g symmetry

Set/ Loglc/ Probablllty,
Neutrosophic Over-/Under-/
Off-Set, Neutrosophic Refined
Set, and their Extension

to Plithogenic Set/Logic/
Probability, with Applications

Edited by
Florentin Smarandache
Printed Edition of the Special Issue Published in Symmetry

=
www.mdpi.com/journal/symmetry m\D\Py



New types of Neutrosophic
Set/Logic/Probability, Neutrosophic
Over-/Under-/Off-Set, Neutrosophic
Refined Set, and their Extension to
Plithogenic Set/Logic/Probability,
with Applications






New types of Neutrosophic
Set/Logic/Probability, Neutrosophic
Over-/Under-/Off-Set, Neutrosophic
Refined Set, and their Extension to
Plithogenic Set/Logic/Probability,
with Applications

Special Issue Editor

Florentin Smarandache

MDPI e Basel o Beijing ¢ Wuhan e Barcelona e Belgrade



Special Issue Editor
Florentin Smarandache
University of New Mexico
USA

Editorial Office

MDPI

St. Alban-Anlage 66
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Symmetry
(ISSN 2073-8994) in 2019 (available at: https://www.mdpi.com/journal/symmetry/special issues/
Neutrosophic_Set_Logic_Probability).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,
Page Range.

ISBN 978-3-03921-938-4 (Pbk)
ISBN 978-3-03921-939-1 (PDF)

© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
published articles, as long as the author and publisher are properly credited, which ensures maximum
dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons
license CC BY-NC-ND.




Contents

About the Special Issue Editor . . . . ... ...... ... ... .. ... .. ... .. . .. ...

Preface to “"New types of Neutrosophic Set/Logic/Probability, Neutrosophic
Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to
Plithogenic Set/Logic/Probability, with Applications” . . . .. .. ... ... .. ... ......

Yingcang Ma, Xiaohong Zhang, Florentin Smarandache, Juanjuan Zhang
The Structure of Idempotents in Neutrosophic Rings and Neutrosophic Quadruple Rings
Reprinted from: Symmetry 2019, 11, 1254, d0i:10.3390/sym11101254 . . . . . ... ... ... ...

Xiaohong Zhang, Florentin Smarandache and Yingcang Ma

Symmetry in Hyperstructure: Neutrosophic Extended Triplet Semihypergroups and Regular
Hypergroups

Reprinted from: Symmetry 2019, 11,1217, d0i:10.3390/sym11101217 . . . . . ... ... ... ...

Erick Gonzalez Caballero, Florentin Smarandache and Maikel Leyva Viazquez
On Neutrosophic Offuninorms
Reprinted from: Symmetry 2019, 11, 1136, d0i:10.3390/sym11091136 . . . . . . ... ... ... ..

Junhui Kim, Florentin Smarandache, Jeong Gon Lee and Kul Hur
Ordinary Single Valued Neutrosophic Topological Spaces
Reprinted from: Symmetry 2019, 11, 1075, d0i:10.3390/sym11091075 . . . . .. ... ... ... ..

Jingqgian Wang, Xiaohong Zhang
A New Type of Single Valued Neutrosophic Covering Rough Set Model
Reprinted from: Symmetry 2019, 11, 1074, d0i:10.3390/sym11091074 . . . . . ... ... ... ...

Muhammad Akram, Sumera Naz and Florentin Smarandache

Generalization of Maximizing Deviation and TOPSIS Method for MADM in Simplified
Neutrosophic Hesitant Fuzzy Environment

Reprinted from: Symmetry 2019, 11, 1058, d0i:10.3390/sym11081058 . . . . . ... ... ... ...

Marcel-Ioan Bolos, Ioana-Alexandra Bradea and Camelia Delcea
Modeling the Performance Indicators of Financial Assets with Neutrosophic Fuzzy Numbers
Reprinted from: Symmetry 2019, 11, 1021, d0i:10.3390/sym11081021 . . . . . ... ... ... ...

Qiaoyan Li, Yingcang Ma, Xiaohong Zhang and Juanjuan Zhang
Study on the Algebraic Structure of Refined Neutrosophic Numbers
Reprinted from: Symmetry 2019, 11, 954, d0i:10.3390/sym11080954 . . . . . ... ... ... ...

Chunxin Bo, Xiaohong Zhang and Songtao Shao
Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications
Reprinted from: Symmetry 2019, 11, 910, d0i:10.3390/sym11070910 . . . ... ... ... ... ..

Mohamed Abdel-Basset, Rehab Mohamed, Abd El-Nasser H. Zaied and

Florentin Smarandache

A Hybrid Plithogenic Decision-Making Approach with Quality Function Deployment for
Selecting Supply Chain Sustainability Metrics

Reprinted from: Symmetry 2019, 11, 903, d0i:10.3390/sym11070903 . . . . . ... ... ... ...



Keli Hu, Wei He, Jun Ye, Liping Zhao, Hua Peng and Jiatian Pi

Online Visual Tracking of Weighted Multiple Instance Learning via Neutrosophic
Similarity-Based Objectness Estimation

Reprinted from: Symmetry 2019, 11, 832, d0i:10.3390/sym11060832 . . . .. ... ... ... ...

Qingqing Hu, Xiaohong Zhang
Neutrosophic Triangular Norms and Their Derived Residuated Lattices
Reprinted from: Symmetry 2019, 11, 817, d0i:10.3390/sym11060817 . . . . . ... ... ... ...

Mohammed A. Al Shumrani and Florentin Smarandache
Introduction to Non-Standard Neutrosophic Topology
Reprinted from: Symmetry 2019, 11, 706, d0i:10.3390/sym11050706 . . . . . ... ... ... ...

Muhammad Jamil, Saleem Abdullah, Muhammad Yaqub Khan, Florentin Smarandache and
Fazal Ghani

Application of the Bipolar Neutrosophic Hamacher Averaging Aggregation Operators to Group
Decision Making: An Illustrative Example

Reprinted from: Symmetry 2019, 11, 698, d0i:10.3390/sym11050698 . . . . . ... ... ... ...

Qiaoyan Li, Yingcang Ma, Xiaohong Zhang, Juanjuan Zhang
Neutrosophic Extended Triplet Group Based on Neutrosophic Quadruple Numbers
Reprinted from: Symmetry 2019, 11, 696, d0i:10.3390/sym11050696 . . . . . ... ... ... ...

Shao Songtao, Zhang Xiaohong and Zhao Quan

Multi-Attribute Decision Making Based on Probabilistic Neutrosophic Hesitant Fuzzy Choquet
Aggregation Operators

Reprinted from: Symmetry 2019, 11, 623, d0i:10.3390/sym11050623 . . . . . ... ... ... ...

Mohamed Abdel-Basset, Mai Mohamed, Victor Chang and Florentin Smarandache

IoT and Its Impact on the Electronics Market: A Powerful Decision Support System for Helping
Customers in Choosing the Best Product

Reprinted from: Symmetry 2019, 11, 611, d0i:10.3390/sym11050611 . . . . . ... ... ... ...

Firoz Ahmad, Ahmad Yusuf Adhami and Florentin Smarandache

Neutrosophic Optimization Model and Computational Algorithm for Optimal Shale Gas Water
Management under Uncertainty

Reprinted from: Symmetry 2019, 11, 544, d0i:10.3390/sym11040544 . . . . . .. ... ... .. ..

Florentin Smarandache

Extended Nonstandard Neutrosophic Logic, Set, and Probability Based on Extended
Nonstandard Analysis

Reprinted from: Symmetry 2019, 11, 515, d0i:10.3390/sym11040515 . . . .. ... .. ... .. ..

Jihong Chen, Kai Xue, Jun Ye, Tiancun Huang, Yan Tian, Chengying Hua and Yuhua Zhu
Simplified Neutrosophic Exponential Similarity Measures for Evaluation of Smart Port
Development

Reprinted from: Symmetry 2019, 11, 485, doi:10.3390/sym11040485 . . . . .. ... ... ... ..

Mohamed Abdel-Basset, Victor Chang, Mai Mohamed and Florentin Smarandache
A Refined Approach for Forecasting Based on Neutrosophic Time Series
Reprinted from: Symmetry 2019, 11,457, d0i:10.3390/sym11040457 . . . . . ... .. ... .. ..

Ashraf Al-Quran, Nasruddin Hassan and Emad Marei
A Novel Approach to Neutrosophic Soft Rough Set under Uncertainty
Reprinted from: Symmetry 2019, 11, 384, d0i:10.3390/sym11030384 . . . . . ... ... ... ...

vi



Ashraf Al-Quran, Nasruddin Hassan and Shawkat Alkhazaleh
Fuzzy Parameterized Complex Neutrosophic Soft Expert Set for Decision under Uncertainty
Reprinted from: Symmetry 2019, 11, 382, d0i:10.3390/sym11030382 . . . .. ... .. ... .. ..

Shahzaib Ashraf, Saleem Abdullah, Florentin Smarandache and Noor ul Amin

Logarithmic Hybrid Aggregation Operators Based on Single Valued Neutrosophic Sets and
Their Applications in Decision Support Systems

Reprinted from: Symmetry 2019, 11, 364, doi:10.3390/sym11030364 . . . . .. ... ... ... ..

Muhammad Aslam and Mohammed Albassam

Application of Neutrosophic Logic to Evaluate Correlation between Prostate Cancer Mortality
and Dietary Fat Assumption

Reprinted from: Symmetry 2019, 11, 330, d0i:10.3390/sym11030330 . . . .. ... .. ... .. ..

Yingcang Ma, Xiaohong Zhang, Xiaofei Yang, Juanjuan Zhang and Hu Zhao
Generalized Neutrosophic Extended Triplet Group
Reprinted from: Symmetry 2019, 11, 327, d0i:10.3390/sym11030327 . . . .. ... ... ... ...

Muhammad Gulistan and Nasruddin Hassan

A Generalized Approach towards Soft Expert Sets via Neutrosophic Cubic Sets with
Applications in Games

Reprinted from: Symmetry 2019, 11, 289, d0i:10.3390/sym11020289 . . . .. ... ... ... ...

Lilian Shi and Yue Yuan

Hybrid Weighted Arithmetic and Geometric Aggregation Operator of Neutrosophic Cubic Sets
for MADM

Reprinted from: Symmetry 2019, 11, 278, doi:10.3390/sym11020278 . . . . .. ... ... ... ..

Chengdong Cao, Shouzhen Zeng and Dandan Luo

A Single-Valued Neutrosophic Linguistic Combined Weighted Distance Measure and Its
Application in Multiple-Attribute Group Decision-Making

Reprinted from: Symmetry 2019, 11, 275, d0i:10.3390/sym11020275 . . . . . ... .. ... .. ..

Wen Jiang, Zihan Zhang and Xinyang Deng
Multi-Attribute Decision Making Method Based on Aggregated Neutrosophic Set
Reprinted from: Symmetry 2019, 11, 267, d0i:10.3390/sym11020267 . . . . . ... .. ... .. ..

Majid Khan, Muhammad Gulistan, Naveed Yaqoob, Madad Khan and

Florentin Smarandache

Neutrosophic Cubic Einstein Geometric Aggregation Operators with Application to
Multi-Criteria Decision Making Method

Reprinted from: Symmetry 2019, 11, 247, d0i:10.3390/sym11020247 . . . . . ... ... ... ...

Muhammad Aslam and Mansour Sattam Aldosari
Inspection Strategy under Indeterminacy Based on Neutrosophic Coefficient of Variation
Reprinted from: Symmetry 2019, 11,193, d0i:10.3390/sym11020193 . . . . . ... .. ... .. ..

Aliya Fahmi, Fazli Amin, Madad Khan and Florentin Smarandache

Group Decision Making Based on Triangular Neutrosophic Cubic Fuzzy Einstein Hybrid
Weighted Averaging Operators

Reprinted from: Symmetry 2019, 11, 180, d0i:10.3390/sym11020180 . . . .. ... .. ... .. ..

vii



Jun Ye and Wenhua Cui

Neutrosophic Compound Orthogonal Neural Network and Its Applications in Neutrosophic
Function Approximation

Reprinted from: Symmetry 2019, 11, 147, d0i:10.3390/sym11020147 . . . .. ... ... ... ... 633

Majdoleen Abu Qamar and Nasruddin Hassan
An Approach toward a Q-Neutrosophic Soft Set and Its Application in Decision Making
Reprinted from: Symmetry 2019, 11,139, d0i:10.3390/sym11020139 . . . .. ... ... ... ... 642

Muhammad Aslam
A Variable Acceptance Sampling Plan under Neutrosophic Statistical Interval Method
Reprinted from: Symmetry 2019, 11, 114, d0i:10.3390/sym11010114 . . . . . ... ... ... ... 660

Chiranjibe Jana and Madhumangal Pal

A Robust Single-Valued Neutrosophic Soft Aggregation Operators in Multi-Criteria Decision
Making

Reprinted from: Symmetry 2019, 11,110, d0i:10.3390/sym11010110 . . . . . .. ... ... .. .. 667

viii



About the Special Issue Editor

Florentin Smarandache is Professor of Mathematics at the University of New Mexico, United States.
He was awarded his MSc in Mathematics and Computer Science from the University of Craiova,
Romania, PhD in Mathematics from the State University of Kishinev, and was a Postdoctor in Applied
Mathematics at the Okayama University of Sciences, Japan. He is the founder of neutrosophy
(generalization of dialectics), neutrosophic set, logic, probability and statistics, and since 1995, has
published hundreds of papers on neutrosophic physics, superluminal and instantaneous physics,
unmatter, absolute theory of relativity, redshift and blueshift due to the medium gradient and
refraction index besides the Doppler effect, paradoxism, outerart, neutrosophy as a new branch of
philosophy, law of included multiple-middle, multispace and multistructure, quantum paradoxes,
degree of dependence and independence between neutrosophic components, refined neutrosophic
set, neutrosophic over/under/offset, plithogenic set, neutrosophic triplet and duplet structures,
quadruple neutrosophic structures, and Dezert-Smarandache theory (DSmT) to many peer-reviewed
international journals and many books, and has presented papers and plenary lectures at many
international conferences around the world.

[http:/ /fs.unm.edu/FlorentinSmarandache.htm]






Preface to "New types of Neutrosophic
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with Applications”
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Abstract: In this paper we review all thirty-seven neutrosophic and plithogenic papers published
by Symmetry journal within the special issue “New types of Neutrosophic Set/Logic/Probability,
Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic
Set/Logic/Probability, with Applications” (2019).

Keywords: neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability,
neutrosophic statistics, neutrosophic overset, neutrosophic underset, neutrosophic offset, degree of
dependence and independence between components, refined neutrosophic set, law of included
multiple-middle, neutrosophic bipolar and tripolar and multipolar sets, neutrosophic algebraic
structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic
structures, quadruple neutrosophic algebraic structures, plithogeny, plithogenic set, plithogenic
logic

The fields of neutrosophic and plithogenic sets, logic, measure, probability, and statistics have
been developed and explored extensively in the last few years because of their multiple practical
applications.

The neutrosophic components of truth (T), indeterminacy (I), and falsehood (F) are symmetric
in form, since T is symmetric to its opposite F with respect to I, which acts as an axis of symmetry
between T-I-F.

This Special Issue invited state-of-the-art papers on new topics related to neutrosophic theories
and applications, including:

—Studies of corner cases of neutrosophic sets/probabilities/statistics/logics, such as:

e neutrosophic intuitionistic sets (which are different from intuitionistic fuzzy sets), neutrosophic
paraconsistent sets, neutrosophic faillibilist sets, neutrosophic paradoxist sets, neutrosophic,
pseudo-paradoxist sets, neutrosophic tautological sets, neutrosophic nihilist sets, neutrosophic
dialetheist sets, and neutrosophic trivialist sets;

e neutrosophic intuitionistic probability and statistics, neutrosophic paraconsistent probability
and statistics, neutrosophic faillibilist probability and statistics, neutrosophic paradoxist
probability and statistics, neutrosophic pseudo-paradoxist probability and statistics,
neutrosophic tautological probability and statistics, neutrosophic nihilist probability and
statistics, neutrosophic dialetheist probability and statistics, and neutrosophic trivialist
probability and statistics;
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e neutrosophic paradoxist logic (or paradoxism), neutrosophic pseudo-paradoxist logic (or
neutrosophic pseudo-paradoxism), and neutrosophic tautological logic (or neutrosophic
tautologism) [1];

—Refined neutrosophic set components (T, I, and F), which are refined/split into many neutrosophic
subcomponents: (T1, Tz, ...; I, I, ...; F1, Fz, ...) [2];

—Degrees of dependence and independence between neutrosophic components: T, I, and F as
independent components, leave room for incomplete information (when their superior sum <1),
paraconsistent and contradictory information (when the superior sum > 1), or complete
information (sum of components = 1).

For technical and engineering proposals, the classical unit interval [0,1] is used.

For single-valued neutrosophic logic, the sum of the components is:

0 <t+1i+f<3when all three components are independent;

0<t+i+f<2 when two components are dependent, while the third one is independent from
them;

0<t+i+f<1when all three components are dependent.

When three or two of the components T, I, and F are independent, one leaves room for
incomplete information (sum < 1), paraconsistent and contradictory information (sum > 1), or
complete information (sum = 1).

If all three components T, I, and F are dependent then, similarly, one leaves room for incomplete
information (sum < 1) or complete information (sum = 1).

In general, the sum of two components x and y that vary in the unitary interval [0,1]is0<x+y
<2-d°(x,y), in which d°(x, y) is the degree of dependence between x and y [3];

Neutrosophic overset (when some neutrosophic component is > 1) is observed, for example,
when an employee works overtime and deserves a degree of membership > 1, with respect to an
employee that only works regular full-time and whose degree of membership = 1.

Neutrosophic underset (when some neutrosophic component is < 0) is observed, for example,
when an employee causes more damage than benefit to his company and deserves a degree of
membership < 0, with respect to an employee that produces benefit to the company and has a degree
of membership > 0.

Neutrosophic offset occurs when some neutrosophic components are off the interval [0,1] (i.e.,
some neutrosophic component > 1 and some neutrosophic component < 0).

—Then, similarly, neutrosophic logic/measure/probability/statistics, and so on, were extended to,
respectively, neutrosophic over-/under-/off-logic, measure, probability, statistics, and so on
[4,5];

—Neutrosophic tripolar set and neutrosophic multipolar set and, consequently, the neutrosophic
tripolar graph and neutrosophic multipolar graph [6];

—N-norm and N-conorm [7];

—Neutrosophic measure and neutrosophic probability (chance that an event occurs, indeterminate
chance of occurrence, chance that the event does not occur) [8];

—Law of included multiple-middle (as middle part of refined neutrosophy): (<A>; <neutA:>,
<neutA>>, ...; <antiA>) [9];

—Neutrosophic statistics (indeterminacy is introduced into classical statistics with respect to the
sample/population characteristics, or with respect to the individuals that only partially belong
to a sample/population, or with respect to the neutrosophic probability distributions) [10];

—Neutrosophic precalculus and neutrosophic calculus [11];

—Refined neutrosophic numbers (a + bili + b2l + ... + bnln), in which I, I, ..., In are sub-
indeterminacies of indeterminacy I; (tif)-neutrosophic graphs; thesis—antithesis—neutrothesis,
and neutrosynthesis; neutrosophic axiomatic system; neutrosophic dynamic systems; symbolic
neutrosophic logic; (t, i, f)-neutrosophic structures; i-neutrosophic structures; refined literal
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indeterminacy; quadruple neutrosophic algebraic structures; and multiplication law of sub-
indeterminacies [12];

—Theory of neutrosophic evolution: degrees of evolution, indeterminacy or neutrality, and
involution [13];

—Plithogeny  as  generalization = of  dialectics = and  neutrosophy;  plithogenic
set/logic/probability/statistics (as generalization of fuzzy, intuitionistic fuzzy, neutrosophic
set/logic/probability/statistics) [14];

—Neutrosophic psychology (neutropsyche; refined neutrosophic memory: conscious, aconscious,
unconscious; neutropsychic personality; Eros/Aoristos/Thanatos; and neutropsychic crisp
personality) [15];

—Neutrosophic applications in artificial intelligence, information systems, computer science,
cybernetics, theory methods, mathematical algebraic structures, applied mathematics,
automation, control systems, big data, engineering, electrical, electronic, philosophy, social
science, psychology, biology, engineering, operational research, management science, imaging
science, photographic technology, instruments, instrumentation, physics, optics, economics,
mechanics, neurosciences, radiology nuclear, interdisciplinary applications, multidisciplinary
sciences, and so on [16].

The Special Issue “New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-
/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability,
with Applications” comprises 37 papers focusing on topics such as: neutrosophic set; neutrosophic
rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup;
semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet
semihypergroup (NET-semihypergroup); NET-hypergroup; neutrosophic offset; uninorm;
neutrosophic offuninorm; neutrosophic offnorm; neutrosophic offconorm; implicator; prospector; n-
person cooperative game; ordinary single valued neutrosophic (co)topology; ordinary single valued
neutrosophic subspace; a-level; ordinary single valued neutrosophic neighborhood system; ordinary
single valued neutrosophic base; ordinary single valued neutrosophic subbase; fuzzy numbers;
neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets;
neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic
numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set;
nondual; two universes; multiattribute group decision making; nonstandard analysis; extended
nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left;
pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology;
nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted
multiple instance learning; neutrosophic triangular norms; residuated lattices; representable
neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely
v-distributive; probabilistic neutrosophic hesitant fuzzy set (PNHFS); decision-making; Choquet
integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision-making techniques;
intuitionistic fuzzy parameters; uncertainty modeling; neutrosophic goal programming approach;
shale gas water management system, and many more.

Molodtsov originated soft set theory that provided a general mathematical framework for
handling uncertainties, in which one meets the data by an affixed parameterized factor during
information analysis as differentiated to fuzzy as well as neutrosophic set theory. The main objective
of the first paper [17] is to lay a foundation for providing a new approach of a single-valued
neutrosophic soft tool that considers many problems that contain uncertainties. In the present study,
new aggregation operators of single-valued neutrosophic soft numbers have, so far, not yet been
applied for ranking the alternatives in decision-making problems. To this proposed work, a single-
valued neutrosophic soft-weighted arithmetic averaging (SVNSWA) operator and single-valued
neutrosophic soft-weighted geometric averaging (SVNSWGA) operator have been used to compare
two single-valued neutrosophic soft numbers (SVNSNs) for aggregating different single-valued
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neutrosophic soft input arguments in neutrosophic soft environments. Then, its related properties
have been investigated. Finally, a practical example for medical diagnosis problems is provided to
test the feasibility and applicability of the proposed work.

The acceptance sampling plan plays an important role in maintaining the high quality of a
product. The variable control chart, using classical statistics, helps in making acceptance or rejection
decisions about the submitted lot of the product. Furthermore, the sampling plan, using classical
statistics, assumes that complete or determinate information are available for a lot of the products.
However, in some situations, data may be ambiguous, vague, imprecise, and incomplete or
indeterminate. In this case, the use of neutrosophic statistics can be applied to guide the
experimenters. In the second paper [18], the authors proposed a new variable sampling plan using
the neutrosophic interval statistical method. The neutrosophic operating characteristic (NOC) is
derived using a neutrosophic normal distribution. An optimization solution is also presented for the
proposed plan under the neutrosophic interval method. The effectiveness of the proposed plan is
compared with the plan under classical statistics. Tables are presented for practical use, and a real
example is given to explain the neutrosophic fuzzy variable sampling plan in the industry.

A neutrosophic set was proposed as an approach to study neutral, uncertain information. It is
characterized through three memberships, T, I and F, such that these independent functions stand
for the truth, indeterminate, and false-membership degrees of an object. The neutrosophic set
presents a symmetric form, since truth enrolment T is symmetric to its opposite false enrolment F
with respect to indeterminacy enrollment I that acts as an axis of symmetry. The neutrosophic set
was further extended to a Q-neutrosophic soft set, which is a hybrid model that keeps the features of
the neutrosophic soft set in dealing with uncertainty and the features of a Q-fuzzy soft set that
handles two-dimensional information. In the next paper [19], the authors discuss some operations of
Q-neutrosophic soft sets, such as subset, equality, complement, intersection, union, AND operation,
and OR operation. The authors also define the necessity and possibility operations of a Q-
neutrosophic soft set. Several properties and illustrative examples are discussed. Then, the authors
define the Q-neutrosophic set aggregation operator and use it to develop an algorithm for using a Q-
neutrosophic soft set in decision-making issues that have indeterminate and uncertain data, followed
by an illustrative real-life example.

Neural networks are powerful universal approximation tools. They have been utilized for
functions/data approximation, classification, pattern recognition, as well as their various
applications. Uncertain or interval values result from the incompleteness of measurements, human
observations, and estimations in the real world. Thus, a neutrosophic number (NsN) can represent
both certain and uncertain information in an indeterminate setting and imply a changeable interval
depending on its indeterminate ranges. In NsN settings, however, existing interval neural networks
cannot deal with uncertain problems with NsNs. Therefore, the next study [20] proposes a
neutrosophic compound orthogonal neural network (NCONN) for the first time, containing the NsN
weight values, NsN input and output, and hidden layer neutrosophic neuron functions, to
approximate neutrosophic functions/NsN data. In the proposed NCONN model, single input and
single output neurons are the transmission notes of NsN data, and hidden layer neutrosophic
neurons are constructed by the compound functions of both the Chebyshev neutrosophic orthogonal
polynomial and the neutrosophic sigmoid function. In addition, illustrative and actual examples are
provided to verify the effectiveness and learning performance of the proposed NCONN model for
approximating neutrosophic nonlinear functions and NsN data. The contribution of this study is that
the proposed NCONN can handle the approximation problems of neutrosophic nonlinear functions
and NsN data. However, the main advantage is that the proposed NCONN implies a simple learning
algorithm, higher speed learning convergence, and higher learning accuracy in indeterminate/NsN
environments.

In the following paper [21], a new concept of the triangular neutrosophic cubic fuzzy numbers
(TNCENSs), their scores, and accuracy functions are introduced. Based on TNCENs, some new



Einstein aggregation operators, such as triangular neutrosophic cubic fuzzy Einstein weighted
averaging (TNCFEWA), triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging
(TNCFEOWA), and triangular neutrosophic cubic fuzzy Einstein hybrid weighted averaging
(TNCFEHWA) operators are developed. Furthermore, their application to multiple-attribute decision
making with triangular neutrosophic cubic fuzzy (TNCF) information is discussed. Finally, a
practical example is given to verify the developed approach and to demonstrate its practicality and
effectiveness.

The existing sampling plans that use the coefficient of variation (CV) are designed under
classical statistics. These available sampling plans cannot be used for sentencing if the sample or the
population has indeterminate, imprecise, unknown, incomplete, or uncertain data. In the next paper
[22], the authors introduce the neutrosophic coefficient of variation (NCV) first. The authors design
a sampling plan based on the NCV. The neutrosophic operating characteristic (NOC) function is then
given and used to determine the neutrosophic plan parameters under some constraints. The
neutrosophic plan parameters such as neutrosophic sample size and neutrosophic acceptance
number are determined through the neutrosophic optimization solution. The efficiency of the
proposed plan under the neutrosophic statistical interval method with the sampling plan under
classical statistics is compared. A real example, which has indeterminate data, is given to illustrate
the proposed plan.

Neutrosophic cubic sets (NCs) are a more-generalized version of neutrosophic sets (Ns) and
interval neutrosophic sets (INs). Neutrosophic cubic sets are better placed to express consistent,
indeterminate, and inconsistent information, which provides a better platform to deal with
incomplete, inconsistent, and vague data. Aggregation operators play a key role in daily life and in
relation to science and engineering problems. In the following paper [23], the authors define the
algebraic and Einstein sum, multiplication and scalar multiplication, and score and accuracy
functions. Using these operations, the authors defined geometric aggregation operators and Einstein
geometric aggregation operators. First, they define the algebraic and Einstein operators of addition,
multiplication, and scalar multiplication, then the score and accuracy function to compare
neutrosophic cubic values, and afterwards the neutrosophic cubic weighted geometric operator
(NCWG), neutrosophic cubic ordered weighted geometric operator (NCOWG), neutrosophic cubic
Einstein weighted geometric operator (NCEWG), and neutrosophic cubic Einstein ordered weighted
geometric operator (NCEOWG) over neutrosophic cubic sets. A multicriteria decision-making
method is developed as an application for these operators. This method is then applied to a daily life
problem.

Multiattribute decision making refers to the decision-making problem of selecting the optimal
alternative or sorting the scheme when considering multiple attributes, which is widely used in
engineering design, economy, management, military, and so on. But in real applications, the attribute
information of many objects is often inaccurate or uncertain, so it is very important for us to find a
useful and efficient method to solve the problem. A neutrosophic set is proposed from philosophical
point of view to handle inaccurate information efficiently, and a single-valued neutrosophic set
(SVNS) is a special case of neutrosophic set, which is widely used in actual field applications. In the
next paper [24], a new method based on aggregating a single-valued neutrosophic set is proposed to
solve a multiattribute decision-making problem. Firstly, a neutrosophic decision matrix is obtained
by expert assessment, then a score function of single-valued neutrosophic sets (SVNSs) is defined to
obtain the positive ideal solution (PIS) and the negative ideal solution (NIS). Then, all alternatives are
aggregated based on the TOPSIS method to make a decision. Finally, numerical examples are given
to verify the feasibility and rationality of the method.

The aim of the next paper [25] is to present a multiple-attribute group decision-making
(MAGDM) framework based on a new single-valued neutrosophic linguistic (SVNL) distance
measure. By unifying the idea of the weighted average and ordered weighted average into a single-
valued neutrosophic linguistic distance, the authors first developed a new SVNL weighted distance
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measure, namely a SVNL combined and weighted distance (SVNLCWD) measure. The focal
characteristics of the devised SVNLCWD are its ability to combine both the decision-makers’
attitudes toward the importance as well as the weights of the arguments. Various desirable properties
and families of the developed SVNLCWD were contemplated. Moreover, a MAGDM approach based
on the SVNLCWD was formulated. Lastly, a real numerical example concerning a low-carbon
supplier selection problem was used to describe the superiority and feasibility of the developed
approach.

Neutrosophic cubic sets (NCSs) can express complex multiattribute decision-making (MADM)
problems with its interval and single-valued neutrosophic numbers simultaneously. The weighted
arithmetic average (WAA) and geometric average (WGA) operators are common aggregation
operators for handling MADM problems. However, the neutrosophic cubic weighted arithmetic
average (NCWAA) and neutrosophic cubic geometric weighted average (NCWGA) operators may
result in some unreasonable aggregated values in some cases. In order to overcome the drawbacks of
the NCWAA and NCWGA, a new neutrosophic cubic hybrid weighted arithmetic and geometric
aggregation (NCHWAGA) operator is developed, and its suitability and effectiveness are
investigated in the next paper [26]. Then, the authors established a MADM method based on the
NCHWAGA operator. Finally, a MADM problem with neutrosophic cubic information was provided
to illustrate the application and effectiveness of the proposed method.

An interesting approach is proposed in [27]. Games are considered to be the most attractive and
healthy event between nations and peoples. Soft expert sets are helpful for capturing uncertain and
vague information. By contrast, neutrosophic sets are tri-component logic sets; thus, they can deal
with uncertain, indeterminate, and incompatible information where the indeterminacy is quantified
explicitly and truth membership, indeterminacy membership, and falsity membership are
independent of each other. Subsequently, the authors develop a combined approach and extend this
concept further to introduce the notion of neutrosophic cubic soft expert sets (NCSESs) by using the
concept of neutrosophic cubic soft sets, which is a powerful tool for handling uncertain information
in many problems and especially in games. Then, the authors define and analyze the properties of
internal neutrosophic cubic soft expert sets (INCSESs) and external neutrosophic cubic soft expert
sets (ENCSESs), P-order, P-union, P-intersection, P-AND, and P-OR as well as R-order, R-union, R-
intersection, R-AND, and R-OR of NCSESs. The NCSESs satisfy the laws of commutativity,
associativity, De Morgan, distributivity, idempotentency, and absorption. Some conditions are
derived for P-union and P-intersection of two INCSESs to be an INCSES. It is shown that P-union
and P-intersection of ENCSESs need not be an ENCSES. The R-union and R-intersection of the
INCSESs (resp., ENCSESs) need not be an INCSES (resp., ENCSES). Necessary conditions for the P-
union, R-union, and R-intersection of two ENCSESs to be an ENCSES are obtained. The authors also
study the conditions for R-intersection and P-intersection of two NCSESs to be an INCSES and
ENCSES. Finally, for its applications in games, the developed procedure to analyze a cricket series
between Pakistan and India is used. It is shown that the proposed method is suitable to be used for
decision making and is as good as, or better than, existing models.

A neutrosophic extended triplet group is a new algebra structure and is different from the
classical group. In the following paper [28], the notion of a generalized neutrosophic extended triplet
group is proposed, and some properties are discussed. In particular, the following conclusions are
strictly proved: (1) an algebraic system is a generalized neutrosophic extended triplet group if and only
if it is a quasi-complete regular semigroup; (2) an algebraic system is a weak commutative
generalized neutrosophic extended triplet group if and only if it is a quasi-Clifford semigroup; (3) for
eachn € Z+,n 22, (Zn,®) is a commutative generalized neutrosophic extended triplet group; (4) for
eachn € Z+,n > 2, (Zn,®) is a commutative neutrosophic extended triplet group if and only if n =
plp2-pm (i.e., n has only single factor).

The next paper [29] presents an epidemiological study on the dietary fat that causes prostate
cancer in an uncertain environment. To study this relationship under an indeterminate environment,



data from 30 countries are selected on the prostate cancer death rate and dietary fat level in food.
Neutrosophic correlation and regression lines are fitted on the data. The authors note from the
neutrosophic analysis that the prostate cancer death rate increases as the dietary fat level in people
increases. The neutrosophic regression coefficient also confirms this claim. From this study, the
authors conclude that neutrosophic regression is a more effective model under uncertainty than the
regression model under classical statistics. They also found a statistical correlation between dietary
fat and prostate cancer risk.

Recently, neutrosophic sets are found to be more general and useful to express incomplete,
indeterminate, and inconsistent information. The purpose of the next paper [30] is to introduce new
aggregation operators based on logarithmic operations and to develop a multicriteria decision-
making approach to study the interaction between the input argument under a single valued
neutrosophic (SVN) environment. The main advantage of the proposed operator is that it can deal
with positive interaction situations, negative interactions, or non-interaction among the criteria
during the decision-making process. In this paper, the authors also defined some logarithmic
operational rules on SVN sets, then proposed the single valued neutrosophic hybrid aggregation
operators as a tool for multicriteria decision making (MCDM) under a neutrosophic environment and
discussed some properties. Finally, detailed decision-making steps for single valued neutrosophic
MCDM problems were developed, and a practical case was given to check the created approach and
to illustrate its validity and superiority. Besides this, a systematic comparison with other existent
methods is conducted to reveal the advantages of the proposed method. Results indicate that the
proposed method is suitable and effective for the decision process to evaluate their best alternative.

In the definition of the complex neutrosophic soft expert set (CNSES), the parameters are a
classical set, and the parameters have the same degree of importance, which is considered as 1. This
poses a limitation in modeling some problems. The subsequent paper [31] introduces the concept of
a fuzzy parameterized complex neutrosophic soft expert set (FP-CNSES) to handle this issue by
assigning a degree of importance to each of the problem parameters. The authors develop FP-CNSES
by establishing the concept of a weighted fuzzy parameterized complex neutrosophic soft expert set
(WFP-CNSES) based on the idea that each expert has a relative weight. These new mathematical
frameworks reduce the chance of unfairness in the decision-making process. Some essential
operations with their properties and relevant laws related to the notion of FP-CNSES are defined and
verified. The notation of mapping on fuzzy parameterized complex neutrosophic soft expert classes
is defined, and some properties of fuzzy parameterized complex neutrosophic soft expert images and
inverse images were investigated. FP-CNSES is used to put forth an algorithm on decision making
by converting it from a complex state to a real state, and the detailed decision steps are subsequently
provided. Then, the authors provide comparisons of FP-CNSES to the current methods to show the
superiority of the proposed method.

To handle indeterminate and incomplete data, neutrosophic logic/set/probability have been
established. The neutrosophic truth, falsehood, and indeterminacy components exhibit symmetry as
the truth, and the falsehood looks the same and behaves in a symmetrical way with respect to the
indeterminacy component, which serves as a line of symmetry. A soft set is a generic mathematical
tool for dealing with uncertainty. A rough set is a new mathematical tool for dealing with vague,
imprecise, inconsistent, and uncertain knowledge in information systems. The next paper [32]
introduces a new rough set model based on neutrosophic soft sets to exploit, simultaneously, the
advantages of rough sets and neutrosophic soft sets in order to handle all types of uncertainty in data.
The idea of a neutrosophic right neighborhood is utilized to define the concepts of neutrosophic
soft/rough (NSR) lower and upper approximations. Properties of the suggested approximations are
proposed and subsequently proven. Some of the NSR set concepts such as NSR definability, NSR
relations, and NSR membership functions are suggested and illustrated with examples. Further, the
authors demonstrate the feasibility of the new rough set model with decision-making problems
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involving neutrosophic soft sets. Finally, a discussion on the features and limitations of the proposed
model is provided.

The following research [33] introduces a neutrosophic forecasting approach based on
neutrosophic time series (NTS). Historical data can be transformed into neutrosophic time series data
to determine their truth, indeterminacy, and falsity functions. The basis for the neutrosophication
process is the score and accuracy functions of historical data. In addition, neutrosophic logical
relationship groups (NLRGs) are determined, and a deneutrosophication method for NTS is
presented. The objective of this research is to suggest an idea of first- and high-order NTSs. By
comparing this approach with other approaches, the authors conclude that the suggested approach
of forecasting gets better results compared to the other existing approaches of fuzzy, intuitionistic
fuzzy, and neutrosophic time series.

Smart ports represent the current trend of port development. Intelligent operations reduce the
daily production cost of ports, facilitate efficient production, strengthen the risk mitigation ability,
and comply with the requirements for long-term development. However, a systematic and scientific
smart port evaluation method is missing to nail down the evaluation indicators of a smart port and
enable accurate evaluation of a port’s degree of intelligence. The next paper [34] analyzes the concept
of the smart port, establishes a set of smart port evaluation indicator systems, and applies a single-
valued neutrosophic exponential similarity measure in port evaluation to enable a quantitative
evaluation of port integrity. This evaluation method is capable of making decisions in the event of
incomplete, uncertain, and inconsistent information during general evaluation, opening up a new
method for smart port evaluation and acting as a helpful tool for ports to carry out improvements
during actual application.

The nonstandard analysis is extended in [35], by adding the left monad closed to the right and
right monad closed to the left. Besides the pierced binad (introduced in 1998), Smarandache adds
now the unpierced binad —all these in order to close the newly extended nonstandard space under
nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division,
and nonstandard power operations. Then, the author extends the nonstandard neutrosophic logic,
nonstandard neutrosophic set, and nonstandard probability on this extended nonstandard analysis
space, and proves that it is a nonstandard neutrosophic lattice of the first type (endowed with a
nonstandard neutrosophic partial order) as well as a nonstandard neutrosophic lattice of the second
type (as algebraic structure, endowed with two binary neutrosophic laws: infv and supn). Many
theorems, new terms introduced, better notations for monads and binads, and examples of
nonstandard neutrosophic operations are given.

Shale gas energy is the most prominent and dominating source of power across the globe. The
processes for the extraction of shale gas from shale rocks are very complex. In the next study [36], a
multiobjective optimization framework is presented for an overall water management system that
includes the allocation of freshwater for hydraulic fracturing and optimal management of the
resulting wastewater with different techniques. The generated wastewater from the shale fracking
process contains highly toxic chemicals. The optimal control of a massive amount of contaminated
water is quite a challenging task. Therefore, an on-site treatment plant, underground disposal facility,
and treatment plant with expansion capacity were designed to overcome environmental issues. A
multiobjective trade-off between socio-economic and environmental concerns was established under
a set of conflicting constraints. A solution method —the neutrosophic goal programming approach—
is suggested, inspired by independent, neutral/indeterminacy thoughts of the decision-maker(s). A
theoretical computational study is presented to show the validity and applicability of the proposed
multiobjective shale gas water management optimization model and solution procedure. The
obtained results and conclusions, along with significant contributions, are discussed in the context of
shale gas supply chain planning policies over different time horizons.

Many companies have observed the significant benefits they can get via using the Internet. Since
then, large companies have been able to develop business transactions with customers at anytime,
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anywhere, and in relation to anything, so that a more comprehensive concept than the Internet is
needed. This concept is the Internet of Things (IoT). IoT will influence decision-making styles in
various phases of selling, buying, and marketing processes. Therefore, every individual and company
should know precisely what IoT is and how and why they should incorporate it in their operations.
In [37], a smart system based on IoT was used to help companies and marketers make a powerful
marketing strategy via utilizing obtained data from IoT devices. Not only this, but the proposed
system can also solve the problems that companies and customers face in online shopping. Since
there are different types of the same product, and also different criteria for purchasing that can be
different between individuals, customers will need a decision support system to recommend them
the best selection. This motivated the authors to propose a neutrosophic technique to deal with
unclear and conflicting information that exists usually in the purchasing process. Therefore, the smart
system and neutrosophic technique are considered as a comprehensive system, which links
customers, companies, and marketers to achieve satisfaction for each of them.

Taking third-party logistics providers (3PLs) as an example, according to the characteristics of
correlation between attributes in multiattribute decision making, two Choquet aggregation operators
adopting probabilistic neutrosophic hesitation fuzzy elements (PNHFEs) are proposed to cope with
the situations of correlation among criteria in [38]. This measure not only provides support for the
correlation phenomenon between internal attributes, but it also fully concerns the incidental
uncertainty of the external space. The goal is to make it easier for decision makers to cope with this
uncertainty; thus, the authors establish the notion of a probabilistic neutrosophic hesitant fuzzy
Choquet averaging (geometric) (PNHFCOA, PNHFCOG) operator. Based on this foundation, a
method for aggregating decision makers” information is proposed, and then the optimal decision
scheme is obtained. Finally, an example of selecting optimal 3PL is given to demonstrate the
objectivity of the above-mentioned standpoint.

In the next paper [39], the authors explore the algebra structure based on neutrosophic
quadruple numbers. Moreover, two kinds of degradation algebra systems of neutrosophic quadruple
numbers are introduced. In particular, the following results are strictly proved: (1) the set of
neutrosophic quadruple numbers with a multiplication operation is a neutrosophic extended triplet
group; (2) the neutral element of each neutrosophic quadruple number is unique, and there are only
sixteen different neutral elements in all of the neutrosophic quadruple numbers; (3) the set which has
same neutral element is closed with respect to the multiplication operator; and (4) the union of the
set which has same neutral element is a partition of four-dimensional space.

The following study [40] aims to introduce the notion of bipolar neutrosophic Hamacher
aggregation operators and to also provide its application in real life. Then, the neutrosophic set (NS)
can elaborate the incomplete, inconsistent, and indeterminate information, Hamacher aggregation
operators, and extended Einstein aggregation operators to the arithmetic and geometric aggregation
operators. First, the authors give the fundamental definition and operations of the neutrosophic set
and the bipolar neutrosophic set. The main focus is on the Hamacher aggregation operators of bipolar
neutrosophic sets, namely, bipolar neutrosophic Hamacher weighted averaging (BNHWA), bipolar
neutrosophic Hamacher ordered weighted averaging (BNHOWA), and bipolar neutrosophic
Hamacher hybrid averaging (BNHHA) along with their desirable properties. The prime gain of
utilizing the suggested methods is that these operators progressively provide a total perspective on
the issues necessary to the decision makers. These tools provide generalized, increasingly exact, and
precise outcomes when compared to the current methods. Finally, as an application, the authors
propose new methods for the multicriteria group decision-making issues by using various kinds of
bipolar neutrosophic operators with a numerical model. This demonstrates the usefulness and
practicality of this proposed approach in real life.

In the next paper [41], the authors introduce nonstandard neutrosophic topology in the extended
nonstandard analysis space, called nonstandard real monad space, which is closed under
neutrosophic nonstandard infimum and supremum conditions. Many classical topological concepts
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are extended to the nonstandard neutrosophic topology, several theorems and properties about them
are proven, and many examples are presented.

Neutrosophic triangular norms (t-norms) and their residuated lattices are not only the main
research object of neutrosophic set theory, but they are also the core content of neutrosophic logic.
Neutrosophic implications are important operators of neutrosophic logic. Neutrosophic residual
implications based on neutrosophic t-norms can be applied to the fields of neutrosophic inference
and neutrosophic control. In [42], neutrosophic t-norms, neutrosophic residual implications, and the
residuated lattices derived from neutrosophic t-norms are deeply investigated by Qingqing Hu and
Xiaohong Zhang. First of all, the lattice and its corresponding system are proven to be a complete
lattice and follow De Morgan algebra, respectively. Secondly, the notions of neutrosophic t-norms
are introduced on the complete lattice discussed earlier. The basic concepts and typical examples of
representable and nonrepresentable neutrosophic t-norms are obtained. Naturally, De Morgan
neutrosophic triples are defined for the duality of neutrosophic t-norms and neutrosophic t-conorms
with respect to neutrosophic negators. Thirdly, neutrosophic residual implications generated from
neutrosophic t-norms and their basic properties are investigated. Furthermore, residual neutrosophic
t-norms are proven to be infinitely v-distributive, and then some important properties possessed by
neutrosophic residual implications are given. Finally, a method for producing neutrosophic t-norms
from neutrosophic implications is presented, and the residuated lattices are constructed on the basis
of neutrosophic t-norms and neutrosophic residual implications.

An online neutrosophic similarity-based object tracking with a weighted multiple instance
learning algorithm (NeutWMIL) is proposed in [43]. Each training sample is extracted surrounding
the object location, and the distribution of these samples is symmetric. To provide a more robust
weight for each sample in the positive bag, the asymmetry of the importance of the samples is
considered. The neutrosophic similarity-based object estimation with object properties (super
straddling) is applied. The neutrosophic theory is a new branch of philosophy for dealing with
incomplete, indeterminate, and inconsistent information. By considering the surrounding
information of the object, a single valued neutrosophic set (SVNS)-based segmentation parameter
selection method is proposed to produce a well-built set of superpixels that can better explain the
object area at each frame. Then, the intersection and shape-distance criteria are proposed for
weighting each superpixel in the SVNS domain, mainly via three membership functions, T (truth), I
(indeterminacy), and F (falsity), for each criterion. After filtering out the superpixels with low
responses, the newly defined neutrosophic weights are utilized for weighting each sample.
Furthermore, the objectness estimation information is also applied for estimating and alleviating the
problem of tracking drift. Experimental results on challenging benchmark video sequences reveal the
superior performance of the algorithm when confronting appearance changes and background
clutters.

Supply chain sustainability has become one of the most attractive decision management topics.
There are many articles that have focused on this field, presenting many different points of view. The
following research [44] is centered on the evaluation of supply chain sustainability based on two
critical dimensions. The first is the importance of evaluation metrics based on economic,
environmental, and social aspects, and the second is the degree of difficulty of information gathering.
This paper aims to increase the accuracy of the evaluation. The proposed method is a combination of
quality function deployment (QFD) with plithogenic aggregation operations. The aggregation
operation is applied to aggregate, firstly, the decision maker’s opinions of requirements that are
needed to evaluate the supply chain sustainability; secondly, the evaluation metrics based on the
requirements; and lastly, the evaluation of information gathering difficulty. To validate the proposed
model, this study presented a real-world case study of Thailand’s sugar industry. The results showed
the most preferred and the lowest preferred metrics in order to evaluate the sustainability of the
supply chain strategy.
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Multiattribute decision making (MADM) is a part of management decision making and an
important branch of the modern decision theory and method. MADM focuses on the decision
problem of discrete and finite decision schemes. Uncertain MADM is an extension and development
of classical multiattribute decision-making theory. When the attribute value of MADM is shown by
neutrosophic numbers, that is, the attribute value is complex data and needs three values to express,
it is called an MADM problem in which the attribute values are neutrosophic numbers. However, in
practical MADM problems, to minimize errors in individual decision making, one needs to consider
the ideas of many people and synthesize their opinions. Therefore, it is of great significance to study
the method of attribute information aggregation. In the subsequent paper [45], the authors propose
a new theory, a nondual multigranulation neutrosophic rough set (MS), to aggregate multiple
attributes and solve a multiattribute group decision-making (MGDM) problem where the attribute
values are neutrosophic numbers. First, the authors defined two kinds of nondual MS models,
intersection-type MS and union-type MS. Additionally, their properties are studied. Then, the
relationships between MS, nondual MS, neutrosophic rough set (NRS) based on a neutrosophic
intersection (union) relationship, and NRS based on a neutrosophic transitive closure relation of
union relationship are outlined, and a figure is given to show them directly. Finally, the definition of
nondual MS on two universes is given and used to solve a MGDM problem with a neutrosophic
number as the attribute value.

The following paper [46] aims to explore the algebraic structure of refined neutrosophic
numbers. Firstly, the algebraic structure of neutrosophic quadruple numbers on a general field is
studied. Secondly, the addition operator & and multiplication operator © on refined neutrosophic
numbers are proposed, and the algebraic structure is discussed. The authors reveal that the set of
neutrosophic refined numbers with an additive operation is an abelian group, and the set of
neutrosophic refined numbers with a multiplication operation is a neutrosophic extended triplet
group. Moreover, algorithms for solving the neutral element and opposite elements of each refined
neutrosophic number are given.

The next research [47] sets the basis for modeling the performance indicators of financial assets
using triangular neutrosophic fuzzy numbers. This type of number allows for the modeling of
financial asset performance indicators by taking into consideration all possible scenarios of their
achievement. The key performance indicators (KPIs) modeled with the help of triangular fuzzy
neutrosophic numbers are the return on financial assets, the financial assets risk, and the covariance
between financial assets. Thus far, the return on financial assets has been studied using statistical
indicators, like the arithmetic and geometric mean, or using the financial risk indicators with the help
of the squared deviations from the mean and covariance. These indicators are well known as the basis
of portfolio theory. This paper opens up the perspective of modeling these three mentioned statistical
indicators using triangular neutrosophic fuzzy numbers because of the major advantages they have.
The first advantage of the neutrosophic approach is that it includes three possible symmetric
scenarios for KPI achievement, namely the scenario of certainty, the scenario of nonrealization, and
the scenario of indecision, in which it cannot be appreciated whether the performance indicators are
or are not achieved. The second big advantage is its data series clustering, representing the financial
performance indicators by which these scenarios can be delimitated by means of neutrosophic fuzzy
numbers in very good, good, or weak performance indicators. This clustering is realized by means of
the linguistic criteria and measuring the belonging degree to a class of indicators using fuzzy
membership functions. The third major advantage is the selection of risk mitigation analysis scenarios
and the formation of optimal financial asset portfolios.

With the development of the social economy and the enlarged volume of information, the
application of multiple-attribute decision making (MADM) has become increasingly complex,
uncertain, and obscure. As a further generalization of the hesitant fuzzy set (HFS), the simplified
neutrosophic hesitant fuzzy set (SNHEFS) is an efficient tool to process vague information and
contains the ideas of a single-valued neutrosophic hesitant fuzzy set (SVNHFS) and an interval



neutrosophic hesitant fuzzy set (INHFS). In the following paper [48], the authors propose a decision-
making approach based on the maximizing deviation method and TOPSIS (technique for order
preference by similarity to ideal solution) to solve the MADM problems, in which the attribute weight
information is incomplete, and the decision information is expressed in simplified neutrosophic
hesitant fuzzy elements. Firstly, the authors inaugurate an optimization model on the basis of
maximizing the deviation method, which is useful to determine the attribute weights. Secondly,
using the idea of TOPSIS, the authors determine the relative closeness coefficient of each alternative
and, based on that, they rank the considered alternatives to select the optimal one(s). Finally, the
authors use a numerical example to show the detailed implementation procedure and effectiveness
of the method in solving MADM problems under a simplified neutrosophic hesitant fuzzy
environment.

Recently, various types of single valued neutrosophic (SVN) rough set models have been
presented based on the same inclusion relation. However, there is another SVN inclusion relation in
SVN sets. In the next paper [49], the authors propose a new type of SVN that covers a rough set model
based on the new inclusion relation. Furthermore, graph and matrix representations of the new SVN
covering approximation operators are presented. Firstly, the notion of SVN p2-covering
approximation space is proposed, which is decided by the new inclusion relation. Then, a type of
SVN covering rough set model under the SVN p2-covering approximation space is presented.
Moreover, there is a corresponding SVN relation rough set model based on an SVN relation induced
by the SVN (32-covering space, and two conditions under which the SVN (32-covering space can
induce a symmetric SVN relation are presented. Thirdly, the graph and matrix representations of the
new SVN covering rough set model are investigated. Finally, the authors propose a novel method for
decision making (DM) problems in a paper on defect diagnosis under the new SVN covering rough
set model.

In the subsequent paper [50], the authors define an ordinary single valued neutrosophic
topology and obtain some of its basic properties. In addition, the authors introduce the concept of an
ordinary single valued neutrosophic subspace. Next, they define the ordinary single-valued
neutrosophic neighborhood system and show that an ordinary single-valued neutrosophic
neighborhood system has the same properties in a classical neighborhood system. Finally, the authors
introduce the concepts of an ordinary single-valued neutrosophic base and an ordinary single-valued
neutrosophic sub-base, and obtain two characterizations of an ordinary single-valued neutrosophic
base and one characterization of an ordinary single-valued neutrosophic sub-base.

Uninorms comprise an important kind of operator in fuzzy theory. They are obtained from the
generalization of the t-norm and t-conorm axiomatic. Uninorms are theoretically remarkable, and
furthermore, they have a wide range of applications. For that reason, when fuzzy sets have been
generalized to others (e.g., intuitionistic fuzzy sets, interval-valued fuzzy sets, interval-valued
intuitionistic fuzzy sets, or neutrosophic sets), then uninorm generalizations have emerged in those
novel frameworks. Neutrosophic sets contain the notion of indeterminacy, which is caused by
unknown, contradictory, and paradoxical information; thus, it includes, aside from the membership
and nonmembership functions, an indeterminate membership function. Also, the relationship among
them does not satisfy any restriction. Along this line of generalizations, the following paper [51] aims
to extend uninorms to the framework of neutrosophic offsets, which are called neutrosophic
offuninorms. Offsets are neutrosophic sets such that their domains exceed the scope of the interval
[0,1]. In the paper, the definition, properties, and application areas of this new concept are provided.
It is necessary to emphasize that the neutrosophic offuninorms are feasible for application in several
fields, as the authors illustrate.

The symmetry of hyperoperation is expressed by hypergroups; more extensive hyperalgebraic
structures than hypergroups are studied in the next paper [52]. The new concepts of neutrosophic
extended triplet semihypergroup (NET semihypergroup) and neutrosophic extended triplet
hypergroup (NET-hypergroup) are firstly introduced, some basic properties are obtained, and the
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relationships among NET-semihypergroups, regular semihypergroups, NET-hypergroups, and
regular hypergroups are systematically are investigated. Moreover, pure NET-semihypergroup and
pure NET-hypergroup are investigated, and a structure theorem of commutative pure NET-
semihypergroup is established. Finally, a new notion of weak commutative NET-semihypergroup is
proposed, some important examples are obtained by software MATLAB, and the following
important result is proved: every pure and weak commutative NET-semihypergroup is a disjointed
union of some regular hypergroups that are its subhypergroups.

The last paper [53] aims to reveal the structure of idempotents in neutrosophic rings and
neutrosophic quadruple rings. First, all idempotents in neutrosophic rings eRule are given when R is
C R, Q Z, or Zn. Secondly, the neutrosophic quadruple ring oRUTUIUFe is introduced, and all
idempotents in neutrosophic quadruple rings oCUTUIUFo, oRUTUIUF®, ®QUTUIUFe, ©ZUTUIUFe, and
oZnUTUIUFe are also given. Furthermore, the algorithms for solving the idempotents in eZnule and
oZnUTulUFe for each non-negative integer n are provided. Lastly, as a general result, if all
idempotents in any ring R are known, then the structure of idempotents in neutrosophic ring eRule
and neutrosophic quadruple ring ©RUTUIUFo can be determined.
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Abstract: This paper aims to reveal the structure of idempotents in neutrosophic rings and
neutrosophic quadruple rings. First, all idempotents in neutrosophic rings (R U I) are given when
Ris C,R,Q,Z or Zj. Secondly, the neutrosophic quadruple ring (RU T U I U F) is introduced and
all idempotents in neutrosophic quadruple rings (CUTUIUF), (RUTUIUF), (QUTUIUF),
(ZUTUIUF) and (Z, U TUIUF) are also given. Furthermore, the algorithms for solving the
idempotents in (Z, U I) and (Z, U T U I UF) for each nonnegative integer n are provided. Lastly,
as a general result, if all idempotents in any ring R are known, then the structure of idempotents in
neutrosophic ring (R U I) and neutrosophic quadruple ring (R UT U I U F) can be determined.

Keywords: neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended
triplet group; neutrosophic set

1. Introduction

The notions of neutrosophic set and neutrosophic logic were proposed by Smarandache [1].
In neutrosophic logic, every proposition is considered by the truth degree T, the indeterminacy
degree I, and the falsity degree F, where T,I and F are subsets of the nonstandard unit interval
J0-,1t[=0"uU[0,1]ult.

Using the idea of neutrosophic set, some related algebraic structures have been studied in recent
years. Among these algebraic structures, by extending classical groups, the neutrosophic triplet
group (NTG) and the neutrosophic extended triplet group (NETG) have been introduced in refs. [2-4].
As an example, paper [5] shows that (Zy, ,...p,, -) is not only a semigroup, but also a NETG, where
- the classical mod multiplication and pq, py, - - -, p; are distinct primes. After the notions were
put forward, NTG and NETG have been carried out in-depth research. For example, the inclusion
relations of neutrosophic sets [6], neutrosophic triplet coset [7], neutrosophic duplet semi-groups [8],
AG-neutrosophic extended triplet loops [9,10], the neutrosophic set theory to pseudo-BCI algebras [11],
neutrosophic triplet ring and a neutrosophic triplet field [12,13], neutrosophic triplet normed space [14],
neutrosophic soft sets [15], neutrosophic vector spaces [16], and so on.

In contrast to the neutrosophic triplet ring, the neutrosophic ring (R U I), which is a ring generated
by the ring R and the indeterminate element I (I> = I), was proposed by Vasantha and Smarandache
in [17]. The concept of neutrosophic ring was further developed and studied in [18-20].

As a special kind of element in an algebraic system, the idempotent element plays a major role
in describing the structure and properties of the algebra. For example, Boolean rings refer to rings
in which all elements are idempotent, clean rings [21] refer to rings in which each element is clean
(an element in a ring is clean, if it can be written as the sum of an idempotent element and an invertible
element), and Albel ring is a ring if each element in the ring is central. From these we can see that some
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rings can be characterized by idempotents. Thus, it is also quite meaningful to find all idempotents in
a ring. In this paper, the idempotents in neutrosophic rings and neutrosophic quadruple rings will
be studied in depth, and all idempotents in them can be obtained if the idempotents in R are known.
In addition, the relationship between idempotents and neutral elements will be given. The elements
of each NETG can be partitioned by neutrals [10]. Therefore, as an application, if R = F, where F
is any field, we can divide the elements of (RUI) (or (RU T U I U F)) by idempotents. As another
application, in paper [22], the authors explore the idempotents and semi-idempotents in neutrosophic
ring (Z, U I) and some open problems and conjectures are given. In this paper, we will answer partial
open problems and conjectures in paper [22] and some further studies are discussed.

The outline of this paper is organized as follows. Section 2 gives the basic concepts. In Section
3, the idempotents in neutrosophic ring (R U I) will be explored. For neutrosophic rings (Z, U I),
(CUI),(RUI),(QUI) and (Z U I), all idempotents will be given. Moreover, the open problem and
conjectures proposed in paper [22] about idempotents in neutrosophic ring (Z, U I) will be solved.
In Section 4, the neutrosophic quadruple ring (R U T U I UF) is introduced and all idempotents in
neutrosophic quadruple rings (CUTUIUF),(RUTUIUF),(QUTUIUF),(ZUTUIUF) and
(Z, U T UIUF) will be given. Finally, the summary and future work is presented in Section 5.

2. Basic Concepts

In this section, the related basic definitions and properties of neutrosophic ring (R U I) and NETG
are provided, the details can be seen in [3,4,17,18].

Definition 1. ([17,18]) Let (R, +, -) be any ring. The set

(RUI) ={a+bl:abecR}

is called a neutrosophic ring generated by R and I. Let aq + by1,ap + boI € (R U I), The operators & and & on
(R U I) are defined as follows:

(a1 +b11) ® (ap + bol) = (aq +a2) + (b + bo) ],
(Lll + bll) ® (le + bzl) = (a1 . uz) + (ﬂl . bz + b] capy + bl . bz)[.

Remark 1. It is easy to verify that ((RUI), ®,®) is a ring, so (R U I) is named by a neutrosophic ring
is reasonable.

Remark 2. It should be noted that the operators +, - are defined on ring R and @, ® are defined on neutrosophic
ring (RUI). For simplicity of notation, we also use +, - to replace ®, ® on ring (RUI). That is a + b also
means a ®bifa,b € (RUI). a-balso means a@bifa,b € (RUI). For short a - b denoted by ab and a - a
denoted by a?.

Example 1. (ZUI),(QUI), (RUI) and (CU I) are neutrosophic rings of integer, rational, real and complex
numbers, respectively. (Z, U I) is neutrosophic ring of modulo integers. Of course, Z,Q, R, C and Z, are
neutrosophic rings when b = 0.

Definition 2. ([17,18]) Let (R U I} be a neutrosophic ring. (R U I) is said to be commutative if
ab = ba,¥a,b € (RUI).

In addition, if there exists 1 € (RUI) suchthat1-a =a-1=aforalla € (RUI) then we call (RUI) a
commutative neutrosophic ring with unity.

Definition 3. ([17,18]) An element a in a neutrosophic ring (R U I) is called an idempotent element if a> = a.
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Definition 4. ([3,4]) Let N be a non-empty set together with a binary operation . Then, N is called a

“u_r

neutrosophic extended triplet set if for any a € N, there exists a neutral of “a” (denote by neut(a)), and an

“_r

opposite of “a”(denote by anti(a)), such that neut(a) € N, anti(a) € N and:
axneut(a) = neut(a) xa =a, axanti(a) = anti(a) * a = neut(a).
The triplet (a,neut(a),anti(a)) is called a neutrosophic extended triplet.

Definition 5. ([3,4]) Let (N, *) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:
(1) (N, *) is well-defined, i.e., for any a,b € N, one has axb € N.
(2) (N, x) is associative, i.e., (axb) xc =ax (bxc) foralla,b,c € N.
A NETG N is called a commutative NETG if forall a,b € N,axb = b xa.

Proposition 1. ([4]) (N, *) be a NETG. We have:
(1) neut(a) is unique for any a € N.

(2) neut(a) = neut(a) = neut(a) for any a € N.
(3) neut(neut(a)) = neut(a) forany a € N.

Proposition 2. ([10]) Let (N, *) is a NETG, denote the set of all different neutral element in N by E(N).
Forany e € E(N), denote N(e) = {x|neut(x) =e,x € N}. Then:

(1) N(e) is a classical group, and the unit element is e.

(2) Forany e1,e; € E(N),e1 # e2 = N(ep) N N(ez) = @.

(3) N = Ueer(n) N(e). i.e., Upep(n) N(e) is a partition of N.

3. The Idempotents in Neutrosophic Rings

In this section, we will explore the idempotents in neutrosophic rings (RUI). If Ris Z,Q,R,C
or Zy, all idempotents in neutrosophic rings (Z, U I), (CUI), (RUI),(QU I) or (Z U I) will be given.
Moreover, we can also obtain all idempotents in neutrosophic ring (R U I) if all idempotents in any
ring R are known. As an application, the open problem and conjectures about the idempotents of
neutrosophic ring (Z, U I) in paper [22] will be solved. Moreover, an example is given to show how to
use the idempotents to get a partition for a neutrosophic ring. The following proposition reveal the
relation of a neutral element and an idempotent element.

Proposition 3. Let G be a non-empty set,  is a binary operation on G. For each a € G, a is idempotent iff it is
a neutral element.

Proof. Necessity: If a is idempotent, i.e., a * a = a, from Definition 4, which shows that a has neutral
element a and opposite element 4, so 4 is a neutral element.

Sufficiency: If a is a neutral element, from Proposition 1(2), we have axa = a, thus a
is idempotent. [

Theorem 1. The set of all idempotents in neutrosophic ring (CUI),(RUI),(QUI) or (ZUI) is
{0,1,1,1 - 1}.

Proof. We just give the proof for (RUI), and the same result can be obtained for (CUI), (QU I)

or (ZUI).
Leta+ bl € (RUI). If a + bl is idempotent, so (a + bI)? = a + bI, which means

?=a
{ 2ab+b>=b @
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From 42 =a,wecangeta = Oora = 1. Whena = 0, from 2ab + b? = b, we can get b = 0 or

b = 1. Thatis 0 and I are idempotents. When a = 1, from 2ab + b?> = b, we can get b = Oor b = —1.
That is 1 and 1 — I are idempotents. Thus, the set of all idempotents of neutrosophic ring (R U I) is
{0,1,,1—1}. O

The above theorem reveals that the set of all idempotents in neutrosophic ring (R U I) is
{0,1,1,1 — I} when R is C,R, Q or Z. For any ring R, we have the following results.

Proposition 4. If a is idempotent in any ring R, then al is also idempotent in neutrosophic ring (R U I).

Proof. If a € R is idempotent, i.e., 2> = a4, so (al)2 = (0+al)(0 +al) = a*I = al, thus, al is also
idempotent in neutrosophic ring (RUI). O

Proposition 5. In neutrosophic ring (R U 1), then a — al is idempotent iff a is idempotent.

Proof. Necessity: If a — al is idempotent, i.e., (2 —al)? = a —al, so (a —al)? = (a —al)(a —al) =
a2 —2al + %] = a* + (a* — 2a)] = a — al, which means 4> = a and 4> — 22 = —a. Thus, we have
a? = a, so a is idempotent.

Sufficiency: If a is idempotent, so (a —al)>2 = a*> + (a®> —2a) = a — al, thus a — al

is idempotent. O

Theorem 2. In neutrosophic ring (RUI), let a + bl € (RUI), then a + bl is idempotent iff a is idempotent
in Rand b = ¢ — a, where c is any idempotent element in R.

Proof. Necessity: If a + b is idempotent, i.e., (a + bI)2 = a + bl, so (a + bI)? = a® + (2ab + 1) =
a + bl, which means a> = a and 2ab + b*> = b. From a*> = a, we can get a is idempotent. From
2ab +b? = band a> = a, we can get (b + a)? = b? +2ab + a?> = b+ a,s0 b + a is also idempotent in R,
denoted by ¢, sob = c —a.

Sufficiency: If a and c are any idempotents in R, let b = ¢ —a, so (a + bI)? = (a+ (c —a)])? =
a2+ (2a(c —a) + (c —a)*)I = a® + (2ac — 24> + ® — 2ac +a?) = a+ (c —a)l = a+bl, thus a + bl
is idempotent. [

Theorem 3. If the number of different idempotents in ring R is t, then the number of different idempotents in
the neutrosophic ring (R U I) is 2.

Proof. If the number of idempotents in Ris t and leta + bI € (RUI) is idempotent, so from Theorem 2,
we can infer that a is idempotent in R, i.e., a has t different selections. When a is fixed, setb = ¢ —a,
where ¢ is any idempotent in R and c also has t different selections, which means b has t different
selections. Thus, a + bl has t - t = > different selections, i.e., the number of all idempotents in (R U I)
ist?. O

From the above analysis, for any ring R, all idempotents in (R U I) can be determined if all
idempotents in R are known. In the following, we will explore all idempotents in neutrosophic ring
(Z,UI),ie,whenR = Z,.

Theorem 4. ([5]) In the algebra system (Zy, -) (see Appendix A), - is the classical mod multiplication, for each
a € Zy, a has neut(a) and anti(a) iff ged(ged(a,n),n/ged(a,n)) = 1.

Theorem 5. ([5]) For an algebra system (Zy, -) and n = pll‘l pgz - pft, where each p;(i = 1,2,- - ,t) isa
prime, then the number of different neutral elements in Z,, is 2\.
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Remark 3. From Proposition 3 and Theorem 5, we can infer that the number of all idempotents in Z y, «, S
K2t
is also 2!,

Example 2. For (Z3zg,-), n = 36 = 2232, From Theorem 5, the number of different neutral elements in Zzg is
22 = 4. They are:

(1)
(2)

0
[l
3) [
[
[

| has the neutral element [0].
1, 15), 7], [11], [13], [17], [19], [23], [25], [29], [31] and [35] have the same neutral element [1].
| and [27] have the same neutral element [9] being ged(9,36) = ged(27,36) = 9.
(4) [4] and [8] have the same neutral element being ged(4,36) = gcd(8,36) = 4. In fact,
]

4], (8], [16], [20], [28] and [32] have the same neutral element, which is [28)].

From Remark 3, the number of idempotents in Zzg is also 4, which are (0], [1], [9] and [28].
From Theorems 2 and 3 and Remark 3, it follows easily that:

Corollary 1. In neutrosophic ring (Z, UI), let a + bl € (Z, UI), then a + bl is idempotent iff a> = a and
b = ¢ — a, where c is any idempotent element in Zy,.

Corollary 2. For an algebra system (Zy, -) and n = pl p2 . p}f', where each py, pa, - - - , and py are distinct
primes. Then the number of different idempotents in (Z, U T) is 2%,

The solving process for (Z, U I) is given by Algorithm 1. Just only input 1, then we can get all
idempotents in (Z, U I). The MATLAB code is provided in the Appendix B.

Example 3. Solve all idempotents in (Zgoo U I).

Since n = 600 = 23 .3 .52, from Theorem 5, we can get the different neutral elements in Zggy are
neut(1), neut(2%), neut(3), neut(52), neut(2% - 3), neut(2° - 52), neut (3 - 5%) and neut(0), i.c., the different
idempotents in Zeoo are 1, 376, 201, 25, 576, 400, 225, 0. From Corollary 2, the number of different idempotents
in neutrosophic ring (Zeno U I) is 223 = 64.

From Algorithm 1, the set of all 64 idempotents in (Zgoo U I) is: {0, 1,251,2011,2251,3761,4001,5761,1 +
5991,1,1+241,1+2001,1 4 2241,1 4 3751,1+3991,1 + 5751, 25 + 5751,25 + 5761, 25,25 4- 1761, 25 +
2001,25 +3511,25 + 3751, 25 + 5511,201 + 3991, 201 +- 4001, 201 + 4241,201, 201 + 241,201 + 1751, 201 +
1991,201 + 3751,225 + 3751,225 + 3761,225 + 4001, 225 + 5761,225,225 + 1511,225 + 1751,225 +
3511,376 + 2241,376 + 2251,376 + 2491,376 + 4251,376 + 4491, 376,376 + 241,376 + 2001,400 +
2001,400 + 2011,400 + 2251,400 + 4011,400 + 4251,400 + 5761,400, 400 + 1761,576 + 241,576 +
251,576 + 491,576 + 2251,576 + 2491, 576 + 4001, 576 + 4241,576}.
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Algorithm 1: Solving the different idempotents in (Z, U I)

Input: n
1: Factorization of integer 1, we can get n = pll(1 plzcz e p};f .
2: Computing the neutral element of 1, p’l“, pgz, e, p’;’, p]{1 pgz, e pll<1 pf‘, e, plﬁz p§3 e p’;‘

and le{1 pgz e p’;’. So, we can get all idempotents in Z,, , denoted by ay,az,- - - , d.

3: Let ID=[];

4:fori=1:2!

5: a=a;

6: forj=1:2f

7: b= mod(a]- —a,n);
8: ID = [ID; [a,b]};
9: end

10: end

Output: ID: all the idempotents in (Z, U I)

In paper [22], the authors studied the idempotents and semi-idempotents in (Z, U I) and proposed
some open problems and conjectures. We list partial open problems and conjectures about idempotents
in (Z, UI) as follows and answer them.

Problem 1. ([22]) Let S = (qu, +,-), where p and q are two distinct primes, be the neutrosophic ring. Can S
have non-trivial idempotents other than the ones mentioned in (b) of the Theorem 6?

Conjecture 1. ([22]) Let S = (Zy,,+,-) be the neutrosophic ring n = pqr, where p,q and r are three
distinct primes.

1. Zy = Zpgr has only six non-trivial idempotents associated with it.
If my, my, m3, my, ms and me are the idempotents, then, associated with each real idempotent m;, we have
seven non-trivial neutrosophic idempotents associated with it, i.e., {m; + nil,j=12,---, 7}, such that
mi+n; =t where t takes the seven distinct values from the set {0,1, my, k # i;k =1,2,3,--+ ,6}.i =
1,2,---,6.

Conjecture 2. ([22]) Given (Z, U I), where n = p1ps - p; t > 2 and p;s are all distinct primes, find:

1. the number of idempotents in Z;
2. the number of idempotents in (Z, U I)\Zy;

Conjecture 3. ([22]) Prove if (Z, U I) and (Z,, U I) are two neutrosophic rings where n > m and n = p'g
(t > 2, and p and q two distinct primes) and m = pypy - - - ps where p;s are distinct primes. 1 < i < s, then

1. prove Zy has a greater number of idempotents than Z,; and
2. prove (Zy U I) has a greater number of idempotents than (Z, U I).

Theorem 6. ([22]) Let S = (Zyq, +, -) where p and q are two distinct primes:

(a) There are two idempotents in Zpq say r and s.
() {r,s,r1,sI,I,r +tl,s + tI|t € {Zps\O}} such that r +t =s,10or 0and s 4t = 0,1 or r is the partial
collection of idempotents of S.

For Problem 1, from Remark 3, there are four idempotents in Zp;, which are
{1, neut(p), neut(q), neut(pq) = 0}. Let r = neut(p),s = neut(q), so there are two non-trivial
idempotents r,s in Zp;. From Corollary 1 and 2, the number of all idempotents in (Zp; U I) is
2% =16, theyare {0+ (0—0) = 0,0+ (1-0) = L0+ (r—0)I =r[,0+ (s —0) =s[,1+ (0—1)I =
1+ n-DL1+1-DI=L,14+F-1)L1+(s—-1)Lr+O0—rI=r+n—-r)Lr+(1-rI=r+



Symmetry 2019, 11, 1254

(m+1-r)Lr+@r—r)I=rr+(—r)Ls+0—s)I=s+mn—r)s,s+(1—s)[=s+mn+1—s)l,s+
(r—s)I,54 (s —s)I = s}. So there are 14 non-trivial idempotents in (Z,; U I), but there are only include
11 non-trivial idempotents in (b) of the Theorem 6, missing {1+ (n —1)[,1+ (r —1)I[,1+ (s — 1)I}.

For Conjecture 1, from Corollary 1 and 2, there are eight idempotents in Zy;, which are
{1 = mo, neut(p) = mq,neut(q) = my,neut(r) = ms,neut(pq) = my, neut(pr) = ms,neut(qr) =
g, neut(pqr) = 0 = my}. There are six non-trivial idempotents in Zyg,. In (Z,, U I), all idempotents
are {m; + (m; —m;)1li,j =0,1,2,--- ,7}.

For Conjecture 2, from Remark 3, the number of idempotents in Zy, ,...p,, is 2t and the number of
idempotents in (Zy, py...p, U I)\Zp, py...p, is 22 — 2",

For Conjecture 3, from Remark 3, the number of idempotents in Z, is 22 and the number of
idempotents in Zj, is 2°, where n = plq,m = p1p2 - ps. So, if s > 2, Zy, is characterized by a larger
number of idempotents than Z,. In similarly way, the number of idempotents in (Z, U I) is 2%, and the
number of idempotents in (Z,, U I) is 2%. So, if s > 2, we can infer that (Z,, U I is characterized by a
larger number of idempotents than (Z, U I).

As another application, we will use the idempotents to divide the elements of the neutrosophic
rings (RUI) when R = F.

For each NETG (N, ), a € N, from Proposition 1, the neutral element of a is uniquely determined.
From Proposition 2, U,cg(n) N(e) is a partition of N. Since the idempotents and neutral elements
are same, we can use the idempotents to get a partition of N. Let us illustrate these with the
following example.

Example 4. Let R = Zg3, which is a field. Since n = 3, from Theorem 5, we can get the different neutral elements
in Zz are neut(1) and neut(0), i.e., the different idempotents in Z3 are 1,0. From Corollary 2, the number of
different idempotents in neutrosophic ring (Zz U I) is 221 = 4.

From Algorithm 1, the set of all 4 idempotents in (Zz U I) is: {0,1,1,1 + 2I}. We have
E(0) = {0},E(1) = {1,2,1+ L2 +2I}, E(I) = {L,2I},E(1 +2I) = {1+2L,2+I}. So (Z3UI) =
E(0) UE(1) UE(I) UE(1+2I).

4. The Idempotents in Neutrosophic Quadruple Rings

In the above section, we explored the idempotents in (R U I). In neutrosophic logic,
each proposition is approximated to represent respectively the truth (T), the falsehood (F), and the
indeterminacy (I). In this section, according the idea of neutrosophic ring (R U I), the neutrosophic
quadruple ring (R U T U I U F) is proposed and the idempotents are given in this section.

Definition 6. Let (R, +,-) be any ring. The set

(RUTUIUF) = {ay + ayT + a3l + a4F : ay,a;,a3,a4 € R} 2)

is called a neutrosophic quadruple ring generated by R and T, 1, F. Consider the order T < I < F. Let a =
a1+ aT + a3l + ayF,b = by + byT + b3 + byF € (RUT UIUF), the operators ®, ® on (RUTUIUF)
are defined as follows:

adb = (111 +112T+113I+114F) ® (b1 +b2T+b3I+b4F)

3
=a1+b1+(112+b2)T+(ﬂ3+b3)1+(ﬂ4+b4)F. ®

axb=(ay+axT + asl + agF) = (by, by T, b3, byF)
=a1b1 + (a1b2 + a2b1 + ﬂzbz)T + (ﬂlbg, + apbz + a3b1 —+ a3b2 + a3b3)l (4)
+(a1by + agby + azby + agby + agby + agbs + agby)F.
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Remark 4. It is easy to verify that ((RUT UIUF), ®, x) is a ring, moreover, it also has the same algebra
structure with neutrosophic quadruple numbers (see [23-25]), so the we call (R\U T U I U F) is a neutrosophic
quadruple ring is reasonable.

Remark 5. Similarly with Remark 2, for simplicity of notation, we use +, - to replace ®, * on neutrosophic
quadruple ring (RUTUIUF). Thatis a + b also means a ® b ifa,b € (RUTUIUF). and a - b also means
axbifa,b € (RUTUIUF). Forshort a - b denoted by ab and a - a denoted by a®.

Example5. (ZUTUIUF),(QUTUIUF), (RUTUIUF)and (CUT U IU F) are neutrosophic quadruple
rings of integer, rational, real and complex numbers, respectively. (Z, U T U I U F) is neutrosophic quadruple
ring of modulo integers. Of course, Z, Q, R, C and Z,, are neutrosophic quadruple rings when coefficients of T, I
and F equal zero.

Definition 7. Let (RU T U I U F) be a neutrosophic quadruple ring. (RU T U I U F) is commutative if
ab =ba,¥Ya,b € (RUTUIUF).

In addition, if there exists 1 € (RUTUIUF), suchthat1l-a =a-1=aforalla € (RUTUIUF), then
(RUTUIUF) is called a commutative neutrosophic quadruple ring with unity.

Definition 8. An element a in a neutrosophic quadruple ring (RU T U I U F) is called an idempotent element
ifa’ =a.

Theorem 7. The set of all idempotents of neutrosophic quadruple rings (CUTUIUF), RUTUIUF), (QU
TUIUF)and (ZUTUIUF) is

{(1,0,0,0),(0,0,0,F), (0,0,1,—F),(0,0,1,0), (0, T, ~1,0), (0, T, =L, F), (0, T,0,—F), (0, T, 0,0),
(1,-T,0,0),(1,-T,0,F),(1,-T,1,—F),(1,-T,1,0),(1,0,—10),(1,0,—F),(1,0,0,—F),(1,0,0,0)}.

Proof. We only give the proof for (RUT UIU F), and the same result can be obtained for
(CUTUIUF),(QUTUIUF)or (ZUTUIUF).

Leta = aj + axT + a3l + a,F, if a is idempotent in (RUTUIUF), so a> = a4, i.e., (a1 +a2T +
a3I + a4F)? = (ay + aoT + a3I + a4F), which means

a3 =ay,

2aqa; + a% =ap,

2(ay + ap)az + a% = a3,
2(ay +ap +az)ay + ai = ay.

Since a7 € R, so from a% =aj,wecangeta; =0ora; = 1.

Case A:if a1 = 0, then from 2a1a, + 11% = a,, we can infer a% =ap,s0ap =0ora; = 1.

Case Al: if s = 0 and ay = 0, so from 2(a; + ap)asz + a% = a3, we can infer a% =as3,s0a3 = 0or
az = 1.

Case All: if a; = 0,ap = 0 and a3 = 0, so from 2(ay + ap + a3)ay + a3 = a4, we can infer a3 = ay,
soay =0oray =1.

Case Al1l:if sy = ap = a3 = a4 = 0, i.e., (0,0,0,0) is idempotent in (RUT UTUF).

Case A112: ifa; = ay = a3 =0and ay = 1, i.e., (0,0,0, F) is idempotent in (RUTUITUF).

Case A12: if sy = a; = 0 and a3 = 1, so from 2(ay + a + az)ay + ai = a4, we can infer
2u4+ui =ay,s0ay =00ray = —1.
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Case A121:if sy = ap = 0,a3 = 1and a4 = 0, i.e., (0,0, 1,0) is idempotent in (RUTU I U F).

Case A122:ifa; =ay =0,a3 = 1land ag = —1,1i.e,(0,0,I, —F) is idempotent in (RUT UIU F).

Case A2: if a1 = 0 and a; = 1, so from 2(a; + az)as + u% = a3, we can infer 2a3 + a% = a3, SO
a3 =0oraz = —1.

Case A21: ifa; = 0,a; = 1, and a3 = 0, so from 2(ay + ap + az)ay + aﬁ = a4, we can infer
2a4+ai =ay,s0a3 =00ray; = —1.

Case A121:ifa; = 0,4y = 1,43 =0and a4 = 0, i.e., (0,T,0,0) is idempotent in (RUTUIUF).

Case A112:ifaqy = 0,ap = 1,43 = 0and ag = —1,i.e, (0,T,0, —F) isidempotentin (RUTUIUF).

Case A22:ifay = 0,ay = 1and az = —1, so from 2(ay + ap + a3)as + ai = a4, we can infer ui =ay,
soay =0o0ray =1.

Case A121:ifa; = 0,ap = 1,43 = —land ag = 0,1i.e., (0, T, —I,0) is idempotent in (RUTUIUF).

Case A112:ifa; = 0,ap = 1,a3 = —land ay = 1,ie, (0, T, — I, F) is idempotentin (RUTUIUF).

Case B: if a1 = 1, then from 2aya; + a% = a5, we can infer 2a, + u% =ap,s0a, =0ora, = —1.

Case Bl: if a7 = 1 and ap; = 0, so from 2(a;y + ap)as + a% = a3, we can infer 2a3 + a% = a3, SO
as = 001'113 =-1.

Case B11: ifay = 1, a, = 0 and a3 = 0, so from 2(a; + a + az)ay + ai = a4, we can infer
204 + a3 = ay,s0a4 = 0oray = —1.

Case B111:ifa; =1,ap = 0,43 = 0and a4 = 0, i.e., (1,0,0,0) is idempotent in (RUTU I UF).

CaseB112: ifa; = 1,ap = 0,a3 = 0and a4 = —1, i.e., (1,0,0, —F) is idempotent in (RUTU I U F).

Case B12:ifay = 1,4p = 0 and a3 = —1, so from 2(ay + a2 + a3)ay + a3 = a4, we can infer a3 = ay,
soay =0oray =1.

Case B121: ifa; = 1,ap = 0,a3 = —land ay = 0, 1.e., (1,0, —1,0) is idempotent in (RUT U I UF).

Case B122: ifay = 1,4, = 0,43 = —land aq = 1,i.e, (1,0, —I, F) is idempotent in (RUT U I UF).

Case B2: if sy = 1 and ay = —1, so from 2(ay + ap)az + a% = a3, we can infer a% =az,s0a3 = 0or
a3 =1.
Case B21:ifa; = 1,4 = —1,and a3 = 0, so from 2(ay + ap + a3)as + ai = a4, we can infer ai =ay,

soay, =0o0ray =1.
CaseB121: if sy = 1,40 = —1,a3 = 0and ag = 0,1.e., (1, —T,0,0) is idempotent in (RUT UIUF).
CaseB112:ifa; = 1,ap = —1,a3 = 0and a4 = 1,i.e., (1,—T,0, F) is idempotent in (RUT U I UF).

Case B22: if a1 = 1,4 = —1 and a3 = 1, so from 2(a; + a» + a3)as + a3 = a4, we can infer
2a4+ai =ay,50ay =0o0ray = —1.

Case B121: ifay = 1,4, = —1,a3 = 1and ag = 0,i.e., (1, —T,1,0) is idempotent in (RUT UIUF).

Case B112: ifay = 1, ap = —1,a3 = 1 and ay = —1, i.e,, (1,—T,I,—F) is idempotent in
(RUTUIUF).

From the above analysis, we can get the set of all idempotents in neutrosophic quadruple ring
(RUTUIUF) are {(1,0,0,0),(0,0,0,F), (0,0,1,—F), (0,0,1,0), (0, T, —1,0), (0, T, —1,F), (0, T,0,—F),
(0,T,0,0), (1,—T,0,0),(1,—T,0,F),(1,—T,I,—F),(1,-T,1,0),(1,0,—1,0),(1,0,—1,F),(1,0,0,—F),
(1,0,0,0)}. O

The above theorem reveals that the idempotents in neutrosophic quadruple ring (RUT U I UF)
is fixed when R is C, R, Q or Z. For any ring R, we have the following results.

Theorem 8. For neutrosophic quadruple ring (RUTUIUF), a = a; + axT + a3l + a4F is idempotent in
neutrosophic quadruple ring (RU T U I U F) iff ay is idempotent in R, ay = ¢ — a1, a3 = d — (ay + ap) and
ay = e — (a1 + ap + az), where ¢, d and e are any idempotents in R.

Proof. Necessity: If a = a1 +axT + a3l + a4F is idempotent, i.e., (a1 + 2T + a3l + u4F)2 =a1+a T+
a3l + a4F, which means
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2 _

ay = ay,

2a1a; + a% = a,

2(a1 + ap)az + a3 = a3,
2(ay +ag +az)ay + aﬁ = ay.

Since a1 € R, from a% = a1, we can get a4y is idempotent in R.

From 2a1a; + a3 = a and a3 = a1, we can get (a1 + a2)? = a3 + 2a1ap + a3 = a1 + a, 50 a1 + ap
is also idempotent in R, denoted by ¢, so a; = ¢ — a;.

From 2(ay + ap)a3 + a3 = a3, and (a1 + a2)?> = ay + ap, we can get (a1 + a + a3)* = (a1 +
a2)? +2(ay + az)az + a3 = ay + a + a3, 50 a1 + ap + a3 is also idempotent in R, denoted by d, so
az = d— ay — ap.

From 2(ay + ap + az)ay + ai = ay, and (a; +as +a3)? = aj + ay + a3, we can get (a +ap +
a3+ as)? = (a1 + az + a3)? + 2(ay + ap + az)az + a = ay + ap + a3 + as, 80 a1 + a + a3 + a4 is also
idempotent in R, denoted by ¢, so a4y = e —a; —a; — a3.

Sufficiency: If a1, ¢, d and e are arbitrary idempotents in R, let ay = ¢ —ay, a3 = d — (a1 + a2)
and ay = e — (a; +ax +a3). so (ay +axT + a3l + a4F)?> = (a; + (c —a))T+ (d —a; — a)I + (e —
ap —ay —a3)F)? = a? + (2(c — ay)ay + (c — a1)?)T + (2c(d — a1 — a2) + (d — a1 — a2)?)I + (2d(e —
ay—ay—a3)+(e—a; —ay —az)>)F = ay + (c —a;)T+ (d — ay — ap)I + (e — a; — ay — a3)F. Thus,
a = ay; + ayT + a3l + a4F is idempotent. [

Theorem 9. If the number of different idempotents in R is t, then the number of different idempotents in
neutrosophic quadruple ring (RUTUTUF) is t*,

Proof. If the number of different idempotents in R is t, let ay + a;T + a3l + a4F € (Z, UTUIUF) is
idempotent, so a; is idempotent in R, i.e., a; has t different selections. When a; is selected, a; = ¢ — a4,
where c is idempotent, which also has ¢ different selections. When a1, a, are selected, a3 = d — a; — ay,
where d is idempotent, which also has f different selections. When 4y, a5, a3 is selected, a4 = e — a; —
ap — a3, where ¢ is idempotent, which also has t different selections. Thus, the number of all selections
ist-t-t-t=t*ie., the number of different idempotents in (RUTUITU F) is t*. O

From Theorems 8 and 9 and Remark 3, it follows easily that:
Corollary 3. In neutrosophic quadruple ring (Z, UTUIUF), a = ay + ayT + a3l + a4F is idempotent in
neutrosophic quadruple ring (Z, U T U I U F) iff a1 is idempotent in Zy, a; = ¢ — a1, a3 = d — (a1 + az) and
ay = e — (a1 + ay + az), where ¢, d and e are any idempotents in Zy.
Corollary 4. The number of different idempotents in neutrosophic quadruple ring (Z, UT U TUF) is 2%,
The solving process for neutrosophic quadruple ring (Z, U T U I UF) is given by Algorithm 2.

Just only input 1, we can get all idempotents in (Z, UT U I U F). The MATLAB code is provided in
the Appendix C.

10
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Algorithm 2: Solving the different idempotents in (Z, UT U U F)
Input: n
1: Factorization of integer 1, we can get n = pll(1 plzcz e p};f .

2: Computing the neutral element of 1, p’l“, pgz, e, p’;’, p]]‘l pgz,‘ = p11<1 p’t‘f, . pgz p§3 e p’t‘t
and le{1 pgz e p’;’ . So, we can get all idempotents in Z,, , denoted by c1,¢p, - - -, Cpt.

3: Let ID=[];

4:fori=1:2"

5 a] = ¢

6 forj=1:2f

7: ay = mod(cj —ay,n);

8 form=1:2!

9: az = mod(cy, — a; — ay, n);

10: forg=1:2

11: ay = mod(cy — ay — az — as, n);

12: ID = [ID; [ay,a2,a3,44]);

13: end

14: end

15: end

16: end

Output: ID: all the idempotents in (Z, UTUIU F)

Example 6. Solve all idempotents in (Z1; UTUIUF).

Since n = 12 = 22 .3, from Theorems 4 and 5, we can get the different neutral elements in Zqy are
neut(1), neut(22), neut(3), neut (2% - 3) and neut(0), i.e., the different idempotents in Z1 are 1,4,9,0. From
Corollary 4, the number of different idempotents in neutrosophic quadruple ring (Z1o U T U TU F) is 242 = 256.

From Algorithm 2, the set of all 256 idempotents in (Z1, U T UIUF) is: {0,1F,4F,9F, I + 11F,I,1 +
3F,1+ 8F,41 + 8F,41 + 9F,41,41 + 5F,91 + 3F,91 +4F,91 +7F, 91, T + 111, T + 111 + F, T + 111 +
4F, T+ 111 +9F, T+ 11F, T, T +3F, T+ 8F, T + 31+ 8F, T+ 31 +9F, T+3I, T+ 31 +5F, T 4 81 +
3F, T+8I+4F, T+81+7F, T+8,4T +81,4T + 81 + F,4T + 81 +4F,4T + 81 +9F,4T +91 + 11F, 4T +
91,4T +91 + 3F,4AT + 91 + 8F,4T + 8F,4T + 9F,4T,4T + 5F,4T + 51 + 3F,4T + 51 + 4F,4T + 51 +
7F,4T +51,9T +31,9T + 31 + F,9T + 31 + 4F,9T + 31 +9F,9T + 41 + 11F,9T +41,9T + 41 + 3F, 9T +
41 +8F,9T +71 +8F,9T + 71 +9F,9T +71,9T + 71 + 5F,9T + 3F,9T + 4F,9T + 7F,9T,1 + 11T, 1 +
NT+F,1+11T+4F, 1+ 11T +9F, 1+ 11T+ 1+11F, 1+ 11T+ L1+ 11T+ 1 +3F, 1+ 11T+ 1+
8F, 1+ 11T +41+8F, 1+ 11T +4I1+9F, 1+ 11T +4I[,1 + 11T + 41 +5F, 1+ 11T +91 + 3F, 1+ 11T +
91 +4F, 1+ 11T +91+7F, 1+ 11T +91,1+ 11,1+ 111 + F,1 + 111 +4F, 1+ 111 +9F, 1+ 11F,1,1 +
3F,1+8F,1+31+8F,1+3I+9F,1+3I,1+31+5F,1+81+3F,1+81+4F,1+8I+7F,1+8I,1+
3T +8I,1+3T+8I+F,1+3T+81+4F,1+3T+81+9F,1+3T +91 +11F,1+3T +91,1+ 3T +
91+3F,1+3T +91+8F,1+3T +8F,14+3T+9F,1+4+3T,1+43T+5F,14+3T+5143F,1+3T + 51 +
4F,1+3T +51+7F,1+3T+51,1+8T +3[,1+8T +31 +F,1+8T +31 +4F,1+8T +31+9F,1+
8T +41+11F,1+8T +41,1+8T +41+3F,1+8T +41+8F,1+8T+71+8F,1+8T+71+9F, 1+
8T +71,14+8T+71+5F,1+8T+3F,14+8T+4F,1+8T +7F,1+8T,4+8T,4+8T +F,4+8T +
4F,4+8T+9F,4+8T+1+11F,4+8T+1,4+8T+1+3F,4+8T + 1 +8F,4+8T +4I +8F,4+8T +
41 +9F,44-8T +41,4 48T +41+5F,4+8T +91 +3F,4+8T +91 +-4F,4 48T +91 +7F, 4 + 8T +
91,4 +9T +111,4+9T + 111 + F,4 +9T + 111 +4F,4 +9T + 111 +9F,4 4+ 9T + 11F,4 +9T,4 + 9T +
3F,44-9T +8F,4+9T +31 +8F,4+9T 4+ 31 +9F,4+9T + 31,4+ 9T + 31 +5F,4 +9T + 81 +3F,4 +
9T+ 81 +4F,4+9T +81+7F,4+9T +81,4+81,4+81 +F,4+ 8] +4F,4+ 81 +9F,4+91 +11F,4 +
91,4+4-91+3F,4+9148F,4+48F,4+9F,4,4+5F,4+51+3F,4+5] +4F,4+51+7F,4+451,4+5T +
31,4+5T +31+F,4+5T +31+4F,4+5T + 31 +9F,4+5T + 41 +11F, 4+ 5T + 41,4+ 5T + 41 +
3F,4+5T +41+8F,4+5T+71+8F,4+5T +71+9F,4+5T +71,4+5T +71+5F,4+ 5T +3F,4 +
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5T +4F,4+5T +7F,4+5T,9+3T,9+3T +F,9+3T +4F,9+3T +9F,9+ 3T + 1+ 11F,9 + 3T +
L9+3T+1+3F,9+3T+1+8F,9+3T+41+8F,9+43T +41+9F,9+3T +41,9+3T +41+5F,9+
3T +91+43F,9+3T+91+4F, 94+ 3T +91 +7F,9+3T +91,9 4+ 4T +111,9 + 4T + 111 + F,9 + 4T +
111 +4F,9 +4T + 111 +9F,9 + 4T + 11F,9 +4T,9 + 4T + 3F,9 + 4T + 8F,9 + 4T + 31 +8F,9 + 4T +
31 +9F,9+4-4T +31,94+4T +31+5F,9 +4T + 81 +3F,9 +4T + 81 +-4F,9 44T + 81+ 7F,9 + 4T +
8L,9+7T+81,9+7T+8I+F,9+7T+81+4F,9+7T +8I+9F,9+ 7T +91+11F,9+7T +91,9 +
7T +91+3F,9+7T +91+8F,9+7T +8F,9+7T +9F,9+ 71,9+ 7T +5F,9+ 7T 4+ 51 4+ 3F,9 +
7T +51+4F,9+7T +51+7F,9+7T+51,9+31,9+31+F,9+31 +4F,9+31 +9F,9+ 41 +11F,9 +
41,9 +41+3F, 9441 +8F,9+71+8F,9+71+9F,9+471,9+71+5F,9 +3F,9 +4F,9 + 7F,9.}

Similarly, we will use the idempotents to divide the elements of the neutrosophic rings (RUT U
IUF) when R = F. Let us illustrate these with the following example.

Example 7. Let R = Zg3, which is a field. From Example 4, the different idempotents in Z3 are 1,0. From
Corollary 4, the number of different idempotents in neutrosophic quadruple ring (Z3 U TU I U F) is 2* = 16.
From Algorithm 2, the set of all 16 idempotents in (Zz U 1) is: E = {0,F,1+2F,I,T+2I,T+2I +
F,T+2FT,1+2T,1+2T+F1+2T+1+2F1+2T+1,1+2[,1+42[+F,1+ 2F,1}. We have
E(0) = {0}, E(F) = {F,2F},E(I +2F) = {I+2F,2I + F}, E(I) = {I,1 + F,21,2] + 2F}, E(T + 2I) =
{T+2L,2T+1}, E(T4+2I+F) = {T+2I+F,T+2]+2F,2T + 1+ F,2T + 1+ 2F}, E(T+2F) =
{T+2F, T+ 1+ F,2T + F,2T + 21 + 2F}, E(T) = {T + F,T,T + I, T + I + 2F,2T,2T + 2F,2T +
21,2T+2I+F}, E(1+2T) = {14+2T,2+ T}, E(1+2T+F) = {1+2T+F,1+2T+2F,2+ T+
F,24+T+2F}, E(1 42T +1+2F) = {14+ 2T+ 1+2F, 14+ 2T+ 21+ F,24+ T+ [ +2F,2+ T+2[ +F},
EQA4+2T+1)={14+2T+L1+2T+1+F14+2T+2,1+2T+2[+2F,2+ T+ 1,24+ T+I1+F,2+
T+21,24+T+214+2F} E(14+21) ={1+2L1+T+1,2+1,24+2T+2I}, E(1+2I+F) = {1+2] +
FA1+2I+2F 1+ THIT1+F1+T+I1+2F,2+1+F2+1+2F2+42T 421+ F,2+4 2T + 21 +2F},
E(14+2F) = {1+2F1+I1+F1+T+F1+T+2[+2F2+F,2+21+2F,2+2T +2F,2+2T +
I+F},E1)={1,1+F14+L1+1+2F1+T,14+T+2F,1+T+2[,14+T+2I+F,2,2+2F,2+
21,2421+ F,242T,2+ 2T+ F,2+ 2T+ 1,24+ 2T+ 1+ 2F}. So (Z3UTUITUF) = Ueer E(e).

5. Conclusions

In this paper, we study the idempotents in neutrosophic ring (R U I) and neutrosophic quadruple
ring (RUT UIUF). We not only solve the open problem and conjectures in paper [22] about
idempotents in neutrosophic ring (Z, U I), but also give algorithms to obtain all idempotents in (Z,, UI)
and (Z, U T UIUF) for each n. Furthermore, if R = F, then the neutrosophic rings (neutrosophic
quadruple rings) can be viewed as a partition divided by the idempotents. As a general result, if all
idempotents in ring R are known, then all idempotents in (RUI) and (RU T U I U F) can be obtained
too. Moreover, if the number of all idempotents in ring R is ¢, then the numbers of all idempotents in
(RUT)and (RUTUIUF) are t? and  respectively. In the following, on the one hand, we will explore
semi-idempotents in neutrosophic rings, on the other hand, we will study the algebra properties of
neutrosophic rings and neutrosophic quadruple rings.
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Appendix A. The MATLAB code for solving the idempotents in (Z,, -)

function neut = solve_neut(n)

% n: nonnegative integer
% neut: all idempotents in Z_n

B=[1];

digits (32);

for i=1:n
for j=1:n

AL(i, j)=mod ((i ~1)+(j ~1),n);

end

end

al=factor(n);

a2=unique(al);

for i=1:length(a2)
b=length (find (al==a2(i)));
B(i)=a2(i)"b;

end

D=[1];

for i=1:length(a2)
C=combnk(B,i);
A=prod (C,2);

D=[D;A];
end
D=mod(D,n);
for i=1:length (D)
if D(i)==
neut(i)=1;
elseif D(i)==
neut(i)=0;
else
for j=1:n
if mod(D(i)#j,n)==D(i)
for k=1:n
if mod(D(i)+k,n)==j
neut(i)=j;
break
end
end
end
end
end
end

neut=sort(neut);

Appendix B. The MATLAB code for solving the idempotents in (Z, U I)

function ID = Idempotents_ZR(n)
% n: nonnegative integer

13
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% ID: all idempotents in in neutrosophic ring <Z_n \cup I>
neut = solve_neut(n);

neutall =[];
for i=1:length(neut)
for j=1:length(neut)
cl=mod(neut(j)—neut(i),n);
neutall=[neutall; [neut(i), c1]];
end
end

’

ID=sortrows (neutall " ,1)’;

Appendix C. The MATLAB code for solving the idempotents in (Z, UTUIUF)

function ID = Idempotents_ZRTIF (n)
% n: nonnegative integer
% ID: all idempotents in in neutrosophic quadruple ring <Z_n\cup T\cup I\cup F>

neut = solve_neut(n);
neutall =[];
for i=1:length(neut)
al=neut(i);
for j=1:length(neut)
a2=mod(neut(j)—al,n);
for m=1:length (neut)
a3=mod(neut (m—al—a2,n);
for q=1:length(neut)
a4=mod(neut(q)—al—a2—a3,n);
neutall=[neutall; [al a2 a3 a4]];
end
end
end
end

,

ID=sortrows (neutall " ,1)’;
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Abstract: The symmetry of hyperoperation is expressed by hypergroup, more extensive hyperalgebraic
structures than hypergroups are studied in this paper. The new concepts of neutrosophic extended
triplet semihypergroup (NET- semihypergroup) and neutrosophic extended triplet hypergroup
(NET-hypergroup) are firstly introduced, some basic properties are obtained, and the relationships
among NET- semihypergroups, regular semihypergroups, NET-hypergroups and regular hypergroups
are systematically are investigated. Moreover, pure NET-semihypergroup and pure NET-hypergroup
are investigated, and a strucuture theorem of commutative pure NET-semihypergroup is established.
Finally, a new notion of weak commutative NET-semihypergroup is proposed, some important
examples are obtained by software MATLAB, and the following important result is proved: every
pure and weak commutative NET-semihypergroup is a disjoint union of some regular hypergroups
which are its subhypergroups.

Keywords: hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic
extended triplet semihypergroup (NET-semihypergroup); NET-hypergroup

1. Introduction and Preliminaries

As a generalization of traditional algebraic structures, hyper algebraic structures
(or hypercompositional structures) have been extensively studied and applied [1-7]. Especially,
hypergroups and semihypergroups are basic hyper structures which are extensions of groups and
semigroups [8]. In fact, hypergroups characterize the symmetry of hyperoperations.

On the other hand, as an extension of fuzzy set and intuitionistic fuzzy set, the concept of
neutrosophic set firstly proposed by F. Smarandache in [9], has been applied to many fields [10-12].
Moreover, as an application of the ideal of neutrosphic sets, a new notion of neutrosophic triplet group
(NTG) was proposed by F. Smarandache and Ali in [13], while the new notion of neutrosophic extended
group (NETG) was proposed by Smarandache in [14]. Furthermore, the basic properties and structural
characteristics of neutrosophic extended groups (NETGs) are studied in [15,16]; the closed connection
between between NETG and regular semigroup investigated, and the new notion of neutrosophic
extended triplet Abel-Grassmann’s Groupoid is proposed in [17]; the decomposition theorem of NETG
is poved in [18]; the generalized neutrosophic extended groups are presented in [19]; the relationship
and difference between NETGs and generalized groups are systematically studied in [20]. From these
research results, we know that NETG is a typical algebraic system with important research value.

In this paper, we combine the two directions mentioned above to study the hyperalgebraic
structures related to neutrosophic extended triplet groups (NETGs), which can be regarded as a further
development of the research ideas in [21].

At first, we recall some concepts and results on hypergroups, semigroups and NETGs.

Symmetry 2019, 11, 1217; doi:10.3390/sym11101217 16 www.mdpi.com/journal/symmetry
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Let H be a non-empty set and P’ (H) the set of all non-empty subsets of H. A map o: H x H—P"(H)
is called (binary) hyperoperation (or hypercomposition), and (H, o) is called a hypergroupoid. If A,
BeP*(H), xeH, then

AoB= U (aob),Aox=-Aof{x}, xoB={x}oB.
a€A,beB

Definition 1. ([1-4]) Let (H, o) be a hypergroupoid. If (Vx,y,zeH) (xoy)oz=xo(yoz), then (H, o) is called a
semihypergroup. That is,

U (noz)= U (xo0).

uexoy VEYozZ

For a semihypergroup (H, o), if (Vx,y€H) xoy=yox, then we call that H is commutative.
Note that, if (H, o) is a semihypergroup, then (AoB)oC = Ao(BoC), YA, B, CeP"(H).

Definition 2. ([1-4]) Assume that (H, o) is a semilypergroup. (1) If acH satisfies (Yx€H) |aox| = |xoa|=1,
then a is called to be scalar. (2) If ecH satisfies (Yx€H) xoe = eox = {x}, then e is called scalar identity. (3) If
ecH satisfies (Vx€H) x€(eox)N(xoe), then e is called identity. (4) Let a, beH. If there exists an identity eeH
satisfies e€ (aob)N\(boa), then b is called an inverse of a. (5) If 0eH satisfies (VxeH) xo0 = Qox = {0}, then 0 is
called zero element.

Definition 3. ([1-4]) Let (H, o) be a semihypergroup. (1) If (YxeH) aoH = Hoa = H (reproductive axiom),
then (H, o) is called a hypergroup. (2) If (H, o) is a hypergroup and (H, o) has at least one identity and each
element has at least one inverse, then (H, o) is called to be regular.

Definition 4. ([1-4]) Let (H, o) be a semihypergroup. If x€H satisfies xéxoHox, i.e., there exists an element
yeH, xexoyox, then x is said to be reqular. If (YxeH) x is reqular, then (H, o) is called to be regular.

Note that, Every regular semigroup is a regular semihypergroup, and every hypergroup is a
regular semihypergroup.

Definition 5. ([14]) Let N be a non-empty set, and * a binary operation on N. If (Ya€N) there exist neut(a)eN,
anti(a)eN satisfy

neut(a)*a = a*neut(a) = a, and

anti(a)*a = a*anti(a) = neut(a).
Then N is called a neutrosophic extended triplet set (NETS). Moreover, for aeN, (a, neut(a), anti(a)) is called a

u_n u_rr

neutrosophic extend triplet, neut(a) is called an extend neutral of “a”, and anti(a) is called an opposite of “a”.

For a neutrosophic extended triplet set N, a€N, the set of neut(a) is denoted by {neut(a)}, and the
set of anti(a) is denoted by {anti(a)}.

Definition 6. ([13,14]) Let (N, *) be a NETS. If (N,*) is a semigroup, then (N, *) is called to be a neutrosophic
extended triplet group (NETG).

About some basic properties of neutrosophic extended triplet groups, plesse see [15,17,20].

2. Neutrosophic Extended Triplet Semihypergroups (NET-Semihypergroups) and Neutrosophic
Extended Triplet Hypergroups (NET-Hypergroups)

In this section, we propose the new concepts of neutrosophic extended triplet semihypergroup
(NET-semihypergroup) and neutrosophic extended triplet hypergroup (NET-hypergroup), and give
some typical examples to illustrate their wide representativeness.
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Definition 7. Let (H,*) be a semihypergroup (i.e., * be a binary hyperoperation on nonempty set H such that
(x*y)*z = x*(y*z), for all x, y, zeH). (H,*) is called a neutrosophic extended triplet semilypergroup (shortened
form, NET-semihypergroup), if for every x€H, there exist neut(x) and anti(x) such that

xe(neut(x)*x)N(x*neut(x)), and

neut(x)e(anti(x)*x)N(x*anti(x)).

Here, we call that (x, neut(x), anti(x)) to be a hyper-neutrosophic-triplet.

Example 1. Denote H = {a, b, ¢}, define hyperoperations * on H as shown in Table 1. We can verify that (H, *) is
semihypergroup by software MATLAB (see Figure 1).

Table 1. The hyperoperation * on H.

* a b c

a a {a b} f{abc}

b a {abl {abc}
c a f{ab}
Moreover,
ac(a*a)N(a*a);
be(b*b)N(b*D);
ce(c*c)N(c*c).

This means that (H, *) is neutrosophic extended triplet semihypergroup (NET-semihypergroup) and (a, a, a),
(b, b, b), (c, c, c) are hyper-neutrosophic-triplets.

BemEl ©xy
16,2 = H
[1,2],(1,2,30:1, (1, 2], [1,2,3]:1, [1,2], 3} ™
I 2-  testl
- 3= O for ¥71:3
@ Figure 1 - o x
x40 ®EEO BBV A0 IAM SHO) BOW EEH)
FEEEEIDEEY R P A IEILY-]
for n°1:k2
T2=union(T2, T{T x, v} (), 2}) ;
T
if isequal (T1,T2)==0
test=0;
break
end
end
end
if test==1
>> shgd 23 - disp(’ OK')
oK 24— end
S>> 25 - cellplot(T)
3 57 32

Figure 1. A program by Matlab to verify hyperoperation.

Example 2. Denote H = {a, b, c, d}, define hyperoperations * on H as shown in Table 2. We can verify that (H, *)
is semihypergroup by software MATLAB (see Figure 2).

Table 2. The hyperoperation * on H.

* a b c d

a f{a, b} fa, b} fcd} {cd}
b {a,b} {a bl f{cdl fcd}
c e df | d} a b
d {c,d} {cd} b a
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(A @@ - HA7BICS R shg3 2.m ® x g
21,01,2],13,4], (3,41, 03,41, (3,41, 1,2, 3,41, [3,41,2, 1), D
6 - k1=length(T {, 2} ); k2=length(T {x,v}):
7- T1=T {5, Tl 2} (D} —
8- for nel:k1 4l Figure 1 -8 X
ole Tlemion(T1, T{x, Tl 2} (@)); | X#A ®&E =BV @BAN) IAM HEE) SOW) =EH >
0- - end NEWe kRN TUDELA- 208 |nD
11 - T2=T{T{x, v} (1), 2};
12- for n=1:k2
13 - T2=union(12, T(T (x, v} (), 2}) :
e end
15 - if isequal (T1,T2)==0
16 - test=0;
17 - break
18 — end
=] F end
20 — end
2 - end
22— if test==1
23 - disp('0K')
24~  end
25— cellplot(T)
=3 15

Figure 2. Verify hyperoperation by Matlab.

Moreover,
Ae(a*a)N(a*a); ac(b*a)N(a*b), be(b*a)N(a*b).

be(t*b)N(b*b).
ce(a*c)N(c*a), ac(c*c)N(c*c); ce(b*c)N(c*b), be(d*c)N(c*d).
de(a*d)N(d*a), ac(d*d)N(d*d); de(b*d)N(d*b), be(c*d)N(d*c).

This means that (H, *) is neutrosophic extended triplet semihypergroup (NET-semihypergroup) and (a, a,
a),(a,b,b),(b,b,b),(c,a,c),(c,bd),(dad)),dDb,c)are hyper-neutrosophic-triplets.

Remark 1. From Example 2 we know that neut(x) may be not unique for an element x in a neutrosophic
extended triplet semihypergroup (NET-semihypergroup). In fact, in Example 2, we have

{neut(a)} = {a, b}, neut(b) = b, {neut(c)} = {a, b}, {neut(d)} = {a, b}.

Example 3. Let H be the set of all nonnegative integers, and define a hyperoperation * on H as following:
x*y = {zeH | z>max{x,y}}.
For examples,
3*5=1{5,6,7,8,... },9*9=1{9,10,11,12, ... };2019*0 = {2019, 2020, 2021,2022, ... }.
Then (H, *) is a commutative semihypergroup. Moreove, for any xeH, we have
xe (x*x)N(x*x); x€ (x*x)N(x*x).

This means that (H, *) is a neutrosophic extended triplet semihypergroup (NET-semihypergroup). In fact,

we have
neut(0)=0; {neut(1)}={0,1}; {neut(2)}=1{0, 1, 2}; {neut(3)}={0, 1, 2,3} ...
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Example 4. Let R be the set of all real numbers, and Z the set of integers. We use the modulo of real numbers
(that we denote by modg) in the following way:

¥ a, beR, then a = b (mody 6), if and only if a - b = 6n, where n is an integer.

For examples, 14.73 = 2.73 (modp 6), since 14.73 —2.73 = 12 = 6 X 2; but 18#15 (modg 6), since 18 - 15
= 3 # 6n with n integer. Now, we define a hyperoperation # on R as following:

a#tb = {xeR | x=4ab (modg 6)}.
Then (R, #) is a commutative semilypergroup, since a#b = bi#a = 4ab (modpg 6), and associative because:

(a#b)#tc = (4ab)ic = 4(4ab)c = 16abc (modg 6), and
a#t(b#c) = a#(4bc) = 4a(4bc) = 16abc (modg 6).
Moreove, for any a€R, we have

(1)
(2) whena#0,(a,}+

when a=0, (a, 6m, r) are hyper-triplets for any integer number m and real number r;

3m 1

37 Ta T 384;“ + %‘) are hyper-neutrosophic-triplets for any integer numbers m, n.

This means that (R, #) is a neutrosophic extended triplet semihypergroup (NET-semihypergroup), and
infinitely many neut(a) and infinitely many anti(a) for any element a in R.

Remark 2. The following example shows that a sub-semihypergroup of a NET-semihypergroup may
be not a NET-semihypergroup.

Example 5. Denote H = {a, b, ¢, d, e}, define hyperoperations * on H as shown in Table 3. We can verify that (H,
*) is semihypergroup by software MATLAB (see Figure 3).

Table 3. The hyperoperation * on H.

* a b c d e
a a a a d {a,b,c,d, e}
b a {a, b} {a, c} d {a,b,c d, el
c a a a d {a,b,c d, e}
d d d d d {a,b,c d, e}
e f{abcde f{abcde f{abcde l{abecde labcdel

(7 8 - F R GRS R ehgs Am —

o B i

=] T={1,1,1,4,01,2,3,4,5];1,01,2], (1,3],4,[1,2,3,4,5];1,1,1,4,(1,2,3,4,5] a

2 4,4,4,4,01,2,3,4,5):(1,2,3,4,5,(1,2,3,4,5], (1,2,3,4,5, [1,2,3,4,5), [1,2,3,4,5]}

o

A

il

7- ) k2=length(T {x,v})

o

ol 4 Figure 1 - o x

26 -

cel

Tl=mion(TL, T{x, Tly, 2} (W});

end
12T (T {x, v} (D), 2}

test=0

lplot(T)

XH RAE) BHY) BA) IRM SEOQ) EOW) REGH)
Dade|h|R
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Figure 3. Verify the hyperoperation by Matlab.
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Moreover, (a,a,a), (a,e,¢), (b, b, ), (b e, e),(c e e),(d,d,d),(dece),leece),leace),lebe)lece),
(e, d, e) are hyper-neutrosophic-triplets.This means that (H, *) is a NET-semihypergroup. For S={a, b, c J]CH,
(S, ) is sub-semihypergroup of (H, *). But, (S, *) is not a NET-semihypergroup.

Remark 3. For the traditional algebraic structures, we have the conclusion that any group must be a
neutrosophic extended triplet group (NETG). For hyper algebraic structures, we know from Example 1
that a NET-semihypergroup is not necessarily a hypergroup (since a*H#H in Example 1). Moreover,
the following example shows that a hypergroup may be not a NET-semihypergroup. Therefore,
hypergroup and NET-semihypergroup are two non-inclusion hyperalgebraic systems.

Example 6. Denote H = {1, 2, 3}, define hyperoperations * on H as shown in Table 4. We can verify that (H, *)
is semihypergroup by software MATLAB.

Table 4. The hyperoperation * on H.

* 1 2 3

1 2 2 {1, 3}
2 (1,23 {23} {1,23}
3 2 {1,2,3}  {1,3}

Moreover,
1*H=H*1=H,2*H=H*2=H,3*H=H*3=H.

This means that (H, *) is a hypergroup. But, for 1€H, we cannot find x,y€H such that 1€(x*1)N\(1%*x), and
xe(y*1)N(1*y). That is, (H, *) is not a NET- semihypergroup.

Definition 8. Let (H,*) be a semihypergroup. (H,*) is called a neutrosophic extended triplet hypergroup
(shortened form, NET-hypergroup), if (H,*) is both a NET-semihypergroup and a hypergroup.

Obviously, the NET-semihypergroups in Example 2 and Example 5 are all NET-hypergroups.
And, the following propostion is true (the proof is omitted).

Proposition 1. Every reqular hypergroup is a NET-hypergroup.

The NET-hypergroup in Example 2 is not a regular hypergroup, it shows that the inverse of
Proposition 1 is not true.

Proposition 2. Let (H,*) be a NET-semihypergroup (or a NET-hypergroup). Then (H,) is a regular
semihypergroup.

Proof. Assume that (H,*) is a NET-semihypergroup. For any xeH, by Definition 7 we get that there
exist neut(x) and anti(x) such that

xe(neut(x)*x)N(x*neut(x)), and neut(x)e(anti(x)*x)N(x*anti(x)).

Then,
xeneut(x)*x C (x*anti(x))*x.

That is, xex*anti(x)*x. From this, by Definition 4, we know that (H,*) is a regular semihypergroup.
If (H,*) is a NET-hypergroup, by Definition 8, it follows that (H,*) is a NET-semihypergroup. Then,
by the proof above, (H,*) is a regular semihypergroup. O
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The following example shows that the inverse of Proposition 2 is not true. Moreover, it also shows
that a regular semihypergroup may be not a hypergroup.

Example 7. Denote H = {a, b, c}, define hyperoperations * on H as shown in Table 5. We can verify that (H, *) is
semihypergroup.

Table 5. The hyperoperation * on H.

* a b c
a a a a
b f{abc f{abc {abc}
¢ labc {ab) {a, b)

Moreover, a € a*a*a; b € b*b*b; ¢ € c*a*c.This means that (H, *) is a regular semihypergroup. But it is not
a NET-semihypergroup, since there is not any x € H such that ¢ € x*c and c € c*x.Obviously, (H, *) is not a
hypergroup.

Therefore, the relationships among semihypergroup, NET-semihypergroup, NET-hypergroup,
(regular) hypergroup and regular semihypergroup can be expressed by Figure 4.

Semihypergroup
Regular Semihypergroup

NET-hypergroup

NET-
Semihypergroup

Hypergroup

Regular
Hypergroup

Figure 4. The relationships among some kinds of semihypergroups.

For basic properties of NET-semihypergroups and NET-hypergroups, we can get following results.

Theorem 1. Let (H,*) be a semihypergroup. Then

(1) if (H*) is commutative NET-semilypergroup, then for any xe€H and hyper-neutrosophic-triplet
(x, neut(x), anti(x)), there exists peneut(x)*neut(x) and qeanti(x)*neut(x) such that (x, p, q) is also
a hyper-neutrosophic-triplet.

(2) if (H*) is commutative NET-semihypergroup, then for any xeH and neut(x)e{neut(x)], there exists
peneut(x)*neut(x) such that pe{neut(x)}.

(3) if (H*) is NET-semihypergroup and x€H is scalar, then |{neut(x)}|=1, that is, the neutral element of x is
unique; Moreover, if x is scalar, then neut(x)*neut(x)=neut(x).

(4) if (H*) is commutative hypergroup, then (H,*) is NET-hypergroup.

Proof. (1) Assume that x€H and (x, neut(x), anti(x)) is a hyper-neutrosophic-triplet. By Definition 7:

xe(neut(x)*x)N(x*neut(x)), and neut(x)e(anti(x)*x)N(x*anti(x)).
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Since (H, *) is commutative, then:
xeneut(x)*x C neut(x)*(neut(x)*x) = (neut(x)*neut(x))*x = x*(neut(x)*neut(x)).
This means that there exists peneut(x)*neut(x) such that xep*x = x*p. Moreover:
peneut(x)*neut(x) C (x*anti(x))*neut(x) = x*(anti(x)*neut(x)) = (anti(x)*neut(x))*x.

It follows that there exists geanti(x)*neut(x) such that peg*x = x*q. By Definition 7 we know that
(x, p, q) is also a hyper-neutrosophic-triplet.

(2) It follows from (1).

(3) Suppose that x€H and x is scalar. Using Definition 2, |x*a|=|a*x|=1 for any a€H. From this, for a
hyper-neutrosophic-triplet (x, neut(x), anti(x)), applying Definition 7, we have:

x = neut(x)*x = x*neut(x), and neut(x) = anti(x)*x = x*anti(x).
Assume p1, pp€{neut(x)}, then there exists g1, go€H such that:
X =p1*x = x7py, p1= g1 = X015 X = potx = x7pg, pr = qotx = X

Then:
p1 =1 = q1*(*p2) = (q1°%)*p2 = p1*p2;
p2 =Xy = (*p1)*q2 = (F(q1"X)) 92 = (Fq1)*(x*q2) = pr*p2.

It follows that p; = pp and p; = p1*p1. That is, |{neut(x)}|=1 and neut(x)*neut(x) = neut(x).

(4) Let (H, *) be a commutative hypergroup. By Definition 3, for any xeH, x*H = H*x = H. Then, for
any x€H, there exists heH such that x = I*x = x*h. Moreover, for heH, there exists u€H such that h = u*x
= x*u. Thus, (x, h, u) is a hyper-neutrosophic-triplet, and it means that (H, *) is a NET-semihypergroup
by Definition 7. On the other hand, since (H, *) is a hypergroup, so (H, *) is a NET-hypergroup by
Definition 8.

3. Pure NET-semihypergroups and Regular hypergroups

In this section, we discuss some properties of NET-semihypergroups. We'll propose the new
notion of pure NET-semihypergroup, investigate the structure of pure NET-semihypergroups.

Definition 9. Let (H,*) be a NET-semihypergroup. (H,*) is called a pure NET-semihypergroup, if for every
x€H, there exist neut(x) and anti(x) such that

x = (neut(x)*x)N(x*neut(x)), and neut(x) = (anti(x)*x)N(x*anti(x)).
Obviously, the following proposition is true and the proof is omitted.

Proposition 3. (1) Every neutrosophic extended triplet group (NETG) is pure NET-semihypergroup. (2) If
(H,*) is a pure NET-semihypergroup and the hyper operation * is commutative, then for every xeH, there exists y,
z€H such that

x=y*x =x*y,and y = z*x = x*z.

Example 8. Denote H = {a, b, ¢}, define hyperoperations * on H as shown in Table 6. We can verify that (H, *) is
semihypergroup.
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Table 6. The hyperoperation * on H.

* a b c
a a {a,b,c} f{a, b ¢}
b f{ab,c} c b
c {ab b c

Moreover,
a=(a*a)N(a*a); b=(c*b)N(b*c), c=(b*b)N(b*D); c=(c*c)N(c*c).

This means that (H, *) is a pure NET-semihypergroup.

Example 9. Denote H = {a, b, c, d, e}, define hyperoperations * on H as shown in Table 7. We can verify that
(H, *) is semihypergroup.

Table 7. The hyperoperation * on H.

a b c d e
a a {a,b,c} f{a,b,c} d a
b {ab,c} b c d b
c {ab,c} c b d ¢
d d d d d d
e a b c d e

Moreover:
a=(a*a)N(a*a); b=(b*b)N(b*b); c=(b*c)N(c*b), b=(c*c)N(c*c); d=(d*d)N(d*d); e=(e*e)N(e*e).
This means that (H, *) is a pure NET-semihypergroup.
Remark 4. From Example 8 and Example 9, we have:

a=(a*a)N(a*a);
ac(b*a)N(a*b), be(b*a)N(a*b); ac(c*a)N(a*c), ce(c*a)N(a*c).

This means that {neut(a)} = {a, b, c}. But, be{neut(a)} and ce{neut(a)} are different to ac{neut(a)},
since one is “€” and the other is “=". In order to clearly express the difference between the two kinds
of neutral elements, we introduce a new concept: pure neutral element.

Definition 10. Let (H,*) be a NET-semihypergroup and xeH. An element yeH is called a pure neutral element
of the element x, if there exist z€H such that:

x=y*x =x*,and y = z*x = x*z.
Here, we denote y by pneut(x).

Proposition 4. Let (H,*) be a NET-semihypergroup and x€H. If there exists a pure neutral element of x, then
the pure neutral element of x, that is, pneut(x), is unique.

Proof. Assume that there exists two pure neutral elements y,, y, for x€H. Then there exists z1,z, € H
such that:

x=y1*x =x*y, and y1 = z1%x = x%zy;

X =yp*x = x*yp, and yp = 20%x = x¥zp.
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Therefore,
Y1 = z1*x = 2% (F*y2) = (20°%)*y2 = y1tyw
Y2 = X*z3 = (X*y1)*z = (¥*(21*X))*22 = (x*21)* (x*22) = y1*2.

Hence, y; = yp. That is, pneut(x) is unique. O

By the proof of Proposition 4, we know that i1 = yo= y1*1, it follows that y; = y;*y;. Therefore,
we have the following corollary.

Corollary 1. Let (H,*) be a NET-semihypergroup and x€H. If there exists a pure neutral element of x, then the
pure neutral element of x is idempotent, that is, pneut(x)*pneut(x)= pneut(x).

Remark 5. From Proposition 4, we know that the pure neutral element of an elemetn x is unique when
there exists one pure neutral element of x. Particularly, for commutative pure NET- semihypergroups,
applying Proposition 3 (2), we get following Proposition 5 (the proof is omitted).

Proposition 5. Let (H,*) be a commutative pure NET-semihypergroup. Then for any x€H, pneut(x) is unique.

Proposition 6. Let (H,*) be a commutative pure NET-semihypergroup. Then for any x, yeH, pneut(x*y)=
pneut(x)*pneut(y) when | x*y|=1. Moreover, if pneut(x) = z1*x = x*z1 and pneut(y) = z,*y = y*zy, z1, 22€H,
then:

preut(x'y) = (z1*2)*(¥*) = (¢*y)*(z1*2).

Proof. Assume that x, y€H and | x*y|=1. Since (H, *) be a commutative pure NET-semihypergroup, then:

(x*y)*(pneut(x)*pneut(y)) = (x*y)*(pneut(y)*pneut(x))
= x*(y*pneut(y))*pneut(x)

= x*y*pneut(x)

= (x*pneut(x))*y

= x*y,'

(pneut(x)*pneut(y))*(x*y) = (pneut(y)*pneut(x))*(x*y)
= pneut(y)*(pneut(x)*x)* y

= pneut(y)*x*y

= x*(pneut(y)*y)

=x*y.

On the other hand, assume that (x, pneut(x), anti(x)) and (y, pneut(y), anti(y)) are
hyper-neutrosophic-triplets, then:

(x*y)*(anti(x)*anti(y)) = (x*y)*(anti(y)*anti(x))
= x*(y*anti(y))*anti(x)

= x*pneut(y)*anti(x)

= (x*anti(x))*pneut(y)

= pneut(x)*pneut(y);

(anti(x)*anti(y))*(x*y) = (anti(x)*anti(y))*(y*x)
= anti(x)*(anti(y)*y)*x

= anti(x)*pneut(y)*x

= (anti(x)*x)*pneut(y)

= pneut(x)*pneut(y).

Applying Proposition 5 we get that pneut(x*y)= pneut(x)*pneut(y).
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Moroeover, assume preut(x) = z1*x = x*zy, pneut(y) = zp*y = y*z,. Then, by commutativity of the
hyper operation *:

(z1*22)*(x*y) = (21*%)*(22™y)

= pneut(x)*pneut(y)

= pneut(x*y);

(*y)*(21*z2) =(x*21)*(y*22)

= pneut(x)*pneut(y)

= pneut(x*y).

Therefore, the proof is completed. O
Theorem 2. Let (H,*) be a commutative pure NET-semihypergroup and H satisfies:
Vx, yeH, pneut(x)=pneut(y)= | x*y|=1. (C1)
Define a binary relation ~ on H as following:
Vx, yeH, x~y if and only if pneut(x)=pneut(y).

Then:

(1)  The binary relation is a equivalent relation on H;

(2)  Forany xeH, [x]~ is a sub-NET-semihypergroup of H, where [x]~ is the equivalent class of x based on
equivalent relation ~;

(3)  Forany xeH, [x]~ is a regular hypergroupe.

Proof. (1) It is obviously.
(2) Assume a, be[x]~, then pneut(a)= pneut(b)=pneut(x). Applying Proposition 6 and Corollary 1,
we have
pneut(a*b) = pneut(a)*pneut(b)
= pneut(x)*pneut(x)
= pneut(x).

This means that [x]~ is closed on the hyper operation *.

Moreover, by Corollary 1, we have pneut(x)*pneut(x) = pneut(x). From this and using Proposition 5,
we get that prneut(pneut(x)) = pneut(x). It follows that pneut(a) €[x]~ for any a€[x]~. Moreover, assume
that a€[x]~, by the definition of commutative pure NET-semihypergroup, there exists r€H such that:

pneut(a) = r*a = a*r.

It follows that:
pneut(a) = (rpneut(a))*a = a*(r*pneut(a)). (C2)

Applying Proposition 6 and Corollary 1:

pneut(r*pneut(a))
= pneut(r)* pneut(pneut(a))
= pneut(r)* pneut(a)
= pneut(r*a)
= pneut(pneut(a)
= pneut(a).
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That is, pneut(r*pneut(a)) = pneut(a) = pneut(x). This means that r*pneut(a) €[x]~. Therefore, by (C2),
there exists anti(a) (see Definition 7), it is in [x]=. This means that [x]~ is a sub-NET-semihypergroup
of H.

(3) For any xeH, from (2) we know that [x]~ is a sub-NET-semihypergroup of H. By the definition
of ~, for any a€[x]~, pneut(a) = pneut(x). Then, a*[x]~*a =[x]~, and pneut(x) is a (local) identity in [x]~.
By Definition 3, we get that [x]~ is a regular hypergroup. O

From Theorem 2 we know that for a commutative pure NET-semihypergroup (it satisfies the
condition in Theorem 2), it is a union of some regular hypergroups. The following picture (Figure 5)
shows this special structure.

Commutative Pure NET-semihypergroup

Regular hypergroups (sub-hypergroups)

Figure 5. The structure of a commutative pure NET-semihypergroups.

Example 10. Denote H = {a, b, c, d, e}, define hyperoperations * on H as shown in Table 8. We can verify that
(H, *) is commutative pure NET-semihypergroup.

Table 8. The hyperoperation * on H.

* a b c d e
a a {a, b, c} {a, b, c} d {a, d, e}
b f{ab,c} b c d {bcd e}
c f{a b} c b d {bcd e}
d d d d d d
e lade {bcde (bcde d e
Moreover:
Hj={a)=[a].;
Hy={b, c}=[bl~ =[cl~;
Hz={d}=[d]~;
Hy={e}=[el~;

and H= H;UH,UH3UHy, where, H; (i=1, 2, 3, 4) are regular hypergroups.

Remark 6. The above example shows that a commutative pure NET-semihypergroup may be not a
hypergroup (since d*H#H in Example 10).

4. Weak Commutative NET-Semihypergroups and Their Structures

In this section, we discuss generalized commutativity in NET-semihypergroups. We propose a
new notion of weak commutative NET-semihypergroup, and prove the structure theorem of weak
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commutative pure NET-semihypergroup (WCP-NET-semihypergroup), which can be regarded as a
generalization of Cliffod Theorem in semigroup theory.

Definition 11. Let (H,*) be a NET-semihypergroup. (H,*) is called a weak commutative NET- semihypergroup,
if for every x€H, every hyper-neutrosophic-triplet (x, neut(x), anti(x)), the following conditions are satisfied:

(H,*) is called a weak commutative pure NET-semihypergroup (shortly,
WCP-NET-semihypergroup), if it both weak commutative and pure.

Obviously, the following proposition is true and the proof is omitted.
Proposition 7. Every commutative NET-semihypergroup is weak commutative.

The following examples show that there exists some weak commutative NET- semihypergroups
which are not commutative.

Example 11. Denote H = {1, 2, 3, 4, 5, 6, 7, 8}, define hyperoperations * on H as shown in Table 9. We can
verify that (H, *) is NET-semihypergroup.

Table 9. The hyperoperation * on H.

*
~
N

PN HR WN R

NS R Wk R W
Y U1 S0 N W R == R
RO Wl =| O,
G W NNOYR =R |
W oo TR O = N
N W HR VO R k| ®

Moreover, (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 3, 4), (5, 3, 5), (6, 3, 6), (7, 3, 8) and (8, 3, 7) are
hyper-neutrosophic-triplets, and (VxeH) 1*x = x*1, 2*x = x*2 and 3*x = x*3, 7*8 = 8*7. This means that (H, *)
is a weak commutative NET-semihypergroup. Since 4*5 # 5*4, (H, *) is not commutative.

Remark 7. The above example shows that there exists WCP-NET-semihypergroup (by Definition 9,
we know that the NET-semihypergroup in Example 11 is pure).

Example 12. Denote H=1{1, 2, 3,4, 5, 6, 7, 8, 91, define hyperoperations * on H as shown in Table 10. We can
verify that (H, *) is NET-semihypergroup.

Table 10. The hyperoperation * on H.

* g 2 3 4 5 6 7 8 9

1 2 {1,3) 3 1 1 1 1 1 1

2 {1,3) 2 (1,3} (1,230 (1,23} {1,230 (1,23} 1,23} 11,2 3}
3 3 {1,3) 1 1,3 {1, 3 {1,3) {1,3) {1,3) {1,3)
4 1 {1,233 (1,3 4 5 6 7 8 9

5 1 {1,2,3) {1,3) 5 4 9 8 7 6

6 1 {1,2,3 11,3} 6 8 4 9 5 7

7 1 (1,23 {13 7 9 8 4 6 5

§ 1 {1,2,3 (1,3 ] 6 7 5 9 4

9 1 {1,2,3 (1,3 9 7 5 6 4 8
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Moreover, (1,2,1),(2,2,2),(3,1,3),(4,4,4),(5,4,5),(6,4,6),(7,4,7),(8,4,9) and (9, 4, 8) are
hyper-neutrosophic-triplets, and (VxeH) 2*x = x*2, 1*x = x*1 and 4*x = x*4, 8*9 = 9*8. This means that (H, *)
is a weak commutative NET-semihypergroup. Since 5*6 # 6*5, (H, *) is not commutative.

Proposition 8. Let (H,*) be a weak commutative pure NET-semihypergroup (WCP-NET-semihypergroup).
Then for any xeH, there exists a pure neutral element of x, and pneut(x) is unique, pneut(x)*pneut(x)= pneut(x).

Proof. For any xeH. Since (H, *) is pure, by Definition 9, there exists hyper-neutrosophic-triplet
(x, neut(x), anti(x)) such that

x = (neut(x)*x)N(x*neut(x)), and neut(x) = (anti(x)*x)N(x*anti(x)).

Moreover, since (H, *) is weak commutative, by Definition 11, neut(x)*x = x*neut(x), and anti(x)*x
= x*anti(x). Thus

x = neut(x)*x = x*neut(x), and neut(x) = anti(x)*x = x*anti(x).

Therefore, by Definition 10, neut(x) is a pure neutral element of x. Applying Proposition 4 we know
that pure neutral element of x is unique. Moreover, using Corollary 1, pneut(x)*pneut(x)= pneut(x). 0O

Proposition 9. Let (H,*) be a weak commutative pure NET-semihypergroup (WCP-NET-semihypergroup).
Then for any x, yeH, pneut(x*y)= pneut(x)*pneut(y) when | x*y |=1. Moreover, if pneut(x) = z1*x = x*z; and
pneut(y) = zp™y = y*z,, z1, 2 € H, then

preut(x*y) = (zx*z1)*(x*y) = (x*y)*(z*zq).

Proof. Since (H, *) be a WCP-NET-semihypergroup, then for any x, yeH and | x*y |=1, pneut(x)*y =
y*pneut(x) by Definition 11. Then

x*y)*(pneut(x)*pneut(y)) = (x*y)*(pneut(y)*pneut(x)) = x*y*pneut(x) = (x*pneut(x))*y = x*y;
(pneut(x)*pneut(y))*(x*y) = (pneut(y)*pneut(x))*(x*y) = pneut(y)*x*y = x*(pneut(y)*y) = x*y.

On the other hand, let (x, pneut(x), anti(x)) and (y, pneut(y), anti(y)) are hyper-neutrosophic-triplets,
then

xx*y)*(anti(y)*anti(x))
= x*(y*anti(y))*anti(x)
= x*pneut(y)*anti(x)
= pneut(y)*x*anti(x)
= pneut(y)*pneut(x)
= pneut(x)*pneut(y);
(anti(y)*anti(x))*(x*y) = anti(y)*(anti(x)*x)*y = anti(y)*pneut(x)*y = pneut(x)*anti(y)*y = pneut(x)*pneut(y).

Thus, pneut(x)*pneut(y) is a pure neutral element of x*y by Definition 7 and Definition 10. Applying
Proposition 8 we get that pneut(x*y)= pneut(x)*pneut(y).

Moroeover, assume preut(x) = z1*x = x*zq, pneut(y) = zp*y = y*zp. Then, by weak commutativity
(Definition 11) we have

(z2*21)¥(x*y) = 2p*(21*%)*y = zp*pneut(x)*y = pneut(x)*(z2*y) = pneut(x)*pneut(y) = pneut(x*y);
(x*Y)*(z2*z1) = x*(y*z3)*z1 = x*pneut(y)*z; = (x*z1)*pneut(y) = pneut(x)*pneut(y) = pneut(x*y).

Therefore, the proof is completed. O
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Theorem 3. Let (H,*) be a WCP-NET-semihypergroup and H satisfies
(Vx, yeH, pneut(x)=pneut(y)= | x*y|=1. (C1)
Define a binary relation ~ on H as following:
Vx, yeH, x~y if and only if pneut(x)=pneut(y).

Then

(1)  The binary relation ~ is a equivalent relation on H;

(2)  Forany xeH, [x]~ is a sub-NET-semilypergroup of H, where [x]~ is the equivalent class of x based on
equivalent relation ~;

(8)  Forany x€H, [x]~ is a regular hypergroupe.

Proof. (1) From the definition of =, by Proposition 8 and Proposition 9, we know that the binary
relation ~ is a equivalent relation.

(2) Suppose a, be[x]~. By the definition of =, pneut(a) = pneut(b) = pneut(x). Using Proposition 8
and Proposition 9, we have

pneut(a*b) = pneut(a)*pneut(b) = pneut(x)*pneut(x) = pneut(x).

It follows that [x]~ is closed on the hyper operation *.

And, applying Proposition 8, we have pneut(x)*pneut(x) = pneut(x). From this and using Proposition
8, we get that pneut(pneut(x)) = pneut(x). It follows that pneut(a)€[x]~ for any a€[x]~. Moreover, assume
that a€[x]~, by the definition of WCP-NET-semihypergroup, there exists reH such that pneut(a) = r*a =
a*r. Thus (by Proposition 9)

pneut(a) = (r*pneut(a))*a = a*(r*pneut(a))
= r*pneut(a) €fanti(a)}.
pneut(r*pneut(a))
= pneut(r)* pneut(pneut(a))
= pneut(r)* pneut(a)

= pneut(r*a)

= pneut(pneut(a))
= pneut(a).

That is, pneut(r*pneut(a)) = pneut(a) = pneut(x). This means that r*pneut(a) €[x]~. Combining this
and r*pneut(a)e{anti(a)}, we know that there exists anti(a) which is in [x]~. This means that [x]~ is a
sub-NET- semihypergroup of H.

(3) Assume x€H, from (2) we know that [x]+ is a sub-NET-semihypergroup of H. By the definition of
=, for any a€[x]~, pneut(a) = pneut(x). From the proof of (2), there exists anti(a)e{anti(a)} and anti(a)€[x]~.
Then, [x]x C a*[x]~*a. Obviously, a*[x]~*a C [x]~. Thus, a*[x]~*a=[x]~.

On the other hand, pneut(x) is a (local) identity in [x]~. Therefore, by Definition 3, we get that [x]~
is a regular hypergroup. O

Example 13. Denote H =1{1,2,3,4,5,6, 7, 8,9, 10, 11}, define hyperoperations * on H as shown in Table 11.
We can verify that (H, *) is WCP-NET-semihypergroup, and not commutative.
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Table 11. The hyperoperation * on H.

* 1 2 3 4 5 6 7 8 9 10 11
1 1 (123 (123 1 1 1 1 1 1 1 1
2 {1,2,3} 3 2 3 2 (1,23}  {1,2,3} 1,23y (1,23} (1,23} {1,2,3}
3 {1,2,3} 2 3 2 3 {1,23) (1,23} 1,23y {123} {1,23} {1,2,3}
. 1 s . s . 678 678 (678 (678 1678 (678
91011} 91011) 9,011} 91011} 9,1011) 9,10,11)
s o1 . s s 678 (678 (678 (678 (678 (678
9,1011) 91011} 9,1011) 910,11} 9,1011) 9,10,11)
6 1 {123 {123 9{%7’131/} 9[%7 /181'} 6 7 8 9 10 11
71 {123 (123) 9{%7’1‘?} 9[61”07 ’181’} 7 6 11 10 9 8
8 1 (123 {123) 9{‘15’07'181'} 9[5'07 '181’} 8 10 6 11 7 9
9 1 (123 {123 9{%’181'} 9[?07 '181’} 9 11 10 6 8 7
0 1 {123 {123 9{%7'181/} 9[%7 /181'] 10 8 9 7 11 6
11 {123 (1,23 9{%7’181’} 9[?07 '181'} 11 9 7 8 6 10
Moreover,
Hy={1}=[1]+;

H2=1{2,3/=[2]~ =3I~
H3={4,5) = [4]~ =[5]x;
H4=16,7,8,9,10,11} = [6]~ = [7]~ = [8]~ = [9]~ = [10]~ = [11];
and H= H{UH,UH3UHy, where, H; (i=1, 2, 3, 4) are regular hypergroups.

5. Conclusions

In this paper, we propose some new notions of neutrosophic extended triplet semihypergroup
(NET-semihypergroup), neutrosophic extended triplet hypergroup (NET-hypergroup), pure NET-
semihypergroup and weak commutative NET-semihypergroup, investigate some basic properties and
the relationships among them (see Figure 6), study their close connections with regular hypergroups
and regular semihypergroups. Particularly, we prove two structure theorems of commutative pure
NET-semihypergroup (CP-NET-semihypergroup) and weak commutative pure NET-semihypergroup
(WCP-NET-semihypergroup) under the condition (C1) (see Theorem 2 and Theorem 3). From these
results, we know that NET-semihypergroup is a hyperalgebraic structure independent of hypergroup,
and NET-semihypergroup is also a generalization of group concept in hyperstructures. The research
results in this paper show that NET-semihypergroups and NET- hypergroups have important theoretical
research value, which greatly enriches the traditional theory of hyperalgebraic structures.
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NET-Semihypergroup

eak Commutative
WCP-NET-Semihypergroup

Pure NET- Commutative NET-Semihypergrou

Semihypergroup

CP-NET-Semihypergroup,

CP-NET-Semihypergrou

ure NET-Semihyperg

Figure 6. The relationships among some kinds of NET-semihypergroups.

In the future, we will investigate the combinations of NET-semihypergroups and related algebraic

systems ([22-24]).
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Abstract: Uninorms comprise an important kind of operator in fuzzy theory. They are obtained
from the generalization of the t-norm and t-conorm axiomatic. Uninorms are theoretically
remarkable, and furthermore, they have a wide range of applications. For that reason, when fuzzy
sets have been generalized to others—e.g., intuitionistic fuzzy sets, interval-valued fuzzy sets,
interval-valued intuitionistic fuzzy sets, or neutrosophic sets—then uninorm generalizations have
emerged in those novel frameworks. Neutrosophic sets contain the notion of indeterminacy—which
is caused by unknown, contradictory, and paradoxical information—and thus, it includes,
aside from the membership and non-membership functions, an indeterminate-membership function.
Also, the relationship among them does not satisfy any restriction. Along this line of generalizations,
this paper aims to extend uninorms to the framework of neutrosophic offsets, which are called
neutrosophic offuninorms. Offsets are neutrosophic sets such that their domains exceed the scope of
the interval [0,1]. In the present paper, the definition, properties, and application areas of this new
concept are provided. It is necessary to emphasize that the neutrosophic offuninorms are feasible for
application in several fields, as we illustrate in this paper.

Keywords: neutrosophic offset; uninorm; neutrosophic offuninorm; neutrosophic offnorm;
neutrosophic offconorm; implicator; prospector; n-person cooperative game

1. Introduction

Uninorms extend the t-norm and t-conorm axiomatic in fuzzy theory. They retain the axioms of
commutativity, associativity, and monotony. Alternatively, they generalize the boundary condition,
where the neutral element is any number lying in [0,1]. Thus, t-norm and t-conorm are special cases of
uninorms, t-norms have 1 as their neutral element and the neutral element of t-conorms is 0, see [1-3].

Uninorms are theoretically important, and moreover they have also been used as operators in
several areas of application; for example, in image processing, to aggregate group decision criteria,
among others, see [4-8]. An exhaustive search on uninorm applications made by the authors of this
paper yielded more than six hundred scientific articles that have been written in the last five years
devoted to this subject.

Rudas et al. in [9] report that uninorms have been applied in diverse applications ranging,
e.g., from defining Gross Domestic Product index in economics, to fusing sequences of DNA and
RNA or combining information on taxonomies or dendograms in biology, and in the fusion of
data provided by sensors of robotics in data mining, and in knowledge-based and intelligent
systems. Particularly, they offer many examples in Decision Making, Utility Theory, Fuzzy Inference
Systems, Multisensor Data Fusion, network aggregation in sensor networks, image approximation,
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hardware implementation of parametric operations, in Fuzzy Systems, and as software tools for
aggregation problems.

Depaire et al. in [10] proposed a new approach to apply uninorms in Importance Performance
Analysis, which is a useful technique to evaluate elements in marketing programs. They proved
that their approach was superior when compared with regression and that it matched well with the
customer satisfaction theory.

A very recent paper written by Modley et al. in [11] applied uninorms in the market basket
analysis. Also, Appel et al. proposed a method based on cross-ratio uninorms as a mechanism to
aggregate in the Sentiment Analysis; see [12].

Kamiset al. in [13] implement a geo-uninorm operator in a consensus model. They utilized
them to derive a consistently based preference relation from a given reciprocal preference relation.
Whereas, Wu et al. in [14] and Urefia et al. in [15] applied uninorms in trust propagation and
aggregation methods for group decision making in a social network.

Bordignon and Gomide in [16], introduce a learning approach to train uninorm-based hybrid
neural networks using extreme learning concepts. According to them, uninorms bring flexibility and
generality to fuzzy neuron models. Wang in [17] and Yang in [18] applied uninorms as a basis to
define logics.

Other areas of application can be consulted in Gonzélez-Hidalgo et al. [19] where uninorms were
utilized in edge detection of image processing, in fuzzy morphological associative memories (see [20]),
and was also applied in time series prediction.

It is well-known that the minimum is the biggest t-norm and the maximum is the lowest t-conorm,
thus they are not compensatory operators; whereas uninorms compensate when the truth values are
situated on both sides of the neutral element. The compensation property could be the key factor in
the wide range of uninorm applicability, mainly in decision making. Zimmermann experimentally
proved in [21], many years before the introduction of uninorms, that often human beings do not make
decisions interpreting AND like a t-norm and OR like a t-conorm, but that compensatory operators are
more adequate to model human aggregations to signify AND and OR in some situations. The use
of means as aggregators to define membership functions can be seen in [22]. However, when the
aggregated values are situated on one side with respect to the neutral element, then uninorms operate
either like a t-norm or a t-conorm.

Uninorms have been extended to other theories more general than fuzzy logic, due to their
applicability. Let us mention intuitionistic fuzzy sets, interval-valued fuzzy sets, and interval-valued
intuitionistic fuzzy sets; where the generalizations consist of the inclusion of an independent
non-membership function or an interval-valued membership function, or both [23]. They have
also been generalized as multi-polar aggregators in [24].

Following this trend, the authors of this paper defined the neutrosophic uninorms, such that
the uninorms were extended to the neutrosophy framework [25]. Neutrosophy is the philosophical
discipline that studies theories, entities, objects, phenomena, among others, related to neutrality [26].
In particular, neutrosophic sets contain three independent functions, namely, a membership function,
a non-membership function, and additionally, an indeterminate-membership function. The last
one represents what is unknown, contradictory, and paradoxical. Furthermore, these elements can
be intervals.

In addition, the relationship among these three functions has no restriction, contrary to the
intuitionist fuzzy sets, which must fulfill the constraint that the sum of the membership truth value
with the non-membership truth value of an element to the set does not exceed the unit.

Neutrosophy theory has been used in a wide spectrum of applications such as in image processing,
decision making, clustering, among others [27-30]. Therefore, it is not difficult to appreciate the
applicability of neutrosophic uninorms.

More recently, other concepts have been defined within the neutrosophy framework, which further
generalizes the traditional membership functions, including the axiomatic in probability theory.
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They are the undersets, oversets, and offsets, where the basic idea is that negative truth values or truth
values greater than 1 are permitted in the calculus [31].

A recurring example in literature is that concerning employment, where the truth value of a
worker’s effectiveness is measured in working hours. Those workers who have met all of their working
hours established for the week will be an effectiveness truth value of 1, those workers who have only
partially met their working hours have a truth value between 0 and 1, and other workers who have not
attended work throughout the week have the truth value of 0. In addition, those who have performed
voluntary overtime after meeting their established hours have a truth value greater than 1, and finally,
the workers who have not attended work throughout the week and, moreover, have caused losses to
the company, must have a negative truth value.

Other examples take into consideration the relationship between two variables or more, where a
negative value represents that they are inversely related, whereas a direct relationship is represented
by positive values [31].

The aim of this paper is to extend for the first time the theory of uninorms to the offsets
framework—we call them neutrosophic offuninorms—in such a way that they are a generalization
of both n-offnorms and n-offconorms equivalently, as fuzzy uninorms generalize both t-norms
and t-conorms.

In this paper, definitions and also properties of neutrosophic offuninorms will be given.
Additionally, we will emphasize the relationship between these new operators and the aggregation
functions used in the well-known medical expert system MYCIN [32], as well as define logical
implicators in offset fields and solve voting cooperative games.

In particular, the association of the proposed theory with the aggregation functions used in
MYCIN supports the hypothesis that neutrosophic offuninorms are more than an interesting theoretical
approach. Historically, within the fuzzy logic framework, some authors have accepted the idea
of extending the uninorms domain to [a, b], in order to include the aggregation functions used in
MYCIN, [33,34]. This proposal is an important precedent for this investigation because uninorms
were there adapted to offsets in the fuzzy theory context. The relationship between uninorms and the
PROSPECTOR operator, as well as their application, can be consulted in [35], where they were used
in e-arning.

Authors in [33,34] also emphasize that this generalization has important practical advantages
because it allows us to naturally apply uninorms in fields like Artificial Neural Networks and Cognitive
Maps. These elements certainly suggest that the proposed theory can be applied in fields like Artificial
Neural Networks based on neutrosophic sets and in neutrosophic cognitive maps, [36,37].

Let us observe that when uninorms have been extended to other domains they have preserved the
property of compensation. Further, we shall prove that offuninorms are not the exception; consequently,
the applicability of offuninorms is practically guaranteed. In the discussion section, we insist on this
aspect and the advantages that offuninorms have over other generalizations.

This paper is divided as follows. It begins with a preliminary section where concepts such
as neutrosophic sets, neutrosophic offsets, neutrosophic uninorms, among other useful aspects,
are discussed in order to develop the content of this article. The section on neutrosophic offuninorms is
devoted to exposing definitions and properties of these novel operators. Next, the applications section
is where the three possible areas of application of this theory are explained. We then finish with the
sections of discussion and conclusions.

2. Preliminaries

This section contains the main definitions necessary to develop the theory proposed in this
paper. We begin with Definitions 1 and 2, which introduce the neutrosophic sets. These sets are
characterized by an independent indeterminacy-membership function that models the unknown,
contradictions, inconsistencies in information and so on. Additionally, we have the classic membership
and non-membership functions, which are not necessarily dependent on each other.
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Definition 1. Let X be a space of points (objects), with a generic element in X denoted by x. A Neutrosophic Set
A in X is characterized by a truth-membership function T o(x), an indeterminacy-membership function I (x),
and a falsity-membership function Fa(x). T(x), [4(x), and F o(x) are real standard or nonstandard subsets of
170, 1*[. There is no restriction on the sum of Ta(x), Ia(x), and Fa(x), thus, ~0< inf Ts(x)+ inf Io(x) + inf
Fa(x) < sup Ta(x)+ sup In(x) + sup Fa(x)< 3% (see [26]).

The neutrosophic sets are useful in their nonstandard form only in philosophy, in order to make a
distinction between absolute truth (truth in all possible worlds—according to Leibniz) and relative
truth (truth in at least one world), but not in technical applications, thus the Single-Valued Neutrosophic
Sets are defined, see Definition 2.

Definition 2. Let X be a space of points (objects), with a generic element in X denoted by x. A Single-Valued
Neutrosophic Set A in X is characterized by a truth-membership function T 4(x), an indeterminacy-membership
function I14(x), and a falsity-membership function Fa(x). Ta(x), 1a(x), and F 4(x) are elements of [0,1]. There is
no restriction on the sum of Ta(x), Io(x), and Fa(x), thus, 0 <T o(x)+14(x) + Fa(x) < 3 (see [38]).

The domain of the single-valued neutrosophic sets does not surpass the limits of the interval [0,1].
This is a classical condition imposed in previous theories such as probability and fuzzy sets. Despite the
past, Smarandache in 2007 proposed the membership >1 and <0 and illustrated this proposal; see [39]
(pp. 92-93) and the example given in the introduction of this paper. In the following, the Single-Valued
Neutrosophic Oversets, Single-Valued Neutrosophic Undersets, and Single-Valued Neutrosophic Offsets are
formally defined.

Definition 3. Let X be a universe of discourse and the neutrosophic set A;CX. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership respectively,
of a generic element xeX, with respect to the neutrosophic set Ay:

T, 1, F: X—[0, O], where Q> 1 is called overlimit, T(x), I(x), F(x)€[0, Q)]. A Single-Valued Neutrosophic
Owerset Ay is defined as Ay = {(x, T(x), I(x), F(x)),x € X}, such that there exists at least one element in A;
that has at least one neutrosophic component that is bigger than 1, and no element has neutrosophic components
that are smaller than 0 (see [31]).

Definition 4. Let X be a universe of discourse and the neutrosophic set AyCX. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership, respectively,
of a generic element x€X, with respect to the neutrosophic set Aj:

T, I, F: X—[Y, 1], where ¥< 0 is called underlimit, T(x), I(x), F(x)e[¥, 1]. A Single-Valued Neutrosophic
Underset A, is defined as Ay = {(x, T(x), I(x), F(x)),x € X}, such that there exists at least one element in A,
that has at least one neutrosophic component that is smaller than 0, and no element has neutrosophic components
that are bigger than 1 (see [31]).

Definition 5. Let X be a universe of discourse and the neutrosophic set A3CX. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership respectively,
of a generic element xeX, with respect to the neutrosophic set Az:

T, I, F: X—>[Y, QJ, where ¥< 0 < 1 <O, Y is called underlimit, while Q) is called overlimit, T(x), I(x),
F(x)el¥, Q. A Single-Valued Neutrosophic Offset Az is defined as Az = {(x, T(x), I(x), F(x)),x € X}, such
that there exists at least one element in Az that has at least one neutrosophic component that is bigger than 1,
and at least another neutrosophic component that is smaller than 0 (see [31]).

Let us note that the oversets, undersets, and offsets cover the three possible cases to characterize.

Now, the logical operations over these kinds of sets have to be redefined, in view that the classical ones
cannot always be straightforwardly extended to these domains. This is the case of complement given
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by Smarandache in [31], whereas the union and intersection definitions do not change with respect to
those of single-valued neutrosophic sets. This is summarized below:

Let X be a universe of discourse, A = {(x,(Ta(x),Ia(x),Fa(x))),xeX} and B =
{(x,(Tp(x),Is(x), F(x))), x € X} be two single-valued neutrosophic oversets/undersets/offsets.

Ta,Ia, Fa, Tg, Ig, Fg: X—[¥, Q], where ¥< 0< 1 <O, ¥ is the underlimit, whilst () is the overlimit,
Ta(x), Ia(x), Fa(x),Tp(x), Ig(x), Fe(x)€[¥, Q)]. Let us remark that the three cases are here comprised,
viz., overset when ¥ = 0 and ()>1, underset when ¥< 0 and () = 1, and offset when ¥< 0 and Q> 1.

Then, the main operators are defined as follows:

AUB = {(x, {max(Tx(x), Tg(x)), min(Ix(x),Ig(x)), min(Fa(x),Fg(x))}),x € X} is the union.

ANB = {(x, (min(Tx (x), Tp(x)), max(Ia(x),Ig(x)), max(Fa(x),Fp(x)))),x € X} is
the intersection,

C(A) = {(x,(Fa(x), ¥+ Q—-1a(x), Ta(x))),x € X} is the neutrosophic complement of the
neutrosophic set.

Let us remark that when ¥ = 0 and Q) = 1, the precedent operators convert in the classical
ones. With regard to logical operators, e.g., n-norms and n-conorms, their redefinitions in the offsets
framework are not so evident. Below, definitions of offnegation, neutrosophic component n-offnorm,
and neutrosophic component n-offconorm are provided.

One offnegation can be defined as in Equation (1).

O(T, I, Fy = (F, ¥+ Oy -1, T) (1)

Definition 6. Let c be a neutrosophic component (To, Ip or Fp). ¢: Mp—[¥, Q], where ¥< 0 and Q>1.
The neutrosophic component n-offnorm N7, : [¥, Q) - [¥, Q] satisfies the following conditions for any
elements x, y, and z eMo:

i Nj(e(x), ¥) =Y, N}(c(x), Q) = c(x) (Overbounding Conditions),
ii.  Nj(e(x), c(y)) = N (c(y), c(x)) (Commutativity),

iii.  If c(x) < c(y) then NP (c(x), ¢(2)) < Np(c(y), c(z)) (Monotonicity),
iv. Ng(N(")(c x), c(y)),c(z)) = Ng( (x), N (c(y), e ))) (Associativity)

A
To simplify the notation, sometimes we use (Tq, Iy, Fy) o (T, 1, Fp) =

A
(T1 o

Let us remark that the definition of the neutrosophic component n-offnorm is valid for every one
of the components, thus, we have to apply it three times. Also, Definition 6 contains the definition of

\Y
T, L (V) L Fy ) Fa)instead of N3 (-).

n-normwhen¥ =0and Q =1.

Proposition 1. Let N{, (-, -) be a neutrosophic component n-offnorm, then, for any elements x, y €Mo we have

N2 (c(x), cly)) < min(e(x), c(y)).

Proof. Because of the monotonicity of the neutrosophic component n-offnorm and one of the
overbounding conditions, wehave Ngj(c(x), c(y)) < Nj(c(x), Q) = c(x), hence Ng (c(x), c(y)) < c(x)
and similarly N§(c(x), c(y)) < c(y) can be proved, therefore, N§(c(x), c(y)) < min(c(x), c(y)). O

See that Proposition 1 maintains this property of the n-norms. Likewise to the definition of

the neutrosophic component n-offnorm, in Definition 7 it is described the neutrosophic component
n-offconorm.
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Definition 7. Let ¢ be a neutrosophic component (To, Io or Fp). c: Mp—[Y¥, Q], where ¥< 0 and Q) >1.
The neutrosophic component n-offconorm N = [¥, Q}z — [¥, Q] satisfies the following conditions for any
elements x, y, and z EMo:

i. (x), Q) = Q, N¥(c(x), ¥) = c(x) (Overbounding Conditions),

Ng(e(x), Q) =
ii.  NZ(c(x), c(y)) = N3(c(y), c(x)) (Commutativity),
iii. f c(x) < c(y) then N“’(c(x), c(z)) < NF(c(y), c(z)) (Monotonicity),

iv. (NC c(x), ¢ z)) Ng’( » N&(e(y), (z)))(Associativity).

Y
To simplify the notation sometimes we use (Tq, Ij,Fy) o (Tp, Ip,Fp) =

A
(Tq T2, I o

I, Fq g F,) instead of N& (-, -).
Proposition 2. Let N3 (-, -) be a neutrosophic component n-offconorm, then, for any elements x, yeMo we have
Ng (e(x), e(y)) = max(e(x), c(y))-

Proof. The proof is equivalent to the proof of Proposition 1. O

In this paper, we use the notion of lattice, based on the poset denoted by <o, where (T1,1;,F1) <o
(T2,1p, Fy) if and only if T> > Ty, I, < Ij and F, < Fy, where the infimum and the supremum of the set
are (Y, ), Q) and (Q), ¥, ¥), respectively.

One property that is preserved of n-norms is that the minimum is the biggest neutrosophic
component n-offnorm for Tp, as it is demonstrated in Proposition 1. Proposition 2 proved that the
maximum is the smallest neutrosophic component n-offconorm for I and Fo when we consider <q.

Evidently, the minimum is a neutrosophic component n-offnorm and the maximum is a
neutrosophic component n-offconorm; see Example 1.

Example 1. An example of a pair off AND/offOR is, c(x) Z/z) c(y) = min(c(x),c(y)) and c(x) Z\z) c(y) =

max(c(x),c(y)), respectively.

\%

Example 2. A pair of offAND/offOR is, c(x) c(y) = max(¥, c(x) +c(y) — Q) and c(x) LO c(y) =

A
LO
min(Q), c(x) + c(y)), respectively.

Example 2 extends the Lukasiewicz t-norm and t-conorm to the neutrosophic offsets. Let us
remark that the simple product t-norm and its dual t-conorm cannot be extended to this new domain.
Finally, we recall the definition of neutrosophic uninorms that appeared in [25], see Definition 8.

Definition 8. A wneutrosophic uninorm Uy is a commutative, increasing, and associative
mapping, Uy : (70, 1+[x]70, 1*[x]-0, 1*[)* = |70, 1*[x]70, 1*[x]70, 1*], such that
UN(x(TX, L, Fx), Ty, I, Fy)) = (UnNT(x,y), UnI(x,y), UNF(x,y)), where UNT means the degree of
membership, UnI the degree of indeterminacy, and UNF the degree of non-membership of both x and y. Additionally, there
exists a neutral elemente € |70, 17[x]70, 17[x]70, 1], where Vx €70, 1*[x]70, 17[x]70, 1], Un(e,x) = x.

Let us observe that this definition can be restricted to single-valued neutrosophic sets. Neutrosophic
uninorms generalize n-norms, n-conorms, uninorms in L*-fuzzy set theory, and fuzzy uninorms.
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3. On Neutrosophic Offuninorms

This section contains the core of the present paper. It is devoted to exposing the definitions and
properties of the neutrosophic offuninorms.

Definition 9. Lef c be a neutrosophic component (To, Ip or Fp). c: Mpo—[¥, O], where ¥< 0 and Q>1.
The neutrosophic component n-offuninorm Ny : [¥, Q] - [¥, Q] satisfies the following conditions for any
elements x, y, and z eMp:

i.  There exists c(e)eMo, such that N{,(c(x), c(e)) = c(x) (Identity),
ii.  N(e(x), c(y)) = N§(c(y), e(x)) (Commutatwlty)
) <

iii.  If c(x) < c(y) then N (c(x), c(z)) < N§(c(y), c(z)) (Monotonicity),
o, NB(NB(c(x), c()),c(z) = Ni(c(x), NI (cly), clz))) (Associativity).

The definition of a neutrosophic uninorm is an especial case of neutrosophic offuninorm when
¥ = 0and Q) =1 (see Definition 8) and, additionally, we are dealing with single-valued neutrosophic sets.

It is easy to prove that the neutral element e is unique.

Let c be a neutrosophic component (Tp, Ig or Fp). c: Mo—[¥, O], where ¥< 0 and ()>1. Let us define
four useful functions, ¢1: [¥, c(e)] — [¥, O], (pl’1 Y, Q- Y, cle)], o2 [cle), Q] = [¥, O],
and @3 L [¥, Q] = [c(e), Q, defined in Equations (2)—(5), respectively.

or(e) = (5 e - )+ ¢ @
o7 e() = (g et - )+ ¥ ®
02(e0) = s et - cle + ¥ <4>
7' (c) = (Tt = ) e ©

where, the superscript -1 means it is an inverse mapping. If the condition c(e) € (¥, Q) is fulfilled,
then the degenerate cases ) =¥, c(e) =¥ and c(e) = (Y are excluded. Therefore, @1 (c(x)) and @2(c(x)) are
well-defined non-constant linear functions. Thus, they are bijective and have inverse mappings defined
in Equations (3) and (5), respectively, in the sense that for c(x) € [¥, ], then (Pl((Pl_l (c(x))) = c(x)
and (p2(<pzfl (c(x))) = ¢(x). Whereas, for c(x) € [¥, c(e)], we have ¢! (¢1(c(x))) = c(x) and for
c(x) € [c(e), O, ;1 (p2(c(x))) = c(x). These properties can be easily verified. Also, it is trivial that
they are non-decreasing mappings.

Additionally, let Uc, Up : [Y¥, Q]* - [¥, Q] be two operators defined by Equations (6) and
(7), respectively,

o7 (or(e) § oatetn)) ittt € ¥, <o)

Ul =1 3 gateto)) & aletn) ) ittt e, ©

min(c(x),c(y)), otherwise
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A

o7 (1(c0) & on(clw)] ittt €1, o)

\%

o5'(w2(c0) & waletw), ifcta) e € ), 0 )

max(c(x),c(y)), otherwise

Up(c(x),c(y)) =

A . \
where, denotes a neutrosophic component n-offnorm and

(@] o

n-offconorm.

denotes a neutrosophic component

Lemma 1. Let ¢ be a neutrosophic component (T, Ip or Fp). ¢: Mo—[¥, Qf, where ¥< 0 and Q>1. Given

g a neutrosophic component n-offnorm and (\;
Uc(c(x),c(y)) and Up(c(x),c(y)) the operators defined in Equations (6) and (7) for c(e) € (¥, Q). They are
commutative, non-decreasing, and c(e) is the neutral element.

a neutrosophic component n-offconorm, let us consider

Proof.

. T . e .. A \% ,

i Commutativity is evidently satisfied due to the commutativity of o’ o ™Min and max.

.. 7‘1 71 /\ v . . .

ii. @1(1), 07 (), 92(), @3 (), o’ o mn and max are non-decreasing mappings, thus both
Uc(+, -) and Up(-, -) satisfy monotonicity.

iii. To prove c(e) is the neutral element, we have two cases, which are the following:

¢ 16e(x) € 1¥, (o), then, Ucle(e) o)) = Un(e(ee(x) = o7 (wn(ee)) § on(c(x) =

o7'(0 & orlet) = o7 r(c0)) = et
e I cx) € [c(e)Q, then Uc(elehe(x)) =  Uplele)clx)) =
@51(@2(0(6)) ° @2(C(x)))<051(‘Y o <p2<c(x>>) = ;' (02(c(x)) = c(x).

Therefore, identity is satisfied. O

Lemma 2. Let ¢ be a neutrosophic component (To, Ip, or Fo). ¢: Mo—[Y¥, Q], where ¥< 0 and Q>1.

Given g a neutrosophic component n-offnorm and (\;
consider Uc(c(x), c(y)) and Up(c(x),c(y)) the operators defined in Equations (6) and (7) for c(e) € (¥, Q).
They are associative.

a neutrosophic component n-offconorm, let us

Proof. Four cases are possible:
i. Let c(x),c(y), c(z) € [¥, c(e)], then UC(UC(C( c(y)),c(z))
ol & wiw))
o7'| o1 @7(e1(e(x) (pl(C(y)))) o #1e() ) ([(m 91(c (y))] o #1e@)

:(pgl(m(c(x))g[m(c(y))O«plcz»])—wl (e c<x>>g[<p1( [ ) @1(6(2))])]):

w{l(tm(C(X)) 8 (Pl(UC(C(y)rC(Z>>))=UC(C(x)/UC(C(y)rC(Z)))~
ii. Let c(x),c(y), c(2) € [c(e), O, Uc(Uc(e(x), c(y)), c(z)) =
@;1(@2(@51(@2(6(96)) (\; (Pz(C(y)))) (\; (Pz(C(Z))) = wgl([mz(C(X)) o @z(C(y))} @z(C(Z))) =

v“
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o5'{ostc0) § Joatet) g enteen|) = o3'(wntctn & fosfoz’|entetnn § oateto])]) -

(pgl(q)z(c(x)) g) cpz(UC(c(y),c(z)))) = Uc(c(x),Uc(c(y),c(z))). These proofs are also valid for Up.

iii.  Letc(x),c(y) € [¥, c(e)] and c(z) € [c(e), Qf, Uc(Uc(e(x),c(y)),c(z)) = min(Uc(c(x),c(y)), c(z)) =
Uc(c(x),¢(y))- Also, we have Uc(c(x), Uc(c(y),c(2))) = Uc(e(x), min(c(y),c(z))) = Uc(e(x),c(y)),
then, it is associative.

iv. Let c(x),c(y) € [c(e), Q] and c(z) € [¥, c(e)], then Uc(Uc(c(x),c(y)),c(z)) =
min(Uc(c(x),c(y)),c(z)) = c(2). In  addition,  Uc(c(x), (Uc(c(y),c(2)))) =
Uc(e(x), min(c(y), c(2))) = Uc(e(x),¢(z)) = min(c(x),c(z)) = c(z).

Thus, Uc satisfies the associativity.
Similarly, associativity of Up can be proved.

Let us remark that we applied the properties, c(x) é\) ¢(y) < min(e(x), ¢(y)) and c(x) g) c(y) =
max(c(x), ¢(y)), as well as Uc(c(x),c(y)) < c(e) if c(x), c(y) € [¥, c(e)] and Uc(c(x),c(y)) = c(e) if
c(x), e(y) € [cle), OQ]. O
Proposition 3. Let c be a neutrosophic component (Tp, Io, or Fp). ¢: Mp—[¥, Q], where ¥< 0 and
O>1. Given (/; a neutrosophic component n-offnorm and (\; a neutrosophic component n-offconorm, let us
consider Uc(c(x),c(y)) and Up(c(x),c(y)) the operators defined in Equations 6 and 7 for c(e) € (¥, Q).
Then, Uc(c(x),c(y)) and Up(c(x),c(y)) are neutrosophic component n-offuninorms and they satisfy the

conditions Uc(¥, Q) = ¥ and Up(¥, Q) = Q, ie., Uc is a conjunctive neutrosophic component
n-offuninorm, and Up, is a disjunctive neutrosophic component n-offuninorm.

Proof. Since Lemma 1, they are commutative, non-decreasing operators, and c(e) is the neutral element.
Since Lemma 2, they are associative operators. Moreover, it is easy to verify that Uc(¥, Q) = ¥ and
Up(Y, Q) =Q. 0

Example 3. Two neutrosophic component n-offuninorms can be defined as:

o7 (1(e) 10, oaletw)) it ) € ¥, <o)

Uzc(c(x),c(y)) = (pgl(@z(c(x)) ZVO (pz(c(y))), if c(x),c(y) € [c(e), O]

min(c(x),c(y)), otherwise

o7 (1(c) 50, (et ifclo)ly) €1, cle)

O =Y g ane) gty et} et ) € @), €1

max(c(x),c(y)), otherwise

A \Y% . .
where 70 and 70 were defined in the Example 1; c(e)e(¥, Q).

Then two examples of n-offuninorms are:Uy ((T1, 11, F1), (To, Ip, F2)) =
(Uzc(Ty, T2), Uzp (11, I2), Uzp (Fi, Fa)) and Ua((T1, I, F1), (T2, I, Fp)) =
(Uzp(T1, T2), Uzc (Iy, I2), Uzc (Fy, Fa)).

They satisfy Ui ((¥, Q, (O, Y, 7)) =Y, Q,0)and U,((¥, O, O),(Q, T, 1)) =(Q, ¥, 7).
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Example 4. Two neutrosophic component n-offuninorms can be defined as

o7 (o1(c0) g 01(ct) it ey € [¥, oo

o3 (w2(c0) 1y 2(ct), ittt € o), €1

min(c(x),c(y)), otherwise

Urc(e(x),e(y)) =

o7 (or(e) & clw)) ifetwcw) € [¥, o)

5" {0ale()) () 0alclw)} £ c(v) € fle), €1

max(c(x),c(y)), otherwise

Uwp(e(x),¢(y)) =

where " and v were defined in the Example 2; c(e)e(¥, Q).

LO LO
Now, two examples of  n-offuninorms are:U3 ((T1, Iy, F1), (T2, I, F2))
(ULc(Ty, T2), Urp (I, I2), ULp (Fy, F2)) and Us((Ty, 1y, Fr), (Ta, I, F2))

(Urp(T1, T2), Urc (I, I2), Urc (Fy, Fa)).
They satisfy, U3(<‘Y, O, 0,0, Y, ‘Y)) =(¥, O,0O)and U4(<‘Y, 0,0),(Q), ‘Y,T)) =(O, Y, Y%).

Remark 1. The neutrosophic components n-offuninorms defined by Equations (6) and (7) are idempotent, i.e.,
N (c(x),c(x)) = c(x), if and only if they are defined from idempotent neutrosophic component n-offnorms
and n-offconorms. Moreover, they are Archimedean, i.e., they satisfy both, N§(c(x),c(x)) <o c(x) when
¥ <c(x) <c(e) and c(x) <o N (c(x),c(x)) when c(e) < c(x) < Q, ifand only if the neutrosophic component
n-offnorm and n-offconorm are Archimedean. Let us observe that <g is the order < defined in the real line when
c(x) is To(x) and it is > when c(x) is Io(x) or Fo(x).

Proposition 4. Let ¢ be a neutrosophic component (To, 1o or Fo). ¢: Mo—[Y, O], where ¥ < 0 and Q0> 1, and let
a neutrosophic component n-offuninormNy, : [¥, QO = [¥, Q). Then, for every x, y € Mo, a neutrosophic
component n-offnorm and a neutrosophic component n-offconorm are defined by Equations (8) and (9).

A

@) o <) = er(N§(er" (e (), 07 (1)) ®)
() L <) = @2(NB (031 (), 031 (c(1)))) ©)

Proof. Evidently, both operators are commutative, since Ng is. Also, it is non-decreasing since N and
the functions in Equations (2)—(5) are. They are associative because of the associativity of N‘é.

It is easy to verify that the overbounding conditions UAO c(y) = c(y) and ¥ UVO c(y) = c(y)
are also satisfied.

Additionally, we have ¥ U/\O c(y) = (pl(Ng((pl’l (¥), 07! (c(y)))) = (pl(Ng(‘I’, o7 (c(y)))) <

A
ml(Ng(‘F,c(e))) = @1(¥Y) = Y, then, ‘YUO cly) = V¥, also, QUO c(y)

02(N&(031(Q), 031 (1)) = 02(NE(Q, 031 (e(1)))) = @2(NE(Q, 031 (¥))) = 92(NE(Q,c(e))) =

©2(Q) = Q, then, O =0.0o

0o <)
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Proposition 5. Let (T, Ip, or Fp), co: Mpo—[Y, O and (T, 1, or F), c: MN—[0,1] be a neutrosophic
component n-offset and a neutrosophic component, respectively. There exists a bijective mapping such that every
neutrosophic component n-offuninormis transformed into a neutrosophic component uninorm and vice versa.

Proof. Let us define the function @3 : [¥, Q] — [0, 1] and itsinverse ¢;* : [0, 1] — [¥, O], expressed
in Equations (10) and (11), respectively.

c(x)-Y¥
03(c(x)) = -5 (10)
03'(c(x) = (Q=¥)e(x) +¥ (11)

Evidently, they are increasing bijective mappings.
1f Un (-, ) is a neutrosophic uninorm, then we can define the neutrosophic component n-offuninorm
No (-, ) as follows:
Ko (co(x),co(y) = 03" (On(@s(co(x)), w3(co(y))))

Conversely, if we have N{(.,-), we can define Ux(-,-) as follows:
On(en(x), en(y)) = 03( No (03" (en(x)), 03" (en()))

Then, it is easy to prove that No(co(x),co(y)) is a neutrosophic component n-offuninorm
and Un(cn(x),en(y)) is a neutrosophic component uninorm. Moreover, the relationship between
the components of their neutral elements co(ep) and cn(en) is en(en) = @3(co(eo)) and thus
co(eo) = @3 (en(en)). O

Let us remark that we maintain the definition of inverse mapping that we explained in Equations (3)
and (5).

In agreement with Proposition 5, many predefined neutrosophic uninorms can be used to define
n-offuninorms. In turn, fuzzy uninorms can be used to define neutrosophic uninorms, thus, it is simply
necessary to find examples in the field of fuzzy uninorms; see further Section 4.1. First, let us make
reference to some properties of n-offuninorms.

Proposition 6. Let ¢ be a mneutrosophic component (To, Io or Fp). ¢ Mop-lY,
QJ, where ¥< 0 and Q>1. Given the neutrosophic ~ component  n-offuninorm
N§: [¥, QP > [¥, Q] and the offuninorm Uo: ¥, QP x[¥, > [¥,
defined from N§ (), Uo((To(x),Io(x),Fo(x)),(To(y).Io(y), Fo(y))) =

(Ng(To(x), To(y)), N§(Io(x), Io(y)),NE’)(FO(x), Fo(y))), satisfies the following properties for
any x = (To(x),Io(x), Fo(x)), denoting ¥o = (¥, Q, Q) and Qo =(Q, ¥, ¥):
Uo(Yo, Yo) = Yo and Up(Qo, Qo) = Qo-
Ifc(e);t‘Y, Q), then, Uo(‘Po,Qo) = UO(Uo(‘Yo, Qo),x)
Ifc(e)#+¥,Q), theneither Up (Yo, Qo) = Yo or Uo(F¥o, Qo) = Qo orUo (Yo, Qo) is <p-incomparable
respect toe = (Tp(e),Io(e), Fo(e)).
4. If there exists y = (To(y),lo(y),Fo(y)), such that either x <p e <o y or y <p e <o X, then,
min(x,y) <o Uo(x,y) <o max(x,y).

Proof.

1. Since Nj(¥, c(e)) = ¥ and N (Q, c(e)) = Q and considering that N§ (¥, -) and N§ (€, -) are
non-decreasing, the result is trivial. Then, Uo (Yo, Yo) = Yo and Up(Qo, Qo) = Qo.

2. First suppose c(x) < c(e), then N (¥, c(x)) < NJ(¥, c(e)) = ¥, therefore N{ (¥, c(x)) =
¥, thus N (¥, Q) = NJ(NS(¥, c(x)), Q) = NB(Q, N&(¥,c(x))) = NE(NS(Q, ¥),c(x)
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= NB(NB(‘F, Q),c(x)). See that we applied the commutativity and associativity of
N§(+, ). Now, suppose c(e) < c(x), then Ng(c(x),Q) = Nj(c(x),Q)) = Q, therefore,
Ng(c(x), Q) = O, and N&(¥, Q) = N(¥, N&(c(x),Q)) = NZ(NE(Q,¥),c(x)).
Suppose x and e = Tole),lo(e),Fole) are <p-incomparable, ie., x €o e and
x N e= min(To(x), To(e)), max(Ip(x),Io(e)), max(Fo(x),Fo(e)) <o x
O
e %o x. Then, v Then,
<o max(To(x), To(e)), min(Ip(x),Io(e)), min(Fo(x),Fole)) = x 0°¢

A
according to the previous results we have Up(¥Yo, Qo) = UO(UO(‘YO, o), x o 6) =

\Y

O
Uo(To, Qo) = Uo(Uo(‘Fo, Qo),x). Then, we proved Uo(‘fo, Qo) = Uo(Uo(‘Yo, Qo),x).

3. Suppose Up (Yo, Qo) is <p-comparable respect to e, then, if Uo (Yo, Qo) <o e since the previous
pl‘OOf Uo(‘l'ro, Qo) = Uo(Uo(‘Yo, Qo),lyo) = ‘Yo. Ife <o Uo(‘Yo, Qo) then Uo(‘Yo, Qo) =
Uo(Uo(¥o, Qo), Qo) = Qo.

4.  Let us assume without loss of generality that x <o e <o y, then, x = Up(x,e) <o Uo(x,y) <o
Uo(ey) =y.O

UO(UO(‘I"O, Qp), x e), thus, for the increasing condition of Ug(-, -) it is satisfied

When c1: Mp—[¥1, )] and c: Mp—[¥2, ;] are two neutrosophic components, such that
Y1#¥, or O£y, satisfying that at least one of ¥1 and ¥ is smaller than 0, or at least one of (2; and
), is bigger than 1, then, a neutrosophic component n-offuninorm aggregates both of them, according
to the interpretation we have to obtain.

For example, if c;: MO—[-1,1] and c2: MO—[0,1], and the first one means the relationship
between two variables like the linear regression coefficient and the second one represents a
classical probability, if we need to obtain the aggregation in [-1,1] in the framework of variable
relationships, then after transforming ¢; : Mp — [0,1] to & : Mg — [-1, 1], we aggregate c¢; and &
using N§ : [-1, 1> = [-1, 1], only in the case that it makes sense to rescale c,, otherwise, because
[0,1] c[-1,1], we can apply N§ : [-1, 1]2 — [-1, 1] over ¢; and ¢;.

However, if we need to obtain a classical probabilistic interpretation, then we aggregate c;:
Mp—[0,1] and ¢ : Mg — [0, 1], where &; is a transformation obtained from c;: Mp—[-1, 1].

Example 5. Let us revisit Example 3 with Uy : [-0.7, 12°x[-0.7, 12> > [-0.7, 1.2]* and neutral
element e = (=0.5, 0,0), defined as Uy ({T1, 11, F1),{T2, o, F2)) = (Uzc(T1, T2), Uzp(I1, I2), Uzp (F1, F2)).
Then, we have:

max(To(x), To(y)), if To(x), To(y) € (0.5, 12]

Urc(To(x), To(y)) = { min(To(x), To(y)), otherwise

) 1lo(y) € [-0.7, 0]
, otherwise

min(Ip(x),Io(y)), if Io(
max(Ip(x),Io(y)

min(FO(x)rFO(y))r if FO
max(Fo(x), Fo(y

=

Unn(lo(@), Io(y)) = {

x),Fo(y) € [-0.7, 0]
), otherwise

=~ =

Uin(Folx), Fo(y)) = {

Let us aggregate the elements of A = {(x1,(1.2,0.4,-0.1)), (x2,(0.2,0.3,-0.7))} by using Uy (-,-),
then, Uy ((x1,(1.2,0.4,-0.1)), (x2,(0.2,03,-0.7))) = (Urc(1.2,0.2), Ui (0.4,0.3), Urp (0.1, -0.7)) =
(1.2, 0.4,-0.7).
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4. Applications

In the following, we illustrate the applicability of the present investigation aided by three areas
of application.

4.1. N-Offuninorms and MYCIN

Let us start with the parameterized Silvert uninorms, see [40]:

hen(Hen(y) - 2
una (en (%), en (y) { Ten a1+ (-an CoTenG 1 (N (), en(y)) € 10, 1{(0, 1), (1, 0))
0, otherwise

where A > 0 and cn(ey) = ALH To convert this family to the equivalent one defined into
[-1,1] we have to apply the Equations in Proposition 5. Then, it is obtained up(co(x),co(y)) =

(A=1)(1+co(x)co(y))+(A+1) (co(x)+coly)) . 2
D@ T Dm0t cow) € (=1, IN(=1, 1), (4, -DF coley) = 122
0, otherwise +
Let us note that Alir&co(e/\) =1land /\hT co(ey) = —1. Therefore, the closer A approximates

to 0, the closer up, (-, -) performs like a neutrosophic component n-offnorm; whereas, the greater A,
the closer 1o, (-, ) performs like a neutrosophic component n-offconorm.

An additional consequence of these assertions is that inequalities O0<Ai<A, imply
uon, (€o(¥),co(y)) < o, (co(x), co(y)).

Applying Equations (2)—(5) to the conditions of the present example, the following transformations
are obtained:

Prlco(®) = (1+A)co() + A, dilco(x) = G2, darlcox))

Aco(x)+1

(PZA(CO( )) = T 11 -

Then, a neutrosophic component n-offnorm and a neutrosophic component n-offconorm are
defined from Equations (8) and (9), as follows:

(1+A)C)lO(X)_l and

W) = (0@ orley)  and @) (el =

21(102 (92} (c(x)), @31 (c(y)))), respectively:
Other properties of 1o, (-, -) are the following:
A-1
_ _ ] i ifco(x) € (-1, 1)
L won(eoe)~co() ={ T 100 €1
2. up(+,-) is Archimedean. To prove it, given co(x) < co(er), then upy(co(x),co(x)) <
uoa(co(x),coler)) = co(x) and if co(x) > coler), uor(co(x),co(x)) = uoa(co(x),coler)) =

co ().
To prove those inequalities are strict, let us suppose the equation
uox(co(x),co(x)) = /\+1 ((1+C2 ))):22(’:\*'3 023 = ¢o(x) holds, or equivalently (A — 1)(1 +cé(x)) +
20+ 1)co(x) = co@[A+D(1+ (x))+2(/\—1)co(x)], thus, (A-1)(1-cA(x) +

A+1)eo(x)(1 -2 (x)) = 0 and finally, (1 - A=14 (A+1)co(x)) = 0, hence the solutions are
0 Y o x
co(x) = 1 and co(x) = co(ey). Then, we conclude it is Archimedean.
A remarkable case is A = 1, which converts into Equation (12).

LWl if (¢(x), coly)) € [-1, 12\(-1, 1), (1, -1))

uop (Co(x),(,'o(y)) = { 1I+co(x)eco(y) (12)

—1, otherwise

1o1(+,+) is the function called PROSPECTOR which aggregates hypothesis values or Certainty
Factors (CF) related to MYCIN, the well-known medical Expert System; nevertheless, the function
used in MYCIN is undefined for the arguments (=1, 1) and (1, —1), see [32-34]. Summarizing, we can
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say that PROSPECTOR is a neutrosophic component n-offuninorm, such that co(e;) = 0, which is an
effective and widely used aggregation operator.

1o1(+,+) means the combination of the CFs of two independent experts about the hypothesis
H. CF = -1.0 means expert has 100% evidence against H and CF = 1.0 means he or she has 100%
evidence to support H. The smaller the CF, the greater the evidence against H; the larger the CE,
the greater the evidence supporting H; whereas evidence with degree close to 0 means a borderline
degree of evidence. Here, up (co(x), —co(x)) = 0, where up1(-1,1) = up1(1,-1) = -1 for meaning
that the 100% contradiction is assessed as 100% against H. The original 1o (-, ) in [32] accepts they
are undefined.

Another function is the Modified Combining Function C(x,y), see [34], defined as

x+y(l-x), ifmin(x,y) >0
x+y e
Clx,y) = o]’ if min(x, y) < 0 < max(x, y)
x+y(1+x), if max(x,y) <0

The components n-offnorm and n-offconorm obtained from the PROSPECTOR are the following:

A _4(co(x)+co(y)-2) v _ 4co@+eo(y)+2)
o) 15 W) = Tom D +1 ad o) 5ol = FrEmmemm v

respectively, see Figures 1 and 2.

Generated Offnorm
I

\

[———

\
|

Figure 1. Depiction of the neutrosophic component n-offnorm generated by up (-, -).

Hitherto we mostly calculated on neutrosophic components, nevertheless n-offuninorms
have to be defined for the three components altogether. For example, given x,y € [-1, 1]3,
Una(x,y) = Cuon, (To(x), To(y)), uon,(Io(x),Io(y)), uors (Fo(x), Fo(y))) is an n-offuninorm, which
evidently it is not conjunctive, neither is it disjunctive, see that Uy, ((-1, 1,1),(1,-1,-1)) =
(~1,-1,-1).

Conjunctive and disjunctive neutrosophic component n-offuninorms were illustrated in Example
3; see also Example 5. Example 6 is a hypothetical example to explain the use of this theory in a
real-life situation.

Example 6. Three physicians, denoted by A, B, and C, have to emit a criterion about a patient’s disease which
suffers from somewhat confusing symptoms. They agree that the Certainty Factor is the better way to express
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their opinions. They use single-valued neutrosophic offsets, instead of a simple CF to increase the accuracy of
the criteria.

After a discussion, they are convinced that it is most likely that the patient has either a thyroid
disease or an infectious one. The treatment for each disease is different each other. Therefore, they have
two hypotheses; one is Ht which means the patient has thyroid disease and Hj that patient has an
infectious disease.

Generated Offconorm

Figure 2. Depiction of the neutrosophic component n-offconorm generated by upq (-, -).

Physician A thinks that the probability they are dealing with a thyroid disease is At = <-0.6, 0.4,
0.6> and that it is an infectious disease is A| = <0.8, —0.5, —0.8>, thus, A is 60% against Ht and 40%
undecided about it; however, A is 80% in favor of H; and 50% sure about it.

Similarly, we have that B’s criteria are, By = <—0.1, —0.2,0.1> and By = <0.1, 0.8, —0.1>, whereas C’s
criteria are Ct = <0.7, 0.1, —=0.2> and C; = <-0.6, 0.3, 0.7>.

To decide what is the strongest hypothesis, Hr or Hj, they select the well-known PROSPECTOR
function used in MYCIN (see Equation (12)) for each component.

Thus, for Hr we have an aggregated value equal to <0.073684, 0.31064, 0.53043> and for Hj it
is <0.46667, 0.23529, —0.32>, therefore, evidently, the infectious disease is the strongest hypothesis,
because (0.073684, 0.31064, 0.53043) <o (0.46667, 0.23529, —0.32).

Despite we proved in Proposition 5 that neutrosophic uninorms are mathematically equivalent to
offuninorms, it is worthwhile to remark that the reason for using an interval different of [0, 1] is that it
could be useful to model real-life problems. The present example is a good one to explain that reason.
The advantages arise from the accuracy and compactness of an expert’s information. In this example,
from an expert’s viewpoint, it is easier to express opinions in the scale [-1, 1] with the aforementioned
meaning than in the scale [0, 1], which is less clear. Information compactness is given because of only a
single offset is semantically equivalent to at least two neutrosophic sets.

Additionally, because of the significance of functions like 1o (-, -) and C(x,y), which were used as
aggregation functions in that well-known expert system, some authors have extended the domain of
fuzzy uninorms to any interval [a, b], not necessarily restricted to a = 0 and b = 1; see [33,34].

This fact supports the usefulness of the present work, where for the first time the precedent ideas
on extending the truth values beyond the scope of [0, 1] naturally associate with the offset concept
maintaining the original definitions of the aggregation functions used in MYCIN.

Another powerful reason is the applicability of up(-,-) and C(x,y), and hence of the fuzzy
uninorms defined in [a, b], as threshold functions of artificial neurons in Artificial Neural Networks,
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as well as to Fuzzy Cognitive Maps, which are used in fields like decision making, forecasting, and
strategic planning [33].

Such applications of uninorms in the fuzzy domain can be explored in the framework of
neutrosophy theory, e.g., in Artificial Neural Networks based on neutrosophic sets, in Neutrosophic
Cognitive Maps, among others [36,37].

4.2. N-Offuninorms and Implicators

Fuzzy uninorms are used to define implicators (see [41], pp. 151-160). This application was
extended to neutrosophic uninorms ([25]). To extend the implication operator in the offuninorm
framework, first, we need to consider the notion of offimplication, which has been defined symbolically.

The Symbolic Neutrosophic Offlogic Operators or briefly the Symbolic Neutrosophic Offoperators extend
the Symbolic Neutrosophic Logic Operators, where every one of T, I, F has an under and an over
version (see [31], pp. 132-139).

To = Over Truth,

Ty = Under Truth;

Ip = Over Indeterminacy,

Iy = Under Indeterminacy;

Fo = Over Falsehood,

Fy = Under Falsehood.

Let Sy = {To, T, Tu, Io, LIy, Fo, F, Fy} be the set of neutrosophic symbols, an order is defined in
Sn as follows: if ‘<’ denotes “more important than”, we have the following order, Ty < Iy < Fy < F <
I<T<Fo<lp<To where —c0o < Ty <Iy<Fy<0,0<F<I<T<land1<Fg<Ip<Tp<+o0;
see Figure 3. Let us note that the proposed order is not the unique one, it depends on the decision
maker’s objective.

Tu<lv<Fu F«I=<T Fazlo=<Ta
- I 1
- I |
-0 1] 1 +oo

Figure 3. Ordered symbolic neutrosophic components in the neutrosophic offlogic.

Let us observe that I is the center of the elements according to <. For every « € Sy, the symbolic
neutrosophic offcomplement is denoted by Co(oc) and it is defined as the symmetric element respect
to the median centered in I, e.g., Cso(Fp) = Fy and Cso(F) = T, hence, given « € Sy its symbolic

neutrosophic offnegation is S_(\D o = Cgo(x).

Additionally, for any «, € Sy the symbolic neutrosophic offconjunction is defined as o S/(\) B=
min(«, B), the symbolic neutrosophic offdisjunction is defined as « SVO B = max(e, B), whereas the
symbolic neutrosophic offimplication is defined in Equation (13).

e Y% 13
“s0 P=s0%s0 P 13)

In this paper, we redefine some of the symbolic neutrosophic offoperators to the continuous
quantitative domain. Given € [¥, ], where ¥ < 0 or Q > 1, the neutrosophic offnegation is defined by
Equation (14).

ﬂ__{mm{Q,l—oc},lfocSO.S (14)

0% | max{¥, 1-w), if &> 05

The neutrosophic offnegation satisfies the following properties:
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1. Itis a non-increasing operator, which extends the classical negation operator in fuzzy logic theory.
It is strictly decreasing when () + ¥ = 1.

2. It extends the notion of symbolic neutrosophic offnegation because satisfies the following
properties:

2.1 Itis centered in 0.5, i.e., o 0.5 = 0.5, therefore I = 0.5.

"' 1 =0, which is the usual negation

22  Ifxe |0, 1], then 0

Sae[o,u, 80:1and

operator in fuzzy logic.

23 If® <0, then ;Rzl. S&:lonlywhenozl.

24 If « > 1, then ;RSO. S ® = 0 only when ¥ = 0.

2.5 When Q)+ Y =1, we have (_‘) Y =Qand (_‘) Q=Y.

3. IQ+Y¥=1then _

0 o0 X=% forevery x € [¥, Q).

The precedent properties are easy to demonstrate.
Hence, the definition of offimplication 8 (¥, QP x[¥, QF - [¥, Q) is defined in Equation

(15), for every % B ey, 0]3.
T b= <Ng’( o To(®), TO(E)), N‘g( o lo(@®), Io(E)),NgZ( o Fo(@), Fo(E))> (15)

where, Ng (-, -) i=1, 2 are neutrosophic components n-offnorms, N& (-, -) is a neutrosophic component

n-offconorm, and is the offnegation defined in Equation (14).

)
Equation (15) is generalized by using offuninorms, see Equation (16).

-

uo

|

5 To(®), TofF)}, N3( 5 10®, o)) N5( 5 Fol@), Fo(F)) 19

B:<Ngl(

where Ng‘ (-, ) fori=1, 2, and 3 are neutrosophic components n-offuninorms.

Example 7. One illustrative example of Equation (16) is obtained revisiting Section 4.1, by defining the
following neutrosophic component n-offnorm:

3(co(x)+1) (Co(y)+1) 1 1 212\ {(— _
uo(co(x),co(y)) ={ @ o+ G-t ~ v I (Co(x), co(y) € [-1, 2M(-1, 2), (2, 1))

—1, otherwise

This is the transformation of Silvert uninorms to the domain [-1, 2]? applying the functions in
Equations (10) and (11), and the transformation in Proposition 5. Also, let us take Uzp(c(x),c(y)) of
Example 3. See that [—1, 2] is symmetric respect to 0.5, and the neutral element is 0.5.

Then, we study the offuninorm defined in the following equation:Up(x,

)
(Uzn(To(®), To(B)), uo(lo(®),1o(B)), uo(Fo(®),Fo(B))) for & = (To(), lo(®),Fo()) and
B = (To(B), Io(B), Fo(B)) in [-1, 2.

Thus, we define the offimplication generated by Up (-, ) according to Equation (16) as follows:
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-
04

Uo

-

O

B = <UZD( o To(®), To(ﬁ)), uo(

where in this case we have Uzp (TO (%), TO(B)) = {

Io(®), IO(B)), uo( 5 Fo (), FO(B))>~

min(To (%), To(B)), if To(%), To(B) € [-1, 1]
max(TO(&), TO(E)), otherwise

see Figure 4, and uo (-, -) models the neutrosophic n-components I and Fo, see Figure 5.

)

U _(~ T (0T
' 0 "0 7o

20

% Cof: Colt)

0(00

| [[T7
1111177272
1] 171117 1117777
777
’lll,'

Figure 5. Depiction of the neutrosophic n-offimplication generated by ug for both, I and Fq.

This offimplicator satisfies

the overbounding conditions

(-1,2,2)  (=1,2,2)=(-1,2,2) (2 -1, -1)=(2, -1, -1) (2, -1, -1) = (2, -1, -1),
Up Uop Up

whereas, (2, =1, =1y (=1, 2, 2) = (-1, 2, 2).
Up

Also, (0, 1, 1) (0, 1, 1) = (1,
Uo

-

©, 1, 1) u (1, 0, 0) =<1, —0.4, —0.4) and (1, O, 0)
o

Or

-
0 4 @

0, 0) {1, 05, 05),

J’ (0, 1, 1y = (0, 1.4, 1.4). Additionally,
O

(0.5, 0.5, 0.5) L? (0.5, 0.5, 0.5) = (0.5, 0.5, 0.5) because 0.5 is the neutral element of every neutrosophic
o

0 0.5=0.5.

component n-offuninorm and
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It is easy to check that substituting up(-,-) by Uzc(-,-) in , we obtain the more classical

=
Uo
— - -

equations (0, 1, 1) 0,1, 1)y= (1,0, 0) (1,0, 0)=<0, 1, 1) (1, 0, 0) =<1, 0, 0) and
Uo Uo Uo

—

1,0, 0 Uo 0,1,1)=40,1, 1).

4.3. N-Offuninorms and Voting Games

The applicability of uninorms to solve group decision problems is evident. However, the use of
them as part of a game theory solution is not so obvious. This subsection is devoted to solving voting
games based on n-offuninorms.

A cooperative game with transferable utility consists of a pair (N,v), where N ={1,2, ... n}isa
non-empty set of players,n € N and v: 2N-R, i.e., v(-) is a function of the power set of N such that each
coalition or SC N is associated with a real number. v is called characteristic function and v(S) represents
the conjoint payoff of players in S. Additionally, v(9) = 0 (see [42], p. 2).

A simple game models voting situations. It is a cooperative game such that for every coalition S,
either v(S) = 0 or v(S) = 1, and v(N) = 1 (see [42], p. 7).

One solution is the Shapley—Shubik index, which is the Shapley value to simple games (see [42],
pp. 6-7). The equation of Shapley value is the following:

ISIL(INT = 1S| = 1)!

NS U i) o(s)] a7)

¢i(v) =

SCN\{i}

where |S] is the cardinality of coalition S, N is the cardinality of the set of players or grand coalition and
¢;(v) is the value assigned to player i in the game.
This is the unique solution which satisfies the following axioms:

e Y o;(v) = v(N) (Efficiency),
ieN

e  Ifi, jeN are interchangeable in v, then ¢;(v) = ¢;(v) (Symmetry),
e Ifiis such that for every coalition S the equation v(S U {i}) = v(S) holds, then ¢;(v) = 0 (Dummy),
e  Givenvand w two games over N, then ¢;(v + w) = ¢;(v) + ¢;(w) (Additivity).

This value is the sum of the terms [v(S U {i}) — v(5)], which mean the marginal contribution of
player i to the coalitions S, multiplied by w which is the probability that |S| — 1 players
precede player i in the game and |N| - |S| players follow him or her. Thus, the Shapley value of i is the
expected marginal contribution of i to the game (see [42], p. 7). The result of the Shapley-Shubik index
is interpreted as a measure of each player’s power.

In the present paper we basically study voting games with some additional features. We call them
voting n-offgames. A voting n-offgame consists in a pair (N, v), where N = {1, 2, ..., n} is the set of players;
the characteristic function v: 2N—{1, ..., 2"} x {1,..., 2" x {1, ..., 2"} is such that for any coalition
S we have v(S) = (k,1,2"-k+1) and v(0) = (2", 2™,1).

The n-offgame is interpreted in the following way:

1. Experts forecast that voters will rank coalition S in the k' position of their preference, also they
cannot decide if S will be ranked in the I position. The first place or k = 1 corresponds to the
preferred coalition of all and so on. Additionally, the n-offgame must satisfy the following rules:

2. Given any two coalitions S; and Sy, S1#5, we have the first component that both v(S1) and v(S;)
are different. Thus, every coalition is associated with a unique number in the order of preference.

3. v(S) = (kk2"-k+1) means experts have no doubt that coalition S will be voted in the kth position.

Let us observe that it is not a simple game. This game can be interpreted as a multicriteria
decision-making problem, where its solution is a measure of every player’s power in the game
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according to the forecasted experts’ ranking of the coalitions. Each coalition can represent a bloc of
political parties.
Shapley value can be the solution to voting n-offgames, in the form given in Equation (18):

ISI'(INT =S| - 1)!

$i(v) = - NI

SCN\{i}

[o(SU{i}) —0(5)] (18)

Let us note that the minus sign in the expression was taken for convenience because the rank
we applied is decreasing respect to the coalition’s significance. Additionally, v(S U {i}) — v(S) is the
difference between two 3-tuple values, thus the operation (kj, 1;, 2"— ki +1)—(kp, 1o, 2"—kp+1):= (k; -
ko, 11— Ip, ko— k) is defined. Equation (18) means the expected number of places won or lost in voter
preference, as predicted by experts.

Apparently, Shapley value cannot be the solution to this problem because v(0) # 0 and v(-) is not a
game. However, if we take in that v(S) = (k,,2" — k+1) in fact represents three games, namely, v1(S)=k,
v2(S)=1, and v3(S) =2"-k+1, one per component and additionally taking into account they are linear
transformations of three games with characteristic functions wq, w, , and ws; where w1 (S)= 2"~ v1(S),
wy(S)=2"=v5(S), and w 3(S) = 1 — v3(S), then, the marginal contributions of the three pairs, w;(-) and
v1(+), wp(-) and vp(-), w3(-) and vs(-), are the same except for the sign. Thus, these three pairs have the
same Shapley value except for the sign and therefore this property is extended to v(-) and w(:).

Shapley value is a rational solution to the game, nevertheless, it can differ from actual human
behavior, as Zhang et al. suggested in [43] to model restrictions in game decisions according to the
human behavior based on fuzzy uninorms. Therefore, we propose n-offuninorms to explore other
behaviors in human decision making by recursively applying an n-offuninorm to every pair of values
BUINEREL: (5) — (S U {i))] in the set of § € N\(i).

Here we explore n-offuninorms defined on [-L, L], L = 2"-1 and with the PROSPECTOR
parameterized function with A> 0 and neutral element e = (;;‘\ see Equation (19).

Uoa(c(x),c(y)) = o3

Ags(e(x)) @3(c(y)) ) (19)
)

A3 (c(x))@3(c(y)) + (1 - @3(c(x))) (1 - @3(c(y)))

where @3(+) and (p‘l( -) are those defined in Equations (10) and (11), respectively, and now they are

@3(c(x)) = L5 and 93'(e(x)) = 2Le(x) - L.
Thus the Algorithm for solving voting n-offgames can be described as follows:

Algorithm 1. Algorithm for solving voting n-offgames

1. Given (N, v) a voting n-offgame. Fix A > 0.

2. Fixplayeri=1.

3. LetS; be the set of coalitions not containing i, and j =1, 2, .. , 2771 Let us take aj = v(S1) and ajp = v(Sy)
and calculate aprey = UOA(‘SIMD;M[U(SQ -v(S1 U {i})], M[‘U(S )—v(S U {i })]), fixj=3
and go to step 4.

4. Ifj<2n71, calculate acyrr = Uo,\(apre\,, w@:‘w[v(%) - Z)(Sj U {i})])~ aprev = acurr and j =j + 1. Repeat
this step. Else, if j = -1 7(v) = acurr- Go to Step 5.

5. Ifi<n, theni=i+1and go to Step 3. Else Finish.

Let us point out that in the precedent algorithm the associativity of n-offuninorms was used.
Moreover, the algebraic sum in Shapley value and the n-offuninorms yield to somewhat similar
results. Thus, for U (1) with A = 1, we have that x, y < 0 imply both U, (x,y)<min(x,y) and x+y<
min(x,y), whereas when x, y > 0, we have Uy, (x,y)>max(x,y) and x+y> max(x,y). For x,y satisfying
x-y<0, then both U (x,y) and x+y are compensatory operators, and finally 0 is the neutral element of

53



Symmetry 2019, 11, 1136

them. For A# 1 and hence e# 0, we obtain other behavioral effects. Let us also recall that Uy (-,-) is a
neutrosophic uninorm transformation, which is described as symmetric summation by Silvert in [40].

Example 8. Let us consider the 3-person voting n-offgame (N, v), where N = {1, 2, 3} and experts predict that
coalitions will be ranked according to the positions shown in Table 1.

Table 1. Position assigned to the coalitions of the 3-person voting n-offgame.

Coalition Ranking

0 (8,8,1)

{1} (3,2,6)

{2} (4,3,5)

{3} (7,6,2)
{1,2} 2,3,7)
{1,3} (5,6,4)
{2,3} 6,5,3)
{1,2,3} (1,1,8)

According to Table 1, the grand coalition N has (1,1,8) as ranking value, i.e., experts think this
coalition will undoubtedly be ranked in the first place or k = 1. v(@) = (8,8,1) because it is axiomatically
predetermined, which means that to not negotiate at all is the worst option, whereas v({2,3}) = (6,5,3)
means this coalition shall be ranked in the sixth place and maybe in the fifth one, but never in the
third place.

Thus, to calculate each player’s power according to our approach we have to apply the precedent
algorithm. We fixed A=1 in U, therefore c(e)= 0, which is defined in [-7, 7].

Table 2 contains the detailed calculus of the Shapley value in Equation (18) and the proposed
algorithm to resolve the precedent voting n-offgame.

Table 2. Shapley value and n-offuninorm based solutions to the 3-person voting n-offgame. The final
values are written in bold font.

v(S)-v(SUli}) Partial Summations

Playeri SS“‘.;‘STI‘“ o(S)-o(SUG)  Multipliedby of the Shapley  Lortial f‘:ﬁ%eg“‘““
! the Probability Value With Y1
1 0 (5,6,-5) /3, 2,-5/3) (5/3,2,-5/3) (5/3,2,-5/3)
2 (2,0,-2) (1/3,0,-1/3) 22,-2) (1.9776,2.0000,~1.9776)
3) 2,0,-2) (1/3,0,-1/3) (7/3.2,~7/3) (2.2802,2.0000,-2.2802)
2,3} (5,4,-5) (5/3,4/3,~5/3) (4,10/3,~4) (3.6628,3.1613,—3.6628)
2 0 (45,-4) (4/3,5/3,-4/3) (4/3,5/3,-4/3) (4/3,5/3,-4/3)
1 1-1-1)  (1/6/1/6,-1/6) (3/2,3/2,-3/2) (1.4932,1.5086,~1.4932)
3) (1,1,-1) (1/6,1/6,~1/6) (5/3,5/3,~5/3) (1.6515,1.6667,~1.6515)
{1,3} (4,5,-4) (4/3,5/3,-4/3) (3,10/3,-3) (2.8565,3.1545,—2.8565)
3 0 (12,-1) (1/3,2/3,-1/3) (1/3.2/3,-1/3) (1/3,2/3,-1/3)
1 (2,-42) (-1/3,-2/3,1/3) 0,0,0 (0,0,0)
2 (2,-22) (-1/3,-1/3,1/3) (-1/3,~1/3,1/3) (-153,-1/3,1/3)
12} (12,-1) (1/3,2/3,1/3) ©,1/3,0 (0,0.33485,0)

According to the results summarized in Table 1, we have that the expected value of places gains by
player 1 is 4 with the Shapley value solution and 3.6628 with U,;, whereas the results for player 2 are 3
and 2.8565, respectively, and for player 3 are 0 and 0. Therefore, player 1 is the most powerful of them,
followed by player 2 and 3 in this order. Thus, the proposed approach and Shapley value are similar.

Table 3 contains the voting n-offgame solutions comparing Uy with c(e) = 0, Uggg/101 with
c(e) = 7/100 and Uy191/99 with c(e) = =7/100.
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Table 3. Solutions of the 3-person voting n-offgame applying U,\ with A = 1, 99/101 and
101/99, respectively.

Player Solution with Uy Solution with Uggg/101 Solution with Ug191/99
1 (3.6628,3.1613,—-3.6628) (3.5079,2.9919,-3.8129) (3.8129,3.3262,—-3.5079)
2 (2.8565,3.1545,-2.8565) (2.6793,2.9849,—-3.0293) (3.0293,3.3196,—-2.6793)
3 (0,0.33485,0) (—0.20994,0.12509,—0.20994) (0.20994,0.54402,0.20994)

The solutions in Table 3 prove that the greater A, the greater the solution values. Thus, when A is
increased, its associated solution models more optimistic behavior with respect to the first component,
which is compensated with more pessimistic behavior with respect to the third component.

The advantages of the proposed approach are more evident when it is compared with a classical
one restricted to {0, 1}. Here we used a semantic represented with natural numbers and we calculated
directly on them. In contrast, for applying classical definitions in {0, 1}, we would need to define eight
Boolean functions, one per element. What is more, some operations such as marginal contributions,
which is an algebraic difference, cannot be directly applied in the logic sense.

In case we would need to extend the approaches to the continuous gradation, then a continuous
ranking can be modeled with the identity line I(x) = x, but in the classical approach, eight memberships
functions would have to be considered, where the simplest ones are triangular (see Figure 6).
From Figure 6 we can infer that there exists a transformation between both models; however,
the proposed model is the simplest one.

Truth value
IS

4
Ranking of the coalitions

Figure 6. Depiction of two kinds of 3-person game modeling. Classical [0, 1] is represented in dashed
lines and triangular membership functions, whereas the solid line represents the solution based on
offsets. The points represent the Boolean restrictions.

5. Discussion

Neutrosophic oversets, undersets, and offsets are concepts of a novel and non-conventional theory
of uncertainty. Historically, the convention of restricting logic to the interval [0, 1] has dominated fuzzy
logic and its generalizations. Possibly this is a legacy of probability and mathematical logic, where,
semantically speaking, 0 and 1 have been considered the two extreme opposite sides. Therefore, oversets,
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undersets, and offsets can be understood as controversial subjects. Nevertheless, Smarandache in [31]
illustrates with some examples that such sets, of which their domains surpass the scope of [0, 1],
could be useful to represent knowledge in a valid semantic.

This is a recent theory that needs more developing and the scientific community’s acknowledgment
of its usefulness. One of our aims with this paper is to demonstrate that this theory can be useful.
To achieve this end, we introduced the uninorm theory in the neutrosophic offset framework. This union
is manifold advantageous, the most evident one being that we have provided a new aggregator operator
to these sets. As we mentioned in the introduction, there exists a wide variety of fuzzy uninorm
applications, namely, Decision Making [9,14,15], DNA and RNA fusion [9], logic [17], Artificial Neural
Networks [16], among others. Uninorm is more flexible than t-norm and t-conorm because it includes
the compensatory property in some cases, which is more realistic for modeling human decision making,
as was experimentally proved by Zimmermann in [21].

Also, uninorms have enriched other theories when they were generalized to other frameworks.
In L*fuzzy set theory [23], uninorms also aggregate independent non-membership functions to
achieve more precision. Moreover, neutrosophic uninorms aggregate the indeterminate-membership
functions [25].

Additionally, some authors have associated uninorms with non-conventional theories. In [33,34]
we can find some attempts to extend uninorm domains to an interval [a, b]. The reason is that the
PROSPECTOR function related to the MYCIN Expert System is one very important milestone in
Artificial Intelligence history. The point is that the PROSPECTOR function is basically a uninorm
except it is defined in the interval [-1, 1], thus, we can consider intervals greater than [0, 1]. They have
argued that there exist two reasons to maintain the interval [-1, 1]—the first one is the importance of
the PROSPECTOR function, the second one is the facility to interchange information among users and
decision makers in form of degrees to accept or reject hypotheses.

The second non-conventional approach is the bipolar or Multi-Polar uninorms defined in [24].
The world is (and some people are) is evidently multi-polar; in case of bipolarity they are modeled
in [-1, 1]. Especially in [24], we have a multi-polar space consisting of an ordered pair of (k, x),
where kefl, 2, ..., n} represents a category or class and x€(0, 1], with the convention 0 = (k, 0) for
every category. This is a more complex representation that takes a unique interval [-n, n] where,
for x€[—n, n], the function round(x) represents the category and its fractional part represents the degree
of membership to that category. This is a real extension of bipolarity in [-1, 1] to multi-polarity. In [31]
(pp- 127, 130) Tripolar offsets and Multi-polar offsets are defined. We illustrated in Example 8 that
considering the semantic values belong to {-n,—n+1,...,0, 1, ... ,n} could be advantageous.

The definition of uninorm-based implicators is not new in literature, they can be seen in [41]
(pp- 151-160) for fuzzy uninorms, in [17] itis extended for type 2 fuzzy sets, in [24] for L*-fuzzy set theory,
and in [25] for neutrosophic uninorms. In the present paper, uninorm-based offimplicators are defined,
however, we only counted on symbolic offimplication operators (see [31], p. 139). To extend this
definition to a continuous framework, we had to extend the symbolic offnegation to a continuous one.

Finally, we preferred to illustrate a voting game solution instead of a group decision method
because the relationship of offuninorms with the latter subject is predictable. However, to find any
game theory associated with uninorms is uncommon in literature. One remarkable example can be
seen in [43], where a behavioral approach has been made to certain kind of games, where uninorms
model the humans’ restrictions to make the division of gains among the players.

In the present paper, another approach is proposed where an indeterminacy component is taken
into account. Also, we proved that modeling with a natural number semantic is simpler than to utilize
the classical [0, 1] interval, because of the fact that # membership functions can be substituted by a
linear identity function. We basically defined the voting game solution since the Shapley-Shubik index
components (see [42], pp. 6-7), where we only changed the algebraic sum by offuninorms. The classical
approaches such as the Shapley-Shubik index are interested in a rational and fair solution; nevertheless,
many times that does not occur in real negotiations and then behavioral solutions are needed.
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6. Conclusions

This paper was devoted to defining for the first time the theory of neutrosophic offuninorms,
which is a generalization of both the neutrosophic offnorms and neutrosophic offconorms, where the
neutral element lays in the interval [, (3]. The properties of these novel operators were proved.
Moreover, we defined neutrosophic offuninorms from neutrosophic offnorms and neutrosophic
offconorms and vice versa, we also proved their properties. Additionally, we proved the relationship
between neutrosophic offuninorms and neutrosophic uninorms.

One of the purposes of this paper is to show the convenience of applying offsets, and to prove that
they are not only simple theoretical concepts; furthermore, they are also necessary to define new concepts.
This need is demonstrated in this paper by associating offsets with the PROSPECTOR aggregation
function, where it is recommendable to extend its domain to the interval [-1, 1]. Some authors in fuzzy
logic have suggested the advantages to calculate in the domains [a, b] instead of the classical [0, 1].
Therefore, the use of the idea of the offset in uninorms has some precedence in fuzzy logic.

Additionally, we recommend offsets because they permit more accuracy and compactness.
We showed that it is possible to define offimplication operators based on offuninorms. A future
direction of this research is to solve problems by using artificial neural networks based on neutrosophic
offuninorms, such that neutrosophic offuninorms are utilized as the threshold functions in the neurons
or in neutrosophic cognitive maps. For the first time, solutions to cooperative games are defined in the
neutrosophic framework—this is an area that it is worthy of development.
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Abstract: We define an ordinary single valued neutrosophic topology and obtain some of its basic
properties. In addition, we introduce the concept of an ordinary single valued neutrosophic subspace.
Next, we define the ordinary single valued neutrosophic neighborhood system and we show that
an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.
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1. Introduction

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization of an ordinary set.
In 1986, Chang [2] was the first to introduce the notion of a fuzzy topology by using fuzzy sets.
After that, many researchers [3-13] have investigated several properties in fuzzy topological spaces.

However, in their definitions of fuzzy topology, fuzziness in the notion of openness of a fuzzy
set was absent. In 1992, Samanta et al. [14,15] introduced the concept of gradation of openness
(closedness) of fuzzy sets in X in two different ways, and gave definitions of a smooth topology and
a smooth co-topology on X satisfying some axioms of gradation of openness and some axioms of
gradation of closedness of fuzzy sets in X, respectively. After then, Ramadan [16] defined level sets
of a smooth topology and smooth continuity, and studied some of their properties. Demirci [17]
defined a smooth neighborhood system and a smooth Q-neighborhood system, and investigated
their properties. Chattopadhyay and Samanta [18] introduced a fuzzy closure operator in smooth
topological spaces. In addition, they defined smooth compactness in the sense of Lowen [8,9],
and obtained its properties. Peters [19] gave the concept of initial smooth fuzzy structures and
found its properties. He [20] also introduced a smooth topology in the sense of Lowen [8] and proved
that the collection of smooth topologies forms a complete lattice. Al Tahan et al. [21] defined a
topology such that the hyperoperation is pseudocontinuous, and showed that there is no relation in
general between pseudotopological and strongly pseudotopological hypergroupoids. In addition,
Onassanya and Hoskova-Mayerova [22] investigated some topological properties of a-level subsets’
topology of a fuzzy subset. Moreover, Coker and Demirci [23], and Samanta and Mondal [24,25]
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defined intuitionistic gradation of openness (in short IGO) of fuzzy sets in Sostak’s sense [26] by
using intuitionistic fuzzy sets introduced by Atanassov [27]. They mainly dealt with intuitionistic
gradation of openness of fuzzy sets in the sense of Chang. However, in 2010, Lim et al. [28] investigated
intuitionistic smooth topological spaces in Lowen’s sense. Recently, Kim et al. [29] studied continuities
and neighborhood systems in intuitionistic smooth topological spaces. In addition, Choi et al. [30]
studied an interval-valued smooth topology by gradation of openness of interval-valued fuzzy sets
introduced by Gorzalczany [31] and Zadeh [32], respectively. In particular, Ying [33] introduced
the concept of the topology (called a fuzzifying topology) considering the degree of openness of
an ordinary subset of a set. In 2012, Lim et al. [34] studied general properties in ordinary smooth
topological spaces. In addition, they [35-37] investigated closures, interiors and compactness in
ordinary smooth topological spaces.

In 1998, Smarandache [38] defined the concept of a neutrusophic set as the generalization of
an intuitionistic fuzzy set. Salama et al. [39] introduced the concept of a neutrosophic crisp set and
neutrosophic crisp relation (see [40] for a neutrosophic crisp set theory). After that, Hur et al. [41,42]
introduced categories NSet(H) and NCSet consisting of neutrosophic sets and neutrosophic crisp sets,
respectively, and investigated them in a topological universe view-point. Smarandache [43] defined the
notion of neutrosophic topology on the non-standard interval and Lupidfiez proved that Smarandache’s
definitions of neutrsophic topology are not suitable as extensions of the intuitionistic fuzzy topology
(see Proposition 3 in [44,45]). In addition, Salama and Alblowi [46] defined a neutrosophic topology
and obtained some of its properties. Salama et al. [47] defined a neutrosophic crisp topology and
studied some of its properties. Wang et al. [48] introduced the notion of a single valued neutrosophic
set. Recently, Kim et al. [49] studied a single valued neutrosophic relation, a single valued neutrosophic
equivalence relation and a single valued neutrosophic partition.

In this paper, we define an ordinary single valued neutrosophic topology and obtain some of
its basic properties. In addition, we introduce the concept of an ordinary single valued neutrosophic
subspace. Next, we define the ordinary single valued neutrosophic neighborhood system and we show
that an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.

2. Preliminaries

In this section, we introduce the concepts of single valued neutrosophic set, the complement of a
single valued neutrosophic set, the inclusion between two single valued neutrosophic sets, the union
and the intersection of them.

Definition 1 ([43]). Let X be a non-empty set. Then, A is called a neutrosophic set (in sort, NS) in X, if A has
the form A = (Ta, 14, Fa), where

Ta:X—]70,17 I4:X—=]70,17, F4:X—]70,17[
Since there is no restriction on the sum of T4(x), I4(x) and F4(x), for each x € X,
0< TA(X) + IA(.X') +FA(X) < 3+.

Moreover, for each x € X, Ta(x) (resp., 14(x) and F4(x)) represent the degree of membership (resp.,
indeterminacy and non-membership) of x to A.
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From Example 2.1.1 in [17], we can see that every IFS (intutionistic fuzzy set) A in a non-empty
set X is an NS in X having the form
A = (Tp,1— (Ta+Fa),Fa),
where (1 —(Ta + Fa))(x) =1 = (Ta(x) + Fa(x)).

Definition 2 ([43]). Let A and B be two NSs in X. Then, we say that A is contained in B, denoted by A C B,
if, foreach x € X, inf Ta(x) < inf Tg(x), sup Ta(x) < sup Tg(x), inf I4(x) > inf Ig(x), sup Ia(x) >
sup Ig(x), inf Fa(x) > inf Fg(x) and sup Fa(x) > sup Fp(x).

Definition 3 ([48]). Let X be a space of points (objects) with a generic element in X denoted by x. Then,
A is called a single valued neutrosophic set (in short, SVNS) in X, if A has the form A = (Ta, I, Fa),
where Ty, I, Fp: X — [0,1].
In this case, Ta, 1a, Fa are called truth-membership function, indeterminacy-membership function,
falsity-membership function, respectively, and we will denote the set of all SVNSs in X as SVNS(X).
Furthermore, we will denote the empty SVNS (resp. the whole SVNS] in X as Oy (resp. 1x) and define by
On(x) = (0,1,1) (resp. 1n = (1,0,0)), for each x € X.

Definition 4 ([48]). Let A € SVNS(X). Then, the complement of A, denoted by A°, is an SVNS in X defined
as follows: for each x € X,

TAC(X) = FA(X), IAC(X) =1- IA(X) and FAC(JC) = TA(X).

Definition 5 ([50]). Let A, B € SVNS(X). Then,
(i) A is said to be contained in B, denoted by A C B, if, for each x € X,

TA(X) < TB(X), IA(X) > IB(X) and FA(JC) > FB(X),
(ii) A is said to be equal to B, denoted by A = B, if A C Band B C A.

Definition 6 ([51]). Let A, B € SVNS(X). Then,
(i) the intersection of A and B, denoted by AN B, is a SVNS in X defined as:

ANB= (TA/\TB,IA\/IB,FA\/FB),

where (To A Tg)(x) = Ta(x) ATp(x), (Fa V Fg) = Fa(x) V Fg(x), for each x € X,
(ii) the union of A and B, denoted by A U B, is an SVNS in X defined as:

AUB = (TpV Tp, 14 Alp, Fa A Fp).
Remark 1. Definitions 5 and 6 are different from the corresponding definitions in [48].

Result 1 ([51], Proposition 2.1). Let A, B € SVNS(X). Then,
(1)ACAUBand BC AUB,
) ANBC Aand ANB C B,
B) (A% =4,
(4) (AUB) = A°N B, (ANB)* = A°UB".

The following are immediate results of Definitions 5 and 6.

Proposition 1. Let A, B, C € SVNS(X). Then,
(1) (Commutativity) AUB=BUA, ANB=BNA,
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(2) (Associativity) AU (BUC) = (AUB)UC, AN (BNC) = (ANB)NC,

(3) (Distributivity) AU(BNC) = (AUB)N(AUC), AN(BUC) =(ANB)U(ANCQC),
(4) Idempotency) AUA=A, ANA=A,

(5) (Absorption) AU(ANB) =A, AN(AUB) = 4,

(6) (DeMorgan’s laws) (AU B) = A°N B¢, (ANB)¢ = A°UB,

(7)AOON :ON,ALJlN = 1[\[,

B AUON=A AN1y = A

Definition 7 (see [46]). Let { Ax}aer C SVNS(X). Then,
(i) the union of { Aa taer, denoted by Uycr Aa, is a single valued neutrosophic set in X defined as follows:

foreach x € X,
(U A“) \/ TAa /\ IAa /\ FAA
ael acl a€l el
(ii) the intersection of { Ay faer, denoted by Nyer Aw, is a single valued neutrosophic set in X defined
as follows: for each x € X,

(N A)(x) = (A Ta,(x), V 14, (x), \/ Fa,(x

ael acl ael acl

The following are immediate results of the above definition.

Proposition 2. Let A € SVNS(X) and let { Ay }yer C SVNS(X). Then,
(1) (Generalized Distributivity)

(N4 =N(AVA), An(UA) = UJANA,

ael ael’ ael ael

(2) (Generalized DeMorgan’s laws)

(UA = N4 (NA)=U A

ael ael ael ael

3. Ordinary Single Valued Neutrosophic Topology

In this section, we define an ordinary single valued neutrosophic topological space and obtain
some of its properties. Throughout this paper, we denote the set of all subsets (resp. fuzzy subsets) of
aset X as 2X (resp. 1%).

For Ty, In, Fy € I, &« = (T, In, Fy) € I x I x I is called a single valued neutrosophic value. For two
single valued neutrosophic values « and §,

() a < Biff Ty < Tp, Iy > Igand Fy > Fp,

(i) o < Biff T, < Tp, Io > Ig and Fy > Fp.

In particular, the form a* = (x,1 — &, 1 — &) is called a single valued neutrosophic constant.

We denote the set of all single valued neutrosophic values (resp. constant) as SVN'V (resp. SVNC)
(see [49]).

Definition 8. Let X be a nonempty set. Then, a mapping T = (T¢, I, Fr) : 2X — I x I x I is called
an ordinary single valued neutrosophic topology (in short, osvnt) on X if it satisfies the following axioms:
forany A, B € 2% and each { Ay }aer C 2%,

(OSVNT1)  (¢) = 7(X) = (1,0,0),

(OSVNT2) To(ANB) > To(A)ATe(B), L(ANB)<IL(A)VI(B),
F:(ANB) < F:(A) V F(B),

(OSVNTS3) TT(chel" Aﬂt) > /\ocel" TT(A“)V IT(UaEF AZX) < szel‘ IT(ADC)/
FT(szel"Aﬂt) < VaeFFT( IX)
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The pair (X, T) is called an ordinary single valued neutrosophic topological space (in short, osvnts). We
denote the set of all ordinary single valued neutrosophic topologies on X as OSVNT(X).

Let2 = {0,1} and let T : 2X — 2 x 2 x 2 satisfy the axioms in Definition 8. Since we can consider
as (1,0,0) =1and (0,1,1) = 0, T € T(X), where T(X) denotes the set of all classical topologies on X.
Thus, we can see that T(X) C OSVNT(X).

Example 1. (1) Let X = {a,b,c}. Then, 2X = {¢, X, {a},{b},{c},{a,b},{a,c}, {b,c}}. We define the
mapping T : 2X — I x I x I as follows:

7(9) = 1(X) = (1,0,0),
t({a}) = (0.7,0.3,0.4), T({b}) = (0.6,0.2,0.3), ({c}) = (0.8,0.1,0.2),
7({a,b}) = (0.6,03,0.4), 7({b,c}) = (0.7,0.1,0.2), 7({a,c}) = (0.8,0.2,0.3).

Then, we can easily see that T € OSVNT(X).
(2) Let X be a nonempty set. We define the mapping Ty : 2X — I x I x I as follows: for each A € 2%,

Tp(A) = (1,0,0) ifeither A=¢ orA=1X,
2T (0,1,1)  otherwise.

Then, clearly, Ty € OSVT(X).

In this case, Ty (resp. (X, 7)) is called the ordinary single valued neutrosophic indiscrete topology on X
(resp. the ordinary single valued neutrosophic indiscrete space].

(3) Let X be a nonempty set. We define the mapping tx : 2X — I x I x 1 as follows: for each A € 2%,

%(A) = (1,0,0).

Then, clearly, tx € OSVNT(X).

In this case, Tx (resp. (X, Tx)) is called the ordinary single valued neutrosophic discrete topology on X
(resp. the ordinary single valued neutrosophic discrete space].

(4) Let X be a set and let & = (Ty, I, Fx) € SVNV be fixed, where T, € Iy and I, F, € Iy. We define
the mapping T : 2X — I x I x I as follows: for each A € 2%,

(1,0,0) ifeither A = ¢ or ACis finite,
T(A) = .
« otherwise.

Then, we can easily see that T € OSVNT(X).

In this case, T is called the a-ordinary single valued neutrosophic finite complement topology on X and will
be denoted by OSVNCof(X). OSVNCof(X) is of interest only when X is an infinite set because if X is finite,
then OSVNCof (X) = 1.

(5) Let X be an infinite set and let &« = (T, Iy, Fx) € SVNV be fixed, where T, € I and I, F, € Io.
We define the mapping T : 2X — I x I x I as follows: for each A € 2%,

(1,0,0) ifeither A = ¢ or A°is countable,
T(A) = .
o otherwise.
Then, clearly, T € OSVNT(X).

In this case, T is called the a-ordinary single valued neutrosophic countable complement topology on X and
is denoted by OSVNCoc(X).
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(6) Let T be the topology generated by S = {(a,b] : a,b € R,a < b} as a subbase, let Ty be the family of all
open sets of R with respect to the usual topology on R and let « = (Ty, Iy, Fx) € SVNV be fixed, where Ty € I
and I, Fy € Iy. We define the mapping T : 28 — I x I x I as follows: for each A € I,

(1,0,0) lfA € Top,
T(A)=1( « ifAeT\T,
(0,1,1) otherwise.

Then, we can easily see that T € OSVNT(X).
(7) Let T € T(X). We define the mapping tr : 2X — I x I x I as follows : for each A € 2%,

(1,0,0) fAET,
A) =
wr(4) { (0,1,1) otherwise.

Then, it is easily seen that v € OSVNT(X). Moreover, we can see that if T is the classical indiscrete
topology, then tr = 1p and if T is the classical discrete topology, then 11 = Tx.

Remark 2. (1) If I = 2, then we can think that Definition 8 also coincides with the known definition of
classical topology.

(2) Let (X, T) be an osvnsts. We define two mappings [ 1T, < > T:2%X — I x I x I, respectively,
as follows : for each A € 2%,

([10)(A) = (Te(A), I (A), 1 = Te(A)), (< > T)(A) = (1 = F(A), [r(A), Fe(A)).
Then, we can easily see that [ ], < > 7 € OSVNT(X).

Definition 9. Let X be a nonempty set. Then, a mapping C = (uc,ve) : 2X — I x I x I is called an
ordinary single valued neutrosophic cotopology (in short, osvnct) on X if it satisfies the following conditions:
forany A, B € 2X and each { Ay }uer C 2%,

(OSVNCT1)  C(¢) = C(X) = (1,0,0),

(OSVNCT2)  Te(AUB) > Te(A)ATe(B), Ip(AUB) < Ie(A)VIe(B),
Fe(AUB) < Fe(A)V Fe(B),

(OSVNCT3)  Te(() Ax) = N\ Te(An), Ie([) Ax) < V Ie(Ad),

ael acl ael acl
Fo(() Ax) <V Fe(Aa).
ael ael

The pair (X, C) is called an ordinary single valued neutrosophic cotopological space (in short, osvncts).
The following is an immediate result of Definitions 8 and 9.

Proposition 3. We define two mappings f : OSVNT(X) — OSVNCT(X) and g : OSVNCT(X) —
OSVNT(X) respectively as follows:

[F(D)](A) = T(A) forany T € OSVNT(X) and any A € 2%

and
[g(C)](A) = C(A®) forany C € OSVNCT(X) and any A € 2%.

Then, f and g are well-defined. Moreover, g o f = logynT(x) a1d f © § = losyncT(x)-

Remark 3. (1) For each T € OSVNT(X) and each C € OSVNCT(X), let f(t) = Cr and g(C) = t¢. Then,
from Proposition 3, we can see that 7o, = T and Cy, = C.
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(2) Let (X, C) be an osvncts. We define two mappings [1C, < > C :2X — I x I x I, respectively,
as follows: for each A € 2%,

([10)(A) = (Te(A), Ie(A), 1 = Te(A)), (< > C)(A) = (1 Fe(A), Ie(A), Fe(A)).
Then, we can easily see that [ |C, < > C € OSVNCT(X).

Definition 10. Let 7,7, € OSVNT(X) and let C1,C, € OSVNCT(X).
(i) We say that T, is finer than T, or T, is coarser than T,, denoted by 7, < 7., if 7,(A) < 7,(A), i.e.,
for each A € 2%,
Tr (A) < Tr, (A), It (A) > I, (A), Fr,(A) > Fr (A).
(ii) We say that Cy is finer than C, or Cy is coarser than Cq, denoted by Cy < Cq,if Co(A) < C1(A), i.e.,

for each A € 2%,
Te,(A) < Te (A), Ie, (A) = I¢ (A), Fe,(A) > Fe (A).

We can easily see that 7, is finer than 7, if and only if Cr, is finer than Cr,, and (OSVNT(X), 2)
and (OSVNCT(X), <) are posets, respectively.

From Example 1 (2) and (3), it is obvious that 7y is the coarsest ordinary single valued neutrosophic
topology on X and Ty is the finest ordinary single valued neutrosophic topology on X.

Proposition 4. If {7, }yer C OSVNT(X), then Nyer T, € OSVNT(X),
where [Naer T.J(A) = (Awer Tr, (A), Vaer I, (A), Vaer Fr, (A)), ¥V A € 2%,

Proof. Let T = (er 7, and let a € T. Since 7, € OSVNT(X), 7, (X) = 7,(¢) = (1,0,0), i.e.,
T, (X) =Tr, (¢) =1, I (X) =L, (¢) =0, F(X)=F,(¢)=0.
Then, Tr(X) = Ager Tr, (X) = 1, :(X) = Vyer Ir, (X) = 0 = F(X). Similarly, we have T:(¢) = 1,

I:(¢) = 0 = Fr(¢). Thus, the condition (OSVNTT1) holds.
Let A, B € 2X. Then,

T:(ANB) = Ayer Tr, (AN B) [By the definition of ]
> Awer(Te, (A) A Ty, (B)) [Since T, € OSVNT(X)]
= (Aaer T (A) A (Aaer T (B))
= T¢(A) NT¢(B) [By the definition of 7]

and

I:(ANB) = Vyer Ir, (AN B) [By the definition of 7]
< Vyer(Ir, (A) V I, (B)) [Since 7, € OSVNT(X)]
= (Vaer I, (A)) V (Vaer I, (B))
= I;(A) V Iz(B). [By the definition of ]

Similarly, we have Fr(A N B) < F;(A) V F¢(B). Thus, the condition (OSVNT2) holds:
Now, let {A;};c; C 2X. Then,

TT(Uje] Aj) = Naer T, (Uje] Aj) [By the definition of 7]
> Aaer(Ajej Tr, (4))) [Since T, € OSVNT(X)]
= /\je](/\aer TTu (Aj))
= AjejlNuer Tr, ] (4)) [By the definition of T]
=Vjej Te(4))

and
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L(Ujej Aj) = Vaer I, (Uje 45) [By the definition of T]
< Vaer(Vjey I, (45)) [Since T, € OSVNT(X)]
= Vje](\/ael“ IT,X (A]'))
= VjE][UaeF Ira] (Aj) [By the definition of ]
= Vie I(A)).

Similarly, we have Fr(Ujcj Aj) < VjejFr(Aj). Thus, the condition (OSVNT3) holds. This
completes the proof. [

From Definition 10 and Proposition 4, we have the following.

Proposition 5. (OSVNT(X), =) is a meet complete lattice with the least element Ty and the greatest
element Tx.

Definition 11. Let (X, T) be an osvnts and let « € SVNV. We define two sets [t], and [T]} as
follows, respectively:

(i) [Tla = {A €2X: T(A) > Ty, t(A) < I, I:(A) < R},

(ii) [7]: = {A € 2X : Te(A) > Ty, It(A) < Lo, Fe(A) < Fy}.

In this case, [1]y (resp. [t]%) is called the a-level (resp. strong a-level] of 7. If « = (0,1,1),
then [t](g11) = 2% ie, [t](g11) is the classical discrete topology on X and if a = (1,0,0),
then [1] (100) = ¢- Moreover, we can easily see that for any « € SVNV, [t]% C [T]a-

Lemma 1. Let T € OSVNT(X) and let &, p € SVNV. Then,
@) [t]a € T(X),
() ifa < B, then [t]g C [T]a,
©) [tla = () [tlp wherea € Iy x I X I,
B<a
0’ [t]5 € T(X), where a € I; X Iy X Iy,
) if e < B, then [t]; C [];,
O = U 7], where a € I x Iy x L.
B>(a

Proof. The proofs of (1), (1)/, (2) and (2)’ are obvious from Definitions 8 and 11.

(3) From (2), {[7]a}actyx1 x1, is @ descending family of classical topologies on X. Then, clearly,
[T]a C Np<alTlp foreacha € Iy x I x I.

Suppose A ¢ [t]y. Then, Tr(A) < Ty or Ir(A) > I, or Fr(A) > F,. Thus,

there exists Tg € Ip such that Tr(A) < Ty < Ty
or

there exists Ig € Ij such that I(A) > Iz > I,
or

there exists Fg € I such that Fz(A) > Fg > F.

Thus, A ¢ [1]g, for some B € SVNV such that B < a,i.e., A ¢ () [t]g. Hence, () [t]g C [T]a-
B<a B<a
Therefore, [t], = () [7]5-
B<a
(3) The proof is similar to (3). O
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Remark 4. From (1) and (2) in Lemma 1, we can see that, for each T € OSVNT(X), {[T]a}ucsvNv is a
family of descending classical topologies called the a-level classical topologies on X with respect to T.

The following is an immediate result of Lemma 1.

Corollary 1. Let (X, 1) be an osvnts. Then, [t]y- = () [T]g+ for each a* € SVNC, where a € I.
B<a

Lemma 2. (1) Let {7 }sesvnv be a descending family of classical topologies on X such that 7(o1 1 is the
classical discrete topology on X. We define the mapping T : 2X — I x I x I as follows: for each A € 2%,

T(A)=(V T A\ I N\ E)-

A€Ty A€Ty Acty

Then, T € OSVNT(X).
() If T = Npea T for eacha € SVNV (2 € Iy x Iy x Iy), then [T]a = Ta.
() If T = Upsa Tp, for each a € SVNV (a € Iy x Iy X L), then [T]% = T

Proof. The proof is similar to Lemma 3.9 in [28]. O

The following is an immediate result of Lemma 2.

Corollary 2. Let {7y }acr, be a descending family of classical topologies on X such that Ty ; 1) is the classical
discrete topology on X. We define the mapping T : 2X — I x I x I as follows: for each A € 2%,

A =(V & A (1-a), A (1-a).

A€Tx  ACT,s AET,x
Then, T € OSVNT(X) and [t]ar = Mgy Tpr = Tar YV & € L.
From Lemmas 1 and 2, we have the following result.

Proposition 6. Let T € OSVNT(X) and let [t], be the a-level classical topology on X with respect to T.
We define the mapping 17 : 2X — I x I x I as follows: for each A € 2%,

W(A):( \/ Ta, /\ Iy, /\ Fy).

A€[T]a A€[T]a A€[t]a

Then, 1 = T.

The fact that an ordinary single valued neutrosophic topological space fully determined by its
decomposition in classical topologies is restated in the following theorem.

Theorem 1. Let 7,7, € OSVNT(X). Then, T, = 1, if and only if [T,]a = [T,]a for each « € SVNV,
or alternatively, if and only if [1,]} = [t,]5 for each « € SVNV.

Remark 5. In a similar way, we can construct an ordinary single valued neutrosophic cotopology C on a set X,
by using the a-levels,

[Cla ={A€X:T,(A) > Ty, I,(A) < I, F,(A) < F.}

and
[Cli={A€X:T,(A) > Ty, L,(A) < I, F,(A) <FJ},

foreach w € SVNV.
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Definition 12. Let T € T(X) and let T € OSVNT(X). Then, T is said to be compatible with T if T = S(1),
where S(t) = {A € 2X: T:(A) > 0,I;(A) < 1, F;(A) < 1}.

Example 2. (1) Let Ty be the ordinary single valued neutrosophic indiscrete topology on a nonempty set X and
let Ty be the classical indiscrete topology on X. Then, clearly,

S(ty) = {A €2X: To (A) > 0,15, (A) < 1, Fr, (A) <1} = {¢, X} = To.

Thus, Tp 18 compatible with Ty.
(2) Let Tx be the ordinary single valued neutrosophic discrete topology on a nonempty set X and let Ty be
the classical discrete topology on X. Then, clearly,

S(tx) = {A €2X : Try (A) > 0, Iy (A) < 1, Fry (A) <1} =2X = Ty.

Thus, Tx is compatible with T.
(3) Let X be a nonempty set and let &« € SVNV be fixed, where o € Iy x Iy x Iy. We define the mapping
7:2%X — I x I x I as follows: for each A € 2%,

T(A) _ (1,0,0) zfeitherA = 4) or A= X,
) & otherwise.

Then, clearly, T € OSVNT(X) and T is compatible with Ty.

Furthermore, every classical topology can be considered as an ordinary single valued neutrosophic
topology in the sense of the following result.

Proposition 7. Let (X, T) be a classical topological space and and let « € SVNV be fixed, where o €
Ip X Iy X Iy. Then, there exists T € OSVNT(X) such that T is compatible with T. Moreover, [T*], = T.

In this case, T* is called the a-th ordinary single valued neutrosophic topology on X and (X, )
is called the a-th ordinary single valued neutrosophic topological space.

Proof. Letx € SVNV be fixed, where & € Iy x I; x I; and we define the mapping 7% : 2X — I x I x I
as follows: for each A € 2%,

(1,0,0) ifeither A=¢orA=1X,
™A)=1{ « if Aet\{¢p X},
(0,1,1) otherwise.

Then, we can easily see that T € OSVNT(X) and [t*], = 7. Moreover, by the definition of %,
S(1%) = {A € 2X: T (A) > 0, [e(A) < 1, Fu(A) <1} = 1.
Thus, 7" is compatible with 7. [

Proposition 8. Let (X, T) be a classical topological space, let C(T) be the set of all osvnts on X compatible
with T, let T = T\ {¢, X} and let (I X Ix I)EMJ) be the setNOfall mappings f : T — I x I x I satisfying the
following conditions: for any A, B € T and each (A;)jc; C T,
(1) F(4) £ (0,1,1),
@ Tf(ANB) > Te(A)AT;(B),  I;(ANB) < I;(A)V T4(B),
Ff(ANB) < Ff(A) V F5(B),
@) Tr(Ujes 4j) = Ajey Tr(4)), Ir(Ujes 4j) < Viey I (4)),
Fr(Ujes Aj) < Viey Fr(4))-
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Then, there is a one-to-one correspondence between C(T) and (I x I x I)(TOl 1

Proof. We define the mapping F : (I x I x I)(TOH) — C(T) as follows: for each f € (I x I x I)(T()ll),

F(f):Tfr

where T 2X 5 IxIxIisthe mapping defined by: for each A € 2X

(1,0,0) ifeither A=¢orA=X,
(A)  ifAET,
(0,1,1) otherwise.

Then, we easily see that 7, € C(T).

Now, we define the mapping G : C(T) — (I x I x I)(T01 1) as follows: for each T € C(T),

G(1) = fr,

where f; : T — I x I x I is the mapping defined by: for each A € T,

Then, clearly, fr € (I x I x I)Z) 11)° Furthermore, we can see that Fo G = idC(T) and GoF =
id(IXIXI)Z),l,l). Thus, C(T) is equipotent to I x I x I)(TO,M). This completes the proof. [

Proposition 9. Let (X, T) be an osvnts and let Y C X. We define the mapping Ty : 2¥ — I x I x I as follows:
for each A € 27,

wA)=( V B, A LB, )\ F(B)

Be2X, A=BNY Be2X, A=BNY Be2X, A=BNY

Then, ty € OSVNT(Y) and for each A € 2Y,
To,(A) 2 Te(A), Iy (A) < L(A), Fr,(A) < Fr(A).

In this case, (Y, 7y) is called an ordinary single valued neutrosophic subspace of (X, T) and 7y is
called the induced ordinary single valued neutrosophic topology on A by 7.

Proof. It is obvious that the condition (OSVNT1) holds, i.e., Ty (¢) = v (Y) = (1,0,0).
Let A,B € 2Y. Then, by proof of Proposition 5.1 in [34], Ty, (AN B) > T, (A) A Ty, (B).
Let us show that I, (AN B) < Iy, (A) V I, (B). Then,

I (A) V Ity (B) = (Ace2x, a=vnc, Ir(C1)) V (Ag,e2x, B=ync, Ir(C2))
= Acy, ¢ e2%, anB=yn(c;ncy) e (C1) V I (C2)]
= Ac,, cie2X, anB=yn(c;ncy) Ir(C1 N C2)
— I, (AN B).
Similarly, we have Fr, (AN B) < Fy, (A) V F, (B). Thus, the condition (OSVNT2) holds.

Now, let {Az}uer C 2¥. Then, by the proof of Proposition 5.1 in [34], Tr, (Uper Aa) >
Aaer Try (Aq). On the other hand,
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Ity (Uner Aa) = AB,e2X, (Uyer Bo)Y=User Ao It (User Ba)
< ABL2X, (User Ba) WY =User Ag N\aer It (Ba)]

= Aaer[AB, 2%, (User Bo)nY=User Ax Lt (Ba)]
= /\aef ITy(AlX)

Similarly, we have Fr, (Uyer Ax) < Axer Fry (Ax). Thus, the condition (OSVNT3) holds. Thus,
Ty € OSVNT(Y).
Furthermore, we can easily see that for each A € 2Y,

Try(A) 2 Te(A),  In(A) < e(A), Fry(A) < Fo(A).
This completes the proof. [
The following is an immediate result of Proposition 9.

Corollary 3. Let (Y, y) be an ordinary single valued neutrosaophic subspace of (X, ) and let A € 2Y.

(1) Cy(A) = (Vpeax,a=pny Te(B), Apeax a=pry Ie(B), Apeax a—pry Fe(B)), where Cy(A) =
Ty(Y — A)

@IfzcYcCX, thent, =(1,),.
4. Ordinary Single Valued Neutrosophic Neighborhood Structures of a Point

In this section, we define an ordinary single valued neutrosophic neighborhood system of a point,
and prove that it has the same properties in a classical neighborhood system.

Definition 13. Let (X, T) be an osvnts and let x € X. Then, a mapping Ny : 2X — I x I x L is called the
ordinary single valued neutrosophic neighborhood system of x if, for each A € 2%,

AcN,:=3B(Bet)A(x€BCA)),
[Ae Ny =Ne(A)=( \/ Te(B), N\ L(B), A\ F(B))
XEBCA XEBCA XxEBCA

Lemma 3. Let (X, T) be an osonts and let A € 2X. Then,

AV Te(B) =T(A),

X€AXEBCA
V A L(B)=I(4)
x€AxeBCA

and
\V A\ F(B) =F(A).
xeAxeBCA

Proof. By Theorem 3.1 in [33], it is obvious that Ayc 4 Vyepca Tr(B) = Te(A).
On the other hand, it is clear that \/yc 4 Avepca It (B) > It(A). Now, let By = {B € 2X: x € B C A}
and let f € ITyc4By. Then, clearly, U,c4 f(x) = A. Thus,

\ L(f(x) < (| f(x) = L(A).
xX€A xXeA

Thus,

VA BB = AV () < k(A).

xeAxeBCA fellyea x€A
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Hence, Vyca Axepca It (B) = I (A). Similarly, we have

V A E(B)=F(A).

xeAxeBCA

O
Theorem 2. Let (X, T) be an osvnts, let A € 2X and let x € X. Then,

E(Aet) < Vx(xe A— 3B(BeNy)A(BCA)),

[Aet]=[Vx(x € A— 3IB(Be Ny)A(BCA)),

[Acd=(A V B, V A @),V A Exv(B

Xx€ABCA x€EABCA xeABCA

Proof. From Theorem 3.1 in [33], it is clear that T:(A) = Ayca Vpca To, (B).

On the other hand,
I(A) = Vyea Arecca I(C) [By Lemma 3]
= Vxea ABca Axeccn IT(C)
= Vzxea Apca In, (B). [By Definition 13]

Similarly, we have F:(A) = V/yca Apca En, (B). This completes the proof. [

Definition 14. Let A be a single valued neutrosophic set in a set 2X. Then, A is said to be normal if there is
Ag € 2% such that A(Ag) = (1,0,0).
We will denote the set of all normal single valued neutrosophic sets in 2% as (I x I x I )%f

From the following result, we can see that an ordinary single valued neutrosophic neighborhood
system has the same properties in a classical neighborhood system.

Theorem 3. Let (X, T) be an osonts and let N : X — (I x I x I)%; ¥ be the mapping given by N'(x) = Ny,
for each x € X. Then, N has the following properties:

(1) foranyx € Xand A€ 2%, E A€ Ny - x €A,

() forany x € Xand A,B €2X, = (A€ Ny) A (BENy) = ANB € N,

(3) foranyx € Xand A,B € 2%, | (ACB) = (A€ Ny = BEMNy),

@ foranyx € X, = (A€ Ny) = 3IC((CeEN)AN(CCTA)AYY(y e C = CeNy)).

Conversely, if a mapping N : X — (I x I x I )%\;( satisfies the above properties (2) and (3), then there is an
ordinary single valued neutrosophic topology T : 2X — I x I x I on X defined as follows: for each A € 2%,

Aet:=Vx(xe A= AeN,),

[Act]=1(A)= (A Tnxi(A), V In(4), \ Ex, (4
xeA xeA xXeA

In particular, if N also satisfies the above properties (1) and (4), then, for each x € X, N is an ordinary
single valued neutrosophic neighborhood system of x with respect to T.
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Proof. (1) Since A € 2%, we can consider A as a special single valued neutrosophic set in x represented
by A = (xa, Xac, Xac)- Then,
[x € Al = A(x) = (xa(x), xac(x), xac(x)) = (1,0,0).
On the other hand,

[AGNx]:( \/ T‘L’(C)/ /\ IT(C)r /\ FT(C))§(1r0r0)~

xeCCA xeCCcA xeCCA

Thus, [A € Ny] < [x € A].
(2) By the definition of Ny,

[ANB¢€ Nr] =( \/ T (C), /\ 1:(C)), /\ E:(C)).

xeCCANB xeCCANB xeCCANB

From the proof of Theorem 3.2 (2) in [33], it is obvious that
Tx, (AN B) = Ty, (A) AT, (B).

Thus, it is sufficient to show that Iy, (AN B) < Iy, (A) V Ly, (B):

In,(ANB) = Arveccans It (C) = Asecyca, xec,cB I (C1 N Ca)
< Axecyca, xecyc(Ir(Cr) V It (C2))
= /\xecch IT(CI) \ /\xeCch IT(CZ)
= In, (A) V Ly, (B).

Similarly, we have Fy;,(A N B) < Fr,(A) V Fx, (B). On the other hand,
[(A € No) A (B € Ni)] = (Tw, (4) AT (B) Iy, (A) V L, (B), Ex, (4) V E, (B)):

Thus, [ANB € Ny] > [(A € Ny) A (B € Ny)].
(3) From the definition of Ny, we can easily show that [A € N] < [B € Ny].
(4) It is clear that

[AC((CeN)A(CCA)AYY(ye C = CeNy))]
= (VecalTa, (C) A Ayec Tn, (O, Accalln, (C) V Vyec Iy, (C)],
AccalEx; (C)V Vyec Ex, (C)))-
Then, by the proof of Theorem 3.2 (4) in [33], it is obvious that
V [Tw. (C) A A T, (C)] = T, (A).
CcA yeC

From Lemma 3, Vycc Iy, (C) = Vyec Ayencc Ir(D) = I(C). Thus,

AccalIn (C) V Vyec Iy, (C)] = Accally, (C) V I(C)] = Acca I(C)

< Axecca (C) = Iy, (A).
Similarly, we have Acc4[En, (C) V Vyec En,, (C)] < Arecca Fr(C) = En;, (A). Thus,
[FC(CeN)A(CCA)AVY(yeC = CeNy))] > [Ae Ny

Conversely, suppose N satisfies the above properties (2) and (3) and let T : 2X — I x I x I be the
mapping defined as follows: for each A € 2%,

(A) = (A Ta(A), V I (A), \ Ex,(A)).

xX€A XEA xXEA
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Then, clearly, T(¢) = (1,0,0). Since N is single valued neutrosophic normal, there is Ay € 2X
such that N (Ap) = (1,0,0). Thus, Ny (X) = (1,0,0). Thus,

T(X) = (A Tv.(X), V I (X), V Ex, (X)) = (1,0,0).
xeX xeX xeX
Hence, 7 satisfies the axiom (OSVNT1).
From the proof of Theorem 3.2 in [33], it is clear that T-(A N B) > T¢(A) A T¢(B).
On the other hand,

L(ANB) = Vieans I (AN B) < Vicans(In, (A) V Iy, (B))
= Vxeans IV, (A) V Vieans In, (B)
< Vxea I/\/x (A) V' Vien I/\/x(B)
= IT(A) \ IT(B)'

Similarly, we have F- (AN B) < F(A) V Fr(B). Then, T satisfies the axiom (OSVNT2). Moreover,
we can easily see that 7 satisfies the axiom (OSVNT3). Thus, T € OSVNT(X).

Now, suppose N satisfies additionally the above properties (1) and (4). Then, from the proof of
Theorem 3.2 in [33], we have Ty, (A) = V,cpca To(B) for each x € X and each A € 2%.

Let x € X and let A € 2X. Then, by property (4),

I, (4) = A I (O VvV Iy, (O))-
CcA yeC

From the property (1), Iy, (C) = 1 for any x ¢ C. Thus,

In (A) 2 Axeccalln (C) V Vyec Iy, (C)]

2 Nxecca VyeC IJ\@(C)

= Axepca I(B).
Now, suppose x € C C A. Then, clearly, V,ec Iy, (C) > Iy, (C) > Ly, (A).
Thus,

A EB) = A VI =Iv(4)
XEBCA xeCcAyeC
Thus, Iy, (A) = Axepca It(B). Similarly, we have Fyr (A) = Aycpca Fr(B). This completes
the proof. [

5. Ordinary Single Valued Neutrosophic Bases and Subbases

In this section, we define an ordinary single valued neutrosophic base and subbase for an ordinary
single valued neutrosophic topological space, and investigated general properties. Moreover, we obtain
two characterizations of an ordinary single valued neutrosophic base and one characterization of an
ordinary single valued neutrosophic subbase.

Definition 15. Let (X,T) be an osvnts and let B : 2X — I x I x I be a mapping such that B < 7, i.e.,
Tg < Ty, Ig > Ir, Fg > Fr. Then, B is called an ordinary single valued neutrosophic base for t if, for each
Ae2X,

{Ba}aerc2X, A=Uqer Bx #€T

IT(A) - /\ \/ IB(Bll)r
{Ba}aer©2X, A=Uger Bx #€T

Fe(4) = /\ \/ Fp(Ba).

{Ba}aer©2X, A=Uper Ba 4€T
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Example 3. (1) Let X be a set and let B : 2X — I x I x I be the mapping defined by:
B({x}) = (1,0,0) Vx € X.

Then, B is an ordinary single valued neutrosophic base for Tx.
(2) Let X = {a,b,c}, let « € SVNV be fixed, where « € I x Iy x Iy and let B : 2X 5 I x I x I bethe
mapping as follows: for each A € 2%,

B(A) = (1,0,0) ifeither A = {a,b} or {b,c} orX,
B otherwise.

Then, B is not an ordinary single valued neutrosophic base for an osvnt on X.
Suppose that B is an ordinary single valued neutrosophic base for an osvnt T on X. Then, clearly, B < t.
Moreover, T({a,b}) = T({b,c}) = (1,0,0). Thus,

Te({0}) = Te({a, b} N({b,c}) > Te({a, b} A Te({b,c} =1
and
L ({6}) = Le({a,b} N T({b,c}) < Le({a,b} A Le({b,c} 0.
Similarly, we have F-({b}) = 0. Thus, T({b}) = (1,0,0). On the other hand, by the definition of B,
T ({b}) = V A Tp(Aw) = Ta
{Aa}aerc2X, {b}=User Az €T

and

IT({b}) = /\ \/ Ig(An) = Iy

{Au}aer 2%, {b}=User Ax #€T

Similarly, we have Fr({b}) = F,. This is a contradiction. Hence, B is not an ordinary single valued
neutrosophic base for an osvnt on X

Theorem 4. Let (X, T) be an osvnts and let B : 2X — I x I x I be a mapping such that B < 7. Then, B is
an ordinary single valued neutrosophic base for T if and only if for each x € X and each A € 2%,

Ty, (A) </ Tg(B),
xEBCA

Iy, (A) > A\ Is(B),

xeBCA

Ex,(A) > )\ Fs(B).
xeEBCA

Proof. (=>): Suppose B is an ordinary single valued neutrosophic base for 7. Let x € X and let A € 2%,
Then, by Theorem 4.4 in [34], it is obvious that Ty (A) < Vycpc 4 Tg(B). On the other hand,

In, (A) = Axepca Ic(B) [By Definition 13]
= AxeBca /\{Ba}agczx, B=Uger Ba Vuer I8(Ba)- [By Definition 15]

If x € BC Aand B = Uyer By, then there is ag € T such that x € By,. Thus,

V Is(Bx) > I5(Byy) = N\ I5(B).
ael xeBCA

Thus, Iy, (A) > Axepca Ip(B). Similarly, we have Fyr, (A) > Ayepca Fs(B). Hence, the necessary
condition holds.
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(<): Suppose the necessary condition holds. Then, by Theorem 4.4 in [34], it is clear that

T(A) = V N Ts(Ba)-

{Bu}aer 2%, A=Uyer Ba #€T

Let A € 2X. Suppose A = Uyer By and {B,} C 2%. Then,

I:(A) < Veer Ir(Ba) [By the axiom (OSVNT3)]
< Veer 18(Bs)- [Since B < 1]
Thus,
L(A) < A\ \/ 15(Ba). M
{Ba}aerC2X, A=Uper Ba #€T

On the other hand,
I:(A) = Vrea Arepca It(B) [By Lemma 3]
= Viea In,(A) [By Definition 13]
= Viea Avepca Ig(B) [By the hypothesis]

= Afertye 1B, Vrea Is(f(x)),
where By = {B € 2X: x € B C A}. Furthermore, A = J,c4 f(x) for each f € T1,c4By. Thus,

AV Is(F) = A \ Is(By).

fellieaBy x€A {Ba }uer C2X, A=Uger Ba €T

Hence,

I(4) 2 A \/ I5(Ba). @)
{Ba}aerc2X, A=Uger Bx #€T
By (1) and (2), I;(A) = A {By}aerc2X, A=Uper Bx Vel Ig(By). Similarly, we have Fr(A) =
/\{Bﬂt}wel‘CZX/ A=Uper Ba Vuer F5(By). Therefore, B is an ordinary single valued neutrosophic base
fort. O

Theorem 5. Let B : 2% — I x I x I be a mapping. Then, B is an ordinary single valued neutrosophic base for
some oist T on X if and only if it has the following conditions:
() VB, }uerc2X, x=Uyer B, Naer TB(Ba) = 1,
(BuYaer 2%, X=Uyer By Vaer I8(Ba) =0,
(Butaer C2%, X=Uyer Ba Vaer F5(Ba) =0,
(2) forany Ay, Ay € 2X and each x € A1 N Ay,

Tg(A1)ATg(A2) </ Tp(A),
XEACAINAy

Ig(A) VIg(A2) = N\ Ig(A),
XEACAINAy

Fs(A1)VEs(A2) > N\ Fs(A).
xeACAINA,

In fact, T : 2% — I x I x I is the mapping defined as follows: for each A € 2%,

1 ifA=¢
T:(A) = .
=(A) { V (Bo}aerc2X, A—User B Axer T(Bs) otherwise,
= {0 ifA=¢
’ A{Bateerc2X, A=Uper Bx Vaer I8(Ba)  otherwise,
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FT(A)_{O ifA=¢

A{Bu}eerc2X, A=Uyer Bx Vaer F5(By) otherwise.

In this case, 7 is called an ordinary single valued neutrosophic topology on X induced by B.

Proof. (=): Suppose B is an ordinary single valued neutrosophic base for some osvnt T on X. Then,
by Definition 15 and the axiom (OSVNT1),

\/ /\ Tp(Ba) = T(X) =1,
{Ba}aEFCZXr X:chel" By ael

/\ \/ Ig(Ba)) = Ie(X) =0,
{Brx }a&rCZX, X:Uuel" By ael

A V Fs(By)) = F(X) =0.

{Ba}aerC2X, X=Uyer Ba ®€T
Thus, condition (1) holds.

Let Ay, Ay, € 2X and let x € A; N Ay. Then, by the proof of Theorem 4.2 in [33], it is obvious that
Tg(A1) A T(A2) < Vyeacana, T5(A). On the other hand,

IB(Al) V IB(AZ) > IT(Al) V IT(Az) > IT(Al n Az) > I_/\[X(A] n Az) > /\ IB(A).
XEACAINAy

Thus,

Ig(A) VIg(A2) > N\ Ig(A).
XEACAINAy

Similarly, we have
Fs(A1) VEs(A2) > N\ Fg(A).
x€ACAINA,
Thus, condition (2) holds.
(«<=): Suppose the necessary conditions (1) and (2) are satisfied. Then, by the proof of Theorem 4.2
in [33], we can see that the following hold:

Tr(X) =Te(¢) =1,
T:(ANB) > T:(A) A T¢(B) forany A, B € 2X

and
Tr(User Aa) = Ager Tr(Ag) for each {Agfuer C 2%
From the definition of 7, it is obvious that I;(X) = I;(¢) = 0. Similarly, we have F;(X) =
Fr(¢) = 0. Thus, T satisfies the axiom (OSVNT1).
Let {Aq}aer C 2X and let By = {{Bs, : « € Tu} : Us,er, Bs, = Aal}- Let f € IyerBy. Then,
dlearly, Uyer Up,, ef(w) Bsx = Uxer Ax- Thus,
L (Urer Ax) = AUjer Bs=User As Voer I8(Bs)
< Afentyer B, Vaer Vs, ef(a) I8(Bs,)
= Vaer A(B;, :5ueTe} b, Voer, I8(Bs,)
= Vaer Ir(Ag).

Similarly, we have Fr(Uyer Ax) < Vaer Fr(Ax). Thus, T satisfies the axiom (OSVNTS3).
Now, let A, B € 2X and suppose Iz (A) < I, and I(B) < I, for « € SVNV. Then, there are
{Ay r a1 €T} and {By, : @y € T2} such that Uy, er, Ay = A, Unyer, Bo, = B and I(Aq,) < I, for
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each wq € I'y, Ig(Ba,) < I for each ap € T'p. Let x € AN B. Then, there are a1, € 'y and ap, € I'; such
that x € Ay, N By,,. Thus, from the assumption,

Iy > IB(A/XM) \Y IB(BthX) > /\ IB(C),
XECC Agy, MBay,

Moreover, there is Cy such that x € C, C Ay, NBy,, C ANB and I5(Cy) < Iy. Since
Uxeans Cx = AN B, we obtain

L> \/ Ig(C) > A V 18(B.) = I.(ANB).
xEANB Uner Be=ANB a€l

Now, let Is = I:(A) V Iz(B) and let 1 be any natural number, where Iz € I. Then, I;(A) <
Ig +1/nand I;(B) < Iz +1/n. Thus, (AN B) < Iz +1/n. Thus, (AN B) < Iy = I;(A) V I(B).
Similarly, we have F;(A N B) < Fr(A) V F¢(B). Hence, T satisfies the axiom (OSVNT?2). This completes
the proof. [

Example 4. (1) Let X = {a,b,c} and let « € SVNV be fixed, where o € Iy x Iy x Iy. We define the mapping
B:2X — I x I x I as follows: for each A € 2%,

)1 ifA={b}or{ab}or{bc}
Ts(A) = { Ty otherwise,

) 0 ifA={b}or{ab}or{bc}
I5(4) = { I, otherwise,

{ 0 ifA={b}or{ab}or{bc}

Fg(A) =
5(4) F, otherwise.

Then, we can easily see that B satisfies conditions (1) and (2) in Theorem 5. Thus, BB is an ordinary single
valued neutrosophic base for an osont T on X. In fact, T : 2X — I x I x I is defined as follows: for each
Ae2X,

I(4) = { 1 ifAe{¢ {b},{ab},{bc} X}
T, otherwise,

L(4) _{ 0 ifA e {¢,{b},{ab},{bc}, X}

I, otherwise,

EA(A) = { 0 ifA€ {g, b}, {ab},{bc}, X}

F, otherwise.

(2) Let « € SVNV be fixed, where « € I x Iy x Iy. We define the mapping B : 28 — I x I x I
as follows: for each A € 28,

)1 ifA=(ab)fora, beRwitha<b
Ts(A) = { T, otherwise,

0 ifA=(ab)fora, beRwitha<b
I, otherwise,

_J 0 ifA=(ab)fora, becRwitha<b
Fs(4) = { F, otherwise.
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Then, it can be easily seen that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osvnt T, on R.

In this case, T is called the a-ordinary single valued neutrosophic usual topology on R.

(3) Let « € SVNV be fixed, where « € Ij x Iy x Iy. We define the mapping B : 28 — I x I x I
as follows: for each A € 2F,

1 ifA={ab)fora, b e Rwitha<b
Tp(A) =
5(4) { T, otherwise,

I5(A) = 0 ifA=1ab)fora, beRwitha<b
B a I, otherwise,

Fg(A) = 0 ifA=1ab)fora, beRwitha<b
B "] E, otherwise.

Then, we can easily see that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osvnt 1 on R.
In this case, T is called the a-ordinary single valued neutrosophic lower-limit topology on R.

Definition 16. Let 7, T, € OSVNT(X), and let By and BBy be ordinary single valued neutrosophic bases for
T1 and Ty, respectively. Then, By and By are said to be equivalent if Ty = 1.

Theorem 6. Let 7y, T2 € OSVNT(X), and let By and By be ordinary single valued neutrosophic bases for T
and T respectively. Then, Ty is coarser than 1, i.e.,

Ty < T, Iy 2 Iy, By 2 Fy
if and only if for each A € 2% and each x € A,

Tg,(A) < \/ Tg(B), Ig(A)> A Ig(B), Fg(A)> A Fs(B).

xeBCA xeBCA xeBCA

Proof. (=): Suppose T is coarser than 7,. Foreachx € X, letx € A € 2X. Then, by Theorem 4.8
in [34], Tg, (A) < Vxepca T, (B). On the other hand,
Ip,(A) > I, (A) [since B; is an ordinary single valued neutrosophic base for 7]
> I, (A) [By the hypothesis]
- /\{A:x }aerC2%, A=Uper Ax VD‘EF IBZ (Aa)'
[Since B; is an ordinary single valued neutrosophic base for 1]

Since x € A and A = Uyer Au, there is &g € T' such that x € Ay, Thus,

/\ \/ IBz(AIX) = IBz(Al’éo) > /\ IBz(B)'

{AutaerC2X, A=Uyer A #€T xeBCA

Thus, Iz, (A) > Ayepca Is,(B). Similarly, we have Fg, (A) > Ayepca Fs,(B).
(<): Suppose the necessary condition holds. Then, by Theorem 4.8 in [34], T;; < Tr,. Let A € 2X,
Then,

Iy (A) = Vxea AxeBca Ip, (B) [By Lemma 3]
> Vrea AxeBca Axeccn I8, (C) [By the hypothesis]
= Axecca Vrea I5,(C)
= N (Ce}renc2X, A=Usen Cx Vaea 18, (Cx)

= Iy
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Thus, I; > Ir,. Similarly, we have Fr, > F,. Thus, 1y is coarser than 7. This completes the
proof. O

The following is an immediate result of Definition 16 and Theorem 6.

Corollary 4. Let By and By be ordinary single valued neutrosophic bases for two ordinary single valued
neutrosophic topologies on a set X, respectively. Then,

By and By are equivalent if and only if the following two conditions hold:

(1) for each By € 2% and each x € By,

Ts,(B) </ Ts(B),
XEB;CBy

Is(B1) > A\ Is(B2),
XEBCBy

Fz (B1) > N Fg(By),
XEB,CBy

(2) for each By € 2% and each x € B,,

Ts,(B2) </ Tz (B1),
XEB1CBy

Ig,(B2) > A\ Ip(B1),

XEB1CBy

Fg,(B) > N Fs(By).
XEB1CBy

It is obvious that every ordinary single valued neutrosophic topology itself forms an ordinary
single valued neutrosophic base. Then, the following provides a sufficient condition for one to see if
a mapping B : 2X 5 I x I x I such that Tp < Ty, Ig > Iy and Fg > F; is an ordinary single valued
neutrosophic base for T € OSVNT(X).

Proposition 10. Let (X, T) bean osvntsandlet B :2X — I x I x I bea mapping such that Tg < T, Ig > It
and Fg > Fr. For each A € 2X and each x € A, suppose Tr(A) < Vyepea T5(B), It(A) > Arepea I5(B)
and Fr(A) > Axepca F(B). Then, B is an ordinary single valued neutrosophic base for .

Proof. From the proof of Proposition 4.10 in [34], it is clear that the first part of the condition (1) of
Theorem 5 holds, i.e., V{Ba}ngrdx, X=User B Awer T(By) = 1. On the other hand,

AN{Bataerc2%, X=User Ba Vaer 18(Bx)

2 A{By}aerC2X, X=Uycr Ba Vaer I+ (By) [since Ig > I]
Z A(BuYaerc2X, X=Uper Bx Tt(User Ba) [by the axiom (OSVNT3)]
= IT(X)

= Viex Avepcx Ir(B) [By Lemma 3]
= Viex Axebex Axeccn I8(C) [By the hypothesis]
= Areccx Vrex I8(C)

= A{By}acrc2X, X=Uer By Vaer 18(Ba).
Since T € OSVNT(X), Ix(X) = 0. Thus, Agg} . cox, X=Uper Bx Vaer Ig(Bs) = 0. Similarly, we
have /\{Ba Yeer C2%, X=Uper B Vaer F5(By) = 0. Thus, condition (1) of Theorem 5 holds.
Now, let Ay, A; € 2X and let x € A1 N Ajy. Then, by the proof of Proposition 4.10 in [34], it is
obvious that Tg(A1) A Tp(A2) < Vicaca,na, T5(A). On the other hand,
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Ig(A1) V Ig(Az) > I (A1) V Iz (Az) [Since Iz > I{]
> (A1 NAy) [by the axiom (OSVNT2)]
> Axcacana, Is(A). [by the hypothesis]

Similarly, we have F5(A1) V F5(A2) > Areaca,na, F5(A). Thus, condition (2) of Theorem 5
holds. Thus, by Theorem 5, B is an ordinary single valued neutrosophic base for 7. This completes

the proof. [

Definition 17. Let (X,T) be an osonts and let ~ : 2X — I x I x I be a mapping. Then, ¢ is called an
ordinary single valued neutrosophic subbase for T, if ¢"' is an ordinary single valued neutrosophic base for T,
where @' : 2X — T x I x I is the mapping defined as follows: for each A € 2%,

Ty(A) = \V} N\ T=(Ba),
{Ba}C2X, A=(yer B #€T

In(A) = A\ \ 1~(Ba),
{Ba}C2X, A=Myer By #€T

Fyn(A) = A\ \/ F=(Bw),

{Ba}C2X, A=Myer Ba #€T

where C stands for “a finite subset of”.

Example 5. Let & € SVNV be fixed, where a € Iy x Iy x Iy. We define the mapping ~ : 28 — I x I x I
as follows: for each A € 2R,

1 if A= (a,)or (—oco,b)or (a,b)
T~(A) =
~(4) { T, otherwise,

I(A) = 0 if A= (a,00)0r (—oo,b)or (a,b)
= "] L otherwise,

] 0 if A= (a,00)o0r(—o0,b)or (a,b)
Fx(4) = { F, otherwise,

where a, b € R such that a < b. Then, we can easily see that ~ is an ordinary single valued neutrosophic
subbase for the -ordinary single valued neutrosophic usual topology Uy on R.

Theorem 7. Let ~ : 2X — [ x I x I be a mapping. Then, ~ is an ordinary single valued neutrosophic subbase

for some osvnt if and only if
V N T=(Bs) =1,

{Bu}uer €2%, X=Uqer Ba #€T

A \/ I(Bx) =0,

{Ba}aer€2X, X=Uper Ba #€T

A \/ E=(By) = 0.

{Bu}taer 2%, X=Uger Ba 4€T

Proof. (=): Suppose =~ is an ordinary single valued neutrosophic subbase for some osvnt. Then,
by Definition 17, it is clear that the necessary condition holds.

(<): Suppose the necessary condition holds. We only show that ¢ satisfies the condition (2) in
Theorem 5. Let A, B € 2X and x € AN B. Then, by the proof of Theorem 4.3 in [33], it is obvious that
Ty (A) ATy (B) < Vieccang Ton(C). On the other hand,
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I,(A) V Iy (B)
= (/\m{1Erl Boy =4 Vayery I~(Bay)) V (/\mtherz Bay=B Vaer, I~(Bay))
= Auyer, Bay =4 Noger, Bay=B(Vayer; I~(Bay) V Viser, I~ (Bay))
> Aer Be=ArB Vaer I=(Ba)
= I,0(ANB).
Since x € ANB, I,n(A) VIn(B) > I,n(ANB) > Areccanslpn(C). Similarly, we have
Fyi(A)V Fyn(B) > Fyn(ANB) > Aseccang Fpr(C). Thus, ¢'' satisfies the condition (2) in Theorem 5.
This completes the proof. [

Example 6. Let X = {a,b,c,d, e} and let « € SVNV be fixed, where v € I x Iy X Iy. We define the mapping
~ 12X — [ x I x I as follows: for each A € 2%,

TN(A)_{ 1 ifAe{{a},{abc} {bcd}{ce}}

T, otherwise,

I, otherwise,

L (A) = { 0 if A e {{a},{abc}, {bcd} {ce}}

F(4) = { 0 itAe ({a) (bl (bod) fee))

F, otherwise.
Then, X ={a}U{b,c,d}U{ce},

Ty({a}) = Tp({be,d}) = Tyo({ee}) = 1,
I ({a}) = Lo ({b,c,d}) = I, ({c,e}) = 0.
Fpr({a}) = Fpr({b,c,d}) = Fyn({c,e}) = 0.

Thus,

V N T=(Bs) =1,

{Bu}uer €2%, X=Uqer Ba #€T

A \/ I=(Bx) =0,

{Bua}aer ©2%, X=Uper Ba 4€T

A \/ F~(Bs) = 0.

{Ba}aer €2%, X=Uyer B #€T

Thus, by Theorem 7, ~ is an ordinary single valued neutrosophic subbase for some osvnt.
The following is an immediate result of Corollary 4 and Theorem 7.

Proposition 11. ~;, ~ : 2X — [ x I x I be two mappings such that

\/ /\ Tl‘l(BtX) =1,

{Ba}taer 2%, X=Uger Ba 4€T

/\ \/ I’—‘1(BIX) =0,

{Ba}aer €2%, X=Uqer Ba #€T
/\ \/ Fﬁl(BzX) =0
{Ba}aerczxr X=Uger B« ael

and

\/ /\ Tiz(Bzx) =1,

{Bu}taer 2%, X=Uper Ba 4€T
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/\ \/ IZZ(BIX) =0,

{Bu}aer ©2%, X=Uper Ba #€T

A \/ F~,(Ba) =0.

{Bw }aEFCZXr X:U«el" By ael

Suppose the two conditions hold:
(1) for each Sy € 2X and each x € Sy,

To(51) €V Toy(S2), 1(81) > N\ 15,(S2), B, (S1) > N\ Fxy(S2),

XE€SCSy XE€SCSy XESHCSy

(2) for each Sy € 2X and each x € S,,

T ($2) <V T (S1), I5(52) > A Ix(S1), f(S2) 2 A f=(S).

X€S1CSy XE€S1CSy XE€S1CSy

Then, ~1 and ~, are ordinary single valued neutrosophic subbases for the same ordinary single valued
neutrosophic topology on X.

6. Conclusions

In this paper, we defined an ordinary single valued neutrosophic topology and level set of
an osvnst to study some topological characteristics of neutrosophic sets and obtained some their
basic properties. In addition, we defined an ordinary single valued neutrosophic subspace. Next,
the concepts of an ordinary single valued neutrosophic neighborhood system and an ordinary single
valued neutrosophic base (or subbase) were introduced and studied. Their results are summarized
as follows:

First, an ordinary single valued neutrosophic neighborhood system has the same properties in a
classical neighborhood system (see Theorem 3).

Second, we found two characterizations of an ordinary single valued neutrosophic base
(see Theorems 4 and 5).

Third, we obtained one characterization of an ordinary single valued neutrosophic subbase
(see Theorem 7).

Finally, we expect that this paper can be a guidance for the research of separation axioms,
compactness, connectedness, etc. in ordinary single valued neutrosophic topological spaces.
In addition, one can deal with single valued neutrosophic topology from the viewpoint of lattices.
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Abstract: Recently, various types of single valued neutrosophic (SVN) rough set models were
presented based on the same inclusion relation. However, there is another SVN inclusion relation
in SVN sets. In this paper, we propose a new type of SVN covering rough set model based on the
new inclusion relation. Furthermore, the graph and matrix representations of the new SVN covering
approximation operators are presented. Firstly, the notion of SVN B2-covering approximation
space is proposed, which is decided by the new inclusion relation. Then, a type of SVN covering
rough set model under the SVN g?-covering approximation space is presented. Moreover, there
is a corresponding SVN relation rough set model based on a SVN relation induced by the SVN
B?-covering, and two conditions under which the SVN f2-covering can induce a symmetric SVN
relation are presented. Thirdly, the graph and matrix representations of the new SVN covering rough
set model are investigated. Finally, we propose a novel method for decision making (DM) problems
in paper defect diagnosis under the new SVN covering rough set model.

Keywords: single valued neutrosophic set; covering; symmetric relation; graph representation;
matrix representation; paper defect diagnosis

1. Introduction

Rough set theory, as a tool to deal with various types of data in data mining, was proposed by
Pawlak [1,2] in 1982. Then rough set theory has been extended to generalize rough sets based on other
notions such as binary relations [3], neighborhood systems [4], and coverings [5].

Covering-based rough sets [6-9] were proposed to deal with the type of covering data.
In application, they have been applied to knowledge reduction [10,11], decision rule synthesis [12,13],
and other fields [14,15]. In theory, covering-based rough set theory has been connected with matroid
theory [16-18], lattice theory [19,20], and fuzzy set theory [21-23]. Zadeh’s fuzzy set theory [24]
addresses the problem of how to understand and manipulate imperfect knowledge. It has been used
in various applications [25-28]. Recent investigations have attracted more attention on combining
covering-based rough set and fuzzy set theories. There are many fuzzy covering rough set models
proposed by researchers, such as Ma [29] and Yang et al. [30].

Smarandache [31] and Wang et al. [32] presented single valued neutrosophic (SVN) sets, which
can be regarded as an extension of intuitionistic fuzzy sets [33]. Both neutrosophic sets and rough
sets can deal with partial and uncertainty information [34]. Therefore, it is necessary to combine them.
Recently, Mondal and Pramanik [35] presented the concept of rough neutrosophic set. Yang et al. [36]
presented a SVN rough set model based on SVN relations. Wang and Zhang [37] presented two
types of SVN covering rough set models. All these SVN rough set models are presented based on an
inclusion relation which is named type-1 inclusion relation and denoted by C;. The definition of C; is
shown as follows; for any A, B € SVN(U),
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A Cq Biff Ta(x) < Tp(x), Ip(x) < In(x) and Fg(x) < Fa(x) forall x € U.

Under the type-1 inclusion relation, for two SVN numbers « = (a,b,c) and = (d, ¢, f), we have
<1 B a<db>eandc > f. The definition of SVN B-covering approximation space is presented
as follows (see the work by the authors of [37]).

Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number 8 = (a,b, c), we
callC = {C1,Cy, -+ ,Cim}, with C; € SVN(U)(i = 1,2,...,m), a SVN B-covering of U, if for all x € U,
C; € Cexists such that C;(x) >; . We also call (U, C) a SVN B-covering approximation space.

However, there exists another inclusion relation in the work by the authors of [38], which is called
type-2 inclusion relation and denoted by C,. The definition of C, is introduced as follows; for any
A,B e SVN(U),

A Sy Biff Ta(x) < Tp(x), In(x) < Ig(x) and F(x) < Fa(x) forall x € U.

Under the type-2 inclusion relation, for two SVN numbers a = (a,b,¢) and = (d, ¢, f), we have
xn<,Bsa<db<eandc> f.

In the definition of SVN B-covering approximation space, if C;(x) > B is replaced by C;(x) >2 8,
there will be a new SVN covering approximation space (we call it a SVN ?-covering approximation
space in this paper). In Example 1 in this paper, we find the following statements.

(1) LetB =(05,0.1,0.8). Then CisaSVN ﬁz-covering of U, but it is not a SVN B-covering of U.
(2) LetB =(05,0.3,0.8). Then CisaSVN B-covering of U, but it is not a SVN g?-covering of U.

That is to say, the SVN B2-covering approximation space is a new SVN covering approximation
space, which is different from the SVN B-covering approximation space. Since different inclusion
relations (C; and Cp) have different union and intersection operations, the SVN g2-covering
approximation space has different union and intersection operations from the SVN B-covering
approximation space. Hence, notions and corresponding SVN covering rough set models of SVN
B-covering approximation space do not apply to SVN f?-covering approximation space, which is the
justification for studying this topic. Therefore, the investigation of the SVN 2-covering approximation
space and its corresponding SVN covering rough set model is very important. It not only can manage
some issues that the SVN B-covering approximation space can not deal with, but also constructs a new
type of SVN covering rough set model. This is our motivation of this research.

In this paper, we present some new concepts in SVN f?-covering approximation space, as well
as their properties. Then the type-2 SVN covering rough set model under the SVN f?-covering
approximation space is proposed. On the one hand, the graph and matrix representations of the type-2
SVN covering rough set model are investigated respectively. Moreover, some relationships between
the type-2 SVN covering rough set model and other SVN rough set models are presented. One the
other hand, we present a method to DM problems in paper defect diagnosis, which is an important
topic in paper making industries, under the type-2 SVN covering rough set model. Many researchers
have studied decision making (DM) problems by rough set models [39-42]. Hence, the proposed DM
method is compared with other methods which are presented by Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37] respectively.

The rest of this paper is organized as follows. Section 2 reviews some fundamental definitions
about covering-based rough sets and SVN sets. In Section 3, some concepts and properties in
SVN p2-covering approximation space are studied. The relationship between the SVN B-covering
approximation space and the SVN B2-covering approximation space is presented. In Section 4, we
present the type-2 SVN covering rough set model. Some relationships between the type-2 SVN covering
rough set model and other SVN rough set models are presented. Moreover, a SVN relation can be
induced by the SVN B2-covering, so a corresponding SVN relation rough set model and two conditions
under which the SVN B2-covering can induce a symmetric SVN relation are presented. In Section 5,
some new graphs and graph operations are presented. Based on this, the graph representation of the
type-2 SVN covering approximation operators is shown. In Section 6, some new matrices and matrix

87



Symmetry 2019, 11, 1074

operations are also presented, and the matrix representation of the type-2 SVN covering approximation
operators is presented. In Section 7, a novel method to paper defect diagnosis is presented under
the type-2 SVN covering rough set model. Moreover, the proposed method is compared with other
methods. This paper is concluded and further work is indicated in Section 8.

2. Basic Definitions

Suppose U is a nonempty and finite set called universe.

Definition 1. (Covering [45,46]) Let U be a universe and C be a family of subsets of U. If none of subsets in C
is empty and UC = U, then C is called a covering of U.

The pair (U, C) is called a covering approximation space.

Definition 2. (SVN set [32]) Let U be a nonempty fixed set. A SVN set A in U is defined as an object of the
following form.

A= {(x,Ta(x),1a(x),Fa(x)) : x € U},

where Ty : U — [0,1] is called the degree of truth-membership of the element x € U to A, I4 : U — [0,1]
is called the degree of indeterminacy-membership of the element x € U to A, Fa(x) : U — [0,1] is called the
degree of falsity-membership. They satisfy 0 < Tp(x) + Ia(x) 4+ Fa(x) < 3 forall x € U. The family of all
SVN sets in U is denoted by SVN(U). For convenience, a SVN number is represented by o« = (a, b, c), where
a,b,ce[0,1]anda+b+c<3.

For the inclusion relation of neutrosophic sets, there are two different definitions in the literature.
An original definition is proposed by Smarandache [31,47], we call it type-1 inclusion relation in this
paper, denoted by C;. For set theory, union and intersection operations are corresponding to inclusion
relation. Hence, there are corresponding union and intersection operations defined as follows; for any
A,Be SVN(U),

(1) A <G Biff Ta(x) < Tp(x), Ip(x) < Ia(x) and Fp(x) < Fa(x) forall x € U;
@AM B = {(x, Ta(x) A Tp(x), L4 (x) V Ip(x), Fa(x) V Fp(x)) : x € U};
() AU B = {{x,Ta(x) V Ta(x), La (x) A Ip(x), Fa(x) A Fp(x)) : € U}
Specially, for two SVN numbers, & = (a,b,c) and = (d,e, f) ,a < < a<d,b>eandc > f.
Under the type-1 inclusion relation, Wang and Zhang [37] presented the definition of SVN
B-covering approximation space.

Definition 3. [37] Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number
B = (ab,c), wecall C ={Cy,Cy,-+,Cp}, with C; € SVN(U)(i = 1,2,...,m), a SVN B-covering of U,
ifforall x € U, C; € C exists such that C;(x) >1 . Wealso call (U, C) a SVN B-covering approximation space.

Definition 4. [37] Let C be a SVN B-covering of U and C = {Cy,Cy, ..., Cy}. Forany x € U, the SVN
B-neighborhood NE of x induced by C can be defined as

I@? = ﬂl{Ci € 6 : Ci(x) >1 ﬁ} (1)

Another one is used in some papers [32,38], we call it type-2 inclusion relation in this paper,
denote it by C,. Hence, the type-2 inclusion relation, corresponding union and intersection operations
are shown as follows; for any A, B € SVN(U),

(1) A Biff Ta(x) < Tp(x), Ia(x) < Ip(x) and Fp(x) < Fa(x) forall x € U;
@) AM2B = {(x, Ta(x) A Tp(x), [4(x) A Ip(x), Fa(x) V Fp(x)) : x € U};
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@) AU B = {{x,Ta(x) V Tp(x), Ia(x) V Ip(x), Fa(x) A F(x)) : x € U}.

Specially, for two SVN numbers « = (a,b,c) and p = (d,e, f) ,a <o p=a<d,b<eandc> f.
For the above inclusion relations of neutrosophic sets, the following operations use the same
definition in this paper [32,36].

(4) A=Biff AC;BandB C, A,iff AC, Band B C, A;
6) A= {{x,Fa(x),1—Ia(x),Ta(x)) : x € U};
(6) A®B={(x,Ta(x)+Tg(x) — Ta(x) - Tp(x), Ia(x) - Ig(x), Fa(x) - Fp(x)) : x € U}.

3. SVN B?-Covering Approximation Space

In this section, the definition of SVN f2-covering approximation space is presented. There are
two basic concepts—SVN B2-covering and SVN B2-neighborhood—in this new approximation space.

Definition 5. Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number p = (a,b,c),
we call C = {Cy,Ca, -~ ,Cy }, with C; € SVN(U )(z =1,2,..,m),a SVN p2-covering of U, if for all x € U,
C; € C exists such that C,( ) > B. Wealso call (U,C) a SVN ,Bz—covermg approximation space.

In Definition 5, if C;(x) >, B is replaced by C;(x) >; B, then C= {C1,Cy,- -+ ,Cp} is called a
SVN B-covering of U in [37]. By the definitions of >; and >3, we know if C is a SVN p2-covering of U,
then C is not necessarily a SVN g-covering. To show the difference between SVN B-covering and SVN
B?-covering, we use the work presented by the authors of [37] in the following example.

Example 1. Let U = {xq,x,x3,%4,%5}, C = {Cy,Cy, C3,Cys} and B = (0.5,0.1,0.8). We can see that Cis
a SVN B2-covering of U in Table 1, but it is not a SVN B-covering of U.

Table 1. The tabular representation of Cin [37].

u C G Cs G

x1 (07,02,05)  (0.6,02,04)  (04,01,05)  (0.1,05,0.6)
x;  (0503,02) (050208  (04,0504)  (0.6,0.1,0.7)
x3  (04,0502)  (02,03,06)  (0502,04)  (0.6,03,0.4)
x,  (06,01,07) (04,0507 (03,0605  (0.5,03,0.2)
xs  (0.3,02,06)  (0.7,03,05)  (0.6,03,05)  (0.8,0.1,0.2)

Conversely, if Cis a SVN B-covering of U, then C is not necessarily a SVN f2-covering.
In Example 1, suppose f = (0.5,0.3,0.8). Then C is a SVN p-covering of U, but it is not a SVN
p?-covering of U.

By the definition of SVN B-neighborhood, the notion of SVN 2-neighborhood is presented in the
following definition.

Definition 6. Let C be a SVN p2-covering of U and C = {Cy,Ca,...,Cy}. Forany x € U, the SVN
~ 32 ~
B?-neighborhood NE of x induced by C can be defined as

N = m{C € €:Ci(x) 22 ). @

Note that C;(x) is a SVN number (T, (x), I¢,(x), Fc,(x)). Hence, C;(x) >2 p means T, (x) > a
Ic,(x) > band F,(x) < ¢, where SVN number 8 = (a,b,c).

Remark 1. Let C be a SVN p2-covering of U, p = (a,b,c) and C = {C1,Cy,...,Cn}. Forany x € U,

NE = m{Ci e C: T, (x) > a, Ic,(x) > b, Fe(x) < c}. ®)
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Example 2. Let (U, C) be a SVN p2-covering approximation space in Example 1 and p = (0.5,0.1,0.8). Then
~‘BZ ~ﬂ2 ~‘52 N)BZ ~Ij2
Ny, =C1MCo, Ny, = C1 M Co My Cy, Ny, = C3Mp Cy, Ny, = Cp M Gy, Ny = G My G3 M2 Gy
Hence, all SVN B?-neighborhoods are shown in Table 2:

Table 2. The tabular representation of fo (k=1,2,3,4,5).

N,

Xk X1 X2 X3 X4 X5

fo (0.6,0.2,0.5) (0.5,0.2,0.8) (0.2,0.3,0.6) (0.4,0.1,0.7) (0.3,0.2,0.6)
fo (0.1,0.2,0.6) (0.5,0.1,0.8) (0.2,0.3,0.6) (0.4,0.1,0.7) (0.3,0.1,0.6)
ij (0.1,0.1,0.6) (0.4,0.1,0.7) (0.5,0.2,0.4) (0.3,0.3,0.5) (0.6,0.1,0.5)
Nf: (0.1,0.2,0.6) (0.5,0.1,0.7) (0.4,0.3,0.4) (0.5,0.1,0.7) (0.3,0.1,0.6)
Nﬁf (0.1,0.1,0.6) (0.4,0.1,0.8) (0.2,0.2,0.6) (0.3,0.3,0.7) (0.6,0.1,0.5)

According to Definitions 3-6, we know that “Let C be a SVN p2-covering of U. If C is also a SVN

~R2 ~
B-covering of U, then N,’? and Nf have no inclusion relations (C; and C») for all x € U. To explain
this statement, the following example is presented.

Example 3. Let U = {x1,x,%3,%4,%5}, C = {Cy,Cy, C3,Cy4} and B = (0.5,0.2,0.8), where C is shown in
Table 1 of Example 1. By Definitions 3 and 5, we know that C is a SVN B?-covering and also a SVN B-covering
of U. Then

~ﬁ2 ~52 ~‘52 ~ﬁ2 ~52

le = C] [ CZ/ NXZ = Cl My CZ/ Nx3 = C3 Mo C4,NX4 = C4, NXS = Cz Mo C3~

Nfl =CiM G, Nﬁz =CrNyCy, N@ =GCs, NZ = Cl,Nfs = Cy.

Hence, all SVN B?-neighborhoods and SVN B2-neighborhoods are shown in Tables 3 and 4 respectively:
By Tables 3 and 4, we see that for all x; € U (k =1,2,3,4,5)

. Nfi < Nék is not established, since Nﬁj Z1 NET
. Nﬁk < Nei is not established, since NQ 1 Nﬁ; .
. Nfi <, ka is not established, since Nfz 7> NZ.
. Nﬁk < NE; is not established, since Ni 7> Nf; .

~R2 ~
Hence, ka and ka have no inclusion relations (Cq and Cp) for all x; € U.

In a SVN p2-covering approximation space (U, C), we present the following properties of the
SVN p2-neighborhood.

Table 3. The tabular representation of fo (k=1,2,3,4,5).

NE,

Xk X1 x2 X3 X4 X5

NE (0.6,0.2,0.5) (0.5,0.2,0.8) (0.2,0.3,0.6) (0.4,0.1,0.7) (0.3,0.2,0.6)
ij (0.6,0.2,0.5) (0.5,0.2,0.8) (0.2,0.3,0.6) (0.4,0.1,0.7) (0.3,0.2,0.6)
Nf; (0.1,0.1,0.6) (0.4,0.1,0.7) (0.5,0.2,0.4) (0.3,0.3,0.5) (0.6,0.1,0.5)
ij (0.1,0.5,0.6) (0.6,0.1,0.7) (0.6,0.3,0.4) (0.5,0.3,0.2) (0.8,0.1,0.2)
Nf: (0.4,0.1,0.5) (0.4,0.2,0.8) (0.2,0.2,0.6) (0.3,0.5,0.7) (0.6,0.3,0.5)
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Table 4. The tabular representation of I@i (k=1,2,3,4,5).

NE x1 x x3 x4 x5

NE (06,0205 (050308 (02,0506 (04,0507 (03,0306
NE (01,05,06) (050208  (02,03,06) (040507  (0.7,03,05)
NE  (04,01,05)  (04,0504)  (0502,04) (03,0605  (0.6,03,05)
NE(07,02,05)  (05,03,02) (04,0502  (0601,07)  (0.3,02,06)
NE  (01,0506)  (0601,07)  (0603,04)  (0503,02)  (0501,02)

Proposition 1. Let C be a SVN p2-covering of U and C = {Cy,Cy, ..., Cp}. Then N"fz(x) >5 B for each
xel

Proof. Forany x € U, Nfz(x) =( M GC)x)>p O
Ci(x)=2B

Proposition 2. Let Cbea SVN B2-covering of U and C = {Cy,Cy, ..., Cp}. Forall x,y,z € U, lfNEZ (¥) >2
~ 2 ~32
B NE (2) 2, B, then N (2) >, .

Proof. Let I = {1,2,---,m}. Since Nfz(y) >y B, forany i € I, if Ci(x) >, B, then Ci(y) >» B.
~R2
Since N5 (z) >2 B, forany i € I, Ci(z) >» B when Ci(y) >3 B. Then, for any i € I, C;(x) >, B implies
Ci(z) >2 B. Therefore, NEZ (z) > 8. O
Proposition 3. Let C be a SVN p2-covering of U and C = {Cy,Cy, ..., Cy }. For two SVN numbers B1, Ba,
~ 32 ~ 32
if B1 <2 B2 <2 B, then Nfl G, Nfzfor all x € U.

Proof. For all x € U, since By <p fo <2 B, {C; € C: Ci(x) >, B1} 2 {Ci € C: Ci(x) >2 B2}
~ B2 ~ ~ ~ 32
Hence, Ni' = ,{C; € C: Ci(x) >2 B1} Co Ma{Ci € C: Ci(x) > po} = N2 forallx € U. [

Proposition 4. Let C be a SVN 2-covering of U. For any x,y € U, Néz (y) >2 Bifand only zfﬁliz 3 Nﬁz

Proof. Suppose the SVN number p = (4, b, c).
~p2
(=): Since NE (y) 228,

TNﬁz(y):T Ny C,‘(y): /\ TCi(y)zu/INﬁz(y):I My Ci(y): ch(y)zb'
- re, (e Te,(x)20 : T, (20 Te,(x)2a
Ie, (1)t Ie, (x)=b I, (1) Ie, (x)2b
Fe;(w=e Fe, (x)<c Fe; (<t Fe; (x)<c
and
FpW)=F n, c)= Fe.(y)<c

* Tc, (x)>a Tc,(x)>a

Ic, (x)2b I, (x)=b

Fe; (x)<e Fe;(x)<c

Then,

{Ci € C: Te,(x) > a,Ig,(x) > b, Fe,(x) < ¢} C{C € C: Te,(y) > a,Ic,(y) > b, Fe,(y) < c}.
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Therefore, for each z € U,

Tp(z)= A Tgz)> (/\ Tc,(z) = T (2),
y

Nx Te,(¥)>a Tg,(y)>a Ny
Ic;(x)=b Ic;(y)=b
F;(x)<c Fe;(y)<c
ILpo(z)y= A Ic(z)> A Ic(z) =1_,(2),
N‘fz( ) . c(2) . c(2) N52( )
Ic;(x)>b Ic;(y)=b
Fe;(x)<e Fe,(y)<e
F_»(z) = Fe,(z) <V Fg(z) =F p(z
= Y Fa@ SV Fole) = g
I, (x)=b Ic;(y)=b
Fe,(x)<c Fe,(y)<e

Hence, N52 () NEZ.
~ 2 ~ 32
(«=): Forany x,y € U, since NS , N,
TNfZ () > TNfZ (y) >a, INEZ (v) > INfZ (y) > band FNEZ (y) < Fﬁﬁz (y) <ec.

Therefore, N?Z (y) 228 O

4. A Type of SVN Covering Rough Set Model Based on a New Inclusion Relation

In this section, we propose a type of SVN covering rough set model on the basis of the
SVN p?-neighborhoods, which is decided by a type-2 inclusion relation. Then, we investigate
some properties of the new lower and upper SVN covering approximation operators. Finally,
some relationships between this model and some other rough set models are presented.

4.1. Characteristics of the New Type of SVN Covering Rough Set Model Based on the New Inclusion Relation

Definition 7. Let (U A) be a SVN B?-covering approximation space. For each A € SVN(U), where A =
{{x, Ta(x), Io(x), Fa(x)) : x € U}, we define the type-2 SVN covering upper approximation C*>(A) and
lower approximation (Cz(A) of Aas

2(A) = {(x, VyeulTge (V) ATaW)] Vyeullge () AaW)] AyeulFge () V Ea()l) - x € U},

4
- % AyeulFge ()Y TaG), Ayeul(— g )V Ia 0] VyeulTop ) A Fa) s x ey,

If C2(A) # C2(A), then A is called the type-2 SVN covering rough set.

Example 4. Let (U, C) be a SVN p2-covering approximation space in Example 1, = (0.5,0.1,0.8) and
A — (060305) (0,4,0.25,0,1) n (0,3,0,3,0.6) i (0.5,0.43,0,4) i (0,7,0.52,0.3) Then all SVN B-neighborhoods Nﬁ

X1

(k =1,2,3,4,5) are shown in Table 2 of Example 2. By Definition 7, we have

C2(A) = {(x1,0.6,0.2,0.5), (x2,0.4,0.2,0.6), (x3,0.6,0.3,0.5), (x4,0.5,0.2,0.6), (x5,0.6,0.3,0.5) },
C2(A) = {(x1,0.6,0.8,0.5), (x2,0.6,0.8,0.4), (x3,0.4,0.7,0.5), (x4,0.4,0.7,0.4), (x5,0.6,0.8,0.3)}.

~

Let the SVN universe setbe U = {(x,1,1,0) : x € U} and the SVN empty set be @ = {(x,0,0,1) :
x € U}, which are decided by the type-2 inclusion relation Cp. Some basic properties of the type-2
SVN covering upper and lower approximation operators are presented in the following proposition.
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Proposition 5. Let C be a SVN B?-covering of U. Then the type-2 SVN covering upper and lower
approximation operators in Definition 7 satisfy the following properties for all A,B € SVN(U).

(1)
2)
(3)
4
(%)

) =u,C )=

C2(A) = (CX(4)). C ( ) = (C¥A);

IfAC, B,thencgz( )Q 2 C*(B), C2(A) S, C(B);

C(A N B) = C(A) Mo CX(B), CH(A U, B) = C2(A) U, C¥(B);
C(A Uz B) 25 C2(A) U, C¥(B), C¥(A Nz B) S, C3(4) , C¥(B).

Proof.(1)  Since the SVN universe set is U = {(x,1,1,0) : x € U} and the SVN empty set is

@)

(©)

(O]

@ ={(x,0,0,1) : x € U},

CU) = {{x AyeulFe () V TuW)) Ayeul (= Tge () V Tu ()], Vyeul[Tge (v) A Fu(y)])  x € U}
={(x,1,1,0) : x e U}
u,

and

C*@) ={(x, VyeulTgge () A To )], Vyeullge (v) Mo (W)], AyeulFp (V) V Fo(0)])) - x € U}
= {(x,0,0,1) : x € U} ' '

/

CxA) ={(x VyeulTge (V) A Tar(W)], Vyeullge (v /\IA’(y)]r/\yeu[F~52 () VEa(y)]) :x e U}
={(x, V/EU[T~ﬁZ(y)/\FA )l V/EU[LﬁZ A1 =Taw))], /\yeu[F~;&2( )V Tay)l) :x € U}

= (C*(4))".

If we replace A by A’ in this proof, we can also prove C2(A’) = (C2(A))'.
Since A Cy B, Ta(x) < Tp(x), Ia(x) < Ig(x) and Fg(x) < F4(x) for all x € U. Therefore

TQZ(A)(X) = /\yEU[FNﬁZ (y) VTaly)] < /\yEU[FNgz (y) v Tp(y)] = Tex(s By(x )
Iea(a) (%) = Ayeul(1 = Iy W) VIa(W)] < Ayeul(l - ~ﬁ2(y)) VIg(y)] = Ip2(p) (%),
F(EZ(A)(X) = VyEU[TN€2 (y) ANFa(y)] > VyeU[Tﬁgz ) /\FB( )] = Foapy (x )

Hence, C2(A) C5 C2(B). In the same way, there is C2(A) C, C2(B);

Since

C*(AM2B)

= o AveulFge () V Tans D Ayeul(X = Tge (1)) V Lansp ()], VyeulTyge (v) A Fangp(y)]) < x € U}

= {{x /\yGU[FN/%Z( IV A(Taly) ATe(W)] Ayeul(d = Ige (1)) V (IA(y>MB(y))],Vyeu[TNgz(y) A (Fa(y)
VEg(y)]) : x € U}

= e Ayeul(Fp (1) v Tay) A (Fge (1) V T ()] Ayeul((1 = Ige (1)) V Ia()) A (1 = I ()Y
L)) Vyeul(Tgge (v) AN Ea(w)) V (T (y) A Ep(y))]) - x € U}

= CHA)MC(B).
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Similarly, we can obtain C2(A U, B) = C2(A) U, C2(B);
(5) Since A Cy (A Up B), B &, (A Up B), (A My B) Cy Aand (A My B) Cy B,

C2(A) S C2(A Uy B), C2(B) S, C2(A U, B), C2(A Ny B) C, C2(A) and C2(A M, B) €, C2(B).
Hence, C2(A Uz B) Dy C2(A) Up C2(B), C2(A My B) C C2(A) Ny C2(B).
i

4.2. Relationships between the New Model and Some Other Rough Set Models

In this subsection, we investigate some relationships between the type-2 SVN covering rough set
model and other two SVN rough set models respectively. Among these two SVN rough set models,
one is a SVN covering rough set model and the other is a SVN relation rough set model.

Wang and Zhang [37] presented the type-1 SVN covering rough set model under a SVN S-covering
approximation space, which is related to the type-1 inclusion relation. We consider whether the type-1
SVN covering approximate operators and the type-2 SVN covering approximate operators presented
in Section 4.1 have inclusion relations.

Definition 8. [37] Let (U, C) be a SVN B-covering approximation space. For each A € SVN(U), where
A = {{x,Ta(x), I4(x),Fa(x)) : x € U}, we define the type-1 SVN covering upper approximation C(A) and
lower approximation C(A) of A as

C(A) = {(x, VyeulTs () A TaW)], Vyeulls () ATa(y)] AyeulFs (v) V Fa(W)]) : x € U}, )
C(A) = {{x, AyeulFys (v) V TaW)], Ayeul(l = Iyp (v) V Ia(w)), Vyeu[ W) AR x € U}

If C(A) # C(A), then A is called the type-1 SVN covering rough set.

Let C be a SVN p?-covering of U and also be a SVN B-covering of U. By Definitions 7 and 8,
we know that the type-1 SVN covering approximate operators (C and C) and the type-2 SVN covering

approximate operators (C? and C?) are related to all SVN B-neighborhoods (Ne, for any x € U) and

SVN B2-neighborhoods (NEZ, for any x € U), respectively. By Example 3, we know that NEZ and Nf
have no inclusion relations (C; and C») for all x € U. Hence, the type-1 SVN covering approximate
operators and the type-2 SVN covering approximate operators also have no inclusion relations (C;
and C»).

In the work by the authors of [36], a SVN relation R on U is defined as R =
{(x,y), Tr(x,y), Ir(x,y), Fr(x,¥)) : (x,y) € U x U}, where Tg : Ux U — [0,1], [g : U x U — [0,1]
and Fg : Ux U — [0,1]. If for any x,y € U, Tr(x,y) = Tr(y,x), Ir(x,y) = Ir(y,x) and
Fr(x,y) = Fr(y, x), then R is called a symmetric SVN relation.

For a SVN ﬁz-covermg C of U, one can use the SVN ,Bz-covermg Cinduce a SVN relation Rz on
U as

Re = {{(x,y), Tre (%, ), IR (x,y), Fro (x,y)) « (x,y) € U x U},

where
Tre(0,y) = Tog (v), Ire (%) = I (v), Fre (x,y) = Fgea (y) forany x,y € U.

The following two propositions present two conditions under which Rg is a symmetric
SVN relation.

~ ~ ~32
Proposition 6. Let C bea SVN B2-covering of U, and R be the induced SVN relation on U by C. If N,’? (y) =
Nfz (x) for any x,y € U, then Ry is a symmetric SVN relation.
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; B ) — NP — — —
Proof. Since Ny (y) = Ny (x) forany x,y € U, Tﬁfz (y) = Tﬁfz(x)’ Iﬁfz (y) = Iﬁfz (x) and Fﬁfz (y) =
Fﬁfz (x). Hence, Tr, (x,y) = Tr.(y, %), Ira(%,y) = Ir.(y,x) and Fr.(x,y) = Fr.(y,x), i.e, Rgisa

symmetric SVN relation. O
Proposition 7. Let C be a SVN B2-covering of U, R be the induced SVN relation on U by C andC e C.

If|C| = 1and C(x) = C(y) for any x,y € U, then R is a symmetric SVN relation, where |C| denotes the
cardinality of C.

Proof. Since |C| = 1, C is the only one element of C. Since C(x) = C(y) for any x,y € U, Nfz (y) =

~ 32
Nf (x). Hence, Tg.(x,y) = Tro(y,x), Ira(x,y) = Ir.(y,x) and Fr,(x,y) = Fr.(y,x), ie, Rgisa
symmetric SVN relation. [

Then, the type-2 SVN covering rough set model defined in Section 4.1 can be viewed as a SVN
relation rough set model.

Definition 9. Let C be a SVN B2-covering of U, and R be the induced SVN relation on U by C. For any
A € SVN(U), the upper approximation ﬁE(A) and lower approximation R_(A) of A are defined as
~C

e(A) ={(x VyeulTr, (%, ) ANTAW)], Vyeullr, (x.y) ALa(W)], AyeulFr, (x,y) V FA(W)]) : x € U},

(A) = {{x, AyeulFr, (2, ¥) V Ta(W)], Ayeul(1 — IR (x,¥)) V 14 ()], Vyeu [Tr. (x,y) AFa(y)]) : x € U}

A A
o

Remark 2. Let C be a SVN B2-covering of U, and R be the induced SVN relation on U by C. Then

Ra(A) = C*(4),
R (4) = c*(A)

5. Graph Representation of the Type-2 SVN Covering Rough Set Model

In this section, the graph representation of the type-2 SVN covering rough set model is presented.
Firstly, some new graphs and graph operations are presented. Then, we show the graph representation
of the type-2 SVN covering approximation operators defined in Definition 7. The order of elements in
U is given.

A graph is a pair G = (V, E) consisting of a nonempty set V of vertices and a set E of edges such
that E C U x U. We shall often write V(G) for V and E(G) for E, particularly when several graphs are
being considered. Two vertices are adjacent if there is an edge with them as ends. A graph G = (V,E)
is called bipartite if the vertex set V can be divided into two disjoint sets V; and V), such that every
edge connects a vertex in V; to one in V,. One often writesG = (V; U V3, E) to denote a bipartite graph
whose partition has the partite sets V; and V,. A complete bipartite graph is a simple bipartite graph
such that two vertices are adjacent if and only if they are in different partite sets. A weighted graph is
a graph with numerical labels on the edges.

Firstly, the graph representation of the SVN p2-covering C is defined in the following definition.

Definition 10. Let C be a SVN ‘Bz—covering of U withU = {x1,x2,- -+, X} and C= {C1,Ca,- -+ ,Cp}.
Forany A € SVN(U), we define a completely weighted bipartite graph G(A) = (U UV, E), named completely
weighted bipartite graph associated with A, where V. = {T,14,Fa}, the weight w(Ta,x¢) = Ta(xg),
w(Is,xg) = Ia(x) and w(Fa, x;) = Fa(xg) (k = 1,2,--- ,n). For the SVN B-covering C, there are m
completely weighted bipartite graphs G(C;) (i = 1,2,--- ,m), and all G(C;) are called the graph representation
of the SVN B2-covering C.
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Example 5. Let (U, C) be a SVN B2-covering approximation space in Example 1 and p = (0.5,0.1,0.8).
Then G(C;) (i = 1,2,3,4) are the graph representation of the SVN B2-covering C. All G(C;) (i = 1,2,3,4) are
shown in Figures 1 and 2.

(b) G(Cy)

Figure 2. G(C3) and G(Cy).

An intersection operation about G(A) and G(B) is presented in the following definition, for any
A,B € SVN(U).

Definition 11. Let C be a SN B2-covering of U with U = {x1,xp, -+ ,x,} and C= {C1,Ca,- - ,Ci}.

For any A,B,D € SVN(U), we define a completely weighted bipartite graph G(D) = G(A) Ny G(B)
associated with D, where G(D) = (UU {Tp, Ip, Fp}, E) and

w(Tp, xx) = w(Ta, xx) ANw(Tg, x¢), w(Ip, xx) = w(la, xx) ANw(Ia, xg) and
w(Fp,x;) = w(Fa, x¢) Vw(Fg,x¢) (k=1,2,--- ,n).

Based on Definition 11 and the definition of A M, B, the relationship between G(A N, B) and
G(A) Ny G(B) can be obtained for any A, B € SVN(U).

Lemma 1. Let C be a SVN p2-covering of U. Then G(A N, B) = G(A) N, G(B) for any A, B € SVN(U).
Proof. According to the definition of A M, B and Definition 11, it is immediate. [

By Definition 6, NE; € SVN(U) for any x; € U. Hence, any G(N%ﬁ) is a completely weighted
bipartite graph, which can be represented in the following proposition.

Proposition 8. Let Cbea SVN ,Bz-covering of UwithU = {x1,x2, -+ ,Xn}, C= {C1,Cq,-+ ,Cp} and
B =(a,b,c). Then

~pn2
G(Ngk) =MA{G(Ci) : w(Tc, xx) > a,w(Ic, x¢) > b,w(Fe, x¢) < c}.

Proof. By Definitions 6 and 11, and Lemma 1, it is immediate. [
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Example 6. Let (U, C) be a SVN B2-covering approximation space in Example 1 and p = (0.5,0.1,0.8).
By Proposition 8, we have

(V) = G(C1) 2 G(Ca), G(NE) = G(C1) M2 G(C2) M2 G(C), G(RE,) = G(C3) M2 GI(Cy),
G(NE) = G(C1) My G(Cy), G(NEY) = G(Ca) My G(Cs) Mo G(Cy).

Then all G(Nfi) are shown in Figures 3, 4, and 5a.

NﬁZ NﬂZ
Figure 4. G(NY, ) and G(NY, ).

Finally, the type-2 SVN covering upper approximation C2(A) and lower approximation C2(A) of
A are represented by graphs.

(@) G(NE)

Figure 5. G(Nf;) and G(A).

Theorem 1. Let C be a SVN B2-covering of U with U = {x1,xp,---,x,}. For each A &
SVN(U), G(C2(A)) and G(C2(A)) are completely weighted bipartite graphs, where G(C2(A)) = (U U

97



Symmetry 2019, 11, 1074

{Tea(a) lez(ay Feaga) 3 E1), G((gz(A)) (U U{Te c2(A) C2< gz(A)},Ez)und the weight of any edge is

listed as follows.

w(T@(A),xk) = ]L/l[w(TNfilxj) Aw(Tg,xj)] (1 <k <n),

w(I@Z(A),xk) = j\:/l[ UN?;'X/) /\w(IA,x]')} (1<k<n),
n

W(F@z(A)/Xk) = i\ [w (Fﬁﬁz,xj) Vw(Fa,x)] (1 <k <n),

—

1 X
n (6)
w(T(gz( L k) = /\1[W(F~/Sz Jx)Vw(Ta, x)] (1 <k <n),

[(1 - (INfz'xj)) Vw(ls,x)] (1<k<n),

-
Il

w(ICz(A), xk)

—.

[
T <: I>=

Il
—_

w(F(gz( A)r xk) [ (TNfz,x]') /\W(FA,X]')] (1 <k< 1’1).

Proof. According to Definition 7, we know C2(A) € SVN(U) and C2(A) € SVN(U) forany A €
SVN(U). Hence, G(C%(A)) and G(C2(A)) are completely weighted bipartite graphs by Definition 10.

According to Definitions 7 and 10, G(C2(A)) = (U U {T& A2 iay Fe } E1), G(C%(A)) = (UU
{ (A)r F 4)}, E2) and the weight of any edge is shown as follows
O(Ts %) = Tea ) (56) = V/ [T (%) A Ta(x))] = v [0(Toge ) Aw(Ta, )] (1 S < m),
j=1 23 j=1
w(I@Z(A)/xk) = I(;z(,q)( X)) = \/ [Lﬁz (x) /\IA(xj)] = Vl[ w(l sz )/\ZU(IA, )] (1<k<nm),
j=
w( cz(A)rxk) A)(xk) [F~ﬁ2( )V Fa(x )] = ,/\1[ (F~ﬁ2 Xj ) Vw(FA/ N1 <k<n),
j=
( (CZ(A)rxk) = T(CZ(A)(-’Ck [F~ ( ]) \ TA(JC]*)] = ]é\ [w(l—lﬁz Xi ) \ w(TA, ] (1 <k< I’l),

/\
A
(g %8) = Ieaa) () = 5[( ~ I G90)V La)) = Al = (g ) Via )] (1< K<),

w( CZ(A)rxk) Fea(a) (x) = V [T~p2( ) NEa(xj)] = [ (T~;s2 xj) ANw(Fa, x)] (1 <k < n).

T<:

O

Example 7. Let (U, C) be a SVN B2-covering approximation space in Example 1 and p = (0.5,0.1,0.8),
A— (0,6,0‘3,0.5) + (040501) | (030206) | (050304) | (07.0203) A) is shown in Figure 5. Based on

X2 X3 X4 X5
Theorem 1 und all G(N,’i) (k =1,2,---,5) in Example 6 and G(C2(A)) and G(C%(A)) are obtained in

Figure 6.
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X X2 X3 X4 X5

(b) G(c2(4))

Figure 6. G(C%(A)) and G(((SZ(A)).

6. Matrix Representation of the Type-2 SVN Covering Rough Set Model

In this section, the matrix representation of the type-2 SVN covering rough set model is
investigated. Firstly, some new matrices and matrix operations are presented. Then, we show the
matrix representation of the type-2 SVN approximation operators defined in Definition 7. The order of
elements in U is given.

Two new matrices about a SVN B?-covering are presented in the following definition.

Definition 12. Let C be a SVN B2-covering of U with U = {x1,xp,+ -+ ,x,} and C= {C1,Ca, -+ ,Cm}.
~ 2

Then Mg = (C; (fi))"xm is named a matrix representation of C, and Mé = (ij)nxm is called a p*-matrix

representation of C, where

0, otherwise.

“_{ 1, Ci(xi) =26
sij =

Example 8. Let (U, C) be a SVN p2-covering approximation space in Example 1 and p = (0.5,0.1,0.8). Then
(0.7,02,05) (0.6,0.2,04) (0.4,0.1,05) (0.1,0.5,0.6) 1100
(05,0.3,02) (0.5,0.2,0.8) (0.4,05,04) (0.6,0.1,0.7) . 1101

Me=| (04,0502) (02,03,06) (0502,04) (0603,04) |,ME=| 0 0 1 1
(0.6,0.1,0.7) (0.4,05,0.7) (0.3,0.6,05) (0.5,0.3,0.2) 1001
(0.3,02,0.6) (0.7,03,0.5) (0.6,03,0.5) (0.8,0.1,0.2) 0111

~ 2
In order to calculate all NE (for any x € U) by matrices, the following operation is presented.

AxB= ((d;;,dij, d§>)1<i<n 1<j<1, where

Sisnlsjs

(5, dij,d;) = (AL l(1 = ag) ViG] AL [(1 = age) Vbl 1= ALy [(1 = age) V (1= b)) ()

~ 32
Based on Definitions 12 and 13, all Nf (for any x € U) can be obtained by matrix operations.

Proposition 9. Let CheaSVN ﬁz—covering of UwithU = {x1,x,- -+ ,x,} and C= {C1,Ca, -+ ,C}.
Then
ME « ML = (W (v)h<icnis) ®)
Cc c x; \1j))1<i<n, 1<j<ns

=nlsjs

where M(I: is the transpose of Mg

2 2
Proof. Suppose M% = (Cr(x)))mxn, Mg = (Six)nxm and Mé *M% = (<dfjf,d,-j,di;))1<i<,,,]<j<n.
Since C is a SVN 52-covering of U, for each i (1 < i < n), there exists k (1 < k < m) such thats;; = 1.
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Then
(5, dij,dy;)
<Ak (X =si) V T, (6], A [(1 = si6) V e (x7)], 1 = AL [(1 = si) V (1= Fe, (x)))])
(Nsz=1[(1 = si) V T, (%)), Nsye=1[(1 = six) V I, (%))], 1 = Agye=1[(1 = si6) V (1 = Fe, (x)))])
= (Nou=1Tc, (%)), Asy=11c, (%)), 1 = Agy=1(1 — Fe, (x;)
(A 28Tk (%)) Acy(x) 22810 (%), 1 = A (x) 208
(A () 228TC (%) Acy ()20l (%7), Ve, ()20 (Fe (%))
(M2, ()22 C) (%)

= Ngl (%), 1<i,j<n

Example 9. Let (U, C) be a SVN B2-covering approximation space in Example 1 and p = (0.5,0.1,0.8).
2
According to Mé and M% in Example 8, we have

B> apT
ME *ME

1100 (0.7,02,05) (0.6,0.2,04) (0.4,0.1,05) (0.1,05,0.6)
1101 (05,0.3,02) (0.5,0.2,0.8) (0.4,05,04) (0.6,0.1,0.7)

= o011 [+| 040502 (020306 (050204) (0.60304)
1001 (0.6,0.1,0.7) (0.4,0.5,0.7) (0.3,0.6,05) (0.5,0.3,0.2)
0111 (0.3,02,0.6) (0.7,0.3,05) (0.6,03,05) (0.8,0.1,0.2)
(0.6,02,05) (0.5,02,0.8) (0.2,0.3,0.6) (0.4,0.1,0.7) (0.3,0.2,0.6)
(0.1,02,0.6) (0.5,0.1,0.8) (0.2,03,0.6) (0.4,0.1,0.7) (0.3,0.1,0.6)

= | (01,01,06) (04,01,07) (0.502,04) (03,03,05) (0.60.1,05)
(0.1,02,0.6) (0.5,0.1,07) (0.4,03,04) (05,0.1,0.7) (0.3,0.1,0.6)
01,01,06) (04,01,08) (02,02,06) (03,03,07) (06,01,05)

= (Nx, (x))1<i<s,1<j<5-

There are two operations in the work by the authors of [37], which can be used to calculate C2(A)
and C?(A) (for any A € SVN(U)) by matrices.

Definition 14. [37] Let A = ((c;,ci/, c;))mxn and B = ((d]*,dj, dj’))n“ be two matrices. We define
C=AoB=({e e e ))mx1and D = Ao B = (( i*,f,-,flf))mxl, where

(e eier) = (VILy(cif AdT), VI (cij A dj), Ny (e vV d))),

)
S f ) = <A;’:1<cij VAR), AL [(1—cy) v dﬂ,v;-;l@ )

According to Proposition 9 and Definition 14, the set representations of C2(A) and C2(A)

(for any A € SVN(U)) can be converted to matrix representations. A = (a;)yx1 with
a; = (Ta(x;),14(x;),Fa(x;)) is the vector representation of A. C2(A) and C2(A) are also

vector representations.
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Theorem 2. Let C be a SVN B2-covering of U with U = {x1,x,-- ,x,} and C = {C1,Ca,--- ,Ci}.
Then for any A € SVN(U),
~ 2
C2(A) = (ME « ML) o A,
c c (10)
C2(4) = (ME x ML) A.

Proof. According to Proposition 9, Definitions 7 and 14, for any x; (i = 1,2,--- ,n),

((Mg2 *ML)oA)(x;) = (V]'-':l(TNg’z (%)) ATa(x})), Vi (INf}Z (%)) A La(x))), A}’:l(FNg,z (xj) V Fa(xj)))
= (C*(A)(x:),

and
(M * MDY 0 A)(x) = (N (Fyp (7)Y TaC)), AT [0~ Eo (7)) Ta ()], Vi (T (39) A Ea(5)
= (C2(A) ().

Hence, C2(A) = (M5 « ML) 0 A,C2(A) = (M5 x ML) o A. O

Example 10. Let (U, C) be a SVN p2-covering approximation space in Example 1, = (0.5,0.1,0.8) and

A= (06,())(‘13,05) 4 (04,())2,0‘1) i (03,?{‘32,0.6) I (0.5,(11%43,0‘4) n (07,())(.2,0‘3). Then
Cx(A)
2
= (ME«MD)oa
(0.6,02,05) (0.5,0.2,0.8) (0.2,0.3,0.6) (0.4,0.1,0.7) (0.3,0.2,0.6) (0.6,0.3,0.5)
(0.1,0.2,0.6) (0.5,0.1,0.8) (0.2,0.3,0.6) (0.4,0.1,0.7) (0.3,0.1,0.6) (0.4,0.5,0.1)
= (0.1,0.1,0.6) (0.4,0.1,0.7) (0.5,0.2,0.4) (0.3,0.3,0.5) (0.6,0.1,05) |o| (0.3,0.2,0.6)
(0.1,02,0.6) (0.5,0.1,0.7) (0.4,0.3,04) (0.5,0.1,0.7) (0.3,0.1,0.6) (0.5,0.3,0.4)
(0.1,0.1,0.6) (0.4,0.1,0.8) (0.2,0.2,0.6) (0.3,0.3,0.7) (0.6,0.1,0.5) (0.7,0.2,0.3)
(0.6,0.2,0.5)
(0.4,0.2,0.6)
= (0.6,03,05) |,
(0.5,0.2,0.6)
(0.6,0.3,0.5)
C*(A)
2
= (M xMD)oa
(0.6,0.2,05) (0.5,0.2,0.8) (0.2,0.3,0.6) (0.4,0.1,0.7) (0.3,0.2,0.6) (0.6,0.3,0.5)
(0.1,02,0.6) (0.5,0.1,08) (0.2,03,0.6) (0.4,0.1,0.7) (0.3,0.1,0.6) (0.4,0.5,0.1)
= (0.1,0.1,0.6) (0.4,0.1,0.7) (0.5,0.2,04) (0.3,0.3,05) (0.6,0.1,05) [<| (0.3,02,06)
(0.1,02,0.6) (0.5,0.1,0.7) (0.4,0.3,0.4) (0.5,0.1,0.7) (0.3,0.1,0.6) (0.5,0.3,0.4)
(0.1,0.1,0.6) (04,0.1,0.8) (0.2,02,0.6) (0.3,0.3,07) (0.6,0.1,0.5) (0.7,0.2,0.3)
(0.6,0.8,0.5)
(0.6,0.8,0.4)
= (0.4,0.7,0.5)
(0.4,0.7,0.6)
(0.6,0.8,0.3)

101



Symmetry 2019, 11, 1074

7. An Application to DM Problems in Paper Defect Diagnosis

Under the type-2 SVN covering rough set model, we present a novel approach to DM problems
in paper defect diagnosis in this section.

7.1. The Problem of DM in Paper Defect Diagnosis

LetU = {x;: k=1,2,--- ,n} be the set of papers and V = {y;|i = 1,2, -- ,m} be the m main
symptoms (for example, spot, steak, and so on) for a paper defect B. Assume that an inspector R
evaluate every paper xx (k=1,2,--- ,n).

Assume that the inspector R believes each paper x, € U (k = 1,2, - - - ,n) has a symptom value
Ci(i=1,2,---,m)denoted by C;(xx) = (Tc, (xx), Ic,(x, Fc,(xx)), where T¢, (xx) € [0,1] is the degree
that inspector R confirms paper x; has symptom y;, Ic,(x¢) € [0,1] is the degree that inspector R is not
sure paper x; has symptom y;, Fc,(x) € [0, 1] is the degree that inspector R confirms paper x; does
not have symptom y;, and Tc, (xx) + Ic, (xx) + Fc,(xx) < 3.

Let B = (a,b, c) be the critical value. If any paper xx € U, there is at least one symptom y; € V
such that the symptom value C; for the paper x; is not less than  (i.e., Ci(xx) >2 B), respectively,
then C = {C1,Cy,+++,Cy} is a SVN B2-covering of U for some SVN number B.

If d is a possible degree, e is an indeterminacy degree and f is an impossible degree of the paper
defect B of every paper x; € U that is diagnosed by the inspector R, denoted by A(xy) = (d,e, f),
then the decision maker (the inspector R) for the DM problem needs to know how to evaluate whether
the papers x; € U have the paper defect B or not.

7.2. The DM Algorithm

In this subsection, we give an approach for the problem of DM with the above characterizations
using the type-2 SVN covering rough set model. According to the characterizations of the DM problem
in Section 7.1, we construct the SVN decision information system and present the Algorithm 1 of DM
under the framework of the type-2 SVN covering rough set model.

Algorithm 1 The DM algorithm under the type-2 SVN covering rough set model

Input: SVN decision information system (U, é, B, A).
Output: The score ordering for all alternatives.

e  Step 1: Compute the SVN p?-neighborhood NEZ of x induced by C, for all x € U according to
Definition 6; _

e  Step 2: Compute the SVN covering upper approximation C?(A) and lower approximation C2(A)
of A, according to Definition 7;

e Step 3: Compute R4 = C2(A) @ C2(A);

e  Step 4: Compute

TR% (x)

s(x) = ;
() WEZA (1) +(Igz (0)>+(Fra (x))?

2 2
A A

e  Step 5: Rank all the alternatives s(x) by using the principle of numerical size and select the paper
that is more likely to be sick with the paper defect B.

According to the above process, we can get the DM according to the ranking. In Step 4, S(x) is the
cosine similarity measure between R 4 (x) and the ideal solution (1,0, 0), which is proposed by Ye [44].

102



Symmetry 2019, 11, 1074

7.3. An Applied Example

Example 11. Assume that U = {x1, X2, X3, X4, X5 } is a set of papers. According to the paper defects’ symptoms,
we write V= {y1,Y2,Y3,Ya} to be four main symptoms (spot, steak, crater, and fracture) for a paper defect B.
Assume that the inspector R evaluates every paper xi (k =1,2,-- - ,5) as shown in Table 1.

Let B = (0.5,0.1,0.8) be the critical value. Then, C = {Cy,Cyp, C3,C4} is a SVN p2-coverings of U.
(060305) | (040501) | (0.30206) , (050304)
X1 + X + X3 + X4 +

Assume that the inspector R diagnosed the value A =

%{3’03) of the paper defect B of every paper.

Step 1: Néi (k=1,2,3,4,5) are shown in Table 2.
Step 2:

C2(A) = {(x1,0.6,0.2,0.5), (x2,0.4,0.2,0.6), (x3,0.6,0.3,0.5), (x4,0.5,0.2,0.6), (x5,0.6,0.3,0.5)},
C2(A) = {(x1,0.6,0.8,0.5), (x2,0.6,0.8,0.4), (x3,0.4,0.7,0.5), (x4,0.4,0.7,0.4), (x5,0.6,0.8,0.3) }.

= CXA)aCXA)
= {(x1,0.84,0.16,0.25), (x5,0.76,0.16,0.24), (x3,0.76,0.21,0.25), (x4,0.70,0.14,0.24), (x5, 0.84,0.24,0.15) }.
Step 4: We can obtain s(x;) (k =1,2,---,5) in Table 5.
Step 5: According to the principle of numerical size, we have
X3 < x4 < xp < x1 < Xs.

Therefore, the inspector R diagnoses the paper x5 as more likely to be sick with the paper defect B.

Table 5. s(xx) (k=1,2,---,5).

u X1 X2 X3 X3 X5
s(x,) 0.943 0.935 0.919 0.929 0.948

7.4. A Comparison Analysis

To validate the feasibility of the proposed DM method, a comparative study is conducted with
other methods. These methods which were introduced in Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37] are compared with the proposed approach using SVN information system.

Because Table 1 is the same as in the work by the authors of [37] and the counting processes of the
methods presented by Liu [43], Ye [44], Yang et al. [36], and Wang et al. [37], are shown in the work
by the authors of [37], so we do not show these counting processes in this paper. For Example 11,
the results of them are calculated as follows.

e InLiu’s method, we suppose the weight vector of the criteria is w = (0.35,0.25,0.3,0.1) and y = 1.
Hence, we get

s(n1) = 0.735, s(np) = 0.706, s(n3) = 0.660, s(ny) = 0.596, s(n5) = 0.734.
According to the cosine similarity degrees s(n) (k =1,2,--- ,5), we obtain
Xg < X3 < Xp < x5 < X7.

e InYe’s method, we suppose the weight vector of the criteria is w = (0.35,0.25,0.3,0.1). Then
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Wi (x1, A%) = 0.677, Wy (x2, A*) = 0.608, W5 (x3, A*) = 0.580, Wy (x4, A*) = 0.511,
Ws (x5, A*) = 0.666.

According to all s(ny,,n*) (k=1,2,---,5), we obtain
Xy < X3 < X2 < x5 < Xq1.

(0.3,0.6,0.5) 4 (0.7,0.2,0.1)
L4t Y2

e In Yang’s method, we suppose paper defect B € SVN(V) and B = +

(060403) | (080405) 1 ¢ v _ (1,0,0). We get

Y3 Y4 '

R(B) = {(x1,0.6,0.2,0.4), (x2,0.6,0.2,0.4), (x3,0.6,0.3,0.4), (x4,0.5,0.4,0.5), (x5,0.8,03,0.5)},
R(B) = {(x1,0.5,0.6,0.5), (x,,0.3,0.6,0.5), (x3,0.3,0.5,0.5), (x4,0.6,0.6,0.5), (x5,0.6,0.6,0.5) }.

|

Then,
s(ny,, n*) = 0.960, s(n1x,, n*) = 0.951, s(11y,, n*) = 0.945, 5(1y,, n*) = 0.918, s(1nyy, n*) = 0.948.
According to all s(ny,,n*) (k = 1,2, - - ,5), we obtain

Xy < X3 < X5 < X < Xq.

e In Wang’s method, we do not use f = (0.5,0.1,0.8) in Example 11, and the reason is explained
later. We suppose ' = (0.5,0.3,0.8) in Wang’s method. Then

C(A) = {(x1,0.6,0.3,0.5), (x,,0.4,0.3,0.6), (x3,0.6,0.5,0.5), (x4,0.5,0.3,0.6), (x5,0.6,0.5,0.5) },
(A) = {(x1,0.6,0.5,0.5), (x2,0.6,0.5,0.4), (x3,0.4,0.4,0.5), (x4,0.4,0.5,0.4), (x5,0.6,0.4,0.3) }.

1!

Hence,
s(x1) = 0.945, s(x2) = 0.937, s(x3) = 0.922, s(x4) = 0.909, s(x5) = 0.958.
According to all s(x) (k=1,2,- - ,5), we obtain
x4 < x3 < X3 < x1 < X5.

All results are shown in Table 6 and Figure 7.

Liu [43] and Ye [44] presented the methods by SVN theory. The method developed by Liu [43]
is based on the Hammer SVN number aggregation (HSVNNWA) operator, the ranking order willed
be changed by different w and <. The parameter y can be regarded as an attitude of the decision
maker’s preferences. For Example 11, we set the weight vector of the criteria is w = (0.35,0.25,0.3,0.1)
and 7 = 1, then we obtain x4 < x3 < x < x5 < x1. The method developed by Ye [44] is based on
the weighted correlation coefficient Wy (x, A*) or the weighted cosine similarity measure My (x, A*),
where A* is the ideal alternative. We can get two ranking orders of x; (k = 1,2,3,4,5) by the values
of Wi (xx, A*) and My (xx, A*), respectively. Then, we find that these two kinds of ranking orders are
the same. Hence, we only show Wi (xx, A*) in this paper. In Table 6 and Figure 7, there are the same
ranking results of their methods.
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Table 6. The results utilizing the different methods of Example 11.

Methods The Final Ranking The Paper Is Most Sick With the Paper Defect B
Liu [43] xXg < x3 < Xp < x5 < X1 X1
Ye [44] xg < x3 < Xp < x5 < X1 X1
Yang et al. [36] xg < x3 < x5 < Xp < X1 X1
Wang et al. [37] xXg < x3 <X <x1 < X5 X5
This paper X3 < x4 < X9 < x1 < X5 X5
y
i Yo e aYang_ o GWang g ,This pgper

1.0

0.8

0.6

0.4

0.2

€ To 3 €4 T U

Figure 7. The chat of different values of patient in utilizing different methods in Example 11.

Yang et al. [36] and Wang et al. [37] used different SVN rough set models to make a decision.
The method presented by Yang et al. [36] is based on a SVN relation rough set model on two-universes.
That is to say, the DM problems with SVN information can be dealt with by Yang’s method when it
induces a SVN relation on two-universes. In Example 11, we obtain a SVN relation on two universes
from Table 1. The method presented by Wang et al. [37] based on the type-1 SVN covering rough set
model. That is to say, the DM problems with SVN information can be dealt with by Wang’s method
when it can induce a SVN g-covering. In Example 11, we suppose = (0.5,0.1,0.8). However, C is
not a SVN B-covering of U when g = (0.5,0.1,0.8). Hence, the method presented by Wang et al. can
not be used in Example 11 when g = (0.5,0.1,0.8). Let’s re-assume B’ = (0.5,0.3,0.8). Then Cisa
SVN p'-covering of U. Hence, the method presented by Wang et al. can be used in Example 11 when
B = (0.5,0.3,0.8).

In this paper, we present the type-2 SVN covering rough set model based on SVN ?-coverings.
Under the type-2 SVN covering rough set model, a novel method for DM problems with SVN
information is presented. The contributions of our proposed method are summarized as follows.

(1) The DM problems with SVN information can be dealt with by our proposed method when it
can induce a SVN B2-covering. The method presented by Wang et al. [37] can not be used in
Example 11 when 8 = (0.5,0.1,0.8). But our proposed method can deal with Example 11 when
B = (0.5,0.1,0.8). Hence, our proposed method complements Wang’s.

(2) Itis a new viewpoint to use SVN sets and rough sets in paper defect diagnosis.

Using different methods, the obtained results may be different. To achieve the most accurate
results, further diagnosis is necessary for combination with other hybrid methods.
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8. Conclusions

This paper investigates a new type of SVN covering rough set model, which can be seen as a new
bridge linking SVN sets and covering-based rough sets. Comparing the existing literatures [36,37,48,49],
the main contributions of this paper are concluded as follows.

(1) By introducing some definitions and properties in SVN f2-covering approximation spaces,
we present the type-2 SVN covering rough set model based on the type-2 inclusion relation.
The existing literatures [36,37,48,49] used the type-1 inclusion relation to study the combination
of SVN sets and rough sets. Hence, this paper presents a new and interesting viewpoint to study
the combination of SVN sets and rough sets.

(2) It would be tedious and complicated to use set representation to calculate the new SVN covering
approximation operators. Therefore, the graph and matrix representations of these new SVN
covering approximation operators make it possible to calculate them. We are the first to study
the equivalent representation of the SVN rough set model by graph theory. By these graph and
matrix representations, calculations will become algorithmic and can be easily implemented
by computers.

(38)  Paper defect diagnosis is important in paper making industries. We propose a method to paper
defect diagnosis under the type-2 SVN covering rough set model. The proposed DM method
is compared with other methods which are presented by Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37], respectively.

Further study will be deserved by the following research topics. On the one hand, the type-2
inclusion relation or graph theory can be considered into other SVN rough set models [34,36,48,49] in
future research. On the other hand, neutrosophic sets and related algebraic structures [50-55] will be
connected with the research content of this paper in further research.
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Abstract: With the development of the social economy and enlarged volume of information,
the application of multiple-attribute decision-making (MADM) has become increasingly complex,
uncertain, and obscure. As a further generalization of hesitant fuzzy set (HFS), simplified
neutrosophic hesitant fuzzy set (SNHFS) is an efficient tool to process the vague information and
contains the ideas of a single-valued neutrosophic hesitant fuzzy set (SVNHFS) and an interval
neutrosophic hesitant fuzzy set (INHFS). In this paper, we propose a decision-making approach based
on the maximizing deviation method and TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) to solve the MADM problems, in which the attribute weight information is incomplete,
and the decision information is expressed in simplified neutrosophic hesitant fuzzy elements. Firstly,
we inaugurate an optimization model on the basis of maximizing deviation method, which is useful
to determine the attribute weights. Secondly, using the idea of the TOPSIS, we determine the relative
closeness coefficient of each alternative and based on which we rank the considered alternatives to
select the optimal one(s). Finally, we use a numerical example to show the detailed implementation
procedure and effectiveness of our method in solving MADM problems under simplified neutrosophic
hesitant fuzzy environment.

Keywords: simplified neutrosophic hesitant fuzzy set; multi-attribute decision-making;
maximizing deviation; TOPSIS

1. Introduction

The concept of neutrosophy was originally introduced by Smarandache [1] from a philosophical
viewpoint. Gradually, it has been discovered that without a specific description, it is not easy to apply
neutrosophic sets in real applications because a truth-membership, an indeterminacy-membership,
and a falsity-membership degree, in non-standard unit interval ]0~, 17|, are independently assigned
to each element in the set. After analyzing this difficulty, Smarandache [2] and Wang [3] initiated the
notion of a single-valued neutrosophic set (SVNS) and made the first ever neutrosophic publication.
Ye [4] developed the concept of simplified neutrosophic set (SNS). SNS, a subclass of a neutrosophic
set, contains the ideas of a SVNS and an interval neutrosophic set (INS), which are very useful in real
science and engineering applications with incomplete, indeterminate, and inconsistent information
existing commonly in real situations. Torra and Narukawa [5] put forward the concept of HFS as
another extension of fuzzy set [6]. HFS is an effective tool to represent vague information in the process
of MADM, as it permits the element membership degree to a set characterized by a few possible values
in [0, 1] and can be accurately described in terms of the judgment of the experts.
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Ye [7] introduced SVNHFS as an extension of SVNS in the spirit of HFS and developed the
single-valued neutrosophic hesitant fuzzy weighted averaging and weighted geometric operator.
The SVNHEFS represents some uncertain, incomplete, and inconsistent situations where each element
has certain different values characterized by truth-membership hesitant, indeterminacy-membership
hesitant, and falsity-membership hesitant function. For instance, when the opinion of three experts
is required for a certain statement, they may state that the possibility that the statement is true
is {0.3,0.5,0.8}, and the statement is false is {0.1,0.4}, and the degree that they are not sure
is {0.2,0.7,0.8}. For single-valued neutrosophic hesitant fuzzy notation, it can be expressed as
{{0.3,0.5,0.8},{0.1,0.4},{0.2,0.7,0.8} }. Liu and Luo [8] discussed the certainty function, score
function, and accuracy function of SVNHEFS and proposed the single-valued neutrosophic hesitant
fuzzy ordered weighted averaging operator and hybrid weighted averaging operator. Sahin and
Liu [9] proposed the correlation coefficient with single-valued neutrosophic hesitant fuzzy information
and successfully applied it to decision-making problems. Li and Zhang [10] introduced Choquet
aggregation operators with single-valued neutrosophic hesitant fuzzy information for MADM.
Juan-Juan et al. [11] developed a decision-making technique using geometric weighted Choquet
integral Heronian mean operator for SVNHFSs. Wang and Li [12] developed the generalized prioritized
weighted average operator, the generalized prioritized weighted geometric operator with SVNHFS,
and further developed an approach on the basis of the proposed operators to solve MADM problems.
Recently, Akram et al. [13-16] and Naz et al. [17-19] put forward certain novel decision-making
techniques in the frame work of extended fuzzy set theory. Furthermore, Liu and Shi [20] proposed
the concept of INHES by combining INS with HFS and developed the generalized weighted operator,
generalized ordered weighted operator, and generalized hybrid weighted operator with the proposed
interval neutrosophic hesitant fuzzy information. Ye [21] and Kakati et al. [22] proposed the correlation
coefficients and Choquet integrals, respectively, with INHFS. Mahmood et al. [23] discussed the vector
similarity measures with SNHFS. In practical terms, the SNHFS measures the truth-membership,
the indeterminacy-membership and the falsity-membership degree by SVNHFSs and INHFSs. The
classical sets, fuzzy sets, intuitionistic fuzzy sets, SVNSs, INSs, SNSs, and HFSs are the particular
situations of SNHFSs. In modeling vague and uncertain information, SNHFS is more flexible
and practice.

In the theory of decision analysis, MADM is one of the most important branches and several
beneficial models and approaches have been developed related to decision analysis. However, due to
limited time, lack of data or knowledge, and the limited expertise of the expert about the problem,
MADM process under simplified neutrosophic hesitant fuzzy circumstances, encounters the situations
where the information about attribute weights is completely unknown or incompletely known.
The existing approaches are not suitable to handle these situations. Furthermore, among some
useful MADM methodologies, the maximizing deviation method and the TOPSIS provide a ranking
approach, which is measured by the farthest distance from the negative-ideal solution (NIS) and
the shortest distance from the positive-ideal solution (PIS). For all these, in this paper, we propose
an innovative approach of maximizing deviation and TOPSIS to objectively determine the attribute
weights and rank the alternatives with completely unknown or partly known attribute weights. We
propose the new distance measure and discuss the application of SNHFSs to MADM. In the framework
of TOPSIS, we construct a novel generalized method under the simplified neutrosophic hesitant
fuzzy environment. As compared to the existing work, the SNHFSs availably depict more general
decision-making situations.

The paper is structured as follows: Section 2 establishes a simplified neutrosophic hesitant fuzzy
MADM based on maximizing deviations and TOPSIS. In Section 3, a numerical example is given to
demonstrate the effectiveness of our model and method and finally we draw conclusions in Section 4.

SVNHES as a more flexible general formal framework extends the concept of fuzzy set [6],
intuitionistic fuzzy set [24], SVNS [3] and HFS [25]. Ye [7] proposed the following definition
of SVNHEFS.
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Definition 1. [7] Let Z be a fixed set, a SVNHFS w on Z is defined as

n = {(z4(2),i(2),f())|z € 2}

where t(z),i(z),f(z) are the sets of a few values in [0,1], representing the possible truth-membership
hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of
the element z to n, respectively; t(z) = {v1,72,---,Yi}, 1,72 ..., 71 are the elements of t(z);
i(z) = {61,02,...,0p},01,02,...,0, are the elements of i(z); f(z) = {11,112, -, 9g}, N1, M2, - .., 1q are the
elements of f(z), for every z € Z; and 1, p, q denote, respectively, the numbers of the hesitant fuzzy elements
int,i,f.

For simplicity, the expression n(z) = {t(z),i(z),f(z)} is called a single-valued neutrosophic
hesitant fuzzy element (SVNHFE), which we represent by simplified symbol n = {4, i, f}.

Definition 2. [7] Let n, ny and ny be three SVNHFEs. Then their operations are defined as follows:

1. meénp= U Hr + 72— 1172} {01602}, {mma} )
T EhM i Ef,12€0,02€1,12€
2. mem= U Unmb {01+ 86— a6}, {m +m—mm}t}t

T1EY,01 €l Ef1 126 4,02€12,112€F2

3. en= U {{1-Q0Q-mp{h{n}} >0

YELIELNET

4 nt= U {{r}L{1-0-9t{1-00-nr<}ttc>0.
YELOELNET

2. TOPSIS and Maximizing Deviation Method for Simplified Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision-Making

In this section, we propose the normalization technique and the distance measures of SNHFSs
and based on this we develop further a new decision-making approach based on maximum deviation
and TOPSIS under simplified neutrosophic hesitant fuzzy circumstances to explore the application of
SNHFSs to MADM.

2.1. TOPSIS and Maximizing Deviation Method for Single-Valued Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision-Making

In this subsection, we only use SVNHFSs in SNHFSs and develop a new decision-making
approach, by combining the idea of SVNHFSs with maximizing deviation, to solve a MADM problem
in single-valued neutrosophic hesitant fuzzy environment.

2.1.1. Description of the MADM Problem

Consider a MADM problem containing a discrete set of m alternatives {A1, Ay,..., Ay} and a
set of all attributes P = {Py, P, ..., P, }. The evaluation information of the ith alternative with respect
to the jth attribute is a SVNHFE n;; = <t,‘j,i.l‘]‘, f,-j), where t;;, i;; and f; indicate the preference degree,
uncertain degree, and falsity degree, respectively, of the decision maker facing the ith alternative
that satisfied the jth attribute. Then the single-valued neutrosophic hesitant fuzzy decision matrix
(SVNHFDM) N, can be constructed as follows:

ni N ... My

npp M2 ... N2y
N =

Wl Wm2  --. N

Assume that each attribute has different importance, the weight vector of all attributes is defined

n
asw = (wy,wy, ..., wy)f, where 0 < w; <land ) w; = 1with w; representing the importance degree
j=1
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of the attribute P;. Due to the complexity of the practical decision-making problems, the attribute
weights information is frequently incomplete. For ease, let 3 be the set of the known information
about attribute weights, which we can construct by the following forms, for i # j:

(i) w; > w; (weak ranking);

() w;i—w; > aj,a; >0 (strict ranking);

(iil) w; —w; > wy —w), for j # k # | (ranking of differences);
(iv) w; > ajwj, 0 < a; <1 (ranking with multiples);

V) a;<w; <a;+¢,0<wa; <a;+¢& <1 (interval form).

In the comparison of SVNHEFEs, the number of their corresponding element may be unequal.
To handle this situation, we normalize the SVNHFEs as follows:

Suppose that n = {t,i,f} isa SVNHFE, then ¥ = @y" + (1 — @)y, 5 = @t + (1 — @)6~
and 7 = @yt + (1 — @)y~ are the added truth-membership, the indeterminacy-membership and
the falsity-membership degree, respectively, where v~ and " are the minimum and the maximum
elements of t, respectively, 6~ and 6 are the minimum and the maximum elements of i, respectively,
7~ and 5" are the minimum and the maximum elements of f, respectively, and @ € [0,1] is a parameter
assigned by the expert according to his risk preference.

For the normalization of SVNHEFE, different values of @ produce different results for the added
truth-membership, the indeterminacy-membership and the falsity-membership degree. Usually,
there are three cases of the preference of the expert:

o If @ = 0, the pessimist expert may add the minimum truth-membership degree v, the minimum
indeterminacy-membership degree 6~ and the minimum falsity-membership degree 7.

e If @ = 05 the neutral expert may add the truth-membership degree #,

& er‘ﬁ and the falsity-membership degree '77?7+.

the indeterminacy-membership degree

o If@ =1, the optimistic expert may add the maximum truth-membership degree y~, the maximum
indeterminacy-membership degree 6~ and the maximum falsity-membership degree 77~

For instance, if we have two SVNHFEs ny = {t;,i1,§1} = {{0.3,0.5},{0.4,0.6,0.8},{0.5,0.7} },
np = {tp, 12,2} = {{0.1,0.4,0.5},{0.6,0.7},{0.2,0.6,0.9} }. Here #t; = 2, #iy = 3, #j; = 2, #t, = 3,
#ip = 2 and #f, = 3. Clearly, #t1 # #tp, #iy # #ip, and #f; # #f. The truth-membership and
the falsity-membership degree of ny, while the indeterminacy-membership degree of n, need to
be pre-treated.

If @ = 0, then we may add the minimum truth-membership degree or the
indeterminacy-membership degree or the falsity-membership degree for the target
object.  For the SVNHFE n;, the truth-membership and falsity-membership degree of
ny can be attained as {0.3,0.3,0.5} and {0.5,0.5,0.7}, ie, n; can be normalized as
n; = {{0.3,0.3,0.5}, {0.4,0.6,0.8},{0.5,0.5,0.7} }. For the SVNHFE ny, the indeterminacy-membership
degree of mn, can be obtained as {0.6,0.6,0.7}, ie, ny is normalized as np =
{{0.1,0.4,0.5},{0.6,0.6,0.7},{0.2,0.6,0.9} }.

If @ = 05, then we may add the average truth-membership degree or the
indeterminacy-membership degree or the falsity-membership degree for the target
object.  For the SVNHFE n;, the truth-membership and falsity-membership degree of
ny can be attained as {0.3,0.4,0.5} and {0.5,0.6,0.7}, ie, n; can be normalized as
n; = {{0.3,0.4,0.5},{0.4,0.6,0.8}, {0.5,0.6,0.7} }. For the SVNHEFE n,, the indeterminacy-membership
degree of np can be obtained as {0.6,0.650.7}, ie, mnp, is normalized as np =
{{0.1,0.4,0.5},{0.6,0.65,0.7},{0.2,0.6,0.9} }.

If @ = 1, then we may add the maximum truth-membership degree or the
indeterminacy-membership degree or the falsity-membership degree for the normalization.
For the SVNHFE n;, the truth-membership and falsity-membership degree of
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can be attained as {0.3,0.5,05} and {05,0.7,0.7}, ie., n; is normalized as n; =
{{0.3,0.5,0.5},{0.4,0.6,0.8},{0.5,0.7,0.7} }. For the SVNHFE n;, the indeterminacy-membership
degree of np can be attained as {0.6,0.7,0.7}, ie, n; is normalized as unp =
{{0.1,04,0.5},{0.6,0.7,0.7},{0.2,0.6,0.9} }.

The algorithm for the normalization of SVNHFEs is given in Algorithm 1.

Algorithm 1 The algorithm for the normalization of SVNHFEs.

INPUT: Two SVNHFEs ny = (41,11, 1), n2 = (t2, 12, f2) and the value of @.
OUTPUT: The normalization of ny = (t1,i1,f1) and ny = (t2,12, f2)-

1: Count the number of elements of ny and ny, i.e., #ty, #i1, #f1, #to, #ip, #f2;
2: Determine the minimum and the maximum of the elements of ny and ny;
3: t = argmin;_j o #t;, i = argmin;_ » #i;, f = arg min,_ » #f;;
4: if #t; = #t, then break;
5: else if t = #t; then
6: n = #ty —#ty;
7: Determine the value of ¥ for t;;
8: fori=1:1:n do
9: Hh=HU%y

10: end for

11: else

12: n = #t; — #ty;

13: Determine the value of ¥ for t;

14: fori=1:1:n do

15: b=tHUy,

16: end for

17: end if

18: if #i; = #iy then break;

19: else if i = #i; then

20: n = #ip — #iy; _

21 Determine the value of ¢ for ij;

22 fori=1:1:n do

23: i1 =1 U 5;

24 end for

25: else

26: n = #i; — #ip; ~

27 Determine the value of d for iy;

28: fori=1:1:n do

29: i =1 UJ;

30 end for

31: end if

32: if #f; = #f, then break;

33: else if f = #f; then

3 n=#, - #p;

35 Determine the value of 7 for fy;

36 fori=1:1:n do

37 fr=Ff U7

38 end for

39: else

40 n = #f; — #fo;

41 Determine the value of 7 for f,;

42 fori=1:1:n do

43 f2 = UT;

44 end for

45: end if
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2.1.2. The Distance Measures for SVNHFSs

Definition 3. Let ny = {t,i1,f1} and ny = {tp,ip, f2} be two normalized SVNHFEs, then the single-valued
neutrosophic hesitant fuzzy Hamming distance between ny and ny can be defined as follows:

1 #t - -
© _ 00 D , M

1
dl(“l/“Z) = 3 (#t

where #t = #t) = #ty, #i = #iy = #ip and # = #f, = #. 7?(1‘;), 5?(‘5) and qfr(g) are the gth largest values in
Yi, 6; and 1;, respectively (i = 1,2).

oe) o 18
l(g)foz(g)‘Jr#if )

oe) Lo, 1+
- + —
2 ’ # o

In addition, the single-valued neutrosophic hesitant fuzzy Euclidean distance is defined as:

(L E e eto 50 _ g, L R
e o L R U B

¢=1

By using the geometric distance model of [26], the above distances can be generalized as follows:

d(l’ll,l’lz) = <; (i{ 2 a>> ) ’ 3)

where « is constant and & > 0. Based on the value of w, the relationship among d(ny,ny),d1(ny,np) and
dy(ny,ny) can be deduced as:

570 _

7= 3 B

o 1 o
+#—fg§1|f71 —1

o Ifa =1, then the distance d(ny,np) = d1(ny, np).
o Ifa =2, then the distance d(ny,np) = dp(ny, np).

Therefore, the distance d(ny,ny) is a generalization of the single-valued neutrosophic hesitant fuzzy
Hamming distance dq(n1, ny) and the single-valued neutrosophic hesitant fuzzy Euclidean distance da(ny, ny).

Theorem 1. Let ny = {t5,iy, f1 } and ny = {{1}, {0}, {0}} be two SVNHFESs, then the generalized distance
d(nq, “/2) can be calculated as:

(o) = (ﬁ(;lz( g Do f1’2n>>

TEL deiy €1

o, . . .
where w, is the normalization outcome of ny by the comparison of nq and ny.
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Proof. Using (3), the generalized distance d(n, n/z) can be calculated as:

dony) = < <;t§:‘71 _3 ))a+%i5f(g)_5zv<g)a #lf#fl a(g)_ng(g)‘ﬂ>>i
c= =
- (S(E Bk B ok E e o))
(R e )
- (R Ea-w) e ;’@)u#; ¥ (i U“))l
)
- (‘1’(;{1%&1(1 +75;1 +#7117§117 >> ‘
O

Theorem 2. Let ny = {t1,iy, f1 } and ny = {{0}, {1}, {1}} be two SVNHFESs, then the generalized distance
d(ny, ) can be calculated as:

1
/ 1(1 1 ‘
d(n;,ny) = - = — (1-6)" 1—n)" .
) <3 <#t1 7; Z #f vgf:l( v ))
where n’z is the normalization outcome of ny by the comparison of ny and ny.

Proof. Using (3), the generalized distance d(ny, n/z) can be calculated as:

1
’ 1 #t o 1 ®
d(nl/nz) = < <#tz‘71 T2 “'F#*fz ﬂ{'(g) U;(C)‘))
G
(1 t o 1)\
= lalwk 7o Il Tl
1
_ (1 (1 E ey L o(6) . o))"
- (3(#tgl<n )+ < >+#f < )
1
11 0o \- @y, 1 o))\
= (3|z )+ 1-46 +4 ) (1 ¢
HEDICRRE S SRS I
1
1 1 Q 1 o« ® !
P B L S
<3 <#t1 TEY #i S ( ) f1 ﬁezﬁ ( 7 ))
0
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2.1.3. Computation of Optimal Weights Using Maximizing Deviation Method

Case I: Completely unknown attribute weight information

Construct an optimization model on the basis of the approach of maximizing deviation to
determine the attributes optimal relative weights with SVNHFS. For the attribute P; € Z, the deviation
of the alternative A; to all the other alternatives can be represented as:

m
2 (nij,m)wj, i=1,2,...,m,j=1,2,...,n

Rl

,Yg(g) _,Y;ij( )‘ +#1 Z ‘50@ 5;;(5)‘ 4 ;f Z

#t
where d(n;;, ;) = (é (#t 21

Let

o %w‘))
o(c) ”ko]_m’“))l,

j=12,...,n. Then D]-(w) indicates the deviation value of all alternatives to other alternatives for the
attribute P; € Z.

On the basis of the above analysis, to select the weight vector w which maximizes all deviation
values for all the attributes, a non-linear programming model is constructed as follows:

m mom

11 ¢
Dj(w) = ;Dij(w) = ; ;w <3 (#t

o(¢)

a(c) |*
i O ‘ L

,Yg]_(g)

1
] =

)

oo) _ oo 1 &
Vi T My )*ﬁcgl

nom m #t N 13 #f c
max D(w) = LY Yw % % v 5;(9) 70;:]_@)‘ + #lf Y |,7‘_Jj(g) _ ,7;{7]_(5
(M-1) j=li=1k=1 =1 =1
n
s.t. ijO,j:1,2,..‘,n, Yuw?=1
=

To solve the above model, we construct the Lagrange function:

1
o(6) _ ole) * e
17’/ 7}1k/g‘ )) wj+E<J;w%71)

where ¢ is a real number, representing the Lagrange multiplier variable. Then we compute the partial
derivatives of L and let:

I ES 3 (% (,ﬂ Y @ !

j=1li=1k=1

#f
_ 5"(5 + l
’ #f E

1

oL m 1 1#& © ()a 1#6 © ():x 1#f © % a

o 1;:1(5(#2% -7 +EX:1)‘55§*‘5ZJ€‘ +#7fz:1‘175§7’71[<7jg) +Ew; =0
= c = =

L o
o= 2 _1] =0
o2 (,1 ’ )

By solving above equations, an exact and simple formula for determining the attribute weights
can be obtained as follows:

Il

—_

1

"

(c)

a(c) %t:i(g)‘ +4 ): ‘57(5) ;{Tj(.c)‘ + #f Z -
w; o2
no|mom ole) _ ol¢) 1 o(g) _ so(c) a(g) a(g)]* ’
b= 1):1 kZI ( < Z Tij Tk "o Okj ‘ + #f ): T~ — Mk ‘
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Because the weights of the attributes should satisfy the normalization condition, so we obtain the
normalized attribute weights:

1
m m #t w #i w #f o ®
Yy <§ (;t v “YZ-(Q) —’Y;:j(g)‘ 'H%i > ‘(55(4;) _5]2(9)‘ +#lf v U;(g) _,72(5)‘ ))
i=1k=1 =1 c=1 ¢=1
ZUj = T (4)
momem (gL B e o] 1 B e @, 1 T e o)) )"
]g Lrr <3 <#t ggl Yij T Yk ‘ +# ggl G = G ’ + % gg Mg~ = My ‘

Case II: Partly known attribute weight information

However, there are some situations that the information about the weight vector is partially
known instead of completely known. For such situations, on the basis of the set of the known weight
information, $, the constrained optimization model can be designed as:

1

©_ e@t, 1 8 CIANE
7;;5 77;‘5) +#7,§ 5‘]() "k] ‘*w |,7;;(§)7,7;{7/_';’>>

nom m 1 #t
maxDw)= L & L w (3| &%
(M—-2) j=li=1k=1 1
n
st weS, w]>0/—12 .,n,):w/-=1
j=1

where S is also a set of constraint conditions that the weight value w; should satisfy according to
the requirements in real situations. The model (M — 2) is a linear programming model. By solving
this model, we obtain the optimal solution w = (wq,wy, ..., wn)‘, which can be used as the attributes
weight vector.

2.1.4. TOPSIS Method

Recently, several MADM techniques are established such as TOPSIS [27], TODIM [28], VIKOR [29],
MULTIMOORA [30] and minimum deviation method [31]. TOPSIS method is attractive as limited
subjective input is required from experts. It is quite well known that TOPSIS is a useful and easy
approach helping an expert choose the optimal alternative according to both the minimal distance
from the positive-ideal solution and the maximal distance from the negative-ideal solution. Therefore,
after attaining the weight of attributes by using the maximizing deviation method, in this section,
we develop a MADM approach based on TOPSIS model under single-valued neutrosophic hesitant
fuzzy circumstances. The PIS A™, and the NIS A~ can be computed as:

AT = {nf,ng,.. .} ®)
= {{{1}, {0}, {o}3}, {{1}, {0}, {0} },..., {{1}, {0}, {0} } }. (6)
AT = {n],ng,...,n;} 7)
= {{{op {1}, {13} {{op, {1}, {13, .., {0}, {1}, {1}} ) ®)

Based on Equation (3), Theorems 1 and 2, the separation measures d;" and d;” of each alternative
from the single-valued neutrosophic hesitant fuzzy PIS At and the NIS A-, respectively, are
determined as:

df = Y d(w o = Y d(w, {1}, {0}, {0} ©
j=1 j=1

1 1
3l Za- S I (10)
ij ’yet:i ‘1 se \ U lyef‘]
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n n
di =) d(wyn;)w =) dlng, ({0}, {1}, {1} Dw; (11)
j=1 j=1
1
e (11 1 e 1 O\
= Luilzla Bty L= - Y a-n |, (12)
=1 b yet; Y seil, Ti nefy

wherei =1,2,...,m.

The relative closeness coefficient of an alternative A; with respect to the single-valued
neutrosophic hesitant fuzzy PIS A" can be defined as follows:

RC(A;) = L (13)
Yod +d

where 0 < RC(4;) < 1, i = 1,2,...,m. The ranking orders of all alternatives can be
determined according to the closeness coefficient CR(A;) and select the best one(s) from a set of
appropriate alternatives.

The scheme of the proposed MADM technique is given in Figure 1. The detailed algorithm is
constructed as follows:

Stepl. Construct the decision matrix N = [ni]-]mxn for the MADM problem, where the entries
nij(i =1,2,...,m;j = 1,2,...,n) are SVNHFEs, given by the decision makers, for the
alternative A; according to the attribute P;.

Step2. On the basis of Equation (4) determine the attribute weights w = (wy, wy, ..., wy)*, if the
attribute weights information is completely unknown, and turn to Step 4. Otherwise go
to Step 3.

Step3. Use model (M-2) to determine the attribute weights w = (wy, w», ..., wy)*, if the information
about the attribute weights is partially known.

Step4. Based on Equations (6) and (8), we determine the corresponding single-valued neutrosophic
hesitant fuzzy PIS A" and the single-valued neutrosophic hesitant fuzzy NIS A, respectively.

Step5. Based on Equations (10) and (12), we compute the separation measures d;” and d; of
each alternative A; from the single-valued neutrosophic hesitant fuzzy PIS A" and the
single-valued neutrosophic hesitant fuzzy NIS A~, respectively.

Step6. Based on Equation (13), we determine the relative closeness coefficient RC(4;) (i =
1,2,...,m) of each alternative A, to the single-valued neutrosophic hesitant fuzzy PIS A™.

Step7. Rank the alternatives A; (i = 1,2,...,m) based on the relative closeness coefficients
RC(A;) (i=1,2,...,m) and select the optimal one(s).
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Description of the MADM Problem
Knowledge based
Construct simplified neutrosophic
hesitant fuzzy decision matrix
Based on maximizing deviation method Maximizing deviation
determine the attribute weights method
1

|

No Approve attribute
weight ?

Yes

Identify the PIS and the NIS

l

Calculate the separation
measures

|

Determine the relative
closeness coefficient

l

Rank the alternatives

> TOPSIS method

Model Based

N
Z

N\

Figure 1. The scheme of the developed approach for MADM.

2.2. TOPSIS and Maximizing Deviation Method for Interval Neutrosophic Hesitant Fuzzy Multi-Attribute
Decision-Making

In this subsection, we only use INHFSs in SNHFSs and put forward a novel decision-making
approach, by combining the idea of INHFSs with maximizing deviation, to solve a MADM problem in
interval neutrosophic hesitant fuzzy environment.

Definition 4 ([20]). Let Z be a fixed set, an INHFS # on Z is defined as:

i ={(z1(2),i(2),}(2))|z € Z}

where ¥(z),1(z),§(z) are sets of some interval-values in [0,1), indicating the possible truth-membership
hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of the
element z to @, respectively; ¥(z) = {¥1,92,-.., 71}, Y1, F2,--., 1 are the elements of ¥(z); i(z) =
{51,52, ., Sp}, 5,0, .. .,5,, are the elements of 1(z); §(z) = {ij1, 7, - - -, g}, 1,72, - - ., T]q are the elements
of f(z), for every z € Z; and 1, p, q denote, respectively, the numbers of the interval-valued hesitant fuzzy
elements in §,1,§.

For convenience, the expression i(z) = {¥(z),i(z),(z)} is called an interval neutrosophic hesitant
fuzzy element (INHFE), which we represent by simplified symbol i = {%,1,f}.
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Similar to Section 2.1, we consider a MADM problem, where A = {A1, Ay, ..., Ay} is a discrete
set of m alternatives and P = {Py, P,, ..., P, } is a set of n attributes. The evaluation information of the
ith alternative with respect to the jth attribute is an INHFE #;; = (&, fi/-, ?i]), where T;;, Ti]' and fi]- indicate
the interval-valued preference degree, interval-valued uncertain degree, and interval-valued falsity
degree, respectively, of the expert facing the ith alternative that satisfied the jth attribute. Then the
interval neutrosophic hesitant fuzzy decision matrix (INHFDM) N, can be constructed as follows:

fiyp fip ... figy

. fipp  fipp ... gy
N = .

ﬁml ﬁmZ B e

In the comparison of INHFEs, the number of their corresponding element may be unequal.
To handle this situation, we normalize the INHFEs as follows:

Suppose that i = {L,i,f} is an INHFE, then § = @7+ + (1 - @)y, = @5 + (1 — @)§~ and
7 = @it + (1 — @)ij~ are the added truth-membership, the indeterminacy-membership and the
falsity-membership degree, respectively, where 4=, ¥+, 5=, 5% and 7, /j* are the minimum and the
maximum elements of {, T and §, respectively, and @ € [0, 1] is a parameter assigned by the expert
according to his risk preference.

For the normalization of INHFE, different values of @ produce different results for the added
truth-membership, the indeterminacy-membership and the falsity-membership degree. Usually, there
are three cases of the preference of the expert:

o If @ = 0, the pessimist expert may add the minimum truth-membership degree 4, the minimum
indeterminacy-membership degree ~ and the minimum falsity-membership degree 7.
e If @ = 05 the neutral expert may add the truth-membership degree »- ;7+ ,

the indeterminacy-membership degree - er‘ﬁ and the falsity-membership degree '77;#.

e If@ =1, the optimistic expert may add the maximum truth-membership degree 4+, the maximum
indeterminacy-membership degree 5 and the maximum falsity-membership degree 7.

The algorithm for the normalization of INHFEs is given in Algorithm 2.
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Algorithm 2 The algorithm for the normalization of INHFEs.

INPUT: Two INHFEs oi; =
OUTPUT: The normalization of ii; =

: Count the number of elements of fi; and fiy, i.e., #t;, #11, #1, #5, #1p, #2;
: Determine the minimum and the maximum of the elements of #i; and ii;

PNDD PN

e
S

e
N ¢

—_
@

G W W NN MNNNNNNNDNDS

A s R R W) W W W) W) O W)
ST SR SR SRR o N o)

: else if i = #i; then

n= #12 - #11 ;
Determine the value of § for ij;
fori=1:1:n do
i1 = il U 5}
end for

: else

n= #11 — #12,
Determine the value of § for iy;
fori=1:1:n do
i =1 UJ;
end for

cendif
. if #f; = #f, then break;
. else if f = #f; then

n = #p — #y;
Determine the value of 7 for fy;
for i=1:1:n do
ji=huf;
end for

. else

n = # — #;
Determine the value of 7 for f»;
fori=1:1:n do
fa=FUT;
end for

. end if

(t,11,F1) and #i; = (T, 12, 72) and the value of @.
(4,11, F1) and fi = (2,12, T2).

t= argmin;—y, C#,1 = arg min;_ 12#11, f= argmin;_p, 2 #;
. if #; = #1, then break;
. else if T = #{; then
n= #{2 — #{1;
Determine the value of ¥ for {;;
fori=1:1:n do
L=tuy
end for
. else
n= #7(1 — #{2;
Determine the value of ¥ for ;
fori=1:1:n do
L=huy
end for
cendif
. if #i; = #i, then break;

2.2.1. The Distance Measures for INHFSs

Definition 5. Let ity = {%;,11,f1} and fi; = {%, 72, T2} be two normalized INHFES, then we define the interval
neutrosophic hesitant fuzzy Hamming distance between #iy and iy as follows:

~ 1 1 # o )L
di(fg, i) = *(*~ W -5
6 #tgzzl(| 1
oot P4 yu
+ 19

) #fi(

gL

¢=1

5;f(g)L _ gg(g)L|

)

(O

~0
— 1

~o(g)" ~0(§)L‘+|ﬁ;7(€)”
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where #1 = #1) = #%, # = #; = #p and #] = #j, = #. 7;7(1‘;), 5:.7(‘5) and 7]:_7((;) are the gth largest values in
1, 6; and 7j;, respectively (i = 1,2).
In addition, the interval neutrosophic hesitant fuzzy Euclidean distance is defined as:

- 11#E A oY _o(c)u\ 2 1#; (L () 2
b ) = (6 (ﬁ 2((%(@ 49 (179" - 420) )+#7 » ((g(g) _ 59
= 6=
1

(5 - 5v<g>“)2 1 % (7" - m(g)L)Z (9" - ~v<g>”)2 :
1 2 e Ut 2 T 2 :
By using the geometric distance model of [26], the above distances can be generalized as follows:

o 1/1 & I N AN N T 1 8 PO N ANy
A i) = (g (E £ ((ﬁ@ O 4 (6 - 520" ) i f <(o;’(€) )
1

~ u ~ uy & 1 #f N L ~ L\ & ~ u N uy & ¢
(5 g > 7 1((,737(@ A (79 @) ))) )
=
where « is constant and « > 0. Based on the value of «, the relationship among d| (R, 112), di (fy, 1) and

do(fiy, i) can be deduced as:

o Ifa =1, then the distance d(fiy, fip)
o Ifa =2, then the distance d(fiy, fi)

= d (i, ip).
= dy(fy, fig)-

Therefore, the distance d(fi1, fiy) is a generalization of the interval neutrosophic hesitant fuzzy Hamming
distance d; (fi1, fip) and the interval neutrosophic hesitant fuzzy Euclidean distance Jz(ﬁl, fiy).

Theorem 3. Let ity = {T;,i1, 1} and fi, = {{[1,1]},{[0,0]}, {[0,0]}} be two INHFESs, then the generalized
distance d(i, ﬁ’z) can be calculated as:

- - 1 1 ~L\% ~u\* 1 SL\a U\« 1 PIAY U\ ‘
G (6 (,m T (=) + (1=7))+ 5 @+ @+ = L@ +a? ))) :
ye6) deiy VS
where ﬁ/z is the normalization outcome of fip by the comparison of fiy and fiy.

Theorem 4. Let fiy = {¥y,i1,f1} and fi, = {{[0,0]}, {[1, 1]}, {[1,1]}} be two INHFES, then the generalized
distance d| (7q, ﬁ’z) can be calculated as:

Jeh #i Jeiq n€h

d(f, ) = (% (#171 T @+ a9+ o n (-8 + (1-84)") *#1? z () (“ﬁu)a))) :
where ﬁ/2 is the normalization outcome of fip by the comparison of fiy and fiy.

2.2.2. Computation of Optimal Weights Using Maximizing Deviation Method

Case I: Completely unknown information on attribute weights

Using the maximizing deviation method, we construct an optimization model to determine the
attributes optimal relative weights in interval neutrosophic hesitant fuzzy setting. For the attribute
P; € Z, the deviation of the alternative A; to all the other alternatives can be represented as:

m
DZ](ZU) = Z‘i(ﬁijrﬁkj)wjr i= 1,2,...,7’Vl, ] = 1,2,...,1”1
k=1
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where
dF i) = (L2 ﬁ (0 _ Jf(g%‘“ 4 ]a7@Y _so@Hty L L & (150 gt
i) = e \mg T T T T My # =\ ki
1
O _ @Y L L& aor  otor et eerf) ) )
T % i g; (/A A IS (A
Let
mo mom 1 1#? L AL U U 1#3 PO N T4
— ZDif(w) - Z Yo=Y (|7 (©) ’ij( + ,ﬁ;(g) 7,??(5) +=Y O;(g) 7(5;:]_(@
i=1 i=1k=1 6 \# o =]
- 1
e _ U L L b (oot ot [t @ aeu |t )
|55 ) i ; T~y i i ,

j=1,2,...,n. Then D]-(w) represents the deviation value of all alternatives to other alternatives for
the attribute P] €Z.

On the basis of the analysis above, to select the weight vector w which maximizes all deviation
values for all the attributes, a non-linear programming model is constructed as follows:

1
1 # aoF L o(L|* T 1 # o 1
nom o m 1 ?t’ 1(/)/;’/_9 _,)/ng +7;7]g _')/ng >+#,{Zl< ij _5
6= =
maxD -
(M—3) ; ; ; ° 571 _ go!|* A" | pe@Y _ v
+ 15,'/' Okj + ~ |’7,, — ‘ + |7 — 1y

n
stow;>0,j=1,2...,n Yy w =1

To solve the above model, we construct the Lagrange function:

Hee o iﬁm( ( (’7” 7 |+)71] *;’z]@)u

j=li=1k
1
~ L ~ L el _FOU X * ¢ n
) <|,7;(§) 17(6) 77;@) _,]Zl_(.c) ‘ >>) wf+§ <.Xiwfz_l)
=

where ¢ is a real number, representing the Lagrange multiplier variable. Then we compute the partial
derivatives of L and let:

FOY _ gt

+ 1% ki

oL (11 & < HO _ 2" a2 _ oo “) 1 & <~rr<g>L (o) "
= = slam U — %" |+~ tr i %
ow; i—k=1 <6 <#tg§1 ‘ ! g ‘ ! Y e\ Y
1
NG HOU “
[0 50 ) P (m gl ’ G ))) Ew =0

aL
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By solving the above equations, to determining the attribute weights, an exact and simple formula
can be obtained as follows:

2l

o

#t RYATS Fld FU % L
1 S0 £0(0) STY _ ~0(6) 1 () 50(0)"
o e ( T =7 T =iy ) +4 (|o 5
=1k= 5 o e L3 #
i=1k=1 + 5;(@)“ _5’2(0” ) + 1f v ( ﬁg(s)’- ﬁr'j(g + ‘ﬁz Qv ,7;:](: )
Wi = =
] i 112
#t L L (U # (L ()L ¥ b
1 ~7(¢) (g) (Y oY 1 ()" _ 50(c)
0 mom | # g§1 ( Tij Tkj Tij Vkj ) + #f Z ( 03 Okj
6
j=1|i=1k=1 GOU (U |Y H () sl L FOU (U
+ )55(5) 7%@) ) + #Lfg; ,75(@) _ mf:jg ‘ + |,7;(§) _ ”]f:j(@)

As the weights of the attributes should satisfy the normalization condition, so we obtain the
normalized attribute weights:

1
x

#1 L a U UK #f (L (L&
1 ~o(e)" _ ~o(0)" ~7(¢) ~0(g) 1 50(c)" _ 50(c)
mom fred gZ < 71] - 'Yk] + ’yij - 'ij ) + # ggl ( (51-]- — 5k]'
rg kgl o PO Ol "‘) L1 #Z;j <|~0<C)L ~0(6)E|* |~a(c) #0(s "‘)
ij kj T =1 Tij Tk ij ’7kJ
w; = - (14)
#t ~( L S0 VL& NI POVSRNTAY. #F (L (VL ®
1 ~0(0)" _ £0(c) <06 2o(c) 1 7(c)" _ 50(c)
nom # -1 <‘,y’.j rykj + j rykf ) + #f gl < (Sij (Skf
1 G 3
il I _ _ # _ _ _
j=li=lk=1 sT(U g6V ¥ 1 o - (o L K (9 E (ST b
=8 ) + L (5" =g =+ | - 2" [)

Case II: Partly known information on attribute weights

However, there are some situations that the information about the weight vector is partially
known. For such situations, using the set of the known weight information, J, the constrained
optimization model can be designed as:

L U U (ol ol so(
o 1 (A?;(G) 5 f L ,y:;(.C) 77;*/@) ) (|00(€) ,5
maxD(w):Zi Tk 1Wj 6 « 1 4 «
_ j=li=lk= Sl (U O LY el (U
(M—4) + 5;(5) _ 5009 >+#7; Z{ (|,7;(.c) 777}(/@ ‘ + W;;(.c) _ 7k/() )
=
n
st weS, wp>0,j=12...,n Y w=1
=1

where S is also a set of constraint conditions that the weight value w; should satisfy according to
the requirements in real situations. By solving the linear programming model (M — 4), we obtain the
optimal solution w = (wy,wy, ..., wy)!, which can be used as the weight vector of attributes.

In interval neutrosophic hesitant fuzzy environment, the PIS A", and the NIS A~ can be defined

as follows:
At {af,8],...,87}
= {{{{L1k {01} {001} }, {{[t, 1]} {[0,0]}, {[0,01}}, ..., {{[1, 1]}, {[0, 0]}, {[0, 0]} } }.
A~ {a;,fy,...,7,}

= {{{loo]} {[LA]} {[LA]} ) {001} {[L AL {[L ]} -
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On the basis of Equation (14), Theorems 3 and 4, the separation measures d}* and dNi’ of each
alternative from the interval neutrosophic hesitant fuzzy PIS A* and the interval neutrosophic hesitant
fuzzy NIS A, respectively, are determined as:

i = )":d' i)y = f{dn,] {113, {00,003, {[0,01} 1wy (1)
=1 =
- Yo (% (#3 L (=) +(1-9)) 4 T (@ + @)+ Z((ﬁL)“Hﬁ“)“))) (16)
j=1 i yet); i gei U jef;
i = L = E e 00 (1 0 (17)
=1

1

- j');w, (% (#11’ T (@) + o T ((1-8) "+ (1-8)") + - T ((kﬁﬂﬂ(l—ﬁ“)“)))x, (18)

P 1 x_=l =
ii get); i geil, i jefy;

where i = 1,2,...,m. The relative closeness coefficient of an alternative A; with respect to the PIS At
is defined as: -
d-

RC(AI) d+ + d,

19)
where 0 < RC(Ai) < 1, i = 1,2,...,m. The ranking orders of all alternatives can be
determined according to the closeness coefficient CR(A;) and select the optimal one(s) from a set of
appropriate alternatives.

3. An Illustrative Example

To examine the validity and feasibility of developed decision-making approach in this section, we give
a smartphone accessories supplier selection problem in realistic scenario as follows: In the smartphone
fields, the Chinese market is the immense one in the world and the competition of smartphone field is so
fierce that several companies could not avoid the destiny of bankrupt. In the Chinese market, a firm, who
does not want to be defeated must choose the excellent accessories suppliers to fit its supply requirements
and technology strategies. A new smartphone design firm called “Hua Xin” incorporated company, who
wants to choose a few accessories suppliers for guaranteeing the productive throughput. For simplicity,
we assume only one kind of accessory known as Central Processing Unit (CPU), which is used as an
essential part in smartphones. The firm determines five CPU suppliers (alternatives) A;(i = 1,2,...,5)
through the analysis of their planned level of effort and the market investigation. The evaluation criteria
are (1) Py : cost; (2) P, : technical ability; (3) P3 : product performance; (4) P4 : service performance.
Because the uncertainty of the information, the evaluation information given by the three experts is
expressed as SVNHFEs. The SVNHFDM is given in Table 1. The hierarchical structure of constructed
decision-making problem is depicted in Figure 2.

Table 1. Single-valued neutrosophic hesitant fuzzy decision matrix.

P1 PZ
Ap {{0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.4}}
A {{0.1},{0.3},{0.5,0.6}} {{0.4},{0.3,0.5},{0.5,0.6}}
Az {{0.6,0.7},{0.2,0.3},{0.1,0.2}} {{0.1,0.2},{0.3},{0.6,0.7}}
Ay {{0.2,0.3},{0.1,0.2},{0.5,0.6}}  {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
As  {{0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6},{0.1,0.7},{0.3,0.5}}
P3 P4
A {{0.2,0.3},{0.4},{0.7,0.8}} {{0.4},{0.1,0.3},{0.5,0.7,0.9}}
Az {{0.1,0.3},{0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2},{0.3,0.5}}
Az {{0.2,0.3},{0.1,0.2},{0.6,0.7}} {{0.2,0.3},{0.4},{0.2,0.5,0.6}}
Ay {{0.2,0.4},{0.3},{0.1,0.2}} {{0.6},{0.2},{0.3,0.5}}
As {{0.3},{0.5},{0.1,0.4}} {{0.5},{0.1,0.2},{0.3,0.4}}
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Take @ = 0.5, « = 2, and we normalize the SVNHFDM by using Algorithm 1. The normalized

SVNHFDM is given in Table 2.

Now to obtain the optimal accessory supplier, we use the developed method, which contains the

Goal

Selection of the best
Smartphone accessories supplier

Figure 2. The smartphone accessories supplier selection hierarchical structure.

Table 2. Normalized single-valued neutrosophic hesitant fuzzy decision matrix.

Py
Cost

P,
Technical ability

Product
performance

performance

P

P,

{10.2,0.2},{0.3,0.5},{0.1,0.2,0.3}}
{{0.1,0.1},{0.3,0.3},{0.5,0.55,0.6}}
{{0.6,0.7},{0.2,0.3},{0.1,0.15,0.2}}
{{0.2,0.3},{0.1,0.2},{0.5,0.55,0.6}}
{10.7,0.7},{0.4,0.5},{0.2,0.4,0.5}}

{10.6,0.7},10.1,0.3},{0.2,0.3,0.4}}
{{0.4,0.4},{0.3,0.5},{0.5,0.55,0.6}}
{{0.1,0.2},{0.3,0.3},{0.6,0.65,0.7}}
{{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
{{0.6,0.6},{0.1,0.7},{0.3,0.4,0.5}}

Ps

Py

{{0.2,0.3},{0.4,0.4},{0.7,0.75,0.8}}
{{0.1,0.3},{0.4,0.4},{0.5,0.6,0.8}}
{{0.2,0.3},{0.1,0.2},{0.6,0.65,0.7}}
{{0.2,0.4},{0.3,0.3},{0.1,0.15,0.2}}
{{0.3,0.3},{0.5,0.5},{0.1,0.25,0.4}}

{{0.4,0.4},{0.1,0.3},{0.5,0.7,0.9}}
{{0.6,0.8},{0.2,0.2},{0.3,0.4,0.5}}
{{0.2,0.3},{0.4,0.4},{0.2,0.5,0.6}}
{{0.6,0.6},{0.2,0.2},{0.3,0.4,0.5}}
{{0.5,0.5},{0.1,0.2},{0.3,0.35,0.4}}

following two cases:

Case 1: The information of the attribute weights is completely unknown, then the MADM approach

related to accessory supplier selection includes the following steps:

Step 1:

Step 2:

On the basis of Equation (4), we get the optimal weight vector:

Based on the decision matrix of Table 2, we get the normalization of the reference points A+

w = (0.2994,0.2367,0.2521, 0.2118)T

and A~ as follows:

A+

(o )

{{{1,1},{0,0},{0,0,0}}, {{1,1}, {0,0}, {0,0,0}}, {{1,1},{0,0},{0,0,0}}, {{1,1},{0,0},{0,0,0}}},
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A™ = {ny,ny,ny,n;}
= {{{oo} {11}, {1, L1}}, {{0,0}, {1, 1}, {1, 1,1}}, {{0,0}, {1, 1}, {1, 1,1}}, {{0,0}, {1, 1}, {1, L, 1} }}.
Step3: On the basis of Equations (10) and (12), we determine the geometric distances d;r =d(A;, AT)
and d; = d(A;, A™) for the alternative A;(i = 1,2,...,5) as shown in Table 3.

Step4: Use Equation (13) to determine the relative closeness of each alternative A; with respect to
the single-valued neutrosophic hesitant fuzzy PIS A™:

RC(A;) = 05251, RC(A;) = 0.4896, RC(A3) = 0.5394, RC(A4) = 0.5600, RC(As) = 0.5927.

Step5:  On the basis of the relative closeness coefficients RC(4;), rank the alternatives A;(i =
1,2,...,5): As = Ay > Az = A; > Ajp. Thus, the optimal alternative (CPU supplier) is
As.

Table 3. The geometric distances for alternatives.

Geometric Distance Aq Ap Az Ay As

df:d(Ai,AJr) 05142 0.5434 04974 04781 0.4279
d; =d(A, A7) 0.5685 0.5212 0.5824 0.6086 0.6226

Case 2: The information of the attribute weights is partly known, and the known weight information
is as follows:

4
3 = {015 < w; 02,016 < w, <0.18,03 < w3 < 0.35,03 < wy < 045, ) w; =1}
j=1

Step 1:  Use the model (M-2) to establish the single-objective programming model as follows:

max D(w) = 5.6368w + 4.4554w, + 4.7465w3 + 3.9864w,
4

st w e %,wj >0,j=1234 Y w=1
=1

(M-2)
By solving this model, we obtain the attributes weight vector:

w = (0.2000, 0.1600, 0.3400, 0.3000)T

Step2:  According to the decision matrix of Table 2, the normalization of the reference points A" and
A~ can be obtained as follows:

A= ()
= {{{v1}, {00}, {0,0,0}} {{1,1},{0,0} {0,0,0}},{{1,1} {0,0},{0,0,0}}, {{1,1}, {0,0} {0,0,0}}},
A7 = Ang,my,ng,my}

{{{0,0}, {1, 1}, {1, 1,1}}, {{0,0}, {1,1}, {1, 1, 1}}, {{0,0}, {1, 1}, {1, 1,1}}, {{0,0}, {1, 1}, {1, 1, 1}}}.

Step3: Based on Equations (10) and (12), we determine the geometric distances d(A;, A") and
d(A;, A7) for the alternative A;(i = 1,2,...,5) as shown in Table 4.

Step4: Use Equation (13) to determine the relative closeness of each alternative A; with respect to
the single-valued neutrosophic hesitant fuzzy PIS A*:

RC(A;) = 04972, RC(A,) = 0.5052, RC(A3) = 0.5199, RC(A4) = 0.5808, RC(As) = 0.5883.
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Step5: Based on the relative closeness coefficients RC(A;), rank the alternatives A;(i =1,2,...,5):
As = Ay = Az > Ay = Aj. Thus, the optimal alternative (CPU supplier) is As.

Taking @ = 0.5, we normalize the single-valued neutrosophic hesitant fuzzy decision matrix
and compute the closeness coefficient of the alternatives with the different values of «.
The comparison results are given in Figure 3.

Table 4. The geometric distances for alternatives.

Geometric Distance Aq An A3 Ay As
d(A;, AT) 05446 0.5244 0.5220 0.4534 0.4341
d(A;, A7) 0.5385 0.5355 0.5652 0.6281 0.6202
062 \ 06 ‘
—¥— (=1 —¥— =1
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(a) The tiribute weight information is completely unknown (b) The attribute weight information is partly known

Figure 3. Comparison of the closeness coefficient of the alternative.

The analysis process under interval neutrosophic hesitant fuzzy circumstances:

In the above smartphone accessories supplier selection problem, if the information provided by
the experts is indicated in INHFEs, as in Table 5. Then, to choose the optimal CPU supplier, we proceed
to use the developed approach.

Take @ = 0.5, « = 2, and we normalize the INHFDM by using Algorithm 2. The normalized
INHFDM is given in Table 6.

Case 1: The information of the attribute weights is completely unknown , then the MADM method of
accessory supplier selection consists of the following steps:

Step1l: On the basis of Equation (14), we get the optimal weight vector:

w = {0.2963,0.2562,0.2388,0.2087 }
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Step 2:

Step 3:

Step 4:

Step 5:

According to the decision matrix of Table 6, the normalization of the reference points ATt and
A~ can be obtained as follows:

At = {if,d),87,8])
= {{{[n1], [1,1]},{[0,0], (0,01}, {[0,0], [0,0], 0,01} }, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 01, [0, 01, [0, 0]} },
{11, 1,193, {{o, 0], [0, 013, {{0, 0], [0, 0], [0, 0]} }, {{[1, 1], [1,1]}, {[0,0], [0,0] },{[0,0], [0,0], [0,0] } } },

A™ = {A, Ry, 6,0}
= {{{lo,0], (0,01}, {[1,1], (1,1}, {[1,1], [1,1], [1, 1]} }, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1,1]}},

{{{o,0], [0,01}, {[1,1], [1, 1]}, {[1, 1], [1,1], [1, 1]} }, {{[0,0], [0, 0]}, {1, 1], [1, 1]}, {1, 1], [1, 1], [1, 1]} } }-

Based on Equations (15) and (17), we determine the geometric distances d(A;, A~) and
d(A;, AT) for the alternative A;(i = 1,2,...,5) as shown in Table 7.

Use Equation (19) to determine the relative closeness of each alternative A; with respect to
the interval neutrosophic hesitant fuzzy PIS A*:

RC(A7) = 0.5169, RC(A,) = 0.4592, RC(A3) = 0.4969, RC(A4) = 0.5368, RC(As) = 0.5643.

Based on the relative closeness coefficients RC(A,-), rank the alternatives A;(i = 1,2,...,5):
As = Ay = Ay = A3 > Ajy. Thus, the optimal alternative (CPU supplier) is As.

Case 2: The information of the attribute weights is partly known, and the known weight information
is given as follows:

4
S = {015 < w; <0.2,0.16 < wp < 0.18,03 < w3 < 035,03 < wy < 0.45,) w; = 1}

Step 1:

Step 2:

Step 3:

j=1

Use the model (M-4) to establish the single-objective programming model as follows: (M —
max D(w) = 4.5556w; + 4.2000w; + 3.3222w3 + 3.3111w,

4
4) s.t. we%,wjzo,j:1,2,3,4, Ywj=1
j=1

By solving this model, we obtain the weight vector of attributes:
w = {0.2000, 0.1800, 0.3200, 0.3000}

According to the decision matrix of Table 6, we can obtain the normalization of the reference
points AT and A~ as follows:

+  —  fat sF ot ot

AT = a8y, 85,8, }

= {{{[1,1],[1,1]},{[0,0],[0,0]},{[0,0],[0,0], [0,0]} }, {{[L, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0, [0,0] } },
{{[1,1], 11,11}, {[0,0], [0,0]}, {[0,0], [0,0], [0, 01} }, {{[1, 1], [1, 1]}, {[0,0], [0, 0]}, {[0,0], [0, 0], [0,0]} } },

A = (a6 )
= {00 0,01}, {1, 1], (111}, {[1,1), [1,1], [1,1]}}, {{[0,0], [0,0]}, {[1, 1}, (LU}, {(1,1], [1,1], [1,1]}},
{400,01,0,013,{[1,1), (1L {11, (1,1, (1,1}, £10,00, 0,00}, {1, 1], [1, 1]}, {[1,1], [1,1], [1, 1]} } .

Use Equations (15) and (17) to determine the geometric distances d(A;, A*) and d(A;, A7)
for the alternative A;(i = 1,2,...,5) as shown in Table 8.
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Step4: Use Equation (19) to determine the relative closeness of each alternative A; with respect to
the interval neutrosophic hesitant fuzzy PIS A*:

RC(A,) = 04955, RC(A,) = 0.4729, RC(A3) = 0.4803, RC(A4) = 0.5536, RC(As) = 0.5607.

Step5: According to the relative closeness coefficients RC(A;), rank the alternatives A;(i =
1,2,...,5): As = Aq = A; > Az > Aj. Thus, the optimal alternative (CPU supplier)
is A5.

Taking @ = 0.5, we normalize the interval neutrosophic hesitant fuzzy decision matrix and
compute the closeness coefficient of the alternatives with the different values of a. The comparison
results are given in Figure 4.
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Figure 4. Comparison of the closeness coefficient of the alternative.
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Table 7. The geometric distances for alternatives.

Geometric Distance Aq Ap Az Ay As
d:(A,', AT) 05169 0.5711 0.5361 0.4952 0.4625
d(A;, A7) 05531 0.4849 0.5295 0.5740 0.5991

Table 8. The geometric distances for alternatives.

Geometric Distance Aq Ay Az Ay As
d(A;, AT) 0.5406 0.5562 0.5569 0.4752 0.4653
d(A;, A7) 0.5310 0.4990 0.5147 0.5894 0.5938
Comparative Analysis

Zhao et al. [31] generalized the minimum deviation method to accommodate hesitant fuzzy values
for solving the decision-making problems. We have used this approach on the above illustrative example
and compared the decision results with proposed approach of this paper for SNHFSs. In the approach of
Zhao et al., assume that the subjective preference values to all the alternatives Aj (j=1,2,3,4,5) assigned
by the experts are: s; = {{0.3,0.4},{0.2,0.5},{0.1,0.3,0.7}},s, = {{0.2,0.7},{0.1,0.9},{0.3,0.6} },
s3 = {{0.8},{0.5,0.8},{0.4,0.7,0.9}}, s, = {{0.1,0.4},{0.6},{0.5,0.7,0.8} } and s5 = {{0.3},{0.4,0.6},
{0.2,04}}. Also §; = {{[0.3,0.5],[0.4,0.6]},{[0.2,0.3],[0.5,0.7]},{[0.1,0.2], [0.3,0.4],[0.7,0.9] } },
5 = {{[0.2,0.3],[0.7,09]},{[0.1,04],[0.7,09]}, {[0.3,0.4], [0.6,0.8] } }, 35 = {{[0.8,0.9]}, {[0.5,0.6], [0.8,0.9] },
{[0.4,0.6],0.7,0.9],[0.6,0.7)}}, 5, = {{[0.1,0.4],0.4,0.5]},{[0.6,0.7]}, {[0.5,0.7], [0.7,0.8], [0.8,0.9] } }
and 55 = {{[0.3,0.5]}, {[0.4,0.5], [0.6,0.8]},{[0.2,0.3],[0.4,0.7] } }.

The results corresponding to these approaches are summarized in Table 9.

Table 9. Comparative analysis.

Methods Score of Alternatives Ranking of Alternatives

Zhao et al. [31] for SVNHFS 0.4431 0.4025 0.4941 0.5073 0.5691 A5 = Ay = Az = A1 = Ay
Our proposed method for SVNHFS ~ 0.5251 0.4896 0.5394 0.5600 0.5927 As >~ Ay > Az = A1 = Ay
Zhao et al. [31] for INHFS 0.4559 0.4206 0.4255 0.5334 0.5791 A5 = Ay = A; = Az = Ay

Our proposed method for INHFS ~ 0.5169 0.4592 0.4969 0.5368 0.5643 Az >~ Ag = Aj = A3 = Ay

From this comparative study, the results obtained by the approach [31] coincide with the proposed
one which validates the proposed approach. The main reason is that in approach [31], the subjective
preferences are taken into account to serve as decision information and will have a positive effect on the
final decision results. Hence, the proposed approach can be suitably used to solve the MADM problems.
The advantages of our proposed method are as follows: (1) The developed approach has good
flexibility and extension. (2) The SNHFSs of developed approach availably depicts increasingly general
decision-making situations. (3) With the aid of the maximizing deviation and TOPSIS, the developed
approach uses the satisfaction level of the alternative to the ideal solutions to make the decision.

4. Conclusions

SNHES is a suitable tool for dealing with the obscurity of an expert’s judgments over alternatives
according to attributes. SNHFSs are useful for representing the hesitant assessments of the experts,
and remains the edge of SNSs and HFSs, which accommodates an increasingly complex MADM
situation. SNHEFS (by combining SNS and HEFS) as an extended format represents some general
hesitant scenarios. In this paper, firstly we have developed the normalization method and the distance
measures of SNHFSs and further, to obtain the attribute optimal relative weights, we have proposed a
decision-making approach called the maximizing deviation method with SNHFSs including SVNHFSs
and INHFSs. Secondly, we have developed a new approach based on TOPSIS to solve MADM problems
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under SNHFS environment (SVNHFS and INHFS). Finally, we have illustrated the applicability and
effectiveness of the developed method with a smartphone accessories supplier selection problem.
In future work, we will extend the proposed approach of SNHFSs to other areas, such as pattern
recognition, medical diagnosis, clustering analysis, and image processing.

Author Contributions: M.A. and S.N. developed the theory and performed the computations. ES. verified the
analytical methods.
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Abstract: This research sets the basis for modeling the performance indicators of financial assets
using triangular neutrosophic fuzzy numbers. This type of number allows for the modeling of
financial assets performance indicators by taking into consideration all the possible scenarios of their
achievement. The key performance indicators (KPIs) modeled with the help of triangular fuzzy
neutrosophic numbers are the return on financial assets, the financial assets risk, and the covariance
between financial assets. Thus far, the return on financial assets has been studied using statistical
indicators, like the arithmetic and geometric mean, or using the financial risk indicators with the help
of the squared deviations from the mean and covariance. These indicators are well known as the basis
of portfolio theory. This paper opens the perspective of modeling these three mentioned statistical
indicators using triangular neutrosophic fuzzy numbers due to the major advantages they have.
The first advantage of the neutrosophic approach is that it includes three possible symmetric scenarios
of the KPIs achievement, namely the scenario of certainty, the scenario of non-realization, and the
scenario of indecision, in which it cannot be appreciated whether the performance indicators are or
are not achieved. The second big advantage is its data series clustering, representing the financial
performance indicators by which these scenarios can be delimitated by means of neutrosophic fuzzy
numbers in very good, good or weak performance indicators. This clustering is realized by means
of the linguistic criteria and measuring the belonging degree to a class of indicators using fuzzy
membership functions. The third major advantage is the selection of risk mitigation analysis scenarios
and the formation of financial assets” optimal portfolios.

Keywords: fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance
indicators; financial assets

1. Introduction

Financial markets specialists have shown a particular interest for financial assets lately, both due
to returns they generate for investors and also because they can predict the future evolution of financial
performance [1]. Researchers in financial markets, starting with Markowittz [2], developed the modern
theory of financial asset portfolios, focusing on the financial assets return (R;) and on the financial
assets risk (02). An extremely important issue in the modern theory of financial assets portfolios is
the risk diversification; in the famous words of Markowitz: “Don’t put all your eggs in one basket.”
These studies, regarding the risk of diversification, have led to the foundation of Markowitz’s efficient
frontier, demonstrating that the financial assets portfolio risk is much lower than the individual risk of
each financial assets’ category [2].

Symmetry 2019, 11, 1021; doi:10.3390/sym11081021 135 www.mdpi.com/journal/symmetry
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In order to evaluate financial asset returns, the literature has enabled two categories of models.
The first model is known as market return model, and it is based on the financial asset market price at
two moments of time (#1) and (ty). The market-based return calculation is as follows:

- Py —Py+ Dy

R
a Po

where P; represents the market price at time (t1), P represents the market price at time (tp), and D
represents the dividend at time (¢;).

The second model for evaluating returns on financial assets is based on the market portfolio (M),
as well as on the return on the risk-free financial asset (Ry) as a result of applying the Capital Assets
Price Model (CAPM). The financial assets return is, in this case:

R, = Rf +ﬂ(RM _Rf)/

where Ry is the portfolio return, and § is the volatility coefficient of the financial asset, which is

determined by a relation of the form:

_ OaM

p="21,
oM

where o, is the covariance between the asset and the portfolio and U%/I represents the portfolio risk.
If the financial asset return is considered to be fairly measured using the CAPM model, then two
situations are encountered in regard to the investors” decision to trade the financial asset on the capital
market. In the first situation, if R, < R,(CAPM), then R, has to decrease by increasing Pp—as such,
investors will buy financial assets. In the second situation, if R; < R;(CAPM), then R, should increase
by subtracting Pp—as such, the investors will sell the financial assets.

In order to assess financial asset risk, the following statistical indicators are used: The squared
deviations from the mean, given by the formula:

1 N =2
U§:N__Z(Rui_R)

—_
Il
—_

and the variance:

1 N =2
Og = me(Rm‘—R)
=

to express the deviation of the financial asset over a period of time from the average return value.
The higher the value of the deviation is, the higher the risk assumed by the investors will be. Otherwise,
the lower the deviation value is, the lower the risk.

Regardless of the model used to evaluate financial asset return, there is a certain degree of
probability that characterizes the achievement of financial asset return. Similarly, also the risk assumed
by investors can be manifested with different intensities (this risk may take maximum or minimum
values, and there is also an area where the risk intensity is uncertain). This degree of uncertainty for the
obtaining of the financial asset return, noted as (D, (R;)), can be grouped into three main categories:

e  The first category: A high degree of obtaining financial asset returns, denoted by (D, (04, Ra)),
which is the value of the financial asset return that can be achieved with a high probability,
approximated by a professional judgment of around 50%. For each financial asset, this degree has
specific values.

e  The second category: A low degree of obtaining financial asset returns, denoted by 9(D,,(ca, Ra)).
Here, there is no prospect of achieving the financial asset return. The causes that lead to these
situations are various: The risk assumed by investors is appropriate to the value of the realizable
asset’s return, the expected return should record high values above the market level, or the
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dynamics of the exchange rate market is not known. The degree of probability for this situation
approximated by professional judgement is 30%, and it is specific to each financial asset.

e  The third category: The degree for obtaining the financial asset return is uncertain, denoted by
A(Du(0a,R,)), corresponding to the situation in which the realization or non-realization of the
return is uncertain or not appreciated. This area of uncertainty is approximated at 20%, and it is
also specific to each category of financial assets.

The introduction of these criteria for assessing financial asset return allows for the analysis of
these performance indicators in line with the real needs of investors. They can thus select portfolios
of financial assets for which the likelihood of achieving profitability is known. Additionally, by
introducing these specific notions, the basis for the use of neutrosophic fuzzy numbers is created in the
field of modeling financial decision-making to form financial assets portfolios.

The aim of this paper is to properly model the indicators from portfolio theory using triangular
neutrosophic fuzzy numbers (considering the major advantages they provide) while solving the
problems that arise in the classical approach—these being several limitations which might appear in
the case of the financial assets’ performance indicators use.

2. State of the Art

Neutrosophic fuzzy numbers represent a quite new research area that has captured the attention
of researchers worldwide since 2013. Querying the WoS (Web of Science) database for the keywords
“neutrosophic fuzzy numbers,” the search results indicated 184 ISI Web of Science articles. Analyzing
by publication year, it can be observed that, since the appearance of this research topic, interest has
increased exponentially each and every year, starting from two ISI articles published in 2013 to seven
ISI articles in both 2014 and 2015, 18 in 2016, 41 in 2017, and 77 in 2018. Researchers from all over the
world have started to use this niche of fuzzy intelligence, but the majority of these studies have come
from China, India, USA, Turkey and Pakistan.

Most of these articles are included in the following categories: Computer science and artificial
intelligence (47%), multidisciplinary sciences (20%), information systems (10%), automation control
systems (7%), management (2%), economics (1%), and business (0.5%). The first articles published in
2013 targeted color image segmentation with applicability in image processing, pattern recognition
and computer vision [3] and the topic of neutrosophic fuzzy classifications [4]. The advantage of
using the neutrosophic set was shown by Ali and Smarandache [5] in their paper, where they studied
the complexity of this topic and revealed that neutrosophic fuzzy numbers can handle imprecise,
indeterminate, inconsistent, and incomplete information.

The most cited articles that have used neutrosophic fuzzy numbers as a research methodology to
target the decision-making problem. Pramanik et al. [6] used an extension of the interval neutrosophic
set, namely the interval bipolar neutrosophic set, in order to develop a multi-attribute decision-making
strategy. Ye [7] introduced the concept of simplified neutrosophic sets in order to solve a multicriteria
decision-making problem. Zhang et al. [8] also proposed an interval neutrosophic set to address
a multicriteria decision-making problem. The paper published by Liu and Teng [9] presented a
new method based on a single-valued neutrosophic normalized weighted Bonferroni mean that
demonstrated its effectiveness for solving decision-making problems. Peng et al. [10] developed a new
outranking approach for multi-criteria decision-making problems. This method was developed in a
simplified neutrosophic environment where the truth-membership degree, indeterminacy-membership
degree, and falsity-membership degree were subsets in [0,1].

None of the studies indexed in WoS have targeted portfolio theory or the finance domain. Even if
there have been a lot of studies that have focused on solving multi-criteria decision-making problems,
none of them have addressed this portfolio theory or the finance domain. There are only five articles
that have approached the economic area of research. The first of them is the study proposed by Bausys
et al. [11], in which the complex proportional assessment method (COPRAS) was used in the context of
single value neutrosophic sets in order to select the location of a liquefied natural gas terminal. In the

137



Symmetry 2019, 11, 1021

same year, Bausys and Zavadskas [12] published another article in which was created an extension
of the Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) method for the solution
of multicriteria decision-making problems. The applicability and efficiency of neutrosophic fuzzy
numbers were studied by Nabadan et al. [13]. The authors compared neutrosophic fuzzy numbers
to other fuzzy methods used in the decision-making field, and their results showed higher values of
efficiency for this new approach. The fourth article in economic domain targeted the tourism area [14]
by creating a decision support model for satisfactory restaurants using social information. The model
used neutrosophic fuzzy numbers to sign online ratings, and it used the Bonferroni mean to consider
interdependence among criteria. Tian et al. [15] used a life cycle assessment technique to develop an
innovative multi-criteria group decision-making approach that incorporates aggregation operators
and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)-based QUALIFLEX
method. This study managed to offer a solution for green product design selection problems using
neutrosophic linguistic information. As for the performance indicators used in financial analysis,
a series of recent papers have addressed optimal portfolio selection, corporate entrepreneurship,
indicators selection or portfolio optimization [16-22].

Thus, our study has an innovative approach, as it introduces in the literature the modeling of
the financial performance indicators with the help of neutrosophic fuzzy numbers with the portfolio
theory. The financial performance indicators modeled using neutrosophic fuzzy numbers refer to:
The financial return of assets (neutrosophic return), financial risk (neutrosophic risk), and financial
covariance (neutrosophic covariance).

This research paper solves the identified problem that consist of the limitations of the classical
approach for the financial assets” performance indicators. Performance indicators of financial assets
are modeled using classical statistical indicators, namely arithmetic mean, geometric mean, squared
deviation from the mean, and variance. These indicators show a series of limitations, including the
following:

e  Not taking into account possible scenarios for achieving performance indicators of financial assets;
as such, investor cannot assess the chance of achieving them.

e Not allowing data series stratification to delimit the values of the financial performance
indicators—the very good, good and low values—so that the investor can select the scenarios best
suited to his/her investment profile.

e Not allowing the selection of performance indicators scenarios that characterize financial assets
for analyzing financial risk mitigation or building optimal portfolios of financial assets.

These limitations in financial assets’ performance indicators make them subject to some degree of
rigidity in substantiating decisions and also affect their capacity to respond properly to information
needed by capital market investors.

In order to solve these shortcomings, the proposed solution introduces the modeling of financial
assets performance indicators using triangular neutrosophic fuzzy numbers due to the numerous
advantages they present, namely:

e Allow for the consideration of all possible achievement scenarios for the financial assets’
performance indicators like the scenario of certainty, the scenario of non-realization, and the
scenario of indecision—these scenarios derive from the neutrosophic components such as truth,
indeterminacy and falsehood, which are symmetric in form, as the truth is opposite to false, with
respect to the indeterminacy [23].

e  Allow for financial performance indicators’ data series stratification or clustering. The delimitation
of these data series was done using linguistic criteria with assigned values such as: very good,
good and weak.

e  Allow for the selection of analysis scenarios to mitigate financial risk or to form optimal portfolios
of financial assets, both of which could lead to a better substantiation of financial asset decisions.
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The methodology used in this paper is aimed at combining portfolio theory with the fuzzy
intelligence and neutrosophic numbers in order to enable the decision-making process for investors.
The proposed model allows for the modeling of financial assets performance indicators by taking into
consideration all possible scenarios of their achievement. Additionally, the model clusters the data
series, representing the financial performance indicators, by delimitating these scenarios by means of
neutrosophic fuzzy numbers in very good, good or weak performance indicators. This clustering is
realized with the help of the linguistic criteria which belong to degrees of a class of indicators using
fuzzy membership functions. This methodology offers the possibility to form financial assets” optimal
portfolios that are characterized by low risk and high return.

The effective neutrosophic fuzzy modeling is presented in the following paragraphs of the paper.

3. Establishment of Neutrosophic Numbers for the Financial Assets Risk and Return

Financial asset return and risk are manifested by varying intensities, depending on the
particularities of the assets that form a portfolio. These intensities may take high, low, or even
uncertain values. Neutrosophic fuzzy numbers are formed and defined separately for each of the two
indicators mentioned above [24,25].

Definition 1. Let the financial asset return on the financial market be (R, ), and let F [0, 1] be the rules set for
all fuzzy triangular numbers. The fuzzy number (f{;) is considered the triangular neutrosophic fuzzy number of
the financial assets return: .

Ra = {(7a, i 955 Ao/ 7a € Ra),

where pz: Ry — [0,1] ; 9% : R, — [0,1] and Az : Ry, — [0,1], for which the membership functions are
defined according to the relations depicted in Figure 1.

uRa A
9Ra
wga I
I | I ARa
| |
|
Uga L |
i | |
| | |
| |
_ | ! |
YEqa T | |
_ ! | !
uRa, | | |
| | |
| |
| | | .
-~ = Al i —
Rag, Ra, Ray, Ra, Rag, Ra

Figure 1. The neutrosophic fuzzy triangular number of financial assets return.

The truth membership, which is the membership function for the financial assets return with the
highest degree of realization (uRa(y)), is the following:
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wr(Rax—Ra — -~ —
gy (RexRaa) for Ragy < Ray < Ray;
Ray —Rag ~ ~
‘uIF?‘;l _ Wi for Ray = Ray
() wg (Rac1—Rax) -~ -~ -~
—L—— for Ray; < Ray < Ray
Rag —Ray, .
0 for others values out of range [Racl ; Ra,,l]

()

The indeterminacy membership, which is the membership function for the financial assets return
with the medium degree of realization (8Rayy)), is the following:

u~ (Ray—Ray1 )+Ray, —Ra —~ -~
RV for Ragy < Ray < Ray

Ray,—Rag,
N _ URq for Ray = Ray .
Ax) = ug. (Rac —Rax)+Rax—Ray — —~ —~ @
L —— — ——— for Ray; < Ray < Ragy
Raci—Ray,

0 for others values out of range [@51 ; 1.{;”1]

The falsity membership, which is the membership function for the financial assets return with low
degree of realization (ARa(y)), is the following:

vi; (Rax—Rap )+Ray —Ray
Ebl_ﬁnl — —

AE for Ray = Ray

Yz, (Rac1—Rax) +Rax—Ray,

for Ray < Ray < R;bl
ARay = ®

or IF{E < IF?E < 1?1;
. for Ray x 1

0 for others values out of range [f{;E] ; I-QTM]

Definition 2. Let the financial asset risk on the financial market be (0,), and let F [0, 1] be the rules set for all
triangular fuzzy numbers. The fuzzy number (7,) is considered the triangular neutrosophic fuzzy number of the
financial assets risk:

Oa = {(Ea/ U85, Az)/0a € OA},
where s 204 —[0,1] ; 85 104 = [0,1] and A; : 04 — [0,1], for which the membership functions are
defined according to the relations depicted in Figure 2.

4
uoa |
voa
weg PE
|
|
| | |
u&a | |
|
| | |
| | |
| | |
Yeu - | |
| |
|
| | |
uoa | | |
| | |
| |
| | | .
[ [ I T
gy 0a, aty,y oa, Tty aa

Figure 2. The neutrosophic fuzzy triangular number of financial assets risk.
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The truth membership, which is the membership function for the financial assets risk with the
highest degree of realization (uday)), is the following:

W (Gax—can — — —
Wag (00 —Gn1) foroag < oax < oay

Ay —0ag]
Go = W, for oay = oay @
HOA(x) = W (60 —6a1y ) for Gap < Gay < G
0l —0lp b1 = Olx = Olcl

0 for others values out of range [Gc1; 0ag |

The indeterminacy membership, which is the membership function for the financial assets risk
with the medium degree of realization (804, ), is the following;

or aag < oay < oa
0y 08, for ot x b1

doay = Uz fgr 0ay = ody (5)
1z (00c1 —0ay ) +0ay—0ay ~ ~ ~
—— < <
- for oay < oay < 0aq

0 for others values out of range [0c1; 041

The falsity membership, which is the membership function for the financial assets risk with low
degree of realization Ada(y), is the following:

Vg7 (0ax—0ag1 ) +0ay —Gax ~ ~ ~
Zog X Tal] TP Y < <
Fr— for oag < oay < oay
A for oay = oay
Yz (00:1 —0ay)+Gayx
a1 ~0ay
0 for [0ac1; 08,1

(6)

/\(}71( = —
x) —0a, ~ ~ ~
U for Gay < Gay < 0a¢

The two neutrosophic numbers that characterize the return and the risk of a financial asset are as
follows:
Ra; = {(Rag;, Ray;, Rag;); wRa, uRa, yRa), fori=1,n @)

oa; = {(0g;, 0ay;, 60 ); woa, uca, yoay, fori=1,n ®)

Definition 3. Two specific neutrosophic numbers are considered for the two financial assets that define the
financial asset return:
Ray = ((Rag1, Rayy, Rac1); wRay, uRay, yRay)

for the first financial asset (A1);
Ray = ((Rag, Rayy, Ray); wRaz, uRay, yRaz)
for the second financial asset (Az) and the parameter y # 0,y € R.

The following arithmetical operations are valid:

1. Addition:
Ray + Ray = ((Raqy + Rag, Rayy + Rayy, Racy + Raa)wRay A wRa, uRay V uRay, yRay V yRaz) (9)
2. Subtraction:

Ray —Ray = ((Rag — Rag, Ray, — Rayy, Racy — Ra)wRay A wRap, uRay V uRaz, yRay V yRaz) (10)
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3. Multiplication:

e for R?lcl > 0and R?l,:z >0;

ﬁl;l X ﬁ;z (11)
= ((Rag XRagp, Rayy XRayy, Rag XRag )wRa; A wRay, uRay V uRay, yRay V. yRap)
e for EElCl <0and Rvafz > 0;
Ray X Ra
ai ap (12)

= ((EalXﬁcz,IFQEMXEL;;)Z,IF&AXIF@”Z);wﬁa A wRay, uRa; V uRay, ylpi&l \% yﬁﬁz)
e for R;d <0and R;cz <0;
Ray X Rap = <(1?Ecl X 13@,1%,1 X Ebz,ﬁéﬂl X ﬁ;ﬂz); wRa; A wRay, uRa; V uRa,, yR~a1 \, yI’{‘az) (13)
4. Division:
e for R;Cl > 0and 1:\"552 > 0;
Ray/Ray = ((Rag /Racy, Ry / Rayy, Racy /Rag); wRay A wRay, uRay V uRay, yRay V yRay) (14)
e for 1’551 <0and EEQ > 0;
Ray /Ray = ((Rac1/Rac, Ray; /Rayp, Ragy /Rag);wRay A wRay, uRay V uRaz, yRay V yRaz) (15)
e for R;Cl <0and 1:\"552 <0;
Ray/Ray = ((Rac /Ragy, Ray; / Rayy, Ragy /Racz); wRay A wRay, uRay V uRay, yRay V yRay) (16)
5. Scalar multiplication:

e fory>0;
y X Ray = ((y X Raq1,y X Rapy, y % Racy ); wRay, uRay, yRay) 17)

e fory<0;
yXRay = ((y x Rac1,y X Ray,y X Rag ); wRay, uRay, yRa) (18)

6.  The inverse of a neutrosophic number:

Ra; ™ = ((1/Rac1,1/Ray, 1/Rag);wRay, uRay, yRay) (19)

It is important to notice that the arithmetic operations with the neutrosophic numbers defined for
the financial asset return Ra; = ((Rayj, Ray;, Ra.;); wRa, uRa, yRa) are the same as the specific arithmetic
operations for the financial asset risk: oa; = ((0a,, 0ay;, 04.;); woa, uca, yoay for any i = 1,n.
Definition 4. Let the neutrosophic number defined for the financial asset return be of the following form:

Ra; = ((Rag;, Ray;, Ra;); wRa, uRa, yRa)

foranyi = 1,n. Toassure the comparability of the neutrosophic fuzzy numbers, a score function is introduced [4,5]:
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1r— — — - - —
S = g[Rllul + Ray; + Racl] + (2 4+ wRay — uRay — yRay) (20)

This is an accuracy function of the form:

1r— — — - — —
Ag = g[Rﬂal + Ray; + Rad] — (24 wRay — uRay — yRay) (21)

Definition 5. There are two neutrosophic numbers that define the financial asset return:
Ra; = <(Eulrﬁh1,ﬁc1)}wﬁ, uﬁélr}/ﬁl)

for the first asset (A1) and
Ra = {(Ran, Rayy, Raz ); wRap, uRaz, yRaz)

for the second asset (Az). As such:

o I S(R‘ﬁl) < ay), then Ray , and it is noted that Ra; < Ray;

S(R
o If S(ﬁ;l) > S(Ray), then f{;l is higher than 1?&7_, and it is noted that ﬁ;l > fi;z;

o If S(Ray) = S(Raz) are distinguished two cases:

o If A(Ray) < A(Ray), then Ray is smaller than Ray, and it is noted that Ra; < Ray;
o If A(Ray) = A(Raz), then the neutrosophic numbers are equal, and it is noted that Ra; = Ray;

4. Modeling the Financial Assets Return Using the Neutrosophic Fuzzy Numbers

The financial assets return, as mentioned above, is the most relevant performance indicator,
because it provides information on the earnings that investors can obtain over a limited period of time
as a result of asset ownership. In literature, the model for determining the financial assets return is
based on: The capital gain P1P—0 Po , formed by the stock price differences at time (t;) and (t9), as well as
on the return on invested capital, represented by the ratio between the dividend at time (¢;) and the

price at time (fp). ?—;, illustrates a remuneration form for the invested capital. The market model that
P;—Pg+D;
P,

evaluates the financial asset return thus becomes Ra = , where the gains are the exchange rate
differences and the dividend. For each financial asset (4;), there are different return values over a time
horizon [0, t] at different time moments of the form:

(22)

t t t t oo b t R —
Ra - 0 1 2 3 k-1 k n t=1,n
Ragp Ray Rap; Ras ... Rayq Ray ... Ray

The formed data series is modeled using neutrosophic fuzzy numbers due to the many advantages
they have: The possibility of stratification for the financial asset; clustering the return values according
to linguistic criteria such as high, medium or small financial asset return; the possibility of selection the
return category desired by the investor in order to maximize his profit; or analyzing the financial asset
return by means of probability grades. The neutrosophic fuzzy numbers built for the financial asset
return, on the above data series, are presented in Figure 3.
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Figure 3. Modeling financial assets return with neutrosophic numbers.

The financial assets return is thus characterized by three neutrosophic numbers:

Ray = ((Ruﬂl,Rubl,Racl) wRa, uRa, yRa) for Ra € |Raz1, Raq
Raz = ((Ruﬂz,Rabz,Rucz) wRa, uRa, yRa) for Ra € Raaz,Racz (23)
Ru3 = ((Raa3,Rab3, Rac3) wRa, uRa, yRa) for Ra € Rau3,RaC3

Definition 6. The following conditions lead to a function called a weighting function f: [0,1] — R:

(a) It is monotone increasing Vx, y € R and x <y results that f(x) < f(y).
(b)  Checks the normality condition: fo a)da =1

The weighting function is used in the calculation of the neutrosophic fuzzy numbers main
indicators—the arithmetic mean and the squared deviation from the mean and the covariance.
The most frequently used weighting function is f(«) = 2a, which meets the conditions imposed above,
namely:

(a) Itis monotone increasing ¥V a, ap € Rwith @y < ap results that f(a1) < f(a2). From this condition,
it follows that 2aq < 25, and, as such, the a1 < ozg is a condition fulfilled.

(b) Checks the normality _[) fla)da = fo 2ada = =1
The required conditions are fulfilled, and, thus, the function f(«) = 2a is a weighting function
for calculating the specific indicators of the triangular neutrosophic fuzzy numbers. The weighting

function f(a) = 2a is part of a weighting class of the form: f(a) = (n+ 1)a" with n € N. This class of
functions is used to determine the main statistical indicators of fuzzy numbers.

Definition 7. This is considered the triangular neutrosophic fuzzy number that defines the financial asset return
of the form:

Ra; = ((ﬁ;gi,f{;bi, Ea);wl?é, uRa, yf{;), foreveryi=1,n

It is considered that the set [Rj]a = [I’Q\z{l (a) ;1’2\1;2(11)] for every a € R is the level set of the triangular
neutrosophic fuzzy numbers, where:

Ray(a) = ((Ray — Ragt)a + Rag;wRa, uRa, yRa)

and @(a) = (Rag — (ﬁz;d - 131;,1)11; wRa, uRa, yﬁﬁ). See Figure 4.
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Figure 4. Levels sets for the triangular neutrosophic fuzzy number—financial asset return.
Definition 8. The medium value of a neutrosophic fuzzy number, Ra; = ((f{;m-, E&bi/k;ci); wRa, uRa, yf{;), is
given by:

1 — — — = =
= Ef {(Ray(a) + Ray(a)); wRa, uRa, yRa) f (a)dex (24)
0
When the weighting function is f(a) = 2a, the medium value of the neutrosophic fuzzy number will be:

Ef(Raj) = [ ((Raj(a) + Raz(a)); wRa, uRa, yRaada.

Proposition 1. The medium value of a triangular neutrosophic fuzzy number of the form, Ra; =
((Ragi, Ray;, Ra.;); wRa, uRa, yRa), is given by the relationship:

1— — 2= — —
Ef(Ra;) = ((Z (Raq + Rac) + ZRay; );wRa, uRa, yRa) (25)

Demonstration 1. According to Definition 8, the medium value of the neutrosophic fuzzy number is calculated
with the relation:

Ef(Ra f ((Ray (a) + Raz(a)); wRa, uRa, yRa)f( )da
Which is computed as:

((Ral( )+Ru2( )); wRa, uRa, yRa)
= ((Ruhl - Raal)a + Raal + Rad - (Racl - Rabl)a, wRa, uRa, yRa)
= ((Rahla Raga + Rag + Ragy — Raga + Rabla) wRa, uRa, yRa)

((Ray () + Ray(a)); wRa, uRa, yRa) = {(Ran (1 - a) + 2Raya + Rax1 (1 - a)); wRa, uRa, yRa)
The formula above can be rewritten as follows:
((Ray (@) + Ray()); wRa, uRa, yRay = (((1 - @) (Ran + Rac) +2Ray a); wRa, uRa, yRa)

The medium value of a triangular neutrosophic fuzzy number becomes:

Ef(Raj) = § [ (Rar (a) + Ray(a)); wRa, uRa, yRa)  (a)da
_ %f [ ((1-a)(Rag + Rae) + 2Raya); wRa, uRa, yRu)]Zada

B
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1 1
Ef(Ra;) = {(Rag + Raq);wRa, uRa, yRa) f (a— az)da + 2(Rayy; wRa, uRa, yRa) f a2da
0 0

~ ~ 2 1 ~ ~ .3 1 ~ .3 1
= ((Rag + Rag ); wRa, uRa, yRa)%O —((Rag1 + Rag);wRa, uRa, yRa)%O + 2(Ray1; wRa, uRa, yRa)%O;
— 1 — — _ - — 2= - =

Ef(Ra;) = g((Rﬂg] + Ragy); wRa, uRa, yRay + §<Rab1; wRa, uRa, yRay;

1~ — 2~ — — —
Ef(Ra;) = <(8(Raal +Ragq) + gRabl);wRa, uRa, yRa)

Example 1. There are three financial assets (A1, Az, A3), to which three specific triangular neutrosophic fuzzy
numbers are attached for the financial assets return:

Ray = ((0.20.30.5);0.5, 0.2, 0.3) for Ra € [0,2;0,5);

Rap = ((0.10.20.3);0.6, 0.3, 0.2) for Ra € [0,1;0,3];
Rap = ((0.3 0.4 0.6);04, 0.3, 0.3) for Ra € [0,3;0,6);

In order to determine the average return on financial assets resulting from the model using the
neutrosophic fuzzy numbers, was applied the result obtained from Proposition 1, which stipulates that:

1~ = 2= = = =
Ef(Ra;) = (7 (Raq + Rac) + 3 Ray; );wRa, uRa, yRa)
Thus, it is obtained:

Ef(Ray) = <(%(o.z +05) + % %0.3);0.5, 02, 0.3)

— 1 2
E¢(Ray) = (0.7 + 20.3);0.5, 0.2, 0.
7(Ray) = (07 +303);05, 02, 03)

Ef(Ray) = (0.316;0.5, 0.2, 0.3);
— 1 2
Ef(Raz) = {(Z(01+03) + 5 x0.2);06, 03, 02)

— 1 2
E¢(Rap) = (0.4 + 20.2);0.6, 0.3, 0.2
f(Raz) = ((Z0.4+302);06, 0.3, 0.2)

Ef(Ray) = (0.199;0.5, 0.2, 0.3);

Ef(Ras) = <(%(0.3 +0.6) + % % 0.4);0.4, 0.3, 0.3)

— 1 2

Ef(Ras) = (0.9 + £0.4);04, 0.3, 0.3

f(Raz) = ((£0.9 + 504);04, 0.3, 0.3)
Ef(Ras) = (0.416;0.4, 0.3, 0.3);

In conclusion, it can be argued that the financial assets return modeled by neutrosophic fuzzy
numbers ensures the determination of the average value of the asset’s return at the same time as
establishing the degrees of truth, falsity, and indeterminacy in the process of obtaining the profitability
expected by the investors.
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5. Modelling the Financial Assets Risk Using the Neutrosophic Fuzzy Numbers

As mentioned above, the risk of financial assets is represented by the squared deviation from the
mean (02) which means the return on financial assets deviation from the average recorded value. Thus,
the financial risk will be higher when the deviation of the financial return from the average is higher.
Contrary to this, the risk exposure will be low.

Definition 9. The financial asset risk modeled by the neutrosophic fuzzy number ca; =
((Gagi, 0ay;, 6ac;); woa, uca, ya~a> is given by the neutrosophic fuzzy number variance, determined by the
formula:

o =} fol[<(ﬁ51(oc) — E¢(Ray))’; wRa, uRa, yRa) + ((Raz(«) 7E;(Iﬂ{;i))z;wﬁ;,uﬁ;,yﬁé)]f(oc)doc (26)

If the weighting function is f(«) = 2a, then the neutrosophic fuzzy number variance is of the form:

ofa; = f [( Ray (o) — B¢ Ral)) ;wRa, uRa, yIF{‘;l) + <(§52(a) —Ef(Igi))z;wIz;, uRa, yﬁa)]ocdoc (27)

Proposition 2. The financial asset variance modeled by the neutrosophic fuzzy number can be determined by
the formula:

Ga=1f <(ﬁ5§(o¢) + 1’1‘52(@); wRa, uRa, yRa)f(e)do— 1(E2(Ray); wRa, uRa, yRa) [} f(o)der  (28)
Demonstration 2. It is known that:
7 = f [( Ra () — Eq( Ral))z;wfz;, uRa, yRa) + %((ﬁéz(oc) - Ef(ﬁ;i))z;wﬁ, uRa, ysz)]f(oc)da
From the relation illustrated above is obtained that:

=14 [ [<(E&f(a) ~ 2Ra (o) Ey (Rai) + E3(Rai));wRa, uRa, yRa)-+
<(135§(a) — 2Ray()Ef(Ray) + E;(Tz;,-)); wRa, uRa, y1’2‘a>] f(a)da

o =% fol ((ﬁz(a) + @;(a)); wRa, uRa, yRa) f (a)da
2E, (Raj) [} <(M) wRa, uRa, yRay f(a)da
+2%(E§(§1§,~);w1313, uRa, ylﬂi;z) fol f(a)da
=1 fol ((Z?Ei(a) + ﬁ;g(a));wﬁ, uRa, yRa) f (a)dax
—2((Ef(f{71,')Ef(1F€;z,‘)); wRa, uRa, yRa) fol f(a)da
+2%((E}(IF€51)); wRa, uRa, yRa) jg)l fla)da

a7 =}y (Rai(@) + R ))'wz’z‘a uRa, yRa)f (a)da~
2((]:"2 (Ra,)) wRa, uRa, yRa}fo a)da + ((E2 (Ra; )) wRa, uRa, yRa)fO a)da;

o =% fol ((f{;l(a) + 1352(04)); wRa, uRa, yRa) f (a)da
~ (2 (Rar)) s wRa, uRa, yRa) [} f(a)da
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Proposition 3. The neutrosophic fuzzy number variance of the form ca; = {(08,;, Gay;, Gac;); WoA, UGA, Yoa) is
given by:
. ~ = 2 = = 2] ~ = —
ora; = (%|(Rab1 —Rag) + (Rag — Rayy) |; wRa, uRa, yRa)
+%<[Ea1 (Ray; — Rag) — Raci (Ragy - R;bl)]? wRa, uRa, yRa) (29)
—2 —2 —_ - — — —_ — —
+<%(Rua1 + Rag);wRa, uRa, yRa) — (%E}(Rai); wRa, uRa, yRa)
Demonstration 3. From Proposition Number 2, it is known the computing relationship for the neutrosophic
fuzzy number variance leads to:

1, _ I B |
Gpa; = % f <(Ru$(a) + Rui(a)); wRa, uRa, yRay f (a)da — %(E]%(Rui);wRa, uRa, yRay f f(a)da
0 0

From Definition 7, it is also known the fact that the triangular fuzzy number level sets are of the
form: . . .
Raq(a) = ((Rap — Ragy)a + Rag1; wRa, uRa, yRa)

Ray(a) = (Ray — (Racy — Ray; )a; wRa, uRa, yRa)

After computing, the following expression is obtained:

—2 —2 —_ - —
((Ral(oc) + Raz(oc)); wRa, uRa, yRa) =
—~ = — — — —7
[(Rab1 —Rayi )+ Ra,i; wRa, uRa, yRa| +
[li;d - (f{;cl - lp{abl)oc; wRa, uRa, yli;]

—2 —2 —_ - —
((Ral(oc) + Raz(oc)); wRa, uRa, yRa) =
— — 2 —2 PR — — —_ - —
= ((Rap; — Rag) o + Ray; + 2Rag; (Rap; — Ragy)o; wRa, uRa, yRa)
— — 2 —2 —_ — — —_ - —
+{(Rac; — Rapy) o + Ragy — 2Rac1 (Rac; — Rap ) o; wRa, uRa, yRa)
—2 —2 —_ —  —
((Ral(oc) + Raz(cx)); wRa, uRa, yRa =
o= = 2, = = 2
=(x JiRabl —Ra,1) + (Rag —Rapp) ]
+0€[2Raa1 (Rapy — Raa1) —2Raci (Rag — Rabl)]
—2 —2 —_ —  —
+Ra,; + Ra.; wRa, uRa, yRa)
The above expression can be written as:
) —2 —_ — —
((Rzzl (@) + Ray (a)); wRa, uRa, yRa)
~ = 2 — = 2
= <012[(R”b1 —Ran) + (Rag — Ray) ]
+20|Rag (Ray; — Ray) - Racy (Ray - Rayy)|
— —2 —_ — —
+Ra,; + Rag;wRa, uRa, yRa)
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By replacing the values for the level set in the variance expression, we get:

o =% fol ((ﬁz(a) + @;(a)); wRa, uRa, yRa) f (a)da
_%<E;(I3ﬁi);wlfiﬁ, uRa, yRa) fol fla)da

-1 f;mz[(ﬁam ~Rag)” + (Ragy - 13&,,1)2]; «wRa, uRa, yRay2ada

+% f01<2a ﬁ&al(f{;m - f{;al) —Ray (R;cl - R;bl)]/' wRa, uRa, yf{;)Zada
+1 f;(lﬁiﬁﬂl + 15?1; wRa, uRa, yﬁa)Zada

_%<E§(IF€&,'); wRa, uRa, yRa) fol 2ada

— ~ = 2 = = 2 — = — 4l
ora; = {(Ray; — Rag1) + (Racy — Ray) ;wRa,uRa, yRa)r,
—_ - — —_ — — — — 31
+2([Ruu1 (Ray; — Ragy) — Racy (Rag 1— Rahl)]; wRa, uRa, yRa)%- )
—2 —2 —_ — — — —_ - —
-+((Ra,; + Ra.); wRa, uRa, yRa}"‘TZO - (E;(Rai); wRa, uRa, yRu)“Z—ZO
After making the calculations, we get:
e = 2 = = 2] = = =
ofa; = <z[(Rabl —Ra,1) + (Ragg —Rapy) |;wRa, uRa, yRa)

+(%[§5a1 (Rap; — Ray1) — Racy (Ragy - ﬁgbl)];wﬁal uRa, yRa)
—2 —2 —_ - — — —_ — —
+(%(Raa1 + Ra.); wRa, uRa, yRa) — (%E%(Rai);wRa, uRa, yRa)

Example 2. There are three financial assets (Aq, A2, A3) to which are attached three triangular neutrosophic
fuzzy numbers for the financial assets return:

Ray = ((0.20.30.5);0.5, 0.2, 0.3) for Ra € [0.2;0.5)
Rap = ((0.10.20.3);0.6, 0.3, 0.2) for Ra € [0.1;0.3]
Rap = ((0.3 0.4 0.6);0.4, 0.3, 0.3) for Ra € [0.3;0.6)

These triangular neutrosophic fuzzy numbers are known as the neutrosophic numbers. Using the
form computed in the previous example, we get:

Ef(Ra) = (0.316;0.5, 0.2, 0.3)
Ef(Raz) = (0.199;0.5, 0.2, 0.3)

Ef(Ras) = (0.416;0.4, 0.3, 0.3)

In order to determine the financial assets variance modeled by neutrosophic numbers, the
following relation is used, according to Proposition 3:

__ — - 2 o~ o~ 2] ~ ~ —~
ofa; = (%[(Rabl —Ra,1) + (Rag —Rapy) |;wRa, uRa, yRa)
+(%[Raa1 (Rap; — Ra,1) — Ragg (Ragg — Rabl)];wRa, uRa, yRa)
—2 —2 —_ - — — —_ - —
+(%(Raa1 + Ra,; ); wRa, uRa, yRa) — (%E?(Rai); wRa, uRa, yRa)
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By replacing the data in the above expression, this is obtained:

Srar = ($[(0.3-02)" + (0.5-03)*];05, 02, 03)
+(2(0.2(0.3-0.2) - 0.5(0.5-0.2));0.5, 0.2, 0.3)
+(1(0.22 +052);0.5, 0.2, 0.3) — (1(0.316)%0.5, 0.2, 0.3)

Gra1 = ($(0.01 4+ 0.04);0.5, 0.2, 0.3) +(3(0.02 - 0.15); 0.5, 0.2, 0.3)
+¢(30.29;0.5, 0.2, 0.3y — (10,099;0.5, 0.2, 0.3);

Gra1 = ((0.0125 — 0.086 + 0, 145 — 0.049; 0.5, 0.2, 0.3));
Gra1 = (0.0225;0.5, 0.2, 0.3)

Gray = (3[(02-01)* + (03-0.2)];06, 0.3, 0.2)
+(3(0.1(02-0.1) - 0.3(0.3-0.1)); 0.6, 0.3, 0.2)
+(1(0.12 4 0.32);0.6, 0.3, 0.2) - (1(0,199)%0.6, 0.3, 0.2)

Gy = (1(0.0140.01);0.6, 0.3, 0.2) 4 (5(0.01 - 0.03);0.6, 0.3, 0.2)+
(20.10;0.6, 0.3, 0.2) — (30,039;0.6, 0.3, 0.2);

@az = ((0.005-0.013 + 0,05 - 0.0195; 0.6, 0.3, 0.2));
ara; = (0.0180;0.6, 0.3, 0.2)

Gras = (1[(0.4-03)" + (0.6 -04)*];04, 03, 03)
+(3(0.3(0.4-0.3) - 0.6(0.6 — 0.4)); 0.4, 0.3, 0.3)
+(1(0.32 +0.62);04, 0.3, 0.3) — (1(0,416)%;04, 0.3, 0.3);

oraz = (1(0.01 +0.04);0.4, 0.3, 0.3)
+¢(2(0.03-0,12);0.4, 0.3, 0.3)
+(30.45;0.4, 0.3, 0.3) - (30.173;0.4, 0.3, 0.3);

oraz = ((0.0125 - 0.059 + 0,225 — 0.086; 0.4, 0.3, 0.3))
oraz = (0.0925;04, 0.3, 0.3)

In conclusion we can state that the triangular neutrosophic fuzzy number variance depends on
the values of Ra,1; Ray; Rac1, all of which are part of its level sets and are also on the average value of
the return of the financial asset E}(Rai).

6. Determination of Covariance Using the Triangular Neutrosophic Fuzzy Numbers

The covariance between two triangular neutrosophic fuzzy numbers that model the return of
two financial assets defines the intensity of the links between two fuzzy numbers and the way they
mutually influence their profitability. There may be three possible situations:

e  If the return of two financial assets increases, E&l >0 and 1?52 > 0, both financial assets show a
positive growth trend. As such, we can say that the return on financial assets is positively correlated.

e If the return of two financial assets registers different growth trends, 1’51 > 0 and ﬁ;z <0,
or R‘le <0and 1?&2 > 0, we can say that the return on financial assets isn’t correlated.

e If the return of two financial assets shows negative growth trends, Ra; < 0 and Ra, < 0, both
returns on financial assets decrease. As such, we can say they are negatively correlated.

Definition 10. There are two triangular neutrosophic fuzzy numbers that define the return of two financial
assets:
Ray = ((Rag, Rayy, Rac1 ); wRay, uRay, yRay),
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and
Ray = ((Rag, Rayy, Rae); wRay, uRay, yRay).

In addition, their level sets, of the form:
[ ] [Rul Ruz( )]
for every « € [0,1] where:
e  For the neutrosophic level set, [j{;]a will have:
Ray () = {(Rap; — Rag1)a + Ragry;wRay, uRay, yRay) (30)
Rapa(ar) = (Raci1 — (Racty — Rapy)a; wRay, uRay, yRay) (31)
e  For the neutrosophic level set, [IF%;;]& will have:
Ra () = ((Rayy — Ragi)a + Rago; wRay, uRay, yRay) (32)
Ray(a) = (Rac — (Racy — Rayy )a; wRay, uRay, yRas) (33)

The covariance between two triangular neutrosophic fuzzy numbers Ra; and Ray can be given by
the following relationship:

coo(Ra, Raz) = % [ [((Rana (@) = E(Ra)) (Ra (@)
—Ef(Ruz)) wRa; A wRay, uRay V uRay, yRm \% yRuz)

+((Raz () = E¢(Ray)) (Raz (o)
—Ef(Ruz)) wRa; A wRay, uRay V uRay, yRul \Y yRuz)]f

(34)

If the weighting function is f(c) = 2, then the covariance between the two neutrosophic fuzzy
numbers will be written as follows:

cov Ral,Raz fo LRun Ef(Ru1))(Ra21( )
—E¢(Rap)); wRa; A wRay, uRay V uRay, yRal \% yRaz)

+((Raa () = E¢(Ran)) (Raz (o)
—E¢(Raz)); wRa; A wRap, uRay v uRa, yRal \% yRaz)]ada

(35)

Proposition 4. The covariance between two triangular neutrosophic fuzzy numbers can be determined by the
following relationship:

cov(lpizl,lpivaz)

=3 f ((Ran (a Rﬂ21( )

+Ru12( )Razz( )); wRa1 A wRuz,uRa1 Vv uRaz, yRa1 Vv yRuz)f(oc)da

+ fo (Ef Ral)Ef Rap))wRay A wRay, uRay V uRay, yRal \Y yRaz,)f( a)da

(36)

Demonstration 4.

cov(Ray,Ray) = zf Ra (a )5 a (a) — (Rﬂll(“)JrR“lZ( ))Ef(Raz) ~ (Raz
+R1122( ))Ef(Ra )+R‘112( )RaZZ( )

+2Ef(Ra1)Ef( az) wRu1 A wRaz, uRa1 \% uRuz, yRa1 \% yRazf( a)da
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((1% (@) + %(H))Ef(ﬁaz)FWElruﬁglr]/Eﬁ = ((Ray11 — Rag)a + Ragyy; wRay, uRay, yRay) +
+ (Rac1 — (Ragy — Rayyy)a; wRay, uRay, yRay) = (((1 —a)Ragy + (1 - a)Ray) ;wRay, uRay, yRay)
((Raz1 + Rax(a))Ef(Ray );wRay, uRay, yRaz) = (R — Ragy ) + Rag; wRay, uRay, yRay);
+(§Em - (ﬁﬁczl - 1"{&;,21)11,- wf{;z, uﬁﬁz, yﬁﬁz): (((l - a)ﬁﬁm +(1- a)faam); wlfaz, uﬁaz,yﬁﬁz)

((15:;;1 (a) + Rapp(a ))Ef(ﬁz) walr”ﬁ;l/yﬁél
(Ra21 + Razz( ))Ef(Ral) wRay, uRaz, yRaz)
[((1 cv)Raﬂn +(1- a)Ram) wRay A wRa, uRay V uRay, yRa1 \% yRaz]Ef(Raz)
[((1 a)Raﬂl +(1- a)RaCzl),wRal A wRap, uRay V uRay, yRu1 v yRuz]Ef(Ral)
= (0;wRay A wRap, uRay V uRay, yRay V yRay)

The expression for covariance between two triangular neutrosophic fuzzy numbers can be written

under these conditions as:

cov(Ral,Raz =3 L Rau( )Igt;zil(az)’w L L .
+Ra12(oz)Ra22( ));wRa; A wRay, uRay V uRay, yRul v yRuz)f( Yda
+ fo (E£( Ra1 Ef Raz))wRal A wRaz,uRu1 V uRay, yRa1 \% yRaz, Y (a)da

Proposition 5. The covariance between two triangular neutrosophic fuzzy numbers can be determined as:

cov(Ray, Ray) = ((} [(Eabll Raq1) (Ray — R )

+(Ran — Rayyy) (Ra — El}bzl)]

%{[R‘luﬂ(Rabll - Rag) + Rﬂan(Rﬂbﬂ Rapr)]

—[R~ 1(Raca ~ Rayn) + Raca (Racnn Rayy)])

%(RﬂggRaaz1 iRﬂcnli@zl) .
%Ef(Ral)Ef(Raz));wRal A wRap, uRay V uRay, yRaq V yRay)

Demonstration 5. It is known from Proposition. 4 that the covariance can be determined using the relationship:

cov(Ray, Ray) —’J()((Rall( )Rll21( )
+Rapp(a)Rax(a)); wRa A wRa, uRay v uRaz,yRul \ yRa2>f( a)da

+ Ji ((Ef(Rar)Ef(Raz) JwRay A wRay, uRay v uRay, yRay v yRay; ) f (a)da

At the same time, we know the expressions for the level sets as follows:
e  For the neutrosophic number’s level set, [E:l]a will have:
Rapy (@) = ((Rapy — Ragy)a + Ragiy; wRay, uRay, yRay)
Rapp(a) = (Racy — (Raciy — Rayyy)a; wRay, uRay, yRay)
e  For the neutrosophic number’s level set, [E;]a will have:
Ia;l (a) = <(Eab21 - ﬁaﬂl)a + ﬁﬁm; wlﬁiaz, uﬁaz, yﬁﬁz)

Ra(a) = (Rag1 — (Raa — Rayy )a; wRay, uRay, yRaz)
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From Proposition 1, we know that the average values of the neutrosophic triangular fuzzy numbers
by which the financial assets return is modeled:

—_ 1 — — 2 — — — —
Ef (Rﬂl) = <(g (Ruall =+ Racll) + gRabll ); wRal, uRal, yRﬂ1>

— 1 — — 27— _ - -
Ef(Rap) = <(E(Rua21 + Racr) + FRam ); wRay, uRaz, yRaz)

By replacing in the covariance expression, we obtain:

COU(R;LREz) =3 fO (Ran )Rp‘/ (j{), . . - . .
+Rapp(a Razz(a ) wRa A wRap, uRay V uRay, yRay V yRay) f (a)de
+ fo (Ef (Ray)Es(Ra 2))wRa1 A wRay, uRay v MRElz,yRLZ] Y yRaz, Y (a)da

coo(Ray, Ray) = 2](; Rﬂbn Rﬂall)“"‘Rﬂan,WRﬂl,MRﬂl,yRﬂ1><(Rﬂbz1 Rﬁuzl)
+Ra1;wRay, uRay, yRﬂz) + (Rﬂcn ~ (Rac1 - Rapyy )a; wRay, uRay, yRay Y(Rag
—(Rag1 — Rayyy ); wRay, uRay, yRay) f (a)dax

+ fol <(Ef(1?&1)Ef(1’€&2))w1§71 A wRay, uRay V uRay, ylpiﬁl \Y yﬁ&z; Y (a)da

cov(Ray, Raz) = } fo ( Rayp = Ruall)(ﬁabﬂ ﬁ;m) 2
+[Raa2l (Rayy — Ragy) + Rag (R”b21 - Rﬂazja + Rag Ragn
+a’ (Rac1 = Rﬂbn)(R‘lczl afRacn (Rllczl ~ Rapy) + Rac (Racy — Rtlbll)]
+Ruc11RuC21,wRa1 A wRap, uRay V uRay, yRul v yRuz)f(oz)da
+ fo (Ef(Ral)Ef(Raz)), wRa; A wRay, uRay V uRay, yRay V yRay; ) f (a)dex

cov(Ray, Ray) = ((Rapyy — Rﬂan)(Rﬂbzl - Raazl)%é
+[Raq1 (Ragn1 - Ragy)
+ + Rag1 (R — RaaZl)]%é + Rag1Raz %é
+(Raci1 = Ray1) (Racyr — Rayy) %(1)
~[Rac1 (Racar - Ray1) + Racor (Racy — Rayyy )]%:)
+Racy1 Rac1 & o wRay A wRay, uRay V uRay, yRay v yRan)
+Ef(Ray)E(Raz) & o wRay A wRay, uRay v uRaz, yRay V yRa)
The above equation can be written as:
cov(Ray, Ray) = (ﬂ(ﬁﬂ;bn — Rag11) (Ray — Ragn)
+(Rac1 — Ray1) (R — ﬁabﬂ)]
+{[Rag1 (Rayyy = Ragn) + Ragyi Ry — Ragon )|
—[Rﬂcu(Rﬂczl Rapn) + Raco (Racy — Rllbn)]}

+35 (RllullRlluzl + RllmRﬂczl)
+1E¢(Ray)Ef(Ray));wRay A wRay, uRay V uRay, yRay V yRay)

In conclusion, for the triangular neutrosophic fuzzy numbers, the expressions for the following
statistical indicators were obtained:

(a) The financial asset return:

Ey(Ra) = (g (Rau + Racr) + 3Rays i, ke, Ry
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(b) The variance, or the financial asset’s risk:

— s = 2 = = 2
ofa; = ((Zl(Rubl —Ran) + (Rac — Ray) ]

— = — —_ — — —2 —2 — —_ - —
+%[R11a1 (Rayy = Ragy) = Ragy (Rag — Rﬂbl)] +3(Ragy + Ragy) - %E}(R”i))/' wRa, uRa, yRa)

(c) The covariance between two financial assets modeled with triangular neutrosophic fuzzy numbers:

cov(Ray, Ray) (( [(ﬁ';bn — Rag1)(Rayy - Ragn)
+(Rac1 — Ray1) (R — ﬁzbzl)]
+%{[Rﬂa21(Rﬂb11 Rag1) + Ragn (Ra; - Ragy)|
[Rﬂcn (Rac — Ray) + Racy (Raii — Rﬂbll)]}
+%(Rﬂa11Rﬂa21 + RagRac)
-‘r%Ef(]Fi;ll)Ef(R‘az)), wﬁ?ﬂ A w]?;lz, LlR;l \% MR?Q, yk‘él \% y]?;lz)

Example 3. There are two financial assets, (A1, Az), to which two triangular neutrosophic fuzzy numbers are
attached:
Ra; = ((0.20.30.5);0.5, 0.2, 0.3) for Ra € [0,2;0,5]

Ray = ((0.10.20.3);0.6, 0.3, 0.2) for Ra € [0,1;0,3)

In order to determine the covariance between two financial assets to determine the cov(]ival, fivaz)
and the variance—covariance matrix, the following formula can be used:

cov(Ray, Ray) = ((%[(fif;bn — Rag11) (Rayp) — Ragn)
+(Ragy - Tz‘abn)(ﬂm R;bﬂ)]
+ JR”uZI Rayyy — Ragiy) + Rag (Rayy — RﬂuZl)]
—[Racn (Ra1 — Ray ) + Rac (R — Rﬂbll)]}
+3 (Rag1Raz + RllcnRﬂczl) e
+2Ef(Ru1)Ef(Ra2)), wRay A wRay, uRa; V uRay, yRay V yRay)

By replacing in the formula, we can obtain:

cov(Ray, Rap) = (1[(0.3-0.2)(0.2~0.1) + (0.5-0.3)(0.3 - 0.2)]
+3[0.1(0.3-0.2) +0.2(0.2 - 0.1)]
—[0.5(0.3-0.2) +0.3(0.5-0.3)]
+1(02+0.1+0.5%0.3) + 30,316+0,199;0.5 A 0.6, 0.2V 0.3,0.3 v 0.2)

cov(Ray, Rap) = (1[0.01 +0.02] + 1[0.01 + 0.02] — [0.05 + 0.06] + 4(0.02 + 0.15)
+10.062;0.6, 0.2, 02>

cov(Ray, Ray) = (0.0075 — 0.053 + 0.085 + 0.031; 0.6, 0.2, 0.2)
cov(Ray, Ray) = (0.0705;0.6, 0.2, 0.2)
The variance—covariance matrix is then:

(0.0225;0.5, 0.2, 0.3) (0.0705;0.6, 0.2, 0.2)
(0.0705;0.6, 0.2, 0.2) (0.0180;0.6, 0.3, 0.2)

Modeling the performance indicators leads to the following results:
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e  The financial asset return:
— 1 — — 2 — _ - —
Ej(Raj) = ((E(Raal + Raq) + §Rab1); wRa, uRa, yRa)
e  The variance of the financial asset risk:

. —  — 2 = =
opa; = ((i[(Rﬂbl —Rag) + (Rag — Ray) ]

—_ = — P — — —2 —2 — —_ — -
+§[Raa1 (Ray; — Ragy) — Raci (Rag — Ray, )] +4(Ray + Rag) - %E}(Rai)); wRa, uRa, yRa)

e  The covariance between two financial assets modelled with the triangular neutrosophic fuzzy
numbers:

cov(Ray, Raz) = ((§[(Rap1 — Ran1) (Ray — Ragn )
+(Rac1 — Rap1 ) (Rag — ﬁa1721)]
+3{[Raca1 Ry — Ragn) + Ragn1 (Rayn = Ragan)|
—[Rﬂcn (Racy1 — Rayn ) + Rac (R — f{;bu)]}
+%(§1;a11§1;u21 + R;cllf{;dl)
+%Ef(ﬂl)Ef (Rvaz));wﬁavl A wRay, uRay V uRa, yﬁzl \ yﬂz)

Conclusion: The covariance of two financial assets determined according to the above formula
shows that there is a weak link between the two financial assets modeled by triangular neutrosophic
fuzzy numbers cov(]F{‘;ll, ﬂz) = (0.0705;0.6, 0.2, 0.2). The covariance is positive, resulting in the fact
that the financial returns of the two assets increase and register a favorable trend.

7. Conclusions

The performance indicators of the financial assets are represented by the return on financial
assets, the financial assets risk, and the covariance between them, the latter of which, as mentioned
above, indicates the intensity of the links between the return on financial assets. Modeling these
three performance indicators of the financial assets has been achieved with the help of triangular
neutrosophic fuzzy numbers, which presents a number of advantages:

e  The neutrosophic approach of these three financial assets performance indicators must take
all the possible scenarios for their achievement into account—these are the scenario of
certainty, the scenario of non-realization, and the scenario of indecision (in which it cannot
be appreciated whether the performance indicators are or are not achieved). All three scenarios
have attached performance, non-execution, or uncertainty ratios according to the investor’s
professional judgment.

e  The possibility of stratification or the clustering of the financial asset return values according to
linguistic criteria such as very good, good or weak performance indicators. This method
of stratification can be also applied in the calculation/determination of financial risk.
Stratification/clustering takes place with the help of triangular neutrosophic fuzzy numbers.

e  The possibility of selecting the desired return/risk group in order to maximize the investor earnings,
analyzing the profitability of the financial asset by means of probability grades or other purposes
desired by investors, etc.

The results obtained by modeling with triangular neutrosophic fuzzy numbers: The financial
assets return, the financial risk, and the covariance between two financial assets were tested on three
practical examples in order to confirm their applicability. For future research, two aspects for modelling
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with the help of neutrosophic fuzzy intelligence are being considered: The mitigation of portfolio risk
and optimal portfolios.

Author Contributions: Conceptualization, M.-1.B., I.-A.B. and C.D.; data curation, C.D.; formal analysis, M.-L.B.
and I.-A.B.; investigation, M.-I.B., I.-A.B. and C.D.; methodology, M.-I.B. and I.-A.B.; supervision, M.-1.B.; Validation,
I.-A.B.; visualization, C.D.; writing—original draft, M.-I.B. and .-A.B.; writing—review & editing, C.D.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Bolos, M.-L; Bradea, I.-A_; Delcea, C. A Fuzzy Logic Algorithm for Optimizing the Investment Decisions
within Companies. Symmetry 2019, 11, 186. [CrossRef]

2. Markowitz, H. Portfolio Selection. . Financ. 1952, 7,77.

3. Guo, Y,; Sengur, A. A Novel Color Image Segmentation Approach Based on Neutrosophic Set and Modified
Fuzzy c-Means. Circuits Syst. Signal Process. 2013, 32, 1699-1723. [CrossRef]

4. Ansari, A.Q.; Biswas, R.; Aggarwal, S. Neutrosophic classifier: An extension of fuzzy classifer. Appl. Soft
Comput. 2013, 13, 563-573. [CrossRef]

5. Ali, M,; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1817-1834. [CrossRef]

6. Pramanik, S.; Dey, P.; Smarandache, F. Correlation Coefficient Measures of Interval Bipolar Neutrosophic
Sets for Solving Multi-Attribute Decision Making Problems. Neutrosophic Sets Syst. 2018, 19, 70-79.

7. Ye,]. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets.
J. Intell. Fuzzy Syst. 2014, 26, 2459-2466.

8.  Zhang, H.; Wang, J.; Chen, X. Interval Neutrosophic Sets and Their Application in Multicriteria Decision
Making Problems. Sci. World J. 2014, 2014, 1-15. [CrossRef]

9. Liu, P; Teng, E. Multiple attribute decision making method based on normal neutrosophic generalized
weighted power averaging operator. Int. . Mach. Learn. Cybern. 2018, 9, 281-293. [CrossRef]

10. Peng, J.; Wang, J.; Zhang, H.; Chen, X. An outranking approach for multi-criteria decision-making problems
with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336-346. [CrossRef]

11. Bausys, R;; Zavadskas, E.K.; Kaklauskas, A. Application of Netrosophic Set to Multi-criteria Decision Making
by COPRAS. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 49, 91-105.

12. Bausys, R.; Zavadskas, E.K. Multi-criteria Decision-Making Approach by Vikor under Interval Neutrosophic
Set Environment. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 49, 33-48.

13. Nadaban, S.; Dzitac, S.; Dzitac, I. Fuzzy TOPSIS: A General View. Procedia Comput. Sci. 2016, 91, 823-831.
[CrossRef]

14.  Zhang, H.; Ji, P.; Wang, J.; Chen, X. A novel decision support model for satisfactory restaurants utilizing
social information: A case study of TripAdvisor.com. Tour. Manag. 2017, 59, 281-297. [CrossRef]

15. Tian, Z.; Wang, J.; Wang, J.; Zhang, H. Simplified Neutrosophic Linguistic Multi-criteria Group
Decision-Making Approach to Green Product Development. Group Decis. Negot. 2017, 26, 597-627.
[CrossRef]

16. Palmowski, Z; Stettner, L.; Sulima, A. Optimal Portfolio Selection in an It6—-Markov Additive Market. Risks
2019, 7, 34. [CrossRef]

17.  Jain, P; Jain, S. Can Machine Learning-Based Portfolios Outperform Traditional Risk-Based Portfolios? The
Need to Account for Covariance Misspecification. Risks 2019, 7, 74. [CrossRef]

18. Drezewski, R.; Doroz, K. An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio
Optimization. Symmetry 2017, 9, 168. [CrossRef]

19. Agapie, A.; Vizitiu, C.; Cristache, S.; Nastase, M.; Craciun, L.; Molanescu, A. Analysis of Corporate
Entrepreneurship in Public R&D Institutions. Sustainability 2018, 10, 2297.

20. Lin, AJ.; Chang, H.-Y. Business Sustainability Performance Evaluation for Taiwanese Banks—A Hybrid
Multiple-Criteria Decision-Making Approach. Sustainability 2019, 11, 2236. [CrossRef]

21. Lassala, C.; Apetrei, A.; Sapena, ]. Sustainability Matter and Financial Performance of Companies.

Sustainability 2017, 9, 1498. [CrossRef]

156



Symmetry 2019, 11, 1021

22.

23.

24.

25.

Bolos, M.I; Bradea, I.A.; Delcea, C. The Development of a Fuzzy Logic System in a Stochastic Environment
with Normal Distribution Variables for Cash Flow Deficit Detection in Corporate Loan Policy. Symmetry
2019, 11, 548. [CrossRef]

Abdel-Basset, M.; Chang, V.; Mohamed, M.; Smarandche, F. A Refined Approach for Forecasting Based on
Neutrosophic Time Series. Symmetry 2019, 11, 457. [CrossRef]

Subas, Y. Neutrosophic Numbers and Their Application to Multi Attribute Decision Making Problems.
Master’s Thesis, Kilis 7 Aralik University, Graduate School of Natural and Applied Science, Ankara, Turkey,
2005.

Sahin, M.; Kargin, A.; Smarandache, F. Generalized Single Valued Triangular Neutrosophic Numbers and
Aggregation Operators for Application to Multi-attribute Group Decision Making. New Trends Neutrosophic
Theory Appl. 2018, 2, 51-84.

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

157



E symmetry MBPY

Article

Study on the Algebraic Structure of Refined
Neutrosophic Numbers

Qiaoyan Li !, Yingcang Ma '*, Xiaohong Zhang ? and Juanjuan Zhang !

1 School of Science, Xi’an Polytechnic University, Xi’an 710048, China
2 School of Arts and Sciences, Shaanxi University of Science & Technology, Xi’an 710021, China
*  Correspondence: mayingcang@126.com

Received: 28 May 2019; Accepted: 22 July 2019; Published: 27 July 2019

Abstract: This paper aims to explore the algebra structure of refined neutrosophic numbers. Firstly,
the algebra structure of neutrosophic quadruple numbers on a general field is studied. Secondly,
The addition operator ® and multiplication operator ® on refined neutrosophic numbers are proposed
and the algebra structure is discussed. We reveal that the set of neutrosophic refined numbers with
an additive operation is an abelian group and the set of neutrosophic refined numbers with a
multiplication operation is a neutrosophic extended triplet group. Moreover, algorithms for solving
the neutral element and opposite elements of each refined neutrosophic number are given.

Keywords: neutrosophic extended triplet group; neutrosophic quadruple numbers; refined
neutrosophic numbers; refined neutrosophic quadruple numbers; neutrosophic set

1. Introduction

The notion of neutrosophic set was proposed by F. Smarandache [1], which is an extension of fuzzy
set and in order to solve real-world problems. A neutrosophic set has three membership functions,
and each membership degree is a real standard or non-standard subset of the nonstandard unit interval
07,1t [=0"U[0,1Jult.

In recent years, the idea of neutrosophic set has been applicable in related algebraic structures.
Among these algebraic structures, Smarandache and Ali [2] proposed the algebraic system neutrosophic
triplet group (NTG), which is an extension of the classical group but the neutral element is different
from the classical algebraic unit element. To regard the unit element as a special neutral element,
the neutrosophic extended triplet group (NETG) has been proposed [3,4] and the classical group is
regarded as a special case of a NETG. Moreover, some research papers have carried out in-depth
research based on NTG (NETG). For example, the inclusion relations of neutrosophic sets [5],
neutrosophic triplet coset [6], neutrosophic duplet semi-groups [7], generalized neutrosophic extended
triplet group [8], AG-neutrosophic extended triplet loops [9,10], the neutrosophic set theory to
pseudo-BClI algebras [11], neutrosophic triplet ring and a neutrosophic triplet field [12,13], neutrosophic
triplet normed space [14], neutrosophic soft sets [15], neutrosophic vector spaces [16] and so on have
been studied.

As an example of NETG, Ma [8] revealed that for eachn € Z*,n > 2,(Z,, ®) is a commutative
NETG if and only if the factorization of n is a product of single factors. As another example, Ma [17]
showed that the set of neutrosophic quadruple numbers with a multiplication operation is a NETG.
The concept of neutrosophic numbers of the form a + bI, where I is the indeterminacy with I" =
I, and, a and are real or complex numbers. If [ into many types of indeterminacies I, I, - -, I,
in [18], Smarandache extended the neutrosophic numbers a + bl into refined neutrosophic numbers
of the form a + byl + byl + - - - + byI,, where a,by,by, - -+ , b, are real or complex numbers and
considered the refined neutrosophic set based on these refined neutrosophic numbers. The notion of
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neutrosophic quadruple number, which has form: NQ = a + bT + cI + dF where a,b, ¢, d are real (or
complex) numbers; and T is the truth/membership/probability; I is the indeterminacy; and F is the
false/membership /improbability are called Neutrosophic Quadruple (Real, respectively, Complex)
Numbers. “a” is called the known part of NQ, while bT + cI + dF is called the unknown part of NQ.
Similar to refined neutrosophic numbers, if T can be split into many types of truths, Ty, Tp, - -+, Tp, [
into many types of indeterminacies, I, I, - - - , I;, and F into many types of falsities, F;, F, - - - , F,, we
can get the refined neutrosophic quadruple numbers. We know that the set of neutrosophic quadruple
numbers with a multiplication operation is a NETG. In this paper, we explore the algebra structure
of refined neutrosophic numbers (refined neutrosophic quadruple numbers) and give new examples
of NETG. In fact, the solving method of the neutral element and opposite elements for each refined
neutrosophic number is different from the solving method for each neutrosophic quadruple number.

The paper is organized as follows. Section 2 gives the basic concepts. In Section 3, we show that
the set of neutrosophic quadruple numbers on the general field with a multiplication operation also
consists of a NETG. In Section 4, the algebra structure of refined neutrosophic numbers and refined
neutrosophic quadruple numbers are studied. Finally, the summary and future work is presented in
Section 5.

2. Basic Concepts
In this section, we provide the related basic definitions and properties of NETG, neutrosophic

quadruple numbers, and refined neutrosophic numbers (for details, see [3,4,18-20]).

Definition 1 ([3,4]). Let N be a non-empty set together with a binary operation . Then, N is called a

“_n

neutrosophic extended triplet set if, for any a € N, there exists a neutral of “a” (denote by neut(a)), and an

“_r

opposite of “a”(denote by anti(a)), such that neut(a) € N, anti(a) € N and:
a*neut(a) = neut(a) xa =a, axanti(a) = anti(a) * a = neut(a).
The triplet (a, neut(a),anti(a)) is called a neutrosophic extended triplet.

Definition 2 ([3,4]). Let (N, x) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:

(1) (N, %) is well-defined, i.e., for any a,b € N, one has a x b € N.
(2) (N, %) is associative, i.e., (a*b)xc =ax (bxc) forall a,b,c € N.

A NETG N is called a commutative NETG if forall a,b € N,axb =0b *a.

Proposition 1 ([4]). (N, ) be a NETG. We have:

(1) meut(a) is unique for any a € N.
(2) neut(a) * neut(a) = neut(a) forany a € N.
(3) neut(neut(a)) = neut(a) forany a € N.

Definition 3 ([18,19]). A neutrosophic number is a number of the form (a,bl), where I is the indeterminacy
with 1> = 1, and a and b are real or complex numbers. A refined neutrosophic number is a number of the form
(ap,a15,a0Lp, - - - ,anly,), where I, Ip, - - -, I, are different types of indeterminacies, and ag, a1, ay, - - -, a, are
real or complex numbers. The set NN defined by

NN = {(a,bI)|a,b € Ror C}. @)

is called a neutrosophic set of neutrosophic numbers. The set RNN defined by
RNN = {(ag,aly,a21p,- - - ,anly)|ag,a1,az,- - ,a, € Ror C}. ()
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is called a neutrosophic set of refined neutrosophic numbers.

Definition 4 ([18,20]). A neutrosophic quadruple number is a number of the form (a,bT,cI, dF), where T, I
and F have their usual neutrosophic logic meanings, i.e., truth, indeterminacy and false, respectively, and
a,b,c,d € Ror C. The set NQ defined by

NQ = {(a,bT,cl,dF)|a,b,c,d € Ror C}. 3)

is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple number (a,bT,cl,dF), a is
called the known part and (bT, cI,dF) is called the unknown part. The set RNQ defined by

RNQ = {(a,biTh,boTp, -+ ,bpTp,c1hy, 00, - -+, cqly, d1Fy, dobs, - - -, drFr)|

4
a,by, by, -+ ,by,c1,02,- - ,Cq,d1,d,- - ,dy € Ror C}. @

is called a neutrosophic set of refined neutrosophic quadruple numbers.

Definition 5 ([18,20]). Let N be a set, endowed with a total order a < b, named “a prevailed by b”, “a less
stronger than b” or “a less preferred than b”. We consider a < b as “a prevailed by or equal to b”, “a less
stronger than or equal to b”, or “a less preferred than or equal to b”.

For any elements a,b € N, with a =< b, one has the absorbance law:

a-b="b-a= absorb(a,b) = max(a,b) = b. 5)

which means that the bigger element absorbs the smaller element. Clearly,

a-a=a*= absorb(a,a) = max(a,a) = a. (6)
and
ai-ap---ap = max(ay,az, -+ ,day). (7)

Analogously, we say that “a = b” and we read: “a prevails to b”, “a is stronger than b” or “a is preferred
to b”. In addition, a > b, and we read: “a prevails or is equal to b”, “a is stronger than or equal to b”, or “a is
preferred or equal to b”.

Definition 6 ([18,20]). Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence
order T > I > F. Then, we have: TI = IT = max(T,I) = T, TF = FT = max(T,F) = T, IF = FI =
max(LLF) =, TT=T?>=T,[I=1?=1,FF=F>=F.

Analogously, suppose in a pessimistic way we consider the prevalence order T < I < F. Then, we have:
TI = IT = max(T,I) = I, TF = FT = max(T,F) = F,IF = FI = max([,F) = F, TT=T?> =T,
II=1=IFF=F=F.

Definition 7 ([18,20]). Let a = (a1,a,T,a3l,a4F),b = (by,byT, b3I, byF) € NQ. Suppose, in an pessimistic
way, the neutrosophic expert considers the prevalence order T < I < F. Then, the multiplication operation is
defined as follows:

axb=(ay,a,T,a3l,a4F) (b1, by T, b31, buF)
= (mby, (a1by 4 asby + axby) T, (a1b3 + azbs 4 asby + azby + asbs)1, ®)
(a1by + azby + azby + aghy + agby + agbs + agby)F).

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T > I > F. Then,

axb=(ay,a,T,a3l,asF) x (b1, b2 T, b3l, byF)
= (a1by, (a1b2 + azby + axby + azby + asby + azbs + axby) T, ©)
(a1b3 + azby + asbs + azby + agbz)1, (a1by 4 asby + agbs)F).

160



Symmetry 2019, 11, 954

Proposition 2 ([18,20]). Let NQ = {(a,bT,cI,dF) : a,b,c,d € R or C}. We have:

(1) (NQ, *) is a commutative monoid.
(2) (NQ,*) is a commutative monoid.

Theorem 1. [17] For the algebra system (NQ,*)(or (NQ, %)), for every element a € NQ, there exists
the neutral element neut(a) and opposite element anti(a), which means that the algebra system (NQ, )
(or (NQ, )) is a NETG.

3. The Algebra Structure of Neutrosophic Quadruple Numbers on General Field

From the above section, we can see that the neutrosophic quadruple numbers are defined on
number field R or C. In this section, the notions of the neutrosophic quadruple numbers on a general
field are introduced and the algebra structure of the neutrosophic quadruple numbers on general field
is explored.

Let (F, +, -) be a field, and 0 and 1 are the unit elements for operator + and -, respectively. For
every a € F, —a is the inverse element of a for operator +, and a~! is the inverse element of a for
operator -. In the following, field (I, +, -) is denoted by F for short and a - b is denoted by ab.

Definition 8. Let IF be a field; a neutrosophic quadruple number is a number of the form (a,bT,cI,dF),
where T, I, F have their usual neutrosophic logic meanings, i.e., truth, indeterminacy and false, respectively,
and a,b,c,d € IF. The set NQF defined by

NQF = {(a,bT,cl,dF)|a,b,c,d € F}. (10)
is called a neutrosophic set of quadruple numbers on field IF.
Definition 9. Let a = (ay,a2T,a3l,a4F),b = (by,b,T,b31,bsF) € NQF, then the addition operator is

defined as follows:
adb= (al + bl, (az —+ bz)T, (ﬂ3 + bg)l, (ﬂ4 + b4)F). (11)

Definition 10. Let a = (a1, 2T, a31,a4F), b = (b1, b2 T, bsl, bysF) € NQF. Suppose, in an pessimistic way,
the neutrosophic expert considers the prevalence order T < I < F. Then, the multiplication operation is defined
as follows:

axb= (111,112T,113I,114F) * (bl,sz, b3I,b4F)
= (a1b1, (a1ba + asby + azby)T, (a1bs + azbs + asby + asby + azbs )1, (12)
(ﬂ1b4 + arby + azby + agby + agby + agbs + a4b4)F),

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T = I > F. Then,
axb=(ay,a2T,a31,a4F) % (b1, b2 T, b3, bsF)
= (a1by, (a1ba + agby + azby + azba + asbhy + azbs + azb4)T, (13)
(a1b3 + azby + asbs + asbs + asbs)1, (a1bs + asby + asbs)F).
Theorem 2. (NQF, &) is an abelian group.

Proof. Itis obvious. [

Theorem 3. For the algebra system (NQF, ) (or (NQF, %)), for every element a € NQF, there exists
the neutral element neut(a) and opposite element anti(a), thus the algebra system (NQF, x) (or (NQF, x))
isa NETG.
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The proof’s method is similar to the proof when F = R in [17]. The detailed proof is omitted.
For algebra system (NQF, ), Table 1 gives all the subsets which have the same neutral element, and
the corresponding neutral element and opposite elements. In the following, from two examples, we
show that how to solve the the neutral element and opposite elements of each element for algebra
system (NQF, ) on different fields.

Example 1. Let F = Zs = {[0], (1], [2], (3], [4]}, then (Zs,+,-) is a field, where + and - are the classical
mod addition and multiplication, respectively. For algebra system (NQF, x), if a = (a1,a,T,a31,a4F) =
([2], [4]T, B]1, [1]F), ie., a1 # [0l,a14+ax # [0],a1 +ar+az # [0],a1 + a2 +a3+as = [0],
then, from Table 1, we can get neut(a) = ([1],[0],[0], [4]F). Let anti(a) = (c1,¢2T,c31,c4F),
soc = afl = [3],c2 = [3],c3 = [3], ca € Zs, thus anti(a) = ([3], [3]T, [3]1, c4F), where ¢4 € Zs. Thus, we
can easily get the neutral element and opposite elements of each neutrosophic quadruple number on general field.
For more examples, see the following:

1. Letb = ([1],[2]T, (1], [3]F), then neut(b) = ([1], 0], [0],

2. Let ¢ = ([0],[0],[1]L, [4]F), then neut(c) = (]0],[0],
where c1 ® ¢y ® c3 = [1],¢4 € Zs.

3. Letd = ([0],(1]T, [1]L, [1]F), then neut(d) = ([0], [1]T,[0], [0]) and anti(d) = (c1,c2T, [2]1, [4]F),
where ¢ & ¢ = [1].

0]) and anti(b) = ([1], [1]T, [2]1, [4]F).
1],[4]) and anti(c) = (c1,¢2T,c31,c4F),

Table 1. The corresponding neutral element and opposite elements for (NQF, ).

The Subset of NQF Neutral Opposite Elements (c1, c2T, 31, ¢4 F)
Element

{(0,0,0,0)} (0,0,0,0) G EF

{(0,0,0,a4F)|ay # 0} (0,0,0,F) c+otoyteg=a;!

{(0,0,a31, —azF)|a3 # 0} (0,0,1,—F) a+ota=alcgelF

{(0,0,a31,a4F)|a3 # 0,3+ a5 # 0} (0,0,1,0) at+a+a=a",c=—(aay(a+a) )

{(0,a2T, —a31,0)|a # 0} 0,T,—1,0)} a+o=ay1c,0€F

{(0,a,T, —ap1,a4F)|as # 0,a4 # 0} (0,T,—1I,F) C1+C2=a£l,C3+C4=a;l+( 21)

{(0,a3T,a31,a4F)|ay # 0,ap +a3 # (0,T,0,—F) c1+c= a;l,q = —(asaz’l(az +a3)7h),

0,ap +a3+ay =0} g €F

{(0,a3T,a31,a4F)|a, # 0,ap +as # (0,T,0,0) c1+c= 02’1,03 = —(a3a2’1(a2 +a3)7h),

0,a2 + a3 + a4 # 0} ey = —(ag(az +a3) " (ap + a3+ a4) ™)

{(a1,—a1T,0,0)|a; # 0} (1,-T,0,0)} 0= ul’l,cz,c:;,q eF

{(a1,—a1T,0,a4F)|a; # 0,a4 # 0} (1,-T,0,F) clzufl,cz+63+C4:a4’1+( 1111)

{(a1,—a1T,a3l, —asF)|a; #0,a3 #0}  (1,—T,1,—F) Cl:11171,62+C3:a517ﬂ171,C4€]F

{(ay,—a1T,a31,a4F)|a; # O0,a3 # (1,-T,1,0) = u;l,cz +e3= a;l + (—ay b,

0,a3 +as # 0} ¢y = —(aga5" (a3 +ay) 1)

{(ay,a2T,a31,0)[a; # 0,ay +ax # (1,0,—1,0) e =a7l, e = —(azay (ay + a2)7Y),

0,/11+u2+a3:0} c3,cq €F

{(a1,a2T,a31,a4F)|ay # O,a1 +ap # (1,0,—LF) e =a7l,c = —(azay (ay + a2) ™),

0,a1 +ay +a3 =0,a4 # 0} g =a;' +(—(a+a)7)

{(a1, 02T, 3L ayF)|ay # O,a1 +ap # (1,0,0,—F) cr=ay' e = —(apay (a1 +a2) "),

0,a14ay+a3 #0,a1 +ay +a3 +a; = c3 = —(az(ag +a2) " Way +ap +a3) "),

O} Ccy € F

{(a1, 82T, a31,a4F)|a; # 0,a1 +ay # (1,0,0,0) a=atc= (ﬂzﬂfl(ﬂl +ay)7h),

0,40 +ay+asz #0,a1 +ay +az+ay # C3=—( 3(a1 +ay)” (tl1+ﬂz+03)7l>/

0} cy = —(ag(ay +ap +a3)"Va; +ay +az +ag)~1)
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Example 2. Let Fy = {0,1, x,y}, the operators + and - on IFy is defined by Table 2.

Table 2. The operators + and - on Fy.

= R = O 4
= R P, OO
R O= =
—_ow R R
O RS
= R = O
[ eleleNel
=R PO
e R OR
R P, O

Then, (Fy, +,-) is a field. Set NQF = {(a,bT,cI,dF)|a,b,c,d € Fy}. We have:

1.

Let a = (0,0,xI,xF), then neut(a) = (0,0,1,F) and anti(a) = (c1,c2T, c3l, c4F), where c1 + ¢ +
c3=y,cq4 €Ty

Let b = (0,xT,xI,yF), then neut(b) = (0, T, I, F) and anti(b) = (c1,c2T, c3l, c4F), where c; + ¢ =
y,c3+cy =1

Let ¢ = (x,xT,0,0), then neut(c) = (1, T,0,0) and anti(c) = (y, c2T,c3l, c4F), where ca, c3,c4 € Fy.

In the same way, for algebra system (NQF, x), Table 3 gives all the subsets which have the same

neutral element, and the corresponding neutral element and opposite elements.

Table 3. The corresponding neutral element and opposite elements for (NQF, %).

The Subset of NQF Neutral Opposite Elements (c1, c2T, c31, c4F)
Element

{(0,0,0,0)} (0,0,0,0) G EeF
{(0,a,T,0,0)|ay # 0} (0,T,0,0) g tertestop=a"
{(0, —a3T,a31,0)|a3 # 0} (0,—T,1,0) ateste=a;',0€F
{(0,a,T,a31,a4F)|ag # 0,ap + a3 #0}  (0,0,1,0) 61+C3+C4:a51,

¢y = —(a2a3 " (az +a3) 1)
{(0,0, —ayI,asF)|ay # 0} (0,0,~1,F)} g +eg=atcc3€F
{(0,a,T, —ayl, aqF)|a; #0,a4 # 0} (0,T,—1IF) C1+C4:ﬂ;1,C2+C3:H51+( u41)
{(0,a,T,a31,a4F)|ay # 0,a3 +ay # (0,—T,0,F) 1 tcy = a;1,03 = 7(u3a4’1(a3 +ay)7h),
0,a; +a3+ay =0} el
{(0,a2T,a31,a4F)|ay # 0,a3 +ay # (0,0,0,F) o teg=agt,c3=—(a3a; (a3 +as)7"),
0,a2 +a3 +as # 0} ¢y = —(a(a3 +aqg) " (a2 + a3+ ay) ™)
{(a1,0,0, —ay F)|ay # 0} (1,0,0,—F)} = afl,cz,C3,C4 eF
{(ay,a,T,0, —ayF)|ay # 0,ap # 0} (1,T,0,—F) cl=afl,cz+C3+C4=a£1+(—afl)
{(a1, —a3T,a3l, —a1F)|ay #0,a3 #0}  (1,—T,1,—F) 1 =af1,C3+C4=a§1+(—af1) g €F
{(a1,a,T,a31, —a;F)|a; # 0,a3 # (1,0,1,—F) cl=af1,C3+C4=a;1+( 11),
0,az + a3 # 0} 0 = — (a5 (2 +a3) 1)
{(a1,0,a31,a4F)|ay # 0,a1 +ag4 # (1,0,—1,0) = afl,C4 = —(a4a;1(a1 +ag)h),
0,a1 +a3+ay =0} c,c3€F
{(a1,aT,a31,a4F)|ay # 0,4 +a4 # (1,T,—1,0) = afl,C4 = —(aw;l(a] +ay) ),
0,a1 +a3 +ay = 0,a2 # 0} tc=ay" +(—(a;+ag) 7Y
{(a1,a,T,a31,a4F)|ay # 0,44 +a4 # (1,—T,0,0) = al_l,q = —(awl_l(a] +ay)h),
0,ay +az+ay #0,a1 +ap +az+ay = c3 = —(az(ag +ag) Yay +az+ay) "),
0} ceF
{(a1,a,T,a31,a4F)|ay # 0,4 +a4 # (1,0,0,0) a=a oy = (a4a1’1(a1 +ay) ),
0,a1 +as+ay #0,a1 +ay +az +ay # c3 = —(az(ay +ay) " Y(ay + a3 +ay)7h),
0} ¢ = —(ax(ay + a3 +ag) N (ay +ay + a3 +ag) ")
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4. The Algebra Structure of Refined Neutrosophic Numbers on General Field

In the above section, we reveal that the algebra structure of the neutrosophic quadruple numbers
on general field. In this section, we explore the the algebra structure of the refined neutrosophic
numbers (refined neutrosophic quadruple numbers) on general field.

Definition 11. Let F be a field; a refined n-ary neutrosophic number is a number of the
form (ag,a1h, 2D, - - - ,anl,), where I, Ip,---, and I, are different types of indeterminacies,
and ag,a1,az,- - - ,ay € F. The set RNF, defined by

RNF, = {(ag,a151, 821y, - - - ,anly)|ag, a1, a2, - - ,an € F}. (14)

is called a refined neutrosophic set on field F.

Definition 12. Let x = (ag, a1y, a21p, - - - ,anly),y = (bo, b111, bo1a, - - - ,byl,) € RNF,, then the addition
operator on RNF, is defined as follows:

x®y = (ag+bo, (a1 +b1)h, (a2 +b2) D, - -+, (an + bu) ). (15)

Definition 13. Let x = (ag,a1l1,a2I, -+ ,au1y),y = (bo,b151,b21p, - - - ,byly) € RNF,, the neutrosophic
expert considers the prevalence order Iy < Iy < --- < I. Then, the multiplication operation is defined
as follows:

X*xlY = (a()ralllraZIZr T ,anln) * (b()rbllll boly, - - rbnln)
= (agby, (agby + a1by + a1b2) 11, (aghy + aiby 4 axbg + azby + axby) I, (16)
cee, ((lobn + albn —+ azbn + 4 ﬂnflbn + unho —+ ”nbl + -+ ﬂnbn)ln).

The neutrosophic expert considers the prevalence order Iy = I = - -- = 1,,. Then,

xxy= (ao,arli, a0, ,anly) % (bo, b1ly, baly, - - -, buly)
= (llobo, (ﬂobl +aiby + - +apby +a1bp + a1bp + a1by + - - + Illbn)h,- ve, 17)
(ﬂobn—l +a,_1bo+a,_1by_1 +a,_1b, + anhn—l)ln—lr (ﬂobn + aybo + ﬂnbn)ln)~

Theorem 4. (RNF,, ®) is an abelian group.
Proof. The proof is obvious. [

Theorem 5. For the algebra system (RNF,, *) (or (RNF,,*)), for every element a € RNE,, there exists
the neutral element neut(a) and opposite element anti(a), thus the algebra system (RNF,, x) (or (RNF,,x))
isa NETG.

Proof. We use applied mathematical induction for # and only discuss the algebra system (RNF,, *).
The algebra system (RNF,, ) has a similar proof.

If n = 2, for refined 2-ary neutrosophic set, which is same as neutrosophic binary numbers set
in [17], from Theorem 7 in [17], we can see that for every element a € RNF,, there exists the neutral
element neut(a) and opposite element anti(a), thus the algebra system (RNF,, ) is a NETG.

Assume that the refined n-ary neutrosophic set RNF, is a NETG. That is, for every element
a € RNF,, there exists the neutral element neut(a) and opposite element anti(a). In the following, we
prove that for the refined (1 + 1)-ary neutrosophic set, which is a NETG.

For each a = (ag,a1ly,a2h,--- ,ans1luiy1) € RNFiqq, let @/ = (ag,a1hy, a2, --- ,anly),
being @ € RNF,, then, from the above assumption condition, neut(a’) and anti(a’) exist
and let neut(a’) = (bo,b1ly,baly, - ,buly), anti(a’) = (co,c1ly,c2ba, -+ ,cnly). We prove for

a= (ag,a10,a20p, -+ ,ay,111,11), neut(a) and anti(a) exist. We discuss from the different cases of a,, ;1.
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Case A: If a,11 = 0, Being (ag,a111, 42D, -+ ,anly,0) * (bo, b11, balp, - - -, buly, byy1Li41) =
(ap,mI,axlp,- -+ ,a,1,,0), thatis (a9 +a; + - - - + a,)by41 = 0, thus we discuss from ag + a3 + - - - +
ap=0o0rag+ay+-+ay #0.

Case Al: If ay.y = 0a0+a +---+a, = 0, so (ag,a1h, a2l ,a,1,,0) x
(co,erly, coly, - -+ culy, cugrlnn) = (bo, bily, baly, - -+, byly, bygqIyi), thatis by = 0 and c,41 can
be chosen arbitrarily in F.

Case A2: If a1 = 0,a0+ay+---+a, # 0, so from (a9 +a;+---+ay)b,11 =0, we have
bn+1 = 0, from (ﬂo,ﬂlll,llzlz, R ,ay’In,O) * (Co,Clll,Czlz, s ,CV,IV,,C,1+1I,1+1) = (bo, blll,hzlz, e ,bnln, 0),
thus ¢;,41 = 0.

Case B: Ifﬂn+1 7& 0, being (110,11111,(1212, s ,anln, an+11n+1) * (bo, b111,b212, ey, annrbn+11n+1) =
(a0, 1L, 820, -+ Anly, ayy1lygr), thatis (ag +ay + - -+ ay41) by + a1 (bo + by + -+ by) = ay41,

thatis (ag+a1 + - -+ ay11)by1 = a1 (1 —bg— by — - - - — by), we discuss fromag + a1 + - - - +a,.1 =0
orag+a;+---+ayq #0.

Case Bl: If a1 # 0,4 +a+ -+ +a,41 = 0, we have byg + by + --- +
by, = 1, so from (ao,alll,llzb,"' ,llnln,a,,+11n+1) * (Co,Clh,Czlz,"’ ,Cy,I71,C,/,+1In+]) =

(bo, 111, b2Lp, - -+, byly, byy11y41), thatis by = (co+c¢1+ -+ cn)iys1 = byy1 and ¢, can be
chosen arbitrarily in F.

CaseB2: If 4,1 #0,a0+ay+ -+ a,.1 #0,wehave b,y = a,41(1 —bg— by — -+ —by)(ag +
ay +ay---a,)"Y, so from (ag,a1ly, a2l -+, anly, ayi1lus1) * (co,crly, coly, -+ culy, Cppilugn) =
(bo, b1y, bal, -+ buly, byy1lyi1), thatisand ¢,y 1 = (byy1 — apya(co+ o1+ +cn))(ao +ag + -+ +
an+l)71~

From the above analysis, we can see that, for each 2 € RNF,, which has the neutral element
neut(a) and opposite element anti(a), from the mathematical induction method, we can obtain that
the algebra system (RNF, ) isa NETG. O

For algebra system (RNF,.1,%), if a = (ag,a1ly, 32D, ap41l441), let a/ =
(ap,a11y,a21p,- -+ ,axl,) € RNF,, if we have neut(a’) = (bo,b1ly,balp,- - ,byly), anti(a’) =
(co,c1h1, 02, - -+, cnly). Then, the corresponding neutral element and opposite elements of 4 are given
in Table 4 according to the different cases of a;,41.

Table 4. The corresponding neutral element and opposite elements for (RNF, 1, *)

The Subset Neutral Element Opposite Elements

{(ao,a1ly, -+ ,ant1lu+1)}  (bo,baly, -+, buly, byy1lynt1) (co,e1ln, ++ enln, cpyp1lnt)

ap1 =0, byi1=0 cny1 €F

ag+ay+---+ap=0

any1 = 0, bn+1 =0 Cnyl = 0

ag+ay+---+ap #0

a1 #0, by = (co+ci+-+en)ani cup1 €F

ag+ay+- -+ ap+app =0

any1 # 0, b1 = app1(1=bo — b1 — -+ —  cpp1 = (bupr —anqr(co+er+-- +
agtay+---+tag+a, 1 A0 by)(ag+ay+ay+--+ay)h) cn))(ag+ap 4+ +ayq)t

For algebra system (RNF,, *), according to the results in Tables 3 and 4 in [17], we can easily
obtain the neutral element and opposite elements when n = 1,2 on general fields. In Table 1, we can get
the neutral element and opposite elements when # = 3 on general field. Thus, from Theorem 5, we can
get the neutral element and opposite elements of each element in RNF, step-by-step. The solving
method is given by Algorithm 1 and the following example is used to explain the algorithm.
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Algorithm 1 Solving the neutral element and opposite elements of each element in (RNE,, *).

Input: a = (ag, 011y, a3h, - - - ,anl,),n >3

1.i=3;

2:Fori=3:n

3 Aj=(ag,mh, 2L, -, a;L;);

4: Ifi==

5: Obtain neut(A;),anti(A;) by Table 1;

6: else

7: Obtain neut(A;), anti(A;) by Table 4 combining the values of neut(A;_1) and anti(A;_1);
8: end

9:  Save neut(A;), anti(A;);

10: end

Output: neut(a) = neut(A,), anti(a) = anti(Ay)

Example 3. For algebra system (RNF,, *), and set F = R. Ifa = (ag,a11;) = (0, —I), from Table 3 in [17],
we can get neut(a) = (0, 1) and anti(a) = (co,c111), where cg +¢1 = —1.

In the following, we use two methods to solve the the neutral element and opposite elements of b =
(ap,mIj,a —2I) = (0,—I1, ) € RNF; and we get the same results.

1. Algorithm 1: From Table 2, being az # 0 and ap+a; +ay = 0, thus by = (co+¢1)-1 = —1,
that is neut(b) = (0, Iy, —Ip) and anti(a) = (co, c111, c21p), where co + ¢; = —1 and ¢, can be chosen
arbitrarily in R.

2. Rsults from Table 4 in [17]: Being ay # 0 and ag + ay + ap = 0, thus neut(b) = (0,11, —Ip) and
anti(a) = (co, c11y, c21n), where co + c1 = —1 and ¢y can be chosen arbitrarily in R.

Example 4. For algebra system (RNF3, %), and set F = R. Ifa = (ap,a111,a21x) = (1, -1, 1) € RNF;,
from Table 4 in [17], we can get neut(a) = (1, —I1, L) and anti(a) = (1,c111, c2Ip), where ¢c1 + c3 = 0.

In the same way, we use two methods to solve the the neutral element and opposite elements of b =
(110,111[1,112[2,&313) = (1,711,12, 13) € RNF,.

1. Algorithm 1: From Table 2, being a3 # 0 and ag + ay + ay + az # 0, thus by = 0, that is neut(b) =

(0,—5,L,0)andc3 =(0—1-1- %) = 7%, thus anti(a) = (1,¢111, c2Ip, 7%13), where c1 + ¢ = 0.
2. Results from Table 1 in [17]: Being ag # 0,ay # 0 and ap + az # 0, thus neut(b) = (1, -1, I,0) and
co=1c14+c=0,c3= _1(117+1) = —%, thus anti(a) = (1,c111, 21, —%13), where cq + ¢ = 0.

For algebra system (RNF,i1,%), set a = (ap,a1l,a2lp,- - ,a,111,41), being the order
L = L = --- > I, thus we should obtain the neutral element and opposite elements
of a = (ap,mb, -+ ,ap4114+1). Knowing that neut(a’) = (bg,bolo, bsls,- -+ ,byly), anti(a’) =
(co,c2ln, 313, - -, culy), then the corresponding neutral element and opposite elements of a are given
in Table 5 according to the different cases of a;.
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Table 5. The corresponding neutral element and opposite elements for (RNF, x).

The Subset Neutral Element Opposite Elements

{(ao,a1ly,- -+ ,any1ly1)}  (bo,bily, -+, buly, byy1lyt1) (co,e1ly, -+« enly, cny1lut1)

1 =0, hl =0 c1 € F

ap+ay+---+ay,41 =0

a; = 0, bl =0 1 = 0

ag+ay+---+a,4 #0

ap #0, by = (co+ca+---+cpr1)m aq€F

ap+ay+---+ap+a,.1 =0

a; # 0, by = o1 —-—(o+br+ -4+ 1 = (b —a(co+c2+ -+
A+ a+- - +an+an1 A0 by1))(ao+ar+ -4 ap) ¢ut1)) (@0 + a1+ -+ apyq) !

Similarly, we also can get the neutral element and opposite elements of each element in (RNF,, )
step-by-step. The solving method is given by Algorithm 2 and the following example is used to explain
the algorithm.

Algorithm 2 Solving the neutral element and opposite elements of each element in (RNE,, x).

Input: a = (ag, 0111, 42D, - - - ,a,l,),n >3

l:i=n-2;

2: Whilei > 1

3 A;=(ao,a;li,- -+ ap_1ly1,anly);

4: Ifi==n-2

5: Obtain neut(A;), anti(A;) by Table 3;
6: else

7: Obtain neut(A;), anti(A;) by Table 5 combining the values of neut(A;,1) and anti(A;;1);
8: end

9:  Save neut(A;), anti(A;);

10: i=i—1;

11: end

Output: neut(a) = neut(Ay),anti(a) = anti(A;)

Example 5. For algebra system (RNFg, %), and set F = R, a = (0,0, —2I, —I3, I4,0), solve the neutral
element and opposite elements of a.

According Algorithm 2 for algebra system (RNFy, *): Firstly, we solve the neutral element and opposite
elements of a' = (0, —1I5,14,0) from Table 3, and then solve the neutral element and opposite elements
of a = (0, —2Lp, —I5,I4,0) from Table 5, lastly, we solve the neutral element and opposite elements of a
from Table 5.

1. From Table 3: neut(a’) = (0, —1Is, I4,0) and anti(a') = (co, c3l3, c4ly, cs5l5), where cg + ¢4 +c5 = 1,
c3 € R

2. From Table 5 and combining the results of the above step: Being —2 # 0and 0+ (—2) + (=1) +1+0 #
0, thus neut(a”) = (0, I, —1I5,14,0) and anti(a") = (co, c2lp, c313, c4ly, c5l5), where cg + ¢4 +¢5 = 1,
C)+c3 = 7%.

3. From Table 5 and combining the results of the above step: Being 0 = 0and 0+ 0+ (—2) + (—1) +
140 # 0, thus neut(a) = (0,0,Ir, —I3,14,0) and anti(a) = (co,0,c2Dp, c313,¢41y, c515), where
co+cs+cs=1,¢c+c3= 7%.

Similarly, we explore the the algebra structure of the refined neutrosophic quadruple numbers on
general field in the following.
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Definition 14. Let F be a field; a refined neutrosophic quadruple number is a
number of the form (a,b1Ty,b2Tp, - -+ by Ty, c1ly, 200, - -+, cqly, diFy, doFy, - - -, drFy),
where a, by, by, - -+ ,by,c1,¢0,- -+ ,cq,d1,d2,- -+ ,dr € F. The set RNQFyq, defined by

RNQFpyr = {(a,b1T1, 02Ty, - -+ ,bpTy,crly, c20p, - -+, cqlg, di1Fy, doFo, - - -, dr )|

18
@biby, - byerey, o cq i dy, o dr € F). 19
is called a refined neutrosophic quadruple set on field F.
Definition 15. Let x = (a,b1Ty, 02T, - -+ ,bp Ty, c11y, 200, - -+, cqly, diFy, doFy, - - -, drFy),

v=(eATLLTy -, [Ty &1h, &b, -+, 81y, M Fi, hoFs, - -+ 1y F:) € RNQFyy, then the addition
operator is defined as follows:

x@y= (a+e (bi+f1)T1, (ba+ f2)To, -+, (bp+ fp)Tp, (1 +81) N, (2 + 82) I, -+,

19
(cg+ 80Ty, (dy + h)Fy, (dy + ha)Fs, -+, (dy + 1) Fy). (19)

Definition 16. Let x = (a,b1Ty, 02T, - -+ ,bpTy,c11y, 0200, - -+, cqly, diFy, doFy, - - -, drFy),
y= (e ATLfoTo, - SrTp 8111, 82D, -+, 8qlg, mF1, By, - - - 1 F) € RNQFy; the neutrosophic
expert considers the prevalence order Ty < Tp < -+ < Ty <1 <L <+ < <F <Fh < <F.
Then, the multiplication operation is defined as follows:

xXxy = (Il,blTl,szz, te /prprC1[1/C212/ s /C:]Iz]/lelrd2F2/ te ,drFr)
*(E,flTl,szz, e /prp/glIlngIZr e ,gqlq,thl,thz,- . ,hyF,)
= (ae, (afy +bre+b1f1)Ty, (af2 + bifa + boe+ baft +b2f2) T,
oo, (ahy 4+ byhy + bohy + -+ -+ dy_qhy +dre +dp f1 + - -+ dihy)F).

(20)

The neutrosophic expert considers the prevalence order Ty = To = -+ = Tp = Iy = b = -+ = I =
Fy = F > -+ > F. Then,

Xxy = (ﬂ, b]Tl,szz, ce /prPr C111,C212, e ,Cqu,lel,szz, e ,dyFr)
*(e,f1T1,f2T2, e /prp/glllngIZI e /gqlq/h]FlthPZr e ,hrPy)
= (ae, (afi +bifi+-- +difitbie+bifo+bifs+-- -+ bihy)Th,
<o (ahy_y +drge+dp_1hy_y +dp iy + dihy_1)F_q, (ahy 4 dre 4 dihy ) F).

@1

Similarly, we also have the following results.
Theorem 6. (RNQFy;,, ®) is an abelian group.

Theorem 7. For the algebra system (RNQFygr, %) (or (RNQFpg, %)), for every element a € RNQFyq,
there exists the neutral element neut(a) and opposite element anti(a), thus the algebra system (RNQFpg, *)
(or (RNQFpgr, %)) is a NETG.

Example 6. For algebra system (RNQF,13,*), and set F =R, a = (1,0,2T,, —31;,2F;,0, —2F3), solve the
neutral element and opposite elements of a.

According Algorithm 1 for algebra system (RNFn3, ), firstly, we solve the neutral element and opposite
elements of a' = (1,0,2T,, —311) from Table 1. We then solve the neutral element and opposite elements
of a’ = (1,0,2T,, —311,2F) from Table 4. Next we solve the neutral element and opposite elements of
a" = (1,0,2T,, —311,2F,0) from Table 4. Finally, we solve the neutral element and opposite elements of a
from Table 4.

1. FromTable 1, neut(a’) = (1,0,0, —L) and anti(a’) = (1,0, —3T», c4]y), where cy € R.
2. From Table 4 and combining the results of the above step: Being2 # 0and 1+ 042+ (-3
thus neut(a”) = (1,0,0, — I, Fy) and anti(a”) = (1,0, f%Tz, c4ly, csFy), where cy + ¢5 =

+24£0,

N
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3. From Table 4 and combining the results of the above step: Being 0 = 0and 1+0+2+ (=3) +2+0 #0,
thus neut(a”) = (1,0,0, —I, F;,0) and anti(a"") = (1,0, —%TZ, c4ly, c5Fy,0), where ¢q + c5 = %,

4. From Table 4 and combining the results of the above step: Being —=2 # 0and 1 +0+2+ (=3) +2+
0+ (—2) = 0, thus neut(a) = (1,0,0, —I, F;,0, —F3) and anti(a) = (1,0, f%Tz, ¢4y, c5F1,0,¢7F3),
where cy + c5 = %,C7 eR.

Example 7. For algebra system (RNQFy3,%), and set F = Zs = {[0], [1], [2], [3], [4]}, a = ([1],]0], [2] T,
(21, [2]Fy, 0, [3]F3), solve the neutral element and opposite elements of a.

Similar to Example 6, according Algorithm 1 for algebra system (RN Fyy3, ), firstly, we solve the neutral
element and opposite elements of a’ = ([1], (0], [2] T2, [2]11) from Table 1. We then solve the neutral element
and opposite elements of a” = ([1], (0], [2] T2, [2]11, [2]F1) from Table 4. Next, we solve the neutral element and
opposite elements of a" = ([1], (0], 2] T, [2] L1, [2]Fy, [0]) from Tuable 4. Finally, we solve the neutral element
and opposite elements of a from Table 4.

1. From Table 1, neut(a’) = ([1],10], [0], [4]I1) and anti(a’) = ([1],]0], [1] T, c4 ), where ¢y € F.

2. From Table 4 and combining the results of the above step: Being 2] # [0] and [1] + [0] + [2] + [2] +
[2] # [0], thus neut(a”) = ([1],]0], [0], [4] 1, [1]Fy) and anti(a”) = ([1],[0], [1]T2, c4]1, c5Fy), where
Cq+C5 = [1]

3. From Table 4 and combining the results of the above step: Being [0] = [0] and [1] + [0] + [2] + [2] + [2] +
[0] # 0, thus neut(a”") = ([1],]0],[0], [4]I1, [1]F1, [0]) and anti(a"") = ([1], [0], [1] T2, c4l1, c5F1, [0]),
where ¢y + ¢5 = [1].

4. From Table 4 and combining the results of the above step: Being [3] # [0] and [1] + [0] + [2] +
2] + [2] + [0] + [3] = O, thus neut(a) = ([1],]0],[0], [4]L1,[1]Fy,[0], [4]F3) and anti(a) =
((1],[0], (1]T2, caly, c5F1, [0], ¢7F3), where c4 + ¢c5 = [1],¢7 € F.

5. Conclusions

In this paper, we study the algebra structure of (NQF(RNF,, RNQF,), &), (NQF(RNEF,, RNQF,), )
and (NQF(RNF,,RNQF,),*), and we prove that (NQF(RNF,, RNQF,),*) (or (NQF(RNEF,,
RNQF,), x)) is a neutrosophic extended triplet group, and provide new examples of neutrosophic
extended triplet group and the neutral element and opposite elements of each refined n-ary
neutrosophic number (refined neutrosophic quadruple number) can be obtained by given
algorithms. In the following, we can explore the algebra structure of (NQF(RNF,, RNQF,), ®, *) or
(NQF(RNF,, RNQF,), ®,*). We can also explore the relation of neutrosophic quadruple numbers
and other algebra systems in papers [21-23]. Moreover, on the one hand, we will discuss the
neutrosophic quadruple numbers based on some particular ring which can form a neutrosophic
extended triplet group, while, on the other hand, we will introduce a new operation o in order to
guarantee (NQF(RNF,, RNQF,), , o) is a neutrosophic triplet ring.
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Abstract: Multi-attribute decision-making (MADM) is a part of management decision-making and
an important branch of the modern decision theory and method. MADM focuses on the decision
problem of discrete and finite decision schemes. Uncertain MADM is an extension and development
of classical multi-attribute decision making theory. When the attribute value of MADM is shown by
neutrosophic number, that is, the attribute value is complex data and needs three values to express,
it is called the MADM problem in which the attribute values are neutrosophic numbers. However,
in practical MADM problems, to minimize errors in individual decision making, we need to consider
the ideas of many people and synthesize their opinions. Therefore, it is of great significance to study
the method of attribute information aggregation. In this paper, we proposed a new theory—non-dual
multi-granulation neutrosophic rough set (MS)—to aggregate multiple attribute information and
solve a multi-attribute group decision-making (MGDM) problem where the attribute values are
neutrosophic numbers. First, we defined two kinds of non-dual MS models, intersection-type MS
and union-type MS. Additionally, their properties are studied. Then the relationships between MS,
non-dual MS, neutrosophic rough set (NRS) based on neutrosophic intersection (union) relationship,
and NRS based on neutrosophic transitive closure relation of union relationship are outlined, and a
figure is given to show them directly. Finally, the definition of non-dual MS on two universes is given
and we use it to solve a MGDM problem with a neutrosophic number as the attribute value.

Keywords: multi-granulation neutrosophic rough set; non-dual; two universes; multi-attribute group
decision making

1. Introduction

Fuzzy sets and rough sets are widely used to solve uncertain problems [1-4]. However, all these
theories have their own deficiency, such as in a voting, you may support, not support, be neutral, or
abstain from voting, so Smarandache present the definition of the neutrosophic set (NS) [5]. NS is an
extensional model of the fuzzy set and intuitionistic fuzzy set. But the original definition of NS is not
convenient to solve real-world problems, thus Wang et al. proposed a single-valued neutrosophic set
(SVNS) [6]. After that, SVNS was extended and used in many fields. Peng et al. [7] defined simplified
NS and obtained some properties. Peng et al. [8] proposed the definition of probability multi-valued
NS and studied its properties. Deli et al. [9] defined bipolar NS and studied its properties. Zhang
et al. [10] analyzed new inclusion relationships of SVNS and discussed its lattice structure. As an
extension of fuzzy sets and rough sets, many scholars combined them and got some results [11-13].
Yang et al. [14] combined SVNS and rough set, then produced a single-valued neutrosophic rough
set and discussed its properties. Now NSs and NRSs have been used widely in decision-making
problems [15-19].

From the perspective of particle computing, the above rough set theories are essentially defined in
a single particle space, and the lower and upper approximations (ULA) of the target concept is shown

Symmetry 2019, 11, 910; doi:10.3390/sym11070910 171 www.mdpi.com/journal/symmetry
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by the information particles in the particle space induced by a single binary relationship. However,
Qian et al. think that, in decision analysis problems, the relationship between the multiple decision
makers may be independent of each other, so multiple binary relations are needed to approximate the
target. Therefore, they put forward the concept of a multi-granularity rough set (MRS) model [20],
and define the optimistic MRS model and pessimistic MRS model, respectively. The biggest difference
between MRS and classical rough sets is that MRS can use the knowledge in a multi-granular space to
approximate the target. Additionally, because it analyzes the problem from multiple angles and levels,
it can obtain a more reasonable and satisfactory solution for the problem, so it has a better application
prospect in many practical decision-making problems. Yao et al. [21] studied the rough set models
under the multi-granulation approximation space. Now the MRS model has been used widely and has
produced some interesting results [22-28].

The ULA operator of most MRS models is dual, there are few articles studying the non-dual MRS
model or hybrid MRS model [29,30]. Zhang et al. [31] put forward non-dual MRS (union-type MRS
and intersection-type MRS) models and outline the relationships between MRSs. In this paper, we put
forward non-dual MS (intersection-type MS and union-type MS) models and study their properties.
Then we show the relationships between MS, non-dual MS, NRS-based neutrosophic union relation,
and NRS-based neutrosophic intersection relation. Finally, we propose non-dual MS models on two
universes and use it to solve MGDM problems with neutrosophic numbers as the attribute values.

The structure of this article is as follows. In Section 2, some basic notions and operations of
NRS and MS are introduced. In Section 3, the concepts of non-dual MS are put forward and their
qualities are investigated. In Section 4, the relationships between MS, non-dual MS, neutrosophic rough
set (NRS) based on neutrosophic intersection (union) relationship, and NRS based on neutrosophic
transitive closure relation of union relationship are discussed. In Section 5, non-dual MS models on
two universes are proposed and an application to solve the MGDM problem where the attribute values
are neutrosophic numbers is outlined. Finally, Section 6 provides our conclusions and outlook.

2. Preliminary

In this section, we look at several basic concepts of NRS and MS.
Definition 1 ([6]). A SVNS A is denoted by
A= {(XITA(X)/IA(X)/FA(x))lxEX} 1)

where T 4(x) represents truth-membership function, 14(x) represents indeterminacy-membership function, F(x)
represenst falsity-membership function and T4(x), Io(x), Fa(x) € [0, 1]. Additionally, they satisfy the condition
0 <Ty(x)+Ix(x) + Fyg(x) < 3.

In this paper, “SVNS” is abbreviated to “NS” and we use the symbol NS(U) to denote the set of all
NSs in U.

Definition 2 ([6]). For any two NSs A and B, the inclusion relation, union, intersection, and complement
operations are defined:

(1) ACBiffVxel, Talx) < Tp(x), Is(x) = Ig(x), Fa(x) > Fp(x);

(2) AUB={(x, Tg(x) V Tp(x), Ia(x) A Ig(x), F5(x) A Fg(x)) | x € U};
(3) ANB={(x, Ta(x) A Tg(x), [4(x) V Ig(x), F5(x) V Fg(x)) | x € U};
(4)  A°={(x, Fa(x), 1-I4(x), Ta(x)) | x € U}.
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Definition 3 [14]). Suppose (U, R) is a neutrosophic approximation space (NAS). YV A € NS(U), the LUA of A,
denoted by R(A) and R(A), are defined as: ¥ x € U,

R(A) = n (R°(x,y) UA(y)),R(A) = U (R(x,y) NA(y))
yeu yel
The pair (R(A), R(A)) is called the SVNRS of A.

Definition 4 ([28]). Suppose (U, R;) is a multi-granulation neutrosophic approximation space (MAS). A €
NS(U), the optimistic ULA of A, represented by MS’(A) and MS' (A), are defined:

ms'(a)) = B 0, Re () v AG) @
WS (a)0) = A Y (Rix 0 nAw) ®

Then the pair (Aﬁ" (A),W(A)) is called an optimistic MS when MS°(A) + MS’(A).

Definition 5 ([28]). Suppose (U, R;) is a MAS. YA € NS(U), the pessimistic ULA of A, represented by MSF (A)
and MS" (A), are defined:

M4 = A o, &) vAw) @
' ()0 = By, (R naw) ®

Then the pair (AAS” (A),I\TSP (A)) is called a pessimistic MS when MS°(A) # W(A)

Proposition 1 ([28]). Suppose (U, R;) be a MAS. ¥ A, B € NS(U), then

(1) MS°(A) =~ MS' (~ A), MSP(A) =~ MS' (~ A)

2) MS’(A) =~ MS’(~ A), MS' (A) =~ MSP(~ A).

(3) MS°(ANB) = MS°(A) N MS°(B), MS"(ANB) = MS'(A) N\ MSF(B).
(4) MS’(AUB) = MS"(A)UMS'(B), MS'(AUB) = MS' (A) UMS' (B).
(5) ACB= MS(A) C MS’(B),MSF(A) € MSP(B).

(6) ACB=MS(A)cMS’ (B),MS (A) cMS (B).

(7). MS’(A) UMS®(B) € MS’(AUB), MS"(A) UMS! (B) € MS"(AUB)

(
(8 MS (AnB)cMS (A)nMS’(B), MS' (AnB) c MS' (A)nMS' (B).

Definition 6 ([14]). If A and B are two neutrosophic numbers in U, the operation of A and B is defined as follows:
(1) A4 = (1= (1=Ta)", (1), (Fa)") ©)

(2)A®B = (To+Tp—Ta Tp,Ia Ip Fa-Fg) @)

Definition 7 ([10]). Let (¢, i, f) be a neutrosophic number, the type-3 score function and type-3 accuracy function
are defined:

(1)55D*—>[0,1],s(t,i,f):t+(;_f) ®

(2)h:D* = [0,1],h(t,i, f) = m ©
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Definition 8 ([10]). Let (11, i1, f1) and (t3, iy, f2) be two neutrosophic numbers. Then

(1) Ifs(i’l,il,fl) < (tz, iz,fz), then (tl,il,fl) < (tz,iz,fz).

(2) Ifs(i’l,ﬁ,fl) (i’ lz,fz),h(i’1,i1,f1) < h(i’z,iz,fz), then (tl,il,f1) < (tz,iz,fz).

(3) IfS(tl,Z'l,fﬂ (t lz,fz) (tlrilrfl) = h(tz,iz,f2), i] < iz, then (i’1,i1,f1) < (tz,iz,fz),‘ lf il = iz,
then (tl,i1,f ) (tz, Zz,fz)

3. Non-Dual Multi-Granulation Neutrosophic Rough Set
In this section, we introduce non-dual MS (intersection-type MS and union-type MS) models and

study their properties.

Definition 9. Let tuple ordered set (U, R;) (1 < i < m) be a MAS. For any A € NS(U), the intersection-type
ULA MS™™ (A) and MS( )( A) in (U, R;) are defined:

MSOA)0) = A 0, Re3) UAG)) (10
W5 )0 = A u,Rv 0 0Aw) )

Obviously, MS'™ (A) and ]\Tsm) (A) are two NSs of U. Furthermore, A is called a definable NS on (U, R;)
when MS(M (A) = ATSm) (A). Otherwise, the pair (ALS(Q) (A),m(m (A)) is called intersection-type MS.

Definition 10. Let tuple ordered set (U, R;) (1 <i < m) be a MAS. For any A € NS(U), the union-type ULA
MSWY)(A) and s (A) in (U, R;) are defined:

Ms()) = B o, Rex ) vaw)) a2)
W5 )00 = By, (Rl 040 )

Obviously, M) (A) and ]\TS<U) (A) are two NSs of U. Furthermore, A is called a definable NS on (U, R;)
when MS\YW) (A) = m“” (A). Otherwise, the pair (ALS(U) (A),W(U) (A)) is called union-type MS.

Proposition 2. Let (U, R;) be a MAS, R; (1 < i < m) be the neutrosophic relations on U. For any A, B € NS(U),
we have

1 MS™(ANB) =M™ (A) nMs")(B), M5 (AUB) = m (A) 35" (B);
2 MSV(ANB) =MV (4)nMsY) (B), M5 (auB) = M5 (4) uMs"” (B);
(3 AcB=Ms"(A)cMs"(B), ACB:>MS( >( )cMs”(B),
4 AcB=MSV(A)cMsY(B), ACB:MS ') e M"Y (B),
5) MS™(AUB) 2 MS"(A) UM (B), M5 (AnB)CMS (A) s (B);
6 MSW(AUB) 2 MV (A)uMsY) (B), MS'"” (anB) c Ms"™ (4) n s (B).

174



Symmetry 2019, 11, 910

Proof. (1) By Definition 9, we have

msanp) = Ao @i Answ))

= Al 0, (R0 VAW A Rt ) VB

_ ii%lzegu(mf(x, y)U A(y)))) n (i51(12u(1{if(x, U B(y))))
— M5 (4) s (B), !

Similarly, by Definition 9, we can get

()

MV (auB) = M5

(n) (

A)UMS' " (B).

(2) By Definition 10, we have

MsV) (4 nB) (Re(xy) U (AN B)(y)))
N (RE(x 1) UA(Y) 0 (R (x,y) U B(y))))

~ (¢ ZyQU(Rf“(x,y) o)) o[ @ uEW)

i=1\yel

Il
Tcs

-

—_
Eie)
jw)

I
I'Cs

Similarly, by Definition 10, we can get

V)

M (auB) = M5 (4) uMs" (B).

(3) Suppose A CB, then Ta(x) < Tp(x), La(x) > Ip(x), Fa(x) > Fp(x),

m

m
Ty () = A A PR VTa) < R (Fre9) vV To() = Tyggo (2

IMS(W(A) (X) = <”/ v [(1 _IR,'(x/y)) /\IA(y)] = i/’l [(1 _IR,'(xry)) /\IB(]/)] = Iw(ﬂ)(B)(x)'

V
=2 i=1yeld i=1yel

Fusoaom @) = V.V [T y) AFa(W)] 2 V. v [Tri(x,y) AFs(9)] = Fyye00) 5 (0)-

Mo i=1yel i=1yel

Hence, MS("(A) ¢ MS(") (B).
Similarly, we can get s (A) cMS
(4) The proof is similar with (3).

(5) According to Definition 9, we have

Tysoaon @) = A A R VTV Ts)] = A A [(FrGow) v Taw) v (Fr (o w) v Ta()]

m m
> |,-21 AR VTAW) | R A (Froy) v mw)] = Ty () V Tyt ()

) p).

Vv

(1-Ir,(x,9)) A (Ia(y) ATs(y))]
(1= Ir ) A L) A (1= Ik () A T ()]

<| 9, o (0= A )| ] % v (=1 50) A1)
(

MS(") (AUB) (x)

I -V v [
Mo i=1yel
[
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VY [Ty A Ea) AFs )] = ¥ v, [T, 9) A Fa () A (Tr () A Fo ()]

F&S(m)(AUB>(x) “ iy
<9, (50 AEa)| A 9, v, (759 A Ea))] = Fygr 00 A gt 0
Hence, MS(" (AU B) 2 MS™(A) UMS™ (B).
Additionally, we have
w50 sy = A Y [T o) A Tal) A TowD] = A v [(Tr o) A Ta0) A (Tr () ATs ()]
[l/\l vu Tr, (%, y) /\TA(y))]/\L/\l o (Tr,(x,y) A To(y ))] = T (x)/\Tm(m(B) (x).
s en® = Y A [ (o) v B V)] = Y A (100 VIaw) (i o) VI )]
[§ () V10| A9, 3, (090 V1) | = g (09 A 9
FasOnn® = Y A [FrGn)v Ea) v Es@)] = Y [(Fren) v Ea) v (Fr (o) v Ea(w)]

L9, () Y o) | = Fn )V g 00

> [;g L (Fr,(x,y) V Ea(y)) |V

Hence, M5\ (ANB) c Ms" " (A)nMs"" (B).
(6) According to Definition 10, we have

Tt (aup) (¥) —lVlyEu[FR %, y)V (Ta(y) v Ta(y))| = lyeu[( &%, y) VTaW) v (Fr,(x,v) v Ts(y))]
_|ig1yQU(FR1(x,y>vTA<y)) 5 2 (B 590 T8000) | = Tyt 01V Ty
s aum® = A v [Tk G0 w) A (aly) ATs(9)]
= A v [0 1) Aa) A (1T (o) A T ()]

(1-Ir,(x, ) A IA(y))] A [ ALY (1=, (x ) A IB(y))]
(
AV [ Tr () A (Baly) AF()] = A (T e w) AFa) A (T () A Fs()]

Fm(u)(AUB) (x) = 21 yeu
m m
< A, (T ) AEAO)| 1| R, (5 ()| = gt 8) A gt 0

Hence, MS™¥) (AU B) 2 MS™)(A) uMS™ (B).

Additionally, we have
Tz sy @ = Y Y [T o) A Ta@) ATo)] = Y, v [(Tr (o) ATA) A (Tr (o) A To )]
<9, (O ATa) |3, v, (T ) AT )| = Ty 09 AT (00
Ly @ = A A [ ED Y G VIS = A A (00 0) VIA0) Y (11,5 9) V14 (0))]

m m
<| A e )| A A 2, (50 v )| = g, ) A1 0

w5 s = A4 R o) VEAW) VEWD] = A & [(Fr ) VEA () v (Fr ) Y Ea ()]
> A, (Enx ) VED) V[ R, (B o) v Eaw)| = Ergn )V g (90
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(U)( (U)(

Hence, M5\~ (AnB) c M5~ (A4) n M5~ (B). o

4. The Relationships between Multi-Granulation Neutrosophic Rough Set Models

In this section, we discuss the relationships between MS, non-dual MS, neutrosophic rough
set (NRS) based on neutrosophic intersection (union) relationship, and NRS based on neutrosophic
transitive closure relation of union relationship and show it by a relational graph.

Definition 11. Suppose U is a non-empty finite universe, and R; (1 < i < m) is the binary NR on U. The ULA

based on neutrosophic union relationship, represented by GlRi (A) and UlR,-(A), are defined:
1= 1=

Sr@ = of(Srey) vaw) (1)
SR = y((Srw)nam) a5)

Definition 12. Suppose U is a non-empty finite universe, and R; (1 <i < m) is the binary NR on U. The ULA

based on neutrosophic intersection relationship, represented by _rnﬁllRi (A) and ,rV!'\lR,-(A), are defined:
i= i=

AR = o ((Aren) vae)) (16)
AR@E = Y((ARn)naw) )

Definition 13 ([32]). Suppose R is a neutrosophic relation in U. The minimal transitive neutrosophic relation
containing R is called transitive closure of R, denoted by +(R).

Proposition 3. Suppose R is a neutrosophic relation in U. Then t(R) = kisk' Where R = ReReRe - - -,
(ReS)(x,2) = ng(R(x/ y)NS(y,2))-

Definition 14. Suppose (U, R) is neutrosophic approximation space. Suppose U is a non-empty finite universe,
R; (1 <i<m) is neutrosophic relations on U, and t(R) denotes the transitive closure of the union of neutrosophic

relations R; on UNA € NS(U), the ULA of A, denoted by t(R)(A) and t(R)(A), are defined as: ¥ x € U,

HRY(A) (@) = 0 [HR (5 ) VAW HRIA)R) = U (HR) (v y) 0 A)).

Proposition 4. Let (U, R;) be a MAS, R; (1 < i< m) be neutrosophic relations on U. For any A € NS (U),
we have

(1) HR)(A) € MSP(A) = M5 (A) = URi(A) C Ri(A) cMS°(A) = MSW(A) c rS Ri(A) € X;

- - i=1

) XQE(A)QZ\TSO(A)zATS (A QE(A)QATSP(A)zmM(A):_ZJR,-(A)gt( )(A).

177



Symmetry 2019, 11, 910

Proof. (1) According to Definition 4, Definition 5, Definition 9, and Definition 10, we can get
M5 (A) = M5 (A), MS"(A) = M5 (A). Let R = Ry URy U--- U Ry, R) = RU Ry U ---, then
(H(R))* =R° N (Ry)* N ---,s0 (£(R))* C R¢, thus

HR)(A)(x) = 0 [HR) (x,y) UA(y)]

—_— yel

m
€ n [R(x,y) VA(y)] = URi(A)(x)
yeld i=1

= QR MR 020 Ry (1) U A()]
= QIREGy) VAW N (R () VAW N0 (R () U A())]

R ) VAWD |0 |yQu(R26("r y)u A(y))] neeen

= ﬁl(ygu(Ric(x,y) UA(y))) = MSP(A)(x) = I\LSW (A)

€ 0 R(xy) UA(y)) = Ri(A) ().
ye

(R (e, y) U A())

Additionally, we have

Ri(A)(x) = yQu(Rf(x, y)VA(y))

< O o R uA) = M8 (4)0) = 18V A) )
c ygu(Rf(x, Y)UR(x,y) U+ URw(x, ) UA(y))

= N ((RIEURU---URy ) (x,y) UA(Y))
yel

= Al(Are ] ey vae) = AR ex

Then we get the proof.
(2) According to Definition 4, Definition 5, Definition 9, and Definition 10, we can get MSP (A) =
MS™(A), MS°(A) = MS™) (A). Let R=R{ URy U--- URy, H{R) = RUR, U -+, then R C #(R), thus

X

]

yelU\\i=

AR = u(AR)nan)
c ygu(Ri(x, y) NA(y)) = Ri(A)(x)

]

i=1

=U (( leRi(x/]/)) NA(y)| = _

0,4, Rt 0400 = T8 () 0) = ' ()
ye
yel\\i= )

Additionally, we have

i=1

,@Ri(A)(x) = U(GRi(x,y))ﬁA(y))
R(x,y) NA(y))

Then we get the proof. O

The above results show that the four kinds of lower and upper approximations equipped with the
inclusion relation C can construct a lattice. This fact can be described by Figure 1, where i # j, each
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node denotes an approximation or a concept, and each diagonal line connects two approximations, the
lower node is a subset of the upper node.

t(R)(4) X

357 (4)= 35" (4)= UR (4)

AR (4)

=1

M5 (4) = M5V (4)

“R)(4)
Figure 1. The relationships between neutrosophic rough lower and upper approximations.

5. The Application of Non-Dual Multi-Granulation Neutrosophic Rough Set on Two Universes
in MGDM

In this section, we propose the concept of non-dual MS on two universes and we talk about
the relationship between non-dual MS on two universes and non-dual MS on a single universe.
Additionally, we used non-dual MS on two universes to deal with a MGDM problem where the
attribute values are neutrosophic numbers.

Definition 14 ([28]). Suppose U, V are two non-empty finite universes, and R; € NS (U X V) (1 <i<m) is
binary NR. We call (U, V, R;) the MAS on two universes.

Definition 15. Let tuple ordered set (U, V, R;) (1 <i < m) be a MAS on two universes. For any A € NS(U), the
intersection-type ULA MNRS"™ (A) and MNRS" (A) in (U, V, R;) are defined:

MRS ()0 = A 0, (Rex) uA)), a8)
PRS " ()0 = Ay, (R 04w ) (19)

Obviously, MNRS™ (A) and MNRS(H) (A) are two NSs. Furthermore, A is called a definable NS on
(U, V, R) when MNRS(") (A) = MNRS"(A). Otherwise, the pair (MNR5<“> (A), MNRS" (A)) are called

intersection-type MS on two universes.

Definition 16. Let tuple ordered set (U, V, R;) (1 < i <m) be a MAS on two universes. For any A € NS(U), the
union-type ULA MNRS"“) (A) and MNRS (A) in (U, V, R;) are defined:

MRS (4)(x) = B 0 (R (5,9) U AGD), @)
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TR (a)(a) = B Y, (R ) 14w ) @
i=1\yev

Obviously, MNRSW)(A) and MNRS(U) (A) are two NSs. Furthermore, A is called a definable NS on
(U, V, R;) when MNRS") (A) = MNRS""(A). Otherwise, the pair (MNRS(U> (A), MNRS"” (A)) are called
union-type MS on two universes.

Proposition 5. Let (U, V, R;) be a MAS on two universes. For any A, B € NS(U), we have

(1) MNRS™(AnB) = MNRS™(A) n MNRS™(B), MNRS (AUB) — MNRS"(A) U
MNRS" (B);

(2) MNRSY(AnB) = MNRSY(A) n MNRSM(B), MNRS(AUB) = MNRS"(A) U
MNRS(U)(B)-

(3) AcB= MNRS™(A)c MNRS(™(B), A C B = MNRS" " (A) c MNRS" " (B);

(4 AcB= MNRSV(A)c MNRSV)(B), A c B = MNRS (A) c MNRS'~(B);

5) MNRSW(AUB) > MNRS™(4) u MNRS™(B), MNRS"(AnB) ¢ MNRS"(4)n
MNERS"” (B);

(6 MNRSV(AUB) 2 MNRS)(A)uMNRSY)(B), MNRS(AnB) < MNRS"(A)n
MNRS' ().

Proof. The proof is similar with Proposition 2. O

Remark 1. Note that if the two universes are the same, then the intersection-type (union-type) MS on two
universes degenerates into the intersection-type (union-type) MS on a single universe in Section 3.

Next, we will use the non-dual MSs to solve the MGDM problems where the attribute values
are neutrosophic numbers. For a multiple attribute group decision making problem, let U = {xq,
X2, ..., Xz} be the decision set and V = {y1, y2, ... , ym} be the criteria set, R; represent / evaluation
experts. Here, R; € NR (U X V) is NRs from U to V, where Y(x;, y;) € U X V, R/(x;, y;) denotes the
degree of membership about criteria set y; (y; € V) with respect to x; (x; € U). In the following, we show
the process about the non-dual MSs on two universes to solve MGDM problems with neutrosophic
numbers as attribute values.

Step 1 Calculate non-dual multi-granulation neutrosophic rough ULA MNRSM(A), MNRS
MNRS") (4), and MNRS'"(A).

Step 2 Calculate the sum of non-dual multi-granulation neutrosophic rough ULA MNRS(") =
AMNRS™M(A) @ (1 - /\)MNRS< )(A), MNRS) = AMNRS™(A) @ (1 - A)MNRS (A) Aelo, 1]
according to Definition 6.

™ a),

Step 3 Make a descending order according to Definitions 7 and 8 for the multi-granulation
neutrosophic rough sets in step 2 and use the Borda number scoring method in reference [33] to make
a total rank.

In practice, the parameter A represents a decision maker’s preference for risk. In general, the
higher the parameter A is, the more likely the decision maker is to be risk-prone. The smaller the
parameter A is, the less risk the decision maker prefers. Therefore, the value of the parameter A is
determined by the decision maker’s preference or by an advance empirical study.

Next, we show the algorithm to calculate the ULA of a union-type multi-granulation neutrosophic
rough set.
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Algorithm 1 The lower approximation of a union-type multi-granulation neutrosophic rough set

Define the method to acquire a complement for a matrix A:
each neutrosophic number in matrix A do complement the operator according to the following Formula:
a® = (Fo,1-1o, Ta).
Return matrix C.
Define the method for two matrixes to do union operator:
the union of B and C is the neutrosophic number of each row in C to do union operator with the corresponding
neutrosophic number in B according to the Formula (22)

a V3 b = (max(T,, Tp), min(I,, I;), min(F,, Fp)). (22)

Return matrix D.
Define the method for one matrix to do intersection operator:
the neutrosophic numbers of each row in D do intersection operator according to the Formula (23)

a Az b= (min(T,, Tp), max(ly, I;), max(Fq, Fp)). (23)

Return matrix E.

Define the method for one matrix to do union operator:

the neutrosophic numbers of each row in E do union operator according to the Formula (22).
Return matrix F.

For the number of iterations is 1,

Transfer the method of acquire complement, assign X.

Get Y.

Transfer the method for two matrixes to do union operator, assign Y, Z.
Get M.

Transfer the method to do intersection operator, assign M.

Get N.

End for.

Combine / matrixes N.

Get P.

Transfer the method for one matrix to do union operator, assign P.

Get Q.

X, Y, M are matrixes which line numbers are 1, column number is 1, and every membership
is a neutrosophic number. Z is a matrix which line number is 1, column number is 1, and every
membership is a neutrosophic number. N and Q are matrixes which line numbers are m, column
number is 1, and every membership is a neutrosophic number. P is a matrix which line number is m,
column number is /, and every membership is a neutrosophic number.

The lower approximation of a union-type multi-granulation neutrosophic rough set is the transpose
of matrix Q.
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Algorithm 2 The upper approximation of a union-type multi-granulation neutrosophic rough set

Define the method for two matrixes to do intersection operator:
the intersection of B and C is the neutrosophic number of each row in C to do intersection operator with the
corresponding neutrosophic number in B according to the Formula (23).
Return matrix D.
Define the method for one matrix to do union operator:
the neutrosophic numbers of each row in D do union operator according to the Formula (22).
Return matrix E.
For the number of iterations is h,
Transfer the method for two matrixes to do intersection operator, assign Y, Z.
Get M.
Transfer the method for one matrix to do union operator, assign M.
Get N.
End for.
Combine & matrixes N.
Get P.
Transfer the method for one matrix to do intersection operator, assign P.
Get Q.

Y, M are matrixes which line numbers are m, column number is 1, and every membership is a
neutrosophic number. Z is a matrix which line number is 1, column number is #, and every membership
is a neutrosophic number. N and Q are matrixes which line numbers are 7, column number is 1, and
every membership is a neutrosophic number. P is a matrix which line number is m, column number is
h, and every membership is a neutrosophic number.

The upper approximation of a union-type multi-granulation neutrosophic rough set is the
transpose of matrix Q.

With the same method we can get the ULA of an intersection-type multi-granulation neutrosophic
rough set. Then, to decide the value of A, we calculate the sum of ULA of the union-type MS and
intersection-type MS according to Formula (6) and (7), and rank them according to Definition 7.

Next, we show an example.

Example 1. We consider the decision making problem adapted from reference [34]. Suppose U = {x1, x5, x3}is a
criterion set, where x; represents the ability of salesman, x, represents the overall condition of the stable supplier,
and x3 represents the position of high flow. Let V = {y1, y2, y3, Y4, Y5} be the decision set, where y; represents
shop 1, y, represents shop 2, y3 represents shop 3, yy represents shop 4, and y5 represents shop 5.

Assume there are three experts. They provide their evaluations shown in Tables 1-3 based on their
knowledge and experience. The data of the three tables were adapted from Table 2 in reference [34].
We take the first positive membership and negative membership of the intuitionistic fuzzy set of
interval values y;—ys5 in Table 2 as the true membership and false membership of the neutrosophic set,
respectively, and the second negative membership as the uncertain membership of the neutrosophic
set. Let A ={(0.9,0.1,0.2), (0.7,0.7,0.3), (0.5, 0.8, 0.6)}.

Table 1. Neutrosophic relation R;.

Ry x1 x2 X3

n (0.75,0.14,0.09)  (0.86, 0.04, 0.01) (0.66, 0.30, 0.29)
Y2 (0.44, 0.33, 0.29) (0.51, 0.09, 0.04) (0.54,0.29, 0.27)
Y3 (0.54, 0.09, 0.08) (0.66, 0.14, 0.06) (0.54, 0.36, 0.34)
Ya (0.56,0.19, 0.14) (0.50, 0.20, 0.12) (0.44, 0.26, 0.23)
¥s (0.33,031,030)  (0.43,0.16, 0.02) (0.21, 0.61, 0.60)
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Table 2. Neutrosophic relation Rj.

RZ X1 X2 X3

1 (0.71,0.10, 0.08) (0.57,0.01, 0.00) (0.56, 0.09, 0.09)
2 (0.39, 0.54, 0.43) (0.59,0.11, 0.01) (0.44, 0.19, 0.18)
Y3 (0.52,0.17,0.07) (0.63, 0.04, 0.02) (0.37,0.54, 0.51)
Y4 (0.31,0.09, 0.08) (0.52,0.31,0.09) (0.41,0.29, 0.27)
Y5 (0.10, 0.61, 0.59) (0.33,0.33,0.13) (0.19, 0.09, 0.07)

Table 3. Neutrosophic relation Rs.

R3 X1 X2 X3

Y1 (0.89, 0.06, 0.05) (0.86,0.01, 0.01) (0.77,0.21, 0.20)
V2 (0.61,0.30, 0.27) (0.76,0.09, 0.01) (0.56,0.27, 0.25)
Y3 (0.64, 0.20, 0.10) (0.63,0.01, 0.01) (0.59, 0.33,0.29)
Y4 (0.68, 0.16, 0.04) (0.59, 0.03, 0.02) (0.57,0.36,0.31)
Ys (0.39,0.23,0.10) (0.34,0.30, 0.19) (0.29, 0.59, 0.49)

By Definitions 15 and 16, we can compute

MNRS™(A) = {(y1,0.50,0.70,0.56), (y2,0.50,0.71,0.44), (y3,0.51,0.70,0.37), (y4,0.50,0.70, 0.41),
(v5,0.60,0.70,0.30)} ’
MNRS 7 (A) = {(y1,0.89,0.10,0.20), (12,070, 0.30,0.27), (3, 0.66,0.10,0.20), (4, 0.68,0.10,0.20),
(ys,0.43,0.23,0.20)} ’
MNRSM (A) = {(y1,0.50,0.80,0.60), (1/2,0.50,0.80,0.56), (1/3,0.50,0.70, 0.59), (y4,0.50, 0.74, 0.57),
(y5,0.50,0.80,0.30)} ’
MNRS ™ (A) = {(y1,0.71,0.14,0.20), (2,051, 0.54,0.30), (3, 0.63,0.20,0.20), (y4,0.52,0.19,0.20),

(y5,0.33,0.61,0.30)}
Let A = 0.3, then

MNRSW (A) = {(11,0.8267,01793,0.2723), (,0.6525,0.3885,0.2896), (y3,0.6183,0.1793,0.2258),
(y4,0.6341,0.1793,0.2480), (ys, 0.4874, 0.3212,0.2236)} ’
MNRS(M(A) = {(1,0.6585,0.2362,0.2780), (12, 0.5070, 0.6076,0.3617), (y3,0.5950,0.2912,0.2767),

(y4,0.5141,0.2857,0.2738), (ys, 0.3863,0.6617,0.3000) }

Then, according to Definition 6, we can get
s (y1) = 0.5259, s (1) = 0.6814, sV (y3) = 0.6963, s (y14) = 0.6930, s (y5) = 0.6319.

So, the ranking result for union-type MSis: y1 <ys <y2 <ya <ys.

s (y1) = 0.6903, sV (y2) = 0.5726, sV (y73) = 0.6592, sV () = 0.6201, sV (y5) = 0.5432.
So, the ranking result for intersection-type MSis: y5 <y <ys4 <y3 <yi.
Using the Borda counting method, score 4, 3, 2, 1, and 0 for the first, second, third, fourth, and

fifth place, respectively, then we can get

B(x1) =4, B(x2) =3, B(x3) =7, B(x4) = 5, B(xs5) = 1.
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So, when A = 0.3, the best choice, shop 3, is chosen.

6. Conclusions

The multi-granulation neutrosophic rough set is a useful tool for MGDM problems. In this
paper, we proposed non-dual MSs and study their operators and properties. Then we discussed
the relationship between NRS, optimistic (pessimistic) MS, non-dual MS, NRS based on intersection
(union) NRs, and NRS based on transitive closure relationship of union NRs, we used Figure 1 to
show the relationship. Furthermore, we proposed a non-dual MS on two universes and talk about
the relationship between non-dual MS on two universes and non-dual MS on a single universe, and
we used non-dual MS on two universes to solve a MGDM problem where the attribute values were
neutrosophic numbers.

For future orientation, we will research other types of fusions of MRSs and NSs. Additionally, we
will study the applications of the concepts in this paper to totally-dependent neutrosophic sets and
some algebraic systems and discuss in relation to other algorithms [35-44].
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Abstract: Supply chain sustainability has become one of the most attractive decision management
topics. There are many articles that have focused on this field presenting many different points of
view. This research is centred on the evaluation of supply chain sustainability based on two critical
dimensions. The first is the importance of evaluation metrics based on economic, environmental
and social aspects, and the second is the degree of difficulty of information gathering. This paper
aims to increase the accuracy of the evaluation. The proposed method is a combination of quality
function deployment (QFD) with plithogenic aggregation operations. The aggregation operation
is applied to aggregate: Firstly, the decision maker’s opinions of requirements that are needed to
evaluate the supply chain sustainability; secondly, the evaluation metrics based on the requirements;
and lastly, the evaluation of information gathering difficulty. To validate the proposed model, this
study presented a real world case study of Thailand’s sugar industry. The results sho