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1. Introduction

Neutrosophic sets (NSs) first appeared in mathematics in 1998 [31,32] as a way to handle uncertain
and indeterminate data as an extension of the concepts of the classical sets and fuzzy sets [41]. Soft
sets were presented by Molodtsov [28] as another way to deal with uncertainty. NSs were further
extended to neutrosophic soft sets (NSSs) [27] by joining the notions of NSs and soft sets. NSSs
were further discussed in [22]. NSs and NSSs became a vital area of study, they were utilized to
different branches of mathematics including graph theory and decision making [13, 15–17, 21, 23, 26,
38–40]. Q-Neutrosophic soft sets (Q-NSS) were established as a way to deal with two dimensional
uncertain data as an extension of NSs, NSSs and Q–fuzzy soft sets [7]. A Q-NSS is identified via three
independent membership degrees which are standard or non-standard subsets of the interval ]−0, 1+[
where −0 = 0 − ε, 1+ = 1 + ε; ε is an infinitesimal number. These memberships represent the degrees
of truth, indeterminacy, and falsity; this structure makes Q-NSSs an effective common framework and
empowers it to deal with two-dimensional indeterminate information. Thus, Q-NSS theory was further
explored by Abu Qamar and Hassan by discussing their basic operations [1], relations [5], measures
of distance, similarity and entropy [2] and also extended it further to the concept of generalized Q-
neutrosophic soft expert sets [3].
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Hybrid models of fuzzy sets and soft sets were extensively applied in different fields of
mathematics, in particular they were extremely applied in classical algebraic structures. This was
started by Rosenfeld in 1971 [30] when he established the idea of fuzzy subgroups, by applying fuzzy
sets to the theory of groups. Recently, many researchers have applied different hybrid models of fuzzy
sets to several algebraic structures such as groups, semirings and
BCK/BCI-algebras [8–12, 19, 24, 25, 36, 37]. NSs and NSSs have received more attention in studying
the algebraic structures dealing with uncertainty. Çetkin and Aygün [18] established the concept of
neutrosophic subgroups. Bera and Mahapatra introduced neutrosophic soft rings [14]. Moreover,
two-dimensional hybrid models of fuzzy sets and soft sets were also applied to different algebraic
structures. The notion of Q-fuzzy groups was discusssed in [34], neutrosophic Q-fuzzy subgroups
were introduced in [35], while Q-fuzzy and anti Q-fuzzy subrings were established in [29] and
Q-neutrosophic subrings were introduced in [4].

Motivated by the above discussion, in the present work, we combine the idea of Q-NSSs and ring
theory to establish the concept of Q-neutrosophic soft rings (Q-NS rings) as a generalization of
neutrosophic soft rings and soft rings. Some properties and basic characteristics are explored.
Additionally, we define the Q-level soft set of a Q-NSSs, which is a bridge between Q-NS rings and
soft rings. The concept of Q-neutrosophic soft homomorphism (Q-NS hom) is defined and
homomorphic image and preimage of a Q-NS ring are investigated. Furthermore, the cartesian
product of Q-NS rings is defined and some pertinent properties are examined.

2. Preliminaries

In this section, we recall some concepts relevant to this study.

Definition 2.1. [28] A pair (F, A) is called a soft set over X, where F is a mapping given by F : A →
P(X). In other words, a soft set over X is a parameterized family of subsets of the universe X.

Definition 2.2. [6] A soft set (F, E) over a ring R is a soft ring over R if f (e) is a subring of R , ∀e ∈ E.

Definition 2.3. [20] Let (F, E) be a soft set over the ring R. Then, (F, E) is called a soft left ideal (resp.
right ideal) over R if F(e) is a left ideal of R for each e ∈ E i.e.

1. x, y ∈ F(e)⇒ x − y ∈ F(e),
2. x ∈ F(e), r ∈ R⇒ rx ∈ F(e)(resp. xr ∈ F(e)).

Definition 2.4. [20] Let (F, E) be a soft set over the ring R. Then, (F, E) is called a both sided ideal
over R if F(e) is a left and right ideal of R for each e ∈ E i.e.

1. x, y ∈ F(e)⇒ x − y ∈ F(e),
2. x ∈ F(e), r ∈ R⇒ rx ∈ F(e), xr ∈ F(e).

Definition 2.5. [5] Let X be a universal set, Q be a nonempty set and A ⊆ E be a set of parameters.
Let µlQNS (X) be the set of all multi Q-NSs on X with dimension l = 1. A pair (ΓQ, A) is called a
Q-NSS over X, where ΓQ : A→ µlQNS (X) is a mapping, such that ΓQ(e) = φ if e < A.

Definition 2.6. [1] The union of two Q-NSSs (ΓQ, A) and (ΨQ, B) is the Q-NSS (ΛQ,C) written as
(ΓQ, A) ∪ (ΨQ, B) = (ΛQ,C), where C = A ∪ B and for all c ∈ C, (x, q) ∈ X × Q, the truth-membership,
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indeterminacy-membership and falsity-membership of (ΛQ,C) are as follows:

TΛQ(c)(x, q) =


TΓQ(c)(x, q) if c ∈ A − B,

TΨQ(c)(x, q) if c ∈ B − A,

max{TΓQ(c)(x, q),TΨQ(c)(x, q)} if c ∈ A ∩ B,

IΛQ(c)(x, q) =


IΓQ(c)(x, q) if c ∈ A − B,

IΨQ(c)(x, q) if c ∈ B − A,

min{IΓQ(c)(x, q), IΨQ(c)(x, q)} if c ∈ A ∩ B,

FΛQ(c)(x, q) =


FΓQ(c)(x, q) if c ∈ A − B,

FΨQ(c)(x, q) if c ∈ B − A,

min{FΓQ(c)(x, q), FΨQ(c)(x, q)} if c ∈ A ∩ B.

Definition 2.7. [1] The intersection of two Q-NSSs (ΓQ, A) and (ΨQ, B) is the Q-NSS (ΛQ,C) written
as (ΓQ, A) ∩ (ΨQ, B) = (ΛQ,C), where C = A ∩ B and for all c ∈ C and (x, q) ∈ X × Q the truth-
membership, indeterminacy-membership and falsity-membership of (ΛQ,C) are as follows:

TΛQ(c)(x, q) = min{TΓQ(c)(x, q),TΨQ(c)(x, q)},
IΛQ(c)(x, q) = max{IΓQ(c)(x, q), IΨQ(c)(x, q)},

FΛQ(c)(x, q) = max{FΓQ(c)(x, q), FΨQ(c)(x, q)}.

3. Q-neutrosophic soft rings

In this section, we introduce the notion of Q-NS rings. Several basic properties and theorems related
to this concept are explored.

Definition 3.1. Let (ΓQ, A) be a Q-NSS over (R,+, .). Then, (ΓQ, A) is said to be a Q-NS ring over
(R,+, .) if for all x, y ∈ R, q ∈ Q and e ∈ A it satisfies:

1. TΓQ(e)(x + y, q) ≥ min
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
, IΓQ(e)(x + y, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and

FΓQ(e)(x + y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(−x, q) ≥ TΓQ(e)(x, q), IΓQ(e)(−x, q) ≤ IΓQ(e)(x, q) and FΓQ(e)(−x, q) ≤ FΓQ(e)(x, q).
3. TΓQ(e)(x.y, q) ≥ min

{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
, IΓQ(e)(x.y, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and

FΓQ(e)(x.y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Example 3.1. Let R = (Z,+, .) be the ring of integers and A=N the set of natural numbers be the
parametric set. Define a Q-NSS (ΓQ, A) as follows for q ∈ Q, x ∈ Z and m ∈ N

TΓQ(m)(x, q) =

0 if x is odd
1
m if x is even,

IΓQ(m)(x, q) =

 1
2m if x is odd
0 if x is even,
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FΓQ(m)(x, q) =

1 − 1
m if x is odd

0 if x is even.

It is clear that (ΓQ,Z) is a Q-NS ring over R.

Theorem 3.2. A Q-NSS (ΓQ, A) over the ring (R,+, .) is a Q-NS ring if and only if for all x, y ∈ R, q ∈ Q
and e ∈ A

1. TΓQ(e)(x − y, q) ≥ min
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
,

IΓQ(e)(x − y, q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x − y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(x.y, q) ≥ min
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
,

IΓQ(e)(x.y, q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x.y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Proof. Suppose that (ΓQ, A) is a Q-NS ring over (R,+, .). Then,

TΓQ(e)(x − y, q) = TΓQ(e)(x + (−y), q) ≥min
{
TΓQ(e)(x, q),TΓQ(e)(−y, q)

}
≥ min

{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
,

IΓQ(e)(x − y, q) = IΓQ(e)(x + (−y), q) ≤max
{
IΓQ(e)(x, q), IΓQ(e)(−y, q)

}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x − y, q) = FΓQ(e)(x + (−y), q) ≤max
{
FΓQ(e)(x, q), FΓQ(e)(−y, q)

}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Thus, conditions 1 and 2 are satisfied.

Conversely, Suppose that conditions 1 and 2 are satisfied.
For the additive identity 0R in (R,+, .),

TΓQ(e)(0R, q) = TΓQ(e)(x − x, q) ≥ min
{
TΓQ(e)(x, q),TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(0R, q) = IΓQ(e)(x − x, q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(0R, q) = FΓQ(e)(x − x, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q).

Now,

TΓQ(e)(−x, q) = TΓQ(e)(0R − x, q) ≥ min
{
TΓQ(e)(0R, q),TΓQ(e)(x, q)

}
≥ min

{
TΓQ(e)(x, q),TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(−x, q) = IΓQ(e)(0R − x, q) ≤ max
{
IΓQ(e)(0R, q), IΓQ(e)(x, q)

}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(−x, q) =ΓQ(e) (0R − x, q) ≤ max
{
FΓQ(e)(0R, q), FΓQ(e)(x, q)

}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q)

}
also,

TΓQ(e)(x + y, q) = TΓQ(e)(x − (−y), q) ≥ min
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
,

IΓQ(e)(x + y, q) = IΓQ(e)(x − (−y), q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x + y, q) = FΓQ(e)(x − (−y), q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

This completes the proof. �
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Theorem 3.3. Let (ΓQ, A) and (ΨQ, B) be two Q-NS rings over (R,+, .). Then, (ΓQ, A)∩ (ΨQ, B) is also
a Q-NS ring over (R,+, .).

Proof. Let (ΓQ, A) ∩ (ΨQ, B) = (ΛQ, A ∩ B). Now, ∀x, y ∈ R, q ∈ Q and e ∈ A ∩ B,

TΛQ(e)(x − y, q) = min
{
TΓQ(e)(x − y, q),TΨQ(e)(x − y, q)

}
≥ min

{
min

{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
,min

{
TΨQ(e)(x, q),TΨQ(e)(y, q)

}}
= min

{
min

{
TΓQ(e)(x, q),TΨQ(e)(x, q)

}
,min

{
TΓQ(e)(y, q),TΨQ(e)(y, q)

}}
= min

{
TΛQ(e)(x, q),TΛQ(e)(y, q)

}
,

also,

IΛQ(e)(x − y, q) = max
{
IΓQ(e)(x − y, q), IΨQ(e)(x − y, q)

}
≤ max

{
max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,max

{
IΨQ(e)(x, q), IΨQ(e)(y, q)

}}
= max

{
max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
,max

{
IΓQ(e)(y, q), IΨQ(e)(y, q)

}}
= max

{
IΛQ(e)(x, q), IΛQ(e)(y, q)

}
.

Similarly, FΛQ(e)(x − y, q) ≤ max
{
FΛQ(e)(x, q), FΛQ(e)(y, q)

}
.

Next,

TΛQ(e)(x.y, q) = min
{
TΓQ(e)(x.y, q),TΨQ(e)(x.y, q)

}
≥ min

{
min

{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
,min

{
TΨQ(e)(x, q),TΨQ(e)(y, q)

}}
= min

{
min

{
TΓQ(e)(x, q),TΨQ(e)(x, q)

}
,min

{
TΓQ(e)(y, q),TΨQ(e)(y, q)

}}
= min

{
TΛQ(e)(x, q),TΛQ(e)(y, q)

}
,

also,

IΛQ(e)(x.y, q) = max
{
IΓQ(e)(x.y, q), IΨQ(e)(x.y, q)

}
≤ max

{
max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,max

{
IΨQ(e)(x, q), IΨQ(e)(y, q)

}}
= max

{
max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
,max

{
IΓQ(e)(y, q), IΨQ(e)(y, q)

}}
= max

{
IΛQ(e)(x, q), IΛQ(e)(y, q)

}
.

Similarly, we can show FΛQ(e)(x.y, q) ≤ max
{
FΛQ(e)(x, q), FΛQ(e)(y, q)

}
. This completes the proof. �

Remark 3.4. For two Q-NS rings (ΓQ, A) and (ΨQ, B) over (R,+, .), (ΓQ, A)∪ (ΨQ, B) is not generally a
Q-NS ring.
For example, let R = (Z,+, .), E = 2Z. Consider two Q-NS rings (ΓQ, E) and (ΨQ, E) over R as follows:
for x,m ∈ Z and q ∈ Q

TΓQ(2m)(x, q) =

0.50 if x = 4tm,∃t ∈ Z,

0 otherwise,
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IΓQ(2m)(x, q) =

0 if x = 4tm,∃t ∈ Z,

0.25 otherwise,

FΓQ(2m)(x, q) =

0.40 if x = 4tm,∃t ∈ Z,

0.10 otherwise,

and

TΨQ(2m)(x, q) =

0.67 if x = 8tm,∃t ∈ Z,

0 otherwise,

IΨQ(2m)(x, q) =

0 if x = 8tm,∃t ∈ Z,

0.20 otherwise,

FΨQ(2m)(x, q) =

0.16 if x = 8tm,∃t ∈ Z,

0.33 otherwise.

Let (ΓQ, A) ∪ (ΨQ, B) = (ΛQ, E). For m = 3, x = 12, y = 18 we have,

TΛQ(6)(12 − 18, q) = TΛQ(6)(−6, q) = max
{
TΓQ(6)(−6, q),TΨQ(6)(−6, q)

}
= max{0, 0} = 0

and

min
{
TΛQ(6)(12, q),TΛQ(6)(18, q)

}
= min

{
max

{
TΓQ(6)(12, q),TΨQ(6)(12, q)

}
,max

{
TΓQ(6)(18, q),TΨQ(6)(18, q)

}}
= min

{
max

{
0.50, 0

}
,max

{
0, 0.67

}}
= min

{
0.50, 0.67

}
= 0.50.

Hence, TΛQ(6)(12 − 18, q) < min
{
TΛQ(6)(12, q),TΛQ(6)(18, q)

}
. Thus, the union is not a Q-NS ring.

Theorem 3.5. Let (ΓQ, A) and (ΨQ, B) be two Q-NS rings over (R,+, .). Then, (ΓQ, A)∧ (ΨQ, B) is also
a Q-NS ring over (R,+, .).

Proof. The proof is similar to the proof of Theorem 3.3. �

Definition 3.6. Let (ΓQ, A) be a Q-NSS over X. Let α, β, γ ∈ [0, 1] with α+β+γ ≤ 3. Then (ΓQ, A)(α,β,γ)

is a Q-level soft set of (ΓQ, A) defined by

(ΓQ, A)(α,β,γ) =
{
x ∈ X, q ∈ Q : TΓQ(e)(x, q) ≥ α, IΓQ(e)(x, q) ≤ β, FΓQ(e)(x, q) ≤ γ

}
for all e ∈ A.

The next theorem provides a bridge between Q-NS rings and soft rings.

Theorem 3.7. Let (ΓQ, A) be a Q-NSS over (R,+, .). Then, (ΓQ, A) is a Q-NS ring over (R,+, .) if and
only if for all α, β, γ ∈ [0, 1] the Q-level soft set (ΓQ, A)(α,β,γ) , φ is a soft ring over R.
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Proof. Let (ΓQ, A) be a Q-NS ring over (R,+, .), x, y ∈ (ΓQ(e))(α,β,γ) and q ∈ Q, for arbitrary α, β, γ ∈
[0, 1] and e ∈ A.
Then, we have TΓQ(e)(x, q) ≥ α, IΓQ(e)(x, q) ≤ β, FΓQ(e)(x, q) ≤ γ. Since (ΓQ, A) is a Q-NS ring over G,
then we have

TΓQ(e)(x − y, q) ≥ min
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
≥ min

{
α, α

}
= α,

IΓQ(e)(x − y, q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
≤ max

{
β, β

}
= β,

FΓQ(e)(x − y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
≤ max

{
γ, γ

}
= γ.

Therefore, x − y ∈ (ΓQ(e))(α,β,γ). Furthermore, TΓQ(e)(x.y, q) ≥ α, IΓQ(e)(x.y, q) ≤ β,
FΓQ(e)(x.y, q) ≤ γ. So, x.y ∈ (ΓQ, A)(α,β,γ). Hence, (ΓQ(e))(α,β,γ) is a subring over (R,+, .),∀e ∈ A.

Conversely, suppose (ΓQ, A) is not a Q-NS ring over (R,+, .). Then, there exists e ∈ A such that
ΓQ(e) is not a Q-neutrosophic subring of R. Then, there exist x1, y1 ∈ R and q ∈ Q such that at
least one of the conditions in Definition 3.1 does not hold. Without loss of generality, let us assume
TΓQ(e)(x1 − y1, q) < min

{
TΓQ(e)(x1, q),TΓQ(e)(y1, q)

}
.

Let TΓQ(e)(x1, q) = α1,TΓQ(e)(y1, q) = α2 and TΓQ(e)(x1 − y1, q) = α3. If we take α = min{α1, α2}, then
x1 − y1 < (ΓQ(e))(α,β,γ). But, since

TΓQ(e)(x1, q) = α1 ≥ min{α1, α2} = α

and
TΓQ(e)(y1, q) = α2 ≥ min{α1, α2} = α.

For IΓQ(e)(x1, q) ≤ β, IΓQ(e)(y1, q) ≤ β, FΓQ(e)(x1, q) ≤ γ, FΓQ(e)(y1, q) ≤ γ, we have x1, y1 ∈ (ΓQ(e))(α,β,γ).
This contradicts with the fact that (ΓQ, A)(α,β,γ) is a soft ring over G.
The other cases can be obtained similarly. �

4. Cartesian product of Q-neutrosophic soft rings

In this section, we define the cartesian product of Q-NS rings and prove that it is also a Q-NS ring.

Definition 4.1. Let (ΓQ, A) and (ΨQ, B) be two Q-NS rings over (R1,+, .) and (R2,+, .), respectively.
Then, their cartesian product (ΛQ, A × B) = (ΓQ, A) × (ΨQ, B), where ΛQ(a, b) = ΓQ(a) × ΨQ(b) for
(a, b) ∈ A × B. Analytically, for x ∈ R1, y ∈ R2 and q ∈ Q

ΛQ(a, b) =
{〈(

(x, y), q
)
,TΛQ(a,b)

(
(x, y), q

)
, IΛQ(a,b)

(
(x, y), q

)
, FΛQ(a,b)

(
(x, y), q

)〉}
, where

TΛQ(a,b)
(
(x, y), q

)
= min

{
TΓQ(a)

(
x, q

)
,TΨQ(b)

(
y, q

)}
,

IΛQ(a,b)
(
(x, y), q

)
= max

{
IΓQ(a)

(
x, q

)
, IΨQ(b)

(
y, q

)}
,

FΛQ(a,b)
(
(x, y), q

)
= max

{
FΓQ(a)

(
x, q

)
, FΨQ(b)

(
y, q

)}
.

Theorem 4.2. Let (ΓQ, A) and (ΨQ, B) be two Q-NS rings over (R1,+, .) and (R2,+, .), respectively.
Then, their cartesian product (ΓQ, A) × (ΨQ, B) is a Q-NS ring over (R1 × R2).
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Proof. Let (ΛQ, A × B) = (ΓQ, A) × (ΨQ, B), where ΛQ(a, b) = ΓQ(a) ×ΨQ(b) for (a, b) ∈ A × B. Then,
for

(
(x1, y1), q

)
,
(
(x2, y2), q

)
∈ (R1 × R2) × Q we have,

TΛQ(a,b)

((
(x1, y1) − (x2, y2), q

))
= TΛQ(a,b)

(
(x1 − x2, y1 − y2), q

)
= min

{
TΓQ(a)

(
(x1 − x2), q

)
,TΨQ(b)

(
(y1 − y2), q

)}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
,TΓQ(a)

(
− x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
,TΨQ(b)

(
− y2, q

)}}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
,TΓQ(a)

(
x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
,TΨQ(b)

(
y2, q

)}}
= min

{
min

{
TΓQ(a)

(
x1, q

)
,TΨQ(b)

(
y1, q

)}
,min

{
TΓQ(a)

(
x2, q

)
,TΨQ(b)

(
y2, q

)}}
= min

{
TΛQ(a,b)

(
(x1, y1), q

)
,TΛQ(a,b)

(
(x2, y2), q

)}
also,

IΛQ(a,b)

((
(x1, y1) − (x2, y2), q

))
= IΛQ(a,b)

(
(x1 − x2, y1 − y2), q

)
= max

{
IΓQ(a)

(
(x1 − x2), q

)
, IΨQ(b)

(
(y1 − y2), q

)}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
− x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
− y2, q

)}}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
max

{
IΓQ(a)

(
x1, q

)
, IΨQ(b)

(
y1, q

)}
,max

{
IΓQ(a)

(
x2, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
IΛQ(a,b)

(
(x1, y1), q

)
, IΛQ(a,b)

(
(x2, y2), q

)}
,

similarly, FΛQ(a,b)

((
(x1, y1) − (x2, y2), q

))
≤ max

{
FΛQ(a,b)

(
(x1, y1), q

)
, FΛQ(a,b)

(
(x2, y2), q

)}
. Next,

TΛQ(a,b)

((
(x1, y1).(x2, y2), q

))
= TΛQ(a,b)

(
(x1.x2, y1.y2), q

)
= min

{
TΓQ(a)

(
(x1.x2), q

)
,TΨQ(b)

(
(y1.y2), q

)}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
,TΓQ(a)

(
x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
,TΨQ(b)

(
y2, q

)}}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
,TΓQ(a)

(
x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
,TΨQ(b)

(
y2, q

)}}
= min

{
min

{
TΓQ(a)

(
x1, q

)
,TΨQ(b)

(
y1, q

)}
,min

{
TΓQ(a)

(
x2, q

)
,TΨQ(b)

(
y2, q

)}}
= min

{
TΛQ(a,b)

(
(x1, y1), q

)
,TΛQ(a,b)

(
(x2, y2), q

)}
,

IΛQ(a,b)

((
(x1, y1).(x2, y2), q

))
= IΛQ(a,b)

(
(x1.x2, y1.y2), q

)
= max

{
IΓQ(a)

(
(x1.x2), q

)
, IΨQ(b)

(
(y1.y2), q

)}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y2, q

)}}
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≤ max
{

max
{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
max

{
IΓQ(a)

(
x1, q

)
, IΨQ(b)

(
y1, q

)}
,max

{
IΓQ(a)

(
x2, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
IΛQ(a,b)

(
(x1, y1), q

)
, IΛQ(a,b)

(
(x2, y2), q

)}
,

similarly, FΛQ(a,b)

((
(x1, y1), q

)
.
(
(x2, y2), q

))
≤ max

{
FΛQ(a,b)

(
(x1, y1), q

)
, FΛQ(a,b)

(
(x2, y2), q

)}
. This

completes the proof. �

5. Homomorphism of Q-neutrosophic soft rings

In this section, we define the Q-neutrosophic soft function, then define the image and pre-image
of a Q-NSS under a Q-neutrosophic soft function. In continuation, we introduce the notion of Q-
neutrosophic soft homomorphism along with some of it’s properties.

Definition 5.1. Let g : X × Q → Y × Q and h : A → B be two functions where Aand B are parameter
sets. Then, the pair (g, h) is called a Q-neutrosophic soft function from X × Q to Y × Q.

Definition 5.2. Let (ΓQ, A) and (ΨQ, B) be two Q-NSSs defined over X × Q and Y × Q, respectively,
and (g, h) be a Q-neutrosophic soft function from X × Q to Y × Q. Then,

1. The image of (ΓQ, A) under (g, h), denoted by (g, h)(ΓQ, A), is a Q-NSS over Y × Q and is defined
by:

(g, h)(ΓQ, A) =
(
g(ΓQ), h(A)

)
=

{〈
b, g(ΓQ)(b) : b ∈ h(A)

〉}
,

where for all b ∈ h(A), y ∈ Y and q ∈ Q,

Tg(ΓQ)(b)(y, q) =

maxg(x,q)=(y,q) maxh(a)=b[TΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),
0 otherwise,

Ig(ΓQ)(b)(y, q) =

ming(x,q)=(y,q) minh(a)=b[IΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),
1 otherwise,

Fg(ΓQ)(b)(y, q) =

ming(x,q)=(y,q) minh(a)=b[FΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),
1 otherwise,

2. The preimage of (ΨQ, B) under (g, h), denoted by (g, h)−1(ΨQ, B), is a Q-NSS over X and is defined
by:

(g, h)−1(ΨQ, B) =
(
g−1(ΨQ), h−1(B)

)
=

{〈
a, g−1(ΨQ)(a) : a ∈ h−1(B)

〉}
,

where for all a ∈ h−1(B), x ∈ X and q ∈ Q,

Tg−1(ΨQ)(a)(x, q) = TΨQ[h(a)](g(x, q)),
Ig−1(ΨQ)(a)(x, q) = IΨQ[h(a)](g(x, q)),

Fg−1(ΨQ)(a)(x, q) = FΨQ[h(a)](g(x, q)).

If g and h are injective (surjective), then (g, h) is injective (surjective).
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Definition 5.3. Let (g, h) be a Q-neutrosophic soft function from X×Q to Y×Q. If g is a homomorphism
from X × Q to Y × Q, then (g, h) is said to be a Q-neutrosophic soft homomorphism. If g is an
isomorphism from X × Q to Y × Q and h is a one-to-one mapping from A to B, then (g, h) is said to be
a Q-neutrosophic soft isomorphism.

Theorem 5.4. Let (ΓQ, A) be a Q-NS ring over R1 and (g, h) : R1 × Q → R2 × Q be a Q-neutrosophic
soft homomorphism. Then, (g, h)(ΓQ, A) is a Q-NS ring over R2.

Proof. Let b ∈ h(A) and y1, y2 ∈ R2. For g−1(y1, q) = φ or g−1(y2, q) = φ, the proof is straight forward.
So, assume there exists x1, x2 ∈ R1 such that g(x1, q) = (y1, q) and g(x2, q) = (y2, q). Then,

Tg(ΓQ)(b)(y1 − y2, q) = max
g(x,q)=(y1−y2,q)

max
h(a)=b

[
TΓQ(a)(x, q)

]
≥ max

h(a)=b

[
TΓQ(a)(x1 − x2, q)

]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q),TΓQ(a)(−x2, q)

}]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q),TΓQ(a)(x2, q)

}]
= min

{
max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max

h(a)=b

[
TΓQ(a)(x2, q)

]}

Tg(ΓQ)(b)(y1.y2, q) = max
g(x,q)=(y1.y2,q)

max
h(a)=b

[
TΓQ(a)(x, q)

]
≥ max

h(a)=b

[
TΓQ(a)(x1.x2, q)

]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q),TΓQ(a)(x2, q)

}]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q),TΓQ(a)(x2, q)

}]
= min

{
max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max

h(a)=b

[
TΓQ(a)(x2, q)

]}
.

Since, the inequality is satisfied for each x1, x2 ∈ R1, satisfying g(x1, q) = (y1, q) and g(x2, q) = (y2, q).
Then,

Tg(ΓQ)(b)(y1 − y2, q) ≥ min
{

max
g(x1,q)=(y1,q)

max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max

g(x2,q)=(y1,q)
max
h(a)=b

[
TΓQ(a)(x2, q)

]}
= min

{
Tg(ΓQ)(b)(y1, q),Tg(ΓQ)(b)(y2, q)

}
.

Tg(ΓQ)(b)(y1.y2, q) ≥ min
{

max
g(x1,q)=(y1,q)

max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max

g(x2,q)=(y1,q)
max
h(a)=b

[
TΓQ(a)(x2, q)

]}
= min

{
Tg(ΓQ)(b)(y1, q),Tg(ΓQ)(b)(y2, q)

}
.

Similarly, we show that
Ig(ΓQ)(b)(y1 − y2, q) ≤ max

{
Ig(ΓQ)(b)(y1, q), Ig(ΓQ)(b)(y2, q)

}
,

Ig(ΓQ)(b)(y1.y2, q) ≤ max
{
Ig(ΓQ)(b)(y1, q), Ig(ΓQ)(b)(y2, q)

}
,
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Fg(ΓQ)(b)(y1 − y2, q) ≤ max
{
Fg(ΓQ)(b)(y1, q), Fg(ΓQ)(b)(y2, q)

}
,

Fg(ΓQ)(b)(y1.y2, q) ≤ max
{
Fg(ΓQ)(b)(y1, q), Fg(ΓQ)(b)(y2, q)

}
.

�

Theorem 5.5. Let (ΨQ, B) be a Q-NS ring over R2 and (g, h) be a Q-neutrosophic soft homomorphism
from R1 × Q to R2 × Q. Then, (g, h)−1(ΨQ, B) is a Q-NS ring over R1.

Proof. For a ∈ h−1(B) and x1, x2 ∈ R1, we have

Tg−1(ΨQ)(a)(x1 − x2, q) = TΨQ[h(a)](g(x1 − x2, q))
= TΨQ[h(a)](g(x1, q) − g(x2, q))

≥ min
{
TΨQ[h(a)](g(x1, q)),TΨQ[h(a)](−g(x2, q))

}
≥ min

{
TΨQ[h(a)](g(x1, q)),TΨQ[h(a)](g(x2, q))

}
= min

{
Tg−1(ΨQ)(a)(x1, q),Tg−1(ΨQ)(a)(x2, q)

}
and

Tg−1(ΨQ)(a)(x1.x2, q) = TΨQ[h(a)](g(x1.x2, q))
= TΨQ[h(a)](g(x1, q).g(x2, q))

≥ min
{
TΨQ[h(a)](g(x1, q)),TΨQ[h(a)](g(x2, q))

}
≥ min

{
TΨQ[h(a)](g(x1, q)),TΨQ[h(a)](g(x2, q))

}
= min

{
Tg−1(ΨQ)(a)(x1, q),Tg−1(ΨQ)(a)(x2, q)

}
Similarly, we can obtain

Ig−1(ΨQ)(a)(x1 − x2, q) ≤ max
{
Ig−1(ΨQ)(a)(x1, q), Ig−1(ΨQ)(a)(x2, q)

}
,

Ig−1(ΨQ)(a)(x1.x2, q) ≤ max
{
Ig−1(ΨQ)(a)(x1, q), Ig−1(ΨQ)(a)(x2, q)

}
,

Fg−1(ΨQ)(a)(x1 − x2, q) ≤ max
{
Fg−1(ΨQ)(a)(x1, q), Fg−1(ΨQ)(a)(x2, q)

}
,

Fg−1(ΨQ)(a)(x1.x2, q) ≤ max
{
Fg−1(ΨQ)(a)(x1, q), Fg−1(ΨQ)(a)(x2, q)

}
.

Thus, the theorem is proved. �

6. Q-neutrosophic soft ideals

In the current section, we present Q-neutrosophic soft ideals and explore some of their related
properties.

Definition 6.1. A Q-NSS over (ΓQ, A) over a ring (R,+, .) is called a Q-NS left (resp. right) ideal over
(R,+, .) if for all x, y ∈ R, q ∈ Q and e ∈ A it satisfies:
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1. TΓQ(e)(x − y, q) ≥ min
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
, IΓQ(e)(x − y, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and

FΓQ(e)(x − y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(x.y, q) ≥ TΓQ(e)(y, q), IΓQ(e)(x.y, q) ≤ IΓQ(e)(y, q) and FΓQ(e)(x.y, q) ≤ FΓQ(e)(y, q) (resp.
TΓQ(e)(x.y, q) ≥ TΓQ(e)(x, q), IΓQ(e)(x.y, q) ≤ IΓQ(e)(x, q) and FΓQ(e)(x.y, q) ≤ FΓQ(e)(x, q)).

Definition 6.2. A Q-NSS over (ΓQ, A) over a ring (R,+, .) is called a Q-NS ideal over (R,+, .) if for all
x, y ∈ R, q ∈ Q and e ∈ A it satisfies:

1. TΓQ(e)(x − y, q) ≥ min
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
, IΓQ(e)(x − y, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and

FΓQ(e)(x − y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(x.y, q) ≥ max
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
, IΓQ(e)(x.y, q) ≤ min

{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
and

FΓQ(e)(x.y, q) ≤ min
{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
.

Example 6.1. Let R = (Z,+, .) be the ring of integers and A=N the set of natural numbers be the
parametric set. Define a Q-NSS (ΓQ, A) as follows for q ∈ Q, x ∈ Z and m ∈ N

TΓQ(m)(x, q) =

 1
m if x = 2l − 1,∃l ∈ Z
2
m if x = 2l,∃l ∈ Z,

IΓQ(m)(x, q) =

 1
m if x = 2l − 1,∃l ∈ Z

0 if x = 2l−,∃l ∈ Z,

FΓQ(m)(x, q) =

1 − 2
m if x = 2l − 1,∃l ∈ Z

1 − 3
m if x = 2l,∃l ∈ Z.

Then, by Definition 6.2 (ΓQ, A) is a Q-NS ideal over (Z,+, .).

Theorem 6.3. Let (ΓQ, A) and (ΨQ, B) be two Q-NS ideals over (R,+, .). Then, (ΓQ, A) ∩ (ΨQ, B) is
also a Q-NS ideal over (R,+, .).

Proof. Let (ΓQ, A) ∩ (ΨQ, B) = (ΛQ, A ∩ B). Then, for x, y ∈ R, q ∈ Q and e ∈ A ∩ B the first condition
of Definition 6.2 is satisfied by Theorem 3.3. Now, for the second condition

TΛQ(e)(x.y, q) = min
{
TΓQ(e)(x.y, q),TΨQ(e)(x.y, q)

}
≥ min

{
max

{
TΓQ(e)(x, q),TΓQ(e)(y, q)

}
,max

{
TΨQ(e)(x, q),TΨQ(e)(y, q)

}}
= max

{
min

{
TΓQ(e)(x, q),TΨQ(e)(x, q)

}
,min

{
TΓQ(e)(y, q),TΨQ(e)(y, q)

}}
= max

{
TΛQ(e)(x, q),TΛQ(e)(y, q)

}
,

also,

IΛQ(e)(x.y, q) = max
{
IΓQ(e)(x.y, q), IΨQ(e)(x.y, q)

}
≤ max

{
min

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,min

{
IΨQ(e)(x, q), IΨQ(e)(y, q)

}}
= min

{
max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
,max

{
IΓQ(e)(y, q), IΨQ(e)(y, q)

}}
= min

{
IΛQ(e)(x, q), IΛQ(e)(y, q)

}
.

Similarly, we can show FΛQ(e)(x.y, q) ≤ min
{
FΛQ(e)(x, q), FΛQ(e)(y, q)

}
. This completes the proof. �
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Theorem 6.4. Let (ΓQ, A) and (ΨQ, B) be two Q-NS ideals over (R,+, .). Then, (ΓQ, A) ∧ (ΨQ, B) is
also a Q-NS ideal over (R,+, .).

Proof. The proof is similar to the proof of Theorem 6.3. �

Remark 6.5. The union of two Q-NS ideals need not be a Q-NS ideal.
For example, let R = Z6 = 0, 1, 2, 3, 4, 5. Consider two Q-NS ideals (ΓQ, A) and (ΨQ, B) over R as
follows: for x ∈ Z, q ∈ Q and e ∈ E

TΓQ(2m)(x, q) =

0.30 if x = 0 or 3,
0 otherwise,

IΓQ(2m)(x, q) =

0 if x = 0 or 3,
0.20 otherwise,

FΓQ(2m)(x, q) =

0.30 if x = 0 or 3,
1 otherwise,

and

TΨQ(2m)(x, q) =

0.40 if x = 0, 2, 4,
0 otherwise,

IΨQ(2m)(x, q) =

0 if x = 0, 2, 4,
0.50 otherwise,

FΨQ(2m)(x, q) =

0.25 if x = 0, 2, 4,
1 otherwise.

Let (ΓQ, A) ∪ (ΨQ, B) = (ΛQ, A ∪ B). For x = 3, y = 2 and q ∈ Q we have,

TΛQ(e)(3 − 2, q) = TΛQ(e)(1, q) = max
{
TΓQ(e)(1, q),TΨQ(e)(1, q)

}
= max{0, 0} = 0

and

min
{
TΛQ(e)(3, q),TΛQ(e)(2, q)

}
= min

{
max

{
TΓQ(e)(3, q),TΨQ(e)(3, q)

}
,max

{
TΓQ(e)(2, q),TΨQ(e)(2, q)

}}
= min

{
max

{
0.30, 0

}
,max

{
0, 0.40

}}
= min

{
0.30, 0.40

}
= 0.30.

Hence, TΛQ(e)(3 − 2, q) < min
{
TΛQ(e)(3, q),TΛQ(e)(2, q)

}
. Thus, the union is not a Q-NS ideal.

7. Conclusion

In this study, we have introduced the idea of Q-neutrosophic soft rings and discuss some of its
related properties. Then, we have discussed the cartesian product of Q-neutrosophic soft rings and
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homomorphic image and preimage of Q-neutrosophic soft rings. Finally, we have presented
Q-neutrosophic soft ideals and explored some of their related properties. The proposed notion
illuminates the way to broaden the notion of Q-neutrosophic soft sets and rings by using the refined
neutrosophic set [33] and different other structures.
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