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SOME REMARKS

ON ANTI-TOPOLOGICAL SPACES

TOMASZ WITCZAK

Abstract. This paper is devoted to a general presentation of anti-
topological spaces. These structures have been initially proposed
by Şahin, Kargın and M. Yücel in 2021. We analyse their basic
definition, showing some of its subtleties and implications. The
framework thus obtained is used to investigate anti-topological in-
terpretation of some basic topological notions. For example, we
discuss the idea of interior and closure and we show some results
on door spaces. Moreover, we introduce two non-equivalent types of
continuity. Finally, we investigate the idea of density and nowhere
density. It is noteworthy that the paper contains some additional
remarks on infra-topological and weak spaces. They may be con-
sidered as a clarification or correction of some earlier results present
in literature.

1. Introduction

Anti-topological spaces have been defined by Şahin, Kargın and M.
Yücel in [12]. These structures have been introduced together with
neutro-topological spaces. The authors studied some basic properties
of these two classes and the most striking relationships between them.
In this paper we shall concentrate only on anti-topologies (without any
special references to the matter of fuzziness and similar concepts like
intuitionistic fuzziness, softness or neutrosophy).

Undoubtedly, the past three decades were rich in works addressing
the idea of generalization of the initial notion of topological space. All
these studies can be easily justified. First, they show us which con-
ditions are really important for preservation of some basic topological
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2 TOMASZ WITCZAK

properties (and which are superflous). Second, they provoke some kind
of discussion on the mathematical, logical and philosophical meaning of
some of the terms used in topology (like openness, closeness, interior,
closure, density, nowhere density etc.). This is because some of these
objects, operations and properties behave in an untypical way when
they are applied to various generalized structures. For example, the
interior of a set need not to be open (and the closure of empty set need
not to be empty). Third, this line of research is helpful when it comes
to classification of numerous types of sets and their families.

Generalization of the notion of topology relies on the assumption
that we can remove some of the conditions which constitute the family
of open sets. For example, we can give up the assumption of closure
under arbitrary unions (to obtain infra-topologies1, see [9], [10] and [5])
or finite intersections (to get supra-topologies, see [4] and [7]). We may
drop both these restrictions and this step gives us minimal structures
(see [11]). If the only requirement is openness of empty set, then we
have weak structures (see [8]). Finally, we may turn our attention to
generalized weak structures which are arbitary families of subsets (see
[1] and [6]).

However, generalization is not the only possible modification. In this
paper we want to think over the idea of anti-topological space. All the
spaces mentioned above are connected with the concept of closure under
certain operations or with the assumption that some distinguished sets
(like empty set or the whole universe) necessarily belong to our family.
Anti-topological strategy reverses this approach (at least in some sense).
What is constitutive for anti-topology, is the fact that intersections and
unions of elements of the family in question, are beyond (anti-)topology.
Again, we can ask what does it mean for some of the basic notions
mentioned earlier (like openness or density)? In this paper we give
some answers and additional suggestions.

2. Basic notions

In general, the very basic definition of anti-topological space is taken
from [12]. However, we would like to discuss some issues which were
not covered by the authors. Moreover, we would like to expand their
initial research in a significant way.

1Császár named them quasi-topologies.
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Definition 2.1. Let X be a non-empty universe and T be a collec-
tion of subsets of X . We say that (X, T ) is an anti-topological space if
the following conditions are satisfied:

(1) ∅, X /∈ T .
(2) For any n ∈ N, if A1, A2, ..., An ∈ T , then

⋂n

i=1
Ai /∈ T (with

the assumption that the sets in question are not all identical,
i.e. the intersection is non-trivial)2.

(3) For any collection {Ai}i∈J 6=∅ such that Ai ∈ T for each i ∈ J ,⋃
i∈J Ai /∈ T (with the assumption that the sets in question are

not all identical, i.e. the union is non-trivial).

We call the elements of T anti-open sets, while their complements
are anti-closed sets. The set of all anti-closed sets (with respect to a
given anti-topology) will be denoted by TCl. We say that every anti-
topology is anti-closed under finite intersections and arbitrary unions
(this refers respectively to Cond. (2) and Cond. (3) from the definition
above). Attention: we assume that the property of being anti-closed
refers only to non-trivial intersections or unions. We will use the notion
of non-trivial family to speak about those families of sets which contain
at least two (different) sets.

Each anti-topology is connected with some associated space: the one
which contains empty set, the whole universe, all the finite intersec-
tions and all arbitrary unions. Clearly, this space is a topological one.
Moreover, T is always contained in τ .

Example 2.2. Let us list down some examples of anti-topological
spaces. The first one is taken from [12], the rest is our own invention.

(1) Let X = {1, 2, 3, 4} and T = {{1, 2}, {2, 3}, {3, 4}}. Clearly,
the only possible intersections are {1, 2} ∩ {2, 3} = {2} /∈ T ,
{1, 2}∩{3, 4} = ∅ /∈ T and {2, 3}∩{3, 4} = {3} /∈ T . As for the
unions, these are {1, 2}∪{2, 3} = {1, 2, 3} /∈ T , {1, 2}∪{3, 4} =
{1, 2, 3, 4} = X /∈ T and {2, 3} ∪ {3, 4} = {2, 3, 4} /∈ T .

We have TCl = {{1, 2}, {1, 4}, {3, 4}}. Note that {1, 2} and
{3, 4} are both anti-open and anti-closed.

As for the associated space, it is
τT = {∅, X, {1, 2}, {2, 3}, {3, 4}, {2}, {3}, {1, 2, 3}, {2, 3, 4}}.

(2) Let X = {1, 2} and T = {{1}, {2}} = TCl. Clearly, {1}∩{2} =
∅ /∈ T and {1} ∪ {2} = X /∈ T .

2This assumption was not mentioned by the authors in their original paper.
However, its necessity is clear.
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(3) Let X = {a, b, c, d, e} and T = {{a, b}, {c, d}, {e}}. Then T
is an anti-topology on X . Note that each intersection of non-
identical elements of this family is empty. As for the TCl, it is
{{c, d, e}, {a, b, e}, {a, b, c, d}}.

The associated space is τT = {∅, X, {a, b}, {c, d}, {e}, {a, b, c, d},
{a, b, e}, {c, d, e}}.

(4) Let X = N+ and assume that Tk consists only of these finite
subsets ofX which have cardinality k, where k is a fixed positive
natural number. Now, if A,B ∈ Tk and A 6= B, then their union
has cardinality m > k and their intersection has cardinality
n < k. Clearly, ∅ /∈ Tk and X = N /∈ Tk. Of course we may
replace N+ with N.

(5) Let X = N+ and T = {{1}, {2}, {3}, {4}, ...} = {{n}, n ∈ N+}.
This is a special case of Tk defined above (for k = 1).

(6) Let X be arbitrary and T = {{x}, x ∈ X}. This is just a col-
lection of all singletons of the elements of an arbitrary universe.

(7) Let X = R and assume that Ty consists only of these closed
intervals which have length y, where y is a fixed positive real
number. Now, if A,B ∈ Ty and A 6= B, then their union has
length z > y (moreover, it is possible that it is not an interval
at all) and their intersection has length w < y (moreover, it can
be empty or consist of one point). Clearly, ∅ and X = R do not
belong to Ty.

(8) Let X = R2 with usual Euclidean metric. Assume that Tr

consists of all these closed balls which have radius r, where r is
some fixed positive real number. Any union of such balls has
radius bigger than r (or is not a ball at all). Any intersection
has radius smaller than r (or is not a ball at all).

(9) LetX = N+ and T = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, ...}= {{n, n+
1}, n ∈ N+}.

(10) Let X = R and T = {R−,R+}. Clearly, R− ∩ R+ = ∅ /∈ T and
R− ∪ R+ = R \ {0} /∈ T .

(11) Let X be arbitrary and ∅ 6= A ⊆ X . Then we may define
antitopology T = {A,X \ A}.

We would like to point out some properties which are simple but
maybe not visible at first glance.

Lemma 2.3. Assume that (X, T ) is an anti-topological space, B ∈
T and A ⊆ B. Then A /∈ T .

Proof. If A ⊆ B then A = A ∩ B and A ∩ B /∈ T . �
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Lemma 2.4. Assume that X is a non-empty universe and U is a
family of subsets of X that is anti-closed under finite intersections.
Then it is anti-closed under arbitrary intersections.

Proof. Assume that there exists certain family {Ai}i∈J 6=∅ such that
|J | ≥ ℵ0, for any i ∈ J , Ai ∈ U and A =

⋂
i∈J Ai ∈ U . Then take

Ak 6= A for some k ∈ J . Now we may write that Ak ∩ A = A. This is
binary intersection, hence A /∈ U . Contradiction. �

Clearly, the lemma above applies to anti-topologies too. Moreover,
we can show that Cond. (2) and (3) from Def. 2.1 are equivalent.

Lemma 2.5. Let X be a non-empty universe. Let U be a family of
subsets of X which is anti-closed under finite intersections. Then it is
anti-closed under arbitrary unions.

Proof. Assume that there exists some non-trivial family {Ai}i∈J 6=∅ such
that for any i ∈ J , Ai ∈ U and A =

⋃
i∈J Ai ∈ U . Then take Ak 6= A

for some k ∈ J . Then Ak ∩ A /∈ U . However, Ak ∩ A = Ak and we
assumed that Ak ∈ U (just like any other element of {Ai}). This is
contradiction. �

Lemma 2.6. Let X be a non-empty universe. Let U be a family
of subsets of X which is anti-closed under arbitrary unions. Then it is
anti-closed under finite intersections.

Proof. Assume that there are two different subsets of X , namely A and
B, such that A,B ∈ U and A∩B ∈ U . Then consider A∪ (A∩B) = A.
By virtue of anti-closure under unions, A /∈ U . This is contradiction.
Note that it was enough to assume anti-closure under finite unions. �

We can check some properties of anti-closed sets.

Lemma 2.7. Assume that (X, T ) is an anti-topological space and
A,B ∈ TCl. Suppose that A 6= B. Then A ∩ B /∈ TCl.

Proof. If A,B ∈ TCl, then −A,−B ∈ T . Assume that A ∩ B ∈ TCl.
Then −(A∩B) ∈ T . But then −A∪−B ∈ T and this is contradiction.

�

Lemma 2.8. Assume that (X, T ) is an anti-topological space and
{Ai}i∈J ⊆ TCl. Then

⋃
i∈J Ai /∈ TCl.

Proof. Assume that
⋃

i∈J Ai ∈ TCl. Then −
⋃

i∈J Ai ∈ T . Hence (by
virtue of De Morgan’s laws)

⋂
i∈J(−Ai) ∈ T . But for any i ∈ J , Ai ∈ T ,

hence their intersection should be beyond T . This is contradiction. �
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3. Anti-interior and anti-closure

In this section we define anti-interior and anti-closure of a set in
anti-topological space.

Definition 3.1. Assume that (X, T ) is an anti-topological space and
A ⊆ X . Then we define anti-interior of A (that is, aInt(A)) and its
anti-closure (namely, aCl(A)) as follows:

(1) aInt(A) =
⋃
{U ;U ⊆ A and U ∈ T }.

(2) aCl(A) =
⋃
{F ;A ⊆ F and F ∈ TCl}.

Example 3.2. Some examples of anti-interior and anti-closure are
presented below:

(1) Let (X, T ) be like in Example 2.2 (1). Consider A = {1, 2, 3}.
Then aInt(A) = {1, 2} ∪ {2, 3} = A /∈ T . As we can see,
anti-interior may not be anti-open. Now aCl(A) =

⋂
∅ = X .

(2) Let (X, T ) be like in Example 2.2 (3). Consider A = {a, b, c}.
Now aInt(A) = {a, b} and aCl(A) = {a, b, c, d}.

(3) Let (X, T ) be like in Example 2.2 (4). Note that for any A ⊆ N
such that |A| ≥ k ∈ N+, the following holds: aInt(A) = A.
This is because A is of the form {a1, a2, ..., an}, n > k. Hence,
it can be presented as a union of all its subsets of cardinality
k. For example, if k = 2 and A = {10, 12, 20}, then aInt(A) =
{10, 12} ∪ {10, 20} ∪ {12, 20} = A.

We may easily predict some of the basic properties of anti-interior
and anti-closure.

Theorem 3.3. Let (X, T ) be an anti-topological space. Let A ⊆ X .
Then the following statements are true:

(1) aInt(A) ⊆ A.
(2) If A ∈ T , then aInt(A) = A.
(3) If A ⊆ B, then aInt(A) ⊆ aInt(B).
(4) aInt(aInt(A)) = aInt(A).
(5) A ⊆ aCl(A).
(6) If −A ∈ T , then aCl(A) = A.
(7) If A ⊆ B, then aCl(A) ⊆ aCl(B).
(8) aCl(aCl(A)) = aCl(A).
(9) −aInt(A) = aCl(−A).
(10) aInt(−A) = −aCl(A).
(11) x ∈ aInt(A) if and only if there is U ∈ T such that x ∈ U ⊆ A.
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(12) x ∈ aCl(A) if and only if U ∩ A 6= ∅ for any U ∈ T such that
x ∈ U .

Proof. All these properties are true in any generalized weak structure
(see [1] and [6]). It means that they are true for any g ⊆ P (X). Hence,
they are true in anti-topological framework too. The only important
thing is to define interior and closure in a standard manner. �

Lemma 3.4. Assume that (X, T ) is an anti-topological space. Then
aInt(A ∩B) ⊆ aInt(A) ∩ aInt(B).

Proof. Let A,B ⊆ X . Now A ∩ B ⊆ A, A ∩ B ⊆ B. From the
monotonicity of interior we get that aInt(A ∩ B) ⊆ aInt(A) and
aInt(A∩B) ⊆ aInt(B). Hence aInt(A∩B) ⊆ aInt(A)∩aInt(B). �

Note that the lemma above is true in any generalized weak struc-
ture. The converse is not necessarily true. Consider X = {1, 2, 3, 4, 5},
T = {{1, 3}, {2}, {3, 4}}, A = {1, 2, 3} and B = {2, 3, 4}. We have
aInt(A) = {1, 3} ∪ {2} = {1, 2, 3} and aInt(B) = {2} ∪ {3, 4} =
{2, 3, 4}. Moreover, A ∩ B = {2, 3} and aInt(A ∩ B) = {2}. Now
aInt(A) ∩ aInt(B) = {2, 3} * {2}.

Remark 3.5. Note that in topological spaces the converse of the
lemma analogous to Lemma 3.4 could be proved in the following man-
ner. First, Int(A) ∩ Int(B) ⊆ A ∩ B. This is obvious. Second,
Int(Int(A)∩Int(B)) ⊆ Int(A∩B). However, both Int(A) and Int(B)
are open, hence their intersection is open too. Thus Int(Int(A) ∩
Int(B)) = Int(A) ∩ Int(B) and we are done.

This proof is not true in these spaces where interior may not be open.
However, if we assume that our generalized weak structure (say, g) is
closed under finite intersections (like in the case of infra-topologies),
then we may use the following reasoning. Let x ∈ Int(A)∩ Int(B). So
there are C,D ∈ g such that x ∈ C ∩ D, C ⊆ A and D ⊆ B. Now
C ∩D is open and contained in A ∩ B. Thus x ∈ Int(A ∩ B).

Lemma 3.6. Let (X, T ) be an anti-topological space and A,B ⊆ X .
Then aInt(A) ∪ aInt(B) ⊆ aInt(A ∪B).

Proof. Let x ∈ aInt(A) ∪ aInt(B). Without loss of generality we may
assume that there is some C ∈ T such that C ⊆ A and x ∈ C. Then
C ⊆ A ∪ B. Moreover, C is anti-open, hence x ∈ aInt(A ∪ B). �

As for the converse of Theorem 3.3 (2), it may be false (as we could
see in Example 3.2). Thus we may introduce the following definition
(per analogiam with infra-topological structures, see [14]).
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Definition 3.7. Let (X, µ) be an anti-topological space. Let A ⊆ X .
If aInt(A) = A then we say that A is pseudo-anti-open. If aInt(A) ∈ T
then we say that A is anti-genuine.

Lemma 3.8. Let (X, T ) be an anti-topological space. Let A ⊆ X .
If aInt(A) may be written as a union of two or more anti-open sets
then aInt(A) /∈ T .

Note that in Example 3.2 (1) the set {1, 2, 3} is pseudo-anti-open and
is not anti-genuine. In Example 3.2 (2) the set {a, b, c} is anti-genuine
and is not pseudo-anti-open.

Let us check some properties of pseudo-anti-open and anti-genuine
sets.

Lemma 3.9. Let (X, T ) be an anti-topological space. Then every
anti-open set is pseudo-anti-open and anti-genuine.

Lemma 3.10. Assume that (X, T ) is an anti-topological space and
{Ai}i∈J 6=∅ is a family of pseudo-anti-open sets. Then

⋃
i∈J Ai is pseudo-

anti-open too.

Proof. Clearly, aInt(
⋃

i∈J Ai) ⊆
⋃

i∈J Ai. Now assume that x ∈
⋃

i∈J Ai

but x /∈ aInt(
⋃

i∈J Ai. Hence there is some k ∈ J such that x ∈ Ak but
for any anti-open G ⊆

⋃
i∈J Ai, x /∈ G. However, Ak = Int(Ak). Hence,

there is B ∈ T such that x ∈ B ⊆ A. But then B ⊆
⋃

i∈J Ai. �

Lemma 3.11. Assume that (X, T ) is an anti-topological space and
A,B ⊆ X are anti-genuine. Assume that aInt(A∩B) is different than
aInt(A) and aInt(B). Then A ∩B is not anti-genuine.

Proof. If A and B are anti-genuine, then aInt(A) ∈ T and aInt(B) ∈
T . Without loss of generality, suppose that aInt(A ∩ B) 6= aInt(A).
We already know that aInt(A∩B) ⊆ aInt(A)∩aInt(B). Now assume
that aInt(A ∩ B) ∈ T . But aInt(A ∩ B) may be written as aInt(A ∩
B) ∩ aInt(A). This is an intersection of two different anti-open sets,
hence it cannot belong to T . �

The assumption expressed in the second sentence of this lemma is
important. Consider T from Example 2.2 (3). Let A = {a, b, c}, B =
{c, d} and C = {a, b}. All these sets are anti-genuine. Now aInt(A ∩
B) = aInt({c}) = ∅ /∈ T . Clearly, aInt(A ∩ B) 6= aInt(A) and
aInt(A ∩ B) 6= aInt(B). On the contrary, aInt(A ∩ C) = aInt(C) =
{a, b} ∈ T .
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It is possible that the union of two anti-genuine sets is not anti-
genuine. Consider the same T . We see that aInt(A∪B) = aInt({a, b, c, d}) =
{a, b, c, d} /∈ T . But this is not general because aInt(A∪C) = aInt({a, b, c}) =
{a, b} ∈ T .

One can use anti-interior and anti-closure to define other classes of
sets. In general, this is beyond the scope of this initial research but we
may show some clues.

Definition 3.12. Let (X, T ) be an anti-topological space and A ⊆
X . We say that A is semi-open if and only if A ⊆ aCl(aInt(A)).

Remark 3.13. The idea of semi-open sets is taken from other fam-
ilies (like topologies or generalized topologies). Modak used it in the
context of weak structures (see [8]). However, we wrote that if A is semi-
open in such structure, then Int(A) 6= ∅. However, we may consider the
following weak structure: X = {a, b, c} and ω = {∅, {a}}. Now consider
A = {b, c}. Of course Int(A) = ∅. Then Cl(∅) = {a, b, c} ∩ {b, c} =
{b, c} = A. Hence Int(A) = ∅ and A ⊆ Cl(Int(A)). The closure of
empty set need not to be empty in weak structure.

We may adjust this example to anti-topologies. Take the same X
and T = {{a}}. Take the same A. Now aInt(A) = ∅ and aCl(∅) =
{b, c} = A.

4. Door anti-topologies

Door spaces (when defined in topological or supra-topological envi-
ronment) are defined by the assumption that each subset is open or
closed. This definition is not reasonable in anti-topological context be-
cause ∅ and X are never open nor closed. However, we can make it
more useful.

Definition 4.1. Let (X, T ) be an anti-topological space. We say
that (X, T ) is door anti-topological space if and only if each subset
(different than ∅ and X) is anti-open or anti-closed.

Example 4.2. Here there are some examples of door spaces:

(1) X = {a}, T = {{a}}.
(2) X = {a, b}, T = {{a}, {b}}.
(3) X = {a, b, c}, T = {{a}, {b}, {c}}.
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(4) X = {a, b, c}, T = {{a, b}, {a, c}, {b, c}}.

We may prove the following theorem:

Theorem 4.3. Assume that (X, T ) is an anti-topological space such
that |X| > 3. Then (X, T ) cannot be door space.

Proof. Take arbitrary x, y, z ∈ X and consider {x}. Assume that {x}
is anti-open. Now {x, y} cannot be open (as a non-trivial superset of
anti-open set). Moreover, it must be anti-closed. The same can be said
about {x, y, z} (note that this set is different than the whole universe
because we assumed that |X| > 3). Now {x, y, z} ∩ {x, y} = {x, y}.
On the one hand, it is anti-closed. On the other, it cannot be anti-
closed because any non-trivial intersection of two anti-closed sets is not
anti-closed. Contradiction.

Now assume that {x} is anti-closed. Then {x, y} cannot be anti-
closed. Hence, it must be open. The same can be said about {x, y, z}.
But then {x, y} ∩ {x, y, z} = {x, y} cannot be open. Again, contradic-
tion. �

5. Continuity

In this section we show some initial results on anti-continuity.

Definition 5.1. Let (X, T ) and (Y,S) be two anti-topological spaces.
We say that a function f : X → Y is anti-continuous if and only if for
any A ∈ S, f−1(A) ∈ T .

Example 5.2. Below there are some examples of anti-continuity.

(1) LetX = {1, 2, 3, 4}, T = {{1, 2}, {3, 4}, {5}}, Y = {a, b, c, d, e},
S = {{a, b}, {c, d}, {e}}. Let f be defined in the following man-
ner: f(1) = a, f(2) = b, f(3) = c, f(4) = d and f(5) = e.

Now f−1({a, b}) = {1, 2} ∈ T , f−1({c, d}) = {3, 4} ∈ T and
f−1({e}) = {5} ∈ T .

(2) Let X = {1, 2, 3, 4}, T = {{1, 2}, {3}}, Y = {a, b, c, d, e}, S =
{{a, b, c, d}, {e}}. Let f(1) = a, f(2) = b and f(3) = e.

Now f−1({a, b, c, d}) = {a, b} ∈ T and f−1({e}) = {3} ∈ T .
(3) Let X = N, T = {{0, 1}, {1, 2}, {2, 3}, ...}. Let Y = R+ ∪ {0}

and S be a collection of all closed intervals of length 1 such that
their endpoints are natural numbers. For example, [0, 1], [1, 2],
[2, 3] belong to S. Let f : X → Y be defined as f(n) = n. Now
f−1([0, 1]) = {0, 1} ∈ T , f−1([3, 4]) = {3, 4} ∈ T etc.

Another type of continuity is this one.
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Definition 5.3. Let (X, T ) and (Y,S) be two anti-topological spaces.
We say that a function f : X → Y is point-anti-continuous if and only
if for any x ∈ X and for any V ∈ S such that f(x) ∈ V , there is U ∈ T
such that x ∈ U and f(U) ⊆ V .

Theorem 5.4. Let (X, T ) and (Y,S) be two anti-topological spaces.
Assume that f : X → Y is anti-continuous. Then it is point-anti-
continuous too.

Proof. Assume that x ∈ X , V ∈ S and f(x) ∈ V . Now f−1(V ) ∈ T
and x ∈ f−1(V ). Moreover, f(f−1(V )) ⊆ V . �

The converse need not to be true. LetX = N and T = {{0}, {1}, {2}, {3}, ...}.
Let Y = R+ ∪{0} and S be a collection of all closed intervals of length
1 such that their endpoints are natural numbers. Let f : X → Y be
defined as f(n) = n. Assume now that k ∈ N, V ∈ S and f(k) ∈ V .
Then f(k) must be left or right endpoint of an interval V . Then there
is U ∈ T , namely U = {k} such that f(U) = {k} ⊆ V . Clearly, k ∈ U .
However, if V = [a, b] for some natural a, b, then f−1 = {a, b} /∈ T .

6. Density and nowhere density

Let us interpret the notions of density and nowhere density in anti-
topological environment.

6.1. Anti-density. The first definition is standard. It relies on the
idea of X as the closure of our set.

Definition 6.1. Let (X, T ) be an anti-topological space and A ⊆ X .
We say that A is anti-dense if and only if aCl(A) = X .

Lemma 6.2. Let (X, T ) be an anti-topological space and A ⊆ X .
A is dense if and only if Z = {B ∈ TCl;A ⊆ B} = ∅.

Proof. If Z is empty, then aCl(A) =
⋂
Z =

⋂
∅ = X . Now assume

that aCl(A) = X and Z 6= ∅. Thus
⋂
Z = X . This is possible only if

for any B ∈ Z, B = X . But X /∈ TCl (because ∅ /∈ T ). �

The next theorem gives us alternative interpretation of density.

Theorem 6.3. Let (X, T ) be an anti-topological space and A ⊆ X .
Then A is dense if and only if A ∩ B 6= ∅ for any B ∈ T .

Proof. Let aCl(A) = X and B ∈ T . Assume that A ∩ B = ∅. Let
x ∈ B (clearly, B is non-empty because it is anti-open). Then x ∈ X =
aCl(A). Thus A ∩ B 6= ∅ (see Lemma 3.3 (12)).
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Assume now that A ∩ B 6= ∅ for any B ∈ T . Suppose that A is
not anti-dense. This means that aCl(A) 6= X . Hence, there is some
D ∈ TCl such that A ⊆ D. Of course D 6= X . Consider −D = X \D.
Clearly, −D ∈ T and A ∩ (−D) = ∅. Contradiction.

�

Remark 6.4. Assume for a moment that we are working with space
in which X is open (for example, with topological space). Then we
could use the following reasoning to prove right-to-left direction in the
preceding theorem. Assume that A∩B 6= ∅ for any B ∈ T . Let x ∈ X .
Let U be any open set such that x ∈ U . Now A ∩ U 6= ∅. Hence,
x ∈ aCl(A).

Note that we used the fact that our xmust be in some open set. How-
ever, this may not be true e.g. in Császár’s generalized topologies, weak
structures or anti-topologies. Surprisingly, it seems that Modak used
this reasoning in [8] (Theorem 3.1.) with respect to weak structures.

Lemma 6.5. Let (X, T ) be an anti-topological space and A ⊆ X .
Then A is anti-dense if and only if aInt(−A) = ∅.

Proof. Let aInt(−A) = ∅. We know that aInt(−A) = −aCl(A).
Hence, −aCl(A) = ∅ and thus aCl(A) = X . Now let aCl(A) = X .
Then −aCl(A) = ∅. However, −aCl(A) = aInt(−A).

Note that we used some properties from Lemma 3.3.
�

Lemma 6.6. Let (X, T ) be an anti-topological space. Assume that
A,B ⊆ X are two anti-dense sets. Then their union is anti-dense too.

Proof. We know that X = aCl(A) = aCl(B). Of course A ⊆ (A ∪ B).
Hence X = aCl(A) ⊆ aCl(A ∪ B). But then aCl(A ∪ B) must be
X . �

As for the intersection of two anti-dense setse, it can be anti-dense or
not. For example, if X = {1, 2, 3, 4} with T = {{1, 2}, {2, 3}, {3, 4}},
then we can consider two anti-dense sets {1, 2, 3} and {2, 3, 4}. Their
intersection {2, 3} is anti-dense too. On the other hand, consider X =
{a, b, c, d, e} and T = {{a, b}, {c, d}, {e}}. Take {a, c, e} and {b, d, e}.
They are both anti-dense but their intersection is {e} and this set is
not anti-dense (for example, it does not have non-empty intersection
with {c, d}).

6.2. Anti-nowhere density. Now we may discuss the idea of anti-
nowhere density.



SOME REMARKS ON ANTI-TOPOLOGICAL SPACES 13

Definition 6.7. Let (X, T ) be an anti-topological space and A ⊆ X .
We say that A is anti-nowhere-dense if and only if aInt(aCl(A)) = ∅.

Example 6.8. Let (X, T ) be like in Example 2.2 (1). Consider
A = {1, 4}. Now aCl(A) = {1, 4} and aInt({1, 4}) =

⋃
∅ = ∅. This

set is anti-nowhere dense. However, it does not mean that for any
B ∈ T we shall find such anti-open C contained in B that A ∩ C = ∅.
For example, if B = {1, 2}, then A ∩ {1} 6= ∅ and {2} /∈ T .

The last example shows us that it would not be sensible to define
anti-nowhere density in terms of empty intersection with at least one
anti-open subset of each anti-open set. As we menioned before, anti-
open sets do not have proper anti-open subsets.

Of course, in some anti-topologies there are sets which have empty
intersection with any anti-open set. Consider X = {a, b, c, d, e, f} with
T = {{a, b}, {c, d}, {e}}. Think about {f}. Its intersection with any
anti-open set is empty.

Another example: X = N+, T = {{1, 3}, {5, 7}, {9, 11}, {13, 15}, ...}.
Consider A = {2, 4, 6, 8, 10, ...}. Its intersection with any anti-open set
is empty. Now consider the same universe and S = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, ...}.
Now it is not possible to find non-empty set with non-empty intersec-
tion with every set from S.
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