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Abstract
We introduce Cartesian product of interval neutrosophic automata and prove that Cartesian product of cyclic interval
neutrosophic automata is cyclic
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1 Introduction

The neutrosophic set was introduced by Florentin Smarandache in 1999 [6]. The neutrosophic set is the
generalization of classical sets, fuzzy set [11] and so on. The fuzzy set was introduced by Zadeh in 1965[11].
Bipolar fuzzy set, YinYang bipolar fuzzy set, NPN fuzzy set were introduced by W. R. Zhang in [8, 9, 10].

A neutrosophic set N is classified by a Truth membership Ty, Indeterminacy membership In, and Falsity
membership Fn, where Ty, In, and Fy are real standard and non-standard subsets of] 07, 1*[. Interval-valued
neutrosophic sets was introduced by Wang etal.,[7]. The concept of interval neutrosophic finite state machine
was introduced by Tahir Mahmood [5]. Generalized products of directable fuzzy automata are discussed in [1].
Retrievability, subsystems, and strong subsystems of INA were introduced in the papers [2, 3, 4].

In this paper, we introduce Cartesian product of interval neutrosophic automata and prove that Cartesian
product of cyclic interval neutrosophic automata is cyclic.

2 Preliminaries
2.1 Neutrosophic Set [6]

Let U be the universal set.. A neutrosophic set (NS) N in U is classified by a truth membership Tn, an
indeterminacy membership Iy and a falsity membership Fn, where Ty, In, and Fy are real standard or non-
standard subsets of] 07,1*[. That is

N ={(x,Ty(),Iy(x),Fy(x)),x €U, Ty, Iy, Fy €]107,1"[}and 0~ < sup Ty(x) +

sup Iy (x) + sup Fy(x) < 3*.We need to take the interval [0,1] for instead of ] 0~, 1*].

2.2 Definition [7]

An interval neutrosophic set (INS for short) is N = {{ay(x), By (x),ya(X)) |x € U}

= {{x, [inf ay(x), sup ay(x)], [inf By (x), sup By ()], [inf vy (x), sup yy(x)])},x € U, where  ay(x),
Bn(x),and yy(x) representing the truth-membership, indeterminacy-membership and falsity membership for
each x € U. ay(x), By(x), yn(x) € [0,1] and the condition that 0 < sup ay(x) + sup By(x) +

sup yy(x) < 3.

2.3 Definition [7]

An INS N is empty if inf ay(x) = sup ay(x) = 0,inf By(x) = sup By(x) 1,inf yy(x) = sup yy(x) =
1forallx € U.

3 Interval Neutrosophic Automata
3.1 Definition [5]

M = (Q,Z%,N) is called interval neutrosophic automaton (INA for short), where Q and X' are non-empty finite
sets called the set of states and input symbols respectively, and N = {{ay(x), By (%), yn(x))}is an INS in Q X
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2 % Q. The set of all words of finite length of X' is denoted by X£*. The empty word is denoted by ¢ and the length
of each x € X*is denoted by |x|.

3.2 Definition [5]

M = (Q,%,N) bean INA. Define an INS N*

{an-(x), By (), v (x))}in Q@ x 27 x Q by

v (g0 6.q)) = [1,1]if q; = q;
~*(qi, ’q} - [0’0] lqu + q}

[0,0]if q; = q;

Bn+(gi. €, qj):{ [1,1]if q; # q;

[0,0]if q; = q;

Yn+ (i€ qi):{ [L1lif g # q;

an (quw,q;) = an(qi xy, 4;)=Vq. o | an- (@ % @) N ay-(ar, ¥, q))]

Bn+(quw,q;) = Bn-(qu Xy, 4;)=Ng. e | Bv (@i % a)V Bu+(ar, ¥, q))]

Y (@w, ;)= va (@ v, 4;)=Ngoeo | Yn- @i % @)V Yar (@ ¥, @)V 4 @ EQw=1xy,x €
frandy € X

4 Cartesian Composition of Interval Neutrosophic Automata
4.1 Definition

Let M; = (Q;, Z;,N;),i = 1,2 be interval neutrosophic automata and letX, n X, = @. Let M; X M, =
(Q1 X Q2 21 U Xy, Ny X Ny), where

al(qi' a, qk) > [0,0] lf a € 21 and qj = q
(0 X o) ((qil Qj): a, (CIkJQz)) = va5(q,a,q,) > [0,0]if a € Z,and q; = qx
0 otherwise

B1(qna, q) <[L1]if a € Z;and q; = q
By X B2) ((ql’;CIj); a, (CIk,CIz)) =3B.(qia,q1) <[11]if a € Z,and q; = qx
0 otherwise

yi(qi,a,qx) < [1,1]if a € Z,and q,= q
(r % ¥2) ((009)). 2. @) = { v2(qua,q) < [L1]if a € Syand g = gy
0 otherwise

V(1,9;), (Qq) € Q1 XQp, a € Z; U X,. Then M; X M, is called the Cartesian product of interval
neutrosophic automata.

4.2 Definition
LetM = (Q,%,N) beanINA. M is cyclic if 3 q; € Q such that Q = S(q;).

4.3 Definition [2]

Let M = (Q,Z,N) be INA. M is connected if V q;,q; and 3 a € X such that either ay (g1 a, qj) > [0,0],
B (qi' a, Qj) <[1,1], VN(% a, qj) <[1,1] or
ay (9j,@,q:) > [0,0], By (aj,a ) < [1,1], yn(aja ) < [L1].

4.4 Definition [2]
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Let M = (Q,Z,N) be INA. M is strongly connected if for every g;,q; € Q, there exists u € X such that

ay-(quw, ;) > [0,01, By (90w, q;) < [1,1], yn+(qiu, q;) < [1,1].

Theorem 4.1 Let M; = (Q;,%;, N;),i = 1,2 be interval neutrosophic automata and let £, N X, = . Let

M; x M, = (Q; X Q,,Z, U X,,N; X N,) be the Cartesian product of M; and M,.ThenVx € £, UZ,", x #
€

a1(qi,x,q,) > [0,0] if x €%,"and q; = q

(g X 0z)" ((%Qj)'x' Gk QL)) =93 ay(qi,%x,qx) > [0,0]if x € Z,7and q; = qy
0 otherwise

Br(qix,q) <[L1]if x € %, and q; = q

(B1 X B2)" ((qi'qj)'x' (Qk'(h)) =3B.(qi, %, qi) <[1L1]if x € Z,7and q; = qx
0 otherwise

v1@ux,q0) <[1L1]if x € I7and q; = q

(r1 X v2)" ((qi'qj)'x' (Qk:Qz)) =9 7200, q,) <[1L1]if x € Z,%and q; = qy

0 otherwise
V(q:,9;), (Qr.q1) € Q1 X Q.

Proof . Letx €2,"UX,",x + eandlet |[x] =m. Letx € X,". The result is trivial if m = 1. Let the
resultistruevy €, |lyl=m—1,m> 1.Letx = aywherea € Z;,y € Z;". Now,

(@, % )" ((3.7),% (@ @) = (o, X o) ((90:9) 23, @ @)

= Vi canx 0z (@, X ) (007, @ (@7, ) A (o % )" (@ 05,9, @1 4)) }
= Vg, 0 10w, (@1 @ @) A (ay, X o) ((@r45), ¥, (@10 90) }
:{Vq,egl {ow, (@i @, @) A ay (@ y.q)} > [001if q;= q

. 0 . otherwise
—_ 1 i» y ) =
_{aN (gi-ay,qi) > [0,0]if q;= q

otherwise

0
Br, % Bry)" (90472 (@0 @) = By, % Br)” ((095), a7, (@ @)

= A asrcanx o { By X Ba) (4 47) @ (@, 49)) V Br, X By (@ 45D, ¥, (@0 1)) }
=Agrear Bn, (@ @ @) V' By X Bry) (@2 45), ¥, (@i 40))}
:{/\qrte By, @i a, ¢ vV By, (@Y )} < [L1]if q;= q
X 0 otherwise
:{BN1 Qi ay, qr) < [L1]if q;= q
0 otherwise
vy X ¥wy)" ((0097).% @0 aD) = G, % vay)" (40 9) @, (@000 )

= Aay as) € 01% 03 {(YN1 X Yn,) ((qi, q;),a,(qr, qs)) vV (Ya, X ¥np) ((ar 45), 9, (qk.qo)}
=Ngreo, v (@ @ @) V (Y X vw,) (@ a5), Y, (@ @)}
:{/\qrte v, @ a a) vV ya, " @ry a0} < [L11if qi= q

X 0 ] otherwise
:{m (@vay, qi) <[L1]if q;= q

0 otherwise

The result is follows by induction. The Proof is similarif y € X,".

Theorem 4.2 Let M; = (Q;,Z;,N;)),i=1,2beINAandletX; n Z, = @. Thenvx € ",y € %,
(@, % o) (002, 2y, (00.97)) = aw,” %4 A o, (07,05

= (aw, % )" (00 1;) ¥%, (05.9))
Bry % By (0 2) 29, (4:4)) = By "o, 0) V B, (97, 47)
= B, ¥ Buy)" (02 7%, (4.9)))
vy X ¥ (2o 2)) 2y, (00.9))) = Yo" o, 0) V v, (01, 9,4))

= (rw, ¥ V)" ((oo21) ¥%, (@007,

(pip)). (9,4;) € Q1 X Q,.
Proof .
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Let € X,y € 3,7, (pl-, pj), (ql-, qj) € Q, XQ,. If x= e=y, then xy = €. Suppose (pi, p]-) =
(qi, q;)- Thenp; = q; and p; = q;. Hence

(aw, % o) ((p02)) 2y, (07)) = (L] = [L1] A[LA] = ay, (x4 A aw," (9 7.45)

Br, % Br,)" ((P2) 2y, (4:4;)) = [0,01 = [0,0] v [0,0] = B, " (1, %, 4) V B, (01, %, 41)
(Y, X ¥i,)" ((pi.pj),xy. (g:, q,-)) =[0,0] = [0,0] v [0,0] = yn," (i, %, 4) V Yn," (P}, ¥, 4})
If (pi, pj) * (qi,q]-), then either p; # q; orp; # q;.
Thus, ay,*(Pi,%,4.) A aw,*(pj,v,q;) = [0,0], By, " (0i, %, 4 V Bu," (01, %, q1) = [1,1],
v, (0o x,a) Vv, (0 v, 45) = [L1].
Hence (o, X an,)" (7 27) 27, (4 4;)) = [0.0] = aw," G %, 4 A (97, 45)

Br, % By (202 2y, (00:0)) = [L1] = B, " (1%, 00) V B, (1 %, 00)
vy % v ((opy) 2y, (0.9))) = (111 = va," 0%, 0D V v, (07,,0))

Ifx=€eandy # € orx # € and y = ¢, then the result follows by Theorem 4.1. Suppose x # eandy # e.
Now,

(ay, X ay,)” ((Pi,Pj)' xy, (9 Qj)) =Vaurpeuxe, {(0(1\11 X oy, )" ((Pi:Pj):xx (Tiﬂ‘j)) A
(aw, X an,) ((r73),, (@4 )}
=Vrieo {(O‘Nl X ay,)" ((pi.pj).X, (Ti'pj)) A (o, X ay,)" ((rp Pj)'}" (qi, CIj))}
= oy, (P %, ) A o, () 3,95)
(Bw, X Bn,)" ((Pi'Pj)' xy, (qi!qj)) =Aayrpeqxe, {(BNl X By,)" ((Pppj):xx (Ti;Tj)) v
Br, % Bry)" ((01). 7, (@)}
= Ay o {Bry X B ((o2) % (rp))) v By X )™ ((o07), v (000 )}
=By, @ x,q) V By, (93, 45)
iy X ¥ (002729, (00.97)) = Mgy aux (s X v (0007, (r73) ) v
vy X ¥w)" (73), v, (0.0}
= A egu {0 X ¥ (00 2) % () )V iy X ¥i)" (o), v (400 )}

=yn, @0 %9) V vn, (93, 4;)
Similarly

(o, % o) (b6 2) v%, (a0,9)) = o, (7,3, 45) A e, (1%, )
Br, % By (002 ¥ (00:0))) = B, (033, 43) V By (1%, 00)
vy X ¥w)" (20 2)) %, (00.07)) = v, " (053, 47) V Yy 0%, 40)-
Theorem 4.3 Let M; = (Q;,Z;,N;),i =1,2be INAandlet £, n ¥, = @. Cartesian product of M; X M, is
cyclic iff M, and M, are cyclic.
Proof. Let M, and M, are cyclic. Then Q; = S(q;) and Q, = S(p;) for some q; € Q;,p; € Q,. Let
(q,p) € Q1 X Q,.Then3 x € Z,;"andy € X," such that
an, (g%, qi) > [0,0], B, (g0, %, qi) < [L1],vw,"(qi %, qi) <[, 1] and
an, (P y,p1) > 10,01, By, (pj v, 21) < [L1]vw," (P, ¥, 1) <[1, 1]. Thus
(@, X a,)" (009, 2y, (@ p)) = an," @@ A ay," (25 3,00) > [00]

Bry % By (402 27, @) = Bry (@0 %.0) V By, (91 7,0) < [11]

vy X ¥ ((@02) %9, @ b)) = Yy " @02 @) Vvw, (ppy001) < (1,11,
Hence (qx,p;) €S ((% p]-)). Q. X Q, = S((qi, pj)). Hence M, x M, is cyclic.
Conversely, let M; x M, is cyclic. Then Q; X Q, = S((qi,pj)) for some (g;,p;) € Q1 X Q.
Letgy € Q;andp;, € Q,. Thenaw € (£, U Z,)* such that
(aNl X aNZ)* ((qil p])l w, (qk' pl)) > [0,0], (BNl X BNZ)* ((qi! pj)!W! (qk! pl)) < [1!1] and
(Yn, X ¥n,)" ((qi,p]-), w, (qk,pl)) <[4, 1]. Then by the theorem 4.2 3u € ;" and v € X," such that
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an, " (@uw qi) A oy, (P v,p) = (ay, X ay,)” ((qi,p,-), w, (qk,pz)) > [0,0]

B, (@ qi0) V B, (P v.10) = Buy X Bay)” ((009,)w, (@i p)) < [11]

Yoy (@) Vv, (P vn) = G x v ((000))ws (qop)) < 11,11

Hence 3u € ;" and v € Z," such that ay, *(q;, u, qx) > [0,0], By, " (g5 u qx) < [1,1], vu, "(q1u qi) < [1,1]

and aNz*(pj' v, pl) > [0'0]1 BNZ*(pj'v'pl) < [1v1]vYN2*(pj'v! pl) < [1’1] Thus dk € S(ql) and (4} € S(p])
Hence @, € S(g;) and Q, € S(p;). Therefore M; x M, is cyclic.
5 Conclusion

The purpose of this paper is to study the Cartesian product of INA. We prove that Cartesian product of cyclic of
interval neutrosophic automata is cyclic.
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