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1. INTRODUCTION:

In dealing with uncertainties many theories have been recently developed, including the
Theory of Probability, Theory of Intuitionistic Fuzzy Sets and Theory of Rough Sets and so on.
Although many new techniques have developed as a result of these theories, yet difficulties are
still there. The major difficulties arise due to inadequacy of parameters.

The fuzzy set was introduced by Zadeh [14] in 1965 where each element had a degree of
membership. The intuitionistic fuzzy set (IFS) was introduced by Atanaasov [1] in 1986 as a
generalization of fuzzy set, where besides the degree of membership and the degree of
non-membership of each element. It does not handle the indeterminate and inconsistent
information which exist in belief system.

In 1995, Smarandache starting from philosophy (when we are fretted to distinguish
between absolute truth and relative truth or between absolute falsehood and relative falsehood in
logics, and respectively between absolute membership and relative membership or absolute
non-membership and relative non-membership in set theory) that time began to use the
non-standard analysis. Also, inspired from the sport games (winning, defeating, or tie scores),
from votes (pro, contra, null/black votes), from decision making and control theory (making a
decision, not making, or hesitating), from accepted/rejected/pending, etc., and guided by the fact
that the law of excluded middle did not work any longer in the modern logics. So how to deal with
all of them at once is it possible to unit them?. This type of situations well managed by
Neutrosophic Set(NS), where indeterminacy is quantified explicitly and truth, indeterminacy, and
falsity membership are independent to each other NS provides a more reasonable mathematical
framework to deal with indeterminate and inconsistent information. During the last decade, the
concept of NS and interval neutrosophic set (INS) have been used in various application such as
Medical Diagnosis, Database, Topology, image processing Guo and Sengur [6] and decision
making problems Broumi and Smarandache [3].

Smarandache [11] first introduced neutrosophy as a branch of philosophy which studies
the origin, nature, and scope of neutralities. Smarandache defined indeterminacy explicitly and

state that truth, indeterminacy and falsity membership are independent and lies within ]70,17,
which is the non-standard unit interval and an extension of the standard interval [0,1]. It is
generalization of intuitionistic fuzzy sets.
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Extremal algebra, in which the addition and multiplication of vectors and matrices is
formally replaced by operations of maximum and minimum, or maximum and plus, are a useful
tool for approaching problems in many areas, such as System Theory, Graph Theory, Scheduling
Theory or knowledge Engineering. Systematic investigation in this direction can be found in
[2,4,13].

Kim and Roush [7] introduced the concept of Fuzzy Matrix(FM). FM plays a vital role in
various areas in Science and Engendering and solves the problems involving various types of
uncertainties [10]. FMs deal only with membership value where as Intuitionistic Fuzzy
Matrices(IFMs) deals with both membership and non-membership values.

Dhar et.al, [5] have defined neutrosophic fuzzy matrices and studied square neutrosophic
fuzzy matrices. Kavitha et.al, [8]studied the concepts of minimal solution of fuzzy neutrosophic
soft matrix. They, also studied on the powers of fuzzy neutrosophic soft matrices in [9]. Uma et.al,
[12] introduced two types of fuzzy neutrosophic soft matrices.

In this paper we extend the model operator concept to neutrosophic fuzzy matrix and give
some fascinating results in transitive closure of neutrosophic fuzzy matrix.

2. PRELIMINARY
In this section the basic definitions of Neutrosophic Set (NS), , Fuzzy Neutrosophic
Matrix (FNM) and fuzzy neutrosophic matrices of type-I are provided.

Definition 2.1.
[11]A neutrosophic set A on the universe of discourse X is defined as

A=L{X T, (), 1,(X), Fa(X)); xe X}, where T,1,F: X —>]0,1"[ and
OLST,(X)+1,(X)+F,(x) <3". 2.1

From philosophical point of view the neutrosophic set takes the value from real standard or

non-standard subsets of ] 0,1[. But in real life application especially in Scientific and

Engineering problems it is difficult to use neutrosophic set with value from real standard or

non-standard subset of ]70,1[. Hence we consider the neutrosophic set which takes the value

from the subset of [0,1]. Therefore we can rewrite equation (2.1) as

0<T,(X)+1,(X)+F,(x)<3. Inshortanelement a in the neutrosophic set A, can be written as

a=(a',a',a"), where a' denotes degree of truth, a' denotes degree of indeterminacy, a*
denotes degree of falsity such that 0<a' +a' +a" <3.

Example 2.1
Assume that the universe of discourse X ={X, X,, X;} where X,X, and X,

characterize the quality, reliability, and the price of the objects. It may be further assumed that the
values of {x, X,, X;} are in [0,1] and they are obtained from some investigations of some experts.

The experts may impose their opinion in three components viz; the degree of goodness, the degree
of indeterminacy and the degree of poorness to explain the characteristics of the objects. Suppose
A is a Neutrosophic Set (NS) of X, such that

A={(x,04,0.5,0.3),(x,,0.7,0.2,0.4),(x,;,0.8,0.3,0.4)} where for X, the degree of goodness
of quality is 0.4, degree of indeterminacy of quality is 0.5 and degree of falsity of quality is 0.3 etc.

Definition 2.2.
A neutrosophic matrix is a matrix in which all entries are from neutrosophic set. That is

A=((aj,a;,a;))
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Definition 2.3.
[12] Let A=((aj,a;, & )),B=((b;,b;,b))eN_ .. The component wise addition
and component wise multiplication is defined as
A®B = (sup{a;, by}, supfay, b}, inf{al,bi})
A®B=(inf{a;, b}, inf{a;, b}, supfaj,b})

Definition 2.4.
Let AeN__,BeN the composition of A and B is defined as

mxn? nxp?

AsB= (DAt Dah At kﬁ[(aivb{,—)j

equivalentlywecanwritethesameas

_ U@L AL, (8l Ab) (el vb;)j.
k=1 k=1 k=1

The product Ao B isdefined if and only if the number of columns of A is same as the number of

rows of B. Then A and B are said to be conformable for multiplication. We shall use AB
instead of Ao B.

Where > (a; Abj) means max-min operation and

n
[ ](ak vb;) means min-max operation.

k=1
Definition 2.5.
Let <XT,X',XF> <yT,y',yF> e NFS . Then we have
. <xT,x',xF>v<yT,y',y > <max{x y } max{x',y'},min{xF,yF}>.
« (X' X XY ALYy Y >:<mln{x Y min{x',y'},max{xF,yF}>.
o (X7 X xPY = (xF X xT)
Definition 2.6.

Let (X',x',x"), (y",y",y") NFS. Then

o . (1,1,0), if(xxx}( >
<x X' x ><—<y Yy >_{<XT,X',XF>, < X> (y yly >

Here (X',x',x")>(y",y",y") means X" 2y",x' >y' ,and x" <y"

Definition 2.7.
An NFM J =((1,1,0)) for all entries is known as the universal matrix and NFM O=(

<0, 0,1)) for all entries is known as Zero matrices. Denote the set of all NFMs of order mxn by
F.. and square matrix of order n by F_ . The idenity NFM I= <5UT,5U',5“F> is defined by
(87.0,,6;) = (L,1,0) ifi=jand (&],5,5; )=(0,0,1) if i#j.

[T | R ||
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Definition 2.8.
Let A=((a],a),a Do B=((0].b}.b Dy and C=((c].ci,cf )y, are NFMs.

(TR ij i

Then

» AvB=((a) a8 ) v (b] by, bii"))

+ AnB=((a] a},a ) A(b].b}.b7 ).

« AC (max-min composition) = (v/,((a] , & . ) A(Cg. Gy G5 ))).
Definition 2.9.

Let A=((a],a],a] ), and C=((c],C},Cf )., are NFMs. Then we have

» AOC (min-max composition) = (A, (a],aj, ] )v(c],ci,cf ).

. AT = (<aJTi ay,aj; >) (Transpose of A).

AC=(a(a] a8 «(c].a).a5 ).
A—C = (A (akaaf) —>(ch.cf.c5 ).
A° =((af aj,a] ) (Complement of A).

Also we can use AC = (<Z(a§<czj), PYCHAN | [CHER- )>) .
K=1 K=1 K=1

Also  A? = AA A= A“'A for max-min composition and A = AOA AM = AKTIOA  for
min-max composition.
Definition 2.10.

Forany NFM AeF,,

* A is reflexive if and only if A>1,.

* A is symmetric if and only if A= AT,

« A is transitive if and only if A> AZ.

* A is idempotent if and only if A= A%,

* A is irreflexive if (a,{,ai},aﬁF} = <0, 0,1> for all i=j.
« A is c-transitive if A< A,

Definition 2.11.
An NFM A is said to be an neutrosophic fuzzy equivalence matrix if it satisfy reflexivity,
symmetry and transitivity.

Proposition 2.1.
(AoB) = A"+B° forAB €F,,.

Proposition 2.2.
(A+B) = A"oB° forAB €F,,.

Definition 2.12.
For an NFM A, define WA= (<a;,ai} 1-a; >),<>A: (<1—a1.jF,ai},aijF >).
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Lemma 2.1.

1] (e +by) = > (1-a,)(A-b,) forall i,j,a,,h, <[0.1].

Lemma 2.2.
l_H(aikbkj) = H((l_alk)—i_(l_bu)) fOI' a” i1 j!aij!bq E[O,l]

3. MODAL OPERATORS IN NFM

Throughout this section, matrices means Neutrosophic fuzzy matrices. In this section,
some results about model operators are proved and the definitions of transitive and c-transitive of a
NFM are given.

Lemma 3.1.
For any two NFMs A and B,

V(a3 a5 ) (b] 5,0 ) =Wi(ay. a5, & ) (Y, b b)) (3.)
Proof:
IF (35,3 ) > (0.0 ) ther
(& a.. ay ) <= (b, by, b, ) =W(1,1,0) =(1,1,0). (3.2)
Since, <a,]a,ia,f>2<b§bljb,f>ag >hi, aj>b; and aj <bf. Therefore, 1-a; <1-b{ and
(& & 1-a) ) 2(by,bj,1-7 ) s0 Wi{aj, a8 )) 2W( By by, B ). Thes
Waj, aj.a5 ) < Wby, bj,b) = (1,1,0). (33)
From (3.2) and (3.3), (3.1) holds.
- 1f (a],aj,a] ) <(bj,bj,bf ), then

1j 1) M

W(a], 3, af ) « (b, by.bf ) =Wa] &, ) =(a] 3, 1-aj ). (3.4)

Waj ) & ) WY bj.bf) = ()&, 1-a )« (B].b]. 1) = (a). &, 1-aj).  (35)
Clearly, from (3.4) and (3.5),(3.1) holds.

Lemma 3.2.
For any two NFMs A and B,

o(aj&5.ay ) < (by.bj. b)) = (a5, a7 ) O (8], by, b)) (36)

Proof:
- 1f (aj,a;,af ) > (b by, by ) , then
o((aj,aj,aj ) «(bj by, b)) = 0((1,1,0)) =(1,1,0). (3.7)
Since, <ai}-’a'i;’aij':>2<bl-1!—’bl}'bl}:>’a;Zb.}-:ailij,} and af <bf .Therefore 1-a; <1-hJ and
(ala},1-a] )= (b ,b!,1-b] ), So O((a],a},af }) = o((b bl b ). Thus,
O(ay.aj, 8 ) <O (bf.bj by ) =(1.1,0) (3.9)
From (3.7) and (3.8), (3.6) holds,
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e If <a§,a’_;,a§><<bT b! b.F>, Then

(T | |

O(ay.ay.a5 ) «(bj.bj.b} ) =0(aj a5, 8 ) = (1-a] 3.8 ). (39)

O{af e ) O(0] b ) =15 ). (L7 by )= (147 3,8 . (220

Clearly from (3.9) and (3.10),(3.6) holds.

Lemma 3.3.
A is reflexive matrix if and only if WA is reflexive matrix
Proof:
Alis reflexive < A>1 < (aj,aj,a] )=(d] 5,07 ) forall
ij <(aj,aj,1-a])>(d],6),1-4] ) forall i, j. <WA>W WA is reflexive. In dual way
we can prove the following lemma.

Lemma 3.4.
A is reflexive matrix if and only if OA is reflexive matrix.

Lemma 3.5.

A is reflexive if and only if WA® is reflexive.
Proof: It is evident that if A is reflexive if and only if A° is reflexive and so WA®.
Similarly, OA° is irreflexive if and only if A is reflexive.

Lemma 3.6.
A is symmetric matrix if and only if WA is symmetric matrix and so WA°.

Proof: A is symmetric <:><a,{a,:a,f> = <a,]a,']a:> forall i, j
<:><a§a1; ,1—a;> = <a1Ia1: ,1—a,}> SWA=(WA)'. Thus A is symmetric if and only if WA s
symmetric. Similarly we can prove the following lemma.

Lemma 3.7.
A is symmetric matrix if and only if OA is reflexive matrix.

Lemma 3.8.
A is transitive matrix if and only if WA is transitive matrix.
Proof:

T

n n n
A is transitive < A> A’ & <aij a5, a5 > > <Z(alaL),Z(aiLa;j),H(ai'; +aij)> for all i,j
k=1 k=1 k=1
n n n n n
a2 (a,a).a > Y (aay).a) <] [(af +af) < aj =D (aray).1-a) <1- (aay) < (&) ,1-a] ) >
k=1 k=1 k=1 k=1 k=1

by lemma 2.2 Similarly, we can prove the following lemma.

Lemma 3.9.
A is transitive matrix if and only if OA s transitive matrix.
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Lemma 3.10.
A is idempotent matrix if and only if WA is idempotent matrix.
Proof:

A idempotent < A= A* < <a“ a, ”> <i(a,1alj),§(a1{<ak'j),lkj(ai'; +a,g)> for all i,j.

o (a) a).1-a]) :<ki<a1a:,-),ki_(eu1ak,) 1-Y(aay)) < > @(alal,-),ki(alal,-),f[((l—ab+(1—alj))>

by Lemma 2.2 <WA = (WA)>. Thus A is idempotent <>WA is idempotent. The following
lemma is trivial from the above.

Lemma 3.11.
A is an idempotent matrix if and only if OA is an idempotent matrix.

Remark 3.1.
If A is an neutrosophic fuzzy equivalence matrix, then WA and OA are also
neutrosophic fuzzy equivalence matrices.

Definition 3.1.
Let A e€F the transitive closure and c-transitive closure of A is defined by

A*=AVA’ VA V.. VA" and A = A A(A)A AL A(ADM respectively.

Theorem 3.1.
For AeF,, A =(A")".
Proof:
By definition 3.1, (A*)° =(Av A’V A’ v...vA") = (A° A(AY)° A...A(AY)).

first let us prove (A?)° = (A°)® . We know that A’ = <Z(a,1alj),2(ai1(a;j),1k_[(ai'; +ay, )> and so
= = 21

(A2 <H(a|k +akj) Z(alka'kj) Z(a“lkakj > (311)

Also A° = <aUFa,'JaJ> gives by the definition of A'2],

(A°) = <H(enk +ay), Z(enkak,) Z(enkak, (3.12)

Thus by (3.11) and (3.12) (A*)° = (AC)[Z] , S0 in general (A“)C = (A", By Definition 3.1,
(A =(AVA VA V.. VA =(AVA VA VL VAT = (A AR ALAAY) = (A)AA) AL A(A))

Lemma 3.12.
A is transitive if and only if A° is c-transitive and so WA® is transitive.

Proof:
It is evident from the definition of transitive and c-transitive.

Lemma 3.13.
If A is reflexive NFM, then
« AT is reflexive.
« AvB isreflexive.
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+ AAB isreflexive if and only if B is reflexive.
Proof:
(1) and (ii) are obvious from the definition of reflexive. (iii) If B is not reflexive, then

<bT b! b.F>;t<1,1,O> for at least one i, that s <bT b b.F><<1,1,0>. Thus

sufficient part is trivial.

<a,{,a1'i,a,.iF>A<bT bi b.F><<1,1,O>. Therefore the condition B is reflexive is necessary, the

Theorem 3.2.
If ABeF, where A is reflexive and symmetric, B is reflexive, symmetric and

transitive and A<B, then A” <B.
Proof:

For A=((a],a.a7)), B=((bl,bbf)) . AB:<<ki_(aLb;),ki_<aLb¢j),ﬁ(a1i+bg)>>

and each

n n n <1,1,0>, ifi=],
a'bl), 'bh), af +b5) )=
<k2:;( ik kj) kZ:;(am kj) ]k:!:( ik kj)> {(b;},bd ,bi;:>, |f| ” J
Thus AB=B implies AA<AB=B . That is A*<B . Continuing in this way, we have
A*<B,A*<B... andalso AvA?v A3 ... vA"<B andhence A”<B.,

Lemma 3.14.
If A” is the transitive closure of A, then the transitive closure of WA is WA”
Proof:
Now
WA” =WAV AZv...v ATT=WAVWA? v .. WA" =WAV (WA)? v...v (WA)" = (WA)*
Similarly, the following results are also true.

« WA, =(WA),.

« OA” = (0A)”.

« 0A, =(0A),.
Lemma 3.15.

Foran NFM AeF ,[(WA)T” =[(WA)_T°.
Proof:
As we know (WA)°® = 0A%, [(WA)°T* =[(CA°]” = 0A° v (OA°)?...v (OA%)".

(on)? = (@(&Eaz),ki)(aiLaij),f[(l—&E)(l—ag)>)-

=(<r"[(a:; +af) [ [(a +ak',->,r"[(1—aii)+<1—az)>> BY definition
A= (<ﬁ(afk cal) ] [y +a). Yl az->>)
WA? = (<Hk =1"(a; +a[j),ll[(ai'k +a¢j),1—1£[(aii +aij)>) Which yields,
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(WA?)® = (<1—ll[(ai'; +aij),ll[(a1.'k +ay), | [k=1"(a} +alj)>) Therefore, (0A®)* = (WA?)°, s0 in
general (OA°)" = (WA")*

[(WA) | =[0A° | = 0A° v (OA°)...v (OA%)" = (WA)® v (WA®)® v...v (WA")°
= (WAAWA? A...AWA")® = (WA, )°.

In dual fashion, one can prove the following lemma.

Lemma 3.16.
Foran NFM AeF_,((CA),)" = ((CA))™.

Definition 3.2.

For any two elements <xT,x' , xF>,<yT,y' , yF> e NFS, we introduce the operation ‘A,
as <xT,x',xF>/\m<yT,y',yF>:<min{xT,yT},min{x',y'},min{xF,yF}>. Using this definition
the following lemmas are trivial.

Lemma 3.17.
The operation A, is commutative on NFSs.

Lemma 3.18.
The operation A, is associative on NFS.

Lemma 3.19.
The operation A, is distributive over addition in NFSs.

Proof:
Forany (X',x',x7),(y"y',y"),(z",2',27) e NFSs

(<XT,X',XF>+<yT,y',yF>)/\m<zT,z',zF>:<max{xT,yT},max{x',y'},min{xF,yF}>/\m<zT,z',zF>
:{min{xT,yT},zT},min{max{x',y'},z'},min{min{xF,yF}zF} (3.13)
case(1)
1t (X', 27) = (y", v yF) and (XX, x7)=(y",y',y") thenRHS of 14 is (z',x7) now
consider, ((X",X',x") A, (2", 2", 2N +(y", ",y ) An (22", 27))
<Zt’zl1yF>’ if<ZT1ZI’ZF>S<yT’yI1yF>1
<

:<ZT’ZI’ZF>+{<yT,y',zF>, it <yT,y|'yF> <ZT,z',ZF>

=(z,7',x) (3.14)
In this case, it is distributive.
case(2)
If <XT,X',XF>S<yT,y',yf> and <xT,x',xF>§<zT,z',zF> then the left hand side of above
equation 15 reduces to <yT,y' : yF>/\m <ZT,Z',ZF>.
sub case (2.1)
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it (2227 <(yy' ) then (20,2 2F) A (YL YY) =(2 2 yE) Now,
(XXX ) A (2,2, 27) + (X X XY A (27,2, 25 ) = (X X 2 )+ (2, 2y ) = (2,2 yF)

Thus distributivity holds,
sub case (2.2)

It (z',2',2)2(y",y',y") then LH.S of equation 15 becomes (y',y',z") and RH.S of
equation 15 becomes ,
(XXX ) A (202 27 + (X X XY A (27,2, 2 ) = (X X 27 )+ (YT Y 27) = (yT Y )

Thus it is distributive in this case also.

case(3)

If (yhy' ¥y <(x" X' x7)<(, 2", 27) then L.H.S becomes,

(XX XDy Y Y D Ag (22 27) = (X x,x> A2, 27)= (X7 X, 27) Also,
F

)=
(X" X' XA (27,2, 2 N+ (27,2 ) A (27,2, 27 ) = (X Y )+ (YT Y 27) = (X X, 27)

S0, it is distributive in this case too

case (4)
it (222X X XY= (Y'Y yT)  then  the  LHS  reduces  to
<yT,yI’yF>/\m<ZT,ZI’ZF>:<ZT’ZI,yF> and

(X" X XD A (27,2 TN+ (X X XY A (27,2, 2 ) = (27,2 X )+ (2, 2 yF) = (27,2, 2F)

Thus distributivity holds for all cases.
Definition 3.3.

For any two elements <XT,X' : XF>,<yT, y', yF> e NFS, we define the inequality '<' as
(XX xF)<(y",y',yF) means x<y, x'<y' and X" <y".
Remark 3.2.

The elements in the set {(yT,y',yF>e NFS|<xT,x',xF>s<yT,y',yF>} are identity
element of <XT,X' , xF> with respect to 'A_,. That is we have multiple identity element.
Remark 3.3.

Any NFMs A can be decomposed into two Neutrosophic fuzzy matrices WA and OA
by means of A, . Thatis A=(WA)A, (CA).

Remark 3.4.
For any two NFMs A and B, (AvB)A,,(AAB)=(AA, B).

4. CONCLUSION:
In this paper, we introduced modal operators and a new composition operation in
Neutrosophic fuzzy matrix. Further some of its algebraic properties are investigated.
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