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Preface to ”New types of Neutrosophic

Set/Logic/Probability, Neutrosophic Over-/Under-/
Off-Set, Neutrosophic Refined Set, and heir
Extension to Plithogenic Set/Logic/Probability,

with Applications”

Department of Mathematics, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA;
smarand@unm.edu

Received: 07 November 2019; Published: 18 November 2019

In this paper we review all thirty seven neutrosophic and plithogenic papers published
by Symmetry journal within the special issue “New types of Neutrosophic Set/Logic/Probability,
Neutrosophic Over /Under /Off Set, Neutrosophic Refined Set, and their Extension to Plithogenic
Set/Logic/Probability, with Applications” (2019).

neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability,
neutrosophic statistics, neutrosophic overset, neutrosophic underset, neutrosophic offset, degree of
dependence and independence between components, refined neutrosophic set, law of included
multiple middle, neutrosophic bipolar and tripolar and multipolar sets, neutrosophic algebraic
structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic
structures, quadruple neutrosophic algebraic structures, plithogeny, plithogenic set, plithogenic
logic

The fields of neutrosophic and plithogenic sets, logic, measure, probability, and statistics have
been developed and explored extensively in the last few years because of their multiple practical
applications.

The neutrosophic components of truth (T), indeterminacy (I), and falsehood (F) are symmetric
in form, since T is symmetric to its opposite F with respect to I, which acts as an axis of symmetry
between T–I–F.

This Special Issue invited state of the art papers on new topics related to neutrosophic theories
and applications, including:
—Studies of corner cases of neutrosophic sets/probabilities/statistics/logics, such as:

neutrosophic intuitionistic sets (which are different from intuitionistic fuzzy sets), neutrosophic
paraconsistent sets, neutrosophic faillibilist sets, neutrosophic paradoxist sets, neutrosophic,
pseudo paradoxist sets, neutrosophic tautological sets, neutrosophic nihilist sets, neutrosophic
dialetheist sets, and neutrosophic trivialist sets;
neutrosophic intuitionistic probability and statistics, neutrosophic paraconsistent probability
and statistics, neutrosophic faillibilist probability and statistics, neutrosophic paradoxist
probability and statistics, neutrosophic pseudo paradoxist probability and statistics,
neutrosophic tautological probability and statistics, neutrosophic nihilist probability and
statistics, neutrosophic dialetheist probability and statistics, and neutrosophic trivialist
probability and statistics;



xii

neutrosophic paradoxist logic (or paradoxism), neutrosophic pseudo paradoxist logic (or
neutrosophic pseudo paradoxism), and neutrosophic tautological logic (or neutrosophic
tautologism) [1];

Refined neutrosophic set components (T, I, and F), which are refined/split into many neutrosophic
subcomponents: (T1, T2, ...; I1, I2, ...; F1, F2, ...) [2];

Degrees of dependence and independence between neutrosophic components: T, I, and F as
independent components, leave room for incomplete information (when their superior sum < 1),
paraconsistent and contradictory information (when the superior sum > 1), or complete
information (sum of components = 1).
For technical and engineering proposals, the classical unit interval [0,1] is used.
For single valued neutrosophic logic, the sum of the components is:
0 t + i + f 3 when all three components are independent;
0 t + i + f 2 when two components are dependent, while the third one is independent from

them;
0 t + i + f 1 when all three components are dependent.
When three or two of the components T, I, and F are independent, one leaves room for

incomplete information (sum < 1), paraconsistent and contradictory information (sum > 1), or
complete information (sum = 1).

If all three components T, I, and F are dependent then, similarly, one leaves room for incomplete
information (sum < 1) or complete information (sum = 1).

In general, the sum of two components x and y that vary in the unitary interval [0,1] is 0 x + y
2 – d°(x, y), in which d°(x, y) is the degree of dependence between x and y [3];

Neutrosophic overset (when some neutrosophic component is > 1) is observed, for example,
when an employee works overtime and deserves a degree of membership > 1, with respect to an
employee that only works regular full time and whose degree of membership = 1.

Neutrosophic underset (when some neutrosophic component is < 0) is observed, for example,
when an employee causes more damage than benefit to his company and deserves a degree of
membership < 0, with respect to an employee that produces benefit to the company and has a degree
of membership > 0.

Neutrosophic offset occurs when some neutrosophic components are off the interval [0,1] (i.e.,
some neutrosophic component > 1 and some neutrosophic component < 0).

—Then, similarly, neutrosophic logic/measure/probability/statistics, and so on, were extended to,
respectively, neutrosophic over /under /off logic, measure, probability, statistics, and so on
[4,5];

Neutrosophic tripolar set and neutrosophic multipolar set and, consequently, the neutrosophic
tripolar graph and neutrosophic multipolar graph [6];

—N norm and N conorm [7];
—Neutrosophic measure and neutrosophic probability (chance that an event occurs, indeterminate

chance of occurrence, chance that the event does not occur) [8];
Law of included multiple middle (as middle part of refined neutrosophy): (<A>; <neutA1>,

<neutA2>, …; <antiA>) [9];
—Neutrosophic statistics (indeterminacy is introduced into classical statistics with respect to the

sample/population characteristics, or with respect to the individuals that only partially belong
to a sample/population, or with respect to the neutrosophic probability distributions) [10];

—Neutrosophic precalculus and neutrosophic calculus [11];
—Refined neutrosophic numbers (a + b1I1 + b2I2 + … + bnIn), in which I1, I2, …, In are sub

indeterminacies of indeterminacy I; (t,i,f) neutrosophic graphs; thesis–antithesis–neutrothesis,
and neutrosynthesis; neutrosophic axiomatic system; neutrosophic dynamic systems; symbolic
neutrosophic logic; (t, i, f) neutrosophic structures; i neutrosophic structures; refined literal
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indeterminacy; quadruple neutrosophic algebraic structures; and multiplication law of sub
indeterminacies [12];

—Theory of neutrosophic evolution: degrees of evolution, indeterminacy or neutrality, and
involution [13];

—Plithogeny as generalization of dialectics and neutrosophy; plithogenic
set/logic/probability/statistics (as generalization of fuzzy, intuitionistic fuzzy, neutrosophic
set/logic/probability/statistics) [14];

—Neutrosophic psychology (neutropsyche; refined neutrosophic memory: conscious, aconscious,
unconscious; neutropsychic personality; Eros/Aoristos/Thanatos; and neutropsychic crisp
personality) [15];

Neutrosophic applications in artificial intelligence, information systems, computer science,
cybernetics, theory methods, mathematical algebraic structures, applied mathematics,
automation, control systems, big data, engineering, electrical, electronic, philosophy, social
science, psychology, biology, engineering, operational research, management science, imaging
science, photographic technology, instruments, instrumentation, physics, optics, economics,
mechanics, neurosciences, radiology nuclear, interdisciplinary applications, multidisciplinary
sciences, and so on [16].

The Special Issue “New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over
/Under /Off Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability,
with Applications” comprises 37 papers focusing on topics such as: neutrosophic set; neutrosophic
rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup;
semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet
semihypergroup (NET semihypergroup); NET hypergroup; neutrosophic offset; uninorm;
neutrosophic offuninorm; neutrosophic offnorm; neutrosophic offconorm; implicator; prospector; n
person cooperative game; ordinary single valued neutrosophic (co)topology; ordinary single valued
neutrosophic subspace; level; ordinary single valued neutrosophic neighborhood system; ordinary
single valued neutrosophic base; ordinary single valued neutrosophic subbase; fuzzy numbers;
neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets;
neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic
numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set;
nondual; two universes; multiattribute group decision making; nonstandard analysis; extended
nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left;
pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology;
nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted
multiple instance learning; neutrosophic triangular norms; residuated lattices; representable
neutrosophic t norms; DeMorgan neutrosophic triples; neutrosophic residual implications; infinitely
distributive; probabilistic neutrosophic hesitant fuzzy set (PNHFS); decision making; Choquet

integral; e marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques;
intuitionistic fuzzy parameters; uncertainty modeling; neutrosophic goal programming approach;
shale gas water management system, and many more.

Molodtsov originated soft set theory that provided a general mathematical framework for
handling uncertainties, in which one meets the data by an affixed parameterized factor during
information analysis as differentiated to fuzzy as well as neutrosophic set theory. The main objective
of the first paper [17] is to lay a foundation for providing a new approach of a single valued
neutrosophic soft tool that considers many problems that contain uncertainties. In the present study,
new aggregation operators of single valued neutrosophic soft numbers have, so far, not yet been
applied for ranking the alternatives in decision making problems. To this proposed work, a single
valued neutrosophic soft weighted arithmetic averaging (SVNSWA) operator and single valued
neutrosophic soft weighted geometric averaging (SVNSWGA) operator have been used to compare
two single valued neutrosophic soft numbers (SVNSNs) for aggregating different single valued
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neutrosophic soft input arguments in neutrosophic soft environments. Then, its related properties
have been investigated. Finally, a practical example for medical diagnosis problems is provided to
test the feasibility and applicability of the proposed work.

The acceptance sampling plan plays an important role in maintaining the high quality of a
product. The variable control chart, using classical statistics, helps in making acceptance or rejection
decisions about the submitted lot of the product. Furthermore, the sampling plan, using classical
statistics, assumes that complete or determinate information are available for a lot of the products.
However, in some situations, data may be ambiguous, vague, imprecise, and incomplete or
indeterminate. In this case, the use of neutrosophic statistics can be applied to guide the
experimenters. In the second paper [18], the authors proposed a new variable sampling plan using
the neutrosophic interval statistical method. The neutrosophic operating characteristic (NOC) is
derived using a neutrosophic normal distribution. An optimization solution is also presented for the
proposed plan under the neutrosophic interval method. The effectiveness of the proposed plan is
compared with the plan under classical statistics. Tables are presented for practical use, and a real
example is given to explain the neutrosophic fuzzy variable sampling plan in the industry.

A neutrosophic set was proposed as an approach to study neutral, uncertain information. It is
characterized through three memberships, T, I and F, such that these independent functions stand
for the truth, indeterminate, and false membership degrees of an object. The neutrosophic set
presents a symmetric form, since truth enrolment T is symmetric to its opposite false enrolment F
with respect to indeterminacy enrollment I that acts as an axis of symmetry. The neutrosophic set
was further extended to a Q neutrosophic soft set, which is a hybrid model that keeps the features of
the neutrosophic soft set in dealing with uncertainty and the features of a Q fuzzy soft set that
handles two dimensional information. In the next paper [19], the authors discuss some operations of
Q neutrosophic soft sets, such as subset, equality, complement, intersection, union, AND operation,
and OR operation. The authors also define the necessity and possibility operations of a Q
neutrosophic soft set. Several properties and illustrative examples are discussed. Then, the authors
define the Q neutrosophic set aggregation operator and use it to develop an algorithm for using a Q
neutrosophic soft set in decision making issues that have indeterminate and uncertain data, followed
by an illustrative real life example.

Neural networks are powerful universal approximation tools. They have been utilized for
functions/data approximation, classification, pattern recognition, as well as their various
applications. Uncertain or interval values result from the incompleteness of measurements, human
observations, and estimations in the real world. Thus, a neutrosophic number (NsN) can represent
both certain and uncertain information in an indeterminate setting and imply a changeable interval
depending on its indeterminate ranges. In NsN settings, however, existing interval neural networks
cannot deal with uncertain problems with NsNs. Therefore, the next study [20] proposes a
neutrosophic compound orthogonal neural network (NCONN) for the first time, containing the NsN
weight values, NsN input and output, and hidden layer neutrosophic neuron functions, to
approximate neutrosophic functions/NsN data. In the proposed NCONN model, single input and
single output neurons are the transmission notes of NsN data, and hidden layer neutrosophic
neurons are constructed by the compound functions of both the Chebyshev neutrosophic orthogonal
polynomial and the neutrosophic sigmoid function. In addition, illustrative and actual examples are
provided to verify the effectiveness and learning performance of the proposed NCONN model for
approximating neutrosophic nonlinear functions and NsN data. The contribution of this study is that
the proposed NCONN can handle the approximation problems of neutrosophic nonlinear functions
andNsN data. However, the main advantage is that the proposedNCONN implies a simple learning
algorithm, higher speed learning convergence, and higher learning accuracy in indeterminate/NsN
environments.

In the following paper [21], a new concept of the triangular neutrosophic cubic fuzzy numbers
(TNCFNs), their scores, and accuracy functions are introduced. Based on TNCFNs, some new
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Einstein aggregation operators, such as triangular neutrosophic cubic fuzzy Einstein weighted
averaging (TNCFEWA), triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging
(TNCFEOWA), and triangular neutrosophic cubic fuzzy Einstein hybrid weighted averaging
(TNCFEHWA) operators are developed. Furthermore, their application tomultiple attribute decision
making with triangular neutrosophic cubic fuzzy (TNCF) information is discussed. Finally, a
practical example is given to verify the developed approach and to demonstrate its practicality and
effectiveness.

The existing sampling plans that use the coefficient of variation (CV) are designed under
classical statistics. These available sampling plans cannot be used for sentencing if the sample or the
population has indeterminate, imprecise, unknown, incomplete, or uncertain data. In the next paper
[22], the authors introduce the neutrosophic coefficient of variation (NCV) first. The authors design
a sampling plan based on the NCV. The neutrosophic operating characteristic (NOC) function is then
given and used to determine the neutrosophic plan parameters under some constraints. The
neutrosophic plan parameters such as neutrosophic sample size and neutrosophic acceptance
number are determined through the neutrosophic optimization solution. The efficiency of the
proposed plan under the neutrosophic statistical interval method with the sampling plan under
classical statistics is compared. A real example, which has indeterminate data, is given to illustrate
the proposed plan.

Neutrosophic cubic sets (NCs) are a more generalized version of neutrosophic sets (Ns) and
interval neutrosophic sets (INs). Neutrosophic cubic sets are better placed to express consistent,
indeterminate, and inconsistent information, which provides a better platform to deal with
incomplete, inconsistent, and vague data. Aggregation operators play a key role in daily life and in
relation to science and engineering problems. In the following paper [23], the authors define the
algebraic and Einstein sum, multiplication and scalar multiplication, and score and accuracy
functions. Using these operations, the authors defined geometric aggregation operators and Einstein
geometric aggregation operators. First, they define the algebraic and Einstein operators of addition,
multiplication, and scalar multiplication, then the score and accuracy function to compare
neutrosophic cubic values, and afterwards the neutrosophic cubic weighted geometric operator
(NCWG), neutrosophic cubic ordered weighted geometric operator (NCOWG), neutrosophic cubic
Einstein weighted geometric operator (NCEWG), and neutrosophic cubic Einstein ordered weighted
geometric operator (NCEOWG) over neutrosophic cubic sets. A multicriteria decision making
method is developed as an application for these operators. This method is then applied to a daily life
problem.

Multiattribute decision making refers to the decision making problem of selecting the optimal
alternative or sorting the scheme when considering multiple attributes, which is widely used in
engineering design, economy, management, military, and so on. But in real applications, the attribute
information of many objects is often inaccurate or uncertain, so it is very important for us to find a
useful and efficient method to solve the problem. A neutrosophic set is proposed from philosophical
point of view to handle inaccurate information efficiently, and a single valued neutrosophic set
(SVNS) is a special case of neutrosophic set, which is widely used in actual field applications. In the
next paper [24], a new method based on aggregating a single valued neutrosophic set is proposed to
solve a multiattribute decision making problem. Firstly, a neutrosophic decision matrix is obtained
by expert assessment, then a score function of single valued neutrosophic sets (SVNSs) is defined to
obtain the positive ideal solution (PIS) and the negative ideal solution (NIS). Then, all alternatives are
aggregated based on the TOPSIS method to make a decision. Finally, numerical examples are given
to verify the feasibility and rationality of the method.

The aim of the next paper [25] is to present a multiple attribute group decision making
(MAGDM) framework based on a new single valued neutrosophic linguistic (SVNL) distance
measure. By unifying the idea of the weighted average and ordered weighted average into a single
valued neutrosophic linguistic distance, the authors first developed a new SVNL weighted distance
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measure, namely a SVNL combined and weighted distance (SVNLCWD) measure. The focal
characteristics of the devised SVNLCWD are its ability to combine both the decision makers’
attitudes toward the importance as well as the weights of the arguments. Various desirable properties
and families of the developed SVNLCWDwere contemplated.Moreover, aMAGDMapproach based
on the SVNLCWD was formulated. Lastly, a real numerical example concerning a low carbon
supplier selection problem was used to describe the superiority and feasibility of the developed
approach.

Neutrosophic cubic sets (NCSs) can express complex multiattribute decision making (MADM)
problems with its interval and single valued neutrosophic numbers simultaneously. The weighted
arithmetic average (WAA) and geometric average (WGA) operators are common aggregation
operators for handling MADM problems. However, the neutrosophic cubic weighted arithmetic
average (NCWAA) and neutrosophic cubic geometric weighted average (NCWGA) operators may
result in some unreasonable aggregated values in some cases. In order to overcome the drawbacks of
the NCWAA and NCWGA, a new neutrosophic cubic hybrid weighted arithmetic and geometric
aggregation (NCHWAGA) operator is developed, and its suitability and effectiveness are
investigated in the next paper [26]. Then, the authors established a MADM method based on the
NCHWAGAoperator. Finally, aMADMproblemwith neutrosophic cubic informationwas provided
to illustrate the application and effectiveness of the proposed method.

An interesting approach is proposed in [27]. Games are considered to be the most attractive and
healthy event between nations and peoples. Soft expert sets are helpful for capturing uncertain and
vague information. By contrast, neutrosophic sets are tri component logic sets; thus, they can deal
with uncertain, indeterminate, and incompatible information where the indeterminacy is quantified
explicitly and truth membership, indeterminacy membership, and falsity membership are
independent of each other. Subsequently, the authors develop a combined approach and extend this
concept further to introduce the notion of neutrosophic cubic soft expert sets (NCSESs) by using the
concept of neutrosophic cubic soft sets, which is a powerful tool for handling uncertain information
in many problems and especially in games. Then, the authors define and analyze the properties of
internal neutrosophic cubic soft expert sets (INCSESs) and external neutrosophic cubic soft expert
sets (ENCSESs), P order, P union, P intersection, P AND, and P OR as well as R order, R union, R

each n ∈ Z+, n 2 , (Zn,⊗)  is a commutative generalized neutrosophic extended triplet group; (4) for  
each n ∈ Z+, n 2 , (Zn,⊗) is a commutative neutrosophic extended triplet group if and only if n =  
p1p2...pm (i.e., n has only single factor).

intersection,  R AND,  and  R OR  of  NCSESs.  The  NCSESs  satisfy  the  laws  of  commutativity,  
associativity,  De  Morgan,  distributivity,  idempotentency,  and  absorption.  Some  conditions  are  
derived for P union and P intersection of two INCSESs to be an INCSES. It is shown that P union  
and  P intersection  of  ENCSESs  need  not  be  an  ENCSES.  The  R union  and  R intersection  of  the  
INCSESs (resp., ENCSESs) need not be an INCSES (resp., ENCSES). Necessary conditions for the P  
union, R union, and R intersection of two ENCSESs to be an ENCSES are obtained. The authors also  
study  the  conditions  for  R intersection  and  P intersection  of  two  NCSESs  to  be  an  INCSES  and  
ENCSES. Finally, for its applications in games, the developed procedure to analyze a cricket series  
between Pakistan and India is used. It is shown that the proposed method is suitable to be used for  
decision making and is as good as, or better than, existing models.

A  neutrosophic  extended  triplet  group  is  a  new  algebra  structure  and  is  different  from  the  
classical group. In the following paper [28], the notion of a generalized neutrosophic extended triplet
group is proposed, and some properties are discussed. In particular, the following conclusions  are  
strictly proved: (1) an algebraic system is a generalized neutrosophic extended triplet group if and only 
if  it  is  a  quasi complete  regular  semigroup;  (2)  an  algebraic  system  is  a  weak  commutative  
generalized neutrosophic extended triplet group if and only if it is a quasi Clifford semigroup; (3) for

The next paper [29] presents an epidemiological study on the dietary fat that causes prostate  
cancer in an uncertain environment. To study this relationship under an indeterminate environment,
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data from 30 countries are selected on the prostate cancer death rate and dietary fat level in food.
Neutrosophic correlation and regression lines are fitted on the data. The authors note from the
neutrosophic analysis that the prostate cancer death rate increases as the dietary fat level in people
increases. The neutrosophic regression coefficient also confirms this claim. From this study, the
authors conclude that neutrosophic regression is a more effective model under uncertainty than the
regression model under classical statistics. They also found a statistical correlation between dietary
fat and prostate cancer risk.

Recently, neutrosophic sets are found to be more general and useful to express incomplete,
indeterminate, and inconsistent information. The purpose of the next paper [30] is to introduce new
aggregation operators based on logarithmic operations and to develop a multicriteria decision
making approach to study the interaction between the input argument under a single valued
neutrosophic (SVN) environment. The main advantage of the proposed operator is that it can deal
with positive interaction situations, negative interactions, or non interaction among the criteria
during the decision making process. In this paper, the authors also defined some logarithmic
operational rules on SVN sets, then proposed the single valued neutrosophic hybrid aggregation
operators as a tool for multicriteria decisionmaking (MCDM) under a neutrosophic environment and
discussed some properties. Finally, detailed decision making steps for single valued neutrosophic
MCDM problems were developed, and a practical case was given to check the created approach and
to illustrate its validity and superiority. Besides this, a systematic comparison with other existent
methods is conducted to reveal the advantages of the proposed method. Results indicate that the
proposed method is suitable and effective for the decision process to evaluate their best alternative.

In the definition of the complex neutrosophic soft expert set (CNSES), the parameters are a
classical set, and the parameters have the same degree of importance, which is considered as 1. This
poses a limitation in modeling some problems. The subsequent paper [31] introduces the concept of
a fuzzy parameterized complex neutrosophic soft expert set (FP CNSES) to handle this issue by
assigning a degree of importance to each of the problem parameters. The authors develop FP CNSES
by establishing the concept of a weighted fuzzy parameterized complex neutrosophic soft expert set
(WFP CNSES) based on the idea that each expert has a relative weight. These new mathematical
frameworks reduce the chance of unfairness in the decision making process. Some essential
operations with their properties and relevant laws related to the notion of FP CNSES are defined and
verified. The notation of mapping on fuzzy parameterized complex neutrosophic soft expert classes
is defined, and some properties of fuzzy parameterized complex neutrosophic soft expert images and
inverse images were investigated. FP CNSES is used to put forth an algorithm on decision making
by converting it from a complex state to a real state, and the detailed decision steps are subsequently
provided. Then, the authors provide comparisons of FP CNSES to the current methods to show the
superiority of the proposed method.

To handle indeterminate and incomplete data, neutrosophic logic/set/probability have been
established. The neutrosophic truth, falsehood, and indeterminacy components exhibit symmetry as
the truth, and the falsehood looks the same and behaves in a symmetrical way with respect to the
indeterminacy component, which serves as a line of symmetry. A soft set is a generic mathematical
tool for dealing with uncertainty. A rough set is a new mathematical tool for dealing with vague,
imprecise, inconsistent, and uncertain knowledge in information systems. The next paper [32]
introduces a new rough set model based on neutrosophic soft sets to exploit, simultaneously, the
advantages of rough sets and neutrosophic soft sets in order to handle all types of uncertainty in data.
The idea of a neutrosophic right neighborhood is utilized to define the concepts of neutrosophic
soft/rough (NSR) lower and upper approximations. Properties of the suggested approximations are
proposed and subsequently proven. Some of the NSR set concepts such as NSR definability, NSR
relations, and NSR membership functions are suggested and illustrated with examples. Further, the
authors demonstrate the feasibility of the new rough set model with decision making problems
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involving neutrosophic soft sets. Finally, a discussion on the features and limitations of the proposed
model is provided.

The following research [33] introduces a neutrosophic forecasting approach based on
neutrosophic time series (NTS). Historical data can be transformed into neutrosophic time series data
to determine their truth, indeterminacy, and falsity functions. The basis for the neutrosophication
process is the score and accuracy functions of historical data. In addition, neutrosophic logical
relationship groups (NLRGs) are determined, and a deneutrosophication method for NTS is
presented. The objective of this research is to suggest an idea of first and high order NTSs. By
comparing this approach with other approaches, the authors conclude that the suggested approach
of forecasting gets better results compared to the other existing approaches of fuzzy, intuitionistic
fuzzy, and neutrosophic time series.

Smart ports represent the current trend of port development. Intelligent operations reduce the
daily production cost of ports, facilitate efficient production, strengthen the risk mitigation ability,
and comply with the requirements for long term development. However, a systematic and scientific
smart port evaluation method is missing to nail down the evaluation indicators of a smart port and
enable accurate evaluation of a port’s degree of intelligence. The next paper [34] analyzes the concept
of the smart port, establishes a set of smart port evaluation indicator systems, and applies a single
valued neutrosophic exponential similarity measure in port evaluation to enable a quantitative
evaluation of port integrity. This evaluation method is capable of making decisions in the event of
incomplete, uncertain, and inconsistent information during general evaluation, opening up a new
method for smart port evaluation and acting as a helpful tool for ports to carry out improvements
during actual application.

The nonstandard analysis is extended in [35], by adding the left monad closed to the right and
right monad closed to the left. Besides the pierced binad (introduced in 1998), Smarandache adds
now the unpierced binad—all these in order to close the newly extended nonstandard space under
nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division,
and nonstandard power operations. Then, the author extends the nonstandard neutrosophic logic,
nonstandard neutrosophic set, and nonstandard probability on this extended nonstandard analysis
space, and proves that it is a nonstandard neutrosophic lattice of the first type (endowed with a
nonstandard neutrosophic partial order) as well as a nonstandard neutrosophic lattice of the second
type (as algebraic structure, endowed with two binary neutrosophic laws: infN and supN). Many
theorems, new terms introduced, better notations for monads and binads, and examples of
nonstandard neutrosophic operations are given.

Shale gas energy is the most prominent and dominating source of power across the globe. The
processes for the extraction of shale gas from shale rocks are very complex. In the next study [36], a
multiobjective optimization framework is presented for an overall water management system that
includes the allocation of freshwater for hydraulic fracturing and optimal management of the
resulting wastewater with different techniques. The generated wastewater from the shale fracking
process contains highly toxic chemicals. The optimal control of a massive amount of contaminated
water is quite a challenging task. Therefore, an on site treatment plant, underground disposal facility,
and treatment plant with expansion capacity were designed to overcome environmental issues. A
multiobjective trade off between socio economic and environmental concerns was established under
a set of conflicting constraints. A solution method—the neutrosophic goal programming approach—
is suggested, inspired by independent, neutral/indeterminacy thoughts of the decision maker(s). A
theoretical computational study is presented to show the validity and applicability of the proposed
multiobjective shale gas water management optimization model and solution procedure. The
obtained results and conclusions, along with significant contributions, are discussed in the context of
shale gas supply chain planning policies over different time horizons.

Many companies have observed the significant benefits they can get via using the Internet. Since
then, large companies have been able to develop business transactions with customers at anytime,



xix

anywhere, and in relation to anything, so that a more comprehensive concept than the Internet is
needed. This concept is the Internet of Things (IoT). IoT will influence decision making styles in
various phases of selling, buying, andmarketing processes. Therefore, every individual and company
should know precisely what IoT is and how and why they should incorporate it in their operations.
In [37], a smart system based on IoT was used to help companies and marketers make a powerful
marketing strategy via utilizing obtained data from IoT devices. Not only this, but the proposed
system can also solve the problems that companies and customers face in online shopping. Since
there are different types of the same product, and also different criteria for purchasing that can be
different between individuals, customers will need a decision support system to recommend them
the best selection. This motivated the authors to propose a neutrosophic technique to deal with
unclear and conflicting information that exists usually in the purchasing process. Therefore, the smart
system and neutrosophic technique are considered as a comprehensive system, which links
customers, companies, and marketers to achieve satisfaction for each of them.

Taking third party logistics providers (3PLs) as an example, according to the characteristics of
correlation between attributes in multiattribute decisionmaking, two Choquet aggregation operators
adopting probabilistic neutrosophic hesitation fuzzy elements (PNHFEs) are proposed to cope with
the situations of correlation among criteria in [38]. This measure not only provides support for the
correlation phenomenon between internal attributes, but it also fully concerns the incidental
uncertainty of the external space. The goal is to make it easier for decision makers to cope with this
uncertainty; thus, the authors establish the notion of a probabilistic neutrosophic hesitant fuzzy
Choquet averaging (geometric) (PNHFCOA, PNHFCOG) operator. Based on this foundation, a
method for aggregating decision makers’ information is proposed, and then the optimal decision
scheme is obtained. Finally, an example of selecting optimal 3PL is given to demonstrate the
objectivity of the above mentioned standpoint.

In the next paper [39], the authors explore the algebra structure based on neutrosophic
quadruple numbers. Moreover, two kinds of degradation algebra systems of neutrosophic quadruple
numbers are introduced. In particular, the following results are strictly proved: (1) the set of
neutrosophic quadruple numbers with a multiplication operation is a neutrosophic extended triplet
group; (2) the neutral element of each neutrosophic quadruple number is unique, and there are only
sixteen different neutral elements in all of the neutrosophic quadruple numbers; (3) the set which has
same neutral element is closed with respect to the multiplication operator; and (4) the union of the
set which has same neutral element is a partition of four dimensional space.

The following study [40] aims to introduce the notion of bipolar neutrosophic Hamacher
aggregation operators and to also provide its application in real life. Then, the neutrosophic set (NS)
can elaborate the incomplete, inconsistent, and indeterminate information, Hamacher aggregation
operators, and extended Einstein aggregation operators to the arithmetic and geometric aggregation
operators. First, the authors give the fundamental definition and operations of the neutrosophic set
and the bipolar neutrosophic set. Themain focus is on theHamacher aggregation operators of bipolar
neutrosophic sets, namely, bipolar neutrosophic Hamacher weighted averaging (BNHWA), bipolar
neutrosophic Hamacher ordered weighted averaging (BNHOWA), and bipolar neutrosophic
Hamacher hybrid averaging (BNHHA) along with their desirable properties. The prime gain of
utilizing the suggested methods is that these operators progressively provide a total perspective on
the issues necessary to the decision makers. These tools provide generalized, increasingly exact, and
precise outcomes when compared to the current methods. Finally, as an application, the authors
propose new methods for the multicriteria group decision making issues by using various kinds of
bipolar neutrosophic operators with a numerical model. This demonstrates the usefulness and
practicality of this proposed approach in real life.

In the next paper [41], the authors introduce nonstandard neutrosophic topology in the extended
nonstandard analysis space, called nonstandard real monad space, which is closed under
neutrosophic nonstandard infimum and supremum conditions. Many classical topological concepts
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are extended to the nonstandard neutrosophic topology, several theorems and properties about them
are proven, and many examples are presented.

Neutrosophic triangular norms (t norms) and their residuated lattices are not only the main
research object of neutrosophic set theory, but they are also the core content of neutrosophic logic.
Neutrosophic implications are important operators of neutrosophic logic. Neutrosophic residual
implications based on neutrosophic t norms can be applied to the fields of neutrosophic inference
and neutrosophic control. In [42], neutrosophic t norms, neutrosophic residual implications, and the
residuated lattices derived from neutrosophic t norms are deeply investigated by Qingqing Hu and
Xiaohong Zhang. First of all, the lattice and its corresponding system are proven to be a complete
lattice and follow De Morgan algebra, respectively. Secondly, the notions of neutrosophic t norms
are introduced on the complete lattice discussed earlier. The basic concepts and typical examples of
representable and nonrepresentable neutrosophic t norms are obtained. Naturally, De Morgan
neutrosophic triples are defined for the duality of neutrosophic t norms and neutrosophic t conorms
with respect to neutrosophic negators. Thirdly, neutrosophic residual implications generated from
neutrosophic t norms and their basic properties are investigated. Furthermore, residual neutrosophic
t norms are proven to be infinitely distributive, and then some important properties possessed by
neutrosophic residual implications are given. Finally, a method for producing neutrosophic t norms
from neutrosophic implications is presented, and the residuated lattices are constructed on the basis
of neutrosophic t norms and neutrosophic residual implications.

An online neutrosophic similarity based object tracking with a weighted multiple instance
learning algorithm (NeutWMIL) is proposed in [43]. Each training sample is extracted surrounding
the object location, and the distribution of these samples is symmetric. To provide a more robust
weight for each sample in the positive bag, the asymmetry of the importance of the samples is
considered. The neutrosophic similarity based object estimation with object properties (super
straddling) is applied. The neutrosophic theory is a new branch of philosophy for dealing with
incomplete, indeterminate, and inconsistent information. By considering the surrounding
information of the object, a single valued neutrosophic set (SVNS) based segmentation parameter
selection method is proposed to produce a well built set of superpixels that can better explain the
object area at each frame. Then, the intersection and shape distance criteria are proposed for
weighting each superpixel in the SVNS domain, mainly via three membership functions, T (truth), I
(indeterminacy), and F (falsity), for each criterion. After filtering out the superpixels with low
responses, the newly defined neutrosophic weights are utilized for weighting each sample.
Furthermore, the objectness estimation information is also applied for estimating and alleviating the
problem of tracking drift. Experimental results on challenging benchmark video sequences reveal the
superior performance of the algorithm when confronting appearance changes and background
clutters.

Supply chain sustainability has become one of the most attractive decision management topics.
There are many articles that have focused on this field, presenting many different points of view. The
following research [44] is centered on the evaluation of supply chain sustainability based on two
critical dimensions. The first is the importance of evaluation metrics based on economic,
environmental, and social aspects, and the second is the degree of difficulty of information gathering.
This paper aims to increase the accuracy of the evaluation. The proposed method is a combination of
quality function deployment (QFD) with plithogenic aggregation operations. The aggregation
operation is applied to aggregate, firstly, the decision maker’s opinions of requirements that are
needed to evaluate the supply chain sustainability; secondly, the evaluation metrics based on the
requirements; and lastly, the evaluation of information gathering difficulty. To validate the proposed
model, this study presented a real world case study of Thailand’s sugar industry. The results showed
the most preferred and the lowest preferred metrics in order to evaluate the sustainability of the
supply chain strategy.
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Multiattribute decision making (MADM) is a part of management decision making and an
important branch of the modern decision theory and method. MADM focuses on the decision
problem of discrete and finite decision schemes. Uncertain MADM is an extension and development
of classical multiattribute decision making theory. When the attribute value of MADM is shown by
neutrosophic numbers, that is, the attribute value is complex data and needs three values to express,
it is called an MADM problem in which the attribute values are neutrosophic numbers. However, in
practical MADM problems, to minimize errors in individual decision making, one needs to consider
the ideas of many people and synthesize their opinions. Therefore, it is of great significance to study
the method of attribute information aggregation. In the subsequent paper [45], the authors propose
a new theory, a nondual multigranulation neutrosophic rough set (MS), to aggregate multiple
attributes and solve a multiattribute group decision making (MGDM) problem where the attribute
values are neutrosophic numbers. First, the authors defined two kinds of nondual MS models,
intersection type MS and union type MS. Additionally, their properties are studied. Then, the
relationships between MS, nondual MS, neutrosophic rough set (NRS) based on a neutrosophic
intersection (union) relationship, and NRS based on a neutrosophic transitive closure relation of
union relationship are outlined, and a figure is given to show them directly. Finally, the definition of
nondual MS on two universes is given and used to solve a MGDM problem with a neutrosophic
number as the attribute value.

The following paper [46] aims to explore the algebraic structure of refined neutrosophic
numbers. Firstly, the algebraic structure of neutrosophic quadruple numbers on a general field is
studied. Secondly, the addition operator ⊕ and multiplication operator � on refined neutrosophic
numbers are proposed, and the algebraic structure is discussed. The authors reveal that the set of
neutrosophic refined numbers with an additive operation is an abelian group, and the set of
neutrosophic refined numbers with a multiplication operation is a neutrosophic extended triplet
group. Moreover, algorithms for solving the neutral element and opposite elements of each refined
neutrosophic number are given.

The next research [47] sets the basis for modeling the performance indicators of financial assets
using triangular neutrosophic fuzzy numbers. This type of number allows for the modeling of
financial asset performance indicators by taking into consideration all possible scenarios of their
achievement. The key performance indicators (KPIs) modeled with the help of triangular fuzzy
neutrosophic numbers are the return on financial assets, the financial assets risk, and the covariance
between financial assets. Thus far, the return on financial assets has been studied using statistical
indicators, like the arithmetic and geometric mean, or using the financial risk indicators with the help
of the squared deviations from themean and covariance. These indicators are well known as the basis
of portfolio theory. This paper opens up the perspective of modeling these three mentioned statistical
indicators using triangular neutrosophic fuzzy numbers because of the major advantages they have.
The first advantage of the neutrosophic approach is that it includes three possible symmetric
scenarios for KPI achievement, namely the scenario of certainty, the scenario of nonrealization, and
the scenario of indecision, in which it cannot be appreciated whether the performance indicators are
or are not achieved. The second big advantage is its data series clustering, representing the financial
performance indicators by which these scenarios can be delimitated by means of neutrosophic fuzzy
numbers in very good, good, or weak performance indicators. This clustering is realized by means of
the linguistic criteria and measuring the belonging degree to a class of indicators using fuzzy
membership functions. The thirdmajor advantage is the selection of riskmitigation analysis scenarios
and the formation of optimal financial asset portfolios.

With the development of the social economy and the enlarged volume of information, the
application of multiple attribute decision making (MADM) has become increasingly complex,
uncertain, and obscure. As a further generalization of the hesitant fuzzy set (HFS), the simplified
neutrosophic hesitant fuzzy set (SNHFS) is an efficient tool to process vague information and
contains the ideas of a single valued neutrosophic hesitant fuzzy set (SVNHFS) and an interval
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neutrosophic hesitant fuzzy set (INHFS). In the following paper [48], the authors propose a decision
making approach based on the maximizing deviation method and TOPSIS (technique for order
preference by similarity to ideal solution) to solve theMADMproblems, in which the attribute weight
information is incomplete, and the decision information is expressed in simplified neutrosophic
hesitant fuzzy elements. Firstly, the authors inaugurate an optimization model on the basis of
maximizing the deviation method, which is useful to determine the attribute weights. Secondly,
using the idea of TOPSIS, the authors determine the relative closeness coefficient of each alternative
and, based on that, they rank the considered alternatives to select the optimal one(s). Finally, the
authors use a numerical example to show the detailed implementation procedure and effectiveness
of the method in solving MADM problems under a simplified neutrosophic hesitant fuzzy
environment.

Recently, various types of single valued neutrosophic (SVN) rough set models have been
presented based on the same inclusion relation. However, there is another SVN inclusion relation in
SVN sets. In the next paper [49], the authors propose a new type of SVN that covers a rough set model
based on the new inclusion relation. Furthermore, graph and matrix representations of the new SVN
covering approximation operators are presented. Firstly, the notion of SVN 2 covering
approximation space is proposed, which is decided by the new inclusion relation. Then, a type of
SVN covering rough set model under the SVN 2 covering approximation space is presented.
Moreover, there is a corresponding SVN relation rough set model based on an SVN relation induced
by the SVN 2 covering space, and two conditions under which the SVN 2 covering space can
induce a symmetric SVN relation are presented. Thirdly, the graph and matrix representations of the
new SVN covering rough set model are investigated. Finally, the authors propose a novel method for
decision making (DM) problems in a paper on defect diagnosis under the new SVN covering rough
set model.

In the subsequent paper [50], the authors define an ordinary single valued neutrosophic
topology and obtain some of its basic properties. In addition, the authors introduce the concept of an
ordinary single valued neutrosophic subspace. Next, they define the ordinary single valued
neutrosophic neighborhood system and show that an ordinary single valued neutrosophic
neighborhood system has the same properties in a classical neighborhood system. Finally, the authors
introduce the concepts of an ordinary single valued neutrosophic base and an ordinary single valued
neutrosophic sub base, and obtain two characterizations of an ordinary single valued neutrosophic
base and one characterization of an ordinary single valued neutrosophic sub base.

Uninorms comprise an important kind of operator in fuzzy theory. They are obtained from the
generalization of the t norm and t conorm axiomatic. Uninorms are theoretically remarkable, and
furthermore, they have a wide range of applications. For that reason, when fuzzy sets have been
generalized to others (e.g., intuitionistic fuzzy sets, interval valued fuzzy sets, interval valued
intuitionistic fuzzy sets, or neutrosophic sets), then uninorm generalizations have emerged in those
novel frameworks. Neutrosophic sets contain the notion of indeterminacy, which is caused by
unknown, contradictory, and paradoxical information; thus, it includes, aside from the membership
and nonmembership functions, an indeterminatemembership function. Also, the relationship among
them does not satisfy any restriction. Along this line of generalizations, the following paper [51] aims
to extend uninorms to the framework of neutrosophic offsets, which are called neutrosophic
offuninorms. Offsets are neutrosophic sets such that their domains exceed the scope of the interval
[0,1]. In the paper, the definition, properties, and application areas of this new concept are provided.
It is necessary to emphasize that the neutrosophic offuninorms are feasible for application in several
fields, as the authors illustrate.

The symmetry of hyperoperation is expressed by hypergroups; more extensive hyperalgebraic
structures than hypergroups are studied in the next paper [52]. The new concepts of neutrosophic
extended triplet semihypergroup (NET semihypergroup) and neutrosophic extended triplet
hypergroup (NET hypergroup) are firstly introduced, some basic properties are obtained, and the
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relationships among NET semihypergroups, regular semihypergroups, NET hypergroups, and
regular hypergroups are systematically are investigated. Moreover, pure NET semihypergroup and
pure NET hypergroup are investigated, and a structure theorem of commutative pure NET
semihypergroup is established. Finally, a new notion of weak commutative NET semihypergroup is
proposed, some important examples are obtained by software MATLAB, and the following
important result is proved: every pure and weak commutative NET semihypergroup is a disjointed
union of some regular hypergroups that are its subhypergroups.

The last paper [53] aims to reveal the structure of idempotents in neutrosophic rings and
neutrosophic quadruple rings. First, all idempotents in neutrosophic rings �R I� are given when R is
C, R, Q, Z, or Zn. Secondly, the neutrosophic quadruple ring �R T I F� is introduced, and all
idempotents in neutrosophic quadruple rings �C T I F�, �R T I F�, �Q T I F�, �Z T I F�, and
�Zn T I F� are also given. Furthermore, the algorithms for solving the idempotents in �Zn I� and
�Zn T I F� for each non negative integer n are provided. Lastly, as a general result, if all
idempotents in any ring R are known, then the structure of idempotents in neutrosophic ring �R I�
and neutrosophic quadruple ring �R T I F� can be determined.
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Abstract: This paper aims to reveal the structure of idempotents in neutrosophic rings and
neutrosophic quadruple rings. First, all idempotents in neutrosophic rings 〈R ∪ I〉 are given when
R is C,R,Q,Z or Zn. Secondly, the neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 is introduced and
all idempotents in neutrosophic quadruple rings 〈C ∪ T ∪ I ∪ F〉, 〈R ∪ T ∪ I ∪ F〉, 〈Q ∪ T ∪ I ∪ F〉,
〈Z ∪ T ∪ I ∪ F〉 and 〈Zn ∪ T ∪ I ∪ F〉 are also given. Furthermore, the algorithms for solving the
idempotents in 〈Zn ∪ I〉 and 〈Zn ∪ T ∪ I ∪ F〉 for each nonnegative integer n are provided. Lastly,
as a general result, if all idempotents in any ring R are known, then the structure of idempotents in
neutrosophic ring 〈R ∪ I〉 and neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 can be determined.

Keywords: neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended
triplet group; neutrosophic set

1. Introduction

The notions of neutrosophic set and neutrosophic logic were proposed by Smarandache [1].
In neutrosophic logic, every proposition is considered by the truth degree T, the indeterminacy
degree I, and the falsity degree F, where T, I and F are subsets of the nonstandard unit interval
]0−, 1+[= 0− ∪ [0, 1] ∪ 1+.

Using the idea of neutrosophic set, some related algebraic structures have been studied in recent
years. Among these algebraic structures, by extending classical groups, the neutrosophic triplet
group (NTG) and the neutrosophic extended triplet group (NETG) have been introduced in refs. [2–4].
As an example, paper [5] shows that (Zp1 p2···pt , ·) is not only a semigroup, but also a NETG, where
· the classical mod multiplication and p1, p2, · · · , pt are distinct primes. After the notions were
put forward, NTG and NETG have been carried out in-depth research. For example, the inclusion
relations of neutrosophic sets [6], neutrosophic triplet coset [7], neutrosophic duplet semi-groups [8],
AG-neutrosophic extended triplet loops [9,10], the neutrosophic set theory to pseudo-BCI algebras [11],
neutrosophic triplet ring and a neutrosophic triplet field [12,13], neutrosophic triplet normed space [14],
neutrosophic soft sets [15], neutrosophic vector spaces [16], and so on.

In contrast to the neutrosophic triplet ring, the neutrosophic ring 〈R∪ I〉, which is a ring generated
by the ring R and the indeterminate element I (I2 = I), was proposed by Vasantha and Smarandache
in [17]. The concept of neutrosophic ring was further developed and studied in [18–20].

As a special kind of element in an algebraic system, the idempotent element plays a major role
in describing the structure and properties of the algebra. For example, Boolean rings refer to rings
in which all elements are idempotent, clean rings [21] refer to rings in which each element is clean
(an element in a ring is clean, if it can be written as the sum of an idempotent element and an invertible
element), and Albel ring is a ring if each element in the ring is central. From these we can see that some
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rings can be characterized by idempotents. Thus, it is also quite meaningful to find all idempotents in
a ring. In this paper, the idempotents in neutrosophic rings and neutrosophic quadruple rings will
be studied in depth, and all idempotents in them can be obtained if the idempotents in R are known.
In addition, the relationship between idempotents and neutral elements will be given. The elements
of each NETG can be partitioned by neutrals [10]. Therefore, as an application, if R = F, where F
is any field, we can divide the elements of 〈R ∪ I〉 (or 〈R ∪ T ∪ I ∪ F〉) by idempotents. As another
application, in paper [22], the authors explore the idempotents and semi-idempotents in neutrosophic
ring 〈Zn ∪ I〉 and some open problems and conjectures are given. In this paper, we will answer partial
open problems and conjectures in paper [22] and some further studies are discussed.

The outline of this paper is organized as follows. Section 2 gives the basic concepts. In Section
3, the idempotents in neutrosophic ring 〈R ∪ I〉 will be explored. For neutrosophic rings 〈Zn ∪ I〉,
〈C∪ I〉, 〈R∪ I〉, 〈Q∪ I〉 and 〈Z∪ I〉, all idempotents will be given. Moreover, the open problem and
conjectures proposed in paper [22] about idempotents in neutrosophic ring 〈Zn ∪ I〉 will be solved.
In Section 4, the neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 is introduced and all idempotents in
neutrosophic quadruple rings 〈C ∪ T ∪ I ∪ F〉, 〈R ∪ T ∪ I ∪ F〉, 〈Q ∪ T ∪ I ∪ F〉, 〈Z ∪ T ∪ I ∪ F〉 and
〈Zn ∪ T ∪ I ∪ F〉 will be given. Finally, the summary and future work is presented in Section 5.

2. Basic Concepts

In this section, the related basic definitions and properties of neutrosophic ring 〈R ∪ I〉 and NETG
are provided, the details can be seen in [3,4,17,18].

Definition 1. ([17,18]) Let (R,+, ·) be any ring. The set

〈R ∪ I〉 = {a + bI : a, b ∈ R}

is called a neutrosophic ring generated by R and I. Let a1 + b1 I, a2 + b2 I ∈ 〈R ∪ I〉, The operators ⊕ and ⊗ on
〈R ∪ I〉 are defined as follows:

(a1 + b1 I)⊕ (a2 + b2 I) = (a1 + a2) + (b1 + b2)I,

(a1 + b1 I)⊗ (a2 + b2 I) = (a1 · a2) + (a1 · b2 + b1 · a2 + b1 · b2)I.

Remark 1. It is easy to verify that (〈R ∪ I〉,⊕,⊗) is a ring, so 〈R ∪ I〉 is named by a neutrosophic ring
is reasonable.

Remark 2. It should be noted that the operators +, · are defined on ring R and⊕,⊗ are defined on neutrosophic
ring 〈R ∪ I〉. For simplicity of notation, we also use +, · to replace ⊕,⊗ on ring 〈R ∪ I〉. That is a + b also
means a⊕ b if a, b ∈ 〈R ∪ I〉. a · b also means a⊗ b if a, b ∈ 〈R ∪ I〉. For short a · b denoted by ab and a · a
denoted by a2.

Example 1. 〈Z∪ I〉, 〈Q∪ I〉, 〈R∪ I〉 and 〈C∪ I〉 are neutrosophic rings of integer, rational, real and complex
numbers, respectively. 〈Zn ∪ I〉 is neutrosophic ring of modulo integers. Of course, Z,Q,R,C and Zn are
neutrosophic rings when b = 0.

Definition 2. ([17,18]) Let 〈R ∪ I〉 be a neutrosophic ring. 〈R ∪ I〉 is said to be commutative if

ab = ba, ∀a, b ∈ 〈R ∪ I〉.

In addition, if there exists 1 ∈ 〈R ∪ I〉 such that 1 · a = a · 1 = a for all a ∈ 〈R ∪ I〉 then we call 〈R ∪ I〉 a
commutative neutrosophic ring with unity.

Definition 3. ([17,18]) An element a in a neutrosophic ring 〈R ∪ I〉 is called an idempotent element if a2 = a.
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Definition 4. ([3,4]) Let N be a non-empty set together with a binary operation ∗. Then, N is called a
neutrosophic extended triplet set if for any a ∈ N, there exists a neutral of “a” (denote by neut(a)), and an
opposite of “a”(denote by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a, a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 5. ([3,4]) Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:
(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

A NETG N is called a commutative NETG if for all a, b ∈ N, a ∗ b = b ∗ a.

Proposition 1. ([4]) (N, ∗) be a NETG. We have:
(1) neut(a) is unique for any a ∈ N.
(2) neut(a) ∗ neut(a) = neut(a) for any a ∈ N.
(3) neut(neut(a)) = neut(a) for any a ∈ N.

Proposition 2. ([10]) Let (N, ∗) is a NETG, denote the set of all different neutral element in N by E(N).
For any e ∈ E(N), denote N(e) = {x|neut(x) = e, x ∈ N}. Then:
(1) N(e) is a classical group, and the unit element is e.
(2) For any e1, e2 ∈ E(N), e1 6= e2 ⇒ N(e1) ∩ N(e2) = ∅.
(3) N =

⋃
e∈E(N) N(e). i.e.,

⋃
e∈E(N) N(e) is a partition of N.

3. The Idempotents in Neutrosophic Rings

In this section, we will explore the idempotents in neutrosophic rings 〈R ∪ I〉. If R is Z,Q,R,C
or Zn, all idempotents in neutrosophic rings 〈Zn ∪ I〉, 〈C∪ I〉, 〈R∪ I〉, 〈Q∪ I〉 or 〈Z∪ I〉 will be given.
Moreover, we can also obtain all idempotents in neutrosophic ring 〈R ∪ I〉 if all idempotents in any
ring R are known. As an application, the open problem and conjectures about the idempotents of
neutrosophic ring 〈Zn ∪ I〉 in paper [22] will be solved. Moreover, an example is given to show how to
use the idempotents to get a partition for a neutrosophic ring. The following proposition reveal the
relation of a neutral element and an idempotent element.

Proposition 3. Let G be a non-empty set, ∗ is a binary operation on G. For each a ∈ G, a is idempotent iff it is
a neutral element.

Proof. Necessity: If a is idempotent, i.e., a ∗ a = a, from Definition 4, which shows that a has neutral
element a and opposite element a, so a is a neutral element.

Sufficiency: If a is a neutral element, from Proposition 1(2), we have a ∗ a = a, thus a
is idempotent.

Theorem 1. The set of all idempotents in neutrosophic ring 〈C ∪ I〉, 〈R ∪ I〉, 〈Q ∪ I〉 or 〈Z ∪ I〉 is
{0, 1, I, 1− I}.

Proof. We just give the proof for 〈R ∪ I〉, and the same result can be obtained for 〈C ∪ I〉, 〈Q ∪ I〉
or 〈Z∪ I〉.

Let a + bI ∈ 〈R∪ I〉. If a + bI is idempotent, so (a + bI)2 = a + bI, which means
{

a2 = a
2ab + b2 = b

(1)

3
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From a2 = a, we can get a = 0 or a = 1. When a = 0, from 2ab + b2 = b, we can get b = 0 or
b = 1. That is 0 and I are idempotents. When a = 1, from 2ab + b2 = b, we can get b = 0 or b = −1.
That is 1 and 1− I are idempotents. Thus, the set of all idempotents of neutrosophic ring 〈R ∪ I〉 is
{0, 1, I, 1− I}.

The above theorem reveals that the set of all idempotents in neutrosophic ring 〈R ∪ I〉 is
{0, 1, I, 1− I} when R is C,R,Q or Z. For any ring R, we have the following results.

Proposition 4. If a is idempotent in any ring R, then aI is also idempotent in neutrosophic ring 〈R ∪ I〉.

Proof. If a ∈ R is idempotent, i.e., a2 = a, so (aI)2 = (0 + aI)(0 + aI) = a2 I = aI, thus, aI is also
idempotent in neutrosophic ring 〈R ∪ I〉.

Proposition 5. In neutrosophic ring 〈R ∪ I〉, then a− aI is idempotent iff a is idempotent.

Proof. Necessity: If a− aI is idempotent, i.e., (a− aI)2 = a− aI, so (a− aI)2 = (a− aI)(a− aI) =
a2 − 2aI + a2 I = a2 + (a2 − 2a)I = a− aI, which means a2 = a and a2 − 2a = −a. Thus, we have
a2 = a, so a is idempotent.

Sufficiency: If a is idempotent, so (a − aI)2 = a2 + (a2 − 2a)I = a − aI, thus a − aI
is idempotent.

Theorem 2. In neutrosophic ring 〈R ∪ I〉, let a + bI ∈ 〈R ∪ I〉, then a + bI is idempotent iff a is idempotent
in R and b = c− a, where c is any idempotent element in R.

Proof. Necessity: If a + bI is idempotent, i.e., (a + bI)2 = a + bI, so (a + bI)2 = a2 + (2ab + b2) =

a + bI, which means a2 = a and 2ab + b2 = b. From a2 = a, we can get a is idempotent. From
2ab + b2 = b and a2 = a, we can get (b + a)2 = b2 + 2ab + a2 = b + a, so b + a is also idempotent in R,
denoted by c, so b = c− a.

Sufficiency: If a and c are any idempotents in R, let b = c− a, so (a + bI)2 = (a + (c− a)I)2 =

a2 + (2a(c− a) + (c− a)2)I = a2 + (2ac− 2a2 + c2 − 2ac + a2) = a + (c− a)I = a + bI, thus a + bI
is idempotent.

Theorem 3. If the number of different idempotents in ring R is t, then the number of different idempotents in
the neutrosophic ring 〈R ∪ I〉 is t2.

Proof. If the number of idempotents in R is t and let a+ bI ∈ 〈R∪ I〉 is idempotent, so from Theorem 2,
we can infer that a is idempotent in R, i.e., a has t different selections. When a is fixed, set b = c− a,
where c is any idempotent in R and c also has t different selections, which means b has t different
selections. Thus, a + bI has t · t = t2 different selections, i.e., the number of all idempotents in 〈R ∪ I〉
is t2.

From the above analysis, for any ring R, all idempotents in 〈R ∪ I〉 can be determined if all
idempotents in R are known. In the following, we will explore all idempotents in neutrosophic ring
〈Zn ∪ I〉, i.e., when R = Zn.

Theorem 4. ([5]) In the algebra system (Zn, ·) (see Appendix A), · is the classical mod multiplication, for each
a ∈ Zn, a has neut(a) and anti(a) iff gcd(gcd(a, n), n/gcd(a, n)) = 1.

Theorem 5. ([5]) For an algebra system (Zn, ·) and n = pk1
1 pk2

2 · · · p
kt
t , where each pi(i = 1, 2, · · · , t) is a

prime, then the number of different neutral elements in Zn is 2t.
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Remark 3. From Proposition 3 and Theorem 5, we can infer that the number of all idempotents in Z
p

k1
1 pk2

2 ···p
kt
t

is also 2t.

Example 2. For (Z36, ·), n = 36 = 2232. From Theorem 5, the number of different neutral elements in Z36 is
22 = 4. They are:

(1) [0] has the neutral element [0].
(2) [1], [5], [7], [11], [13], [17], [19], [23], [25], [29], [31] and [35] have the same neutral element [1].
(3) [9] and [27] have the same neutral element [9] being gcd(9, 36) = gcd(27, 36) = 9.
(4) [4] and [8] have the same neutral element being gcd(4, 36) = gcd(8, 36) = 4. In fact,

[4], [8], [16], [20], [28] and [32] have the same neutral element, which is [28].

From Remark 3, the number of idempotents in Z36 is also 4, which are [0], [1], [9] and [28].

From Theorems 2 and 3 and Remark 3, it follows easily that:

Corollary 1. In neutrosophic ring 〈Zn ∪ I〉, let a + bI ∈ 〈Zn ∪ I〉, then a + bI is idempotent iff a2 = a and
b = c− a, where c is any idempotent element in Zn.

Corollary 2. For an algebra system (Zn, ·) and n = pk1
1 pk2

2 · · · p
kt
t , where each p1, p2, · · · , and pk are distinct

primes. Then the number of different idempotents in 〈Zn ∪ I〉 is 22t.

The solving process for 〈Zn ∪ I〉 is given by Algorithm 1. Just only input n, then we can get all
idempotents in 〈Zn ∪ I〉. The MATLAB code is provided in the Appendix B.

Example 3. Solve all idempotents in 〈Z600 ∪ I〉.
Since n = 600 = 23 · 3 · 52, from Theorem 5, we can get the different neutral elements in Z600 are

neut(1), neut(23), neut(3), neut(52), neut(23 · 3), neut(23 · 52), neut(3 · 52) and neut(0), i.e., the different
idempotents in Z600 are 1, 376, 201, 25, 576, 400, 225, 0. From Corollary 2, the number of different idempotents
in neutrosophic ring 〈Z600 ∪ I〉 is 22·3 = 64.

From Algorithm 1, the set of all 64 idempotents in 〈Z600 ∪ I〉 is: {0, I, 25I, 201I, 225I, 376I, 400I, 576I, 1+
599I, 1, 1 + 24I, 1 + 200I, 1 + 224I, 1 + 375I, 1 + 399I, 1 + 575I, 25 + 575I, 25 + 576I, 25, 25 + 176I, 25 +
200I, 25+ 351I, 25+ 375I, 25+ 551I, 201+ 399I, 201+ 400I, 201+ 424I, 201, 201+ 24I, 201+ 175I, 201+
199I, 201 + 375I, 225 + 375I, 225 + 376I, 225 + 400I, 225 + 576I, 225, 225 + 151I, 225 + 175I, 225 +

351I, 376 + 224I, 376 + 225I, 376 + 249I, 376 + 425I, 376 + 449I, 376, 376 + 24I, 376 + 200I, 400 +

200I, 400 + 201I, 400 + 225I, 400 + 401I, 400 + 425I, 400 + 576I, 400, 400 + 176I, 576 + 24I, 576 +

25I, 576 + 49I, 576 + 225I, 576 + 249I, 576 + 400I, 576 + 424I, 576}.

5
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Algorithm 1: Solving the different idempotents in 〈Zn ∪ I〉
Input: n
1: Factorization of integer n, we can get n = pk1

1 pk2
2 · · · p

kt
t .

2: Computing the neutral element of 1, pk1
1 , pk2

2 , · · · , pkt
t , pk1

1 pk2
2 , · · · pk1

1 pkt
t , · · · , pk2

2 pk3
3 · · · p

kt
t

and pk1
1 pk2

2 · · · p
kt
t . So, we can get all idempotents in Zn , denoted by a1, a2, · · · , a2t .

3: Let ID=[];
4: for i = 1 : 2t

5: a = ai
6: for j = 1 : 2t

7: b = mod(aj − a, n);
8: ID = [ID; [a, b]];
9: end
10: end
Output: ID: all the idempotents in 〈Zn ∪ I〉

In paper [22], the authors studied the idempotents and semi-idempotents in 〈Zn ∪ I〉 and proposed
some open problems and conjectures. We list partial open problems and conjectures about idempotents
in 〈Zn ∪ I〉 as follows and answer them.

Problem 1. ([22]) Let S = 〈Zpq,+, ·〉, where p and q are two distinct primes, be the neutrosophic ring. Can S
have non-trivial idempotents other than the ones mentioned in (b) of the Theorem 6?

Conjecture 1. ([22]) Let S = 〈Zn,+, ·〉 be the neutrosophic ring n = pqr, where p, q and r are three
distinct primes.

1. Zn = Zpqr has only six non-trivial idempotents associated with it.
2. If m1, m2, m3, m4, m5 and m6 are the idempotents, then, associated with each real idempotent mi, we have

seven non-trivial neutrosophic idempotents associated with it, i.e., {mi + nj I, j = 1, 2, · · · , 7}, such that
mi + nj ≡ t, where tj takes the seven distinct values from the set {0, 1, mk, k 6= i; k = 1, 2, 3, · · · , 6}.i =
1, 2, · · · , 6.

Conjecture 2. ([22]) Given 〈Zn ∪ I〉, where n = p1 p2 · pt; t > 2 and pis are all distinct primes, find:

1. the number of idempotents in Zn;
2. the number of idempotents in 〈Zn ∪ I〉\Zn;

Conjecture 3. ([22]) Prove if 〈Zn ∪ I〉 and 〈Zm ∪ I〉 are two neutrosophic rings where n > m and n = ptq
(t > 2, and p and q two distinct primes) and m = p1 p2 · · · ps where pis are distinct primes. 1 ≤ i ≤ s, then

1. prove Zn has a greater number of idempotents than Zm; and
2. prove 〈Zn ∪ I〉 has a greater number of idempotents than 〈Zn ∪ I〉.

Theorem 6. ([22]) Let S = 〈Zpq,+, ·〉 where p and q are two distinct primes:

(a) There are two idempotents in Zpq say r and s.
(b) {r, s, rI, sI, I, r + tI, s + tI|t ∈ {Zpq\0}} such that r + t = s, 1 or 0 and s + t = 0, 1 or r is the partial

collection of idempotents of S.

For Problem 1, from Remark 3, there are four idempotents in Zpq, which are
{1, neut(p), neut(q), neut(pq) = 0}. Let r = neut(p), s = neut(q), so there are two non-trivial
idempotents r, s in Zpq. From Corollary 1 and 2, the number of all idempotents in 〈Zpq ∪ I〉 is
24 = 16, they are {0+ (0− 0)I = 0, 0+ (1− 0)I = I, 0+ (r− 0)I = rI, 0+ (s− 0)I = sI, 1+ (0− 1)I =
1 + (n− 1)I, 1 + (1− 1)I = 1, 1 + (r− 1)I, 1 + (s− 1)I, r + (0− r)I = r + (n− r)I, r + (1− r)I = r +

6
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(n+ 1− r)I, r + (r− r)I = r, r + (s− r)I, s+ (0− s)I = s+ (n− r)s, s+ (1− s)I = s+ (n+ 1− s)I, s+
(r− s)I, s+(s− s)I = s}. So there are 14 non-trivial idempotents in 〈Zpq ∪ I〉, but there are only include
11 non-trivial idempotents in (b) of the Theorem 6, missing {1 + (n− 1)I, 1 + (r− 1)I, 1 + (s− 1)I}.

For Conjecture 1, from Corollary 1 and 2, there are eight idempotents in Zpqr, which are
{1 = m0, neut(p) = m1, neut(q) = m2, neut(r) = m3, neut(pq) = m4, neut(pr) = m5, neut(qr) =

m6, neut(pqr) = 0 = m7}. There are six non-trivial idempotents in Zpqr. In 〈Zn ∪ I〉, all idempotents
are {mi + (mj −mi)I|i, j = 0, 1, 2, · · · , 7}.

For Conjecture 2, from Remark 3, the number of idempotents in Zp1 p2···pt is 2t, and the number of
idempotents in 〈Zp1 p2···pt ∪ I〉\Zp1 p2···pt is 22t − 2t.

For Conjecture 3, from Remark 3, the number of idempotents in Zn is 22, and the number of
idempotents in Zm is 2s, where n = ptq, m = p1 p2 · ps. So, if s > 2, Zm is characterized by a larger
number of idempotents than Zn. In similarly way, the number of idempotents in 〈Zn ∪ I〉 is 24, and the
number of idempotents in 〈Zm ∪ I〉 is 22s. So, if s > 2, we can infer that 〈Zm ∪ I〉 is characterized by a
larger number of idempotents than 〈Zn ∪ I〉.

As another application, we will use the idempotents to divide the elements of the neutrosophic
rings 〈R ∪ I〉 when R = F.

For each NETG (N, ∗), a ∈ N, from Proposition 1, the neutral element of a is uniquely determined.
From Proposition 2,

⋃
e∈E(N) N(e) is a partition of N. Since the idempotents and neutral elements

are same, we can use the idempotents to get a partition of N. Let us illustrate these with the
following example.

Example 4. Let R = Z3, which is a field. Since n = 3, from Theorem 5, we can get the different neutral elements
in Z3 are neut(1) and neut(0), i.e., the different idempotents in Z3 are 1, 0. From Corollary 2, the number of
different idempotents in neutrosophic ring 〈Z3 ∪ I〉 is 22·1 = 4.

From Algorithm 1, the set of all 4 idempotents in 〈Z3 ∪ I〉 is: {0, 1, I, 1 + 2I}. We have
E(0) = {0}, E(1) = {1, 2, 1 + I, 2 + 2I}, E(I) = {I, 2I}, E(1 + 2I) = {1 + 2I, 2 + I}. So 〈Z3 ∪ I〉 =
E(0) ∪ E(1) ∪ E(I) ∪ E(1 + 2I).

4. The Idempotents in Neutrosophic Quadruple Rings

In the above section, we explored the idempotents in 〈R ∪ I〉. In neutrosophic logic,
each proposition is approximated to represent respectively the truth (T), the falsehood (F), and the
indeterminacy (I). In this section, according the idea of neutrosophic ring 〈R ∪ I〉, the neutrosophic
quadruple ring 〈R ∪ T ∪ I ∪ F〉 is proposed and the idempotents are given in this section.

Definition 6. Let (R,+, ·) be any ring. The set

〈R ∪ T ∪ I ∪ F〉 = {a1 + a2T + a3 I + a4F : a1, a2, a3, a4 ∈ R} (2)

is called a neutrosophic quadruple ring generated by R and T, I, F. Consider the order T ≺ I ≺ F. Let a =

a1 + a2T + a3 I + a4F, b = b1 + b2T + b3 I + b4F ∈ 〈R ∪ T ∪ I ∪ F〉, the operators ⊕,⊗ on 〈R ∪ T ∪ I ∪ F〉
are defined as follows:

a⊕ b = (a1 + a2T + a3 I + a4F)⊕ (b1 + b2T + b3 I + b4F)
= a1 + b1 + (a2 + b2)T + (a3 + b3)I + (a4 + b4)F.

(3)

a ∗ b = (a1 + a2T + a3 I + a4F) ∗ (b1, b2T, b3 I, b4F)
= a1b1 + (a1b2 + a2b1 + a2b2)T + (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I
+(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F.

(4)

7
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Remark 4. It is easy to verify that (〈R ∪ T ∪ I ∪ F〉,⊕, ∗) is a ring, moreover, it also has the same algebra
structure with neutrosophic quadruple numbers (see [23–25]), so the we call 〈R ∪ T ∪ I ∪ F〉 is a neutrosophic
quadruple ring is reasonable.

Remark 5. Similarly with Remark 2, for simplicity of notation, we use +, · to replace ⊕, ∗ on neutrosophic
quadruple ring 〈R ∪ T ∪ I ∪ F〉. That is a + b also means a⊕ b if a, b ∈ 〈R ∪ T ∪ I ∪ F〉. and a · b also means
a ∗ b if a, b ∈ 〈R ∪ T ∪ I ∪ F〉. For short a · b denoted by ab and a · a denoted by a2.

Example 5. 〈Z∪T∪ I ∪ F〉, 〈Q∪T∪ I ∪ F〉, 〈R∪T∪ I ∪ F〉 and 〈C∪T∪ I ∪ F〉 are neutrosophic quadruple
rings of integer, rational, real and complex numbers, respectively. 〈Zn ∪ T ∪ I ∪ F〉 is neutrosophic quadruple
ring of modulo integers. Of course, Z,Q,R,C and Zn are neutrosophic quadruple rings when coefficients of T, I
and F equal zero.

Definition 7. Let 〈R ∪ T ∪ I ∪ F〉 be a neutrosophic quadruple ring. 〈R ∪ T ∪ I ∪ F〉 is commutative if

ab = ba, ∀a, b ∈ 〈R ∪ T ∪ I ∪ F〉.

In addition, if there exists 1 ∈ 〈R ∪ T ∪ I ∪ F〉, such that 1 · a = a · 1 = a for all a ∈ 〈R ∪ T ∪ I ∪ F〉, then
〈R ∪ T ∪ I ∪ F〉 is called a commutative neutrosophic quadruple ring with unity.

Definition 8. An element a in a neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 is called an idempotent element
if a2 = a.

Theorem 7. The set of all idempotents of neutrosophic quadruple rings 〈C∪ T ∪ I ∪ F〉, 〈R∪ T ∪ I ∪ F〉, 〈Q∪
T ∪ I ∪ F〉 and 〈Z∪ T ∪ I ∪ F〉 is

{(1, 0, 0, 0), (0, 0, 0, F), (0, 0, I,−F), (0, 0, I, 0), (0, T,−I, 0), (0, T,−I, F), (0, T, 0,−F), (0, T, 0, 0),

(1,−T, 0, 0), (1,−T, 0, F), (1,−T, I,−F), (1,−T, I, 0), (1, 0,−I, 0), (1, 0,−I, F), (1, 0, 0,−F), (1, 0, 0, 0)}.

Proof. We only give the proof for 〈R ∪ T ∪ I ∪ F〉, and the same result can be obtained for
〈C∪ T ∪ I ∪ F〉, 〈Q∪ T ∪ I ∪ F〉 or 〈Z∪ T ∪ I ∪ F〉.

Let a = a1 + a2T + a3 I + a4F, if a is idempotent in 〈R ∪ T ∪ I ∪ F〉, so a2 = a, i.e., (a1 + a2T +

a3 I + a4F)2 = (a1 + a2T + a3 I + a4F), which means




a2
1 = a1,

2a1a2 + a2
2 = a2,

2(a1 + a2)a3 + a2
3 = a3,

2(a1 + a2 + a3)a4 + a2
4 = a4.

Since a1 ∈ R, so from a2
1 = a1, we can get a1 = 0 or a1 = 1.

Case A: if a1 = 0, then from 2a1a2 + a2
2 = a2, we can infer a2

2 = a2, so a2 = 0 or a2 = 1.
Case A1: if a1 = 0 and a2 = 0, so from 2(a1 + a2)a3 + a2

3 = a3, we can infer a2
3 = a3, so a3 = 0 or

a3 = 1.
Case A11: if a1 = 0, a2 = 0 and a3 = 0, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer a2
4 = a4,

so a4 = 0 or a4 = 1.
Case A111: if a1 = a2 = a3 = a4 = 0, i.e., (0, 0, 0, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A112: if a1 = a2 = a3 = 0 and a4 = 1, i.e., (0, 0, 0, F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A12: if a1 = a2 = 0 and a3 = 1, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer
2a4 + a2

4 = a4, so a4 = 0 or a4 = −1.
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Case A121: if a1 = a2 = 0, a3 = 1 and a4 = 0, i.e., (0, 0, I, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A122: if a1 = a2 = 0, a3 = 1 and a4 = −1, i.e., (0, 0, I,−F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A2: if a1 = 0 and a2 = 1, so from 2(a1 + a2)a3 + a2

3 = a3, we can infer 2a3 + a2
3 = a3, so

a3 = 0 or a3 = −1.
Case A21: if a1 = 0, a2 = 1, and a3 = 0, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer
2a4 + a2

4 = a4, so a4 = 0 or a4 = −1.
Case A121: if a1 = 0, a2 = 1, a3 = 0 and a4 = 0, i.e., (0, T, 0, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A112: if a1 = 0, a2 = 1, a3 = 0 and a4 = −1, i.e., (0, T, 0,−F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A22: if a1 = 0, a2 = 1 and a3 = −1, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer a2
4 = a4,

so a4 = 0 or a4 = 1.
Case A121: if a1 = 0, a2 = 1, a3 = −1 and a4 = 0, i.e., (0, T,−I, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A112: if a1 = 0, a2 = 1, a3 = −1 and a4 = 1, i.e., (0, T,−I, F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B: if a1 = 1, then from 2a1a2 + a2

2 = a2, we can infer 2a2 + a2
2 = a2, so a2 = 0 or a2 = −1.

Case B1: if a1 = 1 and a2 = 0, so from 2(a1 + a2)a3 + a2
3 = a3, we can infer 2a3 + a2

3 = a3, so
a3 = 0 or a3 = −1.

Case B11: if a1 = 1, a2 = 0 and a3 = 0, so from 2(a1 + a2 + a3)a4 + a2
4 = a4, we can infer

2a4 + a2
4 = a4, so a4 = 0 or a4 = −1.

Case B111: if a1 = 1, a2 = 0, a3 = 0 and a4 = 0, i.e., (1, 0, 0, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B112: if a1 = 1, a2 = 0, a3 = 0 and a4 = −1, i.e., (1, 0, 0,−F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B12: if a1 = 1, a2 = 0 and a3 = −1, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer a2
4 = a4,

so a4 = 0 or a4 = 1.
Case B121: if a1 = 1, a2 = 0, a3 = −1 and a4 = 0, i.e., (1, 0,−I, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B122: if a1 = 1, a2 = 0, a3 = −1 and a4 = 1, i.e., (1, 0,−I, F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B2: if a1 = 1 and a2 = −1, so from 2(a1 + a2)a3 + a2

3 = a3, we can infer a2
3 = a3, so a3 = 0 or

a3 = 1.
Case B21: if a1 = 1, a2 = −1, and a3 = 0, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer a2
4 = a4,

so a4 = 0 or a4 = 1.
Case B121: if a1 = 1, a2 = −1, a3 = 0 and a4 = 0, i.e., (1,−T, 0, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B112: if a1 = 1, a2 = −1, a3 = 0 and a4 = 1, i.e., (1,−T, 0, F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B22: if a1 = 1, a2 = −1 and a3 = 1, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer
2a4 + a2

4 = a4, so a4 = 0 or a4 = −1.
Case B121: if a1 = 1, a2 = −1, a3 = 1 and a4 = 0, i.e., (1,−T, I, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B112: if a1 = 1, a2 = −1, a3 = 1 and a4 = −1, i.e., (1,−T, I,−F) is idempotent in

〈R∪ T ∪ I ∪ F〉.
From the above analysis, we can get the set of all idempotents in neutrosophic quadruple ring

〈R∪ T ∪ I ∪ F〉 are {(1, 0, 0, 0), (0, 0, 0, F), (0, 0, I,−F), (0, 0, I, 0), (0, T,−I, 0), (0, T,−I, F), (0, T, 0,−F),
(0, T, 0, 0), (1,−T, 0, 0), (1,−T, 0, F), (1,−T, I,−F), (1,−T, I, 0), (1, 0,−I, 0), (1, 0,−I, F), (1, 0, 0,−F),
(1, 0, 0, 0)}.

The above theorem reveals that the idempotents in neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉
is fixed when R is C,R,Q or Z. For any ring R, we have the following results.

Theorem 8. For neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉, a = a1 + a2T + a3 I + a4F is idempotent in
neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 iff a1 is idempotent in R, a2 = c− a1, a3 = d− (a1 + a2) and
a4 = e− (a1 + a2 + a3), where c, d and e are any idempotents in R.

Proof. Necessity: If a = a1 + a2T + a3 I + a4F is idempotent, i.e., (a1 + a2T + a3 I + a4F)2 = a1 + a2T +

a3 I + a4F, which means

9
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



a2
1 = a1,

2a1a2 + a2
2 = a2,

2(a1 + a2)a3 + a2
3 = a3,

2(a1 + a2 + a3)a4 + a2
4 = a4.

Since a1 ∈ R, from a2
1 = a1, we can get a1 is idempotent in R.

From 2a1a2 + a2
2 = a2 and a2

1 = a1, we can get (a1 + a2)
2 = a2

1 + 2a1a2 + a2
2 = a1 + a2, so a1 + a2

is also idempotent in R, denoted by c, so a2 = c− a1.
From 2(a1 + a2)a3 + a2

3 = a3, and (a1 + a2)
2 = a1 + a2, we can get (a1 + a2 + a3)

2 = (a1 +

a2)
2 + 2(a1 + a2)a3 + a2

3 = a1 + a2 + a3, so a1 + a2 + a3 is also idempotent in R, denoted by d, so
a3 = d− a1 − a2.

From 2(a1 + a2 + a3)a4 + a2
4 = a4, and (a1 + a2 + a3)

2 = a1 + a2 + a3, we can get (a1 + a2 +

a3 + a4)
2 = (a1 + a2 + a3)

2 + 2(a1 + a2 + a3)a3 + a2
4 = a1 + a2 + a3 + a4, so a1 + a2 + a3 + a4 is also

idempotent in R, denoted by e, so a4 = e− a1 − a2 − a3.
Sufficiency: If a1, c, d and e are arbitrary idempotents in R, let a2 = c− a1, a3 = d− (a1 + a2)

and a4 = e − (a1 + a2 + a3). so (a1 + a2T + a3 I + a4F)2 = (a1 + (c − a1)T + (d − a1 − a2)I + (e −
a1 − a2 − a3)F)2 = a2

1 + (2(c − a1)a1 + (c − a1)
2)T + (2c(d − a1 − a2) + (d − a1 − a2)

2)I + (2d(e −
a1 − a2 − a3) + (e− a1 − a2 − a3)

2)F = a1 + (c− a1)T + (d− a1 − a2)I + (e− a1 − a2 − a3)F. Thus,
a = a1 + a2T + a3 I + a4F is idempotent.

Theorem 9. If the number of different idempotents in R is t, then the number of different idempotents in
neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 is t4.

Proof. If the number of different idempotents in R is t, let a1 + a2T + a3 I + a4F ∈ 〈Zn ∪ T ∪ I ∪ F〉 is
idempotent, so a1 is idempotent in R, i.e., a1 has t different selections. When a1 is selected, a2 = c− a1,
where c is idempotent, which also has t different selections. When a1, a2 are selected, a3 = d− a1 − a2,
where d is idempotent, which also has t different selections. When a1, a2, a3 is selected, a4 = e− a1 −
a2 − a3, where e is idempotent, which also has t different selections. Thus, the number of all selections
is t · t · t · t = t4, i.e., the number of different idempotents in 〈R ∪ T ∪ I ∪ F〉 is t4.

From Theorems 8 and 9 and Remark 3, it follows easily that:

Corollary 3. In neutrosophic quadruple ring 〈Zn ∪ T ∪ I ∪ F〉, a = a1 + a2T + a3 I + a4F is idempotent in
neutrosophic quadruple ring 〈Zn ∪ T ∪ I ∪ F〉 iff a1 is idempotent in Zn, a2 = c− a1, a3 = d− (a1 + a2) and
a4 = e− (a1 + a2 + a3), where c, d and e are any idempotents in Zn.

Corollary 4. The number of different idempotents in neutrosophic quadruple ring 〈Zn ∪ T ∪ I ∪ F〉 is 24t.

The solving process for neutrosophic quadruple ring 〈Zn ∪ T ∪ I ∪ F〉 is given by Algorithm 2.
Just only input n, we can get all idempotents in 〈Zn ∪ T ∪ I ∪ F〉. The MATLAB code is provided in
the Appendix C.

10
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Algorithm 2: Solving the different idempotents in 〈Zn ∪ T ∪ I ∪ F〉
Input: n
1: Factorization of integer n, we can get n = pk1

1 pk2
2 · · · p

kt
t .

2: Computing the neutral element of 1, pk1
1 , pk2

2 , · · · , pkt
t , pk1

1 pk2
2 , · · · pk1

1 pkt
t , · · · , pk2

2 pk3
3 · · · p

kt
t

and pk1
1 pk2

2 · · · p
kt
t . So, we can get all idempotents in Zn , denoted by c1, c2, · · · , c2t .

3: Let ID=[];
4: for i = 1 : 2t

5: a1 = ci
6: for j = 1 : 2t

7: a2 = mod(cj − a1, n);
8: for m = 1 : 2t

9: a3 = mod(cm − a1 − a2, n);
10: for q = 1 : 2t

11: a4 = mod(cq − a1 − a2 − a3, n);
12: ID = [ID; [a1, a2, a3, a4]];
13: end
14: end
15: end
16: end
Output: ID: all the idempotents in 〈Zn ∪ T ∪ I ∪ F〉

Example 6. Solve all idempotents in 〈Z12 ∪ T ∪ I ∪ F〉.
Since n = 12 = 22 · 3, from Theorems 4 and 5, we can get the different neutral elements in Z12 are

neut(1), neut(22), neut(3), neut(23 · 3) and neut(0), i.e., the different idempotents in Z12 are 1, 4, 9, 0. From
Corollary 4, the number of different idempotents in neutrosophic quadruple ring 〈Z12 ∪ T ∪ I ∪ F〉 is 24·2 = 256.

From Algorithm 2, the set of all 256 idempotents in 〈Z12 ∪ T ∪ I ∪ F〉 is: {0, 1F, 4F, 9F, I + 11F, I, I +
3F, I + 8F, 4I + 8F, 4I + 9F, 4I, 4I + 5F, 9I + 3F, 9I + 4F, 9I + 7F, 9I, T + 11I, T + 11I + F, T + 11I +
4F, T + 11I + 9F, T + 11F, T, T + 3F, T + 8F, T + 3I + 8F, T + 3I + 9F, T + 3I, T + 3I + 5F, T + 8I +
3F, T + 8I + 4F, T + 8I + 7F, T + 8, 4T + 8I, 4T + 8I + F, 4T + 8I + 4F, 4T + 8I + 9F, 4T + 9I + 11F, 4T +

9I, 4T + 9I + 3F, 4T + 9I + 8F, 4T + 8F, 4T + 9F, 4T, 4T + 5F, 4T + 5I + 3F, 4T + 5I + 4F, 4T + 5I +
7F, 4T + 5I, 9T + 3I, 9T + 3I + F, 9T + 3I + 4F, 9T + 3I + 9F, 9T + 4I + 11F, 9T + 4I, 9T + 4I + 3F, 9T +

4I + 8F, 9T + 7I + 8F, 9T + 7I + 9F, 9T + 7I, 9T + 7I + 5F, 9T + 3F, 9T + 4F, 9T + 7F, 9T, 1 + 11T, 1 +
11T + F, 1 + 11T + 4F, 1 + 11T + 9F, 1 + 11T + I + 11F, 1 + 11T + I, 1 + 11T + I + 3F, 1 + 11T + I +
8F, 1 + 11T + 4I + 8F, 1 + 11T + 4I + 9F, 1 + 11T + 4I, 1 + 11T + 4I + 5F, 1 + 11T + 9I + 3F, 1 + 11T +

9I + 4F, 1 + 11T + 9I + 7F, 1 + 11T + 9I, 1 + 11I, 1 + 11I + F, 1 + 11I + 4F, 1 + 11I + 9F, 1 + 11F, 1, 1 +
3F, 1 + 8F, 1 + 3I + 8F, 1 + 3I + 9F, 1 + 3I, 1 + 3I + 5F, 1 + 8I + 3F, 1 + 8I + 4F, 1 + 8I + 7F, 1 + 8I, 1 +
3T + 8I, 1 + 3T + 8I + F, 1 + 3T + 8I + 4F, 1 + 3T + 8I + 9F, 1 + 3T + 9I + 11F, 1 + 3T + 9I, 1 + 3T +

9I + 3F, 1+ 3T + 9I + 8F, 1+ 3T + 8F, 1+ 3T + 9F, 1+ 3T, 1+ 3T + 5F, 1+ 3T + 5I + 3F, 1+ 3T + 5I +
4F, 1 + 3T + 5I + 7F, 1 + 3T + 5I, 1 + 8T + 3I, 1 + 8T + 3I + F, 1 + 8T + 3I + 4F, 1 + 8T + 3I + 9F, 1 +
8T + 4I + 11F, 1 + 8T + 4I, 1 + 8T + 4I + 3F, 1 + 8T + 4I + 8F, 1 + 8T + 7I + 8F, 1 + 8T + 7I + 9F, 1 +
8T + 7I, 1 + 8T + 7I + 5F, 1 + 8T + 3F, 1 + 8T + 4F, 1 + 8T + 7F, 1 + 8T, 4 + 8T, 4 + 8T + F, 4 + 8T +

4F, 4+ 8T + 9F, 4+ 8T + I + 11F, 4+ 8T + I, 4+ 8T + I + 3F, 4+ 8T + I + 8F, 4+ 8T + 4I + 8F, 4+ 8T +

4I + 9F, 4 + 8T + 4I, 4 + 8T + 4I + 5F, 4 + 8T + 9I + 3F, 4 + 8T + 9I + 4F, 4 + 8T + 9I + 7F, 4 + 8T +

9I, 4 + 9T + 11I, 4 + 9T + 11I + F, 4 + 9T + 11I + 4F, 4 + 9T + 11I + 9F, 4 + 9T + 11F, 4 + 9T, 4 + 9T +

3F, 4+ 9T + 8F, 4+ 9T + 3I + 8F, 4+ 9T + 3I + 9F, 4+ 9T + 3I, 4+ 9T + 3I + 5F, 4+ 9T + 8I + 3F, 4+
9T + 8I + 4F, 4+ 9T + 8I + 7F, 4+ 9T + 8I, 4+ 8I, 4+ 8I + F, 4+ 8I + 4F, 4+ 8I + 9F, 4+ 9I + 11F, 4+
9I, 4+ 9I + 3F, 4+ 9I + 8F, 4+ 8F, 4+ 9F, 4, 4+ 5F, 4+ 5I + 3F, 4+ 5I + 4F, 4+ 5I + 7F, 4+ 5I, 4+ 5T +

3I, 4 + 5T + 3I + F, 4 + 5T + 3I + 4F, 4 + 5T + 3I + 9F, 4 + 5T + 4I + 11F, 4 + 5T + 4I, 4 + 5T + 4I +
3F, 4+ 5T + 4I + 8F, 4+ 5T + 7I + 8F, 4+ 5T + 7I + 9F, 4+ 5T + 7I, 4+ 5T + 7I + 5F, 4+ 5T + 3F, 4+
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5T + 4F, 4 + 5T + 7F, 4 + 5T, 9 + 3T, 9 + 3T + F, 9 + 3T + 4F, 9 + 3T + 9F, 9 + 3T + I + 11F, 9 + 3T +

I, 9+ 3T + I + 3F, 9+ 3T + I + 8F, 9+ 3T + 4I + 8F, 9+ 3T + 4I + 9F, 9+ 3T + 4I, 9+ 3T + 4I + 5F, 9+
3T + 9I + 3F, 9 + 3T + 9I + 4F, 9 + 3T + 9I + 7F, 9 + 3T + 9I, 9 + 4T + 11I, 9 + 4T + 11I + F, 9 + 4T +

11I + 4F, 9 + 4T + 11I + 9F, 9 + 4T + 11F, 9 + 4T, 9 + 4T + 3F, 9 + 4T + 8F, 9 + 4T + 3I + 8F, 9 + 4T +

3I + 9F, 9 + 4T + 3I, 9 + 4T + 3I + 5F, 9 + 4T + 8I + 3F, 9 + 4T + 8I + 4F, 9 + 4T + 8I + 7F, 9 + 4T +

8I, 9 + 7T + 8I, 9 + 7T + 8I + F, 9 + 7T + 8I + 4F, 9 + 7T + 8I + 9F, 9 + 7T + 9I + 11F, 9 + 7T + 9I, 9 +
7T + 9I + 3F, 9 + 7T + 9I + 8F, 9 + 7T + 8F, 9 + 7T + 9F, 9 + 7T, 9 + 7T + 5F, 9 + 7T + 5I + 3F, 9 +

7T + 5I + 4F, 9+ 7T + 5I + 7F, 9+ 7T + 5I, 9+ 3I, 9+ 3I + F, 9+ 3I + 4F, 9+ 3I + 9F, 9+ 4I + 11F, 9+
4I, 9 + 4I + 3F, 9 + 4I + 8F, 9 + 7I + 8F, 9 + 7I + 9F, 9 + 7I, 9 + 7I + 5F, 9 + 3F, 9 + 4F, 9 + 7F, 9.}

Similarly, we will use the idempotents to divide the elements of the neutrosophic rings 〈R ∪ T ∪
I ∪ F〉 when R = F. Let us illustrate these with the following example.

Example 7. Let R = Z3, which is a field. From Example 4, the different idempotents in Z3 are 1, 0. From
Corollary 4, the number of different idempotents in neutrosophic quadruple ring 〈Z3 ∪ T ∪ I ∪ F〉 is 24· = 16.

From Algorithm 2, the set of all 16 idempotents in 〈Z3 ∪ I〉 is: E = {0, F, I + 2F, I, T + 2I, T + 2I +
F, T + 2F, T, 1 + 2T, 1 + 2T + F, 1 + 2T + I + 2F, 1 + 2T + I, 1 + 2I, 1 + 2I + F, 1 + 2F, 1}. We have
E(0) = {0}, E(F) = {F, 2F}, E(I + 2F) = {I + 2F, 2I + F}, E(I) = {I, I + F, 2I, 2I + 2F}, E(T + 2I) =
{T + 2I, 2T + I}, E(T + 2I + F) = {T + 2I + F, T + 2I + 2F, 2T + I + F, 2T + I + 2F}, E(T + 2F) =

{T + 2F, T + I + F, 2T + F, 2T + 2I + 2F}, E(T) = {T + F, T, T + I, T + I + 2F, 2T, 2T + 2F, 2T +

2I, 2T + 2I + F}, E(1 + 2T) = {1 + 2T, 2 + T}, E(1 + 2T + F) = {1 + 2T + F, 1 + 2T + 2F, 2 + T +

F, 2+ T + 2F}, E(1+ 2T + I + 2F) = {1+ 2T + I + 2F, 1+ 2T + 2I + F, 2+ T + I + 2F, 2+ T + 2I + F},
E(1+ 2T + I) = {1+ 2T + I, 1+ 2T + I + F, 1+ 2T + 2I, 1+ 2T + 2I + 2F, 2+ T + I, 2+ T + I + F, 2+
T + 2I, 2+ T + 2I + 2F}, E(1+ 2I) = {1+ 2I, 1+ T + I, 2+ I, 2+ 2T + 2I}, E(1+ 2I + F) = {1+ 2I +
F, 1 + 2I + 2F, 1 + T + I + F, 1 + T + I + 2F, 2 + I + F, 2 + I + 2F, 2 + 2T + 2I + F, 2 + 2T + 2I + 2F},
E(1 + 2F) = {1 + 2F, 1 + I + F, 1 + T + F, 1 + T + 2I + 2F, 2 + F, 2 + 2I + 2F, 2 + 2T + 2F, 2 + 2T +

I + F}, E(1) = {1, 1 + F, 1 + I, 1 + I + 2F, 1 + T, 1 + T + 2F, 1 + T + 2I, 1 + T + 2I + F, 2, 2 + 2F, 2 +

2I, 2 + 2I + F, 2 + 2T, 2 + 2T + F, 2 + 2T + I, 2 + 2T + I + 2F}. So 〈Z3 ∪ T ∪ I ∪ F〉 = ⋃
e∈E E(e).

5. Conclusions

In this paper, we study the idempotents in neutrosophic ring 〈R ∪ I〉 and neutrosophic quadruple
ring 〈R ∪ T ∪ I ∪ F〉. We not only solve the open problem and conjectures in paper [22] about
idempotents in neutrosophic ring 〈Zn ∪ I〉, but also give algorithms to obtain all idempotents in 〈Zn ∪ I〉
and 〈Zn ∪ T ∪ I ∪ F〉 for each n. Furthermore, if R = F, then the neutrosophic rings (neutrosophic
quadruple rings) can be viewed as a partition divided by the idempotents. As a general result, if all
idempotents in ring R are known, then all idempotents in 〈R ∪ I〉 and 〈R ∪ T ∪ I ∪ F〉 can be obtained
too. Moreover, if the number of all idempotents in ring R is t, then the numbers of all idempotents in
〈R∪ I〉 and 〈R∪ T ∪ I ∪ F〉 are t2 and t4 respectively. In the following, on the one hand, we will explore
semi-idempotents in neutrosophic rings, on the other hand, we will study the algebra properties of
neutrosophic rings and neutrosophic quadruple rings.
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Appendix A. The MATLAB code for solving the idempotents in (Zn, ·)

function neut = solve_neut ( n )

% n : n o n n e g a t i v e i n t e g e r
% neut : a l l i d e m p o t e n t s in Z_n

B = [ ] ;
d i g i t s ( 3 2 ) ;
for i =1 :n

for j =1 :n
A1( i , j )=mod( ( i −1)*( j −1) ,n ) ;

end
end
a1= f a c t o r ( n ) ;
a2=unique ( a1 ) ;
for i =1 : length ( a2 )

b=length ( find ( a1==a2 ( i ) ) ) ;
B ( i )= a2 ( i )^b ;

end
D= [ 1 ] ;
for i =1 : length ( a2 )

C=combnk ( B , i ) ;
A=prod (C , 2 ) ;
D=[D;A] ;

end
D=mod(D, n ) ;
for i =1 : length (D)

i f D( i )==1
neut ( i ) = 1 ;

e l s e i f D( i )==0
neut ( i ) = 0 ;

e lse
for j =1 :n

i f mod(D( i ) * j , n)==D( i )
for k =1:n

i f mod(D( i ) * k , n)== j
neut ( i )= j ;
break

end
end

end
end

end
end
neut= s o r t ( neut ) ;

Appendix B. The MATLAB code for solving the idempotents in 〈Zn ∪ I〉

function ID = Idempotents_ZR ( n )
% n : n o n n e g a t i v e i n t e g e r

13
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% ID : a l l i d e m p o t e n t s in in n e u t r o s o p h i c r i n g <Z_n \cup I >

neut = solve_neut ( n ) ;

n e u t a l l = [ ] ;
for i =1 : length ( neut )

for j =1 : length ( neut )
c1=mod( neut ( j )−neut ( i ) , n ) ;
n e u t a l l =[ n e u t a l l ; [ neut ( i ) , c1 ] ] ;

end
end

ID=sortrows ( n eu ta l l ’ , 1 ) ’ ;

Appendix C. The MATLAB code for solving the idempotents in 〈Zn ∪ T ∪ I ∪ F〉

function ID = Idempotents_ZRTIF ( n )
% n : n o n n e g a t i v e i n t e g e r
% ID : a l l i d e m p o t e n t s in in n e u t r o s o p h i c q u a d r u p l e r i n g <Z_n\cup T\cup I \cup F>

neut = solve_neut ( n ) ;
n e u t a l l = [ ] ;
for i =1 : length ( neut )

a1=neut ( i ) ;
for j =1 : length ( neut )

a2=mod( neut ( j )−a1 , n ) ;
for m=1: length ( neut )

a3=mod( neut (m)−a1−a2 , n ) ;
for q =1: length ( neut )

a4=mod( neut ( q)−a1−a2−a3 , n ) ;
n e u t a l l =[ n e u t a l l ; [ a1 a2 a3 a4 ] ] ;

end
end

end
end

ID=sortrows ( n eu ta l l ’ , 1 ) ’ ;
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Abstract: The symmetry of hyperoperation is expressed by hypergroup, more extensive hyperalgebraic
structures than hypergroups are studied in this paper. The new concepts of neutrosophic extended
triplet semihypergroup (NET- semihypergroup) and neutrosophic extended triplet hypergroup
(NET-hypergroup) are firstly introduced, some basic properties are obtained, and the relationships
among NET- semihypergroups, regular semihypergroups, NET-hypergroups and regular hypergroups
are systematically are investigated. Moreover, pure NET-semihypergroup and pure NET-hypergroup
are investigated, and a strucuture theorem of commutative pure NET-semihypergroup is established.
Finally, a new notion of weak commutative NET-semihypergroup is proposed, some important
examples are obtained by software MATLAB, and the following important result is proved: every
pure and weak commutative NET-semihypergroup is a disjoint union of some regular hypergroups
which are its subhypergroups.

Keywords: hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic
extended triplet semihypergroup (NET-semihypergroup); NET-hypergroup

1. Introduction and Preliminaries

As a generalization of traditional algebraic structures, hyper algebraic structures
(or hypercompositional structures) have been extensively studied and applied [1–7]. Especially,
hypergroups and semihypergroups are basic hyper structures which are extensions of groups and
semigroups [8]. In fact, hypergroups characterize the symmetry of hyperoperations.

On the other hand, as an extension of fuzzy set and intuitionistic fuzzy set, the concept of
neutrosophic set firstly proposed by F. Smarandache in [9], has been applied to many fields [10–12].
Moreover, as an application of the ideal of neutrosphic sets, a new notion of neutrosophic triplet group
(NTG) was proposed by F. Smarandache and Ali in [13], while the new notion of neutrosophic extended
group (NETG) was proposed by Smarandache in [14]. Furthermore, the basic properties and structural
characteristics of neutrosophic extended groups (NETGs) are studied in [15,16]; the closed connection
between between NETG and regular semigroup investigated, and the new notion of neutrosophic
extended triplet Abel-Grassmann’s Groupoid is proposed in [17]; the decomposition theorem of NETG
is poved in [18]; the generalized neutrosophic extended groups are presented in [19]; the relationship
and difference between NETGs and generalized groups are systematically studied in [20]. From these
research results, we know that NETG is a typical algebraic system with important research value.

In this paper, we combine the two directions mentioned above to study the hyperalgebraic
structures related to neutrosophic extended triplet groups (NETGs), which can be regarded as a further
development of the research ideas in [21].

At first, we recall some concepts and results on hypergroups, semigroups and NETGs.

Symmetry 2019, 11, 1217; doi:10.3390/sym11101217 www.mdpi.com/journal/symmetry16
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Let H be a non-empty set and P*(H) the set of all non-empty subsets of H. A map ◦: H × H→P*(H)
is called (binary) hyperoperation (or hypercomposition), and (H, ◦) is called a hypergroupoid. If A,
B∈P*(H), x∈H, then

A ◦ B = ∪
a∈A,b∈B

(a ◦ b), A ◦ x = A ◦ {x}, x ◦ B = {x} ◦ B.

Definition 1. ([1–4]) Let (H, ◦) be a hypergroupoid. If (∀x,y,z∈H) (x◦y)◦z=x◦(y◦z), then (H, ◦) is called a
semihypergroup. That is,

∪
u∈x◦y

(u ◦ z) = ∪
v∈y◦z(x ◦ v).

For a semihypergroup (H, ◦), if (∀x,y∈H) x◦y=y◦x, then we call that H is commutative.

Note that, if (H, ◦) is a semihypergroup, then (A◦B)◦C = A◦(B◦C), ∀A, B, C∈P*(H).

Definition 2. ([1–4]) Assume that (H, ◦) is a semihypergroup. (1) If a∈H satisfies (∀x∈H) |a◦x| = |x◦a|=1,
then a is called to be scalar. (2) If e∈H satisfies (∀x∈H) x◦e = e◦x = {x}, then e is called scalar identity. (3) If
e∈H satisfies (∀x∈H) x∈(e◦x)∩(x◦e), then e is called identity. (4) Let a, b∈H. If there exists an identity e∈H
satisfies e∈ (a◦b)∩(b◦a), then b is called an inverse of a. (5) If 0∈H satisfies (∀x∈H) x◦0 = 0◦x = {0}, then 0 is
called zero element.

Definition 3. ([1–4]) Let (H, ◦) be a semihypergroup. (1) If (∀x∈H) a◦H = H◦a = H (reproductive axiom),
then (H, ◦) is called a hypergroup. (2) If (H, ◦) is a hypergroup and (H, ◦) has at least one identity and each
element has at least one inverse, then (H, ◦) is called to be regular.

Definition 4. ([1–4]) Let (H, ◦) be a semihypergroup. If x∈H satisfies x∈x◦H◦x, i.e., there exists an element
y∈H, x∈x◦y◦x, then x is said to be regular. If (∀x∈H) x is regular, then (H, ◦) is called to be regular.

Note that, Every regular semigroup is a regular semihypergroup, and every hypergroup is a
regular semihypergroup.

Definition 5. ([14]) Let N be a non-empty set, and * a binary operation on N. If (∀a∈N) there exist neut(a)∈N,
anti(a)∈N satisfy

neut(a)*a = a*neut(a) = a, and
anti(a)*a = a*anti(a) = neut(a).

Then N is called a neutrosophic extended triplet set (NETS). Moreover, for a∈N, (a, neut(a), anti(a)) is called a
neutrosophic extend triplet, neut(a) is called an extend neutral of “a”, and anti(a) is called an opposite of “a”.

For a neutrosophic extended triplet set N, a∈N, the set of neut(a) is denoted by {neut(a)}, and the
set of anti(a) is denoted by {anti(a)}.

Definition 6. ([13,14]) Let (N, *) be a NETS. If (N,*) is a semigroup, then (N, *) is called to be a neutrosophic
extended triplet group (NETG).

About some basic properties of neutrosophic extended triplet groups, plesse see [15,17,20].

2. Neutrosophic Extended Triplet Semihypergroups (NET-Semihypergroups) and Neutrosophic
Extended Triplet Hypergroups (NET-Hypergroups)

In this section, we propose the new concepts of neutrosophic extended triplet semihypergroup
(NET-semihypergroup) and neutrosophic extended triplet hypergroup (NET-hypergroup), and give
some typical examples to illustrate their wide representativeness.
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Definition 7. Let (H,*) be a semihypergroup (i.e., * be a binary hyperoperation on nonempty set H such that
(x*y)*z = x*(y*z), for all x, y, z∈H). (H,*) is called a neutrosophic extended triplet semihypergroup (shortened
form, NET-semihypergroup), if for every x∈H, there exist neut(x) and anti(x) such that

x∈(neut(x)*x)∩(x*neut(x)), and

neut(x)∈(anti(x)*x)∩(x*anti(x)).

Here, we call that (x, neut(x), anti(x)) to be a hyper-neutrosophic-triplet.

Example 1. Denote H = {a, b, c}, define hyperoperations * on H as shown in Table 1. We can verify that (H, *) is
semihypergroup by software MATLAB (see Figure 1).

Table 1. The hyperoperation * on H.

* a b c

a a {a, b} {a, b, c}
b a {a, b} {a, b, c}
c a {a, b} c

Moreover,
a∈(a*a)∩(a*a);
b∈(b*b)∩(b*b);
c∈(c*c)∩(c*c).

This means that (H, *) is neutrosophic extended triplet semihypergroup (NET-semihypergroup) and (a, a, a),
(b, b, b), (c, c, c) are hyper-neutrosophic-triplets.
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Example 2. Denote H = {a, b, c, d}, define hyperoperations * on H as shown in Table 2. We can verify that (H, 

*) is semihypergroup by software MATLAB (see Figure 2). 

Table 2. The hyperoperation * on H. 

* a b c d 

a {a, b} {a, b} {c, d} {c, d} 

b {a, b} {a, b} {c, d} {c, d} 

c {c, d} {c, d} a  b 

d {c, d} {c, d} b a 

Figure 1. A program by Matlab to verify hyperoperation.

Example 2. Denote H = {a, b, c, d}, define hyperoperations * on H as shown in Table 2. We can verify that (H, *)
is semihypergroup by software MATLAB (see Figure 2).

Table 2. The hyperoperation * on H.

* a b c d

a {a, b} {a, b} {c, d} {c, d}
b {a, b} {a, b} {c, d} {c, d}
c {c, d} {c, d} a b
d {c, d} {c, d} b a
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Moreover,
A∈(a*a)∩(a*a); a∈(b*a)∩(a*b), b∈(b*a)∩(a*b).

b∈(b*b)∩(b*b).

c∈(a*c)∩(c*a), a∈(c*c)∩(c*c); c∈(b*c)∩(c*b), b∈(d*c)∩(c*d).

d∈(a*d)∩(d*a), a∈(d*d)∩(d*d); d∈(b*d)∩(d*b), b∈(c*d)∩(d*c).

This means that (H, *) is neutrosophic extended triplet semihypergroup (NET-semihypergroup) and (a, a,
a), (a, b, b), (b, b, b), (c, a, c), (c, b, d), (d, a, d), (d, b, c) are hyper-neutrosophic-triplets.

Remark 1. From Example 2 we know that neut(x) may be not unique for an element x in a neutrosophic
extended triplet semihypergroup (NET-semihypergroup). In fact, in Example 2, we have

{neut(a)} = {a, b}, neut(b) = b, {neut(c)} = {a, b}, {neut(d)} = {a, b}.

Example 3. Let H be the set of all nonnegative integers, and define a hyperoperation * on H as following:

x*y = {z∈H | z≥max{x,y}}.

For examples,

3*5 = {5, 6, 7, 8, . . . }; 9*9 = {9, 10, 11, 12, . . . }; 2019*0 = {2019, 2020, 2021,2022, . . . }.

Then (H, *) is a commutative semihypergroup. Moreove, for any x∈H, we have

x∈ (x*x)∩(x*x); x∈ (x*x)∩(x*x).

This means that (H, *) is a neutrosophic extended triplet semihypergroup (NET-semihypergroup). In fact,
we have

neut(0)=0; {neut(1)}={0,1}; {neut(2)}={0, 1, 2}; {neut(3)}={0, 1, 2, 3} . . .
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Example 4. Let R be the set of all real numbers, and Z the set of integers. We use the modulo of real numbers
(that we denote by modR) in the following way:

∀ a, b∈R, then a = b (modR 6), if and only if a - b = 6n, where n is an integer.

For examples, 14.73 = 2.73 (modR 6), since 14.73 – 2.73 = 12 = 6 × 2; but 18,15 (modR 6), since 18 - 15
= 3 , 6n with n integer. Now, we define a hyperoperation # on R as following:

a#b = {x∈R | x=4ab (modR 6)}.

Then (R, #) is a commutative semihypergroup, since a#b = b#a = 4ab (modR 6), and associative because:

(a#b)#c = (4ab)#c = 4(4ab)c = 16abc (modR 6), and
a#(b#c) = a#(4bc) = 4a(4bc) = 16abc (modR 6).

Moreove, for any a∈R, we have

(1) when a=0, (a, 6m, r) are hyper-triplets for any integer number m and real number r;

(2) when a, 0,
(
a, 1

4 + 3m
2a , 1

16a +
3m
8a + 3n

2a

)
are hyper-neutrosophic-triplets for any integer numbers m, n.

This means that (R, #) is a neutrosophic extended triplet semihypergroup (NET-semihypergroup), and
infinitely many neut(a) and infinitely many anti(a) for any element a in R.

Remark 2. The following example shows that a sub-semihypergroup of a NET-semihypergroup may
be not a NET-semihypergroup.

Example 5. Denote H = {a, b, c, d, e}, define hyperoperations * on H as shown in Table 3. We can verify that (H,
*) is semihypergroup by software MATLAB (see Figure 3).

Table 3. The hyperoperation * on H.

* a b c d e

a a a a d {a, b, c, d, e}
b a {a, b} {a, c} d {a, b, c, d, e}
c a a a d {a, b, c, d, e}
d d d d d {a, b, c, d, e}
e {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e}
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Moreover, (a, a, a), (a, e, e), (b, b, b), (b, e, e), (c, e, e), (d, d, d), (d, e, e), (e, e, e), (e, a, e), (e, b, e), (e, c, e),
(e, d, e) are hyper-neutrosophic-triplets.This means that (H, *) is a NET-semihypergroup. For S={a, b, c }⊆H,
(S, *) is sub-semihypergroup of (H, *). But, (S, *) is not a NET-semihypergroup.

Remark 3. For the traditional algebraic structures, we have the conclusion that any group must be a
neutrosophic extended triplet group (NETG). For hyper algebraic structures, we know from Example 1
that a NET-semihypergroup is not necessarily a hypergroup (since a*H,H in Example 1). Moreover,
the following example shows that a hypergroup may be not a NET-semihypergroup. Therefore,
hypergroup and NET-semihypergroup are two non-inclusion hyperalgebraic systems.

Example 6. Denote H = {1, 2, 3}, define hyperoperations * on H as shown in Table 4. We can verify that (H, *)
is semihypergroup by software MATLAB.

Table 4. The hyperoperation * on H.

* 1 2 3

1 2 2 {1, 3}
2 {1, 2, 3} {2, 3} {1, 2, 3}
3 2 {1, 2, 3} {1, 3}

Moreover,
1*H = H*1 = H, 2*H = H*2 = H, 3*H = H*3 = H.

This means that (H, *) is a hypergroup. But, for 1∈H, we cannot find x,y∈H such that 1∈(x*1)∩(1*x), and
x∈(y*1)∩(1*y). That is, (H, *) is not a NET- semihypergroup.

Definition 8. Let (H,*) be a semihypergroup. (H,*) is called a neutrosophic extended triplet hypergroup
(shortened form, NET-hypergroup), if (H,*) is both a NET-semihypergroup and a hypergroup.

Obviously, the NET-semihypergroups in Example 2 and Example 5 are all NET-hypergroups.
And, the following propostion is true (the proof is omitted).

Proposition 1. Every regular hypergroup is a NET-hypergroup.

The NET-hypergroup in Example 2 is not a regular hypergroup, it shows that the inverse of
Proposition 1 is not true.

Proposition 2. Let (H,*) be a NET-semihypergroup (or a NET-hypergroup). Then (H,*) is a regular
semihypergroup.

Proof. Assume that (H,*) is a NET-semihypergroup. For any x∈H, by Definition 7 we get that there
exist neut(x) and anti(x) such that

x∈(neut(x)*x)∩(x*neut(x)), and neut(x)∈(anti(x)*x)∩(x*anti(x)).

Then,
x∈neut(x)*x ⊆ (x*anti(x))*x.

That is, x∈x*anti(x)*x. From this, by Definition 4, we know that (H,*) is a regular semihypergroup.
If (H,*) is a NET-hypergroup, by Definition 8, it follows that (H,*) is a NET-semihypergroup. Then,

by the proof above, (H,*) is a regular semihypergroup. �
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The following example shows that the inverse of Proposition 2 is not true. Moreover, it also shows
that a regular semihypergroup may be not a hypergroup.

Example 7. Denote H = {a, b, c}, define hyperoperations * on H as shown in Table 5. We can verify that (H, *) is
semihypergroup.

Table 5. The hyperoperation * on H.

* a b c

a a a a
b {a, b, c} {a, b, c} {a, b, c}
c {a, b, c} {a, b} {a, b}

Moreover, a ∈ a*a*a; b ∈ b*b*b; c ∈ c*a*c.This means that (H, *) is a regular semihypergroup. But it is not
a NET-semihypergroup, since there is not any x ∈ H such that c ∈ x*c and c ∈ c*x.Obviously, (H, *) is not a
hypergroup.

Therefore, the relationships among semihypergroup, NET-semihypergroup, NET-hypergroup,
(regular) hypergroup and regular semihypergroup can be expressed by Figure 4.
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For basic properties of NET-semihypergroups and NET-hypergroups, we can get following results.

Theorem 1. Let (H,*) be a semihypergroup. Then

(1) if (H,*) is commutative NET-semihypergroup, then for any x∈H and hyper-neutrosophic-triplet
(x, neut(x), anti(x)), there exists p∈neut(x)*neut(x) and q∈anti(x)*neut(x) such that (x, p, q) is also
a hyper-neutrosophic-triplet.

(2) if (H,*) is commutative NET-semihypergroup, then for any x∈H and neut(x)∈{neut(x)}, there exists
p∈neut(x)*neut(x) such that p∈{neut(x)}.

(3) if (H,*) is NET-semihypergroup and x∈H is scalar, then |{neut(x)}|=1, that is, the neutral element of x is
unique; Moreover, if x is scalar, then neut(x)*neut(x)=neut(x).

(4) if (H,*) is commutative hypergroup, then (H,*) is NET-hypergroup.

Proof. (1) Assume that x∈H and (x, neut(x), anti(x)) is a hyper-neutrosophic-triplet. By Definition 7:

x∈(neut(x)*x)∩(x*neut(x)), and neut(x)∈(anti(x)*x)∩(x*anti(x)).
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Since (H, *) is commutative, then:

x∈neut(x)*x ⊆ neut(x)*(neut(x)*x) = (neut(x)*neut(x))*x = x*(neut(x)*neut(x)).

This means that there exists p∈neut(x)*neut(x) such that x∈p*x = x*p. Moreover:

p∈neut(x)*neut(x) ⊆ (x*anti(x))*neut(x) = x*(anti(x)*neut(x)) = (anti(x)*neut(x))*x.

It follows that there exists q∈anti(x)*neut(x) such that p∈q*x = x*q. By Definition 7 we know that
(x, p, q) is also a hyper-neutrosophic-triplet.

(2) It follows from (1).
(3) Suppose that x∈H and x is scalar. Using Definition 2, |x*a|=|a*x|=1 for any a∈H. From this, for a

hyper-neutrosophic-triplet (x, neut(x), anti(x)), applying Definition 7, we have:

x = neut(x)*x = x*neut(x), and neut(x) = anti(x)*x = x*anti(x).

Assume p1, p2∈{neut(x)}, then there exists q1, q2∈H such that:

x = p1*x = x*p1, p1 = q1*x = x*q1; x = p2*x = x*p2, p2 = q2*x = x*q2.

Then:
p1 = q1*x = q1*(x*p2) = (q1*x)*p2 = p1*p2;

p2 = x*q2 = (x*p1)*q2 = (x*(q1*x))*q2 = (x*q1)*(x*q2) = p1*p2.

It follows that p1 = p2 and p1 = p1*p1. That is, |{neut(x)}|=1 and neut(x)*neut(x) = neut(x).
(4) Let (H, *) be a commutative hypergroup. By Definition 3, for any x∈H, x*H = H*x = H. Then, for

any x∈H, there exists h∈H such that x = h*x = x*h. Moreover, for h∈H, there exists u∈H such that h = u*x
= x*u. Thus, (x, h, u) is a hyper-neutrosophic-triplet, and it means that (H, *) is a NET-semihypergroup
by Definition 7. On the other hand, since (H, *) is a hypergroup, so (H, *) is a NET-hypergroup by
Definition 8.

3. Pure NET-semihypergroups and Regular hypergroups

In this section, we discuss some properties of NET-semihypergroups. We’ll propose the new
notion of pure NET-semihypergroup, investigate the structure of pure NET-semihypergroups.

Definition 9. Let (H,*) be a NET-semihypergroup. (H,*) is called a pure NET-semihypergroup, if for every
x∈H, there exist neut(x) and anti(x) such that

x = (neut(x)*x)∩(x*neut(x)), and neut(x) = (anti(x)*x)∩(x*anti(x)).

Obviously, the following proposition is true and the proof is omitted.

Proposition 3. (1) Every neutrosophic extended triplet group (NETG) is pure NET-semihypergroup. (2) If
(H,*) is a pure NET-semihypergroup and the hyper operation * is commutative, then for every x∈H, there exists y,
z∈H such that

x = y*x = x*y, and y = z*x = x*z.

Example 8. Denote H = {a, b, c}, define hyperoperations * on H as shown in Table 6. We can verify that (H, *) is
semihypergroup.
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Table 6. The hyperoperation * on H.

* a b c

a a {a, b, c} {a, b, c}
b {a, b, c} c b
c {a, b, c} b c

Moreover,
a=(a*a)∩(a*a); b=(c*b)∩(b*c), c=(b*b)∩(b*b); c=(c*c)∩(c*c).

This means that (H, *) is a pure NET-semihypergroup.

Example 9. Denote H = {a, b, c, d, e}, define hyperoperations * on H as shown in Table 7. We can verify that
(H, *) is semihypergroup.

Table 7. The hyperoperation * on H.

* a b c d e

a a {a, b, c} {a, b, c} d a

b {a, b, c} b c d b
c {a, b, c} c b d c
d d d d d d
e a b c d e

Moreover:

a=(a*a)∩(a*a); b=(b*b)∩(b*b); c=(b*c)∩(c*b), b=(c*c)∩(c*c); d=(d*d)∩(d*d); e=(e*e)∩(e*e).

This means that (H, *) is a pure NET-semihypergroup.

Remark 4. From Example 8 and Example 9, we have:

a=(a*a)∩(a*a);
a∈(b*a)∩(a*b), b∈(b*a)∩(a*b); a∈(c*a)∩(a*c), c∈(c*a)∩(a*c).

This means that {neut(a)} = {a, b, c}. But, b∈{neut(a)} and c∈{neut(a)} are different to a∈{neut(a)},
since one is “∈“ and the other is “=“. In order to clearly express the difference between the two kinds
of neutral elements, we introduce a new concept: pure neutral element.

Definition 10. Let (H,*) be a NET-semihypergroup and x∈H. An element y∈H is called a pure neutral element
of the element x, if there exist z∈H such that:

x = y*x = x*y, and y = z*x = x*z.

Here, we denote y by pneut(x).

Proposition 4. Let (H,*) be a NET-semihypergroup and x∈H. If there exists a pure neutral element of x, then
the pure neutral element of x, that is, pneut(x), is unique.

Proof. Assume that there exists two pure neutral elements y1, y2 for x∈H. Then there exists z1, z2 ∈ H
such that:

x = y1*x = x*y1, and y1 = z1*x = x*z1;
x = y2*x = x*y2, and y2 = z2*x = x*z2.
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Therefore,
y1 = z1*x = z1*(x*y2) = (z1*x)*y2 = y1*y2;

y2 = x*z2 = (x*y1)*z2 = (x*(z1*x))*z2 = (x*z1)* (x*z2) = y1*y2.

Hence, y1 = y2. That is, pneut(x) is unique. �

By the proof of Proposition 4, we know that y1 = y2= y1*y2, it follows that y1 = y1*y1. Therefore,
we have the following corollary.

Corollary 1. Let (H,*) be a NET-semihypergroup and x∈H. If there exists a pure neutral element of x, then the
pure neutral element of x is idempotent, that is, pneut(x)*pneut(x)= pneut(x).

Remark 5. From Proposition 4, we know that the pure neutral element of an elemetn x is unique when
there exists one pure neutral element of x. Particularly, for commutative pure NET- semihypergroups,
applying Proposition 3 (2), we get following Proposition 5 (the proof is omitted).

Proposition 5. Let (H,*) be a commutative pure NET-semihypergroup. Then for any x∈H, pneut(x) is unique.

Proposition 6. Let (H,*) be a commutative pure NET-semihypergroup. Then for any x, y∈H, pneut(x*y)=
pneut(x)*pneut(y) when | x*y|=1. Moreover, if pneut(x) = z1*x = x*z1 and pneut(y) = z2*y = y*z2, z1, z2∈H,
then:

pneut(x*y) = (z1*z2)*(x*y) = (x*y)*(z1*z2).

Proof. Assume that x, y∈H and | x*y|=1. Since (H, *) be a commutative pure NET-semihypergroup, then:

(x*y)*(pneut(x)*pneut(y)) = (x*y)*(pneut(y)*pneut(x))
= x*(y*pneut(y))*pneut(x)
= x*y*pneut(x)
= (x*pneut(x))*y
= x*y;
(pneut(x)*pneut(y))*(x*y) = (pneut(y)*pneut(x))*(x*y)
= pneut(y)*(pneut(x)*x)* y
= pneut(y)*x*y
= x*(pneut(y)*y)
= x*y.

On the other hand, assume that (x, pneut(x), anti(x)) and (y, pneut(y), anti(y)) are
hyper-neutrosophic-triplets, then:

(x*y)*(anti(x)*anti(y)) = (x*y)*(anti(y)*anti(x))
= x*(y*anti(y))*anti(x)
= x*pneut(y)*anti(x)
= (x*anti(x))*pneut(y)
= pneut(x)*pneut(y);
(anti(x)*anti(y))*(x*y) = (anti(x)*anti(y))*(y*x)
= anti(x)*(anti(y)*y)*x
= anti(x)*pneut(y)*x
= (anti(x)*x)*pneut(y)
= pneut(x)*pneut(y).

Applying Proposition 5 we get that pneut(x*y)= pneut(x)*pneut(y).
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Moroeover, assume pneut(x) = z1*x = x*z1, pneut(y) = z2*y = y*z2. Then, by commutativity of the
hyper operation *:

(z1*z2)*(x*y) = (z1*x)*(z2*y)
= pneut(x)*pneut(y)
= pneut(x*y);
(x*y)*(z1*z2) =(x*z1)*(y*z2)
= pneut(x)*pneut(y)
= pneut(x*y).

Therefore, the proof is completed. �

Theorem 2. Let (H,*) be a commutative pure NET-semihypergroup and H satisfies:

∀x, y∈H, pneut(x)=pneut(y)⇒ | x*y|=1. (C1)

Define a binary relation ≈ on H as following:

∀x, y∈H, x≈y if and only if pneut(x)=pneut(y).

Then:

(1) The binary relation is a equivalent relation on H;
(2) For any x∈H, [x]≈ is a sub-NET-semihypergroup of H, where [x]≈ is the equivalent class of x based on

equivalent relation ≈;
(3) For any x∈H, [x]≈ is a regular hypergroupe.

Proof. (1) It is obviously.
(2) Assume a, b∈[x]≈, then pneut(a)= pneut(b)=pneut(x). Applying Proposition 6 and Corollary 1,

we have
pneut(a*b) = pneut(a)*pneut(b)
= pneut(x)*pneut(x)
= pneut(x).

This means that [x]≈ is closed on the hyper operation *.
Moreover, by Corollary 1, we have pneut(x)*pneut(x) = pneut(x). From this and using Proposition 5,

we get that pneut(pneut(x)) = pneut(x). It follows that pneut(a) ∈[x]≈ for any a∈[x]≈. Moreover, assume
that a∈[x]≈, by the definition of commutative pure NET-semihypergroup, there exists r∈H such that:

pneut(a) = r*a = a*r.

It follows that:
pneut(a) = (r*pneut(a))*a = a*(r*pneut(a)). (C2)

Applying Proposition 6 and Corollary 1:

pneut(r*pneut(a))
= pneut(r)* pneut(pneut(a))
= pneut(r)* pneut(a)
= pneut(r*a)
= pneut(pneut(a)
= pneut(a).
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That is, pneut(r*pneut(a)) = pneut(a) = pneut(x). This means that r*pneut(a) ∈[x]≈. Therefore, by (C2),
there exists anti(a) (see Definition 7), it is in [x]≈. This means that [x]≈ is a sub-NET-semihypergroup
of H.

(3) For any x∈H, from (2) we know that [x]≈ is a sub-NET-semihypergroup of H. By the definition
of ≈, for any a∈[x]≈, pneut(a) = pneut(x). Then, a*[x]≈*a =[x]≈, and pneut(x) is a (local) identity in [x]≈.
By Definition 3, we get that [x]≈ is a regular hypergroup. �

From Theorem 2 we know that for a commutative pure NET-semihypergroup (it satisfies the
condition in Theorem 2), it is a union of some regular hypergroups. The following picture (Figure 5)
shows this special structure.
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Example 10. Denote H = {a, b, c, d, e}, define hyperoperations * on H as shown in Table 8. We can verify that
(H, *) is commutative pure NET-semihypergroup.

Table 8. The hyperoperation * on H.

* a b c d e

a a {a, b, c} {a, b, c} d {a, d, e}
b {a, b, c} b c d {b, c, d, e}
c {a, b, c} c b d {b, c, d, e}
d d d d d d
e {a, d, e} {b, c, d, e} {b, c, d, e} d e

Moreover:
H1={a}=[a]≈;

H2={b, c}=[b]≈ =[c]≈;
H3={d}=[d]≈;
H4={e}=[e]≈;

and H= H1∪H2∪H3∪H4, where, Hi (i=1, 2, 3, 4) are regular hypergroups.

Remark 6. The above example shows that a commutative pure NET-semihypergroup may be not a
hypergroup (since d*H,H in Example 10).

4. Weak Commutative NET-Semihypergroups and Their Structures

In this section, we discuss generalized commutativity in NET-semihypergroups. We propose a
new notion of weak commutative NET-semihypergroup, and prove the structure theorem of weak
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commutative pure NET-semihypergroup (WCP-NET-semihypergroup), which can be regarded as a
generalization of Cliffod Theorem in semigroup theory.

Definition 11. Let (H,*) be a NET-semihypergroup. (H,*) is called a weak commutative NET- semihypergroup,
if for every x∈H, every hyper-neutrosophic-triplet (x, neut(x), anti(x)), the following conditions are satisfied:

(H,*) is called a weak commutative pure NET-semihypergroup (shortly,
WCP-NET-semihypergroup), if it both weak commutative and pure.

Obviously, the following proposition is true and the proof is omitted.

Proposition 7. Every commutative NET-semihypergroup is weak commutative.

The following examples show that there exists some weak commutative NET- semihypergroups
which are not commutative.

Example 11. Denote H = {1, 2, 3, 4, 5, 6, 7, 8}, define hyperoperations * on H as shown in Table 9. We can
verify that (H, *) is NET-semihypergroup.

Table 9. The hyperoperation * on H.

* 1 2 3 4 5 6 7 8

1 1 {1, 2} 1 1 1 1 1 1
2 {1, 2} 2 1 1 1 1 1 1
3 1 1 3 4 5 6 7 8
4 1 1 4 3 8 7 6 5
5 1 1 5 7 3 8 4 6
6 1 1 6 8 7 3 5 4
7 1 1 7 5 6 4 8 3
8 1 1 8 6 4 5 3 7

Moreover, (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 3, 4), (5, 3, 5), (6, 3, 6), (7, 3, 8) and (8, 3, 7) are
hyper-neutrosophic-triplets, and (∀x∈H) 1*x = x*1, 2*x = x*2 and 3*x = x*3, 7*8 = 8*7. This means that (H, *)
is a weak commutative NET-semihypergroup. Since 4*5 , 5*4, (H, *) is not commutative.

Remark 7. The above example shows that there exists WCP-NET-semihypergroup (by Definition 9,
we know that the NET-semihypergroup in Example 11 is pure).

Example 12. Denote H = {1, 2, 3, 4, 5, 6, 7, 8, 9}, define hyperoperations * on H as shown in Table 10. We can
verify that (H, *) is NET-semihypergroup.

Table 10. The hyperoperation * on H.

* 1 2 3 4 5 6 7 8 9

1 2 {1, 3} 3 1 1 1 1 1 1
2 {1, 3} 2 {1, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3}
3 3 {1, 3} 1 {1, 3} {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}
4 1 {1, 2, 3} {1, 3} 4 5 6 7 8 9
5 1 {1, 2, 3} {1, 3} 5 4 9 8 7 6
6 1 {1, 2, 3} {1, 3} 6 8 4 9 5 7
7 1 {1, 2, 3} {1, 3} 7 9 8 4 6 5
8 1 {1, 2, 3} {1, 3} 8 6 7 5 9 4
9 1 {1, 2, 3} {1, 3} 9 7 5 6 4 8
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Moreover, (1, 2, 1), (2, 2, 2), (3, 1, 3), (4, 4, 4), (5, 4, 5), (6, 4, 6), (7, 4, 7), (8, 4, 9) and (9, 4, 8) are
hyper-neutrosophic-triplets, and (∀x∈H) 2*x = x*2, 1*x = x*1 and 4*x = x*4, 8*9 = 9*8. This means that (H, *)
is a weak commutative NET-semihypergroup. Since 5*6 , 6*5, (H, *) is not commutative.

Proposition 8. Let (H,*) be a weak commutative pure NET-semihypergroup (WCP-NET-semihypergroup).
Then for any x∈H, there exists a pure neutral element of x, and pneut(x) is unique, pneut(x)*pneut(x)= pneut(x).

Proof. For any x∈H. Since (H, *) is pure, by Definition 9, there exists hyper-neutrosophic-triplet
(x, neut(x), anti(x)) such that

x = (neut(x)*x)∩(x*neut(x)), and neut(x) = (anti(x)*x)∩(x*anti(x)).

Moreover, since (H, *) is weak commutative, by Definition 11, neut(x)*x = x*neut(x), and anti(x)*x
= x*anti(x). Thus

x = neut(x)*x = x*neut(x), and neut(x) = anti(x)*x = x*anti(x).

Therefore, by Definition 10, neut(x) is a pure neutral element of x. Applying Proposition 4 we know
that pure neutral element of x is unique. Moreover, using Corollary 1, pneut(x)*pneut(x)= pneut(x). �

Proposition 9. Let (H,*) be a weak commutative pure NET-semihypergroup (WCP-NET-semihypergroup).
Then for any x, y∈H, pneut(x*y)= pneut(x)*pneut(y) when | x*y |=1. Moreover, if pneut(x) = z1*x = x*z1 and
pneut(y) = z2*y = y*z2, z1, z2 ∈ H, then

pneut(x*y) = (z2*z1)*(x*y) = (x*y)*(z2*z1).

Proof. Since (H, *) be a WCP-NET-semihypergroup, then for any x, y∈H and | x*y |=1, pneut(x)*y =

y*pneut(x) by Definition 11. Then

x*y)*(pneut(x)*pneut(y)) = (x*y)*(pneut(y)*pneut(x)) = x*y*pneut(x) = (x*pneut(x))*y = x*y;
(pneut(x)*pneut(y))*(x*y) = (pneut(y)*pneut(x))*(x*y) = pneut(y)*x*y = x*(pneut(y)*y) = x*y.

On the other hand, let (x, pneut(x), anti(x)) and (y, pneut(y), anti(y)) are hyper-neutrosophic-triplets,
then

xx*y)*(anti(y)*anti(x))
= x*(y*anti(y))*anti(x)
= x*pneut(y)*anti(x)
= pneut(y)*x*anti(x)
= pneut(y)*pneut(x)
= pneut(x)*pneut(y);

(anti(y)*anti(x))*(x*y) = anti(y)*(anti(x)*x)*y = anti(y)*pneut(x)*y = pneut(x)*anti(y)*y = pneut(x)*pneut(y).

Thus, pneut(x)*pneut(y) is a pure neutral element of x*y by Definition 7 and Definition 10. Applying
Proposition 8 we get that pneut(x*y)= pneut(x)*pneut(y).

Moroeover, assume pneut(x) = z1*x = x*z1, pneut(y) = z2*y = y*z2. Then, by weak commutativity
(Definition 11) we have

(z2*z1)*(x*y) = z2*(z1*x)*y = z2*pneut(x)*y = pneut(x)*(z2*y) = pneut(x)*pneut(y) = pneut(x*y);
(x*y)*(z2*z1) = x*(y*z2)*z1 = x*pneut(y)*z1 = (x*z1)*pneut(y) = pneut(x)*pneut(y) = pneut(x*y).

Therefore, the proof is completed. �
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Theorem 3. Let (H,*) be a WCP-NET-semihypergroup and H satisfies

(∀x, y∈H, pneut(x)=pneut(y)⇒ | x*y|=1. (C1)

Define a binary relation ≈ on H as following:

∀x, y∈H, x≈y if and only if pneut(x)=pneut(y).

Then

(1) The binary relation ≈ is a equivalent relation on H;
(2) For any x∈H, [x]≈ is a sub-NET-semihypergroup of H, where [x]≈ is the equivalent class of x based on

equivalent relation ≈;
(3) For any x∈H, [x]≈ is a regular hypergroupe.

Proof. (1) From the definition of ≈, by Proposition 8 and Proposition 9, we know that the binary
relation ≈ is a equivalent relation.

(2) Suppose a, b∈[x]≈. By the definition of ≈, pneut(a) = pneut(b) = pneut(x). Using Proposition 8
and Proposition 9, we have

pneut(a*b) = pneut(a)*pneut(b) = pneut(x)*pneut(x) = pneut(x).

It follows that [x]≈ is closed on the hyper operation *.
And, applying Proposition 8, we have pneut(x)*pneut(x) = pneut(x). From this and using Proposition

8, we get that pneut(pneut(x)) = pneut(x). It follows that pneut(a)∈[x]≈ for any a∈[x]≈. Moreover, assume
that a∈[x]≈, by the definition of WCP-NET-semihypergroup, there exists r∈H such that pneut(a) = r*a =

a*r. Thus (by Proposition 9)

pneut(a) = (r*pneut(a))*a = a*(r*pneut(a))
⇒ r*pneut(a) ∈{anti(a)}.

pneut(r*pneut(a))
= pneut(r)* pneut(pneut(a))
= pneut(r)* pneut(a)
= pneut(r*a)

= pneut(pneut(a))
= pneut(a).

That is, pneut(r*pneut(a)) = pneut(a) = pneut(x). This means that r*pneut(a) ∈[x]≈. Combining this
and r*pneut(a)∈{anti(a)}, we know that there exists anti(a) which is in [x]≈. This means that [x]≈ is a
sub-NET- semihypergroup of H.

(3) Assume x∈H, from (2) we know that [x]≈ is a sub-NET-semihypergroup of H. By the definition of
≈, for any a∈[x]≈, pneut(a) = pneut(x). From the proof of (2), there exists anti(a)∈{anti(a)} and anti(a)∈[x]≈.
Then, [x]≈ ⊆ a*[x]≈*a. Obviously, a*[x]≈*a ⊆ [x]≈. Thus, a*[x]≈*a=[x]≈.

On the other hand, pneut(x) is a (local) identity in [x]≈. Therefore, by Definition 3, we get that [x]≈
is a regular hypergroup. �

Example 13. Denote H = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, define hyperoperations * on H as shown in Table 11.
We can verify that (H, *) is WCP-NET-semihypergroup, and not commutative.
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Table 11. The hyperoperation * on H.

* 1 2 3 4 5 6 7 8 9 10 11

1 1 {1,2,3} {1,2,3} 1 1 1 1 1 1 1 1
2 {1,2,3} 3 2 3 2 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
3 {1,2,3} 2 3 2 3 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}

4 1 3 2 5 4 {6,7,8,
9,10,11}

{6,7,8,
9,10,11}

{6,7,8,
9,10,11}

{6,7,8,
9,10,11}

{6,7,8,
9,10,11}

{6,7,8,
9,10,11}

5 1 2 3 4 5 {6,7,8,
9,10,11}

{6,7,8,
9,10,11}

{6,7,8,
9,10,11}

{6,7,8,
9,10,11}

{6,7,8,
9,10,11}

{6,7,8,
9,10,11}

6 1 {1,2,3} {1,2,3} {6,7,8,
9,10,11}

{6,7,8,
9,10,11} 6 7 8 9 10 11

7 1 {1,2,3} {1,2,3} {6,7,8,
9,10,11}

{6,7,8,
9,10,11} 7 6 11 10 9 8

8 1 {1,2,3} {1,2,3} {6,7,8,
9,10,11}

{6,7,8,
9,10,11} 8 10 6 11 7 9

9 1 {1,2,3} {1,2,3} {6,7,8,
9,10,11}

{6,7,8,
9,10,11} 9 11 10 6 8 7

10 1 {1,2,3} {1,2,3} {6,7,8,
9,10,11}

{6,7,8,
9,10,11} 10 8 9 7 11 6

11 1 {1,2,3} {1,2,3} {6,7,8,
9,10,11}

{6,7,8,
9,10,11} 11 9 7 8 6 10

Moreover,

H1 = {1} = [1]≈;
H2 = {2, 3} = [2]≈ = [3]≈;
H3 = {4, 5} = [4]≈ =[5]≈;

H4 = {6, 7, 8, 9, 10, 11} = [6]≈ = [7]≈ = [8]≈ = [9]≈ = [10]≈ = [11]≈;
and H= H1∪H2∪H3∪H4, where, Hi (i=1, 2, 3, 4) are regular hypergroups.

5. Conclusions

In this paper, we propose some new notions of neutrosophic extended triplet semihypergroup
(NET-semihypergroup), neutrosophic extended triplet hypergroup (NET-hypergroup), pure NET-
semihypergroup and weak commutative NET-semihypergroup, investigate some basic properties and
the relationships among them (see Figure 6), study their close connections with regular hypergroups
and regular semihypergroups. Particularly, we prove two structure theorems of commutative pure
NET-semihypergroup (CP-NET-semihypergroup) and weak commutative pure NET-semihypergroup
(WCP-NET-semihypergroup) under the condition (C1) (see Theorem 2 and Theorem 3). From these
results, we know that NET-semihypergroup is a hyperalgebraic structure independent of hypergroup,
and NET-semihypergroup is also a generalization of group concept in hyperstructures. The research
results in this paper show that NET-semihypergroups and NET- hypergroups have important theoretical
research value, which greatly enriches the traditional theory of hyperalgebraic structures.
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Abstract: Uninorms comprise an important kind of operator in fuzzy theory. They are obtained
from the generalization of the t-norm and t-conorm axiomatic. Uninorms are theoretically
remarkable, and furthermore, they have a wide range of applications. For that reason, when fuzzy
sets have been generalized to others—e.g., intuitionistic fuzzy sets, interval-valued fuzzy sets,
interval-valued intuitionistic fuzzy sets, or neutrosophic sets—then uninorm generalizations have
emerged in those novel frameworks. Neutrosophic sets contain the notion of indeterminacy—which
is caused by unknown, contradictory, and paradoxical information—and thus, it includes,
aside from the membership and non-membership functions, an indeterminate-membership function.
Also, the relationship among them does not satisfy any restriction. Along this line of generalizations,
this paper aims to extend uninorms to the framework of neutrosophic offsets, which are called
neutrosophic offuninorms. Offsets are neutrosophic sets such that their domains exceed the scope of
the interval [0,1]. In the present paper, the definition, properties, and application areas of this new
concept are provided. It is necessary to emphasize that the neutrosophic offuninorms are feasible for
application in several fields, as we illustrate in this paper.

Keywords: neutrosophic offset; uninorm; neutrosophic offuninorm; neutrosophic offnorm;
neutrosophic offconorm; implicator; prospector; n-person cooperative game

1. Introduction

Uninorms extend the t-norm and t-conorm axiomatic in fuzzy theory. They retain the axioms of
commutativity, associativity, and monotony. Alternatively, they generalize the boundary condition,
where the neutral element is any number lying in [0,1]. Thus, t-norm and t-conorm are special cases of
uninorms, t-norms have 1 as their neutral element and the neutral element of t-conorms is 0, see [1–3].

Uninorms are theoretically important, and moreover they have also been used as operators in
several areas of application; for example, in image processing, to aggregate group decision criteria,
among others, see [4–8]. An exhaustive search on uninorm applications made by the authors of this
paper yielded more than six hundred scientific articles that have been written in the last five years
devoted to this subject.

Rudas et al. in [9] report that uninorms have been applied in diverse applications ranging,
e.g., from defining Gross Domestic Product index in economics, to fusing sequences of DNA and
RNA or combining information on taxonomies or dendograms in biology, and in the fusion of
data provided by sensors of robotics in data mining, and in knowledge-based and intelligent
systems. Particularly, they offer many examples in Decision Making, Utility Theory, Fuzzy Inference
Systems, Multisensor Data Fusion, network aggregation in sensor networks, image approximation,
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hardware implementation of parametric operations, in Fuzzy Systems, and as software tools for
aggregation problems.

Depaire et al. in [10] proposed a new approach to apply uninorms in Importance Performance
Analysis, which is a useful technique to evaluate elements in marketing programs. They proved
that their approach was superior when compared with regression and that it matched well with the
customer satisfaction theory.

A very recent paper written by Modley et al. in [11] applied uninorms in the market basket
analysis. Also, Appel et al. proposed a method based on cross-ratio uninorms as a mechanism to
aggregate in the Sentiment Analysis; see [12].

Kamiset al. in [13] implement a geo-uninorm operator in a consensus model. They utilized
them to derive a consistently based preference relation from a given reciprocal preference relation.
Whereas, Wu et al. in [14] and Ureña et al. in [15] applied uninorms in trust propagation and
aggregation methods for group decision making in a social network.

Bordignon and Gomide in [16], introduce a learning approach to train uninorm-based hybrid
neural networks using extreme learning concepts. According to them, uninorms bring flexibility and
generality to fuzzy neuron models. Wang in [17] and Yang in [18] applied uninorms as a basis to
define logics.

Other areas of application can be consulted in González-Hidalgo et al. [19] where uninorms were
utilized in edge detection of image processing, in fuzzy morphological associative memories (see [20]),
and was also applied in time series prediction.

It is well-known that the minimum is the biggest t-norm and the maximum is the lowest t-conorm,
thus they are not compensatory operators; whereas uninorms compensate when the truth values are
situated on both sides of the neutral element. The compensation property could be the key factor in
the wide range of uninorm applicability, mainly in decision making. Zimmermann experimentally
proved in [21], many years before the introduction of uninorms, that often human beings do not make
decisions interpreting AND like a t-norm and OR like a t-conorm, but that compensatory operators are
more adequate to model human aggregations to signify AND and OR in some situations. The use
of means as aggregators to define membership functions can be seen in [22]. However, when the
aggregated values are situated on one side with respect to the neutral element, then uninorms operate
either like a t-norm or a t-conorm.

Uninorms have been extended to other theories more general than fuzzy logic, due to their
applicability. Let us mention intuitionistic fuzzy sets, interval-valued fuzzy sets, and interval-valued
intuitionistic fuzzy sets; where the generalizations consist of the inclusion of an independent
non-membership function or an interval-valued membership function, or both [23]. They have
also been generalized as multi-polar aggregators in [24].

Following this trend, the authors of this paper defined the neutrosophic uninorms, such that
the uninorms were extended to the neutrosophy framework [25]. Neutrosophy is the philosophical
discipline that studies theories, entities, objects, phenomena, among others, related to neutrality [26].
In particular, neutrosophic sets contain three independent functions, namely, a membership function,
a non-membership function, and additionally, an indeterminate-membership function. The last
one represents what is unknown, contradictory, and paradoxical. Furthermore, these elements can
be intervals.

In addition, the relationship among these three functions has no restriction, contrary to the
intuitionist fuzzy sets, which must fulfill the constraint that the sum of the membership truth value
with the non-membership truth value of an element to the set does not exceed the unit.

Neutrosophy theory has been used in a wide spectrum of applications such as in image processing,
decision making, clustering, among others [27–30]. Therefore, it is not difficult to appreciate the
applicability of neutrosophic uninorms.

More recently, other concepts have been defined within the neutrosophy framework, which further
generalizes the traditional membership functions, including the axiomatic in probability theory.
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They are the undersets, oversets, and offsets, where the basic idea is that negative truth values or truth
values greater than 1 are permitted in the calculus [31].

A recurring example in literature is that concerning employment, where the truth value of a
worker’s effectiveness is measured in working hours. Those workers who have met all of their working
hours established for the week will be an effectiveness truth value of 1, those workers who have only
partially met their working hours have a truth value between 0 and 1, and other workers who have not
attended work throughout the week have the truth value of 0. In addition, those who have performed
voluntary overtime after meeting their established hours have a truth value greater than 1, and finally,
the workers who have not attended work throughout the week and, moreover, have caused losses to
the company, must have a negative truth value.

Other examples take into consideration the relationship between two variables or more, where a
negative value represents that they are inversely related, whereas a direct relationship is represented
by positive values [31].

The aim of this paper is to extend for the first time the theory of uninorms to the offsets
framework—we call them neutrosophic offuninorms—in such a way that they are a generalization
of both n-offnorms and n-offconorms equivalently, as fuzzy uninorms generalize both t-norms
and t-conorms.

In this paper, definitions and also properties of neutrosophic offuninorms will be given.
Additionally, we will emphasize the relationship between these new operators and the aggregation
functions used in the well-known medical expert system MYCIN [32], as well as define logical
implicators in offset fields and solve voting cooperative games.

In particular, the association of the proposed theory with the aggregation functions used in
MYCIN supports the hypothesis that neutrosophic offuninorms are more than an interesting theoretical
approach. Historically, within the fuzzy logic framework, some authors have accepted the idea
of extending the uninorms domain to [a, b], in order to include the aggregation functions used in
MYCIN, [33,34]. This proposal is an important precedent for this investigation because uninorms
were there adapted to offsets in the fuzzy theory context. The relationship between uninorms and the
PROSPECTOR operator, as well as their application, can be consulted in [35], where they were used
in e-arning.

Authors in [33,34] also emphasize that this generalization has important practical advantages
because it allows us to naturally apply uninorms in fields like Artificial Neural Networks and Cognitive
Maps. These elements certainly suggest that the proposed theory can be applied in fields like Artificial
Neural Networks based on neutrosophic sets and in neutrosophic cognitive maps, [36,37].

Let us observe that when uninorms have been extended to other domains they have preserved the
property of compensation. Further, we shall prove that offuninorms are not the exception; consequently,
the applicability of offuninorms is practically guaranteed. In the discussion section, we insist on this
aspect and the advantages that offuninorms have over other generalizations.

This paper is divided as follows. It begins with a preliminary section where concepts such
as neutrosophic sets, neutrosophic offsets, neutrosophic uninorms, among other useful aspects,
are discussed in order to develop the content of this article. The section on neutrosophic offuninorms is
devoted to exposing definitions and properties of these novel operators. Next, the applications section
is where the three possible areas of application of this theory are explained. We then finish with the
sections of discussion and conclusions.

2. Preliminaries

This section contains the main definitions necessary to develop the theory proposed in this
paper. We begin with Definitions 1 and 2, which introduce the neutrosophic sets. These sets are
characterized by an independent indeterminacy-membership function that models the unknown,
contradictions, inconsistencies in information and so on. Additionally, we have the classic membership
and non-membership functions, which are not necessarily dependent on each other.
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Definition 1. Let X be a space of points (objects), with a generic element in X denoted by x. A Neutrosophic Set
A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership function IA(x),
and a falsity-membership function FA(x). TA(x), IA(x), and FA(x) are real standard or nonstandard subsets of
]–0, 1+[. There is no restriction on the sum of TA(x), IA(x), and FA(x), thus, –0≤ inf TA(x)+ inf IA(x) + inf
FA(x) ≤ sup TA(x)+ sup IA(x) + sup FA(x)≤ 3+ (see [26]).

The neutrosophic sets are useful in their nonstandard form only in philosophy, in order to make a
distinction between absolute truth (truth in all possible worlds—according to Leibniz) and relative
truth (truth in at least one world), but not in technical applications, thus the Single-Valued Neutrosophic
Sets are defined, see Definition 2.

Definition 2. Let X be a space of points (objects), with a generic element in X denoted by x. A Single-Valued
Neutrosophic Set A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x). TA(x), IA(x), and FA(x) are elements of [0,1]. There is
no restriction on the sum of TA(x), IA(x), and FA(x), thus, 0 ≤TA(x)+IA(x) + FA(x) ≤ 3 (see [38]).

The domain of the single-valued neutrosophic sets does not surpass the limits of the interval [0,1].
This is a classical condition imposed in previous theories such as probability and fuzzy sets. Despite the
past, Smarandache in 2007 proposed the membership >1 and <0 and illustrated this proposal; see [39]
(pp. 92–93) and the example given in the introduction of this paper. In the following, the Single-Valued
Neutrosophic Oversets, Single-Valued Neutrosophic Undersets, and Single-Valued Neutrosophic Offsets are
formally defined.

Definition 3. Let X be a universe of discourse and the neutrosophic set A1⊂X. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership respectively,
of a generic element x∈X, with respect to the neutrosophic set A1:

T, I, F: X→[0, Ω], where Ω> 1 is called overlimit, T(x), I(x), F(x)∈[0, Ω]. A Single-Valued Neutrosophic
Overset A1 is defined as A1 =

{
(x, T(x), I(x), F(x)), x ∈ X

}
, such that there exists at least one element in A1

that has at least one neutrosophic component that is bigger than 1, and no element has neutrosophic components
that are smaller than 0 (see [31]).

Definition 4. Let X be a universe of discourse and the neutrosophic set A2⊂X. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership, respectively,
of a generic element x∈X, with respect to the neutrosophic set A2:

T, I, F: X→[Ψ, 1], where Ψ< 0 is called underlimit, T(x), I(x), F(x)∈[Ψ, 1]. A Single-Valued Neutrosophic
Underset A2 is defined as A2 =

{
(x, T(x), I(x), F(x)), x ∈ X

}
, such that there exists at least one element in A2

that has at least one neutrosophic component that is smaller than 0, and no element has neutrosophic components
that are bigger than 1 (see [31]).

Definition 5. Let X be a universe of discourse and the neutrosophic set A3⊂X. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership respectively,
of a generic element x∈X, with respect to the neutrosophic set A3:

T, I, F: X→[Ψ, Ω], where Ψ< 0 < 1 <Ω, Ψ is called underlimit, while Ω is called overlimit, T(x), I(x),
F(x)∈[Ψ, Ω]. A Single-Valued Neutrosophic Offset A3 is defined as A3 =

{
(x, T(x), I(x), F(x)), x ∈ X

}
, such

that there exists at least one element in A3 that has at least one neutrosophic component that is bigger than 1,
and at least another neutrosophic component that is smaller than 0 (see [31]).

Let us note that the oversets, undersets, and offsets cover the three possible cases to characterize.
Now, the logical operations over these kinds of sets have to be redefined, in view that the classical ones
cannot always be straightforwardly extended to these domains. This is the case of complement given
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by Smarandache in [31], whereas the union and intersection definitions do not change with respect to
those of single-valued neutrosophic sets. This is summarized below:

Let X be a universe of discourse, A =
{
(x, 〈TA(x), IA(x), FA(x)〉), x ∈ X

}
and B ={

(x, 〈TB(x), IB(x), FB(x)〉), x ∈ X
}

be two single-valued neutrosophic oversets/undersets/offsets.
TA, IA, FA, TB, IB, FB: X→[Ψ, Ω], where Ψ≤ 0< 1 ≤Ω, Ψ is the underlimit, whilst Ω is the overlimit,

TA(x), IA(x), FA(x),TB(x), IB(x), FB(x)∈[Ψ, Ω]. Let us remark that the three cases are here comprised,
viz., overset when Ψ = 0 and Ω>1, underset when Ψ< 0 and Ω = 1, and offset when Ψ< 0 and Ω> 1.

Then, the main operators are defined as follows:
A∪ B =

{
(x, 〈max(TA(x), TB(x)), min(IA(x), IB(x)), min(FA(x), FB(x))〉), x ∈ X

}
is the union.

A ∩ B =
{
(x, 〈min(TA(x), TB(x)), max(IA(x), IB(x)), max(FA(x), FB(x))〉), x ∈ X

}
is

the intersection,
C(A) =

{
(x, 〈FA(x), Ψ + Ω − IA(x), TA(x)〉), x ∈ X

}
is the neutrosophic complement of the

neutrosophic set.
Let us remark that when Ψ = 0 and Ω = 1, the precedent operators convert in the classical

ones. With regard to logical operators, e.g., n-norms and n-conorms, their redefinitions in the offsets
framework are not so evident. Below, definitions of offnegation, neutrosophic component n-offnorm,
and neutrosophic component n-offconorm are provided.

One offnegation can be defined as in Equation (1).

¬
O〈T, I, F〉 = 〈 F, ΨI + ΩI − I, T〉 (1)

Definition 6. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1.
The neutrosophic component n-offnorm Nn

O : [Ψ, Ω]2 → [Ψ, Ω] satisfies the following conditions for any
elements x, y, and z ∈MO:

i. Nn
O(c(x), Ψ) = Ψ, Nn

O(c(x), Ω) = c(x) (Overbounding Conditions),

ii. Nn
O(c(x), c(y)) = Nn

O(c(y), c(x)) (Commutativity),

iii. If c(x) ≤ c(y) then Nn
O(c(x), c(z)) ≤ Nn

O(c(y), c(z)) (Monotonicity),

iv. Nn
O

(
Nn

O(c(x), c(y)), c(z)
)
= Nn

O

(
c(x), Nn

O(c(y), c(z))
)

(Associativity).

To simplify the notation, sometimes we use 〈T1, I1, F1〉 ∧O 〈T2, I2, F2〉 =

〈T1
∧
O

T2, I1
∨
O

I2, F1
∨
O

F2〉 instead of Nn
O(·, ·).

Let us remark that the definition of the neutrosophic component n-offnorm is valid for every one
of the components, thus, we have to apply it three times. Also, Definition 6 contains the definition of
n-norm when Ψ = 0 and Ω = 1.

Proposition 1. Let Nn
O(·, ·) be a neutrosophic component n-offnorm, then, for any elements x, y ∈MO we have

Nn
O(c(x), c(y)) ≤ min(c(x), c(y)).

Proof. Because of the monotonicity of the neutrosophic component n-offnorm and one of the
overbounding conditions, we have Nn

O(c(x), c(y)) ≤ Nn
O(c(x), Ω) = c(x), hence Nn

O(c(x), c(y)) ≤ c(x)
and similarly Nn

O(c(x), c(y)) ≤ c(y) can be proved, therefore, Nn
O(c(x), c(y)) ≤ min(c(x), c(y)). �

See that Proposition 1 maintains this property of the n-norms. Likewise to the definition of
the neutrosophic component n-offnorm, in Definition 7 it is described the neutrosophic component
n-offconorm.
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Definition 7. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω ≥1.
The neutrosophic component n-offconorm Nco

O : [Ψ, Ω]2 → [Ψ, Ω] satisfies the following conditions for any
elements x, y, and z ∈MO:

i. Nco
O (c(x), Ω) = Ω, Nco

O (c(x), Ψ) = c(x) (Overbounding Conditions),

ii. Nco
O (c(x), c(y)) = Nco

O (c(y), c(x)) (Commutativity),

iii. If c(x) ≤ c(y) then Nco
O (c(x), c(z)) ≤ Nco

O (c(y), c(z)) (Monotonicity),

iv. Nco
O

(
Nco

O (c(x), c(y)), c(z)
)
= Nco

O

(
c(x), Nco

O (c(y), c(z))
)

(Associativity).

To simplify the notation sometimes we use 〈T1, I1, F1〉 ∨O 〈T2, I2, F2〉 =

〈T1
∨
O

T2, I1
∧
O

I2, F1
∧
O

F2〉 instead of Nco
O (·, ·).

Proposition 2. Let Nco
O (·, ·) be a neutrosophic component n-offconorm, then, for any elements x, y∈MO we have

Nco
O (c(x), c(y)) ≥ max(c(x), c(y)).

Proof. The proof is equivalent to the proof of Proposition 1. �

In this paper, we use the notion of lattice, based on the poset denoted by ≤O, where 〈T1, I1, F1〉 ≤O

〈T2, I2, F2〉 if and only if T2 ≥ T1, I2 ≤ I1 and F2 ≤ F1, where the infimum and the supremum of the set
are 〈Ψ, Ω, Ω〉 and 〈Ω, Ψ, Ψ〉, respectively.

One property that is preserved of n-norms is that the minimum is the biggest neutrosophic
component n-offnorm for TO, as it is demonstrated in Proposition 1. Proposition 2 proved that the
maximum is the smallest neutrosophic component n-offconorm for IO and FO when we consider ≤O.

Evidently, the minimum is a neutrosophic component n-offnorm and the maximum is a
neutrosophic component n-offconorm; see Example 1.

Example 1. An example of a pair offAND/offOR is, c(x)
∧

ZO
c(y) = min(c(x), c(y)) and c(x)

∨
ZO

c(y) =

max(c(x), c(y)), respectively.

Example 2. A pair of offAND/offOR is, c(x)
∧

LO
c(y) = max(Ψ, c(x) + c(y) −Ω) and c(x)

∨
LO

c(y) =

min(Ω, c(x) + c(y)), respectively.

Example 2 extends the Łukasiewicz t-norm and t-conorm to the neutrosophic offsets. Let us
remark that the simple product t-norm and its dual t-conorm cannot be extended to this new domain.

Finally, we recall the definition of neutrosophic uninorms that appeared in [25], see Definition 8.

Definition 8. A neutrosophic uninorm UN is a commutative, increasing, and associative
mapping, UN : (]−0, 1+[×]−0, 1+[×]−0, 1+[)2→ ]−0, 1+[×]−0, 1+[×]−0, 1+[ , such that
UN

(
x〈Tx, Ix, Fx〉, y〈Ty, Iy, Fy〉

)
= 〈UNT(x, y), UNI(x, y), UNF(x, y)〉, where UNT means the degree of

membership, UNI the degree of indeterminacy, and UNF the degree of non-membership of both x and y. Additionally, there
exists a neutral element e ∈ ]−0, 1+[×]−0, 1+[×]−0, 1+[, where ∀x ∈ ]−0, 1+[×]−0, 1+[×]−0, 1+[, UN(e, x) = x.

Let us observe that this definition can be restricted to single-valued neutrosophic sets. Neutrosophic
uninorms generalize n-norms, n-conorms, uninorms in L*-fuzzy set theory, and fuzzy uninorms.
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3. On Neutrosophic Offuninorms

This section contains the core of the present paper. It is devoted to exposing the definitions and
properties of the neutrosophic offuninorms.

Definition 9. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1.
The neutrosophic component n-offuninorm Nu

O : [Ψ, Ω]2 → [Ψ, Ω] satisfies the following conditions for any
elements x, y, and z ∈MO:

i. There exists c(e)∈MO, such that Nu
O(c(x), c(e)) = c(x) (Identity),

ii. Nu
O(c(x), c(y)) = Nu

O(c(y), c(x)) (Commutativity),

iii. If c(x) ≤ c(y) then Nu
O(c(x), c(z)) ≤ Nu

O(c(y), c(z)) (Monotonicity),

iv. Nu
O

(
Nu

O(c(x), c(y)), c(z)
)
= Nu

O

(
c(x), Nu

O(c(y), c(z))
)

(Associativity).

The definition of a neutrosophic uninorm is an especial case of neutrosophic offuninorm when
Ψ = 0 and Ω = 1 (see Definition 8) and, additionally, we are dealing with single-valued neutrosophic sets.

It is easy to prove that the neutral element e is unique.
Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1. Let us define

four useful functions, ϕ1 : [Ψ, c(e)]→ [Ψ, Ω] , ϕ−1
1 : [Ψ, Ω]→ [Ψ, c(e)] , ϕ2 : [c(e), Ω]→ [Ψ, Ω] ,

and ϕ−1
2 : [Ψ, Ω]→ [c(e), Ω], defined in Equations (2)–(5), respectively.

ϕ1(c(x)) =
(

Ω −Ψ
c(e) −Ψ

)
(c(x) −Ψ) + Ψ (2)

ϕ−1
1 (c(x)) =

(
c(e) −Ψ
Ω −Ψ

)
(c(x) −Ψ) + Ψ (3)

ϕ2(c(x)) =
(

Ω −Ψ
Ω − c(e)

)
(c(x) − c(e)) + Ψ (4)

ϕ−1
2 (c(x)) =

(
Ω − c(e)
Ω −Ψ

)
(c(x) −Ψ) + c(e) (5)

where, the superscript –1 means it is an inverse mapping. If the condition c(e) ∈ (Ψ, Ω) is fulfilled,
then the degenerate cases Ω = Ψ, c(e) = Ψ and c(e) = Ω are excluded. Therefore,ϕ1(c(x)) andϕ2(c(x)) are
well-defined non-constant linear functions. Thus, they are bijective and have inverse mappings defined
in Equations (3) and (5), respectively, in the sense that for c(x) ∈ [Ψ, Ω], then ϕ1

(
ϕ−1

1 (c(x))
)
= c(x)

and ϕ2
(
ϕ−1

2 (c(x))
)
= c(x). Whereas, for c(x) ∈ [Ψ, c(e)], we have ϕ−1

1 (ϕ1(c(x))) = c(x) and for
c(x) ∈ [c(e), Ω], ϕ−1

2 (ϕ2(c(x))) = c(x). These properties can be easily verified. Also, it is trivial that
they are non-decreasing mappings.

Additionally, let UC, UD : [Ψ, Ω]2 → [Ψ, Ω] be two operators defined by Equations (6) and
(7), respectively,

UC(c(x), c(y)) =



ϕ−1
1

(
ϕ1(c(x))

∧
O
ϕ1(c(y))

)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨
O
ϕ2(c(y))

)
, if c(x), c(y) ∈ [c(e), Ω]

min(c(x), c(y)), otherwise

(6)
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UD(c(x), c(y)) =



ϕ−1
1

(
ϕ1(c(x))

∧
O
ϕ1(c(y))

)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨
O
ϕ2(c(y))

)
, if c(x), c(y) ∈ [c(e), Ω]

max(c(x), c(y)), otherwise

(7)

where,
∧
O

denotes a neutrosophic component n-offnorm and
∨
O

denotes a neutrosophic component

n-offconorm.

Lemma 1. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1. Given
∧
O

a neutrosophic component n-offnorm and
∨
O

a neutrosophic component n-offconorm, let us consider

UC(c(x), c(y)) and UD(c(x), c(y)) the operators defined in Equations (6) and (7) for c(e) ∈ (Ψ, Ω). They are
commutative, non-decreasing, and c(e) is the neutral element.

Proof.

i. Commutativity is evidently satisfied due to the commutativity of
∧
O

,
∨
O

, min, and max.

ii. ϕ1(·), ϕ−1
1 (·), ϕ2(·), ϕ−1

2 (·), ∧
O

,
∨
O

, min and max are non-decreasing mappings, thus both

UC(·, ·) and UD(·, ·) satisfy monotonicity.
iii. To prove c(e) is the neutral element, we have two cases, which are the following:

• If c(x) ∈ [Ψ, c(e)] , then, UC(c(e), c(x)) = UD(c(e), c(x)) = ϕ−1
1

(
ϕ1(c(e))

∧
O
ϕ1(c(x))

)
=

ϕ−1
1

(
Ω
∧
O
ϕ1(c(x))

)
= ϕ−1

1 (ϕ1(c(x))) = c(x).

• If c(x) ∈ [c(e), Ω] , then UC(c(e), c(x)) = UD(c(e), c(x)) =

ϕ−1
2

(
ϕ2(c(e))

∨
O
ϕ2(c(x))

)
ϕ−1

2

(
Ψ
∨
O
ϕ2(c(x))

)
= ϕ−1

2 (ϕ2(c(x))) = c(x).

Therefore, identity is satisfied. �

Lemma 2. Let c be a neutrosophic component (TO, IO, or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1.

Given
∧
O

a neutrosophic component n-offnorm and
∨
O

a neutrosophic component n-offconorm, let us

consider UC(c(x), c(y)) and UD(c(x), c(y)) the operators defined in Equations (6) and (7) for c(e) ∈ (Ψ, Ω).
They are associative.

Proof. Four cases are possible:

i. Let c(x), c(y), c(z) ∈ [Ψ, c(e)] , then UC(UC(c(x), c(y)), c(z)) =

ϕ−1
1

(
ϕ1

(
ϕ−1

1

(
ϕ1(c(x))

∧
O
ϕ1(c(y))

)) ∧
O
ϕ1(c(z))

)
= ϕ−1

1

([
ϕ1(c(x))

∧
O
ϕ1(c(y))

] ∧
O
ϕ1(c(z))

)

= ϕ−1
1

(
ϕ1(c(x))

∧
O

[
ϕ1(c(y))

∧
O
ϕ1(c(z))

])
= ϕ−1

1

(
ϕ1(c(x))

∧
O

[
ϕ1

(
ϕ−1

1

[
ϕ1(c(y))

∧
O
ϕ1(c(z))

])])
=

ϕ−1
1

(
ϕ1(c(x))

∧
O
ϕ1(UC(c(y), c(z)))

)
= UC(c(x), UC(c(y), c(z))).

ii. Let c(x), c(y), c(z) ∈ [c(e), Ω] , UC(UC(c(x), c(y)), c(z)) =

ϕ−1
2

(
ϕ2

(
ϕ−1

2

(
ϕ2(c(x))

∨
O
ϕ2(c(y))

)) ∨
O
ϕ2(c(z))

)
= ϕ−1

2

([
ϕ2(c(x))

∨
O
ϕ2(c(y))

] ∨
O
ϕ2(c(z))

)
=
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ϕ−1
2

(
ϕ2(c(x))

∨
O

[
ϕ2(c(y))

∨
O
ϕ2(c(z))

])
= ϕ−1

2

(
ϕ2(c(x))

∨
O

[
ϕ2

(
ϕ−1

2

[
ϕ2(c(y))

∨
O
ϕ2(c(z))

])])
=

ϕ−1
2

(
ϕ2(c(x))

∨
O
ϕ2(UC(c(y), c(z)))

)
= UC(c(x), UC(c(y), c(z))). These proofs are also valid for UD.

iii. Let c(x), c(y) ∈ [Ψ, c(e)] and c(z) ∈ [c(e), Ω] , UC(UC(c(x), c(y)), c(z)) = min(UC(c(x), c(y)), c(z)) =

UC(c(x), c(y)). Also, we have UC(c(x), UC(c(y), c(z))) = UC(c(x), min(c(y), c(z))) = UC(c(x), c(y)),
then, it is associative.

iv. Let c(x), c(y) ∈ [c(e), Ω] and c(z) ∈ [Ψ, c(e)] , then UC(UC(c(x), c(y)), c(z)) =

min(UC(c(x), c(y)), c(z)) = c(z). In addition, UC(c(x), (UC(c(y), c(z)))) =

UC(c(x), min(c(y), c(z))) = UC(c(x), c(z)) = min(c(x), c(z)) = c(z).

Thus, UC satisfies the associativity.
Similarly, associativity of UD can be proved.

Let us remark that we applied the properties, c(x)
∧
O

c(y) ≤ min(c(x), c(y)) and c(x)
∨
O

c(y) ≥
max(c(x), c(y)), as well as UC(c(x), c(y)) ≤ c(e) if c(x), c(y) ∈ [Ψ, c(e)] and UC(c(x), c(y)) ≥ c(e) if
c(x), c(y) ∈ [c(e), Ω] . �

Proposition 3. Let c be a neutrosophic component (TO, IO, or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and

Ω≥1. Given
∧
O

a neutrosophic component n-offnorm and
∨
O

a neutrosophic component n-offconorm, let us

consider UC(c(x), c(y)) and UD(c(x), c(y)) the operators defined in Equations 6 and 7 for c(e) ∈ (Ψ, Ω).
Then, UC(c(x), c(y)) and UD(c(x), c(y)) are neutrosophic component n-offuninorms and they satisfy the
conditions UC(Ψ, Ω) = Ψ and UD(Ψ, Ω) = Ω, i.e., UC is a conjunctive neutrosophic component
n-offuninorm, and UD is a disjunctive neutrosophic component n-offuninorm.

Proof. Since Lemma 1, they are commutative, non-decreasing operators, and c(e) is the neutral element.
Since Lemma 2, they are associative operators. Moreover, it is easy to verify that UC(Ψ, Ω) = Ψ and
UD(Ψ, Ω) = Ω. �

Example 3. Two neutrosophic component n-offuninorms can be defined as:

UZC(c(x), c(y)) =



ϕ−1
1

(
ϕ1(c(x))

∧
ZO

ϕ1(c(y))
)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨
ZO

ϕ2(c(y))
)
, if c(x), c(y) ∈ [c(e), Ω]

min(c(x), c(y)), otherwise

UZD(c(x), c(y)) =



ϕ−1
1

(
ϕ1(c(x))

∧
ZO

ϕ1(c(y))
)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨
ZO

ϕ2(c(y))
)
, if c(x), c(y) ∈ [c(e), Ω]

max(c(x), c(y)), otherwise

where
∧

ZO
and

∨
ZO

were defined in the Example 1; c(e)∈(Ψ, Ω).

Then two examples of n-offuninorms are:U1(〈T1, I1, F1〉, 〈T2, I2, F2〉) =

〈UZC(T1, T2), UZD(I1, I2), UZD(F1, F2)〉 and U2(〈T1, I1, F1〉, 〈T2, I2, F2〉) =

〈UZD(T1, T2), UZC(I1, I2), UZC(F1, F2)〉.
They satisfy U1(〈Ψ, Ω, Ω〉, 〈Ω, Ψ, Ψ〉) = 〈Ψ, Ω, Ω〉 and U2(〈Ψ, Ω, Ω〉, 〈Ω, Ψ, Ψ〉) = 〈Ω, Ψ, Ψ〉.

42



Symmetry 2019, 11, 1136

Example 4. Two neutrosophic component n-offuninorms can be defined as

ULC(c(x), c(y)) =



ϕ−1
1

(
ϕ1(c(x))

∧
LO

ϕ1(c(y))
)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨
LO

ϕ2(c(y))
)
, if c(x), c(y) ∈ [c(e), Ω]

min(c(x), c(y)), otherwise

ULD(c(x), c(y)) =



ϕ−1
1

(
ϕ1(c(x))

∧
LO

ϕ1(c(y))
)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨
LO

ϕ2(c(y))
)
, if c(x), c(y) ∈ [c(e), Ω]

max(c(x), c(y)), otherwise

where
∧

LO
and

∨
LO

were defined in the Example 2; c(e)∈(Ψ, Ω).

Now, two examples of n-offuninorms are:U3(〈T1, I1, F1〉, 〈T2, I2, F2〉) =

〈ULC(T1, T2), ULD(I1, I2), ULD(F1, F2)〉 and U4(〈T1, I1, F1〉, 〈T2, I2, F2〉) =

〈ULD(T1, T2), ULC(I1, I2), ULC(F1, F2)〉.
They satisfy, U3(〈Ψ, Ω, Ω〉, 〈Ω, Ψ, Ψ〉) = 〈Ψ, Ω, Ω〉 and U4(〈Ψ, Ω, Ω〉, 〈Ω, Ψ, Ψ〉) = 〈Ω, Ψ, Ψ〉.

Remark 1. The neutrosophic components n-offuninorms defined by Equations (6) and (7) are idempotent, i.e.,
Nn

O(c(x), c(x)) = c(x), if and only if they are defined from idempotent neutrosophic component n-offnorms
and n-offconorms. Moreover, they are Archimedean, i.e., they satisfy both, Nu

O(c(x), c(x)) <O c(x) when
Ψ < c(x) < c(e) and c(x) <O Nu

O(c(x), c(x)) when c(e) < c(x) < Ω, if and only if the neutrosophic component
n-offnorm and n-offconorm are Archimedean. Let us observe that <O is the order < defined in the real line when
c(x) is TO(x) and it is > when c(x) is IO(x) or FO(x).

Proposition 4. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ< 0 and Ω> 1, and let
a neutrosophic component n-offuninormNu

O : [Ψ, Ω]2 → [Ψ, Ω] . Then, for every x, y ∈MO, a neutrosophic
component n-offnorm and a neutrosophic component n-offconorm are defined by Equations (8) and (9).

c(x)
∧

UO
c(y) = ϕ1

(
Nu

O

(
ϕ−1

1 (c (x)),ϕ−1
1 (c(y))

))
(8)

c(x)
∨

UO
c(y) = ϕ2

(
Nu

O

(
ϕ−1

2 (c(x)),ϕ−1
2 (c(y))

))
(9)

Proof. Evidently, both operators are commutative, since Nu
O is. Also, it is non-decreasing since Nu

O and
the functions in Equations (2)–(5) are. They are associative because of the associativity of Nu

O.

It is easy to verify that the overbounding conditions Ω
∧

UO
c(y) = c(y) and Ψ

∨
UO

c(y) = c(y)

are also satisfied.

Additionally, we have Ψ
∧

UO
c(y) = ϕ1

(
Nu

O

(
ϕ−1

1 (Ψ),ϕ−1
1 (c(y))

))
= ϕ1

(
Nu

O

(
Ψ,ϕ−1

1 (c(y))
))
≤

ϕ1
(
Nu

O(Ψ, c(e))
)

= ϕ1(Ψ) = Ψ, then, Ψ
∧

UO
c(y) = Ψ; also, Ω

∨
UO

c(y) =

ϕ2
(
Nu

O

(
ϕ−1

2 (Ω),ϕ−1
2 (c(y))

))
= ϕ2

(
Nu

O

(
Ω,ϕ−1

2 (c(y))
))
≥ ϕ2

(
Nu

O

(
Ω,ϕ−1

2 (Ψ)
))

= ϕ2
(
Nu

O(Ω, c(e))
)
=

ϕ2(Ω) = Ω, then, Ω
∨

UO
c(y) = Ω. �
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Proposition 5. Let (TO, IO, or FO), cO: MO→[Ψ, Ω] and (T, I, or F), cN: MN→[0,1] be a neutrosophic
component n-offset and a neutrosophic component, respectively. There exists a bijective mapping such that every
neutrosophic component n-offuninormis transformed into a neutrosophic component uninorm and vice versa.

Proof. Let us define the function ϕ3 : [Ψ, Ω]→ [0, 1] and its inverse ϕ−1
3 : [0, 1]→ [Ψ, Ω] , expressed

in Equations (10) and (11), respectively.

ϕ3(c(x)) =
c(x) −Ψ
Ω −Ψ

(10)

ϕ−1
3 (c(x)) = (Ω −Ψ)c(x) + Ψ (11)

Evidently, they are increasing bijective mappings.
If ÛN(·, ·) is a neutrosophic uninorm, then we can define the neutrosophic component n-offuninorm

N̂
u
O(·, ·) as follows:

N̂
u
O(cO(x), cO(y)) = ϕ−1

3

(
ÛN(ϕ3(cO(x)),ϕ3(cO(y)))

)

Conversely, if we have N̂
u
O(·, ·), we can define ÛN(·, ·) as follows:

ÛN(cN(x), cN(y)) = ϕ3
(

N̂
u
O

(
ϕ−1

3 (cN(x)),ϕ−1
3 (cN(y))

))

Then, it is easy to prove that N̂
u
O(cO(x), cO(y)) is a neutrosophic component n-offuninorm

and ÛN(cN(x), cN(y)) is a neutrosophic component uninorm. Moreover, the relationship between
the components of their neutral elements cO(eO) and cN(eN) is cN(eN) = ϕ3(cO(eO)) and thus
cO(eO) = ϕ−1

3 (cN(eN)). �

Let us remark that we maintain the definition of inverse mapping that we explained in Equations (3)
and (5).

In agreement with Proposition 5, many predefined neutrosophic uninorms can be used to define
n-offuninorms. In turn, fuzzy uninorms can be used to define neutrosophic uninorms, thus, it is simply
necessary to find examples in the field of fuzzy uninorms; see further Section 4.1. First, let us make
reference to some properties of n-offuninorms.

Proposition 6. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ,
Ω], where Ψ≤ 0 and Ω≥1. Given the neutrosophic component n-offuninorm
Nu

O : [Ψ, Ω]2 → [Ψ, Ω] and the offuninorm UO : [Ψ, Ω]3 × [Ψ, Ω]3 → [Ψ, Ω]3

defined from Nu
O(·, ·), UO(〈TO(x), IO(x), FO(x)〉, 〈TO(y), IO(y), FO(y)〉) =

〈Nu
O(TO(x), TO(y)), Nu

O(IO(x), IO(y)), Nu
O(FO(x), FO(y))〉, satisfies the following properties for

any x = 〈TO(x), IO(x), FO(x)〉, denoting ΨO = 〈Ψ, Ω, Ω〉 and ΩO = 〈Ω, Ψ, Ψ〉:
1. UO(ΨO, ΨO) = ΨO and UO(ΩO, ΩO) = ΩO.
2. If c(e),Ψ, Ω, then, UO(ΨO, ΩO) = UO(UO(ΨO, ΩO), x)
3. If c(e),Ψ,Ω, then either UO(ΨO, ΩO) = ΨO or UO(ΨO, ΩO) = ΩO or UO(ΨO, ΩO) is≤O-incomparable

respect to e = 〈TO(e), IO(e), FO(e)〉.
4. If there exists y = 〈TO(y), IO(y), FO(y)〉, such that either x ≤O e ≤O y or y ≤O e ≤O x, then,

min(x, y) ≤O UO(x, y) ≤O max(x, y).

Proof.

1. Since Nu
O(Ψ, c(e)) = Ψ and Nu

O(Ω, c(e)) = Ω and considering that Nu
O(Ψ, ·) and Nu

O(Ω, ·) are
non-decreasing, the result is trivial. Then, UO(ΨO, ΨO) = ΨO and UO(ΩO, ΩO) = ΩO.

2. First suppose c(x) ≤ c(e), then Nu
O(Ψ, c(x)) ≤ Nu

O(Ψ, c(e)) = Ψ, therefore Nu
O(Ψ, c(x)) =

Ψ, thus Nu
O(Ψ, Ω) = Nu

O

(
Nu

O(Ψ, c(x)), Ω
)
= Nu

O

(
Ω, Nu

O(Ψ, c(x))
)
= Nu

O

(
Nu

O(Ω, Ψ), c(x)
)
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= Nu
O

(
Nu

O(Ψ, Ω), c(x)
)
. See that we applied the commutativity and associativity of

Nu
O(·, ·). Now, suppose c(e) ≤ c(x), then Nu

O(c(x), Ω) ≥ Nu
O(c(x), Ω) = Ω, therefore,

Nu
O(c(x), Ω) = Ω, and Nu

O(Ψ, Ω) = Nu
O

(
Ψ, Nu

O(c(x), Ω)
)

= Nu
O

(
Nu

O(Ω, Ψ), c(x)
)
.

Suppose x and e = TO(e), IO(e), FO(e) are ≤O-incomparable, i.e., x �O e and

e �O x. Then,
x
∧
O

e = min(TO(x), TO(e)), max(IO(x), IO(e)), max(FO(x), FO(e)) ≤O x

≤O max(TO(x), TO(e)), min(IO(x), IO(e)), min(FO(x), FO(e)) = x
∨
O

e
Then,

according to the previous results we have UO(ΨO, ΩO) = UO

(
UO(ΨO, ΩO), x

∧
O

e
)

=

UO

(
UO(ΨO, ΩO), x

∨
O

e
)
, thus, for the increasing condition of UO(·, ·) it is satisfied

UO(ΨO, ΩO) = UO(UO(ΨO, ΩO), x). Then, we proved UO(ΨO, ΩO) = UO(UO(ΨO, ΩO), x).
3. Suppose UO(ΨO, ΩO) is ≤O-comparable respect to e, then, if UO(ΨO, ΩO) ≤O e since the previous

proof UO(ΨO, ΩO) = UO(UO(ΨO, ΩO), ΨO) = ΨO. If e ≤O UO(ΨO, ΩO) then UO(ΨO, ΩO) =

UO(UO(ΨO, ΩO), ΩO) = ΩO.
4. Let us assume without loss of generality that x ≤O e ≤O y, then, x = UO(x, e) ≤O UO(x, y) ≤O

UO(e, y) = y. �

When c1: MO→[Ψ1, Ω1] and c2: MO→[Ψ2, Ω2] are two neutrosophic components, such that
Ψ1,Ψ2 or Ω1,Ω2, satisfying that at least one of Ψ1 and Ψ2 is smaller than 0, or at least one of Ω1 and
Ω2 is bigger than 1, then, a neutrosophic component n-offuninorm aggregates both of them, according
to the interpretation we have to obtain.

For example, if c1: MO→[–1,1] and c2: MO→[0,1], and the first one means the relationship
between two variables like the linear regression coefficient and the second one represents a
classical probability, if we need to obtain the aggregation in [–1,1] in the framework of variable
relationships, then after transforming c2 : MO → [0, 1] to ĉ2 : MO → [−1, 1] , we aggregate c1 and ĉ2

using Nu
O : [−1, 1]2 → [−1, 1] , only in the case that it makes sense to rescale c2, otherwise, because

[0,1] ⊂[–1,1], we can apply Nu
O : [−1, 1]2 → [−1, 1] over c1 and c2.

However, if we need to obtain a classical probabilistic interpretation, then we aggregate c2:
MO→[0,1] and ĉ1 : MO → [0, 1] , where ĉ1 is a transformation obtained from c1: MO→[−1, 1].

Example 5. Let us revisit Example 3 with U1 : [−0.7, 1.2]3 × [−0.7, 1.2]3 → [−0.7, 1.2]3 and neutral
element e = 〈−0.5, 0, 0〉, defined as U1(〈T1, I1, F1〉, 〈T2, I2, F2〉) = 〈UZC(T1, T2), UZD(I1, I2), UZD(F1, F2)〉.
Then, we have:

ULC(TO(x), TO(y)) =
{

max(TO(x), TO(y)), if TO(x), TO(y) ∈ [−0.5, 1.2]
min(TO(x), TO(y)), otherwise

ULD(IO(x), IO(y)) =
{

min(IO(x), IO(y)), if IO(x), IO(y) ∈ [−0.7, 0]
max(IO(x), IO(y)), otherwise

ULD(FO(x), FO(y)) =
{

min(FO(x), FO(y)), if FO(x), FO(y) ∈ [−0.7, 0]
max(FO(x), FO(y)), otherwise

Let us aggregate the elements of A =
{
(x1, 〈1.2, 0.4,−0.1〉), (x2, 〈0.2, 0.3,−0.7〉)} by using U1(·, ·),

then, U1((x1, 〈1.2, 0.4,−0.1〉), (x2, 〈0.2, 0.3,−0.7〉)) = 〈ULC(1.2, 0.2), ULD(0.4, 0.3), ULD(−0.1,−0.7)〉 =
〈1.2, 0.4,−0.7〉.
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4. Applications

In the following, we illustrate the applicability of the present investigation aided by three areas
of application.

4.1. N-Offuninorms and MYCIN

Let us start with the parameterized Silvert uninorms, see [40]:

uNλ(cN(x), cN(y)) =


λcN(x)cN(y)

λcN(x)cN(y)+(1−cN(x))(1−cN(y)) , if (cN(x), cN(y)) ∈ [0, 1]2\{(0, 1), (1, 0)
}

0, otherwise

where λ > 0 and cN(eλ) = 1
λ+1 . To convert this family to the equivalent one defined into

[−1, 1] we have to apply the Equations in Proposition 5. Then, it is obtained uOλ(cO(x), cO(y)) =
(λ−1)(1+cO(x)cO(y))+(λ+1)(cO(x)+cO(y))
(λ+1)(1+cO(x)cO(y))+(λ−1)(cO(x)+cO(y))

, if (cO(x), cO(y)) ∈ [−1, 1]2\{(−1, 1), (1, −1)
}

0, otherwise
where cO(eλ) = 1−λ

1+λ .

Let us note that lim
λ→0+

cO(eλ) = 1 and lim
λ→+∞

cO(eλ) = −1. Therefore, the closer λ approximates

to 0, the closer uOλ(·, ·) performs like a neutrosophic component n-offnorm; whereas, the greater λ,
the closer uOλ(·, ·) performs like a neutrosophic component n-offconorm.

An additional consequence of these assertions is that inequalities 0<λ1<λ2 imply
uOλ1(cO(x), cO(y)) < uOλ2(cO(x), cO(y)).

Applying Equations (2)–(5) to the conditions of the present example, the following transformations
are obtained:

ϕ̂1λ(cO(x)) = (1 + λ)cO(x) + λ, ϕ̂−1
1λ(cO(x)) =

cO(x)−λ
1+λ , ϕ̂2λ(cO(x)) =

(1+λ)cO(x)−1
λ and

ϕ̂−1
2λ(cO(x)) =

λcO(x)+1
1+λ .

Then, a neutrosophic component n-offnorm and a neutrosophic component n-offconorm are
defined from Equations (8) and (9), as follows:

c(x)
∧
λO

c(y) = ϕ̂1λ
(
uOλ

(
ϕ̂−1

1λ(c(x)), ϕ̂
−1
1λ(c(y))

))
and c(x)

∨
λO

c(y) =

ϕ̂2λ
(
uOλ

(
ϕ̂−1

2λ(c(x)), ϕ̂
−1
2λ(c(y))

))
, respectively.

Other properties of uOλ(·, ·) are the following:

1. uOλ(cO(x),−cO(x)) =
{ λ−1

1+λ , if cO(x) ∈ (−1, 1)
−1, otherwise

2. uOλ(·, ·) is Archimedean. To prove it, given cO(x) < cO(eλ), then uOλ(cO(x), cO(x)) ≤
uOλ(cO(x), cO(eλ)) = cO(x) and if cO(x) > cO(eλ), uOλ(cO(x), cO(x)) ≥ uOλ(cO(x), cO(eλ)) =

cO(x).

To prove those inequalities are strict, let us suppose the equation

uOλ(cO(x), cO(x)) =
(λ−1)(1+c2

O(x))+2(λ+1)cO(x)

(λ+1)(1+c2
O(x))+2(λ−1)cO(x)

= cO(x) holds, or equivalently (λ− 1)
(
1 + c2

O(x)
)
+

2(λ+ 1)cO(x) = cO(x)
[
(λ+ 1)

(
1 + c2

O(x)
)
+ 2(λ− 1)cO(x)

]
, thus, (λ− 1)

(
1− c2

O(x)
)
+

(λ+ 1)cO(x)
(
1− c2

O(x)
)
= 0 and finally,

(
1− c2

O(x)
)
(λ− 1 + (λ+ 1)cO(x)) = 0, hence the solutions are

cO(x) = ±1 and cO(x) = cO(eλ). Then, we conclude it is Archimedean.
A remarkable case is λ = 1, which converts into Equation (12).

uO1(cO(x), cO(y)) =


cO(x)+cO(y)

1+cO(x)cO(y) , if (cO(x), cO(y)) ∈ [−1, 1]2\{(−1, 1), (1, −1)
}

−1, otherwise
(12)

uO1(·, ·) is the function called PROSPECTOR which aggregates hypothesis values or Certainty
Factors (CF) related to MYCIN, the well-known medical Expert System; nevertheless, the function
used in MYCIN is undefined for the arguments (−1, 1) and (1, −1), see [32–34]. Summarizing, we can
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say that PROSPECTOR is a neutrosophic component n-offuninorm, such that cO(e1) = 0, which is an
effective and widely used aggregation operator.

uO1(·, ·) means the combination of the CFs of two independent experts about the hypothesis
H. CF = –1.0 means expert has 100% evidence against H and CF = 1.0 means he or she has 100%
evidence to support H. The smaller the CF, the greater the evidence against H; the larger the CF,
the greater the evidence supporting H; whereas evidence with degree close to 0 means a borderline
degree of evidence. Here, uO1(cO(x),−cO(x)) = 0, where uO1(−1, 1) = uO1(1,−1) = −1 for meaning
that the 100% contradiction is assessed as 100% against H. The original uO1(·, ·) in [32] accepts they
are undefined.

Another function is the Modified Combining Function C(x,y), see [34], defined as

C(x, y) =



x + y(1− x), if min(x, y) ≥ 0
x+y

1−min(|x|,|y|) , if min(x, y) < 0 < max(x, y)

x + y(1 + x), if max(x, y) ≤ 0

The components n-offnorm and n-offconorm obtained from the PROSPECTOR are the following:

cO(x)
∧

1O
cO(y) =

4(cO(x)+cO(y)−2)
4+(cO(x)−1)(cO(y)−1) + 1 and cO(x)

∨
1O

cO(y) =
4(cO(x)+cO(y)+2)

4+(cO(x)+1)(cO(y)+1) − 1,

respectively, see Figures 1 and 2.
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Figure 1. Depiction of the neutrosophic component n-offnorm generated by uO1(·, ·).

Hitherto we mostly calculated on neutrosophic components, nevertheless n-offuninorms
have to be defined for the three components altogether. For example, given x, y ∈ [−1, 1]3,
UNλ(x, y) = 〈uOλ1(TO(x), TO(y)), uOλ2(IO(x), IO(y)), uOλ3(FO(x), FO(y))〉 is an n-offuninorm, which
evidently it is not conjunctive, neither is it disjunctive, see that UNλ(〈−1, 1, 1〉, 〈1,−1,−1〉) =

〈−1,−1,−1〉.
Conjunctive and disjunctive neutrosophic component n-offuninorms were illustrated in Example

3; see also Example 5. Example 6 is a hypothetical example to explain the use of this theory in a
real-life situation.

Example 6. Three physicians, denoted by A, B, and C, have to emit a criterion about a patient’s disease which
suffers from somewhat confusing symptoms. They agree that the Certainty Factor is the better way to express
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their opinions. They use single-valued neutrosophic offsets, instead of a simple CF to increase the accuracy of
the criteria.

After a discussion, they are convinced that it is most likely that the patient has either a thyroid
disease or an infectious one. The treatment for each disease is different each other. Therefore, they have
two hypotheses; one is HT which means the patient has thyroid disease and HI that patient has an
infectious disease.
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Physician A thinks that the probability they are dealing with a thyroid disease is AT = <−0.6, 0.4,
0.6> and that it is an infectious disease is AI = <0.8, −0.5, −0.8>, thus, A is 60% against HT and 40%
undecided about it; however, A is 80% in favor of HI and 50% sure about it.

Similarly, we have that B’s criteria are, BT = <−0.1, −0.2,0.1> and BI = <0.1, 0.8, −0.1>, whereas C’s
criteria are CT = <0.7, 0.1, −0.2> and CI = <−0.6, −0.3, 0.7>.

To decide what is the strongest hypothesis, HT or HI, they select the well-known PROSPECTOR
function used in MYCIN (see Equation (12)) for each component.

Thus, for HT we have an aggregated value equal to <0.073684, 0.31064, 0.53043> and for HI it
is <0.46667, 0.23529, −0.32>, therefore, evidently, the infectious disease is the strongest hypothesis,
because 〈0.073684, 0.31064, 0.53043〉 <O 〈0.46667, 0.23529, −0.32〉.

Despite we proved in Proposition 5 that neutrosophic uninorms are mathematically equivalent to
offuninorms, it is worthwhile to remark that the reason for using an interval different of [0, 1] is that it
could be useful to model real-life problems. The present example is a good one to explain that reason.
The advantages arise from the accuracy and compactness of an expert’s information. In this example,
from an expert’s viewpoint, it is easier to express opinions in the scale [−1, 1] with the aforementioned
meaning than in the scale [0, 1], which is less clear. Information compactness is given because of only a
single offset is semantically equivalent to at least two neutrosophic sets.

Additionally, because of the significance of functions like uO1(·, ·) and C(x,y), which were used as
aggregation functions in that well-known expert system, some authors have extended the domain of
fuzzy uninorms to any interval [a, b], not necessarily restricted to a = 0 and b = 1; see [33,34].

This fact supports the usefulness of the present work, where for the first time the precedent ideas
on extending the truth values beyond the scope of [0, 1] naturally associate with the offset concept
maintaining the original definitions of the aggregation functions used in MYCIN.

Another powerful reason is the applicability of uO1(·, ·) and C(x,y), and hence of the fuzzy
uninorms defined in [a, b], as threshold functions of artificial neurons in Artificial Neural Networks,
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as well as to Fuzzy Cognitive Maps, which are used in fields like decision making, forecasting, and
strategic planning [33].

Such applications of uninorms in the fuzzy domain can be explored in the framework of
neutrosophy theory, e.g., in Artificial Neural Networks based on neutrosophic sets, in Neutrosophic
Cognitive Maps, among others [36,37].

4.2. N-Offuninorms and Implicators

Fuzzy uninorms are used to define implicators (see [41], pp. 151–160). This application was
extended to neutrosophic uninorms ([25]). To extend the implication operator in the offuninorm
framework, first, we need to consider the notion of offimplication, which has been defined symbolically.

The Symbolic Neutrosophic Offlogic Operators or briefly the Symbolic Neutrosophic Offoperators extend
the Symbolic Neutrosophic Logic Operators, where every one of T, I, F has an under and an over
version (see [31], pp. 132–139).

TO = Over Truth,
TU = Under Truth;
IO = Over Indeterminacy,
IU = Under Indeterminacy;
FO = Over Falsehood,
FU = Under Falsehood.
Let SN = {TO, T, TU, IO, I, IU, FO, F, FU} be the set of neutrosophic symbols, an order is defined in

SN as follows: if ‘<’ denotes “more important than”, we have the following order, TU < IU < FU < F <
I < T < FO < IO < TO, where −∞ < TU < IU < FU < 0, 0 ≤ F < I < T ≤ 1 and 1 < FO < IO < TO < +∞;
see Figure 3. Let us note that the proposed order is not the unique one, it depends on the decision
maker’s objective.
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Let us observe that I is the center of the elements according to <. For every α ∈ SN, the symbolic
neutrosophic offcomplement is denoted by CO(α) and it is defined as the symmetric element respect
to the median centered in I, e.g., CSO(FO) = FU and CSO(F) = T, hence, given α ∈ SN its symbolic

neutrosophic offnegation is
¬

SO
α = CSO(α).

Additionally, for any α, β ∈ SN the symbolic neutrosophic offconjunction is defined as α
∧

SO
β =

min(α, β), the symbolic neutrosophic offdisjunction is defined as α
∨

SO
β = max(α, β), whereas the

symbolic neutrosophic offimplication is defined in Equation (13).

α
→
SO

β =

( ¬
SO

α

) ∨
SO

β (13)

In this paper, we redefine some of the symbolic neutrosophic offoperators to the continuous
quantitative domain. Given α ∈ [Ψ, Ω], where Ψ < 0 or Ω > 1, the neutrosophic offnegation is defined by
Equation (14).

¬
O
α =

{
min{Ω, 1−α}, if α ≤ 0.5
max{Ψ, 1−α}, if α > 0.5

(14)

The neutrosophic offnegation satisfies the following properties:
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1. It is a non-increasing operator, which extends the classical negation operator in fuzzy logic theory.
It is strictly decreasing when Ω + Ψ = 1.

2. It extends the notion of symbolic neutrosophic offnegation because satisfies the following
properties:

2.1 It is centered in 0.5, i.e.,
¬
O

0.5 = 0.5, therefore I = 0.5.

2.2 If α ∈ [0, 1], then
¬
O
α ∈ [0, 1],

¬
O

0 = 1 and
¬
O

1 = 0, which is the usual negation

operator in fuzzy logic.

2.3 If α < 0, then
¬
O

α ≥ 1.
¬
O

α = 1 only when Ω = 1.

2.4 If α > 1, then
¬
O

α ≤ 0.
¬
O

α = 0 only when Ψ = 0.

2.5 When Ω + Ψ = 1, we have
¬
O

Ψ = Ω and
¬
O

Ω = Ψ.

3. If Ω + Ψ = 1, then
¬
O
¬
O

α = α, for every α ∈ [Ψ, Ω].

The precedent properties are easy to demonstrate.

Hence, the definition of offimplication
→
O

: [Ψ, Ω]3 × [Ψ, Ω]3 → [Ψ, Ω]3 is defined in Equation

(15), for every α,β ∈ [Ψ, Ω]3.

α
→
O
β = 〈Nco

O

( ¬
O

TO(α), TO
(
β
))

, Nn1
O

( ¬
O

IO(α), IO
(
β
))

, Nn2
O

( ¬
O

FO(α), FO
(
β
))
〉 (15)

where, Nni
O (·, ·) i = 1, 2 are neutrosophic components n-offnorms, Nco

O (·, ·) is a neutrosophic component

n-offconorm, and
O

is the offnegation defined in Equation (14).

Equation (15) is generalized by using offuninorms, see Equation (16).

α
→

UO
β = 〈Nu1

O

( ¬
O

TO(α), TO
(
β
))

, Nu2
O

( ¬
O

IO(α), IO
(
β
))

, Nu3
O

( ¬
O

FO(α), FO
(
β
))
〉 (16)

where Nui
O (·, ·) for i = 1, 2, and 3 are neutrosophic components n-offuninorms.

Example 7. One illustrative example of Equation (16) is obtained revisiting Section 4.1, by defining the
following neutrosophic component n-offnorm:

uO(cO(x), cO(y)) =


3(cO(x)+1)(cO(y)+1)

(cO(x)+1)(cO(y)+1)+(2−cO(x))(2−cO(y)) − 1, if (cO(x), cO(y)) ∈ [−1, 2]2\{(−1, 2), (2, −1)
}

−1, otherwise

This is the transformation of Silvert uninorms to the domain [−1, 2]2 applying the functions in
Equations (10) and (11), and the transformation in Proposition 5. Also, let us take UZD(c(x), c(y)) of
Example 3. See that [−1, 2] is symmetric respect to 0.5, and the neutral element is 0.5.

Then, we study the offuninorm defined in the following equation:UO(α,β) =

〈UZD(TO(α), TO(β)), uO(IO(α), IO(β)), uO(FO(α), FO(β))〉 for α = 〈TO(α), IO(α), FO(α)〉 and
β = 〈TO(β), IO(β), FO(β)〉 in [−1, 2]3.

Thus, we define the offimplication generated by UO(·, ·) according to Equation (16) as follows:
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α
→
UO

β = 〈UZD

( ¬
O

TO(α), TO
(
β
))

, uO

( ¬
O

IO(α), IO
(
β
))

, uO

( ¬
O

FO(α), FO
(
β
))
〉.

where in this case we have UZD
(
TO(α), TO

(
β
))
=


min

(
TO(α), TO

(
β
))

, if TO(α), TO
(
β
)
∈

[
−1, 1

2

]

max
(
TO(α), TO

(
β
))

, otherwise
,

see Figure 4, and uO(·, ·) models the neutrosophic n-components IO and FO, see Figure 5.
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This offimplicator satisfies the overbounding conditions

〈−1, 2, 2〉 →
UO
〈−1, 2, 2〉 = 〈−1, 2, 2〉 →

UO
〈2, −1, −1〉 = 〈 2, −1, −1〉 →

UO
〈2, −1, −1〉 = 〈2, −1, −1〉,

whereas, 〈2, −1, −1〉 →
UO
〈−1, 2, 2〉 = 〈−1, 2, 2〉.

Also, 〈0, 1, 1〉 →
UO
〈0, 1, 1〉 = 〈 1, 0, 0〉 →

UO
〈1, 0, 0〉 = 〈1, 0.5, 0.5〉,

〈0, 1, 1〉 →
UO
〈1, 0, 0〉 = 〈1, −0.4, −0.4〉 and 〈1, 0, 0〉 →

UO
〈0, 1, 1〉 = 〈0, 1.4, 1.4〉. Additionally,

〈0.5, 0.5, 0.5〉 →
UO
〈0.5, 0.5, 0.5〉 = 〈0.5, 0.5, 0.5〉 because 0.5 is the neutral element of every neutrosophic

component n-offuninorm and
¬
O

0.5 = 0.5.
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It is easy to check that substituting uO(·, ·) by UZC(·, ·) in
→
UO

, we obtain the more classical

equations 〈0, 1, 1〉 →
UO
〈0, 1, 1〉 = 〈1, 0, 0〉 →

UO
〈1, 0, 0〉 = 〈0, 1, 1〉 →

UO
〈1, 0, 0〉 = 〈1, 0, 0〉 and

〈1, 0, 0〉 →
UO
〈0, 1, 1〉 = 〈0, 1, 1〉.

4.3. N-Offuninorms and Voting Games

The applicability of uninorms to solve group decision problems is evident. However, the use of
them as part of a game theory solution is not so obvious. This subsection is devoted to solving voting
games based on n-offuninorms.

A cooperative game with transferable utility consists of a pair (N,v), where N = {1, 2, . . . ,n} is a
non-empty set of players,n ∈ N and v: 2N→R, i.e., v(·) is a function of the power set of N such that each
coalition or S⊆ N is associated with a real number. v is called characteristic function and v(S) represents
the conjoint payoff of players in S. Additionally, v(∅) = 0 (see [42], p. 2).

A simple game models voting situations. It is a cooperative game such that for every coalition S,
either v(S) = 0 or v(S) = 1, and v(N) = 1 (see [42], p. 7).

One solution is the Shapley–Shubik index, which is the Shapley value to simple games (see [42],
pp. 6–7). The equation of Shapley value is the following:

φi(v) =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [v(S∪ {i}) − v(S)] (17)

where |S| is the cardinality of coalition S, |N| is the cardinality of the set of players or grand coalition and
φi(v) is the value assigned to player i in the game.

This is the unique solution which satisfies the following axioms:

• ∑
i∈N
φi(v) = v(N) (Efficiency),

• If i, j∈N are interchangeable in v, then φi(v) = φ j(v) (Symmetry),

• If i is such that for every coalition S the equation v(S ∪ {i}) = v(S) holds, then φi(v) = 0 (Dummy),
• Given v and w two games over N, then φi(v + w) = φi(v) +φi(w) (Additivity).

This value is the sum of the terms [v(S∪ {i}) − v(S)], which mean the marginal contribution of

player i to the coalitions S, multiplied by |S|!(|N|−|S|−1)!
|N|! which is the probability that |S| − 1 players

precede player i in the game and |N| − |S| players follow him or her. Thus, the Shapley value of i is the
expected marginal contribution of i to the game (see [42], p. 7). The result of the Shapley–Shubik index
is interpreted as a measure of each player’s power.

In the present paper we basically study voting games with some additional features. We call them
voting n-offgames. A voting n-offgame consists in a pair (N, v), where N = {1, 2, . . . , n} is the set of players;
the characteristic function v: 2N→{1, . . . , 2n} × {1, . . . , 2n} × {1, . . . , 2n} is such that for any coalition
S we have v(S) = (k,l,2n-k+1) and v(∅) = (2n, 2n,1).

The n-offgame is interpreted in the following way:

1. Experts forecast that voters will rank coalition S in the kth position of their preference, also they
cannot decide if S will be ranked in the lth position. The first place or k = 1 corresponds to the
preferred coalition of all and so on. Additionally, the n-offgame must satisfy the following rules:

2. Given any two coalitions S1 and S2, S1,S2, we have the first component that both v(S1) and v(S2)
are different. Thus, every coalition is associated with a unique number in the order of preference.

3. v(S) = (k,k,2n– k+1) means experts have no doubt that coalition S will be voted in the kth position.

Let us observe that it is not a simple game. This game can be interpreted as a multicriteria
decision-making problem, where its solution is a measure of every player’s power in the game
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according to the forecasted experts’ ranking of the coalitions. Each coalition can represent a bloc of
political parties.

Shapley value can be the solution to voting n-offgames, in the form given in Equation (18):

φi(v) = −
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [v(S∪ {i}) − v(S)] (18)

Let us note that the minus sign in the expression was taken for convenience because the rank
we applied is decreasing respect to the coalition´s significance. Additionally, v(S∪ {i}) − v(S) is the
difference between two 3-tuple values, thus the operation (k1, l1, 2n− k1+1)−(k2, l2, 2n−k2+1):= (k1−
k2, l1− l2, k2− k1) is defined. Equation (18) means the expected number of places won or lost in voter
preference, as predicted by experts.

Apparently, Shapley value cannot be the solution to this problem because v(∅) , 0 and v(·) is not a
game. However, if we take in that v(S) = (k,l,2n – k+1) in fact represents three games, namely, v1(S)=k,
v2(S)= l, and v3(S) =2n– k+1, one per component and additionally taking into account they are linear
transformations of three games with characteristic functions w1, w2,, and w3; where w1(S)= 2n− v1(S),
w2(S)= 2n− v2(S), and w 3(S) = 1 − v3(S), then, the marginal contributions of the three pairs, w1(·) and
v1(·), w2(·) and v2(·), w3(·) and v3(·), are the same except for the sign. Thus, these three pairs have the
same Shapley value except for the sign and therefore this property is extended to v(·) and w(·).

Shapley value is a rational solution to the game, nevertheless, it can differ from actual human
behavior, as Zhang et al. suggested in [43] to model restrictions in game decisions according to the
human behavior based on fuzzy uninorms. Therefore, we propose n-offuninorms to explore other
behaviors in human decision making by recursively applying an n-offuninorm to every pair of values
|S|!(|N|−|S|−1)!

|N|! [v(S) − v(S∪ {i})] in the set of S ⊆ N\{i}.
Here we explore n-offuninorms defined on [−L, L], L = 2n−1 and with the PROSPECTOR

parameterized function with λ> 0 and neutral element e = L
(

1−λ
1+λ

)
, see Equation (19).

UOλ(c(x), c(y)) = ϕ−1
3

(
λϕ3(c(x))ϕ3(c(y))

λϕ3(c(x))ϕ3(c(y)) + (1−ϕ3(c(x)))(1−ϕ3(c(y)))

)
(19)

where ϕ3(·) and ϕ−1
3 (·) are those defined in Equations (10) and (11), respectively, and now they are

ϕ3(c(x)) =
c(x)+L

2L and ϕ−1
3 (c(x)) = 2Lc(x) − L.

Thus the Algorithm for solving voting n-offgames can be described as follows:

Algorithm 1. Algorithm for solving voting n-offgames

1. Given (N, v) a voting n-offgame. Fix λ > 0.
2. Fix player i = 1.
3. Let Sj be the set of coalitions not containing i, and j = 1, 2, . . . , 2n−1. Let us take ai1 = v(S1) and ai2 = v(S2)

and calculate aprev = UOλ

( |S1 |!(n−|S1 |−1)!
n! [v(S1) − v(S1 ∪ {i})], |S2 |!(n−|S2 |−1)!

n! [v(S2) − v(S2 ∪ {i})]
)
, fix j = 3

and go to step 4.

4. If j<2n−1, calculate acurr = UOλ

(
aprev, |S j|!(n−|S j|−1)!

n!

[
v
(
S j

)
− v

(
S j ∪ {i}

)])
. aprev = acurr and j = j + 1. Repeat

this step. Else, if j = 2n−1, πi(v) = acurr. Go to Step 5.
5. If i< n, then i = i+ 1 and go to Step 3. Else Finish.

Let us point out that in the precedent algorithm the associativity of n-offuninorms was used.
Moreover, the algebraic sum in Shapley value and the n-offuninorms yield to somewhat similar
results. Thus, for Uoλ(·,·) with λ = 1, we have that x, y < 0 imply both Uoλ(x,y)<min(x,y) and x+y<

min(x,y), whereas when x, y > 0, we have Uoλ(x,y)>max(x,y) and x+y> max(x,y). For x,y satisfying
x·y<0, then both Uoλ(x,y) and x+y are compensatory operators, and finally 0 is the neutral element of
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them. For λ, 1 and hence e, 0, we obtain other behavioral effects. Let us also recall that Uoλ(·,·) is a
neutrosophic uninorm transformation, which is described as symmetric summation by Silvert in [40].

Example 8. Let us consider the 3-person voting n-offgame (N, v), where N = {1, 2, 3} and experts predict that
coalitions will be ranked according to the positions shown in Table 1.

Table 1. Position assigned to the coalitions of the 3-person voting n-offgame.

Coalition Ranking

∅ (8,8,1)
{1} (3,2,6)
{2} (4,3,5)
{3} (7,6,2)

{1,2} (2,3,7)
{1,3} (5,6,4)
{2,3} (6,5,3)

{1,2,3} (1,1,8)

According to Table 1, the grand coalition N has (1,1,8) as ranking value, i.e., experts think this
coalition will undoubtedly be ranked in the first place or k = 1. v(∅) = (8,8,1) because it is axiomatically
predetermined, which means that to not negotiate at all is the worst option, whereas v({2,3}) = (6,5,3)
means this coalition shall be ranked in the sixth place and maybe in the fifth one, but never in the
third place.

Thus, to calculate each player´s power according to our approach we have to apply the precedent
algorithm. We fixed λ=1 in UOλ therefore c(e)= 0, which is defined in [−7, 7].

Table 2 contains the detailed calculus of the Shapley value in Equation (18) and the proposed
algorithm to resolve the precedent voting n-offgame.

Table 2. Shapley value and n-offuninorm based solutions to the 3-person voting n-offgame. The final
values are written in bold font.

Playeri SSuch That
i<S v(S)–v(S∪{i})

v(S)–v(S∪{i})
Multiplied by
the Probability

Partial Summations
of the Shapley

Value

Partial Aggregation
with Uo1

1 ∅ (5,6,−5) (5/3, 2,−5/3) (5/3,2,−5/3) (5/3,2,−5/3)
{2} (2,0,−2) (1/3,0,−1/3) (2,2,−2) (1.9776,2.0000,−1.9776)
{3} (2,0,−2) (1/3,0,−1/3) (7/3,2,−7/3) (2.2802,2.0000,−2.2802)

{2,3} (5,4,−5) (5/3,4/3,−5/3) (4,10/3,−4) (3.6628,3.1613,−3.6628)

2 ∅ (4,5,−4) (4/3,5/3,−4/3) (4/3,5/3,−4/3) (4/3,5/3,−4/3)
{1} (1,−1,−1) (1/6,-1/6,−1/6) (3/2,3/2,−3/2) (1.4932,1.5086,−1.4932)
{3} (1,1,−1) (1/6,1/6,−1/6) (5/3,5/3,−5/3) (1.6515,1.6667,−1.6515)

{1,3} (4,5,−4) (4/3,5/3,−4/3) (3,10/3,−3) (2.8565,3.1545,−2.8565)

3 ∅ (1,2,−1) (1/3,2/3,−1/3) (1/3,2/3,−1/3) (1/3,2/3,−1/3)
{1} (-2,−4,2) (-1/3,−2/3,1/3) (0,0,0) (0,0,0)
{2} (-2,−2,2) (-1/3,−1/3,1/3) (-1/3,−1/3,1/3) (−1/3,−1/3,1/3)

{1,2} (1,2,−1) (1/3,2/3,−1/3) (0,1/3,0) (0,0.33485,0)

According to the results summarized in Table 1, we have that the expected value of places gains by
player 1 is 4 with the Shapley value solution and 3.6628 with Uo1, whereas the results for player 2 are 3
and 2.8565, respectively, and for player 3 are 0 and 0. Therefore, player 1 is the most powerful of them,
followed by player 2 and 3 in this order. Thus, the proposed approach and Shapley value are similar.

Table 3 contains the voting n-offgame solutions comparing Uo1 with c(e) = 0, Uo99/101 with
c(e) = 7/100 and Uo101/99 with c(e) = −7/100.

54



Symmetry 2019, 11, 1136

Table 3. Solutions of the 3-person voting n-offgame applying Uoλ with λ = 1, 99/101 and
101/99, respectively.

Player Solution with Uo1 Solution with Uo99/101 Solution with Uo101/99

1 (3.6628,3.1613,−3.6628) (3.5079,2.9919,−3.8129) (3.8129,3.3262,−3.5079)
2 (2.8565,3.1545,−2.8565) (2.6793,2.9849,−3.0293) (3.0293,3.3196,−2.6793)
3 (0,0.33485,0) (−0.20994,0.12509,−0.20994) (0.20994,0.54402,0.20994)

The solutions in Table 3 prove that the greater λ, the greater the solution values. Thus, when λ is
increased, its associated solution models more optimistic behavior with respect to the first component,
which is compensated with more pessimistic behavior with respect to the third component.

The advantages of the proposed approach are more evident when it is compared with a classical
one restricted to {0, 1}. Here we used a semantic represented with natural numbers and we calculated
directly on them. In contrast, for applying classical definitions in {0, 1}, we would need to define eight
Boolean functions, one per element. What is more, some operations such as marginal contributions,
which is an algebraic difference, cannot be directly applied in the logic sense.

In case we would need to extend the approaches to the continuous gradation, then a continuous
ranking can be modeled with the identity line Id(x) = x, but in the classical approach, eight memberships
functions would have to be considered, where the simplest ones are triangular (see Figure 6).
From Figure 6 we can infer that there exists a transformation between both models; however,
the proposed model is the simplest one.Symmetry 2019, 11, x FOR PEER REVIEW 22 of 25 
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5. Discussion

Neutrosophic oversets, undersets, and offsets are concepts of a novel and non-conventional theory
of uncertainty. Historically, the convention of restricting logic to the interval [0, 1] has dominated fuzzy
logic and its generalizations. Possibly this is a legacy of probability and mathematical logic, where,
semantically speaking, 0 and 1 have been considered the two extreme opposite sides. Therefore, oversets,
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undersets, and offsets can be understood as controversial subjects. Nevertheless, Smarandache in [31]
illustrates with some examples that such sets, of which their domains surpass the scope of [0, 1],
could be useful to represent knowledge in a valid semantic.

This is a recent theory that needs more developing and the scientific community’s acknowledgment
of its usefulness. One of our aims with this paper is to demonstrate that this theory can be useful.
To achieve this end, we introduced the uninorm theory in the neutrosophic offset framework. This union
is manifold advantageous, the most evident one being that we have provided a new aggregator operator
to these sets. As we mentioned in the introduction, there exists a wide variety of fuzzy uninorm
applications, namely, Decision Making [9,14,15], DNA and RNA fusion [9], logic [17], Artificial Neural
Networks [16], among others. Uninorm is more flexible than t-norm and t-conorm because it includes
the compensatory property in some cases, which is more realistic for modeling human decision making,
as was experimentally proved by Zimmermann in [21].

Also, uninorms have enriched other theories when they were generalized to other frameworks.
In L*-fuzzy set theory [23], uninorms also aggregate independent non-membership functions to
achieve more precision. Moreover, neutrosophic uninorms aggregate the indeterminate-membership
functions [25].

Additionally, some authors have associated uninorms with non-conventional theories. In [33,34]
we can find some attempts to extend uninorm domains to an interval [a, b]. The reason is that the
PROSPECTOR function related to the MYCIN Expert System is one very important milestone in
Artificial Intelligence history. The point is that the PROSPECTOR function is basically a uninorm
except it is defined in the interval [−1, 1], thus, we can consider intervals greater than [0, 1]. They have
argued that there exist two reasons to maintain the interval [−1, 1]—the first one is the importance of
the PROSPECTOR function, the second one is the facility to interchange information among users and
decision makers in form of degrees to accept or reject hypotheses.

The second non-conventional approach is the bipolar or Multi-Polar uninorms defined in [24].
The world is (and some people are) is evidently multi-polar; in case of bipolarity they are modeled
in [−1, 1]. Especially in [24], we have a multi-polar space consisting of an ordered pair of (k, x),
where k∈{1, 2, . . . , n} represents a category or class and x∈(0, 1], with the convention 0 = (k, 0) for
every category. This is a more complex representation that takes a unique interval [−n, n] where,
for x∈[−n, n], the function round(x) represents the category and its fractional part represents the degree
of membership to that category. This is a real extension of bipolarity in [−1, 1] to multi-polarity. In [31]
(pp. 127, 130) Tripolar offsets and Multi-polar offsets are defined. We illustrated in Example 8 that
considering the semantic values belong to {−n,−n+1, . . . , 0, 1, . . . , n} could be advantageous.

The definition of uninorm-based implicators is not new in literature, they can be seen in [41]
(pp. 151–160) for fuzzy uninorms, in [17] it is extended for type 2 fuzzy sets, in [24] for L*-fuzzy set theory,
and in [25] for neutrosophic uninorms. In the present paper, uninorm-based offimplicators are defined,
however, we only counted on symbolic offimplication operators (see [31], p. 139). To extend this
definition to a continuous framework, we had to extend the symbolic offnegation to a continuous one.

Finally, we preferred to illustrate a voting game solution instead of a group decision method
because the relationship of offuninorms with the latter subject is predictable. However, to find any
game theory associated with uninorms is uncommon in literature. One remarkable example can be
seen in [43], where a behavioral approach has been made to certain kind of games, where uninorms
model the humans’ restrictions to make the division of gains among the players.

In the present paper, another approach is proposed where an indeterminacy component is taken
into account. Also, we proved that modeling with a natural number semantic is simpler than to utilize
the classical [0, 1] interval, because of the fact that n membership functions can be substituted by a
linear identity function. We basically defined the voting game solution since the Shapley–Shubik index
components (see [42], pp. 6–7), where we only changed the algebraic sum by offuninorms. The classical
approaches such as the Shapley–Shubik index are interested in a rational and fair solution; nevertheless,
many times that does not occur in real negotiations and then behavioral solutions are needed.
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6. Conclusions

This paper was devoted to defining for the first time the theory of neutrosophic offuninorms,
which is a generalization of both the neutrosophic offnorms and neutrosophic offconorms, where the
neutral element lays in the interval [Ψ, Ω]. The properties of these novel operators were proved.
Moreover, we defined neutrosophic offuninorms from neutrosophic offnorms and neutrosophic
offconorms and vice versa, we also proved their properties. Additionally, we proved the relationship
between neutrosophic offuninorms and neutrosophic uninorms.

One of the purposes of this paper is to show the convenience of applying offsets, and to prove that
they are not only simple theoretical concepts; furthermore, they are also necessary to define new concepts.
This need is demonstrated in this paper by associating offsets with the PROSPECTOR aggregation
function, where it is recommendable to extend its domain to the interval [−1, 1]. Some authors in fuzzy
logic have suggested the advantages to calculate in the domains [a, b] instead of the classical [0, 1].
Therefore, the use of the idea of the offset in uninorms has some precedence in fuzzy logic.

Additionally, we recommend offsets because they permit more accuracy and compactness.
We showed that it is possible to define offimplication operators based on offuninorms. A future
direction of this research is to solve problems by using artificial neural networks based on neutrosophic
offuninorms, such that neutrosophic offuninorms are utilized as the threshold functions in the neurons
or in neutrosophic cognitive maps. For the first time, solutions to cooperative games are defined in the
neutrosophic framework—this is an area that it is worthy of development.
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Next, we define the ordinary single valued neutrosophic neighborhood system and we show that
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ordinary single valued neutrosophic base and one characterization of an ordinary single valued
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1. Introduction

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization of an ordinary set.
In 1986, Chang [2] was the first to introduce the notion of a fuzzy topology by using fuzzy sets.
After that, many researchers [3–13] have investigated several properties in fuzzy topological spaces.

However, in their definitions of fuzzy topology, fuzziness in the notion of openness of a fuzzy
set was absent. In 1992, Samanta et al. [14,15] introduced the concept of gradation of openness
(closedness) of fuzzy sets in X in two different ways, and gave definitions of a smooth topology and
a smooth co-topology on X satisfying some axioms of gradation of openness and some axioms of
gradation of closedness of fuzzy sets in X, respectively. After then, Ramadan [16] defined level sets
of a smooth topology and smooth continuity, and studied some of their properties. Demirci [17]
defined a smooth neighborhood system and a smooth Q-neighborhood system, and investigated
their properties. Chattopadhyay and Samanta [18] introduced a fuzzy closure operator in smooth
topological spaces. In addition, they defined smooth compactness in the sense of Lowen [8,9],
and obtained its properties. Peters [19] gave the concept of initial smooth fuzzy structures and
found its properties. He [20] also introduced a smooth topology in the sense of Lowen [8] and proved
that the collection of smooth topologies forms a complete lattice. Al Tahan et al. [21] defined a
topology such that the hyperoperation is pseudocontinuous, and showed that there is no relation in
general between pseudotopological and strongly pseudotopological hypergroupoids. In addition,
Onassanya and Hošková-Mayerová [22] investigated some topological properties of α-level subsets’
topology of a fuzzy subset. Moreover, Çoker and Demirci [23], and Samanta and Mondal [24,25]
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defined intuitionistic gradation of openness (in short IGO) of fuzzy sets in Šostak’s sense [26] by
using intuitionistic fuzzy sets introduced by Atanassov [27]. They mainly dealt with intuitionistic
gradation of openness of fuzzy sets in the sense of Chang. However, in 2010, Lim et al. [28] investigated
intuitionistic smooth topological spaces in Lowen’s sense. Recently, Kim et al. [29] studied continuities
and neighborhood systems in intuitionistic smooth topological spaces. In addition, Choi et al. [30]
studied an interval-valued smooth topology by gradation of openness of interval-valued fuzzy sets
introduced by Gorzalczany [31] and Zadeh [32], respectively. In particular, Ying [33] introduced
the concept of the topology (called a fuzzifying topology) considering the degree of openness of
an ordinary subset of a set. In 2012, Lim et al. [34] studied general properties in ordinary smooth
topological spaces. In addition, they [35–37] investigated closures, interiors and compactness in
ordinary smooth topological spaces.

In 1998, Smarandache [38] defined the concept of a neutrusophic set as the generalization of
an intuitionistic fuzzy set. Salama et al. [39] introduced the concept of a neutrosophic crisp set and
neutrosophic crisp relation (see [40] for a neutrosophic crisp set theory). After that, Hur et al. [41,42]
introduced categories NSet(H) and NCSet consisting of neutrosophic sets and neutrosophic crisp sets,
respectively, and investigated them in a topological universe view-point. Smarandache [43] defined the
notion of neutrosophic topology on the non-standard interval and Lupiáñez proved that Smarandache’s
definitions of neutrsophic topology are not suitable as extensions of the intuitionistic fuzzy topology
(see Proposition 3 in [44,45]). In addition, Salama and Alblowi [46] defined a neutrosophic topology
and obtained some of its properties. Salama et al. [47] defined a neutrosophic crisp topology and
studied some of its properties. Wang et al. [48] introduced the notion of a single valued neutrosophic
set. Recently, Kim et al. [49] studied a single valued neutrosophic relation, a single valued neutrosophic
equivalence relation and a single valued neutrosophic partition.

In this paper, we define an ordinary single valued neutrosophic topology and obtain some of
its basic properties. In addition, we introduce the concept of an ordinary single valued neutrosophic
subspace. Next, we define the ordinary single valued neutrosophic neighborhood system and we show
that an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.

2. Preliminaries

In this section, we introduce the concepts of single valued neutrosophic set, the complement of a
single valued neutrosophic set, the inclusion between two single valued neutrosophic sets, the union
and the intersection of them.

Definition 1 ([43]). Let X be a non-empty set. Then, A is called a neutrosophic set (in sort, NS) in X, if A has
the form A = (TA, IA, FA), where

TA : X →]−0, 1+[, IA : X →]−0, 1+[, FA : X →]−0, 1+[.

Since there is no restriction on the sum of TA(x), IA(x) and FA(x), for each x ∈ X,

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Moreover, for each x ∈ X, TA(x) (resp., IA(x) and FA(x)) represent the degree of membership (resp.,
indeterminacy and non-membership) of x to A.

61



Symmetry 2019, 11, 1075

From Example 2.1.1 in [17], we can see that every IFS (intutionistic fuzzy set) A in a non-empty
set X is an NS in X having the form

A = (TA, 1− (TA + FA), FA),

where (1− (TA + FA))(x) = 1− (TA(x) + FA(x)).

Definition 2 ([43]). Let A and B be two NSs in X. Then, we say that A is contained in B, denoted by A ⊂ B,
if, for each x ∈ X, in f TA(x) ≤ in f TB(x), sup TA(x) ≤ sup TB(x), in f IA(x) ≥ in f IB(x), sup IA(x) ≥
sup IB(x), in f FA(x) ≥ in f FB(x) and sup FA(x) ≥ sup FB(x).

Definition 3 ([48]). Let X be a space of points (objects) with a generic element in X denoted by x. Then,
A is called a single valued neutrosophic set (in short, SVNS) in X, if A has the form A = (TA, IA, FA),
where TA, IA, FA : X → [0, 1].

In this case, TA, IA, FA are called truth-membership function, indeterminacy-membership function,
falsity-membership function, respectively, and we will denote the set of all SVNSs in X as SVNS(X).

Furthermore, we will denote the empty SVNS (resp. the whole SVNS] in X as 0N (resp. 1N) and define by
0N(x) = (0, 1, 1) (resp. 1N = (1, 0, 0)), for each x ∈ X.

Definition 4 ([48]). Let A ∈ SVNS(X). Then, the complement of A, denoted by Ac, is an SVNS in X defined
as follows: for each x ∈ X,

TAc(x) = FA(x), IAc(x) = 1− IA(x) and FAc(x) = TA(x).

Definition 5 ([50]). Let A, B ∈ SVNS(X). Then,
(i) A is said to be contained in B, denoted by A ⊂ B, if, for each x ∈ X,

TA(x) ≤ TB(x), IA(x) ≥ IB(x) and FA(x) ≥ FB(x),

(ii) A is said to be equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.

Definition 6 ([51]). Let A, B ∈ SVNS(X). Then,
(i) the intersection of A and B, denoted by A ∩ B, is a SVNS in X defined as:

A ∩ B = (TA ∧ TB, IA ∨ IB, FA ∨ FB),

where (TA ∧ TB)(x) = TA(x) ∧ TB(x), (FA ∨ FB) = FA(x) ∨ FB(x), for each x ∈ X,
(ii) the union of A and B, denoted by A ∪ B, is an SVNS in X defined as:

A ∪ B = (TA ∨ TB, IA ∧ IB, FA ∧ FB).

Remark 1. Definitions 5 and 6 are different from the corresponding definitions in [48].

Result 1 ([51], Proposition 2.1). Let A, B ∈ SVNS(X). Then,
(1) A ⊂ A ∪ B and B ⊂ A ∪ B,
(2) A ∩ B ⊂ A and A ∩ B ⊂ B,
(3) (Ac)c = A,
(4) (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

The following are immediate results of Definitions 5 and 6.

Proposition 1. Let A, B, C ∈ SVNS(X). Then,
(1) (Commutativity) A ∪ B = B ∪ A, A ∩ B = B ∩ A,
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(2) (Associativity) A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C,
(3) (Distributivity) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
(4) (Idempotency) A ∪ A = A, A ∩ A = A,
(5) (Absorption) A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A,
(6) (DeMorgan’s laws) (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc,
(7) A ∩ 0N = 0N , A ∪ 1N = 1N ,
(8) A ∪ 0N = A, A ∩ 1N = A.

Definition 7 (see [46]). Let {Aα}α∈Γ ⊂ SVNS(X). Then,
(i) the union of {Aα}α∈Γ, denoted by

⋃
α∈Γ Aα, is a single valued neutrosophic set in X defined as follows:

for each x ∈ X,
(
⋃

α∈Γ
Aα)(x) = (

∨

α∈Γ
TAα

(x),
∧

α∈Γ
IAα

(x),
∧

α∈Γ
FAα

(x)),

(ii) the intersection of {Aα}α∈Γ, denoted by
⋂

α∈Γ Aα, is a single valued neutrosophic set in X defined
as follows: for each x ∈ X,

(
⋂

α∈Γ
Aα)(x) = (

∧

α∈Γ
TAα

(x),
∨

α∈Γ
IAα

(x),
∨

α∈Γ
FAα

(x)).

The following are immediate results of the above definition.

Proposition 2. Let A ∈ SVNS(X) and let {Aα}α∈Γ ⊂ SVNS(X). Then,
(1) (Generalized Distributivity)

A ∪ (
⋂

α∈Γ
Aα) =

⋂

α∈Γ
(A ∪ Aα), A ∩ (

⋃

α∈Γ
Aα) =

⋃

α∈Γ
(A ∩ Aα),

(2) (Generalized DeMorgan’s laws)

(
⋃

α∈Γ
Aα)

c =
⋂

α∈Γ
Ac

α, (
⋂

α∈Γ
Aα)

c =
⋃

α∈Γ
Ac

α.

3. Ordinary Single Valued Neutrosophic Topology

In this section, we define an ordinary single valued neutrosophic topological space and obtain
some of its properties. Throughout this paper, we denote the set of all subsets (resp. fuzzy subsets) of
a set X as 2X (resp. IX).

For Tα, Iα, Fα ∈ I, α = (Tα, Iα, Fα) ∈ I × I × I is called a single valued neutrosophic value. For two
single valued neutrosophic values α and β,

(i) α ≤ β iff Tα ≤ Tβ, Iα ≥ Iβ and Fα ≥ Fβ,
(ii) α < β iff Tα < Tβ, Iα > Iβ and Fα > Fβ.
In particular, the form α∗ = (α, 1− α, 1− α) is called a single valued neutrosophic constant.
We denote the set of all single valued neutrosophic values (resp. constant) as SVNV (resp. SVNC)

(see [49]).

Definition 8. Let X be a nonempty set. Then, a mapping τ = (Tτ , Iτ , Fτ) : 2X → I × I × I is called
an ordinary single valued neutrosophic topology (in short, osvnt) on X if it satisfies the following axioms:
for any A, B ∈ 2X and each {Aα}α∈Γ ⊂ 2X ,

(OSVNT1) τ(φ) = τ(X) = (1, 0, 0),
(OSVNT2) Tτ(A ∩ B) ≥ Tτ(A) ∧ Tτ(B), Iτ(A ∩ B) ≤ Iτ(A) ∨ Iτ(B),

Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B),
(OSVNT3) Tτ(

⋃
α∈Γ Aα) ≥

∧
α∈Γ Tτ(Aα), Iτ(

⋃
α∈Γ Aα) ≤

∨
α∈Γ Iτ(Aα),

Fτ(
⋃

α∈Γ Aα) ≤
∨

α∈Γ Fτ(Aα).
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The pair (X, τ) is called an ordinary single valued neutrosophic topological space (in short, osvnts). We
denote the set of all ordinary single valued neutrosophic topologies on X as OSVNT(X).

Let 2 = {0, 1} and let τ : 2X → 2× 2× 2 satisfy the axioms in Definition 8. Since we can consider
as (1, 0, 0) = 1 and (0, 1, 1) = 0, τ ∈ T(X), where T(X) denotes the set of all classical topologies on X.
Thus, we can see that T(X) ⊂ OSVNT(X).

Example 1. (1) Let X = {a, b, c}. Then, 2X = {φ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. We define the
mapping τ : 2X → I × I × I as follows:

τ(φ) = τ(X) = (1, 0, 0),
τ({a}) = (0.7, 0.3, 0.4), τ({b}) = (0.6, 0.2, 0.3), τ({c}) = (0.8, 0.1, 0.2),
τ({a, b}) = (0.6, 0.3, 0.4), τ({b, c}) = (0.7, 0.1, 0.2), τ({a, c}) = (0.8, 0.2, 0.3).

Then, we can easily see that τ ∈ OSVNT(X).
(2) Let X be a nonempty set. We define the mapping τφ : 2X → I × I × I as follows: for each A ∈ 2X ,

τφ(A) =

{
(1, 0, 0) if either A = φ or A = X,
(0, 1, 1) otherwise.

Then, clearly, τφ ∈ OSVT(X).
In this case, τφ (resp. (X, τφ)) is called the ordinary single valued neutrosophic indiscrete topology on X

(resp. the ordinary single valued neutrosophic indiscrete space].
(3) Let X be a nonempty set. We define the mapping τX : 2X → I × I × I as follows: for each A ∈ 2X ,

τX(A) = (1, 0, 0).

Then, clearly, τX ∈ OSVNT(X).
In this case, τX (resp. (X, τX)) is called the ordinary single valued neutrosophic discrete topology on X

(resp. the ordinary single valued neutrosophic discrete space].
(4) Let X be a set and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1 and Iα, Fα ∈ I0. We define

the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or Ac is finite,
α otherwise.

Then, we can easily see that τ ∈ OSVNT(X).
In this case, τ is called the α-ordinary single valued neutrosophic finite complement topology on X and will

be denoted by OSVNCo f (X). OSVNCo f (X) is of interest only when X is an infinite set because if X is finite,
then OSVNCo f (X) = τφ.

(5) Let X be an infinite set and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1 and Iα, Fα ∈ I0.
We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or Ac is countable,
α otherwise.

Then, clearly, τ ∈ OSVNT(X).
In this case, τ is called the α-ordinary single valued neutrosophic countable complement topology on X and

is denoted by OSVNCoc(X).
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(6) Let T be the topology generated by S = {(a, b] : a, b ∈ R, a < b} as a subbase, let T0 be the family of all
open sets of R with respect to the usual topology on R and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1

and Iα, Fα ∈ I0. We define the mapping τ : 2R → I × I × I as follows: for each A ∈ IR,

τ(A) =





(1, 0, 0) if A ∈ T0,
α if A ∈ T \ T0,
(0, 1, 1) otherwise.

Then, we can easily see that τ ∈ OSVNT(X).
(7) Let T ∈ T(X). We define the mapping τT : 2X → I × I × I as follows : for each A ∈ 2X ,

τT(A) =

{
(1, 0, 0) if A ∈ T,
(0, 1, 1) otherwise.

Then, it is easily seen that τT ∈ OSVNT(X). Moreover, we can see that if T is the classical indiscrete
topology, then τT = τφ and if T is the classical discrete topology, then τT = τX .

Remark 2. (1) If I = 2, then we can think that Definition 8 also coincides with the known definition of
classical topology.

(2) Let (X, τ) be an osvnsts. We define two mappings [ ]τ, < > τ : 2X → I × I × I, respectively,
as follows : for each A ∈ 2X ,

([ ]τ)(A) = (Tτ(A), Iτ(A), 1− Tτ(A)), (< > τ)(A) = (1− Fτ(A), Iτ(A), Fτ(A)).

Then, we can easily see that [ ]τ, < > τ ∈ OSVNT(X).

Definition 9. Let X be a nonempty set. Then, a mapping C = (µC , νC) : 2X → I × I × I is called an
ordinary single valued neutrosophic cotopology (in short, osvnct) on X if it satisfies the following conditions:
for any A, B ∈ 2X and each {Aα}α∈Γ ⊂ 2X ,

(OSVNCT1) C(φ) = C(X) = (1, 0, 0),
(OSVNCT2) TC(A ∪ B) ≥ TC(A) ∧ TC(B), IC(A ∪ B) ≤ IC(A) ∨ IC(B),

FC(A ∪ B) ≤ FC(A) ∨ FC(B),
(OSVNCT3) TC(

⋂

α∈Γ
Aα) ≥

∧

α∈Γ
TC(Aα), IC(

⋂

α∈Γ
Aα) ≤

∨

α∈Γ
IC(Aα),

FC(
⋂

α∈Γ
Aα) ≤

∨

α∈Γ
FC(Aα).

The pair (X, C) is called an ordinary single valued neutrosophic cotopological space (in short, osvncts).

The following is an immediate result of Definitions 8 and 9.

Proposition 3. We define two mappings f : OSVNT(X) → OSVNCT(X) and g : OSVNCT(X) →
OSVNT(X) respectively as follows:

[ f (τ)](A) = τ(Ac) for any τ ∈ OSVNT(X) and any A ∈ 2X

and
[g(C)](A) = C(Ac) for any C ∈ OSVNCT(X) and any A ∈ 2X .

Then, f and g are well-defined. Moreover, g ◦ f = 1OSVNT(X) and f ◦ g = 1OSVNCT(X).

Remark 3. (1) For each τ ∈ OSVNT(X) and each C ∈ OSVNCT(X), let f (τ) = Cτ and g(C) = τC . Then,
from Proposition 3, we can see that τCτ

= τ and CτC = C.
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(2) Let (X, C) be an osvncts. We define two mappings [ ]C, < > C : 2X → I × I × I, respectively,
as follows: for each A ∈ 2X ,

([ ]C)(A) = (TC(A), IC(A), 1− TC(A)), (< > C)(A) = (1− FC(A), IC(A), FC(A)).

Then, we can easily see that [ ]C, < > C ∈ OSVNCT(X).

Definition 10. Let τ1 , τ2 ∈ OSVNT(X) and let C1, C2 ∈ OSVNCT(X).
(i) We say that τ1 is finer than τ2 or τ2 is coarser than τ1 , denoted by τ2 � τ1 , if τ2(A) ≤ τ1(A), i.e.,

for each A ∈ 2X ,
Tτ2

(A) ≤ Tτ1
(A), Iτ2

(A) ≥ Iτ1
(A), Fτ2

(A) ≥ Fτ1
(A).

(ii) We say that C1 is finer than C2 or C2 is coarser than C1, denoted by C2 � C1, if C2(A) ≤ C1(A), i.e.,
for each A ∈ 2X ,

TC2
(A) ≤ TC1

(A), IC2
(A) ≥ IC1

(A), FC2
(A) ≥ FC1

(A).

We can easily see that τ1 is finer than τ2 if and only if Cτ1
is finer than Cτ2

, and (OSVNT(X),�)
and (OSVNCT(X),�) are posets, respectively.

From Example 1 (2) and (3), it is obvious that τφ is the coarsest ordinary single valued neutrosophic
topology on X and τX is the finest ordinary single valued neutrosophic topology on X.

Proposition 4. If {τα}α∈Γ ⊂ OSVNT(X), then
⋂

α∈Γ τα ∈ OSVNT(X),
where [

⋂
α∈Γ τα ](A) = (

∧
α∈Γ Tτα

(A),
∨

α∈Γ Iτα
(A),

∨
α∈Γ Fτα

(A)), ∀ A ∈ 2X .

Proof. Let τ =
⋂

α∈Γ τα and let α ∈ Γ. Since τα ∈ OSVNT(X), τα(X) = τα(φ) = (1, 0, 0), i.e.,

Tτα
(X) = Tτα

(φ) = 1, Iτα
(X) = Iτα

(φ) = 0, Fτα
(X) = Fτα

(φ) = 0.

Then, Tτ(X) =
∧

α∈Γ Tτα
(X) = 1, Iτ(X) =

∨
α∈Γ Iτα

(X) = 0 = Fτ(X). Similarly, we have Tτ(φ) = 1,
Iτ(φ) = 0 = Fτ(φ). Thus, the condition (OSVNT1) holds.

Let A, B ∈ 2X . Then,

Tτ(A ∩ B) =
∧

α∈Γ Tτα
(A ∩ B) [By the definition of τ]

≥ ∧α∈Γ(Tτα
(A) ∧ Tτα

(B)) [Since τα ∈ OSVNT(X)]
= (

∧
α∈Γ Tτα(A)) ∧ (

∧
α∈Γ Tτα(B))

= Tτ(A) ∧ Tτ(B) [By the definition of τ]

and

Iτ(A ∩ B) =
∨

α∈Γ Iτα
(A ∩ B) [By the definition of τ]

≤ ∨α∈Γ(Iτα
(A) ∨ Iτα

(B)) [Since τα ∈ OSVNT(X)]
= (

∨
α∈Γ Iτα(A)) ∨ (

∨
α∈Γ Iτα(B))

= Iτ(A) ∨ Iτ(B). [By the definition of τ]

Similarly, we have Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B). Thus, the condition (OSVNT2) holds:
Now, let {Aj}j∈J ⊂ 2X . Then,

Tτ(
⋃

j∈J Aj) =
∧

α∈Γ Tτα
(
⋃

j∈J Aj) [By the definition of τ]
≥ ∧α∈Γ(

∧
j∈J Tτα

(Aj)) [Since τα ∈ OSVNT(X)]
=
∧

j∈J(
∧

α∈Γ Tτα
(Aj))

=
∧

j∈J [
⋂

α∈Γ Tτα
](Aj) [By the definition of τ]

=
∨

j∈J Tτ(Aj)

and
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Iτ(
⋃

j∈J Aj) =
∨

α∈Γ Iτα
(
⋃

j∈J Aj) [By the definition of τ]
≤ ∨α∈Γ(

∨
j∈J Iτα

(Aj)) [Since τα ∈ OSVNT(X)]
=
∨

j∈J(
∨

α∈Γ Iτα
(Aj))

=
∨

j∈J [
⋃

α∈Γ Iτα
](Aj) [By the definition of τ]

=
∨

j∈J Iτ(Aj).

Similarly, we have Fτ(
⋃

j∈J Aj) ≤
∨

j∈J Fτ(Aj). Thus, the condition (OSVNT3) holds. This
completes the proof.

From Definition 10 and Proposition 4, we have the following.

Proposition 5. (OSVNT(X),�) is a meet complete lattice with the least element τφ and the greatest
element τX .

Definition 11. Let (X, τ) be an osvnts and let α ∈ SVNV. We define two sets [τ]α and [τ]∗α as
follows, respectively:

(i) [τ]α = {A ∈ 2X : Tτ(A) ≥ Tα, Iτ(A) ≤ Iα, Iτ(A) ≤ Fα},
(ii) [τ]∗α = {A ∈ 2X : Tτ(A) > Tα, Iτ(A) < Iα, Fτ(A) < Fα}.

In this case, [τ]α (resp. [τ]∗α) is called the α-level (resp. strong α-level] of τ. If α = (0, 1, 1),
then [τ](0,1,1) = 2X, i.e., [τ](0,1,1) is the classical discrete topology on X and if α = (1, 0, 0),
then [τ]∗(1,0,0) = φ. Moreover, we can easily see that for any α ∈ SVNV, [τ]∗α ⊂ [τ]α.

Lemma 1. Let τ ∈ OSVNT(X) and let α, β ∈ SVNV. Then,
(1) [τ]α ∈ T(X),
(2) if α ≤ β, then [τ]β ⊂ [τ]α,
(3) [τ]α =

⋂

β<α

[τ]β, where α ∈ I0 × I1 × I1,

(1)
′
[τ]∗α ∈ T(X), where α ∈ I1 × I0 × I0,

(2)
′

if α ≤ β, then [τ]∗β ⊂ [τ]∗α,

(3)
′
[τ]∗α =

⋃

β>(α

[τ]∗β, where α ∈ I1 × I0 × I0.

Proof. The proofs of (1), (1)
′
, (2) and (2)

′
are obvious from Definitions 8 and 11.

(3) From (2), {[τ]α}α∈I0×I1×I1 is a descending family of classical topologies on X. Then, clearly,
[τ]α ⊂

⋂
β<α[τ]β, for each α ∈ I0 × I1 × I1.

Suppose A /∈ [τ]α. Then, Tτ(A) < Tα or Iτ(A) > Iα or Fτ(A) > Fα. Thus,

there exists Tβ ∈ I0 such that Tτ(A) < Tβ < Tα

or

there exists Iβ ∈ I1 such that Iτ(A) > Iβ > Iα

or

there exists Fβ ∈ I1 such that Fτ(A) > Fβ > Fα.

Thus, A /∈ [τ]β, for some β ∈ SVNV such that β < α, i.e., A /∈
⋂

β<α

[τ]β. Hence,
⋂

β<α

[τ]β ⊂ [τ]α.

Therefore, [τ]α =
⋂

β<α

[τ]β.

(3)
′

The proof is similar to (3).
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Remark 4. From (1) and (2) in Lemma 1, we can see that, for each τ ∈ OSVNT(X), {[τ]α}α∈SVNV is a
family of descending classical topologies called the α-level classical topologies on X with respect to τ.

The following is an immediate result of Lemma 1.

Corollary 1. Let (X, τ) be an osvnts. Then, [τ]α∗ =
⋂

β<α

[τ]β∗ for each α∗ ∈ SVNC, where α ∈ I0.

Lemma 2. (1) Let {τα}α∈SVNV be a descending family of classical topologies on X such that τ(0,1,1) is the
classical discrete topology on X. We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) = (
∨

A∈τα

Tα,
∧

A∈τα

Iα,
∧

A∈τα

Fα).

Then, τ ∈ OSVNT(X).
(2) If τα =

⋂
β<α τα, for each α ∈ SVNV (α ∈ I0 × I1 × I1), then [τ]α = τα.

(3) If τα =
⋃

β>α τβ, for each α ∈ SVNV (α ∈ I1 × I0 × I0), then [τ]∗α = τα.

Proof. The proof is similar to Lemma 3.9 in [28].

The following is an immediate result of Lemma 2.

Corollary 2. Let {τα∗}α∈I0 be a descending family of classical topologies on X such that τ(0,1,1) is the classical
discrete topology on X. We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) = (
∨

A∈τα∗
α,

∧

A∈τα∗
(1− α),

∧

A∈τα∗
(1− α)).

Then, τ ∈ OSVNT(X) and [τ]α∗ =
⋂

β<α τβ∗ = τα∗ ∀ α ∈ I0.

From Lemmas 1 and 2, we have the following result.

Proposition 6. Let τ ∈ OSVNT(X) and let [τ]α be the α-level classical topology on X with respect to τ.
We define the mapping η : 2X → I × I × I as follows: for each A ∈ 2X ,

η(A) = (
∨

A∈[τ]α
Tα,

∧

A∈[τ]α
Iα,

∧

A∈[τ]α
Fα).

Then, η = τ.

The fact that an ordinary single valued neutrosophic topological space fully determined by its
decomposition in classical topologies is restated in the following theorem.

Theorem 1. Let τ1 , τ2 ∈ OSVNT(X). Then, τ1 = τ2 if and only if [τ1 ]α = [τ2 ]α for each α ∈ SVNV,
or alternatively, if and only if [τ1 ]

∗
α = [τ2 ]

∗
α for each α ∈ SVNV.

Remark 5. In a similar way, we can construct an ordinary single valued neutrosophic cotopology C on a set X,
by using the α-levels,

[C]α = {A ∈ IX : TC (A) ≥ Tα, IC (A) ≤ Iα, FC (A) ≤ Fα}

and
[C]∗α = {A ∈ IX : TC (A) > Tα, IC (A) < Iα, FC (A) < Fα},

for each α ∈ SVNV.
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Definition 12. Let T ∈ T(X) and let τ ∈ OSVNT(X). Then, τ is said to be compatible with T if T = S(τ),
where S(τ) = {A ∈ 2X : Tτ(A) > 0, Iτ(A) < 1, Fτ(A) < 1}.

Example 2. (1) Let τφ be the ordinary single valued neutrosophic indiscrete topology on a nonempty set X and
let T0 be the classical indiscrete topology on X. Then, clearly,

S(τφ) = {A ∈ 2X : Tτφ(A) > 0, Iτφ(A) < 1, Fτφ(A) < 1} = {φ, X} = T0.

Thus, τφ is compatible with T0.
(2) Let τX be the ordinary single valued neutrosophic discrete topology on a nonempty set X and let T1 be

the classical discrete topology on X. Then, clearly,

S(τX) = {A ∈ 2X : TτX (A) > 0, IτX (A) < 1, FτX (A) < 1} = 2X = T1.

Thus, τX is compatible with T1.
(3) Let X be a nonempty set and let α ∈ SVNV be fixed, where α ∈ I0 × I1 × I1. We define the mapping

τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or A = X,
α otherwise.

Then, clearly, τ ∈ OSVNT(X) and τ is compatible with T1.

Furthermore, every classical topology can be considered as an ordinary single valued neutrosophic
topology in the sense of the following result.

Proposition 7. Let (X, τ) be a classical topological space and and let α ∈ SVNV be fixed, where α ∈
I0 × I1 × I1. Then, there exists τα ∈ OSVNT(X) such that τα is compatible with T. Moreover, [τα]α = τ.

In this case, τα is called the α-th ordinary single valued neutrosophic topology on X and (X, τα)

is called the α-th ordinary single valued neutrosophic topological space.

Proof. Let α ∈ SVNV be fixed, where α ∈ I0 × I1 × I1 and we define the mapping τα : 2X → I × I × I
as follows: for each A ∈ 2X ,

τα(A) =





(1, 0, 0) if either A = φ or A = X,
α if A ∈ τ \ {φ, X},
(0, 1, 1) otherwise.

Then, we can easily see that τα ∈ OSVNT(X) and [τα]α = τ. Moreover, by the definition of τα,

S(τα) = {A ∈ 2X : Tτα(A) > 0, Iτα(A) < 1, Fτα(A) < 1} = τ.

Thus, τα is compatible with τ.

Proposition 8. Let (X, T) be a classical topological space, let C(T) be the set of all osvnts on X compatible
with T, let T̃ = T \ {φ, X} and let (I × I × I)T̃

(0,1,1) be the set of all mappings f : T̃ → I × I × I satisfying the

following conditions: for any A, B ∈ T̃ and each (Aj)j∈J ⊂ T̃,
(1) f (A) 6= (0, 1, 1),
(2) Tf (A ∩ B) ≥ Tf (A) ∧ Tf (B), I f (A ∩ B) ≤ I f (A) ∨ Tf (B),

Ff (A ∩ B) ≤ Ff (A) ∨ Ff (B),
(3) Tf (

⋃
j∈J Aj) ≥

∧
j∈J Tf (Aj), I f (

⋃
j∈J Aj) ≤

∨
j∈J I f (Aj),

Ff (
⋃

j∈J Aj) ≤
∨

j∈J Ff (Aj).
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Then, there is a one-to-one correspondence between C(T) and (I × I × I)T̃
(0,1,1).

Proof. We define the mapping F : (I × I × I)T̃
(0,1,1) → C(T) as follows: for each f ∈ (I × I × I)T̃

(0,1,1),

F( f ) = τf ,

where τf : 2X → I × I × I is the mapping defined by: for each A ∈ 2X ,

τf (A) =





(1, 0, 0) if either A = φ or A = X,
f (A) if A ∈ T̃,
(0, 1, 1) otherwise.

Then, we easily see that τf ∈ C(T).

Now, we define the mapping G : C(T)→ (I × I × I)T̃
(0,1,1) as follows: for each τ ∈ C(T),

G(τ) = fτ ,

where fτ : T̃ → I × I × I is the mapping defined by: for each A ∈ T̃,

fτ(A) = τ(A).

Then, clearly, fτ ∈ (I × I × I)T̃
(0,1,1). Furthermore, we can see that F ◦ G = idC(T) and G ◦ F =

id
(I×I×I)T̃

(0,1,1)
. Thus, C(T) is equipotent to I × I × I)T̃

(0,1,1). This completes the proof.

Proposition 9. Let (X, τ) be an osvnts and let Y ⊂ X. We define the mapping τY : 2Y → I× I× I as follows:
for each A ∈ 2Y,

τY(A) = (
∨

B∈2X , A=B∩Y

Tτ(B),
∧

B∈2X , A=B∩Y

Iτ(B),
∧

B∈2X , A=B∩Y

Fτ(B)).

Then, τY ∈ OSVNT(Y) and for each A ∈ 2Y,

TτY (A) ≥ Tτ(A), IτY (A) ≤ Iτ(A), FτY (A) ≤ Fτ(A).

In this case, (Y, τY) is called an ordinary single valued neutrosophic subspace of (X, τ) and τY is
called the induced ordinary single valued neutrosophic topology on A by τ.

Proof. It is obvious that the condition (OSVNT1) holds, i.e., τY(φ) = τY(Y) = (1, 0, 0).
Let A, B ∈ 2Y. Then, by proof of Proposition 5.1 in [34], TτY (A ∩ B) ≥ TτY (A) ∧ TτY (B).
Let us show that IτY (A ∩ B) ≤ IτY (A) ∨ IτY (B). Then,

IτY (A) ∨ IτY (B) = (
∧

C1∈2X , A=Y∩C1
Iτ(C1)) ∨ (

∧
C2∈2X , B=Y∩C2

Iτ(C2))

=
∧

C1, C1∈2X , A∩B=Y∩(C1∩C2)
[Iτ(C1) ∨ Iτ(C2)]

≥ ∧C1, C1∈2X , A∩B=Y∩(C1∩C2)
Iτ(C1 ∩ C2)

= IτY (A ∩ B).

Similarly, we have FτY (A ∩ B) ≤ FτY (A) ∨ FτY (B). Thus, the condition (OSVNT2) holds.
Now, let {Aα}α∈Γ ⊂ 2Y. Then, by the proof of Proposition 5.1 in [34], TτY (

⋃
α∈Γ Aα) ≥∧

α∈Γ TτY (Aα). On the other hand,
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IτY (
⋃

α∈Γ Aα) =
∧

Bα∈2X , (
⋃

α∈Γ Bα)∩Y=
⋃

α∈Γ Aα
Iτ(
⋃

α∈Γ Bα)

≤ ∧Bα∈2X , (
⋃

α∈Γ Bα)∩Y=
⋃

α∈Γ Aα
[
∧

α∈Γ Iτ(Bα)]

=
∧

α∈Γ[
∧

Bα∈2X , (
⋃

α∈Γ Bα)∩Y=
⋃

α∈Γ Aα
Iτ(Bα)]

=
∧

α∈Γ IτY (Aα).

Similarly, we have FτY (
⋃

α∈Γ Aα) ≤
∧

α∈Γ FτY (Aα). Thus, the condition (OSVNT3) holds. Thus,
τY ∈ OSVNT(Y).

Furthermore, we can easily see that for each A ∈ 2Y,

TτY (A) ≥ Tτ(A), IτY (A) ≤ Iτ(A), FτY (A) ≤ Fτ(A).

This completes the proof.

The following is an immediate result of Proposition 9.

Corollary 3. Let (Y, τY) be an ordinary single valued neutrosaophic subspace of (X, τ) and let A ∈ 2Y.
(1) CY(A) = (

∨
B∈2X ,A=B∩Y TC(B),

∧
B∈2X ,A=B∩Y IC(B),

∧
B∈2X ,A=B∩Y FC(B)), where CY(A) =

τY(Y− A).
(2) If Z ⊂ Y ⊂ X, then τZ = (τY )Z .

4. Ordinary Single Valued Neutrosophic Neighborhood Structures of a Point

In this section, we define an ordinary single valued neutrosophic neighborhood system of a point,
and prove that it has the same properties in a classical neighborhood system.

Definition 13. Let (X, τ) be an osvnts and let x ∈ X. Then, a mapping Nx : 2X → I × I × I is called the
ordinary single valued neutrosophic neighborhood system of x if, for each A ∈ 2X ,

A ∈ Nx := ∃B(B ∈ τ) ∧ (x ∈ B ⊂ A)),

i.e.,
[A ∈ Nx] = Nx(A) = (

∨

x∈B⊂A
Tτ(B),

∧

x∈B⊂A
Iτ(B),

∧

x∈B⊂A
Fτ(B)).

Lemma 3. Let (X, τ) be an osvnts and let A ∈ 2X . Then,

∧

x∈A

∨

x∈B⊂A
Tτ(B) = Tτ(A),

∨

x∈A

∧

x∈B⊂A
Iτ(B) = Iτ(A)

and ∨

x∈A

∧

x∈B⊂A
Fτ(B) = Fτ(A).

Proof. By Theorem 3.1 in [33], it is obvious that
∧

x∈A
∨

x∈B⊂A Tτ(B) = Tτ(A).
On the other hand, it is clear that

∨
x∈A

∧
x∈B⊂A Iτ(B) ≥ Iτ(A). Now, letBx = {B ∈ 2X : x ∈ B ⊂ A}

and let f ∈ Πx∈ABx. Then, clearly,
⋃

x∈A f (x) = A. Thus,

∨

x∈A
Iτ( f (x)) ≤ Iτ(

⋃

x∈A
f (x)) = Iτ(A).

Thus, ∨

x∈A

∧

x∈B⊂A
Iτ(B) =

∧

f∈Πx∈A

∨

x∈A
Iτ( f (x)) ≤ Iτ(A).
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Hence,
∨

x∈A
∧

x∈B⊂A Iτ(B) = Iτ(A). Similarly, we have

∨

x∈A

∧

x∈B⊂A
Fτ(B) = Fτ(A).

Theorem 2. Let (X, τ) be an osvnts, let A ∈ 2X and let x ∈ X. Then,

|= (A ∈ τ)↔ ∀x(x ∈ A→ ∃B(B ∈ Nx) ∧ (B ⊂ A)),

i.e.,
[A ∈ τ] = [∀x(x ∈ A→ ∃B(B ∈ Nx) ∧ (B ⊂ A))],

i.e.,
[A ∈ τ] = (

∧

x∈A

∨

B⊂A
TNx (B),

∨

x∈A

∧

B⊂A
INx (B),

∨

x∈A

∧

B⊂A
FNx (B)).

Proof. From Theorem 3.1 in [33], it is clear that Tτ(A) =
∧

x∈A
∨

B⊂A TNx (B).
On the other hand,

Iτ(A) =
∨

x∈A
∧

x∈C⊂A Iτ(C) [By Lemma 3]
=
∨

x∈A
∧

B⊂A
∧

x∈C⊂B Iτ(C)
=
∨

x∈A
∧

B⊂A INx (B). [By Definition 13]

Similarly, we have Fτ(A) =
∨

x∈A
∧

B⊂A FNx (B). This completes the proof.

Definition 14. Let A be a single valued neutrosophic set in a set 2X. Then, A is said to be normal if there is
A0 ∈ 2X such that A(A0) = (1, 0, 0).

We will denote the set of all normal single valued neutrosophic sets in 2X as (I × I × I)2X

N .

From the following result, we can see that an ordinary single valued neutrosophic neighborhood
system has the same properties in a classical neighborhood system.

Theorem 3. Let (X, τ) be an osvnts and let N : X → (I × I × I)2X

N be the mapping given by N (x) = Nx,
for each x ∈ X. Then, N has the following properties:

(1) for any x ∈ X and A ∈ 2X , |= A ∈ Nx → x ∈ A,
(2) for any x ∈ X and A, B ∈ 2X , |= (A ∈ Nx) ∧ (B ∈ Nx)→ A ∩ B ∈ Nx,
(3) for any x ∈ X and A, B ∈ 2X , |= (A ⊂ B)→ (A ∈ Nx → B ∈ Nx),
(4) for any x ∈ X, |= (A ∈ Nx)→ ∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈ Ny)).
Conversely, if a mappingN : X → (I × I × I)2X

N satisfies the above properties (2) and (3), then there is an
ordinary single valued neutrosophic topology τ : 2X → I × I × I on X defined as follows: for each A ∈ 2X ,

A ∈ τ := ∀x(x ∈ A→ A ∈ Nx),

i.e.,
[A ∈ τ] = τ(A) = (

∧

x∈A
TNx (A),

∨

x∈A
INx (A),

∨

x∈A
FNx (A)).

In particular, if N also satisfies the above properties (1) and (4), then, for each x ∈ X, Nx is an ordinary
single valued neutrosophic neighborhood system of x with respect to τ.
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Proof. (1) Since A ∈ 2X , we can consider A as a special single valued neutrosophic set in x represented
by A = (χA, χAc , χAc). Then,

[x ∈ A] = A(x) = (χA(x), χAc(x), χAc(x)) = (1, 0, 0).

On the other hand,

[A ∈ Nx] = (
∨

x∈C⊂A
Tτ(C),

∧

x∈C⊂A
Iτ(C),

∧

x∈C⊂A
Fτ(C)) ≤ (1, 0, 0).

Thus, [A ∈ Nx] ≤ [x ∈ A].
(2) By the definition of Nx,

[A ∩ B ∈ Nx] = (
∨

x∈C⊂A∩B
Tτ(C),

∧

x∈C⊂A∩B
Iτ(C)),

∧

x∈C⊂A∩B
Fτ(C)).

From the proof of Theorem 3.2 (2) in [33], it is obvious that

TNx (A ∩ B) ≥ TNx (A) ∧ TNx (B).

Thus, it is sufficient to show that INx (A ∩ B) ≤ INx (A) ∨ INx (B):

INx (A ∩ B) =
∧

x∈C⊂A∩B Iτ(C) =
∧

x∈C1⊂A, x∈C2⊂B Iτ(C1 ∩ C2)

≤ ∧x∈C1⊂A, x∈C2⊂B(Iτ(C1) ∨ Iτ(C2))

=
∧

x∈C1⊂A Iτ(C1) ∨
∧

x∈C2⊂B Iτ(C2)

= INx (A) ∨ INx (B).

Similarly, we have FNx (A ∩ B) ≤ FNx (A) ∨ FNx (B). On the other hand,

[(A ∈ Nx) ∧ (B ∈ Nx)] = (TNx (A) ∧ TNx (B), INx (A) ∨ INx (B), FNx (A) ∨ FNx (B)).

Thus, [A ∩ B ∈ Nx] ≥ [(A ∈ Nx) ∧ (B ∈ Nx)].
(3) From the definition of Nx, we can easily show that [A ∈ Nx] ≤ [B ∈ Nx].
(4) It is clear that

[∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈ Ny))]

= (
∨

C⊂A[TNx (C) ∧
∧

y∈C TNy(C)],
∧

C⊂A[INx (C) ∨
∨

y∈C INy(C)],∧
C⊂A[FNx (C) ∨

∨
y∈C FNy(C)]).

Then, by the proof of Theorem 3.2 (4) in [33], it is obvious that

∨

C⊂A
[TNx (C) ∧

∧

y∈C
TNy(C)] ≥ TNx (A).

From Lemma 3,
∨

y∈C INy(C) =
∨

y∈C
∧

y∈D⊂C Iτ(D) = Iτ(C). Thus,∧
C⊂A[INx (C) ∨

∨
y∈C INy(C)] =

∧
C⊂A[INx (C) ∨ Iτ(C)] =

∧
C⊂A Iτ(C)

≤ ∧x∈C⊂A Iτ(C) = INx (A).
Similarly, we have

∧
C⊂A[FNx (C) ∨

∨
y∈C FNy(C)] ≤

∧
x∈C⊂A Fτ(C) = FNx (A). Thus,

[∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈ Ny))] ≥ [A ∈ Nx].

Conversely, suppose N satisfies the above properties (2) and (3) and let τ : 2X → I × I × I be the
mapping defined as follows: for each A ∈ 2X ,

τ(A) = (
∧

x∈A
TNx (A),

∨

x∈A
INx (A),

∨

x∈A
FNx (A)).
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Then, clearly, τ(φ) = (1, 0, 0). Since Nx is single valued neutrosophic normal, there is A0 ∈ 2X

such that Nx(A0) = (1, 0, 0). Thus, Nx(X) = (1, 0, 0). Thus,

τ(X) = (
∧

x∈X
TNx (X),

∨

x∈X
INx (X),

∨

x∈X
FNx (X)) = (1, 0, 0).

Hence, τ satisfies the axiom (OSVNT1).
From the proof of Theorem 3.2 in [33], it is clear that Tτ(A ∩ B) ≥ Tτ(A) ∧ Tτ(B).
On the other hand,

Iτ(A ∩ B) =
∨

x∈A∩B INx (A ∩ B) ≤ ∨x∈A∩B(INx (A) ∨ INx (B))
=
∨

x∈A∩B INx (A) ∨∨x∈A∩B INx (B)
≤ ∨x∈A INx (A) ∨∨x∈B INx (B)
= Iτ(A) ∨ Iτ(B).

Similarly, we have Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B). Then, τ satisfies the axiom (OSVNT2). Moreover,
we can easily see that τ satisfies the axiom (OSVNT3). Thus, τ ∈ OSVNT(X).

Now, suppose N satisfies additionally the above properties (1) and (4). Then, from the proof of
Theorem 3.2 in [33], we have TNx (A) =

∨
x∈B⊂A Tτ(B) for each x ∈ X and each A ∈ 2X .

Let x ∈ X and let A ∈ 2X . Then, by property (4),

INx (A) ≥
∧

C⊂A
[INx (C) ∨

∨

y∈C
INy(C)].

From the property (1), INx (C) = 1 for any x 6∈ C. Thus,

INx (A) ≥ ∧x∈C⊂A[INx (C) ∨
∨

y∈C INy(C)]
≥ ∧x∈C⊂A

∨
y∈C INy(C)

=
∧

x∈B⊂A Iτ(B).

Now, suppose x ∈ C ⊂ A. Then, clearly,
∨

y∈C INy(C) ≥ INx (C) ≥ INx (A).
Thus, ∧

x∈B⊂A
Iτ(B) =

∧

x∈C⊂A

∨

y∈C
INy(C) ≥ INx (A).

Thus, INx (A) =
∧

x∈B⊂A Iτ(B). Similarly, we have FNx (A) =
∧

x∈B⊂A Fτ(B). This completes
the proof.

5. Ordinary Single Valued Neutrosophic Bases and Subbases

In this section, we define an ordinary single valued neutrosophic base and subbase for an ordinary
single valued neutrosophic topological space, and investigated general properties. Moreover, we obtain
two characterizations of an ordinary single valued neutrosophic base and one characterization of an
ordinary single valued neutrosophic subbase.

Definition 15. Let (X, τ) be an osvnts and let B : 2X → I × I × I be a mapping such that B ≤ τ, i.e.,
TB ≤ Tτ , IB ≥ Iτ , FB ≥ Fτ . Then, B is called an ordinary single valued neutrosophic base for τ if, for each
A ∈ 2X ,

Tτ(A) =
∨

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∧

α∈Γ
TB(Bα),

Iτ(A) =
∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨

α∈Γ
IB(Bα),

Fτ(A) =
∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨

α∈Γ
FB(Bα).
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Example 3. (1) Let X be a set and let B : 2X → I × I × I be the mapping defined by:

B({x}) = (1, 0, 0) ∀x ∈ X.

Then, B is an ordinary single valued neutrosophic base for τX .
(2) Let X = {a, b, c}, let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0 and let B : 2X → I × I × I be the

mapping as follows: for each A ∈ 2X ,

B(A) =

{
(1, 0, 0) if either A = {a, b} or {b, c} or X,
α otherwise.

Then, B is not an ordinary single valued neutrosophic base for an osvnt on X.
Suppose that B is an ordinary single valued neutrosophic base for an osvnt τ on X. Then, clearly, B ≤ τ.

Moreover, τ({a, b}) = τ({b, c}) = (1, 0, 0). Thus,

Tτ({b}) = Tτ({a, b} ∩ τ({b, c}) ≥ Tτ({a, b} ∧ Tτ({b, c} = 1

and
Iτ({b}) = Iτ({a, b} ∩ τ({b, c}) ≤ Iτ({a, b} ∧ Iτ({b, c} = 0.

Similarly, we have Fτ({b}) = 0. Thus, τ({b}) = (1, 0, 0). On the other hand, by the definition of B,

Tτ({b}) =
∨

{Aα}α∈Γ⊂2X , {b}=⋃α∈Γ Aα

∧

α∈Γ
TB(Aα) = Tα

and
Iτ({b}) =

∧

{Aα}α∈Γ⊂2X , {b}=⋃α∈Γ Aα

∨

α∈Γ
IB(Aα) = Iα.

Similarly, we have Fτ({b}) = Fα. This is a contradiction. Hence, B is not an ordinary single valued
neutrosophic base for an osvnt on X

Theorem 4. Let (X, τ) be an osvnts and let B : 2X → I × I × I be a mapping such that B ≤ τ. Then, B is
an ordinary single valued neutrosophic base for τ if and only if for each x ∈ X and each A ∈ 2X ,

TNx (A) ≤
∨

x∈B⊂A
TB(B),

INx (A) ≥
∧

x∈B⊂A
IB(B),

FNx (A) ≥
∧

x∈B⊂A
FB(B).

Proof. (⇒): Suppose B is an ordinary single valued neutrosophic base for τ. Let x ∈ X and let A ∈ 2X .
Then, by Theorem 4.4 in [34], it is obvious that TNx (A) ≤ ∨x∈B⊂A TB(B). On the other hand,

INx (A) =
∧

x∈B⊂A Iτ(B) [By Definition 13]
=
∧

x∈B⊂A
∧
{Bα}α∈Γ⊂2X , B=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα). [By Definition 15]

If x ∈ B ⊂ A and B =
⋃

α∈Γ Bα, then there is α0 ∈ Γ such that x ∈ Bα0 . Thus,

∨

α∈Γ
IB(Bα) ≥ IB(Bα0) ≥

∧

x∈B⊂A
IB(B).

Thus, INx (A) ≥ ∧x∈B⊂A IB(B). Similarly, we have FNx (A) ≥ ∧x∈B⊂A FB(B). Hence, the necessary
condition holds.
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(⇐): Suppose the necessary condition holds. Then, by Theorem 4.4 in [34], it is clear that

Tτ(A) =
∨

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∧

α∈Γ
TB(Bα).

Let A ∈ 2X . Suppose A =
⋃

α∈Γ Bα and {Bα} ⊂ 2X . Then,

Iτ(A) ≤ ∨α∈Γ Iτ(Bα) [By the axiom (OSVNT3)]
≤ ∨α∈Γ IB(Bα). [Since B ≤ τ]

Thus,
Iτ(A) ≤

∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨

α∈Γ
IB(Bα). (1)

On the other hand,

Iτ(A) =
∨

x∈A
∧

x∈B⊂A Iτ(B) [By Lemma 3]
=
∨

x∈A INx (A) [By Definition 13]
=
∨

x∈A
∧

x∈B⊂A IB(B) [By the hypothesis]
=
∧

f∈Πx∈ABx

∨
x∈A IB( f (x)),

where Bx = {B ∈ 2X : x ∈ B ⊂ A}. Furthermore, A =
⋃

x∈A f (x) for each f ∈ Πx∈ABx. Thus,

∧

f∈Πx∈ABx

∨

x∈A
IB( f (x)) =

∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨

α∈Γ
IB(Bα).

Hence,
Iτ(A) ≥

∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨

α∈Γ
IB(Bα). (2)

By (1) and (2), Iτ(A) =
∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα). Similarly, we have Fτ(A) =∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ FB(Bα). Therefore, B is an ordinary single valued neutrosophic base

for τ.

Theorem 5. Let B : 2X → I × I × I be a mapping. Then, B is an ordinary single valued neutrosophic base for
some oist τ on X if and only if it has the following conditions:

(1)
∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) = 1,∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ IB(Bα) = 0,∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ FB(Bα) = 0,

(2) for any A1, A2 ∈ 2X and each x ∈ A1 ∩ A2,

TB(A1) ∧ TB(A2) ≤
∨

x∈A⊂A1∩A2

TB(A),

IB(A1) ∨ IB(A2) ≥
∧

x∈A⊂A1∩A2

IB(A),

FB(A1) ∨ FB(A2) ≥
∧

x∈A⊂A1∩A2

FB(A).

In fact, τ : 2X → I × I × I is the mapping defined as follows: for each A ∈ 2X ,

Tτ(A) =

{
1 i f A = φ∨
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) otherwise,

Iτ(A) =

{
0 i f A = φ∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα) otherwise,

76



Symmetry 2019, 11, 1075

Fτ(A) =

{
0 i f A = φ∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ FB(Bα) otherwise.

In this case, τ is called an ordinary single valued neutrosophic topology on X induced by B.

Proof. (⇒): Suppose B is an ordinary single valued neutrosophic base for some osvnt τ on X. Then,
by Definition 15 and the axiom (OSVNT1),

∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧

α∈Γ
TB(Bα) = Tτ(X) = 1,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
IB(Bα)) = Iτ(X) = 0,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
FB(Bα)) = Fτ(X) = 0.

Thus, condition (1) holds.
Let A1, A2 ∈ 2X and let x ∈ A1 ∩ A2. Then, by the proof of Theorem 4.2 in [33], it is obvious that

TB(A1) ∧ TB(A2) ≤
∨

x∈A⊂A1∩A2
TB(A). On the other hand,

IB(A1) ∨ IB(A2) ≥ Iτ(A1) ∨ Iτ(A2) ≥ Iτ(A1 ∩ A2) ≥ INx (A1 ∩ A2) ≥
∧

x∈A⊂A1∩A2

IB(A).

Thus,
IB(A1) ∨ IB(A2) ≥

∧

x∈A⊂A1∩A2

IB(A).

Similarly, we have
FB(A1) ∨ FB(A2) ≥

∧

x∈A⊂A1∩A2

FB(A).

Thus, condition (2) holds.
(⇐): Suppose the necessary conditions (1) and (2) are satisfied. Then, by the proof of Theorem 4.2

in [33], we can see that the following hold:

Tτ(X) = Tτ(φ) = 1,
Tτ(A ∩ B) ≥ Tτ(A) ∧ Tτ(B) for any A, B ∈ 2X

and

Tτ(
⋃

α∈Γ Aα) ≥
∧

α∈Γ Tτ(Aα) for each {Aα}α∈Γ ⊂ 2X .

From the definition of τ, it is obvious that Iτ(X) = Iτ(φ) = 0. Similarly, we have Fτ(X) =

Fτ(φ) = 0. Thus, τ satisfies the axiom (OSVNT1).
Let {Aα}α∈Γ ⊂ 2X and let Bα = {{Bδα

: δα ∈ Γα} :
⋃

δα∈Γα
Bδα

= Aα}. Let f ∈ Πα∈ΓBα. Then,
clearly,

⋃
α∈Γ

⋃
Bδα∈ f (α) Bδα

=
⋃

α∈Γ Aα. Thus,

Iτ(
⋃

α∈Γ Aα) =
∧⋃

δ∈Γ Bδ=
⋃

α∈Γ Aα

∨
δ∈Γ IB(Bδ)

≤ ∧ f∈Πα∈ΓBα

∨
α∈Γ

∨
Bδα∈ f (α) IB(Bδα

)

=
∨

α∈Γ
∧
{Bδα :δα∈Γα}∈Bα

∨
δα∈Γα

IB(Bδα
)

=
∨

α∈Γ Iτ(Aα).

Similarly, we have Fτ(
⋃

α∈Γ Aα) ≤
∨

α∈Γ Fτ(Aα). Thus, τ satisfies the axiom (OSVNT3).
Now, let A, B ∈ 2X and suppose Iτ(A) < Iα and Iτ(B) < Iα for α ∈ SVNV. Then, there are

{Aα1 : α1 ∈ Γ1} and {Bα2 : α2 ∈ Γ2} such that
⋃

α1∈Γ1
Aα1 = A,

⋃
α2∈Γ2

Bα2 = B and IB(Aα1) < Iα for
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each α1 ∈ Γ1, IB(Bα2) < Iα for each α2 ∈ Γ2. Let x ∈ A ∩ B. Then, there are α1x ∈ Γ1 and α2x ∈ Γ2 such
that x ∈ Aα1x ∩ Bα2x . Thus, from the assumption,

Iα > IB(Aα1x ) ∨ IB(Bα2x ) ≥
∧

x∈C⊂Aα1x∩Bα2x

IB(C).

Moreover, there is Cx such that x ∈ Cx ⊂ Aα1x ∩ Bα2x ⊂ A ∩ B and IB(Cx) < Iα. Since⋃
x∈A∩B Cx = A ∩ B, we obtain

Iα ≥
∨

x∈A∩B
IB(Cx) ≥

∧
⋃

α∈Γ Bα=A∩B

∨

α∈Γ
IB(Bα) = Iτ(A ∩ B).

Now, let Iβ = Iτ(A) ∨ Iτ(B) and let n be any natural number, where Iβ ∈ I. Then, Iτ(A) <

Iβ + 1/n and Iτ(B) < Iβ + 1/n. Thus, Iτ(A ∩ B) ≤ Iβ + 1/n. Thus, Iτ(A ∩ B) ≤ Iβ = Iτ(A) ∨ Iτ(B).
Similarly, we have Fτ(A∩ B) ≤ Fτ(A)∨ Fτ(B). Hence, τ satisfies the axiom (OSVNT2). This completes
the proof.

Example 4. (1) Let X = {a, b, c} and let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0. We define the mapping
B : 2X → I × I × I as follows: for each A ∈ 2X ,

TB(A) =

{
1 if A = {b} or {a, b} or {b, c}
Tα otherwise,

IB(A) =

{
0 if A = {b} or {a, b} or {b, c}
Iα otherwise,

FB(A) =

{
0 if A = {b} or {a, b} or {b, c}
Fα otherwise.

Then, we can easily see that B satisfies conditions (1) and (2) in Theorem 5. Thus, B is an ordinary single
valued neutrosophic base for an osvnt τ on X. In fact, τ : 2X → I × I × I is defined as follows: for each
A ∈ 2X ,

Tτ(A) =

{
1 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Tα otherwise,

Iτ(A) =

{
0 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Iα otherwise,

Fτ(A) =

{
0 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Fα otherwise.

(2) Let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0. We define the mapping B : 2R → I × I × I
as follows: for each A ∈ 2R,

TB(A) =

{
1 if A = (a, b) for a, b ∈ R with a ≤ b
Tα otherwise,

IB(A) =

{
0 if A = (a, b) for a, b ∈ R with a ≤ b
Iα otherwise,

FB(A) =

{
0 if A = (a, b) for a, b ∈ R with a ≤ b
Fα otherwise.
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Then, it can be easily seen that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osvnt τα on R.

In this case, τα is called the α-ordinary single valued neutrosophic usual topology on R.
(3) Let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0. We define the mapping B : 2R → I × I × I

as follows: for each A ∈ 2R,

TB(A) =

{
1 if A = [a, b) for a, b ∈ R with a ≤ b
Tα otherwise,

IB(A) =

{
0 if A = [a, b) for a, b ∈ R with a ≤ b
Iα otherwise,

FB(A) =

{
0 if A = [a, b) for a, b ∈ R with a ≤ b
Fα otherwise.

Then, we can easily see that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osvnt τl on R.

In this case, τl is called the α-ordinary single valued neutrosophic lower-limit topology on R.

Definition 16. Let τ1, τ2 ∈ OSVNT(X), and let B1 and B1 be ordinary single valued neutrosophic bases for
τ1 and τ2, respectively. Then, B1 and B1 are said to be equivalent if τ1 = τ2.

Theorem 6. Let τ1, τ2 ∈ OSVNT(X), and let B1 and B1 be ordinary single valued neutrosophic bases for τ1

and τ2 respectively. Then, τ1 is coarser than τ2, i.e.,

Tτ1 ≤ Tτ2 , Iτ1 ≥ Iτ2 , Fτ1 ≥ Fτ2

if and only if for each A ∈ 2X and each x ∈ A,

TB1(A) ≤
∨

x∈B⊂A
TB2(B), IB1(A) ≥

∧

x∈B⊂A
IB2(B), FB1(A) ≥

∧

x∈B⊂A
FB2(B).

Proof. (⇒): Suppose τ1 is coarser than τ2. For each x ∈ X, let x ∈ A ∈ 2X. Then, by Theorem 4.8
in [34], TB1(A) ≤ ∨x∈B⊂A TB2(B). On the other hand,

IB1(A) ≥ Iτ1(A) [since B1 is an ordinary single valued neutrosophic base for τ1]
≥ Iτ2(A) [By the hypothesis]
=
∧
{Aα}α∈Γ⊂2X , A=

⋃
α∈Γ Aα

∨
α∈Γ IB2(Aα).

[Since B2 is an ordinary single valued neutrosophic base for τ2]

Since x ∈ A and A =
⋃

α∈Γ Aα, there is α0 ∈ Γ such that x ∈ Aα0 . Thus,

∧

{Aα}α∈Γ⊂2X , A=
⋃

α∈Γ Aα

∨

α∈Γ
IB2(Aα) ≥ IB2(Aα0) ≥

∧

x∈B⊂A
IB2(B).

Thus, IB1(A) ≥ ∧x∈B⊂A IB2(B). Similarly, we have FB1(A) ≥ ∧x∈B⊂A FB2(B).
(⇐): Suppose the necessary condition holds. Then, by Theorem 4.8 in [34], Tτ1 ≤ Tτ2 . Let A ∈ 2X .

Then,

Iτ1(A) =
∨

x∈A
∧

x∈B⊂A IB1(B) [By Lemma 3]
≥ ∨x∈A

∧
x∈B⊂A

∧
x∈C⊂B IB2(C) [By the hypothesis]

=
∧

x∈C⊂A
∨

x∈A IB2(C)
=
∧
{Cx}x∈A⊂2X , A=

⋃
x∈A Cx

∨
x∈A IB2(Cx)

= Iτ2(A).
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Thus, Iτ1 ≥ Iτ2 . Similarly, we have Fτ1 ≥ Fτ2 . Thus, τ1 is coarser than τ2. This completes the
proof.

The following is an immediate result of Definition 16 and Theorem 6.

Corollary 4. Let B1 and B2 be ordinary single valued neutrosophic bases for two ordinary single valued
neutrosophic topologies on a set X, respectively. Then,

B1 and B2 are equivalent if and only if the following two conditions hold:
(1) for each B1 ∈ 2X and each x ∈ B1,

TB1(B1) ≤
∨

x∈B2⊂B1

TB2(B2),

IB1(B1) ≥
∧

x∈B2⊂B1

IB2(B2),

FB1(B1) ≥
∧

x∈B2⊂B1

FB2(B2),

(2) for each B2 ∈ 2X and each x ∈ B2,

TB2(B2) ≤
∨

x∈B1⊂B2

TB1(B1),

IB2(B2) ≥
∧

x∈B1⊂B2

IB1(B1),

FB2(B2) ≥
∧

x∈B1⊂B2

FB1(B1).

It is obvious that every ordinary single valued neutrosophic topology itself forms an ordinary
single valued neutrosophic base. Then, the following provides a sufficient condition for one to see if
a mapping B : 2X → I × I × I such that TB ≤ Tτ , IB ≥ Iτ and FB ≥ Fτ is an ordinary single valued
neutrosophic base for τ ∈ OSVNT(X).

Proposition 10. Let (X, τ) be an osvnts and let B : 2X → I× I× I be a mapping such that TB ≤ Tτ , IB ≥ Iτ

and FB ≥ Fτ . For each A ∈ 2X and each x ∈ A, suppose Tτ(A) ≤ ∨x∈B⊂A TB(B), Iτ(A) ≥ ∧x∈B⊂A IB(B)
and Fτ(A) ≥ ∧x∈B⊂A FB(B). Then, B is an ordinary single valued neutrosophic base for τ.

Proof. From the proof of Proposition 4.10 in [34], it is clear that the first part of the condition (1) of
Theorem 5 holds, i.e.,

∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) = 1. On the other hand,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα)

≥ ∧{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ Iτ(Bα) [since IB ≥ Iτ]

≥ ∧{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα
Iτ(
⋃

α∈Γ Bα) [by the axiom (OSVNT3)]
= Iτ(X)

=
∨

x∈X
∧

x∈B⊂X Iτ(B) [By Lemma 3]
≥ ∨x∈X

∧
x∈B⊂X

∧
x∈C⊂B IB(C) [By the hypothesis]

=
∧

x∈C⊂X
∨

x∈X IB(C)
=
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα).

Since τ ∈ OSVNT(X), Iτ(X) = 0. Thus,
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα) = 0. Similarly, we

have
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ FB(Bα) = 0. Thus, condition (1) of Theorem 5 holds.

Now, let A1, A2 ∈ 2X and let x ∈ A1 ∩ A2. Then, by the proof of Proposition 4.10 in [34], it is
obvious that TB(A1) ∧ TB(A2) ≤

∨
x∈A⊂A1∩A2

TB(A). On the other hand,
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IB(A1) ∨ IB(A2) ≥ Iτ(A1) ∨ Iτ(A2) [Since IB ≥ Iτ]
≥ Iτ(A1 ∩ A2) [by the axiom (OSVNT2)]
≥ ∧x∈A⊂A1∩A2

IB(A). [by the hypothesis]

Similarly, we have FB(A1) ∨ FB(A2) ≥
∧

x∈A⊂A1∩A2
FB(A). Thus, condition (2) of Theorem 5

holds. Thus, by Theorem 5, B is an ordinary single valued neutrosophic base for τ. This completes
the proof.

Definition 17. Let (X, τ) be an osvnts and let ' : 2X → I × I × I be a mapping. Then, ϕ is called an
ordinary single valued neutrosophic subbase for τ, if ϕu is an ordinary single valued neutrosophic base for τ,
where ϕu : 2X → I × I × I is the mapping defined as follows: for each A ∈ 2X ,

Tϕu(A) =
∨

{Bα}@2X , A=
⋂

α∈Γ Bα

∧

α∈Γ
T'(Bα),

Iϕu(A) =
∧

{Bα}@2X , A=
⋂

α∈Γ Bα

∨

α∈Γ
I'(Bα),

Fϕu(A) =
∧

{Bα}@2X , A=
⋂

α∈Γ Bα

∨

α∈Γ
F'(Bα),

where @ stands for “a finite subset of".

Example 5. Let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0. We define the mapping ' : 2R → I × I × I
as follows: for each A ∈ 2R,

T'(A) =

{
1 if A = (a, ∞) or (−∞, b) or (a, b)
Tα otherwise,

I'(A) =

{
0 if A = (a, ∞) or (−∞, b) or (a, b)
Iα otherwise,

F'(A) =

{
0 if A = (a, ∞) or (−∞, b) or (a, b)
Fα otherwise,

where a, b ∈ R such that a < b. Then, we can easily see that ' is an ordinary single valued neutrosophic
subbase for the α-ordinary single valued neutrosophic usual topology Uα on R.

Theorem 7. Let ' : 2X → I × I × I be a mapping. Then, ' is an ordinary single valued neutrosophic subbase
for some osvnt if and only if ∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧

α∈Γ
T'(Bα) = 1,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
I'(Bα) = 0,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
F'(Bα) = 0.

Proof. (⇒): Suppose ' is an ordinary single valued neutrosophic subbase for some osvnt. Then,
by Definition 17, it is clear that the necessary condition holds.

(⇐): Suppose the necessary condition holds. We only show that ϕu satisfies the condition (2) in
Theorem 5. Let A, B ∈ 2X and x ∈ A ∩ B. Then, by the proof of Theorem 4.3 in [33], it is obvious that
Tϕu(A) ∧ Tϕu(B) ≤ ∨x∈C⊂A∩B Tϕu(C). On the other hand,
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Iϕu(A) ∨ Iϕu(B)
= (

∧⋂
α1∈Γ1

Bα1=A
∨

α1∈Γ1
I'(Bα1)) ∨ (

∧⋂
α2∈Γ2

Bα2=B
∨

α2∈Γ2
I'(Bα2))

=
∧⋂

α1∈Γ1
Bα1=A

∧⋂
α2∈Γ2

Bα2=B(
∨

α1∈Γ1
I'(Bα1) ∨

∨
α2∈Γ2

I'(Bα2))

≥ ∧⋂
α∈Γ Bα=A∩B

∨
α∈Γ I'(Bα)

= Iϕu(A ∩ B).

Since x ∈ A ∩ B, Iϕu(A) ∨ Iϕu(B) ≥ Iϕu(A ∩ B) ≥ ∧
x∈C⊂A∩B Iϕu(C). Similarly, we have

Fϕu(A)∨ Fϕu(B) ≥ Fϕu(A∩ B) ≥ ∧x∈C⊂A∩B Fϕu(C). Thus, ϕu satisfies the condition (2) in Theorem 5.
This completes the proof.

Example 6. Let X = {a, b, c, d, e} and let α ∈ SVNV be fixed, where α ∈ I1× I0× I0. We define the mapping
' : 2X → I × I × I as follows: for each A ∈ 2X ,

T'(A) =

{
1 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Tα otherwise,

I'(A) =

{
0 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Iα otherwise,

F'(A) =

{
0 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Fα otherwise.

Then, X = {a} ∪ {b, c, d} ∪ {c, e},
Tϕu({a}) = Tϕu({b, c, d}) = Tϕu({c, e}) = 1,
Iϕu({a}) = Iϕu({b, c, d}) = Iϕu({c, e}) = 0.
Fϕu({a}) = Fϕu({b, c, d}) = Fϕu({c, e}) = 0.

Thus, ∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧

α∈Γ
T'(Bα) = 1,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
I'(Bα) = 0,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
F'(Bα) = 0.

Thus, by Theorem 7, ' is an ordinary single valued neutrosophic subbase for some osvnt.

The following is an immediate result of Corollary 4 and Theorem 7.

Proposition 11. '1, '2 : 2X → I × I × I be two mappings such that

∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧

α∈Γ
T'1(Bα) = 1,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
I'1(Bα) = 0,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
F'1(Bα) = 0

and ∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧

α∈Γ
T'2(Bα) = 1,
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∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
I'2(Bα) = 0,

∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨

α∈Γ
F'2(Bα) = 0.

Suppose the two conditions hold:
(1) for each S1 ∈ 2X and each x ∈ S1,

T'1(S1) ≤
∨

x∈S2⊂S1

T'2(S2), I'1(S1) ≥
∧

x∈S2⊂S1

I'2(S2), F'1(S1) ≥
∧

x∈S2⊂S1

F'2(S2),

(2) for each S2 ∈ 2X and each x ∈ S2,

T'2(S2) ≤
∨

x∈S1⊂S2

T'1(S1), I'2(S2) ≥
∧

x∈S1⊂S2

I'1(S1), f'2(S2) ≥
∧

x∈S1⊂S2

f'1(S1).

Then, '1 and '2 are ordinary single valued neutrosophic subbases for the same ordinary single valued
neutrosophic topology on X.

6. Conclusions

In this paper, we defined an ordinary single valued neutrosophic topology and level set of
an osvnst to study some topological characteristics of neutrosophic sets and obtained some their
basic properties. In addition, we defined an ordinary single valued neutrosophic subspace. Next,
the concepts of an ordinary single valued neutrosophic neighborhood system and an ordinary single
valued neutrosophic base (or subbase) were introduced and studied. Their results are summarized
as follows:

First, an ordinary single valued neutrosophic neighborhood system has the same properties in a
classical neighborhood system (see Theorem 3).

Second, we found two characterizations of an ordinary single valued neutrosophic base
(see Theorems 4 and 5).

Third, we obtained one characterization of an ordinary single valued neutrosophic subbase
(see Theorem 7).

Finally, we expect that this paper can be a guidance for the research of separation axioms,
compactness, connectedness, etc. in ordinary single valued neutrosophic topological spaces.
In addition, one can deal with single valued neutrosophic topology from the viewpoint of lattices.
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Abstract: Recently, various types of single valued neutrosophic (SVN) rough set models were
presented based on the same inclusion relation. However, there is another SVN inclusion relation
in SVN sets. In this paper, we propose a new type of SVN covering rough set model based on the
new inclusion relation. Furthermore, the graph and matrix representations of the new SVN covering
approximation operators are presented. Firstly, the notion of SVN β2-covering approximation
space is proposed, which is decided by the new inclusion relation. Then, a type of SVN covering
rough set model under the SVN β2-covering approximation space is presented. Moreover, there
is a corresponding SVN relation rough set model based on a SVN relation induced by the SVN
β2-covering, and two conditions under which the SVN β2-covering can induce a symmetric SVN
relation are presented. Thirdly, the graph and matrix representations of the new SVN covering rough
set model are investigated. Finally, we propose a novel method for decision making (DM) problems
in paper defect diagnosis under the new SVN covering rough set model.

Keywords: single valued neutrosophic set; covering; symmetric relation; graph representation;
matrix representation; paper defect diagnosis

1. Introduction

Rough set theory, as a tool to deal with various types of data in data mining, was proposed by
Pawlak [1,2] in 1982. Then rough set theory has been extended to generalize rough sets based on other
notions such as binary relations [3], neighborhood systems [4], and coverings [5].

Covering-based rough sets [6–9] were proposed to deal with the type of covering data.
In application, they have been applied to knowledge reduction [10,11], decision rule synthesis [12,13],
and other fields [14,15]. In theory, covering-based rough set theory has been connected with matroid
theory [16–18], lattice theory [19,20], and fuzzy set theory [21–23]. Zadeh’s fuzzy set theory [24]
addresses the problem of how to understand and manipulate imperfect knowledge. It has been used
in various applications [25–28]. Recent investigations have attracted more attention on combining
covering-based rough set and fuzzy set theories. There are many fuzzy covering rough set models
proposed by researchers, such as Ma [29] and Yang et al. [30].

Smarandache [31] and Wang et al. [32] presented single valued neutrosophic (SVN) sets, which
can be regarded as an extension of intuitionistic fuzzy sets [33]. Both neutrosophic sets and rough
sets can deal with partial and uncertainty information [34]. Therefore, it is necessary to combine them.
Recently, Mondal and Pramanik [35] presented the concept of rough neutrosophic set. Yang et al. [36]
presented a SVN rough set model based on SVN relations. Wang and Zhang [37] presented two
types of SVN covering rough set models. All these SVN rough set models are presented based on an
inclusion relation which is named type-1 inclusion relation and denoted by ⊆1. The definition of ⊆1 is
shown as follows; for any A, B ∈ SVN(U),

Symmetry 2019, 11, 1074; doi:10.3390/sym11091074 www.mdpi.com/journal/symmetry86
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A ⊆1 B iff TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U.

Under the type-1 inclusion relation, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f 〉, we have
α ≤1 β⇔ a ≤ d, b ≥ e and c ≥ f . The definition of SVN β-covering approximation space is presented
as follows (see the work by the authors of [37]).

Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number β = 〈a, b, c〉, we
call Ĉ = {C1, C2, · · · , Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β-covering of U, if for all x ∈ U,
Ci ∈ Ĉ exists such that Ci(x) ≥1 β. We also call (U, Ĉ) a SVN β-covering approximation space.

However, there exists another inclusion relation in the work by the authors of [38], which is called
type-2 inclusion relation and denoted by ⊆2. The definition of ⊆2 is introduced as follows; for any
A, B ∈ SVN(U),

A ⊆2 B iff TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FB(x) ≤ FA(x) for all x ∈ U.

Under the type-2 inclusion relation, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f 〉, we have
α ≤2 β⇔ a ≤ d, b ≤ e and c ≥ f .

In the definition of SVN β-covering approximation space, if Ci(x) ≥1 β is replaced by Ci(x) ≥2 β,
there will be a new SVN covering approximation space (we call it a SVN β2-covering approximation
space in this paper). In Example 1 in this paper, we find the following statements.

(1) Let β = 〈0.5, 0.1, 0.8〉. Then Ĉ is a SVN β2-covering of U, but it is not a SVN β-covering of U.
(2) Let β = 〈0.5, 0.3, 0.8〉. Then Ĉ is a SVN β-covering of U, but it is not a SVN β2-covering of U.

That is to say, the SVN β2-covering approximation space is a new SVN covering approximation
space, which is different from the SVN β-covering approximation space. Since different inclusion
relations (⊆1 and ⊆2) have different union and intersection operations, the SVN β2-covering
approximation space has different union and intersection operations from the SVN β-covering
approximation space. Hence, notions and corresponding SVN covering rough set models of SVN
β-covering approximation space do not apply to SVN β2-covering approximation space, which is the
justification for studying this topic. Therefore, the investigation of the SVN β2-covering approximation
space and its corresponding SVN covering rough set model is very important. It not only can manage
some issues that the SVN β-covering approximation space can not deal with, but also constructs a new
type of SVN covering rough set model. This is our motivation of this research.

In this paper, we present some new concepts in SVN β2-covering approximation space, as well
as their properties. Then the type-2 SVN covering rough set model under the SVN β2-covering
approximation space is proposed. On the one hand, the graph and matrix representations of the type-2
SVN covering rough set model are investigated respectively. Moreover, some relationships between
the type-2 SVN covering rough set model and other SVN rough set models are presented. One the
other hand, we present a method to DM problems in paper defect diagnosis, which is an important
topic in paper making industries, under the type-2 SVN covering rough set model. Many researchers
have studied decision making (DM) problems by rough set models [39–42]. Hence, the proposed DM
method is compared with other methods which are presented by Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37] respectively.

The rest of this paper is organized as follows. Section 2 reviews some fundamental definitions
about covering-based rough sets and SVN sets. In Section 3, some concepts and properties in
SVN β2-covering approximation space are studied. The relationship between the SVN β-covering
approximation space and the SVN β2-covering approximation space is presented. In Section 4, we
present the type-2 SVN covering rough set model. Some relationships between the type-2 SVN covering
rough set model and other SVN rough set models are presented. Moreover, a SVN relation can be
induced by the SVN β2-covering, so a corresponding SVN relation rough set model and two conditions
under which the SVN β2-covering can induce a symmetric SVN relation are presented. In Section 5,
some new graphs and graph operations are presented. Based on this, the graph representation of the
type-2 SVN covering approximation operators is shown. In Section 6, some new matrices and matrix
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operations are also presented, and the matrix representation of the type-2 SVN covering approximation
operators is presented. In Section 7, a novel method to paper defect diagnosis is presented under
the type-2 SVN covering rough set model. Moreover, the proposed method is compared with other
methods. This paper is concluded and further work is indicated in Section 8.

2. Basic Definitions

Suppose U is a nonempty and finite set called universe.

Definition 1. (Covering [45,46]) Let U be a universe and C be a family of subsets of U. If none of subsets in C
is empty and ∪C = U, then C is called a covering of U.

The pair (U, C) is called a covering approximation space.

Definition 2. (SVN set [32]) Let U be a nonempty fixed set. A SVN set A in U is defined as an object of the
following form.

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U},

where TA : U → [0, 1] is called the degree of truth-membership of the element x ∈ U to A, IA : U → [0, 1]
is called the degree of indeterminacy-membership of the element x ∈ U to A, FA(x) : U → [0, 1] is called the
degree of falsity-membership. They satisfy 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for all x ∈ U. The family of all
SVN sets in U is denoted by SVN(U). For convenience, a SVN number is represented by α = 〈a, b, c〉, where
a, b, c ∈ [0, 1] and a + b + c ≤ 3.

For the inclusion relation of neutrosophic sets, there are two different definitions in the literature.
An original definition is proposed by Smarandache [31,47], we call it type-1 inclusion relation in this
paper, denoted by ⊆1. For set theory, union and intersection operations are corresponding to inclusion
relation. Hence, there are corresponding union and intersection operations defined as follows; for any
A, B ∈ SVN(U),

(1) A ⊆1 B iff TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U;
(2) A ∩1 B = {〈x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)〉 : x ∈ U};
(3) A ∪1 B = {〈x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)〉 : x ∈ U}.

Specially, for two SVN numbers, α = 〈a, b, c〉 and β = 〈d, e, f 〉 , α ≤1 β⇔ a ≤ d, b ≥ e and c ≥ f .
Under the type-1 inclusion relation, Wang and Zhang [37] presented the definition of SVN

β-covering approximation space.

Definition 3. [37] Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number
β = 〈a, b, c〉, we call Ĉ = {C1, C2, · · · , Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β-covering of U,
if for all x ∈ U, Ci ∈ Ĉ exists such that Ci(x) ≥1 β. We also call (U, Ĉ) a SVN β-covering approximation space.

Definition 4. [37] Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U, the SVN
β-neighborhood Ñβ

x of x induced by Ĉ can be defined as

Ñβ
x = ∩1{Ci ∈ Ĉ : Ci(x) ≥1 β}. (1)

Another one is used in some papers [32,38], we call it type-2 inclusion relation in this paper,
denote it by ⊆2. Hence, the type-2 inclusion relation, corresponding union and intersection operations
are shown as follows; for any A, B ∈ SVN(U),

(1) A ⊆2 B iff TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FB(x) ≤ FA(x) for all x ∈ U;
(2) A ∩2 B = {〈x, TA(x) ∧ TB(x), IA(x) ∧ IB(x), FA(x) ∨ FB(x)〉 : x ∈ U};
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(3) A ∪2 B = {〈x, TA(x) ∨ TB(x), IA(x) ∨ IB(x), FA(x) ∧ FB(x)〉 : x ∈ U}.

Specially, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f 〉 , α ≤2 β⇔ a ≤ d, b ≤ e and c ≥ f .
For the above inclusion relations of neutrosophic sets, the following operations use the same

definition in this paper [32,36].

(4) A = B iff A ⊆1 B and B ⊆1 A, iff A ⊆2 B and B ⊆2 A;
(5) A′ = {〈x, FA(x), 1− IA(x), TA(x)〉 : x ∈ U};
(6) A⊕ B = {〈x, TA(x) + TB(x)− TA(x) · TB(x), IA(x) · IB(x), FA(x) · FB(x)〉 : x ∈ U}.

3. SVN β2-Covering Approximation Space

In this section, the definition of SVN β2-covering approximation space is presented. There are
two basic concepts—SVN β2-covering and SVN β2-neighborhood—in this new approximation space.

Definition 5. Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number β = 〈a, b, c〉,
we call Ĉ = {C1, C2, · · · , Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β2-covering of U, if for all x ∈ U,
Ci ∈ Ĉ exists such that Ci(x) ≥2 β. We also call (U, Ĉ) a SVN β2-covering approximation space.

In Definition 5, if Ci(x) ≥2 β is replaced by Ci(x) ≥1 β, then Ĉ = {C1, C2, · · · , Cm} is called a
SVN β-covering of U in [37]. By the definitions of ≥1 and ≥2, we know if Ĉ is a SVN β2-covering of U,
then Ĉ is not necessarily a SVN β-covering. To show the difference between SVN β-covering and SVN
β2-covering, we use the work presented by the authors of [37] in the following example.

Example 1. Let U = {x1, x2, x3, x4, x5}, Ĉ = {C1, C2, C3, C4} and β = 〈0.5, 0.1, 0.8〉. We can see that Ĉ is
a SVN β2-covering of U in Table 1, but it is not a SVN β-covering of U.

Table 1. The tabular representation of Ĉ in [37].

U C1 C2 C3 C4

x1 〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
x2 〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
x3 〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
x4 〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
x5 〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉

Conversely, if Ĉ is a SVN β-covering of U, then Ĉ is not necessarily a SVN β2-covering.
In Example 1, suppose β = 〈0.5, 0.3, 0.8〉. Then Ĉ is a SVN β-covering of U, but it is not a SVN
β2-covering of U.

By the definition of SVN β-neighborhood, the notion of SVN β2-neighborhood is presented in the
following definition.

Definition 6. Let Ĉ be a SVN β2-covering of U and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U, the SVN

β2-neighborhood Ñβ2

x of x induced by Ĉ can be defined as

Ñβ2

x = ∩2{Ci ∈ Ĉ : Ci(x) ≥2 β}. (2)

Note that Ci(x) is a SVN number 〈TCi (x), ICi (x), FCi (x)〉. Hence, Ci(x) ≥2 β means TCi (x) ≥ a,
ICi (x) ≥ b and FCi (x) ≤ c, where SVN number β = 〈a, b, c〉.

Remark 1. Let Ĉ be a SVN β2-covering of U, β = 〈a, b, c〉 and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U,

Ñβ2

x = ∩2{Ci ∈ Ĉ : TCi (x) ≥ a, ICi (x) ≥ b, FCi (x) ≤ c}. (3)
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Example 2. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉. Then

Ñβ2

x1 = C1 ∩2 C2, Ñβ2

x2 = C1 ∩2 C2 ∩2 C4, Ñβ2

x3 = C3 ∩2 C4, Ñβ2

x4 = C1 ∩2 C4, Ñβ2

x5 = C2 ∩2 C3 ∩2 C4.

Hence, all SVN β2-neighborhoods are shown in Table 2:

Table 2. The tabular representation of Ñβ2

xk (k = 1, 2, 3, 4, 5).

Ñβ2

xk x1 x2 x3 x4 x5

Ñβ2

x1 〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
Ñβ2

x2 〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
Ñβ2

x3 〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
Ñβ2

x4 〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.7〉 〈0.4, 0.3, 0.4〉 〈0.5, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
Ñβ2

x5 〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.3, 0.7〉 〈0.6, 0.1, 0.5〉

According to Definitions 3–6, we know that “Let Ĉ be a SVN β2-covering of U. If Ĉ is also a SVN

β-covering of U, then Ñβ2

x and Ñβ
x have no inclusion relations (⊆1 and ⊆2) for all x ∈ U. To explain

this statement, the following example is presented.

Example 3. Let U = {x1, x2, x3, x4, x5}, Ĉ = {C1, C2, C3, C4} and β = 〈0.5, 0.2, 0.8〉, where Ĉ is shown in
Table 1 of Example 1. By Definitions 3 and 5, we know that Ĉ is a SVN β2-covering and also a SVN β-covering
of U. Then

Ñβ2

x1 = C1 ∩2 C2, Ñβ2

x2 = C1 ∩2 C2, Ñβ2

x3 = C3 ∩2 C4, Ñβ2

x4 = C4, Ñβ2

x5 = C2 ∩2 C3.

Ñβ
x1 = C1 ∩1 C2, Ñβ

x2 = C2 ∩1 C4, Ñβ
x3 = C3, Ñβ

x4 = C1, Ñβ
x5 = C4.

Hence, all SVN β2-neighborhoods and SVN β2-neighborhoods are shown in Tables 3 and 4 respectively:
By Tables 3 and 4, we see that for all xk ∈ U (k = 1, 2, 3, 4, 5)

• Ñβ2

xk ⊆1 Ñβ
xk is not established, since Ñβ2

x2 *1 Ñβ
x2 .

• Ñβ
xk ⊆1 Ñβ2

xk is not established, since Ñβ
x3 *1 Ñβ2

x3 .

• Ñβ2

xk ⊆2 Ñβ
xk is not established, since Ñβ2

x4 *2 Ñβ
x4 .

• Ñβ
xk ⊆2 Ñβ2

xk is not established, since Ñβ
x5 *2 Ñβ2

x5 .

Hence, Ñβ2

xk and Ñβ
xk have no inclusion relations (⊆1 and ⊆2) for all xk ∈ U.

In a SVN β2-covering approximation space (U, Ĉ), we present the following properties of the
SVN β2-neighborhood.

Table 3. The tabular representation of Ñβ2

xk (k = 1, 2, 3, 4, 5).

Ñβ2

xk x1 x2 x3 x4 x5

Ñβ2

x1 〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
Ñβ2

x2 〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
Ñβ2

x3 〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
Ñβ2

x4 〈0.1, 0.5, 0.6〉 〈0.6, 0.1, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.2〉
Ñβ2

x5 〈0.4, 0.1, 0.5〉 〈0.4, 0.2, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.5, 0.7〉 〈0.6, 0.3, 0.5〉
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Table 4. The tabular representation of Ñβ
xk (k = 1, 2, 3, 4, 5).

Ñβ
xk x1 x2 x3 x4 x5

Ñβ
x1 〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉

Ñβ
x2 〈0.1, 0.5, 0.6〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.7, 0.3, 0.5〉

Ñβ
x3 〈0.4, 0.1, 0.5〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉

Ñβ
x4 〈0.7, 0.2, 0.5〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.5, 0.2〉 〈0.6, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉

Ñβ
x5 〈0.1, 0.5, 0.6〉 〈0.6, 0.1, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.2〉

Proposition 1. Let Ĉ be a SVN β2-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then Ñβ2

x (x) ≥2 β for each
x ∈ U.

Proof. For any x ∈ U, Ñβ2

x (x) = ( ∩2
Ci(x)≥2β

Ci)(x) ≥2 β.

Proposition 2. Let Ĉ be a SVN β2-covering of U and Ĉ = {C1, C2, . . . , Cm}. For all x, y, z ∈ U, if Ñβ2

x (y) ≥2

β, Ñβ2

y (z) ≥2 β, then Ñβ2

x (z) ≥2 β.

Proof. Let I = {1, 2, · · · , m}. Since Ñβ2

x (y) ≥2 β, for any i ∈ I, if Ci(x) ≥2 β, then Ci(y) ≥2 β.

Since Ñβ2

y (z) ≥2 β, for any i ∈ I, Ci(z) ≥2 β when Ci(y) ≥2 β. Then, for any i ∈ I, Ci(x) ≥2 β implies

Ci(z) ≥2 β. Therefore, Ñβ2

x (z) ≥2 β.

Proposition 3. Let Ĉ be a SVN β2-covering of U and Ĉ = {C1, C2, . . . , Cm}. For two SVN numbers β1, β2,

if β1 ≤2 β2 ≤2 β, then Ñβ2
1

x ⊆2 Ñβ2
2

x for all x ∈ U.

Proof. For all x ∈ U, since β1 ≤2 β2 ≤2 β, {Ci ∈ Ĉ : Ci(x) ≥2 β1} ⊇ {Ci ∈ Ĉ : Ci(x) ≥2 β2}.
Hence, Ñβ2

1
x = ∩2{Ci ∈ Ĉ : Ci(x) ≥2 β1} ⊆2 ∩2{Ci ∈ Ĉ : Ci(x) ≥2 β2} = Ñβ2

2
x for all x ∈ U.

Proposition 4. Let Ĉ be a SVN β2-covering of U. For any x, y ∈ U, Ñβ2

x (y) ≥2 β if and only if Ñβ2

y ⊆2 Ñβ2

x .

Proof. Suppose the SVN number β = 〈a, b, c〉.
(⇒): Since Ñβ2

x (y) ≥2 β,

T
Ñβ2

x
(y) = T ∩2

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

Ci (y) =
∧

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

TCi (y) ≥ a, I
Ñβ2

x
(y) = I ∩2

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤b

Ci (y) =
∧

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

ICi (y) ≥ b,

and

F
Ñβ2

x
(y) = F ∩2

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

Ci (y) =
∨

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

FCi (y) ≤ c.

Then,

{Ci ∈ Ĉ : TCi (x) ≥ a, ICi (x) ≥ b, FCi (x) ≤ c} ⊆ {Ci ∈ Ĉ : TCi (y) ≥ a, ICi (y) ≥ b, FCi (y) ≤ c}.
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Therefore, for each z ∈ U,

T
Ñβ2

x
(z) =

∧
TCi

(x)≥a

ICi
(x)≥b

FCi
(x)≤c

TCi (z) ≥
∧

TCi
(y)≥a

ICi
(y)≥b

FCi
(y)≤c

TCi (z) = T
Ñβ2

y
(z),

I
Ñβ2

x
(z) =

∧
TCi

(x)≥a

ICi
(x)≥b

FCi
(x)≤c

ICi (z) ≥
∧

TCi
(y)≥a

ICi
(y)≥b

FCi
(y)≤c

ICi (z) = I
Ñβ2

y
(z),

F
Ñβ2

x
(z) =

∨
TCi

(x)≥a

ICi
(x)≥b

FCi
(x)≤c

FCi (z) ≤
∨

TCi
(y)≥a

ICi
(y)≥b

FCi
(y)≤c

FCi (z) = F
Ñβ2

y
(z).

Hence, Ñβ2

y ⊆2 Ñβ2

x .

(⇐): For any x, y ∈ U, since Ñβ2

y ⊆2 Ñβ2

x ,

T
Ñβ2

x
(y) ≥ T

Ñβ2
y
(y) ≥ a, I

Ñβ2
x
(y) ≥ I

Ñβ2
y
(y) ≥ b and F

Ñβ2
x
(y) ≤ F

Ñβ2
y
(y) ≤ c.

Therefore, Ñβ2

x (y) ≥2 β.

4. A Type of SVN Covering Rough Set Model Based on a New Inclusion Relation

In this section, we propose a type of SVN covering rough set model on the basis of the
SVN β2-neighborhoods, which is decided by a type-2 inclusion relation. Then, we investigate
some properties of the new lower and upper SVN covering approximation operators. Finally,
some relationships between this model and some other rough set models are presented.

4.1. Characteristics of the New Type of SVN Covering Rough Set Model Based on the New Inclusion Relation

Definition 7. Let (U, Ĉ) be a SVN β2-covering approximation space. For each A ∈ SVN(U), where A =

{〈x, TA(x), IA(x), FA(x)〉 : x ∈ U}, we define the type-2 SVN covering upper approximation C̃2(A) and
lower approximation C

∼
2(A) of A as

C̃2(A) = {〈x,∨y∈U [T
Ñβ2

x
(y) ∧ TA(y)],∨y∈U [I

Ñβ2
x
(y) ∧ IA(y)],∧y∈U [F

Ñβ2
x
(y) ∨ FA(y)]〉 : x ∈ U},

C
∼

2(A) = {〈x,∧y∈U [F
Ñβ2

x
(y) ∨ TA(y)],∧y∈U [(1− I

Ñβ2
x
(y)) ∨ IA(y)],∨y∈U [T

Ñβ2
x
(y) ∧ FA(y)]〉 : x ∈ U}. (4)

If C̃2(A) 6= C
∼

2(A), then A is called the type-2 SVN covering rough set.

Example 4. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1, β = 〈0.5, 0.1, 0.8〉 and

A = (0.6,0.3,0.5)
x1

+ (0.4,0.5,0.1)
x2

+ (0.3,0.2,0.6)
x3

+ (0.5,0.3,0.4)
x4

+ (0.7,0.2,0.3)
x5

. Then all SVN β2-neighborhoods Ñβ2

xk

(k = 1, 2, 3, 4, 5) are shown in Table 2 of Example 2. By Definition 7, we have

C̃2(A) = {〈x1, 0.6, 0.2, 0.5〉, 〈x2, 0.4, 0.2, 0.6〉, 〈x3, 0.6, 0.3, 0.5〉, 〈x4, 0.5, 0.2, 0.6〉, 〈x5, 0.6, 0.3, 0.5〉},

C
∼

2(A) = {〈x1, 0.6, 0.8, 0.5〉, 〈x2, 0.6, 0.8, 0.4〉, 〈x3, 0.4, 0.7, 0.5〉, 〈x4, 0.4, 0.7, 0.4〉, 〈x5, 0.6, 0.8, 0.3〉}.

Let the SVN universe set be U = {〈x, 1, 1, 0〉 : x ∈ U} and the SVN empty set be ∅ = {〈x, 0, 0, 1〉 :
x ∈ U}, which are decided by the type-2 inclusion relation ⊆2. Some basic properties of the type-2
SVN covering upper and lower approximation operators are presented in the following proposition.
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Proposition 5. Let Ĉ be a SVN β2-covering of U. Then the type-2 SVN covering upper and lower
approximation operators in Definition 7 satisfy the following properties for all A, B ∈ SVN(U).

(1) C
∼

2(U) = U, C̃2(∅) = ∅;

(2) C̃2(A′) = (C
∼

2(A))′, C
∼

2(A′) = (C̃2(A))′;

(3) If A ⊆2 B, then C
∼

2(A) ⊆2 C
∼

2(B), C̃2(A) ⊆2 C̃2(B);

(4) C
∼

2(A ∩2 B) = C
∼

2(A) ∩2 C
∼

2(B), C̃2(A ∪2 B) = C̃2(A) ∪2 C̃2(B);

(5) C
∼

2(A ∪2 B) ⊇2 C
∼

2(A) ∪2 C
∼

2(B), C̃2(A ∩2 B) ⊆2 C̃2(A) ∩2 C̃2(B).

Proof.(1) Since the SVN universe set is U = {〈x, 1, 1, 0〉 : x ∈ U} and the SVN empty set is
∅ = {〈x, 0, 0, 1〉 : x ∈ U},

C
∼

2(U) = {〈x,∧y∈U [F
Ñβ2

x
(y) ∨ TU(y)],∧y∈U [(1− I

Ñβ2
x
(y)) ∨ IU(y)],∨y∈U [T

Ñβ2
x
(y) ∧ FU(y)]〉 : x ∈ U}

= {〈x, 1, 1, 0〉 : x ∈ U}
= U,

and

C̃2(∅) = {〈x,∨y∈U [TÑβ2
x
(y) ∧ T∅(y)],∨y∈U [IÑβ2

x
(y) ∧ I∅(y)],∧y∈U [FÑβ2

x
(y) ∨ F∅(y)]〉 : x ∈ U}

= {〈x, 0, 0, 1〉 : x ∈ U}
= ∅;

(2)

C̃2(A′) = {〈x,∨y∈U [T
Ñβ2

x
(y) ∧ TA′ (y)],∨y∈U [I

Ñβ2
x
(y) ∧ IA′ (y)],∧y∈U [F

Ñβ2
x
(y) ∨ FA′ (y)]〉 : x ∈ U}

= {〈x,∨y∈U [T
Ñβ2

x
(y) ∧ FA(y)],∨y∈U [I

Ñβ2
x
(y) ∧ (1− IA(y))],∧y∈U [F

Ñβ2
x
(y) ∨ TA(y)]〉 : x ∈ U}

= (C
∼

2(A))′.

If we replace A by A′ in this proof, we can also prove C
∼

2(A′) = (C̃2(A))′.

(3) Since A ⊆2 B, TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FB(x) ≤ FA(x) for all x ∈ U. Therefore

TC
∼

2(A)(x) = ∧y∈U [FÑβ2
x
(y) ∨ TA(y)] ≤ ∧y∈U [FÑβ2

x
(y) ∨ TB(y)] = TC

∼
2(B)(x),

IC
∼

2(A)(x) = ∧y∈U [(1− I
Ñβ2

x
(y)) ∨ IA(y)] ≤ ∧y∈U [(1− I

Ñβ2
x
(y)) ∨ IB(y)] = IC

∼
2(B)(x),

FC
∼

2(A)(x) = ∨y∈U [TÑβ2
x
(y) ∧ FA(y)] ≥ ∨y∈U [TÑβ2

x
(y) ∧ FB(y)] = FC

∼
2(B)(x).

Hence, C
∼

2(A) ⊆2 C
∼

2(B). In the same way, there is C̃2(A) ⊆2 C̃2(B);

(4) Since

C
∼

2(A ∩2 B)

= {〈x,∧y∈U [F
Ñβ2

x
(y) ∨ TA∩2B(y)],∧y∈U [(1− I

Ñβ2
x
(y)) ∨ IA∩2B(y)],∨y∈U [T

Ñβ2
x
(y) ∧ FA∩2B(y)]〉 : x ∈ U}

= {〈x,∧y∈U [F
Ñβ2

x
(y) ∨ (TA(y) ∧ TB(y))],∧y∈U [(1− I

Ñβ2
x
(y)) ∨ (IA(y) ∧ IB(y))],∨y∈U [T

Ñβ2
x
(y) ∧ (FA(y)

∨FB(y))]〉 : x ∈ U}
= {〈x,∧y∈U [(F

Ñβ2
x
(y) ∨ TA(y)) ∧ (F

Ñβ2
x
(y) ∨ TB(y))],∧y∈U [((1− I

Ñβ2
x
(y)) ∨ IA(y)) ∧ (1− I

Ñβ2
x
(y))∨

IB(y))],∨y∈U [(T
Ñβ2

x
(y) ∧ FA(y)) ∨ (T

Ñβ2
x
(y) ∧ FB(y))]〉 : x ∈ U}

= C
∼

2(A) ∩2 C∼
2(B).
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Similarly, we can obtain C̃2(A ∪2 B) = C̃2(A) ∪2 C̃2(B);
(5) Since A ⊆2 (A ∪2 B), B ⊆2 (A ∪2 B), (A ∩2 B) ⊆2 A and (A ∩2 B) ⊆2 B,

C
∼

2(A) ⊆2 C
∼

2(A ∪2 B), C
∼

2(B) ⊆2 C
∼

2(A ∪2 B), C̃2(A ∩2 B) ⊆2 C̃2(A) and C̃2(A ∩2 B) ⊆2 C̃2(B).

Hence, C
∼

2(A ∪2 B) ⊇2 C
∼

2(A) ∪2 C
∼

2(B), C̃2(A ∩2 B) ⊆2 C̃2(A) ∩2 C̃2(B).

4.2. Relationships between the New Model and Some Other Rough Set Models

In this subsection, we investigate some relationships between the type-2 SVN covering rough set
model and other two SVN rough set models respectively. Among these two SVN rough set models,
one is a SVN covering rough set model and the other is a SVN relation rough set model.

Wang and Zhang [37] presented the type-1 SVN covering rough set model under a SVN β-covering
approximation space, which is related to the type-1 inclusion relation. We consider whether the type-1
SVN covering approximate operators and the type-2 SVN covering approximate operators presented
in Section 4.1 have inclusion relations.

Definition 8. [37] Let (U, Ĉ) be a SVN β-covering approximation space. For each A ∈ SVN(U), where
A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U}, we define the type-1 SVN covering upper approximation C̃(A) and
lower approximation C

∼
(A) of A as

C̃(A) = {〈x,∨y∈U [TÑβ
x
(y) ∧ TA(y)],∨y∈U [IÑβ

x
(y) ∧ IA(y)],∧y∈U [FÑβ

x
(y) ∨ FA(y)]〉 : x ∈ U},

C
∼
(A) = {〈x,∧y∈U [FÑβ

x
(y) ∨ TA(y)],∧y∈U [(1− IÑβ

x
(y)) ∨ IA(y)],∨y∈U [TÑβ

x
(y) ∧ FA(y)]〉 : x ∈ U}. (5)

If C̃(A) 6= C
∼
(A), then A is called the type-1 SVN covering rough set.

Let Ĉ be a SVN β2-covering of U and also be a SVN β-covering of U. By Definitions 7 and 8,
we know that the type-1 SVN covering approximate operators (C̃ and C

∼
) and the type-2 SVN covering

approximate operators (C̃2 and C
∼

2) are related to all SVN β-neighborhoods (Ñβ
x , for any x ∈ U) and

SVN β2-neighborhoods (Ñβ2

x , for any x ∈ U), respectively. By Example 3, we know that Ñβ2

x and Ñβ
x

have no inclusion relations (⊆1 and ⊆2) for all x ∈ U. Hence, the type-1 SVN covering approximate
operators and the type-2 SVN covering approximate operators also have no inclusion relations (⊆1

and ⊆2).
In the work by the authors of [36], a SVN relation R on U is defined as R =

{〈(x, y), TR(x, y), IR(x, y), FR(x, y)〉 : (x, y) ∈ U ×U}, where TR : U ×U → [0, 1], IR : U ×U → [0, 1]
and FR : U × U → [0, 1]. If for any x, y ∈ U, TR(x, y) = TR(y, x), IR(x, y) = IR(y, x) and
FR(x, y) = FR(y, x), then R is called a symmetric SVN relation.

For a SVN β2-covering Ĉ of U, one can use the SVN β2-covering Ĉ induce a SVN relation RĈ on
U as

RĈ = {〈(x, y), TRĈ
(x, y), IRĈ

(x, y), FRĈ
(x, y)〉 : (x, y) ∈ U ×U},

where

TRĈ
(x, y) = T

Ñβ2
x
(y), IRĈ

(x, y) = I
Ñβ2

x
(y), FRĈ

(x, y) = F
Ñβ2

x
(y) for any x, y ∈ U.

The following two propositions present two conditions under which RĈ is a symmetric
SVN relation.

Proposition 6. Let Ĉ be a SVN β2-covering of U, and RĈ be the induced SVN relation on U by Ĉ. If Ñβ2

x (y) =

Ñβ2

y (x) for any x, y ∈ U, then RĈ is a symmetric SVN relation.
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Proof. Since Ñβ2

x (y) = Ñβ2

y (x) for any x, y ∈ U, T
Ñβ2

x
(y) = T

Ñβ2
y
(x), I

Ñβ2
x
(y) = I

Ñβ2
y
(x) and F

Ñβ2
x
(y) =

F
Ñβ2

y
(x). Hence, TRĈ

(x, y) = TRĈ
(y, x), IRĈ

(x, y) = IRĈ
(y, x) and FRĈ

(x, y) = FRĈ
(y, x), i.e., RĈ is a

symmetric SVN relation.

Proposition 7. Let Ĉ be a SVN β2-covering of U, RĈ be the induced SVN relation on U by Ĉ, and C ∈ Ĉ.
If |Ĉ| = 1 and C(x) = C(y) for any x, y ∈ U, then RĈ is a symmetric SVN relation, where |Ĉ| denotes the
cardinality of Ĉ.

Proof. Since |Ĉ| = 1, C is the only one element of Ĉ. Since C(x) = C(y) for any x, y ∈ U, Ñβ2

x (y) =

Ñβ2

y (x). Hence, TRĈ
(x, y) = TRĈ

(y, x), IRĈ
(x, y) = IRĈ

(y, x) and FRĈ
(x, y) = FRĈ

(y, x), i.e., RĈ is a
symmetric SVN relation.

Then, the type-2 SVN covering rough set model defined in Section 4.1 can be viewed as a SVN
relation rough set model.

Definition 9. Let Ĉ be a SVN β2-covering of U, and RĈ be the induced SVN relation on U by Ĉ. For any
A ∈ SVN(U), the upper approximation R̃Ĉ(A) and lower approximation R

∼Ĉ
(A) of A are defined as

R̃Ĉ(A) = {〈x,∨y∈U [TRĈ
(x, y) ∧ TA(y)],∨y∈U [IRĈ

(x, y) ∧ IA(y)],∧y∈U [FRĈ
(x, y) ∨ FA(y)]〉 : x ∈ U},

R
∼Ĉ

(A) = {〈x,∧y∈U [FRĈ
(x, y) ∨ TA(y)],∧y∈U [(1− IRĈ

(x, y)) ∨ IA(y)],∨y∈U [TRĈ
(x, y) ∧ FA(y)]〉 : x ∈ U}.

Remark 2. Let Ĉ be a SVN β2-covering of U, and RĈ be the induced SVN relation on U by Ĉ. Then

R̃Ĉ(A) = C̃2(A),

R
∼Ĉ

(A) = C
∼

2(A).

5. Graph Representation of the Type-2 SVN Covering Rough Set Model

In this section, the graph representation of the type-2 SVN covering rough set model is presented.
Firstly, some new graphs and graph operations are presented. Then, we show the graph representation
of the type-2 SVN covering approximation operators defined in Definition 7. The order of elements in
U is given.

A graph is a pair G = (V, E) consisting of a nonempty set V of vertices and a set E of edges such
that E ⊆ U ×U. We shall often write V(G) for V and E(G) for E, particularly when several graphs are
being considered. Two vertices are adjacent if there is an edge with them as ends. A graph G = (V, E)
is called bipartite if the vertex set V can be divided into two disjoint sets V1 and V2, such that every
edge connects a vertex in V1 to one in V2. One often writesG = (V1 ∪V2, E) to denote a bipartite graph
whose partition has the partite sets V1 and V2. A complete bipartite graph is a simple bipartite graph
such that two vertices are adjacent if and only if they are in different partite sets. A weighted graph is
a graph with numerical labels on the edges.

Firstly, the graph representation of the SVN β2-covering Ĉ is defined in the following definition.

Definition 10. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
For any A ∈ SVN(U), we define a completely weighted bipartite graph G(A) = (U ∪V, E), named completely
weighted bipartite graph associated with A, where V = {TA, IA, FA}, the weight w(TA, xk) = TA(xk),
w(IA, xk) = IA(xk) and w(FA, xk) = FA(xk) (k = 1, 2, · · · , n). For the SVN β-covering Ĉ, there are m
completely weighted bipartite graphs G(Ci) (i = 1, 2, · · · , m), and all G(Ci) are called the graph representation
of the SVN β2-covering Ĉ.
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Example 5. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉.
Then G(Ci) (i = 1, 2, 3, 4) are the graph representation of the SVN β2-covering Ĉ. All G(Ci) (i = 1, 2, 3, 4) are
shown in Figures 1 and 2.

x1 x2 x3 x4 x5

TC1
IC1

FC1

0.7 0.2 0.5

0.5

0.3 0.2

0.4

0.5 0.2

0.6

0.1
0.7

0.3

0.2 0.6

(a) G(C1)

x1 x2 x3 x4 x5

TC2
IC2

FC2

0.6 0.2 0.4

0.5

0.2 0.8

0.2

0.3 0.6

0.4

0.5
0.7

0.7

0.3 0.5

(b) G(C2)

Figure 1. G(C1) and G(C2).

x1 x2 x3 x4 x5

TC3
IC3

FC3

0.4 0.1 0.5

0.4

0.5 0.4

0.5

0.2 0.4

0.3

0.6
0.5

0.6

0.3 0.5

(a) G(C3)

x1 x2 x3 x4 x5

TC4
IC4

FC4

0.1 0.5 0.7

0.6

0.1 0.7

0.6

0.3 0.4

0.5

0.3
0.2

0.8

0.1 0.2

(b) G(C4)

Figure 2. G(C3) and G(C4).

An intersection operation about G(A) and G(B) is presented in the following definition, for any
A, B ∈ SVN(U).

Definition 11. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
For any A, B, D ∈ SVN(U), we define a completely weighted bipartite graph G(D) = G(A) ∩2 G(B)
associated with D, where G(D) = (U ∪ {TD, ID, FD}, E) and

w(TD, xk) = w(TA, xk) ∧ w(TB, xk), w(ID, xk) = w(IA, xk) ∧ w(IA, xk) and
w(FD, xk) = w(FA, xk) ∨ w(FB, xk) (k = 1, 2, · · · , n).

Based on Definition 11 and the definition of A ∩2 B, the relationship between G(A ∩2 B) and
G(A) ∩2 G(B) can be obtained for any A, B ∈ SVN(U).

Lemma 1. Let Ĉ be a SVN β2-covering of U. Then G(A ∩2 B) = G(A) ∩2 G(B) for any A, B ∈ SVN(U).

Proof. According to the definition of A ∩2 B and Definition 11, it is immediate.

By Definition 6, Ñβ2

xk ∈ SVN(U) for any xk ∈ U. Hence, any G(Ñβ2

xk ) is a completely weighted
bipartite graph, which can be represented in the following proposition.

Proposition 8. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn}, Ĉ = {C1, C2, · · · , Cm} and
β = 〈a, b, c〉. Then

G(Ñβ2

xk ) = ∩2{G(Ci) : w(TCi , xk) ≥ a, w(ICi , xk) ≥ b, w(FCi , xk) ≤ c}.

Proof. By Definitions 6 and 11, and Lemma 1, it is immediate.
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Example 6. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉.
By Proposition 8, we have

G(Ñβ2

x1 ) = G(C1) ∩2 G(C2), G(Ñβ2

x2 ) = G(C1) ∩2 G(C2) ∩2 G(C4), G(Ñβ2

x3 ) = G(C3) ∩2 G(C4),

G(Ñβ2

x4 ) = G(C1) ∩2 G(C4), G(Ñβ2

x5 ) = G(C2) ∩2 G(C3) ∩2 G(C4).

Then all G(Ñβ2

xk ) are shown in Figures 3, 4, and 5a.

(a) G(Ñβ2

x1 ) (b) G(Ñβ2

x2 )

Figure 3. G(Ñβ2

x1 ) and G(Ñβ2

x2 ).

(a) G(Ñβ2

x3 ) (b) G(Ñβ2

x4 )

Figure 4. G(Ñβ2

x3 ) and G(Ñβ2

x4 ).

Finally, the type-2 SVN covering upper approximation C̃2(A) and lower approximation C
∼

2(A) of

A are represented by graphs.

(a) G(Ñβ2

x5 ) (b) G(A)

Figure 5. G(Ñβ2

x5 ) and G(A).

Theorem 1. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn}. For each A ∈
SVN(U), G(C̃2(A)) and G(C

∼
2(A)) are completely weighted bipartite graphs, where G(C̃2(A)) = (U ∪
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{TC̃2(A), IC̃2(A), FC̃2(A)}, E1), G(C
∼

2(A)) = (U ∪ {TC
∼

2(A), IC
∼

2(A), FC
∼

2(A)}, E2) and the weight of any edge is

listed as follows.

w(TC̃2(A), xk) =
n∨

j=1
[w(T

Ñβ2
xk

, xj) ∧ w(TA, xj)] (1 ≤ k ≤ n),

w(IC̃2(A), xk) =
n∨

j=1
[w(I

Ñβ2
xk

, xj) ∧ w(IA, xj)] (1 ≤ k ≤ n),

w(FC̃2(A), xk) =
n∧

j=1
[w(F

Ñβ2
xk

, xj) ∨ w(FA, xj)] (1 ≤ k ≤ n),

w(TC
∼

2(A), xk) =
n∧

j=1
[w(F

Ñβ2
xk

, xj) ∨ w(TA, xj)] (1 ≤ k ≤ n),

w(IC
∼

2(A), xk) =
n∧

j=1
[(1− w(I

Ñβ2
xk

, xj)) ∨ w(IA, xj)] (1 ≤ k ≤ n),

w(FC
∼

2(A), xk) =
n∨

j=1
[w(T

Ñβ2
xk

, xj) ∧ w(FA, xj)] (1 ≤ k ≤ n).

(6)

Proof. According to Definition 7, we know C̃2(A) ∈ SVN(U) and C
∼

2(A) ∈ SVN(U) for any A ∈
SVN(U). Hence, G(C̃2(A)) and G(C

∼
2(A)) are completely weighted bipartite graphs by Definition 10.

According to Definitions 7 and 10, G(C̃2(A)) = (U ∪ {TC̃2(A), IC̃2(A), FC̃2(A)}, E1), G(C
∼

2(A)) = (U ∪
{TC

∼
2(A), IC

∼
2(A), FC

∼
2(A)}, E2) and the weight of any edge is shown as follows.

w(TC̃2(A)
, xk) = TC̃2(A)

(xk) =
n∨

j=1
[T

Ñβ2
xk

(xj) ∧ TA(xj)] =
n∨

j=1
[w(T

Ñβ2
xk

, xj) ∧ w(TA, xj)] (1 ≤ k ≤ n),

w(IC̃2(A)
, xk) = IC̃2(A)

(xk) =
n∨

j=1
[I
Ñβ2

xk

(xj) ∧ IA(xj)] =
n∨

j=1
[w(I

Ñβ2
xk

, xj) ∧ w(IA, xj)] (1 ≤ k ≤ n),

w(FC̃2(A)
, xk) = FC̃2(A)

(xk) =
n∧

j=1
[F
Ñβ2

xk

(xj) ∨ FA(xj)] =
n∧

j=1
[w(F

Ñβ2
xk

, xj) ∨ w(FA, xj)] (1 ≤ k ≤ n),

w(TC
∼

2(A), xk) = TC
∼

2(A)(xk) =
n∧

j=1
[F
Ñβ2

xk

(xj) ∨ TA(xj)] =
n∧

j=1
[w(F

Ñβ2
xk

, xj) ∨ w(TA, xj)] (1 ≤ k ≤ n),

w(IC
∼

2(A), xk) = IC
∼

2(A)(xk) =
n∧

j=1
[(1− I

Ñβ2
xk

(xj)) ∨ IA(xj)] =
n∧

j=1
[(1− w(I

Ñβ2
xk

, xj)) ∨ w(IA, xj)] (1 ≤ k ≤ n),

w(FC
∼

2(A), xk) = FC
∼

2(A)(xk) =
n∨

j=1
[T

Ñβ2
xk

(xj) ∧ FA(xj)] =
n∨

j=1
[w(T

Ñβ2
xk

, xj) ∧ w(FA, xj)] (1 ≤ k ≤ n).

Example 7. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉,
A = (0.6,0.3,0.5)

x1
+ (0.4,0.5,0.1)

x2
+ (0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
. G(A) is shown in Figure 5b. Based on

Theorem 1 and all G(Ñβ2

xk ) (k = 1, 2, · · · , 5) in Example 6 and G(C̃2(A)) and G(C
∼

2(A)) are obtained in

Figure 6.
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(a) G(C̃2(A)) (b) G(C
∼

2(A))

Figure 6. G(C̃2(A)) and G(C
∼

2(A)).

6. Matrix Representation of the Type-2 SVN Covering Rough Set Model

In this section, the matrix representation of the type-2 SVN covering rough set model is
investigated. Firstly, some new matrices and matrix operations are presented. Then, we show the
matrix representation of the type-2 SVN approximation operators defined in Definition 7. The order of
elements in U is given.

Two new matrices about a SVN β2-covering are presented in the following definition.

Definition 12. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
Then MĈ = (Cj(xi))n×m is named a matrix representation of Ĉ, and Mβ2

Ĉ
= (sij)n×m is called a β2-matrix

representation of Ĉ, where

sij =

{
1, Cj(xi) ≥2 β;
0, otherwise.

Example 8. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉. Then

MĈ =




〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉




, Mβ2

Ĉ
=




1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1




.

In order to calculate all Ñβ2

x (for any x ∈ U) by matrices, the following operation is presented.

Definition 13. Let A = (aik)n×m and B = (〈b+kj , bkj, b−kj〉)1≤k≤m,1≤j≤l be two matrices. We define D =

A ? B = (〈d+ij , dij, d−ij 〉)1≤i≤n,1≤j≤l , where

〈d+ij , dij, d−ij 〉 = 〈∧m
k=1[(1− aik) ∨ b+kj ],∧m

k=1[(1− aik) ∨ bkj], 1−∧m
k=1[(1− aik) ∨ (1− b−kj)]〉. (7)

Based on Definitions 12 and 13, all Ñβ2

x (for any x ∈ U) can be obtained by matrix operations.

Proposition 9. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
Then

Mβ2

Ĉ
? MT

Ĉ
= (Ñβ2

xi (xj))1≤i≤n,1≤j≤n, (8)

where MT
Ĉ

is the transpose of MĈ

Proof. Suppose MT
Ĉ

= (Ck(xj))m×n, Mβ2

Ĉ
= (sik)n×m and Mβ2

Ĉ
? MT

Ĉ
= (〈d+ij , dij, d−ij 〉)1≤i≤n,1≤j≤n.

Since Ĉ is a SVN β2-covering of U, for each i (1 ≤ i ≤ n), there exists k (1 ≤ k ≤ m) such that sik = 1.
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Then

〈d+ij , dij, d−ij 〉
= 〈∧m

k=1[(1− sik) ∨ TCk (xj)],∧m
k=1[(1− sik) ∨ ICk (xj)], 1−∧m

k=1[(1− sik) ∨ (1− FCk (xj))]〉
= 〈∧sik=1[(1− sik) ∨ TCk (xj)],∧sik=1[(1− sik) ∨ ICk (xj)], 1−∧sik=1[(1− sik) ∨ (1− FCk (xj))]〉
= 〈∧sik=1TCk (xj),∧sik=1 ICk (xj), 1−∧sik=1(1− FCk (xj))〉
= 〈∧Ck(xi)≥2βTCk (xj),∧Ck(xi)≥2β ICk (xj), 1−∧Ck(xi)≥2β(1− FCk (xj))〉
= 〈∧Ck(xi)≥2βTCk (xj),∧Ck(xi)≥2β ICk (xj),∨Ck(xi)≥2β(FCk (xj))〉
= (∩2Ck(xi)≥2β Ck)(xj)

= Ñβ2

xi (xj), 1 ≤ i, j ≤ n.

Hence, Mβ2

Ĉ
? MT

Ĉ
= (Ñβ2

xi (xj))1≤i≤n,1≤j≤n.

Example 9. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉.
According to Mβ2

Ĉ
and MT

Ĉ
in Example 8, we have

Mβ2

Ĉ
? MT

Ĉ

=




1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1




?




〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉




T

=




〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.7〉 〈0.4, 0.3, 0.4〉 〈0.5, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.3, 0.7〉 〈0.6, 0.1, 0.5〉




= (Nβ2

xi (xj))1≤i≤5,1≤j≤5.

There are two operations in the work by the authors of [37], which can be used to calculate C̃2(A)

and C
∼

2(A) (for any A ∈ SVN(U)) by matrices.

Definition 14. [37] Let A = (〈c+ij , cij, c−ij 〉)m×n and B = (〈d+j , dj, d−j 〉)n×1 be two matrices. We define
C = A ◦ B = (〈e+i , ei, e−i 〉)m×1 and D = A � B = (〈 f+i , fi, f−i 〉)m×1, where

〈e+i , ei, e−i 〉 = 〈∨n
j=1(c

+
ij ∧ d+j ),∨n

j=1(cij ∧ dj),∧n
j=1(c

−
ij ∨ d−j )〉,

〈 f+i , fi, f−i 〉 = 〈∧n
j=1(c

−
ij ∨ d+j ),∧n

j=1[(1− cij) ∨ dj],∨n
j=1(c

+
ij ∧ d−j )〉.

(9)

According to Proposition 9 and Definition 14, the set representations of C̃2(A) and C
∼

2(A)

(for any A ∈ SVN(U)) can be converted to matrix representations. A = (ai)n×1 with
ai = 〈TA(xi), IA(xi), FA(xi)〉 is the vector representation of A. C̃2(A) and C

∼
2(A) are also

vector representations.
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Theorem 2. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
Then for any A ∈ SVN(U),

C̃2(A) = (Mβ2

Ĉ
? MT

Ĉ
) ◦ A,

C
∼

2(A) = (Mβ2

Ĉ
? MT

Ĉ
) � A.

(10)

Proof. According to Proposition 9, Definitions 7 and 14, for any xi (i = 1, 2, · · · , n),

((Mβ2

Ĉ
? MT

Ĉ
) ◦ A)(xi) = 〈∨n

j=1(TÑβ2
xi

(xj) ∧ TA(xj)),∨n
j=1(I

Ñβ2
xi

(xj) ∧ IA(xj)),∧n
j=1(F

Ñβ2
xi

(xj) ∨ FA(xj))〉
= (C̃2(A))(xi),

and

((Mβ2

Ĉ
? MT

Ĉ
) � A)(xi) = 〈∧n

j=1(F
Ñβ2

xi

(xj) ∨ TA(xj)),∧n
j=1[(1− I

Ñβ2
xi

(xj)) ∨ IA(xj)],∨n
j=1(TÑβ2

xi

(xj) ∧ FA(xj))〉

= (C
∼

2(A))(xi).

Hence, C̃2(A) = (Mβ2

Ĉ
? MT

Ĉ
) ◦ A,C

∼
2(A) = (Mβ2

Ĉ
? MT

Ĉ
) � A.

Example 10. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1, β = 〈0.5, 0.1, 0.8〉 and
A = (0.6,0.3,0.5)

x1
+ (0.4,0.5,0.1)

x2
+ (0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
. Then

C̃2(A)

= (Mβ2

Ĉ
? MT

Ĉ
) ◦ A

=




〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.7〉 〈0.4, 0.3, 0.4〉 〈0.5, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.3, 0.7〉 〈0.6, 0.1, 0.5〉



◦




〈0.6, 0.3, 0.5〉
〈0.4, 0.5, 0.1〉
〈0.3, 0.2, 0.6〉
〈0.5, 0.3, 0.4〉
〈0.7, 0.2, 0.3〉




=




〈0.6, 0.2, 0.5〉
〈0.4, 0.2, 0.6〉
〈0.6, 0.3, 0.5〉
〈0.5, 0.2, 0.6〉
〈0.6, 0.3, 0.5〉




,

C
∼

2(A)

= (Mβ2

Ĉ
? MT

Ĉ
) � A

=




〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.7〉 〈0.4, 0.3, 0.4〉 〈0.5, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.3, 0.7〉 〈0.6, 0.1, 0.5〉



�




〈0.6, 0.3, 0.5〉
〈0.4, 0.5, 0.1〉
〈0.3, 0.2, 0.6〉
〈0.5, 0.3, 0.4〉
〈0.7, 0.2, 0.3〉




=




〈0.6, 0.8, 0.5〉
〈0.6, 0.8, 0.4〉
〈0.4, 0.7, 0.5〉
〈0.4, 0.7, 0.6〉
〈0.6, 0.8, 0.3〉




.
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7. An Application to DM Problems in Paper Defect Diagnosis

Under the type-2 SVN covering rough set model, we present a novel approach to DM problems
in paper defect diagnosis in this section.

7.1. The Problem of DM in Paper Defect Diagnosis

Let U = {xk : k = 1, 2, · · · , n} be the set of papers and V = {yi|i = 1, 2, · · · , m} be the m main
symptoms (for example, spot, steak, and so on) for a paper defect B. Assume that an inspector R
evaluate every paper xk (k = 1, 2, · · · , n).

Assume that the inspector R believes each paper xk ∈ U (k = 1, 2, · · · , n) has a symptom value
Ci (i = 1, 2, · · · , m) denoted by Ci(xk) = 〈TCi (xk), ICi (xk, FCi (xk)〉, where TCi (xk) ∈ [0, 1] is the degree
that inspector R confirms paper xk has symptom yi, ICi (xk) ∈ [0, 1] is the degree that inspector R is not
sure paper xk has symptom yi, FCi (xk) ∈ [0, 1] is the degree that inspector R confirms paper xk does
not have symptom yi, and TCi (xk) + ICi (xk) + FCi (xk) ≤ 3.

Let β = 〈a, b, c〉 be the critical value. If any paper xk ∈ U, there is at least one symptom yi ∈ V
such that the symptom value Ci for the paper xk is not less than β (i.e., Ci(xk) ≥2 β), respectively,
then Ĉ = {C1, C2, · · · , Cm} is a SVN β2-covering of U for some SVN number β.

If d is a possible degree, e is an indeterminacy degree and f is an impossible degree of the paper
defect B of every paper xk ∈ U that is diagnosed by the inspector R, denoted by A(xk) = 〈d, e, f 〉,
then the decision maker (the inspector R) for the DM problem needs to know how to evaluate whether
the papers xk ∈ U have the paper defect B or not.

7.2. The DM Algorithm

In this subsection, we give an approach for the problem of DM with the above characterizations
using the type-2 SVN covering rough set model. According to the characterizations of the DM problem
in Section 7.1, we construct the SVN decision information system and present the Algorithm 1 of DM
under the framework of the type-2 SVN covering rough set model.

Algorithm 1 The DM algorithm under the type-2 SVN covering rough set model

Input: SVN decision information system (U, Ĉ, β, A).
Output: The score ordering for all alternatives.

• Step 1: Compute the SVN β2-neighborhood Ñβ2

x of x induced by Ĉ, for all x ∈ U according to
Definition 6;

• Step 2: Compute the SVN covering upper approximation C̃2(A) and lower approximation C
∼

2(A)

of A, according to Definition 7;
• Step 3: Compute R̃2

A = C̃2(A)⊕C
∼

2(A);

• Step 4: Compute

s(x) =
TR̃2

A
(x)

√
(TR̃2

A
(x))2+(IR̃2

A
(x))2+(FR̃2

A
(x))2

;

• Step 5: Rank all the alternatives s(x) by using the principle of numerical size and select the paper
that is more likely to be sick with the paper defect B.

According to the above process, we can get the DM according to the ranking. In Step 4, S(x) is the
cosine similarity measure between R̃A(x) and the ideal solution (1, 0, 0), which is proposed by Ye [44].
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7.3. An Applied Example

Example 11. Assume that U = {x1, x2, x3, x4, x5} is a set of papers. According to the paper defects’ symptoms,
we write V = {y1, y2, y3, y4} to be four main symptoms (spot, steak, crater, and fracture) for a paper defect B.
Assume that the inspector R evaluates every paper xk (k = 1, 2, · · · , 5) as shown in Table 1.

Let β = 〈0.5, 0.1, 0.8〉 be the critical value. Then, Ĉ = {C1, C2, C3, C4} is a SVN β2-coverings of U.
Assume that the inspector R diagnosed the value A = (0.6,0.3,0.5)

x1
+ (0.4,0.5,0.1)

x2
+ (0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+

(0.7,0.2,0.3)
x5

of the paper defect B of every paper.

Step 1: Ñβ2

xk (k = 1, 2, 3, 4, 5) are shown in Table 2.
Step 2:

C̃2(A) = {〈x1, 0.6, 0.2, 0.5〉, 〈x2, 0.4, 0.2, 0.6〉, 〈x3, 0.6, 0.3, 0.5〉, 〈x4, 0.5, 0.2, 0.6〉, 〈x5, 0.6, 0.3, 0.5〉},

C
∼

2(A) = {〈x1, 0.6, 0.8, 0.5〉, 〈x2, 0.6, 0.8, 0.4〉, 〈x3, 0.4, 0.7, 0.5〉, 〈x4, 0.4, 0.7, 0.4〉, 〈x5, 0.6, 0.8, 0.3〉}.

Step 3:

R̃2
A

= C̃2(A)⊕C
∼

2(A)

= {〈x1, 0.84, 0.16, 0.25〉, 〈x2, 0.76, 0.16, 0.24〉, 〈x3, 0.76, 0.21, 0.25〉, 〈x4, 0.70, 0.14, 0.24〉, 〈x5, 0.84, 0.24, 0.15〉}.

Step 4: We can obtain s(xk) (k = 1, 2, · · · , 5) in Table 5.
Step 5: According to the principle of numerical size, we have

x3 < x4 < x2 < x1 < x5.

Therefore, the inspector R diagnoses the paper x5 as more likely to be sick with the paper defect B.

Table 5. s(xk) (k = 1, 2, · · · , 5).

U x1 x2 x3 x4 x5

s(xk ) 0.943 0.935 0.919 0.929 0.948

7.4. A Comparison Analysis

To validate the feasibility of the proposed DM method, a comparative study is conducted with
other methods. These methods which were introduced in Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37] are compared with the proposed approach using SVN information system.

Because Table 1 is the same as in the work by the authors of [37] and the counting processes of the
methods presented by Liu [43], Ye [44], Yang et al. [36], and Wang et al. [37], are shown in the work
by the authors of [37], so we do not show these counting processes in this paper. For Example 11,
the results of them are calculated as follows.

• In Liu’s method, we suppose the weight vector of the criteria is w = (0.35, 0.25, 0.3, 0.1) and γ = 1.
Hence, we get

s(n1) = 0.735, s(n2) = 0.706, s(n3) = 0.660, s(n4) = 0.596, s(n5) = 0.734.

According to the cosine similarity degrees s(nk) (k = 1, 2, · · · , 5), we obtain

x4 < x3 < x2 < x5 < x1.

• In Ye’s method, we suppose the weight vector of the criteria is w = (0.35, 0.25, 0.3, 0.1). Then
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W1(x1, A∗) = 0.677, W2(x2, A∗) = 0.608, W3(x3, A∗) = 0.580, W4(x4, A∗) = 0.511,
W5(x5, A∗) = 0.666.

According to all s(nxk , n∗) (k = 1, 2, · · · , 5), we obtain

x4 < x3 < x2 < x5 < x1.

• In Yang’s method, we suppose paper defect B ∈ SVN(V) and B = (0.3,0.6,0.5)
y1

+ (0.7,0.2,0.1)
y2

+
(0.6,0.4,0.3)

y3
+ (0.8,0.4,0.5)

y4
. Let n∗ = 〈1, 0, 0〉. We get

R̃(B) = {〈x1, 0.6, 0.2, 0.4〉, 〈x2, 0.6, 0.2, 0.4〉, 〈x3, 0.6, 0.3, 0.4〉, 〈x4, 0.5, 0.4, 0.5〉, 〈x5, 0.8, 0.3, 0.5〉},
R̃(B) = {〈x1, 0.5, 0.6, 0.5〉, 〈x2, 0.3, 0.6, 0.5〉, 〈x3, 0.3, 0.5, 0.5〉, 〈x4, 0.6, 0.6, 0.5〉, 〈x5, 0.6, 0.6, 0.5〉}.

Then,

s(nx1 , n∗) = 0.960, s(nx2 , n∗) = 0.951, s(nx3 , n∗) = 0.945, s(nx4 , n∗) = 0.918, s(nx5 , n∗) = 0.948.

According to all s(nxk , n∗) (k = 1, 2, · · · , 5), we obtain

x4 < x3 < x5 < x2 < x1.

• In Wang’s method, we do not use β = 〈0.5, 0.1, 0.8〉 in Example 11, and the reason is explained
later. We suppose β′ = 〈0.5, 0.3, 0.8〉 in Wang’s method. Then

C̃(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.4, 0.3, 0.6〉, 〈x3, 0.6, 0.5, 0.5〉, 〈x4, 0.5, 0.3, 0.6〉, 〈x5, 0.6, 0.5, 0.5〉},

C
∼
(A) = {〈x1, 0.6, 0.5, 0.5〉, 〈x2, 0.6, 0.5, 0.4〉, 〈x3, 0.4, 0.4, 0.5〉, 〈x4, 0.4, 0.5, 0.4〉, 〈x5, 0.6, 0.4, 0.3〉}.

Hence,

s(x1) = 0.945, s(x2) = 0.937, s(x3) = 0.922, s(x4) = 0.909, s(x5) = 0.958.

According to all s(xk) (k = 1, 2, · · · , 5), we obtain

x4 < x3 < x2 < x1 < x5.

All results are shown in Table 6 and Figure 7.
Liu [43] and Ye [44] presented the methods by SVN theory. The method developed by Liu [43]

is based on the Hammer SVN number aggregation (HSVNNWA) operator, the ranking order willed
be changed by different w and γ. The parameter γ can be regarded as an attitude of the decision
maker’s preferences. For Example 11, we set the weight vector of the criteria is w = (0.35, 0.25, 0.3, 0.1)
and γ = 1, then we obtain x4 < x3 < x2 < x5 < x1. The method developed by Ye [44] is based on
the weighted correlation coefficient Wk(xk, A∗) or the weighted cosine similarity measure Mk(xk, A∗),
where A∗ is the ideal alternative. We can get two ranking orders of xk (k = 1, 2, 3, 4, 5) by the values
of Wk(xk, A∗) and Mk(xk, A∗), respectively. Then, we find that these two kinds of ranking orders are
the same. Hence, we only show Wk(xk, A∗) in this paper. In Table 6 and Figure 7, there are the same
ranking results of their methods.

104



Symmetry 2019, 11, 1074

Table 6. The results utilizing the different methods of Example 11.

Methods The Final Ranking The Paper Is Most Sick With the Paper Defect B

Liu [43] x4 < x3 < x2 < x5 < x1 x1
Ye [44] x4 < x3 < x2 < x5 < x1 x1
Yang et al. [36] x4 < x3 < x5 < x2 < x1 x1
Wang et al. [37] x4 < x3 < x2 < x1 < x5 x5
This paper x3 < x4 < x2 < x1 < x5 x5

x1

0.2

0.4

0.6

0.8

1.0

x2 x3 x4 x5 U

y
Liu YangYe This paperWang

Figure 7. The chat of different values of patient in utilizing different methods in Example 11.

Yang et al. [36] and Wang et al. [37] used different SVN rough set models to make a decision.
The method presented by Yang et al. [36] is based on a SVN relation rough set model on two-universes.
That is to say, the DM problems with SVN information can be dealt with by Yang’s method when it
induces a SVN relation on two-universes. In Example 11, we obtain a SVN relation on two universes
from Table 1. The method presented by Wang et al. [37] based on the type-1 SVN covering rough set
model. That is to say, the DM problems with SVN information can be dealt with by Wang’s method
when it can induce a SVN β-covering. In Example 11, we suppose β = 〈0.5, 0.1, 0.8〉. However, Ĉ is
not a SVN β-covering of U when β = 〈0.5, 0.1, 0.8〉. Hence, the method presented by Wang et al. can
not be used in Example 11 when β = 〈0.5, 0.1, 0.8〉. Let’s re-assume β′ = 〈0.5, 0.3, 0.8〉. Then Ĉ is a
SVN β′-covering of U. Hence, the method presented by Wang et al. can be used in Example 11 when
β′ = 〈0.5, 0.3, 0.8〉.

In this paper, we present the type-2 SVN covering rough set model based on SVN β2-coverings.
Under the type-2 SVN covering rough set model, a novel method for DM problems with SVN
information is presented. The contributions of our proposed method are summarized as follows.

(1) The DM problems with SVN information can be dealt with by our proposed method when it
can induce a SVN β2-covering. The method presented by Wang et al. [37] can not be used in
Example 11 when β = 〈0.5, 0.1, 0.8〉. But our proposed method can deal with Example 11 when
β = 〈0.5, 0.1, 0.8〉. Hence, our proposed method complements Wang’s.

(2) It is a new viewpoint to use SVN sets and rough sets in paper defect diagnosis.

Using different methods, the obtained results may be different. To achieve the most accurate
results, further diagnosis is necessary for combination with other hybrid methods.
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8. Conclusions

This paper investigates a new type of SVN covering rough set model, which can be seen as a new
bridge linking SVN sets and covering-based rough sets. Comparing the existing literatures [36,37,48,49],
the main contributions of this paper are concluded as follows.

(1) By introducing some definitions and properties in SVN β2-covering approximation spaces,
we present the type-2 SVN covering rough set model based on the type-2 inclusion relation.
The existing literatures [36,37,48,49] used the type-1 inclusion relation to study the combination
of SVN sets and rough sets. Hence, this paper presents a new and interesting viewpoint to study
the combination of SVN sets and rough sets.

(2) It would be tedious and complicated to use set representation to calculate the new SVN covering
approximation operators. Therefore, the graph and matrix representations of these new SVN
covering approximation operators make it possible to calculate them. We are the first to study
the equivalent representation of the SVN rough set model by graph theory. By these graph and
matrix representations, calculations will become algorithmic and can be easily implemented
by computers.

(3) Paper defect diagnosis is important in paper making industries. We propose a method to paper
defect diagnosis under the type-2 SVN covering rough set model. The proposed DM method
is compared with other methods which are presented by Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37], respectively.

Further study will be deserved by the following research topics. On the one hand, the type-2
inclusion relation or graph theory can be considered into other SVN rough set models [34,36,48,49] in
future research. On the other hand, neutrosophic sets and related algebraic structures [50–55] will be
connected with the research content of this paper in further research.
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Abstract: With the development of the social economy and enlarged volume of information,
the application of multiple-attribute decision-making (MADM) has become increasingly complex,
uncertain, and obscure. As a further generalization of hesitant fuzzy set (HFS), simplified
neutrosophic hesitant fuzzy set (SNHFS) is an efficient tool to process the vague information and
contains the ideas of a single-valued neutrosophic hesitant fuzzy set (SVNHFS) and an interval
neutrosophic hesitant fuzzy set (INHFS). In this paper, we propose a decision-making approach based
on the maximizing deviation method and TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) to solve the MADM problems, in which the attribute weight information is incomplete,
and the decision information is expressed in simplified neutrosophic hesitant fuzzy elements. Firstly,
we inaugurate an optimization model on the basis of maximizing deviation method, which is useful
to determine the attribute weights. Secondly, using the idea of the TOPSIS, we determine the relative
closeness coefficient of each alternative and based on which we rank the considered alternatives to
select the optimal one(s). Finally, we use a numerical example to show the detailed implementation
procedure and effectiveness of our method in solving MADM problems under simplified neutrosophic
hesitant fuzzy environment.

Keywords: simplified neutrosophic hesitant fuzzy set; multi-attribute decision-making;
maximizing deviation; TOPSIS

1. Introduction

The concept of neutrosophy was originally introduced by Smarandache [1] from a philosophical
viewpoint. Gradually, it has been discovered that without a specific description, it is not easy to apply
neutrosophic sets in real applications because a truth-membership, an indeterminacy-membership,
and a falsity-membership degree, in non-standard unit interval ]0−, 1+[, are independently assigned
to each element in the set. After analyzing this difficulty, Smarandache [2] and Wang [3] initiated the
notion of a single-valued neutrosophic set (SVNS) and made the first ever neutrosophic publication.
Ye [4] developed the concept of simplified neutrosophic set (SNS). SNS, a subclass of a neutrosophic
set, contains the ideas of a SVNS and an interval neutrosophic set (INS), which are very useful in real
science and engineering applications with incomplete, indeterminate, and inconsistent information
existing commonly in real situations. Torra and Narukawa [5] put forward the concept of HFS as
another extension of fuzzy set [6]. HFS is an effective tool to represent vague information in the process
of MADM, as it permits the element membership degree to a set characterized by a few possible values
in [0, 1] and can be accurately described in terms of the judgment of the experts.
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Ye [7] introduced SVNHFS as an extension of SVNS in the spirit of HFS and developed the
single-valued neutrosophic hesitant fuzzy weighted averaging and weighted geometric operator.
The SVNHFS represents some uncertain, incomplete, and inconsistent situations where each element
has certain different values characterized by truth-membership hesitant, indeterminacy-membership
hesitant, and falsity-membership hesitant function. For instance, when the opinion of three experts
is required for a certain statement, they may state that the possibility that the statement is true
is {0.3, 0.5, 0.8}, and the statement is false is {0.1, 0.4}, and the degree that they are not sure
is {0.2, 0.7, 0.8}. For single-valued neutrosophic hesitant fuzzy notation, it can be expressed as
{{0.3, 0.5, 0.8}, {0.1, 0.4}, {0.2, 0.7, 0.8}}. Liu and Luo [8] discussed the certainty function, score
function, and accuracy function of SVNHFS and proposed the single-valued neutrosophic hesitant
fuzzy ordered weighted averaging operator and hybrid weighted averaging operator. Sahin and
Liu [9] proposed the correlation coefficient with single-valued neutrosophic hesitant fuzzy information
and successfully applied it to decision-making problems. Li and Zhang [10] introduced Choquet
aggregation operators with single-valued neutrosophic hesitant fuzzy information for MADM.
Juan-Juan et al. [11] developed a decision-making technique using geometric weighted Choquet
integral Heronian mean operator for SVNHFSs. Wang and Li [12] developed the generalized prioritized
weighted average operator, the generalized prioritized weighted geometric operator with SVNHFS,
and further developed an approach on the basis of the proposed operators to solve MADM problems.
Recently, Akram et al. [13–16] and Naz et al. [17–19] put forward certain novel decision-making
techniques in the frame work of extended fuzzy set theory. Furthermore, Liu and Shi [20] proposed
the concept of INHFS by combining INS with HFS and developed the generalized weighted operator,
generalized ordered weighted operator, and generalized hybrid weighted operator with the proposed
interval neutrosophic hesitant fuzzy information. Ye [21] and Kakati et al. [22] proposed the correlation
coefficients and Choquet integrals, respectively, with INHFS. Mahmood et al. [23] discussed the vector
similarity measures with SNHFS. In practical terms, the SNHFS measures the truth-membership,
the indeterminacy-membership and the falsity-membership degree by SVNHFSs and INHFSs. The
classical sets, fuzzy sets, intuitionistic fuzzy sets, SVNSs, INSs, SNSs, and HFSs are the particular
situations of SNHFSs. In modeling vague and uncertain information, SNHFS is more flexible
and practice.

In the theory of decision analysis, MADM is one of the most important branches and several
beneficial models and approaches have been developed related to decision analysis. However, due to
limited time, lack of data or knowledge, and the limited expertise of the expert about the problem,
MADM process under simplified neutrosophic hesitant fuzzy circumstances, encounters the situations
where the information about attribute weights is completely unknown or incompletely known.
The existing approaches are not suitable to handle these situations. Furthermore, among some
useful MADM methodologies, the maximizing deviation method and the TOPSIS provide a ranking
approach, which is measured by the farthest distance from the negative-ideal solution (NIS) and
the shortest distance from the positive-ideal solution (PIS). For all these, in this paper, we propose
an innovative approach of maximizing deviation and TOPSIS to objectively determine the attribute
weights and rank the alternatives with completely unknown or partly known attribute weights. We
propose the new distance measure and discuss the application of SNHFSs to MADM. In the framework
of TOPSIS, we construct a novel generalized method under the simplified neutrosophic hesitant
fuzzy environment. As compared to the existing work, the SNHFSs availably depict more general
decision-making situations.

The paper is structured as follows: Section 2 establishes a simplified neutrosophic hesitant fuzzy
MADM based on maximizing deviations and TOPSIS. In Section 3, a numerical example is given to
demonstrate the effectiveness of our model and method and finally we draw conclusions in Section 4.

SVNHFS as a more flexible general formal framework extends the concept of fuzzy set [6],
intuitionistic fuzzy set [24], SVNS [3] and HFS [25]. Ye [7] proposed the following definition
of SVNHFS.
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Definition 1. [7] Let Z be a fixed set, a SVNHFS n on Z is defined as

n = {〈z, t(z), i(z), f(z)〉|z ∈ Z}

where t(z), i(z), f(z) are the sets of a few values in [0, 1], representing the possible truth-membership
hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of
the element z to n, respectively; t(z) = {γ1, γ2, . . . , γl}, γ1, γ2, . . . , γl are the elements of t(z);
i(z) = {δ1, δ2, . . . , δp}, δ1, δ2, . . . , δp are the elements of i(z); f(z) = {η1, η2, . . . , ηq}, η1, η2, . . . , ηq are the
elements of f(z), for every z ∈ Z; and l, p, q denote, respectively, the numbers of the hesitant fuzzy elements
in t, i, f.

For simplicity, the expression n(z) = {t(z), i(z), f(z)} is called a single-valued neutrosophic
hesitant fuzzy element (SVNHFE), which we represent by simplified symbol n = {t, i, f}.

Definition 2. [7] Let n, n1 and n2 be three SVNHFEs. Then their operations are defined as follows:

1. n1 ⊕ n2 =
⋃

γ1∈t1,δ1∈i1,η1∈f1,γ2∈t2,δ2∈i2,η2∈f2

{{γ1 + γ2 − γ1γ2}, {δ1δ2}, {η1η2}};

2. n1 ⊗ n2 =
⋃

γ1∈t1,δ1∈i1,η1∈f1,γ2∈t2,δ2∈i2,η2∈f2

{{γ1γ2}, {δ1 + δ2 − δ1δ2}, {η1 + η2 − η1η2}};

3. ςn =
⋃

γ∈t,δ∈i,η∈f
{{1− (1− γ)ς}, {δς}, {ης}}; ς > 0

4. nς =
⋃

γ∈t,δ∈i,η∈f
{{γς}, {1− (1− δ)ς}, {1− (1− η)ς}} ς > 0.

2. TOPSIS and Maximizing Deviation Method for Simplified Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision-Making

In this section, we propose the normalization technique and the distance measures of SNHFSs
and based on this we develop further a new decision-making approach based on maximum deviation
and TOPSIS under simplified neutrosophic hesitant fuzzy circumstances to explore the application of
SNHFSs to MADM.

2.1. TOPSIS and Maximizing Deviation Method for Single-Valued Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision-Making

In this subsection, we only use SVNHFSs in SNHFSs and develop a new decision-making
approach, by combining the idea of SVNHFSs with maximizing deviation, to solve a MADM problem
in single-valued neutrosophic hesitant fuzzy environment.

2.1.1. Description of the MADM Problem

Consider a MADM problem containing a discrete set of m alternatives {A1, A2, . . . , Am} and a
set of all attributes P = {P1, P2, . . . , Pn}. The evaluation information of the ith alternative with respect
to the jth attribute is a SVNHFE nij = 〈tij, iij, fij〉, where tij, iij and fij indicate the preference degree,
uncertain degree, and falsity degree, respectively, of the decision maker facing the ith alternative
that satisfied the jth attribute. Then the single-valued neutrosophic hesitant fuzzy decision matrix
(SVNHFDM) N , can be constructed as follows:

N =




n11 n12 . . . n1n
n21 n22 . . . n2n

...
...

. . .
...

nm1 nm2 . . . nmn




Assume that each attribute has different importance, the weight vector of all attributes is defined

as w = (w1, w2, . . . , wn)t, where 0 ≤ wj ≤ 1 and
n
∑

j=1
wj = 1 with wj representing the importance degree
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of the attribute Pj. Due to the complexity of the practical decision-making problems, the attribute
weights information is frequently incomplete. For ease, let = be the set of the known information
about attribute weights, which we can construct by the following forms, for i 6= j:

(i) wi ≥ wj (weak ranking);

(ii) wi − wj ≥ αi, αi > 0 (strict ranking);

(iii) wi − wj ≥ wk − wl , for j 6= k 6= l (ranking of differences);

(iv) wi ≥ αiwj, 0 ≤ αi ≤ 1 (ranking with multiples);

(v) αi ≤ wi ≤ αi + ξi, 0 ≤ αi ≤ αi + ξi ≤ 1 (interval form).

In the comparison of SVNHFEs, the number of their corresponding element may be unequal.
To handle this situation, we normalize the SVNHFEs as follows:

Suppose that n = {t, i, f} is a SVNHFE, then γ̄ = vγ+ + (1 − v)γ−, δ̄ = vδ+ + (1 − v)δ−

and η̄ = vη+ + (1− v)η− are the added truth-membership, the indeterminacy-membership and
the falsity-membership degree, respectively, where γ− and γ+ are the minimum and the maximum
elements of t, respectively, δ− and δ+ are the minimum and the maximum elements of i, respectively,
η− and η+ are the minimum and the maximum elements of f, respectively, and v ∈ [0, 1] is a parameter
assigned by the expert according to his risk preference.

For the normalization of SVNHFE, different values of v produce different results for the added
truth-membership, the indeterminacy-membership and the falsity-membership degree. Usually,
there are three cases of the preference of the expert:

• If v = 0, the pessimist expert may add the minimum truth-membership degree γ−, the minimum
indeterminacy-membership degree δ− and the minimum falsity-membership degree η−.

• If v = 0.5, the neutral expert may add the truth-membership degree γ−+γ+

2 ,

the indeterminacy-membership degree δ−+δ+

2 and the falsity-membership degree η−+η+

2 .
• If v = 1, the optimistic expert may add the maximum truth-membership degree γ−, the maximum

indeterminacy-membership degree δ− and the maximum falsity-membership degree η−.

For instance, if we have two SVNHFEs n1 = {t1, i1, f1} = {{0.3, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.7}},
n2 = {t2, i2, f2} = {{0.1, 0.4, 0.5}, {0.6, 0.7}, {0.2, 0.6, 0.9}}. Here #t1 = 2, #i1 = 3, #f1 = 2, #t2 = 3,
#i2 = 2 and #f2 = 3. Clearly, #t1 6= #t2, #i1 6= #i2, and #f1 6= #f2. The truth-membership and
the falsity-membership degree of n1, while the indeterminacy-membership degree of n2 need to
be pre-treated.

If v = 0, then we may add the minimum truth-membership degree or the
indeterminacy-membership degree or the falsity-membership degree for the target
object. For the SVNHFE n1, the truth-membership and falsity-membership degree of
n1 can be attained as {0.3, 0.3, 0.5} and {0.5, 0.5, 0.7}, i.e., n1 can be normalized as
n1 = {{0.3, 0.3, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.5, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be obtained as {0.6,0.6,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.6, 0.7}, {0.2, 0.6, 0.9}}.
If v = 0.5, then we may add the average truth-membership degree or the

indeterminacy-membership degree or the falsity-membership degree for the target
object. For the SVNHFE n1, the truth-membership and falsity-membership degree of
n1 can be attained as {0.3, 0.4, 0.5} and {0.5, 0.6, 0.7}, i.e., n1 can be normalized as
n1 = {{0.3, 0.4, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.6, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be obtained as {0.6,0.65,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.65, 0.7}, {0.2, 0.6, 0.9}}.
If v = 1, then we may add the maximum truth-membership degree or the

indeterminacy-membership degree or the falsity-membership degree for the normalization.
For the SVNHFE n1, the truth-membership and falsity-membership degree of n1
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can be attained as {0.3, 0.5, 0.5} and {0.5, 0.7, 0.7}, i.e., n1 is normalized as n1 =

{{0.3, 0.5, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.7, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be attained as {0.6,0.7,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.7, 0.7}, {0.2, 0.6, 0.9}}.
The algorithm for the normalization of SVNHFEs is given in Algorithm 1.

Algorithm 1 The algorithm for the normalization of SVNHFEs.
INPUT: Two SVNHFEs n1 = (t1, i1, f1), n2 = (t2, i2, f2) and the value of v.
OUTPUT: The normalization of n1 = (t1, i1, f1) and n2 = (t2, i2, f2).

1: Count the number of elements of n1 and n2, i.e., #t1, #i1, #f1, #t2, #i2, #f2;
2: Determine the minimum and the maximum of the elements of n1 and n2;
3: t = arg mini=1,2 #ti, i = arg mini=1,2 #ii, f = arg mini=1,2 #fi;
4: if #t1 = #t2 then break;
5: else if t = #t1 then
6: n = #t2 − #t1;
7: Determine the value of γ̄ for t1;
8: for i=1:1:n do
9: t1 = t1 ∪ γ̄;

10: end for
11: else
12: n = #t1 − #t2;
13: Determine the value of γ̄ for t2;
14: for i=1:1:n do
15: t2 = t2 ∪ γ̄;
16: end for
17: end if
18: if #i1 = #i2 then break;
19: else if i = #i1 then
20: n = #i2 − #i1;
21: Determine the value of δ̄ for i1;
22: for i=1:1:n do
23: i1 = i1 ∪ δ̄;
24: end for
25: else
26: n = #i1 − #i2;
27: Determine the value of δ̄ for i2;
28: for i=1:1:n do
29: i2 = i2 ∪ δ̄;
30: end for
31: end if
32: if #f1 = #f2 then break;
33: else if f = #f1 then
34: n = #f2 − #f1;
35: Determine the value of η̄ for f1;
36: for i=1:1:n do
37: f1 = f1 ∪ η̄;
38: end for
39: else
40: n = #f1 − #f2;
41: Determine the value of η̄ for f2;
42: for i=1:1:n do
43: f2 = f2 ∪ η̄;
44: end for
45: end if
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2.1.2. The Distance Measures for SVNHFSs

Definition 3. Let n1 = {t1, i1, f1} and n2 = {t2, i2, f2} be two normalized SVNHFEs, then the single-valued
neutrosophic hesitant fuzzy Hamming distance between n1 and n2 can be defined as follows:

d1(n1, n2) =
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
1 − γ

σ(ς)
2
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2
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2
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)

, (1)

where #t = #t1 = #t2, #i = #i1 = #i2 and #f = #f1 = #f2. γ
σ(ς)
i , δ

σ(ς)
i and η

σ(ς)
i are the ςth largest values in

γi, δi and ηi, respectively (i = 1, 2).

In addition, the single-valued neutrosophic hesitant fuzzy Euclidean distance is defined as:
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By using the geometric distance model of [26], the above distances can be generalized as follows:

d(n1, n2) =

(
1
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, (3)

where α is constant and α > 0. Based on the value of α, the relationship among d(n1, n2), d1(n1, n2) and
d2(n1, n2) can be deduced as:

• If α = 1, then the distance d(n1, n2) = d1(n1, n2).
• If α = 2, then the distance d(n1, n2) = d2(n1, n2).

Therefore, the distance d(n1, n2) is a generalization of the single-valued neutrosophic hesitant fuzzy
Hamming distance d1(n1, n2) and the single-valued neutrosophic hesitant fuzzy Euclidean distance d2(n1, n2).

Theorem 1. Let n1 = {t1, i1, f1} and n2 = {{1}, {0}, {0}} be two SVNHFEs, then the generalized distance
d(n1, n

′
2) can be calculated as:
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1
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)) 1
α

where n
′
2 is the normalization outcome of n2 by the comparison of n1 and n2.
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Proof. Using (3), the generalized distance d(n1, n
′
2) can be calculated as:
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Theorem 2. Let n1 = {t1, i1, f1} and n2 = {{0}, {1}, {1}} be two SVNHFEs, then the generalized distance
d(n1, n

′
2) can be calculated as:
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where n
′
2 is the normalization outcome of n2 by the comparison of n1 and n2.
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2.1.3. Computation of Optimal Weights Using Maximizing Deviation Method

Case I: Completely unknown attribute weight information
Construct an optimization model on the basis of the approach of maximizing deviation to

determine the attributes optimal relative weights with SVNHFS. For the attribute Pj ∈ Z, the deviation
of the alternative Ai to all the other alternatives can be represented as:
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,

j = 1, 2, . . . , n. Then Dj(w) indicates the deviation value of all alternatives to other alternatives for the
attribute Pj ∈ Z.

On the basis of the above analysis, to select the weight vector w which maximizes all deviation
values for all the attributes, a non-linear programming model is constructed as follows:
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s.t. wj ≥ 0, j = 1, 2, . . . , n,
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To solve the above model, we construct the Lagrange function:
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where ξ is a real number, representing the Lagrange multiplier variable. Then we compute the partial
derivatives of L and let:
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By solving above equations, an exact and simple formula for determining the attribute weights
can be obtained as follows:
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Because the weights of the attributes should satisfy the normalization condition, so we obtain the
normalized attribute weights:
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Case II: Partly known attribute weight information
However, there are some situations that the information about the weight vector is partially

known instead of completely known. For such situations, on the basis of the set of the known weight
information, =, the constrained optimization model can be designed as:
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s.t. w ∈ =, wj ≥ 0, j = 1, 2, . . . , n,
n
∑

j=1
wj = 1

where = is also a set of constraint conditions that the weight value wj should satisfy according to
the requirements in real situations. The model (M− 2) is a linear programming model. By solving
this model, we obtain the optimal solution w = (w1, w2, . . . , wn)t, which can be used as the attributes
weight vector.

2.1.4. TOPSIS Method

Recently, several MADM techniques are established such as TOPSIS [27], TODIM [28], VIKOR [29],
MULTIMOORA [30] and minimum deviation method [31]. TOPSIS method is attractive as limited
subjective input is required from experts. It is quite well known that TOPSIS is a useful and easy
approach helping an expert choose the optimal alternative according to both the minimal distance
from the positive-ideal solution and the maximal distance from the negative-ideal solution. Therefore,
after attaining the weight of attributes by using the maximizing deviation method, in this section,
we develop a MADM approach based on TOPSIS model under single-valued neutrosophic hesitant
fuzzy circumstances. The PIS A+, and the NIS A− can be computed as:

A+ = {n+1 , n+2 , . . . , n+n } (5)

= {{{1}, {0}, {0}}, {{1}, {0}, {0}}, . . . , {{1}, {0}, {0}}}. (6)

A− = {n−1 , n−2 , . . . , n−n } (7)

= {{{0}, {1}, {1}}, {{0}, {1}, {1}}, . . . , {{0}, {1}, {1}}}. (8)

Based on Equation (3), Theorems 1 and 2, the separation measures d+i and d−i of each alternative
from the single-valued neutrosophic hesitant fuzzy PIS A+ and the NIS A−, respectively, are
determined as:

d+i =
n

∑
j=1

d(n
′
ij, n

+
j )wj =

n

∑
j=1

d(n
′
ij, {{1}, {0}, {0}})wj (9)

=
n

∑
j=1

wj


1

3


 1

#t′ij
∑

γ∈t′ij

(1− γ)α +
1

#i′ij
∑

δ∈i′ij

δα +
1

#f′ij
∑

η∈f′ij

ηα






1
α

, (10)
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d−i =
n

∑
j=1

d(n
′
ij, n
−
j )wj =

n

∑
j=1

d(n
′
ij, {{0}, {1}, {1}})wj (11)

=
n

∑
j=1

wj


1

3


 1

#t′ij
∑

γ∈t′ij

γα +
1

#i′ij
∑

δ∈i′ij

(1− δ)α +
1

#f′ij
∑

η∈f′ij

(1− η)α






1
α

, (12)

where i = 1, 2, . . . , m.
The relative closeness coefficient of an alternative Ai with respect to the single-valued

neutrosophic hesitant fuzzy PIS A+ can be defined as follows:

RC(Ai) =
d−i

d+i + d−i
(13)

where 0 ≤ RC(Ai) ≤ 1, i = 1, 2, . . . , m. The ranking orders of all alternatives can be
determined according to the closeness coefficient CR(Ai) and select the best one(s) from a set of
appropriate alternatives.

The scheme of the proposed MADM technique is given in Figure 1. The detailed algorithm is
constructed as follows:

Step 1. Construct the decision matrix N = [nij]m×n for the MADM problem, where the entries
nij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) are SVNHFEs, given by the decision makers, for the
alternative Ai according to the attribute Pj.

Step 2. On the basis of Equation (4) determine the attribute weights w = (w1, w2, . . . , wm)t, if the
attribute weights information is completely unknown, and turn to Step 4. Otherwise go
to Step 3.

Step 3. Use model (M-2) to determine the attribute weights w = (w1, w2, . . . , wm)t, if the information
about the attribute weights is partially known.

Step 4. Based on Equations (6) and (8), we determine the corresponding single-valued neutrosophic
hesitant fuzzy PIS A+ and the single-valued neutrosophic hesitant fuzzy NIS A−, respectively.

Step 5. Based on Equations (10) and (12), we compute the separation measures d+i and d−i of
each alternative Ai from the single-valued neutrosophic hesitant fuzzy PIS A+ and the
single-valued neutrosophic hesitant fuzzy NIS A−, respectively.

Step 6. Based on Equation (13), we determine the relative closeness coefficient RC(Ai) (i =

1, 2, . . . , m) of each alternative Ai to the single-valued neutrosophic hesitant fuzzy PIS A+.
Step 7. Rank the alternatives Ai (i = 1, 2, . . . , m) based on the relative closeness coefficients

RC(Ai) (i = 1, 2, . . . , m) and select the optimal one(s).
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Description of the MADM Problem

Construct simplified neutrosophic

Maximizing deviation

Identify the PIS and the NIS

TOPSIS method

Rank the alternatives

hesitant fuzzy decision matrix

Based on maximizing deviation method
determine the attribute weights method

Approve attribute
weight ?

No

Yes

Calculate the separation
measures

Determine the relative
closeness coefficient

Knowledge based

Model Based

Figure 1: The scheme of the developed approach for MADM.
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In this subsection, we only use INHFSs in SNHFSs and put forward a novel decision making approach,255

by combining the idea of INHFSs with maximizing deviation, to solve a MADM problem in interval256
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set of m alternatives and P = {P1, P2, . . . , Pn} is a set of n attributes. The evaluation information of268
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Figure 1. The scheme of the developed approach for MADM.

2.2. TOPSIS and Maximizing Deviation Method for Interval Neutrosophic Hesitant Fuzzy Multi-Attribute
Decision-Making

In this subsection, we only use INHFSs in SNHFSs and put forward a novel decision-making
approach, by combining the idea of INHFSs with maximizing deviation, to solve a MADM problem in
interval neutrosophic hesitant fuzzy environment.

Definition 4 ([20]). Let Z be a fixed set, an INHFS ñ on Z is defined as:

ñ = {〈z, t̃(z), ĩ(z), f̃(z)〉|z ∈ Z}

where t̃(z), ĩ(z), f̃(z) are sets of some interval-values in [0, 1], indicating the possible truth-membership
hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of the
element z to ñ, respectively; t̃(z) = {γ̃1, γ̃2, . . . , γ̃l}, γ̃1, γ̃2, . . . , γ̃l are the elements of t̃(z); ĩ(z) =

{δ̃1, δ̃2, . . . , δ̃p}, δ̃1, δ̃2, . . . , δ̃p are the elements of ĩ(z); f̃(z) = {η̃1, η̃2, . . . , η̃q}, η̃1, η̃2, . . . , η̃q are the elements
of f̃(z), for every z ∈ Z; and l, p, q denote, respectively, the numbers of the interval-valued hesitant fuzzy
elements in t̃, ĩ, f̃.

For convenience, the expression ñ(z) = {t̃(z), ĩ(z), f̃(z)} is called an interval neutrosophic hesitant
fuzzy element (INHFE), which we represent by simplified symbol ñ = {t̃, ĩ, f̃}.
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Similar to Section 2.1, we consider a MADM problem, where A = {A1, A2, . . . , Am} is a discrete
set of m alternatives and P = {P1, P2, . . . , Pn} is a set of n attributes. The evaluation information of the
ith alternative with respect to the jth attribute is an INHFE ñij = 〈t̃ij, ĩij, f̃ij〉, where t̃ij, ĩij and f̃ij indicate
the interval-valued preference degree, interval-valued uncertain degree, and interval-valued falsity
degree, respectively, of the expert facing the ith alternative that satisfied the jth attribute. Then the
interval neutrosophic hesitant fuzzy decision matrix (INHFDM) Ñ , can be constructed as follows:

Ñ =




ñ11 ñ12 . . . ñ1n
ñ21 ñ22 . . . ñ2n

...
...

. . .
...

ñm1 ñm2 . . . ñmn




In the comparison of INHFEs, the number of their corresponding element may be unequal.
To handle this situation, we normalize the INHFEs as follows:

Suppose that ñ = {t̃, ĩ, f̃} is an INHFE, then ¯̃γ = vγ̃+ + (1− v)γ̃−, ¯̃δ = vδ̃+ + (1− v)δ̃− and
¯̃η = vη̃+ + (1− v)η̃− are the added truth-membership, the indeterminacy-membership and the
falsity-membership degree, respectively, where γ̃−, γ̃+, δ̃−, δ̃+ and η̃−, η̃+ are the minimum and the
maximum elements of t̃, ĩ and f̃, respectively, and v ∈ [0, 1] is a parameter assigned by the expert
according to his risk preference.

For the normalization of INHFE, different values of v produce different results for the added
truth-membership, the indeterminacy-membership and the falsity-membership degree. Usually, there
are three cases of the preference of the expert:

• If v = 0, the pessimist expert may add the minimum truth-membership degree γ̃−, the minimum
indeterminacy-membership degree δ̃− and the minimum falsity-membership degree η̃−.

• If v = 0.5, the neutral expert may add the truth-membership degree γ̃−+γ̃+

2 ,

the indeterminacy-membership degree δ̃−+δ̃+

2 and the falsity-membership degree η̃−+η̃+

2 .
• If v = 1, the optimistic expert may add the maximum truth-membership degree γ̃+, the maximum

indeterminacy-membership degree δ̃+ and the maximum falsity-membership degree η̃+.

The algorithm for the normalization of INHFEs is given in Algorithm 2.
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Algorithm 2 The algorithm for the normalization of INHFEs.

INPUT: Two INHFEs ñ1 = (t̃1, ĩ1, f̃1) and ñ2 = (t̃2, ĩ2, f̃2) and the value of ṽ.
OUTPUT: The normalization of ñ1 = (t̃1, ĩ1, f̃1) and ñ2 = (t̃2, ĩ2, f̃2).

1: Count the number of elements of ñ1 and ñ2, i.e., #t̃1, #ĩ1, #f̃1, #t̃2, #ĩ2, #f̃2;
2: Determine the minimum and the maximum of the elements of ñ1 and ñ2;
3: t̃ = arg mini=1,2 #t̃i, ĩ = arg mini=1,2 #ĩi, f̃ = arg mini=1,2 #f̃i
4: if #t̃1 = #t̃2 then break;
5: else if t̃ = #t̃1 then
6: n = #t̃2 − #t̃1;
7: Determine the value of γ̃ for t̃1;
8: for i=1:1:n do
9: t̃1 = t̃1 ∪ γ̃;

10: end for
11: else
12: n = #t̃1 − #t̃2;
13: Determine the value of γ̃ for t̃2;
14: for i=1:1:n do
15: t̃2 = t̃2 ∪ γ̃;
16: end for
17: end if
18: if #ĩ1 = #ĩ2 then break;
19: else if ĩ = #ĩ1 then
20: n = #ĩ2 − #ĩ1;
21: Determine the value of δ̃ for ĩ1;
22: for i=1:1:n do
23: ĩ1 = ĩ1 ∪ δ̃;
24: end for
25: else
26: n = #ĩ1 − #ĩ2;
27: Determine the value of δ̃ for ĩ2;
28: for i=1:1:n do
29: ĩ2 = ĩ2 ∪ δ̃;
30: end for
31: end if
32: if #f̃1 = #f̃2 then break;
33: else if f̃ = #f̃1 then
34: n = #f̃2 − #f̃1;
35: Determine the value of η̃ for f̃1;
36: for i=1:1:n do
37: f̃1 = f̃1 ∪ η̃;
38: end for
39: else
40: n = #f̃1 − #f̃2;
41: Determine the value of η̃ for f̃2;
42: for i=1:1:n do
43: f̃2 = f̃2 ∪ η̃;
44: end for
45: end if

2.2.1. The Distance Measures for INHFSs

Definition 5. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {t̃2, ĩ2, f̃2} be two normalized INHFEs, then we define the interval
neutrosophic hesitant fuzzy Hamming distance between ñ1 and ñ2 as follows:

d̃1(ñ1, ñ2) =
1
6

(
1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ(ς)L

1 − γ̃
σ(ς)L

2

∣∣∣+
∣∣∣γ̃σ(ς)U

1 − γ̃
σ(ς)U

2

∣∣∣
)
+

1
#ĩ

#ĩ

∑
ς=1

(∣∣∣δ̃σ(ς)L

1 − δ̃
σ(ς)L

2

∣∣∣

+
∣∣∣δ̃σ(ς)U

1 − δ̃
σ(ς)U

2

∣∣∣
)
+

1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ(ς)L

1 − η̃
σ(ς)L

2

∣∣∣+
∣∣∣η̃σ(ς)U

1 − η̃
σ(ς)U

2

∣∣∣
))

,
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where #t̃ = #t̃1 = #t̃2, #ĩ = #ĩ1 = #ĩ2 and #f̃ = #f̃1 = #f̃2. γ̃
σ(ς)
i , δ̃

σ(ς)
i and η

σ(ς)
i are the ςth largest values in

γ̃i, δ̃i and η̃i, respectively (i = 1, 2).
In addition, the interval neutrosophic hesitant fuzzy Euclidean distance is defined as:

d̃2(ñ1, ñ2) =

(
1
6

(
1
#t̃

#t̃

∑
ς=1

((
γ̃

σ(ς)L

1 − γ̃
σ(ς)L

2

)2
+
(

γ̃
σ(ς)U

1 − γ̃
σ(ς)U

2

)2
)
+

1
#ĩ

#ĩ

∑
ς=1

((
δ̃

σ(ς)L

1 − δ̃
σ(ς)L

2

)2

+
(

δ̃
σ(ς)U

1 − δ̃
σ(ς)U

2

)2
)
+

1
#f̃

#f̃

∑
ς=1

((
η̃

σ(ς)L

1 − η̃
σ(ς)L

2

)2
+
(

η̃
σ(ς)U

1 − η̃
σ(ς)U

2

)2
))) 1

2

.

By using the geometric distance model of [26], the above distances can be generalized as follows:

d̃(ñ1, ñ2) =

(
1
6

(
1
#t̃

#t̃
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((
γ̃

σ(ς)L
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2

)α
+
(
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2

)α
)
+

1
#ĩ
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2

)α
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(
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σ(ς)U
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σ(ς)U

2

)α
)
+

1
#f̃

#f̃

∑
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((
η̃

σ(ς)L

1 − η̃
σ(ς)L

2

)α
+
(

η̃
σ(ς)U

1 − η̃
σ(ς)U

2

)α
))) 1

α

,

where α is constant and α > 0. Based on the value of α, the relationship among d̃(ñ1, ñ2), d̃1(ñ1, ñ2) and
d̃2(ñ1, ñ2) can be deduced as:

• If α = 1, then the distance d̃(ñ1, ñ2) = d̃1(ñ1, ñ2).
• If α = 2, then the distance d̃(ñ1, ñ2) = d̃2(ñ1, ñ2).

Therefore, the distance d̃(ñ1, ñ2) is a generalization of the interval neutrosophic hesitant fuzzy Hamming
distance d̃1(ñ1, ñ2) and the interval neutrosophic hesitant fuzzy Euclidean distance d̃2(ñ1, ñ2).

Theorem 3. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {{[1, 1]}, {[0, 0]}, {[0, 0]}} be two INHFEs, then the generalized
distance d̃(ñ1, ñ

′
2) can be calculated as:

d̃(ñ1, ñ
′
2) =


 1

6


 1

#t̃1
∑

γ̃∈t̃1

(
(
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)α
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




1
α

.

where ñ
′
2 is the normalization outcome of ñ2 by the comparison of ñ1 and ñ2.

Theorem 4. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {{[0, 0]}, {[1, 1]}, {[1, 1]}} be two INHFEs, then the generalized
distance d̃(ñ1, ñ

′
2) can be calculated as:

d̃(ñ1, ñ
′
2) =


 1

6


 1

#t̃1
∑

γ̃∈t̃1
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+
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1− η̃U
)α)






1
α

.

where ñ
′
2 is the normalization outcome of ñ2 by the comparison of ñ1 and ñ2.

2.2.2. Computation of Optimal Weights Using Maximizing Deviation Method

Case I: Completely unknown information on attribute weights
Using the maximizing deviation method, we construct an optimization model to determine the

attributes optimal relative weights in interval neutrosophic hesitant fuzzy setting. For the attribute
Pj ∈ Z, the deviation of the alternative Ai to all the other alternatives can be represented as:

D̃ij(w) =
m

∑
k=1

d̃(ñij, ñkj)wj, i = 1, 2, . . . , m, j = 1, 2, . . . , n
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where

d̃(ñij, ñkj) =
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#ĩ

∑
ς=1

(∣∣∣δ̃σ̃(ς)L

ij − δ̃
σ̃(ς)L

kj

∣∣∣
α

+
∣∣∣δ̃σ̃(ς)U

ij − δ̃
σ̃(ς)U

kj

∣∣∣
α
)
+

1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ̃(ς)L

ij − η̃
σ̃(ς)L

kj

∣∣∣
α
+
∣∣∣η̃σ̃(ς)U

ij − η̃
σ̃(ς)U

kj

∣∣∣
α
))) 1

α

.

Let

D̃j(w) =
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∑
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∑
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,

j = 1, 2, . . . , n. Then Dj(w) represents the deviation value of all alternatives to other alternatives for
the attribute Pj ∈ Z.

On the basis of the analysis above, to select the weight vector w which maximizes all deviation
values for all the attributes, a non-linear programming model is constructed as follows:

(M− 3)


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s.t. wj ≥ 0, j = 1, 2, . . . , n,
n

∑
j=1

w2
j = 1

To solve the above model, we construct the Lagrange function:

L(w, ξ) =
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(
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)

where ξ is a real number, representing the Lagrange multiplier variable. Then we compute the partial
derivatives of L and let:
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α

+ ξwj = 0

∂L
∂ξ

=
1
2

(
n

∑
j=1

w2
j − 1

)
= 0
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By solving the above equations, to determining the attribute weights, an exact and simple formula
can be obtained as follows:

w∗j =

m
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m
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As the weights of the attributes should satisfy the normalization condition, so we obtain the
normalized attribute weights:

wj =
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(14)

Case II: Partly known information on attribute weights
However, there are some situations that the information about the weight vector is partially

known. For such situations, using the set of the known weight information, =, the constrained
optimization model can be designed as:

(M− 4)
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s.t. w ∈ =, wj ≥ 0, j = 1, 2, . . . , n,
n

∑
j=1

wj = 1

where = is also a set of constraint conditions that the weight value wj should satisfy according to
the requirements in real situations. By solving the linear programming model (M− 4), we obtain the
optimal solution w = (w1, w2, . . . , wn)t, which can be used as the weight vector of attributes.

In interval neutrosophic hesitant fuzzy environment, the PIS Ã+, and the NIS Ã− can be defined
as follows:

Ã+ = {ñ+1 , ñ+2 , . . . , ñ+n }
= {{{[1, 1]}, {[0, 0]}, {[0, 0]}}, {{[1, 1]}, {[0, 0]}, {[0, 0]}}, . . . , {{[1, 1]}, {[0, 0]}, {[0, 0]}}}.

Ã− = {ñ−1 , ñ−2 , . . . , ñ−n }
= {{{[0, 0]}, {[1, 1]}, {[1, 1]}}, {{[0, 0]}, {[1, 1]}, {[1, 1]}}, . . . , {{[0, 0]}, {[1, 1]}, {[1, 1]}}}.
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On the basis of Equation (14), Theorems 3 and 4, the separation measures d̃+i and d̃−i of each
alternative from the interval neutrosophic hesitant fuzzy PIS Ã+ and the interval neutrosophic hesitant
fuzzy NIS Ã−, respectively, are determined as:
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, (18)

where i = 1, 2, . . . , m. The relative closeness coefficient of an alternative Ãi with respect to the PIS Ã+

is defined as:

RC(Ãi) =
d̃−i

d̃+i + d̃−i
(19)

where 0 ≤ RC(Ãi) ≤ 1, i = 1, 2, . . . , m. The ranking orders of all alternatives can be
determined according to the closeness coefficient CR(Ãi) and select the optimal one(s) from a set of
appropriate alternatives.

3. An Illustrative Example

To examine the validity and feasibility of developed decision-making approach in this section, we give
a smartphone accessories supplier selection problem in realistic scenario as follows: In the smartphone
fields, the Chinese market is the immense one in the world and the competition of smartphone field is so
fierce that several companies could not avoid the destiny of bankrupt. In the Chinese market, a firm, who
does not want to be defeated must choose the excellent accessories suppliers to fit its supply requirements
and technology strategies. A new smartphone design firm called “Hua Xin” incorporated company, who
wants to choose a few accessories suppliers for guaranteeing the productive throughput. For simplicity,
we assume only one kind of accessory known as Central Processing Unit (CPU), which is used as an
essential part in smartphones. The firm determines five CPU suppliers (alternatives) Ai(i = 1, 2, . . . , 5)
through the analysis of their planned level of effort and the market investigation. The evaluation criteria
are (1) P1 : cost; (2) P2 : technical ability; (3) P3 : product performance; (4) P4 : service performance.
Because the uncertainty of the information, the evaluation information given by the three experts is
expressed as SVNHFEs. The SVNHFDM is given in Table 1. The hierarchical structure of constructed
decision-making problem is depicted in Figure 2.

Table 1. Single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.4}}
A2 {{0.1},{0.3},{0.5,0.6}} {{0.4},{0.3,0.5},{0.5,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.2}} {{0.1,0.2},{0.3},{0.6,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6},{0.1,0.7},{0.3,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4},{0.7,0.8}} {{0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2},{0.3,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.7}} {{0.2,0.3},{0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3},{0.1,0.2}} {{0.6},{0.2},{0.3,0.5}}
A5 {{0.3},{0.5},{0.1,0.4}} {{0.5},{0.1,0.2},{0.3,0.4}}
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Take v = 0.5, α = 2, and we normalize the SVNHFDM by using Algorithm 1. The normalized
SVNHFDM is given in Table 2.

Selection of the best
Smartphone accessories supplier

Cost
P1

Technical ability
P2

Product
P3

Service
P4

A1

A2

A5

A4

A3

Goal

performance

performance

Figure 2: The smartphone accessories supplier selection hierarchical structure.

Table 1: Single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.4}}
A2 {{0.1},{0.3},{0.5,0.6}} {{0.4},{0.3,0.5},{0.5,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.2}} {{0.1,0.2},{0.3},{0.6,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6},{0.1,0.7},{0.3,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4},{0.7,0.8}} {{0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2},{0.3,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.7}} {{0.2,0.3},{0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3},{0.1,0.2}} {{0.6},{0.2},{0.3,0.5}}
A5 {{0.3},{0.5},{0.1,0.4}} {{0.5},{0.1,0.2},{0.3,0.4}}

Take ̟ = 0.5, α = 2, and we normalize the SVNHFDM by utilizing Algorithm 1. The normalized362

SVNHFDM is given in Table 2.363

18

Figure 2. The smartphone accessories supplier selection hierarchical structure.

Table 2. Normalized single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2,0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.3,0.4}}
A2 {{0.1,0.1},{0.3,0.3},{0.5,0.55,0.6}} {{0.4,0.4},{0.3,0.5},{0.5,0.55,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.15,0.2}} {{0.1,0.2},{0.3,0.3},{0.6,0.65,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.55,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7,0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6,0.6},{0.1,0.7},{0.3,0.4,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4,0.4},{0.7,0.75,0.8}} {{0.4,0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4,0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2,0.2},{0.3,0.4,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.65,0.7}} {{0.2,0.3},{0.4,0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3,0.3},{0.1,0.15,0.2}} {{0.6,0.6},{0.2,0.2},{0.3,0.4,0.5}}
A5 {{0.3,0.3},{0.5,0.5},{0.1,0.25,0.4}} {{0.5,0.5},{0.1,0.2},{0.3,0.35,0.4}}

Now to obtain the optimal accessory supplier, we use the developed method, which contains the
following two cases:
Case 1: The information of the attribute weights is completely unknown, then the MADM approach
related to accessory supplier selection includes the following steps:

Step 1: On the basis of Equation (4), we get the optimal weight vector:

w = (0.2994, 0.2367, 0.2521, 0.2118)T

Step 2: Based on the decision matrix of Table 2, we get the normalization of the reference points A+

and A− as follows:

A+ = {n+1 , n+2 , n+3 , n+4 }

= {{{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}},
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A− = {n−1 , n−2 , n−3 , n−4 }

= {{{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}}.

Step 3: On the basis of Equations (10) and (12), we determine the geometric distances d+i = d(Ai, A+)

and d−i = d(Ai, A−) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 3.
Step 4: Use Equation (13) to determine the relative closeness of each alternative Ai with respect to

the single-valued neutrosophic hesitant fuzzy PIS A+:

RC(A1) = 0.5251, RC(A2) = 0.4896, RC(A3) = 0.5394, RC(A4) = 0.5600, RC(A5) = 0.5927.

Step 5: On the basis of the relative closeness coefficients RC(Ai), rank the alternatives Ai(i =

1, 2, . . . , 5): A5 � A4 � A3 � A1 � A2. Thus, the optimal alternative (CPU supplier) is
A5.

Table 3. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d+i = d(Ai, A+) 0.5142 0.5434 0.4974 0.4781 0.4279
d−i = d(Ai, A−) 0.5685 0.5212 0.5824 0.6086 0.6226

Case 2: The information of the attribute weights is partly known, and the known weight information
is as follows:

= = {0.15 ≤ w1 ≤ 0.2, 0.16 ≤ w2 ≤ 0.18, 0.3 ≤ w3 ≤ 0.35, 0.3 ≤ w4 ≤ 0.45,
4

∑
j=1

wj = 1}

Step 1: Use the model (M-2) to establish the single-objective programming model as follows:

(M− 2)





max D(w) = 5.6368w1 + 4.4554w2 + 4.7465w3 + 3.9864w4

s.t. w ∈ =, wj ≥ 0, j = 1, 2, 3, 4,
4
∑

j=1
wj = 1

By solving this model, we obtain the attributes weight vector:

w = (0.2000, 0.1600, 0.3400, 0.3000)T

Step 2: According to the decision matrix of Table 2, the normalization of the reference points A+ and
A− can be obtained as follows:

A+ = {n+1 , n+2 , n+3 , n+4 }

= {{{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}},

A− = {n−1 , n−2 , n−3 , n−4 }

= {{{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}}.

Step 3: Based on Equations (10) and (12), we determine the geometric distances d(Ai, A+) and
d(Ai, A−) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 4.

Step 4: Use Equation (13) to determine the relative closeness of each alternative Ai with respect to
the single-valued neutrosophic hesitant fuzzy PIS A+:

RC(A1) = 0.4972, RC(A2) = 0.5052, RC(A3) = 0.5199, RC(A4) = 0.5808, RC(A5) = 0.5883.
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Step 5: Based on the relative closeness coefficients RC(Ai), rank the alternatives Ai(i = 1, 2, . . . , 5):
A5 � A4 � A3 � A2 � A1. Thus, the optimal alternative (CPU supplier) is A5.

Taking v = 0.5, we normalize the single-valued neutrosophic hesitant fuzzy decision matrix
and compute the closeness coefficient of the alternatives with the different values of α.
The comparison results are given in Figure 3.

Table 4. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d(Ai, A+) 0.5446 0.5244 0.5220 0.4534 0.4341
d(Ai, A−) 0.5385 0.5355 0.5652 0.6281 0.6202
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Figure 3. Comparison of the closeness coefficient of the alternative.

The analysis process under interval neutrosophic hesitant fuzzy circumstances:

In the above smartphone accessories supplier selection problem, if the information provided by
the experts is indicated in INHFEs, as in Table 5. Then, to choose the optimal CPU supplier, we proceed
to use the developed approach.

Take v = 0.5, α = 2, and we normalize the INHFDM by using Algorithm 2. The normalized
INHFDM is given in Table 6.
Case 1: The information of the attribute weights is completely unknown , then the MADM method of
accessory supplier selection consists of the following steps:

Step 1: On the basis of Equation (14), we get the optimal weight vector:

w = {0.2963, 0.2562, 0.2388, 0.2087}
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Step 2: According to the decision matrix of Table 6, the normalization of the reference points Ã+ and
Ã− can be obtained as follows:

Ã+ = {ñ+1 , ñ+2 , ñ+3 , ñ+4 }

= {{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}},

{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}},

Ã− = {ñ−1 , ñ−2 , ñ−3 , ñ−4 }

= {{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}},

{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}}.

Step 3: Based on Equations (15) and (17), we determine the geometric distances d̃(Ai, A−) and
d̃(Ai, A+) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 7.

Step 4: Use Equation (19) to determine the relative closeness of each alternative Ãi with respect to
the interval neutrosophic hesitant fuzzy PIS Ã+:

RC(Ã1) = 0.5169, RC(Ã2) = 0.4592, RC(Ã3) = 0.4969, RC(Ã4) = 0.5368, RC(Ã5) = 0.5643.

Step 5: Based on the relative closeness coefficients RC(Ãi), rank the alternatives Ai(i = 1, 2, . . . , 5):
A5 � A4 � A1 � A3 � A2. Thus, the optimal alternative (CPU supplier) is A5.

Case 2: The information of the attribute weights is partly known, and the known weight information
is given as follows:

= = {0.15 ≤ w1 ≤ 0.2, 0.16 ≤ w2 ≤ 0.18, 0.3 ≤ w3 ≤ 0.35, 0.3 ≤ w4 ≤ 0.45,
4

∑
j=1

wj = 1}

Step 1: Use the model (M-4) to establish the single-objective programming model as follows: (M−

4)





max D(w) = 4.5556w1 + 4.2000w2 + 3.3222w3 + 3.3111w4

s.t. w ∈ =, wj ≥ 0, j = 1, 2, 3, 4,
4
∑

j=1
wj = 1

By solving this model, we obtain the weight vector of attributes:

w = {0.2000, 0.1800, 0.3200, 0.3000}

Step 2: According to the decision matrix of Table 6, we can obtain the normalization of the reference
points Ã+ and Ã− as follows:

Ã+ = {ñ+1 , ñ+2 , ñ+3 , ñ+4 }

= {{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}},

{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}},

Ã− = {ñ−1 , ñ−2 , ñ−3 , ñ−4 }

= {{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}},

{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}}.

Step 3: Use Equations (15) and (17) to determine the geometric distances d̃(Ai, A+) and d̃(Ai, A−)
for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 8.
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Step 4: Use Equation (19) to determine the relative closeness of each alternative Ãi with respect to
the interval neutrosophic hesitant fuzzy PIS Ã+:

RC(Ã1) = 0.4955, RC(Ã2) = 0.4729, RC(Ã3) = 0.4803, RC(Ã4) = 0.5536, RC(Ã5) = 0.5607.

Step 5: According to the relative closeness coefficients RC(Ãi), rank the alternatives Ai(i =

1, 2, . . . , 5): A5 � A4 � A1 � A3 � A2. Thus, the optimal alternative (CPU supplier)
is A5.

Taking v = 0.5, we normalize the interval neutrosophic hesitant fuzzy decision matrix and
compute the closeness coefficient of the alternatives with the different values of α. The comparison
results are given in Figure 4.
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Figure 4. Comparison of the closeness coefficient of the alternative.
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Table 7. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d̃(Ai, A+) 0.5169 0.5711 0.5361 0.4952 0.4625
d̃(Ai, A−) 0.5531 0.4849 0.5295 0.5740 0.5991

Table 8. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d̃(Ai, A+) 0.5406 0.5562 0.5569 0.4752 0.4653
d̃(Ai, A−) 0.5310 0.4990 0.5147 0.5894 0.5938

Comparative Analysis

Zhao et al. [31] generalized the minimum deviation method to accommodate hesitant fuzzy values
for solving the decision-making problems. We have used this approach on the above illustrative example
and compared the decision results with proposed approach of this paper for SNHFSs. In the approach of
Zhao et al., assume that the subjective preference values to all the alternatives Aj(j = 1, 2, 3, 4, 5) assigned
by the experts are: s1 = {{0.3, 0.4}, {0.2, 0.5}, {0.1, 0.3, 0.7}}, s2 = {{0.2, 0.7}, {0.1, 0.9}, {0.3, 0.6}},
s3 = {{0.8}, {0.5, 0.8}, {0.4, 0.7, 0.9}}, s4 = {{0.1, 0.4}, {0.6}, {0.5, 0.7, 0.8}} and s5 = {{0.3}, {0.4, 0.6},
{0.2, 0.4}}. Also s̃1 = {{[0.3, 0.5], [0.4, 0.6]}, {[0.2, 0.3], [0.5, 0.7]}, {[0.1, 0.2], [0.3, 0.4], [0.7, 0.9]}},
s̃2 = {{[0.2, 0.3], [0.7, 0.9]},{[0.1, 0.4], [0.7, 0.9]},{[0.3, 0.4], [0.6, 0.8]}}, s̃3 = {{[0.8, 0.9]},{[0.5, 0.6], [0.8, 0.9]},
{[0.4, 0.6], [0.7, 0.9], [0.6, 0.7]}}, s̃4 = {{[0.1, 0.4], [0.4, 0.5]}, {[0.6, 0.7]}, {[0.5, 0.7], [0.7, 0.8], [0.8, 0.9]}}
and s̃5 = {{[0.3, 0.5]}, {[0.4, 0.5], [0.6, 0.8]}, {[0.2, 0.3], [0.4, 0.7]}}.

The results corresponding to these approaches are summarized in Table 9.

Table 9. Comparative analysis.

Methods Score of Alternatives Ranking of Alternatives

Zhao et al. [31] for SVNHFS 0.4431 0.4025 0.4941 0.5073 0.5691 A5 � A4 � A3 � A1 � A2
Our proposed method for SVNHFS 0.5251 0.4896 0.5394 0.5600 0.5927 A5 � A4 � A3 � A1 � A2

Zhao et al. [31] for INHFS 0.4559 0.4206 0.4255 0.5334 0.5791 A5 � A4 � A1 � A3 � A2
Our proposed method for INHFS 0.5169 0.4592 0.4969 0.5368 0.5643 A5 � A4 � A1 � A3 � A2

From this comparative study, the results obtained by the approach [31] coincide with the proposed
one which validates the proposed approach. The main reason is that in approach [31], the subjective
preferences are taken into account to serve as decision information and will have a positive effect on the
final decision results. Hence, the proposed approach can be suitably used to solve the MADM problems.
The advantages of our proposed method are as follows: (1) The developed approach has good
flexibility and extension. (2) The SNHFSs of developed approach availably depicts increasingly general
decision-making situations. (3) With the aid of the maximizing deviation and TOPSIS, the developed
approach uses the satisfaction level of the alternative to the ideal solutions to make the decision.

4. Conclusions

SNHFS is a suitable tool for dealing with the obscurity of an expert’s judgments over alternatives
according to attributes. SNHFSs are useful for representing the hesitant assessments of the experts,
and remains the edge of SNSs and HFSs, which accommodates an increasingly complex MADM
situation. SNHFS (by combining SNS and HFS) as an extended format represents some general
hesitant scenarios. In this paper, firstly we have developed the normalization method and the distance
measures of SNHFSs and further, to obtain the attribute optimal relative weights, we have proposed a
decision-making approach called the maximizing deviation method with SNHFSs including SVNHFSs
and INHFSs. Secondly, we have developed a new approach based on TOPSIS to solve MADM problems

132



Symmetry 2019, 11, 1058

under SNHFS environment (SVNHFS and INHFS). Finally, we have illustrated the applicability and
effectiveness of the developed method with a smartphone accessories supplier selection problem.
In future work, we will extend the proposed approach of SNHFSs to other areas, such as pattern
recognition, medical diagnosis, clustering analysis, and image processing.
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Abstract: This research sets the basis for modeling the performance indicators of financial assets
using triangular neutrosophic fuzzy numbers. This type of number allows for the modeling of
financial assets performance indicators by taking into consideration all the possible scenarios of their
achievement. The key performance indicators (KPIs) modeled with the help of triangular fuzzy
neutrosophic numbers are the return on financial assets, the financial assets risk, and the covariance
between financial assets. Thus far, the return on financial assets has been studied using statistical
indicators, like the arithmetic and geometric mean, or using the financial risk indicators with the help
of the squared deviations from the mean and covariance. These indicators are well known as the basis
of portfolio theory. This paper opens the perspective of modeling these three mentioned statistical
indicators using triangular neutrosophic fuzzy numbers due to the major advantages they have.
The first advantage of the neutrosophic approach is that it includes three possible symmetric scenarios
of the KPIs achievement, namely the scenario of certainty, the scenario of non-realization, and the
scenario of indecision, in which it cannot be appreciated whether the performance indicators are or
are not achieved. The second big advantage is its data series clustering, representing the financial
performance indicators by which these scenarios can be delimitated by means of neutrosophic fuzzy
numbers in very good, good or weak performance indicators. This clustering is realized by means
of the linguistic criteria and measuring the belonging degree to a class of indicators using fuzzy
membership functions. The third major advantage is the selection of risk mitigation analysis scenarios
and the formation of financial assets’ optimal portfolios.

Keywords: fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance
indicators; financial assets

1. Introduction

Financial markets specialists have shown a particular interest for financial assets lately, both due
to returns they generate for investors and also because they can predict the future evolution of financial
performance [1]. Researchers in financial markets, starting with Markowittz [2], developed the modern
theory of financial asset portfolios, focusing on the financial assets return (Ra) and on the financial
assets risk (σ2

a). An extremely important issue in the modern theory of financial assets portfolios is
the risk diversification; in the famous words of Markowitz: “Don’t put all your eggs in one basket.”
These studies, regarding the risk of diversification, have led to the foundation of Markowitz’s efficient
frontier, demonstrating that the financial assets portfolio risk is much lower than the individual risk of
each financial assets’ category [2].
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Symmetry 2019, 11, 1021

In order to evaluate financial asset returns, the literature has enabled two categories of models.
The first model is known as market return model, and it is based on the financial asset market price at
two moments of time (t1) and (t0). The market-based return calculation is as follows:

Ra =
P1 − P0 + D1

P0

where P1 represents the market price at time (t1), P0 represents the market price at time (t0), and D1

represents the dividend at time (t1).
The second model for evaluating returns on financial assets is based on the market portfolio (M),

as well as on the return on the risk-free financial asset (R f ) as a result of applying the Capital Assets
Price Model (CAPM). The financial assets return is, in this case:

Ra = R f + β(RM −R f ),

where RM is the portfolio return, and β is the volatility coefficient of the financial asset, which is
determined by a relation of the form:

β =
σaM

σ2
M

,

where σaM is the covariance between the asset and the portfolio and σ2
M represents the portfolio risk.

If the financial asset return is considered to be fairly measured using the CAPM model, then two
situations are encountered in regard to the investors’ decision to trade the financial asset on the capital
market. In the first situation, if Ra < Ra(CAPM), then Ra has to decrease by increasing P0—as such,
investors will buy financial assets. In the second situation, if Ra < Ra(CAPM), then Ra should increase
by subtracting P0—as such, the investors will sell the financial assets.

In order to assess financial asset risk, the following statistical indicators are used: The squared
deviations from the mean, given by the formula:

σ2
a =

1
N − 1

N∑

i=1

(Rai −R)
2

and the variance:

σa =

√√√
1

N − 1

N∑

i=1

(Rai −R)
2

to express the deviation of the financial asset over a period of time from the average return value.
The higher the value of the deviation is, the higher the risk assumed by the investors will be. Otherwise,
the lower the deviation value is, the lower the risk.

Regardless of the model used to evaluate financial asset return, there is a certain degree of
probability that characterizes the achievement of financial asset return. Similarly, also the risk assumed
by investors can be manifested with different intensities (this risk may take maximum or minimum
values, and there is also an area where the risk intensity is uncertain). This degree of uncertainty for the
obtaining of the financial asset return, noted as (Du(Ra)), can be grouped into three main categories:

• The first category: A high degree of obtaining financial asset returns, denoted by µ(Du(σa, Ra)),
which is the value of the financial asset return that can be achieved with a high probability,
approximated by a professional judgment of around 50%. For each financial asset, this degree has
specific values.

• The second category: A low degree of obtaining financial asset returns, denoted by ϑ(Du(σa, Ra)).
Here, there is no prospect of achieving the financial asset return. The causes that lead to these
situations are various: The risk assumed by investors is appropriate to the value of the realizable
asset’s return, the expected return should record high values above the market level, or the
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dynamics of the exchange rate market is not known. The degree of probability for this situation
approximated by professional judgement is 30%, and it is specific to each financial asset.

• The third category: The degree for obtaining the financial asset return is uncertain, denoted by
λ(Du(σa, Ra)), corresponding to the situation in which the realization or non-realization of the
return is uncertain or not appreciated. This area of uncertainty is approximated at 20%, and it is
also specific to each category of financial assets.

The introduction of these criteria for assessing financial asset return allows for the analysis of
these performance indicators in line with the real needs of investors. They can thus select portfolios
of financial assets for which the likelihood of achieving profitability is known. Additionally, by
introducing these specific notions, the basis for the use of neutrosophic fuzzy numbers is created in the
field of modeling financial decision-making to form financial assets portfolios.

The aim of this paper is to properly model the indicators from portfolio theory using triangular
neutrosophic fuzzy numbers (considering the major advantages they provide) while solving the
problems that arise in the classical approach—these being several limitations which might appear in
the case of the financial assets’ performance indicators use.

2. State of the Art

Neutrosophic fuzzy numbers represent a quite new research area that has captured the attention
of researchers worldwide since 2013. Querying the WoS (Web of Science) database for the keywords
“neutrosophic fuzzy numbers,” the search results indicated 184 ISI Web of Science articles. Analyzing
by publication year, it can be observed that, since the appearance of this research topic, interest has
increased exponentially each and every year, starting from two ISI articles published in 2013 to seven
ISI articles in both 2014 and 2015, 18 in 2016, 41 in 2017, and 77 in 2018. Researchers from all over the
world have started to use this niche of fuzzy intelligence, but the majority of these studies have come
from China, India, USA, Turkey and Pakistan.

Most of these articles are included in the following categories: Computer science and artificial
intelligence (47%), multidisciplinary sciences (20%), information systems (10%), automation control
systems (7%), management (2%), economics (1%), and business (0.5%). The first articles published in
2013 targeted color image segmentation with applicability in image processing, pattern recognition
and computer vision [3] and the topic of neutrosophic fuzzy classifications [4]. The advantage of
using the neutrosophic set was shown by Ali and Smarandache [5] in their paper, where they studied
the complexity of this topic and revealed that neutrosophic fuzzy numbers can handle imprecise,
indeterminate, inconsistent, and incomplete information.

The most cited articles that have used neutrosophic fuzzy numbers as a research methodology to
target the decision-making problem. Pramanik et al. [6] used an extension of the interval neutrosophic
set, namely the interval bipolar neutrosophic set, in order to develop a multi-attribute decision-making
strategy. Ye [7] introduced the concept of simplified neutrosophic sets in order to solve a multicriteria
decision-making problem. Zhang et al. [8] also proposed an interval neutrosophic set to address
a multicriteria decision-making problem. The paper published by Liu and Teng [9] presented a
new method based on a single-valued neutrosophic normalized weighted Bonferroni mean that
demonstrated its effectiveness for solving decision-making problems. Peng et al. [10] developed a new
outranking approach for multi-criteria decision-making problems. This method was developed in a
simplified neutrosophic environment where the truth-membership degree, indeterminacy-membership
degree, and falsity-membership degree were subsets in [0,1].

None of the studies indexed in WoS have targeted portfolio theory or the finance domain. Even if
there have been a lot of studies that have focused on solving multi-criteria decision-making problems,
none of them have addressed this portfolio theory or the finance domain. There are only five articles
that have approached the economic area of research. The first of them is the study proposed by Bausys
et al. [11], in which the complex proportional assessment method (COPRAS) was used in the context of
single value neutrosophic sets in order to select the location of a liquefied natural gas terminal. In the
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same year, Bausys and Zavadskas [12] published another article in which was created an extension
of the Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) method for the solution
of multicriteria decision-making problems. The applicability and efficiency of neutrosophic fuzzy
numbers were studied by Nabadan et al. [13]. The authors compared neutrosophic fuzzy numbers
to other fuzzy methods used in the decision-making field, and their results showed higher values of
efficiency for this new approach. The fourth article in economic domain targeted the tourism area [14]
by creating a decision support model for satisfactory restaurants using social information. The model
used neutrosophic fuzzy numbers to sign online ratings, and it used the Bonferroni mean to consider
interdependence among criteria. Tian et al. [15] used a life cycle assessment technique to develop an
innovative multi-criteria group decision-making approach that incorporates aggregation operators
and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)-based QUALIFLEX
method. This study managed to offer a solution for green product design selection problems using
neutrosophic linguistic information. As for the performance indicators used in financial analysis,
a series of recent papers have addressed optimal portfolio selection, corporate entrepreneurship,
indicators selection or portfolio optimization [16–22].

Thus, our study has an innovative approach, as it introduces in the literature the modeling of
the financial performance indicators with the help of neutrosophic fuzzy numbers with the portfolio
theory. The financial performance indicators modeled using neutrosophic fuzzy numbers refer to:
The financial return of assets (neutrosophic return), financial risk (neutrosophic risk), and financial
covariance (neutrosophic covariance).

This research paper solves the identified problem that consist of the limitations of the classical
approach for the financial assets’ performance indicators. Performance indicators of financial assets
are modeled using classical statistical indicators, namely arithmetic mean, geometric mean, squared
deviation from the mean, and variance. These indicators show a series of limitations, including the
following:

• Not taking into account possible scenarios for achieving performance indicators of financial assets;
as such, investor cannot assess the chance of achieving them.

• Not allowing data series stratification to delimit the values of the financial performance
indicators—the very good, good and low values—so that the investor can select the scenarios best
suited to his/her investment profile.

• Not allowing the selection of performance indicators scenarios that characterize financial assets
for analyzing financial risk mitigation or building optimal portfolios of financial assets.

These limitations in financial assets’ performance indicators make them subject to some degree of
rigidity in substantiating decisions and also affect their capacity to respond properly to information
needed by capital market investors.

In order to solve these shortcomings, the proposed solution introduces the modeling of financial
assets performance indicators using triangular neutrosophic fuzzy numbers due to the numerous
advantages they present, namely:

• Allow for the consideration of all possible achievement scenarios for the financial assets’
performance indicators like the scenario of certainty, the scenario of non-realization, and the
scenario of indecision—these scenarios derive from the neutrosophic components such as truth,
indeterminacy and falsehood, which are symmetric in form, as the truth is opposite to false, with
respect to the indeterminacy [23].

• Allow for financial performance indicators’ data series stratification or clustering. The delimitation
of these data series was done using linguistic criteria with assigned values such as: very good,
good and weak.

• Allow for the selection of analysis scenarios to mitigate financial risk or to form optimal portfolios
of financial assets, both of which could lead to a better substantiation of financial asset decisions.
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The methodology used in this paper is aimed at combining portfolio theory with the fuzzy
intelligence and neutrosophic numbers in order to enable the decision-making process for investors.
The proposed model allows for the modeling of financial assets performance indicators by taking into
consideration all possible scenarios of their achievement. Additionally, the model clusters the data
series, representing the financial performance indicators, by delimitating these scenarios by means of
neutrosophic fuzzy numbers in very good, good or weak performance indicators. This clustering is
realized with the help of the linguistic criteria which belong to degrees of a class of indicators using
fuzzy membership functions. This methodology offers the possibility to form financial assets’ optimal
portfolios that are characterized by low risk and high return.

The effective neutrosophic fuzzy modeling is presented in the following paragraphs of the paper.

3. Establishment of Neutrosophic Numbers for the Financial Assets Risk and Return

Financial asset return and risk are manifested by varying intensities, depending on the
particularities of the assets that form a portfolio. These intensities may take high, low, or even
uncertain values. Neutrosophic fuzzy numbers are formed and defined separately for each of the two
indicators mentioned above [24,25].

Definition 1. Let the financial asset return on the financial market be (Ra), and let F [0, 1] be the rules set for
all fuzzy triangular numbers. The fuzzy number (R̃a) is considered the triangular neutrosophic fuzzy number of
the financial assets return:

R̃a =
{
〈r̃a,µR̃a,ϑR̃a, λR̃a〉/ra ∈ Ra

}
,

where µR̃a : Ra → [0, 1] ; ϑR̃a : Ra → [0, 1] and λR̃a : Ra → [0, 1] , for which the membership functions are
defined according to the relations depicted in Figure 1.
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The truth membership, which is the membership function for the financial assets return with the
highest degree of realization (µR̃a(x)), is the following:
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µR̃a(x) =



wR̃a(R̃ax−R̃aa1)

R̃ab1−R̃aa1
f or R̃aa1 ≤ R̃ax ≤ R̃ab1

wR̃a f or R̃ax = R̃ab1
wR̃a(R̃ac1−R̃ax)

R̃ac1−R̃ab1
f or R̃ab1 ≤ R̃ax ≤ R̃ac1

0 f or others values out o f range
[
R̃ac1; R̃aa1

]

(1)

The indeterminacy membership, which is the membership function for the financial assets return
with the medium degree of realization (ϑR̃a(x)), is the following:

ϑR̃a(x) =



uR̃a(R̃ax−R̃aa1)+R̃ab1−R̃ax

Řab1−Řaa1
f or R̃aa1 ≤ R̃ax ≤ R̃ab1

uRa f or Rax = Rab1
uR̃a(R̃ac1−R̃ax)+R̃ax−R̃ab1

R̃ac1−R̃ab1
f or R̃ab1 ≤ R̃ax ≤ R̃ac1

0 f or others values out o f range
[
R̃ac1; R̃aa1

]
(2)

The falsity membership, which is the membership function for the financial assets return with low
degree of realization (λR̃a(x)), is the following:

λR̃a(x) =



yR̃a
(R̃ax−R̃aa1)+R̃ab1−R̃ax

R̃ab1−R̃aa1
f or R̃aa1 ≤ R̃ax ≤ R̃ab1

λR̃a
f or R̃ax = R̃ab1

yR̃a(R̃ac1−R̃ax)+R̃ax−R̃ab1

R̃ac1−R̃ab1
f or R̃ab1 ≤ R̃ax ≤ R̃ac1

0 f or others values out o f range
[
R̃ac1; R̃aa1

]

(3)

Definition 2. Let the financial asset risk on the financial market be (σa), and let F [0, 1] be the rules set for all
triangular fuzzy numbers. The fuzzy number (σ̃a) is considered the triangular neutrosophic fuzzy number of the
financial assets risk:

σ̃a =
{
〈σ̃a,µσ̃a ,ϑσ̃a , λσ̃a〉/σ̃a ∈ σA

}
,

where µσ̃a : σA → [0, 1] ; ϑσ̃a : σA → [0, 1] and λσ̃a : σA → [0, 1] , for which the membership functions are
defined according to the relations depicted in Figure 2.
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The truth membership, which is the membership function for the financial assets risk with the
highest degree of realization (µσ̃a(x)), is the following:

µσ̃a(x) =



wσ̃a (σ̃ax−σ̃aa1)

σ̃ab1−σ̃aa1
f or σ̃aa1 ≤ σ̃ax ≤ σ̃ab1

wσ̃a f or σ̃ax = σ̃ab1
wσ̃a (σ̃ac1−σ̃ax)

σ̃ac1−σ̃ab1
f or σ̃ab1 ≤ σ̃ax ≤ σ̃ac1

0 f or others values out o f range [σ̃ac1; σ̃aa1]

(4)

The indeterminacy membership, which is the membership function for the financial assets risk
with the medium degree of realization (ϑσ̃a(x)), is the following:

ϑσ̃a(x) =



uσ̃a(σ̃ax−σ̃aa1)+σ̃ab1−σ̃ax
σ̃ab1−σ̃aa1

f or σ̃aa1 ≤ σ̃ax ≤ σ̃ab1

uσ̃a f or σ̃ax = σ̃ab1
uσ̃a(σ̃ac1−σ̃ax)+σ̃ax−σ̃ab1

σ̃ac1−σ̃ab1
f or σ̃ab1 ≤ σ̃ax ≤ σ̃ac1

0 f or others values out o f range [σ̃ac1; σ̃aa1]

(5)

The falsity membership, which is the membership function for the financial assets risk with low
degree of realization λσ̃a(x), is the following:

λσ̃a(x) =



yσ̃a (σ̃ax−σ̃aa1)+σ̃ab1−σ̃ax

σ̃ab1−σ̃aa1
f or σ̃aa1 ≤ σ̃ax ≤ σ̃ab1

λσ̃a f or σ̃ax = σ̃ab1
yσ̃a(σ̃ac1−σ̃ax)+σ̃ax−σ̃ab1

σ̃ac1−σ̃ab1
f or σ̃ab1 ≤ σ̃ax ≤ σ̃ac1

0 f or [σ̃ac1; σ̃aa1]

(6)

The two neutrosophic numbers that characterize the return and the risk of a financial asset are as
follows:

R̃ai = 〈(R̃aai, R̃abi, R̃aci); wR̃a, uR̃a, yR̃a〉, for i = 1, n (7)

σ̃ai = 〈(σ̃aai, σ̃abi, σ̃aci); wσ̃a, uσ̃a, yσ̃a〉, for i = 1, n (8)

Definition 3. Two specific neutrosophic numbers are considered for the two financial assets that define the
financial asset return:

R̃a1 = 〈(R̃aa1, R̃ab1, R̃ac1); wR̃a1, uR̃a1, yR̃a1〉
for the first financial asset (A1);

R̃a2 = 〈(R̃aa2, R̃ab2, R̃ac2); wR̃a2, uR̃a2, yR̃a2〉

for the second financial asset (A2) and the parameter γ , 0, γ ∈ R.

The following arithmetical operations are valid:

1. Addition:

R̃a1 + R̃a2 = 〈(R̃aa1 + R̃aa2, R̃ab1 + R̃ab2, R̃ac1 + R̃ac2)wR̃a1∧ wR̃a2, uR̃a1∨uR̃a2, yR̃a1∨ yR̃a2〉 (9)

2. Subtraction:

R̃a1− R̃a2 = 〈(R̃aa1 − R̃aa2, R̃ab1 − R̃ab2, R̃ac1 − R̃ac2)wR̃a1∧ wR̃a2, uR̃a1∨ uR̃a2, yR̃a1∨ yR̃a2〉 (10)
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3. Multiplication:

• for R̃ac1 > 0 and R̃ac2 > 0;

R̃a1 × R̃a2

= 〈(R̃aa1XR̃aa2, R̃ab1XR̃ab2, R̃ac1XR̃ac2)wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉
(11)

• for R̃ac1 < 0 and R̃ac2 > 0;

R̃a1 × R̃a2

= 〈(R̃aa1XR̃ac2, R̃ab1XR̃ab2, R̃ac1XR̃aa2); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉
(12)

• for R̃ac1 < 0 and R̃ac2 < 0;

R̃a1 × R̃a2 = 〈(R̃ac1 × R̃ac2, R̃ab1 × R̃ab2, R̃aa1 × R̃aa2); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 (13)

4. Division:

• for R̃ac1 > 0 and R̃ac2 > 0;

R̃a1/R̃a2 = 〈(R̃aa1/R̃ac2, R̃ab1/R̃ab2, R̃ac1/R̃aa2); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 (14)

• for R̃ac1 < 0 and R̃ac2 > 0;

R̃a1/R̃a2 = 〈(R̃ac1/R̃ac2, R̃ab1/R̃ab2, R̃aa1/R̃aa2); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 (15)

• for R̃ac1 < 0 and R̃ac2 < 0;

R̃a1/R̃a2 = 〈(R̃ac1/R̃aa2, R̃ab1/R̃ab2, R̃aa1/R̃ac2); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 (16)

5. Scalar multiplication:

• for γ > 0;
γ× R̃a1 = 〈(γ× R̃aa1,γ× R̃ab1,γ× R̃ac1); wR̃a1, uR̃a1, yR̃a1〉 (17)

• for γ < 0;
γ× R̃a1 = 〈(γ× R̃ac1,γ× R̃ab1,γ× R̃aa1); wR̃a1, uR̃a1, yR̃a1〉 (18)

6. The inverse of a neutrosophic number:

R̃a1
−1 = 〈(1/R̃ac1, 1/R̃ab1, 1/R̃aa1); wR̃a1, uR̃a1, yR̃a1〉 (19)

It is important to notice that the arithmetic operations with the neutrosophic numbers defined for
the financial asset return R̃ai = 〈(R̃aai, R̃abi, R̃aci); wR̃a, uR̃a, yR̃a〉 are the same as the specific arithmetic
operations for the financial asset risk: σ̃ai = 〈(σ̃aai, σ̃abi, σ̃aci); wσ̃a, uσ̃a, yσ̃a〉 for any i = 1, n.

Definition 4. Let the neutrosophic number defined for the financial asset return be of the following form:

R̃ai = 〈(R̃aai, R̃abi, R̃aci); wR̃a, uR̃a, yR̃a〉

for any i = 1, n. To assure the comparability of the neutrosophic fuzzy numbers, a score function is introduced [4,5]:
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Sa1 =
1
8

[
R̃aa1 + R̃ab1 + R̃ac1

]
+ (2 + wR̃a1 − uR̃a1 − yR̃a1) (20)

This is an accuracy function of the form:

Aa1 =
1
8

[
R̃aa1 + R̃ab1 + R̃ac1

]
− (2 + wR̃a1 − uR̃a1 − yR̃a1) (21)

Definition 5. There are two neutrosophic numbers that define the financial asset return:

R̃a1 = 〈(R̃aa1, R̃ab1, R̃ac1); wR̃a1, uR̃a1, yR̃a1〉

for the first asset (A1) and
R̃a2 = 〈(R̃aa2, R̃ab2, R̃ac2); wR̃a2, uR̃a2, yR̃a2〉

for the second asset (A2). As such:

• If S(R̃a1) < S(R̃a2), then R̃a1 , and it is noted that R̃a1 < R̃a2;

• If S(R̃a1) > S(R̃a2), then R̃a1 is higher than R̃a2, and it is noted that R̃a1 > R̃a2;

• If S(R̃a1) = S(R̃a2) are distinguished two cases:

• If A(R̃a1) < A(R̃a2), then R̃a1 is smaller than R̃a2, and it is noted that R̃a1 < R̃a2;

• If A(R̃a1) = A(R̃a2), then the neutrosophic numbers are equal, and it is noted that R̃a1 = R̃a2;

4. Modeling the Financial Assets Return Using the Neutrosophic Fuzzy Numbers

The financial assets return, as mentioned above, is the most relevant performance indicator,
because it provides information on the earnings that investors can obtain over a limited period of time
as a result of asset ownership. In literature, the model for determining the financial assets return is
based on: The capital gain P1−P0

P0
, formed by the stock price differences at time (t1) and (t0), as well as

on the return on invested capital, represented by the ratio between the dividend at time (t1) and the
price at time (t0). D1

P0
, illustrates a remuneration form for the invested capital. The market model that

evaluates the financial asset return thus becomes Ra = P1−P0+D1
P0

, where the gains are the exchange rate
differences and the dividend. For each financial asset (Ai), there are different return values over a time
horizon [0, t] at different time moments of the form:

Ra :
(

t0 t1 t2 t3 . . . tk−1 tk . . . tn

Ra0 Ra1 Ra2 Ra3 . . . Rak−1 Rak . . . Ran

)
t = 1, n (22)

The formed data series is modeled using neutrosophic fuzzy numbers due to the many advantages
they have: The possibility of stratification for the financial asset; clustering the return values according
to linguistic criteria such as high, medium or small financial asset return; the possibility of selection the
return category desired by the investor in order to maximize his profit; or analyzing the financial asset
return by means of probability grades. The neutrosophic fuzzy numbers built for the financial asset
return, on the above data series, are presented in Figure 3.
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Figure 3. Modeling financial assets return with neutrosophic numbers.

The financial assets return is thus characterized by three neutrosophic numbers:

R̃a1 = 〈(R̃aa1, R̃ab1, R̃ac1); wR̃a, uR̃a, yR̃a〉 for R̃a ∈
[
R̃aa1, R̃ac1

]

R̃a2 = 〈(R̃aa2, R̃ab2, R̃ac2); wR̃a, uR̃a, yR̃a〉 for R̃a ∈
[
R̃aa2, R̃ac2

]

R̃a3 = 〈(R̃aa3, R̃ab3, R̃ac3); wR̃a, uR̃a, yR̃a〉 for R̃a ∈
[
R̃aa3, R̃ac3

] (23)

Definition 6. The following conditions lead to a function called a weighting function f: [0,1]→ R:

(a) It is monotone increasing ∀x, y ∈ R and x ≤ y results that f(x) ≤ f(y).

(b) Checks the normality condition:
∫ 1

0 f (α)dα = 1

The weighting function is used in the calculation of the neutrosophic fuzzy numbers main
indicators—the arithmetic mean and the squared deviation from the mean and the covariance.
The most frequently used weighting function is f (α) = 2α, which meets the conditions imposed above,
namely:

(a) It is monotone increasing ∀ α1,α2 ∈ R with α1 ≤ α2 results that f (α1) ≤ f (α2). From this condition,
it follows that 2α1 ≤ 2α2, and, as such, the α1 ≤ α2 is a condition fulfilled.

(b) Checks the normality
∫ 1

0 f (α)dα =
∫ 1

0 2αdα = 2α
2

2
1

0 = 1.

The required conditions are fulfilled, and, thus, the function f (α) = 2α is a weighting function
for calculating the specific indicators of the triangular neutrosophic fuzzy numbers. The weighting
function f (α) = 2α is part of a weighting class of the form: f (α) = (n + 1)αn with n ∈ N. This class of
functions is used to determine the main statistical indicators of fuzzy numbers.

Definition 7. This is considered the triangular neutrosophic fuzzy number that defines the financial asset return
of the form:

R̃ai = 〈(R̃aai, R̃abi, R̃aci); wR̃a, uR̃a, yR̃a〉, for every i = 1, n.

It is considered that the set
[
R̃a

]α
=

[
R̃a1(α); R̃a2(α)

]
for every α ∈ R is the level set of the triangular

neutrosophic fuzzy numbers, where:

R̃a1(α) = 〈(R̃ab1 − R̃aa1)α+ R̃aa1; wR̃a, uR̃a, yR̃a〉

and R̃a2(α) = 〈R̃ac1 − (R̃ac1 − R̃ab1)α; wR̃a, uR̃a, yR̃a〉. See Figure 4.
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Definition 8. The medium value of a neutrosophic fuzzy number, R̃ai = 〈(R̃aai, R̃abi, R̃aci); wR̃a, uR̃a, yR̃a〉, is
given by:

E f (R̃ai) =
1
2

∫ 1

0
〈(R̃a1(α) + R̃a2(α)); wR̃a, uR̃a, yR̃a〉 f (α)dα (24)

When the weighting function is f (α) = 2α, the medium value of the neutrosophic fuzzy number will be:
E f (R̃ai) =

∫ 1
0 〈(R̃a1(α) + R̃a2(α)); wR̃a, uR̃a, yR̃a〉αdα.

Proposition 1. The medium value of a triangular neutrosophic fuzzy number of the form, R̃ai =

〈(R̃aai, R̃abi, R̃aci); wR̃a, uR̃a, yR̃a〉, is given by the relationship:

E f (R̃ai) = 〈(1
6
(R̃aa1 + R̃ac1) +

2
3

R̃ab1); wR̃a, uR̃a, yR̃a〉 (25)

Demonstration 1. According to Definition 8, the medium value of the neutrosophic fuzzy number is calculated
with the relation:

E f (R̃ai) =
1
2

∫ 1

0
〈(R̃a1(α) + R̃a2(α)); wR̃a, uR̃a, yR̃a〉 f (α)dα

Which is computed as:

〈(R̃a1(α) + R̃a2(α)); wR̃a, uR̃a, yR̃a〉
= 〈(R̃ab1 − R̃aa1)α+ R̃aa1 + R̃ac1 − (R̃ac1 − R̃ab1)α; wR̃a, uR̃a, yR̃a〉
= 〈(R̃ab1α− R̃aa1α+ R̃aa1 + R̃ac1 − R̃ac1α+ R̃ab1α); wR̃a, uR̃a, yR̃a〉

〈(R̃a1(α) + R̃a2(α)); wR̃a, uR̃a, yR̃a〉 = 〈(R̃aa1(1− α) + 2R̃ab1α+ R̃ac1(1− α)); wR̃a, uR̃a, yR̃a〉
The formula above can be rewritten as follows:

〈(R̃a1(α) + R̃a2(α)); wR̃a, uR̃a, yR̃a〉 = 〈((1− α)(R̃aa1 + R̃ac1) + 2R̃ab1α); wR̃a, uR̃a, yR̃a〉

The medium value of a triangular neutrosophic fuzzy number becomes:

E f (R̃ai) =
1
2

∫ 1
0 〈(R̃a1(α) + R̃a2(α)); wR̃a, uR̃a, yR̃a〉 f (α)dα

= 1
2

∫ 1
0

[
〈((1− α)(R̃aa1 + R̃ac1) + 2R̃ab1α); wR̃a, uR̃a, yR̃a〉

]
2αdα
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E f (R̃ai) = 〈(R̃aa1 + R̃ac1); wR̃a, uR̃a, yR̃a〉
∫ 1

0
(α− α2)dα+ 2〈R̃ab1; wR̃a, uR̃a, yR̃a〉

∫ 1

0
α2dα

= 〈(R̃aa1 + R̃ac1); wR̃a, uR̃a, yR̃a〉α
2

2

1

0
−〈(R̃aa1 + R̃ac1); wR̃a, uR̃a, yR̃a〉α

3

3

1

0
+ 2〈R̃ab1; wR̃a, uR̃a, yR̃a〉α

3

3

1

0
;

E f (R̃ai) =
1
6
〈(R̃aa1 + R̃ac1); wR̃a, uR̃a, yR̃a〉+ 2

3
〈R̃ab1; wR̃a, uR̃a, yR̃a〉;

E f (R̃ai) = 〈(1
6
(R̃aa1 + R̃ac1) +

2
3

R̃ab1); wR̃a, uR̃a, yR̃a〉

Example 1. There are three financial assets (A1, A2, A3), to which three specific triangular neutrosophic fuzzy
numbers are attached for the financial assets return:

R̃a1 = 〈(0.2 0.3 0.5); 0.5, 0.2, 0.3〉 for R̃a ∈ [0, 2; 0, 5];

R̃a2 = 〈(0.1 0.2 0.3); 0.6, 0.3, 0.2〉 for R̃a ∈ [0, 1; 0, 3];

R̃a2 = 〈(0.3 0.4 0.6); 0.4, 0.3, 0.3〉 for R̃a ∈ [0, 3; 0, 6];

In order to determine the average return on financial assets resulting from the model using the
neutrosophic fuzzy numbers, was applied the result obtained from Proposition 1, which stipulates that:

E f (R̃ai) = 〈(1
6
(R̃aa1 + R̃ac1) +

2
3

R̃ab1); wR̃a, uR̃a, yR̃a〉

Thus, it is obtained:

E f (R̃a1) = 〈(1
6
(0.2 + 0.5) +

2
3
× 0.3); 0.5, 0.2, 0.3〉

E f (R̃a1) = 〈(1
6

0.7 +
2
3

0.3); 0.5, 0.2, 0.3〉

E f (R̃a1) = 〈0.316; 0.5, 0.2, 0.3〉;

E f (R̃a2) = 〈(1
6
(0.1 + 0.3) +

2
3
× 0.2); 0.6, 0.3, 0.2〉

E f (R̃a2) = 〈(1
6

0.4 +
2
3

0.2); 0.6, 0.3, 0.2〉

E f (R̃a2) = 〈0.199; 0.5, 0.2, 0.3〉;

E f (R̃a3) = 〈(1
6
(0.3 + 0.6) +

2
3
× 0.4); 0.4, 0.3, 0.3〉

E f (R̃a3) = 〈(1
6

0.9 +
2
3

0.4); 0.4, 0.3, 0.3〉

E f (R̃a3) = 〈0.416; 0.4, 0.3, 0.3〉;
In conclusion, it can be argued that the financial assets return modeled by neutrosophic fuzzy

numbers ensures the determination of the average value of the asset’s return at the same time as
establishing the degrees of truth, falsity, and indeterminacy in the process of obtaining the profitability
expected by the investors.
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5. Modelling the Financial Assets Risk Using the Neutrosophic Fuzzy Numbers

As mentioned above, the risk of financial assets is represented by the squared deviation from the
mean (σ2

a) which means the return on financial assets deviation from the average recorded value. Thus,
the financial risk will be higher when the deviation of the financial return from the average is higher.
Contrary to this, the risk exposure will be low.

Definition 9. The financial asset risk modeled by the neutrosophic fuzzy number σ̃ai =

〈(σ̃aai, σ̃abi, σ̃aci); wσ̃a, uσ̃a, yσ̃a〉 is given by the neutrosophic fuzzy number variance, determined by the
formula:

σ̃fai =
1
2

∫ 1
0

[
〈(R̃a1(α) − Ef(R̃ai))

2
; wR̃a, uR̃a, yR̃a〉+ 〈(R̃a2(α) − Ef(R̃ai))

2
; wR̃a, uR̃a, yR̃a〉

]
f(α)dα (26)

If the weighting function is f (α) = 2α, then the neutrosophic fuzzy number variance is of the form:

σ̃fai =

∫ 1

0

[
〈
(
R̃a1(α) − Ef(R̃ai)

)2
; wR̃a, uR̃a, yR̃a〉+ 〈

(
R̃a2(α) − Ef(R̃ai)

)2
; wR̃a, uR̃a, yR̃a〉

]
αdα (27)

Proposition 2. The financial asset variance modeled by the neutrosophic fuzzy number can be determined by
the formula:

σ̃fai =
1
2

∫ 1
0 〈

(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉f(α)dα− 1

2 〈E2
f (R̃ai); wR̃a, uR̃a, yR̃a〉

∫ 1
0 f(α)dα (28)

Demonstration 2. It is known that:

σ̃ f ai =
1
2

∫ 1

0

[
〈(R̃a1(α) − Ef(R̃ai))

2
; wR̃a, uR̃a, yR̃a〉+ 1

2
〈
(
R̃a2(α) − Ef(R̃ai)

)2
; wR̃a, uR̃a, yR̃a〉

]
f(α)dα

From the relation illustrated above is obtained that:

σ̃ f ai =
1
2

∫ 1
0

[
〈(R̃a

2
1(α) − 2R̃a1(α)E f (R̃ai) + E2

f (R̃ai)); wR̃a, uR̃a, yR̃a〉+
〈
(
R̃a

2
2(α) − 2R̃a2(α)E f (R̃ai) + E2

f (R̃ai)
)
; wR̃a, uR̃a, yR̃a〉

]
f (α)dα

σ̃ f ai =
1
2

∫ 1
0 〈

(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉 f (α)dα

−2E f (R̃ai)
∫ 1

0 〈
(

R̃a1(α)+R̃a2(α)
2

)
; wR̃a, uR̃a, yR̃a〉 f (α)dα

+2 1
2 〈E2

f (R̃ai); wR̃a, uR̃a, yR̃a〉
∫ 1

0 f (α)dα

= 1
2

∫ 1
0 〈

(
R̃a

2
1(α) + R̃a

2
2(α)) ; wR̃a, uR̃a, yR̃a〉 f (α)dα

−2〈
(
E f (R̃ai)E f (R̃ai)

)
; wR̃a, uR̃a, yR̃a〉

∫ 1
0 f (α)dα

+2 1
2 〈

(
E2

f (R̃ai)
)
; wR̃a, uR̃a, yR̃a〉

∫ 1
0 f (α)dα

σ̃ f ai =
1
2

∫ 1
0 〈

(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉 f (α)dα−

2〈
(
E2

f (R̃ai)
)
; wR̃a, uR̃a, yR̃a〉

∫ 1
0 f (α)dα+ 〈

(
E2

f (R̃ai)
)
; wR̃a, uR̃a, yR̃a〉

∫ 1
0 f (α)dα;

σ̃ f ai =
1
2

∫ 1
0 〈

(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉 f (α)dα

− 1
2 〈

(
E2

f (R̃ai)) ; wR̃a, uR̃a, yR̃a〉
∫ 1

0 f (α)dα
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Proposition 3. The neutrosophic fuzzy number variance of the form σ̃ai = 〈(σ̃aai, σ̃abi, σ̃aci); wσ̃a, uσ̃a, yσ̃a〉 is
given by:

σ̃ f ai = 〈 1
4

[
(R̃ab1 − R̃aa1)

2
+ (R̃ac1 − R̃ab1)

2
]
; wR̃a, uR̃a, yR̃a〉

+ 2
3 〈

[
R̃aa1(R̃ab1 − R̃aa1) − R̃ac1(R̃ac1 − R̃ab1)

]
; wR̃a, uR̃a, yR̃a〉

+〈 1
2 (R̃a

2
a1 + R̃a

2
c1); wR̃a, uR̃a, yR̃a〉 − 〈 1

2 E2
f (R̃ai); wR̃a, uR̃a, yR̃a〉

(29)

Demonstration 3. From Proposition Number 2, it is known the computing relationship for the neutrosophic
fuzzy number variance leads to:

σ̃ f ai =
1
2

∫ 1

0
〈
(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉 f (α)dα− 1

2
〈E2

f (R̃ai); wR̃a, uR̃a, yR̃a〉
∫ 1

0
f (α)dα

From Definition 7, it is also known the fact that the triangular fuzzy number level sets are of the
form:

R̃a1(α) = 〈(R̃ab1 − R̃aa1)α+ R̃aa1; wR̃a, uR̃a, yR̃a〉
R̃a2(α) = 〈R̃ac1 − (R̃ac1 − R̃ab1)α; wR̃a, uR̃a, yR̃a〉

After computing, the following expression is obtained:

〈
(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉 =

[
(R̃ab1 − R̃aa1)α+ R̃aa1; wR̃a, uR̃a, yR̃a

]2
+[

R̃ac1 − (R̃ac1 − R̃ab1)α; wR̃a, uR̃a, yR̃a
]2

〈
(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉 =

= 〈(R̃ab1 − R̃aa1)
2
α2 + R̃a

2
a1 + 2R̃aa1(R̃ab1 − R̃aa1)α; wR̃a, uR̃a, yR̃a〉

+〈(R̃ac1 − R̃ab1)
2
α2 + R̃a

2
c1 − 2R̃ac1(R̃ac1 − R̃ab1)α; wR̃a, uR̃a, yR̃a〉

〈
(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a =

= 〈α2
[
(R̃ab1 − R̃aa1)

2
+ (R̃ac1 − R̃ab1)

2
]

+α
[
2R̃aa1(R̃ab1 − R̃aa1) − 2R̃ac1(R̃ac1 − R̃ab1)

]

+R̃a
2
a1 + R̃a

2
c1; wR̃a, uR̃a, yR̃a〉

The above expression can be written as:

〈
(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉

= 〈α2
[
(R̃ab1 − R̃aa1)

2
+ (R̃ac1 − R̃ab1)

2
]

+2α
[
R̃aa1(R̃ab1 − R̃aa1) − R̃ac1(R̃ac1 − R̃ab1)

]

+R̃a
2
a1 + R̃a

2
c1; wR̃a, uR̃a, yR̃a〉
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By replacing the values for the level set in the variance expression, we get:

σ̃ f ai =
1
2

∫ 1
0 〈

(
R̃a

2
1(α) + R̃a

2
2(α)

)
; wR̃a, uR̃a, yR̃a〉 f (α)dα

− 1
2 〈E2

f (R̃ai); wR̃a, uR̃a, yR̃a〉
∫ 1

0 f (α)dα

= 1
2

∫ 1
0 〈α2

[
(R̃ab1 − R̃aa1)

2
+ (R̃ac1 − R̃ab1)

2
]
; wR̃a, uR̃a, yR̃a〉2αdα

+ 1
2

∫ 1
0 〈2α

[
R̃aa1(R̃ab1 − R̃aa1) − R̃ac1(R̃ac1 − R̃ab1)

]
; wR̃a, uR̃a, yR̃a〉2αdα

+ 1
2

∫ 1
0 〈R̃a

2
a1 + R̃a

2
c1; wR̃a, uR̃a, yR̃a〉2αdα

− 1
2 〈E2

f (R̃ai); wR̃a, uR̃a, yR̃a〉
∫ 1

0 2αdα

σ̃ f ai = 〈(R̃ab1 − R̃aa1)
2
+ (R̃ac1 − R̃ab1)

2
; wR̃a, uR̃a, yR̃a〉α4

4
1

0

+2〈
[
R̃aa1(R̃ab1 − R̃aa1) − R̃ac1(R̃ac1 − R̃ab1)

]
; wR̃a, uR̃a, yR̃a〉α3

3
1

0

+〈(R̃a
2
a1 + R̃a

2
c1); wR̃a, uR̃a, yR̃a〉α2

2
1

0 − 〈E2
f (R̃ai); wR̃a, uR̃a, yR̃a〉α2

2
1

0

After making the calculations, we get:

σ̃fai = 〈 1
4

[
(R̃ab1 − R̃aa1)

2
+ (R̃ac1 − R̃ab1)

2
]
; wR̃a, uR̃a, yR̃a〉

+〈 2
3

[
R̃aa1(R̃ab1 − R̃aa1) − R̃ac1(R̃ac1 − R̃ab1)

]
; wR̃a, uR̃a, yR̃a〉

+〈 1
2 (R̃a

2
a1 + R̃a

2
c1); wR̃a, uR̃a, yR̃a〉 − 〈 1

2 E2
f (R̃ai); wR̃a, uR̃a, yR̃a〉

Example 2. There are three financial assets (A1, A2, A3) to which are attached three triangular neutrosophic
fuzzy numbers for the financial assets return:

R̃a1 = 〈(0.2 0.3 0.5); 0.5, 0.2, 0.3〉 for R̃a ∈ [0.2; 0.5]

R̃a2 = 〈(0.1 0.2 0.3); 0.6, 0.3, 0.2〉 for R̃a ∈ [0.1; 0.3]

R̃a2 = 〈(0.3 0.4 0.6); 0.4, 0.3, 0.3〉 for R̃a ∈ [0.3; 0.6]

These triangular neutrosophic fuzzy numbers are known as the neutrosophic numbers. Using the
form computed in the previous example, we get:

E f (R̃a1) = 〈0.316; 0.5, 0.2, 0.3〉

E f (R̃a2) = 〈0.199; 0.5, 0.2, 0.3〉
E f (R̃a3) = 〈0.416; 0.4, 0.3, 0.3〉

In order to determine the financial assets variance modeled by neutrosophic numbers, the
following relation is used, according to Proposition 3:

σ̃fai = 〈 1
4

[
(R̃ab1 − R̃aa1)

2
+ (R̃ac1 − R̃ab1)

2
]
; wR̃a, uR̃a, yR̃a〉

+〈 2
3

[
R̃aa1(R̃ab1 − R̃aa1) − R̃ac1(R̃ac1 − R̃ab1)

]
; wR̃a, uR̃a, yR̃a〉

+〈 1
2 (R̃a

2
a1 + R̃a

2
c1); wR̃a, uR̃a, yR̃a〉 − 〈 1

2 E2
f (R̃ai); wR̃a, uR̃a, yR̃a〉
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By replacing the data in the above expression, this is obtained:

σ̃fa1 = 〈 1
4

[
(0.3− 0.2)2 + (0.5− 0.3)2

]
; 0.5, 0.2, 0.3〉

+〈 2
3 (0.2(0.3− 0.2) − 0.5(0.5− 0.2)); 0.5, 0.2, 0.3〉

+〈 1
2 (0.22 + 0.52); 0.5, 0.2, 0.3〉 − 〈 1

2 (0.316)2; 0.5, 0.2, 0.3〉

σ̃fa1 = 〈 1
4 (0.01 + 0.04); 0.5, 0.2, 0.3〉+ 〈 2

3 (0.02− 0.15); 0.5, 0.2, 0.3〉
+〈 1

2 0.29; 0.5, 0.2, 0.3〉 − 〈 1
2 0, 099; 0.5, 0.2, 0.3〉;

σ̃fa1 = 〈(0.0125− 0.086 + 0, 145− 0.049; 0.5, 0.2, 0.3)〉;
σ̃fa1 = 〈0.0225; 0.5, 0.2, 0.3〉

σ̃ f a2 = 〈 1
4

[
(0.2− 0.1)2 + (0.3− 0.2)2

]
; 0.6, 0.3, 0.2〉

+〈 2
3 (0.1(0.2− 0.1) − 0.3(0.3− 0.1)); 0.6, 0.3, 0.2〉

+〈 1
2 (0.12 + 0.32); 0.6, 0.3, 0.2〉 − 〈 1

2 (0, 199)2; 0.6, 0.3, 0.2〉
σ̃ f a2 = 〈 1

4 (0.01 + 0.01); 0.6, 0.3, 0.2〉+ 〈 2
3 (0.01− 0.03); 0.6, 0.3, 0.2〉+

〈 1
2 0.10; 0.6, 0.3, 0.2〉 − 〈 1

2 0, 039; 0.6, 0.3, 0.2〉;
σ̃ f a2 = 〈(0.005− 0.013 + 0, 05− 0.0195; 0.6, 0.3, 0.2)〉;

σ̃ f a2 = 〈0.0180; 0.6, 0.3, 0.2〉
σ̃fa3 = 〈 1

4

[
(0.4− 0.3)2 + (0.6− 0.4)2

]
; 0.4, 0.3, 0.3〉

+〈 2
3 (0.3(0.4− 0.3) − 0.6(0.6− 0.4)); 0.4, 0.3, 0.3〉

+〈 1
2 (0.32 + 0.62); 0.4, 0.3, 0.3〉 − 〈 1

2 (0, 416)2; 0.4, 0.3, 0.3〉;
σ̃fa3 = 〈 1

4 (0.01 + 0.04); 0.4, 0.3, 0.3〉
+〈 2

3 (0.03− 0, 12); 0.4, 0.3, 0.3〉
+〈 1

2 0.45; 0.4, 0.3, 0.3〉 − 〈 1
2 0.173; 0.4, 0.3, 0.3〉;

σ̃fa3 = 〈(0.0125− 0.059 + 0, 225− 0.086; 0.4, 0.3, 0.3)〉
σ̃fa3 = 〈0.0925; 0.4, 0.3, 0.3〉

In conclusion we can state that the triangular neutrosophic fuzzy number variance depends on
the values of R̃aa1; R̃ab1; R̃ac1, all of which are part of its level sets and are also on the average value of
the return of the financial asset E2

f (R̃ai).

6. Determination of Covariance Using the Triangular Neutrosophic Fuzzy Numbers

The covariance between two triangular neutrosophic fuzzy numbers that model the return of
two financial assets defines the intensity of the links between two fuzzy numbers and the way they
mutually influence their profitability. There may be three possible situations:

• If the return of two financial assets increases, R̃a1 > 0 and R̃a2 > 0, both financial assets show a
positive growth trend. As such, we can say that the return on financial assets is positively correlated.

• If the return of two financial assets registers different growth trends, R̃a1 > 0 and R̃a2 < 0,
or R̃a1 < 0 and R̃a2 > 0, we can say that the return on financial assets isn’t correlated.

• If the return of two financial assets shows negative growth trends, R̃a1 < 0 and R̃a2 < 0, both
returns on financial assets decrease. As such, we can say they are negatively correlated.

Definition 10. There are two triangular neutrosophic fuzzy numbers that define the return of two financial
assets:

R̃a1 = 〈(R̃aa1, R̃ab1, R̃ac1); wR̃a1, uR̃a1, yR̃a1〉,
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and
R̃a2 = 〈(R̃aa2, R̃ab2, R̃ac2); wR̃a1, uR̃a1, yR̃a1〉.

In addition, their level sets, of the form:
[
R̃a

]α
=

[
R̃a1(α); R̃a2(α)

]

for every α ∈ [0, 1] where:

• For the neutrosophic level set,
[
R̃a1

]α
will have:

R̃a11(α) = 〈(R̃ab11 − R̃aa11)α+ R̃aa11; wR̃a1, uR̃a1, yR̃a1〉 (30)

R̃a12(α) = 〈R̃ac11 − (R̃ac11 − R̃ab11)α; wR̃a1, uR̃a1, yR̃a1〉 (31)

• For the neutrosophic level set,
[
R̃a2

]α
will have:

R̃a21(α) = 〈(R̃ab21 − R̃aa21)α+ R̃aa21; wR̃a2, uR̃a2, yR̃a2〉 (32)

R̃a22(α) = 〈R̃ac21 − (R̃ac21 − R̃ab21)α; wR̃a2, uR̃a2, yR̃a2〉 (33)

The covariance between two triangular neutrosophic fuzzy numbers R̃a1 and R̃a2 can be given by
the following relationship:

cov(R̃a1, R̃a2) = 1
2

∫ 1
0

[
〈(R̃a11(α) − E f (R̃a1))(R̃a21(α)

−E f (R̃a2)); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉
+〈(R̃a12(α) − E f (R̃a1))(R̃a22(α)

−E f (R̃a2)); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉
]

f (α)dα

(34)

If the weighting function is f (α) = 2α, then the covariance between the two neutrosophic fuzzy
numbers will be written as follows:

cov(R̃a1, R̃a2) =
∫ 1

0

[
〈(R̃a11(α) − E f (R̃a1))(R̃a21(α)

−E f (R̃a2)); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉
+〈(R̃a12(α) − E f (R̃a1))(R̃a22(α)

−E f (R̃a2)); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉
]
αdα

(35)

Proposition 4. The covariance between two triangular neutrosophic fuzzy numbers can be determined by the
following relationship:

cov(R̃a1, R̃a2)

= 1
2

∫ 1
0 〈(R̃a11(α)R̃a21(α)

+R̃a12(α)R̃a22(α)); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 f (α)dα
+

∫ 1
0 〈(E f (R̃a1)E f (R̃a2))wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2; 〉 f (α)dα

(36)

Demonstration 4.

cov(R̃a1, R̃a2) = 1
2

∫ 1
0 R̃a11(α)R̃a21(α) − (R̃a11(α) + R̃a12(α))E f (R̃a2) − (R̃a21

+R̃a22(α))E f (R̃a1) + R̃a12(α)R̃a22(α)

+2E f (R̃a1)E f (R̃a2); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2 f (α)dα
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〈
(
R̃a11(α) + R̃a12(α)

)
E f (R̃a2); wR̃a1, uR̃a1, yR̃a1〉 = 〈(R̃ab11 − R̃aa11)α+ R̃aa11; wR̃a1, uR̃a1, yR̃a1〉 +

+ 〈R̃ac11 − (R̃ac11 − R̃ab11)α; wR̃a1, uR̃a1, yR̃a1〉 = 〈
(
(1− α)R̃aa11 + (1− α)R̃ac11) ; wR̃a1, uR̃a1, yR̃a1〉

〈
(
R̃a21 + R̃a22(α)

)
E f (R̃a1); wR̃a2, uR̃a2, yR̃a2〉 = 〈(R̃ab21 − R̃aa21)α+ R̃aa21; wR̃a2, uR̃a2, yR̃a2〉;

+〈R̃ac21 − (R̃ac21 − R̃ab21)α; wR̃a2, uR̃a2, yR̃a2〉= 〈
(
(1− α)R̃aa21 + (1− α)R̃ac21

)
; wR̃a2, uR̃a2, yR̃a2〉

〈
(
R̃a11(α) + R̃a12(α)

)
E f (R̃a2); wR̃a1, uR̃a1, yR̃a1

−(R̃a21 + R̃a22(α))E f (R̃a1); wR̃a2, uR̃a2, yR̃a2〉
=

[
((1− α)R̃aa11 + (1− α)R̃ac11); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2

]
E f (R̃a2)

−
[
((1− α)R̃aa21 + (1− α)R̃ac21); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2

]
E f (R̃a1)

= 〈0; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉

The expression for covariance between two triangular neutrosophic fuzzy numbers can be written
under these conditions as:

cov(R̃a1, R̃a2) =
1
2

∫ 1
0 〈(R̃a11(α)R̃a21(α)

+R̃a12(α)R̃a22(α)); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 f (α)dα
+

∫ 1
0 〈(E f (R̃a1)E f (R̃a2))wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2; 〉 f (α)dα

Proposition 5. The covariance between two triangular neutrosophic fuzzy numbers can be determined as:

cov(R̃a1, R̃a2) = 〈( 1
4

[
(R̃ab11 − R̃aa11)(R̃ab21 − R̃aa21)

+(R̃ac11 − R̃ab11)(R̃ac21 − R̃ab21)
]

+ 1
3

{[
R̃aa21(R̃ab11 − R̃aa11) + R̃aa11(R̃ab21 − R̃aa21)

]

−
[
R̃ac11(R̃ac21 − R̃ab21) + R̃ac21(R̃ac11 − R̃ab11)

]}

+ 1
2 (R̃aa11R̃aa21 + R̃ac11R̃ac21)

+ 1
2 E f (R̃a1)E f (R̃a2)); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉

Demonstration 5. It is known from Proposition. 4 that the covariance can be determined using the relationship:

cov(R̃a1, R̃a2) = 1
2

∫ 1
0 〈(R̃a11(α)R̃a21(α)

+R̃a12(α)R̃a22(α)); wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 f (α)dα
+

∫ 1
0 〈(E f (R̃a1)E f (R̃a2))wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2; 〉 f (α)dα

At the same time, we know the expressions for the level sets as follows:

• For the neutrosophic number’s level set,
[
R̃a1

]α
will have:

R̃a11(α) = 〈(R̃ab11 − R̃aa11)α+ R̃aa11; wR̃a1, uR̃a1, yR̃a1〉

R̃a12(α) = 〈R̃ac11 − (R̃ac11 − R̃ab11)α; wR̃a1, uR̃a1, yR̃a1〉
• For the neutrosophic number’s level set,

[
R̃a2

]α
will have:

R̃a21(α) = 〈(R̃ab21 − R̃aa21)α+ R̃aa21; wR̃a2, uR̃a2, yR̃a2〉

R̃a22(α) = 〈R̃ac21 − (R̃ac21 − R̃ab21)α; wR̃a2, uR̃a2, yR̃a2〉
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From Proposition 1, we know that the average values of the neutrosophic triangular fuzzy numbers
by which the financial assets return is modeled:

E f (R̃a1) = 〈
(1

6
(R̃aa11 + R̃ac11) +

2
3

R̃ab11

)
; wR̃a1, uR̃a1, yR̃a1〉

E f (R̃a2) = 〈
(1

6
(R̃aa21 + R̃ac21) +

2
3

R̃ab21

)
; wR̃a2, uR̃a2, yR̃a2〉

By replacing in the covariance expression, we obtain:

cov(R̃a1, R̃a2) = 1
2

∫ 1
0 〈

(
R̃a11(α)R̃a21(α)

+R̃a12(α)R̃a22(α)
)
; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 f (α)dα

+
∫ 1

0 〈
(
E f (R̃a1)E f (R̃a2)

)
wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2; 〉 f (α)dα

cov(R̃a1, R̃a2) = 1
2

∫ 1
0 〈(R̃ab11 − R̃aa11)α+ R̃aa11; wR̃a1, uR̃a1, yR̃a1〉〈(R̃ab21 − R̃aa21)α

+R̃aa21; wR̃a2, uR̃a2, yR̃a2〉+ 〈R̃ac11 − (R̃ac11 − R̃ab11)α; wR̃a1, uR̃a1, yR̃a1〉〈R̃ac21

−(R̃ac21 − R̃ab21)α; wR̃a2, uR̃a2, yR̃a2〉 f (α)dα
+

∫ 1
0 〈

(
E f (R̃a1)E f (R̃a2)

)
wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2; 〉 f (α)dα

cov(R̃a1, R̃a2) = 1
2

∫ 1
0 〈

(
(R̃ab11 − R̃aa11)(R̃ab21 − R̃aa21)α2

+
[
R̃aa21(R̃ab11 − R̃aa11) + R̃aa11(R̃ab21 − R̃aa21)

]
α+ R̃aa11R̃aa21

+α2(R̃ac11 − R̃ab11)(R̃ac21 − α
[
R̃ac11(R̃ac21 − R̃ab21) + R̃ac21(R̃ac11 − R̃ab11)

]

+R̃ac11R̃ac21; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉 f (α)dα
+

∫ 1
0 〈

(
E f (R̃a1)E f (R̃a2)

)
; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2; 〉 f (α)dα

cov(R̃a1, R̃a2) = 〈(R̃ab11 − R̃aa11)(R̃ab21 − R̃aa21)
α4

4
1

0
+

[
R̃aa21(R̃ab11 − R̃aa11)

+ + R̃aa11(R̃ab21 − R̃aa21)
]
α3

3
1

0 + R̃aa11R̃aa21
α3

2
1

0

+(R̃ac11 − R̃ab11)(R̃ac21 − R̃ab21)
α4

4
1

0

−
[
R̃ac11(R̃ac21 − R̃ab21) + R̃ac21(R̃ac11 − R̃ab11)

]
α3

3
1

0

+R̃ac11R̃ac21
α3

2
1

0; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉
+E f (R̃a1)E f (R̃a2)

α3

2
1

0; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉
The above equation can be written as:

cov(R̃a1, R̃a2) = 〈 1
4

[
(R̃ab11 − R̃aa11)(R̃ab21 − R̃aa21)

+(R̃ac11 − R̃ab11)(R̃ac21 − R̃ab21)
]

+ 1
3

{[
R̃aa21(R̃ab11 − R̃aa11) + R̃aa11(R̃ab21 − R̃aa21)

]

−
[
R̃ac11(R̃ac21 − R̃ab21) + R̃ac21(R̃ac11 − R̃ab11)

]}

+ 1
2 (R̃aa11R̃aa21 + R̃ac11R̃ac21)

+ 1
2 E f (R̃a1)E f (R̃a2)

)
; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉

In conclusion, for the triangular neutrosophic fuzzy numbers, the expressions for the following
statistical indicators were obtained:

(a) The financial asset return:

E f (R̃ai) = 〈
(1

6
(R̃aa1 + R̃ac1) +

2
3

R̃ab1

)
; wR̃a, uR̃a, yR̃a〉
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(b) The variance, or the financial asset’s risk:

σ̃ f ai = 〈
(

1
4

[
(R̃ab1 − R̃aa1)

2
+ (R̃ac1 − R̃ab1)

2
]

+ 2
3

[
R̃aa1(R̃ab1 − R̃aa1) − R̃ac1(R̃ac1 − R̃ab1)

]
+ 1

2 (R̃a
2
a1 + R̃a

2
c1) − 1

2 E2
f (R̃ai)

)
; wR̃a, uR̃a, yR̃a〉

(c) The covariance between two financial assets modeled with triangular neutrosophic fuzzy numbers:

cov(R̃a1, R̃a2) = 〈
(

1
4

[
(R̃ab11 − R̃aa11)(R̃ab21 − R̃aa21)

+(R̃ac11 − R̃ab11)(R̃ac21 − R̃ab21)
]

+ 1
3

{[
R̃aa21(R̃ab11 − R̃aa11) + R̃aa11(R̃ab21 − R̃aa21)

]

−
[
R̃ac11(R̃ac21 − R̃ab21) + R̃ac21(R̃ac11 − R̃ab11)

]}

+ 1
2 (R̃aa11R̃aa21 + R̃ac11R̃ac21)

+ 1
2 E f (R̃a1)E f (R̃a2)

)
; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉

Example 3. There are two financial assets, (A1, A2), to which two triangular neutrosophic fuzzy numbers are
attached:

R̃a1 = 〈(0.2 0.3 0.5); 0.5, 0.2, 0.3〉 for R̃a ∈ [0, 2; 0, 5]

R̃a2 = 〈(0.1 0.2 0.3); 0.6, 0.3, 0.2〉 for R̃a ∈ [0, 1; 0, 3]

In order to determine the covariance between two financial assets to determine the cov(R̃a1, R̃a2)

and the variance–covariance matrix, the following formula can be used:

cov(R̃a1, R̃a2) = 〈
(

1
4

[
(R̃ab11 − R̃aa11)(R̃ab21 − R̃aa21)

+(R̃ac11 − R̃ab11)(R̃ac21 − R̃ab21)
]

+ 1
3

{[
R̃aa21(R̃ab11 − R̃aa11) + R̃aa11(R̃ab21 − R̃aa21)

]

−
[
R̃ac11(R̃ac21 − R̃ab21) + R̃ac21(R̃ac11 − R̃ab11)

]
}

+ 1
2 (R̃aa11R̃aa21 + R̃ac11R̃ac21)

+ 1
2 E f (R̃a1)E f (R̃a2)

)
; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉

By replacing in the formula, we can obtain:

cov(R̃a1, R̃a2) = 〈 1
4 [(0.3− 0.2)(0.2− 0.1) + (0.5− 0.3)(0.3− 0.2)]

+ 1
3 [0.1(0.3− 0.2) + 0.2(0.2− 0.1)]
−[0.5(0.3− 0.2) + 0.3(0.5− 0.3)]
+ 1

2 (0.2 ∗ 0.1 + 0.5 ∗ 0.3) + 1
2 0, 316 ∗ 0, 199; 0.5∧ 0.6, 0.2∨ 0.3, 0.3∨ 0.2〉

cov(R̃a1, R̃a2) = 〈 1
4 [0.01 + 0.02] + 1

3 [0.01 + 0.02] − [0.05 + 0.06] + 1
2 (0.02 + 0.15)

+ 1
2 0.062; 0.6, 0.2, 0.2〉

cov(R̃a1, R̃a2) = 〈0.0075− 0.053 + 0.085 + 0.031; 0.6, 0.2, 0.2〉
cov(R̃a1, R̃a2) = 〈0.0705; 0.6, 0.2, 0.2〉

The variance–covariance matrix is then:

Ω =

( 〈0.0225; 0.5, 0.2, 0.3〉 〈0.0705; 0.6, 0.2, 0.2〉
〈0.0705; 0.6, 0.2, 0.2〉 〈0.0180; 0.6, 0.3, 0.2〉

)

Modeling the performance indicators leads to the following results:
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• The financial asset return:

E f (R̃ai) = 〈
(1

6
(R̃aa1 + R̃ac1) +

2
3

R̃ab1

)
; wR̃a, uR̃a, yR̃a〉

• The variance of the financial asset risk:

σ̃ f ai = 〈
(

1
4

[
(R̃ab1 − R̃aa1)

2
+ (R̃ac1 − R̃ab1)

2
]

+ 2
3

[
R̃aa1(R̃ab1 − R̃aa1) − R̃ac1(R̃ac1 − R̃ab1)

]
+ 1

2 (R̃a
2
a1 + R̃a

2
c1) − 1

2 E2
f (R̃ai)

)
; wR̃a, uR̃a, yR̃a〉

• The covariance between two financial assets modelled with the triangular neutrosophic fuzzy
numbers:

cov(R̃a1, R̃a2) = 〈
(

1
4

[
(R̃ab11 − R̃aa11)(R̃ab21 − R̃aa21)

+(R̃ac11 − R̃ab11)(R̃ac21 − R̃ab21)
]

+ 1
3

{[
R̃aa21(R̃ab11 − R̃aa11) + R̃aa11(R̃ab21 − R̃aa21)

]

−
[
R̃ac11(R̃ac21 − R̃ab21) + R̃ac21(R̃ac11 − R̃ab11)

]
}

+ 1
2 (R̃aa11R̃aa21 + R̃ac11R̃ac21)

+ 1
2 E f (R̃a1)E f (R̃a2)

)
; wR̃a1 ∧ wR̃a2, uR̃a1 ∨ uR̃a2, yR̃a1 ∨ yR̃a2〉

Conclusion: The covariance of two financial assets determined according to the above formula
shows that there is a weak link between the two financial assets modeled by triangular neutrosophic
fuzzy numbers cov(R̃a1, R̃a2) = 〈0.0705; 0.6, 0.2, 0.2〉. The covariance is positive, resulting in the fact
that the financial returns of the two assets increase and register a favorable trend.

7. Conclusions

The performance indicators of the financial assets are represented by the return on financial
assets, the financial assets risk, and the covariance between them, the latter of which, as mentioned
above, indicates the intensity of the links between the return on financial assets. Modeling these
three performance indicators of the financial assets has been achieved with the help of triangular
neutrosophic fuzzy numbers, which presents a number of advantages:

• The neutrosophic approach of these three financial assets performance indicators must take
all the possible scenarios for their achievement into account—these are the scenario of
certainty, the scenario of non-realization, and the scenario of indecision (in which it cannot
be appreciated whether the performance indicators are or are not achieved). All three scenarios
have attached performance, non-execution, or uncertainty ratios according to the investor’s
professional judgment.

• The possibility of stratification or the clustering of the financial asset return values according to
linguistic criteria such as very good, good or weak performance indicators. This method
of stratification can be also applied in the calculation/determination of financial risk.
Stratification/clustering takes place with the help of triangular neutrosophic fuzzy numbers.

• The possibility of selecting the desired return/risk group in order to maximize the investor earnings,
analyzing the profitability of the financial asset by means of probability grades or other purposes
desired by investors, etc.

The results obtained by modeling with triangular neutrosophic fuzzy numbers: The financial
assets return, the financial risk, and the covariance between two financial assets were tested on three
practical examples in order to confirm their applicability. For future research, two aspects for modelling
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with the help of neutrosophic fuzzy intelligence are being considered: The mitigation of portfolio risk
and optimal portfolios.
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Abstract: This paper aims to explore the algebra structure of refined neutrosophic numbers. Firstly,
the algebra structure of neutrosophic quadruple numbers on a general field is studied. Secondly,
The addition operator⊕ and multiplication operator⊗ on refined neutrosophic numbers are proposed
and the algebra structure is discussed. We reveal that the set of neutrosophic refined numbers with
an additive operation is an abelian group and the set of neutrosophic refined numbers with a
multiplication operation is a neutrosophic extended triplet group. Moreover, algorithms for solving
the neutral element and opposite elements of each refined neutrosophic number are given.

Keywords: neutrosophic extended triplet group; neutrosophic quadruple numbers; refined
neutrosophic numbers; refined neutrosophic quadruple numbers; neutrosophic set

1. Introduction

The notion of neutrosophic set was proposed by F. Smarandache [1], which is an extension of fuzzy
set and in order to solve real-world problems. A neutrosophic set has three membership functions,
and each membership degree is a real standard or non-standard subset of the nonstandard unit interval
]0−, 1+[= 0− ∪ [0, 1] ∪ 1+.

In recent years, the idea of neutrosophic set has been applicable in related algebraic structures.
Among these algebraic structures, Smarandache and Ali [2] proposed the algebraic system neutrosophic
triplet group (NTG), which is an extension of the classical group but the neutral element is different
from the classical algebraic unit element. To regard the unit element as a special neutral element,
the neutrosophic extended triplet group (NETG) has been proposed [3,4] and the classical group is
regarded as a special case of a NETG. Moreover, some research papers have carried out in-depth
research based on NTG (NETG). For example, the inclusion relations of neutrosophic sets [5],
neutrosophic triplet coset [6], neutrosophic duplet semi-groups [7], generalized neutrosophic extended
triplet group [8], AG-neutrosophic extended triplet loops [9,10], the neutrosophic set theory to
pseudo-BCI algebras [11], neutrosophic triplet ring and a neutrosophic triplet field [12,13], neutrosophic
triplet normed space [14], neutrosophic soft sets [15], neutrosophic vector spaces [16] and so on have
been studied.

As an example of NETG, Ma [8] revealed that for each n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative
NETG if and only if the factorization of n is a product of single factors. As another example, Ma [17]
showed that the set of neutrosophic quadruple numbers with a multiplication operation is a NETG.
The concept of neutrosophic numbers of the form a + bI, where I is the indeterminacy with In =

I, and, a and are real or complex numbers. If I into many types of indeterminacies I1, I2, · · · , Iq,
in [18], Smarandache extended the neutrosophic numbers a + bI into refined neutrosophic numbers
of the form a + b1 I1 + b2 I2 + · · · + bn In, where a, b1, b2, · · · , bn are real or complex numbers and
considered the refined neutrosophic set based on these refined neutrosophic numbers. The notion of

Symmetry 2019, 11, 954; doi:10.3390/sym11080954 www.mdpi.com/journal/symmetry158
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neutrosophic quadruple number, which has form: NQ = a + bT + cI + dF where a, b, c, d are real (or
complex) numbers; and T is the truth/membership/probability; I is the indeterminacy; and F is the
false/membership/improbability are called Neutrosophic Quadruple (Real, respectively, Complex)
Numbers. “a” is called the known part of NQ, while bT + cI + dF is called the unknown part of NQ.
Similar to refined neutrosophic numbers, if T can be split into many types of truths, T1, T2, · · · , Tp, I
into many types of indeterminacies, I1, I2, · · · , Ir, and F into many types of falsities, F1, F2, · · · , Fr, we
can get the refined neutrosophic quadruple numbers. We know that the set of neutrosophic quadruple
numbers with a multiplication operation is a NETG. In this paper, we explore the algebra structure
of refined neutrosophic numbers (refined neutrosophic quadruple numbers) and give new examples
of NETG. In fact, the solving method of the neutral element and opposite elements for each refined
neutrosophic number is different from the solving method for each neutrosophic quadruple number.

The paper is organized as follows. Section 2 gives the basic concepts. In Section 3, we show that
the set of neutrosophic quadruple numbers on the general field with a multiplication operation also
consists of a NETG. In Section 4, the algebra structure of refined neutrosophic numbers and refined
neutrosophic quadruple numbers are studied. Finally, the summary and future work is presented in
Section 5.

2. Basic Concepts

In this section, we provide the related basic definitions and properties of NETG, neutrosophic
quadruple numbers, and refined neutrosophic numbers (for details, see [3,4,18–20]).

Definition 1 ([3,4]). Let N be a non-empty set together with a binary operation ∗. Then, N is called a
neutrosophic extended triplet set if, for any a ∈ N, there exists a neutral of “a” (denote by neut(a)), and an
opposite of “a”(denote by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a, a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 2 ([3,4]). Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:

(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

A NETG N is called a commutative NETG if for all a, b ∈ N, a ∗ b = b ∗ a.

Proposition 1 ([4]). (N, ∗) be a NETG. We have:

(1) neut(a) is unique for any a ∈ N.
(2) neut(a) ∗ neut(a) = neut(a) for any a ∈ N.
(3) neut(neut(a)) = neut(a) for any a ∈ N.

Definition 3 ([18,19]). A neutrosophic number is a number of the form (a, bI), where I is the indeterminacy
with I2 = I, and a and b are real or complex numbers. A refined neutrosophic number is a number of the form
(a0, a1 I1, a2 I2, · · · , an In), where I1, I2, · · · , In are different types of indeterminacies, and a0, a1, a2, · · · , an are
real or complex numbers. The set NN defined by

NN = {(a, bI)|a, b ∈ R or C}. (1)

is called a neutrosophic set of neutrosophic numbers. The set RNN defined by

RNN = {(a0, aI1, a2 I2, · · · , an In)|a0, a1, a2, · · · , an ∈ R or C}. (2)
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is called a neutrosophic set of refined neutrosophic numbers.

Definition 4 ([18,20]). A neutrosophic quadruple number is a number of the form (a, bT, cI, dF), where T, I
and F have their usual neutrosophic logic meanings, i.e., truth, indeterminacy and false, respectively, and
a, b, c, d ∈ R or C. The set NQ defined by

NQ = {(a, bT, cI, dF)|a, b, c, d ∈ R or C}. (3)

is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple number (a, bT, cI, dF), a is
called the known part and (bT, cI, dF) is called the unknown part. The set RNQ defined by

RNQ = {(a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr)|
a, b1, b2, · · · , bp, c1, c2, · · · , cq, d1, d2, · · · , dr ∈ R or C}. (4)

is called a neutrosophic set of refined neutrosophic quadruple numbers.

Definition 5 ([18,20]). Let N be a set, endowed with a total order a ≺ b, named “a prevailed by b”, “a less
stronger than b” or “a less preferred than b”. We consider a � b as “a prevailed by or equal to b”, “a less
stronger than or equal to b”, or “a less preferred than or equal to b”.

For any elements a, b ∈ N, with a � b, one has the absorbance law:

a · b = b · a = absorb(a, b) = max(a, b) = b. (5)

which means that the bigger element absorbs the smaller element. Clearly,

a · a = a2 = absorb(a, a) = max(a, a) = a. (6)

and
a1 · a2 · · · an = max(a1, a2, · · · , an). (7)

Analogously, we say that “a � b” and we read: “a prevails to b”, “a is stronger than b” or “a is preferred
to b”. In addition, a � b, and we read: “a prevails or is equal to b”, “a is stronger than or equal to b”, or “a is
preferred or equal to b”.

Definition 6 ([18,20]). Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence
order T � I � F. Then, we have: TI = IT = max(T, I) = T, TF = FT = max(T, F) = T, IF = FI =

max(I, F) = I, TT = T2 = T, I I = I2 = I, FF = F2 = F.
Analogously, suppose in a pessimistic way we consider the prevalence order T ≺ I ≺ F. Then, we have:

TI = IT = max(T, I) = I, TF = FT = max(T, F) = F, IF = FI = max(I, F) = F, TT = T2 = T,
I I = I2 = I, FF = F2 = F.

Definition 7 ([18,20]). Let a = (a1, a2T, a3 I, a4F), b = (b1, b2T, b3 I, b4F) ∈ NQ. Suppose, in an pessimistic
way, the neutrosophic expert considers the prevalence order T ≺ I ≺ F. Then, the multiplication operation is
defined as follows:

a ∗ b = (a1, a2T, a3 I, a4F) ∗ (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F).
(8)

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T � I � F. Then,

a ? b = (a1, a2T, a3 I, a4F) ? (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2 + a3b2 + a4b2 + a2b3 + a2b4)T,

(a1b3 + a3b1 + a3b3 + a3b4 + a4b3)I, (a1b4 + a4b1 + a4b4)F).
(9)
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Proposition 2 ([18,20]). Let NQ = {(a, bT, cI, dF) : a, b, c, d ∈ R or C}. We have:

(1) (NQ, ∗) is a commutative monoid.
(2) (NQ, ?) is a commutative monoid.

Theorem 1. [17] For the algebra system (NQ, ∗)(or (NQ, ?)), for every element a ∈ NQ, there exists
the neutral element neut(a) and opposite element anti(a), which means that the algebra system (NQ, ∗)
(or (NQ, ?)) is a NETG.

3. The Algebra Structure of Neutrosophic Quadruple Numbers on General Field

From the above section, we can see that the neutrosophic quadruple numbers are defined on
number field R or C. In this section, the notions of the neutrosophic quadruple numbers on a general
field are introduced and the algebra structure of the neutrosophic quadruple numbers on general field
is explored.

Let (F,+, ·) be a field, and 0 and 1 are the unit elements for operator + and ·, respectively. For
every a ∈ F, −a is the inverse element of a for operator +, and a−1 is the inverse element of a for
operator ·. In the following, field (F,+, ·) is denoted by F for short and a · b is denoted by ab.

Definition 8. Let F be a field; a neutrosophic quadruple number is a number of the form (a, bT, cI, dF),
where T, I, F have their usual neutrosophic logic meanings, i.e., truth, indeterminacy and false, respectively,
and a, b, c, d ∈ F. The set NQF defined by

NQF = {(a, bT, cI, dF)|a, b, c, d ∈ F}. (10)

is called a neutrosophic set of quadruple numbers on field F.

Definition 9. Let a = (a1, a2T, a3 I, a4F), b = (b1, b2T, b3 I, b4F) ∈ NQF, then the addition operator is
defined as follows:

a⊕ b = (a1 + b1, (a2 + b2)T, (a3 + b3)I, (a4 + b4)F). (11)

Definition 10. Let a = (a1, a2T, a3 I, a4F), b = (b1, b2T, b3 I, b4F) ∈ NQF. Suppose, in an pessimistic way,
the neutrosophic expert considers the prevalence order T ≺ I ≺ F. Then, the multiplication operation is defined
as follows:

a ∗ b = (a1, a2T, a3 I, a4F) ∗ (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F).
(12)

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T � I � F. Then,

a ? b = (a1, a2T, a3 I, a4F) ? (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2 + a3b2 + a4b2 + a2b3 + a2b4)T,

(a1b3 + a3b1 + a3b3 + a3b4 + a4b3)I, (a1b4 + a4b1 + a4b4)F).
(13)

Theorem 2. (NQF,⊕) is an abelian group.

Proof. It is obvious.

Theorem 3. For the algebra system (NQF, ∗) (or (NQF, ?)), for every element a ∈ NQF, there exists
the neutral element neut(a) and opposite element anti(a), thus the algebra system (NQF, ∗) (or (NQF, ?))
is a NETG.
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The proof’s method is similar to the proof when F = R in [17]. The detailed proof is omitted.
For algebra system (NQF, ∗), Table 1 gives all the subsets which have the same neutral element, and
the corresponding neutral element and opposite elements. In the following, from two examples, we
show that how to solve the the neutral element and opposite elements of each element for algebra
system (NQF, ∗) on different fields.

Example 1. Let F = Z5 = {[0], [1], [2], [3], [4]}, then (Z5,+, ·) is a field, where + and · are the classical
mod addition and multiplication, respectively. For algebra system (NQF, ∗), if a = (a1, a2T, a3 I, a4F) =

([2], [4]T, [3]I, [1]F), i.e., a1 6= [0], a1 + a2 6= [0], a1 + a2 + a3 6= [0], a1 + a2 + a3 + a4 = [0],
then, from Table 1, we can get neut(a) = ([1], [0], [0], [4]F). Let anti(a) = (c1, c2T, c3 I, c4F),
so c1 = a−1

1 = [3], c2 = [3], c3 = [3], c4 ∈ Z5, thus anti(a) = ([3], [3]T, [3]I, c4F), where c4 ∈ Z5. Thus, we
can easily get the neutral element and opposite elements of each neutrosophic quadruple number on general field.
For more examples, see the following:

1. Let b = ([1], [2]T, [1]I, [3]F), then neut(b) = ([1], [0], [0], [0]) and anti(b) = ([1], [1]T, [2]I, [4]F).
2. Let c = ([0], [0], [1]I, [4]F), then neut(c) = ([0], [0], [1], [4]) and anti(c) = (c1, c2T, c3 I, c4F),

where c1 ⊕ c2 ⊕ c3 = [1], c4 ∈ Z5.
3. Let d = ([0], [1]T, [1]I, [1]F), then neut(d) = ([0], [1]T, [0], [0]) and anti(d) = (c1, c2T, [2]I, [4]F),

where c1 ⊕ c2 = [1].

Table 1. The corresponding neutral element and opposite elements for (NQF, ∗).

The Subset of NQF Neutral
Element

Opposite Elements (c1, c2T , c3 I, c4F)

{(0, 0, 0, 0)} (0, 0, 0, 0) ci ∈ F

{(0, 0, 0, a4F)|a4 6= 0} (0, 0, 0, F) c1 + c2 + c3 + c4 = a−1
4

{(0, 0, a3 I,−a3F)|a3 6= 0} (0, 0, I,−F) c1 + c2 + c3 = a−1
3 , c4 ∈ F

{(0, 0, a3 I, a4F)|a3 6= 0, a3 + a4 6= 0} (0, 0, I, 0) c1 + c2 + c3 = a−1
3 , c4 = −(a4a−1

3 (a3 + a4)
−1)

{(0, a2T,−a2 I, 0)|a2 6= 0 } (0, T,−I, 0)} c1 + c2 = a−1
2 , c3, c4 ∈ F

{(0, a2T,−a2 I, a4F)|a2 6= 0, a4 6= 0} (0, T,−I, F) c1 + c2 = a−1
2 , c3 + c4 = a−1

4 + (−a−1
2 )

{(0, a2T, a3 I, a4F)|a2 6= 0, a2 + a3 6=
0, a2 + a3 + a4 = 0}

(0, T, 0,−F) c1 + c2 = a−1
2 , c3 = −(a3a−1

2 (a2 + a3)
−1),

c4 ∈ F

{(0, a2T, a3 I, a4F)|a2 6= 0, a2 + a3 6=
0, a2 + a3 + a4 6= 0}

(0, T, 0, 0) c1 + c2 = a−1
2 , c3 = −(a3a−1

2 (a2 + a3)
−1),

c4 = −(a4(a2 + a3)
−1(a2 + a3 + a4)

−1)

{(a1,−a1T, 0, 0)|a1 6= 0} (1,−T, 0, 0)} c1 = a−1
1 , c2, c3, c4 ∈ F

{(a1,−a1T, 0, a4F)|a1 6= 0, a4 6= 0} (1,−T, 0, F) c1 = a−1
1 , c2 + c3 + c4 = a−1

4 + (−a−1
1 )

{(a1,−a1T, a3 I,−a3F)|a1 6= 0, a3 6= 0} (1,−T, I,−F) c1 = a−1
1 , c2 + c3 = a−1

3 − a−1
1 , c4 ∈ F

{(a1,−a1T, a3 I, a4F)|a1 6= 0, a3 6=
0, a3 + a4 6= 0}

(1,−T, I, 0) c1 = a−1
1 , c2 + c3 = a−1

3 + (−a−1
1 ),

c4 = −(a4a−1
3 (a3 + a4)

−1)

{(a1, a2T, a3 I, 0)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 = 0}

(1, 0,−I, 0) c1 = a−1
1 , c2 = −(a2a−1

1 (a1 + a2)
−1),

c3, c4 ∈ F

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 = 0, a4 6= 0}

(1, 0,−I, F) c1 = a−1
1 , c2 = −(a2a−1

1 (a1 + a2)
−1),

c3 + c4 = a−1
4 + (−(a1 + a2)

−1)

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 =
0}

(1, 0, 0,−F) c1 = a−1
1 , c2 = −(a2a−1

1 (a1 + a2)
−1),

c3 = −(a3(a1 + a2)
−1(a1 + a2 + a3)

−1),
c4 ∈ F

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 6=
0}

(1, 0, 0, 0) c1 = a−1
1 , c2 = −(a2a−1

1 (a1 + a2)
−1),

c3 = −(a3(a1 + a2)
−1(a1 + a2 + a3)

−1),
c4 = −(a4(a1 + a2 + a3)

−1(a1 + a2 + a3 + a4)
−1)
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Example 2. Let F4 = {0, 1, x, y}, the operators + and · on F4 is defined by Table 2.

Table 2. The operators + and · on F4.

+ 0 1 x y · 0 1 x y
0 0 1 x y 0 0 0 0 0
1 1 0 y x 1 0 1 x y
x x y 0 1 x 0 x y 1
y y x 1 0 y 0 y 1 x

Then, (F4,+, ·) is a field. Set NQF = {(a, bT, cI, dF)|a, b, c, d ∈ F4}. We have:

1. Let a = (0, 0, xI, xF), then neut(a) = (0, 0, I, F) and anti(a) = (c1, c2T, c3 I, c4F), where c1 + c2 +

c3 = y, c4 ∈ F4.
2. Let b = (0, xT, xI, yF), then neut(b) = (0, T, I, F) and anti(b) = (c1, c2T, c3 I, c4F), where c1 + c2 =

y, c3 + c4 = 1.
3. Let c = (x, xT, 0, 0), then neut(c) = (1, T, 0, 0) and anti(c) = (y, c2T, c3 I, c4F), where c2, c3, c4 ∈ F4.

In the same way, for algebra system (NQF, ?), Table 3 gives all the subsets which have the same
neutral element, and the corresponding neutral element and opposite elements.

Table 3. The corresponding neutral element and opposite elements for (NQF, ?).

The Subset of NQF Neutral
Element

Opposite Elements (c1, c2T , c3 I, c4F)

{(0, 0, 0, 0)} (0, 0, 0, 0) ci ∈ F

{(0, a2T, 0, 0)|a2 6= 0} (0, T, 0, 0) c1 + c2 + c3 + c4 = a−1
2

{(0,−a3T, a3 I, 0)|a3 6= 0} (0,−T, I, 0) c1 + c3 + c4 = a−1
3 , c2 ∈ F

{(0, a2T, a3 I, a4F)|a3 6= 0, a2 + a3 6= 0} (0, 0, I, 0) c1 + c3 + c4 = a−1
3 ,

c2 = −(a2a−1
3 (a2 + a3)

−1)

{(0, 0,−a4 I, a4F)|a4 6= 0} (0, 0,−I, F)} c1 + c4 = a−1
4 , c2, c3 ∈ F

{(0, a2T,−a4 I, a4F)|a2 6= 0, a4 6= 0} (0, T,−I, F) c1 + c4 = a−1
4 , c2 + c3 = a−1

2 + (−a−1
4 )

{(0, a2T, a3 I, a4F)|a4 6= 0, a3 + a4 6=
0, a2 + a3 + a4 = 0}

(0,−T, 0, F) c1 + c4 = a−1
4 , c3 = −(a3a−1

4 (a3 + a4)
−1),

c2 ∈ F

{(0, a2T, a3 I, a4F)|a4 6= 0, a3 + a4 6=
0, a2 + a3 + a4 6= 0}

(0, 0, 0, F) c1 + c4 = a−1
4 , c3 = −(a3a−1

4 (a3 + a4)
−1),

c2 = −(a2(a3 + a4)
−1(a2 + a3 + a4)

−1)

{(a1, 0, 0,−a1F)|a1 6= 0} (1, 0, 0,−F)} c1 = a−1
1 , c2, c3, c4 ∈ F

{(a1, a2T, 0,−a1F)|a1 6= 0, a2 6= 0} (1, T, 0,−F) c1 = a−1
1 , c2 + c3 + c4 = a−1

2 + (−a−1
1 )

{(a1,−a3T, a3 I,−a1F)|a1 6= 0, a3 6= 0} (1,−T, I,−F) c1 = a−1
1 , c3 + c4 = a−1

3 + (−a−1
1 ), c4 ∈ F

{(a1, a2T, a3 I,−a1F)|a1 6= 0, a3 6=
0, a2 + a3 6= 0}

(1, 0, I,−F) c1 = a−1
1 , c3 + c4 = a−1

3 + (−a−1
1 ),

c2 = −(a2a−1
3 (a2 + a3)

−1)

{(a1, 0, a3 I, a4F)|a1 6= 0, a1 + a4 6=
0, a1 + a3 + a4 = 0}

(1, 0,−I, 0) c1 = a−1
1 , c4 = −(a4a−1

1 (a1 + a4)
−1),

c2, c3 ∈ F

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6=
0, a1 + a3 + a4 = 0, a2 6= 0}

(1, T,−I, 0) c1 = a−1
1 , c4 = −(a4a−1

1 (a1 + a4)
−1),

c2 + c3 = a−1
2 + (−(a1 + a4)

−1)

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6=
0, a1 + a3 + a4 6= 0, a1 + a2 + a3 + a4 =
0}

(1,−T, 0, 0) c1 = a−1
1 , c4 = −(a4a−1

1 (a1 + a4)
−1),

c3 = −(a3(a1 + a4)
−1(a1 + a3 + a4)

−1),
c2 ∈ F

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6=
0, a1 + a3 + a4 6= 0, a1 + a2 + a3 + a4 6=
0}

(1, 0, 0, 0) c1 = a−1
1 , c4 = −(a4a−1

1 (a1 + a4)
−1),

c3 = −(a3(a1 + a4)
−1(a1 + a3 + a4)

−1),
c2 = −(a2(a1 + a3 + a4)

−1(a1 + a2 + a3 + a4)
−1)
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4. The Algebra Structure of Refined Neutrosophic Numbers on General Field

In the above section, we reveal that the algebra structure of the neutrosophic quadruple numbers
on general field. In this section, we explore the the algebra structure of the refined neutrosophic
numbers (refined neutrosophic quadruple numbers) on general field.

Definition 11. Let F be a field; a refined n-ary neutrosophic number is a number of the
form (a0, a1 I1, a2 I2, · · · , an In), where I1, I2, · · · , and In are different types of indeterminacies,
and a0, a1, a2, · · · , an ∈ F. The set RNFn defined by

RNFn = {(a0, a1 I1, a2 I2, · · · , an In)|a0, a1, a2, · · · , an ∈ F}. (14)

is called a refined neutrosophic set on field F.

Definition 12. Let x = (a0, a1 I1, a2 I2, · · · , an In), y = (b0, b1 I1, b2 I2, · · · , bn In) ∈ RNFn, then the addition
operator on RNFn is defined as follows:

x⊕ y = (a0 + b0, (a1 + b1)I1, (a2 + b2)I2, · · · , (an + bn)In). (15)

Definition 13. Let x = (a0, a1 I1, a2 I2, · · · , an In), y = (b0, b1 I1, b2 I2, · · · , bn In) ∈ RNFn, the neutrosophic
expert considers the prevalence order I1 ≺ I2 ≺ · · · ≺ In. Then, the multiplication operation is defined
as follows:

x ∗ y = (a0, a1 I1, a2 I2, · · · , an In) ∗ (b0, b1 I1, b2 I2, · · · , bn In)

= (a0b0, (a0b1 + a1b1 + a1b2)I1, (a0b2 + a1b2 + a2b0 + a2b1 + a2b2)I2,
· · · , (a0bn + a1bn + a2bn + · · ·+ an−1bn + anb0 + anb1 + · · ·+ anbn)In).

(16)

The neutrosophic expert considers the prevalence order I1 � I2 � · · · � In. Then,

x ? y = (a0, a1 I1, a2 I2, · · · , an In) ? (b0, b1 I1, b2 I2, · · · , bn In)

= (a0b0, (a0b1 + a1b1 + · · ·+ anb1 + a1b0 + a1b2 + a1b3 + · · ·+ a1bn)I1, · · · ,
(a0bn−1 + an−1b0 + an−1bn−1 + an−1bn + anbn−1)In−1, (a0bn + anb0 + anbn)In).

(17)

Theorem 4. (RNFn,⊕) is an abelian group.

Proof. The proof is obvious.

Theorem 5. For the algebra system (RNFn, ∗) (or (RNFn, ?)), for every element a ∈ RNFn, there exists
the neutral element neut(a) and opposite element anti(a), thus the algebra system (RNFn, ∗) (or (RNFn, ?))
is a NETG.

Proof. We use applied mathematical induction for n and only discuss the algebra system (RNFn, ∗).
The algebra system (RNFn, ?) has a similar proof.

If n = 2, for refined 2-ary neutrosophic set, which is same as neutrosophic binary numbers set
in [17], from Theorem 7 in [17], we can see that for every element a ∈ RNF2, there exists the neutral
element neut(a) and opposite element anti(a), thus the algebra system (RNF2, ∗) is a NETG.

Assume that the refined n-ary neutrosophic set RNFn is a NETG. That is, for every element
a ∈ RNFn, there exists the neutral element neut(a) and opposite element anti(a). In the following, we
prove that for the refined (n + 1)-ary neutrosophic set, which is a NETG.

For each a = (a0, a1 I1, a2 I2, · · · , an+1 In+1) ∈ RNFn+1, let a′ = (a0, a1 I1, a2 I2, · · · , an In),
being a′ ∈ RNFn, then, from the above assumption condition, neut(a′) and anti(a′) exist
and let neut(a′) = (b0, b1 I1, b2 I2, · · · , bn In), anti(a′) = (c0, c1 I1, c2 I2, · · · , cn In). We prove for
a = (a0, a1 I1, a2 I2, · · · , an+1 In+1), neut(a) and anti(a) exist. We discuss from the different cases of an+1.
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Case A: If an+1 = 0, Being (a0, a1 I1, a2 I2, · · · , an In, 0) ∗ (b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1) =

(a0, a1 I1, a2 I2, · · · , an In, 0), that is (a0 + a1 + · · ·+ an)bn+1 = 0, thus we discuss from a0 + a1 + · · ·+
an = 0 or a0 + a1 + · · ·+ an 6= 0.

Case A1: If an+1 = 0, a0 + a1 + · · · + an = 0, so (a0, a1 I1, a2 I2, · · · , an In, 0) ∗
(c0, c1 I1, c2 I2, · · · , cn In, cn+1 In+1) = (b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1), that is bn+1 = 0 and cn+1 can
be chosen arbitrarily in F.

Case A2: If an+1 = 0, a0 + a1 + · · · + an 6= 0, so from (a0 + a1 + · · ·+ an)bn+1 = 0, we have
bn+1 = 0, from (a0, a1I1, a2I2, · · · , an In, 0) ∗ (c0, c1I1, c2I2, · · · , cn In, cn+1In+1) = (b0, b1I1, b2I2, · · · , bn In, 0),
thus cn+1 = 0.

Case B: If an+1 6= 0, being (a0, a1 I1, a2 I2, · · · , an In, an+1 In+1) ∗ (b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1) =

(a0, a1 I1, a2 I2, · · · , an In, an+1 In+1), that is (a0 + a1 + · · ·+ an+1)bn+1 + an+1(b0 + b1 + · · ·+ bn) = an+1,
that is (a0 + a1 + · · ·+ an+1)bn+1 = an+1(1− b0− b1−· · ·− bn), we discuss from a0 + a1 + · · ·+ an+1 = 0
or a0 + a1 + · · ·+ an+1 6= 0.

Case B1: If an+1 6= 0, a0 + a1 + · · · + an+1 = 0, we have b0 + b1 + · · · +
bn = 1, so from (a0, a1 I1, a2 I2, · · · , an In, an+1 In+1) ∗ (c0, c1 I1, c2 I2, · · · , cn In, cn+1 In+1) =

(b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1), that is bn+1 = (c0 + c1 + · · · + cn)an+1 = bn+1 and cn+1 can be
chosen arbitrarily in F.

Case B2: If an+1 6= 0, a0 + a1 + · · ·+ an+1 6= 0, we have bn+1 = an+1(1− b0 − b1 − · · · − bn)(a0 +

a1 + a2 · · · an)−1, so from (a0, a1 I1, a2 I2, · · · , an In, an+1 In+1) ∗ (c0, c1 I1, c2 I2, · · · , cn In, cn+1 In+1) =

(b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1), that is and cn+1 = (bn+1 − an+1(c0 + c1 + · · ·+ cn))(a0 + a1 + · · ·+
an+1)

−1.
From the above analysis, we can see that, for each a ∈ RNFn, which has the neutral element

neut(a) and opposite element anti(a), from the mathematical induction method, we can obtain that
the algebra system (RNF, ∗) is a NETG.

For algebra system (RNFn+1, ∗), if a = (a0, a1 I1, a2 I2, · · · , an+1 In+1), let a′ =

(a0, a1 I1, a2 I2, · · · , an In) ∈ RNFn, if we have neut(a′) = (b0, b1 I1, b2 I2, · · · , bn In), anti(a′) =

(c0, c1 I1, c2 I2, · · · , cn In). Then, the corresponding neutral element and opposite elements of a are given
in Table 4 according to the different cases of an+1.

Table 4. The corresponding neutral element and opposite elements for (RNFn+1, ∗)

The Subset
{(a0, a1 I1, · · · , an+1 In+1)}

Neutral Element
(b0, b1 I1, · · · , bn In, bn+1 In+1)

Opposite Elements
(c0, c1 I1, · · · , cn In, cn+1 In+1)

an+1 = 0,
a0 + a1 + · · ·+ an = 0

bn+1 = 0 cn+1 ∈ F

an+1 = 0,
a0 + a1 + · · ·+ an 6= 0

bn+1 = 0 cn+1 = 0

an+1 6= 0,
a0 + a1 + · · ·+ an + an+1 = 0

bn+1 = (c0 + c1 + · · ·+ cn)an+1 cn+1 ∈ F

an+1 6= 0,
a0 + a1 + · · ·+ an + an+1 6= 0

bn+1 = an+1(1 − b0 − b1 − · · · −
bn)(a0 + a1 + a2 + · · ·+ an)−1)

cn+1 = (bn+1 − an+1(c0 + c1 + · · ·+
cn))(a0 + a1 + · · ·+ an+1)

−1

For algebra system (RNFn, ∗), according to the results in Tables 3 and 4 in [17], we can easily
obtain the neutral element and opposite elements when n = 1, 2 on general fields. In Table 1, we can get
the neutral element and opposite elements when n = 3 on general field. Thus, from Theorem 5, we can
get the neutral element and opposite elements of each element in RNFn step-by-step. The solving
method is given by Algorithm 1 and the following example is used to explain the algorithm.
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Algorithm 1 Solving the neutral element and opposite elements of each element in (RNFn, ∗).
Input: a = (a0, a1 I1, a2 I2, · · · , an In), n ≥ 3
1: i = 3;
2: For i = 3 : n
3: Ai = (a0, a1 I1, a2 I2, · · · , ai Ii);
4: If i == 3
5: Obtain neut(Ai), anti(Ai) by Table 1;
6: else
7: Obtain neut(Ai), anti(Ai) by Table 4 combining the values of neut(Ai−1) and anti(Ai−1);
8: end
9: Save neut(Ai), anti(Ai);
10: end
Output: neut(a) = neut(An), anti(a) = anti(An)

Example 3. For algebra system (RNF2, ∗), and set F = R. If a = (a0, a1 I1) = (0,−I1), from Table 3 in [17],
we can get neut(a) = (0, I1) and anti(a) = (c0, c1 I1), where c0 + c1 = −1.

In the following, we use two methods to solve the the neutral element and opposite elements of b =

(a0, a1 I1, a− 2I2) = (0,−I1, I2) ∈ RNF3 and we get the same results.

1. Algorithm 1: From Table 2, being a3 6= 0 and a0 + a1 + a2 = 0, thus b2 = (c0 + c1) · 1 = −1,
that is neut(b) = (0, I1,−I2) and anti(a) = (c0, c1 I1, c2 I2), where c0 + c1 = −1 and c2 can be chosen
arbitrarily in R.

2. Rsults from Table 4 in [17]: Being a2 6= 0 and a0 + a1 + a2 = 0, thus neut(b) = (0, I1,−I2) and
anti(a) = (c0, c1 I1, c2 I2), where c0 + c1 = −1 and c2 can be chosen arbitrarily in R.

Example 4. For algebra system (RNF3, ∗), and set F = R. If a = (a0, a1 I1, a2 I2) = (1,−I1, I2) ∈ RNF3,
from Table 4 in [17], we can get neut(a) = (1,−I1, I2) and anti(a) = (1, c1 I1, c2 I2), where c1 + c2 = 0.

In the same way, we use two methods to solve the the neutral element and opposite elements of b =

(a0, a1 I1, a2 I2, a3 I3) = (1,−I1, I2, I3) ∈ RNF4.

1. Algorithm 1: From Table 2, being a3 6= 0 and a0 + a1 + a2 + a3 6= 0, thus b3 = 0, that is neut(b) =
(0,−I1, I2, 0) and c3 = (0− 1 · 1 · 1

2 ) = − 1
2 , thus anti(a) = (1, c1 I1, c2 I2,− 1

2 I3), where c1 + c2 = 0.
2. Results from Table 1 in [17]: Being a0 6= 0, a2 6= 0 and a2 + a3 6= 0, thus neut(b) = (1,−I1, I2, 0) and

c0 = 1, c1 + c2 = 0, c3 = − 1
1·(1+1) = − 1

2 , thus anti(a) = (1, c1 I1, c2 I2,− 1
2 I3), where c1 + c2 = 0.

For algebra system (RNFn+1, ?), set a = (a0, a1 I1, a2 I2, · · · , an+1 In+1), being the order
I1 � I2 � · · · � In, thus we should obtain the neutral element and opposite elements
of a′ = (a0, a2 I2, · · · , an+1 In+1). Knowing that neut(a′) = (b0, b2 I2, b3 I3, · · · , bn In), anti(a′) =

(c0, c2 I2, c3 I3, · · · , cn In), then the corresponding neutral element and opposite elements of a are given
in Table 5 according to the different cases of a1.
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Table 5. The corresponding neutral element and opposite elements for (RNF, ?).

The Subset
{(a0, a1 I1, · · · , an+1 In+1)}

Neutral Element
(b0, b1 I1, · · · , bn In, bn+1 In+1)

Opposite Elements
(c0, c1 I1, · · · , cn In, cn+1 In+1)

a1 = 0,
a0 + a2 + · · ·+ an+1 = 0

b1 = 0 c1 ∈ F

a1 = 0,
a0 + a2 + · · ·+ an+1 6= 0

b1 = 0 c1 = 0

a1 6= 0,
a0 + a1 + · · ·+ an + an+1 = 0

b1 = (c0 + c2 + · · ·+ cn+1)a1 c1 ∈ F

a1 6= 0,
a0 + a1 + · · ·+ an + an+1 6= 0

b1 = a1(1 − (b0 + b2 + · · · +
bn+1))(a0 + a1 + · · ·+ an+1)

−1
c1 = (b1 − a1(c0 + c2 + · · · +
cn+1))(a0 + a1 + · · ·+ an+1)

−1

Similarly, we also can get the neutral element and opposite elements of each element in (RNFn, ?)
step-by-step. The solving method is given by Algorithm 2 and the following example is used to explain
the algorithm.

Algorithm 2 Solving the neutral element and opposite elements of each element in (RNFn, ?).
Input: a = (a0, a1 I1, a2 I2, · · · , an In), n ≥ 3
1: i = n− 2;
2: While i ≥ 1
3: Ai = (a0, ai Ii, · · · , an−1 In−1, an In);
4: If i == n− 2
5: Obtain neut(Ai), anti(Ai) by Table 3;
6: else
7: Obtain neut(Ai), anti(Ai) by Table 5 combining the values of neut(Ai+1) and anti(Ai+1);
8: end
9: Save neut(Ai), anti(Ai);
10: i = i− 1;
11: end
Output: neut(a) = neut(A1), anti(a) = anti(A1)

Example 5. For algebra system (RNF6, ?), and set F = R, a = (0, 0,−2I2,−I3, I4, 0), solve the neutral
element and opposite elements of a.

According Algorithm 2 for algebra system (RNF6, ?): Firstly, we solve the neutral element and opposite
elements of a′ = (0,−I3, I4, 0) from Table 3, and then solve the neutral element and opposite elements
of a′′ = (0,−2I2,−I3, I4, 0) from Table 5, lastly, we solve the neutral element and opposite elements of a
from Table 5.

1. From Table 3: neut(a′) = (0,−I3, I4, 0) and anti(a′) = (c0, c3 I3, c4 I4, c5 I5), where c0 + c4 + c5 = 1,
c3 ∈ R.

2. From Table 5 and combining the results of the above step: Being −2 6= 0 and 0+ (−2) + (−1) + 1+ 0 6=
0, thus neut(a′′) = (0, I2,−I3, I4, 0) and anti(a′′) = (c0, c2 I2, c3 I3, c4 I4, c5 I5), where c0 + c4 + c5 = 1,
c2 + c3 = − 3

2 .
3. From Table 5 and combining the results of the above step: Being 0 = 0 and 0 + 0 + (−2) + (−1) +

1 + 0 6= 0, thus neut(a) = (0, 0, I2,−I3, I4, 0) and anti(a) = (c0, 0, c2 I2, c3 I3, c4 I4, c5 I5), where
c0 + c4 + c5 = 1, c2 + c3 = − 3

2 .

Similarly, we explore the the algebra structure of the refined neutrosophic quadruple numbers on
general field in the following.
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Definition 14. Let F be a field; a refined neutrosophic quadruple number is a
number of the form (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr),
where a, b1, b2, · · · , bp, c1, c2, · · · , cq, d1, d2, · · · , dr ∈ F. The set RNQFpqr defined by

RNQFpqr = {(a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr)|
a, b1, b2, · · · , bp, c1, c2, · · · , cq, d1, d2, · · · , dr ∈ F}. (18)

is called a refined neutrosophic quadruple set on field F.

Definition 15. Let x = (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr),
y = (e, f1T1, f2T2, · · · , fpTp, g1 I1, g2 I2, · · · , gq Iq, h1F1, h2F2, · · · , hrFr) ∈ RNQFpqr, then the addition
operator is defined as follows:

x⊕ y = (a + e, (b1 + f1)T1, (b2 + f2)T2, · · · , (bp + fp)Tp, (c1 + g1)I1, (c2 + g2)I2, · · · ,
(cq + gq)Iq, (d1 + h1)F1, (d2 + h2)F2, · · · , (dr + hr)Fr).

(19)

Definition 16. Let x = (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr),
y = (e, f1T1, f2T2, · · · , fpTp, g1 I1, g2 I2, · · · , gq Iq, h1F1, h2F2, · · · , hrFr) ∈ RNQFpqr; the neutrosophic
expert considers the prevalence order T1 ≺ T2 ≺ · · · ≺ Tp ≺ I1 ≺ I2 ≺ · · · ≺ Iq ≺ F1 ≺ F2 ≺ · · · ≺ Fr.
Then, the multiplication operation is defined as follows:

x ∗ y = (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr)

∗(e, f1T1, f2T2, · · · , fpTp, g1 I1, g2 I2, · · · , gq Iq, h1F1, h2F2, · · · , hrFr)

= (ae, (a f1 + b1e + b1 f1)T1, (a f2 + b1 f2 + b2e + b2 f1 + b2 f2)T2,
· · · , (ahr + b1hr + b2hr + · · ·+ dr−1hr + dre + dr f1 + · · ·+ drhr)Fr).

(20)

The neutrosophic expert considers the prevalence order T1 � T2 � · · · � Tp � I1 � I2 � · · · � Iq �
F1 � F2 � · · · � Fr. Then,

x ? y = (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr)

?(e, f1T1, f2T2, · · · , fpTp, g1 I1, g2 I2, · · · , gq Iq, h1F1, h2F2, · · · , hrFr)

= (ae, (a f1 + b1 f1 + · · ·+ dr f1 + b1e + b1 f2 + b1 f3 + · · ·+ b1hr)T1,
· · · , (ahr−1 + dr−1e + dr−1hr−1 + dr−1hr + drhr−1)Fr−1, (ahr + dre + drhr)Fr).

(21)

Similarly, we also have the following results.

Theorem 6. (RNQFpqr,⊕) is an abelian group.

Theorem 7. For the algebra system (RNQFpqr, ∗) (or (RNQFpqr, ?)), for every element a ∈ RNQFpqr,
there exists the neutral element neut(a) and opposite element anti(a), thus the algebra system (RNQFpqr, ∗)
(or (RNQFpqr, ?)) is a NETG.

Example 6. For algebra system (RNQF213, ∗), and set F = R, a = (1, 0, 2T2,−3I1, 2F1, 0,−2F3), solve the
neutral element and opposite elements of a.

According Algorithm 1 for algebra system (RNF213, ∗), firstly, we solve the neutral element and opposite
elements of a′ = (1, 0, 2T2,−3I1) from Table 1. We then solve the neutral element and opposite elements
of a′′ = (1, 0, 2T2,−3I1, 2F1) from Table 4. Next we solve the neutral element and opposite elements of
a′′′ = (1, 0, 2T2,−3I1, 2F1, 0) from Table 4. Finally, we solve the neutral element and opposite elements of a
from Table 4.

1. From Table 1, neut(a′) = (1, 0, 0,−I1) and anti(a′) = (1, 0,− 2
3 T2, c4 I1), where c4 ∈ R.

2. From Table 4 and combining the results of the above step: Being 2 6= 0 and 1 + 0 + 2 + (−3) + 2 6= 0,
thus neut(a′′) = (1, 0, 0,−I1, F1) and anti(a′′) = (1, 0,− 2

3 T2, c4 I1, c5F1), where c4 + c5 = 1
6 .
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3. From Table 4 and combining the results of the above step: Being 0 = 0 and 1+ 0+ 2+ (−3) + 2+ 0 6= 0,
thus neut(a′′′) = (1, 0, 0,−I2, F1, 0) and anti(a′′′) = (1, 0,− 2

3 T2, c4 I1, c5F1, 0), where c4 + c5 = 1
6 .

4. From Table 4 and combining the results of the above step: Being −2 6= 0 and 1 + 0 + 2 + (−3) + 2 +

0 + (−2) = 0, thus neut(a) = (1, 0, 0,−I1, F1, 0,−F3) and anti(a) = (1, 0,− 2
3 T2, c4 I1, c5F1, 0, c7F3),

where c4 + c5 = 1
6 , c7 ∈ R.

Example 7. For algebra system (RNQF213, ∗), and set F = Z5 = {[0], [1], [2], [3], [4]}, a = ([1], [0], [2]T2,
[2]I1, [2]F1, 0, [3]F3), solve the neutral element and opposite elements of a.

Similar to Example 6, according Algorithm 1 for algebra system (RNF213, ∗), firstly, we solve the neutral
element and opposite elements of a′ = ([1], [0], [2]T2, [2]I1) from Table 1. We then solve the neutral element
and opposite elements of a′′ = ([1], [0], [2]T2, [2]I1, [2]F1) from Table 4. Next, we solve the neutral element and
opposite elements of a′′′ = ([1], [0], [2]T2, [2]I1, [2]F1, [0]) from Table 4. Finally, we solve the neutral element
and opposite elements of a from Table 4.

1. From Table 1, neut(a′) = ([1], [0], [0], [4]I1) and anti(a′) = ([1], [0], [1]T2, c4 I1), where c4 ∈ F.
2. From Table 4 and combining the results of the above step: Being [2] 6= [0] and [1] + [0] + [2] + [2] +

[2] 6= [0], thus neut(a′′) = ([1], [0], [0], [4]I1, [1]F1) and anti(a′′) = ([1], [0], [1]T2, c4 I1, c5F1), where
c4 + c5 = [1].

3. From Table 4 and combining the results of the above step: Being [0] = [0] and [1] + [0] + [2] + [2] + [2] +
[0] 6= 0, thus neut(a′′′) = ([1], [0], [0], [4]I1, [1]F1, [0]) and anti(a′′′) = ([1], [0], [1]T2, c4 I1, c5F1, [0]),
where c4 + c5 = [1].

4. From Table 4 and combining the results of the above step: Being [3] 6= [0] and [1] + [0] + [2] +
[2] + [2] + [0] + [3] = 0, thus neut(a) = ([1], [0], [0], [4]I1, [1]F1, [0], [4]F3) and anti(a) =

([1], [0], [1]T2, c4 I1, c5F1, [0], c7F3), where c4 + c5 = [1], c7 ∈ F.

5. Conclusions

In this paper, we study the algebra structure of (NQF(RNFn, RNQFn),⊕), (NQF(RNFn, RNQFn), ∗)
and (NQF(RNFn, RNQFn), ?), and we prove that (NQF(RNFn, RNQFn), ∗) (or (NQF(RNFn,
RNQFn), ?)) is a neutrosophic extended triplet group, and provide new examples of neutrosophic
extended triplet group and the neutral element and opposite elements of each refined n-ary
neutrosophic number (refined neutrosophic quadruple number) can be obtained by given
algorithms. In the following, we can explore the algebra structure of (NQF(RNFn, RNQFn),⊕, ∗) or
(NQF(RNFn, RNQFn),⊕, ?). We can also explore the relation of neutrosophic quadruple numbers
and other algebra systems in papers [21–23]. Moreover, on the one hand, we will discuss the
neutrosophic quadruple numbers based on some particular ring which can form a neutrosophic
extended triplet group, while, on the other hand, we will introduce a new operation ◦ in order to
guarantee (NQF(RNFn, RNQFn), ∗, ◦) is a neutrosophic triplet ring.
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Abstract: Multi-attribute decision-making (MADM) is a part of management decision-making and
an important branch of the modern decision theory and method. MADM focuses on the decision
problem of discrete and finite decision schemes. Uncertain MADM is an extension and development
of classical multi-attribute decision making theory. When the attribute value of MADM is shown by
neutrosophic number, that is, the attribute value is complex data and needs three values to express,
it is called the MADM problem in which the attribute values are neutrosophic numbers. However,
in practical MADM problems, to minimize errors in individual decision making, we need to consider
the ideas of many people and synthesize their opinions. Therefore, it is of great significance to study
the method of attribute information aggregation. In this paper, we proposed a new theory—non-dual
multi-granulation neutrosophic rough set (MS)—to aggregate multiple attribute information and
solve a multi-attribute group decision-making (MGDM) problem where the attribute values are
neutrosophic numbers. First, we defined two kinds of non-dual MS models, intersection-type MS
and union-type MS. Additionally, their properties are studied. Then the relationships between MS,
non-dual MS, neutrosophic rough set (NRS) based on neutrosophic intersection (union) relationship,
and NRS based on neutrosophic transitive closure relation of union relationship are outlined, and a
figure is given to show them directly. Finally, the definition of non-dual MS on two universes is given
and we use it to solve a MGDM problem with a neutrosophic number as the attribute value.

Keywords: multi-granulation neutrosophic rough set; non-dual; two universes; multi-attribute group
decision making

1. Introduction

Fuzzy sets and rough sets are widely used to solve uncertain problems [1–4]. However, all these
theories have their own deficiency, such as in a voting, you may support, not support, be neutral, or
abstain from voting, so Smarandache present the definition of the neutrosophic set (NS) [5]. NS is an
extensional model of the fuzzy set and intuitionistic fuzzy set. But the original definition of NS is not
convenient to solve real-world problems, thus Wang et al. proposed a single-valued neutrosophic set
(SVNS) [6]. After that, SVNS was extended and used in many fields. Peng et al. [7] defined simplified
NS and obtained some properties. Peng et al. [8] proposed the definition of probability multi-valued
NS and studied its properties. Deli et al. [9] defined bipolar NS and studied its properties. Zhang
et al. [10] analyzed new inclusion relationships of SVNS and discussed its lattice structure. As an
extension of fuzzy sets and rough sets, many scholars combined them and got some results [11–13].
Yang et al. [14] combined SVNS and rough set, then produced a single-valued neutrosophic rough
set and discussed its properties. Now NSs and NRSs have been used widely in decision-making
problems [15–19].

From the perspective of particle computing, the above rough set theories are essentially defined in
a single particle space, and the lower and upper approximations (ULA) of the target concept is shown
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by the information particles in the particle space induced by a single binary relationship. However,
Qian et al. think that, in decision analysis problems, the relationship between the multiple decision
makers may be independent of each other, so multiple binary relations are needed to approximate the
target. Therefore, they put forward the concept of a multi-granularity rough set (MRS) model [20],
and define the optimistic MRS model and pessimistic MRS model, respectively. The biggest difference
between MRS and classical rough sets is that MRS can use the knowledge in a multi-granular space to
approximate the target. Additionally, because it analyzes the problem from multiple angles and levels,
it can obtain a more reasonable and satisfactory solution for the problem, so it has a better application
prospect in many practical decision-making problems. Yao et al. [21] studied the rough set models
under the multi-granulation approximation space. Now the MRS model has been used widely and has
produced some interesting results [22–28].

The ULA operator of most MRS models is dual, there are few articles studying the non-dual MRS
model or hybrid MRS model [29,30]. Zhang et al. [31] put forward non-dual MRS (union-type MRS
and intersection-type MRS) models and outline the relationships between MRSs. In this paper, we put
forward non-dual MS (intersection-type MS and union-type MS) models and study their properties.
Then we show the relationships between MS, non-dual MS, NRS-based neutrosophic union relation,
and NRS-based neutrosophic intersection relation. Finally, we propose non-dual MS models on two
universes and use it to solve MGDM problems with neutrosophic numbers as the attribute values.

The structure of this article is as follows. In Section 2, some basic notions and operations of
NRS and MS are introduced. In Section 3, the concepts of non-dual MS are put forward and their
qualities are investigated. In Section 4, the relationships between MS, non-dual MS, neutrosophic rough
set (NRS) based on neutrosophic intersection (union) relationship, and NRS based on neutrosophic
transitive closure relation of union relationship are discussed. In Section 5, non-dual MS models on
two universes are proposed and an application to solve the MGDM problem where the attribute values
are neutrosophic numbers is outlined. Finally, Section 6 provides our conclusions and outlook.

2. Preliminary

In this section, we look at several basic concepts of NRS and MS.

Definition 1 ([6]). A SVNS A is denoted by

A =
{
(x, TA(x), IA(x), FA(x))|x ∈ X

}
(1)

where TA(x) represents truth-membership function, IA(x) represents indeterminacy-membership function, FA(x)
represenst falsity-membership function and TA(x), IA(x), FA(x) ∈ [0, 1]. Additionally, they satisfy the condition
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

In this paper, “SVNS” is abbreviated to “NS” and we use the symbol NS(U) to denote the set of all
NSs in U.

Definition 2 ([6]). For any two NSs A and B, the inclusion relation, union, intersection, and complement
operations are defined:

(1) A ⊆ B iff ∀ x ∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x);
(2) A ∪ B = {(x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)) | x ∈ U};
(3) A ∩ B = {(x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)) | x ∈ U};
(4) Ac = {(x, FA(x), 1-IA(x), TA(x)) | x ∈ U}.
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Definition 3 [14]). Suppose (U, R) is a neutrosophic approximation space (NAS). ∀ A ∈ NS(U), the LUA of A,
denoted by R(A) and R(A), are defined as: ∀ x ∈ U,

R(A) = ∩
y∈U

(Rc(x, y)∪A(y)), R(A) = ∪
y∈U

(R(x, y)∩A(y))

The pair
(
R(A), R(A)

)
is called the SVNRS of A.

Definition 4 ([28]). Suppose (U, Ri) is a multi-granulation neutrosophic approximation space (MAS). A ∈
NS(U), the optimistic ULA of A, represented by MSo(A) and MS

o
(A), are defined:

MSo(A)(x) =
m∪

i=1

(
∩

y∈U
(Ri

c(x, y)∪A(y))
)

(2)

MS
o
(A)(x) =

m∩
i=1

(
∪

y∈U
(Ri(x, y)∩A(y))

)
(3)

Then the pair
(
MSo(A), MS

o
(A)

)
is called an optimistic MS when MSo(A) ,MS

o
(A).

Definition 5 ([28]). Suppose (U, Ri) is a MAS. ∀A ∈NS(U), the pessimistic ULA of A, represented by MSp(A)

and MS
p
(A), are defined:

MSp(A)(x) =
m∩

i=1

(
∩

y∈U
(Ri

c(x, y)∪A(y))
)

(4)

MS
p
(A)(x) =

m∪
i=1

(
∪

y∈U
(Ri(x, y)∩A(y))

)
(5)

Then the pair
(
MSp(A), MS

p
(A)

)
is called a pessimistic MS when MSo(A) ,MS

o
(A).

Proposition 1 ([28]). Suppose (U, Ri) be a MAS. ∀ A, B ∈ NS(U), then

(1) MSo(A) =∼MS
o
(∼ A), MSp(A) =∼MS

p
(∼ A).

(2) MS
o
(A) =∼MSo(∼ A), MS

p
(A) =∼MSp(∼ A).

(3) MSo(A∩ B) = MSo(A)∩MSo(B), MSp(A∩ B) = MSp(A)∩MSp(B).

(4) MS
o
(A∪ B) = MS

o
(A)∪MS

o
(B), MS

p
(A∪ B) = MS

p
(A)∪MS

p
(B).

(5) A ⊆ B⇒MSo(A) ⊆MSo(B), MSp(A) ⊆MSp(B) .

(6) A ⊆ B⇒MS
o
(A) ⊆MS

o
(B), MS

p
(A) ⊆MS

p
(B) .

(7) MSo(A)∪MSo(B) ⊆MSo(A∪ B), MSp(A)∪MSp(B) ⊆MSp(A∪ B).

(8) MS
o
(A∩ B) ⊆MS

o
(A)∩MS

o
(B), MS

p
(A∩ B) ⊆MS

p
(A)∩MS

p
(B).

Definition 6 ([14]). If A and B are two neutrosophic numbers in U, the operation of A and B is defined as follows:

(1) λA =
(
1− (1− TA)

λ, (IA)
λ, (FA)

λ
)

(6)

(2) A⊕ B = (TA + TB − TA · TB, IA · IB, FA · FB) (7)

Definition 7 ([10]). Let (t, i, f) be a neutrosophic number, the type-3 score function and type-3 accuracy function
are defined:

(1) s : D∗ → [0, 1], s(t, i, f ) =
t + (1− f )

2
(8)

(2) h : D∗ → [0, 1], h(t, i, f ) =
t

t + (1− f )
(9)
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Definition 8 ([10]). Let (t1, i1, f1) and (t2, i2, f2) be two neutrosophic numbers. Then

(1) If s(t1, i1, f1) < s(t2, i2, f2), then (t1, i1, f1) ≺ (t2, i2, f2).
(2) If s(t1, i1, f1) = s(t2, i2, f2), h(t1, i1, f1) < h(t2, i2, f2), then (t1, i1, f1) ≺ (t2, i2, f2).
(3) If s(t1, i1, f1) = s(t2, i2, f2), h(t1, i1, f1) = h(t2, i2, f2), i1 < i2, then (t1, i1, f1) ≺ (t2, i2, f2); if i1 = i2,

then (t1, i1, f1) = (t2, i2, f2).

3. Non-Dual Multi-Granulation Neutrosophic Rough Set

In this section, we introduce non-dual MS (intersection-type MS and union-type MS) models and
study their properties.

Definition 9. Let tuple ordered set (U, Ri) (1 ≤ i ≤ m) be a MAS. For any A ∈ NS(U), the intersection-type

ULA MS(∩)(A) and MS
(∩)

(A) in (U, Ri) are defined:

MS(∩)(A)(x) =
m∩

i=1

(
∩

y∈U
(Ri

c(x, y)∪A(y))
)

(10)

MS
(∩)

(A)(x) =
m∩

i=1

(
∪

y∈U
(Ri(x, y)∩A(y))

)
(11)

Obviously, MS(∩)(A) and MS
(∩)

(A) are two NSs of U. Furthermore, A is called a definable NS on (U, Ri)

when MS(∩)(A) = MS
(∩)

(A). Otherwise, the pair
(
MS(∩)(A), MS

(∩)
(A)

)
is called intersection-type MS.

Definition 10. Let tuple ordered set (U, Ri) (1 ≤ i ≤ m) be a MAS. For any A ∈ NS(U), the union-type ULA

MS(∪)(A) and MS
(∪)

(A) in (U, Ri) are defined:

MS(∪)(A)(x) =
m∪

i=1

(
∩

y∈U
(Ri

c(x, y)∪A(y))
)
, (12)

MS
(∪)

(A)(x) =
m∪

i=1

(
∪

y∈U
(Ri(x, y)∩A(y))

)
. (13)

Obviously, MS(∪)(A) and MS
(∪)

(A) are two NSs of U. Furthermore, A is called a definable NS on (U, Ri)

when MS(∪)(A) = MS
(∪)

(A). Otherwise, the pair
(
MS(∪)(A), MS

(∪)
(A)

)
is called union-type MS.

Proposition 2. Let (U, Ri) be a MAS, Ri (1 ≤ i ≤ m) be the neutrosophic relations on U. For any A, B ∈ NS(U),
we have

(1) MS(∩)(A∩ B) = MS(∩)(A)∩MS(∩)(B), MS
(∩)

(A∪ B) = MS
(∩)

(A)∪MS
(∩)

(B);

(2) MS(∪)(A∩ B) = MS(∪)(A)∩MS(∪)(B), MS
(∪)

(A∪ B) = MS
(∪)

(A)∪MS
(∪)

(B);

(3) A ⊆ B⇒MS(∩)(A) ⊆MS(∩)(B) , A ⊆ B⇒MS
(∩)

(A) ⊆MS
(∩)

(B) ;

(4) A ⊆ B⇒MS(∪)(A) ⊆MS(∪)(B) , A ⊆ B⇒MS
(∪)

(A) ⊆MS
(∪)

(B) ;

(5) MS(∩)(A∪ B) ⊇MS(∩)(A)∪MS(∩)(B), MS
(∩)

(A∩ B) ⊆MS
(∩)

(A)∩MS
(∩)

(B);

(6) MS(∪)(A∪ B) ⊇MS(∪)(A)∪MS(∪)(B), MS
(∪)

(A∩ B) ⊆MS
(∪)

(A)∩MS
(∪)

(B).
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Proof. (1) By Definition 9, we have

MS(∩)(A∩ B) =
m∩

i=1

(
∩

y∈U
(Ri

c(x, y)∪ (A∩ B)(y))
)

=
m∩

i=1

(
∩

y∈U
((Ri

c(x, y)∪A(y))∩ (Ri
c(x, y)∪ B(y)))

)

=

(
m∩

i=1

(
∩

y∈U
(Ri

c(x, y)∪A(y))
))
∩

(
m∩

i=1

(
∩

y∈U
(Ri

c(x, y)∪ B(y))
))

= MS(∩)(A)∩MS(∩)(B).

Similarly, by Definition 9, we can get

MS
(∩)

(A∪ B) = MS
(∩)

(A)∪MS
(∩)

(B).

(2) By Definition 10, we have

MS(∪)(A∩ B) =
m∪

i=1

(
∩

y∈U
(Ri

c(x, y)∪ (A∩ B)(y))
)

=
m∪

i=1

(
∩

y∈U
((Ri

c(x, y)∪A(y))∩ (Ri
c(x, y)∪ B(y)))

)

=

(
m∪

i=1

(
∩

y∈U
(Ri

c(x, y)∪A(y))
))
∩

(
m∪

i=1

(
∩

y∈U
(Ri

c(x, y)∪ B(y))
))

= MS(∪)(A)∩MS(∪)(B).

Similarly, by Definition 10, we can get

MS
(∪)

(A∪ B) = MS
(∪)

(A)∪MS
(∪)

(B).

(3) Suppose A ⊆B, then TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x),

TMS(∩)(A)
(x) =

m∧
i=1
∧

y∈U
(
FRi(x, y)∨ TA(y)

)
≤ m∧

i=1
∧

y∈U
(
FRi(x, y)∨ TB(y)

)
= TMS(∩)(B)(x).

IMS(∩)(A)
(x) =

m∨
i=1
∨

y∈U
[(

1− IRi(x, y)
)
∧ IA(y)

]
≥ m∨

i=1
∨

y∈U
[(

1− IRi(x, y)
)
∧ IB(y)

]
= IMS(∩)(B)(x).

FMS(∩)(A∪B)(x) =
m∨

i=1
∨

y∈U
[
TRi(x, y)∧ FA(y)

]
≥ m∨

i=1
∨

y∈U
[
TRi(x, y)∧ FB(y)

]
= FMS(∩)(B)(x).

Hence, MS(∩)(A) ⊆MS(∩)(B).
Similarly, we can get MS

(∩)
(A) ⊆MS

(∩)
(B).

(4) The proof is similar with (3).
(5) According to Definition 9, we have

TMS(∩)(A∪B)(x) =
m∧

i=1
∧

y∈U
[
FRi(x, y)∨ (TA(y)∨ TB(y))

]
=

m∧
i=1
∧

y∈U
[(

FRi(x, y)∨ TA(y)
)
∨

(
FRi(x, y)∨ TB(y)

)]

≥
[

m∧
i=1
∧

y∈U
(
FRi(x, y)∨ TA(y)

)]
∨

[
m∧

i=1
∧

y∈U
(
FRi(x, y)∨ TB(y)

)]
= TMS(∩)(A)

(x)∨ TMS(∩)(B)(x).

IMS(∩)(A∪B)(x) =
m∨

i=1
∨

y∈U
[(

1− IRi(x, y)
)
∧ (IA(y)∧ IB(y))

]

=
m∨

i=1
∨

y∈U
[((

1− IRi(x, y)
)
∧ IA(y)

)
∧

((
1− IRi(x, y)

)
∧ IB(y)

)]

≤
[

m∨
i=1
∨

y∈U
((

1− IRi(x, y)
)
∧ IA(y)

)]
∧

[
m∨

i=1
∨

y∈U
((

1− IRi(x, y)
)
∧ IB(y)

)]

= IMS(∩)(A)
(x)∧ IMS(∩)(B)(x).
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FMS(∩)(A∪B)(x) =
m∨

i=1
∨

y∈U
[
TRi(x, y)∧ (FA(y)∧ FB(y))

]
=

m∨
i=1
∨

y∈U
[(

TRi(x, y)∧ FA(y)
)
∧

(
TRi(x, y)∧ FB(y)

)]

≤
[

m∨
i=1
∨

y∈U
(
TRi(x, y)∧ FA(y)

)]
∧

[
m∨

i=1
∨

y∈U
(
TRi(x, y)∧ FB(y)

)]
= FMS(∩)(A)

(x)∧ FMS(∩)(B)(x).

Hence, MS(∩)(A∪ B) ⊇MS(∩)(A)∪MS(∩)(B).
Additionally, we have

T
MS

(∩)
(A∩B)

(x) =
m∧

i=1
∨

y∈U
[
TRi(x, y)∧ (TA(y)∧ TB(y))

]
=

m∧
i=1
∨

y∈U
[(

TRi(x, y)∧ TA(y)
)
∧

(
TRi(x, y)∧ TB(y)

)]

≤
[

m∧
i=1
∨

y∈U
(
TRi(x, y)∧ TA(y)

)]
∧

[
m∧

i=1
∨

y∈U
(
TRi(x, y)∧ TB(y)

)]
= T

MS
(∩)

(A)
(x)∧ T

MS
(∩)

(B)
(x).

I
MS

(∩)
(A∩B)

(x) =
m∨

i=1
∧

y∈U
[
IRi(x, y)∨ (IA(y)∨ IB(y))

]
=

m∨
i=1
∧

y∈U
[(

IRi(x, y)∨ IA(y)
)
∨

(
IRi(x, y)∨ IA(y)

)]

≤
[

m∨
i=1
∧

y∈U
(
IRi(x, y)∨ IA(y)

)]
∧

[
m∨

i=1
∧

y∈U
(
IRi(x, y)∨ IB(y)

)]
= I

MS
(∩)

(A)
(x)∧ I

MS
(∩)

(B)
(x).

F
MS

(∩)
(A∩B)

(x) =
m∨

i=1
∧

y∈U
[
FRi(x, y)∨ (FA(y)∨ FB(y))

]
=

m∨
i=1
∧

y∈U
[(

FRi(x, y)∨ FA(y)
)
∨

(
FRi(x, y)∨ FA(y)

)]

≥
[

m∨
i=1
∧

y∈U
(
FRi(x, y)∨ FA(y)

)]
∨

[
m∨

i=1
∧

y∈U
(
FRi(x, y)∨ FB(y)

)]
= F

MS
(∩)

(A)
(x)∨ F

MS
(∩)

(B)
(x).

Hence, MS
(∩)

(A∩ B) ⊆MS
(∩)

(A)∩MS
(∩)

(B).
(6) According to Definition 10, we have

TMS(∪)(A∪B)(x) =
m∨

i=1
∧

y∈U
[
FRi(x, y)∨ (TA(y)∨ TB(y))

]
=

m∨
i=1
∧

y∈U
[(

FRi(x, y)∨ TA(y)
)
∨

(
FRi(x, y)∨ TB(y)

)]

≥
[

m∨
i=1
∧

y∈U
(
FRi(x, y)∨ TA(y)

)]
∨

[
m∨

i=1
∧

y∈U
(
FRi(x, y)∨ TB(y)

)]
= TMS(∪)(A)

(x)∨ TMS(∪)(B)(x).

IMS(∪)(A∪B)(x) =
m∧

i=1
∨

y∈U
[(

1− IRi(x, y)
)
∧ (IA(y)∧ IB(y))

]

=
m∧

i=1
∨

y∈U
[((

1− IRi(x, y)
)
∧ IA(y)

)
∧

((
1− IRi(x, y)

)
∧ IB(y)

)]

≤
[

m∧
i=1
∨

y∈U
((

1− IRi(x, y)
)
∧ IA(y)

)]
∧

[
m∧

i=1
∨

y∈U
((

1− IRi(x, y)
)
∧ IB(y)

)]

= IMS(∪)(A)
(x)∧ IMS(∪)(B)(x).

FMS(∪)(A∪B)(x) =
m∧

i=1
∨

y∈U
[
TRi(x, y)∧ (FA(y)∧ FB(y))

]
=

m∧
i=1
∨

y∈U
[(

TRi(x, y)∧ FA(y)
)
∧

(
TRi(x, y)∧ FB(y)

)]

≤
[

m∧
i=1
∨

y∈U
(
TRi(x, y)∧ FA(y)

)]
∧

[
m∧

i=1
∨

y∈U
(
TRi(x, y)∧ FB(y)

)]
= FMS(∪)(A)

(x)∧ FMS(∪)(B)(x).

Hence, MS(∪)(A∪ B) ⊇MS(∪)(A)∪MS(∪)(B).
Additionally, we have

T
MS

(∪)
(A∩B)

(x) =
m∨

i=1
∨

y∈U
[
TRi(x, y)∧ (TA(y)∧ TB(y))

]
=

m∨
i=1
∨

y∈U
[(

TRi(x, y)∧ TA(y)
)
∧

(
TRi(x, y)∧ TB(y)

)]

≤
[

m∨
i=1
∨

y∈U
(
TRi(x, y)∧ TA(y)

)]
∧

[
m∨

i=1
∨

y∈U
(
TRi(x, y)∧ TB(y)

)]
= T

MS
(∪)

(A)
(x)∧ T

MS
(∪)

(B)
(x).

I
MS

(∪)
(A∩B)

(x) =
m∧

i=1
∧

y∈U
[
IRi(x, y)∨ (IA(y)∨ IB(y))

]
=

m∧
i=1
∧

y∈U
[(

IRi(x, y)∨ IA(y)
)
∨

(
IRi(x, y)∨ IA(y)

)]

≤
[

m∧
i=1
∧

y∈U
(
IRi(x, y)∨ IA(y)

)]
∧

[
m∧

i=1
∧

y∈U
(
IRi(x, y)∨ IB(y)

)]
= I

MS
(∪)

(A)
(x)∧ I

MS
(∪)

(B)
(x).

F
MS

(∪)
(A∩B)

(x) =
m∧

i=1
∧

y∈U
[
FRi(x, y)∨ (FA(y)∨ FB(y))

]
=

m∧
i=1
∧

y∈U
[(

FRi(x, y)∨ FA(y)
)
∨

(
FRi(x, y)∨ FA(y)

)]

≥
[

m∧
i=1
∧

y∈U
(
FRi(x, y)∨ FA(y)

)]
∨

[
m∧

i=1
∧

y∈U
(
FRi(x, y)∨ FB(y)

)]
= F

MS
(∪)

(A)
(x)∨ F

MS
(∪)

(B)
(x).
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Hence, MS
(∪)

(A∩ B) ⊆MS
(∪)

(A)∩MS
(∪)

(B). �

4. The Relationships between Multi-Granulation Neutrosophic Rough Set Models

In this section, we discuss the relationships between MS, non-dual MS, neutrosophic rough
set (NRS) based on neutrosophic intersection (union) relationship, and NRS based on neutrosophic
transitive closure relation of union relationship and show it by a relational graph.

Definition 11. Suppose U is a non-empty finite universe, and Ri (1 ≤ i ≤ m) is the binary NR on U. The ULA

based on neutrosophic union relationship, represented by
m∪

i=1
Ri(A) and

m∪
i=1

Ri(A), are defined:

m∪
i=1

Ri(A)(x) = ∩
y∈U

(( m∪
i=1

Ri(x, y)
)c
∪A(y)

)
, (14)

m∪
i=1

Ri(A)(x) = ∪
y∈U

(( m∪
i=1

Ri(x, y)
)
∩A(y)

)
. (15)

Definition 12. Suppose U is a non-empty finite universe, and Ri (1 ≤ i ≤ m) is the binary NR on U. The ULA

based on neutrosophic intersection relationship, represented by
m∩

i=1
Ri(A) and

m∩
i=1

Ri(A), are defined:

m∩
i=1

Ri(A)(x) = ∩
y∈U

(( m∩
i=1

Ri(x, y)
)c
∪A(y)

)
, (16)

m∩
i=1

Ri(A)(x) = ∪
y∈U

(( m∩
i=1

Ri(x, y)
)
∩A(y)

)
. (17)

Definition 13 ([32]). Suppose R is a neutrosophic relation in U. The minimal transitive neutrosophic relation
containing R is called transitive closure of R, denoted by t(R).

Proposition 3. Suppose R is a neutrosophic relation in U. Then t(R) =
∞∪

k=1
Rk. Where Rk = R•R•R• · · · ,

(R•S)(x, z) = ∪
y∈Y

(R(x, y)∩ S(y, z)).

Definition 14. Suppose (U, R) is neutrosophic approximation space. Suppose U is a non-empty finite universe,
Ri (1 ≤ i ≤ m) is neutrosophic relations on U, and t(R) denotes the transitive closure of the union of neutrosophic
relations Ri on U.∀A ∈ NS(U), the ULA of A, denoted by t(R)(A) and t(R)(A), are defined as: ∀ x ∈ U,

t(R)(A)(x) = ∩
y∈U

[
t(R)c(x, y)∪A(y)

]
, t(R)(A)(x) = ∪

y∈U
(t(R)(x, y)∩A(y)).

Proposition 4. Let (U, Ri) be a MAS, Ri (1 ≤ i≤ m) be neutrosophic relations on U. For any A ∈ NS (U),
we have

(1) t(R)(A) ⊆MSp(A) = MS(∩)(A) =
m∪

i=1
Ri(A) ⊆ Ri(A) ⊆MSo(A) = MS(∪)(A) ⊆ m∩

i=1
Ri(A) ⊆ X;

(2) X ⊆ m∩
i=1

Ri(A) ⊆MS
o
(A) = MS

(∩)
(A) ⊆ Ri(A) ⊆MS

p
(A) = MS

(∪)
(A) =

m∪
i=1

Ri(A) ⊆ t(R)(A).
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Proof. (1) According to Definition 4, Definition 5, Definition 9, and Definition 10, we can get

MS
o
(A) = MS

(∩)
(A), MS

p
(A) = MS

(∪)
(A). Let R = R1 ∪ R2 ∪ · · · ∪ Rm, t(R) = R ∪ R2 ∪ · · · , then

(t(R))c = Rc ∩ (R2)c ∩ · · · , so (t(R))c ⊆ Rc, thus

t(R)(A)(x) = ∩
y∈U

[
t(R)c(x, y)∪A(y)

]

⊆ ∩
y∈U

[Rc(x, y)∪A(y)] =
m∪

i=1
Ri(A)(x)

= ∩
y∈U

[(R1
c ∩R2

c ∩ · · · ∩Rm
c)(x, y)∪A(y)]

= ∩
y∈U

[(R1
c(x, y)∪A(y))∩ (R2

c(x, y)∪A(y))∩ · · · ∩ (Rm
c(x, y)∪A(y))]

=

[
∩

y∈U
(R1

c(x, y)∪A(y))
]
∩

[
∩

y∈U
(R2

c(x, y)∪A(y))
]
∩ · · · ∩

[
∩

y∈U
(Rm

c(x, y)∪A(y))
]

=
m∩

i=1

(
∩

y∈U
(Ri

c(x, y)∪A(y))
)
= MSp(A)(x) = MS(∩)(A)

⊆ ∩
y∈U

(Ri
c(x, y)∪A(y)) = Ri(A)(x).

Additionally, we have

Ri(A)(x) = ∩
y∈U

(Ri
c(x, y)∪A(y))

⊆ m∪
i=1

(
∩

y∈U
(Ri

c(x, y)∪A(y))
)
= MSo(A)(x) = MS(∪)(A)(x)

⊆ ∩
y∈U

(R1
c(x, y)∪R2

c(x, y)∪ · · · ∪Rm
c(x, y)∪A(y))

= ∩
y∈U

((R1
c ∪R2

c ∪ · · · ∪Rm
c)(x, y)∪A(y))

= ∩
y∈U

(( m∩
i=1

Ri(x, y)
)c
(x, y)∪A(y)

)
=

m∩
i=1

Ri(A) ⊆ X.

Then we get the proof.
(2) According to Definition 4, Definition 5, Definition 9, and Definition 10, we can get MSp(A) =

MS(∩)(A), MSo(A) = MS(∪)(A). Let R = R1 ∪ R2 ∪ · · · ∪ Rm, t(R) = R ∪ R2 ∪ · · · , then R ⊆ t(R), thus

X ⊆ m∩
i=1

Ri(A)(x) = ∪
y∈U

(( m∩
i=1

Ri(x, y)
)
∩A(y)

)

⊆ ∪
y∈U

(Ri(x, y)∩A(y)) = Ri(A)(x)

⊆ m∪
i=1

(
∪

y∈U
(Ri(x, y)∩A(y))

)
= MS

p
(A)(x) = MS

(∪)
(A)(x)

= ∪
y∈U

(( m∪
i=1

Ri(x, y)
)
∩A(y)

)
=

m∪
i=1

Ri(A)(x).

Additionally, we have

m∪
i=1

Ri(A)(x) = ∪
y∈U

(( m∪
i=1

Ri(x, y)
)
∩A(y)

)

= ∪
y∈U

(R(x, y)∩A(y))

⊆ ∪
y∈U

((
R∪R2 ∪ · · ·

)
(x, y)∩A(y)

)

= t(R)(A)(x).

Then we get the proof. �

The above results show that the four kinds of lower and upper approximations equipped with the
inclusion relation ⊆ can construct a lattice. This fact can be described by Figure 1, where i , j, each

178



Symmetry 2019, 11, 910

node denotes an approximation or a concept, and each diagonal line connects two approximations, the
lower node is a subset of the upper node.
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5. The Application of Non-Dual Multi-Granulation Neutrosophic Rough Set on Two Universes
in MGDM

In this section, we propose the concept of non-dual MS on two universes and we talk about
the relationship between non-dual MS on two universes and non-dual MS on a single universe.
Additionally, we used non-dual MS on two universes to deal with a MGDM problem where the
attribute values are neutrosophic numbers.

Definition 14 ([28]). Suppose U, V are two non-empty finite universes, and Ri ∈ NS (U × V) (1 ≤ i ≤ m) is
binary NR. We call (U, V, Ri) the MAS on two universes.

Definition 15. Let tuple ordered set (U, V, Ri) (1 ≤ i ≤ m) be a MAS on two universes. For any A ∈ NS(U), the

intersection-type ULA MNRS(∩)(A) and MNRS
(∩)

(A) in (U, V, Ri) are defined:

MNRS(∩)(A)(x) =
m∩

i=1

(
∩

y∈V
(Ri

c(x, y)∪A(y))
)
, (18)

MNRS
(∩)

(A)(x) =
m∩

i=1

(
∪

y∈V
(Ri(x, y)∩A(y))

)
. (19)

Obviously, MNRS(∩)(A) and MNRS
(∩)

(A) are two NSs. Furthermore, A is called a definable NS on

(U, V, Ri) when MNRS(∩)(A) = MNRS
(∩)

(A). Otherwise, the pair
(
MNRS(∩)(A), MNRS

(∩)
(A)

)
are called

intersection-type MS on two universes.

Definition 16. Let tuple ordered set (U, V, Ri) (1 ≤ i ≤ m) be a MAS on two universes. For any A ∈ NS(U), the

union-type ULA MNRS(∪)(A) and MNRS
(∪)

(A) in (U, V, Ri) are defined:

MNRS(∪)(A)(x) =
m∪

i=1

(
∩

y∈V
(Ri

c(x, y)∪A(y))
)
, (20)
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MNRS
(∪)

(A)(x) =
m∪

i=1

(
∪

y∈V
(Ri(x, y)∩A(y))

)
. (21)

Obviously, MNRS(∪)(A) and MNRS
(∪)

(A) are two NSs. Furthermore, A is called a definable NS on

(U, V, Ri) when MNRS(∪)(A) = MNRS
(∪)

(A). Otherwise, the pair
(
MNRS(∪)(A), MNRS

(∪)
(A)

)
are called

union-type MS on two universes.

Proposition 5. Let (U, V, Ri) be a MAS on two universes. For any A, B ∈ NS(U), we have

(1) MNRS(∩)(A∩ B) = MNRS(∩)(A) ∩ MNRS(∩)(B), MNRS
(∩)

(A∪ B) = MNRS
(∩)

(A) ∪
MNRS

(∩)
(B);

(2) MNRS(∪)(A∩ B) = MNRS(∪)(A) ∩ MNRS(∪)(B), MNRS
(∪)

(A∪ B) = MNRS
(∪)

(A) ∪
MNRS

(∪)
(B);

(3) A ⊆ B⇒MNRS(∩)(A) ⊆MNRS(∩)(B) , A ⊆ B⇒MNRS
(∩)

(A) ⊆MNRS
(∩)

(B) ;

(4) A ⊆ B⇒MNRS(∪)(A) ⊆MNRS(∪)(B) , A ⊆ B⇒MNRS
(∪)

(A) ⊆MNRS
(∪)

(B) ;

(5) MNRS(∩)(A∪ B) ⊇ MNRS(∩)(A) ∪ MNRS(∩)(B), MNRS
(∩)

(A∩ B) ⊆ MNRS
(∩)

(A) ∩
MNRS

(∩)
(B);

(6) MNRS(∪)(A∪ B) ⊇ MNRS(∪)(A) ∪ MNRS(∪)(B), MNRS
(∪)

(A∩ B) ⊆ MNRS
(∪)

(A) ∩
MNRS

(∪)
(B).

Proof. The proof is similar with Proposition 2. �

Remark 1. Note that if the two universes are the same, then the intersection-type (union-type) MS on two
universes degenerates into the intersection-type (union-type) MS on a single universe in Section 3.

Next, we will use the non-dual MSs to solve the MGDM problems where the attribute values
are neutrosophic numbers. For a multiple attribute group decision making problem, let U = {x1,
x2, . . . , xn} be the decision set and V = {y1, y2, . . . , ym} be the criteria set, Rl represent l evaluation
experts. Here, Rl ∈ NR (U × V) is NRs from U to V, where ∀(xi, yj) ∈ U × V, Rl(xi, yj) denotes the
degree of membership about criteria set yj (yj ∈ V) with respect to xi (xi ∈ U). In the following, we show
the process about the non-dual MSs on two universes to solve MGDM problems with neutrosophic
numbers as attribute values.

Step 1 Calculate non-dual multi-granulation neutrosophic rough ULA MNRS(∩)(A), MNRS
(∩)

(A),

MNRS(∪)(A), and MNRS
(∪)

(A).
Step 2 Calculate the sum of non-dual multi-granulation neutrosophic rough ULA MNRS(∩) =

λMNRS(∩)(A) ⊕ (1− λ)MNRS
(∩)

(A), MNRS(∪) = λMNRS(∪)(A) ⊕ (1− λ)MNRS
(∪)

(A), λ ∈ [0, 1]
according to Definition 6.

Step 3 Make a descending order according to Definitions 7 and 8 for the multi-granulation
neutrosophic rough sets in step 2 and use the Borda number scoring method in reference [33] to make
a total rank.

In practice, the parameter λ represents a decision maker’s preference for risk. In general, the
higher the parameter λ is, the more likely the decision maker is to be risk-prone. The smaller the
parameter λ is, the less risk the decision maker prefers. Therefore, the value of the parameter λ is
determined by the decision maker’s preference or by an advance empirical study.

Next, we show the algorithm to calculate the ULA of a union-type multi-granulation neutrosophic
rough set.
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Algorithm 1 The lower approximation of a union-type multi-granulation neutrosophic rough set

Define the method to acquire a complement for a matrix A:
each neutrosophic number in matrix A do complement the operator according to the following Formula:
ac = (Fa, 1− Ia, Ta).
Return matrix C.
Define the method for two matrixes to do union operator:
the union of B and C is the neutrosophic number of each row in C to do union operator with the corresponding
neutrosophic number in B according to the Formula (22)

a∨3 b = (max(Ta, Tb), min(Ia, Ib), min(Fa, Fb)). (22)

Return matrix D.
Define the method for one matrix to do intersection operator:
the neutrosophic numbers of each row in D do intersection operator according to the Formula (23)

a∧3 b = (min(Ta, Tb), max(Ia, Ib), max(Fa, Fb)). (23)

Return matrix E.
Define the method for one matrix to do union operator:
the neutrosophic numbers of each row in E do union operator according to the Formula (22).
Return matrix F.
For the number of iterations is h,
Transfer the method of acquire complement, assign X.
Get Y.
Transfer the method for two matrixes to do union operator, assign Y, Z.
Get M.
Transfer the method to do intersection operator, assign M.
Get N.
End for.
Combine h matrixes N.
Get P.
Transfer the method for one matrix to do union operator, assign P.
Get Q.

X, Y, M are matrixes which line numbers are m, column number is n, and every membership
is a neutrosophic number. Z is a matrix which line number is 1, column number is n, and every
membership is a neutrosophic number. N and Q are matrixes which line numbers are m, column
number is 1, and every membership is a neutrosophic number. P is a matrix which line number is m,
column number is h, and every membership is a neutrosophic number.

The lower approximation of a union-type multi-granulation neutrosophic rough set is the transpose
of matrix Q.

181



Symmetry 2019, 11, 910

Algorithm 2 The upper approximation of a union-type multi-granulation neutrosophic rough set

Define the method for two matrixes to do intersection operator:
the intersection of B and C is the neutrosophic number of each row in C to do intersection operator with the
corresponding neutrosophic number in B according to the Formula (23).
Return matrix D.
Define the method for one matrix to do union operator:
the neutrosophic numbers of each row in D do union operator according to the Formula (22).
Return matrix E.
For the number of iterations is h,
Transfer the method for two matrixes to do intersection operator, assign Y, Z.
Get M.
Transfer the method for one matrix to do union operator, assign M.
Get N.
End for.
Combine h matrixes N.
Get P.
Transfer the method for one matrix to do intersection operator, assign P.
Get Q.

Y, M are matrixes which line numbers are m, column number is n, and every membership is a
neutrosophic number. Z is a matrix which line number is 1, column number is n, and every membership
is a neutrosophic number. N and Q are matrixes which line numbers are m, column number is 1, and
every membership is a neutrosophic number. P is a matrix which line number is m, column number is
h, and every membership is a neutrosophic number.

The upper approximation of a union-type multi-granulation neutrosophic rough set is the
transpose of matrix Q.

With the same method we can get the ULA of an intersection-type multi-granulation neutrosophic
rough set. Then, to decide the value of λ, we calculate the sum of ULA of the union-type MS and
intersection-type MS according to Formula (6) and (7), and rank them according to Definition 7.

Next, we show an example.

Example 1. We consider the decision making problem adapted from reference [34]. Suppose U = {x1, x2, x3} is a
criterion set, where x1 represents the ability of salesman, x2 represents the overall condition of the stable supplier,
and x3 represents the position of high flow. Let V = {y1, y2, y3, y4, y5} be the decision set, where y1 represents
shop 1, y2 represents shop 2, y3 represents shop 3, y4 represents shop 4, and y5 represents shop 5.

Assume there are three experts. They provide their evaluations shown in Tables 1–3 based on their
knowledge and experience. The data of the three tables were adapted from Table 2 in reference [34].
We take the first positive membership and negative membership of the intuitionistic fuzzy set of
interval values y1–y5 in Table 2 as the true membership and false membership of the neutrosophic set,
respectively, and the second negative membership as the uncertain membership of the neutrosophic
set. Let A = {(0.9, 0.1, 0.2), (0.7, 0.7, 0.3), (0.5, 0.8, 0.6)}.

Table 1. Neutrosophic relation R1.

R1 x1 x2 x3

y1 (0.75, 0.14, 0.09) (0.86, 0.04, 0.01) (0.66, 0.30, 0.29)
y2 (0.44, 0.33, 0.29) (0.51, 0.09, 0.04) (0.54, 0.29, 0.27)
y3 (0.54, 0.09, 0.08) (0.66, 0.14, 0.06) (0.54, 0.36, 0.34)
y4 (0.56, 0.19, 0.14) (0.50, 0.20, 0.12) (0.44, 0.26, 0.23)
y5 (0.33, 0.31, 0.30) (0.43, 0.16, 0.02) (0.21, 0.61, 0.60)
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Table 2. Neutrosophic relation R2.

R2 x1 x2 x3

y1 (0.71, 0.10, 0.08) (0.57, 0.01, 0.00) (0.56, 0.09, 0.09)
y2 (0.39, 0.54, 0.43) (0.59, 0.11, 0.01) (0.44, 0.19, 0.18)
y3 (0.52, 0.17, 0.07) (0.63, 0.04, 0.02) (0.37, 0.54, 0.51)
y4 (0.31, 0.09, 0.08) (0.52, 0.31, 0.09) (0.41, 0.29, 0.27)
y5 (0.10, 0.61, 0.59) (0.33, 0.33, 0.13) (0.19, 0.09, 0.07)

Table 3. Neutrosophic relation R3.

R3 x1 x2 x3

y1 (0.89, 0.06, 0.05) (0.86, 0.01, 0.01) (0.77, 0.21, 0.20)
y2 (0.61, 0.30, 0.27) (0.76, 0.09, 0.01) (0.56, 0.27, 0.25)
y3 (0.64, 0.20, 0.10) (0.63, 0.01, 0.01) (0.59, 0.33, 0.29)
y4 (0.68, 0.16, 0.04) (0.59, 0.03, 0.02) (0.57, 0.36, 0.31)
y5 (0.39, 0.23, 0.10) (0.34, 0.30, 0.19) (0.29, 0.59, 0.49)

By Definitions 15 and 16, we can compute

MNRS(∪)(A) =
{
(y1, 0.50, 0.70, 0.56), (y2, 0.50, 0.71, 0.44), (y3, 0.51, 0.70, 0.37), (y4, 0.50, 0.70, 0.41),
(y5, 0.60, 0.70, 0.30)

} ,

MNRS
(∪)

(A) =
{
(y1, 0.89, 0.10, 0.20), (y2, 0.70, 0.30, 0.27), (y3, 0.66, 0.10, 0.20), (y4, 0.68, 0.10, 0.20),
(y5, 0.43, 0.23, 0.20)

} ,

MNRS(∩)(A) =
{
(y1, 0.50, 0.80, 0.60), (y2, 0.50, 0.80, 0.56), (y3, 0.50, 0.70, 0.59), (y4, 0.50, 0.74, 0.57),
(y5, 0.50, 0.80, 0.30)

} ,

MNRS
(∩)

(A) =
{
(y1, 0.71, 0.14, 0.20), (y2, 0.51, 0.54, 0.30), (y3, 0.63, 0.20, 0.20), (y4, 0.52, 0.19, 0.20),
(y5, 0.33, 0.61, 0.30)

} ,

Let λ = 0.3, then

MNRS(∪)(A) =
{
(y1, 0.8267, 01793, 0.2723), (y2, 0.6525, 0.3885, 0.2896), (y3, 0.6183, 0.1793, 0.2258),
(y4, 0.6341, 0.1793, 0.2480), (y5, 0.4874, 0.3212, 0.2236)

} ,

MNRS(∩)(A) =
{
(y1, 0.6585, 0.2362, 0.2780), (y2, 0.5070, 0.6076, 0.3617), (y3, 0.5950, 0.2912, 0.2767),
(y4, 0.5141, 0.2857, 0.2738), (y5, 0.3863, 0.6617, 0.3000)

} ,

Then, according to Definition 6, we can get

s(∪) (y1) = 0.5259, s(∪) (y2) = 0.6814, s(∪) (y3) = 0.6963, s(∪) (y4) = 0.6930, s(∪) (y5) = 0.6319.

So, the ranking result for union-type MS is: y1 ≺ y5 ≺ y2 ≺ y4 ≺ y3.

s(∩) (y1) = 0.6903, s(∩)(y2) = 0.5726, s(∩)(y3) = 0.6592, s(∩)(y4) = 0.6201, s(∩)(y5) = 0.5432.

So, the ranking result for intersection-type MS is: y5 ≺ y2 ≺ y4 ≺ y3 ≺ y1.
Using the Borda counting method, score 4, 3, 2, 1, and 0 for the first, second, third, fourth, and

fifth place, respectively, then we can get

B(x1) = 4, B(x2) =3, B(x3) = 7, B(x4) = 5, B(x5) = 1.
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So, when λ = 0.3, the best choice, shop 3, is chosen.

6. Conclusions

The multi-granulation neutrosophic rough set is a useful tool for MGDM problems. In this
paper, we proposed non-dual MSs and study their operators and properties. Then we discussed
the relationship between NRS, optimistic (pessimistic) MS, non-dual MS, NRS based on intersection
(union) NRs, and NRS based on transitive closure relationship of union NRs, we used Figure 1 to
show the relationship. Furthermore, we proposed a non-dual MS on two universes and talk about
the relationship between non-dual MS on two universes and non-dual MS on a single universe, and
we used non-dual MS on two universes to solve a MGDM problem where the attribute values were
neutrosophic numbers.

For future orientation, we will research other types of fusions of MRSs and NSs. Additionally, we
will study the applications of the concepts in this paper to totally-dependent neutrosophic sets and
some algebraic systems and discuss in relation to other algorithms [35–44].
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Abstract: Supply chain sustainability has become one of the most attractive decision management
topics. There are many articles that have focused on this field presenting many different points of
view. This research is centred on the evaluation of supply chain sustainability based on two critical
dimensions. The first is the importance of evaluation metrics based on economic, environmental
and social aspects, and the second is the degree of difficulty of information gathering. This paper
aims to increase the accuracy of the evaluation. The proposed method is a combination of quality
function deployment (QFD) with plithogenic aggregation operations. The aggregation operation
is applied to aggregate: Firstly, the decision maker’s opinions of requirements that are needed to
evaluate the supply chain sustainability; secondly, the evaluation metrics based on the requirements;
and lastly, the evaluation of information gathering difficulty. To validate the proposed model, this
study presented a real world case study of Thailand’s sugar industry. The results showed the most
preferred and the lowest preferred metrics in order to evaluate the sustainability of the supply
chain strategy.

Keywords: supply chain sustainability metrics; plithogeny; aggregation operations; neutrosophic set;
quality function deployment

1. Introduction

Supply chain sustainability has been one of the most attractive and dynamic research topics in the
domain of supply chain management for a long time. The influence of manufacturing activities to
global warming and the consumption of natural resources assisted the researchers in considering the
importance of the supply chain operation’s sustainability [1]. As a result of increasing competition,
globalization, technological growth and huge customer expectations, the sustainable supply chain
is a significant goal to each supply chain in every field. The supply chain sustainability can be
described as the capability of operating the business with the long term goal of preserving economic,
environment and societal welfare [2]. A more general definition of sustainable supply chain could be the
management of supply chain activities in order to improve the profitability by taking into consideration
the environmental impacts and social aspects. Therefore, supply chain sustainability guarantees
success and achievements of the whole supply chain management in the long term. Under the
uncertainty component, supply chain sustainability became a more important goal for companies. This
explains why measuring supply chain sustainability means to identify possible strategic decisions
under various situations [3].
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The evaluation of supply chain sustainability is an interesting topic based on metrics in
economic, environmental and social scopes. Measuring sustainability of the supply chain guides
firms in the direction of risk elimination and standards/guidelines following [4]. Moreover,
the advantages of evaluating supply chain (SC) sustainability are reducing costs, increasing competence,
supporting competitive advantages and improving operational performance [5]. The challenges of
measuring supply chain sustainability are [6]: The managerial and organizational absence of the
inter-organizational metrics; the variety of the organization’s goals and objectives producing different
measures; and the difficulty in non-traditional data gathering that reduce the SC performance.

There are several studies in supply chain sustainability assessment including supply chain
sustainability risk and assessment [7], literature reviews [8], multi-objective mathematical models
for sustainable supply chain management [9] and decision making models for a sustainable supply
chain [10]. Evaluating supply chain sustainability is a multi-criteria decision making (MCDM) problem,
therefore the evaluation metrics may be the criteria, and the alternatives may be selected based on
these sets of metrics. There are some limitations of SC sustainability studies, such as the fact that the
researchers do not consider the difficulty of collecting the information for the metrics that will measure
the sustainability. In addition, only a few studies use the linguistic variables to evaluate the metrics,
leading to less consideration on the uncertainty or lack of information [11]. Also, there is the matter of
the decision maker’s priorities and contradiction degree between metrics which leads to less accuracy
of results. In the comical industry, Rajeev (2019) proposed a framework to describe the evolution of
a sustainable supply chain [12].

In this research, most of these limitations were processed by the proposed MCDM model that
assists in metrics selection and the weighting of sustainable supply chain. The proposed model is
based on a combination of plithogenic aggregation operations with quality function deployment (QFD).
The details of the model have been explained in Section 3.

QFD is one of the most popular techniques to improve quality in order to meet customer
expectations. This tool combines all customer needs in every aspect of the product, transforming them
into technical requirements so they can meet their expectations [13]. QFD records great results in
many fields, such as rating engineering characteristics [14], the design of building structures [15],
service level measurements [16], industry development [17], product development [18], or supplier
selection problems [19].

Plithogeny refers to the creation, development and progression of new entities from composition
of contradictory or non-contradictory multiple old entities [20]. It was introduced by Smarandache
in 2017 as a generalization of neutrosophy. A plithogenic set (as a generalization of crisp, fuzzy,
intuitionistic fuzzy, and neutrosophic sets) is a set whose elements are characterised by the attribute
values. Each attribute value has its contradiction degree values c(vj,vD) between vj and the dominant
(most important) attribute value vD. The contradiction degree between attributes assists the model
to gain more accurate results. The plithogenic set, logic, probability and statistics that were also
introduced by Smarandache in 2017, are obtained from plithogeny, and they are generalizations of
neutrosophic sets, logic, probability and statistics respectively.

The rest of this papers is organized as follows: In Section 2, there is a literature review of sustainable
supply chain, quality function deployment, clarification of plithogenic sets, and a recapitulation of
neutrosophic sets. Section 3 presents the proposed model to evaluate the sustainable supply chain.
In Section 4, a real world case is studied in order to evaluate the proposed model. Section 5 discusses
the results of this case. Finally, the conclusion and suggestions for future works end Section 6.

2. Literature Review

2.1. Supply Chain Sustainability

In the supply chain management field, there are many considerations that need to be taken
into account to minimize the negative influence of business production to environment and social
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effects. These considerations pushed for the strategic developments plans for sustainability [11].
Three dimensions of sustainability are considered in the supply chain, derived from customer and
stakeholder desires, which are economic, environmental and social aspects to manage raw materials,
information and finance flows [21]. Other definitions of supply chain sustainability is the integration of
an organization’s economic, social and environmental dimensions by coordinating the business process
in order to improve the organization’s performance in the long term [22]. A more focused definition
could be supply chain management strategies and activities concerning social and environmental
aspects, correlated to the production, distribution, design and supply of products and services [23].
The evaluation of supply chain sustainability metrics are attributes and requirements used to measure
the supply chain performance considering economic, social and environmental features [24]. Table 1
summarizes some of the studies on supply chain sustainability metrics and frameworks.

Table 1. Studies about supply chain sustainability metrics.

Authors Scope Methodology Metrics

Akshay Jadhav, Stuart Orr,
Mohsin Malik (2018) [25]

Supply chain orientation
(SCO)

Literature review
analysis (SEM analysis)

Co2 emission management,
community engagement, supplier

codes of conduct, waste elimination,
energy usage efficiency, water usage

efficiency, and recycled materials
practices, among others.

Elkafi Hassini, ChiragSurti,
CorySearcy (2012) [4]

Developing supply chain
sustainability metrics Literature review

Percent of suppliers, Percent of
contracts, Percent of purchase

orders, Level of stake-holder trust
by category

Yazdani, Morteza, Cengiz
Kahraman, Pascale Zarate,

and Sezi Cevik Onar (2019) [26]

Ranking of supply chain
sustainability indicators

Multi-attribute decision
making (QFD and GRA)

Quality, managing environmental
systems, supply chain elasticity,

business social liability,
transportation service situation,

and financial constancy.

Qorri, Ardian, Zlatan Mujkić, and
Andrzej Kraslawski (2018) [27]

Measuring supply chain
sustainability
performance

Literature review

Number of contributors, products,
geographical encompassing,

strategic goals, methods, tools,
among others

Searcy, Cory, Shane M. Dixon, and
W. Patrick Neumann (2016) [28]

Analysis of performance
indicators in supply
chain sustainability

Literature review and
report analysis

Employees number, profits,
supplier estimation, trainingcost,

among others

Chen, Rong-Hui, Yuanhsu Lin,
and Ming-Lang Tseng [29]

Sustainable development
indicators in the

structure minerals
industry in China

Combines fuzzy set
theory, the Delphi
method, discrete

multi-criteria method

Solid waste, Eco-efficiency,
Health and safety, Energy use,

Investments, Land use and
rehabilitation, among others

Haghighi, S. Motevali, S. A.
Torabi, and R. Ghasemi [30]

Evaluation of Sustainable
Supply Chain Networks

Data envelopment
analysis technique

Time delivery, Supplier rejection
rate, Amount of Pollution,

Customers’ satisfaction,
Service quality, among others

2.2. Quality Function Deployment (QFD)

Quality function deployment (QFD) originated in Japan in the 1960s. QFD establishes quality
measurement for the improvement and design, rather than just quality control in manufacturing
processes [31]. The QFD method is the link that connects the customer voice to the design requirement
in order to respond these expectations effectively. As illustrated in Figure 1, the components of QFD
are as follows [32]:

• Area (1): The customers’ requirements (what region) that consists of two indicators: The customers’
requirements and the importance of each of them αi.

• Area (2): The quality characteristics or design specifications (how region), composed of two parts:
The design specifications and the way of development.

• Area (3): The relationship between customer requirements and design specifications (what versus
how region) by score Ci j = {0, 1, 3, . . . , 9}.
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• Area (4): This area is a combination of the value of the design specification, the acceptance level of
it, and the score

S j =
∑(

αi ∗ Ci j
)

(1)

• Area (5): The comparison of the product and competitors, and how much it satisfies customer needs.
• Area (6): The comparison between each design specification, and how much their improvement

may affect each other.
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There are several studies that combine QFD with other techniques to evaluate supply chain
sustainability, such as: A hybrid QFD–ANP approach to design a sustainable maritime supply chain [33];
integration of QFD and grey relational analysis (GRA) in order to solve compound decision making
complications [26]; QFD and MCDM techniques in supplier selection problems [34]. Dursun et al. (2018)
considered the competition factor in the process of new product development using QFD [35].
A combination of best-worst method (BWM) and QFD was proposed in order to determine the relation
between customer requirements and engineering characteristics in Mei et al. (2018) [36].

2.3. Plithogenic Set Characteristics

Plithogeny is the formation, construction, development, germination, and evolution of new
entities from combinations of contradictory (dissimilar) or non-contradictory multiple old entities [37].
A plithogenic set (P, A, V, d, c) is a set that includes numerous elements described by a number of
attributes A = {α1, α2, . . . , αm}, m ≥ 1, which has a values V = {v1, v2, . . . , vn}, for n ≥ 1. There are two
main features of each attribute’s value, V. The first is the appurtenance degree function d(x,v) of the
element x, with respect to some given criteria [38]. The contradiction (dissimilarity) degree function
c(v,D) is the second one, which is realized between each attribute value and the most important
(dominant) one. The contradiction degree function is mainly the key element of the plithogenic
aggregation operations (intersection, union, complement, inclusion, and equality) that increase the
accuracy of aggregation.

Let A be a non-empty set of uni-dimensional attributes A = {α1, α2, . . . , αm}, m ≥ 1, and let α
∈ A be an attribute with its value spectrum the set S, where S can be defined as a finite discrete set,
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S = {s1, s2, . . . , sl}, 1 ≤ l <∞, or infinitely countable set S = {s1, s2, . . . , s∞}, or infinitely uncountable
(continuum) set S = ]a,b[, a < b, where ] . . . [ is any open, semi-open, or closed interval from the set of
real numbers or from other general sets [39].

Let V be a non-empty subset of S, where V is the range of all attributes of α’s values defined by the
experts based on the application, V = {v1, v2, . . . , vn} for n ≥ 1. In the set V, there is a dominant attribute
value which is determined by the experts based on preferences and the nature of the application.

Each attribute value in V has its appurtenance degree d(x,v) with respect to some criteria. The degree
of appurtenance may be a fuzzy, or intuitionistic fuzzy, or neutrosophic degree of appurtenance to the
plithogenic set. Therefore, the appurtenance degree d(x,v) of attribute value v is:

∀x ∈ P, d: P × V→ P ([0, 1]z), (2)

Therefore, d(x, v) is a subset of [0, 1]z, and P([0, 1]z) is the power set of [0, 1]z, where z = 1, 2, 3,
for fuzzy, intuitionistic fuzzy, and neutrosophic degrees of appurtenance respectively [19].

Let c: V × V→ [0, 1] be the attribute value contradiction degree function c(v1, v2), representing the
dissimilarity between two attribute values v1 and v2, and satisfying the following axioms:

c(v1, v1) = 0, contradiction degree between the attribute values and itself is zero.
c(v1, v2) = c(v2, v1), contradiction degree function can be fuzzy CF, intuitionistic attribute value

contradiction function (CIF: V × V→ [0, 1]2), or a neutrosophic attribute value contradiction function
(CN: V × V→ [0, 1]3).

2.4. Neutrosophic Set

Neutrosophy is a new branch of philosophy (generalization of dialectics and Yin Yang Chinese
philosophy), introduced by Florentin Smarandache in 1980, which studies the origin, nature, and scope
of neutralities, as well as their interactions with different ideational spectra. Neutrosophy is the
foundation of neutrosophic logic, neutrosophic probability, neutrosophic sets, and neutrosophic
statistics. Neutrosophic set definitions are clearly stated in the following:

Definition 1. [40] Let X be a universal set of objects, consisting of non-specific elements defined as x.
A neutrosophic set N ⊂ X reflects a set such that each element x from N is characterized by TN(x)–the
truth-membership function, IN(x)–the indeterminacy-membership function, and FN(x)–the falsity-membership
function. TN(x), IN(x) and FN(x) are subsets of [0−, 1+], so the three neutrosophic components are TN(x) ∈ [0−,
1+], IN(x) ∈ [0−, 1+] and FN(x) ∈ [0−, 1+]. IN(x) is depicts uncertainty, indeterminate, unidentified, or error
values. The sum of the three components is 0− ≤ TN(x) + IN(x) + FN(x) ≤ 3+.

Definition 2. [41] Let X be a space of points and x ∈ X. A neutrosophic set N in X is recognized by
a truth-membership function TN(x), an indeterminacy-membership function IN(x) and a falsity-membership
function FN(x), where TN(x), IN(x) and FN(x) are subsets of ]-0, 1+[. TN(x):X→ ]-0, 1+[, IN(x):X→ ]-0, 1+[
and FN(x):X→ ]-0,1+[. There is no restriction on the summation of membership functions. Therefore, 0− ≤ sup
TN(x) + sup IN(x) + sup FN(x) ≤ 3+.

Definition 3. [42] Let a =
〈
(a1, a2, a3);α,θ, β

〉
be a single valued triangular neutrosophic set, with truth

membership Ta(x), indeterminate membership Ia(x), and falsity membership function Fa(x) as follows:

Ta(x) =



αa
( x−a1

a2−a1

)
i f a1 ≤ x ≤ a2

αa i f x = a2

o otherwise
(3)
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Ia(x) =



(a2−x+θa(x−a1))
(a2−a1)

i f a1 ≤ x ≤ a2

θa i f x = a2
(x−a2+θa(a3 −x))

(a3−a2)
otherwise

(4)

Fa(x) =



(a2−x+βa(x−a1))

(a2−a1)
i f a1 ≤ x ≤ a2

βa i f x = a2
(x−a2+βa(a3 −x))

(a3−a2)
i f a2 < x ≤ a3

1 otherwise

(5)

where αa, θa, βa ∈ [0,1]. They represent the highest truth membership degree, the lowest indeterminacy
membership degree, and the lowest falsity membership degree, respectively.

3. Proposed Model

In this paper, the authors proposed a model to evaluate the supply chain sustainability metrics
based on a combination of quality function deployment and plithogenic aggregation operations.
This model combines the benefits of the QFD method to link customer needs with design requirements
and plithogenic aggregation operator features. The usefulness of this model derives from the
plithogenic aggregation operation, because this technique ensures more accurate results and takes
into consideration the degree of uncertainty, which is defective in other studies of the same problem.
The steps of the proposed model have been explained in detail in this section and it is shown in
Figure 2.

v Step 1: First of all, decision makers (DM) identify a series of requirements to appraise the supply
chain sustainability. The most popular requirements of supply chain sustainability evaluation
are summarized in Table 2 or the DM can identify other requirements based on their strategy.
These requirements must reflect economic, social and environmental features which is called
triple bottom line (TPL).

- The decision makers measure the importance of each requirement based on the supply
chain strategy using linguistic terms.

- The linguistic scale is defined to describe the assessment of each requirement by the DM.
In this model, the scale is suggested as a triangular neutrosophic scale, as shown in Table 3.

v Step 2: Using plithogenic aggregation operations, the decision maker’s opinions are aggregated
based on the contradiction degree of each requirement. This step increases the accuracy of results.

- Define contradiction degree c of each requirement with respect to the dominant.
- Plithogenic neutrosophic set intersection is defined as following:

((ai1 , ai2, ai3), 1 ≤ i ≤ n)
∧

p ((bi1, bi2, bi3), 1 ≤ i ≤ n)
=

((
ai1

∧
F bi1 , 1

2 (ai2
∧

F bi2) +
1
2 (ai2 ∨F bi2), ai2 ∨F bi3

))
, 1 ≤ i ≤ n.

(6)

where
∧

F and ∨F are fuzzy t-norm and t-conorm respectively.
- The neutrosophic number is transformed into a crisp number using the following equation:

S (a) =
1
8
(a1 + b1 + c1) × (2 + α− θ− β) (7)

v Step 3: In order to find the best requirement considering the set of criteria, the distance of each
requirement is found from the best and worst solutions.
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- The best (positive) ideal solution S+ and worst (negative) ideal solution S−
require definition.

- For example, in price requirements, the lowest value is desired (best ideal solution); on the
other side, the maximum value is the worst ideal solution. In the opposite of that, in profit
requirements, the maximum value is positive and the lowest value is negative.

- The formula of Euclidean distance is used to find the distance of each requirement to the
ideal positive and ideal negative solutions, as shown in Equations (8) and (9) [50].

D+
i =




m∑

j=1

(
Vi −V+

j

)2



0.5

(8)

D−i =




m∑

j=1

(
Vi −V−j

)2



0.5

(9)

- The superior alternative has the smallest distance from the positive ideal solution S+ and
the worst alternative has a larger distance from the negative ideal solution S−.

v Step 4: The performance score of each requirement is found in order to weight each of them
based on Equation (10).

Pi =
S−i

S+
i − S−i

(10)

- The performance score is normalized to find the weight of each requirement that satisfies
two constraints which are 0 ≤ wi ≤ 1 and

∑
wi = 1.

v Step 5: The decision makers define a combination of metrics by considering the requirements
selected previously in step 1 and the TPL. Some of the economic metrics are cost reduction,
transaction costs, environmental costs, service level, or sales. The environmental metrics are
environmental policies, recycling of waste, air pollution emission, solid waste, water consumption,
and so on. Finally, the social diminution consists of working conditions, employee satisfaction,
government relationships, employee training, and reputation, among others.

- The DMs define the relation between each metric and explain each requirement using
linguistic terms as in Table 3.

v Step 6: Steps 2–4 are repeated on the evaluation metrics. As in Step 2, the plithogenic aggregation
operation is used to combine all decision makers’ judgments about defined metrics. Then,
Equations (8) and (9) are used to establish the distance of every metric from the best and worst
solutions. The importance of each metric is determined using the performance score as in
Equation (10).

v Step 7: As proposed in Osiro, Lauro et al. 2018 [11], the limitations of other studies that do not
consider the hardness of data gathering of each metric need to be addressed. In this step, the
difficulty in regards to three dimensions are evaluated in relation to information accessibility,
human resources and time needed for assessment, and other required resources [51].

- The difficulty of assessment metrics data collecting based on three dimensions explained
by linguistic variables are evaluated.

- The assessment based on the contradiction degree to obtain accuracy of results are
aggregated, and thenits crisp value is found.

- Their performance score of data collecting difficulty based on the distance of best and
worst solutions are found.

v Step 8: In this final step, the goal is to categorize the set of supply chain sustainability metrics.
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- The performance degree found in Step 4 (the importance of each metric) and Step 7
(the difficulty of data gathering) using Equation (11) are normalized as proposed in
(Osiro, Lauro et al. 2018) [11].

vn =
1

1 + e−
v−v
σv

(11)

where vn is the normalized value, v− v is the difference between the value and the mean,
and σv is the standard deviation.

- This is the result if supply chain sustainability evaluation metrics are categorized according
to Figure 3 based on the importance of each metric and its difficulty of data gathering.
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Table 2. Popular requirements of supply chain sustainability evaluations.

Requirement Author

1 Cost/profit Govindan, Kannan, Roohollah Khodaverdi,
and Ahmad Jafarian [43]

2 Product quality Osiro, Lauro, Francisco R. Lima-Junior,
and Luiz Cesar R. Carpinetti [44]

3 Environmental influences Huang, Samuel H., and Harshal Keskar [45]

4 Stability and constancy Kannan, Devika, et al. [46]

5 Information Technology Katsikeas, Constantine S., Nicholas G. Paparoidamis,
and Eva Katsikea [47]

6 Social aspects Mani, V., Rajat Agrawal, and Vinay Sharma [48]

7 Delivery accuracy Chang, Betty, Chih-Wei Chang, and Chih-Hung Wu [49]

Table 3. Linguistic scale.

Linguistic Variable Triangular Neutrosophic Scale

Nothing (N) ((0.10, 0.30,0.35), 0.1,0.2,0.15)

Very Low (VL) ((0.15,0.25,0.10), 0.6,0.2,0.3)

Low (L) ((0.40,0.35,0.50), 0.6,0.1,0.2)

Medium (M) (0.65,0.60,0.70),0.8,0.1,0.1)

High (H) ((0.70,0.65,0.80),0.9,0.2,0.1)

Very high (VH) ((0.90,0.85,0.90),0.7,0.2,0.2)

Absolute (A) ((0.95,0.90,0.95),0.9,0.10,0.10)

4. Real World Case Study

In this paper, the proposed model has been illustrated in an application on Thailand’s sugar
industry in order to measure the overall sustainability of this supply chain (Figure 4). The sugar
industry in Thailand is considered one of the most important economic pillars. Thailand is the fourth
largest sugar producer and second largest exporter in the world. In this application, four decision
makers (DMs) were assisted by their experience in solving such cases to evaluate the sustainability
of Thailand’s sugar industry. They are experienced in manufacturing (DM1), quality control (DM2),
finance and purchasing (DM3), and environmental expert (DM4). The main goal of this case is to
evaluate Thailand’s sugar industry supply chain sustainability metrics based on their significance and
difficulty degree of data gathering. Initially, the four experts identified a group of seven requirements
for Thailand’s sugar industry supply chain sustainability evaluation. They are: Profit (R1), costs (R2),
delivery reliability (R3), product development (R4), environmental aspects (R5), product quality (R6),
health and security (R7).

â The requirements by the DMs based on linguistic variables in Table 3 are evaluated as a triangular
neutrosophic value. The evaluation is shown in Table 4.

â As explained in Step 2, the plithogenic aggregation operation is used to combine all decision
makers judgments about the requirements based on the contradiction degree of each one as in
Table 5.

â Using Equation (6), the aggregation results are shown in Table 6 and then their crisp value is
found using Equation (7).

â In Steps 3 and 4, the distance of positive and negative ideal solutions are found using the
Euclidean distance as in Equations (8) and (9). Then, the performance degree is measured as
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mentioned in Equation (10) to find the weight vector of the seven requirements as shown in
Table 7.

â The decision makers define a set of supply chain sustainability metrics with respect to economic,
environmental, and social dimensions (Table 8). Then, based on linguistic variables in Table 3,
the DMs evaluate them as specified in Table 9.

â Table 10 shows the metrics aggregation using a plithogenic aggregation operator according to
each requirement and based on the contradiction degree in Table 11. Then, their crisp values can
be found.

â As in Steps 3 and 4, using the Euclidean distance as in Equations (8) and (9), the distance of positive
and negative ideal solutions are found. Then, as mentioned in Equation (10), the performance
degree is measured to find the weight vector of the metrics. Their results are shown in Table 12.

â As proposed in Osiro, Lauro et al. 2018 [11], the limitations of neglecting the difficulty of data
gathering of every metric is addressed. In this step, the decision makers evaluate the difficulty in
regards to three dimensions: Information accessibility, human resources and time needed for
assessments, and other required resources, as shown in Table 13.

â Then, the decision makers evaluations were aggregated using a plithogenic aggregation equation
as shown in Table 14:

â Equations (8) and (9) were used to find the distance of every metric from the positive ideal
solution and negative ideal solution. Then, Equation (10) was used to calculate the performance
degree, as shown in the fourth column in Table 15.

â Finally, the performance score was normalized using Equation (11) that relates to metrics
importance and difficulty of data gathering. The normalization results are shown in Table 16.

â Figure 5 shows the Thailand sugar industry supply chain sustainability metrics distribution
categorized in two regions which are the prioritized metrics and less prioritized metrics based on
the four decision maker’s evaluation.
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Table 4. The evaluation of the requirements by four DMs.

Requirement DM1 DM2 DM3 DM4

R1 VH H H M

R2 H VH M H

R3 M H H VH

R4 H M M H

R5 H VH H M

R6 H VH VH M

R7 H M H M

Table 5. The requirements contradiction degree.

Requirement R1 R2 R3 R4 R5 R6 R7

Contradiction degree 0 1/7 2/7 3/7 4/7 5/7 6/7

Table 6. The aggregation results of requirements.

Requirement DM1∧p DM2 ∧p DM3 ∧p DM4 Crisp Value

R1 ((0.29,0.69,1),0.45,0.18,0.36) 0.4727

R2 ((0.42,0.69,0.97),0.57,0.18,0.32) 0.1664

R3 ((0.56,0.69,0.91),0.68,0.18,0.24) 0.6130

R4 ((0.61,0.63,0.8),0.6,0.15,0.12) 0.5942

R5 ((0.79,0.69,0.75),0.86,0.18,0.1) 0.7192

R6 ((0.92,0.74,0.68),0.9,0.18,0.06) 0.7781

R7 ((0.93,0.63,0.43),0.98,0.15,0.01) 0.7015

Table 7. The weights of requirements based on positive and negative distances.

Requirement Positive
Distance

Negative
Distance

Performance
Score Weight Ranking

R1 0.2323 0.40872 0.6376 0.1551 4

R2 0.4674 0.538 0.5351 0.1302 5

R3 0.0914 0.0208 0.1854 0.0451 7

R4 0.1048 0.0398 0.2752 0.0669 6

R5 0.0146 0.0852 0.8537 0.2077 2

R6 0.0736 0.1442 0.6621 0.1611 3

R7 0.0027 0.0677 0.9616 0.2339 1

total - - 4.1107 1

197



Symmetry 2019, 11, 903

Table 8. Economic, environmental and social metrics.

Dimension Metrics

Economic

Commitment to cost reduction (I1)

Inventory turnover (I2)

Environmental costs (I3)

Measurement tools and methods (I4)

Responsiveness to demand change (I5)

Manufacturing cost (I6)

Delivery cost (I7)

Environmental

Waste minimization(I8)

Air emission (I9)

CO2 emission (I10)

Recycling of waste (I11)

Social

Noise level (I12)

Customer complaints (I13)

Employee training (I14)

Working conditions (I15)

Table 9. The evaluation of metrics.

Metrics R1 R2 R3 R4 R5 R6 R7

I1 VH A M M L M L

I2 L M H L L M L

I3 H VH L M VH L H

I4 M M H VH H VH H

I5 H H VH L VL M VL

I6 M VH L VH VL VH VL

I7 VH VH VH M VL H L

I8 L VH L L VH L VH

I9 VL VL L M VH L VH

I10 VL VL L H VH M VH

I11 M L L VL VH L VH

I12 L L L VL M L H

I13 H L M L M L H

I14 H VH L VH VL H H

I15 H H M M L H H
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Table 10. The aggregation results of the metrics.

R1 ∧pR2∧pR3∧p R4 R5∧p R6∧p R7 R1 . . . R7 CRISP

I1 ((0.36,0.74,1),0.4,0.13,0.42) ((0.1,0.43,0.9),0.29,0.1,0.4) ((0.036,0.59,1),0.12,0.25,0.65) 0.248

I2 ((0.12,0.49,0.96),0.34,0.13,0.5) ((0.15,0.4,0.9),0.3,0.1,0.45) ((0.03,0.5,0.99),0.13,0.1,0.69) 0.2479

I3 ((0.52,0.48,0.87),0.43,0.15,0.39) ((0.6,0.63,0.9),0.5,0.2,0.34) ((0.4,0.6,0.97),0.28,0.17,0.54) 0.3866

I4 ((0.46,0.7,0.94),0.6,0.15,0.32) ((0.6,0.7,0.94),0.7,0.2,0.25) ((0.4,0.7,0.97),0.5,0.18,0.41) 0.4968

I5 ((0.43,0.63,0.92),0.6,0.18,0.3) ((0.1,0.3,0.45),0.5,0.18,0.4) ((0.43,0.5,0.8),0.43,0.18,0.46) 0.3871

I6 ((0.55,0.7,0.87),0.56,0.15,0.3) ((0.2,0.4,0.62),0.5,0.2,0.37) ((0.3,0.6,0.8),0.45,0.18,0.41) 0.3953

I7 ((0.78,0.5,0.87),0.88,0.18,0.24) ((0.3,0.4,0.7),0.7,0.14,0.24) ((0.5,0.45,0.8),0.76,0.16,0.28) 0.5191

I8 ((0.5,0.48,0.64),0.6,0.13,0.2) ((0.75,0.7,0.8),0.7,0.18,0.2) ((0.61,0.6,0.73),0.61,0.16,0.2) 0.5484

I9 ((0.37,0.73,0.32),0.68,0.15,0.21) ((0.8,0.7,0.8),0.7,0.18,0.18) ((0.6,0.73,0.53),0.7,0.17,0.18) 0.5464

I10 ((0.45,0.38,0.28),0.77,0.18,0.16) ((0.9,0.8,0.8),0.8,0.18,0.13) ((0.72,0.6,0.48),0.8,0.18,0.12) 0.5607

I11 ((0.57,0.4,0.28),0.79,0.2,0.11) ((0.9,0.7,0.85),0.8,0.18,0.1) ((0.8,0.6,0.46),0.84,0.19,0.07) 0.587

I12 ((0.57,0.33,0.29),0.8,0.13,0.09) ((0.8,0.6,0.5),0.9,0.15,0.05) ((0.78,0.5,0.28),0.9,0.14,0.04) 0.5168

I13 ((0.82,0.49,0.3),0.93,0.13,0.57) ((0.8,0.6,0.5),0.93,0.15,0.2) ((0.9,0.53,0.24),0.97,0.14,0.2) 0.5448

I14 ((0.17,0.7,0.46),0.95,0.13,0.02) ((0.8,0.6,0.2),0.97,0.2,0.03) ((0.8,0.6,0.17),0.99,0.2,0.007) 0.5521

I15 ((0.97,0.63,0.4),0.99,0.15,0.003) ((0.9,0.6,0.4),0.98,0.2,0.01) ((0.99,0.61,0.14),1,0.17,0.001) 0.6153

Table 11. Contradiction degree of metrics.

Metrics I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

Contradiction
degree 0 1

15
2

15
3

15
4

15
5
15

6
15

7
15

8
15

9
15

10
15

11
15

12
15

13
15

14
15
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Table 12. The performance score based on positive and negative distances.

Metrics Positive Distance Negative Distance Performance Score

I1 0.1114 0.5139 0.8218

I2 0.4509 0.1115 0.1983

I3 0.0272 0.3753 0.9324

I4 0.2651 0.137 0.3407

I5 0.3748 0.2467 0.3969

I6 0.264 0.3666 0.5814

I7 0.3878 0.2428 0.385

I8 0.2135 0.189 0.4696

I9 0.4151 0.2155 0.3417

I10 0.4294 0.2012 0.3191

I11 0.1749 0.4557 0.7226

I12 0.3855 0.182 0.3207

I13 0.1854 0.154 0.4537

I14 0.2098 0.4208 0.6673

I15 0.0835 0.2559 0.754

Table 13. The evaluation of information gathering difficulty.

Metrics Information
Availability

Human Resource
and Time

Additional
Resource Required

I1 H L VH

I2 M H H

I3 H L L

I4 M H H

I5 L M L

I6 H H L

I7 H L VH

I8 M L VH

I9 H M L

I10 H M L

I11 M L VH

I12 H VH L

I13 VH L L

I14 H VH VH

I15 H H H
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Table 14. The aggregation results of information gathering difficulty.

Metrics A ∧p B ∧p C Crisp Value

I1 ((0.25,0.68,1),0.38,0.18,0.42) 0.4294

I2 ((0.37,0.64,0.96),0.69,0.18,0.25) 0.5565

I3 ((0.2,0.4,0.85),0.42,0.13,0.35) 0.3516

I4 ((0.47,0.64,0.92),0.75,0.18,0.2) 0.6014

I5 ((0.29,0.42,0.73),0.49,0.1,0.28) 0.3798

I6 ((0.43,0.5,0.76),0.66,0.15,0.2) 0.488

I7 ((0.65,0.68,0.83),0.66,0.18,0.22) 0.6102

I8 ((0.7,0.67,0.77),0.68,0.15,0.19) 0.626

I9 ((0.56,0.49,0.6),0.74,0.13,0.14) 0.5094

I10 ((0.6,0.49,0.55),0.78,0.13,0.12) 0.506

I11 ((0.82,0.67,0.63),0.8,0.15,0.11) 0.6731

I12 ((0.77,0.55,0.53),0.84,0.15,0.09) 0.6013

I13 ((0.78,0.48,0.38),0.83,0.13,0.07) 0.5392

I14 ((0.97,0.8,0.72),0.85,0.2,0.04) 0.8124

I15 ((0.94,0.65,0.55),0.99,0.2,0.01 0.7437

Table 15. The performance score of information gathering difficulty.

Metrics Ideal Positive Ideal Negative Performance Degree

I1 0.7619 0.3594 0.1739

I2 0.6988 0.6338 0.352

I3 0.6988 0.3594 0.02197

I4 0.6988 0.6338 0.2496

I5 0.6338 0.3594 0.0743

I6 0.6988 0.3594 0.3789

I7 0.7619 0.3594 0.6231

I8 0.7619 0.3594 0.6624

I9 0.6988 0.3594 0.442

I10 0.6988 0.3594 0.1003

I11 0.7619 0.3594 0.7794

I12 0.7619 0.3594 0.601

I13 0.7619 0.3594 0.4467

I14 0.7619 0.6988 0.6923

I15 0.6988 0.6988 0.5
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Table 16. Normalization of importance and data gathering difficulty.

Metrics Importance Difficulty of Data Collection

I1 0.8031 0.2762

I2 0.1913 0.4434

I3 0.8711 0.1692

I4 0.3119 0.3429

I5 0.3694 0.2018

I6 0.5763 0.4710

I7 0.3569 0.7095

I8 0.4495 0.7418

I9 0.3129 0.5361

I10 0.2911 0.2197

I11 0.7216 0.8233

I12 0.2926 0.6903

I13 0.4316 0.4509

I14 0.6682 0.7648

I15 0.6958 0.595

5. Results and Discussion

Based on the decision makers evaluations, the prioritize metrics to evaluate Thailand’s sugar
industry sustainability are: Commitment to cost reduction (I1), environmental costs (I3), responsiveness
to demand change (I5), manufacturing costs (I6), working conditions (I15) and CO2 emission (I10). In this
case, the decision makers were considering the economic aspects more than social or environmental
dimensions. The importance of commitment to cost reduction (I1), environmental costs (I3) and
recycling of wastes (I11) gained the highest importance in value compared to other metrics, as shown
in Figure 6. On the other side, recycling of the waste (I11), employee training (I14) and waste
minimization (I8) were the most difficult gathering information metrics. However, the CO2 emission
(I10), environmental costs (I3) and responsiveness to demand changes (I5) were the most available
information that had the lowest difficulty of data gathering degree as in Figure 7.
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As the results of distribution of the Thailand sugar industry sustainability metrics were categorized
based on the significance and difficulty of data gathering, this study found that the most preferred
metrics were: Environmental cost (I3), commitment to cost reduction (I1) and realization to demand
change (I5), respectively, which were all economic metrics. It can be concluded that the economic
metrics were more critical than the environmental and social metrics. These results are based on the
evaluation of four decision makers, which means that it is not a general result for similar applications.

The main point in this paper is the plithogenic aggregation operation to group the decision
maker’s opinions in a more accurate manner. The plithogenic aggregation is taking into consideration
the contradiction degree that mainly increases the accuracy of the aggregation. This study aggregated
the decision maker’s assessment of supply chain sustainability requirements, the evaluation of metrics
importance, and measuring the difficulty of information gathering. Also, the difficulty of data gathering
was not considered in many articles, but the authors found it to be a critical diminution to be measured.

Similar studies on this topic differ based on the model and the nature of the problem. As Ignatius,
Joshua, et al. [52] proposed, the ANP-QFD approach which mainly considered environmental indicators
in order to ensure a green building structure. On the other hand, Jamalnia, Aboozar, et al. [53]
considered economic metrics such as costs, raw material and labour availability to solve a facility
location problem using the QFD method. Khodakarami, Mohsen, et al. [54] and Izadikhah, et al. [55]
used data envelopment analysis (DEA) for the evaluation of supply chain sustainability by taking into
account mostly economic and environmental metrics. Ahmadi, et al. [56] used the best worst method
(BWM) to evaluate the social sustainability of supply chain by considering social indicators rather than
economic or environmental aspects.

6. Conclusions and Future Works

Due to strict government requests and the huge stress from the public, the consideration
of supply chain sustainability was increased [36]. Sustainable development is one of the most
significant conditions of saving resources and keeping the supply chain phases operating efficiently [57].
This explains why SSCM became one of the most important competitive strategies in organizations [58].
This study proposed an efficient combination of plithogenic aggregation operations with the quality
function deployment method. The advantage of this combination is the improvement of the accuracy
of the results while aggregating the assessments of the decision makers. QFD produced great results
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in supply chain sustainability evaluation. However, it does not consider the depth of data gathering
difficulty which loosen the accuracy of the results. The supply chain sustainability evaluation is
a critical topic that needs to be studied with high accuracy by considering economic, environmental
and social dimensions.

This study observed the proposed combined model in a major real world case study, which was
Thailand’s sugar industry. Based on the nature of this supply chain strategy, its sustainability
requirements was defined and measured by four decision makers. Their opinions were aggregated
using plithogenic aggregation operator based on the contradiction degree to maximize the accuracy
of the aggregation. In the same way, the measurement metrics was defined based on the previous
requirement and included economic, social and environmental dimensions evaluated by the DMs.
The results showed that the importance of commitment to cost reduction (I1), environmental costs (I3)
and recycling of wastes (I11) gained the most important metrics compared to the rest of metrics. Finally,
the difficulty of data gathering of these metrics was measured and aggregated. For each dimension of
evaluation, the distance of the metrics to the best and worst ideal solutions was calculated to find the
importance and the degree of information gathering difficulty. The result of this point was recycling of
the waste (I11), employee training (I14) and waste minimization (I8) were the most difficult gathering
information metrics. Moreover, the performance degree of the metrics was intended and normalized
to distribute the metrics based on the two defined dimensions. It can be concluded that the most
preferred metrics based in both dimensions are environmental cost (I3), commitment to cost reduction
(I1) and realization to demand change (I5).

Real contributions of this proposed methodology:

• The main contribution of this proposed model lies in providing accurate results of the decision
makers assessments based on the contradiction degree while applying the aggregation.

• The plithogenic aggregation operation allows the DMs to consider several experts opinions in
order to maximize the efficiency of the decision making.

• Also, it measures the supply chain sustainability based on two major aspects, the significance of
the metrics and its level of difficulty of data gathering, which is really a critical point that affects
the evaluations.

• Using a triangular neutrosophic linguistic scale to evaluate the requirement, metrics and
information availability improved the level of consideration to uncertainty, because it confirms
the best representation by using the three membership degrees positive, negative and boundary
areas of decision making.

• The proposed methodology is efficient and has a high accuracy degree in decision making
problems, Therefore, it is a great tool that may help firms in their estimation of customer needs in
addition to evaluating the supply chain sustainability requirements.

In future research directions, this model may be used in assessment of other supply chain
strategies to evaluate their sustainability. In addition, the plithogenic aggregation operators could be
combined with other techniques to evaluate the supply chain sustainability. Finally, more evaluation
dimensions could be added to the importance and difficulty of information gathering to measure
supply chain sustainability.
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Abstract: An online neutrosophic similarity-based objectness tracking with a weighted multiple
instance learning algorithm (NeutWMIL) is proposed. Each training sample is extracted surrounding
the object location, and the distribution of these samples is symmetric. To provide a more robust weight
for each sample in the positive bag, the asymmetry of the importance of the samples is considered.
The neutrosophic similarity-based objectness estimation with object properties (super straddling)
is applied. The neutrosophic theory is a new branch of philosophy for dealing with incomplete,
indeterminate, and inconsistent information. By considering the surrounding information of the
object, a single valued neutrosophic set (SVNS)-based segmentation parameter selection method is
proposed, to produce a well-built set of superpixels which can better explain the object area at each
frame. Then, the intersection and shape-distance criteria are proposed for weighting each superpixel
in the SVNS domain, mainly via three membership functions, T (truth), I (indeterminacy), and F
(falsity), for each criterion. After filtering out the superpixels with low response, the newly defined
neutrosophic weights are utilized for weighting each sample. Furthermore, the objectness estimation
information is also applied for estimating and alleviating the problem of tracking drift. Experimental
results on challenging benchmark video sequences reveal the superior performance of our algorithm
when confronting appearance changes and background clutters.

Keywords: visual tracking; neutrosophic weight; objectness; weighted multiple instance learning

1. Introduction

The task for visual object tracking is to estimate the object location at each frame in a video
sequence. Such a kind of visual analysis has been widely studied in computer vision due to its
application in many fields, e.g., video surveillance, human–computer interaction, autonomous driving,
and traffic monitoring [1,2]. While a lot of effort has been made, and numerous tracking algorithms
have been proposed in past decades, it is still a very challenging task due to the factors of illumination
variation, scale variation, occlusion, deformation, motion blur, fast motion, rotation, and background
clutters, etc. Most of these factors can cause appearance changes, which are very challenging for the
visual tracker.

To adjust these challenges adaptively, it is quite important for a robust object tracker to employ
an effective appearance model. In general, the existing appearance models can be mainly divided into
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two categories, the generative model [3–9] and the discriminative model [10–18]. For the generative
model, the tracking is cast as finding the most similar region to the learned object appearance.
The tracking result at each frame can be used to update the appearance model. The MeanShift
tracker [3] is one of the most influential methods due to its high efficiency and its robustness when
confronting the challenges of radical changes and deformation. However, the MeanShift tracker
is very sensitive when there is a similar color surrounding the target, because only the histogram
feature is applied for building the appearance model. To improve the performance, some other
features are introduced into the MeanShift tracking technology, e.g., cross-bin metric [5], background
information [6], and depth feature [7]. The IVT tracker [4] employs incremental principal component
analysis to represent and update the appearance model. Unlike generative models, both positive and
negative samples are utilized by discriminative models, and the object tracking is posed as the task of
binary classification to discriminate the target from its surroundings.

Generally, the robustness of generative models is inferior to discriminative models to some extent.
Generative models always utilize the foreground information to model the object appearance, and the
surrounding information is not considered. Thus, generative models are more likely to drift when
handling appearance changes in complex environments. For discriminative models, the positive and
negative samples extracted in the first frame are utilized for initialization. For a new arriving frame,
the object location is estimated by the afore-trained classifier. The classifier will be updated by using
the newly collected positive and negative samples. A boosting method was used for online feature
selection in [10]. Only the sample located at the estimated object location is employed as the positive
sample. Some negative examples are extracted around the neighborhood of the estimated location.
This often causes drift and error accumulation problems when the tracked location drifts a little from
the real location. In [11], only the samples extracted from the first frame were labeled for training the
classifier, and the samples generated in the subsequent frames were all unlabeled. The SemiBoost
tracker [11] may drift in interframe motion on account of the smooth motion assumption.

To tackle the problem of imprecise sampling, online multiple instance learning (MIL) was firstly
proposed for object tracking in [12,13]. The MIL tracker uses the positive and negative bags to
update the classifier at each frame. The positive bag contains several instances extracted from the
close neighborhood of the object location. It has been revealed that the MIL tracker alleviates the
drift problem, however, the limitation still exists. Several trackers have been developed within the
framework of MIL [14–18]. A more effective and efficient algorithm was proposed, using important
prior information, such as instance labels and the most correct positive instance [14], due to the fact
that discriminative information about the importance of the positive examples is not considered in
the MIL tracker. By the assumption that the tracking result in the current frame is the most positive
sample, Zhang et al. [15] employed the Euclidean distance between each positive instance and the
estimated object location as the importance of each positive sample. The weight distribution of the
samples is centrally symmetric. In [16], the chaotic theory was introduced into MIL-based tracking.
The fractal dimension of the dynamic model was adjusted as instance weight. There are still drawbacks
for the proposed weighting algorithms. Once the tracked result drifts from the real object location,
the assumption of the most positive sample will not be satisfied. Weights will be wrongly utilized
to update the classifier. The objectness measure [19] is applied for judging the importance of each
instance [17]. The objectness measure [20] owns the ability of judging the probability of a given
window containing a whole object. Instead of using the distance measure [15], Yang et al. [17]
integrated the objectness estimation into the calculation of the instance importance. Experimental
results have demonstrated the power of the objectness measure once it is introduced into the MIL-based
tracker. As we know, the robustness of the objectness estimation highly depends on the segmentation
result [20,21]. For the application of visual tracking, the environment change occurs almost at each
frame. It is essential to propose a scheme to let the segmentation result adaptively adjust different
scenes. In addition, some noisy superpixels can distract the objectness-based instance weighting.
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Thus, a method for filtering the noisy superpixel should also be seriously considered. However,
much uncertain information must be considered when we try to tackle these two serious issues.

Neutrosophic set (NS) [22] is a new branch of philosophy to deal with the origin, nature, and scope
of neutralities. It has been widely used in dealing with uncertain information [23]. Due to this,
the NS theory has been successfully introduced into many applications, such as medical diagnosis [24],
skeleton extraction [25], image segmentation [26–31], and object tracking [7–9,32]. SVNS (single valued
neutrosophic set) [33] is a subclass of the neutrosophic set with a finite interval for practical usage.
Both the cosine and tangent similarity measures were applied for medical diagnosis in [24]. For the
application of image segmentation, the source image is usually transformed into the NS domain,
and will be described by the T, I, and F membership set [26,31]. The cosine similarity measure was
also utilized in [26,31]. Furthermore, the neutrosophic set-based MeanShift and c-means clustering
methods were proposed to earn a more robust segmentation result [27,28,30].

Guided by the above idea, we propose an online visual tracking of weighted multiple instance
learning via a neutrosophic similarity-based objectness estimation. First, to produce a well-built
set of superpixels at each frame, we propose a method of neutrosophic set-based segmentation
parameter selection. The information surrounding object location is taken into consideration. Second,
the intersection and shape-distance criteria are utilized for evaluating each superpixel, and three
membership functions, T, I, and F, are proposed for each criterion. Then, the neutrosophic set-based
multi-criteria similarity score is utilized to facilitate the superpixel filter. The importance of each training
instance is evaluated by the estimation of the filtered objectness measure. Third, the information of
the objectness estimation is applied for alleviating the problem of tracking drift. Empirical results on
challenging video sequences demonstrate our NeutWMIL tracker can robustly track the target. To our
own knowledge, this is the first time the NS theory has been introduced into the visual object tracking
of a discriminative model.

The paper is organized as follows: in Section 2, we introduce related work. Section 3 introduces
our tracking system, where the basic flow is first given, and then the principle of our method and its
advantages are illustrated in the following subsections. Section 4 gives the detailed experiment setup
and results. Finally, Section 5 concludes the paper.

2. Related Work

Benefitting from the discriminative model, many trackers based on such kind of framework
have been proposed [10–18]. Several studies revealed that the method for weighting the training
samples plays quite an important role for improving the robustness of a tracker [14–18]. The asymmetry
of the importance of the samples is considered, and the objectness measure [19] is applied for
judging the importance of each instance [17], which is collected for training the multiple instance
learning-based tracker. The results revealed that the performance of the MIL tracker was highly
improved [17]. However, the parameters for segmentation were not adaptively updated by considering
the surroundings of the tracked object, and all the regions were considered equally for calculating
the objectness.

To overcome the above problem, we tried to utilize the NS theory to deal with the related
uncertainty problems, due to the ability of the NS theory of handling uncertain information [23],
as well as the requirement for enhancing the robustness of the visual trackers. Several works have
been done introducing the NS theory into the tracking issue [7–9,32]. In order to fuse both the
color and depth features, three membership functions, T, I, and F, were proposed to deal with the
uncertainty problem for judging the robustness of each feature [7]. The single valued neutrosophic
cross-entropy measure [34] was finally utilized for feature fusion. By considering the drawbacks of
the traditional MeanShift tracker [3], Hu et al. [8] integrated the background information into the bin
importance of the histogram feature by using the neutrosophic descriptions regarding the uncertain
issue of feature enhancement. Furthermore, Hu et al. [9] proposed the element-weighted neutrosophic
correlation coefficient and utilized it to improve the CAMShift tracker. It has been revealed that the
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proposed trackers are more robust than traditional ones when the neutrosophic theory is utilized [7–9].
Fan et al. [32] proposed a neutrosophic hough transform-based track initiation method to solve the
uncertain track initiation problem, and the results demonstrated that it is superior to the traditional
hough transform-based track initiation in a complex surveillance environment.

This work is quite different from the proposed NS-base trackers in that it is the first time the NS
theory has been introduced into the visual object tracking of discriminative model. Though many
methods for image segmentation in NS domain have been proposed, this is also the first work that has
proposed to tackle the problem of segmentation parameter selection and superpixel filtering, for the
purpose of enhancing the robustness of a tracker.

3. Problem Formulation

3.1. System Overview

The basic flow of the online visual tracking of weighted multiple instance learning via neutrosophic
similarity-based objectness estimation is shown in Figure 1. Before the tracking process, the classifier
of multiple instance learning is initialized with the same method as the weighted multiple instance
learning [15]. Suppose l∗t ∈ R2 is the center of the object location at frame t, the object location is
represented by a rectangular bounding box. To produce robust objectness [19,20] information for
tracking, N segmentation results of frame t are firstly calculated by utilizing N parameter tuples for
segmentation. Then we used the SVNS-based segmentation parameter selection method to select
the parameter tuple, which can achieve the best segmentation result for the representation of the
object area. When the next frame arrives, we calculated its segmentation result by using the selected
segmentation parameter tuple. Each region in the segmentation result corresponds to a superpixel.
The neutrosophic set-based superpixel filter was employed to filter out the noisy superpixel when
measuring the objectness. The sliding window method was used to calculate two confidence maps.
The classifier confidence map was calculated based on the afore-trained classifier. The Neut-Objectness
confidence map was calculated based on the filtered objectness measure. Finally, each maximum value
of the two kinds of confidence maps was utilized to decide l∗t+1 ∈ R2, which is the center of the object
location at frame t+1. The scale of the rectangular bounding box was fixed in this work. To update the
classifier parameters, the filtered objectness measure was applied for weighting the training samples.
We first cropped M positive instances within the circular region centering at l∗t+1 to form a positive bag

X+ =
{
x|‖lt+1(x) − l∗t+1‖ < α

}
, and the distribution is symmetric, then L negative instances were cropped

from an annular region with radius α < ξ < β to form a negative bag X− =
{
x|α < ‖lt+1(x) − l∗t+1‖ < β

}
,

where lt+1(x) is the location of instance x at frame t+1. The instances in the positive bag were weighted
by the filtered objectness measure, and the negative instances were weighted equally. All the instances
were represented by W Haar-like features. Each Harr-like feature corresponded to a weak classifier.
All the weighted instances were employed to train the W weak classifiers, and finally K weak classifiers
were chosen for constructing a strong classifier Hk. For each frame, we chose the updated Hk as the
new classifier for tracking. For a new arriving frame, the above procedures were repeated.
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Figure 1. The flow chart of online visual tracking with NeutWMIL.

3.2. Objectness Measure

The objectness measure [20] is always utilized in the research area of object detection for quantifying
the degree of an image window containing an object. The color contrast, edge density, and superpixel
straddling (SS) methods were proposed in [20], and it has been proven that the SS measure is suitable
for object tracking [17]. The SS-based objectness for a window Ow can be calculated by:

ss(OW , Ti) = 1−
∑

s∈S(Ti)

min(|s\OW |, |s∩OW |)
|OW | , (1)

where S(Ti) is the superpixel set obtained by the literature [21], with the segmentation parameter tuple
Ti. For each superpixel s, |s\OW | computes its area outside Ow and |s∩OW | calculates its area inside
Ow. From Equation (1), we can get determine that a superpixel contributes less when it straddles the
window Ow. The superpixels inside the window Ow contribute the most. ss(OW , Ti) achieves to 1
when there is not any superpixel straddling the window Ow.

As seen in Equation (1), the segmentation parameter tuple Ti is also an important parameter.
Ti is a set of parameters that can affect the segmentation result greatly. Different segmentation
algorithms always relate to different parameters. For the efficient graph-based image segmentation
algorithm [21] employed in this work, each tuple Ti = {σ, k, m} contained three parameters including σ
(used to smooth the input image before segmenting it), k (value for the threshold function), and m
(minimum component size enforced by post-processing). As shown in Figure 2, when we use the same
segmentation algorithm [21] but employ different segmentation parameter tuples, the segmentation
results are quite different. In addition, with the three different segmentation results, the corresponding
superpixel sets are also quite different from each other. From Equation (1), we can find that the
calculation of SS-based objectness highly depends on the shape and distribution of the superpixels in
the image. To apply the objectness measure for weighting the training samples, we then proposed
a neutrosophic set-based scheme to handle such a problem.Symmetry 2019, 11, x FOR PEER REVIEW 6 of 25 
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Figure 2. Segmentation results with different segmentation parameter tuples. T1 = {0.4, 450, 150},
T2 = {0.5, 250, 400}, T3 = {0.6, 550, 250}.
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3.3. Neutrosophic Set-Based Segmentation Parameter Selection

To apply the objectness information for enhancing the tracker, a suitable segmentation parameter
tuple should first be chosen. A well-built superpixel set is one of the most important preconditions for
producing reliable objectness measures for the application of visual tracking. A well-built superpixel
set should have the ability to enhance the objectness response at the object location. In addition,
the symmetric surrounding information should also be considered seriously. The neutrosophic theory
has shown its ability to deal with uncertain situations, and the neutrosophic similarity score between
SVNSs is applied in this work.

The neutrosophic theory was firstly proposed by Smarandache [22]. The original neutrosophic
theory is difficult to use for tackling practical problems. SVNS [33] is a subclass of the neutrosophic set
with a finite interval, and it is proposed for practical usage. Let A = {A1, A2, . . . , Am}, which denotes a set
of alternatives. For a multiple criteria neutrosophic situation, the alternatives Ai can be represented as:

Ai =
{〈

C j, TCj(Ai), ICj(Ai), FCj(Ai)
〉}

, i = 1, . . . , m; j = 1, . . . , n, (2)

where C = {C1, C2, . . . , Cn} is a set of criteria, TCj(Ai) denotes the degree to which the alternative Ai
satisfies the criterion Cj, ICj(Ai) indicates the indeterminacy degree to which the alternative Ai satisfies
or does not satisfy the criterion Cj, FCj(Ai) indicates the degree to which the alternative Ai does not
satisfy the criterion Cj, TCj(Ai) ∈ [0, 1], ICj(Ai) ∈ [0, 1], FCj(Ai) ∈ [0, 1].

Suppose A∗ =
{〈

C j, TCj(A∗), ICj(A∗), FCj(A∗)
〉}

is an ideal alternative with the criteria Cj. The cosine
similarity score between Ai and A* is defined by [35]:

Scos(Ai, A∗) =
n∑

j=1

w j
TCj(Ai)TCj(A∗) + ICj(Ai)ICj(A∗) + FCj(Ai)FCj(A∗)√

TCj2(Ai) + ICj2(Ai) + FCj2(Ai)
√

TCj2(A∗) + ICj2(A∗) + FCj2(A∗)
. (3)

The corresponding tangent similarity score is defined as [24]:

Stan(Ai, A∗) =
n∑

j=1

w j tan
[
π
12

( ∣∣∣TCj(Ai) − TCj(A∗)
∣∣∣+∣∣∣ICj(Ai) − ICj(A∗)

∣∣∣+
∣∣∣FCj(Ai) − FCj(A∗)

∣∣∣

)]
, (4)

where wj is the weight for each criterion, and w j ∈ [0, 1],
∑

j w j = 1. Both the cosine and tangent
measures have been successfully employed for medical diagnoses [24] and some visual analysis
missions [7,26]. In this work, the neutrosophic similarity score was utilized for fusing information,
and these two measures were tested separately in the experimental section.

As we want to use the objectness measure to weight the training samples, the weights of the
samples close to the object location should be enhanced. Considering such a problem, the object
location objectness enhancing criterion was proposed. For the segmentation parameter tuple Tk,
the corresponding membership functions TO(Tk) (truth), IO(Tk) (indeterminacy), and FO(Tk) (falsity)
were defined as:

TO(Ti) = ss(Ol∗, Ti); (5)

IO(Ti) = 1−min




1
C

∑C
j=1

∣∣∣∣ss
(
O j(r), Ti

)
− ss(Ol∗, Ti)

∣∣∣∣
ss(Ol∗, Ti)

, 1


; (6)

FO(Ti) = 1− TO(Ti), (7)

where Ol* is the rectangular window corresponding to the object location and Ti is the the i-th
segmentation parameter tuple. As shown in Figure 3, O j(r) is a square window centered at the j-th
pixel of the C uniform sampled pixels on the boundary of the square window with the edge length of
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2r+1(pixel) centered at l*, the distribution of O j(r) is symmetric, l* is the center of the object location,
and O j(r) has the same size as the objects.
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Let A∗ = {〈CO, 1, 0, 0〉} denote the ideal alternative with the object location objectness enhancing
criterion. Substituting Equations (5)–(7) into Equation (3), we obtain the cosine similarity score between
the choice of Ti and the ideal choice:

ltupcos(Ti) =
TO(Ai)√

TO2(Ti) + IO2(Ti) + FO2(Ti)
. (8)

When substituting Equation (5) into Equation (4), we obtain the corresponding tangent similarity score:

ltuptan(Ti) = tan
[
π
12

(∣∣∣IO(Ti)
∣∣∣+ 2

∣∣∣FO(Ti)
∣∣∣
)]

. (9)

Suppose we have N segmentation parameter tuples waiting for selection, the tuple with the
maximum similarity score is chosen as the right tuple Tsel. For the cosine and tangent measures,
the selections may be different from each other.

3.4. Neutrosophic Set-Based Superpixel Filter

As shown in Equation (1) and Figure 2, all the superpixels were taken into the consideration for
the estimation of the objectness. However, such a simple method may bring in some noise for the
objectness estimation. For instance, the superpixel far from the object or the superpixel that is too large
size may disturb the objectness of the tracked object.

By considering the uncertain information, the intersection and shape–distance criteria were
considered in this work. For the intersection criteria, the corresponding true, indeterminate, and faulty
membership functions are defined as follows:

Tint(i) = max
( |si ∩Ol|
|si| ,

|si ∩Ol|
|Ol|

)
; (10)

Iint(i) =
|si\Ol|
|si| ; (11)

Fint(i) = 1− Tint(i), (12)
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where Ol is the rectangular window, which corresponds to the object location calculated by the
afore-trained classifier before the modification, suppose S(Tsel) is the superpixel set obtained by the
literature [21] with the selected segmentation tuple Tsel, and si is the i-th superpixel included in S(Tsel).

A superpixel is more likely to satisfy the intersection criteria when it is located in the estimated object
location. The corresponding uncertain probability increases with the area outside the object location.

To enhance the robustness of the neutrosophic set-based method for judging a superpixel, the shape
and the distance information were considered. Using the shape–distance criteria, we can further give
the definitions:

Tsd(i) = min
(

f
(

wsi
wol

)
, f

(
hsi
hol

))
; (13)

Isd(i) = 1− e−|xsi−l|/D; (14)

Fsd(i) = 1− Tsd(i), (15)

where wsi and hsi are the width and height, respectively, of the tight rectangular bounding box of the
super pixel si, wol and hol are the width and height corresponding to the object window Ol, xsi is the
centroid location of si, l is the center of the Ol, and D is half the length of the Ol diagonal. The function
f (x) in Tsd(i) is defined as:

f (x) =
{ 1

2 er f c(5x− 7) x ≥ 1
1
2 er f c(−2.2x + 0.2) 0 ≤ x < 1

. (16)

The domain of f (x) is positive real numbers, and then f (x) is manually designed for the purpose of
decreasing the value of Tsd(i) when the width or the height of si is larger or smaller than the wol or
hol. As seen in Figure 4, when x > 1, the response of f (x) decreases slowly in the intervals of [1,1.2]
and [1.6,1.8], but decreases sharply during the interval of [1.2,1.6]. The reason for such a design is
that we wanted to keep the information of those superpixels with a relative similar size to the object,
and try to discard the superpixels with a much larger width or height than the object. As shown
in Figure 4, the response has decreased at the value of less than 0.1 when x equals 1.6. However,
we choose a different solution when x < 1. The response of f (x) decreases much slower than in the
interval of x > 1, because a small superpixel may be one of the real parts of the object. We tried to keep
the information of such superpixels.
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As seen in Equation (13) and Equation (14), the shape factor is mainly considered when calculating
the truth response, and the distance factor is primarily considered as the indeterminate information.

Let A∗ = {〈Cint, 1, 0, 0〉, 〈Csd, 1, 0, 0〉} denote the ideal alternative with the intersection and
shape–distance criteria. Substituting Equations (10)–(16) into Equation (3), we obtain the cosine
similarity score between the choice of si and the ideal superpixel:

lscos(i) = wcint
Tint(i)√

Tint2(i) + Iint2(i) + Fint2(i)
+ wcsd

Tsd(i)√
Tsd

2(i) + Isd
2(i) + Fsd

2(i)
, (17)

where wcint, wcsd ∈ [0, 1], wcint + wcsd = 1. When substituting Equation (5) into Equation (4), we obtain
the corresponding tangent similarity score:

lstan(i) = wtint tan
[
π
12

(∣∣∣Iint(i)
∣∣∣+ 2

∣∣∣Fint(i)
∣∣∣
)]
+ wtsd tan

[
π
12

(∣∣∣Isd(i)
∣∣∣+ 2

∣∣∣Fsd(i)
∣∣∣
)]

, (18)

where wtint, wtsd ∈ [0, 1], wtint + wtsd = 1.
By employing the similarity score, we finally give the definition of the neutrosophic set-based

superpixel filter:

Hi =

{
1 ls(i) > γ
0 else

, (19)

where Hi is the filter response for the superpixel si, γ is a threshold parameter, and ls(i) is the cosine or
tangent similarity score calculated by Equation (17) or Equation (18).

The results of the superpixel filter are applied for estimating the neutrosophic set-based objectness,
then the definition of the filtered objectness measure is given by:

nss(OW , Tsel) = 1−
∑

si∈S(Tsel)

min(|si\OW |, |si ∩OW |)
|OW | Hi, (20)

where S(Tsel) is the superpixel set obtained by using the selected segmentation parameter tuple Tsel
and OW is a rectangular window with the same size as the object.

3.5. Object Localization

For the task of visual tracking, the precision of the object location given by the tracker is very
important for the following tracking procedure. An inaccurate location may disturb the updating of
the classifier, and the tracking result may drift from the real object location in the following frames,
even leading to failure. To improve the robustness of the object localization, both the Neut-Objectness
confidence map and the classification confidence map were employed in this work.

The classification confidence map is calculated by using the afore-trained classifier Hk. All the
windows whose center is located within the circle area for searching are employed as candidates,
suppose sr denotes the searching radius. The scale of each window is the same as the tracked object.
The Hk response of each candidate window finally forms the classification map.

The neutrosophic-based objectness measure is utilized to modify the location l, which fully
depends on Hk. We calculated the Neut-Objectness confidence map by using the similar manner of the
calculation of the classification confidence map, but the response of the filtered objectness measure is
employed instead of the Hk response. Let lnss denote the center location of the candidate window with
a maximum value within the Neut-Objectness confidence map, and the corresponding response is
nss(Ow(lnss), Tsel). The fused object location is calculated by

l∗ =
{
λl + (1− λ)lnss i f nss(Ow(lnss), Tsel) > τ1, and Hk(lnss) > τ2

l else
, (21)
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where l denotes the location, corresponding to the center of the candidate window with the maximum
value within the classification confidence map, Hk(lnss) is the response of Hk for the window centered
at lnss, λ is the ratio parameter, and τ1 and τ2 are threshold parameters for λ,τ1,τ2∈[0,1].

As seen in Equation (21), we modify the location calculated by the afore-trained classifier only when
the maximum of the Neut-Objectness confidence map and the Hk response at the corresponding location
achieves a relative high value. Such a method can effectively remove the interference, which may be
caused by an objectness estimation that is not stable enough.

3.6. Weighted Multiple Instance Learning

In this work, we considered the importance of the instances in the positive bag X+ during the
learning process. The weight of the j-th positive instance in X+ is obtained by using the filtered
objectness measure:

w j =


nss

(
OW j, Tsel

)
i f nss(Ow(lnss), Tsel) > τ1

1 else
, (22)

where OWj is the window corresponding to the j-th instance in X+. Then, the positive bag probability is
computed by [15,17]:

p
(

y = 1
∣∣∣X+

)
=

∑M

j=1
w jp

(
y1 = 1

∣∣∣x1 j
)
, (23)

where p
(

y1 = 1
∣∣∣x1 j

)
is the posterior probability for the positive sample x1j, and x1j denotes the j-th

instance in the positive bag.
Comparing the weight methods employed in WMIL [15] and ONMIL [17], we used the

neutrosophic set-based objectness measure to calculate the weight of each positive instance. In the
WMIL tracker, the weight is computed mainly based on the Euclidean distance between the center
of the instance and the estimated object location. When the tracking result drifts from the real
object location, those real positive instances will be assigned as a relative low weight because of
the long distance, which is contrary to the fact. For the ONMIL tracker, the traditional objectness
estimation with superpixel straddling [20] is directly employed as the weight of each instance. As we
have discussed above, the traditional objectness estimation is highly relevant to the segmentation
results. When the scene changes during the tracking process, a weak objectness measure may be
obtained if an inappropriate set of superpixels is used. In addition, for the task of visual tracking,
some superpixels may also disturb the objectness response of the tracked object area. In our method,
we first employed an online selection method of segmentation parameter tuples to produce a well-built
result of a superpixel set. Secondly, we proposed a neutrosophic set-based superpixel filter to enhance
the objectness estimation for the tracking application. Finally, when calculating the weight for each
instance, the filtered objectness measurements were utilized for weighting when the corresponding
response results were robust enough.

The posterior probability of labeling xij to be positive is defined as [13]:

p
(

y = 1
∣∣∣xi j

)
= σ

(
Hk

(
xi j

))
, (24)

where i∈{0,1}, as has been mentioned above, x1j denotes the j-th instance in the positive bag, x0j denotes
the j-th instance in the negative bag, and σ is the sigmoid function, σ(x) = 1/1 + e−x.

The strong classifier Hk in Equation (24) is defined as:

Hk
(
xi j

)
= ln




p
(
f(xi j)

∣∣∣y = 1
)
p(y = 1)

p
(
f(xi j)

∣∣∣y = 0
)
p(y = 0)


 =

K∑

k=1

hk
(
xi j

)
, (25)
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where f (xij) is a set of Haar-like features corresponding to the weak classifier hk(xij), f (xij) = (f 1(x),
. . . ,fK(x))T. We assume the features in f (xij) are independent and assume uniform prior p(y = 0) =

p(y = 1) as MIL tracker [13]. Then, the hk(xij) is described as [13]:

hk
(
xi j

)
= ln




p
(

fk(xi j)
∣∣∣y = 1

)

p
(

fk(xi j)
∣∣∣y = 0

)

. (26)

The conditional distribution in hk(.) is also defined as a Gaussian function as the MIL tracker,
that is:

p
(

fk(xi j)
∣∣∣y = 1

)
∼ N(µ1, σ1)

p
(

fk(xi j)
∣∣∣y = 0

)
∼ N(µ0, σ0)

(27)

Like the WMIL tracker [15], the parameters µ1 and σ1 are updated as follows:

µ1 ← ηµ1 + (1− η)µ

σ1 ←
√
η(σ1)

2 + (1− η) 1
M

M−1∑
j=0|yi=1

( fk(xi j) − µ)2 + η(1− η)(µ1 − µ)2 (28)

where η is the learning rate, M is the number of positive samples, and µ = 1
M

M−1∑
j=0|yi=1

fk(xi j) is the

average of the k-th feature extracted from the M positive samples. The parameters µ0 and σ0 are
updated by employing the same rules.

Similar to the WMIL tracker, the bag log-likelihood function is defined as [15]:

l(H) =
1∑

i=0


yi log




M−1∑

j=0

w jp( y = 1
∣∣∣x1 j)


+ (1− yi) log




M+L−1∑

j=M

(1− p( y = 1
∣∣∣x0 j))





, (29)

where L is the number of negative samples, wj is the weight of the j-th positive instance defined in
Equation (22), yi is the label of the training bag, yi equals to 1 when the bag is positive, and yi is set as 0
when the bag is negative.

As the method utilized in MIL [13], WMIL [15], and ONMIL trackers [17], our tracker maintains
W weak classifiers in the pool Φ = {h1, h2, . . . , hW}. At each frame, the K weak classifier with strong
classification ability is selected to form Hk. In the WMIL tracker, a more efficient criterion was proposed.
Similar rules are employed here. The scheme for selecting K weak classifier is given below [15].

hk = argmax
h∈Φ

〈
h,∇l(H)

〉∣∣∣
H=Hk−1

, (30)

where [15]:

∇l(H)(xi j) = yi
w jσ(H(xi j))(1− σ(H(xi j)))

M−1∑
m=0

wmσ(H(xim))

− (1− yi)
σ(H(xi j))(1− σ(H(xi j)))

M+L−1∑
m=M

(1− σ(H(xim)))

, (31)

where wj and wm are the weights of the corresponding samples, and they are calculated by Equation (22).
Finally, the main steps of the proposed NeutWMIL tracker are shown in Algorithm 1.
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Algorithm 1 Online neutrosophic similarity-based objectness tracking with weighted multiple instance
learning algorithm (NeutWMIL)

Initialization:
(1) Initialize the region of the tracked object in the first frame.
(2) Initialize the MIL-based classifier Hk by employing the training bags surrounding the object location.
Online tracking:
(1) Select suitable segmentation parameter tuple Tsel by utilizing the method of neutrosophic set-based
segmentation parameter selection.
(2) Read a new frame of the video sequence.
(3) Calculate the superpixel set for the current frame with the selected tuple Tsel.
(4) Compute the estimation of the filtered objectness surrounding the location obtained by the afore-trained
classifier Hk, and get the final object location l* in this frame by Equation (21).
(5) Compute the neutrosophic set-based weight by Equation (22).
(6) Crop M positive instances within the circular region centering at to form a positive bag, then crop L
negative instances from an annular region to form a negative bag.
(7) Update the parameters of W weak classifiers by Equation (28).
(8) Select K weak classifiers by Equation (30) and form the current classifier Hk.
(9) Go to step (1) until the end.

4. Experiments

In this section, we compared the proposed NeutWMIL tracker with six trackers on 20 challenging
video sequences. The six trackers were the NeutanWMIL, ONWMIL, WMIL [15], MIL [13], OAB [10],
and SemiB[11] trackers. Specifically, the NeutWMIL and the NeutanWMIL trackers were two kinds
of the proposed tracking algorithm. The only difference is that the NeutWMIL tracker employed
the cosine similarity measure, and the NeutanWMIL tracker used the tangent measure when the
neutrosophic similarity estimation was needed during the tracking process. For the ONWMIL tracker,
we implemented it using a similar instance weighting method to that proposed in [17]. The objectness
estimation was directly applied for weighting each instance for the ONWMIL tracker, and the
segmentation parameters were kept constant. The instance-weighting scheme was the only difference
when compared with the NeutWMIL and the NeutanWMIL trackers. The source codes of the
WMIL, MIL, OAB, and SemiB trackers are all publicly available, and the default parameter settings
were utilized.

4.1. Parameter Setting

For the NuetWMIL, NeutanWMIL, and ONWMIL trackers, all the parameters related to the WMIL
tracker were set as they are mentioned in the publicly available source codes. For instance, we set α = 4,
the search radius sr was set to 25, and β ws set to 1.5sr, the number of the cropped negative instances
L was set to 50, the number of the weak classifiers W = 150, and the strong classifier Hk maintained
K = 15 weak classifiers. Three segmentation parameter tuples were chosen—T1 = {0.4, 450, 150},
T2 = {0.5, 500, 200}, and T3 = {0.6, 550, 250}. When we performed the tuple selection algorithm,
the parameter r defined in Equation (6) was set to 8, and C was set to 4, which means the four corners of
the square window with an edge length of 17 pixels were considered for evaluating the indeterminate
estimation. For the neutrosophic set-based superpixel filter, when calculating the similarity score of
each superpixel by Equations (17)–(18), we set wcint = wcsd = wtint = wtsd = 0.5, which meant each criterion
was treated equally. The threshold parameter γ in Equation (19) decided how many superpixels
could pass the filter. To fully use the superpixel information and to filter the noisy superpixel in the
meantime, a near median value 0.4 was set to γ. For the object location step, the location estimated by
the trained classifier was more robust than the filtered objectness-based result statistically. However,
when a relatively high response of the filtered objectness was received, as well as the response of
the classifier, the objectness results were usually robust enough, and a more accurate result could be
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achieved by fusing these two kinds of results. By considering this, for the parameters in Equation (21),
we set τ1 = 0.3 and τ2 = 0.3, and then the fusing ratio λ is set to 0.3. Finally, all parameters were kept
constant for all the experiments.

4.2. Evaluation Criteria

We used two kinds of evaluation criteria, one was center location error, and the other was
the success ratio based on the overlap metric. For the center location error metric, the Euclidean
distance between the estimated object location and the manually labeled ground truth was considered.
The overlap score is defined as:

pi =

∣∣∣ROI′i ∩ROIi
∣∣∣

∣∣∣ROI′i ∪ROIi
∣∣∣
, (32)

where ROI′i is the object area estimated by the tracker in the i-th frame, ROIi corresponds to the ground
truth. Giving a threshold u, we can say the result is correct if pi > u. Suppose FNs is the number of the
frames, then the success ratio is calculated by:

R =
∑FNs

i=1
qi/FNs, (33)

where:

qi =

{
1 i f pi > u
0 else

. (34)

4.3. Quantitative Analysis

Details of each tested video sequence are given in Table 1. 14,163 frames are evaluated here.
The challenge degree grew with the increase in the NC value. The average center location errors for the
tested trackers are shown in Table 2. We can see that the NeutWMIL tracker ran the best in 13 sequences,
and it performed the second best in four sequences. The NeutanWMIL tracker performed the best
in four sequences and the second best in six sequences. The results of the corresponding average
overlap ratio are given in Table 3. We can see the NeutWMIL tracker had the best performance in
12 sequences and the second best in six sequences. The NeutanWMIL tracker performed the best in
five sequences and the second best in eight sequences. Figure 5 shows the plot of average success of
the evaluated trackers through all the sequence. We can see that the NeutWMIL tracker performed the
best, and the NeutanWMIL tracker had the second best performance. We can also find that there is
a big gap between the NeutWMIL tracker and the WMIL tracker, as well as the MIL tracker. Based
on the last line of both Tables 2 and 3, a conclusion can also be drawn that the proposed NeutWMIL
tracker performs the best, and the proposed NeutanWMIL tracker performs the second best.
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Table 1. An overview of the 20 tested video sequences. (Total number of evaluated frames is 14,163)

Sequence IV SV OCC DEF MB FM IPR OPR OV BC LR FNs NC

Freeman1 Y Y Y 326 3
Mountain-Bike Y Y Y 228 3
Vase Y Y Y 271 3
Sylvester Y Y Y 1345 3
Rubik Y Y Y Y 1997 4
Gym Y Y Y Y 767 4
Football Y Y Y Y 362 4
Boy Y Y Y Y Y 602 5
Couple Y Y Y Y Y 140 5
BlurBody Y Y Y Y Y 334 5
Basketball Y Y Y Y Y 725 5
Doll Y Y Y Y Y 3872 5
FleetFace Y Y Y Y Y Y 707 6
Coke Y Y Y Y Y Y 291 6
David Y Y Y Y Y Y Y 471 7
ClifBar Y Y Y Y Y Y Y 472 7
Tiger1 Y Y Y Y Y Y Y 354 7
Biker Y Y Y Y Y Y Y 142 7
Tiger2 Y Y Y Y Y Y Y Y 365 8
Soccer Y Y Y Y Y Y Y Y 392 8

Note: IV: Illumination Variation, SV: Scale Variation, OCC: Occlusion, DEF: Deformation, MB: Motion Blur, FM: Fast
Motion, IPR: In-Plane Rotation, OPR: Out-of-Plane Rotation, OV: Out-of-View, BC: Background Clutters, and LR:
Low Resolution, FNs: Frames, NC: Number of types of challenge.

Table 2. The average center location errors (in pixels) for the compared trackers (bold red fonts indicate
the best performance, while the italic blue fonts indicate the second best ones).

Sequence Neut-WMIL Neutan-WMIL ON-WMIL WMIL MIL OAB SemiB

Freeman1 14.30 16.70 17.80 15.64 17.06 66.12 54.69
MountainBike 7.89 15.02 29.80 120.05 8.07 12.96 44.39
Vase 21.97 21.53 22.62 21.08 15.04 34.58 32.05
Sylvester 7.75 8.79 8.96 18.37 17.49 12.18 22.75
Rubik 14.49 41.30 80.97 84.44 22.56 33.74 53.82
Gym 11.47 29.60 62.04 123.95 20.71 15.24 23.60
Football 12.86 12.54 16.79 14.38 11.66 171.91 96.91
Boy 7.54 7.38 19.63 7.88 108.24 3.43 56.03
Couple 9.70 7.88 35.68 35.92 34.80 33.86 102.71
BlurBody 33.91 36.44 35.07 85.45 81.99 59.44 108.71
Basketball 10.76 10.22 17.69 25.65 107.05 145.94 158.50
Doll 28.18 82.91 47.29 74.80 70.37 127.33 52.73
FleetFace 29.66 50.11 69.94 109.24 50.68 44.27 69.49
Coke 23.54 32.47 43.24 46.60 113.62 17.64 50.93
David 18.97 38.47 46.67 20.22 24.34 71.55 55.41
ClifBar 17.85 9.65 10.50 20.08 23.47 32.87 74.98
Tiger1 14.52 13.94 25.10 73.96 84.24 42.01 60.78
Biker 10.30 11.51 36.35 20.15 27.54 92.87 93.26
Tiger2 17.28 19.19 50.53 40.29 21.93 58.31 68.10
Soccer 28.35 88.16 57.80 101.44 51.88 99.71 92.07
average 17.06 27.69 36.72 52.98 45.64 58.80 68.59
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Table 3. The average overlap ratio for the compared trackers (bold red fonts indicate the best
performance, while the italic blue fonts indicate the second best ones).

Sequence Neut-WMIL Neutan-WMIL ON-WMIL WMIL MIL OAB SemiB

Freeman1 0.299 0.281 0.243 0.281 0.260 0.201 0.170
MountainBike 0.705 0.607 0.554 0.380 0.701 0.621 0.258
Vase 0.314 0.312 0.308 0.307 0.312 0.275 0.236
Sylvester 0.696 0.675 0.657 0.547 0.514 0.612 0.478
Rubik 0.553 0.457 0.191 0.236 0.490 0.385 0.288
Gym 0.474 0.366 0.172 0.074 0.399 0.438 0.269
Football 0.574 0.583 0.412 0.508 0.604 0.237 0.149
Boy 0.662 0.670 0.375 0.591 0.296 0.780 0.272
Couple 0.594 0.617 0.462 0.456 0.486 0.279 0.078
BlurBody 0.525 0.496 0.506 0.298 0.281 0.375 0.193
Basketball 0.655 0.667 0.502 0.529 0.213 0.037 0.048
Doll 0.356 0.164 0.275 0.141 0.231 0.051 0.270
FleetFace 0.568 0.552 0.459 0.305 0.579 0.560 0.415
Coke 0.521 0.448 0.277 0.234 0.047 0.551 0.176
David 0.407 0.309 0.234 0.395 0.346 0.212 0.238
ClifBar 0.426 0.508 0.467 0.403 0.373 0.264 0.224
Tiger1 0.657 0.671 0.517 0.128 0.168 0.526 0.303
Biker 0.437 0.445 0.246 0.246 0.259 0.241 0.244
Tiger2 0.610 0.571 0.309 0.292 0.505 0.250 0.202
Soccer 0.321 0.101 0.204 0.145 0.221 0.103 0.101
average 0.52 0.47 0.37 0.32 0.36 0.35 0.23
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4.4. Qualitative Analysis

We chose thirteen representative sequences among the tested sequences for the Qualitative
analysis. As seen in Tables 1–3, the names of the selected 13 sequences are shown in bold font in each
table. Based on the challenge degree of these sequences, they were separated into three groups for
analysis. The success and center position error plots for each sequence can be seen in Figures 6–8.
Some sampled tracking results are shown in Figures 9–11.
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4.4.1. MountainBike, Sylvester, Rubik, and Gym

As shown in Table 1, the first two sequences were with three types of challenges. The main
challenges were in-plane and out-plane rotation, and there was a background clutter challenge in the
MountainBike sequence, and illumination variation challenge in the Sylvester sequence. As seen in
Figure 9a, the SemiB tracker yielded a severe drift problem at frames #43, #126, and #179. The WMIL
tracker failed due to the background clutter, as shown by frames #126 and #179. When the biker passed
by the area with more challenging background clutter, the NeutanWMIL and ONWMIL trackers
produced wrong object locations, as seen in frame #219. The OAB and SemiB trackers drifted away
on account of the in-plane and out-plane challenge, as shown by frames #64 and #368 in Figure 9b.
Due to the rotation and illumination variation challenges, the trackers drifted from the object except
the NeutWMIL tracker, as shown by frames #657 and #672. The center position errors of all the trackers
at each frame are shown in Figure 6. We can see the NeutWMIL tracker outperformed all the others,
the results in Tables 2 and 3 also support this conclusion. For the last two sequences, besides the scale
variation, in-plane and out-plane rotation challenges, the occlusion was another challenging issue for
the Rubik sequence. For the Gym sequence, there was also a deformation challenge. All the trackers
drifted away due to the in-plane and out-plane rotation, as shown by frames #254, #507, #815, and #1078
in Figure 9c, except the NeutWMIL and NeutanWMIL trackers. As shown in Figure 6, the plot of
center position error shows that NeutanWMIL tracker performed well until fame #1600, and the drift
was mainly caused by the occlusion, as shown by frame #1611. Considering the deformation challenge,

227



Symmetry 2019, 11, 832

all the trackers except the NeutWMIL tracker were affected in some degree in the Gym sequence.
Drifts can be seen in Figure 9d, the plot in Figure 6 also reveals the drift problem.

4.4.2. Couple, BlurBody, Basketball, and Doll

This group of sequences was more challenging than the previous one. The fast motion of the
camera and background clutter were the most challenging problems in the Couple sequence. As shown
in Figure 7, Table 2, and Table 3, the NeutanWMIL tracker performed the best in the Couple sequence.
The OAB and SemiB trackers could not adaptively adjust to these challenges, and they drifted from
the ‘couple’, as shown in Figure 10a. As seen in Figure 7, we can see that all the trackers drifted away
severely near frame #90, because a very fast motion occurred to the camera. However, as shown
in Figure 10a, the ‘couple’ was re-tracked by the NeutWMIL and NeutanWMIL trackers. For the
BlurBody sequence, besides the fast motion, the most challenging problems were motion blur and scale
variation. As shown in Figure 7, the SemiB tracker drifted away at the very beginning. The related
screenshots can be seen by frames #12 and #16 in Figure 10b. As shown by frames #124 and #203,
the WMIL, MIL, and OAB trackers drifted for the scale variation and motion blur challenges. From the
plots shown in Figure 7, we can find that the NeutWMIL and NeutanWMIL trackers performed
the best, the ONWMIL tracker also performed well to some extent. There was background clutter,
out-plane rotation, deformation, and scale variation challenges in the Basketball sequence. The OAB
and SemiB trackers failed quickly when a player appeared nearby the target, as shown by frame #39
in Figure 10c. The MIL tracker also drifted from the target player after he passed by several other
players, as shown by frames #258 and #468. The WMIL tracker ran well until the player passed by
several other players with similar color, as shown by frame #664. As shown in Figure 7, Table 2,
and Table 3, the NeutanWMIL tracker ran the best for both the BlurBody and Basketball sequences,
but the gap between the NeutanWMIL tracker and the NeutWMIL tracker is very small. Challenges
like illumination variation, scale variation, occlusion, and rotation were included in the Doll sequence.
The WMIL, OAB, and SemiB trackers drifted away quickly, as shown by frames #185, #225, and #742.
The NeutanWMIL and ONWMIL trackers could not adaptively adjust to these challenges and drifted
from the doll, as shown by frames #1414 and #2324. The proposed NeutWMIL tracker can yield more
stable and more accurate results than the other six trackers.

4.4.3. David, Tiger1, Biker, Tiger2, and Soccer

This group had the most challenging sequences. Seven types of challenge were included in the
David sequence. Details can be seen in Table 1. The OAB tracker was distracted by the wall because of
the similar color, the SemiB tracker drifted from the target mainly due to the challenge of illumination
variation, as shown by frames #117 and #155 in Figure 11a. The NeutanWMIL and ONWMIL trackers
were also distracted by the wall because of the illumination change and the scale variation, as well as the
similar texture between the painting and the target. As seen in Figure 7, Figure 11a, Table 2, and Table 3,
the NeutWMIL tracker produced a more robust estimation of object location. For the sequences of
Tiger1 and Tiger2, seven types of challenge were included in the Tiger1 sequence, and Tiger2 consisted
of eight types of challenge. The SemiB, OAB, WMIL, MIL, and ONWMIL trackers could not adjust
to these challenges well, as shown by frames #21, #95, #128, #143, and #235 in Figure 11b, as well as
frames #64, #99, #280, and #353 shown in Figure 11d. The performance gap between the NeutanWMIL
tracker and the NeutWMIL tracker was very small in the sequences of Tiger1 and Tiger2, as shown
in Figure 7, Table 2, and Table 3. The Biker sequence mainly contained challenges like fast motion,
scale variation, out-plane rotation, out of view, and low resolution. The OAB and SemiB trackers
drifted from the target mainly due to the challenges of scale variation and head rotation, as shown by
frames #64 and #66 in Figure 11c. All the trackers failed nearby frame #70, because of a very fast move
from the target, as shown by frame #72 in Figure 11c. However, the NeutanWMIL and NeutWMIL
trackers snapped to the target again when the target was located within the searching area, as shown
by frames #84 and #136. The Soccer sequence had the most challenging problems among the tested
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sequences. As shown by frame #37 in Figure 11e, the OAB and SemiB trackers drifted away because of
the challenges of motion blur and rotation. As seen in Figure 8, we can find the estimation results of
the NeutWMIL and NeutanWMIL trackers were not stable between the frame #70 and #120. This is
mainly due to the severe occlusion during such a period. The ONWMIL, WMIL, and MIL trackers
drifted away after such a long-term occlusion. When the target appeared, the NeutWMIL snapped to
the target again, and performed the best in the following frames, as shown by frames #127 and #155.

4.5. Discussion

With the above analysis, we can find that the proposed NeutWMIL tracker had the best performance.
This was mainly due to three contributions of this work. First, by employing the proposed object location
objectness enhancing criterion, a more appropriate tuple of segmentation parameter was selected,
and then a more suitable superpixel set for measuring the objectness was produced, which helped
the tracker to adjust for different scenes during the tracking process. Secondly, the intersection and
shape–distance criteria were proposed for constructing the superpixel filter, which helped the tracker
filter out those superpixels which may disturb the tracker, and more reliable sample weights were
produced for updating the classifier. Thirdly, the object location was finally decided by fusing the
information of the Neut-Objectness confidence map and the classification confidence map, which could
also enhance the robustness of the tracker.

As shown in Figure 5, Table 2, and Table 3, we can see that there is a big gap between the proposed
NeutWMIL and the WMIL tracker. The main reason for this is the NeutWMIL tracker utilized the
neutrosophic set-based objectness weighting algorithm. Weights that are more robust can be produced
when there is a small drift from the real object location. The comparison result also shows that the
NeutWMIL tracker performed better than the NeutanWMIL tracker. As we have mentioned, the only
difference between these two trackers is the usage of different neutrosophic similarity measures.
The cosine similarity measure is applied for the NeutWMIL tracker, and the tangent similarity measure
is employed by the NeutanWMIL tracker. Regarding Equations (8) and (9) and Equations (17) and (18),
it can be found that the truth element is enhanced for the cosine measure, and the I and F elements
are only applied for decreasing the similarity response. Such a scheme seems more suitable for the
judging application in this work. However, all the T, I, and F elements are treated equally for the
tangent measure. As shown in Figure 5, Table 2, and Table 3, a relatively big gap exists between the
NeutWMIL tracker and the ONWMIL tracker. This result reveals that the proposed weighting method
contributed much more to the tracker, rather than using the objectness estimation directly.

5. Conclusions

In this paper, we presented a novel algorithm of neutrosophic similarity-based objectness tracking
via weighted multiple instance learning. This is the first time the NS theory has been introduced
into the visual object tracking of a discriminative model. To produce more reliable sample weights,
object location objectness enhancing criterion was first proposed for the selection of segmentation
parameter tuples. Then, the intersection and the shape–distance criteria were proposed for filtering
out the unreliable superpixels. Three membership functions, T, I, and F, for each criterion were
given by considering uncertain issues. Finally, we proposed a method of filtered objectness measure
and also utilized such a neutrosophic set-based measure to modify the location calculated by the
afore-trained classifier. Experimental results on challenging video sequences demonstrated the
superiority of the proposed tracker to state-of-the-art discriminative trackers in accuracy and stability.
Moreover, our parameter selection technique can be extended to any other segmentation algorithm if its
performance can be affected by some parameters. Our sample weighting scheme can be also extended
to other discriminative trackers to easily help them update the classifier using robust sample weights.
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Abstract: Neutrosophic triangular norms (t-norms) and their residuated lattices are not only the
main research object of neutrosophic set theory, but also the core content of neutrosophic logic.
Neutrosophic implications are important operators of neutrosophic logic. Neutrosophic residual
implications based on neutrosophic t-norms can be applied to the fields of neutrosophic inference
and neutrosophic control. In this paper, neutrosophic t-norms, neutrosophic residual implications,
and the residuated lattices derived from neutrosophic t-norms are investigated deeply. First of all,
the lattice and its corresponding system are proved to be a complete lattice and a De Morgan algebra,
respectively. Second, the notions of neutrosophic t-norms are introduced on the complete lattice
discussed earlier. The basic concepts and typical examples of representable and non-representable
neutrosophic t-norms are obtained. Naturally, De Morgan neutrosophic triples are defined for the
duality of neutrosophic t-norms and neutrosophic t-conorms with respect to neutrosophic negators.
Third, neutrosophic residual implications generated from neutrosophic t-norms and their basic
properties are investigated. Furthermore, residual neutrosophic t-norms are proved to be infinitely
∨-distributive, and then some important properties possessed by neutrosophic residual implications
are given. Finally, a method for producing neutrosophic t-norms from neutrosophic implications
is presented, and the residuated lattices are constructed on the basis of neutrosophic t-norms and
neutrosophic residual implications.

Keywords: neutrosophic sets; neutrosophic triangular norms; residuated lattices; representable
neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely
∨-distributive

1. Introduction

Neutrosophic sets were firstly proposed by Smarandache [1] from a philosophical point of view
in 1998, which is a generalization of fuzzy sets and intuitionistic fuzzy sets. However, it is difficult
to apply neutrosophic sets to solve practical problems since the values of their three functions with
respect to truth, indeterminacy and falsity lie in ]0−,1+[. The definition of single-valued neutrosophic
sets were introduced by Wang [2], whose values belong to [0,1]. With the development of neutrosophic
set theory, single-valued neutrosophic sets and their applications have been investigated by more
scholars. Single-valued neutrosophic sets were successfully applied to various decision making
problems [3–8]. In addition, Zhang et al. studied the neutrosophic logic algebras and discussed
neutrosophic filters and neutrosophic triplet groups, which are the important foundation of the
development of neutrosophic logic theory [9–12]. To facilitate research, “single-valued neutrosophic
sets” are abbreviated as “neutrosophic sets” in this paper. For neutrosophic sets, the truth-membership,
indeterminacy-membership and falsity-membership are not restricted to each other, which is different
from intuitionistic fuzzy sets. Picture fuzzy sets proposed by Cuong [13] in 2013 is a direct
generalization of intuitionistic fuzzy sets, because their positive membership, neutral membership
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and negative membership are not independent completely. It is worth noting that picture fuzzy sets
can be regarded as special neutrosophic sets [14,15], and also can be called standard neutrosophic
sets [1,2,16–19].

Fuzzy logic plays a vital role in fuzzy set theory. T-norms, t-conorms, negators and implications
are very important fuzzy logic operators. T-norms were originally defined by Menger [20], and then
Schweizer and Sklar [21,22] redefined the t-norms which have been used to today. From the
perspective of fuzzy logic, t-norms are the extension of intersection operation of fuzzy sets [23].
The algebraic properties of t-norms, for example, continuity, archimedean, strict, nilpotent and
so on, are discussed in some papers [24–28]. Hu et al. studied t-norm extension operations [29].
Wang et al. discussed the lattice structure of algebra of fuzzy values [30]. The t-norms which
satisfy the residual principle are an important class of t-norms, because they can produce fuzzy
implications and constitute the residuated lattices [31–34]. Type-2 t-norms (t-conorms) and their
residual operators on type-2 fuzzy sets were investigated by Li [25], which promote the development
of fuzzy reference system. Intuitionistic fuzzy t-norms on intuitionistic fuzzy sets (L∗-fuzzy sets)
were proposed by Deschrijver et al., they discussed t-representable intuitionistic fuzzy t-norms and
their residual operators [35,36]. Picture fuzzy sets are particular L-fuzzy sets [37]. Picture fuzzy
t-norms on picture fuzzy sets were introduced in [17,38,39], some basic picture fuzzy logic connectives
and their properties for picture fuzzy sets are investigated in [40,41]. Some classes of representable
picture fuzzy t-norms and representable picture fuzzy t-conorms on picture fuzzy sets and De Morgan
picture operator triples in picture fuzzy logic are discussed [42]. Furthermore, a picture inference
system is proposed by Son [43]. The residual operations, residual implications of uninorms were
discussed by Baets [44]. Wang proposed the notions of residual implications (co-implications) of
pseudo t-norms, left and right uninorms and studied some properties of infinitely ∨-distributive
(∧-distributive) pseudo t-norms, left and right uninorms [45–47]. Then Liu introduced semi-uninorms
and their residual implications [48].

Neutrosophic t-norms, neutrosophic t-conorms, neutrosophic negators and neutrosophic
implications are important neutrosophic logic operators for neutrosophic sets. It is a very meaningful
topic to discuss neutrosophic t-norms and their residual implications on neutrosophic sets. In the
last few years, although Alkhazaleh discusses some neutrosophic t-norms and t-conorms in [49],
Liu proposes aggregation operators based on Archimedean t-norms and t-conorms for neutrosophic
numbers in [5], Smarandache discussed neutrosophic norms (n-norms), n-valued refined neutrosophic
logic and its applications in physics [50,51], there are a few papers about basic neutrosophic logic
connectives and their properties and neutrosophic logic inference systems and their applications
in the field of control. Therefore, it is necessary to study neutrosophic logic operators and their
properties, especially the application of neutrosophic residual implications in neutrosophic inference
and neutrosophic control.

To achieve these goals, the definitions of neutrosophic t-norms should be given firstly. We can
study neutrosophic logic and neutrosophic inference systems further only if neutrosophic t-norms
and their residual implications are studied thoroughly. Thus, it is the main task of this paper to
study neutrosophic t-norms and their residual implications. Section 2 presents some basic notions.
In Section 3, the lattice structure of neutrosophic sets is analyzed and constructed systematically
based on the first type inclusion relation on neutrosophic sets. In particular, we combine some basic
algebraic operations: Union, intersection and complement and their related properties to prove that
the system (D∗;∨1,∧1,c , 0D∗ , 1D∗) is a De Morgan algebra. In Section 4, we introduce neutrosophic
t-norms (t-conorms), representable neutrosophic t-norms (t-conorms) and De Morgan neutrosophic
triples. In addition, we present some important theorems and typical examples. In Section 5,
the definitions of neutrosophic residual implications (co-implications) are obtained and their basic
properties are discussed deeply. Moreover, residual neutrosophic t-norms (t-conorms) are proved
to be infinitely ∨-distributive (∧-distributive), and then some important results related to residual
neutrosophic t-norms and neutrosophic residual implications are given. Section 6 shows a method
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for obtaining neutrosophic t-norms from neutrosophic implications, and then proves that the system
(D∗;∨1,∧1,⊗,→, 0D∗ , 1D∗) is a residuated lattice. In Section 7, we conclude the paper.

2. Preliminaries

Some basic concepts in fuzzy set theory will be reviewed in this section.

Definition 1. ([52]) Let U be a nonempty set. An intuitionistic fuzzy set M in U is characterized by
a membership function µM(u) and a non-membership function νM(u). Then, an intuitionistic fuzzy set M can
be denoted by

M = {(u, µM(u), νM(u)) | u ∈ U},

where µM(u): U → [0, 1] and νM(u): U → [0, 1] with the condition 0 ≤ µM(u) + νM(u) ≤ 1, for all u ∈ U.
Here µM(u), νM(u) ∈ [0, 1] denote the membership and the non-membership functions of the intuitionistic
fuzzy set M, respectively.

Definition 2. ([1]) Let U be a nonempty set. A neutrosophic set M in U is characterized by three functions:
Truth-membership function TM(u), indeterminacy-membership function IM(u), and falsity-membership
function FM(u). Here, TM(u): U →]−0, 1+[, IM(u): U →]−0, 1+[, and FM(u): U →]−0, 1+[ with the
condition −0 ≤ sup TM(u) + sup IM(u) + sup FM(u) ≤ 3+, for all u ∈ U.

However, there are a lot of limitations in solving practical problems with neutrosophic sets,
because their notions are given from a philosophical perspective. Thus, the concepts of single-valued
neutrosophic sets are given by Wang et al. as follows.

Definition 3. ([2]) Let U be a nonempty set. A single-valued neutrosophic set M in U is characterized
by three functions: Truth-membership function TM(u), indeterminacy-membership function IM(u),
and falsity-membership function FM(u). Then, a single-valued neutrosophic set M can be denoted by

M = {〈u, TM(u), IM(u), FM(u)〉|u ∈ U},

where TM(u), IM(u), FM(u) ∈ [0, 1] with the condition 0 ≤ TM(u) + IM(u) + FM(u) ≤ 3, for all u ∈ U.

So far, scholars have described the inclusion relation of neutrosophic sets from three different
angles. The first definition is proposed by Smarandache [1,18,53] and denoted as ⊆1; the second one
is mentioned in [2,14,54] and denoted by ⊆2; the third one is presented in [14,38,39,54] and denoted
by ⊆3. Furthermore, based on the correlation between union, intersection operations and inclusion
relation, we can obtain three different types of union, intersection operations and their properties.
In this paper, we consider the first type inclusion relation.

Definition 4. ([1,18,53]) Let U be a nonempty set. Suppose that M = {〈u, TM(u), IM(u), FM(u)〉|u ∈ U}
and N = {〈u, TN(u), IN(u), FN(u)〉|u ∈ U} are two neutrosophic sets in U. The first type inclusion relation
⊆1 and its basic algebraic operations are defined as follows:

(1) M ⊆1 N if and only if TM(u) ≤ TM(u), IM(u) ≥ IN(u), FN(u) ≥ FN(u), for all u ∈ U;
(2) M ∪1 N = {〈u, max(TM(u), TN(u)), min(IM(u), IN(u)), min(FM(u), FN(u))〉|u ∈ U};
(3) M ∩1 N = {〈u, min(TM(u), TN(u)), max(IM(u), IN(u)), max(FM(u), FN(u))〉|u ∈ U};
(4) Mc = {〈u, IM(u), 1− FM(u), TM(u)〉|u ∈ U}.

Definition 5. ([34]) Let (L;≤L) be a complete lattice. A t-norm on (L;≤L) is a commutative, associative,
increasing mapping T : L2 → L, which satisfies T (1L, u) = u, for all u ∈ L.
A t-conorm on (L;≤L) is a commutative, associative, increasing mapping S : L2 → L, which satisfies
S (0L, u) = u, for all u ∈ L.

234



Symmetry 2019, 11, 817

Example 1. ([27]) Some basic t-norms and their residual implications on ([0, 1];≤) (Table 1) are defined as
follows, for all u, v ∈ [0, 1],

Table 1. Some basic t-norms and their residual implications on ([0, 1];≤).

t-Norms Residual Implications

TM(u, v) = min(u, v) IGD(u, v) =

{
1 if u ≤ v,
v otherwise

TP(u, v) = u · v IGG(u, v) =

{
1 if u ≤ v,
v
u otherwise

TLK(u, v) = max(u + v− 1, 0) ILK(u, v) = min(1, 1− u + v)

TD(u, v) =

{
0 if (u, v) ∈ [0, 1[2,
min(u, v) otherwise

IWB(u, v) =

{
1 if (u, v) ∈ [0, 1[2,
v otherwise

TnM(u, v) =

{
0 if u + v ≤ 1,
min(u, v) otherwise

IFD(u, v) =

{
1 if u ≤ v,
max(1− u, v) otherwise

Example 2. ([27]) Some basic t-conorms and their residual co-implications on ([0, 1];≤) (Table 2) are defined
by, for all u, v ∈ [0, 1],

Table 2. Some basic t-conorms and their residual co-implications on ([0, 1];≤).

t-Conorms Residual Co-Implications

SM(u, v) = max(u, v) JGD(u, v) =

{
0 if u ≥ v,
v otherwise

SP(u, v) = u + v− u · v JGG(u, v) =

{
0 if u ≥ v,
v−u
1−u otherwise

SLK(u, v) = min(u + v, 1) JLK(u, v) = max(0, v− u)

SD(u, v) =

{
1 if (u, v) ∈]0, 1]2,
max(u, v) otherwise

JWB(u, v) =

{
0 if (u, v) ∈]0, 1]2,
v otherwise

SnM(u, v) =

{
1 if u + v ≥ 1,
max(u, v) otherwise

JFD(u, v) =

{
0 if u ≥ v,
min(1− u, v) otherwise

3. The Lattice Structure of (D∗;≤1)

Now we consider the set D∗ defined by,

D∗ = {u = (u1, u2, u3)|u1, u2, u3 ∈ [0, 1]}.

As defined above, if u ∈ D∗, then u has three components: The first component u1, the second
component u2 and the third component u3.

The order relation ≤1 on D∗ can also be defined by, for all u, v ∈ D∗,

u ≤1 v if and only if u1 ≤ v1, u2 ≥ v2, u3 ≥ v3.

Proposition 1. (D∗;≤1) is a partially ordered set.

Proof.

(1) Reflexivity: u ≤1 u, for all u ∈ D∗.
(2) Anti-symmetry: If u ≤1 v and v ≤1 u, then it is obvious that u = v, for all u, v ∈ D∗.
(3) Transitivity: If u ≤1 v and v ≤1 w, then u1 ≤ w1, u2 ≥ w2, u3 ≥ w3, that is, u ≤1 w, for all

u, v, w ∈ D∗.
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Proposition 2. The operations ∧1 and ∨1 are defined by, for all u, v ∈ D∗,

u ∧1 v =





u i f u ≤1 v,
v i f v ≤1 u,
(min(u1, v1), max(u2, v2), max(u3, v3)) otherwise.

u ∨1 v =





u i f v ≤1 u,
v i f u ≤1 v,
(max(u1, v1), min(u2, v2), min(u3, v3)) otherwise.

Then u ∧1 v is called the greatest lower bound of u, v, denoted by inf(u, v); u ∨1 v is called the least upper
bound of u, v, denoted by sup(u, v). That is, (D∗;≤1) is a lattice.

Proof. According to the definitions above, if either u ≤1 v or v ≤1 u, u∧1 v is the greatest lower bound
of u and v. Thus, u ∧1 v = inf(u, v). Similarly, u ∨1 v = sup(u, v) can be obtained.

Now, we assume that neither u ≤1 v nor v ≤1 u. According to the definitions above, u ∧1 v =

(min(u1, v1), max(u2, v2), max(u3, v3)), u ∨1 v = (max(u1, v1), min(u2, v2), min(u3, v3)).

(i) To prove u ∧1 v = inf(u, v), we denote

κ = (κ1, κ2, κ3) = (min(u1, v1), max(u2, v2), max(u3, v3)).

Since u1 ≥ min(u1, v1) = κ1, u2 ≤ max(u2, v2) = κ2, u3 ≤ max(u3, v3) = κ3, κ ≤1 u. Similarly,
we have κ ≤1 v. Thus, κ is the lower bound of u and v. Furthermore, κ is the greatest lower bound of u
and v. In fact, assume a = (a1, a2, a3) ∈ D∗ with the condition a ≤1 u and a ≤1 v. Then, a1 ≤ u1, a2 ≥
u2, a3 ≥ u3 and a1 ≤ v1, a2 ≥ v2, a3 ≥ v3. Therefore, a1 ≤ min(u1, v1) = κ1, a2 ≥ max(u2, v2) = κ2,
a3 ≥ max(u3, v3) = κ3. Hence, a ≤1 κ. To sum up, κ = (min(u1, v1), max(u2, v2), max(u3, v3)) is the
greatest lower bound of u and v.

(ii) To prove u ∨1 v = sup(u, v), we denote

ω = (ω1, ω2, ω3) = (max(u1, v1), min(u2, v2), min(u3, v3)).

Since u1 ≤ max(u1, v1) = ω1, u2 ≥ min(u2, v2) = ω2, u3 ≥ min(u3, v3) = ω3, u ≤1 ω. Similarly,
we have v ≤1 ω. Thus, ω is the upper bound of u and v. Furthermore, ω is the least upper bound of u
and v. In fact, assume b = (b1, b2, b3) ∈ D∗ with the condition b ≥1 u and b ≥1 v. Then, b1 ≥ u1, b2 ≤
u2, b3 ≤ u3 and b1 ≥ v1, b2 ≤ v2, b3 ≤ v3. Therefore, b1 ≥ max(u1, v1) = ω1, b2 ≤ min(u2, v2) = ω2,
b3 ≤ min(u3, v3) = ω3. Hence, b ≥1 ω. To sum up, ω = (max(u1, v1), min(u2, v2), min(u3, v3)) is the
least upper bound of u and v.

(i) and (ii) show that u ∧1 v = inf(u, v), u ∨1 v = sup(u, v), for all u, v ∈ D∗. Then (D∗;≤1) is
a lattice.

The first, second and third projection mapping pr1, pr2 and pr3 on D∗ are defined as follows,
pr1(u) = u1, pr2(u) = u2 and pr3(u) = u3, for all u ∈ D∗.

Proposition 3. (D∗;≤1) is a complete lattice.

Proof. Let B be a nonempty subset of D∗, we have

inf B = (inf pr1B, inf pr2B, inf pr3B),

where inf pr1B = inf{u1 | u1 ∈ [0, 1], ∃u = (u1, u2, u3) ∈ B}, inf pr2B = sup{u2 | u2 ∈ [0, 1], ∃u =

(u1, u2, u3) ∈ B}, inf pr3B = sup{u3 | u3 ∈ [0, 1], ∃u = (u1, u2, u3) ∈ B}.
And
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sup B = (sup pr1B, sup pr2B, sup pr3B),

where sup pr1B = sup{u1 | u1 ∈ [0, 1], ∃u = (u1, u2, u3) ∈ B}, sup pr2B = inf{u2 | u2 ∈ [0, 1], ∃u =

(u1, u2, u3) ∈ B}, sup pr3B = inf{u3 | u3 ∈ [0, 1], ∃u = (u1, u2, u3) ∈ B}.

The maximum and minimum of D∗ are denoted by 1D∗ = (1, 0, 0) and 0D∗ = (0, 1, 1), respectively.
Note that, if u and v are incomparable with respect to ≤1, for all u, v ∈ D∗, then the relationship

between u and v can be denoted as u ‖≤1 v.
Obviously, each neutrosophic set M = {〈u, TM(u), IM(u), FM(u)〉 | u ∈ U} corresponds to

a D∗-fuzzy set. That is, there exits a mapping

M: U → D∗; u 7−→ (TM(u), IM(u), FM(u)).

Based on the relationship between neutrosophic sets and D∗-fuzzy sets, the triple formed by the
three membership degrees of neutrosophic sets is an element of D∗. Therefore, we can obtain more
compact formulas for neutrosophic sets, analyze and extend some operators defined in the fuzzy case
for neutrosophic sets by using the lattice (D∗;≤1).

For example, the intersection of two neutrosophic sets M and N in a universe U is defined as

M ∩1 N = {〈u, min(TM(u), TN(u)), max(IM(u), IN(u)), max(FM(u), FN(u))〉|u ∈ U}.
Using the lattice (D∗;≤1), we can get, for all u ∈ U,

(M ∩1 N)(u) = (min(TM(u), TN(u)), max(IM(u), IN(u)), max(FM(u), FN(u))) = M(u) ∧1 N(u).

Definition 6. The complement of u is defined by, for all u ∈ D∗,

uc = (u3, 1− u2, u1).

Proposition 4. Let u, v, w ∈ D∗. Then

(1) u ∧1 u = u, u ∨1 u = u;
(2) u ∧1 v = v ∧1 u, u ∨1 v = v ∨1 u;
(3) (u ∧1 v) ∧1 w = u ∧1 (v ∧1 w), (u ∨1 v) ∨1 w = u ∨1 (v ∨1 w);
(4) u ∧1 (v ∨1 u) = u, u ∨1 (v ∧1 u) = u;
(5) u ≤1 v if and only if u ∨1 v = v, u ∧1 v = u;
(6) (uc)c = u.

Proposition 5. Let u, v ∈ D∗. Then

(1) (u ∧1 v)c = uc ∨1 vc;
(2) (u ∨1 v)c = uc ∧1 vc.

Proof. (1) Suppose u, v ∈ D∗. If u ≤1 v, that is, u1 ≤ v1, u2 ≥ v2, u3 ≥ v3. By Definition 6, we have
uc ≥1 vc. Thus, (u ∧1 v)c = uc ∨1 vc. Similarly, if u ≥1 v, then uc ≤1 vc and (u ∧1 v)c = uc ∨1 vc.
If u ‖≤1 v, then u ∧1 v = (min(u1, v1), max(u2, v2), max(u3, v3)). Thus, (u ∧1 v)c = (max(u3, v3),
1−max(u2, v2), min(u1, v1)). Since uc ∨1 vc = (u3, 1 − u2, u1) ∨1 (v3, 1 − v2, v1) = (max(u3, v3),
min(1− u2, 1− v2), min(u1, v1)) = (max(u3, v3), 1−max(u2, v2), min(u1, v1)). Hence, (u ∧1 v)c =

uc ∨1 vc.
(2) Similarly, we can get (u ∨1 v)c = uc ∧1 vc.

Proposition 6. The system (D∗;∧1,∨1,c , 0D∗ , 1D∗) is a De Morgan algebra.

Proof. By Propositions 1–5 and the definition of the generalized De Morgan algebra [14,55], we can
get that (D∗;∧1,∨1,c , 0D∗ , 1D∗) is a generalized De Morgan algebra. Furthermore, we can prove that
(D∗;∧1,∨1,c , 0D∗ , 1D∗) is a distributive lattice, that is, for all u, v, w ∈ D∗ such that u ∧1 (v ∨1 w) =

(u ∧1 v) ∨1 (u ∧1 w).
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(1) For all u, v, w ∈ D∗, if any two of them are comparable, then there are six situations as follows:

Case 1: If u ≤1 v ≤1 w, then u ∧1 (v ∨1 w) = u ∧1 w = u, (u ∧1 v) ∨1 (u ∧1 w) = u ∨1 u = u.
Case 2: If u ≤1 w ≤1 v, then u ∧1 (v ∨1 w) = u ∧1 v = u, (u ∧1 v) ∨1 (u ∧1 w) = u ∨1 u = u.
Case 3: If w ≤1 u ≤1 v, then u ∧1 (v ∨1 w) = u ∧1 v = u, (u ∧1 v) ∨1 (u ∧1 w) = u ∨1 w = u.
Case 4: If v ≤1 u ≤1 w, then u ∧1 (v ∨1 w) = u ∧1 w = u, (u ∧1 v) ∨1 (u ∧1 w) = v ∨1 u = u.
Case 5: If w ≤1 v ≤1 u, then u ∧1 (v ∨1 w) = u ∧1 v = v, (u ∧1 v) ∨1 (u ∧1 w) = v ∨1 w = v.
Case 6: If v ≤1 w ≤1 u, then u ∧1 (v ∨1 w) = u ∧1 w = w, (u ∧1 v) ∨1 (u ∧1 w) = v ∨1 w = w.

Thus, u ∧1 (v ∨1 w) = (u ∧1 v) ∨1 (u ∧1 w).

(2) For all u, v, w ∈ D∗, if at least two of them are not comparable, then u ∧1 (v ∨1 w) = u ∧1

(max(v1, w1), min(v2, w2), min(v3, w3)) = (min(u1, max(v1, w1)), max(u2, min(v2, w2)), max(u3,
min(v3, w3))) = (max(min(u1, v1), min(u1, w1)), min(max(u2, v2), max(u2, w2)), min(max(u3, v3),
max(u3, w3))) = (min(u1, v1), max(u2, v2), max(u3, v3))∨ (min(u1, w1), max(u2, w2), max(u3, w3))

= (u∧1 v)∨1 (u∧1 w).

Therefore, (D∗;∧1,∨1,c , 0D∗ , 1D∗) is a De Morgan algebra.

Considering the second type inclusion relation on neutrosophic sets which is dual of the first type
inclusion relation, we get that (D∗;∧2,∨2,c , (0, 0, 1), (1, 1, 0)) is also a De Morgan algebra.

From this, Proposition 2.2 (see [14]) can be easily proved by using Proposition 6. That is,
Proposition 2.2 (see [14]) is a corollary of Proposition 6.

In short, in combination with the conclusions given in [14], we find that neutrosophic net is
different from intuitionistic fuzzy set.

4. Neutrosophic t-Norms and De Morgan Neutrosophic Triples

Section 3 proposes that (D∗;≤1) is a complete lattice, Section 4 will introduce the notions of
neutrosophic t-norms (t-conorms) on (D∗;≤1).

Definition 7. A neutrosophic t-norm is a function T : (D∗)2 → D∗ that satisfies the following conditions,
for all u, v, w ∈ D∗:

(NT1) T (u, v) = T (v, u);
(NT2) T (u, T (v, w)) = T (v, T (u, w));
(NT3) T (u, v) ≤1 T (u′, v′), where u ≤1 u′, v ≤1 v′;
(NT4) T (u, 1D∗) = u.

Definition 8. A neutrosophic t-conorm is a function S : (D∗)2 → D∗ that satisfies the following conditions,
for all u, v, w ∈ D∗:

(NS1) S (u, v) = S (v, u);
(NS2) S (u, S (v, w)) = S (v, S (u, w));
(NS3) S (u, v) ≤1 S (u′, v′), where u ≤1 u′, v ≤1 v′;
(NS4) S (u, 0D∗) = u.

Some basic neutrosophic t-norms (t-conorms) on (D∗;≤1) are presented as follows:

Example 3. Some neutrosophic t-norms are defined by, for all u, v ∈ D∗:

(1) TM(u, v) = (TM(u1, v1), SM(u2, v2), SM(u3, v3));
(2) TP(u, v) = (TP(u1, v1), SP(u2, v2), SP(u3, v3));
(3) TLK(u, v) = (TLK(u1, v1), SLK(u2, v2), SLK(u3, v3));
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(4) TD(u, v) = (TD(u1, v1), SD(u2, v2), SD(u3, v3));
(5) TnM(u, v) = (TnM(u1, v1), SnM(u2, v2), SnM(u3, v3));
(6) T (u, v) = (TP(u1, v1), SLK(u2, v2), SD(u3, v3));
(7) T (u, v) = (TD(u1, v1), SP(u2, v2), SP(u3, v3));
(8) T (u, v) = (TLK(u1, v1), SLK(u2, v2), SM(u3, v3));
(9) T (u, v) = (TM(u1, v1), SP(u2, v2), SM(u3, v3)).

Example 4. Some neutrosophic t-conorms are defined by, for all u, v ∈ D∗:

(1) SM(u, v) = (SM(u1, v1), TM(u2, v2), TM(u3, v3));
(2) SP(u, v) = (SP(u1, v1), TP(u2, v2), TP(u3, v3));
(3) SLK(u, v) = (SLK(u1, v1), TLK(u2, v2), TLK(u3, v3));
(4) SD(u, v) = (SD(u1, v1), TD(u2, v2), TD(u3, v3));
(5) SnM(u, v) = (SnM(u1, v1), TnM(u2, v2), TnM(u3, v3));
(6) S (u, v) = (SM(u1, v1), TP(u2, v2), TLK(u3, v3));
(7) S (u, v) = (SP(u1, v1), TLK(u2, v2), TLK(u3, v3));
(8) S (u, v) = (SLK(u1, v1), TLK(u2, v2), TM(u3, v3));
(9) S (u, v) = (SD(u1, v1), TP(u2, v2), TnM(u3, v3)).

Furthermore, the representation theorems of neutrosophic t-norms (t-conorms) are proposed as follows:

Theorem 1. Let T be a binary operation on D∗. Then, for all u, v ∈ D∗,

T (u, v) = (T(u1, v1), S1(u2, v2), S2(u3, v3))

is a neutrosophic t-norm, where S1, S2 are t-conorms, T is a t-norm on [0, 1].

Proof. (NT1) Let S1, S2 be two t-conorms, T is a t-norm on [0, 1]. Since T(u1, v1) = T(v1, u1),
S1(u2, v2) = S1(v2, u2), S2(u3, v3) = S2(v3, u3), T (u, v) = T (v, u), for all u, v ∈ D∗.

(NT2) T (1D∗ , u) = (T(1, u1), S1(0, u2), S2(0, u3)) = (u1, u2, u3) = u, for all u ∈ D∗.
(NT3) For all u, u′, v, v′ ∈ D∗ with the condition u ≤1 u′, v ≤1 v′, we have T(u1, v1) ≤ T(u′1, v′1),

S1(u2, v2) ≥ S1(u′2, v′2), S2(u3, v3) ≥ S2(u′3, v′3). Therefore, T (u, v) ≤1 T (u′, v′).
(NT4) T (u, T (v, w)) = T (u, (T(v1, w1), S1(v2, w2), S2(v3, w3))) = (T(u1, T(v1, w1)), S1(u2,

S1(v2, w2)), S2(u3, S2(v3, w3))) = (T(v1, T(u1, w1)), S1(v2, S1(u2, w2)), S2(v3, S2(u3, w3))) = T (v,
T (u, w)), for all u, v, w ∈ D∗.

Hence, T (u, v) is a neutrosophic t-norm.

Theorem 2. Let S : (D∗)2 → D∗ be a mapping. Then, for all u, v ∈ D∗,

S (u, v) = (S(u1, v1), T1(u2, v2), T2(u3, v3))

is a neutrosophic t-conorm, where S is a t-conorm, T1, T2 are t-norms on [0, 1].

Proof. The proof is similar to that of Theorem 1.

Theorem 1 proposes a way to construct neutrosophic t-norms on D∗ with t-norms and t-conorms
which are defined on [0, 1]. Unfortunately, the converse is not always true. It is not always possible to
find two t-conorms S1, S2, a t-norm T on [0, 1] such that T = (T, S1, S2).

To distinguish these two kinds of neutrosophic t-norms, we introduce the notions of representable
neutrosophic t-norms.

Definition 9. A neutrosophic t-norm T is called representable, if and only if, there exist two t-conorms S1, S2

and a t-norm T on [0, 1] satisfying, for any u, v ∈ D∗,
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T (u, v) = (T(u1, v1), S1(u2, v2), S2(u3, v3)).

Definition 10. A neutrosophic t-norm T is called standard representable, if and only if, there exists a t-norm
T and a t-conorm S on [0, 1] satisfying, for any u, v ∈ D∗,

T (u, v) = (T(u1, v1), S(u2, v2), S(u3, v3)).

Definition 11. A N-dual representable neutrosophic t-norm T defined by, for any u, v ∈ D∗,

T (u, v) = (T(u1, v1), S(u2, v2), S(u3, v3)).

where T is a t-norm on [0, 1] and S is the N-dual t-conorm of T, that is, T(u, v) = 1− S(1− u, 1− v).

Definition 12. A first N-dual representable neutrosophic t-norm T defined by, for any u, v ∈ D∗,

T (u, v) = (T(u1, v1), S1(u2, v2), S2(u3, v3)).

where T is a t-norm on [0, 1] and S1 is the N-dual t-conorm of T, S2 is a t-conorm on [0, 1].

Definition 13. A second N-dual representable neutrosophic t-norm T defined by, for any u, v ∈ D∗,

T (u, v) = (T(u1, v1), S1(u2, v2), S2(u3, v3))

where T is a t-norm on [0, 1] and S2 is the N-dual t-conorm of T, S1 is a t-conorm on [0, 1].

Notice that the N-dual representable neutrosophic t-norms are not only the standard representable
neutrosophic t-norms, but also the first N-dual representable neutrosophic t-norms and the second
N-dual representable neutrosophic t-norms. Those neutrosophic t-norms presented in Example 3 are all
representable neutrosophic t-norms, and (1)–(5) are N-dual representable neutrosophic t-norms, (8) is a
first N-dual representable neutrosophic t-norm, (9) is a second N-dual representable neutrosophic t-norm.

Definition 14. A neutrosophic t-conorm S is called representable, if and only if, there exists a t-conorm S and
two t-norms T1, T2 on [0, 1] satisfying, for any u, v ∈ D∗,

S (u, v) = (S(u1, v1), T1(u2, v2), T2(u3, v3)).

For neutrosophic t-conorms, the rest of the related concepts can be obtained by contrasting with
Definitions 10–13 of neutrosophic t-norms above.

The following propositions present a method for constructing new representable neutrosophic
t-norms (t-conorms) with intuitionistic fuzzy t-norms (t-conorms).

Proposition 7. Let T(x, y) be a representable intuitionistic fuzzy t-norm: T(x, y) = (t(x1, y1), s2(x3, y3)),
for all x = (x1, x3), y = (y1, y3) ∈ L∗, where t is a t-norm, s2 is a t-conorm on [0, 1]. Assume that
s1 is a t-conorm on [0, 1], satisfying, 0 ≤ t(u1, v1) + s1(u2, v2) + s2(u3, v3) ≤ 3. Then T (u, v) =

(t(u1, v1), s1(u2, v2), s2(u3, v3)) is a representable neutrosophic t-norm, for any u, v ∈ D∗.

Proposition 8. Let S(x, y) be a representable intuitionistic fuzzy t-conorm: S(x, y) = (s(x1, y1), t2(x3, y3)),
for all u = (x1, x3), v = (y1, y3) ∈ L∗, where s is a t-conorm, t2 is a t-norm on [0, 1]. Suppose that
t1 is a t-norm on [0, 1], satisfying, 0 ≤ s(u1, v1) + t1(u2, v2) + t2(u3, v3) ≤ 3. Then S (u, v) =

(s(u1, v1), t1(u2, v2), t2(u3, v3)) is a representable neutrosophic t-conorm, for all u, v ∈ D∗.

De Morgan triple is the perfect combination of a fuzzy t-norm, a fuzzy t-conorm and a fuzzy
negator because it describes the duality of a fuzzy t-norm and a fuzzy t-conorm with respect to a fuzzy
negator. Thus, it is necessary to discuss De Morgan neutrosophic triples. First of all, neutrosophic
negators as the extension of fuzzy negators, as well as intuitionistic negators can be defined as follows:
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Definition 15. A neutrosophic negator is a function N : D∗ → D∗ that satisfies the following conditions:

(NN1) N (u) ≥1 N (v), for all u, v ∈ D∗ such that u ≤1 v;
(NN2) N (0D∗) = 1D∗ ;
(NN3) N (1D∗) = 0D∗ .

If N (N (u)) = u, for all u ∈ D∗, then N is called an involutive neutrosophic negator.
The mapping Ns: D∗ → D∗ defined by, for all (u1, u2, u3) ∈ D∗,

Ns(u1, u2, u3) = (u3, 1− u2, u1)

is an involutive neutrosophic negator. Then we call it the standard neutrosophic negator. Of course,
N (u) = (u3, 1− u3, u1), N (u) = (u3, u1, u1) are neutrosophic negators.

Definition 16. Let T be a neutrosophic t-norm, S be a neutrosophic t-conorm, N be a neutrosophic negator.
The triple (T , N , S ) satisfied the following conditions, for all u, v ∈ D∗,

N (S (u, v)) = T (N (u), N (v));
N (T (u, v)) = S (N (u), N (v))

is called a De Morgan neutrosophic triple. Moreover, T and S are dual with respect to N .

Theorem 3. Let N be an involutive neutrosophic negator.

(1) If S is a neutrosophic t-conorm, then the operator T defined by

T (u, v) = N (S (N (u), N (v))),

is a neutrosophic t-norm. Furthermore, (T , N , S ) is a De Morgan neutrosophic triple.
(2) If T is a neutrosophic t-norm, then the operator S defined by

S (u, v) = N (T (N (u), N (v))),

is a neutrosophic t-conorm. Furthermore, (T , N , S ) is a De Morgan neutrosophic triple.

Proof. (1) Let N be an involutive neutrosophic negator, S be a neutrosophic t-conorm.
(NT1) For any u, v ∈ D∗, T (u, v) = N (S (N (u), N (v))) = N (S (N (v), N (u))) = T (v, u),

because S is commutative. Thus, T is commutative.
(NT2) For any u, v, w ∈ D∗, T (u, T (v, w)) = T (u, N (S (N (v), N (w)))) =

N (S (N (u), N (N (S (N (v), N (w)))))) = N (S (N (u), S (N (v), N (w)))) = N (S (N (v),
S (N (u), N (w)))) = T (v, T (u, w)), because S is associative and N is involutive. Thus, T is
associative.

(NT3) Let u, u′, v, v′ ∈ D∗ with the condition u ≤1 u′, v ≤1 v′. Then N (u) ≥1 N (u′),
N (v) ≥1 N (v′), because N is non-increasing. Since S is non-decreasing in its every variable,
S (N (u), N (v)) ≥1 S (N (u′), N (v′)). Thus, N (S (N (u), N (v))) ≤1 N (S (N (u′), N (v′))),
that is, T (u, v) ≤1 T (u′, v′). Hence, T is non-decreasing.

(NT4) For any u ∈ D∗, T (u, 1D∗) = N (S (N (u), 0D∗)) = N (N (u)) = u.
Therefore, T is a neutrosophic t-norm.
Furthermore, (T , N , S ) is a De Morgan neutrosophic triple.
(2) Similarly, assume that T is a neutrosophic t-norm, S can be proved to be a neutrosophic

t-conorm and (T , N , S ) will be a De Morgan neutrosophic triple.

Proposition 9. Suppose that (T , N , S ) is a De Morgan neutrosophic triple, N is a standard neutrosophic
negator. Then, for all u ∈ D∗,
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(1) T (u, 1D∗) = u if and only if S (u, 0D∗) = u.
(2) T (u, 1D∗) = (u1, 0, u3) if and only if S (u, 0D∗) = (u1, 1, u3).
(3) T (u, 1D∗) = (u1, 1, u3) if and only if S (u, 0D∗) = (u1, 0, u3).

Example 5. Some neutrosophic t-norms and neutrosophic t-conorms are dual with respect to Ns.

(1) TM(u, v) = (TM(u1, v1), SM(u2, v2), SM(u3, v3)), SM(u, v) = (SM(u1, v1), TM(u2, v2),
TM(u3, v3)).

Indeed, TM(N (u), N (v)) = TM((u3, 1 − u2, u1), (v3, 1 − v2, v1)) = (TM(u3, v3), SM(1 −
u2, 1 − v2), SM(u1, v1)), then N (TM(N (u), N (v))) = (SM(u1, v1), 1 − SM(1 − u2, 1 −
v2), TM(u3, v3)) = (SM(u1, v1), TM(u2, v2), TM(u3, v3)) = SM(u, v). Thus, TM and SM are dual
with respect to Ns.

(2) TP(u, v) = (TP(u1, v1), SP(u2, v2), SP(u3, v3)), SP(u, v) = (SP(u1, v1), TP(u2, v2), TP(u3, v3)).
(3) T (u, v) = (TLK(u1, v1), SP(u2, v2), SP(u3, v3)), S (u, v) = (SP(u1, v1), TP(u2, v2), TLK(u3, v3)).
(4) T (u, v) = ( 1

2 (u1 + v1 − 1 + u1 · v1) ∨ 0, SM(u2, v2), SM(u3, v3)), S (u, v) = (SM(u1, v1),
TM(u2, v2), 1

2 (u3 + v3 − 1 + u3 · v3) ∨ 0).
(5) T (u, v) = (TP(u1, v1), SM(u2, v2), SM(u3, v3)), S (u, v) = (SM(u1, v1), TM(u2, v2), TP(u3, v3)).
(6) T (u, v) = (TP(u1, v1), SLK(u2, v2), SLK(u3, v3)), S (u, v) = (SLK(u1, v1), TLK(u2, v2), TP(u3, v3)).

Representable neutrosophic t-norms are mainly analyzed and discussed above. As for
non-representable neutrosophic t-norms, we give the following theorem:

Theorem 4. Let T : (D∗)2 → D∗ be a mapping. Then, for all u, v ∈ D∗,

T (u, v) =





u i f v = 1D∗ ,
v i f u = 1D∗ ,
(min(u1, v1), max(1− u1, 1− v1), max(u3, v3)) otherwise.

is a non-representable neutrosophic t-norm.

Proof. Firstly, T is a neutrosophic t-norm. In fact,
(NT1) Obviously, T (u, v) = T (v, u), for all u, v ∈ D∗.
(NT2) If u = 1D∗ or v = 1D∗ , we can easily prove that T (u, T (v, w)) = T (T (u, v), w).

If u 6= 1D∗ and v 6= 1D∗ , T (u, T (v, w)) = (min(u1, min(v1, w1)), max(1 − u1, 1 −min(v1, w1)),
max(u3, max(v3, w3))) = (min(u1, v1, w1), max(1 − u1, 1 − v1, 1 − w1), max(u3, v3, w3)) =

(min(min(u1, v1), w1), max(1−min(u1, v1), 1− w1), max(max(u3, v3), w3)) = T (T (u, v), w).
(NT3) T (1D∗ , u) = u.
(NT4) If u = 1D∗ or v = 1D∗ , we can easily prove that T is non-decreasing in every variable.

If u 6= 1D∗ and v 6= 1D∗ , let u, u′, v, v′ ∈ D∗ with the condition u ≤1 u′, v ≤1 v′. Then u1 ≤ u′1, v1 ≤ v′1,
u3 ≥ u′3, v3 ≥ v′3. Thus, min(u1, v1) ≤ min(u′1, v′1), max(1 − u1, 1 − v1) ≥ max(1 − u′1, 1 − v′1),
max(u3, v3) ≥ max(u′3, v′3). That is, T (u, v) ≤1 T (u′, v′). Therefore, T is a neutrosophic t-norm.

Secondly, for a representable neutrosophic t-norm T , there exists a t-norm T and two
t-conorms S1, S2 on [0, 1] such that, for all u = (u1, u2, u3), v = (v1, v2, v3) ∈ D∗, T (u, v) =

(T(u1, v1), S1(u2, v2), S2(u3, v3)). Let u = (0.2, 0.5, 0.7), u′ = (0.3, 0.5, 0.7), v = (0.4, 0.5, 0.9).
From T (u, v) = (0.2, 0.8, 0.9) and T (u′, v) = (0.3, 0.7, 0.9), we get S1(u2, v2) = 0.8 and
S1(u′2, v2) = 0.7, so S1(u2, v2) 6= S1(u′2, v2). Hence S1(u, v) is not independent from u1, thus T

is not representable.

Furthermore, the dual neutrosophic t-conorm of T with respect to the standard neutrosophic
negator Ns is S defined by, for all u, v ∈ D∗,
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S (u, v) =





u i f v = 0D∗ ,
v i f u = 0D∗ ,
(max(u1, v1), min(u3, v3), min(u3, v3)) otherwise.

Then, S is not representable.

Remark 1. Let T be a non-representable neutrosophic t-norm on D∗, S be a neutrosophic t-conorm which
is dual to T with respect to the standard neutrosophic negator Ns. Then, S is not representable. Conversely,
the dual neutrosophic t-norm with respect to an involutive neutrosophic negator N on D∗ of a non-representable
neutrosophic t-conorm is not representable.

Example 6. Let T : (D∗)2 → D∗ be a mapping. Then, for all u, v ∈ D∗,

T (u, v) =





u i f v = 1D∗ ,
v i f u = 1D∗ ,
(min(u1, v1), max(1− u1, 1− v1), max(1− u1, 1− v1)) otherwise.

is a non-representable neutrosophic t-norm.
Meanwhile, the dual neutrosophic t-conorm S of T with respect to Ns is presented by, for all u, v ∈ D∗,

S (u, v) =





u i f v = 0D∗ ,
v i f u = 0D∗ ,
(max(1− u3, 1− v3), min(u3, v3), min(u3, v3)) otherwise.

Then, S is not representable, too.

Example 7. Let S be a mapping: (D∗)2 → D∗. Then, for all u, v ∈ D∗,

S (u, v) =





u i f v = 0D∗ ,
v i f u = 0D∗ ,
(max(1− u3, 1− v3), min(u2, v2), min(u3, v3)) otherwise.

is a non-representable neutrosophic t-conorm.
Meanwhile, the dual neutrosophic t-norm T of S with respect to Ns is presented by, for all u, v ∈ D∗,

T (u, v) =





u i f v = 1D∗ ,
v i f u = 1D∗ ,
(min(u1, v1), max(u2, v2), max(1− u1, 1− v1)) otherwise.

Then, T is not representable, too.

5. Neutrosophic Residual Implications of Neutrosophic t-Norms

This section will introduce the notions of neutrosophic residual implications on the complete
lattice D∗, investigate basic properties of neutrosophic residual implications, and give some important
conclusions between neutrosophic t-norms and neutrosophic residual implications after proving
that residual neutrosophic t-norms are ∨-distributive. Firstly, we give the notions of neutrosophic
implications on D∗.

Definition 17. A neutrosophic implication is a function I : (D∗)2 → D∗ that satisfies the following conditions,

(NI1) I is non-increasing with respect to ≤1 in its first variable, that is, I (u, v) ≥1 I (u′, v),
where u, u′, v ∈ D∗ and u ≤1 u′;

(NI2) I is non-decreasing with respect to ≤1 in its second variable, that is, I (u, v) ≤1 I (u, v′),
where u, v, v′ ∈ D∗ and v ≤1 v′;

(NI3) I (0D∗ , 0D∗) = 1D∗ ;
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(NI4) I (1D∗ , 1D∗) = 1D∗ ;
(NI5) I (1D∗ , 0D∗) = 0D∗ .

Definition 18. A function I : (D∗)2 → D∗ is called a neutrosophic residual implication, if there exits a
neutrosophic t-norm T such that

I (u, v) = sup{w|w ∈ D∗, T (u, w) ≤1 v}.

If I is a neutrosophic residual implication generated from a neutrosophic t-norm T , then it will be denoted
by IT .

Furthermore, a neutrosophic t-norm T satisfies the residual principle if and only if, for all
u, v, w ∈ D∗,

T (u, w) ≤1 v if and only if w ≤1 IT (u, v).

Similarly, we can get the definitions of neutrosophic co-implications:

Definition 19. A neutrosophic co-implication is a function J : (D∗)2 → D∗ that satisfies the following conditions:

(NJ1) J is non-increasing with respect to ≤1 in its first variable, that is, J (u, v) ≥1 J (u′, v),
where u, u′, v ∈ D∗ and u ≤1 u′;

(NJ2) J is non-decreasing with respect to ≤1 in its second variable, that is, J (u, v) ≤1 J (u, v′),
where u, v, v′ ∈ D∗ and v ≤1 v′;

(NJ3) J (0D∗ , 0D∗) = 0D∗ ;
(NJ4) J (1D∗ , 1D∗) = 0D∗ ;
(NJ5) J (0D∗ , 1D∗) = 1D∗ .

Definition 20. A function J : (D∗)2 → D∗ is called a neutrosophic residual co-implication, if there exits
a neutrosophic t-conorm S such that

J (u, v) = inf{w|w ∈ D∗, S (u, w) ≥1 v}.

If J is a neutrosophic residual co-implication generated from a neutrosophic t-conorm S , then it will be
denoted by JS .

Furthermore, a neutrosophic t-conorm S satisfies the residual principle if and only if, for all
u, v, w ∈ D∗,

S (u, w) ≥1 v if and only if w ≥1 IS (u, v).

Using the description of the above definitions, we can easily obtain the neutrosophic residual
implications of neutrosophic t-norms discussed in Section 4.

Example 8. The neutrosophic residual implications of the representable neutrosophic t-norms of Example 3 are
given by, for all u, v ∈ D∗,

(1) ITM (u, v) = (IGD(u1, v1), JGD(u2, v2), JGD(u3, v3));
(2) ITP(u, v) = (IGG(u1, v1), JGG(u2, v2), JGG(u3, v3));
(3) ITLK (u, v) = (ILK(u1, v1), JLK(u2, v2), JLK(u3, v3));
(4) ITD (u, v) = (IWB(u1, v1), JWB(u2, v2), JWB(u3, v3));
(5) ITnM (u, v) = (IFD(u1, v1), JFD(u2, v2), JFD(u3, v3));
(6) IT (u, v) = (IGG(u1, v1), JLK(u2, v2), JWB(u3, v3));
(7) IT (u, v) = (IWB(u1, v1), JGG(u2, v2), JGG(u3, v3));
(8) IT (u, v) = (ILK(u1, v1), JLK(u2, v2), JGD(u3, v3));
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(9) IT (u, v) = (IGD(u1, v1), JGG(u2, v2), JGD(u3, v3)).

Example 9. The neutrosophic residual co-implications of the representable neutrosophic t-conorms of Example 4
are given by, for all u, v ∈ D∗,

(1) JSM (u, v) = (JGD(u1, v1), IGD(u2, v2), IGD(u3, v3));
(2) JSP(u, v) = (JGG(u1, v1), IGG(u2, v2), IGG(u3, v3));
(3) JSLK (u, v) = (JLK(u1, v1), ILK(u2, v2), ILK(u3, v3));
(4) JSD (u, v) = (JWB(u1, v1), IWB(u2, v2), IWB(u3, v3));
(5) ISnM (u, v) = (JFD(u1, v1), IFD(u2, v2), IFD(u3, v3));
(6) JS (u, v) = (JGD(u1, v1), IGG(u2, v2), ILK(u3, v3));
(7) JS (u, v) = (JGG(u1, v1), ILK(u2, v2), ILK(u3, v3));
(8) JS (u, v) = (JLK(u1, v1), ILK(u2, v2), IGD(u3, v3));
(9) JS (u, v) = (JWB(u1, v1), IGG(u2, v2), IFD(u3, v3)).

As we all know, t-conorms are dual operators of t-norms on [0, 1], in the same way, residual
co-implications are dual operators of residual implications on [0, 1], with respect to N(u) = 1− u.
Neutrosophic residual co-implications of neutrosophic t-conorms are dual operators of neutrosophic
residual implications of neutrosophic t-norms, just as that neutrosophic t-conorms are dual operators
of neutrosophic t-norms with respect to Ns. As Examples 8 and 9 above show, if S is the dual
neutrosophic t-conorm of a neutrosophic t-norm T , then the neutrosophic residual co-implication
JS is the dual operator of the neutrosophic residual implication of IT .

Next, we will introduce the most important theorem in this section, which gives the sufficient
condition that the residual operators induced by neutrosophic t-norms must be neutrosophic implications.

Theorem 5. Let T be a neutrosophic t-norm on D∗ with the neutral element 1D∗ . Then, for all u, v ∈ D∗,

IT (u, v) = sup{w|w ∈ D∗, T (u, w) ≤1 v}

is a neutrosophic implication.

Proof. From Definition 18, IT (u, 1D∗) = sup{w|w ∈ D∗, T (u, w) ≤1 1D∗} = 1D∗ , for all
u ∈ D∗. Therefore, IT (1D∗ , 1D∗) = 1D∗ . Since T is non-decreasing, IT (1D∗ , 0D∗) = sup{w|w ∈
D∗, T (w, 1D∗) ≤1 0D∗} = sup{w|w ∈ D∗, w ≤1 0D∗} = 0D∗ . IT (0D∗ , 0D∗) = sup{w|w ∈
D∗, T (w, 0D∗) ≤1 0D∗} = 1D∗ . Let u, u′ ∈ D∗ with the condition u ≤1 u′. Since the non-decreasingness
of T , {w|w ∈ D∗, T (u, w) ≤1 v} ⊇1 {w|w ∈ D∗, T (u′, w) ≤1 v}, then sup{w|w ∈ D∗, T (u, w) ≤1

v} ≥1 sup{w|w ∈ D∗, T (u′, w) ≤1 v}. Thus, IT (u, v) ≥1 IT (u′, v). That is IT is
non-increasing with respect to ≤1 in its first variable. Let v, v′ ∈ D∗ with the condition v ≤1 v′.
Since the non-decreasingness of T , {w|w ∈ D∗, T (u, w) ≤1 v} ⊆1 {w|w ∈ D∗, T (u, w) ≤1 v′},
then sup{w|w ∈ D∗, T (u, w) ≤1 v} ≤1 sup{w|w ∈ D∗, T (u, w) ≤1 v′}. Thus, IT (u, v) ≤1

IT (u, v′). That is IT is non-decreasing with respect to ≤1 in its second variable.

For neutrosophic residual implications, there are several important properties as follows:

Theorem 6. Suppose that T is a neutrosophic t-norm on D∗ with the neutral element 1D∗ , IT is
a neutrosophic residual implication. Then, for all u, v, w ∈ D∗,

(1) IT (0D∗ , v) = 1D∗ ;
(2) IT (u, 1D∗) = 1D∗ ;
(3) IT (u, u) = 1D∗ ;
(4) IT (1D∗ , v) = v;
(5) IT (u, v) ≥1 v;
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(6) IT (u, v) = 1D∗ if and only if u ≤1 v;
(7) u ≤1 IT (v, w) if and only if v ≤1 IT (u, w);
(8) u ≤1 IT (v, T (u, v));
(9) IT (T (u, v), T (u, w)) ≥1 IT (v, w).

Proof. For all u, v ∈ D∗,
The proofs of (1)–(4) can be directly obtained by Definition 18.
(5) Since I is non-increasing with respect to ≤1 in its first variable, IT (u, v) ≥1 IT (1D∗ , v) = v.
(6) On the one hand, since u ≤1 v, T (1D∗ , u) ≤1 v. Thus, IT (u, v) ≥1 1D∗ , that is IT (u, v) =

1D∗ . On the other hand, if IT (u, v) = 1D∗ , then T (1D∗ , u) ≤1 v. Thus, u ≤1 v.
(7) Since u ≤1 IT (v, w), T (v, u) ≤1 w. Thus, v ≤1 IT (u, w). Similarly, it follows from

v ≤1 IT (u, w) that u ≤1 IT (v, w).
(8) Since T (u, v) ≤1 T (u, v), u ≤1 IT (v, T (u, v)).
(9) IT (T (u, v), T (u, w)) = sup{t | t ∈ D∗, T (T (u, v), t) ≤1 T (u, w)} = sup{t | t ∈

D∗, T (u, T (v, t)) ≤1 T (u, w)} ≥1 sup{t | t ∈ D∗, T (v, t) ≤1 w} = IT (v, w).

Example 10. Example 8 shows some neutrosophic residual implications of representable neutrosophic t-norms,
furthermore, it is easy to verify that neutrosophic residual implications of representable neutrosophic t-norms
satisfy the properties described in Theorem 6.

For non-representable neutrosophic t-norms, take the neutrosophic t-norm T presented in Theorem 4 for
example, then, for all u, v ∈ D∗,

IT (u, v) =





1D∗ if v = 1D∗ ,

v if u = 1D∗ ,

(IGD(u1, v1),

{
u1 if u1 ≤ 1− v2,

0 otherwise
, JGD(u3, v3)) otherwise

.

is a neutrosophic implication and satisfies the properties given in Theorem 6.

Similarly, we have the following two important theorems of neutrosophic t-conorm on D∗:

Theorem 7. Assume that S is a neutrosophic t-conorm on D∗ with the neutral element 0D∗ . Then, for all
u, v ∈ D∗,

JS (u, v) = inf{w|w ∈ D∗, S (u, w) ≥1 v}.

is a neutrosophic co-implication.

Proof. From Definition 20, we can prove it using the proven ways of Theorem 5.

Theorem 8. Assume that S is a neutrosophic t-conorm on D∗ with the neutral element 0D∗ , JS is
a neutrosophic residual co-implication. Then, for all u, v, w ∈ D∗,

(1) JS (1D∗ , v) = 0D∗ ;
(2) JS (u, 0D∗) = 0D∗ ;
(3) JS (u, u) = 0D∗ ;
(4) JS (0D∗ , v) = v;
(5) JS (u, v) ≤1 v;
(6) JS (u, v) = 0D∗ if and only if u ≥1 v;
(7) u ≥1 JS (v, w) if and only if v ≥1 JS (u, w);
(8) u ≥1 JS (v, S (u, v));
(9) JS (S (u, v), S (u, w)) ≤1 JS (v, w).
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Example 11. Example 9 shows some neutrosophic residual co-implications of representable neutrosophic
t-conorms; furthermore, it is easy to verify that neutrosophic residual co-implications of representable
neutrosophic t-conorms satisfy the properties described in Theorem 8.

For non-representable neutrosophic t-conorms, take the neutrosophic t-conorm S presented in Theorem 4
for example, then, for all u, v ∈ D∗,

IT (u, v) =





0D∗ if v = 0D∗ ,

v if u = 0D∗ ,

(JGD(u1, v1),

{
1 if u3 ≤ v2,

v2 otherwise
, IGD(u3, v3)) otherwise

.

is a neutrosophic co-implication and it satisfies the properties given in Theorem 8.

In Definition 18, IT is called the neutrosophic residual implication. At the same time, T is
called the residual neutrosophic t-norm. Then, some important properties of the residual neutrosophic
t-norm will be discussed below.

Definition 21. [45] A binary operation H on a complete lattice L is called left (right) infinitely ∨-distributive,
if for all u ∈ L,

H( sup
w∈W

w, v) = sup
w∈W

H(w, v) (H(u, sup
w∈W

w) = sup
w∈W

H(u, w));

H is called left (right) infinitely ∧-distributive, if for all u ∈ L,

H( inf
w∈W

w, v) = inf
w∈W

H(w, v) (H(u, inf
w∈W

w) = inf
w∈W

H(u, w)),

where W ⊆ L. H is called infinitely ∨-distributive (∧-distributive) on L, if H is both left and right infinitely
∨-distributive (∧-distributive).

Theorem 9. Assume that T is a residual neutrosophic t-norm on D∗ with the neutral element 1D∗ . Then T is
infinitely ∨-distributive on D∗.

Proof. Let W ⊆ D∗. If W = ∅, then T ( sup
w∈W

w, v) = T (0D∗ , v) = 0D∗ = sup
w∈W

T (w, v), for all

v ∈ D∗. If W 6= ∅, since T is non-decreasing, T ( sup
w∈W

w, v) ≥1 sup
w∈W

T (w, v), for any v ∈ D∗.

Suppose m = sup
w∈W

T (w, v), then T (w, v) ≤1 m, now we have w ∈ {t | t ∈ D∗, T (t, v) ≤1 m}.
By Definition 18, w ≤1 IT (v, m), for all w ∈W. Thus, sup

w∈W
w ≤1 IT (v, m). Since T is non-decreasing,

T ( sup
w∈W

w, v) ≤1 T (IT (v, m), v). Since T (u, w) ≤1 v if and only if w ≤1 IT (u, v), and IT (v, m) ≤1

IT (v, m), T (IT (v, m), v) ≤1 m = sup
w∈W

T (w, v). Therefore, T ( sup
w∈W

w, v) ≤1 sup
w∈W

T (w, v).

Theorem 10. Assume that T is a residual neutrosophic t-norm on D∗ with the neutral element 1D∗ . Then,
for all u, v ∈ D∗,

(1) T (IT (u, v), u) ≤1 v. In particularly, T (IT (u, u), u) = u, T (IT (u, 0D∗), u) = 0D∗ ;
(2) IT (T (u, v), w) = IT (v, IT (u, w));
(3) IT (sup

u∈U
u, v) = inf

u∈U
IT (u, v);

(4) T (IT (u, v), IT (v, w)) ≤1 IT (u, w);
(5) T (IT (w, 1D∗), IT (u, v)) ≤1 IT (T (u, w), v);
(6) IT (u, IT (v, w)) = IT (v, IT (u, w));
(7) T (IT (u, T (v, u)), u) = T (u, v);
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(8) IT (u, T (IT (u, v), u)) = IT (u, v).

Proof. We can directly prove (1)–(6) directly by the method of Theorems 4.3 and 4.6–4.9 in [46];
The proofs of (7) and (8) can be obtained directly from Theorem 3.5 in [48].

Naturally, we can prove that a residual neutrosophic t-conorm is infinitely ∧-distributive, and then
we can get some important properties of a residual neutrosophic t-conorm on D∗.

Theorem 11. Assume that S is a residual neutrosophic t-conorm on D∗ with the neutral element 0D∗ . Then S

is infinitely ∧-distributive on D∗.

Theorem 12. Assume that S is a residual neutrosophic t-conorm on D∗ with the neutral element 0D∗ . Then,
for all u, v ∈ D∗,

(1) S (JS (u, v), u) ≥1 v. In particularly, S (JS (u, u), u) = u, S (JS (u, 1D∗), u) = 1D∗ ;
(2) JS (S (u, v), w) = JS (v, JS (u, w));
(3) JS ( inf

u∈U
u, v) = sup

u∈U
JS (u, v);

(4) S (JS (u, v), JS (v, w)) ≥1 JS (u, w);
(5) S (JS (w, 1D∗), JS (u, v)) ≥1 JS (S (u, w), v);
(6) JS (u, JS (v, w)) = JS (v, JS (u, w));
(7) S (JS (u, S (v, u)), u) = S (u, v);
(8) JS (u, S (JS (u, v), u)) = JS (u, v).

Proof. The proofs of (1)–(6) can be obtained directly from Theorems 3.2 and 3.5–3.8 in [47]; the proofs
of (7) and (8) can be obtained directly from Theorem 3.5 in [48].

6. Neutrosophic t-Norms Induced by Neutrosophic Implications on D∗

From Theorem 5, we know that neutrosophic implications can be induced by neutrosophic t-norms.
In this section, the dual situation will be considered. Then, residuated lattices can be constructed on the
basis of neutrosophic t-norms and their corresponding neutrosophic residual implications.

Definition 22. Let I : (D∗)2 → D∗ be a neutrosophic implication. The induced operator TI by I is defined
as follows:

TI (u, v) = inf{w | w ∈ D∗, v ≤1 I (u, w)}, for all u, v ∈ D∗.

Remark 2. (1) TI (u, v) is a non-empty set, since I (u, 1D∗) = 1D∗ , for all u ∈ D∗.
(2) TI defined above is not always a neutrosophic t-norm. For example, for all u, v ∈ D∗,

I (u, v) = (1− u1 + u1v1,

{
0 if u2 ≥ v2,

v2 otherwise
,

{
0 if u3 ≥ v3,

v3 otherwise
)

is a neutrosophic implication. However, TI is not a neutrosophic t-norm, because TI (1D∗ , v) = (1, v2, v3) 6= v.

Theorem 13. Let I be a neutrosophic implication on D∗. The induced operator TI by I :

TI (u, v) = inf{w | w ∈ D∗, v ≤1 I (u, w)}

is a neutrosophic t-norm if I satisfies the following conditions, for all u, v, w ∈ D∗:

(1) u ≤1 I (v, w) if and only if v ≤1 I (u, w);
(2) I (I (u, v), w) = I (u, I (v, w));
(3) I (u, v) = 1D∗ if and only if u ≤1 v;
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(4) I (1D∗ , u) = u.

Proof. Firstly, we prove that TI is a neutrosophic t-norm.
(NT1) From (1), we can directly get TI (u, v) = TI (v, u), for all u, v ∈ D∗.

(NT2) From (1) and (2), TI (TI (u, v), w) = TI (w, TI (u, v)) = inf{t | t ∈ D∗, TI (u, v) ≤1

I (w, t)} = inf{t | t ∈ D∗, u ≤1 I (v, I (w, t))} = inf{t | t ∈ D∗, v ≤1 I (u, I (w, t))} = inf{t |
t ∈ D∗, v ≤1 I (w, I (u, t))} = inf{t | t ∈ D∗, TI (v, w) ≤1 I (u, t)} = TI (TI (v, w), u) =

TI (u, TI (v, w)).
(NT3) Since TI (u, 1D∗) = TI (1D∗ , u) = inf{t | t ∈ D∗, u ≤1 I (1D∗ , t)} = inf{t | t ∈ D∗, u ≤1

t} = u, TI (u, 1D∗) = TI (1D∗ , u) = u.
(NT4) Assume u, u′, v, v′ ∈ D∗ with the condition u ≤1 u′, v ≤1 v′. Since I is a neutrosophic

implication, I (u′, t) ≤1 I (u, t), for all t ∈ D∗. For any t0 ∈ {t | t ∈ D∗, v′ ≤1 I (u′, t)}, it follows
that v′ ≤1 I (u′, t0). Since v ≤1 v′, and I (u′, t0) ≤1 I (u, t0), v ≤1 I (u, t0), that is, t0 ∈ {t |
t ∈ D∗, v ≤1 I (u, t)}. Thus, {t | t ∈ D∗, v′ ≤1 I (u′, t)} ⊆1 {t | t ∈ D∗, v ≤1 I (u, t)}. Hence,
inf{t | t ∈ D∗, v ≤1 I (u, t)} ≤1 inf{t | t ∈ D∗, v′ ≤1 I (u′, t)}, that is, TI (u, v) ≤1 TI (u′, v′).

Therefore, TI is a neutrosophic t-norm.

Theorem 13 describes the conditions that an induced operator TI by I is a neutrosophic
t-norm. Moreover, we can construct neutrosophic t-norms with neutrosophic implications according
to these conditions.

Next, some important properties of the residual neutrosophic implication on D∗ will be discussed.

Theorem 14. Let I be a residual neutrosophic implication on D∗. Then I (u, inf
w∈W

w) = inf
w∈W

I (u, w),

for all u ∈ D∗, W ⊆1 D∗.

Proof. Let W ⊆1 D∗. If W = ∅, then I (u, inf
w∈W

w) = I (u, 1D∗) = 1D∗ = inf
w∈W

I (u, w), for any

u ∈ D∗. If W 6= ∅, since I is non-decreasingness in its second variable, I (u, inf
w∈W

w) ≤1 inf
w∈W

I (u, w),

for all u ∈ D∗. Suppose n = inf
w∈W

I (u, w), then n ≤1 I (u, w), now we have w ∈ {t | t ∈ D∗, n ≤1

I (u, t)}. By Definition 22, TI (n, u) ≤1 w, for all w ∈ W. Thus, TI (n, u) ≤1 inf
w∈W

w. Since I is

non-decreasingness in its second variable, I (u, inf
w∈W

w) ≥1 I (u, TI (n, u)). Since u ≤1 I (v, w) if and

only if w ≥1 TI (u, v), and TI (n, u) ≥1 TI (n, u), I (u, TI (n, u)) ≥1 n = inf
w∈W

I (u, w). Therefore,

I (u, inf
w∈W

w) ≥1 inf
w∈W

I (u, w).

From Theorem 14, we know that a residual neutrosophic implication satisfies infinitively
∧-distributive in its second variable.

Theorem 15. Assume that I is a residual neutrosophic implication on D∗. Then, for all u, v ∈ D∗,

(1) TI (u, I (u, TI (u, v))) = TI (u, v);
(2) I (u, TI (u, I (u, v))) = I (u, v).

Proof. Let u, v ∈ D∗.

(1) TI (u, I (u, TI (u, v))) = inf{t | t ∈ D∗, I (u, inf{t | t ∈ D∗, v ≤1 I (u, t)}) ≤1 I (u, t)} =

inf{t | t ∈ D∗, inf{I (u, t) | t ∈ D∗, v ≤1 I (u, t)} ≤1 I (u, t)} = inf{t | t ∈ D∗, v ≤1

I (u, t)} = TI (u, v).
(2) I (u, Tu,I (I (u, v))) = I (u, inf{t | t ∈ D∗, I (u, v) ≤1 I (u, t)}) = inf{I (u, t) | t ∈

D∗, I (u, t) ≥1 I (u, v)} = I (u, v).

Summarizing the results in Theorem 5 and 13, we get the following theorem.
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Theorem 16. (1) Assume that T is a neutrosophic t-norm on D∗. Then IT (u, inf
v∈V

v) = inf
v∈V

IT (u, v) and

T = TIT
;

(2) Let I be a neutrosophic implication on D∗. Then TI which satisfies the conditions presented in Theorem 13
is a infinitely ∨-distributive neutrosophic t-norm, and I = ITI

.

Proof. (1) From Theorem 5, IT is a neutrosophic implication. Next, we prove IT (u, inf
v∈V

v) =

inf
v∈V

IT (u, v), for all u ∈ D∗, V ⊆1 D∗. Suppose V ⊆1 D∗. If V = ∅, then IT (u, inf
v∈V

v) =

IT (u, 1D∗) = 1D∗ = inf
v∈V

IT (u, v), for all u ∈ D∗. If V 6= ∅, then IT (u, inf
v∈V

v) = sup{t | t ∈
D∗, T (t, u) ≤1 inf

v∈V
v} = sup{t | t ∈ D∗, ∀v ∈ V, T (t, u) ≤1 v} = sup{t ∈ D∗ | ∀v ∈ V, t ≤1

IT (u, v)} = sup{t ∈ D∗ | t ≤1 inf
v∈V

IT (u, v)} = inf
v∈V

IT (u, v). Finally, from Definitions 18 and 22,

we get TIT
(u, v) = inf{t | t ∈ D∗, v ≤1 IT (u, t)} = inf{t | t ∈ D∗, T (u, v) ≤1 t} = T (u, v), for all

u, v ∈ D∗. Thus, T = TIT
.

(2) From Definition 22 and Theorem 13, TI is a neutrosophic t-norm. Next, we prove TI (sup
u∈U

u, v) =

sup
u∈U

TI (u, v), for all v ∈ D∗, U ⊆1 D∗. Suppose U ⊆1 D∗. If U = ∅, then TI (sup
u∈U

u, v) =

TI (0D∗ , v) = 0D∗ = sup
u∈U

TI (u, v), for all v ∈ D∗. If U 6= ∅, then TI (sup
u∈U

u, v) = inf{t | t ∈
D∗, v ≤1 I (sup

u∈U
u, t)} = inf{t | t ∈ D∗, ∀u ∈ U, v ≤1 I (u, t)} = inf{t | t ∈ D∗, ∀u ∈ U, t ≥1

TI (u, v)} = inf{t | t ∈ D∗, t ≥1 sup
u∈U

TI (u, v)} = sup
u∈U

TI (u, v). Since TI satisfies the commutative

law, TI (u, sup
v∈V

v) = sup
v∈V

TI (u, v). Hence, TI is infinitely ∨-distributive. At last, from Definitions 18

and 22, we get ITI
(u, v) = sup{t | t ∈ D∗, TI (t, u) ≤1 v} = sup{t | t ∈ D∗, t ≤1 I (u, v)} =

I (u, v), for all u, v ∈ D∗. Thus, I = ITI
.

Sections 4 and 5 mainly discuss neutrosophic t-norms and their residual implications, then, we can
get a residuated lattice by using these two neutrosophic logic operators as follows:

Theorem 17. Let T be a neutrosophic t-norm on D∗. Suppose (D∗;∨1,∧1,c , 0D∗ , 1D∗) is a system on D∗.
For all u, v ∈ D∗, we define:

u⊗ v = TIT
(u, v); u→ v = IT (u, v).

Then, (D∗;∨1,∧1,⊗,→, 0D∗ , 1D∗) is a residuated lattice.

Proof. Firstly, from Proposition 3, we know that (D∗;∨1,∧1, 0D∗ , 1D∗) is a bounded lattice.
Then, we prove that (D∗;⊗, 1D∗) is a commutative monoid. (1) For any u ∈ D∗, 1D∗ ⊗ u = inf{t |
t ∈ D∗, 1D∗ ≤1 IT (u, t)} = inf{t | t ∈ D∗, IT (u, t) = 1D∗} = inf{t | t ∈ D∗, u ≤1 t} = u,
u ⊗ 1D∗ = inf{t | t ∈ D∗, u ≤1 IT (1D∗ , t)} = inf{t | t ∈ D∗, u ≤1 t} = u. Thus,
1D∗ ⊗ u = u ⊗ 1D∗ = u. (2) Theorem 16 proves that TIT

= T is a neutrosophic t-norm.
Thus, T satisfies the commutative law, that is, u⊗ v = v⊗ u. (3) Similarly, T satisfies the associative
law, that is, u⊗ (v⊗ w) = (u⊗ v)⊗ w.

Finally, we prove that ⊗ is a binary operation for which the equivalence

u⊗ v ≤1 w if and only if v ≤1 u→ w

holds for all u, v, w ∈ D∗. On the one hand, by the definition of ⊗, we have u⊗ v = inf{w | w ∈
D∗, v ≤1 u→ w}, then u⊗ v ≤1 w. Thus, v ≤1 u→ w. On the other hand, from the definition of→,
we have u→ w = sup{v | v ∈ D∗, u⊗ v ≤1 w}. Thus, u⊗ v ≤1 w.
Therefore, (D∗;∨1,∧1,⊗,→, 0D∗ , 1D∗) is a residuated lattice.

Example 12. Suppose (D∗;∨1,∧1,c , 0D∗ , 1D∗) is a system on D∗. For all u, v ∈ D∗, we define:
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u⊗ v = TIT
(u, v);

u→ v = IT (u, v).

where TIT
(u, v) is that presented in Theorem 4, IT (u, v) is that presented in Example 10.

Then, (D∗;∨1,∧1,⊗,→, 0D∗ , 1D∗) is a residuated lattice.

Proof. Firstly, from Proposition 3, we know that (D∗;∨1,∧1, 0D∗ , 1D∗) is a bounded lattice.
Then, we prove that (D∗;⊗, 1D∗) is a commutative monoid. (1) For any u ∈ D∗, by the definition
of ⊗, we get 1D∗ ⊗ u = u ⊗ 1D∗ = u. (2) Obviously, u ⊗ v = v ⊗ u. (3) Suppose u, v, w ∈
D∗. If at least one of them is equal to 1D∗ , then u ⊗ (v ⊗ w) = (u ⊗ v) ⊗ w. Otherwise,
u ⊗ (v ⊗ w) = (min(u1, min(v1, w1)), max(1 − u1, max(1 − v1, 1 − w1)), max(u3, max(v3, w3))) =

(min(u1, v1, w1), max(1 − u1, 1 − v1, 1 − w1), max(u3, v3, w3)) = (min(v1, min(u1, w1)), max(1 −
v1, max(1− u1, 1− w1)), max(v3, max(u3, w3))) = (u⊗ v)⊗ w.

Finally, we will prove

u⊗ v ≤1 w⇔ v ≤1 u→ w, for all u, v, w ∈ D∗.

If u = 1D∗ , u⊗ v = v ≤1 w if and only if v ≤1 u → w ⇒ v ≤1 1D∗ → w ⇒ v ≤1 w; If v = 1D∗ ,
u⊗ v = u⊗ 1D∗ = u ≤1 w ⇒ u ≤1 1D∗ if and only if v ≤1 u → w ⇒ 1D∗ ≤ 1D∗ ; If u 6= 1D∗ and v 6=
1D∗ , u⊗ v = (min(u1, min(v1, w1)), max(1− u1, max(1− v1, 1− w1)), max(u3, max(v3, w3))) ≤1 w if
and only if

v ≤1





1D∗ if w = 1D∗ ,

w if u = 1D∗ ,

(IGD(u1, w1),

{
u1 if u1 ≤ 1− w2,

0 otherwise
, JGD(u3, w3)) otherwise

that is, v ≤1 u→ w.
Therefore, (D∗;∨1,∧1,⊗,→, 0D∗ , 1D∗) is a residuated lattice.

7. Conclusions

Neutrosophic logic plays a vital role in neutrosophic set theory. Neutrosophic t-norms, t-conorms,
negators and implications are very important neutrosophic logic operators. In this paper, under
the first type inclusion relation, the lattice structure of neutrosophic sets is discussed, (D∗;≤1) and
(D∗;∨1,∧1,c , 0D∗ , 1D∗) are proved to be a complete lattice and De Morgan algebra, respectively.
On the complete lattice (D∗;≤1), we introduce the definitions of neutrosophic t-norms, t-conorms,
negators and their operations. Furthermore, De Morgan neutrosophic triples are defined, which
describe that neutrosophic t-norms and t-conorms are dual with respect to the standard neutrosophic
negator. Then, we introduce neutrosophic residual implications (co-implications) on the complete
lattice (D∗;≤1), propose a theorem which shows that residual operations induced by neutrosophic
t-norms are neutrosophic implications, investigate basic properties for neutrosophic residual implications
(co-implications), prove that residual neutrosophic t-norms are infinitely ∨-distributive, and give some
important results for residual neutrosophic t-norms and neutrosophic residual implications. Finally, we
introduce neutrosophic operations produced by neutrosophic implications, discuss the conditions that
the neutrosophic operations are neutrosophic t-norms, and then construct residuated lattices. Based on
these results, we will consider their applications in neutrosophic inference systems in the future.
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Abstract: For the first time we introduce non-standard neutrosophic topology on the extended
non-standard analysis space, called non-standard real monad space, which is closed under
neutrosophic non-standard infimum and supremum. Many classical topological concepts are
extended to the non-standard neutrosophic topology, several theorems and properties about them are
proven, and many examples are presented.
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1. Introduction to Non-Standard Analysis

The purpose of this study is to initiate for the first time a new field of research, called non-standard
neutrosophic algebraic structures, and we start with non-standard neutrosophic topology (NNT) in
this paper. Being constructed on the set of hyperreals, that includes the infinitesimals, NNT can further
be utilized in neutrosophic calculus applications.

As a branch of mathematical logic, non-standard analysis [1] deals with hyperreal numbers, which
include infinitesimals and infinities.

The introduction of infinitesimals in calculus has been debated philosophically in the history of
mathematics since the time of G. W. Leibniz, with pros and cons. Many mathematicians prefer the
epsilon-delta use in calculus concepts’ definitions and theorems’ proofs.

By the 1960s Abraham Robinson had developed non-standard analysis [2] in a more rigorous way.
Besides calculus, non-standard analysis found applications in mathematical physics, mathematical

economics, and in probability theory.
In 1998, Smarandache [3] used non-standard analysis in philosophy and in neutrosophic logic,

in order to differentiate between absolute truth (which is truth in all possible worlds, according to
Leibniz), and relative truth (which is, according to the same Leibniz, truth in at least one world). Let T
represent the neutrosophic truth value, I the neutrosophic indeterminacy value, and F the neutrosophic
falsehood value, with T, I, F ∈ [−0, 1+]. Then T (absolute truth) = 1+ = µ (1+), while T (relative truth) =

1. This is analogously for absolute falsehood vs. relative falsehood, and absolute indeterminacy vs. relative
indeterminacy.

Then he extended [3] the use of non-standard analysis to neutrosophic set (absolute
membership/indeterminacy/nonmembership vs. relative membership/indeterminacy/nonmembership
respectively) and to neutrosophic probability (absolute occurrence/indeterminate occurrence/nonoccurence of
an event vs. relative occurrence/indeterminate occurrence/nonoccurence of an event, respectively).

We next recall several notions and results from classical non-standard analysis [2] that are needed
to defining and developing the non-standard neutrosophic topology.

The set R* of nonstandard reals (or hyperreals) is the generalization of the real numbers (R).

Symmetry 2019, 11, 706; doi:10.3390/sym11050706 www.mdpi.com/journal/symmetry254
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The transfer principle states that first-order statements that are valid in R are also valid in R*.

R* includes the infinites and the infinitesimals, which on the hyperreal number line
may be represented as 1/ε = ω/1.

(1)

An infinite (or infinite number) (ω) is a number that is greater than anything:

1 + 1 + 1 + . . . + 1 (for any number of finite terms) (2)

The infinitesimals are reciprocals of infinites.
An infinitesimal (or infinitesimal number) (ε) is a number ε such that |ε| < 1/n, for any non-null

positive integer n.
An infinitesimal is so small that it cannot be measured, and it is very close to zero.
The infinitesimal in absolute value, is a number smaller than anything nonzero positive number.
In calculus one uses the infinitesimals.

By R+* we denote the set of positive non-zero hyperreal numbers. (3)

Left Monad {for simplicity, denoted [2] by (−a) or only –a} was defined as:

µ(−a) = (−a) = −a = a = {a− x, x ∈ R+
∗|x is in f initesimal} (4)

Right Monad {for simplicity, denoted [2] by (a+) or only by a+} was defined as:

µ(a+) = (a+) = a+ =
+
a = {a + x, x ∈ R+

∗|x is in f initesimal} (5)

µ (a) is a monad (halo) of an element a ∈ R*, which is formed by a subset of numbers infinitesimally
close (to the left-hand side, or right-hand side) to a.

1.1. Non-Standard Analysis’s First Extension

In 1998, Smarandache [3] introduced the pierced binad.
Pierced binad {for simplicity, denoted by (−a+) or only –a+} was defined as:

µ(−a+) = (−a+) = −a+ =
−+
a =

= {a− x, x ∈ R+
∗|x is in f initesimal} ∪ {a + x, x ∈ R+

∗|x is in f initesimal}
= {a± x, x ∈ R+

∗|x is in f initesimal}
(6)

This extension was needed in order to be able to do union aggregations of non-standard
neutrosophic sets, where a left monad µ (−a) had to be united with a right monad µ (a+), as such
producing a pierced binad: µ (−a) ∪ µ (a+) = N µ (−a+). Without this pierced binad we would not have
been able to define the non-standard neutrosophic operators.

1.2. Non-Standard Analysis’s Second Extension

Smarandache [4,5] introduced at the beginning of 2019 for the first time, the left monad closed to
the right, the right monad closed to the left, and unpierced binad, defined as below:

Left Monad Closed to the Right

µ(
−0
a ) = (

−0
a ) =

−0
a = {a− x|x = 0, or x ∈ R+

∗ and x is in f initesimal} = µ(−a)∪ {a} = (−a)∪ {a}
= −a∪ {a} (7)
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Right Monad Closed to the Left

µ(
0+
a ) = (

0+
a ) =

0+
a = {a + x|x = 0, or x ∈ R+

∗ and x is in f initesimal} = µ(a+)∪ {a} = (a+)∪ {a}
= a+ ∪ {a} (8)

Unpierced Binad

µ(
−0+

a ) = (
−0+

a ) =
−0+

a = {a− x| x ∈ R+
∗ and x is in f initesimal} ∪ {a + x| x ∈ R+

∗ and x is in f initesimal} ∪ {a}
= {a± x|x = 0, or x ∈ R+

∗ and x is in f initesimal}
= µ(−a+)∪ {a} = (−a+)∪ {a} = −a+ ∪ {a}

(9)

Therefore, as seen, the element {a} has been included in both the left and right monads, and also
in the pierced binad respectively.

All monads and binads are subsets of R*.
This second extension was done in order to be able to compute the non-standard aggregation

operators (negation, conjunction, disjunction, implication, equivalence) in non-standard neutrosophic
logic, set, and probability, and now we need them in non-standard neutrosophic topology.

1.3. The Best Notations for Monads and Binads

For any standard real number a ∈ R, we employ the following notations for monads and binads:

m
a ∈ {a,

−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a } and by convention
0
a = a; (10)

where
m ∈ {−, −0, +, +0, −+, −0+} = {0, −, −0, +, +0, −+, −0+}; (11)

thus “m” written above the standard real number “a” means: a standard real number (0, or nothing
above), or a left monad (−), or a left monad closed to the right (−0), or a right monad (+), or a right
monad closed to the left (0+), or a pierced binad (−+), or a unpierced binad (−0+) respectively.

Neutrosophic notations will have an index N associated to each symbol, for example: the classical
symbol < (less than), becomes < N (neutrosophically less than, i.e., some indeterminacy is involved,
especially with respect to infinitesimals, monads and binads).

Similarly for: ∩ and ∩N, ∧ and ∧N etc.

1.4. Non-Standard Neutrosophic Inequalities

We have the following neutrosophic non-standard inequalities (taking into account the definitions of
infinitesimals, monads and binads):

(−a) < N a < N (a+) (12)

because
∀x ∈ R∗+, a− x < a < a + x (13)

where x is a (nonzero) positive infinitesimal.
The converse also is true:

(a+) > N a > N (−a) (14)

Similarly:
(−a) ≤ N(−a+) ≤ N(a+) (15)

To prove it, we rely on the fact that (−a+) = (−a) ∪ (a+) and the number a is in between the subsets
(on the real number line) −a = (a − ε, a) and a+ = (a, a + ε), so:

(−a) ≤ N(
−a)∪ (a+) ≥ N(a+) (16)
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Conversely, it is neutrosophically true too:

(a+) ≥ N(
−a)∪ (a+) ≥ N(

−a) (17)

Also,
−
a ≤N

−0
a ≤N a ≤N

0+
a ≤N

+
a and

−
a ≤N

−+
a ≤N

−0+
a ≤N

+
a (18)

Conversely, they are also neutrosophically true:

+
a ≥N

0+
a ≥N a ≥N

−0
a ≥N

−
a and

+
a ≥N

−0+
a ≥N

−+
a ≥N

−
a respectively. (19)

Let a, b be two standard real numbers. If a > b, which is (standard) classical real inequality, then
we have:

a >N (−b), a > N(b+), a > N(
−b+), a >N

−0
b , a >N

0+
b , a >N

−0+
b ; (20)

(−a) >N b, (−a) >N (−b), (−a) >N (b+), (−a) >N (−b+),
−
a >N

−0
b ,
−
a >N

0+
b ,
−
a >N

−0+
b ; (21)

(a+) >N b, (a+) >N b(−b), (a+) >N b(b+), (a+) >N b(−b+),
+
a >N

−0
b ,

+
a >N

0+
b ,

+
a >N

−0+
b ; (22)

(−a+) > N b, (−a+) > N (−b), (−a+) > N (b+), (−a+) > N (−b+), etc. (23)

No non-standard order relationship between a and (−a+),

nor between a and (−0a+). (24)

1.5. Neutrosophic Infimum and Neutrosophic Supremum

1.5.1. Neutrosophic Infimum

Let (S, <N) be a set, which is neutrosophically partially ordered, and let M be a subset of S.
The neutrosophic infimum of M, denoted by infN (M), is the neutrosophically greatest element in

S, which is neutrosophically less than or equal to all elements of M.

1.5.2. Neutrosophic Supremum

Let (S, <N) be a set, which is neutrosophically partially ordered, and let M be a subset of S.
The neutrosophic supremum of M, denoted by supN (M), is the neutrosophically smallest element

in S, which is neutrosophically greater than or equal to all elements of M.
The neutrosophic infimum and supremum are both extensions of the classical infimum and

supremum respectively, using the transfer principle from the real set R to the neutrosophic real MoBiNad
set NRMB defined below.

1.5.3. Property

If
m1a ,

m2
b are left monads, right monads, pierced binads, or unpierced monads,

then both infN{
m1a ,

m2
b } and supN{

m1a ,
m2
b } are left monads or right monads.

(25)

1.6. Non-Standard Real MoBiNad Set

MoBiNad [3] etymologically comes from monad + binad.
Let R and R* be the set of standard real numbers, and respectively the set of hyper-reals (or

non-standard reals) that contains the infinitesimals and infinites.
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The Non-standard Real MoBiNad Set [2] is built as follows:

NRMB = N

{
ε,ω, a, (−a), (−a0), (a+), (0a+), (−a+), (−a0+) |where ε are infinitesimals,

with ε ∈ R∗;ω = 1/ε are infinites, with ω ∈ R∗; and a are real numbers, with a ∈ R
}

(26)

or,

NRMB = N

{
ε,ω,

m
a

∣∣∣∣∣∣
where ε,ω ∈ R∗, ε are infinitesimals, ω = 1

ε are infinitesimals;
a ∈ R; and m ∈ {,− ,− 0 ,+ ,+ 0 ,− + ,− 0 +}

}
(27)

As a set, NRMB is closed under addition, subtraction, multiplication, division [except division by
m
a, with a = 0 and m ∈ {,− ,− 0 ,+ ,0+ ,− + ,− 0 +}], and power

{
(

m1a
)(

m2
b )

with : either a > 0, or a ≤ 0 but b =
p
r (irreducible fraction) and p, r are

positive integers with r an odd number}.
(28)

1.7. Remark

The neutrosophic infimum and neutrosophic maximum are well-defined on the Non-standard
Real MoBiNad Set NRMB, in the sense that we can compute infN and supN of any subset of NRMB.

1.8. Non-Standard Real Open Monad Unit Interval

Since there is no relationship of order between a and –a+, not between a and (−0a+), and we need a
total order relationship on the set of non-standard real numbers, we remove all binads and keep only
the open left monads and open right monads [we also remove the monads closed to one side].

]−0, 1+[M = {a, ε,− a, a+|a ∈ [0, 1], ε ∈ R∗, ε > 0}. (29)

where a is subunitary real number, and ε is an infinitesimal number.
The non-standard neutrosophic unit interval ]−0, 1+[M includes the previously defined ]−0, 1+[

as follows:
]−0, 1+[=N (−0)∪ [0, 1]∪(1+) ⊂N

]−
0, 1+[M (30)

where the index M means that the interval includes all open monads and infinitesimals between −0
and 1+.

2. General Monad Neutrosophic Set

Let U be a universe of discourse, and S ⊂ U be a subset. Then, a Neutrosophic Set is a set for which
each element x from S has a degree of membership (T), a degree of indeterminacy (I), and a degree
of non-membership (F), with T, I, F standard or non-standard real monad subsets or infinitesimals,
neutrosophically included in or equal to the nonstandard real monad unit interval ]−, +[M, or

T, I, F ⊆N]−0, 1+[M (31)

where
−0 ≤N in fNT + in fNI + in fNF ≤N supNT + supNI + supNF ≤ 3+. (32)

2.1. Non-Standard Neutrosophic Set

Let us consider the above general definition of general neutrosophic set, and assume that at least
one of T, I, or F (the neutrosophic components) is a non-standard real monad subset or infinitesimal,
neutrosophically included in or equal to ]−0, 1+[M, where

−0 ≤N in fNT + in fNI + in fNF ≤N supNT + supNI + supNF ≤ 3+, (33)
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we have a non-standard neutrosophic set.

2.2. Non-Standard Fuzzy t-Norm and Fuzzy t-Conorm

Let T1, and T2, ∈]−0, 1+[M, be nonstandard real numbers (infinitesimals, or open monads), or
standard (classical) real numbers, such that at least one of them is a non-standard real number. T1 and
T2 are non-standard fuzzy degrees of membership. Then one has:

The non-standard fuzzy t-norms:

T1/\F T2 = infN {T1, T2} (34)

The non-standard fuzzy t-conorms:

T1\/F T2 = supN {T1, T2} (35)

2.3. Aggregation Operators on Non-Standard Neutrosophic Set

Let T1, I1, F1 and T2, I2, F2 ∈ ]−0, 1+[MB, be nonstandard real numbers (infinitesimals, or monads),
or standard (classical) real numbers, such that at least one of them is a non-standard real number.

Non-Standard Neutrosophic Conjunction

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1 ∨F I2, F1 ∨F F2) =

(infN (T1, T2), supN (I1, I2), supN (F1, F2))
(36)

Non-Standard Neutrosophic Disjunctions

(T1, I1, F1) ∨N (T2, I2, F2) = (T1∨F T2, I1 ∧F I2, F1 ∧F F2) =

(supN (T1, T2), infN (I1, I2), infN (F1, F2))
(37)

Non-Standard Neutrosophic Complement/Negation
We may use the notations CN or ¬N for the neutrosophic complement.

CN(T1, I1, F1) = N¬N (T1, I1, F1) =N (F1, I1, T1). (38)

Non-Standard Neutrosophic Inclusion/Inequality

(T1, I1, F1) ≤ N(T2, I2, F2) i f f T1 ≤N T2, I1 ≥N I2, F1 ≥N F2. (39)

Let A, B ∈ P (X), if A ⊆N B then B is called a neutrosophic superset of A.
Non-standard Neutrosophic Equality

(T1, I1, F1) =N(T2, I2, F2) iff (T1, I1, F1) ≤ N(T2, I2, F2) and (T2, I2, F2) ≤ N(T1, I1, F1). (40)

Non-Standard Monad Neutrosophic Universe of Discourse
We now introduce for the first time the non-standard neutrosophic universe.

Definition 1. A general set U, defined such that each element x ∈ U has neutrosophic coordinates of the form
x(Tx, Ix, Fx), such that Tx represents the degree of truth-membership of the element x with respect to set U, Ix

represents the degree of indeterminate-membership of the element x with respect to the set U, and Fx represents
the degree of false-membership of the element x with respect to the set U; where Tx, Ix, and Fx are non-standard
or standard subsets of the neutrosophic real monad set NRM, but at least one of all of them is non-standard (i.e.,
contains infinitesimals, or open monads).

Single-Valued Non-Standard Neutrosophic Topology
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Let U be a single-valued non-standard neutrosophic universe of discourse, i.e., for all x ∈ U, their
neutrosophic components Tx, Ix, Fx are single-values (either real numbers, or infinitesimals, or open
monads) belonging to ]−0, 1+[

Definition 2. Let X be a non-standard neutrosophic subset of U. The neutrosophic empty-set, denoted by 0N =

(−0, 1+, 1+), is a set ΦN ⊂ X whose all elements have the non-standard neutrosophic components equal to (−0,
1+, 1+). The whole set, denoted by 1N = (1+, −0, −0), is a set WN ⊂ X whose all elements have the non-standard
neutrosophic components equal to (1+, −0, −0).

Definition 3. Let X be a non-standard neutrosophic set. Let A = (T1, I1, F1) and B = (T2, I2, F2) be non-standard
neutrosophic numbers. Then:

A ∩ B = (infN (T1, T2), supN (I1, I2), supN (F1, F2)) (41)

A ∪ B = (supN (T1, T2), infN (I1, I2), infN (F1, F2)) (42)

CNA = (F1, I1, T1) (43)

Definition 4. Let X be a non-standard neutrosophic set. Let A(X) be the family of all non-standard neutrosophic
sets in X. Let τ ⊆ A (X) be a family of non-standard neutrosophic sets in X. Then τ is called a Non-standard
Neutrosophic Topology on X, if it satisfies the following axioms:

(i) 0N and 1N are in τ.
(ii) The intersection of the elements of any finite subcollection of τ is in τ.
(iii) The union of the elements of any subcollection of τ is in τ.

The pair (X, τ) is called a non-standard neutrosophic topological space. All members of τ are called
non-standard neutrosophic open sets in X.

Example 1. Let X be a non-standard neutrosophic set. Let τ be the set consisting of 0N and 1N. Then τ is a
topology on X. It is called the non-standard neutrosophic trivial topology.

Example 2. Let X be a non-standard neutrosophic set. Let A be a non-standard neutrosophic set in X. Let τ =

{0N, 1N, A}. Then it can be easily shown that τ is a topology on X.

Example 3. Let X be a non-standard neutrosophic set. Let A and B be non-standard neutrosophic sets in X such
that A is a neutrosophic superset of B. Let τ = {0N, 1N, A, B}. Then since A ∩ B = B and A ∪ B = A we deduce
that τ is a topology on X.

Example 4. Let X be a non-standard neutrosophic set. Suppose we have a nested sequence

A1 ⊆ A2 ⊆ A3 ⊆ . . . ⊆ An−1 ⊆ An ⊆ (44)

of non-standard neutrosophic sets in X such that each An is a neutrosophic superset of An−1 for each

n ∈ {1, 2, 3, . . . }.

Let τ = {0N, 1N, An: n ∈N}. Then since Ai ∩N Aj = Ai and Ai ∪N Aj = Aj for each i less than j, we deduce
that τ is a topology on X.

Example 5. Let X be a non-standard neutrosophic infinite set:

X =

(
xm,n,p

((
+

0.7
)m

, (0.2)n,
( −
0.6

)p)
, xm,n,p ∈ X; m, n, p ∈ {1, 2, . . .}

)
(45)
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Let M100 be a family of subsets of X, such that each member Am,n,p of the family has:

m, n, p ∈ {1, 2, . . . , 100}. (46)

Then τ = {0N, 1N, M100} is a non-standard neutrosophic topology.

Proof. Any monad (
m
a) raised to the integer power k > 0, is equal to the monad of ak:

(
m
a
)k

=
m(
ak

)
(47)

Let’s consider two non-standard neutrosophic elements from X:

xm1,n1,p1

((
+

0.7
)m1

, (0.2)n1 ,
( −
0.6

)p1
)

and xm2,n2,p2

((
+

0.7
)m2

, (0.2)n2 ,
( −
0.6

)p2
)

(48)

where
m1, n1, p1, m2, n2, p2 ∈ {1, 2, . . . , 100}. (49)

It is sufficient to prove that their non-standard neutrosophic finite intersection and the random
union of elements from M100 are in M100.

xm1,n1,p1 ∩N xm2,n2,p2
=N

(
infN{

(
+

0.7
)m1

,
(
+

0.7
)m2

},

SUPN{(0.2)n1 , (0.2)n2 }, SUPN{
( −
0.6

)p1

,
( −
0.6

)p2

})

=



(
+

0.7
)max{m1,m2}

, (0.2)min{n1,n2},
( −
0.6

)min{p1,p2} ∈M100

(50)

because also max{m1, m2}, min{n1, n2}, min{p1, p2} ∈M100. (51)

∪
m,n,p∈(ψ1,ψ2,ψ3)⊆{1,2,...,100}3

{xm,n,p

((
+

0.7
)m

, (0.2)n,
( −
0.6

)p)
}

=



(
+

0.7
)min{m,m∈ψ1}

, (0.2)max{n,n∈ψ2},
( −
0.6

)max{p,p∈ψ3} ∈M100

(52)

�

Definition 5. Let X be a non-standard neutrosophic set. Suppose that τ and τ’ are two topologies on X such
that τ ⊂ τ ‘. Then we say that τ’ is finer than τ.

Example 6. Let X be a non-standard neutrosophic set. Let A and B be non-standard neutrosophic sets in X such
that A is a neutrosophic superset of B. Let τ = {0N, 1N, A} and τ’ = {0N, 1N, B}.

Then τ’ is finer than τ.

Example 7. Let’s consider the above Example 5. In addition to M100, let’s define L100 as follows:

L100 = {xm,n,p

((
+

0.7
)m

, (0.2)n,
( −
0.6

)p
) , xm,n,p ∈ X; m, n, p ∈ {2, 4, 6, . . . , 100}}

(53)

The non-standard neutrosophic topology τ = {0N, 1N, M100} is a finer non-standard neutrosophic topology
than the non-standard neutrosophic topology τ’ = {0N, 1N, L100}.
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Definition 6. The subset Z of a non-standard neutrosophic topological space X is called a non-standard
neutrosophic closed set if its complement CN (Z) is open in X.

Example 8. Let Y be a non-standard neutrosophic infinite set

Y = {ym,n

((
+

0.5
)m

,
( −
0.1

)n

,
(
+

0.5
)m)

, ym,n ∈ Y; m, n ∈ {1, 2, . . .}} (54)

and P (Y) the power set of Y.
Let τ ⊆ P (Y) be a non-standard neutrosophic topology.
Each non-standard neutrosophic set A ∈ τ is a non-standard neutrosophic open set and closed set in the

same time, because its non-standard neutrosophic complement CN (A) = A.

Proof. For any ym,n∈Y one has:

CN
(
ym,n

)
= Cn

((
+

0.5
)m

,
( −
0.1

)n

,
(
+

0.5
)m)

=

((
+

0.5
)m

,
( −
0.1

)n

,
(
+

0.5
)m)

= ym,n (55)

�

Theorem 1. Unlike in classical topology, the non-standard neutrosophic empty-set 0N and the non-standard
neutrosophic whole set 1N are not necessarily closed, since they are not the non-standard neutrosophic complement
of each other.

Proof.
CN (−0, 1+, 1+) =N (1+,1+, −0) , (1+, −0, −0), and reciprocally: (56)

CN (1+, −0, −0) =N (−0, −0, 1+) , (−0, 1+, 1+). (57)

Theorem 2. In a non-stardard neutrosophic topology there may be non-standard neutrosophic sets which are
both open and closed set.

Proof. See the above Example 8. �

Theorem 3. Unlike in classical topology, the intersection of two non-standard neutrosophic closed sets is not
necessarily a non-standard neutrosophic closed set. Moreover, the union of two non-standard neutrosophic closed
sets is not necessarily a non-standard neutrosophic closed set.

Proof. Consider Example 3 above.

Let A = (T2, I2, F2) and B = (T1, I1, F1). Note that CNA = (F2, I2, T2) and CNB = (F1, I1, T1). (58)

Then CNA ∩N CNB = (F2, I1, T2). (59)

Since CN (CNA ∩N CNB) = (T2, I1, F2) (60)

is not non-standard neutrosophic open set in X, we have that CNA ∩N CNB is not a non-standard
neutrosophic closed set in X. Also,

CNA ∩N CNB = (F1, I2, T1). (61)

Since CN (CNA ∩N CNB) = (T1, I2, F1) (62)

262



Symmetry 2019, 11, 706

is not non-standard neutrosophic open set in X, we have that CNA ∩N CNB is not a non-standard
neutrosophic closed set in X. �

General Remark 1. Since the non-standard neutrosophic aggregation operators (conjunction, disjunction,
complement) needed in non-standard neutrosophic topology, are defined by classes of operators (not by exact
unique operators) respectively, the classical topological space theorems and properties extended (by the transfer
principle) to the non-standard neutrosophic topological space may be valid for some non-standard neutrosophic
operators, but invalid for other classes of neutrosophic aggregation operators.

Even worth, due to the fact that non-standard neutrosophic conjunction/disjunction/complement
are, in addition, based on fuzzy t-norms and fuzzy t-conorms, which are not fixed either, but
characterized by classes!

{Similarly for fuzzy and intuitionistic fuzzy aggregation operators.}
For example, the neutrosophic intersection/\N can be defined in 2 ways:

(T1, I1, F1) /\N (T2, I2, F2) = (T1/\F T2, I1/\F I2, F1/\F F2) (63)

And
(T1, I1, F1) /\N (T2, I2, F2) = (T1/\F T2, I1 \/F I2, F1/\F F2). (64)

In turn, the fuzzy t-norms (/\F) and fuzzy t-conorm (\/F) are also defined in many ways; for
example I know at least 3 types of fuzzy t-norms:

a/\F b = min {a, b} (65)

a/\F b = ab (66)

a/\F b = max {a + b − 1, 0} (67)

and 3 types of fuzzy t-conorms:
a\/F b = max {a, b} (68)

a/\F b = a + b − ab (69)

a/\F b = min {a + b, 1} (70)

therefore there exist at least 2·3·3 = 18 possibilities to define the neutrosophic t-norm (/\N).
There exist at least the same number 18 of possibilities of defining the neutrosophic t-conorm (\/N).
From these 18 possibilities of defining/\N and \/N for some of them the classical topological

theorems extended to non-standard neutrosophic topology may be valid, for others invalid.

Definition 7. Let (X, τ) be a nonstandard neutrosophic topological space. Let A be a non-standard neutrosophic
set in X. Then the Non-standard Neutrosophic Closure of A is the intersection of all non-standard neutrosophic
closed supersets of A, and we denote it by clN (A). The Non-standard Neutrosophic Closure of A is the smallest
nonstandard neutrosophic closed set in X that neutrosophically includes A.

Example 9. Let X be a non-standard neutrosophic set:

X = {x1
−

(0.4,
+

0.1,
−

0.5), x2
−

(0.5,
+

0.1,
−

0.4), x3
−

(0.5,
+

0.1,
−

0.5)} (71)

and the following non-standard neutrosophic topology:

τ = {ΦN, 1N, A1{x1
−

(0.4,
+

0.1,
−

0.5), A2{x2
−

(0.5,
+

0.1,
−

0.4), A3{x3
−

(0.5,
+

0.1,
−

0.5)}} (72)
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where

ΦN = {x1
−
(0,

+
1,

+
1), x2

−
(0,

+
1,

+
1), x3

−
(0,

+
1,

+
1), 1N = x1

+
(1,
−
0,
−
0), x1

+
(1,
−
0,
−
0), x1

+
(1,
−
0,
−
0)} (73)

Proof. τ is a non-standard neutrosophic topology because:

A1 ∩N A2 = A1, A1 ∩N A3 = A1, A2 ∩N A3 = A3 (74)

A1 ∪N A2 = A2, A1 ∪N A3 = A3, A2 ∪N A3 = A2, A1 ∪N A2 ∪N A3 = A2. (75)

(X, τ) is a non-standard neutrosophic topological space.
The non-standard neutrosophic sets A1, A2, A3 are open sets since they belong to τ.
A2 is the non-standard neutrosophic complement of A1, or CN (A2) = A1, therefore A2 is a

non-standard neutrosophic closed set in X.
A3 is the non-standard neutrosophic complement of A3 (itself), or CN (A3) = A3, therefore A3 is

also a non-standard neutrosophic closed set in X.
A2 and A3 are nonstandard neutrosophic supersets of A1, since A1 ⊂ A2 and A1 ⊂ A3.
Whence, the Non-standard Neutrosophic Closure of A1 is the intersection of its non-standard

neutrosophic closed supersets A2 and A3, or

clN (A1) = N A2 ∩N A3 =N A3 (76)

�

Definition 8. The Non-standard Neutrosophic Interior of A is the union of all non-standard neutrosophic open
subsets of A that are contained in A, and we denote it by intN (A).

The Non-standard Neutrosophic Interior of A is the largest non-standard neutrosophic open set in X that is
neutrosophically included into A.

Example 10. Into the previous Example 9, let’s compute intN (A2).

A1 and A3 are non-standard neutrosophic open sets in X, with A1 ⊂N A2 and A3 ⊂N A2 (77)

Whence
intN (A2) = A1 ∪N A3 = A3. (78)

Definition 9. Let (X, τ) be a non-standard neutrosophic topological space, and let Y ⊆N X be a non-standard
neutrosophic subset of X. Then the collection τY = {O ∩N Y, O ∈ τ} is a topology on Y. It is called the
non-standard neutrosophic subspace topology and Y is called a non-standard neutrosophic subspace of X.

Example 11. In the same previous Example 9, let’s take Y = A3 ⊂ X, and the non-standard neutrosophic
subspace topology

τY = {ΦN, 1N, A3, {
−

(0.5,
+

0.1,
−

0.5)}} (79)

Then Y is a non-standard neutrosophic topological subspace of X.

Definition 10. Let X and Y be two non-standard neutrosophic topological spaces. A map f:

X→ Y (80)

is said to be non-standard neutrosophic continuous map if for each non-standard neutrosophic open set A in Y,
the set f −1 (A) is a non-standard neutrosophic open set in X.
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Example 12. Let X be a non-standard neutrosophic space. Let Y be a non-standard neutrosophic subspace of X.
Then the inclusion map i: Y→ X is non-standard neutrosophic continuous.

Example 13. Let X be a non-standard neutrosophic set. Suppose that τ and τ‘ are two non-standard neutrosophic
topologies on X such that τ’ is finer than τ. Then the identity map id: (X, τ’)→ (X, τ) is obviously non-standard
neutrosophic continuous.

Definition 11. Let (X1, τ1) and (X2, τ2) be two non-standard neutrosophic topological spaces. Then
τ1 × τ2 =N {U ×V : U ∈ τ1, V ∈ τ2} defines a topology on the product

X1 ×X2 (81)

The topology τ1 × τ2 is called non-standard neutrosophic product topology.

3. Development of Neutrosophic Topologies

Since the first definition of neutrosophic topology and neutrosophic topological space [3] in 1998,
the neutrosophic topology has been developed tremendously in multiple directions and has added new
topological concepts such as: neutrosophic crisp topological [6–9], neutrosophic crisp α-topological
spaces [10], neutrosophic soft topological k-algebras [11–13], neutrosophic nano ideal topological
structure [14], neutrosophic soft cubic set in topological spaces [15], neutrosophic alpha m-closed
sets [16], neutrosophic crisp bi-topological spaces [17], ordered neutrosophic bi-topological space [18],
neutrosophic frontier and neutrosophic semi-frontier [19], neutrosophic topological functions [20],
neutrosophic topological manifold [21], restricted interval valued neutrosophic topological spaces [22],
smooth neutrosophic topological spaces [23], nω–closed sets in neutrosophic topological spaces [24],
and other topological properties [25,26], arriving now to the neutrosophic topology extended to the
non-standard analysis space.

4. Conclusions

We have introduced for the first time the non-standard neutrosophic topology, non-standard
neutrosophic toplogical space and subspace constructed on the non-standard unit interval]−0, 1+[M that
is formed by real numbers and positive infinitesimals and open monads, together with several concepts
related to them, such as: non-standard neutrosophic open/closed sets, non-standard neutrosophic
closure and interior of a given set, and non-standard neutrosophic product topology. Several theorems
were proven and non-standard neutrosophic examples were presented.

Non-standard neutrosophic topology (NNT) is initiated now for the first time. It is a neutrosophic
topology defined on the set of hyperreals, while the previous neutrosophic topologies were initiated and
developed on the set of reals.

The novelty of NNT is its possibility to be used in calculus due to the involvement of infinitesimals,
while the previous neutrosophic topologies could not be used due to lack of infinitesimals.

Thus, the paper has contributed to the foundation of a new field of study, called non-standard
neutrosophic topology.

As future work, we intend to study more non-standard neutrosophic algebraic structures, such
as: non-standard neutrosophic group, non-standard neutroosphic ring and field, non-standard
neutrosophic vector space and so on.
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Abstract: The present study aims to introduce the notion of bipolar neutrosophic Hamacher aggregation
operators and to also provide its application in real life. Then neutrosophic set (NS) can elaborate
the incomplete, inconsistent, and indeterminate information, Hamacher aggregation operators, and
extended Einstein aggregation operators to the arithmetic and geometric aggregation operators. First,
we give the fundamental definition and operations of the neutrosophic set and the bipolar neutrosophic
set. Our main focus is on the Hamacher aggregation operators of bipolar neutrosophic, namely, bipolar
neutrosophic Hamacher weighted averaging (BNHWA), bipolar neutrosophic Hamacher ordered
weighted averaging (BNHOWA), and bipolar neutrosophic Hamacher hybrid averaging (BNHHA)
along with their desirable properties. The prime gain of utilizing the suggested methods is that
these operators progressively provide total perspective on the issue necessary for the decision makers.
These tools provide generalized, increasingly exact, and precise outcomes when compared to the
current methods. Finally, as an application, we propose new methods for the multi-criteria group
decision-making issues by using the various kinds of bipolar neutrosophic operators with a numerical
model. This demonstrates the usefulness and practicality of this proposed approach in real life.

Keywords: BNHWA aggregation operator; BNHOWA aggregation operator; BNHHA aggregation
operator; score function; accuracy function; certainty function; group decision making

1. Introduction

In the recent era of decision making, there is often incomplete, indeterminate, and inconsistent
information. Zadeh introduced the notion of fuzzy set [1], which deals with uncertainty and can
be applied in many fields. However, it has a shortcoming, i.e., it only expresses membership value
and is unable to express non-membership value. At that point, Atanassov [2] introduced the idea of
intuitionistic fuzzy set (IFS) to address issues with the fuzzy set. Every component in IFS is shown by
a structured pair, and every pair is portrayed by a membership value (truth-membership) ζA(p) and a
non-membership value (falsity-membership) ЮA(p) that satisfy the conditions ζ(p), Ю(p) ∈ [0, 1] and
0 ≤ ζ(p), Ю(p) ≤ 1. IFSs can deal with incomplete data but cannot deal with the indeterminate and
inconsistent data. Smarandache [3] developed the neutrosophic set (NS) by including an indeterminacy
membership value Ґ(p), which is a generality of IFS. NS can deal with information very effectively,
i.e., incomplete, indeterminate, and inconsistent. When ζ(p) + Ґ(p) + Ю(p) < 1, it shows that this
information is indeterminate and when ζ(p) + Ґ(p) +Ю(p) > 1, it is inconsistent information.
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Single valued neutrosophic set (SVNS), as suggested by Wang et al. [4], was applied to decision
making with the conditions ζ(p), Ґ(p), Ю(p) ∈ [0, 1] and 0 ≤ ζ(p) +Ґ(p) +Ю(p) ≤ 3. Ye [5] introduced
the correlation coefficient and also proposed the comparison method for SVNSs. Wang et al. [6]
proposed the interval valued SVNSs to extend the truth, indeterminacy, and false membership
to interval values. Ye [7] defined the similarity measures between interval valued neutrosophic
sets on the basis of the Hamming and Euclidean distances and also proposed a multiple attribute
decision-making method.

Aggregation operators are the important research areas, claiming the attention of today’s researchers.
Since the proposed theory of IFS, many scientists [8–15] have made essential contributions to the
advancement of IFS theory. XU and Yager [12] developed the notion of aggregation operators based on
IFS. They also applied these aggregation operators to decision making. Wang and Liu [16], proposed
the idea of Einstein aggregation operators. Zhao and Wei [17] built up some of the Einstein hybrid
aggregation operators. Fahmi et al. [18–21] developed aggregation operators based on triangular and
trapezoidal cubic fuzzy numbers with applications to decision making. Rahman et al. [22–25] proposed
aggregation operators on different extension of fuzzy numbers. The bipolar fuzzy set (BFS) [26–28]
uses a substitute method to deal with uncertainty in decision making. The bipolar fuzzy set consists
of a positive as well as negative membership degree. The membership degree of the bipolar fuzzy set
ranges from −1 to 1. BFSs have been useful in various research domains and set theory decision analysis
and organizational modeling [29], quantum computing [30], physics and philosophy [31], and graph
theory [32]. Bipolar averaging and geometric fuzzy aggregations operators were defined by Gul [33].
Irfan et al. [34] presented the bipolar neutrosophic set with basic operations. They also proposed the
comparison method for bipolar neutrosophic sets. Fan et al. [35] developed Heronian mean operators in
a bipolar neutrosophic environment. Irfan et al. [36] presented the interval valued bipolar neutrosophic
set with applications to pattern recognition. Irfan et al. [37] proposed the interval valued neutrosophic
soft set with applications to decision making. Zhan et al. [38] proposed Schweizer-Sklar Muirhead
mean aggregation operators based on single-valued neutrosophic set. Ashraf et al. introduced some
logarithmic aggregation operators on neutrosophic sets [39].

Hamacher t-norm and t-conorm [40], which are the generalization of algebraic and Einstein
t-norm and t-conorm, are more general and flexible. There are many researchers who extended the
Hamacher operations to solve multiple attribute decision-making problems combined with other
fuzzy environments, such as intuitionistic [41], interval valued intuitionistic [42], hesitant fuzzy [43],
hesitant Pythagorean fuzzy [44], bipolar fuzzy numbers [45] and neutrosophic numbers [46,47]. Since
the development of this field, there has been no significant research on Hamacher operations and its
applicability to bipolar neutrosophic numbers. Here, we extended the Hamacher operations to bipolar
neutrosophic numbers to develop bipolar neutrosophic Hamacher aggregation operators for multiple
attribute decision-making problems.

Decision making plays a key role in present day management. Necessarily, sound decision
making is a basic part of administration. Consciously or unconsciously, a manager makes a decision,
or decisions, as it is his or her responsibility as a manager. Decision making has a consequential role
as organizational and managerial activities are linked with that decision. A decision is explained
as a sequence of actions, intentionally taken from a set of alternates, to accomplish managerial or
organizational targets. The decision-making process is an incessant and obligatory part of organization
management or activities that are carried out in business. Decisions are made to address the events of
all activities related to business and organizations. Decision and economic theories are interconnected
with the assumption that field experts make a decision to make the best use out of their personal interest
and reasonableness. This, though, doesn’t take into consideration the probabilities of intervening
factors that make decision making dependent upon the situation. The aforementioned factors play a
key role in normalizing decision making for the manager to achieve optimal targets.
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Although there is much literature available regarding the present study, the points given below,
connected to the bipolar neutrosophic set and its aggregation operator, motivated the researcher to
construct a detail and deep inquiry in the present study. Our main rationalizations and are as follows:

(1) Single valued neutrosophic sets (SVNSs) help in dealing with uncertain information in a more
reliable way. It is a generalization of classical set, fuzzy set, and intuitionistic fuzzy set etc.,
and adaptable to the framework in comparison with pre-existing fuzzy sets and its versions.

(2) To deal with uncertain real-life problems, bipolar fuzzy sets are of great value and prove to be
helpful in dealing with the positive as well as the negative membership values.

(3) We tried to merge these ideas with the Hamacher aggregation operator and strive to develop
a more effective tool to deal with uncertainty in the form of bipolar neutrosophic Haymaker
averaging aggregation operators.

(4) The objective of the study was to propose bipolar neutrosophic Hamacher operators and also study
its properties. Furthermore, we proposed three aggregation operators, namely bipolar neutrosophic
Hamacher weighted averaging operators (BNHWA), and bipolar neutrosophic Hamacher ordered
weighted averaging operators (BNHOWA) and bipolar neutrosophic Hamacher hybrid averaging
operators (BNHHA). Multi-attribute decision making (MADM) program approach is established
based on bipolar neutrosophic numbers

(5) So as to affirm the effectiveness of the proposed method, we applied bipolar neutrosophic numbers
to the decision-making problem.

(6) The initial decision matrices were composed of bipolar neutrosophic numbers and transformed
into a collective bipolar neutrosophic decision matrix.

(7) The proposed operators probably completely elaborate the vagueness of bipolar neutrosophic
Hamacher aggregation operator.

The rest of the study is organized as follows:

• Section 2 comprises the fundamental definitions and their related properties, which are required
later in paper.

• In Section 3 we introduce the BNHWA operator, BNHWOA operator and BNHHA operator.
• In Section 4, the new aggregation operators are applied to group decision making and we propose

a numerical problem.
• In Section 5, there is a comparison of our method in relation to other methods and concluding

remarks are also given.

2. Preliminaries

Fundamental definitions of neutrosophic set are provided in the current section for bipolar fuzzy set,
bipolar neutrosophic set, score function, accuracy function, certainty function and Hamacher operations.

Definition 1. [3] Let P be any fixed set. Then a neutrosophic set (NS) is as follows:

B =
{(

p, ζ(p), Ґ(p), Ю(p)
)∣∣∣∣p ∈ P

}
, (1)

where the truth-membership is ζ : H→ E, the indeterminacy-membership is Ґ : H→ E, and the
falsity-membership is Ю : H→ E, where E = ]0−, 1+[.ζ(p), Ґ(p) and Ю(p) are real standard or non-standards
subsets of ]0−, 1+[, which was proposed by Abraham Robinson in 1966 [48]. There is no restriction on the sum
of ζ(p), Ґ(p) and Ю(p), so 0− ≤ ζ(p) + Ґ(p) +Ю(p) ≤ 3+.

As it is difficult to apply NS in real scientific and engineering areas, Wang et al. [4] proposed the
concept of a single valued neutrosophic set (SVNS), which follows.
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Definition 2. [4] Let P be a non-empty set, with an element in P denoted by p, and then the single valued
neutrosophic set (SVNS) of A in H is as follows:

ANS =
{(

p, ζ(p), Ґ(p), Ю(p)
)∣∣∣∣p ∈ P

}
, (2)

where the truth-membership is ζ : H→ N , the indeterminacy-membership is Ґ : H→ N , and the
falsity-membership is Ю : H→ N, where N = [0, 1]. There is one condition, i.e.,

0 ≤ ζ(p) + Ґ(p) +Ю(p) ≤ 3.

The basic operations for two SVNSs are:

ANS =
{(

p, ζA(p), ҐA(p), ЮA(p)
)∣∣∣∣p ∈ P

}
, BNS =

{(
p, ζB(p), ҐB(p), ЮB(p)

)∣∣∣∣p ∈ P
}
,

and are given as follows:

i. The subset ANS ⊆ BNS if, and only if,

ζA(p) ≤ ζB(p), ҐA(p) ≥ ҐB(p), ЮA(p) ≥ЮB(p).

ii. ANS = BNS if, and only if,

ζA(p) = ζB(p), ҐA(p) = ҐB(p), ЮA(p) = ЮB(p).

iii. the complement A′NS is

A′NS =
{(

p, ЮA(p), 1− ҐA(p), ζA(p)
)∣∣∣∣p ∈ P

}
.

iv. the intersection is defined by

ANS ∩ BNS =
{(

p, min
{
ζA(p), ζB(p)

}
, max

{
ҐA(p), ҐB(p)

}
, max

{
ЮA(p), ЮB(p)

})∣∣∣∣p ∈ P
}
, and

v. the union is defined by

ANS ∪ BNS =
{(

p, max
{
ζA(p), ζB(p)

}
, min

{
ҐA(p), ҐB(p)

}
, min

{
ЮA(p), ЮB(p)

})∣∣∣∣p ∈ P
}
,

Definition 3. [49] Let u1 =
(
ζ1, Ґ1, Ю1

)
and u2 =

(
ζ2, Ґ2, Ю2

)
be two single-value neutrosophic numbers

(SVNNs). Then, the operations for the SVNNs are as follows:

i. u1 + u2 =
(
ζ1 + ζ2 − ζ1ζ2, Ґ1Ґ2, Ю1Ю2

)
,

ii. u1·u2 =
(
ζ1 + ζ2, Ґ1 + Ґ2 − Ґ1Ґ2, Ю1 +Ю2 −Ю1Ю2

)
,

iii. λ(u1) =
(
1− (1− ζ1)

λ,
(
Ґ1

)λ
, (Ю1)

λ
)

and

iv. (u1)
λ =

(
(ζ1)

λ, 1−
(
1− Ґ1

)λ
, 1− (1−Ю1)

λ
)
,

where λ > 0.

Definition 4. [49] Let u1 =
(
ζ1, Ґ1, Ю1

)
be a SVNN. Then, the score function s(u1) is as follows:

s(u1) =

(
ζ1 + 1− Ґ1 + 1−Ю1

)

3
.
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Definition 5. [49] Let u1 =
(
ζ1, Ґ1, Ю1

)
be a SVNN. Then, the accuracy function a(u1) is as follows:

a(u1) = (ζ1 −Ю1).

Definition 6. [49] Let u1 =
(
ζ1, Ґ1, Ю1

)
be a SVNN. Then, the certainty function c(u1) is as follows:

c(u1) = ζ1 .

Definition 7. [49] Let u1 =
(
ζ1, Ґ1, Ю1

)
and u2 =

(
ζ2, Ґ2, Ю2

)
be two SVNNs. Then, the comparison is as

follows:

i. if s(u1) > s(u2), then u1 is greater than u2, denoted by u1 > u2,
ii. if s(u1) = s(u2) and a(u1) >a(u2), then u1 is greater than u2, denoted by u1 > u2,
iii. if s(u1) = s(u2), a(u1) =a(u2) and c(u1) > c(u2), then u1 is greater than u2, denoted by u1 > u2 and
iv. if s(u1) = s(u2), a(u1) =a(u2) and c(u1) = c(u2), then u1 is equal to u2, denoted by u1 = u2.

Definition 8. [28] Let P be a fixed set, and the bipolar fuzzy set is as follows:

F =
{〈

p,µ+F (p), η
−
F (p)

〉∣∣∣∣p ∈ P
}
, (3)

where the positive degree of membership is µ+
F
(p) : H→ N and the negative degree of membership is

η−
F
(p) : H→M, where N = [1, 0] and M = [−1, 0].

Definition 9. [34] A bipolar neutrosophic set (BNS), A in P, is as follows:

A =
{(

p, ζ+(p), Ґ+
(p), Ю+(p), ζ−(p), Ґ−(p), Ю−(p)

)∣∣∣∣p ∈ P
}
, (4)

Let ζ+(p), Ґ+
(p), Ю+(p) = BN+ and ζ−(p), Ґ−(p), Ю−(p) = BN−, where, ζ+(p), Ґ+

(p), Ю+(p) is
the positive degree of truth, the indeterminate and false membership of p ∈ P and ζ−(p), Ґ−(p), Ю−(p)
is the negative degree of truth, the indeterminate and false membership of p ∈ P. Then BN+ : H→ N
and BN− : H→M, where N = [1, 0] and M = [−1, 0]. There are conditions where 0 ≤ ζ+(p) +Ґ+

(p) +
Ю+(p) + ζ−(p) + Ґ−(p) +Ю−(p) ≤ 6.

Example 1. Let P =
{
p1, p2, p3

}
, then

A =



(p1, 0.1, 0.5, 0.3,−0.4,−0.5,−0.6),
(p2, 0.2, 0.7, 0.4,−0.3,−0.6,−0.2),
(p3, 0.4, 0.6, 0.7,−0.2,−0.3,−0.1)



is a bipolar neutrosophic subset of P.

Basic operations [34], for two bipolar neutrosophic sets (BNSs), are as follows:
Let

A1 =
{(

p, ζ+1 (p), Ґ
+
1 (p), Ю

+
1 (p), ζ

−
1 (p), Ґ

−
1 (p), Ю

−
1 (p)

)∣∣∣∣p ∈ P
}

and A2 =
{(

p, ζ+2 (p), Ґ
+
2 (p), Ю

+
2 (p), ζ

−
2 (p), Ґ

−
2 (p), Ю

−
2 (p)

)∣∣∣∣p ∈ P
}

be two BNSs, then:
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i. A1 ⊆ A2 if, and only if,

ζ+1 (p) ≤ ζ+2 (p), Ґ
+
1 (p) ≤ Ґ+

2 (p), Ю
+
1 (p) ≥Ю+

2 (p)

and
ζ−1 (p) ≥ ζ−2 (p), Ґ

−
1 (p) ≥ Ґ−2 (p), Ю−

1 (p) ≤Ю−
2 (p),

ii. A1 = A2 if, and only if,

ζ+1 (p) = ζ+2 (p), Ґ
+
1 (p) = Ґ+

2 (p), Ю
+
1 (p) = Ю+

2 (p)

and
ζ−1 (p) = ζ−2 (p), Ґ

−
1 (p) = Ґ−2 (p), Ю−

1 (p) = Ю−
2 (p),

iii. The union is defined as:

(A1 ∪A2) =
{(

max
(
ζ+1 (p), ζ

+
2 (p)

)
, Ґ+

1 (p)+Ґ+
2 (p)

2 , min
(
Ю+

1 (p), Ю
+
2 (p)

)
, min

(
ζ−1 (p), ζ

−
2 (p)

)
, Ґ−1 (p)+Ґ−2 (p)

2 , max
(
Ю−

1 (p), Ю
−
2 (p)

))}
, and

iv. The intersection is defined as:

(A1 ∩A2) =
{(

min
(
ζ+1 (p), ζ

+
2 (p)

)
, Ґ+

1 (p)+Ґ+
2 (p)

2 , max
(
Ю+

1 (p), Ю
+
2 (p)

)
, max

(
ζ−1 (p), ζ

−
2 (p)

)
, Ґ−1 (p)+Ґ−2 (p)

2 , min
(
Ю−

1 (p), Ю
−
2 (p)

))}
.

Let A =
{(

p, ζ+(p), Ґ+
(p), Ю+(p), ζ−(p), Ґ−(p), Ю−(p)

)∣∣∣∣p ∈ P
}

and be a BNS. Then the
complement Ac is defined as:

ζ+Ac(p) =
{
1+

}
− ζ+A (p), Ґ

+
Ac(p) =

{
1+

}
− Ґ+

A (p), Ю
+
Ac(p) =

{
1+

}
−Ю+

A (p)

and
ζ−Ac(p) =

{
1−

}− ζ−A(p), Ґ
−
Ac(p) =

{
1−

}− Ґ−A(p), Ю−
Ac(p) =

{
1−

}−Ю−
A(p).

Definition 10. [34] Let u1 =
(
ζ+1 , Ґ+

1 , Ю+
1 , ζ−1 , Ґ−1 , Ю−

1

)
and u2 =

(
ζ+2 , Ґ+

2 , Ю+
2 , ζ−2 , Ґ−2 , Ю−

2

)
be two bipolar

neutrosophic numbers (BNNs). Then, the operations for the BNNs are as follows:

u1 + u2 =
(
ζ+1 + ζ+2 − ζ+1 ζ+2 , Ґ+

1 Ґ+
2 , Ю+

1 Ю+
2 ,−ζ−1 ζ−2 ,−

(
−Ґ−1 − Ґ−2 − Ґ−1 Ґ−2

)
,−

(
−Ю−

1 −Ю−
2 −Ю−

1 Ю−
2

))
,

u1·u2 =
(
ζ+1 ζ+2 , Ґ+

1 + Ґ+
2 − Ґ+

1 Ґ+
2 , Ю+

1 +Ю+
2 −Ю+

1 Ю+
2 ,−

(
−ζ−1 − ζ−2 − ζ−1 ζ−2

)
,−Ґ−1 Ґ−2 ,−Ю−

1 Ю−
2

)
,

λ(u1) =
(
1−

(
1− ζ+1

)λ
,
(
Ґ+

1

)λ
,
(
Ю+

1

)λ
,−

(
−ζ−1

)λ
,−

(
−Ґ−1

)λ
,−

(
1−

(
1−

(
−Ю−

1

))λ))
,

(u1)
λ =

((
ζ+1

)λ
, 1−

(
1− Ґ+

1

)λ
, 1−

(
1−Ю+

1

)λ
,−

(
1−

(
1−

(
−ζ−1

))λ)
,−

(
−Ґ−1

)λ
,−

(
−Ю−

1

)λ)
.

where λ > 0.

Definition 11. [34] Let u =
(
ζ+, Ґ+, Ю+, ζ−, Ґ−, Ю−) be a bipolar neutrosophic number (BNN), then the

score function of u is as follows:

S(u) =
1
6

(
ζ+ + 1− Ґ+

+ 1−Ю+ + 1 + ζ− − Ґ− −Ю−). (5)
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Definition 12. [34] Let u =
(
ζ+, Ґ+, Ю+, ζ−, Ґ−, Ю−) be a BNN, then the accuracy function of u is as follows:

a(u) = ζ+ −Ю+ + ζ− −Ю−. (6)

Definition 13. [34] Let u =
(
ζ+, Ґ+, Ю+, ζ−, Ґ−, Ю−) be a bipolar neutrosophic value, then the certainty

function of u is as follows:
c(u) = ζ+ −Ю−. (7)

Definition 14. [34] Let u1 =
(
ζ+1 , Ґ+

1 , Ю+
1 , ζ−1 , Ґ−1 , Ю−

1

)
and u2 =

(
ζ+2 , Ґ+

2 , Ю+
2 , ζ−2 , Ґ−2 , Ю−

2

)
be two BNNs,

then the comparison method is as follows:

(i) If S(u1) � S(u2), then u1 is greater than u2, denoted by u1 � u2,
(ii) If S(u1) = S(u2), and a(u1) � a(u2), then u1 is superior to u2, denoted by u1 � u2,
(iii) If S(u1) = S(u2), a(u1) = a(u2) and c(u1) � c(u2), then u1 is greater than u2, denoted by u1 � u2 and
(iv) If S(u1) = S(u2), a(u1) = a(u2) and c(u1) = c(u2), then u1 is equal to u2, denoted by u1 = u2

Hamacher [40] proposed a more generalized t-norm and t-conorm. The Hamacher product, ⊗,
is a t-norm and the Hamacher sum, ⊕, is a t-conorm, where:

T(a, b) = a⊗ b = ab
..
γ+(1− ..

γ)(a+b−ab)
,

..
γ > 0

T ∗ (a, b) = a⊕ b =
a+b−ab−(1− ..

γ)ab

1−(1− ..
γ)ab

,
..
γ > 0

when
..
γ = 1, the Hamacher t-norm and t-conorm will be reduced to algebraic t-norm and t-conorm,

respectively:
T(a, b) = a⊗ b = ab
T ∗ (a, b) = a⊕ b = a + b− ab

when
..
γ = 2, the Hamacher t-norm and t-conorm will be reduced to the Einstein t-norm and t-conorm,

respectively [16]:
T(a, b) = a⊗ b = ab

1+(1−a)(1−b)
T ∗ (a, b) = a⊕ b = a+b

1+ab

The following definitions introduce the Hamacher operations of bipolar neutrosophic set, as the
notion of the bipolar neutrosophic Hamacher sum, product, scalar multiple and exponential operations
are defined.

Definition 15. Let u =
(
ζ+, Ґ+, Ю+, ζ−, Ґ−, Ю−), u1 =

(
ζ+1 , Ґ+

1 , Ю+
1 , ζ−1 , Ґ−1 , Ю−

1

)
and u2 =(

ζ+2 , Ґ+
2 , Ю+

2 , ζ−2 , Ґ−2 , Ю−
2

)
be three BNNs values, and λ � 0 be any real number, then we define basic

Hamacher operators with
..
γ � 0.

u1 ⊕ u2 =




ζ+
1 +ζ+

2 −ζ+
1 ζ+

2 −(1− ..
γ)ζ+

1 ζ+
2

1−(1− ..
γ)ζ+

1 ζ+
2

, Ґ+
1 Ґ+

2
..
γ+(1− ..

γ)
(
Ґ+

1 +Ґ+
2 −Ґ+

1 Ґ+
2

) ,
Ю+

1 Ю+
2

..
γ+(1− ..

γ)(Ю+
1 +Ю+

2 −Ю+
1 Ю+

2 )
,

−ζ−1 ζ−2
..
γ+(1− ..

γ)(ζ−1 +ζ−2−ζ−1 ζ−2 )
,
−
(
−Ґ−1−Ґ−2−Ґ−1 Ґ−2−(1− ..

γ)Ґ
−
1 Ґ−2

)

1−(1− ..
γ)Ґ

−
1 Ґ−2

,
−(−Ю−

1−Ю−
2−Ю−

1 Ю−
2−(1− ..

γ)Ю−
1 Ю−

2 )
1−(1− ..

γ)Ю−
1 Ю−

2




(8)

u1 ⊗ u2 =




ζ+
1 ζ+

2
..
γ+(1− ..

γ)(ζ+
1 +ζ+

2 −ζ+
1 ζ+

2 )
,
Ґ+

1 +Ґ+
2 −Ґ+

1 Ґ+
2 −(1− ..

γ)Ґ
+
1 Ґ+

2

1−(1− ..
γ)Ґ

+
1 Ґ+

2
,
Ю+

1 +Ю+
2 −Ю+

1 Ю+
2 −(1− ..

γ)Ю+
1 Ю+

2
1−(1− ..

γ)Ю+
1 Ю+

2
,

−(−ζ−1−ζ−2−ζ−1 ζ−2−(1− ..
γ)ζ−1 ζ

−
2 )

1−(1− ..
γ)ζ−1 ζ

−
2

, −Ґ−1 Ґ−2
..
γ+(1− ..

γ)
(
Ґ−1 +Ґ−2−Ґ−1 Ґ−2

) ,
−Ю−

1 Ю−
2

..
γ+(1− ..

γ)(Ю−
1 +Ю−

2−Ю−
1 Ю−

2 )




(9)
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λ(u) =




(1+(
..
γ−1)ζ+)

λ−(1−ζ+)
λ

(1+(
..
γ−1)ζ+)

λ
+(

..
γ−1)(1−ζ+)

λ ,
..
γ
(
Ґ+)λ

(
1+(

..
γ−1)

(
1−Ґ+))λ

+(
..
γ−1)

(
Ґ+)λ ,

..
γ(Ю+)

λ

(1+(
..
γ−1)(1−Ю+))

λ
+(

..
γ−1)(Ю+)

λ ,

− ..
γ|ζ−|λ

(1+(
..
γ−1)(1+ζ−))

λ
+(

..
γ−1)|ζ−|λ ,

− ..
γ
∣∣∣∣Ґ−

∣∣∣∣
λ

(
1+(

..
γ−1)

(
1+Ґ−

))λ
+(

..
γ−1)

∣∣∣∣Ґ−
∣∣∣∣
λ ,

−
(
(1+(

..
γ−1)|Ю−|)λ−(1+Ю−)λ

)

(1+(
..
γ−1)|Ю−|)λ+( ..

γ−1)(1+Ю−)λ




(10)

(u)λ =




(ζ+)
λ

(1+(
..
γ−1)(1−ζ+))

λ
+(

..
γ−1)(ζ+)

λ ,
(
1+(

..
γ−1)Ґ

+)λ−
(
1−Ґ+)λ

(
1+(

..
γ−1)Ґ

+)λ
+(

..
γ−1)

(
1−Ґ+)λ ,

(1+(
..
γ−1)Ю+)

λ−(1−Ю+)
λ

(1+(
..
γ−1)Ю+)

λ
+(

..
γ−1)(1−Ю+)

λ ,

−
(
(1+(

..
γ−1)|ζ−|)λ−(1+ζ−)λ

)

(1+(
..
γ−1)ζ−)

λ
+(γ−1)(1+ζ−)λ

,
− ..
γ
∣∣∣∣Ґ−

∣∣∣∣
λ

(
1+(

..
γ−1)

(
1+Ґ−

))λ
+(

..
γ−1)

∣∣∣∣Ґ−
∣∣∣∣
λ , − ..

γ|Ю−|λ
(1+(

..
γ−1)(1+Ю−))

λ
+(

..
γ−1)|Ю−|λ




(11)

3. Bipolar Neutrosophic Hamacher Aggregation Operators

We propose some properties of the Hamacher aggregation operators in this part of the paper for
bipolar neutrosophic Hamacher weighted averaging (BNHWA), bipolar neutrosophic Hamacher ordered
weighted averaging (BNHOWA) and bipolar neutrosophic Hamacher hybrid averaging (BNHHA).

Let u` =
(
ζ+
`

, Ґ+
` , Ю+

`
, ζ−` , Ґ−` , Ю−

`

)
be a family of BNNs, where ` ∈ Z and Z = {1, 2, 3, . . . ., n}.

3.1. Bipolar Neutrosophic HamacherWeighted Averaging Aggregation Operator

Definition 16. The bipolar neutrosophic Hamacher weighted averaging (BNHWA) operator can be defined
as follows:

BNHWAν(u1, u2, . . . .., un) =
n⊕
`=1

(ν`u`) = ν1u1 ⊕ ν2u2 ⊕ . . . . . . . . .⊕ νnun (12)

where ν = (ν1, ν2, . . . , νn)
T is the weighted vector of u`, such that ν` > 0 and

n∑
`=1

ν` = 1,
..
γ > 0.

Theorem 1. The (BNHWA) operator gives a bipolar neutrosophic value when:

BNHWAν(u1, u2, . . . .., un) =



n∏
`=1

(1+(
..
γ−1)ζ+

` )
ν`−

n∏
`=1

(1−ζ+
` )

ν`

n∏
`=1

(1+(
..
γ−1)ζ+

` )
ν`+(

..
γ−1)

n∏
`=1

(1−ζ+
` )

ν`
,

..
γ

n∏
`=1

(
Ґ+
`

)ν`

n∏
`=1

(
1+(

..
γ−1)

(
1−Ґ+

`

))ν`+( ..
γ−1)

n∏
`=1

(
Ґ+
`

)ν` ,

..
γ

n∏
`=1

(Ю+
` )

ν`

n∏
`=1

(1+(
..
γ−1)(1−Ю+

` ))
ν`+(

..
γ−1)

n∏
`=1

(Ю+
` )

ν`
,

− ..
γ

n∏
`=1

∣∣∣ζ−`
∣∣∣ν`

n∏
`=1

(1+(
..
γ−1)(1+ζ−` ))

ν`+(
..
γ−1)

n∏
`=1

∣∣∣ζ−`
∣∣∣ν`

,−
n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣Ґ−`
∣∣∣∣
)ν`−

n∏
`=1

(
1+Ґ−`

)ν`

n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣Ґ−`
∣∣∣∣
)ν`

+(
..
γ−1)

n∏
`=1

(
1+Ґ−`

)ν` ,−
n∏
`=1

( 1+(
..
γ−1)

∣∣∣Ю−
`

∣∣∣)ν`−
n∏
`=1

(1+Ю−
` )

ν`

n∏
`=1

( 1+(
..
γ−1)

∣∣∣Ю−
`

∣∣∣)ν`+( ..
γ−1)

n∏
`=1

(1+Ю−
` )

ν`




(13)

where ν = (ν1, ν2, . . . , νn)
T is the weighted vector of u`, such that ν` > 0 and

n∑
`=1

ν` = 1,
..
γ > 0.

Proof. This theorem can be proved by mathematical induction as follows:
When n = 2

ν1u1 =




(1+(
..
γ−1)ζ+

1 )
ν1−(1−ζ+

1 )
ν1

(1+(
..
γ−1)ζ+

1 )
ν1+(

..
γ−1)(1−ζ+

1 )
ν1 ,

..
γ
(
Ґ+

1

)ν1

(
1+(

..
γ−1)

(
1−Ґ+

1

))ν1+(
..
γ−1)

(
Ґ+

1

)ν1 ,
..
γ(Ю+

1 )
ν1

(1+(
..
γ−1)(1−Ю+

1 ))
ν1+(

..
γ−1)(Ю+

1 )
ν1 ,

− ..
γ
∣∣∣ζ−1

∣∣∣ν1

(1+(
..
γ−1)(1+ζ−1 ))

ν1+(
..
γ−1)

∣∣∣ζ−1
∣∣∣ν1 ,

− ..
γ
∣∣∣∣Ґ−1

∣∣∣∣
ν1

(
1+(

..
γ−1)

(
1+Ґ−1

))ν1+(
..
γ−1)

∣∣∣∣Ґ−1
∣∣∣∣
ν1 ,
−(( 1+((

..
γ−1)

∣∣∣Ю−
1

∣∣∣))ν1−(1+Ю−
1 )

ν1)
( 1+(

..
γ−1)

∣∣∣Ю−
1

∣∣∣)ν1+(
..
γ−1)(1+Ю−

1 )
ν1




ν2u2 =




(1+(
..
γ−1)ζ+

2 )
ν2−(1−ζ+

2 )
ν2

(1+(
..
γ−1)ζ+

2 )
ν2+(

..
γ−1)(1−ζ+

2 )
ν2 ,

..
γ
(
Ґ+

2

)ν2

(
1+(

..
γ−1)

(
1−Ґ+

2

))ν2
+(

..
γ−1)

(
Ґ+

2

)ν2 ,
..
γ(Ю+

2 )
ν2

(1+(
..
γ−1)(1−Ю+

2 ))
ν2+(

..
γ−1)(Ю+

2 )
ν2 ,

− ..
γ
∣∣∣ζ−2

∣∣∣ν2

(1+(
..
γ−1)(1+ζ−2 ))

ν2+(
..
γ−1)

∣∣∣ζ−2
∣∣∣ν2 ,

− ..
γ
∣∣∣∣Ґ−2

∣∣∣∣
ν2

(
1+(

..
γ−1)

(
1+Ґ−2

))ν2+(
..
γ−1)

∣∣∣∣Ґ−2
∣∣∣∣
ν2 ,
−((1+((

..
γ−1)

∣∣∣Ю−
2

∣∣∣))ν2−(1+Ю−
2 )

ν2)
( 1+(

..
γ−1)

∣∣∣Ю−
2

∣∣∣)ν2+(
..
γ−1)(1+Ю−

2 )
ν2



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and for

ν1u1 =




(1+(
..
γ−1)ζ+

1 )−(1−ζ+
1 )

(1+(
..
γ−1)ζ+

1 )+(
..
γ−1)(1−ζ+

1 )
,

..
γ
(
Ґ+

1

)
(
1+(

..
γ−1)

(
1−Ґ+

1

))
+(

..
γ−1)

(
Ґ+

1

) ,
..
γ(Ю+

1 )
(1+(

..
γ−1)(1−Ю+

1 ))+(
..
γ−1)(Ю+

1 )
,

− ..
γ
∣∣∣ζ−1

∣∣∣
(1+(

..
γ−1)(1+ζ−1 ))+(

..
γ−1)

∣∣∣ζ−1
∣∣∣ ,−

(
1+((

..
γ−1)

∣∣∣∣Ґ−1
∣∣∣∣
)
−
(
1+Ґ−1

)

(
1+(

..
γ−1)

∣∣∣∣Ґ−1
∣∣∣∣
)
+(

..
γ−1)

(
1+Ґ−1

) ,− ( 1+((
..
γ−1)

∣∣∣Ю−
1

∣∣∣)−(1+Ю−
1 )

( 1+(
..
γ−1)

∣∣∣Ю−
1

∣∣∣)+( ..
γ−1)(1+Ю−

1 )




(14)

So it is proved for n = 1.
Now when n = r in Equation (14), then

BNHWAν(u1, u2, . . . .., un) =


r∏
`=1

(1+(
..
γ−1)ζ+

` )
ν`−

r∏
`=1

(1−ζ+
` )

ν`

r∏
`=1

(1+(
..
γ−1)ζ+

` )
ν`+(

..
γ−1)

r∏
`=1

(1−ζ+
` )

ν`
,

..
γ

r∏
`=1

(
Ґ+
`

)ν`

r∏
`=1

(
1+(

..
γ−1)

(
1−Ґ+

`

))ν`+( ..
γ−1)

r∏
`=1

(
Ґ+
`

)ν` ,

..
γ

r∏
`=1

(Ю+
` )

ν`

r∏
`=1

(1+(
..
γ−1)(1−Ю+

` ))
ν`+(

..
γ−1)

r∏
`=1

(Ю+
` )

ν`
,

− ..
γ

r∏
`=1

∣∣∣ζ−`
∣∣∣ν`

r∏
`=1

(1+(
..
γ−1)(1+ζ−` ))

ν`+(
..
γ−1)

r∏
`=1

∣∣∣ζ−`
∣∣∣ν`

,
− ..
γ

r∏
`=1
|Ґ−` |

r∏
`=1

(
1+(

..
γ−1)

(
1+Ґ−`

))ν`+( ..
γ−1)

r∏
`=1

∣∣∣∣Ґ−`
∣∣∣∣
ν`

,
−

k∏
j=1
( 1−( ..

γ−1)
∣∣∣Ю−

`

∣∣∣)ν`−
r∏

`=1
(1−Ю−

` )
ν`

r∏
`=1

( 1−( ..
γ−1)

∣∣∣Ю−
`

∣∣∣)ν`+( ..
γ−1)

r∏
`=1

(1+Ю−
` )

ν`




This proves that it is true for n = r
When n = r + 1, then

BNHWAν(u1, u2, . . . .., un)

=




r∏
`=1

(1+(
..
γ−1)ζ+

` )
ν`−

r∏
`=1

(1−ζ+
` )

ν`

r∏
`=1

(1+(
..
γ−1)ζ+

` )
ν`+(

..
γ−1)

r∏
`=1

(1−ζ+
` )

ν`
,

..
γ

r∏
`=1

(
Ґ+
`

)ν`

r∏
`=1

(
1+(

..
γ−1)

(
1−Ґ+

`

))ν`+( ..
γ−1)

r∏
`=1

(
Ґ+
`

)ν` ,

..
γ

r∏
`=1

(Ю+
` )

ν`

r∏
`=1

(1+(
..
γ−1)(1−Ю+

` ))
ν`+(

..
γ−1)

r∏
`=1

(Ю+
` )

ν`
,

− ..
γ

r∏
`=1

(
∣∣∣ζ−`

∣∣∣)ν`

r∏
`=1

(1+(
..
γ−1)(1+ζ−` ))

ν`+(
..
γ−1)

r∏
`=1

∣∣∣ζ−`
∣∣∣ν`

,

− ..
γ

r∏
`=1

∣∣∣∣∣∣Ґ
−
`

∣∣∣∣∣∣
r∏

`=1

(
1+(

..
γ−1)

(
1+Ґ−`

))ν`+( ..
γ−1)

r∏
`=1

∣∣∣∣Ґ−`
∣∣∣∣
ν`

,−
r∏

`=1
( 1+(

..
γ−1)

∣∣∣Ю−
`

∣∣∣)ν`−
r∏

`=1
(1+Ю−

` )
ν`

r∏
`=1

( 1+(
..
γ−1)

∣∣∣Ю−
`

∣∣∣)ν`+( ..
γ−1)

r∏
`=1

(1+Ю−
` )

ν`




⊕




(
1+(

..
γ−1)ζ+

r+1

)νr+1−
(
1−ζ+

r+1

)νr+1

(
1+(

..
γ−1)ζ+

r+1

)νr+1+(
..
γ−1)

(
1−ζ+

r+1

)νr+1 ,
..
γ
(
Ґ+

r+1

)νr+1

(
1+(

..
γ−1)

(
1−Ґ+

r+1

))νr+1+(
..
γ−1)

(
Ґ+

r+1

)νr+1 ,

..
γ
(
Ю+

r+1

)νr+1

(
1+(

..
γ−1)

(
1−Ю+

r+1

))νr+1+(
..
γ−1)

(
Ю+

r+1

)νr+1 ,
− ..
γ
∣∣∣ζ−r+1

∣∣∣νr+1

(1+(
..
γ−1)(1+ζ−r+1))

νr+1+(
..
γ−1)

∣∣∣ζ−r+1

∣∣∣νr+1 ,

− ..
γ
∣∣∣∣Ґ−r+1

∣∣∣∣
νr+1

(
1+(

..
γ−1)

(
1+Ґ−r+1

))νr+1+(
..
γ−1)

∣∣∣∣Ґ−r+1

∣∣∣∣
νr+1 ,− (1−(1+(

..
γ−1)

∣∣∣Ю−
r+1

∣∣∣))νr+1−(1+Ю−
r+1)

νr+1)
( 1+(

..
γ−1)

∣∣∣Ю−
r+1

∣∣∣)νr+1+(
..
γ−1)(1+Ю−

r+1)
νr+1




=




r+1∏
`=1

(1+(
..
γ−1)ζ+

` )
ν`−

r+1∏
`=1

(1−ζ+
` )

ν`

r+1∏
`=1

(1+(
..
γ−1)ζ+

` )
ν`+(

..
γ−1)

r+1∏
`=1

(1−ζ+
` )

ν`
,

..
γ

r+1∏
`=1

(
Ґ+
`

)ν`

r+1∏
`=1

(
1+(

..
γ−1)

(
1−Ґ+

`

))ν`+( ..
γ−1)

r+1∏
`=1

(
Ґ+
`

)ν`
,

..
γ

r+1∏
`=1

(Ю+
` )

ν`

r+1∏
`=1

(1+(
..
γ−1)(1−Ю+

` ))
ν`+(

..
γ−1)

r+1∏
`=1

(Ю+
` )

ν`
,

− ..
γ

r+1∏
`=1

(
∣∣∣ζ−`

∣∣∣)ν`

r+1∏
`=1

(1+(
..
γ−1)(1+ζ−` ))

ν`+(
..
γ−1)

r+1∏
`=1

∣∣∣ζ−`
∣∣∣ν`

,

− ..
γ

r+1∏
`=1

∣∣∣∣Ґ−`
∣∣∣∣
ν`

r+1∏
`=1

(
1+(

..
γ−1)

(
1+Ґ−`

))ν`+( ..
γ−1)

r+1∏
`=1

∣∣∣∣Ґ−`
∣∣∣∣
ν`

,−
r+1∏
`=1

( 1+(
..
γ−1)

∣∣∣Ю−
`

∣∣∣)ν`−
r+1∏
`=1

(1+Ю−
` )

ν`

r+1∏
`=1

( 1+(
..
γ−1)

∣∣∣Ю−
`

∣∣∣)ν`+( ..
γ−1)

r+1∏
`=1

(1+Ю−
` )

ν`




.

Thus, Equation (14) is true for n = r + 1, which proves Theorem 1. �
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Theorem 2. (Idempotency) Let u` =
(
ζ+
`

, Ґ+
` , Ю+

`
, ζ−` , Ґ−` , Ю−

`

)
, where ` ∈ Z and Z = {1, 2, 3, . . . ., n} be a

collection of BNNs are equal, i.e., u` = u for all `, then:

BNHWAν(u1, u2, . . . .., un) = u.

Theorem 3. (Boundedness) Let u− = min
`

u`, u+ = max
`

u`, then:

u− ≤ BNHWAν(u1, u2, . . . .., un) ≤ u+.

Theorem 4. (Monotonicity) Let u` =
(
ζ+
`

, Ґ+
` , Ю+

`
, ζ−` , Ґ−` , Ю−

`

)
, where ` ∈ Z and Z = {1, 2, 3, . . . ., n}, and

u′` =
(
ζ′+` , Ґ′+` , Ю′+

` , ζ′−` , Ґ′−` , Ю′−
`

)
, where ` ∈ Z and Z = {1, 2, 3, . . . ., n} are two BNNs. If u` ≤ u′`, for all

`, then:
BNHWAν(u1, u2, . . . .., un) ≤ BNHWAν

(
u′1, u′2, . . . .., u′n

)

A discussion of two cases of BNHWA operator follows.

• If
..
γ = 1, then the BNHWA is converted to the bipolar neutrosophic weighted average (BNWA):

BNWAν(u1, u2, . . . .., un) =
n⊕
`=1

(ν`u`)=




1−
n∏
`=1

(
1− ζ+

`

)ν` ,
n∏
`=1

(
Ґ+
`

)ν` ,
n∏
`=1

(
Ю+

`

)ν` ,

−
n∏
`=1

∣∣∣ζ−`
∣∣∣ν` ,−

(
1−

(
n∏
`=1

(
1 + Ґ−`

)ν`
))

,−
(
1−

(
n∏
`=1

(
1 +Ю−

`

)ν`
))



.

• If
..
γ = 2, then the BNHWA is converted to the bipolar neutrosophic Einstein weighted average

(BNEWA):

BNEWAν(u1, u2, . . . .., un) =
n⊕
`=1

(ν`u`) =



n∏
`=1

(1+ζ+
` )

ν`−
n∏
`=1

(1−ζ+
` )

ν`

n∏
`=1

(1+ζ+
` )

ν`+
n∏
`=1

(1−ζ+
` )

ν`
,

n∏
`=1

(
Ґ+
`

)ν`

n∏
`=1

(
2−Ґ+

`

)ν`+
n∏
`=1

(
Ґ+
`

)ν` ,

n∏
`=1

(Ю+
` )

ν`

n∏
`=1

(2−Ю+
` )

ν`+
n∏
`=1

(Ю+
` )

ν`
,

−2
n∏
`=1

∣∣∣ζ−`
∣∣∣ν`

n∏
`=1

(2+ζ−` )
ν`+

n∏
`=1

∣∣∣ζ−`
∣∣∣ν`

,−
n∏
`=1

(
1+

∣∣∣∣Ґ−`
∣∣∣∣
)ν`−

n∏
`=1

(
1+Ґ−`

)ν`

n∏
`=1

(
1+

∣∣∣∣Ґ−`
∣∣∣∣
)ν`

+
n∏
`=1

(
1+Ґ−`

)ν` ,−
n∏
`=1

( 1+
∣∣∣Ю−

`

∣∣∣)ν`−
n∏
`=1

(1+Ю−
` )

ν`

n∏
`=1

( 1+
∣∣∣Ю−

`

∣∣∣)ν`+
n∏
`=1

(1+Ю−
` )

ν`




.

3.2. Bipolar Neutrosophic Hamacher OrderedWeighted Averaging Aggregation Operator

Definition 17. The bipolar neutrosophic Hamacher ordered weighted averaging (BNHOWA) operator can be
defined as follows:

BNHOWAν(u1, u2, . . . . . . , un) =
n⊕
`=1

(
ν`uρ(`)

)
= ν1uρ(1) ⊕ ν2uρ(2) ⊕ ν3u^

σ (3) ⊕ . . . . . . . . . ..⊕ νnuρ(n), (15)

where (ρ(1),ρ(2), . . . . . . . . . ,ρ(n)) is a permutation with uρ(`−1) ≥ uρ(`), ∀` ∈ Z, Z = {1, 2, 3, . . . ., n},
and ν = (ν1, ν2, . . . , νn)

T is the weighted vector of u` such that ν` > 0 and
n∑
`=1

ν` = 1,
..
γ > 0.
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Theorem 5. The (BNHOWA) operator gives a bipolar neutrosophic value:

BNHOWAν(u1, u2, . . . .., un) =


n∏
`=1

(
1+(

..
γ−1)ζ+

ρ(`)

)ν`−
n∏
`=1

(
1−ζ+

ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)ζ+

ρ(`)

)ν`
+(

..
γ−1)

n∏
`=1

(
1−ζ+

ρ(`)

)ν` ,

..
γ

n∏
`=1

(
Ґ+
ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

(
1−Ґ+

ρ(`)

))ν`+( ..
γ−1)

n∏
`=1

(
Ґ+
ρ(`)

)ν` ,

..
γ

n∏
`=1

(
Ю+

ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

(
1−Ю+

ρ(`)

))ν`
+(

..
γ−1)

n∏
`=1

(
Ю+

ρ(`)

)ν` ,
− ..
γ

n∏
`=1

∣∣∣∣ζ−ρ(`)
∣∣∣∣
ν`

n∏
`=1

(
1+(

..
γ−1)

(
1+ζ−

ρ(`)

))ν`
+(

..
γ−1)

n∏
`=1

∣∣∣∣ζ−ρ(`)
∣∣∣∣
ν`

,

−
n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣Ґ−ρ(`)
∣∣∣∣
)ν`−

n∏
`=1

(
1+Ґ−ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣Ґ−ρ(`)
∣∣∣∣
)ν`

+(
..
γ−1)

n∏
`=1

(
1+Ґ−ρ(`)

)ν` ,−
n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣Ю−
ρ(`)

∣∣∣∣
)ν`−

n∏
`=1

(
1+Ю−

ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣Ю−
ρ(`)

∣∣∣∣
)ν`

+(
..
γ−1)

n∏
`=1

(
1+Ю−

ρ(`)

)ν`




(16)

where (ρ(1),ρ(2), . . . . . . . . . ,ρ(n)) is a permutation with uρ(`−1) ≥ uρ(`), ∀` ∈ Z, Z = {1, 2, 3, . . . ., n} and

ν = (ν1, ν2, . . . , νn)
T is the weighted vector of u` such that ν` > 0 and

n∑
`=1

ν` = 1,
..
γ > 0.

Proof. The theorem is straightforward. �

Theorem 6. (Idempotency) Let u` =
(
ζ+
`

, Ґ+
` , Ю+

`
, ζ−` , Ґ−` , Ю−

`

)
, where ` ∈ Z and Z = {1, 2, 3, . . . ., n} are a

collection of equal BNNs, i.e., u` = u for all `, then:

BNHOWAν(u1, u2, . . . .., un) = u.

Theorem 7. (Boundedness) Let u− = min
`

u`, u+ = max
`

u`, then:

u− ≤ BNHOWAν(u1, u2, . . . .., un) ≤ u+.

Theorem 8. (Monotonicity) Let u` =
(
ζ+
`

, Ґ+
` , Ю+

`
, ζ−` , Ґ−` , Ю−

`

)
, where ` ∈ Z and Z = {1, 2, 3, . . . ., n} and

u′` =
(
ζ′+` , Ґ′+` , Ю′+

` , ζ′−` , Ґ′−` , Ю′−
`

)
, where ` ∈ Z and Z = {1, 2, 3, . . . ., n} are two BNNs. If u` ≤ u′`, for all

`, then:
BNHOWA$(u1, u2, . . . .., un) ≤ BNHOWA$

(
u′1, u′2, . . . .., u′n

)
.

Now, we discuss two cases of the BNHOWA operator:

• If
..
γ = 1, the BNHOWA is converted to the bipolar neutrosophic ordered weighted average

(BNOWA):

BNOWAν(u1, u2, . . . .., un) =
n⊕
`=1

(
ν`uρ(`)

)
=




1−
n∏
`=1

(
1− ζ+

ρ(`)

)ν`
,

n∏
`=1

(
Ґ+
ρ(`)

)ν` ,
n∏
`=1

(
Ю+

ρ(`)

)ν`
,

−
n∏
`=1

∣∣∣∣ζ−ρ(`)
∣∣∣∣
ν`

,−
(
1−

(
n∏
`=1

(
1 + Ґ−ρ(`)

)ν`
))

,−
(
1−

(
n∏
`=1

(
1 +Ю−

ρ(`)

)ν`))



.
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• If
..
γ = 2, the BNHOWA is converted to the bipolar neutrosophic Einstein ordered weighted

average (BNEOWA):

BNEOWAν(u1, u2, . . . .., un) =
n⊕
`=1

(
ν`uρ(`)

)

=




n∏
`=1

(
1+ζ+

ρ(`)

)ν`−
n∏
`=1

(
1−ζ+

ρ(`)

)ν`

n∏
`=1

(
1+ζ+

ρ(`)

)ν`
+

n∏
`=1

(
1−ζ+

ρ(`)

)ν` ,
2

n∏
`=1

(
Ґ+
ρ(`)

)ν`

n∏
`=1

(
2−Ґ+

ρ(`)

)ν`+
n∏
`=1

(
Ґ+
ρ(`)

)ν` ,
2

n∏
`=1

(
Ю+

ρ(`)

)ν`

n∏
`=1

(
2−Ю+

ρ(`)

)ν`
+

n∏
`=1

(
Ю+

ρ(`)

)ν` ,

−2
n∏
`=1

∣∣∣∣ζ−ρ(`)
∣∣∣∣
ν`

n∏
`=1

(
2+ζ−

ρ(`)

)ν`
+

n∏
`=1

∣∣∣∣ζ−ρ(`)
∣∣∣∣
ν`

,−
n∏
`=1

(
1+

∣∣∣∣Ґ−ρ(`)
∣∣∣∣
)ν`−

n∏
`=1

(
1+Ґ−ρ(`)

)ν`

n∏
`=1

(
1+

∣∣∣∣Ґ−ρ(`)
∣∣∣∣
)ν`

+
n∏
`=1

(
1+Ґ−ρ(`)

)ν` ,−
n∏
`=1

(
1+

∣∣∣∣Ю−
ρ(`)

∣∣∣∣
)ν`−

n∏
`=1

(
1+Ю−

ρ(`)

)ν`

n∏
`=1

(
1+

∣∣∣∣Ю−
ρ(`)

∣∣∣∣
)ν`

+
n∏
`=1

(
1+Ю−

ρ(`)

)ν`




.

3.3. Bipolar Neutrosophic Hamacher HybridAveraging Aggregation Operator

Definition 18. The bipolar neutrosophic Hamacher hybrid averaging (BNHHA) operator can be defined
as follows:

BNHHAw,ν(u1, u2, . . . . . . , un) =
n⊕
`=1

(
ν`

.
uρ(`)

)
= ν1

.
uρ(1) ⊕ ν2

.
uρ(2) ⊕ ν3

.
uρ(3) ⊕ . . . . . . . . . ..⊕ νn

.
uρ(n) (17)

where w = (w1, w2, . . . , wn) is a weighting vector of u`(` ∈ Z), Z = {1, 2, 3, . . . ., n}, such that

w` ∈ [0, 1],
n∑
`=1

w` = 1 and
.
uρ(`) is the `-th largest element of the bipolar neutrosophic

argument,
.
u`

( .
u` = (nν`)u`, ` = 1, 2, . . . , n

)
and also ν = (ν1, ν2, . . . , νn) are weighting vectors of bipolar

neutrosophic arguments u`(` ∈ Z), Z = {1, 2, 3, . . . ., n}, such that ν` ∈ [0, 1],
n∑
`=1

ν` = 1, where n is the

balancing coefficient. Note that BNHHA reduces to BNHWA if w =
(

1
n , 1

n , . . . .., 1
n

)T
and BNHOWA operator if:

ν =
(1

n
,

1
n

, . . . ..,
1
n

)
.

Theorem 9. The (BNHHA) operator returns a bipolar neutrosophic value when:

BNHHAw,ν(u1, u2, . . . .., un) =
n∏
`=1

(
1+(

..
γ−1)

.
ζ
+
ρ(`)

)ν`−
n∏
`=1

(
1− .

ζ
+
ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

.
ζ
+
ρ(`)

)ν`
+(

..
γ−1)

n∏
`=1

(
1− .

ζ
+
ρ(`)

)ν` ,

..
γ

n∏
`=1

( .
Ґ
+

ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

(
1−

.
Ґ
+

ρ(`)

))ν`
+(

..
γ−1)

n∏
`=1

( .
Ґ
+

ρ(`)

)ν` ,

..
γ

n∏
`=1

( .
Ю

+

ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

(
1−

.
Ю

+

ρ(`)

))ν`
+(

..
γ−1)

n∏
`=1

( .
Ю

+

ρ(`)

)ν` ,
− ..
γ

n∏
`=1

∣∣∣∣
.
ζ
−
ρ(`)

∣∣∣∣
ν`

n∏
`=1

(
1+(

..
γ−1)

(
1+

.
ζ
−
ρ(`)

))ν`
+(

..
γ−1)

n∏
`=1

∣∣∣∣
.
ζ
−
ρ(`)

∣∣∣∣
ν`

,

−
n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣∣
.
Ґ
−
ρ(`)

∣∣∣∣∣
)ν`
−

n∏
`=1

(
1+

.
Ґ
−
ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣∣
.
Ґ
−
ρ(`)

∣∣∣∣∣
)ν`

+(
..
γ−1)

n∏
`=1

(
1+

.
Ґ
−
ρ(`)

)ν` ,−
n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣
.

Ю
−
ρ(`)

∣∣∣∣
)ν`−

n∏
`=1

(
1+

.
Ю
−
ρ(`)

)ν`

n∏
`=1

(
1+(

..
γ−1)

∣∣∣∣
.

Ю
−
ρ(`)

∣∣∣∣
)ν`

+(
..
γ−1)

n∏
`=1

(
1+

.
Ю
−
ρ(`)

)ν`

(18)

where w = (w1, w2, . . . , wn) is the weighting vector of u`(` ∈ Z), Z = {1, 2, 3, . . . ., n}, such that

w` ∈ [0, 1],
n∑
`=1

w` = 1 and
.
uρ(`) is the ` -th largest element of the bipolar neutrosophic arguments,

.
u`

( .
u` = (nν`)u`, ` = 1, 2, . . . , n

)
and also ν = (ν1, ν2, . . . , νn) are the weighting vector of bipolar neutrosophic

arguments u`(` ∈ Z), Z = {1, 2, 3, . . . ., n}, such that ν` ∈ [0, 1],
n∑
`=1

ν` = 1, where n is the balancing

coefficient,
..
γ > 0.
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Proof. The theorem is straightforward. �

Now, we discuss two cases of BNHOWA:

• If
..
γ = 1, the BNHHA is converted to the bipolar neutrosophic hybrid averaging (BNHA):

BNHAw,ν(u1, u2, . . . .., un) =
n⊕
`=1

(
ν`

.
uρ(`)

)
=




1−
n∏
`=1

(
1− .

ζ
+

ρ(`)

)ν`
,

n∏
`=1

( .
Ґ
+

ρ(`)

)ν`
,

n∏
`=1

( .
Ю

+

ρ(`)

)ν`
,

−
n∏
`=1

∣∣∣∣
.
ζ
−
ρ(`)

∣∣∣∣
ν`

,−
(
1−

(
n∏
`=1

(
1 +

.
Ґ
−
ρ(`)

)ν`))
,−

(
1−

(
n∏
`=1

(
1 +

.
Ю
−
ρ(`)

)ν`))



.

• If
..
γ = 2, the BNHHA is converted to the bipolar neutrosophic Einstein hybrid averaging (BNEHA):

BNEHAw,ν(u1, u2, . . . .., un) =
n⊕
`=1

(
ν`

.
uρ(`)

)

=




n∏
`=1

(
1+

.
ζ
+
ρ(`)

)ν`−
n∏
`=1

(
1− .

ζ
+
ρ(`)

)ν`

n∏
`=1

(
1+

.
ζ
+
ρ(`)

)ν`
+

n∏
`=1

(
1− .

ζ
+
ρ(`)

)ν` ,
2

n∏
`=1

( .
Ґ
+

ρ(`)

)ν`

n∏
`=1

(
2−

.
Ґ
+

ρ(`)

)ν`
+

n∏
`=1

( .
Ґ
+

ρ(`)

)ν` ,
2

n∏
`=1

( .
Ю

+

ρ(`)

)ν`

n∏
`=1

(
2−

.
Ю

+

ρ(`)

)ν`
+

n∏
`=1

( .
Ю

+

ρ(`)

)ν` ,

−2
n∏
`=1

∣∣∣∣
.
ζ
−
ρ(`)

∣∣∣∣
ν`

n∏
`=1

(
2+

.
ζ
−
ρ(`)

)ν`
+

n∏
`=1

∣∣∣∣
.
ζ
−
ρ(`)

∣∣∣∣
ν`

,

n∏
`=1

(
1+

∣∣∣∣∣
.
Ґ
−
ρ(`)

∣∣∣∣∣
)ν`
−

n∏
`=1

(
1+

.
Ґ
−
ρ(`)

)ν`

n∏
`=1

(
1+

∣∣∣∣∣
.
Ґ
−
ρ(`)

∣∣∣∣∣
)ν`

+
n∏
`=1

(
1+

.
Ґ
−
ρ(`)

)ν` ,

n∏
`=1

(
1+

∣∣∣∣
.

Ю
−
ρ(`)

∣∣∣∣
)ν`−

n∏
`=1

(
1+

.
Ю
−
ρ(`)

)ν`

n∏
`=1

(
1+

∣∣∣∣
.

Ю
−
ρ(`)

∣∣∣∣
)ν`

+
n∏
`=1

(
1+

.
Ю
−
ρ(`)

)ν`




.

4. An Application of the Bipolar Neutrosophic Hamacher Averaging Aggregation Operators to
Group Decision Making

In this section, we apply the bipolar neutrosophic Hamacher averaging aggregation operators to
the multiple attribute group decision-making problems in which the attribute weights take the form of
crisp numbers and the attribute values take the form of BNNs.

Algorithm 1: Bipolar Neutrosophic Group Decision Making Problems

Let G = {G1, G2, . . . , Gm} be the set of m alternatives, L = {L1, L2, . . . .., Ln} be the set of n attributes or criterions,
and D = {D1, D2, . . . , Dk} be the finite k decision makers. Let ν = (ν1, ν2, . . . , νn)

T be the weighted vector of the

decision makers Ds(s = 1, 2, . . . , k), such that ν` ∈ [0, 1] and
n∑
`=1

ν` = 1. Let w = (w1, w2, . . . , wn)
T be the

weighted vector of the attribute set L = {L1, L2, . . . .., Ln} such that w` ∈ [0, 1] and
n∑
`=1

w` = 1. An alternative of

the criterion is assessed by the decision maker and the values are represented by bipolar neutrosophic values,

where u(s)_
i
_
j
=

[(
ζ+_

i
_
j
, Ґ+

_
i
_
j
, Ю+

_
i
_
j
, ζ−_

i
_
j
, Ґ−_

i
_
j
, Ю−

_
i
_
j

)]

m×n
is the decision matrix provided by the decision maker

(Tables 1–3) and u(s)_
i
_
j

is a bipolar neutrosophic number (Table 4) for alternative G_
i
, associated with criterion L_

i
.

The condition ζ+_
i
_
j
, Ґ+

_
i
_
j
, Ю+

_
i
_
j
, ζ−_

i
_
j
, Ґ−_

i
_
j

and Ю−
_
i
_
j
∈ [0, 1] is such that

0 ≤ ζ+_
i
_
j
+ Ґ+

_
i
_
j
+Ю+

_
i
_
j
+ ζ−_

i
_
j
+ Ґ−_

i
_
j
+Ю−

_
i
_
j
≤ 6 for

_
i = 1, 2, . . . ., m and

_
j = 1, 2, . . . ., n.

Step 1: Construct the decision matrix Ds =

[
u(s)_

i
_
j

]

m×n
(s = 1, 2, . . . , k) for the decision.

Step 2: Compute BNHWAν
(
r_

i 1
, r_

i 2
, . . . .., r_

i n

)
for each

_
i = 1, 2, 3, . . . ., m:
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i
=
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i
, Ґ+

_
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i
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i
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Step 3: Calculate the scores of S
(
r_

i

)
for the

(_
i = 1, 2, 3, . . . ., m

)
.

Step 4: Rank all the software systems of BNHWAν
(
u_

i 1
, u_

i 2
, . . . .., u_

i n

)
according to the scores values.

Step 5: Select the best alternative(s).
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Illustrative Example

We considered an issue, taken from Deli [29], as an application for the proposed method in the
present paper. The issue given is that an investment company wants to make some investments in the

best possible options. There are four types of companies G_
i

(_
i = 1, 2, 3 . . . . . . . . .m

)
that are available

as alternatives, namely G1: computer company, G2: food company, G3: car company, and G4: arms
company, to invest money. The investment company takes into account four attributes to evaluate
the alternatives: L1: risk, L2: growth, L3: environmental impact, and L4: performance. We utilized

the bipolar neutrosophic numbers to assess the four possible alternatives of G_
i

(_
i = 1, 2, 3, 4

)
under

the four criteria. The weight vector of the attributes is ν = ( 1
4 , 1

5 , 3
10 , 1

4 )
T

. There are three experts, i.e.,

Ds(s = 1, 2, 3), from a group of decision makers, whose weight vector is ν = ( 3
10 , 3

10 , 2
5 )

T
. The expert

opion about the companies based on atrribute are given in Tables 1–3.

Step 1: Decision matrices

Table 1. Bipolar Neutrosophic Decision Matrix, D1.

L1 L2 L3 L4

G1 (0.5,0.4,0.3, −0.7, −0.5, −0.6) (0.1, 0.5, 0.4, −0.2, −0.4, −0.7) (0.3, 0.7, 0.4−0.6, −0.4, −0.6) (0.2, 0.4, 0.7, −0.3, −0.5, −0.1)
G2 (0.2, 0.6, 0.4, −0.3, −0.6, −0.8) (0.5, 0.7, 0.6, −0.3, −0.4, −0.5) (0.5, 0.5, 0.1, −0.7, −0.4, −0.8) (0.6, 0.5, 0.4, −0.5, −0.4, −0.6)
G3 (0.4, 0.5, 0.3, −0.5, −0.6, −0.7) (0.8, 0.9, 0.2, −0.7, −0.4, −0.6) (0.2, 0.6, 0.5, −0.5, −0.4, −0.7) (0.5, 0.7, 0.3, −0.5, −0.4, −0.2)
G4 (0.7, 0.6, 0.5, −0.6, −0.5, −0.4) (0.5, 0.7, 0.6, −0.6, −0.3, −0.5) (0.3, 0.1, 0.8, −0.9, −0.5, −0.6) (0.2, 0.5, 0.7, −0.4, −0.5, −0.8)

Table 2. Bipolar Neutrosophic Decision Matrix, D2.

L1 L2 L3 L4

G1 (0.2, 0.5,0.3, −0.4, −0.6, −0.5) (0.4, 0.3, 0.7, −0.5, −0.4, −0.6) (0.5, 0.7, 0.3, −0.4, −0.7, −0.6) (0.1, 0.4, 0.6, −0.3, −0.4, −0.2)
G2 (0.5, 0.6,0.4, −0.2, −0.4, −0.5) (0.5, 0.1, 0.6, −0.6, −0.4, −0.2) (0.3, 0.5, 0.4, −0.1, −0.4, −0.6) (0.5, 0.3, 0.4−0.7, −0.4, −0.5)
G3 (0.7, 0.4, 0.5, −0.4, −0.5, −0.6) (0.7, 0.2, 0.4, −0.3, −0.5, −0.1) (0.1, 0.7, 0.5, −0.4, −0.3, −0.8) (0.4, 0.3, 0.5, −0.7, −0.4, −0.3)
G4 (0.3, 0.4, 0.5, −0.7, −0.1, −0.3) (0.8, 0.2, 0.1, −0.5, −0.3, −0.4) (0.5, 0.2, 0.4, −0.1, −0.4, −0.7) (0.4, 0.3, 0.7, −0.5, −0.2, −0.6)

Table 3. Bipolar Neutrosophic Decision Matrix, D3.

L1 L2 L3 L4

G1 (0.4, 0.5, 0.1, −0.6, −0.4, −0.5) (0.4, 0.3, 0.6, −0.1, −0.6, −0.3) (0.2, 0.6, 0.3, −0.7, −0.2, −0.5) (0.2, 0.1, 0.8, −0.9, −0.2, −0.3)
G2 (0.5, 0.3, 0.2, −0.4, −0.1, −0.6) (0.4, 0.5, 0.3, −0.7, −0.2, −0.3) (0.5, 0.3, 0.4, −0.5, −0.4, −0.6) (0.8, 0.6, 0.2, −0.1, −0.5, −0.4)
G3 (0.3, 0.4, 0.6, −0.7, −0.2, −0.4) (0.2, 0.9, 0.1, −0.4, −0.5, −0.6) (0.3, 0.7, 0.2, −0.5, −0.3, −0.4) (0.4, 0.1, 0.6, −0.3, −0.4, −0.1)
G4 (0.5, 0.3, 0.6, −0.6, −0.3, −0.5) (0.5, 0.6, 0.2, −0.5, −0.3, −0.6) (0.4, 0.3, 0.7, −0.8, −0.4, −0.7) (0.7, 0.4, 0.5, −0.5, −0.3, −0.4)

Step 2: We computed BNHWAν
(
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, r_

i 2
, . . . .., r_

i n

)
for

..
γ = 2: The collective bipolar neutrosophic

decision matrix is given in Table 4.
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

Step 3: We calculated the score function, for
..
γ = 2:

r1 = (0.2993, 0.3560, 0.4013,−0.4544,−0.4369,−0.4585),
r2 = (0.5060, 0.4265, 0.3217,−0.3607,−0.3854,−0.5668),
r3 = (0.4150, 0.4765, 0.3629,−0.4780,−0.4010,−0.4920 ),
r4 = (0.4989, 0.3360, 0.5028,−0.5272,−0.3517,−0.5683),
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S
(
r_

i

)
=

1
6

(
ζ+ + 1− Ґ+

+ 1−Ю+ + 1 + ζ− − Ґ− −Ю−)and

S(r1) = 0.4972, S(r2) = 0.5582, S(r3) = 0.4984, S(r4) = 0.5088.

Step 4: We calculated the scores for
..
γ = 2, which gave:

G2 � G4 � G3 � G1

Step 5: Thus, the best option was G2

Table 4. Collective Bipolar Neutrosophic Decision Matrix R.

L1 L2

G1 (0.3757,0.4683,0.1962, −0.5615, −0.4946, −0.5317) (0.3155,0.3520,0.5616, −0.2056, −0.4865, −0.5313)
G2 (0.4181,0.4622,0.3062, −0.3001, −0.3585, −0.6479) (0.4614,0.3623,0.4622, −0.5292, −0.3233, −0.3359)
G3 (0.4708,0.4283,0.4669, −0.5406, −0.4250, −0.5632) (0.5855,0.6202,0.1902, −0.4417, −0.4712, −0.4741)
G4 (0.5174,0.4072,0.5386, −0.6291, −0.3083, −0.4134) (0.6132,0.4687,0.2350, −0.5288, −0.3000, −0.5147)

L3 L4

G1 (0.3264,0.3931,0.3276, −0.5709, −0.4174, −0.5255) (0.1703,0.2364,0.7077, −0.4916, −0.3566, −0.2115)
G2 (0.4441,0.4108,0.2709, −0.3623, −0.4000, −0.6722) (0.6708,0.4669,0.3061, −0.3107, −0.4413, −0.4946)
G3 (0.2115,0.6692,0.3536, −0.4683, −0.3308, −0.6406) (0.4312,0.2639,0.4669, −0.4597, −0.4000, −0.1914)
G4 (0.4029,0.1931,0.6264, −0.4973, −0.4312, −0.6724) (0.4891,0.3942,0.6154, −0.4683, −0.3359, −0.6088)

5. Comparison with the Different Methods

There are various tools utilized by researchers so far in decision making. Chen et al. [50] utilized FSs,
and, later on, Atanassov [2] utilized intuitionistic FSs, Dubois et al. [51] utilized BFSs, Zavadskas et al. [52]
utilized NSs, Ali et al. [53] utilized bipolar neutrosophic soft sets, and Irfan et al. [34] utilized BNSs and
so many others have studied decision making. In this paper, we applied the bipolarity to the neutrosophic
sets via Hamacher operators. If

..
γ = 1, then our proposed model corresponded to the same BNSs of the

decision making as Irfan et al. [34].
The advantage of our proposed methods was that the decision maker could choose different values

of
..
γ in accordance with their preferences (Table 5). Generally, when the values of

..
γ = 1, 2, are used,

they form algebraic aggregation operators and Einstein aggregation operators. The aggregation
operators suggested in this paper were more general and flexible in accordance with the different
values of

..
γ, keeping in view the above computation and analysis, it is derived that although the overall

rating values of the alternatives are varying by using different values of
..
γ, the ranking orders of the

alternatives are slightly contrastive (Table 5). However, the most desirable investment company is G2.

Table 5. Ranking of the four alternatives for the different values of
..
γ.

¨
γ Aggregation Operators Ranking

1 BNHWA G2 � G4 � G1 � G3
1.5 BNHWA G2 � G4 � G1 � G3
2 BNHWA G2 � G4 � G3 � G1

2.5 BNHWA G2 � G4 � G3 � G1
3 BNHWA G2 � G4 � G1 � G3

6. Conclusions

The purpose of this paper was to study the different bipolar neutrosophic aggregation operators,
based on Hamacher t-norms and t-conorms, and their application to multiple criteria group decision
making where the criteria are bipolar neutrosophic values. Motivated by the Hamacher operations, we
have proposed bipolar neutrosophic Hamacher aggregation operators. Firstly, we have introduced
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bipolar neutrosophic Hamacher aggregation operators, as well as their desirable properties. These
aggregation operators were bipolar neutrosophic Hamacher weighted averaging (BNHWA), bipolar
neutrosophic Hamacher ordered weighted averaging (BNHOWA), and bipolar neutrosophic Hamacher
hybrid averaging (BNHHA). When

..
γ = 1, the bipolar neutrosophic Hamacher averaging operators

reduced to the bipolar neutrosophic averaging aggregation operator and for
..
γ = 2, the bipolar

neutrosophic Hamacher averaging operators transformed to the bipolar neutrosophic Einstein
averaging aggregation operators. Finally, we have introduced a method for multi-attribute group
decision making. A descriptive example of opting for the best company or alternative to investing
money was provided. The results in this paper showed that our proposed methods were more effective
and practical in real life. In our future study, we are determined to extend the proposed models to
other domains and applications, such as risk analysis, pattern recognition, and so on.
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Abstract: In this paper, we explore the algebra structure based on neutrosophic quadruple numbers.
Moreover, two kinds of degradation algebra systems of neutrosophic quadruple numbers are
introduced. In particular, the following results are strictly proved: (1) the set of neutrosophic
quadruple numbers with a multiplication operation is a neutrosophic extended triplet group; (2) the
neutral element of each neutrosophic quadruple number is unique and there are only sixteen different
neutral elements in all of neutrosophic quadruple numbers; (3) the set which has same neutral
element is closed with respect to the multiplication operator; (4) the union of the set which has same
neutral element is a partition of four-dimensional space.

Keywords: neutrosophic extended triplet group; neutrosophic quadruple numbers; neutrosophic set

1. Introduction

The notion of a neutrosophic set is proposed by F. Smarandache [1] in order to solve
real-world problems and some in-depth analysis and research have been carried out [2–5]. Recently,
Smarandache and Ali in [6] proposed a new algebraic system, neutrosophic triplet group (NTG), which
different from classical groups. From the original definition of NTG, the neutral element is different
from the classical algebraic unit element. By removing this restriction, the neutrosophic extended
triplet group (NETG) is proposed in [7,8] and the classical group is regarded as a special case of NETG.

As a new algebraic structure, NTG (NETG) immediately attracted the attention of scholars and
conducted in-depth research. These studies are mainly carried out by the following three aspects.
Firstly, the structure properties of NTG (NETG) have been studied deeply. For examples, paper [8] has
conducted an in-depth analysis of the nature of NTG, and the properties and structural features of
NTG are studied by using theoretical analysis and software calculations. In paper [9], the notion of the
neutrosophic triplet coset and its relation with the classical coset are proposed and the properties of the
neutrosophic triplet cosets are given. The neutrosophic duplet sets, neutrosophic duplet semi-groups,
and cancellable neutrosophic triplet groups are proposed and the characterizations of cancellable weak
neutrosophic duplet semi-groups are established in paper [10]. In order to explore the structure of
the algebraic system (Zn,⊗), where ⊗ is the classical mod multiplication, paper [11] reveals that for
each n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative NETG if and only if the factorization of n is a product of
single factors. Moreover, the generalized neutrosophic extended triplet group (GNETG) is proposed
in [11] and verify that for each n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative GNETG. Secondly, it is the
application research on the algebraic system NET. For example, In paper [12], the distinguishing
features between an NTG and other algebraic structures are investigated and the first isomorphism
theorem was established for NTGs, furthermore, applications of the results on NTG to management
and sports are discussed. In paper [13], NTGs and their applications to mathematical models, such as

Symmetry 2019, 11, 696; doi:10.3390/sym11050696 www.mdpi.com/journal/symmetry286
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fuzzy cognitive maps model, neutrosophic cognitive maps model and fuzzy relational maps model,
are discussed. Thirdly, extend the idea of NTG(NETG) to another algebraic system. For example,
in paper [14,15], the extend to Abel–Grassmann groupoid (AG-groupoid) is studied. The neutrosophic
triplet ring and a neutrosophic triplet field are discussed in paper [16,17]. A notion of neutrosophic
triplet metric space is given and properties of neutrosophic triplet metric spaces are studied in [18].
The notion of neutrosophic triplet v-generalized metric space are introduced in [19]. Paper [20]
applies the neutrosophic set theory to pseudo-BCI algebras. The idea of a neutrosophic triplet set to
non-associative semihypergroups is given in paper [21]. The above results enrich the research content
of the algebraic system NTG (NETG).

In neutrosophic logic, each proposition is approximated to represent respectively the truth (T),
the falsehood (F), and the indeterminacy (I), where T, I, F are standard or non-standard subsets of
the non-standard unit interval ]0−, 1+[= 0− ∪ [0, 1] ∪ 1+. The notion of neutrosophic quadruple
number, which is represented by a known part and an unknown part to describe a neutrosophic logic
proposition, was introduced by Florentin Smarandache in [22]. The algebra system (NQ, ∗) based on
neutrosophic quadruple numbers are introduced and the properties have discussed [22,23]. In this
paper, we will reveal that (NQ, ∗) is a NETG and some properties are discussed.

The paper is organized as follows. Section 2 gives the basic concepts. In Section 3, (NQ, ∗) be a
NETG is proved and some properties are discussed. In Section 4, two kinds of degradation algebra
systems of (NQ, ∗) are introduced and studied. Finally, the summary and future work are presented
in Section 5.

2. Basic Concepts

In this section, we will provide the related basic definitions and properties of NETG and
neutrosophic quadruple numbers, the details can be seen in [7,8,22,23].

Definition 1 ([7,8]). Let N be a non-empty set together with a binary operation ∗. Then, N is called a
neutrosophic extended triplet set if for any a ∈ N, there exists a neutral of “a” (denote by neut(a)), and an
opposite of “a”(denote by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a, a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 2 ([7,8]). Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:

(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.
A NETG N is called a commutative NETG if for all a, b ∈ N, a ∗ b = b ∗ a.

Proposition 1 ([8]). Let (N, ∗) be a NETG. We have:
(1) neut(a) is unique for any a ∈ N.
(2) neut(a) ∗ neut(a) = neut(a) for any a ∈ N.
(3) neut(neut(a)) = neut(a) for any a ∈ N.

Definition 3 ([22,23]). A neutrosophic quadruple number is a number of the form (a, bT, cI, dF),
where T, I, F have their usual neutrosophic logic meanings and a, b, c, d ∈ R or C. The set NQ, defined by

NQ = {(a, bT, cI, dF) : a, b, c, d ∈ R or C}. (1)

is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple number (a, bT, cI, dF), a is
called the known part and (bT, cI, dF) is called the unknown part.
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Definition 4 ([22,23]). Let N be a set, endowed with a total order a ≺ b, named “a prevailed by b” or “a
less stronger than b” or “a less preferred than b”. We consider a � b as “a prevailed by or equal to b” “a less
stronger than or equal to b”, or “a less preferred than or equal to b”.

For any elements a, b ∈ N, with a � b, one has the absorbance law:

a · b = b · a = absorb(a, b) = max(a, b) = b, (2)

which means that the bigger element absorbs the smaller element. Clearly,

a · a = a2 = absorb(a, a) = max(a, a) = a. (3)

and
a1 · a2 · · · an = max(a1, a2, · · · , an). (4)

Analogously, we say that “a � b” and we read: “a prevails to b” or “a is stronger than b” or “a is preferred
to b”. Also, a � b, and we read: “a prevails or is equal to b” “a is stronger than or equal to b”, or “a is preferred
or equal to b”.

Definition 5 ([22,23]). Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence
order T � I � F. Then we have: TI = IT = max(T, I) = T, TF = FT = max(T, F) = T, IF = FI =

max(I, F) = I, TT = T2 = T, I I = I2 = I, FF = F2 = F.
Analogously, suppose in a pessimistic way we consider the prevalence order T ≺ I ≺ F. Then we have:

TI = IT = max(T, I) = I, TF = FT = max(T, F) = F, IF = FI = max(I, F) = F, TT = T2 = T,
I I = I2 = I, FF = F2 = F.

Definition 6 ([22,23]). Let a = (a1, a2T, a3 I, a4F), b = (b1, b2T, b3 I, b4F) ∈ NQ, Suppose in an pessimistic
way, the neutrosophic expert considers the prevalence order T ≺ I ≺ F. Then the multiplication operation is
defined as following:

a ∗ b = (a1, a2T, a3 I, a4F) ∗ (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F).
(5)

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T � I � F. Then:

a ? b = (a1, a2T, a3 I, a4F) ∗ (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2 + a3b2 + a4b2 + a2b3 + a2b4)T,

(a1b3 + a3b1 + a3b3 + a3b4 + a4b3)I, (a1b4 + a4b1 + a4b4)F).
(6)

Proposition 2 ([22,23]). Let NQ = {(a, bT, cI, dF) : a, b, c, d ∈ R or C}. We have:
(1) (NQ, ∗) is a commutative monoid.
(2) (NQ, ?) is a commutative monoid.

3. Main Results

From Proposition 2, we can see that (NQ, ∗) (or (NQ, ?)) be a commutative monoid. In these
section, we will show that the algebra system (NQ, ∗)(or (NQ, ?)) is a NETG.

Theorem 1. For the algebra system (NQ, ∗), for every element a ∈ NQ, there exists the neutral element
neut(a) and opposite element anti(a).

Proof analysis: the proof of this theorem contains two aspects. Firstly, given an element
a ∈ NQ, a = (a1, a2T, a3 I, a4F), ai ∈ R, i ∈ {1, 2, 3, 4}. Being ai can select every element in R, we should
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discuss from different cases and in each case netu(a) and anti(a) should given. Secondly, we should
prove that all the cases discussed above include all the elements in NQ.

Proof. Let a = (a1, a2T, a3 I, a4F), we consider ai ∈ R, i ∈ {1, 2, 3, 4} and the same results can be gotten
when ai ∈ C.

Set neut(a) = (b1, b2T, b3 I, b4F), bi ∈ R, i ∈ {1, 2, 3, 4} and anti(a) = (c1, c2T, c3 I, c4F), ci ∈ R, i ∈
{1, 2, 3, 4}. From Definition 1 we can get a ∗ neut(a) = a, that is a1b1 = a1 should hold. So we discuss
from two cases, a1 = 0 or a1 6= 0.

Case A: when a1 = 0.
In this case, we have a = (0, a2T, a3 I, a4F). From Definition 1, a ∗ anti(a) = neut(a), that is

0 · c1 = b1, so we have b1 = 0, i.e., neut(a) = (0, b2T, b3 I, b4F). Moreover, from a ∗ neut(a) = a, we
have (0, a2T, a3 I, a4F) ∗ (0, b2T, b3 I, b4F) = (0, a2T, a3 I, a4F), so we have a2b2 = a2. So we discuss from
a2 = 0 or a2 6= 0.

Case A1: a1 = 0, a2 = 0. That is, a = (0, 0, a3 I, a4F), netu(a) = (0, b2T, b3 I, b4F), anti(a) =

(c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), we have 0c1 + 0(c1 + c2) = b2, so b2 = 0, i.e., netu(a) =
(0, 0, b3 I, b4F). From (0, 0, a3 I, a4F) ∗ (0, 0, b3 I, b4F) = (0, 0, a3 I, a4F), we have a3b3 = a3. So we discuss
from a3 = 0 or a3 6= 0.

Case A11: a1 = a2 = a3 = 0, that is, a = (0, 0, 0, a4F), netu(a) = (0, 0, b3 I, b4F), anti(a) =

(c1, c2T, c3 I, c4F). In the same way, from a ∗ anti(a) = neut(a), we have b3 = 0, i.e., netu(a) =

(0, 0, 0, b4F). From (0, 0, 0, a4F) ∗ (0, 0, 0, b4F) = (0, 0, 0, a4F), we have a4b4 = a4. So we discuss from
a4 = 0 or a4 6= 0.

Case A111: a1 = a2 = a3 = a4 = 0, that is, a = (0, 0, 0, 0), in this case, we can easily get
neut(a) = (0, 0, 0, 0) and anti(a) = (c1, c2T, c3 I, c4F), ci can be chosen arbitrarily in R.

Case A112: a1 = a2 = a3 = 0, a4 6= 0, being that a4b4 = a4 and a4 6= 0, we have b4 =

1, that is, a = (0, 0, 0, a4F), netu(a) = (0, 0, 0, F), anti(a) = (c1, c2T, c3 I, c4F). From (0, 0, 0, a4F) ∗
(c1, c2T, c3 I, c4F) = (0, 0, 0, F), we have a4(c1 + c2 + c3 + c4) = 1, so the opposite element of a should
satisfy c1 + c2 + c3 + c4 = 1

a4
, ci ∈ R.

Case A12: a1 = a2 = 0, a3 6= 0. From a3b3 = a3 and a3 6= 0, we have b3 = 1. That is a =

(0, 0, a3 I, a4F), netu(a) = (0, 0, I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From (0, 0, a3 I, a4F) ∗ (0, 0, I, b4F) =
(0, 0, a3 I, a4F), we have 0b4 + 0b4 + a3b4 + a4(0+ 0+ 1+ b4) = a4, so (a3 + a4)b4 = 0. We discuss from
a3 + a4 = 0 or a3 + a4 6= 0.

Case A121: a1 = a2 = 0, a3 6= 0, a3 + a4 = 0, that is a = (0, 0, a3 I,−a3F), neut(a) =

(0, 0, I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), that is (0, 0, a3 I,−a3F) ∗
(c1, c2T, c3 I, c4F) = (0, 0, I, b4F). So we have a3(c1 + c2 + c3) = 1 and a3c4 − a3(c1 + c2 + c3 + c4) = b4

i.e., c1 + c2 + c3 = 1
a3

and b4 = 1. Thus neut(a) = (0, 0, I,−F), anti(a) = (c1, c2T, c3 I, c4F), where
c1 + c2 + c3 = 1

a3
, c4 can be chosen arbitrarily in R.

Case A122: a1 = a2 = 0, a3 6= 0, a3 + a4 6= 0. From (a3 + a4)b4 = 0, we have b4 = 0. that
is a = (0, 0, a3 I, a4F), neut(a) = (0, 0, I, 0), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a),
that is (0, 0, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (0, 0, I, 0). So we have a3(c1 + c2 + c3) = 1 and a3c4 −
a3(c1 + c2 + c3 + c4) = 0 i.e., c1 + c2 + c3 = 1

a3
and c4 = − a4

a3(a3+a−4) . Thus neut(a) = (0, 0, I, 0),

anti(a) = (c1, c2T, c3 I, c4F), where c1 + c2 + c3 = 1
a3

, c4 = − a4
a3(a3+a4)

.
Case A2: when a1 = 0, a2 6= 0. From a2b2 = a2, we have b2 = 1, that is, a =

(0, 0, a3 I, a4F), netu(a) = (0, T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). In the same way, from a ∗
neut(a) = a, we have (a2 + a3)b3 = 0, so we discuss from a2 + a3 = 0 or a2 + a3 6= 0.

Case A21: when a1 = 0, a2 6= 0, a2 + a3 = 0. that is, a = (0, a2T,−a2 I, a4F), netu(a) =

(0, T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). In the same way, from a ∗ neut(a) = a, we have
a4 + a4(b3 + b4) = a4, that is a4(b3 + b4) = 0, so we discuss from a4 = 0 or a4 6= 0.

Case A211: when a1 = 0, a2 6= 0, a2 + a3 = 0, a4 = 0. that is, a = (0, a2T,−a2 I, 0), netu(a) =

(0, T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From (0, a2T,−a2 I, 0) ∗ (c1, c2T, c3 I, c4F) = (0, T, b3 I, b4F),
so we have a2(c1 + c2) = 1 and −a2(c1 + c2) = b3, that is b3 = −1. In the same way, we can get
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b4 = 0. Thus neut(a) = (0, T,−I, 0), anti(a) = (c1, c2T, c3 I, c4F), where c1 + c2 = 1
a2

, c3, c4 can be
chosen arbitrarily in R.

Case A212: when a1 = 0, a2 6= 0, a2 + a3 = 0, a4 6= 0, From a4(b3 + b4) = 0, we have b3 + b4 =

0, that is, a = (0, a2T,−a2 I, a4F), netu(a) = (0, T, b3 I,−b3F), anti(a) = (c1, c2T, c3 I, c4F). From
(0, a2T,−a2 I, a4) ∗ (c1, c2T, c3 I, c4F) = (0, T, b3 I,−b3F), so we have a2(c1 + c2) = 1 and−a2(c1 + c2) =

b3, i.e., b3 = −1. Thus neut(a) = (0, T,−I, F), anti(a) = (c1, c2T, c3 I, c4F), where c1 + c2 = 1
a2

,
c3 + c4 = 1

a4
− 1

a2
.

Case A22: when a1 = 0, a2 6= 0, a2 + a3 6= 0. From (a2 + a3)b3 = 0, we have b3 = 0. that is,
a = (0, a2T,−a2 I, a4F), netu(a) = (0, T, 0, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a, we
have (a2 + a3 + a4)b4 = 0, so we discuss from a2 + a3 + a4 = 0 or a2 + a3 + a4 6= 0.

Case A221: when a1 = 0, a2 6= 0, a2 + a3 6= 0, a2 + a3 + a4 = 0. In this case a =

(0, a2T, a3 I, a4F), netu(a) = (0, T, 0, b4F), anti(a) = (c1, c2T, c3 I, c4F). From (0, a2T, a3 I, a4F) ∗
(c1, c2T, c3 I, c4F) = (0, T, 0, b4F), so we have a2(c1 + c2) = 1, c3 = − a3

a2(2+a3)
, (a2 + a3 + a4)b4 +

a4(c1 + c2 + c3) = b4, so we have b4 = −1. Thus neut(a) = (0, T, 0,−F), anti(a) = (c1, c2T, c3 I, c4F),
where c1 + c2 = 1

a2
, c3 = − a3

a2(2+a3)
, c4 can be chosen arbitrarily in R.

Case A222: when a1 = 0, a2 6= 0, a2 + a3 6= 0, a2 + a3 + a4 6= 0. From (a2 + a3 + a4)b4 = 0,
we have b4 = 0. that is, a = (0, a2T, a3 I, a4F), netu(a) = (0, T, 0, 0), anti(a) = (c1, c2T, c3 I, c4F).
From (0, a2T, a3 I, 0) ∗ (c1, c2T, c3 I, c4F) = (0, T, 0, 0), so we have a2(c1 + c2) = 1, c3 = − a3

a2(2+a3)
,

(a2 + a3 + a4)b4 + a4(c1 + c2 + c3) = 0, Thus neut(a) = (0, T, 0, 0), anti(a) = (c1, c2T, c3 I, c4F), where
c1 + c2 = 1

a2
, c3 = − a3

a2(2+a3)
, c4 = − a4

(a2+a3)(a2+a3+a4)
.

Case B: when a1 6= 0.
In this case, from a1b1 = a1 and a1 6= 0, we have b1 = 1. That is a = (a1, a2T, a3 I, a4F), neut(a) =

(1, b2T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From Definition 1, a ∗ neut(a) = a, that is a1b2 + a2 +

a2b2 = a2, so (a1 + a2)b2 = 0. So we discuss from a1 + a2 = 0 or a1 + a2 6= 0.
Case B1: when a1 6= 0, a1 + a2 = 0. That is a = (a1,−a1T, a3 I, a4F), neut(a) =

(1, b2T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), we have c1 = 1
a1

,
a1c2 − a1c1 − a1c2 = b2, so b2 = −1. From a ∗ neut(a) = a, so we have a3 + a3b2 + a3b3 = a3,
i.e., a3(b2 + b3) = 0. So we discuss from a3 = 0 or a3 6= 0.

Case B11: when a1 6= 0, a1 + a2 = 0, a3 = 0. That is a = (a1,−a1T, 0, a4F), neut(a) =

(1,−T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a, we have a1b4− a1b4− 0b4 + a4(1−
1 + b3 + b4) = a4, i.e., a4(b3 + b4) = a4. So we discuss from a4 = 0 or a4 6= 0.

Case B111: when a1 6= 0, a1 + a2 = 0, a3 = 0, a4 = 0. That is a = (a1,−a1T, 0, 0), neut(a) =

(1,−T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), i.e., (a1,−a1T, 0, 0) ∗
(c1, c2T, c3 I, c4F) = (1,−T, b3 I, b4F), we have c1 = 1

a1
, b3 = b4 = 0. Thus neut(a) = (1,−T, 0, 0),

anti(a) = (c1, c2T, c3 I, c4F), which satisfies c1 = 1
a1

and c2, c3, c4 can be chosen arbitrarily in R.
Case B112: when a1 6= 0, a1 + a2 = 0, a3 = 0, a4 6= 0. From a4(b3 + b4) = a4, we have b3 + b4 =

1. That is a = (a1,−a1T, 0, a4F), neut(a) = (1,−T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗
anti(a) = neut(a), i.e., (a1,−a1T, 0, a4F) ∗ (c1, c2T, c3 I, c4F) = (1,−T, b3 I, b4F), we have c1 = 1

a1
,

b3 = 0, b4 = 1. Thus neut(a) = (1,−T, 0, F), anti(a) = (c1, c2T, c3 I, c4F), where c1 = 1
a1

and c2 + c3 +

c4 = 1
a4
− 1

a1
.

Case B12: when a1 6= 0, a1 + a2 = 0, a3 6= 0. From a3(b2 + b3) = 0 and a3 6= 0, we have b2 + b3 = 0,
i.e., b3 = 1. That is a = (a1,−a1T, a3 I, a4F), neut(a) = (1,−T, I, b4F), anti(a) = (c1, c2T, c3 I, c4F).
From a ∗ neut(a) = a, we have a3b4 + a4 + a4b4 = a4, i.e., (a3 + a4)b4 = 0. So we discuss from
a3 + a4 = 0 or a3 + a4 6= 0.

Case B121: when a1 6= 0, a1 + a2 = 0, a3 6= 0, a3 + a4 = 0. That is a = (a1,−a1T, a3 I,−a3F),
neut(a) = (1,−T, I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), i.e.,
(a1,−a1T, a3 I,−a3F) ∗ (c1, c2T, c3 I, c4F) = (1,−T, I, b4F), we have c1 = 1

a1
, c2 + c3 = 1

a3
− 1

a1
,

−a3(c1 + c2 + c3) = b4, i.e., b4 = −1. Thus neut(a) = (1,−T, I,−F), anti(a) = (c1, c2T, c3 I, c4F),
where c1 = 1

a1
, c2 + c3 = 1

a3
− 1

a2
, c4 can be chosen arbitrarily in R.
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Case B122: when a1 6= 0, a1 + a2 = 0, a3 6= 0, a3 + a4 6= 0, from (a3 + a4)b4 = 0, we have b4 = 0.
That is a = (a1,−a1T, a3 I, a4F), neut(a) = (1,−T, I, 0), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) =
neut(a), i.e., (a1,−a1T, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (1,−T, I, 0), we have c1 = 1

a1
, c2 + c3 = 1

a3
− 1

a1
,

c4 = − a4
a3(a3+a4)

. Thus neut(a) = (1,−T, I,−F), anti(a) = (c1, c2T, c3 I, c4F), where c1 = 1
a1

, c2 + c3 =
1
a3
− 1

a1
, c4 = − a4

a3(a3+a4)
.

Case B2: when a1 6= 0, a1 + a2 6= 0, from (a1 + a2)b2 = 0, we have b2 = 0. That is a =

(a1,−a1T, a3 I, a4F), neut(a) = (1, 0, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a, so we
have a1b3 + a2b3 + a3 + a3b3 = a3, i.e., (a1 + a2 + a3)b3 = 0. So we discuss from a1 + a2 + a3 = 0 or
a1 + a2 + a3 6= 0.

Case B21: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 = 0. That is a = (a1, a2T, a3 I, a4F), neut(a) =
(1, 0, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a, so we have (a1 + a2 + a3)b4 + a4 +

a4b3 + a4b4 = a4, i.e., (b3 + b4)a4 = 0. So we discuss from a4 = 0 or a4 6= 0.
Case B211: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 = 0, a4 = 0. That is a =

(a1, a2T, a3 I, 0), neut(a) = (1, 0, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), i.e.,
(a1, a2T, a3 I, 0) ∗ (c1, c2T, c3 I, c4F) = (1, 0, b3 I, b4F), we have c1 = 1

a1
, c2 = − a2

a1(a1+a2)
. a3(c1 + c2) = b3,

(a1 + a2 + a3)c4 + 0(c1 + c2 + c3 + c4) = 0, which means b3 = −1, b4 = 0. Thus neut(a) = (1, 0,−I, 0),
anti(a) = (c1, c2T, c3 I, c4F), where c1 = 1

a1
, c2 = − a2

a1(a1+a2)
, c3, c4 can be chosen arbitrarily in R.

Case B212: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 = 0, a4 6= 0. From (b3 + b4)a4 = 0, we have
b3 + b4 = 0. That is a = (a1, a2T, a3 I, a4F), neut(a) = (1, 0, b3 I,−b3F), anti(a) = (c1, c2T, c3 I, c4F).
From a ∗ anti(a) = neut(a), i.e., (a1, a2T, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (1, 0, b3 I,−b3F), we have
c1 = 1

a1
, c2 = − a2

a1(a1+a2)
. a3(c1 + c2) = b3, i.e., b3 = −1, b4 = 1. Thus neut(a) = (1, 0,−I, F),

anti(a) = (c1, c2T, c3 I, c4F), where c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3 + c4 = 1
a4
− 1

a1+a2
.

Case B22: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 6= 0, from (a1 + a2 + a3)b3 = 0, we have b3 = 0.
That is a = (a1, a2T, a3 I, a4F), neut(a) = (1, 0, 0, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a,
so we have (a1 + a2 + a3 + a4)b4 + a4 = a4, i.e., (a1 + a2 + a3 + a4)b4 = 0. So we discuss from
a1 + a2 + a3 + a4 = 0 or a1 + a2 + a3 + a4 6= 0.

Case B221: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 = 0, That is
a = (a1, a2T, a3 I, a4F), neut(a) = (1, 0, 0, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a),
i.e., (a1, a2T, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (1, 0, 0, b4F), we have c1 = 1

a1
, c2 = − a2

a1(a1+a2)
. c3 =

− a3
(a1+a2)(a1+a2+a3)

, a4(c1 + c2 + c3) = b4, so b4 = −1. Thus neut(a) = (1, 0, 0,−F), anti(a) =

(c1, c2T, c3 I, c4F), where c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3 = − a3
(a1+a2)(a1+a2+a3)

, c4 can be chosen arbitrarily
in R.

Case B222: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 6= 0. From (a1 + a2 +

a3 + a4)b4 + a4 = a4, we have b4 = 0. That is a = (a1, a2T, a3 I, a4F), neut(a) = (1, 0, 0, 0), anti(a) =

(c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), i.e., (a1, a2T, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (1, 0, 0, 0),
we have c1 = 1

a1
, c2 = − a2

a1(a1+a2)
, c3 = − a3

(a1+a2)(a1+a2+a3)
. (a1 + a2 + a3 + a4)c4 + a4(c1 + c2 + c3) = 0,

i.e., c4 = − a4
(a1+a2+a3)(a1+a2+a3+a4)

. Thus neut(a) = (1, 0, 0, 0), anti(a) = (c1, c2T, c3 I, c4F), where

c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3 = − a3
(a1+a2)(a1+a2+a3)

, c4 = − a4
(a1+a2+a3)(a1+a2+a3+a4)

.

Finally, we should show that all the above cases include each element a ∈ NQ, i.e., ai, i = 1, 2, 3, 4
can take all the values on R. It is obvious that a1 can take all the values on R because a1 = 0 according
to case A and that a1 6= 0 according to case B. Moreover, for case A, a2 can take all the values on R
because case A1 according to a2 = 0 and case A2 according to a2 6= 0. For case B, a2 can take all the
values on R because case B1 according to a1 + a2 = 0 and case B2 according to a1 + a2 6= 0. That is for
each element a = (a1, a2, a3, a4) ∈ NQ, a1, a2 can select all of value in R. We will verify that a3 and a4

can take all the values on R when case A1 or A2 or B1 or B2 respectively.
For case A1, a3 can take all the value in R because case A11 according to a3 = 0 and case A12

according to a3 6= 0. Similarly, for case A11, a4 can take all the value in R because case A111 according
to a4 = 0 and case A112 according to a4 6= 0. For case A12, a4 can take all the value in R because
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case A121 according to a3 + a4 = 0 and case A122 according to a3 + a4 = 0. The top left subgraph of
Figure 1 shows that the four cases A111, A112, A211 and A222. The unique � point represents the
case A111, the + points represent the case A112, the ∗ points represent the case A121 and the • points
represent the case A122. This explain the that for case A1, a3 and a4 can take all the points on the
plane. For case A2, B1 or B2, we can get that a3 and a4 can take all the points on the plane respectively.
The top right subgraph of Figure 1 represents the case A2 if we select a1 = 0, a2 = 1, the bottom left
subgraph of Figure 1 represents the case B1 if we select a1 = 1, a2 = −1 and bottom right subgraph of
Figure 1 represents the case B2 if we select a1 = 1, a2 = 0. The figure intuitively illustrates that all the
points (a1, a2, a3, a4), ai ∈ R are included.

Through the above analysis, we can get that for each element a ∈ NQ, there exists the neutral
element neut(a) and opposite element anti(a).

-3 -2 -1 0 1 2 3

I

-3

-2

-1

0

1

2

3

F

a1=0, a2=0

-3 -2 -1 0 1 2 3

I

-3

-2

-1

0

1

2

3

F

a1=0, a2=1

-3 -2 -1 0 1 2 3

I

-3

-2

-1

0

1

2

3

F

a1=1, a2=-1

-3 -2 -1 0 1 2 3

I

-3

-2

-1

0

1

2

3

F

a1=1, a2=0

Figure 1. The demonstration figure shows that case A1 (a1 = a2 = 0, the top left subgraph) or A2 (select
a1 = 0, 0 6= a2 = 1, the top right subgraph) or B1 (Select a1 6= 0, a2 = −1 which means a1 + a2 = 0, the
bottom left subgraph) or B2 (select a1 = 1, a2 = 0, which means a1 + a2 6= 0, the bottom right subgraph)
can take all the values on the plane.

For algebra system (NQ, ∗), Table 1 gives all the subset, which has the same neutral element, and
the corresponding neutral element and opposite elements.
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Table 1. The corresponding neutral element and opposite elements for (NQ, ∗).

The Subset of NQ Neutral Elements Opposite Element (c1, c2T , c3 I, c4F)

{(0, 0, 0, 0)} (0, 0, 0, 0) ci ∈ R

{(0, 0, 0, a4F)|a4 6= 0} (0, 0, 0, F) c1 + c2 + c3 + c4 = 1
a4

{(0, 0, a3 I,−a3F)|a3 6= 0} (0, 0, I,−F) c1 + c2 + c3 = 1
a3

, c4 ∈ R

{(0, 0, a3 I, a4F)|a3 6= 0, a3 + a4 6= 0} (0, 0, I, 0) c1 + c2 + c3 = 1
a3

, c4 = − a4
a3(a3+a4)

{(0, a2T,−a2 I, 0)|a2 6= 0 } (0, T,−I, 0)} c1 + c2 = 1
a2

, c3, c4 ∈ R

{(0, a2T,−a2 I, a4F)|a2 6= 0, a4 6= 0} (0, T,−I, F) c1 + c2 = 1
a2

, c3 + c4 = 1
a4
− 1

a2

{(0, a2T, a3 I, a4F)|a2 6= 0, a2 + a3 6=
0, a2 + a3 + a4 = 0}

(0, T, 0,−F) c1 + c2 = 1
a2

, c3 = − a3
a2(a2+a3)

, c4 ∈ R

{(0, a2T, a3 I, a4F)|a2 6= 0, a2 + a3 6=
0, a2 + a3 + a4 6= 0}

(0, T, 0, 0) c1 + c2 = 1
a2

, c3 = − a3
a2(a2+a3)

,

c4 = − a4
(a2+a3)(a2+a3+a4)

{(a1,−a1T, 0, 0)|a1 6= 0} (1,−T, 0, 0)} c1 = 1
a1

, c2, c3, c4 ∈ R

{(a1,−a1T, 0, a4F)|a1 6= 0, a4 6= 0} (1,−T, 0, F) c1 = 1
a1

, c2 + c3 + c4 = 1
a4
− 1

a1

{(a1,−a1T, a3 I,−a3F)|a1 6= 0, a3 6= 0} (1,−T, I,−F) c1 = 1
a1

, c2 + c3 = 1
a3
− 1

a1
, c4 ∈ R

{(a1,−a1T, a3 I, a4F)|a1 6= 0, a3 6=
0, a3 + a4 6= 0}

(1,−T, I, 0) c1 = 1
a1

, c2 + c3 = 1
a3
− 1

a1
,

c4 = − a4
a3(a3+a4)

{(a1, a2T, a3 I, 0)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 = 0}

(1, 0,−I, 0) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3, c4 ∈ R

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 = 0, a4 6= 0}

(1, 0,−I, F) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

,

c3 + c4 = 1
a4
− 1

a1+a2

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 =
0}

(1, 0, 0,−F) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

,

c3 = − a3
(a1+a2)(a1+a2+a3)

, c4 ∈ R

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 6=
0}

(1, 0, 0, 0) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

,

c3 = − a3
(a1+a2)(a1+a2+a3)

,

c4 = − a4
(a1+a2+a3)(a1+a2+a3+a4)

Example 1. For the algebra system (NQ, ∗), if a = (a1, a2, a3, a4) = (1,−T, 3I,−F), i.e., a1 6= 0, a1 + a2 =

0, a3 6= 0, a3 + a4 6= 0, then from Table 1, we can get neut(a) = (1,−T, I, 0). Let anti(a) = (c1, c2T, c3 I, c4F),
so c1 = 1

a1
= 1, c2 + c3 = 1

a3
− 1

a1
= − 2

3 , c4 = − a4
a3(a3+a4)

= 1
6 , so anti(a) = (1, c2T, c3 I, 1

6 F), where

c2 + c3 = − 2
3 . Thus we can easily get the neutral element and opposite elements of each neutrosophic quadruple

number. For more examples, see the following:

1. Let b = (0, 0, I,−F), then neut(b) = (0, 0, I,−F) and anti(b) = (c1, c2T, c3 I, c4F), where c1 + c2 +

c3 = 1, c4 can be can be chosen arbitrarily in R.
2. Let c = (1, T, I,−F), then neut(c) = (1, 0, 0, 0) and anti(c) = (1,− 1

2 T,− 1
6 I, 1

6 F).
3. Let d = (0, T, I, F), then neut(d) = (0, T, 0, 0) and anti(d) = (c1, c2T,− 1

2 I,− 1
6 F), where c1 + c2 = 1.

In the following, we will discuss the algebra structure properties of (NQ, ∗).

Proposition 3. For algebra system (NQ, ∗), let NS = {neut(a)|a ∈ NQ}, we have:
(1) NS = {(1, 0, 0, 0), (0, 0, 0, F), (0, 0, I,−F), (0, 0, I, 0), (0, T,−I, 0), (0, T,−I, F), (0, T, 0,−F), (0, T, 0, 0),

(1,−T, 0, 0), (1,−T, 0, F), (1,−T, I,−F), (1,−T, I, 0), (1, 0,−I, 0), (1, 0,−I, F), (1, 0, 0,−F), (1, 0, 0, 0)}.
(2) NS is closed with respect to operation ∗.
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(3) Set IS = {a|a2 = a, a ∈ NQ}, which is all the set of idempotent elements of (NQ, ∗), then NS = IS.

Proof. (1) Obviously.
(2) If c, d ∈ NS, that is neut(a) = c, neut(b) = d, a, b ∈ NQ. From Proposition 1, neut(a) ∗

neut(b) = neut(a ∗ b), i.e., c ∗ d = neut(a ∗ b), then form Theorem 1, every element in NQ has neutral
element, so a ∗ b also has neutral element, that is neut(a ∗ b) ∈ NS, i.e., c ∗ d ∈ NS, thus NS is closed
with respect to operation ∗.

(3) From Proposition 1, neut(a) ∗ neut(a) = neut(a), so neut(a) is a idempotent element and
NS ⊆ IS. On the other hand if a is a idempotent element, so a ∗ a = a, that is a exists the neutral
element a and the opposite element a, so a is a neutral element, that is IS ⊆ NS. Thus NS = IS.

Proposition 4. For algebra system (NQ, ∗), let Vc = {a|a ∈ NQ ∧ neut(a) = c}, Vc∗d = {a ∗ b|a, b ∈
NQ ∧ neut(a) = c ∧ neut(b) = d}, we have:

(1) Vc is closed with respect to operation ∗.
(2) Vc∗d is closed with respect to operation ∗.

Proof. (1) If a, b ∈ Vc, that is neut(a) = neut(b) = c. From Proposition 1, neut(a) ∗ neut(b) =

neut(a ∗ b), we can see that neut(a ∗ b) = neut(a) = c, i.e., the neutral element of a ∗ b is the neutral
element of a, so a ∗ b ∈ Vc, that is Vc is closed with respect to operation ∗.

(2) If a1 ∗ b1, a2 ∗ b2 ∈ Vc∗d, i.e., neut(a1) = neut(a2) = c, neut(b1) = neut(b2) = d.
From Proposition 3(2), a1 ∗ a2 = a3 ∈ Vc, b1 ∗ b2 = b3 ∈ Vd, so neut(a3) = c, neut(b3) = d, from
(a1 ∗ b1) ∗ (a2 ∗ b2) = a3 ∗ b3, so neut(a1 ∗ a2 ∗ b1 ∗ b2) = neut(a3 ∗ a4), that is a3 ∗ a4 ∈ Vc∗d, that means
a1 ∗ a2 ∗ b1 ∗ b2 ∈ Vc∗d. Thus Vc∗d is closed with respect to operation ∗.

Definition 7. Assume that (N, ∗) is a neutrosophic triplet group and H be a nonempty subset of N. Then H is
called a neutrosophic triplet subgroup of N if;

(1) a ∗ b ∈ H for all a, b ∈ H;
(2) there exists anti(a) ∈ {anti(a)} such that anti(a) ∈ H for all a ∈ H, where {anti(a)} is the set of

opposite element of a in (N, ∗).

Theorem 2. For algebra system (NQ, ∗), let Vc = {a|a ∈ NQ ∧ neut(a) = c}, Vc∗d = {a ∗ b|a, b ∈
NQ ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NQ.
(2) Vc∗d is a neutrosophic triplet subgroup of NQ.

Proof. (1) From Proposition 3, we can see that Vc is closed with respect to operation ∗. In the following,
we will prove there exists anti(a) ∈ {anti(a)} such that anti(a) ∈ Vc for all a ∈ Vc.

Proof by contradiction.
Assume that {anti(a)} ∩Vc = ∅. From Proposition 1 we can see that a ∗ anti(a) = c. On the other

hand, anti(a) ∈ NQ, so anti(a) exists neutral element, denoted by neut(anti(a)). Being anti(a) 6∈ Vc,
so neut(anti(a)) 6= c.

From a ∗ anti(a) = c, we have a ∗ anti(a) ∗ neut(anti(a)) = c ∗ neut(anti(a)), being anti(a) ∗
neut(anti(a)) = anti(a) and a ∗ anti(a) = c, we have c ∗ neut(anti(a)) = c, and then we have a ∗
c ∗ neut(anti(a)) = a ∗ c = a, that means a ∗ neut(anti(a)) = a, so neut(anti(a)) is also a neutral
element of a. This leads to the contradiction being the uniqueness of neutral element for each element.
Therefore {anti(a)} ∩Vc 6= ∅. Thus from Definition 7, Vc is a neutrosophic triplet subgroup of NQ.

(2) The same way we can get Vc∗d is a neutrosophic triplet subgroup of NQ.

Theorem 3. For algebra system (NQ, ∗), let Vc = {a|a ∈ NQ ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
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(2) NQ = ∪c∈NSVc. So ∪c∈NSVc is a partition of NQ, where NS is a set, which contains all the neutral
elements of (NQ, ∗).

Proof. (1) Proof by contradiction.
Assume Vc ∩Vd 6= ∅ when c 6= d, so exist a ∈ Vc ∩Vd, such that a has two neutral elements c and

d. This leads to the contradiction being the uniqueness of neutral element. So Vc ∩Vd = ∅ if c 6= d.
(2) From the proof of Theorem 1, we can get NQ = ∪c∈NSVc. So ∪c∈NSVc is a partition of NQ.

For the algebra system (NQ, ?), we have the similar results. We describe as following and omit
the proof.

Theorem 4. For the algebra system (NQ, ?), for every element a ∈ NQ, there exists the neutral element
neut(a) and opposite element anti(a).

For algebra system (NQ, ?), Table 2 gives all the subset, which has the same neutral element, and
the corresponding neutral element and opposite elements.

Table 2. The corresponding neutral element and opposite elements for (NQ, ?).

The Subset of NQ Neutral Elements Opposite Element (c1, c2T , c3 I, c4F)

{(0, 0, 0, 0)} (0, 0, 0, 0) ci ∈ R

{(0, a2T, 0, 0)|a2 6= 0} (0, T, 0, 0) c1 + c2 + c3 + c4 = 1
a2

{(0,−a3T, a3 I, 0)|a3 6= 0} (0,−T, I, 0) c1 + c3 + c4 = 1
a3

, c2 ∈ R

{(0, a2T, a3 I, a4F)|a3 6= 0, a2 + a3 6= 0} (0, 0, I, 0) c1 + c3 + c4 = 1
a3

,
c2 = − a2

a3(a2+a3)

{(0, 0,−a4 I, a4F)|a4 6= 0} (0, 0,−I, F)} c1 + c4 = 1
a4

, c2, c3 ∈ R

{(0, a2T,−a4 I, a4F)|a2 6= 0, a4 6= 0} (0, T,−I, F) c1 + c4 = 1
a4

, c2 + c3 = 1
a2
− 1

a4

{(0, a2T, a3 I, a4F)|a4 6= 0, a3 + a4 6= 0, a2 +
a3 + a4 = 0}

(0,−T, 0, F) c1 + c4 = 1
a4

, c3 = − a3
a4(a3+a4)

, c2 ∈ R

{(0, a2T, a3 I, a4F)|a4 6= 0, a3 + a4 6= 0, a2 +
a3 + a4 6= 0}

(0, 0, 0, F) c1 + c4 = 1
a4

, c3 = − a3
a4(a3+a4)

,

c2 = − a2
(a3+a4)(a2+a3+a4)

{(a1, 0, 0,−a1F)|a1 6= 0} (1, 0, 0,−F)} c1 = − 1
a1

, c2, c3, c4 ∈ R

{(a1, a2T, 0,−a1F)|a1 6= 0, a2 6= 0} (1, T, 0,−F) c1 = 1
a1

, c2 + c3 + c4 = 1
a2
− 1

a1

{(a1,−a3T, a3 I,−a1F)|a1 6= 0, a3 6= 0} (1,−T, I,−F) c1 = 1
a1

, c3 + c4 = 1
a3
− 1

a1
, c4 ∈ R

{(a1, a2T, a3 I,−a1F)|a1 6= 0, a3 6= 0, a2 +
a3 6= 0}

(1, 0, I,−F) c1 = 1
a1

, c3 + c4 = 1
a3
− 1

a1
,

c2 = − a2
a3(a2+a3)

{(a1, 0, a3 I, a4F)|a1 6= 0, a1 + a4 6= 0, a1 +
a3 + a4 = 0}

(1, 0,−I, 0) c1 = 1
a1

, c4 = − a4
a1(a1+a4)

, c2, c3 ∈ R

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6= 0, a1 +
a3 + a4 = 0, a2 6= 0}

(1, T,−I, 0) c1 = 1
a1

, c4 = − a4
a1(a1+a4)

,

c2 + c3 = 1
a2
− 1

a1+a4

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6= 0, a1 +
a3 + a4 6= 0, a1 + a2 + a3 + a4 = 0}

(1,−T, 0, 0) c1 = 1
a1

, c4 = − a4
a1(a1+a4)

,

c3 = − a3
(a1+a4)(a1+a3+a4)

, c2 ∈ R

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6= 0, a1 +
a3 + a4 6= 0, a1 + a2 + a3 + a4 6= 0}

(1, 0, 0, 0) c1 = 1
a1

, c4 = − a4
a1(a1+a4)

,

c3 = − a3
(a1+a4)(a1+a3+a4)

,

c2 = − a2
(a1+a3+a4)(a1+a2+a3+a4)
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Theorem 5. For an algebra system (NQ, ?), let Vc = {a|a ∈ NQ ∧ neut(a) = c}, Vc?d = {a ? b|a, b ∈
NQ ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NQ.
(2) Vc?d is a neutrosophic triplet subgroup of NQ.

Theorem 6. For algebra system (NQ, ?), Let Vc = {a|a ∈ NQ ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
(2) NQ = ∪c∈NSVc. So ∪c∈NSVc is a partition of NQ, where NS is a set, which contains all the neutral

elements of (NQ, ?).

4. Two Kinds of Degenerate Systems of Neutrosophic Quadruple Numbers

The neutrosophic quadruple numbers consider (T, I, F) to solve real problems. In this section,
we will explore two kinds of degenerate systems about neutrosophic quadruple numbers. The first
system is only consider logical true, and the second system is only consider logical true and
logical indeterminacy.

4.1. The Neutrosophic Binary Numbers

Definition 8. A neutrosophic binary number is a number of the form (a, bT), where T have their usual
neutrosophic logic true and a, b ∈ R or C. The set NB defined by

NB = {(a, bT) : a, b ∈ R or C}. (7)

is called a neutrosophic set of binary numbers. For a neutrosophic binary number (a, bT), a is called the known
part and (bT) is called the unknown part.

Definition 9. Let a = (a1, a2T), b = (b1, b2T) ∈ NB, the multiplication operation is defined as following:

a ∗ b = (a1, a2T) ∗ (b1, b2T) = (a1b1, (a1b2 + a2b1 + a2b2)T). (8)

We have the following results similar to (NQ, ∗).

Theorem 7. For the algebra system (NB, ∗), for every element a ∈ NB, there exists the neutral element
neut(a) and opposite element anti(a).

For algebra system (NB, ∗), Table 3 gives all the subset, which has the same neutral element, and
the corresponding neutral element and opposite elements.

Table 3. The corresponding neutral element and opposite elements for (NB, ∗).

The Subset Neutral Elements Opposite Element (c1, c2T)

{(0, 0)} (0, 0) ci ∈ R

{(0, a2T)|a2 6= 0} (0, T) c1 + c2 = 1
a2

{(a1,−a1T)|a1 6= 0} (1, 0) c1 = 1
a1

, c2 ∈ R

{(a1, a2T)|a1 6= 0 (1,−T) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

Theorem 8. For algebra system (NB, ∗), let Vc = {a|a ∈ NB ∧ neut(a) = c}, Vc∗d = {a ∗ b|a, b ∈
NB ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NB.
(2) Vc∗d is a neutrosophic triplet subgroup of NB.
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Theorem 9. For an algebra system (NB, ∗), let Vc = {a|a ∈ NB ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
(2) NB = ∪c∈NSVc. So ∪c∈NSVc is a partition of NB, where NS is a set, which contains all the neutral

elements of (NB, ∗).

4.2. The Neutrosophic Triple Numbers

Definition 10. A neutrosophic triple number is a number of the form (a, bT, cI), where T, I have their usual
neutrosophic logic meanings and a, b, c ∈ R or C. The set NT defined by

NT = {(a, bT, cI) : a, b, c ∈ R or C} (9)

is called a neutrosophic set of triple numbers. For a neutrosophic triple number (a, bT, cI), a is called the known
part and (bT, cI) is called the unknown part.

Definition 11. Let a = (a1, a2T, a3 I), b = (b1, b2T, b3 I) ∈ NT, suppose in an pessimistic way, the
neutrosophic expert considers the prevalence order T ≺ I. Then the multiplication operation is defined
as following:

a ∗ b = (a1, a2T, a3 I) ∗ (b1, b2T, b3 I)
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I.

(10)

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T � I. Then:

a ? b = (a1, a2T, a3 I) ∗ (b1, b2T, b3 I)
= (a1b1, (a1b2 + a2b1 + a2b2 + a2b2 + a3b2)T, (a1b3 + a3b1 + a3b3)I).

(11)

Theorem 10. For the algebra system (NT, ∗), for every element a ∈ NT, there exists the neutral element
neut(a) and opposite element anti(a).

For algebra system (NT, ∗), Table 4 gives all the subset, which has the same neutral element, and
the corresponding neutral element and opposite elements.

Table 4. The corresponding neutral element and opposite elements for (NT, ∗).

The Subset Neutral Elements Opposite Element (c1, c2T , c3 I)

{(0, 0, 0)} (0, 0, 0) ci ∈ R

{(0, 0, a3 I)|a3 6= 0} (0, 0, I) c1 + c2 + c3 = 1
a3

{(0, a2T,−a2 I)|a2 6= 0, a2 + a3 = 0} (0, T,−I) c1 + c2 = 1
a2

, c3 ∈ R

{(0, a2T, a3 I)|a2 6= 0, a2 + a3 6= 0} (0, T, 0) c1 + c2 = 1
a2

, c3 = − a3
a2(a2+a3)

{(a1,−a1T, 0)|a1 6= 0} (1,−T, 0)} c1 = 1
a1

, c2, c3 ∈ R

{(a1,−a1T, a3 I)|a1 6= 0, a3 6= 0} (1,−T, I) c1 = 1
a1

, c2 + c3 = 1
a3
− 1

a1

{(a1, a2T, a3 I)|a1 6= 0, a1 + a2 6= 0, a1 +
a2 + a3 = 0}

(1, 0,−I) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3 ∈ R

{(a1, a2T, a3 I)|a1 6= 0, a1 + a2 6= 0, a1 +
a2 + a3 6= 0}

(1, 0, 0) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

,

c3 = − a3
(a1+a2)(a1+a2+a3)

297



Symmetry 2019, 11, 696

Theorem 11. For an algebra system (NT, ∗), let Vc = {a|a ∈ NT ∧ neut(a) = c}, Vc∗d = {a ∗ b|a, b ∈
NT ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NT.
(2) Vc∗d is a neutrosophic triplet subgroup of NT.

Theorem 12. For an algebra system (NT, ∗), let Vc = {a|a ∈ NT ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
(2) NT = ∪c∈NSVc. So ∪c∈NSVc is a partition of NT, where NS is a set, which contains all the neutral

elements of (NT, ∗).

Theorem 13. For the algebra system (NT, ?), for every element a ∈ NT, there exists the neutral element
neut(a) and opposite element anti(a).

For an algebra system (NT, ?), Table 5 gives all the subset, which has the same neutral element,
and the corresponding neutral element and opposite elements.

Table 5. The corresponding neutral element and opposite elements for (NT, ?).

The Subset Neutral Elements Opposite Element (c1, c2T , c3 I)

{(0, 0, 0)} (0, 0, 0) ci ∈ R

{(0, a2T, 0)|a2 6= 0} (0, T, 0) c1 + c2 + c3 = 1
a2

{(0, a3T,−a3 I)|a3 6= 0, a2 + a3 = 0} (0,−T, I) c1 + c3 = 1
a3

, c2 ∈ R

{(0, a2T, a3 I)|a3 6= 0, a2 + a3 6= 0} (0, 0, I) c1 + c3 = 1
a3

, c2 = − a2
a3(a2+a3)

{(a1, 0,−a1 I)|a1 6= 0} (1, 0,−I)} c1 = 1
a1

, c2, c3 ∈ R

{(a1, a2T,−a1 I)|a1 6= 0, a2 6= 0} (1, T,−I) c1 = 1
a1

, c2 + c3 = 1
a2
− 1

a1

{(a1, a2T, a3 I)|a1 6= 0, a1 + a3 6= 0, a1 +
a2 + a3 = 0}

(1,−T, 0) c1 = 1
a1

, c3 = − a3
a1(a1+a3)

, c2 ∈ R

{(a1, a2T, a3 I)|a1 6= 0, a1 + a3 6= 0, a1 +
a2 + a3 6= 0}

(1, 0, 0) c1 = 1
a1

, c3 = − a3
a1(a1+a3)

,

c2 = − a2
(a1+a3)(a1+a2+a3)

Theorem 14. For algebra system (NT, ?), let Vc = {a|a ∈ NT ∧ neut(a) = c}, Vc?d = {a ? b|a, b ∈
NT ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NT.
(2) Vc?d is a neutrosophic triplet subgroup of NT.

Theorem 15. For an algebra system (NT, ?), let Vc = {a|a ∈ NT ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
(2) NT = ∪c∈NSVc. So ∪c∈NSVc is a partition of NT, where NS is a set, which contains all the neutral

elements of (NT, ?).

5. Conclusions

In the paper, we prove that (NQ, ∗)(or NQ, ?) is a neutrosophic extended triplet group, and
provide new examples of a neutrosophic extended triplet group. We also explore the algebra structure
properties of neutrosophic quadruple numbers. Moreover, we discuss two kinds of degenerate systems
of neutrosophic quadruple numbers. For neutrosophic quadruple numbers, the results in the paper
can be extended to general fields. In the following, we will explore the relation of neutrosophic
quadruple numbers and other algebra systems [24–26]. Moreover, on the one hand, we will discuss
the neutrosophic quadruple numbers based on some particular ring which can form a neutrosophic
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extended triplet group, on the other hand, we will introduce a new operation ◦ in order to guarantee
(NQ, ∗, ◦) is a neutrosophic triplet ring.
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Abstract: Take the third-party logistics providers (3PLs) as an example, according to the characteristics
of correlation between attributes in multi-attribute decision-making, two Choquet aggregation
operators adoping probabilistic neutrosophic hesitation fuzzy elements (PNHFEs) are proposed to
cope with the situations of correlation among criterions. This measure not only provides support
for the correlation phenomenon between internal attributes, but also fully concerns the incidental
uncertainty of the external space. Our goal is to make it easier for decision makers to cope with
this uncertainty, thus we establish the notion of probabilistic neutrosophic hesitant fuzzy Choquet
averaging (geometric) (PNHFCOA, PNHFCOG) operator. Based on this foundation, a method for
aggregating decision makers’ information is proposed, and then the optimal decision scheme is
obtained. Finally, an example of selecting optimal 3PL is given to demonstrate the objectivity of the
above-mentioned standpoint.

Keywords: probabilistic neutrosophic hesitant fuzzy set (PNHFS); decision-making; Choquet integral

1. Introduction

In the process of enterprise development, business leaders often encounter various multi-criteria
decision-making (MADM) situations. In order for a company to survive in today’s increasingly
competitive real life, decision makers (DMs) must decide on the best solution when encountering
MADM issues [1,2]. Therefore, how to effectively make optimal decisions in the MADM problems
has become an emergency problem that global enterprises urgently need to solve. Establishing and
perfecting research methods to suitable for MADM situations has attracted more and more attention
from DMs [3]. The key to MADM is to choose the appropriate decision theory and computer software
to aggregate the information of DMs and make the best decision in the decision process according
to relevance of the information. In order to choose the optimal solution, different MADM schemes
have been established to increase the development and competitiveness of enterprises. Since the most
common feature in decision information is the ambiguity of the information. Therefore, some related
researches based on fuzzy information have been proposed [4–12].

In reality, there is a correlation among attributes in the process of MADM. In addition,
some researchers have begun to pay attention to this issue. For example, Brito et al. [13] proposed
a new-type multi-criteria model based on the Choquet integral and epistemic mapping technique
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for evaluating eco-friendly cities. Krishnan et al. [14] introduced a new λ0-measure authentication
approach that expresses the mutual relation between the attributes. To more effectively highlight the
correlation between attributes, Beg et al. [15] introduced the diminishing Chouqet hesitant 2-tuple
average (DCH2TA) operator and established a MADM approach.

Compared with reality, the current research method does not consider the fuzzy information with
possibility in the MADM problem. Thus, when there is a situation with possibility information, the existing
methods will be invalid. To deal with this type of problem, there are two aspects that need to be solved:
one is the representation of the PNHF information and the probability information of external environment.
The other is the establishment of the MADM model considering the interrelationship among the attributes.

According to the analysis of the common fuzzy conditions in practice, fuzzy sets [16] have
been used in many situations. Diversity based on fuzzy information, the fuzzy set theory has been
continuously improved. For example, intuitionistic FS [17], hesitant FS [18], and dual hesitant FS [19].
When dealing with fuzzy data, DMs will often encounter the following three kinds of independent
fuzzy information: truth fuzzy information, indeterminacy fuzzy information and falsity fuzzy
information. The definition of neutrosophic set (NS) was constructed [20] to express the feature.
For application to engineering projects, different types of generalized NSs are constructed such as
single-valued NS [21], interval NS [22], and neutrosophic hesitant fuzzy (NHF) set [23]. These extended
NS theories have been applied to medical diagnosis and other engineering fields [24–28]. Fuzzy set
and neutrosophic set are also extended to the field of algebra [29–33]. In order to express three
independent hesitant messages, NHFS was proposed and applied to MADM [34–36]. However, as can
be seen from these references, those theories can only express information about cognitive uncertainty.
Thus, in this article, we use PNHFS [3,37] to express the occasional uncertainty of information and
the uncertainty of cognition. Under the MADM environment, due to the different cognitive situations
of DMs and their own hesitation, the final evaluation value may not be unique. Depending on the
complexity of the external environment, the probability of taking values also affects the evaluation
values. Thus, probability plays a key role in interpreting the evaluation value, which avoid the loss
of evaluation values, simultaneously. Not only subjective information of NHFS, but also objective
probability information of each membership was clearly described.

The MADM problem under attribute correlation is one of the main research questions in this paper.
As an important part of fuzzy mathematics, fuzzy integral can help DMs to better deal with MADM
problems through modeling methods when attributes are associated with each other. The classic
weight information is to satisfy the additivity condition, and the advantage of fuzzy integral is that
it is not limited by the additivity condition, that is, the sum of the fuzzy integral may be greater
than 1. When the Choquet integral (CI) [38] satisfies the additivity, the Choquet integral is converted
into classic weight information. Therefore, the application range of Choquet integral is extensive,
and it is more suitable for coping with MADM problems with uncertain information. For example,
Khan et al. [39] proposed the (generalized) Pythagorean hesitant fuzzy Choquet averaging (geometric)
operators under the MADM environment. Based on the hierarchical and interacting standards,
Corrente et al. [40] Choquet integral preference model that can be robust ranking of universities
evaluation. Labreuche et al. [41] developed two new Choquet models. Yager [42] used the standard
Shapley value as an approximation of Choquet integra. Liu et al. [43] effectively investigate the
MADM situations that the interrelationship between attributes, globally. Absolutely, above aggregation
operators can not integrate PNHF information. Thus, we construct a new integration method by CI.
Thus, we extend these operators to the PNHFSs and propose PNHF Choquet averaging (geometric)
operators and establish a process to handle MADM situations.

Based on the above analysis: In Section 2, fundamental concepts are reviewed. In Section 3,
the operators are included, the comparison approaches are described, and some basic properties are
studied. In Section 4, an approach to MADM based on the PNHFCOA (PNHFCOG) operator is proposed.
In Section 5, an illustrative situation is given to confirm the proposed method. In Section 6, our results are
analyzed with the results of other methods. Finally, conclusions and future work are summarized.
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2. Preliminaries

Some basic definitions can be referred to [3,23,37,38,44].

Definition 1. A NHF set (NHFS) in a reference domain X set is depicted by:

N = {〈x, t̃(x), ĩ(x), f̃ (x)〉|x ∈ X}

in which t̃(x) indicates that a set includes some truth-membership hesitant degrees of x, ĩ(x) indicates that
a set includes some indeterminacy-membership hesitant degrees, and f̃ (x) indicates that a set includes some
falsity-membership hesitant degrees. The following conditions are held: δ ∈ t̃(x), γ ∈ ĩ(x), η ∈ f̃ (x),
δ, γ, η ∈ [0, 1], max{δ}+ max{γ}+ max{η} ∈ [0, 3].

Definition 2. A PNHFS in a reference domain X is depicted by:

N = {〈x, T(x)|PT(x), I(x)|PI(x), F(x)|PF(x)〉|x ∈ X}. (1)

T(x)|PT(x), I(x)|PI(x) and F(x)|PF(x) describes three components of N, T(x), I(x) and F(x) is depicted
the three types hesitant degrees of x. PT(x), PI(x) and PF(x) describe the corresponding probability of T(x),
I(x) and F(x), The conditions that need to be held:

α ∈ T(x), β ∈ I(x), γ ∈ F(x), α, β, γ ∈ [0, 1], max{α}+ max{β}+ max{γ} ∈ [0, 3];

PT
a ∈ PT , PI

b ∈ PI , PF
c ∈ PF.PT

a , PI
b , PF

c ∈ [0, 1];
#t̃

∑
a=1

PT
a ≤ 1,

#ĩ

∑
b=1

PI
b ≤ 1,

# f̃

∑
c=1

PF
c ≤ 1.

#t̃, #ĩ and # f̃ describe the cardinal number of T(x)|PT(x), I(x)|PI(x), F(x)|PF(x), respectively.
Generally, N = {T|PT , I|PI , F|PF} is described a an PNHF number (PNHFE) of N =

〈T(x)|PT(x), I(x)|PI(x), F(x)|PF(x)〉.

Definition 3. A normalized PNHFE N satisfies the following conditions:

Ñ = 〈T(x)|P̃T(x), I(x)|P̃I(x), F(x)|P̃F(x)〉, (2)

where P̃T
a = PT

a
∑ PT

a
, P̃I

b =
PI

b
∑ PI

b
, P̃F

c = PF
c

∑ PF
c

.

Definition 4. Supposing that N1 = {T1|PT1 , I1|PI1 , F1|PF1}, N2 = {T2|PT2 , I2|PI2 , F2|PF2} are two
PNHFEs, some basic algorithms are defined by:

(1) (N1)
c =

⋃
α1∈T1,β1∈I1,γ1∈F1

{γ1|PF1
1 , 1− β1|PI1

1 , α1|PT1
1 },

(2) (N1)
λ =

⋃
α1∈T1,β1∈I1,γ1∈F1

{{(α1)
λ|PT1

1 }, {1− (1− β1)
λ|PI1

1 }, {1− (1− γ1)
λ|PF1

1 }},

(3) λ(N1) =
⋃

α1∈T1,β1∈I1,γ1∈F1

{{1− (1− λ1)
λ|PT1

1 }, {(β1)
λ|PI1

1 }, {(γ1)
λ|PF1

1 }},

(4) N1 ⊕ N2 =
⋃

α1∈T1,β1∈I1,γ1∈F1,
η2∈T2,π2∈I2,µ2∈F2

{{α1 + η2 − α2η2|PT1
1 PT2

2 }, {β1π2|PI1
1 PI2

2 }, {γ1µ2|PF1
1 PF2

2 }},

(5) N1⊗N2 =
⋃

α1∈T1,β1∈I1,γ1∈F1,
η2∈T2,π2∈I2,µ2∈F2

{{α1η2|PT1
1 PT2

2 }, {β1 +π2− β1π2|PI1
1 PI2

2 }, {γ1 + µ2− γ1µ2|PF1
1 PF2

2 }},

where PT1
1 ; PI1

1 and PF1
1 are hesitant probabilities of α1 ∈ T1, β1 ∈ I1 and γ1 ∈ F1, respectively. PT2

2 ; PI2
2 and

PF2
1 are corresponding hesitant probabilities of η2 ∈ T2, π2 ∈ I2 and µ2 ∈ F2.
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Definition 5. P(Y) depicts the power set of a domain Y. Fuzzy measure µ: P(Y)→ [0, 1] satisfies conditions:

(1) µ(∅) = 0, µ(Y) = 1;
(2) A ⊆ B, then µ(A) ≤ µ(B), ∀A, B ⊆ P(Y);

Fuzzy measure µ satisfies property, ∀Y1, Y2 ∈ P(Y), A ∩ B = ∅

µ(Y1 ∪Y2) = µ(Y1) + µ(Y2) + λµ(Y1)µ(Y2), λ ∈ (−1, ∞).

Then, µ is described a λ-fuzzy measure.

Theorem 1. A λ-fuzzy measure µ in a discourse Y = {y1, y2, · · · , yn} satisfies the following formula:

µ(X) =

{ 1
λ (∏

n
i=1[1 + λµ(yi)]− 1) i f λ 6= 0,

∑n
i=1 µ(yi) i f λ = 0.

(3)

Since µ(Y) = 1, parameter λ can be determined by

λ =
n

∏
i=1

(1 + λµ(xi))− 1.

Definition 6. f is a real function on Y = {y1, y2, · · · , yn}. The Choquet integral about fuzzy measure µ is
depicted by:

∫
f dµ =

n

∑
a=1

f (y(a))[µ(A(a))− µ(A(a+1))]

in which {xπ(1), xπ(2), · · · , xπ(n)} is a new rank of Y, f (yπ(1)) ≤ f (yπ(2)) ≤ · · · ≤ f (yπ(n)),
A(a) = {yπ(a), yπ(a+1), · · · , xπ(n)} and A(n+1) = 0.

3. PNHFSs and Aggregation Operators

The PNHFCOA and PNHFCOG operators are proposed in this section. Some basic properties
are verified.

3.1. The Comparison Method of PNHFEs

When we describe decision information with PNHFS theory, a comparison method of PNHFEs is
necessary. Thus, a approch of ranking PNHFEs is established.

Definition 7. Supposing that N = {T|PT , I|PI , F|PF} is an PNHFE, then the score function of the PNHFE
is expressed by the following formula:

S(N) =
#T

∑
a=1

αaPT
a +

#I

∑
b=1

(1− βb)PI
b −

#F

∑
c=1

γcPF
c . (4)

Definition 8. Supposing that N = {T|PT , I|PI , F|PF} is an PNHFE, then we can find the deviation function
D(N):

D(N) =
#T

∑
a=1

(αa − S(N))2 · PT
a +

#I

∑
b=1

(1− βb − S(N))2 · PI
b +

#F

∑
c=1

(γc − S(N))2 · PF
c . (5)

The distance from the score valued in the PNHFE N is described by the deviation function.
Thus, the deviation value is called a consistency indicator of the PNHFE N. The higher value
of D(N), the lower consistency of N. Based on Definitions 7 and 8, a method for ranking two
PNHFEs is developed.
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Definition 9. For PNHFEs N1 and N2, the sort of N1 and N2 is determined by:

(1) If S(N1) > S(N2), it indicates that PNHFE N1 is superior to N2;
(2) If S(N1) = S(N2), D(N1) > D(N2), it indicates that PNHFE N1 is inferior to N2;
(3) If S(N1) = S(N2), D(N1) = D(N2), it indicates that PNHFE N1 is equal to N2.

3.2. The PNHFCOA Operator and PNHFCOG Operator

This section constructed the PNHFCOA operator and PNHFCOG operator under the probabilistic
neutrosophic environment, and some basic properties are investigated. In this section, µ describes a
fuzzy measure on a domain X, k = 1, 2, · · · , n.

Definition 10. Suppose that Nk = {Tk|PTk , Ik|PIk , Fk|PFk} describes an PNHFE in a reference set X. Then,
the PNHFCOA operator is expressed by the following formula:

PNHFCOA(N1, N2, · · · , Nn) = ⊕n
π(k)=1µπ(k)Nπ(k)

=
⋃

απ(k)∈Tπ(k),βπ(k)∈Iπ(k),γπ(k)∈Fπ(k)

{{1−
n

∏
π(k)=1

(1− απ(k))
µπ(k) |

n

∏
π(k)=1

P
Tπ(k)
π(k) },

{
n

∏
π(k)=1

(βπ(k))
µπ(k) |

n

∏
π(k)=1

P
Iπ(k)
π(k) }, {

n

∏
π(k)=1

(γπ(k))
µπ(k) |

n

∏
π(k)=1

PFπ(k)
π(k) }},

(6)

where P
Tπ(k)
π(k) , P

Iπ(k)
π(k) and P

Fπ(k)
π(k) are corresponding probability data of απ(k), βπ(k) and γπ(k). µπ(k) = µ(Fπ(k) −

Fπ(i+1)), Fπ(k) = {xπ(1), xπ(2), · · · , xπ(k)} and Fπ(0) = 0. {nπ(k)} is a sequence such that nπ(1) ≤ nπ(2) ≤
· · · ≥ nπ(m).

Theorem 2. Supposing that Nk describes an PNHFE, PNHFCOA operator PNHFCOA(N1, N2, · · · , Nn) is still
an PNHFE.

Proof. The mathematical induction can be utilized.

(1) When n = 1, we have the following equation by Definition 10:

PNHFCOA(N1) = µπ(1) ⊕ Nπ(1) = N1. (7)

Obviously, PNHFCOA{N1} is an PNHFE.
(2) When n = 2, we have

PNHFCOA(N1, N2) = (µπ(1)Nπ(1))⊕ (µπ(2)Nπ(2))

=
⋃

απ(1)∈Tπ(1),βπ(1)∈Iπ(1),γπ(1)∈Fπ(1)

{1− (1− απ(1))
µπ(1) |PTπ(1)

π(1) , β
µπ(1)
π(1) |P

Iπ(1)
π(1) , γ

µπ(1)
π(1) |P

Fπ(1)
π(1) }

⊕
⋃

απ(2)∈Tπ(2),βπ(2)∈Iπ(2),γπ(2)∈Fπ(2)

{1− (1− απ(2))
µπ(2) |PTπ(2)

π(2) , β
µπ(2)
π(2) |P

Iπ(2)
π(2) , γ

µπ(2)
π(2) |P

Fπ(2)
π(2) }

=
⋃

απ(k)∈Tπ(k),βπ(k)∈Iπ(k),γπ(k)∈Fπ(k)

{1−
2

∏
π(k)=1

(1− απ(k))
µπ(k) |

2

∏
π(k)=1

P
Tπ(k)
π(1) ,

2

∏
π(k)=1

β
µπ(k)
π(k) |

2

∏
π(k)=1

P
Iπ(k)
π(k) ,

2

∏
π(k)=1

γ
µπ(k)
π(k) |

2

∏
π(k)=1

P
Fπ(k)
π(k) }.

Thus, we know PNHFCOA{N1, N2} is an PNHFE.
(3) When n = k, Equation (9) is true, and we have

305



Symmetry 2019, 11, 623

PNHFCOA(N1, N2, · · · , Nk) = ⊕k
π(k)=1µπ(k)Nπ(k)

=
⋃

απ(k)∈Tπ(k),βπ(k)∈Iπ(k),γπ(k)∈Fπ(k)

{{1−
k

∏
π(k)=1

(1− απ(k))
µπ(k) |

k

∏
π(k)=1

P
Tπ(k)
π(k) },

{
k

∏
π(k)=1

(βπ(k))
µπ(k) |

k

∏
π(k)=1

P
Iπ(k)
π(k) }, {

k

∏
π(k)=1

(γπ(k))
µπ(k) |

k

∏
π(k)=1

PFπ(k)
π(k) }}.

Thus, the next formula is obtained, n = k + 1,

PNHFCOA(N1, N2, · · · , Nk, Nk+1) = (⊕k
π(k)=1µπ(k)Nπ(k))⊕ (µπ(k+1)Nπ(k+1))

=
⋃

απ(k)∈Tπ(k),βπ(k)∈Iπ(k),γπ(k)∈Fπ(k)

{{1−
k

∏
π(k)=1

(1− απ(k))
µπ(k) |

k

∏
π(k)=1

P
Tπ(k)
π(k) },

{
k

∏
π(k)=1

(βπ(k))
µπ(k) |

k

∏
π(k)=1

P
Iπ(k)
π(k) }, {

k

∏
π(k)=1

(γπ(k))
µπ(k) |

k

∏
π(k)=1

PFπ(k)
π(k) }}

⊕
⋃

απ(k+1)∈Tπ(k+1),βπ(k+1)∈Iπ(k+1),γπ(k+1)∈Fπ(k+1)

{1− (1− απ(k+1))
µπ(k+1) |PTπ(k+1)

π(k+1) ,

β
µπ(k+1)
π(k+1)|P

Iπ(k+1)
π(k+1), γ

µπ(k+1)
π(k+1)|P

Fπ(k+1)
π(k+1)}

=
⋃

απ(k)∈Tπ(k),βπ(k)∈Iπ(k),γπ(k)∈Fπ(k)

{{1−
k+1

∏
π(k)=1

(1− απ(k))
µπ(k) |

k+1

∏
π(k)=1

P
Tπ(k)
π(k) },

{
k+1

∏
π(k)=1

(βπ(k))
µπ(k) |

k+1

∏
π(k)=1

P
Iπ(k)
π(k) }, {

k+1

∏
π(k)=1

(γπ(k))
µπ(k) |

k+1

∏
π(k)=1

PFπ(k)
π(k) }}.

Thus, for any n, the conclusion is right.

Next, when the fuzzy measure satisfies different conditions, different types of PNHFCOA
can be obtained.

(1) Assume µ(F) = 1, then

PNHFCOA(N1, N2, · · · , Nn) = max{N1, N2, · · · , Nn}.

(2) Assume µ(F) = 0, then

PNHFCOA(N1, N2, · · · , Nn) = min{N1, N2, · · · , Nn}.

(3) Assume the condition µ(xπ(k)) = µ(Fπ(k) − Fπ(k−1)) is independent, the PNHFCOA operator is
described an PNHFWA operator,

PNHFWA(N1, N2, · · · , Nn) = ⊕n
k=1µ(xk)Nk

=
⋃

αk∈Tk ,βk∈Ik ,γk∈Fk

{{1−
n

∏
k=1

(1− αk)
µ(xk)|

n

∏
k=1

PTk
k }, {

n

∏
k=1

(βk)
µ(xk)|

n

∏
k=1

PIk
k }, {

n

∏
k=1

(γk)
µ(xk)|

n

∏
k=1

PFk
k }}.

(4) Assume the condition µ(xπ(k)) =
1
n , the PNHFCOA operator and PNHFWA operator reduce to

the PNHFA operator,
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PNHFWA(N1, N2, · · · , Nn) = ⊕n
k=1µ(xk)Nk

=
⋃

αk∈Tk ,βk∈Ik ,γk∈Fk

{{1−
n

∏
k=1

(1− αk)
1
n |

n

∏
k=1

PTk
k }, {

n

∏
k=1

(βk)
1
n |

n

∏
k=1

PIk
k }, {

n

∏
k=1

(γk)
1
n |

n

∏
k=1

PFk
k }}.

Theorem 3. (Monotonicity) Suppose Nk = {{αk|PTk
k }, {βk|PIk

k }, {γk|PFk
k }} and Ñk = {{α̃k|PT̃k

k }, {β̃k|P Ĩk
k },

{γ̃k|PF̃k
k }} indicate two PNHFEs. The factor π(k) satisfies Nπ(1) ≥ Nπ(2) ≥ · · · ≥ Nπ(n) and Ñπ(1) ≥

Ñπ(2) ≥ · · · ≥ Ñπ(n). For any Nπ(k), Ñπ(k), there are απ(k) ≤ α̃π(k), βπ(k) ≥ β̃π(k), γπ(k) ≥ γ̃π(k) and

P
Tπ(k)
π(k) = P

T̃π(k)
π(k) , P

Iπ(k)
π(k) = P

Ĩπ(k)
π(k) , P

Fπ(k)
π(k) = P

F̃π(k)
π(k) . Then,

PNHFCOA{N1, N2, · · · , Nn} ≤ PNHFCOA{Ñ1, Ñ2, · · · , Ñn}.

Proof. By Definition 7, Nπ(k) ≤ Ñπ(k). By Definition 10, the following inequality is obtained:

(1−∏(1− απ(k))
µπ(k))∏ P

Tπ(k)
π(k) + (1−∏(βπ(k))

µπ(k) ∏ P
Iπ(k)
π(k) )−∏(γπ(k))

µπ(k) ∏ P
Fπ(k)
j } ≤

(1−∏(1− α̃π(k))
µπ(k))∏ P

Tπ(k)
π(k) + (1−∏(β̃π(k))

µπ(k) ∏ P
Iπ(k)
π(k) )−∏(γ̃π(k))

µπ(k) ∏ P
Fπ(k)
j }.

Then, by Definitions 7 and 9, the result is proved

PNHFCOA(N1, N2, · · · , Nn) ≤ PNHFCOA(Ñ1, Ñ2, · · · , Ñn).

Theorem 4. (Boundedness) Suppose Nk = {{αk|PTk
k }, {βk|PIk}, {γk|PFk

k }} indicate an PNHFE,

N− = {{min{αk}|min{PTk
k }}, {max{βk}|max{PIk

k }}, {max{γk}|max{PFk
k }}},

N+ = {{max{αk}|max{PTk
k }}, {min{βk}|min{PIk

k }}, {min{γk}|min{PFk
k }}}.

Then,

PNHFCOA(N−) ≤ PNHFCOA(N1, N2, · · · , Nn) ≤ PNHFCOA(N+).

Proof. ∀Nk, we know:

min{αk} ≤ απ(k) ≤ max{αk}, min{βk} ≤ βπ(k) ≤ max{βk}, min{γk} ≤ γπ(k) ≤ max{γk};

min{PTk
k } ≤ P

Tπ(k)
π(k) ≤ max{PTk

k }, min{PIk
k } ≤ P

Iπ(k)
π(k) ≤ max{PIk

k }, min{PFk
k } ≤ P

Fπ(k)
π(k) ≤ max{PFk

k }.

Thus,

1−∏(1− απ(k))
(µ(Fπ(k))−µ(Fπ(k−1))) ≥ 1−∏(1−min{αi})(µ(Fπ(k))−µ(Fπ(k−1)))

= 1− (1−min{αk})∑ (µ(Fπ(k))−µ(Fπ(k−1)))

= min{αk} = min{απ(k)},

∏(βπ(k))
(µ(Fπ(k))−µ(Fπ(k−1))) ≤∏(max{βk})(µ(Fπ(k))−µ(Fπ(k−1)))

= (max{βk})∑ (µ(Fπ(k))−µ(Fπ(k−1)))

= max{βk} = max{βπ(k)},
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∏(γπ(k))
(µ(Fπ(k))−µ(Fπ(k−1))) ≤∏(max{γk})(µ(Fπ(k))−µ(Fπ(k−1)))

= (max{γk})∑ (µ(Fπ(k))−µ(Fπ(k−1)))

= max{γk} = max{γπ(k)}.

For the probabilities, it is easy to get

∏ min{PTk
k } = min{PTπ(k)

π(k) } ≤∏ P
Tπ(k)
π(k) ,

∏ P
Iπ(k)
π(k) ≤∏ max{PIπ(k)

π(k) } = ∏ max{PIi
i },

∏ P
Fπ(k)
π(k) ≤∏ max{PFπ(k)

π(k) } = ∏ max{PFi
i }.

Therefore, we have:

PNHFCOA(N−) =
⋃
{{min{απ(k)}|∏ min{PTk

k }}, {max{βπ(k)}|∏ max{PIπ(k)
π(k) }}, {max{γπ(k)}|∏ max{PFπ(k)

π(k) }}}.

By Definitions 7 and 9,

PNHFCOA(N−) ≤ PNHFCOA(N1, N2, · · · , Nn).

Similarly, we can get

PNHFCOA(N1, N2, · · · , Nn) ≤ PNHFCOA(N+).

Theorem 5. (Idempotency) Supposing Ni = {{α|P1}, {β|P2}, {γ]|P3}} (i = 1, 2, · · · , n) is a normalized
PNHFE, µ is a fuzzy measure on X; then,

PNHFCOA(N1, N2, · · · , NX) = {{α|P1}, {β|P2}, {γ|P3}}. (8)

Proof. When P1, P2, P3 ∈ {1}, we have the following equation:

∏ Pj = Pj (j = 1, 2, 3).

Based on Definition 10, it is expressed by the following formula:

PNHFCOA(N1, N2, · · · , Nn)

= {{1−∏(1− α)µπ(k) |∏ P1}, {∏(β)µπ(k) |∏ P2}, {∏(γ)µπ(k) |∏ P3}}
= {{1− (1− α)∑(µ(Fπ(k))−µ(Fπ(k)))|P1}, {(β)∑(µ(Fπ(k))−µ(Fπ(k)))|P2}, {(γ)∑(µ(Fπ(k))−µ(Fπ(k)))|P3}}
= {{α|P1}, {β|P2}, {γ|P3}}.

Theorem 6. (Commutativity) Suppose A = {N1, N2, · · · , Nn} and B = {Nλ(1), Nλ(2), · · · , Nλ(n)} are
two finite sets. If the position of the element in {Nπ(1), Nπ(2), · · · , Nπ(n)} is changed arbitrarily to get
{N1, N2, · · · , Nn}. Then,

PNHFCOA(N1, N2, · · · , Nn) = PNHFCOA{Nλ(1), Nλ(2), · · · , Nλ(n)}.

Proof. Based on Definition 10, the result is easy to get.
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Definition 11. Suppose Nk = {Tk|PTk , Ik|PIk , Fk|PFk} indicates an PNHFE. Then, the PNHFCOG operator
is described by the following formula:

PNHFCOG(N1, N2, · · · , Nn) = ⊗n
π(k)=1µπ(k)Nπ(k)

=
⋃

απ(k)∈Tπ(k),βπ(k)∈Iπ(k),γπ(k)∈Fπ(k)

{{
n

∏
π(k)=1

(απ(k))
µπ(k) |

n

∏
π(k)=1

P
Tπ(k)
π(k) },

{1−
n

∏
π(k)=1

(1− βπ(k))
µπ(k) |

n

∏
π(k)=1

P
Iπ(k)
π(k) }, {1−

n

∏
π(k)=1

(1− γπ(k))
µπ(k) |

n

∏
π(k)=1

PFπ(k)
π(k) }},

(9)

where P
Tπ(k)
π(k) , P

Iπ(k)
π(k) and P

Fπ(k)
π(k) are the corresponding probabilities of απ(k), βπ(k) and γπ(k). µπ(k) = µ(Fπ(k) −

Fπ(k−1)), Fπ(k) = {xπ(1), xπ(2), · · · , xπ(k)} and Fπ(0) = 0. The factor nπ(k) hold nπ(1) ≥ nπ(2) ≥ · · · ≥
nπ(n).

Theorem 7. Suppose that Nk indicates an PNHFE, PNHFCOG(N1, N2, · · · , Nn) is still an PNHFE.

Similarly, the fuzzy measure satisfies different conditions, different types of PNHFCOA can
be obtained.

(1) Assume µ(F) = 1, then

PNHFCOG(N1, N2, · · · , Nn) = max{N1, N2, · · · , Nn}.

(2) Assume µ(F) = 0, then

PNHFCOG(N1, N2, · · · , Nn) = min{N1, N2, · · · , Nn}.

(3) Assume the prerequisite µ(xπ(k)) = µ(Fπ(k) − Fπ(i− 1)) is independent, the PNHFCOG operator
indicates an PNHFWG operator:

PNHFWG(N1, N2, · · · , Nn) = ⊗n
k=1µ(xk)Nk

=
⋃

αk∈Tk ,βk∈Ik ,γk∈Fk

{{
n

∏
k=1

(αk)
µ(xk)|

n

∏
k=1

PTk
k }, {1−

n

∏
k=1

(1− βk)
µ(xk)|

n

∏
k=1

PIk
k }, {1−

n

∏
k=1

(1− γk)
µ(xk)|

n

∏
k=1

PFk
k }}.

(4) Assume the precondition µ(xπ(k)) =
1
n , the PNHFFCG operator and PNHFWG operator reduce

to the PNHFG operator:

PNHFWG(N1, N2, · · · , Nn) = ⊗n
k=1µ(xk)Nk

=
⋃

αk∈Tk ,βk∈Ik ,γk∈Fk

{{
n

∏
k=1

(αk)
1
n |

n

∏
k=1

PTk
k }, {1−

n

∏
k=1

(1− βk)
1
n |

n

∏
k=1

PIk
k }, {1−

n

∏
k=1

(1− γk)
1
n |

n

∏
k=1

PFk
k }}.

Theorem 8. By analyzing the PNHFCOA operator, we can obtain the following theorems, obviously.

(1) (Monotonicity) Assume Nk = {{αk|PTk
k }, {βk|PIk

k }, {γk|PFk
k }} and Ñk = {{α̃k|PT̃k

k }, {β̃k|P Ĩk
k },

{γ̃k|PF̃k
k }} indicate two PNHFEs. The factor π(k) satisfies condition Nπ(1) ≥ Nπ(2) ≥ · · · ≥ Nπ(n)

and Ñπ(1) ≥ Ñπ(2) ≥ · · · ≥ Ñπ(n). With ∀Nπ(k) and ∀Ñπ(k), there are απ(k) ≤ α̃π(k), βπ(k) ≥ β̃π(k),

γπ(k) ≥ γ̃π(k) and P
Tπ(k)
π(k) = P

T̃π(k)
π(k) , P

Iπ(k)
π(k) = P

Ĩπ(k)
π(k) , P

Fπ(k)
π(k) = P

F̃π(k)
π(k) . Then,

PNHFCOG{N1, N2, · · · , Nn} ≤ PNHFCOG{Ñ1, Ñ2, · · · , Ñn}.

(2) (Boundedness) Assume Nk = {{αk|PTk
k }, {βk|PIk}, {γk|PFk

k }} indicates an PNHFE,

309



Symmetry 2019, 11, 623

N− = {{min{αk}|min{PTk
k }}, {max{βk}|max{PIk

k }}, {max{γk}|max{PFk
k }}},

N+ = {{max{αk}|max{PTk
k }}, {min{βk}|min{PIk

k }}, {min{γk}|min{PFk
k }}}.

Then,

PNHFCOG(N−) ≤ PNHFCOA(N1, N2, · · · , Nn) ≤ PNHFCOG(N+).

(3) (Idempotency) Assume Nk = {{α|P1}, {β|P2}, {γ]|P3}} is a normalized PNHFE, then

PNHFCOG(N1, N2, · · · , NX) = {{α|P1}, {β|P2}, {γ|P3}}. (10)

(4) (Commutativity) Assume A = {N1, N2, · · · , Nn} and B = {Nλ(1), Nλ(2), · · · , Nλ(n)} are two
finite sets. If the position of the element in {Nπ(1), Nπ(2), · · · , Nπ(n)} is changed arbitrarily to get
{N1, N2, · · · , Nn}, then:

PNHFCOG(N1, N2, · · · , Nn) = PNHFCOG{Nλ(1), Nλ(2), · · · , Nλ(n)}.

Lemma 1. By reference [37], if xk ≥ 0, wk ≥ 0, ∑n
k=1, we have

n

∏
k=1

(xk)
wk ≤

n

∑
k=1

wkxk.

Theorem 9. Suppose Nk = {{αk|PTk
k }, {βk|PIk

k }, {γk|PFk
k }} indicates an PNHFE, we have

PNHFCOG(N1, N2, . . . , Nn) ≤ PNHFCOA(N1, N2, . . . , Nn). (11)

Proof. Based on Lemma 1, Definitions 10 and 11, the following formula is obtained:

∏(απ(k))
µπ(k) ≤∑(µπ(k))απ(k) = 1−∑ µπ(k)(1− απ(k)) ≤ 1−∏(1− απ(k))

µπ(k) .

Obviously,

∏(απ(k))
µπ(k) ∏ P

Tπ(k)
π(k) ≤ (1−∏(1− απ(k))

µπ(k))P
Tπ(k)
π(k) .

Similarly, we know

∏(βπ(k))
µπ(k) ∏ P

Tπ(k)
π(k) ≤ (1−∏(1− βπ(k))

µπ(k))P
Tπ(k)
π(k) ,

∏(γπ(k))
µπ(k) ∏ P

Tπ(k)
π(k) ≤ (1−∏(1− γπ(k))

µπ(k))P
Tπ(k)
π(k) .

Thus, based on Equation (4) and Definition 9,

PNHFCOG(N1, N2, . . . , Nn) ≤ PNHFCOA(N1, N2, . . . , Nn).

4. A MADM method in PNHF Environment

For a MAMD problem under the PNHF environment, assume Z1, Z2, · · · , Zn indicates all the
alternatives, D1, D2, · · · , Dk indicates all the attributes. The evaluated information of Zi with Dj is

indicated by PNHFE Nij = {{Tij|P
Tij
ij }, {Iij|P

Iij
ij }, {Fij|P

Fij
ij }}.

Based on these necessary prerequisites, we elicit specific steps.

• Step 1. Construct a PNHF decision matrix (PNHFDM) E = (Nij)m×k.
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Rank all PNHFEs from smallest to largest according to Definition 9. Then, the reorder decision
matrix can be obtained such that Niπ(1) ≤ Niπ(2) ≤ · · · ≤ Niπ(n), {π(1), π(2), · · · , π(n)} indicates a
new arrangement.

• Step 2. Calculate µj of criterion Dj.

In order to consider more interrelationships among criteria, by taking the gλ fuzzy measure,
the measure µ of each criterion could be determined.

• Step 3. Based on the goal, select a PNHFCOA (PNHFCOG) operator to aggregate all PNHFEs Zi
(i = 1, 2, · · · , n).

When we need to consider the group’s major points, the PNHFCOA operator should be utilized.
However, the individual major points could be emphasized based on the PNHFCOG operator.
Thus, different types of operators can be used based on the different demands.

• Step 4. Reorder the alternatives

By the valued of S(Ni), D(Ni) and Definition 9, all the Zi are ranked in decreasing order, DM picks
an optimal option Zi.

5. The Program of the Proposed Approach

Choosing the suitable 3PL plays a key role in business development, like improving efficiency
and reducing costs, improving market share and service quality. ABC Machinery Manufacturing
Company Limited as an automotive manufacturing company. The decision maker needs to select an
optimal third part logistics supplier. There are four possible logistics suppliers that are denoted as
Z1, Z2, Z3, Z4. The decision maker selects the following four attributes to access these alternatives:
D1: equipment system; D2: effectiveness; D3: safety; D4: Correlation. The PNHFDM E is obtained,
depicted in Table 1. Suppose that fuzzy measures of Dj are µ(D1) = 0.3, µ(D2) = 0.3, µ(D3) = 0.3,
µ(D4) = 0.2, respectively.

• Step 1. Calculate the score values of all Zi. The results are depicted in Table 2.

Thus, we can get reordered PNHFDM E′. Because of space constraints, the decision matrix
E′ is omitted.

• Step 2. Since the information of fuzzy measure is µ(C1) = 0.3, µ(C2) = 0.3, µ(C3) = 0.3,
µ(C4) = 0.2, respectively. By Equation (3), we get λ = −0.2317. Thus, taking Z1 as an example,
we can get

µπ(1) = 0.2477, µπ(2) = 0.1732, µπ(3) = 0.2791, µπ(4) = 0.3.

• Step 3. Utilizing the PNHFCOA operator, by Equation (9), we can get

S(Z1) = 0.6466, S(Z2) = 0.6436, S(Z3) = 0.5822, S(Z4) = 0.6950.

• Step 4. Rank the PNHFEs by Definition 9,

Z4 > Z1 > Z2 > Z3.

The 3PL Company Z1 is an optimal option.

Next, suppose that the PNHFCOG operator is utilized to solve this problem. Similarly, the score
value of alternative Ai is obtained:

S(Z1) = 0.6181, S(Z2) = 0.6167, S(Z3) = 0.5639, S(Z4) = 0.6686.

311



Symmetry 2019, 11, 623

Thus, the final ranking of alternatives is determined, as follows:

Z4 > Z1 > Z2 > Z3.

The 3PL Company A1 is an optimal option.

Table 1. A PNHFDM Information E.

C1

A1 {{0.5|0.3, 0.57|0.22, 0.58|0.27, 0.64|0.21}, {0.43|0.25, 0.48|0.2, 0.49|0.30, 0.55|0.25},
{0.41|0.27, 0.47|0.23, 0.52|0.23, 0.46|0.27}}

A2 {{0.44|0.27, 0.49|0.24, 0.48|0.26, 0.52|0.23}, {0.46|0.47, 0.53|0.53},
{0.29|0.18, 0.33|0.14, 0.36|0.20, 0.41|0.16, 0.41|0.18, 0.47|0.14}}

A3 {{0.41|0.30, 0.48|0.22, 0.47|0.27, 0.53|0.21}, {0.46|0.23, 0.49|0.26, 0.49|0.24, 0.53|0.27},
{0.39|0.24, 0.41|0.25, 0.48|0.26, 0.45|0.25}}

A4 {{0.47|0.25, 0.51|0.24, 0.50|0.26, 0.53|0.25}, {0.34|0.33, 0.43|0.35, 0.5|0.32},
{0.42|0.28, 0.45|0.21, 0.53|0.29, 0.56|0.22}}
C2

A1 {{0.40|0.26, 0.51|0.25, 0.49|0.25, 0.58|0.24}, {0.56|0.27, 0.59|0.24, 0.60|0.26, 0.63|0.23},
{0.39|0.23, 0.43|0.29, 0.42|0.21, 0.47|0.27}}

A2 {{0.51|0.53, 0.54|0.47}, {0.49|0.25, 0.52|0.22, 0.57|0 : 28, 0.60|0.25},
{0.43|0.18, 0.46|0.18, 0.48|0.17, 0.50|0.16, 0.53|0.16, 0.55|0.15}}

A3 {{0.54|0.26, 0.60|0.25, 0.63|0.25, 0.68|0.24}, {0.50|0.48, 0.56|0.52},
{0.43|0.26, 0.46|0.24, 0.46|0.26T, 0.50|0.24}}

A4 {{0.61|0.54, 0.67|0.46}, {0.43|0.27, 0.50|0.26, 0.46|0.24, 0.53|0.23},
{0.42|0.23, 0.50|0.24T, 0.45|0.26, 0.53|0.27}}
C3

A1 {{0.56|0.24, 0.62|0.24, 0.59|0.26, 0.64|0.26}, {0.33|0.25, 0.36|0.24, 0.37|0.26, 0.41|0.25},
{0.36|0.33, 0.42|0.36, 0.45|0.31}}

A2 {{0.65|0.24T, 0.69|0.27, 0.67|0.23, 0.71|0.26}, {0.43|0.31, 0.52|0.23, 0.46|0.27, 0.55|0.19},
{0.43|0.26, 0.46|0.25, 0.50|0.25, 0.53|0.24}}

A3 {{0.51|0.26, 0.54|0.26, 0.57|0.24, 0.60|0.24}, {0.43|0.26, 0.46|0.24, 0.48|0.26, 0.52|0.24},
{0.49|0.25, 0.54|0.26, 0.57|0.24, 0.62|0.25}}

A4 {{0.57|0.24, 0.66|0.28, 0.66|0.22, 0.73|0.26}, {0.43|0.54, 0.49|0.46},
{0.47|0.16, 0.53|0.17, 0.56|0.16, 0.50|0.17, 0.57|0.18, 0.59|0.17}}
C4

A1 {{0.48|0.47, 0.57|0.53}, {0.40|0.51, 0.47|0.49},
{0.47|0.16, 0.50|0.15, 0.53|0.15, 0.49|0.19, 0.54|0.18, 0.56|0.17}}

A2 {{0.51|0.27, 0.62|0.26, 0.54|0.24, 0.64|0.23}, {0.40|0.25, 0.46|0.28, 0.46|0.22, 0.53|0.25},
{0.39|0.33, 0.42|0.37, 0.45|0.30}}

A3 {{0.48|0.28, 0.58|0.23, 0.51|0.26, 0.61|0 : 23}, {0.42|0.25, 0.45|0.24, 0.47|0.26, 0.50|0.25},
{0.42|0.27, 0.50|0.26, 0.45|0.24, 0.53|0.23}}

A4 {{0.66|0.27, 0.73|0.24, 0.71|0 : 26, 0.77|0.23}, {0.43|0.38, 0.49|0.33, 0.54|0.29},
{0.36|0.27, 0.41|0.24, 0.39|0.26T, 0.45|0.23}}

Table 2. The score values of PNHFE Nij.

D1 D2 D3 D4

Z1 0.6185 0.4700 0.8259 0.5782
Z2 0.6081 0.4885 0.7204 0.6941
Z3 0.5395 0.6181 0.5273 0.6072
Z4 0.5907 0.6825 0.6562 0.8329

6. Comparison with Other Approaches

Based on the same problem background, the comparison results are described.
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Wu’s method emphasizes the individual (group’s) major points, which utilize the MADM
problems with a simplified neutrosophic environment.

Peng put forward the TOPSIS-based QUALIFIEX method and the cross-entropy measurement to
manage MADM situations with probability multi-valued neutrosophic elements. Then, the effectiveness of
this method is demonstrated by an illustrative example.

However, in many actual problems, attributes are not independent. But by comparing the above
methods, the association between attributes is not considered. However, attribute correlation is
considered in our proposed method. The decision results are more reasonable and effective. The final
results by different approaches are indicated in Table 3.

Table 3. Choice of optimal result.

Method Sort of Results Optimal Alternative Worst Alternative

TOPSIS-based QUALIFLEX method [3] Z4 > Z2 > Z1 > Z3 Z4 Z3
SNNPWA operator [45] Z3 > Z1 > Z2 > Z4 Z3 Z4
SNNPWG operator [45] Z3 > Z2 > Z1 > Z4 Z2 Z1

PNHFCOA operator Z4 > Z1 > Z2 > Z3 Z4 Z3
PNHFCOG operator Z4 > Z1 > Z2 > Z3. Z4 Z3

Through the above analysis, the DMs’ evaluation information is represented by PNHFEs. PNHFEs
are more flexible in describing the hesitant MADM information and reporting the probabilistic values
of all hesitant values. The Choquet integral and aggregation operators are integrated in our method.
Next, the alternatives’ information is aggregated and ranked. In this model, the interrelationship
between attributes are involved by Choquet integral. The MADM problems are effectively resolved
by utilizing interdependencies or interactions between attributes. The results are closer to the
actual situations.

7. Conclusions

Firstly, our goal is to aggregate the PNHF information by the notion of PNHFS. By applying
the Choquet integral, the weight information is extended, more information about the correlation
between attributes is mined. The advantage of PNHFS is that it can explain the preferences of DMs
without information loss. By investigating, we found both of the PNHFCOA and PNHFCOG operators
satisfying the following characteristics: monotonity, boundedness, idempotency and commutativity.
Those operators can reduce to some common aggregation operators. Moreover, those aggregation
operators were used to an PNHF background, where fuzzy measure of attributes are recognized.
All alternatives are reordered and choose an optimal option. Next, we present an illustrative situation
to explain the objectivity of our method. The result received by the PNHFCOA and PNHFCOG
operators are effective and flexible. The results are more suitable for the actual situations, because more
information can be considered based on our method. Thus, when some uncertain problems or
inconsistent and indeterminate information needs to be resolved, our proposed approach shows great
advantages. In regard to the next jobs, more types of aggregation operators are investigated and
applied in other practical situations, like medical diagnoses, group decision-making, risk evaluations,
and fractal-wavelet modeling [46–50].
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Abstract: Many companies have observed the significant benefits they can get via using internet.
Since then, large companies have been able to develop business transactions with customers at
anytime, anywhere, and in relation to anything, so that we now need a more comprehensive concept
than the internet. This concept is the Internet of Things (IoT). IoT will influence decision making style
in various phases of selling, buying and marketing process. Therefore, every individual and company
should know precisely what IoT is, and how and why they should incorporate it in their operations.
This motivated us to propose a smart system based on IoT to help companies and marketers make
a powerful marketing strategy via utilizing obtained data from IoT devices. Not only this, but the
proposed system can also solve the problems which face companies and customers in online shopping.
Since there are different types of the same product, and also different criteria for purchasing which can
be different between individuals, customers will need a decision support system to recommend them
with the best selection. This motivates us to also propose a neutrsophic technique to deal with unclear
and conflicting information which exists usually in the purchasing process. Therefore, the smart
system and neutrosophic technique is considered as a comprehensive system which links between
customers, companies, marketers to achieve satisfaction for each of them.

Keywords: e-marketing; Internet of Things; neutrsophic set; multi-criteria decision making techniques

1. Introduction

Internet of Things (IoT) was presented as a concept in 1999. It has provided a platform to connect
to different hardware and mobile devices, so that different people can be connected to each other.
The networks can be on the local wide area networks subscribed to each organization, or wireless
networks, or both. IoT can also collect data via wireless sensors, and then connect to its central
servers for processing and storage. Similarly, it enables people to connect to the internet and other
people’s mobile devices via central servers and/or wireless sensors. The efficient use of IoT can
improve operational efficiency due to its capability to gather and explicate big data, as well as automate
connections among machines [1].

The IoT can be applied in several areas such as smart cities, smart homes, education, agriculture,
health, wearables, and industrial automation [2]. It provides enormous benefits to the society as a whole.
We can see the effect of IoT in cars with built-in sensors, health-monitoring systems, biochip transponders
which are used for farm animals, search and deliverance devices, smart washer/dryers which use Wi-Fi
for remote monitoring, etc. There will be almost twenty billion devices on the IoT by 2020 according to
Gartner [3].
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Although more companies and retail stores have adopted IoT, many consumers are still unaware
of IoT services.

Using IoT can significantly make users’ day to day activities more convenient since many services
can be accessed on their mobile devices. It also improves inventory management, tracks product usage,
monitors selling rates and locations. Also, the IoT can improve the customer services to allow real-time
communications. Additionally, it can allow businesses to forecast possible customers’ concerns and
cases, and proactively provide solutions [4]. By doing so, it can achieve a better customer satisfaction.
As a result, IoT can also save time, reduce costs and also human errors.

Due to the significant role of IoT in enhancing services quality, managing customer demands,
and achieving customer satisfaction and loyalty, some studies are presented that highlight this role.
Jie et al. [5] illustrated in their study how e-retailers who deal with innovative products in the era of the
Internet of Things (IoT) select product delivery service providers to ensure timely and efficient delivery
to customers. Additionally, Desai [6] could model IoT services on the basis of service quality dimensions
in the electricity distribution center of Bangalore Electricity Supply Company. The researchers in [7]
have determined IoT solutions to improve the effectiveness of the service product.

Several research papers are presented to demonstrate discovering the capabilities for IoT adoption
in the organization and also studying its effect on customers’ experience. The way in which the
IoT changes customers’ experience while shopping in a retailing context is presented by Balaji and
Roy [8]. The theoretical understanding of consumers’ adoption and continued use of wearable
technology for advanced health and fitness purposes is illustrated by Canhoto and Arp [9]. Wu, Chen,
and Dou [10] gave insights into how companies can improve their brand building through the use of
IoT technologies. A better understanding of the underlying causes of consumer resistance to smart
and related products was developed by Mani and Chouk [11]. Woodside and Sood [12] proposed
substantial revisions of the dominant logic of service because of the next take-off phase to adopt new
radical innovations in the Internet of Things. Ehret and Wirtz [13] illustrated that the industrial IoT
offers new opportunities and harbors threats that companies are not able to address with presented
business models. Additionally, a smart framework for a shopping mall based on IoT technologies was
presented by Pathan et al. [14].

IoT also has a huge impact on marketers since it provides them with the access to accurate big data.
Marketers can track and record products, estimate the number of customers daily, analyze purchasing
behaviors and understand the individual uses of products [4]. The analyzed outputs may eliminate
the need for surveys or the collection of costly and time-consuming data, where ideas can be collected
from the actual use of connected products and related data. It can also improve direct and hyper-local
marketing, where personal messages can be sent via a number of connected mediums, for monitoring
response and comments from customers. This can directly benefit all forms of marketing, since the
information is the first-hand and the dissemination can reach more individuals regardless of their
demographic, psychographic, or geographic generalizations. The growth of IoT will influence all
marketing companies, particularly those focused on big data analytics. With more big data from
consumers and businesses which became quickly available to marketers, analysts can turn raw data
into useful insights, recommendations and predicted outcomes.

For understanding how IoT constitutes to marketing, few studies are presented. Balmer and Yen [15]
proposed the appearance of what they call, ‘The Corporate Marketing Internet Revolution’ which calls for
a radical rethinking of marketing practice and scholarship. The influence of the IoT on marketing practices
was considered by De Cremer, Nguyen, and Simkin [16] via addressing the overlooked area of the dark
side of the IoT. A smart marketing system based on IoT was proposed by Rajabi and Hakim [17] to help
customers and shopping centers to interact with each other. The vision and challenges of advertising
in the Internet of Things era was presented by Aksu et al. [18]. Celik [19], illustrated how IoT will be a
great source of future marketing tools. An intelligent retail 4.0 Internet of Things consumer retailer model
for smart and strategic marketing of in-store products was presented by Jayaram [20]. The potential
applications of Internet of Things technologies and solutions for effective marketing at retail was presented
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by Bogdanovic [21]. Also, a precise positioning of marketing and behavior intentions of location-based
mobile commerce in the Internet of things was presented by Tsai et al. [22].

The previous studies motivated us to design a smart and comprehensive framework for presenting
the impact of IoT on customers, companies, and also on constituting marketing strategies. In this smart
framework, customers, companies and marketers interact with each other smartly and achieve desired
goals easily.

In addition to the proposed framework, we also proposed a novel neutrosophic multi-criteria
decision making technique based on The Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) for supporting customers in selecting the best service or product from among several
types. The TOPSIS technique is used for evaluating the performance of IoT in organizations [23].
Similarly, an unclear multicriteria group decision making algorithm based on the TOPSIS approach
and the concept of similarity measures was developed by Wibowo and Grandhi [24] for evaluating
the overall performance of IoT-based supply chains. We used a neutrosophic set in our technique
since it considers the truth, indeterminacy and falsity membership degrees, so that it forms the best
representation of reality rather than unclear and intuitionistic uncertain results [25].

The residual parts of this paper are presented as follows: Section 2 describes introductory concepts
that includes the e-marketing concept and Internet of Things (IoT). A smart e-marketing model for
aiding customers, companies, and marketers is suggested in Section 3. Section 4 presents a neutrosophic
technique for aiding customers in selecting the best available product or service, and also the case
study and experimental results of our suggested technique are presented. Section 5 concludes and
identifies future trends of this paper.

2. Foundations of E-Marketing and Internet of Things (IoT)

The conventional marketing is very costly and takes more time to promote products.
The development in technology that comprises the internet media and other digital media has
led to the emergence of new marketing concepts.

E-marketing (also known as online marketing or internet marketing) refers to any marketing
activities which are presented and serviced online via internet technologies. It includes not only
advertising that is shown on websites, but also other types of online activities such as email and
social networking.

E-marketing has extended and offered more opportunities for companies to reach out their
customers and make direct requests served [26]. The popular media to introduce services and products
of companies is on websites to blend information and social media. The three cornerstone principles of
e-marketing are immediacy, personalization, and relevance.

The popular e-marketing methods are as follows:

# Search Engine Market (SEM): There are three major search engine marketing activities,
which correspond to search engine optimization (SEO), pay-per-click (PPC) and trusted feed [27].

# Online Partnerships: It has three types, which include:

• Link building: Which is a structured activity to comprise high-quality hyperlinks to your
website from pertinent sites with a good page rank.

• Affiliate marketing: Given rewards of affiliate by business as soon as the customer purchases
a product through the own marketing efforts of affiliate, and it is a zero-risk advertising
strategy since the merchant does not have to pay any fee until the products are purchased.

• Online sponsorship: It links to a brand with associated content or context to create brand
consciousness. The aim is to enhance the attractiveness of brand.

# Interactive advertising: This means placing ad banners on other websites, and in some respects,
it is completely similar to a pay-per-click search engine.

# Email marketing: It is divided into two categories which are inbound and outbound
email marketing.
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# Online PR: Public relations (PR) means maximizing constructive mentions of an organization,
its brands, products or websites on websites of third-party which are probably going to be visited
by its target crowd.

# Viral marketing: Viral marketing uses e-mail to send a promotional message to another probable
customer [28]. Offline campaigns:

# The use of communications tools like advertising and public relations which are delivered by
traditional media for directing visitors to an online attendance.

Nowadays, many people depend on e-marketing websites and services for buying products and
services. There is a stable increase in the number of buyers who make purchasing decisions over Google
or social network searches or the comments of preceding customers regarding the quality and price
of the product. This is due to permanent sales of 24 h/7 days/365 days for customers and businesses,
access to customers in distant geographical areas, minimum costs, presenting the right products
to the right customers, sustained relationships of customers in the future, and free advertising of
businesses, products or services. Hence, e-marketing is an important way to build strong relationships
with customers.

Despite all these advantages of e-marketing, there are still many disadvantages which are as follows:

(a) If the infrastructure of e-marketing is weak, users will not have many opportunities to access the
internet, learn information online, buy online, and participate in online auctions, and so forth.

(b) If the content control is not good, it can easily to affect the brand image.
(c) It is hard to control the target audience due to the diverse methods of e-marketing.
(d) There is a need to synchronize good information, otherwise, it will lead to information disruption

in management.
(e) Customer trust.
(f) Security and privacy issues.

Since the main marketing pertinent element is the fact that consumers anticipate businesses to
perform transactions with them at anytime, anywhere, and in relation to anything, we need to apply a
more widespread concept than the internet. This concept is based on IoT, since it has become a base for
connecting things, sensors, actuators, and other smart technologies.

There are many technical solutions for IoT: Radio Frequency Identification (RFID), Near Field
Communication (NFC), Bluetooth Low Energy (BLE), Wi-Fi, Z-wave and others [29]. Protocols like RFID
and NFC have been used in retail practice for inventory tracking or payments. BLE is a protocol that has
attracted the attention of retailers and marketers in recent years. As it has become the standard in most
current smart phones, it presents real-time, contextual, personalized communication and activation at
or close to point of purchase, identifying micro location. BLE is a modulation to the standard Bluetooth
protocol for allowing short range, low bandwidth, low latency, and efficient communication.

IoT systems contain application, network and perception layers and comprise of a number of
component modules.

By its nature, IoT generates an enormous amount of data. For making this data generate useful
information and create value to the user, they should be connected and enabled via cloud services and
big data analytics, ensuring compliance with security and privacy requirements.

Now the key question here is how will IoT affect e-marketing?
One of the primary goals of marketers is marketing data. The obtained data from IoT devices will

help marketers to analyze buying behavior of customers and then determine customers’ preferences.
The IoT will help marketers to target their audience and then make more relevant advertisements.
It will also save time on gathering and analyzing data. Real-time data which is obtained from
IoT devices will help marketers to respond to their customers quickly and then achieve customer
satisfaction. Every smart product will help marketers to connect with their customers and then increase
customer engagement.
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Then, we can define IoT in e-marketing as “the interconnection of our digital devices which
introduces endless chances for brands to listen and react to the requirements of their customers–with
the proper message, at the proper time, and on the proper device”.

Despite the great benefits of using IoT in e-marketing, there exists some challenges. The major
challenge is security issues. Although gathering data is a very important characteristic of IoT according
to marketer’s views, it is a very critical part from point of view of customers. The critical part in
this process is that the retrieved data from IoT devices about customers, is personal, numerous and
includes not only computers and mobile devices but other kinds of house equipment, wearables, etc.
Thus, users’ behaviors can be tracked at any time and everywhere. This can lead to hackers gaining
unauthorized access to customer databases and physical objects which can pose threats to human lives.
For example, cars which are based on IoT technology are susceptible to hacker attacks. The hacking of
databases is not only dangerous from the point of view of customers but also from the company’s view.
For example, hacking companies’ databases which contain personal information about customers may
make the customers sue the company.

3. Model of IoT Application in E-Marketing

In this section we propose a smart model based on IoT technologies which helps customers and
companies to interact with each other and meet their needs in the best way. It also helps marketers
make the best marketing strategies for their companies through utilizing the significant data which
is obtained from IoT devices. By applying this model, we can also solve the most popular problems
which exist in e-marketing models.

In this model we focused only on food commodities as example of products, but this model has
the potential to be applied on all kinds of products in our lives.

Before we begin to explain the main parts of the proposed model, let us ask ourselves some
questions. What if we could know the food commodities that we need to buy, when we are out of the
house or at work? For instance, if you run out of milk, a refrigerator can connect to the internet and
decide your needs and present a message on its screen or your phone. Additionally, what if you buy
these products with the highest quality and lowest prices? How about knowing all the information
about products that you need to buy, and the best recommendations according to your purchase criteria,
in only one click? What if you can get these products as soon as possible? How about achieving the
highest degree of security when buying these products online? These questions are from the point of
view of users.

But, from the point of view of companies the important question is: What if companies can achieve
online identity verification of consumers, maintain customers’ loyalty, solve the problem of product
return and refund, and achieve data security?

Finally, from the point of view of marketers the most important question is: What will happen if
marketers can get all data and information about customers’ behaviors, habits and preferences?

Our proposed model answers the previous questions, and can help customers, companies and
marketers to achieve their goals efficiently and effectively.
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3.1. Knowing the Amount of Food Commodities in Our Kitchens When We Are Away from Home or at Work

The first part of the proposed model is to know the amount of current food commodities in our
kitchens when we are away from home, at work or in our car. This helps people to know their needs
and buy it quickly.

In order to do this, we first need to design a smart kitchen based on IoT technologies, but in
this part we focus only on specific parts of the kitchen which can help us to know the stock of food
commodities. These parts of kitchen are the refrigerator and some shelves in the kitchen that contains
some goods like rice, cooking oil, coffee, tea, sugar, etc.

The smart refrigerator should contain an IP address that might sustain functions such as control
units, sensors, communication modules, but the most important technologies that will help us in
our smart system are: (1) Bluetooth/Wi-Fi. (2) RFID technology: a micro-chip in a label used for
transmitting data when the label is exposed to radio waves. The RFID will maintain an updated list of
the products in the fridge. Now, all items are tagged with RFID cards when entering the fridge for the
first time, and every time items are placed in or removed from the fridge, the RFID antenna which
installed inside the fridge recognizes the items and registers them as either in or out of the stock.

So using a smart refrigerator with RFID technology and Wi-Fi connectivity can help us know what
is inside the fridge as well as what is consumed and what we need to buy by sending an electronic
report to the owner’s phone.

The second place that contains food commodities in our kitchen are kitchen shelves. We will
design these shelves from keen glass with RFID technology and also connect them to Wi-Fi. The RFID
reader in these shelves will determine the quantity of items required, and automatically send alert
emails to its owner’s phone if the product is less than the threshold as seen on the smart refrigerator.

3.2. Smart E-Marketing Application

In this sub-section, we suggest a smart app for Android and Apple iOS to help customers make
their online shopping in an easy, simple, attractive and secure procedure.

This application saves time for customers who are searching for their needs in various websites.
Some websites can deceive customers by not sending products with the required quality, difficulty in
shipping and retrieval. But this app supports and advertises trusted sites of companies that are subject
to certain specifications.

We will store this application in App Store and Google Play to enable various users to download
it easily. Once the program is downloaded and installed, users can register in the application as in
Figure 1. In this registration each user will fill his/her details and obtain an ID which will be unique
for future prospects. This unique ID will store in our database and through it the user will receive
messages on his/her phone as well as emails with all offers and discounts on existing products.

This app supports customers, vendors, and also affiliates. It also helps companies to build their
websites and market their products smartly.
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3.2.1. Customer Registration on the Application

In the first part of this section we illustrate how any person will be able to know his/her
kitchen’s stock of food commodities using IoT technology in the refrigerator and kitchen shelves.
The RFID reader in the refrigerator and kitchen shelves will determine the quantity of items in each
take, and automatically send alert emails if the product is less than the threshold. Hence, if such
circumstances occurred one message will be sent to the owner’s phone, then the owner will pass
his/her needs to the proposed app.

The first step that the customer must do is the registration process in the proposed app as in
Figure 1. After finishing the registration process of user (customer or shopper), this application can
perform various processes as follows:

# Firstly, view videos in a unique way to allow the customer to see a full description of the app,
its features and benefits.

# Enable the customer to select a category of product that he/she plans to buy either by selecting
the category from the app directly or via customer voice since this app supports voice
recognition technology.

# After determining products that the customer decides to buy, this app begins to compare prices
between various websites and recommend the cheapest and highest quality products to the
customer. The app deals only with companies which have an Secure Sockets Layer (SSL) certificate.
Usually, SSL is used for securing credit card transactions, transferring data and logins, and more
recently, is becoming the norm when securely browsing social media sites [30]. The customer has
to choose the suitable product according to his/her purchasing criteria. We will illustrate this part
with detail in next section via proposing a new neutrsophic technique for helping the customer in
the selection process.

# Customers can also buy products from vendors who have registered in this app, since the vendor
in this case is able to advertise his/her product using this app. We illustrate this part with details
in the next subsection.

# This application also allows customers to get the best description of products by telling customers
about products, clarifying why it is for them, characterizing how the product feels, how it can
fix problems, save time, or make them happier, and can complete requests in text with photos,
graphics and videos. Entertainment is not just a notification. This helps customers to assess
products properly and obtain all the information they need, so that they feel comfortable about
their purchasing products.

# If a customer buys his/her products continuously via the app, he/she will obtain large discounts.
# After completing the buying process, all information about customers and products that he/she

bought and also the websites that he/she bought from it, will store in our cloud database.
This helps marketers capture interactions, conversion metrics, and consumer behavior predictions
and link them to purchase-intent data.

# The app also supports direct contacts between customers and vendors via chat, video calls,
and customer service. This will help in solving all existing problems, increase customer confidence
and satisfaction.

# The app will inform users continuously with special offers via sending messages and e-mails to
their smart phones.

This app enables customers to make the payment process as in Figure 2. The development of the
international payments market made the payment process very simple [30].
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3.2.2. Registering as a Vendor on the Application

This app not only supports customers, but it also supports sellers and affiliates. The seller in this
app may be the person who plans to sell a product or a company that aims to advertise its products
using this app and already has its own website.

Previously we explained how anyone can remotely access the stock of food commodities in
his/her kitchen using IoT technology, and then we enabled them to buy the product easily through the
proposed app if his/her stock’s state is low.

But, if there exists a large amount of food commodities in our shelves that are about to expire or
to dispose, the owner can sell them with special offers by using this app as follows:

# Make the registration process as in Figure 1.
# Next, the app verifies the user’s identity in a streamlined manner and then converts it to digital

data if it is validated. The verification process of vendor/seller consists of three steps:

• Registration of vendor identity documents such as identification card, driving license,
passports, vital standards as fingerprint and facial recognition.

• Validate documents in addition to their holder.
• Create a reliable digital ID. This can combat the fraud, strengthen compliance processes and

enhance sensitive security services such as money transfer, etc.

# If the previous step can prove that he/she is an invalid user, then the app will automatically reject
his/her registration process and automatically block him/her.

# But if he/she is a valid user, then the app will complete registration and give the vendor a special
link. This link will help the vendor in dealing with customers, tracking his/her product status,
and also receiving money.

# The vendor then begins to upload the product that he/she wants to sell and supports it with the
detailed information, images, videos that explain the product status with detail.

# The product will submit for approval before the vendor is able start selling it within the app.

3.2.3. Registration as an Affiliate on the Application

As we know, the vendor is the person who sells their own products, and the affiliate is the person
who promotes products for vendors in order to earn a commission. This smart app also supports
the affiliate.
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In the first step, the affiliate person must fill in a registration form exactly as the vendor did.
A verification process will be performed for validating the affiliate as we explained previously with
the vendor case.

After the verification process, the affiliate will have a formal registration in our app and receive
special link for helping him/her in the promotion of products and receiving commissions.

After that, the app will recommend various products for the affiliate to select from for the promotion
process. Not only this, but the app will also classify products into ‘most popular’, ‘most gravity’,
and a ‘new products’ category.

By using the proposed app, any affiliate can obtain advice on how to achieve the greatest earning
through the promotion process of products. It also generates a report with the most famous sites that
support affiliation. Since, in marketing language, the new products usually achieve the highest earned
value of affiliate, then our app will continuously send e-mails and messages to the affiliate with any
new product either sold in the app or any site supported by the affiliate.

3.2.4. Use of the App by Companies That Have Their Own Inventory

This app is also designed for supporting companies to create their own website via providing the
chance to create and market it smartly.

Before creating the website, the company must use IoT technologies in their inventory’s
management. Subsequently, products should have either an RFID tag or barcode label for offering the
visibility of inventory levels, dates of expiration, item location, and product demand.

Using IoT, it will increase the capability to track and communicate with products. For instance,
RFID tags will load information about an object, and communicate with an inventory system.
Also, built-in RFID tags can drive information about an object’s temperature, weather, damage,
and traffic, etc. Moreover, built-in GPS locations permit the vendor company to know precisely where
every item is. Every object will have its own unique identifier. As a result, the vendor company will
be able to pin-point each and every item or piece of equipment. This will then effectively minimize
stock reduction, shortages, and overstocks. The vendor company can identify precisely which areas
are efficient and which are not. Therefore, inefficiencies and problems that were not exposed before
will become simple to spot with recommendations for further actions.

The vendor company should also insert IoT technologies in their products’ shipping services for
customers. Our lives depend on transportation, since it is important to travel for work and leisure,
as well as the delivery of food and goods to destinations. The growing use of sensors attached to
both products and the enclosures (that move them from point A to point B) opens a new window into
real-time discovery of actual conditions, with clear ramifications for cost control and accountability.
Thus, by adding IoT technologies to shipping services we can track shipments, optimize delivery and
shipping routes, minimize costs associated with inefficiencies in logistics, and raise our expectations
for goods and services. Additionally, merging data from weather meters and road closure notes makes
operations run easily. It can also inform stakeholders of real-time operations - a major win in an era of
instant gratification.

After using IoT in inventory management, the shipping service of products and having explained
its effective and efficient role, the next step is the creation of a company website for marketing and
promotion of their products and services.

By using the proposed app the company can select the creation option of the website which is a
free feature in our app. The required steps for creating the company’s website are as follows:

• First the vendor company should complete a registration process as in Figure 1, after then,
the company must produce all identity documents.

• The validation process of company documents has to be performed.
• For finding new customers and boosting their business, this app enables the company to build a

high-quality website with the following prosperities:
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# A high-quality building platform.
# Simple and attractive designs. The most important thing is to build trust for a business

or company and ensure customers can find the content or sales information they are
looking for.

# It can map out company content.
# It works on most browsers such as Firefox, Chrome, Safari, etc.
# It is almost effortless to read on mobile platforms.
# It is quick to load.
# It supports the use of online social media such as LinkedIn, Facebook.
# Use of offline channels such as press releases or groups you belong to.
# Secure: using high level usernames and passwords, up-to date of platform software and

any plugging/modules, and considering an external security monitoring software.
# To assist people with physical and visual disabilities, this site will also provide voice

support next to screens where the customer can make the entire purchase process of
products by using the voice service.

# The app also enables companies to create an account with best ePayment gateway.

• After creating the website of a vendor company, this app gives a full update on the related events
and content on your sites, as well as customers’ average time spent on your site, page views per
visitor, percentage of reiterate visitors, and visitors’ countries of origins.

• It also compares your large success stories with your less successful endeavors; it is simple to
distinguish where your effort should be concentrated to enhance site page rank and draw in more
traffic. As soon as you know where to direct your efforts, your expenditures and time can be used
more effectively.

Now, let us ask ourselves a question: what is the relation between adding IoT in inventory
management and a shipping service with the marketing process of company products via their site?

Large companies spend huge amounts of money on marketing their products, and money that can
be used to produce a better product rather than being spent on reaching to the widest possible audience.
Thus, why is marketing so expensive? This is because marketing agencies need to gather quite a lot of
information to determine their target audience. Once they know their audience a campaign targeted
towards them can be created. Since the IoT enables companies to obtain all information about their
products, and then the marketer can create their marketing strategy easily and effectively. Moreover,
this information can help to understand which products have reached the expiration of its validity
and then the marketers can make a marketing strategy for selling this product with various offers
and discounts.

By using the proposed app the marketers can obtain a huge amount of data about customers.
This data includes customer location, time of buying, a list of purchases, and customer demographics
as stored in our cloud database of customers. According to stored information about customers,
the marketers can extract and analyze customers’ preferences and habits, and build more attractive
marketing plans.

In order to avoid any type of risks and misunderstanding, the marketers should inform consumers
that their private data is stored and will be used for commercial purposes. The high level of transparency
will help companies to minimize or eliminate consumers’ dissatisfaction.

The general framework of proposed model is shown in Figure 3.
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4. Neutrosophic Technique for Helping the Customer to Select the Best Service or Product from
Several Types

To determine the best choice between all of the possible alternatives, the multiple criteria decision
making (MCDM) techniques are used widely. The problem of product or service selection on which
decision maker has a typically vague and inaccurate result, which is a representative example of
an MCDM problem. The traditional techniques have not been very effective for solving MCDM
problems due to the inaccurate or unclear nature of the linguistic assessments. Finding the exact
values for MCDM problems is complex and not possible in more real world cases. So, it is more
rational to consider the values of alternatives regarding to the criteria as neutrosophic numbers (NNs).
This part deals with The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
method and expands the TOPSIS approach to the MCDM problem with single valued neutrosophic
information. Here, the weights of criteria are calculated using the rank order centroids (ROCs) method,
and the evaluation matrix for comparing alternatives relating to existing criteria is represented by
using triangular neutrosophic numbers (TNNs).

So, in this section, we will explain how the proposed technique can help customers choose the
best product among several types.

4.1. Proposed Neutrosophic Technique

As explained in the previous section, the customer will have the opportunity to choose from
several products recommended by the proposed application. Next, the customer should choose the
best product that suits his/her needs. But the assessment process of existing products is a multifaceted
problem owing to several mismatched criteria. These include the interests of different customers,
the diversity of products, and the breakdown of dealing with unclear and conflicting information which
exists frequently during the selection processes. Therefore, we proposed a neutrosophic technique for
helping customers to select the best product or service.

For determining the appropriate product or service, according to the several purchasing
criteria of customer like price of product, delivery time to customer, quality of product, etc.,
let C = {C1, C2, · · · , Cn} be a given set of finite criteria for product or service, and P = {P1, P2, · · · , Pm)

be given set of finite alternatives (products).
The detailed steps for selecting the best possible product are as follows:
Step 1: Let the customer determine his/her selection criteria and rank them according to their needs.
Step 2: After determining the rank of purchase criteria by customer, the weight of these criteria

must be calculated. Here we used the rank order centroids (ROCs) for assigning weights to these
criteria [31]. For a set of ranks of order N, the ROC value which corresponds to the kth rank is given by:

rk = (
∑N

i=k

(1
i

)
)/N (1)

For example, if we have a set of three ranks, associated ROCs values are:

r1 =
(
1 +

1
2
+

1
3

)
/3 = 0.61,

r2 =
(
0 +

1
2
+

1
3

)
/3 = 0.28,

r3 =
(
0 + 0 +

1
3

)
/3 = 0.11.

Step 3: After assigning relative weights to the purchase criteria, we begin to build the estimation
matrix which consists of m alternatives and n criteria using the following linguistic variables as in
Table 1. The crossing of every alternative and criteria indicated as xi j. Then, we have (xi j)m×n matrix.
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Table 1. Linguistic variables for comparison matrices.

Linguistic Variables Neutrosophic Numbers

Very Low/ Bad (VL/VB) 〈0, 1, 2; 0.10, 0.85, 0.90〉
Low/ Bad (L/B) 〈1, 2, 3; 0.20, 0.75, 0.80〉

Medium Low/Bad (ML/MB) 〈2, 3, 4; 0.35, 0.65, 0.60〉
Medium/Fair (M/F) 〈3, 4, 5; 0.50, 0.50, 0.50〉

Medium High/ Good (MH/MG) 〈4, 5, 6; 0.60, 0.35, 0.30〉
High/Good (H/G) 〈5, 6, 7; 0.80, 0.20, 0.15〉

Very High/Good (VH/VG) 〈6, 7, 8; 0.90, 0.10, 0.05〉
Extremely High/Good (EH/EG) 〈7, 8, 9; 1.00, 0.00, 0.00〉

Each value in Table 1 is a single valued triangular neutrosophic number which is a special case of
single valued neutrosophic set:

Definition 1. A single valued neutrosophic set A over X, is an object taking the form A ={〈x, TA(x), IA(x), FA(x)〉 : x ∈ X
}
, where TA(x): X → [0, 1], IA(x): X → [0, 1] and FA(x): X → [0,

1] with 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for all x ∈ X. The intervals TA(x), IA(x) and FA(x) represent the
truth-membership degree, the indeterminacy-membership degree and the falsity membership degree of x to A,
respectively and X is a universe of discourse. For convenience, a SVN number is represented by A = (a, b, c),
where a, b, c ∈ [0, 1] and a + b + c ≤ 3 [32].
Definition 2. A single valued triangular neutrosophic number ã = 〈(a1, a2, a3); Ta , Ia, Fa〉 is a
special neutrosophic set on the real line set R, whose truth-membership, indeterminacy-membership and
falsity-membership functions are defined as follows [32]:

Ta(x) =



Ta
( x−a1

a2−a1

)
(a1 ≤ x < a2)

Ta (x = a2)

Ta
( a3−x

a3−a2

)
(a2 < x ≤ a3)

0 otherwise,

(2)

Ia(x) =



(a2−x+Ia(x−a1))
(a2−a1)

(a1 ≤ x < a2)

Ia ( x = a2)
(x−a2+Ia(a3−x))

(a3−a2)
(a2 < x ≤ a3)

1 otherwise,

(3)

Fa(x) =



(a2−x+Fa(x−a1))
(a2−a1)

(a1 ≤ x < a2)

Fa (x = a2)
(x−a2+Fa (a3−x))

(a3−a2)
(a2 < x ≤ a3)

1 otherwise.

(4)

where Ta, Ia and Fa(x), represent the maximum truth-membership degree, minimum indeterminacy-membership
degree and minimum falsity-membership degree respectively. A single valued triangular neutrosophic number ã
= (a1, a2, a3); Ta , Ia , Fa may express an ill-defined quantity about a, which is approximately equal to a.

Definition 3. Let ã = 〈(a1, a2, a3); Ta , Ia , Fa〉 and b̃ = 〈(b1, b2, b3 ); Tb , Ib , Fb〉 be two single valued
triangular neutrosophic numbers and γ , 0 be any real number [32]. Then,

1. Addition of two triangular neutrosophic numbers

ã + b̃ = 〈(a1 + b1 , a2 + b2, a3 + b3); Ta ∧ Tb, Ia ∨ Ib, Fa ∨ Fb〉
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2. Subtraction of two triangular neutrosophic numbers

ã− b̃ = 〈(a1 − b3 , a2 − b2 , a3 − b1); Ta ∧ Tb, Ia ∨ Ib, Fa ∨ Fb〉

3. Inverse of a triangular neutrosophic number

ã−1 = 〈
(

1
a3

,
1
a2

,
1
a1

)
; Ta, Ia, Fa〉, where (̃a , 0)

4. Multiplication of triangular neutrosophic number by constant value

γã =

{ 〈(γa1, γa2, γa3); Ta, Ia, Fa〉 if ( γ > 0)
〈(γa3, γa2,γa1); Ta, Ia, Fa〉 if (γ < 0)

5. Division of triangular neutrosophic number by constant value

ã
γ
=


〈
( a1
γ , a2

γ , a3
γ

)
; Ta, Ia, Fa〉 if ( γ > 0)

〈
( a3
γ , a2

γ , a1
γ

)
; Ta, Ia, Fa〉 if (γ < 0)

6. Division of two triangular neutrosophic numbers

ã

b̃
=



〈
( a1

b3
, a2

b2
, a3

b1

)
; Ta ∧ Tb, Ia ∨ Ib, Fa ∨ Fb〉 if(a3 > 0, b3 > 0)

〈
( a3

b3
, a2

b2
, a1

b1

)
; Ta ∧ Tb, Ia ∨ Ib, Fa ∨ Fb〉 if(a3< 0, b3 >0 )

〈
( a3

b1
, a2

b2
, a1

b3

)
; Ta ∧ Tb, Ia ∨ Ib, Fa ∨ Fb〉 if(a3 < 0, b3 < 0)

7. Multiplication of two triangular neutrosophic numbers

ã̃b =



〈(a1b1 , a2b2, a3b3); Ta ∧ Tb, Ia ∨ Ib, Fa ∨ Fb〉 if (a3 > 0, b3 > 0)

〈(a1b1 , a2b2, a3b3); Ta ∧ Tb, Ia ∨ Ib, Fa ∨ Fb〉 if (a3 < 0, b3 > 0)

〈(a3b3, a2b2, a1b1); Ta ∧ Tb, Ia ∨ Ib, Fa ∨ Fb〉 if (a3 < 0, b3 < 0)

So, the evaluation matrix of alternatives with respect to criteria will take the following form:

E = 〈ei j〉m×n = 〈Li j, Mi j, Ui j; Ti j, Ii j, Fi j〉m×n =

C1 C2 · · · Cn

A1

A2
...

Am




〈L11, M11, U11; T11, I11, F11〉 〈L12, M12, U12; T12, I12, F12〉 · · · 〈L1n, M1n, U1n; T1n, I1n, F1n〉
〈L21, M21, U21; T21, I21, F21〉 〈L22, M22, U22; T22, I22, F22〉 · · · 〈L2n, M2n, U2n; T2n, I2n, F2n〉

...
...

. . .
...

〈Lm1, Mm1, Um1; Tm1, Im1, Fm1〉 〈Lm2, Mm2, Um2; Tm2, Im2, Fm2〉 · · · 〈Lmn, Mmn, Umn; Tmn, Imn, Fmn〉




(5)

where, ei j = 〈Li j, M, Ui j; Ti j, Ii j, Fi j〉 is the triangular neutrosophic element of evaluation matrix E for
i = 1; 2; . . . ; m and j = 1; 2; . . . ; n. Since L, M, U are the lower, median and upper value of triangular
neutrosophic number, and T, I, F are the truth, indeterminacy and falsity degrees of this triangular
neutrosophic number.
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Step 4: Calculate the neutrosophic weighted evaluation matrix as follows:

Ew = E×w = 〈ei j
wj〉m×n = 〈Li j

wj, Mi j
wj, Ui j

wj; Twj
ij , Ii j

wj, Fi j
wj〉

m×n
=

C1 C2 · · · Cn

A1

A2
...

Am




〈Lw1
11 , Mw1

11 , Uw1
11 ; Tw1

11 , Iw1
11 , Fw1

11 〉 〈Lw2
12 , Mw2

12 , Uw2
12 ; Tw2

12 , Iw2
12 , Fw2

12 〉 · · · 〈Lwn
1n , Mwn

1n , Uwn
1n ; Twn

1n , Iwn
1n , Fwn

1n 〉
〈Lw1

21 , Mw1
21 , Uw1

21 ; Tw1
21 , Iw1

21 , Fw1
21 〉 〈Lw2

22 , Mw2
22 , Uw2

22 ; Tw2
22 , Iw2

22 , Fw2
22 〉 · · · 〈Lwn

2n , Mwn
2n , Uwn

2n ; Twn
2n , Iwn

2n , Fwn
2n 〉

...
...

. . .
...

〈Lw1
m1, Mw1

m1, Uw1
m1; Tw1

m1, Iw1
m1, Fw1

m1〉 〈Lw2
m2, Mw2

m2, Uw2
m2; Tw2

m2, Iw2
m2, Fw2

m2〉 · · · 〈Lwn
mn, Mwn

mn, Uwn
mn; Twn

mn, Iwn
mn, Fwn

mn〉




(6)

Here, 〈ei j
wj〉m×n = 〈Li j

wj, Mi j
wj, Ui j

wj; Ti j
wj, Ii j

wj, Fi j
wj〉m×n is an element of the weighted

neutrosophic evaluation matrix Ew for i = 1; 2; · · · ; m and j = 1; 2; · · · ; n.
Step 5: Define the neutrosophic positive and negative ideal solution NPIS and NNIS:
Their exists two types of attributes B1 and B2, which are the benefit and cost-type attribute

respectively. So, v+ is the neutrosophic positive ideal solution (NPIS), v− is the neutrosophic negative
ideal solution (NNIS) and have the following formula:

v+ =
[
e1

w+, e2
w+, · · · , en

w+
]
. (7)

where e j
w+ = 〈L j

w+, M j
w+, U j

w+; T j
w+, I j

w+, F j
w+〉 for j = 1, 2, · · · , n.

L j
w+ =

{(
max i

{
Lwj

ij

}∣∣∣∣∣ j ∈ B1

)
, (min i

{
Lwj

ij

}∣∣∣∣∣ j ∈ B2)
}
, (8)

M j
w+ =

{(
max i

{
Mwj

ij

}∣∣∣∣∣ j ∈ B1

)
, (min i

{
Mwj

ij

}∣∣∣∣∣ j ∈ B2)
}
, (9)

U j
w+ =

{(
max i

{
Uwj

ij

}∣∣∣∣∣ j ∈ B1

)
, (min i

{
Uwj

ij

}∣∣∣∣∣ j ∈ B2)
}
, (10)

T j
w+ =

{(
max i

{
Twj

ij

}∣∣∣∣∣ j ∈ B1

)
, (min i

{
Twj

ij

}∣∣∣∣∣ j ∈ B2)
}
, (11)

I j
w+ =

{(
min i

{
Iwj
ij

}∣∣∣∣∣ j ∈ B1

)
, (max i

{
Iwj
ij

}∣∣∣∣∣ j ∈ B2)
}
, (12)

F j
w+ =

{(
min i

{
Fwj

ij

}∣∣∣∣∣ j ∈ B1

)
, (max i

{
Fwj

ij

}∣∣∣∣∣ j ∈ B2)
}
. (13)

Also,
v− = [e1

w−, e2
w−, · · · , en

w−], (14)

where 〈e j
w− = L j

w−, M j
w−, U j

w−; T j
w−, I j

w−, F j
w−〉 for j = 1, 2, · · · , n.

L j
w− =

{(
min i

{
Lwj

ij

}∣∣∣∣∣ j ∈ B1

)
, (max i

{
Lwj

ij

}∣∣∣∣∣ j ∈ B2)
}
, (15)

M j
w− =

{(
min i

{
Mwj

ij

}∣∣∣∣∣ j ∈ B1

)
, (max i

{
Mwj

ij

}∣∣∣∣∣ j ∈ B2)
}
, (16)

U j
w− =

{(
min i

{
Uwj

ij

}∣∣∣∣∣ j ∈ B1

)
, (max i

{
Uwj

ij

}∣∣∣∣∣ j ∈ B2)
}
, (17)

T j
w− =

{(
min i

{
Twj

ij

}∣∣∣∣∣ j ∈ B1

)
, (max i

{
Twj

ij

}∣∣∣∣∣ j ∈ B2)
}
, (18)

I j
w− =

{(
max i

{
Iwj
ij

}∣∣∣∣∣ j ∈ B1

)
, (min i

{
Iwj
ij

}∣∣∣∣∣ j ∈ B2)
}
, (19)

F j
w− =

{(
max i

{
Fwj

ij

}∣∣∣∣∣ j ∈ B1

)
, (min i

{
Fwj

ij

}∣∣∣∣∣ j ∈ B2)
}
. (20)

331



Symmetry 2019, 11, 611

Step 6: Measure the Euclidian distance of each alternative from the NPIS and NNIS:
The normalized Euclidian distance of each alternative 〈Li j

wj, Mi j
wj, Ui j

wj; Ti j
wj, Ii j

wj, Fi j
wj〉 from

the neutrosophic positive ideal solution 〈L j
w+, M j

w+, U j
w+; T j

w+, I j
w+, F j

w+〉 for i = 1, 2, · · · , m and
j = 1, 2, · · · , n written as follows:

DN(Ai, NPIS) = Di+
N(ei j

wj, e j
w+) =√√√√

1
6n
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(
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(
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(
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(
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(
x j

))2
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(
x j

)
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(
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))2
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(
Ii j
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(
x j

)
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w+
(
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))2
+

(
Fi j

wj
(
x j

)
− F j
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(
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))2


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(21)

Also, the normalized Euclidian distance of each alternative 〈Li j
wj, Mi j

wj, Ui j
wj; Ti j

wj, Ii j
wj, Fi j

wj〉
from the neutrosophic negative ideal solution 〈L j

w−, M j
w−, U j

w−; T j
w−, I j

w−, F j
w−〉 for i = 1, 2, · · · , m

and j = 1, 2, · · · , n written as follows:
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1
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(22)

Step 7: Calculate the closeness coefficient of each alternative according to the NPIS:

ci
∗ =

Di−
N
(
ei j

wj, e j
w−)

Di+N
(
ei j

wj, e jw+
)
+ Di−N

(
ei j

wj, e jw−
) where 0 ≤ ci

∗ ≤ 1. (23)

Step 8: Rank alternatives according to the largest values of ci
∗.

4.2. A Numerical Example

If a customer plans to buy a specific product using the proposed app, then the app will search for
that product from various websites. After that, the app will return various products with different
prices and different qualities. The customer should have to choose the best one according to his/her
needs, so the decision in his/her hands. Since the selection of the best product is the customer mission
(and it is a complex problem because of vague and incomplete information) we will apply the ROCs
method and neutrosophic TOPSIS for the selection process as follows:

Step 1: Ask customer to insert his/her purchase criteria and rank them from the most to the least
important. Here the customer ranked the purchase criteria as follows:

1. Quality,
2. Price,
3. Delivery Time.

Step 2: After determining the rank of purchase criteria by the customer, the weight of these criteria
must be calculated using the ROCs method. Since the rank of purchase criteria according to customer
needs are: Quality, Price and Time respectively. Then, by using the ROCs method, the weight of criteria
will be as follows:

W1(Quality) = 0.61, W2(Price) = 0.28, W3(Time) = 0.11.

Step 3: Assuming that the customer should choose one from the four initially selected products
p1, p2, p3, p4 with respect to three criteria which determined previously, the decision maker will compare
all alternatives according to criteria using the linguistic scale which was presented in Table 1. Since there
is no absolute truth and the truth is always relative, the single valued triangular neutrosophic numbers
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have been used for handling unclear, imperfect and conflicting information which usually exists
in actuality.

By comparing the four products with respect to existing criteria, the estimation matrix is as in Table 2.

Step 4: Construct the weighted decision matrix via multiplying weights of criteria by the estimation
matrix as in Table 3.
Step 5: Define the neutrosophic positive and negative ideal solution, NPIS and NNIS by using
equations from Equation (7) to Equation (20) according to attribute type (i.e., benefit or cost).

Table 2. Estimation matrix of alternatives according to criteria.

P C1 C2 C3

P1 G VH B
P2 EG H G
P3 G L VG
P4 VG H VG

Table 3. Weighted decision matrix of alternatives.

P C1 C2 C3

P1 〈3, 4, 4; 0.80, 0.20, 0.15〉 〈2, 2, 2; 0.90, 0.10, 0.05〉 〈0, 0, 0; 0.20, 0.75, 0.80〉
P2 〈4, 5, 5; 1.00, 0.00, 0.00〉 〈1, 2, 2; 0.80, 0.20, 0.15〉 〈0, 1, 1; 0.80, 0.20, 0.15〉
P3 〈3, 4, 4; 0.80, 0.20, 0.15〉 〈0, 1, 1; 0.20, 0.75, 0.80〉 〈1, 1, 1; 0.90, 0.10, 0.05〉
P4 〈4, 4, 5; 0.90, 0.10, 0.05〉 〈1, 2, 2; 0.80, 0.20, 0.15〉 〈0, 1, 1; 0.90, 0.10, 0.05〉

The NPIS and NNIS are given by:

NPIS = (〈4, 4, 4; 1.00, 0.00, 0.00〉, 〈0, 1, 1; 0.2, 0.75, 0.80〉, 〈1, 0, 0; 0.9, 0.1, 0.05〉),

NNIS = (〈3, 4, 4; 0.8, 0.20, 0.15〉, 〈2, 2, 2; 0.90, 0.10, 0.05〉, 〈0, 0, 0; 0.20, 0.75, 0.80〉).
If obtained values of lower, median, and/or upper are out of order, then reorder them and follow

the work.

Step 6: Calculate the normalized Euclidian distance of each alternative from the NPIS as follows:

D(P1, NPIS) = 0.78, D(P2, NPIS) = 0.71,

D(P3, NPIS) = 0.41, D(P4, NPIS) = 0.67.

Step 7: Calculate the normalized Euclidian distance of each alternative from the neutrosophic negative
ideal solution as follows:

D(P1, NNIS) = 0.0, D(P2, NNIS) = 0.63,

D(P3, NNIS) = 0.81, D(P4, NNIS) = 0.60.

Step 8: Calculate the closeness coefficient of each alternative according to the NPIS using Equation (23):

c1
∗ = 0.00, c2

∗ = 0.470, c3
∗ = 0.663, c4

∗ = 0.472.

Step 9: Rank alternatives according to the largest values of ci
∗:

P3 > P4 > P2 > P1

Hence, the best product which suits customer needs is P3 as appears in Figure 4.
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5. Conclusion and Future Directions

In this paper we proposed a smart e-marketing system based on IoT. Using this system enables
marketers to meet customers’ expectations for products and services, and then achieve a high degree
of satisfaction. It also enables marketers to have new streams of data, and discover consumer
preferences and habits. Therefore, it enables marketers to provide customers with what they need with
better matches.

By using the proposed system by customers and companies, all problems which face them in online
shopping could be solved easily. It also helps customers, sellers, affiliate, companies, and marketers to
achieve their goals with a high degree of accuracy.

In this system we focused only on food commodities as an example of products, but this system
has the potential to be applied to all kinds of other products in our daily lives.

Although the proposed system can avoid different threats and hacking process, more involvements
from governments to create legal basis is very significant and will make the proposed system better.

Since there are different types of the same product and also different criteria of buying, and the
main problem of product or service selection is the vague and inaccurate knowledge of the decision
maker, we presented a multi-criteria decision making technique based on neutrosophic TOPSIS
to deal with unclear and conflicting information. In this technique we calculated the weights of
criteria by using the rank order centroids (ROCs) method, and the evaluation matrix for comparing
alternatives regarding to existing criteria is represented by using triangular neutrosophic numbers
(TNNs). This technique will support customers in selecting the best product or service.

For our future work, we will expand our IoT research outputs, applications and services, aiming
to apply them in different domains in agriculture, health, and industry. Furthermore, we will apply the
proposed neutrosophic technique in various situations, not only for supporting customers, but also
supporting marketers and companies.
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Abstract: Shale gas energy is the most prominent and dominating source of power across the globe.
The processes for the extraction of shale gas from shale rocks are very complex. In this study,
a multiobjective optimization framework is presented for an overall water management system
that includes the allocation of freshwater for hydraulic fracturing and optimal management of the
resulting wastewater with different techniques. The generated wastewater from the shale fracking
process contains highly toxic chemicals. The optimal control of a massive amount of contaminated
water is quite a challenging task. Therefore, an on-site treatment plant, underground disposal
facility, and treatment plant with expansion capacity were designed to overcome environmental
issues. A multiobjective trade-off between socio-economic and environmental concerns was
established under a set of conflicting constraints. A solution method—the neutrosophic goal
programming approach—is suggested, inspired by independent, neutral/indeterminacy thoughts
of the decision-maker(s). A theoretical computational study is presented to show the validity and
applicability of the proposed multiobjective shale gas water management optimization model and
solution procedure. The obtained results and conclusions, along with the significant contributions,
are discussed in the context of shale gas supply chain planning policies over different time horizons.

Keywords: intuitionistic fuzzy parameters; uncertainty modeling; neutrosophic goal programming
approach; shale gas water management system

1. Introduction

Energy sources play a dynamic role in the development, nourishment, and enrichment reputation
of any country. Presently, many conventional sources of energy are being used for energy production,
but shale gas energy is booming among different energy sources [1–3]. Apart from conventional sources
of energy, shale gas—which is located within shale rocks—is the most promising source of natural gas.
Recently, shale gas has become an emerging source of natural gas across the world [4,5]. The United
States is the second-richest country after China in terms of the abundance of shale gas resources. Since
the start of this century, significant interest has been shown in the potential extraction of shale gas
across the world [6–8]. In 2000, only 1% of the US natural gas production was contributed by shale
gas energy; by 2010, it was more than 20%, and according to predictions of the US government’s
Energy Information Administration (EIA), by 2035 more than 46% of the US’ natural gas supply will
be from shale gas [9]. The first extraction of shale gas from shale rocks was done in Fredonia (New
York) in 1821 by using shallow and low-pressure fractures. However, horizontal drilling started in the
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1930s, and the first well was fractured in the US in 1947. Presently, shale gas potential extraction and
enriched abundance in many nations are being investigated. According to Sieminski et al. [10], in 2013,
only a few countries (e.g., the US, Canada, and China) have sufficient shale gas enrichment, and future
production is planned at commercial scale [10]. China has an apparent strategy to dramatically
grow its shale gas production and investment, which has been restricted by its insufficient approach
to water, land, and the latest technology. Shale hosts rocks trapping potential shale gas quantities
that have numerous common properties, namely, being composed of organic material, a mature
petroleum source, containing a high amount of natural gas in the thermogenic gas window spread
inside the Earth’s crust where there is high heat and pressure being applied to convert petroleum into
natural gas. Most commonly, hydraulic fracturing (also known as fracking) and horizontal drilling
are two dominant methods that are being used in the process of shale gas extraction across the world.
The high concentration of released toxic and contaminated wastewater from the extraction and use
of shale gas affects the environment. A challenge in the shale gas extraction process is preventing
environmental pollution. This depends on drilling wells and their capacity, which varies with shale
use. Water cannot be reused until a well is fractured and the water starts to withdraw from the well.
A study was published by Kerr [11] in May 2011 that strongly suggested shale gas wells contain a
rigorous abundance of toxic surface groundwater flows with flammable methane in North-Eastern
Pennsylvania. Although the presented study was confined to the contamination of water, the impact
in other areas that would be dug out for shale extraction purposes was not discussed.

Over the past few years, various research works have been published suggesting, in the context
of optimal production policies, a selection area, supply chain network, and socio-economic balancing
during shale gas extraction at the commercial level. Lutz et al. [12] presented a theoretical overview
of shale gas development in the context of a more prominent resource-producing country such as
the United States. The quantification of shale gas energy and wastewater generation throughout
Pennsylvania was revealed with consolidated data obtained from 2189 wells. The concluding remarks
were contrary to the current perception regarding the shale gas extraction-to-wastewater evulsion
ratio, transportation, disposal facilities, treatment strategies, and the associated factors in the shale
gas extraction processes. Yang et al. [13] presented the optimum usage of the water life cycle for
drilled well-peds through a discontinuous-time bi-stage stochastic mixed-integer linear programming
(SMILP) optimization framework under uncertainty. The model was optimized with a set of long-term
historical data. The discussed approach was applied to two Marcellus shale gas uses, which showed
the effectiveness of the addressed study. Yang et al. [14] discussed the optimal usage of water in the
fracking and drilling mechanism during shale gas extraction processes at commercial scale, and also
formulated a new mixed-integer linear programming (MILP) problem that inherently optimizes the
capital investment for an optimal shale gas yielding scheme. A case study was implemented in
the proposed optimization scenario. Li and Peng [15] investigated a new solution scheme based on
interval-valued hesitant fuzzy information for the selection of promising shale gas areas, and discussed
the applicability of the proposed approach by selecting the shale gas areas using multi-criteria decision
making (MCDM). Although shale gas extraction has been done for over 100 years in two different
prominent basins of the United States (i.e., the Appalachian Basin and the Illinois Basin), the wells
seldom result in profitable production. The current shale gas extraction process, consisting of horizontal
drilling and hydraulic fracturing, has made shale gas synthesis more advantageous.

In April 2012 [16], the cost of extraction incurred over shale gas in different coastal parts of the
UK was approximated to be much higher than $200 per barrel, which was compared to oil prices of
about $120 per barrel in the UK North Sea. North America has emerged as one of the potential leaders
in developing and producing shale energy. In the US and Canada, after the successful economic
accomplishment of the Barnett Shale use in Texas, the exploration of promising new sources of
shale gas is being made. Gao and You [17] designed an active water cycle configuration for the
shale gas extraction process and re-formulated it as a mixed-integer linear fractional programming
(MILFP) optimization model under different objectives and sets of constraints. The models were
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globally optimized using various approaches such as the parametric method, a reformulation
linearization approach, the branch and bound method, and the Charnes–Cooper transformation
technique. The addressed mathematical models were applied to two case studies based on Marcellus
shale play, in which on-site treatment techniques of wastewater gained importance in generating
freshwater storage. Sang et al. [18] discussed a numerical optimization model of desorption and
adsorption processes for hydraulic fracturing stimulations that was optimized by assuming polar
co-ordinate and balance space, respectively. To estimate the receptacle volume of drilled horizontal
shale well reservoirs, Gao and You [19] addressed a practical framework for the optimal flow of
shale energy networks. The designed configuration comprises various coherent components such
as freshwater, shale energy, wastewater management, transportation, and disposal facility with
treatment plant options. The formulated models were built in the form of a mixed-integer nonlinear
programming (MINLP) problem. The obtained results revealed the trade-off between economic and
environmental objectives. Furthermore, Guerra et al. [20] also discussed the mathematical formulation
and implementation of a comprehensive shale gas production framework with the integration of the
water supply chain management system. The proposed optimization framework was illustrated with
two case studies with different leading components of the shale gas production systems. Bartholomew
and Mauter [21] also developed a multiobjective mixed-integer linear programming framework to
highlight the trade-off between financial cost and human health & environment (HHE) costs in
the overall shale gas water management system. The system’s objectives were defined effectively,
inherently representing different financial aspects of the shale gas production planning problem.
Zhang et al. [22] presented a specific study on shale gas wastewater management systems under
uncertainty. The presented optimization framework for shale gas wastewater management system
corresponds to the disposal and treatment facilities under the expansion of treatment capacity. The
proposed model has been designed by considering fuzzy and stochastic parameters with feasibility
degree and probability distribution function at the different significance level. The concluding remarks
revealed the optimal wastewater management in cases where underground disposal capacity is
scarce. The uncertainty involved in the parameter reduced the reliability risk factor in shale gas
production. In the present competitive epoch, different shale-gas-producing countries have motivated
the wholesome and challenging study of shale gas production policies and the optimal supply chain
network configuration. Lira-Barragán et al. [23] investigated a mathematical programming formulation
for integrating water networks consumed for hydraulic fracturing processes in shale gas extraction.
The proposed uncertainty pertained to the use of water for a different purpose and highlighted
probabilistic aspects. Moreover, the developed models also cover the scheduling problem associated
with the whole modeling framework for shale gas extraction. The different expected objective functions
were incorporated, which led to the existence of uncertainty in the modeling approach. Interested
researchers can find recent publications on shale gas development and future research scope in Chen
et al. [24], Knee and Masker [25], Lan et al. [26], Ren et al. [27], Zhang et al. [28], Denham et al. [29],
Al-Aboosi and El-Halwagi [30], Jin et al. [31], Ren and Zhang [32], and Wang et al. [33].

Research Gaps and Contribution

Shale gas extraction planning models and optimal strategic implementation inherently depend on
various parametric factors that are actively indulged in the decision-making process. The requirement
of a tremendous amount of freshwater for hydraulic fracturing (i.e., between 7000 and 40,000 m3 per
well) becomes challenging. The assessment of different freshwater sources is somewhat uneconomic,
but other extractions can fulfill freshwater demand. The produced wastewater management system is
also an indispensable issue and is very important in shale gas production planning models.

Many recent publications, such as Guo et al. [34], Gao et al. [35], Chebeir et al. [36], Chen et al. [37],
Drouven and Grossmann [38], He et al. [39], and Wang et al. [40] have discussed different optimal
modeling approaches for shale gas water management systems with socio-economic and environmental
concerns. All of the above studies are confined to only uncertain modeling approaches, and have not
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discussed uncertainty among parameters’ values; however, Zhang et al. [22] incorporated vagueness
among parameters and represented it by fuzzy and stochastic quantification methodology. However,
the study proposed by Zhang et al. [22] is lagging in two more practical aspects. First, it may not
always be possible to have historical data for to the stochastic technique can be applied; additionally,
due to some hesitation regarding imprecise parameters, the fuzzy number may not be an appropriate
representative of uncertain parameters. Hence, better representation of the degree of hesitation under
vagueness or imprecision can be made by using the intuitionistic fuzzy number, which considers
the degree of belongingness as well as non-belongingness of the element in the possible set. Second,
Zhang et al. [22] only designed the optimization framework for the optimal management of wastewater
throughout the shale gas extraction processes, and did not consider the management of freshwater,
which is also an integrated part of the whole shale gas extraction over time horizons. Thus, in this
study we propose the unification of the two aspects discussed above. The proposed multiobjective
shale gas water management system optimization model was designed after considering the most critical
aspects of overall water management planning and optimization epoch. Furthermore, the concept of a
neutrosophic goal programming approach is new and has not yet been applied in the field of such an
emerging source of energy. The proposed model also ensures the trade-off between the socio-economic
and environmental effects of shale gas production policies more realistically. The proposed shale gas
optimization model also provides an opportunity to adopt the available on-site treatment technology
along with the option of expanding the treatment plant, which would be beneficial for Pennsylvania
because underground disposal facilities are scarce and most often wastewater is supplied to nearby cities
in Ohio. The rest of the paper is summarized as follows:

In Section 2, the methodologies and technical definitions regarding intuitionistic fuzzy parameters
and the neutrosophic goal programming approach (NGPA) are discussed, while Section 3 represents
the multiobjective shale gas water management optimization model and implementation of the NGPA
algorithm. A hypothetical case study is examined in Section 4 that shows the applicability and validity
of the proposed approach. Finally, concluding remarks and findings are highlighted based on the
present work in Section 5.

2. Methodology

The shale gas optimization and modeling framework discussed in this paper enviably involve
significant work-flow procedures. The involvement of various critical terminological aspects in the
proposed modeling and computational approach makes the shale gas optimization problem more
pervasive. In order to represent these aspects, we have used some technical terminology which is able
to define each and every aspect of the proposed model effectively and efficiently. The mathematical
technical terminologies used in this study are intuitionistic fuzzy parameters [41–43] and those
from multiobjective optimization problems [44–46] and the neutrosophic goal programming approach,
which is based on the neutrosophic decision set (see [47–49]). On the basis of these mathematical
technical terminologies, we developed an effective modeling and optimization framework for a shale
gas water management system that dynamically characterizes the freshwater requirement and the
dispensation of the generated wastewater from shale gas wells. The proposed model for shale gas
water management systems contemplates different kinds of cost parameters (e.g., acquisition cost,
transportation cost, treatment cost, disposal cost, and capital investment) involved in the accumulation
process of freshwater and the dispensation of the generated wastewater from the shale gas extraction
process. Apart from the cost, different parameters such as the freshwater storage capacity, underground
injection disposal capacity of wastewater, wastewater treatment capacity, and the capacity for the
expansion of wastewater treatment plants were considered in this study. Moreover, these parameters
are not always in deterministic/crisp form, despite containing some kind of ambiguity and vagueness.
This ambiguousness and vagueness can be represented by different uncertain parameters, such as fuzzy
Zhang et al. [22], intuitionistic fuzzy, stochastic Zhang et al. [22], and other uncertain forms. The fuzzy
parameters are only concerned with the maximization of membership degree (belongingness), whereas
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an intuitionistic fuzzy set is based on more intuition than a fuzzy set, as it deals with the maximization
of membership (belongingness) and the minimization of non-membership degree (non-belongingness)
of the element in the set. A stochastic parameter involves a probability distribution function with
known mean and variances based on the randomly occurring events.

Furthermore, the proposed modeling approach was designed and incorporated with
socio-economic and environmental facts. The potential production and distribution of shale gas energy
at the commercial level is not a boon unless and until the proper pertinent initiatives are undertaken in
order to overcome the by-products released by the shale gas extraction processes. Therefore,
the proposed modeling and optimization approach inherently involves more than one objective
(known as a multiobjective optimization problem), which is sufficient to justify the trade-off among
different critical socio-economic and environmental aspects of shale gas energy. The mathematical
formulation of multiple objectives ensures the economic and environmental aspects of shale gas
extraction procedures. To deal with the proposed multiobjective shale gas water management
optimization model, a neutrosophic goal programming approach was developed that reveals the actual
situation more appropriately. The proposed NGPA considers the independent indeterminacy/neutral
degree, which is the area of incognizance of a proposition’s value. The selection of the proposed NGPA
technique is quite effective, explanatory, and a good representative of real-life situations.

2.1. Intuitionistic Fuzzy Set

Definition 1 ([50]). (Intuitionistic fuzzy set (IFS)) Let there be a universal set Y; then, an IFS W̃ in Y is given
by the ordered triplets as follows:

W̃ = {y, µW̃(y), νW̃(y)| y ∈ Y},

where
µW̃(y) : Y → [0, 1]; νW̃(y) : Y → [0, 1],

with conditions
0 ≤ µW̃(y) + νW̃(y) ≤ 1,

where µW̃(y) and νW̃(y) denote the membership and non-membership functions of the element y ∈ Y into the
set W̃.

Definition 2 ([51] (Intuitionistic fuzzy number)). An intuitionistic fuzzy set W̃ =

{y, µW̃(y), νW̃(y)| y ∈ Y} of the real number R is said to be an intuitionistic fuzzy number if the
following condition holds:

(i) W̃ should be intuitionistic fuzzy normal and convex.
(ii) µW̃(y) and νW̃(y) should be upper and lower semi-continuous functions.

(iii) Supp W̃ = {y ∈ R; νW(y) < 1} should be bounded.

Definition 3 ([43]). (Triangular intuitionistic fuzzy number) An intuitionistic fuzzy number W̃ is said to be a
triangular intuitionistic fuzzy number if the membership function µW̃(y) and non-membership function νW̃(y)
are given by:

µW̃(y) =





y− a1

b− a1
, if a1 ≤ y ≤ b,

1, if y = b,
a2 − y
a2 − b

, if b ≤ y ≤ a2

and
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νW̃(y) =





b− y
b− a3

, if a3 ≤ y ≤ b,

0, if y = b,
y− b
a4 − b

, if b ≤ y ≤ a4,

where a3 ≤ a1 ≤ b ≤ a2 ≤ a4 and is denoted by W̃ = {(a1, b, a2; µW̃), (a3, b, a4; νW̃)}.

Definition 4 ([42]). (Expected interval for intuitionistic fuzzy number) Let us consider that there exists an
intuitionistic fuzzy number W̃ which belongs to the set of real numbers R with (a1, a2, a3, a4; b1, b2, b3, b4) ∈ IR
such that a1 ≤ a2 ≤ a3 ≤ a4 ≤ b1 ≤ b2 ≤ b3 ≤ b4. The four functions fW̃(y), gW̃(y), hW̃(y), kW̃(y) : IR →
[0, 1] such that fW̃(y) and gW̃(y) are non-decreasing and hW̃(y) and kÃ(y) are non-increasing functions, then
the intuitionistic fuzzy number W̃ = {y, µW̃(y), νW̃(y) : y ∈ Y} can be represented by membership and
non-membership functions stated as follows:

µW̃(y) =





0, if y ≤ a1 or y ≥ a4,
fW̃(y), if a1 ≤ y ≤ a2,
gW̃(y), if a3 ≤ y ≤ a4,
1, if a2 ≤ y ≤ a3

and

νW̃(y) =





1, if y ≤ b1 or y ≥ b4,
hW̃(y), if b1 ≤ y ≤ b2,
kW̃(y), if b3 ≤ y ≤ b4,
0, if b2 ≤ y ≤ b3.

Furthermore, Grzegrorzewski [52] discussed the expected interval for the intuitionistic fuzzy number
W̃ = {a1, a2, a3, a4; b1, b2, b3, b4} as a crisp interval and presented it as follows:

EI(W̃) = [E1(W̃), E2(W̃)]. (1)

The lower and upper values of the expected interval for the intuitionistic fuzzy number W̃ is defined as
given below:

E1(W̃) =
b1 + a2

2
+
∫ b2

b1

hW̃(y)−
∫ a2

a1

fW̃(y),

E2(W̃) =
a3 + b4

2
+
∫ a4

a3

gW̃(y)−
∫ b4

b3

kW̃(y),

where
hW̃(y) =

y− b1

b2 − b1
, fW̃(y) =

y− a1

a2 − a1
,

kW̃(y) =
y− b4

b3 − b4
, gW̃(y) =

y− a4

a3 − a4
.

Definition 5 ([42]). (Expected interval and value for triangular intuitionistic fuzzy number) Suppose that
W̃ = {(a1, b, a2; µW̃), (a3, b, a4; νW̃)} is a triangular intuitionistic fuzzy number with membership and
non-membership functions µW̃(y) and νW̃(y); then, the expected interval of the triangular intuitionistic
fuzzy number by using the above definition can be obtained as follows:

E1(W̃) =
b1 + a2

2
+
∫ b2

b1

hW̃(y)−
∫ a2

a1

fW̃(y) =
3a + b1 + (a− b1)νW̃ − (a− a1)µW̃

4
(2)

and
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E2(W̃) =
a3 + b4

2
+
∫ a4

a3

gW̃(y)−
∫ b4

b3

kW̃(y) =
3a + b2 + (a2 − a)µW̃ + (a− b2)νW̃

2
. (3)

Grzegrorzewski [52] also suggested the expected value for the intuitionistic fuzzy number with the help of
lower and upper values of the expected interval. Therefore, the expected value for the triangular intuitionistic
fuzzy number is obtained as follows:

EV(W̃) =

[
E1(W̃) + E2(W̃)

2

]
. (4)

Definition 6. The general mathematical programming formulation of a multiobjective optimization problem
with k objectives, j constraints, and q variables can be stated as follows:

Optimize (Z1, Z2, · · · , Zk) k = 1, 2, · · · , K

s.t. gj(x) ≤ dj, j = 1, 2, · · · , j1;

gj(x) ≥ dj, j = j1 + 1, j1 + 2, · · · , j2;

gj(x) = dj, j = j2 + 1, j2 + 2, · · · , J;

xq ≥ 0, q = 1, 2, 3, · · · , Q; xq ∈ X,

(5)

where Zk are a set of k different conflicting objectives, gj are real-valued functions, and dj are real numbers. xq is
a q-dimensional decision variable vector and X is a feasible solution set.

2.2. Neutrosophic Goal Programming Approach (NGPA)

In the past few decades, the extended version of the fuzzy set (FS) and intuitionistic fuzzy set
(IFS) have been introduced. In order to reflect the insightful concept of indeterminacy or neutral
thoughts in decision making, a new set called the neutrosophic set was introduced by Smarandache [47].
The technical erm neutrosophic holds two different words, which are neutre derived from French and
meaning “neutral”, and sophia, adopted from Greek and meaning “skill” or “wisdom”. Therefore,
the word “neutrosophic” concretely means “knowledge of neutral thoughts”. The FS is mainly
concerned with the maximization of the degree of belongingness (membership function) of an element
in the set, whereas the IFS deals with two aspects, namely, the degree of belongingness (membership
function) and the degree of non-belongingness (non-membership function) of the element in the
set. The incorporation of the independent neutral/indeterminacy concept in the neutrosophic set
differentiates itself from FS and IFS, providing more strength to decision-making processes.

Moreover, many real-life circumstances may not be easy to tackle with only the degree of
belongingness and non-belongingness of the element in the set. However, the degree up to some level
of belongingness and non-belongingness would be a significant touchstone in the decision-making
process. For example, if we take the opinion about the victory of team X in a cricket match,
and supposing they have the possible chance of winning equalling 0.8, the chance team X has
of losing would be 0.4 and the chance that match would be a tie would be 0.5 (see [53]). All the
possibilities are independent of each other and can take any value between 0 and 1. Therefore, this sort
of decision-making problem is outside of the domain of FS and IFS, and consequently beyond the
periphery of fuzzy programming and intuitionistic fuzzy programming approaches, respectively.
Hence, independent indeterminacy conditions under the uncertainty domain are a more technical
perspective in real-life optimization problems (see [48,49,53]).

An efficient approach called the neutrosophic goal programming approach (NGPA) based on
the neutrosophic decision set [47] was designed in order to reach the best compromise solution of
multiobjective optimization problems. The NGPA inherently comprises three membership functions,
namely, the maximization of truth and indeterminacy degrees and the minimization of the falsity
degree present in any optimization problem. It permits policymakers to manifest independent neutral
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inferences about decision-making processes and provides an opportunity to effectively reach goals
using the NGPA technique.

Definition 7 ([47] (Neutrosophic Set)). Let there be a universal discourse Y such that y ∈ Y, then a
neutrosophic set W in Y is defined by three membership functions, namely, truth TW(y), indeterminacy IW(y),
and falsity FW(y), denoted by the following form:

W = {< y, TW(y), IW(y), FW(y) > |y ∈ Y},

where TW(y), IW(y), and FW(y) are real standard or non-standard subsets belonging to ]0−, 1+[, also given as,
TW(y) : y → ]0−, 1+[, IW(y) : Y → ]0−, 1+[, and FW(y) : Y → ]0−, 1+[. There is no restriction on the sum
of TW(y), IW(y) and FW(y), so we have

0− ≤ sup TW(y) + IW(y) + sup FW(y) ≤ 3+.

Definition 8 ([47]). Let there be two single-valued neutrosophic sets A and B, then C = (A ∪ B) with truth
TC(y), indeterminacy IC(y), and falsity FC(y) membership functions are given by:

TC(y) = max (TA(y), TB(y)),
IC(y) = min (IA(y), IB(y)),
FC(y) = min (FA(y), FB(y)) for each y ∈ Y.

Definition 9 ([47]). Let there be two single-valued neutrosophic sets A and B, then C = (A ∩ B) with truth
TC(y), indeterminacy IC(y), and falsity FC(y) membership functions are given by

TC(y) = min (TA(y), TB(y)),
IC(y) = max (IA(y), IB(y)),
FC(y) = max (FA(y), FB(y)) for each y ∈ Y.

The concept of fuzzy decision (D), fuzzy goal (G), and fuzzy constraint (C) was first discussed
by Bellman and Zadeh [44] and extensively used in many real-life decision-making problems under
fuzziness. Therefore, a fuzzy decision set can be defined as follows:

D = G ∩ C.

Equivalently, the neutrosophic decision set DN , with the set of neutrosophic goals and constraints,
can be defined as:

DN = (∩K
k=1Gk)(∩J

j=1Cj) = (y, TD(y), ID(y), FD(y) ),

where

TD(y) = min

{
TG1(y), TG2(y), ..., TGK (y)
TC1(y), TC2(y), ..., TCJ (y)

}
∀ y ∈ Y,

ID(y) = max

{
IG1(y), IG2(y), ..., IGK (y)
IC1(y), IC2(y), ..., ICJ (y)

}
∀ y ∈ Y,

FD(y) = max

{
FG1(y), FG2(y), ..., FGK (y)
FC1(y), FC2(y), ..., FCJ (y)

}
∀ y ∈ Y,

where TD(y), ID(y), and FD(y) are the truth, indeterminacy, and falsity membership functions of
neutrosophic decision set DN , respectively.
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In order to formulate the different membership functions for multiobjective optimization problems
(MOOPs), we defined the bounds for each objective function. The lower and upper bounds for each
objective function are represented by Lk and Uk which can be obtained as follows:

First, we solved each objective function as a single objective under the given constraints of the
problem. After solving k objectives individually, we have the k solutions set, X1, X2, ..., Xk. After that,
the obtained solutions are substituted for each objective function to provide the lower and upper
bounds for each objective, as given below:

Uk = max [Zk(Xk)] and Lk = min [Zk(Xk)] ∀ k = 1, 2, 3, ..., K. (6)

The bounds for k objective functions under the neutrosophic environment can be obtained as
follows:

UT
k = Uk, LT

k = Lk for truth membership,

U I
k = LT

k + sk, LI
k = LT

k for indeterminacy membership,

UF
k = UT

k , LF
k = LT

k + tk for falsity membership,

where sk and tk ∈ (0, 1) are predetermined real numbers assigned by decision maker(s) (DM(s)).
By using the above lower and upper bounds, we defined the linear membership functions under a
neutrosophic environment:

Tk(Zk(x)) =





1 i f Zk(x) < LT
k

UT
k −Zk(x)
UT

k −LT
k

i f LT
k ≤ Zk(x) ≤ UT

k

0 i f Zk(x) > UT
k ,

(7)

Ik(Zk(x)) =





1 i f Zk(x) < LI
k

U I
k−Zk(x)
U I

k−LI
k

i f LI
k ≤ Zk(x) ≤ U I

k

0 i f Zk(x) > U I
k ,

(8)

Fk(Zk(x)) =





1 i f Zk(x) > UF
k

Zk(x)−LF
k

UF
k −LF

k
i f LF

k ≤ Zk(x) ≤ UF
k

0 i f Zk(x) < LF
k .

(9)

In the above case, L(.)
k 6= U(.)

k for all k objective functions. If for any membership L(.)
k = U(.)

k , then
the value of these memberships will be equal to 1. The diagrammatic representation of the objective
function with different components of membership functions under a neutrosophic environment is
shown in Figure 1.

Moreover all the above three discussed membership degrees can be transformed into membership
goals according to their respective degrees of attainment. The highest degree of truth membership
function that can be achieved is unity (1), the indeterminacy membership function is neutral and
independent with the highest attainment degree half (0.5), and the falsity membership function can be
achieved with the highest attainment degree zero (0). Now the transformed membership goals under
a neutrosophic environment can be expressed as follows:

Tk(Zk(x)) + d−kT − d+kT = 1, (10)

Ik(Zk(x)) + d−kI − d+kI = 0.5, (11)

Fk(Zk(x)) + d−kF − d+kF = 0, (12)
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where d−kT , d+kT , d−kI , d+kI , d−kF, and d+kF are the over and under deviations such that d−kT .d+kT = 0, d−kF.d+kF =

0, and d−kF.d+kF = 0 for truth membership, indeterminacy membership, and falsity membership goals
under a neutrosophic environment.

Figure 1. Diagrammatic representation of truth, indeterminacy, and falsity membership degree for the
objective function.

Intuitionally, the aims are to maximize the truth and indeterminacy membership degrees of
neutrosophic objectives and constraints, and minimize the falsity membership degree of neutrosophic
objectives and constraints. The general formulation of the neutrosophic goal programming (NGP)
model for multiobjective optimization problem (5) is represented as follows:

Minimize Z =
K

∑
k=1

wkT .d−kT +
K

∑
k=1

wkI .d−kI +
K

∑
k=1

wkF.d+kF,

subject to

Tk(Zk(x)) + d−kT − d+kT ≥ 1;

Ik(Zk(x)) + d−kI − d+kI ≥ 0.5;

Fk(Zk(x)) + d−kF − d+kF ≤ 0;

Tk(Zk(x)) ≥ Ik(Zk(x));

Tk(Zk(x)) ≥ Fk(Zk(x));

Fk(Zk(x)) ≥ 0, d−kT .d+kT = 0;

d−kI .d
+
kI = 0, d−kF.d+kF = 0;

gj(x) ≤ dj, j = 1, 2, · · · , m1;

gj(x) ≥ dj, j = m1 + 1, m1 + 2, · · · , m2;

gj(x) = dj, j = m2 + 1, m2 + 2, · · · , m;

xi ≥ 0, i = 1, 2, 3, · · · , q; xi ∈ X;

d−kT , d+kT , d−kI , d+kI d−kF, d+kF ≥ 0 ∀ k,

(13)

where wkT , wkI , and wkF are the weights assigned to deviations of the truth, indeterminacy, and falsity
membership goals of each objective function, respectively. Now the assignment of corresponding
weighting schemes of different weights can be obtained as follows:

wkT =
1

UT
k − LT

k
, wkI =

1
U I

k − LI
k

, and wkF =
1

UF
k − LF

k
.

Hence, the optimum evaluation of multiobjective optimization problems by using the NGP
approach is a very useful technique as it involves the degree of indeterminacy, which is independent
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and certainly ensures the achievement of marginal evaluation of each membership goal by reducing
the deviational values under a neutrosophic environment.

3. Shale Gas Water Management System: Modeling and Optimization under Uncertainty

Shale gas is a rapidly emerging and unconventional source of energy found trapped in shale
rocks. The extraction process at the wholesale level is very complicated. Since shales usually possess
low permeability to permit significant fluid inflow to a well-bore, most shale wells are not adequate
sources of natural gas for commercial production. Other sources of natural gases include coal bed
methane, methane hydrates, and tight sandstones. Most commonly, the area in which shale gases are
trapped are known as resource plays. Shale has comparatively low matrix permeability, which affects
gas production at the commercial level and requires the fracturing process to supply permeability.
In the past few decades, shale gas has been produced from shale rocks with natural fractures. Shale
gas production seems to be booming in recent years due to the latest potential technology in hydraulic
fracturing (fracking), which has led in the direction of pervasive artificial fractures around good bores.
Horizontal drilling is often used in the shale gas extraction process. Lateral lengths up to 10,000 feet
(3000 m) within shale wells are dug out to create maximum borehole surface area in contact with the
shale. While injecting water with high pressure into shale rocks, chemicals are added to facilitate the
underground fracturing process, which releases natural gas. The fracturing fluid is primarily water
and contains approximately 0.5% chemical additives that are fully dissolved into the water. Depending
on the size of the area, millions of liters of water are used for fracking, which signifies that thousands
of liters of chemicals are injected into the subsurface.

The massive amount of contaminated surface water and groundwater with fracking fluids has
emerged as a problematic issue. Generally, accrued shale gas is usually trapped several thousand
feet below ground. Different challenging environmental concerns are often observed. For example,
methane migration, improper treatment of produced wastewater, and lack of an underground injection
disposal site. About 50% to 70% of the injected volume of contaminated water is generated after
fracking, and sufficient storage capacity for wastewater management is required. The remaining
volume of water remains in the subsurface. The hydraulic fracturing process leads to the perception
that it can lead to the contamination of groundwater aquifers. However, foul odors and very toxic local
water supply above-ground are also unavoidable truths about shale gas. Acid mine wastewater can be
released into groundwater, but it might cause significant contamination of underground freshwater.
Usually, the harmful impact and water pollution associated with wastewater and coal production
can be reduced to a certain extent in shale gas production. Apart from using water and industrial
chemicals, it may also be feasible to frack shale gas with only liquefied propane gas. This extraction
option simultaneously reduces water and environmental degradation. It can be implemented in
regions like Pennsylvania that have experienced a marginal increment in the freshwater requirement
for energy production. More explicitly, shale gas development in the United States represents less than
half a percent of total domestic freshwater consumption, although this quantity can reach as high as
25% in particularly arid regions.

Therefore, the proposed shale gas water management strategy has been designed to optimize
the allocation of water requirement for different purposes. The designed water supply chain network
configuration contains various components, such as the acquisition of freshwater and its transportation,
on-site treatment with different technology, underground injection disposal sites, and treatment plants
for wastewater with an option for expansion with a to and fro transportation network. Different
potential objectives addressing the project planning strategy were also considered in this present study.
A well-defined set of dynamic constraints were imposed to represent the modeling approach more
realistically. The integrated water flow supply chain network within shale gas planning periods is
shown in Figure 2. In Figure 2, the different echelons are presented to highlight the proposed shale gas
water management design. The flow of freshwater initiates from different freshwater sources S and is
then shipped to various shale sites I. After fracking processes, a possible part of the generated toxic
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water would be treated by on-site treatment technology O, and the remaining wastewater would be
used to dispatch for further management to different treatment plants or disposal sites J, respectively.
To enhance the treatment capacity of sewage treatment plants, an opportunity to adopt the different
expansion options M was incorporated along with the associated capital investment. Hence, the treated
wastewater can be reused for household purposes and in turn can yield significant revenues from
the reuse of water. The whole integrated water cycle continues to flow over different time horizons
T. Therefore, to assure the optimal flow of water among different echelons, the proposed water flow
network captures the actual behavior of flow-back and produced water during shale gas extraction
processes. The shale gas project planning model explicitly includes different indices’ set, decision
variables, and values of parameters shown in Table 1, which presents the significant characteristic
features during the shale gas synthesis process.

The proposed shale gas water flow network configuration is based on the following assumptions:

1. There is no scope for the transportation of water using pipelines throughout the planning horizons.
2. The expansion options of underground injection disposal sites have not been considered due to

the financial crisis or uneconomic aspects throughout the planning horizons.
3. The expansion of the treatment plant has been considered in order to avoid excess wastewater at

the subsurface level of underground water during all the planning periods.
4. An absolute option of on-site treatment technology has been included that enables the reuse of

wastewater within the shale sites throughout the planning horizons.
5. The restrictive margin was designed for the minimum and maximum capacity of wastewater

treatment by using different on-site treatment technologies throughout the planning horizons.
6. The overall produced wastewater volume was successfully managed by the proposed system

during all the planning horizons.

Figure 2. Representation of shale gas integrated water flow optimization network over time.
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Table 1. Notions and descriptions.

Indices Descriptions

i Denotes the number of shale sites
j Represents the number of disposal sites and treatment plants
m Denotes the available options for the expansion capacity of the treatment plant
o Denotes the on-site treatment technologies
t Represents the time period
s Denotes the source of freshwater

Decision variables

FWs,i,t Amount of freshwater acquired from source s at shale site i in time period t
WTOi,o,t Amount of wastewater treated by on-site treatment technology o at shale site i in time

period t
WWi,j,t Total amount of wastewater generated at shale site i and received by disposal site and

treatment plant j in time period t
WWDi,j,t Amount of wastewater generated at shale site i and received by disposal site j in time

period t
WWTi,j,t Amount of wastewater generated at shale site i and received by treatment plant j in

time period t
Yj,m,t Binary variable representing the expansion capacity of the disposal site and treatment

plant j by expansion option m in time period t
YOi,o Binary variable representing that on-site technology o is applied at shale site i

Parameters

loo Recovery factor for treating wastewater with on-site treatment technology o
f dwi,t Freshwater demand at shale site i in time period t
f cas,t Freshwater supply capacity at source s in time period t
r fo Ratio of freshwater to wastewater required for blending after treatment with on-site

treatment technology o
wwdsj,t Capacity for wastewater at disposal site j in time period t
wwtpj,t Capacity for wastewater at treatment plant j in time period t
wdwj,t Total wastewater capacity at disposal site and treatment plant j in time period t
eoj,m,t Represents increased treatment capacity of wastewater treatment plant j by using

available expansion option m in time period t
caqs,t Denotes the unit acquisition cost of freshwater at source s in time period t
ct fs,i,t Denotes the unit transportation cost of freshwater from source s to shale site i in time

period t
ctwi,j,t Denotes the unit transportation cost of wastewater from shale site i to disposal site and

treatment plant j in time period t
ctrj,t Denotes the unit treatment cost of wastewater at treatment plant j in time period t
cdj,t Denotes the unit disposal cost of wastewater at disposal site j in time period t
rej,t Denotes the revenues from wastewater reuse from treatment plant j in time period t
rrj,t Denotes the reuse rate from wastewater treatment plant j in time period t
cexj,m,t Represents the investment cost of expanding the disposal site and treatment plant j by

expansion option m in time period t
oclo Denotes the minimum capacity for the on-site treatment of wastewater
ocuo Denotes the maximum capacity for the on-site treatment of wastewater

3.1. Objective Function

The first objective function is concerned with a different kind of cost incurred over the freshwater.
It is quite a challenging task to collect the optimal amount of freshwater directly from natural freshwater
sources; however, the option exists to acquire the freshwater from nearby the shale gas plant, which
results in a lower acquisition cost. The transportation of freshwater is also required, which again
appears as a transportation cost from source s to shale site i over period t, and both are of minimization
type. Therefore, the cost function (14) related to freshwater can be furnished as follows:
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Minimize Z1 =
S

∑
s=1

I

∑
i=1

T

∑
t=1

(caqs,t + ct fs,i,t)FWs,i,t. (14)

The second objective mainly focuses on a different kinds of cost levied over the wastewater.
It is crucial to manage the huge amount of contaminated or toxic wastewater released during the
shale gas energy generation process. The produced amount of wastewater can be handled by
either sending it to the treatment plants or by dumping into underground wastewater disposal
sites. Both techniques are associated with some cost known as treatment and disposal facility costs,
respectively. The transportation of wastewater from shale sites to different treatment plants and
disposal sites results in additional transportation costs associated with the wastewater. The total
revenues from the reuse of wastewater with some reuse rate are also associated with wastewater from
shale site i to disposal and treatment plant j over period t. Therefore, the cost function (15) related to
wastewater can be presented as follows:

Minimize Z2 =
I

∑
i=1

J

∑
j=1

T

∑
t=1

(ctrj,t + cdj,t + ctwi,j,t − rrj,t.rej,t)WWi,j,t. (15)

The third objective function provides the facility of proliferation at treatment plants and
underground disposal sites with some predetermined expansion option. The different expansion
options require capital investment, which is to be minimized with binary variable taking value 1 if the
expansion option m is adopted at treatment plant j over time period t; otherwise 0. Therefore the total
capital investment (16) for the expansion of wastewater treatment plant capacity can be summarized
as follows:

Minimize Z3 =
J

∑
j=1

M

∑
m=1

T

∑
t=1

(cexj,m,t).Yj,m,t. (16)

3.2. Constraints

The constraint given by (17) is related to freshwater demand at shale sites:
At each shale site, a certain quantity of freshwater is required for the hydraulic fracturing process.

The total amount of freshwater obtained from different sources is not sufficient to meet the demand
at shale sites, but it is indispensable to build up the other sources or by developing other techniques
to obtain the freshwater. Therefore on-site treatment technology with a recovery factor for treating
wastewater is also an important option to fulfill the demand of such a tremendous amount of freshwater.
Hence, the sum of the total amount freshwater acquired from different freshwater sources s and
freshwater obtained from various on-site treatment technologies o with the recovery factor for treating
wastewater must be greater than or equal to its total requirement at each shale site i over period t:

S

∑
s=1

FWs,i,t +
O

∑
o=1

loo ∗WTOi,o,t ≥ f dwi,t ∀ i, t. (17)

The constraint has given in (18) is related to the freshwater capacity at each source:
The total amount of freshwater obtained from different sources has some limitations in terms of

storage capacity at different sources. The optimal stock of freshwater at different sources may differ
marginally. It is necessary to ensure that the total amount of freshwater can be obtained without
substantially affecting the storage capacity of each freshwater source. Therefore, the total amount of
freshwater acquired from different sources s with the consumption at each shale site i must be less
than or equal to its storage capacity at source s over period t:

I

∑
i=1

FWs,i,t ≤ f cas,t ∀ s, t. (18)
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The constraint given in (19) is related to wastewater capacity at underground disposal sites:
The amount of wastewater generated after the fracturing process contains various toxic chemicals

dissolved in it. A proper disposal system with its associated available capacity must be built to
overcome fatal environmental effects. Therefore, it must be assured that the amount of wastewater
received at different disposal sites can be fully tackled. Thus, the amount of wastewater released from
shale site i and received at each disposal site j must be less than or equal to the presumable capacity of
each disposal site j over period t:

I

∑
i=1

WWDi,j,t ≤ wwdsj,t ∀ j, t. (19)

The constraint given in (20) is related to the wastewater capacity at each treatment plant with its
prevalence:

The wastewater treatment facility leads to the option of reusing wastewater. The amount of
wastewater liberated from different shale sites restrains the tremendous amount of harmful chemicals
that must be treated at the water treatment plant to ensure its reuse for different household purposes.
Thus, the amount of wastewater released from different shale sites i and dispatched to different
treatment plants j must be less than or equal to the sum of the total capacity of each treatment plant
with its several expansion options m over period t:

I

∑
i=1

WWTi,j,t ≤ wwtpj,t +
M

∑
m=1

eoj,m,t.Yj,m,t ∀ j, t. (20)

The constraint given in (21) is related to the overall wastewater capacity at the treatment plant
and disposal site:

The total amount of wastewater generated during the shale gas extraction process must be
confronted with proper cautionary measures. The option of the treatment plant and disposal site for
dealing with wastewater must be sufficient to conquer its harmful effects. Therefore it must be ensured
that the total amount of wastewater generated from the hydraulic fracturing process at shale site i is
less than or equal to its total capacity at the treatment plant and disposal site j over period t:

I

∑
i=1

WWi,j,t ≤ wdwj,t ∀ j, t. (21)

The constraint given in (22) is related to different wastewater capacities at the treatment plant and
disposal site:

This constraint ensures that regardless of what the excess amount of wastewater released from
shale sites is, it must be fully managed by expanding the treatment plant capacity. Therefore,
the different treatment plants have a potential storage capacity increment option within the investment
costs. Thus, the sum of total wastewater capacity enhanced by expanding treatment plant j with
expansion option m, the total capacity of underground disposal and treatment plant j must be less
than or equal to the assorted capacity of disposal site and treatment plant j over time period t:

M

∑
m=1

eoj,m,t.Yj,m,t + wwdsj,t + wwtpj,t ≤ wdwj,t ∀ i, j, t. (22)

The constraint given in (23) is related to the different wastewater capacities at the treatment plant
and disposal site:

The necessity and utilization of a huge amount of freshwater in the whole process of shale gas
extraction requires thought regarding its acquisition. Various techniques are used to recycle freshwater.
Therefore, one of the most trending techniques is on-site treatment with different technologies. Thus,
the reuse specification for hydraulic fracturing with the blending ratio of freshwater to wastewater
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after the treatment of on-site treatment technology o must be less than or equal to the total amount of
freshwater acquired at source s transported to shale site i over period t:

O

∑
o=1

r fo.loo.WTOi,o,t ≤ FWs,i,t ∀ s, i, t. (23)

The constraint given in (24) is related to the minimum capacity of the ton-site treatment of
wastewater:

This restriction was imposed with the fact that a minimal amount of freshwater must be obtained
by using on-site treatment technology. The capital investment towards the setup of on-site treatment
plant steers the utilization of on-site treatment technology. Thus, the minimum capacity of on-site
wastewater treatment with technology o along with the binary variable taking value one if the certain
technology is used (and otherwise 0) at shale site i must be less than or equal to the amount of
wastewater treated by on-site treatment technology o over period t:

O

∑
o=1

oclo.YOi,o ≤WTOi,o,t ∀ i, t. (24)

The constraint given in (25) is related to the maximum capacity of on-site wastewater treatment:
This restriction ensures that the maximal amount of freshwater is acquired by using on-site

treatment technology. The upper limit for the on-site treatment of wastewater restricts the excessive
holding of wastewater at the on-site treatment plant. Thus, this constraint provides the surety that
the minimum capacity of on-site treatment of wastewater with technology o along with the binary
variable taking value 1 if the certain technology is used (otherwise 0) at shale site i is greater than or
equal to the amount of wastewater treated by on-site treatment technology o over time period t:

O

∑
o=1

ocuo.YOi,o ≥WTOi,o,t ∀ i, t. (25)

The constraint given in (26) is related to the total wastewater produced during the shale gas
extraction process:

It must be ensured that the total amount of wastewater generated during the fracking procedures
is strictly equal to the sum of different amounts of wastewater distributed to the treatment plant and
disposal site. Therefore, the sum of the total amount of wastewater at the treatment plant and disposal
site j dispatched from shale site i must be equal to the assorted wastewater capacity at disposal site
and treatment plant j over time period t:

I

∑
i=1

J

∑
j=1

T

∑
t=1

WWDi,j,t +
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWTi,j,t =
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWi,j,t ∀ i, j, t. (26)

The proposed multiobjective shale gas optimization model under uncertainty is presented in
model M1 with the fact that parameter values inherently contain vagueness and ambiguousness
in the real-life decision-making process. The decision maker(s) or policy maker(s) is(are) not very
sure about the exact parameter values due to a lack of proper information, relatively little experience,
environmental issues, and other humanitarian logical perception. To overcome these issues, the settings
are taken as the triangular intuitionistic fuzzy number and are more elaborately discussed in Section 3.3.
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M1 : Minimize Z1 =
S

∑
s=1

I

∑
i=1

T

∑
t=1
{ ˜caqs,t +

˜ct f s,i,t}FWs,i,t

Minimize Z2 =
I

∑
i=1

J

∑
j=1

T

∑
t=1
{ ˜ctrj,t + c̃dj,t + ˜ctwi,j,t − rrj,t.rej,t}WWi,j,t

Minimize Z3 =
J

∑
j=1

M

∑
m=1

T

∑
t=1
{ ˜cexj,m,t}.Yj,m,t

subject to:

S

∑
s=1

FWs,i,t +
O

∑
o=1

loo.WTOi,o,t ≥ ˜f dwi,t ∀ i, t

I

∑
i=1

FWs,i,t ≤ ˜f cas,t ∀ s, t

I

∑
i=1

WWDi,j,t ≤ ˜wwdsj,t ∀ j, t

I

∑
i=1

WWTi,j,t ≤ ˜wwtpj,t +
M

∑
m=1

eoj,m,t.Yj,m,t ∀ j, t

I

∑
i=1

WWi,j,t ≤ ˜wdwj,t ∀ j, t

M

∑
m=1

eoj,m,t.Yj,m,t + ˜wwdsj,t + ˜wwtpj,t ≤ ˜wdwj,t ∀ i, j, t

O

∑
o=1

r fo.loo.WTOi,o,t ≤ FWs,i,t ∀ s, i, t

O

∑
o=1

oclo.YOi,o ≤WTOi,o,t ∀ i, t

O

∑
o=1

ocuo.YOi,o ≥WTOi,o,t ∀ i, t

I

∑
i=1

J

∑
j=1

T

∑
t=1

WWDi,j,t +
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWTi,j,t =
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWi,j,t ∀ i, j, t

FWs,i,t ≥ 0, WWi,j,t ≥ 0 ∀ s, i, j, t

WTOi,o,t ≥ 0, WWDi,j,t ≥ 0, WWTi,j,t ≥ 0 ∀ i, o, j and t

0 ≤ Yj,m,t , YOi,o ≤ 1, Yj,m,t and YOi,o = integer, ∀ i, o, j, m and t,

where the notation (.̃) over different parameters represents the triangular intuitionistic fuzzy number
for the indices’ whole set.
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3.3. Intuitionistic Fuzzy Parameters

The proposed multiobjective shale gas water management optimization model discussed in
Section 3 inherently involves uncertainty or impreciseness. The existence of ambiguity among
parameters makes it uncertain. It is not always feasible for decision maker(s) or project manager(s) to
assign crisp/exact parameter values. Actual perceptions behind the uncertainty involve a lack of proper
information, environmental conditions, the condition of roads, natural calamities, abrupt changes in
the prices of fuel, different routes of transportation, shortages of freshwater on sunny days, etc. In such
cases, only some vague and inconsistent pieces of information are available regarding the parameter
values. Therefore, uncertainty can take different forms, such as fuzzy numbers, stochastic random
variables, and other forms of change. Based on this confluent information, one may assume imprecise
parameters and easily overcome uncertainty by applying the different techniques to obtain the best
estimates of the parameters. In brief, we may distinguish between stochastic and fuzzy methods while
dealing with the uncertain dataset. The uncertainty involved in the data due to randomness can be
handled with a stochastic programming approach while it can be dealt with using fuzzy techniques
due to vagueness or ambiguousness. In the present study, all the parameters were assumed to be
triangular intuitionistic fuzzy numbers, which is more realistic as compared to fuzzy numbers as
it simultaneously reveals both the degree of belongingness and the degree of non-belongingness.
The defuzzification/ranking method of triangular intuitionistic fuzzy parameters is based on the
expected interval and expected values of a lower and upper member of the set. Imprecise parameters
involved in the different objective functions were converted to their crisp forms by using expected
values, whereas uncertain parameters present in constraints were transformed into their deterministic
forms using expected intervals. All the pieces of information regarding triangular intuitionistic fuzzy
settings used in THE shale gas optimization model are summarized in Table 2.
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Therefore, the crisp/deterministic version of the proposed multiobjective shale gas water
management system optimization model M1 based on the different crisp values of the parameters can
be represented in the model M2 as follows:

M2 : Minimize Z1 =
S

∑
s=1

I

∑
i=1

T

∑
t=1
{EV( ˜caqs,t) + EV( ˜ct f s,i,t)}FWs,i,t,

Minimize Z2 =
I

∑
i=1

J

∑
j=1

T

∑
t=1
{EV( ˜ctrj,t) + EV(c̃dj,t) + EV( ˜ctwi,j,t)− rrj,t.rej,t}WWi,j,t,

Minimize Z3 =
J

∑
j=1

M

∑
m=1

T

∑
t=1
{EV( ˜cexj,m,t)}Yj,m,t,

subject to:

S

∑
s=1

FWs,i,t +
O

∑
o=1

loo.WTOi,o,t ≥ E f dwi,t
1 ∀ i, t

I

∑
i=1

FWs,i,t ≤ E f cas,t
2 ∀ s, t

I

∑
i=1

WWDi,j,t ≤ E
wwdsj,t
2 ∀ j, t

I

∑
i=1

WWTi,j,t ≤ E
wwtpj,t
2 +

M

∑
m=1

eoj,m,t.Yj,m,t ∀ j, t

I

∑
i=1

WWi,j,t ≤ E
wdwj,t
2 ∀ j, t

M

∑
m=1

eoj,m,t.Yj,m,t + E
wwdsj,t
1 + E

wwtpj,t
1 ≤ E

wdwj,t
2 ∀ j, t

O

∑
o=1

r fo.loo.WTOi,o,t ≤ FWs,i,t ∀ s, i, t

O

∑
o=1

oclo.YOi,o ≤WTOi,o,t ∀ i, t

O

∑
o=1

ocuo.YOi,o ≥WTOi,o,t ∀ i, t

I

∑
i=1

J

∑
j=1

T

∑
t=1

WWDi,j,t +
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWTi,j,t =
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWi,j,t ∀ i, j, t

FWs,i,t ≥ 0, WWi,j,t ≥ 0 ∀ s, i, j, t

WTOi,o,t ≥ 0, WWDi,j,t ≥ 0, WWTi,j,t ≥ 0 ∀ i, o, j and t

0 ≤ Yj,m,t , YOi,o ≤ 1, Yj,m,t and YOi,o = integer, ∀ i, o, j, m and t,

where EV(.), E(.)
1 , and E(.)

2 are the expected value and lower and upper intervals of triangular
intuitionistic fuzzy numbers for the entire indices’ set, respectively.

The discussed solution technique (i.e., the neutrosophic goal programming approach (NGPA)) is
based on the neutrosophic decision set, which ensures the efficient implementation of the independent
neutral thoughts of the decision maker(s). The obtained crisp model M2 can be transformed into M3

to achieve the globally optimal solution of the proposed multiobjective shale gas water management
system optimization model.
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M3 : Minimize Z = (w1T .d−1T + w2T .d−2T + w3T .d−3T) + (w1I .d−1I + w2I .d−2I + w3I .d−3I)

+ (w1F.d+1F + w2F.d+2F + w3F.d+3F)

subject to

UT
1 −∑S

s=1 ∑I
i=1 ∑T

t=1{EV( ˜caqs,t) + EV( ˜ct f s,i,t)}FWs,i,t

UT
1 − LT

1
+ d−1T − d+1T = 1

U I
1 −∑S

s=1 ∑I
i=1 ∑T

t=1{EV( ˜caqs,t) + EV( ˜ct f s,i,t)}FWs,i,t

U I
1 − LI

1
+ d−1I − d+1I = 0.5

∑S
s=1 ∑I

i=1 ∑T
t=1{EV( ˜caqs,t) + EV( ˜ct f s,i,t)}FWs,i,t − LF

1

UF
1 − LF

1
+ d−1F − d+1F = 0

UT
2 −∑I

i=1 ∑J
j=1 ∑T

t=1{EV( ˜ctrj,t) + EV(c̃dj,t) + EV( ˜ctwi,j,t)− rrj,t.rej,t}WWi,j,t

UT
2 − LT

2
+ d−2T − d+2T = 1

U I
2 −∑I

i=1 ∑J
j=1 ∑T

t=1{EV( ˜ctrj,t) + EV(c̃dj,t) + EV( ˜ctwi,j,t)− rrj,t.rej,t}WWi,j,t

U I
2 − LI

2
+ d−2I − d+2I = 0.5

∑I
i=1 ∑J

j=1 ∑T
t=1{EV( ˜ctrj,t) + EV(c̃dj,t) + EV( ˜ctwi,j,t)− rrj,t.rej,t}WWi,j,t − LF

2

UF
2 − LF

2
+ d−2F − d+2F = 0

UT
3 −∑J

j=1 ∑M
m=1 ∑T

t=1{EV( ˜cexj,m,t)}Yj,m,t

UT
3 − LT

3
+ d−3T − d+3T = 1

U I
3 −∑J

j=1 ∑M
m=1 ∑T

t=1{EV( ˜cexj,m,t)}Yj,m,t

U I
3 − LI

3
+ d−3I − d+3I = 0.5

∑J
j=1 ∑M

m=1 ∑T
t=1{EV( ˜cexj,m,t)}Yj,m,t − LF

3

UF
3 − LF

3
+ d−3F − d+3F = 0

S

∑
s=1

FWs,i,t +
O

∑
o=1

loo.WTOi,o,t ≥ E f dwi,t
1 ∀ i, t

I

∑
i=1

FWs,i,t ≤ E f cas,t
2 ∀ s, t

I

∑
i=1

WWDi,j,t ≤ E
wwdsj,t
2 ∀ j, t

I

∑
i=1

WWTi,j,t ≤ E
wwtpj,t
2 +

M

∑
m=1

eoj,m,t.Yj,m,t ∀ j, t

I

∑
i=1

WWi,j,t ≤ E
wdwj,t
2 ∀ j, t

M

∑
m=1

eoj,m,t.Yj,m,t + E
wwdsj,t
1 + E

wwtpj,t
1 ≤ E

wdwj,t
2 ∀ j, t

O

∑
o=1

r fo.loo.WTOi,o,t ≤ FWs,i,t ∀ s, i, t

O

∑
o=1

oclo.YOi,o ≤WTOi,o,t ∀ i, t

O

∑
o=1

ocuo.YOi,o ≥WTOi,o,t ∀ i, t

I

∑
i=1

J

∑
j=1

T

∑
t=1

WWDi,j,t +
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWTi,j,t =
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWi,j,t ∀ i, j, t
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FWs,i,t ≥ 0, WWi,j,t ≥ 0 ∀ s, i, j, t

WTOi,o,t ≥ 0, WWDi,j,t ≥ 0, WWTi,j,t ≥ 0 ∀ i, o, j and t

0 ≤ Yj,m,t , YOi,o ≤ 1, Yj,m,t and YOi,o = integer, ∀ i, o, j, m and t

d−kT .d+kT = 0, d−kI .d
+
kI = 0, d−kF.d+kF = 0,

where w1T , w1I , w1F, w2T , w2I , w2F, w3T , w3I , and w3F are the parameter weights assigned to different
deviational variables of the neutrosophic membership goals.

3.4. Solution Algorithm

To reformulate the shale gas water management optimization model into the neutrosophic goal
programming model, one needs to solve each objective function individually and has to determine
the maximum and minimum values of each objective. With the help of these values, the upper
and lower bounds for each membership function under a neutrosophic environment were obtained.
Then, the truth, indeterminacy, and falsity membership functions for each objective were constructed.
The transformation of membership functions into membership goals can be done by using the different
deviational variables. The weighting scheme of each aim was designed based on the difference
between the best and worst values of the respective objective function. The developed framework for
the optimal shale gas water management computational model was transmuted under a neutrosophic
environment. The stepwise solution procedures for the proposed neutrosophic goal programming
approach can be summarized as follows:

Step 1. Design the proposed multiobjective shale gas water management optimization model as given
in M1.

Step 2. Convert each intuitionistic fuzzy parameter involved in model M1 into its crisp form by using
the expected interval and values method as given in Equations (2)–(4) or presented in Table 2.

Step 3. Modify model M1 into M2 and solve model M2 for each objective function individually in
order to obtain the best and worst solutions.

Step 4. Determine the upper and lower bounds for each objective function by using Equation (6).
Using Uk and Lk, define the upper and lower bounds for truth, indeterminacy, and falsity
membership as given in Equations (7)–(9).

Step 5. Transform the truth, indeterminacy, and falsity membership degrees into their respective
membership goals and deviational variables as defined in Equations (10)–(12).

Step 6. Formulate the neutrosophic goal programming model defined in M3 and solve the
multiobjective shale gas water management optimization model in order to obtain the
compromise solution using suitable techniques or some optimization software packages.

4. A Computational Study

The integrated framework representative of the multiobjective shale gas water management
optimization model is presented based on a real-life scenario, hypothetical proposition, data,
information, and a quick review of the published research (Lutz et al. [12], Rahm and Riha [54],
Rahm et al. [55], Zhang et al. [22], Alawattegama [56]). The unified optimal shale gas water planning
model was structured to manifest the real-life scenario in the current and future characteristic features
of shale gas extraction processes. The proposed model includes the optimal acquisition of freshwater,
on-site treatment of wastewater, expansion of treatment plant facility, underground injection disposal
site, treatment plant facility, and primary socio-economic concerns and environmental issues with
the technical and potential aspects in major shale gas plays in the United States. The acquisition
of freshwater from different sources and the inventory holding of freshwater to a certain level for
the smooth operation of the shale gas extraction processes is quite a challenging task. Therefore,
the acquisition of freshwater is allowed some predetermined budget allocation at the different
freshwater sources. The flow-back-produced water from shale play is a matter of grave concern.
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The privilege of an on-site wastewater treatment facility for reuse purposes at a moderate scale is also
feasible and laid down as a base of future technologies. Various burning socio-environmental issues
are being raised against the contaminated wastewater generated from shale wells after fracturing
processes at the national and international political levels. To overcome these issues, the orientation
of wastewater underground disposal sites and treatment facilities with their expansion options have
been taken under consideration. There is no scope for pipelines to any extent throughout the shale gas
extraction process. All sorts of to and fro flow of freshwater and wastewater have been depicted with
roadways. The planning periods are designed in such a way that shale gas production turnover results
in an economically profitable scenario.

In this study, the shale gas water management system optimization model comprises one
freshwater source, five shale sites with one drilled well at each shale site, and three on-site wastewater
treatment facilities. The toxic wastewater management system includes one wastewater underground
injection disposal site, two wastewater treatment plants with three expansion options for each treatment
plant facility over three planning periods of 5 years each which are capable of representing the whole
shale gas production process more realisticallyy. All the summarized parameters were assumed to be
a triangular intuitionistic fuzzy number, and their defuzzified version can be obtained from Table 2.
The acquisition costs (in $/bbl) of freshwater at source and transportation cost (in $/bbl) of freshwater
by road over three planning periods are presented in Table 3. The various costs incurred on account
of wastewater, such as transportation cost (in $/bbl) from different shale sites to disposal site and
treatment plants, underground injection disposal cost (in $/bbl), and wastewater operational cost at
different treatment plants (in $/bbl) over three planning periods are summarized in Table 4. The capital
investment costs(in $/bbl) for alternative options for the expansion of treatment plant capacity with the
respective enhanced potential volume (in bbl/day) over three planning periods are presented in Table 4.
The crisp parameters which include revenues/profits from the reuse of wastewater (in $), reuse rate (in
bbl/day), recovery factor for treating wastewater with different treatment technology, and the required
ratio of freshwater to sewer for blending after on-site treatment technology, along with the minimum
and maximum capacities for on-site treatment with conflicting technology over three time periods are
summarized in Table 5. The different restrictive intuitionistic fuzzy parameters (for freshwater and
wastewater) were introduced for the optimal allocation of freshwater and wastewater according to their
speculated destination. The freshwater acquisition capacity at the source, the requirement of freshwater
at different shale sites, the underground wastewater disposal capacity, the wastewater treatment plant
capacity, and the overall generated wastewater permitted for managerial purposes are summarized in
Table 5. Throughout the project planning scheme, the decision maker(s) or project manager(s) intend to
adopt the certainly feasible strategy that ensures the optimal allocation of freshwater and wastewater
to their predetermined consumption points. However, during the whole planning periods, the decision
maker(s) are confronted with the different multiple conflicting objectives which are to be optimized in
order to achieve the global benefits from the production of shale gas energy as well as its commercial
distribution. Hence, the proposed multiobjective shale gas water management optimization model
experiments with these hypothetical datasets and was applied to tackle the project planning scheme.

Table 3. Acquisition and transportation costs of freshwater ($/bbl).

Freshwater Acquisition Cost at Source ( ˜caq) Time Period
t = 1 t = 2 t = 3

Source (1.9,2.1,2.3;1.8,2.1,2.4) (1.6,1.8,2;1.5,1.8,2.1) (0.9,1.2,1.5;0.8,1.2,1.6)

Transportation costs of freshwater from
source to shale site ( ˜ct f )

Source to shale site 1 (1.2,1.4,1.6;1.1,1.4,1.7) (4.2,4.4,4.6;4.1,4.4,4.7) (4.1,4.3,4.5;4.0,4.3,4.6)
Source to shale site 2 (2.1,2.3,2.5;1.9,2.3,2.7) (3.2,3.4,3.6;3.1,3.4,3.7) (3.2,3.4,3.6;3.0,3.4,3.8)
Source to shale site 3 (3.4,3.6,3.8;3.2,3.6,4.0) (2.2,2.4.2.6;2.1,2.4,2.7) (2.2,2.4,2.6;2.0,2.4,2.8)
Source to shale site 4 (2.2,2.4,2.6;2.1,2.4,2.7) (1.5,1.8,1.9;1.4,1.8,2.1) (1.5,1.7,1.9;1.4,1.7,2.0)
Source to shale site 5 (1.4,1.6,1.8;1.2,1.6,2) (1.8,2,2.2;1.8,2,2.2) (2.6,2.8,3.0;2.5,2.8,3.1)
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Results Analyses

The multiobjective shale gas water management optimization model was written in the AMPL
language and solved using the BARON solver through NEOS server version 5.0 in the on-line
facility provided by Wisconsin Institutes for Discovery at the University of Wisconsin in Madison
for solving optimization problems, see Dolan [57], Drud [58], Server [59], and Gropp, W. Moré [60].
The technical description of the problem is presented as follows: The final multiobjective shale
gas water management optimization model along with a set of well-defined multiple objectives
comprised 219 variables including 42 binary variables, 27 non-linear variables, 150 linear variables,
and 336 constraints, including 15 non-linear constraints and 321 linear constraints, 66 equality, and 270
inequality constraints. The total computational time for obtaining the final solution was 0.095 s (CPU
time). The proposed multiobjective shale gas water management optimization model was solved
with three weight parameters assigned to deviational variables of each membership goal with respect
to their marginal membership degree. The first weight parameter wkT was assigned to the truth
deviational variable of each membership goal. The second weight parameter wkI was assigned to
the indeterminacy deviational variable of each membership goal, and the third weight parameter
wkF was assigned to the falsity deviational variable of each membership goal included in all three
objective functions. The obtained optimal results were categorized into five main parts: (i) the optimal
acquisition of freshwater from various sources to different shale sites in order to ensure smooth
operation of the shale gas energy generation system; (ii) prominent emerging technologies for the
on-site treatment of wastewater; (iii) the optimal wastewater management system strategy, which
is challenging from the environmental point of view; (iv) the optimal expansion plan to enhance
the treatment plant capacity; and (v) the optimal values of different conflicting objectives with their
corresponding assigned weights. The optimal amounts of freshwater from source to different shale sites
are summarized in Table 6. In planning period 1, the amount of freshwater requirements from source
to five shale sites were 700.000, 186.765, 700.000, 300.480, and 74.100 bbl/day, respectively. In planning
period 2, the requirements of freshwater at each shale site were obtained as 1125.000, 1125.000, 654.419,
131.542 and 212.553 bbl/day, respectively. In planning period 3, the consumption of freshwater at
each shale site was 1275.000, 187.613, 528.153, 131.542, and 212.553 bbl/day in order to ensure smooth
operation of the shale gas extraction processes. However, with the exception of shale sites 1 and 5,
the requirements for freshwater increased for each planning horizon. The maximum requirement of
freshwater was in shale site 5 with a volume 1275.000 bbl/day, whereas the minimum freshwater
requirement was observed at shale site 1 during planning period 3, with 74.100 bbl/day due to the low
and high cost of acquisition and transportation incurred over the amount of freshwater, respectively.

The most promising characteristic features of on-site wastewater treatment are the different
technologies which are being used to reutilize the wastewater within candidate shale sites. The optimal
allocation of wastewater for on-site treatment is summarized in Table 7. The on-site treatment of
wastewater by different technologies are emerging options for generating freshwater, which was
included in the proposed modeling and optimization framework. At shale site 1, the amount
of freshwater after treatment by technology 1 was 150 bbl/day in all three planning horizons;
the generation of freshwater after treatment by using technology 2 was 200 bbl/day in each planning
period; and by applying technology 3 the values were 1551.71, 2401.65, and 2701.62 bbl/day, which was
consistently increasing and ensuring the reuse of wastewater in these three planning horizons. At shale
site 2, the amount of freshwater generated by the on-site treatment facility using technology 1 was
127.352 bbl/day in each planning period; the generation of freshwater after treatment using technology
2 was 200, 6250, and 200 bbl/day each; and by applying on-site treatment technology 3 they were
525.313, 4554.66, and 527.01 bbl/day in each planning horizon, respectively. At shale site 3, the amount
of freshwater after treatment by technology 1 was 150 bbl/day in all three planning horizons; the
generation of freshwater after treatment by using technology 2 was 200 bbl/day in the first and second
planning periods, which were the same as shale site 1; whereas it was 2865.32 bbl/day in the third
planning slot, and unlike by applying technology 3 the obtained amounts were 1551.71, 2060.51,
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and 2208.04 in all planning horizons, resulting in a significant increase in the freshwater generation
pattern by on-site treatment. At shale site 4, the generation of freshwater using on-site treatment
technology 1 was 147.779, 2023.26, and 147.779 bbl/day; by implementing on-site treatment technology
2 they were 200, 272.266, and 730.788 bbl/day, revealing the significant increment in the regenerated
wastewater volumes in three planning slots. The amount of freshwater by using on-site treatment
technology 3 was 751.275, 300.000, and 300.000 bbl/day in each planning horizon respectively. At shale
site 5, the generation of freshwater using on-site treatment technology 1 was 150 bbl/day in each
planning slot; by applying on-site treatment technology 2 it was 342.801, 861.73, and 861.73 bbl/day;
and after implementing on-site treatment technology 3 it was 300, 860.539, and 860.539 bbl/day in each
planning horizon, respectively. Therefore, the optimal regeneration of freshwater at each shale sites
was effectively designed by implementing the on-site treatment technology component in the proposed
shale gas water management study and could be potentially achieved using these technologies in an
efficient manner under many adverse circumstances, especially where wastewater managerial issues
are often encountered at the political level.

The presented wastewater managerial study includes one underground injection disposal site and
two treatment plants with its three expansion options which are capable of representing the wastewater
management system for the shale plays. Optimal distribution of total wastewater for underground
injection disposal and treatment facility is summarized in Table 7. The toxic wastewater produced at
shale site 1 was 6.75, 17.25, and 13.25 bbl/day, which is directly transported to the underground injection
disposal site; whereas the total volume shipped to the treatment plant was 645, 842.50, and 0 bbl/day
in all three time horizons. At shale site 2, the whole volume of wastewater was directly sent to the
underground injection disposal site and it was not feasible to facilitate the usage of a treatment plant
facility. At shale site 3, a certain volume of wastewater was delivered to an underground injection disposal
site and treatment plant 2 without allocating any volume to treatment plant 1. The amount of wastewater
shipped to the underground injection disposal site was 6.75, 17.25, and 13.25 bbl/day, and the optimal
allocations to treatment plant 1 were 137.71, 675, and 850 bbl/day in the three planning periods. At shale
sites 4 and 5, the overall volume of produced wastewater that would be delivered from both shale
sites were the same and found to be 6.75, 17.25, and 13.25 bbl/day for underground injection disposal
purposes: 645, 842.50, and 937.50 bbl/day towards treatment plant 1 whereas the optimal shipment
volumes of wastewater from both shale sites to treatment plant 2 were 137.71, 675, and 850 bbl/day in all
three planning horizons, respectively. The optimal allocation strategy for the total wastewater volumes
was described in such a fashion that the optimal contribution of each wastewater management system
components had equal significance. At all five shale sites, the generated amount of wastewater sent from
each shale site to the underground injection disposal site were 6.75, 17.25, and 13.25 bbl/day over the
three planning horizons, respectively, revealing the maximum permitted amount at the underground
injection disposal site and restraining the subsurface water for a certain period. More elaborately, it could
be concluded that during the various time horizons it was not found optimal and feasible to flow the
wastewater towards the underground injection disposal site due to the significant cost of transportation
and the underground injection disposal facility. At shale site 1, the amount of wastewater that would
be shipped to treatment plant 1 was 645 and 842.50 bbl/day for planning horizons 1 and 2, respectively.
The shipment of wastewater from shale site 1 to treatment plant 2 was not found to be feasible due to the
significant increase in the transportation cost incurred over wastewater. At shale site 2, the allocation of
any wastewater amount to treatment plants 1 and 2 was not found to be justified in all three planning
periods. At shale site 3, it was not feasible to deliver any amount of wastewater to treatment plant 1
during all three planning periods, although the amount of wastewater that would be shipped to treatment
plant 2 was 137.71, 675, and 850 bbl/day in the three planning horizons, respectively. At shale sites 4
and 5, the volume of wastewater that would be delivered from both shale sites were the same and found
to be 645, 842.50, and 937.5 bbl/day towards treatment plant 1, whereas the optimal shipment volume
of wastewater from both shale sites to treatment plant 2 were 137.71, 675, and 850 bbl/day in all three
planning horizons respectively.
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During all three planning horizons, treatment plant expansion options played a significant role in
dealing with the excess volume of wastewater produced at different shale sites. The vital dominant
characteristic of treatment plant expansion was mainly due to limited and rare existence of underground
injection disposal site facilities in some places. The limitations imposed on underground injection disposal
sites enabled the expanded scope of treatment plant expansions. The optimal strategy for the expansion
of treatment plants is presented in Table 7. The optimal expansion results of treatment plant 1 during
planning periods 1 and 3 by using expansion option 1 were 600 bbl/day each. By using expansion option
2 in planning periods 1 and 3, the optimal capacity was 750 bbl/day each; and by using expansion option
3 in planning periods 1 and 3, the optimal capacity was 850 bbl/day each. There was no need to expand
the treatment capacity of treatment plant 1 in planning period 2. Moreover, the optimal expansion strategy
for treatment plant 2 by using all three expansion options during planning horizon 1 were obtained as
550, 650, and 850 bbl/day, whereas in planning period 2, only expansion option 2 was suggested to
enhance the treatment capacity. There was no more optimal strategy indicated for the rest of the expansion
options. The compromise solution results obtained by solving the proposed multiobjective shale gas water
management model are summarized in Table 6. The minimum total cost of acquisition and transportation
of freshwater at the source and from different sources to shale sites was USD $525126.00, whereas the
net cost incurred over the entire amount of wastewater management during the three planning periods
was obtained as USD $4025940.00. The optimal strategy to expand the treatment plant capacity with the
predetermined expansion option was presented efficiently and the total capital investment levied on the
expansion of the wastewater treatment plant was USD $5548.97, which reveals that there is still adequate
opportunity to expand the capacity of the treatment plant. Shale gas water management systems play an
important role in the whole process of generating shale gas energy. The acquisition of a huge amount of
freshwater for the fracturing process is a challenging task. The wastewater released from shale sites is
toxic in nature and contains various harmful dissolved elements. Therefore, a well-organized wastewater
management system includes disposal sites (underground injections) and the establishment of different
treatment plants with expansion options.

The overall shale gas water modeling approach was presented, inevitably revealing more practical
aspects of decision-making scenarios. Uncertainty among parameters due to vagueness and hesitation
were addressed with the triangular intuitionistic fuzzy number, which complies over the degree of
acceptance and non-acceptance simultaneously. For example, if the decision maker intends to quantify
the value of freshwater requirement with some estimated value, such as each shale site requires
approximately 54,800 bbl/day for fracking and horizontal drilling purposes, then the most likely
estimated interval would be 54,750–54,850 bbl/day, along with some hesitation degree that may be
given as 54,700–54900 bbl/day, which ensures less violation of risks with degree of acceptance and
non-acceptance. The representation of different constraints imposed over various parameters also
reflects the real scenario of Pennsylvania. In Pennsylvania, underground disposal facilities are very rare
and most often wastewater is shipped to nearby cities in Ohio. The solution results have shown a similar
situation, and less sewage has been allocated to a different underground disposal facility. Furthermore,
the scope for on-site treatment technology and expansion capacity options of treatment plants have
been optimally utilized. The resulting optimal allocation of wastewater for on-site treatment at different
shale sites shows another advantage by reducing the transportation cost incurred over the treatment
and disposal facilities. The opportunity for the expansion capacity option of the treatment plant—if
needed—was propounded, and results show that some expansion option was adopted due to the lesser
capital investment. The determination of the wastewater reuse rate at the treatment plant also yielded a
significant amount of freshwater generation and ensured a lesser burden on the underground disposal
facility, which again exhibits substantial characteristic features of the shale gas modeling approach of
Pennsylvania. Thus, the proposed shale gas water management model can be easily applied to shale gas
energy project planning problems that inherently involve uncertain parameters. The decision maker(s)
or project manager(s) can conclusively determine the optimal allocation of each water component with
a set of multiple conflicting objectives along with a profitable and economic strategy.
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Table 6. Optimal amount of freshwater and value of objective functions.

Amount of Freshwater FWs,i,t

1 1 1 700.000
1 1 2 1125.000
1 1 3 1275.000
1 2 1 186.765
1 2 2 1125.000
1 2 3 187.613
1 3 1 700.000
1 3 2 654.419
1 3 3 528.153
1 4 1 300.480
1 4 2 131.542
1 4 3 131.542
1 5 1 74.100
1 5 2 212.553
1 5 3 212.553

Optimal objective values

Minimum Z1 525,126.00
Minimum Z2 4,025,940.00
Minimum Z3 5548.97

Table 7. Optimal amount of wastewater allocation and treatment plant expansion strategy.

Total Amount of Amount of Wastewater Amount of Wastewater Amount of Wastewater for
wastewater WWi,j,t at Disposal Site WW Di,j,t at Treatment Plant WWTi,j,t on-Site Treatment WTOi,o,t

1 1 1 6.75 6.75 0 150
1 1 2 17.25 17.25 0 150
1 1 3 13.25 13.25 0 150
1 2 1 645 0 645 200
1 2 2 842.5 0 842.5 200
1 2 3 0 0 0 200
1 3 1 0 0 0 1551.71
1 3 2 0 0 0 2401.65
1 3 3 0 0 0 2701.62
2 1 1 6.75 6.75 0 127.352
2 1 2 17.25 17.25 0 127.352
2 1 3 13.25 13.25 0 127.352
2 2 1 0 0 0 200
2 2 2 0 0 0 6250
2 2 3 0 0 0 200
2 3 1 0 0 0 525.313
2 3 2 0 0 0 4554.66
2 3 3 0 0 0 527.01
3 1 1 6.75 6.75 0 150
3 1 2 17.25 17.25 0 150
3 1 3 13.25 13.25 0 150
3 2 1 0 0 0 200
3 2 2 0 0 0 200
3 2 3 0 0 0 2865.32
3 3 1 137.71 0 137.71 1551.32
3 3 2 675 0 675 2060.51
3 3 3 850 0 850 2208.04
4 1 1 6.75 6.75 0 147.779
4 1 2 17.25 17.25 0 2023.26
4 1 3 13.25 13.25 0 147.779
4 2 1 645 0 645 200
4 2 2 842.5 0 842.5 272.266
4 2 3 937.5 0 937.5 730.788
4 3 1 137.71 0 137.71 751.275
4 3 2 675 0 675 300
4 3 3 850 0 850 300
5 1 1 6.75 6.75 0 150
5 1 2 17.25 17.25 0 150
5 1 3 13.25 13.25 0 150
5 2 1 645 0 645 342.801
5 2 2 842.5 0 842.5 861.73
5 2 3 937.5 0 937.5 861.73
5 3 1 137.71 0 137.71 300
5 3 2 675 0 675 360.539
5 3 3 850 0 850 360.539

Increased treatment Expansion option Time period
plant capacity (eo) (m) t = 1 t = 2 t = 3

Treatment plant 1 1 600 - 600
Treatment plant 1 2 750 - 750
Treatment plant 1 3 850 - 850
Treatment plant 2 1 550 550 -
Treatment plant 2 2 650 - -
Treatment plant 2 3 800 - -
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5. Conclusions

The multiobjective shale gas water management optimization model addressed within synthesizes
the optimum allocation of water resources for shale gas extraction processes. It assures the optimal
distribution of freshwater and wastewater, which are the complementary components of shale gas
energy production problems. The proposed shale gas modeling outlook is reliable and provides a
helpful tool to investigate and analyze the trade-off between socio-economic and environmental
concerns globally. The different costs incurred over freshwater, charges levied on wastewater,
and capital investment of expanding treatment plant capacity along with the set of shale gas
water management system constraints were optimized simultaneously. Uncertainty measures were
incorporated among different parameters to demonstrate the actual situations encountered in real-life
shale gas optimization frameworks. The accumulation of freshwater from various sources is a crucial
task to fulfill commercial needs. However, alternate options were suggested for the generation of
freshwater by using on-site treatment technology, which simultaneously reduced the transportation
costs for freshwater. Underground injection disposal sites and treatment plant facilities are two major
consumption points of generated wastewater from shale sites. A critical factor in the reuse of water
in shale gas is the detailed coordination of activities. For greater convenience, auxiliary options have
also been introduced to tackle the excess amount of wastewater in the form of on-site treatment
technology and different potential expansions of treatment plant capacity at each shale site during
each planning horizon. Unlike the various existing conventional solution techniques, the neutrosophic
goal programming approach was suggested, which also considers the independent neutral thoughts
of decision makers in the decision-making process. Since the proposed approach was applied to a
small-scale shale gas extraction process (see Figure 2), it resulted in the globally optimal solution for all
objectives simultaneously. However, it may not always be possible to have a globally optimal solution
when dealing with large-scale dataset problems. The discussed approach cannot capture the stochastic
nature of parameters, which consequently cannot be applied to stochastic optimization problems.

The significant contributions of the proposed multiobjective shale gas water management system
are summarized as follows:

• The proposed study considers the overall shale gas water management system which consists
of freshwater acquisition at sources, on-site wastewater treatment facilities at each shale site,
underground injection disposal sewage facilities, different treatment plant options for the reuse
of wastewater and the total wastewater capacity which are feasible to handle without affecting
the environmental issues. The decision maker(s) or project manager(s) may adopt the presented
shale gas modeling framework, which has a magnetic orientation concerning the overall water
management system. However, pipeline facilities have not been included throughout the shale
gas energy extraction due to their uneconomic aspect.

• Uncertainty among the parameter values is commonly known in the decision-making process.
In this shale gas optimization model, the different parameters (e.g., acquisition cost, transportation
cost, treatment cost, disposal cost, and capital investment) are taken as the triangular intuitionistic
fuzzy number, which is based on more intuition and leads to more realistic uncertainty modeling
texture. It also ensures that the system costs the reliability of each component (costs related to
freshwater and wastewater) more realistically. The crisp versions of uncertain parameters were
determined in terms of expected interval and expected values.

• A neutrosophic-based computational decision-making algorithm for such a complex and dynamic
multiobjective shale gas water management optimization model provides benefits while obtaining
globally optimal solutions. The indeterminacy/neutral thought is the region of the propositions’
value uncertainly and originates from the independent and impartial thoughts. Therefore,
the proposed NGPA is a dominating and suitable conventional optimization technique that
is preferred over others due to the existence of its independent indeterminacy degree.
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• The multiobjective shale gas project planning model was implemented with a possible dataset
and the obtained optimal results were analyzed for each component of the shale gas system in a
well-organized and efficient manner. Hence, it was concluded that the proposed optimal strategy
for shale gas production could be adopted for more sophisticated and quite typical Marcellus
shale plays in large-scale long-term scenarios.

Due to manuscript drafting constraints and space limitations, some important aspects remain
untouched and may be explored as a future research scope. The presented shale gas water management
modeling approach could be extended by considering different essential aspects such as the to and
fro movement of water through the pipeline which was not considered in this paper. The presented
computational study was demonstrated for small-scale shale-plays, which could be further explored
for large-scale and long-term time horizons by enhancing the number of shale sites and different
sources of freshwater and various destinations for wastewater.

Flow-back water does not exit instantaneously, but follows a decline curve. Most of the water
exits in the first 3–4 weeks, but there is small and a continuous flow of produced water during all
the shale-sites life. Therefore the presented modeling approach may be extended by capturing the
above-discussed behavior of flow-back produced water. On-site treatment technology exerts less
pressure on the underground disposal of wastewater and provides an opportunity to reuse the treated
wastewater for fracking purposes within the shale sites itself. If there are no NORMs (normally
occurring radioactive materials), the most costly part of water treatment is desalination. Therefore,
the sort of on-site treatment technologies may be specified along with their actual cost, and the
possibility of being used for on-site treatment purposes may be explored as a future study. Most of
the water management system (e.g., the water treated in municipal wastewater treatment facilities
that are usually not prepared to deal with hypersaline water) are presently forbidden and may be
implemented and executed by including them under a good practices scheme in future work. From
the decision-making point of view, hierarchical decision-making processes could be adopted, ensuring
a decentralized decision-making scenario and providing more flexibility compared to multiobjective
optimization techniques with a single decision maker. Apart from conventional solution techniques,
some metaheuristic algorithms could be applied to solve such shale gas water management planning
problems. Furthermore, the propounded neutrosophic modeling approach could be applied to real-life
dataset problems such as supplier selection problems, inventory control problems, supply chain
management, humanitarian logistic problems, etc. The proposed approach could be further extended
by incorporating the multi-choice and stochastic parameters along with bi-level and multi-level
decision-making scenarios.
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Abstract: We extend for the second time the nonstandard analysis by adding the left monad closed to
the right, and right monad closed to the left, while besides the pierced binad (we introduced in 1998)
we add now the unpierced binad—all these in order to close the newly extended nonstandard space
under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard
division, and nonstandard power operations. Then, we extend the Nonstandard Neutrosophic
Logic, Nonstandard Neutrosophic Set, and Nonstandard Probability on this Extended Nonstandard
Analysis space, and we prove that it is a nonstandard neutrosophic lattice of first type (endowed
with a nonstandard neutrosophic partial order) as well as a nonstandard neutrosophic lattice of
second type (as algebraic structure, endowed with two binary neutrosophic laws: infN and supN).
Many theorems, new terms introduced, better notations for monads and binads, and examples of
nonstandard neutrosophic operations are given.

Keywords: nonstandard analysis; extended nonstandard analysis; open and closed monads to the
left/right; pierced and unpierced binads; MoBiNad set; infinitesimals; infinities; nonstandard reals;
standard reals; nonstandard neutrosophic lattices of first type (as poset) and second type (as algebraic
structure), nonstandard neutrosophic logic; extended nonstandard neutrosophic logic; nonstandard
arithmetic operations; nonstandard unit interval; nonstandard neutrosophic infimum; nonstandard
neutrosophic supremum

1. Short Introduction

In order to more accurately situate and fit the neutrosophic logic into the framework of extended
nonstandard analysis [1–3], we present the nonstandard neutrosophic inequalities, nonstandard
neutrosophic equality, nonstandard neutrosophic infimum and supremum, and nonstandard
neutrosophic intervals, including the cases when the neutrosophic logic standard and nonstandard
components T, I, F get values outside of the classical unit interval [0, 1], and a brief evolution of
neutrosophic operators [4].

2. Theoretical Reason for the Nonstandard Form of Neutrosophic Logic

The only reason we have added the nonstandard form to neutrosophic logic (and similarly to
neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is
truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words,
according to Leibniz as well) that occur in philosophy.

Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or
falsehood are infinitesimally determined, for example a value infinitesimally bigger than 0.8 (or 0.8+),
or infinitesimally smaller than 0.8 (or −0.8). But these can easily be overcome by roughly using interval
neutrosophic values, for example (0.80, 0.81) and (0.79, 0.80), respectively.

Symmetry 2019, 11, 515; doi:10.3390/sym11040515 www.mdpi.com/journal/symmetry371
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3. Why the Sum of Neutrosophic Components Is Up to 3

We was more prudent when we presented the sum of single valued standard neutrosophic
components [5–9], saying

Let T, I, F be single valued numbers, T, I, F ∈ [0, 1], such that 0 ≤ T + I + F ≤ 3. (1)

The sum of the single-valued neutrosophic components, T + I + F is up to 3 since they are
considered completely (100%) independent of each other. But if the two components T and F are
completely (100%) dependent, then T + F ≤ 1 (as in fuzzy and intuitionistic fuzzy logics), and let us
assume the neutrosophic middle component I is completely (100%) independent from T and F, then
I ≤ 1, whence T + F + I ≤ 1 + 1 = 2.

But the degree of dependence/independence [10] between T, I, F all together, or taken two by two,
may be, in general, any number between 0 and 1.

4. Neutrosophic Components outside the Unit Interval [0, 1]

Thinking out of box, inspired from the real world, was the first intent, i.e., allowing neutrosophic
components (truth/indeterminacy/falsehood) values be outside of the classical (standard) unit real
interval [0, 1] used in all previous (Boolean, multivalued, etc.) logics if needed in applications, so
neutrosophic component values < 0 and > 1 had to occurs due to the Relative/Absolute stuff, with

−0 <N 0 and 1+ >N 1 (2)

Later on, in 2007, I found plenty of cases and real applications in Standard Neutrosophic Logic
and Set (therefore, not using the Nonstandard Neutrosophic Logic, Set, and Probability), and it was
thus possible the extension of the neutrosophic set to Neutrosophic Overset (when some neutrosophic
component is > 1), and to Neutrosophic Underset (when some neutrosophic component is < 0), and
to Neutrosophic Offset (when some neutrosophic components are off the interval [0, 1], i.e., some
neutrosophic component > 1 and some neutrosophic component < 0). Then, similar extensions to
Neutrosophic Over/Under/Off Logic, Measure, Probability, Statistics, etc., [11–14], extending the unit
interval [0, 1] to

[Ψ, Ω], with Ψ ≤ 0 < 1 ≤ Ω, (3)

where Ψ, Ω are standard (or nonstandard) real numbers.

5. Refined Neutrosophic Logic, Set, and Probability

We wanted to get the neutrosophic logic as general as possible [15], extending all previous logics
(Boolean, fuzzy, intuitionistic fuzzy logic, intuitionistic logic, paraconsistent logic, and dialethism),
and to have it able to deal with all kind of logical propositions (including paradoxes, nonsensical
propositions, etc.).

That is why in 2013 we extended the Neutrosophic Logic to Refined Neutrosophic Logic / Set /

Probability (from generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and
Lukasiewicz’s and Bochvar’s 3-symbol valued logics or Belnap’s 4-symbol valued logic, to the most
general n-symbol or n-numerical valued refined neutrosophic logic, for any integer n ≥ 1), the largest
ever so far, when some or all neutrosophic components T, I, F were split/refined into neutrosophic
subcomponents T1, T2, . . . ; I1, I2, . . . ; F1, F2, . . . , which were deduced from our everyday life [16].

6. From Paradoxism Movement to Neutrosophy Branch of Philosophy and then to
Neutrosophic Logic

We started first from Paradoxism (that we founded in the 1980s in Romania as a movement
based on antitheses, antinomies, paradoxes, contradictions in literature, arts, and sciences), then we
introduced the Neutrosophy (as generalization of Dialectics of Hegel and Marx, which is actually the
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ancient YinYang Chinese philosophy), neutrosophy is a branch of philosophy studying the dynamics
of triads, inspired from our everyday life, triads that have the form

<A>, its opposite <antiA>, and their neutrals <neutA>, (4)

where <A> is any item or entity [17]. (Of course, we take into consideration only those triads that
make sense in our real and scientific world.)

The Relative Truth neutrosophic value was marked as 1, while the Absolute Truth neutrosophic
value was marked as 1+ (a tinny bigger than the Relative Truth’s value): 1+ >N 1, where >N is a
neutrosophic inequality, meaning 1+ is neutrosophically bigger than 1.

Similarly for Relative Falsehood/Indeterminacy (which is falsehood/indeterminacy in some Worlds)
and Absolute Falsehood/Indeterminacy (which is falsehood/indeterminacy in all possible worlds).

7. Introduction to Nonstandard Analysis

An infinitesimal (or infinitesimal number) (ε) is a number ε, such that |ε| < 1/n, for any non-null
positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured.

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero.
Infinitesimals are used in calculus.
An infinite (or infinite number) (ω) is a number greater than anything:

1 + 1 + 1 + . . . + 1 (for any finite number terms) (5)

The infinites are reciprocals of infinitesimals.
The set of hyperreals (or nonstandard reals), denoted as R*, is the extension of set of the real numbers,

denoted as R, and it comprises the infinitesimals and the infinites, that may be represented on the
hyperreal number line:

1/ε = ω/1. (6)

The set of hyperreals satisfies the transfer principle, which states that the statements of first order in
R are valid in R* as well.

A monad (halo) of an element a ∈ R*, denoted by µ(a), is a subset of numbers infinitesimally close
to a.

8. First Extension of Nonstandard Analysis

Let us denote by R+* the set of positive nonzero hyperreal numbers.
We consider the left monad and right monad, and the (pierced) binad that we have introduced as

extension in 1998 [5]:
Left Monad {that we denote, for simplicity, by (−a) or only −a} is defined as:

µ(−a) = (−a) = −a =
−
a = {a− x, x ∈ R+

∗ | x is in f initesimal}. (7)

Right Monad {that we denote, for simplicity, by (a+) or only by a+} is defined as:

µ(a+) = (a+) = a+ =
+
a = {a + x, x ∈ R+

∗ | x is in f initesimal}. (8)

Pierced Binad {that we denote, for simplicity, by (−a+) or only −a+} is defined as:

µ(−a+) = (−a+) = −a+ =
−+
a = {a− x, x ∈ R+

∗ | x is in f initesimal} ∪ {a + x, x ∈ R+
∗ | x is in f initesimal}

= {a± x, x ∈ R+
∗ | x is in f initesimal}. (9)

The left monad, right monad, and the pierced binad are subsets of R*.
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9. Second Extension of Nonstandard Analysis

For the necessity of doing calculations that will be used in nonstandard neutrosophic logic in
order to calculate the nonstandard neutrosophic logic operators (conjunction, disjunction, negation,
implication, and equivalence) and in order to have the Nonstandard Real MoBiNad Set closed under
arithmetic operations, we extend, for the time being, the left monad to the Left Monad Closed to the
Right, the right monad to the Right Monad Closed to the Left, and the Pierced Binad to the Unpierced
Binad, defined as follows [18–21].

Left Monad Closed to the Right

µ
(−0

a
)
=

(−0
a
)
=
−0
a ={a− x | x = 0, or x ∈ R+

∗ and x is in f initesimal} = µ(−a)∪ {a} = (−a) 0∪
{a} = −a∪ {a}.

(10)

Right Monad Closed to the Left

µ
(

0+
a
)
=

(
0+
a
)
=

0+
a ={a + x | x = 0, or x ∈ R+

∗ and x is in f initesimal} = µ(a+)∪ {a} = (a+) 0∪
{a} = a+ ∪ {a}.

(11)

Unpierced Binad

µ
(−0+

a
)
=

(−0+
a

)
=
−0+

a = {a− x
∣∣∣x ∈ R+

∗andxisin f initesimal} ∪ {a + x|x ∈ R+
∗and

xisin f initesimal}∪{a} = {a± x
∣∣∣x = 0, orx ∈ R+

∗andxisin f initesimal} = µ(−a+)∪
{a} = (−a+)∪{a} =− a+ ∪ {a}

(12)

The element {a} has been included into the left monad, right monad, and pierced binad respectively.

10. Nonstandard Neutrosophic Function

In order to be able to define equalities and inequalities in the sets of monads, and in the sets of
binads, we construct a nonstandard neutrosophic function that approximates the monads and binads
to tiny open (or half open and half closed respectively) standard real intervals as below. It is called
‘neutrosophic’ since it deals with indeterminacy: unclear, vague monads and binads, and the function
approximates them with some tiny real subsets.

Taking an arbitrary infinitesimal

ε1 > 0, and writing −a = a− ε1, a+ = a + ε1, and −a+ = a± ε1, (13)

or taking an arbitrary infinitesimal ε2 ≥ 0, and writing

−0
a = (a− ε2, a],

0+
a = [a, a + ε2),

−0+
a = (a− ε2, a + ε2) (14)

We meant to actually pick up a representative from each class of the monads and of the binads.
Representations of the monads and binads by intervals is not quite accurate from a classical point

of view, but it is an approximation that helps in finding a partial order and computing nonstandard
arithmetic operations on the elements of the nonstandard set NRMB.

Let ε be a generic positive infinitesimal, while a be a generic standard real number.
Let P(R) be the power set of the real number set R.

µN : NRMB → P(R) (15)
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For any a ∈ R, the set of real numbers, one has

µN((−a)) =N (a − ε, a), (16)

µN((a+)) =N (a, a + ε), (17)

µN((−a+)) =N (a − ε, a) ∪ (a, a + ε), (18)

µN

((−0
a
))

=N (a− ε, a], (19)

µN

((
0+
a
))

=N [a, a + ε
)
, (20)

µN

((−0+
a

))
=N (a− ε, a + ε), (21)

µN

((
0
a
))

=N µN(a) =N a = [a, a], (22)

in order to set it as real interval too.

11. General Notations for Monads and Binads

Let a ∈ R be a standard real number. We use the following general notation for monads and binads.

m
a ∈

{
a,
−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a
}

and by convention
0
a = a; (23)

or
m ∈ { , −, −0, +, +0, −+, −0+} = {0, −, −0, +, +0, −+, −0+}; (24)

therefore “m” above a standard real number “a” may mean anything: a standard real number (0, or
nothing above), a left monad (−), a left monad closed to the right (−0), a right monad (+), a right monad
closed to the left (0+), a pierced binad (−+), or a unpierced binad (−0+), respectively.

The notations of monad’s and binad’s diacritics above (not laterally) the number a as

−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a (25)

are the best, since they also are designed to avoid confusion for the case when the real number a is
negative.

For example, if a = −2, then the corresponding monads and binads are respectively represented as:

−−2,
−0−2,

+−2,
0+−2,
−+−2,

−0+−2 (26)

Classical and Neutrosophic Notations
Classical notations on the set of real numbers:

<, ≤, >, ≥, ∧, ∨,→,↔, ∩, ∪, ⊂, ⊃, ⊆, ⊇, =, ∈,
+, −, ×,÷, ˆ, *

(27)

Operations with real subsets:
~ (28)

Neutrosophic notations on nonstandard sets (that involve indeterminacies, approximations, and
vague boundaries):

<N, ≤N, >N, ≥N, ∧N, ∨N,→N,↔N, ∩N, ∪N, ⊂N, ⊃N, ⊆N, ⊇N, =N, ∈N + N, − N, ×N, ÷N, ˆN, *N (29)
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12. Neutrosophic Strict Inequalities

We recall the neutrosophic strict inequality which is needed for the inequalities of nonstandard
numbers.

Let α and β be elements in a partially ordered set M.
We have defined the neutrosophic strict inequality

α >N β (30)

and read as
“α is neutrosophically greater than β”

if α in general is greater than β, or α is approximately greater than β, or subject to some indeterminacy
(unknown or unclear ordering relationship between α and β) or subject to some contradiction (situation
when α is smaller than or equal to β) α is greater than β.

It means that in most of the cases, on the set M, α is greater than β.
And similarly for the opposite neutrosophic strict inequality

α <N β (31)

13. Neutrosophic Equality

We have defined the neutrosophic inequality

α =N β (32)

and read as
“α is neutrosophically equal to β”

if α in general is equal to β, or α is approximately equal to β, or subject to some indeterminacy (unknown
or unclear ordering relationship between α and β) or subject to some contradiction (situation when α is
not equal to β) α is equal to β.

It means that in most of the cases, on the set M, α is equal to β.

14. Neutrosophic (Nonstrict) Inequalities

Combining the neutrosophic strict inequalities with neutrosophic equality, we get the ≥N and ≤N
neutrosophic inequalities.

Let α and β be elements in a partially ordered set M.
The neutrosophic (nonstrict) inequality

α ≥N β (33)

and read as
“α is neutrosophically greater than or equal to β”

if α in general is greater than or equal to β, or α is approximately greater than or equal to β, or subject
to some indeterminacy (unknown or unclear ordering relationship between α and β) or subject to some
contradiction (situation when α is smaller than β) α is greater than or equal to β.

It means that in most of the cases, on the set M, α is greater than or equal to β.
And similarly for the opposite neutrosophic (nonstrict) inequality

α ≤N β. (34)
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15. Neutrosophically Ordered Set

Let M be a set. (M, <N) is called a neutrosophically ordered set if

∀α, β ∈M, onehas : eitherα <N β, orα =N β, orα >N β. (35)

16. Neutrosophic Infimum and Neutrosophic Supremum

As an extension of the classical infimum and classical supremum, and using the neutrosophic
inequalities and neutrosophic equalities, we define the neutrosophic infimum (denoted as infN) and
the neutrosophic supremum (denoted as supN).

Neutrosophic Infimum.
Let (S, <N) be a set that is neutrosophically partially ordered, and M a subset of S.
The neutrosophic infimum of M, denoted as infN(M) is the neutrosophically greatest element in S

that is neutrosophically less than or equal to all elements of M:
Neutrosophic Supremum.
Let (S, <N) be a set that is neutrosophically partially ordered and M a subset of S.
The neutrosophic supremum of M, denoted as supN(M) is the neutrosophically smallest element

in S that is neutrosophically greater than or equal to all elements of M.

17. Definition of Nonstandard Real MoBiNad Set

Let R be the set of standard real numbers, and R∗ be the set of hyper-reals (or nonstandard reals)
that consists of infinitesimals and infinites.

The Nonstandard Real MoBiNad Set is now defined for the first time as follows

NRMB =N


ε, ω, a, (−a) ,

(−a0
)
, (a+),

(
0a+

)
, (−a+),

(−a0+
)
|where ε are infinitesimals,

with ε ∈ R∗; ω = 1/ε are infinites, with ω ∈ R∗; and a are real numbers, with a ∈ R

 (36)

Therefore

NRMB =N R∗ ∪R∪ µ(−R)∪ µ
(−R0

)
∪ µ

(
R+

)
∪ µ

(
0R+

)
∪ µ

(−R+
)
∪ µ

(−R0 +
)
, (37)

where

µ(−R) is the set of all real left monads,

µ
(−R0

)
is the set of all real left monads closed to the right,

µ(R+) is the set of all real right monads,

µ
(
0R+

)
is the set of all real right monads closed to the left,

µ(−R+) is the set of all real pierced binads,

and µ
(−R0 +

)
is the set of all real unpierced binads.

Also,

NRMB =N

{
ε, ω,

m
a
∣∣∣∣where ε, ω ∈ R∗, ε are infinitesimals, ω = 1

ε are infinities;

a ∈ R; and m ∈
{

,− ,− 0 ,+ ,+ 0 ,− + ,− 0 +
}} (38)

NRMB is closed under addition, subtraction, multiplication, division (except division by
m
a, with a

= 0 and m ∈
{

,− ,− 0 ,+ ,0+ ,− + ,− 0 +
}
), and power

{
(

m1a
)(

m2
b )

with: either a > 0, or a = 0 and m∈
{

,+ ,0+
}

and b > 0, or a < 0 but b =
p
r (irreducible

fraction) and p, r are integers with r an odd positive integer r ∈ {1, 3, 5, . . . }}.
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These mobinad (nonstandard) above operations are reduced to set operations, using Set Analysis
and Neutrosophic Analysis (both introduced by the author [22] (page 11), which are generalizations of
Interval Analysis), and they deal with sets that have indeterminacies.

18. Etymology of MoBiNad

MoBiNad comes from monad + binad, introduced now for the first time.

19. Definition of Nonstandard Complex MoBiNad Set

The Nonstandard Complex MoBiNad Set, introduced here for the first time, is defined as

NCMB =N
{
α+ βi|where i =

√
−1; α, β ∈ NRMB

}
(39)

20. Definition of Nonstandard Neutrosophic Real MoBiNad Set

The Nonstandard Neutrosophic Real MoBiNad Set, introduced now for the first time, is defined as

NNRMB =N
{
α+ βI|where I = literal indeterminacy, I2 = I; α, β ∈ NRMB

}
. (40)

21. Definition of Nonstandard Neutrosophic Complex MoBiNad Set

The Nonstandard Neutrosophic Complex MoBiNad Set, introduced now for the first time, is
defined as

NNCMB =N
{
α+ βI|where I = literal indeterminacy, I2 = I; α, β ∈ NCMB

}
(41)

22. Properties of the Nonstandard Neutrosophic Real Mobinad Set

Since in nonstandard neutrosophic logic we use only the nonstandard neutrosophic real mobinad
set, we study some properties of it.

Theorem 1. The nonstandard real mobinad set (NRMB, ≤N), endowed with the nonstandard neutrosophic
inequality is a lattice of first type [as partially ordered set (poset)].

Proof. The set NRMB is partially ordered, because (except the two-element subsets of the form{
a,
−+
a
}
, and

{
a,
−0+

a
}
, with a ∈ R, beetwen which there is no order) all other elements are ordered:

If a < b, where a, b ∈ R, then:
m1a <N

m2
b , for any monads or binads

m1, m2 ∈N
{

,− ,− 0 ,+ ,0+ ,− + ,− 0 +
}
. (42)

If a = b, one has:
−a <N a, (43)

a− <N a+ (44)

a <N a+ (45)

−a ≤N
−a+, (46)

−a ≤N
−a+, (47)

and there is no neutrosophic ordering relationship between a and −a+,

nor between a and
−0+

a (that is why ≤N on NRMB is a partial ordering set). (48)
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If a > b, then :
m1a >N

m2
b , for any monads or binads m1, m2. (49)

�

Any two-element set
{
α, β

} ⊂N NRMB has a neutrosophic nonstandard infimum (meet, or greatest
lower bound) that we denote by infN, and a neutrosophic nonstandard supremum (joint, or least upper
bound) that we denote by supN, where both

infN
{
α, β

}
and supN

{
α, β

} ∈ NRMB. (50)

For the nonordered elements a and −a+:

infN
{
a,− a+

}
=N
−a ∈N NRMB, (51)

supN

{
a,− a+

}
=N a+ ∈N NRMB (52)

And similarly for nonordered elements a and −a0 +:

infN
{
a,− a0 +

}
=N

−a ∈N NRMB, (53)

supN

{
a,− a0 +

}
=N a+ ∈N NRMB. (54)

Dealing with monads and binads which neutrosophically are real subsets with indeterminate
borders, and similarly a = [a, a] can be treated as a subset, we may compute infN and supN of each
of them.

infN(
−a) =N

−a and supN(
−a) =N

−a (55)

infN
(
a+

)
=N a+ and supN

(
a+

)
=N a+; (56)

infN
(−a+

)
=N

−a and supN

(−a+
)
=N a+; (57)

infN
(−a0 +

)
=N

−a and supN

(−a0 +
)
=N a+. (58)

Also,
infN(a) =N a and supN(a) =N a. (59)

If a < b, then
m1a <N

m2
b , hence

infN

{
m1a ,

m2
b
}
=N infN

(
m1a

)
and supN

{
m1a ,

m2
b
}
=N supN

m2
b , (60)

which are computed as above.
Similarly, if

a > b, with
m1a <N

m2
b . (61)

If a = b, then: infN

{
m1a ,

m2a
}
=N the neutrosophically smallest (<N) element among

infN

{
m1a

}
and infN

{
m2a

}
. (62)

While supN

{
m1a ,

m2a
}
=N the neutrosophically greatest (>N) element among

supN

{
m1a

}
and supN

{
m2a

}
. (63)
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Examples:
infN

(−a, a+
)
=N

−a and supN

(−a, a+
)
=N a+; (64)

infN
(−a,− a+

)
=N
−a and supN

(−a,− a+
)
=N a+; (65)

infN
(−a+, a+

)
=N
−a and supN

(−a+, a+
)
=N a+. (66)

Therefore, (NRMB, ≤N) is a nonstandard real mobinad lattice of first type (as partially ordered set).
Consequence
If we remove all pierced and unpierced binads from NRMB and we denote the new set by

NRM =
{
ε, ω, a,− a,− a0, a+,0 a+, where ε are infinitesimals, ω are infinites, and a ∈ R

}
we obtain a

totally neutrosophically ordered set.

Theorem 2. Any finite non-empty subset L of (NRMB,≤N) is also a sublattice of first type.

Proof. It is a consequence of any classical lattice of first order (as partially ordered set). �

Theorem 3. (NRMB, ≤N) is bounded neither to the left nor to the right, since it does not have a minimum
(bottom, or least element), or a maximum (top, or greatest element).

Proof. Straightforward, since NRMB includes the set of real number R = (−∞, +∞) which is clearly
unbounded to the left and right-hand sides. �

Theorem 4. (NRMB, in fN, supN), where in fN and supN are two binary operations, dual to each other, defined
before as a lattice of second type (as an algebraic structure).

Proof. We have to show that the two laws in fN and supN are commutative, associative, and verify the
absorption laws.

Let α, β, γ ∈ NRMB be two arbitrary elements.
Commutativity Laws
(i)

infN
{
α, β

}
=N infN

{
β, α

}
(67)

(ii)
supN

{
α, β

}
=N supN

{
β, α

}
(68)

Their proofs are straightforward.
Associativity Laws
(i)

infN
{
α, infN

{
β,γ

}}
=N infN

{
infN

{
α, β

}
, γ

}
. (69)

�

Proof.
infN

{
α, infN

{
β,γ

}}
=N infN

{
α, β, γ

}
, (70)

and
infN

{
infN

{
α, β

}
, γ

}
=N infN

{
α, β, γ

}
, (71)

where we have extended the binary operation infN to a trinary operation infN.
(ii)

supN

{
α, supN

{
β,γ

}}
=N supN

{
supN

{
α, β

}
, γ

}
(72)

�
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Proof.
supN

{
α, supN

{
β,γ

}}
=N supN

{
α, β, γ

}
, (73)

and
supN

{
α, supN

{
β,γ

}}
=N supN

{
α, β, γ

}
, (74)

where similarly we have extended the binary operation supN to a trinary operation supN.
Absorption Laws (as peculiar axioms to the theory of lattice)
(i) We need to prove that

infN
{
α, supN

{
α, β

}}
=N α. (75)

Let α ≤N β, then
infN

{
α, supN

{
α, β

}}
=N infN{α,α} =N α. (76)

Let α >N β, then
infN

{
α, supN

{
α, β

}}
=N infN{α,α} =N α. (77)

(ii) Now, we need to prove that

supN
{
α, infN

{
α, β

}}
=N α. (78)

Let α ≤N β, then
supN

{
α, infN

{
α, β

}}
=N supN{α, α} =N α. (79)

Let α >N β, then
supN

{
α, infN

{
α, β

}}
=N supN

{
α, β

}
=N α. (80)

Consequence
The binary operations infN and supN also satisfy the idempotent laws:

infN{α, α} =N α, (81)

supN{α, α} =N α. (82)

�

Proof. The axioms of idempotency follow directly from the axioms of absorption proved above. �

Thus, we have proved that (NRMB, infN, supN) is a lattice of second type (as algebraic structure).

23. Definition of General Nonstandard Real MoBiNad Interval

Let a, b ∈ R, with
−∞ < a ≤ b < ∞, (83)

]−a, b+[MB=
{
x ∈ NRMB,− a ≤N x ≤N b+

}
. (84)

As particular edge cases:
]−a, a+[MB=N

{−a, a,− a+, a+
}
, (85)

a discrete nonstandard real set of cardinality 4.

]−a, −a[MB=N
{−a

}
; (86)

]a+, a+[MB =N
{
a+

}
(87)

]a, a+[MB =N
{
a, a+

}
(88)

]−a, a[MB=N
{−a, a

}
(89)
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]−a, −a+[MB=N
{−a,− a+, a+

}
, (90)

where a <]−a,− a+[MB since a �N
−a+ (there is no relation of order between a and −a+);

]−a+, a+[MB=N
{−a+, a+

}
. (91)

Theorem 5.
(
]−a, b+[, ≤N

)
is a nonstandard real mobinad sublattice o f f irst type (poset). (92)

Proof. Straightforward since ]−a, b+[ is a sublattice of the lattice of first type NRMB. �

Theorem 6.
(
]−a, b+[, infN, supN,− a, b+

)
is a nonstandard bounded real mobinad sublattice

o f second type (as algebraic structure).
(93)

Proof. ]−a, b+[MB as a nonstandard subset of NRMB is also a poset, and for any two-element subset

{
α, β

} ⊂N ]−0, 1+[MB (94)

one obviously has the triple neutrosophic nonstandard inequality:

−a ≤N infN
{
α, β

} ≤N supN
{
α, β

} ≤N b+ (95)

hence ( ]−a, b+[MB≤N) is a nonstandard real mobinad sublattice of first type (poset), or sublattice of
NRMB.

Further on, ]−a, b+[, endowed with two binary operations infN and supN, is also a sublattice of
the lattice NRMB, since the lattice axioms (Commutative Laws, Associative Laws, Absortion Laws, and
Idempotent Laws) are clearly verified on ]−a, b+[.

The nonstandard neutrosophic modinad Identity Join Element (Bottom) is −a, and the nonstandard
neutrosophic modinad Identity Meet Element (Top) is b+, or

infN]
−a, b+[=N

− and supN]
−a, b+[=N b+. (96)

The sublattice Identity Laws are verified below.

Let α ∈N]
−a, b+[, whence −a ≤N α ≤N b+. (97)

Then:
infN

{
α, b+

}
=N α, and supN

{
α,− a

}
=N α. (98)

�

24. Definition of Nonstandard Real MoBiNad Unit Interval

]−0, 1+[MB=N
{
x ∈ NRMB,− 0 ≤N x ≤N 1+

}

=N


ε, a,

−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a
∣∣∣∣∣ where ε are in f initesimals,

ε ∈ R∗, with ε > 0, and a ∈ [0, 1]


(99)
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This is an extension of the previous definition (1998) [5] of nonstandard unit interval

]−0, 1+[=N (−0 )∪ [0, 1] ∪
(
1+

)
(100)

Associated to the first published definitions of neutrosophic set, logic, and probability was used.
One has

]−0, 1+[⊂N ]−0, 1+[MB (101)

where the index MB means: all monads and binads included in ]−0, 1+[, for example,

(−0.2), (−0.30), (0.5+), (−0.7+), (−0.80+) etc. (102)

or, using the top diacritics notation, respectively,

−
0.2 ,

−0
0.3 ,

+
0.5 ,

−+
0.7 ,

−0+
0.8 etc. (103)

Theorem 7. The Nonstandard Real MoBiNad Unit Interval ]−0, 1+[MB is a partially ordered set (poset)
with respect to ≤N, and any of its two elements have an in fN and supN hence ]−0, 1+[MB is a nonstandard
neutrosophic lattice of first type (as poset).

Proof. Straightforward. �

Theorem 8. The Nonstandard Real MoBiNad Unit Interval ]−0, 1+[MB, endowed with two binary operations
in fN and supN, is also a nonstandard neutrosophic lattice of second type (as an algebraic structure).

Proof. Replace a = 0 and b = 1 into the general nonstandard real mobinad interval ]−a, b+[. �

25. Definition of Extended General Neutrosophic Logic

We extend and present in a clearer way our 1995 definition (published in 1998) of neutrosophic logic.
LetU be a universe of discourse of propositions and P ∈ U be a generic proposition.
A General Neutrosophic Logic is a multivalued logic in which each proposition P has a degree

of truth (T), a degree of indeterminacy (I), and a degree of falsehood (F), and where T, I, and F are
standard real subsets or nonstandard real mobinad subsets of the nonstandard real mobinat unit
interval ]−0, 1+[MB,

With
T, I, F ⊆N]

−0, 1+[MB (104)

where
−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+. (105)

26. Definition of Standard Neutrosophic Logic

If in the above definition of general neutrosophic logic all neutrosophic components, T, I, and F
are standard real subsets, included in or equal to the standard real unit interval, T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3 (106)

we have a standard neutrosophic logic.
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27. Definition of Extended Nonstandard Neutrosophic Logic

If in the above definition of general neutrosophic logic at least one of the neutrosophic components
T, I, or F is a nonstandard real mobinad subset, neutrosophically included in or equal to the nonstandard
real mobinad unit interval ]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (107)

we have an extended nonstandard neutrosophic logic.

Theorem 9. If M is a standard real set, M ⊂ R, then

in fN(M) = in f (M) and supN(M) = sup(M). (108)

Proof. The neutrosophic infimum and supremum coincide with the classical infimum and supremum
since there is no indeterminacy on the set M, meaning M contains no nonstandard numbers. �

28. Definition of Extended General Neutrosophic Set

We extend and present in a clearer way our 1995 definition of neutrosophic set.
LetU be a universe of discourse of elements and S ∈ U a subset.
A Neutrosophic Set is a set such that each element x from S has a degree of membership (T), a

degree of indeterminacy (I), and a degree of nonmembership (F), where T, I, and F are standard real
subsets or nonstandard real mobinad subsets, neutrosophically included in or equal to the nonstandard
real mobinat unit interval

]−0, 1+[MB, with T, I, F ⊆N]
−0, 1+[MB, (109)

where
−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+. (110)

29. Definition of Standard Neutrosophic Set

If in the above general definition of neutrosophic set all neutrosophic components, T, I, and F, are
standard real subsets included in or equal to the classical real unit interval, T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3, (111)

we have a standard neutrosophic set.

30. Definition of Extended Nonstandard Neutrosophic Set

If in the above general definition of neutrosophic set at least one of the neutrosophic components T,
I, or F is a nonstandard real mobinad subsets, neutrosophically included in or equal to ]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (112)

we have a nonstandard neutrosophic set.

31. Definition of Extended General Neutrosophic Probability

We extend and present in a clearer way our 1995 definition of neutrosophic probability.
LetU be a universe of discourse of events, and E ∈ U be an event.
A Neutrosophic Probability is a multivalued probability such that each event E has a chance of

occuring (T), an indeterminate (unclear) chance of occuring or not occuring (I), and a chance of not
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occuring (F), and where T, I, and F are standard or nonstandard real mobinad subsets, neutrosophically
included in or equal to the nonstandard real mobinat unit interval

]−0, 1+[MB, T, I, F ⊆N]
−0, 1+[MB, where −0 ≤N infNT + infNI + infNF ≤N supNT+

supNI + supNF ≤ 3+.
(113)

32. Definition of Standard Neutrosophic Probability

If in the above general definition of neutrosophic probability all neutrosophic components, T, I,
and F are standard real subsets, included in or equal to the standard unit interval T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3, (114)

we have a standard neutrosophic probability.

33. Definition of Extended Nonstandard Neutrosophic Probability

If in the above general definition of neutrosophic probability at least one of the neutrosophic
components T, I, F is a nonstandard real mobinad subsets, neutrosophically included in or equal to
]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (115)

we have a nonstandard neutrosophic probability.

34. Classical Operations with Real Sets

Let A, B ⊆ R be two real subsets. Let ~ and * denote any of the real subset classical operations
and real number classical operations respectively: addition (+), subtraction (−), multiplication (×),
division (÷), and power (ˆ).

Then,
A~ B = {a ∗ b, where a ∈ A and b ∈ B} (116)

Thus
A⊕ B = {a + b|a ∈ A, b ∈ B} (117)

A	 B = {a− b|a ∈ A, b ∈ B} (118)

A⊗ B = {a× b|a ∈ A, b ∈ B} (119)

A� B = {a÷ b|a ∈ A; b ∈ B, b , 0} (120)

AB =
{
ab

∣∣∣a ∈ A, a > 0; b ∈ B
}

(121)

For the division (÷), of course, we consider b , 0. While for the power (ˆ), we consider a > 0.

35. Operations on the Nonstandard Real MoBiNad Set (NRMB)

For all nonstandard (addition, subtraction, multiplication, division, and power) operations

α, β ∈N NRMB, α *N β =N µN(α) ~ µN(β) (122)

where *N is any neutrosophic arithmetic operations with neutrosophic numbers (+N, −N, ×N, ÷N, ˆN),
while the corresponding ~ is an arithmetic operation with real subsets.

So, we approximate the nonstandard operations by standard operations of real subsets.
We sink the nonstandard neutrosophic real mobinad operations into the standard real subset

operations, then we resurface the last ones back to the nonstandard neutrosophic real mobinad set.
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Let ε1 and ε2 be two non-null positive infinitesimals. We present below some particular cases, all
others should be deduced analogously.

Nonstandard Addition
First Method

(−a) + (−b) =N (a− ε1, a) + (b− ε2, b) =N (a + b− ε1 − ε2, a + b) =N (a + b− ε, a + b) =N
−(a + b), (123)

where we denoted ε1 + ε2 = ε (the addition of two infinitesimals is also an infinitesimal).
Second Method

(−a) + (−b) =N (a− ε1) + (b− ε2) =N (a + b− ε1 − ε2) =N
−(a + b) (124)

Adding two left monads, one also gets a left monad.
Nonstandard Subtraction
First Method

(−a) − (−b) =N (a− ε1, a)
−(b− ε2, b) =N (a− ε1 − b, a− b + ε2) =N (a− b− ε1, a− b

+ε2) =N

( − 0 +

a− b

) (125)

Second Method

(−a) − (−b) =N (a− ε1) − (b− ε2) =N a− b− ε1 + ε2, (126)

since ε1 and ε2 may be any positive infinitesimals,

=N



−(a− b), when ε1 > ε2;(
0

a− b

)
, when ε1 = ε2

(a− b)+, when ε1 < ε2.

=N

(
0

a− b

)
=N a − b; (127)

Subtracting two left monads, one obtains an unpierced binad (that is why the unpierced binad
had to be introduced).

Nonstandard Division
Let a, b > 0.

(−a) ÷ (−b) =N (a− ε1, a) ÷ (b− ε2, b) =N

(a− ε1

b
,

a
b− ε2

)
(128)

Since
ε1 > 0 and ε2 > 0,

a− ε1

b
<

a
b

and
a

b− ε2
>

a
b

, (129)

while between a−ε1
b and a

b−ε2
there is a continuum whence there are some infinitesimals ε0

1 and ε0
2 such

that
a−ε0

1
b−ε0

2
= a

b , or ab− bε0
1 = ab− aε0

2, and for a given ε0
1 there exists an

ε0
2 = ε0

1·
b
a

(130)

Hence
(−a)
(−b)

=N

( − 0 +
a
b

)
(131)

For a or/and b negative numbers, it is similar but it is needed to compute the in fN and supN of the
products of intervals.
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Dividing two left monads, one obtains an unpierced binad.
Nonstandard Multiplication
Let a, b ≥ 0.

(−a0
)
×

(−b0 +
)

=N (a− ε1, a]
×(b− ε2, b + ε2) =N ((a− ε1)·(b− ε2), a·(b + ε2)) =N

(−ab0 +
) (132)

Since
(a− ε1)·(b− ε2) < a·b and a·(b + ε2) > a·b. (133)

For a or/and b negative numbers, it is similar but it is needed to compute the in fN and supN of the
products of intervals.

Multiplying a positive left monad closed to the right, with a positive unpierced binad, one obtains
an unpierced binad.

Nonstandard Power
Let a, b > 1.

(0a+)
(−b0)

=N [a, a + ε1)
(b−ε2, b] =N (ab−ε2 , (a + ε1)

b) =N

( − 0 +

ab

)
(134)

since ab−ε1< ab and (a + ε1)
b >ab. (135)

Raising a right monad closed to the left to a power equal to a left monad closed to the right, for
both monads above 1, the result is an unpierced binad.

Consequence
In general, when doing arithmetic operations on nonstandard real monads and binads, the result

may be a different type of monad or binad.
That is why is was imperious to extend the monads to closed monads, and the pierced binad to

unpierced binad, in order to have the whole nonstandard neutrosophic real mobinad set closed under
arithmetic operations.

36. Conditions of Neutrosophic Nonstandard Inequalities

Let NRMB be the Nonstandard Real MoBiNad. Let’s endow (NRMB, <N) with a neutrosophic
inequality.

Let α, β ∈ NRMB, where α, β may be real numbers, monads, or binads.
And let (−

a
)
,
(−0

a
)
,
(
+
a
)
,
(

0+
a
)
,
(−+

a
)
,
(−0+

a
)
∈ NRMB, and

(−
b
)
,
(−0

b
)
,
(
+
b
)
,
(

0+
b
)
,
(−+

b
)
,
(−0+

b
)
∈ NRMB,

(136)

be the left monads, left monads closed to the right, right monads, right monads closed to the left, and
binads, and binads nor pierced of the elements (standard real numbers) a and b, respectively. Since all
monads and binads are real subsets, we may treat the single real numbers

a = [a, a] and b = [b, b] as real subsets too (137)

as real subsets too.
NRMB is a set of subsets, and thus we deal with neutrosophic inequalities between subsets.

(i) If the subset α has many of its elements above all elements of the subset β,
(ii) then α >N β (partially).
(iii) If the subset α has many of its elements below all elements of the subset β,
(iv) then α <N β (partially).
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(v) If the subset α has many of its elements equal with elements of the subset β,
(vi) then α =N β (partially).

If the subset α verifies (i) and (iii) with respect to subset β, then α ≥N β.
If the subset α verifies (ii) and (iii) with respect to subset β, then α ≤N β.
If the subset α verifies (i) and (ii) with respect to subset β, then there is no neutrosophic order

(inequality) between α and β.

For example, between a and (−a+) there is no neutrosophic order, similarly between a and
−0+

a .
Similarly, if the subset α verifies (i), (ii) and (iii) with respect to subset β, then there is no

neutrosophic order (inequality) between α and β.

37. Open Neutrosophic Research

The quantity or measure of “many of its elements” of the above (i), (ii), or (iii) conditions depends
on each neutrosophic application and on its neutrosophic experts.

An approach would be to employ the Neutrosophic Measure [23,24], that handles indeterminacy,
which may be adjusted and used in these cases.

In general, we do not try in purpose to validate or invalidate an existing scientific result, but
to investigate how an existing scientific result behaves in a new environment (that may contain
indeterminacy), or in a new application, or in a new interpretation.

38. Nonstandard Neutrosophic Inequalities

For the neutrosophic nonstandard inequalities, we propose, based on the previous six neutrosophic
equalities, the following.

(−a) <N, a <N (a+) (138)

Since the standard real interval (a − ε, a) is below a, and a is below the standard real interval (a, a +

ε) by using the approximation provided by the nonstandard neutrosophic function µ, or because

∀x ∈ R∗+, a− x < a < a + x (139)

where x is of course a (nonzero) positive infinitesimal (the above double neutrosophic inequality
actually becomes a double classical standard real inequality for each fixed positive infinitesimal).

The converse double neutrosophic inequality is also neutrosophically true:

(a+) >N, a >N (−a) (140)

Another nonstandard neutrosophic double inequality:

(−a) ≤N (−a+) ≤N (a+) (141)

This double neutrosophic inequality may be justified since (−a+) = (−a)∪(a+) and, geometrically,
on the Real Number Line, the number a is in between the subsets −a = (a − ε, a) and a+ = (a, a + ε), so

(−a) ≤N (−a) ∪ (a+) ≤N (a+) (142)

Hence the left side of the inequality’s middle term coincides with the inequality first term, while
the right side of the inequality middle term coincides with the third inequality term.

Conversely, it is neutrosophically true as well:

(a+) ≥N (−a) ∪ (a+) ≥N (−a) (143)

388



Symmetry 2019, 11, 515

Also,
−
a ≤N

−0
a ≤N a ≤N

0+
a ≤N

+
a and

−
a ≤N

−+
a ≤N

−0+
a ≤N

+
a (144)

Conversely, they are also neutrosophically true:

+
a ≥N

0+
a ≥N a ≥N

−0
a ≥N

−
a and

+
a ≥N

−0+
a ≥N

−+
a ≥N

−
a respectively. (145)

If a > b, which is a (standard) classical real inequality, then we have the following neutrosophic
nonstandard inequalities.

a >N (−b), a >N
(
b+

)
, a >N

(−b+
)
, a >N

−0
b , a >N

0+
b , a >N

−0+
b ; (146)

(−a) >N b, (−a) >N (−b), (−a) >N
(
b+

)
, (−a) >N

(−b+
)
,
−
a >N

−0
b ,
−
a >N

0+
b ,
−
a >N

−0+
b ; (147)

(
a+

)
>N b,

(
a+

)
>N (−b),

(
a+

)
>N

(
b+

)
,
(
a+

)
>N

(−b+
)
,
+
a >N

−0
b ,

+
a >N

0+
b ,

+
a >N

−0+
b ; (148)

(−a+) >N b, (−a+) >N (−b), (−a+) >N (b+), (−a+) >N (−b+), etc. (149)

No Ordering Relationships
For any standard real number a, there is no relationship of order between the elements a and (−a+),

or between the elements a and (−0+
a

)
(150)

Therefore, NRMB is a neutrosophically partially order set.

If one removes all binads from NRMB, then (NRMB, ≤N) is neutrosophically totally ordered. (151)

Theorem 10. Using the nonstandard general notation one has:
If a > b, which is a (standard) classical real inequality, then

m1a >N
m2
b for any m1, m2 ∈

{
, −, −0, +, +0, −0, −0+

}
. (152)

Conversely, if a < b, which is a (standard) classical real inequality, then

m1a <N
m2
b for any m1, m2 ∈

{
, −, −0, +, +0, −0, −0+

}
. (153)

39. Nonstandard Neutrosophic Equalities

Let a, b be standard real numbers; if a = b that is a (classical) standard equality, then

(−a) =N (−b), (a+) =N (b+), (−a+) =N (−b+), (154)

(−0
a
)
=N

(−0
b
)
,
(

0+
a
)
=N

(
0+
b
)
,
(−0+

a
)
=N

(−0+
b

)
(155)

40. Nonstandard Neutrosophic Belongingness

On the nonstandard real set NRMB, we say that

m
c ∈N]

m1a ,
m2
b [ iff

m1a ≤N
m
c ≤N

m2
b , (156)
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where
m1, m2, m ∈ {, −, −0, +, +0, −+, −0+}. (157)

We use the previous nonstandard neutrosophic inequalities.

41. Nonstandard Hesitant Sets

Nonstandard Hesitant sets are sets of the form:

A = {a1, a2, . . . , an}, 2 ≤ n < ∞, A ⊂N NRMB, (158)

where at least one element ai0 , 1 ≤ i0 ≤ n, is an infinitesimal, a monad, or a binad (of any type); while
other elements may be standard real numbers, infinitesimals, or also monads or binads (of any type).

If the neutrosophic components T, I, and F are nonstandard hesitant sets, then one has a
Nonstandard Hesitant Neutrosophic Logic/Set/Probability.

42. Nonstandard Neutrosophic Strict Interval Inclusion

On the nonstandard real set NRMB,

]
m1a ,

m2
b [⊂N]

m3c ,
m4
d [ (159)

iff
m3c ≤N

m1a <N
m2
b <N

m4
d or

m3c <N
m1a <N

m2
b ≤N

m4
d or

m3c <N
m1a <N

m2
b <N

m4
d (160)

43. Nonstandard Neutrosophic (Nonstrict) Interval Inclusion

On the nonstandard real set NRMB,

]
m1a ,

m2
b [⊆N]

m3c ,
m4
d [ iff (161)

m3c ≤N
m1a <N

m2
b ≤N

m4
d . (162)

44. Nonstandard Neutrosophic Strict Set Inclusion

The nonstandard set A is neutrosophically strictly included in the nonstandard set B, A ⊂N B, if:

∀x ∈N A, x ∈N B, and ∃y ∈N B : y <N A. (163)

45. Nonstandard Neutrosophic (Nonstrict) Set Inclusion

The nonstandard set A is neutrosophically not strictly included in the nonstandard set B,

A ⊆N B, iff: (164)

∀x ∈N A, x ∈N B. (165)

46. Nonstandard Neutrosophic Set Equality

The nonstandard sets A and B are neutrosophically equal,

A =N B, iff: (166)

A ⊆N B and B ⊆N A. (167)
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47. The Fuzzy, Neutrosophic, and Plithogenic Logical Connectives ∧, ∨,→
All fuzzy, intuitionistic fuzzy, and neutrosophic logic operators are inferential approximations, not

written in stone. They are improved from application to application.
Let’s denote:

∧F, ∧N, ∧P representing respectively the fuzzy conjunction, neutrosophic
conjunction, and plithogenic conjunction;

(168)

similarly

∨F, ∨N, ∨P representing respectively the fuzzy disjunction, neutrosophic
disjunction, and plithogenic disjunction,

(169)

and
→F,→N,→P representing respectively the fuzzy implication, neutrosophic

implication, and plithogenic implication.
(170)

I agree that my beginning neutrosophic operators (when I applied the same fuzzy t-norm, or the
same fuzzy t-conorm, to all neutrosophic components T, I, F) were less accurate than others developed
later by the neutrosophic community researchers. This was pointed out in 2002 by Ashbacher [25] and
confirmed in 2008 by Rivieccio [26]. They observed that if on T1 and T2 one applies a fuzzy t-norm,
for their opposites F1 and F2, one needs to apply the fuzzy t-conorm (the opposite of fuzzy t-norm),
and reciprocally.

About inferring I1 and I2, some researchers combined them in the same directions as T1 and T2.
Then,

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1 ∧F I2, F1 ∨F F2), (171)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∨F I2, F1 ∧F F2), (172)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∨F I2, T1 ∧ F F2). (173)

others combined I1 and I2 in the same direction as F1 and F2 (since both I and F are negatively qualitative
neutrosophic components, while F is qualitatively positive neutrosophic component), the most used
one is as follows.

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2), (174)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2), (175)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧F F2). (176)

Even more, recently, in an extension of neutrosophic set to plithogenic set [27] (which is a set
whose each element is characterized by many attribute values), the degrees of contradiction c( , ) between
the neutrosophic components T, I, and F have been defined (in order to facilitate the design of the
aggregation operators), as follows:

c(T, F) = 1 (or 100%, because they are totally opposite), c(T, I) = c(F, I) = 0.5
(or 50%, because they are only half opposite).

(177)

Then,

(T1, I1, F1) ∧P (T2, I2, F2) = (T1 ∧F T2, 0.5(I1∧F I2) + 0.5(I1∨F I2), F1 ∨F F2), (178)

(T1, I1, F1) ∨P (T2, I2, F2) = (T1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), F1 ∧F F2), (179)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2),
T1 ∧ F F2).

(180)
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48. Fuzzy t-norms and Fuzzy t-conorms

The most used ∧F (Fuzzy t-norms), and ∨F (Fuzzy t-conorms) are as follows.
Let

a, b ∈ [0, 1]. (181)

Fuzzy t-norms (fuzzy conjunctions, or fuzzy intersections):

a ∧F b = min{a, b}; (182)

a ∧F b = ab; (183)

a ∧F b = max{a + b − 1, 0}. (184)

Fuzzy t-conorms (fuzzy disjunctions, or fuzzy unions):

a ∨F b = max{a, b}; (185)

a ∨F b = a + b - ab; (186)

a ∨F b = min{a + b, 1} (187)

49. Nonstandard Neutrosophic Operators

Nonstandard Neutrosophic Conjunctions

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) =

(inf N(T1, T2), supN(I1, I2), supN(F1, F2))
(188)

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) =

(T1 ×N T2, I1 +N I2 −N I1 ×N I2, F1 +N F2 −N F1 ×N F2)
(189)

Nonstandard Neutrosophic Disjunctions

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2) =

(supN(T1, T2), inf N(I1, I2), inf N(F1, F2))
(190)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2) =

(T1 +N T2 −N T1 ×N T2, I1 ×N I2, F1 ×N F2)
(191)

Nonstandard Neutrosophic Negations

¬(T1, I1, F1) = (F1, I1, T1) (192)

¬(T1, I1, F1) = (F1, (1+) -N I1, T1) (193)

Nonstandard Neutrosophic Implications

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2)
= (F1 +N T2 −N F1 ×N T2, I1 ×N I2, T1 ×N F2)

(194)
(T1, I1, F1)→N (T2, I2, F2) = (F1, (1+) −N I1, T1) ∨N (T2, I2, F2)

= (F1 ∨F T2, ((1+) −N I1) ∧F I2, T1 ∧ F F2) = (F1 +N T2 −N F1 ×N T2, ((1+) −N I1) ×N I2, T1 ×N F2)
(195)

Let P1(T1, I1, F1) and P2(T2, I2, F2) be two nonstandard neutrosophic logical propositions, whose
nonstandard neutrosophic components are, respectively,

T1, I1, F1, T2, I2, F2 ∈N NRMB. (196)
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50. Numerical Examples of Nonstandard Neutrosophic Operators

Let us take a particular numeric example, where

P1 =N (
0+
0.3 ,

−+
0.2 , 0.4), P2 =N (

−0
0.6 ,

−0+
0.1 ,

+
0.5 ) (197)

are two nonstandard neutrosophic logical propositions.
We use the nonstandard arithmetic operations previously defined Numerical Example of Nonstandard

Neutrosophic Conjunction

0+
0.3 × −0

0.6 =N [0.3, 0.3 + ε1) × (0.6− ε2, 0.6) = (0.18− 0.3ε2, 0.18 + 0.6ε1) =N
−0+
0.18 (198)

−+
0.2 +N

−0+
0.1 −N

−+
0.2 ×N

−0+
0.1 =N [(0.2− ε1, 0.2)∪ (0.2, 0.2 + ε1)] + (0.1− ε2, 0.1 + ε2)

−[(0.2− ε1, 0.2)∪ (0.2, 0.2 + ε1)] × (0.1− ε2, 0.1 + ε2)

= [(0.3− ε1 − ε2, 0.3 + ε2)∪ (0.3− ε2, 0.3 + ε1 + ε2)]

−[(0.2− ε1) × (0.1− ε2), (0.02 + 0.2ε2)]∪ [(0.02− 0.2ε2), (0.2 + ε1) × (0.1 + ε2)]

= [
−0+
0.3 ∪ −0+

0.3 ] − [−0+
0.02 ∪ −0+

0.02 ] = [
−0+
0.3 ] − [−0+

0.02 ] = 0.3
−0+− 0.02 =N

−0+
0.28

(199)

0.4 +N
+

0.5 =N [0.4, 0.4] + (0.5, 0.5 + ε1) − [0.4, 0.4] × (0.5, 0.5 + ε1)

= (0.4 + 0.5, 0.4 + 0.5 + ε1) − (0.4× 0.5, 0.4× 0.5 + 0.4ε1)

= (0.9, 0.9 + ε1) − (0.2, 0.2 + 0.4ε1)

= (0.9− 0.2− 0.4ε1, 0.9 + ε1 − 0.2) = (0.7− 0.4ε1, 0.7 + ε1) =N
−0+
0.70

(200)

Hence

P1 ∧ P2 =N (
−0+
0.18 ,

−0+
0.28 ,

−0+
0.70 ) (201)

Numerical Example of Nonstandard Neutrosophic Disjunction

0+
0.3 +N

−0
0.6 − 0+

0.3 ×N
−0
0.6 =N

{
[0.3, 0.3 + ε1) + (0.6− ε1, 0.6]

}− {
[0.3, 0.3 + ε1) × (0.6− ε1, 0.6]

}

= (0.9− ε1, 0.9 + ε1) − (0.18− 0.3ε1, 0.18 + 0.6ε1) = (0.72− 1.6ε1, 0.72 + 1.3ε1) =N
−0+
0.72

(202)

−+
0.2 ×N

−0+
0.1 =N

(
0.2
−0+× 0.1

)
=N

−0+
0.02 (203)

0.4×N
+

0.5 =N

(
0.4

+× 0.5
)
=N

+
0.20 (204)

Hence

P1 ∨N P2 =N (
−0+
0.72,

−0+
0.02,

+
0.20) (205)

Numerical Example of Nonstandard Neutrosophic Negation

¬NP1 =N ¬N(
0+
0.3 ,

−+
0.2 , 0.4) =N (0.4,

−+
0.2 ,

0+
0.3 ) (206)

Numerical Example of Nonstandard Neutrosophic Implication

(P1 → NP2) ⇔ N(¬NP1 ∨N P2) =N (0.4,
−+
0.2 ,

0+
0.3 )∨N (

−0
0.6 ,

−0+
0.1 ,

+
0.5 ) (207)
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Afterwards,

0.4 +N
−0
0.6 − 0.4×N

−0
0.6 =N

(
0.4
−0
+ 0.6

)
−N

(
0.4
−0× 0.6

)
=N

−0
1.0 −N

−0
0.24 =N

−0+
0.76 (208)

−+
0.2 ×N

−0+
0.1 = N

−0+
0.02 (209)

0+
0.3 × +

0.5 =N
+

0.15 (210)

whence

¬NP1 =N (
−0+
0.76 ,

−0+
0.02 ,

+
0.15 ) (211)

Therefore, we have showed above how to do nonstandard neutrosophic arithmetic operations on
some concrete examples.

51. Conclusions

In the history of mathematics, critics on nonstandard analysis, in general, have been made by
Paul Halmos, Errett Bishop, Alain Connes, and others.

That’s why we have extended in 1998 for the first time the monads to pierced binad, and then in
2019 for the second time we extended the left monad to left monad closed to the right, the right monad
to right monad closed to the left, and the pierced binad to unpierced binad. These were necessary
in order to construct a general nonstandard neutrosophic real mobinad space, which is closed under
the nonstandard neutrosophic arithmetic operations (such as addition, subtraction, multiplication,
division, and power), which are needed in order to be able to define the nonstandard neutrosophic
operators (such as conjunction, disjunction, negation, implication, and equivalence) on this space, and
to transform the newly constructed nonstandard neutrosophic real mobinad space into a lattice of first
order (as partially ordered nonstandard set, under the neutrosophic inequality ≤N) and a lattice of
second type (as algebraic structure, endowed with two binary laws: neutrosophic infimum (infN) and
neutrosophic supremum (supN)).

As a consequence of extending the nonstandard analysis, we also extended the nonstandard
neutrosophic logic, set, measure, probability and statistics.

As future research it would be to introduce the nonstandard neutrosophic measure, and to find
applications of extended nonstandard neutrosophic logic, set, probability into calculus, since in calculus
one deals with infinitesimals and their aggregation operators, due to the tremendous number of
applications of the neutrosophic theories [28].
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Abstract: Smart ports represent the current trend of port development. Intelligent operations reduce
the daily production cost of ports, facilitate efficient production, strengthen the risk mitigation ability
and comply with the requirements for long-term development. However, a systematic and scientific
smart port evaluation method is missing to nail down the evaluation indicators of a smart port and
enable accurate evaluation of a port’s degree of intelligence. This paper analyzes the concept of the
smart port, establishes a set of smart port evaluation indicator systems, and applies a single-valued
neutrosophic exponential similarity measure to port evaluation to enable quantitative evaluation
of port integrity. This evaluation method is capable of decision-making in the event of incomplete,
uncertain, and inconsistent information during general evaluation, opening up a new method for
smart port evaluation, and acting as a helpful tool for ports to carry out improvements during
actual application.

Keywords: smart port; simplified neutrosophic set; single-valued neutrosophic set; exponential
similarity measure; port evaluation

1. Introduction

More and more opportunities for international trade cooperation are emerging as the world
economy integrates. Ports, as a key link in global transportation, play an important role in world
economic and trade development. However, currently port enterprises are battling sluggish growth of
revenue and cutthroat competition due to homogenization. The international community is paying
increasing attention to environmental protection issues, demonstrating higher sensitivity to climate
change issues. All these problems have been pushing ports toward upgrading and transformation.
In recent years, smart ports have become a dominant mode for port development, representing the
highest level of modern port development. Smart port is based on systematic, strategic and social
thinking, featuring integrated application of cloud computing, big data, Internet of Things, mobile
internet, intelligent sensing and other next-generation information technologies to achieve all-round
perception, ubiquitous interconnection, intelligent integration, deep computing, and coordinated
operation and promoting organic connection and sharing of various resource elements and related
parties in the port organization ecosystem, so as to eventually form a modern port that is smarter, safer,
more efficient, more flexible, greener, and with strong cultural presence.

To materialize an operation mode for the smart port, scholars have conducted a ton of research on
port optimization, including improving logistics supply efficiency, enhancing port service functions,
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reducing environmental pollution at ports, and cutting energy consumption of equipment. These studies
have provided practical and effective steps to port organizations and improved their shortcomings.
However, the current evaluation of smart port performance remains imperfect, lacking an objective
and scientific evaluation method, and clear indicators for the evaluation, which is not conducive to
discovering problems in ports. For the purpose of establishing a systematic and scientific smart port
evaluation approach, this paper builds up a system of indicators for smart port evaluation, namely
by using single-valued neutrosophic exponential similarity measure to quantify the degree of port
intelligence. The research results can offer a theoretical basis for the port industry and stakeholders to
launch smart port construction.

The rest of the paper is organized as follows. The literature review in Section 2 summarizes
the current research programs on port efficiency evaluation with the aim to draw lessons from
them. Section 3 determines the smart port evaluation indicators. Section 4 proposes the research
approach in this paper, and introduces the neutrosophic exponential similarity measure. Section 5
conducts an empirical study to evaluate smart port based on the indicators in a simplified neutrosophic
environment. Section 6 presents the conclusion of this paper.

2. Literature Review

Development efficiency evaluation helps ports to identify their own shortcomings, and facilitates
better designing of plans and policies tailored to distinct situations of different ports, which is of
constructive significance for port development. At present, parametric analysis and nonparametric
analysis are two dominant approaches for port efficiency evaluation both domestically and
internationally. Specifically, data envelopment analysis (DEA) is often used in the nonparametric
analysis. Scholars select different input and output indicators from different angles according to their
own research needs, and construct corresponding port operation efficiency evaluation models. Wu et al.
used the DEA model to test the sensitivity of individual input and output decision-making units,
finding that berth count and capital investment are the most sensitive factors affecting the throughput
of a container port [1]. Tongzon studied the operational efficiency of international ports with the DEA
model, and compared the operational advantages of several international ports, discovering that the
relationship between the efficiency of an international port and its size is not clear [2,3]. Cullinane et al.
took into account time-varying factors in port efficiency evaluation modeling, and established the DEA
time window analysis model to study the relative efficiencies of world’s major container ports, finding
that the evaluated efficiency of a container port fluctuates over time [4]. Cullinane et al. studied the
advantages and disadvantages of port privatization, and used the DEA model to conduct an empirical
study on the relationship between privatization and container port efficiency [5]. Rajasekar and Deo
studied the size effect and its efficiency of Indian Major Ports using DEA-Additive models, discovering
that there is no significant difference between size and its efficiency of the port [6]. Wang and Han
used the traditional DEA, into fuzzy DEA using fuzzy number characteristics in order to measure
the efficiency of twelve international container ports in Taiwan and surrounding areas without
having to consider weighting values of inputs and outputs. This approach allows objective and easy
measurement of international container port efficiency. By the fuzzy DEA computation, it was found
that the results of judging under input orientation and output orientation were consistent [7]. Cullinane
and Wang studied the fundamentals of DEA and demonstrated how DEA can be applied to measure
the efficiency of container ports. As a benchmarking approach to study efficiency, DEA enables a port
to evaluate its performance vis-a-vis its peers. In so doing, the possible waste of resources and the
industry best practice can be identified [8]. Gamassa and Chen used the DEA model to measured and
analyzed the East and West African major ports efficiency over time, and the findings demonstrate
that though West African ports have bigger ports size and have a higher Container throughput
TEUs compared to East African ports [9]. In addition, Chin et al. used the DEA model to study the
efficiencies of ports in Singapore, Greece, ASEAN, etc., and proposed enhanced measures targeting
their shortcomings [10–12].

397



Symmetry 2019, 11, 485

The parametric approach for port efficiency evaluation primarily uses the so-called stochastic
frontier analysis. The stochastic frontier analysis refers to calculating the deviation degree between
the sample port and frontier ports in terms of efficiency to evaluate the efficiency of the sample port.
There are no definite frontier ports in terms of efficiency, they are just the most efficient ports relative to
other ports, and vary with different port sample sets [13]. Coto-Millan et al. used a stochastic frontier
cost function to evaluate the economic efficiency of Spanish ports using panel data, and found that
the port operation model has a significant impact on economic efficiency, but the port size has no
relationship with port economic efficiency [14]. Cullinane et al. used the cross-section and panel data
versions of the “stochastic frontier model” to evaluate the relative efficiency of major container ports in
Asia, and found that port size is closely related to port efficiency [15]. Notteboom and Winkelmans used
the Bayesian stochastic frontier model to evaluate the port efficiency in Asia and Europe, and found
that port efficiency has nothing to do with privatization but is positively related to port size [16].
In addition, many scholars used the analytical hierarchy process to evaluate port performance [17–19],
the fuzzy analytical network process (FANP), and other multiple attribute decision-making methods
were also chosen to evaluate port efficiency [20,21]. Such evaluation methods are easier for practical
application, but feature international indicators of the evaluation system and hence a high degree
of interference.

Founded by Smarandache in 1980, neutrosophy studies the neutrosophic origin, nature and scope,
as well as the roles of different ideologies [22]. In recent years, neutrosophic set theory has been
widely used in decision-making and evaluation research in many industries. Neutrosophy boasts wide
application, such as in the fields of engineering, medicine, military science, cybernetics and physics,
for logical deduction, aggregation, and probability statistics. Fu and Ye proposed new exponential
similarity measures (ESMs) between simplified neutrosophic sets (SNSs), including single-valued
neutrosophic ESMs and interval neutrosophic ESMs, and their initial evaluation/diagnosis method of
the BPH symptoms with simplified neutrosophic information [23]. Peng et al. proposed simplified
neutrosophic sets for multi-criteria decision-making problems [24]. Sahin and Liu used two new
operational laws in which the bases are positive real numbers and interval numbers, respectively
and the exponents are SNNs, and discussed some of their desired properties [25]. Şahin and Küçük
established a useful method dealing with subsethood similarity measure between two SVNSs [26].
Biswas et al. applied the TOPSIS method in single-valued neutrosophic information [27]. Şahin and Liu
introduced a maximizing deviation method under neutrosophic environment and utilized it for solving
a numerical example with incomplete weight information [28]. Akram and Shahzadi defined the notion
of the interval valued neutrosophic soft set (ivn-soft sets), which is a combination of an interval valued
neutrosophic set and a soft set to investigate the decision making based on ivn-soft sets by level soft
sets [29]. Smarandache and Ali introduced the notion of neutrosophic triplet, which is a group of three
elements that satisfy certain properties with some binary operation [30]. Rizk-Allah et al. developed
a new compromise algorithm for multi-objective transportation problem (MO-TP), which is inspired
by Zimmermann’s fuzzy programming and the neutrosophic set terminology [31]. Liu and Teng
introduced the definition, the properties, the score function, the accuracy function, and the operational
laws of the normal neutrosophic numbers (NNNs), and used an illustrative example to demonstrate
the practicality and effectiveness of the proposed method [32]. Abdel-Basset and Mohamed proposed
a general framework for smart city evaluation with imperfect and incomplete information through
using single valued neutrosophic and rough set theories [33]. Thong et al. developed a new Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS) method based on the proposed
Dynamic Interval-valued Neutrosophic Set(DIVNS) theory [34]. However, neutrosophy in the field
of transportation application is rarely mentioned, so this paper proposes to apply a single-valued
neutrosophic exponential similarity measure to evaluate smart port in a simplified neutral environment.

Most of the current research on port efficiency evaluation adopts the aforementioned methods,
or makes further improvements based on the aforesaid studies. In recent years, some new non-classical
nature-inspired evaluation and optimization methods have also been developed and applied [35–37].
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However, port evaluation indicators are uncertain in practical application, no matter whether the
parametric analysis or the nonparametric analysis approach is used for port performance evaluation.
Besides, the evaluation indicators for different ports are not consistent and applying different evaluation
methods for the same port will also produce different results. To avoid this, we should nail down the
indicators related to smart port evaluation and then use the single-valued neutrosophic exponential
similarity measure to evaluate smart port on that basis.

3. Evaluating Indicators

Port is the junction of water and land transport, an important base for industrial activities,
a comprehensive logistics center and a new growth point for urban economic development. To facilitate
more efficient, safer and greener port operation, experts never ceased the search of new information
technologies, and the concept of the smart port came into being.

Currently, the smart port in the broad sense is a result of digital technologies, business model
innovation and resource value innovation. The smart port features excellent port operation, an open
ecosystem, and active expansion in sustainable innovative businesses.

Smart ports attempt to apply advanced information technology as well as automated and intelligent
mechanical equipment to the daily production and operation management of ports, realizing the
automation of port production and operation, the whole process of port logistics supply chain services,
the facilitation of port financial trade and the rationalization of port energy saving and emission
reduction. Smart ports enable seamless connection and synergy between vehicles, ships, people,
cargoes and various systems of the port, improving its daily operational efficiency and amplifying
its advantages. By referring to literature in port and related fields, this paper singles out specific
evaluation indicators for the smart port, as shown in Table 1. The smart port mentioned in this paper
refers to a comprehensive conceptual port, which renders intelligence and advancedness to the port in
terms of production and operation systems, logistics supply chain systems, financial and trade service
technologies, and energy conservation and emission reduction capacities. This enables a safe, efficient,
convenient, green and sustainable development form of the port to improve the comprehensive
competitiveness of ports.

Specifically, the evaluation indicators of the port production and operation systems include the
application of emerging information technologies, such as port production dispatching automation,
Internet of Things and cloud computing, and emergency response capabilities. These indicators
emphasize the application of intelligent technology in port operation, which is the breakthrough
sign of the development of information and intelligence in many ports in the world. Smart Ports use
intelligent technology to automate production scheduling, reduce manual work, and enhance the
handling capacity of port emergency events.

The evaluation indicators of the port logistics supply chain systems include the intelligent level
of door-to-door full-course services of port logistics, the electronic processing of logistics documents,
the standardization level of operations and the “Internet +” logistics supply chain services of the port.
These indicators mainly consider the ability of ports to develop door-to-door supply chain services,
especially require ports to realize the intellectualization, standardization, and convenience of logistics
services through intelligent technology. Ports can provide efficient, fast, and convenient integrated
logistics services.

The evaluation indicators of the port financial and trade service technologies include port
integration and facilitation as well as customs clearance efficiency, and sharing of financial service
resources in the port supply chain. These indicators consider the service expansion capability of
ports in the context of intellectualization, and require ports to use intelligent technology to achieve
convenient customs clearance environment, goods trade, and supply chain financial service extension.

The evaluation indicators of the port energy conservation and emission reduction capacities
include the application status of green energy sources at the port and the emission control and
governance capacities over port pollutants. These indicators mainly consider how to use intelligent
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technology to achieve energy reduction and emission reduction, and how to build and develop green
ports. Green port is also a new concept of port development in the world. It is a sustainable port with
a good balance between environmental protection and economic interests. Guided by the concept
of green development, green ports achieve environmental health, energy consumption reduction,
and pollution reduction through intelligent technologies and emission reduction measures.

Table 1. Classification of Smart Port Evaluation Indicators.

Area Evaluation Indicator Reference

Port Production and
Operation Systems

Production dispatching automation [38–40]

Application of emerging information technologies at ports
such as the Internet of Things and cloud computing [39,41,42]

Emergency response capabilities [38,41]

Port Logistics Supply
Chain System

Intelligent level of door-to-door full-course services of
port logistics [40–43]

Electronic processing of logistics documents, the
standardization level of operations [40–43]

“Internet +” logistics supply chain services [40–43]

Port Financial and Trade
Service Technologies

Port integration and facilitation as well as customs
clearance efficiency [38,44,45]

Sharing of financial service resources in the port supply chain [44,45]

Port Energy Conservation and
Emission Reduction Capacities

Application status of green energy sources at the port [38,46,47]

Emission control and governance capacities over
port pollutants [46–49]

4. Research Methodology

4.1. Basic Concepts of SNSs

Simplified neutrosophic set (SNS) is a powerful tool that attracts the attention of many scholars
in dealing with uncertainty and vagueness [24]. Ye proposed the Simplified Neutrosophic Set (SNS),
a subset of the neutrosophic set which is more suitable for processing issues that contain many
incomplete, uncertain, and inconsistent information to apply neutrosophy to science and engineering
better [23,26]. SNS can be defined as follows.

Let X be a space of points (objects), with a generic element in X denoted by x. An SNS N in X is
characterized by a truth-membership function TN(x), an indeterminacy-membership function IN(x)
and a falsity-membership function FN(x). Then, an SNS N can be expressed as N = {<x, TN(x), IN(x),
FN(x)>|x ∈ X}, where the sum of TN(x), IN(x), FN(x) ⊆ [0, 1] satisfies the condition 0 ≤ sup TN(x) + sup
IN(x) + sup FN(x) ≤ 3 for each point x in X. Then, SNS is a subclass of the neutrosophic set and includes
the concepts of single valued neutrosophic set (SVNS).

Assume that A = {<x, TA(x), IA(x), FA(x)>|x ∈ X} and B = {<x, TB(x), IB(x), FB(x)>|x ∈ X} are two
SNSs, where TA(x), IA(x), FA(x) ∈ [0, 1], 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for each point x in X, i.e., A and B
are two Simplified Neutrosophic Sets (SNSs). The SNS is a effective generalization of the fuzzy set
that is designed for some situations in which each element has different truth membership function,
indeterminacy membership function and falsity membership function. Then, the inclusion, equation,
and complement for SNSs A and B are defined, respectively, as follows:

(1) B ⊆ A if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x) for any x in X,
(2) A = B if and only if A ⊆ B and B ⊆ A,
(3) Ac = {<x, FA(x), 1 − IA(x), TA(x)>|x ∈ X} and Bc = {<x, FB(x), 1 − IB(x), TB(x)>|x ∈ X}.
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Assume that A = {
〈
x, TA(x), IA(x), FA(x)

〉∣∣∣x ∈ X } and B =
{〈

x, TB(x), IB(x), FB(x)
〉∣∣∣x ∈ X

}
are two

SNSs in X. If TA(x), IA(x), FA(x) ⊆ [0, 1], 0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3, TB(x), IB(x), FB(x)
⊆ [0, 1], and 0 ≤ sup TB(x) + sup IB(x) + sup FB(x) ≤ 3 for each point x in X, then A and B are reduced
to two interval neutrosophic sets (INSs) [50]. Thus, the inclusion, equation, and complement for SNSs
B and A are defined, respectively, as follows:

(4) B ⊆ A if and only if inf TB(x) ≤ inf TA(x), inf IB(x) ≥ inf IA(x), inf FB(x) ≥ inf FA(x), sup TB(x) ≤
sup TA(x), sup IB(x) ≥ sup IA(x), sup FB(x) ≥ sup FA(x) for any x in X;

(5) B = A if and only if B ⊆ A and A ⊆ B;
(6) Ac =

{〈
x, [inf FA(x), supFA(x)], [1− supIA(x), 1− inf IA(x)], [inf TA(x), supTA(x)]

〉∣∣∣x ∈ X
}

and Bc

=
{〈

x, [inf FB(x), supFB(x)], [1− supIB(x), 1− inf IB(x)], [inf TB(x), supTB(x)]
〉∣∣∣x ∈ X

}

Especially when the upper and lower ends of the interval numbers TA(x), IA(x), FA(x) in A and
TB(x), IB(x), FB(x) in B are equal, the INSs A and B are reduced to the single valued neutrosophic sets
(SVNSs) A and B. Therefore, SVNSs are the special cases of INSs, and also SVNSs and INSs are also the
special cases of SNSs.

4.2. Exponential Similarity Measures of SVNS

The single valued neutrosophic set (SVNS) is a generalization of classic set, fuzzy set, interval
valued fuzzy set, intuitionistic fuzzy set, and para-consistent set [23,26]. This section describes the
steps of applying the exponential similarity measuring method, as detailed below.

Step 1. Determine the decision goal. This paper aims to obtain the evaluation approach of
smart port, consulting relevant literature to determine the specific indicators of the evaluation system.
Im represents the m-th indicator.

Step 2. Develop criteria for indicators. According to different evaluation environments, different
degrees of decision-making statuses are selected, and Dn is used to denote the n-th degree. Second,
these degrees are represented by their respective SVNS information.

Step 3. Conduct a preliminary evaluation. t industry experts are invited to evaluate the indicators.
Truth, Indeterminacy, and Falsity represent the degree of recognition, from high to low, of the indicator
performance. Specific SVNS value calculation is as follows:

Assume a experts select Truth, b experts choose Indeterminacy, and c experts choose Falsity.
Then the SNS value of this indicator is <a/t, b/t, c/t>.

Step 4. Exponential similarity measure. Set the standard to be A = {<xj, TA(xj), IA(xj), FA(xj)>|xj ∈
X}, and the preliminary evaluation is B = {<xj, TB(xj,), IB(xj,), FB(xj)>|x ∈ X}, which is any two SVNSs in
the range of X = {x1, x2, . . . , xm}. Based on the exponential function, the exponential similarity measure
of the standard and the preliminary evaluation is defined as follows:

Ei(A, B) =
1
m

m∑

j=1

exp
{
− 1

3 [
∣∣∣TA(x j) − TB(x j)

∣∣∣+
∣∣∣IA(x j) − IB(x j)

∣∣∣+
∣∣∣FA(x j) − FB(x j)

∣∣∣]
}
− exp(−1)

1− exp(−1)
(1)

When the weights of the indicators are different, a weight coefficient wj can be added. wj ∈ [0, 1]
and the sum of them is 1. The specific expression is as follows:

Wi(A, B) =
m∑

j=1

w j
exp

{
− 1

3 [
∣∣∣TA(x j) − TB(x j)

∣∣∣+
∣∣∣IA(x j) − IB(x j)

∣∣∣+
∣∣∣FA(x j) − FB(x j)

∣∣∣]
}
− exp(−1)

1− exp(−1)
(2)

Step 5. Make the calculation using MATLAB. The above content is coded and calculated in
MATLAB to obtain the maximum similarity measure to indicate the most appropriate evaluation.
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5. Application Method and Results

In this section, the aforementioned methods will apply. First, follow Step 1 to organize the smart
port evaluation indicators listed above into the Table 2.

Table 2. Evaluation by 5 experts for a port Pk.

Indicators
Truth Indeterminacy Falsity

(T) (I) (F)

I1 Port production scheduling of fully automated
I2 The application of the Internet of things, cloud computing and

other emerging information technologies in ports
I3 The ability of the port to deal with emergencies

I4 Intelligent level of port logistics door-to-door service
I5 Port logistics documents, data processing and other links electronic,

standardized operation level
I6 Port “Internet +” logistics supply chain service

I7 Integration and facilitation of ports and customs
clearance efficiency

I8 Port supply chain financial service resource sharing
I9 Application of green energy in ports

I10 The ability to control and control the discharge of pollutants
from ports

Follow Step 2 to preliminarily classify smart port into five degrees: strong, relatively strong,
average, relatively weak, and weak, to quantify the initially evaluated degrees of the smart port.
See Table 3 for details.

Table 3. Five types of smart port degree with simplified neutrosophic information.

Indicators
D1 D2 D3 D4 D5

(Strong) (Relatively Strong) (Average) (Relatively Weak) (Weak)

I1 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I2 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I3 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I4 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I5 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I6 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I7 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I8 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I9 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>
I10 <1.0,0.0,0.0> <0.8,0.2,0.0> <0.6,0.4,0.0> <0.4,0.4,0.2> <0.2,0.4,0.4>

From Table 3 we can see that the evaluated degrees of smart port indicators correspond to the
following SVNS information.

S1 = {<I1,1.0,0.0,0.0>, <I2,1.0,0.0,0.0>, <I3,1.0,0.0,0.0>, <I4,1.0,0.0,0.0>, <I5,1.0,0.0,0.0>, <I6,1.0,0.0,0.0>,
<I7,1.0,0.0,0.0>, <I8,1.0,0.0,0.0>, <I9,1.0,0.0,0.0>, <I10,1.0,0.0,0.0>},
S2 = {<I1,0.8,0.2,0.0>, <I2,0.8,0.2,0.0>, <I3,0.8,0.2,0.0>, <I4,0.8,0.2,0.0>, <I5,0.8,0.2,0.0>, <I6,0.8,0.2,0.0>,
<I7,0.8,0.2,0.0>, <I8,0.8,0.2,0.0>, <I9,0.8,0.2,0.0>, <I10,0.8,0.2,0.0>},
S3 = {<I1,0.6,0.4,0.0>, <I2,0.6,0.4,0.0>, <I3,0.6,0.4,0.0>, <I4,0.6,0.4,0.0>, <I5,0.6,0.4,0.0>, <I6,0.6,0.4,0.0>,
<I7,0.6,0.4,0.0>, <I8,0.6,0.4,0.0>, <I9,0.6,0.4,0.0>, <I10,0.6,0.4,0.0>},
S4 = {<I1,0.4,0.4,0.2>, <I2,0.4,0.4,0.2>, <I3,0.4,0.4,0.2>, <I4,0.4,0.4,0.2>, <I5,0.4,0.4,0.2>, <I6,0.4,0.4,0.2>,
<I7,0.4,0.4,0.2>, <I8,0.4,0.4,0.2>, <I9,0.4,0.4,0.2>, <I10,0.4,0.4,0.2>},
S5 = {<I1,0.2,0.4,0.4>, <I2,0.2,0.4,0.4>, <I3,0.2,0.4,0.4>, <I4,0.2,0.4,0.4>, <I5,0.2,0.4,0.4>, <I6,0.2,0.4,0.4>,
<I7,0.2,0.4,0.4>, <I8,0.2,0.4,0.4>, <I9,0.2,0.4,0.4>, <I10,0.2,0.4,0.4>}.
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Follow Step 3 to provide Table 2 to five experts for parallel preliminary evaluation of the three
ports. The evaluation results are shown in Table 4.

Table 4. Five experts’ evaluation of three smart ports.

Indicators
Port A Port B Port C

T I F T I F T I F

I1 5/5 0/5 0/5 4/5 0/5 1/5 3/5 1/5 1/5
I2 4/5 1/5 0/5 3/5 2/5 0/5 3/5 0/5 2/5
I3 4/5 0/5 1/5 2/5 0/5 3/5 1/5 1/5 3/5
I4 3/5 2/5 0/5 4/5 1/5 0/5 4/5 0/5 1/5
I5 4/5 1/5 0/5 3/5 1/5 1/5 2/5 1/5 2/5
I6 5/5 0/5 0/5 3/5 1/5 1/5 3/5 1/5 1/5
I7 3/5 0/5 2/5 4/5 0/5 1/5 2/5 2/5 1/5
I8 4/5 1/5 0/5 3/5 1/5 1/5 4/5 1/5 0/5
I9 5/5 0/5 0/5 3/5 0/5 2/5 2/5 3/5 0/5
I10 3/5 2/5 0/5 2/5 2/5 1/5 3/5 2/5 0/5

From Table 4, the indicator degrees of Port Pk (k = 1, 2, 3) can be expressed with the following
SVNS information:

P1 = {<I1,1.0,0.0,0.0>, <I2,0.8,0.2,0.0>, <I3,0.8,0.0,0.2>, <I4,0.6,0.4,0.0>, <I5,0.8,0.2,0.0>, <I6,1.0,0.0,0.0>,
<I7,0.6,0.0,0.4>, <I8,0.8,0.2,0.0>, <I9,1.0,0.0,0.0>, <I10,0.6,0.0,4.0>},
P2 = {<I1,0.8,0.0,0.2>, <I2,0.6,0.4,0.0>, <I3,0.4,0.0,0.6>, <I4,0.8,0.2,0.0>, <I5,0.6,0.2,0.2>, <I6,0.6,0.2,0.2>,
<I7,0.8,0.0,0.2>, <I8,0.6,0.2,0.2>, <I9,0.6,0.0,0.4>, <I10,0.4,0.4,0.2>},
P3 = {<I1,0.6,0.2,0.2>, <I2,0.6,0.0,0.4>, <I3,0.2,0.2,0.6>, <I4,0.8,0.0,0.2>, <I5,0.4,0.2,0.4>, <I6,0.6,0.2,0.2>,
<I7,0.4,0.4,0.2>, <I8,0.8,0.2,0.0>, <I9,0.4,0.6,0.0>, <I10,0.6,0.4,0.0>}.

According to Step 4, assume that the weight of each element I j is w j = 1/10 for j = 1, 2, . . . , 10. Then,
by using MTALAB, we can get the results of the similarity measure between the port Pk (k = 1, 2, 3) and
the indicator degree Di (i = 1, 2, 3, 4, 5), as shown in Table 5.

Table 5. Similarity measure values of between Pk and Di with SVNSs.

S1 S2 S3 S4 S5

W1(P1,Di) 0.8099 0.8445 0.7556 0.6189 0.4841
W1(P2,Di) 0.6340 0.7356 0.7380 0.7531 0.6167
W1(P3,Di) 0.5905 0.7207 0.7380 0.7531 0.6513

In Table 5, the maximum similarity measure indicates the most proper evaluation. In the three
smart ports, the result of port P1 is “Relative Strong”, that of port P2 is “Average”, and that of port P3

is “Relative Weak”. The difference in evaluation results for different ports is obvious.
In order to compare our method with other methods, we neglect the indeterminacy and falsity

situations. When only the truth situation is considered, the neutrosophic sets degenerate into the
traditional fuzzy sets. Therefore, under the fuzzy set framework, the indicator degrees of Port Pk (k = 1,
2, 3) can be expressed with the following SVNS information:

P1 = {<I1,1.0,0.0,0.0>, <I2,0.8,0.0,0.0>, <I3,0.8,0.0,0.0>, <I4,0.6,0.0,0.0>, <I5,0.8,0.0,0.0>, <I6,1.0,0.0,0.0>,
<I7,0.6,0.0,0.0>, <I8,0.8,0.0,0.0>, <I9,1.0,0.0,0.0>, <I10,0.6,0.0,0.0>},
P2 = {<I1,0.8,0.00.0>, <I2,0.6,0.0,0.0>, <I3,0.4,0.0,0.0>, <I4,0.8,0.0,0.0>, <I5,0.6,0.0,0.0>, <I6,0.6,0.0,0.0>,
<I7,0.8,0.0,0.0>, <I8,0.6,0.0,0.0>, <I9,0.6,0.0,0.0>, <I10,0.4,0.0,0.0>},
P3 = {<I1,0.6,0.0,0.0>, <I2,0.6,0.0,0.4>, <I3,0.2,0.2,0.6>, <I4,0.8,0.0,0.2>, <I5,0.4,0.0,0.0>, <I6,0.6,0.0,0.0>,
<I7,0.4,0.0,0.0>, <I8,0.8,0.0,0.0>, <I9,0.4,0.0,0.0>, <I10,0.6,0.0,0.0>}.
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Similarly, we can get the results of the similarity measure between the port Pk (k = 1, 2, 3) and the
indicator degree Di (i = 1, 2, 3, 4, 5) under the traditional fuzzy set framework, as shown in Table 6.

Table 6. Similarity measure values of between Pk and Di with Fuzzy Set.

S1 S2 S3 S4 S5

W1(P1,Di) 0.8999 0.8407 0.7150 0.5531 0.4114
W1(P2,Di) 0.8038 0.8038 0.7668 0.6308 0.4794
W1(P3,Di) 0.7775 0.7775 0.7406 0.6391 0.5018

From the data in Table 6, we can see that there is a big difference between the evaluation results
using fuzzy sets and our method (see Table 5). From the evaluation results of fuzzy sets, the result
of port P1 is “Strong”, that of port P2 is “Strong” or “Relative Strong”, and that of port P3 is also
“Strong” or “Relative Strong” (see Table 6). In this way, it is difficult to distinguish the differences
among the evaluation results of the three smart ports. Therefore, our evaluation method is much more
effective and reasonable than the traditional fuzzy set method. From the case study in this paper,
simplified neutrosophic exponential similarity measures can be well used in the evaluation of smart
port development and get more reasonable evaluation results. However, from the point of view of the
specific research process, this method has not added the influence of decision experts’ weight. In the
future research, we can consider the influence of decision experts’ weight on the evaluation results
comprehensively, and further overcome the subjective limitations of expert evaluation, so as to make
the evaluation results of smart ports more reasonable and flexible.

6. Conclusions and Future Directions

The intelligent operation is an imperative development direction of advanced ports in the future.
Securing all-round and sustainable development is the key to enhancing the competitiveness of ports.
To this end, it is of more practical significance to study and analyze smart port evaluation. Based on
exponential functions, this paper proposes to apply single-valued neutrosophic exponential similarity
measure to evaluate smart port in a simplified neutral environment. This evaluation approach is
advantageous over other existing port evaluation methods in that it has a more complete evaluation
system to render a clearly quantitative evaluation result. Besides, it addresses the decision-making in
the context of incomplete, uncertain and inconsistent information for smart port evaluation, making
its evaluation results more scientific and rigorous. The contribution of this study is threefold. First,
this study makes an initiative for the assessment of world smart port development. Second, this research
provides an effective method for the evaluation system of amert ports. Third, the achievements of this
study can provide decision-making basis and practical tool for international organizations, relevant
governments or policy makers to formulate reasonable and effective governance strategy of global
port industry and smart port development.

Using single-valued neutrosophic exponential similarity measure to analyze and evaluate smart
port is an innovative attempt. This paper still has limitations. In the future, further research can be
carried out focusing on the following three aspects. First, more smart port types and orientations
can be taken into consideration in future to further tap to the evaluation of the smart ports using
next-generation information technologies, while including different types of data in the evaluation
scope to build more accurate evaluation indicators. Second, the evaluation indicators can be further
subdivided. In the future, we can further look at the four aspects of smart port, namely the daily
production and operation, the logistics supply chain system, the financial and trade services, and the
energy conservation and emission reduction, for in-depth research and establishment of a more practical
evaluation system that better complies with the actual situations. Third, the probabilistic approach
can be introduced into the single-valued neutrosophic exponential similarity measure of this paper to
give the evaluation model a certain predictive ability for the future development direction of smart
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ports, helping the port to locate find more room for improvement, so as to elevate the comprehensive
competitiveness and put forward more accurate and effective suggestions for port building.
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Abstract: This research introduces a neutrosophic forecasting approach based on neutrosophic time
series (NTS). Historical data can be transformed into neutrosophic time series data to determine
their truth, indeterminacy and falsity functions. The basis for the neutrosophication process is the
score and accuracy functions of historical data. In addition, neutrosophic logical relationship groups
(NLRGs) are determined and a deneutrosophication method for NTS is presented. The objective of
this research is to suggest an idea of first-and high-order NTS. By comparing our approach with other
approaches, we conclude that the suggested approach of forecasting gets better results compared to
the other existing approaches of fuzzy, intuitionistic fuzzy, and neutrosophic time series.

Keywords: neutrosophic time series; triangular neutrosophic number; neutrosophic logical
relationship; neutrosophic logical relationship groups

1. Introduction

There are different methods in the literature on fuzzy and intuitionistic fuzzy time series methods
to forecast future values. The major difference between traditional and fuzzy time series is that the
values of traditional time series are presented in numbers, whereas the values in fuzzy time series are
fuzzy sets or linguistic values with real meanings. In intuitionistic fuzzy time series, the values are
intuitionistic fuzzy sets or linguistic values. The first method in literature for forecasting future values
based on fuzzy time series was introduced by Song and Chissom [1]. They also applied time-variant
and time-invariant models for forecasting the enrollment data at the University of Alabama [1,2].
The identification of fuzzy relationship and the defuzzification process in both models were the
main steps for calculating forecasted values. In time variant fuzzy time series it is proposed that
autocorrelation is dependent due to the time, while in time invariant it is proposed that autocorrelation
is independent due to the time.

The term “fuzzy relationship” means a collection of fuzzy sets which are caused only by other
sets. In addition, the “defuzzification” process means converting the fuzzy values into crisp ones.
Furthermore, a straightforward approach for time series forecasting was presented by Chen [3] by using
uncomplicated arithmetic computations. To enhance the accuracy of forecasted outputs, some papers
suggested various methods on fuzzy time series (FTS) forecasting [4–7]. A high-order FTS method
was also presented by Chen [8] and Singh [9], and a method of bivariate fuzzy time series analysis
for the forecasting of a stock index was introduced by Hsu et al. [10]. Furthermore, a framework
developed for evaluation and forecasting based on the fuzzy NEAT F-PROMETHEE method was
presented by Ziemba and Becker [11] for taking into account the uncertainty of input data, which is
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particularly burdened with the forecast values of the information and communication technologies
development indicators.

The concept of fuzzy set was introduced by Zadeh [12], and it was generalized by Atanassov [13]
to intuitionistic fuzzy set (IFS) to make it more suitable to handle ambiguity. The IFS considers both
the membership (truth) and non-membership (falsity) degrees. However, the fuzzy set considers only
the membership degree. Recently, the IFS was used for handling the fuzzy time series forecasting by
Gangwar and Kumar [14] and Wang et al. [15]. In addition, the notion of intuitionistic fuzzy time series
(IFTS)was employed in forecasting, as in [16–18]. Several researchers [19,20] proposed forecasting
models using a genetic algorithm, or suggested a method of forecasting based on aggregated FTS
and particle swarm optimization [21]. A novel method of forecasting based on hesitant fuzzy set
was proposed by Bisht and Kumar [22], and fuzzy descriptor models for earthquakes was introduced
by Bahrami and Shafiee [23]. A heuristic adaptive-order IFTS forecasting model was presented
by Wang et al. [24]. Subsequently, Abhishekh et al. [25,26] presented a weighted type 2 FTS and
score function-based IFTS forecasting approach. Moreover, Abhishekh and Kumar [27] suggested an
approach for forecasting rice production in the area of FTS.

Since the accuracy rates of forecasting in the previous approaches are not good enough in the field of
fuzzy and intuitionistic fuzzy time series, we introduce the notion of first- and high-order neutrosophic
time series data for this research. Additionally, with the growing need to represent vague and random
information, neutrosophic set (NS) theory [28] is an effective extension of fuzzy and intuitionistic
fuzzy set theories. Smarandache [29] suggested NSs, which consist of truth membership function,
indeterminacy membership function, and falsity membership function, as a better representation
of reality. Neutrosophic sets received wide attention, as well as benefitting from various practical
applications in diverse fields [30–39]. However, there are only two recent research papers published
in the forecasting field (e.g., for stock market analysis). Guan et al. [40] proposed a new forecasting
model based on multi-valued neutrosophic sets and two-factor third-order fuzzy logical relationships
to forecast the stock market. Subsequently, Guan et al. [41] proposed a new forecasting method based
on high-order fluctuation trends and information entropy.

The aim of this research is to enhance accuracy rates of forecasting in the area of fuzzy, intuitionistic
fuzzy, and neutrosophic time series (NTS). In this research, we present the notion of forecasting based
on first-and high-order NTS data by determining the suitable length of neutrosophic numbers that
influence on expected values. We also suggest a neutrosophication of historical time series data, based
on the biggest score function (i.e., the maximum value of score function), and define neutrosophic
logical relationship groups (NLRGs) for obtaining forecasted outputs. The suggested approach of
neutrosophic time series forecasting has been validated and compared with different existing models
for showing its superiority.

The remaining parts of this research are organized as follows. The essential concepts of
neutrosophic set and neutrosophic time series are briefly presented in Section 2. Section 3 presents
the proposed neutrosophic time series method for the forecasting process. Section 4 validates the
proposed method by applying it to two numerical examples for showing its effectiveness; a comparison
with other existing methods is presented. Finally, Section 5 concludes the research and determines
future trends.

2. Some Basic Definitions of Neutrosophic Set and Neutrosophic Time Series

Neutrosophic time series is a concept for solving forecasting problems using neutrosophic concepts.
In this section, we present the basic concepts of the neutrosophic set and of the neutrosophic time
series (NTS).

Definition 1. Let X be a finite universal set. A neutrosophic set N in X is an object having the following form: N={〈x, TN(x), IN(x), FN(x)〉
∣∣∣x ∈ X

}
, where TN(x) : X→ [0, 1] determines the degree of truth membership function,
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IN(x) : X→ [0, 1] determines the degree of indeterminacy, and function FN(x) : X→ [0, 1] determines the
degree of non-membership or falsity function. For every x ∈ X, 0− ≤ TN(x) + IN(x) + FN(x) ≤ 3+ [29].

Definition 2. A single valued triangular neutrosophic number Ñ = 〈(n1, n2, n3); TÑ, IÑ, FÑ〉is a special
neutrosophic set on the real number set R whose truth (membership), indeterminacy, and falsity (non-membership)
degrees are as follows [29]:

TÑ(x) =



TÑ ( x−n1
n2−n1

)
(n1 ≤ x ≤ n2)

TÑ (x = n2)

TÑ

(
n3−x

n3−n2

)
(n2 < x ≤ n3)

0 otherwise,

(1)

IÑ(x) =



(n2−x+IÑ(x−n1))

(n2−n1)
(n1 ≤ x ≤ n2 )

IÑ (x = n2)
(x−n2+IÑ(n3−x))

(n3−n2)
(n2 < x ≤ n3)

1 otherwise,

(2)

FÑ(x) =



(n2−x+FÑ(x−n1))

(n2−n1)
(n1 ≤ x ≤ n2 )

FÑ (x = n2)
(x−n2+FÑ (n3−x))

(n3−n2)
(n2 < x ≤ n3)

1 otherwise,

(3)

where 0 ≤TÑ ≤ 1, 0 ≤IÑ ≤ 1, 0 ≤ FÑ ≤ 1, 0 ≤ TÑ+IÑ+FÑ≤ 3, n1, n2, n3 ∈ R, and being the lower,
median, and upper values of the triangular neutrosophic number.

Definition 3. Let X and Y be two finite universal sets. A neutrosophic relation R from X to Y is a neutrosophic
set in the direct product space X to Y:

R =
{〈(x, y), TN(x, y), IN(x, y), FN(x)〉

∣∣∣(x, y) ∈ X× Y
}

where 0− ≤ TN(x, y)+ IN(x, y)+FN(x, y) ≤ 3+,∀(x, y) ∈ X×Y for TN(x, y)→ [0, 1] , IN(x, y)→ [0, 1],
and FN(x, y)→ [0, 1] : X ×Y→ [0, 1].

Definition 4. Let X(t)(t = 1, 2, . . . ,), a subset of R, be the universe of discourse on which neutrosophic sets
fi(t) = 〈TN(x, y), IN(x, y), FN(x)〉(i = 1, 2, . . .) are defined. F(t) =

{
f1(x), f2(x), . . .

}
is a collection of fi(t)

and it defines a neutrosophic time series on X(t)(t = 0, 1, 2, . . .).

Definition 5. If there exists a neutrosophic relationship R(t− 1, t), such that F(t) = F(t− 1) ×R(t− 1, t),
where ‘×’ represents an operator, then F(t) is said to be caused by F(t− 1). The relationship between F(t) and
F(t− 1) is symbolized by F(t− 1)→ F(t) .

Definition 6. Let F(t) caused by F(t− 1) only and symbolized by F(t− 1)→ F(t) ; consequently, a
neutrosophic relationship exists between F(t) and F(t− 1) that is denoted as F(t) = F(t− 1) ×R(t− 1, t),
since R is a first-order model of F(t). The F(t) is a time-invariant neutrosophic time series if R(t− 1, t) is
independent of time t, R(t, t− 1) = R(t− 1, t− 2)∀ t. Otherwise, F(t) is called a time-variant neutrosophic
time series.

Definition 7. Let F(t− 1) = Ñi and (t) = Ñj; a neutrosophic logical relationship (NLR) can be defined
as Ñi → Ñj , where Ñi, Ñj are the current and next state of NLR. Since F(t) is occurred by more than one
neutrosophic set F(t− n), F(t− n + 1), . . . F(t− 1), then the neutrosophic relationship is represented by
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Ñi1, Ñi2, . . . , Ñin → Ñj, where F(t− n) = Ñi1, F(t− n + 1) = Ñi2. The relationship is called high-order
neutrosophic time series model.

3. Neutrosophic Time Series Forecasting Algorithm

Because a neutrosophic set plays a significant role in decision-making and data analysis problems
by handling vague, inconsistent, and incomplete information [30–39], we propose in this section an
enhanced approach of forecasting using the concept of neutrosophic time series (NTS).

The stepwise method of the suggested algorithm of neutrosophic time series forecasting is
dependent on historical time series data.

3.1. The Proposed Method of Forecasting Based on First-Order NTS Data

Step 1: By depending on the range of the existing data set, determine the universe of discourse U
as follows:

- Select the largest Dl and the smallest Ds from all available data Dv, then

U = [Ds −D1, Dl + D2] (4)

where D1 and D2 are two proper positive numbers assigned by experts in the problem domain. So,
we can define D1, D2 as the values by which the range of the universe of discourse is less than the
specified value of Ds for the first (i.e., D1) or greater than the specified value of Dl for the latter (i.e., D2).

Step 2: Create a partition of the universe of discourse, to m triangular neutrosophic numbers
as follows:

- Decide the suitable length (Le) of available time series data:

# Among the value Dv−1, Dv, calculate all absolute differences and take the average of
these differences.

# Consider half the average as the initial length.
# According to the obtained result, use the base mapping table [42] to determine the base

for the length of intervals.
# Round the result to determine the appropriate length of neutrosophic numbers.
# For example: if we have these time series data 30, 50, 80, 120, 100, 70, then the absolute

differences will be 20, 30, 40, 20, 30, and the average of these values = 28. Then, half of
the average will be 14 and this is the initial value of length. By using the base mapping
table [42], the base for length = 10 because 14 locates in the range [11− 100] and by
rounding the length 14 by the base ten, the result will equal 10. Here, the appropriate
length of neutrosophic numbers equals 10.

- Compute the number of triangular neutrosophic numbers (m) as follows:

m =
Dl + D2 −Ds + D1

le
(5)

Step 3: According to the numbers of triangular neutrosophic numbers on the universe of discourse
and determined length (le), begin to construct the triangular neutrosophic numbers. The triangular
neutrosophic numbers are Ñ1, Ñ2, . . . , Ñm.

As we illustrated in Definition 2, each triangular neutrosophic number consists of two parts
which are the value of the triangular neutrosophic number (lower, median, upper) and the degree of
confirmation (truth/membership degree T, indeterminacy degree I, falsity/non-membership degree F).
The initial value of T, I, F must be determined by experts according to the existing problem.

Step 4: Make a neutrosophication process of the existing data:
For i, j = 1, 2, . . . , v (the end of data):
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Rule 1: Use this equation to calculate the score degree, and if the score degree of two neutrosophic
numbers is not equal for any data, then choose the maximum value of the score degree:

SCÑ j
(xi) = 2 + TÑ j

(xi) − IÑ j
(xi) − F(xi) (6)

Then, select SCÑk
= max ( SCÑk

, SCÑk
, . . . , SCÑk

) for xi, i = 1, 2 . . . ., n, 1 ≤ k ≤ n, and assign the

neutrosophic number Ñk to xi.
Rule 2: If two neutrosophic numbers have the same score degree, then use the following equation

to calculate the score degree, and select the minimum accuracy degree:

ACÑ j
(xi) = 2 + TÑ j

(xi) − IÑ j
(xi) + F(xi) (7)

Furthermore, ACÑk
= min ( ACÑk

, ACÑk
, . . . , ACÑk

) for xi, i = 1, 2 . . . ., n, 1 ≤ k ≤ n; assign the

neutrosophic number Ñk to xi.
Step 5: Construct the neutrosophic logical relationships (NLRs) as follows:
If Ñ j,Ñk are the neutrosophication values of year n and year n + 1, respectively, then the NLR is

symbolized as Ñ j → Ñk .
Step 6: Based on the NLR, begin to establish the neutrosophic logical relationship groups (NLRGs).
Step 7: Calculate the forecasted values as follows:
Rule 1: If the neutrosophication value of datai is Ñk and it is not caused by any other

neutrosophication values and, by looking at the NLRG of this value, you cannot find the value
which it depends on (i.e., ,→ Ñk ), then the forecasted value in this case will equal—(i.e., leave it
empty). The , symbol means no value.

Rule 2: If the neutrosophication value of datai is Ñk and it is caused by Ñ j ( Ñ j → Ñk ), then look at
NLRG of Ñ j, and

- If NLRG of Ñ j is empty (i.e., Ñ j → ∅, or Ñ j → Ñ j ), then the forecasted value is the middle value
of Ñ j.

- If NLRG of Ñ j is one-to-one (i.e., Ñ j → Ñk), then the forecasted value is the middle value of Ñk.

- If NLRG of Ñ j is one-to-many (i.e., Ñ j → Ñk1, Ñk2, . . . , Ñkn ), then the forecasted value is the
average of the middle values of Ñk1, Ñk2, . . . , Ñkn.

Step 8: Use the following equations to calculate the forecasting error:

Root mean square error (RMSE) =

√∑n
i=1 (Forecasti −Actuali)

2

n
, (8)

Forecasting error =
| Forecast−Actual|

Actual
× 100, (9)

Average forecasting error (AFE) (%) =
Sum of forecasting error

number o f errors
× 100. (10)

3.2. The Proposed Method of Forecasting Based on High-Order NTS Data

We can also apply the proposed method of forecasting based on high-order NTS data:

- All steps from 1 to 4 are the same as previously, but in step 5 we begin to construct the neutrosophic
logical relationships (NLRs) of the nth order NTS, where n ≥ 2.

- Based on the NLR of the nth order, NTS begin to establish the neutrosophic logical relationship
groups (NLRGs).

- Calculate the forecasted values as follows:
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# Rule 1: If the neutrosophication values of datai is Ñl and it is not caused by any other
neutrosophication values and, by looking at the NLRG of this value, you cannot find
the values which it depends on (i.e., ,→ Ñl ), then the forecasted value in this case will
equal—(i.e., leave it empty). The , symbol means no value.

# Rule 2: If the neutrosophication value of datai is Ñl and it is caused by Ñin, Ñi(n−1), . . . ,

Ñik (i.e., Ñin, Ñi(n−1), . . . , Ñik → Ñl ), then look at the NLRG of Ñin, Ñi(n−1), . . . , Ñik, and

• If Ñin, Ñi(n−1), . . . , Ñik → ∅ , then the forecasted value at this year is the average of

the middle value of Ñin, Ñi(n−1), . . . , Ñik.

• If Ñin, Ñi(n−1), . . . , Ñik → Ñ j , then the forecasted value at this year is the middle

value of Ñ j.

• If Ñin, Ñi(n−1), . . . , Ñik → Ñ j, Ñ j1 , Ñ j2, then the forecasted value at this year is the

average of the middle value of Ñ j, Ñ j1, Ñ j2.

4. Numerical Examples

In this section, we solve two numerical examples and compare outputs with other existing
methods for verifying the applicability and superiority of the suggested method.

4.1. Numerical Example 1

In this example, the suggested approach is implemented on the benchmarking time series data of
student enrollments at the University of Alabama from year 1971 to 1992 adopted from [26]. The steps
are as follows:

Step 1: Let the two proper positive numbers D1 and D2 be 5 and 13, determined by the expert.
By selecting the largest and the smallest observation from all available data which are presented in
Table 1, then Dl = 19, 337 and Ds = 13, 055, respectively. Consequently, the universe of discourse U =

[13, 055− 5, 19, 337 + 13] = [13, 050, 19, 350].
Step 2: Create a partition of the universe of discourse, to m triangular neutrosophic numbers,

as follows:

- Determine the suitable length (Le) of available time series data:

# From Table 1, the average of absolute differences = 510.3.
# The initial length = 510.3

2 = 255.15.
# By using the base mapping table [42], the base for length of intervals = 100, since it is

located in the range [101, 1000].
# By rounding 255.15 with regard to base 100, then the appropriate length of neutrosophic

numbers = 300.

- Compute the number of triangular neutrosophic numbers (m) as follows:

m =
19350− 13050

300
= 21.

Then, we can partition U into 21 triangular neutrosophic numbers with length = 300.
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Step 3: According to the number of triangular neutrosophic numbers on the universe of discourse
and determined length (le), begin to construct the triangular neutrosophic numbers as follows:

Ñ1 = 〈13050, 13350, 13650; 0.90, 0.10, 0.10〉,
Ñ2 = 〈13350, 13650, 13950; 0.80, 0.20, 0.10〉,
Ñ3 = 〈13650, 13950, 14250; 0.90, 0.20, 0.10〉,
Ñ4 = 〈13950, 14250, 14550; 0.85, 0.15, 0.10〉,
Ñ5 = 〈14250, 14550, 14850; 0.75, 0.10, 0.30〉,
Ñ6 = 〈14550, 14850, 15150; 0.90, 0.10, 0.10〉,
Ñ7 = 〈14850, 15150, 15450; 0.60, 0.30, 0.40〉,
Ñ8 = 〈15150, 15450, 15750; 0.80, 0.20, 0.20〉,
Ñ9 = 〈15450, 15750, 16050; 0.70, 0.20, 0.30〉,

Ñ10 = 〈 15750, 16050, 16350; 0.90, 0.10, 0.30〉,
Ñ11 = 〈16050, 16350, 16650; 0.85, 0.10, 0.15〉,
Ñ12 = 〈16350, 16650, 16950; 0.80, 0.20, 0.20〉,
Ñ13 = 〈16650, 16950, 17250; 0.90, 0.10, 0.30〉,
Ñ14 = 〈16950, 17250, 17550; 0.90, 0.10, 0.30〉,
Ñ15 = 〈17250, 17550, 17850; 0.75, 0.10, 0.30〉,
Ñ16 = 〈17550, 17850, 18150; 0.65, 0.20, 0.35〉,
Ñ17 = 〈17850, 18150, 18450; 0.90, 0.10, 0.10〉,
Ñ18 = 〈18150, 18450, 18750; 0.90, 0.10, 0.10〉,
Ñ19 = 〈18450, 18750, 19050; 0.60, 0.20, 0.30〉,
Ñ20 = 〈18750, 19050, 19350; 0.90, 0.10, 0.10〉,
Ñ21 = 〈19050, 19350, 19350; 0.90, 0.10, 0.10〉.

Step 4: Make a neutrosophication of the available time series data:
The first value of actual enrollments is 13,055 which is located only in the range of triangular

neutrosophic number Ñ1, then the neutrosophication value of 13,055 is Ñ1 as in Table 1.
Also, the second value of actual enrollments (i.e., 13,563) locates in the range

of triangular neutrosophic numbers Ñ1 = 〈13050, 13350, 13650; 0.90, 0.10, 0.10〉 and Ñ2 =

〈13350, 13650, 13950; 0.80, 0.20, 0.10〉.
Then, we must select the highest score degree of 13,563 as follows:
The membership, indeterminacy, and non-membership degrees of this value are calculated by

using Equations (1)–(3) as follows:

TÑ1
(13563) = 0.261, IÑ1

(13563) = 0.739, FÑ1
(13563) = 0.739.

We must also calculate membership, indeterminacy, and non-membership degrees of 13, 563
according to Ñ2 = 〈13350, 13650, 13950; 0.80, 0.20, 0.10〉 as follows:

TÑ2
(13563) = 0.568, IÑ2

(13563) =0.432, FÑ2
(13563) = 0.361.

In this case, we must calculate the score degree of 13563 in both Ñ1 and Ñ2 and select the
maximum value.

SCÑ1
(13563) = 2 + 0.262− 0.739− 0.739 = 0.783,

and SCÑ2
(13563) = 2 + 0.568− 0.432− 0.361 = 1.775.

Since the score degree of 13563 in Ñ2 is greater than Ñ1, then the neutrosophication value of 13563 is
Ñ2, as in Table 1.

We will apply the previous steps on the remaining data as follows:

414



Symmetry 2019, 11, 457

The value 13867 locates in the range of Ñ2 = 〈13350, 13650, 13950; 0.80, 0.20, 0.10〉, and Ñ3 =

〈13650, 13950, 14250; 0.90, 0.20, 0.10〉.
Then

TÑ2
(13867) = 0.221, IÑ2

(13867) = 0.156, FÑ2
(13867) = 0.751.

TÑ3
(13867) = 0.651, IÑ3

(13867) = 0.421, FÑ3
(13867) = 0.349,

SCÑ2
(13867) = 2 + 0.221− 0.156− 0.751 = 1.314,

and SCÑ3
(13867) = 2 + 0.651− 0.421− 0.349 = 1.881.

So, the neutrosophication value of 13867 is Ñ3.
Also, the value of 14,696 locates in the range of Ñ5 = 〈14250, 14550, 14850; 0.75, 0.10, 0.30〉,

Ñ6 = 〈14550, 14850, 15150; 0.90, 0.10, 0.10〉, then

TÑ5
(14696) = 0.385, IÑ5

(14696) = 0.538, FÑ5
(14696) = 0.641.

TÑ6
(14696) = 0.438, IÑ6

(14696) = 0.562, FÑ6
(14696) = 0.562.

SCÑ5
(14696) = 2 + 0.385− 0.538− 0.641 = 1.206,

SCÑ6
(14696) = 2 + 0.438− 0.562− 0.562 = 1.314.

So, the neutrosophication value of 14,696 is Ñ6.
The value 15,460 locates in the range of Ñ8 = 〈15150, 15450, 15750; 0.80, 0.20, 0.20〉, and Ñ9 =

〈15450, 15750, 16050; 0.70, 0.20, 0.30〉, then

TÑ8
(15460) = 0.773, IÑ8

(15460) = 0.226, FÑ8
(15460) = 0.226.

TÑ9
(15460) = 0.023, IÑ9

(15460) = 0.973, FÑ9
(15460) = 0.973.

SCÑ8
(15460) = 2 + 0.773− 0.226− 0.226 = 2.321,

and SCÑ9
(15460) = 2 + 0.023− 0.973− 0.976 = 0.074.

So, the neutrosophication value of 15, 460 is Ñ8.
The value of 15,311 locates in the range of Ñ7 = 〈14850, 15150, 15450; 0.60, 0.30, 0.40〉 and Ñ8 =

〈15150, 15450, 15750; 0.80, 0.20, 0.20〉, then

TÑ7
(15311) = 0.278, IÑ7

(15311) = 0.675, FÑ7
(15311) = 0.722.

SCÑ7
(15311) = 2 + 0.278− 0.675− 0.722 = 0.881.

TÑ8
(15311) = 0.429, IÑ8

(15311) = 0.570, FÑ8
(15311) = 0.570.

SCÑ8
(15311) = 2 + 0.429− 0.570− 0.570 = 1.289.

So, the neutrosophication value of 15, 311 is Ñ8.
The value of 15,603 locates in the range of Ñ8 = 〈15150, 15450, 15750; 0.80, 0.20, 0.20〉 and Ñ9 =

〈15450, 15750, 16050; 0.70, 0.20, 0.30〉, then

TÑ8
(15603) = 0.392, IÑ8

(15603) = 0.608, FÑ8
(15603) = 0.608.

SCÑ8
(15603) = 2 + 0.392− 0.608− 0.608 = 1.176.

TÑ9
(15603) = 0.357, IÑ9

(15603) = 0.592, FÑ9
(15603) = 0.643.

SCÑ9
(15603) = 2 + 0.357− 0.592− 0.643 = 1.122.

So, the neutrosophication value of 15, 603 is Ñ8.
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The value of 15,861 locates in the range of Ñ9 = 〈15450, 15750, 16050; 0.70, 0.20, 0.30〉, and Ñ10 =

〈15750, 16050, 16350; 0.90, 0.10, 0.30〉, then

TÑ9
(15861) = 0.441, IÑ9

(15861) = 0.496, FÑ9
(15861) = 0.559.

SCÑ9
(15861) = 2 + 0.441− 0.496− 0.559 = 1.386.

TÑ10
(15861) = 0.333, IÑ10

(15861) = 0.667, FÑ10
(15861) = 0.741.

SCÑ10
(15861) = 2 + 0.333− 0.667− 0.741 = 0.925.

So, the neutrosophication value of 15861 is Ñ9.
The value of 16,807 locates in the range of Ñ12 = 〈16350, 16650, 16950; 0.80, 0.20, 0.20〉, Ñ13 =

〈16650, 16950, 17250; 0.90, 0.10, 0.30〉 then,

TÑ12
(16807) = 0.381, IÑ12

(16807) = 0.618, FÑ12
(16807) = 0.618.

SCÑ12
(16807) = 2 + 0.381− 0.618− 0.618= 1.145.

TÑ13
(16807) = 0.471, IÑ13

(16807) = 0.529, FÑ13
(16807) = 0.634.

SCÑ13
(16807) = 2 + 0.471− 0.529− 0.634 = 1.308.

So, the neutrosophication value of 16807 is Ñ13.
The value of 16919 locates in the range of Ñ12 = 〈16350, 16650, 16950; 0.80, 0.20, 0.20〉, Ñ13 =

〈16650, 16950, 17250; 0.90, 0.10, 0.30〉, then

TÑ12
(16919) = 0.063, IÑ12

(16919) = 0.917, FÑ12
(16919) = 0.917.

SCÑ12
(16919) = 2 + 0.063− 0.917− 0.917= 0.229.

TÑ13
(16919) = 0.807, IÑ13

(16919) = 0.193, FÑ13
(16919) = 0.372.

SCÑ13
(16919) = 2 + 0.807− 0.193− 0.372 = 2.24.

So, the neutrosophication value of 16919 is Ñ13.
The value of 16388 locates in the range of Ñ11 = 〈16050, 16350, 16650; 0.85, 0.10, 0.15〉, Ñ12 =

〈16350, 16650, 16950; 0.80, 0.20, 0.20〉, then

TÑ11
(16388) = 0.742, IÑ11

(16388) = 0.214, FÑ11
(16388) = 0.257.

SCÑ11
(16388) = 2 + 0.742− 0.214− 0.257 = 2.271.

TÑ12
(16388) = 0.101, IÑ12

(16388) = 0.898, FÑ12
(16388) = 0.898.

SCÑ12
(16388) = 2 + 0.101− 0.898− 0.898 = 0.305.

So, the neutrosophication value of 16388 is Ñ11.
The value of 15433 locates in the range of Ñ7 = 〈14850, 15150, 15450; 0.60, 0.30, 0.40〉, and Ñ8 =

〈15150, 15450, 15750; 0.80, 0.20, 0.20〉, then

TÑ7
(15433) = 0.034, IÑ7

(15433) = 0.960, FÑ7
(15433) = 0.966.

SCÑ7
(15433) = 2 + 0.034− 0.960− 0.966 = 0.108.

TÑ8
(15433) = 0.754, IÑ8

(15433) = 0.245, FÑ8
(15433) = 0.245.

SCÑ8
(15433) = 2 + 0.754− 0.245− 0.245 = 2.264.

So, the neutrosophication value of 15433 is Ñ8.
The value of 15497 locates in the range of Ñ8 = 〈15150, 15450, 15750; 0.80, 0.20, 0.20〉 and Ñ9 =

〈15450, 15750, 16050; 0.70, 0.20, 0.30〉 then,

TÑ8
(15497) = 0.674, IÑ8

(15497) = 0.325, FÑ8
(15497) = 0.325.

SCÑ8
(15497) = 2.024.
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Also,
TÑ9

(15497) =0.109, IÑ9
(15497) = 0.874, FÑ9

(15497) = 0.890.
SCÑ9

(15497) = 0.345.

So, the neutrosophication value of 15, 433 is Ñ8.
The value of 15,145 locates in the range of Ñ6 = 〈14550, 14850, 15150; 0.90, 0.10, 0.10〉, and Ñ7 =

〈14850, 15150, 15450; 0.60, 0.30, 0.40〉, then

TÑ6
(15145) = 0.015, IÑ6

(15145) = 0.985, FÑ6
(15145) = 0.985.

SCÑ6
(15145) = 0.045.

Also,
TÑ7

(15145) = 0.59, IÑ7
(15145) = 0.311, FÑ7

(15145) = 0.41.
SCÑ7

(15145) = 1.869.

So, the neutrosophication value of 15,145 is Ñ7.
The value of 15, 163 locates in the range of Ñ7 = 〈14850, 15150, 15450; 0.60, 0.30, 0.40〉, Ñ8 =

〈15150, 15450, 15750; 0.80, 0.20, 0.20〉, then

TÑ7
(15163) = 0.6, IÑ7

(15163) = 0.330, FÑ7
(15163) = 0.426.

SCÑ7
(15163) = 1.844.

Also
TÑ8

(15163) = 0.034, IÑ8
(15163) = 0.965, FÑ8

(15163) = 0.965.
SCÑ8

(15163) = 0.104.

So, the neutrosophication value of 15, 163 is Ñ7.
The value of 15, 984 locates in the range of Ñ9 = 〈15450, 15750, 16050; 0.70, 0.20, 0.30〉, Ñ10 =

〈15750, 16050, 16350; 0.90, 0.10, 0.30〉, then

TÑ9
(15984) = 0.154,IÑ9

(15984) = 0.824, FÑ9
(15984) = 0.846.

SCÑ9
(15984) = 0.484.

Also,
TÑ10

(15984) = 0.702,IÑ10
(15984) = 0.298, FÑ10

(15984) = 0.454,
SCÑ10

(15984) = 1.95.

So, the neutrosophication value of 15984 is Ñ10.
The value of 16859 locates in the range of Ñ12 = 〈16350, 16650, 16950; 0.80, 0.20, 0.20〉, Ñ13 =

〈16650, 16950, 17250; 0.90, 0.10, 0.30〉, then

TÑ12
(16859) = 0.242,IÑ12

(16859) = 0.757, FÑ12
(16859) = 0.757,

SCÑ12
(16859) = 0.728.

Also,
TÑ13

(16859) = 0.627, IÑ13
(16859) = 0.373, FÑ13

(16859) = 0.512,
SCÑ13

(16859) = 1.442.

So, the neutrosophication value of 16859 is Ñ13.
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The value of 18150 locates in the range of Ñ16 = 〈17550, 17850, 18150; 0.65, 0.20, 0.35〉, Ñ17 =

〈17850, 18150, 18450; 0.90, 0.10, 0.10〉, then

TÑ16
(18150) = 0, IÑ16

(18150) = 1, FÑ16
(18150) = 1,

SCÑ16
(18150) = 0.

Also,
TÑ17

(18150) = 0.90, IÑ17
(18150) = 0.1, FÑ17

(18150) = 0.1,
SCÑ17

(18150) = 2.7.

So, the neutrosophication value of 18150 is Ñ17.
The value of 18970 locates in the range of Ñ19 = 〈18450, 18750, 19050; 0.60, 0.20, 0.30〉, Ñ20 =

〈18750, 19050, 19350; 0.90, 0.10, 0.10〉, then

TÑ19
(18970) = 0.16, IÑ19

(18970) = 0.786, FÑ19
(18970) = 0.813.

SCÑ19
(18970) = 0.561.

Also,
TÑ20

(18970) = 0.66,IÑ20
(18970) = 0.34, FÑ20

(18970) = 0.34.
SCÑ20

(18970) = 1.98.

So, the neutrosophication value of 18, 970 is Ñ20.
The value of 19, 328 locates in the range of Ñ20 = 〈18750, 19050, 19350; 0.90, 0.10, 0.10〉, Ñ21 =

〈19050, 19350, 19; 0.90, 0.10, 0.10〉, then

TÑ20
(19328) = 0.066, IÑ20

(19328) = 0.992, FÑ20
(19328) = 0.992.

SCÑ20
(19328) = 0.082.

Also,
TÑ21

(19328) = 0.834, IÑ21
(19328) = 0.166, FÑ21

(19328) = 0.166.
SCÑ21

(19328) = 2.502.

So, the neutrosophication value of 19, 328 is Ñ21.
The value of 19, 337 locates in the range of Ñ20 = 〈18750, 19050, 19350; 0.90, 0.10, 0.10〉, Ñ21 =

〈19050, 19350, 19; 0.90, 0.10, 0.10〉, then

TÑ20
(19337) = 0.039,IÑ20

(19337) = 0.961, FÑ20
(19337) = 0.961.

SCÑ20
(19337) = 0.117.

Also,
TÑ21

(19337) = 0.861,IÑ21
(19337) = 0.139, FÑ21

(19337) = 0.139.
SCÑ21

(19337) = 2.583.

So, the neutrosophication value of 19, 337 is Ñ21.
Finally, the value of 18, 876 locates in the range of Ñ19 = 〈18450, 18750, 19050; 0.60, 0.20, 0.30〉,

Ñ20 = 〈18750, 19050, 19350; 0.90, 0.10, 0.10〉, then

TÑ19
(18876) = 0.348,IÑ19

(18876) = 0.536, FÑ19
(18876) = 0.594.

SCÑ19
(18876) = 1.218.

Also,
TÑ20

(18876) = 0.378, IÑ20
(18876) = 0.622, FÑ20

(18876) = 0.622.
SCÑ20

(18876) = 1.134.
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So, the neutrosophication value of 18, 876 is Ñ19.

Table 1. Actual and neutrosophication values of student enrollments.

Years Actual Enrollments Neutrosophication Values of Enrollments
~
N

1971 13,055 Ñ1
1972 13,563 Ñ2
1973 13,867 Ñ3
1974 14,696 Ñ6
1975 15,460 Ñ8
1976 15,311 Ñ8
1977 15,603 Ñ8
1978 15,861 Ñ9
1979 16,807 Ñ13
1980 16,919 Ñ13
1981 16,388 Ñ11
1982 15,433 Ñ8
1983 15,497 Ñ8
1984 15,145 Ñ7
1985 15,163 Ñ7
1986 15,984 Ñ10
1987 16,859 Ñ13
1988 18,150 Ñ17
1989 18,970 Ñ20
1990 19,328 Ñ21
1991 19,337 Ñ21
1992 18,876 Ñ19

Step 5: Construct the neutrosophic logical relationships (NLRs) as in Table 2:

Table 2. Neutrosophic logical relationships.

Ñ1 → Ñ2 Ñ2 → Ñ3 Ñ3 → Ñ6 Ñ6 → Ñ8 Ñ8 → Ñ8

Ñ8 → Ñ9 Ñ9 → Ñ13 Ñ13 → Ñ13 Ñ13 → Ñ11 Ñ11 → Ñ8

Ñ8 → Ñ7 Ñ7 → Ñ7 Ñ7 → Ñ10 Ñ10 → Ñ13 Ñ13 → Ñ17
Ñ17 → Ñ20 Ñ20 → Ñ21 Ñ21 → Ñ21 Ñ21 → Ñ19

Step 6: Based on NLR, begin to establish the neutrosophic logical relationship groups (NLRGs) as
in Table 3.

Table 3. Neutrosophic logical relationship groups (NLRGs) of enrollments.

Ñ1 → Ñ2

Ñ2 → Ñ3

Ñ3 → Ñ6

Ñ6 → Ñ8

Ñ7 → Ñ7 Ñ7 → Ñ10
Ñ8 → Ñ7 Ñ8 → Ñ8 Ñ8 → Ñ9

Ñ9 → Ñ13
Ñ10 → Ñ13
Ñ11 → Ñ8

Ñ13 → Ñ11 Ñ13 → Ñ13 Ñ13 → Ñ17
Ñ17 → Ñ20

Ñ20 → Ñ21
Ñ21 → Ñ19 Ñ21 → Ñ21
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Step 7: Calculate the forecasted values as in Table 4:

Table 4. Actual and forecasted values of enrollments.

Years Actual Enrollments Forecasted Values of Enrollments

1971 13,055 −
1972 13,563 13, 650
1973 13,867 13,950
1974 14,696 14, 850
1975 15,460 15, 450
1976 15,311 15, 450
1977 15,603 15, 450
1978 15,861 15, 450
1979 16,807 16, 950
1980 16,919 17, 150
1981 16,388 17, 150
1982 15,433 15,450
1983 15,497 15, 450
1984 15,145 15, 450
1985 15,163 15, 600
1986 15,984 15, 600
1987 16,859 16, 950
1988 18,150 17, 150
1989 18,970 19, 050
1990 19,328 19, 350
1991 19,337 19, 050
1992 18,876 19, 050

To calculate the forecasted value of 13,055 in year 1971, do the following:

- Look at the neutrosophication value of 13055 in year 1971 which is Ñ1 as it appears in Table 1.

- Go to NLRG which is presented in Table 3, and because Ñ1 is the first neutrosophication value of
data, then it is not caused by any other value (i.e. , ,→ Ñ1 ) as in Table 3.

Therefore, the forecasted value of 13,055 is—Which means leaving it empty, as we illustrated in
Step 7, Rule 1 of the proposed algorithm.

Also, to calculate the forecasted value of 13,563 in year 1972, do the following:

- Look at the neutrosophication value of 13,563 in year 1972 which is Ñ2 as it appears in Table 1,
and because Ñ2 is caused by Ñ1 (i.e., Ñ1 → Ñ2 ), then

- Go to Table 3, and look at the NLRG which starts with Ñ1, and we noted that it is Ñ1 → Ñ2. Then
the forecasted value of 13,563 is the middle value of Ñ2.

Another illustrating example for calculating the forecasted value of 18,876 in year 1992:

- Look at the neutrosophication value of 18,876 in year 1992 which is Ñ19 as it appears in Table 1.
Since Ñ19 is caused by Ñ21, then

- Go to Table 3, and look at the NLRG which starts with Ñ21 (i.e. , Ñ21 → Ñ19, Ñ21 → Ñ21 ). Then
the forecasted value of 18876 is the average of the middle values of Ñ19, Ñ21, and it will equal
19,050.

The other forecasted values are calculated in the same manner.
The actual and forecasted values of enrollments appear in Figure 1.
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Table 4. Actual and forecasted values of enrollments. 

Years Actual Enrollments Forecasted Values of Enrollments 
1971 13,055 − 
1972 13,563 13,650 
1973 13,867 13,950 
1974 14,696 14,850 
1975 15,460 15,450 
1976 15,311 15,450 
1977 15,603 15,450 
1978 15,861 15,450 
1979 16,807 16,950 
1980 16,919 17,150 
1981 16,388 17,150 
1982 15,433 15,450 
1983 15,497 15,450 
1984 15,145 15,450 
1985 15,163 15,600 
1986 15,984 15,600 
1987 16,859 16,950 
1988 18,150 17,150 
1989 18,970 19,050 
1990 19,328 19,350 
1991 19,337 19,050 
1992 18,876 19,050 

The actual and forecasted values of enrollments appear in Figure 1. 
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The forecasted enrollment data obtained with the suggested method, along with the forecasted
data obtained with the models in [14,17,43–46], are presented in Table 5.

Table 5. Forecasted values by suggested method and other methods.

Years Actual Values
Forecasted Values

Proposed [43] [44] [45] [46] [14] [17]

1971 13,055 − − − − − − −
1972 13,563 13, 650 14,242.0 14,025 13,250 14,031.35 14,586 13,693
1973 13,867 13,950 14,242.0 14,568 13,750 14,795.36 14,586 13,693
1974 14,696 14, 850 14,242.0 14,568 13,750 14,795.36 15,363 14,867
1975 15,460 15, 450 15,774.3 15,654 14,500 14,795.36 15,363 15,287
1976 15,311 15, 450 15,774.3 15,654 15,375 16,406.57 15,442 15,376
1977 15,603 15, 450 15,774.3 15,654 15,375 16,406.57 15,442 15,376
1978 15,861 15, 450 15,774.3 15,654 15,625 16,406.57 15,442 15,376
1979 16,807 16, 950 16,146.5 16,197 15,875 16,406.57 15,442 16,523
1980 16,919 17, 150 16,988.3 17,283 16,833 17,315.29 17,064 16,606
1981 16,388 17, 150 16,988.3 17,283 16,833 17,315.29 17,064 17,519
1982 15,433 15, 450 16,146.5 16,197 16,500 17,315.29 15,438 16,606
1983 15,497 15, 450 15,474.3 15,654 15,500 16,406.57 15,442 15,376
1984 15,145 15, 450 15,474.3 15,654 15,500 16,406.57 15,442 15,376
1985 15,163 15, 600 15,474.3 15,654 15,125 16,406.57 15,363 15,287
1986 15,984 15, 600 15,474.3 15,654 15,125 16,406.57 15,363 15,287
1987 16,859 16, 950 16,146.5 15,654 16,833 16,406.57 15,438 16,523
1988 18,150 17, 150 16,988.3 16,197 16,667 17,315.29 17,064 17,519
1989 18,970 19, 050 19,144.0 17,283 18,125 19,132.79 19,356 19,500
1990 19,328 19, 350 19,144.0 18,369 18,750 19,132.79 19,356 19,000
1991 19,337 19, 050 19,144.0 19,454 19,500 19,132.79 19,356 19,500
1992 18,876 19, 050 19,144.0 19,454 19,500 19,132.79 19,356 19,500

By comparing the proposed method with other existing methods in Table 5, the RMSE and AFE
tools confirm that the suggested method is better than others, as shown in Table 6.

Table 6. Error measures.

Tool Proposed [43] [44] [45] [46] [14] [17]

RMSE 342.68 478.45 781.47 646.67 805.17 642.68 493.56
AFE (%) 1.44 2.39 3.61 2.98 4.28 2.96 2.33

We combined forecasted values with respect to all methods in Figure 2.

421



Symmetry 2019, 11, 457

Table 5. Forecasted values by suggested method and other methods. 

Years  Actual Values  
Forecasted Values 

Proposed [43] [44] [45] [46] [14] [17] 
1971 13,055 − − − − − − − 
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1987 16,859 16,950 16,146.5 15,654 16,833 16,406.57 15,438 16,523 
1988 18,150 17,150 16,988.3 16,197 16,667 17,315.29 17,064 17,519 
1989 18,970 19,050 19,144.0 17,283 18,125 19,132.79 19,356 19,500 
1990 19,328 19,350 19,144.0 18,369 18,750 19,132.79 19,356 19,000 
1991 19,337 19,050 19,144.0 19,454 19,500 19,132.79 19,356 19,500 
1992 18,876 19,050 19,144.0 19,454 19,500 19,132.79 19,356 19,500 

By comparing the proposed method with other existing methods in Table 5, the RMSE and AFE 
tools confirm that the suggested method is better than others, as shown in Table 6. 
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If we plan to find the second-order neutrosophic logical relationships of the previous example by
applying the proposed method of forecasting based on the second-order NTS, they are as shown in
Table 7.

Table 7. Second-order NLR.

Ñ1, Ñ2 → Ñ3

Ñ2, Ñ3 → Ñ6

Ñ3, Ñ6 → Ñ8

Ñ6, Ñ8 → Ñ8

Ñ8, Ñ8 → Ñ8

Ñ8, Ñ8 → Ñ9

Ñ8, Ñ9 → Ñ13
Ñ9, Ñ13 → Ñ13

Ñ13, Ñ13 → Ñ11 Ñ13, Ñ11 → Ñ8

Ñ11, Ñ8 → Ñ8

Ñ8, Ñ8 → Ñ7

Ñ8, Ñ7 → Ñ7

Ñ7, Ñ7 → Ñ10
Ñ7, Ñ10 → Ñ13
Ñ10, Ñ13 → Ñ17
Ñ13, Ñ17 → Ñ20

Ñ17, Ñ20 → Ñ21
Ñ20, Ñ21 → Ñ21
Ñ21, Ñ21 → Ñ19

The second-order neutrosophic logical relationship groups of the previous example are as shown
in Table 8.

We compared forecasted values of enrollments based on the second order of neutrosophic logical
relationship groups of the proposed method with the method of second order presented by Gautam
and Singh [47]. The results are shown in Table 9.
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Table 8. Second-order NLRGs.

Ñ1, Ñ2 → Ñ3

Ñ2, Ñ3 → Ñ6

Ñ3, Ñ6 → Ñ8

Ñ6, Ñ8 → Ñ8

Ñ8, Ñ8 → Ñ8 Ñ8, Ñ8 → Ñ9 Ñ8, Ñ8 → Ñ7

Ñ8, Ñ9 → Ñ13
Ñ9, Ñ13 → Ñ13
Ñ13, Ñ13 → Ñ11
Ñ13, Ñ11 → Ñ8

Ñ11, Ñ8 → Ñ8

Ñ8, Ñ7 → Ñ7

Ñ7, Ñ7 → Ñ10
Ñ7, Ñ10 → Ñ13
Ñ10, Ñ13 → Ñ17
Ñ13, Ñ17 → Ñ20

Ñ17, Ñ20 → Ñ21
Ñ20, Ñ21 → Ñ21
Ñ21, Ñ21 → Ñ19

Table 9. Actual and forecasted values of enrollments based on the second order of the proposed method
vs. the Gautam and Singh [47] method.

Years Actual Enrollments Second-Order Forecasted Values of the
Proposed Method Forecasted Values in [47]

1971 13,055 − −
1972 13,563 − −
1973 13,867 13,950 13,800
1974 14,696 14, 850 14,400
1975 15,460 15, 450 15,300
1976 15,311 15, 450 15,300
1977 15,603 15, 450 15,600
1978 15,861 15, 450 15,600
1979 16,807 16, 950 16,800
1980 16,919 16, 950 16,800
1981 16,388 16, 350 16,200
1982 15,433 15, 450 15,300
1983 15,497 15, 450 15,300
1984 15,145 15,450 15,000
1985 15,163 15, 150 15,000
1986 15,984 16, 050 15,900
1987 16,859 16, 950 16,800
1988 18,150 18, 150 18,000
1989 18,970 19, 050 18,900
1990 19,328 19, 350 19,200
1991 19,337 19, 350 19,200
1992 18,876 18, 750 18,600

The MSE and AFE of the two methods are presented in Table 10.

Table 10. Error measures of the proposed method and the Gautam and Singh method [47].

Tool Proposed [47]

MSE 19,823.4 24,443.4
AFE (%) 0.60 0.81
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From Table 10, it appears that our proposed method of second order is also better than the
proposed method of second order presented by Gautam and Singh [47].

In addition, the third-order neutrosophic logical relationship groups of the previous example are
constructed and shown in Table 11.

Table 11. Third-order NLRGs.

Ñ1, Ñ2, Ñ3 → Ñ6

Ñ2, Ñ3, Ñ6 → Ñ8

Ñ3, Ñ6, Ñ8 → Ñ8

Ñ6, Ñ8, Ñ8 → Ñ8

Ñ8, Ñ8, Ñ8 → Ñ9

Ñ8, Ñ8, Ñ9 → Ñ13
Ñ8, Ñ9, Ñ13 → Ñ13
Ñ9, Ñ13, Ñ13 → Ñ11
Ñ13, Ñ13, Ñ11 → Ñ8

Ñ13, Ñ11, Ñ8 → Ñ8

Ñ11, Ñ8, Ñ8 → Ñ7

Ñ8, Ñ8, Ñ7 → Ñ7

Ñ8, Ñ7, Ñ7 → Ñ10
Ñ7, Ñ7, Ñ10 → Ñ13
Ñ7, Ñ10, Ñ13 → Ñ17
Ñ10, Ñ13, Ñ17 → Ñ20

Ñ13, Ñ17, Ñ20 → Ñ21
Ñ17, Ñ20, Ñ21 → Ñ21
Ñ20, Ñ21, Ñ21 → Ñ19

We also compared the forecasted values of enrollments based on the third order of neutrosophic
logical relationship groups of the proposed method with the proposed methods of third order presented
by [8,9,47], and the results are shown in Table 12.

Table 12. Actual and forecasted values of enrollments based on the third order of the proposed method
vs. the methods presented by [8,9,47].

Years Actual
Enrollments

Third-Order Forecasted Values of
the Proposed Method

Forecasted
Values in [47]

Forecasted
Values in [8]

Forecasted
Values in [9]

1971 13,055 − − − −
1972 13,563 − − − −
1973 13,867 − − − −
1974 14,696 14,850 14,400 14,500 14,750
1975 15,460 15,450 15,300 15,500 15,750
1976 15,311 15,450 15,300 15,500 15,500
1977 15,603 15,450 15,600 15,500 15,500
1978 15,861 15,750 15,600 15,500 15,500
1979 16,807 16,950 16,800 16,500 16,500
1980 16,919 16,950 16,800 16,500 16,500
1981 16,388 16,350 16,200 16,500 16,500
1982 15,433 15,450 15,300 15,500 15,500
1983 15,497 15,450 15,300 15,500 15,500
1984 15,145 15,150 15,000 15,500 15,250
1985 15,163 15,150 15,000 15,500 15,500
1986 15,984 16,050 15,900 15,500 15,500
1987 16,859 16,950 16,800 16,500 16,500
1988 18,150 18,150 18,000 18,500 18,500
1989 18,970 19,050 18,900 18,500 18,500
1990 19,328 19,350 19,200 19,500 19,500
1991 19,337 19,350 19,200 19,500 19,500
1992 18,876 18,750 18,600 18,500 18,750
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The MSE and AFE of the methods are presented in Table 13.

Table 13. Error measures of the proposed method and the [8,9,47] methods.

Tool Proposed [47] [8] [9]

MSE 7367.316 25,493.6 86,694 76,509
AFE (%) 0.40 0.82 1.52 1.40

4.2. Numerical Example 2

We verified the proposed method by solving the TAIEX2004 example [40], and by putting D1

and D2 equal 56 and 61, respectively, then U = [5600.17, 6200.69]. Also we calculated the suitable
length as we illustrated previously and found that it is equal to 40. Therefore, the number of triangular
neutrosophic numbers is equal to 12. For these neutrosophic numbers, the decision makers determined
the truth, indeterminacy, and falsity degrees equal to 0.9, 0.1, 0.1, respectively. The actual and forecasted
values of the TAIEX2004 example are presented in Table 14 and Figure 3.

Table 14. Actual and forecasted values of TAIEX2004.

Dates Actual Values Forecasted Values of the Proposed Method

01/11/2004 5656.17 −
02/11/2004 5759.61 5760.17
03/11/2004 5862.85 5813.5
04/11/2004 5860.73 5900.17
05/11/2004 5931.31 5900.17
08/11/2004 5937.46 5903.02
09/11/2004 5945.2 5903.02
10/11/2004 5948.49 5940.17
11/11/2004 5874.52 5940.17
12/11/2004 5917.16 5903.02
15/11/2004 5906.69 5903.02
16/11/2004 5910.85 5903.02
17/11/2004 6028.68 5940.17
18/11/2004 6049.49 5940.17
19/11/2004 6026.55 5940.17
22/11/2004 5838.42 5830.17
23/11/2004 5851.1 5830.17
24/11/2004 5911.31 5903.02
25/11/2004 5855.24 5830.17
26/11/2004 5778.65 5813.5
29/11/2004 5785.26 5813.5
30/11/2004 5844.76 5860.17
1/12/2004 5798.62 5830.17

02/12/2004 5867.95 5860.17
03/12/2004 5893.27 5900.17
06/12/2004 5919.17 5900.17
07/12/2004 5925.28 5903.02
08/12/2004 5892.51 5903.02
09/12/2004 5913.97 5900.17
10/12/2004 5911.63 5903.02
13/12/2004 5878.89 5903.02
14/12/2004 5909.65 5900.17
15/12/2004 6002.58 5903.02
16/12/2004 6019.23 6040.17
17/12/2004 6009.32 6040.17
20/12/2004 5985.94 6040.17
21/12/2004 5987.85 6040.17
22/12/2004 6001.52 6040.17
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Table 14. Cont.

Dates Actual Values Forecasted Values of the Proposed Method

23/11/2004 5851.1 5830.17
24/11/2004 5911.31 5903.02
25/11/2004 5855.24 5830.17
26/11/2004 5778.65 5813.5
29/11/2004 5785.26 5813.5
30/11/2004 5844.76 5860.17
1/12/2004 5798.62 5830.17

02/12/2004 5867.95 5860.17
03/12/2004 5893.27 5900.17
06/12/2004 5919.17 5900.17
07/12/2004 5925.28 5903.02
08/12/2004 5892.51 5903.02
09/12/2004 5913.97 5900.17
10/12/2004 5911.63 5903.02
13/12/2004 5878.89 5903.02
14/12/2004 5909.65 5900.17
15/12/2004 6002.58 5903.02
16/12/2004 6019.23 6040.17
17/12/2004 6009.32 6040.17
20/12/2004 5985.94 6040.17
21/12/2004 5987.85 6040.17
22/12/2004 6001.52 6040.17
23/12/2004 5997.67 6040.17
24/12/2004 6019.42 6040.17
27/12/2004 5985.94 6040.17
28/12/2004 6000.57 6040.17
29/12/2004 6088.49 6040.17
30/12/2004 6100.86 6080.17
31/12/2004 6139.69 6080.17

 
Figure 3. Actual and forecasted values of TAIEX2004. 

The RMSE and AFE of the proposed method are presented in Table 15. 

Table 15. Error measures of the proposed method. 

Tool Proposed 
RMSE 42.05 

AFE (%) 0.005 
To confirm the performance of the suggested method, we compared it with other existing 

methods and the results are shown in Table 16 and Figure 4.  

Table 16. Error measures of the proposed method and other existing methods which solved the 
TAIEX2004 example. 

Methods RMSE  
Guan et al.’s method [40] 53.01 

Huarng et al.’s method [48] 73.57 
Chen and Kao’s method [49] 58.17 

Cheng et al.’s method [50] 54.24 
Chen et al.’s method [51] 56.16 

Chen and Chang’s method [52] 60.48 
Chen and Chen’s method [53] 61.94 
Yu and Huarng’s method [54] 55.91 

Proposed method  42.05 

Figure 3. Actual and forecasted values of TAIEX2004.

The RMSE and AFE of the proposed method are presented in Table 15.
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Table 15. Error measures of the proposed method.

Tool Proposed

RMSE 42.05
AFE (%) 0.005

To confirm the performance of the suggested method, we compared it with other existing methods
and the results are shown in Table 16 and Figure 4.

Table 16. Error measures of the proposed method and other existing methods which solved the
TAIEX2004 example.

Methods RMSE

Guan et al.’s method [40] 53.01
Huarng et al.’s method [48] 73.57

Chen and Kao’s method [49] 58.17
Cheng et al.’s method [50] 54.24
Chen et al.’s method [51] 56.16

Chen and Chang’s method [52] 60.48
Chen and Chen’s method [53] 61.94
Yu and Huarng’s method [54] 55.91

Proposed method 42.05

 
Figure 4. The RMSE of different methods that solved the TAIEX2004 example. 

TAIEX2004 is used as a baseline to compare our method with other competitive methods, to 
compare and identify how all the methods can manage error reduction. The RMSE is a common 
approach used in financial analysis [55]. Compared with the existing methods as shown in Table 16, 
our proposed method can offer the least presence of errors since it has the most minimized RMSE. In 
other words, our method appears to be performing the best in reducing errors and ensuring all our 
analyses are accurate with insights. This may provide a new insight for business intelligence with 
artificial intelligence, cloud computing, and neutrosophic research. 

 

5. Conclusion and future directions 

The objective of this research was to enhance the accuracy rates of forecasting, since the 
forecasting accuracy rates in the existing approaches of fuzzy and intuitionistic fuzzy time series were 
not accurate enough. Thus, in this research we introduced the notion of first-and high-order 
neutrosophic time series data by defining the fitting length of intervals and proposing a novel method 
for calculating forecasted values. In order to obtain truth, indeterminacy, and falsity membership 
degrees of historical data, we defined triangular neutrosophic numbers. The neutrosophication 
process of historical time series data depends on the biggest score function of the triangular 
neutrosophic numbers. For the deneutrosophication process of first- and high-order NTS, we used 
simple arithmetic computations. The suggested approach of first- and high-order neutrosophic time 
series proved its superiority against other existing methods in the field of fuzzy, intuitionistic fuzzy, 
and neutrosophic time series. In the future, we plan to apply meta-heuristic optimization techniques 
for improving the accuracy of the suggested method. We will apply this model for predicting other 
time series, such as demand forecasting, electricity consumption, etc. Furthermore, we may consider 
using other approaches for comparing similarities of historical data, like information entropy. 
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and M.M.; V.C. completed the preparatory work of the paper. F. S. analyzed the existing work. The revision and 
submission of this paper was completed by F.S. and M.A.-B. 

Figure 4. The RMSE of different methods that solved the TAIEX2004 example.

TAIEX2004 is used as a baseline to compare our method with other competitive methods,
to compare and identify how all the methods can manage error reduction. The RMSE is a common
approach used in financial analysis [55]. Compared with the existing methods as shown in Table 16,
our proposed method can offer the least presence of errors since it has the most minimized RMSE.
In other words, our method appears to be performing the best in reducing errors and ensuring all our
analyses are accurate with insights. This may provide a new insight for business intelligence with
artificial intelligence, cloud computing, and neutrosophic research.
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5. Conclusion and Future Directions

The objective of this research was to enhance the accuracy rates of forecasting, since the forecasting
accuracy rates in the existing approaches of fuzzy and intuitionistic fuzzy time series were not accurate
enough. Thus, in this research we introduced the notion of first-and high-order neutrosophic time
series data by defining the fitting length of intervals and proposing a novel method for calculating
forecasted values. In order to obtain truth, indeterminacy, and falsity membership degrees of historical
data, we defined triangular neutrosophic numbers. The neutrosophication process of historical time
series data depends on the biggest score function of the triangular neutrosophic numbers. For the
deneutrosophication process of first- and high-order NTS, we used simple arithmetic computations.
The suggested approach of first- and high-order neutrosophic time series proved its superiority
against other existing methods in the field of fuzzy, intuitionistic fuzzy, and neutrosophic time series.
In the future, we plan to apply meta-heuristic optimization techniques for improving the accuracy
of the suggested method. We will apply this model for predicting other time series, such as demand
forecasting, electricity consumption, etc. Furthermore, we may consider using other approaches for
comparing similarities of historical data, like information entropy.
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Abstract: To handle indeterminate and incomplete data, neutrosophic logic/set/probability were
established. The neutrosophic truth, falsehood and indeterminacy components exhibit symmetry
as the truth and the falsehood look the same and behave in a symmetrical way with respect to the
indeterminacy component which serves as a line of the symmetry. Soft set is a generic mathematical
tool for dealing with uncertainty. Rough set is a new mathematical tool for dealing with vague,
imprecise, inconsistent and uncertain knowledge in information systems. This paper introduces a
new rough set model based on neutrosophic soft set to exploit simultaneously the advantages of
rough sets and neutrosophic soft sets in order to handle all types of uncertainty in data. The idea
of neutrosophic right neighborhood is utilised to define the concepts of neutrosophic soft rough
(NSR) lower and upper approximations. Properties of suggested approximations are proposed and
subsequently proven. Some of the NSR set concepts such as NSR-definability, NSR-relations and
NSR-membership functions are suggested and illustrated with examples. Further, we demonstrate
the feasibility of the newly rough set model with decision making problems involving neutrosophic
soft set. Finally, a discussion on the features and limitations of the proposed model is provided.

Keywords: decision making; membership function; neutrosophic set; neutrosophic soft rough;
relations; rough set approximation; soft set

1. Introduction

The limitation of deterministic research is currently recognized in areas of management, social
sciences, operations research and economics. Uncertain theories such as probability, fuzzy sets [1],
intuitionistic fuzzy sets [2], vague sets [3] and theory of interval mathematics [4] are applied in realms
which are ambiguous and uncertain.

Rough set theory, initiated by Pawlak [5], is an effective mathematical tool to the vague and
imperfect knowledge. Rough set expresses vagueness by bounded region of a set, which can be
interpreted as using the vagueness of Frege’s idea. Pawlak argued that any vague concept can be
replaced by the lower and upper approximations of precise sets using an equivalence relation. In the
real application, the equivalence relation is a very stringent condition which limits the applications
of rough sets in the real world. For this reason, by replacing the equivalence relation with covering,
similarity, tolerance, preference, dominance relations, and different neighborhood operators, various
kinds of rough set generalizations model were proposed [6–11].

A soft set is a set-valued map defined by Molodtsov [12], to approximately describe objects using
several parameters. Maji et al. [13] applied the theory of soft set to solve decision making problems with
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the help of rough mathematics. The adequate parametrization capabilities of soft set theory and the lack
of such capabilities in the fuzzy set served as the motivation to introduce the fuzzy soft sets [14].

Feng et al. [15] proved properties of soft rough set model. Smarandache [16,17] proposed
neutrosophic set to handle problems containing imprecise, incomplete, uncertain and indeterminate
data. Neutrosophic sets progressed rapidly to neutrosophic oversets, neutrosophic undersets,
neutrosophic offsets [18], neutrosophic cubic sets [19], neutrosophic and generalised neutrosophic
soft sets [20–22], neutrosophic rough sets [23–26], neutrosophic vague sets [27,28] and complex
neutrosophic sets [29–32].

We will propose an approach to neutrosophic soft rough set and show that the traditional
rough approach is a special case of our approach. Furthermore, we will study the neutrosophic
soft rough approximations and apply them to decision making. The paper is organized into seven
sections. Section 2 provides literature review. In Section 3, the concept of neutrosophic right
neighborhood is defined. This section further defines neutrosophic soft rough set approximations.
Properties of NSR-lower and NSR-upper approximations are included along with supported proofs
and illustrated examples. Section 4 delves into neutrosophic soft rough set and generalization of rough
concepts. NSR-set concepts include neutrosophic soft rough (NSR) definability, neutrosophic soft rough
(NSR)-membership function, neutrosophic soft rough (NSR)-membership relations, neutrosophic soft
rough (NSR)-inclusion relations and neutrosophic soft rough (NSR)-equality relations. Properties of
these concepts are proven and examples provided. Section 5 provides an application of the proposed
neutrosophic soft rough model on decision making. In Section 6, we conduct a discussion about the
features and limitations of the proposed model by making a comparison with the existing models.
In the final section, we outline future work and draw conclusions to this work.

2. Preliminaries

We start by reviewing the concepts of rough set, neutrosophic set and soft set.
Pawlak considered the set X with the equivalence relation E and called the pair (X, E) as a Pawlak

approximation space. Then he assigned two operations (lower and upper approximations) to any
vague subset M ⊆ X. These operations process some information connected with the relationship
E and they are analogous with Kuratowski’s operations, which are generated by the closure and
the completion.

The lower, upper and boundary approximations are defined as follows.

Definition 1 ([5]). Let E be an equivalence relation on a universe X and M ⊆ X. Then the pair (X, E) is
referred to as a Pawlak approximation space. The lower, upper and boundary approximations of M are defined
as follows.

E(M) = ∪{[x]E : [x]E ⊆ M},

E(M) = ∪{[x]E : [x]E ∩M 6= φ},

BNDE(M) = E(M)− E(M).

where [x]E = {x′ ∈ X : E(x) = E(x
′
)}.

Definition 2 ([5]). Let A = (X, E) be an approximation space and let M ⊂ X. By the accuracy of
approximation of M in A we mean the number

αE(M) =
| E(M) |
| E(M) | , E(M) 6= ∅.

Obviously, 0 ≤ αE(M) ≤ 1. If E(M) = E(M), then M is crisp (exact) set, with respect to E, otherwise M is
rough set.
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The following proposition lists the properties of Pawlak’s approximations.

Proposition 1 ([5]). For every M, Y ⊂ X and every approximation space A = (X, E) the following
properties hold:
(i) E(M) ⊆ M ⊆ E(M).
(ii) E(φ) = φ = E(φ) and E(X) = X = E(X).
(iii) E(M ∪Y) = E(M) ∪ E(Y).
(iv) E(M ∩Y) = E(M) ∩ E(Y).
(v) M ⊆ Y, then E(M) ⊆ E(Y) and E(M) ⊆ E(Y).
(vi) E(M ∪Y) ⊇ E(M) ∪ E(Y).
(vii) E(M ∩Y) ⊆ E(M) ∩ E(Y).
(viii) E(M

c
) = [E(M)]

c
, where M

c
is the complement of M.

(ix) E(M
c
) = [E(M)]

c
.

(x) E(E(M)) = E(E(M)) = E(M).
(xi) E(E(M)) = E(E(M)) = E(M).

Definition 3 ([33]). An information system is a quadruple IS = (U, A, V, f ), where U is a non-empty finite
set of objects, A is a non-empty finite set of attributes, V = ∪{Ve, e ∈ A}, Ve is the set of values of attribute e,
and f : U × A→ V, is called an information (knowledge) function.

Definition 4 ([12]). Let X be an initial universe set, E be a set of parameters, A ⊆ E and let P(X) denote
the power set of X. Then, a pair K = (L, A) is called a soft set over X, where L is a mapping given by
L : A → P(X). In other words, a soft set over X is a parameterized family of subsets of X. For a ∈ A, L(a)
may be considered as the set of a-approximate elements of K.

The neutrosophic set was defined by Smarandache below.

Definition 5 ([17]). A neutrosophic set N on the universe of discourse X is defined as

N = {〈n, TN(n), IN(n), FN(n)〉 : n ∈ X}, where

−0 ≤ TN(n) + IN(n) + FN(n) ≤ 3+, where

T, I, F : X −→]−0; 1+[.

3. Neutrosophic Soft Rough Set Approximations (NSR-Set Approximations)

In this section, we give a definition of neutrosophic soft set (NSS in short) with an illustrative
example. We will introduce and provide examples of NSR-lower and NSR-upper approximations.

Definition 6. Let a universe X, E the parameter set and A ⊆ E. A neutrosophic soft set H over X is a
neutrosophic set valued function from A to P(X). It can be written as

H = {(a,< x, TH(a)(x), IH(a)(x), FH(a)(x) >: x ∈ X) : a ∈ E},

where P(X) denotes the power neutrosophic set of X.
In other words, the neutrosophic soft set H is a parameterized family of neutrosophic subsets of X. For any

parameter a, H(a) is referred as the neutrosophic value set of parameter a.

The example below will convey the meaning of neutrosophic soft set.

Example 1. Let X be a set of houses and E be a set of parameters (or qualities). Consider E = {cheap, beautiful,
green surrounding, spacious}. To define an (NSS) means to point out cheap houses, beautiful houses and so
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on. If there are five houses in X, where, X = {x1 , x2 , x3 , x4 , x5} and the set of parameters A = {a1 , a2 , a3 , a4},
where A ⊂ E, and each ai is a specific property for houses: a1 stands for (cheap), a2 stands for (beautiful), a3

stands for (green surrounding), a4 stands for (spacious).

An (NSS) can be represented as in Table 1, such that the entries are hij corresponding to the house
xi and the parameter aj , where hij = (true membership value of xi , indeterminacy-membership value
of xi , falsity membership value of xi ) in H(aj). Table 1, represents the (NSS) (H, A) as follows.

Table 1. Tabular representation of the neutrosophic soft set (NSS) (H, A).

X a1 a2 a3 a4

x1 (0.6, 0.6, 0.2) (0.8, 0.4, 0.3) (0.7, 0.4, 0.3) (0.8, 0.6, 0.4)
x2 (0.4, 0.6, 0.6) (0.6, 0.2, 0.4) (0.6, 0.4, 0.3) (0.7, 0.6, 0.6)
x3 (0.6, 0.4, 0.2) (0.8, 0.1, 0.3) (0.7, 0.2, 0.5) (0.7, 0.6, 0.4)
x4 (0.6, 0.3, 0.3) (0.8, 0.2, 0.2) (0.5, 0.2, 0.6) (0.7, 0.5, 0.6)
x5 (0.8, 0.2, 0.3) (0.8, 0.3, 0.2) (0.7, 0.3, 0.4) (0.9, 0.5, 0.7)

In the following, we define the concept of the neutrosophic right neighborhood.

Definition 7. Let X be a universal set and Γ be the power set of X. Let (H, A) be an (NSS) on X, and
ω = A× X. Let S be a mapping given by

S : ω → Γ,

where Sa(x) = S(a, x) = {xi ∈ X : Ta(xi ) ≥ Ta(x) and Ia(xi ) ≥ Ia(x) and Fa(xi ) ≤ Fa(x)}.

Then for any element x ∈ X, Sa(x) is called a neutrosophic right neighborhood, with respect to a ∈ A.

Definition 8. Let X be a universal set and (H, A) be an (NSS) on X. Then for all x ∈ X and a ∈ A, the family
of all neutrosophic right neighborhoods is defined as follows.

ψ = {Sa(x) : x ∈ X, a ∈ A}.

The example below conveys the meaning of neutrosophic right neighborhoods.

Example 2. We can deduce the statements below from Example 1.
Sa1(x1) = Sa2(x1) = Sa3(x1) = Sa4(x1) = {x1},
Sa1(x2) = Sa3(x2) = {x1 , x2}, Sa2(x2) = {x1 , x2 , x4 , x5}, Sa4(x2) = {x1 , x2 , x3},
Sa1(x3) = Sa4(x3) = {x1 , x3}, Sa2(x3) = {x1 , x3 , x4 , x5}, Sa3(x3) = {x1 , x3 , x5},
Sa1(x4) = {x1 , x3 , x4}, Sa2(x4) = {x4 , x5}, Sa3(x4) = X, Sa4(x4) = {x1 , x2 , x3 , x4},
Sa1(x5) = Sa2(x5) = Sa4(x5) = {x5}, Sa3(x5) = {x1 , x5}.

It follows that, ψ = { {x1}, {x5}, {x1 , x2}, {x1 , x3}, {x1 , x5}, {x4 , x5}, {x1 , x2 , x3}, {x1 , x3 , x4},
{x1 , x3 , x5}, {x1 , x2 , x3 , x4}, {x1 , x2 , x4 , x5}, {x1 , x3 , x4 , x5}, X }.

Proposition 2. Let (H, A) be an (NSS) on a universe X, ψ is the parameterised family of all neutrosophic right
neighborhoods and Ra : X → ψ, Ra(x) = Sa(x). Then the statements below hold.
(i) Ra is reflexive relation.
(ii) Ra is transitive relation.

Proof. Let 〈x1 , Ta(x1), Ia(x1), Fa(x1)〉, 〈x2 , Ta(x2), Ia(x2), Fa(x2)〉 and 〈x3 , Ta(x3), Ia(x3), Fa(x3)〉 ∈
(H, A). Then,
(i) Obviously, for all i = 1, 2, 3, Ta(xi ) ≥ Ta(xi ), Ia(xi ) ≥ Ia(xi ), Fa(xi ) ≤ Fa(xi ) Hence, for every a ∈ A,
xi ∈ Sa(xi) and xi Ra xi and thus Ra is reflexive relation.
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(ii) Let x1 Ra x2 and x2 Ra x3 . Then, x2 ∈ Sa(x1) and x3 ∈ Sa(x2). Hence, Ta(x2) ≥ Ta(x1), Ia(x2) ≥ Ia(x1),
Fa(x2) ≤ Fa(x1), Ta(x3) ≥ Ta(x2), Ia(x3) ≥ Ia(x2) and Fa(x3) ≤ Fa(x2). Consequently, wa have Ta(x3)

≥ Ta(x1), Ia(x3) ≥ Ia(x1) and Fa(x3) ≤ Fa(x1). It follows that x3 ∈ Sa(x1) and x1 Ra x3 and thus Ra is
transitive relation.

Note that Ra in Proposition 2 may not necessarily be symmetric as shown below.

Example 3. From Example 2, we have, Sa1(x1) = {x1} and Sa1(x3) = {x1 , x3}. Hence, (x3 , x1) ∈ Ra1
but

(x1 , x3) 6∈ Ra1
. Thus Ra is not symmetric relation.

We define the neutrosophic soft rough lower and upper approximations below.

Definition 9. Let (H, A) be an (NSS) on a universe X, with ψ being the family of all neutrosophic right
neighborhoods. The neutrosophic soft lower and neutrosophic soft upper approximations of any subset M based
on ψ, respectively, are

NR∗M = ∪{Y ∈ ψ : Y ⊆ M},

NR
∗
M = ∪{Y ∈ ψ : Y ∩M 6= ∅}.

NR∗M and NR
∗
M can be referred as neutrosophic soft rough approximations of M (NSR-set

approximations) with respect to A.

Remark 1. For any considered set M in an (NSS) (H, A), the sets PosNR M = NR∗M, NegNR M =

[NR
∗
M]

c
, bNR M = NR

∗
M− NR∗M are called the NSR-positive, NSR-negative and NSR-boundary regions

of a considered set M, respectively. The meaning of PosNR M is the set of all elements, which are surely
belonging to M, NegNR M is the set of all elements, which do not belong to M and bNR M is the elements of M,
not determined by (H, A).

The proposition below lists the properties of neutrosophic soft rough approximations.

Proposition 3. Let (H, A) be an (NSS) on a universe X, and let M, Z ⊆ X. Then the following properties
hold.
(i) NR∗M ⊆ M ⊆ NR

∗
M.

(ii) NR∗∅ = NR
∗
∅ = ∅.

(iii) NR∗X = NR
∗
X = X.

(iv) M ⊆ Z⇒ NR∗M ⊆ NR∗Z.
(v) M ⊆ Z⇒ NR

∗
M ⊆ NR

∗
Z.

(vi) NR∗(M ∩ Z) ⊆ NR∗M ∩ NR∗Z.
(vii) NR∗(M ∪ Z) ⊇ NR∗M ∪ NR∗Z.
(viii) NR

∗
(M ∩ Z) ⊆ NR

∗
M ∩ NR

∗
Z.

(ix) NR
∗
(M ∪ Z) = NR

∗
M ∪ NR

∗
Z.

Proof. (i) From Definition 9, we can deduce that NR∗M ⊆ M. In addition, let x ∈ M, but Ra defined
in Proposition 2 is reflexive relation. For all a ∈ A, there exists Sa(x) such that x ∈ Sa(x) and there
exists Y ∈ ψ such that Y ∩M 6= ∅. Hence, x ∈ NR

∗
M. Thus NR∗M ⊆ M ⊆ NR

∗
M.

(ii) Proof of (ii) follows directly from Definition 9.
(iii) From property (i), we have X ⊆ NR

∗
X. Since X is the universe set NR

∗
X = X. From

Definition 9, we have NR∗X = ∪{Y ∈ ψ : Y ⊆ X}, but for all x ∈ X, there exists Sa(x) ∈ ψ such that x
∈ Sa(x) ⊆ X. Hence, NR∗X = X. Thus NR∗X = NR

∗
X = X.

(iv) Let M ⊆ Z and x ∈ NR∗M. There exists Y ∈ ψ such that x ∈ Y ⊆ M. However, M ⊆ Z, thus
x ∈ Y ⊆ Z. Hence, x ∈ NR∗Z. Consequently, NR∗M ⊆ NR∗Z.
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(v) Let M ⊆ Z and x ∈ NR
∗
M. There exists Y ∈ ψ such that x ∈ Y, Y ∩M 6= ∅. However, M ⊆ Z,

thus Y ∩ Z 6= ∅. Hence, x ∈ NR
∗
Z. Thus NR

∗
M ⊆ NR

∗
Z.

(vii) Let x ∈ NR∗(M ∩ Z) = ∪{Y ∈ ψ : Y ⊆ (M ∩ Z)}. There exists Y ∈ ψ such that x ∈ Y ⊆
(M ∩ Z), x ∈ Y ⊆ M and x ∈ Y ⊆ Z. Consequently, x ∈ NR∗M and x ∈ NR∗Z, implying x ∈ NR∗M
∩ NR∗Z. Thus NR∗(M ∩ Z) ⊆ NR∗M ∩ NR∗Z.

(viii) Let x 6∈ NR∗(M ∪ Z) = ∪{Y ∈ ψ : Y ⊆ M ∪ Z}. For all a ∈ M, x ∈ Y, we have Y 6⊆ M ∪ Z,
thus for all a ∈ A, x ∈ Y, we have Y 6⊆ M and Y 6⊆ Z. Consequently, x 6∈ NR∗M and x 6∈ NR∗Z,
implying x 6∈ NR∗M ∪ NR∗Z. Thus NR∗(M ∪ Z) ⊇ NR∗M ∪ NR∗Z.

(ix) Let x ∈ NR
∗
(M ∩ Z) = ∪{Y ∈ ψ : Y ∩ (M ∩ Z) 6= ∅}. There exists Y ∈ ψ such that x ∈ Y,

Y∩ (M ∩ Z) 6= ∅, Y ∩M 6= ∅ and Y ∩ Z 6= ∅. Consequently, x ∈ NR
∗
M and x ∈ NR

∗
Z, implying x ∈

NR
∗
M ∩ NR

∗
Z. Thus NR

∗
(M ∩ Z) ⊆ NR

∗
M ∩ NR

∗
Z.

(x) Let x 6∈ NR
∗
(M ∪ Z) = ∪{Y ∈ ψ : Y ∩ (M ∪ Z) 6= ∅}. For all a ∈ A, x ∈ Y, we have

Y ∩ (M ∪ Z) = ∅. For all a ∈ A, x ∈ Y, we have Y ∩ M = ∅ and Y ∩ Z = ∅. Consequently, x 6∈
NR

∗
M and x 6∈ NR

∗
Z, implying x 6∈ NR

∗
M ∪ NR

∗
Z. Therefore, NR

∗
(M ∪ Z) ⊇ NR

∗
M ∪ NR

∗
Z. In

addition, let x ∈ NR
∗
(M ∪ Z) = ∪{Y ∈ ψ : Y ∩ (M ∪ Z) 6= ∅}, and thus, there exists Y ∈ ψ such that

x ∈ Y, Y ∩ (M ∪ Z) 6= ∅. It follows that, Y ∩M 6= ∅ or Y ∩ Z 6= ∅. Consequently, x ∈ NR
∗
M or x ∈

NR
∗
Z. Hence, x ∈ NR

∗
M ∪ NR

∗
Z, and NR

∗
M ∪ NR

∗
Z ⊇ NR

∗
(M ∪ Z). Thus NR

∗
M ∪ NR

∗
Z =

NR
∗
(M ∪ Z).

The converse of property (i) in Proposition 3 does not hold, as shown below.

Example 4. From Example 1, if M = {x1 , x4}, then NR∗M = {x1} and NR
∗
M = X. Hence, NR∗M 6= M

and M 6= NR
∗
M.

The converse of property (iv) in Proposition 3 does not hold, as shown below.

Example 5. From Example 1, if M = {x2} and Z = {x1 , x2}, then NR∗M = ∅, NR∗Z = {x1 , x2}.
Thus NR∗M 6= NR∗Z.

The converse of property (v) in Proposition 3 does not hold, as shown below.

Example 6. According to Example 1. Let A = {a1}, then ψ = {{x1}, {x5}, {x1 , x2}, {x1 , x3}, {x1 , x3 , x4}}.
If M = {x2} and Z = {x1 , x2}, then NR

∗
M = {x1 , x2} and NR

∗
Z = {x1 , x2 , x3 , x4}. Hence, NR

∗
M 6=

NR
∗
Z.

The converse of property (vi) in Proposition 3 does not hold, as shown below.

Example 7. From Example 1, if M = {x1 , x3 , x4} and Z = {x1 , x4 , x5}, then NR∗M = {x1 , x3 , x4}, NR∗Z
= {x1 , x4 , x5} and NR∗(M ∩ Z) = {x1}. Hence, NR∗(M ∩ Z) 6= NR∗M ∩ NR∗Z.

The converse of property (vii) in Proposition 3 does not hold, as shown below.

Example 8. From Example 1, if M = {x1} and Z = {x2}, then NR∗M = {x1}, NR∗Z = ∅ and NR∗(M∪Z)
= {x1 , x2}. Hence, NR∗(M ∪ Z) 6= NR∗M ∪ NR∗Z.

The converse of property (viii) in Proposition 3 does not hold, as shown below.

Example 9. From Example 6, if M = {x2 , x5} and Z = {x1 , x3 , x5}, then NR
∗
M = {x1 , x2 , x5}, NR

∗
Z =

X and NR
∗
(M ∩ Z) = {x5}. Hence, NR

∗
(M ∩ Z) 6= NR

∗
M ∩ NR

∗
Z.
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Proposition 4. Let (H, A) be an (NSS) on a universe X, and let M, Z ⊆ X. Then the properties below hold.
(i) NR∗ NR∗M = NR∗M.
(ii) NR

∗
NR

∗
M ⊇ NR

∗
M.

(iii) NR∗ NR
∗
M = NR

∗
M.

(iv) NR
∗

NR∗M ⊇ NR∗M.
(v) NR∗M

c ⊇ [NR
∗
M]

c
.

(vi) NR
∗
M

c ⊇ [NR∗M]
c
.

Proof. (i) Let W = NR∗M and x ∈ W = ∪{Y ∈ ψ : Y ⊆ M}. Then, for some a ∈ A, x ∈ Y ⊆W. So,
x ∈ NR∗W. Therefore, W ⊆ NR∗W. Hence NR∗M ⊆ NR∗ NR∗M. From property (i) of Proposition 3,
NR∗M ⊆ M and using property (iv) of Proposition 3, we obtain NR∗ NR∗M ⊆ NR∗M. Subsequently,
NR∗ NR∗M = NR∗M.

(ii) Let W = NR
∗
M. Using property (i) of Proposition 3, we get W ⊆ NR

∗
W. Hence NR

∗
NR

∗
M

⊇ NR
∗
M.

(iii) Let W = NR
∗
M. Using property (i) of Proposition 3, we get NR∗W ⊆ W. Let x ∈ W =

∪{Y ∈ ψ : Y ∩M 6= ∅}, thus there exists Y ∈ ψ where x ∈ Y ⊆W such that x ∈ NR∗W. Subsequently,
W ⊆ NR∗W, with W = NR∗W, and W = NR

∗
M. Therefore, NR∗NR

∗
M = NR

∗
M.

(iv) Let W = NR∗M. Using property (i) of Proposition 3, we get W ⊆ NR
∗
W. Hence NR

∗
NR∗M

⊇ NR∗M.
(v) Let x 6∈ NR∗M

c
. For all Y ∈ ψ such that x ∈ Y, we have Y 6⊂ M

c
and Y ∩ M

c
= ∅. Thus Y ∩

M 6= ∅, where x ∈ NR
∗
M but x 6∈ [NR

∗
M]

c
. Therefore, NR∗M

c ⊇ [NR
∗
M]

c
.

(vi) From property (v) of Proposition 4, we get NR∗M
c ⊇ [NR

∗
M]

c
.

Therefore, NR∗M ⊇ [NR
∗
M

c
]

c
meaning that NR

∗
M

c ⊇ [NR∗M]
c
.

The converse of property (ii) in Proposition 4 does not hold, as shown below.

Example 10. From Example 6, if X = {x2}, we will have NR
∗
X = {x1 , x2} and NR

∗
NR

∗
X =

{x1 , x2 , x3 , x4}. Therefore, NR
∗

NR
∗
X 6= NR

∗
X.

The converse of property (iv) in Proposition 4 does not hold, as shown below.

Example 11. From Example 6, if M = {x1 , x4}, then NR∗M = {x1} and NR
∗

NR∗M = {x1 , x2 , x3 , x4}.
Hence, NR

∗
NR∗M 6= NR∗M.

The converse of property (v) in Proposition 4 does not hold, as shown below.

Example 12. From Example 6, if M = {x3}, then NR∗M
c
= {x1 , x2 , x5} and [NR

∗
M]

c
= {x2 , x5}. Hence,

NR∗M
c 6= [NR

∗
M]

c
.

The converse of property (vi) in Proposition 4 does not hold, as shown below.

Example 13. From Example 6, if M = {x1 , x2 , x4 , x5}, then [NR∗M]
c
= {x3 , x4} and NR

∗
M

c
= {x1 , x3 , x4}.

Hence, [NR∗M]
c 6= NR

∗
M

c
.

Proposition 5. Let (H, A) be an (NSS) on a universe X, and let M, Z ⊆ X. Then,

NR∗(M− Z) ⊆ NR∗M− NR∗Z.

Proof. Let u ∈ NR∗(M− Z) = ∪{Y ∈ ψ : Y ⊆ (M− Z)}. There exists Y ∈ ψ where u ∈ Y ⊆ (M− Z),
u ∈ Y ⊆ M and u ∈ Y 6⊆ Z. Subsequently, u ∈ NR∗M but u 6∈ NR∗Z, hence u ∈ NR∗M − NR∗Z.
Thus, NR∗(M− Z) ⊆ NR∗M − NR∗Z.
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The converse of Proposition 5 does not hold, as shown below.

Example 14. From Example 1, if M = {x1 , x3 , x5} and Z = {x1 , x5}, then NR∗M = {x1 , x3 , x5}, NR∗Z =

{x1 , x5}, NR∗(M− Z) = ∅ and NR∗M − NR∗Z = {x3}. Hence, NR∗M − NR∗Z 6= NR∗(M− Z).

Proposition 6. Let (H, A) be an (NSS) on a universe X, and let M, Z ⊆ X. Then, the property below holds.

NR
∗
(M− Z) 6= NR

∗
M− NR

∗
Z.

Example 15. From Example 6, if M = {x1 , x3 , x5} and Z = {x1 , x5}, then NR
∗
M = X, NR

∗
Z = X,

NR
∗
(M− Z) = {x1 , x3 , x4} and NR

∗
M − NR

∗
Z = ∅. Hence, NR

∗
M − NR

∗
Z 6= NR

∗
(M− Z).

4. The Concepts of Neutrosophic Soft Rough Set

We will now define the neutrosophic soft rough concepts as a generalization of rough concepts,
illustrated by examples.

Definition 10. Let (H, A) be an (NSS) on a universe X and let M ⊆ X. A subset M ⊆ X is called
(i) NSR-definable (NSR-exact) set, if NR∗M = NR

∗
M = M.

(ii) Internally NSR-definable set, if NR∗M = M and NR
∗
M 6= M.

(iii) Externally NSR-definable set, if NR∗M 6= M and NR
∗
M = M.

(iv) NSR-rough set, if NR∗M 6= M and NR
∗
M 6= M.

Example 16. From Example 6, we have {x1 , x2 , x3 , x4} is NSR-definable set, whereas {x1}, {x5}, {x1 , x2},
{x1 , x3}, {x1 , x5}, {x1 , x3 , x4}, {x1 , x3 , x5}, {x1 , x2 , x3 , x5}, {x1 , x3 , x4 , x5} are internally NSR-definable
sets, whereas the rest of the subsets of X are NSR-rough sets.

The degree of NSR-crispness (exactness) of any subset M ⊆ X, can be determined by using
NSRP -accuracy measure denoted by CNSR M, which is defined as follows.

Definition 11. Let (H, A) be an (NSS) on a universe X and let M ⊆ X. Then,

CNSR M =
|NR∗M|
|NR∗M| ,

where M 6= φ and | M | denotes the cardinality of sets.

Remark 2. Let (H, A) be an (NSS) on a universe X. A subset M ⊆ X is NSR-definable, if and only if,
CNSR M = 1.

Neutrosophic soft rough (NSR)-membership function is defined below.

Definition 12. Let (H, A) be an (NSS) on a universe X and let M ⊆ X.
NSR-membership function of an element m to a set M denoted by NM(m) is defined as follows.

NM(m) =
|mA ∩M|
|mA|

,

where SA(m) = ∩{Sa(m) : a ∈ A} and Sa(m) is a neutrosophic right neighborhood defined in Definition 7.

Proposition 7. Let (H, A) be an (NSS) on a universe X, M ⊆ X and let NM(m) be the membership function
defined in Definition 12. Then the properties below holds:

NM(m) ∈ [0, 1]
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Proof. From Definition 12, we have φ ⊆ SA(m) ∩M ⊆ SA(m), then 0 ≤ |SA(m) ∩M| ≤ |SA(m)| and
0 ≤ |SA(m)∩M|

|SA(m)| ≤ 1, thus NM(m) ∈ [0, 1].

Proposition 8. Let (H, A) be an (NSS) on a universe X and let M ⊆ X. Then,

m ∈ M⇔ NM(m) = 1

Proof. Let NM(m) = 1, if and only if, |SA(m)∩M|
|SA(m)| = 1, if and only if, |SA(m) ∩M| = |SA(m)|, if and

only if, SA(m) ⊆ M. However, from Proposition 2, we have Ra is a reflexive relation for all a ∈ A.
Hence m ∈ Sa(m), ∀a ∈ A. It follows that m ∈ SA(m). Hence m ∈ M, if and only if, NM(m) = 1.

Proposition 9. Let (H, A) be an (NSS) on a universe X and let M ⊆ X. If M1 ⊆ M2, then the properties
below hold:
(i) NM1(m) ≤ NM2(m)

(ii) NNR∗M1(m) ≤ NNR∗M2(m)

(iii) NNR∗M1
(m) ≤ NNR∗M2

(m)

Proof. (i) If M1 ⊆ M2, it follows that SA(m)∩M1 ⊆ SA(m)∩M2, then |SA(m)∩M1| ≤ |SA(m)∩M2|
and |SA(m)∩M1|

|SA(m)| ≤
|SA(m)∩M2|
|SA(m)| , thus NM1(m) ≤ NM2(m).

(ii) We get the proof directly from property (i) of Proposition 9 and property (iv) of Proposition 3.
(iii) We get the proof directly from property (ii) of Proposition 9 and property (v) of Proposition 3.

Proposition 10. Let (H, A) be an (NSS) on a universe X and let M ⊆ X, then the following properties hold:
(i) NNR∗M(m) ≤ NM(m)

(ii) NM(m) ≤ NNR∗M(m)

(iii) NNR∗M(m) ≤ NNR∗M(m)

Proof. The proof of properties (i), (ii) and (iii) can be obtained directly from Propositions 3 and
property (i) of Proposition 9.

Definition 13. Let (H, A) be a (NSS) on a universe X and let m ∈ X, M ⊆ X. NSR-membership relations,
denoted by ∈

NSR
and ∈

NSR
, are defined below.

m∈
NSR

M, if m ∈ NR∗M,

m∈
NSR

M, if m ∈ NR
∗
M.

Proposition 11. Let (H, A) be an (NSS) on a universe X and let m ∈ X, M ⊆ X. Then,

(i)m∈
NSR

M −→ m ∈ M

(ii)m 6∈
NSR

M −→ m 6∈ M

Proof. Proof of (i) and (ii) follows directly from Definition 13 and Proposition 3.

The following example illustrates that the converse of properties (i) and (ii) in Proposition 11 do
not hold.

Example 17. In Example 1, if M = {x2 , x5}, then NR∗M = {x5} and NR
∗
M = X. Hence x2 6 ∈NSR

M,
although x2 ∈ M and x3 6∈ M, although x3 ∈NSR

M.
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Proposition 12. Let (H, A) be an (NSS) on a universe X, and let M ⊆ X. Then the properties below hold:

(i)m∈
NSR

M −→ NM(m) = 1

(ii)NM(m) = 1 −→ m ∈
NSR

M

Proof. The proof of properties (i) and (ii) can be obtained directly from Definition 13 and
Propositions 11.

The converse of property (ii) in Proposition 12 does not hold, as shown below.

Example 18. In Example 1, if M = {x1, x4}, then NR∗M = {x1} and SA(x4) = {x4}, it follows that
NM(x4) =

|SA(x4)∩M|
|SA(x4)| = |{x4}|

|{x4}| = 1, although x4 6∈
NSR

M.

The converse of Proposition 13 does not hold, as shown below.

Example 19. In Example 1, if M = {x1, x4}, then NR
∗
M = X and SA(x3) = {x1, x3}, it follows that x3

∈
NSR

M, although NM(x3) =
|{x1}|
|{x1,x3}| =

1
2 6= 1.

Proposition 13. Let (H, A) be an (NSS) on a universe X and let M ⊆ X. Then,

m 6∈
NSR

M −→ NM(m) = 0

Proof. Let m 6 ∈
NSR

M, then m 6 ∈NR
∗
M, also from Definition 9, we conclude that Sa(m) ∩ M =

φ, ∀a ∈ A, but SA(m) = ∩{Sa(m) : a ∈ A}. Thus SA(m) ∩M = φ and |SA(m) ∩M| = 0, and hence
NM(m) = 0.

The following example illustrates that the converse of Proposition 13 does not hold.

Example 20. In Example 1, if M = {x2}, then NR
∗
M = {x1, x2} and SA(x1) = {x1}. It follows that

x1∈NSR
M, although NM(x1) =

|{x1}∩{x2}|
|{x1}| = 0.

Proposition 14. Let (H, A) be an (NSS) on a universe X and let M ⊆ X. Then,
(i) NM(m) = 0 −→ m 6∈ M
(ii) NM(m) = 0 −→ m 6∈

NSR
M

Proof. The proof of properties (i) and (ii) are straightforward and therefore are omitted.

The converse of property (i) in Proposition 14 does not hold, as shown below.

Example 21. In Example 1, if M = {x1, x3, x4}, then SA(x2) = {x1, x2} and NM(x2) =
|{x1}|
|{x1,x2}| =

1
2 6= 0,

although x2 6∈ M.

The converse of property (ii) in Proposition 14 does not hold, as shown below.

Example 22. In Example 1, if M = {x1, x4, x5}, then NR∗M= {x1, x4, x5} and x2A = {x1, x2}, it follows
that NM(x2) =

|{x1}|
|{x1,x2}| =

1
2 6= 0, although x2 6∈

NSR
M.

Definition 14. Let (H, A) be an (NSS) on a universe X and let M, Z ⊆ X. NSR-inclusion relations, denoted
by

⇁
⊂

NSR
and

⇀⊂
NSR

, are defined as follows.

M
⇁
⊂

NSR
Z, if NR∗M ⊆ NR∗Z,
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M
⇀⊂

NSR
Z, if NR

∗
M ⊆ NR

∗
Z.

Proposition 15. Let (H, A) be an (NSS) on a universe X and let M, Z ⊆ X. Then,

M ⊆ Z −→ M
⇁
⊂

NSR
Z and M

⇀⊂
NSR

Z.

Proof. It can be directly obtained from Proposition 3.

The inverse of Proposition 15 does not hold, as shown below.

Example 23. In Example 6, if M = {x1 , x4} and Z = {x1 , x5}, then NR∗M = {x1}, NR∗Z = {x1 , x5},
NR

∗
M = {x1 , x2 , x3 , x4} and NR

∗
Z = X. Hence, M

⇁
⊂

NSR
Z and M

⇀⊂
NSR

Z, although M 6⊆ Z.

Proposition 16. Let (H, A) be an (NSS) on a universe X and let M, Z ⊆ X. If M
⇁
⊂

NSR
Z, then the following

properties hold:
(i) NNR∗M(m) ≤ NNR∗Z(m)

(ii) NNR∗M(m) ≤ NZ(m)

(iii) NNR∗M(m) ≤ NNR∗Z(m)

Proof. The proof can be directly obtained from Definition 14 and Proposition 9.

Proposition 17. Let (H, A) be an (NSS) on a universe X and let M, Z ⊆ X. If M
⇀⊂

NSR
Z, then the properties

below hold:
(i) NNR∗M(m) ≤ NNR∗Z(m)

(ii) NM(m) ≤ NNR∗Z(m)

(iii) NNR∗M(m) ≤ NNR∗Z(m)

Proof. It can be directly obtained from Definition 14 and Proposition 9.

Definition 15. Let (H, A) be an (NSS) on a universe X and let M, Z ⊆ X. NSR-equality relations are defined
as follows.

M ∼NSR Z, if NR∗M = NR∗Z,

M ∼
NSR

Z, if NR
∗
M = NR

∗
Z,

M ≈NSR Z, if M ∼NSR Z and M ∼
NSR

Z.

The example below illustrates Definition 15.

Example 24. In Example 6, suppose M1 = {x2}, M2 = {x3}, M3 = {x1 , x2}, M4 = {x1 , x4}, M5 =

{x3 , x5} and M6 = {x4 , x5}. Then, NR∗M1 = NR∗M2 = ∅, NR
∗
M3 = NR

∗
M4 = {x1 , x2 , x3 , x4}, NR∗M5

= NR∗M6 = {x5} and NR
∗
M5 = NR

∗
M6 = {x1 , x3 , x4 , x5}. Consequently, M1∼NSR M2 , M3∼NSR

M4 and
M5 ≈NSR M6 .

Proposition 18. Let (H, A) be an (NSS) on a universe X and let M, Z ⊆ X. Then,
(i) M ∼NSR NR∗M
(ii) M = Z −→ M ≈NSR Z
(iii) M ⊆ Z, Z ∼NSR ∅ −→ M ∼NSR ∅
(iv) M ⊆ Z, M ∼NSR X −→ Z ∼NSR X
(v) M ⊆ Z, Z ∼

NSR
∅ −→ M ∼

NSR
∅

(vi) M ⊆ Z, M ∼
NSR

X −→ Z ∼
NSR

X

Proof. It can be directly obtained from Propositions 3 and 4.
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Proposition 19. Let (H, A) be an (NSS) on a universe X and let M, Z ⊆ X. If M ∼NSR Z, then the following
properties hold:
(i) NNR∗M(m) = NNR∗Z(m)

(ii) NNR∗M(m) ≤ NZ(m)

(iii) NNR∗M(m) ≤ NNR∗Z(m)

Proof. The proof of properties (i), (ii) and (iii) can be obtained directly from Definition 15 and
Proposition 9.

Proposition 20. Let (H, A) be an (NSS) on a universe X and let M, Z ⊆ X. If M ∼
NSR

Z, then the following
properties hold:
(i) NNR∗M(m) = NNR∗Z(m)

(ii) NZ(m) ≤ NNR∗M(m)

(iii) NNR∗Z(m) ≤ NNR∗M(m)

Proof. The proof of properties (i), (ii) and (iii) can be obtained directly from Definition 15 and
Proposition 9.

5. Application of the Proposed Neutrosophic Soft Rough Model in Decision Making

This section presents an employment of the suggested neutrosophic soft rough approximations to
the multi attribute decision making problems.

Consider Example 1 and suppose that we are requested to make a decision about the most
desirable house based on the given attributes. To solve this problem, we apply the following
decision steps.

Step 1: Input the NSS (H, A).
Step 2: Compute the accuracy measure to each alternative (house) in the given NSS (H, A),

separately.
Step 3: Choose the (element) alternative which has the highest accuracy measure as the optimal

solution. If there is more than one alternative with highest accuracy measure, we do the
following steps.

Step 4: Consider the alternatives that have the highest accuracy measure and create a new NSS
(Ĥ, A), which consists of the selected alternatives xi and the corresponding parameters aj.

Step 5: Find the values of Sij = Taj(xi) + Iaj(xi)− Faj(xi), where T, I and F represent, respectively
the truth, indeterminacy and falsity membership functions of the NSS (Ĥ, A).

Step 6: Compute the score C(xi) =
m

∑
j=1

Sij of each element of the selected alternatives, where m is

the number of the parameters.
Step 7: Determine the value of the highest score. Then the decision is to choose the alternative with

the highest score. If more than one alternative has the maximum score, then any one of
those alternatives can be the optimal solution.

Table 2 gives the accuracy measure to all alternatives.

Table 2. Accuracy measures of the alternatives.

Alternatives x1 x2 x3 x4 x5

CNSR M 1
2 0 0 0 1

2
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From Table 2, it is clear that there are two alternatives (houses) with the highest accuracy measure
which are house 1 and house 5. Thus, we proceed to the next steps and create the NSS (Ĥ, A) of the
considered alternatives as in Table 3.

Table 3. Tabular representation of (Ĥ, A).

X a1 a2 a3 a4

x1 (0.6, 0.6, 0.2) (0.8, 0.4, 0.3) (0.7, 0.4, 0.3) (0.8, 0.6, 0.4)
x5 (0.8, 0.2, 0.3) (0.8, 0.3, 0.2) (0.7, 0.3, 0.4) (0.9, 0.5, 0.7)

Now we calculate the values of Sij to the considered alternatives (houses) as in the Table 4.

Table 4. Values of Sij to the considered houses.

X a1 a2 a3 a4

x1 1 0.9 0.8 1
x5 0.7 0.9 0.6 0.7

The scores C(xi) of the considered houses can be shown as in Table 5.

Table 5. Scores of the considered houses.

X Score

x1 3.7
x5 2.9

From Table 5, it is clear that the house x1 gets the highest score which is 3.7. Thus the decision is
to choose house 1 as the appropriate solution under the parameter set A.

6. Discussion

We will discuss the features and limitations of our model by conducting a comparison with the
existing models. Discussion will begin on the features of the proposed model before moving on to
its limitations.

To illustrate the features of our model, we compare it with traditional rough approach [5,33],
neutrosophic rough set approaches [10,23–25], and fuzzy and intuitionistic fuzzy rough soft
approaches [34–36].

We begin by making a comparison between the proposed neutrosophic soft rough approach and
the traditional rough approach. The following Table 6 shows the properties of both traditional rough
and the proposed neutrosophic soft rough approaches.

Table 6. Properties of traditional rough and neutrosophic soft rough.

Traditional Rough Properties Neutrosophic Soft Rough Properties

E(M ∩ Z) = E(M) ∩ E(Z) NR∗ (M ∩ Z) ⊆ NR∗M ∩ NR∗Z
E(E(M)) = E(M) NR

∗
NR

∗
M ⊇ NR

∗
M

E(E(M)) = E(M) NR
∗
NR∗M ⊇ NR∗M

E(M
c
) = [E(M)]

c
NR∗M

c ⊇ [NR
∗
M]

c

E(M
c
) = [E(M)]

c
NR

∗
M

c ⊇ [NR∗M]
c

In the proposed neutrosophic soft rough approach, let us consider the NSS (H, A) on the universe
X, where x ∈ X and M ⊆ X. If we consider the case where Ta(xi ) > 0.5, then a(x) = 1, otherwise
a(x) = 0. Thus, the neutrosophic right neighborhood of an element x is replaced by the following

443



Symmetry 2019, 11, 384

equivalence class [x] = {xi ∈ X : a(xi ) = a(x), a ∈ A}. Subsequently, the neutrosophic soft rough set
approximates to that of Pawlak, i.e., the lower and upper approximations of the proposed model will
be NR∗M = {x ∈ X : [x] ⊆ M} and NR

∗
M = {x ∈ X : [x] ∩M 6= ∅}. Therefore, all properties of

traditional rough set approximations will be satisfied.
We continue our discussion by comparing the proposed neutrosophic soft rough approach

with other approaches which combine rough set to neutrosophic set [10,23–25]. It can be seen that
these approaches have the inadequacy of the parametrization tool to facilitate the representation of
parameters, while the soft set in the proposed model can represent the problem parameters in a more
complete manner. This feature makes the proposed model superior to these models and other models
that do not incorporate soft sets into their structures.

Now, we compare the proposed model to the fuzzy and intuitionistic fuzzy soft rough
approaches [34–36]. The proposed approach combines rough set to neutrosophic soft set which is a
generalisation of fuzzy and intuitionistic fuzzy soft set. Neutrosophic soft sets consider three membership
functions instead of two as in the intuitionistic fuzzy soft set and one as in the fuzzy soft set. Fuzzy sets
handle the uncertainty in data, intuitionistic fuzzy sets deal with ambiguous and incomplete data, while
neutrosophic sets hold the features of all of the aforementioned sets in addition to its ability to handle the
indeterminacy in data. Thus, combining neutrosophic soft sets to the rough sets provides the opportunity
to deal with complicated data that cannot be handled by other models. From Example 1, it can be seen
that fuzzy soft set and intuitionistic fuzzy soft set cannot describe the data presented by the neutrosophic
soft set, which makes these models incapable to be applied directly on decision making problems with
neutrosophic soft information. Conversely, the newly proposed model can directly address fuzzy and
intuitionistic fuzzy soft rough set based decision making, since the intuitionistic fuzzy soft set is a
special case of neutrosophic soft set and can be easily represented in the form of neutrosophic soft set.
For example, the intuitionistic fuzzy soft value (0.4, 0.5) can be represented as (0.4, 0.1, 0.5) by means of
neutrosophic soft set, since the sum of the degrees of membership, nonmembership and indeterminacy
of an intuitionistic fuzzy value equals to 1. Note that the indeterminacy degree in intuitionistic fuzzy set
is provided by default and cannot be defined alone unlike the neutrosophic set where the indeterminacy
is defined independently and quantified explicitly.

Then we enlarge the discussion by presenting two limitations of the proposed model: (1) It cannot
be used to solve multi attribute group decision making problems which incorporate the opinions
of more than one expert. For more illustration, if we consider Example 1 and suppose that there
are three experts who are requested to provide their opinions on each house under each (attribute)
parameter, then we need a mechanism to incorporate the opinions of the three experts in one model
(neutrosophic soft set), otherwise, we have to construct three neutrosophic soft sets and this increases
the amount of both mathematical calculations and investigation of several operators in incorporating
three neutrosophic soft sets to find out the optimal solution; (2) There exist some neutrosophic soft set
based decision making problems in which the proposed algorithm is likely to get an empty decision
(optimum) set. Consider Example 1, and consider the NSS (G, A) as in Table 7.

Table 7. Tabular representation of the NSS (G, A).

X a1 a2 a3 a4

x1 (0.6, 0.6, 0.2) (0.8, 0.4, 0.3) (0.7, 0.4, 0.3) (0.8, 0.6, 0.4)
x2 (0.4, 0.6, 0.6) (0.6, 0.2, 0.4) (0.6, 0.4, 0.3) (0.7, 0.6, 0.6)
x3 (0.6, 0.4, 0.2) (0.8, 0.2, 0.2) (0.7, 0.4, 0.3) (0.7, 0.6, 0.4)
x4 (0.6, 0.3, 0.3) (0.8, 0.2, 0.2) (0.5, 0.2, 0.6) (0.7, 0.5, 0.6)
x5 (0.6, 0.6, 0.2) (0.8, 0.4, 0.3) (0.7, 0.3, 0.4) (0.8, 0.6, 0.4)

We then obtain the family of all neutrosophic right neighborhood ψ = { {x1 , x3}, {x1 , x5},
{x1 , x2 , x3}, {x1 , x3 , x5}, {x1 , x2 , x3 , x5}, {x1 , x3 , x4 , x5}, {x3 , x4}, X }.

As a result, the accuracy measure table is as follows.
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From Table 8, it can be seen that the accuracy measure to each alternative (house) equals zero,
which means that none of the houses can be selected as a candidate to be an optimal solution. Thus the
proposed approach fails to handle this case.

Table 8. Accuracy measures of the alternatives in the NSS (G, A).

Alternatives x1 x2 x3 x4 x5

CNSR M 0 0 0 0 0

7. Conclusions

We proposed a novel approach to rough sets based on neutrosophic soft sets and deduced that
the traditional rough approach is a special case of the proposed approach. The lower and upper
neutrosophic soft rough approximations are defined and their properties are verified. We have
further defined some essential neutrosophic soft rough concepts such as neutrosophic soft rough
(NSR) definability, neutrosophic soft rough (NSR)-membership relations and functions. Properties
of these concepts are deduced, proven and shown by several examples. In addition, we provided an
algorithm based on the proposed neutrosophic soft rough sets approximations. Finally, we have made
a comparative analysis and a discussion to reveal the features and limitations of the proposed model.
For the future prospects, we will extend this model by using topological structures and commit to
exploring the application of the proposed model to data mining and attribute reduction.
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Abstract: In the definition of the complex neutrosophic soft expert set (CNSES), parameters set
is a classical set, and the parameters have the same degree of importance, which is considered
as 1. This poses a limitation in modeling of some problems. This paper introduces the concept
of fuzzy parameterized complex neutrosophic soft expert set (FP-CNSES) to handle this issue by
assigning a degree of importance to each of the problem parameters. We further develop FP-CNSES
by establishing the concept of weighted fuzzy parameterized complex neutrosophic soft expert set
(WFP-CNSES) based on the idea that each expert has a relative weight. These new mathematical
frameworks reduce the chance of unfairness in the decision making process. Some essential operations
with their properties and relevant laws related to the notion of FP-CNSES are defined and verified.
The notation of mapping on fuzzy parameterized complex neutrosophic soft expert classes is defined
and some properties of fuzzy parameterized complex neutrosophic soft expert images and inverse
images was investigated. FP-CNSES is used to put forth an algorithm on decision-making by
converting it from complex state to real state and subsequently provided the detailed decision steps.
Then, we provide the comparison of FP-CNSES to the current methods to show the ascendancy of
our proposed method.

Keywords: complex neutrosophic set; complex neutrosophic soft expert set; fuzzy parameterized
single valued neutrosophic soft expert set; single valued neutrosophic set; soft expert set

1. Introduction

In a world where not everything is certain, the need to represent uncertain data was successfully
fulfilled by Zadeh [1] by introducing the concept of fuzzy sets. Intuitionistic fuzzy sets were introduced
by Atanassov [2] as an extension of Zadeh’s notion of fuzzy set, which proved to be a better model
of uncertainty. The words “neutrosophy” and “neutrosophic” were introduced for the first time by
Smarandache [3]. Then, neutrosophic set [4] was defined as a more general platform, which extends the
concepts of the fuzzy set and intuitionistic fuzzy set. To apply neutrosophic set to real- life problems,
its operators need to be specified. Thus, single valued neutrosophic set and its basic operations were
defined [5] as a special case of neutrosophic set. Molodtsov [6] proposed the concept of soft set,
to bring a topological flavor to the models of uncertainty and associate family of subsets of universe to
parameters. Soft set was then extended to the soft expert set [7], which was further developed to fuzzy
soft expert set (FSES) [8], intuitionistic fuzzy soft expert sets (IFSES) [9] and single valued neutrosophic
soft expert sets (SVNSES) [10]. At the same time, there have been some practical applications in soft
expert set theory and its extensions that are used in decision making [11–13].

Among the significant milestones in the development of soft sets and soft expert sets and their
generalizations is the introduction of the fuzzy parameterized aspect. This new aspect has further

Symmetry 2019, 11, 382; doi:10.3390/sym11030382 www.mdpi.com/journal/symmetry447
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improved the theories of soft and soft expert sets and made them better suited to be used in solving
decision making problems, especially when used with the more accurate generalizations of soft
and soft expert sets such as FSESs, IFSESs and other hybrid models mentioned above. The fuzzy
parameterized aspect was firstly established by Cagman et al. [14] who introduced the concept of
fuzzy parameterized soft set by giving a degree of importance to each element in the set of parameters.
Subsequently, this aspect was attached and/or added to the existing generalizations of the soft sets,
soft expert sets and fuzzy sets. Bashir and Salleh [15] introduced the notion of fuzzy parameterized
soft expert sets (FP-SES), while Hazaymeh et al. [16] the notion of fuzzy parameterized fuzzy soft
expert sets (FP-FSES), followed by Selvachandran and Salleh [17] who introduced the notion of
fuzzy parameterized intuitionistic fuzzy soft expert set (FP-IFSES) as a generalization of the work by
Hazaymeh et al. [16]. However, these sets can only handle incomplete and uncertainty information but
not indeterminate and inconsistent information, which usually exists in real situations. To treat this
deficiency, Al-Quran and Hassan [18] defined the fuzzy parameterized single valued neutrosophic soft
expert set (FP-SVNSES), which proves superior to these models with three independent membership
functions. The FP-SVNSES model is also significantly more advantageous compared to SVNSES,
as it has added advantages to SVNSES by virtue of the fuzzy parameterized feature, which provides
more information enhancing the quality of the information presented by the SVNSES, which in turn,
increases the accuracy of the final decision.

The development of the uncertainty sets that have been mentioned above are not limited to the
real field but extended to the complex field. The introduction of fuzzy sets was followed by their
extension to the complex fuzzy set [19,20]. Alkouri and Salleh [21] introduced the concept of complex
intuitionistic fuzzy set (CIFS) to represent information that happens repeatedly over a period of time.
To handle imprecise, indeterminate, inconsistent, and incomplete information that has periodic nature,
Ali and Smarandache [22] introduced complex neutrosophic set, where each membership function
associates with a phase term. This feature gives wave-like properties that could be used to describe
constructive and destructive interference depending on the phase value of an element, as well as
its ability to deal with indeterminacy. Inspired by this, Al-Quran and Hassan [23] generalized the
CNSES from the definitions of the complex neutrosophic set and soft expert set on the basis of the
SVNSES. In depth, the rationales of introducing the complex neutrosophic set and the soft expert set
are considered as a potent motivation to the introduction of the concept of CNSES. CNSES is actually
an extension of the SVNSES to the complex space, which makes it superior to all of the aforementioned
uncertainty sets. Subsequently, Al-Quran and Hassan [24] studied the CNSESs further by establishing
a novel structure of relation between two CNSESs, called complex neutrosophic soft expert relation,
to evaluate the degree of interaction between the CNSESs, which is defined as a subset of the Cartesian
product of the CNSESs.

Over the years, many techniques and methods have been proposed as tools to be used to find
the solutions of problems that are nonlinear or vague in nature, with every method introduced
superior to its predecessors. Following in this direction, we extend the studies on CNSESs [23] and
FP-SVNSES [18] through the establishment of the notion of FP-CNSES to keep the advantages of CNSES
while holding the FP-SVNSES features. On the one hand, the novelty of CNSES appears in its ability
to provide a succinct, elegant and comprehensive representation of two-dimensional neutrosophic
information as well as the adequate parameterization and the opinions of the experts, all in a single set.
This two-dimensional information is presented by amplitude and phase terms simultaneously where
the phase terms give neutrosophic information that may interfere, constructively or destructively,
with the neutrosophic information presented by the associated amplitude terms, thus making this
model highly suitable for use in decision making problems to select the best alternative. On the other
hand, FP-SVNSES has the fuzzy parameterized feature, which gives a degree of importance to each
parameter in the domain of the SVNSES. All of these features together are contained in the proposed
FP-CNSES.
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To facilitate our discussion, we first review some background on complex neutrosophic set and
FP-SVNSES in Section 2. In Section 3, we introduce the concept of FP-CNSES and give its theoretic
operations. In Section 4, we study a mapping on fuzzy parameterized complex neutrosophic soft expert
classes and its properties. In Section 5 we discuss an application of the FP-CNSES in decision making.
Section 6 provides a comprehensive comparison among FP-CNSES and other recent approaches
to manifest the dominance of our proposed method. In Section 7, we define the concept of the
WFP-CNSES where experts’ relative weights are considered and applied to solve a decision making
problem. Section 8 outlines the conclusion of this paper.

2. Preliminaries

In this section, a summary of the literature on complex neutrosophic set and FP-SVNSES relevant
to this paper is presented.

We begin by recalling the definition of complex neutrosophic set and its basic operations in the
following two definitions.

Definition 1. [22] Let X be a universe of discourse; a complex neutrosophic set S in X is characterized by
a truth membership function TS(x), an indeterminacy membership function IS(x), and a falsity membership
function FS(x) that assign an element x ∈ X a complex-valued grade of TS(x), IS(x), and FS(x) in S.
By definition, the values TS(x), IS(x), and FS(x) and their sum may all be within the unit circle in the
complex plane and are of the form, TS(x) = pS(x).ejµS(x), IS(x) = qS(x).ejνS(x) and FS(x) = rS(x).ejωS(x);
pS(x), qS(x), rS(x) and µS(x), νS(x), ωS(x) are, respectively, real valued and pS(x), qS(x), rS(x) ∈ [0, 1]
such that 0− ≤ PS(x) + qS(x) + rS(x) ≤ 3+.

Definition 2. [22] Let A and B be two complex neutrosophic sets, where A is characterized by a truth
membership function TA(x) = pA(x).ejµA(x), an indeterminacy membership function IA(x) = qA(x).ejνA(x)

and a falsity membership function FA(x) = rA(x).ejωA(x) and B is characterized by a truth membership
function TB(x) = pB(x).ejµB(x), an indeterminacy membership function IB(x) = qB(x).ejνB(x) and a falsity
membership function FB(x) = rB(x).ejωB(x).

We define the the complement, subset, union and intersection operations as follows.

1. The complement of A, denoted as c̃(A), is specified by functions:

Tc̃(A)(u) = pc̃(A)(u).e
jµc̃(A)(u) = rA(u).ej(2π−µA(u)),

Ic̃(A)(u) = qc̃(A)(u).e
jνc̃(A)(u) = (1− qA(u)).ej(2π−νA(u)), and

Fc̃(A)(u) = rc̃(A)(u).e
jωc̃(A)(u) = pA(u).ej(2π−ωA(u)).

2. A is said to be complex neutrosophic subset of B (A ⊆ B) if and only if the following conditions are satisfied:

(a) TA(u) ≤ TB(u) such that pA(u) ≤ pB(u) and µA(u) ≤ µB(u).
(b) IA(u) ≥ IB(u) such that qA(u) ≥ qB(u) and νA(u) ≥ νB(u).
(c) FA(u) ≥ FB(u) such that rA(u) ≥ rB(u) and ωA(u) ≥ ωB(u).

3. The union(intersection) of A and B, denoted as A ∪ (∩)B and the truth membership function TA∪(∩)B(u),
the indeterminacy membership function IA∪(∩)B(u), and the falsity membership function FA∪(∩)B(u) are
defined as:

TA∪(∩)B(u) = [(pA(u) ∨ (∧)pB(u))].ej(µA(u)∨(∧)µB(u)),

IA∪(∩)B(u) = [(qA(u) ∧ (∨)qB(u))].ej(νA(u)∧(∨)νB(u)) and

FA∪(∩)B(u) = [(rA(u) ∧ (∨)rB(u))].ej(ωA(u)∧(∨)ωB(u)),
where ∨ = max and ∧ = min .
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Al-Quran and Hassan [18] defined the FP-SVNSES, agree FP-SVNSES and disagree FP-SVNSES
as follows.

Definition 3. [18] Let U be a universe set, E be a set of parameters, IE denote all fuzzy subsets of E, X be
a set of experts, and O = {1 = agree, 0 = disagree} a set of opinions. Let Z = Ψ× X ×O and A ⊆ Z,
where Ψ ⊂ IE. A pair ( f , A)Ψ is called a fuzzy parameterized single valued neutrosophic soft expert set
(FPSVNSES) over U, where F is a mapping given by

fΨ : A→ SVN(U),

and SVN(U) denotes the set of all single valued neutrosophic subsets of U.

Definition 4. An agree FP-SVNSES ( f , A)Ψ1 over U is a FP-SVNSE subset of ( f , A)Ψ where the opinions of
all experts are “agree” and is defined as follows:

( f , A)Ψ1 =
{

FΨ(ε) : ε ∈ Ψ× X× {1}
}

.

A disagree FP-SVNSES ( f , A)Ψ0 over U is a FP-SVNSE subset of ( f , A)Ψ where the opinions of all
experts are “disagree” and is defined as follows:

( f , A)Ψ0 =
{

FΨ(ε) : ε ∈ Ψ× X× {0}
}

.

3. Fuzzy Parameterized Complex Neutrosophic Soft Expert Set

In this section, we introduce the definition of FP-CNSES, which is a generalization of the concept
of FP-SVNSES. We define some operations on this concept, namely subset, equality, complement,
union and intersection. We also give some properties on these operations.

We begin by proposing the definition of FP-CNSES, and give an illustrative example of it.

Definition 5. Let U be a universe set, E be a set of parameters, FZ(E) denote all fuzzy subsets of E, X be a
set of experts, and O = {1 = agree, 0 = disagree} a set of opinions. Let Y = Γ× X×O and A ⊆ Y where
Γ ⊂ FZ(E). A pair (H, A)Γ is called a fuzzy parameterized complex neutrosophic soft expert set (FP-CNSES)
over U, where H is a mapping given by

HΓ : A→ CNU ,

and CNU denotes the power complex neutrosophic set of U.

The FP-CNSES (H, A)Γ can be written as the following set of ordered pairs:

(H, A)Γ =
{(

a,
{ u

HΓ(a)(u)
: u ∈ U

})
: a ∈ A

}
,

where A ⊆ Γ × X × O =
{( e

µΓ(e)
, x, o

)
:e ∈ E, x ∈ Xand o ∈ O

}
, such that µΓ(e)

is the corresponding membership function of the fuzzy set Γ and ∀u ∈ U, ∀a ∈ A,
HΓ(a)(u) =

〈
THΓ(a)(u), IHΓ(a)(u), FHΓ(a)(u)

〉
, where THΓ(a)(u) = pHΓ(a)(u).e

jµHΓ(a)(u), IH(a)(u) =

qHΓ(a)(u).e
jνHΓ(a)(u) and FHΓ(a)(u) = rHΓ(a)(u).e

jωHΓ(a)(u) with THΓ(a)(u), IHΓ(a)(u) and FHΓ(a)(u)
representing the complex-valued truth membership function, complex-valued indeterminacy
membership function and complex-valued falsity membership function, respectively, for the
FP-CNSES (H, A)Γ. The values THΓ(a)(u), IHΓ(a)(u), FHΓ(a)(u) are within the unit circle in the
complex plane and both the amplitude terms pHΓ(a)(u), qHΓ(a)(u), rHΓ(a)(u) and the phase terms
µHΓ(a)(u), νHΓ(a)(u), ωHΓ(a)(u) are real valued such that pHΓ(a)(u), qHΓ(a)(u),
rHΓ(a)(u) ∈ [0, 1] and 0 ≤ pHΓ(a)(u) + qHΓ(a)(u) + rHΓ(a)(u) ≤ 3.
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Example 1. Suppose that a car company produces two different models of cars and wish to take the opinion of
its team of experts concerning these two models of cars before and after testing these cars. These two models of
cars form the universe of elements, U = {u1, u2}. The team of experts is represented by the set X = {x1, x2}.
Suppose that the team of experts consider a set of parameters, E = {e1, e2, e3}, where ei(i = 1, 2, 3) denotes

the decisions “reliability”, “comfortability” and “durability”, respectively, and suppose Γ =
{

e1
0.4 , e2

0.6 , e3
0.5

}
is a

fuzzy subset of FZ(E). It is to be noted that the parameters may be affected and altered after the cars are tested.
By applying the FP-CNSES and considering the opinions of the experts in process one (before testing the car)
as amplitude terms of membership, non-membership and indeterminate membership, and setting the opinions
of the experts in the second process (after testing the car) as phase terms of membership, non-membership,
and indeterminacy, the first and second processes form a FP-CNSES as a whole, which is shown below:

(H, A)Γ ={{(
e1
0.4 , x1, 1

)
,
{

u1
〈0.6e2π(0.5),0.1e2π(0),0.2e2π(0.4)〉 ,

u2
〈0.5e2π(0.8),0.4e2π(0.7),0.3e2π(1)〉

}}
,

{(
e1
0.4 , x2, 1

)
,
{

u1
〈0.5e2π(0.4),0.7e2π(0.5),0.1e2π(0.2)〉 ,

u2
〈0.8e2π(0.7),0.7e2π(0.5),0.4e2π(0.3)〉

}}
,

{(
e2
0.6 , x1, 1

)
,
{

u1
〈0.3e2π(0.2),0.5e2π(0.6),0.4e2π(0.5)〉 ,

u2
〈0.6e2π(0.5),0.7e2π(0.6),0.1e2π(0.2)〉

}}
,

{(
e2
0.6 , x2, 1

)
,
{

u1
〈0.9e2π(0.8),0.5e2π(0.3),0.7e2π(0.4)〉 ,

u2
〈0.5e2π(0.4),0.8e2π(0.9),0.1e2π(0.2)〉

}}
,

{(
e3
0.5 , x1, 1

)
,
{

u1
〈0.4e2π(0.2),0.5e2π(0.3),0.7e2π(0.6)〉 ,

u2
〈0.5e2π(0.2),0.7e2π(0.2),0.8e2π(0.2)〉

}}
,

{(
e3
0.5 , x2, 1

)
,
{

u1
〈0.8e2π(0.1),0.3e2π(0.2),0.7e9π(0.2)〉 ,

u2
〈0.1e2π(0.6),0.2e2π(0.4),0.6e2π(0.8)〉

}}
,

{(
e1
0.4 , x1, 0

)
,
{

u1
〈0.6e2π(0.5),0.7e2π(0.4),0.9e2π(0.3)〉 ,

u2
〈0.9e2π(0.8),0.8e2π(0.8),0.7e2π(0.7)〉

}}
,

{(
e1
0.4 , x2, 0

)
,
{

u1
〈0.4e2π(0.2),0.6e2π(0.4),0.7e2π(0.8)〉 ,

u2
〈0.2e2π(0.4),0.5e2π(0.4),0.6e2π(0.5)〉

}}
,

{(
e2
0.6 , x1, 0

)
,
{

u1
〈0.3e2π(0.2),0.6e2π(0.2),0.9e2π(0.2)〉 ,

u2
〈0.6e2π(0.4),0.5e2π(0.6),0.7e2π(0.8)〉

}}
,

{(
e2
0.6 , x2, 0

)
,
{

u1
〈0.5e2π(0.8),0.3e2π(0.1),0.8e2π(0.9)〉 ,

u2
〈0.3e2π(0.7),0.8e2π(0.7),0.7e2π(0.6)〉

}}
,

{(
e3
0.5 , x1, 0

)
,
{

u1
〈0.4e2π(0.7),0.9e2π(0.8),0.1e2π(0.3)〉 ,

u2
〈0.8e2π(0.2),0.3e2π(0.2),0.5e2π(0.2)〉

}}
,

{(
e3
0.5 , x2, 0

)
,
{

u1
〈0.5e2π(0.4),0.6e2π(0.7),0.1e2π(0.9)〉 ,

u2
〈0.1e2π(0),0.4e2π(0.3),0.1e2π(0.1)〉

}}}
.

In the FP-CNSES (H, A)Γ above, the amplitude term of the membership in the first process and the
phase term in the second process form a complex-valued truth membership function. Similarly, the amplitude
term of non-membership in process one and the phase term of non-membership in the second process form a
complex-valued falsity membership function. In addition, the amplitude term of undecidedness in the first
process and the phase term of indeterminacy in the second process form the complex-valued indeterminate
membership function.

Now, we put forward the definition of an agree FP-CNSES and the definition of a disagree
FP-CNSES.

Definition 6. An agree FP-CNSES (H, A)Γ1 over U is a FP-CNSE subset of (H, A)Γ where the opinions of
all experts are “agree” and is defined as follows:

(H, A)Γ1 =
{(

a,
{ u

HΓ(a)(u)
: u ∈ U

})
: a ∈ A ⊆ Γ× X× {1}

}

Definition 7. A disagree FP-CNSES (H, A)Γ0 over U is a FP-CNSE subset of (H, A)Γ where the opinions of
all experts are “disagree” and is defined as follows:

(H, A)Γ0 =
{(

a,
{ u

HΓ(a)(u)
: u ∈ U

})
: a ∈ A ⊆ Γ× X× {0}

}
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In the following, we give some basic definitions and set theoretic operations of FP-CNSESs.
We begin by proposing the definition of the subset of two FP-CNSESs and the equality of two

FP-CNSESs.

Definition 8. Let (H, A)Γ and (G, B)∆ be two FP-CNSESs over a universe U, we say that (H, A)Γ is a fuzzy
parameterized complex neutrosophic soft expert subset of (G, B)∆ denoted by (H, A)Γ ⊆ (G, B)∆ if and only if

1. A ⊆ B, and 2. ∀a ∈ A, HΓ(a) is complex neutrosophic subset of G∆(a).

Definition 9. For two FP-CNSESs (H, A)Γ and (G, B)Γ over a universe U, we say that (H, A)Γ is equal to
(G, B)Γ and we write (H, A)Γ = (G, B)Γ if (H, A)Γ ⊆ (G, B)Γ and (G, B)Γ ⊆ (H, A)Γ.

In the following, we propose the definition of the complement of a FP-CNSES along with an
illustrative example and give a proposition on the complement of a FP-CNSES.

Let U be a universe of discourse and (H, A)Γ be a FP-CNSES on U, which is as defined below:

(H, A)Γ =
{(

a,
{ u

HΓ(a)(u)
: u ∈ U

})
: a ∈ A

}
.

Definition 10. The complement of (H, A)Γ is denoted by (H, A)c
Γ and is defined by

(H, A)c
Γ =

{(
a,
{ u

Hc
Γ(a)(u)

: u ∈ U
})

: a ∈ ¬A
}

,

where

Hc
Γ(a)(u) =

〈
THc

Γ(a)(u), IHc
Γ(a)(u), FHC

Γ (a)(u)
〉
,

such that:
THc

Γ(a)(u) = pHc
Γ(a)(u).e

jµHc
Γ(a)(u) = rHΓ(a)(u).e

j(2π−µHΓ(a)(u)),

IHc
Γ(a)(u) = qHc

Γ(a)(u).e
jνHc

Γ(a)(u) = (1− qHΓ(a)(u)).e
j(2π−νHΓ(a)(u)),

FHc
Γ(a)(u) = rHc

Γ(a)(u).e
jωHc

Γ(a)(u) = pHΓ(a)(u).e
j(2π−ωHΓ(a)(u)),

and ¬A ⊆ Γc̃ × X×O, where c̃ is the fuzzy complement.

Example 2. Consider the approximation given in Example 1, where

HΓ(
e1

0.4
, x1, 1) = { u1

〈0.6ej2Π(0.5), 0.1ej2Π(0), 0.2ej2Π(0.4)〉 ,
u2

〈0.5ej2Π(0.8), 0.4ej2Π(0.7), 0.3ej2Π(1)〉 }.

By using the complex neutrosophic complement and the fuzzy complement, we obtain the complement of
the approximation given by

HΓ(
e1

0.6
, x1, 1) = { u1

〈0.2ej2Π(0.5), 0.9ej2Π(1), 0.6ej2Π(0.6)〉 ,
u2

〈0.3ej2Π(0.2), 0.6ej2Π(0.3), 0.5ej2Π(0〉 }.

Proposition 1. If (H, A)Γ is a FP-CNSES over U, then
(
(H, A)c

Γ
)c = (H, A)Γ.

Proof. From Definition 10, we have (H, A)c
Γ =

{(
a,
{ u

Hc
Γ(a)(u) : u ∈ U

})
: a ∈ ¬A

}
, where, Hc

Γ(a)(u)

=
〈

THc
Γ(a)(u), IHc

Γ(a)(u), FHc
Γ(a)(u)

〉
=
〈

pHc
Γ(a)(u).e

jµHc
Γ(a)(u), qHc

Γ(a)(u).e
jνHc

Γ(a)(u), rHc
Γ(a)(u).e

jωHc
Γ(a)(u)〉,

=
〈
rHΓ(a)(u).e

j(2π−µHΓ(a)(u)), (1− qHΓ(a)(u)).e
j(2π−νHΓ(a)(u)), pHΓ(a)(u).e

j(2π−ωHΓ(a)(u))
〉
, and ¬A ⊆ Γc̃ ×

X×O Thus, ((H, A)c
Γ)

c =
{(

a,
{ u
(Hc

Γ)
c(a)(u) : u ∈ U

})
: a ∈ ¬(¬A)

}
, where

(Hc
Γ)

c(a)(u) =
〈
rHc

Γ(a)(u).e
j(2π−µHc

Γ(a)(u)), (1− qHc
Γ(a)(u)).e

j(2π−νHc
Γ(a)(u)), pHc

Γ(a)(u) .e
j(2π−ωHc

Γ(a)(u))〉,
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=
〈

pHΓ(a)(u).e
j
(

2π−(2π−µHΓ(a)(u))
)

,
(
1− (1− qHΓ(a)(u))

)
.ej
(

2π−(2π−νHΓ(a)(u))
)

,

rHΓ(a)(u).e
j
(

2π−(2π−ωHΓ(a)(u))
)〉

=
〈

pHΓ(a)(u).e
jµHΓ(a)(u), qHΓ(a)(u).e

jνHΓ(a)(u), rHΓ(a)(u).e
jωHΓ(a)(u)

〉
,

=
〈

THΓ(a)(u), IHΓ(a)(u), FHΓ(a)(u)
〉
, = HΓ(a)(u), and ¬(¬A) ⊆ (Γc̃)c̃ × X ×O and since (Γc̃)c̃ = Γ,

this completes the proof.

We introduce the definition of union and intersection operations of two FP-CNSESs along with an
illustrative example and some propositions on these two operations.

Let (H, A)Γ and (G, B)∆ be two FP-CNSESs over a universe U, where (H, A)Γ =
{(

a,
{ u

HΓ(a)(u) :

u ∈ U
})

: a ∈ A
}

and (G, B)∆ =
{(

b,
{ u

G∆(b)(u)
: u ∈ U

})
: b ∈ B

}
.

Definition 11. The union of (H, A)Γ and (G, B)∆, denoted by (H, A)Γ ∪̃ (G, B)∆, is the FP-CNSES (K, C)Θ
such that CΘ = AΓ ∪ B∆ and Θ = Γ∪̂∆, ∪̂ is the fuzzy union, and ∀ε ∈ CΘ, ∀ u ∈ U,

TKΘ(ε)(u) =





pHΓ(ε)
(u).ejµHΓ(ε)

(u) , i f ε ∈ AΓ − B∆

pG∆(ε)
(u).ejµG∆(ε)(u) , i f ε ∈ B∆ − AΓ

(pHΓ(ε)
(u) ∨ pG∆(ε)

(u)).ej(µHΓ(ε)
(u)∨µG∆(ε)(u)) , i f ε ∈ AΓ ∩ B∆,

IKΘ(ε)(u) =





qHΓ(ε)
(u).ejνHΓ(ε)

(u) , i f ε ∈ AΓ − B∆

qG∆(ε)
(u).ejνG∆(ε)(u) , i f ε ∈ B∆ − AΓ

(qHΓ(ε)
(u) ∧ qG∆(ε)

(u)).ej(νHΓ(ε)
(u)∧νG∆(ε)(u)) , i f ε ∈ AΓ ∩ B∆,

FKΘ(ε)(u) =





rHΓ(ε)
(u).ejωHΓ(ε)

(u) , i f ε ∈ AΓ − B∆

rG∆(ε)
(u).ejωG∆(ε)(u) , i f ε ∈ B∆ − AΓ

(rHΓ(ε)
(u) ∧ rG∆(ε)

(u)).ej(ωHΓ(ε)
(u)∧ωG∆(ε)(u)) , i f ε ∈ AΓ ∩ B∆,

where ∨ = max, and ∧ = min.

Definition 12. The intersection of (H, A)Γ and (G, B)∆, denoted by (H, A)Γ ∩̃ (G, B)∆, is the FP-CNSES
(K, C)Θ such that CΘ = AΓ ∪ B∆ and Θ = Γ∩̂∆, ∩̂ is the fuzzy intersection, and ∀ε ∈ CΘ, ∀ u ∈ U,

TKΘ(ε)(u) =





pHΓ(ε)
(u).ejµHΓ(ε)

(u) , i f ε ∈ AΓ − B∆

pG∆(ε)
(u).ejµG∆(ε)(u) , i f ε ∈ B∆ − AΓ

(pHΓ(ε)
(u) ∧ pG∆(ε)

(u)).ej(µHΓ(ε)
(u)∧µG∆(ε)(u)) , i f ε ∈ AΓ ∩ B∆,

IKΘ(ε)(u) =





qHΓ(ε)
(u).ejνHΓ(ε)

(u) , i f ε ∈ AΓ − B∆

qG∆(ε)
(u).ejνG∆(ε)(u) , i f ε ∈ B∆ − AΓ

(qHΓ(ε)
(u) ∨ qG∆(ε)

(u)).ej(νHΓ(ε)
(u)∨νG∆(ε)(u)) , i f ε ∈ AΓ ∩ B∆,

FKΘ(ε)(u) =





rHΓ(ε)
(u).ejωHΓ(ε)

(u) , i f ε ∈ AΓ − B∆

rG∆(ε)
(u).ejωG∆(ε)(u) , i f ε ∈ B∆ − AΓ

(rHΓ(ε)
(u) ∨ rG∆(ε)

(u)).ej(ωHΓ(ε)
(u)∨ωG∆(ε)(u)) , i f ε ∈ AΓ ∩ B∆,

where ∨ = max, and ∧ = min.
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Example 3. Consider Example 1. Let Γ =
{

e1
0.3 , e2

0.1 , e3
0.9

}
be a fuzzy subset of E, and ∆ =

{
e1
0.4 , e2

0.8 , e3
0.2

}
be

another fuzzy subset over E.

AΓ =
{( e1

0.3
, x1, 1

)
,
( e2

0.1
, x2, 1

)
,
( e3

0.9
, x2, 0

)}
,

BΥ =
{( e1

0.4
, x2, 0

)
,
( e2

0.8
, x2, 1

)
,
( e3

0.2
, x1, 0

)}
.

Suppose (H, A)Γ and (G, B)∆ are two FP-CNSESs over the same U given by

(H, A)Γ ={{(
e1
0.3 , x1, 1

)
,
{

u1
〈0.4e2π(0.5),0.5e2π(0.6),0.8e2π(0.3)〉 ,

u2
〈0.3e2π(0.8),0.7e2π(0.1),0.6e2π(0.7)〉

}}
,

{(
e2
0.1 , x2, 1

)
,
{

u1
〈0.7e2π(0.4),0.9e2π(0.3),0.4e2π(0.1)〉 ,

u2
〈0.6e2π(0.3),0.2e2π(0.6),0.4e2π(0.7)〉

}}
,

{(
e3
0.9 , x2, 0

)
,
{

u1
〈0.4e2π(0.1),0.3e2π(0.4),0.5e2π(0.9)〉 ,

u2
〈0.6e2π(0.2),0.9e2π(0.8),0.1e2π(0.3)〉

}}}
,

and
(G, B)∆ ={{(

e1
0.4 , x2, 0

)
,
{

u1
〈0.9e2π(0.5),0.5e2π(0.8),0.4e2π(0.4)〉 ,

u2
〈0.1e2π(0.9),0.7e2π(0.2),0.6e2π(0.7)〉

}}
,

{(
e2
0.8 , x2, 1

)
,
{

u1
〈0.7e2π(0.6),0.4e2π(0.3),0.6e2π(0.4)〉 ,

u2
〈0.7e2π(0.9),0.2e2π(0.4),0.1e2π(0.6)〉

}}
,

{(
e3
0.2 , x1, 0

)
,
{

u1
〈0.7e2π(0.4),0.2e2π(0.5),0.9e2π(0.3)〉 ,

u2
〈0.1e2π(0.5),0.3e2π(0.7),0.9e2π(0.8)〉

}}}
.

By using the complex neutrosophic union and the fuzzy union (maximum), we have

(H, A)Γ ∪̃ (G, B)∆ ={{(
e1
0.3 , x1, 1

)
,
{

u1
〈0.4e2π(0.5),0.5e2π(0.6),0.8e2π(0.3)〉 ,

u2
〈0.3e2π(0.8),0.7e2π(0.1),0.6e2π(0.7)〉

}}
,

{(
e2
0.8 , x2, 1

)
,
{

u1
〈0.7e2π(0.6),0.4e2π(0.3),0.4e2π(0.1)〉 ,

u2
〈0.7e2π(0.9),0.2e2π(0.4),0.1e2π(0.6)〉

}}
,

{(
e3
0.9 , x2, 0

)
,
{

u1
〈0.4e2π(0.1),0.3e2π(0.4),0.5e2π(0.9)〉 ,

u2
〈0.6e2π(0.2),0.9e2π(0.8),0.1e2π(0.3)〉

}}
,

{(
e1
0.4 , x2, 0

)
,
{

u1
〈0.9e2π(0.5),0.5e2π(0.8),0.4e2π(0.4)〉 ,

u2
〈0.1e2π(0.9),0.7e2π(0.2),0.6e2π(0.7)〉

}}
,

{(
e3
0.2 , x1, 0

)
,
{

u1
〈0.7e2π(0.4),0.2e2π(0.5),0.9e2π(0.3)〉 ,

u2
〈0.1e2π(0.5),0.3e2π(0.7),0.9e2π(0.8)〉

}}}
.

By using the complex neutrosophic intersection and the fuzzy intersection (minimum), we have

(H, A)Γ ∩̃ (G, B)∆ ={{(
e1
0.3 , x1, 1

)
,
{

u1
〈0.4e2π(0.5),0.5e2π(0.6),0.8e2π(0.3)〉 ,

u2
〈0.3e2π(0.8),0.7e2π(0.1),0.6e2π(0.7)〉

}}
,

{(
e2
0.8 , x2, 1

)
,
{

u1
〈0.7e2π(0.4),0.9e2π(0.3),0.6e2π(0.4)〉 ,

u2
〈0.6e2π(0.3),0.2e2π(0.6),0.4e2π(0.7)〉

}}
,

{(
e3
0.9 , x2, 0

)
,
{

u1
〈0.4e2π(0.1),0.3e2π(0.4),0.5e2π(0.9)〉 ,

u2
〈0.6e2π(0.2),0.9e2π(0.8),0.1e2π(0.3)〉

}}
,

{(
e1
0.4 , x2, 0

)
,
{

u1
〈0.9e2π(0.5),0.5e2π(0.8),0.4e2π(0.4)〉 ,

u2
〈0.1e2π(0.9),0.7e2π(0.2),0.6e2π(0.7)〉

}}
,

{(
e3
0.2 , x1, 0

)
,
{

u1
〈0.7e2π(0.4),0.2e2π(0.5),0.9e2π(0.3)〉 ,

u2
〈0.1e2π(0.5),0.3e2π(0.7),0.9e2π(0.8)〉

}}}
.

Proposition 2. Let (H, A)Γ, (G, B)∆ and (S, W)Θ be any three FP-CNSESs over a universe U. Then,

1. ((H, A)Γ ∪̃ (G, B)∆)∩̃(S, W)Θ = ((H, A)Γ ∩̃ (S, W)Θ)∪̃((G, B)∆∩̃(S, W)Θ);
2. ((H, A)Γ ∩̃ (G, B)∆)∪̃(S, W)Θ = ((H, A)Γ ∪̃ (S, W)Θ)∩̃((G, B)∆∪̃(S, W)Θ).

Proof.
(1) Assume that ((H, A)Γ ∪̃ (G, B)∆) = (Q, R)Π, where RΠ = AΓ ∪ B∆ and Π = Γ∪̂∆, (L, D)Φ =

(Q, R)Π∩̃(S, W)Θ where DΦ = RΠ ∪WΘ and Φ = Π∩̂Θ. Thus, Φ = (Γ∪̂∆)∩̂Θ = (Γ∩̂Θ)∪̂(∆∩̂Θ),
since the distributive property is valid for fuzzy sets.
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Let (L, D)Φ =
{(

ε,
{ u

LΦ(ε)(u) : u ∈ U
})

: ε ∈ D
}

, where LΦ(ε)(u) =
〈

TLΦ(ε)(u),

ILΦ(ε)(u), FLΦ(ε)(u)
〉
. We consider the case when ε ∈ AΓ ∩ B∆ ∩WΘ as the other cases are trivial.

Then, we have,

TLΦ(ε)(u) = T(QΠ(ε)∩̃SΘ(ε))(u) = T(HΓ(ε)∪̃G∆(ε))∩̃SΘ(ε)(u),

= min(max(pHΓ(ε)
(u), pG∆(ε)

(u)), pSΘ(ε)(u)).e
jmin(max(µHΓ(ε)

(u),µG∆(ε)(u)),µSΘ(ε)(u)),

= max(min(pHΓ(ε)
(u), pSΘ(ε)(u)), min(pG∆(ε)

(u), pSΘ(ε)(u))).e
jmax(min(µHΓ(ε)

(u),µSΘ(ε)(u)),min(µG∆(ε)(u),µSΘ(ε)(u))),
= T(HΓ(ε)∩̃SΘ(ε))∪̃(G∆(ε)∩̃SΘ(ε))(u),

which implies that T(HΓ(ε)∪̃G∆(ε))∩̃SΘ(ε)(u) = T(HΓ(ε)∩̃SΘ(ε))∪̃(G∆(ε)∩̃SΘ(ε))(u).
The proofs for the identity and falsity terms follow similarly. Therefore,

((H, A)Γ ∪̃ (G, B)∆)∩̃(S, W)Θ = ((H, A)Γ ∩̃ (S, W)Θ)∪̃((G, B)∆∩̃(S, W)Θ).

(2) The proof is similar to that in Part (1) and therefore is omitted.

4. MAPPING ON FP-CNSESs

In this section, we introduce the notion of a mapping on fuzzy parameterized complex
neutrosophic soft expert classes. fuzzy parameterized complex neutrosophic soft expert classes
are collections of FP-CNSESs. We define the fuzzy parameterized complex neutrosophic soft expert
images and fuzzy parameterized complex neutrosophic soft expert inverse images of FP-CNSESs.
We give some operations and properties related with this concept.

Definition 13. Let U be a universe set, E be a set of parameters, FZ(E) denote all fuzzy subsets of E, where
Γ ⊂ FZ(E), X be a set of experts, and O = {1 = agree, 0 = disagree} a set of opinions. Let Y = Γ× X×O.
Then, the collection of all FP-CNSESs over U with parameters from Y is called a fuzzy parameterized complex
neutrosophic soft expert class and is denoted as ˜(U, Y).

Definition 14. Let ˜(U, Y) and ˜(V, Y′) be fuzzy parameterized complex neutrosophic soft expert classes. Let r :
U → V and s : Y → Y′ be mappings. Then, a mapping F : ˜(U, Y)→ ˜(V, Y′) is defined as follows:

For a FP-CNSES (H, A)Γ in ˜(U, Y), (F (H, A)Γ , M), where M = s(Y) ⊆ Y′ is a FP-CNSES in ˜(V, Y′)
obtained as follows:

F (H, A)Γ (β) (v) =





⋃
u∈r−1(v)

( ⋃
α∈s−1(β)∩A

HΓ (α)
)
(u) if r−1 (v) and s−1 (β) ∩ A 6= ∅,

(0, 1, 1) otherwise.

For u ∈ r−1 (v), β ∈ M ⊆ Y′, v ∈ V and ∀ α ∈ s−1 (β) ∩ A, (F (H, A)Γ , M) is called a fuzzy
parameterized complex neutrosophic soft expert image of the FP-CNSES (H, A)Γ. If M = Y′, then we shall
write (F (H, A)Γ , M) as F (H, A)Γ.

Definition 15. Let ˜(U, Y) and ˜(V, Y′) be two fuzzy parameterized complex neutrosophic soft expert classes.
Let r : U → V and s : Y → Y′ be mappings. Then, a mapping F−1 : ˜(V, Y′)→ ˜(U, Y) is defined as follows:

For a FP-CNSES (G, B)∆ in ˜(V, Y′), (F−1 (G, B)∆ , N), where N = s−1 (B) , is a FP-CNSES in ˜(U, Y)
obtained as follows:

F−1 (G, B)∆ (α) (u) =

{
G∆ (s (α)) (r (u)) if s (α) ∈ B,
(0, 1, 1) otherwise,

For α ∈ N ⊆ Y and u ∈ U. (F−1 (G, B)∆, N) is called a fuzzy parameterized complex neutrosophic soft
expert inverse image of the FP-CNSES (G, B)∆. If N = Y, we write (F−1 (G, B)∆, N) as F−1(G, B)∆.
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Definition 16. Let F : ˜(U, Y) → ˜(V, Y′) be a mapping and (H, A)Γ, (H′, A′)∆ be FP-CNSESs in ˜(U, Y).
Then, for β ∈ Y′, ν ∈ V, the union and intersection of the fuzzy parameterized complex neutrosophic soft expert
images F(H, A)Γ and F(G, B)∆ are defined as follows.

(
F (H, A)Γ ∪̃F

(
H′, A′

)
∆

)
(β) (ν) = F (H, A)Γ (β) (ν)∪F

(
H′, A′

)
∆ (β) (ν) ,

(
F (H, A)Γ ∩̃F

(
H′, A′

)
∆

)
(β) (ν) = F (H, A)Γ (β) (ν)∩F

(
H′, A′

)
∆ (β) (ν) ,

where ∪̃ and ∩̃ denote fuzzy parameterized complex neutrosophic soft expert union and intersection of fuzzy
parameterized complex neutrosophic soft expert images in ˜(V, Y′) .

Definition 17. Let F : ˜(U, Y)→ ˜(V, Y′) be a mapping and (G, B)Σ, (G′, B′)Ω FP-CNSESs in ˜(V, Y′). Then,
for α ∈ Y, u ∈ U, the union and intersection of the fuzzy parameterized complex neutrosophic soft expert
inverse images F−1(G, B)Σ and F−1(G′, B′)Ω are defined as follows.

(
F−1 (G, B)Σ ∪̃F−1 (G′, B′

)
Ω

)
(α) (u) = F−1 (G, B)Σ (α) (u)∪F−1 (G′, B′

)
Ω (α) (u) ,

(F−1(G, B)Σ∩̃F−1(G′, B′)Ω)(α)(u) = F−1(G, B)Σ(α)(u)∩F−1(G′, B′)Ω(α)(u),

where ∪̃ and ∩̃ denote fuzzy parameterized complex neutrosophic soft expert union and intersection of fuzzy
parameterized complex neutrosophic soft expert inverse images in ˜(U, Y).

Proposition 3. Let F : ˜(U, Y)→ ˜(V, Y′) be a mapping. Then, for FP-CNSESs (H, A)Γ and (H′, A′)∆ in the
fuzzy parameterized complex neutrosophic soft expert class ˜(U, Y), we have:

1. F(φ̃) = φ̃.
2. F(ψ̃) = ψ̃.
3. F ((H, A)Γ ∪̃ (H′, A′)∆) = F (H, A)Γ ∪̃F (H′, A′)∆.
4. F ((H, A)Γ ∩̃ (H′, A′)∆) ⊆ F (H, A)Γ ∩̃F (H′, A′)∆.
5. If (H, A)Γ ⊆ (H′, A′)∆, then F (H, A)Γ ⊆ F (H′, A′)∆.

Proof. The proof is straightforward by Definitions 14 and 16.

Proposition 4. Let F : ˜(U, Y)→ ˜(V, Y′) be a mapping. Then, for FP-CNSESs (G, B)Σ and (G′, B′)Ω in the
fuzzy parameterized complex neutrosophic soft expert class ˜(V, Y′), we have:

1. F−1(φ̃) = φ̃.
2. F−1(ψ̃) = ψ̃.
3. F−1 ((G, B)Σ ∪̃ (G′, B′)Ω) = F−1 (G, B)Σ ∪̃F−1 (G′, B′)Ω.
4. F−1 ((G, B)Σ ∩̃ (G′, B′)Ω) = F−1 (G, B)Σ ∩̃F−1 (G′, B′)Ω.
5. If (G, B)Σ ⊆ (G′, B′)Ω, then F−1 (G, B)Σ ⊆ F−1 (G′, B′)Ω.

Proof. The proof is straightforward by Definitions 15 and 17.

5. An Application of Fuzzy Parameterized Complex Neutrosophic Soft Expert Set

In this section, we present an application of FP-CNSES in a decision making problem by
considering the following example.

Example 4. Suppose that an engineering company wishes to evaluate two kinds of a certain product from
a manufacturer and choose the most suitable one. Suppose that the company takes the opinion of its experts
concerning these two kinds of product on two phases: once before using the products and again after trying a
sample of each of the two kinds of the product. Suppose that U = {u1, u2} is the universe consisting of the two
alternatives (the two kinds of the product) and E = {e1, e2, e3} is the attributes set, where e1 stands for “easy
to use”, e2 stands for “ functional ” and e3 stands for “durable”. The attributes e1, e2 and e3 are important
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with degrees 0.3, 0.6 and 0.8, respectively. That is, the fuzzy subset of parameters is Γ =
{

e1
0.3 , e2

0.6 , e3
0.8

}
.

Let X = {x1, x2} be a set of experts. Now, the team of experts are requested to make a decision about the most
desirable alternative based on the goals and the constraints according to a chosen subset Γ of FZ(E) to construct
a FP-CNSES.

(H, A)Γ ={{(
e1
0.3 , x1, 1

)
,
{

u1
〈0.5e2π(0.4),0.2e2π(0.4),0.1e2π(0.2)〉 ,

u2
〈0.6e2π(0.7),0.5e2π(0.4),0.1e2π(1)〉

}}
,

{(
e1
0.3 , x2, 1

)
,
{

u1
〈0.6e2π(0.5),0.6e2π(0.4),0.1e2π(0.3)〉 ,

u2
〈0.9e2π(0.8),0.5e2π(0.6),0.5e2π(0.4)〉

}}
,

{(
e2
0.6 , x1, 1

)
,
{

u1
〈0.4e2π(0.3),0.7e2π(0.8),0.8e2π(0.7)〉 ,

u2
〈0.4e2π(0.9),0.2e2π(0.5),0.1e2π(0.2)〉

}}
,

{(
e2
0.6 , x2, 1

)
,
{

u1
〈0.8e2π(0.9),0.4e2π(0.3),0.7e2π(0.4)〉 ,

u2
〈0.5e2π(0.4),0.8e2π(0.6),0.6e2π(0.2)〉

}}
,

{(
e3
0.8 , x1, 1

)
,
{

u1
〈0.2e2π(0.2),0.3e2π(0.3),0.7e2π(0.6)〉 ,

u2
〈0.5e2π(0.2),0.7e2π(0.2),0.8e2π(0.2)〉

}}
,

{(
e3
0.8 , x2, 1

)
,
{

u1
〈0.8e2π(0.1),0.3e2π(0.2),0.7e9π(0.2)〉 ,

u2
〈0.1e2π(0.6),0.2e2π(0.4),0.6e2π(0.8)〉

}}
,

{(
e1
0.3 , x1, 0

)
,
{

u1
〈0.5e2π(0.5),0.5e2π(0.4),0.9e2π(0.3)〉 ,

u2
〈0.9e2π(0.8),0.7e2π(0.8),0.5e2π(0.7)〉

}}
,

{(
e1
0.3 , x2, 0

)
,
{

u1
〈0.4e2π(0.6),0.7e2π(0.4),0.7e2π(0.8)〉 ,

u2
〈0.5e2π(0.4),0.5e2π(0.4),0.3e2π(0.5)〉

}}
,

{(
e2
0.6 , x1, 0

)
,
{

u1
〈0.3e2π(0.2),0.6e2π(0.2),0.9e2π(0.2)〉 ,

u2
〈0.7e2π(0.4),0.5e2π(0.8),0.6e2π(0.8)〉

}}
,

{(
e2
0.6 , x2, 0

)
,
{

u1
〈0.3e2π(0.5),0.3e2π(0.1),0.9e2π(0.3)〉 ,

u2
〈0.3e2π(0.7),0.8e2π(0.7),0.7e2π(0.6)〉

}}
,

{(
e3
0.8 , x1, 0

)
,
{

u1
〈0.5e2π(0.4),0.4e2π(0.5),0.4e2π(0.3)〉 ,

u2
〈0.8e2π(0.2),0.3e2π(0.2),0.5e2π(0.2)〉

}}
,

{(
e3
0.8 , x2, 0

)
,
{

u1
〈0.4e2π(0.6),0.2e2π(0.3),0.1e2π(0.6)〉 ,

u2
〈0.3e2π(0),0.6e2π(0.4),0.3e2π(0.1)〉

}}}
.

In the FP-CNSES (H, A)Γ above, the amplitude terms of membership, non-membership and
indeterminate membership represent the opinions of the experts in phase one (before using the
products), while the phase terms of membership, non-membership, and indeterminacy represent the
opinions of the experts in the second phase (after trying a sample of each of the two kinds of the
product). Thus, the amplitude term of the membership in the first phase and the phase term of the
membership in the second phase form a complex-valued truth membership function of the FP-CNSES
(H, A)Γ. Similarly, the amplitude term of non-membership in phase one and the phase term of
non-membership in the second phase form a complex-valued falsity membership function. In addition,
the amplitude term of undecidedness in the first phase and the phase term of indeterminacy in the
second phase form the complex-valued indeterminate membership function. Now, our problem is to
select the most desirable kind of the product to the engineering company.

To solve this decision making problem, we use the FP-CNSES (H, A)Γ together with a generalized
algorithm. This algorithm converts the fuzzy parameterized complex neutrosophic soft expert values
(FP-CNSEVs) to fuzzy parameterized single-valued neutrosophic soft expert values (FP-SVNSEVs)
using a practical formula which give a decision-making with a simple computational process without
the need to carry out directed operations on complex numbers. In this formula, we give a weight
to the amplitude terms (a weight to the experts’ opinions before using the products) by multiplying
the weight vector to each amplitude term. Similarly we give a weight to the phase terms (a weight
to the experts’ opinions after using the products) by multiplying the weight vector to each phase
term. Then, we combine the values of the weighted amplitude terms and phase terms to obtain
the FP-SVNSEVs which represent the experts’ opinions on both phases together. Thus, after doing
these simple calculations to all membership functions of the FP-CNSES (H, A)Γ, we proceed to
the final decision using the fuzzy parameterized single valued neutrosophic soft expert method
(FPSVNSEM) [18].

The generalized algorithm is as follows.
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Algorithm 1: Fuzzy parameterized complex neutrosophic soft expert method (FP-CNSEM).

1. Input the FP-CNSES (H, A)Γ

2. Convert the FP-CNSES (H, A)Γ to the FPSVNSES (Ĥ, A)Γ by obtaining the weighted
aggregation values of T

ĤΓ(ai)
(uj), I

ĤΓ(ai)
(uj) and F

ĤΓ(ai)
(uj),∀ai ∈ A and ∀uj ∈ U as the

following formulas:

TĤΓ(ai)
(uj) = w1 pHΓ(ai)

(uj) + w2(1/2π)µHΓ(ai)
(uj),

IĤΓ(ai)
(uj) = w1qHΓ(ai)

(uj) + w2(1/2π)νHΓ(ai)
(uj),

FĤΓ(ai)
(uj) = w1rHΓ(ai)

(uj) + w2(1/2π)ωHΓ(ai)
(uj),

where pHΓ(ai)
(uj), qHΓ(ai)

(uj), rHΓ(ai)
(uj) and µHΓ(ai)

(uj), νHΓ(ai)
(uj), ωHΓ(ai)

(uj) are the
amplitude and phase terms in the FP-CNSES (H, A)Γ, respectively. T

ĤΓ(ai)
(uj), I

ĤΓ(ai)
(uj) and

F
ĤΓ(ai)

(uj) are the truth-membership function, indeterminacy-membership function and

falsity-membership function in the FP-SVNSES (Ĥ, A)Γ, respectively, and w1, w2 are the
weights for the amplitude terms (the first decision process) and the phase terms (the second
decision process), respectively, where w1 and w2 ∈ [0, 1] and w1 + w2 = 1.

3. Find the values of cij = T
ĤΓ(ai)

(uj)− I
ĤΓ(ai)

(uj)− F
ĤΓ(ai)

(uj), ∀uj ∈ U and ∀ai ∈ A.

4. Compute the score of each element uj ∈ U by the following formulas :

Kj = ∑
x∈X

n

∑
i=1

cij(µΓ(ei)), Sj = ∑
x∈X

n

∑
i=1

cij(µΓ(ei))

for the agree FP-SVNSES and disagree FP-SVNSES, where µΓ(ei) is the corresponding
membership function of the fuzzy set Γ, X is the set of the experts and n is the number of the
parameters (attributes).

5. Find the values of the score rj = Kj − Sj for each element uj ∈ U.

6. Determine the value of the highest score m = maxuj ∈U{rj}. Then, the decision is to choose
element uj as the optimal solution to the problem. If there are more than one elements with
the highest rj score, then any one of those elements can be chosen as the optimal solution.

Then, we can conclude that the optimal choice for the team of the experts is to select the kind uj
as the most desirable kind of the product to the company.

Now, to convert the FP-CNSES (H, A)Γ to the FP-SVNSES (Ĥ, A)Γ, suppose that the weight
vector for the amplitude terms is w1 = 0.3 and the weight vector for the phase terms is w2 = 0.7 and
obtain the weighted aggregation values of T

ĤΓ(ai)
(uj), I

ĤΓ(ai)
(uj) and F

ĤΓ(ai)
(uj),∀ai ∈ A and ∀uj ∈ U.

To illustrate this step, we calculate T
ĤΓ(a1)

(u1), I
ĤΓ(a1)

(u1) and F
ĤΓ(a1)

(u1), such that a1 = ( e1
0.3 , x1, 1)

as shown below:

T
ĤΓ(

e1
0.3 ,x1,1)

(u1) = w1 p
HΓ(

e1
0.3 ,x1,1)

(u1) + w2(1/2π)µHΓ(
e1
0.3 ,x1,1)(u1)

= 0.3(0.5) + 0.7(1/2π)(2π)(0.4)
= 0.43

I
ĤΓ(

e1
0.3 ,x1,1)

(u1) = w1q
HΓ(

e1
0.3 ,x1,1)

(u1) + w2(1/2π)νHΓ(
e1
0.3 ,x1,1)(u1)

= 0.3(0.2) + 0.7(1/2π)(2π)(0.4)
= 0.34
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F
ĤΓ(

e1
0.3 ,x1,1)

(u1) = w1r
HΓ(

e1
0.3 ,x1,1)

(u1) + w2(1/2π)ωHΓ(
e1
0.3 ,x1,1)(u1)

= 0.3(0.1) + 0.7(1/2π)(2π)(0.2)
= 0.17.

Then, the FP-SVNSEV

(TĤΓ(a1)
(u1), IĤΓ(a1)

(u1), FĤΓ(a1)
(u1)) = (0.43, 0.34, 0.17).

In the same manner, we calculate the others FP-SVNSEVs, ∀a ∈ A and ∀u ∈ U as in Table 1.

Table 1. Values of (Ĥ, A)Γ.

u1 u2
( e1

0.3 , x1, 1
)
〈0.43, 0.34, 0.17〉 〈0.67, 0.43, 0.73〉( e1

0.3 , x2, 1
)
〈0.53, 0.46, 0.24〉 〈0.83, 0.57, 0.53〉( e2

0.6 , x1, 1
)
〈0.33, 0.77, 0.73〉 〈0.75, 0.41, 0.71〉( e2

0.6 , x2, 1
)
〈0.87, 0.33, 0.49〉 〈0.43, 0.66, 0.32〉( e3

0.8 , x1, 1
)
〈0.20, 0.30, 0.63〉 〈0.29, 0.35, 0.38〉( e3

0.8 , x2, 1
)
〈0.31, 0.23, 0.35〉 〈0.45, 0.34, 0.74〉( e1

0.3 , x1, 0
)
〈0.50, 0.43, 0.48〉 〈0.83, 0.77, 0.64〉( e1

0.3 , x2, 0
)
〈0.54, 0.49, 0.77〉 〈0.43, 0.43, 0.44〉( e2

0.6 , x1, 0
)
〈0.23, 0.32, 0.41〉 〈0.49, 0.71, 0.74〉( e2

0.6 , x2, 0
)
〈0.44, 0.16, 0.48〉 〈0.58, 0.73, 0.63〉( e3

0.8 , x1, 0
)
〈0.43, 0.47, 0.33〉 〈0.38, 0.23, 0.29〉( e3

0.8 , x2, 0
)
〈0.54, 0.27, 0.45〉 〈0.09, 0.46, 0.16〉

Tables 2 and 3 give the values of cij = T
ĤΓ(ai)

(uj)− I
ĤΓ(ai)

(uj)− F
ĤΓ(ai)

(uj) and the score of each

element uj ∈ U for agree FP-SVNSES and disagree FP-SVNSES, respectively.

Table 2. Numerical degree of agree FP-SVNSES.

U u1 u2
(

e1
0.3 , x1

)
−0.08 −0.49(

e1
0.3 , x2

)
−0.17 −0.27(

e2
0.6 , x1

)
−1.17 −0.37(

e2
0.6 , x2

)
0.05 −0.55(

e3
0.8 , x1

)
−0.73 −0.44(

e3
0.8 , x2

)
−0.27 −0.63

Kj = ∑
x∈X

3

∑
i=1

cij(µΓ(ei)) K1 = −1.547 K2 = −1.636

Table 3. Numerical degree for disagree FP-SVNSES.

U u1 u2
(

e1
0.3 , x1

)
−0.41 −0.58(

e1
0.3 , x2

)
−0.72 −0.44(

e2
0.6 , x1

)
−0.50 −0.96(

e2
0.6 , x2

)
−0.20 −0.78(

e3
0.8 , x1

)
−0.37 −0.14(

e3
0.8 , x2

)
−0.18 −0.53

Sj = ∑
x∈X

3

∑
i=1

cij(µΓ(ei)) S1 = −1.199 S2 = −1.886
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Let Kj and Sj represent the score of each numerical degree for the agree FP-SVNSES and disagree
FP-SVNSES, respectively. These values are given in Table 4.

Table 4. The score rj = Kj − Sj.

Kj = ∑
x∈X

3

∑
i=1

cij(µΓ(ei)) Sj = ∑
x∈X

3

∑
i=1

cij(µΓ(ei)) rj = Kj− Sj

K1 = −1.547 S1 = −1.199 −0.348
K2 = −1.636 S2 = −1.886 0.25

Thus, m = maxuj ∈U{rj} = r2 . Therefore, the team of experts advise selecting the kind u2 of this
product as a desirable alternative.

6. Comparison between FP-CNSES and Other Existing Methods

In this section, we compare our proposed FP-CNSES model to FP-SVNSES [18] and FP-IFSES [17],
which are generalizations of FP-SES [15] and FP-FSES [16].

To reveal the significance of our proposed FP-CNSES compared to FP-SVNSES and FP-IFSES,
let us consider Example 4 above. In this example, we apply the FP-CNSES to handle a decision-making
problem, which consists of two decision processes. Our proposed model is applied to both the decision
processes by considering the opinions in process one as amplitude terms of truth membership, falsity
membership and indeterminacy membership, and setting the second decision process as phase terms
of truth membership, falsity membership, and indeterminacy. Thus, both decision processes form a
FP-CNSES as whole.

On the other hand, when we apply the FP-IFSES to both processes, it tells us only about the
truth membership and falsity membership in the first decision process, but cannot tell anything about
the undecidedness. The situation is similar in the second decision process. Thus, FP-IFSES fails to
handle this situation. Now, when we apply the FP-SVNSES, it tells about the truth membership, falsity
membership and indeterminacy membership in the first round, and, similarly, it tells about the second
round but it cannot describe both decision processes simultaneously.

Thus, both FP-SVNSES and FP-IFSES cannot directly solve such a decision-making problem
with fuzzy parameterized complex neutrosophic soft expert information. In contrast, the FP-CNSES
can directly address the fuzzy parameterized single valued neutrosophic soft expert problem,
since the FP-SVNSES is a special case of FP-CNSES and can be easily represented in the form of
FP-CNSES. In other words, the FP-SVNSES is a FP-CNSES with phase terms equal zeros. For example,
the FP-SVNSEV (0.2, 0.4, 0.6) can be represented as (0.2ej2Π(0), 0.4ej2Π(0), 0.6ej2Π(0)) by means of
FP-CNSES. Furthermore, our method is applicable for fuzzy parameterized intuitionistic fuzzy soft
expert problem, since FP-IFSES is a special case of FP-SVNSES and consequently of FP-CNSES.
For example, the fuzzy parameterized intuitionistic fuzzy soft expert value (0.1, 0.6) can be (0.1, 0.3,
0.6) by means of FP-SVNSES and hence can be (0.1ej2Π(0), 0.3ej2Π(0), 0.6ej2Π(0)) by means of FP-CNSES,
since the sum of the degrees of membership, nonmembership and indeterminacy of an intuitionistic
fuzzy value equal to 1. Note that the indeterminacy degree in intuitionistic fuzzy set is provided by
default and cannot be defined alone unlike the SVNS where the indeterminacy is defined independently
and quantified explicitly.

The advantage of using FP-CNSES manifests in representing information of two dimensions
for one object in the same time (i.e., the expert’s time can be saved by constructing/building one
set (FP-CNSES) instead of two sets (FP-SVNSESs), not to mention reducing the amount of both
mathematical calculations and investigation of several operators in incorporating two FP-SVNSESs to
find the optimal solution). A practical formula is employed to convert the FP-CNSES to the FP-SVNSES,
which gives a decision-making with a simple computational process without the need to carry out
directed operations on complex numbers.
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7. Weighted Fuzzy Parameterized Complex Neutrosophic Soft Expert Set

Experts opinions are vital for any decision making process as most real-life situations deal
with elements and parameters that are subjective, biased and have the potential to be distorted and
interpreted differently by different parties. Each expert might have his/her own thought, which differs
from others in various aspects but all of the experts should have a common goal to reach the final
destination. Moreover, as the domains of expertise of different experts are different, one expert may
be more confident on his/her opinion than the other on the same set of attributes. For this type of
environment, equal weights assignment to different experts may lead to improper and biased solution.
Feeling the need of prioritizing different experts motivates us to develop a new idea for assigning
relative weight to each expert by establishing a novel notion called weighted fuzzy parameterized
complex neutrosophic soft expert set (WFP-CNSES). The relative weight is assigned to each of the
experts where the choice of the experts may not be of equal importance.

This new mathematical framework reduces the chance of unfairness in the decision making
process and brings more credibility to the final decision.

We begin this section by first proposing the concept of the weighted fuzzy parameterized
single-valued neutrosophic soft expert set (WFP-SVNSES).

Definition 18. Let U be a universe set, E be a set of parameters, IE denote all fuzzy subsets of E, X be a
set of experts, IX denotes all fuzzy subsets of X and O = {1 = agree, 0 = disagree} a set of opinions.
Let Z = Ψ×W ×O and A ⊆ Z where Ψ ⊂ IE and W ⊂ IX . A pair ( f , A, )Ψ,W is called a weighted fuzzy
parameterized single-valued neutrosophic soft expert set over U, where f is a mapping given by

fΨ,W : A→ SVN(U),

and SVN(U) denotes the set of all single-valued neutrosophic subsets of U.

We then generalize the WFP-SVNSES by establishing the concept of the weighted fuzzy
parameterized complex neutrosophic soft expert set (WFP-CNSES), which is actually an extended
version of WFP-SVNSES, on the complex space.

Definition 19. Let U be a universe set, E be a set of parameters, FZ(E) denote all fuzzy subsets of E, X be a
set of experts, FZ(X) denotes all fuzzy subsets of X and O = {1 = agree, 0 = disagree} a set of opinions.
Let Y = Γ×W ×O and A ⊆ Y where Γ ⊂ FZ(E) and W ⊂ FZ(X) . A pair (H, A, )Γ,W is called a weighted
fuzzy parameterized complex neutrosophic soft expert set (WFP− CNSES) over U, where H is a mapping
given by

HΓ,W : A→ CNU ,

and CNU denotes the power complex neutrosophic set of U.

The WFP-CNSES (H, A)Γ,W can be written as the following set of ordered pairs: (H, A)Γ,W ={(
a,
{ u

HΓ,W (a)(u) : u ∈ U
})

: a ∈ A
}

, where A ⊆ Γ×W ×O =
{( e

µΓ(e)
, x

µW (x) , o
)

: e ∈ E, x ∈ Xand o ∈ O
}

, such that µΓ(e) and µW(x) are the corresponding
membership functions of the fuzzy sets Γ and W, respectively.

From Definition 19, it is clear that the expert set in the WFP-CNSES (H, A)Γ,W is a fuzzy
set, where the membership function µW(x) of the fuzzy set W represents weight of the expert x,
and µW(x) ∈ [0, 1], ∀x ∈ X.

For more illustration, we consider the following example.
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Example 5. Consider Example 4. Suppose that the weights for the experts x1 and x2 are 0.5 and 0.8, respectively.

Then, the fuzzy subset of experts is W =
{

x1
0.5 , x2

0.8

}
and the FP-CNSES (H, A)Γ in Example 4 is converted to

the WFP-CNSES (H, A)Γ,W where,

(H, A)Γ,W ={{(
e1
0.3 , x1

0.5 , 1
)

,
{

u1
〈0.5e2π(0.4),0.2e2π(0.4),0.1e2π(0.2)〉 ,

u2
〈0.6e2π(0.7),0.5e2π(0.4),0.1e2π(1)〉

}}
,

{(
e1
0.3 , x2

0.8 , 1
)

,
{

u1
〈0.6e2π(0.5),0.6e2π(0.4),0.1e2π(0.3)〉 ,

u2
〈0.9e2π(0.8),0.5e2π(0.6),0.5e2π(0.4)〉

}}
,

{(
e2
0.6 , x1

0.5 , 1
)

,
{

u1
〈0.4e2π(0.3),0.7e2π(0.8),0.8e2π(0.7)〉 ,

u2
〈0.4e2π(0.9),0.2e2π(0.5),0.1e2π(0.2)〉

}}
,

{(
e2
0.6 , x2

0.8 , 1
)

,
{

u1
〈0.8e2π(0.9),0.4e2π(0.3),0.7e2π(0.4)〉 ,

u2
〈0.5e2π(0.4),0.8e2π(0.6),0.6e2π(0.2)〉

}}
,

{(
e3
0.8 , x1

0.5 , 1
)

,
{

u1
〈0.2e2π(0.2),0.3e2π(0.3),0.7e2π(0.6)〉 ,

u2
〈0.5e2π(0.2),0.7e2π(0.2),0.8e2π(0.2)〉

}}
,

{(
e3
0.8 , x2

0.8 , 1
)

,
{

u1
〈0.8e2π(0.1),0.3e2π(0.2),0.7e9π(0.2)〉 ,

u2
〈0.1e2π(0.6),0.2e2π(0.4),0.6e2π(0.8)〉

}}
,

{(
e1
0.3 , x1

0.5 , 0
)

,
{

u1
〈0.5e2π(0.5),0.5e2π(0.4),0.9e2π(0.3)〉 ,

u2
〈0.9e2π(0.8),0.7e2π(0.8),0.5e2π(0.7)〉

}}
,

{(
e1
0.3 , x2

0.8 , 0
)

,
{

u1
〈0.4e2π(0.6),0.7e2π(0.4),0.7e2π(0.8)〉 ,

u2
〈0.5e2π(0.4),0.5e2π(0.4),0.3e2π(0.5)〉

}}
,

{(
e2
0.6 , x1

0.5 , 0
)

,
{

u1
〈0.3e2π(0.2),0.6e2π(0.2),0.9e2π(0.2)〉 ,

u2
〈0.7e2π(0.4),0.5e2π(0.8),0.6e2π(0.8)〉

}}
,

{(
e2
0.6 , x2

0.8 , 0
)

,
{

u1
〈0.3e2π(0.5),0.3e2π(0.1),0.9e2π(0.3)〉 ,

u2
〈0.3e2π(0.7),0.8e2π(0.7),0.7e2π(0.6)〉

}}
,

{(
e3
0.8 , x1

0.5 , 0
)

,
{

u1
〈0.5e2π(0.4),0.4e2π(0.5),0.4e2π(0.3)〉 ,

u2
〈0.8e2π(0.2),0.3e2π(0.2),0.5e2π(0.2)〉

}}
,

{(
e3
0.8 , x2

0.8 , 0
)

,
{

u1
〈0.4e2π(0.6),0.2e2π(0.3),0.1e2π(0.6)〉 ,

u2
〈0.3e2π(0),0.6e2π(0.4),0.3e2π(0.1)〉

}}}
.

Suppose we are interested in solving the decision making problem in Example 4, where the data
are represented by the means of the WFP-CNSES (H, A)Γ,W above, where each expert has his/her own
weight. Then, we may use the following algorithm, which is a generalization of Algorithm 1.

Now, we use Algorithm 2 to select the most desirable kind of the product to the engineering company.

Algorithm 2: Weighted fuzzy parameterized complex neutrosophic soft expert method
(WFP-CNSEM).

1. Input the WFP-CNSES (H, A)Γ,W .

2. Convert the WFP-CNSES (H, A)Γ,W to the WFP-SVNSES (Ĥ, A)Γ,W as it was illustrated in
step 2 of Algorithm 1. Note that the WFP-CNSES (H, A)Γ,W and the FP-CNSES (H, A)Γ has
the same evaluation information and the difference between them lies in the structure of the
expert set which does not affect the conversion process.

3. Find the values of cij for agree WFP-SVNSES and disagree WFP-SVNSES respectively, where
cij = T

ĤΓ,W (ai)
(uj)− I

ĤΓ,W (ai)
(uj)− F

ĤΓ,W (ai)
(uj), ∀uj ∈ U and ∀ai ∈ A.

4. Compute the score of each element uj ∈ U by the following formulas:

Kj = ∑
x∈X

∑
i

cij(µΓ(e))(µW(x)), Sj = ∑
x∈X

∑
i

cij(µΓ(e))(µW(x)), for the agree WFP-SVNSES

and disagree WFP-SVNSES, where µΓ(e) and µW(x) are the corresponding membership
functions of the fuzzy sets Γ and W, respectively.

5. Find the values of the score rj = Kj − Sj for each element uj ∈ U.

6. Determine the value of the highest score m = maxuj ∈U{rj}. Then, the decision is to choose
element uj as the optimal solution to the problem.
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Tables 5 and 6 give the numerical degree of agree WFP-SVNSES and disagree WFP-SVNSES,
respectively.

Table 5. Numerical degree of agree WFP-SVNSES.

U u1 u2
(

e1
0.3 , x1

0.5

)
−0.08 −0.49(

e1
0.3 , x2

0.8

)
−0.17 −0.27(

e2
0.6 , x1

0.5

)
−1.17 −0.37(

e2
0.6 , x2

0.8

)
0.05 −0.55(

e3
0.8 , x1

0.5

)
−0.73 −0.44(

e3
0.8 , x2

0.8

)
−0.27 −0.63

Kj = ∑
x∈X

∑
i

cij(µΓ(e))(µW(x)) K1 = −0.845 K2 = −1.093

Table 6. Numerical degree of disagree WFP-SVNSES.

U u1 u2
(

e1
0.3 , x1

0.5

)
−0.41 −0.58(

e1
0.3 , x2

0.8

)
−0.72 −0.44(

e2
0.6 , x1

0.5

)
−0.50 −0.96(

e2
0.6 , x2

0.8

)
−0.20 −0.78(

e3
0.8 , x1

0.5

)
−0.37 −0.14(

e3
0.8 , x2

0.8

)
−0.18 −0.53

Sj = ∑
x∈X

∑
i

cij(µΓ(e))(µW(x)) S1 = −0.744 S2 = −1.250

Let Kj and Sj represent the score of each numerical degree of agree WFP-SVNSES and disagree
WFP-SVNSES, respectively. These values are given in Table 7.

Table 7. The score rj = Kj − Sj.

Kj = ∑
x∈X

∑
i

cij(µΓ(e))(µW (x)) Sj = ∑
x∈X

∑
i

cij(µΓ(e))(µW (x)) rj = Kj− Sj

K1 = −0.845 S1 = −0.744 −0.101
K2 = −1.093 S2 = −1.250 0.157

Thus, m = maxuj ∈U{rj} = r2 . Therefore, the team of experts advise selecting the kind u2 of this
product as a desirable alternative.

Using Algorithms 1 and 2, we obtained the same results. However, it is clear that giving more
consideration to the expert (weight) reduces the chance of unfairness in the decision making process
and as a result adds more credibility to the final decision.

To illustrate the significance of the adjustable approach using WFP-CNSES as compared to that of
FP-CNSES, let us consider Example 5 above.

It can be seen that WFP-CNSES is basically a FP-CNSES with weighted experts and every
FP-CNSES can be considered as a WFP-CNSES with a relative weight equal to 1 assigned to all
of the experts’ opinions.
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For example, the approximation

{( e1

0.3
,

x1

0.5
, 1
)

,
{ u1

〈0.5e2π(0.4), 0.2e2π(0.4), 0.1e2π(0.2)〉 ,
u2

〈0.6e2π(0.7), 0.5e2π(0.4), 0.1e2π(1)〉
}}

can be represented as

{( e1

0.3
,

x1

1
, 1
)

,
{ u1

〈0.5e2π(0.4), 0.2e2π(0.4), 0.1e2π(0.2)〉 ,
u2

〈0.6e2π(0.7), 0.5e2π(0.4), 0.1e2π(1)〉
}}

by means of FP-CNSES.

In other words, the expert set in the FP-CNSES is a classical set, where the opinions of the experts
have the same degree of importance, which is considered as 1. This limitation may lead to improper
and biased solution. In contrast, the expert set in the WFP-CNSES is a fuzzy set, i.e., a membership
degree that represents an importance degree (a relative weight) between zero and one is assigned to
each of the experts. This makes the decision process more realistic and reduces the biased information
given by the experts.

8. Conclusions

We introduced the concept of FP-CNSES, which is a FP-SVNSES defined in a complex setting.
We defined FP-CNSES operations and their properties. We then studied a mapping on fuzzy
parameterized complex neutrosophic soft expert classes and its properties. An adjustable approach to
decision making problems based on FP-CNSES was also introduced. A comparison of the FP-IFSES
and FP-SVNSES to FP-CNSES was made and the preferability of FP-CNSES was revealed. Finally,
we defined the notion of WFP-CNSES where experts’ relative weights were considered and applied
it to solve a decision making problem. This adjustable approach to decision making can be helpful
to deal with more room of uncertainty compared to using FP-CNSES on the same problem. Both the
newly proposed approaches efficiently capture the incomplete, indeterminate, and inconsistent
information and extend existing decision-making methods to provide a more comprehensive outlook
for decision-makers. WFP-CNSES seems to be a promising new concept, paving the way toward
numerous possibilities for future research. We intend to investigate this concept further by studying
its operations and their properties to develop some real applications.
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Abstract: Recently, neutrosophic sets are found to be more general and useful to express
incomplete, indeterminate and inconsistent information. The purpose of this paper is to introduce
new aggregation operators based on logarithmic operations and to develop a multi-criteria
decision-making approach to study the interaction between the input argument under the single
valued neutrosophic (SVN) environment. The main advantage of the proposed operator is that it can
deal with the situations of the positive interaction, negative interaction or non-interaction among the
criteria, during decision-making process. In this paper, we also defined some logarithmic operational
rules on SVN sets, then we propose the single valued neutrosophic hybrid aggregation operators as a
tool for multi-criteria decision-making (MCDM) under the neutrosophic environment and discussd
some properties. Finally, the detailed decision-making steps for the single valued neutrosophic
MCDM problems were developed, and a practical case was given to check the created approach and
to illustrate its validity and superiority. Besides this, a systematic comparison analysis with other
existent methods is conducted to reveal the advantages of our proposed method. Results indicate that
the proposed method is suitable and effective for decision process to evaluate their best alternative.

Keywords: single valued neutrosophic sets; logarithmic operational laws; logarithmic aggregation
operators; MCGDM problems

1. Introduction

The information involves, in most of the real-life decision-making problems are often incomplete,
indeterminate and inconsistent. Fuzzy set theory introduced by Zadeh [1] deals with imprecise,
inconsistent information. Although fuzzy set information proved to be very handy but it cannot
express the information about rejection. Atanassov [2] introduced the intuitionistic fuzzy set (IFS) to
bring in non-membership. Non membership function represents degree of rejection. To incorporate
indeterminate and inconsistent information, in addition to incomplete information, the concept of
neutrosophic set (NS) proposed by Smarandache [3]. A NS generalizes the notion of the classic set,
fuzzy set (FS) [1], IFS [2], paraconsistent set [4], dialetheist set, paradoxist set [4], and tautological
set [4] to name a few. In NS, indeterminacy is quantified explicitly, and truth, indeterminacy, and falsity
memberships are expressed independently. The NS generalizes different types of non-crisp sets but
in real scientific and engineering applications the NS and the set-theoretic operators require to be
specified. For a detailed study on NS we refer to [5–17].

Symmetry 2019, 11, 364; doi:10.3390/sym11030364 www.mdpi.com/journal/symmetry466
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Related Work

Most of the weighted aggregation operators consider situations in which criteria and preferences
of experts are independent, which means that additivity is a main property of these operators.
However, in real life decision-making problems, the criteria of the problems are often interdependent
or interactive.

Most of the weighted average operators are based on the basic algebraic product and algebraic
sum of single valued neutrosophic numbers (SVNNs) which are not the only operations available to
model the intersection and union of SVNNs. The logarithmic algebraic product and sum are two good
alternatives of algebraic operations which can be used the model intersection and union of SVNNs.
Moreover, it is observed that in the literature there is little investigation on aggregation operators
utilizing the logarithmic operations on SVNNs. For a detailed review on the applications of logarithmic
operations, we refer to [10]. As already mentioned that the single valued neutrosophic set (SVNS) is an
effective tool to describe the uncertain, incomplete and indeterminate information. The logarithmic
single valued neutrosophic hybrid and logarithmic generalized single valued neutrosophic algebraic
operators have the ability to express interactions among the criteria and it can replace the weighted
average to aggregate dependent criteria for obtaining more accurate results. Motivated by these,
we find it interesting to develop the logarithmic single valued neutrosophic hybrid aggregation
operators for decision-making with neutrosophic information.

Also, we proposed the possibility of a degree-ranking technique for SVNNs from the probability
point of view, since the ranking of SVNNs is very important for decision-making under the SVN
environment. Furthermore, we proposed a multi-criteria decision-making model based on the
logarithmic single valued neutrosophic hybrid weighted operators. Forstudy the multi-criteria
decision-making models, we refer [18–31].

The aim of writing this paper is to introduce a decision-making method for MCDM problems in
which there exist interrelationships among the criteria. The contributions of this research are:

(1) A novel logarithmic operations for neutrosophic information is defined, which can overcome
the weaknesses of algebraic operations and obtain the relationship between various SVNNs.

(2) Logarithmic operators for IFSs are extended to logarithmic single-valued neutrosophic hybrid
operators and logarithmic generalized single-valued neutrosophic operators, namely, logarithmic
single valued neutrosophic hybrid weighted averaging (L-SVNHWA), logarithmic single valued
neutrosophic hybrid weighted geometric (L-SVNHWG), logarithmic generalized single-valued
neutrosophic weighted averaging (L-GSVNWA) and logarithmic single-valued neutrosophic weighted
geometric (L-GSVNWG) to SVNSs, which can overcome the algebraic operators drawbacks.

(3) A decision-making approach to handle the MCDM problems under the neutrosophic
informations is introduced.

To attain our research goals which are stated above, the arrangement of the paper is offered
as: Section 2 concentrates on basic definitions and operations of existing extensions of fuzzy set
theories. In Section 3, some novel logarithmic operational laws of SVNSs are presented. Section 4
defines the logarithmic hybrid aggregation operators for SVNNs. In Section 5, an algorithm for
handling the neutrosophic MCDM problem based on the developed logarithmic operators is presented.
In Section 5.1, an application to verify the novel method is given and Section 5.2 presents the
comparison study about algebraic and logarithmic aggregation operators. Section 6 consists of the
conclusion of the study.

2. Preliminaries

This section includes the concepts and basic operations of existing extensions of fuzzy sets to
make the study self contained.
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Definition 1. [2] For a set <, by an intuitionistic fuzzy set in <, we have a structure

ζ = {〈Pσ (r) , Nσ (r)〉 |r ∈ <} , (1)

in which Pσ : < → Θ and Nσ : < → Θ indicate the membership and non-membership grades in <, Θ = [0, 1]
be the unit interval. Also the following condition is satisfied by Pσ and Nσ, 0 ≤ Pσ (r) + Nσ (r) ≤ 1; ∀ r ∈ <.
Then ζ is said to be intuitionistic fuzzy set in <.

Definition 2. [32] For a set <, by a neutrosophic set in <, we have a structure

ζ = {〈Pσ (r) , Iσ (r) , Nσ (r)〉 |r ∈ <} , (2)

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ indicate the truth, indeterminacy and falsity memberships
in<, Θ = ]0−, 1+[. Also the following condition is satisfied by Pσ, Iσ and Nσ, 0− ≤ Pσ (r)+ Iσ (r)+ Nσ (r) ≤
3+; ∀ r ∈ <. Then, ζ is said to be neutrosophic set in <.

Definition 3. [33] For a set <, by a single valued neutrosophic set in <, we mean a structure

ζ = {〈Pσ (r) , Iσ (r) , Nσ (r)〉 |r ∈ <} , (3)

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ indicate the truth, indeterminacy and falsity
memberships in <, Θ = [0, 1]. Also the following condition is satisfied by Pσ, Iσ and Nσ, 0 ≤ Pσ (r) + Iσ (r) +
Nσ (r) ≤ 3; ∀r ∈ <. Then, ζ is said to be a single valued neutrosophic set in <. We denote this triplet
ζ = 〈Pσ (r) , Iσ (r) , Nσ (r)〉, in whole study called SVNN.

Ye [14], Wang et al. [33] and [34] proposed the basic operations of SVNNs, which are as follows:

Definition 4. [34] For any two SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

and ζq =
〈

Pξq (r) , Iξq (r) , Nξq (r)
〉

in <. The union, intersection and compliment are proposed as:
(1) ζp ⊆ ζq i f f ∀r ∈ <, Pξp (r) ≤ Pξq (r) , Iξp (r) ≥ Iξq (r) and Nξp (r) ≥ Nξq (r);
(2) ζp = ζq i f f ζp ⊆ ζq and ζq ⊆ ζp;

(3) ζp ∪ ζq =
〈

max
(

Pξp , Pξq

)
, min

(
Iξp , Iξq

)
, min

(
Nξp , Nξq

)〉
;

(4) ζp ∩ ζq =
〈

min
(

Pξp , Pξq

)
, max

(
Iξp , Iξq

)
, max

(
Nξp , Nξq

)〉
;

(5) ζc
p =

〈
Nξp , Iξp , Pξp

〉
.

Definition 5. [13,15,33] For any two SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

and ζq =
〈

Pξq (r) , Iξq (r) , Nξq (r)
〉

in < and β ≥ 0.Then the operations of SVNNs are proposed as:

(1) ζp ⊕ ζq =
{

Pξp + Pξq − Pξp · Pξq , Iξp · Iξq , Nξp · Nξq

}
;

(2) β · ζp =
{

1− (1− Pξp)
β, (Iξp)

β, (Nξp)
β
}

;

(3) ζp ⊗ ζq =
{

Pξp · Pξq , Iξp + Iξq − Iξp · Iξq , Nξp + Nξq − Nξp · Nξq

}
;

(4) ζ
β
p =

{
(Pξp)

β, 1− (1− Iξp)
β, 1− (1− Nξp)

β
}

.

(5) βζp =





(
β

1−Pξp , 1− β
Iξp , 1− β

Nξp
)

i f β ∈ (0, 1)((
1
β

)1−Pξp , 1−
(

1
β

)Iξp , 1−
(

1
β

)Nξp
)

i f β ≥ 1

Definition 6. [33] For any three SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

, ζq =
〈

Pξq (r) , Iξq (r) , Nξq (r)
〉

and ζl =
〈

Pσl (r) , Iσl (r) , Nσl (r)
〉

in < and β1, β2 ≥ 0. Then, we have
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(1) ζp ⊕ ζq = ζq ⊕ ζp;
(2) ζp ⊗ ζq = ζq ⊗ ζp;
(3) β1(ζp ⊕ ζq) = β1ζp ⊕ β1ζq, β1 > 0;

(4) (ζp ⊗ ζq)β1 = ζ
β1
p ⊗ ζ

β1
q , β1 > 0;

(5) β1ζp ⊕ β2ζp = (β1 + β2)ζp, β1 > 0, β2 > 0;

(6) ζ
β1
p ⊗ ζ

β2
p = ζ

β1+β2
p , β1 > 0, β2 > 0;

(7) (ζp ⊕ ζq)⊕ ζl = ζp ⊕ (ζq ⊕ ζl);
(8) (ζp ⊗ ζq)⊗ ζl = ζp ⊗ (ζq ⊗ ζl).

Definition 7. [33] For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. Then score and accuracy values are
defined as:
(1) S̃(ζp) = Pξp − Iξp − Nξp

(2) Ã(ζp) = Pξp + Iξp + Nξp

The above definitions of score and accuracy funtions suggest which SVNN is greater than other
SVNNs. The comparison technique is defined in following definition.

Definition 8. [33] For any SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2) in <.

Then comparison techniques are proposed as:
(1) If S̃(ζ1) < S̃(ζ2), then ζ1 < ζ2,
(2) If S̃(ζ1) > S̃(ζ2), then ζ1 > ζ2,
(3) If S̃(ζ1) = S̃(ζ2), and
(a) Ã(ζ1) < Ã(ζ2), then ζ1 < ζ2,
(b) Ã(ζ1) > Ã(ζ2), then ζ1 > ζ2,
(c) Ã(ζ1) = Ã(ζ2), then ζ1 ≈ ζ2.

Garg and Nancy [10] proposed some logarithmic-based aggregation operators, which are
as follows:

Definition 9. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single valued

neutrosophic weighted averaging (L-SVNWA) operator is defined as:

L− SVNWA (ζ1, ζ2, ..., ζn) =




1−
n
∏

p=1

(
`ogσp Pξp

)βp
,

n
∏

p=1

(
`ogσp

(
1− Iξp

))βp
,

n
∏

p=1

(
`ogσp

(
1− Nξp

))βp




, (4)

where βp (p = 1, 2, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1.
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Definition 10. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of the logarithmic single-valued

neutrosophic-ordered weighted averaging (L-SVNOWA) operator is defined as:

L− SVNOWA (ζ1, ζ2, ..., ζn) =




1−
n
∏

p=1

(
`ogσp Pζη(p)

)βp
,

n
∏

p=1

(
`ogσp

(
1− Iζη(p)

))βp
,

n
∏

p=1

(
`ogσp

(
1− Nζη(p)

))βp




, (5)

where βp (p = 1, 2, ..., n) are weighting vector with βp ≥ 0, ∑n
p=1 βp = 1 and pth largest weighted value is

ζη(p) consequently by total order ζη(1) ≥ ζη(2) ≥ ... ≥ ζη(n).

Definition 11. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single-valued

neutrosophic-weighted geometric (L-SVNWG) operator is defined as:

L− SVNWG (ζ1, ζ2, ..., ζn) =




n
∏

p=1

(
1− `ogσp Pξp

)βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Iξp

))βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Nξp

))βp




, (6)

where βp (p = 1, 2, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1.

Definition 12. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single valued

neutrosophic ordered weighted geometric (L-SVNOWG) operator is defined as:

L− SVNOWG (ζ1, ζ2, ..., ζn) =




n
∏

p=1

(
1− `ogσp Pξη(p)

)βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Iξη(p)

))βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Nξη(p)

))βp




, (7)

where βp (p = 1, 2, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth are the largest weighted

value is ζη(p) consequently by total order ζη(1) ≥ ζη(2) ≥ ... ≥ ζη(n).

3. Logarithmic Operational Laws

Motivated by the well growing concept of SVNSs, we introduce some novel logarithmic
operational laws for single valued neutrosophic numbers. As in real number systems `ogσ0 is
meaningless and `ogσ1 is not defined therefore, in our study we take non-empty SVNSs and σ 6= 1,
where σ is any real number.

Definition 13. For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. The logarithmic SVNN is defined as:

`ogσζp =
{〈

1−
(
`ogσPξp (r)

)
, `ogσ

(
1− Iξp (r)

)
, `ogσ

(
1− Nξp (r)

)〉
|r ∈ <

}
, (8)
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in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ are indicated the truth, indeterminacy and falsity
memberships in <, Θ = [0, 1] be the unit interval. Also following condition is satisfied by Pσ, Iσ and Nσ,
0 ≤ Pσ (r) + Iσ (r) + Nσ (r) ≤ 3;∀ r ∈ <. Therefore the truth membership grade is

1−
(
`ogσPξp (r)

)
: < → Θ, such that 0 ≤ 1−

(
`ogσPξp (r)

)
≤ 1, for all r ∈ <

the indeterminacy membership is

`ogσ

(
1− Iξp (r)

)
: < → Θ, such that 0 ≤ `ogσ

(
1− Iξp (r)

)
≤ 1, for all r ∈ <

and falsity membership is

`ogσ

(
1− Nξp (r)

)
: < → Θ, such that 0 ≤ `ogσ

(
1− Nξp (r)

)
≤ 1, for all r ∈ <.

Therefore

`ogσζp =
{〈

1−
(
`ogσPξp (r)

)
, `ogσ

(
1− Iξp (r)

)
, `ogσ

(
1− Nξp (r)

)〉
|r ∈ <

}

0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
≤ 1, σ 6= 1

is SVNS.

Definition 14. For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. If

`ogσζp =








1−
(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)


 0 < σ ≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1




1−
(
`og 1

σ
Pξp (r)

)
,

`og 1
σ

(
1− Iξp (r)

)
,

`og 1
σ

(
1− Nξp (r)

)




0 < 1
σ ≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1,

σ 6= 1

(9)

then the function `ogσζp is known to be a logarithmic operator for SVNS, and its value is said to be logarithmic
SVNN (L-SVNN). Here, we take `ogσ0 = 0, σ > 0, σ 6= 1.

Theorem 1. [10] For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <, then `ogσζp is also be SVNN.

Now, we give some discussion on the basic properties of the L-SVNN.

Definition 15. For any two L-SVNNs `ogσζp =




1−
(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)


 and `ogσζq =




1−
(
`ogσPξq (r)

)
,

`ogσ

(
1− Iξq (r)

)
,

`ogσ

(
1− Nξq (r)

)


 in < and β ≥ 0.Then the logarithmic operations of L-SVNNs are propose as

(1) `ogσζp ⊕ `ogσζq =





1−
(
`ogσPξp (r)

)
·
(
`ogσPξq (r)

)
,

`ogσ

(
1− Iξp (r)

)
· `ogσ

(
1− Iξq (r)

)
,

`ogσ

(
1− Nξp (r)

)
· `ogσ

(
1− Nξq (r)

)





;
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(2) β · `ogσζp =





1−
(
`ogσPξp (r)

)β
,

(
`ogσ

(
1− Iξp (r)

))β
,

(
`ogσ

(
1− Nξp (r)

))β





;

(3) `ogσζp ⊗ `ogσζq =





1−
(
`ogσPξp (r)

)
· 1−

(
`ogσPξq (r)

)
,

1−
(

1− `ogσ

(
1− Iξp (r)

))
·
(

1− `ogσ

(
1− Iξq (r)

))
,

1−
(

1− `ogσ

(
1− Nξp (r)

))
·
(

1− `ogσ

(
1− Nξq (r)

))





;

(4)
(
`ogσζp

)β
=





(
1−

(
`ogσPξp (r)

))β
,

1−
(

1− `ogσ

(
1− Iξp (r)

))β
,

1−
(

1− `ogσ

(
1− Nξp (r)

))β





.

Theorem 2. [10] For any two L-SVNNs `ogσζp =




1−
(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)


 (p = 1, 2) in <, with 0 <

σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, β, β1, β2 > 0 be any real numbers. Then

(1) β (`ogσζ1 ⊕ `ogσζ2) = β`ogσζ1 ⊕ β`ogσζ2;
(2) (`ogσζ1 ⊗ `ogσζ2)

β = (`ogσζ1)
β ⊗ (`ogσζ2)

β ;
(3) β1`ogσζ1 ⊕ β2`ogσζ1 = (β1 + β2) `ogσζ1;
(4) (`ogσζ1)

β1 ⊗ (`ogσζ1)
β2 = (`ogσζ1)

(β1+β2) ;

(5)
(
(`ogσζ1)

β1
)β2

= (`ogσζ1)
β1β2 .

Comparison Technique for L-SVNNs

Definition 16. [10] For any L-SVNN `ogσζp =




1−
(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)


 in <. Then score and accuracy

values are define as
(1) S̃(`ogσζp) = 1−

(
`ogσPξp (r)

)
− `ogσ

(
1− Iξp (r)

)
−
(
`ogσ

(
1− Nξp (r)

))

(2) Ã(`ogσζp) = 1−
(
`ogσPξp (r)

)
+ `ogσ

(
1− Iξp (r)

)
+
(
`ogσ

(
1− Nξp (r)

))

The above defined score and accuracy values suggest which L-SVNN are greater than other
L-SVNNs. The comparison technique is defined in the following definition.

Definition 17. For any L-SVNNs `ogσζp =




1−
(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)


 (p = 1, 2) in <. Then, comparison

technique is proposed as:
(1) If S̃(`ogσζ1) < S̃(`ogσζ2) then `ogσζ1 < `ogσζ2,
(2) If S̃(`ogσζ1) > S̃(`ogσζ2) then `ogσζ1 > `ogσζ2,
(3) If S̃(`ogσζ1) = S̃(`ogσζ2) then
(a) Ã(`ogσζ1) < Ã(`ogσζ2) then `ogσζ1 < `ogσζ2,
(b) Ã(`ogσζ1) > Ã(`ogσζ2) then `ogσζ1 > `ogσζ2,
(c) Ã(`ogσζ1) = Ã(`ogσζ2) then `ogσζ1 ≈ `ogσζ2.
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4. Logarithmic Aggregation Operators for L-SVNNs

Now, we propose novel logarithmic hybrid aggregation operators for L-SVNNs based on
logarithmic operations laws as follows:

4.1. Logarithmic Hybrid Averaging Operator

Definition 18. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic single valued neutrosophic hybrid

weighted averaging (L-SVNHWA) operator is

L− SVNHWA (ζ1, ζ2, ..., ζn) =
n

∑
p=1

ωp`ogσp ζ∗η(p), (10)

where βp (p = 1, ..., n) is the weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) = nβpζη(p), P ∈ N
)

consequently by total order ζ∗
η(1) ≥ ζ∗

η(2) ≥ ... ≥ ζ∗
η(n). Also, the associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Theorem 3. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then by using logarithmic operations and Definition 18,

L− SVNHWA is defined as

L− SVNHWA (ζ1, ζ2, ..., ζn)

=








1−
n
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp




0 < σp ≤ min





Pξp ,
1− Iξp ,
1− Nξp





< 1




1−
n
∏

p=1

(
`og 1

σp
P∗ξη(p)

)ωp

,

n
∏

p=1

(
`og 1

σp

(
1− I∗ξη(p)

))ωp

,

n
∏

p=1

(
`og 1

σp

(
1− N∗ξη(p)

))ωp




0 < 1
σp
≤ min





Pξp ,
1− Iξp ,
1− Nξp





< 1,

σ 6= 1

(11)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) = nβpζη(p), P ∈ N
)

consequently by total order ζ∗
η(1) ≥ ζ∗

η(2) ≥ ... ≥ ζ∗
η(n). Also the associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Proof. Using mathematical induction to prove Equation (3), we proceed as:
(a) For n = 2, since

ω1`ogσ1 ζ∗η(1) =




1−
(
`ogσ1 P∗ξη(1)

)ω1
,

(
`ogσ1

(
1− I∗ξη(1)

))ω1
,

(
`ogσ1

(
1− N∗ξη(1)

))ω1



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and

ω2`ogσ2 ζ∗η(2) =




1−
(
`ogσ2 P∗ξη(2)

)ω2
,

(
`ogσ2

(
1− I∗ξη(2)

))ω2
,

(
`ogσ2

(
1− N∗ξη(2)

))ω2




Then

L− SVNHWA (ζ1, ζ2) = ω1`ogσ1 ζ∗η(1) ⊕ω2`ogσ2 ζ∗η(2)

=




1−
(
`ogσ1 P∗ξη(1)

)ω1
,

(
`ogσ1

(
1− I∗ξη(1)

))ω1
,

(
`ogσ1

(
1− N∗ξη(1)

))ω1


⊕




1−
(
`ogσ2 P∗ξη(2)

)ω2
,

(
`ogσ2

(
1− I∗ξη(2)

))ω2
,

(
`ogσ2

(
1− N∗ξη(2)

))ω2




=




1−
(
`ogσ1 P∗ξη(1)

)ω1 ·
(
`ogσ2 P∗ξη(2)

)ω2
,

(
`ogσ1

(
1− I∗ξη(1)

))ω1 ·
(
`ogσ2

(
1− I∗ξη(2)

))ω2
,

(
`ogσ1

(
1− N∗ξη(1)

))ω1 ·
(
`ogσ2

(
1− N∗ξη(2)

))ω2




=




1−
2

∏
p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp




.

(b) Now Equation (3) is true for n = k,

L− SVNHWA (ζ1, ζ2, ..., ζk) =




1−
k

∏
p=1

(
`ogσp P∗ξη(p)

)ωp
,

k
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp




.

(c) Now, we prove that Equation (3) for n = k + 1, that is

L− SVNHWA (ζ1, ζ2, ..., ζk) =
k

∑
p=1

ωp`ogσp ζ∗η(p) + ωk+1`ogσk+1 ζ∗η(k+1)
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L− SVNHWA (ζ1, ζ2, ..., ζk)

=




1−
k

∏
p=1

(
`ogσp P∗ξη(p)

)ωp
,

k
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp



⊕




1−
(
`ogσk+1 P∗ξη(k+1)

)ωk+1
,

(
`ogσk+1

(
1− I∗ξη(k+1)

))ωk+1
,

(
`ogσk+1

(
1− N∗ξη(k+1)

))ωk+1




=




1−
k+1
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

k+1
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k+1
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp




Thus Equation (3) is true for n = z + 1. Hence its satisfies for whole n. Therefore

L− SVNHWA (ζ1, ζ2, ..., ζn) =




1−
n
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp




.

In a similarly way, if 0 < 1
σp
≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, we can also obtain

L− SVNHWA (ζ1, ζ2, ..., ζn) =




1−
n
∏

p=1

(
`og 1

σp
P∗ξη(p)

)ωp

,

n
∏

p=1

(
`og 1

σp

(
1− I∗ξη(p)

))ωp

,

n
∏

p=1

(
`og 1

σp

(
1− N∗ξη(p)

))ωp




which completes the proof.

Remark 1. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− SVNHWA operator is reduced as follows

L− SVNHWA (ζ1, ζ2, ..., ζn) =




1−
n
∏

p=1

(
`ogσP∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσ

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσ

(
1− N∗ξη(p)

))ωp




. (12)

Properties

L− SVNHWA operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− SVNHWA (ζ1, ζ2, ..., ζn) = ζ. (13)

475



Symmetry 2019, 11, 364

(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp P∗ξp
, maxp I∗ξp

, maxp N∗ξp

〉
and ζ+p =

〈
maxp P∗ξp

, minp I∗ξp
, minp N∗ξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− SVNHWA (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (14)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζη(p) ⊆ ζ∗η(p) for (p = 1, ..., n) , then

L− SVNHWA (ζ1, ζ2, ..., ζn) ⊆ L− SVNHWA (ζ∗1 , ζ∗2 , ..., ζ∗n) . (15)

4.2. Logarithmic Hybrid Geometric Operators

Definition 19. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic single valued neutrosophic hybrid

weighted geometric (L-SVNHWG) operator is

L− SVNHWG (ζ1, ζ2, ..., ζn) =
n

∏
p=1

(
`ogσp ζ∗η(p)

)ωp
(16)

where βp (p = 1, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) =
(

ζη(p)

)nβp
, P ∈ N

)
consequently by total order ζ∗

η(1) ≥ ζ∗
η(2) ≥ ... ≥ ζ∗

η(n). Also associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Theorem 4. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then by using logarithmic operations and Definition 19,

L−SVNHWG define as

L− SVNHWG (ζ1, ζ2, ..., ζn)

=








n
∏

p=1

(
1− `ogσp P∗ξη(p)

)βp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξη(p)

)))βp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− n∗ξη(p)

)))βp




0 < σp ≤ min





Pξp ,
1− Iξp ,
1− Nξp





< 1




n
∏

p=1

(
1− `og 1

σp
P∗ξη(p)

)βp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− I∗ξη(p)

)))βp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− n∗ξη(p)

)))βp




0 < 1
σp
≤ min





Pξp ,
1− Iξp ,
1− Nξp





< 1,

σ 6= 1

(17)

where βp (p = 1, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) =
(

ζη(p)

)nβp
, P ∈ N

)
consequently by total order ζ∗

η(1) ≥ ζ∗
η(2) ≥ ... ≥ ζ∗

η(n). Also associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Proof. Using mathematical induction to prove Equation (4), we proceed as:
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(a) For n = 2, since

(`ogσ1 ζ∗1)
ω1 =




(
1− `ogσ1 P∗ξ1

)ω1

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1




and

(`ogσ2 ζ∗2)
ω2 =




(
1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2


 .

Then

L− SVNHWG (ζ1, ζ2) = (`ogσ1 ζ∗1)
ω1 ⊗ (`ogσ2 ζ∗2)

ω2

=




(
1− `ogσ1 P∗ξ1

)ω1

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1


⊗




(
1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2




=





(
1− `ogσ1 P∗ξ1

)ω1 ·
(

1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1 ·
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1 ·
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2





=




2
∏

p=1

(
1− `ogσp P∗ξp

)ωp
,

1−
2

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
2

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp




.

(b) Now Equation (4) is true for n = k,

L− SVNHWG (ζ1, ζ2, ..., ζk) =




k
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp




,

(c) Now, we prove that Equation (4) for n = k + 1, that is

L− SVNHWG (ζ1, ζ2, ..., ζk, ζk+1) =
k

∏
p=1

(
`ogσp ζp

)ωp ⊗
(
`ogσk+1 ζk+1

)ωk+1
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L− SVNHWG (ζ1, ζ2, ..., ζk, ζk+1)

=




k
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp



⊗




(
1− `ogσp P∗ξk+1

)ωk+1

1−
(

1−
(
`ogσp

(
1− I∗ξk+1

)))ωk+1

1−
(

1−
(
`ogσp

(
1− N∗ξk+1

)))ωk+1




=




k+1
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k+1
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k+1
∏

p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp




Thus Equation (4) is true for n = z + 1. Hence it is satisfied for all n. Therefore

L− SVNHWG (ζ1, ζ2, ..., ζn) =




n
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp




.

In a similar way, if 0 < 1
σp
≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, we can also obtain

L− SVNHWG (ζ1, ζ2, ..., ζn) =




n
∏

p=1

(
1− `og 1

σp
P∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− N∗ξp

)))ωp




which completes the proof.

Remark 2. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− SVNHWG operator reduced as follows

L− SVNHWG (ζ1, ζ2, ..., ζn) =




n
∏

p=1

(
1− `ogσP∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`ogσ

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`ogσ

(
1− N∗ξp

)))ωp




. (18)

Properties

L− SVNHWG operator satisfies some properties are enlist below;
(1) Idempotency: for any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− SVNHWG (ζ1, ζ2, ..., ζn) = ζ. (19)
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(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− SVNHWG (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (20)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− SVNHWG (ζ1, ζ2, ..., ζn) ⊆ L− SVNHWG (ζ∗1 , ζ∗2 , ..., ζ∗n) . (21)

4.3. Generalized Logarithmic Averaging Operator

Definition 20. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic generalized single-valued

neutrosophic weighted averaging (L-GSVNWA) operator is

L− GSVNWA (ζ1, ζ2, ..., ζn) =

(
n

∑
p=1

βp`ogσp

(
ζp
)γ

) 1
γ

(22)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Theorem 5. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, γ ≥ 1. Then by using logarithmic operations and Definition 20,

L− GSVNWA define as

L− GSVNWA (ζ1, ζ2, ..., ζn)






(
1−

n
∏

p=1

(
1−

(
1−

(
`ogσp Pξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσp

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσp

(
1− Nξp

))γ)βp
] 1

γ




0 < σp ≤ min





Pξp ,
1− Iξp ,
1− Nξp





< 1




(
1−

n
∏

p=1

(
1−

(
1−

(
`og 1

σp
Pξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `og 1

σp

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `og 1

σp

(
1− Nξp

))γ)βp
] 1

γ




0 < 1
σp
≤ min





Pξp ,
1− Iξp ,
1− Nξp





< 1,

σ 6= 1

(23)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Apparently, if we use γ = 1, then the L−GSVNWA operator is becomes into L− SVNWA operator.

Proof. Theorem 5 take the form by utilized the technique of mathematical induction and procedure is
eliminate here.
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Remark 3. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− GSVNWA operator reduced as follows

L− GSVNWA (ζ1, ζ2, ..., ζn) =




(
1−

n
∏

p=1

(
1−

(
1−

(
`ogσPξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσ

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσ

(
1− Nξp

))γ)βp
] 1

γ




. (24)

Properties

L− GSVNWA operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− GSVNWA (ζ1, ζ2, ..., ζn) = ζ. (25)

(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− GSVNWA (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (26)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− GSVNWA (ζ1, ζ2, ..., ζn) ⊆ L− GSVNWA (ζ∗1 , ζ∗2 , ..., ζ∗n) . (27)

4.4. Generalized Logarithmic Geometric Operator

Definition 21. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with

0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic generalized single valued

neutrosophic weighted geometric (L-GSVNWG) operator is

L− GSVNWG (ζ1, ζ2, ..., ζn) =

(
n

∑
p=1

(
`ogσp

(
ζp
)γ
)βp

) 1
γ

(28)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.
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Theorem 6. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in<, with 0 < σp ≤

min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, γ ≥ 1. Then by using logarithmic operations and definition (21),

L− GSVNWG define as

L− GSVNWG (ζ1, ζ2, ..., ζn)






1−
[

1−
n
∏

p=1

(
1−

(
`ogσp Pξp

)γ)βp
] 1

γ

,

(
1−

n
∏

p=1

(
1−

(
`ogσp

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`ogσp

(
1− Nξp

))γ)βp
) 1

γ




0 < σp ≤ min





Pξp ,
1− Iξp ,
1− Nξp





< 1




1−
[

1−
n
∏

p=1

(
1−

(
`og 1

σp
Pξp

)γ)βp
] 1

γ

,

(
1−

n
∏

p=1

(
1−

(
`og 1

σp

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`og 1

σp

(
1− Nξp

))γ)βp
) 1

γ




0 < 1
σp
≤ min





Pξp ,
1− Iξp ,
1− Nξp





< 1,

σ 6= 1

(29)

where βp (p = 1, ..., n) is the weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Apparently, if we use γ = 1, then the L−GSVNWG operator is becomes into L− SVNWG operator.

Proof. Theorem 6 takes the form by utilizing the technique of mathematical induction and the
procedure is eliminated here.

Remark 4. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− GSVNWG operator reduced as follows

L− GSVNWG (ζ1, ζ2, ..., ζn) =




1−
[

1−
n
∏

p=1

(
1−

(
`ogσPξp

)γ)βp
] 1

γ

,

(
1−

n
∏

p=1

(
1−

(
`ogσ

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`ogσ

(
1− Nξp

))γ)βp
) 1

γ




. (30)

Properties

L− GSVNWG operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− GSVNWG (ζ1, ζ2, ..., ζn) = ζ. (31)
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(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− GSVNWG (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (32)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− GSVNWG (ζ1, ζ2, ..., ζn) ⊆ L− GSVNWG (ζ∗1 , ζ∗2 , ..., ζ∗n) . (33)

5. Proposed Technique for Solving Decision-Making Problems

This section includes the new approach to decision-making based on the single-valued
neutrosophic sets, and we will propose a decision-making matrix as indicated below.

Let H = (h1, h2, ..., hm) be a distinct collection of m probable alternatives and Y = (y1, y2, ..., yn)

be a finite collection of n criteria, where hi indicate the i-th alternatives and yj indicate the j-th criteria.
Let D = (d1, d2, ..., dt) be a finite set of t experts, where dk indicate the k-th expert. The expert dk
supply her appraisal of an alternative hi on an attribute yj as a SVNNs (i = 1, ..., m; j = 1, ..., n).

The expert’s information is represented by the SVNS decision-making matrix Ds =
[

E(s)
ip

]
m×n

. Assume

that βp(p = 1, ..., m) is the weight vector of the attribute yj, where 0 ≤ βp ≤ 1,
n
∑

p=1
βp = 1 and

ψ = (ψ1, ψ2, ..., ψm) be the weights of the decision makers dk such that ψk ≤ 1,
n
∑

k=1
ψk = 1.

When we construct the SVNS decision-making matrices, Ds =
[

E(s)
ip

]
m×n

for decision. Basically,

criteria have two types, one is benefit criteria and other one is cost criteria. If the SVNS decision
matrices have cost-type criteria metricsDs =

[
Es

ip

]
m×n

can be converted into the normalized SVNS

decision matrices, Rs =
[
r(s)ip

]
m×n

, where rs
ip =

{
Es

ip , for benefit criteria Ap

Es
ip , for cost criteria Ap ,

j = 1, ..., n, and Es
ip is

the complement of Es
ip . The normalization is not required, if the criteria have the same type.

Step 1: In this step, we get the neutrosophic information, using the all proposed logarithmic
aggregation operators to evolute the alternative preference values with associated weights, which are
ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn

p=1ωp = 1.

Step 2: We find the score value S̃(`ogσζp) and the accuracy value Ã(`ogσζp) of the cumulative
total preference value hi (i = 1, ..., m).

Step 3: By definition, we give ranking to the alternatives hi (i = 1, ..., m) and choose the best
alternative which has the maximum score value.

5.1. Numerical Example

Assume that there is a committee which selects five applicable emerging technology enterprises
Hg(g = 1, ..., 5), which are given as follows.
(1) Augmented reality (H1),
(2) Personalized medicine (H2) ,
(3) Artificial intelligence (H3),
(4) Gene drive (H4) and
(5) Quantum computing (H5).

They assess the possible rising technology enterprises according to the five attributes, which are
(1) Advancement (D1),
(2) Market risk (D2),
(3) Financial investments (D3),
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(4) Progress of science and technology (D4) and
(5) Designs (D5) .

To avoid the conflict between them, the decision makers take the attribute weights as
β = (0.15, 0.28, 0.20, 0.22, 0.15)T . They construct the SVNS decision-making matrix given in Table 1.

Table 1. Emerging Technology Enterprises D1.

D1 D2 D3 D4 D5

H1 (0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.2, 0.2, 0.6) (0.4, 0.2, 0.3) (0.3, 0.3, 0.4)
H2 (0.7, 0.1, 0.3) (0.3, 0.2, 0.7) (0.6, 0.3, 0.2) (0.2, 0.4, 0.6) (0.7, 0.1, 0.2)
H3 (0.5, 0.3, 0.4) (0.4, 0.2, 0.6) (0.6, 0.1, 0.2) (0.3, 0.1, 0.5) (0.6, 0.4, 0.3)
H4 (0.7, 0.3, 0.2) (0.2, 0.2, 0.7) (0.4, 0.5, 0.2) (0.2, 0.2, 0.5) (0.4, 0.5, 0.4)
H5 (0.4, 0.1, 0.3) (0.2, 0.1, 0.5) (0.4, 0.1, 0.5) (0.6, 0.3, 0.4) (0.3, 0.2, 0.4)

Since D1, D3 are benefit-type criteria and D2, D4 is cost type criteria, the normalization is required
for these decision matrices. Normalized decision matrices are shown in Table 2.

Table 2. Emerging Technology Enterprises R1.

D1 D2 D3 D4 D5

H1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4) (0.3, 0.3, 0.4)
H2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.7, 0.1, 0.2)
H3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.4, 0.3)
H4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2) (0.4, 0.5, 0.4)
H5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6) (0.3, 0.2, 0.4)

Step 1: Now, we apply all the proposed logarithmic aggregation operators to collective
neutrosophic information as follows.

Case 1: Using logarithmic single-valued neutrosophic hybrid weighted averaging aggregation
operator, we obtained the results shown in Table 3.

Table 3. Aggregated information using the logarithmic single valued neutrosophic hybrid weighted
averaging (L-SVNHWA) operator for σ = 0.3.

H1 (0.17624, 0.23432, 0.43885)
H2 (0.66164, 0.16229, 0.21840)
H3 (0.52788, 0.18347, 0.32224)
H4 (0.49410, 0.30962, 0.20985)
H5 (0.22496, 0.12393, 0.39318)

Case 2: Using Logarithmic single valued neutrosophic hybrid weighted geometric aggregation
operator, we obtainedthe results shown in Table 4.

Table 4. Aggregated information using logarithmic single valued neutrosophic hybrid weighted
geometric (L-SVNHWG) operator for σ = 0.1.

H1 (0.52472, 0.12638, 0.24189)
H2 (0.81968, 0.10633, 0.11764)
H3 (0.74946, 0.11782, 0.17620)
H4 (0.70685, 0.18942, 0.11685)
H5 (0.58497, 0.07427, 0.23305)

Step 2: We find the score index S̃(`ogσζp) and the accuracy index Ã(`ogσζp) of the cumulative
overall preference value hi (i = 1, 2, 3, 4, 5).
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Case 1: Using the score of aggregated information for L-SVNHWA operator, we obtained the
results shown in Table 5.

Table 5. Score of aggregated information for L-SVNHWA operator.

S̃(`og0.3H1) −1.14345 Ã(`og0.3H1) 0.25985
S̃(`og0.3H2) 0.30519 Ã(`og0.3H2) 1.0087
S̃(`og0.3H3) −0.02207 Ã(`og0.3H3) 0.96078
S̃(`og0.3H4) −0.08895 Ã(`og0.3H4) 0.91781
S̃(`og0.3H5) −0.76389 Ã(`og0.3H5) 0.28571

Case 2: Score of Aggregated information for L-SVNHWG Operator, we obtained the results shown
in Table 6.

Table 6. Score of aggregated information for L-SVNHWG operator.

S̃(`og0.1H1) 0.540979 Ã(`og0.1H1) 0.89888
S̃(`og0.1H2) 0.810463 Ã(`og0.1H2) 1.01683
S̃(`og0.1H3) 0.736126 Ã(`og0.1H3) 1.01338
S̃(`og0.1H4) 0.704159 Ã(`og0.1H4) 0.994506
S̃(`og0.1H5) 0.618387 Ã(`og0.1H5) 0.903179

Step 3: We find the best (suitable) alternative which has the maximum score value from the
set of alternatives hi (i = 1, 2, 3, 4, 5). Overall preference value and ranking of the alternatives are
summarized in Table 7.

Table 7. Overall preference value and ranking of the alternatives.

S̃(H1) S̃(H2) S̃(H3) S̃(H4) S̃(H5) Ranking

L− SVNHWA −1.143 0.305 −0.022 −0.088 −0.763 H2 > H3 > H4 > H5 > H1
L− SVNHWG 0.540 0.810 0.736 0.704 0.618 H2 > H3 > H4 > H5 > H1

5.2. Comparison with Existing Methods

This section consists of the comparative analysis of several existing aggregation operators of
neutrosophic information with the proposed logarithmic single valued hybrid weighted aggregation
operators. Existing methods for aggregated neutrosophic information are shown in Table 8–11.

Table 8. Average aggregated SVN information.

SVNWA [35] SVNOWA [35] NWA [14]

H1 (0.3779, 0.2259, 0.4002) (0.3820, 0.2449, 0.4071) (0.3779, 0.2314, 0.4223)
H2 (0.6615, 0.2052, 0.2381) (0.6663, 0.1801, 0.2430) (0.6615, 0.2426, 0.2446)
H3 (0.5656, 0.1763, 0.3131) (0.5597, 0.1838, 0.3122) (0.5656, 0.2109, 0.3272)
H4 (0.5722, 0.2929, 0.2219) (0.5706, 0.3145, 0.2219) (0.5722, 0.3348, 0.2338)
H5 (0.4165, 0.1413, 0.3607) (0.3960, 0.1373, 0.3696) (0.4165, 0.1633, 0.4131)

Table 9. Average aggregated SVN information.

SVNFWA [12] SVNHWA [11] γ = 2

H1 (0.3755, 0.2262, 0.4018) (0.3725, 0.2264, 0.4033)
H2 (0.6611, 0.2072, 0.2385) (0.6608, 0.2086, 0.2388)
H3 (0.5652, 0.1779, 0.3141) (0.5648, 0.1790, 0.3149)
H4 (0.5692, 0.2956, 0.2225) (0.5663, 0.2978, 0.2230)
H5 (0.4159, 0.1422, 0.3646) (0.4151, 0.1427, 0.3680)
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Table 10. Average aggregated SVN information.

SVNHWA [11] γ = 3 L-SVNWA [10]

H1 (0.3693, 0.2266, 0.4048) (0.3130, 0.1753, 0.3544)
H2 (0.6604, 0.2099, 0.2390) (0.6486, 0.1989, 0.2313)
H3 (0.5645, 0.1800, 0.3157) (0.4989, 0.1733, 0.3321)
H4 (0.5635, 0.3000, 0.2234) (0.5585, 0.2736, 0.1942)
H5 (0.4143, 0.1432, 0.3714) (0.2849, 0.1249, 0.3758)

Table 11. Average aggregated SVN information.

L-SVNOWA [10]

H1 (0.3229, 0.1926, 0.3607)
H2 (0.6549, 0.1719, 0.2368)
H3 (0.4896, 0.1823, 0.3303)
H4 (0.5561, 0.2975, 0.1942)
H5 (0.2442, 0.1209, 0.3834)

Now, we analyze the ranking of the alternatives according to their aggregated information (in
Table 12).

Table 12. Overall ranking of the alternatives.

Existing Operators Ranking

NWA [14] H2 > H3 > H4 > H5 > H1
SVNWA [35] H2 > H3 > H4 > H5 > H1

SVNOWA [35] H2 > H3 > H4 > H5 > H1
SVNWG [35] H2 > H3 > H4 > H5 > H1

SVNOWG [35] H2 > H3 > H4 > H5 > H1
SVNFWA [12] H2 > H3 > H4 > H5 > H1

SVNHWA [11] γ = 2 H2 > H3 > H4 > H5 > H1
SVNHWA [11] γ = 3 H2 > H3 > H4 > H5 > H1

NWG [14] H2 > H3 > H4 > H5 > H1
SVNFWG [12] H2 > H3 > H4 > H5 > H1

SVNHWG [11] γ = 2 H2 > H3 > H4 > H5 > H1
SVNHWG [11] γ = 3 H2 > H3 > H4 > H5 > H1

SNWEA [15] H2 > H3 > H5 > H4 > H1
L-SVNWA [10] H2 > H4 > H3 > H5 > H1

L-SVNOWA [10] H2 > H4 > H3 > H5 > H1
L-SVNWG [10] H2 > H4 > H3 > H1 > H5

L-SVNOWG [10] H2 > H3 > H4 > H5 > H1

Proposed Operators Ranking

L-SVNHWA H2 > H3 > H4 > H5 > H1
L-SVNHWG H2 > H3 > H4 > H5 > H1
L-GSVNWA H2 > H4 > H3 > H5 > H1
L-GSVNWG H2 > H4 > H3 > H1 > H5

The bast alternative was H2. The obtained results utilizing logarithmic single valued neutrosophic
hybrid weighted operators and logarithmic generalized single valued neutrosophic weighted operators
were same as results shows existing methods. Hence, this study proposed novel logarithmic
aggregation operators to aggregate the neutrosophic information more effectively and efficiently.
Utilizing the proposed logarithmic aggregation operators, we sound the best alternative from a set of
alternatives given by the decision maker. Hence the proposed MCDM technique based on logarithmic
operators lets us find the best alternative as an applications in decision support systems.
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6. Conclusions

In this work, an attempt has been made to present different kinds of logarithmic weighted
averaging and geometric aggregation operators based on the single-valued neutrosophic set
environment. Earlier, it has been observed that the various aggregation operators are defined under
the SVNSs environment where the aggregation operators based on the algebraic or Einstein t-norm
and t-conorm. In this paper, we proposed novel logarithmic hybrid aggregation operators and also
logarithmic generalized averaging and geometric aggregation operators. Aggregation operators,
namely L-SVNHWA, L-SVNHWG, L-GSVNWA and L-GSVNWA are developed under the SVNSs
environment and we have studied their properties in detail. Further, depending on the standardization
of the decision matrix and the proposed aggregation operators, a decision-making approach is
presented to find the best alternative to the SVNSs environment. An illustrative example is taken
for illustrating the developed approach, and their results are compared with some of the existing
approaches of the SVNSs environment to show the validity of it. From the studies, we conclude that
the proposed approach is more generic and suitable for solving the stated problem.

In the future, we shall link the proposed operators with some novel fuzzy sets, like as type 2
fuzzy sets, neutrosophic sets, and so on. Moreover, we may examine if our constructed approach
can also be applied in different areas, such as personal evaluation, medical artificial intelligence,
energy management and supplier selection evaluation.
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Abstract: This paper presents an epidemiological study on the dietary fat that causes prostate cancer
in an uncertainty environment. To study this relationship under the indeterminate environment,
data from 30 countries are selected for the prostate cancer death rate and dietary fat level in the food.
The neutrosophic correlation and regression line are fitted on the data. We note from the neutrosophic
analysis that the prostate cancer death rate increases as the dietary fat level in the people increases.
The neutrosophic regression coefficient also confirms this claim. From this study, we conclude that
neutrosophic regression is a more effective model under uncertainty than the regression model under
classical statistics. We also found a statistical correlation between dietary fat and prostate cancer risk.

Keywords: prostate cancer; neutrosophic statistics; dietary fat level; neutrosophic regression;
neutrosophic correlation

1. Introduction

In modern society, cancer is the most widespread disease in both developed and under-developing
countries. The cancer disease, its symptoms and treatment impact the victim patients. Lin et al. [1]
pointed out that high anxiety and depression is noted in cancer patients. According to Siegel et al. [2],
cancer is the disease that is the leading cause of death in the USA. As mentioned by Rahib et al. [3],
in 2030, it is expected the sufficient deaths because of cancer. In men, worldwide, prostate cancer is
the second common type of cancer. Prostate cancer increases slowly and is not harmful during the
initial stage. The main symptoms of prostate cancer are troubling in urine, blood during urination
and pain in the bones. Cao et al. [4] mentioned, “Prostate cancer is the third highest cause of male
mortality in the developed world”. Torre et al. [5] pointed out that more than 37,000 prostate cancer
cases are recorded every year in the UK. According to Jemal et al. [6], prostate cancer increases with
the increase in age. Lin et al. [1] described that prostate cancer is a common urologic malignancy and
results in a high death rate. In Taiwan, it is the fifth most common cancer. Arnold et al. [7] studied
the effect of smoking and weight on cancer. [8] studied the factors that contribute significantly to the
cancer. Cao et al. [4] presented seven new biomarkers for the diagnosis of cancer. Applegate et al. [9]
studied the relationship between soy food and prostate cancer. More information on cancer can be
seen in Carter et al. [10].

Regression analysis, principle components analysis and partial least square analysis have been
widely used for analyzing the data in a variety of fields. The regression analysis study is applied to see
the effect of the independent variable (s) on the dependent variable (s). The regression analysis is a
powerful statistical method to use for examining the relationship between one or more explanatory
variables and dependent variables. This method is widely used for prediction and forecasting purposes.
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The applications of these methods can be seen in Abdul-Wahab et al. [11], Cervigón et al. [12],
Kumar and Chong [13] and Karamacoska et al. [14].

Fuzzy logic is applied when there is uncertainty in the observations or in the parameters.
Fuzzy logic has been widely applied in epidemical studies. Saritas et al. [15] introduced the fuzzy
system to analyze prostate cancer. Benecchi [16] used the fuzzy logic and artificial neural network
to develop a system to predict prostate cancer. Saritas et al. [17] described the fuzzy approach to
determine prostate cancer. Yuksel et al. [18] introduced the soft expert system to diagnose this cancer.
Fu et al. [19] studied the risk evaluation of prostate cancer. More information of this topic can be
read in Cosma et al. [20], Al-Dmour et al [21] and Ludwig et al. [22]. More details about the use of
fractal geometry and wavelet analysis in the cancer study can be seen in Rodrigo et al. [23], Rodrigo
Capobianco Guido [24], Guariglia [25], Guariglia [26] and Guariglia [27].

According to Smarandache [28], neutrosophic logic is the generalized form of the fuzzy logic.
The neutrosophic logic also considered an indeterminacy interval for the analysis. Smarandache [29]
introduced neutrosophic statistics, which is the extension of classical statistics and is applied for the
analysis under the uncertainty environment. Neutrosophic regression is the extension of classical
regression analysis. Neutrosophic regression is applied when some observations in the sample are
uncertain. Details of neutrosophic regression can be seen in Smarandache [29]. The applications of the
neutrosophic statistics can be seen in Chen et al. [30], Chen et al. [30], Aslam [31] and Aslam [32].

Many studies on prostate cancer in social and biological sciences are available using classical
statistics. The existing studies are not helpful when the data is recorded in an indeterminate
environment. In this paper, we will study the relationship between prostate cancer and dietary
fat level using the neutrosophic interval method. By exploring the literature on prostate cancer and
according to the best of our knowledge, there is no study on the relationship between the death rate due
to prostate cancer and dietary fat level using neutrosophic statistics. In this paper, we aim to present
the analysis for these variables using the data of 30 countries under neutrosophic statistics. We expect
that the proposed method will be more adequate and effective in analyzing the relation between the
prostate cancer death rate and the dietary fat level than the analysis under classical statistics.

2. Material Methods

In this section, we will give details about the source of data, material and methods under the
neutrosophic statistical interval method.

2.1. Data Description

The epidemiological studies showed that the dietary fat level causes an increase in the prostate
cancer rate across countries, see [33]. The dietary fat can measure through the fat by each ingredient in
our daily food or by calculating the per percentage of calories using glucose machines through blood
in our daily food. In the earlier case, it was not possible to keep the record of exact or determined
dietary fat level, and in the latter case it is was also not determined. Measuring the diet through these
methods is not a determined value and recorded in the interval rage. When the variables are expressed
in an interval, the relationship between dietary level and prostate cancer cannot be studied using the
classical regression model. Therefore, under an uncertain environment, when the dietary fat level and
prostate cancer rate are in the interval range, the neutrosophic statistics can be applied to study the
relationship between the dietary fat level and prostate cancer. By following [33], the data on dietary
fat level and prostate cancer from the 30 countries under the uncertainty level is reported in Table 1.
The variable prostrate death rate is expressed per 100,000 and dietary fat consumption is expressed in
gram/day.

490



Symmetry 2019, 11, 330

Table 1. Prostate cancer death rate of 30 countries.

D-Rate Diet Fat County No. D-Rate Diet Fat County No.

[10.1,10.3] [97,97] 16 [0.9,1.1] [38,38] 1
[11.4,11.4] [73,75] 17 [1.3,1.3] [29,31] 2
[11.1,11.1] [112,112] 18 [1.6,1.6] [42,42] 3
[13.1,13.3] [100,100] 19 [4.5,4.5] [57,57] 4
[12.9,13.1] [134,134] 20 [4.8,4.10] [96,98] 5
[13.4,13.4] [142,142] 21 [5.4,5.6] [47,49] 6
[13.9,14.2] [119,119] 22 [5.5,5.5] [67,67] 7
[14.4,14.4] [137,137] 23 [5.6,5.6] [72,74] 8
[14.4,14.6] [152,152] 24 [6.4,6.6] [93,93] 9
[15.1,15.3] [129,129] 25 [7.8,7.8] [58,58] 10
[15.9,15.9] [156,156] 26 [8.4,8.6] [95,95] 11
[16.3,16.4] [147,147] 27 [8.8,8.8] [67,69] 12
[16.8,16.9] [133,133] 28 [9,9] [62,62] 13
[18.4,18.4] [132,132] 29 [9.1,9.1] [96,96] 14
[12.4,12.6] [143,144] 30 [9.4,9.4] [86,87] 15

2.2. Study Participants

[33] presented data on the prostate cancer death rate and consumption of fat in the 30 countries.
The data presented in Table 1 is the extension of the data provided by [33] under the neutrosophic
statistics. The data was collected from the 30 countries. The data given in Table 1 becomes the same as
in [33] if no indeterminate observations are found in the dietary fat level and prostate cancer.

2.3. Study Outcomes

In this study, the neutrosophic dietary fat level is an explanatory variable and the neutrosophic
death rate due to prostate cancer in the 30 countries is a response variable. The aim of this study is
to see the effect on the prostate cancer death rate due to an increase in the dietary fat level under the
neutrosophic statistical interval method. Therefore, the objective of the study is to measure the prostate
cancer death rate. We defined the neutrosophic death due to prostate cancer may cause of increase
in fat. The data given in Table 1 is the extension of the data provided by [33] in the neutrosophic
interval rage.

2.4. Statistical Methods

We will study the effect of the death rate using the fat level as an explanatory variable.
The relationship between the two variables is studied using the neutrosophic regression proposed
by [29]. The neutrosophic regression is the extension of the classical regression used to see
the relationship between variables when the data is taken from an incomplete, indeterminate or
uncertain sample of the population. Let the neutrosophic variable XNε{XL, XU} represent the
dietary fat level and neutrosophic variable YNNε{YL, YU} denote the death rate due to prostate
cancer. By following [29], the neutrosophic regression which expressed the relation between these two
variables is given as

YN = aN + bN XN ; aNε{aL, aU}, bNε{bL, bU} (1)

where aN and bN are the neutrosophic intercept and rate of change per unit, respectively.
The neutrosophic regression given in Equation (1) can be written as follows

D.rate = aN + bN Diet Fat; aNε{aL, aU} bNε{bL, bU} (2)
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The neutrosophic correlation coefficient rNε{rL, rU} between the two variables is defined as

rN =
nN ∑ xy−∑ x ∑ y√{

nN ∑ x2 − (∑ x)2
}{

nN ∑ y2 − (∑ y)2
} ; nNε{nL, nU} (3)

We presented the scatter plot under the neutrosophic statistical interval methods. We presented
the neutrosophic regression models to measure the prostate cancer death rate. We presented the
fitted model and determined the residual sum of squares for using the neutrosophic regression model.
We used a 5% level of significance to test the null hypothesis that the neutrosophic regression coefficient
is zero. We also made a comparison between the neutrosophic regressions with a regression under the
classical statistics. The data is analyzed using EXCEL and R.

3. Results

We plotted the death rate (D. rate) and dietary fat (Diet Fat) on the scatter diagram in Figure 1.
We note from Figure 1 that there is an increasing trend in the D. rate as the fat level increases. Therefore,
Figure 1 indicates that a relationship between the death rate due to prostate cancer and the dietary
fat level exists. The neutrosophic correlation between two variables is rNε{0.8811, 0.8851}. The fitted
neutrosophic regression model of two variables is given as

YN = [28.36, 29.95] + [6.757, 6.911,]XN (4)
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Figure 1. The scatter plot of two variables.

From Equation (3), we note that for a unit of change in dietary fat, the death rate due to prostate
cancer increases between 6.75 to 6.911. We also observe from the model given in Equation (3) that
when dietary fat is zero, the death rate due to prostate cancer can be expected to be between 28.38 to
29.95 per 100,000. The 95% neutrosophic confidence interval for the neutrosophic slope (rate of change)
bNε{bL, bU} is ([5.35, 5.50], [8.16, 8.31]). This confidence interval shows that one can expect that the
minimum death rate per 10,000 will be between 5.35 to 5.50 and the maximum death rate per 10,000
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will be between 8.16 to 8.31. The neutrosophic p-values [0.0001,0.0001]≤ 0.05 show the significance of
death due to prostate cancer.

4. Discussion

The relationship between two variables using the regression model under classical statistics is
given as: Y = 28.38 + 6.911X. By comparing the neutrosophic regression with the classical regression,
we note that the neutrosophic regression provides the parameters, confidence interval and p-values
in the indeterminacy interval range. The regression model using the classical statistics provides the
determined values of all parameters involved in the regression line. Therefore, under uncertainty,
the proposed neutrosophic regression analysis will be more helpful to see the significance of death
due to the increase in fate rate. Further, the forecasting of a death rate due to cancer can be expected
in the indeterminacy interval rage rather than the exact or the determined values. The neutrosophic
regression model is more flexible and adequate under the uncertainty environment than the classical
regression model.

Study Limitations

The proposed neutrosophic regression model is the extension of the classical regression.
The neutrosophic regression becomes the regression model in the classical statistics if no uncertain
observations are in the sample or in the population. The proposed neutrosophic regression can be
applied adequately in the uncertainty environment.

5. Conclusions

The present study showed that there is a strong relationship between the prostate cancer rate
and dietary fat. We presented a neutrosophic regression model that can be used more effectively
in the uncertainty environment than the classical regression model. The neutrosophic regression
provides the parameters estimation in the indeterminacy interval rage. The neutrosophic regression
shows a significant effect on the death rate due to the inverse in the fat. We also found a statistical
correlation between dietary fat and prostate cancer risk. We conclude from this study that the use of
the neutrosophic regression model for the estimation and forecasting of prostate cancer death will
be helpful to make an adequate decision to control the death rate. We recommend that a health
manager should adopt the neutrosophic regression model for better and more effective analysis
under an uncertainty environment. The proposed study using multiple regression analysis, principal
component analysis or partial least squares analysis can be extended for future research.
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Abstract: Neutrosophic extended triplet group is a new algebra structure and is different from the
classical group. In this paper, the notion of generalized neutrosophic extended triplet group is
proposed and some properties are discussed. In particular, the following conclusions are strictly
proved: (1) an algebraic system is a generalized neutrosophic extended triplet group if and only if it
is a quasi-completely regular semigroup; (2) an algebraic system is a weak commutative generalized
neutrosophic extended triplet group if and only if it is a quasi-Clifford semigroup; (3) for each
n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative generalized neutrosophic extended triplet group; (4) for
each n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative neutrosophic extended triplet group if and only if
n = p1 p2 · · · pm, i.e., the factorization of n has only single factor.

Keywords: neutrosophic extended triplet group; generalized neutrosophic extended triplet group;
quasi-completely regular semigroup; clifford semigroup

1. Introduction

Groups are very important algebraic structures and have been applied in many fields, such as
cryptology, engineering, physics, chemistry, etc. Recently, a new algebraic system, neutrosophic triplet
group (NTG), is proposed by Smarandache and Ali in [1]. For an NTG (N, ∗), every element a ∈ N
has its own neutral element (denote by neut(a)) satisfying condition a ∗ neut(a) = neut(a) ∗ a = a,
and there exits at least one opposite element (denote by anti(a)) in N relative to neut(a) such that
a ∗ anti(a) = anti(a) ∗ a = neut(a). Some further studies can be found in [2–11].

From the original definition of NTG, we can see that it is an extension of a group. However, it is
different from a group. In NTG, the neutral element is different from the unit element of the classical
algebraic system. By removing this restriction, an algebraic system, which is called neutrosophic
extended triplet group (NETG), is proposed, and the classical group is regarded as a special case of
NETG. Moreover, further studies of NETG can be found in [12–18] and some important results have
been achieved.

For the algebraic system (Zn,⊗), ⊗ is the classical mod multiplication, where Zn =

{[0], [1], · · · , [n − 1]} and n ≥ 2 is a positive integer. (Zn,⊗) is only a commutative semigroup
before NTG and NETG are introduced. Recently, properties of algebraic structure of (Zn,⊗) in some
special cases are studied in [19,20] by the point view of NTG. We can see that for some positive integers
n, (Zn,⊗) is a commutative NETG, but for some positive integers n, (Zn,⊗) is not a commutative
NETG. So, there are two problems, 1 What conditions can guarantee (Zn,⊗) to be a NETG? 2 Is there a
new algebraic system that makes (Zn,⊗) is the algebraic system for each positive integer n? We will
give positive answers for the two problems in this paper.

The paper is organized as follows. Section 2 gives the related work. In Section 3, the conditions
which guarantee the algebraic system (Zn,⊗) to be a NETG are deeply studied. In Section 4,
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the generalized neutrosophic extended triplet group (GNETG) is proposed and some properties
and structure are discussed. Finally, the summary and future work are presented in Section 5.

2. Related Works

In this section, we will give the related research and results of the NETG. Some related notions
are introduced at first. Let G be non-empty set, ∗ is a binary operation on G. If ∀a, b ∈ G, implies
a ∗ b ∈ G, then (G, ∗) is called a groupoid. A groupoid G is called a semigroup if ∗ satisfies associative
law, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) ( ∀a, b, c ∈ G). A semigroup G is called a group if there exists the unit
element and for each element in G exists its inverse element.

Definition 1. [11] Let N be a non-empty set together with a binary operation ∗. Then, N is called a neutrosophic
extended triplet set if for any a ∈ N, there exists a neutral of “a” (denote by neut(a)), and an opposite of
“a”(denote by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a, a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 2. [11,15] Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:
(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

A NETG N is called a commutative NETG if for all a, b ∈ N, a ∗ b = b ∗ a.

From Definition 2, we can see that a NETG is an extension of the classical group. There are some
important results about the properties and structure of a NETG. For examples, G is a NETG iff it
is a completely regular semigroup, G is a singular NETG iff it is a generalized group, and so on.
We introduce some related notions and results in the following. Figure 1 gives the relations of the
NETG and other algebraic structures.

Figure 1. The relations of NETG and other algebraic structures.

Proposition 1. [15] (N, ∗) be a NETG. We have:
(1) neut(a) is unique for any a ∈ N.
(2) neut(a) ∗ neut(a) = neut(a) for any a ∈ N.
(3) neut(neut(a)) = neut(a) for any a ∈ N.

Definition 3. [17] A NETG (N, ∗) is said to be singular, if anti(a) is unique for any a ∈ N.

Definition 4. [21] A generalized group (G, ∗) is a non-empty set admitting a binary operation ∗ called
multiplication subject to the set of rules given below:
(1) (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀ a, b, c ∈ G.
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(2) For each a ∈ G, there exists a unique e(a) ∈ G such that a ∗ e(a) = e(a) ∗ a = a.
(3) For each a ∈ G, there exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e(a).

Theorem 1. [17] (N, ∗) is a singular NETG iff (N, ∗) is a generalized group.

Definition 5. [15] Let (N, ∗) be a NETG. Then N is called a weak commutative NETG if a ∗ neut(b) =

neut(b) ∗ a for all a, b ∈ N.

Definition 6. [22] A semigroup (S, ∗) is called regular if for any a ∈ S, there exists a unary operation a→ a−1

on S such that
(a−1)−1 = a, a ∗ a−1 ∗ a = a.

A semigroup S is called quasi-regular if for any a ∈ S, there exists a positive integer n such that an is regular.

Definition 7. [22] A semigroup (S, ∗) is called completely regular if for any a ∈ S, there exists a unary
operation a→ a−1 on S such that

(a−1)−1 = a, a ∗ a−1 ∗ a = a, a ∗ a−1 = a−1 ∗ a.

A semigroup S is called quasi-completely regular if for any a ∈ S, there exists a positive integer n such that an is
completely regular.

Proposition 2. [22] Let (S, ∗) be a semigroup. Then the following statements are equivalent:
(1) S is completely regular;
(2) every element of S lies in a subgroup of S;
(3) every H-class in S is a group.

Definition 8. [22] A semigroup (S, ∗) is called Clifford semigroup, if it is completely regular and in which for
any a, b ∈ S, such that

(a ∗ a−1) ∗ (b ∗ b−1) = (b ∗ b−1) ∗ (a ∗ a−1).

Proposition 3. [22] Let (S, ∗) be a semigroup. Then the following statements are equivalent:
(1) S is Clifford semigroup;
(2) S is a semilattice of groups;
(3) S is regular, and the idempotents of S are central.

Theorem 2. [18] Let (N, ∗) be a groupoid. Then N is a NETG iff it is a completely regular semigroup.

Theorem 3. [18] Let (N, ∗) be a groupoid. Then N is a weak commutative NETG iff it is a Clifford semigroup.

3. The Relations of (Zn,⊗) and NETG

Lemma 1. In an algebra system (Zn,⊗), where Z is the integer set, we have for a, b, c ∈ Z, ab ≡ c(mod n)
holds iff [a]⊗ [b] = [c] holds.

Lemma 2. For each positive integer n ≥ 2, linear congruence equation ax ≡ c(mod n) has a solution iff
gcd(a, n) | c, where gcd(a, b) is the greatest common divisor of a and b.

Proposition 4. The solution of x for equation [a]⊗ [x] = [a] is x = mn/gcd(a, n) + 1, where m ∈ Z.

Proof. From Lemma 1, [a]⊗ [x] = [a] has a solution iff ax ≡ a(mod n) has a solution, and by Lemma 2,
ax ≡ a(mod n) must have a solution being gcd(a, n) | a holds obviously. We will prove the solution to
the equation [a]⊗ [x] = [a] is mn/gcd(a, n) in the following.
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Let gcd(a, n) = d, then there exist two integers a1 and n1, such that a = a1 ∗ d, n = n1 ∗ d
and gcd(a1, n1) = 1. If x satisfies the equation ax ≡ a(mod n), we can get that n|(ax − a), thus
n1|(a1x− a1), i.e., a1x− a1 = m1n1, m1 ∈ Z, that is a1(x− 1) = m1n1. Since gcd(a1, n1) = 1, we have
a1|m1. Let m1 = ma1, m ∈ Z, then, a1(x− 1) = ma1n1, that is x = mn1 + 1, m ∈ Z.

On the other hand, being a(mn1 + 1)− a = amn1 = a1mn, that is n|(a(mn1 + 1)− a), i.e., a(mn1 +

1) ≡ a(mod n) holds, so x = mn1 + 1 is the solution of equation ax ≡ a(mod n). This tells us that the
solution for equation [a]⊗ [x] = [a] is x = mn/gcd(a, n) + 1, where m ∈ Z.

Remark: From Proposition 4, we can see that the solution of [a]⊗ [x] = [a] is just decided by the gcd(a, n).
If gcd(a, n) = gcd(b, n), then [a]⊗ [x] = [a] and [b]⊗ [x] = [b] have the same solution in (Zn,⊗).

Theorem 4. In the algebra system (Zn,⊗), for each [a] ∈ Zn, [a] has neut([a]) and anti([a]) iff
gcd(gcd(a, n), n/gcd(a, n)) = 1.

Proof. Necessity: In general, let [a] ∈ Zn and the neutral elements of [a] exists, that is there are
neut([a]) and anti([a]) such that [a] ⊗ neut([a]) = [a] and [a] ⊗ anti([a]) = neut([a]). That is the
linear congruence equations ax ≡ a(mod n) and ay ≡ x(mod n) have solutions. Let gcd(a, n) = d
and a = a1 ∗ d, n = n1 ∗ d. From Proposition 4, x = mn1 + 1, m ∈ Z. From Lemma 2, y has
solution for equation ay ≡ x(mod n) iff gcd(a, n)|x, that is gcd(a, n)|(mn1 + 1), which means
gcd(gcd(a, n), n/gcd(a, n)) = 1.

Sufficiency: If gcd(gcd(a, n), n/gcd(a, n)) = 1, we should verify that there is x and y, such that
ax ≡ a(mod n) and ay ≡ x(mod n). From Proposition 4, ax ≡ a(mod n) has a solution and x =

mn1 + 1, m ∈ Z. From the given condition gcd(d, n1) = 1, we can infer that there exist p, q ∈ Z, such
that pd + qn1 = 1, which means d|((−q)n1 + 1), that is d|x when m = −q. So there exists y, such that
ay ≡ x(mod n), which means if gcd(gcd(a, n), n/gcd(a, n)) = 1, thus for [a] ∈ Zn, [a] has neut([a])
and anti([a]).

Example 1. For (Z8,⊗), n = 8 = 23, the operation table as following Table 1. From Definition 1,
we have netu([0]) = [0], {anti([0])} = {[0], [1], [2], [3], [4], [5], [6], [7]}, netu([1]) = [1], anti([1]) =

[1], netu([3]) = [1], anti([3]) = [3], netu([5]) = [1], anti([5]) = [5], netu([7]) = [1], anti([7]) = [7],
but [2], [4] and [6] have not the neutral element and opposite element.

We can get the above results by Theorem 4. Being gcd(gcd(1, 8), 8/gcd(1, 8)) =

gcd(gcd(3, 8), 8/gcd(3, 8)) = gcd(gcd(5, 8), 8/gcd(5, 8)) = gcd(gcd(7, 8), 8/gcd(7, 8)) = 1, so from
Theorem 4, [1], [3], [5] and [7] exist the neutral element and opposite element. In fact, from Proposition 4, being
gcd(1, 8) = gcd(3, 8) = gcd(5, 8) = gcd(7, 8) = 1, i.e., they have the same greatest common divisor, so they
have the same neutral element, that is [1]. In the same way, [0] has its neutral element and opposite element.
However, gcd(gcd(2, 8), 8/gcd(2, 8)) = gcd(gcd(4, 8), 8/gcd(4, 8)) = gcd(gcd(6, 8), 8/gcd(6, 8)) =

2 6= 1, so [2], [4] and [6] do not have the neutral element and opposite element.

Table 1. The operation table of Z8.

⊗ [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6] [7]
[2] [0] [2] [4] [6] [0] [2] [4] [6]
[3] [0] [3] [6] [1] [4] [7] [2] [5]
[4] [0] [4] [0] [4] [0] [4] [0] [4]
[5] [0] [5] [2] [7] [4] [1] [6] [3]
[6] [0] [6] [4] [2] [0] [6] [4] [2]
[7] [0] [7] [6] [5] [4] [3] [2] [1]
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Proposition 5. In the algebra system (Zn,⊗), if the neutral element exists, then it is unique.

Proof. In general, if [a] ∈ Zn and the neutral elements of [a] exists, that is there are neut([a]) and
anti([a]) such that [a]⊗ neut([a]) = [a] and [a]⊗ anti([a]) = neut([a]). Let gcd(a, n) = d and there are
two integers a1 and n1, such that a = a1 ∗ d, n = n1 ∗ d.

By Proposition 4, the neutral element of [a] has form n1m + 1, where m ∈ Z, and from Theorem 4,
there exists m0 ∈ Z such that d|(n1m0 + 1). Since d|n, we have d|(n1m0 + 1± n), which means there
must exist m ∈ Z such that 0 ≤ n1m + 1 < n, so the neutral element of [a] exists.

In the following, we will show that if there exist two integers m1 and m2, such that d|(n1m1 + 1)
and d|(n1m2 + 1), then n|n1(m1 −m2).

From d|(n1m1 + 1) and d|(n1m2 + 1), we have d|(n1m1 + 1− n1m2 − 1), i.e., d|(n1(m1 − m2)).
Being gcd(d, n1) = 1, then d|(m1 −m2), that is n|n1(m1 −m2).

From the above analysis, we can get that the neutral element of [a] is unique in (Zn,⊗) if it
exists.

Remark: From Proposition 5, we can see that if the neutral element of [a] exists, then it is unique. Let neut([a])
is the neutral element of [a], then we have that (neut([a], neut([a])), [1]) and (neut([a], neut([a])), neut([a]))
are the neutrosophic extended triplets in (Zn,⊗).

Example 2. For (Z36,⊗), n = 36 = 2232. From the above results we have:

(1) [2] has not the neutral element and opposite element being gcd(gcd(2, 36), 36/gcd(2, 36)) = 2 6= 1.
In fact, [2], [3], [6], [10], [12], [14], [15], [18], [21], [22], [24], [26], [30], [33] and [34] do not have the neutral
element and opposite element by Theorem 4 for the same reason.

(2) [4] and [8] have the same neutral element being gcd(4, 36) = gcd(8, 36) = 4. In fact,
[4], [8], [16], [20], [28] and [32] have the same neutral element, which is [28].

(3) [9] and [27] have the same neutral element [9] being gcd(9, 36) = gcd(27, 36) = 9.
(4) [1], [5], [7], [11], [13], [17], [19], [23], [25], [29], [31] and [35] have the same neutral element [1].
(5) [0] has the neutral element [0].
(6) We can see that the neutral element of each element is unique and explain that Proposition 5 is

correct. Moreover, ([0], [0], [1]), ([0], [0], [0]), ([1], [1], [1]), ([9], [9], [1]), ([9], [9], [9]), ([28], [28], [1])
and ([28], [28], [28]) are some neutrosophic extended triplets in (Z36,⊗), which verify the above Remark.

Theorem 5. An algebra system (Zn,⊗) is a NETG iff the factorization of n is a product of single factors,
i.e., n = p1 p2 · · · pk, where pi(i = 1, 2, · · · , k) is a prime number.

Proof. Necessity: Suppose that (Zn,⊗) is a NETG, we verify the factorization of n is the product of a
single factor and proof by contradiction.

Assume, the factorization of n is n = pk1
1 pk2

2 · · · p
kt
t , and ∃i, such that ki ≥ 2. Without losing

generality, let k1 ≥ 2. We will prove neut([p1]) and anti([p1]) do not exist.
Because gcd(gcd(p1, n), n/gcd(p1, n)) = pk1−1

1 and k1 ≥ 2, then

gcd(gcd(p1, n), n/gcd(p1, n)) 6= 1.

By Theorem 4, we have that neut([p1]) and anti([p1]) do not exist. This contradicts that (Zn,⊗) is
NETG. So, the factorization of n is a product of single factors if (Zn,⊗) is a NETG.

Sufficiency: If the factorization of n is a product of some single factors, i.e., n = p1 p2 · · · pk,
where pi(i = 1, 2, · · · , k) is a prime number. We will prove for each [a] ∈ Zn, neut([a]) and
anti([a]) exist.

Let d = gcd(a, n), because n = p1 p2 · · · pk, so gcd(d, n/d) = 1, i.e.,

gcd(gcd(a, n), n/gcd(a, n)) = 1.
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From Theorem 4, [a] has the neutral element and opposite element. From the arbitrariness of a, we can
know that (Zn,⊗) is a NETG if the factorization of n is a product of some single factors.

Remark: For an algebra system (Zn,⊗) and n = p1 p2 · · · pk, where pi(i = 1, 2, · · · , k) is a prime number.
From the above analysis, the number of different neutral elements in Zn is 2k.

Example 3. For (Z30,⊗), n = 30 = 213151, so each element in Z30 has its corresponding neutral element.
From the above Remark, the number of different neutral elements in Z30 is 23 = 8. In fact, being different factors
of 30 are 1, 2, 3, 5, 6, 10, 15, and 30. Thus, the different neutral elements are [1], [16], [21], [25], [6], [10], [15] and
[0] respectively. In detail (just consider the neutral element):

(1) [1], [7], [11], [13], [17], [19], [23] and [29] have the same neutral element, which is [1].
(2) [2], [4], [8], [14], [16], [22], [26] and [28] have the same neutral element, which is [16].
(3) [3], [9], [21] and [27] have the same neutral element, which is [21].
(4) [5] and [25] have the same neutral element, which is [25].
(5) [6], [12], [18] and [24] have the same neutral element, which is [6].
(6) [10] and [20] have the same neutral element, which is [10].
(7) [15] has neutral element [15].
(8) [0] has neutral element [0].

4. GNETG and Quasi-Completely Regular Semigroup

Definition 9. Let N be a non-empty set together with a binary operation ∗. Then, N is called a generalized
neutrosophic extended triplet set if for any a ∈ N, there exist at least a positive integer n, such that
an exists neutral element, denoted by neut(an), and opposite element, denoted by anti(an). The triplet
(a, neut(an), anti(an)) is called a generalized neutrosophic extended triplet with degree n.

Definition 10. Let (N, ∗) is a generalized neutrosophic extended triplet set. Then, N is called a GNETG, if the
following conditions are satisfied:
(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

A GNETG N is called a commutative generalized neutrosophic extended triplet group if for all a, b ∈
N, a ∗ b = b ∗ a.

Remark: From Definition 9, it is obviously that a neutrosophic extended triplet is a generalized neutrosophic
extended triplet with degree 1, so a neutrosophic extended triplet set is a generalized neutrosophic extended
triplet set. Moreover, a NETG is a GNETG, but a GNETG is not a NETG in general.

Example 4. Let S = {a, e, f , g}, an operation ∗ on S is defined as in Table 2. We can see that
(e, e, a), (e, e, e), ( f , f , f ) and (g, g, g) are neutrosophic extended triplets, but a does not exist the neutral
element and opposite element. Thus, S is not a NETG. Moreover, a2 = e has the neutral element and opposite
element, so (S, ∗) is a GNETG. (a, e, a) and (a, e, e) are generalized neutrosophic extended triplets with degree
2. We can infer that (S, ∗) is a GNETG but not a NETG. Moreover, it is not a commutative GNETG being
e ∗ f 6= f ∗ e.

Table 2. A GNETG of Example 4.

∗ a e f g

a e e g e
e e e e e
f f f f f
g g g g g
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Example 5. Consider (Z12,⊗), 12 = 2231. From Theorem 4, we have:

(1) [0], [1], [3], [4], [5], [7], [8], [9] and [11] exist the neutral element and opposite element.
(2) [2] does not exist the neutral element and opposite element, but we can see that [2]2 = [4] exists the

neutral element and opposite element.
(3) [6] does not exist the neutral element and opposite element, but we can see that [6]2 = [0] exists the

neutral element and opposite element.
(4) [10] does not exist the neutral element and opposite element, but we can see that [10]2 = [4] exists the

neutral element and opposite element.

So Z12 is a generalized neutrosophic extended triplet set, but it is not a neutrosophic extended
triplet set. Moreover, (Z12,⊗) is a commutative GNETG. The following theorem shows that for each
positive integer n ≥ 2, (Zn,⊗) is a commutative GNETG.

Theorem 6. For each [a] ∈ Zn, there exists a positive integer m, such that [a]m has the neutral element and
opposite element. That is, (Zn,⊗) is commutative GNETG.

Proof. If the factorization of n is a product of single factors, From Theorem 5, (Zn,⊗) is a NETG,
so [a]1 = [a] has the neutral element and opposite element.

If n = pk1
1 pk2

2 · · · p
kt
t , and ∃i, such that ki ≥ 2. For each [a] ∈ Zn, it is easy to get that there is a

positive integer m, such that

gcd((gcd(am, n)), n/(gcd(am, n))) = 1,

that is [am] = [a]m has the neutral element and opposite element from Theorem 4. So, for each
[a] ∈ Zn, there exists a positive integer m, such that [a]m has the neutral element and opposite element,
i.e., (Zn,⊗) is a commutative GNETG.

Definition 11. [22] Let (S, ∗) be a semigroup, an element x in S is said to be periodic if there exists a positive
integer n such that xn+1 = x. S is pointwise periodic if each x in S is periodic.

Proposition 6. Let (S, ∗) be a pointwise periodic semigroup, then (S, ∗) is a NETG, so it is a GNETG.

Proof. Since (S, ∗) is a pointwise periodic semigroup, so for each element x in a S, there exists a
positive integer n such that xn+1 = x.

If n = 1, then x2 = x, so (x, x, x) is a neutrosophic extended triplet.
If n ≥ 2, so x ∗ xn = xn ∗ x = x and x ∗ xn−1 = xn−1 ∗ x = xn, that is, (x, xn, xn−1) is a neutrosophic

extended triplet.
By the arbitrariness of x, we have (S, ∗) is a NETG. Of course, it is a GNETG.

Example 6. Let S = {a, b, c}, an operation ∗ on S is defined as following Table 3. Because a2 = a, b3 =

b, c2 = c, so (S, ∗) is a pointwise periodic semigroup. Moreover, (a, a, a), (b, a, b), (c, c, a), (c, c, b) and (c, c, c)
are neutrosophic extended triplets, that is (S, ∗) is a NETG.

Table 3. A pointwise periodic semigroup of Example 6.

∗ a b c

a a b c
b b a c
c c c c

From Example 6, we can also see that if (S, ∗) has zero element (c is the zero element in Example 6),
then the neutral element of zero element is itself and the opposite element of zero element is every
element in S.
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Proposition 7. Let (N, ∗) is a GNETG, a ∈ N and (a, neut(an), anti(an)) is a generalized neutrosophic
extended triplet with degree n. We have:
(1) neut(an) is unique.
(2) neut(an) ∗ neut(an) = neut(an).

Proof. Assume c, d ∈ {neut(an)}, so an ∗ c = c ∗ an = an, an ∗ d = d ∗ an = an, and there exists x, y ∈ N
such that

an ∗ x = x ∗ an = c, an ∗ y = y ∗ an = d.

We can obtain
c ∗ d = (x ∗ an) ∗ d = x ∗ (an ∗ d) = x ∗ an = c,

c ∗ d = (an ∗ x) ∗ (an ∗ y) = (an ∗ (x ∗ an)) ∗ y = d.

We have c = d = c ∗ d. So neut(an) is unique and neut(an) ∗ neut(an) = neut(an).

Proposition 8. Let (N, ∗) is a GNETG, a ∈ N and (a, neut(an), anti(an)) is a generalized neutrosophic
extended triplet with degree n. Then
(1) an ∗ x ∗ neut(an) = x ∗ neut(an) ∗ an = neut(an), for any x ∈ {anti(an)}.
(2) an ∗ neut(an) ∗ x = neut(an) ∗ x ∗ an = neut(an) for any x ∈ {anti(an)}.
(3) neut((neut(an))) = neut(x ∗ neut(an)) = neut(an), x ∈ {anti(an)} ∪ {an}.
(4) neut(an) ∗ x = y ∗ neut(an) = z ∗ neut(an), for any x, y, z ∈ {anti(an)}.
(5) anti(x ∗ neut(an)) ∗ neut(x ∗ neut(an)) = an, for any x ∈ {anti(an)}.

Proof. (1) For any x ∈ {anti(an)}, from Definition 9 and Proposition 7, we have

an ∗ x ∗ neut(an) = (an ∗ x) ∗ neut(an) = neut(an) ∗ neut(an) = neut(an),

x ∗ neut(an) ∗ an = x ∗ (neut(an) ∗ an) = x ∗ an = neut(an).

So an ∗ x ∗ neut(an) = x ∗ neut(an) ∗ an = neut(an), for any x ∈ {anti(an)}.
(2) For any x ∈ {anti(an)}, From Definition 9 and Proposition 7, we have

an ∗ neut(an) ∗ x = (an ∗ neut(an)) ∗ x = an ∗ x = neut(an),

neut(an) ∗ x ∗ an = neut(an) ∗ (x ∗ an) = neut(an) ∗ neut(an) = neut(an).

So an ∗ neut(an) ∗ x = neut(an) ∗ x ∗ an = neut(an) for any x ∈ {anti(an)}.
(3) We prove neut(an) = neut((neut(an))) firstly.
For any x ∈ {anti(an)} and y ∈ {anti(neut(an))},

(y ∗ x) ∗ an = y ∗ (x ∗ an) = y ∗ neut(an) = neut(neut(an)).

Moreover,

((y ∗ x) ∗ an) ∗ neut(an) = (y ∗ x) ∗ (an ∗ neut(an)) = (y ∗ x) ∗ an = neut(neut(an)).

Thus, neut(an) = neut(neut(an)) ∗ neut(an) = ((y ∗ x) ∗ an) ∗ neut(an) = neut(neut(an)).
In the following we will prove neut(x ∗ neut(an)) = neut(an), x ∈ {anti(an)} ∪ {an}.
It is obvious that neut(x ∗ neut(an)) = neut(an) when x = an. If x ∈ {anti(an)}, by Proposition 7

we have:
(x ∗ neut(an)) ∗ neut(an) = x ∗ (neut(an) ∗ neut(an)) = x ∗ neut(an),
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neut(an) ∗ (x ∗ neut(an)) = (neut(an) ∗ x) ∗ neut(an) = (x ∗ neut(an)) ∗ neut(an)

= x ∗ (neut(an) ∗ neut(an)) = x ∗ neut(an).

Moreover, we can get

(x ∗ neut(an)) ∗ an = x ∗ (neut(an) ∗ an) = x ∗ an = neut(an),

an ∗ (x ∗ neut(an)) = (an ∗ x) ∗ neut(an) = neut(an) ∗ neut(an) = neut(an).

Thus, neut(an) = neut(x ∗ neut(an)).
(4) For any x, y, z ∈ {anti(an)}, we have

neut(an) ∗ x = (y ∗ an) ∗ x = y ∗ (an ∗ x) = y ∗ neut(an).

Moreover,

y ∗ neut(an) = y ∗ (an ∗ z) = (y ∗ an) ∗ z = neut(an) ∗ z = (z ∗ an) ∗ z = z ∗ (an ∗ z) = z ∗ neut(an).

Thus, (4) holds.
(5) Suppose x ∈ {anti(an)}, for each y ∈ {anti(x ∗ neut(an))}, from (4) we know that anti(x ∗

neut(an)) ∗ neut(x ∗ neut(an)) is unique. Applying (1), an ∈ {anti(x ∗ neut(an))}, that is,

anti(x ∗ neut(an)) ∗ neut(x ∗ neut(an)) = anneut(x ∗ neut(an)).

By (3), neut(x ∗ neut(an)) = neut(an). Thus, anti(x ∗ neut(an)) ∗ neut(x ∗ neut(an)) = an ∗ neut(x ∗
neut(an)) = an ∗ neut(an) = an.

Example 7. Let S = {a, e, b, f , c, g}, an operation ∗ on S is defined as following Table 4. Since neut(e) =

e, {anti(e)} = {a, e}, neut( f ) = f , {anti( f )} = {b, f }, neut(g) = g, {anti(g)} = {a, e, b, f , c, g} and
a2 = e, b2 = f , c2 = g, so (S, ∗) is a GNETG. We can get that (Corresponding to the results of Proposition 8):

Table 4. A GNETG of Example 7.

∗ a e b f c g

a e e c c c g
e e e c c c g
b g g f f g g
f g g f f g g
c g g c c g g
g g g g g g g

(1) Being a2 ∗ a ∗ neut(a2) = a ∗ neut(a2) ∗ a2 = neut(a2), a2 ∗ e ∗ neut(a2) = e ∗ neut(a2) ∗ a2 =

neut(a2), that is, for any x ∈ {anti(a2)}, a2 ∗ x ∗ neut(a2) = x ∗ neut(a2) ∗ a2 = neut(a2).
(2) Being b2 ∗ neut(b2) ∗ b = neut(b2) ∗ b ∗ b2 = neut(b2), b2 ∗ neut(b2) ∗ f = neut(b2) ∗ f ∗ b2 =

neut(b2), that is, for any x ∈ {anti(b2)}, b2 ∗ neut(b2) ∗ x = neut(b2) ∗ x ∗ b2 = neut(b2).
(3) Being neut((neut(a2))) = neut(a ∗ neut(a2)) = neut(a2), neut((neut(a2))) = neut(e ∗

neut(a2)) = neut(a2), that is, for any x ∈ {anti(an)} ∪ {an}, neut((neut(an))) = neut(x ∗
neut(an)) = neut(an).

(4) For each element x, y, z ∈ S, neut(c2) ∗ x = y ∗ neut(c2) = z ∗ neut(c2) = g, that is, for any
x, y, z ∈ {anti(c2)}, neut(c2) ∗ x = y ∗ neut(c2) = z ∗ neut(c2).

(5) Being b ∗ f = b2 = f , f ∗ f = b2 = f , that is, for any x ∈ {anti(b2)}, anti(x ∗ neut(b2)) ∗ neut(x ∗
neut(b2)) = b2.
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Proposition 9. Let (N, ∗) be a commutative GNETG, then ∀a, b ∈ N, there are two positive integers m andn
such that the following hold:
(1) neut(an) ∗ neut(bm) = neut(an ∗ bm).
(2) anti(an) ∗ anti(bm) ∈ {anti(an ∗ bm)}.

Proof. Being (N, ∗) be a commutative GNETG, then for a ∈ N, there is a positive integer n, such that
an exists the neutral element and opposite element, denoted by neut(an) and anti(an) respectively. For
b ∈ N, there is a positive integer m, such that bm exists the and opposite element, denoted by neut(bm)

and anti(bm) respectively. So

(neut(an) ∗ neut(bm)) ∗ (an ∗ bm) = ((neut(an) ∗ neut(bm)) ∗ an) ∗ bm

= ((neut(an) ∗ an) ∗ neut(bm)) ∗ bm

= (an ∗ neut(bm)) ∗ bm

= an ∗ (neut(bm) ∗ bm) = an ∗ bm.

in the same way, we have (an ∗ bm) ∗ (neut(an) ∗ neut(bm)) = an ∗ bm. That is:

(an ∗ bm) ∗ (neut(an) ∗ neut(bm)) = (neut(an) ∗ neut(bm)) ∗ (an ∗ bm) = an ∗ bm.

Moreover, for any anti(an) ∈ {anti(an)} and anti(bm) ∈ {anti(bm)}, we can get,

(anti(an) ∗ anti(bm)) ∗ (an ∗ bm) = ((anti(an) ∗ anti(bm)) ∗ an) ∗ bm

= ((anti(an) ∗ an) ∗ anti(bm)) ∗ bm

= (neut(an) ∗ anti(bm)) ∗ bm

= neut(an) ∗ (anti(bm) ∗ bm) = neut(an) ∗ neut(bm).

Similarly, we have (an ∗ bm) ∗ (anti(an) ∗ anti(bm)) = neut(an) ∗ neut(bm). That is:

(an ∗ bm) ∗ (anti(an) ∗ anti(bm)) = (anti(an) ∗ anti(bm)) ∗ (an ∗ bm) = neut(an) ∗ neut(bm).

Thus, we have
neut(an) ∗ neut(bm) ∈ {neut(an ∗ bm)}.

From this, by Proposition 7, we get: neut(an) ∗ neut(bm) = neut(an ∗ bm). Therefore, we get anti(an) ∗
anti(bm) ∈ {anti(an ∗ bm)}.

Example 8. Consider (Z12,⊗), which is a commutative GNETG from Example 5. Without losing generality,
select [2] and [4], then exist two positive integers 2 and 1, such that neut([2]2) ∗ neut([4]1) = neut([2]2 ∗
[4]1) = [4], so explain (1) of Proposition 9 is correct. Being {anti[4]} = {[1], [4], [7]} and [1], [4], [7] is a sub
algebra structure of (Z12,⊗) by Table 5. So, explain (2) of Proposition 9 is correct.

Table 5. The operator table of {[1], [4], [7]} in (Z12,⊗).

⊗ [1] [4] [7]

[1] [1] [4] [7]
[4] [4] [4] [4]
[7] [1] [4] [1]
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Example 9. Apply the (S, ∗) in Example 7, Since it is not a commutative GNETG, we can get that:

(1) Being for each 2 ≤ n ∈ Z+, an = e, and for each m ∈ Z+, f m = f , so neut(an) ∗ neut( f m) = e ∗ f = c.
On the other hand, neut(an ∗ f m) = neut(e ∗ f ) = neut(c), but neut(c) does not exist, so the (1) of
Proposition 9 does not hold.

(2) Being {anti(an)} = {a, e}, {anti( f m)} = { f }, an ∗ f m = c, but anti(c) does not exist, we can get that
the (2) of Proposition 9 does not hold.

Theorem 7. Let (N, ∗) be a groupoid. Then N is a GNETG if and only if it is a quasi-completely
regular semigroup.

Proof. Necessity: Suppose N is a GNETG, from Definition 10, for each a ∈ N, there is a positive integer
n, such that an exists the neutral element and opposite element, denoted by neut(an) and anti(an)

respectively. Set
(an)−1 = anti(an) ∗ neut(an),

by Proposition 8, (an)−1 is unique and we have

((an)−1)−1 = anti(anti(an) ∗ neut(an)) ∗ neut(anti(an) ∗ neut(an)) = an,

an ∗ (an)−1 ∗ an = an ∗ anti(an) ∗ neut(an) ∗ an = an,

an ∗ anti(an) ∗ neut(an) = anti(an) ∗ neut(an) ∗ an = neut(an), i.e. an ∗ (an)−1 = (an)−1 ∗ an

from Definition 7, N is a quasi-completely regular semigroup.
Sufficiency: If N is a completely quasi-regular semigroup. For any a ∈ N, there is a positive

integer n and (an)−1 ∈ N, such that an ∗ (an)−1 ∗ an = an and an ∗ (an)−1 = (an)−1 ∗ an, set

neut(an) = an ∗ (an)−1,

then
neut(an) ∗ an = an ∗ (an)−1 ∗ an = an,

an ∗ neut(an) = an ∗ an ∗ (an)−1 = an ∗ (an)−1 ∗ an = an,

an ∗ (an)−1 = (an)−1 ∗ an = neut(an).

From Definition 10, we have that N is a GNETG and (an)−1 ∈ {anti(an)}.

Example 10. Apply (S, ∗) in the Example 7, we know that it is a GNETG. We will show that it is a
quasi-completely regular semigroup in the following.

For e, there exists an inverse element e−1 = e, such that (e−1)−1 = e, e ∗ e−1 ∗ e = e, e ∗ e−1 = e−1 ∗ e,
so e is completely regular. f and g are completely regular for the same reason. Moreover, being a2 = e, b2 = f
and c2 = g, so a2, b2 and c2 are completely regular, so (S, ∗) is a quasi-completely regular semigroup by
Definition 7.

Definition 12. Let (N, ∗) is a GNETG. N is called a weak commutative GNETG if there are two positive
integers n, m, such that an ∗ neut(bm) = neut(bm) ∗ an for all a, b ∈ N.

Example 11. Let S = {a, b, c, d, f }, an operation ∗ on S is defined as following Table 6.
Since (a, a, a), (b, a, b), (c, c, c) and ( f , f , f ) are neutrosophic extended triplets, but d does not exist the neutral
element and opposite element. Thus, S is not a NETG. Moreover, d2 = c exists the neutral element and opposite
element, so (S, ∗) is GNETG and (d, c, c) is a generalized neutrosophic extended triplet with degree 2. We can
infer that (S, ∗) is a GNETG but not a NETG. Moreover, it is not a commutative GNETG being b ∗ d 6= d ∗ b,
we can show that it is a weak commutative GNETG.
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For a, b, c, d, and f , there exist positive integers 1, 1, 1, 2, and 1 respectively, so S′ = {a1, b1, c1, d2, f 1} =
{a, b, c, f } being d2 = c. We know that neut(a) = a, neut(b) = a, neut(c) = c, neut( f ) = f ,
so {neut(a), neut(b), neut(c), neut( f )} ∈ S′. From Table 6, we can get the sub algebra system (S′, ∗) of
(S, ∗) as following Table 7, and (S′, ∗) is commutative. Thus, (S, ∗) is a weak commutative GNETG.

Table 6. The operation table of Example 11.

∗ a b c d f

a a b c d f
b b a c d f
c c c c c c
d c c c c c
f f f c d f

Table 7. The sub algebra system S′ of S in Example 11.

∗ a b c f

a a b c f
b b a c f
c c c c c
f f f c f

Example 12. Select the (S, ∗) in Example 4, being en = e, f m = f for every n, m ∈ Z+, en ∗ neut( f m) =

e ∗ f = e, f m ∗ neut(en) = f ∗ e = f , so en ∗ neut( f m) = e 6= f = neut( f m) ∗ en, ∀n, m ∈ Z+. Thus,
the (S, ∗) in Example 4 is not weak commutative GNETG.

Proposition 10. Let (N, ∗) be a GNETG. Then (N, ∗) is a weak commutative GNETG iff there are two positive
integers n and m, such that N satisfies the following conditions:
(1) neut(an) ∗ neut(bm) = neut(bm) ∗ neut(an), for all a, b ∈ N.
(2) neut(an) ∗ neut(bm) ∗ an = an ∗ neut(bm), for all a, b ∈ N.

Proof. Necessity: If (N, ∗) is a weak commutative GNETG, then there are two positive integers n, m,
such that an and bm exist the neutral element and opposite element. So, from Proposition 7 and
Definition 12, we have

neut(an) ∗ neut(bm) = neut(bm) ∗ neut(an), ∀a, b ∈ N.

Moreover,

neut(an) ∗ neut(bm) ∗ an = neut(an) ∗ (neut(bm) ∗ an)

= neut(an) ∗ (an ∗ neut(bm))

= (neut(an) ∗ an) ∗ neut(bm) = an ∗ neut(bm).

Sufficiency: Suppose that N satisfies the conditions (1) and (2) above. Then:

an ∗ neut(bm) = (neut(an) ∗ neut(bm)) ∗ an

= (neut(bm) ∗ neut(an)) ∗ an

= neut(bm) ∗ (neut(an) ∗ an) = neut(bm) ∗ an.

From Definition 12 we know that (N, ∗) is a weak commutative GNETG.
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Proposition 11. Let (N, ∗) be a weak commutative GNETG, then for a, b ∈ N, the following conditions
are satisfied:
(1) neut(an) ∗ neut(bm) = neut(bm ∗ an);
(2) anti(an) ∗ anti(bm) ∈ {anti(bm ∗ an)}.

Proof. If a, b ∈ N, then there are two positive integers m, n, such that an and bm exist the neutral
element and opposite element. We have

(neut(an) ∗ neut(bm)) ∗ (bm ∗ an) = ((neut(an) ∗ neut(bm)) ∗ bm) ∗ an

= (neut(an) ∗ (bm ∗ neut(bm))) ∗ an

= (neut(an) ∗ bm) ∗ an

= (bm ∗ neut(an)) ∗ an = bm ∗ (neut(an) ∗ an) = bm ∗ an.

Similarly, we have (bm ∗ an) ∗ (neut(an) ∗ neut(bm)) = (neut(an) ∗ neut(bm)) ∗ (bm ∗ an) = bm ∗ an.
Moreover, for any anti(an) ∈ {anti(an)} and anti(bm) ∈ {anti(bm)}, we have:

(anti(an) ∗ anti(bm)) ∗ (bm ∗ an) = ((anti(an) ∗ anti(bm)) ∗ bm) ∗ an

= (anti(an) ∗ (anti(bm) ∗ bm)) ∗ an

= (anti(an) ∗ neut(bm)) ∗ an

= anti(an) ∗ (neut(bm) ∗ an)

= anti(an) ∗ (an ∗ neut(bm))

= (anti(an) ∗ an) ∗ neut(bm) = neut(an) ∗ neut(bm).

Similarly, we have (bm ∗ an) ∗ (anti(an) ∗ anti(bm)) = (anti(an) ∗ anti(bm)) ∗ (bm ∗ an) =

neut(an) ∗ neut(bm). So, we have neut(an) ∗ neut(bm) ∈ {neut(bm ∗ an)}. From this, we can get
neut(an) ∗ neut(bm) = neut(bm ∗ an). Thus, we have anti(an) ∗ anti(bm) ∈ anti(bm ∗ an).

Example 13. Let S = {a, e, b, f , c, g}, an operation ∗ on S is defined as following Table 8. Being netu(e) =
e, {anti(e)} = {a, e}, netu( f ) = f , {anti( f )} = {b, f }, netu(g) = g, {anti(g)} = {a, e, b, f , c, g} and
a2 = e, b2 = f , c2 = g, so (S, ∗) is a GNETG. It is easy to verify (S, ∗) is a weak commutative GNETG by
Definition 12. We also can get:

(1) Being neut(b2) ∗ neut(e1) = f ∗ e = g, and neut(e1 ∗ b2) = neut(g) = g, so, neut(b2) ∗ neut(e1) =

neut(e1 ∗ b2).
(2) Being {anti(b2)} = {b, f }, {anti(e1)} = {a, e}, {anti(b2 ∗ e1)} = {anti(g)} = {a, e, b, f , c, g},

thus, anti(b2) ∗ anti(e1) ∈ {anti(b2 ∗ e1)}.

Table 8. The operation table of Example 13.

∗ a e b f c g

a e e c c g g
e e e g g g g
b c g f f c g
f c g f f c g
c g g c c g g
g g g g g g g

Example 14. Apply the (S, ∗) in Example 4, Being it is not a weak commutative GNETG, we can get that:

(1) Being neut(a2) ∗ neut( f 1) = e ∗ f = e, but neut( f 1 ∗ a2) = neut( f ) = f , so, neut(a2) ∗ neut( f 1) 6=
neut( f 1 ∗ a2).
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(2) Being {anti(a2)} = {a, e}, {anti( f 1)} = { f }, {anti( f 1 ∗ a2)} = {anti( f )} = { f }, thus, anti(a2) ∗
anti( f 1) 6∈ {anti( f 1 ∗ a2)}.

Definition 13. A semigroup S is called a quasi-Clifford semigroup, if it is quasi-completely regular and for
any a, b ∈ S, there are two positive integers n, m such that

an ∗ (bm ∗ (bm)−1) = (bm ∗ (bm)−1) ∗ an.

Theorem 8. Let (N, ∗) be a groupoid. Then N is a weak commutative GNETG iff it is a
quasi-Clifford semigroup.

Proof. Necessity: Suppose that N is a weak commutative GNETG. By Theorem 7, we know that N is
a quasi-completely regular semigroup, then there are two positive integers m, n, such that an and bm

exist the neutral element and opposite element. Set

(an)−1 = anti(an) ∗ neut(an).

For any a, b ∈ N, so we have

an ∗ (bm ∗ (bm)−1) = (bm ∗ (bm)−1) ∗ an.

From Definition 13, we know that N is a quasi-Clifford semigroup.
Sufficiency: Assume that N is a quasi-Clifford semigroup, then there are two positive integers m

and n, such that an and bm are completely regular. Then there exists (an)−1 and (bm)−1. Set

neut(an) = an ∗ (an)−1, neut(bm) = bm ∗ (bm)−1.

Applying Definition 13, being an ∗ (bm ∗ (bm)−1) = (bm ∗ (bm)−1) ∗ an, we have an ∗ neut(bm) =

neut(bm) ∗ an, we can get that N is a weak commutative GNETG by Definition 12.

Example 15. Apply the (S, ∗) in Example 11, Being it is a weak commutative GNETG from Example 11.
We show that it is a quasi-Clifford semigroup. From Theorem 7, we can see that (S, ∗) is a quasi-completely
regular semigroup, we just show for any x, y ∈ S, there are two positive integers n and m such that xn ∗ (ym ∗
(ym)−1) = (ym ∗ (ym)−1) ∗ xn.

From Example 11, for a, b, c, d, and f , there exist positive integers 1, 1, 1, 2, and 1 respectively, and set
a−1 = a, b−1 = b, c−1 = c, (d2)−1 = c, f−1 = f . For any x, y ∈ {a1, b1, c1, d2, f 1}, without losing
generality, let x = a, y = b, we can get a1 ∗ (b1 ∗ (b1)−1) = (b1 ∗ (b1)−1) ∗ a1 = b. We can verify other cases,
thus (S, ∗) is a quasi-Clifford semigroup.

Example 16. Apply the (S, ∗) in Example 4, Being it is not a weak commutative GNETG from Example 12.
We show that there exists x, y ∈ S, for any two positive integers n and m such that xn ∗ (ym ∗ (ym)−1) 6=
(ym ∗ (ym)−1) ∗ xn.

From Example 4, for any n, m ∈ Z+, en = e, f m = f and (en)−1 = e, ( f m)−1 = f , but en ∗ ( f m ∗
( f m)−1) = e 6= f = ( f m ∗ ( f m)−1) ∗ en. That is for e, f ∈ S, there are not two positive integers n, m such
that en ∗ ( f m ∗ ( f m)−1) = ( f m ∗ ( f m)−1) ∗ en . So (S, ∗) is not a quasi-Clifford semigroup.

5. Conclusions

In the paper, from the perspective of semigroup theory, we deeply studied the GNETG and
obtained some important results. We proved that the GNETG is equal to the quasi-completely regular
semigroup, and the weak commutative GNETG is equal to the quasi-Clifford semigroup. Moreover,
we investigated the relationship between (Zn,⊗) and a NETG. All these results are interesting for
exploring the structure characterization of GNETG. As the next research topics, we will explore the
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structure of some special GNETG and their relationships with related logic algebras. Moreover, we will
discuss the integration of the related topics, such as the combination of neutrosophic set, fuzzy set,
soft set and algebra systems [23,24].
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Abstract: Games are considered to be the most attractive and healthy event between nations
and peoples. Soft expert sets are helpful for capturing uncertain and vague information.
By contrast, neutrosophic set is a tri-component logic set, thus it can deal with uncertain,
indeterminate, and incompatible information where the indeterminacy is quantified explicitly and
truth membership, indeterminacy membership, and falsity membership independent of each other.
Subsequently, we develop a combined approach and extend this concept further to introduce the
notion of the neutrosophic cubic soft expert sets (NCSESs) by using the concept of neutrosophic
cubic soft sets, which is a powerful tool for handling uncertain information in many problems and
especially in games. Then we define and analyze the properties of internal neutrosophic cubic
soft expert sets (INCSESs) and external neutrosophic cubic soft expert sets (ENCSESs), P-order,
P-union, P-intersection, P-AND, P-OR and R-order, R-union, R-intersection, R-AND, and R-OR of
NCSESs. The NCSESs satisfy the laws of commutativity, associativity, De Morgan, distributivity,
idempotentency, and absorption. We derive some conditions for P-union and P-intersection of two
INCSESs to be an INCSES. It is shown that P-union and P-intersection of ENCSESs need not be an
ENCSES. The R-union and R-intersection of the INCSESs (resp., ENCSESs) need not be an INCSES
(resp. ENCSES). Necessary conditions for the P-union, R-union and R-intersection of two ENCSESs
to be an ENCSES are obtained. We also study the conditions for R-intersection and P-intersection
of two NCSESs to be an INCSES and ENCSES. Finally, for its applications in games, we use the
developed procedure to analyze the cricket series between Pakistan and India. It is shown that the
proposed method is suitable to be used for decision-making, and as good as or better when compared
to existing models.

Keywords: neutrosophic sets; cubic sets; soft sets; neutrosophic cubic soft sets; neutrosophic cubic
soft expert system; multicriteria decision-making

1. Introduction

Researchers always try to discover methods to handle imprecise and vague information, which is
not possible using classical set theory. In this regard, Zadeh gave the concept of fuzzy set [1], to cope
with uncertainty. However, fuzzy sets were considered imperfect since it is not always easy to give an
exact degree of membership to any element. To overcome this problem, the interval-valued fuzzy set
was proposed by Turksen [2]. Atanassov [3] extended the notion of fuzzy sets to intuitionistic fuzzy
sets by introducing the non-membership of an element with its membership in a set X, which were
proven to be a better tool than fuzzy sets. Furthermore, the intuitionistic fuzzy sets are used in
many directions [4]. Smarandache gave the notion of neutrosophic sets as a generalization of
intuitionistic fuzzy sets and fuzzy sets [5]. The idea of neutrosophic sets are further expanded
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to different directions [6–9] by various researchers. Jun et al. [10] gave the idea of cubic set and
it was characterized by interval-valued fuzzy set and fuzzy set, which is a more general tool to
capture uncertainty and vagueness, since fuzzy set deals with single-value membership while
interval-valued fuzzy set ranges the membership in the form of intervals. The hybrid platform
provided by cubic set has the main advantage since it contains more information than a fuzzy set
and interval-valued fuzzy set. By using this concept, different problems arising in several areas can
be solved by choosing the finest choice by means of cubic sets as in the works of Abughazalah and
Yaqoob [11], Rashid et al. [12], Gulistan et al. [13], Ma et al. [14], Naveed at al. [15], Gulistan et al. [16],
Khan et al. [17,18], Yaqoob et al. [19], and Aslam et al. [20].

More recently, Jun et al. [21] gave the idea of neutrosophic cubic set and it was subsequently used
in many areas by Khan et al. [22] and Gulistan et al. [23,24].

On the other hand, Molodtsov [25] introduced the concept of soft sets that can be seen as a
new mathematical theory for dealing with uncertainty. It was applied to many different fields by
Maji et al. [26] who later defined fuzzy soft set theory and some properties of fuzzy soft sets [27].
Hybrids of soft sets were further developed [28–32].

Alkhazaleh and Salleh in 2011 defined the concept of soft expert set in which the user could
know the opinion of all the experts in one model and gave an application of this concept in the
decision-making problem [33]. Arokia et al. [34] studied fuzzy parameterizations for decision-making
in risk management systems via soft expert set. Arokia and Arockiarani [35] provided a fusion
of soft expert set and matrix models. Alkhazaleh and Salleh [36] extended the concept of soft
expert set in terms of fuzzy set and provided its application. Bashir and Salleh [37] provided the
concept of fuzzy parameterized soft expert set. Bashir et al. [38] discussed possibility fuzzy soft
expert set. Alhazaymeh et al. [39] provided the application of generalized vague soft expert set in
decision-making. Broumi and Smarandache [40] extended the soft expert sets in terms of intuitionistic
fuzzy sets. Abu Qamar and Hassan [41,42] presented the idea of Q-neutrosophic soft relation and
its entropy measures of distance and similarity. Sahin et al. [43] gave the idea of neutrosophic soft
expert sets while Uluçay et al. [44], introduced the concept of generalized neutrosophic soft expert set
for multiple-criteria decision-making. Neutrosophic vague soft expert set theory was put forward by
Al-Quran and Hassan [45] and developed it further to complex neutrosophic soft expert set [46,47].
Qayyum et al. [48] gave the idea of cubic soft expert sets for a more general approach. Ziemba and
Becker [49] presented analysis of the digital divide using fuzzy forecasting, which is a new approach
in decision-making.

Hence it is natural to extend the concept of expert sets to neutrosophic cubic soft expert sets for a
more generalized approach. The major contribution of this paper is the development of neutrosophic
cubic soft expert sets(NCSESs) by using the concept of neutrosophic cubic soft sets which generalizes
the concept of fuzzy soft expert sets, intuitionistic soft expert sets, and cubic soft expert sets. We define
and analyze the properties of internal neutrosophic cubic soft expert sets (INCSESs) and external
neutrosophic cubic soft expert sets (ENCSESs), P-order, P-union, P-intersection, P-AND, P-OR,
and R-order, R-union, R-intersection, R-AND, and R-OR of NCSESs. The NCSESs satisfy the laws of
commutativity, associativity, De Morgan, distributivity, idempotentency, and absorption. We derive
some conditions for P-union and P-intersection of two INCSESs to be an INCSES. It is shown that
P-union and P-intersection of ENCSESs need not be an ENCSES. The R-union and R-intersection of
the INCSESs (resp., ENCSESs) need not be an INCSES (resp. ENCSES). Necessary conditions for the
P-union, R-union, and R-intersection of two ENCSESs to be an ENCSES are obtained. We also study
the conditions for R-intersection and P-intersection of two NCSESs to be an INCSES and ENCSES.
This paper is organized as follows. Section 2 will be on preliminaries, while Section 3 develops an
approach to neutrosophic cubic soft expert set. We focus on the basic operations, namely P-order,
R-order, P-containment, R-containment, P-union, P-intersection, R-union, R-intersection, complement,
P-AND, P-OR, R-AND, and R-OR of NCSESs. Section 4 will present more results on NCSESs,
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followed by Section 5 on application in analyzing a cricket series. A comparison analysis will be
discussed in Section 6 and a conclusion is drawn in Section 7.

2. Preliminaries

Here we recall some of the basic material from the literature to develop the new theory.
For simplicity, the symbol (FE

S , A) stands for the soft expert set, N stands for the neutrosophic set,
IN stands for the interval neutrosophic set and (NC) for the neutrosophic cubic sets.

In psychology, decision-making (also spelled decision-making) is regarded as the cognitive
process resulting in the selection of a belief or a course of action among several alternative possibilities.
Every decision-making process produces a final choice, which may or may not prompt action.
Decision-making is the process of identifying and choosing alternatives based on the values,
preferences, and beliefs of the decision-maker. Experts set is a technique used in decision-making
problems, which is further extended to generalized forms, such as fuzzy experts set, intuitionistic fuzzy
expert set, cubic expert sets, neutrosophic expert set and other hybrids. We begin by stating the
definition of expert set.

Definition 1. [33] Let U be a universe, E be a set of parameters, and X be a set of experts. Let O = {0 =

disagree, 1 = agree} be a set of two valued opinion, Z = E× X×O and A ⊆ Z. A pair
(

FE
S , A

)
is called a soft

expert set over U, where FE
S is a mapping given by FE

S : A −→ P(U) where P(U) denotes the power set of U.

Definition 2. [33] Two soft expert sets
(

FE
S , A

)
and

(
GE

S , B
)

over U,
(

FE
S , A

)
⊆
(
GE

S , B
)

if

HE
S (a) =

{
A ⊆ B

FE
S (a) ⊆ GE

S (a) for all a ∈ A

and
(

FE
S , A

)
=
(
GE

S , B
)

if and only if
(

FE
S , A

)
⊆
(
GE

S , B
)

as well as
(
GE

S , B
)
⊆
(

FE
S , A

)
.

Definition 3. [33] Let E be a set of parameters and X be a set of experts. The NOT set ÍZ of Z = E× X×O
is defined by

ÍZ =
{(

Íei, xi, ok
)

. Íei /∈ E, xj ∈ X and ok ∈ O ∀ i, j, k
}

Definition 4. [33] The complement of a soft expert set
(

FE
S , A

)
is denoted by

(
FE

S , A
)c

= (FEc
S , ÍA) where

FEc
S : ÍA −→ P(U) is a mapping given by FEc

S (a) = U − FE
S ( Ía), for all a ∈ ÍA.

Definition 5. [33] If Z = E× X× {1} in Definition 1 then
(

FE
S , A

)
is called agree soft expert set over U and

it is denoted by
(

FE
S , A

)
1 .

Definition 6. [33] If Z = E× X× {0} in Definition 1 then
(

FE
S , A

)
is called disagree soft expert set over U

and it is denoted by
(

FE
S , A

)
0

Definition 7. [33] The union of two soft expert sets
(

FE
S , A

)
and

(
GE

S , B
)

over U denoted by
(

FE
S , A

)
∪(

GE
S , B

)
, is the soft expert set (HE

S , C) where C = A ∪ B, and for all a ∈ C,

HE
S (a) =





FE
S (a) if a ∈ A− B

GE
S (a) if a ∈ B− A

FE
S (a) ∪ GE

S (a) if a ∈ A ∩ B.

Definition 8. [33] The intersection of two soft expert sets
(

FE
S , A

)
and

(
GE

S , B
)

over U denoted by
(

FE
S , A

)
∩(

GE
S , B

)
, is the soft expert set (HE

S , C) where C = A ∩ B, and for all a ∈ C,
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HE
S (a) =





FE
S (a) if a ∈ A− B

GE
S (a) if a ∈ B− A

FE
S (a) ∩ GE

S (a) if a ∈ A ∩ B.

Definition 9. [33] If
(

FE
S , A

)
and

(
GE

S , B
)

are two soft expert sets over U then
(

FE
S , A

)
AND

(
GE

S , B
)

denoted
by
(

FE
S , A

)
∧ (GE

S , B), is defined by

(
FE

S , A
)
∧ (GE

S , B) = (HE
S , A× B)

where HE
S (a, b) = FE

S (a) ∩ GE
S (b), for all (a, b) ∈ A× B.

Definition 10. [33] If
(

FE
S , A

)
and

(
GE

S , B
)

are two soft expert sets then
(

FE
S , A

)
OR(GE

S , B) denoted by(
FE

S , A
)
∨ (GE

S , B) is defined by

(
FE

S , A
)
∨ (GE

S , B) = (HE
S , A× B)

where HE
S (a, b) = FE

S (a) ∪ GE
S (b), for all (a, b) ∈ A× B.

Definition 11. [5] A neutrosophic set in X is the structure of the form

N := {〈x, TN(x), IN(x), FN(x)〉 : x ∈ X}

where TN , IN , FN : X → [0, 1] such that 0 ≤ TN(x) + IN(x) + FN(x) ≤ 3.

Definition 12. [8] An interval neutrosophic set in X is the structure of the form

IN :=
{〈

x, TIN (x), IIN (x), FIN (x)
〉

: x ∈ X
}

where TN , IN , FN : X → D[0, 1] such that [0, 0] � TN(x) + IN(x) + FN(x) � [3, 3].

Definition 13. [21] A neutrosophic cubic set in X is a pair (NC) = (IN , N) where

IN := {〈x, TIN (x), IIN (x), FIN (x)〉 : x ∈ X}

is an interval neutrosophic set in X where TIN , IIN , FIN : X → D[0, 1] and

N := {〈x, TN(x), IN(x), FN(x)〉 : x ∈ X}

is a neutrosophic set in X where TN , IN , FN : X → [0, 1].

3. Neutrosophic Cubic Soft Expert Set

In this section, we develop an approach to neutrosophic cubic soft expert set which is a more
general approach for soft expert set theory. We focus on the basic operations namely, P-order, R-order,
P-containment, R-containment, P-union, P-intersection, R-union, R-intersection, complement, P-AND,
P-OR, R-AND, and R-OR of neutrosophic cubic soft expert sets. The symbol ((NC)E

S , E, X) stands for
the neutrosophic cubic soft expert set.

Definition 14. Let U be a finite set containing n alternatives, E be a set of criteria, X be a set of experts. A triplet
((NC)E

S , E, X) is called neutrosophic cubic soft expert set over U, if and only if (NC)E
S : E× X → NCP(U) is

a mapping into the set of all neutrosophic cubic set in U and defined as

((NC)E
S , E, X) =

{
(NC)E

S (e, x) = {
〈

u, IN
(e,x)(u), N(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E× X

}
,
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where
IN
(e,x)(u) = {(u, T̃IN (u), ĨIN (u), F̃IN (u))}, N(e,x)(x) = {(u, TN(u), IN(u), FN(u)},

such that

[0, 0] � T̃IN (u) + ĨIN (u) + F̃IN (u) � [3, 3], 0 ≤ TN(u) + IN(u) + FN(u) ≤ 3.

Example 1. Let U = {u1 = India, u2 = Pakistan} be the set of countries playing a cricket series, E = {e1 =

playing conditions , e2 = historic record} be the set of factors affecting the series, X = {x1, x2, x3} be the set of
experts giving their expert opinion. Let E× X = {(e1, x1), (e1, x2), (e2, x1), (e2, x2)}. Then the neutrosophic
cubic soft expert set ((NC)E

S , E, X) is given by

(NC)E
S (e1, x1) =

{
(u1, [0.5, 0.6] , [0.2, 0.3] , [0.1, 0.2] , 0.1, 0.4, 0.5) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e1, x2) =

{
(u1, [0.5, 0.6] , [0.2, 0.3] , [0.1, 0.2] , 0.1, 0.4, 0.5) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e1, x3) =

{
(u1, [0.5, 0.6] , [0.2, 0.3] , [0.1, 0.2] , 0.4, 0.3, 0.5) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e2, x1) =

{
(u1, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e2, x2) =

{
(u1, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e2, x3) =

{
(u1, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

The function of the form (T̃IN (u), TN(u)) denotes the range of values where the experts are sure to give certain
membership to a certain element, ( ĨIN (u), IN(u)) denotes the range of values where the experts are hesitant
and (F̃IN (u), FN(u)) denotes the range of values where the experts are sure to give negative points to a certain
element as a non-membership. Thus, experts have a wide range of scale to make their conclusion as compared
to the previous defined versions of fuzzy sets. More specific in the current example is the function of the form
(T̃IN (u), TN(u)) which gives the expert opinion for the past performance of these two countries, ( ĨIN (u), IN(u))
gives the expert opinion for running series between these two countries and (F̃IN (u), FN(u)) gives the expert
opinion for the upcoming series between these two countries which is not to be held in the near future.

Definition 15. A neutrosophic cubic soft expert set

((NC)E
S , E, X) =

{
(NC)E

S (e, x) = {
〈

u, IN
(e,x)(u), N(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E× X

}

over U is said to be:
(i) Internal truth neutrosophic cubic soft experts set (briefly, ITNCSESs) if for all u ∈ U, so that

T−IN (u) ≤ TN(u) ≤ T+
IN (u), ∀ u ∈ U.

(ii) Internal indeterminacy neutrosophic cubic soft experts set (briefly, I INCSESs) if for all u ∈ U, so that

I−IN (u) ≤ IN(u) ≤ I+IN (u), ∀ u ∈ U.

(iii) Internal falsity neutrosophic cubic soft experts set (briefly, IFNCSESs) if for all u ∈ U, so that

F−IN (u) ≤ FN(u) ≤ F+
IN (u), ∀u ∈ U.
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If a neutrosophic cubic soft expert set ((NC)E
S , E, X) in X, satisfies (i), (ii), (iii), then it is known as

internal neutrosophic cubic soft expert set in X, abbreviated as (INCSESs).

Example 2. Consider the Example 1. Then the internal neutrosophic cubic soft expert set is given by

(NC)E
S (e1, x1) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.5, 0.4, 0.3) ,
(u2, [0.6, 0.9] , [0.5, 0.9] , [0.6, 0.8] , 0.7, 0.6, 0.7) ,

}

(NC)E
S (e2, x1) =

{
(u1, [0.5, 0.7] , [0.2, 0.4] , [0.1, 0.4] , 0.6, 0.3, 0.2) ,
(u2, [0.6, 0.9] , [0.7, 0.9] , [0.6, 0.8] , 0.7, 0.8, 0.7) ,

}

(NC)E
S (e1, x2) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.7, 0.2, 0.3) ,
(u2, [0.5, 0.9] , [0.6, 0.8] , [0.4, 0.9] , 0.6, 0.7, 0.6) ,

}

(NC)E
S (e2, x2) =

{
(u1, [0.6, 0.8] , [0.3, 0.9] , [0.6, 0.9] , 0.7, 0.7, 0.8) ,
(u2, [0.3, 0.9] , [0.7, 0.9] , [0.6, 0.8] , 0.6, 0.8, 0.7)

}

Remark 1. We can draw the following conclusion from Example 2;
(i) If the value of N(e,x)(u) lies in the interval IN

(e,x)(u), then it means that the respective team is going to
maintain its progress in different time frames.

(ii) If the panel of experts consists of the internal panel (meaning that the experts are from the same country
or same cricket board), then it is known as INCSESs.

Definition 16. A neutrosophic cubic soft expert set

((NC)E
S , E, X) =

{
(NC)E

S (e, x) = {
〈

u, IN
(e,x)(u), N(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E× X

}

over U is said to be:
(i) External truth neutrosophic cubic soft expert set (briefly, ETNCSESs) if for all u ∈ U, we have

TN(u) /∈ (T−IN (u), T+
IN (u)), ∀ u ∈ U

(ii) External indeterminacy neutrosophic cubic soft expert set (briefly, EINCSESs) if for all u ∈ U, we have

IN(x) /∈ (I−IN (x), I+IN (x)), ∀ u ∈ U

(iii) External falsity neutrosophic cubic soft expert set (briefly, EFNCSESs) if for all u ∈ U, we have

FN(x) /∈ (F−IN (x), F+
IN (x)), ∀ u ∈ U

If a neutrosophic cubic soft expert set ((NC)E
S , E, X) over U, satisfies (i), (ii), (iii), then it is known

as external neutrosophic cubic soft expert set in X, abbreviated as (ENCSESs).

Example 3. Let U be the set of countries playing a one-day international (ODI) triangular series provided in
Example 1, then the external neutrosophic cubic soft expert set is given by;
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(NC)E
S (e1, x1) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(NC)E
S (e2, x1) =

{
(u1, [0.5, 0.7] , [0.2, 0.4] , [0.1, 0.4] , 0.8, 0.5, 0.6) ,
(u2, [0.4, 0.6] , [0.3, 0.5] , [0.6, 0.8] , 0.7, 0.2, 0.4) ,

}

(NC)E
S (e1, x2) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

(NC)E
S (e2, x2) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

Remark 2. We can draw the following conclusion from Example 3;
(i) If the value of N(e,x)(u) does not lie in the interval IN

(e,x)(u), then it means the respective team is not
maintaining its progress in different time frames.

(ii) If the panel of experts consists of the external panel (meaning that the experts are not from the same
country or same cricket board), then it is known as ENCSESs.

Our next discussion is to define some basic operations on neutrosophic cubic soft expert sets to
get more insight of neutrosophic cubic soft expert sets.

Definition 17. A NCSESs
(
(NC)E

S1, E1, X1
)

over U is said to be P-order contained in another NCSESs(
(NC)E

S2, E2, X2
)

over U, denoted by
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

,
if (i) E1 ⊆ E2,
(ii) X1 ⊆ X2,
(iii) (NC)E

S1(e, x) ⊆P (NC)E
S2(e, x) for all e ∈ E1, x ∈ X1, where condition (iii) implies that

IN
1(NC)E

S (e1,x1)
(x) � IN

2(NC)E
S (e2,x2)

(x), N1(NC)E
S (e1,x1)

(x) ≤ N2(NC)E
S (e2,x2)

(x).

Definition 18. A NCSESs
(
(NC)E

S1, E1, X1
)

over U is said to be R-order contained in another NCSES(
(NC)E

S2, E2, X2
)

over U, denoted by
(
(NC)E

S1, E1, X1
)
⊆R

(
(NC)E

S2, E2, X2
)

,
if (i) E1 ⊆ E2,
(ii) X1 ⊆ X2,
(iii) (NC)E

S1(e, x) ⊆R (NC)E
S2(e, x) for all e ∈ E1, x ∈ X1,

where condition (iii) implies that

IN
1(NC)E

S (e1,x1)
(x) � IN

2(NC)E
S (e2,x2)

(x), N1(NC)E
S (e1,x1)

(x) ≥ N2(NC)E
S (e2,x2)

(x).

Definition 19. Two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U is said to be equal which is
denoted by

(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S2, E2, X2
)

,
if (i) A = B,
(ii) X1 = X2,
(iii) (NC)E

S1(e) = (NC)E
S2(e) for all e ∈ E = A = B, x ∈ X = X1 = X2,

where condition (iii) implies that

IN
1(NC)E

S (e1,x1)
(x) = IN

2(NC)E
S (e2,x2)

(x), N1(NC)E
S (e1,x1)

(x) = N2(NC)E
S (e2,x2)

(x).

Remark 3. (a) We observe from Definitions 17–19, that for any two NCSESs
(
(NC)E

S1, E1, X1
)

and(
(NC)E

S2, E2, X2
)

over U;
(i) If

(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S2, E2, X2
)
⊆P

(
(NC)E

S1, E1, X1
)

,
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then
(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S2, E2, X2
)

,
(ii) If

(
(NC)E

S1, E1, X1
)
⊆R

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S2, E2, X2
)
⊆R

(
(NC)E

S1, E1, X1
)

,
then

(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S2, E2, X2
)

.
(b) Using Definitions 17–19, one can easily compare the performance of two cricket teams in different

time frames.

Definition 20. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two NCSESs in U.
Then we define (i)

(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where E3 = E1 ∪
E2, X3 = X1 ∪ X2

(NC)E
S3(ei) =





(NC)E
S1(ei) if ei ∈ E1 − E2

(NC)E
S2(ei) if ei ∈ E2 − E1

(NC)E
S1(ei) ∨P (NC)E

S2(ei) if ei ∈ E1 ∩ E2

where

(NC)E
S1(ei) ∨P (NC)E

S2(ei) =
{〈

u, IN
(NC)E

S1(ei)
∨ IN

(NC)E
S2(ei)

, N(NC)E
S1(ei)

∨ N(NC)E
S2(ei)

〉
: u ∈ U

}

= {
〈 u,




T̃IN
(NC)E

S1(ei)
(u) ∨ T̃IN

(NC)E
S2(ei)

(u), ĨIN
(NC)E

S1(ei)
(u) ∨ ĨIN

(NC)E
S2(ei)

(u)

, F̃IN
(NC)E

S1(ei)
(u) ∧ T̃IN

(NC)E
S2(ei)

(u)


 ,




TN
(NC)E

S1(ei)
(u) ∨ TN

(NC)E
S2(ei)

(u), IN
(NC)E

S1(ei)
(u) ∨ IN

(NC)E
S2(ei)

(u),

FN
(NC)E

S1(ei)
(u) ∧ FN

(NC)E
S2(ei)

(u)




〉
}

(ii)
(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where E3 = E1 ∩ E2, X3 = X1 ∩ X2

(NC)E
S3(ei) =

{
(NC)E

S1(ei) ∧P (NC)E
S2(ei) if ei ∈ E1 ∩ E2

where

(NC)E
S1(ei) ∧P (NC)E

S2(ei) =
{〈

u, IN
(NC)E

S1(ei)
∧ IN

(NC)E
S2(ei)

, N(NC)E
S1(ei)

∧ N(NC)E
S2(ei)

〉
: u ∈ U

}

= {
〈 u,




T̃IN
(NC)E

S1(ei)
(u) ∧ T̃IN

(NC)E
S2(ei)

(u), ĨIN
(NC)E

S1(ei)
(u) ∧ ĨIN

(NC)E
S2(ei)

(u),

F̃IN
(NC)E

S1(ei)
(u) ∨ T̃IN

(NC)E
S2(ei)

(u)







TN
(NC)E

S1(ei)
(u) ∧ TN

(NC)E
S2(ei)

(u), IN
(NC)E

S1(ei)
(u) ∧ IN

(NC)E
S2(ei)

(u),

FN
(NC)E

S1(ei)
(u) ∨ FN

(NC)E
S2(ei)

(u)




〉
}

(iii)
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where E3 = E1 ∪ E2, X3 = X1 ∪ X2,

(NC)E
S3(ei) =





(NC)E
S1(ei) if ei ∈ E1 − E2

(NC)E
S2(ei) if ei ∈ E2 − E1

(NC)E
S1(ei) ∨R (NC)E

S2(ei) if ei ∈ E1 ∩ E2
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where

(NC)E
S1(ei) ∨R (NC)E

S2(ei) =
{〈

u, IN
(NC)E

S1(ei)
∨ IN

(NC)E
S2(ei)

, N(NC)E
S1(ei)

∧ N(NC)E
S2(ei)

〉
: u ∈ U

}

= {
〈 u,




T̃IN
(NC)E

S1(ei)
(u) ∨ T̃IN

(NC)E
S2(ei)

(u), ĨIN
(NC)E

S1(ei)
(u) ∨ ĨIN

(NC)E
S2(ei)

(u),

F̃IN
(NC)E

S1(ei)
(u) ∧ T̃IN

(NC)E
S2(ei)

(u)







TN
(NC)E

S1(ei)
(u) ∧ TN

(NC)E
S2(ei)

(u), IN
(NC)E

S1(ei)
(u) ∧ IN

(NC)E
S2(ei)

(u),

FN
(NC)E

S1(ei)
(u) ∨ FN

(NC)E
S2(ei)

(u)




〉

(iv)
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where E3 = E1 ∩ E2, X3 = X1 ∩ X2,

(NC)E
S3(ei) =

{
(NC)E

S1(ei) ∧R (NC)E
S2(ei) if ei ∈ E1 ∩ E2

where

(NC)E
S1(ei) ∧R (NC)E

S2(ei) =
{〈

u, IN
(NC)E

S1(ei)
∧ IN

(NC)E
S2(ei)

, N(NC)E
S1(ei)

∨ N(NC)E
S2(ei)

〉
: u ∈ U

}

= {
〈 u,




T̃IN
(NC)E

S1(ei)
(u) ∧ T̃IN

(NC)E
S2(ei)

(u), ĨIN
(NC)E

S1(ei)
(u) ∧ ĨIN

(NC)E
S2(ei)

(u),

F̃IN
(NC)E

S1(ei)
(u) ∨ T̃IN

(NC)E
S2(ei)

(u)







TN
(NC)E

S1(ei)
(u) ∨ TN

(NC)E
S2(ei)

(u), IN
(NC)E

S1(ei)
(u) ∨ IN

(NC)E
S2(ei)

(u),

FN
(NC)E

S1(ei)
(u) ∧ FN

(NC)E
S2(ei)

(u)




〉
}

(v) The complement of a neutrosophic cubic soft expert set
(
(NC)E

S , E, X
)

denoted by

(
(NC)E

S , E, X
)c

= {(NC)Ec
S (ei) = {

〈
u, 1̃− IN

(NC)E
S (ei)

(u), 1− N(NC)E
S (ei)

(u)
〉

, u ∈ U}, ei ∈ A}.

Proposition 1. Let
(
(NC)E

S1, E1, X1
)
,
(
(NC)E

S2, E2, X2
)

,
(
(NC)E

S3, E3, X3
)

,
(
(NC)E

S4, E4, X4
)

be NCSESs
in U. Then

(i) If
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S4, E4, X4
)

then
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S4, E4, X4
)

.
(ii) If

(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

then
(
(NC)E

S2, E2, X2
)c ⊆P

(
(NC)E

S1, E1, X1
)c .

(iii) If
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S4, E4, X4
)

then
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)
∩P
(
(NC)E

S4, E4, X4
)

.
(iv) If

(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S2, E2, X2
)

then
(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S2, E2, X2
)

.
(v) If

(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S4, E4, X4
)

then
(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S2, E2, X2
)
∪P
(
(NC)E

S4, E4, X4
)
,(

(NC)E
S1, E1, X1

)
∩P
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S2, E2, X2
)
∩P
(
(NC)E

S4, E4, X4
)

.

Proof. The proof is straightforward.

Theorem 1. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U the following
properties hold:

(i) Idempotent law:
(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S1, E1, X1
)

,(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S1, E1, X1
)

.
(ii) Commutative law:

(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S2, E2, X2
)
∪P
(
(NC)E

S1, E1, X1
)

,(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S2, E2, X2
)
∩P
(
(NC)E

S1, E1, X1
)

.
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(iii) Associative law: (((NC)E
S1, E1, X1)∪P ((NC)E

S2, E2, X2))∪P ((NC)E
S3, E3, X3) = ((NC)E

S1, E1, X1)

∪P(((NC)E
S2, E2, X2) ∪P ((NC)E

S3, E3, X3)),
(((NC)E

S1, E1, X1)∩P ((NC)E
S2, E2, X2))∩P ((NC)E

S3, E3, X3) = ((NC)E
S1, E1, X1) ∩P (((NC)E

S2, E2, X2)

∩P((NC)E
S3, E3, X3)).

(iv) Distributive and De Morgan’s laws also true.
(v) Involution law: (

(
(NC)E

S1, E1, X1
)c
)c =

(
(NC)E

S1, E1, X1
)

.

Proposition 2. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U the following
properties are equivalent:

(i)
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

,
(ii)
(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S1, E1, X1
)

,
(iii)

(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S2, E2, X2
)

.

Proof. (i)⇒ (ii) By Definition 20, we have

(
(NC)E

S1, E1, X1

)
∩P

(
(NC)E

S2, E2, X2

)
= ((NC)E

S1 ∩P (NC)E
S2, A ∩ B) = ((NC)E

S1 ∩P (NC)E
S2, A)

as A ⊆ B by hypothesis. Now for any e ∈ E1, since (NC)E
S1(e) ⊆P (NC)E

S2(e), using Definition 17,
implies that IN

(NC)E
S1(ei)

(u) � IN
(NC)E

S2(ei)
(u) and N(NC)E

S1(ei)
(u) ≤ N(NC)E

S2(ei)
(u) for any u ∈ U, where

(NC)E
S1(ei) = {

〈
u, IN

(NC)E
S1(ei)

(u), N(NC)E
S1(ei)

(u)
〉

u ∈ U}. Since IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) and

IN+
(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S2(ei)

(u). Thus

inf{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)} = [inf{IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u)},

inf{IN+
(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S2(ei)

(u)}] = [IN−
(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)]

and inf{N(NC)E
S1(ei)

(u), N(NC)E
S2(ei)

(u)} = N(NC)E
S1(ei)

(u). So It is ok.

(NC)E
S1(e) ∩P (NC)E

S2(e) = {
〈

u, inf{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)},

inf{N(NC)E
S1(ei)

(u), N(NC)E
S2(ei)

(u)
〉

: u ∈ U} = {
〈

u, IN
(NC)E

S1(ei)
(u), N(NC)E

S1(ei)
(u)
〉

: u ∈ U}

= (NC)E
S1(e)

Hence (NC)E
S1(e) ∩P (NC)E

S2(e) = (NC)E
S (e).

(ii)⇒(iii) By Definition 20, we have

(
(NC)E

S1, E1, X1

)
∪P

(
(NC)E

S2, E2, X2

)
= ((NC)E

S1 ∪P (NC)E
S2, A ∪ B) = ((NC)E

S1 ∪P (NC)E
S2, A)

as A∩ A = A and (NC)E
S2 ∩ (NC)E

S2 = (NC)E
S2, by hypothesis. Now for any e ∈ E1, since (NC)E

S1(e)∩P
(NC)E

S2(e) = (NC)E
S1(e), by Definition 20, we have

inf{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)} = IN
(NC)E

S1(ei)
(u)

and inf{N(NC)E
S1(ei)

(u), N(NC)E
S2(ei)

(u)} = N(NC)E
S1(ei)

(u)

this implies that

sup{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)} = IN
(NC)E

S2(ei)
(u)

and sup{N(NC)E
S1(ei)

(u), N(NC)E
S2(ei1)

(u)} = N(NC)E
S2(ei)

(u)
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Thus, we have

(NC)E
S1(e) ∪P (NC)E

S2(e) = {
〈

u, sup{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)},
sup{N(NC)E

S1(ei)
(u), N(NC)E

S2(ei)
(u)

〉
: u ∈ U}

= {
〈

u, IN
(NC)E

S2(ei)
(u), N(NC)E

S2(ei)
(u)
〉

: u ∈ U} = (NC)E
S2(e).

Hence (NC)E
S1(e) ∩P (NC)E

S2(e) = (NC)E
S2(e).

(iii)⇒(i) By hypothesis we have

(
(NC)E

S1, E1, X1

)
∪P

(
(NC)E

S2, E2, X2

)
= ((NC)E

S1 ∪P (NC)E
S2, A ∪ B) = ((NC)E

S1 ∪P (NC)E
S2, A)

as A ∪ A = A and (NC)E
S2 ∪ (NC)E

S2 = (NC)E
S2 ⇒ A ⊆ A and (NC)E

S2 ⊆ (NC)E
S2. Also

(NC)E
S1(e) ∪P (NC)E

S2(e) = {
〈

u, sup{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)},
sup{N(NC)E

S1(ei)
(u), N(NC)E

S2(ei)
(u)

〉
: u ∈ U}

= {
〈

u, IN
(NC)E

S2(ei)
(u), N(NC)E

S2(ei)
(u)
〉

: u ∈ U} = (NC)E
S2(e)

this implies that IN
(NC)E

S1(ei)
(u) � IN

(NC)E
S2(ei)

(u) and N(NC)E
S1(ei)

(u) ≤ N(NC)E
S2(ei)

(u) for any u ∈ U.

Hence
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

.

Corollary 1. If we take X1 = X2 = X in the Proposition 2, then the following are equivalent:
(i)
(
(NC)E

S1, E1, X
)
⊆P

(
(NC)E

S2, E2, X
)

,
(ii)
(
(NC)E

S1, E1, X
)
∩P
(
(NC)E

S2, E2, X
)
=
(
(NC)E

S1, E1, X
)

,
(iii)

(
(NC)E

S1, E1, X
)
∪P
(
(NC)E

S2, E2, X
)
=
(
(NC)E

S2, E2, X
)

.

Proof. The proof is straightforward.

4. More on NCSESs

In this section, we discuss different types of union and intersection of the NCSESs and their
related conditions.

1. The following example shows that R-Union of two INCSESs in U need not be INCSESs
in U.

Example 4. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two INCSESs in U, where

(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.1, 0.2], [0.4, 0.5], [0.5, 0.6]), N(NC)E
S1(ei)

= (0.2, 0.3, 0.4)}

and
(
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.3, 0.4], [0.3, 0.5], [0.5, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.3)}.

Now by Definition 20, we have
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.3, 0.4], [0.4, 0.5], [0.5, 0.7], N(NC)E
S3(ei)

= (0.2, 0.3, 0.4)}

As 0.2 /∈ [0.4, 0.5], 0.3 /∈ [0.4, 0.5] and 0.4 /∈ [0.5, 0.7].

Hence
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is not a INCSES in U.
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The following theorem gives the condition under which R-union of two INCSESs in U is also a
INCSES in U.

Theorem 2. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two INCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}

and
(
(NC)E

S2, E2, X2
)
=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}

such that
sup{IN−

(NC)E
S1(ei)

(u), IN−
(NC)E

S2(ei)
(u)} ≤

{
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

for all u ∈ U and (g, z) ∈ (E1 ∩ E2 × X1 ∩ X2). Then
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is INCSESs
in U.

Proof. By Definition 20, we know
(
(NC)E

S1, E1, X1
)
∪R

(
(NC)E

S2, E2, X2
)

=
(
(NC)E

S3, E3, X3
)

,
where E3 = E1 ∪ E2, X3 = X1 ∪ X2,

(NC)E
S3(e3, x3) =





(NC)E
S1(e3, x3) if (e3, x3) ∈ (E1 × X1)− (E2 × X2)

(NC)E
S2(e3, x3) if (e3, x3) ∈ (E2 × X2)− (E1 × X1)

(NC)E
S1(e3, x3) ∨R (NC)E

S2(e3, x3) if (e3, x3) ∈ (E1 × E2) ∩ (X1 × X2)

where

(NC)E
S1(e3, x3) ∨R (NC)E

S2(e3, x3)=
{〈

u, IN
(NC)E

S1(e3,x3)
∨IN

(NC)E
S2(e3,x3)

, N(NC)E
S1(e3,x3)

∧N(NC)E
S2(e3,x3)

〉
:u ∈ U

}

= {
〈

u,




T̃IN
(NC)E

S1(e3,x3)
(u) ∨ T̃IN

(NC)E
S2(e3,x3)

(u),

ĨIN
(NC)E

S1(e3,x3)
(u) ∨ ĨIN

(NC)E
S2(e3,x3)

(u),

F̃IN
(NC)E

S1(e3,x3)
(u) ∧ T̃IN

(NC)E
S2(e3,x3)

(u)







TN
(NC)E

S1(e3,x3)
(u) ∧ TN

(NC)E
S2(e3,x3)

(u),

IN
(NC)E

S1(e3,x3)
(u) ∧ IN

(NC)E
S2(e3,x3)

(u),

FN
(NC)E

S1(e3,x3)
(u) ∨ FN

(NC)E
S2(e3,x3)

(u)




〉

If (e3, x3) ∈ (E1 × X1) − (E2 × X2) or if (e3, x3) ∈ (E2 × X2) − (E1 × X1) then the result is trivial.
If (e3, x3) ∈ (E1 ∩ E2 × X1 ∩ X2) , then

(NC)E
S3 (e3, x3) =

{〈
u, IN

(NC)E
S1(e3,x3)

∨ IN
(NC)E

S2(e3,x3)
, N(NC)E

S1(e3,x3)
∧ N(NC)E

S2(e3,x3)

〉
: u ∈ U

}
.

Since
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

are INCSESs in U. So IN−
(NC)E

S1(e3,x3)
(u) ≤

N(NC)E
S1(e3,x3)

(u) ≤ IN+
(NC)E

S1(e3,x3)
(u) and IN−

(NC)E
S2(e3,x3)

(u) ≤ N(NC)E
S2(e3,x3)

(u) ≤ IN+
(NC)E

S2(e3,x3)
(u). Also

IN−
(NC)E

S1(e3,x3)
(u) ∨ IN−

(NC)E
S2(e3,x3)

(u) ≤ N(NC)E
S1(e3,x3)

(u) ∧ N(NC)E
S2(e3,x3)

(u)

≤ IN+
(NC)E

S1(e3,x3)
(u) ∨ IN+

(NC)E
S2(e3,x3)

(u)

for all u ∈ U and (e3, x3) ∈ (E2 ∩ E2, X1 ∩ X2) . Hence
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is
INCSESs in U.

2. The following example yields that R-intersection of two INCSESs need not be a INCSESs.

Example 5. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two INCSESs in U, where
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(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.1, 0.2], [0.3, 0.5], [0.3, 0.6]), N(NC)E
S1(ei)

= (0.2, 0.3, 0.4)}

and
(
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.6], [0.3, 0.6], [0.5, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.5)}.

Now by Definition 20, we have
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

(
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S3(ei)

= ([0.1, 0.2], [0.3, 0.5], [0.5, 0.7], N(NC)E
S3(ei) = (0.4, 0.6, 0.4)}.

As 0.4 /∈ [0.1, 0.2], 0.6 /∈ [0.3, 0.5] and 0.4 /∈ [0.5, 0.7].

Hence
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is not a INCSES in U.
The following theorem gives the condition that R-intersection of two INCSESs is to be a INCSES.

Theorem 3. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two INCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}

and (
(NC)E

S2, E2, X2
)
=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such

that
inf{IN+

(NC)E
S (ei)

(x), IN+
(NC)E

S2(ei)
(u)} ≥

{
N(NC)E

S (ei)
(u) ∨ N(NC)E

S2(ei)
(u)
}

for all u ∈ U and (g, z) ∈ (E1 ∩ E2 × X1 ∩ X2). Then
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is a INCSES
in U.

Proof. Similar to the proof of the Theorem 2.

3. The following example yields that R-union of two ENCSESs need not be an ENCSESs.

Example 6. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U, where

(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.3, 0.4], [0.4, 0.7], [0.3, 0.6]), N(NC)E
S (ei)

= (0.5, 0.3, 0.7)}

and
(
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.6], [0.3, 0.5], [0.5, 0.6]), N(NC)E
S2(ei)

= (0.1, 0.2, 0.4)}.

Now by Definition 20, we have
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.3, 0.6], [0.4, 0.7], [0.5, 0.6], N(NC)E
S3(ei) = (0.1, 0.2, 0.7)}.

As 0.1 /∈ [0.3, 0.6], 0.2 /∈ [0.4, 0.7] and 0.7 /∈ [0.5, 0.6].

Hence R-union is not a ENCSESs in U.
The following theorem gives the condition that R-union of two ENCSESs to be a ENCSESs.

Theorem 4. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}

and
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(
(NC)E

S2, E2, X2
)

=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}

such that

{inf{sup{IN+
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

<
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

≤ {sup{IN+
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)}},

for all u ∈ U and (g, z) ∈ (E1 ∩ E2 × X1 ∩ X2). Then
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is a ENCSES
in U.

Proof. By Definition 20, we know
(
(NC)E

S1, E1, X1
)
∪R

(
(NC)E

S2, E2, X2
)

=
(
(NC)E

S3, E3, X3
)

,
where E3 = E1 ∪ E2, X3 = X1 ∪ X2,

(NC)E
S3(e3, x3) =





(NC)E
S1(e3, x3) if (e3, x3) ∈ (E1 × X1)− (E2 × X2)

(NC)E
S2(e3, x3) if (e3, x3) ∈ (E2 × X2)− (E1 × X1)

(NC)E
S1(e3, x3) ∨R (NC)E

S2(e3, x3) if (e3, x3) ∈ (E1 × E2) ∩ (X1 × X2)

where

(NC)E
S1(e3, x3) ∨R (NC)E

S2(e3, x3) =

{〈
u, IN

(NC)E
S1(e3,x3)

∨ IN
(NC)E

S2(e3,x3)
,

N(NC)E
S1(e3,x3)

∧ N(NC)E
S2(e3,x3)

〉
: u ∈ U

}

= {
〈

u,




T̃IN
(NC)E

S1(e3,x3)
(u) ∨ T̃IN

(NC)E
S2(e3,x3)

(u),

ĨIN
(NC)E

S1(e3,x3)
(u) ∨ ĨIN

(NC)E
S2(e3,x3)

(u),

F̃IN
(NC)E

S1(e3,x3)
(u) ∧ T̃IN

(NC)E
S2(e3,x3)

(u)







TN
(NC)E

S1(e3,x3)
(u) ∧ TN

(NC)E
S2(e3,x3)

(u),

IN
(NC)E

S1(e3,x3)
(u) ∧ IN

(NC)E
S2(e3,x3)

(u),

FN
(NC)E

S1(e3,x3)
(u) ∨ FN

(NC)E
S2(e3,x3)

(u)




〉

If (e3, x3) ∈ (E1 ∩ E2 × X1 ∩ X2) , take

h =



{inf{sup{IN+

(NC)E
S1(ei)

(u), IN−
(NC)E

S2(ei)
(u)},

sup{IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)}}




and

k =



{sup{IN+

(NC)E
S1(ei)

(u), IN−
(NC)E

S2(ei)
(u)},

sup IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)}}




Then h is one of (
IN+
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u), IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)
)

.

If we choose h = IN−
(NC)E

S2(ei)
(u) or IN+

(NC)E
S2(ei)

(u), then

IN−
(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u) ≤ IN−
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S2(ei)

(u)
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and so k = IN+
(NC)E

S1(ei)
(u). Thus




sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)} = IN−
(NC)E

S2(ei)
(u)

= h >
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

.


 .

Hence 


{
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

/∈ (sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)},
sup{IN+

(NC)E
S1(ei)

(u), IN+
(NC)E

S2(ei)
(u)}).


 .

Now if h = IN+
(NC)E

S2(ei)
(u) then IN−

(NC)E
S1(ei)

(u) ≤ IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u) and so

sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}. Assume k = IN−
(NC)E

S1(ei)
(u), then we have

IN−
(NC)E

S2(ei)
(u) ≤ IN−

(NC)E
S1(ei)

(u) <
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u).

So, we can write




IN−
(NC)E

S2(ei)
(u) ≤ IN−

(NC)E
S1(ei)

(u) <
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

= IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)


 .

For the case




IN−
(NC)E

S2(ei)
(u) ≤ IN−

(NC)E
S1(ei)

(u)

<
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

= IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)




which contradicted the fact that
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U.
For the case 



IN−
(NC)E

S2(ei)
(u) ≤ IN−

(NC)E
S1(ei)

(u) =
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)




we have 


{
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

/∈ (sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)})
= IN−

(NC)E
S1(ei)

(u) =
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}


 .

Again, assume that k = IN−
(NC)E

S2(ei)
(u), then we have

IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) <
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)
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or

IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) =
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u).

For the case

IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) <
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)

which contradict
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U. For the case

IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) =
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)

we have
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

/∈ {((sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}),

(sup{IN+
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)})}

because

((sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}) =, IN−
(NC)E

S2(ei)
(u) =

{
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

.

If ei = (e3, x3) ∈ (E1 × X1)− (E2 × X2) or if ei = (e3, x3) ∈ (E2 × X2)− (E1 × X1) then the result is
trivial. Hence

(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is a ENCSES in U.

4. The following example shows that R-intersection of two ENCSESs need not be ENCSESs.

Example 7. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U, where

(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.3, 0.4], [0.4, 0.7], [0.5, 0.6]), N(NC)E
S1(ei)

= (0.2, 0.3, 0.4)}

and
(
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.5)}.

Now by Definition 20, we have
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7], N(NC)E
S3(ei) = (0.4, 0.6, 0.4)}.

As 0.4 /∈ [0.2, 0.3], 0.6 /∈ [0.3, 0.5] and 0.4 /∈ [0.6, 0.7]. Hence
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is not a
ENCSES in U.

The following theorem gives the condition that R-intersection of two ENCSESs is also a ENCSES.

Theorem 5. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,
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where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}

and (
(NC)E

S2, E2, X2
)

=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}

such that

{inf{sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

<
{

N(NC)E
S (ei)

(u) ∨ N(NC)E
S2(ei)

(u)
}

≤ {sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

for all u ∈ U and (g, z) ∈ (E1 ∩ E2 × X1 ∩ X2). Then
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is ENCSESs
in U.

Proof. Similar to the proof of Theorem 4.

5. The following example shows that P-union of two ENCSESs need not to be a ENCSES.

Example 8. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U, where

(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.3, 0.5], [0.4, 0.7], [0.5, 0.6]), N(NC)E
S1(ei)

= (0.6, 0.8, 0.4)}

and
(
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.5)}.

Now by Definition 20, we have
(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.3, 0.5], [0.4, 0.7], [0.5, 0.6], N(NC)E
S3(ei) = (0.6, 0.8, 0.4)}.

As 0.6 /∈ [0.3, 0.5], 0.8 /∈ [0.4, 0.7] and 0.4 /∈ [0.5, 0.6].

Hence P-union of
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

is not ENCSES in U.
The following theorem gives the condition under which P-union of two ENCSESs is a ENCSESs.

Theorem 6. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}

and (
(NC)E

S2, E2, X2
)

=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}

such that

sup{inf{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, {IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

<
{

N(NC)E
S (ei)

(u) ∨ N(NC)E
S2(ei)

(u)
}

≤ inf{sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

for all e ∈ (A ∩ A× B ∩ B) and u ∈ U. Then
(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S2, E2, X2
)

is a ENCSES over U.

Proof. Similar to the proof of Theorems 2 and 4.

6. The following example shows that P-intersection of two ENCSESs need not be a ENCSES.
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Example 9. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U, where

(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.3, 0.5], [0.4, 0.7], [0.5, 0.6]), N(NC)E
S1(ei)

= (0.6, 0.8, 0.4)}

and
(
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.5)}.

Now by Definition 20, we have
(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7], N(NC)E
S3(ei) = (0.4, 0.6, 0.5)}.

As 0.4 /∈ [0.2, 0.3], 0.6 /∈ [0.3, 0.5] and 0.5 /∈ [0.6, 0.7].

Hence P-intersection of
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

is not ENCSES in U.

Theorem 7. Let {(NC)E
Si}i∈I = {

(
(NC)E

Si, Ei, Xi
)
}i∈I be a family of internal cubic soft expert set (INCSESs)

sets over U, u ∈ U for any ei ∈ Ei, x ∈ Xi}. Then ∪Pi∈I{(NC)E
Si} and ∩Pi∈I{(NC)E

Si} are internal cubic soft
expert set (INCSESs) sets over U.

Proof. As {(NC)E
Si}i∈I be a family of internal generalized cubic soft expert set (INCSESs) over U so

we have IN−
(NC)E

Si(e,x)
(u) ≤ N(NC)E

Si(e,x)(u) ≤ IN−
(NC)E

Si(e,x)
(u) for each i ∈ I this implies that

∪Pi∈I IN−
(NC)E

Si(e,x)
(u) ≤ ∪Pi∈I N(NC)E

Si(e,x)(u) ≤ ∪Pi∈I IN−
(NC)E

Si(e,x)
(u)

and
∩Pi∈I IN−

(NC)E
Si(e,x)

(u) ≤ ∩Pi∈I N(NC)E
Si(e,x)(u) ≤ ∩Pi∈I IN−

(NC)E
Si(e,x)

(u).

Hence ∪p
i∈I

{
(NC)E

Si
}

and ∩p
i∈I

{
(NC)E

Si
}

are (INCSESs) over U.

Theorem 8. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}

and
(
(NC)E

S2, E2, X2
)
=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}

such that

sup{inf{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, {IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

<
{

N(NC)E
S (ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

≤ inf{sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

for all e ∈ (A ∩ A× B ∩ B) and u ∈ U. Then
(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
)

is also an ENCSESs
and INCSESs over U.

Proof. Similar to the proof of Theorems 2 and 4.

Theorem 9. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}

and
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(
(NC)E

S2, E2, X2
)
=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such

that

(
N(NC)E

S (eix)
∨ N

(NC)E
S2(ei)

)
(u)∈





inf{sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup{IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}},
{inf{IN+

(NC)E
S (ei)

(u), IN−
(NC)E

S2(ei)
(u)}, inf{IN−

(NC)E
S (ei)

(u), IN+
(NC)E

S2(ei)
(u)}}

for all e ∈ (A ∩ A× B ∩ B) and u ∈ U. Then
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is a ENCSES and
INCSES over U.

Proof. Similar to the proof of Theorems 2 and 4.

Theorem 10. Let
(
(NC)E

S1, E1, X1
)
, and

(
(NC)E

S2, E2, X2
)

, be any two NCSESs in U. Then
(i)
(
(NC)E

S1, E1, X1
)
∪P
((
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
))

=
(
(NC)E

S1, E1, X1
)
,

(ii)
(
(NC)E

S1, E1, X1
)
∩P
((
(NC)E

S2, E2, X2
)
∪P
(
(NC)E

S2, E2, X2
))

=
(
(NC)E

S1, E1, X1
)

,
(iii) (

(
(NC)E

S1, E1, X1
)
∪R
((
(NC)E

S2, E2, X2
)
) ∩R

(
(NC)E

S2, E2, X2
))

=
(
(NC)E

S1, E1, X1
)
,

(iv)
(
(NC)E

S1, E1, X1
)
∩R
((
(NC)E

S2, E2, X2
)
∪R
(
(NC)E

S2, E2, X2
))

=
(
(NC)E

S1, E1, X1
)

.

Proof. The proof is straightforward.

Next we define some more operations on NCSESs.

Definition 21. For two neutrosophic cubic soft expert sets (NCSESs)
(
(NC)E

S1, E1, X1
)

and(
(NC)E

S2, E2, X2
)

over U, P-AND is denoted as

(
(NC)E

S1, E1, X1

)∧

P

(
(NC)E

S2, E2, X2

)
=
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)

,

where
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)
= (NC)E

S3((e, f ), (x, y))

= (NC)E
S1(e, x) ∩P (NC)E

S2( f , y)

= {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}

and {
〈

u, IN
2(e,x)(u), N2(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}.

Definition 22. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U, R-AND is denoted as

(
(NC)E

S1, E1, X1

)∧

R

(
(NC)E

S2, E2, X2

)
=
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)

,

where
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)
= (NC)E

S3((e, f ), (x, y)) = (NC)E
S1(e, x) ∩R (NC)E

S2( f , y)

= {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}

and {
〈

u, IN
2(e,x)(u), N2(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}.

Definition 23. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U, P-OR is denoted as

(
(NC)E

S1, E1, X1

)∨

P

(
(NC)E

S2, E2, X2

)
=
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)

,
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where
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)
= (NC)E

S3((e, f ), (x, y)) = (NC)E
S1(e, x) ∩R (NC)E

S2( f , y)

= {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}

and {
〈

u, IN
2(e,x)(u), N2(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}.

Definition 24. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U, R-OR is denoted as

(
(NC)E

S1, E1, X1

)∨

R

(
(NC)E

S2, E2, X2

)
=
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)

,

where
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)
= (NC)E

S3((e, f ), (x, y)) = (NC)E
S1(e, x) ∩R (NC)E

S2( f , y)

= {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}

and {
〈

u, IN
2(e,x)(u), N2(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}.

Theorem 11. Let
(
(NC)E

S1, E1, X1
)
, be a neutrosophic cubic soft expert sets in U. If

(
(NC)E

S1, E1, X1
)
, is an

INCSESs (resp., ENCSESs). Then
(
(NC)E

S1, E1, X1
)C is INCSESs (resp., ENCSESs) respectively.

Proof. Since
(
(NC)E

S1, E1, X1
)
, is an INCSESs (resp., ENCSESs) in U, so for any e ∈ E1 we have

(NC)E
S1(e) = {

〈
x, IN

(NC)E
S1(ei)

(x), N(NC)E
S1(ei)

(u)
〉

: u ∈ U}. As

IN−
(NC)E

S1(ei)
(u) ≤ N(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)

⇒ 1− IN+
(NC)E

S1(ei)
(u) ≤ 1− N(NC)E

S1(ei)
(u) ≤ 1− IN−

(NC)E
S1(ei)

(u).

Hence
(
(NC)E

S1, E1, X1
)C is an INCSES. Also

N(NC)E
S1(ei)

(u) /∈ (IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S1(ei)

(u)) ∀ u ∈ U

⇒ (1− N(NC)E
S1(ei)

(u) /∈ (1− IN+
(NC)E

S1(ei)
(u), 1− IN−

(NC)E
S1(ei)

(u))

Hence
(
(NC)E

S1, E1, X1
)C is an ENCSES.

5. Applications

In this section, we use NCSESs to construct an algorithm and applied it to a decision-making
problem. The series between Pakistan and India remains a hot cake for cricket lovers and this cricket
rivalry existed between them at the start of partition. The first series between the two teams took
place in 1951–52, when Pakistan made a tour of India. India made a tour of Pakistan for the first time
in 1954–55. Between 1962 and 1977, no cricket was played between the two countries owing to two
major wars in 1965 and 1971. The 1999 Kargil War and the 2008 Mumbai terrorist attacks have also
interrupted the game of cricket between the two nations. The growth of large expatriate populations
from India and Pakistan across the world led to neutral venues such as the United Arab Emirates and
Canada hosting several bilateral and multilateral ODI series involving the two teams. Tickets for The
India-Pakistan match in the 2015 World Cup in Australia sold out in 12 min at the ticket counters.

We try to use NCSESs in India–Pakistan cricket rivalry to conclude which country is suffering
more from the above mentioned conflicts.
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For this we first define the neutrosophic cubic soft expert weight average operator (NCSEWAO)
and score function.

Definition 25. Let ((NC)E
S , E, X) =

{
(NC)E

S (e, x) = {
〈

u, IN
(e,x)(u), N(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E× X

}

be a NCSESs. Then neutrosophic cubic soft expert weight average operator (NCSEWAO) is denoted and
define as

Qwi (IN
(NC)E

S (ei)
(x), N(NC)E

S (ei)
(x))

=







n

∏
i=1

(
1+IN−

(NC)E
S (ei)

(u)wi

)
−

n

∏
i=1

(
1−IN−

(NC)E
S (ei)

(u)wi

)

n

∏
i=1

(
1+IN−

(NC)E
S (ei)

(u)wi

)
+

n

∏
i=1

(
1−IN−

(NC)E
S (ei)

(u)wi

) ,

n

∏
i=1

(
1+IN+

(NC)E
S (ei)

(u)wi

)
−

n

∏
i=1

(
1−IN+

(NC)E
S (ei)

(u)wi

)

n

∏
i=1

(
1+IN+

(NC)E
S (ei)

(u)wi

)
+

n

∏
i=1

(
1−IN+

(NC)E
S (ei)

(u)wi

)




,

n

∏
i=1
{N(NC)E

S (ei)
(u)wi}




where wi is the weight of expert opinion, wi ∈ [0, 1] and
n

∑
i=1

wi = 1.

Definition 26. Let (NC)E
S =

〈[
IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S (ei)

(u)
]

, N(NC)E
S (ei)

(u)
〉

be neutrosophic cubic soft

expert value. A score function Q of (NC)E
S is defined as Q((NC)E

S ) =
IN−
(NC)E

S (ei)
(u)+IN+

(NC)E
S (ei)

(u)−N
(NC)E

S (ei)
(u)

9 ,
where Q((NC)E

S ) ∈ [−3, 3].

Decision-making problems have been studied using fuzzy soft sets. Now, we are going to present
multicriteria neutrosophic cubic soft set in decision-making along with weights and score function.
For this we propose the following algorithmic steps as pictured in Figure 1.

Step 1: Define a decision problem by inputting the neutrosophic cubic soft expert set (NC)E
S (ei, xi).

Step 2: Use the opinions of experts in the form of NCSESs to determine the opinions regarding
given criteria. Make a separate table for the opinion of each expert.

Step 3: Assign weight to each expert according to their expertise.
Step 4: Apply neutrosophic cubic soft expert weighted average operator to each above table and

find the neutrosophic cubic soft expert weighted average corresponding to each attribute.
Step 5: Calculate the

∨

P
of Uj.

Step 6 : Calculate the score of each Uj.
Step 7: Generate the non-increasing order of all the alternatives according to their scores.

Example 10. Let U = {u1 = India, u2 = Pakistan} be the set of countries playing a cricket series, E = {e1 =

Pakistan Cricket Board (PCB), e2 = The Board of Control for Cricket in India (BCCI), e3 = Bilateral relations
between Pakistan and India} be the set of factors affecting the series, X = {p, q, r} be the set of experts giving
their expert opinion. The expert may consider the most burning parameter as “ICC’s Future Tours Programme
(FTP)" when they are giving their opinion by considering three times of frames as past, present, and future.
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Step 1: After a serious discussion, the committee constructed the following neutrosophic cubic
soft expert set.

(NC)E
S (e1, p) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(NC)E
S (e2, p) =

{
(u1, [0.5, 0.7] , [0.2, 0.4] , [0.1, 0.4] , 0.8, 0.5, 0.6) ,
(u2, [0.4, 0.6] , [0.3, 0.5] , [0.6, 0.8] , 0.7, 0.2, 0.4) ,

}

(NC)E
S (e3, p) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

(NC)E
S (e1, q) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

(NC)E
S (e2, q) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

(NC)E
S (e3, q) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(NC)E
S (e1, r) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

(NC)E
S (e2, r) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(NC)E
S (e3, r) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

Step 2: Opinion of expert p

(e1, p) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(e2, p) =

{
(u1, [0.5, 0.7] , [0.2, 0.4] , [0.1, 0.4] , 0.8, 0.5, 0.6) ,
(u2, [0.4, 0.6] , [0.3, 0.5] , [0.6, 0.8] , 0.7, 0.2, 0.4) ,

}

(e3, p) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

Opinion of expert q

(e1, q) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

(e2, q) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

(e3, q) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}
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Opinion of expert r

(e1, r) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

(e2, r) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(e3, r) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

Step 3: Let w = (0.5, 0.25, 0.25) be the weight vector assigned to the experts p, q and r respectively.
Step 4: The neutrosophic cubic soft expert weighted average (NCSEWA) of each attribute is

displayed in Table 1.
Step 5: Calculate the

∨

P
of the first and second columns of Table 1 by using Definition 23.

Thus we have

U1 =
3∨

j=1

= ([0.66, 0.75], [0.80, 0.99], [0.61, 0.90], (0.95, 0.92, 0.91))

U2 =
3∨

j=1

= ([0.97, 0.99] , [0.98, 0.99], [0.98, 0.99], (0.68, 0.47, 0.51))

Step 6: Using Definition 26, we have Q(u1) = 0.2244, Q(u2) = 0.4711.
Step 7: The score of the NCSESs values corresponding to

∨

P
of Uj implies the following order

u2 > u1.
Thus, we can conclude that the country u2 = Pakistan is affected more by the factors, e1 = PCB,

e2 = BCCI, e3 = Bilateral relations between Pakistan and India.

Figure 1. Flow chart of NCSESs based on MADM Problem.
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Table 1. NCSEWA of each attribute.

u1 u2

e1




([0.009, 0.051] , [0.77, 0.87],
[0.61, 0.90]),

(0.41, 0.15, 0.58)







([0.97, 0.98] , [0.98, 0.99],
[0.98, 0.99]),

(0.52, 0.14, 0.19)




e2




([0.66, 0.75], [0.40, 0.49],
[0.54, 0.80]),

(0.46, 0.028, 0.048)






(

[0.78, 0.99], [0.57, 0.86],
[0.80, 0.99]

)
,

(0.68, 0.47, 0.34)




e3




([0.34, 0.671], [0.80, 0.99],
[0.23, 0.71]),

(0.95, 0.92, 0.91)







([0.43, 0.67], [0.76, 0.98],
[0.34, 0.61]),

(0.25, 0.32, 0.51)




6. Comparison Analysis

In this paper, we extend the concept of soft expert sets to neutrosophic cubic soft expert sets.
This new idea generalizes the different types of expert sets presented by Alkhazaleh and Salleh [33,36],
Broumi and Smarandache [40], Qayyum et al. [48] and Sahin et al. [43].

1. If we consider only truth part or indeterminacy part or falsity part, then our model and the
model presented by Qayyum et al. [48] coincides with each other.

2. Since NCSESs consists of interval neutrosophic soft expert soft sets and neutrosophic soft
expert sets and if we consider only the part containing the neutrosophic soft expert sets then our model
reduces to the model presented by Sahin et al. [43].

3. If we consider the part containing the interval neutrosophic soft expert soft sets, we get a special
class of soft expert sets.

4. Similarly imposing some extra conditions to our model it will reduce it to those models
presented by Alkhazaleh and Salleh [33,36], Broumi and Smarandache [40].

7. Conclusions

The model of NCSESs can be used in many decision-making problems and it will produce more
reliable results as compared to the previously defined versions of soft expert sets. This paper is of
introductory nature where we establish this new generalized theory of soft expert sets with its basic
properties and provide an application. In future we shall apply this model to other areas to illustrate
its novelty. We have defined different operations of NCSESs including different versions of NCSESs.
We have designed aggregation operators and score functions of neutrosophic cubic soft expert value.
We have also constructed an algorithm based on this new concept and applied the developed approach
to a numerical example.

The substantial impact of our outcome for the research field is that we gave a generalized form of
soft expert system which certainly improves the decision-making theory due to its wide range of values
in the form of truth, indeterminacy, and falsity. We have not used any software for the decision-making,
since the preliminary research is on a small scale. We intend to expand the research to a larger scale on
an applied problem so that we can develop a software and related interface. We also intend to apply
the developed approach to a variety of games, signature theory and others, since the nature of NCSESs
enables us to deal with vague and inconsistent data. In decision-making theory, we often deal with
data which are inconsistent and vague. Thus, ex-ante decision-making problems can also be handled
easily through NCSESs. In future, arguments and modern theories linked to behavioral patterns could
strengthen the idea of NCSESs, especially using aggregation operators and methods that effectively
deal with the uncertainty and inaccuracy of the input data [49].
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Abstract: Neutrosophic cubic sets (NCSs) can express complex multi-attribute decision-making
(MADM) problems with its interval and single-valued neutrosophic numbers simultaneously.
The weighted arithmetic average (WAA) and geometric average (WGA) operators are common
aggregation operators for handling MADM problems. However, the neutrosophic cubic weighted
arithmetic average (NCWAA) and neutrosophic cubic geometric weighted average (NCWGA)
operators may result in some unreasonable aggregated values in some cases. In order to overcome
the drawbacks of the NCWAA and NCWGA, this paper developed a new neutrosophic cubic
hybrid weighted arithmetic and geometric aggregation (NCHWAGA) operator and investigates
its suitability and effectiveness. Then, we established a MADM method based on the NCHWAGA
operator. Finally, a MADM problem with neutrosophic cubic information was provided to illustrate
the application and effectiveness of the proposed method.

Keywords: weighted geometric operator; weighted average operator; neutrosophic cubic sets;
multi-attribute decision-making (MADM); neutrosophic cubic hybrid weighted arithmetic and
geometric aggregation operator (NCHWAGA)

1. Introduction

Zadeh [1] proposed the classic fuzzy set to describe fuzzy problems with the membership degree
in the closed interval [0,1]. Atanassov [2] presented the concept of the intuitionistic fuzzy set (IFS) to
express fuzzy problems by the membership function and non-membership function. Smarandache [3]
defined neutrosophic logic and introduced neutrosophic sets (NSs) to describe fuzzy problems by
the truth, falsity, and indeterminacy membership functions. For easy engineering applications,
some subclasses of NSs are defined. Wang et al. developed interval neutrosophic sets (INSs) [4]
and single-valued neutrosophic sets (SVNSs) [5]. Ye presented simplified neutrosophic sets (SNSs) [6].
Wang et al. also presented multi-valued neutrosophic sets (MVNSs) [7]. Since then, INSs, SVNSs, SNSs
and MVNSs have been widely applied in decision-making [8,9], medical diagnoses [10,11], and fault
diagnoses [12,13]. Furthermore, many scholars developed some extension forms of NSs by combining
neutrosophic sets with other sets, such as refined single-valued neutrosophic sets [14], intuitionistic
neutrosophic soft sets [15], single-valued neutrosophic hesitant fuzzy sets [16], and rough neutrosophic
sets [17].

Recently, Ali et al. [18,19] also put forward the concepts of neutrosophic cubic sets (NCSs) by
combining neutrosophic sets with cubic sets, and defined internal and external NCSs. NCSs are
described by two parts simultaneously, where the truth, falsity, and indeterminacy membership
functions can be expressed by an interval value and an exact value simultaneously. Obviously, an NCS
can be combined by an INS and an SVNS, and it contains much more information than an INS
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or an SVNS. Thus, some researchers have applied NCSs in decision-making problems effectively.
Lu et al. [20] studied cosine measures of NCSs to deal with multiple attribute decision-making (MADM)
problems. Banerjee et al. [21] established a grey relational analysis (GRA) method for MADM in NCS
environment. Pramanik et al. [22] investigated a multi-criteria group decision making (MCGDM)
method based on the similarity measure of NCSs. Moreover, aggregation operators have been widely
applied in many MADM problems [23–29], and some aggregation operators have been studied for
MADM problems in an NCS environment. Shi et al. [30] developed Dombi aggregation operators of
NCSs for MADM. Zhan et al. [31] also proposed the neutrosophic cubic weighted arithmetic average
(NCWAA) and neutrosophic cubic geometric weighted average (NCWGA) operators by extending the
WAA and WGA operators to NCSs. However, the aforementioned NCWAA and NCWGA operators
may cause some unreasonable results in some cases. In order to overcome the shortcomings of the
NCWAA and NCWGA operators, this paper developed a new neutrosophic cubic hybrid weighted
arithmetic and geometric aggregation (NCHWAGA) operator and analyzed its effectiveness for MADM
by numerical examples. The main advantage of the proposed NCHWAGA operator can overcome
the shortcomings of the existing NCWAA and NCWGA operators in some situations and obtain the
moderate aggregation values.

The rest of the paper is organized as follows. Section 2 briefly introduces some basic concepts of
NCSs and analyzes the shortcomings of the NCWAA and NCWGA operators. Then, Section 3 presents
the NCHWAGA operator and investigated its properties. We establish a MADM approach based on
the NCHWAGA operator in Section 4. Subsequently, Section 5 provides numerical examples with
neutrosophic cubic information to demonstrate the application and effectiveness of the developed
approach. Finally, Section 6 presents conclusions and possible future research.

2. Preliminaries

Some basic concepts and ranking methods of NCSs were introduced in this section.

Definition 1. [19,32] Let
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U(x)] ⊆ [0, 1] for x ∈
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indeterminacy, and falsity membership functions; then < tc(x), vc(x), fc(x) > is an SVNS [3,5] in
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Then, we called a basic element (x, < Tc(x), Vc(x), Fc(x) >, < tc(x), vc(x), fc(x) >) in an
NCS G a neutrosophic cubic number (NCN) [20]; for convenience, we denoted it as g = (<

[TL, TU], [VL, VU], [FL, FU] >,< t, v, f >), where t, v, f ∈ [0,1] and [TL, TU], [VL, VU], [FL, FU] ⊆
[0, 1] satisfy the condition 0 ≤ TU + VU + FU ≤ 3 and 0 ≤ t + v + f ≤ 3.

Then, an NCS G = {x, < Tc(x), Vc(x), Fc(x) >, < tc(x), vc(x), fc(x) > | x ∈
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[18,19].
Let g1 = (< [T1

L, T1
U], [V1

L, V1
U], [F1

L, F1
U] >,< t1, v1, f1 >) and g2 = (< [T2

L,
T2

U], [V2
L, V2

U], [F2
L, F2

U] >,< t2, v2, f2 >) be two NCNs, then there are following operational laws:

(1) (g1)
C = ( < [F1

L, F1
U], [1 − V1

U, 1 − V1
L], [T1

L, T1
U] >,< f1, 1 − v1, t1 >)

(complement of g1);

(2)
g1 ⊕ g2 = (< [T1

L + T2
L − T1

LT2
L, T1

U + T2
U − T1

UT2
U ], [V1

LV2
L, V1

UV2
U],

[F1
LF1

L, F1
UF2

U] >,< t1 + t2 − t1t2, v1v2, f1 f2 > );
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(3)
g1 ⊗ g2 = (< [T1

LT2
L, T1

UT2
U ], [V1

L + V2
L −V1

LV2
L, V1

U + V2
U −V1

UV2
U],

[F1
L + F1

L − F1
LF1

L, F1
U+F2

U − F1
UF2

U] >,< t1t2, v1 + v2 − v1v2, f1 + f2 − f1 f2 >);

(4) λg1 = (< [1− (1− T1
L)λ, 1− (1− T1

U)λ ], [(V1
L)λ, (V1

U)
λ
], [(F1

L)λ, (F1
U)

λ
] >,

< 1− (1−t1)
λ, (v1)

λ, ( f1)
λ > ) for λ > 0;

(5) (g1)
λ = (< [(T1

L)
λ

, (T1
U)

λ
], [ 1− (1−V1

L)
λ

, 1− (1−V1
U)

λ
], 1− (1− F1

L)
λ

,

1− (1− F1
U)

λ
] >,< (t1)

λ, 1− (1− v1)
λ, 1− (1− f1)

λ > ) for λ > 0;

For any NCN g = (< [TL, TU], [VL, VU], [FL, FU] >,< t, v, f >), its score and accuracy
functions [33] can be defined as follows:

Ψ(x) = [(4 + TL + TU −VL −VU − FL − FU) + (2 + t− v− f )]/9 (1)

Γ(x) = [(TL + TU − FL − FU) + (t− f )]/3 (2)

Based on the functions Ψ(x) and Γ(x), two NCNs can be compared and ranked by definition
as follows:

Definition 2. [33] Let g1 = (< [T1
L, T1

U], [V1
L, V1

U], [F1
L, F1

U] >,< t1, v1, f1 >) and g2 =

[T2
L, T2

U], [V2
L, V2

U], [F2
L, F2

U] >,< t2, v2, f2 >) be two NCNs, then their comparative relations are
defined as follows:

(i) If Ψ(g1) > Ψ(g2), then g1 � g2;
(ii) If Ψ(g1) = Ψ(g2) and Γ(g1) > Γ(g2), then g1 � g2;
(iii) If Ψ(g1) = Ψ(g2) and Γ(g1) = Γ(g2), then g1 ~ g2.

Assume that gi = ( < [Ti
L, Ti

U], [Vi
L, Vi

U], [Fi
L, Fi

U] >,< ti, vi, fi >) (i = 1, 2, . . . , n) be a
collection of NCNs. Then the NCWAA and NCWGA are provided, respectively, as follows [31]:

NCWAA (g1, g2, . . . , gn)

=
n

∑
i=1

ξigi =




〈
[

1−
n
∏
i=1

(
1− TL

i
)ξi , 1−

n
∏
i=1

(
1− TU

i
)ξi

]
,
[

n
∏
i=1

(
VL

i
)ξi ,

n
∏
i=1

(
VU

i
)ξi

]
,

[
n
∏
i=1

(
FL

i
)ξi ,

n
∏
i=1

(
FU

i
)ξi

]
〉

,

〈
1−

n
∏
i=1

(1− ti)
ξi ,

n
∏
i=1

(vi)
ξi ,

n
∏
i=1

( fi)
ξi

〉




(3)

NCWGA (g1, g2, . . . , gn)

=
n

∏
i=1

gξi
i =




〈
[

n
∏
i=1

(
TL

i
)ξi ,

n
∏
i=1

(
TU

i
)ξi

]
,
[

1−
n
∏
i=1

(1 −VL
i
)ξi , 1−

n
∏
i=1

(1 −VU
i
)ξi

]
,

[
1−

n
∏
i=1

(1 − FL
i
)ξi , 1−

n
∏
i=1

(1 − FU
i
)ξi

]
〉

,

〈
n
∏
i=1

(ti)
ξi , 1−

n
∏
i=1

(1 − vi)
ξi , 1−

n
∏
i=1

(1 − fi)
ξi

〉




(4)

where ζi ∈ (i = 1, 2, . . . , n), satisfying ∑n
i=1 ξi = 1.

Although the above-weighted average and geometric operators were used for multi-criteria
decision making [31], some unreasonable results are implied in the following two cases.

Case 1. Let g1 = (< [0.001, 0.002], [0, 0], [0, 0] >, <0.001, 0, 0 >) and g2 = (< [0, 1], [0, 0], [0, 0] >, <1, 0, 0 >)
be two NCNs, with their weights ζ1 = 0.9 and ζ2 = 0.1, respectively.

Then, by Equations (3) and (4), NCWAA (g1, g2) = (< [0.001, 1], [0, 0], [0, 0] >, <1, 0, 0 >) and
NCWGA (g1, g2) = (< [0, 0.004], [0, 0], [0, 0] >, <0.002, 0, 0 >).
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Case 2. Also take two NCNs g1 = (< [0.001, 0.002], [0, 0], [0, 0] >, <0.001, 0, 0 >) and g2 = (< [0, 1], [0, 0],
[0, 0] >, <1, 0, 0 >) with their weights ζ1 = 0.1 and ζ2 = 0.9, respectively.

Then, by Equation (3) and (4), NCWAA (g1, g2) = (< [0, 1], [0, 0], [0, 0] >, <1, 0, 0 >) and NCWGA
(g1, g2) = (< [0, 0.537], [0, 0], [0, 0] >, <0.501, 0, 0 >).

The above aggregated results indicate that the aggregated values of NCWAA (g1, g2) operator tend
to the maximum value, while the aggregated results of NCWGA (g1, g2) operator tend to the maximum
weight value. It is obvious that the NCWAA and NCWGA operators may cause unreasonable results
of NCNs in some cases. In order to overcome the drawbacks, it is necessary to improve the NCWAA
and NCWGA operators provided in [31]. Hence, in the next section, a new NCHWAGA is proposed
by extending the hybrid arithmetic and geometric aggregation operators presented in [34,35].

3. Hybrid Arithmetic and Geometric Aggregation Operators of NCNs

In this section, we present the NCHWAGA operator and investigated its properties.

3.1. NCHWAGA Operator

Definition 3. Let gi =
(
<
[
Ti

L, Ti
U], [Vi

L, Vi
U], [Fi

L, Fi
U] >,< ti, vi, fi >

)
(i = 1, 2, . . . , n) be a

collection of NCNs. Then, the NCHWAGA operator is defined by:

NCHWAGA(g1, g2, . . . , gn) =

(
n

∑
i=1

ξigi

)ρ( n

∏
i=1

gξi
i

)(1−ρ)

(5)

where ρ ∈ [0, 1]; and ζi (i = 1, 2, . . . , n) is the weight of gi (i = 1, 2, . . . , n), satisfying ζi ∈ [0, 1] and
∑n

i=1 ξi = 1.

Theorem 1. Let gi =
(
<
[
Ti

L, Ti
U], [Vi

L, Vi
U], [Fi

L, Fi
U] >,< ti, vi, fi >

)
(i = 1, 2, . . . , n) be a collection

of NCNs, and ζi (i = 1, 2, . . . , n) be the corresponding weight of gi (i = 1, 2, . . . , n), satisfying ζi ∈ [0, 1] and
∑n

i=1 ξi = 1. Then, the aggregated value of the NCHWAGA operator is also an NCN, which can be calculated by:

NCHWAGA(g1, g2, . . . , gn) =

(
n
∑

i=1
ξigi

)ρ( n
∏
i=1

gξi
i

)(1−ρ)

=




〈

[(
1−

n
∏
i=1

(
1− TL

i
)ξi

)ρ( n
∏
i=1

(
TL

i
)ξi

)(1−ρ)

,
(

1−
n
∏
i=1

(
1− TU

i
)ξi

)ρ( n
∏
i=1

(
TU

i
)ξi

)(1−ρ)
]

,
[

1−
(

1−
n
∏
i=1

(
VL

i
)ξi

)ρ( n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ( n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)
]

,
[

1−
(

1−
n
∏
i=1

(
FL

i
)ξi

)ρ( n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(
FU

i
)ξi

)ρ( n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)
]

〉

〈(
1−

n
∏
i=1

(1− ti)
ξi

)ρ( n
∏
i=1

(ti)
ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(vi)
ξi

)ρ( n
∏
i=1

(1− vi)
ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

( fi)
ξi

)ρ( n
∏
i=1

(1− fi)
ξi

)(1−ρ)
〉




(6)

Proof. Based on the operational laws of NCNs in Section 2 and the NCWAA and NCWGA, we can
obtain the following result:

NCHWAGA(g1, g2, . . . , gn) =

(
n
∑

i=1
ξigi

)ρ( n
∏
i=1

gξi
i

)(1−ρ)

=




〈
[

1−
n
∏
i=1

(
1− TL

i
)ξi , 1−

n
∏
i=1

(
1− TU

i
)ξi

]
,
[

n
∏
i=1

(
VL

i
)ξi ,

n
∏
i=1

(
VU

i
)ξi

]
,

[
n
∏
i=1

(
FL

i
)ξi ,

n
∏
i=1

(
FU

i
)ξi

]
〉

,

〈
1−

n
∏
i=1

(1− ti)
ξi ,

n
∏
i=1

(vi)
ξi ,

n
∏
i=1

( fi)
ξi

〉




ρ

×




〈
[

n
∏
i=1

(
TL

i
)ξi ,

n
∏
i=1

(
TU

i
)ξi

]
,
[

1−
n
∏
i=1

(1 −VL
i
)ξi , 1−

n
∏
i=1

(1 −VU
i
)ξi

]
,

[
1−

n
∏
i=1

(1 − FL
i
)ξi , 1−

n
∏
i=1

(1 − FU
i
)ξi

]
〉

,

〈
n
∏
i=1

(ti)
ξi , 1−

n
∏
i=1

(1 − vi)
ξi , 1−

n
∏
i=1

(1 − fi)
ξi

〉




(1−ρ)
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=




〈

[(
1−

n
∏
i=1

(
1− TL

i
)ξi

)ρ

,
(

1−
n
∏
i=1

(
1− TU

i
)ξi

)ρ]
,

[
1−

(
1−

n
∏
i=1

(
VL

i
)ξi

)ρ

, 1−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ]
,

[
1−

(
1−

n
∏
i=1

(
FL

i
)ξi

)ρ

, 1−
(

1−
n
∏
i=1

(
FU

i
)ξi

)ρ]

〉

〈(
1−

n
∏
i=1

(1− ti)
ξi

)ρ

, 1−
(

1−
n
∏
i=1

(vi)
ξi

)ρ

, 1−
(

1−
n
∏
i=1

( fi)
ξi

)ρ〉




×




〈

[(
n
∏
i=1

(
TL

i
)ξi

)(1−ρ)

,
(

n
∏
i=1

(
TU

i
)ξi

)(1−ρ)
]

,
[

1−
(

n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)

, 1−
(

n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)
]

,
[

1−
(

n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)

, 1−
(

n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)
]

〉

〈(
n
∏
i=1

(ti)
ξi

)(1−ρ)

, 1−
(

n
∏
i=1

(1− vi)
ξi

)(1−ρ)

, 1−
(

n
∏
i=1

(1− fi)
ξi

)(1−ρ)
〉




=




〈

[(
1−

n
∏
i=1

(
1− TL

i
)ξi

)ρ( n
∏
i=1

(
TL

i
)ξi

)(1−ρ)

,
(

1−
n
∏
i=1

(
1− TU

i
)ξi

)ρ( n
∏
i=1

(
TU

i
)ξi

)(1−ρ)
]

,
[

1−
(

1−
n
∏
i=1

(
VL

i
)ξi

)ρ

+ 1−
(

n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)

−
(

1−
(

1−
n
∏
i=1

(
VL

i
)ξi

)ρ)(
1−

(
n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)
)

,

1−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ

+ 1−
(

n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)

−
(

1−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ)(
1−

(
n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)
)]

,
[

1−
(

1−
n
∏
i=1

(
FL

i
)ξi

)ρ

+ 1−
(

n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)

−
(

1−
(

1−
n
∏
i=1

(
FL

i
)ξi

)ρ)(
1−

(
n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)
)

,

1−
(

1−
n
∏
i=1

(
FU

i
)ξi

)ρ

+ 1−
(

n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)

−
(

1−
(

1−
n
∏
i=1

(
FU

i
)ξi

)ρ)(
1−

(
n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)
)]

〉

〈

(
1−

n
∏
i=1

(1− ti)
ξi

)ρ( n
∏
i=1

(ti)
ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(vi)
ξi

)ρ

+ 1−
(

n
∏
i=1

(1− vi)
ξi

)(1−ρ)

−
(

1−
(

1−
n
∏
i=1

(vi)
ξi

)ρ)

×
(

1−
(

n
∏
i=1

(1− vi)
ξi

)(1−ρ)
)

, 1−
(

1−
n
∏
i=1

( fi)
ξi

)ρ

+ 1−
(

n
∏
i=1

(1− fi)
ξi

)(1−ρ)

−
(

1−
(

1−
n
∏
i=1

( fi)
ξi

)ρ)

×
(

1−
(

n
∏
i=1

(1− fi)
ξi

)(1−ρ)
)

〉




=




〈

[(
1−

n
∏
i=1

(
1− TL

i
)ξi

)ρ( n
∏
i=1

(
TL

i
)ξi

)(1−ρ)

,
(

1−
n
∏
i=1

(
1− TU

i
)ξi

)ρ( n
∏
i=1

(
TU

i
)ξi

)(1−ρ)
]

,






1−
(

1−
n
∏
i=1

(
VL

i
)ξi

)ρ

+ 1−
(

n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)

−
(

1−
(

n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)
)

+

(
1−

n
∏
i=1

(
VL

i
)ξi

)ρ

−
(

1−
n
∏
i=1

(
VL

i
)ξi

)ρ( n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)


,




1−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ

+ 1−
(

n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)

−
(

1−
(

n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)
)

+

(
1−

n
∏
i=1

(
VU

i
)ξi

)ρ

−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ( n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)





,







1−
(

1−
n
∏
i=1

(
FL

i
)ξi

)ρ

+ 1−
(

n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)

−
(

1−
(

n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)
)

+

(
1−

n
∏
i=1

(
FL

i
)ξi

)ρ

−
(

1−
n
∏
i=1

(
FL

i
)ξi

)ρ( n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)


,




1−
(

1−
n
∏
i=1

(
FU

i
)ξi

)ρ

+ 1−
(

n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)

−
(

1−
(

n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)
)

+

(
1−

n
∏
i=1

(
FU

i
)ξi

)ρ

−
(

1−
n
∏
i=1

(
FU

i
)ξi

)ρ( n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)







〉

〈

(
1−

n
∏
i=1

(1− ti)
ξi

)ρ( n
∏
i=1

(ti)
ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(vi)
ξi

)ρ

+ 1−
(

n
∏
i=1

(1− vi)
ξi

)(1−ρ)

−
(

1−
(

n
∏
i=1

(1− vi)
ξi

)(1−ρ)

−
(

1−
n
∏
i=1

(vi)
ξi

)ρ
)
−
(

1−
n
∏
i=1

(vi)
ξi

)ρ( n
∏
i=1

(1− vi)
ξi

)(1−ρ)

,

1−
(

1−
n
∏
i=1

( fi)
ξi

)ρ

+ 1−
(

n
∏
i=1

(1− fi)
ξi

)(1−ρ)

−
(

1−
(

n
∏
i=1

(1− fi)
ξi

)(1−ρ)

−
(

1−
n
∏
i=1

( fi)
ξi

)ρ
)

−
(

1−
n
∏
i=1

( fi)
ξi

)ρ( n
∏
i=1

(1− fi)
ξi

)(1−ρ)

〉




=




〈

[(
1−

n
∏
i=1

(
1− TL

i
)ξi

)ρ( n
∏
i=1

(
TL

i
)ξi

)(1−ρ)

,
(

1−
n
∏
i=1

(
1− TU

i
)ξi

)ρ( n
∏
i=1

(
TU

i
)ξi

)(1−ρ)
]

,
[

1−
(

1−
n
∏
i=1

(
VL

i
)ξi

)ρ( n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ( n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)
]

,
[

1−
(

1−
n
∏
i=1

(
FL

i
)ξi

)ρ( n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(
FU

i
)ξi

)ρ( n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)
]

〉

〈(
1−

n
∏
i=1

(1− ti)
ξi

)ρ( n
∏
i=1

(ti)
ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(vi)
ξi

)ρ( n
∏
i=1

(1− vi)
ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

( fi)
ξi

)ρ( n
∏
i=1

(1− fi)
ξi

)(1−ρ)
〉




The proof is finished. Hence, Theorem 1 is true. �

Let gi =
(
<
[
Ti

L, Ti
U], [Vi

L, Vi
U], [Fi

L, Fi
U] >,< ti, vi, fi >

)
(i = 1, 2, . . . , n) be a collection of

NCNs. Corresponding to the properties of the NCWAA and NCWGA operators [31], the NCNHWAGA
operator also satisfies these properties:
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(i) Idempotency: If gi= g for i = 1, 2, . . . , n, then NCHWAGA (g1, g2, . . . , gn) = g.
(ii) Boundedness: If gmin= min (g1, g2, . . . , gn) and gmax= max (g1, g2, . . . , gn) for i = 1, 2, . . . , n,

then gmin ≤ NCHWAGA (g1, g2, . . . , gn) ≤ gmax.
(iii) Monotonicity: If gi ≤ gi

* for i = 1, 2, . . . , n, then NCHWAGA (g1, g2, . . . , gn) ≤ NCHWAGA
(g1

*, g2
*, . . . , gn

*).

For different values of ρ ∈ [0, 1], we can discuss the families of the NCHWAGA operator in some
special cases as follows:

(i) The NCHWAGA operator reduces to the NCWAA operator [31] if ρ = 1.
(ii) The NCHWAGA operator reduces to the NCWGA operator [31] if ρ = 0.
(iii) The NCHWAGA operator is the mean of the NCWAA and NCWGA operators [31] if ρ = 0.5.

3.2. Numerical Example

We still consider the above two numerical examples in Section 2 to demonstrate the effectiveness
of the presented NCHWAGA operator. Generally taking ρ = 0.5, we calculate aggregated values of the
NCHWAGA operator.

For Case 1: Let two NCNs g1 = (< [0.001, 0.002], [0, 0], [0, 0] >, <0.001, 0, 0 >) and g2 = (< [0, 1], [0, 0],
[0, 0] >, <1, 0, 0 >) with their weights ζ1 = 0.9 and ζ2 = 0.1, by Equation (6), we obtain NCHWAGA (g1, g2) =
(< [0, 0.061], [0, 0], [0, 0] >, <0.045, 0, 0 >), which is between NCWAA (g1, g2) = (< [0.001, 1], [0, 0], [0, 0] >,
<1, 0, 0 >) and NCWGA (g1, g2) = (< [0, 0.004], [0, 0], [0, 0] >, <0.002, 0, 0 >).

For Case 2: Also take two NCNs g1 = (< [0.001, 0.002], [0, 0], [0, 0] >, <0.001, 0, 0 >) and g2 = (< [0, 1],
[0, 0], [0, 0] >, <1, 0, 0 >) with their weights ζ1 = 0.1 and ζ2 = 0.9, then, by Equation (6), we get NCHWAGA
(g1, g2) = (< [0, 0.733], [0, 0], [0, 0] >, <0.708, 0, 0 >), which is between NCWAA (g1, g2) = (< [0, 1], [0, 0],
[0, 0] >, <1, 0, 0 >) and NCWGA (g1, g2) = (< [0, 0.537], [0, 0], [0, 0] >, <0.501, 0, 0 >).

In the above two cases, we can obtain the moderate values by the NCHWAGA operator.
Obviously, the NCHWAGA operator can overcome the drawbacks of the NCWAA and NCWGA
provided in Reference [31].

4. MADM Method Using the NCHWAGA Operator

In this section, we provide a MADM method based on the NCHWAGA operator to deal with
neutrosophic cubic information.

In a MADM problem, assume that G = {G1, G2, . . . , Gk} is a set of k alternatives and P = {P1, P2,
. . . , Pn} is a set of attributes. Suppose that the weight vector of P is ωP = {ωP1 , ωP2 , . . . , ωPn } with
ωPj ∈ [0, 1] and ∑n

j=1 ωPj = 1. The evaluation value of an alternative Gi under an attribute Pj can be
expressed using an NCN gij = (< [TL

ij , TU
Ij ], [V

L
ij , VU

ij ], [F
L
ij , FU

ij ] >,< tij, vij, fij >) (i = 1, 2, . . . , k;

j = 1, 2, . . . , n), where [TL
ij , TU

ij ], [V
L
ij , VU

ij ], [F
L
ij , FU

ij ] ⊆ [0, 1], and tij, vij, fij ∈ [0, 1]. Then, we can
construct a decision matrix G = (gij)k×n with the NCN information, and provide the following MADM
procedures based on the proposed NCHWAGA operator:

Step 1. Calculate the aggregated value of gi for each alternative Gi (i = 1, 2, . . . , k) using the
NCHWAGA operator:

gi = NCHWAGA(gi1, gi2, . . . , gin) =
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where ωPj ∈ [0, 1] and ∑n
j=1 ωPj = 1 for j = 1, 2, . . . , n.

Step 2. Obtain the score values of Ψ(x) (the accuracy degrees of Γ(x) if necessary) of the collective NCN
gi (i = 1, 2, . . . , k) by Equations (1) and (2).
Step 3. Rank all the alternatives corresponding to the values of Ψ(x) and Γ(x), and select the best one(s)
based on the largest value.
Step 4. End.

5. Illustrative Example and Comparison Analysis

This section introduces an illustrative example adapted from Reference [20] to demonstrate the
application of the above MADM method. A company wants to invest some money in one of the four
possible alternatives Gi (i = 1, 2, 3, 4). G1, G2, G3 and G4 represent a textile company, an automobile
company, a computer company, and a software company, respectively. The four alternatives need to be
evaluated according to the three attributes Pj (j = 1, 2, 3). P1, P2 and P3 represent respectively the risk,
the growth, and the environmental impact. Corresponding to the three attributes, the weight vector is
ωP = (0.32, 0.38, 0.3). When the decision maker evaluates the four alternatives Gi (i = 1, 2, 3, 4) based
on the three attributes Pj (j = 1, 2, 3) with the NCN information, the decision matrix can be established
as shown in Table 1.

Table 1. The decision matrix with the neutrosophic cubic number (NCN) information.

Alternative Attribute (P1) Attribute (P2) Attribute (P3)

G1
(< [0.5, 0.6], [0.1, 0.3],

[0.2, 0.4]>, <0.2, 0.6, 0.3>)
(< [0.5, 0.6], [0.1, 0.3],

[0.2, 0.4]>, <0.2, 0.6, 0.3>)
(< [0.6, 0.8], [0.2, 0.3],

[0.1, 0.2]>, <0.7, 0.2, 0.1>)

G2
(< [0.6, 0.8], [0.1, 0.2],

[0.2, 0.3]>, <0.7, 0.1, 0.2>)
(< [0.6, 0.7], [0.1, 0.2],

[0.2, 0.3]>, <0.6, 0.3, 0.4>)
(< [0.6, 0.7], [0.3, 0.4],

[0.1, 0.2]>, <0.7, 0.4, 0.2>)

G3
(< [0.4, 0.6], [0.2, 0.3],

[0.1, 0.3]>, <0.6, 0.2, 0.2>)
(< [0.5, 0.6], [0.2, 0.3],

[0.3, 0.4]>, <0.6, 0.3, 0.4>)
(< [0.5, 0.7], [0.2, 0.3],

[0.3, 0.4]>, <0.6, 0.2, 0.3>)

G4
(< [0.7, 0.8], [0.1, 0.2],

[0.1, 0.2]>, <0.8, 0.1, 0.2>)
(< [0.6, 0.7], [0.1, 0.2],

[0.1, 0.3]>, <0.7, 0.1, 0.2>)
(< [0.6, 0.7], [0.3, 0.4],

[0.2, 0.3]>, <0.7, 0.3, 0.2>)

Then, we apply the NCHWAGA operator to handle the MADM problem as follows:

Step 1. By Equation (7) for ρ = 0.5, we calculate the aggregated value of the collective NCN gi for the
each alternative Gi (i = 1, 2, 3, 4) as follows:

g1 = (< [0.5302, 0.6645], [0.1272, 0.3000], [0.1669, 0.3355] >, <0.3430, 0.4709, 0.2306>)
g2 = (< [0.6000, 0.7335], [0.1523, 0.2563], [0.1669, 0.2685] >, <0.6628, 0.2525, 0.2346>)
g3 = (< [0.4677, 0.6307], [0.2000, 0.3000], [0.2264, 0.3672] >, <0.6000, 0.2365, 0.3025>)
g4 = (< [0.6328, 0.7335], [0.1523, 0.2563], [0.1272, 0.2665] >, <0.7335, 0.1523, 0.2000>)

Step 2. By Equation (1), we calculate the score values of Ψ(gi) for the alternatives Gi (i = 1, 2, 3, 4) as
the follows:

Ψ(g1) = 0.6563, Ψ(g2) = 0.7405, Ψ(g3) = 0.6740, Ψ(g4) = 0.7717.

Step 3. According to Ψ(g4) > Ψ(g2) > Ψ(g3) > Ψ(g1), the ranking of the alternatives is G4 � G2 � G3 �
G1. So, the alternative G4 is the best one.

Compared with the MADM method introduced in Reference [20], Table 2 lists the decision results
based on the NCHWAGA operator and cosine similarity measures of the NCSs. Obviously, the best
alternatives and the ranking orders based on the NCHWAGA operator proposed in this paper are the
same as in Reference [20].

For further relative comparison, Table 3 lists the MADM results using the NCHWAGA operator
proposed in this paper and the NCWAA and NCWGA operators provided in Reference [31],
respectively. The results listed in Table 3 show that the aggregated values of the NCHWAGA operator
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tend to the moderate values between the aggregated results of the NCWAA and NCWGA operators.
Then, the ranking orders based on the NCHWAGA operator have little difference with the NCWAA
and NCWGA operators. However, the best alternative given in all the MADM methods is identical.
Furthermore, the results in Table 3 also show that the aggregated values of the NCHWAGA operator
tend to moderate values between the aggregated values of the NCWAA and NCWGA operators in [31].
Therefore, the NCHWAGA operator can overcome the drawbacks of the NCWAA and NCWGA
operators, and it is more effective and more suitable than the NCWAA and NCWGA operators to
handle MADM problems under a neutrosophic cubic environment in some cases.

Table 2. Decision results based on the neutrosophic cubic hybrid weighted arithmetic and geometric
aggregation (NCHWAGA) operator and cosine similarity measures.

MADM Method Score Values
(Cosine Measures Value) Ranking Order The Best

Alternative

NCHWAGA (ρ = 0.5) 0.6563, 0.7405, 0.6740, 0.7717 G4 � G2 � G1 � G3 G4
Cosine Measure Sw1 [20] 0.9564, 0.9855, 0.9596, 0.9945 G4 � G2 � G1 � G3 G4
Cosine Measure Sw2 [20] 0.9769, 0.9944, 0.9795, 0.9972 G4 � G2 � G1 � G3 G4
Cosine Measure Sw3 [20] 0.9892, 0.9959, 0.9897, 0.9989 G4 � G2 � G1 � G3 G4

Table 3. Decision results based on different aggregation operators.

Aggregation
Operator Aggregated Result Score Value Ranking Order The Best

Alternative

NCHWAGA
(ρ = 0.5)

g1 = (< [0.5302, 0.6645], [0.1272, 0.3000],
[0.1669, 0.3355] >, < 0.3430, 0.4709, 0.2306 >) Ψ(g1) = 0.6563

G4 � G2 � G1 � G3 G4g2 = (< [0.6000, 0.7335], [0.1523, 0.2563],
[0.1669, 0.2685] >, <0.6628, 0.2525, 0.2346>) Ψ(g2) = 0.7405

g3 = (< [0.4677, 0.6307], [0.2000, 0.3000],
[0.2264, 0.3672] >, <0.6000, 0.2365, 0.3025>) Ψ(g3) = 0.6740

g4 = (< [0.6328, 0.7335], [0.1523, 0.2563],
[0.1272, 0.2665] >, <0.7335, 0.1523, 0.2000>) Ψ(g4) = 0.7717

NCWAA [31]

g1 = (< [0.5324, 0.6751], [ 0.1231, 0.3000],
[0.1625, 0.3249] >, < 0.4039, 0.4315, 0.2158 >), Ψ(g1) = 0.6726

G4 � G2 � G3 � G1 G4g2 = (< [0.6000, 0.7365], [0.1390, 0.2462],
[0.1625, 0.2656] >, <0.6653, 0.2301, 0.2114>) Ψ(g2) = 0.7497

g3 = (< [0.4700, 0.6331], [0.2000, 0.3000],
[0.2111, 0.3648] >, <0.6000, 0.2333, 0.2939>) Ψ(g3) = 0.6778

g4 = (< [0.6352, 0.7365], [0.1390, 0.2462],
[0.1231, 0.2635] >, <0.7365, 0.1390, 0.2000>) Ψ(g4) = 0.7775

NCWGA [31]

g1 = (< [0.5281, 0.6541], [ 0.1312, 0.3000],
[0.1712, 0.3459] >, < 0.2912, 0.5075, 0.2452 >) Ψ(g1) = 0.6414

G4 � G2 � G3 � G1 G4g2 = (< [0.6000, 0.7306], [0.1654, 0.2661],
[0.1712, 0.2714] >, <0.6602, 0.2757, 0.2571>) Ψ(g2) = 0.7315

g3 = (< [0.4655, 0.6284], [0.2000, 0.3000],
[0.2414, 0.3697] >, <0.6000, 0.2396, 0.3110>) Ψ(g3) = 0.6703

g4 = (< [0.6303, 0.7306], [0.1654, 0.2661],
[0.1312, 0.2694] >, <0.7306, 0.1654, 0.2000>) Ψ(g4) = 0.7660

6. Conclusions

This paper developed the NCHWAGA operator of NCSs and investigated its properties. The main
advantage of the proposed NCHWAGA operator can overcome the drawbacks implied by the
existing NCWAA and NCWGA operators [31] in some cases and reach the moderate aggregated
values. Then, the MADM method based on the NCHWAGA operator was established under an
NCS environment. Finally, we provided an illustrative example to demonstrate the application of
the established MADM method. By comparison, we found that the developed MADM method
was more effective and more suitable to solve decision-making problems with neutrosophic cubic
information in some cases. In the real world, a refined neutrosophic set [14] is very suitable to express
complex problems of decision-making, since it can be described by its refined types of sub-truths,
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sub-indeterminacies, and sub-falsities. Therefore, we shall further extend the NCHWAGA operator
to neutrosophic refined cubic sets for MADM by using the refined neutrosophic sets. In addition,
the proposed method will be also extended to neutrosophic cubic oversets/undersets/offsets using
the neutrosophic overset/underset/offset [36] in the future.
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Abbreviations

GRA Grey relational analysis
INSs Interval neutrosophic sets
MADM Multi-attribute decision-making
MCGDM Multi-criteria group decision making
MVNSs Multi-valued neutrosophic sets
NCHWAGA Neutrosophic cubic hybrid weighted arithmetic and geometric aggregation
NCSs Neutrosophic cubic sets
NCWAA Neutrosophic cubic weighted arithmetic average
NCWGA Neutrosophic cubic geometric weighted average
SNSs Simplified neutrosophic sets
SVNSs Single-valued neutrosophic sets
WAA Weighted arithmetic average
WGA Geometric average
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Abstract: The aim of this paper is to present a multiple-attribute group decision-making (MAGDM)
framework based on a new single-valued neutrosophic linguistic (SVNL) distance measure.
By unifying the idea of the weighted average and ordered weighted averaging into a single-valued
neutrosophic linguistic distance, we first developed a new SVNL weighted distance measure, namely
a SVNL combined and weighted distance (SVNLCWD) measure. The focal characteristics of the devised
SVNLCWD are its ability to combine both the decision-makers’ attitudes toward the importance, as well
as the weights, of the arguments. Various desirable properties and families of the developed SVNLCWD
were contemplated. Moreover, a MAGDM approach based on the SVNLCWD was formulated. Lastly,
a real numerical example concerning a low-carbon supplier selection problem was used to describe the
superiority and feasibility of the developed approach.

Keywords: single-valued neutrosophic linguistic set; distance measure; combined weighted average;
MAGDM; low-carbon supplier selection

1. Introduction

Multiple-attribute group decision-making (MAGDM) is one of the most commonly used methods
to rank and select potential alternatives based on the decision information of multiple decision-makers
(or experts). In real MAGDM problems, the increasing uncertainties of objects make it increasingly
difficult for people to precisely express judgments about their attributes during the process of
decision-making. Indeed, this is related not only to the nature of the objects but also to the ambiguity
of the underlying human intervention and cognitive thinking in general. Handling imprecision or
vagueness effectively in these complex situations is a matter of great concern in MAGDM problems.
Recently, a new tool for solving the uncertainty or inaccuracy of such information was introduced
by Ye [1], namely the single-valued neutrosophic linguistic set (SVNLS). By unifying the features of
single-valued neutrosophic sets (SVNS) [2,3] and linguistic terms [4], the SVNLS can eliminate both
of their shortcomings, and has been proven to be suitable to measure a higher degree of uncertainty
for subjective evaluations. As an effective extension of the linguistic terms and SVNS, the basic
element of the SVNLS is the single-valued neutrosophic linguistic value (SVNLV), which makes it
more effective for handling uncertain and imprecise information when contrasted with the existing
fuzzy tools, such as the intuitionistic linguistic set [5] and the Pythagorean fuzzy set [6]. Following
the latest research trend, the SVNLS has been widely applied to handle MAGDM problems under
indeterminacy and complex environments. Ye [1] investigated the classic technique for order preference
by similarity to an ideal solution (TOPSIS) method in SVNLS situation and studied its usefulness for
decision-making problems. Ye [7] developed some neutrosophic linguistic operators and investigated
their applications in selecting a flexible manufacturing system. Wang et al. [8] extended the Maclaurin
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symmetric mean operator to aggregate SVNL information. Chen et al. [9] developed a novel distance
measure for SVNLS based on the ordered weighted viewpoint. Ji et al. [10] proposed a combined
multi-attribute border approximation area comparison (MABAC) and the elimination and choice
translating reality (ELECTRE) approach for SVNLS and studied its application in selecting outsourcing
providers. Wu et al. [11] investigated the usefulness of the SVNLS in a 2-tuple environment of MAGDM
analysis. Kazimieras et al. [12] developed a new SVN decision-making model by applying the weighted
aggregated sum product assessment (WASPAS) method. Garg and Nancy [13] proposed several
prioritized aggregation operators for SVNLS to handle the priority among the attributes.

Distance measurement is one of the most widely used tools in MAGDM, and can be used to measure
the differences between the expected solutions and potential alternatives. Recently, a new distance
measurement method based on the ordered weighted viewpoint, i.e., the ordered weighted averaging
distance (OWAD) operator proposed by Merigó and Gil-Lafuente [14] has attracted increasing attention
from researchers. The essence of this distance operator is that it enables decision-makers to incorporate
their attitudinal bias into the decision-making process by imposing some weighting schemes to
the individual distances. To date, several OWAD extensions and their subsequent applications in
solving MAGDM problems have appeared in recent studies, such as the induced OWAD operator [15],
intuitionistic fuzzy OWAD operator [16], hesitant fuzzy OWAD operator [17], probabilistic OWAD
operator [18], Pythagorean fuzzy generalized OWAD operator [19], fuzzy linguistic induced Euclidean
OWAD operator [20], continuous OWAD operator [21] and the intuitionistic fuzzy weighted induced
OWAD operator [22]. More recently, Chen et al. [8] further presented a definition of the single-valued
neutrosophic linguistic OWAD (SVNLOWAD) operator, on the basis of which a modified TOPSIS
model was then proposed for MAGDM problems in a SVNL situation.

Although the OWAD operator and its numerous extensions, such as the SVNLOWAD operator,
have shown their superiority in practical applications, they possess a defect in that they can integrate
only the special interests of the experts, while ignoring the importance of the attributes in the outcome
of a decision. To overcome this shortcoming, this study develops a combined weighted distance for
SVNLSs, called the single-valued neutrosophic linguistic combined weighted distance (SVNLCWD)
operator. The proposed combined weighted distance operator is superior in that it involves both
subjective information on the importance of the ordered attributes and the importance of specific
attributes. We further explored some of the key properties and particular cases of the proposed
operator. Finally, we applied the SVNLCWD operator to a MAGDM problem concerning low-carbon
supplier selection to verify its effectiveness and superiority.

2. Preliminaries

In this section, we will briefly review some of concepts we need to use in the following sections,
including the definition of the SVNLS, the OWAD and the SVNLOWAD operator.

2.1. Linguistic Set

Let S = {sα|α = 1, . . . , l } be a finitely ordered discrete term set, where sα indicates a possible
value for a linguistic variable (LV) and l is an odd number. For instance, taking l = 7, then a linguistic
term set S could be specified S = {s1, s2, s3, s4, s5, s6, s7} = {extremely poor, very poor, poor, fair, good, very
good, extremely good}. In this case, any two LVs si and sj in S should satisfy rules (1)-(4) [23]:

(1) Neg(si) = s−i;
(2) si ≤ sj ⇔ i ≤ j ;

(3) max(si, sj) = sj, if i ≤ j;
(4) min(si, sj) = si, if i ≤ j.

To minimize information loss in the operational process, the discrete term set S shall be extended
to a continuous set S = { sα|α ∈ R}. Any two LVs sα, sβ ∈ S, satisfy the following operational rules [24]:
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(1) sα ⊕ sβ = sα+β;

(2) µsα = sµα, µ ≥ 0;
(3) sα/sβ = sα/β.

2.2. Single-Valued Neutrosophic Set (SVNS)

The neutrosophic set was introduced for the first time by Smarandache in 1998 [2], while Ye
introduced the linguistic neutrosophic set in 2015 [1] and Ye developed the single-valued neutrosophic
set (SVNS) in 2013 [25].

Definition 1. Let y be an element in a finite set Y. A SVNS P in Y can be defined as in (1):

P = { 〈y, TP(y), IP(y), FP(y)〉|y ∈ Y}, (1)

where the truth-membership function TP(y), the indeterminacy-membership function IP(y), and the
falsity-membership function FP(y) shall satisfy the following conditions:

0 ≤ TP(y), IP(y), FP(y) ≤ 1, 0 ≤ TP(y) + IP(y) + FP(y) ≤ 3. (2)

For convenience of calculation, we call the triplet (TP(y), IP(y), FP(y)) single-valued neutrosophic
value (SVNV) and simply denote it as y = (Ty, Iy, Fy). Let y = (Ty, Iy, Fy) and z = (Tz, Iz, Fz) be two
SVNVs, their mathematical operational laws are defined as follows:

(1) y⊕ z = (Ty + Tz − Ty ∗ Tz, Iy ∗ Tz, Fy ∗ Fz);

(2) λy = (1− (1− Ty)
λ, (Iy)

λ, (Fy)
λ), λ > 0;

(3) yλ = ((Ty)
λ, 1− (1− Iy)

λ, 1− (1− Fy)
λ), λ > 0.

2.3. Single-Valued Neutrosophic Linguistic Set (SVNLS)

On the basis of the SVNS, Ye gave the definition and operational laws of the single-valued
neutrosophic linguistic set (SVNLS), listed in the definitions 2–5.

Definition 2. Let Y be a finite universe set, a SVNLS Q in Y is defined as in (3):

Q =
{〈

y, [sθ(y), (TP(y), IP(y), FP(y))]
〉∣∣∣y ∈ Y

}
, (3)

where sθ(y) ∈ S, the truth-membership function Tq(y), the indeterminacy-membership function Iq(y),
and the falsity-membership function Fq(y) satisfy condition (4):

0 ≤ Tq(y), Iq(y), Fq(y) ≤ 1, 0 ≤ Tq(y) + Iq(y) + Fq(y) ≤ 3. (4)

For a SVNLS Q in Y, the SVNLV
〈

sθ(y), (TP(y), IP(y), FP(y))
〉

is simply denoted as y =
〈

sθ(y), (Ty, Iy, Fy)
〉

for computational convenience.

Definition 3. Let yi =
〈

sθ(yi)
, (Tyi , Iyi , Fyi )

〉
(i = 1, 2) be two SVNLVs, then

(1) y1 ⊕ y2 =
〈

sθ(y1)+θ(y2)
, (Ty1 + Ty2 − Ty1 ∗ Ty2 , Iy1 ∗ Ty2 , Fy1 ∗ Fy2)

〉
;

(2) λy1 =
〈

sλθ(y1)
, (1− (1− Ty1)

λ, (Iy1)
λ, (Fy1)

λ)
〉

, λ > 0;

(3) yλ
1 =

〈
sθλ(y1)

, ((Ty1)
λ, 1− (1− Iy1)

λ, 1− (1− Fy1)
λ)
〉

, λ > 0.
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Definition 4. The distance measure between the SVNLVs yi =
〈

sθ(yi)
, (Tyi , Iyi , Fyi )

〉
(i = 1, 2) is defined

as in (5):

d(y1, y2) =
[∣∣θ(y1)Ty1 − θ(y2)Ty2

∣∣λ +
∣∣θ(y1)Iy1 − θ(y2)Iy2

∣∣λ +
∣∣θ(y1)Fy1 − θ(y2)Fy2

∣∣λ
]1/λ

. (5)

If we assign different weights to the individual distances of the SVNLVs, we get the single-valued
neutrosophic linguistic weighted distance (SVNLWD) measure [8].

Definition 5. Let yj, y′j (j = 1, . . . , n) be the two collections of SVNLVs, a single-valued neutrosophic
linguistic weighted distance measure of dimension n is a mapping SVNLWD: Ωn ×Ωn → R , which

has an associated weighting vector W with wj ∈ [0, 1] and
n
∑

j=1
wj = 1, such that:

SVNLWD
(
(y1, y′1), . . . , (yn, y′n)

)
=

n

∑
j=1

wjd(yj, y′j), (6)

The OWAD operator developed by Merigó and Gil-Lafuente [14] aims to aggregate individual
distances as arguments on the basis of the ordered weighted averaging (OWA) operator [26]. Let
A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} be two crisp sets, and the OWAD operator can be defined
as follows.

Definition 6. An OWAD operator is defined as a mapping OWAD: Rn × Rn → R with the weighting

vector W = {wj
∣∣ n

∑
i=1

wj = 1, 0 ≤ wj ≤ 1
}

, such that:

OWAD(〈a1, b1〉, . . . , 〈an, bn〉) =
n

∑
j=1

wjdj, (7)

where dj is the j-th largest number among |ai − bi|.

On the basis of the OWAD operator, Chen et al. [9] introduced the SVNLOWAD operator to
aggregate SVNL information.

Definition 7. Let yj, y′j (j = 1, . . . , n) be the two collections of SVNLVs. If

SVNLOWAD
(
(y1, y′1), . . . , (yn, y′n)

)
=

n

∑
j=1

wjd(yj, y′j), (8)

then the SVNLOWAD is called the single-value neutrosophic linguistic OWAD, where d(yj, y′j)
represents the j-th largest value among the individual distances d(yi, y′i)(i = 1, . . . , n) defined in
Equation (5). w = (w1, . . . , wn)T is a weighting vector related to the SVNLOWAD operator, satisfying

n
∑

j=1
wj = 1 and wj ∈ [0, 1].

The properties of commutativity, monotonicity, boundedness and idempotency can easily be
established for the SVNLOWAD operator. Based on the above analysis, we can find that, although the
SVNLOWAD and SVNLWD operators have been widely used to solve MAGDM problems in SVNL
environments, these two operators exhibit certain deficiencies. Next, we shall propose a combined
weighted distance measure to alleviate these shortcomings.

551



Symmetry 2019, 11, 275

3. SVNL Combined Weighted Distance (SVNLCWD) Operator

The SVNL combined weighted distance (SVNLCWD) operator unifies both the advantages of the
SVNLWD and the SVNLOWAD operators in the same framework. Therefore, it is able to integrate the
decision-makers’ attitudes using ordered weighted arguments as well as embedding the importance of
alternatives based on the weighted average method. Moreover, it allows decision-makers to adjust
the allocation ratio of the SVNLOWAD and SVNLWD flexibly based on the needs of the particular
problem or their interests. The SVNLCWD operator can be defined as follows.

Definition 8. Let yj, y′j (j = 1, . . . , n) be the two collections of SVNLVs. If

SVNLCWD
(
(y1, y′1), . . . , (yn, y′n)

)
=

n

∑
j=1

wjDj, (9)

then the SVNLCWD is called the single-value neutrosophic linguistic combined weighted distance
operator, where Dj represents the j-th largest value among the individual distances d(yi, y′i)(i =

1, 2..., n) defined in Equation (5). There are two weights assigned to each distance Dj: ωj, is the weight

for weighted averaging (WA) with
n
∑

j=1
ωj = 1 and ωj ∈ [0, 1], and wj, is the weight for the OWA

meeting
n
∑

j=1
wj = 1 and wj ∈ [0, 1]. The integrated weight wj is defined as:

wj = δωj + (1− δ)wj, (10)

where δ ∈ [0, 1] and ωj is indeed ωi re-ordered to be associated to d(yi, y′i)(i = 1, . . . , n).

Based on the basic operational laws (i.e., ordered weighted and weighted average), the SVNLCWD
operator can be decomposed linearly into a combination of the SVNLOWAD and SVNLWD:

Definition 9. Let yj, y′j (j = 1, . . . , n) be the two collections of SVNLNs. If

SVNLCWD
(
(y1, y′1), . . . , (yn, y′n)

)
= δ

n

∑
i=1

ωid(yi, y′i) + (1− δ)
n

∑
j=1

wjDj, (11)

where Dj represents the j-th largest value among the individual distances d(yi, y′i)(i = 1, . . . , n) defined
in Equation (5), and δ ∈ [0, 1]. Obviously, the SVNLCWD is reduced to the SVNLOWAD and SVNLWD,
when δ = 0 and δ = 1, respectively.

Example 3.1. Let Y = (y1, y2, y3, y4, y5) = (〈s2, (0.5, 0.3, 0.4)〉 , 〈s5, (0.5, 0.2, 0.2)〉, 〈s5, (0.3, 0.3, 0.6)〉,
〈s2, (0.1, 0.4, 0.6)〉, 〈s7, (0.5, 0.8, 0.2)〉) and Y′ = (y′1, y′2, y′3, y′4, y′5) = (〈s5, (0.2, 0.9, 0)〉 , 〈s3, (0.5, 0.7, 0.2)〉,
〈s5, (0.4, 0.4, 0.5)〉, 〈s4, (0.5, 0.7, 0.2)〉, 〈s3, (0.4, 0.2, 0.6)〉) be two SVNLSs defined in set S =

{s1, s2, s3, s4, s5, s6, s7}. Let w = (0.15, 0.3, 0.2, 0.25, 0.1)T be the weighting vector of SVNLCWD
measure. Then, the aggregating process by the SVNLCWD can be displayed as follows:

(1) Compute the individual distances d(yi, y′ i)(i = 1, 2, . . . , 5) (let λ = 1) according to Equation (5):

d(y1, y′1) = |2× 0.5− 5× 0.2|+ |2× 0.3− 5× 0.9|+ |2× 0.4− 5× 0| = 4.7.

Similarly, we get
d(y2, y′2) = 2.4, d(y3, y′3) = 1.5,
d(y4, y′4) = 3.2, d(y5, y′5) = 7.7.
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(2) Sort the d(yi, y′ i)(i = 1, 2, . . . , 5) in decreasing order:

D1 = d(y5, y′5) = 7.7, D2 = d(y1, y′1) = 4.7, D3 = d(y4, y′4) = 3.2,
D4 = d(y2, y′2) = 2.4, D5 = d(y3, y′3) = 1.5.

(3) Let the weighting vector ω = (0.1, 0.15, 0.2, 0.35, 0.2)T and δ = 0.4, calculate the integrated
weights wj according to Equation (10):

w1 = 0.4× 0.2 + (1− 0.4)× 0.15 = 0.17, w2 = 0.4× 0.1 + (1− 0.4)× 0.3 = 0.22,
w3 = 0.4× 0.35 + (1− 0.4)× 0.2 = 0.26, ŵ4 = 0.4× 0.15 + (1− 0.4)× 0.25 = 0.21,

w5 = 0.4× 0.2 + (1− 0.4)× 0.1 = 0.14.

(4) Use the SVNLCWD measure defined in Equation (9) to perform the following aggregation:

SVNLCWD(Y, Y′)
= 0.17× 7.7 + 0.22× 4.7 + 0.26× 3.2 + 0.21× 2.4 + 0.14× 1.5

= 3.889

We can also perform the aggregation process of the SVNLCWD using Equation (11):

SVNLCWD(Y, Y′)
= 0.4× SVNLWD + (1− 0.4)× SVNLOWAD

= 0.4× 3.79 + 0.6× 3.955
= 3.889

Apparently, we obtain the same results using both methods. However, compared with the
SVNLOWAD operator, the proposed SVNLCWD operator can not only incorporate decision-makers’
interests and biases according to the ordered weights, but also highlights the importance of the input
arguments based on the weighted average tool.

Furthermore, by setting varied weighting schemes on the SVNLCWD operator, we can obtain a
series of SVNL weighted distance measures:

• If w1 = 1, w2 = · · · = wn = 0, then max-SVNLWD (SVNLMaxD) is formed.
• If w1 = · · · = wn−1 = 0, wn = 1, then the min-SVNLWD (SVNLMinD) is obtained.
• The step-SVNLCWD operator is rendered by imposing w1 = · · · = wk−1 = 0, wk = 1 and

wk+1 = · · · = wn = 0.
• According to techniques used in the recent literature [27,28], we can create more special

cases of the SVNLCWD, such as the Median-SVNLCWD, the Centered-SVNLCWD and the
Olympic-SVNLCWD operators.

The SVNLCWD operator has the following desirable properties that all aggregation operators
should ideally possess:

Theorem 1. (Commutativity–aggregation operator). Let ((x1, x′1), . . . , (xn, x′n)) be any permutation
of the set of SVNLVs ((y1, y′1), . . . , (yn, y′n)), then

SVNLCWD
(
(x1, x′1), . . . , (xn, x′n)

)
= SVNLCWD

(
(y1, y′1), . . . , (yn, y′n)

)
(12)

553



Symmetry 2019, 11, 275

The property of commutativity can also be demonstrated from the perspective of
distance measure:

SVNLCWD
(
(y1, y′1), . . . , (yn, y′n)

)
= SVNLCWD

(
(y′1, y1), . . . , (y′n, yn)

)
(13)

Theorem 2. (Monotonicity). If d(yi, y′ i) ≥ d(xi, x′ i) for all i, the following property holds

SVNLCWD
(
(y1, y′1), . . . , (yn, y′n)

)
≥ SVNLCWD

(
(x1, x′1), . . . , (xn, x′n)

)
(14)

Theorem 3. (Boundedness). This feature shows that the aggregation result lies between the minimum
and maximum arguments (distances) to be aggregated:

min
i

(
d(yi, y′ i)

)
≤ SVNLCWD

(
(y1, y′1), . . . , (yn, y′n)

)
≤ max

i

(
d(yi, y′ i)

)
(15)

Theorem 4. (Idempotency). If d(yi, y′ i) = D for all i, then

SVNLCWD
(
(y1, y′1), . . . , (yn, y′n)

)
= D (16)

Theorem 5. (Nonnegativity). In case distances are aggregated, the result of aggregation is positive:

SVNLCWD
(
(y1, y′1), . . . , (yn, y′n)

)
≥ 0 (17)

Theorem 6. (Reflexivity). In case the two vectors involved in the aggregation coincide, the resulting
variable is zero:

SVNLCWD((y1, y1), . . . , (yn, yn)) = 0 (18)

4. New MAGDM Method Using the SVNLCWD Operator

The SVNLCWD operator can be used in a wide range of environments, such as data analysis,
financial investment and engineering applications [29–32]. Subsequently, a new approach was
developed for MAGDM problems in SVNL situations. Suppose that C = {C1, C2, . . . , Cm} is the
set of schemes, and A = {A1, A2, . . . , An} is a set of finite attributes.

Step 1: Let each decision-maker (DM) ek(k = 1, 2, . . . , t) (whose weight is εk, meeting εk ≥ 0 and
t

∑
k=1

εk = 1) provide his/her evaluation on the attributes expressed by the SVNLVs, and then form the

individual matrix Yk =
(

y(k)ij

)
m×n

.

Step 2: Aggregate all evaluations of the individual DMs into a collective one, and then construct the
group matrix:

Y =
(

y
ij

)
m×n

=




y11 · · · y1n
...

. . .
...

ym1 · · · ymn


, (19)

where the SVNLN y
ij
=

t
∑

k=1
εky(k)ij .

Step 3: Construct the ideal levels for each attribute to establish the ideal scheme (see Table 1).
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Table 1. Ideal scheme.

A1 A2 · · · An

I ỹ1 ỹ2 . . . ỹn

Step 4: Utilize the SVNLCWD to compute the distances between the ideal scheme I and the different
alternatives Ci(i = 1, 2, . . . , m).

Step 5: Sort all alternatives and identify the best alternative(s) according to the results derived from
Step 4.

5. An Illustrative Example: Low-Carbon Supplier Selection

We will focus on a numerical example of the low-carbon supplier selection problem provided
by Chen et al. [9]. Three experts are invited to evaluate and prioritize a suitable low-carbon supplier
as a manufacturer, with respect to the four potential suppliers Ci (i = 1, 2, 3, 4) using the attributes:
low-carbon technology (A1), risk factor (A2), cost (A3) and capacity (A4). The preference presented by
the experts regarding these four attributes is formed into three individual SVNL decision matrices
under the linguistic term set S = {s1 = extremely poor, s2 = very poor, s3 = poor, s4 = fair, s5 = good,
s6 = very good, s7 = extremely good}, as listed in Tables 2–4.

Table 2. SVNL decision matrix Y1.

A1 A2 A3 A4

C1

〈
s(1)5 , (0.7, 0.0, 0.1)

〉 〈
s(1)4 , (0.6, 0.1, 0.2)

〉 〈
s(1)3 , (0.3, 0.1, 0.2)

〉 〈
s(1)6 , (0.6, 0.1, 0.2)

〉

C2

〈
s(1)6 , (0.6, 0.1, 0.2)

〉 〈
s(1)5 , (0.6, 0.1, 0.2)

〉 〈
s(1)4 , (0.5, 0.2, 0.2)

〉 〈
s(1)3 , (0.6, 0.2, 0.4)

〉

C3

〈
s(1)4 , (0.3, 0.2, 0.3)

〉 〈
s(1)4 , (0.5, 0.2, 0.3)

〉 〈
s(1)3 , (0.5, 0.3, 0.1)

〉 〈
s(1)5 , (0.3, 0.5, 0.2)

〉

C4

〈
s(1)5 , (0.4, 0.2, 0.3)

〉 〈
s(1)5 , (0.4, 0.2, 0.3)

〉 〈
s(1)3 , (0.3, 0.2, 0.5)

〉 〈
s(1)4 , (0.5, 0.3, 0.3)

〉

Table 3. SVNL decision matrix Y2.

A1 A2 A3 A4

C1

〈
s(3)4 , (0.6, 0.1, 0.2)

〉 〈
s(3)4 , (0.5, 0.2, 0.2)

〉 〈
s(3)3 , (0.4, 0.1, 0.1)

〉 〈
s(3)5 , (0.7, 0.2, 0.1)

〉

C2

〈
s(3)5 , (0.5, 0.2, 0.3)

〉 〈
s(3)4 , (0.7, 0.2, 0.2)

〉 〈
s(3)5 , (0.7, 0.2, 0.1)

〉 〈
s(3)6 , (0.4, 0.6, 0.2)

〉

C3

〈
s(3)6 , (0.5, 0.1, 0.3)

〉 〈
s(3)5 , (0.6, 0.1, 0.3)

〉 〈
s(3)4 , (0.6, 0.2, 0.1)

〉 〈
s(3)4 , (0.3, 0.6, 0.2)

〉

C4

〈
s(3)6 , (0.5, 0.2, 0.3)

〉 〈
s(3)6 , (0.6, 0.2, 0.4)

〉 〈
s(3)5 , (0.2, 0.1, 0.6)

〉 〈
s(3)4 , (0.5, 0.2, 0.3)

〉

Table 4. SVNL decision matrix Y3.

A1 A2 A3 A4

C1

〈
s(2)4 , (0.8, 0.1, 0.2)

〉 〈
s(2)5 , (0.7, 0.2, 0.3)

〉 〈
s(2)4 , (0.4, 0.2, 0.2)

〉 〈
s(2)6 , (0.6, 0.3, 0.3)

〉

C2

〈
s(2)6 , (0.7, 0.2, 0.3)

〉 〈
s(2)6 , (0.7, 0.2, 0.3)

〉 〈
s(2)5 , (0.6, 0.2, 0.2)

〉 〈
s(2)4 , (0.5, 0.4, 0.2)

〉

C3

〈
s(2)6 , (0.4, 0.2, 0.4)

〉 〈
s(2)6 , (0.6, 0.3, 0.4)

〉 〈
s(2)4 , (0.6, 0.1, 0.3)

〉 〈
s(2)5 , (0.4, 0.4, 0.1)

〉

C4

〈
s(2)5 , (0.4, 0.3, 0.4)

〉 〈
s(2)6 , (0.5, 0.1, 0.2)

〉 〈
s(2)5 , (0.3, 0.1, 0.6)

〉 〈
s(2)3 , (0.7, 0.1, 0.1)

〉
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Assume that the weights of the experts are ε1 = 0.37, ε2 = 0.30 and ε3 = 0.33, respectively. Then
we can aggregate the individual opinion and form the group SVNL decision matrix, which is listed in
Table 5.

Table 5. Group SVNL decision matrix R.

A1 A2 A3 A4

C1
〈
s

4.37
, (0.714, 0.000, 0.155)

〉 〈
s4.33, (0.611, 0.155, 0.229)

〉 〈
s3.67, (0.365, 0.128, 0.163)

〉 〈
s5.70, (0.633, 0.180, 0.186)

〉

C2
〈
s

5.70
, (0.611, 0.155, 0.258)

〉 〈
s4.70, (0.666, 0.155, 0.229)

〉 〈
s2.37, (0.602, 0.200, 0.162)

〉 〈
s4.23, (0.514, 0.350, 0.258)

〉

C3
〈
s

5.26
, (0.399, 0.163, 0.330)

〉 〈
s4.96, (0.566, 0.186, 0.330)

〉 〈
s3.37, (0.566, 0.185, 0.144)

〉 〈
s4.70, (0.335, 0.491, 0.159)

〉

C4
〈
s

5.30
, (0.432, 0.229, 0.330)

〉 〈
s5.63, (0.450, 0.159, 0.286)

〉 〈
s2.37, (0.271, 0.129, 0.561)

〉 〈
s3.67, (0.578, 0.185, 0.209)

〉

According to their objectives, the experts carry out a similar analysis to determine the ideal
scheme, which represents the optimal results that a supplier should have. The resulting vector (Table 6)
further serves as a reference point.

Table 6. Ideal scheme.

A1 A2 A3 A4

I
〈
s

7
, (0.9, 0, 0)

〉 〈
s

7
, (1, 0, 0.1)

〉 〈
s7, (0.9, 0, 0.1)

〉
〈s6, (0.9, 0.1, 0)〉

Assume that the weight vectors of the attributes and the SVNLCWD are ω = (0.25, 0.40, 0.20, 0.15)T

and w = (0.2, 0.15, 0.3, 0.35)T, respectively. Considering the available information, we can employ the
developed SVNLCWD (without loss of generality, let δ = 0.5) to compute the distances between the ideal
scheme I and the different alternatives Ci(i = 1, 2, 3, 4):

SVNLCWD(I, C1) = 5.176, SVNLCWD(I, C2) = 5.660,
SVNLCWD(I, C3) = 6.544, SVNLCWD(I, C4) = 6.641.

Note that smaller values of distances show preferable alternatives. Thus, the ranking of the
alternatives through the values of SVNLCWD(I, Ci)(i = 1, 2, 3, 4) yields:

A1 � A2 � A3 � A4.

The results show that A1 had the smallest distance from the ideal scheme, which means it was the
most desirable alternative.

To better reflect the superiority of the SVNLCWD, we used the SVNLWD and the SVNLOWAD to
measure the relative performance of the ideal scheme to all alternatives. For the SVNLWD measure,
we obtained:

SVNLWD(I, C1) = 5.249, SVNLWD(I, C2) = 5.669,
SVNLWD(I, C3) = 6.621, SVNLWD(I, C4) = 6.789.

For the SVNLOWAD operator, we obtained:

SVNLOWAD(I, C1) = 5.103, SVNLOWAD(I, C2) = 5.652,
SVNLOWAD(I, C3) = 6.466, SVNLOWAD(I, C4) = 6.492.

It is easy to see that the most desirable alternative was A1 for both the SVNLWD and SVNLOWAD
operators, which coincides with the results derived using the proposed SVNLCWD operator. Moreover,
the comparison of the SVNLWD and SVNLOWAD operators indicates that the SVNLCWD operator
was able to account for the degrees of pessimism or optimism of the attitudes of decision-makers, and
the different values of importance assigned to the various criteria during the process of aggregation.
Furthermore, this method has more flexibility as it can execute the selection procedure by assigning
different parameter values for the operator.
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6. Conclusions

In this paper, we proposed a new combined weighted distance measure for SVNLSs, i.e., the SVNL
combined weighted distance operator, to overcome the drawbacks of the existing method. Given
that the developed combined weighted distance measure for SVNLSs involves both the SVNL
weighted average and SVNL ordered weighted models, it takes into account both the attitudes toward
separate criteria, as well as toward positions in the ordered array. Moreover, the SVNLCWD operator
generalizes different types of SVNL aggregation operators, such as the SVNLMaxD, the SVNLMinD,
the SVNLOWAD and the step-SVNLCWD operators. Thus, it provides a further generalization of
previous methods by presenting a more general model to deal with the complex environments in a
more flexible and efficient manner.

The illustrative example dealt with a selection problem of a low-carbon supplier. We conducted
the sensitivity analysis to verify the robustness of the results by means of the changes in the aggregation
rules (implemented by switching to different aggregation operators) and the changes in the relative
importance of the ordered weights and arithmetic weights. Therefore, the proposed methodology can
simulate different degrees of pessimism or optimism displayed by the decision-makers and account
for the relative importance imposed on the various criteria in the aggregation process.

In future research, we will propose some methodological extensions and applications
of the SVNLCWD with other decision-making approaches, such as induced aggregation and
moving averaging.
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Abstract: Multi-attribute decision-making refers to the decision-making problem of selecting the
optimal alternative or sorting the scheme when considering multiple attributes, which is widely used
in engineering design, economy, management and military, etc. But in real application, the attribute
information of many objects is often inaccurate or uncertain, so it is very important for us to find a
useful and efficient method to solve the problem. Neutrosophic set is proposed from philosophical
point of view to handle inaccurate information efficiently, and a single-valued neutrosophic set
(SVNS) is a special case of neutrosophic set, which is widely used in actual application fields. In this
paper, a new method based on single-valued neutrosophic sets aggregation to solve multi-attribute
decision making problem is proposed. Firstly, the neutrosophic decision matrix is obtained by expert
assessment, a score function of single-valued neutrosophic sets (SVNSs) is defined to obtain the
positive ideal solution (PIS) and the negative ideal solution (NIS). Then all alternatives are aggregated
based on TOPSIS method to make decision. Finally numerical examples are given to verify the
feasibility and rationality of the method.

Keywords: multi-attribute decision making; single-valued neutrosophic set; aggregation; TOPSIS

1. Introduction

With the rapid development of human society, the social environment has become more and more
complex, which makes us have difficulties in making actual decision [1–9]. Therefore, in recent years,
more and more attention has been paid to multi-attribute decision making [10–16]. In the real world, the
attribute information of many objects is often inaccurate or uncertain [17–23], which makes the decision
progress difficult. In view of this problem, Zadeh put forward the concept of fuzzy set (FS) in 1965 [24],
which made up for the lack of flexibility of classical set theory to some extent. But the traditional FS can
not describe the decision information well in some conditions, Atanassov proposed the intuitionistic
fuzzy set (IFS) [25] on the basis of FS. An IFS is given by A = {〈x, µA(x), νA(x)〉}where µA(x), νA(x) ∈
[0, 1] denote the degree of membership and non-membership of x to A respectively. For instance, A is
an IFS in X = {1, 2, 3}, A = (0.6, 0.3)/1 + (0.7, 0.1)/2 + (0.5, 0.4)/3. Because IFSs take into account
the information of membership, non-membership and hesitation simultaneously, compared with FSs,
IFSs can describe the fuzzy nature [26–29] of the objective world more precisely. IFS attracted attention
of many scholars, rich achievements were made in the study of intuitionistic fuzzy sets [30–33].
Torra [34] proposed another generalized form of the fuzzy set, named the hesitant fuzzy set (HFS) in
2009. HFS allowed the membership of each element in the domain to belong to a certain set which
was combined by a number of different values. The element of the HFS is named as the hesitant
fuzzy element (HFE) by Xia et al. [35], the mathematical symbol of HFS is expressed by Xia as
A = {〈x, hA(x)〉|x ∈ X} where hA(x) is set of some values in [0, 1], denoting the possible membership
degrees of element x ∈ X to the set A. hA(x) is called a HFE. For example, B is a HFS in X = {1, 2, 3}
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and B = {0.6, 07, 0.8}/1 + {0.2}/2 + {0.3, 0.9}/3. The addition and multiplication operations on the
hesitant fuzzy element are also given by Xia. The hesitant intuitionistic fuzzy sets (HIFSs) is proposed
by Zhou et al. [36]. Zhou proposed that the HIFSs here were the generalization of the IFSs. The group
decision-making method under the condition of the uncertain intuitionistic fuzzy priority relation
matrix and aggregation operator was also given by Zhou in that paper.

The IFS considers both the truth-membership TA(x) and the falsity membership FA(x) with
TA(x), FA(x) ∈ [0, 1] and 0 ≤ TA(x) + FA(x) ≤ 1. For IFSs, the indeterminacy is 1− TA(x)− FA(x) by
default. The IFS can handle incomplete information but can hardly process inaccurate information.

In order to better describe uncertain information, Smarandache introduced Neutrosophy in
1995 [37,38]. Neutrosophy is a kind of philosophy which studies the nature, scope, and origin of
neutralities, as well as their joint parts with different ideational spectra [37]. Neutrosophic set (NS)
was also propose by Smarandache. NS is a very powerful tool which generalizes the concept of
the classic set, fuzzy set, interval-valued fuzzy set, IFS, interval-valued intuitionistic fuzzy set [39],
dialetheist set, paraconsistent set, and tautological set [37]. A NS A is defined on a universe of
discourse u. An element x in set A is expressed as x = x(t, i, f ) ∈ A, where t is a truth-membership
function, i is an indeterminacy-membership function, and f is a falsity-membership function, t, i, and
f are the real standard or non-standard subsets of ]0−, 1+[. For a NS, the indeterminacy is denoted
explicitly in contrast of that of IFSs. The indeterminacy can be divided into more parts so as to better
express the inaccurate information [37]. However neutrosophic sets are hard to use in actual occasions.
So Wang et al. [40] proposed the concept of single-valued neutrosophic sets (SVNSs). For instance,
C = (0.7, 0.5, 0.2) is a SVNS, in which the truth-membership t = 0.7, the indeterminacy i = 0.5 and
the falsity-membership f = 0.2. Because SVNS are easy to express the inaccurate information, SVNSs
are widely used in actual situations, such as in medicine [41], image processing [42], multi-criteria
decision-making [43–47], fault diagnosis [41,48,49], etc.

Neutrosophic set has many advantages in handling uncertain information. A lot of researches are
conducted on it. In [50], SVNS is used to express the decision information, weighted average operator,
TOPSIS method is adopted to propose the multi-criteria decision making method. Peng introduced
relevant concepts about the interval neutrosophic set [51], and the multi-criteria decision making
problem is also analyzed by combining the ranking method. Jiang proposed a new method to measure
the similarity between SVNSs using Dempster-Shafer evidence theory [52]. Ye proposed a method
to make decision based on the weighted correlation coefficient of SVNSs in [44], and proposed
another method to make decision in multi-criteria environment based on single valued neutrosophic
cross-entropy in [45]. Ye utilized cross entropy between the ideal solution and an alternative to get
the rank of all alternatives according to the values of cross entropy and to choose the most suitable
one(s). A decision method for the interval neutrosophic set is proposed based on cross entropy
by Tian et al. [53]. Deli applied bipolar neutrosophic sets to multi-criteria decision situations [54].
The TOPSIS method can be effectively combined with SVNSs to accomplish multi-attribute decision
making problems. By the way, the key point of TOPSIS is that the ideal alternative should have the
shortest distance from the PIS and the farthest distance from the NIS. The standard TOPSIS to new
multi-attribute decision-making called simplified-TOPSIS is proposed by Elhassouny [55], which
simplifies the process of the classical TOPSIS and get the same result.

This paper mainly introduces a new multi-attribute decision-making method based on SVNSs.
First, based on the given decision matrix, use score function to get the PIS and the NIS. Second,
aggregate all alternatives to get aggregated neutrosophic set. Last, use TOPSIS method to rank all
alternatives to make decision.

The paper is organized as follow. In Section 2, we present some preliminaries. Section 3 will focus
on the proposed multi-criteria decision method based on aggregated neutrosophic set. Afterwards,
two illustrative examples are introduced in Section 4. In the final section, conclusions are drawn.
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2. Preliminaries

A brief review of some preliminaries will be given in the following part.

2.1. Neutrosophic Sets

Neutrosophic set is an efficient tool to deal with the uncertain information. In [37], Smarandache
gave the definitions about a NS as follow:

Definition 1. Y is a universal space of point (objects) with a generic element of Y denoted by y. A neutrosophic
set N ⊂ Y is consist of a truth-membership function TN(y), an indeterminacy-membership function IN(y) and
a falsity-membership function FN(y). TA(y), These three components are real standard or real nonstandard
subset of [0−, 1+]. So that all three components

TN(y)→ [0−, 1+]

IN(y)→ [0−, 1+]

FN(y)→ [0−, 1+]

TN(y), IN(y) and FN(y) are related as follow:

0− ≤ sup TN(y) + sup IN(y) + sup FN(y) ≤ 3+.

Definition 2. A neutrosophic set N has its’ complement which is characterized by Nc and is characterized as

Tc
N(y) = 1+ − TN(y)

Ic
N(y) = 1+ − IN(y)

Fc
N(y) = 1+ − FN(y)

for every y in Y.

2.2. SVNS

For NS is difficult to be used in practical occasions, Wang [40] proposed the concept of
single-valued neutrosophic sets (SVNSs), which can be easily used in actual situations. The definition
of SVNSs are introduced as follow:

Definition 3. Let Y be a space of points (objects) which generic elements in Y denoted by y. A SVNS
N is characterized by a truth-membership function TN , an indeterminacy-membership function IN , and a
falsity-membership function FN with TN , IN , FN ∈ [0, 1].

When Y is continuous, an SVNS N can be expressed as:

N =
∫

X
〈TN(y), IN(y), FN(y)〉|y, y ∈ Y. (1)

When Y is discrete, an SVNS N can be characterized as:

N = ∑
y
〈TN(y), IN(y), FN(y)〉|y, y ∈ Y (2)

For convenience, a SVNS is usually denoted by its’ simplified symbol N = 〈TN(Y), IN(Y), FN(Y)〉 for
all y ∈ Y.
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Definition 4. A SVNS N has its’ complement Nc which is characterized as

Tc
N(y) = FN(y)

Ic
N(y) = 1− IN(y)

Fc
N(y) = TN(y)

for all y in Y.

Definition 5. A SVNS N is contained in the other SVNS M, N ⊆ M, if and only if

TN(y) ≤ TM(y)

IN(y) ≥ IM(y)

FN(y) ≥ FM(y)

for all y in Y.

Definition 6. Two SVNSs N and M are equal, written as N = M, if and only if N ⊆ M and N ⊆ M.

2.3. Score Function

Definition 7. Assume A = (TA, IA, FA) be a single valued neutrosophic number, then the score function [56]
is defined as

S(A) =
TA − IA − FA

3
. (3)

Score function is a very useful tool to illustrate which neutrosophic number is better. For example,
A1 = (0.5, 0.3, 0.4), A2 = (0.6, 0.4, 0.5), use the score function and get S(A1) = − 2

15 , S(A2) = − 1
6 ,

S(A1) > S(A2), this result is in line with intuition, in this case, A1 is better than A2.

2.4. Distance between Two Neutrosophic Sets

Assume that there two NSs, shows as follow:

M = 〈tM(xi), iM(xi), fM(xi)〉 i = 1, 2, . . . , n (4)

N = 〈tN(xi), iN(xi), fN(xi)〉 i = 1, 2, . . . , n (5)

Then the Hamming distance between M and N is defined as follow:

d1(M, N) =
n

∑
i=1
{|tM(xi)− tN(xi)|+ |iM(xi)− iN(xi)|+ | fM(xi)− fN(xi)|} (6)

the standard Hamming distance between M and N is defined as follow:

d2(M, N) =
1

3n

n

∑
i=1
{|tM(xi)− tN(xi)|+ |iM(xi)− iN(xi)|+ | fM(xi)− fN(xi)|} (7)

the Euclid distance between M and N is defined as follow:

d3(M, N) =

√
n

∑
i=1
{(tM(xi)− tN(xi))2 + (iM(xi)− iN(xi))2 + ( fM(xi)− fN(xi))2} (8)
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the standard Euclid distance between M and N is defined as follow:

d4(M, N) =

√
1

3n

n

∑
i=1
{(tM(xi)− tN(xi))2 + (iM(xi)− iN(xi))2 + ( fM(xi)− fN(xi))2} (9)

3. An Improved Multi-Criteria Decision Making Method

Multi-criteria decision making often faces complex environments. At present, multi-criteria
decision making methods mostly handle multiple attributes of an alternative separately for decision
making. Few studies try to aggregate all neutrosophic sets of one alternative before decision making to
simplify the decision progress. Based on the idea of information fusion, the NSs can be aggregated
before using TOPSIS method to make a decision. In this way, decision progress can be simplified.
A multi-attribute decision making method based on aggregated SVNSs is introduced in this part.

step1: Construct neutrosophic decision matrix.
The single-valued neutrosophic decision matrix is constructed based on expert assessments.

For instance, when an expert is asked the opinion of an alternative A1 with respect to a criterion C1,
the expert may say that possibility in which the alternative is good is 0.5 and false degree is 0.4 and the
expert is not sure is 0.2. For the NS, it can be expressed as d11 = 〈0.5, 0.2, 0.4〉.

Assume there are m alternatives and n criteria. The neutrosophic decision matrix D is expressed
as follow: 



d11 d12 . . . d1n
d21 d22 . . . d2n

...
...

. . .
...

dm1 dm2 . . . dmn




where dij = (Tij, Iij, Fij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, Tij, Iij, Fij are the truth-membership degree, the
indeterminacy-membership degree, the falsity-membership degree of alternative Ai with respect to
criterion j.

step2: Determine the PIS and the NIS.
In this step, score function mentioned above is utilized to get the PIS A∗ and the NIS A−∗.
Assume A∗ = (d∗1 , d∗2 , . . . , d∗n), among them S(d∗j ) = max

i
{S(dij)}, j = 1, 2, . . . , n, and A−∗ =

(d−∗1 , d−∗2 , . . . , d−∗n ) among them S(d−∗j ) = min
i
{S(dij)}, j = 1, 2, . . . , n, the score function can be used

to illustrate that how good or bad a neutrosophic set is. A simple example is given as follow:

Example 1. Assume there is a decision matrix which is obtained from expert assessments showing as follow:


(0.4, 0.2, 0.3) (0.4, 0.2, 0.4) (0.5, 0.2, 0.2)
(0.6, 0.1, 0.2) (0.6, 0.1, 0.2) (0.2, 0.2, 0.5)
(0.7, 0.1, 0.1) (0.5, 0.3, 0.3) (0.4, 0.3, 0.2)




Specifically, let us consider the neutrosophic set (0.4, 0.2, 0.3), T11 = 0.4, I11 = 0.2, F11 = 0.3,
use Equation (3) to obtain the score function as follows:

S(d11) =
0.4− 0.2− 0.3

3
= − 1

30

In this way, scores of all neutrosophic sets can be obtained, neutrosophic sets which have the highest or the lowest
scores will be choose to constitute the PIS(A∗) and the NIS(A−∗). For example, in the first column of the matrix:

S(d11) = −
1

30
, S(d21) =

1
10

, S(d31) =
1
6
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In this case, d31 and d11 are chosen to constitute the first column of A∗ and A−∗ respectively. A∗ and A−∗ can
be obtained as follow:

A∗ = ((0.7, 0.1, 0.1), (0.6, 0.1, 0.2), (0.5, 0.2, 0.2))

A−∗ = ((0.4, 0.2, 0.3), (0.4, 0.2, 0.4), (0.2, 0.2, 0.5))

step3: Aggregate the SVNSs.
In this step, all the attributes of a neutrosophic set are aggregated. Arithmetic average method

is used to combine neutrosophic set. Aa
j = (ta

j , ia
j , f a

j ) is the aggregated neutrosophic set, 1 ≤ j ≤ m,
where

ta
j =

tj1 + tj2 + . . . + tjn

n

ia
j =

ij1 + ij2 + . . . + ijn

n

f a
j =

f j1 + f j2 + . . . + f jn

n
n is the number of attributes.

This method is used to aggregate all the alternatives, the PIS and the NIS. So Aa
j = (ta

j , ia
j , f a

j ), 1 ≤
j ≤ m, A∗a = (t∗a, i∗a, f ∗a) and A−∗a = (t−∗a, i−∗a, f−∗a) are obtained.

step4: Multi-criteria decision making based on TOPSIS method
In this step, TOPSIS method is utilized to finish a multi-attribute neutrosophic decision making.

In step 3, the aggregated SVNSs, the aggregated PIS and NIS are obtained. Then the distance for each
aggregated SVNS between A∗a and between A−∗a can be calculated by Euclid distance Equation (8).
The distance between Aa

j and A∗a is calculated as follows:

D∗j =
√
(ta

j − t∗a)2 + (ia
j − i∗a)2 + ( f a

j − f ∗a)2 j = 1, 2, . . . , m (10)

The distance between Aa
j and A−∗a is got as follows:

D−∗j =
√
(ta

j − t−∗a)2 + (ia
j − i−∗a)2 + ( f a

j − f−∗a)2 j = 1, 2, . . . , m (11)

The relative closeness Tj based on TOPSIS is got as follows:

Tj =
D−∗j

(D−∗j + D∗j )
j = 1, 2, . . . , m (12)

Obviously, the bigger the value of Tj is, the farther the alternative is from the NIS, and the closer the
alternative is to the PIS, and vice versa. The ranked of all the alternatives is obtained in the descending
order of the value of Tj.

4. Illustrative Example

In this section, two examples are used to demonstrate the application of the proposed method.

Example 2. Let us consider the decision-making problem originated from [56]. There is an investment
company which wants to invest some money in a schools. There are four possible schools to invest the money:
{A1, A2, A3, A4}. The investment company is going to choose one school to invest with respect to the following
four criteria: {C1, C2, C3, C4}.

Step1: Experts evaluate all the four possible schools according to the four attributes. According to the
evaluation results, the following SVNS decision matrix is shown in Table 1:

564



Symmetry 2019, 11, 267

Table 1. Solution matrix for SVNS.

C1 C2 C3 C4

A1 (0.6, 0.3, 0.5) (0.5, 0.7, 0.6) (0.7, 0.6, 0.5) (0.5, 0.5, 0.6)
A2 (0.6, 0.4, 0.5) (0.4, 0.5, 0.6) (0.3, 0.5, 0.6) (0.4, 0.5, 0.6)
A3 (0.5, 0.6, 0.7) (0.7, 0.2, 0.8) (0.7, 0.6, 0.3) (0.4, 0.4, 0.5)
A4 (0.4, 0.3, 0.2) (0.5, 0.4, 0.3) (0.6, 0.7, 0.2) (0.4, 0.3, 0.2)

Step2: Then the score function is utilized to get A∗ and A−∗. The calculation results are expressed
in Table 2:

Table 2. Scores matrix for SVNS.

C1 C2 C3 C4

A1 − 1
15 − 4

15 − 2
15 − 1

5
A2 − 1

10 − 7
30 − 4

15 − 7
30

A3 − 4
15 − 1

10 − 1
15 − 1

6
A4 − 1

30 − 1
15 − 1

10 − 1
30

From Table 2, S(d41) = − 1
30 is the maximum in the first column, S(d42), S(d33), S(d44) is the maximum

in column 2, 3, 4 respectively. The neutrosophic PIS A∗ is composed of d41, d42, d33, d44. Similarly, the dij which
has the minimum score in each column is chosen to constitute the neutrosophic NIS A−∗. The PIS A∗ and the
NIS A−∗ can be obtained as follow:

A∗ = ((0.4, 0.3, 0.2), (0.5, 0.4, 0.3), (0.7, 0.6, 0.3), (0.4, 0.3, 0.2))

A−∗ = ((0.5, 0.6, 0.7), (0.5, 0.7, 0.6), (0.3, 0.5, 0.6), (0.4, 0.5, 0.6))

Step3: Aggregate all the alternatives, A∗ and A−∗. For example:

A∗ = ((0.4, 0.3, 0.2), (0.5, 0.4, 0.3), (0.7, 0.6, 0.3), (0.4, 0.3, 0.2))

The TA∗ , IA∗ , FA∗ of A∗c can be obtained as follow:

TA∗ =
0.4 + 0.5 + 0.7 + 0.4

4
= 0.500

IA∗ =
0.3 + 0.4 + 0.6 + 0.3

4
= 0.400

FA∗ =
0.2 + 0.3 + 0.3 + 0.2

4
= 0.250

A∗c = (TA∗ , IA∗ , FA∗) = (0.500, 0.400, 0.250)

All aggregated neutrosophic sets are obtained in the same way and shown as follow:

A1c = (0.575, 0.525, 0.550)

A2c = (0.425, 0.475, 0.575)

A3c = (0.575, 0.450, 0.575)

A4c = (0.475, 0.425, 0.225)

A∗c = (0.500, 0.400, 0.250)

A−∗c = (0.425, 0.575, 0.625)
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Step4: All alternatives are ranked by the TOPSIS method. Euclid distances between alternatives and the
PIS are calculated as follow:

d(A1c, A∗c ) =
√
(TA1c − TA∗c )

2 + (IA1c − IA∗c )
2 + (FA1c − FA∗c )

2 = 0.334

d(A2c, A∗c ) =
√
(TA2c − TA∗c )

2 + (IA2c − IA∗c )
2 + (FA2c − FA∗c )

2 = 0.342

d(A3c, A∗c ) =
√
(TA3c − TA∗c )

2 + (IA3c − IA∗c )
2 + (FA3c − FA∗c )

2 = 0.337

d(A4c, A∗c ) =
√
(TA4c − TA∗c )

2 + (IA4c − IA∗c )
2 + (FA4c − FA∗c )

2 = 0.043

Euclid distances between alternatives and the NIS are calculated as follow:

d(A1c, A−∗c ) =
√
(TA1c − TA−∗c

)2 + (IA1c − IA−∗c
)2 + (FA1c − FA−∗c

)2 = 0.175

d(A2c, A−∗c ) =
√
(TA2c − TA−∗c

)2 + (IA2c − IA−∗c
)2 + (FA2c − FA−∗c

)2 = 0.112

d(A3c, A−∗c ) =
√
(TA3c − TA−∗c

)2 + (IA3c − IA−∗c
)2 + (FA3c − FA−∗c

)2 = 0.202

d(A4c, A−∗c ) =
√
(TA4c − TA−∗c

)2 + (IA4c − IA−∗c
)2 + (FA4c − FA−∗c

)2 = 0.430

The relative closeness are calculated as follow:

T1 =
d(A1c, A−∗c )

d(A1c, A−∗c ) + d(A1c, A∗c )
= 0.344

T2 =
d(A2c, A−∗c )

d(A2c, A−∗c ) + d(A2c, A∗c )
= 0.247

T3 =
d(A3c, A−∗c )

d(A3c, A−∗c ) + d(A3c, A∗c )
= 0.375

T4 =
d(A4c, A−∗c )

d(A4c, A−∗c ) + d(A4c, A∗c )
= 0.909

Rank the Ti, i = 1, 2, 3, 4 in descending order, and get T4 > T3 > T1 > T2. In this case, A4 is chosen as the
ideal solution. This example shows that by using the proposed method decision results can be easily obtained.

Example 3. For a further understanding and comparison of our approach, another problem is considered.
The data in this example originated from [57]. Let us suppose that decision makers intend to select the most
suitable tablet from the four chosen tablets (A1, A2, A3, A4) by considering six attributes namely: Features C1,
Hardware C2, Display C3, Communication C4, Affordable Price C5, Customer care C6. By using the presented
method, the problem is handled by the following steps.

Step1: Assume that Ai(A1, A2, A3, A4) are alternatives with respect to six criteria
(C1, C2, C3, C4, C5, C6). Neutrosophic decision matrix are shown in Table 3:
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Table 3. Neutrosophic decision matrix.

C1 C2 C3
A1 (0.864, 0.136, 0.081) (0.853, 0.147, 0.092) (0.800, 0.200, 0.150)
A2 (0.667, 0.333, 0.277) (0.727, 0.273, 0.219) (0.667, 0.333, 0.277)
A3 (0.880, 0.120, 0.067) (0.887, 0.113, 0.064) (0.834, 0.166, 0.112)
A4 (0.667, 0.333, 0.277) (0.735, 0.265, 0.195) (0.768, 0.232, 0.180)

C4 C5 C6
A1 (0.704, 0.296, 0.241) (0.823, 0.177, 0.123) (0.864, 0.136, 0.081)
A2 (0.744, 0.256, 0.204) (0.652, 0.348, 0.293) (0.608, 0.392, 0.336)
A3 (0.779, 0.256, 0.204) (0.811, 0.189, 0.109) (0.850, 0.150, 0.092)
A4 (0.727, 0.273, 0.221) (0.791, 0.209, 0.148) (0.808, 0.192, 0.127)

Step2: Score function are used to calculate and get the score matrix in Table 4.

Table 4. Score matrix.

C1 C2 C3 C4 C5 C6

A1 0.216 0.205 0.150 0.056 0.174 0.216
A2 0.019 0.078 0.019 0.095 0.004 -0.040
A3 0.231 0.237 0.185 0.106 0.171 0.203
A4 0.019 0.092 0.119 0.078 0.145 0.163

From Table 4, the neutrosophic PIS can be got as follow:

A∗ = ((0.880, 0.120, 0.067), (0.887, 0.113, 0.064), (0.834, 0.166, 0.112),

(0.779, 0.256, 0.204), (0.823, 0.177, 0.123), (0.864, 0.136, 0.081))

and the neutrosophic NIS is shown as follow:

A−∗ = ((0.667, 0.333, 0.277), (0.727, 0.273, 0.219), (0.667, 0.333, 0.277),

(0.704, 0.296, 0.241), (0.652, 0.348, 0.293), (0.608, 0.392, 0.336)).

Step3: Neutrosophic sets aggregation is done in this step. After calculation, results are shown as follows:

A1c = (0.818, 0.182, 0.128)

A2c = (0.677, 0.323, 0.268)

A3c = (0.840, 0.166, 0.108)

A4c = (0.749, 0.251, 0.191)

A∗c = (0.844, 0.161, 0.109)

A−∗c = (0.671, 0.329, 0.274)

Step4: In the last step, Euclid distances between Aic, i = 1, 2, 3, 4 and A∗c and between Aic, i = 1, 2, 3, 4
and A−∗c are obtained, and the relative closeness of each alternative Ti(i = 1, 2, 3, 4) is obtained. Euclid distances
between alternatives and the neutrosophic PIS are as follow:

d(A1c, A∗c ) = 0.038 d(A2c, A∗c ) = 0.282

d(A3c, A∗c ) = 0.007 d(A4c, A∗c ) = 0.154
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Euclid distances between alternatives and the neutrosophic NIS are below:

d(A1c, A−∗) = 0.254 d(A2c, A−∗) = 0.011

d(A3c, A−∗) = 0.288 d(A4c, A−∗) = 0.138

So the relative closeness of each alternative to the ideal solution can be easily obtained as follow:

T1 = 0.870 T2 = 0.038

T3 = 0.976 T4 = 0.473

the rank of them can be obtained: T3 > T1 > T4 > T2. Obviously, A3 is the best solution.
According to the results, method which uses aggregated SVNSs in this paper is more simplified than that

proposed by Pramanik [57]. Additionally, the Pramanik’s results are shown as follow:

T1 = 0.8190 T2 = 0, 1158

T3 = 0.8605 T4 = 0.4801

The same rank of alternatives are got, but in our approach the difference between the data is greater and the results
are clearer than that in Pramanik’s. The presented method is different with Pramanik’s method in handling
the attributes. In Pramanik’s method, attribute weight is used to revise the neutrosophic set. In the presented
method neutrosophic sets of different attributes are aggregated to one neutrosophic set, which simplifies the
decision-making process and makes the process more efficient. In this way, multi-criteria decision making can be
easily made.

To verify the rationality and usefulness of the presented method, correlation coefficient method [44] and
cross-entropy method [45] are used to calculate the same decision problem in Table 3. In Table 3, Bi refers to the
correlation between alternative Ai and the PIS A∗, and Ei refers to the distance between Ai and the PIS A∗. The
comparison of presented method with these three methods are shown in Table 5.

Table 5. Comparison with other methods.

Methods Indexes for Decision Making Rank of Indexes The Chosen Alternative

Elhassouny’s [57] T1 = 0.8190, T2 = 0, 1158, T3 = 0.8605, T4 = 0.4801 T3 > T1 > T4 > T2 A3
correlation coefficient [44] B1 = 0.959, B2 = 0.846, B3 = 0.970, B4 = 0.917 B3 > B1 > B4 > B2 A3

cross-entropy [45] E1 = 0.530, E2 = 0.966, E3 = 0.466, E4 = 0.763 E3 < E1 < E4 < E2 A3
Presented method T1 = 0.870, T2 = 0.038, T3 = 0.976, T4 = 0.473 T3 > T1 > T4 > T2 A3

5. Conclusions

In this paper, a multi-attribute decision method used aggregated neutrosophic set and TOPSIS
is proposed. In our method, arithmetic average method is used to aggregate neutrosophic sets, and
aggregated sets can be used by TOPSIS method to get a final rank. The proposed approach could
reduce the computation since it firstly aggregate the neutrosophic sets before ranking, so it is useful in
real application with high requirements of real-time. Two examples have demonstrated the rationality
and feasibility of our approach. However, this method also has some limitations, averaging the validity
of the criteria may lead to the loss of some criteria information. If the criteria information is especially
emphasized in the decision process, this presented method may be not so appropriate to be used.
In the future, more work will be done on the score function to make the decision making process
more accurate, and the geometric average method is also need to be checked. Continuous work in the
application of complex decision-making problems such as group decision-making problems and other
domains such as fuzzy system is also need to be done.

Author Contributions: W.J. and X.D. proposed the method; W.J., Z.Z. and X.D. analyzed the results of experiment;
Z.Z. wrote the paper; W.J. and X.D. revised and improved the paper.

568



Symmetry 2019, 11, 267

Funding: The work is partially supported by National Natural Science Foundation of China (Program No.
61671384, 61703338), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ6085).

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. Jiang, W. A correlation coefficient for belief functions. Int. J. Approx. Reason. 2018, 103, 94–106. [CrossRef]
2. Deng, X.; Jiang, W.; Wang, Z. Zero-sum polymatrix games with link uncertainty: A Dempster-Shafer theory

solution. Appl. Math. Comput. 2019, 340, 101–112. [CrossRef]
3. Kahneman, D.; Tversky, A. Prospect Theory. An analysis of decision making under risk. Econometrica 1979,

47, 263–291. [CrossRef]
4. Han, Y.; Deng, Y. A hybrid intelligent model for Assessment of critical success factors in high risk

emergency system. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1933–1953. [CrossRef]
5. Bellman, R.E.; Zadeh, L.A. Decision-Making in a Fuzzy Environment. Manag. Sci. 1970, 17, B141–B164.

[CrossRef]
6. Wendt, D.; Vlek, C. Utility, Probability, and Human Decision Making. Soc. Sci. Electron. Publ. 1977, 185,

1124–1131.
7. Xiao, F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief

entropy. Inf. Fusion 2019, 46, 23–32. [CrossRef]
8. Zhang, L.; Wu, X.; Zhu, H.; AbouRizk, S.M. Perceiving safety risk of buildings adjacent to tunneling

excavation: An information fusion approach. Autom. Constr. 2017, 73, 88–101. [CrossRef]
9. He, Z.; Jiang, W. An evidential Markov decision making model. Inf. Sci. 2018, 467, 357–372. [CrossRef]
10. He, Z.; Jiang, W. An evidential dynamical model to predict the interference effect of categorization on

decision making. Knowl.-Based Syst. 2018, 150, 139–149. [CrossRef]
11. Liu, J.C.; Li, D.F. Corrections to “TOPSIS-based nonlinear-programming methodology for multi-attribute

decision making with interval-valued intuitionistic fuzzy sets” [Apr 10 299-311]. IEEE Trans. Fuzzy Syst.
2018, 26, 391. [CrossRef]

12. Broumi, S.; Smarandache, F. Single valued neutrosophic trapezoid linguistic aggregation operators based
multi-attribute decision making. Bull. Pure Appl. Sci. Math. Stat. 2017, 33e, 135. [CrossRef]

13. Deli, I.; Subas, Y. A ranking method of single valued neutrosophic numbers and its applications to
multi-attribute decision making problems. Int. J. Mach. Learn. Cybern. 2017, 8, 1309–1322. [CrossRef]

14. Pramanik, S.; Dey, P.P.; Giri, B.C.; Smarandache, F. An Extended TOPSIS for Multi-Attribute Decision Making
Problems with Neutrosophic Cubic Information; University of New Mexico: Albuquerque, NM, USA, 2017.

15. Figueira, J.; Greco, S.; Ehrogott, M. Multiple Criteria Decision Analysis: State of the Art Surveys.
International 2018, 142, 192–202.

16. Siregar, D.; Arisandi, D.; Usman, A.; Irwan, D.; Rahim, R. Research of Simple Multi-Attribute Rating
Technique for Decision Support. J. Phys. Conf. Ser. 2017, 930, 012015. [CrossRef]

17. Deng, X.; Jiang, W. Dependence assessment in human reliability analysis using an evidential network
approach extended by belief rules and uncertainty measures. Ann. Nuclear Energy 2018, 117, 183–193.
[CrossRef]

18. Deng, X. Analyzing the monotonicity of belief interval based uncertainty measures in belief function
theory. Int. J. Intell. Syst. 2018, 33, 1869–1879. [CrossRef]

19. Li, Y.; Deng, Y. Generalized Ordered Propositions Fusion Based on Belief Entropy. Int. J. Comput.
Commun. Control 2018, 13, 792–807. [CrossRef]

20. Deng, X.; Xiao, F.; Deng, Y. An improved distance-based total uncertainty measure in belief function theory.
Appl. Intell. 2017, 46, 898–915. [CrossRef]

21. Zhang, X.; Mahadevan, S. Aircraft re-routing optimization and performance assessment under uncertainty.
Decis. Support Syst. 2017, 96, 67–82. [CrossRef]

22. Huang, Z.; Yang, L.; Jiang, W. Uncertainty measurement with belief entropy on the interference effect in
the quantum-like Bayesian Networks. Appl. Math. Comput. 2019, 347, 417–428. [CrossRef]

23. Jiang, W.; Hu, W. An improved soft likelihood function for Dempster-Shafer belief structures. Int. J.
Intell. Syst. 2018, 33, 1264–1282. [CrossRef]

24. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]

569



Symmetry 2019, 11, 267

25. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
26. Han, Y.; Deng, Y. An enhanced fuzzy evidential DEMATEL method with its application to identify critical

success factors. Soft Comput. 2018, 22, 5073–5090. [CrossRef]
27. Kang, B.; Deng, Y.; Hewage, K.; Sadiq, R. A method of measuring uncertainty for Z-number. IEEE Trans.

Fuzzy Syst. 2018. [CrossRef]
28. Zhang, L.; Wu, X.; Qin, Y.; Skibniewski, M.J.; Liu, W. Towards a Fuzzy Bayesian Network Based Approach

for Safety Risk Analysis of Tunnel-Induced Pipeline Damage. Risk Anal. 2016, 36, 278–301. [CrossRef]
[PubMed]

29. Fei, L.; Wang, H.; Chen, L.; Deng, Y. A new vector valued similarity measure for intuitionistic fuzzy sets
based on OWA operators. Iranian J. Fuzzy Syst. 2018. [CrossRef]

30. Yager, R.R. Some Aspects of Intuitionistic Fuzzy Sets; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 2009; pp. 67–90.

31. Li, D.F. TOPSIS-Based nonlinear-programming methodology for multiattribute decision making with
interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 2018, 26, 391. [CrossRef]

32. Bustince, H.; Burillo, P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst. 1996, 79, 403–405. [CrossRef]
33. Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518.

[CrossRef]
34. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [CrossRef]
35. Xia, M.; Xu, Z. Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 2011,

52, 395–407. [CrossRef]
36. Zhou, W.; Xu, Z.; Chen, M. Preference Relations Based on Hesitant-Intuitionistic Fuzzy Information and Their

Application in Group Decision Making; Pergamon Press, Inc.: Oxford, UK, 2015; pp. 163–175.
37. Smarandache, F. A unifying field in logics: Neutrosophic logic. Multiple-Valued Logic 1999, 8, 489–503.
38. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Ann Arbor,

Michigan, USA, 1998; 105p.
39. Atanassov, K.T. Interval Valued Intuitionistic Fuzzy Sets; Elsevier North-Holland, Inc.: Amsterdam,

The Netherlands, 1989; pp. 343–349.
40. Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. In Proceedings of

the 8th Joint Conference on Information Sciences, Salt Lake, UT, USA, 21–26 July 2005; pp. 94–97.
41. Ma, Y.X.; Wang, J.Q.; Wang, J.; Wu, X.H. An interval neutrosophic linguistic multi-criteria group

decision-making method and its application in selecting medical treatment options. Neural Comput. Appl.
2017, 28, 2745–2765. [CrossRef]

42. Guo, Y.; Cheng, H.D. New Neutrosophic Approach to Image Segmentation; Elsevier Science Inc.: Amsterdam,
The Netherlands, 2009; pp. 587–595.

43. Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic
sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466.

44. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued
neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [CrossRef]

45. Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems.
Appl. Math. Model. 2014, 38, 1170–1175. [CrossRef]

46. Xiao, F. A novel multi-criteria decision making method for assessing health-care waste treatment
technologies based on D numbers. Eng. Appl. Artif. Intell. 2018, 71, 216–225. [CrossRef]

47. Deng, X.; Jiang, W. D number theory based game-theoretic framework in adversarial decision making
under a fuzzy environment. Int. J. Approx. Reason. 2019, 106, 194–213. [CrossRef]

48. Jiang, W.; Zhong, Y.; Deng, X. A Neutrosophic Set Based Fault Diagnosis Method Based on Multi-Stage
Fault Template Data. Symmetry 2018, 10, 346. [CrossRef]

49. Zhou, D.; Al-Durra, A.; Zhang, K.; Ravey, A.; Gao, F. Online remaining useful lifetime prediction of proton
exchange membrane fuel cells using a novel robust methodology. J. Power Sources 2018, 399, 314–328.
[CrossRef]
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1. Introduction

The theory of fuzzy sets was introduced by Zadeh [1].Soon after, it attracted experts of sciences
and engineering due to its possibilistic behavior. The applicability of fuzzy sets extended it to interval
valued fuzzy sets(IVFs) [2,3]. In 1986, K. Atnassov developed the theory of intuitionistic fuzzy sets [4],
which were further extended to interval valued intuitionistic fuzzy sets in 1989 [5]. In 2012, Y.B.
Jun generalized the idea of fuzzy sets and intuitionistic fuzzy sets to form cubic sets [6]. Smarandache
presented his theory regarding the inconsistent and indeterminate behavior of data in 1999, and named
it the neutrosophic set [7]. Neutrosophic sets consist of three components:Truth, indeterminate and
falsehood, which provides a more general platform to deal with vague and insufficient data. In 2005,
Wang et al. [8] presented the idea of interval valued neutrosophic sets. Interval valued neutrosophic
sets provide a range to experts which makes them more comfortable with making the choice. Jun et al.
defined the neutrosophic cubic set [9,10]. Neutrosophic cubic sets are a generalization of neutrosophic
sets and interval neutrosophic sets. They enable us to choose both interval values and single value
membership. This characteristic of neutrosophic cubic sets enables us to deal with uncertain and vague
data more efficiently.

Decision making is one of the most important factors in scienceand day-to-day life as well.
Aggregation operators are an imperative part of modern decision making. A lack of data or information
makes it difficult for decision makers to take an appropriatedecision. This uncertain situation can
be minimized using the vague nature neutrosophic cubic set and its extensions. Neutrosophic cubic
set (NCs) are a more generalized version of neutrosophic sets (Ns) and interval neutrosophic sets
(INs). Neutrosophic cubic setsare better placed to express consistent, indeterminate, and inconsistent
information, which provides a better platform to deal with incomplete, inconsistent, and vague data.
Aggregation operators have a key role in daily life, science and engineering problems. Zhan et al. [11]
in their workapplications of neutrosophic cubic sets in multi-criteria decision making in 2017.
Banerjee et al. [12] usedgrey rational analysis in their workGRA for multi attribute decision making in
neutrosophic cubic set environment in 2017.Lu and Ye [13] definedcosine measure for neutrosophic
cubic sets for multiple attribte decision making in 2017. Pramanik et al. [14] defined neutrosophic cubic
MCGDM method based on similarity measurein 2017. Shi and Ye [15] defined Dombi aggregation
operators of neutrosophic cubic set for multiple attribute deicision makingin 2018. Baolin et al. [16]
applied Einstein aggregations onneutrosophic sets in a novel generalized simplified neutrosophic
number Einstein aggregation operator 2018. Alot of work has been done and is being done by different
researchers in decision making using neutrosophic cubic sets.

In this paper, we define algebraic and Einstein sum, multiplication and scalar multiplication,
score and accuracy functions. Using these operations, we define geometric aggregation operators
and Einstein geometric aggregation operators. First, we define algebraic and Einstein operators of
addition, multiplication and scalar multiplication. We then define score and accuracy functions to
compare neutrosophic cubic values. Following this, we propose a neutrosophic cubic ordered weighted
geometric operator (NCOWG), neutrosophic cubic Einstein weighted geometric operator (NCEWG),
and a neutrosophic cubic Einstein ordered weighted geometric operator (NCEOWG) over neutrosophic
cubic sets. A multi-criteria decision making method is then developed as an application for these
operators. This method is then applied to a daily life problem.

2. Preliminaries

This section consists of two parts: Notations, which consists of notations with their descriptions
and some previous definitions; and results. We recommend the reader to see [1–3,6–9,16].

2.1. Notations

This section consists of some notations with their descriptions, as shown in Table 1.
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Table 1. Some notations with their descriptions.

S. No Notation Description

1 U Ground set
2 u Element of ground set (U).
3 ψ Fuzzy set

4 Ψ̃ =
[
ΨL, ΨU]

Interval valued fuzzy set which is an interval of [0,1]. The left
extreme ψL is referred as lower fuzzy and right extreme ψU is

referred as upper fuzzy function.
5 (TN , IN , FN) components of neutrosophic sets each one is fuzzy sets.

6
(

T̃N , ĨN , F̃N

) The components of interval neutrosophic each one is an interval
valued fuzzy set.

7
(

T̃N , ĨN , F̃N , TN , IN , FN

)
The components of neutrosophic cubic set. Referred to 5 and 6.

8 Γ∗, Γ t-conorm, t-norm
9 ⊕,⊗ Algebraic sum, product
10 ⊕E,⊗E Einstein sum, product

2.2. Pre-Defined Definitions

This section consists of some predefined definitions and results.

Definition 1 [1]. A mapping ψ:U → [0, 1] is called a fuzzy set, and ψ(u) is called a membership function,
simply denoted by ψ.

Definition 2 [2,3]. A mapping Ψ̃ : U → D[0, 1] , where D[0, 1] is the interval
value of [0, 1], called the interval valued fuzzy set(IVF). For all u ∈ U Ψ̃(u) ={[

ψL(u), ψU(u)
]
|ψL(u), ψU(u) ∈ [0, 1] and ψL(u) ≤ ψU(u)

}
is membership degree of u in Ψ̃. This is

simply denoted by Ψ̃ =
[
ΨL, ΨU].

Definition 3 [6]. A structure C =
{(

u, Ψ̃(u), Ψ(u)
)
|u ∈ U

}
is a cubic set in U in which Ψ̃(u) is IVF in U,

that is, Ψ̃ =
[
ΨL, ΨU] and Ψ is a fuzzy set in U. This can be simply denoted by C =

(
Ψ̃, Ψ

)
. CU denotes the

collection of cubic sets in U.

Definition 4 [7]. A structure N = {(TN(u), IN(u), FN(u))|u ∈ U} is a neutrosophic set(Ns), where
{TN(u), IN(u), FN(u) ∈ [0, 1]} are called truth, indeterminacy and falsity functions, respectively.This can be
simply denoted by N = (TN , IN , FN).

Definition 5 [8]. An interval neutrosophic set (INs) in U is a structure
N =

{(
T̃N(u), ĨN(u), F̃N(u)

)
|u ∈ U

}
, where

{
T̃N(u), ĨN(u), F̃N(u) ∈ D[0, 1]

}
is calledtruth,

indeterminacy an falsity functionin U, respectively. This can be simply denoted by N =
(

T̃N , ĨN , F̃N

)
.

For convenience, we denote N =
(

T̃N , ĨN , F̃N

)
by N =

(
T̃N =

[
TL

N , TU
N
]
, ĨN =

[
IL
N , IU

N
]
, F̃N =

[
FL

N , FU
N
])

.

Definition 6 [9]. A structure N =
{(

u, T̃N(u), ĨN(u), F̃N(u), TN(u), IN(u), FN(u)
)
|u ∈ U

}
is

neutrosophic cubic set(NCs) in U, in which
(

T̃N =
[
TL

N , TU
N
]
, ĨN =

[
IL
N , IU

N
]
, F̃N =

[
FL

N , FU
N
])

is an interval

neutrosophic set and (TN , IN , FN) is a neutrosophic set in U. Simply denoted by N =
(

T̃N , ĨN , F̃N , TN , IN , FN

)
,

[0, 0] ≤ T̃N + ĨN + F̃N ≤ [3, 3] and 0 ≤ TN + IN + FN ≤ 3. NU denotes the collection of neutrosophic cubic
sets in U. Simply denoted by N =

(
T̃N , ĨN , F̃N , TN , IN , FN

)
.

Definition 7 [16]. The t-operators are basically union and intersection operators in the theory of fuzzy sets,
which are denoted by t-conorm (Γ∗) and t-norm (Γ), respectively. The role of t-operators is very important in
fuzzy theory and its applications.
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Definition 8 [16]. Γ∗ : [0, 1]× [0, 1]→ [0, 1] is called t-conorm if it satisfies the following axioms:

Axiom 1. Γ∗(1, u) = 1 and Γ∗(0, u) = 0;
Axiom 2. Γ∗(u, v) = Γ∗(v, u) for all a and b;
Axiom 3. Γ∗(u, Γ∗(v, w)) = Γ∗(Γ∗(u, v), w) for all a, b and c;
Axiom 4. If u ≤ u′ and v ≤ v′, then Γ∗(u, v) ≤ Γ∗(u′, v′).

Most known t-conorms are as follows:

1. The default t-conorm: Γ∗max(u, v) = max(u, v).
2. The bounded t-conorm: Γ∗bounded(u, v) = min(1, u + v).
3. The algebraic t-conorm: Γ∗algebraic(u, v) = u + v− uv.

Definition 9 [16]. Γ : [0, 1]× [0, 1]→ [0, 1] is called t-norm if it satisfies the following axioms:

Axiom 5. Γ(1, u) = u and Γ(0, u) = 0;
Axiom 6. Γ(u, v) = Γ(v, u) for all a and b;
Axiom 7. Γ(u, Γ(v, w)) = Γ(Γ(u, v), w) for all a, b and c;
Axiom 8. If u ≤ u′ and v ≤ v′, then Γ(u, v) ≤ Γ(u′, v′).

Most well known t-norms are as follows:

1. The default t-norm: Γmin(u, v) = min(u, v).
2. The bounded t-norm: Γbounded(u, v) = max(0, u + v− 1).
3. The algebraic t-norm: Γalgebraic(u, v) = uv.

If Γ∗(u, v), Γ(u, v) are continuous and Γ∗(u, u) > u, Γ(u, u) < u, then Γ∗ and Γ are said to be
Archimedes t-conorm and t-norm, respectively. Any pair of dual t-conorm (Γ∗) and t-norm (Γ) is used.
It is known that t-norms and t-conorms operators satisfy the condition of conjunction and disjunction
operators, respectively. However, the algebraic operations, like algebraic sum and product, are not
unique and may correspond to union and intersection. The t-conorms and t-norms families have
a vast range, which corresponds to unions and intersections. Among these, the Einstein sum and
Einstein product are good choices since they give the smooth approximation like algebraic sum and
algebraic product, respectively. Einstein sum ⊕E and Einstein product ⊗E are examples of t-conorm
and t-norm, respectively:

Γ∗E(u, v) =
u + v

1 + uv

ΓE(u, v) =
uv

1 + (1− u)(1− v)

Group decision making is an important aspect of decision making theory. We are often in
situationsin which we have to deal with more then one expert, attribute and alternative. Motivated
by such situations, a multi-attribute decision making method for more then one expert is proposed
on neutrosophic cubic aggregation operators.This whole work consisted of six sections. In Section 3,
we define some algebraicEinstein operations and score and accuracy functions, along with some
important results and examples. On the basis of these definitions and results, we define geometric
and Einstein geometric aggregation operators on neutrosophic cubic sets in Section 4. In Section 5,
an algorithm is proposed based on neutrosophic cubic geometric and Einstein geometric aggregation
operators to deal with multi-attribute decision making problems. In the final section, a numerical
example from daily life is presented as an application of the work.

3. Operations on Neutrosophic Cubic Sets

In this section, we introduce some new operations on neutrosophic cubic sets which are further
used in the article.
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3.1. Algebraic Addition, Multiplication and Scalar Multiplication

We introduce the algebraic addition, multiplication, and scalar multiplication on neutrosophic
cubic sets(NCs). An important result of exponential multlipliction is established on the basis of these
defintions, which provides the basis to define neutrosophic cubic geometric aggregation operators.

Definition 10. The sum of two neutrosophic cubic sets(NCs), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, and B =

(
T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B , TU
B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A⊕ B =




[
TL

A + TL
B − TL

ATL
B , TU

A + TU
B − TU

A TU
B
]
,[

IL
A + IL

B − IL
A IL

B , IU
A + IU

B − IU
A IU

B
]
,[

FL
AFL

B , FU
A FU

B
]
,

TATB, IA IB, FA + FB − FAFB




Definition 11. The product between two neutrosophic cubic sets (NCs), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
,

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]

and B =
(

T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B , TU
B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A⊗ B =




[
TL

ATL
B , TU

A TU
B
]
,[

IL
A IL

B , IU
A IU

B
]
,[

FL
A + FL

B − FL
AFL

B , FU
A + FU

B − FU
A FU

B
]
,

TA + TB − TATB, IA + IB − IA IB, FAFB




Definition 12. The scalar multiplication on a neutrosophic cubic set (NCs), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
,

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, and a Scalar k is defined as

kA =




[
1− (1− TL

A)
k, 1− (1− TU

A )
k
]
,[

1− (1− IL
A)

k, 1− (1− IU
A )

k
]
,[(

FL
A
)k,
(

FU
A
)k
]
,

(TA)
k, (IA)

k, 1− (1− FA)
k




The following result is established to deal with the exponential multiplication on neutrosophic
cubic values. This result enables us to define geometric aggregation operators along some important
results on neutrosophic cubic sets.

Theorem 1. Let A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, be a

neutrosophic cubic value, then the exponential operation can be defined by

Ak =




[
(TL

A)
k, (TU

A )k
]
,[

(IL
A)

k, (IU
A )k
]
,[

1−
(
1− FL

A
)k, 1−

(
1− FU

A
)k
]
,

1− (1− TA)
k, 1− (1− IA)

k, (FA)
k




where Ak = A⊗ A⊗, . . .⊗ A(k− times), and Ak is a neutrosophic cubic value for every positive value of k.
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Proof. We prove the theorem by mathematical induction, as the k = 1, A1 = A result holds.We assume
that for k = m the result is true:

Am =




[
(TL

A)
m, (TU

A )m
]
,[

(IL
A)

m, (IU
A )m

]
,[

1−
(
1− FL

A
)m, 1−

(
1− FU

A
)m
]
,

1− (1− TA)
m, 1− (1− IA)

m, (FA)
m




That is Am is neutrosophic cubic value. We prove that for k = m + 1 is also neutrosophic
cubic value.

Since

Am ⊗ A =




[
(TL

A)
m, (TU

A )m
]
,[

(IL
A)

m, (IU
A )m

]
,[

1−
(
1− FL

A
)m, 1−

(
1− FU

A
)m
]
,

1− (1− TA)
m, 1− (1− IA)

m, (FA)
m



⊗




[
(TL

A), (T
U
A )
]
,[

(IL
A), (IU

A )
]
,[

FL
A, FU

A
]
,

TA, IA, FA




=




[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m

+ FL
A −

(
1−

(
1− FL

A
)m
)

FL
A, 1−

(
1− FU

A
)m

+ FU
A −

(
1−

(
1− FU

A
)m
)

FU
A

]
,

1− (1− TA)
m + TA −

(
1− (1− TA)

m)TA, 1− (1− IA)
m + IA −

(
1− (1− IA)

m IA
)
, (FA)

m+1




=




[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m

+ FL
A − FL

A +
(
1− FL

A
)mFL

A, 1−
(
1− FU

A
)m

+ FU
A − FU

A +
(
1− FU

A
)mFU

A

]
,

1− (1− TA)
m + TA − TA + (1− TA)

mTA, 1− (1− IA)
m + IA − IA + (1− IA)

m IA, (FA)
m+1




=




[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m

+
(
1− FL

A
)mFL

A, 1−
(
1− FU

A
)m

+
(
1− FU

A
)mFU

A

]
,

1− (1− TA)
m + (1− TA)

mTA, 1− (1− IA)
m + (1− IA)

m IA, (FA)
m+1




=




[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m(1− FL

A
)
, 1−

(
1− FU

A
)m(1− FU

A
)]

,

1− (1− TA)
m(1− TA), 1− (1− IA)

m(1− IA), (FA)
m+1




=




[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m+1, 1−

(
1− FU

A
)m+1

]
,

1− (1− TA)
m+1, 1− (1− IA)

m+1, (FA)
m+1




= Am+1.

�

3.2. Einstein Addition, Multiplication and Scalar Multiplication

Taking into account the dual t-conorm (Γ∗) and t-norm (Γ), the Einstein operations of union,
intersection, addition, multiplication and scalar multiplication are defined on the neutrosophic cubic
sets.An important result of Einstein exponential multlipliction is established on the basis of these
defintions, which provides the base with which to define neutrosophic cubic Einstein geometric
aggregation operators.
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Definition 13. The Einstein union between two neutrosophic cubic sets (NCs), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, and B =

(
T̃B, ĨB, F̃B, TB, IB, FB

)
where T̃B =

[
TL

B , TU
B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A ∨ B =
(

Γ
{

T̃A, T̃B

}
, Γ
{

ĨA, ĨB

}
, Γ∗
{

F̃A, F̃B

}
, Γ∗{TA, TB}, Γ∗{IA, IB}, Γ{FA, FB}

)

Definition 14. The Einstein intersection between two neutrosophic cubic sets(NCS), A =(
T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]

and B =
(

T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B , TU
B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A ∧ B =
(

Γ∗
{

T̃A, T̃B

}
, Γ∗
{

ĨA, ĨB

}
, Γ
{

F̃A, F̃B

}
, Γ{TA, TB}, Γ{IA, IB}, Γ∗{FA, FB}

)
.

On the basis of Einstein union and intersection the Einstein sum and product is defined over
neutrosophic cubic values.

Definition 15. The Einstein sum between two neutrosophic cubic sets (NCS), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
,

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]

and B =
(

T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B , TU
B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A⊕E B =




[
TL

A+TL
B

1+TL
ATL

B
, TU

A +TU
B

1+TU
A TU

B

]
,

[
IL
A+IL

B
1+IL

A IL
B

, IU
A+IU

B
1+IU

A IU
B

]
,

[
FL

A FL
B

1+(1−FL
A)(1−FL

B )
, FU

A FU
B

1+(1−FU
A )(1−FU

B )

]

TATB
1+(1−TA)(1−TB)

, IA IB
1+(1−IA)(1−IB)

, FA+FB
1+FA FB




Definition 16. The Einstein product between two neutrosophic cubic sets (NCS), A =(
T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]

and B =
(

T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B , TU
B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A⊗E B =




[
TL

ATL
B

1+(1−TL
A)(1−TL

B)
, TU

A TU
B

1+(1−TU
A )(1−TU

B )

]
,

[
IL
A IL

B
1+(1−IL

A)(1−IL
B)

, IU
A IU

B
1+(1−IU

A )(1−IU
B )

]
,

[
FL

A+FL
B

1+FL
A FL

B
, FU

A +FU
B

1+FU
A FU

B

]

TA+TB
1+TATB

, IA+IB
1+IA IB

, FA FB
1+(1−FA)(1−FB)




Definition 17. The scalar multiplication on a neutrosophic cubic set(NCS), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
,

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, and scalar k is defined as
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kE A =




[
(1+TL

A)
k−(1−TL

A)
k

(1+TL
A)

k
+(1−TL

A)
k , (1+TU

A )
k−(1−TU

A )
k

(1+TU
A )

k
+(1−TU

A )
k

]
,

[
(1+IL

A)
k−(1−IL

A)
k

(1+IL
A)

k
+(1−IL

A)
k , (1+IU

A )
k−(1−IU

A )
k

(1+IU
A )

k
+(1−IU

A )
k

]
,

[
2(FL

A)
k

(2−FL
A)

k
+(FL

A)
k ,

2(FU
A )

k

(2−FU
A )

k
+(FU

A )
k

]
,

2(TA)
k

(2−TA)
k+(TA)

k , 2(IA)
k

(2−IA)
k+(IA)

k , (1+FA)
k−(1−FA)

k

(1+FA)
k+(1−FA)

k




After defining the scalar multiplication over the neutrosophic cubic set, we established the
following result, which deals with the Einstein exponential multiplication on neutrosophic cubic
values. This result enabled us to define Einstein geometric aggregation operators along with some
important results on neutrosophic cubic sets.

Theorem 2. Let A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, be a

neutrosophic cubic value, then the exponential operation defined by

AEk
=




[
2(TL

A)
k

2(−TL
A)

k
+(TL

A)
k , 2(TU

A )k

(2−TU
A )

k
+(TU

A )
k

]
,

[
2(IL

A)
k

(2−IL
A)

k
+(IL

A)
k , 2(IU

A )k

(2−IU
A )

k
+(IU

A )
k

]
,

[
(1+FL

A)
k−(1−FL

A)
k

(1+FL
A)

k
+(1−FL

A)
k , (1+FU

A )
k−(1−FU

A )
k

(1+FU
A )

k
+(1−FU

A )
k

]
,

(1+TA)
k−(1−TA)

k

(1+TA)
k+(1−TA)

k , (1+IA)
k−(1−IA)

k

(1+IA)
k+(1−IA)

k , 2(FA)
k

(2−FA)
k+(FA)

k




where AEk
= A⊗E A⊗E . . .⊗E A(k− times), moreover AEk

is a neutrosophic cubic value for every positive
value of k.

Proof. We prove the theorem by mathematical induction. For k = 1

AE =




[
2(TL

A)

(2−TL
A)+(TL

A)
, 2(TU

A )

(2−TU
A )+(TU

A )

]
,

[
2(IL

A)

(2−IL
A)+(IL

A)
, 2(IU

A )

(2−IU
A )+(IU

A )

]
,

[
(1+FL

A)−(1−FL
A)

(1+FL
A)+(1−FL

A)
, (1+FU

A )−(1−FU
A )

(1+FU
A )+(1−FU

A )

]
,

(1+TA)−(1−TA)
(1+TA)+(1−TA)

, (1+IA)−(1−IA)
(1+IA)+(1−IA)

, 2(FA)
(2−FA)+(FA)




We observe that the components TL
A, TU

A , IL
A, IU

A , FA are of the form 2x
(2−x)+x , and FL

A, FU
A , TA, IA are

of the form (1+y)−(1−y)
(1+y)+(1−y) ,

For all x, y ∈ [0, 1], clearly x = 2x
(2−x)+x and y = (1+y)−(1−y)

(1+y)+(1−y)

Hence AE is neutrosophic cubic value.
Assuming k = m is a neutrosophic cubic value i.e.,

AEm
=




[
2(TL

A)
m

(2−TL
A)

m
+(TL

A)
m , 2(TU

A )m

(2−TU
A )

m
+(TU

A )
m

]
,

[
2(IL

A)
m

(2−IL
A)

m
+(IL

A)
m , 2(IU

A )m

(2−IU
A )

m
+(IU

A )
m

]
,

[
(1+FL

A)
m−(1−FL

A)
m

(1+FL
A)

m
+(1−FL

A)
m , (1+FU

A )
m−(1−FU

A )
m

(1+FU
A )

m
+(1−FU

A )
m

]
,

(1+TA)
m−(1−TA)

m

(1+TA)
m+(1−TA)

m , (1+IA)
m−(1−IA)

m

(1+IA)
m+(1−IA)

m , 2(FA)
m

(2−FA)
m+(FA)

m



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is a neutrosophic cubic value. Then we prove AEk+1
is neutrosophic cubic value.

Consider,

AEm ⊗E AE =




[
2(TL

A)m

(2−TL
A)

m
+(TL

A)
m , 2(TU

A )m

(2−TU
A )

m
+(TU

A )
m

]
,

[
2(IL

A)m

(2−IL
A)

m
+(IL

A)
m , 2(IU

A )m

(2−IU
A )

m
+(IU

A )
m

]
,

[
(1+FL

A)
m−(1−FL

A)
m

(1+FL
A)

m
+(1−FL

A)
m , (1+FU

A )
m−(1−FU

A )
m

(1+FU
A )

m
+(1−FU

A )
m

]
,

(1+TA)m−(1−TA)m

(1+TA)m+(1−TA)m , (1+IA)m−(1−IA)m

(1+IA)m+(1−IA)m , 2(FA)m

(2−FA)m+(FA)m




⊗E




[
2(TL

A)

(2−TL
A)+(TL

A)
, 2(TU

A )

(2−TU
A )+(TU

A )

]
,

[
2(IL

A)1

(2−IL
A)+(IL

A)
, 2(IU

A )1

(2−IU
A )+(IU

A )

]
,

[
(1+FL

A)−(1−FL
A)

(1+FL
A)+(1−FL

A)
, (1+FU

A )−(1−FU
A )

(1+FU
A )+(1−FU

A )

]
,

(1+TA)−(1−TA)
(1+TA)+(1−TA)

, (1+IA)−(1−IA)
(1+IA)+(1−IA)

, 2(FA)
(2−FA)+(FA)




=







4(TL
A)

m+1

(
(2−TL

A)
m
+(TL

A)
m)
((2−TL

A)+TL
A)

1+

(
1− 2(TL

A)
m

(2−TL
A)

m
+(TL

A)
m

)(
1− 2TL

A
(2−TL

A)+TL
A

) ,

4(TU
A )

m+1

(
(2−TU

A )
m
+(TU

A )
m)
((2−TU

A )+TU
A )

1+

(
1− 2(TU

A )
m

(2−TU
A )

m
+(TU

A )
m

)(
1− 2TU

A
(2−TU

A )+TU
A

)


,




4(IL
A)

m+1

(
(2−IL

A)
m
+(IL

A)
m)
((2−IL

A)+IL
A)

1+

(
1− 2(IL

A)
m

(2−IL
A)

m
+(IL

A)
m

)(
1− 2IL

A
(2−IL

A)+IL
A

) ,

4(IU
A )

m+1

(
(2−IU

A )
m
+(IU

A )
m)
((2−IU

A )+IU
A)

1+

(
1− 2(IU

A )
m

(2−IU
A )

m
+(IU

A)
m

)(
1− 2IU

A
(2−IU

A )+IU
A

)


,




(
(1+FL

A)
m−(1−FL

A)
m

(1+FL
A)

m
+(1−FL

A)
m

)
+

(
(1+FL

A)−(1−FL
A)

(1+FL
A)+(1−FL

A)

)

1+

(
(1+FL

A)
m−(1−FL

A)
m

(1+FL
A)

m
+(1−FL

A)
m

)(
(1+FL

A)−(1−FL
A)

(1+FL
A)+(1−FL

A)

) ,

(
(1+FU

A )
m−(1−FU

A )
m

(1+FU
A )

m
+(1−FU

A )
m

)
+

(
(1+FU

A )−(1−FU
A )

(1+FU
A )+(1−FU

A )

)

1+

(
(1+FU

A )
m−(1−FU

A )
m

(1+FU
A )

m
+(1−FU

A )
m

)(
(1+FU

A )−(1−FU
A )

(1+FU
A )+(1−FU

A )

)


,

(
(1+TA)m−(1−TA)m

(1+TA)m+(1−TA)m

)
+
(
(1+TA)−(1−TA)
(1+TA)+(1−TA)

)

1+
(

(1+TA)m−(1−TA)m

(1+TA)m+(1−TA)m

)(
(1+TA)−(1−TA)
(1+TA)+(1−TA)

) ,

(
(1+IA)m−(1−IA)m

(1+IA)m+(1−IA)m

)
+
(
(1+IA)−(1−IA)
(1+IA)+(1−IA)

)

1+
(

(1+IA)m−(1−IA)m

(1+IA)m+(1−IA)m

)(
(1+IA)−(1−IA)
(1+IA)+(1−IA)

) ,

4(FA)
m+1

((2−FA)m+(FA)
m)((2−FA)+FA)

1+
(

1− 2(FA)
m

(2−FA)m+(FA)
m

)(
1− 2FA

(2−FA)+FA

)




=







4(TL
A)

m+1

(
(2−TL

A)
m
+(TL

A)
m)
((2−TL

A)+TL
A)

1+

(
(2−TL

A)
m
+(TL

A)
m−2(TL

A)
m

(2−TL
A)

m
+(TL

A)
m

)(
(2−TL

A)+TL
A−2TL

A
(2−TL

A)+TL
A

) ,

4(TU
A )

m+1

(
(2−TU

A )
m
+(TU

A )
m)
((2−TU

A )+TU
A )

1+

(
(2−TU

A )
m
+(TU

A )
m−2(TU

A )
m

(2−TU
A )

m
+(TU

A )
m

)(
(2−TU

A )+TU
A−2TU

A
(2−TU

A )+TU
A

)


,




4(IL
A)

m+1

(
(2−IL

A)
m
+(IL

A)
m)
((2−IL

A)+IL
A)

1+

(
(2−IL

A)
m
+(IL

A)
m−2(IL

A)
m

(2−IL
A)

m
+(IL

A)
m

)(
(2−IL

A)+IL
A−2IL

A
(2−IL

A)+IL
A

) ,

4(IU
A )

m+1

(
(2−IU

A )
m
+(IU

A )
m)
((2−IU

A )+IU
A )

1+

(
(2−IU

A )
m
+(IU

A )
m−2(IU

A)
m

(2−IU
A )

m
+(IU

A )
m

)(
(2−IU

A )+IU
A−2IU

A
(2−IU

A )+IU
A

)


,




(
(1+FL

A)
m−(1−FL

A)
m)
((1+FL

A)+(1−FL
A))+

(
(1+FL

A)
m
+(1−FL

A)
m)
((1+FL

A)−(1−FL
A))

((1+FL
A)

m
+(1−FL

A)
m)((1+FL

A)+(1−FL
A))

(
(1+FL

A)
m
+(1−FL

A)
m)
((1+FL

A)+(1−FL
A))+(1+FL

A)
m+1−(1+FL

A)
m
(1−FL

A)−(1−FL
A)

m
(1+FL

A)+(1−FL
A)

m+1

((1+FL
A)

m
+(1−FL

A)
m)((1+FL

A)+(1−FL
A))

,

(
(1+FU

A )
m−(1−FU

A )
m)
((1+FU

A )+(1−FU
A ))+

(
(1+FU

A )
m
+(1−FU

A )
m)
((1+FU

A )−(1−FU
A ))

((1+FU
A )

m
+(1−FU

A )
m)((1+FU

A )+(1−FU
A ))

(
(1+FU

A )
m
+(1−FU

A )
m)
((1+FU

A )+(1−FU
A ))+(1+FU

A )
m+1−(1+FU

A )
m
(1−FU

A )−(1−FU
A )

m
(1+FU

A )+(1−FU
A )

m+1

((1+FU
A )

m
+(1−FU

A )
m)((1+FU

A )+(1−FU
A ))




,

((1+TA)
m−(1−TA)

m)((1+TA)+(1−TA))+((1+TA)
m
+(1−TA)

m)((1+TA)−(1−TA))

((1+TA)m+(1−TA)m)((1+TA)+(1−TA))

((1+TA)
m
+(1−TA)

m)((1+TA)+(1−TA))+(1+TA)
m+1−(1+TA)

m(1−TA)−(1−TA)
m(1+TA)+(1−TA)

m+1

((1+TA)m+(1−TA)m)((1+TA)+(1−TA))

,

((1+IA)
m−(1−IA)

m)((1+IA)+(1−IA))+((1+IA)
m
+(1−IA)

m)((1+IA)−(1−IA))

((1+IA)m+(1−IA)m)((1+IA)+(1−IA))

((1+IA)
m
+(1−IA)

m)((1+IA)+(1−IA))+(1+IA)
m+1−(1+IA)

m(1−IA)−(1−IA)
m(1+IA)+(1−IA)

m+1

((1+IA)m+(1−IA)m)((1+IA)+(1−IA))

,

4(FA)
m+1

((2−FA)m+(FA)
m)((2−FA)+FA)

1+
(

(2−FA)m+(FA)
m−2(FA)

m

(2−FA)m+(FA)
m

)(
(2−FA)+FA−2FA

(2−FA)+FA

)



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=







4(TL
A)

m+1

(
(2−TL

A)
m
+(TL

A)
m)
((2−TL

A)+TL
A)((

(2−TL
A)

m
+(TL

A)
m)
((2−TL

A)+TL
A)
)
+
((

(2−TL
A)

m−(TL
A)

m)
((2−TL

A)−TL
A)
)

(
(2−TL

A)
m
+(TL

A)
m)
((2−TL

A)+TL
A)

,

4(TU
A )

m+1

(
(2−TU

A )
m
+(TU

A )
m)
((2−TU

A )+TU
A )((

(2−TU
A )

m
+(TU

A )
m)
((2−TU

A )+TU
A )

)
+
((

(2−TU
A )

m−(TU
A )

m)
((2−TU

A )−TU
A )

)

(
(2−TU

A )
m
+(TU

A )
m)
((2−TU

A )+TU
A )




,




4(IL
A)

m+1

(
(2−IL

A)
m
+(IL

A)
m)
((2−IL

A)+IL
A)((

(2−IL
A)

m
+(IL

A)
m)
((2−IL

A)+IL
A)
)
+
((

(2−IL
A)

m−(IL
A)

m)
((2−IL

A)−IL
A)
)

(
(2−IL

A)
m
+(IL

A)
m)
((2−IL

A)+IL
A)

,

4(IU
A )

m+1

(
(2−IU

A )
m
+(IU

A )
m)
((2−IU

A )+IU
A)((

(2−IU
A )

m
+(IU

A )
m)
((2−IU

A )+IU
A )

)
+
((

(2−IU
A )

m−(IU
A)

m)
((2−IU

A )−IU
A)

)

(
(2−IU

A )
m
+(IU

A )
m)
((2−IU

A )+IU
A)




,




(
1 + FL

A
)m+1

+
(
1 + FL

A
)m(1− FL

A
)
−
(
1− FL

A
)m(1 + FL

A
)
−
(
1− FL

A
)m+1

+(
1 + FL

A
)m+1 −

(
1 + FL

A
)m(1− FL

A
)
+
(
1− FL

A
)m(1 + FL

A
)
−
(
1− FL

A
)m+1

(
1 + FL

A
)m+1

+
(
1 + FL

A
)m(1− FL

A
)
−
(
1− FL

A
)m(1 + FL

A
)
+
(
1− FL

A
)m+1

+(
1 + FL

A
)m+1 −

(
1 + FL

A
)m(1− FL

A
)
+
(
1− FL

A
)m(1 + FL

A
)
+
(
1− FL

A
)m+1

,

(
1 + FU

A
)m+1

+
(
1 + FU

A
)m(1− FU

A
)
−
(
1− FU

A
)m(1 + FU

A
)
−
(
1− FU

A
)m+1

+(
1 + FU

A
)m+1 −

(
1 + FU

A
)m(1− FU

A
)
+
(
1− FU

A
)m(1 + FU

A
)
−
(
1− FU

A
)m+1

(
1 + FU

A
)m+1

+
(
1 + FU

A
)m(1− FU

A
)
−
(
1− FU

A
)m(1 + FU

A
)
+
(
1− FU

A
)m+1

+(
1 + FU

A
)m+1 −

(
1 + FU

A
)m(1− FU

A
)
+
(
1− FU

A
)m(1 + FU

A
)
+
(
1− FU

A
)m+1




,

(1 + TA)
m+1 + (1 + TA)

m(1− TA)− (1− TA)
m(1 + TA)− (1− TA)

m+1+

(1 + TA)
m+1 − (1 + TA)

m(1− TA) + (1− TA)
m(1 + TA)− (1− TA)

m+1

(1 + TA)
m+1 + (1 + TA)

m(1− TA)− (1− TA)
m(1 + TA) + (1− TA)

m+1+

(1 + TA)
m+1 − (1 + TA)

m(1− TA) + (1− TA)
m(1 + TA) + (1− TA)

m+1

,

(1 + IA)
m+1 + (1 + IA)

m(1− IA)− (1− IA)
m(1 + IA)− (1− IA)

m+1+

(1 + IA)
m+1 − (1 + IA)

m(1− IA) + (1− IA)
m(1 + IA)− (1− IA)

m+1

(1 + IA)
m+1 + (1 + IA)

m(1− IA)− (1− IA)
m(1 + IA) + (1− IA)

m+1+

(1 + IA)
m+1 − (1 + IA)

m(1− IA) + (1− IA)
m(1 + IA) + (1− IA)

m+1

,

4(FA)
m+1

((2−FA)m+(FA)
m)((2−FA)+FA)

(((2−FA)m+(FA)
m)((2−FA)+FA))+(((2−FA)m−(FA)

m)((2−FA)−FA))
((2−FA)m+(FA)

m)((2−FA)+FA)




=







4(TL
A)

m+1

(2−TL
A)

m+1
+TL

A(2−TL
A)

m
+(TL

A)
m+1

+TLm
A (2−TL

A)+
(
(2−TL

A)
m+1−TL

A(2−TL
A)

m
+(TL

A)
m+1−(TL

A)
m
(2−TL

A)
) ,

4(TU
A )

m+1

(2−TU
A )

m+1
+TU

A (2−TU
A )

m
+(TU

A )
m+1

+TUm
A (2−TU

A )+
(
(2−TU

A )
m+1−TU

A (2−TU
A )

m
+(TU

A )
m+1−(TU

A )
m
(2−TU

A )
)


,




4(IL
A)

m+1

(2−IL
A)

m+1
+IL

A(2−IL
A)

m
+(IL

A)
m+1

+ILm
A (2−IL

A)+
(
(2−IL

A)
m+1−IL

A(2−IL
A)

m
+(IL

A)
m+1−(IL

A)
m
(2−IL

A)
) ,

4(IU
A )

m+1

(2−IU
A )

m+1
+IU

A (2−IU
A )

m
+(IU

A )
m+1

+IUm
A (2−IU

A )+
(
(2−IU

A )
m+1−IU

A (2−IU
A )

m
+(IU

A )
m+1−(IU

A )
m
(2−IU

A )
)


,

[
2
(
(1+FL

A)
m+1−(1−FL

A)
m+1

)

2
(
(1+FL

A)
m+1

+(1−FL
A)

m+1
) ,

2
(
(1+FU

A )
m+1−(1−FU

A )
m+1

)

2
(
(1+FU

A )
m+1

+(1−FU
A )

m+1
)

]
,

2((1+TA)
m+1−(1−TA)

m+1)
2((1+TA)

m+1+(1−TA)
m+1)

,

2((1+IA)
m+1−(1−IA)

m+1)
2((1+IA)

m+1+(1−IA)
m+1)

,

4(FA)
m+1

(2−FA)
m+1+FA(2−FA)

m+(FA)
m+1+Fm

A (2−FA)+
(
(2−FA)

m+1−FA(2−FA)
m+(FA)

m+1−(FA)
m(2−FA)

)




581



Symmetry 2019, 11, 247

=




[
4(TL

A)
m+1

2
(
(2−TL

A)
m+1

+(TL
A)

m+1) ,
4(TU

A )
m+1

2
(
(2−TU

A )
m+1

+(TU
A )

m+1)

]
,

[
4(IL

A)
m+1

2
(
(2−IL

A)
m+1

+(IL
A)

m+1) ,
4(IU

A )
m+1

2
(
(2−IU

A )
m+1

+(IU
A )

m+1)

]
,

[ (
(1+FL

A)
m+1−(1−FL

A)
m+1)

(
(1+FL

A)
m+1

+(1−FL
A)

m+1) ,

(
(1+FU

A )
m+1−(1−FU

A )
m+1)

(
(1+FU

A )
m+1

+(1−FU
A )

m+1)

]
,

(
(1+TA)

m+1−(1−TA)
m+1

)

(
(1+TA)

m+1+(1−TA)
m+1

) ,
(
(1+IA)

m+1−(1−IA)
m+1

)

(
(1+IA)

m+1+(1−IA)
m+1

) ,

4(FA)
m+1

2
(
(2−FA)

m+1+(FA)
m+1

)




=




[
2(TL

A)
m+1

(
(2−TL

A)
m+1

+(TL
A)

m+1) ,
2(TU

A )
m+1

(
(2−TU

A )
m+1

+(TU
A )

m+1)

]
,

[
2(IL

A)
m+1

(
(2−IL

A)
m+1

+(IL
A)

m+1) ,
2(IU

A )
m+1

(
(2−IU

A )
m+1

+(IU
A )

m+1)

]
,

[ (
(1+FL

A)
m+1−(1−FL

A)
m+1)

(
(1+FL

A)
m+1

+(1−FL
A)

m+1) ,

(
(1+FU

A )
m+1−(1−FU

A )
m+1)

(
(1+FU

A )
m+1

+(1−FU
A )

m+1)

]
,

(
(1+TA)

m+1−(1−TA)
m+1

)

(
(1+TA)

m+1+(1−TA)
m+1

) ,
(
(1+IA)

m+1−(1−IA)
m+1

)

(
(1+IA)

m+1+(1−IA)
m+1

) ,

2(FA)
m+1

(
(2−FA)

m+1+(FA)
m+1

)




Which shows that k = m + 1 is a neutrosophic cubic value. �

3.3. Score and Accuracy Function of Neutrosophic Cubic Set

For the comparison of two neutrosophic values, the score and accuracy function are defined.
The score function is used tocompare two neutrosophic cubic values; sometimes the score of
two neutrosophic cubic values becomes equal, although they have different components of truth,
indeterminancy and falsity functions. This situation can be overcome by the help of an accuracy
function. The following definition, along with examples, providesa better view of understanding to
the reader.

Definition 18. Let N =
(

T̃N , ĨN , F̃N , TN , IN , FN

)
, where T̃N =

[
TL

N , TU
N
]
, ĨN =

[
IL
N , IU

N
]
, F̃N =

[
FL

N , FU
N
]
,

be a neutrosophic cubic value and we define the score function as

S(N) =
[

TL
N − FL

N + TU
N − FU

N + TN − FN

]

Sometimes the situation arises that the score of two neutrosophic cubic values are equal. In such a
situation, a comparison is made on the basis of an accuracy function.

Definition 19. Let N =
(

T̃N , ĨN , F̃N , TN , IN , FN

)
, where T̃N =

[
TL

N , TU
N
]
, ĨN =

[
IL
N , IU

N
]
, F̃N =

[
FL

N , FU
N
]
,

be a neutrosophic cubic value, the accuracy function is defined as

H(u) =
1
9

{
TL

N + IL
N + FL

N + TU
N + IU

N + FU
N + TN + IN + FN

}
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The following definition is accomplished for the comparison relation of the neutrosophic
cubic values.

Definition 20. Let N1 and N2 be two neutrosophic cubic values, where SN1 and SN2 are scores and HN1 and
HN2 are accuracy functions of N1 and N2, respectively.

1. If SN1 > SN2 ⇒ N1 > N2

2. If SN1 = SN2 and HN1 > HN2 ⇒ N1 > N2 HN1 = HN2 ⇒ N1 = N2

Example 1. Let N1 = ([0.5, 0.9][0.6, 0.9][0.1, 0.4], 0.3, 0.4, 0.4) and N2 =

([0.2, 0.8][0.5, 0.9][0.4, 0.8], 0.4, 0.45, 0.8) be two neutrosophic sets.
Then

SN1 = 0.8, and SN2 = −0.6

SN1 > SN2 ⇒ N1 > N2

In the following example the score funtions are equal, so accuracy functions are used to compare
neutrosophic cubic values.

Example 2. Let N1 = ([0.4, 0.9][0.5, 0.8][0.1, 0.7], 0.4, 0.5, 0.8) and N2 =

([0.4, 0.6][0.5, 0.9][0.6, 0.7], 0.7, 0.5, 0.3) be two neutrosophic sets.

SN1 = 0.1, SN2 = 0.1

SN1 = SN2 ⇒ N1 = N2

HN1 = 0.566, HN2 = 0.577

HN1 < HN2 ⇒ N1 < N2

4. Neutrosophic Cubic Geometric and Einstein Geometric Aggregation Operators

In this section, we introduce the concept of neutrosophic cubic geometric aggregation operators
and neutrosophic cubic Einstein geometric aggregation operators.

This section consists of two sub-sections: In Section 4.1, the neutrosophic cubic geometric
aggregation operators are defined on the basis of Section 3.1; and in Section 4.2, the neutrosophic cubic
Einstein geometric aggregation operators are defined on the basis of Section 3.2.

4.1. Neutrosophic Cubic Weighted Geometric Aggregation Operator

We define neutrosophic cubic geometric aggregation operators using Section 3.1.

Definition 21. We define the neutrosophic cubic weighted geometric operator(NCWG) as

NCWG : Rm → R defined by NCWGw(N1, N2, . . . , Nm) =
m⊗

j=1
N

wj
j

where the weight W = (w1, w2, . . . , wm)T of corresponding neutrosophic cubic values is such that each

wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

In NCWG, the neutrosophic cubic values are first weighted then aggregated.
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Definition 22. We define the neutrosophic cubic ordered weighted geometric operator(NCOWG) as

NCOWG : Rm → R defined by NCOWGw(N1, N2, . . . , Nm) =
m⊗

j=1
N

wj
(γ)j

where N(γ)j
are descending ordered neutrosophic cubic values, and the weight W = (w1, w2, . . . , wm)T of

corresponding neutrosophic cubic values Nj(j = 1, 2, 3, . . . , m) is such that each wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

In NCOWG, the neutrosophic cubic values are first arranged in decending order, weighted and
then aggregated.

Theorem 3. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
, ĨNj =

[
IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
(j = 1, 2, . . . , n) are a collection of neutrosophic cubic values, then neutrosophic cubic weighted

geometric(NCWG) operator of Nj is also a neutrosophic cubic value and

NCWG(Nj) =




[
m
∏
j=1

(
TL

Nj

)wj
,

m
∏
j=1

(
TU

Nj

)wj

]
,

[
m
∏
j=1

(
IL
Nj

)wj
,

m
∏
j=1

(
IU
Nj

)wj

]

[
1−

m
∏
j=1

(1− FL
Nj
)

wj , 1−
m
∏
j=1

(1− FU
Nj
)

wj

]

1−
m
∏
j=1

(1−
(

TNj

)
)

wj
, 1−

m
∏
j=1

(1−
(

INj

)
)

wj
,

m
∏
j=1

(
FNj

)wj




where the weight W = (w1, w2, . . . , wm)T of Nj(j = 1, 2, 3, . . . , m) such that wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

Proof. By mathematical induction for m = 2, using

2⊗
j=1

N
wj
j = Nw1

1 ⊗ Nw2
2

=




[
(TL

Nj
)

w1 , (TU
Nj
)w1
]
,[

(IL
Nj
)

w1 , (IU
Nj
)w1
]
,

[
1−

(
1− FL

Nj

)w1
, 1−

(
1− FU

Nj

)w1
]
,

1−
(

1−
(

TNj

))w1
, 1−

(
1−

(
INj

))w1
,
(

FNj

)w1



⊗




[
(TL

Nj
)

w2 , (TU
Nj
)w2
]
,[

(IL
Nj
)

w2 , (IU
Nj
)w2
]
,

[
1−

(
1− FL

Nj

)w2
, 1−

(
1− FU

Nj

)w2
]
,

1−
(

1−
(

TNj

))w2
, 1−

(
1−

(
INj

))w2
, (FNj )

w2




=




[
2

∏
j=1

(TL
Nj
)

wj ,
2

∏
j=1

(TU
Nj
)

wj

]
,

[
2

∏
j=1

(IL
Nj
)

wj ,
2

∏
j=1

(IU
Nj
)

wj

]
,

[
1−

2
∏
j=1

(
1− FL

Nj

)wj
,

2
∏
j=1

(
FU

Nj

)wj

]
,

1−
2

∏
j=1

(
1− TNj

)wj
, 1−

2
∏
j=1

(
1− INj

)wj
,

2
∏
j=1

(
FNj

)wj



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For m = n, we have

n⊗
j=1

N
wj
j =




[
n
∏
j=1

(TL
Nj
)

wj ,
n
∏
j=1

(TU
Nj
)

wj

]
,

[
n
∏
j=1

(IL
Nj
)

wj ,
n
∏
j=1

(IU
Nj
)

wj

]
,

[
1−

n
∏
j=1

(
1− FL

Nj

)wj
,

n
∏
j=1

(
FU

Nj

)wj

]
,

1−
n
∏
j=1

(
1− TNj

)wj
, 1−

n
∏
j=1

(
1− INj

)wj
,

n
∏
j=1

(
FNj

)wj




We prove the result holds for m = n + 1,

Nwn+1
n+1 =




[
(TL

Nn+1
)

wn+1 , (TU
Nn+1

)wn+1
]
,[

(IL
Nj+1

)
wj+1 , (IU

Nj+1
)wj+1

]
,

[
1−

(
1− FL

Nn+1

)wn+1
, 1−

(
1− FU

Nn+1

)wn+1
]
,

1−
(
1− TNn+1

)wn+1 , 1−
(
1− INn+1

)wn+1 , (FNn+1)
wn+1




n⊗
j=1

N
wj
j ⊕ Nwn+1

n+1

=




[
n
∏
j=1

(TL
Nj
)

wj ,
n
∏
j=1

(TU
Nj
)

wj

]
,

[
n
∏
j=1

(IL
Nj
)

wj ,
n
∏
j=1

(IU
Nj
)

wj

]
,

[
1−

n
∏
j=1

(
1− FL

Nj

)wj
,

n
∏
j=1

(
FU

Nj

)wj

]
,

1−
n
∏
j=1

(
1− TNj

)wj
, 1−

n
∏
j=1

(
1− INj

)wj
,

n
∏
j=1

(
FNj

)wj




⊕




[
(TL

Nn+1
)

wn+1 , (TU
Nn+1

)wn+1
]
,[

(IL
Nj+1

)
wj+1 , (IU

Nj+1
)wj+1

]
,

[
1−

(
1− FL

Nn+1

)wn+1
, 1−

(
1− FU

Nn+1

)wn+1
]
,

1−
(
1− TNn+1

)wn+1 , 1−
(
1− INn+1

)wn+1 , (FNn+1 )
wn+1




n+1⊗
j=1

N
wj
j =




[
n
∏
j=1

(
TL

Nj

)wj
(

TL
Nm+1

)wm+1
,

n
∏
j=1

(
TU

Nj

)wj
(

TU
Nm+1

)wm+1

]
,

[
n
∏
j=1

(
IL
Nj

)wj
(

IL
Nm+1

)wm+1
,

n
∏
j=1

(
IU
Nj

)wj
(

IU
Nm+1

)wm+1

]
,




1−
n
∏
j=1

(1− FL
Nj
)

wj + 1− (1− FL
Nm+1

)
wm+1−

(
1−

n
∏
j=1

(1− FL
Nj
)

wj

)(
1− (1− FL

Nm+1
)

wm+1
)

,

1−
n
∏
j=1

(1− FU
Nj
)

wj + 1− (1− FU
Nm+1

)
wm+1−

(
1−

n
∏
j=1

(1− FU
Nj
)

wj

)(
1− (1− FU

Nm+1
)

wm+1
)

,




,

1−
n
∏
j=1

(
1− TNj

)wj
+ 1−

(
1− TNm+1

)wm+1−
(

1−
n
∏
j=1

(
1− TNj

)wj

)(
1−

(
1− TNm+1

)wm+1
)

1−
n
∏
j=1

(
1− INj

)wj
+ 1−

(
1− INm+1

)wm+1−
(

1−
n
∏
j=1

(
1− INj

)wj

)(
1−

(
1− INm+1

)wm+1
)

n
∏
j=1

(
FNj

)wj(
FNm+1

)wm+1



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=




[
n+1
∏
j=1

(
TL

Nj

)wj
,

n+1
∏
j=1

(
TU

Nj

)wj

]

[
n+1
∏
j=1

(
IL
Nj

)wj
,

n+1
∏
j=1

(
IU
Nj

)wj

]
,




2−
n+1
∏
j=1

(1− FL
Nj
)

wj − 1 +
n
∏
j=1

(1− FL
Nj
)

wj + (1− FL
Nm+1

)
wm+1

−
(

n
∏
j=1

(1− FL
Nj
)

wj

)
(1− FL

Nm+1
)

wm+1 ,

2−
n+1
∏
j=1

(1− FU
Nj
)

wj − 1 +
n+1
∏
j=1

(1− FU
Nj
)

wj + (1− FU
Nm+1

)
wm+1

−
(

n
∏
j=1

(1− FU
Nj
)

wj

)
(1− FU

Nm+1
)

wm+1




,

2−
n+1
∏
j=1

(1− TNj)
wj − 1 +

n
∏
j=1

(1− TNj)
wj + (1− TNm+1)

wm+1

−
(

n
∏
j=1

(1− TNj)
wj

)
(1− TNm+1)

wm+1 ,

2−
n+1
∏
j=1

(1− INj)
wj − 1 +

n
∏
j=1

(1− INj)
wj + (1− INm+1)

wm+1

−
(

n
∏
j=1

(1− INj)
wj

)
(1− INm+1)

wm+1

,
n+1
∏
j=1

(
FNj

)wj




=




[
n+1
∏
J=1

(
TL

Nj

)wj
,

n+1
∏
J=1

(
TU

Nj

)wj

]

[
n+1
∏
J=1

(
IL
Nj

)wj
,

n+1
∏
J=1

(
IU
Nj

)wj

]
,

[
1−

n+1
∏
J=1

(
1− FL

Nj

)wj
, 1−

n+1
∏
J=1

(
1− FU

Nj

)wj

]
,

, 1−
n+1
∏
J=1

(
1− TNj

)wj
, 1−

n+1
∏
J=1

(
1− INj

)wj
,

n+1
∏
J=1

(
1− FNj

)wj




�

Theorem 4. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
, ĨNj =

[
IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) is a collection of neutrosophic cubic values The weight W = (w1, w2, . . . , wm)T

of Nj(j = 1, 2, 3, . . . , m), be such that wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

1. Idempotency: If for all Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
,

ĨNj =
[

IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) are equal, that is, Nj = N for all k, then NCW

Gw(N1, N2, . . . , Nm) = N

2. Monotonicity: Let Bj =
(

T̃Bj , ĨBj , F̃Bj , TBj , IBj , FBj

)
where T̃Bj =

[
TL

Bj
, TU

Bj

]
,

ĨBj =
[

IL
Bj

, IU
Bj

]
, F̃Bj =

[
FL

Bj
, FU

Bj

]
(j = 1, 2, . . . , m) is the collection of neutrosophic cubic values.

If SBj(u) ≥ SNj(u) and Bj(u) ≥ Nj(u) then NCWGw(N1, N2, . . . , Nm) ≤ NCWGw(B1, B2, . . . , Bm).

586



Symmetry 2019, 11, 247

3. Boundary: N− ≤ NCWGw{(N1)T , (N2)T , . . . , (Nm)T} ≤ N+, where

N− =

{
min

j
TL

Nj
, min

j
IL
Nj

, 1−max
j

FL
Nj

, min
j

TNj , min
j

INj , 1−max
j

FL
Nj

, min
j

TNj , min
j

INj , 1−max
j

FL
Nj

}
,

N+ =



max

j
TU

Nj
, max

j
IU
Nj

, 1−min
j

FU
Nj

, max
j

TNj , max
j

INj , 1−min
j

FNj , maxTNj

j
, maxINj

j
, 1−min

j
FNj





Proof.

1. Idempotent: Since Nj = N, so

NCWG(Nj) =




[
m
∏
j=1

(
TL

N
)wj ,

m
∏
j=1

(
TU

N
)wj

]
,

[
m
∏
j=1

(
IL
N
)wj ,

m
∏
j=1

(
IU
N
)wj

]
,

[
1−

m
∏
j=1

(
1− FL

N
)wj , 1−

m
∏
j=1

(
1− FL

N
)wj

]
,

1−
m
∏
j=1

(1− TN)
wj , 1−

m
∏
j=1

(1− IN)
wj ,

m
∏
j=1

(FN)
wj




=





(TL

N)

m
∑

j=1
wj

, (TU
N )

m
∑

j=1
wj


,


(IL

N)

m
∑

j=1
wj

, (IU
N )

m
∑

j=1
wj


,


1−

(
1− FL

N
)

m
∑

j=1
wj

, 1−
(
1− FU

N
)

m
∑

j=1
wj


,

1− (1− TN)

m
∑

j=1
wj

, 1− (1− IN)

m
∑

j=1
wj

, (FN)

m
∑

j=1
wj




=
(

T̃N , ĨN , F̃N , TN , IN , FN

)

2. Monotonicity: Since NCOWG is strictly monotone function.
3. Boundary: Let u = minN− and y = maxN+, then by monotonicity we have

u ≤ NCOWA(Nj) ≤ y⇒ N− ≤ NCOWG(Nj) ≤ N+ .

�

Theorem 5. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, whereT̃Nj =

[
TL

Nj
, TU

Nj

]
, ĨNj =

[
IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , n) be the collection of neutrosophic cubic values and W = (w1, w2, . . . , wn)T is

the weight of the NCOWG, with wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

1. If W= (1, 0, . . . , 0)T , then NCOWG(N1, N2, . . . , Nn) = maxNj

2. If W= (0, 0, . . . , 1)T , then NCOWG(N1, N2, . . . , Nn) = minNj

3. If wj = 1, wl = 0, and j 6= l, then NCOWG(N1, N2, . . . , Nn) = Nj

where Nj is the jth largest of (N1, N2, . . . , Nn).

Proof. Since in NCOWG the neutrosophic values are ordered in descending order. �
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4.2. Neutrosophic Cubic Einstein Weighted Geometric Aggregation Operator

We define neutrosophic cubic Einstein geometric aggregation operators using Section 3.2.

Definition 23. The neutrosophic cubic Einstein weighted geometric operator(NCEWA) is defined as

NCEWG : Rm → R , defined by NCEWGw(N1, N2, . . . , Nm) =
m⊗

j=1

(
NE

j

)wj

where, W = (w1, w2, . . . , wm)T is the weight of Nj(j = 1, 2, 3, . . . , m), such that wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

That is, first all the neutrosophic values are weighted then aggregated using Einstein operations.

Definition 24. Order neutrosophic cubic Einstein weighted geometric operator(NCEOWG) is defined as

NCEOWG : Rm → R by NCEOWGw(N1, N2, . . . , Nm) =
m⊗

j=1

(
BE

j

)wj

where Bj is the jth largest, W = (w1, w2, . . . , wm)T is the weight of Nj(j = 1, 2, 3, . . . , m), such that

wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

That is, first all the neutrosophic values are ordered and then weighted, after ordering weighted
values are aggregated using Einstein operations.The fundamental concept of ordered weighted
operators is to rearrange the neutrosophic cubic values in descending order.

Theorem 6. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
, ĨNj =

[
IL
Nj

, IU
Nj

]
,

F̃Nj =
[

FL
Nj

, FU
Nj

]
, (j = 1, 2, . . . , m) is a collection of neutrosophic cubic values, then their Einstein weighted

geometric aggregated value by NCEWG operator is also a neutrosophic cubic value, and

NCEWG(Nj) =







2
m
∏
j=1

(
TL

Nj

)wj

m
∏
j=1

(
2−TL

Nj

)wj
+

m
∏
j=1

(
TL

Nj

)wj ,
2

m
∏
j=1

(
TU

Nj

)wj

m
∏
j=1

(
2−TU

Nj

)wj
+

m
∏
j=1

(
TU

Nj

)wj


,




2
m
∏
j=1

(
IL
Nj

)wj

m
∏
j=1

(
2−IL

Nj

)wj
+

m
∏
j=1

(
IL
Nj

)wj ,
2

m
∏
j=1

(
IU
Nj

)wj

m
∏
j=1

(
2−IU

Nj

)wj
+

m
∏
j=1

(
IU
Nj

)wj


,




m
∏
j=1

(
1+FL

Nj

)wj
−

m
∏
j=1

(
1−FL

Nj

)wj

m
∏
j=1

(
1+FL

Nj

)wj
+

m
∏
j=1

(
1−FL

Nj

)wj ,

m
∏
j=1

(
1+FU

Nj

)wj
−

m
∏
j=1

(
1−FU

Nj

)wj

m
∏
j=1

(
1+FU

Nj

)wj
+

m
∏
j=1

(
1−FU

Nj

)wj


,

m
∏
j=1

(
1+TNj

)wj−
m
∏
j=1

(
1−TNj

)wj

m
∏
j=1

(
1+TNj

)wj
+

m
∏
j=1

(
1−TNj

)wj
,

m
∏
j=1

(
1+INj

)wj−
m
∏
j=1

(
1−INj

)wj

m
∏
j=1

(
1+INj

)wj
+

m
∏
j=1

(
1−INj

)wj
,

2
m
∏
j=1

(
FNj

)wj

m
∏
j=1

(
2−FNj

)wj
+

m
∏
j=1

(
FNj

)wj




where W = (w1, w2, . . . , wm)T is the weight vector of Nj(j = 1, 2, 3, . . . , m), such that wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.
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Proof. We use mathematical induction to prove this result, for m = 2, using definition (Einstein sum
and Einstein scalar multiplication).

(
NE

1

)w1
=




[
2
(

TL
N1

)w1

(
2−TL

N1

)w1
+TL

N1

,
2
(

TU
N1

)w1

(
2−TU

N1

)w1
+TU

N1

]
,

[
2
(

IL
N1

)w1

(
2−IL

N1

)w1
+IL

N1

,
2
(

IU
N1

)w1

(
2−IU

N1

)w1
+IU

N1

]
,

[
(1+FL

N1
)

w1−(1−FL
N1

)
w1

(1+FL
N1

)
w1+(1−FL

N1
)

w1 ,
(1+FU

N1
)

w1−(1−FU
N1

)
w1

(1+FU
N1

)
w1+(1−FU

N1
)

w1

]
,

(1+TN1 )
w1−(1−TN1 )

w1

(1+TN1 )
w1+(1−TN1 )

w1 ,
(1+IN1 )

w1−(1−IN1 )
w1

(1+IN1 )
w1+(1−IN1 )

w1 ,

2(FN1)
w1

(2−FN1)
w1+FN1




(
NE

2

)w2
=




[
2
(

TL
N2

)w2

(
2−TL

N2

)w2
+TL

N2

,
2
(

TU
N2

)w2

(
2−TU

N2

)w2
+TU

N2

]
,

[
2
(

IL
N2

)w2

(
2−IL

N2

)w2
+IL

N2

,
2
(

IU
N2

)w2

(
2−IU

N2

)w2
+IU

N2

]
,

[
(1+FL

N2
)

w2−(1−FL
N2

)
w2

(1+FL
N2

)
w2+(1−FL

N2
)

w2 ,
(1+FU

N2
)

w2−(1−FU
N2

)
w2

(1+FU
N2

)
w2+(1−FU

N2
)

w2

]
,

(1+TN2 )
w2−(1−TN2 )

w2

(1+TN2 )
w2+(1−TN2 )

w2 ,
(1+IN2 )

w2−(1−IN2 )
w2

(1+IN2 )
w2+(1−IN2 )

w2 ,

2(FN2)
w2

(2−FN2)
w2+FN2




2⊗
j=1

(
NE

j

)wj
=







2
2
∏
j=1

(
TL

Nj

)wj

2
∏
j=1

(
2−TL

Nj

)wj
+

2
∏
j=1

(
TL

Nj

)wj ,
2

2
∏
j=1

(
TU

Nj

)wj

2
∏
j=1

(
2−TU

Nj

)wj
+

2
∏
j=1

(
TU

Nj

)wj


,




2
2
∏
j=1

(
IL
Nj

)wj

2
∏
j=1

(
2−IL

Nj

)wj
+

2
∏
j=1

(
IL
Nj

)wj ,
2

2
∏
j=1

(
IU
Nj

)wj

2
∏
j=1

(
2−IU

Nj

)wj
+

2
∏
j=1

(
IU
Nj

)wj


,




2
∏
j=1

(
1+FL

Nj

)wj
−

2
∏
j=1

(
1−FL

Nj

)wj

2
∏
j=1

(
1+FL

Nj

)wj
+

2
∏
j=1

(
1−FL

Nj

)wj ,

2
∏
j=1

(
1+FU

Nj

)wj
−

2
∏
j=1

(
1−FU

Nj

)wj

2
∏
j=1

(
1+FU

Nj

)wj
+

2
∏
j=1

(
1−FU

Nj

)wj


,

2
∏
j=1

(
1+TNj

)wj−
2
∏
j=1

(
1−TNj

)wj

2
∏
j=1

(
1+TNj

)wj
+

2
∏
j=1

(
1−TNj

)wj
,

2
∏
j=1

(
1+INj

)wj−
2
∏
j=1

(
1−INj

)wj

2
∏
j=1

(
1+INj

)wj
+

2
∏
j=1

(
1−INj

)wj
,

2
2
∏
j=1

(
FNj

)wj

2
∏
j=1

(
2−FNj

)wj
+

2
∏
j=1

(
FNj

)wj



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for m = n

n⊗
j=1

(
NE

j

)wj
=







2
n
∏
j=1

(
TL

Nj

)wj

n
∏
j=1

(
2−TL

Nj

)wj
+

n
∏
j=1

(
TL

Nj

)wj ,
2

n
∏
j=1

(
TU

Nj

)wj

n
∏
j=1

(
2−TU

Nj

)wj
+

n
∏
j=1

(
TU

Nj

)wj


,




2
n
∏
j=1

(
IL
Nj

)wj

n
∏
j=1

(
2−IL

Nj

)wj
+

n
∏
j=1

(
IL
Nj

)wj ,
2

n
∏
j=1

(
IU
Nj

)wj

n
∏
j=1

(
2−IU

Nj

)wj
+

n
∏
j=1

(
IU
Nj

)wj


,




n
∏
j=1

(
1+FL

Nj

)wj
−

n
∏
j=1

(
1−FL

Nj

)wj

n
∏
j=1

(
1+FL

Nj

)wj
+

n
∏
j=1

(
1−FL

Nj

)wj ,

n
∏
j=1

(
1+FU

Nj

)wj
−

n
∏
j=1

(
1−FU

Nj

)wj

n
∏
j=1

(
1+FU

Nj

)wj
+

n
∏
j=1

(
1−FU

Nj

)wj


,

n
∏
j=1

(
1+TNj

)wj−
n
∏
j=1

(
1−TNj

)wj

n
∏
j=1

(
1+TNj

)wj
+

n
∏
j=1

(
1−TNj

)wj
,

n
∏
j=1

(
1+INj

)wj−
n
∏
j=1

(
1−INj

)wj

n
∏
j=1

(
1+INj

)wj
+

n
∏
j=1

(
1−INj

)wj
,

2
n
∏
j=1

(
FNj

)wj

n
∏
j=1

(
2−FNj

)wj
+

n
∏
j=1

(
FNj

)wj




We prove the result holds for m = n + 1

as
(

NE
n+1

)wn+1
=




[
2
(

TL
Nn+1

)wn+1

(
2−TL

Nn+1

)wn+1
+
(

TL
Nn+1

)wn+1 ,
2
(

TU
Nn+1

)wn+1

(
2−TU

Nn+1

)wn+1
+
(

TU
Nn+1

)wn+1

]
,

[
2
(

IL
Nn+1

)wn+1

(
2−IL

Nn+1

)wn+1
+
(

IL
Nn+1

)wn+1 ,
2
(

IU
Nn+1

)wn+1

(
2−IU

Nn+1

)wn+1
+
(

IU
Nn+1

)wn+1

]
,

[
(1+FL

Nn+1
)

wn+1−(1−FL
Nn+1

)
wn+1

(1+FL
Nn+1

)
wn+1+(1−FL

Nn+1
)

wn+1 ,
(1+FU

Nn+1
)

wn+1−(1−FU
Nn+1

)
wn+1

(1+FU
Nn+1

)
wn+1+(1−FU

Nn+1
)

wn+1

]
,

(1+TNn+1 )
wn+1−(1−TNn+1 )

wn+1

(1+TNn+1 )
wn+1+(1−TNn+1 )

wn+1 ,
(1+INn+1 )

wn+1−(1−INn+1 )
wn+1

(1+INn+1 )
wn+1+(1−INn+1 )

wn+1 ,

2
(

FNn+1

)wn+1

(
2−FNn+1

)wn+1
+
(

FNn+1

)wn+1




so
n⊗

j=1

(
NE

j

)wj ⊗E
(

NE
m+1

)wm+1 =







2
n
∏

j=1

(
TL

Nj

)wj

n
∏

j=1

(
2−TL

Nj

)wj
+

n
∏

j=1

(
TL

Nj

)wj ,
2

n
∏

j=1

(
TU

Nj

)wj

n
∏

j=1

(
2−TU

Nj

)wj
+

n
∏

j=1

(
TU

Nj

)wj


,




2
n
∏

j=1

(
IL
Nj

)wj

n
∏

j=1

(
2−IL

Nj

)wj
+

n
∏

j=1

(
IL
Nj

)wj ,
2

n
∏

j=1

(
IU
Nj

)wj

n
∏

j=1

(
2−IU

Nj

)wj
+

n
∏

j=1

(
IU
Nj

)wj


,




n
∏

j=1

(
1+FL

Nj

)wj
−

n
∏

j=1

(
1−FL

Nj

)wj

n
∏

j=1

(
1+FL

Nj

)wj
+

n
∏

j=1

(
1−FL

Nj

)wj ,

n
∏

j=1

(
1+FU

Nj

)wj
−

n
∏

j=1

(
1−FU

Nj

)wj

n
∏

j=1

(
1+FU

Nj

)wj
+

n
∏

j=1

(
1−FU

Nj

)wj


,

n
∏

j=1

(
1+TNj

)wj−
n
∏

j=1

(
1−TNj

)wj

n
∏

j=1

(
1+TNj

)wj
+

n
∏

j=1

(
1−TNj

)wj ,

n
∏

j=1

(
1+INj

)wj−
n
∏

j=1

(
1−INj

)wj

n
∏

j=1

(
1+INj

)wj
+

n
∏

j=1

(
1−INj

)wj ,

2
n
∏

j=1

(
FNj

)wj

n
∏

j=1

(
2−FNj

)wj
+

n
∏

j=1

(
FNj

)wj




⊕E







2
(

TL
Nn+1

)wn+1

(
2−TL

Nn+1

)wn+1
+

(
TL

Nn+1

)wn+1 ,
2
(

TU
Nn+1

)wn+1

(
2−TU

Nn+1

)wn+1
+

(
TU

Nn+1

)wn+1


,




2
(

IL
Nn+1

)wn+1

(
2−IL

Nn+1

)wn+1
+

(
IL
Nn+1

)wn+1 ,
2
(

IU
Nn+1

)wn+1

(
2−IU

Nn+1

)wn+1
+

(
IU
Nn+1

)wn+1


,

[
(1+FL

Nn+1
)
wn+1−(1−FL

Nn+1
)
wn+1

(1+FL
Nn+1

)
wn+1 +(1−FL

Nn+1
)
wn+1 ,

(1+FU
Nn+1

)
wn+1−(1−FU

Nn+1
)
wn+1

(1+FU
Nn+1

)
wn+1 +(1−FU

Nn+1
)
wn+1

]
,

(1+TNn+1
)
wn+1−(1−TNn+1

)
wn+1

(1+TNn+1
)
wn+1 +(1−TNn+1

)
wn+1 ,

(1+INn+1
)
wn+1−(1−INn+1

)
wn+1

(1+INn+1
)
wn+1 +(1−INn+1

)
wn+1 ,

2
(

FNn+1

)wn+1

(
2−FNn+1

)wn+1
+

(
FNn+1

)wn+1



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n+1⊗
j=1

(
NE

j

)wj
=







2
n+1
∏
j=1

(
TL

Nj

)wj

n+1
∏
j=1

(
2−TL

Nj

)wj
+

n+1
∏
j=1

(
TL

Nj

)wj ,
2

n+1
∏
j=1

(
TU

Nj

)wj

n+1
∏
j=1

(
2−TU

Nj

)wj
+

n+1
∏
j=1

(
TU

Nj

)wj


,




2
n+1
∏
j=1

(
IL
Nj

)wj

n+1
∏
j=1

(
2−IL

Nj

)wj
+

n+1
∏
j=1

(
IL
Nj

)wj ,
2

n+1
∏
j=1

(
IU
Nj

)wj

n+1
∏
j=1

(
2−IU

Nj

)wj
+

n+1
∏
j=1

(
IU
Nj

)wj


,




n+1
∏
j=1

(
1+FL

Nj

)wj
−

n+1
∏
j=1

(
1−FL

Nj

)wj

n+1
∏
j=1

(
1+FL

Nj

)wj
+

n+1
∏
j=1

(
1−FL

Nj

)wj ,

n+1
∏
j=1

(
1+FU

Nj

)wj
−

n+1
∏
j=1

(
1−FU

Nj

)wj

n+1
∏
j=1

(
1+FU

Nj

)wj
+

n+1
∏
j=1

(
1−FU

Nj

)wj


,

n+1
∏
j=1

(
1+TNj

)wj−
n+1
∏
j=1

(
1−TNj

)wj

n+1
∏
j=1

(
1+TNj

)wj
+

n+1
∏
j=1

(
1−TNj

)wj
,

n+1
∏
j=1

(
1+INj

)wj−
n+1
∏
j=1

(
1−INj

)wj

n+1
∏
j=1

(
1+INj

)wj
+

n+1
∏
j=1

(
1−INj

)wj
,

2
n+1
∏
j=1

(
FNj

)wj

n+1
∏
j=1

(
2−FNj

)wj
+

n+1
∏
j=1

(
FNj

)wj




so result holds for all values of m. �

Theorem 7. LetNj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
,

ĨNj =
[

IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) is a collection of neutrosophic cubic values and

W = (w1, w2, . . . , wm)T is a weight vector of Nj(j = 1, 2, 3, . . . , m), withwj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

1. Idempotency: If for all Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
,

ĨNj =
[

IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) are equal, that is, Nj = N for all k, then

NCEWGw(N1, N2, . . . , Nm) = N

2. Monotonicity: Let Bj =
(

T̃Bj , ĨBj , F̃Bj , TBj , IBj , FBj

)
, where T̃Bj =

[
TL

Bj
, TU

Bj

]
,

ĨBj =
[

IL
Bj

, IU
Bj

]
, F̃Bj =

[
FL

Bj
, FU

Bj

]
(j = 1, 2, . . . , m) be the collection of cubic values. If SB(u) ≥ SN(u)

and Bj(u) ≥ Nj(u) then NCW Gw(N1, N2, . . . , Nm) ≤ NCWGw(B1, B2, . . . , Bm)

3. Boundary: N− ≤ NCWGw{(N1)T , (N2)T , . . . , (Nm)T} ≤ N+, where

N− =

{
min

j
TL

Nj
, min

j
IL
Nj

, 1−max
j

FL
Nj

, min
j

TNj , min
j

INj , 1−max
j

FL
Nj

}
,

N+ =

{
max

j
TU

Nj
, max

j
IU
Nj

, 1−min
j

FU
Nj

, max
j

TNj , max
j

INj , 1−min
j

FNj

}

Proof. Followed by Theorem 2. �

Theorem 8. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
,

ĨNj =
[

IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) be a collection of neutrosophic cubic values and

W = (w1, w2, . . . , wm)T is a weight vector of the NCOWA, with wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

1. If w= (1, 0, . . . , 0)T , then NCEOWG (N1, N2, . . . , Nm) = max Nj

2. If w(0, 0, . . . , 1)T , then NCEOWG (N1, N2, . . . , Nm) = minNj

3. If wj = 1, wj = 0, and j 6= j, then NCEOWG (N1, N2, . . . , Nm) = Nj

where Nj is the jth largest of (N1, N2, . . . , Nm).
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Proof. Followed by Theorem 3. �

5. An Application of Neutrosophic cubic Geometric and Einstein Geometric Aggregation
Operator to Group Decision Making Problems

Group decision making is an important factor of decision making theory. We are often in a
situation with more then one expert, attribute and alternative to deal with. Motivated by such
situations, a multi-attribute decision making method for more then one expert is proposed in
this section.

In this section, we develop an algorithm for group decision making problems using the geometric
and Einstein geometric aggregations (NCWG and NCEWG) under the neutrosophic cubic environment.

Algorithm. Let F = {F1, F2, . . . , Fn} be the set of n alternatives, H = {H1, H2, . . . , Hm} be the m

attributes subject to their corresponding weight W = {w1, w2, . . . , wm} such that wj ∈ [0, 1] and
m
∑

j=1
wj = 1,

and D = {D1, D2, ...Dr} be the r decision makers with their corresponding weight V = {v1, v2, . . . , vr}.
such that vj ∈ [0, 1] and

r
∑

j=1
vj = 1 The method has the following steps:

Step1. First, we construct neutrosophic cubic decision matrices for each decision maker
D(s) =

[
N(s)

ij

]
n×m

(s = 1, 2, . . . , r).

Step2. All decision matrices are aggregated to a single matrix consisting of m attributes, by NCWG and
NCEWG corresponding to the weight assigned to the decision maker.

Step3. By using aggregation operators like NCWG and NCEWG, the decision matrix is aggregated by the
weight assigned to the m attributes.

Step4. The n alternatives are ranked according to their scores and arranged in descending order to select
the alternative with highest score.

6. Application

Mobile companies play a vital role in Pakistan’s stock market. The performance of these companies
affects resources of capital market and have become a common concern of shareholders, government
authorities, creditors and other stakeholders. In this example, an investor company wants to invest
his capital levy in listed companies. They acquire two types of experts: Attorney and market maker.
The attorney is acquired to look at the legal matters and the market maker is aquired to provide his
expertise in capital market matters. Data are collected on the basis of stock market analysis and growth
in different areas. Let the listed mobile companies be (x1) Zong, (x2) Jazz, (x3) Telenor and (x4)

Ufone, which have higher ratios of earnings than the others available in the market, from the three
alternatives of (A1) stock market trends, (A2) policy directions and (A3) the annual performance.
The two experts evaluated the mobile companies

(
xj, j = 1, 2, 3, 4

)
with respect to the corresponding

attributes (Ai, i = 1, 2, 3), and proposed their decision making matrices consisting of neutrosophic
cubic values in Equation (1) and Equation (2). The Equation (3) represents the single matrix as the
aggregation of Equtiona1 and Equation (2) by NCWG or NCEWG. The Equation (4) is obtained by
applying NCWG or NCEWG on attributes. The decision matrices are aggregated to a single decision
matrix. At the end we rank the alternatives according to their score to get the desirable alternative(s).

Step 1. We construct the decision maker matrices in Equations (1) and (2).
Equation (1): Decision making matrix for the first expert(attorney) Da is
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


A1 A2 A3

X1

(
[0.2, 0.6], [0.4, 0.6],
[0.5, 0.8], 0.7, 0.4, 0.3

) (
[0.1, 0.4], [0.5, 0.8],
[0.4, 0.8], 0.6, 0.7, 0.5

) (
[0.4, 0.6], [0.2, 0.7],
[0.5, 0.9], 0.4, 0.5, 0.3

)

X2

(
[0.3, 0.5], [0.6, 0.9],
[0.3, 0.6], 0.3, 0.6, 0.7

) (
[0.5, 0.9], [0.1, 0.3],
[0.4, 0.8], 0.8, 0.3, 0.6

) (
[0.2, 0.7], [0.1, 0.6],
[0.4, 0.7], 0.5, 0.4, 0.7

)

X3

(
[0.6, 0.9], [0.2, 0.7],
[0.4, 0.9], 0.5, 0.5, 0.6

) (
[0.2, 0.6], [0.7, 0.3],
[0.3, 0.8], 0.4, 0.6, 0.5

) (
[0.5, 0.9], [0.7, 0.9],
[0.1, 0.5], 0.5, 0.6, 0.4

)

X4

(
[0.4, 0.8], [0.5, 0.9],
[0.3, 0.8], 0.5, 0.8, 0.5

) (
[0.2, 0.7], [0.4, 0.9],
[0.5, 0.7], 0.6, 0.4, 0.5

) (
[0.3, 0.5], [0.5, 0.9],
[0.7, 0.3], 0.3, 0.3, 0.8

)




(1)

Equation (2): Decision making matrix for the second expert(market maker) Dm is




A1 A2 A3

X1

(
[0.3, 0.6], [0.2, 0.6],
[0.2, 0.6], 0.8, 0.7, 0.2

) (
[0.3, 0.8], [0.4, 0.8],
[0.3, 0.8], 0.6, 0.7, 0.4

) (
[0.2, 0.7], [0.2, 0.6],
[0.3, 0.8], 0.5, 0.3, 0.5

)

X2

(
[0.2, 0.5], [0.6, 0.9],
[0.7, 0.3], 0.4, 0.8, 0.7

) (
[0.4, 0.9], [0.1, 0.4],
[0.5, 0.8], 0.6, 0.5, 0.7

) (
[0.4, 0.9], [0.1, 0.4],
[0.5, 0.8], 0.6, 0.5, 0.7

)

X3

(
[0.5, 0.9], [0.2, 0.6],
[0.3, 0.8], 0.7, 0.7, 0.8

) (
[0.2, 0.5], [0.2, 0.7],
[0.5, 0.8], 0.6, 0.7, 0.2

) (
[0.3, 0.5], [0.3, 0.9],
[0.2, 0.5], 0.6, 0.5, 0.4

)

X4

(
[0.3, 0.5], [0.3, 0.9],
[0.2, 0.5], 0.6, 0.5, 0.4

) (
[0.4, 0.7], [0.2, 0.8],
[0.7, 0.3], 0.6, 0.7, 0.7

) (
[0.2, 0.6], [0.5, 0.9],
[0.2, 0.8], 0.4, 0.4, 0.8

)




(2)

Step2. Let W = (0.4, 0.6)T , then the single matrix corresponding to weight W by use of NCWG
operator is

Equation (3): The single decision matrix.




A1 A2 A3

X1




[0.2551, 0.6000],
[0.2885, 0.6732],
[0.3371, 0.6968],

0.7647, 0.6041, 0.2352







[0.1933, 0.6062],
[0.4430, 0.8001],
[0.3418, 0.8680],

0.6000, 0.7000, 0.4772







[0.2638, 0.6581],
[0.1999, 0.6381],
[0.3881, 0.8484],

0.4621, 0.3881, 0.2223




X2




[0.2352, 0.5577],
[0.6000, 0.9000],
[0.3000, 0.6634],

0.3618, 0.7360, 0.7000







[0.2352, 0.5577],
[0.6000, 0.9000],
[0.3000, 0.6634],

0.3618, 0.7360, 0.7000







[0.5253, 0.8670],
[0.1515, 0.6000],
[0.4621, 0.8448],

0.3371, 0.4621, 0.3301




X3




[0.5378, 0.9000],
[0.3565, 0.8385],
[0.3418, 0.8484],

0.6319, 0.6319, 0.7130







[0.2000, 0.5378],
[0.2352, 0.7000],
[0.4279, 0.8000],

0.5295, 0.6634, 0.2885







[0.3680, 0.6325],
[0.4210, 0.9000],
[0.1614, 0.5000],

0.5626, 0.5426, 0.4000




X4




[0.5101, 0.8000],
[0.3465, 0.6325],
[0.2416, 0.7449],

0.5000, 0.6133, 0.3807







[0.3031, 0.7000],
[0.2639, 0.8385],
[0.3881, 0.7000],

0.6000, 0.6041, 0.6118







[0.2352, 0.5578],
[0.5000, 0.9000],
[0.2416, 0.7647],

0.3618, 0.3618, 0.8000







(3)

Step3. Let the weight of attributes are W = {0.35, 0.30, 0.35}, using NCWG operators on attributes
A’s we get Equation (4),

593



Symmetry 2019, 11, 247

NCWG =




X1




[0.2375, 0.6195],
[0.2885, 0.7916],
[0.3567, 0.8146],

0.6315, 0.5757, 0.2851




X2




[0.4426, 0.7657],
[0.2165, 0.5915],
[0.5382, 0.7804],

0.4827, 0.5729, 0.5282




X3




[0.3500, 0.6616],
[0.3335, 0.8142],
[0.3131, 0.7498],

0.5791, 0.6133, 0.4439




X4




[0.3327, 0.6774],
[0.3630, 0.7787],
[0.2888, 0.7396],

0.4906, 0.5359, 0.5692







(4)

Step4. Using the score function we rank the alternatives as:
S(X1) = 0.0321, S(X2) = 0.0548, S(X3) = 0.0839 and S(X4) = −0.0969, X3 > X2 > X1 > X4

The most desirable alternative is X3.

7. Conclusions

Dealing with real life problems, decision makers encounter incomplete and vague data.
The characteristics of neutrosophic cubic sets enablesdecision makers to deal with such a situation.
Consequently, for each situation we defined the algebraic and Einstein sum, product and scalar
multiplication. It is often difficult to compare two or more neutrosophic cubic values. The score and
accuracy functions are defined to compare the neutrosophic cubic values values. Using these operations
we defined neutrosophic cubic geometric, neutrosophic cubic weighted geometric, neutrosophic cubic
Einstein geometric, and neutrosophic cubic Einstein weighted geometric aggregation operators with
some useful properties. In the next section, a multi-criteria decision making algorithm was constructed.
In the last section, a daily life problem was solved usingmulti-criteria decision making method
(MCDM). This paper is based on some basic definitions and aggregation operators, which can be
further extended to new horizons, like neutrosophic cubic hybrid geometric and neutrosophic cubic
Einstein hybrid geometric aggregation operators.
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Abstract: The existing sampling plans which use the coefficient of variation (CV) are designed under
classical statistics. These available sampling plans cannot be used for sentencing if the sample
or the population has indeterminate, imprecise, unknown, incomplete or uncertain data. In this
paper, we introduce the neutrosophic coefficient of variation (NCV) first. We design a sampling
plan based on the NCV. The neutrosophic operating characteristic (NOC) function is then given and
used to determine the neutrosophic plan parameters under some constraints. The neutrosophic plan
parameters such as neutrosophic sample size and neutrosophic acceptance number are determined
through the neutrosophic optimization solution. We compare the efficiency of the proposed plan
under the neutrosophic statistical interval method with the sampling plan under classical statistics.
A real example which has indeterminate data is given to illustrate the proposed plan.

Keywords: neutrosophic statistical interval method; classical statistics; fuzzy logic; producer’s risk;
consumer’s risk

1. Introduction

The sampling plan is an important tool for statistical quality control (SQC) which is used for the
inspection of finished product batches before they are sent to the market [1]. Cheap inspections, which
require less effort and minimized risks, are the main targets during the inspection process. These
targets can be only achieved by applying a well-designed sampling plan. The decision regarding
the product lot is made based on sample information. Ineffective sampling plans may mislead the
experimenter, causing them to reject a good lot (producer’s risk) and accepting a bad lot (consumer’s
risk). The supplier wishes to protect lots produced at permissible standards and the customer wants to
reduce the chance of accepting a bad lot of the product. A well-designed sampling plan is based on the
optimal plan parameters where the sample size required for the inspection and risks involved are at a
minimum level.

Two major types of sampling plans are the attribute sampling plan and variable sampling plan.
Variable sampling plans are designed for when the quality characteristic is measurable and attribute
sampling plans are designed for a quality characteristic expressed as ‘go, no-go’. The attribute sampling
plans are easy to apply in practice but yield less information than variable sampling. The variable
sampling plans can be applied to inspection lots using smaller sample sizes, while attribute plans
require larger sample sizes to attain the same protection for the supplier and customer. Based on the
advantages of the variable sampling over the attribute sampling plans, several authors from a variety
of fields worked on designing variable sampling plans. For example, the authors of Reference [2]
introduced the plan for the coefficient of variation (CV), and they proposed a CV-based plan for
two-stage sampling. In addition, the authors of Reference [3] presented the design of a CV-based plan
using repetitive sampling.

Symmetry 2019, 11, 193; doi:10.3390/sym11020193 www.mdpi.com/journal/symmetry596
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According to Yan et al. [4], the relative measure is called the coefficient of variation (CV). This is
the ratio of standard deviation (SD), meaning it has been widely used to measure the relative variation
to its mean in a variety of fields. For example, References [5–8] applied the CV in the testing of material
reliability and the average quality characteristic used to measure the product quality. According to
Reference [9], “in certain scenarios, the practitioner is not interested in the changes in the mean or
the standard deviation but is instead interested in the relative variability compared with the mean”.
Due to the wide applications of the CV, several authors have designed sampling plans, this includes
a proposed multiple dependent state sampling plan for the CV [4], a proposed CV-based plan for
two stage sampling [2], and presenting the designing of CV based planning using the repetitive
sampling [3].

The sampling plans in the literature are applied for the inspection of the submitted lot of products
under the assumption that all the observations are determined. The fuzzy approach is applied when
there is uncertainty in the proportion parameters. The sampling plans which use the fuzzy approach can
be applied for the inspection of a product lots with ambiguous proportion parameters. In recent years,
several authors contributed excellent work on the design of sampling plan using the fuzzy approach,
the authors of Reference [10] proposed fuzzy attribute plans for multiple dependent state sampling, the
authors of Reference [11] designed the fuzzy plan using double sampling, the authors of Reference [12]
proposed the fuzzy sampling plan using the Poisson distribution, the authors of Reference [13] studied
the fuzzy operating characteristics curve, the authors of References [14,15] proposed the double and
sequential sampling plan using the fuzzy logic, and the authors of Reference [16] proposed the fuzzy
plan using gamma distribution. More details can be seen in Reference [17].

Neutrosophic logic is the generalization of fuzzy logic as introduced by Reference [18].
Neutrosophic logic consists of measures of the truth, falsehood, and indeterminacy. Smarandache [19]
introduced neutrosophic statistics using neutrosophic numbers. Neutrosophic statistics are the
generalization of classical statistics, which can be applied when the data is indeterminate. This
means that neutrosophic statistics can be applied to analyze data which may have some uncertain or
unclear observations. The neutrosophic analysis provides the output in an indeterminacy interval
rather than the determined values. Therefore, it is effective when applied under uncertain conditions.
Recently, the authors of References [20,21] introduced the neutrosophic statistical interval method for
the rock measuring problem. According to Reference [22], “observations include human judgments,
and evaluations and decisions, a continuous random variable of a production process should include
the variability caused by human subjectivity or measurement devices, or environmental conditions.
These variabilities can create vagueness in the measurement system.” In this situation, when there
is indeterminacy in the data, the lot sentencing cannot be done using the traditional sampling plans.
To handle this situation, the authors of Reference [23] introduced the neutrosophic statistics in the area
of acceptance sampling plans, as well as proposed sampling plans based on the process loss function
under the neutrosophic statistical interval method, and the authors of Reference [24] designed the
neutrosophic sampling plan using sudden death testing. Aslam and Raza’s [25] design proposed a
neutrosophic sampling plan for multiple manufacturing lines, the authors of Reference [26] proposed
a plan for exponential distribution under neutrosophic statistics, and the authors of Reference [27]
proposed a neutrosophic plan for using the regression estimator.

By exploring the literature and to the best of our knowledge, there is no work on the sampling
plan for the CV using neutrosophic statistics. In this paper, we introduce the neutrosophic coefficient
of variation (NCV). We first design a sampling plan based on the CV according to the neutrosophic
statistical interval method. The neutrosophic operating characteristic (NOC) is given. We expect that
the proposed sampling under the neutrosophic statistical interval method will be more effective and
adequate than the sampling plan based on the classical statistics under the indeterminacy environment.
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2. Neutrosophic Coefficient of Variation

In this section, we first define the NCV and then design the sampling plan based on it.
Suppose that XNiε{XL, XU} = i =1, 2, 3, . . . , nN is a neutrosophic random variable of size

nN distributed as the neutrosophic normal distribution with neutrosophic mean µNε{µL, µU} and
neutrosophic standard deviation σNε{σL, σU}; for details, see [19]. The NCV is defined by

CVN = σN/µN ; µNε{µL, µU}, σNε{σL, σU}, CVNε{CVL, CVU}. (1)

It is important to note that µNε{µL, µU} and σNε{σL, σU} are usually unknown in practice
and are estimated using sample information. The best linear unbiased estimates (BLUE) of

µNε{µL, µU} and σNε{σL, σU} are XNε
{

XL, XU
}

=

{
n
∑

i=1
xL

i /nL,
n
∑

i=1
xU

i /nU

}
and sN = {sL, sU} =

{√
n
∑

i=1

(
xL

i − XL
)2/nL,

√
n
∑

i=1

(
xU

i − XU
)2/nU

}
, respectively. The natural estimate of NCV is defined by

ĈVN =
sN

XN
; XNε

{
XL, XU

}
, sN = {sL, sU}, CVNε{CVL, CVU}. (2)

By following Reference [28], the neutrosophic statistic
√

XN/ĈVN ; XNiε{XL, XU}, ĈVNε
{

ĈVL, ĈVU

}

follows the neutrosophic non-central chi-square distribution with a neutrosophic degree of freedom
nN − 1 and neutrosophic non-centrality parameters δN =

√
nN/ĈVN . The neutrosophic chi-square

distribution is used to test the association between the qualitative data and having some uncertain
observations. The neutrosophic chi-square distribution is reduced to chi-square distribution under
classical statistics if all observations in the data are precise. Some more details on the neutrosophic
distributions can be read in [19,24].

The sampling plans based on the NCV are stated as follows:

Step-1: Select a random sample of size nNε{nL, nU} and compute ĈVNε
{

ĈVL, ĈVU

}
.

Step-2: Accept a lot of product if ĈVN ≤ kN , otherwise reject a lot of the product.

Note that kNε{kaL, kaU} is a neutrosophic acceptance number.
The sampling plan based on the NCV has two neutrosophic plan parameters, nNε{nL, nU} and

kNε{kaL, kaU}, that will be determined through the neutrosophic optimization solution. The proposed
plan is a progression of the sampling plan based on CV under classical statistics reported in [29].
The proposed sampling plan is reduced to the aforementioned sampling plan [29] when there is no
indeterminacy in the data.

The neutrosophic operating characteristic (NOC) function is derived as follows:

PNa = P
{

ĈVN ≤ kN

}
; ĈVNε

{
ĈVL, ĈVU

}
, kNε{kaL, kaU} (3)

PNa = P
{

ĈVN ≤ kN

}
= P

(
tnN−1,

√
nN /CVN

>
√

nN/kN

)
; ĈVNε

{
ĈVL, ĈVU

}
, kNε{kaL, kaU},

nNε{nL, nU}.
(4)

Suppose that α and β are the producer’ risk and consumer’s risk, respectively. To meet the
producer and consumer requirements, the NOC should pass through (p1, 1− α) and (p2, β), where
p1 and p2 are an acceptable quality level (AQL) and limiting quality level (LQL), respectively.
The neutrosophic plan parameters of the proposed plan are determined through following neutrosophic
optimization solution (NOS):

minimize nNε{nL, nU} (5)

subject to

PNa

(
p1 = ĈVN

)
= P

(
tnN−1,

√
nN /CVAQL

>
√

nN/kN

)
≥ 1− α; kNε{kaL, kaU}; nNε{nL, nU} (6)
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and

PNa

(
p2 = ĈVN

)
= P

(
tnN−1,

√
nN /CVLQL

>
√

nN/kN

)
≤ β; kNε{kaL, kaU}; nNε{nL, nU}. (7)

The plan parameters nNε{nL, nU} and kNε{kaL, kaU} are determined through the above NOS
using the search grid method. It is noted that several combinations of nNε{nL, nU} and kNε{kaL, kaU}
met the given conditions. The plan parameters nNε{nL, nU} and kNε{kaL, kaU} are selected at smaller
values of nNε{nL, nU}. We used the following algorithm to find the neutrosophic plan parameters.
The codes to make the tables are available from the authors upon request.

Step-1: Pre-fix the values of α,β, AQL, and LQL.
Step-2: Define a range for nN , say 2 < nN < 1000. Determine the probabilities using Equations (6)
and (7).
Step-3: Using search grid method, record those combinations from 10,000 combinations of plan
parameters where nNε{nL, nU} is minimum.

Note here that the proposed NOS approaches the optimization solution under classical statistics
if kaL = kaU and nL = nU . Table 1 shows that plan parameters nNε{nL, nU} and kNε{kaL, kaU} when
α = 5% and β = 10%. Table 2 shows that plan parameters nNε{nL, nU} and kNε{kaL, kaU}when α = 5%
and β = 5%. We note from Tables 1 and 2 that when the AQL is fixed, nNε{nL, nU} decreases while
kNε{kaL, kaU} increases. Further, for the fixed values of α, nNε{nL, nU} decreases as β increses.

Table 1. The neutrosophic fuzzy plan parameters when α = 0.05, β = 0.10.

CVAQL CVLQL nNε{nL,nU} kNε{kaL,kaU} PNa(p1) PNa(p2)

0.05 0.06 {161,265} {0.05546,0.05637} {0.9759,0.9983} {0.0933,0.0861}
0.07 {61,167} {0.06092,0.06456} {0.9924,0.9999} {0.0854,0.08353}
0.08 {37,92} {0.06506,0.06616} {0.9954,0.9999} {0.0642,0.0111}
0.09 {21,40} {0.06858,0.06953} {0.9922,0.9997} {0.0778,0.0260}
0.10 {43,58} {0.06923,0.07187} {0.9998,0.9999} {0.00296,0.00163}

0.06 0.07 {332,407} {0.06630,0.06641} {0.9966,0.9988} {0.0910,0.0752}
0.08 {100,116} {0.06766,0.07080} {0.9659,0.9970} {0.0168,0.0443}
0.09 {72,146} {0.07393,0.07485} {0.9974,0.9999} {0.0190,0.0024}
0.10 {23,72} {0.07674,0.07949} {0.9723,0.9999} {0.072,0.0085}
0.11 {23,37} {0.07711,0.08012} {0.9747,0.9980} {0.0289,0.0128}

0.07 0.08 {323,412} {0.07564,0.07604} {0.9799,0.9934} {0.08757,0.0818}
0.09 {125,145} {0.07925,0.08196} {0.9821,0.9982} {0.0330,0.0698}
0.10 {120,150} {0.08340,0.08485} {0.9985,0.9998} {0.0060,0.0051}
0.11 {61,97} {0.09125,0.09208} {0.9996,0.9999} {0.0354,0.0138}
0.12 {21,90} {0.09236,0.10763} {0.9814,1.000} {0.0859,0.0930}

0.08 0.09 {748,928} {0.08431,0.08450} {0.9814,0.9961} {0.0079,0.0086}
0.10 {115,152} {0.08918,0.09061} {0.9601,0.9897} {0.0562,0.0559}
0.11 {68,80} {0.09145,0.09623} {0.9541,0.9949} {0.0291,0.0643}
0.12 {47,70} {0.1001,0.1042} {0.9926,0.9998} {0.0639,0.0677}
0.13 {33,60} {0.10309,0.11169} {0.9905,0.9999} {0.0573,0.0713}

0.09 0.10 {655,820} {0.09459,0.09559} {0.9672,0.9963} {0.0270,0.0553}
0.11 {126,181} {0.10066,0.10138} {0.9703,0.9918} {0.0971,0.0740}
0.12 {77,107} {0.10393,0.10514} {0.9731,0.9929} {0.0555,0.0401}
0.13 {62,85} {0.10558,0.11026} {0.9736,0.9983} {0.0223,0.0283}
0.14 {41,74} {0.10848,0.11624} {0.9694,0.9998} {0.0265,0.0237}
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Table 2. The neutrosophic fuzzy plan parameters when α = 0.05, β = 0.05.

CVAQL CVLQL nNε{nL,nU} kNε{kaL,kaU} PNa(p1) PNa(p2)

0.05 0.06 {320,545} {0.05432,0.05689} {0.9859,0.9999} {0.0090,0.0456}
0.07 {81,143} {0.05806,0.06016} {0.9809,0.9997} {0.0403,0.0099}
0.08 {55,102} {0.06271,0.06716} {0.9963,0.9999} {0.0143,0.0126}
0.09 {24,85} {0.06492,0.07410} {0.9817,1.000} {0.0352,0.0126}
0.10 {18,65} {0.06857,0.07824} {0.9875,1.000} {0.0410,0.0081}

0.06 0.07 {289,490} {0.06473,0.06561} {0.9519,0.9986} {0.0003,0.0113}
0.08 {109,163} {0.07068,0.07222} {0.9958,0.9998} {0.0474,0.0434}
0.09 {51,137} {0.07101,0.07700} {0.9696,0.9999} {0.0202,0.0970}
0.10 {39,79} {0.07241,0.07259} {0.9679,0.9959} {0.0097,0.0004}
0.11 {23,76} {0.07624,0.07805} {0.9686,0.9999} {0.0256,0.0002}

0.07 0.08 {412,689} {0.07509,0.07618} {0.9818,0.9994} {0.0418,0.0401}
0.09 {110,277} {0.07967,0.08018} {0.9803,0.9996} {0.0494,0.0058}
0.10 {50,104} {0.08274,0.08277} {0.9671,0.9958} {0.0498,0.008}
0.11 {41,102} {0.08300,0.09190} {0.9560,0.9999} {0.0168,0.0112}
0.12 {28,118} {0.09056,0.10651} {0.9864,1.000} {0.0426,0.0476}

0.08 0.09 {431,789} {0.08458,0.08571} {0.9538,0.9976} {0.0411,0.0311}
0.10 {179,204} {0.08845,0.08982} {0.9775,0.9934} {0.0163,0.0222}
0.11 {80,177} {0.09264,0.09787} {0.9778,0.9999} {0.0269,0.0215}
0.12 {54,91} {0.09739,0.09822} {0.9882,0.9989} {0.0305,0.0088}
0.13 {35,106} {0.09947,0.10929} {0.9797,0.9999} {0.0315,0.0123}

0.09 0.10 {673,906} {0.09487,0.09513} {0.9762,0.9921} {0.0322,0.0206}
0.11 {154,229} {0.09869,0.09937} {0.9555,0.9869} {0.0398,0.0217}
0.12 {93,167} {0.10448,0.10806} {0.9859,0.9998} {0.0446,0.0388}
0.13 {69,125} {0.10876,0.11385} {0.9928,0.9999} {0.0328,0.0287}
0.14 {41,111} {0.10638,0.12125} {0.9521,0.9999} {0.0193,0.0271}

3. Advantage of the Proposed Plan

In this section, we discuss the advantage of the proposed plan under the neutrosophic interval
method over the plan designed under classical statistics. The neutrosophic sample size has the form
nN = n+ uI, where n is the determined part and also the parameter of the plan under classical statistics,
and uI is an indeterminate part for n and I ∈ {in f I, supI}. The proposed sampling plan reduces
the plan under classical statistics when nL = nU = n. According to References [20,21], a method
which provides the parameters in range/interval is considered more effective than the method which
provides the determined value under the uncertainty environment. The values of nNε{nL, nU} and n
are reported in Table 3 when α = 0.05 and β = 0.05.

From Table 4, the proposed plan has the parameter in the indeterminacy interval while the
existing sampling plan under classical statistics has determined values. For example, when AQL = 0.05
and LQL = 0.06, the proposed plan has the neutrosophic interval in sample size nN = 320 + 320I,
I ∈ {0, 1.7031}. Then, the neutrosophic sample size is nNε{320, 545} for I ∈ {0, 1.7031}. So, under
conditions of uncertainty, the experimenter should select a sample size between 320 and 545.
The existing sampling plan provides the determined value of 320. This means that the proposed
plan is more effective and adequate under uncertainty and this theory coincides with the findings
of [20,21].
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Table 3. The neutrosophic fuzzy plan parameters when α = 0.05, β = 0.05.

CVAQL CVLQL nNε{nL,nU} n

0.05 0.06 {320,545} 320
0.07 {81,143} 81
0.08 {55,102} 55
0.09 {24,85} 24
0.10 {18,65} 18

0.06 0.07 {289,490} 289
0.08 {109,163} 109
0.09 {51,137} 51
0.10 {39,79} 39
0.11 {23,76} 23

0.07 0.08 {412,689} 412
0.09 {110,277} 110
0.10 {50,104} 50
0.11 {41,102} 41
0.12 {28,118} 28

0.08 0.09 {431,789} 431
0.10 {179,204} 179
0.11 {80,177} 80
0.12 {54,91} 54
0.13 {35,106} 35

0.09 0.10 {673,906} 673
0.11 {154,229} 154
0.12 {93,167} 93
0.13 {69,125} 69
0.14 {41,111} 41

4. Case Study

In this section, we discuss the application of the proposed sampling plan using real data from
the concrete industry. Concrete is an important material in building and road construction. The
comprehensive strength is the maximum load which the material can sustain without any fracture.
This quality characteristic is measured for engineering buildings and other structures. Therefore,
engineers are more concerned about the stability of concrete strength. The comprehensive strength of
concrete is not always a crisp value in practice. According to Reference [30] “Input fields of the fuzzy
expert system are the weight percent of cement, water, blast furnace slag, fly ash, super plasticizer, fine
aggregate, coarse aggregate, and age of the concrete”. Measuring the strength of concrete is a complex
system and there is a chance of having some indeterminate, incomplete, imprecise, or vague (unclear)
observations. In this situation, the presentation of data in a set is called neutrosophication, making
the proposed plan more effective in application than the existing sampling plan. The existing plan
can be applied if data are deneutrosophied by replacing the neutrosophic data with the mid values
of data, see [19]. Imprecise observations lead to uncertainty in the plan parameters needed for the
inspection of a concrete product. Suppose that for this lot sentencing, AQL = 0.05, LQL = 0.09, α = 5%,
and β = 10%. The neutrosophic plan parameters from Table 1 are nNε{21, 40} and kNε{0.0685, 0.0695}.
The comprehensive strength of 25 concrete mixture specimens having some indeterminate, incomplete,
imprecise, and vague observations is shown in Table 4.

Table 4. The data of concrete mixture specimens.

Column 1 Column 2 Column 3 Column 4 Column 5

(36.3, 36.9) (40.1, 40.1) (31.8, 32.1) (33.6, 33.6) (34.9, 35.2)
(31.2, 31.2) (32.8, 32.8) (25.8, 25.8) (30.8, 32.2) (32.9, 32.9)
(30.9, 30.9) (31.9, 32.4) (35.6, 35.6) (30.9, 30.9) (27.8,29.1)
(24.9, 24.9) (31.6, 31.6) (27.9, 28.2) (33.7, 33.7) (38.4, 38.4)
(28.5, 28.9) (31.4, 31.8) (26.9, 26.9) (32.7, 32.7) (34.1,34.6)

601



Symmetry 2019, 11, 193

The NCV for the real data is computed as follows:
XNε{31.89, 32.13} and sNε{3.64, 3.67}.
So,
ĈVNε{0.1133, 0.1152}, XNε{31.89, 32.13}, and sNε{3.64, 3.67}.
The proposed plan is implemented as follows:

Step-1: Select a random sample of size nNε{21, 40} and compute ĈVNε{0.1133, 0.1152}.
Step-2: Reject a lot of concrete product since ĈVNε{0.1133, 0.1152} > kNε{0.0685, 0.0695}.

5. Concluding Remarks

In this manuscript, we originally designed a sampling plan based on the neutrosophic coefficient
of variation (NCV) which can be applied when observations/parameters are indeterminate in practice.
The structure of the proposed plan is given to find the neutrosophic plan parameters. The application
of the proposed neutrosophic plan is given with the aid of company data. The proposed plan under
the neutrosophic interval method is more effective and adequate under the uncertainty environment.
The proposed plan using big data from the industry can be studied as future research. The estimation
and properties of neutrosophic normal distribution and neutrosophic chi-square distribution can be
considered as future research.
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Abstract: In this paper, a new concept of the triangular neutrosophic cubic fuzzy numbers (TNCFNs),
their score and accuracy functions are introduced. Based on TNCFNs, some new Einstein aggregation
operators, such as the triangular neutrosophic cubic fuzzy Einstein weighted averaging (TNCFEWA),
triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging (TNCFEOWA) and
triangular neutrosophic cubic fuzzy Einstein hybrid weighted averaging (TNCFEHWA) operators
are developed. Furthermore, their application to multiple-attribute decision-making with triangular
neutrosophic cubic fuzzy (TNCF) information is discussed. Finally, a practical example is given to
verify the developed approach and to demonstrate its practicality and effectiveness.

Keywords: triangular neutrosophic cubic fuzzy number; Einstein t-norm; arithmetic averaging
operator; Multi-attribute decision making; numerical application

1. Introduction

Atanassov [1] introduced the IFS, which is a generalization of FS. Atanassov [2] introduced
operations and relations over IFSs taking as a point of departure respective definitions of relations and
operations over fuzzy sets. Bustince et al. [3] introduced the characterization of certain structures of
intuitionistic relations according to the structures of two concrete fuzzy relations. Deschrijver et al. [4]
established the relationships between intuitionistic fuzzy sets (Atanassov, VII ITKR’s Session, Sofia,
June 1983 (Deposed in Central Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian)),
L-fuzzy sets. Deschrijver et al. [5] defined the mathematical relationship between intuitionistic fuzzy
sets and other models of imprecision. Jun et al. [6] introduced the cubic set. Mohiuddin et al. [7]
showed that the union of two internal cubic soft sets might not be internal. Turksen [8] showed that the
proposed representation (1) exists for certain families of the conjugate pairs of t-norms and t-norms,
and (2) resolves some of the difficulties associated with particular interpretations of conjunction,
disjunction, and implication in fuzzy set theories.

Xu [9] developed some aggregation operators, such as the intuitionistic fuzzy weighted averaging
operator, intuitionistic fuzzy ordered weighted averaging operator, and intuitionistic fuzzy hybrid
aggregation operator, to aggregate intuitionistic fuzzy values. Xu et al. [10] developed some new
geometric aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator
and the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator. Xu et al. [11] provided
a survey of the aggregation techniques of intuitionistic fuzzy information and their applications
in various fields, such as decision making, cluster analysis, medical diagnosis, forecasting, and
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manufacturing grid. Liu et al. [12] introduced and discussed the concept of intuitionistic fuzzy point
operators. Zeng et al. [13] defined the situation with intuitionistic fuzzy information and developed
an intuitionistic fuzzy ordered weighted distance (IFOWD) operator. The fuzzy set was introduced
by Zadeh [14]. Zadeh [15] introduced the interval-valued fuzzy set Li et al. [16] proposed group
decision-making methods of the interval-valued intuitionistic uncertain linguistic variable based on
Archimedean t-norm and Choquet integral. Zhao et al. [17] developed some hesitant triangular fuzzy
aggregation operators based on the Einstein operation: the hesitant triangular fuzzy Einstein weighted
averaging (HTFEWA) operator. Xu et al. [18] introduced two new aggregation operators: dynamic
intuitionistic fuzzy weighted averaging (DIFWA) operator and uncertain dynamic intuitionistic fuzzy
weighted averaging (UDIFWA) operator.

The Neutrosophic Set (NS) was projected by Smarandache [19,20]. Neutrosophic sets are
characterized by fact participation, an indeterminacy-enrollment work and misrepresentation
participation, which are inside the ordinary or nonstandard unit interim ]−0, 1+[ in order to apply NS
to genuine applications. In order to apply NS to real-world applications, Aliya et al. [21] introduced
the concept of the triangular cubic fuzzy number. Aliya et al. [22] introduced the triangular cubic
hesitant fuzzy Einstein weighted averaging (TCHFEWA) operator, triangular cubic hesitant fuzzy
Einstein ordered weighted averaging (TCHFEOWA) operator and triangular cubic hesitant fuzzy
Einstein hybrid weighted averaging (TCHFEHWA) operator.

Beg et al. [23] introduced a computational means to manage situations in which experts assess
alternatives in possible membership and non-membership values. Przemyslaw et al. [24] introduced a
simple test that sometimes might be helpful in detecting non-separability at a glance.

The differences between Reference 21, 22 and the current paper are as Table 1:

Table 1. Difference between references 21, 22 and current paper.

Reference 21 Reference 22 Current Paper

Defines a new extension of the
triangular cubic fuzzy number by
using a cubic set.

Defines a new extension of the
triangular cubic hesitant fuzzy
number by using a cubic set.

Defines a new extension of the
triangular neutrosophic cubic
fuzzy number by using a
neutrosophic set.

Introduced the triangular cubic
fuzzy number, operational laws,
and their score and accuracy
functions.

Introduced the triangular cubic
hesitant fuzzy number,
operational laws, and their score,
accuracy functions, membership
uncertainty index and hesitation
index.

Introduced the triangular cubic
fuzzy number, operational laws,
and their score and accuracy
functions, membership
uncertainty index and hesitation
index.

Introduced the triangular cubic
fuzzy hybrid aggregation operator.

Introduced three Einstein
aggregation operators, such as the
triangular cubic fuzzy hybrid
aggregation operator, and the
TCHFEWA, TCHFEOWA and
TCHFEHWA operators

Introduced three Einstein
aggregation operators, such as the
triangular neutrosophic cubic
fuzzy hybrid aggregation operator,
and the TNCFEWA, TNCFEOWA
and TNCFEHWA operators

Based on the above analysis, in this paper we develop TNCFNs, which is the generalization of the
triangular neutrosophic intuitionistic fuzzy number and triangular neutrosophic interval fuzzy number.
We perform some operations based on Einstein T-norm and Einstein T-conorm for TNCFNs. We also
develop score and accuracy functions to compare two TNCFNs. Due to the developed operation, we
propose the TNCFEWA operator, TNCFEOWA operator, and TNCFEHWA operator, to aggregate a
collection of TNCFNs.

This paper is organized as follows. In Section 2, we define some concepts of FS, CS, and TNCFNs.
In Section 3, we discuss some Einstein operations on TNCFNs and their properties. In Section 4, we
first develop some novel arithmetic averaging operators, such as the TNCFEWA operator, TNCFEOWA
operator, and TNCFEHWA operator, for aggregating a group of TNCFNs. In Section 5, we apply the

605



Symmetry 2019, 11, 180

TNCFEHWA operator to MADM with TNCFNs material. In Section 6, we offer a numerical example
consistent with our approach. In Section 7, we discuss comparison analysis. In Section 8, we present
a conclusion.

2. Preliminaries

Definition 1. [15]. Let H be a fixed set, a FS F in H is defined as:F = {(h, ΓF(h)|h ∈ H} where ΓF(h) is a
mapping from h to the closed interval [0, 1] and for each h ∈ H, ΓF(h) is called the degree of membership of h
in H.

Definition 2. Let H is a fixed set and an interval-valued fuzzy set I in H is defined as I ={
h, R−I (h), R+

I (h)
∣∣h ∈ H

}
, where R−I : H → [0, 1] and R+

I : H → [0, 1]. The R−I (h) is lower
membership and R+

I (h) is upper membership such that 0 ≤ R−I (h) ≤ R+
I (h)≤ 1.

Definition 3. [1]. An IFS Ð in H is given by Ð ={(h, RÐ(h), ΩÐ(h)|h ∈ H}, where RÐ : H → [0, 1]
and ΩÐ : H → [0, 1] , with the condition 0 ≤ RÐ(h) + ΩÐ(h) ≤ 1.

The numbers RÐ(h) and ΩÐ(h) represent, respectively, the membership degree and non-membership degree
of the element h to the set Ð.

Triangular Neutrosophic Cubic Fuzzy Number

Definition 4. Let A1 =





[p1(h), q1(h),
r1(h)],〈
[Υ−1 (h),

R−1 (h), δ−1 (h)],
[Υ+

1 (h),
R+

1 (h), δ+1 (h)],
[Υ1(h),

R1(h), δ1(h)]〉
|h ∈ H





and A2 =





[p2(h), q2(h),
r2(h)],〈
[Υ−2 (h),

R−2 (h), δ−2 (h)],
[Υ+

2 (h),
R+

2 (h), δ+2 (h)],
[Υ2(h),

R2(h), δ2(h)]〉
|h ∈ H





are two TNCFNs, some

operations on TNCFNs are defined as follows:
(a) A1 ⊆ A2 iff ∀h ∈ H, p1(h)) ≥ p2(h) q1(h) ≥ q2(h), r1(h)≥ r2(h), Υ−1 (h) ≥ Υ−2 (h), R−1 (h)≥

R−2 (h), δ−1 (h)≥ δ−1 (h), Υ+
1 (h) ≥ Υ+

2 (h) R+
1 (h) ≥ R+

2 (h),, δ+1 (h) ≥ δ+2 (h) and Υ1(h) ≥ Υ2(h) δ1(h) ≤
δ2(h).

(b) A1 ∩T, S A2 = T[p1(h), p2(h)], T[q1(h), q2(h)], T[r1(h), r2(h)],
〈

T[Υ−1 (h), Υ−2 (h)],
T[R−1 (h), R−2 (h)], T[δ−1 (h), δ−2 (h)], T[Υ+

1 (h),Υ
+
2 (h)], T[R+

1 (h), R+
2 (h)], T[δ+1 (h), δ+2 (h)], S[Υ1(h), Υ2(h)],

S[R1(h), R2(h)], S[δ1(h), δ2(h)]〉

Example 1. Let
..
A1 =





〈[0.1, 0.2, 0.3],
[0.2, 0.4, 0.6],
[0.4, 0.6, 0.8],
[0.3, 0.5, 0.7]〉





and
..
A2 =





〈[0.103, 0.104, 0.105],
[0.100, 0.102, 0.104],
[0.102, 0.104, 0.106],
[0.101, 0.103, 0.105]〉





be two TNCFSs

(a)
..
A1 ⊆

..
A2, if ∀...

z ∈ Z, 0.1 ≥ 0.103, 0.2 ≥ 0.104, 0.3 ≥ 0.105, 0.2 ≥ 0.100, 0.4 ≥ 0.102, 0.6 ≥ 0.104,
0.4 ≥ 0.102, 0.6 ≥ 0.104, 0.8 ≥ 0.106 and 0.3 ≤ 0.101, 0.5 ≤ 0.103, 0.7 ≤ 0.105.

(b)
..
A1 ∩T, S

..
A2 = T[0.1, 0.103], T[0.2, 0.104], T[0.3, 0.105], [T[0.2, 0.10], T[0.4, 0.12], T[0.6, 0.14],

T[0.4, 0.12], T[0.6, 0.14], T[0.8, 0.16] and S[0.3, 0.11], S[0.7, 0.15].
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Definition 5. Let C =





[pC(h), qC(h), rC(h)]〈
[A−C (h), R−C (h), Ũ−C (h)],

[A+
C (h), R+

C (h), Ũ+
C (h)],

[AC(h), RC(h), ŨC(h)]
〉∣∣∣h ∈ H





be a TNCFN and then the score function

S(C), accuracy function N(C), membership uncertainty index T(C) and hesitation uncertainty index G(C) of
a TNCFN C are defined by

S(C) =

〈
[pC(h) + qC(h) + rC(h)][[A−C (h) + R−C (h) + Ũ−C (h)]

+[A+
C (h) + R+

C (h) + Ũ+
C (h)]]

−[AC(h) + RC(h) + ŨC(h)]
〉

27 ,

N(C) =

〈
[pC(h) + qC(h) + rC(h)][[A−C (h) + R−C (h) + Ũ−C (h)]

+[A+
C (h) + R+

C (h) + Ũ+
C (h)]] + [AC(h) + RC(h) + ŨC(h)]

〉

27

T(C) =
〈
[pC(h) + qC(h) + rC(h)][[A+

C (h) + R+
C (h) + Ũ+

C (h)]+

[AC(h) + RC(h) + ŨC(h)]− [A−C (h) + R−C (h) + Ũ−C (h)]
〉

,

G(C) =
〈
[pC(h) + qC(h) + rC(h)][[A+

C (h) + R+
C (h) + Ũ+

C (h)]

+[A−C (h) + R−C (h) + Ũ−C (h)]− [AC(h) + RC(h) + ŨC(h)]
〉

.

Example 2. Let C =





〈[0.101, 0.102,
0.103], [0.5, 0.7, 0.9],
[0.7, 0.9, 0.11], [0.6,

0.8, 0.10]〉





be a TNCFN. Then the score function S(C), accuracy

function H(C), membership uncertainty index T(C) and hesitation uncertainty index G(C) of a TNCFN C are
defined by

S(C) =

〈[0.101 + 0.102 + 0.103][0.5 + 0.7 + 0.9]]
+[0.7 + 0.9 + 0.11]− [0.6 + 0.8 + 0.10]〉

27
=

0.306(3.81− 1.5)
27

=
0.7068

27
= 0.0261,

H(C) =

〈[0.101 + 0.102 + 0.103][0.5 + 0.7 + 0.9]]
+[0.7 + 0.9 + 0.11] + [0.6 + 0.8 + 0.10]〉

27
=

0.306(3.81 + 1.5)
27

=
1.6248

27
= 0.0601,

T(C) =

{
[0.101 + 0.102 + 0.103]〈[0.7 + 0.9 + 0.11]
+[0.6 + 0.8 + 0.10]− [0.5 + 0.7 + 0.9]〉

}
= 0.6(1.71 + 1.5− 2.1) = 0.306(3.21− 2.1) = 0.3396,

G(C) =

{
〈[0.101 + 0.102 + 0.103][0.7 + 0.9 + 0.11]
+[0.5 + 0.7 + 0.9]− [0.6 + 0.8 + 0.10]〉

}
= 0.306(1.71 + 2.1− 1.5) = 0.7068.

See Figure 1.
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uncertainty index are ranking of TNCFN.

3. Some Einstein Operations on TNCFNs

Definition 6. Let C =





[ą(h), ę(h),
G, (h)], 〈[Y =− (h),

k, −(h), Γ−(h)],
[Y =+ (h), k, +(h),
Γ+(h)], [Y = (h),

k, (h), Γ(h)]〉
|h ∈ H





, C1 =





[ą1(h), ę1(h),
G, 1(h)]

〈
[Y =−1 (h),

k, −1 (h), Γ−1 (h)],
[Y =+

1 (h), k, +1 (h),
Γ+

1 (h)], [Y =1 (h),
k, 1(h), Γ1(h)]〉
|h ∈ H





and

C2 =





[ą2(h), ę2(h),
G, 2(h)]

〈
[Y =−2 (h),

k, −2 (h), Γ−2 (h)],
[Y =+

2 (h), k, +2 (h),
Γ+

2 (h)], [Y =2 (h),
k, 2(h), Γ2(h)]〉
|h ∈ H





be any three TNCFNs. Then some Einstein operations of C1

and C2 can be defined as: C1 + C2 =

〈



ą1(h)+ą2(h)
1+ą1(h)(1−ą2(h))

,
ę1(h)+ę2(h)

1+ę1(h)(1−ę2(h))
,

G, 1(h)+G, 2(h)
1+G, 1(h)(1−G, 2(h))


,




Y=−1 (h)+Y=−2 (h)
1+Y=−1 (h)(1−Y=−2 (h))

,
Y=+

1 (h)+Y=+
2 (h)

1+Y=+
1 (h)(1−Y=+

2 (h))

,

k, −1 (h)+k, −2 (h)
1+k, −1 (h)(1−k, −2 (h))

,
k, +1 (h)+k, +2 (h)

1+k, +1 (h)(1−k, +2 (h))

,

Γ−1 (h)+Γ−2 (h)
1+Γ−1 (h)(1−Γ−2 (h))

,
Γ+

1 (h)+Γ+
2 (h)

1+Γ+
1 (h)(1−Γ+

2 (h))




,
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


Y=1(h)Y=2(h)
(1+(1−Y=1(h)) (1−Y=2(h)))

,
k, 1(h)k, 2(h)

(1+(1−k, 1(h)) (1−k, 2(h)))
,

Γ1(h)Γ2(h)
(1+((1−Γ1(h)) (1−Γ2(h)))




〉
, λC =

〈



[1+ąC(h)]
λ−[1−ąC(h)]

λ

[1+ąC(h)]
λ+[1−ą(h)]λ

,

[1+ęC(h)]
λ−[1−ęC(h)]

λ

[1+ęC(h)]
λ+[1−ę(h)]λ

,

[1+G, C(h)]
λ−[1−G, C(h)]

λ

[1+G, C(h)]
λ+[1−G, (h)]λ




,




[1+Y=−C (h)]λ−[1−Y=−C (h)]λ

[1+Y=−C (h)]λ+[1−Y=−C (h)]λ
,

[1+Y=+
C (h)]λ−[1−Y=+

C (h)]λ

[1+Y=+
C (h)]λ+[1−Y=+

C (h)]λ
,

[1+k, −C (h)]λ−[1−k, −C (h)]λ

[1+k, −C (h)]λ+[1−k, −C (h)]λ
,

[1+k, +C (h)]λ−[1−k, +C (h)]λ

[1+k, +C (h)]λ+[1−k, +C (h)]λ
,

[1+Γ−C (h)]λ−[1−Γ−C (h)]λ

[1+Γ−C (h)]λ+[1−Γ−C (h)]λ
,

[1+Γ+
C (h)]λ−[1−Γ+

C (h)]λ

[1+Γ+
C (h)]λ+[1−Γ+

C (h)]λ




,




2[Y=C(h)]
λ

[(2−Y=C(h)]
λ+[Y=C(h)]

λ ,

2[k, C(h)]
λ

[(2−k, C(h)]
λ+[k, C(h)]

λ ,

2[ΓC(h)]
λ

[(2−ΓC(h)]
λ+[ΓC(h)]

λ




〉
.

Proposition 1. Let
..
A,

..
A1 and

..
A2 be three TNCFNs, λ, λ1, λ2 > 0, then we have:

(1)
..
A1 +

..
A2 =

..
A2 +

..
A1,

(2) λ(
..
A1 +

..
A2) = λ

..
A2 + λ

..
A1,

(3) λ1
..
A + λ2

..
A = (λ1 + λ2)

..
A.

Proof. The proof of these propositions is provided in Appendix A. �

Remark 1. If α1 ≤LTNCFN α2, then α1 ≤ α2, the total order is the partial order on LTNCFN, see Figure 2.
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Proposition 1. Let 1,A A   and 2A  be three TNCFNs, 1 2, , 0,λ λ λ >  then we have: 

(1)  1 2 2 1 ,A A A A+ = +      

(2)  1 2 2 1( ) ,A A A Aλ λ λ+ = +      

(3)  1 2 1 2( ) .A A Aλ λ λ λ+ = +     

 Proof: The proof of these propositions is provided in Appendix A. □ 
 Remark 1. If 

TNCFN1 2Lα α≤  , then 1 2α α≤ , the total order is the partial order on TNCFNL , see Figure 2. 
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Figure 2. New extend aggregation operators, such as TNCFEWA, TNCFEOWA and TNCFEHWA 
operators. 
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Figure 2. New extend aggregation operators, such as TNCFEWA, TNCFEOWA and TNCFEHWA
operators.

4. Triangular Neutrosophic Cubic Fuzzy Averaging Operators Based on Einstein Operations

In this section, we define the aggregation operators.
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4.1. Triangular Neutrosophic Cubic Fuzzy Einstein Weighted Averaging Operator

Definition 7. Let
..
A =





[α(h), β(h),
∆(h)]

〈
[ξ−1 (h),

ξ−2 (h), ξ−3 (h)],
[ξ+1 (h), ξ+2 (h),
ξ+3 (h)], [ξ1(h),
ξ2(h), ξ3(h)]〉
|h ∈ H





be a collection of TNCFNs in LTNCFN and
..
ω =

(
..
ω1,

..
ω2, . . . ,

..
ωn)

T be the weight vector, with
..
ω j ∈ [0, 1],

n
∑

j=1

..
ω j = 1. Hence TNCFEWA

operator of dimension n is a mapping TNCFEWA : Ln
TNCFN → LTNCFN and defined by

TNCFEWA(
..
A1,

..
A2, . . . ,

..
An) =

..
ω1

..
A1 +

..
ω2

..
A2, . . . ,

..
ωn

..
An.

If
..
ω = ( 1

n , 1
n , . . . , 1

n )
T

. Hence the TNCFEWA operator is reduced to TNCFEA operator of dimension n.
It can be defined as follows: TNCFEA(

..
A1,

..
A2, . . . ,

..
An) =

1
n (

..
A1,

..
A2, . . . ,

..
An).

Theorem 1. Let
..
A =





[α1(h), β1(h),
∆1(h)],

〈
[p−1 (h),

q−1 (h), r−1 (h)],
[p+1 (h), q+1 (h),
r+1 (h)], [p1(h),
q1(h), r1(h)]〉
|h ∈ H





be a collection of TNCFNs in LTNCFN. The amassed an

incentive by utilizing the TNCFEWA operator is additionally a TNCFN and TNCFEWA.

(
..
A1,

..
A2, . . . ,

..
An) =

〈




n
∏
j=1

[1+α1(h)]
”
ω−

n
∏
j=1

[1−α1(h)]
”
ω

n
∏
j=1

[1+α1(h)]
”
ω+

n
∏
j=1

[1−α1(h)]
”
ω

,

n
∏
j=1

[1+β1(h)]
”
ω−

n
∏
j=1

[1−β1(h)]
”
ω

n
∏
j=1

[1+β1(h)]
”
ω+

n
∏
j=1

[1−β1(h)]
”
ω

,

n
∏
j=1

[1+∆1(h)]
”
ω−

n
∏
j=1

[1−∆1(h)]
”
ω

n
∏
j=1

[1+∆1(h)]
”
ω+

n
∏
j=1

[1−∆1(h)]
”
ω

,




,




n
∏
j=1

[1+p−1 (h)]
”
ω−

n
∏
j=1

[1−p−1 (h)]
”
ω

n
∏
j=1

[1+p−1 (h)]
”
ω
+

n
∏
j=1

[1−p−1 (h)]
”
ω

,

n
∏
j=1

[1+q−2 (h)]
”
ω−

n
∏
j=1

[1−q−2 (h)]
”
ω

n
∏
j=1

[1+q−2 (h)]
”
ω
+

n
∏
j=1

[1−q−2 (h)]
”
ω

,

n
∏
j=1

[1+r−3 (h)]
”
ω−

n
∏
j=1

[1−r−3 (h)]
”
ω

n
∏
j=1

[1+r−3 (h)]
”
ω
+

n
∏
j=1

[1−r−3 (h)]
”
ω




,




n
∏
j=1

[1+p+1 (h)]
”
ω−

n
∏
j=1

[1−p+1 (h)]
”
ω

n
∏
j=1

[1+p+1 (h)]
”
ω
+

n
∏
j=1

[1−p+1 (h)]
”
ω

,

n
∏
j=1

[1+q+2 (h)]
”
ω−

n
∏
j=1

[1−q+2 (h)]
”
ω

n
∏
j=1

[1+q+2 (h)]
”
ω
+

n
∏
j=1

[1−q+2 (h)]
”
ω

,

n
∏
j=1

[1+r+3 (h)]
”
ω−

n
∏
j=1

[1−r+3 (h)]
”
ω

n
∏
j=1

[1+r+3 (h)]
”
ω
+

n
∏
j=1

[1−r+3 (h)]
”
ω




,




2
n
∏
j=1

[p1(h)]
”
ω

n
∏
j=1

[(2−p1(h)]
”
ω+

n
∏
j=1

[p1(h)]
”
ω

,
2

n
∏
j=1

[q2(h)]
”
ω

n
∏
j=1

[(2−q2(h)]
”
ω+

n
∏
j=1

[q2(h)]
”
ω

,

,
2

n
∏
j=1

[r3(h)]
”
ω

n
∏
j=1

[(2−r3(h)]
”
ω+

n
∏
j=1

[r3(h)]
”
ω




〉

where
..
ω = (

..
ω1,

..
ω2, . . . ,

..
ωn)

T be the weight vector of
..
Aj(j = 1, 2, . . . , n) such that

..
ω j ∈ [0, 1] and

n
∑

j=1

..
ω j = 1. If α1(h) = α1(h), β1(h) = β1(h), ∆1(h) = ∆1(h), p−1 (h) = p−1 (h), q−2 (h) = q−2 (h),

r−3 (h) = r−3 (h), p+1 (h) = p+1 (h), q+2 (h) = q+2 (h), r+3 (h) = r+3 (h) and p1(h) = p1(h), q2(h) = q2(h),
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r3(h) = r3(h). Then the TNCFN
..
A =





[α1(h), β1(h),
∆1(h)],

〈
[p−1 (h),

q−1 (h), r−1 (h)],
[p+1 (h), q+1 (h),
r+1 (h)], [p1(h),
q1(h), r1(h)]〉
|h ∈ H





are reduced to the triangular neutrosophic

cubic fuzzy numbers
..
A =





[α1(h), β1(h),
∆1(h)],

〈
[p−1 (h),

q−1 (h), r−1 (h)],
[p+1 (h), q+1 (h),
r+1 (h)], [p1(h),
q1(h), r1(h)]〉
|h ∈ H





and the TNCFEWA operator is reduced to the TNCFEWA

operator.

Proof. The proof of this theorem is provided in Appendix B. �

Example 3. Let C1 =





〈[0.02, 0.03, 0.04],
[0.02, 0.04, 0.06],
[0.04, 0.06, 0.08],
[0.03, 0.05, 0.07]〉





, C2 =





〈[0.205, 0.207, 0.209],
[0.211, 0.213, 0.215],
[0.213, 0.215, 0.217],
[0.212, 0.214, 0.216]〉





and

C3 =





〈[0.004, 0.005, 0.006],
[0.102, 0.104, 0.106],
[0.104, 0.106, 0.108],
[0.103, 0.105, 0.107]〉





be a TNCFN. Then the score function is defined by S(C1) =





〈[0.02 + 0.03 + 0.04],
[0.02 + 0.04 + 0.06]+
[0.04 + 0.06 + 0.08]−
[0.03 + 0.05 + 0.07]〉





27 = 0.0005, S(C2) =





〈[0.205 + 0.207 + 0.209],
[0.211 + 0.213 + 0.215]+
[0.213 + 0.215 + 0.217]−
[0.212 + 0.214 + 0.216]〉





27 = 0.0147, S(C3) =




〈[0.004, 0.005, 0.006],
[0.102, 0.104, 0.106],
[0.104, 0.106, 0.108],
[0.103, 0.105, 0.107]〉





27 = 0.015(0.63−0.315)
27 = 0.0001.

See Figure 3.
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Example 4. Let C1 =





〈[0.04, 0.05, 0.06],
[0.01, 0.03, 0.05],
[0.03, 0.05, 0.07],
[0.02, 0.04, 0.06]〉





, C2 =





〈[0.05, 0.07, 0.09],
[0.11, 0.13, 0.15],
[0.13, 0.15, 0.17],
[0.12, 0.14, 0.16]〉





and C3 =





〈[0.2004, 0.2005, 0.2006],
[0.2102, 0.2104, 0.2106],
[0.2104, 0.2106, 0.2108],
[0.2103, 0.2105, 0.2107]〉





be a TNCFN. Then the accuracy function is defined by H(C1) =





〈[0.04 + 0.05 + 0.06],
[0.01 + 0.03 + 0.05]+
[0.03 + 0.05 + 0.07]+
[0.02 + 0.04 + 0.06]〉





27 = 0.002, H(C2) =





〈[0 + 05 + 0.07 + 0.09],
[0.11 + 0.13 + 0.15]+
[0.13 + 0.15 + 0.17]+
[0.12 + 0.14 + 0.16]〉





27 = 0.0098, H(C3) =




〈[0.2004 + 0.2005 + 0.2006],
[0.2102 + 0.2104 + 0.2106]+
[0.2104 + 0.2106 + 0.2108]+
[0.2103 + 0.2105 + 0.2107]〉





27 = 0.0422.
See Figure 4.
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Proposition 2. Let
..
A =





[α1(h), β1(h), ∆1(h)]〈
[p−1 (h), q−1 (h), r−1 (h)],
[p+1 (h), q+1 (h), r+1 (h)],
[p1(h), q1(h), r1(h)]〉

|h ∈ H





be a collection of TNCFNs in LTNCFN and where
..
ω

= (
..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector of
..
Aj(j = 1, 2, . . . , n) with

..
ω j ∈ [0, 1] and

n
∑

j=1

..
ω j = 1.

Then (1) (Idempotency): If all Aj, j = 1, 2, . . . , n are equal, i.e., Aj = A, for all j = 1, 2, . . . , n, then
TNCFEWA (A1, A2, . . . , An) = A.

(2) (Boundary): If αmin = min1≤j≤nαj, βmin = min1≤j≤nβ j, ∆min = min1≤j≤n∆j,
p−min = min1≤j≤n p−j , q−min = min1≤j≤nq−j , r−min = min1≤j≤nr−j , p+min = min1≤j≤n p+j , q+min =

min1≤j≤nq+j , r+min = min1≤j≤nr+j , pmax = max1≤j≤n pj, qmax = max1≤j≤nqj, rmax = max1≤j≤nrj,

µmax = max1≤j≤nµj, p−max = max1≤j≤n p−j , q−max = max1≤j≤nq−j , r−max = max1≤j≤nr−j , µ−max =

max1≤j≤nµ−j , p+max = max1≤j≤n p+j , q+max = max1≤j≤nq+j , r+max = max1≤j≤nr+j , pmin = min1≤j≤n pj,
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qmin = min1≤j≤nqj, rmin = min1≤j≤nrj, µmin = min1≤j≤nµj for all j = 1, 2, .., n, we can determine that



[αmin(h),
βmin(h), ∆min(h)]〈

[p−min(h),
q−min(h), r−min(h)]

[p+min(h),
q+min(h), r+min(h)]
[pmax(h), qmax(h),
rmax(h), smax(h)]〉|

h ∈ H





≤ TNCFEWA(A1, A2, . . . , An) ≤





[αmax(h), βmax(h),
∆max(h)], 〈[p−max(h),

q−max(h), r−max(h)],
[p+max(h), q+max(h),
r+max(h)], [pmin(h),
qmin(h), rmin(h)]〉|

h ∈ H





(3) (Monotonicity): A =





[αA(h),
βA(h), ∆A(h)],〈

[
{

p−A(h),
q−A(h), r−A(h)]

, [p+A(h),
q+A(h), r+A(h)]

, [pA(h),
qA(h), rA(h)]〉|

h ∈ H





and B =





[αB(h),
βB(h), ∆B(h)],〈

[p−B (h),
q−B (h), r−B (h)]

[p+B (h),
q+B (h), r+B (h)]

[pB(h),
qB(h), rB(h)〉
|h ∈ H





be two collection

of TNCFNs in LTNCFN and Aj ≤ LTNCFNBj i.e., αA(h) ≤ αB(h), βA(h) ≤ βB(h), ∆A(h) ≤ ∆B(h),
p−A(h) ≤ p−B (h), q−A(h) ≤ q−B (h), r−A(h) ≤ r−B (h), p+A(h) ≤ p+B (h), q+A(h) ≤ q+B (h), r+A(h) ≤ r+B (h)
and pA(h) ≤ pB(h), qA(h) ≤ qB(h), rA(h) ≤ rB(h) then TNCFEWA (A1, A2, . . . , An) ≤ TNCFEWA
(B1, B2, . . . , Bn).

4.2. Triangular Neutrosophic Cubic Fuzzy Einstein Ordered Weighted Averaging Operator

Definition 8. Let
..
A =





[α ..
A
(h), β ..

A
(h),

∆ ..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H





be a collection of TNCFNs in LTNCFN, a TNCFEOWA

operator of dimension n is a mapping TNCFEOWA: Ln
TNCFN → LTNCFN , that has an associated vector w =

(w1, w2, . . . , wn)
T such that wj ∈ [0, 1] and

n
∑

j=1
wj = 1. TNCFEOWA (

..
A1,

..
A2, . . . ,

..
An) = ð1

..
A(σ)1 +

ð2
..
A(σ)2, . . . ,+ðn

..
A(σ)n, where (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that

..
Aσ(1) ≤

..
Aσ(j−1) for all j = 2, 3, . . . , n (i.e.,

..
Aσ(j) is the j the largest value in the collection (

..
A1,

..
A2, . . . ,

..
An). If

w = (w1, w2, . . . , wn)
T = ( 1

n , 1
n , . . . , 1

n )
T

. Then the TNCFEOWA operator is reduced to the TCFA operator
(2) of dimension n.
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Theorem 2. Let
..
A =





[α ..
A
(h), β ..

A
(h),

∆ ..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H





be a collection of TNCFNs in LTNCFN. Then their aggregated

value by using the TNCFEOWA operator is also a TNCFN and TNCFEOWA

(
..
A1,

..
A2, . . . ,

..
An) =

〈




n
∏
j=1

[1+α1(h)]
”
ω−

n
∏
j=1

[1−α1(h)]
”
ω

n
∏
j=1

[1+α1(h)]
”
ω+

n
∏
j=1

[1−α1(h)]
”
ω

,

n
∏
j=1

[1+β1(h)]
”
ω−

n
∏
j=1

[1−β1(h)]
”
ω

n
∏
j=1

[1+β1(h)]
”
ω+

n
∏
j=1

[1−β1(h)]
”
ω

,

n
∏
j=1

[1+∆1(h)]
”
ω−

n
∏
j=1

[1−∆1(h)]
”
ω

n
∏
j=1

[1+∆1(h)]
”
ω+

n
∏
j=1

[1−∆1(h)]
”
ω

,




,




n
∏
j=1

[1+p−
σ(j)(h)]

”
ω−

n
∏
j=1

[1−p−
σ(j)(h)]

”
ω

n
∏
j=1

[1+p−
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−p−
σ(j)(h)]

”
ω

,

n
∏
j=1

[1+q−
σ(j)(h)]

”
ω−

n
∏
j=1

[1−q−
σ(j)(h)]

”
ω

n
∏
j=1

[1+q−
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−q−
σ(j)(h)]

”
ω

,

n
∏
j=1

[1+r−
σ(j)(h)]

”
ω−

n
∏
j=1

[1−r−
σ(j)(h)]

”
ω

n
∏
j=1

[1+r−
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−r−
σ(j)(h)]

”
ω




,




n
∏
j=1

[1+p+
σ(j)(h)]

”
ω−

n
∏
j=1

[1−p+
σ(j)(h)]

”
ω

n
∏
j=1

[1+p+
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−p+
σ(j)(h)]

”
ω

,

n
∏
j=1

[1+q+
σ(j)(h)]

”
ω−

n
∏
j=1

[1−q+
σ(j)(h)]

”
ω

n
∏
j=1

[1+q+
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−q+
σ(j)(h)]

”
ω

,

n
∏
j=1

[1+r+
σ(j)(h)]

”
ω−

n
∏
j=1

[1−r+
σ(j)(h)]

”
ω

n
∏
j=1

[1+r+
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−r+
σ(j)(h)]

”
ω




,




2
n
∏
j=1

[pσ(j)(h)]
”
ω

n
∏
j=1

[(2−pσ(j)(h)]
”
ω+

n
∏
j=1

[pσ(j)(h)]
”
ω

,
2

n
∏
j=1

[qσ(j)(h)]
”
ω

n
∏
j=1

[(2−qσ(j)(h)]
”
ω+

n
∏
j=1

[qσ(j)(h)]
”
ω

,

2
n
∏
j=1

[rσ(j)(h)]
”
ω

n
∏
j=1

[(2−rσ(j)(h)]
”
ω+

n
∏
j=1

[rσ(j)(h)]
”
ω




〉

where (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) with
..
Aσ(1) ≤

..
Aσ(j−1) for all j = 2, 3, . . . , n,

..
ω = (

..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector of
..
Aj(j = 1, 2, . . . , n) such that

..
ω j ∈ [0, 1], and

n
∑

j=1

..
ω j = 1.

If
..
ω = (

..
ω1,

..
ω2, . . . ,

..
ωn)

T
= ( 1

n , 1
n , . . . , 1

n )
T

. Then the TNCFEOWA operator is reduced to the TNCFA
operator of dimension n. Where

..
ω = (

..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector of
..
Aj(j = 1, 2, . . . , n) such

that
..
ω j ∈ [0, 1] and

n
∑

j=1

..
ω j = 1. If α1(h) = α1(h), β1(h) = β1(h), ∆1(h) = ∆1(h), p−..

A
(h) = p−..

A
(h),

q−..
A
(h) = q−..

A
(h), r−..

A
(h) = r−..

A
(h), p+..

A
(h) = p+..

A
(h), q+..

A
(h) = q+..

A
(h), r+..

A
(h) = r+..

A
(h) and p ..

A
(h) = p ..

A
(h),
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q ..
A
(h) = q ..

A
(h), r ..

A
(h) = r ..

A
(h). The TNCFN

..
A =





[α ..
A
(h), β ..

A
(h),

∆ ..
A
(h)]

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H





are reduced to the triangular

neutrosophic cubic fuzzy numbers
..
A =





[α ..
A
(h), β ..

A
(h),

∆ ..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H





. Then the TNCFEWA operator is reduced to

the triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging operator.

Proof. The process of this proof is the same as Theorem 1. �

Example 5. Let C1 =





〈[0.01, 0.02, 0.03],
[0.103, 0.105, 0.107],
[0.105, 0.107, 0.109],
[0.104, 0.106, 0.108]〉





, C2 =





〈[0.306, 0.308, 0.310],
[0.310, 0.313, 0.315],
[0.313, 0.315, 0.317],
[0.312, 0.314, 0.316]〉





and

C3 =





〈[0.44, 0.55, 0.66],
[0.122, 0.124, 0.126],
[0.124, 0.126, 0.128],
[0.123, 0.125, 0.127]〉





be a TNCFN. Then the score function is defined by S(C1) =





〈[0.01 + 0.02 + 0.03],
[0.103 + 0.105 + 0.107]+
[0.105 + 0.107 + 0.109]−
[0.104 + 0.106 + 0.108]〉





27 = 0.00004, S(C2) =





〈[0.306 + 0.308 + 0.310],
[0.310 + 0.313 + 0.315]+
[0.313 + 0.315 + 0.317]−
[0.312 + 0.314 + 0.316]〉





27 = 0.0322, S(C3) =



〈[0.44 + 0.55 + 0.66],
[0.122 + 0.124 + 0.126]+
[0.124 + 0.126 + 0.128]−
[0.123 + 0.125 + 0.127]〉





27 = 0.0229.
See Figure 5.
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[0.01 0.02 0.03],
[0.103 0.105 0.107]
[0.105 0.107 0.109]
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Example 6. Let C1 =





〈[0.02, 0.03, 0.04],
[0.06, 0.08, 0.010],
[0.08, 0.010, 0.012],
[0.07, 0.09, 0.011]〉





, C2 =





〈[0.1105, 0.1107, 0.1109],
[0.1111, 0.1113, 0.1115],
[0.1113, 0.1115, 0.1117],
[0.1112, 0.1114, 0.1116]〉





and C3 =





〈[0.214, 0.215, 0.216],
[0.2202, 0.2204, 0.2206],
[0.2204, 0.2206, 0.2208],
[0.2203, 0.2205, 0.2207]〉





be a TNCFN. Then the accuracy function is defined by H(C1) =





〈[0.02, 0.03, 0.04],
[0.06, 0.08, 0.010],
[0.08, 0.010, 0.012],
[0.07, 0.09, 0.011]〉





27 = −0.0021, H(C2) =





〈[0.1105, 0.1107, 0.1109],
[0.1111, 0.1113, 0.1115],
[0.1113, 0.1115, 0.1117],
[0.1112, 0.1114, 0.1116]〉





27 = 0.0041, H(C3) =




〈[0.214, 0.215, 0.216],
[0.2202, 0.2204, 0.2206],
[0.2204, 0.2206, 0.2208],
[0.2203, 0.2205, 0.2207]〉





27 = 0.0158.
See Figure 6.
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4.3. Triangular Neutrosophic Cubic Fuzzy Einstein Hybrid Weighted Averaging Operator 

Definition 9. Let  
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4.3. Triangular Neutrosophic Cubic Fuzzy Einstein Hybrid Weighted Averaging Operator

Definition 9. Let
..
A =





[Γ ..
A
(h), Ω ..

A
(h),

..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H





be a collection of TNCFNs in LTNCFN and
..
ω =

(
..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector of
..
Aj(j = 1, 2, . . . , n) such that

..
ω j ∈ [0, 1] and

n
∑

j=1

..
ω j = 1.

Then TNCFEHWA operator of dimension n is a mapping TNCFEHWA : Ln
TNCFN → LTNCFN , that is

an associated vector w = (w1, w2, . . . , wn)
T such that wj ∈ [0, 1] and

n
∑

j=1
wj = 1. TNCFEHWA

(
..
A1,

..
A2, . . . ,

..
An) = p1

..
Aσ(1) + p2

..
Aσ(1), . . . , pn

..
Aσ(1). If p = θ

..
ωσ(j) + (1 − θ)wσ(j) with a balancing

coefficient θ ∈ [0, 1], (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that
..
Aσ(j) ≤

..
Aσ(j−1) for

all j = 2, 3, . . . , n (i.e.,
..
Aσ(j) is the j th largest value in the collection (

..
A1,

..
A2, . . . ,

..
An).

Example 7. Let C1 =





〈[0.11, 0.13, 0.14],
[0.62, 0.64, 0.66],
[0.64, 0.66, 0.68],
[0.63, 0.65, 0.67]〉





, C2 =





〈[0.51, 0.52, 0.53],
[0.311, 0.313, 0.315],
[0.313, 0.315, 0.317],
[0.312, 0.314, 0.316]〉





and C3 =





〈[0.1004, 0.1005, 0.1006],
[0.3102, 0.3104, 0.3106],
[0.3104, 0.3106, 0.3108],
[0.3103, 0.3105, 0.3107]〉





be a TNCFN. Then the score function is defined by S(C1) =





〈[0.11 + 0.13 + 0.14],
[0.62 + 0.64 + 0.66]+
[0.64 + 0.66 + 0.68]−
[0.63 + 0.65 + 0.67]〉





27 = 0.0281, S(C2) =





〈[0.51 + 0.52 + 0.53],
[0.311 + 0.313 + 0.315]+
[0.313 + 0.315 + 0.317]−
[0.312 + 0.314 + 0.316]〉





27 = 0.0543, S(C3) =




〈[0.1004, 0.1005, 0.1006],
[0.3102, 0.3104, 0.3106],
[0.3104, 0.3106, 0.3108],
[0.3103, 0.3105, 0.3107]〉





27 = 0.0104.
See Figure 7.
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Example 8. Let C1 =





〈[0.112, 0.113, 0.114],
[0.21, 0.24, 0.28],
[0.24, 0.28, 0.32],
[0.23, 0.26, 0.30]〉





, C2 =





〈[0.0019, 0.0021, 0.0034],
[0.1231, 0.1233, 0.1235],
[0.1233, 0.1235, 0.1237],
[0.1232, 0.1234, 0.1236]〉





and

C3 =





〈[0.2554, 0.2555, 0.2556],
[0.2662, 0.2664, 0.2666],
[0.2664, 0.2666, 0.2668],
[0.2663, 0.2665, 0.2667]〉





be a TNCFN. Then the accuracy function is defined by H(C1) =





〈[0.112 + 0.113 + 0.114],
[0.21 + 0.24 + 0.28]+
[0.24 + 0.28 + 0.32]−
[0.23 + 0.26 + 0.30]〉





27 = 0.0111, H(C2) =





〈[0.0019 + 0.0021 + 0.0034]
[0.1231 + 0.1233 + 0.1235]+
[0.1233 + 0.1235 + 0.1237]−
[0.1232 + 0.1234 + 0.1236]〉





27 = 0.1124,

H(C3) =





〈[0.2554, 0.2555, 0.2556],
[0.2662, 0.2664, 0.2666],
[0.2664, 0.2666, 0.2668],
[0.2663, 0.2665, 0.2667]〉





27 = 0.0226.
See Figure 8.
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[ ( ), ( ), ( )],
[ ( ), ( ), ( )],

( ) [ ( ), ( ), ( )],
( ), ( ), ( )

|

A A A

A A A

ij m n A A A

A A A

h h h
p h q h r h

D A p h q h r h
p h q h r h

h H

− − −

+ + +
×

Γ Ω Ε 
   = =  
  
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Step 1: Calculate the TNCF decision matrix. 
Step 2: Utilize the TNCFEWA operator to mix all values  ijβ  ( 1, 2,..., )j m=   and   ω  

1 2( , , ..., )T
nω ω ω=     is the weight vector.  

Figure 8. Different accuracy ranking of TNCFEHWA operator.
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5. An Approach to MADM with TNCF Data

Let us suppose the discrete set is h = {h1, h2, . . . , hn} and G = {g1, g2, . . . , gn} are the attributes.
Consider that the value of alternatives hi (i = 1, 2, . . . , n) on attributes gj (j = 1, 2, . . . , m) given by

decision maker are TNCFNs in LTNCFN :
..
A =





[Γ ..
A
(h), Ω ..

A
(h),

..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q+..

A
(h),

r+..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H





, a MADM problem is expressed

in the TNCF-decision matrix
...
D = (

..
Aij)m×n =





[Γ ..
A
(h), Ω ..

A
(h), ..

A
(h)],〈

[p−..
A
(h), q−..

A
(h), r−..

A
(h)],

[p+..
A
(h), q+..

A
(h), r+..

A
(h)],

p ..
A
(h), q ..

A
(h), r ..

A
(h)
〉

|h ∈ H





.

Step 1: Calculate the TNCF decision matrix.
Step 2: Utilize the TNCFEWA operator to mix all values

..
βij (j = 1, 2, . . . , m) and

..
ω =

(
..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector.
Step 3: Calculate the score function.
Step 4: Find the ranking.
See Figure 9.
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6. Numerical Application

The inspiration structure is designed to be dependent upon an assessment that has been devised
for the purpose of a stimulus/influencing technique of a twofold entire traveler dispersion to work
over the Lahore in Faisalabad by lessening the adventure stage in extraordinarily brimful waterway
movement. Inspiration structure choices are sure the settled of options A = {A1, A2, A3, A4}

A1 : Old-style propeller and high trundle
A2 : Get-up-and-go,
A3 : Cyclonical propeller,
A4 : Outmoded
See Figure 10.
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Figure 10. Four alternatives.

The ideal is prepared on the possibility of lone zone and four issue characteristics, which are
as follows:

c1 : Theory rate
c2 : Reparation and support uses
c3 : Agility
c4 : Tremor and unrest.
See Figure 11.
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The weight vector is
..
ω = (0.25, 0.50, 0.25). So, the triangular neutrosophic cubic fuzzy MADM

issue is intended to choose the appropriate energy structure from between 3 choices.

620



Symmetry 2019, 11, 180

Step 1: Calculate the TNCF decision matrix.
The TNCF decision matrix is as Table 2

Table 2. Triangular Neutrosophic Cubic Fuzzy Decision Matrix.

c1 c2

A1

〈 [0 .1, 0.2, 0 .3],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0 .9]

〉 〈 [0 .21, 0.22, 0 .23],
[0 .5, 0.7, 0 .9],
[0 .7, 0.9, 0 .11],
[0 .6, 0.8, 0 .10]

〉

A2

〈 [0 .21, 0.22, 0 .23],
[0 .5, 0.7, 0 .9],
[0 .7, 0.9, 0 .11],
[0 .6, 0.8, 0 .10]

〉 〈 [0 .1, 0.2, 0 .3],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0 .9]

〉

A3

〈 [0 .15, 0.16, 0 .17],
[0 .12, 0.14, 0 .16],
[0 .14, 0.16, 0 .18],
[0 .13, 0.15, 0 .17]

〉 〈 [0 .3, 0.4, 0 .5],
[0 .2, 0.4, 0 .6],
[0 .4, 0.6, 0 .8],
[0 .3, 0.5, 0 .7]

〉

A4

〈 [0 .3, 0.4, 0 .5],
[0 .2, 0.4, 0 .6],
[0 .4, 0.6, 0 .8],
[0 .3, 0.5, 0 .7]

〉 〈 [0 .15, 0.16, 0 .17],
[0 .12, 0.14, 0 .16],
[0 .14, 0.16, 0 .18],
[0 .13, 0.15, 0 .17]

〉

c3 c4

A1

〈 [0 .15, 0.16, 0 .17],
[0 .12, 0.14, 0 .16],
[0 .14, 0.16, 0 .18],
[0 .13, 0.15, 0 .17]

〉 〈 [0 .21, 0.22, 0 .23],
[0 .5, 0.7, 0 .9],
[0 .7, 0.9, 0 .11],
[0 .6, 0.8, 0 .10]

〉

A2

〈 [0 .3, 0.4, 0 .5],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0 .9]

〉 〈 [0 .15, 0.16, 0 .17],
[0 .12, 0.14, 0 .16],
[0 .14, 0.16, 0 .18],
[0 .13, 0.15, 0 .17]

〉

A3

〈 [0 .1, 0.2, 0 .3],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0 .9]

〉 〈 [0 .3, 0.4, 0 .5],
[0 .2, 0.4, 0 .6],
[0 .4, 0.6, 0 .8],
[0 .3, 0.5, 0 .7]

〉

A4

〈 [0 .21, 0.22, 0 .23],
[0 .5, 0.7, 0 .9],
[0 .7, 0.9, 0 .11],
[0 .6, 0.8, 0 .10]

〉 〈 [0 .1, 0.2, 0 .3],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0.9]

〉

Step 2: Calculate the TNCFEWA operator to total all the rating values and w = (0.1, 0.2, 0.4, 0.3)T .
The TNCFEWA operator are defined in Table 3.

Table 3. TNCFEWA Operator.

A1

{〈
[0 .2539, 0.2751, 0 .2965], [0 .1628, 0.2513, 0 .3973],
[0 .2513, 0.3973, 0 .0503], [0 .7335, 0.8054, 0 .6003]

〉}

A2

{〈
[0 .1536, 0.1995, 0 .2477], [0 .2944, 0.3597, 0 .6447],
[0 .3597, 0.6447, 0 .0988], [0 .4838, 0.6067, 0 .4831]

〉}

A3

{〈
[0 .3481, 0.4499, 0 .5594], [0 .3626, 0.5867, 0 .7852],
[0 .5867, 0.7852, 0 .7582], [0 .1049, 0.2122, 0 .3571]

〉}

A4

{〈
[0 .2282, 0.2945, 0 .3622], [0 .3704, 0.5631, 0 .7729],
[0 .5631, 0.7729, 0 .4197], [0 .2593, 0.3985, 0 .2735]

〉}

Step 3: The score value are calculated as s1 = −0.0192, s2 = 0.0184, s3 = 0.1603, s4 = 0.0829.
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Step 4: Ranking
..
s3 >

..
s4 >

..
s2 >

..
s1.

See Figure 12.
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7. Comparsion Analysis

So as to check the legitimacy and viability of the proposed methodology, a near report is led
utilizing the techniques triangular cubic fuzzy number [21], which are unique instances of TNCFNs, to
the equivalent illustrative model.

A Comparison Analysis with the Existing MCDM Method Triangular Cubic Fuzzy Number

Aliya et al [21] after transformation, the triangular cubic fuzzy information is given in Table 4.

Table 4. Triangular cubic fuzzy decision matrix.

c1 c2 c3 c4

A1

{
[0 .1, 0.2, 0 .3],
〈[0 .4, 0 .8], 0.7〉

}{
[0 .21, 0.22, 0 .23],
〈[0 .5, 0 .9], 0.8〉

}{
[0 .15, 0.16, 0 .17],
〈[0 .12, 0 .16], 0.15〉

}{
[0 .21, 0.22, 0 .23],
〈[0 .5, 0 .9], 0.8〉

}

A2

{
[0 .21, 0.22, 0 .23],
〈[0 .5, 0 .9], 0.8〉

}{
[0 .1, 0.2, 0 .3],
〈[0 .4, 0 .8], 0.7〉

}{
[0 .3, 0.4, 0 .5],
〈[0 .2, 0 .6], 0.4〉

}{
[0 .15, 0.16, 0 .17],
〈[0 .12, 0 .16], 0.15〉

}

A3

{
[0 .15, 0.16, 0 .17],
〈[0 .12, 0 .16], 0.15〉

}{
[0 .3, 0.4, 0 .5],
〈[0 .2, 0 .6], 0.4〉

}{
[0 .1, 0.2, 0 .3],
〈[0 .4, 0 .8], 0.7〉

}{
[0 .3, 0.4, 0 .5],
〈[0 .2, 0 .6], 0.5〉

}

A4

{
[0 .3, 0.4, 0 .5],
〈[0 .2, 0 .6], 0.4〉

}{
[0 .15, 0.16, 0 .17],
〈[0 .12, 0 .16], 0.15〉

}{
[0 .21, 0.22, 0 .23],
〈[0 .5, 0 .9], 0.8〉

}{
[0 .1, 0.2, 0 .3],
〈[0 .4, 0 .8], 0.7〉

}

Calculate the TCFA operator and w = (0.1, 0.2, 0.4, 0.3)T .
The TCFA operator is presented in Table 5.

Table 5. TCFA operator.

A1 〈[0 .067, 0.081, 0 .093], [0 .1833, 0 .4721], 0.1384〉
A2 〈[0 .152, 0.196, 0 .24], [0 .2672, 0 .6329], 0.5073〉
A3 〈[0 .42, 0.464, 0 .588], [0 .4631, 0 .7646], 0.2132〉
A4 〈[0 .228, 0.294, 0 .36], [0 .3727, 0 .7771], 0.3613〉

Calculate the score function s1 = 0.0138, s2 = 0.0256, s3 = 0.1659, s4 = 0.0772.
See Figure 13.
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Figure 13. s3 is the first ranking, s4 is the 2nd ranking, s2 is the third ranking and s1 is the 4th ranking
in the TCFN.

The existing Table 6 is as

Table 6. Comparison method with existing methods.

Method Ranking

TNCFNs
..
s3 >

..
s4 >

..
s2 >

..
s1

TCFN [21]
..
s3 >

..
s4 >

..
s2 >

..
s1

See Figure 14.
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The comparison method of score function is presented in Table 7.

Table 7. Comparison method with score function.

Score function Ranking

TNCFEWA operator S(C3) > S(C2) > S(C1)
TNCFEOWA operator S(C1) > S(C2) > S(C3)
TNCFEHWA operator S(C2) > S(C1) > S(C3)

See Figure 15.
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8. Conclusions

In this paper, we introduce a new concept of TNCFNs and operational laws. We introduce
three aggregation operators, namely, the TNCFEWA operator, TNCFEOWA operator and TNCFEWA
operator. We introduce group decision making under TNCFNs. Finally, a numerical example
is provided to demonstrate the utility of the established approach. In cluster decision-making
issues, consultants sometimes return from completely different specialty fields and have different
backgrounds and levels of data; as such, they sometimes have branching opinions. These operators
may be applied to several different fields, like data fusion, data processing, and pattern recognition,
triangular neutrosophic cube like linguistic fuzzy Vikor methodology and quadrangle neutrosophic
cube linguistic fuzzy Vikor methodology, which may be a suitable topic for longer term analysis, see
Figure 16.
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Appendix A: Proof of Proposition 1 

(1)  1 2 2 1;A A A A+ = +   
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Hence  1 2 2 1.A A A A+ = +   

(2)  1 2 2 1( )A A A Aλ λ λ+ = +   

Figure 16. Flowcharts of whole papers.

Author Contributions: All authors contributed equally to this paper.

624



Symmetry 2019, 11, 180

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Proposition 1

(1) A1 + A2 = A2 + A1;

A1 + A2 =





〈
[ α1(h)+α2(h)
(1+α1(h))(1−α2(h))

, β1(h)+β2(h)
(1+β1(h))(1−β2(h))

, ∆1(h)+∆2(h)
(1+∆1(h))(1−∆2(h))

],


[
p−1 (h)+p−2 (h)

(1+p−1 (h))(1−p−2 (h))
, q−1 (h)+q−2 (h)
(1+q−1 (h))(1−q−2 (h))

, r−1 (h)+r−2 (h)
(1+r−1 (h))(1−r−2 (h))

],

[
p+1 (h)+p+2 (h)

(1+p+1 (h))(1−p+2 (h))
, q+1 (h)+q+2 (h)
(1+q+1 (h))(1−q+2 (h))

, r+1 (h)+r+2 (h)
(1+r+1 (h))(1−r+2 (h))

]


,

[
[ p1(h)p2(h)

1+((1−p1(h)) (1−p2(h)))
, q1(h)q2(h)

1+((1−q1(h)) (1−q2(h)))
, r1(h)r2(h)

1+((1−r1(h)) (1−r2(h)))
]
] 〉





=





〈
[ α2(h)+α1(h)
(1+α2(h))(1−α1(h))

, β2(h)+β1(h)
(1+β2(h))(1−β1(h))

, ∆2(h)+∆1(h)
(1+∆2(h))(1−∆1(h))

],


[
p−2 (h)+p−1 (h)

(1+p−2 (h))(1−p−1 (h))
, q−2 (h)+q−1 (h)
(1+q−2 (h))(1−q−1 (h))

, r−2 (h)+r−1 (h)
(1+r−2 (h))(1−r−1 (h))

],

[
p+2 (h)+p+1 (h)

(1+p+2 (h))(1−p+1 (h))
, q+2 (h)+q+1 (h)
(1+q+2 (h))(1−q+1 (h))

, r+2 (h)+r+1 (h)
(1+r+2 (h))(1−r+1 (h))

],


,

[
[ p2(h)p1(h)

1+((1−p2(h)) (1−p1(h)))
, q2(h)q1(h)

1+((1−q2(h)) (1−q1(h)))
, r2(h).r1(h)

1+((1−r2(h)) (1−r1(h)))
]
] 〉





= A2 + A1

Hence A1 + A2 = A2 + A1.
(2) λ(A1 + A2) = λA2 + λA1

λ(A1 + A2) =

〈



[(1+α1(h))(1−α1(h))]
λ [((1+α2(h))(1−α2(h))]

λ

[(1+α1(h))(1−α1(h))]
λ [(1+α2(h))(1−α2(h))]

λ ,

[(1+β1(h))(1−β1(h))]
λ [((1+β2(h))(1−β2(h))]

λ

[(1+β1(h))(1−β1(h))]
λ [(1+β2(h))(1−β2(h))]

λ ,

[(1+∆1(h))(1−∆1(h))]
λ [((1+∆2(h))(1−∆2(h))]

λ

[(1+∆1(h))(1−∆1(h))]
λ [(1+∆2(h))(1−∆2(h))]

λ




,




[
[(1+p−1 (h))(1−p−1 (h))]λ [(1+p−2 (h))(1−p−2 (h))]λ

[(1+p−1 (h))(1−p−1 (h))]λ [(1+p−2 (h))(1−p−2 (h))]λ
,

[(1+q−1 (h))(1−q−1 (h))]λ [(1+q−2 (h))(1−q−2 (h))]λ

[(1+q−1 (h))(1−q−1 (h))]λ [(1+q−2 (h))(1−q−2 (h))]λ
,

[(1+r−1 (h))(1−r−1 (h))]λ [(1+r−2 (h))(1−r−2 (h))]λ

[(1+r−1 (h))(1−r−1 (h))]λ [(1+r−2 (h))(1−r−2 (h))]λ
]

[
[(1+p+1 (h))(1−p+1 (h))]λ [(1+p+2 (h))(1−p+2 (h))]λ

[(1+p+1 (h))(1−p+1 (h))]λ [(1+p+2 (h))(1−p+2 (h))]λ
,

[(1+q+1 (h))(1−q+1 (h))]λ [(1+q+2 (h))(1−q+2 (h))]λ

[(1+q+1 (h))(1−q+1 (h))]λ [(1+q+2 (h))(1−q+2 (h))]λ
,

[(1+r+1 (h))(1−r+1 (h))]λ [(1+r+2 (h))(1−r+2 (h))]λ

[(1+r+1 (h))(1−r+1 (h))]λ [(1+r+2 (h))(1−r+2 (h))]λ
]




,




[ 2[p1(h)p2(h)]
λ

[(4−2p1(h)−2p2(h)−p1(h)p2(h)]
λ+[p1(h)p2(h)]

λ ,

2[q1(h)q2(h)]
λ

[(4−2q1(h)−2q2(h)−q1(h)q2(h)]
λ+[q1(h)q2(h)]

λ ,

2[r1(h)r2(h)]
λ

[(4−2r1(h)−2r2(h)−r1(h)r2(h)]
λ+[r1(h)r2(h)]

λ ]

]〉

and we have

λA1 =
〈




[(1+α1(h))]
λ−[(1−α1(h))]

λ

[(1+α1(h))]
λ+[(1−α1(h))]

λ ,

[(1+β1(h))]
λ−[(1−β1(h))]

λ

[(1+β1(h))]
λ+[(1−β1(h))]

λ ,

[(1+∆1(h))]
λ−[(1−∆1(h))]

λ

[(1+∆1(h))]
λ+[(1−∆1(h))]

λ




,




[
[(1+p−1 (h))λ−(1−p−1 (h))λ

]

[(1+p−1 (h))λ
+(1−p−1 (h))λ

]
,

[(1+q−1 (h))λ−(1−q−1 (h))λ
]

[(1+q−1 (h))λ
+(1−q−1 (h))λ

]
, [(1+r−1 (h))λ−(1−r−1 (h))λ

]

[(1+r−1 (h))λ
+(1−r−1 (h))λ

]
]

[
[(1+p+1 (h))λ−(1−p+1 (h))λ

]

[(1+p+1 (h))λ
+(1−p+1 (h))λ

]
,

[(1+q+1 (h))λ−(1−q+1 (h))λ
]

[(1+q+1 (h))λ
+(1−q+1 (h))λ

]
, [(1+r+1 (h))λ−(1−r+1 (h))λ

]

[(1+r+1 (h))λ
+(1−r+1 (h))λ

]
]




,




[
2pλ

1 (h)

[(2−p1(h)]
λ+[p1(h)]

λ ,
2qλ

1 (h)

[(2−q1(h)]
λ+[q1(h)]

λ , 2rλ
1 (h)

[(2−r1(h)]
λ+[r1(h)]

λ ]



〉
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λA2 =
〈




[(1+α2(h))]
λ−[(1−α2(h))]

λ

[(1+α2(h))]
λ+[(1−α2(h))]

λ ,

[(1+β2(h))]
λ−[(1−β2(h))]

λ

[(1+β2(h))]
λ+[(1−β2(h))]

λ ,

[(1+∆2(h))]
λ−[(1−∆2(h))]

λ

[(1+∆2(h))]
λ+[(1−∆2(h))]

λ




,




[
[(1+p−2 (h))λ−(1−p−2 (h))λ

]

[(1+p−2 (h))λ
+(1−p−2 (h))λ

]
,

[(1+q−2 (h))λ−(1−q−2 (h))λ
]

[(1+q−2 (h))λ
+(1−q−2 (h))λ

]
, [(1+r−2 (h))λ−(1−r−2 (h))λ

]

[(1+r−2 (h))λ
+(1−r−2 (h))λ

]
],

[
[(1+p+2 (h))λ−(1−p+2 (h))λ

]

[(1+p+2 (h))λ
+(1−p+2 (h))λ

]
,

[(1+q+2 (h))λ−(1−q+2 (h))λ
]

[(1+q+2 (h))λ
+(1−q+2 (h))λ

]
, [(1+r+2 (h))λ−(1−r+2 (h))λ

]

[(1+r+2 (h))λ
+(1−r+2 (h))λ

]
]




,




[
2pλ

2 (h)
[(2−p2(h)]

λ+[p2(h)]
λ ,

2qλ
2 (h)

[(2−q2(h)]
λ+[q2(h)]

λ , 2rλ
2 (h)

[(2−r2(h)]
λ+[r2(h)]

λ ]



〉

λA2 + λA1 =
〈




[(1+α2(h))(1−α2(h))]
λ [((1+α1(h))(1−α1(h))]

λ

[(1+α2(h))(1−α2(h))]
λ [(1+α1(h))(1−α1(h))]

λ ,

[(1+β2(h))(1−β2(h))]
λ [((1+β1(h))(1−β1(h))]

λ

[(1+β2(h))(1−β2(h))]
λ [(1+β1(h))(1−β1(h))]

λ ,

[(1+∆2(h))(1−∆2(h))]
λ [((1+∆1(h))(1−∆1(h))]

λ

[(1+∆2(h))(1−∆2(h))]
λ [(1+∆1(h))(1−∆1(h))]

λ




,




[
[(1+p−2 (h))(1−p−2 (h))]λ [(1+p−1 (h))(1−p−1 (h))]λ

[(1+p−2 (h))(1−p−2 (h))]λ [(1+p−1 (h))(1−p−1 (h))]λ
,

[(1+q−2 (h))(1−q−2 (h))]λ [(1+q−1 (h))(1−q−1 (h))]λ

[(1+q−2 (h))(1−q−2 (h))]λ [(1+q−1 (h))(1−q−1 (h))]λ
,

[(1+r−2 (h))(1−r−2 (h))]λ [(1+r−1 (h))(1−r−1 (h))]λ

[(1+r−2 (h))(1−r−2 (h))]λ [(1+r−1 (h))(1−r−1 (h))]λ
]

[
[(1+p+2 (h))(1−p+2 (h))]λ [(1+p+1 (h))(1−p+1 (h))]λ

[(1+p+2 (h))(1−p+2 (h))]λ [(1+p+1 (h))(1−p+1 (h))]λ
,

[(1+q+2 (h))(1−q+2 (h))]λ [(1+q+1 (h))(1−q+1 (h))]λ

[(1+q+2 (h))(1−q+2 (h))]λ [(1+q+1 (h))(1−q+1 (h))]λ
,

[(1+r+2 (h))(1−r+2 (h))]λ [(1+r+1 (h))(1−r+1 (h))]λ

[(1+r+2 (h))(1−r+2 (h))]λ [(1+r+1 (h))(1−r+1 (h))]λ
]




,




[ 2[p2(h)p1(h)]
λ

[(4−2p2(h)−2p1(h)−p2(h)p1(h)]
λ+[p2(h)p1(h)]

λ ,

2[q2(h)q1(h)]
λ

[(4−2q2(h)−2q1(h)−q2(h)q1(h)]
λ+[q2(h)q1(h)]

λ ,

2[r2(h)r1(h)]
λ

[(4−2r2(h)−2r1(h)−r2(h)r1(h)]
λ+[r2(h)r1(h)]

λ ]




〉

so, we have λ(A1 + A2) = λA2 + λA1.
(3) λ1 A + λ2 A = (λ1 + λ2)A

λ1 A =
〈




[(1+αA(h))]
λ1−[(1−αA(h))]

λ1

[(1+αA(h))]
λ1+[(1−αA(h))]

λ1
,

[(1+βA(h))]
λ1−[(1−βA(h))]

λ1

[(1+βA(h))]
λ1+[(1−βA(h))]

λ1
,

[(1+∆A(h))]
λ1−[(1−∆A(h))]

λ1

[(1+∆A(h))]
λ1+[(1−∆A(h))]

λ1




,




[
[1+p−A(h)]

λ1−[1−p−A(h)]
λ1

[1+p−A(h)]
λ1+[1−p−A(h)]

λ1
,

[1+q−A(h)]
λ1−[1−q−A(h)]

λ1

[1+q−A(h)]
λ1+[1−q−A(h)]

λ1
, [1+r−A (h)]

λ1−[1−r−A (h)]
λ1

[1+r−A (h)]
λ1+[1−r−A (h)]

λ1
]

[
[1+p+A(h)]

λ1−[1−p+A(h)]
λ1

[1+p+A(h)]
λ1+[1−p+A(h)]

λ1
,

[1+q+A(h)]
λ1−[1−q+A(h)]

λ1

[1+q+A(h)]
λ1+[1−q+A(h)]

λ1
, [1+r+A (h)]

λ1−[1−r+A (h)]
λ1

[1+r+A (h)]
λ1+[1−r+A (h)]

λ1
]

,







[ 2[pA(h)]
λ1

[(2−pA(h)]
λ1+[pA(h)]

λ1
,

2[qA(h)]
λ1

[(2−qA(h)]
λ1+[qA(h)]

λ1
, 2[rA(h)]

λ1

[(2−rA(h)]
λ1+[rA(h)]

λ1
]



〉

and λ2 A =

〈



[(1+αA(h))]
λ2−[(1−αA(h))]

λ2

[(1+αA(h))]
λ2+[(1−αA(h))]

λ2
,

[(1+βA(h))]
λ2−[(1−βA(h))]

λ2

[(1+βA(h))]
λ2+[(1−βA(h))]

λ2
,

[(1+∆A(h))]
λ2−[(1−∆A(h))]

λ2

[(1+∆A(h))]
λ2+[(1−∆A(h))]

λ2




,




[
[1+p−A(h)]

λ2−[1−p−A(h)]
λ2

[1+p−A(h)]
λ2+[1−p−A(h)]

λ2
, [1+q−A(h)]

λ2−[1−q−A(h)]
λ2

[1+q−A(h)]
λ2+[1−q−A(h)]

λ2
,

[1+r−A (h)]
λ2−[1−r−A (h)]

λ2

[1+r−A (h)]
λ2+[1−r−A (h)]

λ2
], [ [1+p+A(h)]

λ2−[1−p+A(h)]
λ2

[1+p+A(h)]
λ2+[1−p+A(h)]

λ2
,

[1+q+A(h)]
λ2−[1−q+A(h)]

λ2

[1+q+A(h)]
λ2+[1−q+A(h)]

λ2
, [1+r+A (h)]

λ2−[1−r+A (h)]
λ2

[1+r+A (h)]
λ2+[1−r+A (h)]

λ2
]




,

[
[ 2[pA(h)]

λ2

[(2−pA(h)]
λ2+[pA(h)]

λ2
, 2[qA(h)]

λ2

[(2−qA(h)]
λ2+[qA(h)]

λ2
, 2[rA(h)]

λ2

[(2−rA(h)]
λ2+[rA(h)]

λ2
]

]〉
=
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〈



[1+αA(h)]
λ1+λ2−[1−αA(h)]

λ1+λ2

[1+αA(h)]
λ1+λ2+[1−αA(h)]

λ1+λ2
, [1+βA(h)]

λ1+λ2−[1−βA(h)]
λ1+λ2

[1+βA(h)]
λ1+λ2+[1−βA(h)]

λ1+λ2
,

[1+∆A(h)]
λ1+λ2−[1−∆A(h)]

λ1+λ2

[1+∆A(h)]
λ1+λ2+[1−∆A(h)]

λ1+λ2


,




[
[1+p−A(h)]

λ1+λ2−[1−p−A(h)]
λ1+λ2

[1+p−A(h)]
λ1+λ2+[1−p−A(h)]

λ1+λ2
, [1+q−A(h)]

λ1+λ2−[1−q−A(h)]
λ1+λ2

[1+q−A(h)]
λ1+λ2+[1−q−A(h)]

λ1+λ2
,

[1+r−A (h)]
λ1+λ2−[1−r−A (h)]

λ1+λ2

[1+r−A (h)]
λ1+λ2+[1−r−A (h)]

λ1+λ2
], [ [1+p+A(h)]

λ1+λ2−[1−p+A(h)]
λ1+λ2

[1+p+A(h)]
λ1+λ2+[1−p+A(h)]

λ1+λ2
,

[1+q+A(h)]
λ1+λ2−[1−q+A(h)]

λ1+λ2

[1+q+A(h)]
λ1+λ2+[1−q+A(h)]

λ1+λ2
, [1+r+A (h)]

λ1+λ2−[1−r+A (h)]
λ1+λ2

[1+r+A (h)]
λ1+λ2+[1−r+A (h)]

λ1+λ2
]




,




[ 2[pA(h)]
λ1+λ2

[(2−pA(h)]
λ1+λ2+[pA(h)]

λ1+λ2
,

2[qA(h)]
λ1+λ2

[(2−qA(h)]
λ1+λ2+[qA(h)]

λ1+λ2
, 2[rA(h)]

λ1+λ2

[(2−rA(h)]
λ1+λ2+[rA(h)]

λ1+λ2
]



〉
= (λ1 + λ2)A.

Appendix B. Proof of Theorem 1

Assume that n = 1, TCFEWA (A1, A2, . . . , An) =
k⊕

j=1
w1 A1 〈(λ(A1 + A2) = λA2 + λA1

λ(A1 + A2) =




[(1+α1(h))(1−α1(h))]
λ [((1+α2(h))(1−α2(h))]

λ

[(1+α1(h))(1−α1(h))]
λ [(1+α2(h))(1−α2(h))]

λ ,

[(1+β1(h))(1−β1(h))]
λ [((1+β2(h))(1−β2(h))]

λ

[(1+β1(h))(1−β1(h))]
λ [(1+β2(h))(1−β2(h))]

λ ,

[(1+∆1(h))(1−∆1(h))]
λ [((1+∆2(h))(1−∆2(h))]

λ

[(1+∆1(h))(1−∆1(h))]
λ [(1+∆2(h))(1−∆2(h))]

λ




,
〈




[
[(1+p−1 (h))(1−p−1 (h))]λ [(1+p−2 (h))(1−p−2 (h))]λ

[(1+p−1 (h))(1−p−1 (h))]λ [(1+p−2 (h))(1−p−2 (h))]λ
,

[(1+q−1 (h))(1−q−1 (h))]λ [(1+q−2 (h))(1−q−2 (h))]λ

[(1+q−1 (h))(1−q−1 (h))]λ [(1+q−2 (h))(1−q−2 (h))]λ
,

[(1+r−1 (h))(1−r−1 (h))]λ [(1+r−2 (h))(1−r−2 (h))]λ

[(1+r−1 (h))(1−r−1 (h))]λ [(1+r−2 (h))(1−r−2 (h))]λ
]

, [ [(1+p+1 (h))(1−p+1 (h))]λ [(1+p+2 (h))(1−p+2 (h))]λ

[(1+p+1 (h))(1−p+1 (h))]λ [(1+p+2 (h))(1−p+2 (h))]λ
,

[(1+q+1 (h))(1−q+1 (h))]λ [(1+q+2 (h))(1−q+2 (h))]λ

[(1+q+1 (h))(1−q+1 (h))]λ [(1+q+2 (h))(1−q+2 (h))]λ
,

[(1+r+1 (h))(1−r+1 (h))]λ [(1+r+2 (h))(1−r+2 (h))]λ

[(1+r+1 (h))(1−r+1 (h))]λ [(1+r+2 (h))(1−r+2 (h))]λ
]




,




[ 2[p1(h)p2(h)]
λ

[(4−2p1(h)−2p2(h)−p1(h)p2(h)]
λ+[p1(h)p2(h)]

λ ,

2[q1(h)q2(h)]
λ

[(4−2q1(h)−2q2(h)−q1(h)q2(h)]
λ+[q1(h)q2(h)]

λ ,

2[r1(h)r2(h)]
λ

[(4−2r1(h)−2r2(h)−r1(h)r2(h)]
λ+[r1(h)r2(h)]

λ ]




〉
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and we have

λA1 =
〈




[(1+α1(h))]
λ−[(1−α1(h))]

λ

[(1+α1(h))]
λ+[(1−α1(h))]

λ ,

[(1+β1(h))]
λ−[(1−β1(h))]

λ

[(1+β1(h))]
λ+[(1−β1(h))]

λ ,

[(1+∆1(h))]
λ−[(1−∆1(h))]

λ

[(1+∆1(h))]
λ+[(1−∆1(h))]

λ




,




[
[(1+p−1 (h))λ−(1−p−1 (h))λ

]

[(1+p−1 (h))λ
+(1−p−1 (h))λ

]
,

[(1+q−1 (h))λ−(1−q−1 (h))λ
]

[(1+q−1 (h))λ
+(1−q−1 (h))λ

]
, [(1+r−1 (h))λ−(1−r−1 (h))λ

]

[(1+r−1 (h))λ
+(1−r−1 (h))λ

]
]

[
[(1+p+1 (h))λ−(1−p+1 (h))λ

]

[(1+p+1 (h))λ
+(1−p+1 (h))λ

]
,

[(1+q+1 (h))λ−(1−q+1 (h))λ
]

[(1+q+1 (h))λ
+(1−q+1 (h))λ

]
, [(1+r+1 (h))λ−(1−r+1 (h))λ

]

[(1+r+1 (h))λ
+(1−r+1 (h))λ

]
]




,




[
2pλ

1 (h)

[(2−p1(h)]
λ+[p1(h)]

λ ,
2qλ

1 (h)

[(2−q1(h)]
λ+[q1(h)]

λ ,
2rλ

1 (h)

[(2−r1(h)]
λ+[r1(h)]

λ ]




〉

λA2 =
〈




[(1+α2(h))]
λ−[(1−α2(h))]

λ

[(1+α2(h))]
λ+[(1−α2(h))]

λ ,

[(1+β2(h))]
λ−[(1−β2(h))]

λ

[(1+β2(h))]
λ+[(1−β2(h))]

λ ,

[(1+∆2(h))]
λ−[(1−∆2(h))]

λ

[(1+∆2(h))]
λ+[(1−∆2(h))]

λ




,




[
[(1+p−2 (h))λ−(1−p−2 (h))λ

]

[(1+p−2 (h))λ
+(1−p−2 (h))λ

]
,

[(1+q−2 (h))λ−(1−q−2 (h))λ
]

[(1+q−2 (h))λ
+(1−q−2 (h))λ

]
, [(1+r−2 (h))λ−(1−r−2 (h))λ

]

[(1+r−2 (h))λ
+(1−r−2 (h))λ

]
]

[
[(1+p+2 (h))λ−(1−p+2 (h))λ

]

[(1+p+2 (h))λ
+(1−p+2 (h))λ

]
,

[(1+q+2 (h))λ−(1−q+2 (h))λ
]

[(1+q+2 (h))λ
+(1−q+2 (h))λ

]
, [(1+r+2 (h))λ−(1−r+2 (h))λ

]

[(1+r+2 (h))λ
+(1−r+2 (h))λ

]
]




,




[
2pλ

2 (h)
[(2−p2(h)]

λ+[p2(h)]
λ , 2qλ

2 (h)
[(2−q2(h)]

λ+[q2(h)]
λ ,

2rλ
2 (h)

[(2−r2(h)]
λ+[r2(h)]

λ ]



〉

λA2 + λA1 =
〈




[(1+α2(h))(1−α2(h))]
λ [((1+α1(h))(1−α1(h))]

λ

[(1+α2(h))(1−α2(h))]
λ [(1+α1(h))(1−α1(h))]

λ ,

[(1+β2(h))(1−β2(h))]
λ [((1+β1(h))(1−β1(h))]

λ

[(1+β2(h))(1−β2(h))]
λ [(1+β1(h))(1−β1(h))]

λ ,

[(1+∆2(h))(1−∆2(h))]
λ [((1+∆1(h))(1−∆1(h))]

λ

[(1+∆2(h))(1−∆2(h))]
λ [(1+∆1(h))(1−∆1(h))]

λ




,




[
[(1+p−2 (h))(1−p−2 (h))]λ [(1+p−1 (h))(1−p−1 (h))]λ

[(1+p−2 (h))(1−p−2 (h))]λ [(1+p−1 (h))(1−p−1 (h))]λ
,

[(1+q−2 (h))(1−q−2 (h))]λ [(1+q−1 (h))(1−q−1 (h))]λ

[(1+q−2 (h))(1−q−2 (h))]λ [(1+q−1 (h))(1−q−1 (h))]λ
,

[(1+r−2 (h))(1−r−2 (h))]λ [(1+r−1 (h))(1−r−1 (h))]λ

[(1+r−2 (h))(1−r−2 (h))]λ [(1+r−1 (h))(1−r−1 (h))]λ
]

[
[(1+p+2 (h))(1−p+2 (h))]λ [(1+p+1 (h))(1−p+1 (h))]λ

[(1+p+2 (h))(1−p+2 (h))]λ [(1+p+1 (h))(1−p+1 (h))]λ
,

[(1+q+2 (h))(1−q+2 (h))]λ [(1+q+1 (h))(1−q+1 (h))]λ

[(1+q+2 (h))(1−q+2 (h))]λ [(1+q+1 (h))(1−q+1 (h))]λ
,

[(1+r+2 (h))(1−r+2 (h))]λ [(1+r+1 (h))(1−r+1 (h))]λ

[(1+r+2 (h))(1−r+2 (h))]λ [(1+r+1 (h))(1−r+1 (h))]λ
]




,




[ 2[p2(h)p1(h)]
λ

[(4−2p2(h)−2p1(h)−p2(h)p1(h)]
λ+[p2(h)p1(h)]

λ ,

2[q2(h)q1(h)]
λ

[(4−2q2(h)−2q1(h)−q2(h)q1(h)]
λ+[q2(h)q1(h)]

λ ,

2[r2(h)r1(h)]
λ

[(4−2r2(h)−2r1(h)−r2(h)r1(h)]
λ+[s2(h)s1(h)]

λ ]




〉

so, we have λ(A1 + A2) = λA2 + λA1.
λ1 A + λ2 A = (λ1 + λ2)A

λ1 A =
〈



[1+αA(h)]
λ1−[1−αA(h)]

λ1

[1+αA(h)]
λ1+[1−αA(h)]

λ1
, [1+βA(h)]

λ1−[1−βA(h)]
λ1

[1+βA(h)]
λ1+[1−βA(h)]

λ1
,

[1+∆A(h)]
λ1−[1−∆A(h)]

λ1

[1+∆A(h)]
λ1+[1−∆A(h)]

λ1


,




[
[1+p−A(h)]

λ1−[1−p−A(h)]
λ1

[1+p−A(h)]
λ1+[1−p−A(h)]

λ1
, [1+q−A(h)]

λ1−[1−q−A(h)]
λ1

[1+q−A(h)]
λ1+[1−q−A(h)]

λ1
, [1+r−A (h)]

λ1−[1−r−A (h)]
λ1

[1+r−A (h)]
λ1+[1−r−A (h)]

λ1
]

[
[1+p+A(h)]

λ1−[1−p+A(h)]
λ1

[1+p+A(h)]
λ1+[1−p+A(h)]

λ1
, [1+q+A(h)]

λ1−[1−q+A(h)]
λ1

[1+q+A(h)]
λ1+[1−q+A(h)]

λ1
, [1+r+A (h)]

λ1−[1−r+A (h)]
λ1

[1+r+A (h)]
λ1+[1−r+A (h)]

λ1
]


,

[
2[pA(h)]

λ1

[(2−pA(h)]
λ1+[pA(h)]

λ1
, 2[qA(h)]

λ1

[(2−qA(h)]
λ1+[qA(h)]

λ1
, 2[rA(h)]

λ1

[(2−rA(h)]
λ1+[rA(h)]

λ1

] 〉

and λ2 A =

〈



[1+αA(h)]
λ2−[1−αA(h)]

λ2

[1+αA(h)]
λ2+[1−αA(h)]

λ2
,

[1+βA(h)]
λ2−[1−βA(h)]

λ2

[1+βA(h)]
λ2+[1−βA(h)]

λ2
,

[1+∆A(h)]
λ2−[1−∆A(h)]

λ2

[1+∆A(h)]
λ2+[1−∆A(h)]

λ2




,




[
[1+p−A(h)]

λ2−[1−p−A(h)]
λ2

[1+p−A(h)]
λ2+[1−p−A(h)]

λ2
, [1+q−A(h)]

λ2−[1−q−A(h)]
λ2

[1+q−A(h)]
λ2+[1−q−A(h)]

λ2
,

[1+r−A (h)]
λ2−[1−r−A (h)]

λ2

[1+r−A (h)]
λ2+[1−r−A (h)]

λ2
], [ [1+p+A(h)]

λ2−[1−p+A(h)]
λ2

[1+p+A(h)]
λ2+[1−p+A(h)]

λ2
,

[1+q+A(h)]
λ2−[1−q+A(h)]

λ2

[1+q+A(h)]
λ2+[1−q+A(h)]

λ2
, [1+r+A (h)]

λ2−[1−r+A (h)]
λ2

[1+r+A (h)]
λ2+[1−r+A (h)]

λ2
]




,
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


[ 2[pA(h)]
λ2

[(2−pA(h)]
λ2+[pA(h)]

λ2
,

2[qA(h)]
λ2

[(2−qA(h)]
λ2+[qA(h)]

λ2
, 2[rA(h)]

λ2

[(2−rA(h)]
λ2+[rA(h)]

λ2
]



〉
=

〈



[1+αA(h)]
λ1+λ2−[1−αA(h)]

λ1+λ2

[1+αA(h)]
λ1+λ2+[1−αA(h)]

λ1+λ2
, [βA(h)]

λ1+λ2−[1−βA(h)]
λ1+λ2

[1+βA(h)]
λ1+λ2+[1−βA(h)]

λ1+λ2
,

[1+∆A(h)]
λ1+λ2−[1−∆A(h)]

λ1+λ2

[1+∆A(h)]
λ1+λ2+[1−∆A(h)]

λ1+λ2


,




[
[1+p−A(h)]

λ1+λ2−[1−p−A(h)]
λ1+λ2

[1+p−A(h)]
λ1+λ2+[1−p−A(h)]

λ1+λ2
, [1+q−A(h)]

λ1+λ2−[1−q−A(h)]
λ1+λ2

[1+q−A(h)]
λ1+λ2+[1−q−A(h)]

λ1+λ2
,

[1+r−A (h)]
λ1+λ2−[1−r−A (h)]

λ1+λ2

[1+r−A (h)]
λ1+λ2+[1−r−A (h)]

λ1+λ2
], [ [1+p+A(h)]

λ1+λ2−[1−p+A(h)]
λ1+λ2

[1+p+A(h)]
λ1+λ2+[1−p+A(h)]

λ1+λ2
,

[1+q+A(h)]
λ1+λ2−[1−q+A(h)]

λ1+λ2

[1+q+A(h)]
λ1+λ2+[1−q+A(h)]

λ1+λ2
, [1+r+A (h)]

λ1+λ2−[1−r+A (h)]
λ1+λ2

[1+r+A (h)]
λ1+λ2+[1−r+A (h)]

λ1+λ2
]




,




[ 2[pA(h)]
λ1+λ2

[(2−pA(h)]
λ1+λ2+[pA(h)]

λ1+λ2
,

2[qA(h)]
λ1+λ2

[(2−qA(h)]
λ1+λ2+[qA(h)]

λ1+λ2
, 2[rA(h)]

λ1+λ2

[(2−rA(h)]
λ1+λ2+[rA(h)]

λ1+λ2
]



〉
=

[
[[1+α1(h)]

λ1−[1−α1(h)]
λ1

[1+α1(h)]
λ1

+[1−α1(h)]
λ1

, [[1+β1(h)]
λ1−[1−β1(h)]

λ1

[1+β1(h)]
λ1

+[1−β1(h)]
λ1

, [[1+∆1(h)]
λ1−[1−∆1(h)]

λ1

[1+∆1(h)]
λ1

+[1−∆1(h)]
λ1

]




[[1+p−1 (h)]λ1−[1−p−1 (h)]
λ1

[1+p−1 (h)]
λ1

+[1−p−1 (h)]
λ1

, [1+q−1 (h)]
λ1−[1−q−1 (h)]

λ1

[1+q−1 (h)]
λ1

+[1−q−1 (h)]
λ1

,

[1+r−1 (h)]
λ1−[1−r−1 (h)]

λ1

[1+r−1 (h)]
λ1

+[1−r−1 (h)]
λ1




;




[1+p+1 (h)]
λ1−[1−p+1 (h)]

λ1

[1+p+1 (h)]
λ1

+[1−p+1 (h)]
λ1

, [1+q+1 (h)]
λ1−[1−q+1 (h)]

λ1

[1+q+1 (h)]
λ1

+[1−q+1 (h)]
λ1

,

[1+r+1 (h)]
λ1−[1−r+1 (h)]

λ1

[1+r+1 (h)]
λ1

+[1−r+1 (h)]
λ1




;




2[p1(h)]
λ1

[(2−p1(h)]
λ1

+[p1(h)]
λ1

, 2[q1(h)]
λ1

[(2−q1(h)]
λ1

+[q1(h)]
λ1

,

2[r1(h)]
λ1

[(2−r1(h)]
λ1

+[r1(h)]
λ1


.

Assume that n = k, TCFEWA (A1, A2, . . . , An) =
k⊕

j=1
wj Aj

〈



[
k

∏
j=1

[1+α1(h)]
v−

k
∏
j=1

[1−α1(h)]
v

k
∏
j=1

[1+α1(h)]
v
+

k
∏
j=1

[1−α1(h)]
v

,
[

k
∏
j=1

[1+β1(h)]
v−

k
∏
j=1

[1−β1(h)]
v

k
∏
j=1

[1+β1(h)]
v
+

k
∏
j=1

[1−β1(h)]
v

,
[

k
∏
j=1

[1+∆1(h)]
v−

k
∏
j=1

[1−∆1(h)]
v

k
∏
j=1

[1+∆1(h)]
v
+

k
∏
j=1

[1−∆1(h)]
v







[
k

∏
j=1

[1+p−1 (h)]v−
k

∏
j=1

[1−p−1 (h)]
v

k
∏
j=1

[1+p−1 (h)]
v
+

k
∏
j=1

[1−p−1 (h)]
v

,

k
∏
j=1

[1+q−1 (h)]
v
−

k
∏
j=1

[1−q−1 (h)]
v

k
∏
j=1

[1+q−1 (h)]
v
+

k
∏
j=1

[1−q−1 (h)]
v

,

k
∏
j=1

[1+r−1 (h)]
v
−

k
∏
j=1

[1−r−1 (h)]
v

k
∏
j=1

[1+r−1 (h)]
v
+

k
∏
j=1

[1−r−1 (h)]
v


,




k
∏
j=1

[1+p+1 (h)]
v
−

k
∏
j=1

[1−p+1 (h)]
v

k
∏
j=1

[1+p+1 (h)]
v
+

k
∏
j=1

[1−p+1 (h)]
v

,

k
∏
j=1

[1+q+1 (h)]
v
−

k
∏
j=1

[1−q+1 (h)]
v

k
∏
j=1

[1+q+1 (h)]
v
+

k
∏
j=1

[1−q+1 (h)]
v

,

k
∏
j=1

[1+r+1 (h)]
v
−

k
∏
j=1

[1−r+1 (h)]
v

k
∏
j=1

[1+r+1 (h)]
v
+

k
∏
j=1

[1−r+1 (h)]
v


;




2
k

∏
j=1

[p1(h)]
v

k
∏
j=1

[(2−p1(h)]
v
+

k
∏
j=1

[p1(h)]
v

,
2

k
∏
j=1

[q1(h)]
v

k
∏
j=1

[(2−q1(h)]
v
+

k
∏
j=1

[q1(h)]
v

,
2

k
∏
j=1

[r1(h)]
v

k
∏
j=1

[(2−r1(h)]
v
+

k
∏
j=1

[r1(h)]
v


.

Then when n = k + 1, we have TCFEWA (A1, A2, . . . , Ak+1) = TCFEWA (A1, A2, . . . , Ak)⊕
Ak+1)
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〈



[
k

∏
j=1

[1+α1(h)]
v−

k
∏
j=1

[1−α1(h)]
v

k
∏
j=1

[1+α1(h)]
v
+

k
∏
j=1

[1−α1(h)]
v

,
[

k
∏
j=1

[1+β1(h)]
v−

k
∏
j=1

[1−β1(h)]
v

k
∏
j=1

[1+β1(h)]
v
+

k
∏
j=1

[1−β1(h)]
v

,
[

k
∏
j=1

[1+∆1(h)]
v−

k
∏
j=1

[1−∆1(h)]
v

k
∏
j=1

[1+∆1(h)]
v
+

k
∏
j=1

[1−∆1(h)]
v







[
k

∏
j=1

[1+p−1 (h)]v−
k

∏
j=1

[1−p−1 (h)]
v

k
∏
j=1

[1+p−1 (h)]
v
+

k
∏
j=1

[1−p−1 (h)]
v

,

k
∏
j=1

[1+q−1 (h)]
v
−

k
∏
j=1

[1−q−1 (h)]
v

k
∏
j=1

[1+q−1 (h)]
v
+

k
∏
j=1

[1−q−1 (h)]
v

,

k
∏
j=1

[1+r−1 (h)]
v
−

k
∏
j=1

[1−r−1 (h)]
v

k
∏
j=1

[1+r−1 (h)]
v
+

k
∏
j=1

[1−r−1 (h)]
v


;




k
∏
j=1

[1+p+1 (h)]
v
−

k
∏
j=1

[1−p+1 (h)]
v

k
∏
j=1

[1+p+1 (h)]
v
+

k
∏
j=1

[1−p+1 (h)]
v

,

k
∏
j=1

[1+q+1 (h)]
v
−

k
∏
j=1

[1−q+1 (h)]
v

k
∏
j=1

[1+q+1 (h)]
v
+

k
∏
j=1

[1−q+1 (h)]
v

,

k
∏
j=1

[1+r+1 (h)]
v
−

k
∏
j=1

[1−r+1 (h)]
v

k
∏
j=1

[1+r+1 (h)]
v
+

k
∏
j=1

[1−r+1 (h)]
v


;




2
k

∏
j=1

[p1(h)]
v

k
∏
j=1

[(2−p1(h)]
v
+

k
∏
j=1

[p1(h)]
v

,
2

k
∏
j=1

[q1(h)]
v

k
∏
j=1

[(2−q1(h)]
v
+

k
∏
j=1

[q1(h)]
v

,
2

k
∏
j=1

[r1(h)]
v

k
∏
j=1

[(2−r1(h)]
v
+

k
∏
j=1

[r1(h)]
v


⊕k+1

〈



[
k+1
∏
j=1

[1+α1(h)]
v−

k+1
∏
j=1

[1−α1(h)]
v

k+1
∏
j=1

[1+α1(h)]
v
+

k+1
∏
j=1

[1−α1(h)]
v

,
[
k+1
∏
j=1

[1+β1(h)]
v−

k+1
∏
j=1

[1−β1(h)]
v

k+1
∏
j=1

[1+β1(h)]
v
+

k+1
∏
j=1

[1−β1(h)]
v

,
[
k+1
∏
j=1

[1+∆1(h)]
v−

k+1
∏
j=1

[1−∆1(h)]
v

k+1
∏
j=1

[1+∆1(h)]
v
+

k+1
∏
j=1

[1−∆1(h)]
v







[
k+1
∏
j=1

[1+p−1 (h)]v−
k+1
∏
j=1

[1−p−1 (h)]
v

k+1
∏
j=1

[1+p−1 (h)]
v
+

k+1
∏
j=1

[1−p−1 (h)]
v

,

k+1
∏
j=1

[1+q−1 (h)]
v
−

k+1
∏
j=1

[1−q−1 (h)]
v

k+1
∏
j=1

[1+q−1 (h)]
v
+

k+1
∏
j=1

[1−q−1 (h)]
v

,

k+1
∏
j=1

[1+r−1 (h)]
v
−

k+1
∏
j=1

[1−r−1 (h)]
v

k+1
∏
j=1

[1+r−1 (h)]
v
+

k+1
∏
j=1

[1−r−1 (h)]
v


;




k+1
∏
j=1

[1+p+1 (h)]
v
−

k+1
∏
j=1

[1−p+1 (h)]
v

k+1
∏
j=1

[1+p+1 (h)]
v
+

k+1
∏
j=1

[1−p+1 (h)]
v

,

k+1
∏
j=1

[1+q+1 (h)]
v
−

k+1
∏
j=1

[1−q+1 (h)]
v

k+1
∏
j=1

[1+q+1 (h)]
v
+

k+1
∏
j=1

[1−q+1 (h)]
v

,

k+1
∏
j=1

[1+r+1 (h)]
v
−

k+1
∏
j=1

[1−r+1 (h)]
v

k+1
∏
j=1

[1+r+1 (h)]
v
+

k+1
∏
j=1

[1−r+1 (h)]
v


;




2
k+1
∏
j=1

[p1(h)]
v

k+1
∏
j=1

[(2−p1(h)]
v
+

k+1
∏
j=1

[p1(h)]
v

,
2

k+1
∏
j=1

[q1(h)]
v

k+1
∏
j=1

[(2−q1(h)]
v
+

k+1
∏
j=1

[q1(h)]
v

,
2

k+1
∏
j=1

[r1(h)]
v

k+1
∏
j=1

[(2−r1(h)]
v
+

k+1
∏
j=1

[r1(h)]
v




=




[
k+1
∏
j=1

[1+p−1 (h)]v−
k

∏
j=1

[1−p−1 (h)]
v

k+1
∏
j=1

[1+p−1 (h)]
v
+

k
∏
j=1

[1−p−1 (h)]
v

,

k+1
∏
j=1

[1+q−1 (h)]
v
−

k
∏
j=1

[1−q−1 (h)]
v

k+1
∏
j=1

[1+q−1 (h)]
v
+

k
∏
j=1

[1−q−1 (h)]
v

,

k+1
∏
j=1

[1+r−1 (h)]
v
−

k
∏
j=1

[1−r−1 (h)]
v

k+1
∏
j=1

[1+r−1 (h)]
v
+

k
∏
j=1

[1−r−1 (h)]
v


,




k+1
∏
j=1

[1+p+1 (h)]
v
−

k
∏
j=1

[1−p+1 (h)]
v

k+1
∏
j=1

[1+p+1 (h)]
v
+

k
∏
j=1

[1−p+1 (h)]
v

,

k+1
∏
j=1

[1+q+1 (h)]
v
−

k
∏
j=1

[1−q+1 (h)]
v

k+1
∏
j=1

[1+q+1 (h)]
v
+

k
∏
j=1

[1−q+1 (h)]
v

,

k+1
∏
j=1

[1+r+1 (h)]
v
−

k
∏
j=1

[1−r+1 (h)]
v

k+1
∏
j=1

[1+r+1 (h)]
v
+

k
∏
j=1

[1−r+1 (h)]
v


,




2
k+1
∏
j=1

[p1(h)]
v

k+1
∏
j=1

[(2−p1(h)]
v
+

k+1
∏
j=1

[p1(h)]
v

,
2

k+1
∏
j=1

[q1(h)]
v

k+1
∏
j=1

[(2−q1(h)]
v
+

k+1
∏
j=1

[q1(h)]
v

,
2

k+1
∏
j=1

[r1(h)]
v

k+1
∏
j=1

[(2−r1(h)]
v
+

k+1
∏
j=1

[r1(h)]
v


.
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Especially, if w = ( 1
n , 1

n , ...., 1
n )

T
, then the the TNCFEWA operator is reduced to the triangular

neutrosophic cubic fuzzy einstein averaging operator, which is shown as follows:

〈



[
n
∏
j=1

[1+α1(h)]
1
n −

n
∏
j=1

[1−α1(h)]
1
n

n
∏
j=1

[1+α1(h)]
1
n
+

n
∏
j=1

[1−α1(h)]
1
n

,
[

n
∏
j=1

[1+β1(h)]
1
n −

n
∏
j=1

[1−β1(h)]
1
n

n
∏
j=1

[1+β1(h)]
1
n
+

n
∏
j=1

[1−β1(h)]
1
n

,
[

n
∏
j=1

[1+∆1(h)]
1
n −

n
∏
j=1

[1−∆1(h)]
1
n

n
∏
j=1

[1+∆1(h)]
1
n
+

n
∏
j=1

[1−∆1(h)]
1
n







[
n
∏
j=1

[1+p−1 (h)]
1
n −

n
∏
j=1

[1−p−1 (h)]
1
n

n
∏
j=1

[1+p−1 (h)]
1
n
+

n
∏
j=1

[1−p−1 (h)]
1
n

,

n
∏
j=1

[1+q−1 (h)]
1
n −

n
∏
j=1

[1−q−1 (h)]
1
n

n
∏
j=1

[1+q−1 (h)]
1
n
+

n
∏
j=1

[1−q−1 (h)]
1
n

,

n
∏
j=1

[1+r−1 (h)]
1
n −

n
∏
j=1

[1−r−1 (h)]
1
n

n
∏
j=1

[1+r−1 (h)]
1
n
+

n
∏
j=1

[1−r−1 (h)]
1
n


;




n
∏
j=1

[1+p+1 (h)]
1
n −

n
∏
j=1

[1−p+1 (h)]
1
n

n
∏
j=1

[1+p+1 (h)]
1
n
+

n
∏
j=1

[1−p+1 (h)]
1
n

,

n
∏
j=1

[1+q+1 (h)]
1
n −

n
∏
j=1

[1−q+1 (h)]
1
n

n
∏
j=1

[1+q+1 (h)]
1
n
+

n
∏
j=1

[1−q+1 (h)]
1
n

,

n
∏
j=1

[1+r+1 (h)]
1
n −

n
∏
j=1

[1−r+1 (h)]
1
n

n
∏
j=1

[1+r+1 (h)]
1
n
+

n
∏
j=1

[1−r+1 (h)]
1
n


;




2
n
∏
j=1

[p1(h)]
1
n

n
∏
j=1

[(2−p1(h)]
1
n
+

n
∏
j=1

[p1(h)]
1
n

,
2

n
∏
j=1

[q1(h)]
1
n

n
∏
j=1

[(2−q1(h)]
1
n
+

n
∏
j=1

[q1(h)]
1
n

,
2

n
∏
j=1

[r1(h)]
1
n

n
∏
j=1

[(2−r1(h)]
1
n
+

n
∏
j=1

[r1(h)]
1
n


.
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Abstract: Neural networks are powerful universal approximation tools. They have been utilized for
functions/data approximation, classification, pattern recognition, as well as their various applications.
Uncertain or interval values result from the incompleteness of measurements, human observation
and estimations in the real world. Thus, a neutrosophic number (NsN) can represent both certain
and uncertain information in an indeterminate setting and imply a changeable interval depending
on its indeterminate ranges. In NsN settings, however, existing interval neural networks cannot
deal with uncertain problems with NsNs. Therefore, this original study proposes a neutrosophic
compound orthogonal neural network (NCONN) for the first time, containing the NsN weight
values, NsN input and output, and hidden layer neutrosophic neuron functions, to approximate
neutrosophic functions/NsN data. In the proposed NCONN model, single input and single
output neurons are the transmission notes of NsN data and hidden layer neutrosophic neurons
are constructed by the compound functions of both the Chebyshev neutrosophic orthogonal
polynomial and the neutrosophic sigmoid function. In addition, illustrative and actual examples
are provided to verify the effectiveness and learning performance of the proposed NCONN model
for approximating neutrosophic nonlinear functions and NsN data. The contribution of this study
is that the proposed NCONN can handle the approximation problems of neutrosophic nonlinear
functions and NsN data. However, the main advantage is that the proposed NCONN implies a
simple learning algorithm, higher speed learning convergence, and higher learning accuracy in
indeterminate/NsN environments.

Keywords: Neutrosophic compound orthogonal neural network; Neutrosophic number;
Neutrosophic function; Function approximation

1. Introduction

Neural networks are powerful universal approximation tools. They have been utilized for data
modeling, function approximation, classification analysis, pattern recognition, as well as their various
applications. Uncertain or interval values result from the incompleteness of measurements, human
observation and estimations in the real world. Hence, Baker and Patil [1] proposed an interval neural
network (INN), which used interval weights rather than interval data input to approximate an interval
function. Then, Hu et al. [2] presented an INN with interval weights, where the network is modeled
like the problem of the solution equations, implying its complexity in the solution process. Rossi
and Conan-Guez [3] introduced a multilayer perceptron neural network on interval data for the
classification analysis of interval data. For processing the interval neural network, Patiño-Escarcina [4]
presented an INN, where one of its input, output, and weight sets is interval values and the output set
is a binary one, therefore its outputs are binaries too for classifiers. Recently, Lu et al. [5] introduced a
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neural network-based interval matcher corresponding to linguistic IF-THEN constructions, which is an
interval pattern matcher to identify patterns with interval elements using the neural network, which
can handle interval inputs values and interval output values based on a traditional neural network
and is only suitable for interval pattern matching. Kowalski and Kulczycki [6] presented the interval
probabilistic neural network (IPNN) for the classification of interval data, where the IPNN structure is
based on Specht’s probabilistic network [7].

In indeterminate environments, neutrosophic theory [8–10] has been used for various
applications [11–14]. Since a neutrosophic number (NsN) [8–10] can represent both certain and
uncertain information in indeterminate settings and contain a changeable interval depending
on its indeterminate ranges, NsNs have been wildly applied to decision making [15–17], fault
diagnoses [18,19], linear and nonlinear optimization problems [20–23], expression and analysis of the
rock joint roughness coefficient (JRC) [24–27]. However, there is no study on neutrosophic neural
networks with NsNs in existing literature, while existing INNs also cannot deal with uncertain
problems with NsNs. Therefore, this original study proposes a neutrosophic compound orthogonal
neural network (NCONN) for the first time, which contains the NsN weight values, NsN input and
output neurons and hidden layer neutrosophic neurons, to approximate neutrosophic functions and
NsN data. In the proposed NCONN model, single input and single output data are NsNs (changeable
interval numbers) and hidden layer neutrosophic neuron functions are composed of the Chebyshev
neutrosophic orthogonal polynomial and neutrosophic sigmoid function. In addition, illustrative and
actual examples are provided to verify the effectiveness and performance of the proposed NCONN
model in approximating neutrosophic nonlinear functions and NsN data. The contribution of this study
is that the proposed NCONN can handle the approximating and modelling problems of neutrosophic
functions and NsN data for the first time. The main advantage is that the proposed NCONN implies
a simple learning algorithm, higher speed learning convergence, and higher learning accuracy in
indeterminate/NsN environments.

This study was formed as the following framework. The second section introduces the basic
concepts and operations of NsNs. The third section proposes a NCONN structure and its learning
algorithm. Then, two illustrative examples about neutrosophic nonlinear function approximations
and an actual example (a real case) about the approximation problem of rock JRC NsNs are presented
in the fourth section and the fifth section, respectively, to verify the effectiveness and performance
of the proposed NCONN in approximating neutrosophic nonlinear functions and NsN data under
indeterminate/NsN environments. The last section contains conclusions and future work.

2. Basic Concepts and Operations of NsNs

In an uncertain setting, Smarandache [8–10] introduced the NsN concept represented by the
mathematical form N = c + uI for a, b ∈ R (all real numbers) and I (indeterminacy), in which the certain
part c with its uncertain part uI for I ∈ [I−, I+] are combined. Hence, it can depict and express the
certain and/or uncertain information in indeterminate problems.

Provided there is the NsN N = 5 + 3I, it depicts that the certain value is five and its uncertain
value is 3I. Then, some interval range of the indeterminacy I ∈ [I−, I+] is possibly specified in actual
applications to satisfy some applied requirement. For instance, the indeterminacy I is specified as such
a possible interval I ∈ [0, 2]. Thus, it is equivalent to N = [5, 11]. If I ∈ [1, 3], then there is N = [8, 14]. It
is obvious that it is a changeable interval depending on the specified indeterminate range of I ∈ [I−, I+],
which is also denoted by N = [c + uI−, c + uI+].

In some special cases, a NsN N = c + uI for N ∈ U (U is all NsNs) may be represented as either a
certain number N = c for uI = 0 (the best case) or an uncertain number N = uI for c =0 (the worst case).

Provided that there are two NsNs N1 = c1 + u1I and N2 = c2 + u2I for N1, N2 ∈ U and I ∈ [I−, I+],
then their operational laws are introduced as follows [21]:

N1 + N2 = c1 + c2 + (u1 + u2)I = [c1 + c2 + u1 I− + u2 I−, c1 + c2 + u1 I+ + u2 I+] (1)
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N1 − N2 = c1 − c2 + (u1 − u2)I = [c1 − c2 + u1 I− − u2 I−, c1 − c2 + u1 I+ − u2 I+] (2)

N1 × N2 = c1c2 + (c1u2 + c2u1)I + u1u2 I2

=




min

(
(c1 + u1 I−)(c2 + u2 I−), (c1 + u1 I−)(c2 + u2 I+),
(c1 + u1 I+)(c2 + u2 I−), (c1 + u1 I+)(c2 + u2 I+)

)
,

max

(
(c1 + u1 I−)(c2 + u2 I−), (c1 + u1 I−)(c2 + u2 I+),
(c1 + u1 I+)(c2 + u2 I−), (c1 + u1 I+)(c2 + u2 I+)

)




(3)

N1

N2
=

c1 + u1 I
c2 + u2 I

=
[c1 + u1 I−, c1 + u1 I+]
[c2 + u2 I−, c2 + u2 I+]

=


 min

(
c1+u1 I−
c2+u2 I+ , c1+u1 I−

c2+u2 I− , c1+u1 I+
c2+u2 I+ , c1+u1 I+

c2+u2 I−

)
,

max
(

c1+u1 I−
c2+u2 I+ , c1+u1 I−

c2+u2 I− , c1+u1 I+
c2+u2 I+ , c1+u1 I+

c2+u2 I−

)



(4)

Regarding an uncertain function containing NsNs, Ye [21,22] defined a neutrosophic function in n
variables (unknowns) as y(x, I): Un → U for x = [x1, x2, . . . , xn]T ∈ Un and I ∈ [I−, I+], which is then a
neutrosophic nonlinear or linear function.

For example, y1(x, I) = N1x cos(x) = (c1 + u1 I)x cos(x) for x ∈ U and I ∈ [I−, I+] is a
neutrosophic nonlinear function, while y2(x, I) = N1x1 + N2x2 + N3 = (c1 + u1 I)x1 + (c2 + u2 I)x2 +

(c3 + u3 I) for x = [x1, x2]T∈ U2 and I ∈ [I−, I+] is a neutrosophic linear function.
Generally, the values of x and y(x) are NsNs (usually, but not always).

3. NCONN with NsNs

This section proposes a NCONN structure and its learning algorithm based on the NsN concept
for the first time.

A three-layer feedforward NCONN structure with a single input, single output, and hidden layer
neutrosophic neurons are indicated in Figure 1. In Figure 1, the weight values between the input layer
neuron and the hidden layer neutrosophic neurons are equal to the constant value 1 and the NsN
weight values between the hidden layer neutrosophic neurons and the output layer neuron are wj
(j = 1, 2, . . . , p); xk (k = 1, 2, . . . , n) is the kth NsN input signal; yk is the kth NsN output signal; and p is
the number of the hidden layer neutrosophic neurons.
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Figure 1. A three-layer feedforward neutrosophic compound orthogonal neural network
(NCONN structure).
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In the learning process, when each NsN input signal is given by xk = ck + uk I = [ck + uk I−, ck +

uk I+] (k = 1, 2, . . . , n) for I∈ [I−, I+], the actual output value is given as:

yk =
p

∑
j=1

wj q̃j, k = 1, 2, . . . , n (5)

where the neutrosophic neuron functions of the hidden layer q̃j for j = 1, 2, . . . , p are the Chebyshev
compound neutrosophic orthogonal polynomial: q̃1 = [1, 1], q̃2 = X̃, q̃j = 2X̃ · q̃j−1 − q̃j−2, and X̃ is
specified as the following unipolar neutrosophic sigmoid function (the neutrosophic S-function):

X̃ =
1

1 + e−αxk
(6)

The neutrosophic S-function can transform NsN into the interval (0, 1) and the different scalar
parameters of α can change the slant degree of the neutrosophic S-function curve.

Then, the square interval of output errors between the desired output yd
k = cd

k + ud
k I and the actual

output yk = ck + uk I for I ∈ [I−, I+] is given as follows:

Ẽ2
k = [(cd

k + ud
k I− − ck − uk I−)

2
, (cd

k + ud
k I+ − ck − uk I+)

2
] (7)

Whereas, the learning performance index of the proposed NCONN is specified as the
following requirement:

Ẽ =
1
2

n

∑
k=1

Ẽ2
k (8)

The NCONN weight values can be adjusted by the following formula:

W̃k(l + 1) = W̃k(l) + λẼkQ̃, k = 1, 2, . . . , n (9)

where W̃k(l) = [w̃1(l), w̃2(l), . . . , w̃q(l)]
T and Q̃k(l) = [q̃1(l), q̃2(l), . . . , q̃p(l)]

T is the NsN weight vector
and the function vector of the hidden layer neutrosophic neurons, λ is the learning rate of the NCONN
to determine the convergence velocity for λ ∈ (0, 1), and l is the lth iteration learning of the NCONN.

Thus, this NCONN learning algorithm can be described below:
Step 1: Give W̃k(0) by small random values,
Step 2: Input a NsN and calculate the actual output of a NCONN based on Equations (5) and (6),
Step 3: Calculate the output error by using Equations (7) and (8),
Step 4: Adjust weight values by using Equation (9),
Step 5: Input the next NsN and return to Step 2.
In the NCONN learning process, the learning termination condition depends on the requirement

of the specified learning error or iteration number.
Since NsN can be considered as a changeable interval depending to its indeterminacy I ∈ [I−, I+],

the learning algorithm of NCONN permits changeable interval operations, which are different from
existing neural network algorithms and show its advantage of approximating neutrosophic nonlinear
functions/NsN data in an uncertain/NsN setting.

Generally, the more the hidden layer neutrosophic neurons are, the higher the approximation
accuracy of the proposed NCONN is. Then, the number of the hidden layer neutrosophic
neurons determinated in actual applications will depend on the accuracy requirements of actual
approximation models.

4. NsN Nonlinear Function Approximation Applied by the Proposed NCONN

To prove the effectiveness of approximating any neutrosophic nonlinear function based on the
proposed NCONN model, we present two illustrative examples in this section.
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Example 1. Supposing there is a neutrosophic nonlinear function:

y1(x, I) = 1 + 0.3I + (0.5 + 0.2I)x cos(πx) for I ∈ [0, 1].

For x ∈ [−1+0.02I, 1+0.023I] and I ∈ [0, 1], the proposed NCONN needs to approximate the above
neutrosophic nonlinear function.

To prove the approximation ability of the proposed NCONN, we give the proposed NCONN
structure with eight hidden layer neutrosophic neurons (p = 8) and learning parameters, which are
indicated in Table 1.

Table 1. The NCONN structure and learning parameters.

NCONN Structure α λ
The Number of the Specified

Learning Iteration Ẽ

1 × 8 × 1 2.5 0.25 20 [3.2941, 8.5088]

Then, the desired output y1d = [y−1d, y+1d] and actual output y1 = [y−1 , y+1 ] of the proposed
NCONNs are shown in Figure 2. Obviously, the desired output curves and the actual output curves
were very close to each other, to demonstrate the better approximation accuracy in the neutrosophic
nonlinear function approximation of the proposed NCONN. Hence, the proposed NCONN indicated
the better approximation performance regarding the neutrosophic nonlinear function.
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1 1 1[ , ]d d dy y y− += 1 1 1[ , ]y y y− +=Figure 2. The desired output y1d = [y−1d, y+1d] and actual output y1 = [y−1 , y+1 ] of the proposed NCONN.

Example 2. Considering a neutrosophic nonlinear function:
y2(x, I) = (0.6 + 0.3I) sin(πx) + (0.3 + 0.15I) sin(3πx) + (0.1 + 0.05I) sin(5πx) for I ∈ [0, 1].
For x ∈ [0 + 0.002I, 1 + 0.002I] and I ∈ [0, 1], the proposed NCONN needs to approximate the

above neutrosophic nonlinear function.
To prove the approximation ability of the proposed NCONN model, we also give the NCONN

structure with eight hidden layer neutrosophic neurons (p = 8) and learning parameters, which are
indicated in Table 2.
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Table 2. The NCONN structure and learning parameters.

NCONN Structure α λ
The Number of the Specified

Learning Iteration Ẽ

1 × 8 × 1 8 0.3 20 [0.5525, 1.1261]

Thus, the desired output y2d = [y−2d, y+2d] and actual output y2 = [y−2 , y+2 ] of the proposed NCONN
are indicated in Figure 3. It was obvious that the desired output curves and the actual output curves
were also very close, so as to demonstrate the better approximating accuracy and performance in the
neutrosophic nonlinear function approximation of the proposed NCONN.
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Figure 3. The desired output y2d = [y−2d, y+2d] and actual output y2 = [y−2 , y+2 ] of the proposed NCONN.

Corresponding to the learning results obtained from the above two illustrative examples, we
could see that the proposed NCONN showed faster learning velocity and a higher learning accuracy,
which indicated a better approximation performance regarding the neutrosophic nonlinear functions.

5. Actual Example on the Approximation of the JRC NsNs Based on the Proposed NCONN

In rock machanics, the JRC of rock joints implies uncertainty in different sampling lengths and
directions of rock joints. Therefore, JRC uncertainty may make the shear strength of joints uncertain
because of the corresponding relationship between JRC and the shear strength, which results in the
difficulty of making assessments of side stability [25–27]. However, the lengths of the testing samples
can affect JRC values, which indicates their scale effect. To establish a relationship between the
sampling lengths L and the JRC values in an uncertain/NsN setting, existing literature [25–27] used
the uncertain/neutrosophic statistic method and fitting functions to establish some related model of L
and the JRC. Since the proposed NCONN is able to approximate NsN data, the proposed NCONN
could be applied to the relative approximation model between the sampling length L and the NsN
data of the JRC by an actual example (a real case) in this section, to show its effectiveness.

According to the testing samples of the specified area in Shaoxing city, China and data analysis,
we found a relationship between the sampling length L and the NsN data of JRC, which are shown
in Table 3.
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Table 3. NsN data of rock joint roughness coefficient (JRC) regarding different sampling lengths for
I ∈ [0, 1].

Sample Length L (cm) xk JRC yk

9.8 + 0.4I [9.8, 10.2] 8.321 + 6.231I [8.321, 14.552]
19.8 + 0.4I [19.8, 20.2] 7.970 + 6.419I [7.970, 14.389]
29.8 + 0.4I [29.8, 30.2] 7.765 + 6.529I [7.765, 14.294]
39.8 + 0.4I [39.8, 40.2] 7.762 + 6.464I [7.762, 14.226]
49.8 + 0.4I [49.8, 50.2] 7.507 + 6.64I [7.507, 14.147]
59.8 + 0.4I [59.8, 60.2] 7.417 + 6.714I [7.417, 14.131]
69.8 + 0.4I [69.8, 70.2] 7.337 + 6.758I [7.337, 14.095]
79.8 + 0.4I [79.8, 80.2] 7.269 + 6.794I [7.269, 14.063]
89.8 + 0.4I [89.8, 90.2] 7.210 + 6.826I [7.210, 14.036]
99.8 + 0.4I [99.8, 100.2] 7.156 + 6.855I [7.156, 14.011]

To establish the approximation model of the proposed NCONN regarding the actual example, we
took the NCONN structure with eight hidden layer neutrosophic neurons (p = 8) and indicated the
learning parameters in Table 4.

Table 4. The NCONN structure and learning parameters regarding the actual example.

NCONN Structure α λ
The Number of the Specified

Learning Iteration Ẽ

1 × 8 × 1 8 0.11 5 [3.2715, 22.3275]

From Figure 4, we can see that the proposed NCONN could approximate the JRC NsN
data regarding different sampling lengths L and showed a higher speed convergence and higher
approximating accuracy in its learning process for the actual example. Obviously, the proposed
NCONN could find the approximating model between different sampling lengths L and JRC NsN
data, while existing neural networks cannot do them in the uncertain/NsN setting.Symmetry 2019, 11, x FOR PEER REVIEW 8 of 10 
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making and control in robotics [14,28] in an indeterminate/NsN setting. 
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6. Conclusions

In a NsN setting, this original study presented a NCONN to approximate neutrosophic
functions/NsN data for the first time. It is a three-layer feedforward neutrosophic network structure
composed of a single input, a single output, and hidden layer neutrosophic neurons, where the single
input and single output information are NsNs and hidden layer neutrosophic neuron functions are
composed of both the Chebyshev neutrosophic orthogonal polynomial and the neutrosophic sigmoid
function. Illustrative and actual examples were provided to verify the effectiveness and rationality of
the proposed NCONN model for approximating neutrosophic nonlinear functions and establishing
the approximation model of NsN data. Therefore, the contribution of this study is that the proposed
NCONN could handle the approximating and modeling problems of uncertain/interval/neutrosophic
functions and NsN data. Here, the main advantage is that the proposed NCONN implies a
simpler learning algorithm, higher speed learning convergence, and higher learning accuracy in
indeterminate/NsN environments.

In the future work, we shall propose further NCONNs with multi-inputs and multi-outputs
and apply them to the modeling and approximating problems of neutrosophic functions and NsN
data, the clustering analysis of NsNs, medical diagnosis problems, and possible applications for
decision-making and control in robotics [14,28] in an indeterminate/NsN setting.
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Abstract: A neutrosophic set was proposed as an approach to study neutral uncertain information.
It is characterized through three memberships, T, I and F, such that these independent functions
stand for the truth, indeterminate, and false-membership degrees of an object. The neutrosophic set
presents a symmetric form since truth enrolment T is symmetric to its opposite false enrolment F
with respect to indeterminacy enrolment I that acts as an axis of symmetry. The neutrosophic set was
further extended to a Q-neutrosophic soft set, which is a hybrid model that keeps the features of the
neutrosophic soft set in dealing with uncertainty, and the features of a Q-fuzzy soft set that handles
two-dimensional information. In this study, we discuss some operations of Q-neutrosophic soft sets,
such as subset, equality, complement, intersection, union, AND operation, and OR operation. We also
define the necessity and possibility operations of a Q-neutrosophic soft set. Several properties and
illustrative examples are discussed. Then, we define the Q-neutrosophic-set aggregation operator
and use it to develop an algorithm for using a Q-neutrosophic soft set in decision-making issues that
have indeterminate and uncertain data, followed by an illustrative real-life example.

Keywords: decision making; neutrosophic set; Q-neutrosophic set; Q-neutrosophic soft set; soft set

1. Introduction

Fuzzy-set theory was established by Zadeh in 1965 [1]. Since then, fuzzy logic has been utilized in
several real-world problems in uncertain environments. Consequently, numerous analysts discussed
many results using distinct directions of fuzzy-set theory, for instance, interval valued fuzzy set
[2] and intuitionistic fuzzy set [3]. These extensions can deal with uncertain real-world problems.
An intuitionistic fuzzy set can only cope with incomplete data through its truth and falsity membership
values, but it does not cope with indeterminate data. Thus, Smarandache [4] initiated the neutrosophic
idea to overcome this problem. A neutrosophic set (NS) [5] is a mathematical notion serving
issues containing inconsistent, indeterminate, and imprecise data. Recent studies on NS include
a single-valued neutrosophic set [6] and complex neutrosophic set [7].

Molodtsov [8] proposed the notion of the soft set as an important mathematical notion for handling
uncertainties. The main advantage of this notion in data analysis is that it does not need any grade of
membership as in fuzzy-set theory. Maji et.al. [9] presented the fuzzy soft set, which is a combination
between a soft set and a fuzzy set. Later, many researchers developed several extensions of the soft-set
model, such as vague soft set [10], interval-valued vague soft set [11–13], soft expert set [14], and soft
multiset theory [15]. Maji [16] extended the notion of the fuzzy soft set to the neutrosophic soft set
(NSS) and defined some of its properties.

NS is very appropriate for handling inconsistent, indeterminate, and incomplete information
in real applications. Recently, many studies have been done on NSS [17–24], the most recent being
on vague soft sets [25], neutrosophic vague soft expert sets [26], n-valued refined neutrosophic
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soft sets [27], complex neutrosophic soft expert sets [28,29] and time-neutrosophic soft sets [30].
Many researchers [23,31–36] have constructed several aggregation operators, such as simplified
neutrosophic prioritized aggregation operators, single-valued neutrosophic Dombi weighted
aggregation operators, simplified neutrosophic weighted aggregation operators, interval neutrosophic
exponential weighted aggregation operators, and used them in decision-making issues. Aggregation
operators perform a vital role in multicriteria decision making (MCDM) issues whose principle target
is to aggregate a collection of inputs to a single number. Thus, aggregation operators give us effective
tools to handle neutrosophic data in the decision process.

For a two-dimensional universal set, Adam and Hassan [37,38] introduced the Q-fuzzy soft set
(Q-FSS) and multi-Q-FSS, which includes a Q-fuzzy soft aggregation operator that allows constructing
more efficient decision-making methods. Broumi [39] presented the notion of the Q-intuitionistic fuzzy
soft set (Q-IFSS), and defined some basic properties and basic operations. Actually, these notions
cannot handle indeterminate data that appear in two universal sets. Inspired by this, Abu Qamar and
Hassan [40] initiated the concept of the Q-neutrosophic soft set (Q-NSS) by upgrading the membership
functions of the NSS to a two-dimensional entity. As a result, Q-NSS is premium to these models with
three two-dimensional independent membership functions. Hence, this concept serves indeterminacy
and two-dimensionality at the same time. Moreover, the Q-neutrosophic set (Q-NS) is basically an NS
defined over a two-dimensional set. Thus, it has added advantages to NS by treating a two-dimensional
universal set, which makes it more valid in modeling real-life problems where two-dimensional sets
and indeterminacy majorly appear. Q-NSS is created to keep the advantages of Q-FSS while holding
NSS features. Therefore, it incorporates the benefits of these models. Abu Qamar and Hassan studied
different aspects of Q-NSS, such as their relations [40], measures of Q-NSS information [41], generalized
Q-neutrosophic soft expert set [42], and different decision problems of these concepts.

Motivated by these studies, in this study we discuss the different operations and properties
of Q-NSS. To facilitate the discussion, we arranged this article as follows. Section 2 contains a
review of basic definitions pertaining to this work. In Section 3, we discuss some operations of
Q-NSS, such as subset, equality, complement, intersection, union, AND operation, and OR operation.
We discuss necessity and possibility operations in Section 4 along with properties and illustrative
examples. In Section 5, we define the aggregation Q-NS in order to utilize it in the algorithm that
we constructed to solve decision-making problems using Q-NSS. In Section 6, comparison analysis is
presented to validate the proposed approach. Finally, conclusions and future work are in Section 7.
Consequently, the concept of Q-NSS will enrich current NSS studies.

2. Preliminaries

In this section, we recall the concepts of soft set, NS, and Q-NS, which are relevant to this paper.
Soft-set theory was proposed by Molodtsov [8].

Definition 1 ([8]). A pair (F, E) is a soft set over U if and only if F : E→ P(U) is mapping. That is, the soft
set is a parameterized family of subsets of U.

In order to handle inconsistent and indeterminate information that exists in some real-world
issues, Smarandache [5] initiated the NS concept as follows:

Definition 2 ([5]). An NS Γ on universe U is defined as Γ = {〈u, (TΓ(u), IΓ(u), FΓ(u))〉 : u ∈ U},
where T, I, F : U →]−0, 1+[ and −0 ≤ TΓ(u) + IΓ(u) + FΓ(u) ≤ 3+.

Now, we recall some basic NS operations proposed by Smarandache [43].

Definition 3 ([43]). Let Γ and Ψ be two NSs. Then, Γ is a subset of Ψ, written as Γ ⊆ Ψ, if and only if
TΓ(u) ≤ TΨ(u), IΓ(u) ≥ IΨ(u) and FΓ(u) ≥ FΨ(u)∀u ∈ U.
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Definition 4 ([43]). The union of two NSs Γ and Ψ in U, written as Γ ∪ Ψ = Λ, where Λ =

{〈u, (max{TΓ(u), TΨ(u)}, min{IΓ(u), IΨ(u)}, min{FΓ(u), FΨ(u)})〉 : u ∈ U}.

Definition 5 ([43]). The intersection of two NSs Γ and Ψ in U, written as Γ ∩ Ψ = Λ, where Λ =

{〈u, (min{TΓ(u), TΨ(u)}, max{IΓ(u), IΨ(u)}, max{FΓ(u), FΨ(u)})〉 : u ∈ U}.

Definition 6 ([43]). The complement of an NS Γ in U, denoted by Γc, where

Γc = {〈u, (1− TΓ(u), 1− IΓ(u), 1− FΓ(u))〉 : u ∈ U}.

Abu Qamar and Hassan [40] introduced the idea of Q-NS as follows:

Definition 7 ([40]). A Q-NS ΓQ in U is an object of form

ΓQ =
{〈

(u, t), TΓQ(u, t), IΓQ(u, t), FΓQ(u, t)
〉

: u ∈ U, t ∈ Q
}

,

where Q 6= φ and TΓQ , IΓQ , FΓQ : U × Q →]−0, 1+[ are the true, indeterminacy, and false membership
functions, respectively, with −0 ≤ TΓQ + IΓQ + FΓQ ≤ 3+.

3. Q-Neutrosophic Soft Sets

In this section, we discuss numerous properties and operations concerning Q-NSSs, namely,
union, intersection, and AND and OR operations. The concept of Q-NSS was briefly mentioned in
the following definition without any algebraic operations in the discussion on Q-neutrosophic soft
relations [40].

Definition 8 ([40]). Let U be a universal set, Q be a nonempty set and A ⊆ E be a set of parameters.
Let µlQNS(U) be the set of all multi-Q-NSs on U with dimension l = 1. A pair (ΓQ, A) is called a Q-NSS
over U, where ΓQ : A→ µlQNS(U) is a mapping, such that ΓQ(e) = φ if e /∈ A.

A Q-NSS can be presented as

(ΓQ, A) = {(e, ΓQ(e)) : e ∈ A, ΓQ ∈ µlQNS(U)}.

The set of all Q-NSSs in U is denoted by Q-NSS(U).

The following example shows how Q-NSS can represent real-world problems.

Example 1. Suppose we want to examine the attractiveness of a cell phone that a person is considering buying.
Suppose there are two choices in the universe U = {u1, u2}, Q = {s = black, t = white} is the set of colors
under consideration and E = {e1 = price, e2 = version, e3 = device speci f ication} is a set of decision
parameters. Then, the Q-NSS (ΓQ, A) is given by:

(ΓQ, A) =
{〈

e1, [(u1, s), 0.5, 0.1, 0.2], [(u1, t), 0.7, 0.5, 0.3], [(u2, s), 0.7, 0.5, 0.4], [(u2, t), 0.4, 0.3, 0.1]
〉

,
〈

e2, [(u1, s), 0.1, 0.2, 0.6], [(u1, t), 0.8, 0.1, 0.5], [(u2, s), 0.4, 0.6, 0.9], [(u2, t), 0.4, 0.6, 0.7]
〉

,
〈

e3, [(u1, s), 0.6, 0.2, 0.2], [(u1, t), 0.1, 0.8, 0.5], [(u2, s), 0.6, 0.4, 0.9], [(u2, t), 0.3, 0.1, 0.5]
〉}

.

Each element in (ΓQ, A) represents the degree of attractiveness of each cell phone with a specific color based
on each parameter. For example, element [(u1, s), 0.6, 0.2, 0.2] under parameter e3 represents the degree of true,
indeterminacy, and falsity attractiveness of device specification of cell phone u1 with a black color, and they are
0.6, 0.2, and 0.2, respectively.
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Now, we introduce some basic definitions of Q-NSSs.

Definition 9. Let (ΓQ, A) ∈ Q-NSS(U). If ΓQ(e) = φ for all e ∈ A, then (ΓQ, A) is called a null Q-NSS(U)
denoted by (φ, A).

Definition 10. Let (ΓQ, A), (ΨQ, B) ∈ Q-NSS(U), then

1. (ΓQ, A) is a Q-neutrosophic soft subset of (ΨQ, B), denoted by (ΓQ, A) ⊆ (ΨQ, B),
if A ⊆ B and ΓQ(e) ⊆ ΨQ(e) for all e ∈ A, that is TΓQ(e)(u, t) ≤ TΨQ(e)(u, t),
IΓQ(e)(u, t) ≥ IΨQ(e)(u, t), FΓQ(e)(u, t) ≥ FΨQ(e)(u, t), for all (u, t) ∈ U ×Q.

2. (ΓQ, A) and (ΨQ, B) are equal, denoted by (ΓQ, A) = (ΨQ, B), if and only if (ΓQ, A) ⊆ (ΨQ, B) and
(ΨQ, B) ⊆ (ΓQ, A) for all u ∈ U.

Now, we define the complement of Q− NSS(U):

Definition 11. Let (ΓQ, A) ∈ Q-NSS(U). Then, its complement written as (ΓQ, A)c = (Γc
Q, A), and is

defined as

(ΓQ, A)c =
{〈

e, Tc
ΓQ(e)(u, t), Ic

ΓQ(e)(u, t), Fc
ΓQ(e)(u, t)

〉
: e ∈ A, (u, t) ∈ U ×Q

}
,

such that ∀e ∈ A, (u, t) ∈ U ×Q

Tc
ΓQ(e)(u, t) = 1− TΓQ(e)(u, t),

Ic
ΓQ(e)(u, t) = 1− IΓQ(e)(u, t),

Fc
ΓQ(e)(u, t) = 1− FΓQ(e)(u, t).

Example 2. Let U = {u1, u2} be a universal set, A = {e1, e2} and Q = {s, t}.

(ΓQ, A) =
{〈

e1,[(u1, s), 0.2, 0.3, 0.5], [(u1, t), 0.6, 0.4, 0.1], [(u2, s), 0.1, 0.4, 0.7], [(u2, t), 0.3, 0.2, 0.8]
〉

,
〈

e2,[(u1, s), 0.4, 0.1, 0.9], [(u1, t), 0.6, 0.2, 0.1], [(u2, s), 0.5, 0.3, 0.7], [(u2, t), 0.1, 0.3, 0.2]
〉}

.

is a Q-NSS and the complement of (ΓQ, A) is

(Γc
Q, A) =

{〈
e1,[(u1, s), 0.8, 0.7, 0.5], [(u1, t), 0.4, 0.6, 0.9], [(u2, s), 0.9, 0.6, 0.3], [(u2, t), 0.7, 0.8, 0.2]

〉
,

〈
e2,[(u1, s), 0.6, 0.9, 0.1], [(u1, t), 0.4, 0.8, 0.9], [(u2, s), 0.5, 0.7, 0.3], [(u2, t), 0.9, 0.7, 0.8]

〉}
.

Proposition 1. If (ΓQ, A) ∈ Q-NSS(U), then ((ΓQ, A)c)c = (ΓQ, A).

Proof. From Definition 11, we have

(ΓQ, A)c =
{〈

e, Tc
ΓQ(e)(u, t), Ic

ΓQ(e)(u, t), Fc
ΓQ(e)(u, t)

〉
: e ∈ A, (u, t) ∈ U ×Q

}

=
{〈

e, 1− TΓQ(e)(u, t), 1− IΓQ(e)(u, t), 1− FΓQ(e)(u, t)
〉

: e ∈ A, (u, t) ∈ U ×Q
}

.

645



Symmetry 2019, 11, 139

Thus,

((ΓQ, A)c)c =
{〈

e, 1− (1− TΓQ(e)(u, t)), 1− (1− IΓQ(e)(u, t)), 1− (1− FΓQ(e)(u, t))
〉

:

e ∈ A, (u, t) ∈ U ×Q
}

=
{〈

e, TΓQ(e)(u, t), IΓQ(e)(u, t), FΓQ(e)(u, t)
〉

: e ∈ A, (u, t) ∈ U ×Q
}

This completes the proof.

Next, we discuss the operations of union, intersection, and AND and OR operations for Q-NSSs,
along with some results and examples.

Definition 12. The union of two Q-NSSs (ΓQ, A) and (ΨQ, B) is the Q-NSS (ΛQ, C) written as (ΓQ, A) ∪
(ΨQ, B) = (ΛQ, C), where C = A∪ B and for all c ∈ C, (u, t) ∈ U×Q, the truth membership, indeterminacy
membership, and falsity membership of (ΛQ, C) are as follows:

TΛQ(c)(u, t) =





TΓQ(c)(u, t) if c ∈ A− B,

TΨQ(c)(u, t) if c ∈ B− A,

max{TΛQ(c)(u, t), TΨQ(c)(u, t)} if c ∈ A ∩ B,

IΛQ(c)(u, t) =





IΓQ(c)(u, t) if c ∈ A− B,

IΨQ(c)(u, t) if c ∈ B− A,

min{IΓQ(c)(u, t), IΨQ(c)(u, t)} if c ∈ A ∩ B,

FΛQ(c)(u, t) =





FΓQ(c)(u, t) if c ∈ A− B,

FΨQ(c)(u, t) if c ∈ B− A,

min{FΓQ(c)(u, t), FΨQ(c)(u, t)} if c ∈ A ∩ B.

Definition 13. The intersection of two Q-NSSs (ΓQ, A) and (ΨQ, B) is the Q-NSS (ΛQ, C) written as
(ΓQ, A) ∩ (ΨQ, B) = (ΛQ, C), where C = A ∩ B and for all c ∈ C and (u, t) ∈ U ×Q the truth membership,
indeterminacy membership, and falsity membership of (ΛQ, C) are as follows:

TΛQ(c)(u, t) =min{TΓQ(c)(u, t), TΨQ(c)(u, t)},
IΛQ(c)(u, t) =max{IΓQ(c)(u, t), IΨQ(c)(u, t)},
FΛQ(c)(u, t) =max{FΓQ(c)(u, t), FΨQ(c)(u, t)}.

Example 3. Let U = {u1, u2} be a universal set, E = {e1, e2} and Q = {s, t}. If A = B = {e1, e2} ⊆ E,

(ΓQ, A) =
{〈

e1,[(u1, s), 0.2, 0.3, 0.5], [(u1, t), 0.6, 0.4, 0.1], [(u2, s), 0.1, 0.4, 0.7], [(u2, t), 0.3, 0.2, 0.8]
〉

,
〈

e2,[(u1, s), 0.4, 0.1, 0.9], [(u1, t), 0.6, 0.2, 0.1], [(u2, s), 0.5, 0.3, 0.7], [(u2, t), 0.1, 0.3, 0.2]
〉}

and

(ΨQ, B) =
{〈

e1,[(u1, s), 0.4, 0.5, 0.2], [(u1, t), 0.2, 0.3, 0.5], [(u2, s), 0.3, 0.1, 0.7], [(u2, t), 0.2, 0.4, 0.6]
〉

,
〈

e2,[(u1, s), 0.9, 0.3, 0.2], [(u1, t), 0.4, 0.3, 0.1], [(u2, s), 0.8, 0.6, 0.3], [(u2, t), 0.2, 0.4, 0.6]
〉}

,
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then

(ΓQ, A) ∪ (ΨQ, B) =
{〈

e1,[(u1, s), 0.4, 0.3, 0.2], [(u1, t), 0.6, 0.3, 0.1], [(u2, s), 0.3, 0.1, 0.7], [(u2, t), 0.3, 0.2, 0.6]
〉

,
〈

e2,[(u1, s), 0.9, 0.1, 0.2], [(u1, t), 0.6, 0.2, 0.1], [(u2, s), 0.8, 0.3, 0.3], [(u2, t), 0.2, 0.3, 0.2]
〉}

,

and

(ΓQ, A) ∩ (ΨQ, B) =
{〈

e1,[(u1, s), 0.2, 0.5, 0.5], [(u1, t), 0.2, 0.4, 0.5], [(u2, s), 0.1, 0.4, 0.7], [(u2, t), 0.2, 0.4, 0.8]
〉

,
〈

e2,[(u1, s), 0.4, 0.3, 0.9], [(u1, t), 0.4, 0.3, 0.1], [(u2, s), 0.5, 0.6, 0.7], [(u2, t), 0.1, 0.4, 0.6]
〉}

.

Here, we give a proposition concerning the union and intersection of Q-NSSs.

Proposition 2. Let (ΓQ, A), (ΨQ, B) and (ΛQ, C) ∈ Q-NSS(U). Then,

1. (ΓQ, A) ∪ (ΨQ, B) = (ΨQ, B) ∪ (ΓQ, A).
2. (ΓQ, A) ∩ (ΨQ, B) = (ΨQ, B) ∩ (ΓQ, A).
3. (ΓQ, A) ∪ ((ΨQ, B) ∪ (ΛQ, C)) = ((ΓQ, A) ∪ (ΨQ, B)) ∪ (ΛQ, C).
4. (ΓQ, A) ∩ ((ΨQ, B) ∩ (ΛQ, C)) = ((ΓQ, A) ∩ (ΨQ, B)) ∩ (ΛQ, C).

Proof. 1. We show that (ΓQ, A) ∪ (ΨQ, B) = (ΨQ, B) ∪ (ΓQ, A) by using Definition 12. Consider case
c ∈ A ∩ B, as other cases are trivial.

(ΓQ, A) ∪ (ΨQ, B) =
{〈

c,
(

max{TΓQ(c)(u, t), TΨQ(c)(u, t)}, min{IΓQ(c)(u, t), IΨQ(c)(u, t)},

min{FΓQ(c)(u, t), FΨQ(c)(u, t)}
)
}
〉

: (u, t) ∈ U ×Q
}

=
{〈

c, max{TΨQ(c)(u, t), TΓQ(c)(u, t)}, min{IΨQ(c)(u, t), IΓQ(c)(u, t)},

min{FΨQ(c)(u, t), FΓQ(c)(u, t)}
〉

: (u, t) ∈ U ×Q
}

= (ΨQ,B) ∪ (ΓQ, A).

2. The proof is similar to that of Part (1).
3. We show that ((ΓQ, A) ∪ (ΨQ, B)) ∪ (ΥQ, C) = (ΓQ, A) ∪ ((ΨQ, B) ∪ (ΥQ, C)) by using

Definition 12. Consider case c ∈ A ∩ B, as other cases are trivial.

(ΓQ, A) ∪ (ΨQ, B) =
{〈

c,
(

max{TΓQ(c)(u, t), TΨQ(c)(u, t)}, min{IΓQ(c)(u, t), IΨQ(c)(u, t)},

min{FΓQ(c)(u, t), FΨQ(c)(u, t)}
)〉

: (u, t) ∈ U ×Q
}

.

((ΓQ, A) ∪ (ΨQ, B)) ∪ (ΥQ, C)

=
{〈

c,
((

max
{

max{TΓQ(c)(u, t), TΨQ(c)(u, t)}, TΥQ(c)(u, t)
}

,

min
{

min{IΓQ(c)(u, t), IΨQ(c)(u, t)}, IΥQ(c)(u, t)
}

,

min
{

min{FΓQ(c)(u, t), FΨQ(c)(u, t)}, FΥQ(c)(u, t)
}))〉

: (u, t) ∈ U ×Q
}
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=
{〈

c,
((

max
{

TΓQ(c)(u, t), TΨQ(c)(u, t), TΥQ(c)(u, t)
}

,

min
{

IΓQ(c)(u, t), IΨQ(c)(u, t), IΥQ(c)(u, t)
}

,

min
{

FΓQ(c)(u, t), FΨQ(c)(u, t), FΥQ(c)(u, t)
}))〉

: (u, t) ∈ U ×Q
}

=
{〈

c,
((

max
{

TΓQ(c)(u, t), max{TΨQ(c)(u, t), TΥQ(c)(u, t)}
}

,

min
{

IΓQ(c)(u, t), min{IΨQ(c)(u, t), IΥQ(c)(u, t)}
}

,

min
{

FΓQ(c)(u, t), min{FΨQ(c)(u, t), FΥQ(c)(u, t)}
}))〉

: (u, t) ∈ U ×Q
}

= (ΓQ,A) ∪ ((ΨQ, B) ∪ (ΥQ, C)).

4. The proof is similar to that of Part (3).

Next, we introduce the AND and OR operations of Q-NSSs.

Definition 14. If (ΓQ, A) and (ΨQ, B) are two Q-NSSs on U, then (ΓQ, A) AND (ΨQ, B) is the Q-NSS
denoted by (ΓQ, A) ∧ (ΨQ, B) and defined by (ΓQ, A) ∧ (ΨQ, B) = (ΛQ, A × B), where ΛQ(a, b) =

ΓQ(a) ∩ ΨQ(b) for all (a, b) ∈ A × B is the operation of intersection of two Q-NSs on U. That is, the
truth, indeterminacy, and falsity memberships of (ΓQ, A) and (ΨQ, B) are as follows:

TΛQ(a,b)(u, t) =min{TΓQ(a)(u, t), TΨQ(b)(u, t)},
IΛQ(a,b)(u, t) =max{IΓQ(a)(u, t), IΨQ(b)(u, t)},
FΛQ(a,b)(u, t) =max{FΓQ(a)(u, t), FΨQ(b)(u, t)},

Definition 15. If (ΓQ, A) and (ΨQ, B) are two Q-NSSs on U, then (ΓQ, A) OR (ΨQ, B) is the Q-NSS denoted
by (ΓQ, A) ∨ (ΨQ, B) and defined by (ΓQ, A) ∨ (ΨQ, B) = (ΛQ, A× B), where ΛQ(a, b) = ΓQ(a) ∪ΨQ(b)
for all (a, b) ∈ A× B is the operation of union of two Q-NSs on U. The truth, indeterminacy, and falsity
memberships of (Λ̂h

Q, A× B) are as follows:

TΥQ(a,b)(u, t) =max{TΓQ(a)(u, t), TΨQ(b)(u, t)},
IΥQ(a,b)(u, t) =min{IΓQ(a)(u, t), IΨQ(b)(u, t)},
FΥQ(a,b)(u, t) =min{FΓQ(a)(u, t), FΨQ(b)(u, t)},

Here, we present an example of AND and OR operations followed by the corresponding propositions.

Example 4. Reconsider Example 3, then

(ΓQ, A) ∧ (ΨQ, B)

=
{〈

(e1, e1),[(u1, s), 0.2, 0.5, 0.5], [(u1, t), 0.2, 0.4, 0.5], [(u2, s), 0.1, 0.4, 0.7], [(u2, t), 0.2, 0.4, 0.8]
〉

,
〈
(e1, e2),[(u1, s), 0.2, 0.3, 0.5], [(u1, t), 0.4, 0.4, 0.1], [(u2, s), 0.1, 0.6, 0.7], [(u2, t), 0.2, 0.4, 0.8]

〉
,

〈
(e2, e1),[(u1, s), 0.4, 0.5, 0.9], [(u1, t), 0.2, 0.3, 0.5], [(u2, s), 0.3, 0.3, 0.7], [(u2, t), 0.1, 0.4, 0.6]

〉
,

〈
(e2, e2),[(u1, s), 0.4, 0.3, 0.9], [(u1, t), 0.4, 0.3, 0.1], [(u2, s), 0.5, 0.6, 0.7], [(u2, t), 0.1, 0.4, 0.6]

〉}
.
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(ΓQ, A) ∨ (ΨQ, B)

=
{〈

(e1, e1),[(u1, s), 0.4, 0.3, 0.2], [(u1, t), 0.6, 0.3, 0.1], [(u2, s), 0.3, 0.1, 0.7], [(u2, t), 0.3, 0.2, 0.6]
〉

,
〈
(e1, e2),[(u1, s), 0.9, 0.3, 0.2], [(u1, t), 0.6, 0.4, 0.1], [(u2, s), 0.8, 0.4, 0.3], [(u2, t), 0.3, 0.2, 0.6]

〉
,

〈
(e2, e1),[(u1, s), 0.4, 0.1, 0.2], [(u1, t), 0.6, 0.2, 0.1], [(u2, s), 0.5, 0.1, 0.7], [(u2, t), 0.2, 0.3, 0.2]

〉
,

〈
(e2, e2),[(u1, s), 0.9, 0.1, 0.2], [(u1, t), 0.6, 0.2, 0.1], [(u2, s), 0.8, 0.3, 0.3], [(u2, t), 0.2, 0.3, 0.2]

〉}
.

Proposition 3. Let (ΓQ, A), (ΨQ, B), and (ΛQ, C) be three Q-NSSs on U. Then, we have the following
associative properties:

1. (ΓQ, A) ∧ ((ΨQ, B) ∧ (ΛQ, C)) = ((ΓQ, A) ∧ (ΨQ, B)) ∧ (ΛQ, C).
2. (ΓQ, A) ∨ ((ΨQ, B) ∨ (ΛQ, C)) = ((ΓQ, A) ∨ (ΨQ, B)) ∨ (ΛQ, C).

Proof. 1. Let (ΨQ, B) ∧ (ΛQ, C) = (ΥQ, B× C), where ΥQ(b, c) = ΨQ(b) ∩ΛQ(c).

Now, (ΓQ, A) ∧ ((ΨQ, B) ∧ (ΛQ, C)) = (ΓQ, A) ∧ (ΥQ, B × C) = (ΩQ, A × B × C),
where ΩQ(a, b, c) = ΓQ(a) ∩ ΥQ(b, c) = ΓQ(a) ∩ΨQ(b) ∩ΛQ(c).

Also, (ΓQ, A) ∧ (ΨQ, B) = (ΘQ, A × B), where ΘQ(a, b) = ΓQ(A) ∩ ΨQ(B).
Therefore, ((ΓQ, A) ∧ (ΨQ, B)) ∧ (ΛQ, C) = (Θq, A × B) ∧ (ΛQ, C) = (∆Q, A × B × C),
where ∆Q(a, b, c) = ΘQ(a, b) ∩ ΛQ(c) = ΓQ(a) ∩ ΨQ(b) ∩ ΛQ(c). Hence, (ΓQ, A) ∧ ((ΨQ, B) ∧
(ΛQ, C)) = ((ΓQ, A) ∧ (ΨQ, B)) ∧ (ΛQ, C).

2. The result can be proved in a similar fashion as in Assertion 1.

4. Necessity and Possibility Operations on Q-Neutrosophic Soft Sets with Some Properties

In this section, we introduce necessity and possibility operations on Q-NSSs.

Definition 16. The necessity operation on a Q-NSS on U (ΓQ, A) is denoted by ⊕(ΓQ, A) and is defined as,
for all e ∈ A,

⊕(ΓQ, A) =
{〈

e, [(u, t), TΓQ(u, t), IΓQ(u, t), 1− TΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

.

Example 5. Reconsider Example 2, then

⊕(ΓQ, A) =
{〈

e1,[(u1, s), 0.2, 0.3, 0.8], [(u1, t), 0.6, 0.4, 0.4], [(u2, s), 0.1, 0.4, 0.9], [(u2, t), 0.3, 0.2, 0.7]
〉

,
〈

e2,[(u1, s), 0.4, 0.1, 0.6], [(u1, t), 0.6, 0.2, 0.4], [(u2, s), 0.5, 0.3, 0.5], [(u2, t), 0.1, 0.3, 0.9]
〉}

Proposition 4. Let (ΓQ, A) and (ΨQ, B) be two Q-NSSs on U. Then,

1. ⊕((ΓQ, A) ∪ (ΨQ, B)) = ⊕(ΓQ, A) ∪⊕(ΨQ, B).
2. ⊕((ΓQ, A) ∩ (ΨQ, B)) = ⊕(ΓQ, A) ∩⊕(ΨQ, B).
3. ⊕(⊕(ΓQ, A)) = ⊕(ΓQ, A).
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Proof. 1. (ΓQ, A) ∪ (ΨQ, B) = (ΛQ, C), where C = A ∪ B

(ΛQ, C) =
{〈

e, [(u, t), TΛQ(u, t), IΛQ(u, t), FΛQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

, such that

TΛQ(u, t) =





TΓQ(u, t) if e ∈ A− B,

TΨQ(u, t) if e ∈ B− A,

max{TΓQ(u, t), TΨQ(u, t)} if e ∈ A ∩ B,

IΛQ(u, t) =





IΓQ(u, t) if e ∈ A− B,

IΨQ(u, t) if e ∈ B− A,

min{IΓQ(u, t), IΨQ(u, t)} if e ∈ A ∩ B,

and

FΛQ(u, t) =





FΓQ(u, t) if e ∈ A− B,

FΨQ(u, t) if e ∈ B− A,

min{FΓQ(u, t), FΨQ(u, t)} if e ∈ A ∩ B.

Now, by Definition 16, for all e ∈ C

⊕(ΛQ, C) =
{〈

e, [(u, t),⊕TΛQ(u, t),⊕IΛQ(u, t), ⊕FΛQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

, where

⊕TΛQ(u, t) =





TΓQ(u, t) if e ∈ A− B,

TΨQ(u, t) if e ∈ B− A,

max{TΓQ(u, t), TΨQi (u, t)} if e ∈ A ∩ B,

⊕IΛQ(u, t) =





IΓQ(u, t) if e ∈ A− B,

IΨQ(u, t) if e ∈ B− A,

min{IΓQ(u, t), IΨQ(u, t)} if e ∈ A ∩ B,

and

⊕FΛQ(u, t) =





1− TΓQ(u, t) if e ∈ A− B,

1− TΨQ(u, t) if e ∈ B− A,

1−max{TΓQ(u, t), TΨQ(u, t)} if e ∈ A ∩ B.

Assume for all e ∈ A
⊕(ΓQ, A) =

{〈
e, [(u, t), TΓQ(u, t), IΓQ(u, t), 1− TΓQ(u, t)]

〉
: (u, t) ∈ U ×Q

}
, and

⊕(ΨQ, B) =
{〈

e, [(u, t), TΨQ(u, t), IΨQ(u, t), 1 − TΨQ(u, t)]
〉

: (u, t) ∈ U × Q
}

. Now, ⊕(ΓQ, A) ∪
⊕(ΨQ, B) = (ΥQ, C), where

(ΥQ, C) =
{〈

e, [(u, t), TΥQ(u, t), IΥQ(u, t), FΥQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

, such that

TΥQ(u, t) =





TΓQ(u, t) if e ∈ A− B,

TΨQ(u, t) if e ∈ B− A,

max{TΓQ(u, t), TΨQ(u, t)} if e ∈ A ∩ B,
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IΥQ(u, t) =





IΓQ(u, t) if e ∈ A− B,

IΨQ(u, t) if e ∈ B− A,

min{IΓQ(u, t), IΨQ(u, t)} if e ∈ A ∩ B,

and

FΥQ(u, t) =





1− TΓQ(u, t) if e ∈ A− B,

1− TΨQ(u, t) if e ∈ B− A,

min{1− TΓQ(u, t), 1− TΨQ(u, t)} if e ∈ A ∩ B,

=





1− TΓQ(u, t) if e ∈ A− B,

1− TΨQ(u, t) if e ∈ B− A,

1−max{TΓQ(u, t), TΨQ(u, t)} if e ∈ A ∩ B.

Consequently, ⊕(ΛQ, C) and (ΥQ, C) are the same. Thus, ⊕((ΓQ, A) ∪ (ΨQ, B)) = ⊕(ΓQ, A) ∪
⊕(ΨQ, B).
2. Can be analogously proven.
3. Assume for all e ∈ A

⊕(ΓQ, A) =
{〈

e, [(u, t), TΓQ(u, t), IΓQ(u, t), 1− TΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

.

Now,

⊕(⊕(ΓQ, A)) =
{〈

e, [(u, t), TΓQ(u, t), IΓQ(u, t), 1− TΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

= ⊕(ΓQ, A).

Definition 17. The possibility operation on a Q-NSS on U (ΓQ, A) is denoted by ⊗(ΓQ, A) and is defined as,
for all e ∈ A,

⊗(ΓQ, A) =
{〈

e, [(u, t), 1− FΓQ(u, t), IΓQ(u, t), FΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

.

Example 6. Reconsider Example 2, then

(ΓQ, A) =
{〈

e1,[(u1, s), 0.5, 0.3, 0.5], [(u1, t), 0.9, 0.4, 0.1], [(u2, s), 0.3, 0.4, 0.7], [(u2, t), 0.2, 0.2, 0.8]
〉

,
〈

e2,[(u1, s), 0.1, 0.1, 0.9], [(u1, t), 0.9, 0.2, 0.1], [(u2, s), 0.3, 0.3, 0.7], [(u2, t), 0.8, 0.3, 0.2]
〉}

.

Proposition 5. Let (ΓQ, A), (ΨQ, B) be two Q-NSSs on U. Then,

1. ⊗((ΓQ, A) ∪ (ΨQ, B)) = ⊗(ΓQ, A) ∪⊗(ΨQ, B).
2. ⊗((ΓQ, A) ∩ (ΨQ, B)) = ⊗(ΓQ, A) ∩⊗(ΨQ, B).
3. ⊗(⊗(ΓQ, A)) = ⊗(ΓQ, A).

Proof. 1. (ΓQ, A) ∪ (ΨQ, B) = (ΛQ, C), where C = A ∪ B and

(ΛQ, C) =
{〈

e, [(u, t), TΛQ(u, t), IΛQ(u, t), FΛQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

,
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such that

TΛQ(u, t) =





TΓQ(u, t) if e ∈ A− B,

TΨQ(u, t) if e ∈ B− A,

max{TΓQ(u, t), TΨQ(u, t)} if e ∈ A ∩ B,

IΛQ(u, t) =





IΓQ(u, t) if e ∈ A− B,

IΨQ(u, t) if e ∈ B− A,

min{IΓQi (u, t), IΨQ(u, t)} if e ∈ A ∩ B,

and

FΛQ(u, t) =





FΓQ(u, t) if e ∈ A− B,

FΨQ(u, t) if e ∈ B− A,

min{FΓQ(u, t), FΨQ(u, t)} if e ∈ A ∩ B.

Now, by Definition 17, for all e ∈ A

⊗(ΛQ, C) =
{〈

e, [(u, t),⊗TΛQ(u, t),⊗IΛQ(u, t),⊗FΛQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

, where

⊗TΛQ(u, t) =





1− FΓQ(u, t) if e ∈ A− B,

1− FΨQ(u, t) if e ∈ B− A,

1−min{FΓQ(u, t), FΨQ(u, t)} if e ∈ A ∩ B,

⊗IΛQ(u, t) =





IΓQ(u, t) if e ∈ A− B,

IΨQ(u, t) if e ∈ B− A,

min{IΓQ(u, t), IΨQ(u, t)} if e ∈ A ∩ B,

and

⊗FΛQ(u, t) =





FΓQ(u, t) if e ∈ A− B,

FΨQ(u, t) if e ∈ B− A,

min{FΓQ(u, t), FΨQ(u, t)} if e ∈ A ∩ B.

Assume for all e ∈ A

⊗(ΓQ, A) =
{〈

e, [(u, t), 1− FΓQ(u, t), IΓQ(u, t), FΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

,

and
⊗(ΨQ, B) =

{〈
e, [(u, t), 1− FΨQ(u, t), IΨQ(u, t), FΨQ(u, t)]

〉
: (u, t) ∈ U ×Q

}
.

Now,
⊗(ΓQ, A) ∪⊗(ΨQ, B) = (ΥQ, C), where

(ΥQ, C) =
{〈

e, [(u, t), TΥQ(u, t), IΥQ(u, t), FΥQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

,
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such that

TΥQ(u, t) =





1− FΓQ(u, t) if e ∈ A− B,

1− FΨQ(u, t) if e ∈ B− A,

max{1− FΓQ(u, t), 1− FΨQ(u, t)} if e ∈ A ∩ B,

=





1− FΓQ(u, t) if e ∈ A− B,

1− FΨQ(u, t) if e ∈ B− A,

1−min{FΓQ(u, t), FΨQ(u, t)} if e ∈ A ∩ B,

IΥQ(u, t) =





IΓQ(u, t) if e ∈ A− B,

IΨQ(u, t) if e ∈ B− A,

min{IΓQ(u, t), IΨQ(u, t)} if e ∈ A ∩ B,

and

FΥQ(u, t) =





FΓQ(u, t) if e ∈ A− B,

FΨQ(u, t) if e ∈ B− A,

min{FΓQ(u, t), FΨQ(u, t)} if e ∈ A ∩ B.

Consequently, ⊗(ΛQ, C) and (ΥQ, C) are the same. Thus, ⊗((ΓQ, A) ∪ (ΨQ, B)) = ⊗(ΓQ, A) ∪
⊗(ΨQ, B).
2. Can be analogously proven.

3. Assume for all e ∈ A ⊗(ΓQ, A) =
{〈

e, [(u, t), TΓQ(u, t), IΓQ(u, t), 1− TΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

.
Now,

⊗(⊗(ΓQ, A)) =
{〈

e, [(u, t), TΓQ(u, t), IΓQ(u, t), 1− TΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

= ⊗(ΓQ, A).

Proposition 6. Let (ΓQ, A) be a Q-NSS over U and Q; we have the following properties:

1. ⊗⊕ (ΓQ, A) = ⊕(ΓQ, A).
2. ⊕⊗ (ΓQ, A) = ⊗(ΓQ, A).

Proof. 1. Suppose that, for any e ∈ A,

(ΓQ, A) =
{〈

e, [(u, t), TΓQ(u, t), IΓQ(u, t), FΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

. Then,

⊕(ΓQ, A) =
{〈

e, [(u, t), TΓQ(u, t), IΓQ(u, t), 1− TΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

and

⊗(ΓQ, A) =
{〈

e, [(u, t), 1− FΓQ(u, t), IΓQ(u, t), FΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}

.

Thus, ⊗⊕ (ΓQ, A) =
{〈

e, [(u, t), TΓQ(u, t), IΓQ(u, t), 1− TΓQ(u, t)]
〉

: (u, t) ∈ U ×Q
}
= ⊕(ΓQ, A).

2. The proof is similar to that of Assertion 1.
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Proposition 7. Let (ΓQ, A) and (ΨQ, B) be two Q-NSSs over U and Q, we have the following:

1. ⊕((ΓQ, A) ∧ (ΨQ, B)) = ⊕(ΓQ, A) ∧⊕(ΨQ, B).
2. ⊕((ΓQ, A) ∨ (ΨQ, B)) = ⊕(ΓQ, A) ∨⊕(ΨQ, B).
3. ⊗((ΓQ, A) ∧ (ΨQ, B)) = ⊗(ΓQ, A) ∧⊗(ΨQ, B).
4. ⊗((ΓQ, A) ∨ (ΨQ, B)) = ⊗(ΓQ, A) ∨⊗(ΨQ, B).

Proof. 1. Assume (ΓQ, A) ∧ (ΨQ, B) = (ΛQ, A× B), where for all ea ∈ A, eb ∈ B,

ΛQ(ea, eb) =
{
〈(ea, eb),[(u, t), min{TΓQ(u, t), TΨQ(u, t)}, max{IΓQ(u, t), IΨQ(u, t)},

max{FΓQ(u, t), FΨQ(u, t)}]
〉

: (u, t) ∈ U ×Q
}

.

By Definition 16, and for all ea ∈ A, eb ∈ B, we have

⊕((ΓQ, A) ∧ (ΨQ, B)) =
{〈

(ea, eb),[(u, t), min{TΓQ(u, t), TΨQ(u, t)}, max{IΓQ(u, t), IΨQ(u, t)},

1−min{FΓQ(u, t), FΨQ(u, t)}]
〉

: (u, t) ∈ U ×Q
}

.

Since ⊕(ΓQ, A) =
{〈

ea, [(u, t), TΓQ(u, t), IΓQ(u, t), 1 − TΓQ(u, t)]
〉

: ea ∈ A, (u, t) ∈ U × Q
}

,

and ⊕(ΨQ, B) =
{〈

eb, [(u, t), TΨQ(u, t), IΨQ(u, t), 1 − TΨQ(u, t)]
〉

: eb ∈ B, (u, t) ∈ U × Q
}

.
Then, for all ea ∈ A, eb ∈ B we have

⊕(ΓQ, A) ∧⊕(ΨQ, B)

=
{〈

(ea, eb), [(u, t), min{TΓQ(u, t), TΨQ(u, t)}, max{IΓQ(u, t), IΨQ(u, t)},

max{1− TΓQ(u, t), 1− TΨQ(u, t)}]
〉

: (u, t) ∈ U ×Q
}

.

=
{〈

(ea, eb), [(u, t), min{TΓQ(u, t), TΨQ(u, t)}, max{IΓQ(u, t), IΨQ(u, t)},

1−min{TΓQ(u, t), TΨQ(u, t)}]
〉

: (u, t) ∈ U ×Q
}

.

= ⊕((ΓQ, A) ∧ (ΨQ,B))

2. The proof is similar to that of Assertion 1.

3. Since for all ea ∈ A, eb ∈ B

(ΓQ, A) ∧ (ΨQ, B) =
{〈

(ea, eb), [(u, t), min{TΓQ(u, t), TΨQ(u, t)}, max{IΓQ(u, t), IΨQ(u, t)},

max{FΓQ(u, t), FΨQ(u, t)}]
〉

: (u, t) ∈ U ×Q
}

.

By Definition 17,

(ΓQ, A) ∧ (ΨQ, B) =
{〈

(ea, eb), [(u, t),1−max{FΓQ(u, t), FΨQ(u, t)}, max{IΓQ(u, t), IΨQ(u, t)},

max{FΓQ(u, t), FΨQ(u, t)}]
〉

: (u, t) ∈ U ×Q
}

.
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Since, ⊗(ΓQ, A) =
{〈

ea, [(u, t), 1 − FΓQ(u, t), IΓQ(u, t), FΓQ(u, t)]
〉

: ea ∈ A, (u, t) ∈ U × Q
}

,

and⊗(ΨQ, B) =
{〈

eb, [(u, t), 1− FΨQ(u, t), IΨQ(u, t), FΨQ(u, t)]
〉

: eb ∈ B, (u, t) ∈ U×Q
}

. Then, for all
ea ∈ A, eb ∈ B we have

⊗(ΓQ, A) ∧⊗(ΨQ, B) =
{〈

(ea, eb), [(u, t), min{1− FΓQ(u, t), 1− FΨQ(u, t)}, max{IΓQ(u, t), IΨQ(u, t)},

max{FΓQ(u, t), FΨQ(u, t)}]
〉

: (u, t) ∈ U ×Q
}

=
{〈

(ea, eb), [(u, t),1−max{FΓQ(u, t), FBQ(u, t)}, max{IΓQ(u, t), IΨQ(u, t)},

max{FΓQ(u, t), FΨQ(u, t)}]
〉

: (u, t) ∈ U ×Q
}

= ⊗((ΓQ, A) ∧ (ΨQ, B)).

4. The proof is similar to that of Assertion 3.

5. An Application of Q-Neutrosophic Soft Sets

In this section, we present a Q-NS aggregation operator of Q-NSS that produces a Q-NS from
a Q-NSS and then reduces it to a Q-fuzzy set in order to use it in a decision-making problem.

Definition 18. Let (ΓQ, A) be Q-NSS over U. Then, a Q-NS aggregation operator of (ΓQ, A), denoted by
Γagg

Q , is defined by Γagg
Q = {〈(u, t), Tagg

Q (u, t), Iagg
Q (u, t), Fagg

Q (u, t)〉 : (u, t) ∈ U ×Q}, which is a Q-NS over
U, where Tagg

Q , Iagg
Q , Fagg

Q : U ×Q→ [0, 1]

Tagg
Q =

1
|A| ∑

(u,t)∈U×Q
TΓQ(u, t),

Iagg
Q =

1
|A| ∑

(u,t)∈U×Q
IΓQ(u, t) and

Fagg
Q =

1
|A| ∑

(u,t)∈U×Q
FΓQ(u, t).

Definition 19. The reduced Q-fuzzy set of a Q-NS ΓQ is

Γ̂Q = {(u, t), µΓQ(u, t) : (u, t) ∈ U ×Q},

where µΓQ : U ×Q→ [0, 1] and given by µΓQ = 1
3 [TQ(u, t) + 2− IQ(u, t)− FQ(u, t)].

Now, using the definitions of a Q-NS aggregation operator and a reduced Q- fuzzy set, we
construct the following algorithm for a decision method:

Step 1 Construct a Q-NSS over U.
Step 2 Compute the Q-NS aggregation operator.
Step 3 Compute the reduced Q-fuzzy set of the Q-NS aggregation operator.
Step 4 The decision is any element in M, where M = max(u,t)∈U×Q{µagg

ΓQ
}.

Now, we provide an example for Q-NSS decision-making method.

Example 7. Suppose a university needs to fill a position in the mathematics department to be selected
by expert committee. There are three candidates, U = {u1, u2, u3}, with two types of scientific degree,
Q = {s = assistant professor, t = associate professor}, and the hiring committee considers a set of parameters
E = {e1, e2, e3} representing experience, language fluency, and computer knowledge, respectively.

Now, we can apply the method to help the committee fill the position with the suitable candidate as follows:
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Step 1 The committee construct the following Q-NSS:

(ΓQ, A) =
{〈

e1,[(u1, s), 0.2, 0.3, 0.5], [(u1, t), 0.6, 0.4, 0.1], [(u2, s), 0.1, 0.4, 0.7], [(u3, t), 0.3, 0.2, 0.8]
〉

,
〈

e2,[(u1, s), 0.4, 0.1, 0.9], [(u2, s), 0.6, 0.2, 0.1], [(u3, s), 0.5, 0.3, 0.7], [(u3, t), 0.1, 0.3, 0.2]
〉

,
〈

e3,((u1, t), 0.2, 0.3, 0.6), ((u2, t), 0.9, 0.1, 0.2)
〉}

.

Step 2 The Q-NS aggregation operator is

Γagg
Q =

{
[(u1, s), 0.2, 0.133, 0.467], [(u1, t), 0.267, 0.233, 0.233], [(u2, s), 0.233, 0.2, 0.267],

[(u2, t), 0.3, 0.033, 0.067], [(u3, s), 0.166, 0.1, 0.233], [(u3, t), 0.133, 0.167, 0.333]
}

.

Step 3 The reduced Q-fuzzy set of the Γagg
Q is

Γ̂Q =
{
[(u1, s), 0.533], [(u1, t), 0.6], [(u2, s), 0.589], [(u2, t), 0.733], [(u3, s), 0.611], [(u3, t), 0.544]

}
.

Step 4 The largest membership grade is µ
agg
ΓQ

(u2, t) = 0.733 which implies that the committee is inclined to
choose associate-professor candidate u2 with a scientific degree for the job.

6. Comparative Analysis

In this section, we compare the concept of the Q-neutrosophic soft method to the neutrosophic
soft method [16], Q-FSS [38], and Q-IFSS [39].

In contrast to the neutrosophic soft method that uses the NSS to characterize decision-making
data, the novel Q-neutrosophic soft method introduces a new descriptor, that is, Q-NSS, to provide
actual decision-making information. From Example 7, it can be seen that the NSS was unable to
represent variables in two dimensions. However, the framework of the Q-NSS offers the capacity to
simultaneously handle these two dimensions.

On the other hand, Q-NSS is identified through three independent degrees of membership,
namely, truth, indeterminacy, and falsity. Hence, it is more accurate than Q-FSS, which is identified
by one truth value, and Q-IFSS, which is identified by two dependent memberships for truth and
falsity. Thus, the proposed method has certain advantages, that is, this method uses the Q-NSS
to represent decision information as an extension of Q-FSS and Q-IFSS. An effective aggregation
formula is employed to convert the Q-NSS to Q-NS, which preserves the entirety of the original
data without reducing or distorting them. Our method also provides decision making with a simple
computational process.

As a result, the Q-NSS has the ability to deal with indeterminate and inconsistent data in
two-dimensional sets. Consequently, it is capable to interact with deeper imprecise data. The basic
characteristics of Q-NSS were compared to those of NSS, Q-FSS, and Q-IFSS, as shown in Table 1.

Table 1. Characteristic comparison of the Q-neutrosophic soft set (Q-NSS) with other variants.

Method NSS Q-FSS Q-IFSS Q-NSS

Authors Maji [16] Adam and Hassan [38] Broumi [39] Proposed Method

Domain Universe of discourse Universe of discourse Universe of discourse Universe of discourse

Codomain [0, 1]3 [0, 1] [0, 1]2 [0, 1]3

Q No Yes Yes Yes

True Yes Yes Yes Yes

Indeterminacy Yes No No Yes

Falsity Yes No Yes Yes
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7. Conclusions

Q-NSS is an NSS over a two-dimensional universal set. Thus, a Q-NSS is a tricomponent set
that can simultaneously handle two-dimensional and indeterminate data. This study discussed some
operations of Q-NSSs, namely, subset, equality, complement, intersection, union, AND operation,
and OR operation. It discussed the necessity and possibility operations along with some properties
and illustrative examples. Finally, the Q-NS aggregation operator was defined and applied to
develop an algorithm for using Q-NSS in decision-making problems that involve uncertainty.
This new model provides an important extension to existing studies that can handle indeterminacy,
where two-dimensionality appears in the decision process, thus offering the opportunity for further
relevant research. Q-NSS encourages the path to various scopes for future research since it deals
with indeterminacy and two-dimensionality at the same time. Hence, it can be expanded by utilizing
the n-valued refined neutrosophic set [44], possibility neutrosophic set [45], and numerous different
structures. Moreover, different algebraic structures, for instance, the field, ring, and group of the
Q-NSS and its extensions may be investigated.

Author Contributions: M.A.Q. and N.H. contributed equally to achieve this work.

Funding: Universiti Kebangsaan Malaysia GUP-2017-105.

Acknowledgments: We are indebted to Universiti Kebangsaan Malaysia for providing financial support and
facilities for this research under grant GUP-2017-105.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Turksen, I.B. Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 1986, 20, 191–210. [CrossRef]
3. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
4. Smarandache, F. Neutrosophy. Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, IL,

USA, 1998.
5. Smarandache, F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. Int. J. Pure Appl. Math.

2005, 24, 287–297.
6. Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. Mult. Multistruct.

2010, 4, 410–413.
7. Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1817–1834. [CrossRef]
8. Molodtsov, D. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [CrossRef]
9. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft set theory. J. Fuzzy Math. 2001, 9, 589–602.
10. Xu, W.; Ma, J.; Wang, S.; Hao, G. Vague soft sets and their properties. Comput. Math. Appl. 2010, 59, 787–794.

[CrossRef]
11. Alhazaymeh, K.; Hassan, N. Generalized interval-valued vague soft set. Appl. Math. Sci. 2013, 7, 6983–6988.

[CrossRef]
12. Alhazaymeh, K.; Hassan, N. Interval-valued vague soft sets and its application. Adv. Fuzzy Syst. 2012, 2012, 208489.

[CrossRef]
13. Alhazaymeh, K.; Hassan, N. Possibility interval-valued vague soft set. Appl. Math. Sci. 2013, 7, 6989–6994.

[CrossRef]
14. Alkhazaleh, S.; Salleh, A.R. Soft expert sets. Adv. Decis. Sci. 2011, 2011, 757868. [CrossRef]
15. Alkhazaleh, S.; Salleh, A.R.; Hassan, N. Soft multi sets theory. Appl. Math. Sci. 2011, 5, 3561–3573.
16. Maji, P.K. Neutrosophic soft set. Ann. Fuzzy Math. Inform. 2013, 5, 157–168.
17. Broumi, S. Generalized neutrosophic soft set. Int. J. Comput. Sci. Eng. Inf. Technol. 2013, 3, 17–30. [CrossRef]
18. Broumi, S.; Smarandache, F. Intuitionistic neutrosophic soft set. J. Inf. Comput. Sci. 2013, 8, 130–140.
19. Deli, I. Interval-valued neutrosophic soft sets and its decision making. Int. J. Mach. Learn. Cybern. 2017, 8, 665–676.

[CrossRef]
20. Deli, I; Broumi, S. Neutrosophic soft matrices and NSM decision making. J. Intell. Fuzzy Syst. 2015,

28, 2233–2241. [CrossRef]

657



Symmetry 2019, 11, 139

21. Karaaslan, F. Neutrosophic soft sets with applications in decision making problem. Int. J. Inf. Sci. Intell. Syst.
2015, 4, 1–20.

22. Ye, J.; Cui, W. Exponential entropy for simplified neutrosophic sets and its application in decision making.
Entropy 2018, 20, 357. [CrossRef]

23. Ye, J. Exponential operations and aggregation operators of interval neutrosophic sets and their decision
making methods. SpringerPlus 2016, 5, 1488. [CrossRef]
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Abstract: The acceptance sampling plan plays an important role in maintaining the high quality
of a product. The variable control chart, using classical statistics, helps in making acceptance
or rejection decisions about the submitted lot of the product. Furthermore, the sampling plan,
using classical statistics, assumes the complete or determinate information available about a lot of
product. However, in some situations, data may be ambiguous, vague, imprecise, and incomplete or
indeterminate. In this case, the use of neutrosophic statistics can be applied to guide the experimenters.
In this paper, we originally proposed a new variable sampling plan using the neutrosophic interval
statistical method. The neutrosophic operating characteristic (NOC) is derived using the neutrosophic
normal distribution. The optimization solution is also presented for the proposed plan under the
neutrosophic interval method. The effectiveness of the proposed plan is compared with the plan
under classical statistics. The tables are presented for practical use and a real example is given to
explain the neutrosophic fuzzy variable sampling plan in the industry.

Keywords: optimization solution; sampling plan; producer’s risk’; consumer’s risk; sample size

1. Introduction

In this modern era, there is a strict competition between the companies to earn good reputation
in the market. So, quality is considered as a benchmark for the well-reputed company. The good
quality of the product means a good reputation of the company in the market. To maintain the high
quality of the product, the inspection of the product from the raw material to the finished product
should be done. Inspection of a finished lot of the products should be done before sending them to the
market. Therefore, the inspection of the finished product is aimed at the high quality of the product.
At the time of inspection, it may not possible to inspect 100% of the items and the entire submitted
lot of product. Therefore, inspection of a lot of product is done using the acceptance sampling plans.
A well-designed sampling plan reduces the cost and time of the inspection. A sampling plan also
pressures the producer to increase the quality of the product. As the decision about the submitted lot of
product is taken based on the sample information, there is a chance of committing errors. The chance
of rejecting a lot meets the given specification is called the producer’s risk, and accepting a bad lot is
known as the consumer’s risk. Therefore, sampling plans are designed to give those parameters for
the inspection of a lot of product, where these two risks are satisfied. More details about the sampling
plans can be seen in [1,2].

The variable sampling plan is applied when the data is continuous, such as the diameter of
the ball bearing. Several variable acceptance sampling plans are available in the literature using
classical statistics [1,3–5]. The variable sampling plans designed under classical statistics can only
be applied when there is no certainty in the observations. According to [6] “observations include
human judgments, and evaluations and decisions, a continuous random variable of a production
process should include the variability caused by human subjectivity or measurement devices, or
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environmental conditions. These variability causes create vagueness in the measurement system”.
In this situation, the sampling plans designed use the fuzzy logic. Several authors presented excellent
work to design the sampling plan under the fuzzy environment. Kanagawa and Ohta [7] designed the
fuzzy attribute sampling plan. Jamkhaneh et al. [8] studied the rectifying fuzzy single sampling plan.
Sadeghpour et al. [9] presented the plan with fuzzy parameters. Jamkhaneh et al. [10] discussed the
effect of inspection errors on the single fuzzy plan. Tong and Wang [11] proposed the fuzzy sampling
plan for the geospatial data. Turanoğlu et al. [12] presented the characteristic curve for the fuzzy plan.
Uma and Ramya [13] presented a review of the fuzzy sampling plans. Kahraman et al. [14] worked on
the single and double sampling using the fuzzy approach, and Afshari and Gildeh [15] designed a
fuzzy multiple dependent state sampling plan.

According to [16], the neutrosophic logic is the generalization of classical fuzzy logic.
The neutrosophic statistics developed by [17] is the generalization of the classical statistics.
The neutrosophic statistics can be applied under the uncertainty environment. References [18,19]
introduced the neutrosophic interval method in rock measurement. Recently, references [20–25]
introduced the neutrosophic statistics in the area of the acceptance sampling plan. Aslam [26] proposed
a sampling plan for the exponential distribution using the neutrosophic statistics.

Although a rich variety of variable sampling plans under the fuzzy approach and classical
statistics is available in the literature, according to the best of the author’s knowledge, there is no
work on the design of a variable sampling plan using the neutrosophic interval method. In this
paper, we originally proposed a new variable sampling plan using the neutrosophic interval statistical
method. The neutrosophic operating characteristic (NOC) is derived using the neutrosophic normal
distribution. The optimization solution is also presented for the proposed plan under the neutrosophic
statistical interval method. The effectiveness of the proposed plan is compared with the plan using
classical statistics. The tables presented for practical use and a real example is given to explain the
neutrosophic fuzzy variable sampling plan in the industry. A brief introduction to the neutrosophic
approach is given in Section 2. The design of the proposed plan is given in Section 3. The advantages
of the proposed plan are discussed in Section 4. An example is given in Section 5, and some concluding
remarks are given in the last section.

2. Neutrosophic Approach

According to [16], the neutrosophic logic is an extension of fuzzy logic. The neutrosophic logic
considers the measures of truth, false, and indeterminacy. The neutrosophic statistics using the
neutrosophic logic is introduced by [17]. Classical statistics is the special case of the neutrosophic
statistics. The latter one is applied when the sample is selected from the population having
uncertain observations. According to [17] “neutrosophic statistics is an extension of the classical
statistics. In the neutrosophic statistics, the data may be ambiguous, vague, imprecise, incomplete,
even unknown. Instead of crisp numbers used in classical statistics, one uses sets in neutrosophic
statistics”. Suppose that XN ∈ {XL, XU} denotes the neutrosophic random variable, where XL
and XU are lower and upper values of indeterminacy interval, respectively. Let nN ∈ {nL, nU}
represent the neutrosophic sample size selected from the population having indeterminate observations.
Let µN ∈ {µL, µU} and σN ∈ {σL, σU} be the corresponding neutrosophic population mean and
variance, respectively. Suppose that sN ∈ {sL, sU} XN ∈

{
XL, XU

}
represent the neutrosophic sample

mean and variance, respectively.

3. Design of the Proposed Plan Neutrosophic Interval Method

Based on the above information, in this section, we present the design of the proposed sampling
under the neutrosophic environment. The operational procedure of the proposed plan is given as:

Step-1: Select a random sample of size nL ≤ nN ≤ nU ; nN ∈ {nL, nU} from the lot of product.

Compute the statistic vN = U−XN
sN

, where XN ∈
{

XL, XU
}

; XL = ∑n
i=1 xL

i /nL, XU = ∑n
i=1 xU

i /nU ,
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and sN ∈ {sL, sU}, where sL =
√

∑n
i=1 (xL

i − XL)
2/nL and sU =

√
∑n

i=1 (xU
i − XU)

2/nU ; i =1,2,3,
. . . ,n.
Step-2: Accept the lot of product of v ≥ kNa; kN ∈ {kaL, kaU} where kNa is the neutrosophic
acceptance number.

The proposed plan is applied to test the hypothesis that the product is good versus the alternative
hypothesis that the product is bad, on the basis of sample information. The null hypothesis is accepted
if v ≥ kN , otherwise, the alternative hypothesis is accepted. The proposed plan has two parameters,
nN ∈ {nL, nU} and kNa ∈ {kaL, kaU}. The neutrosophic normal distribution, with mean µN ∈ {µL, µU}
and standard deviation σN ∈ {σL, σU}, is defined by

XN ∼ NN(µN , σN) =
1

σN
√

2π
exp

(
− (x− µN)

2

2σ2
N

)
(1)

where NN(µN , σN) denotes the neutrosophic normal distribution. The neutrosophic operating
characteristic (NOC) of the proposed sampling plan is derived as follows:

Following [27], XN ± kNasN ; XN ∈
{

XL, XU
}

and sN ∈ {sL, sU} the approximate neutrosophic

normal distribution with mean µN ± cσN ; µN ∈ {µL, µU}; σN ∈ {σL, σU} and σ2
N

nN
+

c2σ2
N

2nN
; µN ∈

{µL, µU}; σN ∈ {σL, σU} and nN ∈ {nL, nU}. The lot acceptance probability is given by

L(p) = P(vN ≥ kNa) = P
{

XN + kNasN ≤ U
}

; XN ∈
{

XL, XU
}

(2)

Therefore, the lot acceptance probability is given by

L(p) = Φ


 U − µN − kNasN(

σN√
nN

)√
1 + k2

Na
2


; XN ∈

{
XL, XU

}
, nN ∈ {nL, nU}, kNa ∈ {kaL, kaU} and sN ∈ {sL, sU} (3)

Suppose pU is the probability that defective items beyond U, so pU = P(XN > U|µN);
XN ∈

{
xL

i , xU
i
}

and µN ∈ {µL, µU}, where ZNpU = U−µN
σN

; µN ∈ {µL, µU} and ZNpU is the
neutrosophic standard normal distribution. After some simplification, the NFOC is given by

LN(p) = Φ

(
(
ZNpU − kNa

)√ nN

1 +
(
k2

Na/2
)
)

; kNa ∈ {kaL, kaU}; nN ∈ {nL, nU} (4)

where α and β are the producer’s risk and consumer’s risk, respectably. The plan parameters
kNa ∈ {kaL, kaU}; nN ∈ {nL, nU} of the neutrosophic plan will be determined, such that the lot
acceptance probability should be larger than 1− α at acceptable quality level (AQL), and p1 and
bad lot acceptance probability should be smaller than β at limiting quality level (LQL), say p2.
The neutrosophic plan parameters of the proposed sampling plans will be determined by the following
non-linear optimization problem.

minimize nN ∈ {nL, nU} (5a)

subject to

LN(p1) = Φ

(
(
ZNpU1 − kNa

)√ nN

1 +
(
k2

N/2
)
)
≥ 1− α; kNa ∈ {kaL, kaU}; nN ∈ {nL, nU} (5b)

and

LN(p2) = Φ

(
(
ZNpU2 − kNa

)√ nN

1 +
(
k2

N a/2
)
)
≤ β; kN ∈ {kaL, kaU}; nN ∈ {nL, nU} (5c)
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The neutrosophic plan parameters such as nN ∈ {nL, nU}, kNa ∈ {kaL, kaU}, LN(p1), and LN(p2)

for various values of AQL and LQL are placed in Table 1.

Table 1. The neutrosophic plan parameter when α = 0.05, β = 0.05.

p1 p2 nN kNa LN(p1) LN(p2)

0.001 0.002 {388,569} {1.062,1.068} {0.0151,0.065} {0.9501,0.9502}
0.003 {213,268} {1.05,1.055} {0.000,0.000} {0.9501,0.9502}
0.004 {180,213} {1.046,1.05} {0.000,0.000} {0.9500,0.9502}
0.006 {139,150} {1.039,1.041} {0.000,0.000} {0.9504,0.9508}
0.008 {103,130} {1.03,1.037} {0.000,0.000} {0.9500,0.9506}
0.010 {78,117} {1.02,1.034} {0.000,0.026} {0.9501,0.9506}
0.015 {61,100} {1.01,1.029} {0.000,0.007} {0.9500,0.9512}
0.020 {50,80} {0.99,1.02} {0.000,0.010} {0.9527,0.6983}

0.0025 0.030 {143,233} {0.696,0.706} {0.0173,0.0847} {0.9501,0.9504}
0.050 {138,213} {0.695,0.705} {0.0214,0.0937} {0.9504,0.9506}

0.005 0.050 {77,83} {0.708,0.711} {0.9999,1.000} {0.0791,0.0990}
0.100 {15,22} {0.77,0.795} {0.0012,0.0118} {0.9545,0.9577}

0.01 0.020 {184,210} {0.812,0.814} {0.0731,0.0985} {0.9500,0.9536}
0.030 {95,102} {0.794,0.796} {0.0275,0.0358} {0.9502,0.9508}

0.03 0.060 {127,149} {0.669,0.673} {0.0638,0.0992} {0.9516,0.9520}
0.090 {112,121} {0.666,0.668} {0.0010,0.0018} {0.9502,0.9507}

0.05 0.100 {125,132} {0.60,0.614} {0.0029,0.0551} {0.9501,0.9503}
0.150 {38,40} {0.557,0.559} {0.0812,0.0921} {0.9512,0.9519}

From Table 1, we note following trends in neutrosophic plan parameters

1. For the fixed values AQL, nN ∈ {nL, nU} decreases as LQL increases.
2. For the fixed values AQL, kNa ∈ {kaL, kaU} decreases as LQL increases.

Comparative Study

Now we compare the proposed plan with the sampling plan under classical statistics in [19],
a method which provides the range of the parameters under the uncertainty is called the most effective
and adequate method. We preened the values of both sampling plans for some combinations of AQL
and LQL in Table 2. From Table 2, it can be noted that the plan under classical statistics provides the
determined value, while the proposed plan provides the plan parameter in the indeterminacy interval.
For example, when AQL = 0.001 and LQL = 0.002, the proposed plan has indeterminacy interval
nN ∈ {388,569}, while the plan under classical statistics has a determined value n = 388. Under the
uncertainty, when AQL = 0.001 and LQL = 0.002, the suitable sample size should be selected between
388 and 569. Therefore, the sampling plan under the neutrosophic interval method has the advantage
over the plan under classical statistics under the uncertainty environment. The proposed plan is more
effective, informative, flexible, and adequate to be applied in uncertainty than the plan based on
classical statistics.

Table 2. The comparison of neutrosophic plan with plan under classical Statistics, when α = 0.05, β = 0.05.

p1 p2
Proposed Plan Existing Plan

nN n

0.001 0.002 {388,569} 388
0.001 0.010 {78,117} 78
0.001 0.020 {50,80} 50
0.005 0.050 {77,83} 77
0.005 0.100 {15,22} 15
0.01 0.020 {184,210} 184
0.01 0.030 {95,102} 95
0.05 0.100 {125,132} 125
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4. Application of the Proposed Plan

In this section, we present the application of the proposed neutrosophic plan using color STN
display data collected from the industry of LCD. According to [28], “Color STN displays are created
by adding color filters to traditional monochrome. In color STN displays, each pixel is divided into R,
G, and B sub-pixels. In this study, the membrane thickness of each pixel is the quality characteristic”.
The data for this variable of study is obtained from the measurement process. Senturk and Erginel [6]
pointed out that the observations obtained from the measurement devices have variability. The present
state of this variation makes some observations imprecise. During the sample study, we found that
some observations about each pixel are determinate or clear, and some are indeterminate or unclear.
For this experiment, the experimenter did not determinate the sample size that should be selected for
the inspection of this LCD product. Suppose we fixed α = 0.05, β = 0.05, AQL = 0.001, and LQL = 0.020.
From Table 1, it can be noted that the optimal sample size nN for this case should be nN ∈ {50, 80}.
Therefore, we need to collect the data for a sample size having between 50 and 80. Let nN = 55 once
nN ∈ {50, 80}. The data of 55 observations, including determinate and indeterminate observations
about each pixel, is reported in Table 3.

Table 3. Data on color Super Twisted Nematic (STN) displays.

[11,816.7,11,816.7] [11,710.1,11,710.1] [11,722.6,11,823.5] [11,744.1,11,744.1] [11,681.1,11,681.1] [11,728.4,11,728.4]
[11,712.6,11,712.6] [11,775.2,11,775.2] [11,743.3,11,743.3] [11,786.1,11,786.1] [11,760.6,11,760.6] [11,723.6,11,723.6]
[11,721.7,11,721.7] [11,698,11,698] [11,695.9,11,695.9] [11,726.4,11,726.4] [11,797.2,11,797.2] [11,773.1,11,773.1]
[11,769.1,11,769.1] [11,800.8,11,800.8] [11,780.7,11,780.7] [11,670.9,11,675.9] [11,692.3,11,692.3] [11,666.2,11,666.2]
[11,755.2,11,762.5] [11,712.7,11,712.7] [11,775.5,11,775.5] [11,731.2,11,731.2] [11,625.6,11,625.6] [11,757.5,11,757.5]
[11,674.7,11,674.7] [11,729.2,11,729.2] [11,681.3,11,681.3] [11,636.4,11,636.4] [11,682.1,11,690.7] [11,667.9,11,667.9]
[11,722.9,11,722.9] [11,655.3,11,655.3] [11,700.2,11,700.2] [11,754.2,11,754.2] [11,769.9,11,769.9] [11,705.9,11,705.9]
[11,589.8,11,589.8] [11,738.4,11,745.6] [11,745.4,11,745.4] [11,727.7,11,727.7] [11,664.3,11,664.3] [11,647.2,11,647.2]
[11,755,11,755] [11,671.8,11,671.8] [11,705.8,11,705.8] [11,664.2,11,664.2] [11,677.0,11,695.2] [11,680.5,11,687.4]
[11,633.6,11,633.6]

As the data given in Table 3 is neutrosophic, therefore, the sampling plan under classical statistics
cannot be applied for the inspection of this product. The proposed sampling plan for the neutrosophic
data is explained as follows.

By following [17], the sample mean XN ∈
{

XL, XU
}

and sN ∈ {sL, sU} for this data are calculated
as follows

XN =

[11, 816.7, 11, 816.7] + [11, 710.1, 11, 710.1] + [11, 722.6, 11, 722.6] + . . . + [11, 633.6, 11, 633.6], [11, 816.7, 11, 816.7] + . . .

+[11, 687.4, 11687.4] + [11, 633.6, 11, 633.6]

55

Or
XN ∈ {11, 715.2, 11, 719.6} and sN = {49.21, 49.70}

Suppose that U = 12,500 for the submitted LCD product. The proposed sampling plan
implemented as follows.

Step-1: select a random sample of size nN = {nL, nU} from a lot of product. Compute the statistic

vN = U−XN
sN

= [12,500,12,500]−[11,715.2,11,719.6]
[49.21,49.70] , so vN ∈ [15.70, 15.94].

Step-2: Accept a lot of the product of vN ≥ kN ; kNa ∈ {kaL, kaU}. From Table 1, we have kNa ∈ {0.99,
1.02}. So, vN ≥ kNa, the lot of product, should be accepted to send to the market.

From this real example, it is concluded that the proposed sampling is quite reasonable and
adequate to apply when observations are imprecise.
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5. Concluding Remarks

A new variable neutrosophic variable sampling plan is proposed in this paper. The proposed plan
is the extension of the variable sampling plan based on classical statistics. The proposed plan can be
applied in those situations where data is incomplete or indeterminate came from the complex process.
The non-linear optimization problem was developed under the neutrosophic approach, and some
results are presented for the practical use of the proposed plan. A real example shows the application
of the proposed plan in the industry. From the comparison study, it was concluded that the proposed
plan under the neutrosophic interval method is an adequate, flexible, effective, and reasonable method
in the uncertainty environment. The proposed plan has the limitation that it can be applied only when
the data follows the neutrosophic normal distribution. The proposed plan, using some other sampling
scheme, will be considered for future research. The proposed plan for some non-normal distribution
can be extended as future research.
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Abstract: Molodtsov originated soft set theory that was provided a general mathematical framework
for handling with uncertainties in which we meet the data by affix parameterized factor during the
information analysis as differentiated to fuzzy as well as neutrosophic set theory. The main object
of this paper is to lay a foundation for providing a new approach of single-valued neutrosophic
soft tool which is considering many problems that contain uncertainties. In present study, a new
aggregation operators of single-valued neutrosophic soft numbers have so far not yet been applied
for ranking of the alternatives in decision-making problems. To this propose work, single-valued
neutrosophic soft weighted arithmetic averaging (SVNSWA) operator, single-valued neutrosophic soft
weighted geometric averaging (SVNSWGA) operator have been used to compare two single-valued
neutrosophic soft numbers (SVNSNs) for aggregating different single-valued neutrosophic soft input
arguments in neutrosophic soft environment. Then, its related properties have been investigated.
Finally, a practical example for Medical diagnosis problems provided to test the feasibility and
applicability of the proposed work.

Keywords: single-valued neutrosophic soft number and its operations; SVN soft weighted arithmetic
averaging operator; SVN soft weighted geometric averaging operator; decision-making

1. Introduction

Multi-criteria decision-making (MCDM) problems seek great attention in modern decision science.
The method is addressed to select the best alternative among the finite set of alternatives as claimed by
decision makers under the preference values of the alternatives. MCDM problems extensively applied
with quantitative or qualitative attribute values and have a board application in medical diagnosis [1,2],
ecology [3], sensor network [4] management science and engineering [5,6], economic [7], market
prediction and engineering technology [8], transport service problem [9] etc. As our modern society
move forward with the decision-making process, so it always faces imprecise, vague and uncertain
facts to take a decision in solving decision-making problems. In order to solve imprecise and uncertain
data, [10] initiated the idea of intuitionistic fuzzy set (IFS), a powerful extension of fuzzy set (FS) [11].
Even though (FS) and (IFS) are very powerful set to model decision problems containing uncertainties,
in some cases these sets are not sufficient to overcome indeterminate and inconsistent statistics
experience in real world problems. As SVNS [12] have strong acceptance for modeling of problems
including the incomplete, indeterminate and inconsistent data. The aggregated information for the
execution of the criteria for alternatives, weighted and order weighted aggregation operators [13–22]
takes a significant role during the combination of the information process. The above aggregation
operators based decision-making problems are not enough for the solution of real-world problems
because they have insufficient of parameterizations. In real life problems involve different parameters.
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Most of MCDM problems, researchers can not consider parameterizations factor when they aggregate
the information of the alternatives. Therefore, there are lack of information of the alternatives about
the involves parameter. Motivated by the aforementioned limitations, this research developed a
novel fuzzy-based MCDM approach for the evaluation of medical diagnosis problems. Initially, we
introduced the SVSNs to quantify evaluation information on criteria and alternatives. We combined
the SVNNs with the concept of soft set. Subsequently, this study proposed single-valued neutrosophic
soft weighted averaging (SVNSWA) operator and single-valued neutrosophic soft weighted geometric
(SVNSWG) operator to aggregate criteria by considering their parameterizations factors. We haved
studied idempotency, boundedness, shift-invariance and Homogeneity property of these two kinds of
soft weighted aggregation operators. The main advantage of these operators is that they are able to
make smooth description of the real-world problems by the use of parameterizations factor. In order
to rank the alternatives, aggregation operators lead to aggregate the over all information of the objects
for the preferences of the decision maker into a collective one and hence find to a desirable according
to its score values. To the best of our knowledge, the research developed on FSS and SVNSS is only
about their basic theory and its applications, but, there have been no research done on single-valued
neutrosophic soft aggregation numbers. So, it is a new issue and have a scope for future development in
decision science. Therefore, decision-making problems in single-valued neutrosophic soft environment
under proposed aggregation operators which makes us enough motivation to develop the propose
problems. The main object of this article is to exhibit some aggregation operators under SVN data
called as single-valued neutrosophic soft aggregation for collect the distinct priorities of the choices of
this technique.

The remainder of this paper is organized as: In next Section, briefly survey some essential ideas of
the FSS and SVNSS. In Section 3, we define some operational principles of single-valued neutrosophic
soft numbers and then define single-valued neutrosophic soft weighted averaging (SVNSWA) operator,
single-valued neutrosophic soft weighted geometric (SVNSWGA) operator and established its related
properties. In next Section, we utilize those operators to create single-valued neutrosophic soft
multi-criteria group decision-making problems. An interpretative case is specified for the selection
of most illness patient in Section 5. In Section 6, a comparative analysis has been made between the
existing works and the proposed study. Finally, in Section 7, follows a remark.

2. Literature Review

Neutrosophic set (NS) a tremendous branch of philosophy was proposed by Smarandache [23,24].
This proposed approach is characterized by three functions called (truth-, indeterminacy-,falsity)-
membership functions. Therefore, (NS) has strong acceptance to develop models carrying indeterminate
and inconsistent data. However, since codomain of membership functions of a (NS) is real standard or
nonstandard subsets of ]−0, 1+[, in some applications areas engineering and real scientific fields
they have some difficulties in modeling of problems. To overcome difficulties in these areas,
Wang et al. [12] defined the view of single-valued neutrosophic set (SVNs). As (SVNs) have strong
acceptance for modeling of problems including the incomplete, indeterminate and inconsistent
data. So, scholars have been investigating on how to find a proper one alternative and have
obtained some achievements. Ye utilized [25] arithmetic and geometric aggregation functions
under simplified neutrosophic numbers to develop MCDM problems. Garg and Nancy [26] have
followed to the study of linguistic SVN prioritized aggregation function to propose a MADM problem.
Wan et al. [27] introduced Frank Choquet Bonferroni mean operators and utilized this operator
develop MCDM problems in single-valued bipolar neutrosophic environment. Shi and Ye [28]
introduced Dombi aggregation operator to originate neutrosophic cubic Dombi (NCD) aggregation
functions to study a decision-making problems. Wei and Zhang [29] utilized combination of power
averaging and Bonferroni mean operator to developed SVN Bonferroni power aggregation operators
to develop a MADM problem. Ulucay et al. [30] developed a decision-making problem using
similarity measure method under bipolar neutrosophic environment. Abdel-Basset et al. [31] studied
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MCGDM based on neutrosophic hierarchy method. Abdel-Basset et al. [32] proposed strategic
planning and decision-making based on neutrosophic AHP-SWOT analysis. Dalapati et al. [33]
proposed cross entropy based MAGDM based on interval neutrosophic information. In [34], Bausys
and Zavadskas provided VIKOR method based MCDM problems using interval neutrosophic
numbers. Biswas et al. [35] utilized TOPSIS method for MCDM problems under SVN environment.
Broumi et al. [36] introduced an algorithm to solve a neutrosophic shortest problems from source node
to destination node. Sahin and Liu [37] derived correlation coefficient between two SVN hesitant fuzzy
numbers. Jana et al. [38] studied trapezoidal neutrosophic aggregation functions and utilized these
operators develop MADM problems. Recently, researchers have drawn attention to model interval
rough sets with their application problems [39].

But the technique of the above papers are not enough for the solution of real-world problems
because they have insufficient of parameterizations. In that context, soft set theory plays an important
role to overcome such barrier and effectively applied to solve the conditions. Maji et al. [40,41]
provided with the bridge connection between FS and IFS with soft sets theory [42]. Some hybrid
models together with soft set theory have been develop in various uncertain environments such
as on fuzzy soft set theory with parameterizations [43,44], fuzzy soft expert sets [45], generalized
intuitionsitic fuzzy soft sets [46], IVIF soft sets [47,48] and its applications, bipolar intuitionistic
fuzzy soft sets and decision-making [49], Hesitant fuzzy soft sets [50]. Jana and pal [51,52] have
studied soft intersection BCK/BCI-algebras, and soft intersection group structure based on (α, β)-soft
intersectional sets. Selvachandran and Peng [53] has found a modified TOPSIS method using vauge
parameterized vegue soft set and gave its application in decision making. Recently, Arora and
Garg [54] provided a new approach of aggregation operator using parameterized factor in intuitionistic
fuzzy soft environment. In the same time, a tool combination of neutrosophic set and soft set have
gave a momentum to the solution of real life problems in many directions. Karaaslan [55] used
possibility theory to develop PNS-decision-making method using neutrosophic soft OR-product and
AND-product. Broumi and Samarandache [56] proposed single-valued neutrosophic soft expert set
and its application in decision-making. Ali et al. [57] gave an application of bipolar neutrosophic soft
sets in decision making in the environment of bipolar neutrosophic set. Deli et al. [58] motivated to
develop a decision-making method called ivnpivn-soft sets using neutrosophic information. In [59],
Khalid and Abbas used soft set theory in distance measure.

In this study, multi-criteria decision-making approach is characterized by single-valued
neutrosophic soft numbers (SVNSNs). The SVNSWA and SVNSWG aggregation operators are
presented. Then, a medical diagnosis problems is solved by using these proposed operators.

3. Basic Concepts of FSS and SVNSS

In what follows, U, E and P(U) respectively denote universal set, parameter set and power set of
U. Also, A ⊆ E.

Definition 1 ([11]). Let X be a non-empty set. A fuzzy set µ of X is defined as a mapping µ : X → [0, 1],
where [0, 1] is the usual interval of real numbers. We take F(X) as the set of all fuzzy subsets of X.

Definition 2 ([42]). A pair (F , E) is called a soft set over U if F is a mapping given by F : E → P(U).
In other words, a soft over the universe U is a parameterized family of subsets of the universal set U. For ε ∈ A,
F (ε) may be considered as the set of ε-elements of the soft (F , A), or as the set of ε-approximate elements of the
soft set.

The following example illustrate the above idea.

Example 1. Let (X, τ) be a topological space, i.e. τ is a family of subsets of the set X called the open sets of X.
Then, the family of open neighborhood N(x) of point x, where N(x) = {V ∈ τ|x ∈ V}, may be consider as the
soft set (N(x), τ).
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Definition 3 ([40]). Let U be the universe set and E be the set of parameters. Let P(U) be the power set of U
and A ⊆ E, and P(U) is the collection of all fuzzy subsets of U, then (F , A) is called fuzzy soft set, where
F : A→ P(U).

Example 2. Let U = {M1, M2, M3, M4} be the set of four mobiles under consideration and E =

{beauti f ul(e1), costly(e2), batterybackup(e3) and apps(e4)} be a set of parameters then FSS for describing
“attractiveness of the mobiles"
is (F , A) = {Fe1 ,Fe2 ,Fe3}, where A = {e1, e2, e3} ⊆ E and (F, A) can be defined as:
Fe1 = {(M1, 0.6), (M2, 0.4), (M3, 0.5), (M4, 0.3)},
Fe2 = {(M1, 0.7), (M2, 0.6), (M3, 0.5), (M4, 0.4)} and
Fe3 = {(M1, 0.9), (M2, 0.5), (M3, 0.3), (M4, 0.6)}.

Definition 4 ([23]). Let X be finite, with a generic element in X denoted by x. A NS c̃ in X is defined by

C̃ =
{
〈TC(x), IC(x), FC(x)〉|x ∈ X

}
,

where its truth-function TC is presented by TC : X →]0−, 1+[ , indeterminacy-function IC presented IC :
X →]0−, 1+[, and falsity- function F̂C interpreted as FC : X →]0−, 1+[. Also, TC, IC and FC are real
standard or non-standard subsets of ]0−, 1+[. There is no restriction on the sum of TC, IC and FC, and so
0− ≤ TC + IC + FC ≤ 3+.

For real applications of NS, Wang et al. [12] introduced SVNs in the following definition.

Definition 5 ([12]). Let X be a finite set, with a generic element in X denoted by x. A SVNS is defined as:

C̃ =
{
〈TC(x), IC(x), FC(x)〉|x ∈ X

}
,

where TC : X → [0, 1] indicated the truth, IC : X → [0, 1] is the indeterminacy and FC : X → [0, 1] is the
falsity function of x to C with the condition 0 ≤ TC + IC + FC ≤ 3.

Definition 6. Let U be universal set and E be the parameter set. For N ⊂ E. Let P(U) called the subsets of
single-valued neutrosophic sets of U. The term (FC, C) is called single-valued neutrosophic soft sets of U, where
FC is a function follows as, FC : N → P(U).

Example 3. Let U = {O1, O2, O3, O4} be the set of four mobiles under consideration and
E = {beauti f ul(e1), costly(e2), batterybackup(e3) and apps(e4)} be a set of parameters under SVNSS for
describing “attractiveness of the mobiles" is (C, N) = {Fe1 ,Fe2 ,Fe3}, where A = {e1, e2, e3} ⊆ E and (C̃, N)

can be defined as:
C̃e1 = {(O1, 0.6, 0.4, 0.2), (O2, 0.4, 0.5, 0.1), (O3, 0.5, 0.2, 0.3), (O4, 0.3, 0.6, 0.1)},
C̃e2 = {(O1, 0.7, 0.1, 0.2), (O2, 0.6, 0.3, 0.1), (O3, 0.5, 0.3, 0.3), (O4, 0.4, 0.4, 0.1)} and
C̃e3 = {(O1, 0.9, 0.1, 0.3), (O2, 0.5, 0.2, 0.2), (O3, 0.3, 0.5, 0.1), (O4, 0.6, 0.4, 0.4)}.

For the sake of simplicity, we denote the pair of C̃et(xc) = {〈Tc(x), Ic(x), Fc(x)〉|xs ∈ U}, i.e.,
C̃est = 〈Tst, Ist, Fst〉 is called as single-valued neutrosophic soft (SVNSN) numbers. For the application
purpose, it is necessary to define score function for ranking it. For this, a score function of C̃est is
defined as

Ψ(C̃est) = Tst − Fst (1)

where, Ψ(C̃est) ∈ [0, 1]. By this definition, it is clear that the larger the Ψ(C̃est), the larger is SVNSN C̃est .
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Example 4. Let C̃e11 = 〈0.6, 0.2, 0.2〉 and C̃e12 = 〈0.3, 0.5, 0.5〉 be two SVNSNs, then by Equation (2), we get
Ψ(C̃e11) = 0.4 and Ψ(C̃e12) = −0.2. Since Ψ(C̃e11) > Ψ(C̃e12) which imply C̃e11 > C̃e12 .

However, there are some situation, where above function can not be used to compare SVNSNs. For example,
let C̃e11 = 〈0.6, 0.2, 0.2〉 and C̃e12 = 〈0.5, 0.1, 0.1〉, then it is not possible to compare SVNSNs, which one of
them is bigger as Ψ(C̃e11) = Ψ(C̃e12). To overcome this situation, we define accuracy function of C̃est as follows:

H(C̃est) = Tst + Ist + Fst (2)

where, H(C̃est) ∈ [0, 1]. Based on score function Ψ and accuracy function H, defined order relation on two
SVNSNs P̃est and Q̃est as follows:

(i) If Ψ(P̃est) < Ψ(Q̃est), then P̃est ≺ Q̃est

(ii) If Ψ(P̃est) > Ψ(Q̃est), then P̃est � Q̃est

(iii) If Ψ(P̃est) = Ψ(Q̃est), then

(1) IfH(P̃est) < H(Q̃est), then P̃est ≺ Q̃est .
(2) IfH(P̃est) > H(Q̃est), then P̃est � Q̃est .
(3) IfH(P̃est) = H(Q̃est), then P̃est ∼ Q̃est .

4. Single-Valued Neutrosophic Soft Weighted Arithmetic Averaging (SVNSWAA) Operator

In this Section, an aggregation operators namely single-valued neutrosophic soft weighted
averaging (SVNSWA) operator and single-valued neutrosophic soft weighted geometric averaging
(BFSWGA) operator for neutrosophic soft numbers (SVNSNs) are proposed.

4.1. Operational Law for SVNSNs

Definition 7. Let C̃e = 〈T, I, F〉 and C̃e11 = 〈T11, I11, F11〉) and C̃e12 = 〈T12, I12, F12〉) be the three SVNSNs
over the universe X, then following operations are defined as follows:

(i) C̃e11 ⊕ C̃e12 =
(〈

T11 + T12 − T11T12, I11 I12, F11F12
〉)

(ii) C̃e11 ⊗ C̃e12 =
(〈

T11T12, I11 + I12 − I11 I12, F11 + F12 − F11F12
〉)

(iii) λC̃e =
(
1− (1− T)λ, Iλ, Fλ

)

(iv) C̃λ
e =

(
Tλ, 1− (1− I)λ, 1− (1− F)λ

)
.

Definition 8. Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number of SVNSNs and φt, θs

are the are weight vectors for the parameter et’s and expert ys’s respectively, satisfying φt ≥ 0, θs ≥ 0 such that
n
∑

t=1
φt = 1 and

m
∑

s=1
θs = 1. Then single-valued neutrosophic soft weighted averaging (SVNSWA) operator is

function SVNSWA : C̃n → C̃ such that

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) =
n⊕

t=1

φt

( m⊕

s=1

θsC̃est

)
. (3)

We get the following theorem that follows on SVNSWA operator.

Theorem 1. C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number of (SVNSNs), then aggregated
value of them using the SVNSWA operator is also a SVNSNs, and SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn)

=
〈

1−
n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt

,
n

∏
t=1

( m

∏
s=1

(
Ist

)θs)φt
,

n

∏
t=1

( m

∏
s=1

(
Fst

)θs)φt〉
. (4)

Theorem 1 can be proved by the method of mathematical induction as follows:
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Proof. For m = 1, we get θ1 = 1. Then by Definition 7 of operational law,

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn ) =
n⊕

t=1
φt

(
C̃e1t

)

=
〈

1−
n

∏
t=1

(
1− T1t

)φt
,

n

∏
t=1

(I1t)
φt ,

n

∏
t=1

(F1t)
φt
〉

=
〈

1−
n

∏
t=1

( 1

∏
s=1

(1− Fst)
θs
)φt

,
n

∏
t=1

( 1

∏
s=1

(Ist)
θs
)φt

,
n

∏
t=1

( 1

∏
s=1

(Fst)
θs
)φt〉

.

Again, for n = 1 and φ1 = 1 and hence,

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn ) =
( m⊕

s=1
θs1C̃e1t

)

=
〈

1−
m

∏
t=1

(
1− Ts1

)θs
,

m

∏
s=1

(Is1)
θs ,

m

∏
s=1

(Fs1)
θs
〉

=
〈

1−
1

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt

,
1

∏
t=1

( m

∏
s=1

(Ist)
θs
)φt

,
1

∏
t=1

( m

∏
s=1

(Fst)
θs
)φt〉

.

Thus, (5) is true for m = 1 and n = 1. Assume that (5) is true for n = p1 + 1, m = p2 and n = p1,
m = p2 + 1, then it follows that

p1+1⊕

t=1

φt

( p2⊕

s=1

θsC̃est

)
=
〈

1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Tst)
θs
)φt

,
p1+1

∏
t=1

( p2

∏
s=1

(Ist)
θs
)φt

,
p1+1

∏
t=1

( p2

∏
s=1

(Fst)
θs
)φt〉

.

Also,

p1⊕

t=1

φt

( p2+1⊕

s=1

θsC̃est

)
=
〈

1−
p1

∏
t=1

( p2+1

∏
s=1

(1− Tst)
θs
)φt

,
p1

∏
t=1

( p2+1

∏
s=1

(Ist)
θs
)φt

,
p1

∏
t=1

( p2+1

∏
s=1

(Fst)
θs
)φt〉

.

Now for n = p1 + 1 and m = p2 + 1, we obtained

p1+1⊕

t=1

φt

( p2+1⊕

s=1

θsC̃est

)
=

p1+1⊕

t=1

φt

( p2⊕

s=1

θsC̃est ⊕ θp2+1C̃e(p2+1)t

)

=
p1+1⊕

t=1

p2⊕

s=1

φtθsC̃est

p1+1⊕

t=1

φtθp2+1C̃e(p2+1)t

)

=
〈

1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Tst)
θs
)φt ⊕ 1−

p1+1

∏
t=1

(
(1− T(p2+1)t)

θp2+1
)φt

,

p1+1

∏
t=1

( p2

∏
s=1

(Ist)
θs
)φt ⊕

p1+1

∏
t=1

(
(I(p2+1)t)

θp2+1
)φt

,
p1+1

∏
t=1

( p2

∏
s=1

(Fst)
θs
)φt ⊕

p1+1

∏
t=1

(
(F(p2+1)t)

θp2+1
)φt〉

=
〈

1−
p1+1

∏
t=1

( p2+1

∏
s=1

(1− Tst)
θs
)φt

,
p1+1

∏
t=1

( p2+1

∏
s=1

(Ist)
θs
)φt

,
p1+1

∏
t=1

( p2+1

∏
s=1

(Fst)
θs
)φt〉

.

Thus, (5) is true for n = p1 + 1, m = p2 + 1, therefore by induction the results is hold for all
m, n ≥ 1.

Since, 0 ≤ Tst ≤ 1 ⇔ 0 ≤
m
∏

s=1
(1− Tst)θs ≤ 1 and hence, 0 ≤ 1−

n
∏

t=1
(

m
∏

s=1
(1− Tst)θs)φt ≤ 1. Also,

0 ≤ Ist ≤ 1⇔ 0 ≤
m
∏

s=1
(Ist)θs ≤ 1⇔ 0 ≤

n
∏

t=1
(

m
∏

s=1
(Ist)θs)φt ≤ 1, and 0 ≤ Fst ≤ 1⇔ 0 ≤

m
∏

s=1
(Fst)θs ≤ 1⇔
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0 ≤
n
∏

t=1
(

m
∏

s=1
(Fst)θs)φt ≤ 1. Thus, 0 ≤ 1−

n
∏

t=1
(

m
∏

s=1
(1− Tst)θs)φt +

n
∏

t=1
(

m
∏

s=1
(Ist)θs)φt +

n
∏

t=1
(

m
∏

s=1
(Fst)θs)φt ≤ 3.

Hence, aggregated value obtained by SVNSWA is again a SVNSN.

Corollary 1 ([60]). For only one parameter e1, i.e., n = 1, then SVNSWA operator reduces to SVNWA.

SVNSWA(C̃e11 , C̃e21 , . . . , C̃em1) =
〈

1−
m

∏
s=1

(1− Ts)
θs ,

m

∏
s=1

(Is)
θs ,

m

∏
s=1

(Fs)
θs
〉

. (5)

Therefore, it is justified that aggregation operator defined under SVNS environment is taken as a special
case of the proposed operator.

Example 5. Let Y = {y1, y2, y3, y4} be the set of experts which are going to narrate the “attractiveness of
two-wheeler bikes" under the set of parameters E = {e1 = stylish, e2 = weight, e3 = milage, e4 = price}.
The rating value of the experts is assumed to be given in the form of SVNSNs(C, E) = (Tst, Ist, Fst)4×3 for each
parameters which are given in the following table (Table 1).

Table 1. Neutrosophic soft numbers.

Experts e1 e2 e3

y1 〈0.6, 0.2, 0.3〉 〈0.5, 0.5, 0.2〉 〈0.6, 0.3, 0.5〉
y2 〈0.5, 0.4, 0.4〉 〈0.3, 0.2, 0.1〉 〈0.5, 0.4, 0.5〉
y3 〈0.7, 0.1, 0.4〉 〈0.4, 0.3, 0.6〉 〈0.3, 0.1, 0.6〉
y4 〈0.4, 0.5, 0.2〉 〈0.7, 0.2, 0.1〉 〈0.2, 0.6, 0.3〉

Let φ = (0.3, 0.2, 0.5)T and θ = (0.2, 0.1, 0.3, 0.4)T be the weight vectors for the parameters and experts
respectively. Then, we get by using Theorem 1 as:

SVNSWA(B̃e11 , B̃e12 , . . . , B̃e43)

=
〈

1−
3

∏
t=1

( 4

∏
s=1

(1− Tst)
θs
)φt

,
3

∏
t=1

( 4

∏
s=1

(Ist)
θs
)φt

,
3

∏
t=1

( 4

∏
s=1

(Ist)
θs
)φt〉

〈
1 −

({
(1 − 0.6)0.2(1 − 0.5)0.1(1 − 0.7)0.3(1 − 0.4)0.4

}0.3 {
(1 − 0.5)0.2(1 − 0.3)0.1(1 − 0.4)0.3(1 −

0.7)0.4
}0.2 {

(1− 0.6)0.2(1− 0.5)0.1(1− 0.3)0.3(1− 0.2)0.4
}0.5)

,
{
(0.2)0.2 (0.4)0.1 (0.1)0.3 (0.5)0.4

}0.3

{
(0.5)0.2 (0.2)0.1 (0.3)0.3 (0.2)0.4

}0.2

{
(0.3)0.2 (0.4)0.1 (0.1)0.3 (0.6)0.4

}0.5
,
{
(0.3)0.2 (0.4)0.1 (0.4)0.3 (0.2)0.4

}0.3

{
(0.2)0.2 (0.1)0.1 (0.6)0.3 (0.1)0.4

}0.2

{
(0.5)0.2 (0.5)0.1 (0.6)0.3 (0.3)0.4

}0.5〉

=
〈
(0.5317, 0.2755, 0.3256)

〉
.

We prove easily the following properties by using the operator SVNSWA.

Theorem 2 (Idempotency Property). Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number
of SVNSNs are all equal, i.e., C̃es t = C̃e for all s, t, then

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) = C̃e. (6)
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Proof. Since C̃est = C̃e = 〈T, I, F〉 for all s, t. Then,

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) =
〈

1−
n

∏
t=1

( m

∏
s=1

(1− T)θs
)φt

,
n

∏
t=1

( m

∏
s=1

(I)θs
)φt n

∏
t=1

( m

∏
s=1

(F)θs
)φt〉

=
〈

1−
(
(1− T)

m
∑

s=1
θs)

n
∑

t=1
φt

,
(
(I)

m
∑

s=1
θs)

n
∑

t=1
φt(

(F)

m
∑

s=1
θs)

n
∑

t=1
φt〉

=
〈

1− (1− T), I, F
〉

=
〈

T, I, F
〉

.

The proof is completed.

Theorem 3 (Boundedness Property). Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a
collection of SVNSNs. Let C̃−est = 〈min

t
min

s
{Tst}, max

t
max

s
{Ist}, max

t
max

s
{Fst}〉

and C̃+
est = 〈max

t
max

s
{Tst}, min

t
min

s
{Ist}, min

t
min

s
{Fst}〉. Then,

C̃−est ≤ SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) ≤ C̃+
est .

Proof. Since, C̃est = (Tst, Ist, Fst) be a SVNSNs then min
t

min
s
{Tst} ≤ Tst ≤ max

t
max

s
{Tst} which

implies that 1 − max
t

max
s
{Tst} ≤ 1 − Tst ≤ 1 − min

t
min

s
{Tst} ⇔ (1 − max

t
max

s
{Tst})θs ≤

(1 − Tst ≤ (1 − min
t

min
s
{Tst)θs ⇔ 1 − max

t
max

s
{Tst} ≤

m
∏

s=1
(1 − Tst)θs ≤ 1 − min

t
min

s
{Tst} ⇔

(1−max
t

max
s
{Tst})

n
∑

t=1
φt ≤

n
∏

t=1
(

m
∏

s=1
(1− Tst)θs)

n
∑

t=1
φt ≤ (1−min

t
min

s
{Tst})

n
∑

t=1
φt ⇔ 1−max

t
max

s
{Tst} ≤

n
∏

t=1
(

m
∏

s=1
(1− Tst)θs)

n
∑

t=1
φt ≤ 1−min

t
min

s
{Tst}. Therefore,

max
t

max
s
{Tst} ≤ 1−

n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
) n

∑
t=1

φt ≤ min
t

min
s
{Tst}. (7)

Again,
min

t
min

s
{Ist} ≤ Ist ≤ max

t
max

s
{Ist}

which finds (min
t

min
s
{Ist})

m
∑

s=1
θs ≤

m
∏

s=1
(Ist)θs ≤ (max

t
max

s
{Ist})

m
∑

s=1
θs ⇔ min

t
min

s
{Ist} ≤

m
∏

s=1
(Ist)θs ≤

max
t

max
s
{Ist} ⇔ (min

t
min

s
{Ist})φt ≤ (

m
∏

s=1
(Ist)θs)φt ≤ (max

t
max

s
{Ist})φt ⇔ (min

t
min

s
{Ist})

n
∑

t=1
φt ≤

n
∏

t=1
(

m
∏

s=1
(Ist)θs)φt ≤ (max

t
max

s
{Ist})

n
∑

t=1
φt

, hence we get,

min
t

min
s
{Ist} ≤

n

∏
t=1

(
m

∏
s=1

(Ist)
θs)φt ≤ max

t
max

s
{Ist}. (8)

and,
min

t
min

s
{Fst} ≤ Fst ≤ max

t
max

s
{Fst}

674



Symmetry 2019, 11, 110

which follows (min
t

min
s
{Fst})

m
∑

s=1
θs ≤

m
∏

s=1
(Fst)θs ≤ (max

t
max

s
{Fst})

m
∑

s=1
θs ⇔ min

t
min

s
{Fst} ≤

m
∏

s=1
(Fst)θs ≤ max

t
max

s
{Fst} ⇔ (min

t
min

s
{Fst})φt ≤ (

m
∏

s=1
(Fst)θs)φt ≤ (max

t
max

s
{Fst})φt ⇔

(min
t

min
s
{Fst})

n
∑

t=1
φt ≤

n
∏

t=1
(

m
∏

s=1
(Fst)θs)φt ≤ (max

t
max

s
{Fst})

n
∑

t=1
φt

, hence we get,

min
t

min
s
{Fst} ≤

n

∏
t=1

(
m

∏
s=1

(Fst)
θs)φt ≤ max

t
max

s
{Fst}. (9)

Let β ≡ SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) = 〈Tβ, Iβ, Fβ〉, then from Equations (7)–(9),
min

t
min

s
{Tst} ≤ Tβ ≤ max

t
max

s
{Tst} and min

t
min

s
{Ist} ≤ Iβ ≤ max

t
max

s
{Ist}, and min

t
min

s
{Fst} ≤

Fβ ≤ max
t

max
s
{Fst}. Then by definition of score function

Ψ(β) = Tβ − Fβ ≤ max
t

max
s
{Tst} −min

t
min

s
{Fst} = Ψ(C̃+

est)

Ψ(β) = Tβ − Fβ ≥ min
t

min
s
{Tst} −max

t
max

s
{Fst} = Ψ(C̃−est).

Now, there are three cases arises:

Case 1. If Ψ(C̃est) < Ψ(C̃+
est) and Ψ(C̃est) > Ψ(C̃−est), then by comparison of two SVNSNs, we have

C̃−est ≤ SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) ≤ C̃+
est .

Case 2. If Ψ(C̃est) = Ψ(C̃+
est), i.e., Tβ + Fβ + Fst = max

t
max

s
{Tst}+ min

t
min

s
{Ist}+ min

t
min

s
{Fst}, then

by above inequalities Tβ = max
t

max
s
{Tst} and Iβ = min

t
min

s
{Ist}, and Fβ = min

t
min

s
{Fst}

Therefore,

H = Tβ + Iβ + Fβ = max
t

max
s
{Tst}+ min

t
min

s
{Ist}+ min

t
min

s
{Fst} = H(C̃+

est),

then by comparison of two SVNSNs, we have

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) = C+
est .

Case 3. If Ψ(C̃est) = Ψ(C̃−est), i.e., Tβ + Iβ + Fβ = min
t

min
s
{Tst}+ max

t
max

s
{Ist}+ max

t
max

s
{Fst}, then

by above inequalities Tβ = min
t

min
s
{Tst}, Iβ = max

t
max

s
{Ist}, and Fβ = max

t
max

s
{Fst}.

Hence,

H = Tβ + Iβ + Fst = min
t

min
s
{Tst}+ max

t
max

s
{Ist}+ max

t
max

s
{Fst} = H(C̃−est),

then by comparison of two SVNSNs, we have

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) = C−est .

Thus, proof is completed.

Theorem 4 (Shift-invariance property). If C̃e = 〈T, I, F〉 be another SVNSN, then

SVNSWA(C̃e11 ⊕ C̃e, C̃e12 ⊕ C̃e, . . . , C̃emn ⊕ C̃e) = SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn)⊕ C̃e
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Proof. Since C̃e and C̃est are SVNSNs. Then, we have C̃e ⊕ C̃est =
〈

1− (1− T)(1− Tst), I Ist, FFst

〉
.

Hence, SVNSWA(C̃e11 ⊕ C̃e, C̃e12 ⊕ C̃e, . . . , C̃emn ⊕ C̃e)

=
n⊕

t=1

φt

( m⊕

s=1

θt(C̃est ⊕ C̃e)
)

=
〈

1−
n

∏
t=1

( m

∏
s=1

(1− Tst)
θs(1− T)θs

)φt
,

n

∏
t=1

( m

∏
s=1

(Ist)
θs(I)θs

)φt
,

n

∏
t=1

( m

∏
s=1

(Fst)
θs(F)θs

)φt〉

=
〈

1− (1− I)
n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt

, I
n

∏
t=1

( m

∏
s=1

(Ist)
θs
)φt

, F
n

∏
t=1

( m

∏
s=1

(Fst)
θs
)φt〉

=
〈

1−
n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt

,
n

∏
t=1

( m

∏
s=1

(Ist)
θs
)φt

,
n

∏
t=1

( m

∏
s=1

(Fst)
θs
)φt〉⊕

〈
T, I, F

〉

= SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn)⊕ C̃e.

Hence the result.

Theorem 5 (Homogeneity property). For any real number λ > 0, we have

SVNSWA(λC̃e11 , λC̃e12 , . . . , λC̃emn) = λSVNSWA(C̃e11 , C̃e12 , . . . , C̃emn).

Proof. Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number of SVNSNs and λ > 0 be

any real number. Then, λC̃est =
〈

1− (1− Tst)λ, (Ist)λ, (Fst)λ〉. Thus,

SVNSWA(λC̃e11 , λC̃e12 , . . . , λC̃emn ) =
〈

1−
n

∏
t=1

( m

∏
s=1

(1− Tst)
λθs
)φt

,
n

∏
t=1

( m

∏
s=1

(Ist)
λθs
)φt

,
n

∏
t=1

( m

∏
s=1

(Fst)
λθs
)φt〉

=
〈

1−
( n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt)λ

,
( n

∏
t=1

( m

∏
s=1

(Ist)
θs
)φt)λ

,

( n

∏
t=1

( m

∏
s=1

(Fst)
θs
)φt)λ〉

= λ SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn ).

Hence the proof is completed.

4.2. Single-Valued Neutrosophic Soft Weighted Geometric Averaging (SVNSWGA) Operator

In this Section, we defined single-valued neutrosophic soft weighted geometric averaging
(SVNSWGA) operator and studied

Definition 9. Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number of SVNSNs and φt, θs

are the are weight vectors for the parameter et’s and expert ys’s respectively, satisfying φt ≥ 0, θs ≥ 0 such that
m
∑

t=1
φt = 1 and

n
∑

s=1
θs = 1. Then single-valued neutrosophic soft weighted geometric (SVNSWGA) operator is a

function SVNSWGA : C̃n → C̃ such that

SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn) =
n⊗

t=1

( m⊗

s=1

C̃θs
est

)φt
.

Theorem 6. Then single-valued neutrosophic soft weighted geometric (SVNSWGA) operator is a function
SVNSWGA : C̃n → C̃ such that

SVNSWA(C̃e11 , C̃e12 , . . . , C̃e1n ) =
〈 n

∏
t=1

( m

∏
s=1

(Tst)
θs
)φt

, 1−
n

∏
t=1

( m

∏
s=1

(1− Ist)
θs
)φt

, 1−
n

∏
t=1

( m

∏
s=1

(1− Fst)
θs
)φt〉

. (10)
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Proof. For m = 1 and θ1 = 1 then by Definition 7, we have

SVNSWGA(C̃e11 , C̃e12 , . . . , C̃e1n ) =
n⊗

t=1

C̃φt
est

=
〈 n

∏
t=1

(T1t)
φt , 1−

n

∏
t=1

(1− I1t)
φt , 1−

n

∏
t=1

(1− F1t)
φt
〉

=
〈 n

∏
t=1

( 1

∏
s=1

(Tst)
θs
)φt

, 1−
n

∏
t=1

( 1

∏
s=1

(1− Ist)
θs
)φt

, 1−
n

∏
t=1

( 1

∏
s=1

(1− Fst)
θs
)φt〉

.

For n = 1 and φ1 = 1, then by Definition 9, we get

SVNSWGA(C̃e11 , C̃e21 , . . . , C̃em1 ) =
n⊗

t=1

C̃θs
est

=
〈 m

∏
s=1

(Ts1)
θs , 1−

m

∏
s=1

(1− Is1)
θs , 1−

m

∏
s=1

(1− Fs1)
θs
〉

=
〈 1

∏
t=1

( m

∏
s=1

(Tst)
θs
)φt

, 1−
1

∏
t=1

( m

∏
s=1

(1− Ist)
θs
)φt

, 1−
1

∏
t=1

( m

∏
s=1

(1− Fst)
θs
)φt〉

.

Assume that (10) is true for n = p1 + 1, m = p2 and n = p1, m = p2 + 1, then it follows that

p1+1⊗

t=1

( p2⊗

s=1

C̃θs
est

)φt
=
〈 p1+1

∏
t=1

( p2

∏
s=1

(Tst)
θs
)φt

, 1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Ist)
θs
)φt

, 1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Fst)
θs
)φt〉

.

Also,

p1⊗

t=1

( p2+1⊗

s=1

C̃θs
est

)φt
=
〈 p1

∏
t=1

( p2+1

∏
s=1

(Tst)
θs
)φt

, 1−
p1

∏
t=1

( p2+1

∏
s=1

(1− Ist)
θs
)φt

, 1−
p1

∏
t=1

( p2+1

∏
s=1

(1− Fst)
θs
)φt〉

.

Now for n = p1 + 1 and m = p2 + 1, we obtained

p1+1⊗

t=1

( p2+1⊗

s=1

C̃θs
est

)φt
=

p1+1⊗

t=1

( p2⊗

s=1

C̃θs
est
⊗ C̃

θp2+1
e(p2+1)t

)φt

=
p1+1⊗

t=1

( p2⊗

s=1

C̃θs
est

)φt
p1+1⊗

t=1

(
C̃

θp2+1
e(p2+1)t

)φt)

=
〈 p1+1

∏
t=1

( p2

∏
s=1

(Tst)
θs
)φt ⊗

p1+1

∏
t=1

(
(T(p2+1)t)

θp2+1
)φt

,

1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Ist)
θs
)φt ⊗ 1−

p1+1

∏
t=1

(
(1− I(p2+1)t)

θp2+1
)φt

,

1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Fst)
θs
)φt ⊗ 1−

p1+1

∏
t=1

(
(1− F(p2+1)t)

θp2+1
)φt〉

=
〈 p1+1

∏
t=1

( p2+1

∏
s=1

(Tst)
θs
)φt

, 1−
p1+1

∏
t=1

( p2+1

∏
s=1

(1− Ist)
θs
)φt

,

1−
p1+1

∏
t=1

( p2+1

∏
s=1

(1− Fst)
θs
)φt〉

.

Thus, (10) is true for n = p1 + 1, m = p2 + 1, therefore by induction the results is hold for all
m, n ≥ 1.

Since, 0 ≤ Ist ≤ 1 ⇔ 0 ≤
m
∏

s=1
(1 − Ist)θs ≤ 1 ⇔ 0 ≤

n
∏

t=1

( m
∏

s=1
(1 − Ist)θs

)φt ≤

1 ⇔ 0 ≤ 1 −
n
∏

t=1

( m
∏

s=1
(1 − Ist)θs

)φt ≤ 1, and 0 ≤ Fst ≤ 1 ⇔ 0 ≤
m
∏

s=1
(1 − Fst)θs ≤
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1 ⇔ 0 ≤
n
∏

t=1

( m
∏

s=1
(1 − Fst)θs

)φt ≤ 1 ⇔ 0 ≤ 1 −
n
∏

t=1

( m
∏

s=1
(1 − Fst)θs

)φt ≤ 1 On the other

hand, 0 ≤ Tst ≤ 1 ⇔ 0 ≤
m
∏

s=1
(Tst)θs ≤ 1 ⇔ 0 ≤

n
∏

t=1

( m
∏

s=1
(Tst)θs

)φt ≤ 1. Therefore,

0 ≤ 1−
n
∏

t=1

( m
∏

s=1
(1− Ist)θs

)φt
+ 1−

n
∏

t=1

( m
∏

s=1
(1− Fst)θs

)φt
+

n
∏

t=1

( m
∏

s=1
(Tst)θs

)φt ≤ 3.

Thus, aggregated value obtained by SVNSWG operator is again a SVNSN.

Example 6. Let Y = {y1, y2, y3, y4} be the set of experts which are going to narrate the “attractiveness of
two-wheeler bikes" under the set of parameters E = {e1 = stylish, e2 = weight, e3 = milage, e4 = price}.
The rating value of the experts is assumed to be given in the form of SVNSNs(B, E) = (Tst, Ist, Fst)4×3 for each
parameters which are given in the following table (Table 2).

Table 2. Neutrosophic soft numbers.

Experts e1 e2 e3

y1 〈0.6, 0.3, 0.3〉 〈0.7, 0.2, 0.5〉 〈0.4, 0.2, 0.2〉
y2 〈0.5, 0.4, 0.2〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.1〉
y3 〈0.4, 0.1, 0.2〉 〈0.7, 0.1, 0.5〉 〈0.5, 0.2, 0.3〉
y4 〈0.6, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉 〈0.6, 0.3, 0.3〉

Let φ = (0.3, 0.2, 0.5)T and θ = (0.2, 0.1, 0.3, 0.4)T be the weight vectors for the parameters and experts
respectively. Then, we get by using Theorem 6 as:

SVNSWGA(C̃e11 , C̃e12 , . . . , C̃e43)

=
〈 3

∏
t=1

( 4

∏
s=1

(Tst)
θs
)φt

, 1−
3

∏
t=1

( 4

∏
s=1

(1− Ist)
θs
)φt

, 1−
3

∏
t=1

( 4

∏
s=1

(1− Fst)
θs
)φt〉

〈({
(0.6)0.2(0.5)0.1(0.4)0.3(0.6)0.4

}0.3 {
(0.7)0.2(0.5)0.1(0.7)0.3(0.6)0.4

}0.2

{
(0.4)0.2(0.8)0.1(0.5)0.3(0.6)0.4

}0.5)
,

1−
{
(1− 0.3)0.2 (1− 0.4)0.1 (1− 0.1)0.3 (1− 0.2)0.4

}0.3

{
(1− 0.2)0.2 (1− 0.3)0.1 (1− 0.1)0.3 (1− 0.3)0.4

}0.2

{
(1−0.2)0.2 (1−0.1)0.1 (1−0.2)0.3 (1−0.3)0.4

)0.5
, 1−

{
(1−0.3)0.2 (1−0.2)0.1 (1−0.2)0.3 (1−0.4)0.4

}0.3

{
(1− 0.5)0.2 (1− 0.2)0.1 (1− 0.5)0.3 (1− 0.4)0.4

}0.2

{
(1− 0.2)0.2 (1− 0.1)0.1 (1− 0.3)0.3 (1− 0.3)0.4

)0.5〉

=
〈
(0.5518, 0.2261, 0.3138)

〉
.

SVNSWGA operator satisfies the following properties as similar as SVNSWA operator

• (Idempotency Property) If C̃est = C̃e = 〈T, I, F〉 for all s, t, then

SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn) = C̃e.

• (Boundedness Property) If C̃−est = 〈min
t

min
s
{Tst}, max

t
max

s
{Ist}, max

t
max

s
{Fst}〉 and if

C̃+
est = 〈max

t
max

s
{Tst}, min

t
min

s
{Ist}, min

t
min

s
{Fst}〉,
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then
C̃−est ≤ SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn) ≤ C̃+

est .

• (Shift-invariance Property) Let C̃e = 〈T, I, F〉 be another SVNSN then

SVNSWGA(C̃e11 ⊗ C̃e, C̃e12 ⊗ C̃e, . . . , C̃emn ⊗ C̃e) = SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn)⊗ C̃e.

• (Homogeneity Property) For any real number λ > 0, we have

SVNSWGA(C̃λ
e11

, C̃λ
e12

, . . . , C̃λ
emn) =

(
SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn)

)λ
.

5. Model for MCDM Method Using Single-Valued Soft Information

In this Section, we shall present multi-criteria decision making (MCDM) method using
single-valued neutrosophic soft weighted averaging operator (SVNSWA) and single-valued
neutrosophic soft weighted geometric (SVNSWGA) operator in the environment of single-valued
neutrosophic soft numbers.

An Approach Based on Proposed Operators

Let Ỹ = {Ỹ1, Ỹ2, . . . , Ỹl} be the discrete set of alternatives is evaluated by the set of m experts
{y1, y2, . . . , ym} under the constraints of n parameters E = {e1, e2, . . . , en}. Let θ = (θ1, θ2, . . . , θm)T and
φ = (φ1, φ2, . . . , φn)T are respectively denote the weight vectors of the m experts x′ss and n parameters

e′ts that θs > 0, θ ∈ [0, 1] such that
m
∑

s=1
θs = 1 and φt > 0, φ ∈ [0, 1] such that

n
∑

t=1
φs = 1. In order to choice

the best l alternates by the preference of n experts in the form of SVNSNs C̃est = 〈Tst, Ist, Fst〉 where
0 ≤ Tst + Ist + Fst ≤ 3 and collective over all decision matrix is expressed as M̃ = (C̃est)m×n. By these
preference values of the experts, the aggregated SVNSN C̃ek for the alternatives p̃k (k = 1, 2, . . . , l) is
C̃ek = 〈Tk, Ik, Fk〉 by applying weighted averaging or geometric averaging operators which is given in
Equations (5) and (8). Ranking order of the alternatives is determine based on the score function of the
aggregated values of SVNSNs C̃ek (k = 1, 2, . . . , l).

In the following algorithm we propose to solve MCDM problem with single-valued neutrosophic
soft information using SVNSWA and SVNSWGA operators.

Step 1. Collect all the information in the form of single-valued neutrosophic soft matrix C =

〈Tst, Ist, Fst〉 (s = 1, 2, . . . , m; t = 1, 2, . . . , n) related to each alternatives under different
parameters ek (k = 1, 2, . . . , l) as

C̃m×n = M =




(T11, I11, Fst) (T12, I12, F12) . . . (T1n, I1n, F1n)

(T21, I21, F21) (T22, I22, F22) . . . (T2n, I2n, F2n)
...

...
. . .

...
(Tm1, Im1, Fm1) (Tm2, Im2, Fm2) . . . (Tmn, Imn, Fmn)




Step 2. To normalize the aggregated decision matrix by transforming values of benefit type (B) into
cost (C) type by using the formula depicted in [61].

gij =

{
C̃c

est , ifet ∈ B̃
C̃est , ifet ∈ C̃

where C̃c
est = 〈1− Fst, Ist, Tst〉 is the complement of C̃est = 〈Tst, Ist, Fst〉.

Step 3. Aggregate the SVNSNs C̃est (s = 1, 2, . . . , m; t = 1, 2, . . . , n) for each alternatives Yk (k =

1, 2, . . . , l) into collective decision matrix Ψk using SVNSWA or (SVNSWGA) operators.
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Step 4. Using Equation (1) we get the score value of Ψk (k = 1, 2, . . . , l) for each alternatives Ak
(k = 1, 2, . . . , l).

Step 5. Rank all the alternative Ak (k = 1, 2, . . . , l) in order to choice the best one(s) in accordance
with Ψk (k = 1, 2, . . . , l).

Step 6. End.

6. Numerical Example

In the above described decision-making method has been demonstrated with a practical example
about the Medical diagnosis. The experts of five doctors m1, m2, m3, m4, m5 whose weight vector
is θ = (0.2, 0.15, 0.2, 0.3, 0.15)T , will give their judgement based on the diagnosis of four patients
Y1, Y2, Y3, Y4 under the parameters

E = {Temparature(e1), Headache(e2), Stomachpain(e3), Cough(e4), Chestpain(e5)}

with weight vector φ = (0.2, 0.1, 0.3, 0.15, 0.25)T . Then, we utilize the developed method to get most
desirable candidate(s).

6.1. By SVNSWA Operator

The steps of the proposed approach performed and their corresponding details are reviewed
as follows:

Step 1. The given patients are being evaluated by five experts doctors to give their grades in terms of
SVNSNs and are found in Tables 3–6 respectively for each candidate.

Step 2. All the parameters are of same type, so, there is no required for normalization.

Table 3. Single-valued neutrosophic soft matrix for the patient Y1.

Experts e1 e2 e3 e4 e5

m1 〈0.6, 0.2, 0.3〉 〈0.5, 0.5, 0.5〉 〈0.6, 0.3, 0.2〉 〈0.3, 0.5, 0.7〉 〈0.3, 0.4, 0.4〉
m2 〈0.6, 0.4, 0.5〉 〈0.3, 0.2, 0.4〉 〈0.5, 0.4, 0.5〉 〈0.4, 0.6, 0.4〉 〈0.4, 0.1, 0.2〉
m3 〈0.7, 0.1, 0.4〉 〈0.4, 0.3, 0.4〉 〈0.3, 0.1, 0.4〉 〈0.7, 0.3, 0.2〉 〈0.6, 0.2, 0.6〉
m4 〈0.4, 0.5, 0.3〉 〈0.7, 0.2, 0.1〉 〈0.2, 0.6, 0.4〉 〈0.6, 0.1, 0.5〉 〈0.5, 0.1, 0.5〉
m5 〈0.5, 0.2, 0.2〉 〈0.6, 0.1, 0.6〉 〈0.6, 0.2, 0.2〉 〈0.4, 0.1, 0.1〉 〈0.4, 0.2, 0.3〉

Table 4. Single-valued neutrosophic soft matrix for the patient Y2.

Experts e1 e2 e3 e4 e5

m1 〈0.3, 0.4, 0.4〉 〈0.8, 0.1, 0.1〉 〈0.7, 0.1, 0.1〉 〈0.4, 0.1, 0.3〉 〈0.2, 0.3, 0.4〉
m2 〈0.5, 0.1, 0.3〉 〈0.5, 0.2, 0.2〉 〈0.4, 0.2, 0.3〉 〈0.6, 0.1, 0.2〉 〈0.2, 0.1, 0.3〉
m3 〈0.2, 0.1, 0.2〉 〈0.4, 0.1, 0.4〉 〈0.5, 0.4, 0.5〉 〈0.4, 0.2, 0.6〉 〈0.5, 0.2, 0.2〉
m4 〈0.7, 0.2, 0.3〉 〈0.5, 0.1, 0.4〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.2, 0.1〉 〈0.7, 0.1, 0.1〉
m5 〈0.5, 0.2, 0.2〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.1, 0.5〉 〈0.3, 0.2, 0.2〉 〈0.6, 0.4, 0.2〉

Table 5. Single-valued neutrosophic soft matrix for the patient Y3.

Experts e1 e2 e3 e4 e5

m1 〈0.4, 0.3, 0.2〉 〈0.8, 0.1, 0.4〉 〈0.5, 0.2, 0.3〉 〈0.6, 0.1, 0.2〉 〈0.2, 0.3, 0.3〉
m2 〈0.5, 0.1, 0.2〉 〈0.4, 0.2, 0.3〉 〈0.3, 0.2, 0.4〉 〈0.4, 0.2, 0.3〉 〈0.5, 0.2, 0.2〉
m3 〈0.2, 0.1, 0.1〉 〈0.4, 0.2, 0.3〉 〈0.4, 0.2, 0.3〉 〈0.5, 0.1, 0.4〉 〈0.5, 0.1, 0.1〉
m4 〈0.7, 0.2, 0.4〉 〈0.5, 0.2, 0.2〉 〈0.2, 0.1, 0.5〉 〈0.6, 0.2, 0.5〉 〈0.6, 0.2, 0.2〉
m5 〈0.5, 0.3, 0.3〉 〈0.5, 0.4, 0.4〉 〈0.4, 0.1, 0.2〉 〈0.4, 0.1, 0.5〉 〈0.7, 0.2, 0.3〉
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Table 6. Single-valued neutrosophic soft matrix for the patient Y4.

Experts e1 e2 e3 e4 e5

m1 〈0.4, 0.1, 0.2〉 〈0.5, 0.4, 0.4〉 〈0.5, 0.2, 0.1〉 〈0.5, 0.1, 0.3〉 〈0.2, 0.3, 0.7〉
m2 〈0.5, 0.1, 0.3〉 〈0.3, 0.2, 0.2〉 〈0.3, 0.2, 0.3〉 〈0.4, 0.2, 0.2〉 〈0.3, 0.2, 0.2〉
m3 〈0.5, 0.3, 0.4〉 〈0.5, 0.1, 0.5〉 〈0.4, 0.2, 0.2〉 〈0.2, 0.2, 0.4〉 〈0.5, 0.2, 0.4〉
m4 〈0.6, 0.2, 0.3〉 〈0.4, 0.5, 0.2〉 〈0.3, 0.2, 0.4〉 〈0.7, 0.2, 0.1〉 〈0.3, 0.1, 0.1〉
m5 〈0.5, 0.3, 0.1〉 〈0.4, 0.6, 0.1〉 〈0.4, 0.2, 0.3〉 〈0.3, 0.1, 0.4〉 〈0.6, 0.3, 0.3〉

Step 3. The opinion of doctors for each patient Yk (k = 1, 2, 3, 4) are aggregated by using Equation (5)
given as follows: Ω1 = 〈0.4918, 0.2326, 0.3404〉, Ω2 = 〈0.5154, 0.1700, 0.2522〉, Ω3 =

〈0.4800, 0.1656, 0.2753〉 and Ω4 = 〈0.4319, 0.1942, 0.2444〉.
Step 4. The values of score functions are: Ψ(Ω1) = 0.1514, Ψ(Ω2) = 0.2632, Ψ(Ω3) = 0.2047 and

Ψ(Ω4) = 0.1875.
Step 5. Ranking all the patients Yk (k = 1, 2, 3, 4) in accordance with the value of the score Ψ(Ωk)

(k = 1, 2, 3, 4) of the overall single-valued neutrosophic soft numbers as Y2 � Y3 � Y4 � Y1.
Step 6. Therefore, Y2 is the more illness patient than other patients.

6.2. By Using SVNSWGA Operator

If we apply SVNSWGA operator on the proposed problem for the selection of appropriate
candidate(s) that follows the following steps:

Step 3. The aggregated values for each patients Yk (k = 1, 2, 3, 4) using SVNSWGA operator are
as follows from Equation (10): Ω1 = 〈0.4432, 0.3084, 0.3913〉, Ω2 = 〈0.4515, 0.1999, 0.3044〉,
Ω3 = 〈0.4224, 0.1825, 0.3079〉 and Ω4 = 〈0.3960, 0.2204, 0.3030〉.

Step 4. The values of score functions are: Ψ(Ω1) = 0.0519, Ψ(Ω2) = 0.1471, Ψ(Ω3) = 0.1145 and
Ψ(Ω4) = 0.0930.

Step 5. Ranking all the candidates Yk (k = 1, 2, 3, 4) in accordance with the value of the score Ψ(Ωk)

(k = 1, 2, 3, 4) of the overall single-valued neutrosophic soft numbers as Y2 � Y3 � Y4 � Y1.
Step 6. Hence, Y2 is the most illness patient diagnosed by the expert doctors .

From the above analysis, it is clear that although overall rating values of the alternatives are
different by using two operators, but ranking order of the alternatives are similar, the most illness
patient is Y2 among four patients.

7. Comparative Analysis

To compare the proposed work with the existing approach, an analysis has been made based
on aggregation operator (see [25,60,62]). In that reason, the different parameters of single-valued
neutrosophic soft numbers are aggregated by using weighted averaging operator corresponding to the
weighted vector (0.2, 0.1, 0.3, 0.15, 0.25)T and then obtained aggregated single-valued neutrosophic
soft matrix for the different candidates Yk (k = 1, 2, 3, 4) given in Table 7. From this evaluated
matrix, a comparative study has been established with the existing work based on weighted
aggregation operator on simplified neutrosophic numbers, single-valued neutrosophic Domi weighted
aggregation operators and single-valued neutrosophic weighted averaging operators developed by
researchers [25,60,62] for each candidate are shown in Table 8. It also shows that proposed method
is stable with compare the existing methods. From the Table 7, we can see that the candidate Y2 is
most illness person diagnosed by the experts doctors. The characteristic comparison between propose
study with existing methods are given in Table 9. The propose method utilize advance technique to
compare the existing works [56,57] where a decision making method has been develop based on some
soft algebraic operations in neutrosophic soft environment but present paper leads a decision making
method based on aggregating single-valued neutrosophic soft arguments in the environment of SVN
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soft numbers.The advantages of this paper is that they are capable to facilitate the descriptions of the
real-world problems situation with the help of their parameterizations property. Therefore, proposed
method can be utilize to solve decision-making problems instead of other existing operator in the
environment of SVN soft numbers.

Table 7. Aggregated value of single-valued neutrosophic soft matrix for the patients.

Experts C1 C2 C3 C4

m1 〈0.4884, 0.3378, 0.3411〉 〈0.5161, 0.1737, 0.2200〉 〈0.4854, 0.2018, 0.2679〉 〈0.4168, 0.1861, 0.2531〉
m2 〈0.4680, 0.2805, 0.3761〉 〈0.4256, 0.1320, 0.2711〉 〈0.4211, 0.1741, 0.2725〉 〈0.3605, 0.1741, 0.2449〉
m3 〈0.5545, 0.1565, 0.3990〉 〈0.4251, 0.2000, 0.3327〉 〈0.4092, 0.1320, 0.1911〉 〈0.4333, 0.2024, 0.3322〉
m4 〈0.4513, 0.2531, 0.3594〉 〈0.6182, 0.1569, 0.2169〉 〈0.5246, 0.1625, 0.3470〉 〈0.4573, 0.1843, 0.2024〉
m5 〈0.5081, 0.1682, 0.2226〉 〈0.4747, 0.2012, 0.2633〉 〈0.5223, 0.1702, 0.2952〉 〈0.4650, 0.2415, 0.2253〉

Table 8. Comparison analysis with the existing method.

Methods Ψ(Ω1) Ψ(Ω2) Ψ(Ω3) Ψ(Ω4) Ranking Order

Proposed SVNSWA operator 0.1514 0.2632 0.2047 0.1875 Y2 � Y3 � Y4 � Y1
Proposed SVNSWGA operator 0.0519 0.1417 0.1145 0.0930 Y2 � Y3 � Y4 � Y1
Ye [25] by SNWAA operator 0.1440 0.2583 0.1969 0.1822 Y2 � Y3 � Y4 � Y1
Ye [25] by SNWGA operator 0.1487 0.2506 0.1999 0.1852 Y2 � Y3 � Y4 � Y1

Chen and Ye [62] SVNDWA operator 0.1594 0.2732 0.2131 0.1915 Y2 � Y3 � Y4 � Y1
Chen and Ye [62] SVNDWG operator 0.1378 0.2383 0.1875 0.1760 Y2 � Y3 � Y4 � Y1

Sahin [60] SVNWAA operator 0.1515 0.2632 0.2047 0.1869 Y2 � Y3 � Y4 � Y1
Sahin [60] SVNWGA operator 0.1412 0.2445 0.1921 0.1791 Y2 � Y3 � Y4 � Y1

Table 9. Characteristic comparisons of different methods.

Methods Fuzzy Information Easier Weather Aggregate Parameter Information

Ye [25] Yes No
Chen and Ye [62] Yes No

Sahin [60] Yes No
Proposed operators Yes Yes

8. Conclusions

In this article, we have studied multi-criteria group decision-making problem using in the
environment of single-valued neutrosophic soft information. We have introduced two new operators
namely (SVNSWA) operator, (SVNSWGA) operators in SVN soft environment. The different features
of those recommended operators is deliberated. For this purpose, firstly some algebraic structures
of two SVNSNs are given and their operational rules are defined. The two aggregation operators
have been proposed in the environment of SVNS numbers. Some properties of these two kinds
of operators have been established. We justify the propose method with the existing methods
and a characteristic comparison also shown to demonstrate advantage and applicability of the
proposed method. A Medical decision-making problems has been studied based on SVNSWA
and SVNSWGA operators under the environment of SVN soft information. The main advantages
of these operators is that they are able to make smooth description of the real-world problems
by the use of parameterizations factor. Ultimately, a realistic example for the selection of most
illness patient is provided to develop a strategy and in accordance with expounding the utility and
effectiveness of the proposed method. In the future work, the propose model further develop new soft
aggregation operators for simplified neutrosophic sets and apply them to solve practical applications
like engineering [63], group decision-making [64], expert system, information fusion system, fault
diagnosis, robotics design [65] and other domains under different fuzzy soft environments.
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