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A lot of studies confirmed the seriousness of breast cancer as the most tumors lethal to
women worldwide. Early detection and diagnosis of breast cancer are of great importance
to increase treatment options and patients’ survival rate. Ultrasound is one of the most fre-
quently used methods to detect and diagnosis breast tumor due to its harmlessness and
inexpensiveness. However, problems were found in the tumor diagnosis and classification
as benign and malign on ultrasound image for its vagueness, such as speckle noise and low
contrast. In this paper, we propose a novel breast tumor classification algorithm that com-
bines texture and morphologic features based on neutrosophic similarity score. Then, a
supervised feature selection technique is employed to reduce feature space. Finally, a sup-
port vector machine (SVM) classifier is employed to prove the discrimination power of the
proposed features set. The proposed system is validated by 112 cases (58 malign, 54
benign). The experimental results show that such features set is promising and 99.1%
classification accuracy is achieved.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Reports of World Health Organization (WHO) indicated
that cancers are among the main reasons of morbidity and
death-rate worldwide. Moreover, they reported that in
2012, the new cases are around 14 million and the cancer
related deaths are 8 million [1]. For 2014, there are
estimated 1.6 million new cancer cases diagnosed and
0.6 million cancer deaths only in USA [2]. Unfortunately,
the total number of new cases is expected to rise – for
the next two decades – by about 70% [1]. Breast cancer dis-
ease is considered the second lethal killer among women
all over the world [15]. Published statistics indicate that
about 8% of women will be harmed by this disease during
their lives [1]. It is believed that early detection tests for
not only breast cancer but also all types of cancer save tens
of thousands of lives yearly.

Breast ultrasound (BUS) imaging is a well-known
approach for the early detection and diagnosis of breast
cancer [3]. It is widely used in clinic due to the fact that
it is noninvasive, practically harmless and low cost [4].
However, speckle noise and low contrast are their main
drawbacks [5]. In addition, ultrasound exam depends on
the operator’s aptitude, and the analysis of its images
requires good experience of the radiology field [6,7]. For
more accurate diagnosis, computer-aided detection/
diagnosis (CADe/CADx) systems [21–23] have been devel-
oped for detecting and classifying breast cancer. A CAD
system is an interdisciplinary technology that employs
both digital image processing algorithms and the knowl-
edge of radiology’s experts to greatly improve the accuracy
of abnormality detection and diagnosis [8]. Generally,
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ultrasound CAD system includes many stages on image
processing: (a) denoising, (b) enhancement, (c) segmenta-
tion, (d) feature extraction, (e) features reduction and
finally (f) classification. Some simple CAD systems start
processing using already segmented images [15]. In such
systems, many features are extracted from the segmented
region of interest. Then, this large number of features are
reduced and used as inputs to the next classifier stage.
Our proposed system in this work is designed according
to the latter approach.

The input to our proposed system is a breast ultrasound
image which contains only one tumor. The tumor’s contour
is marked by an experienced radiologist. The rectangular
image that best enclose the tumor area (ROI) is then
selected from the input image. Different types of features
are extracted from the ROI image and included in a fea-
tures pool. In order to reduce the size of such pool, a super-
vised chi-squared feature selection technique is employed.
To classify the tumor into either benign or malign classes, a
support vector machine classifier is used as a final stage.

The rest of this paper is organized as follows. Section 2
gives a brief review of literature. Section 3 presents the
details of the proposed method. In Section 4, Experimental
results are introduced and then followed by a discussion in
Section 5. Finally, Conclusions and future work are drawn
in Section 6.

2. Literature review

During the last few years, classification of breast tumors
in ultrasound images is a hot research point. Many CAD
systems were proposed to distinguish malignant from
benign tumors in BUS images. A survey on the research
work done during last few years on such CAD systems is
summarized in Table 1. We are here interested in the
stages of feature extraction, feature reduction/selection,
and classification. Table 1 demonstrates some specific
points used in similar recent CAD systems. For every previ-
ous work; the total size of used data set and the number of
malignant and benign cases are indicated. The training and
testing partitions of the dataset (if any) is also indicated. In
such table, the employed type of classifier/or classifiers,
the obtained classification accuracy, types and numbers
Table 1
Survey of recent CAD systems [24–32].

References Size of data-set Classifier

[24] 210 (120 B, 90 M) SVM
[25] 132 (67 B, 65 M) APC
[26] 105 (50 B, 55 M) SVM

[27] 200 (100 M, 100B) SVM Ada.
[28] 321 (92 B, 172 M) {train} (21 B, 36 M)

{test}
SVM ANN KNN

[29] 80 (47 B, 33 M) SVM
[30] 40 SVM
[31] 91 (56 B, 35 M) ANN

[32] 80 (21B, 59 M) Multi-C (ANN& Ada.&
FSVM)

Used Abbreviations; T: Total No. of features, F/S: feature selection, Text.: Tex
transform, Multi-C: multi classifier, Ada.: Ada-boost, SFSS: Sequential floating fo
of extracted features, used feature reduction/selection (if
any) are indicated. The used abbreviations are summarized
in the last row of Table 1.

2.1. Features extraction

Features can generally be used as a concise representa-
tion of an image [12]. From the radiologist’s point of view,
while investigating BUS images, malignant tumors have
many different characteristics (shape, margins, structure,
texture, . . .) than benign ones. The main characteristics of
malignant tumors are: irregular shape, malady boundaries,
microlobulated margins and heterogeneous echo texture
[19]. On the other hand, benign tumors have a rounded
shape, well defined margins, and homogeneous echo tex-
ture. However, the boundary and shape characteristics
are the most important information in tumor’s detection
or differentiation [18,19].

From the digital image processing point of view, the
features extracted from a BUS image are usually a combi-
nation of two or more categories of: texture, morphologi-
cal, model-based, and descriptor features. A brief
summary of them that were utilized in detection and clas-
sification of tumors in BUS images can be found in [15,28].
Due to the complicated nature of Model-based and
descriptor features [28], we are interested here on the tex-
ture and morphologic features.

2.1.1. Texture features
One of an effective and robust set of features that is

used to classify breast tumors is the texture features [15].
It is clearly noted from survey results summarized in
Table 1 that texture features are the most popular features
that are extracted from BUS images [24–26,28,31].

In [24], nine auto-covariance coefficients were used as
texture features extracted from ROI image. In [25], The
ROI image is divided into non-overlapping grids, then, local
texture features, local gray level co-occurrence matrix
(GLCM) features and position features (to indicate the posi-
tion of each grid with respect to center of ROI image) are
extracted. Local texture features include different mea-
sures that quantitatively describe the first order histogram
of each grid [25].
Accuracy
(%)

Features (Total No.) Feature
reduction

93 Text. & Morph. (T: 9) Fwd. F/S
93 Text. & Morph. (T: 9) PCA, SFFS
94 Text. & Morph. & Vascularity

(T: 9)
No

95 93 Text. (shearlet trnsf.) (NA) No
87 87 84 Text. & Morph. (T: 140) No

87 Text. & Morph. (T: 6) No
93 Text. & Morph. (T: 9) PCA 2D-LDA
98 Text. (T: 300) Fischer

algorithm
99 Text. (37)& Morph.(20) Bidirectional

search

ture, Morph.: Morphologic, APC: Affinity propagation clustering, Trnsf.:
rward selection.
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A histogram of an image is a function indicating the
number of pixels that have the same intensity level [14].
For an gray image f with size (N �M), Let (f(x,y) = i) be a
function of two variables x (horizontal space variable)
and y (vertical space variable), where x = 0, 1,. . .,N�1 and
y = 0,1,. . ., M�1. Let G represents the number of intensity
levels in f, then the discrete value (i) of function f(x,y)
equals i = 0,1,. . .,G�1. The intensity-level histogram is
given as [9]:

hðiÞ ¼
XN�1

x¼0

XM�1

y¼0

dðf ðx; yÞ; iÞ ð1Þ

where d(j, i) represents Kronecker delta function which is
defined by;

dðj; iÞ ¼ 1 . . . :: j ¼ i

0 . . . . . . j – i

�
ð2Þ

The pdf of occurrence of intensity levels is obtained by
dividing h(i) by (N �M) which indicates the total number
of pixels [9]:

PðiÞ ¼ hðiÞ
N:M

; i ¼ 0;1; . . . ;G� 1 ð3Þ

The following four basic statistical measures can be
used as texture features [35] and calculated for each image
histogram using [9]:

Mean: l ¼
XG�1

i¼0

ipðiÞ ð4Þ

Variance: d2 ¼
XG�1

i¼0

i� lð Þ2pðiÞ ð5Þ

Skewness: l3 ¼ r�3
XG�1

i¼0

i� lð Þ3pðiÞ ð6Þ

Kurtosis: l4 ¼ r�4
XG�1

i¼0

i� lð Þ4pðiÞ � 3 ð7Þ

GLCM is another method to describe the textures by
considering the spatial relationship of the pixels on images
[25,26]. For a given image, the GLCM is calculated by
counting howmany times- pairs of pixels with specific val-
ues and relative direction- are found. Hence, some statisti-
cal measures can be calculated from this matrix and used
as texture features. By definition, the number of gray levels
in the image G determines and equals the number of either
rows or columns of the GLCM which is a square matrix
[10]. In the calculated GLCM, each element C(i, j, d, h) is
the sum of the number of times that the pixel with value
i occurred in the specified spatial relationship to a pixel
with value j in the input image. The spatial relationship
is specified by the distance d (1, 2, 3, . . ..) between the pair
of pixels along direction angle h (0�, 45�, 90�, or 135�) of the
image [26]:

Cðd;hÞði; j;d; hÞ ¼ kfððx1; y1Þ; ðx2; y2ÞÞjx2 � x1 ¼ d cos h;
y2 � y1 ¼ d sin h; Iðx1; y1Þ ¼ i; Iðx2; y2Þ ¼ jgk

ð8Þ
where (x1, y1) and (x2, y2) are the pixels in the ROI., I(�) is
the intensity, and ||�|| is the number of pixel pairs matching
to the specified conditions [26].

In [2,3,5], many typical statistical features can be
extracted from GLCM at different (G, d, h) values. In the
work of [27], texture features are extracted based on
shear-let transform. In a recent work of [31], 300 texture
features are extracted based on the histogram, absolute
gradient (spatial variation of gray-level values), run length
matrix (counts of pixel runs with the specified gray-level
value and length in a given direction), GLCM, autoregres-
sive model (description of correlation between neighbor-
ing pixels), and wavelet (decomposition image frequency
at different scales).
2.1.2. Morphologic (shape) features
Most CAD systems [24–26,28–30,32] used morphologic

features to cooperate with texture features in order to
achieve higher classification accuracy. Morphologic fea-
tures are used to describe shape and margin of the tumors
[15]. The shape is an effective feature for classifying breast
tumors into benign and malignant [19]. Some popular
morphological features of interest are defined as follows
[11–13]:

� Diameter (di): It is a feature of any component that has
area and perimeter. The diameter feature represents
here the diameter of the tumor. It can be calculated as
an average length of the axis in irregular shapes.

� Eccentricity (ec): It is defined by the ratio of the distance
between the foci of the ellipse and its major axis length.
It takes values between 0 and 1. As an example, for an
ellipse that has zero ec, it is actually a circle, Moreover,
for an ellipse whose ec is 1, it is a segment of straight
line.

� Perimeter (pr): It represents the total length of the com-
ponent perimeter. Since malignant tumors usually have
irregular shapes, large value of pr is associated with that
a tumor is probably malignant.

� Area (ar): Malignant tumors usually have a larger value
of ar compared to benign tumors.

� Circularity (cr): It’s a measure of the compactness of a
shape. For an example, a circle is the most compact
and round shape. Benign tumors have usually larger cir-
cularity than malignant ones. The cr is calculated by;
cr ¼ 4� p� ar

prð Þ2 ð9Þ
� Elongation (el): the ratio between the object’s longest
axis (lx) and its shortest axis (sx). Malignant tumors
have usually larger elongation than benign ones. Shape
elongation is calculated using;
el ¼ sx
lx

ð10Þ
� Compactness (co): This feature depends on circularity
and elongation as following;
co ¼ cr � el ð11Þ
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2.2. Features selection

A lot of features can be extracted from BUS images. It is
not an ideal option to employ all features for classification,
and the selection of optimal and relevant features is crucial
for accurate classification decision [15,17]. The required
training time and classification accuracy are greatly
affected by the dimension of features vector [15]. In the lit-
erature, many feature reduction/selection techniques were
used such as: principal component analysis (PCA) [25], for-
ward feature selection [24], sequential floating forward
selection (SFFS) [3], bidirectional search [32], Fischer algo-
rithm [31], linear discriminate analysis (LDA) [30].
2.3. Classification

The following block after the features reduction is the
classifier which uses the reduced features pool to catego-
rize the tumor in an BUS image into benign/malignant
[15]. In the literature, many types of classifiers were used.
Our survey summary in Table 1 illustrates that SVM, due to
its superior performance and time cost [15], is the most
popular classifier used by recent CAD systems as in
[24,26–30]. Artificial neural network (ANN) (with different
topologies) and ada-boost are also used for comparison
reasons as in [28]. Sometimes, many classifiers are com-
bined in the same system and a majority voting method
was used to get the final result [30].

For the scheme of training and testing, some systems
(e.g. in [28]) divided the images dataset into training
and testing sections. Others utilized x-cross folding
techniques.

For the evaluation of the classification results, unfortu-
nately, according to our knowledge, there is no standard
BUS image database available to be used as a benchmark
[15]. Most of the previous work, as also noted from Table 1,
were done by using their own databases, which are of dif-
ferent sizes, portions of benign and malignant classes, and
sources. Different metrics are used for measuring perfor-
mance such as [15,24–32]: a receiver operating character-
istic (ROC) curve, overall accuracy (ACC), specificity (SPC),
sensitivity or true positive rate (TPR), precision or positive
predictive value (PPV), negative predictive value (NPV).
2.4. Neutrosophic similarity score

The neutrosophic similarity score (NSS) algorithm is
relatively new and introduced by [33] to measure the
degree to the ideal object, and it has been applied widely
due to its ability to describe the indeterminate features.
A neutrosophic set can be defined under different criteria
as: let A ¼ fA1;A2; . . . . . . ;Amg be a set of alternatives in
neutrosophic set, and C ¼ fC1;C2; . . . . . .Cng be a set of
criteria. The alternative Ai at Cj criterion is denoted as
fTCj

ðAiÞ; ICj
ðAiÞ; FCj

ðAiÞg=Ai; where TCj
ðAiÞ; ICj

ðAiÞ and FCj
ðAiÞ

are the membership values to the true, indeterminate
and false set at the Cj criterion.

A similarity score is employed to measure the similarity
between two elements in neutrosophic set under multi-
criteria [33]:
SCj
ðAm;AnÞ¼

TCj
ðAmÞTCj

ðAnÞþ ICj
ðAmÞICj

ðAnÞþFCj
ðAmÞFCj

ðAnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
Cj
ðAmÞþ I2Cj

ðAmÞþF2
Cj
ðAmÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
Cj
ðAnÞþ I2Cj

ðAnÞþF2
Cj
ðAnÞ

q
ð12Þ

The concept of ideal element can be employed to iden-
tify the best alternative. The ideal alternative A⁄ is denoted
as: fT�

Cj
ðAiÞ; I�Cj

ðAiÞ; F�
Cj
ðAiÞg=A�

i . The similarity to the ideal

alternative is calculated as:

SCj
ðAi;A

�Þ¼ TCj
ðAiÞTCj

ðA�Þþ ICj
ðAiÞICj

ðA�ÞþFCj
ðAiÞFCj

ðA�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
Cj
ðAiÞþ I2Cj

ðAiÞþF2
Cj
ðAiÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
Cj
ðA�Þþ I2Cj

ðA�ÞþF2
Cj
ðA�Þ

q
ð13Þ

U is a universe, BP is a bright pixel set in U, and an image
Im in NS domain is named as neutrosophic image INS, which
is interpreted using subsets T, I and F. A pixel Pðx; yÞ is
interpreted in NS domain: PNSðx; yÞ ¼ fTðx; yÞ; Iðx; yÞ;
Fðx; yÞg. Tðx; yÞ, Iðx; yÞ and Fðx; yÞ are memberships belong-
ing to bright pixel set, indeterminate set and non-bright
pixel set, respectively. At the intensity criterion, they are
computed as:

TCg ðx; yÞ ¼
gðx; yÞ � gmin

gmax � gmin
ð14Þ

ICg ðx; yÞ ¼ 1� Gdði; jÞ � Gdmin

Gdmax � Gdmin
ð15Þ

FCg ðx; yÞ ¼ 1� TCg ðx; yÞ ð16Þ
where gðx; yÞ and Gdðx; yÞ are the gray scale value and gra-
dient magnitude value at the position of (x,y) on the image.
Finally, to measure the degree to the ideal object under
intensity condition, a similarity score is calculated using;

SCg ðPðx;yÞ;A�Þ

¼ TCg ðx;yÞTCg ðA�Þþ ICg ðx;yÞICg ðA�ÞþFCg ðx;yÞFCg ðA�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
Cg
ðx;yÞþ I2Cg

ðx;yÞþF2
Cg
ðx;yÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
Cg
ðA�Þþ I2Cg

ðA�ÞþF2
Cg
ðA�Þ

q
ð17Þ
3. Proposed method

This section discusses our brief CAD systemwhich starts
processing not from raw BUS images, but from segmented
ones. The proposed method of classifying BUS images is
comprised of the following four fundamental stages:

� Region of interest (ROI) selection: ROI image which only
includes the tumor region is selected from the original
BUS image according to markings of the radiologist.

� Feature extraction: different types of information are
extracted from ROI image. This extracted information
is used to create a feature pool. Our proposed features
are extracted based on NSS domain.

� Feature selection: Supervised chi-squared feature selec-
tion technique is used to reduce the size of features
pool.

� Classification: In the last phase, we use support vector
machine (SVM) classifier to give us the final classifica-
tion decision.
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These four stages are described in more detail in the fol-
lowing sub-sections along with the steps involved. The
flow chart in Fig. 1 illustrates the detailed steps of our pro-
posed method. All original marked BUS images are avail-
able in RGB format. The input BUS image is converted
into gray level image (from which texture features are
extracted) and then into binary image (from which shape
features are extracted) as two preliminaries steps. Then,
the ROI is selected and partitioned into nine sub-images
so as to be ready for feature extraction stage. The same par-
titioning technique is also applied to the ROI image after
being transformed to the NS domain. The details of cre-
ation of different features vectors and pools are discussed
later. A classifier is used as a final stage to give the deci-
sion: malign or benign tumor.

3.1. ROI selection and partition

In a BUS image, a ROI is a rectangle enclosing the lesion.
Hence, the rectangle ROI image may has minor areas of
surrounding tissues that may leads to minor errors in the
experimental results. An illustrative example of ROI selec-
tion and partitioning is shown in Fig. 2. An original BUS
image, that has only one tumor, is shown in Fig. 2a. The
RGB BUS imag
radiologist m

RGB to Gra
conversio

Selec�on of

Texture (sta�s�cal) 
features extrac�on

Textu
feature

Features p

Features Red

Classifica�

Transforma�on 
into Neutrosophic 

similarity score

Par��oning o

Par��oning of

 NS-ROI

Malign tumor  

Fig. 1. Flow chart of the
tumor on image is marked by an experienced radiologist
as shown in Fig. 2b, and selection of ROI is illustrated in
Fig. 2c.

For measuring the feature distribution in different sub-
regions inside ROI, a method is newly proposed to split the
ROI into several sub-images with equal areas as shown in
Fig. 2d based on the fact that the center of the tumor has
different feature distribution from the boundary parts.
According to such splitting technique, every sub-region is
called ‘‘SRx”, where x equals (1, 2, . . . or 9). Usually,
‘‘SR5” represents the tumor centered region. Moreover,
all other sub-images represent different contour parts of
the tumor. The partitioned BUS image of Fig. 2a is shown
in Fig. 2e. This method is useful to describe various regions
of the tumor and is ready now for following feature extrac-
tion stage.
3.2. Feature extraction

In this section, we employ both texture and morpholog-
ical features to describe the tumor in each ROI image.
These traditional features are combined together into a
single features pool (FP1) which is consisting of 85 features
described in the following subsections in detail. Moreover,
es & 
arks

y 
n

 ROI

re (GLCH) 
s extrac�on

Morphologic 
features extrac�on

Binary ROI image

ool 

uc�on

on  

Gray to Binary 
conversion

f ROI

Benign tumor  

proposed method.
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SR1 SR2 SR3

SR4 SR5 SR6

SR7 SR8 SR9

(c) (d)

(e)

Fig. 2. Processing stages of an BUS as an example; (a) a raw BUS image, (b) Marked BUS image, (c) Selected ROI (with dimensions (l �w), (d) partitioning of
ROI image into equaled area nine sub-regions. The length of each sub-region is (l/3), width is (w/3) (e) Partitioned ROI image.
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we propose a novel feature pool (FP2) which is extracted
from the transformed ROI image in the neutrosophic set
domain and using the neutrosophic similarity score.

3.2.1. Intensity based features
For each sub-image in the partitioned ROI image (as

shown in Fig. 3d), the basic four statistical features (F1:
mean, F2: variance, F3: skewness, F4: kurtosis) of intensity
histogram are extracted. Then, the resultant features that
are extracted from the entire image are 36 features. The
Fig. 3. The most important direction of variation for
following novel features are proposed to measure horizon-
tal, vertical and central orientation contrast of intensity.
Such features are calculated depending on the above 36
features extracted:

F5: Horizontal orientation contrast of intensity (CH)

CH¼ jF1SR2 þF1SR5 þF1SR8 � 1
2ðF1SR1 þF1SR4 þF1SR7 þF1SR3 þF1SR6 þF1SR9Þj
F1SR2 þF1SR5 þF1SR8

ð18Þ

F6: Vertical orientation contrast of intensity (IVH)
each sub-image is indicated on different axis.



Table 2
Detailed values of different parameters of GLCM.

Parameter Value

Number of gray levels, G 8
Distance between pixels, d 1
Direction of variation, h Depends on the location in the ROI

SR1, 135� SR2, 90� SR3, 45�
SR4, 0� SR5, 0� SR6,0�
SR7, 45� SR8, 90� SR9, 135�

Table 3
List of used abbreviations for various features vectors.

Abbrev. Features No. of elements

FV1 1st order statistical 39
FV2 GLCH 39
FV3 Morphological 7
FV4 {FV1, FV2} 78
FV5 {FV1, FV3} 46
FV6 {FV2, FV3} 46
FP1 {FV1, FV2, FV3} 85
FP2 {FV1NS, FV2NS, FV3NS} 85
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IVH¼ jF1SR4 þF1SR5 þF1SR6 � 1
2ðF1SR1 þF1SR2 þF1SR3 þF1SR7 þF1SR8 þF1SR9Þj
F1SR4 þF1SR5 þF1SR6

ð19Þ

F7: Central contrast of intensity (ICC)

ICC¼ jF1SR5 � 1
8ðF1SR1 þF1SR2 þF1SR3 þF1SR4 þF1SR6 þF1SR7 þF1SR8 þF1SR9Þj

F1SR5

ð20Þ

Hence, the first features vector will be called ‘‘FV1” and
includes 39 features (36 features, F5, F6, and F7). Such fea-
ture vector represents the basic intensity-based statistical
features of the ROI image.

3.2.2. Texture (GLCM-based) features
From the above literature review, the intensity-based

features should be enforced with other types of texture
features. As a second texture descriptor, a gray level co-
occurrence histogram (GLCH) is calculated from the GLCM
of each sub-image with parameters values that are listed in
Table 2. The value of angle h is selected for each sub-image
to indicate the most important direction of variation in the
tumor texture as shown in Fig. 2. For 0� axis, the horizontal
direction is the most important direction of variation, so, h
is selected to be zero for SR4, SR5 and SR6. Also, For 45�
axis, h is selected to be 45� for SR3and SR7, and so on.
We then, extract the four basic statistical features {F8�
Mean, F9� Variance, F10� Skewness, F11� Kurtosis} from
GLCH on each sub-image. As a result, 36 features are
extracted from the entire image. Moreover, extra novel fea-
tures which are calculated based on the above features as
defined as follows;

F12: Horizontal orientation contrast of texture (TCH):

TCH¼ jF8SR2 þF8SR5 þF8SR8 �0:5ðF8SR1 þF8SR4 þF8SR7 þF8SR3 þF8SR6 þF8SR9Þj
F8SR2 þF8SR5 þF8SR8

ð21Þ

F13: Vertical orientation contrast of texture (TVC):

TVC¼ jF8SR4 þF8SR5 þF8SR6 �0:5ðF8SR1 þF8SR4 þF8SR7 þF8SR3 þF8SR6 þF8SR9Þj
F8SR4 þF8SR5 þF8SR6

ð22Þ

F14: Central contrast of texture (TCC):

TCC¼ jF8SR5 �0:125ðF8SR1 þF8SR2 þF8SR3 þF8SR4 þF8SR6 þF8SR7 þF8SR8 þF8SR9Þj
F8SR5

ð23Þ

The above GLCH features are concatenated into the fea-
ture vector which will be called ‘‘FV2” and includes 39
features.

3.2.3. Morphologic features
For nearly all of previous CAD systems, morphologic

features are used to coincide with texture features so as
to get maximum classification accuracy. Here in our pro-
posed system, we use some morphologic features to
describe the shape of the tumor’s contour. The contour
shape of either benign or malignant tumors can be
described by the following features that are included in
the feature vector ‘‘FV3”that includes seven features;
F15: Diameter, F16: Eccentricity, F17: Perimeter, F18: Area,
F19: Circularity, F20: Elongation, F21: Compactness.
3.2.4. Features pool
To reveal the discriminative power of various types of

features, the following concatenated vectors are proposed;
FV4 = {FV1, FV2}, FV5 = {FV1, FV3}, FV6 = {FV2, FV3}.
Finally, the above feature vectors FV1, FV2 and FV3 are
concatenated all together to construct the features pool
‘‘FP1”. On the other hand, all ROI images are transformed
to the neutrosophic domain ‘‘ROI_NS” which from the var-
ious novel feature vectors (FV1NS, FV2NS, FV3NS) are
extracted to construct the feature pool ‘‘FP2”. Table 3 lists
the abbreviations used for various features vectors.

3.3. Feature selection

The proposed features pool consists of 85 features. The
dimension of feature vectors should be reduced to enhance
the performance of the classifier, and to shorten the train-
ing time of the algorithm [15]. In our work, we use the
Chi_squared (v2) feature selection technique which gives
promised results in a recent similar work [17].

3.4. Classification

In our proposed system, we use support vector machine
(SVM) for it is an effective statistical learning method for
classification [16]. SVM also has advantage of fast training
technique, even with large number of input data. There-
fore, it has been used for many pattern classification prob-
lems [20]. We use the most popular 10-folds cross
validation method for dividing the dataset into training
and testing data.

4. Experimental results

4.1. BUS images database

A clinical BUS images database [8] is used in the exper-
iments. The images were collected by an experienced radi-
ologist in the 2nd Affiliated Hospital of Harbin Medical



Fig. 4. Comparison between classification accuracies using different features types. Only one feature vector is used per experiment.
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University, Harbin, China. The used equipment: VIVID 7
(GE, USA) with a 5–14 MHz linear probe, and captured
directly from video frames. The database includes one
BUS image for 112 cases where each image contains only
a single lesion. The 112 images include 54 cases for benign
solid lesions, and 58 cases for malignant solid lesions. All
cases were confirmed by either biopsy or operation.
Finally, experienced radiologists outlined tumors in each
BUS image. Such marked images are used as golden stan-
dard images [8]. During our experiments, we use both Mat-
lab (release 2014a) [34] and Weka (Ver. 3.6.11) [35] as
software tools.

4.2. Performance metrics

Different metrics are used to measure the performance
of the classification process. On the basis of the obtained
confusion matrix, we can define: TP � True positive, TN
� True negative, FP � False positive, FN � False negative.
Then, five metrics can be calculated as follows [13];

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð24Þ

Sensitiv ity ¼ TP
TP þ FN

ð25Þ

Specifity ¼ TN
TN þ FP

ð26Þ
Fig. 5. Classification accuracy
Positive predictve value ðPPVÞ ¼ TP
TP þ FP

ð27Þ
Negative predictive value ðNPVÞ ¼ TN
TN þ FN

ð28Þ
4.3. Features discriminability test

In the first experiment, we show the discriminability of
various features. In a three successive classification exper-
iments using the SVM classifier, the features vector (FV1,
FV2, or FV3) is used to train and test the classifier using
10-folds cross validation technique. Fig. 4 illustrates the
classification accuracy for each features vector. FV1 gives
the maximum classification accuracy (96.4%). When FV2
only is used. It gives accuracy of 68.75%. Moreover, FV3
gives (80.35%) classification accuracy.
4.4. Combined features discriminability test

In the second experiment, we want to show that combi-
nations of the above feature vectors gives higher accuracy
than using each one individually. Using the same setup
described in the above first experiment, Fig. 5 illustrates
a comparison between the classification accuracy obtained
when using the features vector (FV4, FV5 or FP1).
for combined features.
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Fig. 6. Comparison between the classification accuracy of SVM and MLP for FP1 and FP2.
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Fig. 8. classification accuracy for both (FP1 and FP2) after features dimension reduction using CSFS and PCA.
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4.5. performance of our novel features

In the third experiment, we compare between the clas-
sification accuracy using our proposed novel features pool
(FP2) and traditional features pool (FP1). As shown in
Fig. 6, FP2 gives better performance (99.1%) than that of
FP1 (97.32%). A comparison between the accuracy of SVM
and another common neural network classifier (Multi layer
Perceptron ‘‘MLP”) for both FP1 and FP2 is shown also in
Fig. 6. As stated above in the literature review section,
SVM giver better performance. Different performance
metrics (accuracy, sensitivity, specificity, PPV, NPV) are
calculated for both FP1 and FP2 as shown in Fig. 7. For all
measures, SVM is used to classify different pools without
using any dimension reduction techniques. It is obvious
the using of FP2 gives super classification performance in
all metrics.

4.6. Performance of feature reduction technique

In order to reduce the size of the feature vector, we used
the Chi-squared feature selection (CSFS). For comparison
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purposes, we use also the popular feature reduction tech-
nique; principal component analysis (PCA). Fig. 8 shows
comparison between such methods for FP1.
5. Discussion

As a primary test, we check the discrimination power of
every type of the used features both when it is used sepa-
rately and when multiples of them are used together.
Employing of only FV1, FV2, or FV3 gives classification
accuracy 96.4%, 68.7% and 80.3% respectively. This means
that FV1 has the maximum discrimination power when it
is used separately. In order to get higher accuracy we check
all possibilities of grouping different features vectors
together. When FV1 is combined with FV2 to create a
new feature vector called ‘‘FV4”, they reinforce each other
and give more accuracy (96.42%). When FV1 is combined
with FV3 to create a new feature vector called ‘‘FV5”, they
weaken each other and give lower accuracy (95.53%).
When all types of features are combined together into a
new feature pool called ‘‘FP1”, a classification accuracy of
about (97.32%) is obtained. The latter results proved that
‘‘FP1” represents the best choice and can be used efficiently
in our CAD system.

Our new proposed features pool that is called ‘‘FP2” is
tested with respect to the above traditional group of fea-
tures ‘‘FP1”. In our experimental results, ‘‘FP2” outperforms
‘‘FP1” with extra 1.78% classification accuracy and this is
considered our main contribution in this paper. The super
performance of ‘‘FP2” is clear using not only classification
accuracy but also other performance metrics (e.g. sensitiv-
ity, specificity, PPV, NPV).

As expected from the results of past studies, the support
vector machine (SVM) classifier gives better performance
than multi layer perceptron classifier (MLP).

The effect of using of features reduction techniques is
also studied. We used two famous feature reduction tech-
niques: chi-squared features selection ‘‘CSFS” and principle
component analysis ‘‘PCA”. Although the elements of the
feature pool ‘‘FP1” are reduced from 85 down to 14 (using
PCA) or to 5 (using CSFS) elements, classification accuracy
is not greatly reduced. Moreover, computing time is greatly
reduced from 6.5 s down to 0.6 s when using CSFS method.
6. Conclusion and future work

This paper presented a new feature extraction approach
used for classifying tumors in BUS images. It combines the
discriminating power of statistical and morphological fea-
tures. Moreover, original BUS images are transformed into
neutrosophic set domain, and then we extract the same set
of features from that transformed image. That latter fea-
ture pool gives very promising classification accuracy as
verified by our experiments. The dimension of features
pool is greatly reduced used using chi-squared feature
selection technique. We use SVM as a main classifier, and
MLP-NN classifier for performance comparison. The exper-
imental results obtained, show that classification accuracy
offered by using our proposed novel features is higher than
any published results. Future work will focus on optimize
the significant types of features and being tested on larger
size of images database.
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