
Journal of Hyperstructures 8 (1) (2019), 48-57.

ISSN: 2251-8436 print/2322-1666 online

A NEW VIEW ON NEUTROSOPHIC MATRIX

BANU PAZAR VAROL, VILDAN ÇETKIN AND HALIS AYGÜN

Abstract. In the present paper, we define a new kind of matrix
called by a neutrosophic matrix, whose entries are all single-valued
neutrosophic sets. So, we aim to be introduce a convenient tool for
the problems, have uncertain inputs. We first give the definition of a
neutrosophic matrix with its basic operations. Then we investigate
the properties of the given operations and also prove that the family
of all neutrosophic matrices is a vector space over a classical field.
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1. Introduction

Neutrosopy was introduced by Smarandache to handle the indeter-
minate information. In the neutrosophic set, a truth-membership, an
indeterminacy- membership and a falsity-membership are represented
independently. Then Wang et al. [19] specified the definition of neu-
trosophic set which is called single valued neutrosophic set. The single
valued neutrosophic set is a generalization of classical set, fuzzy set, in-
tuitionistic fuzzy set etc. Single valued neutrosophic set is applied to
algebraic and topological structures (see [3, 4, 5, 12, 14, 15]). Çetkin
and Aygün [7] proposed the definitions of neutrosophic subgroups [5]
and neutrosophic subrings [7] of a given classical group and classical
ring, respectively. Also, Çetkin et al. [6] defined the neutrosophic sub-
modules based on single valued neutrosophic sets and discussed their
elementary properties.
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In this paper, we introduce neutrosophic matrix in a completely dif-
ferent direction from Dhar et al. [8] and give some algebraic operations
of it. Then, we prove that the neutrosophic matrix forms a vector space
under component wise addition, multiplication and scalar multiplication.

This paper is organized as follows: Section 2 gives a brief summary of
neutrosophic sets and operations on these sets. In section 3, we give the
definition of neutrosophic matrix and investigate some of its algebraic
operations. In section 4, we showed that neutrosophic matrix multi-
plication is associative and distributive. In addition, we proved that
the set of all neutrosophic matrixes of order n × n is an algebra and
form a vector space under complement wise addition, complement wise
multiplication and scalar multiplication.

2. Preliminaries

In this chapter, we give some preliminaries about single valued neu-
trosophic sets and set operations, which will be called neutrosophic sets,
for simplicity.

Definition 2.1 [16] A neutrosophic set A on the universe of X is
defined as A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} where tA, iA, fA :
X →]−0, 1+[ and −0 ≤ tA(x) + iA(x) + fA(x) ≤ 3+.

From philosophical point of view, the neutrosophic set takes the value
from real standard or non standard subsets of ]−0, 1+[. But in real life
applications in scientific and engineering problems it is difficult to use
neutrosophic set with value from real standard or non-standard subset
of ]−0, 1+[. Hence throughout this work, the following specified defini-
tion of a neutrosophic set known as single valued neutrosophic set is
considered.

Definition 2.2[19] Let X be a space of points (objects), with a
generic element in X denoted by x. A single valued neutrosophic set
(SVNS) A on X is characterized by truth-membership function tA,
indeterminacy-membership function iA and falsity-membership function
fA. For each point x in X, tA(x), iA(x), fA(x) ∈ [0, 1].

A neutrosophic set A can be written as

A =

n∑
i=1

< t(xi), i(xi), f(xi) > /xi, xi ∈ X.

Example 2.3[19] Assume that X = {x1, x2, x3}, x1 is capability, x2 is
trustworthiness and x3 is price. The values of x1, x2 and x3 are in [0, 1].
They are obtained from the questionnaire of some domain experts, their
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option could be a degree of ”good service”, a degree of indeterminacy
and a degree of ”poor service”. A is a single valued neutrosophic set of
X defined by
A =< 0.3, 0.4, 0.5 > /x1+ < 0.5, 0.2, 0.3 > /x2+ < 0.7, 0.2, 0.2 > /x3.
Since the membership functions tA, iA, fA are defined from X into

the unit interval [0, 1] as tA, iA, fA : X → [0, 1], a (single valued) neu-
trosophic set A will be denoted by a mapping defined as A : X →
[0, 1]× [0, 1]× [0, 1] and A(x) = (tA(x), iA(x), fA(x)), for simplicity.

Definition 2.4 [14, 19] Let A and B be two neutrosophic sets on X.
Then

(1) A is contained in B, denoted as A ⊆ B, if and only if A(x) ≤ B(x).
This means that tA(x) ≤ tB(x), iA(x) ≤ iB(x) and fA(x) ≥ fB(x). Two
sets A and B is called equal, i.e., A = B iff A ⊆ B and B ⊆ A.

(2) the union of A and B is denoted by C = A ∪ B and defined
as C(x) = A(x) ∨ B(x) where A(x) ∨ B(x) = (tA(x) ∨ tB(x), iA(x) ∨
iB(x), fA(x)∧fB(x)), for each x ∈ X. This means that tC(x) = max{tA(x), tB(x)},
iC(x) = max{iA(x), iB(x)} and fC(x) = min{fA(x), fB(x)}.

(3) the intersection of A and B is denoted by C = A∩B and defined
as C(x) = A(x) ∧ B(x) where A(x) ∧ B(x) = (tA(x) ∧ tB(x), iA(x) ∧
iB(x), fA(x)∨fB(x)), for each x ∈ X. This means that tC(x) = min{tA(x), tB(x)},
iC(x) = min{iA(x), iB(x)} and fC(x) = max{fA(x), fB(x)}.

(4) the complement of A is denoted by Ac and defined as
Ac(x) = (fA(x), 1− iA(x), tA(x)), for each x ∈ X. Here (Ac)c = A.
Proposition 2.5[19] Let A,B and C be the neutrosophic sets on the

common universe X. Then the following properties are valid.
(1) A ∪B = B ∪A,A ∩B = B ∩A.
(2) A ∪ (B ∪ C) = (A ∪B) ∪ C,A ∩ (B ∩ C) = (A ∩B) ∩ C.
(3) A∪ (B∩C) = (A∪B)∩ (A∪C), A∩ (B∪C) = (A∩B)∪ (A∩C).

(4) A ∩ ∅̃ = ∅̃, A ∪ ∅̃ = A,A ∪ X̃ = X̃, A ∩ X̃ = A, where
t∅̃ = i∅̃ = 0, f∅̃ = 1 and t

X̃
= i

X̃
= 1, f

X̃
= 0.

(5) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.
Definition 2.6 [6] Let A and B be two neutrosophic sets on X and Y ,

respectively. Then the cartesian product of A and B which is denoted by
A×B is a neutrosophic set on X×Y and it is defined as (A×B)(x, y) =
A(x)× B(y) where A(x)× B(y) = (tA×B(x, y), iA×B(x, y), fA×B(x, y)),
i.e.,
tA×B(x, y) = tA(x)∧tB(y), iA×B(x, y) = iA(x)∧iB(y) and fA×B(x, y) =

fA(x) ∨ fB(y).
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3. Neutrosophic matrix

In this section, we introduce neutrosophic matrix and give some alge-
braic operations of it.

Definition 3.1 A neutrosophic matrix (NSM) of orderm×n is defined
as A = [< aTij , a

I
ij , a

F
ij >] where aTij , a

I
ij , a

F
ij are called truth- membership,

indeterminacy-membership, falsity-membership values of the ij-th ele-
ment in A satisfying the condition 0 ≤ aTij + aIij + aFij ≤ 3 for all i,j.

For simplicity, we write A = [aij ]m×n where aij =< aTij , a
I
ij , a

F
ij >.

Let Fm×n denotes the set of all NSMs of order m × n. In particular
Fn denotes the set of all NSMs of order n.

Example 3.2 We would represent the Example 2.3 in matrix form
of order 3× 1 as  (0.3, 0.4, 0.5)

(0.5, 0.2, 0.3)
(0.7, 0.2, 0.2)


Definition 3.3 Let a and b be two elements of a NSM such that

a =< aTij , a
I
ij , a

F
ij >, b =< bTij , b

I
ij , b

F
ij >, then complement wise addition

and multiplication is defined as
a+ b =< max{aTij , bTij},max{aIij , bIij},min{aFij , bFij} >
a • b =< min{aTij , bTij},min{aIij , bIij},max{aFij , bFij} >
We say max{aTij , bTij} = aTij + bTij and min{aTij , bTij} = aTij .b

T
ij

Definition 3.4 Some algebraic operaitons of NSMs
Let A and B be two NSMs such that A = [aij ]m×n, B = [bij ]m×n.
1) Matrix addition and subtraction are given by
A+B =< max{aTij , bTij},max{aIij , bIij},min{aFij , bFij} > and

A−B =< aTij − bTij , aIij − bIij , aFij − bFij > where

aTij − bTij =

{
aTij , if aTij ≥ bTij ;
0, otherwise

aIij − bIij =

{
aIij , if aIij ≥ bIij ;
0, otherwise

aFij − bFij =

{
aFij , if aFij < bFij ;

0, otherwise

2) Component wise matrix multiplicaiton is given by
A ◦B =< min{aTij , bTij},min{aIij , bIij},max{aFij , bFij} >
3) Let A and B be two NSMs of order m× n and n× p, respectively.

Then the matrix product AB is defined by
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AB =<

p∑
k=1

aTik.b
T
kj ,

p∑
k=1

aIik.b
I
kj ,

p∏
k=1

aFik.b
F
kj > ∈ Fm×n.

We can also write
AB = [max

k
{min{aTik, bTkj}},max

k
{min{aIik, bIkj}},min

k
{max{aFik, bFkj}}],

where k = 1, n, i = 1,m, j = 1, p.
The product AB is defined if and only the number of columns of A

is the same as the number of rows of B. We say that A and B are
comfortable for multiplication.

4) Transpose of A is given by
AT =< aTji, a

I
ji, a

F
ji >.

5) complement of A
A =< aFij , 1− aIij , aTij >.
Definition 3.5 Let A be a m × n neutrosophic matrix. If all of its

entries are < 0, 0, 1 >, then A is called zero neutrosophic matrix and
denoted by 0.

If all of its entries are < 1, 1, 0 >, then A is called universal neutro-
sophic matrix and denoted by J.

.
The n× n identity matrix In is defined by < λTij , λ

I
ij , λ

F
ij > such that

λTij = λIij = 1, λFij = 0, if i = j and

λTij = λIij = 0, λFij = 1, if i 6= j.

Definition 3.6 Let A = [< aTij , a
I
ij , a

F
ij >] ∈ Fm×n and k ∈ F . Then

the neutrosophic scalar multiplication is defined as
kA = [< min{k, aTij},min{k, aIij},max{1− k, aFij} >].
For the universal matrix J,
kJ = [< min{k, 1},min{k, 1},max{1− k, 0} >] = [< k, k, 1− k >].
Under component wise multiplication ,
kJ •A = [< min{k, aTij},min{k, aIij},max{1− k, aFij} >] = kA.

Definition 3.7 Let A = [< aTij , a
I
ij , a

F
ij >], B = [< bTij , b

I
ij , b

F
ij >] ∈

Fm×n, then we write A ≤ B if, aTij ≤ bTij , aIij ≤ bIij , aFij ≥ bFij for all i,j.
Example 3.8 0 ≤ A ≤ J.

4. Main Results

In this section, we see that matrix multiplicaiton is associative and
distributive. We prove that the neutrosophic matrix forms a vector space
under component wise addition, multiplication and scalar multiplication
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Theorem 4.1 For any NSMs A ∈ Fm×n, B ∈ Fn×p, C ∈ Fp×q,
(AB)C = A(BC).

Proof (AB)C and A(BC) are defined and are type of m× q.
Let A = [< aTij , a

I
ij , a

F
ij >], B = [< bTjk, b

I
jk, b

F
jk >] and C = [<

cTkl, c
I
kl, c

F
kl >] such that the ranges of the suffixes i = 1,m, j = 1, n,

k = 1, p, l = 1, q.
(i,k)-th element of the product

AB = [<

n∑
j=1

aTij .b
T
jk,

n∑
j=1

aIij .b
I
jk,

n∏
j=1

aFij .b
F
jk >].

The (i,1)-th element in the product (AB)C is the sum of products
of the corresponding elements in the i-th row of AB, first column of C
with k common. Hence, (i,1)-th element of

(AB)C = [<

p∑
k=1

 n∑
j=1

aTij .b
T
jk

 cTkl,

p∑
k=1

 n∑
j=1

aIij .b
I
jk

 cIkl,

p∏
k=1

 n∏
j=1

aFij + bFjk

+ cFkl >]

= [<

p∑
k=1

n∑
j=1

aTij .b
T
jk.c

T
kl,

p∑
k=1

n∑
j=1

aIij .b
I
jk.c

I
kl,

p∏
k=1

n∏
j=1

(aFij + bFjk + cFkl) >].

(j,1)-th element of the product

BC = [<

p∑
k=1

bTjk.c
T
kl,

p∑
k=1

bIjk.c
I
kl,

p∏
k=1

(bFjk + bFkl) >].

Now, the (i,1)-th element of the product A(BC) is the sum of products
of the corresponding elements in the i-th row of A and first column of
BC.

(i,l)-th element of

A(BC) = [<

n∑
j=1

aTij

(
p∑

k=1

bTjk.c
T
kl

)
,

n∑
j=1

aIij

(
p∑

k=1

bIjk.c
I
kl

)
,

n∏
j=1

aFij +

(
p∏

k=1

(bFjk + cFkl)

)
>]

= [<

p∑
k=1

n∑
j=1

aTij .b
T
jk.c

T
kl,

p∑
k=1

n∑
j=1

aIij .b
I
jk.c

I
kl,

p∏
k=1

n∏
j=1

(aFij + bFjk + cFkl) >].

Thus, (AB)C = A(BC).
Theorem 4.2 Let A ∈ Fm×n, B ∈ Fn×p and C ∈ Fn×p. Then

A(B + C) = AB +AC.
Proof Let A = [< aTij , a

I
ij , a

F
ij >], B = [< bTjk, b

I
jk, b

F
jk >] and C =

[< cTjk, c
I
jk, c

F
jk >] such that the ranges of the suffixes i = 1,m, j = 1, n,

k = 1, p.
(j,k)-th element of
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B + C = [< max{bTjk, cTjk},max{bIjk, cIjk},min{bFjk, cFjk} >]

= [< bTjk + cTjk, b
I
jk + cIjk, b

F
jk.c

F
jk >].

(i,k)-th element in the product of A and B + C, that is of A(B + C)
is the sum of the products of the corresponging elements in the i-th row
A and k-th column of B + C

A(B+C) = [<
n∑

j=1

aTij(b
T
jk+cTjk),

n∑
j=1

aIij(b
I
jk+cIjk),

n∏
j=1

(aFij+bTjk.c
T
jk) >].

(i,k)-th element of (AB +AC)

AB +AC = [<

n∑
j=1

aTij .b
T
jk,

n∑
j=1

aIij .b
I
jk,

n∏
j=1

(aFij + bFjk) > +
n∑

j=1

aTjk.c
T
jk,

n∑
j=1

aIjk.c
I
jk,

n∏
j=1

(aFij + cFjk) >]

= [<

n∑
j=1

(aTij .b
T
jk + aTij .c

T
jk),

n∑
j=1

(aIij .b
I
jk + aIij .c

I
jk),

n∏
j=1

(aFij + bFjk)

n∏
j=1

(aFij + cFjk) >]

= [<

n∑
j=1

aTij(b
T
jk + cTjk),

n∑
j=1

aIij(b
I
jk + cIjk),

n∏
j=1

(aFij + bFjk.c
F
jk) >].

This completes the proof.
Theorem 4.3 Let A,B ∈ Fm×n. If A ≤ B , then for any C ∈ Fn×p,

AC ≤ BC and for any D ∈ Fp×m, DA ≤ DB.
Proof Let A ≤ B. Then aTik ≤ bTik, aIik ≤ bIik, aFik ≥ bFik for i = 1,m,

k = 1, n.
By fuzzy multiplicaiton aTik.c

T
kj ≤ bTik.cTkj , aIik.cIkj ≤ bIik.cIkj and aFik.c

F
kj ≥

bFik.c
F
kj for j = 1, p.

By fuzzy addition
n∑

k=1

aTik.c
T
kj ≤

n∑
k=1

bTik.c
T
kj ,

n∑
k=1

aIik.c
I
kj ≤

n∑
k=1

bIik.c
I
kj and

n∑
k=1

aFik.c
F
kj ≥

n∑
k=1

bFik.c
F
kj .

Hence, AC ≤ BC.
Similarly, we can see DA ≤ DB.
Theorem 4.4 The set Fm×n is a commutative semiring with identity

0 and J.
Proof We have A+ 0 = A and A • J = A for all A ∈ Fm×n. So, we

say that zero neutrosophic matix 0 is the aditive identitiy and universal
neutrosophic matrix J is the multiplicative identity.
A+ J = J and A • 0 = 0.
Let A,B,C ∈ Fm×n such that A = [< aTij , a

I
ij , a

F
ij >],

B = [< bTij , b
I
ij , b

F
ij >], C = [< cTij , c

I
ij , c

F
ij >].
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A+ (B + C) = [< aTij , a
I
ij , a

F
ij >] + [< max{bTij , cTij},max{bIij , cIij},min{bFij , cFij} >]

= [< max{aTij , bTij , cTij},max{aIij , bIij , cIij},min{aFij , bFij , cFij} >].
and
(A+B) + C = [< max{aTij , bTij},max{aIij , bIij},min{aFij , bFij} >] + [< cTij , c

I
ij , c

F
ij >]

= [< max{aTij , bTij , cTij},max{aIij , bIij , cIij},min{aFij , bFij , cFij} >].

Hence, A + (B + C) = (A + B) + C. Similarly, we can show that
A • (B • C) = (A •B) • C.

So, we obtain associativity law under + and •.
Now, we show that A+ (A •B) = A • (A+B).
A+ (A •B) = [< aTij , a

I
ij , a

F
ij >] + [< min{aTij , bTij},min{aIij , bIij},max{aFij , bFij} >]

= [< max{aTij ,min{aTij , bTij},max{aIij ,min{aIij , bIij},min{aFij ,max{aFij , bFij} >]

= [< aTij , a
I
ij , a

F
ij >]

= A.
Similarly, we see A • (A+B) = A. Hence, absorption is satisfied.
Now, we prove A • (B + C) = (A •B) + (A • C).
Suppose that A 6 B,C.
A • (B + C) = [< min{aTij ,max{bTij , cTij},min{aIij ,max{bIij , cIij},max{aFij ,min{bFij , cFij} >]

= [< aTij , a
I
ij , a

F
ij >]

= A.

(A •B) + (A • C) = [< min{aTij , bTij},min{aIij , bIij},max{aFij , bFij} >]

+[< min{aTij , cTij},min{aIij , cIij},max{aFij , cFij} >]

= [< max{min{aTij , bTij},min{aTij , cTij}} >],max{min{aIij , bIij},min{aIij , cIij}},

min{max{aFij , bFij},max{aFij , cFij}}
= [< aTij , a

I
ij , a

F
ij >]

= A
So, we obtained the desired equality.
If A > B,C, then we have two cases.
If A > B > C, then we obtain A • (B +C) = (A •B) + (A •C) from

the above equalities, and if A > C > B, similarly we see A • (B +C) =
(A •B) + (A • C). Hence, distributivity law is hold.

Theorem 4.5 The set Fm×n is a vector space under the operations
neutrosophic matrix addition and scalar multiplication.

Proof LetA,B,C ∈ Fm×n. We haveA+B = B+A andA+(B+C) =
(A+B) + C. Commutative law and associative low hold in Fm×n.

For all A ∈ Fm×n, there exist an element 0 ∈ Fm×n such that
A+ 0 = A.
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For k ∈ F, by Definition 3.6 and Theorem 4.4, we obtain
k(A+B) = kJ • (A+B)

= kJ •A+ kJ •B.
= kA+ kB

Again, for k1, k2 ∈ F ,
(k1 + k2)A = (k1 + k2)J •A

= (k1J + k2J) •A.
= k1J •A+ k2J •A
= k1A+ k2A

Hence, Fm×n is a vector space over F .

5. Conclusion

It is well-known that matrices play an important role in computer
science and technology. However, the classical matrix theory sometimes
fails to solve the problems involving uncertainties, occurring in an im-
precise environment Thomas [18] introduce fuzzy matrices to represent
fuzzy relation in a system based on fuzzy set theory. According to this
idea, we introduce the notion of a neutrosophic matrix to handle the
computer science problems involving neutrosophic inputs which is an
extension of the intuitionistic fuzzy matrix [17].

Acknowledgments

The authors wish to thank the referee for his/her valuable suggestions

References

[1] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Mathematics,
29 (2003), 831–840.

[2] R. Y. Sharp, Steps in commutative algebra, Cambridge: Cambridge University
Prees.

[3] I. Arockiarani, I. R. Sumathi, J. Martina Jency, Fuzzy neutrosophic soft topo-
logical spaces, International Journal of Mathematical Arhchive, 4 (10) (2013)
225–238.

[4] R. A. Borzooei, H. Farahani, M. Moniri, Neutrosophic deductive filters on BL-
algebras, Journal of Intelligent and Fuzzy Systems, 26 (6) (2014) 2993–3004.
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[6] V.Çetkin, B.P. Varol, H. Aygün, On neutrosophic submodules of a module,
Hacettepe Journal of Mathematics and Statistics, 46 (5) (2017) 791–799



A New View on Neutrosophic Matrix 57
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