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1. Introduction

Multiple criteria group decision-making (MCGDM) problems
are the prominent part of the research in decision theory and seek
incredible consideration in commonsense fields. The fundamental
target of such problems is to choose the foremost desirable alter-
native among limited options concurring to the preference values
of the criteria given by distinctive choice makers. In real situations,
we encounter many decision-making (DM) problems, involving the
uncertainty or vagueness and hence such problems may not be
modeled by the existing classical theories. So, in order to process
such information, an intuitionistic fuzzy (IF) set (IFS) [1] theory,
which is an effective extension of the fuzzy set (FS) theory [2],
gives better way out to manage the inaccuracy, dubiousness, and
vulnerabilities in the information and in tackling the DM issues.
IFS is way better equipped to speak to the genuine world situation
more really because it also factors in the hesitancy of the decision
maker, a feature that is not possible in the fuzzy sets. Since its
existence, many researchers have utilized this theory to solve the
various DM problems under different environment [3-13].
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However, it is remarked that neither the FS nor IFS theory is able
to deal with indeterminate and inconsistent data. To deal with it,
Smarandache [14] created a neutrosophic set (NS) which portray
the uncertain information by taking the functions of truth, indeter-
minacy, and falsity, all are independent to each other and are the
subsets of |07, 17[. As the NS theory is more in line with human
instinctive feelings and judgment, at the same time it moreover
has the degree of indeterminacy, subsequently, it can depict the
unclear information more helpfully than the FS and uncertainties
speculations. NS theory handles the indeterminate information,
but this theory is hard to implement on the practical problems,
therefore, Wang et al. [15] presented the concept of the single-
valued neutrosophic set (SVNS), a special case of NS. Due to its
importance, several researchers have made their efforts to enrich
the concept of neutrosophic sets in the decision-making process.
For instance, Garg and Nancy [16] presented some hybrid weighted
AOs under NS environment to solve the decision-making problems.
Ye [17] presented an AO for the simplified NS. Nancy and Garg [18]
presented some weighted averaging and geometric AOs by using
Frank norm operations by using single-valued neutrosophic
(SVN) information. Abdel-Basset et al. [19] solved the supplier
selection problem using the neutrosophic set environment. Garg
and Nancy [20] presented some new logarithm operational laws
and their corresponding AOs for SVN numbers (SVNNs) and


http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2019.02.031&domain=pdf
https://doi.org/10.1016/j.measurement.2019.02.031
mailto:harishg58iitr@gmail.com
http://sites.google.com/site/harishg58iitr/
https://doi.org/10.1016/j.measurement.2019.02.031
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement

H. Garg, Nancy/Measurement 138 (2019) 278-290 279

applied them to solve the decision-making problems. Peng and Liu
[21] presented an algorithm for solving DM problem under neutro-
sophic soft set environment. Peng and Dai [22] presented an
approach based on similarity measures and Technique for order
preference by similarity to ideal solution (TOPSIS) to solve the
DM problem under the SVNS environment. Garg and Nancy [23]
presented a nonlinear methodology for solving the DM problem
by using TOPSIS approach under interval neutrosophic set environ-
ment. Yang and Li [24] extends the power operator to NS domain
which can consider the importance of attributes by considering
the support over each other and relieve the influence of unreason-
able attribute values of different alternatives given by decision-
makers. Garg and Nancy [25] presented some bi-parametric
distance Measures on SVNSs and applied them to solve the pattern
recognition problems. A bibliometric analysis of NS is presented by
Peng and Dai [26]. However, apart from them, several other
approaches had presented by the various researchers under the
NS environment to solve the decision-making problems [27-33].

In the neutrosophic environment, the information which is
evaluated is quantitative in nature and is expressed by the means
of numeric numbers. But in a real scenario, most of the times the
uncertain or imprecise data evaluated by the decision maker has
the qualitative aspects. Like, while figure out the level of ‘perfor-
mance’ of any distributor company, decision maker wants to con-
vey his/her assessment by using the labels such as “extremely
poor”, “poor”, “fair”, “slightly good”, “very good”, “extremely
good”, etc. In these situations, the linguistic variables [34] are used
to access the information and deal with the qualitative data. In the
field of NS environment, Li et al. [35] introduce the concept of lin-
guistic neutrosophic sets (LNSs) in which membership, indetermi-
nacy, and non-membership are expressed as a linguistic variable
instead of real numbers. Since the LNSs are exceptionally appropri-
ate for portraying more complicated linguistic data of human pre-
diction under linguistic DM environment, therefore, researchers
have been willing to give their great potential in the advancement
of AOs within the linguistic neutrosophic environment. Fang and
Ye [36] gave the weighted arithmetic and geometric averaging
operators under LNS environment. Liang et al. [37] presented an
extended TOPSIS approach with linguistic neutrosophic numbers
and applied them to analyze the risks of metallic mines. Garg
and Nancy [38] introduced some linguistic prioritized AOs which
simultaneously considers the priority among the attributes and
the uncertainty in linguistic terms under linguistic SVN (LSVN)
domain. Liu et al. [39] presented power Heronian AOs for solving
group DM problem using LSVN information.

In recent years, multicriteria methods such as Analytic hierar-
chy process (AHP), VIseKriterijumska Optimizacija I Kompromisno
Resenje (VIKOR) method, TOPSIS and COPRAS method have been
increasingly used for quantitative and qualitatively evaluation of
complicated economic or social processes. The aim of the evalua-
tion is to choose the best alternatives, ranking the alternatives in
the order of their significance. Among these, COPRAS method
was firstly introduced by Zavadskas et al. [40] in 1994. This
method compares the alternatives and determines their priorities
under the conflicting criteria by taking into account the criteria
weights. Chatterjee et al. [41] have done comparative analysis on
different methods such as AHP, VIKOR, TOPSIS, COPRAS with
regards to a computational procedure, effortlessness, probability
of visual understanding and kind of the data and concluded that
COPRAS strategy shows outperform among them. In the literature,
there are many applications of COPRAS method. For instance,
Razavi Hajiagha et al. [42] presented the COPRAS method for the
information in the intuitionistic terms. Rathi and Balamohan [43]
used the COPRAS method to solve the group decision-making
problem under fuzzy environment. Zolfani et al. [44] applies the
complex assessment strategy to the environmental issues by

taking the decision problem. Bausys et al. [45] gives its contribu-
tion to the COPRAS method in a neutrosophic domain.

Since all the above-stated studies are widely used into the dif-
ferent environment, but under some certain cases, these existing
approaches fail to be utilized for the issues where the linguistic
neutrosophic data is given by the experts over various criteria. Fur-
thermore, in the definition of the linguistic single-valued neutro-
sophic sets (LSVNSs), the possibility of each element of universal
set related to each criterion is considered as 1. This poses a limita-
tion in the modeling of some problems. However, in some practical
situations, the possibility of each element related to each object
may be different from 1. For instance, consider the linguistic term
“intelligence” and three experts evaluate the candidate. The possi-
bility of the intelligence of a candidate by the first expert can be
0.8. However, the linguistic rating values in terms of SVNSs corre-
sponding to a candidate is (ss,S,,54) Where s; represent the degree
of agreement towards the statement, s, represent the degree of
indeterminacy and s, represent a degree of falsity towards the
statement. Based on it, the other experts can be expressed with
some different possibility values. Thus, to represent such an infor-
mation more clearly, there is a need to introduce a set which rep-
resents all of the corresponding possibility neutrosophic values.

From this point of view, we introduce the concept of possibility
linguistic single-valued neutrosophic set (PLSVNS) based on an
idea that each of the elements of the universe has got a possibility
degree related to each element of the neutrosophic set. Also, we
define some basic operational laws, score and accuracy functions,
comparison laws to rank the different PLSVNSs. Based on the oper-
ational laws of possibility linguistic single-valued numbers
(PLSVNs), we stated some weighted averaging and geometric
aggregation operators. Furthermore, this paper extends the
COPRAS strategy to the PLSVNS environment. The important high-
lights of the COPRAS method are: (1) it consider both the angles of
the criteria, namely benefit and cost ones, based on the complex
proportional assessment; (2) this strategy is compelled to get the
DM outcomes in a more convenient way; (3) this strategy makes
conceivable to figure out the gap between each alternative and
the best one by evaluating the utility degree. Owing to the advan-
tages of both the AOs and COPRAS method, the aim of this paper is
to tackle the challenges under the PLSVNS by developing two
MCGDM approaches to manage the information for PLSVNSs,
which not only have a great power in distinguishing the optimal
alternative, but also can met the optimal conditions as per our
real-life situations. Therefore, motivated from the features of
AOs, COPRAS method and LSVNS, the following are the fundamen-
tal targets for this paper:

(i) to present a new concept of possibility LSVNS and their
associated score/accuracy function, comparison laws and
basic operational laws;

(ii) to propose different weighted averaging and geometric AOs
under PLSVNS environment where the information related
to each object is represented in terms of possibility linguistic
single-valued neutrosophic numbers (PLSVNNSs);

(iii) to develop some new distance measures for PLSVNSs to
catch the closeness and the discrimination among the sets;

(iv) to establish the COPRAS method to rank the PLSVNSs;

(v) to create two different algorithms based on AOs and
COPRAS method to illuminate group DM issues;

(vi) to exhibit an illustration where significance of preferences
based on PLSVNS decision problems has been clarified.

To facilitate our discussion, the remainder of this paper is organized
as follows: In Section 2, some fundamental concepts of SVNS and
LSVNS are briefly reviewed. In Section 3, a new concept of PLSVNS,
a score and accuracy function, and some operational laws are pre-
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sented along with distance measures and weighted averaging and
geometric AOs. In Section 4, we present a new COPRAS method
for the PLSVNS environment. In Section 5, we propose two novel
possibilities  linguistic  single-valued neutrosophic MCGDM
approaches based on proposed AOs and COPRAS method in PLSVNS
domain. Section 6 give a numerical example to validate the pro-
posed approaches along with their discussion and comparative
study. Finally, the paper ends with a concluding remark in Section 7.

2. Basic concepts

In the following, we discusses the basic concepts associated
with neutrosophic theory in universal set X.

Definition 2.1. [14] A neutrosophic set (NS) o in X is defined as

o= {(% 14, (%), P, (X). Va(0)) | x € X} 1)

which assigns to each element x € X, a acceptance degree [,(x),
indeterminacy degree p,(x) and the non-acceptance degree v,(x)
with the condition that 0™ < sup u,(X) + sup p,(x) + sup v,(x) <
3", where sup denotes ‘supremum’.

Definition 2.2. [15] A SVNS « in X is stated as
o= {(% 14,(%). p,(X), va(x)) | x € X} 2)

Where :uoz(x)7poc(x)7vl(x) € [O ]] and 0 < :uc((x) + pac(x) + VOC(X) < 3.
For convenience the pair is denoted as o = (u,, p,,V.) and called
as SVN number (SVNN).

In real situations, we get into the problems in which the data
cannot be communicated by numerical numbers, means the data
is qualitative in nature. For representation of such kind of data
we have linguistic variables. In order to portray them, it is essential
to characterize the linguistic term set (LTS).

Definition 2.3. [36] Let Q = {so,S1,...,5:} be a LTS with odd
cardinality t + 1 and Q = {sy|so < Sp < St,h € [0,t]} Then, a LSVNS A
in X is stated as

A= {(x,50(x),54(x),55(x)) | x € X}, (3)

where sy,5,,5, expresses the linguistic acceptance, indeterminacy
and non-acceptance degrees, respectively, with 0 < 0+ + o < 3t.
The triple (sy,Sy.55) is called linguistic SVN (LSVN) number
(LSVNN). In addition, if sy,s,,5, € Q, we call (sy,5y,S5), the original
LSVNN, otherwise the virtual.

Definition 2.4. [36] To compare the LSVNNs, a score (S) and an
accuracy function (Ac) for a LSVNN o = (sy,S,,Ss), can be repre-
sented as

S(a)=(2t+0—y —0)/3 €[0,t] (4)
and
Ac(a) = (0+y +0)/3 €10,t]. (5)

By using these functions, we define an order relation for two differ-
ent LSVNNs « and $ as, if S(o) > S(f) then o > f, where “>" means
“preferred to” and if S(«) is same as that of S(B) then calculate the
accuracy function. If Ac(x) is greater than Ac(f) then o >~ B.

Definition 2.5. [38] For three LSVNNs o = (S,Sy,55),01 =
(So1,59155,) and o = (Sp,,Sy,,Ss, ), the following operations are
defined as:

(i) & = (S4,Sy,50);

(ii) a1 < o if s, < Sp, 1€ 01 < 02,5y, =Sy, i€ Yy =, and
Se, = Sq, 1.€. 01 = 02;

(iii) oy U oy = (max{sy, ,ss, }, min{s,,,sy, },min{ss,,ss, });

(iv) oy N o = (min{sy, , Sy, }, max{s,,, sy, },Max{se,Ss, })-

Definition 2.6. [38] Let o= (sy,Sy,55),% = (S0,,S4,,55,) and
oz = (So,,5y,,55,) be LSVNNs and Z be any positive real number,
then

ooy =1s .S .S ;
07 0, 070, )’ Y v
(o) () ()
(if) o @ 22 = (s[(%) ’sr<v’1 2 'h-//z) ’st<"1 172 “1”2)) !
2 T2 Tt T2

(lll) Ao = (St(l—(l—%);) ,S[&)/,,S[(%)z) )
“””:Gwﬁmﬁ%w%wwn)

3. Possibility linguistic SVN sets

In the following, we introduce the concept of PLSVNSs and its
based some laws.

Definition 3.1. A possibility linguistic SVN set (PLSVNS) in uni-
versal set X is defined as follows:

x= {(Sﬂ(x)ﬁw(XLSa(x);p(x))\x S X} (6)

which consists of two kind of information: one is LSVN value
(So(x),84(x),55(x)) and other one is possibility degree, p(x), of exis-
tence of this LSVN value for any x € X and p(x) € (0, 1]. For conve-
nience, we denote o as (s(),s.,,sg;p) and named as possibility LSVN
number (PLSVNN).

To compare two PLSVNNS, the score and the accuracy functions

are stated as below:

Definition 3.2. Let o = (Sy,Sy,S;p) is PLSVNN. Then the score
function (Sc) is defined as

Sc(a) = w €0,1] (7)
and the accuracy function (H) is defined as
H(oy =20 o 1) ®)

Definition 3.3. For two PLSVNNs o and j, an order relation for
ranking them is defined as

(i) if Sc(or) > Sc(p), then o = B, where “>~" means “preferred to”;
(ii) if Sc(o) = Sc(pB), and H(ax) > H(B), then o = B.

Definition 3.4. For two PLSVNNs o4 = (Sy,,Sy,,50,;P;) and
% = (S0,,Sy,,Ss,:P2), We have

(i) of = (So,+5y,,50,51 — P1);
(ll) o < 0y if So, < So, ie. 01 < 92,5,1,] = Sy,
ie. Yy = ¥,,55, = Sq, .. 01 = 07 and p; < p,;



H. Garg, Nancy/Measurement 138 (2019) 278-290

(iii) o U oy =
max{p;,p,});
(iv) oy Noy =
min{p;,p,}).

(max{sy,,Sq, }, min{s,, sy, }, min{s,, ,Sq, };

(min{s(’l )50, }7 max{slh 3 S, }7 max{s<71 »Sa, }3

Definition 3.5. Let o = (saj,s%,s,,}; pj) ,j=1,2 be two PLSVNNs
and 4 > 0, then

2

(moe= (5[(1(1“;)(11',2))5{(%)’5[(%);1 -(1-p)a pz>> ;

2

(i) o0 & 2 = (i(w) i1 () (12) ’Stoo%)(l%))?PWZ) ?

(iii) Aoy =

Definition 3.6. Let o; and o, be two PLSVNSs and t > 1, then the
generalized normalized distance between them is stated as

281
PLSVNWG(t1, 0%, ..., 0y) = @0
j=1
n [on
=15 /n S n )S n .’Hpjfj
(f107) (- f1er) (+Thone) =
J=1 j=1 j=1

(11)

where j is the associated weight of o with ; > 0 and >3 w; = 1.

4. COPRAS method with PLSVN information

COPRAS method is mainly developed by Zavadskas et al. [40],
which consists the direct and relative dependencies of the impor-
tance and the utility degree of the alternatives under the contrary
criteria values. This method takes into the consideration of the
given choices with regards to the distinct criteria and their corre-
sponding weights. This method has the capability to consider the
both beneficial and non-beneficial criteria, which can evaluated
independently during the assessment process. The main advantage
of this method is that it can be utilized to calculate the utility

o 00 e ) " ) P o) ) ) | ©
d-;(al s OCQ) =q 5 T
o +{pi () 02— p, x) 222

Remark 3.1. The following observations are noted from the Defi-
nition 3.6:

1) The measure defined in Eq. (9) satisfies the properties of the
distance measure.

2) For 1 =1,2, Eq. (9) reduces to normalized Hamming and
Euclidean distances, respectively.

Definition 3.7. For the PLSVNNs oj;j=1,2,...,n, the PLSVN
weighted averaging and geometric operators, denoted by
PLSVNWA and PLSVNWG respectively, are defined as:

PLSVNWA(o1,0z,...,0,) = ég ;0
j=1

n

_ St<lﬁ(l""')mj>ysf<fl<v>‘“f)’sr(f[<?>“f);1J-H]“pf)wj

(10)

and
Ci C,
Ar 108015 Sy S P1D) (8915 Syis Sopys P12)
K- Ar | (Soy5 Sunis Soas P21) (860 Sy So s P22)
A YS0,5 Surs> Sois Pm1) (S6,5 Sys Sorys Pm2)

degree of the given choices showing the degree to which one alter-
native is way better or more awful than other opinions taken for
comparison.

Consider a DM problem which consists of ‘m’ alternatives

A1,Ay, ... A, which are evaluated under the set of ‘n’ criteria
Cy,Cy, ..., Cy,. During the evaluation, the preference values of each
alternative  A;;(i=1,2,...,m) corresponding to criteria

Gi;(j=1,2,...,n)is given in terms of PLSVNNs among their possi-
bilities. = These  preference  values are denoted as
o = (sows%,s,;ij; p,-j), where s,,s,,,Sq; represents the satisfactory,
indeterminant, non-satisfactory degree in linguistic term, respec-
tively, and p; is the corresponding possibility of the LSVNN.
Assume that the importance of each Cj;(j=1,2,...,n) is given
by the weight vector w = (w1, wo, ..., wn)T, such that w; > 0 and
> imim; = 1. In order to access and select the best alternative in
terms of their priority and utility degree, the following procedural
steps are presented as below.

Step 1: Arrange the information given by the decision maker(s)
towards the assessment of each alternative in the form of deci-
sion matrix K as

C,
(S()]u’ Syis Sy pln)
(S92,,a Slﬂg,,s sO’z,, 5 p2i’l)

(56,,,» S > ST > Pun)
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Step 2: Construct the weighted decision matrix K., = (&)

mxn

where &; = (sg,l_j,s%,s%; [7,-]-) is given by

&ij = ;0

= i\ 3 Wi\ @ 5 i rw;] — ] — Pij @i 12
(o) S S~ Amm” ) a2)

Step 3: Discretion the given criteria into the benefit and non-
benefit types. Assume that out of n criteria, k are benefit and
the remaining n — k are non-benefit types. In the benefit type
criteria, the higher is the rating values, the better is the fulfill-
ment of the goal. Thus, the different rating values of such ben-
efit type corresponding to each alternative are aggregated by
utilizing the PLSVNWA operator and is given by:

where k, is the number of criteria that must be maximized.
Step 4: For non-benefit type criteria, the lower is the values, the
better is the fulfillment of our goal. So, for obtaining the overall
assessment values of each alternatives corresponding to such
n — k criteria, we utilize PLSVNWA operator and their aggre-
gated values are computed as

n-k
Ti= & o
J=k+1

. @ . @
Aj (S"(ﬁ” S,@5 8,03 Py S 5,05 8,03 P13

A S0, 8 @, 8 0 p? Sy, S s @ p
2 [ \Sepe Sugy Sy P o> Sug> Solg> P

() . @
An (s0<q>, Sy Sg@’ Py Sg@ s Sy, Sy P

ml ml m2 m2 m2

where n — k, is the number of criteria which have cost optimiza-
tion direction i.e. the criteria with non-beneficial type.
Step 5: Determine the minimal value of T; as:

Tmin = mlﬂ{T,}
where min{T;} = min{T1,T2,...,Tn}.

Step 6: Calculate the relative significance value or priority value
of the alternatives by using Eq. (16) as

ygm :
Vi =Sc(Q;) + Mm’zlscs;(r)’); provided Sc(T;) # 0
SA(Ti) > iz “scy”

(16)

The value of V; expresses the degree of satisfaction earned by the
alternative. The maximum value of V; represents the higher pri-
ority of that alternative i.e. Vi, is the best choice among the
given choices.

Step 7: Compute the quantitative utility for each alternative as

U,-:( Vi > x 100% 17)
Vmax
where Vn.x = max;{V;} is non-zero. It can be easily seen that utility
degree is directly related with the relative priorities of the alterna-
tives i.e. if the value of the relative priority increase or decrease then
the value of utility degree is also going to increase or decrease. The
utility value is attained by comparing the priority of alternatives
with the most efficient alternative hence it ranges from 0% to 100%.
Hence, this COPRAS method permits for assessing the direct and
relative dependence of priorities and utility degree of the consid-
ered alternatives in a DM problem including different criteria, their
weights and the rating values of alternative with regard to all the
criteria.

5. Approaches for solving DM problems

This section offers two different DM approaches which utilize
the COPRAS technique and the aggregation operators with some
new information measures under the PLSVNNs. The presented
approaches are illustrated with a numerical example.

5.1. Description of problem

Consider a group decision-making problem which consists ‘m’
alternatives A,A;,...,An, ‘n’ criteria C;,C,,...,C, and ‘I' decision

makers KV, K® ... K® which are evaluated the given alternatives

under PLSVN environment. Each decision maker K9 q=1,2,...,1
represent their preferences in the form of PLSVNN

(q) -th

= (som,,sw,sU<q>;P§f>> corresponding to i™  alternative

Ai(i=1,2,...,m) rating on jrh criteria C;(j = 1,2,...,n). The com-
plete decision matrix M@ of the g™ decision maker towards the
alternatives is summarized as

Cil
()]
(‘eﬁ‘z” Su)> Sy P

(9)
S)@y S @, (@,
Oy "W (7'2[{1’p2”

. @
(Sg(cn S @, S D5 Pmn

‘mn mn

Assume that the importance of each decision maker and crite-
,A(’)) and
(@1,®y,...,m,) respectively such that 0<i? w;<1 and
ZL:M@ =1;>1,@; = 1. If the weights of such criteria and deci-
sion makers are known a priori then we can easily utilized. On
the other hand, if the information about them are completely

unknown then we utilize the following entropy measure procedure
to compute the weight vector of each decision maker and criteria.

rion are given in the form of weights as ()f“,)fz),...

(i) Weight vector for decision maker K9, q=1,2,...,1.
For the collection of ‘I' decision maker KV, K@, ... K", the
entropy E?, (g =1,2,...,1) is defined as
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o ey ()
E(Q)W;[SIH( 5 >+sm (# -1

(18)
where ¥ = L5 pl@ (2t +O — g — ag”).
In DM problems, if decision makers have comparable almost dis-
tinctive choices for different alternatives, the entropy value will
be bigger. That is, the more prominent value of entropy for deci-
sion maker, the smaller is the differences between the choices.
According to entropy theory, if the entropy value is smaller over
the choices then more valuable information is provided by the
decision maker in the DM procedure. Therefore, a decision maker
with small entropy value will be given the higher priority than
others. Then, by combining the above aspects, the weights for
decision maker K”;(q =1,2,...,]) based on the entropy E? is
defined as:

1—E@

2@ — :
I— Zq:l E(q)

) (19)
where /% € (0,1] and Y} ;49 = 1. From the Eq. (19), it can
easily conclude that smaller the value of E, the greater weight

will be assigned to the decision maker K'?.

(ii) weight vector for each criterion C;(j =1,2,...,n)

For the set of ‘n’ criteria C;,C,,...,C, of the collective decision
matrix, the entropy Fj, (j =1,2,...,n) is defined as

Fj= mﬁ; {sin (%C”) +sin (M) - l}

(20)

{i,-:l—d2<afj‘”7ocg>
1
1¢ 107 0, W Uy of 055\
:TZ |:1<3|pijtp$t| +|PUT*P.§T\ HPUT*%T\

(21)

Here of = (s(,;,s.,,;,sgi;,pg) is a positive ideal solution and

d, (ocij, oc;) is the Euclidean distance between the each prefer-
ence value of decision matrices and the positive ideal preference
values . In order to evaluate the information by considering all

the aspects, we define the weights of criteria by using entropy F;
as follows:

__1-F
n—3F
where w; € (0,1] and E}’lej = 1. From the Eq. (22), it can easily

conclude that smaller the value of F;, the greater weight will be
assigned to the criteria w;.

Wj

Now, based on the collective information under PLSVN environ-
ment and the weight vector, we develop two new approaches
based on COPRAS and the aggregation operators to find the most
accessible alternative(s). The procedure steps falls under these
approaches are described as below.

5.2. Approach based on COPRAS method

In this section, we present a decision making approach to rank
the given alternative(s) by using proposed COPRAS method under
PLSVN environment. The steps involved for solving the group deci-
sion making problems under this approach are summarized as
below, where the flow chart is presented in Fig. 1.

Step 1: Aggregate the preferences of each decision matrix given
by the different decision makers K'? in the form of the decision
matrices M@ = (osz”) into a single decision matrix M = (o) by
utilizing the PLSVNWA operator.

Step 2: Compute the weighted decision matrix K,, by using Eq.
(12).

Step 3: By using Eq. (13) to compute the aggregated values of
the weighted decision matrix for benefit type criteria.

Step 4: Utilize Eq. (14) to aggregate the rating values of the cost
type criteria into a single ones.

Step 5: Compute the relative priority values of each alternative
by using Egs. (15) and (16).

Step 6: Determine the utility degree for each alternative by
using Eq. (17).

Step 7: Rank the alternative according to decreasing order of
the utility degree.

5.3. Approach based on the aggregation operators

In this section, we present a decision making approach to rank
the given alternative(s) by using the proposed weighted averaging
or geometric aggregation operators. The steps followed under this
approach are summarized as below, where the flow chart is pre-
sented in Fig. 2.

Step 1: In the decision matrix M@, transform the rating values
((x,?;’)) of each cost type criteria into the benefit type by using
the normalizing formula as

@ .
(S(,Igjm ’SwfﬁJ ,S,,ém iPjj > ;

ij
(50@) 1Sy 831 — Y ) ;  forcost type criteria

for benefit type criteria

)

(23)

and hence obtain the normalized decision matrix HY = (rE}”) cor-

responding to each decision maker.
Step 2: Aggregate the preferences of each decision maker
towards the each alternative into the collective one. For it, the
preferences values r§j">,q =1,2,...,1 are aggregated either by
using PLSVNWA or PLSVNWG operator. For instance, if we uti-

lize PLSVNWA operator and weight vector 1% to aggregate each
decision maker preferences corresponding to each alternative
then the overall values of alternative A; under criteria Cj,

denoted by o = (soij,swﬁ,sgq; pij> is given by

2 =PLSVNWA (ri"r?....1{))
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Fig. 1. Flowchart of the proposed approach based on COPRAS method.
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Fig. 2. Flowchart of the proposed approach based on aggregation operators.
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On the other hand, if we utilize PLSVNWG operator to aggregate the
preference values of each decision maker then the aggregated val-
ues are computed as

2% =PLSVNWG () r?...1{))

gty o

(25)

Step 3: Aggregate the values o;(j = 1,2,...,n) by utilizing the
weight vector of criteria w;(j = 1,2,...,n) and the appropriate
averaging or geometric aggregation operator to get the collec-
tive values of each alternative o;(i = 1,2,...,m). For instance,
if we take PLSVNWA operator to aggregate each value then
we get the collective value o; = (sy;,Sy;,S5,;P;) as

o f] :PLSVNWA((ZI] , Uiz, .,O(in)

(26)

On the other hand, by taking PLSVNWG operator to aggregate the
values, we get

:PLSVNWG((X” ,02, ... -,‘“in)

Step 4: Compute the score value of the aggregate number
o = (So;,Sy;»Se,iP;),1=1,2,...,n by using Eq. (7) as

pi(2t + 0 — i — 03)
3t

However, if the score values of two aggregated PLSVNNs are equal
then, calculate their accuracy values using the Eq. (8):

Sc(oy) =

i(0i + 4 + 0

Step 5: Obtain the ranking order of alternatives using Definition
3.3 and hence select the most desirable one(s).

(29)

6. Numerical example

The above presented approaches are illustrated with a numeri-
cal example related to outsourcing supplier selection problem and
compared their results with some of the existing approaches.

In the following case study, we discuss about the IT Outsourcing
Selection problem. Millennium semiconductors (MS), established
in October 1995, is an ISO 9001 — 2015 organization with distribu-
tion of electronic components as its core expertise. MS is the lead-
ing distributor of electronic components in India is synonymous
with innovation and today it is one of the most reputed name in
market. MS has established roots in almost every region of India
with catering more than 1500 customers all segments from last
two decades. It participates in innovative work, creation and show-
casing of items, for example, full shading ultra brilliance LED

epitaxial items, chips, compound sun powered cells and high
power concentrating sun oriented items. The branch workplaces
of MS is situated in Delhi, Bangalore, Hyderabad, Ahmedabad,
Chennai and Mumbai in India and abroad workplaces in Singapore
and Shenzhen (China). MS contributes the extraordinary layer part
of labour and financial resources to its competition rather than IT.
The outsourcing of IT is a better option for MS as of its lack of
ability to do it efficiently. Therefore, MS selects the following
outsourcing providers: Tata Consultancy Services (A;), Infosys
(A2), Wipro (As3), HCI (A4) and TatvaSoft (As) under the four criteria
namely, Design development (C;), Quality product (C;), Delivery
time (C3) and Cost (C4). Now to find the more suitable or best
outsourcing provider among the above choices, MS hires the
three decision makers KV, K® and K® who have the
responsibilities to evaluate the given alternatives and rate their
preferences in terms of PLSVNN on the basis of linguistic
term set Q = {sp = “extremelypoor”,s; = “verypoor”,s, = “poor”,
s3 = “slightlypoor”, s, = “fair”, ss = “slightlygood”, s¢ = “good”,
s; = “verygood”, sg = “extremelygood” }. The rating values of these
decision makers are summarized in the form of the matrices in
Tables 1-3 respectively.

In order to compute the importance of each decision maker and
criterion, we find the weight vector associated with them by using
rating values of each decision maker summarized in Tables 1-3.
For it, by using Egs. (18) and (19), we compute the weight vector
to the decision maker K9 g=1,2,3 as iV =0.3333,.@ =
0.3337 and 2® = 0.3330. Similarly, the weight vectors correspond-
ing to each criteria are computed by utilizing Egs. (20) and (22) and
hence we get w;=0.3188,w, =0.2345 w3 =0.1666 and
w4 = 0.2801. Then, based on these information, we applied the
above developed two approaches to find the most desirable alter-
ative(s).

Table 1
PLSVN decision matrix given by decision maker K",
G C, Cs Cy

Ay (S6,52,51; 0.3) (S6,52,56; 0.4) (S6,52,54; 0.7) (s3,52,52; 0.6)
Ay (85,581,525 0.4) (85,581,515 0.6) (54,52,82; 0.7) (S6:51,82; 0.5)
As (S4,82,83; 0.5) ($5,82,53; 0.7) (54,584,525 0.8) (S5,52,54; 0.4)
Ay (s6,53,51; 0.6) (s3,52,55; 0.7) (s3,52,82; 0.6) (S6,53,53; 0.5)
As (54,52,54; 0.4) (s5,83,52; 0.3) (s5,52,81; 0.5) (54,51,51; 0.6)

Table 2
PLSVN decision matrix given by decision maker K.
G G C3 Cy
A (S6,52,52; 0.4) (S6,51,52; 0.8) (S6,52,53; 0.6) (S6:54,83; 0.5)
Ay (S5,51,52; 0.4) (S6,52,53; 0.2) (84,53,52; 0.3) (S5,51,52; 04)
As (S4,52,52; 0.8) (s3,52,82; 0.9) (54,52,52; 0.6) (85,582,835 0.7)
Aq (86,582,515 0.7) ($3,51,52; 0.6) (85,584,525 0.2) (S6,52,52; 0.5)
As (S4.54,81; 0.4) (s3,53,83; 0.3) (85,582,815 0.2) (S4,52,51; 05)
Table 3
PLSVN decision matrix given by decision maker K.
Cy G C3 Cy
Aq (s5,51,52; 0.5) (85,84,52; 0.7) (52,51,82; 0.6) (s5,52,52; 0.2)
Ay (S6,52,52; 0.2) (S6,53,52; 0.5) (83,584,825 0.5) (S4,52,815 0.5)
As (s5,53,52; 0.6) (54,53,52; 0.4) (54,53,82; 0.7) (s3,51,52; 0.7)
Ay (84,583,525 0.7) (s3,52,82; 0.7) (S6,54,52; 0.6) (S6,53,53; 0.6)
As (54,52,51; 0.8) (S4,52,54; 0.6) (5,52,52; 0.5) (s6,53,51; 0.5)
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The following steps of the proposed approach are executed on
to the considered data to find the most suitable alternative(s).

Step 1: Aggregate the given preferences values summarized in
Tables 1-3 by using PLSVNWA operator. The resultant matrix
is represented in Table 4.

Step 2: By using Eq. (12), the weighted decision matrix K, is
computed and their values are summarized in Table 5.

Step 3: By using Eq. (13), the aggregated values of all benefit
type criteria corresponding to each alternative A;(i=1,2,...,5)
are computed and get Q= (S39969,53.4511,53.7607;0.2726),
Q3 = (53.8201,53.1345,53.5190;0.2320), Q3 = (52.7389,54.0031,54.0034; 0.3567),
Q4 = (83.0427,53.8353,53.4440;0.3466) and Qs = (S2.5758,54.2611,53.7606
0.2721).

Step 4: The aggregated values of the alternatives corresponding
to the cost type criteria are computed by using Eq. (14) and we
get Ty = (Sz8214,S3.8850, S4.7547; 0.2262), Ty = (S2.5772, S5.0721, $4.0373;
0.2125), T3 = (S2.3203, $5.0720, S4.7723; 0.2804), T4 = (S3.3650, S5.2943,
Saeass; 0.2256) and Ts = (S2.7551, S4.3069, S3.2846; 0.2137).

Step 5: By using Eq. (16), the relative priority values of each
alternative  are  computed and get V;=0.2357,
V, =0.2308,V; = 0.2472,V, = 0.2678 and V5 = 0.2070.

Step 6: The utility degrees for each alternative A;(i=1,2,...,5)
are computed by using Eq. (17) and hence we get
U, = 87.9963,U, = 86.1720,U; = 92.2850,U,4 = 100 and
Us = 77.2776.

Step 7: Based on the utility degree the ranking order of the
given set of alternative is As = As = A; = A; = As and hence
the best one is Aj.

6.2. Results based on aggregation operators

The following steps of the proposed approach based on the
aggregation operators are executed to find the most desirable
alternative(s).

Step 1: Since the criteria C3 and C4 are the cost types while
other are the benefit types, so by utilizing Eq. (23), we normal-
ize the rating values of each decision maker. The updated values
are summarized in decision matrices given in Tables 6-8
respectively.

Step 2: By taking weights of decision makers 29, q = 1,2,3, we
aggregate preference values corresponding to each decision
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Table 6
Normalized PLSVN decision matrix for K.
G G G Cq
Ay (S6,52,81; 0.3) (S6,52,6; 0.4) (84,582,865 0.3) (52,52,53; 0.4)
A (s5,51,52; 0.4) (85,51,51; 0.6) (52,52,84; 0.3) (s2,51,86; 0.5)
As (54,582,833 0.5) (S5,52,83; 0.7) ($2,54,84: 0.2) (S4,52,85; 0.6)
Aq (S6,53,51; 0.6) (53,52,55; 0.7) (52,52,53; 0.4) (53,53,56; 0.5)
As (54,52,54; 0.4) (5,53,52; 0.3) (51,52,85; 0.5) (51,51,54; 0.4)
Table 7
Normalized PLSVN decision matrix given for K.
Cq Cy C3 Cy
A (S6,52,52; 0.4) (S6,51,52; 0.8) (83,52,86: 0.4) (53,584,865 0.5)
Ay (S5,51,52; 0.4) (S6,52,53; 0.2) (82,583,845 0.7) (82,51,55; 0.6)
A3z (54,52,52; 0.8) (s3,52,52; 0.9) (52,52,84; 0.4) (s3,52,85; 0.3)
Ag (86,582,515 0.7) (s3,51,82; 0.6) ($2,54,85: 0.8) (52,582,865 0.5)
As (54,584,515 0.4) (s3,53,83; 0.3) (51,582,555 0.8) (51,52,54; 0.5)
Table 8
Normalized PLSVN decision matrix for K.
C] Cz C3 C4
Ay (85,581,825 0.5) (S5,54,82; 0.7) ($2,51,82: 0.4) (52,52,85; 0.8)
A, (S6,52,52; 0.2) (S6,53,52; 0.5) (52,54,53; 0.5) (51,52,54; 0.5)
Az (S5,53,52; 0.6) (54,53,52; 0.4) (52,83,54; 0.3) (s2,81,83; 0.3)
Aq (s4,53,52; 0.7) (53,852,523 0.7) (52,584,865 0.4) (53,53,56; 0.4)
As (54,582,515 0.8) (S4,52,84; 0.6) (82,582,555 0.5) (51,583,865 0.5)

maker by using PLSVNWA and PLSVNWG operators. The aggre-
gated values corresponding to them are summarized in Table 9
and 10 respectively.

Step 3a: By taking weight w;(j=1,2,3,4) of the criteria and
preference value summarized in Table 9, we compute the final
aggregated values of each alterative A;(i=1,2,...,5) by using
PLSVNWA operator. Their corresponding values are obtained
as o1 = (S46502,51.6759, S2.8675; 0.5346), 0z = (S4.2708, S1.9873, S2.6949;
0.4826), 03 = (53.9]77,52.5380152.98]4§ 0.5806), 0ty = (53.8576752.53827
S2.8849; 0.6080) and o5 = (S2.9333, S2.2040, S2.9741; 0.5278).

Step 3b: On the other hand, by utilizing the information values
given in Table 10 and PLSVNWG operator to compute the aggre-
gated value for each alterative A;(i=1,2,...,5), we get
o = ($3.9210, S1.8807, S3.8801; 0.4893), 0ty = (S3.2653, S2.3319, S33192;
0.4396), o3 = (S36117,S2.6842,53:3163; 0.5199), 014 = (S3.3501, S2.8224,
S41309;0.5920) and os = (522265, S2.4149, S3.7717; 0.4811).

C3

(@

(S5.116,51.5878, S2.8840; 0.6366)
($3.6914,S2.8842, S2.0000; 0.5281)
(S4.0000, $2.8841,52.0000; 0.7115)
(54.8924,53.1748, S2.0000; 0.4959)
(85.0000, 2.0000 S1.2596; 0.4151)

(54.8932,52.5204, S2.2897; 0.4572)
($5.1158,51.2506, S1.5878; 0.4686)
($4.4437, 515878, S2.8849; 0.6220)
(S6.0000, 52,6204, 52.6204; 0.5358)
(S4.8245,51.8169, S1.0000; 0.5358)

G

(@

Table 4
Aggregated decision matrix by PLSVNWA operator used in COPRAS method.
G G
Ay ($5.7109, S1.5878, S1.5871; 0.4056) ($5.7108, 51.9991, S2.8845; 0.6699)
Az (853789, 51.2596, S2.0000; 0.4233) (85.7106, S1.8169, S1.5874; 0.4570)
As (S4.3654, 522801, S2.2894; 0.6581) (S4.0848, 522891, S2.2894; 0.7382)
Ay (85.4807, 52.6204, S1.2596; 0.6698) (53.0000, 15870, 52.7144; 0.6698)
As (540000, $2.5204, S1.5874; 0.5838) (S4.0848,S2.6211,S2.8842; 0.4190)
Table 5
Weighted decision matrix.
G G
A (526315, 547775, S4.7772; 0.1316) (52.0346, S5.7788, S6.2977; 0.1624)
Ay (523946, 54.4376, S5.1423; 0.1347) (52.0344, 55,6507, 5.4746; 0.1096)
As ($1.7790, S5 3685 S5.3687; 0.2160) (512344, S5.9654, S5.9656; 0-1796)
Ag (52.4650, S5.6049, S4.4376; 0.2199) (S0.8350, S5 4743, S6.2086; 0.1624)
As (S1.5861, 555358, S4.7772; 0.1909) (512344, 61579, S6.2076; 0.1003)

(512506, S6.1108 S6.7500; 0.1097)
(S0.7836, S6.7497, S6.3504; 0.0905)
(S0.8724, 56.7496 S6.3504; 0.1232)
(51.1659; S6.8585 S6.3504; 0.0848)
(512059, S6.3504, S5.8796; 0.0707)

(51.8619; 55.0860, S5.6353; 0.1308)
(51.9884, 560116, S5.0860; 0-1341)
(S1.6251:S6.0115, S6.0120; 0.1793)
(525743, 56.1754, S5.8522; 0.1538)
(51.8242,S5.4257, Sa.a683; 0.1538)
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Table 9
Aggregated decision matrix by PLSVNWA operator.
C Cy C3 Cq
A (857100, 515878, S1.5874; 0.4056) (85.7109, $1.9990, S2.8844; 0.6699) (53.0678, 515878, S4.1617; 0.3684) (523542, 525205, Sa.4818; 0.6084)
Az (853789, 51.2596, S2.0000; 0.4232) ($5.7106, S1.8169, S1.5874; 0.4570) (52.0000, S2.8843, S3.6346; 0.5283) (516840, S1.2596, S4.9328; 0.5359)
As (S4.3654, S2.2891, S2.2894; 0.6581) (5408485522891, S2.28094; 0.7381) (82,7593, 52,8840, S4.0000; 0.3048) (53,8408, 51,5878, S4.2179; 0.4191)
Ag (85.4807, 52.6204, S1.2596; 0.6698) (53.0000, $1.5870, $2.7143; 0.6698) (52.0000, $3.1749, Sa.4812; 0.5842) (53.0000, $2.6204, S6.0000; 0.4687)
As (540000, 525205, S1.5873; 0.5838) (S4.0848,S2.6211,S2.8843; 0.4190) (513503, $2.0000, S5.0000; 0.6317) (51.0000, 518169, S4.5782; 0.4687)
Table 10
Aggregated decision matrix by PLSVNWG operator.
Cq Cy C3 Cy
A (S5.6466, S1.6840, S1.6837; 0.3915) (856467, S2.4811,53.8397; 0.6074) (52.8849; S1.6840, S5.166; 0.3634) (52,2808, 52.7593, S4.8933; 0.5428)
Az (853130, 51.3503, S2.0000; 0.3636) ($5.6463,52.0577, S1.6837; 0.3914) (52.0000, $3.0672, $3.6015; 0.4718) (515878, 51.3503, S5.1157; 0.5314)
As (S4.3085, 523534, S2.3537; 0.6215) (539144, 523534, S2.3537; 0.6318) (82,5205 53.0672, S4.0000; 0.2885) (534210, 16840, S4.4437; 0.3780)
Ag (852422, 52,6864, 51.3503; 0.6649) (53.0000, S1.6833,53.2377; 0.6649) (52.0000, $3.4212, Sa.8024; 0.5041) (53.0000, 2.6864, S6.0000; 0.4642)
As (540000, 527593, S2.1911; 0.5039) ($3.9144, 52,6870, S3.0672; 0.3779) (512596, $2.0000, S5.0000; 0.5849) (51.0000 $2.0557, Sa.8245; 0.4642)

Step 4: The score values of the collective values obtained during
Step 3a are computed by using Eq. (28) and get Sc(oy) =
0.3588,Sc(02) = 0.3134,Sc(03) = 0.3483,Sc(0y) = 0.3657 and
Sc(as) = 0.3005. On the other hand, the score values of the
aggregated PLSVNN obtained in Step 3b are Sc(o;)=
0.2887,Sc(0) = 0.2494, Sc(o3) = 0.2948,Sc(oy) = 0.3058 and
Sc(os) = 0.2413.

Step 5: The final ranking order of the given alternatives are
obtained as A4 = A1 = As = A; = As corresponding to PLSVNWA
operator while Ay = A3 = A; = A; = As to the PLSVNWG opera-
tor. Here - refers “preferred to”. Thus, we conclude that A, is
the best alternative among the given ones.

6.3. Comparative analysis

In this section, the proposed approaches are compared with the
various existing studies in order to defend its dominance in DM
problems. It is noticeable that the PLSVN environment reduces to
LSVN environment if we take the possibility of each element in
the PLSVNS as one. So, to analyze the behavior of our proposed
approaches, we compare them to the existing theories [36-38]
by taking the same numerical example. But for this comparative
study, we firstly convert the PLSVNNs into LSVNNs by fixing values

of pff =1;(i=1,2,3,4,5; j=1,2,3,4; ¢=1,2,3).

(i) Based on the reduction of PLSVNNs to LSVNNs, we apply the
approach given by Fang and Ye [36], on the considered example.
Under it, we aggregate the given preference values by using the
existing linguistic neutrosophic number weighted averaging
operator and hence obtain the score values of each alternative
Ai(i=1,2,...,5) as

Sc(A;) =0.7194;
Sc(A4) = 0.6968;

Sc(A;) =0.7423;
Sc(As) = 0.6945.

Sc(As) = 0.6554;

Thus, the ranking order of the given alternatives is obtained as
A, = Ay = Ay = As = As and hence conclude that A; is the best alter-
native.

On the other hand, if we utilize linguistic neutrosophic number
weighted geometric aggregation operator to aggregate the different
rating values then the score values corresponding to each alterna-
tive are obtained as

Sc(A;)=0.7111;
Sc(As) =0.6732;

Sc(A;) =0.7321;
Sc(As) = 0.6838.

Sc(A3) =0.6513;

Based on these score values, we obtain the final ranking order of the
alternatives as A, = A; = As = A; = As.
It can be easily seen that ranking results given by these operators
and the proposed approach based on operators are totally vary from
each other. This fluctuation in results is due to various reasons. The
approach used by the existing ones didn’t normalize the given data
but the our proposed approach do so. Also, the aggregation opera-
tors for PLSVNSs takes the possibility of each LSVNS but in the
aggregate process of the LSVNSs the possibility didn’t come into
play for numerical evaluations. Thus, we can conclude that the igno-
rance of the one factor, that is, possibility degree in the data shows
the great divergence in final results. But it is clear that involvement
of possibility of each member of the PLSVNS gives more reliable
information in case of complex uncertainties. Moreover, LSVNS is
the particular case of the PLSVNS. Thus, we can say proposed
approach based on operators give more genuine results than exist-
ing one.
(ii) If we utilize the prioritized weighted averaging aggregation
operator, as proposed by Garg and Nancy [38] to the considered
data then the final score values of each alternative
Ai(i=1,2,...,5) are obtained as

Sc(A) =0.7006;
Sc(As) = 0.6529;

Sc(A) =0.7002;
Sc(As) = 0.6226.

Sc(As) =0.6143;

Thus, the ranking order of the alternatives is obtained as
A; = Ay = A4 = As = A3 and get A, is the most desirable alternative.
On the other hand, if we utilize the prioritized weighted geometric
aggregation operator to the given information then the final scores
are obtained corresponding to the given alternatives are

Sc(A;) =0.6341;
Sc(A4) =0.5771;

Sc(A;) = 0.6356;
Sc(As) =0.5503.

Sc(A3) =0.5917;

Based on these score values, the final ranking order of the given
alternatives is obtained as A; =~ A; = As = A4 = As. From this study,
it is observed that the final ranking order of the given alternatives
obtained through the proposed approach and the existing
approaches is entirely different. This is due to the fact that the com-
putational procedure to find the weights of the factors of the pro-
posed approach is different from the existing studies. In the
existing studies, weights of each decision maker and criteria are
obtained by taking account the priority of each criteria while in
the proposed approach, these weights vector are computed by using
the entropy measures.
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(iii) If we apply the TOPSIS method, as proposed by Liang et al.
[37], under the LSVN environment to the normalized decision
matrices obtained by taking all the possibility degree to be
one, then the final ranking order of the given alternatives is
obtained as A, - A; = A; = Ay = As. Compared this ranking
order with the proposed ranking order by COPRAS method,
we found that ranking results by the TOPSIS method is far apart
from ranking results of COPRAS method. This difference is due
to the fact that both ranking methods adopt different strategies.
In TOPSIS, calculation and final ranking is obtained by involving
the concept of worst and the best ideal solutions of the
decision-making problems under consideration. In contrast to
this, COPRAS method gives the ranking results without finaliz-
ing the ideal solutions and use the procedure of aggregating
the benefit and cost criteria individually which is not done in
TOPSIS method.

6.4. Advantages of proposed approaches

This section explores the advantages of the proposed work as
follows.

(i) Real life DM problems are often possibilistic and as well as
qualitative in nature. This paper caught the significance of tak-
ing the idea of possibility along with the LSVNS in demonstrat-
ing the present practical circumstances. As the assigned
possibility degree to the element of LSVNS represents the pos-
sibility of occurrence of linguistic membership, indeterminacy
and non-membership, therefore, this combination has high
potential in true representation in the field of computational
intelligence.

(ii) From the presented study, it is observed that the proposed
operator is a generalization of the existing ones in the LSVNS
environment if we put the value of the possibility of each ele-
ment in LSVNS equals to 1. As we take possibility as 1, so the
proposed PLSVNWA and PLSVNWG aggregation operators
reduce to existing Linguistic neutrosophic number weighted
averaging and geometric operators [36], respectively. This
shows the proposed concept is much more generalized than
existing ones.

(iii) In this manuscript, we use the COPRAS method as the rank-
ing method which is a suitable strategy to prepare the informa-
tion in a sensible and effective way. The strategy used by the
COPRAS can process the criterion information from distinctive
points based on the complex proportional calculation, which
contains more accurate information compared with other
strategies basically dealing with the benefit criteria or the cost
criteria.

(iv) This paper introduces a new entropy measure that not only
provides the overall information about the amount of uncer-
tainty imbued in the specific structure but also used as an effec-
tive tool in the DM process. In the DM process, the allocation of
weights to the decision maker as well as criteria in order to sig-
nify the preference of the both, the proposed entropy measure
has been utilized. Thus, this paper gives us a way to find the
completely unknown criterion weights to decision maker and
criteria using entropy measure.

7. Conclusion

In this manuscript, we have introduced the new concept of
PLSVNSs along with information measures and aggregation opera-
tors under the same scenario. The current speculations just man-
age the qualitative aspects without incorporation of possibility
and hence the final outcomes are sometimes inadmissible in grab-
bing the best choice. To resolve this, this paper presents the LSVNSs

which are imbued with the possibility in the decision process and
are named as PLSVNSs. Also, in this paper, we give the operational
laws for this proposed set-theoretic structure with uncertainties
and then explore the various relationships among these operations.
Further, some weighted averaging and geometric AOs for the
PLSVNSs are proposed based on the averaging and geometric con-
ception for assembled the PLSVNSs in the single value. Moreover,
this paper presents a new way to rank the alternatives evaluated
under PLSVN domain by introducing the COPRAS method. Also,
the two approaches are given for evaluating the information with
completely unknown weights and these weights are calculated
by utilizing the entropy measure. The illustrative example demon-
strates all the concepts of the proposed work in this paper. Thus,
we can conclude that the proposed work is widely used in the dif-
ferent scenarios like: when decision maker provides the informa-
tion about the fact that ‘how much he/she sure about the
uncertain information evaluated by him/her?’; in the situations,
when we need to know the gap between the most beneficial choice
and the others choices; when the evaluators have no knowledge of
the importance of their decision as well the considered criteria.
Thus, the proposed concepts are efficaciously applicable to the sit-
uation under uncertainties and expected to have wide applications
in complex DM problems. In the future, there is a scope of extend-
ing the proposed method to some different environment and its
application in the various fields related to decision-theory [46-49].
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