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A real case study based on the proposed T2NN-TOPSIS is introduced.
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This paper proposes an advanced type of neutrosophic technique, called type 2 neutrosophic numbers,
and defines some of its operational rules. The type 2 neutrosophic number weighted averaging operator
is determined in order to collective the type 2 neutrosophic number set, inferring some properties of the
suggested operator. The operator is employed in a MADM problem to collect the type 2 neutrosophic
numbers based classification values of each alternative over the features. The convergent classification
values of every alternative are arranged with the assistance of score and accuracy values with the aim to
detect the superior alternative. We introduce an illuminating example to confirm the suggested approach
for multi attribute decision making issues, ordering the alternatives based on the accuracy function.
Selecting an appropriate alternative among the selection options is a difficult activity for decision makers,
since it is complicated to express attributes as crisp numbers. To tackle the problem, type 2 neutrosophic
numbers can be efficiently used to estimate information in the decision making process. The type 2
neutrosophic numbers can accurately describe real cognitive information. We propose a novel T2NN-
TOPSIS strategy combining type 2 neutrosophic numbers and TOPSIS under group decision making as
application of T2NN, suggesting a type 2 neutrosophic number expression for linguistic terms. Finally,
we provide a real case dealing with a decision making problem based on the proposed T2NN-TOPSIS
methodology to prove the efficiency and the applicability of the type 2 neutrosophic number.
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1. Introduction seeks to deem uncertain data which can be related with exis-
tent fuzziness of peoples’ observations and perceptions. The re-
sults indicate that they are strongly affected by self-regulation in
such circumstances. Fuzzy has confirmed functionality in dealing
with vagueness and ambiguity of human intellect and expression

while decision making. Hence, the Neutrosophic is an extension

Fuzzy theory was established on the notion of membership
function to take linguistic variables into consideration. The theory
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SVN, Single valued neutrosophic; ANP, Analytical network process; MDM, Multi
decision making; MADM, Multi attribute decision making; MAGDM, Multi
attribute group decision making; MCDM, Multicriteria decision making
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of the fuzzy theory and intuitionistic fuzzy set (IFS). Smarandache
proposed the neutrosophic sets in [1,2], attracting the attention
of many scholars. The neutrosophic sets proved to be a valid
workspace in describing incompatible and indefinite information.
z(T, 1, F) is a Type-1 Neutrosophic Number. But z((Tr, Tj, T¢), (It,
I, Ig), (Fr, Fy, Fg)) is a Type-2 Neutrosophic Number, which means
that each neutrosophic component T, I, and F is split into its truth,
indeterminacy, and falsehood subparts. The procedure of splitting
may be executed recurrently, as many times as needed, obtaining
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a general Type-n Neutrosophic Number, for any integer n > 1.
Here, we use the type 2 neutrosophic number as advancement of
neutrosophic number to solve MCDM problems.

A neutrosophic set has more possibility strength than other
forming mathematical apparatus, such as fuzzy set [3], interval
valued intuitionistic fuzzy set (IVIFS) [4] or IFS [5]. Smarandache
combined the degree of indeterminacy as independent element in
IFS and defined the neutrosophic set [6] as a generalization of IFSs.
Georgiev [7] questioned that the neutrosophic logic is qualified
for preserving formal operators, since there is no standardiza-
tion base for the elements T, I and F. However, fuzzy sets and
IFSs cannot deal with certain types of uncertain information, such
as incompatible, indefinite, or incomplete information. Smaran-
dache [8] recognized neutrosophic set as a generalization of IFS,
which performs a significant role to transact unclear, unpredictable
and indeterminate information in the real world. The truth, in-
determinacy and falsity degrees exist in the non-standard item
interval suitable for each element of the universe [8]. In these days,
Neutrosophic received attentions from many researches were pro-
ceed to develop, improve and expand the neutrosophic theory [9-
16]. The neutrosophic set expanded to many branches, such as
topology, image conversion or social science. We used single val-
ued neutrosophic set [17] (SVNS), a subclass of neutrosophic set,
in which every component of the universe is described by the
truth, indeterminacy and falsity memberships existing in the ac-
tual unitinterval. Liu and Liu [ 18] introduced neutrosophic number
generalized weighted power averaging operator (NNGWPAO) and
suggested a MAGDM strategy in neutrosophic number environ-
ment. Peng et al. [19] suggested a MAGDM strategy constructed
on neutrosophic number generalized hybrid weighted averaging
operator. Ye [20] introduced weighted arithmetic average operator
for simplified neutrosophic sets. Hence, we will refer to TOPSIS
methodology that is a widespread strategy to transact MAGDM.
TOPSIS [21] helps choosing the best selection, which is the nearest
to the quixotic solution and the farthest from the negative quixotic
solution. Information of attributes that aggregated from experts
and decision maker/makers is the base of the TOPSIS strategy.
In crisp setting, an extended TOPSIS strategy for MAGDM under
GDM was established by Shih [22]. A TOPSIS strategy for group
decision making was suggested by Hatami [23]. Ravasan et al. [24]
developed a fuzzy TOPSIS strategy for an e-banking outsourcing
strategy selection in fuzzy environment. Banaeian et al. [25] intro-
duced a fuzzy TOPSIS for GDM for green supplier selection for an
actual company from the agri-food sector. In intuitionistic fuzzy
environment, Bilyiik6zkan et al. [26] elaborated an MAGDM for
supplier election with TOPSIS strategy. Gupta et al. [27] established
a protracted TOPSIS method under interval-valued intuitionistic
fuzzy environment. Wang et al. [28] suggested a TOPSIS strategy for
MAGDM in single valued neutrosophic environment. Ju et al. [29]
propounded a TOPSIS strategy for MAGDM established on SVN lin-
guistic numbers. A TOPSIS strategy was presented in neutrosophic
cubic set environment by Pramanik et al. [30]. ATOPSIS strategy for
MADM in bipolar neutrosophic set environment was put forward
by Dey et al. [31]. Abdel-Basset et al. [32] suggested an ANP-TOPSIS
strategy for supplier selection problems with interval valued neu-
trosophic. TOPSIS strategy is yet to approach T2NN environment.
To fill the research gap, we improve a MAGDM strategy built

on TOPSIS in type 2 neutrosophic number environment, namely
T2NN-TOPSIS strategy to solve MAGDM issues.
Contribution of this paper:

e We state a T2NN, score function and accuracy function of
T2NN, and prove its basic properties.

o We define T2ZNNWA to aggregate T2NN decision matrices.

o We propose linguistic terms to present T2NN.

e We suggest a tangential function to locate unidentified
weights of attributes in T2NN setting.

o We develop a T2NN-TOPSIS strategy to solve MAGDM prob-
lems in T2NN environment.

o The proposed T2NN-TOPSIS is comprehensive, presenting all
vague and incomplete information about all elements.

o We present an illustrative model of a MADM problem.

Table 1 below provides a literature review. Section 2 introduces
several basic concepts of T2NN, operations on T2NN, applications
of T2NNWA operator to MADM, two properties on T2NNWA and
a numerical example. Section 3 clarifies the procedure for TOPSIS-
T2NN methodology for the evaluation suppliers. Section 4 provides
a real example based on the proposed T2NN-TOPSIS strategy. Sec-
tion 5 concludes the research.

2. Preliminaries

We introduce several basic concepts of T2NN, operations on
T2NN, applications of T2ZNNWA operator to MADM, and two prop-
erties on T2ZNNWA.

Definition 1. Let Z be the limited universe of discourse and F [0, 1]
be the set of all triangular neutrosophic numbers on F[0, 1]. A
type 2 neutrosophic number set (T2NNS) U in Z is represented

by U = {(z,fﬁ @),l5@) ,F3@) |z € Z>} where Ty (2):Z —

F[0.1].i;(2):Z — F[0.1],F5():Z — F[0,1]. A T2NNS
Ti@ = (T, @. Ty @. Ty, @)l @ = (i, @1, @) Ty (2),
150 (z2) = (FTa (2), F‘o (2), FFG(Z)>, respectively, denote the truth,
indeterminacy, and falsity memberships of z in U and for every
z €7:0 < Ty (2)>+15 (2)> +F; (2)* < 3; for convenience, we con-
sider that 0=((Tr, 2)., iy ), e, (2) » (In, @ 1y, @), Ty (2))

(FTL~J (2), Fiy @, Fr, (z))> as a type 2 neutrosophic number.

Definition 2. Suppose U= <(TT. @) . T @),Tr (z)) ,
Uq Uq Uq B
(hy, @1y, @15, @), (Fr, @).Fy @, Fr, (2))) and 0, =
((Tr, @ Ty, @.Tey, @) (1, @1, @15, @)
(FTl~J (2), Flﬂ (2), FF0 (z))) are two T2NNS in the set real num-
2 2
bers. Then the procedures are defined as Egs. (1)-(4) in Box L.

The procedures defined in Definition 2 satisfy the following
properties:

LUeU; =U0 U, U1 QU =Up ® Uy; _

2. 8(U; ® Uy) = 8U; @ 8Us, (U ® Up)* = U3 ® Uj for § > O,
and _ o _ _

3. 5,01 @ 8,01 = (814 82)0,, U @ 0% = UV for 84, 8, >0.

Definition 3. Suppose that U, = ((TT[~J1 (z),TlL.]1 2), Tp[~J1 (z)),

(i, @1y @1, ). (Fr, @.Fy @ F, (2)))areT2NNS
in the set of real numbers, the score function S(le) of Uy is defined
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Table 1
Literature review.
References Methods Application Objective of the study
type
Peng, X. and J. SVN-TOPSIS Methodology A new axiomatic definition of
Dai [33] proposal single-valued neutrosophic
distance measure and
similarity measure
Pouresmaeil, H., TOPSIS and SVN Methodology Multiple attribute decision
etal. [34] proposal making
Selvachandran, TOPSIS-MDM-SVN Sets Methodology New aggregation operator
G, etal.[35] proposal proposal
Biswas, P., et al. Neutrosophic TOPSIS Methodology New aggregation operator
[36] proposal proposal
Biswas, P., et al. TOPSIS for MAGDM under Methodology A new strategy for MAGDM
[37] SVN proposal problems
Broumi, S., et al. TOPSIS method for MADM Methodology TOPSIS solve the MADM
[38] based on interval proposal
neutrosophic
Smarandache, F. Neutrosophic under bi-polar Methodology Select the most desirable
and S. Pramanik neutrosophic proposal alternative
[39]
10,00,

(T, @ +Tr, @ =Tr, @ Ty @), (Ty, @+Ty @ —Tyy @ Ty, @),

= < (Tey, @ +Try, @ =T, @.Try, @) ’ > (1)
~ (IT:.M @k @y @Dy @l @ Ty @), (F, @ Fry @, Fy @)y @.F, @) .Fy @)
2.U,®U;
((ty, @ T, @. Ty @ Ty @. T, @.Tey @),
(e, @ +hy, @ =k, @ 11, @) (1, @+, @~y @1y, @),
= < (1r, @ +1r, @ =Ty @, @) > 2)
(Fry, @ +Fr, @ —Fr, @ Fry @), (Fy, @ +Fy @) —Fy @ Fy @),
(Fr,, @ +Fry, @ —Fry @ Fry, @)
3.80
(1-a-T, @ 1-(1- T, @’ 1-(1-Ty, @)).
_ < <(IT01 (Z))a, (Ilol (Z)>67 (IFL-Jl (Z))8> ) > fors > 0 (3)
()" (5, @) o, ) )
4.0
((TT[.J] @) (1, @) (T, (Z)>5> ,
=< 1- (1 —k. (z))a, 1— (1 1, (z))(s - (1 s, (z))3>, > fors > 0 (4)
1- (1 —Fry, (z))s, 1- (1 —Fy, (z))s, 1- (1 —Fr. (z))a)
Box L.
as follows: — (FT01 (z) +2 (Flljl (z)) + FFL.]1 (z)>> (5)
- 1
S0 = 55 (8+ (T, @+2(1, @) +Tr, ) A = 2 {(7, @ +2 (g, @) +T5, @)
= (Fr,, @ +2(Fy, @) +Fr, ) (6)

= (i, @ +2 (1, @) +1, (2))
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T2NNWA, (U1, Uy, ..., 0p) = 0101 © 020, @ ... 0Up = &)_(wpUp)

n n n

1-[[0-T, @) 1-]]O-T, @)" . 1-]][(1=Ts, @)" |.

p=1 p=1 p=1
n n

p=1 p=1 p=1

= < [10, @), T[]0, @)". ][]0 @) |,

> (11)

Box II.

Definition 4. Suppose that U, = <<TT01 ), T‘al (2), TFGI (z)),
(i, @1y @1, ). (Fr, @ Fy @ Fr, (2)))and O =
((Tr, @. Ty, @.Te, @) (4, @1y, @16, @)

(FT[_J2 @, F‘oz 2, FF02 (z))> are two T2NNS in the set of real num-

bers. Suppose that ~S(fli) and A(U;) are the score and accuracy
functions of T2ZNNS U;(i = 1, 2), then the order relations are defined
as follows:

1. If S(U;) > S(U,), then U, is greater than U,, that is Uy is
superior to Up, denoted by U;> Uy ; ~

2. If S(Uy) = S(U3), A(U1) > A(Uy) )then Uy _is superior than Uy,
that is Uy is superior to U,, denoted by U;>U,; ~

3. IfS(Uq) = S(Uz), A(U;) = A(U,) ) then Uy is equal to U, that
is Uy is indifferent to U,, denoted by U; = U,;

Example 1. Consider two T2NNS in the group of real numbers:
O = ((T, @. Ty, @. T, ) (I, @4, @1, @),
Fry, @, Fy @) Fr; (2)))and o =((Tr, @), T, ). T, (@)
by, @1y, @1, ). (Fry, @ Fy @) Fr, @) 00 =
((0.65, 0.70, 0.75) , (0.20, 0.15, 0.30) , (0.15, 0.20, 0.10)), U, =

((0.45, 0.40, 0.55), (0.35, 0.45, 0.30) , (0.25,0.35, 0.40)). From
Egs. (5) and (6), we get the following outcomes:

1. Score value of S(U;) = (8+(2.8—0.8—.065))/12 =
0.78,and S(Uy) = (8 + (1.8 — 1.55 — 1.35)) /12 = 0.58;

2. Accuracy value of A(U;) = (2.8 —0.65) /4 = 0.54, and
A(U;) = (1.8 — 1.35) /4 = 0.11; it is obvious that A; > A,.

Example 2. Consider two T2NNS in the set of real numbers:
U; = ((0.50,0.20,0.35), (0.30, 0.45, 0.30) , (0.10, 0.25, 0.35)),
U, = ((0.15,0.60, 0.20), (0.35, 0.20, 0.30) , (0.45, 0.35, 0.20)).
From Egs. (5) and (6), we obtain the following results:

1. Score value of S(Uy) = (8 +(1.25 — 1.5 —0.95)) /12 =
0.57,and S(U,) = (8 + (1.55 - 1.05 — 1.35)) /12 = 0.60;

2. Accuracy value of A(U;) = (1.25 - 0.95) /4 = 0.075, and
A(Uy) = (1.55 — 1.35) /12 = 0.05; it is obvious that A; >
A;.

2.1. Aggregation of type 2 neutrosophic number

In this part, we recall some basic descriptions of aggregation
operators for real numbers.

Definition 5 ([40]). Suppose that w: (Z)" — Z,and ay(= 1,2, ...,
n) = 1 are a group of numbers. The weighted averaging operator

wA,, is defined as:

n
wA,(ar, az, ~--,an):praps (7)
p=1
where Z is the set of numbers, and w = (w1, wy, ...,y is
the weight vector of ap(p = 1,2,..., n) such that w, € [0, 1]

p=1,2,..., n)andZZ:1wp=1.

Definition 6 ([40]). Suppose that w: (Z)" — Z and ap(p =
1,2, ...,n) are a group of numbers. The weighted averaging op-
erator wA,, is defined as:

n
why(er, o, .. an)=] " (8)
p=1

Where Z is the set of number, and w = (w1, wy, ..., wn) is
the weight vector of ap(p = 1,2,..., n) such that w, € [0, 1]
(p=1,2,..., n)and Z;Zl wp = 1. Based on Definitions 5 and 6,
we suggest the next aggregation operator of T2NNS to be used in
decision making.

Definition 7. Suppose that flp = <(TT0,, ), T‘a (2), TFop (z)) ,

<ITI~J @ .1y (@), ]g (Z)P , (FTG (@).Fy @), F (2)

P P P P, P P

(p =1,2,..., n)is acollection T2NNS in the set of numbers and
let us have T2NNWA: ®" — ©. A type 2 neutrosophic number
weighted averaging (T2ZNNWA) operator denoted by T2NNWA
(Uq, Ug, ..., U,)is defined as T2ZNNWA,,

(011 02, ceey ﬁn) = 0)101 @ 0)2':]2 ®D... a)nfjn = @Z:](wpﬁp)v 9)

Where w, € [0, 1] is the weight vector of Up(p = 1, 2, ..., n)such
that 2221 wp, = 1.Ifw = (1/n, 1/n, ..., 1/n)T, then the T2NNWA
(Uy, Uy, ..., U,)operator decrease to type 2 neutrosophic number
averaging (T2NNA) operator: T2NNA

.. . 1 -~ - -
(Uy, Uy, ---7Un):E(Ul@U2@"'@Un) (10)

Now, we can enunciate the following theorem by using the
basic procedures of T2NNVs expressed in Definition 2.

Theorem 1. Let U, = ((Tr, (). Ty, (2), T, (2)). (Ir, @) .1, @),
Ir,(2)) . (Fr, @), F, (), Fs,(2)))(p = 1,2,..., n) be a group
T2NNS in the set of numbers. Then the combined value obtained by
T2NNWA is also a T2NNV, and T2NNWA,, (U4, U,, ..., U,)is given
as Eq. (11) in Box II, where w, € [0, 1] is the weight vector of
Up(p=1,2,..., n)such that 2221 wp = 1.
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:< (1-(1-Tr, @) 1-(1-T, @), 1-(1-Tr, @)“"). >
((

@) (1, @) (I @)). ((Fr, @), (R, @) (Fr, @)™) (12)

1 1

(1—]‘[(1—TTp(z))‘””, -[Ta-1,@)” . 1- ]_[ 1-Tg, @)
p=1 p=1

p=1
(Ir, (z))‘“") : > (13)
(FFp (z))wp)
1

Box III.

1

1
=< [0 @) T[], @),
p=1

p=1 p:

:]H

1

1
[T, @) T, @),
p=1 p=1

o P

p

@2_] (Cl)pUp) = (1)1(]] &® (1)2(]2

i [ ol
((lTl (z))w1 ’ (111 (z)) (IFl (Z)) '

:< < « (1-(1-Ty (z))‘”2 )(

I, @), (I, @)™ (i), @)
(
(1=
- (1-T, @)"). —E—nxnﬁﬂ

( (
((
N : ’
( (1= (1=T,, @)"") +( —Tr, (2)))
-(1-(1-Tr, @) ‘) (1 (1—TF <Z))“’2)
((t, (z))“”((Tz <z>;‘”2 (1, @) (1, @)™ (I, @) (Ir, ) )
@) !

L @) 1= (1-Tr, @)7"), >
(Fr, @), (R, @), (Fe, @)")

> (14)
L @)%, 1= (1-Tg, 2)7). >
(Fr, @), (F, @)™ . (Fr, 2))™)

—Tr, @))) )
—Tr, (2))7)
-T, @)") )

).

A'_] /—\'—]

—(1-Th, @)") +
(1- (1-Tr @)")
)

(
_(1 -(1-T, @) 12]

’
’

).
1
1
1
1
1

(Fr, @) (Fr, @) . (R, @) (F, @) (Fr, )" (Fr, @)"7)
2 2 2
1-[[0-T, @) 1-T]O-T, @)". 1-]](1 =T, @)” |.
p=1 p=1 p=1
2 2 2
= < [T, @), [T, @)". ], @) > (15)
p=1 p=1 p=1
2 2 2
[T, @)". [TFE, @)7 . T]F, @)
p=1 p=1 p=1
Box IV.
Proof. We verify the theorem by mathematical induction. of pr belong to [0, 1], the following relations are valid:
1. When n = 1, it is a normal case. We mention it here for K
clarification only (see Eqs. (12) and (13) in Box III). ( l_[ (1-T, @) ) <1, 0< (l_[ (I, (z))w") <1,
Consequently, the theorem is true for n = 1. p=1 p=1
. k
2. When n = 2, we have Eqgs. (14) and (15) in Box IV. Conse- o
. o< [ [](F, @) | <1 (18)
quently, the theorem is true for n = 2. e
3. When n = k, we suppose that Eq. (11) is also true. . . X
Then, T2NNWA (U;. Us, Oy)is given as Eq. (16) in Box V. It follows that this relation completes the proof of Theorem 1.
4, Whenn = k+1, we have T2NNWA(U1, Uy, ..., Ugyq)given k k
as Eq. (17) in Box VL. 0§< 1—]_[(1 ~Te, @)7 | + ]_[ I, (2))”
We notice that the theorem is true for n = k + 1. So, by p=1 p=1

k
mathematical induction, we can say that Eq. (11) holds for all + 1—[ Fr, (z)
values of n. As the components of all three membership functions p=1
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T2NNWA(U;, Uz, ..., U) = 0101 @ 020 @ ... 00Uy = @ (Up)

k k k
(1 -[[a-T,@)” 1-]][(-T,@)" . 1-]](1-Ts, (z))”"’) :

p=1 p=1 p=1

k k k
01@@) Fﬁunwl]m@>) > (16)
p=1 p=1
k k
0]%@) T @) T (F, @) )
p=1 p=1 p=1

k

p=1
k

k+1
(1- Tr, (Z)
p=1

p=1
k+1

p=1

1- 1_[ (1 -T, (Z))wp +1— l_[ (1 ~ T, (Z))wkﬂ
-1-J[(1 -1, @)”

=< kﬁ(m @)
[1(F, @)

Box V.
T2NNWA(U;, Uy, ..., Uig1) = @) (0pUp) B (@is1Uks1)
k K
1- l_[ (1 =T, (Z))wp +1— l_[ (1 ~ Ty, (Z))wkﬂ
p=1 i
k X
—1- H (1-Tr, @)" 1- 1_[ (1=Tg,, @)
p=1 e

k

p=1
k

1- 1_[ (1 - T11<+1 (Z))warl

< p=1 p=1 >
= k k
1-[10-T, @)” +1-T](1 - s, @)™

p=1 p=1
k k
~1-[TO -1, @)” 1 =TT (1 - T, @)
p=1 p=1
k @p+1 k @p+1 k @p+1
[, @)". (h,@) .[]0,@)" . (1, @) .[]0,@)". (@) |.
p=1 k+1 k+1 p=1 k+1
Wp+1 k Wp+1 k Wp+1
[T, @)" . (Fr, @) . [](F, @)". (F, @) .[](Fr, @) . (Fr, @)
p=1 k+1 k+1 p= k+1

k+1 k+1
1-[[0-1,@)" 1-T](-T, @)" |

k+1 k+1
’ 1_[ (Ilp (Z))wp ’ 1_[ (IFp (Z))wp ’ >
k+1 k+1
16 @) T F @)

p=1 p=1

Box VI.

2.2. Now, we will refer to one property to confirm the T2NNWA

Suppose Ut
operator

(mpax (Tr, @), max (Ty, @) . max (T, (z))) ,
Property 1 (Boundedness). ifall Uy(p = 1,2, ..., n) are equal U, = = < <rr};r1 (h, @), rr}ain (I, @), mpin (Ir, (Z))> , >

U = <(TT (@), Ty, (), Tg,(z )) (lT @), 1 (Z) IF (z )) (FT (2), . . .
F, @), FFp?z))>,fo£ all p, thpen TZNN\I;VA l]p(; =1, 2p ..., n) :pr. (mpln (FTP (Z)) ’ rryn (FIP (z)) ’ mpm (FFD (Z))>
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8+ (m;lx (Tr, @) + 2. mpax (T, @) + mﬁx (T, (z)))
1
SU=5 < - (ngn (I, @) + 2. min (I, @) + min (Is, (z))>
- (mpm (Fr, @) + 2. min (F, @) + min (e, (z)))

> =S(U*) (22)

Box VII.

Then, for min, (Tr, (2)) < (Tr, (z)) < max, (Tr, (2)), we prove the

Suppose U- following:

(min (15, @) min (1, @) min (15, @) ).
= < (m};ax (, @), mpax 1, @), mlsax (Ir, (z))) , >
(mlsax (Fr, @), max (F, @) . max (e, (z)))

Forallp = 1,2,...,n Then, U~ <T2NNWAU,(p = 1,2, ....n)
<U*. Now, we demonstrate that:

mm (Tr, @) = (T, @) < max (Tr, @),
mm (I, @) < (I, @) < max (Ir, @) .

n}gm (Fe, @) < (Fr, @) <max (Fy, (2)), forallp=1,2,...,n.
P
(19)

Then, 1=T,_, (1 — min, (Ty, )" <1-TT;_, (1~ (5, @) )

<1-TT5_, (1 — max, (Tg, (2)))"=1—(1 — min, (T, (z)))ZP=1 @

<1-TT', (1= (T, @) ) = 1= (1 — max, (Ts, (2))) =71 =

min, (Te, ) < 1— [T, (1= (Tr, @) )™ < max, (T, 2)).
Then, from Eq. (19), we have forp =1,2,...,n

[ [min (5, @) < [, @)” <] ] max (&, @)”
p=1 P p=1 p=1 b
= H min (I, (2))># 7

< 1_[ Ir, (2)) "<Hmax I, (z))ZP 149

p=1
n

= min (If, (2)) = E (Ir, @) < max (I, (2)) and

Hmm (Fr, @) 1_[ (Fr, @) <l_[max (Fr, @)
p=1

p=1

—Hmm Fr, )21 < ]_[ Fr, (2))°

p=1
< H max (F, (z))zﬁ:‘ “
p=1 ?
= min (Fy, (2)) < [, @) < max (Fr, (2)) (20)

p=1

n

H min (Tr, @) < [] (T, @) <] [ max (T, @)

p=1 p=1

= H m’}n (Tr, (Z))Z‘J:1 P < 1_[ (Tr, @)

p=1 p=1

n
< [T max (1, @)=

p=1
n

= m;n (Tr, @) < l_[ (Tr, (z))w” < max (Tr, (2)) and

p=1
n

g min (Tr, ) = [] (T, @) <[ max(Tr, @)

p=1 p=1

= H mpin (TTp (Z))Z§:1 @ < l_[ (TTP (Z))wp

p=1 p=1
< ﬁ max (Tr, (Z))Z§=1 “p
p=1 "
= mpin (Tr, @) < 1_[ (Tr, (z)) < max (Tr, @) (21)
p=1

Likewise, from previous Egs. (19)-(21).

Then, for ((Tr, @), Ty, @). T, @). (Ir, @1, @I, @),
(Fr, @), F, (2), Fy, (z);) p = 12,..., n). Similarly, we have:
min, (Ty, (2)) < (Ty, (z)) <max, (T, (2)), min, (Fr, (2)) < (Fr, 2))
<max, (Fr, (2)), min, (F, @) < (F, ) < max,(F, @)
min, (I, 2)) < (I, (z)) <max, (ITp (z)) min, (I, 2)) < (I, (2))
<max, (I, ). forp=1,2,....n

Then, suppose that T2NNW A, ﬁp(p =1 2., n)= U =
((TTp (Z) ) Tlp (Z) 5 TFp (Z)) 9 ([Tp (Z) s [lp (Z) 5 IFp (Z)) ) (FTp (Z) ) Flp (Z) )
Fr, (2))). and the score function of U = S(U) = & (8 + (TTl~J1 (2)
+2(Tyy, @) +Te, @) = (i, @ +2 (1, @)+l (2)) -
(FT[~J1 (2)+2 (Fl01 (z)) + FFI.Jl (z)>>from this, we have Eq. (22) given

in Box VII.
Also, S(U) = L <8 n (TT01 @) +2 (TI (z)) + T, )

(i, @ +2(1y @) +15, @) = (Fry, @ +2(Fy, « )
+FF0 (z)) ). From this, we have Eq. (23)g1ven in Box VIII. Also, S( 0
1 <8 n (TT~1 @) +2 (TI~ (z)) +Tr,, (z)) - (TO1 @) +2

o, @) +1xg, @) = (Fry, @ +2(Fy, @) +F (2))). From
1 Up 1 1
thls we have Eq. (24) given m Box IX.



M. Abdel-Basset, M. Saleh, A. Gamal et al. / Applied Soft Computing Journal 77 (2019) 438-452 445

8+ <mpax (Tr, @) + 2. max (T, @) + max (T, (z)))
- (mpm (, @) +2. min I, @)+ min (I, (z)))
- (mpm (Fr, @) +2. min (F, @) + min (Fr, (z)))

> =S(U7) (23)

Box VIII.

8+ <mpax (Tr, (@) +2 mpax (Ty, @) + mpax (T, (z)))
- (mpm (h, @) +2 min (I, @) + min (Ir, (z)))
- (mpm (Fr, @) +2 min (F, @) + min (s, (z)))

> = S(UH) (24)

Box IX.

Therefore, we found the following cases: S(U) < S(UY), s(0)
<S(U™) and S(U) = S(U), hence
U™ <T2NNWA Uy(p=1,2,...,n) < U* (25)

By using the previous equations and by proving the score value,
we can prove in the same way the accuracy value using this equa-

tion: A(Uy) = %((TTG] (@) +2 (Tlﬁl (Z)) +Try, (Z)> = (Fry, @+
2 (Fl01 (z)) +Fr,, (z)>>
Property 2 (Idempotency). if all ﬁp(p = 1,2,...,n) are equal

U, = U0 = (T, @.T, @.Tg,(2)) . (Ir, @) :Ilp @) .15, (2))
(Fr, @), Fy, (2) , Fg,(2))), for all p, then T2NNWA Up(p =12..,
n)=U. From Eq. (11), we have T2NNWA Up(p =1,2...,n)givenin
Box X).

Consequently,

(Tr, @, Ty, @, Tg,(2) . (I, @), 1, @) I, (2)) «

(Fr, @) . Fy, (2) . Fg,(2))) = U.
This proves Property 2.

Example 3. Consider the following four T2NN values. Using the
T2NNWA operator defined in Eq. (11), we can aggregate (U;, U,,
U3, and Uy) with weight vector ® = (0.25, 0.20, 0.35, 0.20) as
U T2NNWA(U1, Uz, U3, andU4) = w1U1 @a)zUz @0)3U3 @0)4U4
Ul, U,, Uz and Uy are given in Box XI. After aggregation, we find
that Uy,

=((Tr, @. Ty, @, Tg,(2)) ., (k, @ .1, @) ,I5,(2),
(Fr, @) .F, 2). Fg,(2)))

= ((0.881,0.710, 0.768), (0.2851, 0.0872, 0.2093) ,
(0.0941, 0.2163, 0.2268))

2.3. Application of T2NNWA operator to MADM

Consider a MADM issue in which we have the collection of ¢; =
{¢1, P2, ..., Pn} suitable alternatives, where i = 1, 2, ..., m, as-
sessed on n criteria i, = {Eiy, Eiy, .., Eip},p = 1,2,...,n. Assume
that w, ={w1, wy,..., wp} is the weight vector of attributes, where
wp >0 and sum Zgzl wp = 1forp = 1,2, ..., n. The standing of

all alternatives ¢; = {¢1, ¢, . . ., ¢n} with regard to the attributes
Ei, = {Eiy, Eip, ..., Eip}, p = 1, 2, ..., n have been supposed in
T2NN values based relation matrix R = (kip)mxn, as in Table 2.
Furthermore, in the relation matrix R = (kip)mxn' the stand-
ing Ap = ((Tr, @, Ty, @, Te,(2), (I, @, L, @), 1g,(2) ,
(Fr, @) . Fy, (2) . Fy,,(2))) represents a T2NN value, where the type
2 neutrosophic number (TTip @, Ty, (@), TFip(z)) signifies the de-
gree an alternative satisfies the attribute i, = iy, Eiy, ...,
Ei,, p = 1,2,...,n, with three degrees of truth (truth, inde-
terminacy, and falsity). Also, (ITip @, 1, @), Ipip(z)) signifies the
degree an alternative is undefined about the attribute i, =
iy, Eiy, ..., Eiy, p = 1, 2, ..., n, where the uncertain degree
contains three degrees of indeterminacy (truth, indeterminacy,
and falsity). Also, (Fr,, (2), Fy,, (2) , Fr,,()) introduces the degree
an alternative does not satisfy the attribute Ei, = {Ei;, Eiy, ..,
iy}, p = 1, 2, ..., n, where the unsatisfied degree contains
three degrees of dissatisfaction (truth, indeterminacy, and falsity).
We improve a functional approach for solving MADM problems
based on the T2ZNNWA, in which we rank the alternatives over the
attributes. The graphical schema of the developed technique for
MADM is shown in Fig. 1.

2.4. Numerical case

In this section, a mathematical example of data and methods
is presented to check the competence and efficiency of submitted
framework for selection the best alternative. Currently in Egypt,
people seek for choosing the best bank to operate banking trans-
actions such as deposit their money, withdraw financial loans,
transfer of money, change currencies, etc. This section presents a
numerical case to select the best bank for citizens and investors.
There are four evaluation alternatives ¢+, ¢2, ¢3 and ¢y, five criteria
are considered as selection factors (Ei; (Reputation and elegance),
(Ei, (Customer service), (i3 (Place of the bank and its branches),
(Ei4 (Fees), Eis (Offers). The classification of alternatives ¢; (i =
1, 2, ..., 4) with regard to Ei;(i = 1, 2, ..., 5) are expressed with
T2NN values, as presented in Table 3. We suppose that o =
(0.20, 0.25, 0.30, 0.15, 0.10)" is the proportional weight for crite-
riaj; (i=1,2,...,5).
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T2NNWAU,(p = 1, 2,...,n) = T2NNWA(U;, Uy, ..., Ugg1) = @)_; (0, Up)

1-[[-T, @) 1-][(-T,@)" . 1-]](1 =T, @) |.
p=1 p=1 p=1
= < [T, @) [T, @) ][]0, @) |, >

p=1 p=1 p=1
[1E @) TTE @) [T (F @)”
p=1 p=1 p=1

(1 —(1=Tr, @)1 1= (1=Ty, @)= 1= (1= Ty, @) ‘””) :

) < (5, @)= (1, @)1 (1, @)717) >

((FTP (Z))Z;=1 @ (F]p (Z))Zg=1wp , (FFP (Z))Z;=1 wp)

Box X.

U, = ((0.75, 0.65, 0.95), (0.30, 0.15, 0.20) , (0.15, 0.25, 0.20)) ,

U, = ((0.85,0.75, 0.65) , (0.20, 0.10, 0.25) , (0.10, 0.30, 0.25)) ,

fJ = ((0.90, 0.70, 0.65) , (0.30, 0.05, 0.20) , (0.05, 0.25, 0.20)) ,
= ((0.95, 0.70, 0.60) , (0.35, 0.10, 0.20) , (0.15, 0.10, 0.30))

(1 —(1- 0.75)0425 a-— 0.85)0‘20 (- 0'90)0.35 a-— 0_95)0420) i
(1-(1-0.65%" (1-0.75°°(1—-0.70)** (1-0.75)°%),
(‘l _ (‘1 _ 0.95)025 (-1 _ 0.65)020 (—l _ 0.60)035 (-1 _ 0.60)020)
< ((0.30)°% (0.20)°* x (0.30)*** (0.35)**) , >

)

((0_15)0425 (0_10)0420 (0_05)0.35 (0.10)0.20) i
((0.20)0.25 (0.25)0.20 (0.20)0.35 (0.20)0.20)
((0.15)0.25 (0.10)0.20 (0.05)0.35 (0_15)0420) i
((0.25)°% (0.30)°% (0.25)°% (0.10)*%) ,
((0.20)0425 (0.25)0.20 (0.20)035 (0'30)020)

(1 —0.707 x 0.684 x 0.447 x 0.549), (1 — 0.769 x 0.758 x 0.656 x 0.758),
(1—-0.473 x 0.811 x 0.726 x 0.833)
. (0.740 x 0.725 x 0.656 x 0.811), (0.622 x 0.631 x 0.350 x 0.631),
(0.669 x 0.758 x 0.569 x 0.725)
(0.622 x 0.631 x 0.350 x 0.684), (0.707 x 0.786 x 0.616 x 0.631),
(0.669 x 0.758 x 0.569 x 0.786)

Box XI.

Table 2
Type 2 neutrosophic number value based relation matrix.

(ry @ .1y, @ Try, (Z)) 1712 2,1y, @, I, @) (I, @ .1y, @15, @),
(Fryy @, Fyy @), Fryy(2)) (Fr,y, @, Fyy, @), Fey,(2)

TTZI @) . Ty, @), Tr,,(2)) . TTH @), Tiy, @), Tryp(2) TTzn @) Ty, @), Try, (2))
< > < > < Iy, (2), 1y, (2, 1y, (@) >
)

<TT11 @) . Ty, @) . Tr,, (2)) > <TT12 @) . Ti, @), Tr,(2), > <TT,,, @) . Ty, @, Tr,, (2)) >
(Fr, @, Fiy, @), Fry,(2))
)

)
)
Iy, @)1, @), 1g, @), Iy, (@), 1, @)1, @)
(Fr,, @ . Fiy, @), Fry, (2)) (Fry, @), Fiy, (@), Fryy (2)) (Fr,y @ . Fiy, @), F,y(2))

TTml @), Tipy @), Tle(Z) TTmZ @), T, @, ey (2)) TTmn @), Ty @), Tea(2)) 5
< Moy @) 211y @)1y, @) > < Ity @Iy, @)1y, @) > o < Mo @) 2 Iy @) Ty 2)) >
(Fry @), Fipy @) Frpy (2 (Fry @), Fipy @), Frpy(2)) (Frn @), Fipy @) Frpy (2))
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Fig. 1. The general framework of the submitted method.

, (085 0.90,0.95),
> <(030 0.35,0.40)

(0.25, 0.40, 0.35)
(0.45,0.35, 0.50),
(0.15,0.10, 0.10),
(0.20, 0.30, 0.25)

(0.05,0.20. 0.25).
(0.40, 0.20, 0.25)

(0.95,0.70, 0.80),
(0.15,0.10, 0.30),

(050 0.40,0.55)
(0.10,0.15, 0.30),
(0.10, 0.20, 0.20)

(030 0.45,0.25),
(0.20, 0.10, 0.30),
(0.10,0.25, 0.20)

(030,020, 0.30)
(0.25,0.30, 0.25)

(0.45, 0.80, 0.90)
(0.40, 0.70, 0.55) ,
(0.55, 0.20, 0.40)

(0.90, 0.70, 0.95) ,
(0.60, 0.40, 0.65) ,

(0.30,0.25, 0.30) .
(0.20, 0.30, 0.25)

(0.80, 0.50, 0.80),
(0.45,0.30, 0.55),
(0.55, 0.20, 0.25)

(0.65, 0.70, 0.80) ,
(0.40, 0.35, 0.25),

Table 3
Decision matrix between alternatives and criteria using T2NN values.
Giiz
(0 75, 0.80,0.85), (0.65, 0.70, 0.75)
1 <(0 20, 0.15,0.30), > <(0.40, 0.45,0.50),
(0.10, 0.15, 0.20) (0.35, 0.40, 0.35)
(0.60, 0.50, 0.65) , (0.65,0.70, 0.75) ,
b2 (0.30, 0.25,0.30) , (0.10, 0.15, 0.20) ,
(0.20, 0.30, 0.25) (0.05, 0.10, 0.15)
(0.45, 0.50, 0.80) , (0.40, 0.45, 0.50)
3 <(O 15, 0.30, 0.55) , > <(0.15, 0.20,0.25),
(0.55,0.20, 0.25) (0.10, 0.15, 0.20)
(0.85,0.70,0.95) , (0.60, 0.65, 0.70) ,
¢4 {(0.60,0.50,0.65), (0.35,0.40, 0.45) ,
(0.45, 0.15, 0.35) (0.30, 0.40, 0.45)

)|
) figissn
)|

(0.30, 0.35, 0.30)

— - - - -

<
<
<

- - - =

<
<
<

- - - =

(0.45,0.15, 0.35) (0.15, 0.15, 0.20)

Table 4
Aggregated T2NN values based classification.
Aggregating values
o
2

((0.7131, 0.7654, 0.8302) , (0.2420, 0.2444, 0.3716) , (0.1801, 0.2827, 0.2721)
((0.5434,0.5193, 0.6113), (0.1852, 0.1616, 0.1950) , (0.1462, 0.2280, 0.2200)
¢3 ((0.4785, 0.5408, 0.7210) , (0.1395, 0.2726, 0.3565) , (0.3264, 0.1861, 0.2537)
((0.8588, 0.6882, 0.8638) , (0.3322, 0.2723, 0.4273), (0.3226, 0.2472, 0.3365)

We apply the proposed aggregation operator T2ZNNWA to solve
the best bank selection issue by using the next procedures.

Step 1. Collect the classification values of the alternatives ¢;(i = 1,
2, 3,4) defined in the previous matrix with T2NNWA operator that
is located by Eq. (11) and the values introduced in Table 4.

Step 2. Compute the score value and the accuracy value of alterna-
tives ¢i(i = 1, 2, 3, 4) by applying Eq. (5) and Eq. (6), as shown in
Table 5.

Step 3. Ranking the alternatives based on score values, we found
that alternative ¢, is the best alternative, and the classification of
alternatives is : ¢1 > ¢4 > ¢ > ¢3.

Table 5
The score and accuracy values of alternatives.

Score values Accuracy values

1 0.8382 0.5141
o3 0.7809 0.3428
o3 0.7775 0.3322
4 0.8288 0.4864

3. The proposed method procedure

We now suggest an orderly approach to TOPSIS technique to the
neutrosophic environment under type 2 of neutrosophic number.
We found that the GDM problem can be easily solved by this
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Fig. 2. The general framework for applying TOPSIS using type 2 neutrosophic number.

Table 6

Semantic terms for the significance weight of each criteria.

Linguistic variables

The type 2 neutrosophic number scale for relative importance

of each criteria [(Tr, Ty, T¢), (Ir, I, I), (Fr, Fy, Fe)]

Weakly important (WI)
Equal important (EI)

Very strongly important (VSI)

(0.20, 0.30, 0.20), (0.60, 0.70, 0.80) , (0.45, 0.75, 0.75)
(0.40, 0.30, 0.25), (0.45, 0.55, 0.40) , (0.45, 0.60, 0.55)

(0.80,0.75,0.70) , (0.20, 0.15, 0.30), (0.15, 0.10, 0.20)

( )
( )
Strong important (SI) ((0.65, 0.55, 0.55) , (0.40, 0.45, 0.55) , (0.35, 0.40, 0.35))
( )
( )

Absolutely important (Al)

(0.90, 0.85, 0.95), (0.10, 0.15, 0.10) , (0.05, 0.05, 0.10)

method under advanced neutrosophic environment. The general
conceptualization of framework is displayed in Fig. 2.

The suggested framework consists of many phases, as presented
in Fig. 2.

Phase 1. Establish a group of Exs and decide the goal, alternatives
and criteria.

e Assume that EXs want to estimate the combination of n
criteria and m alternatives EXs are symbolized by Exg = {Ex;, Exs,
Ex3}, where E =1, 2,..., E, and alternatives by Alt; = {Alty, Alty, ...,
Alty}, wherei=1,2,...,m, assessed on n criteria Ei, = {Ei, Eiy,
L Einhbp=12,..,n.

Phase 2. Depict and design the linguistic scales.

e Obtain Exs’ judgments on each element. Based on previous
knowledge and experience on the topic, Exs are wanted to
convey their judgments. Every Ex gives his/her judgment
linguistically on all of these elements.

Transform EXs’ linguistic evaluations into type 2 neutro-
sophic numbers for every Ex providing his judgment with
assistance of the linguistic terms.

The significance weights of different criteria and the ordering
of specific criteria are deemed as linguistic terms. These lin-
guistic terms can be presented in type 2 neutrosophic number
as in Tables 6 and 7. The significance weight of each criterion
can be obtained either by direct allocation or indirectly by
pairwise comparisons [41]. Herein, we propose that the ex-
perts and decision makers use the linguistic terms presented

in Tables 6 and 7 to evaluate the weight of the criteria and the
classification of alternatives with account to different criteria.
Build the preference relation matrix to locate the weights of
criteria. Exs use the linguistic terms presented in Table 6 to
assess the opinions of Exs with regard to each criterion.

A neutrosophic multicriteria GDM problem can be briefly
expressed in matrix:

i, i,
Ex; [ Zn Z1n

Formatas A= : (26)
Exm | Zm Zin

® = [@1, @, ..., @] (27)

Where z, = ((Tr, @), T, @),Tr, @), (r, @, L, @),
Ir, @), (Fr, @).Fy, @) .F, @)).i = 1,2...m,p = 1,
2,...,n, where Zj, Vi, and @p, p = 1, 2..., n are linguistic
terms. These linguistic terms can be described by type 2
neutrosophic number.

- Calculating the weights of Exs. Exs’ judgments are col-
lected by using the equation given in Box XII.

- Calculate the score value after aggregating the opinions
of Exs for each criteria using Eq. (5). Then, normalize the
obtained weights.

Phase 3. Construct the evaluation matrix.
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. [M,@.T, @ T, @k, @1, @ T, @ Fr, @) .Fy, @ .Fr, @]

Zip =
P n

Box XII.

Table 7
Linguistic variables for the classification.

Linguistic variables

The type - 2 neutrosophic number scale for relative importance

of comparison matrix [(Tr, Ty, T), (I, I, Ig), (Fr, Fy, Fp)]

Very Bad (VB)
Bad (B)
Medium Bad (MB)

Medium Good (MG)
Good (G)
Very Good (VG)

(0.60, 0.45, 0.50),
(0.70, 0.75, 0.80) ,
(0.95, 0.90, 0.95),

((0.20, 0.20, 0.10) , (0.65, 0.80, 0.85) , (0.45, 0.80, 0.70)
((0.35, 0.35, 0.10) , (0.50, 0.75, 0.80) , (0.50, 0.75, 0.65)

((0.50, 0.30, 0.50) , (0.50, 0.35, 0.45) , (0.45, 0.30, 0.60)

Medium (M) ((0.40, 0.45, 0.50) ,
(

(

(

(0.20, 0.15, 0.25) , (0.10, 0.25, 0.15)
(0.15, 0.20, 0.25) , (0.10, 0.15, 0.20)

)
)
)
(0.40, 0.45, 0.50) , (0.35, 0.40, 0.45))
)
)
(0.10, 0.10, 0.05) , (0.05, 0.05, 0.05))

e Build the evaluation matrix A; x (Eip to assess the classifica-
tion of alternatives with respect to each criterion. Exs use the
linguistic terms shown in Table 7.

Ei, ... Ei,
Alty TZi1 ... Zn

Formatas R= : ot (29)
Altg, | Zm1 .. Zmn

e Aggregate the final evaluation matrix using Eq. (1) divided by
3

e Use the de-neutrosophication Eq. (5) for transforming type 2
neutrosophic number to the crisp value for each factor z,.
e Then, normalize the obtained matrix by Eq. (30)

Zip
)
Zi:l Zip

e Compute the weighted matrix by multiplying Eq. (27) by the
normalized matrix as in Eq. (31).

Zip = wp x NMjp (31)

Vip = ;i=1,2,...,m;p=1,2,...,n. (30)

Phase 4. Rank the alternatives

e We can describe the neutrosophic positive ideal solution
(NPIS, A*) and Neutrosophic negative ideal solution (NNIS,
A7)

A* = {< max(8pli=1,2,..., m)|pep™ >,
<min(8ipli=1,2,...,m)pep” >} (32)
A™ = {<min(§pli=1,2,..., m)|pept >,

< max(dpli=1,2,...,m)|pep” >} (33)

Where p* related with the criteria that have a profitable ef-
fectand p~ related with the criteria that have a non-beneficial
effect.

e The dimension of each alternative from A* and A~ can be
currently computed as:

e A proximity factor is defined to locate the classification sys-
tem of all available alternatives once the di and d;” of each

alternative A; = (1, 2, ...,m) have been computed. The prox-
imity coefficient of every available alternative is computed
as:

CG i=12,...,m (36)

_ i
Cdf 4 d
Clearly, an alternative A, is closer to the (NPIS, A*) and further
from (NNIS, A™). Thus, according to the closeness coefficient,
we can decide the classification order of all alternatives and
select the superior one from a set of available alternatives.

4. Real case study

We introduce a numerical case which implicates methods and
data analysis to test the competence and the efficiency of suggested
framework for selection of the best supplier to import cars, per-
formed on an importing company in Egypt, Ghabbour Company,
founded in 1960 and based in Cairo. Egypt the Corporation seeks
to increase the numbers of suppliers. For this purpose, the execu-
tive managers suggested some alternatives such as Alt; India, Alt,
Japan, Alt; China, Alt, USA and Alts Germany. Consequently, the
organization must evaluate suppliers and their sustainability. For
this study, the corporation determined the most important criteria
as being i, competency, Ei, capacity, iz commitment, (Ei4 con-
trol, (Eis cash, (Eig cost, (Ei; consistency and (Eig communication
for comparing alternatives and select the best alternative. These
criteria are considered by three experts. The experts are: strategic
expert, marketing expert and manufacturing expert, all with more
than ten years of experience in this field. The hierarchical construc-
tion of this decision problem is presented in Fig. 3. The suggested
technique is employed to solve this issue and the computational
steps are as follows:

Phase 1. Organize a group of Exs and determine goals, alternatives
and criteria.

e Agroup consisting of three Exs, symbolized by Exg = (Ex;, Exg,
Ex3), is constructed to select the best supplier which the Ghabbour
Company can deal with it for importing motors. Alternatives are
introduced as A; = (Altq, Alt,, Alts, Alty, Alts). These alternatives
are estimated based on eight criteria Ei, = (i, Ei, (Eisz, Eig,
(Eis, Eig, Eiy, Eig), which are collected from a comprehensive
literature and EXs’ opinions.

Phase 2. Depict and design the linguistic scales.

e Obtain Exs’ judgments on each element. Based on the pre-
viously knowledge and experience on the topics, Exs are
demanded to convey their judgments. Every Ex gives his
judgment linguistically on every of these elements. Then,
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Goal [ Determining the best supplier J

Table 10
Classification of alternatives and criteria by EXSs.

Exs Alt, Gi; (i, (i3 iy Gis G Ei;  Eig
o Alt;  (MG) (G) (VG)  (MG) (B) (VG)  (VB)  (VG)
Criteria Alt, (VB) (VG) (G) (B) (MG)  (G) (G) (G)
Ex; Als  (MG) (MG) (MG) (M) (B) (MG)  (G) (MG)
. . . ) Alty,  (G) (MB) (VG) (MG) (VG) (VG) (MG) (VG)
[ Bl J [ iy } [ Eis ] [ Els ] [ &l ] [ g ] Alt, (VB) (B) (B) (VG) (VB) (MG) (MG) (M)
Alt;  (G) (MB) (MB) (VG) (VG) (VG) (MG) (G)
Al, (MB) (VB) (G) M (M) (G) (VB)  (MG)
Ex, Aty (VG) (MG) (VG) (MG) (VB) (MG) (G) (VG)
. Alty, (VG) (VB) (VG) (VG) (MB) (VB) (MB) (VG)
SlSmALNES ‘ Alts (MB) (B)  (VG) (VG) (VB) (VG) (MB) (M)
Alt;  (VG)  (B) (VG)  (VG)  (G) (VG)  (VG)  (VG)
[ Altl J [ Alt2 } [ Alt3 } { Alt4 ] { Alt5 ] Alt, (M) (VG) (MB) (MB) (MG) (M) (M) (M)
Ex; Al;  (G) (B) (MG) (MG) (VB)  (B) (MG)  (G)
Alty  (B) (MB) (VG) (MB) (MG) (M)  (G) (VG)
Fig. 3. The hierarchy of the problem. Alts  (MB) (V&) (M) (MB) (MG) (VG) (MB) (MB)
Table 8 0.7
The weight of criteria by experts.
EXs  (Ei @i, GEis G, Gis Gg Ei Eig 0.6
Ex (sl (WI) — (SI) (I (Al)  (EI) (EI) (EI) 05
Ex, (Vsly  (EI) (VSIy (A} (SI) (SI) (WL (SI) :
Exs (AI) (ET) (VSIy (A (SI) (EI) (ET) (VSI) 04
0.3 -
transform EXs’ linguistic evaluations into type 2 neutrosophic 0.2 .
numbers as in Tables 6 and 7. '
e Build the preference relation matrix to locate the weights of 0.1 4
criteria using Eq. (26) as presented in Table 8. EXs employ the
semantic terms displayed in Table 6 to assess the opinions of 0 - : : T T
EXs with consideration to every criterion. India Japan China USA Germany

e Calculate the weights of Exs; Exs’ judgments are collected by
using Eq. (28). Then, calculate the score value after aggregat-
ing the opinions of Exs for each criteria using Eq. (5). Then,
normalize the obtaining weights as presented in Table 9.

Phase 3. Create the valuation matrix.

e Form the valuation matrix A; x (Ei; using Eq. (29) to assess
the ratings of alternatives with esteem to every criterion, as
in Table 10. Exs use the linguistic terms presented in Table 7.

e Aggregate the final evaluation matrix using Eq. (1) as in
Table 11.

o Use the de-neutrosophication Eq. (5) for transforming type 2
neutrosophic numbers to the crisp values, as shown in Table 12.

e Then, construct the normalized decision matrix by Eq. (30), as
presented in Table 13.

e Compute the weighted matrix by multiplying Eq. (27) by the
normalized matrix as in Eq. (31), as shown in Table 14.

Phase 4. Rank the alternatives

e We can define the neutrosophic positive ideal solution (NPIS,
A*) and the Neutrosophic negative ideal solution (NNIS, A™)
by Egs. (32) and (33).

Table 9
The final results of normalized criteria weights.

Fig. 4. Ranking the alternatives according to the best supplier.

e The distance of each alternative from A* and A~ can be cur-
rently calculated by Egs. (34) and (35) as: d* = (0.021, 0.016,
0.012,0.012,and 0.018),d~ ={0.011,0.017,0.019, 0.022, and
0.017).

e The proximity coefficient of each available alternative is com-
puted by Eq. (36) as in Table 15.

o The ordering for the optimal alternatives of selecting the best
supplier is: Alts, Alty, Alt,, Alts, and Alty, as presented in Fig. 4.

5. Concluding remarks

MADM issues generally occur in difficult environments related
to uncertainty and imprecise data. The type 2 neutrosophic num-
ber is an efficient tool to deal with expert’s impreciseness or incom-
pleteness, and the decision maker’s appreciations and assessments
over alternative with esteem to attribute. In the first part of the
article, we present the proposed method, introducing the type 2
neutrosophic number and defining its operations, properties and

Weight @, Aggregation weight by T2NN Crisp Normalized
weight
iy ((0.78,0.72,0.73), (0.23, 0.25, 0.32), (0.18, 0.18, 0.22)) 0.7617 0.16
Ei ((0.33,0.30, 0.23), (0.50, 0.60, 0.53) , (0.45, 0.65, 0.62)) 0.3800 0.08
(Eis ((0.75,0.68, 0.65) , (0.27, 0.25, 0.38) , (0.22, 0.20, 0.25)) 0.7283 0.15
Eiy ((0.82,0.75,0.82), (0.20, 0.25, 0.25) , (0.15,0.17, 0.18)) 0.7933 0.17
Eis ((0.73, 0.65, 0.68) , (0.30, 0.35, 0.40) , (0.25, 0.28, 0.27)) 0.6858 0.14
Eig ((0.48,0.38,0.35), (0.43, 0.52, 0.45) , (0.42, 0.53, 0.48)) 0.4758 0.10
Ei; ((0.33,0.30,0.23), (0.50, 0.60, 0.53) , (0.45, 0.65, 0.62)) 0.3800 0.08
Eig ((0.62, 0.53,0.50), (0.35, 0.38, 0.42) , (0.32, 0.37, 0.37)) 0.6017 0.12
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Table 11
The consolidated decision matrix.
EXs i
(0.617, 0.599, 0.623) , (0 476, 0.440, 0.453) , (0 650, 0.619, 0.650) , (0 653, 0.629, 0.650) ,
Alty <(0 013,0.001,0.014) , > <(0 013, 0.018, 0.030) , > <(0 003, 0.004, 0.004) , > <(0 006, 0.005, 0.006) , >
(0.003, 0.005, 0.005) (0.008,0.011, 0.026) (0.001, 0.008, 0.005) (0.008, 0.006, 0.001)
(0.353, 0.308, 0.358), (0.640, 0.613, 0.637), (0.552, 0.544, 0.593) (0.393,0.351,0.358),
Alt, (0.043, 0.042, 0.064) , (0.002, 0.003, 0.007) (0.004, 0.005, 0.009) (0.033, 0.039, 0.060)
(0.024, 0.032, 0.063) (0.004, 0.007, 0.006) (0.002, 0.002, 0.008) (0.026, 0.030, 0.059)
(0.617,0.599, 0.623) (0.475, 0.393, 0.358) (0.603, 0.539, 0.571), (0.485, 0.420, 0.458)
Alt; <(0 013, 0.001, 0.014) , > <(0 006, 0.006, 0.017) , > <(0 001, 0.008, 0.001) , > <(0 005, 0.003, 0.011) , >
(0.003, 0.005, 0.005) (0.002, 0.016, 0.005) (0.001, 0.001, 0.004) (0.001, 0.008, 0.003)
(0.589, 0.588, 0.591) (0.383,0.261,0.358) (0.664, 0.657, 0.664) , (0.588,0.510,0.571),
Alty (0.006, 0.005, 0.003) (0.054, 0.003, 0.057), (0.003, 0.003, 0.004) (0.003, 0.001, 0.002)
(0.008, 0.005, 0.002) (0.030, 0.024, 0.084) (0.004, 0.004, 0.004) (0.008, 0.001, 0.002)
(0.383,0.261, 0.358) (0.511, 0.497, 0.380) (0.522,0.519,0.501), (0.650, 0.619, 0.650)
Alts <(0 054, 0.003, 0.057) , > <(0 008, 0.019, 0.011) , > <(0 007, 0.011, 0.007) , > <(0 002, 0.001, 0.004) , >
(0 030, 0.024, 0.084) (0 004, 0.009, 0.007) (0 003, 0.005, 0.005) (0 004, 0.003, 0.005)
EXs
(0 589, 0.588, 0.591) , (0 664, 0.657, 0.664) , (0 545, 0.490, 0.501) , (0 656, 0.648, 0.659) ,
Alty (0.006, 0.005, 0.003) (0.003, 0.003, 0.004) , (0.004, 0.004, 0.004) , (0.005, 0.007, 0.003)
(0.008, 0.005, 0.002) (0.004, 0.004, 0.004) (0.003, 0.001, 0.002) (0.008, 0.001, 0.002)
(0.485, 0.420, 0.458) , (0.535, 0.566, 0.593) , (0.415, 0.444, 0.453) , (0.511, 0.499, 0.533)
Alt, <(0 005, 0.003, 0.011) , > <(0 003, 0.006, 0.021) , > <(0 013, 0.024, 0.035) , > <(0 004, 0.005, 0.010) , >
(0.001, 0.008, 0.003) (0.001, 0.003, 0.006) (0.005, 0.016, 0.021) (0.001, 0.005, 0.005)
(0.245, 0.245, 0.099) (0.408, 0.365, 0.232) (0.535, 0.566, 0.593) (0.617, 0.599, 0.623)
Alts (0.070, 0.160, 0.193) (0.017, 0.028, 0.053), (0.003, 0.006, 0.021), (0.013,0.001,0.014),
(0.034, 0.160, 0.106) (0.008, 0.047, 0.021) (0.001, 0.003, 0.006) (0.003, 0.005, 0.005)
(0.588,0.510,0.571), (0.491, 0.490, 0.501) (0.530, 0.466, 0.533) (0.664, 0.657, 0.664) ,
Alty <(0 003, 0.001, 0.002) , > <(0 008, 0.012, 0.007) , > <(0 005, 0.004, 0.009) , > <(0 003, 0.003, 0.004) , >
(0.008, 0.001, 0.002) (0.003, 0.005, 0.005) (0.002, 0.004, 0.006) (0.004, 0.004, 0.004)
(0.325,0.277,0.232) (0.653, 0.629, 0.650) (0.483, 0.337, 0.458) (0.407, 0.380, 0.458)
Alts (0.028, 0.032, 0.060), (0.006, 0.005, 0.006) (0.017, 0.006, 0.017) (0.027, 0.024, 0.038)
(0.007, 0.053, 0.025) (0.008, 0.006, 0.001) (0.007, 0.008, 0.018) (0.018,0.016, 0.041)
Table 12
The final aggregated matrix.
i, /Alt, Eiy i, Ei; Eiy Eis Eig Eiy (Eig
Alty 0.8659  0.8061 08751 0.8765 0.8598 0.8844  0.8336  0.8814
Alt, 07488  0.8720 08497 07614 08118 0.8509 08002  0.8385
Alts 0.8659 07954 08523 08118 06493 07600 0.8509  0.8759
Alty 0.8597 07487 08844 08467 08467 08263  0.8298  0.8844
Alts 07487 08166 08339 08763 07351 0.8765 07940  0.7851
Table 13 illustrated with the best bank selection problem to do some bank-
The normalized decision matrix. ing transactions. In the second part, we present a powerful a
GinAlt, G, G, Gz G4 Gis G Gy i & I : part, we p ap P
Al 034 031 033 034 033 034 032 035 plication of the proposed method under GDM in neutrosophic
Al 032 038 037 032 035 036 034 036 environment and employ the TOPSIS method in the neutrosophic
Alts 038 035 037 036 028 033 037 039 . t by the t ) ¢ hi bers. W. Iv th
Alty 036 031 037 035 035 035 035 037 environment by the type 2 neutrosophic numbers. Vve apply the
Alts 032 035 036 038 032 038 034 033 proposed method in a problem of selection of the best supplier

functioning rules. Then, we suggest an aggregation operator, called
T2NNWA operator, the score function and the accuracy function,
and apply them to solve a MADM problem under neutrosophic
environment using type 2 neutrosophic numbers. We discuss two
properties of the T2NNWA operator. Finally, the competence, the
performance and the applicability of the suggested technique is

for importing cars. The method can be easily used to compute and
rank the alternatives under group decision making process. The
suggested technique can be as well employed in other decision
making issues, such as pattern recognition, medical diagnosis, per-
sonnel selection, information project selection, material selection
and other management decision problems.

Table 14

The weighted matrix.
i, /Alt, i, Ei, Eis Eiy Eis Eig Eiy Eig
Alty 0.0544 0.0248 0.0495 0.0578 0.0462 0.0340 0.0256 0.0420
Alt, 0.0512 0.0304 0.0555 0.0544 0.0490 0.0360 0.0272 0.0432
Alt; 0.0608 0.0280 0.0555 0.0612 0.0392 0.0330 0.0296 0.0468
Alty 0.0576 0.0248 0.0555 0.0595 0.0490 0.0350 0.0280 0.0444
Alts 0.0512 0.0280 0.0540 0.0664 0.0448 0.0380 0.0272 0.0396
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Table 15
The final result of ranking.
Eip/Alt, D Dy Eij Arranging
Alty 0.021 0.011 0.34 5
Alt, 0.016 0.017 0.52 3
Altz 0.012 0.022 0.65 1
Alty 0.012 0.019 0.62 2
Alts 0.018 0.017 0.48 4
References

(1l
(2]
3]

[4

[5]
(6]

[7

[8

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic: An-
alytic Synthesis & Synthetic Analysis, American Research Press, 1998.

F. Smarandache, A unifying field in logics: Neutrosophic logic. Neutrosophy,
neutrosophic set, neutrosophic probability, Infinite Study (2003).

L.A. Zadeh, A fuzzy-algorithmic approach to the definition of complex or
imprecise concepts, in: Systems Theory in the Social Sciences, Springer, 1976,
pp. 202-282.

K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets
Syst. 31(3) (1989) 343-349.

K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1) (1986) 87-96.
F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Philosophy,
American Research Press, 1999, pp. 1-141.

K. Georgiev, A simplification of the neutrosophic sets. Neutrosophic logic and
intuitionistic fuzzy sets, in: Proceedings of the 9th International Conference
on IFSs, 2005.

F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy
set, ]. Def. Resour. Manage. 1 (1) (2010) 107.

H.V. Long, M. Ali, M. Khan, D.N. Tu, A novel approach for fuzzy clustering
based on neutrosophic association matrix, Comput. Ind. Eng. (2018), http:
//dx.doi.org/10.1016/j.cie.2018.11.007.

L. Deli, Interval-valued neutrosophic soft sets and its decision making, Int. J.
Mach. Learn. Cybern. 8 (2) (2017) 665-676.

G.N. Nguyen, A.S. Ashour, N. Dey, A survey of the state-of-the-arts on neutro-
sophic sets in biomedical diagnoses, Int. J. Mach. Learn. Cybern. 10 (1) (2017)
1-13.

S.Jha, R. Kumar, L.H. Son, J.M. Chatterjee, M. Khari, N. Yadav, F. Smarandache,
Neutrosophic soft set decision making for stock trending analysis, Evolv. Syst.
(2018), http://dx.doi.org/10.1007/s12530-018-9247-7.

T.M. Tuan, P.M. Chuan, M. Ali, T.T. Ngan, M. Mittal, LH. Son, Fuzzy and
neutrosophic modeling for link prediction in social networks, Evolv. Syst.
(2018), http://dx.doi.org/10.1007/s12530-018-9251-y.

S.Jha, L.H. Son, R. Kumar, I. Priyadarshini, F. Smarandache, H.V. Long, Neutro-
sophic image segmentation with dice coefficients, Measurement (2018), http:
//dx.doi.org/10.1016/j.measurement.2018.11.006.

M. Abdel-Basset, G. Manogaran, A. Gamal, F. Smarandache, A group decision
making framework based on neutrosophic TOPSIS approach for smart med-
ical device selection, J. Med. Syst. 43 (2) (2019), http://dx.doi.org/10.1007/
s10916-019-1156-1.

M. Abdel-Baset, V. Chang, A. Gamal, F. Smarandache, An integrated neutro-
sophic anp and vikor method for achieving sustainable supplier selection:
a case study in importing field, Computers in Industry 106 (2019) 94-110,
http://dx.doi.org/10.1016/j.compind.2018.12.017.

H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Single valued neutro-
sophic sets, Multisp. Multistruct. 4 (2010) 410-413.

P. Liu, X. Liu, The neutrosophic number generalized weighted power averag-
ing operator and its application in multiple attribute group decision making,
Int. ]. Mach. Learn. Cybern. 9 (2) (2018) 347-358.

[19]

(20]
[21]
(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]
[40]

[41]

J. Peng, J. Wang, J. Wang, H. Zhang, X. Chen, Simplified neutrosophic sets
and their applications in multi-criteria group decision-making problems, Int.
J. Syst. Sci. 47 (10) (2015) 2342-2358, http://dx.doi.org/10.1080/00207721.
2014.994050.

J. Ye, Amulticriteria decision-making method using aggregation operators for
simplified neutrosophic sets, J. Intell. Fuzzy Syst. 26 (5) (2014) 2459-2466.
K.P. Yoon, C.-L. Hwang, Multiple Attribute Decision Making: An Introduction,
Sage publications, 1995.

H.-S. Shih, et al., An extension of TOPSIS for group decision making, Math.
Comput. Modelling 45 (7-8) (2007) 801-813.

A.Hatami-Marbini, F. Kangi, An extension of fuzzy TOPSIS for a group decision
making with an application to Tehran stock exchange, Appl. Soft Comput. 52
(2017) 1084-1097.

A.Z. Ravasan, et al., A fuzzy TOPSIS method for selecting an e-banking out-
sourcing strategy, Int. J. Enterprise Inf. Syst. 13 (2) (2017) 34-49.
N.Banaeian, et al., Green supplier selection using fuzzy group decision making
methods: A case study from the agri-food industry, Comput. Oper. Res. 89
(2018) 337-347.

G. Biiytikozkan, F. Goger, Application of a new combined intuitionistic fuzzy
MCDM approach based on axiomatic design methodology for the supplier
selection problem, Appl. Soft Comput. 52 (2017) 1222-1238.

P. Gupta, et al., Multi-attribute group decision making based on extended
TOPSIS method under interval-valued intuitionistic fuzzy environment, Appl.
Soft Comput. (2018).

J.-q. Wang, et al., Multi-criteria decision-making method based on single-
valued neutrosophic linguistic Maclaurin symmetric mean operators, Neural
Comput. Appl. 30 (5) (2018) 1529-1547.

D. Ju, et al., Multiple attribute group decision making based on Maclaurin
symmetric mean operator under single-valued neutrosophic interval 2-tuple
linguistic environment, J. Intell. Fuzzy Syst. 34 (4) (2018) 2579-2595.

S. Pramanik, et al., NC-TODIM-Based MAGDM under a neutrosophic cubic set
environment, Information 8 (4) (2017) 149.

P.P. Dey, et al., TOPSIS for solving multi-attribute decision making problems
under bi-polar neutrosophic environment, in: New Trends in Neutrosophic
Theory and Applications, Brussells, Pons Editions, 2016, pp. 65-77.

M. Abdel-Basset, et al., A hybrid neutrosophic group ANP-TOPSIS framework
for supplier selection problems, Symmetry 10 (6) (2018) 226.

X. Peng, J. Dai, Approaches to single-valued neutrosophic MADM based on
MABAC, TOPSIS and new similarity measure with score function, Neural
Comput. Appl. 29 (10) (2018) 939-954.

H. Pouresmaeil, et al., An extended method using TOPSIS and VIKOR for
multiple attribute decision making with multiple decision makers and single
valued neutrosophic numbers, Adv. Appl. Stat. 50 (2017) 261-292.

G. Selvachandran, et al., An extended technique for order preference by
similarity to an ideal solution (TOPSIS) with maximizing deviation method
based on integrated weight measure for single-valued neutrosophic sets,
Symmetry 10 (7) (2018) 236.

P. Biswas, S. Pramanik, B.C. Giri, Neutrosophic TOPSIS with group decision
making, Stud. Fuzz. Soft Comput. (2018) 543-585, http://dx.doi.org/10.1007/
978-3-030-00045-5_21.

P. Biswas, et al., TOPSIS Method for multi-attribute group decision-making
under single-valued neutrosophic environment, Neural Comput. Appl. 27 (3)
(2016) 727-737.

S. Broumi, et al., An extended TOPSIS method for multiple attribute decision
making based on interval neutrosophic uncertain linguistic variables, Infinite
Study (2015).

F. Smarandache, S. Pramanik, New trends in neutrosophic theory and appli-
cations, Infinite Study (2016).

J. Aczél, T.L. Saaty, Procedures for synthesizing ratio judgements, J. Math.
Psychol. 27 (1) (1983) 93-102.

H. Hsu, C. Chen, Fuzzy hierarchical weight analysis model for multicriteria
decision problem, J. Chinese Inst. Ind. Eng. 11 (3) (1994) 126-136.


http://refhub.elsevier.com/S1568-4946(19)30041-9/sb1
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb1
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb1
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb2
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb2
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb2
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb3
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb3
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb3
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb3
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb3
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb4
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb4
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb4
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb5
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb6
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb6
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb6
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb8
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb8
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb8
http://dx.doi.org/10.1016/j.cie.2018.11.007
http://dx.doi.org/10.1016/j.cie.2018.11.007
http://dx.doi.org/10.1016/j.cie.2018.11.007
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb10
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb10
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb10
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb11
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb11
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb11
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb11
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb11
http://dx.doi.org/10.1007/s12530-018-9247-7
http://dx.doi.org/10.1007/s12530-018-9251-y
http://dx.doi.org/10.1016/j.measurement.2018.11.006
http://dx.doi.org/10.1016/j.measurement.2018.11.006
http://dx.doi.org/10.1016/j.measurement.2018.11.006
http://dx.doi.org/10.1007/s10916-019-1156-1
http://dx.doi.org/10.1007/s10916-019-1156-1
http://dx.doi.org/10.1007/s10916-019-1156-1
http://dx.doi.org/10.1016/j.compind.2018.12.017
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb17
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb17
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb17
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb18
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb18
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb18
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb18
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb18
http://dx.doi.org/10.1080/00207721.2014.994050
http://dx.doi.org/10.1080/00207721.2014.994050
http://dx.doi.org/10.1080/00207721.2014.994050
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb20
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb20
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb20
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb21
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb21
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb21
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb22
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb22
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb22
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb23
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb23
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb23
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb23
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb23
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb24
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb24
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb24
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb25
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb25
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb25
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb25
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb25
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb26
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb26
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb26
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb26
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb26
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb27
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb27
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb27
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb27
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb27
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb28
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb28
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb28
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb28
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb28
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb29
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb29
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb29
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb29
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb29
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb30
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb30
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb30
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb32
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb32
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb32
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb33
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb33
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb33
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb33
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb33
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb34
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb34
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb34
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb34
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb34
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb35
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb35
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb35
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb35
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb35
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb35
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb35
http://dx.doi.org/10.1007/978-3-030-00045-5_21
http://dx.doi.org/10.1007/978-3-030-00045-5_21
http://dx.doi.org/10.1007/978-3-030-00045-5_21
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb37
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb37
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb37
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb37
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb37
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb38
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb38
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb38
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb38
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb38
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb39
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb39
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb39
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb40
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb40
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb40
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb41
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb41
http://refhub.elsevier.com/S1568-4946(19)30041-9/sb41

	An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number
	Introduction
	Preliminaries
	Aggregation of type 2 neutrosophic number 
	Now, we will refer to one property to confirm the T2NNWA operator
	Application of T2NNWA operator to MADM 
	Numerical case 

	The proposed method procedure
	Real case study
	Concluding remarks
	References


