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Abstract Single-valued trapezoidal neutrosophic numbers

(SVTNNs) have a strong capacity to depict uncertain,

inconsistent, and incomplete information about decision-

making problems. Preference relations represent a practical

tool for presenting decision makers’ preference informa-

tion regarding various alternatives. The purpose of this

paper is to propose single-valued trapezoidal neutrosophic

preference relations (SVTNPRs) as a strategy for tackling

multi-criteria decision-making problems. First, this paper

briefly reviews basic concepts about neutrosophic sets and

SVTNNs and defines a new comparison method and new

operations for SVTNNs. Next, two aggregation operators,

the single-valued trapezoidal neutrosophic weighted arith-

metic average operator and the single-valued trapezoidal

neutrosophic weighted geometric average operator, are

proposed for applications in information fusion. Then, this

paper discusses the definitions of completely consistent

SVTNPRs and acceptably consistent SVTNPRs. Finally,

we outline a decision-making method based on SVTNPRs

to address green supplier selection problems, and we con-

duct a comparison study and discussion to illustrate the

rationality and effectiveness of the decision-making

method.

Keywords Multi-criteria decision-making � Single-valued

trapezoidal neutrosophic preference relations � Aggregation

operators � Completely consistent � Acceptably consistent

1 Introduction

Recently, growing concerns about environmental issues

have attracted worldwide attention to innovative business

practices that alleviate or prevent negative environmental

effects [1]. One potentially effective way of managing a

company’s environmental policy is by linking it closely

with its purchasing function activities, i.e., through supplier

selection [2]. Taking the suppliers’ environmental perfor-

mance into consideration, organizations and governments

have attached great value to green supply chain manage-

ment (GSCM). The processes of green supplier evaluation

and selection are critical issues in GSCM [3], because

incorporating environmental criteria into these processes

can contribute to achieving GSCM goals [4]. Thus, it is

critical and necessary to study green supplier evaluation

and selection problems.

Green supplier selection problems involve strategic and

complex decision making that demands consideration of

different criteria, such as green products, green knowledge

transfer, and environmental management systems [3].

Selecting the appropriate green supplier can have a direct

impact on the reduction in enterprise costs, increase in

enterprise flexibility, and the promotion of core competi-

tiveness. Such complex problems can be solved using

multi-criteria decision-making (MCDM) techniques, which

can not only facilitate reaching clear decisions but also deal

with various, often conflicting criteria [5]. MCDM tech-

niques are very useful tools for addressing many real-life

green supplier selection problems.

To the best of our knowledge, existing research into

green supplier evaluation and selection can roughly be

classified into the following MCDM approaches: the ana-

lytic hierarchy process (AHP) [6, 7], the analytic network

process (ANP) [8–10], mathematical programming
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[11, 12], and some other approaches [13–16]. Because

decision makers (DMs) often have limited time and

knowledge, the vagueness of their opinions must also be

taken into consideration; for this reason, fuzzy logic and

fuzzy sets (FSs), initially proposed by Zadeh [17], have

been integrated in the methods listed above. For example,

Chan et al. [18] incorporated fuzzy logic into the fuzzy-

AHP model to measure the environmental and organiza-

tional performance of different designs for eco-friendly

products. Kumar et al. [19] used an integrated fuzzy-AHP

and fuzzy multi-objective linear programming approach for

order allocation among green suppliers. AHP and fuzzy-

AHP are recognized as good tools for addressing MCDM

problems, as they can provide techniques for flexibly

deciding among various options [20]. However, real-world

complexity has generated the need to extend other fuzzy

concepts to help organizations make more thoughtful and

precise decisions. An extension of FSs, intuitionistic fuzzy

sets (IFSs) [21] have demonstrated a strong ability to

represent vagueness and uncertainty, such that they can

describe MCDM problems in a more accurate way.

Büyüközkan and Güleryüz [20] integrated the intuitionistic

fuzzy analytic hierarchy process (IF-AHP) and intuition-

istic fuzzy technique for order preference by similarity to

ideal solution (IF-TOPSIS) methods to effectively evaluate

product development partners. Furthermore, interval type-2

fuzzy sets (IT2FSs) [22], which are another extension of

FSs, are remarkably flexible in modeling the uncertainty of

MCDM problems. Within environments characterized by

IT2FSs, researchers made some significant discoveries; for

example, Yu et al. [23] proposed a new multi-attributive

border approximation area comparison method to solve

hotel selection problems in a tourism websites. Ghorabaee

et al. [24] extended the Vlsekriterijumska Optimizacija I

Kompromisno Resenje (VIKOR) method for handling

fuzzy multi-criteria group decision-making (MCGDM)

problems using IT2FSs. In another study, Ghorabaee et al.

[25] presented a new method for ranking interval type-2

fuzzy numbers (IT2FNs) and extended the complex pro-

portional assessment method for supplier selection prob-

lems. Later, in order to consider environmental criteria,

Ghorabaee et al. [4] proposed an integrated approach based

on the weighted aggregated sum product assessment

method to deal with green supplier selection problem using

IT2FSs.

Although prior studies have contributed to advancing

the study of green supplier evaluation and selection prob-

lems, these problems can feature incomplete and incon-

sistent information that remains beyond the scope of FSs,

IFSs or other extensions [26–28]. In order to cope with

indeterminate and inconsistent information to the greatest

extent possible, Smarandache [29, 30] proposed neutro-

sophic sets (NSs) from a philosophical point of view [31].

Recently, Smarandache [32] extended NSs to propose

refined NSs, introducing for the first time the degree of

dependence or independence of (sub)components of NSs.

However, NSs cannot be applied in real scientific and

engineering areas since their description is not specified.

To meet this critical challenge, multiple researchers have

studied extensions of NSs, including simplified neutro-

sophic sets [33, 34], multi-valued neutrosophic sets

(MVNSs) [35–37], and independent inputs simplified

neutrosophic linguistic sets (SNLSs) [38]. Up to this point,

these extensions have been applied to MCDM problems to

remarkable effect [1]. However, the domains of these

extensions are still discrete sets; for example, in indepen-

dent inputs SNLSs, the three membership degrees are rel-

ative to a discrete fuzzy concept ‘‘excellent’’ or ‘‘good.’’

Naturally, this may lead to the loss of information, such

that it is worthwhile to extend the discrete set to a con-

tinuous one.

To tackle issues analyzed above, Ye [39] proposed

single-valued trapezoidal neutrosophic sets (SVTNSs) as

another extension of NSs, while Deli and Şubaş [40]

defined single-valued triangular neutrosophic numbers

(SVTrN-numbers), which can be regarded as special cases

of single-valued trapezoidal neutrosophic numbers

(SVTNNs). As these studies demonstrate, information from

DMs can be expressed in different dimensions and con-

tinuous sets. Other researchers have also performed sig-

nificant work in this field. For example, both Deli and

Şubaş [41] and Biswas et al. [42] proposed a new ranking

method by defining the concept of cut sets for SVTNNs,

which they applied to tackle MCDM problems. Thama-

raiselvi and Santhi [43] introduced the mathematical rep-

resentation of a transportation problem in the SVTNN

environment. Based on the extent studies, Liang et al. [44]

improved the existing operations and operations of

SVTNNs and proposed a new MCGDM approach based on

interdependent inputs of SVTNN information. In other

fields, however, very little researches exist based on

SVTNNs. Considering the positive characteristics of

SVTNNs in representing incomplete and inconsistent

information, this paper explores further applications of

SVTNNs in green supplier selection problems.

In real-life MCDM problems, it seems more flexible for

DMs to offer comparisons among alternatives rather than

providing evaluation values for all alternatives with respect

to each criterion. Moreover, it has been pointed out that

building a preference relation by pairwise comparisons

between alternatives is more accurate than non-pairwise

comparisons [45]. Preference relations fall into two main

categories: multiplicative preference relations [46, 47] and

fuzzy preference relations (FPRs) [48–50]. Saaty [51]

proposed the traditional AHP method based on multi-

plicative preference relations, using the 1 through -9
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linguistic scale to represent judgments made by pairwise

comparisons between alternatives, in which all judgments

are crisp values. However, deterministic values cannot

reflect the vagueness of real-life decision-making infor-

mation. As a result, Orlovsky [50] introduced FPRs, in

which each element has a membership degree assigned

from 0 to 1. FSs cannot take the non-membership into

consideration, while IFSs can cover this deficiency;

therefore, Xu [52] constructed intuitionistic fuzzy prefer-

ence relations (IFPRs). Using this type of representation

technique, DMs can express their imprecise cognitions

from positive, negative, and hesitant points of view when

comparing alternatives Ai and Aj [53]. Although IFPRs can

express DMs’ preferences in a more comprehensive and

flexible way than FPRs [53], some weaknesses still exist in

IFPRs that go beyond the capacity of intuitionistic fuzzy

numbers (IFNs) to handle inconsistent information, which

might be common in complex decision-making situations.

To overcome the defects described above, this paper

proposes single-valued trapezoidal neutrosophic preference

relations (SVTNPRs). In real-life decision-making situa-

tions, SVTNPRs are more widespread and can cover more

DM preference information than FPRs and IFPRs. For

example, suppose that teams are assembled from several

constituencies to serve as DMs (reviewers) in order to solve

a green supplier selection problem; then, data are collected

over two sessions. First, experts are asked to offer their

preference degree between each pair of alternatives Ai and

Aj i; j ¼ 1; 2; . . .;mð Þ with respect to each criterion. Due to

the limited knowledge and indeterminacy inherent in the

DMs’ cognitions, they are more likely to use linguistic

information rather numeric values to denote their preference

values; for example, when asked about the performance of

one car, the reviewers might tend to describe the perfor-

mance as ‘‘good’’ or ‘‘poor.’’ However, based on the pre-

ceding discussion about independent inputs SLNSs, it is

worthwhile to translate the first part of a linguistic term into

a trapezoidal fuzzy number (TFN) using the techniques by

Wang and Hao [54], such that the preference degree can be

obtained in a continuous way. In the second session,

reviewers are asked to evaluate the obtained preference

degree TFN by voting in favor, voting against, or abstaining

on each evaluation index. In this way, the final preference

relations can be obtained with respect to each criterion as

assigned by SVTNNs. When represented in this way, the

preference information is considerably more comprehensive

and accurate. Additionally, the experts complete the survey

anonymously, not communicating with each other so as not

to influence each other. Using this strategy, the evaluation

information expressed by SVTNNs is composed of inde-

pendent components on T , I, and F. This paper only con-

siders SVTNNs with independent inputs.

The rest of this paper is organized as follows. Section 2

reviews some preliminaries regarding SVTNNs and their

operations. Section 2 also revisits existing comparison

methods and analyzes their deficiencies. In order to over-

come shortcomings in operations and comparison methods,

Sect. 3 proposes new operations, an improved comparison

method, and two aggregation operators to fuse decision

information. Section 4 presents SVTNPR, exploring their

complete consistency and acceptable consistency condi-

tions. Based on these foundations, Sect. 5 presents a

MCDM method using SVTNPRs. To verify the feasibility

of the method, Sect. 6 provides an example of a green

supplier selection problem and conducts a comparison

analysis. Finally, Sect. 7 presents the main conclusions.

2 Preliminaries

This section introduces some basic concepts, operations,

and comparison methods related to SVTNNs; in addition,

this section briefly reviews the concepts of FPRs and

IFPRs, which are utilized in the subsequent analyses.

2.1 NSs and SVTNNs

Definition 1 [55] Suppose thatK ¼ ½a1; a2; a3; a4� is a TFN

on the real number set R, and a1 � a2 � a3 � a4. Then, its

membership function lK : R ! ½0; 1� is defined as follows:

lKðxÞ ¼

x� a1ð ÞlK= a2 � a1ð Þ; a1 � x\a2;
lK ; a2 � x� a3;
a4 � xð ÞlK= a4 � a3ð Þ; a3\x� a4;

0; otherwise:

8
>><

>>:

When a2 ¼ a3, the TFN K ¼ ½a1; a2; a3; a4� is reduced to

a triangular fuzzy number.

Definition 2 [56] Let X be a space of points or objects,

with a generic element in X denoted by x. A single-valued

neutrosophic set (SVNS) V in X is characterized by three

independent parts, namely truth-membership function TV ,

indeterminacy-membership function IV , and falsity-mem-

bership function FV , such that TV : X ! ½0; 1�,
IV : X ! ½0; 1�, and FV : X ! ½0; 1�.

For notational convenience, V is often denoted as

V ¼ \x; TVðxÞ; IVðxÞ;FVðxÞð Þ[ jx 2 Xf g, satisfying

0� TVðxÞ þ IVðxÞ þ FVðxÞ� 3.

A SVNN, which is an element in a SVNS, is denoted by

crisp numbers; it is related to a discrete set and cannot

represent very much fuzzy information. In order to over-

come this challenge, Ye [39] extended the discrete set to a

continuous one by combining the concept of TFNs with

SVNSs and defined the SVTNNs.
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Definition 3 [39] Let T~a; I~a;F~a 2 0; 1½ �; then, a SVTNN

~a ¼ a1; a2; a3; a4½ �; T~aðh ; I~a;F~aÞi is a special NS on the real

number set R, whose truth-membership function l~a, inde-

terminacy-membership function m~a, and falsity-member-

ship function k~a are given as follows:

l~a xð Þ ¼

x� a1ð ÞT~a= a2 � a1ð Þ a1 � x� a2;

T~a a2 � x� a3;

a4 � xð ÞT~a= a4 � a3ð Þ a3 � x� a4;

0 otherwise:

8
>>><

>>>:

m~a xð Þ ¼

a2 � xþ I~a x� a1ð Þð Þ= a2 � a1ð Þ a1 � x� a2;

I~a a2 � x� a3;

x� a3 þ I~a a4 � xð Þð Þ= a4 � a3ð Þ a3 � x� a4;

1 otherwise:

8
>>><

>>>:

k~a xð Þ ¼

a2 � xþ F~a x� a1ð Þð Þ= a2 � a1ð Þ a1 � x� a2;

F~a a2 � x� a3;

x� a3 þ F~a a4 � xð Þð Þ= a4 � a3ð Þ a3 � x� a4;

1 otherwise:

8
>>><

>>>:

When a1 [ 0, ~a ¼ a1; a2; a3; a4½ �; T~aðh ; I~a;F~aÞi is called

a positive SVTNN, denoted by ~a[ 0. Similarly, when

a4 � 0, ~a ¼ a1; a2; a3; a4½ �; T~aðh ; I~a;F~aÞi becomes a negative

SVTNN, denoted by ~a\0. When 0� a1 � a2 � a3 � a4 � 1

and T~a; I~a;F~a 2 0; 1½ �, ~a is called a normalized SVTNN.

When I~a ¼ 1 � T~a � F~a, the SVTNN is reduced to a

trapezoidal intuitionistic fuzzy number (TIFN). When

a2 ¼ a3, ~a ¼ a1; a2; a3; a4½ �; T~aðh ; I~a;F~aÞi turns out to be a

single-valued triangular neutrosophic number (SVTrNN).

When I~a ¼ 0, F~a ¼ 0, a SVTNN is reduced to a general-

ized TFN, ~a ¼ ½a1; a2; a3; a4�; T~ah i.

2.2 Operations and comparison methods

for SVTNNs

Definition 4 [39] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i
and ~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� �� �
be two arbitrary

SVTNNs, and f� 0; then, their operations are defined as

follows:

1. ~a� ~b ¼ a1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4½ �;h
T~a þ T~b � T~aT~b; I~aI~b;F~aF~b

� �
i;

2. ~a� ~b ¼ a1b1; a2b2; a3b3; a4b4½ �; T~aT~b; I~a þ I~b
��

�I~aI~b;F~a þ F~b � F~aF~bÞi;
3. f~a ¼ fa1;½h fa2; fa3; fa4�; 1 � 1 � T~að Þf;

�
I~að Þf;

F~að ÞfÞi; and

4. ~af ¼
D

af1;
h

af2; af3; af4�; T~að Þf;
�

1 � 1 � I~að Þf; 1�

1 � F~að Þf
�E

.

However, some drawbacks exist in operations (1) and

(3) in Definition 4, and they will be discussed in Example 1

and Example 2, respectively.

Example 1 Let ~a ¼ 0:1; 0:1; 0:2; 0:3½ �; 0; 0; 1ð Þh i and ~b ¼
0:1; 0:1; 0:2; 0:3½ �; 1; 0; 0ð Þh i be two SVTNNs. According to

Definition 4, the following result can be calculated:

~aþ ~b ¼ 0:2; 0:2; 0:4; 0:6½ �; 1; 0; 0ð Þh i. However, this result is

inaccurate because it does not consider the falsity-member-

ship of ~a, the correlations among TFNs and the membership

degrees of ~a and ~b. Therefore, these operations are imprecise.

Example 2 Let ~a1 ¼ ½0:03; 0:05; 0:07; 0:09�; ð0:3; 0:5;h
0:5Þi be a SVTNN and f ¼ 10. Then, the result f~a1

obtained using Definition 4 is

10~a1 ¼ 0:3; 0:5; 0:7; 0:9½ �; 0:9718; 0:001; 0:001ð Þh i:

According to Example 2, the former TFN and the latter

SVNN in ~a1 are calculated simultaneously; therefore,

repeated calculations occur between the three membership

degrees and the TFN of the SVTNN, which significantly

distort the result and conflict with common sense.

Therefore, some new operations for SVTNNs must be

defined in order to overcome these anomalies. The new

operations are discussed in Sect. 3.

To compare any two SVTNNs, Ye [39] and Deli and

Şubaş [57] proposed comparison methods based on the

score function and accuracy function.

Definition 5 [39] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i be

a SVTNN. The score function of ~a is defined as

S ~að Þ ¼ 1

12
a1 þ a2 þ a3 þ a4½ � 	 2 þ T~a � I~a � F~að Þ: ð1Þ

Definition 6 [39] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i
and ~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� �� �
be two SVTNNs.

Then,

1. when S ~að Þ[ S ~b
� �

, ~a[ ~b; and

2. when S ~að Þ ¼ S ~b
� �

, ~a ¼ ~b.

However, some flaws exist in Definition 5, which are

discussed in Example 3.

Example 3 Let ~a ¼ 0:3; 0:4; 0:5; 0:8½ �; 0:5; 0:3; 0:7ð Þh i
and ~b ¼ 0:5; 0:7; 0:8; 1½ �; 0:2; 0:8; 0:4ð Þh i be two SVTNNs;

then, it is clear that ~a 6¼ ~b. However, according to Defini-

tions 5 and 6, S ~að Þ ¼ S ~b
� �

¼ 0:25, and ~a ¼ ~b, which does

not conform to our intuition.

In order to overcome the deficiency in this comparison

method, Deli and Şubaş [57] defined a new comparison

method for SVTNNs.
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Definition 7 [57] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i be

a SVTNN. The score function and accuracy function of ~a

are defined, respectively, as follows:

S0 ~að Þ ¼ 1

16
a1 þ a2 þ a3 þ a4½ � 	 2 þ T~a � I~a � F~að Þ; ð2Þ

H0 ~að Þ ¼ 1

16
a1 þ a2 þ a3 þ a4½ � 	 2 þ T~a � I~a þ F~að Þ:

ð3Þ

Definition 8 [57] Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i
and ~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� ���
be two arbitrary

SVTNNs.

1. When S0 ~að Þ\S0 ~b
� �

, ~a\~b;

2. when S0 ~að Þ ¼ S0 ~b
� �

and H0 ~að Þ\H0 ~b
� �

, ~a\~b; and

3. when S0 ~að Þ ¼ S0 ~b
� �

and H0 ~að Þ ¼ H0 ~b
� �

, ~a ¼ ~b.

Although the comparison method proposed in Deli and

Şubaş [57] addressed the problem in Ye [39], some

drawbacks still exist in the operations, as described in

Example 4.

Example 4 Let ~a ¼ 0:2; 0:3; 0:5; 0:8½ �; 0:1; 0:8; 0ð Þh i and
~b ¼ 0:1; 0:4; 0:5; 0:8½ �; 0:2; 0:9; 0ð Þh i be two SVTNNs;

then, it is clear that ~a 6¼ ~b. According to Definition 7, we

can determine that S0 ~að Þ ¼ S0 ~b
� �

¼ 0:146, H0 ~að Þ ¼
H0 ~b
� �

¼ 0:146, and according to Definition 8, ~a ¼ ~b,

which is counterintuitive.

As a result, it is worthwhile to define a new comparison

method for SVTNNs that overcomes the shortcomings of

the extant research.

2.3 Fuzzy preference relation and intuitionistic

fuzzy preference relation

Definition 9 [53] A FPRB on the setA ¼ A1;A2; . . .;Amf g
is represented by a matrix B ¼ bikð Þm	m, where bik is the

intensity of preference of Ai over Ak, and satisfies

bik þ bki ¼ 1; bij 2 0; 1½ �; 8Ai;Ak 2 A: ð4Þ

In the FPRs, the preference degree is represented by a

crisp number. However, this seems to be counterintuitive

for several reasons: (1) The experiences and knowledge of

experts are limited and they may be not familiar with the

content of the decision-making problems; (2) even if the

experts are familiar with the decision-making problems,

scarcity of information and time pressure may make it

difficult for DMs to determine the exact values of the

preference values; and (3) the evaluation information for

alternatives usually contain some incomplete, inconsistent,

or indeterminate types. All of the situations described

above can create challenges when experts attempt to con-

struct a FPR when comparing alternatives.

In order to express both the vagueness and uncertainty

existing in DMs’ pairwise judgments, Xu [52] proposed a

standard definition of an IFPR, in which experts can

express their opinions of the alternatives from three per-

spectives: preferred, non-preferred, and indeterminate.

Definition 10 [52] An IFPR R on the set X ¼
x1; x2; . . .; xmf g is represented by a matrix R ¼ rij

� �

m	m
,

where rij ¼ xi; xj
� �

; u xi; xj
� �

; v xi; xj
� �

;
��

p xi; xj
� �

Þi for all

i; j ¼ 1; 2; . . .;m. For simplicity, rij is denoted as

rij ¼ uij; vij; pij
� �

, and uij þ vij þ pij ¼ 1, uij, vij 2 0; 1½ �, for

all i; j ¼ 1; 2; . . .;m, satisfying

1. uij þ vij � 1;

2. uij ¼ vji and vij ¼ uji; and

3. uii ¼ vii ¼ 0:5;

where uij indicates the certainty degree to which alternative

Xi is preferred to Xj, vij denotes the certainty degree to

which the alternative Xi is non-preferred to Xj, and pij is

interpreted as the indeterminate degree to which the

alternative Xi is superior to Xj.

However, part of the information about the alternatives in

complex decision-making problems, including inconsistent

or unknown decision information, still cannot be depicted in

depth. For this reason, it is worthwhile to extend IFPRs to

SVTNPRs; this extension is discussed in Sect. 4.

3 New operations and comparison method
for SVTNNs

This section defines new operations and proves their

properties. Moreover, a new comparison method is pro-

posed on the basis of score and accuracy functions in order

to cover the limitations presented in Sect. 2.2. Finally, two

aggregation operators are proposed.

3.1 New operations based on area of SVTNNs

Definition 11 Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i be an

arbitrary SVTNN; then, the areas under the three mem-

bership functions, denoted, respectively, by ar T~að Þ, ar I~að Þ
and ar F~að Þ, can be defined as follows:

ar T~að Þ ¼ a3 � a2 þ a4 � a1

2
	 T~a; ð5Þ

ar I~að Þ ¼ a3 � a2 þ a4 � a1

2
	 1 � I~að Þ; ð6Þ
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ar F~að Þ ¼ a3 � a2 þ a4 � a1

2
	 1 � F~að Þ: ð7Þ

Definition 12 Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i and
~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� �� �
be two arbitrary

SVTNNs, and f� 0; then, new operations for SVTNNs are

defined as follows:

1. ~a�~b¼
�

a1þb1;a2þb2;a3þb3;a4þb4½ �; uð~aÞT ~aþuð~bÞT ~b

uð~aÞþuð~bÞ ;
�

uð~aÞ 1�I ~að Þþuð~bÞ 1�I ~bð Þ
uð~aÞþuð~bÞ ;

uð~aÞ 1�F ~að Þþuð~bÞ 1�F ~bð Þ
uð~aÞþuð~bÞ

	


, where uð~aÞ ¼ a3�a2þa4�a1

2
and

uð~bÞ ¼ b3�b2þb4�b1

2
;

2. ~a�~b¼
�

a1�b4;a2�b3;a3�b2;a4þb1½ �; uð~aÞT ~aþuð~bÞT ~b

uð~aÞþuð~bÞ ;
�

uð~aÞ 1�I ~að Þþuð~bÞ 1�I ~bð Þ
uð~aÞþuð~bÞ ;

uð~aÞ 1�F ~að Þþuð~bÞ 1�F ~bð Þ
uð~aÞþuð~bÞ

	


, where uð~aÞ ¼ a3�a2þa4�a1

2
and

uð~bÞ ¼ b3�b2þb4�b1

2
;

Note When uð~aÞ ¼ 0 and u ~b
� �

¼ 0, then T~a�~b ¼ T~a�~b

¼ T ~aþT ~b

2
, I~a�~b ¼ I~a�~b ¼

I ~aþI ~b
2

, and F~a�~b ¼ F~a�~b ¼
F ~aþF ~b

2
.

3. ~a� ~b ¼ a1b1; a2b2; a3b3; a4b4½ �; T~aT~b; I~a þ I~b � I~a
��

I~b;F~a þ F~b � F~aF~bÞi;
4. f~a ¼ fa1; fa2; fa3; fa4½ �; T~a; I~a;F~að Þh i, f� 0;

5. ~af¼ af1;a
f
2;a

f
3;a

f
4

h i
; T~að Þf;1� 1�I~að Þf;1�
�D

1�F~að ÞfÞi,
f�0;

6. neg ~að Þ ¼ neg Kð Þ; F~a; 1 � I~a; T~að Þh i, where K denotes

the TFN in ~a.

Example 5 Using the data in Example 1, let f ¼ 2; based

on Definition 12, we can identify that

1. ~a� ~b¼ 0:2; 0:2; 0:35; 0:7½ �; 0:538; 0; 0:538ð Þh i;
2. ~a� ~b¼ 0:01; 0:01; 0:03; 0:12½ �; 0; 0; 0ð Þh i;
3. 2~a¼ 0:2; 0:2; 0:4; 0:6½ �; 0; 0; 1ð Þh i; and

4. ~a2¼ 0:01; 0:01; 0:04; 0:09½ �; 0; 0; 1ð Þh i.

Compared with the operations proposed by Ye [39],

our new proposed operations for SVTNNs not only

capture the correlations of TFNs and the three mem-

bership degrees of SVTNNs, but also effectively avoid

the loss and distortion of information. Therefore, the

newly defined operations are more reasonable than the

existing ones.

In terms of the corresponding operations for SVTNNs,

the following theorem can be easily proved.

Theorem 1 Let ~a, ~b and ~c be three SVTNNs and f� 0;

then, the following equations are true:

1. ~a� ~b ¼ ~b� ~a;

2. ~a� ~b
� �

� ~c¼~a� ~b� ~c
� �

;

3. ~a� ~b ¼ ~b� ~a;

4. ~a� ~b
� �

� ~c¼~a� ~b� ~c
� �

;

5. f~a� f~b ¼ f ~b� ~a
� �

; and

6. ~a� ~b
� �f¼~af � ~bf.

The proof of Theorem 1 according to Definition 12 is

self-explanatory, so it is omitted here.

3.2 A new comparison method for SVTNNs

Motivated by the centroid defuzzification method [54, 58]

and related research on neutrosophic theory [35, 59], we

redefine the score function, accuracy function, and cer-

tainty function of SVTNNs, based on which a new com-

parison method for SVTNNs is presented.

Definition 13 [54] Let K ¼ a1; a2; a3; a4½ � be a TFN on

the real number set R, and a1 � a2 � a3 � a4; then, the

center of gravity (COG) of K can be defined as follows:

Definition 14 Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i be a

SVTNN; then, the score function, accuracy function, and

certainty function of SVTNN ~a are defined, respectively, as:

E ~að Þ ¼ COG Kð Þ 	 2 þ T ~að Þ � I ~að Þ � F ~að Þð Þ
3

; ð9Þ

A ~að Þ = COG Kð Þ 	 T~a � F~að Þ; and ð10Þ
C ~að Þ = COG Kð Þ 	 T~a: ð11Þ

Based on the above three functions, we can define a

novel comparison method for SVTNNs as follows.

Definition 15 Let ~a ¼ a1; a2; a3; a4½ �; T~a; I~a;F~að Þh i and
~b ¼ b1; b2; b3; b4½ �; T~b; I~b;F~b

� �� �
be two SVTNNs. The

comparison method for ~a and ~b can be defined as follows:

COG Kð Þ ¼
a if a1 ¼ a2 ¼ a3 ¼ a4

1

3
a1 þ a2 þ a3 þ a4 �

a4a3 � a2a1

a4 þ a3 � a2 � a1

� �

otherwise

8
<

:
: ð8Þ
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1. When E ~að Þ[E ~b
� �

, ~a[ ~b, meaning that ~a is superior

to ~b;

2. when E ~að Þ ¼ E ~b
� �

, and A ~að Þ[A ~b
� �

, ~a[ ~b, meaning

that ~a is superior to ~b;

3. when E ~að Þ ¼ E ~b
� �

, and A ~að Þ\A ~b
� �

, ~a\~b, meaning

that ~a is inferior to ~b; and

4. when E ~að Þ ¼ E ~b
� �

, A ~að Þ ¼ A ~b
� �

, and C ~að Þ[C ~b
� �

,

~a[ ~b, meaning that ~a is superior to ~b; and ~a\~b when

C ~að Þ\C ~b
� �

, meaning that ~a is inferior to ~b; and ~a ¼ ~b

when C ~að Þ¼C ~b
� �

, meaning that ~a is indifferent to ~b.

Example 6 Utilizing the data in Example 1, we can calculate

thatE ~að Þ ¼ 0:1986 andE ~b
� �

¼ 0:195. Then, ~a[ ~b; that is, ~b

is superior to ~a, which is consistent with our intuition.

3.3 Aggregation operators for SVTNNs

Definition 16 Let ~aj ¼ aj1; aj2; aj3; aj4

 �

; T~aj ; I~aj ;F~aj

� �� �

j ¼ 1; 2; . . .; nð Þ be a set of SVTNNs, and let - ¼

-1;-2; . . .;-nð ÞT be the weight vector of ~aj
j ¼ 1; 2; . . .; nð Þ with -j 2 0; 1½ � and

Pn
j¼1 -j ¼ 1; then, the

SVTNWAA operator can be defined as follows:

SVTNWAAw ~a1; ~a2; . . .; ~anð Þ ¼ �
n

j¼1
-j~aj: ð12Þ

Theorem 2 Let ~aj ¼ aj1; aj2; aj3; aj4

 �

; T~aj ; I~aj ;F~aj

� �� �

j ¼ 1; 2; . . .; nð Þ be a set of SVTNNs. Then, the aggregated

value utilizing the SVTNWAA operator is still a SVTNN,

which is shown as follows:

where uð~ajÞ ¼ aj3�aj2þaj4�aj1
2

.

In the following, we proof Theorem 2 using mathe-

matical induction on n.

Proof 1. When n ¼ 2, the following equation can be

obtained:

where uð~a1Þ ¼ a13�a12þa14�a11

2
and uð~a2Þ ¼ a23�a22þa24�a21

2
.

Clearly, when n ¼ 2, Theorem 2 is true.

2. Suppose that when n ¼ k, Theorem 2 is true. That

is,

SVTNWAAw ~a1; ~a2; . . .; ~anð Þ ¼ �
n

j¼1
-j~aj

¼

Xn

j¼1

-jaj1;
Xn

j¼1

-jaj2;
Xn

j¼1

-jaj3;
Xn

j¼1

-jaj4

" #

;

Pn
j¼1 -juð~ajÞT~a
Pn

j¼1 -juð~ajÞ
;

Pn
j¼1 -juð~ajÞ 1 � I~að Þ
Pn

j¼1 -juð~ajÞ
;

Pn
j¼1 -juð~ajÞ 1 � F~að Þ
Pn

j¼1 -juð~ajÞ

 !

* +

;

ð13Þ

SVTNWAAw a1; a2ð Þ ¼ -1a1 � -2a2

¼ -1a11;-1a12;-1a13;-1a14½ �; T~a1
; I~a1

;F~a1
ð Þh i � -2a21;-2a22;-2a23;-2a24½ �; T~a2

; I~a2
;F~a2

ð Þh i

¼

-1a11 � -2a21;-1a12 � -2a22;-1a13 � -2a23;-1a14 � -2a24½ �;
-1uð~a1ÞT~a1

þ -2uð~a2ÞT~a2

-1uð~a1Þ þ -2uð~a2Þ
;
-1uð~a1Þ 1 � I~a1

ð Þ þ -2uð~a2Þ 1 � I~a2
ð Þ

-1uð~a1Þ þ -2uð~a2Þ
;

-1uð~a1Þ 1 � F~a1
ð Þ þ -2uð~a2Þ 1 � F~a2

ð Þ
-1uð~a1Þ þ -2uð~a2Þ

0

B
B
@

1

C
C
A

* +

¼

P2

j¼1

-jaj1;
P2

j¼1

-jaj2;
P2

j¼1

-jaj3;
P2

j¼1

-jaj4

" #

;

P2
j¼1 -juð~ajÞT~aj
P2

j¼1 -juð~ajÞ
;

P2
j¼1 -juð~ajÞ 1 � I~aj

� �

P2
j¼1 -juð~ajÞ

;

P2
j¼1 -juð~ajÞ 1 � F~aj

� �

P2
j¼1 -juð~ajÞ

 !

* +

;
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Then, when n ¼ kþ1, the following equation can be

calculated:

That is, Theorem 2 is true for n ¼ kþ1.

Therefore, Theorem 2 holds for all n.

Definition 17 Let ~aj ¼ aj1; aj2; aj3; aj4

 �

; T~aj ; I~aj ;F~aj

� �� �

j ¼ 1; 2; . . .; nð Þ be a set of SVTNNs, and - ¼
-1;-2; . . .;-nð ÞT be the weight vector of ~aj
j ¼ 1; 2; . . .; nð Þ with -j 2 0; 1½ � and

Pn
j¼1 -j ¼ 1; then, the

SVTNWGA operator is defined as follows:

SVTNWGAw ~a1; ~a2; . . .; ~anð Þ ¼
Yn

j¼1

~a
-j

j : ð15Þ

Theorem 3 Let ~aj ¼ aj1; aj2; aj3; aj4

 �

; T~aj ; I~aj ;F~aj

� �� �

j ¼ 1; 2; . . .; nð Þ be a set of SVTNNs. Then, the aggregated

value utilizing the SVTNWGA operator is still a SVTNN.

The aggregated result satisfies

SVTNWGAw ~a1; ~a2; . . .; ~anð Þ ¼
Yn

j¼1

~a
-j

j

¼

Yn

j¼1

a
-j

j1 ;
Yn

j¼1

a
-j

j2 ;
Yn

j¼1

a
-j

j3 ;
Yn

j¼1

a
-j

j4

" #

;

Yn

j¼1

T~aj

� �-j ; 1 �
Yn

j¼1

1 � I~aj
� �-j ;1 �

Yn

j¼1

1 � F~aj

� �-j

 !

* +

:

ð16Þ

The proof is similar to Theorem 2, so it is omitted here.

SVTNWAAw ~a1; ~a2; . . .; ~akð Þ ¼ �
k

j¼1
-j~aj

¼

Xk

j¼1

-jaj1;
Xk

j¼1

-jaj2;
Xk

j¼1

-jaj3;
Xk

j¼1

-jaj4

" #

;

Pk
j¼1 -juð~ajÞT~aj
Pk

j¼1 -juð~ajÞ
;

Pk
j¼1 -juð~ajÞ 1 � I~aj

� �

Pk
j¼1 -juð~ajÞ

;

Pk
j¼1 -juð~ajÞ 1 � F~aj

� �

Pk
j¼1 -juð~ajÞ

 !

* +

:

ð14Þ

SVTNWAAw ~a1; ~a2; . . .; ~akþ1ð Þ ¼ �
k

j¼1
-j~aj � -kþ1~akþ1

¼

Pk

j¼1

-jaj1;
Pk

j¼1

-jaj2;
Pk

j¼1

-jaj3;
Pk

j¼1

-jaj4

" #

;

Pk
j¼1 -juð~ajÞT~aj
Pk

j¼1 -juð~ajÞ
;

Pk
j¼1 -juð~ajÞ 1 � I~aj

� �

Pk
j¼1 -juð~ajÞ

;

Pk
j¼1 -juð~ajÞ 1 � F~aj

� �

Pk
j¼1 -juð~ajÞ

 !

* +

� -kþ1akþ1;1;-kþ1akþ1;2;-kþ1akþ1;3;-kþ1akþ1;4


 �
; T~akþ1

; I~akþ1
;F~akþ1

� �� �

¼

Pkþ1

j¼1

-jaj1;
Pkþ1

j¼1

-jaj2;
Pkþ1

j¼1

-jaj3;
Pkþ1

j¼1

-jaj4

" #

;

Pkþ1
j¼1 -juð~ajÞT~aj
Pkþ1

j¼1 -juð~ajÞ
;

Pkþ1
j¼1 -juð~ajÞ 1 � I~aj

� �

Pkþ1
j¼1 -juð~ajÞ

;

Pkþ1
j¼1 -juð~ajÞ 1 � F~aj

� �

Pkþ1
j¼1 -juð~ajÞ

 !

* +

:
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4 Single-valued trapezoidal neutrosophic
preference relations

This section extends the traditional FPRs and IFPRs to

SVTNPRs and explores some of their prominent

characteristics.

Definition 18 Let a matrix eR ¼ ½~aij�m	m on the set A ¼
A1;A2; . . .;Amf g be composed of SVTNNs, where ~aij ¼

a1
ij; a

2
ij; a

3
ij; a

4
ij

h i
; T~aij ; I~aij ;F~aij

� �D E
for all i; j ¼ 1; 2; . . .;m,

and 0� a1
ij � a2

ij � a3
ij � a4

ij � 1, 0� T~aij , I~aij , F~aij � 1. When

comparing alternative Ai over Aj, T~aij indicates the certainty

degree to which alternative Ai is preferred to Aj with a

degree of a1
ij; a

2
ij; a

3
ij; a

4
ij

h i
which is represented as a TFN;

I~aij is the indeterminate degree to which alternative Ai is

preferred to Aj with a degree of a1
ij; a

2
ij; a

3
ij; a

4
ij

h i
; and F~aij

denotes the certainty degree to which alternative Ai is non-

preferred to Aj with a degree of a1
ij; a

2
ij; a

3
ij; a

4
ij

h i
.

The matrix eR ¼ ½~aij�m	m is denoted as a SVTNPR on A,

if the following rules can be satisfied:

1. a1
ij þ a4

ji ¼ 1, a2
ij þ a3

ji ¼ 1, a3
ij þ a2

ji ¼ 1, a4
ij þ a1

ji ¼ 1;

2. T~aij ¼ F~aji , I~aij ¼ I~aji , F~aij ¼ T~aji ;

3. ~aii ¼ 1; 1; 1; 1½ �; 1; 0; 0ð Þh i; and

4. 0� T~aij þ I~aij þ F~aij � 3.

Theorem 4 A SVTNPR eR on the set of A ¼
A1;A2; . . .;Amf g is represented by a matrix eR ¼ ½~aij�m	m,

where ~aij ¼ a1
ij; a

2
ij; a

3
ij; a

4
ij

h i
; T~aij ; I~aij ;F~aij

� �D E
for all

i; j ¼ 1; 2; . . .;m, when the elements in the ith row and ith

column are removed from eR ¼ ½~aij�m	m, the preference

relation composed by the remainder elements of eR is still a

SVTNPR.

Proof The proof of Theorem 4 can be completed easily

according to Definition 18, so it is omitted here.

Definition 19 A SVTNPR eR ¼ ½~aij�m	m with ~aij ¼
a1
ij; a

2
ij; a

3
ij; a

4
ij

h i
; T~aij ; I~aij ;F~aij

� �D E
i; j; k ¼ 1; 2; . . .;mð Þ is

called a completely consistent SVTNPR when the follow-

ing statements are equivalent for any i; j; k:

1. a1
ij þ a4

ij þ a1
jk þ a4

jk þ a1
ki þ a4

ki ¼ a2
ij þ a3

ij þ a2
jk

þa3
jk þ a2

ki þ a3
ki ¼ 3;

2. T~aijT~ajkT~aki ¼ F~ajiF~aikF~akj ;

3. I~aij I~ajk I~aki ¼ I~aji I~aik I~akj ; and

4. F~aijF~ajkF~aik ¼ T~ajiT~akiT~akj .

Let the symbols 
 and � be two binary relations on

SVTNRs, interpreted as preferred and indifferent relations,

respectively.

Definition 20 ASVTNPR eR ¼ ½~aij�m	m with ~aij ¼ a1
ij;

hD

a2
ij; a

3
ij; a

4
ij�; T~aij ; I~aij ;F~aij

� �
i i; j; k ¼ 1; 2; . . .;mð Þ is called an

acceptably consistent SVTNPR when the following state-

ments are equivalent for any i; j; k:

1. when ~aij 
 ~aii and ~ajk 
 ~aii, then ~aik 
 ~aii;

2. when ~aij � ~aii and ~ajk � ~aii, then ~aik � ~aii; and

3. when ~aij � ~aii and ~ajk � ~aii, then ~aik � ~aii.

It can be interpreted as follows: when ~aij is preferred (infe-

rior) to ~aii, and ~ajk is preferred (inferior) to ~aii, ~aij should be

preferred (inferior) to ~ajk; similarly, when ~aij is indifferent to ~aii,

and ~ajk is indifferent to ~aii, ~aij should be indifferent to ~ajk, too.

Clearly, when a2 ¼ a3, T~aij ¼ 1, and I~aij ¼ F~aij ¼ 0, the

SVTNPR is reduced to a triangular fuzzy preference rela-

tion (TrFPR); meanwhile, when a2 ¼ a3 and

F~aij ¼ 1 � T~aij � I~aij , the SVTNPR is reduced to a triangu-

lar intuitionistic fuzzy preference relation (TrIPR). In

essence, a SVTNPR is a generalized form of FPR.

5 Multi-criteria decision-making method based
on SVTNPRs and complete weight information

This section proposes an MCDM approach based on

SVTNPRs and provides the main procedures of the pro-

posed method.

For an MCDM problem with a finite set of m alterna-

tives, let A ¼ A1;A2; . . .;Amf g be the set of m feasible

alternatives, and let C ¼ C1;C2; . . .;Cnf g be the set of

criteria. Assume that the criteria weight vector is - ¼
-1;-2; . . .;-nð ÞT

with -j 2 0; 1½ � and
Pn

j¼1 -j ¼ 1. The

pairwise comparison analyses are conducted with respect

to every criterion Cj j ¼ 1; 2; . . .; nð Þ; then, the evaluation

values represented by SVTNPRs Rj ¼ ½~a j
ik�m	m with ~a j

ik ¼

a
1j
ik ;

hD
a

2j
ik ; a

3j
ik ; a

4j
ik �; T~a j

ik
;

�
I~a j

ik
;F~a j

ik
Þi i ¼ 1; 2; . . .;m; k ¼ð

1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ can be obtained by transforming

the preference values provided by DMs.

Then, we can derive the decision matrix Rj ¼ ½~a j
ik�m	m as

follows:

Rj ¼

~a j
11 ~a j

12 � � � ~a j
1m

~a j
21 ~a j

22 � � � ~a j
2m

..

. ..
. ..

.

~a j
m1 ~a j

m2 � � � ~a j
mm

2

6
6
6
4

3

7
7
7
5

m	m

:

Our proposed approach involves the following steps:
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Step 1 Normalize the SVTNPRs.

Normalize the decision-making information ~a j
ik in the

matrices Rj ¼ ½~a j
ik�m	m. The criteria in the decision matri-

ces are classified as benefit and cost types. In order to make

the criterion type uniform, the cost criteria must be trans-

formed into benefits using the negation operation defined in

Definition 12. Because the elements in the TFN of

SVTNNs are assigned values between 0 and 1, we conduct

the negation operation as follows:

neg ~að Þ ¼ 1 � a4; 1 � a3; 1 � a2; 1 � a1½ �; F~a; 1 � I~a; T~að Þh i:
ð17Þ

The normalized evaluation information matrices are

denoted as �Rj ¼ �a j
ik

� �

m	m
.

Step 2 Check the complete consistency or accept-

able consistency of SVTNPR �Rj.

If �Rj meets complete consistency or acceptable consis-

tency, then proceed to Step 6. Otherwise, �Rj should be

modified based on Definitions 19 and 20, until it has

complete consistency.

Step 3 Improve the consistency degree of SVTNPR �Rj.

Determine the element with highest degree of confi-

dence level when comparing with other alternatives in

SVTNPR �Rj ¼ �a j
ik

� �

m	m
. Assume that the experts are sure

about the evaluation information of the first row in

�Rj ¼ �a j
ik

� �

m	m
; then, according to Definition 18, the experts

are also sure about elements of the first column in

�Rj ¼ �a j
ik

� �

m	m
.

Let the elements of the TFNs in the ith row be divided

by elements in the first row. If the obtained difference is a

fixed value, and the subsequent three membership degrees

meet the conditions in Definition 19, then there is no need

to modify; otherwise, the elements that do not meet the

conditions must be modified according to Definition 19.

Step 4 Obtain the completely consistent SVTNPR.

Check every element in SVTNPR �Rj ¼ �a j
ik

� �

m	m
and

modify the elements that do not meet the conditions until

�Rj ¼ �a j
ik

� �

m	m
is completely consistent.

Step 5 Obtain the overall preference information.

Utilizing Eqs. (13) and (16), the overall value of alter-

native Ai can be aggregated. We can obtain the overall

preference degrees of Ai i ¼ 1; 2; . . .;mð Þ when comparing

it with other alternatives, and they are denoted by tik and t0ik
i ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .;mð Þ, respectively; then, the

matrices are denoted as T ¼ tikð Þm	m and T 0 ¼ t0ik
� �

m	m
,

respectively.

Step 6 Calculate the ordering vector of each alternative.

Aggregate each row of the SVTNPRs T ¼ tikð Þm	m and

T 0 ¼ t0ik
� �

m	m
, and gain the matrices U ¼ uið Þm	1 and

U0 ¼ u0i
� �

m	1
, which are composed of the ordering vector

of each alternative.

U ¼
Xm

k¼1

tik; ð18Þ

U0 ¼
Xm

k¼1

t0ik: ð19Þ

Then, the elements ui ¼ u1
i ; u

2
i ; u

3
i ; u

4
i


 �
; Tui ; Iui ;Fuið Þ

� �

in U should be normalized to ~ui ¼ ~u1
i ; ~u

2
i ; ~u

3
i ; ~u

4
i


 �
;

�

T~ui ; I~ui ;ð :F~uiÞi in V ¼ ~uið ÞT
m	1¼ ~u1; ~u2; . . .; ~umð Þ, where

~u1
i ; ~u

2
i ; ~u

3
i ; ~u

4
i


 �
¼ u1

i

max u4
i

;
u2
i

max u4
i

;
u3
i

max u4
i

;
u4
i

max u4
i

� �

;

ð20Þ
T~ui ¼ Tui ; I~ui ¼ Iui F~ui ¼ Fu: ð21Þ

Similarly, the elements u0i ¼ u01i ; u
02
i ; u

03
i ; u

04
i


 �
; Tu0 ;ð

�

Iu0 ;Fu0 Þi in U0 should be normalized to u00i ¼ u001i ;

�

u002i ; u003i ; u004i �; Tu00
i
; Iu00

i
;

�
:Fu00

i

�E
in V 0 ¼ u00i

� �T

m	1
¼ u001 ; u

00
2;

�

. . .; u00mÞ, where

u001i ;u002i ;u003i ;u004i

 �

¼ u001i
max u004i

;
u002i

max u004i
;

u003i
max u004i

;
u004i

max u004i

� �

;

ð22Þ
Tu00

i
¼ Tui ; Iu00

i
¼ Iui ; Fu00

i
¼ Fui : ð23Þ

Step 7 Derive the score values of each alternative Ai.

Utilizing Definition 14, the score values for each alter-

native can be calculated.

Step 8 Gain the final ranking order and select the optimal

alternative(s).

By comparing the values obtained in Step 8, the final

ranking results can be obtained, and the optimum option

can be selected.

6 An numerical example

This section uses a green supplier selection problem

adapted from Wan and Dong [60] to demonstrate the

applicability of the proposed method.

Shanghai General Motors Company Limited (SGM) is

planning to incorporate environmentally friendly features

into the product design stage to protect the environment
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and achieve sustainable development of the social econ-

omy. For this reason, SGM wishes to select the most

appropriate green supplier for one of the key elements in its

manufacturing process. After pre-evaluation, four suppliers

remain as candidates for further evaluation. They are

Howden Hua Engineering Company (A1), Sino Trunk (A2),

Taikai Electric Group Company Limited (A3), and Shantui

Construction Machinery Company Limited (A4). Utilizing

principal component analysis, the experts choose the fol-

lowing three independent criteria as evaluation principles:

product quality (C1), pollution control (C2), and environ-

ment management (C3). According to historical data, the

weight vector of the three criteria is - ¼ 0:4; 0:35; 0:25ð ÞT .

The results of pairwise comparisons among these three

alternatives with respect to the three criteria Cj j ¼ 1; 2; 3ð Þ
are listed as follows in the form of SVTNNs:

6.1 Evaluation steps for green supplier selection

problem

The evaluation steps of the proposed method proceed as

follows.

Step 1 Normalize the SVTNPRs.

Because all the criteria are of the benefit type, the decision

information does not need to be normalized. In other words,

�Rj ¼ �a j
ik

� �

m	m
¼ Rj ¼ ~a j

ik

� �

m	m
k ¼ 1; 2; . . .;mð Þ.

Step 2 Check the complete consistency or accept-

able consistency of SVTNPR eR.

Based on Definition 19, the results obtained by calcu-

lating the elements in SVTNPR R1 are as follows: a11
31 þ

a14
31 þ a11

12 þ a14
12 þa11

23 þ a14
23 ¼ 0:4 þ 0:6 þ 0:3 þ 0:7 þ 0:4

þ0:7 ¼ 3:1 6¼ 3; and a12
31 þ a13

31 þa12
12 þ a13

12 þa12
23 þ a13

23 ¼
0:5 þ0:5 þ 0:5 þ 0:5 þ 0:5 þ 0:6 ¼ 3:1 6¼ 3; therefore, R1

is not completely consistent. However, R2 and R3 are both

completely consistent according to Definition 19. Further-

more, utilizing the score function defined in Definition 14

in Sect. 3.2, we can obtain E �a1
13

� �
¼ 0:175, E �a1

32

� �
¼

0:100, E �a1
12

� �
¼ 0:342, and E �a1

11

� �
¼ 0:333, such that

�a1
13 � �a1

11, �a1
32 � �a1

11, and �a1
12 � �a1

11; therefore, according to

Definition 20, R1 is not acceptably consistent either..

As a result, the matrix R1 must be modified based on

Definitions 19 and 20 until it is completely consistent.

Step 3 Improve the consistency degree of SVTNPR �R.

Assume that the experts are very sure about the first row

of SVTNPR �R; then, based on Definition 18, we can see

that the experts are also very sure about the first column of

SVTNPR �R.

Let the elements in the second line be divided by the

elements in the first line. The results are not a fixed value,

but the three membership degrees satisfy the conditions in

Definition 19; therefore, ~a1
23 should be modified as

~a1
23¼ 0:3; 0:5; 0:5; 0:7½ �; 0:7; 0; 0:3ð Þh i.

Step 4 Obtain the completely consistent SVTNPR.

Check every element in the SVTNPR R1 ¼ a1
ik

� �

m	m

and modify all the elements; then, the modified results of

R1 are as follows:

A1 A2 A3

R1 ¼
A1

A2

A3

½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i ½0:3; 0:5; 0:5; 0:7�; 0:9; 0:5; 0:1ð Þh i ½0:4; 0:5; 0:5; 0:6�; 0:3; 0:3; 0:4ð Þh i
½0:3; 0:5; 0:5; 0:7�; 0:1; 0:5; 0:9ð Þh i ½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i ½0:4; 0:5; 0:6; 0:7�; 0:7; 0; 0:3ð Þh i
½0:4; 0:5; 0:5; 0:6�; 0:4; 0:3; 0:3ð Þh i ½0:3; 0:4; 0:5; 0:6�; 0:3; 0; 0:7ð Þh i ½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i

0

B
@

1

C
A;

A1 A2 A3

R2 ¼
A1

A2

A3

½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i ½0:25; 0:4; 0:6; 0:75�; 0:5; 0:2; 0:4ð Þh i ½0:35; 0:45; 0:55; 0:65�; 0:4; 0:2; 0:4ð Þh i
½0:25; 0:4; 0:6; 0:75�; 0:4; 0:2; 0:5ð Þh i ½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i ½0:25; 0:45; 0:55; 0:75�; 0:6; 0:3; 0:3ð Þh i
½0:35; 0:45; 0:55; 0:65�; 0:4; 0:2; 0:4ð Þh i ½0:25; 0:45; 0:55; 0:75�; 0:3; 0:3; 0:6ð Þh i ½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i

0

B
@

1

C
A;

A1 A2 A3

R3 ¼
A1

A2

A3

½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i ½0:35; 0:45; 0:55; 0:65�; 0:5; 0:1; 0:4ð Þh i ½0:4; 0:5; 0:5; 0:6�; 0:4; 0:2; 0:5ð Þh i
½0:35; 0:45; 0:55; 0:65�; 0:4; 0:1; 0:5ð Þh i ½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i ½0:25; 0:4; 0:6; 0:75�; 0:6; 0:3; 0:3ð Þh i
½0:4; 0:5; 0:5; 0:6�; 0:5; 0:2; 0:4ð Þh i ½0:25; 0:4; 0:6; 0:75�; 0:3; 0:3; 0:6ð Þh i ½0:5; 0:5; 0:5; 0:5�; 1; 0; 0ð Þh i

0

B
@

1

C
A;
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Step 5 Obtain the overall preference information.

Utilizing Eqs. (13) and (16), the overall preference

value can be aggregated. It is denoted as matrices

TSVTNWAA and T 0
SVTNWGA which are given as follows:

and

Step 6 Calculate the ordering vector of each alternative.

Aggregate each row of SVTNPR TSVTNWAA ¼ tikð Þm	m

and T 0
SVTNWGA ¼ t0ik

� �

m	m
, yielding the matrices U ¼

�R0
1 ¼

½0:5; 0:5; 0:5; 0:5�;
1; 0; 0ð Þ

* +
½0:3; 0:5; 0:5; 0:7�;

0:9; 0:5; 0:1ð Þ

* +
½0:4; 0:5; 0:5; 0:6�;

0:3; 0:3; 0:4ð Þ

* +

½0:3; 0:5; 0:5; 0:7�;
0:1; 0:5; 0:9ð Þ

* +
½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +
½0:3; 0:5; 0:5; 0:7�;

0:7; 0; 0:3ð Þ

* +

½0:3; 0:5; 0:5; 0:7�;
0:4; 0:3; 0:3ð Þ

* +
½0:3; 0:4; 0:5; 0:6�;

0:3; 0; 0:7ð Þ

* +
½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

:

TSVTNWAA ¼

½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +
½0:295; 0:4525; 0:5475; 0:705�;

0:6267; 0:7248; 0:695ð Þ

* +
½0:3825; 0:4825; 0:5175; 0:6175�;

0:3704; 0:7704; 0:5815ð Þ

* +

½0:295; 0:4525; 0:5475; 0:705�;

0:305; 0:7248; 0:3733ð Þ

* +
½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +
½0:27; 0:4575; 0:5425; 0:73�;

0:6294; 0:7881; 0:7ð Þ

* +

½0:3425; 0:4825; 0:5175; 0:6575�;

0:4143; 0:7543; 0:6457ð Þ

* +
½0:27; 0:4175; 0:5425; 0:69�;

0:3; 0:7881; 0:3706ð Þ

* +
½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

T 0
SVTNWGA ¼

½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +
½0:2925; 0:4504; 0:5458; 0:7039�;

0:6325; 0:3173; 0:2944ð Þ

* +
½0:3817; 0:4819; 0:517; 0:617�;

0:3565; 0:2416; 0:4267ð Þ

* +

½0:2925; 0:4504; 0:5458; 0:7039�;

0:2297; 0:3173; 0:7373ð Þ

* +
½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +
½0:2689; 0:4558; 0:5411; 0:7296�;

0:6382; 0:1927; 0:3ð Þ

* +

½0:3402; 0:4819; 0:517; 0:6563�;

0:4229; 0:2416; 0:3618ð Þ

* +
½0:2689; 0:4168; 0:5411; 0:686�;

0:3; 0:1927; 0:6435ð Þ

* +
½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

:
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uið Þm	1 and U0 ¼ u0i
� �

m	1
, respectively, which are com-

posed of the ordering vector of each alternative.

U¼
A1

A2

A3

½1:1775;1:435;1:565;1:8225�; 0:5374;0:2594;0:3445ð Þh i
½1:065;1:41;1:59;1:935�; 0:4733;0:2424;0:4571ð Þh i
½1:1125;1:4;1:56;1:8475�; 0:3447;0:2251;0:5218ð Þh i

0

B
@

1

C
A;

and

U0 ¼
A1

A2

A3

½1:1742;1:4323;1:5628;1:821�; 0:5365;0:709;0:6596ð Þh i
½1:0614;1:4062;1:5869;1:9335�; 0:4415;0:7473;0:4895ð Þh i
½1:1092;1:3987;1:558;1:8422�; 0:3484;0:7881;0:4673ð Þh i

0

B
@

1

C
A:

Then, the normalized matrix V ¼ ~uið ÞT
m	1¼

~u1; ~u2; . . .; ~umð Þ from U is as follows:

V ¼
A1

A2

A3

½0:6085;0:7416;0:8088;0:9419�; 0:5374;0:2594;0:3445ð Þh i
½0:5504;0:7287;0:8217;1:0�; 0:4733;0:2624;0:4571ð Þh i

½0:5749;0:7235;0:8062;0:9548�; 0:3447;0:2251;0:5218ð Þh i

0

B
@

1

C
A;

and the normalized matrix V 0 ¼ u00i
� �T

m	1
¼ u001 ;u

00
2; . . .;u

00
m

� �

from U0 is as follows:

V 0 ¼
A1

A2

A3

½0:6073;0:7408;0:8083;0:9418�; 0:5365;0:709;0:6596ð Þh i
½0:549;0:7273;0:8207;1:0�; 0:4415;0:7473;0:4895ð Þh i

½0:5737;0:7234;0:8058;0:9528�; 0:3484;0:7881;0:4673ð Þh i

0

B
@

1

C
A:

Step 7 Derive the score values of each alternative Ai.

The score values of each alternative can be obtained

based on Definition 14.

When using the alternative information in U:

EðA1Þ ¼ 0:4996; EðA2Þ ¼ 0:4532; EðA3Þ ¼ 0:4072:

When using the alternative information in U0:

EðA1Þ ¼ 0:3015; EðA2Þ ¼ 0:3109; EðA3Þ ¼ 0:2781:

Step 8 Gain the final ranking order and select the optimal

alternative(s).

By comparing the values obtained in Step 8, including

EðA1Þ[EðA2Þ[EðA3Þ obtained by U and

EðA2Þ[EðA1Þ[EðA3Þ obtained by U0, we can get the

final ranking orders as A1 
 A2 
 A3 and A2 
 A1 
 A3,

respectively. Because of the distinct inherent characteristic

of these two operators, it is reasonable that the ultimate

ranking results are different.

6.2 Comparative study and discussion

In order to illustrate the rationality and effectiveness of the

proposed method, this subsection conducts a comparative

study and discussion.

In solving the above example, the preference informa-

tion of each alternative Ai is integrated directly using the

SVTNWAA and SVTNWGA operators, and consistency is

not considered. The aggregated matrices can be calculated,

respectively, as follows:

_TSVTNWAA ¼

½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +
½0:295; 0:4525; 0:5475; 0:705�;

0:6267; 0:7248; 0:695ð Þ

* +
½0:3825; 0:4825; 0:5175; 0:6175�;

0:3704; 0:7704; 0:5815ð Þ

* +

½0:295; 0:4525; 0:5475; 0:705�;

0:305; 0:7248; 0:3733ð Þ

* +
½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +
½0:31; 0:4575; 0:5825; 0:73�;

0:6294; 0:7881; 0:7ð Þ

* +

½0:3425; 0:4825; 0:5175; 0:6175�;

0:4185; 0:7704; 0:6296ð Þ

* +
½0:27; 0:4175; 0:5425; 0:69�;

0:3; 0:7881; 0:3706ð Þ

* +
½0:5; 0:5; 0:5; 0:5�;

1; 0; 0ð Þ

* +

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

;
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and

Then, the corresponding normalized matrices can be

calculated, respectively, as follows:

_V ¼
A1

A2

A3

½0:6085;0:7416;0:8088;0:9419�; 0:5374;0:2594;0:3445ð Þh i
½0:5711;0:7287;0:8424;1:0�; 0:4733;0:2424;0:4571ð Þh i

½0:5956;0:7235;0:8062;0:9341�; 0:3393;0:2178;0:5436ð Þh i

0

B
@

1

C
A;

and

_V 0 ¼
A1

A2

A3

½0:6073;0:7408;0:8083;0:9418�; 0:5365;0:709;0:6596ð Þh i
½0:5659;0:7273;0:8419;1:0�; 0:4431;0:7478;0:4911ð Þh i
½0:5951;0:7234;0:8058;0:9325�; 0:341;0:791;0:4503ð Þh i

0

B
@

1

C
A:

Therefore, we can obtain the score values based on

Definition 14, and they are _EðA1Þ ¼ 0:4996,
_EðA2Þ ¼ 0:4645, and _EðA3Þ ¼ 0:4023 in the normalized

matrix _V , such that the ranking order is A1 
 A2 
 A3;

meanwhile, they are _EðA1Þ ¼ 0:3015, _EðA2Þ ¼ 0:3145, and
_EðA3Þ ¼ 0:2801 in the normalized matrix _V 0, such that the

ranking order is A2 
 A1 
 A3. Consequently, we can see

that a different result is produced when the consistency of

preference relations is not considered. This also indicates

that our approach is reasonable.

7 Conclusion

This paper developed a novel single-valued trapezoidal

neutrosophic MCDM method based on SVTNPRs. First of

all, in order to overcome the disadvantages of existing

operations and comparison methods for SVTNNs, which

are not always in accordance with real MCDM situations,

we defined some new operations and a new comparison

method and explored their properties; second, we devel-

oped the SVTNWAA operator and SVTNWGA operator

to aggregate decision information. And then, we con-

structed the SVTNPRs and defined both the complete

consistency and acceptable consistency. Finally, we out-

lined a method for MCDM problem solving with

SVTNPRs and applied a numerical example to verify the

effectiveness of our method. Future research should take

into account unknown weight information, which exists

widely in real life; additionally, DMs’ preferences on

alternatives might be missing, and the problem of tackling

incomplete preference information also represents an

important issue for further study. Also, it is worthwhile to

investigate SVNPR when the neutrosophic components

are partially dependent and partially independent. Finally,

it is worthwhile to propose new comparison methods and

integrated methodologies to deal with MCDM problems

with SVTNNs.
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