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1. Introduction

One of the most interesting and promising approaches 
to the analysis of multivariate phenomena and processes 
are methods of cluster analysis or automatic classification 
of objects. Clustering is one of the key areas of data mining. 
Its objective is identification of some unknown structure of a 
group of similar objects in the initial set.

The clear objective of cluster analysis formally refers to 
the problem of finding some multiple partition (coverage) 
of the initial set of objects into non-overlapping subsets. 
In particular, elements of one subset shall differ much less 
among themselves than those of different subsets. Subsets 
that possess this property are called clusters. In case of this 
partition, every object belongs only to one cluster.

Fuzzy clustering allows the same object to belong to sev-
eral (or even all) clusters at the same time, but to a different 
extent. Such clustering in many situations is more “natural” 
than clear, for example, for the objects located on the clus-
ter edge. Besides, the fuzzy approach to solving clustering 
problems in many cases allows splitting complex clusters and 
opens up new opportunities for interpretation of clustering 
results.

Cluster analysis is important and widely used in various 
fields. It provides an opportunity to find hidden groups of 
objects, to improve the analysts’ perception of group data. 
Clustering may be applied for economics and sociology data, 
texts, news feeds, genetic sequences, images, social data, 
medical and biological indicators, etc.

2. Literature review and problem statement

For a more effective solution of emerging practical 
problems of cluster analysis, there is always the need for 

new clustering methods or various modifications of existing 
ones. Considering the needs of medicine [1], agriculture 
[2], economy [3] geodemography [4], various modifications 
of the optimization model of the fuzzy c-means algorithm 
are presented. The main shortcomings of c-means are the 
need for setting the optimum number of clusters, computing 
complexity, “noise” sensitivity, low rate of convergence and 
“sticking” at local minima. Various modifications eliminate 
some shortcomings due to complication of the clustering 
procedure.

In [5] two new optimization models, which allow de-
termining the optimum number of clusters have been de-
veloped. The paper [6] deals with developing a clustering 
method, which is based on the bees optimization algorithm 
with setting the optimum number of clusters. The shortcom-
ings of clustering optimization approaches are computing 
complexity, operation only with small data volume, the pos-
sibility of clustering only by one object similarity criterion.

In [7] the neutrosophic algorithm based on hierarchical 
clustering has been proposed. It can be applied to clustering 
of the data, set in the neutrosophic environment. In [8, 9]  
the methods of clustering of non-numerical input data based 
on the genetic approach have been proposed. The partic-
ularity of these methods is the possibility of clustering of 
objects, which are characterized by specifically set features 
and under uncertainty. Thus, object grouping can be carried 
only by one similarity criterion.

In [10] the BSP algorithm, which performs clustering 
not only on the basis of object features, but also depending 
on the relations between them has been considered. Appli-
cation of this method for clustering of social networks has 
shown that its main drawback is high computing resource 
intensity, which complicates operation with large data sets.

It should be noted that different applied nature of input 
data, objectives, types of clustering leads to a fundamental 
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impossibility to develop a single universal method of cluster 
analysis. But even within the same class of problems, the 
considered clustering methods carry out object grouping 
only by one similarity criterion (typically using a distance 
metric). Thus, only sphere- and ellipsoid-shaped clusters 
are formed. There are a large number of applied problems, 
including described in [11–13], where this type of object 
grouping is inadequate and ineffective.

Therefore, development of a flexible mathematical ap-
paratus, which would have a rather wide range of means 
for object grouping by various criteria of similarity of their 
features, using distance, length and angular metrics is rea-
sonable. This will allow an effective solution of rather broad 
classes of problems from various subject areas within the 
developed approach using various types of clustering. This 
will also allow clustering not only with ellipsoids but also 
cones and concentric spheres.

According to the author, the use of fuzzy binary relations 
for a mathematical description of various object similarity 
criteria will ensure the implementation of different types 
of clustering within a single approach. In addition, this will 
allow not only identifying a relationship between objects 
by different criteria, but also determining its degree, which 
gives the opportunity to develop a fuzzy clustering approach 
with all its benefits.

3. Mathematical statement of the fuzzy problem of  
cluster analysis

The lack of a single conventional statement of fuzzy 
modification of the cluster analysis problem requires a clear 
factual description of the research problem.

Let us consider the general problem of fuzzy cluster anal-
ysis in the following statement.

Let there be given some objects O1,..., Om, characterized 
by n quantitative features. Let ( )i i i

1 2 nc ,c , ,c  be the feature 
vector, characterizing the object with the number i. Thus, each 
object Oi, i 1,m=  definitely corresponds to the feature vector 

( )i i i
i 1 2 nс c ,c , ,c , i 1,m.=

It is necessary to partition the given objects iО , i 1,m=  
into homogeneous “similarity” groups (clusters) by all n 
features according to a particular one or more similarity cri-
teria of objects and determine the degree of their “member-
ship” in the obtained clusters. To do this from the mathemat-
ical point of view, the problem of fuzzy clustering of feature 
vectors ( )i i i

i 1 2 nс c ,c , ,c ,  i 1,m=  shall be solved.

4. Goal and objectives 

The research goal is to improve the efficiency of solving 
automatic classification (clustering) problems by develop-
ing clear and fuzzy clustering methods, which allow object 
grouping by the distance, angular and length similarity of 
vector features.

To achieve the goal, the following problems shall be 
solved:

– to give examples of membership functions, described 
by fuzzy binary relations that characterize different object 
similarity criteria;

– to develop clear and fuzzy methods for single-level and 
multi-level clustering based on fuzzy binary relations;

– to illustrate the methods on real applied problems.

5. Examples of constructing object similarity measures 
based on fuzzy binary relations 

The cluster analysis method is based on the concepts of 
similarity of objects in their features. Determination of the 
most “similar” objects helps to partition a set into clusters 
(groups). In the majority of clustering methods, the similari-
ty criterion of objects is “similarity” of their feature vectors, 
expressed by the distance between them, which is the basis 
for constructing various types of metrics.

The research [14] has shown that the apparatus of fuzzy 
binary relations is useful in setting measures of similarity 
between objects. Let some fuzzy binary relation R  be given 
on the set of vector features

{ }iС с i 1,m= =

with the membership function ( )i jc ,c ,m  where 2: C 0,1m →   , 
characterizing object similarity by some criterion. The closer 
the value of ( )i jc ,cm  to 1, the more similar the objects Oi and 
Oj according to this criterion. In addition, Core(R)¹Ø, since 
each object is similar to itself.

Setting fuzzy sets similarity functions is not unequivocal 
and can be expressed by different kinds of functions. In par-
ticular, to determine the “distance” similarity measure, it is 
proposed to introduce the fuzzy binary relation RV with the 
membership function

V
2

R

1
: C ,1 :

e
 m →   

( )
( )i j

V

c ,c

i j
R

c ,c e ,

 r
 −
 ∆ m =   (1)

where

( )i j
i,j 1,m
max c ,c ,

=
∆ = r

where r is some distance metric (Euclidean, Manhattan, 
Chebyshev, etc). Thus, set function VR

m  will belong to the 
class of Harrington type desirability functions [15]. The 
closer the points corresponding to the feature vectors of two 
objects Oi and Oj, the closer the value ( )V i jR

c ,cm  to 1. For  
 the most “distant” objects, this value will be equal to 

1
.

e
There are classes of applied problems, the solution of 

which requires clustering based on the “angular”, “length” 
[11–13] and other measures of similarity between the feature 
vectors of the corresponding objects.

To determine the “length” similarity measure of feature 
vectors of objects, it is proposed to use the binary relation 
RD with the Harrington type membership function 

( )
i j

D

c c

i j
R

c ,c e ,
−

−
∆m =   (2)

where

ii
max c ,∆ =  i 1,m,= j 1,m.=

The defined fuzzy binary relation RD characterizes the 
difference between the lengths of vectors ic  and jc .  More-

D
2

R

1
: C ,1 :

e
 m →   
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over, the smaller the difference between the lengths, the 
closer DR

m  to 1.
The binary relation RK with the membership function

K
2

R
: C 0,1m →   

is determined by the formula [14]:

( )k

i j

i j

i j
R

c c
1

c c
c ,c ,

2

⋅
+

⋅
m =  i 1,m,=  j 1,m.=  (3)

It describes the angle between the vectors ic  and jc .  
Obviously, the smaller the angle between ic and ic ,  the clos-
er the value KR

m  to 1, and vice versa, the larger the angle, the 
closer KR

m  to zero. 

6. Clear single-level clustering method

Let it be required to perform single-level object cluster-
ing by a certain similarity criterion, described by some fuzzy 
binary relation R with the membership function ( )R i jc ,c .m  
Also, the specified numerical value *

R 0,1m ∈    is the cluster-
ing threshold. It characterizes the required similarity degree 
of objects within one cluster. If *

R 0,m =  the object similarity 
degree is considered the weakest, which in turn will lead to 
the formation of a cluster, which will include all objects. If 

*
R 1,m =  then, on the contrary, each object will form a sepa-

rate cluster as the object similarity degree will be very high. 
Thus, the closer *

Rm  to unity, the more clusters formed as a 
result of clustering.

For a more accurate determination of numerical values of 
thresholds for the Harrington type membership functions, it 
is proposed to be guided by the psychophysical Harrington 
desirability scale [15]. It establishes a correspondence be-
tween physical and psychophysical parameters and is widely 
and effectively used in solving practical problems. It can be 
considered that the threshold values provide:

– from the interval [0.8, 1] – high object similarity 
degree;

– from the interval [0.63, 0.8] – average;
– from the interval [0.37, 0.63] – low similarity degree.
It should be noted that this scale is only tentative and 

needs to be clarified for each specific problem.
In the development of the method, the following heu-

ristics were also taken into account: a new cluster shall be 
formed based on two “most similar” ungrouped objects.

The following describes a clear single-level object clus-
tering method.

Let

W1={1, 2, …, m}. 

Next, the l-th iteration is described step by step.
Step 1. We choose the dominant centroid vector *

lc  from 
the set { }i lс i ,∈W  around which the l-th cluster will 
be built. This vector can be arbitrary or determined by 
a specific rule. In particular, given the heuristics, it is 
recommended to assign as dominant one of the vectors 
{ }i lс i ,∈W  which provides the maximum value of the func-
tion mR in relation to all other vectors from { }i lс i .∈W  All 

i lс ,∈W  for which 

( )* *
R i l Rc ,c ,m ≥ m

is valid are included in the conventional cluster Ul.
Step 2. The procedure of alignment of the cluster Ul is 

performed. For this, the centroid vector is recalculated, for 
example, by the formula:

l
i

i
c U*

l l

с

c .
U
∈=
∑

Items with Ul: Ul=Ø are cleared. Further, a new refined 
cluster is formed

( ){ }l * *
i l R i l RU c c ,c .= ∈W m ≥ m

The procedure of alignment of the cluster Ul is held until 
the *

lc  coordinates change in recalculation. Otherwise, we 
proceed to the next step.

Step 3. The procedure of refinement of the cluster Ul is 
performed. For this, the vector pс ,  which is “the most simi-
lar” to the vector *

lc ,  is determined from the set l
l / U ,W  i. e.

( ) ( )l
l

* *
R p l R i l

i /U
c ,c max c ,c .

∈W
m = m

And the possibility of joining pс  to Ul is checked. For the 
set { }l

pU c ,∪  the centroid vector is calculated, for example

{ }l
i p

i
c Uс**

l l

с

c .
U 1

∈ ∪
=

+

∑

If the set

{ } ( ){ }l ** *
i p R i l Rс U c c ,c∈ ∪ m ≥ m

is equal to the set { }l
pU c ,∪  the vector pс  is included in 

the set Ul, and the centroid vector *
lc  is recalculated, i. e. 

* **
l lcс .=  If

{ } ( ){ } { }l ** * l
i p R i l R pс U c c ,c U c ,∈ ∪ m ≥ m ¹ ∪

the procedure of refinement of the cluster Ul is completed.
Step 4. We form the cluster

Kl=Ul 

and 

Wl+1=Wl/Kl. 

If l 1 ,+W ¹ ∅  we proceed to step 1. Otherwise, the cluster-
ing procedure is completed.

The result of the method will be clear clusters K1, K2, ..., Kz, 
where z m£  with the appropriate representatives *

lc .
The convergence of the method is guaranteed by the 

condition Core(R)¹Ø.
It should be noted that the formulas of centroid vec-

tors of cluster representatives can be modified depending 
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on the considered types of similarity measures (angular, 
length).

The method, unlike the majority of cluster analysis meth-
ods, requires no prior information on the desired number of 
clusters, but needs information about the threshold value 

*
R .m  Thus, gradually changing the numerical value of *

R ,m  it 
is possible to get complete information about the formation 
dynamics of clusters, changes in their number and degree of 
relationships between objects.

7. Multi-level sequential clear clustering method

Let it be required to perform multi-level clear clustering 
of objects O1,..., Om by some s object similarity criteria, 
specified by fuzzy binary relations kR , k 1, s=  with the 
membership functions ( )kR i jc ,cm  and the clustering thresh-
olds 

k

*
R 0,1 ,m ∈    k 1, s.=  be determined for each kR ,  k 1, s.=

This method requires object similarity criteria pre-or-
dering by preference in the form of a certain ranking of the 
respective binary relations: 1 2 sR R R . 

The first iteration.
Clustering of the initial set of objects is performed by the 

clear single-level clustering method for the binary relation 
R1 with the membership function ( )1R i jc ,cm  and the thresh-
old 

1

*
R .m  Let the clusters 1z1 2

1 1 1K ,K , ,K .  be obtained. 
Then the l-th iteration is described step by step.
To each cluster of the previous iteration

p
l 1 l 1K , p 1,z− −=  

the clear single-level clustering method is applied: filtering 
objects of each cluster by the criterion, expressed by the bi-
nary relation Rl with the membership function ( )lR i jc ,c ,m  
which is not lower than the threshold 

l

*
R .m  Thus, the l 1z −  

clustering problem with the original set 1,W  consisting only 
of the numbers of objects included in the separate cluster 

p
l 1K .−  is solved. As a result, we get l 1z −  sets of new smaller 

clusters. By re-enumerating all the obtained clusters we get 
lz1 2

l l lK ,K , ,K .

Exactly s described iterations shall be performed in this 
method. So, by re-assigning the resultant clusters, we get clear 
sets of partition of the initial set of objects – K1, K2, …, Kz, 
where z m£  with the appropriate representatives *

lc .

8. Fuzzification of clusters

Let it be required to perform single-level fuzzy object 
clustering by a certain object similarity criterion, specified 
by some fuzzy binary relation R with the membership func-
tion ( )R i jc ,cm  and the threshold *

R 0,1 .m ∈    Then, according 
to the clear single-level method in p. 6, we perform clustering 
into clear clusters K1, K2, …, Kz, z m£  with the appropriate 
representatives * * *

1 2 zc , c , ,c .  The membership functions 

j : C 0,1m →     

of the fuzzified clusters jK ,  j 1, z=  are proposed to be deter-
mined by the formulas:

( ) ( )*
j i i j

R
c c ,c ,m = m   (5)

or

( ) ( ) 2
*

i j
R

j i

1 c ,c
c exp ,

  − m   m = − 
β 

  

   (6)

where β is an extension factor.
When using the Harrington type membership func-

tions (1), (2), the formula (5) is not conventional for fuzzi-
fication of data, such as

j

1
: C ;1 ,

e
 m →   



i. e. the degree of membership of the most distant objects 

in the j-th cluster will be not less than the number 
1

.
e

 But  
 
in this case, it is possible to make an effective  analysis of 
clustering results and numerical values of jm  according to 
the Harrington desirability scale. The use of the Gaussian 
type membership function (6) leads to its normalization, i. e. 

(j : C 0;1 ,m →   and the coefficient β in the exponent argument 
is proposed to be determined by the three-sigma rule. In par-
ticular, the value of β is calculated for the Harrington type 
membership functions (1), (2) – β=0.0882.

Let it be required to perform multi-level fuzzy clustering 
by some s 2≥  object similarity criteria, specified by fuz- 
zy binary relations kR , k 1, s=  with the membership func-
tions ( )kR i jc ,cm  and the clustering thresholds 

k

*
R 0,1 ,m ∈    

k 1, s=  be determined for each kR ,  k 1, s.=  By fuzzy clus-
tering we mean partition of the initial set of objects iО ,
i 1,m=  into fuzzy clusters jK ,  j 1, z,=  where each object Oi 
is included in each fuzzy cluster jK  with the corresponding 
membership function j : C 0,1 .m →   

Let the sequential multi-level clustering method in p. 7  
provide clear clusters K1, K2,…, Kz, z m.£  To determine 
the numerical value of the membership degree of the cluster 
Kj, j 1,z=  of the object iО , i 1,m,=  it is proposed to use the 
Gaussian membership function:

( )
( )

l

2s
*

l i j
Rl 1

j i

c ,c 1

c exp ,=

   α m −   m = − β 
  

∑
   (7)

where

l

k

*
R

l s
*
R

k 1

,

=

m
α =

m∑
 l 1,s,=  i 1,m,=  j 1,z,=

where β is an extension factor. The values α1, l 1,s=  speci-
fy the necessary normalized object similarity degree by  
the l-th criterion within each cluster.

9. Computing experiment

The single-level clustering method for the angular simi-
larity of objects Rk was used in solving multicriteria linear 
programming problems with a high-dimensional criteria 
space. They occur in mathematical modeling of balanced diet 
problems [11, 13]. One of the stages of solving such problems 
is clustering of their criteria space. In this case, the relations 
between criteria are determined by their angular similarity. 
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Application of the proposed approach has proved to be ef-
fective and convenient in solving the problems of efficiency 
criteria grouping into sets of strongly related and contradic-
tory criteria [12].

A software system that enables to solve various cluster 
analysis problems, both single-level, and multi-level clear 
and fuzzy clustering, was also developed based on the pre-
sented methods.

Verification of the presented methods was conducted on 
many clustering problems in a two-dimensional space where 
the object similarity groups can be represented graphically, 
making it possible to estimate the results.

In addition, from the epistemological standpoint, the 
quality of machine clustering is determined by its com-
pliance with the man-done classification. So, in case of 
significant similarity of man-done and machine clustering, 
general conclusions about the procedure correctness can be 
drawn. This leads to the need for testing clustering meth-
ods on real data with the known structure. Also [16] sum-
marizes the data quality requirements for verification of 
experimental studies of clustering and presents the applied 
problem that satisfies them (Table 1). 

Table 1

Some specifications of the USAF aircrafts

Object 
No.

Aircraft 
type

Flight performance

Wing 
span, m

Length, 
m

Height, 
m

Estimated 
takeoff 

weight, kg

Maximum 
range, km

1 F–104G 6.68 16.69 4.11 9428 1200

2 F–5A 7.70 14.68 4.06 6080 898

3 F–5E 8.13 14.68 4.06 7030 1083

4 F–16A 9.45 14.52 5.01 10205 925

5 F–15A 13.05 19.43 5.63 18824 1050

6 F–4B 11.70 17.76 4.96 20865 1600

7 F–4E 11.77 19.19 5.02 18818 1266

8 F–106A 11.67 21.56 6.18 16100 920

9 RA–5C 16.15 23.11 5.92 30300 1600

10 SR–71A 16.95 32.74 5.64 63505 1930

11 B–58A 17.32 29.49 9.53 68000 2600

According to [16], the specifications presented in Table 1 
allowed experts to conventionally group these aircrafts into 
3 classes (clusters):

– class 1 – light aircrafts: objects 1–4;
– class 2 – average: objects 5–9;
– class 3 – heavy aircrafts: objects 10, 11.
To illustrate the proposed method in the examined clus-

ter analysis problem, single-level clustering from p. 6 was 
chosen. Further, the results were fuzzified according to p. 8.  
The fuzzy binary relation RV “distance” with the member-
ship function described by the formula (1) was used. The 
Euclidean distance was taken as ρ.

The input data were normalized data in Table 1. For the 
interpretation of fuzzy clustering results, matrices of fuzzy 
object distribution among clusters were used. For a visual 
representation of the results, the line chart of fuzzy parti-
tions was constructed. The membership values are given on 
the y-axis of the chart, and the numbers of objects – on the 
x-axis. The cluster object membership is determined by the 
intersection point of the lines that corresponds to the object 

number and object degree of membership in a cluster. The 
cluster number is specified near the point.

In the study of the clustering process dynamics, given 
data set, different thresholds (accurate to 0.01) were chosen. 
Sample results of clear clustering are given in Table 2.

Table 2

The results of clear clustering of the considered set

Numerical values of  
the clustering threshold

Clustering results

V
*

R
0.57;0.72m ∈  

Cluster 1: objects 1–9 
Cluster 2: objects 10, 11

V
*

R
0.73;0.83m ∈  

Cluster 1: objects 1–8; 
Cluster 2: object 9; 

Cluster 3: objects 10, 11

V
*

R
0.84m =

Cluster 1: objects 1–4; 
Cluster 2: objects 5–8; 

Cluster 3: object 9; 
Cluster 4: objects 10, 11

V
*

R
0.85;0.88m ∈  

Cluster 1: objects 1–4; 
Cluster 2: objects 5–8; 

Cluster 3: object 9; 
Cluster 4: object 10; 
Cluster 5: object 11

According to the Harrington desirability scale, the re-
sults of clustering in the transition from the average object 
similarity degree to high (in the transition of numerical 
values of the thresholds V

*
R

m  from the interval [0.63, 0.8] 
to [0.8, 1]) are the most significant. In the context of this 
problem, a high object similarity degree is achieved with 

V
*
R

0,84,m ≥  so clustering with V
*
R

0,84.m =  can be considered 
the solution of the problem. Let us analyze the matrix of the 
corresponding fuzzy partition (Table 3) and its line chart 
(Fig. 1) using the formula (5). 

Table 3

The matrix of fuzzy partition of the examined set of objects 
with V

*
R

0,84m =  with a degree of membership determined by 
the formula (5) 

Object No. Cluster 1 Cluster 2 Cluster 3 Cluster 4

1 0.92 0.77 0.42 0.61

2 0.95 0.76 0.40 0.60

3 0.97 0.78 0.41 0.62

4 0.91 0.82 0.43 0.65

5 0.76 0.94 0.51 0.78

6 0.77 0.88 0.53 0.78

7 0.80 0.96 0.51 0.77

8 0.77 0.89 0.50 0.74

9 0.62 0.78 0.63 1.00

10 0.44 0.54 0.84 0.66

11 0.38 0.47 0.84 0.57

In Fig. 1 dashed lines are conventional boundaries of 
different degrees of object similarity within one cluster, clar-
ified for the considered problem. The chart in Fig. 1 shows 
that the object 9 has an average degree of similarity with the 
objects of the second cluster. And the objects of the second 
cluster have an average degree of similarity with the objects 
of the first cluster. The similarity of the objects in the fourth 
cluster is high, but the weakest among others.
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Fig. 1. The line chart of fuzzy partition of the examined set 
with a degree of membership determined by the formula (5)

Further, the matrix of the corresponding fuzzy partition 
(Table 4) and its line chart (Fig. 2) are presented using the 
normalization formula (6). 

Table 4

The matrix of fuzzy partition of the examined set of objects 
with V

*
R

0,84m =  with a degree of membership determined by 
the formula (6) 

Object No. Cluster 1 Cluster 2 Cluster 3 Cluster 4

1 0.94 0.55 0.02 0.19

2 0.98 0.53 0.02 0.17

3 0.99 0.59 0.02 0.19

4 0.93 0.71 0.02 0.25

5 0.54 0.96 0.07 0.6

6 0.55 0.86 0.08 0.59

7 0.64 0.98 0.06 0.57

8 0.56 0.89 0.05 0.47

9 0.2 0.59 0.22 1

10 0.03 0.09 0.75 0.28

11 0.01 0.04 0.75 0.12

Fig. 2. The line chart of fuzzy partition of the examined 
set with a normalized degree of membership determined by 

the formula (6)

For the analysis of the results, it will be appropriate to 
present the main results of fuzzy clustering of the examined set 
described in [16]. Fuzzy c-means clustering into three clusters 
coincided fully with the expert one. Partition into 4 clusters is 
the same as with V

*
R

0,84m =  (Table 2). The conclusion is made 
that the object 9 takes an intermediate position between the 
cluster of objects 1–8 and the cluster of objects 10, 11.

Using the Pedrycz optimization method [17] with the 
objects marked with numbers 11, 3, 6 and the number of 
clusters 3, the following results are obtained: 

– cluster 1 – objects 1–4 and 8; 
– cluster 2 – objects 5–7 and 9; 
– cluster 3 – objects 10 and 11. 
The drawback of the method is that the results of cluster-

ing depend on the initially marked objects.
According to the Windham optimization method [18], 

only clusters with objects 1–4 and 9–11 were clearly iden-
tified when partition into three and four clusters, all other 
objects appeared evenly distributed among all clusters.

All these optimization methods require pre-setting the 
desired number of clusters and can be used with a small 
number of objects.

The result of the hierarchical version of the Tamura-Hi-
guchi-Tanaka algorithm [19] that the most corresponds to 
the expert one:

– cluster 1 – objects 1–4; 
– cluster 2 – objects 5–8; 
– cluster 3 – object 9; 
– cluster 4 – object 10; 
– cluster 5 – object 11. 

10. Discussion of the experimental results

The diverse nature of the data and the purposes of clus-
tering, the existence of various geometric forms of clusters 
leads to impossibility of existence of a universal method 
of clustering. Therefore, comparison of cluster analysis 
methods is not quite correct. Each has advantages and dis-
advantages and can be effective in solving a certain class 
of problems.

In particular, the experimental studies demonstrated the 
convenience and efficiency of single-level and multi-level 
sequential clustering methods for solving various classes of 
clustering problems. It is possible to determine their main 
advantages:

– the developed methods allow object clustering not 
only by the distance degree of similarity, but also length and 
angular;

– application of the Harrington type membership func-
tions allows an effective  analysis of the resulting object 
partition;

– a variety of clustering thresholds provides an addi-
tional opportunity to observe the formation dynamics, 
structural changes of clusters and reveal hidden relations 
between objects;

– the multi-level sequential clustering method enables 
object clustering by various similarity criteria;

– the developed methods can be used for preliminary 
data analysis and for holding the clustering procedure.

All this makes it possible to apply single-level and 
multi-level sequential clustering methods for solving a wider 
range of applied problems.

The research is a continuation and generalization of  
[12, 14]. Also, refinement of the developed mathematical 
apparatus is planned:

– for implementing parallel multi-level clustering and its 
application;

– for solving an even wider range of problems involving 
the length similarity measure of objects.
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11. Conclusions

1. Examples of membership functions described by fuzzy 
binary relations, which characterize the distance, angular 
and length similarity measures of vector features of objects 
are given. Application of the Harrington type functions gave 
an additional opportunity of effective interpretation of the 
obtained results of clustering.

2. Single-level and multi-level clustering methods are 
developed. They made it possible to perform clear and fuzzy 
clustering of objects according to one or more similarity 
criteria. Thus, certain values, such as clustering thresh-

olds, characterizing the degree of similarity of objects in a 
cluster are set. By changing the clustering thresholds, one 
can analyze the formation dynamics of clusters, investigate 
their structure and relations between objects. The present-
ed methods allow clustering in the absence of additional a 
priori information, so they can be used in preliminary data 
analysis.

3. The software systems that implement the presented 
methods are developed. Testing of systems showed their 
effectiveness in dealing with a fairly broad class of applied 
problems of cluster analysis. The single-level fuzzy method 
is illustrated on a real problem.
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