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ABSTRACT Breast tumor segmentation in ultrasound is important for breast ultrasound (BUS) quantita-
tive analysis and clinical diagnosis. Even this topic has been studied for a long time, it is still a challenging
task to segment tumor in BUS accurately arising from difficulties of speckle noise and tissue background
inconsistence. To overcome these difficulties, we formulate breast tumor segmentation as a classification
problem in the neutrosophic set (NS) domain which has been previously studied for removing speckle noise
and enhancing contrast in BUS images. The similarity set score and homogeneity value for each pixel
have been calculated in the NS domain to characterize each pixel of BUS image. Based on that, the seed
regions are selected by an adaptive Otsu-based thresholding method and morphology operations, then an
adaptive region growing approach is developed for obtaining candidate tumor regions in NS domain. The
direction of region growing depends on the differences of similarity set score, texture homogeneity value
and distance value between the seed region and the candidate growing points. A deep convolutional neural
network, based on VGG-16 network, is applied to each candidate tumor region for false positive reduction.
A testing dataset with pathology proof includes 35 images without tumor, 36 images with benign tumors
and 50 images with malignant tumors. Numerical experiments show that the proposed method is effective
to segment breast tumor in BUS images with average 81.6% and 84.4% percent dice coefficient, average
77.0% and 84.3% true positive ratio, average 11.2% and 15.2% false positive ratio, and average 57.5 pixel
and 52.8 pixel Hausdorff distance for benign and malignant images, respectively.

INDEX TERMS Breast ultrasound; Image segmentation; Neutrosophic set; Region growing; Similarity set
score.

I. INTRODUCTION

BREAST cancer is one of the leading causes among
women worldwide [1]. Early detection of breast cancer

is important in clinic to improve patient survival [2]. Breast
Ultrasound (BUS) is a cost efficient and noninvasive imaging
tool for early detection of breast cancer [3]. Quantitative
analysis of breast cancer including accurate measurement
of tumor region of interest (ROI), is an essential step in
clinical diagnosis. Currently in clinical setting, doctors vi-

sually segment tumor ROI and measure parameters by hand
which is relatively subjective and depends on the doctor
experience. To overcome this difficulty, computer-aided de-
tection (CAD) system [4] intends to exploit machine learning
technology to automatically segment tumor ROI for future
clinical measurement or quantitative analysis. Breast cancer
segmentation in BUS has been studied in different context by
previous researchers, however, it still needs improvement of
segmentation accuracy for clinical applications with difficul-
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ties of speckle noise and tissue background inconsistence.
Most existing segmentation methods for BUS has been

borrowed from general image processing field. These seg-
mentation methods in the literature fall into four classes:
gray-level thresholding method, active contour method,
graph-based approaches and learning-based approaches [1].
These methods based on different hypothesis have different
advantages and disadvantages, and it is difficult to overcome
the segmentation difficulty in BUS by a single method. To
optimize the segmentation results, hybrid techniques have
been widely used in previous studies.

Gray-level thresholding is fast and straightforward for
tumor segmentation in BUS using the gray value differ-
ence between tumor and tissue background, which has been
widely used as pre-processing technique for other segmen-
tation methods [5]. Selecting an appropriate threshold value
is crucial for differentiating tumor pixels from background
pixels. A single global thresholding value is simple however
inefficient for segmentation purpose, which is usually used to
generate seed points for other approaches. In most fast seg-
mentation applications, locally adaptive thresholding value
depending on local texture features and gray value pattern has
been efficiently used for fast tumor segmentation in BUS.

The active contour method has been widely used for tumor
segmentation especially for noisy BUS images. Most feasible
semi-automated active contour methods have been proposed
in previous papers, which are not practical in a clinical setting
since the users are required to outline the initial contour for
further segmentation. An automated active contour method
[6] for tumor segmentation in BUS images without human in-
tervention has been proposed with two steps: ROI generation
and ROI segmentation. A pre-trained texture classifier using
the tissue background pattern has been trained to select the
ROI candidates, and then an active contour model, combining
both global gray-level statistical information and local edge
information, is applied for approximate the tumor contour.
[7] defines a global active contour model and a local active
contour model using the intensity statistical features of inter-
nal and external contours, and a cost functional combining
both global and local region information has been minimized
to automated segment tumor region in BUS images.

Graph-based approaches are used in BUS image segmen-
tation after the success in general image segmentation. In
a graph model, the BUS image is initialized with a seg-
mentation label, and then the probability of which label
each pixel belonging to is calculated for classification. [8]
combines maximum a posteriori (MAP) and Markov random
field (MRF) to estimate the BUS images distortion field
with labeling image regions based on the corrected intensity
statistics. This method contains two steps, the MAP step
estimates the intensity model parameters and the MRF step
describes the distributions of image tissue classes.

Image segmentation can be modelled as a learning-based
classification problem which classifies the pixels into back-
ground pixels and foreground pixels. Learning-based meth-
ods are categorized into two groups: unsupervised and super-

vised method. Fuzzy C-means (FCM) is an effective unsu-
pervised learning approach for breast cancer segmentation in
BUS images. In the paper [9], the fuzzy c-mean clustering
method is applied to detect the candidate tumors by extract-
ing the intensity, morphology, location, and size features in
the transverse, and then a logistic linear regression model
is used to estimate the likelihood of these candidate regions
based on the extracted features. Early in many unsupervised
methods, support vector machine (SVM) [10], [11] and ar-
tificial neural network (ANN) [12], [13] are most widely
used for BUS image segmentation. With the development
of artificial intelligence, new deep learning techniques such
as deep convolution neural networks (CNNs) and recurrent
neural network (RNN) have made great progress in segment-
ing BUS images. In the paper [14], a novel deep learning
approach, combining three different methods: a patch-based
LeNet, a UNet and a pre-trained FCN-AlexNet with transfer
learning, has been proposed for lesion detection in BUS
images. In addition, the deep convolutional neural network
can also be used for false positive reduction [15].

Some other approaches have appeared for BUS image
segmentation. The paper [16] observed that a BUS image
can be modelled as three regions: the lesion region, the
normal tissue region, and the blurry region. Based on this
observation, a fuzzy cellular automate (FAC) framework is
proposed for handling the uncertain pixel during the seg-
mentation process. Each candidate regions generated from an
initial segmentation are transformed into the fuzzy domain
and a voting strategy is applied to select the blurry region.
The developed energy function is used to specifically classify
the uncertain pixels in the blurry region. However, due to
the speckle noise and low contrast of the ultrasound image,
previous image processing methods have not worked satisfied
in the BUS images with blurry boundary and low contrast.
In addition, for less proper acquisition, some breast tumors
are close to the image border and the tumor regions are cut
partially which may cause failure of tumor segmentation.

To overcome the difficulties, we formulate breast tumor
segmentation as a classification problem in the neutrosophic
set (NS) domain which has been previously studied for
removing speckle noise and enhancing contrast for segmen-
tation in BUS images [17]. Considering of the image patterns
and vagueness, a breast tumor segmentation method based on
neutrosophic similarity score and region growing (NSSRG)
is proposed, which achieves breast tumor segmentation by
transforming the BUS images into neutrosophic set (NS) do-
main which consists three membership subsets with different
degree of vagueness. The similarity set score and homo-
geneity value for each pixel have been calculated in the NS
domain to characterize each pixel of BUS image for further
segmentation in the NS domain. An adaptive Otsu-based
thresholding method and morphology methods are used to
locate seed regions, and an adaptive region growing method
based on the similarity set score and homogeneity value is
developed for each seed region to grow separately. A deep
convolutional neural network, based on VGG-16 network,
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is used for false positive reduction. Percent dice coefficient,
true positive ratio, false positive ratio and Hausdorff Distance
have been measured on various BUS images to evaluate the
experiment performance.

The remaining sections are organized as follows. Section
II describes the technical details of the proposed algorithm.
Sections III shows the experiment results in comparing to
other existing methods and an extensive discussion sequen-
tially. Section IV concludes the present study and indicates
the future research.

II. METHOD AND MATERIALS
A. METHOD
An adaptive region growing on neutrosophic set for Ultra-
sound image is developed for breast tumor segmentation,
which includes the following four steps.

1) Domain transformation: the whole input ultrasound
image is transferred into the neutrosophic set (NS)
domain with speckle noise reduction and contrast en-
hancement;

2) Seed regions initialization: the initial seed regions are
localized based on an adaptive Otsu-based thresholding
method and morphology operations;

3) Region growing: according to the corresponding simi-
larity set score vector, homogeneity vector and distance
vector of candidate pixels, each seed region grows
separately and finally obtaining the candidate tumor
regions;

4) False positive reduction: false positive regions are re-
duced by a deep convolutional neural network which is
based on VGG-16 network.

1) Domain transformation
Neutrosophy has been successfully used for removing
speckle noise and enhancing contrast in BUS images. In
NS domain, a similarity set score S is calculated to rep-
resent the probabilities of belonging to truth (T ), indeter-
minacy (I), and falsity (F ), respectively [17]. Specifically,
a pixel P in BUS image I is mapped to NS domain:
PNS(x, y) = {T (x, y), I(x, y), F (x, y)}, where T (x, y),
I(x, y) and F (x, y) represent the elements belonging to the
brightest pixel set, indeterminate pixel set, and non-white
pixel set, respectively. The T (x, y), I(x, y) and F (x, y) are
calculated as follows,

T (x, y) =
P (x, y)− Pmin(x, y)

Pmax(x, y)− Pmin(x, y)
(1)

I(x, y) =
Pd(x, y)− Pdmin(x, y)

Pdmax(x, y)− Pdmin(x, y)
(2)

F (x, y) = 1− T (x, y) (3)

where P (x, y) and Pd(x, y) are the intensity value and
gradient value of pixel P in the image. Pmin(x, y) and
Pdmin(x, y) are the minimum intensity value and gradient
value in the image. Pmax(x, y) and Pdmax(x, y) are the
maximum intensity value and gradient value in the image.

Here, T (x, y), I(x, y) and F (x, y) are calculated un-
der three image contexts: the original image I , the im-
age M after mean filtering and the image H after texture
energy measurement (TEM) filtering [18], and termed as
TI(x, y), II(x, y), FI(x, y), TM (x, y), IM (x, y), FM (x, y),
and TH(x, y), IH(x, y), FH(x, y), respectively.

Then, under the original image context, the similarity set
score SI(x, y) of the pixel P is calculated as follow,

SI(x, y)=
TI(x, y)∗V (1)+II(x, y)∗V (2)+FI(x, y)∗V (3)√

TI(x, y)2+II(x, y)2+FI(x, y)2∗‖V ‖
(4)

where V represents the weight vector of TI(x, y), II(x, y)
and FI(x, y). ‖V ‖ represents the model of the vector.

Under other two contexts: the image M and the image
H , the simlarity set score SM (x, y) and SH(x, y) of the
pixel P are calculated as described above with replacing
TI(x, y), II(x, y), FI(x, y) into TM (x, y), IM (x, y), FM (x, y)
and TH(x, y), IH(x, y), FH(x, y), respectively.

Thus, the BUS image is transferred into NS domain
by calculating the average similarity set score S(x, y) of
SM (x, y), SI(x, y) and SH(x, y) for each pixel. Further-
more, the BUS images are normalizated by NS domain
transformation.

2) Seed regions initialization
After transferring the BUS images into NS domain, the
traditional Otsu method is applied on the transferred NS
image to gain the initial threshold value of T1. Then, the
background C0 and the foreground C1 segmented with initial
threshold value T1 are {S(x, y) ≥ T1} and {S(x, y) < T1},
respectively. Since the similarity set scores of the tumor
regions are commonly lower than the T1, a new grayscale
threshold T2 is obtained by applying the traditional Otsu
method on the foreground C1 of NS image. The threshold T2

is used to exclude background pixels with {S(x, y) ≥ T2}.
The regions extracted by the above Otsu-based thresholding
method are regarded as the candidate seed regions.

Then, morphology operations are performed on the fore-
ground and background masks, individually. To fill the holes
inside the seed regions, a flood-fill operation is employed
on the foreground mask. The seed regions connected with
the image border are deleted. To exclude small isolated
background regions, disk erosion operation with radius of
seven pixels and disk dilatation operation with radius of three
pixels radius are sequentially performed on the background
mask.

3) Region growing
In image segmentation, the goal of region growing is to
divide the image domain R into background region Rb and
foreground region Rf [19]–[21], which satisfy the following
equations.

R = Rb ∪Rf (5)

and
Rb ∩Rf = ∅ (6)
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FIGURE 1: Results of linear regression

Region growing starts with some initial seed regions
{A1, A2, ..., An}. Then a seed region Ai includes m pixels
{p1(x1, y1), p2(x2, y2), ..., pm(xm, ym)}, the candidate pix-
els set Clist {c1(cx1, cy1), c2(cx2, cy2), ..., cn(cxn, cyn)}
of seed region Ai is defined as follow,

Clist =
m⋃
i=1

([xi, yi] +Ne) (7)

where [xi, yi] is the position of pixel pi in Ai. Ne is a vector
which is used for obtaining the neighborhood of the pixel pi
and set as {−1, 0; 1, 0; 0,−1; 0, 1}. The pixels in Ai are not
included in the Clist.

The direction of region growing is determined by three
vectors {Vg, Vh, Vd}, which are defined as follows,

Vg =

n⋃
j=1

∑m
i=1 S(pi)

m
− S(cj) (8)

where S(pi) is the similarity set score of the pixel pi in the
seed region Ai, S(cj) is the similarity set score of the pixel
cj in the Clist.

Vh =
n⋃

j=1

∑m
i=1 H(pi)

m
−H(cj) (9)

where H(pi), H(cj) are the intensity values of the pixel pi
and ci in the image H .

Vd =
n⋃

j=1

(

√
(cxj −

∑m
i=1 xi

m
)2 + (cyj −

∑m
i=1 yi
m

)2 + C)

(10)
where [cxi, cyi] is the position of the pixel ci in the Clist. C
is the constant term for avoiding value zero.

For each iteration, the growth direction of each candidate
seed region is defined as follow,

Dire = V e(1) ∗ Vg + V e(2) ∗ Vh + V e(3) ∗ Vd (11)

where Vg stands for the similarity set score vector, Vh stands
for the homogeneity value vector, Vd stands for the distance
vector. V e is the weight factor and set as {0.4, 0.4, 0.2} in
this study.

The pixel with the minimum value of Dire among the
Clist is selected as the growing pixel, and would be included
in set Ai. After each iteration, the pixels in Clist will be
updated based on the new seed regions. The stop criterion
for region growing is based on the similarity set score of the
image I and the intensity value of the image H . To determine
the stop criterion, linear regressions are applied between the
similarity set scores of the whole image I (termed as IScore)
and the segmentation ground truth in the image I (termed as
GScore), and between the intensity value of the whole image
H (termed as IH) and the ground truth in image H (termed
as GH). The results of the linear regressions are illustrated
in Fig. 1.

According to the results of linear regressions, two stop
criterions are set: (1) Scoremean(S) ≥ 0.5Scoremean(I),
where Scoremean(S) and Scoremean(I) represent the
mean similarity set scores of the seed region and the
whole image I , respectively;(2) Intensitymean(S) ≥
0.7Intensitymean(H), where Intensitymean(S) and
Intensitymean(H) represent the mean intensity value of the
seed region and the whole image H , respectively. The region
growing stops until it meets any of the two criterion.

4) False positive reduction
The features extracted by deep convolutional neural network
(DCNN) have been proved effective in reducing false positive
regions [22]. In this study, a deep convolutional neural net-
work, based on VGG-16 net, is applied for reducing the false
positive regions (over segmentation). As shown in Fig. 2, a
DCNN based VGG-16 network is constructed. To fit our task,
the last nine layers of original VGG-16 network are replaced
as new block (block 3), which is consist of dropout layer,
fully connected layer and SoftMax layer. The dropout layer
makes the model more generalize and prevents over-fitting
[23]. The other layers of VGG-16 are kept in DCNN, as
shown in blocks 1-2. Block 1 contains one max-pooling layer
and two convolution layers which convolve the input images
with a set of filters. Block 2 contains three convolution layers
and one max-pooling layer, which can provide strong ro-
bustness and decrease the dimensions of features map. Each
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(a) structure of the DCNN (b) structure of block 1

(c) structure of block 2 (d) structure of block 3

FIGURE 2: The structure of the proposed deep convolutional neural network (DCNN)

convolution layer in DCNN is followed by a rectified linear
units (Relu) layer, which actives the feature maps extracted
by the previous convolution layer with the ReLu function
(f(x) = max(0, x)) to improve the computation efficiency
and solve the problem of disappearing gradient [24], [25].

The input images for DCNN are the candidate region
images extracted from BUS image, which are generated by
the following procedures: 1) cropping the maximum external
quadrangle regions of candidate regions from BUS image,
individually; 2) padding the quadrangle images as square
images with zero; 3) resizeing the square images as size of
224 × 224. With the DCNN fine-tuned by BUS candidate
region images, the false positive regions are removed from
the candidate regions, and the breast tumor segmentation
result is obtained.

With above four procedures, Fig. 3 shows the whole steps
of the proposed method with a flowchart and correspond-
ing visualization results of breast tumor segmentation using
NSSRG method.

B. MATERIALS
1) Dataset
A dataset of clinical 384 BUS images, collected by VIVID
7 (GE, Horten, Norway) with 4-5 MHz linear probe, are
employed in this study. The tumor contours of those images
are manually delineated by experienced radiologists, which
are regarded as the ground truth segmentation. 298 images

of them are randomly selected for the DCNN training and
the rest 86 images are used for the performance evaluation
of the proposed NSSRG segmentation method. Among the
86 testing images, 36 images are benign and others are
malignant, which are verified by surgeries or pathologies.

2) Quantitative criterions
To evaluate the segmentation result quantitatively, four eval-
uation metrics including percent dice coefficient (PDC), the
false positive ratio (FPR), the true positive ratio (TPR) and
Hausdorff distance (HD) are employed.

PDC is the percent of dice similar coefficient, measures the
degree of overlap between segmentation results and ground
truth. PDC = 100% means the segmentation results are
completely consistent with the ground truth. The PDC is
defined as follow,

PDC =
2 ∗ (Am ∩Ag)

Am ∪Ag
(12)

where Am is the mask of segmentation result and Ag is
ground truth mask. ∩ and ∪ are the intersection and union
operation.

FPR represents the proportion of background pixels which
are segmented as foreground. FPR = 0 means the segmen-
tation results are completely correct. The FPR is defined as
follow,

FPR =
Am/Ag

Ag
(13)
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FIGURE 3: The flowchart of the proposed method

.
TPR denotes the proportion of foreground pixels which

are segmented correctly. TPR ranges from zero to one and
represents the worst to best segmentations, respectively. The
TPR is calculated as Equation 14.

TPR =
Am ∩Ag

Ag
(14)

HD measures the differences between two contours, which
is given as the maximum of the Euclidean distance between
the contours of segmentation results and ground truth. Let
M {m1,m2, ...,mp} and G {g1, g2, ..., gq} be the contour
points of method segmented tumor and ground truth, respec-
tively, where p and q are the quantities of contour points, the
HD can be calculated as follow,

HD = max {D(M,G), D(G,M)} (15)

where D(M,G) = maxmi∈M

{
mingj∈G {Dist(mi, gj)}

}
,

Dist(mi, gj) stands for the Euclidean distance between the
contour point mi in M and the contour point gj in G. The
unit of HD is pixel.

In this study, the proposed NSSRG segmentation method
is compared with a newly published method based on the
neutrosophic set score and level set (NSSLS) [17].

III. EXPERIMENTAL RESULTS
Fig. 4 illustrates the segmentation comparison between
NSSLS and NSSRG on three BUS images (one of them is

benign image and the others are malignant images), which
have relatively clear boundary between the tumor and back-
ground. Need to be noted is that these two images in Fig.4
and the example image in Fig. 3 were also presented in Fig.
3-4 and Fig. 6 in the study of NSSLS[17]. It is observed that
the NSSRG has very similar performances as the NSSLS.
However, as illustrated in Fig. 5, the NSSRG achieves much
superior segmentation performacnes than NSSLS on the
other six BUS images (two of them are benign images and
the others are malignant images). All these six images have
the same characteristic: the tumor boundary is close to the
image border or the shadow. In this scenario, the NSSLS
may be failed in the segmentation, since the NSSLS achieves
segmentation results by minimizing the energy function just
based on the similarity set scores of BUS image. In con-
trast, the proposed NSSRG employes two stop criterions: (1)
Scoremean(S) ≥ 0.5Scoremean(I), where Scoremean(S)
and Scoremean(I) represent the mean similarity set scores
of the seed region and the whole image I , respectively;
(2) Intensitymean(S) ≥ 0.7Intensitymean(H), where
Intensitymean(S) and Intensitymean(H) represent the
mean intensity value of the seed region and the whole image
H , respectively. During the region growing procedure, the
strict stop criterions can prevent the over-segmentation to the
shadow regions and image border. Furthermore, a deep con-
volutional neural network used for false positive reduction
also can avoid the over-segmentation on some extend. Thus,
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Malignant images:

(a) (b) (c) (d)

FIGURE 4: Results of tumor segmentation with different methods: (a) original images; (b) Results of NSSRG method; (c)
Results of NSSLS method; (d) Radiologist’s results

the NSSRG can performe better than NSSLS for similar
images, which are commonly in clinical practice.

Table 1 demonstrates the mean PDC, TPR, FPR, HD of
the segmentation result on all the 86 testing images. It is
observed that, compared to the NSSLS, the PDC and TPR of
NSSRG were improved from 71.6±25.9%, 82.6±234.3% to
83.3±7.6%, 81.3±22.6%, and the FPR and HD of NSSRG
were decreased from 95.8±234.3%, 113.0±98.0 pixel to
13.5±22.6%, 54.7±41.6 pixel, respectively.

To show the comparison results between NSSLS and
NSSRG intuitively, Fig. 6(a)-(d) illustrates the cumulative
percentage of images having PDC, TPR, FPR and HD
smaller/larger than a certain value on the segmentation results
of NSSLS and NSSRG. As shown in Fig. 6, 80% images have

PDC > 78%, HD < 90 pixel and 90% images have TPR >
40%, FPR < 40% using NSSRG method.

To analyze the segmentation performances in the benign
and malignant images, the mean and standard deviation of
four quantitative metrics: PDC, TPR, FPR, HD are calcu-
lated on the benign and malignant images, individually, and
collected in Table 2. It is observed that, 1) For NSSLS and
NSSRG, the segmentation results achieve in benign images
are better than that in malignant images; 2) The NSSRG
always performs superior than NSSLS in benign images and
malignant images.

Fig. 7 and Fig. 8 show the cumulative percentage of images
with PDC, TPR, FPR and HD larger/smaller than a certain
value on BUS images with benign and malignant tumors,

TABLE 1: The performances of computer segmentation results with reference to an experienced radiologist’s manually drawn
boundaries for the proposed method and the NSSLS method.

Methods PDC (%) TPR (%) FPR (%) Hausdorff Distance (pixel)

NSSRG 83.3± 7.6 81.3± 22.6 13.5± 22.6 54.7± 41.6
NSSLS 71.6± 25.9 82.6± 234.3 95.8± 234.3 113.0± 98.0

TABLE 2: The performances of computer segmentation results with reference to an experienced radiologist’s manually drawn
boundaries for the proposed method and the NSSLS method in the benign images and the malignant images.

Methods PDC (%) TPR (%) FPR (%) Hausdorff Distance (pixel)

Benign images NSSRG 81.6± 6.9 77.0± 20.3 11.2± 20.4 57.5± 46.1
NSSLS 63.9± 30.1 73.4± 134.3 88.4± 134.0 146.9± 111.4

Malignant images NSSRG 84.4± 7.8 84.3± 23.5 15.2± 23.5 52.8± 38.1
NSSLS 77.2± 20.7 89.4± 283.1 101.1± 283.1 88.6± 78.6
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Malignant images:

FIGURE 5: Results of tumor segmentation with different methods. Row1: original images; Row2: Results of NSSRG method;
Row3: Results of NSSLS method; Row4: Radiologist’s results
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FIGURE 6: Cumulative percentage relative to the 86 images with the radiologist’s outlined tumor region as reference standards
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FIGURE 7: Cumulative percentage relative to the 36 benign images with the radiologist’s outlined tumor region as reference
standards
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FIGURE 8: Cumulative percentage relative to the 50 malignant images with the radiologist’s outlined tumor region as reference
standards
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respectively. Among all the benign cases, in the results
achieved by NSSRG, 80% images have PDC > 75%, HD <
90 pixel and 90% images have TPR > 43%, FPR < 25%.
In contrast, for the segmentation results achieved by NSSLS,
80% images have PDC > 37%, HD < 120 pixel and 90%
images have TPR > 40%, FPR < 80%. The Fig. 8 shows that
80% malignant images have PDC > 78%, HD < 80 pixel and
90% images have TPR > 40%, FPR < 25% using NSSRG
method. Furthermore, The NSSRG also performs better than
NSSLS.

To analyze the segmentation results’ performance in the
images without tumor, additional thirty-five BUS images
from thirty-five patients are collected from the fifth affiliated
hospital of Sun Yat-Sen University for NSSRG segmenta-
tion test. There are three images with tumor segmented by
NSSRG, which are regarded as misdiagnosed cases. Thus
the false positive ratio on patient cases is 8.57%. Moreover,
no tumor is missed among the segmentations on 86 test
images with single tumor. Thus, the false negative ratio is
much smaller than the false positive ratio but still needs to be
evaluated on more cases.

The above experiment results and quantitative evaluations
on various clinical BUS images demonstrate that the NSSRG
method is effective and reliable in breast tumor segmentation,
and also superior than NSSLS.

IV. CONCLUSION
An adaptive region growing method based on neutrosophic
set (NSSRG) is proposed for brest ultrasound image seg-
mentation in this study. By transforming the BUS images
into NS domain, the similarity set score and homogeneity
value for each pixel are calculated to characterize each
pixel of BUS image. An adaptive Otsu-based thresholding
method and morphology methods are used for generating
the seed regions, then an adaptive region growing method
is adapt based on the neutrosophic set for candidate tumor
regions generation. A deep convolutional neural network,
based on VGG-16 net, is used for false positive reduction
and achieves the final segmentation result. Compared to the
NSSLS method, the improved segmentation performances on
86 clinical BUS images illustrate that the NSSRG method is
effective and robust for breast tumor segmentation on BUS
images, especially for these tumors with blur and low contrast
boundaries.
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