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Abstract: This paper proposes novel skin lesion detection based on neutrosophic clustering
and adaptive region growing algorithms applied to dermoscopic images, called NCARG. First,
the dermoscopic images are mapped into a neutrosophic set domain using the shearlet transform
results for the images. The images are described via three memberships: true, indeterminate, and false
memberships. An indeterminate filter is then defined in the neutrosophic set for reducing the
indeterminacy of the images. A neutrosophic c-means clustering algorithm is applied to segment the
dermoscopic images. With the clustering results, skin lesions are identified precisely using an adaptive
region growing method. To evaluate the performance of this algorithm, a public data set (ISIC 2017) is
employed to train and test the proposed method. Fifty images are randomly selected for training and
500 images for testing. Several metrics are measured for quantitatively evaluating the performance
of NCARG. The results establish that the proposed approach has the ability to detect a lesion with
high accuracy, 95.3% average value, compared to the obtained average accuracy, 80.6%, found when
employing the neutrosophic similarity score and level set (NSSLS) segmentation approach.

Keywords: neutrosophic clustering; image segmentation; neutrosophic c-means clustering; region
growing; dermoscopy; skin cancer

1. Introduction

Dermoscopy is an in-vivo and noninvasive technique to assist clinicians in examining pigmented
skin lesions and investigating amelanotic lesions. It visualizes structures of the subsurface skin in
the superficial dermis, the dermoepidermal junction, and the epidermis [1]. Dermoscopic images
are complex and inhomogeneous, but they have a significant role in early identification of skin
cancer. Recognizing skin subsurface structures is performed by visually searching for individual
features and salient details [2]. However, visual assessment of dermoscopic images is subjective,
time-consuming, and prone to errors [3]. Consequently, researchers are interested in developing
automated clinical assessment systems for lesion detection to assist dermatologists [4,5]. These systems
require efficient image segmentation and detection techniques for further feature extraction and skin
cancer lesion classification. However, skin cancer segmentation and detection processes are complex
due to dissimilar lesion color, texture, size, shape, and type; as well as the irregular boundaries of
various lesions and the low contrast between skin and the lesion. Moreover, the existence of dark hair
that covers skin and lesions leads to specular reflections.
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Traditional skin cancer detection techniques implicate image feature analysis to outline the
cancerous areas of the normal skin. Thresholding techniques use low-level features, including intensity
and color to separate the normal skin and cancerous regions. Garnavi et al. [6] applied Otsu’s method
to identify the core-lesion; nevertheless, such process is disposed to skin tone variations and lighting.
Moreover, dermoscopic images include some artifacts due to water bubble, dense hairs, and gel that
are a great challenge for accurate detection. Silveira et al. [7] evaluated six skin lesions segmentation
techniques in dermoscopic images, including the gradient vector flow (GVF), level set, adaptive snake,
adaptive thresholding, fuzzy-based split and merge (FSM), and the expectation–maximization level set
(EMLV) methods. The results established that adaptive snake and EMLV were considered the superior
semi-supervised techniques, and that FSM achieved the best fully computerized results.

In dermoscopic skin lesion images, Celebi et al. [8] applied an unsupervised method using
a modified JSEG algorithm for border detection, where the original JSEG algorithm is an adjusted
version of the generalized Lloyd algorithm (GLA) for color quantization. The main idea of this method
is to perform the segmentation process using two independent stages, namely color quantization
and spatial segmentation. However, one of the main limitations occurs when the bounding box does
not entirely include the lesion. This method was evaluated on 100 dermoscopic images, and border
detection error was calculated. Dermoscopic images for the initial consultation were analyzed by
Argenziano et al. [9] and were compared with images from the last follow-up consultation and the
symmetrical/asymmetrical structural changes. Xie and Bovik [10] implemented a dermoscopic image
segmentation approach by integrating the genetic algorithm (GA) and self-generating neural network
(SGNN). The GA was used to select the optimal samples as initial neuron trees, and then the SGNF was
used to train the remaining samples. Accordingly, the number of clusters was determined by adjusting
the SD of cluster validity. Thus, the clustering is accomplished by handling each neuron tree as a cluster.
A comparative study between this method and other segmentation approaches—namely k-means,
statistical region merging, Otsu’s thresholding, and the fuzzy c-means methods—has been conducted
revealing that the optimized method provided improved segmentation and more accurate results.

Barata et al. [11] proposed a machine learning based, computer-aided diagnosis system for
melanoma using features having medical importance. This system used text labels to detect several
significant dermoscopic criteria, where, an image annotation scheme was applied to associate the
image regions with the criteria (texture, color, and color structures). Features fusion was then used to
combine the lesions’ diagnosis and the medical information. The proposed approach achieved 84.6%
sensitivity and 74.2% specificity on 804 images of a multi-source data set.

Set theory, such as the fuzzy set method, has been successfully employed into image segmentation.
Fuzzy sets have been introduced into image segmentation applications to handle uncertainty. Several
researchers have been developing efficient clustering techniques for skin cancer segmentation and other
applications based on fuzzy sets. Fuzzy c-means (FCM) uses the membership function to segment the
images into one or several regions. Lee and Chen [12] proposed a segmentation technique on different
skin cancer types using classical FCM clustering. An optimum threshold-based segmentation technique
using type-2 fuzzy sets was applied to outline the skin cancerous areas. The results established the
superiority of this method compared to Otsu’s algorithm, due its robustness to skin tone variations
and shadow effects. Jaisakthi et al. [13] proposed an automated skin lesion segmentation technique
in dermoscopic images using a semi-supervised learning algorithm. A k-means clustering procedure
was employed to cluster the pre-processed skin images, where the skin lesions were identified from
these clusters according to the color feature. However, the fuzzy set technique cannot assess the
indeterminacy of each element in the set. Zhou et al. [14] introduced the fuzzy c-means (FCM)
procedure based on mean shift for detecting regions within the dermoscopic images.

Recently, neutrosophy has provided a prevailing technique, namely the neutrosophic set (NS),
to handle indeterminacy during the image processing. Guo and Sengur [15] integrated the NS and FCM
frameworks to resolve the inability of FCM for handling uncertain data. A clustering approach called
neutrosophic c-means (NCM) clustering was proposed to cluster typical data points. The results proved
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the efficiency of the NCM for image segmentation and data clustering. Mohan et al. [16] proposed
automated brain tumor segmentation based on a neutrosophic and k-means clustering technique.
A non-local neutrosophic Wiener filter was used to improve the quality of magnetic resonance images
(MRI) before applying the k-means clustering approach. The results found detection rates of 100% with
98.37% accuracy and 99.52% specificity. Sengur and Guo [17] carried out an automated technique using
a multiresolution wavelet transform and NS. The color/texture features have been mapped on the NS
and wavelet domain. Afterwards, the c-k-means clustering approach was employed for segmentation.
Nevertheless, wavelets [18] are sensitive to poor directionality during the analysis of supplementary
functions in multi-dimensional applications. Hence, wavelets are relatively ineffectual to represent
edges and anisotropic features in the dermoscopic images. Subsequently, enhanced multi-scale
procedures have been established, including the curvelets and shearlets to resolve the limitations of
wavelet analysis. These methods have the ability to encode directional information for multi-scale
analysis. Shearlets provides a sparse representation of the two-dimensional information with edge
discontinuities [19]. Shearlet-based techniques were established to be superior to wavelet-based
methods [20].

Dermoscopic images include several artifacts such as hair, air bubbles, and other noise factors that
are considered indeterminate information. The above-mentioned skin lesion segmentation methods
either need a preprocessing to deal with the indeterminate information, or their detection results must
be affected by them. To overcome this disadvantage, we introduce the neutrosophic set to deal with
indeterminate information in dermoscopic images; we use a shearlet transform and the neutrosophic
c-means (NCM) method along with an indeterminacy filter (IF) to eliminate the indeterminacy for
accurate skin cancer segmentation. An adaptive region growing method is also employed to identify
the lesions accurately.

The rest of the paper is organized as follows. In the second section, the proposed method is
presented. Then the experimental results are discussed in the third section. The conclusions are drawn
in the final section.

2. Methodology

The current work proposes a skin lesion detection algorithm using neutrosophic clustering and
adaptive region growing in dermoscopic images. In this study, the red channel is used to detect the
lesion, where healthy skin regions tend to be reddish, while darker pixels often occur in skin lesion
regions [21]. First, the shearlet transform is employed on the red channel of dermoscopic image to
extract the shearlet features. Then, the red channel of the image is mapped into the neutrosophic
set domain, where the map functions are defined using the shearlet features. In the neutrosophic
set, an indeterminacy filtering operation is performed to remove indeterminate information, such as
noise and hair without using any de-noising or hair removal approaches. Then, the segmentation is
performed through the neutrosophic c-means (NCM) clustering algorithm. Finally, the lesions are
identified precisely using adaptive region growing on the segmentation results.

2.1. Shearlet Transform

Shearlets are based on a rigorous and simple mathematical framework for the geometric
representation of multidimensional data and for multiresolution analysis [22]. The shearlet transform
(ST) resolves the limitations of wavelet analysis; where wavelets fail to represent the geometric
regularities and yield surface singularities due to their isotropic support. Shearlets include nearly
parallel elongated functions to achieve surface anisotropy along the edges. The ST is an innovative
two-dimensional wavelet transformation extension using directional and multiscale filter banks to
capture smooth contours corresponding to the prevailing features in an image. Typically, the ST is
a function with three parameters a, s, and t denoting the scale, shear, and translation parameters,
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respectively. The shearlet can fix both the locations of singularities and the singularities’ curve tracking
automatically. For a > 0, s ∈ R, t ∈ R2, the ST can be defined using the following expression [23]:

STς p(a, s, t) =< 〈p, ςa,s,t〉, (1)

where ςa,s,t( f ) = |detNa,s|−1/2ς
(

N−1
a,s ( f − t)

)
and Na,s =

[
a s
0
√

a

]
. Each matrix Na,s can be

defined as:
Na,s = VsDa, (2)

where the shear matrix is expressed by:

Vs =

[
1 s
0 1

]
(3)

and the anisotropic dilation matrix is given by:

Da =

[
a s
0
√

a

]
. (4)

During the selection of a proper decomposition function for any τ = (τ1, τ2) ∈ R2, and τ2 6= 0,
ς can be expressed by:

_
ς (τ) =

_
ς (τ1, τ2) =

_
ς 1(τ1)

_
ς 2

(
τ1

τ2

)
, (5)

where
_
ς 1 ∈ L2(R) and ‖ς2‖L2

= 1.
From the preceding equations, the discrete shearlet transform (DST) is formed by translation,

shearing, and scaling to provide the precise orientations and locations of edges in an image. The DST is
acquired by sampling the continuous ST. It offers a decent anisotropic feature extraction. Thus, the DST
system is properly definite by sampling the continuous ST on a discrete subset of the shearlet group as
follows, where j, k, m ∈ Z× Z× Z2 [24]:

ST(ς) =
{

ς j,k,m = a−
3
4 ς
(

Da
−1Vs

−1(.− t)
)

: (j, k, m) ∈ ∧
}

. (6)

The DST can be divided into two steps: multi-scale subdivision and direction localization [25],
where the Laplacian pyramid algorithm is first applied to an image in order to obtain the
low-and-high-frequency components at any scale j, and then direction localization is achieved with
a shear filter on a pseudo polar grid.

2.2. Neutrosophic Images

Neutrosophy has been successfully used for many applications to describe uncertain or
indeterminate information. Every event in the neutrosophy set (NS) has a certain degree of truth (T),
indeterminacy (I), and falsity (F), which are independent from each other. Previously reported studies
have demonstrated the role of NS in image processing [26,27].

A pixel P(i, j) in an image is denoted as PNS(i, j) = {T(i, j), I(i, j), F(i, j)} in the NS domain,
where T(i, j), I(i, j), and F(i, j) are the membership values belonging to the brightest pixel set,
indeterminate set, and non-white set, respectively.

In the proposed method, the red channel of the dermoscopic image is transformed into the NS
domain using shearlet feature values as follows:
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T(x, y) = STL(x,y)−STLmin
STLmax−STLmin

I(x, y) = STH(x,y)−STHmin
STHmax−STHmin

(7)

where T and I are the true and indeterminate membership values in the NS. STL(x, y) is the
low-frequency component of the shearlet feature at the current pixel P(x, y). In addition, STLmax

and STLmin are the maximum and minimum of the low-frequency component of the shearlet feature
in the whole image, respectively. STH(x, y) is the high-frequency component of the shearlet feature
at the current pixel P(x, y). Moreover, STHmax and STHmin are the maximum and minimum of the
high-frequency component of the shearlet feature in the whole image, respectively. In the proposed
method, we only use T and I for segmentation because we are only interested in the degree to which
a pixel belongs to the high intensity set of the red channel.

2.3. Neutrosophic Indeterminacy Filtering

In an image, noise can be considered as indeterminate information, which can be handled
efficiently using NS. Such noise and artifacts include the existence of hair, air bubbles, and blurred
boundaries. In addition, NS can be integrated with different clustering approaches for image
segmentation [16,28], where the boundary information, as well as the details, may be blurred due to the
principal low-pass filter leading to inaccurate segmentation of the boundary pixels. A novel NS based
clustering procedure, namely the NCM has been carried out for data clustering [15], which defined
the neutrosophic membership subsets using attributes of the data. Nevertheless, when it is applied to
the image processing area, it does not account for local spatial information. Several side effects can
affect the image when using classical filters in the NS domain, leading to blurred edge information,
incorrect boundary segmentation, and an inability to combine the local spatial information with the
global intensity distribution.

After the red channel of the dermoscopic image is mapped into the NS domain, an indeterminacy
filter (IF) is defined based on the neutrosophic indeterminacy value, and the spatial information is
utilized to eliminate the indeterminacy. The IF is defined by using the indeterminate value Is(x, y),
which has the following kernel function [28]:

OI(u, v) =
1

2πσ2
I

e
− u2+v2

2σ2
I (8)

σI(x, y) = f (I(x, y)) = rI(x, y) + q, (9)

where σI represents the Gaussian distribution’s standard deviation, which is defined as a linear function
f (.) associated with the indeterminacy degree. Since σI becomes large with a high indeterminacy
degree, the IF can create a smooth current pixel by using its neighbors. On the other hand, with a low
indeterminacy degree, the value of σI is small and the IF performs less smoothing on the current pixel
with its neighbors.

2.4. Neutrosophic C-Means (NCM)

In the NCM algorithm, an objective function and membership are considered as follows [29]:

J(T, I, F, A) =
N

∑
i=1

A

∑
j=1

(v1Tij)
m||xi − aj||2 +

N

∑
i=1

(v2 Ii)
m||xi − aimax||2 +

N

∑
i=1

δ2(v3Fi)
m (10)
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aimax =
api+aqi

2

pi = argmax
j=1,2,··· ,A

(Tij)

qi = argmax
j 6=pi∩j=1,2,··· ,A

(Tij)

(11)

where m is a constant and usually equal to 2. The value of aimax is calculated, since pi and qi are
identified as the cluster numbers with the largest and second largest values of T, respectively.
The parameter δ is used for controlling the number of objects considered as outliers, and vi is
a weight factor.

In our NS domain, we only defined the membership values of T and I. Therefore, the objective
function reduces to:

J(T, I, F, A) =
N

∑
i=1

A

∑
j=1

(v1Tij)
m||xi − aj||2 +

N

∑
i=1

(v2 Ii)
m||xi − aimax||2. (12)

To minimize the objective function, three membership values are updated on each iteration as:

Tij =
K

v1

(
xi − aj

)− 2
m−1

I i =
K

v2
(xi − aimax)

− 2
m−1

K =

[
1

v1

A
∑

j=1

(
xi − aj

)− 2
m−1 + 1

v2
(xi − aimax)

− 2
m−1

]−1 (13)

where aimax is calculated based on the indexes of the largest and the second largest value of Tij.

The iteration does not stop until
∣∣∣T(k+1)

ij − T(k)
ij

∣∣∣ < ε, where ε is a termination criterion between 0 and
1, and k is the iteration step. In the proposed method, the neutrosophic image after indeterminacy
filtering is used as the input for NCM algorithm, and the segmentation procedure is performed using
the final clustering results. Since the pixels whose indeterminacy membership values are higher than
their true membership values, it is hard to determine which group they belong to. To solve this problem,
the indeterminacy filter is employed again on all pixels, and the group is determined according to their
biggest true membership values for each cluster after the IF operation.

2.5. Lesion Detection

After segmentation, the pixels in an image are grouped into several groups according to their
true membership values. Due to the fact that the lesions have low intensities, especially for the core
part inside a lesion, the cluster with lowest true membership value is initially considered as the lesion
candidate pixels. Then an adaptive region growing algorithm is employed to precisely detect the
lesion boundary parts having higher intensity and lower contrast than the core ones. A contrast ratio
is defined adaptively to control the growing speed:

DR(t) =
mean(Ra − Rb)

mean(Rb)
, (14)

where DR(t) is the contrast ratio at the t-th iteration of growing, and Rb and Ra are the regions before
and after the t-th iteration of growing, respectively.

A connected component analysis is taken to extract the components’ morphological features.
Due to the fact that there is only one lesion in a dermoscopic image, the region with the biggest area is
identified as the final lesion region. The block diagram of the proposed neutrosophic clustering and
adaptive region growing (NCARG) method is illustrated in Figure 1.
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Figure 1. Flowchart of the proposed neutrosophic clustering and adaptive region growing (NCARG)
skin lesion detection algorithm.

Figure 1 illustrates the steps of the proposed skin lesion segmentation method (NCARG) using
neutrosophic c-means and region growing algorithms. Initially, the red channel of the dermoscopic
image is transformed using a shearlet transform, and the shearlet features of the image are used to
map the image into the NS domain. In the NS domain, an indeterminacy filtering operation is taken
to remove the indeterminate information. Afterward, the segmentation is performed through NCM
clustering on the filtered image. Finally, the lesion is accurately identified using an adaptive region
growing algorithm where the growing speed is controlled by a newly defined contrast ratio.

To illustrate the steps in the proposed method, we use an example to demonstrate the intermediate
results in Figure 2. Figure 2a,b are the original image and its ground truth image of segmentation.
Figure 2c is its red channel. Figure 2d,e are the results after indeterminacy filtering and the NCM.
In Figure 2f, the final detection result is outlined in blue and ground truth in red where the detection
result is very close to its ground truth result.

Figure 2. Intermediate results of an example image: ISIC_0000015: (a) Original skin lesion image;
(b) Ground truth image; (c) Red channel of the original image; (d) Result after indeterminate filtering;
(e) Result after NCM; (f) Detected lesion region after adaptive region growing, where the blue line is
for the boundary of the detection result and the red line is the boundary of the ground truth result.
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2.6. Evaluation Metrics

Several performance metrics are measured to evaluate the proposed skin cancer segmentation
approach, namely the Jaccard index (JAC), Dice coefficient, sensitivity, specificity, and accuracy [30].
Each of these metric is defined in the remainder of this section. JAC is a statistical metric to compare
diversity between the sample sets based upon the union and intersection operators as follows:

JAC(Y, Q) =
ArY ∩ ArQ

ArY ∪ ArQ
, (15)

where ∩ and ∪ are the intersection and union of two sets, respectively. In addition, ArY and ArQ
are the automated segmented skin lesion area and the reference golden standard skin lesion area
enclosed by the boundaries Y and Q; respectively. Typically, a value of 1 specifies complete similarity,
while a JAC value of 0 specifies no similarity.

The Dice index compares the similarity of two sets, which is given as following for two sets X
and Y:

DSC =
2|X ∩Y|
|X|+|Y| (16)

Furthermore, the sensitivity, specificity, and accuracy are related to the detection of the lesion region.
The sensitivity indicates the true positive rate, showing how well the algorithm successfully predicts
the skin lesion region, which is expressed as follows:

Sensitivity =
Number of true positives

Number of true positives + Number of false negatives
. (17)

The specificity indicates the true negative rate, showing how well the algorithm predicts the non-lesion
regions, which is expressed as follows:

Specificity =
Number of true negative

Number of conditionnegative
. (18)

The accuracy is the proportion of true results (either positive or negative), which measures the reliability
degree of a diagnostic test:

Accuracy =
Number of true positive + Number of true negative

Number of total population
. (19)

These metrics are measured to evaluate the proposed NCARG method compared to another
efficient segmentation algorithm that is based on the neutrosophic similarity score (NSS) and level
set (LS), called NSSLS [31]. In the NSSLS segmentation method, the three membership subsets are
used to transfer the input image to the NS domain, and then the NSS is applied to measure the
fitting degree to the true tumor region. Finally, the LS method is employed to segment the tumor
in the NSS image. In the current work, when the NSSLS is applied to the skin images, the images
are interpreted using NSS, and the skin lesion boundary is extracted using the level set algorithm.
Moreover, the statistical significance between the evaluated metrics using both segmentation methods
is measured by calculating the significant difference value (p-value) to estimate the difference between
the two methods. The p-value refers to the probability of error, where the two methods are considered
statistically significant when p ≤ 0.05.

3. Experimental Results and Discussion

3.1. Dataset

The International Skin Imaging Collaboration (ISIC) Archive [32] contains over 13,000 dermoscopic
images of skin lesions. Using the images in the ISIC Archive, the 2017 ISBI Challenge on Skin Lesion Analysis
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Towards Melanoma Detection was proposed to help participants develop image analysis tools to
enable the automated diagnosis of melanoma from dermoscopic images. Image analysis of skin lesions
includes lesion segmentation, detection and localization of visual dermoscopic features/patterns,
and disease classification. All cases contain training, and binary mask images as ground truth files.

In our experiment, 50 images were selected to tune the parameters in the proposed NCARG
algorithm and 500 images were used as the testing dataset. In the experiment, the parameters are set
to r = 1, q = 0.05, w1 = 0.75, w2 = 0.25, and ε = 0.001.

3.2. Detection Results

Skin lesions are visible by the naked eye; however, early-stage detection of melanomas is
complex and difficult to distinguish from benign skin lesions with similar appearances. Detecting
and recognizing melanoma at its earliest stages reduces melanoma mortality. Skin lesion digital
dermoscopic images are employed in the present study to detect skin lesions for accurate automated
diagnosis and clinical decision support. The ISIC images are used to test and to validate the proposed
approach of skin imaging. Figure 3 demonstrates the detection results using the proposed NCARG
approach compared to the ground truth images. In the Figure 3d, the boundary detection results are
marked in blue and the ground truth results are in red. The detection results match the ground truth
results, and their boundaries are very close. Figure 3 establishes that the proposed approach accurately
detects skin lesion regions, even with lesions of different shapes and sizes.

Figure 3. Detection results: (a) Skin cancer image number; (b) Original skin lesion image; (c) Ground
truth image; and (d) Detected lesion region using the proposed approach.

3.3. Evaluation

Table 1 reports the average values as well as the standard deviations (SD) of the evaluation metrics
on the proposed approach’s performance over 500 images.
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Table 1. The performance of computer segmentation using the proposed NCARG method with
reference to ground truth boundaries (Average ± SD).

Metric Value Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

Average 95.3 90.38 83.2 97.5 88.8

Standard deviation 6 7.6 10.5 3.5 11.4

Table 1 establishes that the proposed approach achieved a detection accuracy for the skin lesion
regions of 95.3% with a 6% standard deviation, compared to the ground truth images. In addition,
the mean values of the Dice index, Jaccard index, sensitivity, and specificity are 90.38%, 83.2%, 97.5%,
and 88.8%; respectively, with standard deviations (SD) of 7.6%, 10.5%, 3.5%, and 11.4%; respectively.
These reported experimental test results proved that the proposed NCARG approach correctly detects
skin lesions of different shapes and sizes with high accuracy. Ten dermoscopic images were randomly
selected; their segmentation results are shown in Figure 4, and the evaluation metrics are reported in
Table 2.

Figure 4. Cont.
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Figure 4. Comparative segmentation results, where (a1–a10): original dermoscopic test images;
(b1–b10): ground truth images; (c1–c10): segmented images using the neutrosophic similarity score
and level set (NSSLS) algorithm, and (d1–d10): NCARG proposed approach.

Table 2. The performance of computer segmentation using the proposed method with reference to the
ground truth boundaries (Average ± SD) of ten images during the test phase.

Image ID Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

ISIC_0012836 99.7819 93.2747 87.397 99.9909 87.851
ISIC_0013917 99.1485 90.4852 82.6237 1 82.6237
ISIC_0014647 99.4684 92.8643 86.6791 99.7929 91.2339
ISIC_0014649 98.8823 95.2268 90.8886 98.8313 99.2854
ISIC_0014773 98.9017 97.3678 94.8707 98.6294 99.9692
ISIC_0014968 89.5888 89.2267 80.5489 81.7035 99.9913
ISIC_0014994 98.9242 93.0613 87.023 1 87.023
ISIC_0015019 93.8788 93.9689 88.6239 88.6218 99.602
ISIC_0015941 99.7687 94.3589 89.3203 1 89.3203
ISIC_0015563 98.0344 83.939 72.3232 97.928 1
Average (%) 97.63777 92.3774 86.0298 96.54978 93.68998

SD (%) 3.31069 3.7373 6.2549 6.26068 6.76053

3.4. Comparative Study with NSSLS Method

The proposed NCARG approach is compared with the NSSLS algorithm [31] for detecting skin
lesions. Figure 4(a1–a10), Figure 4(b1–b10), Figure 4(c1–c10) and Figure 4(d1–d10) include the original
dermoscopic images, the ground truth images, the segmented images using the NSSLS algorithm,
and the NCARG proposed approach; respectively.

Figure 4 illustrates different samples from the test images with different size, shape,
light illumination, skin surface roughness/smoothness, and the existence of hair and/or air bubbles.
For these different samples, the segmented image using the proposed NCARG algorithm is matched
with the ground truth; while, the NSSLS failed to accurately match the ground truth. Thus, Figure 4
demonstrates that the proposed approach accurately detects the skin lesion under the different cases
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compared with the NSSLS method. The superiority of the proposed approach is due to the ability of the
NCM along with the IF to handle indeterminate information. In addition, shearlet transform achieved
the surface anisotropic regularity along the edges leading the algorithm to capture the smooth contours
corresponding to the dominant features in the image. For the same images in Figure 4, the comparative
results of the previously mentioned evaluation metrics are plotted for the NCARG and NSSLS in
Figures 5 and 6; respectively. In both figures, the X-axis denotes the image name under study, and the
Y-axis denotes the value of the corresponding metric in the bar graph.

Figure 5 along with Table 2 illustrate the accuracy of the proposed algorithm, which achieves
an average accuracy of 97.638% for the segmentation of the different ten skin lesion samples,
while Figure 6 illustrates about 44% average accuracy of the NSSLS method. Thus, Figures 5 and 6
establish the superiority of the proposed approach compared with the NSSLS method, owing to the
removal the indeterminate information and the efficiency of the shearlet transform. The same results
are confirmed by measuring the same metrics using 500 images, as reported in Figure 7.

Figure 5. Evaluation metrics of the ten test images using the proposed segmentation NCARG approach.

Figure 6. Evaluation metrics of the ten test images using the NSSLS segmentation approach
for comparison.
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Figure 7 reports that the proposed method achieves about 15% improvement on the accuracy and
about 25% improvement in the JAC over the NSSLS method. Generally, Figure 7 proves the superiority
of the proposed method compared with the NSSLS method. In addition, Table 3 reports the statistical
results on the testing images; it compares the detection performance with reference to the ground
truth segmented images for the NSSLS and the proposed NCARG method. The p-values are used to
estimate the differences between the metric results of the two methods. The statistical significance was
set at a level of 0.05; a p-value of <0.05 refers to the statistically significant relation.

Figure 7. Comparative results of the performance evaluation metrics of the proposed NCARG and
NSSLS methods.

The p-values reported in Table 3 establish a significant difference in the performance metric values
when using the proposed NCARG and NSSLS methods. The mean and standard deviation of the
accuracy, Dice, JAC, sensitivity, and specificity for the NSSLS and NCARG methods, along with the
p-values, establish that the proposed NCARG method improved skin lesion segmentation compared
with the NSSLS method. Figure 7 along with Table 3 depicts that the NCARG achieved 95.3% average
accuracy, which is superior to the 80.6% average accuracy of the NSSLS approach. Furthermore,
the proposed algorithm achieved a 90.4% average Dice coefficient value, 83.2% average JAC value,
97.5% average sensitivity value, and 88.8% average specificity value. The segmentation accuracy
improved from 80.6 ± 22.1 using the NSSLS to 95.3 ± 6 using the proposed method, which is
a significant difference. The skin lesion segmentation improvement is statistically significant (p < 0.05)
for all measured performances metrics by SPSS software.

Table 3. The average values (mean ± SD) of the evaluation metrics using the NCARG approach
compared to the NSSLS approach.

Method Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

NSSLS method 80.6 ± 22.1 66.4 ± 32.6 57.9 ± 33.7 82.1 ± 24 83.1 ± 30.4

Proposed NCARG method 95.3 ± 6 90.4 ± 7.6 83.2 ± 10.5 97.5 ± 6.3 88.8 ± 11.4

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

The cumulative percentage is used to measure the percentage of images, which have a metric
value less than a threshold value. The cumulative percentage (CP) curves of the measured metrics
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are plotted for comparing the performance of the NSSLS and NCARG algorithms. Figures 8–12 show
the cumulative percentage of images having five measurements less than a certain value; the X-axis
represents the different threshold values on the metric and the Y-axis is the percentage of the number
of images whose metric values are greater than this threshold value. These figures demonstrate the
comparison of performances in terms of the cumulative percentage of the different metrics, namely the
accuracy, Dice value, JAC, sensitivity, and specificity; respectively.

Figure 8 illustrates a comparison of performances in terms of the cumulative percentage of the
NCARG and NSSLS segmentation accuracy. About 80% of the images have a 95% accuracy for the
segmentation using the proposed NCARG, while the achieved cumulative accuracy percentage using
the NSSLS is about 65% for 80% of the images.

Figure 8. Comparison of performances in terms of the cumulative percentage of the accuracy using the
NCARG and NSSLS segmentation methods.

Figure 9 compares the performances, in terms of the cumulative percentage of the Dice index
values, of the NCARG and NSSLS segmentations. Figure 9 depicts that 100% of the images have about
82% Dice CP values using the NCARG method, while 58% of the images achieved the same 82% Dice
CP values when using the NSSLS method.

Figure 9. Comparison of performances in terms of the cumulative percentage of the Dice values using
the NCARG and NSSLS segmentation methods.
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Figure 10 compares the performances, in terms of the cumulative percentage of the JAC values,
of the NCARG and NSSLS segmentation. About 50% of the images have 83% CP JAC values using
the NCARG method, while the obtained CP JAC using the NSSLS for the same number of images is
about 72%.

Figure 10. Comparison of performances in terms of the cumulative percentage of the JAC values using
NCARG and NSSLS segmentation methods.

Figure 11 compares the performances, in terms of the cumulative percentage of the sensitivity,
using the NCARG and NSSLS segmentation methods. About 50% of the images have 97% sensitivity
value using the NCARG method, while the NSSLS achieves about 92% sensitivity value.

Figure 11. Comparison of performances in terms of the cumulative percentage of the sensitivity using
the NCARG and NSSLS segmentation methods.

Figure 12 demonstrates the comparison of performances, in terms of the cumulative percentage
of the specificity, using the NCARG and NSSLS segmentation methods. A larger number of images
have accuracies in the range of 100% to 85% when using the NSSLS compared to the proposed method.
However, about 100% of the images have 63% CP specificity values using the NCARG method,
while the NSSLS achieved about 20% cumulative specificity values with 90% of the images. Generally,
the cumulative percentage of each metric establishes the superiority of the proposed NCARG method
compared with the NSSLS method.
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Figure 12. Comparison of performances in terms of the cumulative percentage of the specificity using
the NCARG and NSSLS segmentation methods.

3.5. Comparison with Other Segmentation Methods Using the ISIC Archive

In case of lesion segmentation, variability in the images is very high; therefore, performance
results highly depend on the data set that is used in the experiments. Several studies and challenges
have been conducted to resolve such trials [33]. In order to validate the performance of the proposed
NCARG method, a comparison is conducted on the results of previously published studies on the
same ISIC dermoscopic image data set. Yu et al. [34] leveraged very deep convolutional neural
networks (CNN) for melanoma image recognition using the ISIC data set. The results proved
that deeper networks, of more than 50 layers, provided more discriminating features with more
accurate recognition. For accurate skin lesion segmentation, fully convolutional residual networks
(FCRN) with a multi-scale contextual information integration structure were applied to the further
classification stage. The network depth increase achieved enhanced discrimination capability of
CNN. The FCRNs of 38 layers achieved 0.929 accuracy, 0.856 Dice, 0.785 JAC, and 0.882 sensitivity.
Thus, our proposed NCARG provides superior performance in terms of these metrics. However,
with an increased FCRN layer depth of 50, the performance improvement increased compared to our
proposed method. However, the complexity also increases. In addition, Yu et al. have compared
their study with other studies, namely the fully convolutional VGG-16 network [34,35] and the fully
convolutional GoogleNet [34,36] establishing the superiority of our work compared to both of those
studies. Table 4 reports a comparative study between the preceding studies, which have used the same
ISIC data set, and the proposed NCARG method.

Table 4. Performance metrics comparison of different studies using the ISIC dataset for segmentation.

Method Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

FCRNs of 38 layers [34] 92.9 85.6 78.5 88.2 93.2
FCRNs of 101 layers [34] 93.7 87.2 80.3 90.3 93.5

VGG-16 [34,35] 90.3 79.4 70.7 79.6 94.5
GoogleNet [34,36] 91.6 84.8 77.6 90.1 91.6

Proposed NCARG method 95.3 90.4 83.2 97.5 88.8

The preceding results and the comparative study establish the superiority of the proposed NCARG
method compared with other methods. This superiority arises due to the effectiveness of the shearlet
transform, the indeterminacy filtering, and the adaptive region growing, yielding an overall accuracy
of 95.3%. Moreover, in comparison with previously conducted studies on the same ISIC dermoscopic
image data set, the proposed method can be considered an effective method. In addition, the studies
in References [37,38] can be improved and compared with the proposed method on the same dataset.
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4. Conclusions

In this study, a novel skin lesion detection algorithm is proposed based on neutrosophic
c-means and adaptive region growing algorithms applied to dermoscopic images. The dermoscopic
images are mapped into the neutrosophic domain using the shearlet transform results of the image.
An indeterminate filter is used for reducing the indeterminacy on the image, and the image is
segmented via a neutrosophic c-means clustering algorithm. Finally, the skin lesion is accurately
identified using a newly defined adaptive region growing algorithm. A public data set was employed
to test the proposed method. Fifty images were selected randomly for tuning, and five hundred images
were used to test the process. Several metrics were measured for evaluating the proposed method
performance. The evaluation results demonstrate the proposed method achieves better performance
to detect the skin lesions when compared to the neutrosophic similarity score and level set (NSSLS)
segmentation approach.

The proposed NCARG approach achieved average 95.3% accuracy of 500 dermoscopic images
including, ones with different shape, size, color, uniformity, skin surface roughness, light illumination
during the image capturing process, and existence of air bubbles. The significant difference in the
p-values of the measured metrics using the NSSLS and the proposed NCARG proved the superiority of
the proposed method. This proposed method determines possible skin lesions in dermoscopic images
which can be employed for further accurate automated diagnosis and clinical decision support.
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