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Abstract: Decision-making activities are prevalent in human life. Many methods have been developed
to address real-world decision problems. In some practical situations, decision-makers prefer to
provide their evaluations over a set of criteria and weights. However, in many real-world situations,
problems include a lack of weight information for the times, criteria, and decision-makers (DMs).
To remedy such discrepancies, an optimization model has been proposed to determine the weights
of attributes, times, and DMs. A new concept related to the correlation measure and some distance
measures for the dynamic interval-valued neutrosophic set (DIVNS) are defined in this paper.
An extend Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method in
the interval-valued neutrosophic set with unknown weight information in dynamic neutrosophic
environments is developed. Finally, a practical example is discussed to illustrate the feasibility and
effectiveness of the proposed method.

Keywords: dynamic neutrosophic environment; dynamic interval-valued neutrosophic set; unknown
weight information

1. Introduction

Multiple criteria decision-making (MCDM) problems have gained more attention to researchers
in recent years. The purpose of the MCDM process is to make the best ideal choice reaching the highest
standard of achievement from a set of alternatives. Existing studies of MCDM attempt to handle various
kinds of multi-criteria decision-making problems. The MCDM’s evaluation is decided on the basis
of alternative evaluations being withdrawn from to the weights of the criteria. They are completely
unknown, based upon some diverse reasons, such as time pressure, partial knowledge, incomplete
attribute information, and lack of decision-makers’ information, so that the overall evaluation cannot
be derived. Especially, in real-world situations of group decisions, the exact appreciation of weights
is important for handling MCDM problems and for making a decision. For solving such problems,
several studies have attempted to develop the methods to handle the MCDM problems using various
kinds of information, such as fuzzy set [1], interval fuzzy set [2,3], intuitionistic fuzzy set [4,5],
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hesitant fuzzy set [6], neutrosophic set [7–10], interval neutrosophic set [11–15], or single neutrosophic
set [16], etc. [17–19], and various methods (e.g., maximizing deviation method, entropy, optimization
method) [20–22] in which the information of criteria weights are incompletely known.

Yue et al. [23] presented a TOPSIS model to calculate the weights of the DMs under a group decision
environment with individual information described as interval numbers. Sajjad Ali Khan et al. [6]
introduced a study based on the combination of the maximizing deviation method and the TOPSIS
method for resolving MCDM problems where the valuation information is depicted as Pythagorean
hesitant fuzzy numbers and information about attribute weight is incomplete. Broumi et al. [24]
proposed an extended TOPSIS method for solving multiple attribute decision-making based on
two new concepts of complex neutrosophic sets. Gupta et al. [4] also extended the TOPSIS method
under intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets. They considered different
variations of weights of attributes depending on their subjective impression, cognitive thinking, and their
psychology. Wang and Mendel [25] presented an optimization model to solve the decision-making
(DM) problems on the Interval Type-2 (IT2) fuzzy set. All the DMs’ information is characterized by the
IT2 fuzzy set and the attribute weights’ information is completely unknown. Maghrabie et al. [26]
proposed a new model that used the maximizing deviation method and grey systems theory to estimate
the unknown criteria weights. Peng [27] proposed a novel model for achieving unknown attribute
weights and handling an IoT (Internet of Things) industry decision-making issue based on interval
neutrosophic sets. Tian et al. [28] combined single-valued neutrosophic sets with completely unknown
criteria weights and qualitative flexible multiple criteria method for MCDM problems. In addition,
for handling multi attribute decision-making problems with interval neutrosophic information,
Hong et al. [29] discussed some distance measure based on the TODIM (an acronym in Portuguese for
Interactive and Multicriteria Decision Making) method.

According to above analyses, the motivations of this study are summarized as follows:

(1) Many approaches attempted to handle the MCDM problem with unknown weight information,
but there is little research on discovering the weights of the DMs, the attributes, and the time in
the group decision-making problems, and these methods are approximately complex.

(2) Another reason is that the TOPIS model in [13] could not work efficiently without determining
the evaluation information of decision-makers and this issue was not considered in [13].

(3) In real application situations, many MCDM problems reflect a lack of weight information for the
times, criteria, and decision-makers.

Therefore, we focus on the issue of multiple attribute group decision-making model based
on an interval-valued neutrosophic fuzzy environment, and DMs’ information is characterized by
interval-valued neutrosophic fuzzy sets, and the information is completely and partially unknown.
We study multiple attribute group decision-making methods with incompletely known weights of
DMs, attributes, and time in the neutrosophic setting and the interval-valued neutrosophic setting.

In this paper, our aim is to propose a novel decision-making approach based on DIVNS for
unknown weight information to effectively solve the above deficits. The main contributions of this
paper can be summarized as follows:

• We define a new correlation measure and some distance measures for DIVNS.
• An optimization model is proposed to determine the weight information for the times, criteria,

and decision-makers.
• An extend TOPSIS method under interval-valued neutrosophic set with unknown weight

information in the dynamic neutrosophic environment is established.

To do that, the rest of this work is organized as follows. In Section 2, we review some basis
concepts. In Section 3, we develop a TOPSIS approach to handle the MCDM problems under DIVNS in
dynamic neutrosophic environments where all information of attributes, DMs, and time is completely
and partially unknown. Section 4 presents the numerical results of applying our proposed method in
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a practical problem to demonstrate the feasibility of this method. Some comparative analyses with
existing algorithms are presented in Section 5. Finally, this paper ends with some conclusions of this
study in Section 6.

2. Preliminary

In this section, we review some basic knowledge, such as dynamic interval-valued neutrosophic
sets and MCDM.

2.1. Dynamic Interval-Valued Neutrosophic Sets

Neutrosophic sets are characterized by truth membership (T), indeterminacy membership (I),
and falsity membership (F) with the conditions as 0 <= T <= 1; 0 <= I <= 1; 0 <= F <= 1. Moreover,
three membership functions have to satisfy 0 <= T + I + F <= 3. Some other concepts were designed
based on neutrosophic sets such as the neutrosophic probability and neutrosophic statistics, that refer to
both randomness and indeterminacy with no such contraints of memberships [30]. Herein, we extend
the neutrosophic set and logic to the dynamic interval-valued neutrosophic set where each element in
the new neutrosophic set is expressed by the interval-valued neutrosophic number and time sequence.

Definition 1 [31]. Let U be a universe of discourse. A is an interval neutrosophic set expressed by:

A =
{
x,

〈[
TL

A(x), TU
A (x)

]
,
[
IL
A(x), IU

A (x)
]
,
[
FL

A(x), FU
A(x)

]〉∣∣∣∣x ∈ U
}

(1)

where
[
TL

A(x), TU
A (x)

]
⊆ [0, 1];

[
IL
A(x), IU

A (x)
]
⊆ [0, 1];

[
FL

A(x), FU
A(x)

]
⊆ [0, 1] represents truth, indeterminacy,

and falsity membership functions of an element.

Thong et al. [13] introduced the concept of a DIVNS, which is shown as follows.

Definition 2 [13]. Let U be a universe of discourse. A is a dynamic–valued neutrosophic set (DIVNS)
expressed by,

A =
{
x,

〈[
TL

x (t), TU
x (t)

]
,
[
IL
x (t), IU

x (t)
]
,
[
FL

x(t), FU
x (t)

]〉∣∣∣∣x ∈ U
}

(2)

where t = {t1, t2, . . . , tk};
[
TL

x (t), TU
x (t)

]
⊆ [0, 1];

[
IL
x (t), IU

x (t)
]
⊆ [0, 1];

[
FL

x(t), FU
x (t)

]
⊆ [0, 1] and for

convenience, we call ñ =
〈[

TL
x (t), TU

x (t)
]
,
[
IL
x (t), IU

x (t)
]
,
[
FL

x(t), FU
x (t)

]〉
a dynamic interval–valued neutrosophic

element (DIVNE).

2.2. MCDM Problems in a Dynamic Neutrosophic Environment

Thong et al. [13] expressed MCDM problems in the dynamic neutrosophic environment as follows:
Consider a MCDM problem containing A = {A1, A2, . . . , Av} and C = {C1, C2, . . . , Cn} and

D = {D1, D2, . . . , Dh} are sets of alternatives, criteria, and decision-makers. For a decision-maker
Dq(q = 1, 2, 3, . . . , h) the evaluation characteristic of an alternatives Am(m = 1, 2, 3, . . . , v) on a criteria
Cp(p = 1, 2, 3, . . . , n) in time sequence t = {t1, t2, . . . , tk} is represented by the decision matrix where

dq
mp(t) =

〈
xq

dmp
(t),

(
Tq

(
dmp, t

)
, Iq

(
dmp, t

)
, Fq

(
dmp, t

))
〉; t = {t1, t2, . . . , tk} taken by DIVNSs evaluated by

decision-maker Dq.

3. An Extended TOPSIS Method for Unknown Weight Information

This section proposes the method to handle the MCDM problem that include a lack of the weight
information for the times, criteria, and DMs in dynamic netrosophic environments.

3.1. Correlation Coefficient Measure for Dynamic Interval-Valued Neutrosophic Sets

We propose a novel correlation coefficient measure for DIVNSs based on the idea in [32].
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Definition 3. Let Y(t) =
{(

x(t),
〈
TY(x, tl), IY(x, tl), FY(x, tl)

〉)
,∀tl ∈ t, x ∈ U

}
and Z(t) ={(

x(t),
〈
TZ(x, tl), IZ(x, tl), FZ(x, tl)

〉)
,∀tl ∈ t, x ∈ U

}
be two DIVNs in t = {t1, t2, . . . , tk} and U =

(x1, x2, . . . , xn). A correlation coefficient measure between A and B is:

K(Y, Z) =
C(Y, Z)

max(T(Y), T(Z))
=

∑n
i=1 C(Y(xi), Z(xi))

max
(∑n

i=1 T(Y(xi)),
∑n

i=1 T(Z(xi))
) (3)

where C(Y, Z) is considered the correlation between two DIVNSs Y and Z; T(Y) and T(Z) refer to the
information energies if the two DIVNSs, respectively. These components are provided by:

C(Y, Z) = 1
k

k∑
l=1

n∑
i=1

C(Y(xi, tl), Z(xi, tl))

= 1
k

k∑
l=1

n∑
i=1

1
2


infTY(xi, tl) × infTZ(xi, tl) + supTY(xi, tl) × supTZ(xi, tl)

+infIY(xi, tl) × infIZ(xi, tl) + supIY(xi, tl) × supIZ(xi, tl)

+infFY(xi, tl) × infFZ(xi, tl) + supFY(xi, tl) × supFZ(xi, tl)


T(Y) = 1

k

k∑
l=1

n∑
i=1

T(Y(xi, tl))

= 1
k

k∑
l=1

n∑
i=1

1
2

 (infTY(xi, tl))
2 + (supTY(xi, tl))

2 + (infIY(xi, tl))
2 + (supIY(xi, tl))

2

+(infFY(xi, tl))
2 + (supFY(xi, tl))

2


T(Z) = 1

k

k∑
l=1

n∑
i=1

T(Z(xi, tl))

= 1
k

k∑
l=1

n∑
i=1

1
2

 (infTZ(xi, tl))
2 + (supTZ(xi, tl))

2 + (infIZ(xi, tl))
2 + (supIZ(xi, tl))

2

+(infFZ(xi, tl))
2 + (supFZ(xi, tl))

2


Theorem 1. The correlation coefficient K between Y and Z satisfies the follow properties:

(i) 0 ≤ K(Y, Z) ≤ 1
(ii) K(Y, Z) = K(Z, Y)
(iii) K(Y, Z) = 1⇔ Y = Z

Proof. (i) for any i = 1, 2, 3, . . . , n, the values of [infTY(xi, tl), supTY(xi, tl)]; [infIY(xi, tl), supIY(xi, tl)];
[infFY(xi, tl), supFY(xi, tl)]; [infTZ(xi, tl), supTZ(xi, tl)]; [infIZ(xi, tl), supIZ(xi, tl)];
[infFZ(xi, tl), supFZ(xi, tl)] ⊆ [0, 1] exist for any i = 1, 2, 3, . . . , n. Thus, it is hold that
C(Y, Z) ≥ 0; T(Y) ≥ 0; T(Z) ≥ 0. Therefore

K(Y, Z) =
C(Y, Z)

max(T(Y), T(Z))
≥ 0

and according to the Cauchy–Schwarz inequality, it holds that:

K(Y, Z) =
C(Y, Z)

max(T(Y), T(Z))
≤ 1

Therefore, 0 ≤ K(Y, Z) ≤ 1.
(ii) It is obvious that if Y(t) = Z(t), ∀l ∈ {1, 2, . . . , k}. We have:
infTY(xi, tl) = infTZ(xi, tl); supTY(xi, tl) = supTZ(xi, tl); infIY(xi, tl) = infIZ(xi, tl); supIY(xi, tl) =

supIZ(xi, tl); infFY(xi, tl) = infFZ(xi, tl); supFY(xi, tl) = supFZ(xi, tl);
Thus, K(Y, Z) = K(Z, Y). Theorem 1 is proved.
(iii) It is easily observed. �
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3.2. Distance Measures for Dynamic Interval-Valued Neutrosophic Sets

In this section, we present the definitions of the Hamming and Euclidean distances between
DIVNEs and distance of two dynamic interval-valued neutrosophic matrices.

Definition 4. Let n1 and n2 be two DIVNEs. The dynamic interval-valued neutrosophic distance between n1

and n2 is determined as follows:

(i) The Hamming distance:

d1(n1, n2) =
1

6× k

k∑
l=1

( ∣∣∣TL
n1
(tl) − TL

n2
(tl)

∣∣∣+ ∣∣∣TU
n1
(tl) − TU

n2
(tl)

∣∣∣+ ∣∣∣IL
n1
(tl) − IL

n2
(tl)

∣∣∣
+

∣∣∣IU
n1
(tl) − IU

n2
(tl)

∣∣∣+ ∣∣∣FL
n1
(tl) − FL

n2
(tl)

∣∣∣+ ∣∣∣FU
n1
(tl) − FU

n2
(tl)

∣∣∣
)

(4)

(ii) The Euclidean distance:

d2(n1, n2) =

√√√√
1

6× k

k∑
l=1


(
TL

n1
(tl) − TL

n2
(tl)

)2
+

(
TU

n1
(tl) − TU

n2
(tl)

)2
+

(
IL
n1
(tl) − IL

n2
(tl)

)2

+
(
IL
n1
(tl) − IL

n2
(tl)

)2
+

(
FL

n1
(tl) − FL

n2
(tl)

)2
+

(
FU

n1
(tl) − FU

n2
(tl)

)2

 (5)

(iii) The geometry distance:

d3(n1, n2) =

 1
6× k

k∑
l=1


(
TL

n1
(tl) − TL

n2
(tl)

)α
+

(
TU

n1
(tl) − TU

n2
(tl)

)α
+

(
IL
n1
(tl) − IL

n2
(tl)

)α
+

(
IL
n1
(tl) − IL

n2
(tl)

)α
+

(
FL

n1
(tl) − FL

n2
(tl)

)α
+

(
FU

n1
(tl) − FU

n2
(tl)

)α 


1
α

(6)

where α > 0 and

• If α = 1, then equation (6) refers to the Hamming distance.
• If α = 2, then equation (6) refers to the Euclidean distance.

Therefore, the distance in Equation (6) is a generalization of distances in Equation (5) and
Equation (4).

Definition 5. Given two dynamic interval-valued neutrosophic matrices A1 = [α(tl)]h×n and A2 = [β(tl)]h×n,
the elements of both A1 and A2 are described by DIVNS. After that the distance between A1 and A2 is defined by:

d(A1, A2) =
1

hn

n∑
p

h∑
q

d
(
αqp, βqp

)
(7)

where d
(
αqp, βqp

)
is the distance between two DIVNEs.

3.3. Unknown Weight Information in Dynamic Neutrosophic Environment

3.3.1. Determining the Weight of Time

It is common knowledge that the weights of time periods have an important role in MCDM
problems practical application. In the followings, we present how to determine the weights of time
periods in dynamic neutrosophic environments.

Definition 6. Given a basic unit-interval monotonic (BUM) function g : [0, 1]→ [0, 1] , the time weight can
be determined as follows:

λ(tl) = g
( Rl

TV

)
− g

(Rl−1

TV

)
, (8)
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where Rl =
l∑

j=1
V j; TV =

k∑
i=1

Vi; Vi = 1 + T(MDi); T(MDi) denotes the support of ith largest argument by

all the other arguments:

T(MDi) =
k∑

j = 1
j , i

Sup
(
MDi, MD j

)

sup
(
MDi, MD j

)
= 1− d

(
MDi, MD j

)
= 1− 1

hn

h∑
q

n∑
p=1

√√√√
1
6


(
TL

(
xi

pq

)
− TL

(
x j

pq

))2
+

(
TU

(
xi

pq

)
− TU

(
x j

pq

))2
+

(
IL

(
xi

pq

)
− IL

(
x j

pq

))2
+(

IU
(
xi

pq

)
− IU

(
x j

pq

))2
+

(
FL

(
xi

pq

)
− FL

(
x j

pq

))2
+

(
FU

(
xi

pq

)
− FU

(
x j

pq

))2

 (9)

3.3.2. Determining the Weights of Decision-Makers

The weights of DMs play a critical role in MCDM problems. In this section, we present how to
determine the weights of DMs in dynamic neutrosophic environment.

Definition 7. Let D1 = [α(tl)]v×n and D2 = [β(tl)]v×n be two dynamic interval-valued neutrosophic matrices,
in which the elements of both D1 and D2 are expressed by DIVNS. Then the correlation coefficient between D1

and D2 is defined by:

C(D1, D2) =
1

nv

n∑
p

v∑
m

K
(
αmp, βmp

)
(10)

where K
(
αmp, βmp

)
is correlation coefficient measure between two DIVNEs.

Theorem 2. For two Dynamic interval-valued neutrosophic matrices D1 = [α(tl)]v×n and D2 = [β(tl)]v×n
where the elements of both D1 and D2 are expressed by DIVNSs, C(D1, D2) satisfies the three conditions:

(i) 0 ≤ C(D1, D2) ≤ 1
(ii) C(D1, D2) = C(D2, D1)

(iii) D1 = D2 if and only if C(D1, D2) = 1

Proof. (i) According to Theorem 1, we have 0 ≤ K
(
αmp, βmp

)
≤ 1; m = 1, 2, 3, . . . , v;

p = 1, 2, 3, . . . , n, Thus,

0 ≤
1

nv

n∑
p

v∑
m

K
(
αmp, βmp

)
≤ 1

(ii) According to Definition 3 and Theorem 1 it is easily observed.
(iii) According to Theorem 1 we obtain C(D1, D2) = 1⇔ D1 = D2

Thus, Theorem 2 is proved. �

Definition 8. For the decision-maker Dq, the weights of decision-makers can be defined as follows:

ωq =
δq

h∑
q=1

δq

(11)

where δq has the form:

δq =
h∑

q′ = 1;
q′ , q

C
(
Dq, Dq′

)
(12)
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C
(
Dq, Dq′

)
is the correlation coefficient between two decision-makers q and q′.

3.3.3. Determining the Weights of the Criteria

In real life applications, the attribute information may be completely unknown. Thus, we need
to develop an integrated programming model for MCDM problems under the dynamic
neutrosophic environment.

Definition 9. Let Cp be the pth criterion and Am be the mth alternative, the deviation value between Am and all
the other alternatives in dynamic neutrosophic environment can be calculated as:

Omp(w) =
v∑

k = 1;
k , i

d
(
nmp, nkp

)
wp (13)

where wp is weight of the pth criterion. d
(
nmp, nkp

)
is the distance between two DIVNEs.

Definition 10. The deviation among all the alternatives to the others can be computed by the global deviation
function as follows:

Op(w) =
v∑

m=1
Omp(w) =

v∑
m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)
wp

s.t.
n∑

p=1
wp = 1; wp≥0;

(14)

By using the deviation degree between evaluations [33], the criteria weights can be calculated.
Then, we construct optimization decision making model with the purpose of maximizing the decision
space in the following:

maxO(w) =
n∑

p=1

Op(w) =
n∑

p=1

v∑
m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)
w∗p → max (15)

where d
(
nmp, nkp

)
is the distance between two elements. The optimization model can be solved based

on the Lagrange function. Let ξ be the Lagrange multiplier. We have:

L
(
w∗p, ξ

)
= O(w) −

1
2
ξ

 n∑
p=1

(
w∗p

)2
− 1


L
(
w∗p, ξ

)
=

n∑
p=1

v∑
m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)
w∗p −

1
2
ξ

 n∑
p=1

(
w∗p

)2
− 1


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

∂L
∂wp

=
v∑

m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)
− ξw∗p = 0

∂L
∂ξ = 1

2

 n∑
p=1

(
w∗p

)2
− 1

 = 0

⇒ w∗p =

v∑
m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)

ξ

Since
n∑

m=p

(
w∗p

)2
= 1, the value of ξ can be calculated as follows:

n∑
p=1



v∑
m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)

ξ



2

= 1, thus, ξ =

√√√√√√√√√√√√√√√√√√√√√√√ n∑
p=1


v∑

m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)


2

From the above equations, a formula to calculate the criteria weights can be obtained as follows:

w∗p =

v∑
m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)
√√√√√√√√√√√√√√√√√√√√ n∑

p=1


v∑

m=1

v∑
k = 1;
k , m

d
(
nmp, nkp

)


2
(16)

3.4. TOPSIS Method with Unknown Weight Information in Dynamic Neutrosophic Environments

In this section, we develop a MCDM approach based on the TOPSIS model with unknown weight
information in dynamic neutrosophic environments. The scheme of the proposed MCDM technique is
given in Figure 1. The detailed method is constructed as follows:

Step 1. Construct the dynamic interval-valued neutrosophic decision matrix as MCDM problems
expressed in Section 2.2.

Step 2. Using Equation (8) to determine the time weights λ = (λ1,λ2, . . . ,λk) of k time sequence:

g(x) =
eαx
− 1

eα − 1
(17)

Step 3. Using Equations (10)–(12) to determine the DMs’ weights ω = (ω1,ω2, . . . ,ωh) of
h decision-makers.

Step 4. I the criteria weight information is completely unknown, we determine the criteria weights
w = (w1, w2, . . . , wn)

T of n criteria by using Equation (16), otherwise go to Step 5.
Step 5. Suppose W = [ψ(tl)]p×q; p = 1, 2, 3, . . . , n; q = 1, 2, 3, . . . , h; l = 1, 2, 3, . . . , k be

dynamic interval-valued neutrosophic matrix of important criteria weights. ψpq(tl) is the weight
of decision-maker qth to criterion pth in time sequence tl. The criteria weights w = (w1, w2, . . . , wn)

T

can be calculated by:
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wp =

〈

〈
1−

1−

1−
h∑

q=1
TL

pq

(
ψtl

)
1
h


1
k 〉

,
〈
1−

1−

1−
h∑

q=1
TU

pq

(
ψtl

)
1
h


1
k 〉,

 h∑
q=1

IL
pq

(
ψtl

)
1

h∗k

,

 h∑
q=1

IU
pq

(
ψtl

)
1

h∗k
,

 h∑

q=1
FL

pq

(
ψtl

)
1

h∗k

,

 h∑
q=1

FU
pq

(
ψtl

)
1

h∗k


〉
(18)

Step 6. The aggregate ratings of alternative m and criteria p can be estimated as:

xmp = 1
h∗k ⊗

〈

〈
1−

1−

1−
h∑

q=1
TL

pmq

(
xtl

)
1
h


1
k 〉

,
〈
1−

1−

1−
h∑

q=1
TU

pmq

(
xtl

)
1
h


1
k 〉

 h∑
q=1

IL
pmq

(
xtl

)
1

h∗k

,

 h∑
q=1

IU
pmq

(
xtl

)
1

h∗k
, Fmp(x) =


 h∑

q=1
FL

pmq

(
xtl

)
1

h∗k

,

 h∑
q=1

FU
pmq

(
xtl

)
1

h∗k


〉
, (19)

Step 7: Average weighted ratings of alternatives can be calculated as follows:
Case 1: If the information about the criteria weights is known, the criteria weights is a collection

of DIVNEs and the average weighted ratings of alternatives in tl, calculated by:

Gm =
1
p

n∑
p=1


〈 [

TL
mp(x) × TL

p (w), TU
mp(x) × TU

p (w)
]
,[

IL
mp(x) + IL

p (w) − IL
mp(x) × IL

p (w), IU
mp(x) + IU

p (w) − IU
mp(x) × IU

p (w)
]
,[

FL
mp(x) + FL

p (w) − FL
mp(x) × FL

p (w), FU
mp(x) + FU

p (w) − FU
mp(x) × FU

p (w)
]

〉;

m = 1, 2, 3, . . . , v; p = 1, 2, 3, . . . , n;

(20)

Case 2: If the information about the criteria weights is unknown, the criteria weights is a collection
of DIVNEs and average weighted ratings of alternatives in tl, calculated by:

Gm =
1
p

n∑
p=1

〈
[
1−

(
1− TL

mp(x)
)wp

, 1−
(
1− TU

mp(x)
)wp]

,[(
IL

mp(x)
)wp

,
(
IU

mp(x)
)wp]

,
[(

FL
mp(x)

)wp
,
(
FU

mp(x)
)wp] 〉;

m = 1, 2, 3, . . . , v; p = 1, 2, 3, . . . , n;

(21)

Step 8: Determine the interval neutrosophic positive ideal solution (PIS, A+) and the interval
neutrosophic negative ideal solution (NIS, A−):

A+ =
{
x, ([1, 1], [0, 0], [0, 0])

}
(22)

A− =
{
x, ([0, 0], [1, 1], [1, 1])

}
(23)

Step 9: Compute the distance of alternatives.
The distances of each alternative in time sequence tl, are calculated:

d+m =

√
(Gm −A+)2 (24)

d−m =

√
(Gm −A−)2 (25)

where d+m and d−m represent the shortest and farthest distances of alternative Am.
Step 10: Determine the relative closeness coefficient.
The closeness coefficient values are calculated below:

CCm =
d−m

d+m + d−m
(26)
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Step 11: Rank the alternatives based on the relative closeness coefficients.
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Figure 1. TOPSIS method with unknown weight information.

4. Experiments

This section applies the proposed method with dataset in [17] to evaluate lecturers’ performances
from ULIS, Vietnam National University, Hanoi, Vietnam. The hierarchical structure of the constructed
multi-criteria decision-making problem is depicted in Figure 2 for the dataset.
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Figure 2. Evaluation lecturer’s performance problem.

According to the language labels in Table 1 below, the rating of lectures through criteria sets are
done by decision-makers.

Table 1. Language variables.

Language Labels Short Labels Values

Very-Poor Vr ([0.1, 0.2], [0.6, 0.7], [0.7, 0.8])
Poor Pr ([0.2, 0.3], [0.5, 0.6], [0.6, 0.7])

Medium Mm ([0.3, 0.5], [0.4, 0.6], [0.4, 0.5])
Good Gd ([0.5, 0.6], [0.4, 0.5], [0.3, 0.4])

Very-Good Vd ([0.6, 0.7], [0.2, 0.3], [0.2, 0.3])

Step 1: Dynamic interval-valued neutrosophic decision matrix shown in Table 2.
Step 2: Bases on Equation (8) and BUM function in Equation (17), we receive the weights of the

time periods:
λ1 = 0.280;λ2 = 0.330;λ3 = 0.390

Step 3: Using Equations (10)–(12) to calculate weights of the DMs, we receive the weights of the
DMs as follows:

ω1 = 0.330;ω2 = 0.337;ω3 = 0.333

Step 4: Based on the basic of maximizing deviation method and Equation (16), we receive the
weights of the criteria as follows:

w1 = 0.160; w2 = 0.165; w3 = 0.171; w4 = 0.166; w5 = 0.175; w6 = 0.163

Step 5: Average weighted ratings are shown in Table 3.
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Table 2. Dynamic interval-valued neutrosophic decision matrix.

Criteria Lecturers
Decision Makers

t1 t2 t3

D1 D2 D3 D1 D2 D3 D1 D2 D3

C1

A1 Mm Gd Gd Gd Gd Gd Gd Vd Gd

A2 Gd Gd Vd Vd Gd Vd Vd Gd Vd

A3 Mm Gd Gd Gd Gd Gd Gd Gd Vd

A4 Go Mm Gd Gd Gd Gd Gd Gd Gd

A5 Mm Gd Mm Go Go Mm Gd Gd Gd

C2

A1 Gd Gd Gd Vd Gd Gd Gd Gd Gd

A2 Vd Gd Vd Mm Gd Gd Vd Gd Gd

A3 Vd Gd Gd Gd Mm Gd Gd Mm Gd

A4 Gd Gd Gd Gd Vd Gd Gd Gd Vd

A5 Vd Gd Gd Gd Vd Gd Gd Gd Mm

C3

A1 Vd Vd Gd Gd Vd Gd Gd Mm Gd

A2 Gd Vd Gd Vd Gd Vd Gd Gd Vd

A3 Gd Vd Vd Gd Gd Gd Gd Vd Gd

A4 Gd Gd Gd Vd Gd Gd Vd Gd Gd

A5 Vd Gd Gd Gd Vd Gd Gd Gd Gd

C4

A1 Mm Gd Mm Gd Gd Mm Mm Gd Mm

A2 Gd Mm Gd Gd Mm Gd Gd Mm Gd

A3 Gd Gd Gd Gd Gd Mm Gd Gd Vd

A4 Mm Poo Mm Gd Mm Mm Gd Gd Mm

A5 Mm Mm Poo Mm Mm Mm Mm Gd Mm

C5

A1 Mm Gd Mm Mm Gd Gd Gd Mm Gd

A2 Gd Vd Go Vd Gd Gd Gd Vd Gd

A3 Gd Gd Mm Gd Gd Gd Gd Vd Gd

A4 Vd Gd Gd Vd Gd Gd Vd Gd Gd

A5 Gd Gd Gd Gd Gd Gd Gd Vd Gd

C6

A1 Vd Gd Gd Vd Gd Vd Vd Gd Vd

A2 Gd Gd Gd Gd Vd Gd Gd Gd Vd

A3 Vd Gd Vd Vd Gd Vd Vd Gd Vd

A4 Gd Vd Gd Gd Vd Gd Gd Gd Gd

A5 Gd Gd Gd Vd Gd Gd Gd Vd Gd

Table 3. Average weighted ratings of lectures.

Lecturers Weighted Ratings

A1 ([0.072, 0.102], [0.871, 0.906], [0.848, 0.883])
A2 ([0.083, 0.112], [0.852, 0.889], [0.833, 0.871])
A3 ([0.082, 0.110], [0.867, 0.900], [0.842, 0.878])
A4 ([0.077, 0.105], [0.867, 0.901], [0.844, 0.880])
A5 ([0.073, 0.102], [0.871, 0.907], [0.850, 0.884])
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Step 6: Compute the distance of each lecture from (PIS, A+) and (NIS, A−). The results are shown
in Table 4 below.

Table 4. The distance of each lecture.

Lecturers d+ d−

A1 0.113845 0.889443
A2 0.128101 0.875218
A3 0.120105 0.882727
A4 0.117807 0.885273
A5 0.113326 0.889768

Step 7: Calculate the closeness coefficient for lectures. Table 5 shows the values of the
closeness coefficient.

Table 5. The closeness coefficient of lectures.

Lecturers Proposed Model

A1 0.11355
A2 0.12778
A3 0.11983
A4 0.11752
A5 0.11301

Step 8: Rank the lectures based on the values of the closeness coefficients.
Table 5 shows the ranking order is A2 � A3 � A4 � A1 � A5 and A2 is the best lecture.

5. Comparison with the Related Methods

In this section, we compare the proposed method with those in Thong et al. [17] and Peng [29] to
demonstrate the advantages for unknown weight information in dynamic neutrosophic environments.
Data used to prove the performance of the method are in [17]. Table 6 shows that the rankings of
lectures by Thong et al. [17] as A2 � A3 � A4 � A1 � A5 and Peng [29] as A2 � A3 � A1 � A4 � A5.
Thus, A2 is still the best option. These results are the same as our proposed method. However,
the proposed method can be solved with unknown weight information in a dynamic neutrosophic
environment. Moreover, it is more generalized and flexible than Thong et al. [17]’s method with
unknown weight information in a dynamic neutrosophic environment.

Table 6. A comparison study with some existing methods.

Methods
Ranking Values Ranking Order

A1 A2 A3 A4 A5

Proposed method 0.11355 0.12778 0.11983 0.11752 0.11301 A2 � A3 � A4 � A1 � A5

Thong et al. [17]
(Topsis Model) 0.33916 0.36694 0.35124 0.34526 0.33778 A2 � A3 � A4 � A1 � A5

Peng [29]
(Similarity measure) 0.92735 0.94145 0.92949 0.90850 0.89896 A2 � A3 � A1 � A4 � A5

6. Conclusions

In this paper, we proposed a novel approach to solve MCDM problems in dynamic neutrosophic
environments where all the information supplied by the DMs is described as interval-valued
neutrosophic sets and the information about the weight of attributes, DMs, and time may be
incompletely known. A new concept related to the correlation measure and some distance measures
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for dynamic interval-valued neutrosophic sets are defined. Then, we have proposed an extended
TOPSIS method to solve MCDM problems, are is expressed with the interval-valued neutrosophic
setting in dynamic neutrosophic environments. Finally, the effectiveness of the proposed method has
been demonstrated with the purpose of evaluating lecturers’ performance in ULIS, Vietnam National
University, Hanoi, Vietnam. We considered in this situation that all the weight information about the
criteria, DMs, and time is expressed with various conditions is unknown.

Since the proposed method has not demonstrated its practicality and effectiveness with more
real applications and the weight information about the criteria and DMs that change over time is
not mentioned in our method, in the future, we will conduct further studies to handle unknown
weight information in which the criteria and DMs vary with time periods and with more real
decision-making data.
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