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ABSTRACT 
This paper presents TOPSIS approach to solve chance constrained multi – objective multi – level quadratic 

programming problem. The proposed approach actually combines TOPSIS and fuzzy goal programming. In the 

TOPSIS approach, most appropriate alternative is to be finding out among all possible alternatives based on both 

the shortest distance from positive ideal solution (PIS) and furthest distance from the negative ideal solution (NIS). 

PIS and NIS for all objective functions of each level have been determined in the solution process. Distance 

functions which measure distances from PIS and NIS have been formulated for each level. The membership 

functions of the distance functions have been constructed and linearized in order to approximate nonlinear 

membership functions into equivalent linear membership functions. Stanojevic’s normalization technique for 

normalization has been employed in the proposed approach. For avoiding decision deadlock, each level decision 

maker provides relaxation on the upper and lower bounds of the decision variables. Two FGP models have been 

developed in the proposed approach. Euclidean distance function has been utilized to identify the optimal 

compromise solution. An illustrative example has been solved to demonstrate the proposed approach. 

 

INTRODUCTION  
Multilevel programming (MLP) is very useful technique to solve hierarchical decision making problem with multiple 

decision makers (DMs) in a hierarchical system. In MLP, each level DM independently controls some variables and 

tries to optimize his own objectives. For the successful running of a multilevel system, DMs try to find out a 

way/solution so that each level DM is satisfied at reasonable level.  There are many approaches to solve MLP problem 

(MLPP) in the literature.  Ananndalingam [1] proposed mathematical programming model of decentralized multi-

level systems in crisp environment. 

 

Lai [2] at first developed an effective fuzzy approach by using the concept of tolerance membership functions of 

fuzzy set theory [3] for solving MLPPs in 1996.  Shih et al. [4] extended Lai’s concept by employing non-

compensatory max-min aggregation operator for solving MLPPs. Shih and Lee [5] further extended Lai’s concept 

by introducing the compensatory fuzzy operator for obtaining satisfactory solution for MLPP. Sakawa et al. [6] 

developed interactive fuzzy programming to solve MLPP. Sinha [7, 8] further established an alternative fuzzy 

mathematical programming for MLPP. Pramanik and Roy [9] established fuzzy goal programming (FGP) approach 

to solve MLPP and presented sensitive analysis on relaxation provided by the upper level decision maker..  Linear 

plus linear fractional multilevel multi objective programming problem had been studied by Pramanik et al [10]. Han 

et al. [11]  presented a case study on production inventory planning using reference based uncooperative multi 

follower tri level decision problem based on K – th best algorithm. 

 

Pramanik [12] developed bilevel programming problem (BLPP) with fuzzy parameters using FGP.  Pramanik and 

Dey [13] extended Pramanik’s concept [12] to multi objective BLPP with fuzzy parameters. Pramanik et al. [14] 

further discussed decentralized multi objective BLPP with fuzzy parameters.  In 2015, Pramanik [15] studied MLPP 

with fuzzy parameters by extending Pramanik‘s concept [12] and developed three FGP models. Sakawa et al. [16] 

established interactive fuzzy programming for MLPP with fuzzy parameters. 
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Pramanik and Banerjee [17] developed chance constrained BLPP with quadratic objective functions. In their study 

[17] they converted chance constraints into deterministic constraints and solved the problem using FGP models. 

Pramanik et al. [18] studied linear plus linear fractional chance constrained BLPP. Pramanik et al. [19] also studied 

multilevel linear programming problem with chance constraints based on FGP. 

 

TOPSIS stands for technique for order preference by similarity to ideal solution. In TOPSIS approach, most 

appropriate alternative is to be selected among all alternatives based on the shortest distance from positive ideal 

solution (PIS) and furthest distance from negative ideal solution (NIS). TOPSIS approach reduces multiple numbers 

of conflicting objectives to two objectives; one is the minimum of distance function which measures distance from 

PIS and another is the maximum of distance function which measures distance from NIS. Hwang and Yoon [20] 

introduced the TOPSIS approach to solve multi – attribute decision making problem. Lai et al. [21] established 

TOPSIS method for solving multi – objective decision making (MODM) problem. Chen [22] developed TOPSIS to 

solve multi criteria decision making. Jahanshahloo et al. [23] extended TOPSIS for decision making problem with 

fuzzy data. They used triangular fuzzy numbers for rating of each alternatives and weight of each criterion using 

- cut method for normalization.  

 

In neutrosophic environment Biswas et al. [24] proposed TOPSIS method for multi attribute decision making. In the 

evaluation process, Biswas et al. [24] employed linguistic variables to present the ratings of each alternative with 

respect to each attribute characterized by single-valued neutrosophic number. Biswas et al. [24] employed 

neutrosophic aggregation operator to aggregate all the opinions of decision makers. Dey et al. [25] studied 

generalized neutrosophic soft multi attribute group decision making based on TOPSIS. Pramanik et al. [26] 

established TOPSIS for single valued neutrosophic soft expert set based multi-attribute decision making problems.    

Dey et al. [27] studied TOPSIS for solving multi-attribute decision making problem under bi-polar neutrosophic 

environment. 

 

Wang and Lee [28] developed fuzzy TOPSIS approach based on subjective weights and objective weights. 

Subjective weights are normalized into comparable scale. They adopted Shannon’s entropy [29] theory and defined 

closeness coefficient. Baky and Abo-Sinna [30] studied non-linear MODM problem using TOPSIS approach. Baky 

[31] developed interactive TOPSIS algorithms for solving multi – level non – linear multi – objective decision 

making problem. Dey et al. [32] studied TOPSIS approach to linear fractional MODM problem based on FGP. In 

their study they compared obtained results with Baky and Abo-Sinna’s [33] method and obtained better satisfactory 

results in terms of distance function. 

 

In the present paper, we have presented TOPSIS approach to solve chance constrained multi-level multi objective 

quadratic programming problem. In the proposed approach, firstly, we have transformed chance constraints into 

equivalent deterministic constraints using known means and variances and confidence levels. PIS and NIS have been 

calculated for each objective function of each level.  We have employed first order Taylor series for each nonlinear 

membership function to convert them into linear membership function. Then we have normalized them using 

Stanojevic’s normalization technique [34]. The above process has been done for each level and using FGP model 

to find optimal solution for each level separately.  Each level DM provides his choice on the upper and lower bounds 

of the decision variables under his control. Two FGP models have been developed to get the optimal solution. 

Euclidean distance function has been used to find out the most appropriate optimal solution. The proposed TOPSIS 

method has been illustrated by solving a CCMLMOQPP. 

 

The rest of the paper is designed as follow: In the section 2, CCMLMOQPP has been formulated. In Section 3 we 

have presented the conversion of chance constraints into equivalent deterministic constraints. In the Section 4, 

TOPSIS approach with normalization method for all levels have been described. Selection of preference bounds has 

been presented in the section 5. Two FGP models have been formulated in the next section. Section 7 presents 

Zeleny’s distance function [35] which helps to select optimal compromise solution. A numerical example of 

CCMLMOQPP has been presented in the section 8. In Section 9, we have presented conclusion and future scope of 

research.  
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PROBLEM FORMULATION 
Consider the following CCMLMOQPP. 
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ij

c is a vector of order n1  and ij
d is a vector of order nn . 

 

CONVERSION OF CHANCE CONSTRAINTS INTO EQUIVALENT 

DETERMINISTIC CONSTRAINTS  

Consider the chance constraints of the form 
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0x                                                                                                                                                                 (8) 

where )b(E
i

and )bvar(
i

are the expectation and variance of the random variable 
i

b and (.)(.), 1 represent the 

distribution and inverse distribution functions of standard normal variable respectively. We denote the equivalent 

deterministic system constraints (6), (7) and (8) by S . Here, S and S are equivalent set of constraints. 
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TOPSIS APPROACH 
TOPSIS model for the FLDM 

Consider the first level problem as 
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Conversion of non – linear membership function into linear membership function  
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Stanojevic’s normalization technique  

Adopting Stanojevic’s normalization technique [34], the linear membership functions can be normalized as 

follows: 

)1F(PIS)1F(PIS

)1F(PIS

)1F(PIS
qd

)1F(PIS
qd ab

a)x(ˆ

)x(




 where )x(ˆMina
)1F(PIS

qdSx

)1F(PIS 


)x(ˆMaxb
)1F(PIS

qdSx

)1F(PIS 


                                         (14) 

)1F(NIS)1F(NIS

)1F(NIS

)1F(NIS
qd

)1F(NIS
qd ab

a)x(ˆ

)x(




 where )x(ˆMina
)1F(NIS

qdSx

)1F(NIS 


)x(ˆMaxb
)1F(NIS

qdSx

)1F(NIS 


                                       (15) 

 

FGP model to obtain satisfactory solution for FLDM 

Using the FGP model of Pramanik and Banerjee [17] in order to obtain the satisfactory solution for the FLDM, 

the FGP model appears as: 
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Thus the problem becomes  
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Conversion of non – linear membership function into linear membership function  
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*)2F(NIS

p
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2
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1

*)2F(NIS   

Applying first order Taylor’s series we have obtained the linear membership function  
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x
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                                           (21) 

 

Stanojevic normalization technique  

Adopting Stanojevic’s normalization technique [34] the linear membership functions have been normalized as 

follows: 

)2F(PIS)2F(PIS

)2F(PIS

)2F(PIS
qd

)2F(PIS
qd ab

a)x(ˆ

)x(

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 (22)

)2F(NIS)2F(NIS
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qd
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qd ab
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


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)x(ˆMaxb,
)2F(NIS
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                                    (23)
 

 

FGP model to obtain satisfactory solution for SLDM 

Using the model of Pramanik and Banerjee [17] in order to obtain the satisfactory solution for the SLDM, the 

FGP model can be written as: 

Sx
2Min



                                                                                                                                                                       (24)

 
1d)x( )2F(PIS)2F(PIS

qd
 

,
 

,1d)x( )2F(NIS)2F(NIS
qd

   
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

  )2F(NIS2 d , 
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,1d0 )2F(NIS  
 

Subject to     Sx  . 

Solving the above model, the obtained satisfactory solution for the SLDM has been denoted by

)x...,,x,x(x
*2F

p

*2F

2

*2F

1

*2F  . 

 

TOPSIS model for the LLDM 

Let 




pjpj
Sx

Z)x(ZMax  and 




pjpj
Sx

Z)x(ZMin  (j = 1, 2, …, mp) be the PIS and NIS for the LLDM. The distance 

functions measuring the distances from the PIS and NIS can be defined as follows: 
q/1
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                                                (25) 

Thus the problem becomes  

)x(dMin )Fp(PIS

q  

)x(dMax )Fp(NIS

q
 

Subject to     Sx   

 

Construction of membership function for )x(d),x(d )Fp(NIS

q

)Fp(PIS

q
 

     Let 


 ))x(d()x(dMin )Fp(PIS

q
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q
Sx
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
 ))x(d()x(dMax )Fp(PIS

q

)Fp(PIS

q
Sx

 

The membership function for )x(d )Fp(PIS

q
can be constructed as follows: 

)x(d))x(d(1
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                                         (26) 

Let 


 ))x(d()x(dMin )Fp(NIS
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q
Sx

and 


 ))x(d()x(dMax )Fp(NIS

q

)Fp(NIS

q
Sx

 

The membership function for )x(d )Fp(NIS

q
can be constructed as follows: 
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                                       (27) 

 

Conversion of non – linear membership function into linear membership function  

 Let )x()x(Max
*

)Fp(PIS

)Fp(PIS
qd
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qdSx




and )x,...,x,x(x
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2
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Applying first order Taylor’s series we have obtained the linear membership function  
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                                              (28) 

Let )x()x(Max
*
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qdSx




and )x,...,x,x(x
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2
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1

*)Fp(NIS   

 

Applying first order Taylor’s series we have obtained the linear membership function  
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)x(ˆ)
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
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                                        (29)

 

 

Stanojevic’s normalization technique  

Adopting Stanojevic’s normalization technique [34] the linear membership functions can be normalized as 

follows: 
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                                     (30) 
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)Fp(NIS
qd

)Fp(NIS
qd ab
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
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qdSx
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

)x(ˆMaxb,
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                                  (31)
 

 

FGP model to obtain satisfactory solution for LLDM 

Using the model of Pramanik and Banerjee [17] in order to obtain the satisfactory solution for the LLDM, the 

FGP model can be written as: 

Sx

pMin


                  

(32) 
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Subject to     Sx  . 

Solving the above model, the obtained satisfactory solution for the SLDM has been denoted by
 

)x...,,x,x(x
*Fp

p
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2

*Fp

1

*Fp   

 

SELECTION OF PREFERENCE BOUNDS 
In the multi – level decision making problem, the goals of all levels are generally conflicting. To execute the 

decision making in the real situation, cooperation between DMs is needed. For the overall satisfaction, each level 

DM provides some relaxation on their decision variables. So, the i-th level provides the upper and lower bounds 

on the decision variable xi. Let )Fi(L

i
t and )Fi(R

i
t be the lower and upper bounds on the decision variables (i = 1, 2, 

…, p). Then the bounds can be written as follows:  
)Fi(R

i

*Fi

ii

)Fi(L

i
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i
txxtx                                                                                                                                         (33) 
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i
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

 
 

FGP MODELS 
Using FGP model of Pramanik and Banerjee [17], the two FGP models have been presented as follows: 

Model – 1 

Min                                                                                                                                                                       (34) 

Subject to  
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,1d)x( )Fi(NIS)Fi(NIS
qd

 

 

,1d0

,1d0

,d

,d

)Fi(NIS

)Fi(PIS

)Fi(NIS

)Fi(PIS

















 

p...,,2,1ifor,txxtx )Fi(R

i

*Fi

ii

)Fi(L

i

*Fi

i 

 Sx  .  
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SELECTION OF OPTIMAL SOLUTION 
Zeleny’s distance function [35] can be defined as follows: 

r/1
rK

1k
k

r

kr
])1([)K,(L  



                                                                                                                                         (36)

 
Here, 

k
 means attribute level and 1

K

1k
k




)r0(r  denotes the distance parameter and 
k

 represents the 

degree of closeness between compromise solution and individual best solution of the k – th objective function. 

In this paper, we consider r = 2, then distance function becomes 
2/1

2K

1k
k

2

k2
])1([)K,(L  



                              (37) 

For the maximization problem, 
k

 is the ratio of the compromise solution and individual best solution of the k – 

th objective function. For the minimization type, the ratio would be reversed. Minimum 
2

L reflects the best 

optimal compromise solution. 

 

NUMERICAL EXAMPLE 
Consider the following numerical example to illustrate the proposed approach. 

]FLDM[)xxxz);4x()3x)(2x(z(max
3

2

2

2

11232111

1x



 
]SLDM[)xxxz;xxx(z(max 3212232121

2x


 

]LLDM[)xx3x2z);5x)(1x()7x(z(max
32

2

13231231

3x

  

Subject to 

11321 1)bxxx(Pr  ,
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22321
1)bx3x5x2(Pr  ,

 
33321

1)bx2x4x3(Pr  , 

x1   0, x2   0, x3   0.
 

The means, variances and the confidence levels are given below: 

E(b1) = 3, var(b1) = 2, 1  = 0.03 

E(b2) = 12, var(b2) =8, 2 = 0.01 

E(b3) =10, var(b3) = 18, 3 = 0.05     

Using (6), (7) the chance constraints involved in the proposed problem have been transformed into equivalent 

deterministic constraints as: 

666.5xxx
321
 , 

576.18x3x5x2
321
 , 

021.3x2x4x3
321
 , 

 

First level MODM problem 

]FLDM[)xxxz);4x()3x)(2x(z(max
3

2

2

2

11232111

1x

  

Subject to  

666.5xxx
321
 , 

576.18x3x5x2
321
 , 

021.3x2x4x3
321
 , 

x1   0, x2   0, x3   0.
 

The individual best solutions (PISs) and the individual worst solutions (NISs) of the objective functions 

considered by the FLDM subject to the constraints have been respectively shown in the Table 1 and Table 2. 

 

Table 1: The individual best solutions of FLDM in Numerical Example 

Maximal value of the objective 

function of FLDM 



11z  


12z  

Sx
Max


z1j (x), (j = 1,2) 32.33 at (3.669, 1.997, 0) 32.103 at (5.666, 0, 0) 

 

Table 2: The individual worst solutions of FLDM in Numerical Example 

Minimal value of the objective 

function of FLDM 



11z  


12z  

Sx
Min


z1j (x), (j = 1,2) 11.51 at (0, 0, 1.51) 0.948 at (0.75, 0, 0.38) 

 

Considering 1α = 2α = 0.5, and q = 2, we have obtained  
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Now,  )x(dPIS(F1)

2
= 

S
Min

x
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2
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d (x) = 0.0205 at (0.459, 

0, 0.822). 

The membership functions of PIS(F1)

2
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2
d (x) can be formulated as follows: 
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Applying the first order Taylor’s series the non-linear membership functions )x(
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2
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transformed into equivalent linear membership functions )x(ˆ
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



















 
= )x(ˆ

PIS(F1)
2

d


 
= 1 + 3.895149( (x1 – 5.34)0.06814+ (x2 – 0.33)0.0682 + (x3 – 0)0.01255) 

)x(
NIS(F1)
2

d


~


NIS(F1)
2

d
 (5.666, 0, 0) + (x1 – 5.666)

)0,0,666.5(xat
1

NIS(F1)
2

d

x

)x(




















+ (x2 – 0) 

)0,0,666.5(xat
2

NIS(F1)
2

d

x

)x(




















+(x3 – 

0) 

)0,0,666.5(xat
3

NIS(F1)
2

d

x

)x(




















 

= )x(ˆ
NIS(F1)
2

d
  

= 1 + 3.3128((x1 – 5.666)  0.4696 + (x2 – 0)  0.2734+ (x3 – 0)0.0677), 

Normalizing )x(ˆ
PIS(F1)
2

d
 and )x(ˆ

NIS(F1)
2

d
 , we have obtained the following, 

)x(
PIS(F1)
2

d
 =

PIS(F1)PIS(F1)

PIS(F1)

PIS(F1)
2

d

ab

a)x(ˆ





, where 
PIS(F1)b =

S
Max

x
)x(ˆ

PIS(F1)
2

d
 = 0.999 and 

PIS(F1)a =
S

Min
x

)x(ˆ
PIS(F1)
2

d
 = -0.431; 

)x(
NIS(F1)
2

d
 =

NIS(F1)NIS(F1)

NIS(F1)

NIS(F1)
2

d

ab

a)x(ˆ





, where
NIS(F1)b =

S
Max

x
)x(ˆ

NIS(F1)
2

d
 = 1 and

NIS(F1)a =
S

Min
x

)x(ˆ
NIS(F1)
2

d
 = -7.476. 

Solve the model (16) in order to get the satisfactory solution of FLDM: 

,1d)x(

Min

)1F(PIS)1F(PIS
qd

1







 



  
[Pramanik et al., 3(6): June, 2016]                                                                             ISSN 2349-4506 
  Impact Factor: 545 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [30] 

,1d)x( )1F(NIS)1F(NIS
qd

   

,1d0

,1d0

,.d

,d

)1F(NIS

)1F(PIS

)1F(NIS1

)1F(PIS1

















 

666.5xxx
321
 , 

576.18x3x5x2
321
 , 

021.3x2x4x3
321
 ,

 
x1   0, x2   0, x3   0.           

The satisfactory solution of FLDM has been provided in the Table 3. 

 

Table 3: The satisfactory solution of FLDM 
*F1

1
x  

*F1

2
x  

*F1

3
x  

5.664737 0.001263 0 

 

Suppose that the FLDM decides 
*F1

1
x = 5.66 with upper tolerance R(F1)

1
t = 0.34 and lower tolerance L(F1)

1
t = 3.66 such 

that 5.66 – 3.66   x1  5.66 + 0.34.  

8.2 Second level MODM problem 

]SLDM[)xxxz;xxx(z(max
3212232121

2x


 

Subject to  

666.5xxx
321
 , 

576.18x3x5x2
321
 , 

021.3x2x4x3
321
 , 

x1   0, x2   0, x3   0.
 

,he individual best solutions (PISs) and the individual worst solutions (NISs) of the objective functions considered 

by the SLDM subject to the constraints have been respectively shown in the Table 4 and Table 5. 

 

Table 4: The individual best solutions of SLDM in Numerical Example 

Maximal value of the objective 

function of SLDM 



21
z  

22
z  

Sx
Max


z2j (x), (j = 1,2) 5.941871 at (0.26, 1.43, 3.98) 7.326 at (3.67, 1.997, 0) 

 

Table 5: The individual worst solutions of SLDM in Numerical Example 

Minimal value of the objective 

function of SLDM 



21
z  

22
z  

Sx
Min


z2j (x), (j = 1,2) 0 at (0, 0, 1.51) 0 at (1.007, 0, 0) 

 

Considering 1α = 2α = 0.5, and q = 2, we have obtained  

)x(d PIS(F2)

2 = ,
0326.7

)xxx(326.7
)5.0(

0942.5

)xxx(942.5
)5.0(

2
1

2

3212

2

3212






































 

)x(d NIS(F2)

2 =

2
1

2

3212

2

3212

0326.7

0)xxx(
)5.0(

0942.5

0xxx
)5.0(






































. 
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Now,  )x(dPIS(F2)

2
= 

S
Min

x

PIS(F2)

2
d (x) = 0.129 at (2.59, 1.817, 1.259);  )x(dPIS(F2)

2
= 

S
Max

x

PIS(F2)

2
d (x) = 0.6499 at 

(1.007,0, 0);  )x(dNIS(F2)

2
= 

S
Max

x

NIS(F2)

2
d (x) = 0.5877 at (3.669, 1.997, 0);  )x(dNIS(F2)

2
= 

S
Min

x

NIS(F2)

2
d (x) = 0.065 

at (0.6, 0, 0.609). 

The membership functions of PIS(F2)

2
d (x) and NIS(F2)

2
d (x) can be formulated as follows: 

,

129.0 )x(dif 1,

6499.0 )x(d129.0if,
129.06499.0

)x(d6499.0

 )x(d0.6499if0,

)x(

PIS(F2)

2

PIS(F2)

2

PIS(F2)

2

PIS(F2)

2

PIS(F2)
2

d






















  

)x(
NIS(F2)
2

d
 =

 




















5877.0 )x(dif 1,

5877.0 )x(d065.0if,
065.05877.0

065.0-)x(d

065.0)x(dif0,

NIS(F2)

2

NIS(F2)

2

NIS(F2)

2

NIS(F2)

2

 

Applying the first order Taylor’s series the non-linear membership functions )x(
PIS(F2)
2

d
 and )x(

NIS(F2)
2

d
 can be 

transformed into equivalent linear membership functions )x(ˆ
PIS(F2)
2

d
 and )x(ˆ

NIS(F2)
2

d
 respectively as follows: 

)x(
PIS(F2)
2

d


~

 )x(ˆ
PIS(F2)
2

d


 
= 1 + (x1 – 2.59)0.2835+ (x2 – 1.817)0.3854 + (x3 – 1.259)0.2980 

)x(
NIS(F2)
2

d


~

 )x(ˆ
NIS(F2)
2

d
  

= 1 + (x1 – 0.6) (-0.1245) + (x2 – 0) (-0.1257) + (x3 – 0.609)(-0.083), 

Normalizing )x(ˆ
PIS(F2)
2

d
 and )x(ˆ

NIS(F2)
2

d
 , we have obtained  

)x(
PIS(F2)
2

d
 =

PIS(F2)PIS(F2)

PIS(F2)

PIS(F2)
2

d

ab

a)x(ˆ





, where 
PIS(F2)b =

S
Max

x
)x(ˆ

PIS(F2)
2

d
 = 0.999 and 

PIS(F2)a =
S

Min
x

)x(ˆ
PIS(F2)
2

d
 = -0.5243; 

)x(
NIS(F2)
2

d
 =

NIS(F2)NIS(F2)

NIS(F2)

NIS(F2)
2

d

ab

a)x(ˆ





, where
NIS(F2)b =

S
Max

x
)x(ˆ

NIS(F2)
2

d
 = 1 and

NIS(F2)a =
S

Min
x

)x(ˆ
NIS(F2)
2

d
 = 0.4176. 

Solve the model (24) in order to get the satisfactory solution of SLDM: 

,1d)x(

Min

)2F(PIS)2F(PIS
qd

2







 

,1d)x( )2F(NIS)2F(NIS
qd

       

 )2F(PIS2 d , 

 )2F(NIS2 d , 

1d0 )2F(PIS  
, 

1d0 )2F(NIS  
, 

666.5xxx
321
 , 

576.18x3x5x2
321
 , 

021.3x2x4x3
321
 , 

x1   0, x2   0, x3   0. 

The satisfactory solution of SLDM has been provided in the Table 6. 



  
[Pramanik et al., 3(6): June, 2016]                                                                             ISSN 2349-4506 
  Impact Factor: 545 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [32] 

Table 6: The satisfactory solution of SLDM 
*F2

1
x  

*F2

2
x  

*F2

3
x  

3.669308 1.996692 0 

 

Assume that the SLDM decides 
*F2

2
x = 1.997 with upper tolerance R(F2)

2
t = 0.003 and lower tolerance L(F2)

2
t =1.997 

such that 1.997 – 1.997   x2  1.997 + 0.003. 

 

Last level MODM problem 

]LLDM[)xx3x2z);5x)(1x()7x(z(max
32

2

13231231

3x


 

Subject to  

666.5xxx
321
 , 

576.18x3x5x2
321
 , 

021.3x2x4x3
321
 , 

              x1   0, x2   0, x3   0. 

             The individual best solutions (PISs) and the individual worst solutions (NISs) of the objective functions of the 

LLDM subject to the constraints have been respectively shown in the Table 7 and Table 8. 

 

Table 7: The individual best solutions of LLDM in Numerical Example 

Maximal value of the objective 

function of LLDM 
 

31
z   

32
z  

Sx
Max


z3j (x), (j = 1,2) 41.024 at (4.833, 0, 0.833) 64.21 at (5.666, 0, 0) 

 

Table 8: The individual worst solutions of LLDM in Numerical Example 

Minimal value of the objective 

function of LLDM 



31
z  

32
z  

Sx
Min


z3j (x), (j = 1,2) 13.51 at (0, 0, 1.51) 0 at (0, 0, 2.546) 

 

Let us assume that 1α = 2α = 0.5, and q = 2. 

)x(d PIS(F3)

2 = ,
021.64

)xx3x2(21.64
)5.0(

51.13024.41

))5x)(1x(7x(024.41
)5.0(

2
1

2

32

2

12

2

3122






































 

)x(d NIS(F3)

2 =

2
1

2

32

2

12

2

3122

021.64

0)xx3x2(
)5.0(

51.13024.41

51.13))5x)(1x(7x(
)5.0(






































. 

Now,  )x(dPIS(F3)

2
= 

S
Min

x

PIS(F3)

2
d (x) = 0.012 at (5.65, 0, 0.011);  )x(dPIS(F3)

2
= 

S
Max

x

PIS(F3)

2
d (x) = 0.707 at (0, 0, 

1.51);  )x(dNIS(F3)

2
= 

S
Max

x

NIS(F3)

2
d (x) = 0.698 at (5.67, 0, 0);  )x(dNIS(F3)

2
= 

S
Min

x

NIS(F3)

2
d (x) = 0 at (0, 0, 1.51). 

The membership functions of PIS(F3)

2
d (x) and NIS(F3)

2
d (x) can be formulated as follows: 

,

01.0 )x(dif 1,

71.0 )x(d01.0if,
01.071.0

)x(d71.0

 )x(d710.if0,

)x(

PIS(3)

2

PIS(F3)

2

PIS(F3)

2

PIS(F3)

2

PIS(F3)
2

d






















  
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)x(
NIS(F3)
2

d
 =




















698.0 )x(dif 1,

698.0 )x(d0if,
0698.0

0-)x(d

0)x(dif0,

NIS(F3)

2

NIS(F3)

2

NIS(F3)

2

NIS(F3)

2

 

Applying the first order Taylor’s series the non-linear membership functions )x(
PIS(F3)
2

d
 and )x(

NIS(F3)
2

d
 can be 

transformed into equivalent linear membership functions )x(ˆ
PIS(F3)
2

d
 and )x(ˆ

NIS(F3)
2

d
 respectively as follows: 

)x(
PIS(F3)
2

d


~

 )x(ˆ
PIS(F3)
2

d


  
= 1 +0.0093((x1 – 5.65)0.00333+ (x2 – 0)*0.00309 + (x3 – 0.01)0.00047) 

)x(
NIS(F3)
2

d


~

 )x(ˆ
NIS(F3)
2

d
  

= 1 + 1.02474((x1 – 5.67) 0.72871 + (x2 – 0) 0.18832+ (x3 – 0)0.48636), 

Now, Normalize )x(ˆ
PIS(F3)
2

d
 and )x(ˆ

NIS(F3)
2

d
 we get the following, 

)x(
PIS(F3)
2

d
 =

PIS(F3)PIS(F3)

PIS(F3)

PIS(F3)
2

d

ab

a)x(ˆ





, where 
PIS(F3)b =

S
Max

x
)x(ˆ

PIS(F3)
2

d
 = 1 and 

PIS(F3)a =
S

Min
x

)x(ˆ
PIS(F3)
2

d
 = 0.9998; 

)x(
NIS(F3)
2

d
 =

NIS(F3)NIS(F3)

NIS(F3)

NIS(F3)
2

d

ab

a)x(ˆ





, where
NIS(F3)b =

S
Max

x
)x(ˆ

NIS(F3)
2

d
 = 0.99701 and

NIS(F3)a =
S

Min
x

)x(ˆ
NIS(F3)
2

d
 = -

2.48204. 

Solve the model (32) in order to get the satisfactory solution of LLDM. 

3Min 
 

,1d)x( )3F(PIS)3F(PIS
qd

 
 

,1d)x( )3F(NIS)3F(NIS
qd

   

,1d0

,1d0

,d

,d

)3F(NIS

)3F(PIS

)3F(NIS3

)3F(PIS3

















 

666.5xxx
321
 , 

576.18x3x5x2
321
 , 

021.3x2x4x3
321
 , 

x1   0, x2   0, x3   0.          

The satisfactory solution of LLDM has been provided in the Table 9. 

 

Table 9: The satisfactory solution of FLDM 
*F3

1
x  

*F3

2
x  

*F3

3
x  

5.666 0 0 

Assume that the LLDM decides 
*F3

3
x = 0 with upper tolerance R(F3)

3
t = 1 and lower tolerance L(F3)

3
t =0 such that 0-0 

  x3  0 + 1. 

 

Using Model 1(35) and Model 2 (36) for p= 3, obtained solutions have been shown in the Table 10 and Table 11 

respectively. 
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Table 10: The optimal solution of the FGP model 1 

Methods Decision 

variables 

x1, x2, x3 

 

Objective 

values of 

FLDM 

z11, z12 

Objective 

values of 

SLDM 

Z21, z22 

Objective 

values of 

LLDM 

Z31, z32 

Membership values 

11z , 
12z ,

21z , .,
22z ,

31z

32z
  

FGP 

Model 1 

x1 = 2, 

x2 = 1.24 

x3 =1 

 

z11 = 21.979, 

z12 = 6.549. 
 

z21=3.245, 

 z22=3.245. 

Z31 =26.979, 

z22 =11.734. 
11z  = 0.374, 

12z  = 0.427, 

21z  = 0.558,
22z  = 0.548, 

31z
  = 0.326,

32z
  = 0.374, 

 

 

The optimal solution of the FGP Model 2 is shown in the Table 11. 

 

Table 11: The optimal solution of the FGP model 2 

Methods Decision 

variables 

x1, x2, x3 

Objective 

values of 

FLDM 

z11, z12 

Objective 

values of 

SLDM 

Z21, z22 

Objective 

values of 

LLDM 

Z31, z32 

Membership values 

11z , 
12z ,

21z , .,
22z ,

31z

32z
  

FGP 

Model 2 

x1 = 2, 

x2 = 1.24 

x3 =1 

 

z11 = 21.979, 

z12 = 6.549. 
 

z21=3.245, 

 z22=3.245. 

Z31 =26.979, 

z22 =11.734. 
11z  = 0.374, 

12z  = 0.427, 

21z  = 0.558,
22z  = 0.548, 

31z
  = 0.326,

32z
  = 0.374, 

 

Note1. Two tables show the two FGP Models provide the same results 

 

CONCLUSION 
In the paper we have developed TOPSIS approach to solve chance constrained multi-level multi objective 

quadratic programming problem. In the proposed approach two FGP models have been developed and solved. 

Further, the proposed approach can be extended to solve multi-level multi objective quadratic programming 

problem with fuzzy coefficient of objective functions. If the coefficients of constraints are taken as random 

variables, the proposed concept can also be adopted.      
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