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ABSTRACT

This paper presents TOPSIS approach to solve chance constrained multi — objective multi — level quadratic
programming problem. The proposed approach actually combines TOPSIS and fuzzy goal programming. In the
TOPSIS approach, most appropriate alternative is to be finding out among all possible alternatives based on both
the shortest distance from positive ideal solution (P1S) and furthest distance from the negative ideal solution (NIS).
PIS and NIS for all objective functions of each level have been determined in the solution process. Distance
functions which measure distances from PIS and NIS have been formulated for each level. The membership
functions of the distance functions have been constructed and linearized in order to approximate nonlinear
membership functions into equivalent linear membership functions. Stanojevic’s normalization technique for
normalization has been employed in the proposed approach. For avoiding decision deadlock, each level decision
maker provides relaxation on the upper and lower bounds of the decision variables. Two FGP models have been
developed in the proposed approach. Euclidean distance function has been utilized to identify the optimal
compromise solution. An illustrative example has been solved to demonstrate the proposed approach.

INTRODUCTION

Multilevel programming (MLP) is very useful technique to solve hierarchical decision making problem with multiple
decision makers (DMs) in a hierarchical system. In MLP, each level DM independently controls some variables and
tries to optimize his own objectives. For the successful running of a multilevel system, DMs try to find out a
way/solution so that each level DM is satisfied at reasonable level. There are many approaches to solve MLP problem
(MLPP) in the literature. Ananndalingam [1] proposed mathematical programming model of decentralized multi-
level systems in crisp environment.

Lai [2] at first developed an effective fuzzy approach by using the concept of tolerance membership functions of
fuzzy set theory [3] for solving MLPPs in 1996. Shih et al. [4] extended Lai’s concept by employing non-
compensatory max-min aggregation operator for solving MLPPs. Shih and Lee [5] further extended Lai’s concept
by introducing the compensatory fuzzy operator for obtaining satisfactory solution for MLPP. Sakawa et al. [6]
developed interactive fuzzy programming to solve MLPP. Sinha [7, 8] further established an alternative fuzzy
mathematical programming for MLPP. Pramanik and Roy [9] established fuzzy goal programming (FGP) approach
to solve MLPP and presented sensitive analysis on relaxation provided by the upper level decision maker.. Linear
plus linear fractional multilevel multi objective programming problem had been studied by Pramanik et al [10]. Han
et al. [11] presented a case study on production inventory planning using reference based uncooperative multi
follower tri level decision problem based on K — th best algorithm.

Pramanik [12] developed bilevel programming problem (BLPP) with fuzzy parameters using FGP. Pramanik and
Dey [13] extended Pramanik’s concept [12] to multi objective BLPP with fuzzy parameters. Pramanik et al. [14]
further discussed decentralized multi objective BLPP with fuzzy parameters. In 2015, Pramanik [15] studied MLPP
with fuzzy parameters by extending Pramanik‘s concept [12] and developed three FGP models. Sakawa et al. [16]
established interactive fuzzy programming for MLPP with fuzzy parameters.
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Pramanik and Banerjee [17] developed chance constrained BLPP with quadratic objective functions. In their study
[17] they converted chance constraints into deterministic constraints and solved the problem using FGP models.
Pramanik et al. [18] studied linear plus linear fractional chance constrained BLPP. Pramanik et al. [19] also studied
multilevel linear programming problem with chance constraints based on FGP.

TOPSIS stands for technique for order preference by similarity to ideal solution. In TOPSIS approach, most
appropriate alternative is to be selected among all alternatives based on the shortest distance from positive ideal
solution (PIS) and furthest distance from negative ideal solution (NIS). TOPSIS approach reduces multiple numbers
of conflicting objectives to two objectives; one is the minimum of distance function which measures distance from
PIS and another is the maximum of distance function which measures distance from NIS. Hwang and Yoon [20]
introduced the TOPSIS approach to solve multi — attribute decision making problem. Lai et al. [21] established
TOPSIS method for solving multi — objective decision making (MODM) problem. Chen [22] developed TOPSIS to
solve multi criteria decision making. Jahanshahloo et al. [23] extended TOPSIS for decision making problem with
fuzzy data. They used triangular fuzzy numbers for rating of each alternatives and weight of each criterion using o
- cut method for normalization.

In neutrosophic environment Biswas et al. [24] proposed TOPSIS method for multi attribute decision making. In the
evaluation process, Biswas et al. [24] employed linguistic variables to present the ratings of each alternative with
respect to each attribute characterized by single-valued neutrosophic number. Biswas et al. [24] employed
neutrosophic aggregation operator to aggregate all the opinions of decision makers. Dey et al. [25] studied
generalized neutrosophic soft multi attribute group decision making based on TOPSIS. Pramanik et al. [26]
established TOPSIS for single valued neutrosophic soft expert set based multi-attribute decision making problems.
Dey et al. [27] studied TOPSIS for solving multi-attribute decision making problem under bi-polar neutrosophic
environment.

Wang and Lee [28] developed fuzzy TOPSIS approach based on subjective weights and objective weights.
Subjective weights are normalized into comparable scale. They adopted Shannon’s entropy [29] theory and defined
closeness coefficient. Baky and Abo-Sinna [30] studied non-linear MODM problem using TOPSIS approach. Baky
[31] developed interactive TOPSIS algorithms for solving multi — level non — linear multi — objective decision
making problem. Dey et al. [32] studied TOPSIS approach to linear fractional MODM problem based on FGP. In
their study they compared obtained results with Baky and Abo-Sinna’s [33] method and obtained better satisfactory
results in terms of distance function.

In the present paper, we have presented TOPSIS approach to solve chance constrained multi-level multi objective
quadratic programming problem. In the proposed approach, firstly, we have transformed chance constraints into
equivalent deterministic constraints using known means and variances and confidence levels. PIS and NIS have been
calculated for each objective function of each level. We have employed first order Taylor series for each nonlinear
membership function to convert them into linear membership function. Then we have normalized them using
Stanojevic’s normalization technique [34]. The above process has been done for each level and using FGP model
to find optimal solution for each level separately. Each level DM provides his choice on the upper and lower bounds
of the decision variables under his control. Two FGP models have been developed to get the optimal solution.
Euclidean distance function has been used to find out the most appropriate optimal solution. The proposed TOPSIS
method has been illustrated by solving a CCMLMOQPP.

The rest of the paper is designed as follow: In the section 2, CCMLMOQPP has been formulated. In Section 3 we
have presented the conversion of chance constraints into equivalent deterministic constraints. In the Section 4,
TOPSIS approach with normalization method for all levels have been described. Selection of preference bounds has
been presented in the section 5. Two FGP models have been formulated in the next section. Section 7 presents
Zeleny’s distance function [35] which helps to select optimal compromise solution. A numerical example of
CCMLMOQPP has been presented in the section 8. In Section 9, we have presented conclusion and future scope of
research.
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PROBLEM FORMULATION
Consider the following CCMLMOQPP.

MX?X Z:(X)= MX?X Zy (X, X000 X)) = MX?X (Z11 (X)), Z12 (X), «.ry Z,., (x)) [FLDM] Q)

Max Z;(X) = Max Zz (%, X,....X,) = Max (Za (%), 222 (%), .., Zy,, (X)) [SLDM] @)

Max Zy(X) = Max Zy(x,,X,,....x,) = Max (Zp1 (X), Zp2 (X), ..., mep (X)) [LLDM] 3)
*p *p Xp
Subject to
_ <_ - =
X eS=(X=(X,,X,,...X,) €R": Pr (AX _B)2 | -B andx >0). 4

all a12 a13 a1p

a, a
Where A=| * %
P lsxp
B=(b,,b,,....b,).,

i,B are vectors of ordersx1and 1 is a vector having s numbers of 1, X; = (X;y, X5 Xy, ), [_3: B,.B,.--B.),
i=1,2,..,p;n=m+n+..+n

Z,(%) ='iji+§*‘aﬁi (=120 )= 1,2, ., m) ®)

Where G, is a vector of order 1xn and d, is a vector of order nxn .

CONVERSION OF CHANCE  CONSTRAINTS INTO  EQUIVALENT
DETERMINISTIC CONSTRAINTS

Consider the chance constraints of the form Pr(iaijxj <b,)21-8,, i=12,..,s,
j=1

Using [17], the constraints can be written as follows:

i a X, <E()+¢ B varb) i=12...5, 6)
Now, consider the chance constraints of the form

Pf(gainiji)Zl—Bu i=s+1...5

Using [17], the constraint can be written as follows:

>a,x, >E(b,) -0 (B ] var(b,), i=s,+1..8 )

X >0 ®)
where E(b,) and var(b,) are the expectation and variance of the random variable b, and ¢(.),¢*(.) represent the

distribution and inverse distribution functions of standard normal variable respectively. We denote the equivalent
deterministic system constraints (6), (7) and (8) by S'. Here, S'and S are equivalent set of constraints.
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TOPSIS APPROACH

TOPSIS model for the FLDM

Consider the first level problem as

MX?X Z1(X)= MX?X Zy (X, X000 X)) = MX?X (Z11 (X), Z12 (X), ..., Z,, (X)) [FLDM]

Subjectto xes
Let Max Z,(X) = Z,, and MinZ,(X)=Z; G=1,2, ..., m;y) be the PIS and NIS for the FLDM. The distance
functions measuring the distances from the PIS and NIS can be defined as follows:

PIS(F1) a 11 Zu() h NIS(F1) & a 11(X) ZlJ h
d," (X)) = { (—Z+ = )} andd;~"™ (X) = { (—Z+ > ):l

)

Thus the problem becomes
Min d;"s‘“) X)
MaX dNIS(Fl) (X)
q
Subjectto xes'.

Construction of membership function for d*™ (x),d}"*™ (x)

Let '\len d:IS(Fl) (y) — (dzIS(Fl) (i))+ and Mg?( d:’IS(Fl) ()—() — (dzIS(Fl) ()—())_
The membership function for d*™ (X) can be constructed as follows:
0’ (d:’IS(Fl) (i))_ S dZIS(Fl) (X)

(d PIS(F1) (Y))i _ dPIS(Fl) (Y)
q 9
(dEIS(Fl) (i))_ _ (d:‘IS(Fl) (X))+
1 (dgls(Fl) (Y)y > d:IS(Fl) (X)
Let I\i/lelsn d(l]\lIS(Fl) ()—() — (dg"S(Fl) ()—())7 and hélgx d:IS(Fl) (i) — (d ;\lIS(Fl) (i))+

M s (X) = (A" (x))" <d7™™ (x) < (d;* (%)) (10)

The membership function for d;*™(X) can be constructed as follows:
0 NS (Y) < (d\NIS(Fl) (Y)y
! q - q
d;\lIS(Fl) (i) _ (d;\IIS(Fl) (X))f
(d;\lIS(Fl) (Y))Jr _ (quIS(Fl) (i))f
1 (d(l;lIS(Fl) (i))+ < d(l]\llS(Fl) (i)

s (X) = (d3"7 (x)” <dg™™ (%) < (d" ™ (X)) (11)

Conversion of non — linear membership function into linear membership function
Let ng Mdg's(“) x)= ”dg's(ﬂ) (XHS(FI) Yand X7V = (les(l:l) ,les(m) ,...,X?S(FD )

Applying first order Taylor’s series we have obtained the linear membership function

£ S PIS(F1)” s pIs(F1)” op af1SCY (X) . _
Hdng(Fl) 3= “dEIS(Fl) & )+ EE(X” i Y — X.J ) 2xPIS(FD" - “dgls(m) (X) (12)

) NIS( F)” < NIS(F1, NIS(FD)" , NIS(F1)” NIS(F1)”™
Let Maxu aNIS(FL) (X) U NIS(Fl)( )and ' (X1 () 1 X3 = Xy 0 )

Applying first order Taylor’s series we have obtained the linear membership function
ou aIS(FD (X)

CNIS(FL)™
Xij X=X

p Ny ~ —
NIS(Fi) (X) ~u NIS(Fl) (XNIS(FD )+ ;JE(X“ - XNIS(FD )( = “da\us(m) (X) (13)
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Stanojevic’s normalization technique
Adopting Stanojevic’s normalization technique [34], the linear membership functions can be normalized as

follows:

~ v PIS(F1)
HngS(Fl) (X) —a

— 9\ _ PIS(F) _ N A S\ WPIS(FD) _ A -

MngS(Fl) (X)= EGUPEC) wherea = l\i/lelsn “’dE’IS(Fl) (X) b = l\élgx udEB(m) (X) (14)
A < NIS(F1)

— e “da\us(m) (X) - NIS(F1) PR S\ | NIS(F1) A <

Hda\us(a) (X) = pNS(D _ o NS(FD where a = I\i/lelsn udé\usu:n (X) b = l\élgx Hdgusu:n (X) (15)

FGP model to obtain satisfactory solution for FLDM
Using the FGP model of Pramanik and Banerjee [17] in order to obtain the satisfactory solution for the FLDM,
the FGP model appears as:
Min A,
XeS'

(16)

nngS(Fl) (X)+ d};IS(Fl) =1
ﬁda\us(Fl) (x) + dKjIS(Fl) =1
Ay 2 dpigey

Ay 2 dysey

0<dpisry <1,
0<dysery <L
Subjectto  xes

Solving the above model, the satisfactory solution for the FLDM has been obtained as

*
F1

XT = (XXX

TOPSIS model for the SLDM
Let Max Z,,(X) = Z,, and Misn Z,(X)=2, (=1, 2, ..., mp) be the PIS and NIS for the SLDM. The distance

functions measuring the distances from the PIS and NIS can be defined as

1/q 1/q
ez -7, (%) oz, -2Z,
dPIS(FZ) X) = Zae{ 2j 2j q anddNIS(FZ) X) = aq 2j 2j\q
) {z IS )} 150 () {z IS

2j

a7
Thus the problem becomes

Min df'S"? (x)

Max dg"s(”) (x)

Subjectto xes

Construction of membership function for d;* (X),d " (x)
Let '\;/IEISn d:IS(Fz) ()—() — (d:’IS(FZ) (i))+ and '\élgx quIS(FZ) (X) — (dZ‘IS(Fz) (X))7

The membership function for d}*"(X) can be constructed as follows:
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0, (quIS(FZ) (i))— S d:IS(Fz) (7)

(d PIS(F2) (X)Y _ dPIS(FZ) (Y)

q q

(dZIS(FZ) (X))_ _ (d;’IS(Fz) (X))+
1 (d zIS(FZ) (X))‘F 2 d:’IS(FZ) (i)
Let l\gilsn d;\lIS(Fz) (i) — (d;\lIS(Fz) (i))— and MEaS-X dg"S(FZ) ()—() — (d;\IIS(FZ) ()—())+

M piscen (X) = (A" (x))" <d7*™ (%) < (d7° (X)) (18)

The membership function for d{*"? (X) can be constructed as follows:
0 NS (i) < (d\NIS(FZ) (X)y
! q - q
d;\lIS(FZ) (i) _ (d;\lIS(FZ) (X))f
(d;\lIS(FZ) (Y))Jr _ (d;\lIS(FZ) (Y))f
1 (d;\lIS(FZ) (i))+ < d(l;lIS(FZ) (X)

B s (X) = (d3" (3))” <dg™ ™ (X) < (dg7 (%) (19)

Conversion of non — linear membership function into linear membership function
Let Max Mdm(m) (X) l’ldPIS(FZ) (—PIS (F2)" ) and X SPIS(F2)" _ (XPIS(FZ) XPIS(FZ) ,...,X?S(FZ)*)

Applying first order Taylor’s series we have obtained the linear membership function

i < PIS(F2)" & & PIS(F2)” au p'5(’:2) (X) . 3
HngS(FZ) (X) - HdEIS(FZ) (X )+ E;(Xij % )( Xij ) 2-zPIS(F2)" - “dgls(Fz) (X) (20)

Let MaX},l NIS(FZ) (X) I NIS(FZ) (_NIS (2 )and xR _(XNIS(FZ) XNIS(FZ) .---,XEIS(FZ) )

Applying first order Taylor’s series we have obtained the linear membership function

X S NIS(F2)" L2 NIS(F2)" H’ aIs(F2) (X) R ~
quNIS(FZ) x)= ud‘?IS(FZ) x )t gi:ié(xij X )(T);:;NIS(FZ)* = l'lda"s(”) (X) (21)
ij

Stanojevic normalization technique
Adopting Stanojevic’s normalization technique [34] the linear membership functions have been normalized as

follows:

~ tva PIS(F2)
HngS(FZ) (X) —a

— 7\ _ PIS(F2) _ PIS(F2) _ N -

HdEIS(FZ) (X)= P2 _ o Ps(F) where a Mln H gFIS(F2) (X) b I\ggx Mdglswz) (X) (22)
A < NIS(F2)

— e Hda\us(Fz) (X) - NIS(F2) _ NIS(F2) __

Mda\us(pz) (X)= where a Mln H oIS(F2) (X) ,b Max n aIS(F2) (X) (23)

bNIS(FZ) —a NIS(F2)

FGP model to obtain satisfactory solution for SLDM

Using the model of Pramanik and Banerjee [17] in order to obtain the satisfactory solution for the SLDM, the
FGP model can be written as:

Min ., (24)

xeS'
Hdglswa (X) +dpisrzy =1,
ﬁda\us(Fz) (x) + d;\us(Fz) =1
Ay 2 doigea) s
Ay 2 s s

0<dpger <1,
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0<dygez <1

Subjectto xes'.
Solving the above model, the obtained satisfactory solution for the SLDM has been denoted by

<F2" F2* L F2" F2*
X7 =X X, X))

TOPSIS model for the LLDM
Let Max Z,(X) =2 and Min Z,,(X)=Z, (j =1, 2, ..., mp) be the PIS and NIS for the LLDM. The distance

functions measuring the distances from the PIS and NIS can be defined as follows:

Z,(%) x) -2, }

1/q
PIS(Fp) (o iz VAR NIS(Fp) /— mp Z )
a <P’<x)=[;a?<—“ )q} and ] “”(x){z(x?( X Zuy, @)

2,2, = Z, =2,
Thus the problem becomes
i PSP (¢
Min d, xX)
NIS(Fp) (3¢
Max d, (X)
Subjectto xes

Construction of membership function for d;*™ (x),d;"*™ (X)

Let Min d? (%) = (d7° (%)) and Max d?™ (%) = (d7° (%))
The membership function for d;** (X) can be constructed as follows:
0, (AP (%)) < dP)(R)

(d5°™ (X)) —d ;"™ (x)
(d5° (X)) = (dg* ™ (X))
1 (d:‘IS(Fp) (i))+ > dZIS(Fp) (X)
Let Min d3"™ (%) = (d."*" (X)) and Max d**™ (%) = (d}"™ (%))’

B s (X) = (A" (X)) <d*P (%) < (A7 (X)) (26)

The membership function for d;*™ (X) can be constructed as follows:
0, d:"S(F”) xX)< (d'qN'S(Fp) X))
dy ™ (X) - (d;"" (X))
(d3= (X)) = (dy=™ (%))
1 (d:“s(F") (X)) < d(’:'s(Fp) X)

M gusien (X) = (A3 (%)) <d*P(x) < (A" (%))’ @7)

Conversion of non — linear membership function into linear membership function
Let |\4|as_x udPIS(Fp) (X) = udmsn:p) (XPIS(FP) )and PSR _ (X1PIS(Fp) ’XZIS(Fp) ’.“'XE‘IS(Fp) )
< q q

Applying first order Taylor’s series we have obtained the linear membership function

“’dPIS(Fp) (X)
q

d
— g— * P np * A~ —
K scen (x)= M giscen (X7 ) + E;(xij =X ( = L s (X) (28)

oX.. z_zPIS(Fp)”
ij

) — <7 NIS(Fp)” < NIS(Fp)” NIS(Fp)™ , NIS(Fp)~ NIS(Fp)”
Let '\ggx Md(l:I\IIS(Fp) (X) _uda\us(}:p) (X )and X (Fp) :(x1 (Fp) X, (Fe) ,...,Xp ) )

Applying first order Taylor’s series we have obtained the linear membership function
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a“dNIS(Fp) (i)

oX.. z_xNIS(Fp)”
i

_ _ * p "p * ~ =
M usieny (X) = B s (X NSy ¢ 23, - X )( = Lo (%) (29)

Stanojevic’s normalization technique
Adopting Stanojevic’s normalization technique [34] the linear membership functions can be normalized as

follows:

~ v PIS(Fp)
“d§|s(|=p) (X) —a

— tva PIS(FP) _ N AiA tva PIS(Fp) __ ~ Ve
M pisceo) (x)= b PSR _ qPiS(FD) where a =Min H gpisieo) (x).,b = Max M gprscen) (X) (30)
l’:l (X) _ aNIS(Fp)
NIS(Fp)
— oy 9
Hd(l]\“S(Fp) (X) - bNIS(Fp) _aNIS(Fp)
NIS(FP) _ N Aim tva NIS(Fp) __ ~ Ve
wherea = l\y/lelsn “’dE\HS(Fp) (X) b Y= '\élgx HdglIS(Fp) (X) (31)

FGP model to obtain satisfactory solution for LLDM
Using the model of Pramanik and Banerjee [17] in order to obtain the satisfactory solution for the LLDM, the
FGP model can be written as:
Min2.,
xXeS'

(32)

ﬁds|5(p) (X) + dI;IS(Fp) =1

ﬁdgus@p) (X) + dKlIS(Fp) =1
Ay 2 doigey i Ay 2 diserp) »
0<dpgrp) <LO<d gy <1,
Subjectto xes'.

Solving the above model, the obtained satisfactory solution for the SLDM has been denoted by
rad :(xf”*,xzp*,...,xgp*

SELECTION OF PREFERENCE BOUNDS

In the multi — level decision making problem, the goals of all levels are generally conflicting. To execute the
decision making in the real situation, cooperation between DMs is needed. For the overall satisfaction, each level
DM provides some relaxation on their decision variables. So, the i-th level provides the upper and lower bounds
on the decision variable xi. Let t-™ and t* be the lower and upper bounds on the decision variables (i = 1, 2,

..., p). Then the bounds can be written as follows:

XF ) < x < x4 R (33)
WHhere X, = (X, Xipeee Xy )y XE = (XX XED) T = (0560, E5 L) 170 = (63, (2 5)
FGP MODELS

Using FGP model of Pramanik and Banerjee [17], the two FGP models have been presented as follows:

Model - 1

Min v (34)
Subject to

HngS(Fi) (x) + d;IS(Fi) =1
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P_ldgusm) (X) + dl_\lIS(Fi) =1
v2dpigr,
VZdl_\IIS(Fi)’
0<dpigm) <1,
0<dyse <1,
X tHE < x < xF RO for i=1,2,...p
xeS'.
Model — 2
. p _ _
Min n=§(WiP'Sdp|S(:.> +WiNISdNIS(F|)) (35)
i=
subject to
ungS(Fi) (X) + d;IS(Fi) =1
ﬁdglIS(Fi) (X) + dnlsm) =1,
0<dpigm) <1,
0<d s <L
p
_Zl(WiPIS + WiN|S) :11
i=
X1 < <xF RO for i=1,2,...,p
xeS'.

SELECTION OF OPTIMAL SOLUTION

Zeleny’s distance function [35] can be defined as follows:
K r
L (tK)=[X7 (1-®,) 1" (36)

K
Here, t, means attribute level and X7, =1 r(0 <r <o) denotes the distance parameter and ®, represents the
k=1
degree of closeness between compromise solution and individual best solution of the k — th objective function.
K 2
In this paper, we consider r = 2, then distance function becomes L, (t,K)=[>1:(1-®,) 1" (37)
k=1

For the maximization problem, o, is the ratio of the compromise solution and individual best solution of the k —
th objective function. For the minimization type, the ratio would be reversed. Minimum L, reflects the best
optimal compromise solution.

NUMERICAL EXAMPLE
Consider the following numerical example to illustrate the proposed approach.
max (z,, = (X, +2)(X, +3) + (X, +4);Z,, = X2 + X’ +x,)[FLDM]
max (Z,, = (X; +X,X3;Z,, = XX, + X;) [SLDM]
X2

max (z,, = (X, +7) + (X, +D(X, +5);z,, = 2x% +3x,X,)[LLDM]
x3

Subject to
Pr(x, +x, +X, <b;)>1-p,,
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Pr(-2x, +5x, +3x,<b,)>1-f,,
Pr(3x, —4x, +2x, <b,)>21-,,
X1=> 0,X%X2 > 0,x3> 0.
The means, variances and the confidence levels are given below:
E(b1) = 3, var(by) =2, B, =0.03
E(b2) = 12, var(b2) =8, B, =0.01
E(bs) =10, var(bs) = 18, B,=0.05
Using (6), (7) the chance constraints involved in the proposed problem have been transformed into equivalent
deterministic constraints as:
X, +X, +X, <5.666,
—2X, +5X, +3X, <18.576,
3X, —4X, +2x, <3.021,

First level MODM problem

max (z,, = (X, +2)(X, +3) + (X, +4);z2,, = X2 + X’ + X, ) [FLDM]
Sukl)ject to

X, +X, +X, <5.666,

—2X, +5x, +3x, <18.576,

3X, —4X, +2x, <3.021,

X1= 0,%2 > 0,x3 > 0.
The individual best solutions (PISs) and the individual worst solutions (NISs) of the objective functions
considered by the FLDM subject to the constraints have been respectively shown in the Table 1 and Table 2.

Table 1: The individual best solutions of FLDM in Numerical Example

Maximal value of the objective + +
H le ZlZ
function of FLDM
Max z3j(x), (j = 1,2) 32.33 at (3.669, 1.997, 0) 32.103 at (5.666, 0, 0)
xeS'
Table 2: The individual worst solutions of FLDM in Numerical Example
Minimal value of the objective | - 7°
function of FLDM 1 12
Min z3; (x), (1 =1,2) 11.51 at (0, 0, 1.51) 0.948 at (0.75, 0, 0.38)
xeS'

Considering 0, =0, = 0.5, and g = 2, we have obtained

- %
39328 (X, +2)*(x, +3)+(x, +4) ’ , ’
A (x) =) (0.5)° 2X,—X,+3 +(05)° 32.103- (X2 +x2 +x,)
32.328-11.51 32.103-0.948 ’
[ (X, +2)*(x, +3)+(x,+4
1*2 :+3 2 -11.51 2 2 ’
d;us(m) (X) - (0.5)2 2X, =X, +3 +(0.5)2 (Xl2 +X§ +X,)—0.948
32.328-11.51 32.103-0.948
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Now, (d25%(x)) = Min d°™ (x) = 0.109 at (5.338, 0.328, 0); (d°**(x)) = Max d7™ (x) = 0.7007 at (0, 0,
xeS

xXeS

151); (A (x)) = Max d)'*(x) = 0.599 at (0, 0, 5.666); (d*™(x)) = Min di** (x) = 0.0205 at (0.459,
xeS xeS

0, 0.822).
The membership functions of d?*® (x) and d}"*" (x) can be formulated as follows:
0, if 0.701< d? (x)
0.701—d?(x) .
X) =4 ——2 "7 if 0.109 < d”*"(x) < 0.701,
Mgsen () =170 2010 109 = ()
1, if d75F) (x) < 0.109
0, if ()" (x))< 0.02
42 (x)-0.02
X)=d2——"2 = if 0.02 < d)**(x) < 0.599
Mdlz\lIS(Fl)( ) 0.599_0.02 2 ( )
1, if d"*F (x) > 0.599

Applying the first order Taylor’s series the non-linear membership functions u ., (x) and H s (x) have been
2 2

transformed into equivalent linear membership functions ﬁdp,s(m (x) and ﬁleS(m) (x) respectively as follows:
2 2

= a“dms(n) (X) a“dms(m) (X)
“dgls(Fl) (x) = “d;IS(Fl) (5.34,0.33,0) + (x1 —5.34) T +(x2 - 0.33) T +
at x=(5.34,0.33,0) at x=(5.34,0.33,0)

1 2
( 0 al’ldgls(Fl) (x)
Xa—0)| 2~
’ 0X,
at x=(5.34,0.33,0)

= ﬁdgls(m) (X)
=1+ 3.895149( (x; — 5.34)0.06814+ (x2 — 0.33)0.0682 + (x3 — 0)0.01255)

- 8Fllesm) (X) audmsm) (X)
B ey () = K e (5666, 0, 0) + (x1 — 5.666)| ———— + (- 0) | —2—— +(Xs —
atx=(5.666,0,0) atx=(5.666,0,0)

) OX,
[audNIS(Fl) (X) J
0) | ——0——
OX
3
at x=(5.666,0,0)

= ﬁld;\usm) (X)

=1+ 3.3128((x1 — 5.666) x 0.4696 + (x» — 0) x 0.2734+ (xz — 0)0.0677),

Normalizing ﬁtdp,s(m) (x)and ;ldN,S(H) (x) , we have obtained the following,
2 2

PIS(F1)

l:ldPIS(Fl) (X) —a
2

H oiser) (x)= TLPED LPsED) where b™®=Max tl PIS(F1) (x) =0.999 and a™™=Min t PIS(F1) (x) =-0.431;
2 b —a xeS xeS %

~ NIS(F1)
— “d'z\' ISFD) (X)_a NIS(F1) ~ NIS(F1) oA
HdNIS(Fl) (X) = NIS(F1) NIS(F1) ' where b = Max Hdr\usm) (X) =landa = Mln l"l'dNIS(Fl) (X) =-7.476.
2 b —a xeS 2 xeS 2
Solve the model (16) in order to get the satisfactory solution of FLDM:
Min A,

ﬁdglsua) (X) + d|;|5(|=l) =1,
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ﬁdgusu:l) x) + dﬁs@) =1
i 2 dpigiry

Ay 2 dr_\usu:l) .

0<dpgr) <1,

0<dygr) <L

X, +X, +X, <5.666,

—2X, +5x, +3x, <18.576,
3X, —4X, +2x, <3.021,

X1> 0,%2> 0,x3> 0.
The satisfactory solution of FLDM has been provided in the Table 3.

Table 3: The satisfactory solution of FLDM

1 F1 1
X, X, Xs

5.664737 0.001263 0

Suppose that the FLDM decides xff =5.66 with upper tolerance t7=0.34 and lower tolerance t;®* = 3.66 such
that 5.66 — 3.66 < x1 <5.66 + 0.34-

8.2 Second level MODM problem
max (z,, = (X, + X,X;;Z,, = X,X, + X,)[SLDM]
X2

Subject to
X, +X, +X, <5.666,

—2X, +5X, +3X, <18.576,
3X, —4X, +2x, <3.021,

X1= 0,%X2 > 0,x3 > 0.
,he individual best solutions (PISs) and the individual worst solutions (N1Ss) of the objective functions considered
by the SLDM subject to the constraints have been respectively shown in the Table 4 and Table 5.

31

Table 4: The individual best solutions of SLDM in Numerical Example

Maximal value of the objective z;, z;,

function of SLDM

I\{I%x 25 (%), =1,2) 5.941871 at (0.26, 1.43, 3.98) 7.326 at (3.67, 1.997, 0)
Table 5: The individual worst solutions of SLDM in Numerical Example

Minimal value of the objective z;, z,,

function of SLDM

Mlsn 25 (x), 1=1,2) 0at (0,0, 1.51) 0 at (2.007, 0, 0)

Considering 0,,= 0., = 0.5, and q = 2, we have obtained

d;IS(FZ) (X) - {(05)2|:5942— (X1 + szs)i|2 N (05)2|:7326— (X1X2 " X3)j|2}%’

5.942 -0 7.326-0

%

4 (x) = (0.5)° X, +X,X, =0 2+(0.5)2 (XX, +X,)-0 .
: 5.942 -0 7.326-0
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Now, (d2°(x)) = Min d?*® (x) = 0.129 at (2.59, 1.817, 1.259); (d>*(x)) = Max d?*" (x) = 0.6499 at
xeS

XeS
(1.007,0, 0); (A" (x)) = Max d}*" (x) = 0.5877 at (3.669, 1.997, 0); (d=F2 (x)) = Min d}" (x) = 0.065
at (0.6, 0, 0.609). )
The membership functions of d?*® (x) and d}*® (x) can be formulated as follows:
0, if 0.6499 < d"™*™ (x)

0.6499 —d"° (x)
0.6499-0.129
1, if d°°) (x) < 0.129

0, if (2" (x)) < 0.065
d)') (x)- 0.065

0.5877 —0.065
1, if d°F (x) > 0.5877

Jif 0.129 < d7°F (x) < 0.6499,

l”thIS(FZ) (X) =
2

M e (X) = Jif 0.065 < V'S (x) < 0.5877
2

Applying the first order Taylor’s series the non-linear membership functions u ., (x) and H s (x) can be
2 2

transformed into equivalent linear membership functions ﬁdp,sm (x) and ﬁleS(FZ) (x) respectively as follows:
2 2

“dglsm) (x) = ﬁd;IS(FZ) (x)

=1+ (X1 —2.59)0.2835+ (x2 — 1.817)0.3854 + (x3 — 1.259)0.2980

H’dZNIS(FZ) (X) = pld;\lIS(FZ) (X)
=1+ (xg—0.6) (-0.1245) + (x2 — 0) (-0.1257) + (x3 — 0.609)(-0.083),
Normalizing ﬁtdp,s(m (x)and ﬁdm(pz) (X) , we have obtained

2 2

~ PIS(F2)

u PIS(F2) (X)_a

— _d PIS(F2) — ~ _ PIS(F2) Fa A — .

H o) (x ‘—f)msmz) e » Where b™=Max R piser (x) =0.999 and a™" = Min B piser (x) =-0.5243;
2 —a xeS 2 xeS 2

~ NIS(F2)
“dNIS(FZ) (X) —a
2

udVZ\IIS(FZ) (X) = bNIS(FZ) _ aNIS(FZ)
Solve the model (24) in order to get the satisfactory solution of SLDM:
Min A,

ﬁdglswa (x) + d;IS(FZ) =1

, where b = hﬁlgx ﬁtdzN,S(Fz) (x) =1anda*™ = Meisn ﬁdg,ls(m (X) =0.4176.

Hda\us(m) (x) + dKlIS(FZ) =1

Ay Zd;,S(FZ) ,

X2 2 d;\lIS(FZ) ’

0<dpgrp <1,

0<dysey <1,

X, +X, +X, <5.666 ,

—2x, +5x, +3x, <18.576,

3X, —4x, +2x, <3.021,

X1= 0,X2 > 0, x3> 0.
The satisfactory solution of SLDM has been provided in the Table 6.
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Table 6: The satisfactory solution of SLDM

2" F2" 2"
X! x; X

3
3.669308 1.996692 0

Assume that the SLDM decides xgz* = 1.997 with upper tolerance t5*”=0.003 and lower tolerance t:*® =1.997
such that 1.997 — 1.997 < x2 <1.997 + 0.003-

Last level MODM problem

max (z,, = (X, +7) + (X, +D(X, +5);z,, = 2x% +3x,X,)[LLDM]
Suks)ject to

X, +X, +X, <5.666,

—2X, +5X, +3X, <18.576,

3X, —4X, +2x, <3.021,
X1> 0,%x2 > 0,%x3> 0.

The individual best solutions (PI1Ss) and the individual worst solutions (NISs) of the objective functions of the
LLDM subject to the constraints have been respectively shown in the Table 7 and Table 8.

Table 7: The individual best solutions of LLDM in Numerical Example

Maximal value of the objective z;, z,,

function of LLDM

Max z3 (x), (j = 1,2) 41.024 at (4.833, 0, 0.833) 64.21 at (5.666, 0, 0)
xeS'

Table 8: The individual worst solutions of LLDM in Numerical Example
Minimal value of the objective | 7 N

31 232
function of LLDM
Misn 235 (x), = 1,2) 13.51 at (0, 0, 1.51) 0 at (0, 0, 2.546)

Let us assume that o, =0, =0.5,and q = 2.

47" ()= {m.sy[“-oz“‘(xz MALURE S +5>>T ; (o.s){ﬁ“-ﬂ— 2x; 3>Hy

41.024-13.51 64.21-0

2 ) 2\ %
4 x) :{(0.5)2[(& F74(x, +D)(x, +5))—13.51} +(O_%_,){(le +3x2x3)—0} } |
41.024-1351 64.21-0

Now, (@F(x)) = Min d?*® (x) = 0.012 at (5.65, 0, 0.011); (d7*"(x)) = Max dZ*® (x) = 0.707 at (0, 0,
xeS xeS

151); (d¥F(x)) = Max d)'*® (x) = 0.698 at (5.67, 0, 0); (A" (x)) = Min d*™ (x) = 0 at (0, 0, 1.51).
xeS xeS

The membership functions of d?*® (x) and d}*® (x) can be formulated as follows:

0, if 0.71< d")(x)
O]l—dmmxx)'
X) =122 if 0.01<d]° (x) <0.74,
Hd;|s(F3)( ) 0.71-0.01 -
1 if d°®(x) <0.01
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0, if 47 (x) <0
- d e (X) -0 . NIS(F3
HdZN'S(W) (X) = m, if 0< d2 ¢ )(X) <0.698
1, if d!"SF (x) > 0.698

Applying the first order Taylor’s series the non-linear membership functions p e (x) and H nise) (x) can be
2 2

transformed into equivalent linear membership functions ﬁtdpls(m (x) and ﬂles(Fs) (x) respectively as follows:
2 2

“’dPIS(F3) (X) = ﬂdPIS(FS) (X)
2 2

= 1 +0.0093((X; — 5.65)0.00333+ (X, — 0)*0.00309 + (x5 — 0.01)0.00047)

Mdlz\lIS(FS) (x) = ﬁdgusm) (x)

=1+ 1.02474((x1—5.67) 0.72871 + (x, — 0) 0.18832+ (x5 — 0)0.48636),
Now, Normalize ﬁdplm) (x)and ﬂ'les(Fs) (x) we get the following,
2 2
_ lld;'s(“) (X)_aP'S(Fg) PISF3) N PIS(F3) A
“dglsma) (X) =— s e » Where b = I\ileaéx “’ngS(FS) (X) =land a = I\){Ielsn “’ngS(FS) (X) =0.9998;

[PISF) _ g PIsE)

~ NIS(F3)
“‘dNIS(FS) (X) —a
2

H NIS(F3 (X =
d) (F3) bNIS(F3)_

. Where "= I\ﬁlasx ﬁdgusm) (x) = 0.99701 anda"“*™= |\<|€isn ﬁdzNIS(F3) (x) = -

aNIS(F3)
2.48204.
Solve the model (32) in order to get the satisfactory solution of LLDM.
Min A,

}_J«dg|S(F3) (X) + d;IS(F3) =1
Hda\us(Fs) (x) + d;\lIS(F3) =1,
Mg 2dpiges),

Ag 2 d sz

0<dpgry <1,

0<dysers <1,

X, +X, +X, <5.666,

—2X, +5x, +3x, <18.576,
3X, —4X, +2x, <3.021,

X1> 0,X2 > 0,%x3> 0.
The satisfactory solution of LLDM has been provided in the Table 9.

Table 9: The satisfactory solution of FLDM
XFS* XFs* XFS*
1 2 3
5.666 0 0
Assume that the LLDM decides xf* = 0 with upper tolerance t:® =1 and lower tolerance t:*® =0 such that 0-0

3
< X3<Q0+1-

Using Model 1(35) and Model 2 (36) for p= 3, obtained solutions have been shown in the Table 10 and Table 11
respectively.
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Table 10: The optimal solution of the FGP model 1

Methods | Decision Objective Obijective Objective Membership values
variables values of values of values of T VIS T TR | N
a1 212 'z 222 731
X1, X2, X3 FLDM SLDM LLDM
211, Z12 Zn, 72 Z31, I Mo
FGP X1 =2, 711 = 21.979, 221=3.245, Z31=26.979, | n, =0.374, u,, =0427,
Model 1 | x, = 1.24 212 = 6.549. 2273245 | 22 =1L734. |\ _gEsg . =0.548,
X3=1 21 22
u,, =0.326,u,, =0.374,

The optimal solution of the FGP Model 2 is shown in the Table 11.

Table 11: The optimal solution of the FGP model 2

Methods | Decision Objective Objective Objective Membership values
variables values of values of values of T T TS T TR
X1, X2, X3 FLDM SLDM LLDM
711, Z12 Zn, Z2 Z3, I3 He
FGP X1 = 2, 711 = 21.979, 221=3.245, Z3=26.979, | u, =0.374, u,, =0427,
Model 2 | x,=1.24 712 = 6.549. 72,=3.245. 75 =11.734. _ _
=1 M, =0.558,u,, =0.548,
W, = 0.326, W, = 0.374,

Notel. Two tables show the two FGP Models provide the same results

CONCLUSION

In the paper we have developed TOPSIS approach to solve chance constrained multi-level multi objective
quadratic programming problem. In the proposed approach two FGP models have been developed and solved.
Further, the proposed approach can be extended to solve multi-level multi objective quadratic programming
problem with fuzzy coefficient of objective functions. If the coefficients of constraints are taken as random
variables, the proposed concept can also be adopted.
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