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The aim of this paper is to propose the generalized version of the multipolar neutrosophic soft set with operations and basic
properties. Here, we define the AND, OR, Truth-Favorite, and False-Favorite operators along with their properties. Also, we define
the necessity and possibility of operations for them. Later on, to extend it to solve the decision-making problems, we define some
information measures such as distance, similarity, and correlation coefficient for the generalized multipolar neutrosophic soft set.
Several desirable properties and their relationship between them are derived. Finally, based on these information measures, a
decision-making algorithm is stated under the neutrosophic environment to tackle the uncertain and vague information. The
applicability of the proposed algorithm is demonstrated through a case study of the medical-diagnosis and the decision-making

problems. A comparative analysis with several existing studies reveals the effectiveness of the approach.

1. Introduction

Uncertainty plays a dynamic part in numerous fields of life
such as modeling, medical, and engineering fields. However,
a general question of how we can express and use the un-
certainty concept in mathematical modeling is raised. A lot
of researchers in the world proposed and recommended
different approaches to use uncertainty theory. First of all,
Zadeh developed the notion of fuzzy sets [1] to solve those
problems which contain uncertainty and vagueness. It is
observed that in some cases circumstances cannot be han-
dled by fuzzy sets; to overcome such types of situations,
Turksen [2] gave the idea of the interval-valued fuzzy set
(IVES). In some cases, we must deliberate membership
unbiassed as the nonmembership values for the suitable

representation of an object in uncertain and indeterminate
conditions that could not be handled by fuzzy sets or by
IVFES. To overcome these difficulties, Atanassov presented
the notion of intuitionistic fuzzy sets (IFSs) in [3]. The theory
that was presented by Atanassov only deals with the in-
sufficient data considering both membership and non-
membership values; however, the IFSs theory cannot handle
the overall incompatible as well as imprecise information. To
address such incompatible as well as imprecise records, the
idea of the neutrosophic set (NS) was developed by Smar-
andache [4]. A general mathematical tool was proposed by
Molodtsov [5] to deal with indeterminate, fuzzy, and not
clearly defined substances known as a soft set (SS). Maji et al.
[6] extended the work on SS and defined some operations
and their properties. Maji et al. [7] utilized the SS theory for
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decision-making. Ali et al. [8] revised the Maji approach to
SS and developed some new operations with their properties.
De Morgan’s Law on SS theory was proved in [9] by using
different operators.

Maji [10] offered the idea of a neutrosophic soft set (NSS)
with necessary operations and properties. The idea of the
possibility NSS was developed by Karaaslan [11] and in-
troduced a possibility of neutrosophic soft decision-making
method to solve those problems which contain uncertainty
based on And-product. Broumi [12] developed the gener-
alized NSS with some operations and properties and used the
proposed concept for decision-making. To solve MCDM
problems with single-valued neutrosophic numbers
(SVNNs) presented by Deli and Subas in [13], they con-
structed the concept of cut sets of SVNNs. On the basis of the
correlation of IFS, the term correlation coefficient (CC) of
SVNSs [14] was introduced. Ye [15] presented the simplified
NSs introduced with some operational laws and aggregation
operators such as weighted arithmetic and weighted geo-
metric average operators. Therein, a multicriteria decision-
making (MCDM) method was constructed based on pro-
posed aggregation operators. Masooma et al. [16] progressed
a new concept by combining the multipolar fuzzy set and
neutrosophic set, which is known as the multipolar neu-
trosophic set. They also established various characterizations
and operations with examples. Dey et al. [17] developed the
grey relational projection method based on NSS to solve
MADM complications. Pramanik et al. [18] extended the
VIKOR technique to solve MAGDM problems under a
bipolar neutrosophic set environment. Pramanik et al. [19]
established the TOPSIS technique to solve MADM problems
utilizing single-valued neutrosophic soft expert sets. Pra-
manik et al. [20] developed three different hybrid projection
measures projection, bidirectional projection, and hybrid
projection measures between bipolar neutrosophic sets.

Peng et al. [21] established the probability multivalued
neutrosophic set by combining the multivalued neu-
trosophic set and probability distribution and used it for
decision-making problems. Kamal et al. [22] proposed the
idea of mPNSS with some important operations and
properties; they also used the developed technique for de-
cision-making. Garg [23] developed the MCDM method
based on weighted cosine similarity measures under an
intuitionistic fuzzy environment and used the proposed
technique for pattern recognition and medical diagnoses. To
measure the relative strength of IFS, Garg and Kumar [24]
presented some new similarity measures. They also for-
mulated a connection number for set pair analysis (SPA) and
developed some new similarity measures and weighted
similarity measures based on defined SPA. Garg and Rani
[25] extended the IFS technique to complex intuitionistic
fuzzy sets (CIFS) and developed the correlation and
weighted correlation coefficient under the CIFS environ-
ment. To measure the relation between two Pythagorean
tuzzy sets (PES), Garg [26] proposed a novel CC and WCC
and presented the numerical examples of pattern recogni-
tion and medical diagnoses to verify the validity of the
proposed measures. Zulgarnain et al. [27] developed the
aggregation operators for Pythagorean fuzzy soft sets and
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proposed a decision-making methodology using their de-
veloped aggregation operators. They also utilized their
established decision-making technique for the selection of
suppliers in green supply chain management. Zulgarnain
et al. [28] extended the TOPSIS technique under Pythag-
orean fuzzy soft environment. Nguyen et al. [29] defined
some similarity measures for PFS by using the exponential
tunction for the membership and nonmembership degrees
with its several properties and relations. Peng and Garg [30]
presented some diverse types of similarity measures for PFS
with multiple parameters. Wang and Li [31] introduced
Pythagorean fuzzy interaction power Bonferroni mean
(PBM) operators for solving MADM issues. Wang et al. [32]
proposed the Pythagorean fuzzy interactive Hamacher
power aggregation operators for assessment of express
service quality with entropy weight. Saeed et al. [33]
established the concept of mPNSS with its properties and
operators; they also developed the distance-based similarity
measures and used the proposed similarity measures for
decision-making and medical diagnoses.

Gerstenkorn and Mafiko [34] proposed the functional
measuring of the interrelation of IFSs, which is known
nowadays as correlation, and developed its coefficient with
properties. To measure the interrelation of fuzzy numbers,
Yu [35] established the CC of fuzzy numbers. Evaluating the
CC for fuzzy data had been developed by Chiang and Lin
[36]. Hung and Wu [37] proposed the centroid method to
calculate the CC of IFSs and extended the proposed method
to interval-valued intuitionistic fuzzy sets (IVIFSs). Hong
[38] and Mitchell [39] also established the CC for IFSs and
IVIESs, respectively. Ye [40] extended the work on IFSs and
developed the CC of a single-valued neutrosophic set and
developed a decision-making method for similarity measure.
Xue et al. [41] developed the CC on a single-valued neu-
trosophic set and proposed a decision-making method for
pattern recognition. Zulqarnain et al. [42] utilized the
neutrosophic TOPSIS in the production industry for sup-
plier selection. Garg and Arora [43] introduced the corre-
lation measures on intuitionistic fuzzy soft sets and
constructed the TOPSIS technique on developed correlation
measures. In Iryna et al.’s work [44], an algorithm has been
proposed to handle uncertainty in fault diagnoses by using
single-valued neutrosophic sets. Faruk [45] established CC
between possibility NSS and proved some properties. He
also developed CC for a single-valued neutrosophic refined
soft set, and it was used for clustering analysis [46]. A
correlation measure of neutrosophic refined sets has been
developed, which is the extension of the correlation measure
of neutrosophic sets and intuitionistic fuzzy multisets [47].

In this era, professionals consider that the real life is
moving in the direction of multipolarity. Thus, it projects as
no surprise that multipolarity in information performs a
significant part in flourishing numerous fields of science as
well as technology. In neurobiology, multipolar neurons in
the brain gather a good deal of information from other
neurons. In information technology, multipolar technology
could be used to control extensive structures. The motivation
of the present research is extended and hybrid work is given
step by step in the complete article. We demonstrate that
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different hybrid structures containing fuzzy sets are con-
verted into the special privilege of mPNSS under whatsoever
appropriate circumstances. The concept of a neutrosophic
environment to a multipolar neutrosophic soft set is novel.
We tend to discuss the effectiveness, flexibility, quality, and
favorable position of our planned work and algorithms. The
present research will be the most generalized form and is
used to assemble data in considerable and appropriate
medical, engineering, artificial intelligence, agriculture, and
other everyday life complications. In the future, the present
work might be gone competently for other approaches and
different types of hybrid structures.

The remainder of the paper is organized as follows: in
Section 2, we recollected some basic definitions which are
used in the following sequel such as NS, SS, NSS, and
multipolar neutrosophic set. In Section 3, we proposed the
generalized version of mPNSS with its properties and op-
erations, and we also developed the Truth-Favorite, False-
Favorite, AND, and OR operators in this section. In Section
4, distance-based similarity measures have been developed
by using Hamming distance and Euclidean distance between
two generalized multipolar neutrosophic soft sets
(GmPNSS). In Section 5, the idea of CC and WCC with their
properties has been established. Finally, we use the devel-
oped distance-based similarity measures and CC for medical
diagnoses and decision-making in Section 6. We also present
the comparative study of our proposed similarity measures
and CC with some already existing techniques in Section 7.

2. Preliminaries

In this section, we recollect some basic concepts such as
neutrosophic set, soft set, neutrosophic soft set, and m-polar
neutrosophic soft set, which are used in the following sequel.

Definition 1 (see [4]).

Let 2% be a universe and let &/ be an NS on % defined as
A ={u, (uy u),vy ), wy (u): ue %}, where u, v, w: %
— 07, 1" and 0" <uy (u) +vy (u) +wy (u) <3*.

Definition 2 (see [5]).

Let % be the universal set and let & be the set of at-
tributes concerning %. Let 2 (%) be the power set of % and
ACE. A pair (F,9) is called a soft set over % and its
mapping is given as

Fod — P(U). (D

It is also defined as
(F,d)={F(e) e P(U):ec & F(e)= Dife ¢ A}
(2)

Definition 3 (see [10]).

Let 2 be the universal set and let & be the set of at-
tributes concerning %. Let 9 (%) be the set of neutrosophic
values of  and A C&. A pair (¥, ) is called a neutrosophic
soft set over % and its mapping is given as

F.d — P(U). (3)

Definition 4 (see [16]).

Let % be the universal set and let & be the set of at-
tributes concerning %; then F is said to be a multipolar
neutrosophic set if Fy ={u, (s;ou, (u), s;®v,(u),s;
ew,(u): uelU,eecE i=1,23,...,m}, where
S;®Ug, S; Vg, s;0Wg: U — [0, 1], and 0 < s;0uy (1) +
s;ove(u) + s;owg(u) <3;i=1,2,3,...,mu,v,and w,
represent the truth, indeterminacy, and falsity of the con-
sidered alternative.

3. Generalized Multipolar Neutrosophic Soft Set
(GmPNSS) with Operators and Properties

In this section, we develop the concept of GmPNSS and
introduce aggregate operators on GmPNSS with their
properties.

Definition 5. Let % and E be universal and set of attributes,
respectively, and & CE, if there exists a mapping ® such that
®: 9/ — GmPNSS”, (4)

then (@, &) is called GmPNSS over % defined as follows:
Y. =(D, ) ={(e, (u, Dy (u))): e €Euc %}, (5)

where @, (e) = {u, (si®Ug o) (U), 5@ V(e (1), s;0Wy
(W): ue U e €kE;i€l,2,3,...,mhand 0< s;0uy(,

() + 5,0V (U) +s;0wy (1) < 3foralliel,2,3,...,m;
ecEanduc .

Definition 6. Let Y, and Y be two GmPNSS over %; then
Y, is called a multipolar neutrosophic soft subset of Yy, if
S;® Uy () (1) <5 0Up () (1),

S; 9V (o) (W) <505, (1), (6)
S; @ Wy () (U) =5 owp, (1),
foralliel,2,3,...,mecEand ue %.
Definition 7. Let Y, and Y be two GmPNSS over %, then
Y, =Yy, if
S;® Uy () (1) <s;0up(, (1),
s;®upy (u) <s;ouy ) (1),
i ® V(o) (1) 25,0 vp () (1), )
i@ Vg (U) 25,0V, (1),
;@ Wy (e (U) 25, 0 wp(,) (1),
S;® Wy, (u) =s; Wy (e (u),
foralliel, 2,3,...,mec Eandu € %.

Definition 8. Let #_ be a GmPNSS over %, then empty
GmPNSS can be represented as F; and defined as follows:
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Fo={e,(u, (0,1,1), (0,1, 1),..., (0, 1,1): e € E, u € %}.

Definition 9. Let F , be a GmPNSS over %, then universal
GmPNSS can be represented as Fj; and defined as follows:

Fip={e (u, (1,0,0), (1,0,0),..., (1,0,0): ecE, uec%.

Definition 10. Let ¥, be a GmPNSS over %, then the
complement of GmPNSS is defined as follows:

F(e) ={(e; (t ;0w (W), 1= 50V (W), 50Uy (W)): ue %},

foralli€l,2,3,...,mecEandu € %. 3) (Fp)=F;

Proposition 1. If #, is a GmPNSS, then
D) (FY =F4
2) (Fo) =Fp

Proof. Let

Fy(e) ={(e, (u, (siouﬂ(e) (1), s;9vy (e (1), si-wm(u)))): uelU,e€E;i€l,2,3,...,m }

Then, by using Definition 10, we get

F,(e) :{(e, (u, (siowd(e) (U), 1= s5;9v ) (1), 59U, (u)))): ueU,ecE;iel,2,3,..., m}.
Again, by using Definition 10,
(F5,(e) = (e, (u, (sioud(e) (u), 1 —(1 — 5%y (0 (u)), %Wy () (u)))): uelU,e€E;i€l,2,3,..., m},

(F5, ) :{ (e, (u, (Si.ud(e) (1), 5,9V (), S;9W () (u)))): uelU,e€E;i€l,2,3,...,m },

(F5,(e) =F(e).

Proof. Let F; be an empty GmPNSS over %.

Fy=1e(u, (0,1,1), (0,1,1),..., (0,1,1)): ec E, u e U}

(8)

)

(10)

(11)

(12)

(13)

(14)
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Utilizing Definition 10,

(F5) ={e (u, (1,0,0), (1,0,0),..., (1,0,0): e €E, ue¥}, (15)

(Fo) = Fp. (16)

O Definition 11. Let F (. and &g, be two GmPNSS over %.
Then,

Similarly, we can prove 3.

max{ S;%U () (1), s;oUp(, (u)}

F V5 = e, | u, min{siovﬂ(e)(u), ;% () (u)} ruelU,e€eE;iel, 2,3,...,m¢. (17)

min{ 5;9W () (1), sowB(E)(u)}

3) 9’}1 U ?B:?B U '?A

Proposition 2. Let F;, G5, and ' be GmPNSS over %.
(4) (97A U ?B)U %ngA U (?B U %C)

Then,

(1) F4 U

F
2 Fz U Fyg=F; Proof. Let

F 4 (e) ={(€, (u) (SOMA e)(u) Si®Vi(e) (u), S; %Wy (o) (u)))) uelU,ecE;i€l, 2,3,..., m}, (18)
be a GmPNSS. Then,
max{siouA(E) (1), s;®uj (u)}
F(UF,(e) = u, | minfsevs e ), sovic )] cuecU,ecE;i€l,2,3,...,mp, (19)
min{s;ewy ) (1), 59wy, (1)}
F (e u, '”A( ) (1), s;ovy ) (u), s;owy (u)))): uelU,e€ek;i€l, 2,3,..., m}, (20)

1={(e
UF 3 =F;.

By using Definition 11, we can easily prove the  Definition 12. Let ¥ and &g, be GmPNSS over %.

remaining properties. O Then,

min{sioume) (1), s;®up(e) (”)}

Fope)NTpe) = e, | u, max{siovd(e) (1), s;9Vp(e) (u)} cuelU,e€Ei€l, 2,3,...,m . (21)
max{siowd(e) (u), s;owp (u)}
Proposition 3. Let 3, 3, and ' be GmPNSS over %. 2) Fz 0N Fyg=F;
Then, (3)97}& n‘C}TE:gE

(l)gAﬂgAZgA (4)‘0;}&0?3:?30928
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(B)(Fi NN He=F; N (% N He) 1) (E/TA(E)U?B(e)f:gvg(e)ngcg(e)
(@) (FawNGre) =F49Y T3
Proof. By using Definition 12, the proof is easy. O

Proposition 4. Let % ; and &}, be GmPNSS over %. Then, ~ Proof. We know that

F 5 (e) :{(e, (u, (situA(e) (1), s;ovj () (1), s;owy (u)))): uelU,e€E;i€l, 2,3,..., m}, (22)
Zj(e) :{ (e, (u, (51’“3(3) (1), s;ovp () (U), s;owp (u)))): uelU,ecE;i€l, 2,3,..., m}, (23)
are two GmPNSS. By using Definition 11,

max{simA(e) (1), s;oup(,) (”)}
Fa@UGs=1 | & | u| minfsevsq W), sevs W)} uetheeBiel a3 om (29

min{s,-owA(e) (u), 5;9Wp ) (u)}

Now, by using Definition 10,

min{siow,;(e) (u), Si®Wg () (”)}
(Fa(@U gé(e))c =1 | e|u| 1-minfsevy ), sovye )} cueU,ecE;i€l,2,3,....,m¢. (25)

max{si o uj( (u), s;oup (”)}

Now,

F 4 (e)° ={(e, (u, (siowA(e> (1), 1= s;0v3, (u), s;ouy, (u)))): ueU,ecE;iel, 2,3,..., m}, (26)

?g(e) ={(e, (u, (siowB(E) (1), 1= s;9 v, (1), s;oug (u)))): uelU,e€E;i€l, 2,3,..., m}. (27)

By using Definition 12,

min{si CWy (), s; *wg(, (u)}
Fa@ NG5, =1 | &| u | max{l—sevy, w),1-sevy, W)} cueUecE;iel,2,3,...m¢, (28)
max{si oUj () (1), s; oUp(, (u)}

min{si QW (U), s; @ wp(, (u)}

gA(e)C n ?g(e) =<2 le|u]| 1- min{siovA(e) (1), s;®vp(,) (u)} cuelU,e€E;i€l,2,3,...,m ¢. (29)

max{si *Uj (e (), s; oUg () (u)}

Fi(UCs ¢ =F;()°nEs, . (30)
Hence, a(e) B(e) ale) B(e) O
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Proof. We know that

F 5 (e) ={(e, (u, (Si'”A(e) (1), 5,9V () (1), s;0W}5 (u)))): uelU,e€eE;i€l,2,3,..., m},

Zj(e) ={ (e, (u, (%'“B(e) (W), s;®Vp () (1), s;owp, (u)))): uelU,ecE;i€l, 2,3,..., m},

are two GmPNSS. Utilizing Definition 12,

min{siouA(e) (u), s;oup, (u)}

F i) NGpe) = e, | u max{siovA(e) (1), s;%vp(,) (u)} cruelU,e€eE;iel, 2,3,...,m

max{s,-'wA(E) (u), s;owp, (u)}

By Definition 10,

max{siowA(e) (1), s;owp(, (u)}

c
(%A(e) nGB(e)) = e, |u | 1- max{siwA(e) (1), 5,9V, (u)} cuelU,eeEjiel, 2,3,...,m

min{siouA(e) (u), s;oup, (u)}

Now,

F i (e)C ={(e, (u, (siOwA(e) (1), 1—5;9v5(,) (u), 5,015, (u)))): ueU,eceE;i€l, 2,3,..., m},

?g(e) ={(e, (u, (siowB(e) (1), 1= s;9vp, (u), s;oug, (u)))): uelU,ecE;iel, 2,3,..., m}.

By using Definition 11,

max{si Cwy () (1), s; o wp, (u)}

F i (e)cu‘fg(e) =1 ]e|u min{l — 5% (1), 1 —siovB(e)(u)} cuelU,e€eE;i€l,2,3,...m

min{si *Uj () (1), ; oUg(, (u)}

max{si CWj i, (u), s;® Wp(e) (u)}

Fie)u ?(Bj(e) =1 |e|u] 1- max{siovA(e) (u), siovB(e)(u)} ruelU,e€E;i€l, 2,3,...,m

min{si oUj () (1), s; oUp(, (u)}

Hence,

c C C
(FawNGre) = FawY T (39)

Y

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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Proposition 5. Let *G}Aie)) ?B(e), and %c(e) be GmPNSS over (3) J*A(e U (J«A(e) N Gy )) JA(e)
4. Then, (4) Fp1ep N (F a9 Y g13(e))—‘9"fx(e)
M Faiey Y Gpiey N Fcty) = Faig Y i) N
(‘/’Afe) U Cle)

P "~ We k that
Q) Fp N (Gyy U Hop)=(Fag N Gy 100k Welnowitha

U (gA(e) n %Cfe))

min{siouB(e) (u), Si®UC,) (u)}
G N i) = e | u, max{siovB(e) (u), Si*Vcio (u)} cuelU,e€E;i€l, 2,3,...,m

max{s,-‘wB(e) (), sipwcy, (”)}

(40)
max{siouA(e) (u), min{s Uzl (u), s; UG (u)}}
g:Afe) u (?B(e) ﬂ?fc@) = e, | u, min{siovA(e) (u), max{siovB(e) (u), Si*Vcie) (u)}} cuelU,e€E,;
min{s,-owAEe) (u), max{siowB(E) (u), S *Weie) (u)}}
iel, 2, 3,...,m},
(41)

min{s,ﬁuAEe) (1), s;oup, (u)
gAEe)ngB(e): e, | u, max{s»ovA(e (u), S-OVB(e)(u) cuelU,e€E;i€l,2,3,....,m¢,
max{s W,y (u), S;®Wpg(,) (u)

(42)

FaigN i = e | u, max{ Si®Va(e (W), sovc(e)(u) ruelU,ec€E;i€l,2,3,...,m

min{s U, (1), Si%Ucr, (u) )

max{siowAZe) (u), s S OWe(, (u)

(43)
max{min{s 0u;~ (u),s; u (u)]> mm{ 0u~ (u),s; u (u)]»}
(F}A(e) N ?B(e)) U (S‘TA(e) n %C(e)) = e | u, min{max{siov;;) (u),s,-ova; (u)}, max{siov; (u),s,.ovc—: (u)” ueU,
min{max{siow&; (u),siowgz:) (u)}, max{s 0w~ (u), s; w (u)H
ecE;iel,?2, 3,...,m},
(44)
max{siouA(e) (u), min{spuB(e) (u), Si®UCl,) (u)}}
(‘G/:Aie) n ?B(e)) u ((%”A(e) n%cZe)) = e | u, min{s *Vale) (u), max{ S ®Vp( )(u) Si*Vcie) (u)}} ruel,
(45)

min{siowA(e) (u), max{siowB(e) (u), ;%W (u)}}

eeE;iel,Z,Zw,...,m}.
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Hence,

F 210 Y(Zi0 N 1) =(F a0 Y E10) N (Fato U i)

Similarly, we can prove other results.

u(ngUs?B) =9

<

V(F4U,.%5)

w(F4U,9%) =

O

S;9U 4 () (u),

;9 Up () (u),

[ Si®Vae) (1),

5;® Vp(e) (1),

. maX{Si'UA(e) (u), s;oup, (u)},

min{sio Vaie) (U), S:9Vp () (u)},

S;OW4 () (u),

s;oWp(,) (1),

ifee A-B,
ifee B—A,
ifee ANB,
ifee A-B,

ifee B—A,
ife e ANB,

ifee A-B,
ifee B— A,

min{sio Wy () (W), s;0wp (u)}, ifee ANB.

Example 1. Assume that % ={u,, u,} is a universe of dis-
course and let E={x,, x,, x5, x4} be a set of attributes and
A={x,, x,} and B={x,, x;} CE. Consider & ;) and T3,
€ G3-PNSS over % can be represented as follows:

( (50 {1y, (5,.2,.1), (3,.1,.2), (6,

gAzd

(uy (1,.1,.4), (.3,.3, 1), (.5, .3,

<

u(F,n,.95)

<

v(FAN,Y5)

7,.8)) )
(4, (:2,.3,.1), (:2,.1,.1), (.8, .6,
(%, {uy, (:3,.1,.3), (0, .1,.3), (.5, .
(4, (:2,.2,.5), (.3,.1,.5), (.6, .5,

(x5, {uy> (4,.3,.2), (.2,.3,.4), (.7,.
(uy, (.1,.5,.1), (.3,.2,.2), (.5,.7,
(x5 {uy, (:2,.3,.2), (.1,.2,.2), (4,.

6))
3,.5))

6))
(50)

4,.5)) )
4))
4,.5))
1))

(51)

[ s;0u, () (1),

S;® HB(e) (H),

min{si° Up (o) (1), 5;9Up (u)},

(5 Va(e) (1),

5i® V(o) (u),

Then,

FaU g =1

(x1 {ups (5,.2,.1), (.3,.1,.2), (.6, .7, .8))
(uy (2,.3,.1), (:2,.1,.1), (.8, .6, .6))
(x5, {uy, (4.1, .2), (:2,.1,.3), (.7, .3,.5))
(uy (:2,.2,.1), (:3,.1,.2), (.6, .5, .4))
(x5 {uys (:2,.3,.2), (1,.2,.2), (4, .4,.5))

(tyy (1,.1,.4), (3,3, 1), (.5,.3,.1))

(46)

Definition 13. Let %4 and &3 be GmPNSS, then their
extended union is defined as

(47)

(48)

(49)

(52)

Definition 14. Let ¥ ; and & be GmPNSS; then their
extended union is defined as

| max{s,-' Va(e) (1), 59V, (”)}’

ifee A-B,
ifee B—A,
ifee ANB,
ifee A-B,
ifee B- A,
ifee ANB,

(53)

(54)
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SO Wy () (1), ifee A—B,
w(gAﬂegg) =4 S;®Wpg(e (u), ifee B— A, (55)

max{sio Wy () (1), s;owp, (u)}, ifee ANB.

Definition 15. Let ¥ and &3 be GmPNSS, then their
difference is defined as follows:

F i\ = {(e, (u, min{siouA(e) (), s;0up, (u)}, max{siovA(e) (1), 1 = s;9vp,, (u)}, max{sio Wy () (1), ;2 Wp () (M)}))i

ueU;ie€l,23,..., m}
(56)

Definition 16. Let ¥ ; and & be GmPNSS, then their
addition is defined as follows:

Fi+8p= {(e, (u, min{siouA(e) (u) + s;oup, (u), 1}, min{ s;®v, ) (1) + s;ovg(e) (u), 1}, min{s;e w, (1) + s;® wy (u), 1}):
uelU;iel, 2,3,..., m)}.

(57)

Definition 17. Let & ; be a GmPNSS, then its scalar mul-
tiplication is represented as & ; (e). a, where a € [0, 1] and it
is defined as follows:

F 4 -a={e, (u, min{s;ou, ) (u).a, 1}, min{s;®v,, (u).a, 1}, min{s;ow,, (u).a,1}: ueU)}. (58)

Definition 18. Let F ; be a GmPNSS, then its scalar division
is represented as F ;/a, where a € [0, 1] and it is defined as
follows:

Fila= { e, (u, min{ siow, 1 }, min{ Si'w) 1 }, min{ siow, 1 }: ue€ U) } (59)
a

a a

Definition 19. Let & 3 be a GmPNSS over %, then Truth-
Favorite operator on & ; can be represented by AF ; and it
is defined as follows:

AF :({e, u, min{siouA(e) (1) + s5;9v, () (1), 1},0, Si0W 4 () (1) }: uelU;iel, 23,..., m). (60)
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Proposition 6. Let F 3 and G5 be GmPNSS over %. Then,
(1) MAF 5 =AF 4
(2) A(FRU%y) CAF UAG
(3) AM(F 3N Cp) CAF 3 NAG,
4) 3(9A+53)=Zggx+2f3

VF,4 ={e, (u, si%U4 () (1), O, min{sich(e) (1) + 5,9V (1), 1}: ueclU;iel, 2,3,..., m) }

Proposition 7. Let F 3 and G be GmPNSS over %. Then,
1) \VAY Fi= \Y Fi
)V (F ugy)cVF UV g,
B)V(FinEp)cVF; NV Gy
WV (Fi+%p)=VF,+VZG,
The proof of the above proposition is easily obtained by
using Definitions 11, 12, 16, and 20.

Definition 21. Let & ; and &3 be GmPNSS; then their AND
operator is represented by F 3 A € and it is defined as

11

The proof of the above proposition is easily obtained by
using Definitions 11, 12, 16, and 19.

Definition 20. Let F ; be a GmPNSS over %, Ehen False-
Favorite operator on % ; can be represented by V.# ; and it
is defined as follows:

(61)

follows: F 3 N Gp=1,,5, where l,,5(x, y)=F ,(,,(x) N
gB(e)()’) for all (x, )/) € AXB.

Definition 22. Let % ; and & be GmPNSS; then their OR
operator is represented by F; V € and it is defined as
follows: F 3 vV G5 =1,,5 where 1,,5(x, y)=F ,, (x) U
?B(e)(y) for all (x, y) € AxB.

Example 2. Reconsider Example 1.

- _{ (x1, {uys (5,.2,.1), (3,.1,.2), (.6,.7,.8)) (up (:2,.3,.1), (:2,.1,.1), (.8, .6, .6)) } -
A0 (0 {uy, (3,.1,.3), (0, .1,.3), (:5,.3,.5)) (uy (2,.2,.5), (.3,.1,.5), (.6,.5,.6)) |
. _{ (% {uy, (4,.3,.2), (:2,.3,.4), (.7, .4,.5)) (uy (.1,.5,.1), (.3,.2,.2), (.5 .7, .4)) } (63)
BT (g {uy, (2,.3,.2), (1,2, .2), (4, 4,.5)) (uy (1,.1,.4), (:3,.3, 1), (5.3,.1) |
(%1, %), (uy, (4,.3,.2), (:2,.3,.4), (.6,.7,.8)), (t4y, (.1,.5,.1), (.2,.2,.2), (.5,.7,.6)),
F ATy = (1, %3)s (w1, (2,.3,.2), (.1,.2,.1), (:4,.7,.8)), (t4y, (.1,.3,.4), (.2,.3,.1), (.5,.6,.6)), 0

(%3, %5), (uy, (.3,.1,.3), (.0,.1,.3), (.5,

3,.5)), (uy, (.2,.2,.5), (.3,.1,.5), (.6,.5,.6)),

(%3, %3), (uy, (:2,.1,.3), (.0,.2,.3), (.4,.4,.5)), (u,, (.1,.2,.5), (.3,.3,.5), (.5,.5,.6))

Proposition 8. Let F 3, &5, and # be GmPNSS. Then,
(1) FVG3=83VF
(2) F NGy = GpNF
(3) F V(v ) = (F VG )VH ¢
(4) FN(GyNH ) = (F NG )NK ¢
(5) (F3vG5)°" = F(ANG (B)
(6) (FanTp)° = F(AVE(B)

OF 4 :{(e, (u, (siouA(e)(u), SV (U, 1- s,-OuA(e)(u)))): ueU,ecE;ie€l,2,3,..., m}.

Proof. We can prove this easily by using Definitions 10, 21,
and 22. O

Definition 23. Let F 3 be a GmPNSS; then necessity oper-
ation on GmPNSS is represented by @ & ; and defined as
follows:

(65)
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Definition 24. Let & 3 be a GmPNSS; then possibility op-
eration on GmPNSS is represented by ® % ; and defined as
follows:

Journal of Mathematics

F ;4 ={(e, (u, (1 —sowy (u), s;0 vy, (1), siowA(u)))): ueU,ecE;i€l,2,3,..., m}. (66)

Proposition 9. Let F 3 and G be two GmPNSS. Then,
1) Q)(g;A U, ?B)=®?B USGBgA
2)e(Fzn . Tp) =053 N, 0F,

Proof. We know that

Fa ={(e, (”, (si.uA(g) (u), Si®VA(e) (u), S;%Wj () (u)))): ueU,ecE;iel, 2,3,..., m}, (67)
Gy ={(e, (u, (Si Uy (1), 59 Vi, (1), 5,9 Wi, (u)))): ueU,e€E;i€l,2,3,...,m } (68)
are two GmPNSS. s;oU () (14), ifee A-B,
Let F3U , Zp=¢. .
. @u(%c) ER A uB(e)(u)) ifee B—A,
si.uA(e) (u)> ifee A- B,
) max{s,-o Uy (e (U), s;0Up(, (u)}, ifee ANB,
u(F#e) =14 Si®Use) (u), ifee B—A, o
max{si-uA(e) (1), s;oup (u)}, ifee ANB,
(69) Si®VA(e) (u), ifee A-B,
£ GBV(%C) =14 Si®VB(e) (u), ifee B— A,
Si®VA(e) ((I/l)), lfe € A-B, min{sio Va(e) (u), Si%g(e) (u)}’ ifee ANB,
) =4 s;evp, (1), ifee B—A,
v(Ze) B(e) o
min{sio Va(e) (1), 5;9Vp ) (u)}, ife e ANB,
(70) Si®W4 (e) (u), ifee A- B,
£ ow(H ) =1 Si®Ws(e) (), ifee B—A,
oWy (o) (1), 1 ec A-B, min{sio W (e (1), s0Wpe (u)}, ifec ANB.
w(Ze) =4 Si® Wpe (W), ife e B- A,

min{sio Wy () (1), s;0wp ) (u)}, ifee ANB.
(71)

By using Definition 23,

OF ={(e, (u, (Si‘”A(e) (1), s;®Vja () (W), 1—s;0u;, (u)))): ueU,e€kE;i€l, 2,3,...

(74)

Assume that 895 U @F ; = N, where ®F 3 and &%, are
given as follows by using the definition of necessity
operation:

, m}, (75)

&7 ={(e, (u, (5i°”B(e) (u), Si%VE(e) (u), 1-s; ® UL (u)))): ueU,e€E;iel, 2,3,..., m}. (76)
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Then, by using Definition 13,
S;9U 4 () (1),
u(R) =1 s;®uUp( (u),

max{sio Uy (o) (W), s;0Up () (u)},

Si%4(e) (u),
V(N) = Si. VB(e) (I/l),

min{sio Vace) (U),5;9Vp () (u)},

s;®Uy () (1),

w(R) =4 si®up( (),

ifee A-B,

ifee B-A,

ifee ANB,
(77)

ifee A-B,

ifee B-A,

ifee ANB,
(78)

ifee A-B,
ifee B—A,

1- min{sio Up (e (1), s;0Up () (u)}, ifee ANB.

(79)

Consequently, (%) and X are the same, so

F i :{(e, (u, (s,-ouA(e)(u), S;® V(e (1), siowA(e)(u)))): ueU,ecE;iel, 2,3,...

Let (F3A%p) =%, where C=Ax B.

o - {(e,., ) [u, mm{

By using Definition 23,

o - {(ei, ) [u, mm{

We have

13
GB(gA US?B) =0Y3U BF ;. (80)
Similarly, we can prove 2. O

Proposition 10. Let F; and G be two GmPNSS. Then,
(1) ®, (gA UegB): ®, ?B U, ®, gA
2) ®, (F3N,85)=0, %3 N, ®, Fy

Proof. The proof is similar to that of Proposition 9. O

Proposition 11. Let F 3 and G be GmPNSS, then we have
the following:

(1) ®(F ;NGp)=0F 3 NOT

(2) &(F 31VGp)=0F 4 VOT;

(3) @(F 3NC)=0F 4 N ®T}

(4) ®(F;V83)=0F ; V ®%3

Proof. We know that &% 3 and & are GmPNSS:

,m}, (81)
G :{(e, (u, (si *Up () (1), S0 V() (U), s; 0w, (u)))): ueU,e€E;i€l,2,3,..., m}. (82)
Si%U () (u) Si%a(e) (u) Si®Wj () (u)
, max , max . (83)
S;%UR () (u) 5% (e) (u) 5;%Wp 4 (u)
s;ou ;. (1) s;ovi (1) s;ou (1)
FrAE , max FAR ,1 —min FrAR . (84)
S;OUR () (u) S %V () (u) S;OUE () (u)
OF 3 ={(e, (u, (siouA(e) (1), s;#Vj( (1), 1 —s;0u;, (u)))): ueU,ecE;i€el, 2,3,..., m}, (85)
(XA ={(e, (u, (Si.uB(e) (1), s;9vp(p) (), 1 = s;oup, (u)))): uelU,e€E;iel, 2,3,..., m}. (86)
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By using Definition 21, we get
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OF N7 ={(ei, ej), [u, min{siouA(e) (1), s;oup (u)}, max{siovA(E) (1), s;%Vg () (u)},

max{(l —Si0U; (u)), (1

OF 3 NOTG 5 ={(ei, ej), [u, min{siOuA(E) (1), s;oup ) (u)}, max{siwA(E) (1), s;%Vg () (u)},l

So GB(F/TA/\?B)ZGB&TA /\GB?B.
Similar to Assertion 1, we can prove 2, 3, and 4. [

4. Distance and Similarity Measure of
Generalized Multipolar Neutrosophic
Soft Set

In this section, we introduce the Hamming distance and
Euclidean distance between two GmPNSS and develop the
similarity measure by using these distances.

M§

Il
—

j=1

dGmPNSS((D‘T(e) pg(e) = ‘l

= Si®Up( (l/l))} ]}’

(87)

- min{siOMA(e) (u), s;9up (”)}]}'

(88)

Definition 25. 7% and E are a universal set and a set of at-
tributes, respectively; assume that GmPNSS(%) represents
the collection of all GmPNSS. Consider (®g, E) as well as
(¢g, E) € GmPNSS and there exists a mapping @y, ¢z: E
— GmPNSS(%); after that, we tend to establish the
distances between (¥, E) and (¢, E) as follows.

4.1. Hamming Distance

3 (Jse st () = st ()] ) + ([ v, (1) = 504, (1))

(89)

(Jsv s, o) - s o)) |

4.2. Normalized Hamming Distance

s (05 (@) = {ii(ls-% (1)~ s )) + (J 0, ) 5090

i=1 j=1

(90)

+<|$i' wo, (1)) - 50 ww(”j)D}'

4.3. Euclidean Distance

s (05 0 95,0 - (—m {ii(w o, (1) = sy (1)) ¢ ([0, 1)~ 507, 1))

i=1 j=1

2

(91)

(o, ) - sown )) )
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4.4. Normalized Euclidean Distance

Agmpnss (P (€), 9 (€)) = < ‘Iii(k'”fb (1)) = siouy, (”f)|)2 " <|5f° CACHERT V%(”;‘)D

i=1 j=1

15

2

(92)

(o, ) - swwn))])

4.5. Weighted Distance

dGmpnss (P (€), 95 (e)) = (i ‘|§: i wi{(|5i° U, (“j) - s ”%(”J’)
"

(s, (1) - 521 o

where r > 0 and w= (w,, wy, w5, ..., w,)" is a weight
vector ofe; (i=1,2,3,...,n).Ifr=1and r =2, then equation
(5) becomes the weighted hamming and weighted Euclidean
distances, respectively.

Definition 26. 7% and E are a universal set and a set of at-
tributes, respectively, and (®g, E) and (¢y, E) are two
GmPNSS(%). Then similarity measure based on Definition
25 between (®g, E) and (¢, E) is defined as follows:

Scmenss (P 9g) = (94)

1
1+d(Pg,05)

i=1 j=1

m P
dimenss (P (€), 95 (€)) = ( ‘{ZZ<|S'“®( ) 5i®Ug, (”]‘)
)r}>1/r,
dgmenss (P (€), 9z (e)) <2mp {ii 'S°”<l> ( )_ Si'“w(”i)

(sowq,

i=1j

#(Jsie w, (1)) - 00, (1))

where r > 0, and equations (8) and (9) are reduced to
equations (1) and (2), respectively, if r= 1. Similarly, if r=2,

TS0 Wy, (”J‘)

Another similarity measure between (®g, E) and (¢, E)
is defined as

Scmpnss (P 95) = e’ d(%’%)) (95)

where f3 is a steepness measure and a positive real number.

Definition 27. % and E are a universal set and a set of at-
tributes, respectively, and (®g, E) and (¢g, E) are two
GmPNSS(%). Then, the distances between (®g, E) and (¢,
E) are defined as follows:

)+ (Js v, () = 50, ()] )

(96)

r

)r + (|5i' vo, (1)) = e Vv’v(”f)D

) 97

then equations (8) and (9) are reduced to equations (3) and
(4), respectively.
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Definition 28. Similarity measure between two GmPNSS 5, Correlation Coefficient of Generalized

(P4, E) and (¢, E) based on the weighted distance of (O, Multipolar Neutrosophic Soft Set
E) and (¢, E) is defined as follows:

1 In this section, we propose the concept of correlation co-
1+ d° @ y (98) efficient and weighted correlation coefficient of GmPNSS
GmpNss (P> with some properties.

SGmpNss ((Dfi’ 9"?) =

Definition 29. Let @4 and ¢, be GmPNSS over the uni- Definition 30. Let
versal set; then @ and ¢, are said to be a-similar if and only

if Sgmpnss (P> @) = afor a € (0, 1). If S pnss (P> @) >
1/2, then we can say that @ and ¢, are significantly similar.

F i ={u (siouy (ug), s;ov4 (uy), sowy (uy)): uy € Usi € 1,2,3,...,m}, (99)

G; ={uk, (s,--ué (1), siovy (), siows; (uk)): u, €U;i€1,2,3,... ,m}, (100)
be two GmPNSS over a set of parameters Then, informational neutrosophic energies of two
E = {x},x5,%X3,...,%,}. GmPNSS can be expressed as follows:

SGmPNSS( ) ii(( UL (”k )2+(5i'ng(“k))2+<5i°w;j(”k))2)’ (101)

(( ou uk))2 (SiOVEj(Mk))z+<si'w§j(uk))2). (102)

4

‘SGmPNSS( ) Z
j=1k

Definition 31. The correlation of two GmPNSS can be

presented as follows:

M-

1

M-

(GmPNSS(F;" GE) = {(s ou. (uk)s ou (uk) + 5,072 (uk)s v (uk) + 50w (uk) siowg (uk)): i€1,2,3,... ,m}.

=1 k=1
(103)
Definition 32. Let F, and G be two GmPNSS; then the CC
between them can be defined as follows:
{GmpNss (FV > GV)
RGmPNSS(F;\’ Gg) = =S (104)

\/sGmPNSS (F5 F3) - €omenss (G G3)

351 T (o (ot () + siov, (s () + sowr (e)siouw () )

sz_l z;(:l<(5iou2} (uk))2 e (uk))2 (5w (uk>)2>\j2§-1 22:1<( o (uk))2 e (uk))2 (5w (uk))2>

(105)

RGmPNSS(FA’GB) =
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Proposition 12. Let F-. and G; be two GmPNSS; then the
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all j,k, where i€1,2,3,...,m, then Rg,pnss

CC Rgppnss (F>Gy) between them satisfies the following (F,Gp) =1

properties:
(1) 0= Repmpyss (F 3, Gg) <1 Proof. Rempnss (F5,G5) 20 is trivial, so we just need to
(2) Rgmpnss (F 3> Gg) = Reppnss (G, F) prove that RGmPNSS (F Gy <L

3) If F~ = Gu that is, s; oy (u) =s; ouy (), s;9v~ We know that
(uk) =5 Ovv (uk) and s; Od) (uk) =5 Oiu (uk) fA%

MN
M-»

(GmPNss(F;) Gg) = (Si : ”gj ()i - “gj () + ;- ng ()i - ng () + ;- w;‘}_ (we)si - wj;j (”k))

k

(5105 o) s o) 50w (o) v () 550 (s wy ()

1

-
Il
—_

Il
M

-
Il
—_

o3 (st (s () 5 v ) v () 5, (s () )+

j=

_

R

Il
—_

(510 (s ) 420, s vg )+ 5,00 )y ()

J

<s g (ul) U (u1)+s VL (uy)s; - vy (uy) +s; - “wy (ul)s - wy (u1)>
J <Si Uy (u1)s; - U () +s; - Vi (uy)s; - Vi (uy) +s;- wy (u))s; ‘wy (u1)> bt

Y

<5i e (u1)s; "Ug, () + 5 Vi (u4y)s; - Vs, () +5;- wa, ()5 - Wy, (”1)>+

(106)

<Si U3 (4)s; - Ug, (uy) +5;- Vi, (t4)s; - VB, () + 5 - Wi (u2)s; - Wy (”2))*’

Y

) <5i U (u)s; - U, (1) +5; - Vi, (u)s; - Vs, (u2) +5; wa, (up)s; - Wy, (“z)) Tt

(Si UL (1)s; U (1) +5; - Vi (1)s; - V. (uy) +5;- wa (u)s; - Wg. (”2)>+

+ e
<Si oy (ug)s; - Ug () + 5+ Vi, (ug)s; - VE, () + 5+ wa (ug)s; - Wy (”k)>+

1 <Si U (uge)s; - Ug, () + 5+ Vi, (uge)s; - Vs, () +5; - wa, (we)s; - Wy, (”k)) SERR

(s Uy (uk)s U (uk)+s vy (uk)s vy (uk)+s ‘wy (uk)s Ez(uk)>+

:i<s o (uy)s; - (u1)+s Uy (uz)s U (u2)+ +si-u2j(ut)si-u§j(ut)>

\.

+

M

(Si . V;‘J (u1)s; - Vs, (uy) +5; Vi, (ug)s; - Vg, (up) - ts;- ng (ue)s; - Vg, (”t))

j=1

+ Z(Si W, (uy)s; - Wy, (wy) +s;- w3, (u)s; - Wy, (up) +--+5; v, (ue)s; - Wg, (“t)>~
j=1
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By using Cauchy-Schwarz inequality, we get

(Camprss(F3 G5)) <

i((si.ugj(ul))z+(si.u;{j(u2))2+...+<Si,ugj(ut)>2>+
<<s Ve (ul)) <i'VZ;j(uZ))z+"'+(5i'VAj(”t)>2>+"'+ [

X i((si'véj(ul)>2+<5i'VEJ(M2)>2+...+(si.véj(ut)>2>+...+ g (107)

(B8 oo oot

= sGmPNSS(F ).eGmPNSS(G )

Therefore, Proof. The proof is obvious. O

(Comenss (F> Gy )) < €Gmenss (F3) - égmpnss (Gy)- Hence, by
using Definition 32, we get Rempnss (F» G- 7 =1, so
0< Ropnss (F; Gy) < 1. 0 Proof. We know that

ijl Z;c:l(si U, (ug)s; - ug, (ug) +s; - V3, (ue)s; - v, (ug) +5; - wy (e)s; - wy, (uk))

\jZle Zi:l((si'“j;’ (”k))z (5 Vg (“k))z +(5i'w§) (uk))2>\j2;:1 Zf(:l<(5 ug (uk))2 +(si~v§j(uk))2 +(5"'w1§, (uk))2>

(108)

RGmPNSS(FA’GE) =

As we know that uA () =s; Uy (up),
() =s; Vg (ug), and s; (uk =5 wy (uk]) for
all ]Ak by using Befinition 32, we Have
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Y Yit < (Si g, (”k))z + (Si B, (”k))2 + (Si Wy, (”k))2>

Hence, RGmPNSS (FZ) GE) = 1. D

Comenss(F5 Gy)

V52 (s ) s, 00) (5 00 ) )55 55 (s, 00 (00, 00 (s ) )

(109)

Definition 33. Let F, and G be two GmPNSS; then the CC
between them also can be cﬁzﬁned as follows:

RévaNSS(F e Gg) =

Ré}mPNSS(F;" Gj;) =

max

> (110)
max{ecmPNss(Fg’ Fg)> sGmPNSS(GE’ Gg)}
i S uy (g )s; - ug, () +s; i (ug)s; - v, () +s; - wy (ug)s; - wy, (ug)
2 2 2
5 T (53 0 (5005 00) (5, @) ) an

55t (-t 0) (555 ) (5 )

Proposition 13. Let F- and G+ are two GmPNSS; then the

B . .
CC RE, pss (FGyp) between 'them satisfies the following
properties:

(1)0< RlePNss(F;7G§) <1
(2) RGmpnss (F 3 Gg) = Rimpwss (G F)
(3) If FL =G, that is, ;- us () = s;-uz, (), s;+ v+
(Mk)AZ S; . (uy), and sif}’wu () = siB.’ w- (uk)’ﬁ,“;,
. . B K A, B.
all i, j, where i€1,2,3,)..,m, then R{,pnss

Proof. The proof is easy according to Definition 33.
Nowadays, considering that the weight of GmPNSS is
very necessary for practical applications, the result of

CompNss (F e Gg)

RGWmPNSS(F g:Gg) = \/

decisions may vary, whenever decision-makers adjust the
different weight to every element in the universe of dis-
course. Consequently, it is particularly significant to plan
the weight before decision-making. Let W = {w,,Ww,,
Wws, . . ., W,} be a weight vector for experts such as W, >0 and
Yo W =1, and let &=1{58;,8,,8;,...,0,} be a weight
vector for parameters such as §; >0 and 27:1 d;=1.In the
following, we develop the WCC between GmPNSS by

extending Definitions 32 and 33. O

Definition 34. For two GmPNSS F-. and G, the WCC
between them can be defined as follows:

Rempnss(F +05) =

(112)
SGmPNSS(FZ’F;)gGmpNss(Gé, GE)
B §:1 5j<21t<:1 (i)k<s,- Ty (ug)s; - ug, () +s; - 151 (ue)s; - 5, () +5; - wy (uy)s; - wy (”k)))
2 2 >
\]Zj—l ‘SJ(Z§<_1 d’k((% s (“k)) +<s,» Vi, (uk)> +<Si Ty (uk)> )) (113)

V28 (s, )

Definition 35. Let FE and G- be two GmPNSS, then the
WCC between them can be cfeﬁned as follows:

»

a0 (uk))2 +(s,. "W, (”k))z))
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CGmPNss(F“»G“)

Reywmpnss(Fxr Gz ) = 4B . (114)

o PNSS( 4 B) aX{sGmPNSS(F;\’F;\)’sGmPNSS(Gg’GE)}
X i 5j<22=1 U'Jk<5i cug (w)s; - ug () + 500 vy (s vy () +5;0wy (we)s; - wy (”k)))

] J ] J ] J
RGmPNss(Fg’GI;) = 2 2 2
z t ’
500 b 0 (500 0)) (50, @0) #5005 () ) ws)

max

¥, 8},(2;_1 d,k((Si u (uk)>2 +(Si - (uk)>2 +(si vy (uk))2>>

If we consider w = {l/t,tl/tn,q...h,l,t} and &= {1/
z,tl/zn,q.. . h,,,  then  Rgwmpnss  (F3,Gz)  and
R%}WmPNSS (F,Gy) are reduced to Rgympxss (F-./G. =) and
RGWmPNSS( »Gy), respectively, defined in Deﬁ?ntlons 32
and 33.

Proposition 14. Let F- and G be two GmPNSS; then the
CC Rewmpnss (F 3, Gy )[)aetween them satisfies the following
properties:

(2) Rowmpnss (F5>G3) = Rowmenss (G F7)

3) If Fv = Gv that is, s; U (uk) =5 uy (),
s; VA (uk) =85V (uy), B and
siwy () =s;-wy (w), for all j, k. where
16123 .m, thénRGWmPNSS(F Gy =1

Proof. Rgwmpnss (F3,Gz) 20 is trivial, so we just need to
prove that RGWmPNSS (F Gy <L

(1) 0= Rgwmpnss (F Gy <1 We know that
z t
(GWmPNSS F G Z‘%(Z Wl ;- uy ”k Si-Ug (”k) +si-vy (uk)s Vg (”k) 5wy (uk)s cWwy (”k)))
j=1 k=1
= 35,0050y (o) (o) 5 o) v () 5 ) )

(Sj(('bl(sz 3, (up)s; - g, () +5;-

* VAJ (uy)s; - vé (uy) +s; wy (uz) ‘wy (uz)))
j=1
j; 03605+ (s 10y () 57w (s v () 0wy (1) ()
01 (5110 o)y (o) 5w (o) (ae) 5wy o), ()
52(‘1’1(51"”;,2 (ul)si'ugz () *tSivy (w))s; - vy (“1) tsi-wy (”1) "Wg, (”1))>+
0.1y ()i (1) 550y ()i vg () 0wy (o) wy (u)))
61((1)2(5,--14;‘1 (uz)si-uél (1) SV (up)s; - vy (uz) +s;ws (uz)s w; (uz)))+
%@&wd@»g%ﬂ»u%ﬁ%%%swwﬁBﬁﬁ}
8z<d)2(5i o (u)s; - Uy (”2)+5 VA, (u)s; - V3, (1) +5i'wgz(”2)5i'w1§z (”2)))
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+
00 (s 1 (o)t (1) 5 v (s v (1) 50w () () o
a5 10y ()5t () 45, v (s v (o) + 5wy (s () o

+

(@510 (s g () 5,0 sy vg () + 5,0 wy (s wy ()

+

i 81(\/5)-1(51- Uy (”1)) * \/(_bj(s,- U, (ul)) + \/(—i):(si V3, (ul)) * \/E)T(Si Vi, (”1)) + \/E’T(Si Wy, (”1)) * \/251(5:' "W, (“1)))+ ‘
) 52(\/0'071(51' UL (”1)) * \/‘E(Si Uy, (“1)) + \/U"Tl(si Vi, (“1)) * \/dTl(si "V, (”1)) + \/dTl(si “wi (”1)) * \/(iTl(si "Wy, (”1)))+ i
[ 0-(Voo (s (a0 ) o (st o)) oy (v o)) o (5w (ae) )+ (s o)) oy (5w () ))
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[ (V80 Gy (510 (0) ) o 85 VG, (5105 ) ) V8 NGy (5w ) ) LD (s, () ) 85 NGBy (5 (u)) /8 VG (57 () ) |
(82 81 (s, o)) o B G (s, ) ) VB G (5, ) ) = 8 B (s, ) )+ 48 3 (5w, ) #8548 (s ) )+ |
(VBN (5710 () ) o B2 Dy (s () 4 B2 NGBy (s, () ) VB Dy (s v o) )+ VBV (50 () ) o VB Dy (5w () )
+
(\/3—1\/6’-2(51 ,; ) \/—\/_'-("“g‘(“2)>+\/5—1\/&-2(51’"’;,|(“2))*\/5—1\/&-2<5i"’,§‘(”z)>+\/5_1\/&-2(% (”2)) \/_\/_-(5 Wy (”2)))*"
(0 (5, ) ) VB2 B (s, ) 08 B (v, () ) = 85 B (s, 0)) B B (500, () = B 5 (5w, ) )+ |

(VB2 (501 (1) ) 5B D, (505 (1) ) + 2 NGBy (v (1)) 2 D, (v () ) 4 VB VD5 (50 () ) ¢ VB NGB (510w () ) )
+
+

(V85 (s () % 8, NGB (51145 () ) + N,V (s () 2 LG (s o))+ Y NGB (5w (1)) 85 D (5w (1) ) )+
(VB (s (1) ) s D (505, 0 )+ s VB (5 () ) s NGB (v o)) B D, (50 o)) 2 3B B (s (o)) )

(VB (-5 (o) ) VB2 D (505 o))+ 82 NGB (57w (o) ) /B2 Dy (5w () + VBB (500 () = 2 NGB (50w (1))
(117)

By using Cauchy-Schwarz inequality, we get

((GWmPNSS(F/;,le;))2 <
(5100 (s U (ul))2 + Sldn(si i (ul))z + 510'01(5. “wy (m ))z ( (u1)> +8,0 ( (u1)>2 +51®1<S,- . wgz(“l))2>+
<5'w‘(s"'“iz(“‘))z+5‘d’ (si-7y (w) )2+6 5wy () )
)

+ 61d)2(si wy (uz)) + 51w2(s,. Uy (uz)>2 + 51d)2(si Va (uz))2 + 6101)2(51 cwy (uz))2)+

+

(61(.0((5,- Uy (u,))2 + 61(.'0[(5, vy (ut))z + Sld)‘<s,- wy (ut))z + éld)l<s,- Uy (ut)>z + 510'0‘(51- . vgz(ut))z + Gl(i)t(s,v wy (ut))2)+

<8,(bt<si . u/—iz(ut))z + Bld)t(si Vi (ut))z + 61(1)((5, “wy (ut)>2>
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<61Cul(si.u3‘ () ) +8 wl(s vy >2+5 wl(s wy ”1)) +81(i)l<s,»~uBz(ul))2+61(bl(si~1/Bz(ul))2+61d)1(si~sz(ul)>2>+
( (55, 1))+ 8,0, (5-v Bz(ul)>2+§1(i)1(si~wl§z(ul)>z)
8,0, 5['”5(”2 8,0, 5 - V3 ' 8,0, 5 - wg ”2 ' 8,0, 5;'”;;(”2) 8,w, Si'Vg(uz)z 8,W, Si‘wg(”z)z
<w( 1 >+w< (1)) + 8,0 )+w(22 )+w(22 ) 805wy, >>+’+ -
1 (510'32(51"14;32(”2)) +51w2<5i"’gz(”z)> +51w2<5i'w1§z(u2)>) (

+

(61(i)t(si Uy (ut)>2 + 610'0((51- v, (ut))2 + 5lu'ut<s,- wy (ut))2 + SI(bt(s,- Uy (ut))2 + 51‘i’:<5i v, (ut))z + Sld)‘(si ‘wy, (u,))z>+ ’

2

(Cowmpnss (F a5 ?B))Z < ZZ: 8j <Z (bk( <5i‘”Aj (Mk))2 +<51'VA]. (”k))2 +<Si.wAj (”k)>2 >>

j=1 k=1
z t 2 2 2 (119)
x Z%-(Z wk( (sioms, 05) )+ (500, (10} +(si0w5 (1) ))
=t et J J J
= EGwmenss (Fa) - Ewmenss (9p)-
Therefore, ({gwmpnss (Fi> 5))° < Egwmenss (Fi)-  Proof. The proof is obvious. O

& gwmpnss (€5). Hence, by using Definition 34, we get

Rewmenss (F 4> Gp) < 1,50 0 < Rowmenss (F 4> Tp) <
O

] Proof. Utilizing Definition 34,

RGWmPNSS(F ;’Gg) =
Z;:l 6j<ztk:1 d‘)k(si : ”,;j (we)si - “gj () +s; - ng (1)s; - Vg}_ () +5; - w;,j (1)s; - ng (”k)))

\jle ’(Zk 1w"<( “gj(uk))z+<si-vgj(uk)>2+<si.wzj(uk)>2>> (120
Jz, ! J<zk 1 wk((si g (uk)>2 #(s v (uk)>2 (s wy (uk))2>>

As we know that siouy, (ug) = s;oup (ug),
siovy (u) =s; i*Vp, (4g), and s; wy, (ug) =5, wp, (uy), for all
j» k, by using Definition 34, we have

50 s (50 () (500 ) (0, ) ) )
\]Z 5, Zklwk(( ouAj(uk)>2+<siovAj(uk)>2+<siowAj(uk))2)) (o)

\jz 15] 3t 1wk(( ouAj(uk)>2+<Si0VAj(uk)>2+<Si0wA}-(uk))2))

Rwmenss (F 4> Gp) =
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Hence, Zgwmpnss (F 4> T3)=1. O

6. Applications of Similarity Measures and
Correlation Coefficient of GmPNSS in
Medical Diagnoses and Decision-Making

In this section, we proposed the algorithm for GmPNSS by
using developed similarity measures and CC. We also used
the proposed methods for medical diagnoses and decision-
making in real-life problems.

6.1. Application of Similarity Measure in Medical Diagnoses.
We develop the algorithm of GmPNSS for similarity mea-
sure and use the developed similarity measure for medical

NgE
TN

Il
—_

H _ 1
dimpnss (P (€), 9y (e)) = m {

Il
—_

i=1j
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diagnoses by using the proposed algorithm, shown in
Figure 1.

6.1.1. Algorithm for Similarity Measure of GmPNSS

Step 1. Pick out the set containing parameters.
Step 2. Construct the GmPNSS according to experts.

Step 3. Construct GmPNSS ¢, for the evaluation of
different decision-makers, where t =1, 2, ..., m.

Step 4. Find the distance between two GmPNSS by
using the distance formula:

(I 0, () - st 1)) # (Jso v, 1) - 5034, ()])

(122)

+<|51..w®_@(uj) - s,~°w%(”j)|> }

Step 5. Compute the similarity measure between two
GmPNSS by utilizing the following formula:

1

Somenss (P> 95) = T+d(@g90) (123)

Step 6. Analyze the result.

The flow chart of the presented algorithm can be seen in
Figure 1.

6.2. Problem Formulation and Application of Similarity
Measure and CC of GmPNSS for Disease Diagnoses. The
general proposed algorithm can be used in diagnosis
complications. In the light of scientific discipline, a nu-
merical example is presented to deal the diagnostic diffi-
culties. This planned algorithm may be obtained from
immoderate medical disease diagnosis complications. We
consider typhoid disease as a diagnosis problem, so re-
gardless of whether a well-advised patient has typhoid or
not, as many containing the overall signs and symptoms of
typhoid are going to be compatible as well as other diseases
such as malaria. For a verbal description of the disease, we
tend to dispensed similarity measures along the GmPNSS
structure to attain an insured person as well as high-fidelity
consequences. The general m-polar anatomical structure
offers us a record of medical experts rating for the ex-
traordinary disease.

6.2.1. Application of Similarity Measure. Now, we consider
the wuniversal set as follows: % ={u, =typhoid,
u, =nontyphoid} and E is a set of parameters consisting of
symptoms of typhoid disease such as E = {x, =flu, x, = body

pain, x;=headache}. Consider # and & < E; then we
construct the G3-PNSS of # and & such as ®g (x) and
¢+ (x) according to experts as given in Tables 1 and 2.

Compute distances between @ (x) and ¢, (x) by using
Definition 25 given as follows:

dds_pass (@g (e), 9z (€)) =0.6183
dg?—PNss (Dg (e), ¢y (e)) =0.3092
A&, pnss (P (€), 9y (€)) =0.7749
dl(\}lg—PNSS (Dg (e), gy (e)) =0.5481

By using Hamming distance, we will find the similarity
measure between @ (e) and ¢ (e) given as follows:

Sas-pnss (P> @) =0.6179 > 0.5.

According to the above calculation, Sg;_pnss (P
¢¢) =2 0.5, so G3-PNSS of &5 and ¢y are significantly
similar, which shows that the patient suffers from typhoid.

6.3. Applications of Correlation Coefficient in Medical
Diagnoses. We develop the algorithm of GmPNSS for CC
and use the developed CC for medical diagnoses by de-
veloping an algorithm.

6.3.1. Algorithm for Correlation Coefficient of GmPNSS
Step 1. Pick out the set containing parameters.

Step 2. Construct the GmPNSS according to experts.

Step 3. Find the informational neutrosophic energies of
any two GmPNSS.

Step 4. Calculate the correlation between two GmPNSS
by using the following formula:



Journal of Mathematics 25

Step 1

()

(i) Input GmPNSS according to requirement

Step 2

(ii) Construct the evaluation report for each
alternative in the form of GmPNSS

Q

Step 3
(iii) Compute the distance between GmPNSS

Step 4

(iv) Compute the similarity measures

Step 5

(v) Choose the alternative with highest similarity

Step 6

SIPIOI®

(vi) Analyze the ranking

FIGURE 1: Flow chart of presented algorithm for GmPNSS based on the similarity measure.

TaBLE 1: G3-PNSS of F; according to experts.

Dy (x) X, X, X5
u, (.69, .52, .61), (.37, .44, 23), (.46, .37, .29) (.54, .63, .55), (48, .44, 26), (.63, 47, .59) (.34, .47, 27), (46, 48, .37), (.75, .58, .69)
u, (.43, .66, .62), (.48, .45, .53), (47, .52,.36) (17, 23, .29), (.37, .41, 47), (.53, .59, .61) (.58,.53,.55), (.37, .35, .32), (.65, .63, .59)

TaBLE 2: G3-PNSS of &} according to experts.

9z (x) X1 X, X3
u, (.63, .57, .54), (47, .46, 32), (.62, .75, .67) (45, .71, .50), (.50, .43, 26), (.61, .50, .47) (.27, .38, .24), (.58, .37, .47), (.65, .69, .70)
U, (.47, .59, .69), (.53, .50, .60), (.43, .58, .32) (.15, .25, .25), (.32, .40, .43), (.53, .60, .60) (.47, .46, .64), (.44, .40, .30), (.61, .60, .68)

Zt
Comenss (F 4, ) = Z > (s,-OuAj (uk)s,-Oqu () + si*Va, (uk)sioij () + siowy, (uk)siowB]_ (ue):i€1,2,3,..., m).
=1 k=1
(124)
Step 5. Calculate the CC between any two GmPNSS by
using the following formula:
CGm F 4, G
Rcmpnss (F 4 Gp) = mpss (70 71) (125)
\/gGmPNSS (9A, gA) - EGmpnss (31’3’ ?B)
Step 6. Analyze the results. consider that & ; and ¥ are G3-PNSS which are described in

Section 6.2.1 in Tables 1 and 2, respectively. By using equation
(12), we can find CC against the values of the universal set given
as follows: B3 pnss(u,) (F 4> T) =0.9967 and g3 pss(uy)
(F 4, €5)=0.9925. By the above calculation, we analyze the

6.3.2. Application of Correlation Coefficient. We use the  results @d get ‘%GS—PNSS(ME) (Fa 9p) > '%G3—PNSS(MZ) (F 4
proposed algorithm for medical diagnoses. For this, we  ¥3), which shows that patient suffers from typhoid.

The flow chart of the presented algorithm can be seen in
Figure 2.



2

)

(i) Input GmPNSS according to requirement

(i) Construct the evaluation report for each alternative in the form of GmPNSS

(iii) Compute the neutrosophic informational energies

(v) Calculate the correlation coefficient

(vi) Choose the alternative with maximum score value

(iv) Compute the correlation between GmPNSS }
(vii) Ranking alternatives }

€€ EK

FiGure 2: Flow chart of the presented algorithm based on the
correlation coefficient.

6.4. Problem Formulation and Application of GmPNSS for
Decision-Making. Department of the scientific discipline of
some university U will have one scholarship for a post-
doctoral position. Several applicants apply for scholarship
but only four S={S,, S,, S;, S} applicants received the
interview call for evaluation based on their CGPA (cumu-
lative grade points average). The president of the university
hires a committee of four experts X ={X,, X,, X5, X,} for
the selection of the postdoctoral scholars. First of all, the
committee decides the set of parameters such as E = {x,, x,,
x5}, where x;, x,, and x; represent the research papers,
research quality, and communication skills for the selection
of postdoctoral scholars. The experts evaluate the scholars
under defined parameters and forward the performance
evaluation to the president of the university. Finally, the
president of the university scrutinizes the one best scholar
based on the expert’s evaluation for the postdoctoral
scholarship.

6.4.1. Application of GmPNSS for Decision-Making.
Assume that S={S,, S,, S;, S;} is a set of scholars who are
shortlisted for interview and E={x, =research paper,
x, =research quality, x5 =interview} is a set of parameters
for the selection of scholarship. Let & and & C E; then we
construct the G3-PNSS @, (x) according to the requirement
of the scientific discipline department.

Now we will construct the G3-PNSS ¢, according to
four experts, where t=1, 2, 3, 4.

By using equation (3), we calculate the Euclidean dis-
tance between @ and ¢, as follows:

AEs_pnss (Pgrs 9L) =1.32

AEs_pnss (P> 9%) =1.3185
dE, onss (Pgry 93) =0.4598
dE s (Do @) =1.1132

Similarity measures of @ and ¢/, can be calculated as
follows:

Sgs_pnss (P> 9i) =0.4310
Sgs_pnss (P 9%) =0.4313
Sgs-pnss (Pgs 93) =0.6850
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Sgapnss (P> 93) =0.4732

According to the proposed similarity measure, ranking
of the alternatives is S; > S, > S, > §;, and it is clear that
Sga—pnss (P> 93) =0.6850 > 0.5, which shows that @4 and
@3, are significantly similar to G3-PNSS. So S, is the best
scholar for the postdoctoral position. Graphical represen-
tation of alternatives ranking can be seen in Figure 3.

6.4.2. Solution by Using Algorithm 2. Now, by using
Tables 3-7, we can find the correlation coefficient for each
alternative by using equation (12) given as Rgppnss
(g, 95) = 8374, Rgmenss (P> 9%) =7821, Rgmpnss
(Og, ¢3)=.9462, and Rgrpnss (Pg» 93) =.9422. This
shows that Reupnss (Pgs 9%) > Rgmpnss (P> 9) >
Rcmpnss (P> 95) > Rcmpnss (P 9%). Hence, S; s the
best scholar for a postdoctoral position. In Figure 3, we can
see the graphical representation of alternatives ranking.

7. Result Discussion and Comparative Analysis

In the following section, we will discuss the effectiveness,
naivety, flexibility, and advantages of the proposed methods
and algorithms. We also conducted a brief comparative
analysis of the following: suggested methods and existing
methods.

7.1. Advantages and Flexibility of the Proposed Approach.
The recommended technique is effective and applicable to all
forms of input data. Here, we introduce two novel algo-
rithms based on GmPNSS: one is CC, and the other is
similarity measures. Both algorithms are effective and can
provide the best results in MCDM problems. The recom-
mended algorithm is simple and easy to understand, can
deepen understanding, and is suitable for many types of
choices and indicators. Developed algorithms are flexible
and easy to change to suit different situations, inputs, and
outputs. There are subtle differences between the rankings of
the suggested methods because different techniques have
different ranking methods, so they can be afforded according
to their considerations.

7.1.1. Superiority of the Proposed Method. Through this
research and comparative analysis, we have concluded that
the results obtained by the proposed method are more
general than the prevailing methods. However, in the de-
cision-making process, compared with the existing decision-
making methods, it contains more information to deal with
the uncertainty in the data. Moreover, the mixed structure of
many FS has become a special case of GmPNSS, by adding
some suitable conditions. Among them, the information
related to the object can be expressed more accurately and
empirically, so it is a convenient tool for combining inac-
curate and uncertain information in the decision-making
process. Therefore, our proposed method is effective, flex-
ible, simple, and superior to other hybrid structures of fuzzy
sets.
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TaBLE 3: Construction of G3-PNSS of all scholars according to department requirement.

Score value

Correlation coefficient

Similarity measure

0.8374

0.431

0.7821

0.4313

0.9462

0.6819

0.9422

0.4491

FIGURE 3: Alternative final score value with the proposed algorithms.

27

X1

X3

X3

(.82,
(.50,
(29,
(.91,

.55,
.62,
.25,
.50,

.63), (.55,
52), (.93,
A1), (.73,
16), (.30,

.46,
.57,
.34,
.24,

28), (43, .38,
.80), (.66, .48,
32), (.64, 44,
63), (.16, .55,

.60) (.43,
52) (.77,
(.36,
(.69,

.68,
.54,
.45,

.56)
20) 52,

86), (47, .67, .56), (42, .51,
81), (.75, .54, .72), (.53,
27), (47, .65, 21), (.61,
61), (.37, .44, 23), (.46,

33) (.73,
69) (.64,
39)
29)

.54,
.37,

(.57,
37, (.39

.48,
.48,
.25,

, .35,

.53), (.87,
59), (.32,
A1), (.72,
67), (47,

.43,
.58,
.55,
.24,

77), (.76,
22), (.94,
29), (.64,
32), (.40,

53, .62)
64, .62)

31,
71,

34)
.56)

TABLE 4: G3-PNSS evaluation report according to experts of S,
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TaBLE 8: Comparative analysis between some existing techniques and the proposed approach.

Set Truthiness Indeterminacy Falsity Multipolarity Loss of information
Chen et al. [48] mPFS v X X V4 X
Xu et al. [49] IFS v X v X X
Zhang et al. [50] IFS v X v X v
Ali et al. [51] BPNSS v v v X X
Proposed approach GmPNSS v v v v X

TaBLE 9: Comparison between GmPNSS and some existing studies.

Method Alternative final ranking Optimal choice
Masooma et al. [16] $:>85,>85 >, S5
Saeed et al. [33] $5>8,>S5,>8; S;
Riaz et al. [52] $5>8,>8,>8, S;
Kamal et al. [22] $5>8,>S5,>8; S,
Proposed algorithm 1 S5>8,>S5,>8; S;
Proposed algorithm 2 S;>8,>8 >, Ss

It turns out that this is a contemporary issue. Why do we
have to express novel algorithms based on the current novel
structure? Many indications are compared with other
existing methods, and the recommended methods are surely
competent. We remember the following fact: the mixed
structures have some limitations in IFS, picture fuzzy sets,
FS, hesitation fuzzy sets, NS, and other fuzzy sets, so
complete information about the situation cannot be pro-
vided. But our m-polar model GmPNSS can be the most
suitable for MCDM because it can deal with truth, inde-
terminacy, and falsity. Due to the exaggerated multipolar
neutrosophy, these three degrees are independent of each
other and provide a lot of information about alternative
norms. Other similarity measures of available hybrid
structures are converted into special cases of GmPNSS. A
comparative analysis of some existing techniques is listed in
Table 8. Therefore, compared with intuitionistic, neu-
trosophy, hesitant, image, and ambiguity substitution, this
model is more versatile and can easily resolve complications.
The similarity measures established for GmPNSS become
better than the existing similarity measures for MCDM.

7.1.2. Discussion. By using the technique of Chen et al. [48],
we deal with the multipolar information of fuzzy sets, but,
with this method, we cannot deal with the indeterminacy
and falsity objects of alternatives. By using the methodol-
ogies of Xu et al. [49] and Zhang et al. [50], we cannot deal
with the multipolar information and uncertainty part of the
alternative. But, on the other hand, the methodology we
established involves the truthiness, indeterminacy, and
falsity of alternatives with multiple data. Therefore, the
technique we developed is more efficient and can provide
better results for decision-makers through various infor-
mation. Ali et al.’s method [51] dealt with the truthiness,
indeterminacy, and falsity levels of alternatives, but these
techniques cannot manage multiple data. Instead, the
method we developed is an advanced technique that can
handle alternatives with multiple types of information. It can
be seen in Table 8.

7.1.3. Comparative Analysis. In this article, we propose two
types of algorithms. First, an algorithm is proposed based on
the correlation coefficient, and the other is based on simi-
larity measures for GmPNSS. Next, both algorithms are
utilized to solve practical problems in real life, that is, for the
selection of a postdoctoral position. The graphical repre-
sentation of results obtained by both algorithms is shown in
Figure 3. The results show that the proposed technique is
effective and practical. Finally, the ranking of all alternatives
using the existing methodologies gives the same final de-
cision; that is, the “postdoctoral” position is selected as S;.
All rankings are also calculated by applying existing methods
with the same case study. The proposed method is also
compared with other existing methods: Saeed et al. [33],
Masooma et al. [16], Riaz et al. [52], and Kamal et al. [22].
The comparison results are listed in Table 9, which shows the
final ranking of the top 4 alternatives. It can be observed that
the best selections made by the proposed methods are
compared with the already established methods which are
expressive in themselves and approve the reliability and
validity of the proposed method.

8. Conclusion

In this paper, we study the mPNSS and propose a generalized
version of mPNSS with some basic operations and prop-
erties. We also develop the AND operator, OR operator,
Truth-Favorite operator, and False-Favorite operator with
properties and examples. The concepts of necessity and
possibility operations with their properties are developed in
this research. The distance-based similarity measures on
GmPNSS are established by using the Hamming and Eu-
clidean distances with their properties, and a decision-
making approach is presented to solve multicriteria deci-
sion-making problems. We also established the correlation
coefficient and the weighted correlation coefficient of
GmPNSS with the decision-making technique. Further-
more, a numerical illustration has been described to solve
the MCDM problem by using the proposed decision-making
approaches for medical diagnoses and decision-making. A
comparative analysis is presented to verify the validity and
demonstration of the proposed method. Finally, the sug-
gested techniques showed higher stability and practicality
for decision-makers in the decision-making process. Based
on the results obtained, it is concluded that the proposed
method is most suitable for solving the MCDM problem in
today’s life. The presented technique is unable to handle the
scenario when the information of truth, falsity, and inde-
terminacy is given in intervals. In the future, the concept of
mPNSS will be extended to interval-valued mPNSS and the
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developed techniques to other fields, such as mathematical
programming, cluster analysis, and big data analysis.
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