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Abstract. Neutrosophic theory has many applications in graph theory,
bipolar single valued neutrosophic graphs (BSVNGs) is the generalization
of fuzzy graphs and intuitionistic fuzzy graphs, SVNGs. In this paper we
introduce some types of BSVNGs, such as subdivision BSVNGs, middle
BSVNGs, total BSVNGs and bipolar single valued neutrosophic line graphs
(BSVNLGs), also investigate the isomorphism, co weak isomorphism and
weak isomorphism properties of subdivision BSVNGs, middle BSVNGs,
total BSVNGs and BSVNLGs.
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1. Introduction

Neutrosophic set theory (NS) is a part of neutrosophy which was introduced
by Smarandache [43] from philosophical point of view by incorporating the degree
of indeterminacy or neutrality as independent component for dealing problems with
indeterminate and inconsistent information. The concept of neutrosophic set the-
ory is a generalization of the theory of fuzzy set [50], intuitionistic fuzzy sets [5],
interval-valued fuzzy sets [47] interval-valued intuitionistic fuzzy sets [6]. The con-
cept of neutrosophic set is characterized by a truth-membership degree (T), an
indeterminacy-membership degree (I) and a falsity-membership degree (f) indepen-
dently, which are within the real standard or nonstandard unit interval ]−0, 1+[.
Therefore, if their range is restrained within the real standard unit interval [0, 1] :
Nevertheless, NSs are hard to be apply in practical problems since the values of the
functions of truth, indeterminacy and falsity lie in ]−0, 1+[. The single valued neu-
trosophic set was introduced for the first time by Smarandache [43]. The concept



Ali Hassan et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 1, 55–73

of single valued neutrosophic sets is a subclass of neutrosophic sets in which the
value of truth-membership, indeterminacy membership and falsity-membership de-
grees are intervals of numbers instead of the real numbers. Later on, Wang et al. [49]
studied some properties related to single valued neutrosophic sets. The concept of
neutrosophic sets and its extensions such as single valued neutrosophic sets, interval
neutrosophic sets, bipolar neutrosophic sets and so on have been applied in a wide
variety of fields including computer science, engineering, mathematics, medicine and
economic and can be found in [9, 15, 16, 30, 31, 32, 33, 34, 35, 36, 37, 51]. Graphs
are the most powerful tool used in representing information involving relationship
between objects and concepts. In a crisp graphs two vertices are either related or
not related to each other, mathematically, the degree of relationship is either 0 or 1.
While in fuzzy graphs, the degree of relationship takes values from [0, 1]. Atanassov
[42] defined the concept of intuitionistic fuzzy graphs (IFGs) using five types of
Cartesian products. Theconcept fuzzy graphs, intuitionistic fuzzy graphs and their
extensions such interval valued fuzzy graphs, bipolar fuzzy graph, bipolar intuition-
itsic fuzzy graphs, interval valued intuitionitic fuzzy graphs, hesitancy fuzzy graphs,
vague graphs and so on, have been studied deeply by several researchers in the liter-
ature. When description of the object or their relations or both is indeterminate and
inconsistent, it cannot be handled by fuzzy intuitionistic fuzzy, bipolar fuzzy, vague
and interval valued fuzzy graphs. So, for this purpose, Smaranadache [45] proposed
the concept of neutrosophic graphs based on literal indeterminacy (I) to deal with
such situations. Later on, Smarandache [44] gave another definition for neutrosphic
graph theory using the neutrosophic truth-values (T, I, F) without and constructed
three structures of neutrosophic graphs: neutrosophic edge graphs, neutrosophic
vertex graphs and neutrosophic vertex-edge graphs. Recently, Smarandache [46]
proposed new version of neutrosophic graphs such as neutrosophic offgraph, neutro-
sophic bipolar/tripola/multipolar graph. Recently several researchers have studied
deeply the concept of neutrosophic vertex-edge graphs and presented several exten-
sions neutrosophic graphs. In [1, 2, 3]. Akram et al. introduced the concept of
single valued neutrosophic hypergraphs, single valued neutrosophic planar graphs,
neutrosophic soft graphs and intuitionstic neutrosophic soft graphs. Then, followed
the work of Broumi et al. [7, 8, 9, 10, 11, 12, 13, 14, 15], Malik and Hassan [38]
defined the concept of single valued neutrosophic trees and studied some of their
properties. Later on, Hassan et Malik [17] introduced some classes of bipolar single
valued neutrosophic graphs and studied some of their properties, also the authors
generalized the concept of single valued neutrosophic hypergraphs and bipolar sin-
gle valued neutrosophic hypergraphs in [19, 20]. In [23, 24] Hassan et Malik gave
the important types of single (interval) valued neutrosophic graphs, another impor-
tant classes of single valued neutrosophic graphs have been presented in [22] and in
[25] Hassan et Malik introduced the concept of m-Polar single valued neutrosophic
graphs and its classes. Hassan et al. [18, 21] studied the concept on regularity and
total regularity of single valued neutrosophic hypergraphs and bipolar single valued
neutrosophic hypergraphs. Hassan et al. [26, 27, 28] discussed the isomorphism
properties on SVNHGs, BSVNHGs and IVNHGs. Nasir et al. [40] introduced a new
type of graph called neutrosophic soft graphs and established a link between graphs
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and neutrosophic soft sets. The authors also studeied some basic operations of neu-
trosophic soft graphs such as union, intersection and complement. Nasir and Broumi
[41] studied the concept of irregular neutrosophic graphs and investigated some of
their related properties. Ashraf et al. [4], proposed some novels concepts of edge reg-
ular, partially edge regular and full edge regular single valued neutrosophic graphs
and investigated some of their properties. Also the authors, introduced the notion
of single valued neutrosophic digraphs (SVNDGs) and presented an application of
SVNDG in multi-attribute decision making. Mehra and Singh [39] introduced a
new concept of neutrosophic graph named single valued neutrosophic Signed graphs
(SVNSGs) and examined the properties of this concept with suitable illustration.
Ulucay et al. [48] proposed a new extension of neutrosophic graphs called neu-
trosophic soft expert graphs (NSEGs) and have established a link between graphs
and neutrosophic soft expert sets and studies some basic operations of neutrosophic
soft experts graphs such as union, intersection and complement. The neutrosophic
graphs have many applications in path problems, networks and computer science.
Strong BSVNG and complete BSVNG are the types of BSVNG. In this paper, we
introduce others types of BSVNGs such as subdivision BSVNGs, middle BSVNGs,
total BSVNGs and BSVNLGs and these are all the strong BSVNGs, also we discuss
their relations based on isomorphism, co weak isomorphism and weak isomorphism.

2. Preliminaries

In this section we recall some basic concepts on BSVNG. Let G denotes BSVNG
and G∗ = (V,E) denotes its underlying crisp graph.

Definition 2.1 ([10]). Let X be a crisp set, the single valued neutrosophic set
(SVNS) Z is characterized by three membership functions TZ(x), IZ(x) and FZ(x)
which are truth, indeterminacy and falsity membership functions, ∀x ∈ X

TZ(x), IZ(x), FZ(x) ∈ [0, 1].

Definition 2.2 ([10]). Let X be a crisp set, the bipolar single valued neutrosophic
set (BSVNS) Z is characterized by membership functions T+

Z (x), I+Z (x), F+
Z (x),

T−Z (x), I−Z (x), and F−Z (x). That is ∀x ∈ X

T+
Z (x), I+Z (x), F+

Z (x) ∈ [0, 1],

T−Z (x), I−Z (x), F−Z (x) ∈ [−1, 0].

Definition 2.3 ([10]). A bipolar single valued neutrosophic graph (BSVNG) is a
pair G = (Y, Z) of G∗, where Y is BSVNS on V and Z is BSVNS on E such that

T+
Z (βγ) ≤ min(T+

Y (β), T+
Y (γ)), I+Z (βγ) ≥ max(I+Y (β), I+Y (γ)),

I−Z (βγ) ≤ min(I−Y (β), I−Y (γ)), F−Z (βγ) ≤ min(F−Y (β), F−Y (γ)),

F+
Z (βγ) ≥ max(F+

Y (β), F+
Y (γ)), T−Z (βγ) ≥ max(T−Y (β), T−Y (γ)),

where

0 ≤ T+
Z (βγ) + I+Z (βγ) + F+

Z (βγ) ≤ 3

−3 ≤ T−Z (βγ) + I−Z (βγ) + F−Z (βγ) ≤ 0

∀ β, γ ∈ V.
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In this case, D is bipolar single valued neutrosophic relation (BSVNR) on C. The
BSVNG G = (Y, Z) is complete (strong) BSVNG, if

T+
Z (βγ) = min(T+

Y (β), T+
Y (γ)), I+Z (βγ) = max(I+Y (β), I+Y (γ)),

I−Z (βγ) = min(I−Y (β), I−Y (γ)), F−Z (βγ) = min(F−Y (β), F−Y (γ)),

F+
Z (βγ) = max(F+

Y (β), F+
Y (γ)), T−Z (βγ) = max(T−Y (β), T−Y (γ)),

∀ β, γ ∈ V (∀ βγ ∈ E). The order of BSVNG G = (A,B) of G∗, denoted by O(G), is
defined by

O(G) = (O+
T (G), O+

I (G), O+
F (G), O−T (G), O−I (G), O−F (G)),

where

O+
T (G) =

∑
α∈V

T+
A (α), O+

I (G) =
∑
α∈V

I+A (α), O+
F (G) =

∑
α∈V

F+
A (α),

O−T (G) =
∑
α∈V

T−A (α), O−I (G) =
∑
α∈V

I−A (α), O−F (G) =
∑
α∈V

F−A (α).

The size of BSVNG G = (A,B) of G∗, denoted by S(G), is defined by

S(G) = (S+
T (G), S+

I (G), S+
F (G), S−T (G), S−I (G), S−F (G)),

where

S+
T (G) =

∑
βγ∈E

T+
B (βγ), S−T (G) =

∑
βγ∈E

T−B (βγ),

S+
I (G) =

∑
βγ∈E

I+B (βγ), S−I (G) =
∑
βγ∈E

I−B (βγ),

S+
F (G) =

∑
βγ∈E

F+
B (βγ), S−F (G) =

∑
βγ∈E

F−B (βγ).

The degree of a vertex β in BSVNG G = (A,B) of G∗,, denoted by dG(β), is
defined by

dG(β) = (d+T (β), d+I (β), d+F (β), d−T (β), d−I (β), d−F (β)),

where

d+T (β) =
∑
βγ∈E

T+
B (βγ), d−T (β) =

∑
βγ∈E

T−B (βγ),

d+I (β) =
∑
βγ∈E

I+B (βγ), d−I (β) =
∑
βγ∈E

I−B (βγ),

d+F (β) =
∑
βγ∈E

F+
B (βγ), d−F (β) =

∑
βγ∈E

F−B (βγ).
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3. Types of BSVNGs

In this section we introduce the special types of BSVNGs such as subdivision,
middle and total and intersection BSVNGs, for this first we give the basic definitions
of homomorphism, isomorphism, weak isomorphism and co weak isomorphism of
BSVNGs which are very useful to understand the relations among the types of
BSVNGs.

Definition 3.1. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the homomorphism χ : G1 → G2 is
a mapping χ : V1 → V2 which satisfies the following conditions:

T+
C1

(p) ≤ T+
C2

(χ(p)), I+C1
(p) ≥ I+C2

(χ(p)), F+
C1

(p) ≥ F+
C2

(χ(p)),

T−C1
(p) ≥ T−C2

(χ(p)), I−C1
(p) ≤ I−C2

(χ(p)), F−C1
(p) ≤ F−C2

(χ(p)),

∀ p ∈ V1,
T+
D1

(pq) ≤ T+
D2

(χ(p)χ(q)), T−D1
(pq) ≥ T−D2

(χ(p)χ(q)),

I+D1
(pq) ≥ I+D2

(χ(p)χ(q)), I−D1
(pq) ≤ I−D2

(χ(p)χ(q)),

F+
D1

(pq) ≥ F+
D2

(χ(p)χ(q)), F−D1
(pq) ≤ F−D2

(χ(p)χ(q)),

∀ pq ∈ E1.

Definition 3.2. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the weak isomorphism υ : G1 → G2

is a bijective mapping υ : V1 → V2 which satisfies following conditions:
υ is a homomorphism such that

T+
C1

(p) = T+
C2

(υ(p)), I+C1
(p) = I+C2

(υ(p)), F+
C1

(p) = F+
C2

(υ(p)),

T−C1
(p) = T−C2

(υ(p)), I−C1
(p) = I−C2

(υ(p)), F−C1
(p) = F−C2

(υ(p)),

∀ p ∈ V1.

Remark 3.3. The weak isomorphism between two BSVNGs preserves the orders.

Remark 3.4. The weak isomorphism between BSVNGs is a partial order relation.

Definition 3.5. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the co-weak isomorphism κ : G1 →
G2 is a bijective mapping κ : V1 → V2 which satisfies following conditions:
κ is a homomorphism such that

T+
D1

(pq) = T+
D2

(κ(p)κ(q)), T−D1
(pq) = T−D2

(κ(p)κ(q)),

I+D1
(pq) = I+D2

(κ(p)κ(q)), I−D1
(pq) = I−D2

(κ(p)κ(q)),

F+
D1

(pq) = F+
D2

(κ(p)κ(q)), F−D1
(pq) = F−D2

(κ(p)κ(q)),

∀ pq ∈ E1.

Remark 3.6. The co-weak isomorphism between two BSVNGs preserves the sizes.

Remark 3.7. The co-weak isomorphism between BSVNGs is a partial order rela-
tion.
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Table 1. BSVNSs of BSVNG.

A T+
A I+A F+

A T−A I−A F−A
a 0.2 0.1 0.4 -0.3 -0.1 -0.4
b 0.3 0.2 0.5 -0.5 -0.4 -0.6
c 0.4 0.7 0.6 -0.2 -0.6 -0.2

B T+
B I+B F+

B T−B I−B F−B
p 0.2 0.4 0.5 -0.2 -0.5 -0.6
q 0.3 0.8 0.6 -0.1 -0.7 -0.8
r 0.1 0.7 0.9 -0.1 -0.8 -0.5

Definition 3.8. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the isomorphism ψ : G1 → G2 is a
bijective mapping ψ : V1 → V2 which satisfies the following conditions:

T+
C1

(p) = T+
C2

(ψ(p)), I+C1
(p) = I+C2

(ψ(p)), F+
C1

(p) = F+
C2

(ψ(p)),

T−C1
(p) = T−C2

(ψ(p)), I−C1
(p) = I−C2

(ψ(p)), F−C1
(p) = F−C2

(ψ(p)),

∀ p ∈ V1,
T+
D1

(pq) = T+
D2

(ψ(p)ψ(q)), T−D1
(pq) = T−D2

(ψ(p)ψ(q)),

I+D1
(pq) = I+D2

(ψ(p)ψ(q)), I−D1
(pq) = I−D2

(ψ(p)ψ(q)),

F+
D1

(pq) = F+
D2

(ψ(p)ψ(q)), F−D1
(pq) = F−D2

(ψ(p)ψ(q)),

∀ pq ∈ E1.

Remark 3.9. The isomorphism between two BSVNGs is an equivalence relation.

Remark 3.10. The isomorphism between two BSVNGs preserves the orders and
sizes.

Remark 3.11. The isomorphism between two BSVNGs preserves the degrees of
their vertices.

Definition 3.12. The subdivision SVNG be sd(G) = (C,D) of G = (A,B), where
C is a BSVNS on V ∪ E and D is a BSVNR on C such that

(i) C = A on V and C = B on E,
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = min(T+

A (v), T+
B (e)), I+D(ve) = max(I+A (v), I+B (e))

I−D(ve) = min(I−A (v), I−B (e)), F−D (ve) = min(F−A (v), F−B (e))

F+
D (ve) = max(F+

A (v), F+
B (e)), T−D (ve) = max(T−A (v), T−B (e))

else
D(ve) = O = (0, 0, 0, 0, 0, 0).

Example 3.13. Consider the BSVNG G = (A,B) of a G∗ = (V,E), where V =
{a, b, c} and E = {p = ab, q = bc, r = ac}, the crisp graph of G is shown in Fig.
1. The BSVNSs A and B are defined on V and E respectively which are defined
in Table 1. The SDBSVNG sd(G) = (C,D) of a BSVNG G, the underlying crisp
graph of sd(G) is given in Fig. 2. The BSVNSs C and D are defined in Table 2.
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Figure 1. Crisp Graph of BSVNG.

Figure 2. Crisp Graph of SDBSVNG.

Table 2. BSVNSs of SDBSVNG.

C T+
C I+C F+

C T−C I−C F−C
a 0.2 0.1 0.4 -0.3 -0.1 -0.4
p 0.2 0.4 0.5 -0.2 -0.5 -0.6
b 0.3 0.2 0.5 -0.5 -0.4 -0.6
q 0.3 0.8 0.6 -0.1 -0.7 -0.8
c 0.4 0.7 0.6 -0.2 -0.6 -0.2
r 0.1 0.7 0.9 -0.1 -0.8 -0.5

D T+
D I+D F+

D T−D I−D F−D
ap 0.2 0.4 0.5 -0.2 -0.5 -0.6
pb 0.2 0.4 0.5 -0.2 -0.5 -0.6
bq 0.3 0.8 0.6 -0.1 -0.7 -0.8
qc 0.3 0.8 0.6 -0.1 -0.7 -0.8
cr 0.1 0.7 0.9 -0.1 -0.8 -0.5
ra 0.1 0.7 0.9 -0.1 -0.8 -0.5

Proposition 3.14. Let G be a BSVNG and sd(G) be the SDBSVNG of a BSVNG
G, then O(sd(G)) = O(G) + S(G) and S(sd(G)) = 2S(G).

Remark 3.15. Let G be a complete BSVNG, then sd(G) need not to be complete
BSVNG.
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Figure 3. Crisp Graph of TSVNG.

Definition 3.16. The total bipolar single valued neutrosophic graph (TBSVNG) is
T (G) = (C,D) of G = (A,B), where C is a BSVNS on V ∪ E and D is a BSVNR
on C such that

(i) C = A on V and C = B on E,
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = min(T+

A (v), T+
B (e)), I+D(ve) = max(I+A (v), I+B (e))

I−D(ve) = min(I−A (v), I−B (e)), F−D (ve) = min(F−A (v), F−B (e))

F+
D (ve) = max(F+

A (v), F+
B (e)), T−D (ve) = max(T−A (v), T−B (e))

else

D(ve) = O = (0, 0, 0, 0, 0, 0),

(iii) if αβ ∈ E, then

T+
D (αβ) = T+

B (αβ), I+D(αβ) = I+B (αβ), F+
D (αβ) = F+

B (αβ)

T−D (αβ) = T−B (αβ), I−D(αβ) = I−B (αβ), F−D (αβ) = F−B (αβ),

(iv) if e, f ∈ E have a common vertex, then

T+
D (ef) = min(T+

B (e), T+
B (f)), I+D(ef) = max(I+B (e), I+B (f))

I−D(ef) = min(I−B (e), I−B (f)), F−D (ef) = min(F−B (e), F−B (f))

F+
D (ef) = max(F+

B (e), F+
B (f)), T−D (ef) = max(T−B (e), T−B (f))

else

D(ef) = O = (0, 0, 0, 0, 0, 0).

Example 3.17. Consider the Example 3.13 the TBSVNG T (G) = (C,D) of under-
lying crisp graph as shown in Fig. 3. The BSVNS C is given in Example 3.13. The
BSVNS D is given in Table 3.

Proposition 3.18. Let G be a BSV NG and T (G) be the TBSVNG of a BSVNG
G, then O(T (G)) = O(G) + S(G) = O(sd(G)) and S(sd(G)) = 2S(G).

Proposition 3.19. Let G be a BSVNG, then sd(G) is weak isomorphic to T (G).
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Table 3. BSVNS of TBSVNG.

D T+
D I+D F+

D T−D I−D F−D
ab 0.2 0.4 0.5 -0.2 -0.5 -0.6
bc 0.3 0.8 0.6 -0.1 -0.7 -0.8
ca 0.1 0.7 0.9 -0.1 -0.8 -0.5
pq 0.2 0.8 0.6 -0.1 -0.7 -0.8
qr 0.1 0.8 0.9 -0.1 -0.8 -0.8
rp 0.1 0.7 0.9 -0.1 -0.8 -0.6
ap 0.2 0.4 0.5 -0.2 -0.5 -0.6
pb 0.2 0.4 0.5 -0.2 -0.5 -0.6
bq 0.3 0.8 0.6 -0.1 -0.7 -0.8
qc 0.3 0.8 0.6 -0.1 -0.7 -0.8
cr 0.1 0.7 0.9 -0.1 -0.8 -0.5
ra 0.1 0.7 0.9 -0.1 -0.8 -0.5

Definition 3.20. The middle bipolar single valued neutrosophic graph (MBSVNG)
M(G) = (C,D) of G, where C is a BSVNS on V ∪E and D is a BSVNR on C such
that

(i) C = A on V and C = B on E, else C = O = (0, 0, 0, 0, 0, 0),
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = T+

B (e), I+D(ve) = I+B (e), F+
D (ve) = F+

B (e)

T−D (ve) = T−B (e), I−D(ve) = I−B (e), F−D (ve) = F−B (e)

else

D(ve) = O = (0, 0, 0, 0, 0, 0),

(iii) if u, v ∈ V, then

D(uv) = O = (0, 0, 0, 0, 0, 0),

(iv) if e, f ∈ E and e and f are adjacent in G, then

T+
D (ef) = T+

B (uv), I+D(ef) = I+B (uv), F+
D (ef) = F+

B (uv)

T−D (ef) = T−B (uv), I−D(ef) = I−B (uv), F−D (ef) = F−B (uv).

Example 3.21. Consider the BSVNG G = (A,B) of a G∗, where V = {a, b, c} and
E = {p = ab, q = bc} the underlaying crisp graph is shown in Fig. 4. The BSVNSs
A and B are defined in Table 4. The crisp graph of MBSVNG M(G) = (C,D) is
shown in Fig. 5. The BSVNSs C and D are given in Table 5.

Remark 3.22. Let G be a BSVNG and M(G) be the MBSVNG of a BSVNG G,
then O(M(G)) = O(G) + S(G).

Remark 3.23. Let G be a BSVNG, then M(G) is a strong BSVNG.

Remark 3.24. Let G be complete BSVNG, then M(G) need not to be complete
BSVNG.

Proposition 3.25. Let G be a BSVNG, then sd(G) is weak isomorphic with M(G).
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Figure 4. Crisp Graph of BSVNG.

Table 4. BSVNSs of BSVNG.

A T+
A I+A F+

A T−A I−A F−A
a 0.3 0.4 0.5 -0.2 -0.1 -0.3
b 0.7 0.6 0.3 -0.3 -0.3 -0.2
c 0.9 0.7 0.2 -0.5 -0.4 -0.6

B T+
B I+B F+

B T−B I−B F−B
p 0.2 0.6 0.6 -0.1 -0.4 -0.3
q 0.4 0.8 0.7 -0.3 -0.5 -0.6

Table 5. BSVNSs of MBSVNG.

C T+
C I+C F+

C T−C I−C F−C
a 0.3 0.4 0.5 -0.2 -0.1 -0.3
b 0.7 0.6 0.3 -0.3 -0.3 -0.2
c 0.9 0.7 0.2 -0.5 -0.4 -0.6
e1 0.2 0.6 0.6 -0.1 -0.4 -0.3
e2 0.4 0.8 0.7 -0.3 -0.5 -0.6

D T+
D I+D F+

D T−D I−D F−D
pq 0.2 0.8 0.7 -0.1 -0.5 -0.6
ap 0.2 0.6 0.6 -0.1 -0.4 -0.3
bp 0.2 0.6 0.6 -0.1 -0.4 -0.3
bq 0.2 0.6 0.6 -0.3 -0.5 -0.6
cq 0.4 0.8 0.7 -0.3 -0.5 -0.6

Figure 5. Crisp Graph of MBSVNG.
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Proposition 3.26. Let G be a BSVNG, then M(G) is weak isomorphic with T (G).

Proposition 3.27. Let G be a BSVNG, then T (G) is isomorphic with G ∪M(G).

Definition 3.28. Let P (X) = (X,Y ) be the intersection graph of a G∗, let C1 and
D1 be BSVNSs on V and E, respectively and C2 and D2 be BSVNSs on X and Y
respectively. Then bipolar single valued neutrosophic intersection graph (BSVNIG)
of a BSVNG G = (C1, D1) is a BSVNG P (G) = (C2, D2) such that,

T+
C2

(Xi) = T+
C1

(vi), I
+
C2

(Xi) = I+C1
(vi), F

+
C2

(Xi) = F+
C1

(vi)

T−C2
(Xi) = T−C1

(vi), I
−
C2

(Xi) = I−C1
(vi), F

−
C2

(Xi) = F−C1
(vi)

T+
D2

(XiXj) = T+
D1

(vivj), T
−
D2

(XiXj) = T−D1
(vivj),

I+D2
(XiXj) = I+D1

(vivj), I
−
D2

(XiXj) = I−D1
(vivj),

F+
D2

(XiXj) = F+
D1

(vivj), F
−
D2

(XiXj) = F−D1
(vivj)

∀ Xi, Xj ∈ X and XiXj ∈ Y.

Proposition 3.29. Let G = (A1, B1) be a BSVNG of G∗ = (V,E), and let P (G) =
(A2, B2) be a BSVNIG of P (S). Then BSVNIG is a also BSVNG and BSVNG is
always isomorphic to BSVNIG.

Proof. By the definition of BSVNIG, we have

T+
B2

(SiSj) = T+
B1

(vivj) ≤ min(T+
A1

(vi), T
+
A1

(vj)) = min(T+
A2

(Si), T
+
A2

(Sj)),

I+B2
(SiSj) = I+B1

(vivj) ≥ max(I+A1
(vi), I

+
A1

(vj)) = max(I+A2
(Si), I

+
A2

(Sj)),

F+
B2

(SiSj) = F+
B1

(vivj) ≥ max(F+
A1

(vi), F
+
A1

(vj)) = max(F+
A2

(Si), F
+
A2

(Sj)),

T−B2
(SiSj) = T−B1

(vivj) ≥ max(T−A1
(vi), T

−
A1

(vj)) = max(T−A2
(Si), T

−
A2

(Sj)),

I−B2
(SiSj) = I−B1

(vivj) ≤ min(I−A1
(vi), I

−
A1

(vj)) = min(I−A2
(Si), I

−
A2

(Sj)),

F−B2
(SiSj) = F−B1

(vivj) ≤ min(F−A1
(vi), F

−
A1

(vj)) = min(F−A2
(Si), F

−
A2

(Sj)).

This shows that BSVNIG is a BSVNG.
Next define f : V → S by f(vi) = Si for i = 1, 2, 3, . . . , n clearly f is bijective.

Now vivj ∈ E if and only if SiSj ∈ T and T = {f(vi)f(vj) : vivj ∈ E}. Also

T+
A2

(f(vi)) = T+
A2

(Si) = T+
A1

(vi), I
+
A2

(f(vi)) = I+A2
(Si) = I+A1

(vi),

F+
A2

(f(vi)) = F+
A2

(Si) = F+
A1

(vi), T
−
A2

(f(vi)) = T−A2
(Si) = T−A1

(vi),

I−A2
(f(vi)) = I−A2

(Si) = I−A1
(vi), F

−
A2

(f(vi)) = F−A2
(Si) = F−A1

(vi),

∀ vi ∈ V,
T+
B2

(f(vi)f(vj)) = T+
B2

(SiSj) = T+
B1

(vivj),

I+B2
(f(vi)f(vj)) = I+B2

(SiSj) = I+B1
(vivj),

F+
B2

(f(vi)f(vj)) = F+
B2

(SiSj) = F+
B1

(vivj),

T−B2
(f(vi)f(vj)) = T−B2

(SiSj) = T−B1
(vivj),

I−B2
(f(vi)f(vj)) = I−B2

(SiSj) = I−B1
(vivj),

F−B2
(f(vi)f(vj)) = F−B2

(SiSj) = F−B1
(vivj),

∀ vivj ∈ E. �
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Table 6. BSVNSs of BSVNG.

A1 T+
A1

I+A1
F+
A1

T−A1
I−A1

F−A1

α1 0.2 0.5 0.5 -0.1 -0.4 -0.5
α2 0.4 0.3 0.3 -0.2 -0.3 -0.2
α3 0.4 0.5 0.5 -0.3 -0.2 -0.6
α4 0.3 0.2 0.2 -0.4 -0.1 -0.3

B1 T+
B1

I+B1
F+
B1

T−B1
I−B1

F−B1

x1 0.1 0.6 0.7 -0.1 -0.4 -0.5
x2 0.3 0.6 0.7 -0.2 -0.3 -0.6
x3 0.2 0.7 0.8 -0.3 -0.2 -0.6
x4 0.1 0.7 0.8 -0.1 -0.4 -0.5

Definition 3.30. Let G∗ = (V,E) and L(G∗) = (X,Y ) be its line graph, where
A1 and B1 be BSVNSs on V and E, respectively. Let A2 and B2 be BSVNSs on X
and Y, respectively. The bipolar single valued neutrosophic line graph (BSVNLG)
of BSVNG G = (A1, B1) is BSVNG L(G) = (A2, B2) such that,

T+
A2

(Sx) = T+
B1

(x) = T+
B1

(uxvx), I+A2
(Sx) = I+B1

(x) = I+B1
(uxvx),

I−A2
(Sx) = I−B1

(x) = I−B1
(uxvx), F−A2

(Sx) = F−B1
(x) = F−B1

(uxvx),

F+
A2

(Sx) = F+
B1

(x) = F+
B1

(uxvx), T−A2
(Sx) = T−B1

(x) = T−B1
(uxvx),

∀ Sx, Sy ∈ X and

T+
B2

(SxSy) = min(T+
B1

(x), T+
B1

(y)), I+B2
(SxSy) = max(I+B1

(x), I+B1
(y)),

I−B2
(SxSy) = min(I−B1

(x), I−B1
(y)), F−B2

(SxSy) = min(F−B1
(x), F−B1

(y)),

F+
B2

(SxSy) = max(F+
B1

(x), F+
B1

(y)), T−B2
(SxSy) = max(T−B1

(x), T−B1
(y)),

∀ SxSy ∈ Y.

Remark 3.31. Every BSVNLG is a strong BSVNG.

Remark 3.32. The L(G) = (A2, B2) is a BSVNLG corresponding to BSVNG G =
(A1, B1).

Example 3.33. Consider the G∗ = (V,E) where V = {α1, α2, α3, α4} and E =
{x1 = α1α2, x2 = α2α3, x3 = α3α4, x4 = α4α1} and G = (A1, B1) is BSVNG of
G∗ = (V,E) which is defined in Table 6. Consider the L(G∗) = (X,Y ) such that
X = {Γx1 ,Γx2 ,Γx3 ,Γx4} and Y = {Γx1Γx2 ,Γx2Γx3 ,Γx3Γx4 ,Γx4Γx1}. Let A2 and B2

be BSVNSs of X and Y respectively, then BSVNLG L(G) is given in Table 7.

Proposition 3.34. The L(G) = (A2, B2) is a BSVNLG of some BSVNG G =
(A1, B1) if and only if

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)),

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)),
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Table 7. BSVNSs of BSVNLG.

A1 T+
A1

I+A1
F+
A1

T−A1
I−A1

F−A1

Γx1 0.1 0.6 0.7 -0.1 -0.4 -0.5
Γx2 0.3 0.6 0.7 -0.2 -0.3 -0.6
Γx3

0.2 0.7 0.8 -0.3 -0.2 -0.6
Γx4

0.1 0.7 0.8 -0.1 -0.4 -0.5

B1 T+
B1

I+B1
F+
B1

T−B1
I−B1

F−B1

Γx1
Γx2

0.1 0.6 0.7 -0.1 -0.4 -0.6
Γx2Γx3 0.2 0.7 0.8 -0.2 -0.3 -0.6
Γx3Γx4 0.1 0.7 0.8 -0.1 -0.4 -0.6
Γx4

Γx1
0.1 0.7 0.8 -0.1 -0.4 -0.5

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)),

∀ SxSy ∈ Y.

Proof. Assume that,

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)),

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)),

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)),

∀ SxSy ∈ Y. Define

T+
A1

(x) = T+
A2

(Sx), I+A1
(x) = I+A2

(Sx), F+
A1

(x) = F+
A2

(Sx),

T−A1
(x) = T−A2

(Sx), I−A1
(x) = I−A2

(Sx), F−A1
(x) = F−A2

(Sx)

∀ x ∈ E. Then

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)) = max(I+A2

(x), I+A2
(y)),

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)) = min(I−A2

(x), I−A2
(y)),

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)) = min(T+
A2

(x), T+
A2

(y)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)) = max(T−A2

(x), T−A2
(y)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)) = min(F−A2

(x), F−A2
(y)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)) = max(F+
A2

(x), F+
A2

(y)).

A BSVNS A1 that yields the property

T+
B1

(xy) ≤ min(T+
A1

(x), T+
A1

(y)), I+B1
(xy) ≥ max(I+A1

(x), I+A1
(y)),

I−B1
(xy) ≤ min(I−A1

(x), I−A1
(y)), F−B1

(xy) ≤ min(F−A1
(x), F−A1

(y)),

F+
B1

(xy) ≥ max(F+
A1

(x), F+
A1

(y)), T−B1
(xy) ≥ max(T−A1

(x), T−A1
(y))

will suffice. Converse is straight forward. �
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Proposition 3.35. If L(G) be a BSVNLG of BSVNG G, then L(G∗) = (X,Y ) is
the crisp line graph of G∗.

Proof. Since L(G) is a BSVNLG,

T+
A2

(Sx) = T+
B1

(x), I+A2
(Sx) = I+B1

(x), F+
A2

(Sx) = F+
B1

(x),

T−A2
(Sx) = T−B1

(x), I−A2
(Sx) = I−B1

(x), F−A2
(Sx) = F−B1

(x)

∀ x ∈ E, Sx ∈ X if and only if x ∈ E, also

T+
B2

(SxSy) = min(T+
B1

(x), T+
B1

(y)), I+B2
(SxSy) = max(I+B1

(x), I+B1
(y)),

I−B2
(SxSy) = min(I−B1

(x), I−B1
(y)), F−B2

(SxSy) = min(F−B1
(x), F−B1

(y)),

F+
B2

(SxSy) = max(F+
B1

(x), F+
B1

(y)), T−B2
(SxSy) = max(T−B1

(x), T−B1
(y)),

∀ SxSy ∈ Y . Then Y = {SxSy : Sx ∩ Sy 6= φ, x, y ∈ E, x 6= y}. �

Proposition 3.36. The L(G) = (A2, B2) be a BSVNLG of BSVNG G if and only
if L(G∗) = (X,Y ) is the line graph and

T+
B2

(xy) = min(T+
A2

(x), T+
A2

(y)), I+B2
(xy) = max(I+A2

(x), I+A2
(y)),

I−B2
(xy) = min(I−A2

(x), I−A2
(y)), F−B2

(xy) = min(F−A2
(x), F−A2

(y)),

F+
B2

(xy) = max(F+
A2

(x), F+
A2

(y)), T−B2
(xy) = max(T−A2

(x), T−A2
(y)),

∀ xy ∈ Y.

Proof. It follows from propositions 3.34 and 3.35. �

Proposition 3.37. Let G be a BSVNG, thenM(G) is isomorphic with sd(G)∪L(G).

Theorem 3.38. Let L(G) = (A2, B2) be BSVNLG corresponding to BSVNG G =
(A1, B1).

(1) If G is weak isomorphic onto L(G) if and only if ∀ v ∈ V, x ∈ E and G∗ to
be a cycle, such that

T+
A1

(v) = T+
B1

(x), I+A1
(v) = T+

B1
(x), F+

A1
(v) = T+

B1
(x),

T−A1
(v) = T−B1

(x), I−A1
(v) = T−B1

(x), F−A1
(v) = T−B1

(x).

(2) If G is weak isomorphic onto L(G), then G and L(G) are isomorphic.

Proof. By hypothesis, G∗ is a cycle. Let V = {v1, v2, v3, . . . , vn} and E = {x1 =
v1v2, x2 = v2v3, . . . , xn = vnv1}, where P : v1v2v3 . . . vn is a cycle, characterize a

BSVNS A1 by A1(vi) = (pi, qi, ri, p
′

i, q
′

i, r
′

i) and B1 by B1(xi) = (ai, bi, ci, a
′

i, b
′

i, c
′

i)
for i = 1, 2, 3, . . . , n and vn+1 = v1. Then for pn+1 = p1, qn+1 = q1, rn+1 = r1,

ai ≤ min(pi, pi+1), bi ≥ max(qi, qi+1), ci ≥ max(ri, ri+1),

a
′

i ≥ max(p
′

i, p
′

i+1), b
′

i ≤ min(q
′

i, q
′

i+1), c
′

i ≤ min(r
′

i, r
′

i+1),

for i = 1, 2, 3, . . . , n.
Now let X = {Γx1

,Γx2
, . . . ,Γxn} and Y = {Γx1

Γx2
,Γx2

Γx3
, . . . ,ΓxnΓx1

}. Then
for an+1 = a1, we obtain

A2(Γxi) = B1(xi) = (ai, bi, ci, a
′

i, b
′

i, c
′

i)
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andB2(ΓxiΓxi+1) = (min(ai, ai+1),max(bi, bi+1),max(ci, ci+1),max(a
′

i, a
′

i+1),min(b
′

i, b
′

i+1),

min(c
′

i, c
′

i+1)) for i = 1, 2, 3, . . . , n and vn+1 = v1. Since f preserves adjacency, it in-
duce permutation π of {1, 2, 3, . . . , n},

f(vi) = Γvπ(i)vπ(i)+1

and

vivi+1 → f(vi)f(vi+1) = Γvπ(i)vπ(i)+1
Γvπ(i+1)vπ(i+1)+1

,

for i = 1, 2, 3, . . . , n− 1. Thus

pi = T+
A1

(vi) ≤ T+
A2

(f(vi)) = T+
A2

(Γvπ(i)vπ(i)+1
) = T+

B1
(vπ(i)vπ(i)+1) = aπ(i).

Similarly, p
′

i ≥ a
′

π(i), qi ≥ bπ(i), ri ≥ cπ(i), q
′

i ≤ b
′

π(i), r
′

i ≤ c
′

π(i) and

ai = T+
B1

(vivi+1) ≤ T+
B2

(f(vi)f(vi+1))

= T+
B2

(Γvπ(i)vπ(i)+1
Γvπ(i+1)vπ(i+1)+1

)

= min(T+
B1

(vπ(i)vπ(i)+1), T+
B1

(vπ(i+1)vπ(i+1)+1))

= min(aπ(i), aπ(i)+1).

Similarly, bi ≥ max(bπ(i), bπ(i)+1), ci ≥ max(cπ(i), cπ(i)+1), a
′

i ≥ max(a
′

π(i), a
′

π(i)+1),

b
′

i ≤ min(b
′

π(i), b
′

π(i)+1) and c
′

i ≤ min(c
′

π(i), c
′

π(i)+1) for i = 1, 2, 3, . . . , n. Therefore

pi ≤ aπ(i), qi ≥ bπ(i), ri ≥ cπ(i), p
′

i ≥ a
′

π(i), q
′

i ≤ b
′

π(i), r
′

i ≤ c
′

π(i)

and

ai ≤ min(aπ(i), aπ(i)+1), a
′

i ≥ max(a
′

π(i), a
′

π(i)+1),

bi ≥ max(bπ(i), bπ(i)+1), b
′

i ≤ min(b
′

π(i), b
′

π(i)+1),

ci ≥ max(cπ(i), cπ(i)+1), ci ≤ min(c
′

π(i), c
′

π(i)+1)

thus

ai ≤ aπ(i), bi ≥ bπ(i), ci ≥ cπ(i), a
′

i ≥ a
′

π(i), b
′

i ≤ b
′

π(i), c
′

i ≤ c
′

π(i)

and so

aπ(i) ≤ aπ(π(i)), bπ(i) ≥ bπ(π(i)), cπ(i) ≥ cπ(π(i))
a

′

π(i) ≥ a
′

π(π(i)), b
′

π(i) ≤ b
′

π(π(i)), c
′

π(i) ≤ c
′

π(π(i))

∀ i = 1, 2, 3, . . . , n. Next to extend,

ai ≤ aπ(i) ≤ . . . ≤ aπj(i) ≤ ai, a
′

i ≥ a
′

π(i) ≥ . . . ≥ a
′

πj(i) ≥ a
′

i

bi ≥ bπ(i) ≥ . . . ≥ bπj(i) ≥ bi, b
′

i ≤ b
′

π(i) ≤ . . . ≤ b
′

πj(i) ≤ b
′

i

ci ≥ cπ(i) ≥ . . . ≥ cπj(i) ≥ ci, c
′

i ≤ c
′

π(i) ≤ . . . ≤ c
′

πj(i) ≤ c
′

i

where πj+1 identity. Hence

ai = aπ(i), bi = bπ(i), ci = cπ(i), a
′

i = a
′

π(i), b
′

i = b
′

π(i), c
′

i = c
′

π(i)

∀ i = 1, 2, 3, . . . , n. Thus we conclude that

ai ≤ aπ(i+1) = ai+1, bi ≥ bπ(i+1) = bi+1, ci ≥ cπ(i+1) = ci+1

a
′

i ≥ a
′

π(i+1) = a
′

i+1, b
′

i ≤ b
′

π(i+1) = b
′

i+1, c
′

i ≤ c
′

π(i+1) = c
′

i+1
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which together with

an+1 = a1, bn+1 = b1, cn+1 = c1, a
′

n+1 = a
′

1, b
′

n+1 = b
′

1, c
′

n+1 = c
′

1

which implies that

ai = a1, bi = b1, ci = c1, a
′

i = a
′

1, b
′

i = b
′

1, c
′

i = c
′

1

∀ i = 1, 2, 3, . . . , n. Thus we have

a1 = a2 = . . . = an = p1 = p2 = . . . = pn

a
′

1 = a
′

2 = . . . = a
′

n = p
′

1 = p
′

2 = . . . = p
′

n

b1 = b2 = . . . = bn = q1 = q2 = . . . = qn

b
′

1 = b
′

2 = . . . = b
′

n = q
′

1 = q
′

2 = . . . = q
′

n

c1 = c2 = . . . = cn = r1 = r2 = . . . = rn

c
′

1 = c
′

2 = . . . = c
′

n = r
′

1 = r
′

2 = . . . = r
′

n

Therefore (a) and (b) holds, since converse of result (a) is straight forward. �

4. Conclusion

The neutrosophic graphs have many applications in path problems, networks and
computer science. Strong BSVNG and complete BSVNG are the types of BSVNG. In
this paper, we discussed the special types of BSVNGs, subdivision BSVNGs, middle
BSVNGs, total BSVNGs and BSVNLGs of the given BSVNGs. We investigated
isomorphism properties of subdivision BSVNGs, middle BSVNGs, total BSVNGs
and BSVNLGs.
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