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Neutrosophic set (NS) is a generalization of intuitionistic fuzzy set (IFS). It depicts not only the incomplete information but also
the indeterminate information and inconsistent information which exist commonly in belief systems. In this paper, the evaluation
based on distance from average solution (EDAS) method is extended to handle multicriteria decision-making problems with
multivalued neutrosophic numbers (MVNNs). )e average solution under all the criteria is calculated by the proposed convex
weighted average operator of MVNNs. )en, the positive distance and the negative distance from each solution to the average
solution are calculated, and the comprehensive evaluations of alternatives are obtained by integrating two kinds of distance values
to get the ranking result. Finally, the rationality and efficiency of the proposed method are shown by the parameter analysis and
comparisons with some existing methods.

1. Introduction

Zadeh [1, 2] proposed the fuzzy set (FS) theory, which
describes the uncertain information in the form of mem-
bership function. In some cases, it is difficult for the
membership function to give a complete description of the
decision information alone. So, Atanassov [3, 4] proposed
the concept of intuitionistic fuzzy sets (IFSs) on this basis of
FSs by adding a nonmembership function. Torra and
Narukawa [5, 6] proposed hesitant fuzzy sets (HFSs) to
describe the situation in which the expert is hesitant when
giving evaluations. IFSs and HFSs have attracted a lot of
researchers’ attention and obtained many research results,
which have been widely used to solve problems of multi-
criteria decision-making (MCDM) in engineering and
management [7–9].

FSs theory has been well developed, but it cannot
distinguish between abandonment and uncertain infor-
mation that are widely available in the real world. For
example, in a decision-making process, suppose there are

10 decision makers, of which 4 decision makers agree, 3
decision makers disagree, 2 decision makers are uncer-
tain, and 1 decision maker gives up. For this case, tra-
ditional fuzzy sets cannot accurately describe. To handle
this situation, Smarandache [10, 11] proposed the concept
of neutrosophic set (NS) by adding an independent in-
determinacy-membership degree. For the above-
mentioned situation, the information can be expressed by
a NS as {x(0.4, 0.3, 0.2)}. NSs were originally introduced
from a philosophical perspective, and it is difficult to be
applied in solving practical problems. Considering this
situation, some special cases of NS are proposed, such as
single-valued neutrosophic sets (SVNSs) and interval
neutrosophic sets (INSs) [12–14]. In recent years, many
research results about SVNSs and INSs have been made
involving average operator, NWBM operator, generalized
hybrid weight average operator, crossentropy, some
similarity measures, etc., [15–23], which are widely used
in solving decision-making problems. In addition, NS
theory and related research results have been applied in
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other fields, for example, graph theory [24–29], cluster
analysis [30–32], image processing [33–35], medical di-
agnosis and treatment systems [36–38], social manage-
ment [39–41], and artificial intelligence [42].

However, in some decision-making environment,
multiple different discrete values are needed to represent
decision information, rather than using specific or interval
values. Under these circumstances, Wang and Li [43]
proposed the definition of multivalued neutrosophic sets
(MVNSs) and developed the TODIM method to solve the
multicriteria decision-making (MCDM) with MVNSs. Liu
[44] proposed some aggregation operators of MVNSs and
applied them in decision-making problems. Peng and Wang
[45] introduced a comparisonmethod and some aggregation
operators of MVNSs. Peng et al. [46, 47] also developed a
multivalued neutrosophic qualitative flexible approach
based on likelihood and an extended ELECTRE approach
with multivalued neutrosophic information. Ji et al. [48]
proposed a projection-based TODIM method under mul-
tivalued neutrosophic environments.

Ghorabaee et al. [49] proposed a new method called
evaluation on distance from average solution (EDAS) for
multicriteria inventory classification. )is method ranks the
alternatives by calculating the positive distance and negative
distance between each alternative and the average alterna-
tive. )e good performance of the EDAS method in solving
the inventory classification problems and MCDM problems
was also shown in [49]. EDAS is a simple and effective
method for MCDM, but it can only deal with decision in-
formation described by numerical values.

Motivated by these ideas, in this paper, we propose an
extended EDAS method to solve the MCDM problem,
which is described by MVNSs. We revise the aggregation
method of the positive distance and negative distance in
[49] and permit the decision makers to adjust their
proportions according to their preferences in calculating
the comprehensive evaluations of alternatives. So, the
method is more flexible for decision makers in choosing
the most appropriate solution. Moreover, compared with
some existing methods, it needs fewer data preprocessing
and calculation and is suitable to solve the decision-
making problem with more criteria and alternatives. )e
proposed method also can be used to the situations in
which the decision information is described by SVNSs,
HFSs, or Dual HFSs.

)is paper is constructed as follows. Section 2 introduces
the basic concepts and operations of of MVNSs. In Section 3,
the EDAS method for MCDM problem with MVNSs is
proposed. Algorithm analysis and comparison analysis are
made based on two numerical examples to illustrate the
feasibility and effectiveness of the proposed method in
Section 4. Finally, the conclusions are given in Section 5.

2. Preliminaries

2.1. Multivalued Neutrosophic Sets. In this section, we recall
some definitions, operations, and properties regarding
MVNSs, which will be used in the rest of the paper.

Definition 1 (see [14]). Let X be a universal set and x be a
generic element in X. A single-valued neutrosophic set
(SVNS) in X is defined as

A � x TA(x), IA(x), FA(x)( 􏼁􏼊 􏼋 | x ∈ X􏼈 􏼋}, (1)

where TA is a truth-membership function, IA is a indeter-
minacy-membership function, and FA is a falsity-mem-
bership function. For each point x ∈ X, we have TA, IA,

FA ∈ [0, 1] and 0≤TA + IA + FA ≤ 1.

Definition 2 (see [45]). Let X be a universal set and x be a
generic element in X. A multivalued neutrosophic number
set (MVNS) in X is defined as

A � x 􏽥TA(x), 􏽥IA(x), 􏽥FA(x)􏼐 􏼑 | x ∈ X􏽮 􏽯, (2)

where 􏽥TA(x), 􏽥IA(x), and 􏽥FA(x) are three sets of discrete real
values in [0, 1], denoting the truth-membership degree,
indeterminacy-membership degree, and falsity-membership
degree, respectively, which satisfies 0≤ c, η, ξ ≤ 1, and 0≤
c+ + η+ + ξ+ ≤ 3, where c ∈ 􏽥TA(x), η ∈ 􏽥IA(x), and ξ ∈ 􏽥FA(x)

and c+ � sup􏽥TA(x), η+ � sup􏽥FA(x), and ξ+
� sup􏽥IA(x).

For convenience, 〈􏽥TA(x), 􏽥IA(x), 􏽥FA(x)〉 is called a
multivalued neutrosophic number (MVNN), which is
denoted as A � 〈􏽥TA, 􏽥IA, 􏽥FA〉.

MVNS is a generalized form of SVNS, hesitant fuzzy set,
and dual hesitant fuzzy set. In fact, if 􏽥TA(x), 􏽥IA(x), and
􏽥FA(x), for any x ∈ X, has only one value, respectively, then a
MVNSs is reduced to a SVNS. If 􏽥IA(x) � Φ for any x ∈ X,
then a MVNS is reduced to a dual hesitant fuzzy set [50]; if
􏽥IA(x) � 􏽥FA(x) � Φ for any x ∈ X, a MVNS is reduced to a
hesitant fuzzy set [5].

Example 1. Assume that X � {x1, x2, x3, x4, x5, x6} is the
universal set, where x1 is the functionality, x2 is the reli-
ability, x3 is the ease of use, x4 is the efficiency, x5 is the
maintainability, x6 is the portability of software, and the
evaluations of a software under x1, x2, x3, x4, x5, andx6 are
in [0, 1]. Evaluation information about a software can be
obtained from some experts in the field. )eir opinions
about the degree of “good,” a degree of indeterminacy, and a
degree of “poor” can be described by the following MVNS
in X:

A � x1( 0.4, 0.5{ }, 0.2{ }, 0.3{ }), x2( 0.6, 0.7{ }, 0.2{ }, 0.3{ }),􏼈

x3( 0.5{ }, 0.2, 0.3{ }, 0.3{ }), x4( 0.7, 0.8{ }, 0.1{ }, 0.2{ }),

x5( 0.2{ }, 0.5{ }, 0.5, 0.6{ }), x6( 0.3{ }, 0.4, 0.5{ }, 0.5{ })􏼉.

(3)

2.2.0eComparisonMethod andOperational Rules. In order
to apply MVNNSs to solve practical problems, some
comparison and operational rules are reviewed as follows.

For any two MVNNs, they can be compared by the
method proposed by Peng et al. [45].
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Definition 3. Let A � 〈􏽥TA, 􏽥IA, 􏽥FA〉 be a MVNN. )en, its
score function s(A) , accuracy function a(A), and certainty
function c(A) are defined as follows:

(1) s(A) � (1/(l􏽥TA
· l􏽥IA

· l􏽥FA
))􏽐ci∈􏽥TA,ηj∈􏽥IA,ξk∈􏽥FA

(ci + 1 −

ηj + 1 − ξk)/3
(2) a(A) � (1/(l􏽥TA

· l􏽥FA
))􏽐ci∈􏽥TA,ξk∈􏽥FA

(ci − ξk)

(3) c(A) � (1/l􏽥TA
)􏽐ci∈􏽥TA

ci

where ci ∈ 􏽥TA, ηj ∈ 􏽥IA, ξk ∈ 􏽥FA, and l􏽥TA
, l􏽥IA

, and l􏽥FA
are the

element numbers of 􏽥TA, 􏽥IA, and 􏽥FA, respectively.

Definition 4 (see [45]). Let A and B be two MVNNs. )en,
their comparison rules are defined as follows:

(1) If s(A)> s(B), thenA≻B

(2) If s(A) � s(B) and a(A)> a(B), thenA≻B

(3) If s(A)�s(B), a(A)�a(B)andc(A)>c(B), thenA≻B
(4) If s(A) � s(B), a(A) � a(B) and c(A) � c(B), then

A ∼ B

Definition 5 (see [45]). Let A � 〈􏽥TA, 􏽥IA, 􏽥FA〉 and B �

〈􏽥TB, 􏽥IB, 􏽥FB〉 be any two MVNNs. )e operations on
MVNNs are defined by

(i) A⊕B � 〈∪cA∈􏽥TA,cB∈􏽥TB
{cA + cB − cA · cB},

∪ηA∈􏽥TA,ηB∈􏽥TB
{ηA · ηB} ,∪ξA∈􏽥TA,ξB∈􏽥TB

{ξA · ξB}〉

(ii) A⊙B � 〈∪cA∈􏽥TA,cB∈􏽥TB
{cA · cB},∪ηA∈􏽥TA,ηB∈􏽥TB

{ηA +

ηB − ηA · ηB},∪ξA∈􏽥TA,ξB∈􏽥TB
{ξA + ξB − ξA · ξB}〉

(iii) λA � 〈∪cA∈􏽥TA
{1 − (1 − cA)λ},∪ηA∈􏽥IA

{(ηA)λ},

∪ξA∈􏽥FA
{(ξA)λ}〉, λ> 0

(iv) Aλ � 〈∪cA∈􏽥TA
{(cA)λ},∪ηA∈􏽥IA

{1 − (1 − ηA)λ}, ∪ξA∈􏽥FA

{1 − (1 − ξA)λ}〉 , λ> 0

Let A � 〈􏽥TA, 􏽥IA, 􏽥FA〉 and B � 〈􏽥TB, 􏽥IB, 􏽥FB〉 be two
MVNNs. )en, the following properties are easily obtained
from the abovementioned operations:

(i) A⊕B � B⊕A

(ii) A⊙B � B⊙A

(iii) λ(A⊕B) � λA⊕ λB, λ> 0
(iv) (A⊙B)λ � Aλ ⊙Bλ, λ> 0
(v) (λ1 + λ2)A � λ1A⊕ λ2A, λ> 0
(vi) Aλ1+λ2 � Aλ1 ⊙Aλ2 , λ1, λ2 > 0

3. Aggregation Operators and EDAS
Method with MVNNSs

3.1. Aggregation Operators. In this section, we define the
weighted average operators for MVNNS by using the idea of
the convex combination [51].

Definition 6. Let A � 〈􏽥TA, 􏽥IA, 􏽥FA〉 and B � 〈􏽥TB, 􏽥IB, 􏽥FB〉 be
any twoMVNNs.)e convex combination ofA and B can be
defined as follows:

C
2 ω1, A,ω2, B( 􏼁 � ω1A⊕ω2B, (4)

where ωi ≥ 0(i � 1, 2) and ω1 + ω2 � 1.

Definition 7. Let X � {xi | xi � 〈􏽥Txi
, 􏽥Ixi

, 􏽥Fxi
〉, i � 1, 2, . . . , n}

be a collection of MVNNs. We called

MVNCWA x1, x2, . . . , xn( 􏼁 � C
n ωi, xi( 􏼁 � ω1x1 ⊕ 1 − ω1( 􏼁C

n− 1 ωk

􏽐
n
k�2ωk

, xk􏼠 􏼡. (5)

A multivalued neutrosophic extended weighted average
(MVNCWA) operator, where ωi is the weight vector of xi

and ωi ≥ 0 (i � 1, 2, . . . , n), 􏽐
n
i�1 ωi � 1.

We consider a special case of Definition 7. If
ωi � (1/n)(i � 1, 2, . . . , n), then the MVNCWA operator
reduces to the arithmetic average operator with the fol-
lowing form:

MVNCWA x1, x2, . . . , xn( 􏼁 � C
n ωi, xi( 􏼁 � C

n 1
n

, xi􏼒 􏼓 �
1
n

x1 ⊕ 1 −
1
n

􏼒 􏼓C
n− 1 1

n − 1
, xk􏼒 􏼓. (6)

3.2. An Extended EDAS Method with MVNNS. In this sec-
tion, we present an algorithm to handle MCDM problems
with MVNNs based on the EDAS method proposed by
Ghorabaee et al. [49]. In this method, first, calculate the
average alternative with the existing alternative. Next, cal-
culate the positive distance and negative distance of each
alternative relative to the average alternative. )en, the
comprehensive evaluations of alternatives are obtained by

considering the influence of positive and negative distance
on an average. Based on this idea, we propose an extended
EDAS method to deal with decision information described
by MVNNs.

)e multiattribute decision-making problems based on
MVNNs can be considered as follows. Let A � {A1, A2, . . . ,

Am} be the set of alternatives, C � {c1, c2, . . . , cn} be the set of
criteria, B denote the index set of beneficial criteria, and N
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denote the index set of cost criteria. Let ω � {ω1,ω2, . . . ,ωm}

with ωi ≥ 0, 􏽐
m
i�1 ωi � 1 be the weight vector of the creteria.

Suppose that R � [Rij]m×n is the decisionmatrix, where Rij �

〈􏽥Tij, 􏽥Iij, 􏽥Fij〉 is a MVNN satisfying 􏽥Tij, 􏽥Iij, 􏽥Fij ∈ [0, 1], and
describes the evaluation information of the alternative Ai

with respect to the criterion cj.
Here, we give the basic idea of the extended EDAS de-

cision-making method based on MVNNs. Firstly, the average
alternative is calculated by the proposed weighted average
operator given in Definition 7. Next, the score function of
MVNN proposed in [45] is comonly used to calculate the
dominance of the alternative, and the positive distance matrix
and negative distancematrix are constructed by calculating the
positive and negative distance between each alternative and
the average alternative. Finally, the weighted average of the
normalized positive and negative distance is used to obtain the
comprehensive evaluation value of each alternative.

)e concrete algorithm of EDAS for MCDM with
MVNNs is described as follows.

Step 1: construct the decision matrix R � [Rij]m×n, whose
elements are described by the multivalued neutrosophic
numbers.
Step 2: aggregate the evaluations of all the alternatives
under each criterion by equation (6) and get the average
alternative AV � (AV1,AV2, . . . ,AVi, . . . ,AVn), where

AVi � MVNCWA R1i, R2i, . . . , Rmi( 􏼁

� C
m 1

n
, Rki ∣ k � 1, 2, . . . , m􏼒 􏼓

�
1
n

R1i ⊕ 1 −
1
n

􏼒 􏼓C
m− 1 1

n − 1
, Rki􏼒 􏼓.

(7)

Step 3: calculate the positive distance matrix PDA �

(PDAij)m×n and negative distance matrix NDA �

(NDAij)m×n of each alternative from the average al-
ternative according to equations (8) and (9):

PDAij �

max 0, s Rij􏼐 􏼑 − s AVj􏼐 􏼑􏼐 􏼑􏼐 􏼑

s AVj􏼐 􏼑
, j ∈ B,

max 0, s AVj􏼐 􏼑 − s Rij􏼐 􏼑􏼐 􏼑􏼐 􏼑

s AVj􏼐 􏼑
, j ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

NDAij �

max 0, s AVj􏼐 􏼑 − s Rij􏼐 􏼑􏼐 􏼑􏼐 􏼑

s AVj􏼐 􏼑
, j ∈ B,

max 0, s Rij􏼐 􏼑 − s AVj􏼐 􏼑􏼐 􏼑􏼐 􏼑

s AVj􏼐 􏼑
, j ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Remark 1. If s(AVj)� s(Rij) and a(AVj)≠ a(Rij), then
replace score function with accuracy function in
equations (8) and (9); if s(AVj)� s(Rij) and a(AVj)�

a(Rij), then replace score function with certainty
function in equations (8) and (9).

Step 4: calculate the positive distance and the negative
distance of each alternative Ai(i � 1, . . . , m), denoted
as PDi and NDi, respectively, by

PDi � 􏽘
n

j�1
wjPDAij,

NDi � 􏽘

n

j�1
wjNDAij.

(10)

Step 5: the normalized values of PD and ND (NPD and
NND) for all alternatives can be calculated by

NPDi �
PDi

maxi(PD(i))
,

NNDi �
NDi

maxi(ND(i))
.

(11)

Step 6: the comprehensive evaluation of each alter-
native ASi(i � 1, 2, . . . , m) can be calculated by

ASi � λNPDi +(1 − λ) 1 − NNDi( 􏼁, λ ∈ [0, 1], (12)

where the decision makers can adjust the value of λ
according to their preference for positive distance and
negative distance.
Especially, when the preference of the decision-maker
is neutral and taken λ � (1/2), (12) is simplified to

ASi �
1
2

NPDi + 1 − NNDi( 􏼁( 􏼁. (13)

Step 7: rank the alternatives according to the com-
prehensive evaluation value ASi(i � 1, 2, . . . , m) and
then choose the satisfactory scheme.

4. Illustrative Example

4.1. An Illustrative Example of the EDAS Method. Based on
the multicriteria decision-making problem used in [22, 43],
the feasibility and effectiveness of the proposed method are
analyzed. )e multiattribute decision-making problem is
described as follows. An investment company needs to
choose appropriate investment projects so that to get rich
reward. )ere are four possible investment options: (1) A1:
automobile company; (2) A2: food company; (3) A3: com-
puter company; (4) A4: military industrial enterprise. In
order to select appropriate investment project and obtain
satisfied investment returns, the investment company
should consider the enterprise performance of the invest-
ment project. )e enterprise performance is a compre-
hensive reflection of its profitability, operation, risk
management, debt repayment, and social responsibility in
the company’s production and operation process.)e ability
of enterprises to fulfill their social responsibilities is the basis
of their long-term existence and development. )e social
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responsibility ability of enterprises is manifested in many
aspects. We choose relatively important environmental
factors. After discussion by the company’s development
committee, the following three criteria are considered in the
selection of investment options: (1) C1: risk control capa-
bility; (2) C2: growth factors; (3) C3: environmental impact
factors, where C1 and C2 are benefit criteria and C3 is a cost
criterion. In this problem, the weight vector of criteria is
given by w � (0.2, 0.25, 0.55).

Next, we apply the algorithm proposed in Section 3.2 to
solve this decision-making problem.

Step 1: the decisionmatrix described by themultivalued
neutrosophic sets is given by the decision maker, which
is shown in Table 1:
Step 2: calculate the average solution AV � (AV1,

AV2,AV3) according to equation (6), where

AV1 �
1
4
R11 ⊕ 1 −

1
4

􏼒 􏼓
1
3
R21 ⊕ 1 −

1
3

􏼒 􏼓
1
2
R31 ⊕ 1 −

1
2

􏼒 􏼓R41􏼒 􏼓􏼒 􏼓

�
1
4
∪

cRk1
∈􏽥TRk1

1 − 􏽙

3

k�1
1 − cRk1

􏼐 􏼑
⎫⎬

⎭, ∪
ηRk1
∈􏽥IRk1

􏽙

3

k�1
ηRk1

⎫⎬

⎭, ∪
ξRk1
∈􏽥FRk1

􏽙

3

k�1
ξRk1

⎫⎬

⎭

⎧⎨

⎩ 􏼫.
⎧⎨

⎩

⎧⎪⎨

⎪⎩
􏼪

(14)

So, by Definition 3, the score function value of AV1 can
be obtained as

s AV1( 􏼁 � 0.7234. (15)

In a similar way, we can get s(AV2) � 0.7127,

s(AV3) � 0.6489.

Step 3: calculate the positive distance matrix PDA and
negative distance matrix NDA by equations (8) and (9),
where B � {C1, C2} and N � {C3}:

PDA �

0 0 0.2295

0.0368 0.0758 0

0 0 0

0.1290 0.0758 0.0240

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

NDA �

0.1014 0.1347 0

0 0 0.1044

0.1475 0.0646 0.0530

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

Step 4: according to equation (10), the positive distance
PDi and the negative distance NDi(i � 1, 2, 3, 4) of each
alternative are calculated as follows:

PD1 � 0.0918,

PD2 � 0.0318,

PD3 � 0,

PD4 � 0.0737,

ND1 � 0.0692,

ND2 � 0.0417,

ND3 � 0.0890,

ND4 � 0.

(17)

Step 5: the normalized values NPDi and NNDi for all
alternatives are shown as follows:

NPD1 � 1.0000,

NPD2 � 0.2048,

NPD3 � 0,

NPD4 � 0.4592,

NND1 � 0.7215,

NND2 � 0.7675,

NND3 � 1.0000,

NND4 � 0.

(18)

Step 6: when λ � 0.5 is taken in equation (12), the
comprehensive evaluations ASi(i � 1, 2, 3, 4) of alter-
natives can be obtained:

AS1 � 0.6393,

AS2 � 0.2204,

AS3 � 0,

AS4 � 0.7296.

(19)

Step 7: the ranking of the four projects is A4 ≻A1 ≻
A2 ≻A3. Obviously, A4 is the best alternative.

4.2.AlgorithmicAnalysis. In Step 6 of the proposed algorithm,
decision makers can adjust the value of λ according to their
preference for positive distance and negative distance. In order
to study the influence of different parameter values on ranking
results, we take different values of λ to calculate the ranking
results of the alternatives, which are shown in Table 2.

From Table 2, it can be seen that the ranking results are
consistent for λ≤ 0.5 and λ> 0.5, respectively. On the other
hand, the ranking for λ≤ 0.5 is slightly different from that for
λ> 0.5. When λ≤ 0.5, the best scheme is A4 and the worst
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scheme is A3; when λ> 0.5, the best scheme is A1 and the
worst scheme is A3. )e best one is A4 or A1 depending on
the value of λ, while the worst one is always A3 for different
values of λ. So, the ranking results are stable with the dif-
ferent values of λ.

Compared with the original EDAS in [49] that fixed
the value of λ to 0.5, the proposed method allows pa-
rameter λ from 0 to 1 and gives full consideration of the
preference of decision makers for loss and gain to the
average solution by adjusting the values of λ. When λ< 0.5,
the loss of the alternative relative to the average solution is
magnified. Otherwise, more attention is paid to the gain of
the scheme over the average solution.)e decision makers
can adjust the value of λ according to their preference so as
to solve the actual decision-making problem with a perfect
choice.

4.3. Comparison Analysis

4.3.1. Comparison with the Methods for MVNSs. )ere are
other methods for the multicriteria decision problem with
MVNSs, for example, the MVNWA and MVNGA operators
proposed by Peng and Wang [45] are used to solve MCDM
with MVNSs. )e TODIM method was put forward by
Wang and Li [43] to deal with decision information de-
scribed with MVNSs. In order to verify the effectiveness of
the proposed algorithm, we made a comparative analysis
with these methods by using the case in Section 4.1. )e
calculation results of the three methods are shown in Table 3.

From Table 3, it can be seen that the best alternative is A4
for all the methods and the worst one is A2 for the method
using the MVNGA operator in [45], while the worst one is
A3 for all other methods. )e ranking result of our proposed
method taking λ≤ 0.5 is the same as that of the method in
[43] and the method using the MVNWA operator in [45].

)e TODIM method [43] can take into account the
decision makers’ psychological behavior and obtain more

decision information by calculating the dominance of any
two alternatives under each criterion. But when there are
more alternatives in the MCDM problems, we need to deal
with the dominance degree matrices with larger order. By
the methods in [45], different aggregation operators can be
used to deal with the different relationships of the aggregated
arguments. But the number of operations and the sizes of the
results will exponentially increase if more MVNNs are in-
volved in the operations. )erefore, it is not suitable to deal
with the MCDM problems with large number of criteria.
Compared with these methods, the proposedmethod has the
advantages of the simplicity and less calculation process and
is more suitable to deal with MVNNs under large number of
criteria.

4.3.2. Comparison with the Methods for SVNSs. In this
section, the proposed method is compared with the two
methods of Ye [21] and Chu and Liu [17] for simplified
neutrosophic information.

)e proposed method is also suitable for MCDM with
SVNSs. In this situation, Ye [21] proposed the crossentropy
of SVNSs and use it to solve MCDM problem, and Chi and
Liu [17] proposed an expanded TOPSIS method to deal with
interval neutrosophic information, which is suitable for
simplified neutrosophic information since a numerical
number can be seen an interval. In order to facilitate the
comparative analysis, we cite the same illustrative example in
[21] to compare the three methods.

)e problem to be solved is to choose the best supplier
based on the suppliers’ core competitiveness. Suppose that
there are four suppliers A1, A2, A3, andA4 whose core
competencies are evaluated by the following four criteria
C1, C2, C3, andC4: (1) the level of technology innovation
C1, (2) the control ability of flow C2, (3) the ability of
management C3, and (4) the level of service C4. Suppose the
weight vector of the four criteria is w � (0.3, 0.25, 0.25, 0.2).
)e decision matrix described by the single-valued

Table 2: Compared results utilizing different values of λ.

The ranking The best alternative Theworst alternative
λ � 0.1 A4 ≻A1 ≻A2 ≻A3 A4 A3
λ � 0.2 A4 ≻A1 ≻A2 ≻A3 A4 A3
λ � 0.3 A4 ≻A1 ≻A2 ≻A3 A4 A3
λ � 0.4 A4 ≻A1 ≻A2 ≻A3 A4 A3
λ � 0.5 A4 ≻A4 ≻A2 ≻A3 A4 A3
λ � 0.6 A1 ≻A4 ≻A2 ≻A3 A1 A3
λ � 0.7 A1 ≻A4 ≻A2 ≻A3 A1 A3
λ � 0.8 A1 ≻A4 ≻A2 ≻A3 A1 A3
λ � 0.9 A1 ≻A4 ≻A2 ≻A3 A1 A3

Table 1: Decision-making matrix R.

c1 c2 c3

A1 {{0.4, 0.5}, {0.2}, {0.3}} {{0.4}, {0.2, 0.3}, {0.3}} {{0.2}, {0.2}, {0.5}}

A2 {{0.6}, {0.1, 0.2}, {0.2}} {{0.6}, {0.1}, {0.2}} {{0.5}, {0.2}, {0.1, 0.2}}

A3 {{0.3, 0.4}, {0.2}, {0.3}} {{0.5}, {0.2}, {0.3}} {{0.5}, {0.2, 0.3}, {0.2}}

A4 {{0.7}, {0.1, 0.2}, {0.1}} {{0.6}, {0.1}, {0.2}} {{0.3}, {0.3}, {0.2}})

6 Complexity



neutrosophic sets which are given by the decision maker is
shown in Table 4.

)e above three methods are used to solve the decision-
making problem, respectively, and the results of them are
shown in Table 5.

From Table 5, it can be seen that the worst alternative is
A4 for all methods, the best one is A3 for the proposed
method and the crossentropy method in [21], while the best
one is A2 for the TOPSIS method in [17].)e ranking results
are identical using the crossentropy method in [21] and the
proposed method with λ � 0.5. )e result of the TOPSIS
method differs from the other two methods.

)e three methods have the different ideas to solve the
MCDM with SVNSs. )e crossentropy method in [21]
calculates the crossentropy of each alternative to the positive
ideal solution, which is used to rank alternatives. )e
TOPSIS method in [17] used the relative closeness coeffi-
cients to rank all alternative. )e relative closeness coeffi-
cient is determined by the distances of an alternative from
the positive ideal solution and the negative ideal solution. On
the other hand, the two methods are not suitable for solving
the MCDM problems with multivalue neutrosophic infor-
mation, while the proposed method can be used to deal with
single-value or multivalue neutrosophic information.

5. Conclusion

MVNSs are very useful in modeling the problems with
uncertain, imprecise, incomplete, and inconsistent in-
formation, which widely exist in scientific and engi-
neering cases. In this paper, based on the EDAS method in
[49] and the proposed multivalued neutrosophic extended
weighted average (MVNCWA) operator, we propose an
extended EDAS method for decision-making problem
described by MVNSs. In this method, the average

alternative is calculated by aggregating the MVNNs under
each criterion using the MVNCWA operator. Next, the
positive distance and negative distance between each al-
ternative and the average alternative under all the criteria
are calculated. And then we revise the aggregation method
of the positive distance and negative distance in [49] and
permit the decision makers to adjust their proportions in
calculating the comprehensive evaluations of alternatives
according to their preferences. Two cases study are an-
alyzed. )e first one is to illustrate that the proposed
method is stable for the adjusted parameter and is feasible
and effective for solving MCDM problems with MVNSs by
comparing with some existing methods. And the other is
to compare the proposed method with two methods for
SVNSs.

From the above analysis, it is obvious that the proposed
method needs fewer data preprocessing and less calculation
and is suitable to solve the decision-making problem with
more criteria and alternatives. It can also be used to the
situations in which the decision information is described by
SVNSs, HFSs, or Dual HFSs, which are the special forms of
MVNSs. Moreover, the decision makers’ preference for the
loss or gain of an alternative is taken into consideration
in the proposed method, so as to get the most favourite
solution.

In the future, we will investigate the decision-making
method for MVNSs under criteria with different relation-
ships and intend to study the social network-based methods
for different formats of NSs.

Data Availability

All of the data used to support the findings of this study are
included within the article.

Table 5: Ranking results by different methods.

Themethod The ranking The best Theworst
Crossentropy A3 ≻A1 ≻A2 ≻A4 A3 A4
TOPSIS A2 ≻A3 ≻A1 ≻A4 A2 A4
The proposedmethod (λ � 0.5) A3 ≻A1 ≻A2 ≻A4 A3 A4

Table 3: Ranking results by different methods.

Themethod The ranking The best Theworst
MVNWA A4 ≻A1 ≻A2 ≻A3 A4 A3
MVNGA A4 ≻A1 ≻A3 ≻A2 A4 A2
TODIM(θ � 1) A4 ≻A1 ≻A2 ≻A3 A4 A3
The proposedmethod (λ≤ 0.5) A4 ≻A1 ≻A2 ≻A3 A4 A3

Table 4: Decision-making matrix.

C1 C2 C3 C4

A1 {0.5, 0.1, 0.3} {0.5, 0.1, 0.4} {0.7, 0.1, 0.2} {0.3, 0.2, 0.1}

A2 {0.4, 0.2, 0.3} {0.3, 0.2, 0.4} {0.9, 0.0, 0.1} {0.5, 0.3, 0.2}

A3 {0.4, 0.3, 0.1} {0.5, 0.1, 0.3} {0.5, 0.0, 0.4} {0.6, 0.2, 0.2}

A4 {0.6, 0.1, 0.2} {0.2, 0.2, 0.5} {0.4, 0.3, 0.2} {0.7, 0.2, 0.1}
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