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Abstract. In this paper, we explain classical concept of the fuzzy soft sets to express the idea

of cyclic normal fuzzy neutrosopic soft G-modular structures acting on a group. Neutrosopic

soft set theory is studied as an effective parametric tool to discuss with uncertainities. We

also investigate the relationship between cyclic fuzzy neutrosopic soft G-modules and classical

modules. We study their concerned properties in terms of soft set operations, soft image, soft

pre-image, soft anti image, α-inclusion of neutrosopic fuzzy soft sets and linear combinations of

the vector spaces. Furthermore we show applications of this new G-modules on vector spaces

with supporting proofs.

1. Introduction

The fuzzy set was introduced by Zadeh[19] in 1965 where each element had a degree of

membership. The bifuzzy set on a universe was proposed by K.Atanasov[1] in 1983, as a

generalization of fuzzy set, which discussed both the degree of membership and the degree of non

membership of each element. The idea of Neutrosophic set was introduced by F.Smarandache[14]

which is a parametric tool to deal with problems which involves vagueness, indeterminacy and

inconsistent data. The theory of Neutrosophic set which is the modern set of the classical

sets, conventional fuzzy set[19], intuitionistic fuzzy set[1] and interval valued fuzzy set[16] was

proposed by F.Smarandache[14]. This idea was recently used in developing new approach in

various field such as databases study, medical diagonses problems, decision making problem,

http://creativecommons.org/licenses/by/3.0
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topology, control theory and so on. The idea of neutrosophic set handles middle data where

fuzzy theory and intuitionistic fuzzy set theory cannot be applied. The concept of cyclic fuzzy

set is discussed in [12]. Our objective is to introduce the concept of cyclic fuzzy neutrosophic

soft groups [CFNSG] and its properties.

2. Preliminaries

Definition 1. Let U be a non-empty set. Then a fuzzy set on U is meant to be a function

A : U −→ [0, 1]. A is called the graded function, A(x) is called the membership grade of x in A.

We also write {(x,A(x)) : x ∈ U}.

Example 1. Consider U = {a, b, c, d} and A : U −→ [0, 1] defined by A(a) = 0, A(b) =

0.7, A(c) = 0.4, A(d) = 1.

Definition 2. Let U be the initial universe set and E be the set of parameters. Let P (U) denote

the power set of U . Consider a non empty set A,A ⊂ E. A pair (F,A) is called a soft set over

U, where F : A −→ P (U).

Example 2. Suppose that U is the set of houses under consideration, say U = {h1, h2, . . . , h5} .

Let E be the set of some attributes of such houses, say E = {e1, e2, . . . , e8} , where e1, e2, . . . , e8

stand for the attributes “expensive”, “beautiful”, “wooden”, “cheap”, “modern” and “in bad”,

“repair” respectively.

In this problem, to discuss a soft set means to point out expensive houses, beautiful houses and so

on. For example, the soft set (F,A) that explain the “attractiveness of the houses” in the opinion

of a buyer, say Thomas, may be defined like this: A = {e1, e2, e3, e4, e5} ; F (e1) = {h2, h3, h5} ,

F (e2) = {h2, h4} , F (e3) = {h1} , F (e4) = U, F (e5) = {h3, h5} .

Definition 3. A Neutrosophic set ‘A′ on the universe of discourse X is defined as

A = 〈x, TA(x), IA(x), FA(x)〉 , x ∈ X

where TA(x) : X −→ [0−, 1+], IA(x) : X −→ [0−, 1+], FA(x) : X −→ [0−, 1+],

and 0− ≤ TA(x)+IA(x)+FA(x) ≤ 3+, TA(x), IA(x) and FA(x) are respectively truth membership,

indeterminacy membership and falsity membership.

From certain point of view, the neutrosophic set takes from real standard and non-standard

values [0−, 1+]. So instead of [0−, 1+] we have to take the value [0, 1] for technical applications,

because [0−, 1+] will be inconvenient to use in all main applications such as scientific and
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engineering problems.

If a Neutrosophic set ‘A’ is contained in another neutrosophic set B, i.e.A ⊆ B then

TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x), for all x ∈ X.

Definition 4. A fuzzy neutrosophic set ‘A’ on the universe of discourse X is defined as

A =
〈
x,∆TA(x),∆IA(x),∆FA(x)

〉
, x ∈ X

where

T : X −→ [0, 1], I : X −→ [0, 1], F : X −→ [0, 1], and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 2.

Example 3. Consider the universe of discourse U = {x1, x2, x3} , where x1 characterizes the

capability, x2 characterizes the trustworthiness and x3 indicates the prices of the objects. It

may be further assumed that the values of x1, x2 and x3 are in [0, 1] and they are derived from

doubtful of some experts. The experts may say their opinion in three components viz. the degree

of goodness, the degree of indeterminacy and that of lowerness to explain the characteristics of

the objects. Suppose A is a fuzzy neutrosophic set(FNS) of U , such that,

A = {〈x1, 0.3, 0.5I, 0.4〉 , 〈x2, 0.4I, 0.2, 0.6〉 , 〈x3, 0.7, 0.3, 0.5I〉 , } ,

where the membership of goodness of capability is 0.3, degree of indeterminacy of capability is

0.5I and degree of falsity of capability is 0.4 etc.

Definition 5. Let U be the initial universal set and E be a set of parameters. Let P (U) denote

the set of all fuzzy neutrosophic set of U . Consider a non-empty set A,A ⊂ E. The collection

(F,A) is noted to be the fuzzy neutrosophic soft set(FNSS) over U , where F : A −→ P (U).

Example 4. Let U be the set of blouses under consideration and E is the set of parameters (or

qualities). Each parameter is a fuzzy neutrosophic word or sentence involving fuzzy neutrosophic

words. Let E = {Bright, Cheap, Costly, Very costly, Colorful, Cotton, Polystyrene, Long sleeve,

Expensive }. In this case, to define a fuzzy neutrosophic soft set means to point out in the

universe U = {b1, b2, b3, b4, b5} and the set of constants A = {e1, e2, e3, e4} , where each ei is a

specific criterion for blouses:

e1 stands for ‘Bright’,

e2 stands for ‘Cheap’,

e3 stands for ‘Costly’,

e4 stands for ‘Colorful’,
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Suppose that,

F (Bright) = {〈b1, 0.5, 0.6I, 0.3〉 , 〈b2, 0.4, 0.7, 0.2I〉 , 〈b3, 0.6I, 0.2, 0.3〉 , 〈b4, 0.7I, 0.3, 0.2〉 , 〈b5, 0.8, 0.2, 0.3I〉} .

F (Cheap) = {〈b1, 0.6I, 0.3, 0.5〉 , 〈b2, 0.7, 0.4I, 0.3〉 , 〈b3, 0.8I, 0.1, 0.2〉 , 〈b4, 0.7, 0.1, 0.3I〉 , 〈b5, 0.8I, 0.3, 0.4〉} .

F (Costly) = {〈b1, 0.7I, 0.4, 0.3〉 , 〈b2, 0.6, 0.1I, 0.2〉 , 〈b3, 0.7, 0.2, 0.5I〉 , 〈b4, 0.5I, 0.2, 0.6〉 , 〈b5, 0.7, 0.3I, 0.2〉} .

F (Colorful) = {〈b1, 0.8, 0.1I, 0.4〉 , 〈b2, 0.4, 0.2I, 0.6〉 , 〈b3, 0.3I, 0.6, 0.4〉 , 〈b4, 0.4, 0.8, 0.5I〉 ,

〈b5, 0.3, 0.5I, 0.7〉} .

The fuzzy neutrosophic soft set(FNSS) (F,E) is a parameterized family of all fuzzy

neutrosophic sets of U and explain a collection of approximation of an element. The mapping

F here is ‘blouses(.)’, where dot(.) is to be filled up by a parameter ei ∈ E. Therefore, F (e1)

means ‘blouses(Bright)’ whose functional-value is the fuzzy neutrosophic set

{〈b1, 0.5, 0.6I, 0.3〉 , 〈b2, 0.4, 0.7, 0.2I〉 , 〈b3, 0.6I, 0.2, 0.3〉 , 〈b4, 0.7I, 0.3, 0.2〉 , 〈b5, 0.8, 0.2, 0.3I〉} .

Thus we can see, (FNSS) (F,A) as a collection of approximation as below:

(F,A) = {Bright blouses = {〈b1, 0.5, 0.6I, 0.3〉 , 〈b2, 0.4, 0.7, 0.2I〉 , 〈b3, 0.6I, 0.2, 0.3〉 ,

〈b4, 0.7I, 0.3, 0.2〉 , 〈b5, 0.8, 0.2, 0.3I〉} ,Cheap blouses = {〈b1, 0.6I, 0.3, 0.5〉 , 〈b2, 0.7, 0.4I, 0.3〉 ,

〈b3, 0.8I, 0.1, 0.2〉 , 〈b4, 0.7, 0.1, 0.3I〉 , 〈b5, 0.8I, 0.3, 0.4〉} ,Costly blouses = {〈b1, 0.7I, 0.4, 0.3〉 ,

〈b2, 0.6, 0.1I, 0.2〉 , 〈b3, 0.7, 0.2, 0.5I〉 , 〈b4, 0.5I, 0.2, 0.6〉 , 〈b5, 0.7, 0.3I, 0.2〉} ,Colorful blouses =

{〈b1, 0.8, 0.1I, 0.4〉 , 〈b2, 0.4, 0.2I, 0.6〉 , 〈b3, 0.3I, 0.6, 0.4〉 , 〈b4, 0.4, 0.8, 0.5I〉 , 〈b5, 0.3, 0.5I, 0.7〉}} .

In obtain a fuzzy neutrosophic soft set in a computer, we can express it in the form of a table

as shown below (corresponding to the fuzzy neutrosophic soft set in the above example). In this

table, the entries are cij corresponding to the blouse bi and the parameter ej, where cij =(true-

membership value of bi, indeterminacy-membership value of bi, falsity membership value of bi)

in F (ej). The fuzzy neutrosophic soft set (F,A) described as above is expressed as follows.



b1 (0.5, 0.6I, 0.3) (0.6I, 0.3, 0.5) (0.7I, 0.4, 0.3) (0.8, 0.1I, 0.4)

b2 (0.4, 0.7, 0.2I) (0.7, 0.4I, 0.3) (0.6, 0.1I, 0.2) (0.4, 0.2I, 0.6)

b3 (0.6I, 0.2, 0.3) (0.8I, 0.1, 0.2) (0.7, 0.2, 0.5I) (0.3I, 0.6, 0.4)

b4 (0.7I, 0.3, 0.2) (0.7, 0.1, 0.3I) (0.5I, 0.2, 0.6) (0.4, 0.8, 0.5I)

b5 (0.8, 0.2, 0.3I) (0.8I, 0.3, 0.4) (0.7, 0.3I, 0.2) (0.3, 0.5I, 0.7)


Definition 6. Let X be a non-empty collection and
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A = 〈x, TA(x), IA(x), FA(x)〉 , B = 〈x, TB(x), IB(x), FB(x)〉 are fuzzy neutrosophic soft sets.

Then union, intersection and difference sets defined as

TA∪B(x) = max {TA(x), TB(x)} , IA∪B(x) = max {IA(x), IB(x)} , FA∪B(x) = min {FA(x), FB(x)} .

TA∩B(x) = min {TA(x), TB(x)} , IA∩B(x) = min {IA(x), IB(x)} , FA∩B(x) = max {FA(x), FB(x)} .

for all x ∈ X and

A/B = TA/B(x) = min {TA(x), TB(x)} = IA/B(x) = min {IA(x), 1− IB(x)}

= FA/B(x) = max {FA(x), FB(x)}

Definition 7. A pair (F,A) is called Fuzzy neutrosophic soft group if the following conditions

are satisfied:

(FNSG1) : TA(xy) ≥ min {TA(x), TA(y)} , FA(xy) ≤ max {FA(x), FA(y)} ,

IA(xy) ≤ max {IA(x), IA(y)} for all x, y ∈ X.

(FNSG2) : TA(x−1) ≥ TA(x), FA(x−1) ≤ FA(x), IA(x−1) ≤ IA(x) for all x ∈ X.

Example 5.

(i) Let the universe of discourse X = {x, y, z} . Then

A = {〈x, 0.1, 0.3I, 0.5〉 , 〈y, 0.2, 0.5, 0.6I〉 , 〈z, 0.3I, 0.4, 0.5〉}

implies the degrees of goodness of capability is 0.1, degree of indeterminacy of capability is

0.3I and degree of falsity of capability is 0.5.

(ii) Let X = {DOG,CAT,RAT} . A FNS ‘A’ of X could be

A = {〈DOG, (0.3I, 0.2, 0.1)〉 , 〈CAT, (0.3, 0.4I, 0.6)〉 , 〈RAT, (0.1, 0.3, 0.4I)〉}

Definition 8. A fuzzy neutrosophic soft set is said to be zero FNS if TA(x) = 0, IA(x) =

0, FA(x) = 1 for all x ∈ X. It is denoted by 0N . A fuzzy neutrosophic soft set is said to be unit

FNS if TA(x) = 1, IA(x) = 1, FA(x) = 0 for all x ∈ X. It is known as 1N .

The below proposition is obvious.

Proposition 1. Zero FNS and unit FNS of a group X are well known FNSG of X.
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Definition 9. The α−cut of the FNS. A is a classical subset Aα of the set X is given by

Aα = {x, x ∈ X/TA(x) ≥ α} .

Proposition 2. Let A be FNSG of a group X. Then for α ∈ [0, 1], α−cut Aα is a classical

subgroup of X.

Proof. For all x, y ∈ Aα. We have TA(x) ≥ α, TA(y) ≥ α.

Now TA(xy−1) ≥ min {TA(x), TA(y)} = α.

3. Cyclic fuzzy neutrosophic soft groups

The main concepts on cyclic fuzzy neutrosophic soft group is related to cyclic group and fuzzy

neutrosophic soft group. Before defining the cyclic fuzzy neutrosophic soft group, we will need

the following well known definition.

Let ‘a’ be an element of a group A. Then the set S = {an/n ∈ Z} is a cyclic subgroup

of A generated by a, and is denoted by < a >. Now we shall define a new class of fuzzy

neutrosophic soft groups. Let A = 〈a〉 be a cyclic group. If

Ã = {〈an, (TA(an)), (IA(an)), (FA(an))〉 /n ∈ Z}

is fuzzy neutrosophic soft group, then Ã is called a cyclic fuzzy neutrosophic soft group [CFNSG]

powered by (a, TA(a), IA(a), FA(a)) and will be denoted by 〈a, TA(a), IA(a), FA(a)〉.

Definition 10. Let e be the identity element of the group A. We define fuzzy neutrosophic soft

group E by

E = {e, TA(e), IA(e), FA(e)/TA(e) = IA(e) = FA(e) = 1|e ∈ A}

Definition 11. A negative fuzzy(N-Fuzzy) neutrosophic soft set A on the universe of discourse

X is defined as

A =
〈
x, δA(x), IA(x),∆A(x)

〉
, x ∈ X

where δ, I,∆ : X −→ [−1, 0] and− 1 ≤ δA(x) + IA(x) + ∆A(x) ≤ 0.

Definition 12. A N-Fuzzy neutrosophic soft set A over the universe X is said to be null or

empty N-Fuzzy neutrosophic soft set if

δA(x) = −1, IA(x) = −1,∆A(x) = 0 for all x ∈ X .
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It is denoted by −1N .

Definition 13. A N-Fuzzy neutrosophic soft set A over the universe X is said to be

absolute(universe) N-Fuzzy neutrosophic soft collection if

δA(x) = 0, IA(x) = 0,∆A(x) = −1 for all x ∈ X .

It is represented by 0N .

Definition 14. The complement of a N-Fuzzy neutrosophic soft set A is denoted by AC and is

defined as

AC = 〈x, δAC (x), IAC (x),∆AC (x)〉

where

δAC (x) = ∆A(x)

IAC (x) = 1− IA(x)

∆AC (x) = δA(x).

The complement of a N-Fuzzy neutrosophic soft set A can also be defined as 0N −A.

Definition 15. Let (G, .) be a groupoid and let −1N 6= A ∈ NFNS(G), Then A is called

N-Fuzzy neutrosophic soft subgroupoid ( in short NFNSS in G) if

δA(xy) ≤ max {δA(x), δA(y)}

IA(xy) ≤ max {IA(x), IA(y)}

∆A(xy) ≥ min {∆A(x),∆A(y)}

for all x, y ∈ G.

A N-Fuzzy neutrosophic soft set

A =
{〈
x : δA, IA,∆A

〉
, x ∈ X

}
in X can be associated with an ordered pair

(
δA, IA,∆A

)
in

F (X , [−1, 0])× F (X , [−1, 0])× F (X , [−1, 0])

where F (X , [−1, 0]) explains the set of all collections from X to [−1, 0] . For simplicity, we write

A =
(
δA, IA,∆A

)
instead of A =

{(
x : δA, IA,∆A

)
/x ∈ X

}
.
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Definition 16. Let A =
(
δA, IA,∆A

)
be an NFNSS in X . Then the set

N
{(
δA, IA,∆A

)
; (p, q, r)

}
=
{
x ∈ X/δA(x) ≤ p, IA(x) ≤ q,∆A(x) ≥ r

}
where p, q, r ∈ [−1, 0] with p+q+r ≥ −1 is said to be an N(p, q, r)-level set of A. An N(p, p, p)-

level set of A =
(
δA, IA,∆A

)
is said to be an N -level set of A.

Definition 17. Let A =
(
δA, IA,∆A

)
and B =

(
δB, IB,∆B

)
be two NFNSS in X . If for all

x ∈ X , δA(x) ≥ δB(x), IA(x) ≥ IB(x) and ∆A(x) ≤ ∆B(x), then A is said to be an NFNSS

subset of B and is denoted as A ⊆ B. We say that A = B if and only if A⊆B and B⊇A.

Definition 18. Let A =
(
∆δA ,∆IA ,∆∆A

)
and B =

(
δB, IB,∆B

)
be two NFNSS in X . Then

their collection and intersection are also N -Fuzzy neutrosophic soft set in X Where

(A∪B) =
{
x,min

{
δA(x), δB(x)

}
,min

{
IA(x), IB(x)

}
,max

{
∆A(x),∆B(x)

}}
and

(A∩B) =
{
x,max

{
δA(x), δB(x)

}
,max

{
IA(x), IB(x)

}
,min

{
∆A(x),∆B(x)

}}
Example 6. Let X be as in example 1 and

A = {〈w,−0.9,−0.8,−0.7〉 , 〈x,−0.5,−0.4,−0.5〉 , 〈y,−0.7,−0.6,−0.6〉 , 〈z,−0.6,−0.3,−0.2〉}

B = {〈w,−0.8,−0.4,−0.6〉 , 〈x,−0.9,−0.6,−0.7〉 , 〈y,−0.7,−0.4,−0.5〉 , 〈z,−0.8,−0.4,−0.7〉}

then A =
(
δA, IA,∆A

)
and B =

(
δB, IB,∆B

)
are N -Fuzzy neutrosophic soft set in X . Easily we

can verify that A⊆B.

Example 7. Let X be as in example 2 and

A = {〈w,−0.7,−0.4,−0.5〉 , 〈x,−0.8,−0.5,−0.7〉 , 〈y,−0.9,−0.5,−0.6〉 , 〈z,−0.4,−0.2,−0.3〉}

B = {〈w,−0.9,−0.4,−0.5〉 , 〈x,−0.7,−0.5,−0.4〉 , 〈y,−0.6,−0.4,−0.5〉 , 〈z,−0.8,−0.5,−0.6〉}

then A =
(
δA, IA,∆A

)
and B =

(
δB, IB,∆B

)
are N -Fuzzy neutrosophic soft set in X .

A∪B = {〈w,−0.9,−0.4,−0.5〉 , 〈x,−0.8,−0.5,−0.4〉 , 〈y,−0.9,−0.5,−0.5〉 , 〈z,−0.8,−0.5,−0.3〉}

A∩B = {〈w,−0.7,−0.4,−0.5〉 , 〈x,−0.7,−0.5,−0.7〉 , 〈y,−0.6,−0.4,−0.6〉 , 〈z,−0.4,−0.2,−0.6〉}

Obviously,A∪B and A∩B are N-Fuzzy neutrosophic soft set in X .
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Definition 19. Let C be a non empty subset of X. Then N-Fuzzy neutrosophic soft membership

function of C is a function Ψ̄C = (δΨ̄C
, IΨ̄C

,∆Ψ̄C
) defined as, for any x ∈ X,

δΨ̄C
(x) =

 −1 if x ∈ C

0 if x /∈ C

IΨ̄C
(x) =

 0 if x ∈ C

0.5 if x /∈ C

∆Ψ̄C
(x) =

 0.5 if x ∈ C

−1 if x /∈ C

We denote N-Fuzzy neutrosophic soft characteristic function of X by Ψx = (δx, Ix,∆x).

Theorem 1. If A is a cyclic fuzzy neutrosophic soft group, then

Am = {(an, (TA(an))m, (IA(an)), (FA(an)))/n ∈ Z,m ∈ N}

is also a cyclic fuzzy neutrosophic soft group.

Theorem 2. If Ai and Aj are cyclic fuzzy neutrosophic soft groups, then Ai∪Aj is also a cyclic

fuzzy neutrosophic soft group, for some i, j ∈ N.

Proof. We can show only grade of function. Let m ≤ n.

In this case (FNSG1), since Ai ⊃ Aj ,

TAi∪Aj (anam) = max {TAi(anam), TAj (anam)}

≥ max
{

(TA(anam))i, (TA(anam))j
}

≥ max
{

min
{

(TA(an))i, (TA(am))i
}
,min

{
(TA(an))j , (TA(am))j

}}
≥ min {max {TAi(an), TAi(am)} ,max {TAj (an), TAj (am)}}

≥ min {max {TAi(an), TAj (an)} ,max {TAi(am), TAj (am)}}

≥ min {TAi∪Aj (an), TAi∪Aj (am)}
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Similarly we can prove FAi∪Aj and IAi∪Aj .

(FNSG2) TAi∪Aj (x−1) = max
{
TAi(x−1), TAj (x−1)

}
≥ max

{
(TA(x−1))i, (TA(x−1))j

}
≥ max

{
(TA(x))i, (TA(x))j

}
≥ max {TAi(x), TAj (x)}

≥ TAi∪Aj (x).

Similarly we can prove FAi∪Aj (x−1) and IAi∪Aj (x−1).

Theorem 3. If Ai and Aj are cyclic fuzzy neutrosophic soft groups, then Ai∩Aj is also a cyclic

fuzzy neutrosophic soft group, for some i, j ∈ N.

Proof. We can show only grade of function. Let m ≥ n.

In this case (FNSG1), since Ai ⊂ Aj ,

TAi∩Aj (anam) = min {TAi(anam), TAj (anam)}

≤ min
{

(TA(anam))i, (TA(anam))j
}

≤ min
{

max
{

(TA(an))i, (TA(am))i
}
,max

{
(TA(an))j , (TA(am))j

}}
≤ max {min {TAi(an), TAi(am)} ,min {TAj (an), TAj (am)}}

≤ max {min {TAi(an), TAj (an)} ,min {TAi(am), TAj (am)}}

≤ max {TAi∩Aj (an), TAi∩Aj (am)}

Similarly we can prove FAi∩Aj and IAi∩Aj .

(FNSG2) TAi∩Aj (x−1) = min
{
TAi(x−1), TAj (x−1)

}
≤ min

{
(TA(x−1))i, (TA(x−1))j

}
≤ min

{
(TA(x))i, (TA(x))j

}
≤ min {TAi(x), TAj (x)}

≤ TAi∩Aj (x).

Similarly we can prove FAi∩Aj (x−1) and IAi∩Aj (x−1).

Definition 20. Let A be a cyclic fuzzy neutrosophic soft group. Then the given set of the cyclic

neutrosophic soft group
{
A,A2, A3, . . . , Am, . . . , E

}
is called cyclic fuzzy neutrosophic soft group

powered by A. It will be represented by 〈A〉.
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Theorem 4. Consider collection 〈A〉 =
{
A,A2, A3, . . . , Am, . . . , E

}
. Then

∞⋃
n=1

An = A and

∞⋂
n=1

E.

Proof. The proof is clear.

4. Fuzzy Characteristic Neutrosophic Soft Group

In this section, we define fuzzy characteristic neutrosophic soft group (FCNSG) and discuss

their properties. First we deal with the notations T θA, I
θ
A, F

θ
A which is applicable in the following

section.

Definition 21. Let A be a fuzzy neutrosophic soft set of a group G. Let θ : G −→ G be a

map. Define the maps T θA : G −→ [0, 1], IθA : G −→ [0, 1], F θA : G −→ [0, 1] given by, respectively

T θA(x) = TA(θ(x)), IθA(x) = IA(θ(x)), F θA(x) = FA(θ(x)) for all x ∈ X.

Definition 22. A FNSG ‘A’ of a group G is called fuzzy characteristic neutrosophic soft

group(FCNSG) of G if T θA = TA, I
θ
A = IA, F

θ
A = FA for every automorphism θ of G.

We now show the following results

Proposition 3. If A is FNSG of a group G and θ is a homomorphism of G, then the fuzzy

neutrosophic soft set Aθ of G given by

Aθ =
{〈
x, T θA, I

θ
A, F

θ
A

〉
/x ∈ G

}
,

is also FNSG of G.
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Proof. Let x, y ∈ G.Then

(FNSG1) : T θA(xy) = TA(θ(xy)) = TA(θ(x)θ(y))

≥ min {TA(θ(x)), TA(θ(y))}

= min
{
T θA(x), T θA(y)

}
.

IθA(xy) = IA(θ(xy)) = IA(θ(x)θ(y))

≤ max {IA(θ(x)), IA(θ(y))}

= max
{
IθA(x), IθA(y)

}
.

F θA(xy) = FA(θ(xy)) = FA(θ(x)θ(y))

≤ max {FA(θ(x)), FA(θ(y))}

= max
{
F θA(x), F θA(y)

}
.

(FNSG2) : T θA(x−1) = TA(θ(x−1)) ≥ TA(θ(x)) = TA(θ(x)).

Also it is easy to prove IθA(x−1) = IA(θ(x)) and F θA(x−1) = FA(θ(x)).

Therefore Aθ is FNSG of G.

5. Main results

Theorem 5. Let A and B be fuzzy neutrosophic soft groups in X, then so is A ∪B.

Proof. Since A and B be fuzzy neutrosophic soft groups in X. Then clearly FNSG1 and FNSG2

are satisfied.

Now, let x, y ∈ X. Then

(FNSG1) : TA∪B(xy) = max {TA(xy), TB(xy)}

≥ max {min {TA(x), TA(y)} ,min {TB(x), TB(y)}}

≥ min {max {TA(x), TA(y)} ,max {TB(x), TB(y)}}

≥ min {max {TA(x), TB(x)} ,max {TA(y), TB(y)}}

≥ min {TA∪B(x), TA∪B(y)} .

IA∪B(xy) = max {IA(xy), IB(xy)}

≤ max {max {IA(x), IA(y)} ,min {IB(x), IB(y)}}

≤ max {max {IA(x), IB(x)} ,min {IA(y), IB(y)}}

≤ max {IA∪B(x), IA∪B(y)} .
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FA∪B(xy) = min {FA(xy), FB(xy)}

≤ min {max {FA(x), FA(y)} ,max {FB(x), FB(y)}}

≤ max {min {FA(x), FA(y)} ,min {FB(x), FB(y)}}

≤ max {min {FA(x), FB(x)} ,min {FA(y), FB(y)}}

≤ max {FA∪B(x), FA∪B(y)} .

(FNSG2) : TA∪B(x−1) = max
{
TA(x−1), TB(x−1)

}
≥ max {TA(x), TB(x)}

≥ TA∪B(x).

IA∪B(x−1) = max
{
IA(x−1), IB(x−1)

}
≤ max {IA(x), IB(x)}

≤ IA∪B(x).

FA∪B(x−1) = min
{
FA(x−1), FB(x−1)

}
≤ min {FA(x), FB(x)}

≤ FA∪B(x).

Theorem 6. If A and B be fuzzy neutrosophic soft group in X, then A ∩ B is also a fuzzy

neutrosophic soft group in X.

Proof. Since A and B be fuzzy neutrosophic soft groups in X. Then clearly FNSG1 and FNSG2

are satisfied.

Now, let x, y ∈ X. Then

(FNSG1) : TA∩B(xy) = max {TA(xy), TB(xy)}

≥ max {min {TA(x), TA(y)} ,min {TB(x), TB(y)}}

≥ min {max {TA(x), TA(y)} ,max {TB(x), TB(y)}}

≥ max {max {TA(x), TB(x)} ,max {TA(y), TB(y)}}

≥ min {TA∩B(x), TA∩B(y)} .
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IA∩B(xy) = min {IA(xy), IB(xy)}

≥ min {min {IA(x), IA(y)} ,max {IB(x), IB(y)}}

≥ min {min {IA(x), IB(x)} ,max {IA(y), IB(y)}}

≥ min {IA∩B(x), IA∩B(y)} .

FA∩B(xy) = max {FA(xy), FB(xy)}

≥ max {min {FA(x), FA(y)} ,min {FB(x), FB(y)}}

≥ min {max {FA(x), FA(y)} ,max {FB(x), FB(y)}}

≥ min {max {FA(x), FB(x)} ,max {FA(y), FB(y)}}

≥ min {FA∩B(x), FA∩B(y)} .

(FNSG2) : TA∩B(x−1) = min
{
TA(x−1), TB(x−1)

}
≤ min {TA(x), TB(x)}

≤ TA∩B(x).

IA∩B(x−1) = min
{
IA(x−1), IB(x−1)

}
≥ min {IA(x), IB(x)}

≥ IA∩B(x).

FA∩B(x−1) = max
{
FA(x−1), FB(x−1)

}
≥ max {FA(x), FB(x)}

≥ FA∩B(x).

Theorem 7. If A and B be fuzzy neutrosophic soft group in X, then A/B also fuzzy neutrosophic

soft group in X.

Proof. Let x, y ∈ X.
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Now,

TA/B(xy) = min {TA(xy), FB(xy)}

≥ min {min {TA(x), TA(y)} , 1− F cB(xy)}

= min {min {TA(x), TA(y)} , 1−max {F cB(x), F cB(y)}}

= min {min {TA(x), TA(y)} ,min {FB(x), FB(y)}}

= min {min {TA(x), FB(x)} ,min {TA(y), FB(y)}}

= min
{
TA/B(x), TA/B(y)

}
.

Also IA/B(xy) = min {IA(xy), 1− IB(xy)}

≤ min {max {IA(x), IA(y)} ,max {1− IB(y), 1− IB(x)}}

≤ max {min {IA(x), 1− IB(x)} ,min {IA(y), 1− IB(y)}}

≤ max
{
IA/B(x), IA/B(y)

}
.

Also FA/B(xy) = max {FA(xy), TB(xy)}

≤ max {max {FA(x), FA(y)} , 1− T cB(xy)}

≤ max {max {FA(x), FA(y)} ,max {TB(x), TB(y)}}

≤ max {max {FA(x), TB(x)} ,max {FA(y), TB(y)}}

≤ max
{
FA/B(x), FA/B(y)

}
Therefore, A/B is also fuzzy neutrosophic soft group in X.

6. Conclusion and Future work

In this paper, the notion of Fuzzy neutrosophic normal soft subgroups [FNNSG] is introduced

and their basic properties are presented. Union, intersection and difference of Fuzzy neutrosophic

soft groups are defined. Further we defined cyclic fuzzy neutrosophic normal soft group

[CFNNSG] and studied some related properties with supporting proofs. These ideas can be

extended to ring and ideal theory.
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