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Abstract:
In this paper we have suggested two classes of estimators for population median My of the study character
Y using information on two auxiliary characters X and Z in double sampling. It has been shown that the
suggested classes of estimators are more efficient than the one suggested by Singh ez a/ (2001). Estimators
based on estimated optimum values have been also considered with their properties. The optimum values
of the first phase and second phase sample sizes are also obtained for the fixed cost of survey.

Keywords: Median estimation, Chain ratio and regression estimators, Study variate, Auxiliary variate,
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1. INTRODUCTION

In survey sampling, statisticians often come across the study of variables which have highly skewed
distributions, such as income, expenditure etc. In such situations, the estimation of median deserves special
attention. Kuk and Mak (1989) are the first to introduce the estimation of population median of the study
variate Y using auxiliary information in survey sampling. Francisco and Fuller (1991) have also
considered the problem of estimation of the median as part of the estimation of a finite population
distribution function. Later Singh et a/ (2001) have dealt extensively with the problem of estimation of
median using auxiliary information on an auxiliary variate in two phase sampling.

Consider a finite population U={1,2,...,i,....N}. Let Y and X be the variable for study and auxiliary
variable, taking values Y; and X; respectively for the i-th unit. When the two variables are strongly related
but no information is available on the population median My of X, we seek to estimate the population
median My of Y from a sample S,,, obtained through a two-phase selection. Permitting simple random
sampling without replacement (SRSWOR) design in each phase, the two-phase sampling scheme will be as
follows:

(1) The first phase sample S,(S,cU) of fixed size n is drawn to observe only X in order to
furnish an estimate of Mx.

(i1) Given S,, the second phase sample S,(S,,c=S,) of fixed size m is drawn to observe Y
only.

Assuming that the median My of the variable X is known, Kuk and Mak (1989) suggested a ratio estimator
for the population median My of Y as
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(1.1)

where M y and M  are the sample estimators of My and Mx respectively based on a sample S,, of size

m. Suppose that yy, o), .., Ym) are the y values of sample units in ascending order. Further, let t be an
integer such that Y ) < My <Y ) and let p=t/m be the proportion of Y, values in the sample that are less
than or equal to the median value My, an unknown population parameter. If f) is a predictor of p, the

sample median M y can be written in terms of quantities as QY ( ﬁ) where p =0.5. Kuk and Mak
(1989) define a matrix of proportions (Pj(x,y)) as

Y <My Y > My Total
X < My Pu(xy) Pyi(x,y) P,(xy)
X > Mx Pia(x,y) Par(x,y) Pa(x,y)
Total Pl'(xny) P2'(X>Y) 1
and a position estimator of My given by
MY(p) :QY(f’Y) (1.2)
A 1 p s - p s
where p, = _( mpu(6,y) | (m=m)py(x y)j
m\  py(x,y) Pa(x,)
~ Z[mxﬁll(x’ y)+(m—m)p,(x, y)j
m

with ﬁij (x, ) being the sample analogues of the P;(x,y) obtained from the population and my the number

of units in S, with X < Mx.

Let F, v4(») and F v3 () denote the proportion of units in the sample S, with X < My, and X>Mx,

respectively that have Y values less than or equal to y. Then for estimating My, Kuk and Mak (1989)
suggested the 'stratification estimator' as

M, = inf{y EY > 0.5} (1.3)
where ﬁy (y) = % ﬁYA(J’) i ﬁYB(y)]

It is to be noted that the estimators defined in (1.1), (1.2) and (1.3) are based on prior knowledge of the
median My of the auxiliary character X. In many situations of practical importance the population median
My of X may not be known. This led Singh ef a/ (2001) to discuss the problem of estimating the
population median My in double sampling and suggested an analogous ratio estimator as

. ~ M
M, =M,—* (1.4)
M

X
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where M )1( is sample median based on first phase sample S,

Sometimes even if My is unknown, information on a second auxiliary variable Z, closely related to X but
compared X remotely related to Y, is available on all units of the population. This type of situation has
been briefly discussed by, among others, Chand (1975), Kiregyera (1980, 84), Srivenkataramana and Tracy
(1989), Sahoo and Sahoo (1993) and Singh (1993). Let Mz be the known population median of Z.
Defining

M M M, M M,
e, :[My —l}e1 :[M_X_ J,ez :[MX —1],63[1\4—Z—l}mde4 :(MZ —1]
Y X X zZ Z

such that E(e)=0 and | ey | <1 for k=0,1,2,3; where M , and M é are the sample median estimators based
on second phase sample S, and first phase sample S,. Let us define the following two new matrices as

Z <My, Z>My Total
X < My P(x,2) P11(x,2) P.(x,2)
X > MX Plz(X,Z) P22(X,Z) P,z(X,Z)

Total P-(x,2) P,-(x,2) 1

and

Z <My, Z>M;y Total
Y <My Pii(y,z) Py1(y,2) P.(y,2)
Y > My Pix(y,z) Py(y,2) P(y,z)

Total P-(y,2) Py(y,2) 1

Using results given in the Appendix-1, to the first order of approximation, we have

Ee) = (5 Gmy (B (M)}
Ee) = (5 (my (MM}
(o) = () @n) (Mt (M)

E(e) = () (4m)" {Mzf(M2)}

Be) = () dny ),

E(eoen) = (TR (4my” (4P (5.y)-1} MMy (M (M)
E(even) = () G (4P, (5y)-1} MM ()R M)
E(eres) = () (4my” (4P (5,21} (MM MYEM)}
E(ere = () G0 (4P, (5,2)1} (MM YEM)}
E(eren = () ény (MM

E(eie3) = ?m) (4m)" {4P},(x,2)-1} {MxMfx(Mx)f(My)} ™,
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E(eieq) = (%) (4n)"{4P ) (x,2)-1} {MxMfx(Mx) (M)},
E(ese3) = (%) (4n)"{4P ) (x,2)-1} {MxMfx(Mx) (M)},
E(eseq) = (%) (4n)"{4P ) (x,2)-1} {MxMfx(Mx) (M)},

Eesen = () @0 (MM,

where it is assumed that as N—oo the distribution of the trivariate variable (X,Y,Z) approaches a continuous
distribution with marginal densities fx(x), fy(y) and fz(z) for X, Y and Z respectively. This assumption
holds in particular under a superpopulation model framework, treating the values of (X, Y, Z) in the
population as a realization of N independent observations from a continuous distribution. We also assume
that fy(My), fx(Mx) and fz(My) are positive.

Under these conditions, the sample median M is consistent and asymptotically normal (Gross, 1980) with
mean My and variance

[ ) 17 00,

In this paper we have suggested a class of estimators for My using information on two auxiliary variables X
and Z in double sampling and analyzes its properties.

2. SUGGESTED CLASS OF ESTIMATORS

Motivated by Srivastava (1971), we suggest a class of estimators of My of Y as
@y e gy ( )
g=wWM," M, =M,g\u,v 2.1

M, M,

where U = — V== and g(u,v) is a function of u and v such that g(1,1)=1 and such that it satisfies

X z
the following conditions.

1. Whatever be the samples (S, and S,,) chosen, let (u,v) assume values in a closed convex sub-
space, P, of the two dimensional real space containing the point (1,1).

2. The function g(u,v) is continuous in P, such that g(1,1)=1.
3. The first and second order partial derivatives of g(u,v) exist and are also continuous in P.

Expanding g(u,v) about the point (1,1) in a second order Taylor's series and taking expectations, it is found
that

E(, %)=y +0(n™)
so the bias is of order n”".

Using a first order Taylor's series expansion around the point (1,1) and noting that g(1,1)=1, we have
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M, = M [1+e,+(e, —e,)g, (1) + e,g,(1,1) + O(”fl)]
or
(MI(/g) -M, ) =M, [eo + (el & )gl (1’1)"' €48 (1’1)] 2.2)

where g;(1,1) and g,(1,1) denote first order partial derivatives of g(u,v) with respect to u and v respectively
around the point (1,1).

Squaring both sides in (2.2) and then taking expectations, we get the variance of M Y(g)

Var<My<g>):m[&_%}&_ﬂmg%y} 2

MYfY(MY) MYfY(MY)

A= [mjg (LDKWJ& (L) +2(4R, (x,»)- 1)} 2.4)

to the first degree
of approximation, as

where

B= (%] g, (1,1){(%%2 (L) +2(4B,(y,2)- 1)} 2.5)

The variance of M Y(g) in (2.3) is minimized for

gl = —[%]@Rl (v.2)-1)

(2.6)

g, (L) = _(%AMT?;}(“E 1 (y, Z) - 1)

(2)

Thus the resulting (minimum) variance of M y'°’ is given by

: g 1 1) (1 1 Pt _

min. Var(MY )— TAUD); Km N) (m nj(4P11(x,y) 1) (n N)(4Pu(y,2) 1)}
2.7

Now, we proved the following theorem.

Theorem 2.1 - Up to terms of order n”™,

varlit, ) m[(i-%)-(i—5)<4al<x,y>—1>2 (Lo JemiGna) -1

with equality holding if
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&@Dz[gééf—%}ﬂh&y)w

ggur:(ﬂéé%—%}ﬂau,)l)

" (2)

It is interesting to note that the lower bound of the variance of M , at (2.1) is the variance of the linear

regression estimator

A

M, = w1y d (v -6y )+ dy (v, - 1) 2.8)

with p,, (x,y) and p,, (y, Z) being the sample analogues of the p,, (x,y) and p, (y, Z) respectively
and fy (My ),fx (Mx ) and fz (MZ ) can be obtained by following Silverman (1986).

Any parametric function g(u,v) satisfying the conditions (1), (2) and (3) can generate an asymptotically
acceptable estimator. The class of such estimators are large. The following simple functions g(u,v) give
even estimators of the class

2@ (u,v) = T+a(u-1)
1-B(v-1)°
=tralu=1)+plr-1),g"wv)={i-al-1)-p-1)}"

g u,v)=1
g(s)(u,v):wu +w2vB w, +w2 =1
gu,v)=

o+ (1—a pp® g (u,v)= explo(u—1)+ B (v—1)}

Let the seven estimators generated by g”(u,v) be denoted by M ©) — a1 v g( )( ) (i =1 t07). Itis

easily seen that the optimum values of the parameters oc,B,wi(l—l,Z) are given by the right hand sides of
(2.6).

3. A WIDER CLASS OF ESTIMATORS

The class of estimators (2.1) does not include the estimator
MYd :MY +d1( A;( _Mx)+d2(Mz _Mlzl(dladz)

being constants.
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However, it is easily shown that if we consider a class of estimators wider than (2.1), defined by
M(G)—G(A?I uv) 3.1)
Y - M1 Yo .

of My, where G(-) is a function of MY ,uand v such that G(MY ,1,1) =M, and G, (MY ,1,1) =1.
G, (M v ,1,1) denoting the first partial derivative of G(-) with respect to M v

Proceeding as in Section 2 it is easily seen that the bias of M Y(G) is of the order n™' and up to this order of

. ~(G) ..
terms, the variance of M Y( ) is given by

Var(¥1, @ )= m [(i B %j i (% - %j[%j

G,(M, ,1,1){(&1“))}@ (M, 11)+2(48R,(x,y)- 1)}

M f (M,
N G _ %j fj 35‘24);& : {( Mi v (j(lﬁyl)z )]G3 (M, 1) +2(4P,(y,2)- 1)}]

(3.2)

where G,(Myl,1) and G3(My1,1) denote the first partial derivatives of u and v respectively around the point
(My,(1.1).

. 6
The variance of M y( ) is minimized for

@mmrﬂ@EQM@wo

fy(M,)

G, (MY ’1’1) = —[%J@PH (y> Z) - 1)

(3.3)

Substitution of (3.3) in (3.2) yields the minimum variance of M Y(G) as

. o@) | 1oy (11 oL 2)-1)
i Varit, )« <l (L ar )1 (L far 217
= min.Var(MY(g ) )
(3.4)

Thus we established the following theorem. Theorem 3.1 - Up to terms of order n™",
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varlit, )z ol L) (LD )y (2 Lar 017

A(fy () \m - N Kmn

with equality holding if

Gz<My,u>=—[%}(4&@)—0

G, (MY ’1’1) = _(WJ(‘I'PM (y> Z) - 1)

fy(My)

. . . . . . ~ (G
If the information on second auxiliary variable z is not used, then the class of estimators M Y( ) reduces to
the class of estimators of My as

M, =H(My,u) (3.5)

where H(My,u) is a function of (My,u) such that H(My,l) =M, and H, (MY ,1) =1,
H, (My ,1) = 8[‘{()} . The estimator MY(H) is reported by Singh et al (2001).
vd(my 1)

.. . ~ (H S
The minimum variance of M Y( ) to the first degree of approximation is given by

min.Var(MY<H>):ﬁ{(i_ij_(l_lj(wl(x, y)—l)z} 66

fyg,)f m NJ Amn
From (3.4) and (3.6) we have

minVar(MY(H) )— min.Var(MY(G) ) = (l _ ij

1
by ~(4P, (v,2)-1) (3.7)

4(fy (M)

L .. . ~ (G) . . .
which is always positive. Thus the proposed class of estimators M Y( ) is more efficient than the estimator

M Y(H) considered by Singh et al (2001).

4. ESTIMATOR BASED ON ESTIMATED OPTIMUM VALUES

We denote
_MXfX(MX) 4P 1
% Myfy(My)( iy)=) wn
=MZfZ(MZ) 4P z 1 .
2 Mny(MY)( 11()/,) )
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In practice the optimum values of g;(1,1)(=-a,;) and g,(1,1)(=-a,) are not known. Then we use to find out
their sample estimates from the data at hand. Estimators of optimum value of g;(1,1) and g,(1,1) are given
as

(4.2)

where

(4.3)

Now following the procedure discussed in Singh and Singh (19xx) and Srivastava and Jhajj (1983), we
define the following class of estimators of My (based on estimated optimum) as

M, =M, g *(uv,d,,d,) (4.4)

where g*(+) is a function of (u, v,oil ,(iz) such that
g* (1,1,0(1(12 ) =1

g;(l’ljal’az): agaz(.) (Lo as) -

=

gi(LLa,,0,)= ‘3‘2;(')( | =0
L

gi(LLa,,0,)= 6?;2(')( | =0
Lot

and such that it satisfies the following conditions:

1. Whatever be the samples (S, and S;,) chosen, let u, v,dldz assume values in a closed convex sub-
space, S, of the four dimensional real space containing the point (1,1,0.1,0,).

2. The function g*(u,v, a4, o) continuous in S.

3. The first and second order partial derivatives of g * (u a,,d, ) exst. and are also continuous in
S.

Under the above conditions, it can be shown that

Er, )= M, +0(n)
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and to the first degree of approximation, the variance of M Y(g*) is given by
Var(M Y(g*) ) = min.Var(M v )

where min.Var(M Y(g)) is given in (2.7).

A wider class of estimators of My based on estimated optimum values is defined by
MY(G*) =G* (MY ,u,v,oil*,oi;)

where

are the estimates of

(X; :MZfZ(MZ
fy (M

and G*(-) is a function of (My U, v,ocl* ,(i; ) such that

G*(My,l,l,al*,a;)=My

Gl* (MY alalaa’l*’a;): aG:k() 1
aMy (My,l,l,lll*aa;)
(M 1,1, 15 2)=6G* :_al*
(My,l,l,(xl*,(l;)
* . . aG* . *
G3(MY1,1,al,a2)= av()( . ‘):_Ocz
My1,1,87a;
G:(MYI,I,OLI*,O‘;): 8?1() -0
(Xl (My,l,l,al (Xz)
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* * * 8G*(-)
G M 1,1,0( O, )= ———=— =0
5( Y 1 2) 6(12 (

My,l,l,af,a;)

Under these conditions it can be easily shown that

A

EWr,' )=, +0(n")
and to the first degree of approximation, the variance of M Y(G*) is given by
~ G* : ~ (G
Var(M ¥ ): mm.Var(M Y( ) ) (4.9)
where min.Var(MYG) is given in (3.4).

~ *
It is to be mentioned that a large number of estimators can be generated from the classes M Y(g ) and

~ (G . .
M Y( ) based on estimated optimum values.

5. EFFICIENCY OF THE SUGGESTED CLASS OF ESTIMATORS FOR FIXED COST

The appropriate estimator based on on single-phase sampling without using any auxiliary variable is M,
whose variance is given by

~ I 1 1
Var(MY):(;_ﬁ]m (5.1

In case when we do not use any auxiliary character then the cost function is of the form Cy-mC;, where C,
and C, are total cost and cost per unit of collecting information on the character Y.

The optimum value of the variance for the fixed cost Cy is given by

opt| Var(st, )=, (C% - %J (5.2)
where
V, B (5.3)
4(fy (M)
When we use one auxiliary character X then the cost function is given by
C,=Gm+C,n, (5.4)

where C, is the cost per unit of collecting information on the auxiliary character Z.

()

The optimum sample sizes under (5.4) for which the minimum variance of M, is optimum, are
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Co (Vo _Vl)/Cl

[, =v)c, +nc )

n _ Co VI/CZ .
” |_\/(V0_V1)C1+\/V1C2J

(5.5)

mopt =

where V,=V(4P;(x,y)-1)

(H

Putting these optimum values of m and n in the minimum variance expression of M, ) in (3.6), we get

the optimum min.Var(M Y(H)) as

Opt.[min.Var(M Y(H) )] = ( ¥, =1 ), + \/m)z o

(5.7
C, N
Similarly, when we use an additional character Z then the cost function is given by
C, =Cm+(C, +Cy)n (5.8)

where C; is the cost per unit of collecting information on character Z.

It is assumed that C;>C,>C;. The optimum values of m and n for fixed cost Cy which minimizes the
(&) (OrM Y(G)) (2.7) (or (3.4)) are given by

CO\](VO _VI)/Cl

Mo S0 VI, 4G, + G, 7)) °

_ CO\/(Vl_Vz)/C2+C3 .
[\/(Vo _VI)CI +\/(C2 +C3)(V1 _VZ)J

minimum variance of M,

(5.10)

n opt

where V,=V(4P(y,2)-1)*.

The optimum variance of M Y(g) (OI‘M Y(G) ) corresponding to optimal two-phase sampling strategy is

_ [\/(VO_VI)CI+\/(C2+C3)(V1_V2)]2 _&
= C, ;
(5.11)

Opt[min.Var(M 9 )or min.Var(M @) )]

Assuming large N, the proposed two phase sampling strategy would be profitable over single phase
sampling so long as

lOpt.Var(M y )J > Opt.lmin.Var(M Y(g ) )or min.Var(M Y(G) )J
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i.e.CﬂLC3 < \/70_ i
Cl \lVl_Vz

When N is large, the proposed two phase sampling is more efficient than that Singh ez a/ (2001) strategy if

(5.12)

Optlmin.Var(M Y(g ) )or min.Var(M Y(G) )J < Optlmin.Var(M Y(H) )J

. C,+C, Vi
1.€. < (5.13)
Cl Vl - Vz
6. GENERALIZED CLASS OF ESTIMATORS
We suggest a class of estimators of My as
I = {A?[Y(F) a1, :F(My,u,v,w)} 6.1)

where u =M, /M',,v=M /M, w=M, /M, and the function F() assumes a value in a
bounded closed convex subset WcR,, which contains the point (My,1,1,1)=T and is such that

F(T)=My=F(T)=1, F{(T) denoting the first order partial derivative of F(-) with respect to M y around the
point T=(My,1,1,1). Using a first order Taylor's series expansion around the point T, we get

M, = F(T)+(MY =My)F](T)+(u—1)F2(T)+(v—1)F3(T)+(W—1)F4(T)+O(”71)
(6.2)

where Fy(T), F3(T) and F4(T) denote the first order partial derivatives of (M /AZ W) with respect to u,

v and w around the point T respectively. Under the assumption that F(T)=My and F(T)=1, we have the
following theorem.

Theorem 6.1. Any estimator in J is asymptotically unbiased and normal.

Proof: Following Kuk and Mak (1989), let Py, Px and Pz denote the proportion of Y, X and Z values
respectively for which Y<My, X<My and Z<My; then we have

Wy =My =y 1-2B)40, (077
My My = 1-2R) 00, (7 )
M=M= 2fX(1MX)(1_2P)‘)+°P(”%)
MZ_Mzzzfz(l z)(l_zpz)mp(”%]
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M, -M !

Z:

m(l—ﬂ;ﬁ Op(n_%j

Using these expressions in (6.2), we get the required results.

Expression (6.2) can be rewritten as

M, M,

or

By

M

Squaring both sides of (6.3) and then taking expectation, we get the variance of M Y(F

of approximation, as

var(i7, ")) m{[i_%}ﬂ (

where

MM, =M ey + (e, -

;(MY —MY)+(u

fy(M,)
MXfX(MX

+2(4P,(x,z) - 1(

|

1

m

1

n

—J F (1) +2(4B,(y,2)- 1)(%

JF“(T)}

)

M) jF T)F,(T
M_f,0M,) L(DF( )_

e, )F,(T) +e,F,(T) +e,F,(T)

)

zfz(Mz

)JFJ (T)+2(4P, (x,y) 1) F,(T)

oot

—DF,(T)+ (v =DF(T) +(w=1)F,(T)

(6.3)

) to the first degree

(6.4)

| Y( )jFZT (4P _1FT_

TR G
o MZfZ(MZ) fY( )

+2(szz (MZ )jF (T)F (T) ]

The Var(M Y(F)) at (6.4) is minimized for
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[(4]311()5:)’)_1)_(4]311()6’2)_1)(4]311(%2)_1)] ] MXfX(MX).

F,(T)=- >
v [1-(R, (x.2)-1 £,0,)
= —a, (say)
6.5)
ey 52N 5) 1)~ 47, 0.2) - R 2. 2) 1) 0, 1, 01,)
3 [1_(4P11(X’Z)_1)2] fY(MY)
= —a, (say)
F (T):_[(4})11(yaz)_l)_(4})11(xay)_1)(4])11(x’z)_1)]_szz(Mz).
) [1_(41011(3592)_1)2] fY(MY)
= —a;(say)

Thus the resulting (minimum) variance of M Y(F) is given by

minVar(¥t, )= &_%j‘[%‘%j{l_(mf();z)_l)z +(4P”(x,y)—1)}2
Y 4ty (M,)) _(1 1

n N
1 1

i o) (L_1 1 D’
_m1n.Var(My ) (m nj4(fY(MY))2 1_l4pn x,z)—12J

(6.6)

where
D=[(4R,(y,2)-1)- (4P, (x,y)-1)4PR, (xz)-1)] (6.7)
and min.Var(M Y(G) ) is given in (3.4)

Expression (6.6) clearly indicates that the proposed class of estimators M Y(F) is more efficient than the
class of estimator M Y(G) or (M Y(g)) and hence the class of estimators M Y(H) suggested by Singh et al

(2001) and the estimator A, at its optimum conditions.

The estimator based on estimated optimum values is defined by
ot = (0 Gy
pr=wWM," "M, = U, v,w,a,,a,,d, (6.8)

where
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a [(413”(x,y)—1)—(4]3”()6,2)—1)(413”()/,2)—1)] fo:\t MV)

1 [1_(41311()@2)_1)2] AY(MY)

4. = (4ﬁ11(xaz)_1)[(4ﬁ11(_an’)_1)_(41511(%_2)_1)(4ﬁ11(xaz)_1)] MZiZ (Mz)
2 - @py,(x.2)-1)] 71,

a. = [(4;3“()/,2)—1)—(4;3“(x,y)—1)(4_1;3”()6,2)—1)] szz (Mz)
’ - @py,(x,2)-1)| 7,,)

(6.9)

are the sample estimates of a;, a, and a; given in (6.5) respectively, F*(-) is a function of

(My,u,v, w,al,az,a3) such that

F*(T*=M,
:>F1*(T*)=aFA () -1
oMy |,.
Fz*(T*):aF*(.) =-4q
ou |
Fs*(T*):éF*(.) =-a,
ov |
F *(T*)—aF *0) = —a,
oW |
=20 o
a1 T
Forn =2 g
2 g
F7*(T*):8F:"(-) -0
aa3 T*

where T* = (My,1,1,1,a,a;,a3)

Under these conditions it can easily be shown that

Er,™)=m, +0(n™")
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and to the first degree of approximation, the variance of M Y(F*) is given by
Var(M S ) = min.Var(M S ) (6.10)
where min.Var(M Y(F)) is given in (6.6).

Under the cost function (5.8), the optimum values of m and n which minimizes the minimum variance of
MY(F) is (6.6) are given by

- CllV, =7 =7)IG o
[\/(Vo _Vl _V3)C1 +\/(V1 _Vz _V3)(C2 +C3)]

Coy\V =V, _V3)/C2
[\/(Vo _Vl _V3)C1 +\/(V1 _Vz +V3)(Cz +C3)]

nopt =

where
DV,
V,=1 0 1 6.12
i@ s 7] o
for large N, the optimum value of min.Var(M Y(F)) is given by
Opt.[min.Var(MY(F))] _ I_\/(Vo —V, =V, )Cl + \/(V1 -V, +V )(Cz +C, )J 6.13)

C10

The proposed two-phase sampling strategy would be profitable over single phase-sampling so long as

Opt.[Var(M . )] > Opt.[min.Var(MY(F) )]

Cz +C3 < \/V_O_‘\IVO_VI_V3 ’
¢ Vi =V, + 75

1.€.

(6.14)

It follows from (5.7) and (6.13) that

Opt.lmin.Var(M Y(F) )J < Opt.lmin.Var(M S )J

o JVo =V, =V, =V, =V, o GG 4 ) (6.15)
m C1 (Vl _Vz +V3 )Cl Cl

for large N.

Further we note from (5.11) and (6.13) that
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Opt.lmin.Var(M Y(F) )J < Opt.lmin.Var(M Y(g Jord 0 )J

¢, +¢ [N =r) - =v-r)|

if
Cl \/(V1_V2+V3)_\/V1_V2

(6.16)
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