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To overcome the complex calculation and difficult solution problems in existing solution
methods of neutrosophic number (NN) optimization models, this paper proposes an improved
NN optimization method to solve NN optimization models by use of the Matlab built-in function
“fmincon()” corresponding to the indeterminacy I and the indeterminate scale A. Next, the
proposed NN optimization method is applied to a three-bar planar truss structural design with
indeterminate information to achieve the minimum weight objective under stress and deflection
constraints as a NN nonlinear optimization design example. The optimal solutions of the truss
structural design demonstrate the feasibility and flexibility of the proposed NN nonlinear
optimization method under indeterminate environment. Finally, by taking some specified in-
determinate scale we can also obtain a suitable optimal solution to satisfy some specified
actual requirement under indeterminate environments.

Keywords: Neutrosophic number; neutrosophic number optimization method neutrosoph.lc
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1. Introduction

In past decades, various optimization methods have been applied to optimal design
problems of truss structures with some constraints. Usually, there are three types of
truss structural design problems: size, layout, and topology optimizations. Because
the truss structural optimization design is a critical and challenging activity in me-
chanical engineering and civil engineering fields, a lot of researchers mainly focus on
the developments or improvemeénts of optimal algorithms for optimal design pro-
blems of truss structures in determinate environments.»2%%7810 However, in real
engineering design problems, there exist some indeterminate data, such as Young’s
modulus, stiffness, and yield stress of materials, which are generally given as interval
ranges rather than the unique crisp values in design handbooks on materials due to
the uncertainty/indeterminacy of material characteristics. Furthermore, the applied
force/toque for truss structures may be indeterminate/changeable in real situations.
Hence, the uncertain problems are inevitable and have to be taken into account in

295




206 J. Ye

engineering optimization problems; otherwise, the obtained optimal solution may
become infeasible or its performance can degrade significantly. Thus, robust opti-
mization approaches have been proposed for handling uncertain design problems.8:24
However, the robust optimal solutions obtained from the robust optimization
approaches may be conservative and relatively insensitive to input uncertainty, and
also the unique crisp optimal solution obtained from an indeterminate problem may
be unreasonable due to the conservative/overestimated design. On the other hand,
existing some uncertain optimization approaches are to provide uncertain objective
programming models involving uncertain variables/parameters, and then these
models were turned to crisp objective programming models to find unique crisp
optimal solutions.®''%17 From an indeterminate viewpoint, however, an indeter-
minate optimization problem should contains possible ranges of the optimal solutions
corresponding to various indeterminate ranges to be suited to indeterminate design
requirements rather than the unique crisp optimal solution.???

Then, the indeterminacy of structural design is connected with lack of accurate
data of design factors. In this case, how to express indeterminate information is
an important problem. Hence, Smarandache'?™4 first introduced a concept of inde-
terininacy, which is denoted by the symbol “I” as the indeterminate value/range,
and then presented a concept of a neutrosophic number (NN) z = d +ul ford,u € R
(all real numbers), which consists of both the determinate part d and the indeter-
minate part ul. It is obvious that it can express determinate and/or indeterminate
information in incomplete, uncertain, and indeterminate problems. After that,
Ye'®?? first applied NNs to decision making problems. Then, Kong et al.® and
Ye® applied NNs to fault diagnosis problems under NN environment. Further,
Smarandache!® introduced an interval function (so-called neutrosophic function
g(z) = [g1(z), go(z)] for = € R) to describe indeterminate problems by the form
of interval functions. Based on the Smarandache’s neutrosophic function (interval
function), Ye et al.?! utilized the neutrosophic functions (interval functions) to ex-
press the joint roughness coefficient and the shear strength in rock mechanics
under indeterminate environment. Jiang and Ye® defines basic operations of NNs
and NN functions for objective functions and constraints in optimization models,
and proposed a general NN nonlinear optimization model for the optimal design of
truss structures. They utilized the Lagrangian multipliers for the neutrosophic
number optimization model and the Karush-Kuhn-Tucker (KKT) necessary
conditions to obtain the NN/interval optimal solution. Ye?® also presented a NN
linear programming (NNLP) method for NNLP problems to obtain the possible
ranges of the optimal solution by the simplex algonthm under indeterminate
environments. '

However, in NNLP and NN nonhnear optlmlzatlon problems, the optimization
calculations cannot be carried by means of the MATLAB built-in routines, such as
“linprog()” and “fmincon(),” which result in the complex calculation and difficult
solution problems by existing solution methods.®*3 To overcome these drawbacks,
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this paper presents an improved NN optimization method to realize the implemen-
tation of the solution method for NN optimization models by use of the Matlab built-
in function “fmincon()” corresponding to the indeterminacy I € [inf I, sup I] and the
indeterminate scale A € [0, 1]. Next, the proposed NN optimization method is applied
to the optimization problem of truss structural design with indeterminate informa-
tion, where the obtained optimal solutions (possible optimal interval range) can
satisfy the design requirements in indeterminate situations. In some specified case,
designers can also get one specified optimal solution by specifying some suitable
indeterminate scale A € [0, 1] to satisfy the specified design requirement.

The remainder of this paper is structured as follows. Section 2 describes the
indeterminate expression of NNs and some concepts of NN functions, which are used
for the NN objective functions and constraints in indeterminate optimization
problems. Section 3 proposes an improved NN optimization method to implement the
solution method of NN optimization models by use of the Matlab built-in function
“fmincon()”. In Sec. 4, the proposed NN optimization method is applied to a three-
bar truss structural design with indeterminate information, and then the optimal
design solutions of the truss structure demonstrate the feasibility and flexibility of the

proposed NN optimization design method. Section 5 contains some conclusions and
future research direction.

2. NN and NN Optimization Model
2.1. Indeterminate expression based on NNs

In design problems of truss structures, there are some indeterminate design variables
and/or parameters, such as allowable tensile and compressive stresses and external
forces. For example, the allowable stress of some metal material is given in design
handbooks by a possible range between 120 MPa and 140 MPa, denoted by [o7] =
[120, 140] MPa, which reveals the value of [07] is an indeterminate range within the
interval [120, 140]. To effectively express the indeterminate information, a NN z =
d+ul for d, u € R (all real numbers), introduced by Smarandache (1998, 2013,
2014), can represent it as z = 120 + 20I MPa for I € [0, 1], where its determinate
part is d = 120 MPa, its indeterminate part is ul = 207 MPa. Then, the indetermi-
nacy I in NN usually belongs to the indeterminate interval [inf I, sup I], i.e., I € [inf -
I, sup I]. For another example, if some external force is within [20, 23] kN, then it can
~be expressed as the NNz = 20 + 3/ kN for I € [0,1] orz =20+ 0.3IkN for I € [0, 10]
according to some represented needs. -

It is clear that the NN z = d + u[ for d, u € R can express its determinate and/or
indeterminate information, where I is usually specified as a possible interval range
linf I, sup I] in actual applications. Tt is noteworthy that there are the crisp value
z=d if ul =0 and the indeterminate value z = ul if d =0 as two special cases.,
Therefore, NNs are very suitable for the expression of determinate and/or indeter-
minate information under indeterminate environments.
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For convenience, let Z be all NNs (Z domain), and then a NN is denoted by
-z=d+ul = [d+ u(inf I), d+ u(sup I)] for I C [inf I, sup I] and z € Z.

2.2. NN functions and optimization model in Z domain

In optimal design problems of truss structures, a general optimization model is
composed of the objective functions and constrained functions. Then in indetermi-
nate optimization problems, objective functions and constrained functions may
contain indeterminate information (variables and/or parameters). T'o express inde-
terminate optimization models in NN environment, we introduce NN functions to
general NN optimization models in Z domain.3%3

Definition 1 (Refs. 13 and 23). A NN function in n variables (unknowns) and
Z domain is defined as follows:

f=x,I): 2" — Z, (1)

where © = [z, 2y, ...,z,]T for x € Z" is a n-dimensional vector, I is indeterminacy,
and f(a, I) is either a NN linear function or a NN nonlinear function.

For example, fi(x,I) =z} + (4 + I)z} for = [z;, z,]T € Z? is a NN nonlinear
function, while fo(x,I) = (8 +2I)zy + x5 +2+ 31 for = = [z, 7,]T € Z2 is a NN
+ linear function.

In general, NN optimization problems in n design variables and Z domain can be
defined as the following general form of a NN optimization model:

min f(z,I),
stogeld ) <0, k=12 . m
hi@, 1) =0, j=1,2,...,s,
AN

(2)

where f(xz,I) is a NN objective function and gi(a ), gz, B g, ),
hi(z,I), hy(z,I),...,h,(x,I) are NN constrained functions for € Z" and I € [inf
I, sup I]. '

When the NN optimal solution of design variables satisfies all these constrained
conditions in a NN optimization model, it is feasible and otherwise is unfeasible.
Generally, the optimal solution of design variables and the value of the NN objective
function are usually within some optimal indeterminate range for an indeterminate
optimization problem.>? :

However, it is usually difficult to solve NN linear/nonlinear optimization models
in indeterminate linear/ nonlinear optimization design problems by existing solution
methods. To easily solve the NN linear /nonlinear optimization model, this paper uses
a Matlab built-in function “‘frilincon()” for the implementation of the solution
method in NN optimization problems.
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3. Solution Method using the Matlab Built-in Function “fmincon()”

In this study, we propose an approach of de-neutrosophication, where the indeter-
minacy I € [inf I, sup I] can be represented as I(\) = (1-X)(inf I) 4+ A(sup I) for
A € [0, 1]. Thus, NN can be represented as z(\) = d+ul(\) = d + u[(1-A) (inf I) + A
(sup I)] for A € [0, 1]. Thus A may be considered as an indeterminate scale in real
engineering design problems. For example, assume that a NN is z = 120 4 201 for I €
[0, 1]. There are z(0) = 120 for A = 0 (determinacy), z(1) = 140 for A = 1 (maximum
indeterminacy), and z(0.5) = 130 for A = 0.5 (moderate indeterminacy).

For the optimization approach of de-neutrosophication, it allows some specifica-
tion of the indeterminacy I € [inf I, sup I] as I(\) = (1—A)(inf I) + A(sup I) by an
indeterminate scale A €[0,1]. Especially when A =0, A = 0.5 and A = 1 are considered
as the minimum indeterminacy/determinacy, the moderate indeterminacy, and the
maximum indeterminacy, respectively, in an NN optimization problem, we can ob-
tain their corresponding optimal solutions. Usually, the NN optimization solutions
reveal an optimal interval range (but not always) corresponding to the interval range
[0, 1] of the indeterminate scale A. It is obvious that the optimal solutions are changed
as the indeterminacy I € [inf I, sup I] and the indeterminate scale A € [0, 1] are
changed in NN optimization problems.

According to the proposed optimization technique of de-neutrosophication, the
NN optimization model (2) with I € [inf I, sup I] can be turned into the following
optimization model with the indeterminate scale A € [0, 1]:

min f(z,\)
st gi(z,N) <0, k=1,2,...,m
hi(x,A) =0, j=1,2,...,s
T € R™.

3)

Thus, the optimization model (3) can be easily solved by use of the Matlab built-in
function “fmincon()”. To illustrate the effectiveness of the proposed method, we
consider the following numerical example to show the optimal solutions corre-
sponding to the specified indeterminate scales of \.

Example 1. A NN minimization problem with I € [0, 2] and two variables is
considered subject to several NN nonlinear inequality constraints, which is
constructed as the following optimization model:

min f(z,I) = {[z; + (1 +I)]? + 3(z, ~ 1.3)*}H{[z; — (1.2 + I))?
+0.5(zy — 0.5)2},
st gi(x, I) = 3z —zyz + 429 — (6+ 1) <0,
g2z, I) = 2z + 25 — (2+2I) <0, (4)
g3(z,I) = 2+ )z, — 42} — 42, <0,
gu(®) = -z, <0,
gs(x) = —z5 < 0.
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According to the introduced optimization technique of de-neutrosophication, the
NN nonlinear optimization model (4) with I € [0, 2] can be turned into the following
optimization model with the indeterminate scale A € [0, 1]: :

min f(z,A) = {[z; + (1 +2X)]2 + 3(z; — 1.3)2}{[z; — (1.2 +2X)]?
+0.5(zy — 0.5)2}, :
s.t. gi(x,A) = 3z — 2129 + 43y — (6 +2)0) <0,

G(®,A) = 2z + 25 — (24 4X) <0, (5)
gs(x, ) = (24 20z — 422 — 42, < 0, ’

ga(z) = -2, <0,

g5(x) = —z5 < 0.

Then, we discuss the implementation of the solution method by the Matlab built-in
function “fmincon()”. When we consider A = 0 as the minimum indeterminacy, A =
0.5 as the moderate indeterminacy, and A = 1 as the maximum indeterminacy in the
NN nonlinear optimization problem we can obtain the following three specified
optimal solutions:

(1) z7=0.8406, z5 = 0.3187, and f (z*, I) = 1.1026 for \ = 0;
(2) zi =1.6415, z5 = 0.7170, and f(x*, I) = 5.0656 for X\ = 0.5;
(3) z1=2,z5=1, and f(x*, I) = 40.2987 for A = 1.

Obviously, the optimization problem with the indeterminacy I € [0, 2] reveals
different optimal results corresponding to the three specified indeterminate scales of
A. However, its general optimal solutions are z] = [0.8406, 2] and =5 = [0.3187, 1] for
flz*, I) = [1.1026, 40.2987], which usually are interval optimal ranges.

4. Optimal Design of Truss Structures under NN Environment

To illustrate the application of the proposed NN optimization method, this section
will research on the NN optimization de51gn problem of a three-bar planar truss
structure with indeterminate information to realize the primal investigation of the
truss structural optimization design in NN environment.

A well-known three-bar planar truss structure, which is shown in Fig. 1, is pre-
sented to minimize the weight of the truss structure subject to stress constraints on
each of the truss members and the vertical and horizontal displacement constraints at
the loading point of a loaded three-bar planar truss with some indeterminate infor-
mation for I € [0, 1]. According to the design requirements, the optimization problem
of the truss structure can be constructed by the following NN optimization model:

min f(z,I) = pL(2V2z; + x,),
F(2$1 + \/51,'2)
2(z? + 2z, 1)

st oy(z,I) = — o] <0,
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F

Fig. 1. Three-bar planar truss structure.

E
o(®,I) = ——— —[opy] <0,
2( ) 531 0 \/ixz [ TZ]
F2z
oalml= Y g
2(z} + V2, )
F
Slep- L oy
E($1 + \/§$2)
FL
1) I)= ——-§ <
n(x, I) Ty Oh S 0,
Limin S Z; S mimax fOI' ’I, = 1, 2, (6)

where F' is the applied load at the loading point; p is the material density; L is the
length; E is Young’s modulus; the design vector & = [z1, z,]T is composed of two
design variables z; and z,, which are denoted as the cross sections of bars 1 and 2; &,
and 6 are the allowable vertical and horizontal displacements of the loaded point,
respectively; [or] is the allowable stress for bars 1, 2, and 3. The given data of the
optimization model are shown in Table 1.

Thus, we use the Matlab built-in function “fmincon()” for the implementation of
the solution method for the NN nonlinear optimization model of the truss structural
design.

Firstly, according to the optimization technique of de-neutrosophication, the NN
nonlinear optimization model (6) with the indeterminacy I € [0, 1] can be formulated

Table 1. The given data of the optimization model for I € [0, 1].

Applied load Volume Length Allowable Young’s Allowable verti-  Cross section of
F(N) density L (mm)  stress modulus cal and horizon-  bars 1, 2 (mm?)
p (kg/m3) [or] (MPa)  E (MPa) tal displacements
of loaded joint 6,
and 5h (mln)

(1+40.27) x 104 © 7800 1000 120 +20I (2+4-0.11) x 10° §,=0.01,

T1min = Z2min

6, =0.1 =50, Tipay =

Tomae = 4000
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as follows:

min f(z,X) = 0.0078(2v2z; + z,)
(14 0.2)) x 104(2z; + v22,)
2(z} + v2z, 2,)

. (1+0.2 4
oa(x, A) =M—(l20+20A)§0

st.op(x,A) = —(1204+20)) <0

z1 + 2z,
(1+0.2)) x 1042z
o3(x,2) = : —(120+20)) <0 (7)
5 2z} + V2, 7)) ( )
140 7
8,(x, ) = (1 0.2 < ~0.01<0
- (24 0.1X) x 105(z; + v/2z,)
: 7
e (140.2)) x 10 i

T 2401\ x 105z,
50 < z; <4000 fori=1,2.

~ Selecting different indeterminate scales of A € [0, 1] in the NN nonlinear optimization
problem, we can obtain the different specified optimal solutions of the three-bar
planar truss structural design, which are shown in Table 2.

From Table 2, we can obtain that its general optimal solutions are z7 = [500,
571.4] and z5 = [3182, 3636.5], and then the minimum value of the objective function
is f(z*, I) = [35.8503, 40.9718] for I < [0, 1],

Obviously, the optimal results are changed as the indeterminate scale of \ are
changed under NN environment. If A =0, it is clear that the NN optimization
problem is degenerated to the determinate optimization problem without the inde-
terminate part u/ (i.e., conventional certain optimization problem). However, for a
specified interval range of the indeterminacy I € [inf I, sup I] in actual applications,
designers will take some indeterminate scale of A € [0, 1] depending on some inde-
terminate condition to obtain the corresponding optimal solution, which can satisfy
the actual requirement of the truss structural design. For example, if we take the
specified indeterminate scale A = 0.5 (tli¢ moderate indeterminacy) for I € [0, 1] in
Table 2, then the specified optimal solution is 2} = 536.6 mm? and =} = 3414.8 mm?
to be suitable for the design requirement of the moderate indeterminacy.

Table 2. Optimal solutions of the truss structural
design for different indeterminate scales of \.

A zi (mm?) z3 (mm?) f (=% A) (ke)
A=0 500 3182 35.8503
A=0.1 507.5 3229.5 36.3854
A=03 522.2 3323.1 37.4397
A=05 536.6 3414.8 38.4735
A=07 550.7 3504.8 39.4873
A=09 564.6 3593.0 40.4817
X 571.4 3636.5 40.9718
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Compared with existing NN optimization design methods (Jiang and Ye, 2016;
Ye, 2017), the improved NN (indeterminate) optimization design method indicates
the following main advantages:

(i) The improved NN optimization design method shows its convenience and
flexibility since the Matlab built-in function “fmincon()” can realize the optimal
solution by a specified selection of indeterminate scale under an indeterminate
(NN) condition.

(ii) Existing NN optimization methods difficultly handle the complex NN optimi-
zation design problems under indeterminate environment, while the improved
NN optimization method can overcome this drawback.

(iii) The improved NN optimization method demonstrates its feasibility and ratio-
" nality under indeterminate optimization design problems.

5. Conclusion

To overcome the complex calculation and difficult solution problems in existing
solution methods of NN optimization models,>?? this paper proposed an improved
NN optimization method with constrained optimizations by using the Matlab built-
in function “fmincon()” to reach the solution method corresponding to the indeter-
minacy I € [inf I, sup I] and the indeterminate scale A € [0, 1]. Next, the improved
NN optimization method was applied to a three-bar planar truss structural design
with indeterminate information. The obtained optimal solutions demonstrated the
‘flexibility and rationality of the proposed NN optimization design method. However,
the NN optimization problems may contain indeterminate optimal solutions, which
can indicate possible optimal ranges of the design variables and objective function
when the indeterminacy I € [inf I, sup I]. Then, when the indeterminate scale ) € [0,
1] are specified as possible values in actual applications, we can also determinate the
specified optimal design values of design variables to satisfy the specified indeter-
minate requirements, such as the minimum indeterminacy/ determmacy, the mod-
erate indeterminacy, and the maximum indeterminacy.

It is obvious that the improved NN optimization design method is easier and more
feasible than existing NN optimization design methods of truss structures since the
existing NN optimization design methods contain some drawbacks, such as complex
calculation/difficult solution problems, under indeterminate environment. Then, the
improved NN optimization design method can overcome the mentioned drawbacks
and provide a new way for the linear /nonlinear optimal des1gn under indeterminate
environment. ; i

The results of this study may lead to the development of effective NN optimization
technique for solving other models of linear/nonlinear optimization problems in
different fields. In the future, therefore, we shall further study solving methods
for more complex NN linear /nonlinear optimization problems and apply them
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to mechanical design and civil engineering areas under indeterminate (NN)
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