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PREFACE  
 
 

Authors in this book study the notion of Smarandache 

element in multiset semigroups. It is important to keep on 

record that we define four operations on multisets viz. +, X, 

union and intersection in a free way. Thus all sets finite or 

infinite order contribute to infinite order multisets and the 

semigroup under any of these operations is of infinite order.   

We in this book define a new notion called n- multiplicity 

multiset using any set S, denoted by n-M(S). This n-multiplicity 

multiset contains all set got using S where the number of times 

an element in the multiset M(S) cannot repeat more than n-

times. On n-multiplicity multisets we cannot define + or  or  

as in case of multisets, for closure axiom fails in all cases. We 

overcome this problem by the method of levelling. We have 

defined l(+) where l denotes the levelling of addition or levelled 

addition. It is proved that n-multiplicity of M(S) under l(+) is a 

semigroup of finite order if S is finite and if S is infinite {n-
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multiplicity M(S) , l(+)} is a commutative semigroup of infinite 

order. Similarly in case of  and  we use levelling. 

Several interesting properties are derived and one of the 

innovations made here is the defining special Smarandache 

elements on these semigroups, like Smarandache special 

idempotents, Smarandache special zero divisors and so on.   

 We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 
W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 
 
 



 

Chapter One 

 

 

BASIC CONCEPTS 

 

 In this chapter we just proceed onto define some basic 
concepts which are essential for an easy understanding of the 
other chapters and the algebraic structures defined on multisets. 
We first list out the properties of power set, semilattices and 
lattices. 

 A power set of a nonempty set S is the collection of all 
subsets of S together with S and  denoted by P(S); P(S) = {All 
subsets of S including S and the empty set }. 

Example 1.1.  Let S = {a1, a2, a3, a4} be set of four elements the 
power set of S is P(S). P({a1, a2, a3, a4}) = {{a1}, {a2}, {a3}, 
{a4}, , {a1, a2}, {a1, a3} {a1, a4}, {a2, a3} {a2, a4}, {a3, a4}, {a1, 
a2, a3}, {a1, a2, a4}, {a1, a3, a4}, {a2, a3, a4}, {a1, a2, a3, a4}}. 
Clearly |P(S)| = 24 so if |S| = n then |P(S)| = 2n and the power set 
of a finite set is always finite. 

 It is well know P(S) under union of set ‘’ is a 
semilattice. 
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Further P(S) is a partially ordered set {P(S), } is a 
commutative idempotent semigroup of finite order. 

 Similarly P(S) under intersection of set is a semilattice 
or {(P(S), } is again a finite idempotent semigroup which is 
commutative. 

 Further it has been proved that {P(S), , } is a lattice 
and this lattice is complemented and distributive hence a 
Boolean algebra of order 2|S|. We would be using this concept as 
the multisets in general under the unrestricted union and 
intersection is not a Boolean algebra. Further the order of 
multisets of any set S finite or infinite is of infinite order. 

 For instance if S = {a1, a2, a3} we see P(S) = {, {a1}, 
{a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3}, {a1, a2, a3}} is the power 
set associated with S and |S| = 8 = 23. The Boolean algebra B 
associated with P(S) is as follows. 

 

 

 

 

 
Figure 1.1 

 We define B as a Boolean algebra of order 8. 

B = {a1, a2} 

{a1} 

{} 

{a3} 

{a1, a2, a3} 

{a2, a3} {a1, a3} 

{a2} 
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Now we proceed onto describe multisets and the 

operations which we have used in this book.  

 Definition 1.1: Let S be a finite or infinite set. Multiset of S 
 denoted by M(S) = {collection of all subsets of S where in the 
subsets any element of S is repeated from one time to infinitely 
many times)}.  

Thus if S ={a}; a singleton set, the multiset of S denoted 
by M(S) = {, {a}, {a, a}, {a, a, a} … , {a, a, a, ….-infinite 
number of times}. Hence M(S) is always infinite immaterial of 
whether S is finite or infinite.  

 (i). In this first place a multiset of any set S finite or infinite is 
always infinite and is denoted by M(S).  

(ii) We illustrate how  operation is defined on M(S). 

If A and B  M(S), A  B contains all elements of A and 
all elements of B; no restrictions on the repetitions of the 
elements. 

Thus if A = {a1, a1, a1, a2, a2, a3, a8, a8, a8} and B = {a1, a1, 
a2, a2, a2, a2, a2, a2, a2, a9, a9}  M(S) where S = {a1, a2, …, a9} 
A  B = {a1, a1, a1, a2, a2, a3, a8, a8, a8, a1, a1, a2, a2, a2, a2, a2, a2, 
a2, a2, a9, a9}. 

This is the way we have define ‘’ operation on 
multisets. 

Hence if we take infinite union of many sets then the 
resulting set is infinite though |S| = 9. 
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 iii) We define intersection as the common elements 
occurring in A and B so A  B = {a1, a1, a2, a2} and nothing 
more, that is intersection is the usual intersection. 

 iv) Since M(S) is a partially ordered set we see {M(S), , 
} is a lattice. 

 We will show that in general {M(S), , } the lattice of 
M(S) is not a distributive lattice. It cannot be a Boolean algebra. 

 We now give an example where the distributive law fails. 

 Let A = {0, 0, 0, 1, 1, 2}, B = {0, 0, 3, 1, 4} and C = {0, 
1, 1, 5, 3, 7}  M(S) where S = {0, 1, 2, …, 8}.  

 Consider A  (B  C) = {0, 0, 0, 1, 1, 2}  [{0, 0, 3, 1, 
4}  {0, 1, 1, 5, 3, 7}] = {0, 0, 0, 1, 1, 2}  {0, 0, 0, 1, 1, 1, 3, 
3, 5, 7, 4} = {0, 0, 0, 1, 1}    I 

Consider (A  B)  (B  C) = [{0, 0, 0, 1, 1, 2}  {0, 0, 3, 1, 
4}]  [{0, 0, 0, 1, 1, 2}  {0, 1, 1, 5, 3, 7}] = {0, 0, 1}  {0, 1, 
1} = {0, 0, 0, 1, 1, 1}     II 

 Clearly I and II are different hence A  (B  C)  (A  
B)  (A  C) in general for A, B, C  M(S). 

 Thus we see  and do not in general follow the 
distributive law hence {P, , } cannot be a distributive lattice. 

 We recall the definition a Smarandache lattice in the 
following. 
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Definition 1.2. Let {L, , } be a lattice. We call L a 
Smarandache lattice if there exists a  B  L such that {B, , 
} is a Boolean algebra of order four. 

 For more refer [39]. 

 Next we proceed onto define and describe the properties 
of Smarandache structures. 

Definition 1.3. Let {S, ×} be a semigroup {H, ×}  {S,×} be a 
subsemigroup of S. 

 If {H, ×} is a group we define {S, ×} to be a 
Smarandache semigroup or in short S-semigroup. 

 We give an example or two. 

Example 1.2. Let {Z, ×} be the semigroup under product. P = 
{{1, – 1}, ×}  {Z, ×} is a cyclic group of order two given by 
the following example. 

× –1 1 

–1 1 –1 

1 –1 1 
 

 Thus {Z, ×} is a S-semigroup. 

Example 1.3.  Let S(3) = {Symmetric semigroup got from {1, 2, 
3} by taking all mappings from {1, 2, 3} to {1, 2, 3}} S(3) 
under composition of mappings is a semigroup known as the 
symmetric semigroup [17]. Clearly S3 is the group of 
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permutations on {1, 2, 3}; S3  S(3).  Hence {S(3), composition 
maps} is a S-semigroup. For more [17]. 

 We now proceed onto define Smarandache zero divisors 
and Smarandache weak zero divisors in semigroups. 

Definition 1.4.  Let {S, ×} be a semigroup with 0  S. We say x, 
y  S \ {0} is a zero divisor if x × y = 0. 

 x, y  S \ {0} is defined as a Smarandache zero divisor 
(S-zero divisor) if there exists a, b   S \ {x, y, 0} such that 

 x × a = 0    or a × x = 0 

 y × b = 0   or  b × y = 0 

and a × b = 0. 

Example 1.4. Let S = {Z12, ×} be the semigroup under product 
modulo 12. 

 We have  

 4 × 3 = 0,     4 × 6 = 0  

 6 × 10 = 0,   2 × 6 = 0,    8 × 3 = 0 and 8 × 6 = 0 

 x = 8 and y = 3 then x × y = 0. 

 Choose a = 4 and b = 6 we see 6 × 8 = 0    4 × 3 = 0 

and 4 × 6 = 0  so {x, y} is a Smarandache zero divisor in  S. 

 Now we proceed onto give an example of a Smarandache 
zero divisor. 
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 Consider 6, 4  Z12 we see 6 × 4 = 0, to prove 6, 4  Z12 
is a S-weak zero divisor we have to show there exists a, b  Z12 
\ {6, 4, 10} with a × b  0  a × 6 = 0 and b × 4 = 0. Take 3, 2  
Z12. We see 3 × 4 = 0 and 6 × 2 = 0 but 3 × 2 = 6  0. Hence {6, 
4} is a S-weak zero divisor of Z12. 

 Results in this direction for rings can be had from [16]. 

 Now we proceed onto define idempotents and 
Smarandache idempotents in case of semigroups with 
idempotents. 

Definition 1.5. Let {S, ×} be a semigroup suppose x  S is an 
idempotent; that is x2 = x; we call x a Smarandache idempotent 
if there exists a  S with a2 = x and ax = x or ax = a. 

Example 1.5. Let S = {Z10, ×} be the semigroup under product 
modulo 10. 

 We see 6  Z10 is such that 62 = 6 is an idempotent of Z10. 

 Consider 4  Z10, 4 × 4  6 (mod 10) and 6 × 4 = 4 (mod 
10). Hence 6 is a Smarandache idempotent of Z10. 

Example 1.6.  Let S = {Z12, ×} be a semigroup. Clearly 4  Z12 
is such that 4 × 4  4 (mod 12). We see 8  Z12 is such that 8 × 
8  4 (mod 12) and 8 × 4 = 8 (mod 12)  so 4 is a S-idempotent 
of Z12. 

 More properties can be had from [17] 

 We have used in this book the notion of natural product 
of matrices. 
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Definition 1.6. Let N and M be two m × n matrices m  n where 
M = (mij) and N = (nij). We define the natural product of M with 
N denoted by ×n as M ×n N = (mij × nij); 1  i  n and 1   j  
m, that is component multiplication is done. 

 Clearly the classical matrix product can be defined only if 
there exists a compatibility of multiplication; that is if A is a n × 
m matrix if A × B is to be defined B must only be a m × t matrix 
if n  t. B × A is not defined. For more refer [30]. 

 We will just give an example or two of this situation. 

Example 1.7. Let  

A = 
3 0 1 4 8
0 5 6 9 1

 
 
 

 

and  

B =
2 4 9 9 2
9 9 9 1 9
 
  

 

be two 2 × 5 matrices. Under usual or classical product A × B is 
not defined. But the natural product ×n is defined for A and B as 
well as B and A. 

A ×n B = 
3 0 1 4 8
0 5 6 9 1

 
 
 

 ×n 
2 4 0 9 2
9 0 9 1 9
 
  

  

  = 
3 2 0 4 1 0 4 9 8 2
0 9 5 0 6 9 9 1 1 9
      

      
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   = 
6 0 0 36 16
0 0 54 9 9

 
  

. 

 It is easily seen B ×n A = A ×nB. 

 Thus under natural product the matrix multiplication is 
commutative. 

 For more about natural product ×n and their related 
properties refer [30]. 

 Next we just keep on record that multisets defined in this 
book are not the usual classical ones used  by [1, 2]. 

 We define ‘’ as free one so the multisets are of infinite 
cardinality immaterial of the basic set. 

 Further  happens to be as that of the classical one. 

 All multisets under ‘’ and ‘’ happen to be lattice. In 
fact they are Smarandache lattices as they contain the Boolean 
algebra of order 22. Though X is the basic set used and M(X) is 
the multiset of X then P(X) the power set of X is always a 
subset of M(X), but we see {P(X), , } is not a Boolean 
algebra of order 2|x| and M(X) can be finite or infinite. 

 Thus we see {M(X), , is a lattice which does not 
contain the Boolean algebra of P(X) but contains always a 
Boolean algebra of order four, hence the multiset lattice {M(X), 
, } is a Smarandache multiset lattice. 

 Next one the innovative portion of this book is that we 
define multisets on a semigroup under product or sum and we 
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induce the product or sum operation on the multisets and those 
multisets also become a semigroup under product or sum 
respectively. 

 We study mainly the special Smarandache elements 
present in them. 

 We just enumerate some of the possible applications of 
these new algebraic structures introduced in [2]. 

 Some properties of query languages for bags can be had 
from [6]. 

  Various applications of multisets are becoming 
fundamental in combinatorics. Multisets have become an 
important tool in databases. 

 Certainly with algebraic structures imposed on them and 
some innovative new techniques in defining the very multisets 
and operations on them, they in due course of time will find 
much more applications in database and data storages. 



 

Chapter Two 

 

 

SMARANDACHE ELEMENTS IN MULTISET 

SEMIGROUPS 

 

 In this  chapter we proceed onto describe the other type of 
operations on multisets other than ‘’ (union), ‘’ 
(intersection) and \ existing in the literature which are briefly 
discussed in chapter I of this book. 

 Now before we proceed to define operations + and × on 
multisets, we discuss some of the vital properties associated 
with them. 

 Consider the subsets of the reals R which are multisets. 
Clearly the collection of all multisets of R are of infinite 
cardinality. In fact some of the multiset can be even of infinite 
cardinality. We will indicate some operations on them. 

 Let A = {1, 1, 2} be a multiset  

A + A = {1, 1, 2} + {1, 1, 2} 

= {2, 2, 3, 2, 2, 3, 3, 3, 4}. 
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 Thus o(A) = 3 and o(A + A) = 9. 

 A × A  = {1, 1, 2} × {1, 1, 2} 

   = {1, 1, 2, 1, 1, 2, 2, 2, 4}. 

We see o(A × A) = 9. 

However A × A  A + A. 

Consider (A + A) + A = {2, 2, 3, 2, 2, 3, 3, 3, 4} + {1, 1, 2} 

= {3, 3, 4, 3, 3, 4, 4, 4, 5, 3, 3, 4, 3, 3, 4, 4, 4, 5, 5, 5, 6, 4, 4, 5, 
4, 4, 5}. 

 o(A + A + A) = 27. 

(A × A) × A = {1, 1, 2, 1, 1, 2, 2, 2, 4} × {1, 1, 2} 

 = {1, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 2, 2, 4,  

   2, 2, 4, 2, 2, 4, 4, 4, 8}. 

(A × A × A) = 27. 

However (A + A) + A  (A × A) × A and (A + A) + A = A + (A 
+ A) and (A × A) × A = A × (A × A). 

 Now we will check will (A + B) + C = A + (B + C) 

Where A, B and C are three distinct sets. 

 Let A = {3, 1, 1, 4}, B = {0, 2, 0, 1, 6, 5} and C = {7, 5, 
5, 10} be three multisets. 

We find (A + B) + C = ({3, 1, 1, 4} + {0, 0, 2, 1, 6, 5}) + {7, 5, 
5, 10} 
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 = {3, 1, 1, 4, 3, 1, 1, 4, 5, 3, 3, 6, 4, 2, 2, 5, 9, 7, 7, 10, 8, 
6, 6, 9} + {7, 5, 5, 10} = {10, 8, 8, 11, 10, 8, 8, 11, 12, 10, 10, 
13, 11, 9, 9, 12, 16, 14, 14, 17, 15, 13, 13, 16, 8, 6, 6, 9, 8, 6, 6, 
9, 10, 8, 8, 11, 9, 7, 7, 10, 14, 12, 12, 15, 13, 11, 11, 14, 8, 6, 6, 
9, 8, 6, 6, 9, 10, 8, 8, 11, 9, 7, 7, 10, 14, 12, 12, 15, 13, 11, 11, 
14, 13, 11, 11, 14, 15, 13, 13, 16, 14, 12, 12, 15, 19, 17, 17, 20, 
18, 16, 16, 19} 

o(A + B + C)  = 96 

   = o(A) × o(B) × o(C) 

It is easily verified A × (B × C) = (A × B) × C and (A + B) + C 

= A + (B + C) with o(A + B + C) = o(A × B × C) = o(A) × o(B) 
× o(C). 

When finite order multisets are taken we see the sum or product 
defined on them finite number of times using only finite number 
of elements from  the multisets, yields only a finite order 
multiset. 

 Thus if M(R) = {collection of multisets from the set of 
real} then M(R) is of infinite order and M(R) contains both 
finite and infinite multisets. 

 Further M(R) contains P(R) the power set of R which is 
also of infinite order but P(R) contains no multiset. In fact we 
make it as a convention to accept the power set of the set of 
reals R to be included as a multiset, however if a researcher 
wishes to make a proper difference he/she can call the multiset 
to be a collection not including the power set of R. 

 It is upto the needs of the researcher. 
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 Further the sum of multiset A with B from P(R), the 
power set of R yields only a multiset. 

 However it is important to keep on record whether the set 
S is finite or infinite the multiple set M(R) (or M(S)) is always 
infinite. 

 We can define freely the four operations +, ×,  and . 

 Under each of these M(S) is a semigroup of infinite order 
which is commutative. 

 We will illustrate these situations by some examples. 

Example 2.1. Let S = {0, 1, 2, 3} = Z4. Define M(S) to be the 
multiset of S. Clearly M(S) is of infinite order 

 Consider x = {0, 2, 2, 2, 0, 0, 0}  M(S). We see x + x = 
{0, 0, 0, 0, 2, 2, 2, 0,  0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 
2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0 , 0, 2, 2, 2, 2}  
M(S). 

 o(x + x) = 49 whereas o(x) = 7. 

Thus we see 
n-times

| x x ... x |    = 7n; as n    o(x + x + … + x) 

 . It is easily prove {M(S), +} is an infinite commutative 
semigroup of infinite order. 

 Next consider 

 x  x = {0, 0, 0, 0, 2, 2, 2}  {0, 0, 0, 0, 2, 2, 2}  

= {0, 0, 0, 0, 2, 2, 2}  M(S) = x. 
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Thus {M(S), } can be easily proved to be a commutative 
semigroup of infinite order. 

 Infact {M(S), } has subsemigroups of finite order and 
every x  M(S) is such that x  x = x is an idempotent. 

 Thus {M(S), } is a semilattice of infinite order. 

 Likewise {M(S), } is not a semilattice for 

 if x = {2, 2, 2, 0, 0, 0, 0}  M(S) 

 x  x = {2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0}  M(S). 

x  x ≠ x and if |x| = 7 then | x  x| = 14 that |x  x  x| = 3 × 7 
and further 

n-times

| x x ... x |    = 7n. 

 Consider M(S) under the operation + 

 x + x = {2, 2, 2, 0, 0, 0, 0} + {2, 2, 2, 0, 0, 0, 0} 

 = {0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2,  
    0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 
    0, 0, 0, 0, 2, 2, 2}  M(S) 
 o(x + x) = 7 x 7 = 49. 
{M(S), +} is a commutative semigroup of infinite order. 

 We consider the product operation on M(S). For the same 
x  M(S). We see x × x = {0, 0, 0, 0, 2, 2, 2} × {0, 0, 0, 0, 2, 2, 
2} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … ,0}. 

 Thus we see there are special multiset nilpotents, which 
we choose call x as special because it is such that  
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 x  × x = 
49-times

{0,...,0}  

We have x  M(Z4) such that x × x = {0} or {0, 0}, {0, 0, 0}, 
{0, 0, 0, 0} and so on 

n-times

{0,0,0,...,0} . 

These will be called only as special multiset nilpotents. 

 Further we wish to record that we have in multisets 
infinite number of zeros. 

 Next let x = {2, 2, 0, 0, 0, 0, 2, 0, 2, 2, 2} and y = {2, 2, 
2}  M(Z4). We see x × y = {2, 2, 2, 2, 2, 2, 0, 0, 0, 0 } × {2, 2, 
2} = 

30-times

{0,0,0,0...,0,0,0} . 

 Thus x, y in M(Z4) is a special multiset zero divisor. 

 We have infinitely many special multiset zero divisors in 
M(Z4). 

 In fact {M(Z4), ×} is an infinite semigroup which has 
infinite number of special multiset nilpotents and special 
multiset zero divisors. 

 Also all multiset subsemigroups are of infinite order. 
Further {M(Z4), ×} has no nontrivial multiset idempotents. 

 It is easily verified that {M(Z4), ×} can contain ideals of 
infinite order also. It can have infinite order subsemigroups. 

 We see M({0, 2})  M(Z4) is an ideal of infinite order 
under ×. 
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 Infact when we say multiset zero ideal it will contain 
{{0}, {0, 0}, {0, 0, 0}, …, {0, 0, 0, …, 0} and soon}. It is 
pertinent to keep on record that in case of semigroup under 
product the zero ideal is just the element ({0}). 

 But in case of multiset semigroups under product the zero 
ideal is an infinite collection of zeros given by {{0}, {0, 0}, {0, 
0, 0}, …, {0, 0, 0, …, 0} and so on}. 

 Now we show the existence of non zero ideals in case of 
infinite set S and a finite set P. 

Example 2.2. Let Z be the set of integers M(Z) be the multiset 
of Z. {M(Z), ×} be the semigroup. 

 Clearly P = {M(2n) / n  Z)} be the multiset of even 
integers. We see P is an ideal of infinite order. 

 Infact for every prime p  Z we have {M(px) / x  Z}  
M(Z) is an ideal of {M(Z), ×}. 

 Thus {M(Z), ×} has finite number of ideals all of which 
are of infinite order. 

Example 2.3. Let R be the field of reals. M(R) be the multiset of 
R. {M(R), ×} is an infinite semigroup. 

 Clearly {M(R), ×} has no nontrivial ideal. The only 
trivial proper ideal being {{0}, {0, 0}, {0, 0, 0}, …, {0, 0, 0, …, 
0}}. 

 Thus if F is a field the multisets of F under product does 
not yield any proper special nilpotents or special zero divisors 
or any nontrivial ideals. 
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Example 2.4. Let S = Z11 and M(Z11) be the collection of 
multisets of Z11 = S. We see {M(Z11), ×} is a semigroup which 
has no nontrivial ideals only zero ideal {{0}, {0, 0}, {0, 0, 0}, 
…, {0, 0, …,0}}. Further M(Z11) has no special zero divisors or 
nilpotents. 

 Thus M(S) has no special idempotents what ever be the 
set S. 

 In view of all these we put forth the following theorem. 

Theorem 2.1. Let {S, ×} be a semigroup of finite or infinite 
order. M(S) be the multiset of S.  

i) {M(S), ×} is always a semigroup of infinite order 
ii) {M(S), ×} has special multiset nilpotents and 

special multiset zero divisors if and only if {S, ×} 
has nilpotents and zero divisors respectively. 

iii) {M(S), ×} has multiset nontrivial ideals if and 
only if {S, ×} has nontrivial ideals. 

iv) {0} is the zero ideal of {S, ×} then {{0}, {0, 0}, 
{0, 0, 0}, …, {0, 0, 0, …, 0} and so on} is the 
special zero ideals of {M(S), ×}. 

v) Whatever be S, {M(S), ×} has no nontrivial 
multiset idempotents. 

 Proof is left as an exercise to the reader. 

 We now show how the set {S, ×} has idempotents but 
{M(S), ×} has no idempotents. 

Example 2.5. Let {Z12, ×} be the semigroup under product 
modulo 12. {M(Z12, ×} be the multiset semigroup on {Z12, ×}. 
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 We see 4 and 9 are idempotents of Z12 but any multiset 
with 4 and 9 or 4 or 9 does not contribute for an idempotent. 
However trivial idempotents of M(Z12) which are not multisets 
are {4} and {9}. 

 For {4} × {4} = {4} and {9} × {9} = {9}. Trivial ones  
being {1} and {0}. 

 However even trivial idempotents does not occur in case 
of M(Z12). If {0, 0}  M(Z12), {0, 0} × {0, 0} = {0, 0, 0, 0}  
{0, 0}. 

 Similar if {1, 1, 1}  M(Z12) {1, 1, 1} × {1, 1, 1}  

 =  {1, 1, 1, 1, 1, 1, 1, 1, 1}  {1, 1, 1 }. 

 Thus {M(Z12),×} has nontrivial multiset idempotents. 

 Next we proceed onto give some multiset zero divisors of 
{M(Z12), ×}. 

 Consider x = {6, 3, 9, 0, 0, 6, 6, 3, 9, 9, 3} and y = {4, 4, 
4, 8, 8, 8, 8, 4, 0, 0, 0}  M(Z12) 

 x × y = {6, 3, 9, 0, 0, 6, 6, 3, 9, 9, 3} × {4, 4, 8, 4, 8, 8, 8, 
4, 0, 0, 0} = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …, 

121-times

0,0,...,0} . 

 Thus x and y are special multiset zero divisors of M(Z12) 
as 6, 3 and 9 are such that  

6 × 4  0 (mod 12); 3 × 4  0 (mod 12), 

6 × 8 = 0 (mod 12); 3 × 8  0 (mod 12) and 



26 Smarandache Special Elements in Multiset Semigroups  
 
 
 
 
 
 
 

9 × 4  0 (mod 12) and 9 × 8  0 (mod 12) 

are zero divisors of Z12. 

 However the idempotents 9 and 4 in Z12 cannot contribute 
to any form of idempotent multisets in M(Z12) as if order of the 
multiset x is n then that of x × x will be n × n hence we cannot 
get any multiset idempotents other than {9}, {4}, {0} and {1}. 

 But nontrivial zero divisors Z12 contribute to multiset 
special zero divisors of {M(Z12), ×}. 

 Hence if {S, ×} has zero divisors or nilpotents then 
{M(S), ×} will also have special multiset zero divisors and 
special multiset nilpotents. 

 We in this book are not interested in studying the multiset 
with the operations defined by [2, 6]. 

 We further can prove that if {Zn, ×} has Smarandache 
zero divisors then {M(Zn), ×} will have infinite number of 
Smarandache special zero divisors. 

 To this end we will supply an example or two. 

Example 2.6. Let {M(Z4), ×} be the multiset of Z4. Clearly 
M(Z4) has infinite number of zero divisors and special 
Smarandache zero divisors and no Smarandache special weak 
multiset zero divisors. 

Example 2.7. Let {Z6, ×} be the semigroup {M(Z6), ×} be the 
multiset semigroup {M(Z6), ×} has special multiset 
Smarandache zero divisors and no special multiset S-weak zero 
divisors. This is true since {Z6, ×} has no S-zero divisors or S-
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weak zero divisors. However {M(Z6), ×} has infinite collection 
of special multiset zero divisor. {Z6, ×} also has zero divisor. 

 We see if x = {3, 3, 0, 0, 3, 0, 3, 3} and y = {2, 2, 4, 4, 4, 
4, 0, 0, 0}  M(Z6). 

 Clearly x × y = {0, 0, 0, 0, 0, 
72-times

,...,0,0,0}  is a special 

multiset zero divisors. 

 However as {Z6, ×} has no S-zero divisors and S-weak 
zero divisors. {Z6, ×} has idempotent by {M(Z6), ×} has no 
nontrivial multiset idempotents but {Z6, ×} has 3  Z6; 3 × 3 = 
3  (mod 6). 

Example 2.8: Let {Z12, ×} be the semigroup under product 
modulo 12. {M(Z12), ×} be the multiset semigroup. 

The zero divisors of Z12 are  
 3 × 4  0 (mod 12), 2 × 6  0(mod 12); 
 3 × 8  0 (mod 12), 6 × 4  0 (mod 12); 
 6 × 8  0 (mod 12), 9 × 4  0 (mod 12) 
and 9 × 8  0 (mod 12). 

 The S-zero divisors of {Z12, ×} are 

 6 × 8  0 (mod 12) and  3 × 8  0 (mod 12) 
 6.2  0 (mod 12) but 3.2  0 (mod 12) 

 Thus {Z12, ×} has both S-zero divisors and S-weak zero 
divisors. 
 So if x = {0, 6, 0, 6, 6} and 9 = {8, 8, 8, 8, 0} we see  
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x  × y  
25-times

{0,0,0,...,0} . z = {3, 0, 3, 3, 3}  M(Z12) is such that  

z × y  
25-times

{0,0,0,...,0}  but z × x  {0, 0, …, 0}. 

 Thus we can prove {Z12, ×} has S-zero divisors and S-
weak zero divisors then {M(Z12), ×} also has Smarandache 
special multiset zero divisors and Smarandache special multiset 
weak zero divisors. 

 Infact it is left as an exercise for the reader to prove the 
following theorem. 

Theorem 2.2. Let {Zn, ×} be the semigroup under product 
modulo n. {M(Zn), ×} be the multiset semigroup. 

i) {M(Zn), ×} has special multiset S-zero divisors if 
{Zn, ×} has S-zero divisors. 

ii) {M(Zn), ×} has Smarandache special multiset 
weak zero divisors if and only if {Zn, ×} S-weak 
zero divisors. 

 Next we proceed onto prove and describe for what values 
of n; {M(Zn), ×} has nontrivial S-zero divisors and S-weak 
divisors. 

Example 2.9. Let S = {Z23, ×} be the semigroup. {M(Z23), ×} be 
the multiset semigroup. S has no zero divisors, S-zero divisors 
and S-weak zero divisors. Hence {M(Z23),×} has no nontrivial 
multiset zero divisors, S-multiset special zero divisors and S-
multiset special weak zero divisors. 
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 In view of this we leave the following result as an 
exercise for the reader. 

Theorem 2.3. Let S = {Zp, ×} be the semigroup under product. 
B = {M(Zp), ×} be the multiset semigroup under product. B has 
no special multiset zero divisors, S-multiset special zero 
divisors and S-multiset special weak zero divisors. 

 We define these as semidomain group or semidomains. 

Definition 2.1. Let S = {P, ×} be  semigroup. We define S as a 
semidomains or semidomain group or domain semigroup if  

i) S has zero 
ii) S has no zero divisors 
iii) S has no idempotents 
iv) S has no units 

 We first provide some examples of them. 

Example 2.10. Let S = {Z47, ×} be the semigroup under product 
modulo 47. 

 B = {M(Z47), ×} be the multiset semigroup under product 
modulo 47. 

 We see S has no idempotents, zero divisors or S-zero 
divisors and S-idempotents but has 0  Z47 such that 0 × x = 0 
for all x  Z47. 

 Hence P = {M(Z47), ×} has no special S-zero divisors or 
S-special weak zero divisors or special zero divisors. 
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 But P has infinite number of zeros and has no special 
idempotents S-special idempotent. 

 In view of all these we have the following result. 

Theorem 2.4:  Let S = {Zp, ×} be the semigroup under product 
modulo p, p a prime. B = {M(Zp), ×} be the multiset semigroup 
under product. B has no special multiset zero divisors, multiset 
idempotents, S-special multiset zero divisors and S-special 
multiset weak zero divisors. 

 Proof. Follows from the very fact {Zp, ×} has no zero 
divisors or idempotents or S-Zero divisors or S-weak zero 
divisors so B has none of the above said elements mentioned in 
the theorem. 

Example 2.11. Let S = {Z10, ×} be the semigroup under product 
B = {M(Z10), ×} be the multiset semigroup of Z10. Z10 has only 
zero divisors hence M(Z10) has multiset special zero divisors 
which are infinite in number. 

 However S has no S-zero divisors or S-weak zero 
divisors so B has no special multiset S-zero divisors or special 
multiset S-weak zero divisors. 

 In view of this we have the following theorem. 

Theorem 2.5.  Let S = {S2p, ×} be the semigroup under product 
modulo 2p, p a prime B = {M(Z2p, ×} be the multiset semigroup. 
B has special S-multiset zero divisors and no special S-multiset 
weak zero divisors. B has infinite number of special subset zero 
divisors. 
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Proof. Follows from the fact Z2p has zero divisors only of the 
form p × x  0; where x  2Z2p. Now in the multisets B we see 
for all x and y  B where x has only elements of the form p and 
0 repeating and y has only elements of the form {2, 4, …, 2n} 
repeating we see x × y = {0, …, 0} hence has special multiset 
zero divisors. 

 Thus we have infinitely a big collection of special 
multiset zero divisors. 

 If we take a, b  B \ {x, y} where a  has only elements 
0’s and p’s and b has elements only from 2Z2p then with x have 
only elements from 0’s and p’s with |a|  |x| and y having only 
elements from 2Z2p, with |b|  |y| we get a × y  0 and b × x = 0 
with a × b  0. Thus this collection a, b, x, y  M(Z2p) is a 
special Smarandache multiset zero divisor.  

We have infinite such collection for in a and x we can also 
change the number of zeros and number of p so that even if |a| = 
|x| still we  see a and x are distinctly different. 

 Thus the result of the theorem. 

 We will illustrate this situation before we give the 
abstract definitions. 

Example 2.12. Let S = {Z22, ×} be the semigroup under product 
× modulo 22. B = {M(Z22), ×} be the multiset semigroup under 
product ×. 

 2 × 11  0 (mod 22); x × 11  0 (mod 22)  

 x  2Z22. 
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Now let x = {0, 0, 11, 11, 11} and y = {2, 2, 0, 4}  M(Z22). 

 x × y = 
20-times

{0,0,0,...,0}  

 Clearly x, y is a special multiset zero divisors of B. 

 Consider a = {11, 11, 11, 11, 11, 0, 0} and b = {8, 8, 8, 8, 
8, 8, 0, 0, 0}  M(Z22). 

 We see x × b  
45-times

{0,0,0,0,...,0,0}  a × y = 
28-times

{0,0,0,0,...,0,0}  

 Further a × b = 
63-times

{0,0,0,0,...,0,0}  

 Thus (x, y) is a special multiset Smarandache zero divisor 
of B. 

 Infact it can be easily proved that B has infinite number 
of special multiset Smarandache zero divisors. 

 We cannot find S-weak zero divisors in S. 

Example 2.13. Let S = {Z86, ×} be the semigroup under product 
43. 

 {M(Z86), ×} = P be the multiset semigroup. 

 The zero divisors of S are 43 × x  0 (mod 86); where x 
 {0, 2, 4, 6, 8, …, 84}. Thus S has only finite number zero 
divisors. S has S-zero divisors but S has no S-weak zero 
divisors. 
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 Now we see P has infinite number of special multiset S-
zero divisors but no special multiset S-weak zero divisors. 

 We just give the abstract definition of both. 

Definition 2.2. Let {S, ×} be a semigroup under ×. {M(S), ×} be 
the multiset semigroup. 

 Let x, y  M(S) such that x × y = {0} (A multiset special  
zero divisor. If there exist a, b  M(S) \ {x, y} such that 

 a × x = {0} or x × a = {0} 
 b × y = {0} or y × b = {0} 
 a × b = {0} or b × a = {0} 

then (x, y) is defined as the special multiset Smarandache zero 
divisor of {M(S), ×}. 

 We call x, y  M(S) with x × y = {0} a special multiset 
zero divisor of M(S) to a multiset special Smarandache weak 
zero divisor of M(S) if there exist a, b  M(S) \ {x, y} with  

 ax   = {0}   or    xa =  {0} 
 by   = {0}   or    yb = {0} 
and ab     {0}  or    ba   {0} 

 We will supply some more examples of them. 

Example 2.14. Let S = {Z12,  ×} be semigroup under product 
modulo 12. 

 P = {M(Z12), ×} be the multiset semigroup 
 3.4  0  mod 12.  4.9   0 (mod 12) 
 3.8  0 (mod 12)  8.9  0 (mod 12) 
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 6.8  0 (mod 12)  and  3.8  0 (mod 12) 
 6.2  0 (mod 12)  3.2  0 (mod 12) 

Thus {Z12, ×} has S-zero divisors and S-weak zero divisors. 

 We will show {M(Z12), ×} has special multiset S-zero 
divisors and special multiset S-weak zero divisors and special 
multiset S-weak zero divisors which are infinitely many. 

Consider x = {6, 6, 6, 6, 0, 0, 0} and y = {8, 8, 8, 0,  8, 0}  B. 

 Clearly x × y =  
42-times

0,0,0, ,0,0,0 . 

 In fact we can show there are infinitely many special 
multiset zero divisors in M(Z12).  

Consider special multiset zero divisor x = {3, 0, 3, 3, 3, 0, 0} 
and y = {4, 4, 4, 0, 0}  M(Z12) x × y = 

42-times

{0,0,0,0,...,0} . 

 Now {8, 8, 8, 0, 0} = a and b = {9, 9, 9, 9, 0}  M(Z12) a 
× b = 

25-times

{0,0,0,...,0}  is a special multiset zero divisor. 

Further  a × x = 
35-times

{0,0,0,...,0}  

  y × b = 
25-times

{0,0,...,0}  is again a special multiset zero 

divisor. 

 Thus a, b  M(Z12) \ {x, y} so {x, y} is a S-special 
multiset zero divisor of M(Z12). 
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 We can find infinitely many such S-special multiset in 
zero divisors. 

 Consider 6, 8, 3, 2  Z12 we see 6 × 8  0 (mod 12) 

 For the pair 3, 2  Z12 \ {6, 8} we get 3 × 8  0 (mod 12) 
and 6 × 2  0 (mod 12) but 3  2  0 (mod 12). 

 Thus (6, 8) is a S-weak zero divisor of Z12. 

Take x = {6, 6, 6, 6, 0, 0} and y = {8, 8, 0, 0, 0, 0, 0, 0}  
M(Z12). We get x ×  y = 

48-times

{0,0,0,...,0}  is a multiset special zero 

divisor of M(Z12). 

 Let a = {3, 3, 3, 0} and b = {2, 2, 2, 2, 0, 0}  M(Z12) \ 
{x, y}. Using this a, b  M(Z12) we get x × b = 

36-times

{0,0,0,...,0}  is a 

special multiset zero divisor of M(Z12). 

 y × a = {8, 8, 0, 0, 0, 0, 0, 0} × {3, 3, 3, 0} 

 = 
32-times

{0,0,0,...,0}  is also a special multiset zero divisor of 

M(Z12). 

 But a × b = {3, 3, 3, 0} × {2, 2, 2, 2, 0, 0} = {6, 6, 6, 0, 6, 
6, 6, 0, 6, 6, 6, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0}  {0, 0, …, 0} 
so x, y  M (Z12) is a S-special multiset weak zero divisor of 
M(Z12). 

 Infact M(Z12) has infinite number of S-multiset special 
zero divisors and S-multiset special weak zero divisors. 
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Example 2.15.  Let S = {Z16, ×} be the semigroup under 
product modulo 16.  

We see  8 × 2  0, 
  8 × 6  0, 8 × 8  0, 
  8 × 10  0 8 × 12 = 0, 8  4 = 0 and 
  8 × 14  0 are zero divisors contributed by the value 8 
in Z16. 

 Clearly S has S-zero divisors but has no S-weak zero 
divisors. 

 However M(Z16) has special multiset zero divisors which 
are infinitely many. M(16) has special multiset S-zero divisors 
and special multiset S-weak zero divisors. 

 Next we proceed onto define and describe the new notion 
of special multiset pseudo idempotents. 

Definition 2.3. Let (S,×) be a semigroup under product. {M(S), 
×} be the multiset semigroup under product. We say x  M(S) is 
a pseudo multiset idempotent of M(S), if x × x = {only elements 
in x} but the number of times these elements repeat is different 
from that of x. 

 We will first illustrate this situation by some examples. 

Example 2.16. Let S = {Z6, ×} be the semigroup under product 
B = {M(Z6), ×} be the multiset semigroup. 

 Consider x1 = {0, 1, 1, 0, 0, 0, 1, 1, 1}  H. We see  

x1 × x1 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
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0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 
1, 0, 0, 0, 1, 1, 1}  x1; yet elements of x1 × x1 are the same as 
that of x1 and x1 × x1 has no new elements only number of times 
they repeat are more or to be more precise |x1 × x1| = 81 whereas 
that of x1 is 9.   

 We call x1 as the pseudo multiset idempotent of B. In fact 
we have infinitely many such pseudo multiset idempotents. 
These are also known as trivial pseudo multiset idempotents as 
{0} × {0} and {1} × {1} = {1} are trivial idempotents in the 
reals and modulo integers 3  Z6 is such that 3 × 3 = 3 is a 
nontrivial idempotents of Z6, 0 and 1 are trivial idempotents of 
Z6. 

 Consider the multiset x = {3, 3, 1, 3}  B. x × x = {3, 3, 
3, 1} × {3, 3, 3, 1} = {3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1}. 

 Thus x is a nontrivial pseudo multiset idempotent of M. 

 We have infinitely many nontrivial pseudo multiset 
idempotents in M though Z6 on which the multiset is built is 
only a finite set. 

 Let a = {3, 3, 3}  M(Z6) a × a = {3, 3, 3, 3, 3, 3, 3, 3, 3} 
is a nontrivial pseudo multiset idempotent of M. 

 In view of all these we have the following results. 

Theorem 2.6.  Let R or C or Q of Z be the reals or complex or 
rationals or integers respectively under product ×. {M(R), ×} 
(or M(C) or M(Q) or M(Z)) be the multisets M(R) (or M(C) or 
M(Q) or M(Z)) has infinitely many trivial multiset pseudo 
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idempotents although R or C or Q or Z are only fields or 
domains. 

 Proof is direct and left as an exercise to the reader. 

Theorem 2.7. Let Zn be the modulo integer and {Zn, ×} be the 
semigroup of finite order {M(Zn), ×} be the multiset semigroup. 

i) {M(Zn), ×} has infinitely many pseudo multiset 
idempotents for all n including n = p a prime. 

ii) When n is not a prime and n = 1
1p ,…, t

tp ; pi’s 

are distinct primes 1  i  t (t  2) and i  1; 1  
i   t; then {M(Zn), ×} has infinitely many pseudo 
multiset idempotents. 

Proof is direct and left for the reader to prove. 

Example 2.17. Let {Z180, ×} be the semigroup under ×. M(Z180) 
be the multiset semigroup. This has nontrivial idempotents 
hence {M(Z180), ×} has pseudo multiset special idempotents 
which are infinitely many in M(Z180). 

 However {M(Z180), ×} has also infinitely many pseudo 
multiset idempotents. There are S-pseudo multiset special 
idempotents if and only if Z180 has S-idempotents. 

Example 2.18. Consider S = {Z10, ×} be the semigroup under 
product modulo 10. {M(Z10), ×} be the multiset semigroup. 

 Clearly Z10 has 6 to be a S-idempotent as 6 × 6 = 6 and 4 
× 4 = 4 with 6 × 4  4 (modulo 10). 
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 Consider the multisets x = {6, 6, 6, 6, 6, 6, 6, 6} and y = 
{4, 4, 4}  M(Z10).  

We see x × x = 
64-times

{6,6,6,...,6}  y × y = {4, 4, 4, 4, 4, 4, 4, 4, 4} 

both x and y pseudo special multiset idempotents. 

 x × y = 
24-times

{4,4,4,4,4,4...,4} . 

 Thus x is a Smarandache pseudo special multiset 
idempotents of M(Z10). We give yet another example of S-
pseudo special multiset idempotents. We wish to keep in record 
there exists infinitely many S-special pseudo multiset 
idempotents in M(Z10). 

 Consider the following example. 

Example 2.19. Let S = {Z16, ×} be the semigroup under 
product. {M(Z16), ×} = B be the multiset semigroup. Clearly Z16 
has no nontrivial idempotents so B cannot contain any special 
pseudo multiset idempotent or S-special pseudo multiset 
idempotent. 

 In view of all these we have the following results. 

Theorem 2.8. Let S = {Z2p, ×} be the semigroup under product 
modulo 2p; p a prime. B = {M(Z2p, ×} be the multiset 
semigroup. 

 B has infinitely many special pseudo multiset idempotents 
and S-special pseudo multiset idempotents. 
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 Proof. Following from the fact as Z2p has idempotents and 
S-idempotents so will M(Z2p).  

 But M(Z2p) has infinitely many special pseudo 
idempotents and S-special pseudo idempotents. 

 In fact the theorem can be reformulated as the multiset 
{M(Z2p), ×} has infinitely many pseudo special idempotents if 
and only if Z2p has idempotents. 

 We have another result which is as follows. 

Theorem 2.9. Let S = { np
Z , ×}, p a prime, n  2 be the 

semigroup under product modulo pn. B = {M( np
Z ), ×} be the 

multiset semigroup under product modulo pn. B has only 
infinitely many trivial pseudo special multiset idempotents. 

 Proof is directed and hence left as an exercise to the 
reader. 

 We now give a few more examples of special pseudo 
multiset idempotents using Z3p, Z18 and so on. 

Example 2.20. Let S ={Z30, ×} be the semi group under product 
modulo 30. 

 6, 10, 15, 16, 21 and 25 are idempotents in S. 

 Clearly none of these elements are Smarandache 
idempotents. 

 Now {M(Z30), ×} has infinitely many nontrivial special 
pseudo multiset idempotents. 
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Example 2.21. Let S = {Z21, ×} be the semigroup under product 
modulo 21. The idempotents of Z21 are 7 and 15 clearly we 
cannot find S-idempotents in S. Thus the multiset semgroup B = 
{M(Z21), ×} cannot contain any S-pseudo multiset special 
idempotents. 

 In view of all these we have the following theorem. 

Theorem 2.10. Let S = {Zpq, ×} (p and q two distinct primes) be 
the semigroup under product modulo pq. 

 B = {(M(Zpq), ×} be the multiset semigroup under modulo 
product pq. 

i) B = {M(Zpq), ×} has infinitely many special 
multiset pseudo idempotents 

ii) B = {M(Zpq), ×} has no S-pseudo special multiset 
idempotents. 

 Hint: Follows from the fact Zpq has no S-idempotents 
which are nontrivial hence {M(Zpq), ×} cannot contain S-special 
pseudo multiset idempotents. 

 In view o all these we leave it as an exercise to the reader 
to prove the following result. 

Problem 2.1.  Let S = {
t1 2p p pZ  | pi are distinct primes 1  i  t, 

×} be the semigroup under product. 

 B = {M(
1 2p pZ , … pt), ×} be the multiset semigroup. 

 Can B have S-multiset pseudo special idempotents? 
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 In view of all these we study the following modulo 
semigroup. 

Example 2.22. Let S = {Z18, ×} be the semigroup modulo 18. 

 The idempotents of Z18 are 9, 10, B = {M(Z18), ×} be the 
multiset semigroup. B has no S-multiset special pseudo 
idempotents. 

 In fact we leave the following problems open. 

Problem 2.2. Let B = {M( tp q
Z ) (p and q distinct primes) t  2, 

×} be the semigroup under modulo ptq. 

 Can B have nontrivial S-special pseudo multiset 
idempotents? 

Problem 2.3. Let B = {M( t t t1 2 r
r1 2p p p

Z


), ×} (pi’s distinct primes ti 

> 2, 1  i  r} be the multiset semigroup. 

 Can B have S-special pseudo multiset idempotents? 

 Next we proceed onto study nilpotents in multiset 
semigroups. 

Example 2.23. Let S = {Z12, ×} be the semigroup under product 
modulo 12. {M(Z12), ×} = B be the multiset semigroup. 

 The nilpotents in S is 6. 

 Now let x = {6, 6}  B. 

 x × x = {6, 6} × {6, 6} = {0, 0, 0, 0}. 
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 This is a special case of nilpotents in multisets which we 
define as pseudo special multiset nilpotents. 

 In view of this we first define the new notion of special 
pseudo multiset nilpotents. 

Definition 2.4. Let B = P{M(S), ×} be a multiset collection on a 
nonempty set S under product (that is {S, ×} is a semigroup). A 
multiset x  B is defined as a pseudo special multiset nilpotent 
if x × x = 

t-times

{0,0,...,0} ; t > 2. 

 We just provide some more examples of them and give 
the results associated with this new notion. 

Example 2.24. Let S = {Z16, ×} be the semigroup under product 
modulo 16. 

 The nilpotents in S are 4, 8 and 12. 

 For we see 4 × 4  0 (mod 16), 8 × 8  0 (mod 16) and 12 
× 12  0 (mod 16). 

 Let B = {M(Z16), ×} be the multiset semigroup. 

 Consider x = {4, 4, 4, 4, 0, 0, 0}  B.  

We see x × x = 
49-times

{0,0,...,0} . Let a = {8, 4, 8, 12, 0, 4, 8, 4, 12, 8} 

 B, we see a × a = 
100-times

{0,0,...,0} . 

 Thus a and x are pseudo special multiset nilpotents. 



44 Smarandache Special Elements in Multiset Semigroups  
 
 
 
 
 
 
 

 In fact we can have infinitely many pseudo special 
multiset nilpotents which are also nontrivial. 

 Consider the following examples for the obtaining 
nontrivial special pseudo multiset idempotents. 

Example 2.25. Let S = {Z43, ×} be the semigroup under product 
modulo 43. Let B = {M(Z43), ×} be the multiset semigroup Z43 
has no idempotents, nilpotents and zero divisors. Hence B has 
no nontrivial multiset special nilpotents, idempotents and zero 
divisors. 

 In view of all these w have the following theorem. 

Theorem 2.11. Let S = {Zp, ×} be the semigroup under product 
modulo p (p a prime). 

 B = {M(Zp), ×} be the multiset semigroup. 

i) B has no non-trivial special pseudo multiset 
nilpotents. 

ii) B  has no non-trivial special pseudo multiset zero 
divisors. 

 Proof is direct and  hence left as an exercise to the reader. 

Theorem 2.12. Let S = {Zn, ×} be the semigroup under product 
modulo n. B = {M(Zn), ×} be the multiset semigroup. 

i) B has nontrivial special pseudo multiset zero 
divisors if and only if S has nontrivial zero 
divisors. 
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ii) B has nontrivial infinitely many pseudo multiset 
special nilpotents if and only if S has nontrivial 
nilpotents. 

iii) B has nontrivial infinitely many special pseudo 
multiset idempotents if and only if S has non 
trivial idempotents. 

Proof is left as an exercise to the reader. 

 Thus we can now proceed on to describe the multiset 
subsemigroups of B = {M(Zn), ×}. 

Example 2.26. Let S = {Z24, ×} be the semigroup. B = {M(Z24), 
×} be the multiset semigroup of Z24. Consider P = {0, 3, 6, 9, 
12, 15, 18, 21}  Z24. {M(P), ×} = C  B is a multiset 
subsemigroup of B as P is a subsemigroup of S. 

 We see C is again of infinite cardinality. 

 Consider T = {0, 23, 1}  Z24, {T, ×} is a subsemigroup 
of S of order 3, however {M(T), ×} is a multiset subsemigroup 
of infinite order. 

Example 2.27. Let S = {Z41, ×} be the semigroup under product 
modulo 41. B = {M(Z41), ×} be the semigroup. C = {1,40}  
Z41 is a subsemigroup of order two. But D = {M({40, 1}), ×}  
B is a multiset subsemigroup of infinite order. 

Theorem 2.13. Let S = {Zn, ×} be the semigroup under product 
modulo n. D = {M(Zn), ×} be the multiset semigroup. 

 All multiset subsemigroups of D are of infinite order. 
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 Now we wish to study whether D can be Smarandache 
semigroup to this effect we define a new notion. 

Definition 2.5. Let S = {Zn, ×} be a semigroup B = {M(Zn), ×} 
be the multiset semigroup. 

 We define for any subset P  Zn where {P, ×} is a group 
to be associated with R = {M(P), ×}  B to a pseudo multiset 
group of B. 

 If B contains a pseudo multiset group which is nontrivial 
then we define B to be a Smarandache pseudo multiset 
semigroup. 

 We will provide some examples of this situations. 

Example 2.28. Let S = {Z36, ×} be the semigroup under product 
modulo 36. 

 B = {M(Z36), ×} be the multiset semigroup. Let P = {0, 2, 
4, …, 34}  Z36, D = {M(P), ×} is a multiset subsemigroup of 
infinite order. 

 W = {1, 3, 5}; {W, ×} is a group of order two T = 
{M(W), ×} is defined as the pseudo special multiset group of B. 

 If x = {35, 35, 35, 35}  T then x × x = 
16-times

{1,1,1, ...,1} . 

 Consider = {1, 35}  T; we see y × y = {1, 35, 35} 

Let Y = {{1}, {35}, {1, 1}, {35, 35}, {1, 1, 1}, {35, 35, 35}, {1, 
1, 1, 1}, {35, 35, 35, 35}, …, 

n-times

{1,1,1,...,1} , 
n-times

{35,35,...,35}  n can 
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be infinite. We define {Y, ×} is a multiset special pseudo cyclic 
group. 

 As B contains a multiset special pseudo cyclic group we 
call B as a Smarandache pseudo special multiset semigroup. 

 We have a large class of multisets which are S-pseudo 
special multiset semigroups. 

 We have seen examples of them. 

 In view of all these we have the following theorem. 

Theorem 2.14. Let S = {Zn, ×} be a semigroup B = {M(Zn), ×} 
be the multiset semigroup. B is a Smarandache pseudo special 
multiset semigroup. 

 Proof follows from the fact that {1, (n – 1)}  Zn is a 
cyclic group of order two. 

 Consider H = {{1}, {n – 1}, {1, 1}, {n – 1, n – 1}, {1, 1, 
1}, {n – 1, n – 1, n – 1}, …, 

m-times

{1,1,...,1}  
m-times

{n 1,n 1,...,n 1}     

1  m  ; ×}  B is a pseudo special multiset group. Hence B 
is a Smarandache pseudo special multiset semigroup. 

 We enlist the following problems for the interested 
reader. 

Problems 

1. Prove if S = {1, 2, 3, …, 8, 9} be a set of order nine. Thus 
M(S) the multiset under  is an infinite semilattice. 
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2. Define (S) = {1, 2, 3, …, 9}  operation and prove 
{M(S), } is an infinite semilattice. 

3. Let S = P{1 + I, –3I, 4I, 7 – 5I, –8 + 4I, 0, 1, 2, 4} be a set 
of 9. M(S) be the multiset of S. 

 i) Prove M(S) under + is not closed. 

 ii) Prove M(S) is not closed under ×. 

 iii) Prove {M(S), } and {M(S), } are multiset 
semigroups of infinite order. 

iv) Can {M(S), } have a finite order multiset 
subsemigroups? 

v) Prove {M(S), } cannot have finite order 
multiset subsemigroups. 

vi) Obtain any other special feature enjoyed by 
M(S). 

4. Let S = {Z10} be the modulo integers {0, 1, 2, …, 9} 

 i) Prove {M(Z10), } is an infinite order multiset 
semigroup. 

 ii) Prove B = {M(Z10), } is an infinite order 
multiset semigroup which has multiset 
subsemigroups of finite order. 

 iii) Prove T = {M(Z10), +} is an infinite order 
multiset semigroup under + modulo 10. 
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 iv) Can T contain multiset subsemigroups of finite 
order? 

v) Prove R = {M(Z10), ×} is a multiset semigroup 
under product modulo 10 of infinite order. 

vi) Can R has finite order multiset subsemigroups? 

vii) Can R have special multiset zero divisors? 

viii) Can R have special multiset S-zero divisors? 

ix) Can R have special multiset S-weak zero 
divisors? 

5. Let S = {Z29, ×} be the semigroup under product modulo 
29. {M(Z29), ×} = P be the multiset semigroup. 

 i) Study questions (i) to (ix) of problem 4 for this 
M(Z29). 

 ii) Compare this P with R of problem 4. 

6. Let P = {Z45, +} be the group under + modulo 45. B = 
{M(Z45), +} be the multiset semigroup under +. 

 i) Find all multiset subsemigroups of S. 

 ii) Prove or disprove all multiset subsemigroups 
are of infinite order 

 iii) Let W = {{0}, {1}, …, {44}} be the multiset 
subsemigroup. 

a) What is the order of W? 
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b) Is W a group? 

c) Is B a Smarandache multiset semigroup or 
just a Smarandache special pseudo subset 
semigroup? 

Justify your claim. 

 iv) Obtain any other special feature enjoyed by B. 

7. Let S = {Z29, +} be the semigroup under + modulo 29. B 
= {M(Z29), +} be the multiset semigroup. 

 i) Study questions (i) to (iv) of problem (6) for 
this B. 

 ii) Compare the results of problem 6 with this B. 

 iii) Hence or otherwise study multiset semigroup 
on Zp and Zn; p a prime and n a composite 
number. 

8. Let S = {Z148, ×} be a semigroup under product modulo 
148 {M(Z148), ×} = B be the multiset semigroup under 
product. 

 i) Prove o(B) is infinite 

 ii) Can B have multiset subsemigroups of finite 
order? 

 iii) Can B have multiset pseudo special zero 
divisors? 
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 iv) Can B have special pseudo multiset S-special 
zero divisors? 

 v) Can B have multiset pseudo special 
idempotents? 

 vi) Can B have S-multiset pseudo special 
idempotents? 

vii) Can B have multiset pseudo special nilpotents? 

viii) Is B a S-pseudo special multiset semigroup? 

ix) Prove/disprove B cannot have finite order 
multiset subsemigroups. 

x) Obtain all the special features enjoyed by 
multiset semigroup. 

9. Let S = {Z128, ×} be the semigroup under product modulo 
128. B = {M(Z128), ×} be the multiset semigroup. 

 Study questions (i) to (x) of problem 8 for this B. 

10. Let S = {Z2310, ×} be the semigroup under product 
modulo 2310. D = {M(Z2310), ×} be the multiset 
semigroup. 

 i) Study questions (i) to (x) of problem 8 for this 
D. 

 ii) Compare B of problems 8 and 9 with this D. 

11. Let S = {Z45, ×} be the semigroup under product modulo 
45 and R = {M(Z48), ×} be the multiset semigroup. 
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i)  Study questions (i) to (x) of problem 8 of this R.  

ii) Compare this R with D of problem 10. 

12. Let S = {Z10 × Z45} be the semigroup under ×. R = 
{M(Z10 × Z45), ×} be the multiset semigroup. 

 i) Study questions (i) to (x) of problem (8) for this D. 

 ii) Compare D of problem 11 with this R. 

 iii) Show that due to the presence of pairs in the 
multisets more number of pseudo multiset special 
zero divisors. 

 iv) If instead of Z10 × Z45 if are take Z11 × Z43 prove we 
can still have pseudo multiset special zero divisors. 

13. Let S = {Z16 × Z11 × Z48, ×} be the semigroup under 
modulo product. T = {M(Z16 × Z11  Z48), ×} be the 
multiset semigroup. 

i) Study questions (i) to (x) of problem (8) for this T. 

ii) Compare this T with R of problem 2. 

14. Let S = {Z12 × Z12 × Z12 × Z12, ×} be the semigroup. V = 
{M(Z12 × Z12 × Z12 × Z1), ×} be the multiset semigroup. 

 i) Study questions (i) to (x) of problem 8 for this V. 

 ii) Compare this V with T of problem 13. 



  

Chapter Three 

 

 

N-MULTIPLICITY– MULTISETS AND THEIR 

ALGEBRAIC PROPERTIES 

 

 Study of multisets started as early as (1498-1576) in the 
work of Marius Nizolium. Jean Prestet published a general rule 
for the multiset permutations in 1675, John Wallis explained 
this rule in more detail in 1685. A brief literature survey 
regarding multisets is given in chapter I of this book. 

 In this chapter we define only a special type of multisets 
which we define as n-multiplicity multiset where 1  n < . Just 
for the sake of easy understanding before we proceed onto give 
the abstract definition provide some examples of them. 

Example 3.1. Let X = {a} a singleton set. The two multiplicity 
of X is {{a}, {a, a}, }. Clearly one multicity multiset of X is 
{{a}, }. This it is the classical power set of X that is P(X). 

 The 3-multiplicity multiset of X is {{a}, {a, a}, {a, a, a}, 
}. 
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 The 4-multiplicity multiset of X = {a} is {{a}, {a, a}, {a, 
a, a}, {a, a, a, a}, }. 

 Clearly we see the1-multiplicity multiset (P(X)) of X  
2-multiplicity multiset of X  3-multiplicity multiset of X  … 
 n-multiplicity multiset of X = {{a}, {a, a}, {a, a, a}, {a, a, a, 

a}, … , n times(n 1) times

{a,a,...,a},{a,a,...,a},
 

  }. 

 We shall denote 1-M(X) = 1-multiplicity multiset of X = 
P (X) is the power set of X. 2-M(X) denotes the two multiplicity 
multiset of X, 3-M(X) denotes the 3-multiplicity multiset of X 
and so on. 

 Now we take in the following example X = {a, b}. 

Example 3.2. Let X = {a, b} be the given set. The powerset of 
1-multiplicity multiset of {a, b} = {{a, b}, {b}, {a}, } = P(X). 

 The 2-multiplicity multiset of {a, b} = {{a, a, b, b}, {a, a, 
b}, {a, b, b}, {a, a}, {b, b}, {a, b}, {a}, {b}, {}}. 

 The three multiplicity multiset of {a, b} = {{a, a, a, b, b, 
b}, {a, a, a, b, b}, {a, a, a, b}, {a, a, a}, {b, b, b, a, a}, {b, b, b, 
a},  {b, b, b}, {a, a, b, b}, {a, a, b}, {a, b, b}, {a, b}, {a}, {b}, 
{a, a}, {b, b}, {}} = 3-multiset of {a, b}. 

 The four multiplicity multiset of {a, b} = {{a, a, a, a, b, b, 
b, b}, {a, a, a, a, b, b, b}, {a, a, a, a, b, b} {a, a, a, a, b}, {a, b, b, 
b, b}, {a, a, b, b, b, b}, {a, a, a, b, b, b, b}, {a, a, a, a} {b, b,  b, 
b}, {a, a, a, b, b, b}, {a, a, a}, {a, a, a, b, b}, {a, a, a, b}, {b, b, 
b, a, a}, {b, b,  b, a}, {b, b, b}, {b, b, a, a} {b, b, a}, {a, a, b}, 
{b, b}, {a, a}, {a, b}, {a}, {b}, } = 4-M({a, b}). 
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 Now we find for the same X {a, b} the five multiplicity 
multiset. 5-M(X) = {{}, {a}, {b}, {a, a}, {a, b}, {b, b}, {a,  b, 
b}, {b, a, a}, {a, a, a}, {b, b, b}, {a, b, b, b}, {b, a, a, a}, {a, a, 
b, b}, {a, a, a, a}, {b, b, b, b}, {b, a, a, a, a}, {a, a, a, b, b, b}, 
{a, b, b, b, b}, {a, a, b, b, b}, {b, b, a, a, a}, {a, a, a, a, b}, {b, b, 
b, b, b}, {b, b, b, b, a}, {b, b, b, b, a, a}, {a, a, b, b, b}, {a, a,  b, 
b, b, b}, {a, a, a, b, b, b, b}, {a, a, b, b, b, b, b} and so on.  {a, a, 
a, a, a}, {a, a, a,  a, a, b, b}, {a, a, a, a, a, b}  {a, a, a, a, a, b, b, 
b, b}, {a, a, a, a, a, b, b, b}, {b, b, b, b, b, a, a, a, a, a,}, }. 

 Now we work out for 6-multiplicity multiple sets using 
{a, b} are {{}, {a}, {b}, {a, b}, {a, a,}, {b, b}, {a, b, a}, {a,  b, 
b}, {a, a, a}, {b, b,  b}, {a, a, b, b}, {a, a, a, b}, {b, b, b, a} {a, 
a, a, b, b}, {b, b, a, a, b}, {a, a, a, b, b, b}, {a, a, a, a}, {b, b, b, 
b}, {a, a, a, a, b}, {a, a, a, a, b, b}, {a, a, a, a, b, b, b}, {a, a, a, a, 
b, b, b, b}, {b, b, b, b, a}, {b, b, b, b, a, a}, {b, b, b, b, a, a, a}, 
{a, a, a, a, a}, {a, a, a, a, a, b}, {a, a, a, a, a, b, b}, {a, a, a, a, a, 
b, b, b}, {a, a, a, a, a, b, b, b, b}, {a, a, a,  a, a,  b, b, b, b}, {a, b, 
b, b, b, b}, {a, a, b, b, b, b, b, b}, {a, a, a, b, b, b, b, b}, {a, a, a, 
a, b, b, b, b, b}, {b, b, b, b, b}, {a, a, a, a, a, a}, {a, a, a, a, a, a, 
b}, {a, a, a, a, a, a, b, b}, {a, a, a, a, a, a, b, b, b}, {a, a, a, a, a, a, 
b, b, b} {b, b, b, b, b, b}, {a, a, a, a, a, a, b, b, b, b, b} {a, a, a, a, 
a, a, b, b, b, b, b, b}, {a, b, b, b, b, b, b}, {a, a, b, b, b, b, b, b}, 
{a, a, a, b, b, b, b, b, b}, {a, a, a, a, b, b, b, b, b, b}, {a, a, a, a, a, 
b, b, b, b, b, b} {a, a, a, a, a, a, b, b, b, b, b, b} and so on} |6- 
multiset} = 49. 

 In view of all these we have the following result. 

Definition 3.1. Let X = {a1, …, am} with m-distinct elements. A 
n-multiplicity multiset of X denoted by n-M(X) is the collection 
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of all multisets where no element in any of these multisets can 
have multiplicity greater than n. In other words in every 
multiset every element can have multiplicity n or repeat itself 
less than or equal to n number of times only. It is denoted by n-
M(X). 

 We will first illustrate this situation by some examples. 

Example 3.3. Let X = {a1, a2, a3, a4, a5, a6, a7} be a set of order 
7. 

 We find the 5-multiplicity multisets of X. We give few of 
the multisets of 5- M(X). 

 A = {a1, a2, a3, a4, a5, a6, a6, a6, a6, a6, a7, a3, a2, a2, a2, a2} is 
a 5-multiplicity multiset of X. 

 Clearly a6 and a2 have multiplicity 5 and the rest of the 
elements of A have multiplicity less than five. 

 B = {a1, a1, a1, a4, a4, a4, a4, a5, a5, a5, a6, a6, a7, a7, a7} is a 
multiset of 5-multiplicity multiset of X. It is pertinent to 
mention that A and B are 5-multiplicity multisets of X however 
the multiset A has two elements a6 and a2 of multiplicity five 
whereas none of the elements in B has multiplicity 5. 

 It is also important to note P(X) the powerset of X is 
always a subset of n-multiset of  n-M(X). 

 P(X)  n - M(X). 

Finding cardinality is an interesting work. 

 We just describe the n-multiset with X = {a} (1  n < ). 
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 We have n-M(X) = {, {a}, {a, a}, {a, a, a}, {a, a, a, a}, 
…, {a, a, a, …, a}, 

n-times

{a,a,...,a} }. 

 Clearly n-M(X) is a chain lattice of order (n + 1) given by 
the following {}  {a}  {a, a}  [a, a, a}  {a, a, a, a} … 
 

n-times

{a,a,...,a} . 

 When n = 1 we get the powerset of X, P(X) = {{}, {a}}. 

 Infact a chain lattice of order two, a basic Boolean 
algebra of order two given by  

 

  

 

Figure 3.1 

When n = 2 we get the 2-multiplicity multiset = {{}, {a}, {a, 
a}} where X = {a} which is a chain lattice of order three given 
the following 

 

 

 

 

Figure 3.2 

 {} 

{a} 

{} 

{a,a} 

{a} 
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 In case of r-multiplicity multiset of X = {a} is a chain 
lattice of order (r + 1) given the  following figure 

 

 

 

 

 

 

 

 

 

Figure 3.3 

 Now we find 3-multiplicity multisets of X = {a,  b}. 

 3-M(X) = {{}, {a}, {b}, {a, b}, {a, a}, {b, b}, {a, a, b}, 
{b, b, b}, {a, b, b}, {a, a, b, b}, {a, a, a}, {b, b, b, a}, {b, b, b, a, 
a}, {b, b, b, a, a, a} {a, b, a, a}, {b, b, a, a, a}}}, |3-M(X)| = 16. 

 Now we give the lattice associated with 3-M(X). Clearly 
this has {} as the least element and {a, a, a, b, b, b} is the 
greatest element which is described by the following figure. 

 

 

 
(r-1)-times

{a,a,a,...,a}


 

r -times

{a,a,a,...,a}


. 

. 

. 
 

{} 

{a,a} 

{a} 
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Figure 3.4 

 The lattice of a power set of a set X is  always a Boolean 
algebra of order 2|X| however when |X| = 2. However the lattice 
of a n-multiplicity multiset is not a Boolean algebra but it 
always contains a sublattice which is a Boolean algebra of order 
four. 

 We proceed onto provide some examples. 

Example 3.4. The 2-multiplicity multiset of X = {a, b} is as 
follows 2-M ({a, b}) = {{}, {a}, {b}, {a, b}, {a, a}, {a, a, b}, 
{b, b}, {a, a, b, b}, {a, b, b}}. 

 The lattice associated with 2-M({a, b}) is as follows; 

l({a, a, b}   {a, a, b}) = {a, a, b, b} and not { a, a, a, b, b, b}. 
this is the way the , union operation is leveled in case of 2-
multiplicity multiset and l() is defined as the leveled union on 
2- M({a, b}). 

{a, a, a, b, b} 

{a, a, a, b, b, b} 

{a, a, a, b} 

{a, a, a} 

{a, a} 

{a} 

{} 

{b} 

{b,b} 

{b,b,b} 

{b,b,b,a} 

{b,b,b,a,a} 

{b,b,b,a,a} 

{a,a,b} 

{a,b} 

{b,b,a} 
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Figure 3.5 

 Clearly this lattice has {} to be the least element and {a, 
a, b, b} to be the largest element or the greatest element. Here U 
is the leveled union l(U).  Further it is to be noted L contains a 
sublattice H which is a Boolean algebra of order four given in 
the following. 

 

 

 

 

Figure 3.6 

Now the maximal chains of L are of length five given by the 
following figures. 

{a, a, b, b} 

{a, a, b} 

L = {a, a} 

{a} 

{} 

{b} 

{a,b} {b,b} 

{b, b,a} 

H = {a} 

{} 

{b} 

{a,b} 
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Figure 3.7 

 The other two maximal chains are given in the following 
figure 3.8. 

 

 

 

 
 

Figure 3.8 

 The reader is left with the task of finding whether the 
lattice L is modular or distributive. 

 Now we describe the 2 multiplicity multiset of X = {a, b, 
c} in the following. 

 Let X = {a, b, c}; 3M (X) = {{}, {a}, {b}, {c}, {a, b}, 
{a, c}, {b, c}, {a, b, c}, {a, a, c}, {a, a}, {a, a, b}, {b, b, c}, {b, 
b, a}, {c, c}, {c, c, a}, {c, c, b}, {a, a, b, b}, {a, a, c, c}, {b, b, c, 

C1 = 

{a, a, b, b} 

 {a, a, b} 

 {a, a} 

 {a} 

  {} 

C2 = 

{a, a, b, b} 

 {b, b, a} 

 {b, b} 

 {b} 

  {} 

{a, a, b, b} 

 {a, a, b} 

 {a, b} 

 {a} 
 {} 

{a, a, b, b} 

 {b, b, a} 

 {a, b} 

 {b} 

  {} 
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c}, {b, b}, {a, a, b, c}, {a, b, b, c}, {a, c, c, b}, {a, a, b, b, c}, {a, 
a, c, c, b}, {b, b, c, c, a}, {a, a, c, c, b, b}}. 

 Clearly |2-M(X)| = 27 = 33. The  lattice  associated  with 
2-M(X) is as follows. 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3.9 

 The reader is left with the task of finding the lattices of 3-
M({a, b, c}) and 4-M({a, b}). Find all the maximal chains of K. 

{a, a, b, b, c, c} 

{a, a, c, c, b} 

{b, b, c, c, a} 

{b, a, c, c} 

{b, b, c, c} 

{c,c,b} 

{a,a,c,c} 

{a,a,b,b,c} 

{a,a,b,b} 

{a,a,b,c} 

{a,a,b} 
{a,a,c} 

{b,b,a} 

{b,b,a,c} 

{b,b,c} 
{c,c,a} 

{c,c} {c,b} {b,b} 

{c} 

{} 

{b} 

{a,b} {a,c} {a,a} 

{a} 

K = 

{a,b,c} 
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 Clearly this K has a sublattice B which is a Boolean 
algebra of order 8 given by the following figure. 

 

 

 

 

 

Figure 3.10 

 We can give one more example before we leave some 
open problems as exercise. 

Example 3.5. Let X = {a, b} be a set of order two. 4-M(X) be 
the 4-multiplicity multiset of X given in the following. 4-M(X) 
= {{}, {a}, {b}, {a, b}, {a, a}, {b, b}, {a, a, a}, {b, b, b}, {a, a, 
a}, {b, b, a}, {a, a, a, a}, {a, a, b, b}, {b,  b, b, b}, {a, a, a, b}, 
{b, b, b, a}, {a, a, a, a, b} {a, a, a, a, b, b}, {a, a, a, a, b, b, b} {a, 
a, a, a, b,  b, b, b}, {b, b, b, b, a}, {b, b, b, b, a, a}, {b, b, b, b, a, 
a, a}, {a, a, a, b, b}, {a, a, a, b, b, b}, {a, a, b, b, b}}. 

 The reader is left with the task of finding the lattice 
associated with 4-M(X). 

 Recall [39] , a lattice L is a Smarandache lattice if it has a 
sublattice which is a Boolean algebra. 

 In view of this we have the following theorem. 

{a, b} 
 

{a} 
 

{a, b, c} 
 

{b,c} 
 

{c}
{a, c} 
 

 

{b} 
 

B = 
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Theorem 3.1. Let X = {a1, …, am} n-M(X) be the n-multiplicity 
multiset of X. L be the lattice associated with the n-M(X) L is a 
Smarandache lattice and has a Boolean algebra of order 22 as a 
sublattice. 

Proof. Given X = {a1, a2, …, am} a set of order m. n-M(X) be 
the n-multiplicity multiset of X. We know by definition every 
multiset A has the order of multiplicity of any element in A to 
be less than or equal to n. Clearly the power set of X is a 
subcollection of n-M(X); that is P(X)  n-M(X). 

 If L is a lattice of n-M(X) then the set P(X) in n-M(X) 
will contribute to a sublattice of L of order 22. The sublattice 
(lattice) associated with any power set of a set X is  not a 
Boolean algebra of order 2|X|. Thus there is Boolean algebra of 
order four which  is a sublattice of L so L is a Smarandache 
lattice. Hence the claim. 

 Thus n-multiplicity multisets contributes to a nontrivial 
class of Smarandache lattices. 

 It is left as an open conjecture to find the order of n-M(X) 
where X = {a1, a2, …, am}. 

 Clearly when n = 1 we get n-M(X) = P(X) and |n-M(X)| = 
2m. 

 When n = 2 what is the order of n-M(X) X = {a1, a2, …, 
am} when n = 3 what is the order of n-M(X); X = {a1, …, am}. 
Thus when n = r what is the order of n-M(X), X = {a1, …, am}. 
It is left as an open problem for the reader to write an algorithm 
find the cardinality of n-M(X), when X = {a1, …, am}. 
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 Further for any lattice associated with n-M(X) as 
itselements how many maximal chains exist between {} the 

least element and { 1 1 1

n-times

a ,a ,....,a ,  2 2 2

n -times

a ,a ,....,a , …, 

m 1 m 1 m 1

n -times

a ,a ,....,a ,     the greatest element of the lattice. 

 Find whether the lattice L associated with n-M(X) is 
modular or distributive? 

 Thus we have used the already defined on n-M(X) the 
multiset with maximum multiplicity of any element to be n the 
notion of l( )and  to obtain lattice structure using n-M(X) as  
n-M(X) is a partially ordered n-multiplicity mutiset.  Further as 
the multiplicity of any element in the multiset is finite we see 
the o(n-M(X)) <  as |X| < . 

 These were examples of finite n-multiplicity multisets. 

 Now if we replace X by R or Z or Q even if we restrict 
the multiplicity to be finite we only get infinite order n-
multiplicity multisets. 

 We give examples of them. 

Example 3.6. Let Z be the set of integers positive and negative. 

 We define 2-multiplicity multiset of Z; i.e. 2-M(Z). 
Clearly |2-M(Z)| = . Any X  2-M(Z) will be of the form (1, 
1, 3, 4, 5, 6, 7, 7, 8, 8, 9, 9, 16, 18, 18, 27, 27, 36). 
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 Clearly B = {5, 5, 5, 6, 6, 6, 6, 6, 142, 142, 169, 999, 
2018} is not a 2-multiplicity multiset as 5 in B is of multiplicity 
3 and 6 in B is of multiplicity 5. 

 Now if A = {3, 3, 4, 4, 5, 9, 18, 27, 36, 48, 45, 45} and B 
= {3, 3, 4, 5, 9, 45}  2-M(Z) then B  A.  It is easily verified 
2-M(Z) is a partially ordered set under the usual containment 
ordering. Further on 2-M(Z) we can define l() and  in the 
usual way. Thus {2-M(Z), l(, , } is a lattice L, where by 
using the leveled union, l(U) an element can repeat itself here 
atmost two times. 

 This lattice is of infinite order. Infact L is Smarandache 
lattice as P(Z) the power set of Z is a proper subset n-M(Z). 

 Can we say the lattice L  has infinite number of maximal 
chains? 

 Now on n-M(Z) we proceed onto define the two classical 
binary operations + and product ×. 

 First of all we know (Z, +) is an abelian group so closure 
operation n-M(Z) exists. Further {Z,  ×} is only semi group of 
infinite order undr ×. 

 Consider A = {1, 1, 5, 5, 0, 2, 4, 11} and B = {2, 2, 0, 
5}  2-M(Z). We now show how A + B is obtained. 

 A + B = {1, 1, 5, 5, 0, 2, 4, 11} + {2, 2, 0, 5} = {1 + 2, 
1 + 2, 5 + 2, 5 + 2, 0 + 2, 2 + 2, 4 + 2,  11 + 2,1 + 0, 1 + 0, 5 + 
0, 5 + 0, 0 + 0, 2 + 0, 4 + 0,  11 + 0, 1 – 5, 1 – 5, –5 + 5, 5 – 5, 
0 – 5, 2 – 5, –4 – 5, 11 – 5} = {3, 3, 7, 7, 2, 4, 2, 13, 3, 3, 7, 7, 2, 
4, 2, 13, 1, 1, 5, 0, 2, –4, 11, –4, –4, 0, 0, –5, –3, –9, 6}  2- 
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M(Z) as there are some elements which has multiplicity greater 
than 2. Thus we level A + B to a 2-M(Z) element by replacing 
all higher than two multiplicity elements by multiplicity two. 
Thus modified or leveled l(A + B) = {3,  3, 7, 7, 2, 2, 4, 13, 4, 
13, 1, 1, 5, 5, 0, 0, –4, –4, 11, –5, –3, –9, 6} 

 Thus in A + B multiplicity of 3, 7, 2 were four and 5 so it 
was replaced. 

 Clearly l(A+B)  2-M(Z). This is the way leveling + 
operations are performed on 2-M(Z). We call them as leveling 
as A + B did not belong to 2-M(Z) only l(A+B)  2-M(Z). 

 Is {2-M(Z), l(+)}a semigroup? It is permanent to record 
by l(+) we mean that usual + operation on 2-M(Z) followed by 
leveling is done. 

 We want to test whether l(+) on 2-M(Z) is associative. 

 Clearly {2-M(Z), l(+)} is a commutative closed structure. 

Let  A = {3, 2, 2, 2, 1, 1, 6, 6}, 

 B = {0, 2, 4, 1, 0} and C = {1, 1, 2}  2-M(Z). 

We find  

l(A+B) = l({3, 2, 2, 2, 1, 1, 6, 6, 5, 0, 4, 4, 4, 3, 3, 8, 8, 7, 2, 6, 
6, 5, 5, 10, 10, 4, -1, 3, 3, 2, 2, 7, 7, 3, 2, 2, 2, 1, 1, 6, 6})   

= {3,  

D. l(D+C) = l (l(A + B) + C) = l (D + C)  
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= {4, 1, 3, 3, 2, 2, 7, 7, 6, 1, 5, 5, 4, 9, 9, 8, 8, 6, 11, 11, 0, 4, 
1,  4, 1, 3, 3, 2, 2, 7, 7, 6, 1, 5, 5, 4, 9, 9, 8, 8, 6, 11, 11, 0, 4,     
1, 5, 0, 4, 4, 3, 3, 8, 8, 7, 2, 6, 6, 5, 10, 10, 9, 9, 7, 12, 12, 1, 4, 
0} = {4, 4, 1, 1, 3, 3, 2, 2, 7, 7, 6, 6, 1, 1, 5, 5, 9, 9, 8, 8, 11, 
11, 0, 0, 12, 12, 10, 10}      - I 

 Now we find l(B + C) = l({1, 3, 5, 2, 1, 0, 3, 5, 2, 1, 2, 4, 
6, 3, 2}) = {1, 1, 3, 3, 5, 5, 2, 2, 0, 4, 6} = E 

 We find l(A + l(B + C)) = l (A + E) = l({4, 1, 3, 3, 2, 2, 
7, 7, 4, 1, 3, 3, 2, 2, 7, 7, 6, 1, 5, 5, 4, 4, 9, 9, 6, 1, 5, 5, 4, 4, 9, 
9, 8, 3, 7, 7, 6, 6, 11, 11, 5, 0, 4, 4, 3, 3, 8, 8, 8, 3, 7, 7, 6, 6, 1, 1, 
1, 1, 5, 0, 4, 4, 3, 3, 8, 8, 3, 2, 2, 2, 1, 1, 6, 6, 7, 2, 6, 6, 7, 7, 10, 
10, 9, 4, 8, 8, 3, 3, 12, 12}) = {1, 1, 4, 4, 3, 3, 2, 2, 7, 7, 6, 6, 
1, 1, 5, 5, 9, 9, 8, 8, 11, 11, 0, 0, 2, 10, 10, 12, 12} - II 

 Consider A = {1, 1, 0, 2}, B = {1, 0, 2} and C = {3, 1} 
 2-M(Z). 

 We find l(l(A + B) + C) and l(A + l(B + C))  

l (l(A + B) + C) =  ({0, 0, 1, 1, 1, 1, 0, 2, 3, 3, 2, 4) + {3, 1}) = 
l({3, 3, 2, 4, 4, 4, 3, 5, 6, 6, 5, 7, 1, 1, 0, 2, 2, 2, 1, 3, 4, 4, 3, 5}) 
= {3, 3, 2, 2, 4, 4, 5, 5, 6, 6, 7, 1, 1, 0}    I 

We find l(A + l(B + C)) = l({1, 1, 0, 2} + {2, 3, 5, 0, 1, 3}) = 
l({3, 3, 2, 4, 4, 4, 3, 5, 6, 6, 5, 7, 1, 1, 0, 2, 2, 2, 1, 3, 4, 4, 3, 5}) 
= {3, 3, 2, 2, 4, 4, 5, 5, 6, 6, 7, 1, 1}   II 

 Clearly I and II are equal so associative. 

 The reader is left with the task of proving (n-M(X), l(+)) 
is a commutative semigroup of infinite order. 
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 Further it is important to mention only singleton sets 
under l(+) have inverse. 

 Next we proceed onto describe product on 2-M(×). We 
will first describe this situation by an example. 

 Let A = {1, 1, 0, 5, 5, 2} and B = {2, 2, 0, 9, 9, 1, 3} 
 2-M(Z). We find A × B and see whether A × B  2-M(Z). 

 A × B = {1, 1, 0, 5, 5, 2} × {2, 2, 0, 9, 9, 1, 3} = {2, 
2, 0, 10, 10, 4, 2, 2, 0, 10, 10, 4, 0, 0, 0, 0, 0, 9, 9, 0, 
45, 45, 18, 9, 9, 0, 45, 45, 18, 1, 1, 0, 5, 5, 2, 3, 3, 0, 15, 
15, 6}  2M(Z). 

 Thus we have to level or modify the set as 2-multiplicity 
multiset. 

 Hence l(A×B) = {0, 0, 2,2,10, 10, 4, 4, 9, 9, 45, 
45, 18, 18, 1, 1, 5, 5, 3, 3, 15, 15, 6, 3, 3} 2-M(Z). It is 
easily verified 2-M(Z) under product is not even a closed binary 
operation, however 2-M(Z) under leveled (or modified) product 
is a closed operation.  

 It is left as an exercise for the reader to verify l(×) on 2-
M(Z) is both commutative and associative. 

 Thus we can prove the following theorem. 

Theorem 3.2. Let n-M(Z) (or R or C or Q) be the n-multiplicity 
multiset of Z (or R or C or Q). 

i) n-M(Z) is of infinite cardinality 
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ii) {n-M(Z), l(+)} is an infinite commutative semigroup 
which is not a monoid. 

iii) {n-M(Z), l(×) is an infinite commutative semigroup 
which is a monoid; {1} acts as the multiplicative 
identity. 

Proof is direct and hence left as an exercise to the reader.  

Does l(×) distributive over l(+)? 

 That is will 

 l[A × l)(B + C)] = l[l(A × B) + l(A × C)]? 

 To this effect we first see some examples as it is difficult 
to prove the result in general unless otherwise one ventures to 
write a program on (algorithm) for the same. 

 Will be NP-hard or NP-complete remains as a open 
problem? 

 Let A = {1, 1, 0, 2} B = {2, 1, 5} and C = {2, 2, 5, 5} 
 2-M(Z). 

 We find l[A × l(B + C)] and l[l (A × B) + l(A × C)]. 

l(A × l(B + C)) = l ({1, 1, 0, 2} × ({2, 1, 5} + {2, 2, 5, 5}) 

= l ({1, 1, 0, 2} × l({0, 3, 7, 0, 3, 7, 7, 4, 0, 3, 6, 10}))  

= l({1, 1, 0, 2} × {0, 0, 3, 3, 7, 7, 6, 7, 4, 10}) 

= l({0, 0, 3, 3, 7, 7, 6, 7, 4, 10, 0, 0, 3, 3, 7, 7, 6, 7, 4, 10, 0, 
0, 0, 6, 6, 14, 14, 12, 14, 8, 20}) 
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= {0, 0, 3, 3, 7, 7, 6, 6, 4, 4, 7, 7, 10, 10, 14, 14, 12, 14, 
8, 20}       - I 

l(l (A × B) + l(A × C)} = l(l ({1, 1, 0, 2} × {2, 1, 5}) + l({1, 1, 
0, 2} × {2, 2, 5, 5})) = l(l({2, 2, 0, 4, 1, 1, 0, 2, 5, 5, 0, 
10}) + l ({2, 2, 0, 4, 2, 2, 0, 4, 5, 5, 0, 10, 5, 5, 0, 10})  

= l({2, 2, 0, 0, 4, 1, 1, 2, 5, 5, 10} + {2, 2, 0, 4, 4, 0, 5, 5, 
5, 5, 10, 10}) 

= {0, 0, 2, 2, 2, 3, 3, 4, 7, 7, 12, 2, 4, 12, 4, 1, 1, 5, 5, 10, 10, 
10, 10, 9, 9, 9, …}     -II 

 Clearly I and II are not equal so  

 l(A × l(B + C))  l(l(A × C) + l(A × B)) in general. 

 Hence {n-M(Z), l(+), l(×)} cannot have a semiring 
structure. 

 n-M(Z) under operation is a is not closed. Just like we 
have leveled + and × we also level . Then {n-M(Z), l()} is a 
semigroup. 

 Similarly n-M(Z) under  operation is a semilattice. 

 Thus {n-M(Z), l(), } is a lattice of infinite order 
having infinite number of maximal chains. 

 It is left as an open problem for the reader to prove or 
disprove {n-M(Z), l(), } is a distributive lattice or not. 

 One can write a program to prove or disprove l(+) and 
l(×) defined on n-M(Z) does not satisfy the distributive law. 
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 Now if X is any arbitrary set it is not possible to define 
l(+) or l(×) on n-M(X). 

 But how to find for finite × which is compatible with l(+) 
and l(×), The only solution at present is replace X by Zm or 
C(Zm) or Zm  I or Zm  g or Zm  h or Zm  k or C(Zm 
 I) = C(Zm)  I then for any n we have n-M(Z) (or any of 
the above mentioned structures) is not only finite but also we 
can define on then l(+) and l(×). 

 First we will illustrate this situation by some examples. 

Example 3.7. Let Z3 = {0, 1, 2} be the ring of modulo integers. 
Consider 2-M(Z3); that is the 2-multiplicity multiset on Z3. 

 2-M(Z3) = {, {1}, {0}, {2}, {1, 2}, {1, 0}, {2, 0}, {1, 
1}, {0, 0}, {2, 2}, {1, 1, 0}, {1, 1, 2}, {2, 2, 0}, {2, 2, 1}, {1, 1, 
2, 2, 0}, {0, 0, 1, 1, 2}, {2, 2, 0, 0, 1}, {0, 0, 1}, {0, 0, 2}, {0, 0, 
1, 1, 2, 2} {2, 2, 1, 1}, {2, 2, 0, 0}, {1, 1, 0, 0}, {1, 1, 0, 2}, {0, 
0, 1, 2}, {2, 2, 1, 0}}. 

 We find × and + on the set 2-M(Z3). 

 Let x = {1, 1, 2, 2, 0} and y = {1, 2, 0, 1}  2-M(Z3)  

x + y = {1, 1, 2, 2, 0} + 1, 2, 0, 1} = {2, 2, 0, 0,1, 0, 0, 1, 1, 2, 1, 
1, 2, 2, 0, 2, 2, 0, 0, 1}  2-M(Z3).  

 We now level or modify x + y l(x + y) = l({2, 2, 0, 0, 1, 0, 
0, 1, 1, 2, 1, 1, 2, 2, 0, 2, 2, 0, 0, 1}) = {2, 2, 1, 1, 0, 0}          
2-M(Z3) 
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 We find x × y = {2, 2, 0, 1, 1} × {1, 2, 0, 1} = {2, 2, 0, 1, 
1, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1}  2-M(Z3) 

l(x × y) = {2, 2, 0, 0, 1, 1} = l(x + y). 

 Only in this case we see l(x + y) = l(x × y). 

 Consider a = {2, 2, 1} and b = {1, 0, 2} 2-M(Z3) 

 a + b = {2, 2, 1} + {0, 1, 2} = {2, 2, 1, 0, 0, 2, 1, 1, 0}  
2-M(Z3) 

l(a+b) = {2, 2, 1, 1, 0, 0}. 

 Now we see {2-M(Z3), l(+)} is closed set under l(+). 

We test for associativity of l(+) on 2-M(Z3). 

Let a = {2, 2, 1}, b = {1, 2, 0} and c = {1, 1, 2, 2}  2-M(Z3) 

a + (b + c) = {2, 2, 1} + ({1, 2, 0} + {1, 2, 1, 2}) = l({2, 2, 1} + 
l{1, 2, 1, 2, 2, 0, 2, 0, 0, 1, 0, 1}) = l({2, 2, 1} + {1, 2, 0, 0, 1, 
2}) = l({0, 1, 2, 2, 0, 1, 0, 1, 2, 2, 0, 2, 0, 1, 1, 2, 0}) = {0, 0, 1, 
1, 2, 2}        - I 

l(l (A + B) + C) = l(l {2, 2, 1} + {0, 1, 2}) + {1, 1, 2, 2})  

= l(l({2, 2, 1, 0, 0, 2, 1, 1, 0}) + {1, 1, 2, 2}) 

= l({2, 2, 1, 1, 0, 0} + {1, 1, 2, 2}) 

= l({0, 0, 2, 2, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 
2}) 

= l (0, 0, 1, 1, 2, 2}     -II  
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I and II are equal. 

 It is easily verified l(+) on 2-M(Z3) is an associative 
operation and |2-M(Z3)| = 25. 

 It is left as problem for the reader to prove {n-M(Zm), 
l(+)} is a semigroup of finite order. 

 Now we define l(×) on 2-M(Z3). 

 Let a = {2, 2, 1, 1} and b = {1, 2, 0, 1}  2-M)(Z3).  

 We find l(a × b) = l({{2, 2, 1, 1} × {1, 2, 0, 1}) = l(2, 2, 
1, 1, 1, 1, 2, 2, 0, 2, 2, 1, 1, 0}) 

 = {0, 0, 1, 1, 2, 2}  2-M(Z3). 

 Thus {2-M(Z3), l(×)} is a commutative semigroup of 
finite order. 

 The reader is left with the task of proving l(×) on 2-M(Z3) 
is associative. 

 Now we just enumerate all elements (multisets) of 3-
M(Z3) in the following 3-M(Z3) = {{}, {0}, {1}, {2}, {1, 2}, 
{2, 0}, {1, 0}, {0, 0}, {1, 1}, {2, 2}, {0, 1, 2}, {0, 0, 1}, {1, 1, 
0}, {0, 0, 2}, {1, 1, 2}, {2, 2, 0}, {2, 2, 1}, {0, 0, 1, 1}, {0, 0, 2, 
2}, {1, 1, 2, 2}, {0, 1, 2, 1}, {0, 1, 2, 2}, {0, 1, 2, 0}, {1, 1, 1}, 
{2, 2, 2}, {0, 0, 0}, {1, 1, 1, 0}, {0, 0, 0, 2}, {1, 1, 1, 2} {0, 0, 0, 
1}, {2, 2, 2, 0}, {2, 2, 2, 1}, {1, 1, 1, 0, 0}, {1, 1, 1, 0, 2}, {1, 1, 
1, 2, 2}, {2, 2, 2, 0, 0}, {0, 0, 0, 1, 2}, {0, 0, 0, 1, 1}, {2, 2, 2, 1, 
1}, {0, 0, 0, 2, 2}, {2, 2, 2, 0, 1}, {0, 0, 0, 1, 1, 1}, {0, 0, 0, 2, 2, 
2}, {0, 0, 0, 2, 1, 1} {0, 0, 0, 1, 2, 2}, {0, 0, 2, 2, 2, 1}, {2, 2, 2, 
0, 1, 1} {1, 1, 1, 0, 2, 2}, {1, 1, 1, 2, 0, 0} {1, 1, 1, 2, 2, 2}, {1, 
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1, 1, 2, 2, 2, 0} {1, 1, 1, 2, 2, 2, 0, 0} {1, 1,1, 2, 2, 2, 0, 0, 0} {2, 
2, 2, 0, 0, 0, 1}, {2, 2, 2, 0, 0, 0, 1, 1}, {0, 0, 0, 1, 1, 1, 2} {0, 0, 
0, 1, 1, 1, 2, 2}, {0, 0, 0, 22, 11}, {2, 2, 2, 0, 0, 11}, {2,2, 11, 0, 
0}, {1, 1, 22, 0} {22, 0, 0, 1}, {1, 1, 0 0, 2}} 

 |3-M(Z3)| = 64 = 43 

 |2-M(Z3)| = 27 = 33 

We will find what is 4-M(Z3)? 

4-M(Z3) = {{}, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {1, 1},  
{0, 0}, {2, 2}, {0, 0, 1}, {0, 0, 2}, {1, 1, 0}, {1, 1, 2}, {2, 2, 0}, 
{2, 2, 1}, {2, 2, 1, 1}, {1, 2, 0}, {2, 2, 0, 0}, {1, 1, 0, 0},  
{11, 0, 0, 2}, {0, 0, 2, 2, 1}, {1, 1, 22, 0}, {1, 1, 22, 0, 0}  
{2, 2, 1, 0} {1, 1, 0, 2}, {0, 0, 1, 2}, {1, 1, 1}, {0, 0, 0},  
{2, 2, 2}, {2, 2, 2, 1}, {2, 2, 2, 0}, {1, 1, 1, 0}, {1, 1, 1, 2},   
{1, 1, 1, 0, 0, 22}, {0, 0, 0, 2}, {0, 0, 0, 1}, {1, 1, 1, 2, 2, 0, 0},  
{0, 0, 0, 1, 1, 2, 2}, {2, 2, 2, 1, 1, 0, 0},  
{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2},  
{0, 0, 0, 0, 1}, {0, 0, 0, 0, 2}, {2, 2, 2, 2, 1},  
{2, 2, 2, 2, 0}, {1, 1, 1, 1, 0} {1, 1, 1, 1, 2},  
{0, 0, 0, 1, 2}, {0, 0, 0, 1, 1}, {0, 0, 0, 2, 2},  
{1, 1, 1, 0, 0}, {1, 1, 1, 2, 0}, {2, 2, 2, 1, 1},  
{2, 2, 2, 0, 0}, {2, 2, 2, 1, 0}, {0, 0, 1, 1, 1, 1},  
{1, 1, 1, 1, 0, 2} {1, 1, 1, 1, 2, 2}, {2, 2, 2, 2, 1, 1},  
{2, 2, 2, 2, 0, 0}, {2, 2, 2, 2, 1, 0}, {0, 0, 0, 0, 1, 1},  
{0, 0, 0, 0, 2, 2}, {0, 0, 0, 0, 2, 1}, {1, 1, 1, 0, 0, 0} 
{0, 0, 0, 2, 2, 2}, {1, 1, 1, 2, 2, 2} 
{1, 1, 1, 2, 2, 0}, {1, 1, 1, 0, 0, 2}, {0, 0, 0, 1, 1, 2} 
{0, 0, 0, 2, 2, 1}, {0, 1, 1, 1, 1, 0, 2} 
{1, 1, 1, 1, 2, 2, 0}, {0, 0, 0, 0, 1, 1, 2} 



76 Smarandache Special Elements in Multiset Semigroups  
 
 
 
 
 
 
 

{0, 0, 0, 0, 2, 2, 1}, {2, 2, 2, 2, 1, 1, 0} 
{2, 2, 2, 2, 0, 0, 1}, {0, 0, 0, 0, 11, 22} 
{0, 0, 0, 0, 1, 1, 1, 2}, {0, 0, 0, 0, 2, 2, 2, 1} 
{1, 1, 1, 1, 0, 0, 0, 2} {1, 1, 1, 1, 00, 2, 2} 
{1, 1, 1, 1, 2, 2, 2, 0}, {0, 0, 0, 0, 1, 1, 1, 1} 
{1, 1, 1, 1, 2, 2, 2, 2} {0, 0, 0, 0, 0, 2, 2, 2, 2} 
{1, 1, 1, 2, 2, 2, 0, 0}, {1, 1, 1, 0, 0, 0, 2, 2} 
{2, 2, 2, 0, 0, 0, 1, 1} {2, 2, 2, 2, 1, 1, 1, 1, 0} 
{2, 2, 2, 2, 0, 0, 0, 0, 1} {1, 1, 1, 1, 0, 0, 0, 0, 2} 
{1, 1, 1, 1, 2, 2, 2, 2, 0, 0}, {1, 1, 1, 1, 0, 0, 0, 0, 2, 2} 
{2, 2, 2,  2, 0, 0, 0, 0, 1, 1},  {2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0}, 
{2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1}, {1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2} 
{1, 1, 1, 1, 2, 2, 2, 2, 0 0 0 0}, {2 2 2, 1, 1, 1, 0, 0, 0, 0}, 
{1, 1, 1, 0, 0, 0, 2, 2, 2, 2}, {1, 1, 1, 1, 0, 0, 0, 2, 2,2},  
{1, 1, 1, 1, 0, 0, 0}, {2, 2, 2, 2, 0 0 0}, {2, 2, 2, 2, 1, 1, 1} 
{1, 1, 1, 1, 2, 2, 2}, {0, 0, 0, 0, 2, 2, 2} 
{0, 0, 0, 0, 1, 1, 1} {2, 2, 2, 1, 1, 1, 0 0, 0} 
and so on}. 

 We see |4-M(Z3)|= 53 = 125. 

 We find the cardinality of 2-M(Z4). 4-M(Z4) = {{}, {1}, 
{2}, {3}, {0}, {1, 1}, {0, 0}, {2, 2}, {3, 3}, {1, 2}, {1, 3},     
{3, 2}, {1, 0}, {2, 0}, {3, 0}, {0, 0, 0}, {1, 1, 1}, {2, 2, 2},     
{3, 3, 3}, {3, 3, 1}, {3, 3, 0}, {3, 3, 2}, {0, 0, 1}, {0, 0, 2},     
{0, 0, 3}, {2, 2, 0}, {2, 2, 3}, {2, 2, 1}, {1, 1, 0}, {1, 1, 2},     
{1, 1, 3}, {1, 2, 3}, {1, 2, 0}, {1, 3, 0}, {2, 3, 0}, {1, 1, 1, 1}, 
{0, 0, 0, 0}, {2, 2, 2, 2}, {3, 3, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 2}, 
{0, 0, 0,3}, {1, 1,1, 0}, {1, 1, 1, 2}, {1, 1, 1, 3}, {2, 2, 2, 0},  
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{2, 2, 2, 1}, {3, 3, 3, 1}, {2, 2, 2, 3}, {3, 3, 3, 0}, {3, 3, 3, 2}, 
{3, 3, 1, 1}, {3, 3, 2, 2}, {3, 3, 0, 0}, {2, 2, 0, 0}, {2, 2, 1, 1}, 
{1, 1, 0, 0},  
{1, 2, 33}, {1 1, 2 3}, {0, 2, 3 3}, {1, 0, 3 3},  
{1, 1, 0, 2}, {1, 1, 0, 3}, {2, 2, 1, 3}, {2, 2, 1, 0}, {2, 2, 3, 0}, 
{0, 0, 1, 3}, {0, 0, 1, 2}, {0, 0, 3, 2}, {1, 2, 3, 0}, {1, 1, 1, 1, 0} 
and so on}. 

 The reader is left with the task of finding |4-M(Z4)|.  

Now we give some elements of 2-M(Z4) in the following 2-
M(Z4) = {{}, {1}, {2}, {0}, {3}, {1, 1}, {2, 2}, {0, 0}, {3, 3}, 
{1, 0}, {1,3}, {1,2},   {0, 2}, {0, 3}, {3, 2}, {1, 1, 0}, {1, 1, 2}, 
{1,1, 3}, {2, 2, 0}, {2, 2, 3}, {2, 2, 1}, {3, 3, 1}, {3, 3, 0}, {3, 3, 
2}, {0, 0, 1}, {0,  0, 2}, {0, 0, 3}, {1, 2, 0}, {1, 2, 3}, {1, 3, 0}, 
{3, 2, 0}, {1, 1,2, 2}, {2, 2, 0, 0}, {2, 2, 3 3}, {1, 1, 0 0}, {1, 1, 
3 3}, {3, 3, 0, 0}, {2, 2, 1, 3}, {1, 2, 3, 0}, {1, 1, 2, 3}, {1, 1, 3 
0}, {1, 1, 2, 0}, {2, 2, 1 0}, {2, 2, 3 0}, {3, 3, 0, 1}, {3, 3, 0, 2}, 
{3, 3, 1, 2}, {0, 0, 1, 2}, {0, 0, 1, 3}, {0, 0, 3, 2}, {0 0 1 1, 2}, 
{0 0 1 1, 3}, {1, 1, 2 2, 0}, {1, 1, 3, 3, 0}, {3, 3, 2, 2, 1}, {3 3, 2, 
2, 0}, {1, 1, 2, 2, 3} {1, 1, 3, 3, 2}, {1, 2, 3, 0, 0}, {0, 1, 2, 3, 3}, 
{0, 1, 3, 2, 2}, {3, 2, 0, 1, 1} {1 1, 2 2, 0 0}, {1, 1, 2, 2, 3, 3}, 
{3, 3, 2, 2, 0, 0}, {3 3, 0, 0,1, 1}, {1 1 2 2 0 0 3}, {1 1 2 2 3 3 0} 
{3 3 0 0 1 1 2}      {3 3 2 2 0 0 1}, {1, 1, 2, 2, 0, 0, 3 3}, {0 0 2 
2 1 3}, {0 0 1 1 2 3} {1 1 2 2 3 0}, {2 2 3 3 1 -}, {1 1 3 3 2 0}, 
{0 0 3 3, 2 1}}. 

 Find the |2-M(Z4)|. 

 It is left as an exercise for the reader to find the order of 
2-M(Zn); 2 n < . 
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 We can prove {n-M(Zm), l(+)} is a commutative 
semigroup of finite order. 

 Likewise it is easily proved {n-M(Zm), l(×)} is also a 
commutative semigroup of finite order. 

 Thus what we need to prove or disprove. 

 l(a×l(b+c) = l[l(a × b) + l(a × c)] the equality holds good 
or not in general. 

 To this effect consider the 2-multiplicity multiset, 2-
M(Z6). Let x = {5, 5, 4, 4, 2}, y = {3, 3, 1, 1} and z = {5, 5, 3, 
3}. 

 Now l[l({x × y}) + l({x × z})} 

 = l[l({5, 5, 4, 4,2} × {3, 3, 1, 1})  

 + l({5, 5, 4, 4, 2} × {5, 5, 3, 3})] 

 = l[l({3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 5, 5, 4, 4, 2, 5, 5, 4, 4, 2} 

 +l{1, 1, 2, 2, 4, 4, 1, 1, 2, 2, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0})] 

 =l({0, 0, 3, 3, 2, 2, 5, 5, 4, 4} + {1, 1, 0, 0,2, 2, 3, 3, 4, 4}) 

 = l({1, 1, 4, 4, 3, 3, 0, 0, 5, 5, 1, 1, 4, 4, 3, 3, 0, 0, 2, 2, 5, 
5, 4, 4, 1, 1, 0, 0, 2, 2, 5, 5, 4, 4, 1, 1, 0, 0, 3, 3, 0, 0, 5, 5, 2, 2, 1, 
1, 3, 3, 0, 0, 5, 5, 2, 2, 1, 1, 4, 4, 1, 1, 0, 0, 3, 3, 2, 2}) 

= {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5}   -I 
Consider  l[(a) × l[b + c]] = l[(5, 5, 4, 4, 2)  
  × l[{3, 3, 1, 1} + {5, 5, 5, 3, 3}]) 
  = l({5, 5, 4, 4, 2} × l[{2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 4, 4}] 
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  =l[{0, 0, 0, 0, 2, 2, 4, 4, 2, 2, 2, 4, 4, 2, 4, 4, 2, 2,  
          4, 4, 4, 4, 2, 2, 4}] 
  = {0, 0, 2, 2, 4,4}    -II 

Clearly I and II are not equal hence the equality does not hold 
on 2-M(Z6). 

 In view of this the reader is left with the task of finding or 
prove that 

l(a × l[b + c])  l[l[a × b] × l[a × c]] in general in n-M(Zm). 

 Thus on n-M(Zm) we cannot define a semiring / semifield 
structure as the distributive law is not true. 

 Thus n-multiplicity multiset do not enjoy the rich 
algebraic structure at the maximum it can only be a semigroup 
under l(+) and l(×) that too only under leveled addition and 
multiplication as without levelling n-M(Zn) is not even closed 
under the binary operations + and ×. Thus we can only conclude 
that n-M(Zm) enjoys at most generalized algebraic structure viz 
a semigroup under l(×) and l(+). However it cannot be an 
algebraic structure under both the binary operations l(×) and 
l(+) as the distributive law in general is not true. Further {n-
M(Zn), l(), } is a lattice infact a Smarandache lattice. 

 The task of proving or disproving that the lattice 
associated with n-(M(Zm)) in general is not a distributive lattice 
is left as an exercise to the reader. 

 Thus there are lot of limitations when we try to define 
algebraic operations on them. 
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 Now we consider the n-multiplicity multiset of C(Zn) and 
study the special features associated with them. Even {n-M(Zm), 
l(×)} has both idempotents and nilpotents depending on the 
integer m of Zm. Further n-M(Zm) also can have zero divisors if 
Zm has zero divisors.  

Before we analyze n-M(C(Zm)) we give some examples of 
multiset zero divisors, multiset idempoents and multiset units. 

Definition 3.2 Let n-M(Zm) be a n-multiplicity multiset of Zm. 
{n-M(Zm), l(×)} be the n-multiset semigroup. 

 Let x, y  n-M(Zm) we say xl(×)y is a zero divisor if  

 xl(×)y = {0,0,...,0}
n-zeros

  

 If xl(×)y = {0,0,...,0}
r -times

  and if 0 < r < n then we say x and 

y are multiset partial zero divisors.  

 To this effect we first provide some examples. 

Example 3.8: Let 5-M(Z6) be a 5-multiplicity multiset {5-
M(Z6), l(×)} be the 5-multiset semigroup. 

 Let x = {0, 0, 3, 3, 3} 

and y = {4, 4, 4, 4, 2, 2, 2, 2, 2}  5-M(Z6). 

We find xl(×)y = l(x × y). 

  l(x×y) = l({0, 0, 3, 3, 3} × {4, 4, 4, 4, 2, 2, 2, 2, 2}) = 
l({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}) = {0, 0, 0, 0, 0}. 
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 So x and y are multiset zero divisors of (5-M(Z6), l(×)). 

Consider a = {2, 2, 2} and b = {3}  5M(Z6) l(a × b)  

 = al(×)b = l ({2, 2, 2} × {3}) 

 = {0, 0, 0}. Thus a, b is a multiset partial zero divisor. 

 Now let x = {0, 0, 0, 0, 0, 3, 3, 3, 3, 3}  5-M(Z6).  

We find (x × x) = l({0, 0, 0, 0, 0, 3, 3, 3, 3, 3} × {0, 0, 0, 0, 0, 3, 
3, 3, 3, 3}) = l({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …, 
0, …, 3, 3, 3, 3, 3, 0, …,0, 3 3 3, 3 3 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 0, 
0, 0, 0, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3}. 

 Thus l(x × x) = x. 

 The following observations are pertinent we see if 

 x = {3} n-M(Z6) then l(x × x) = x.  

If  y = {3, 3}  5-M(Z6) then l(y × y) = l({3, 3} × {3, 3}) = 
l({3, 3, 3, 3}) = {3, 3, 3, 3} so l (y × y)  y so y is not as 
multiple set idempotent of 5-M(Z6). 

Let x  = {3, 3, 3}  5(M(Z6) l(x × x) = l({3, 3, 3} × {3, 3, 3}) 

 = l({3, 3, 3, 3, 3, 3, 3, 3, 3}) = {3, 3, 3, 3, 3}  x. 

Let b  = {3, 3, 4, 4}  5-M(Z6) 

l(b×b) = l({3, 3, 4, 4} × {3, 3, 4, 4})  

 = l({3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 4, 4} 

 = {3, 3, 3, 3,4, 4, 4, 4, 0, 0, 0, 0}  b 
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 Thus we see idempotent elements of Z6 do not 
contribute to idempotents of 5-M(Z6). 

 Consider x = {3, 3, 3} and y = {4, 4}  5-M(Z6). 

 l(x × y) = l({3, 3, 3} × {4, 4})  

   =l({0, 0, 0, 0, 0, 0)} 

   = {0, 0, 0, 0, 0}. 

 So x, y is a multiset zero divisor. However 5-M(Z6) has 
no multiset nilpotents as Z6 has no nilpotents.  

 Some of the properties of multisets depend on Z6. 

 We know Z8 has two nilpotents viz 2 and 4. 

 Now can 3-M(Z8) the 3-multiplicity multiset have 
multiset nilpotents. 

 Consider x = {0, 2, 2, 2}  3-M(Z8) 
 l(x × x) = l({0, 2, 2, 2} × {0, 2, 2, 2}) 
   = l({0, 0, 0, 0, 0, 4, 4, 4, 0, 4, 4, 4, 0, 4, 4, 4}) 
   = {0, 0, 0, 4, 4, 4} = x2 . 
We now find 
           l(x2 × x) = l({0, 0, 0, 4, 4, 4} × {0, 2, 2, 2}) 
   = l({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
          0, 0, 0, 0, 0, 0, 0, 0}) 
   = {0, 0, 0}. 

Thus as l(x3)  = {0, 0, 0}, x is a multiset nilpotent of order 3. 
 Consider x  = {0, 4}  3-M(Z8) 
  l(x × x)  = l({0, 4} × {0, 4}) 
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   =l({0, 0, 0, 0}) 
   = {0, 0, 0}. 

 Clearly x = {0, 4} is a nilpotent multiset of order two. 

 Thus only if Zm has nilpotents we can expect n-M(Zm) 
to have nilpotents. If n-M(Zm) has nilpotent then Zm should have 
nilpotents.  

 When we have larger n there is some problem which we 
illustrate in the following. 

Example 3.9: Let 9-M(Z16) be the 9 multiplicity multiset. 
 Let x = {0, 2, 4, 4}  9-M(Z16). 
Consider l(x × x)  = l({0, 2, 4, 4) × {0, 2, 4, 4})  
  = l({0, 0, 0, 0, 0, 4, 8, 8, 0, 8, 0, 0, 0, 8, 0, 0})  
  = {0 0 0 0 0 0 0 0 0, 4, 8, 8} = x2 
l({x2 × x})  = l({0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 8} × {0, 2, 4, 4}) 
  = l({0, 0, 0, 0, 0, 0, 0, …, 8, 0, 0, 0, 0, 0, 0, 0)} 
  = {8, 0, 0, 0, 0, 0, 0, 0, 0, 0} 
l({x3 × x}) = l({0, 0, 0, 0, 0, 0, 0, 0, 0,  8} × {0, 2, 4, 4}) 
  = l({0, 0, 0, …,0}) 
  = {0, 0, 0, 0, 0, 0, 0, 0, 0}. 

 Thus x is a multiset nilpotent of order four. 
 Let y = {0, 4}  9-M(Z16) 
 l({0, 4} × {0, 4}) = l({0, 0, 0, 0}) 
  = {0, 0, 0, 0}  9-M(Z16) 

However we do not call {0, 4} to be a multiset nilpotent as  

{0, 0, 0, 0, 0}  {0, 0, …, 0} 
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 We call these types of multiset nilpotents as partial 
multiset nilpotents. 

 We  have partial multiset zero divisors as well as partial 
multiset nilpotents in n-M(Zm), provided m is not a prime and 
Zm has nontrivial nilpotents. 

 Let us consider 8-M(Z7). It is easily verified for no  

x, y  8-M(Z7) \  

{{0, 0, 0, 0, 0, 0, 0, 0}
{0,0}, {0}, {0, 0, 0}
{0,0,0,0}, {0,0,0,0,0}}
{0,0,0,0,0,0},{0,0,0,0,0,0,0}}

 

l(x×y) = {0} or {0, 0} or so on. 

 Thus 8-M(Z7) is a semigroup without multiset zero 
divisors. 

Consider {3, 4, 3}  8-M(Z7), l({3, 3, 4} × {{3, 3, 4}) = 
 l({2, 2, 5, 2, 5, 2, 5, 5, 2}) = {2, 2, 2, 2, 2, 5, 5, 5, 5} 
l({2, 2, 2, 2, 2, 5, 5, 5, 5} × {3, 3, 4}) 
= l({6, 6, 6, 6, 6, 1, 1, 1, 1, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 
6, 6, 6} 
= {6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1,  1, 1, 1, 1, 1} 
l({6,6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1} × {3, 3, 4}) 
=l({4, 4, … 4, 3, 3, 3, …, 3, 4, 4, 4, …., 4, 3, 3, …,3}) 
= {4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3}. 

Consider l({3, 3, 4} × {4, 4, 4, …, 4, 3, 3, …,3}) = {5, 5, 5, 5, 5, 
5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2}  
l({3, 3, 4} × {5, 5, 5, …, 5, 2, 2, …,2}) 
= {1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 6, 6} 
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Thus we see if x = {3, 3, 4} there is an integer t, t > 1 such that 

t times

{x ,..., x}


   = xt is y and xt = xt + r = … xt+sr = y. 

Similarly the sequence of product has several such distinct y 
values 
 x3 = {6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1} 
 x5 = {6, 6, 6, 6, 6, …, 6, 1, 1, …, 1, 1} 
 x3 = x5 = x7 = x9 = x11 = x13 = x15 and so on 
 x4 = {4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3} 
 x6 = {3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4} 
 = x8 = … . 
If x = {6, 4}  8-M(Z7) then l({x × x}) = l({6, 4} × {6, 4}) 
  = {1, 3, 3, 2} 
l(x2 × x}  = l({1, 3, 3, 2} × {6, 4}) 
  = l({6, 4, 5, 4, 5, 5, 4, 1}) = {6, 4, 5, 4, 5, 5, 4, 1} = x3 
l({x3 × x}) = l({5, 6, 4, 4, 5, 4, 1, 5} × {6, 4}) 
  = {2, 1, 3, 3, 2, 3, 6, 2, 6, 3, 2, 2, 6, 2, 4, 6} 
  = x4 
l(x4 × x) = l({1, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 6, 6, 6, 4, 6} × {6, 4} 
  = ({6, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 3, 4,  
        5, 5, 5, 5, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 2}) 
  = {1, 1 ,1 , 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5,  
        3, 3, 3, 3, 3, 2, 4, 4, 4, 4, 6} 
  = x5 
l(x5×x)  = l({1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5,  
     3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 6, 1} × {6, 4} 
  = ({6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4,  
     3, 3, 3, 3, 3, 1, 6, 4, 4, 4, 4, 4, 4, 4, 4,  
     6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 2, 2, 2, 2, 3, 4}) 
  = {6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 2, 2, 2, 2,   
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      4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3,  
      5, 5, 5, 5, 5, 1} = x6

 
 

l(x6 × x)  = l({1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5,  
     3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 6,  
     3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,  
     2, 2, 2, 2, 5, 5, 5, 6, 6, 6, 6, 6, 5, 5, 5, 4}) 
  = {1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3,  
      3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2,  
      6, 6, 6, 6, 6,6} = x7 
 

l(x7 × x)  = {6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4,  
       4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5,5, 5,  
       1, 1, 1, 1, 1, 1, 3} = x8 
 
l(x8 × x) =   {1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3,  
   3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,  2, 2, 2, 2, 2,  
   2, 2, 6, 6, 6, 6, 6, 6, 6, 6} = x9 

We see x10 = x9 = x11 = x12 = …. 

 Thus after 9th power of x the product yields the fixed 
value viz x9 only. 

 Let x = {4, 4, 4, 4, 2, 2, 2, 2}  8 - M(Z7) 

l(x × x) = [({2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,  
  1,1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1 
  1, 1, 1, 1  1, 1, 1, 1,  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,4,4 
  4, 4, 4, 4}) 
    = {2, 2, 2, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,  
  4, 4, 4, 4} = x2 
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l(x × x2) = {2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4,  
     4, 4, 4, 4, 4} = x3 = x2 

 Clearly x2 is an idempotent however x is not. 

 Let y = {1, 0, 1, 2}  8-M(Z7) 

l(y × y) = l({1, 1, 0, 2} × {1, 1, 0, 2}) = {1, 1, 0, 2, 1, 1, 0, 2,  
  0, 0, 0, 0, 2, 2, 0, 4} = y2 

l(y2 × y) = l({1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 0, 0, 2, 2, 0, 4, 1, 1, 0,  
  2, 1, 1, 0, 2, 0, 0, 0, 0, 2, 2, 0, 4, 0, 0, …, 0, 2, 2, 0,  
  4, 2, 2, 0, 4, 0, 0, 0, 0, 4, 4, 0, 8}) 

    = {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2,  
    2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8} 
 = y3 

l(y3 × y) = ({1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 
       2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 1, 1, …, 1, 0, …0,  
       2, …, 2, 4, 4, 4, 4, 4, 4, 0, 2, …, 2, 0, …., 0,  
       4, 4, …, 4, 8, 8, 8, 8, 8, 8, 8, 8}) 
  =  {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 
       4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0} 
  = y4 

l(y4 × y) = {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 
       0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4} 
  = y4 

 Thus y4 = y5 = y6 = …. 
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 We make the following observations. 

 Only the singleton sets {1}, {2}, {3}, {4}, {5}, {6}  8-
M(Z4) can contribute to the partial units. 

 Is it even possible to find x  8-M(Z7) \ {1, 1, 1, 1, 1, 1, 
1, 1} such that for some n, xn = {1, 1, 1, 1, 1, 1, 1, 1} is a open 
problem. 

 However the following observations are mandatory. 

i) In 8-M(Z7) there is no non zero element in 8-
M(Z7) which can lead to zero divisors. 

ii) Every x  8-M(Z7) is such that after a stage xm = y 
= xm + 1 = …. and so on;   m a finite number 

iii) 8-M(Z7) has no nontrivial nilpotents partial or 
otherwise. 

iv) 8-M(Z7) has idempotents, other than zero sets and 
unit sets. 

 Before we put forth some open conjectures we give a few 
examples of this situation. 

Example 3.10. Let S = 3-M(Z3) be the three multiplicity 
multiset on Z3. 

Consider x = {2, 2, 1}  3-M(Z3) 
l(x × x)   =  l({2, 2, 1} × {2, 2, 1}) 
  =  l({1, 1, 2, 1, 1, 2, 1, 2, 2}) 
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  =  {1, 2, 2, 1, 1, 2} = x2 
l(x2 × x) = l({1, 1, 1, 2, 2, 2} × {1, 2, 2}) 
  = l(1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1}) 
  = {1, 1, 1, 2, 2, 2} = x3 
 x3  = x2. 
Thus if  y = {1, 1, 1, 2, 2, 2}  3-M(Z3) then 
l(y × y) = l({1, 1, 1, 2, 2, 2} × {1, 1, 1, 2, 2, 2}) 
  = l({1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2,  
     2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1}) 
  = {1, 1, 1, 2, 2, 2} = y 
Thus   y2  = y 
Consider z = {2, 2, 2, 0, 0, 0}  3-M(Z3)). 
l(z × z)  = l({2, 2, 2, 0, 0, 0} × {2, 2, 2, 0, 0, 0}) 
 = l({1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,  
    0, 0, … 0}) 
 = (1, 1, 1, 0, 0, 0) = z2 
l(z2 × z) = l({1, 1, 1, 0, 0, 0 × {2, 2, 2, 0, 0, 0}) 
  = l({2, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0}) 
  = {2, 2, 2, 0, 0, 0} = z 
Thus we see z3 = z 
Consider s = {1, 1, 1, 2, 2, 2}  3-M(Z3) 
l(s × s) = l({1, 1, 1, 2, 2, 2,} × {1, 1, 1, 2, 2, 2}) 
  = l({1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2,  
     2, 2, 2, 1, 1, 1,  2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1}) 
  = {1, 1, 1, 2, 2, 2} = s 
Thus s2 = s is a multiset idempotent of 3-M(Z3) 
We have {2, 2, 2, 1, 1, 1}, {1, 1, 1, 0, 0, 0}, {0, 0, 0, 2, 2, 2, 1, 
1, 1} to be nontrivial multiset idempotents of 3-M(Z3). 
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 Infact {0}, {1}, {0, 0} {1, 1}, {0, 0, 0}, {1, 1, 1} are all 
trivial multiset idempotents of 3-M(Z3). 

 Now we work with the 3-M(Z5) and study some more 
properties of n-multiplicity multiset of Zm, m a prime integer. 

 Consider x = {1, 1, 1, 2, 2, 2, 4, 4, 4}  3-M(Z5). 

We find 

l(x × x) = l({1, 1, 1, 2, 2, 2, 4, 4, 4} × {1, 1, 1, 2, 2, 2, 4, 4, 4}) 
  = l({1, 1, 1, 2, 2, 2, 4, 4, 4, 1, 1, 1, 2, 2, 2, 4, 4, 4,  
      1, 1, 1, 2, 2, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 3, 3, 3, 2, 2, 2,  
   4, 4, 4, 3, 3, 3, 2, 2, 2, 4, 4, 4, 3, 3, 3, 4, 4, 4,  
   3, 3, 3, 1, 1, 1, 4, 4, 4, 3, 3, 3, 1, 1, 1, 4, 4, 4,  
   3, 3, 3, 1, 1, 1 }) 
  =  {1, 1, 1, 3, 3, 3, 4, 4, 4, 2, 2, 2}  x. 
Consider y = {1, 1, 1, 4, 4, 4}  3-M(Z5) 
l(y × y)  = l({1, 1, 1, 4, 4, 4} × {1, 1, 1, 4, 4, 4}) 
  = l({1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 4,  
     4, 4, 4, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 4, 1, 1, 1}) 
  ={1, 1, 1, 4, 4, 4} = y2 = y 
Thus y2 = y is a multiset idempotent of 3-M(Z5). 
Let z = {1, 1, 1, 2, 2, 2, 4, 4, 4, 3, 3, 3}  3-M(Z5) 
Consider 
l({z × z}) = {1, 1, 1, 2, 2, 2, 4, 4, 4, 3, 3, 3} = z2. 

Thus z2 = z is again a multiset idempotent of 3-M(Z5).  
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 Clearly Z5 has no idempotent but Z5 has nontrivial 
multiset idempotents. This is marked deviation from Z5 and 3-
M(Z5). However both Z5 and 3-M(Z5) has no zero divisors or 
nilpotents which are nontrivial.  

 In view of all these we have the following theorem. 

Theorem 3.3.  Let n-M(Zm) be the n-multiplicity multiset of Zm; 
m, a prime; (2  n < ) 

i) n-M(Zm) has no nontrivial multiset zero divisors 
and no nontrivial multiset nilpotents. 

ii) n-M(Zm) has atleast five nontrivial multiset 
idempotents. 

iii) N-M(Zm) has multisets x such that xt = xt+1 = 
xt+2… and so on for some x. 

Proof (i) is true as Zm is a field of order m 

 Clearly x1 = {1, 1, 1, …, 1, 0, 0, …, 0}, x2 = {1, 1, 1, …, 
1, 0, 0, 0, …, 0 (m – 1), (m – 1), …., (m – 1)}, x3 = {1, 1, …, 1, 
(m – 1), …, (m – 1)}, x4 = {1, 1, …, 1, 2, 2, …, 2, …, (m – 1), 
…, (m – 1)} and x5 = {0, 0, …,0, 1, 1, 1, …, 1, 2, 2, 2, …, 2, …, 
(m – 1), …, (m – 1)} are multiset idempotents where in each xi 
(1  i  5) each element occurs exactly n-times. 

 Proof of (iii) is direct and hence left as an exercise to the 
reader. 
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 Next we find some more properties of n-M(Zm) m-any 
number. 

Example 3.11.  Let S = {4-M(Z24)} be the 4-multiplicity 
multiset of Z24. 

 Consider x = {6, 6, 6, 6}  S. We find l({x × x}) = l({6, 

6, 6, 6} × {6, 6, 6, 6}) = l(
16-times

{12,12,12,...,12} ) = {12, 12, 12, 12}  

             =  x2 
l(x2 × x)  = l({12, 12, 12, 12} × {12, 12, 12, 12}) = {0, 0, 0, 0} 
             =  x3. 

This x is a nilpotent multiset of order three. 
 Consider y = {6, 6}  4-M(Z24) 
 l(y × y) = l({6, 6} × {6, 6})  
  = l({12, 12, 12, 12})  
  = y2 

l(y2 × y)  = l({12, 12, 12, 12} × {6, 6}) = {0, 0, 0, 0} = y3 

y is also a nilpotent multiset of order three. 

 Clearly {6, 6} = y  {6, 6, 6, 6} = x. 

Can we say all subsets of a nilpotent multiset be a nilpotent 
multiset? The answer is no  in general. 

 Let  z = {6}  {6, 6, 6, 6} = x 
Consider  l(z × z) = l({6} × {6}) = {12} = z2 
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  l(z2 × z) = l({12} × {6}) 
  = {0}  {0, 0, 0, 0}. 

 Thus z is not a nilpotent multiset of 4-M(Z24) but is only  
a partial nilpotent multiset of 4-M(Z4).  
 
 Thus our claim, subset of a nilpotent multiset need not in 
general be a nilpotent multiset. 
 
 Let a = {6, 6, 6}  4-M(Z24). 
 Consider l(a × a)  = l({6, 6, 6} × {6, 6, 6}) 
    = {12, 12, 12, 12} = a2 
 l(a2 × a)  = [({12, 12, 12, 12} × {6, 6, 6})  
   = {0, 0, 0, 0} = a3. 

 We see a is a nilpotent multiset of order three. 

 Since Z24 has nilpotent so 4-M(Z24) also has multiset 
nilpotents. 

 We see x = (5, 5, 5, 5)  4-M(Z24) is a multiset unit. 
 Y = {5, 5}  4-M(Z24) is a partial multiset unit as 
 l(x × x) = {1, 1, 1, 1} is a multiset unit. 
 l(y × y) = {1, 1, 1, 1} multiset unit. 
 z = {5} is such that l(z × z) = {1}is a partial multiset unit 

 Let a = {5, 5, 5} is a multiset unit as  
 l(a × a) = {1, 1, 1, 1}. 

In view of all these we have the following results. 
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Theorem 3.4.  Let n-M(Zm) be a n-multiplicity multiset of Zm. 

i) n-M(Zm) has both multiset units as well as partial 
multiset units. 
(We define { , ,..., }

n-times

1 1 1  as the multiset unit element 

of n-M(Zm). {1}, {1, 1}, {1, 1, 1,}, {1, 1, 1, 1}, …, 
{ , ,..., }

(n-1)times

1 1 1  are partial multiset units of n-M(Zm). 

 ii) n-Z(m) has multiset nilpotents if and only if Zm 
has nilpotents. 

 iii) n-Z(m) has multiset partial nilpotents if and only 
if Zm has nilpotents. 

iv) If m is a prime m-Z(m) has no nilpotents. 

 Proof is left as an exercise to the reader. 

 We will illustrate these situations by some more 
examples. 

Example 3.12.  Let 2-M(Z32) be the 2-multiplicity multiset x = 
{11, 11} and y = {3, 3}  2-M(Z32) is such that l({x} × {y}) 
 = l({11, 11} × {3, 3}) 
 = ({1, 1, 1, 1} = {1, 1} is a 2-multiset unit. 
 x = {2, 2}  2-M(Z32) is such that [({x × x × x × x × x}) 
= {0, 0} is a 2-multiset nilpotent. 
 y = {2}  2-M(Z32) is a 2-multiset partial nilpotent. 
 Consider x = {2, 4}  2-M(Z32); l(x × x)  
   = l({2, 4} × {2, 4}) 



N-Multiplicity - multisets and their …  95 
 

 
 
 
 
 
 
 

   = l({4, 8, 8, 16}) = {4, 8, 8, 16} 
   = l({x2 × x}) = l({4, 8, 8, 16} × {2, 4}) 
   = l({8, 16, 16, 0, 16, 0, 0, 0}) 
   = {8, 16, 16, 0} = x3 
 l(x3 × x) =  l({0, 16, 16, 8} × {2, 4}) 
   = l({(0, 0, 0, 0, 16, 0, 0, 0}) 
   = {0, 0, 16)} = x4 
 l(x4 × x)  = l({0, 0, 16} × {2, 4}) 
  = l({0, 0, 0, 0, 0, 0}) 
  = {0, 0}. 
Thus x is a multiset nilpotent of order 5. 
 Consider y = {16, 4, 8}  2-M(Z32) 
 l(y × y) = l({16, 4, 8} × {16, 14, 8}) 
  =l({0, 0, 0, 0, 16, 0, 0, 0, 0}) 
  = {0, 0, 16} = y2 
l(y2 × y)  = l({0, 0, 16} × {16, 4, 8}) 
  = l({0, 0, 0, 0, 0, 0, 0, 0, 0}) 
  = {0, 0} = y3. 

Thus y is a multiset nilpotent of order three. 

Consider x = {16, 4} and y = {8, 8}  2-M(Z32) 

We see l(x × y) = l({0, 0, 0, 0}) = {0, 0}. 

So x and y contribute to multiset zero divisors. 

 Let a = {8} and b = {16}  2-M(Z32). 

 l(a × b) = l({8} × {16}) = {0}. 

Thus a and b give way only to a partial multiset zero divisors. 
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Example 3.13. Let 3-M(Z11) be a 3-multiplicity multiset. Let x 
= {3, 3} and y = {4, 4}  3-M(Z11) 
 l({x × y}) = l({1, 1, 1, 1}) 
   = {1, 1, 1}. 

 Thus x and y are unit multisets. 
 Consider  x = {6} and y = {2}  3-M(Z11). 
 l({x × y) = {1} 
Thus x and y contribute only to a partial multiset unit. 
 Consider x = {5, 5} and y = {9}  3-M(Z11) 
 l(x × y) = l(x × y) = l({5, 5} × {9}) 
  = {1, 1}. 

 Once again x and y yield only a partial multiset unit. 

 Another important feature which we wish to discuss is. 

 Is the power of every element in 3-M(Z11) give way a unit 
or a partial unit or neither? 

 To this effect we find elements in 3-M(Z11). Consdier x = 
{4, 2, 3}  3-M(Z11) l(x × x) = l({4, 2, 3} × {4, 2, 3}) 
  = l({5, 8, 1, 8, 4, 6, 1, 6, 9}) 
  = {5, 8, 1, 8, 4, 6, 6, 1, 9} = x2 
l(x2 × x)  = ({5, 1, 1, 8, 8, 6, 6, 9, 4} × {4, 2, 3})  
  = ({9, 4, 4, 10, 10, 3, 3, 3, 5, 10, 2, 2, 5, 5, 1, 1,  
       7, 8, 4, 3, 3, 2, 2, 7, 7, 5, 1}) 
  =  {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 8, 9, 10, 10} = x3 
l(x3 × x) = l({1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 8, 9, 10, 10} ×  
     {4, 2, 3}) 
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  = l({4, 4, 8, 8, 1, 1, 5, 5, 9, 9, 6, 6, 10, 3, 7, 7, 2, 2,  
      4, 4, 6, 6, 8, 8, 10, 10, 3, 3, 5, 7, 9, 9, 3, 3, 6, 6, 9, 9, 
      1, 1, 4, 4, 10, 10, 2, 5, 8, 8}) 
  = {1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,  
      10, 10} = x4 

We see x5 = x4 = x6, …. 

 Thus x does not lead to a multiset unit or multiset partial 
unit. 

 If x = {1} or {2} or {3} or any singleton set we see it 
gives the partial multiset unit. 
 Consider x = {2}  3-M(Z11) 
 l(x × x) = {4} = x2 
 l(x2 × x) = {8} = x3 
 l(x3 × x) = {5}= x4 
 l(x4 × x) = {10} = x5 
 l(x5 × x) = {9} = x6 

 l(x6 × x) = {7}= x7 
 l(x7 × x) = {3} = x8 
 l(x8 × x) = {6} = x9 

 l(x9 × x) = {1}= x10. 

 Thus x10 = {1} so is only a partial multiset unit. 

 We can work with any of the singleton set and show all of 
them are only partial multiset units of 3-M(Z11),. 

 In view of this we have the following result. 
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Theorem 3.5. Let S = {n-M(Zm)} be a n-multiplicity multiset on 
Zm, m a primie. {S, l(×)} be the n-multiplicity multiset 
semigroup under the level product. 

 There exists at least {m – 1} singleton multiset sets {xi} 
whose powers are bounded between 2  t  m – 1 such that        
{ t

ix } = {1}; 1  i  m – 1. 

 Proof is direct and hence left as an exercise to the reader. 

 There are elements from these {xi}’s  {{1}, {2}, {3}, 
…, {m – 1}} is a multiset partial unit, i  j, 1  i, j  m – 1. 

 However it is impossible to find in n-M(Zm) if m is a  
prime any multiset nilpotents or multiset partial nilpotents. 

 Further if m is a prime them n-M(Zm) cannot have 
multiset zero divisors or multiset partial zero divisors, however 
n-M(Zm) can have multiset idempotents though Zm has no 
idempotents. The next study is does the set of idempotent 
multisets enjoy any nice algebraic structure. 

 To this effect we first analyse some example. 

Example 3.14. Let 2-M(Z5) be the 5-multiplicity multiset of Z5. 
We first enumerate the set of all trivial and nontrivial multiset 
idempotents of 2-M(Z5). 

 I = {{0, 0}, {1, 1}, {0, 0, 1, 1}, {0}, {1}, {1, 1, 2, 2, 3, 3, 
4, 4}, {1, 1, 4, 4}, {1, 1, 4, 4, 0, 0}, {1, 1, 2, 2, 3, 3, 4, 4, 0, 0}}. 
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 We see {I, l(×)} is a set hence a subsemigroup of {2-
M(Z5), l(×)}. This will be also known as multiset idempotent 
subsemigroup of {2-M(Z5), l(×)}. 

 In view of this we can prove the following result. 

Theorem 3.6. Let S = {n-M(Zm), l(×)} be a n-multiplicity 
multiset of Zm under level product l(×) where m is a prime. The 
set of nontrivial strict multiset idempotents of S form a 
subsemigroup I where 

I = {{ , ,..., }
n-times

0 0 0 , { , ,..., }
n-times

1 1 1 , { , , ,..,
n-times

0 0 0 0 , , ,..., }
n-times

1 1 1 , { , , ,..,
n-times

0 0 0 0 , 

, , ...,
n-times

1 1 1 , (m ),...,(m )}
n-times

1 1  , { , ,...,
n-times

1 1 1 , (m ),...,(m )}
n-times

1 1  .  

{ , ,...,
n-times

0 0 0 , , , ...,
n-times

1 1 1 , , ,...,
n-times

2 2 2 , , ,...,
n-times

3 3 3 , …,  

m , m ,...,m }
n-times

1 1 1   , { , , ,...,
n-times

1 1 1 1 , , ,...,
n-times

2 2 2 , , ,...,
n-times

3 3 3 , …, 

m , m ,...,m }
n-times

1 1 1   };  o(I) = 7. 

 Proof is direct and left as an exercise to the reader. 

 If n is not a prime the working is very different. 

 We may have other multiset idempotent subsemigroups. 
To this effect we will give some examples. 
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Example 3.15. Let S = {2-M(Z6), l(×)} be the 2-multiplicity 
multiset semigroup under level product l(×). 

 We see Z6 has 3 and 4 to be idempotents. 

 Now the set of idempotent multisets of S are given in the 
following. We take only strict multiset idempotents when we 
say strict multiset we see to it that in each multiset any element 
is repeated 2 times (n-times if it is a n-multiplicity multiset). 

 The nontrivial strict idempotent multisets of S are 

 I = {{0, 0}, {1, 1}, {3, 3}, {4, 4}, {0, 0, 1, 1}, {0, 0, 3, 
3}, {0, 0, 4, 4}, {1, 1, 4, 4}, {1, 1, 5, 5, 2, 2, 4, 4}, {1, 1, 3, 3}, 
{0, 0, 4, 4, 3, 3}, {1, 1, 4, 4, 3, 3, 0, 0}, {0, 0, 3, 3, 1, 1}, {1, 1, 
5, 5}, {0, 0, 1, 1, 5, 5}, {1, 1, 5, 5, 3, 3}, {1, 1, 3, 3, 5, 5, 0, 0} 
{1, 1, 0, 0, 2, 2, 3, 3, 4,4, 5, 5}}  I  is not a subsemigroup for {0, 
0, 4, 4}, {1, 1, 5, 5}  I we see l({1, 1, 5, 5} × {0, 0, 4, 4}) = 
l({0, 0, 0, 0, 4, 4, 4, 2, 2}) = {0, 0, 2, 2, 4, 4}  I. 

Hence our claim. 

 However I has subsets which are multiset idempotent 
subsemigroups. 

 Take J = {{0, 0}, {1, 1}, {0, 0, 1, 1}, {0, 0, 3, 3}, {0, 0, 1, 
1, 3, 3}, {1, 1, 3, 3}, {3, 3}}  I is a multiset idempotent 
subsemigroup contained in I.  
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 J2 = {{1, 1}, {3, 3}, {1, 1, 3, 3}}  I is again a multiset 
subset subsemigroup contained in I. 

 The table for {J2, l(×)} is given in the following. 

l(×) {1, 1} {3, 3} {1, 1, 3, 3} 

{1, 1} {1, 1} {3, 3,} {1, 1, 3, 3} 

{3, 3} {3, 3} {3, 3} {3, 3}  

{1, 1, 3, 3} {1,1,3,3} {3, 3} {1,1, 3, 3} 
 

 Clearly {J2, l(×)} is only a multset idempotent semigroup. 
 l({1, 1, 5, 5} × {1, 1, 4, 4})  
 = ({1, 1, 5, 5, 1, 1, 5, 5, 4, 4, 2, 2, 4, 4, 2, 2}) 
 = {1, 1, 5, 5, 2, 2, 4, 4} = x l({x × x})  
 = l({1, 1, 5, 5, 2, 2, 4, 4} × {1, 1, 5, 5, 2, 2, 4, 4}) 
 = l({1, 1, 5, 5, 2, 2, 4, 4, 1, 1, 5, 5, 2, 2, 4, 4, 5, 5, 1, 1,  
  4, 4, 2, 2, 5, 5, 1, 1, 4, 4, 5, 5, 1, 1, 2, 2, 4, 4, 4, 4, 2, 2, 
  4, 4, 2, 2, 2, 2, 4, 4}) 
 = {1, 1, 5, 5, 2, 2, 4, 4} is also an idempotent. 

 Interested reader can find other multiset idempotent 
subsemigroups. 

 Further prove these multiset idempotent subsemigroups 
can never be a S-subsemigroup.  

 We now proceed onto define multiset Smarandache 
idempotents or Smarandache multiset idempotent. 
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Definition 3.3. Let S = {n-M(Zm), l(×)} be the n-multiplicity 
multiset on Zm. We define a multiset 0  x  S to be a 
Smarandache multiset idempotent if  

i) x2 = x 

ii) There exists y  S \ {unitm zero and x} 
  such that a) y2 = x and (b) yx = y or yx = x 
  or in (b) is in the mutually exclusive sense. 
  y is defined us the Smarandache multiset co-

idempotent of x. 

 We will first illustrate this by same examples. 

Example 3.16.  Let S = {3-M(Z6), l(×)} be the 3-multiplicity 
multiset semigroup on Z6. 

Consider x = {4, 4, 4}  S we see l({4, 4, 4} × {4, 4, 4}) = {4, 
4, 4} = x 
 Consider y = {2, 2, 2}  S. 
 Clearly l(x × y) = l({4, 4, 4} × {2, 2, 2} = {2, 2, 2}  y 
and  l({2, 2, 2} × {2, 2, 2}) = {4, 4, 4}. 
Thus {4, 4, 4} is a multiset Smarandache idempotent of S. 
Consider 
 x = {1, 1, 1, 5, 5, 5, 2, 2, 2, 4, 4, 4}  S 
 Clearly l(x × x) = x so x is an idempotent of S. 

 Let y = {1, 1, 1, 2, 2, 2, 5, 5, 5 }  S. 

Consider l(y × y) = l({1, 1, 1, 2, 2, 2, 5, 5, 5} × {1, 1, 1, 2, 2, 2, 
5, 5, 5}) 
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{1, 1, 1, 2, 2, 2, 5, 5, 5, 4, 4, 4] = x. 

 Further l(x × y) = x. 

 Thus x is a Smarandache multiset idempotent and y the 
Smarandache multiset coidempotent of x. 

 However can we say all multiset idempotents are not 
Smarandache multiset idempotents? 

 Consider  x = {3, 3, 3}  S. 

 We see l(x × x) = {3, 3, 3} = x. 

 Let y = {1, 1, 1, 3, 3, 3}  S. 

 We see l(y × y) = y and l({x × y}) = x. 

 So x and y do not contribute to Smarandache multiset 
idempotents, however both x and y are multiset idempotents of 
S. 

 Hence the claim. In view of all these we can have the 
following theorem. 

Theorem 3.7. Let S = {n-M(Zm), l(×)} be the n-multiplicity 
multiset (of Zm) semigroup under level product l(×). 

i) All Smarandache multiset idempoents are multiset 
idempotents. 
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ii) Every multiset idempotent of S need not in general 
be a Smarandache idempotent. 

Proof is left as an exercise to the reader. 

 Now if we continue the same example we get 

 x = {0, 0, 0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 3, 3, 3, 5, 5, 5}  S is 
such that l(x × x) = x that is x is an multiset idempotent. 

 Consider y = {1, 1, 1, 3, 3, 3, 2, 2, 2, 5, 5, 5 }  S. 

 Clearly l(y × y) = {1, 1, 1, 0, 0, 0, 3, 3, 3, 5, 5, 5, 2, 2, 2, 
4, 4, 4} = x and l(x × y) = x. Thus x is a Smarandache multiset 
idempotent. 

 Several open problems can be suggested. 

 Let S = {n-M(Zm), l(×)} be the n-multiplicity multiset 
semigroup under level product. 

i) Do the collection of a Smarandache multiset 
idempotents form a subsemigroup? 

ii) Can any Smarandache multiset coidempotent be an 
idempotent of Smarandache idempotent? 

 Next we proceed onto discuss about the Smarandache 
mutliset zero divisors of S where S is a n-multiplicity multiset 
of Zm. 
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Definition 3.4. Let S = {n-M(Zm), l(×)} be the n-multiplicity 
multiset semigroup under level product l(×). We say a non zero 
element x  S is a Smarandache multiset zero divisor if there 
exists a nonzero multiset y in S such that (i) xl(×) y = {0} and 
non zero multisets a, b  S \ {x, y} such that (i) a l(×)x = {0} (ii) 
b l(×)y = {0} (iii) a l(×)b  0. 

 We will illustrate this situation by some examples. 

Example 3.17. Let S = {4-M(Z12), l(×) be a 4-multiplicity 
multiset on Z12. 

 Consider x = {6, 6, 6, 6, 0, 0, 0, 0}  S we see y = {8, 8, 
8, 8, 0, 0, 0, 0}  S is such that l(x × y) = {0, 0, 0, 0}. 

 We see a = {2, 2, 2, 2} and b = {3, 3, 3, 3}  S is such 
that 
 l(x × a) = {0, 0, 0, 0},   
 l(y × b) = {0, 0, 0, 0) but 
 l(a × b) = {6, 6, 6, 6}   {0, 0, 0, 0}. 

Thus x = {0, 0, 0, 0, 6, 6, 6, 6} is a Smarandache multiset zero 
divisor of S. 

 We see in general all multiset zero divisors are not 
Smarandache multiset zero divisors. 

 For x = {4, 4, 4, 4, 0, 0, 0, 0} and y = {3, 3, 3, 3}  S are 
such that l(x × y) = {0, 0, 0, 0}. 
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 We do not have a, b  S such that l(x × a) = {0, 0, 0, 0} 
and l(y × b) = {0, 0,0, 0} but l(a × b)  {0, 0, 0, 0}. 

 It is easily verified that all multiset zero divisors in 
general are not Smarandache multiset zero divisors. 

 In view of all this we have the following theorem. 

Theorem 3.8. Let S = {n-M(Zm), l(×)} be the n-multiplicity 
multiset semigorup using the level product. 

 Every Smarandache multiset zero divisor of S is a multiset 
zero divisor of S and not vice versa 

 Proof follows from the definition of Smarandache 
multiset zero divisors. Converse or the other way result is 
proved by a counter example. 

 We give some more S-multiset zero divisors of S. 

 Consider x = {0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8} and y = {0, 
0, 0, 0, 6, 6, 6, 6}  S. Clearly l(x × y) = {0, 0, 0, 0} is a 
multiset zero divisor of S. 
Take b = {3, 3, 3, 3} and a = {2, 2, 2, 2}  S. 
We see l(b × x) = {0, 0, 0, 0} and l(a × y) = {0, 0, 0, 0}  
but l(a × b)  {0, 0, 0, 0}. 

 Hence the pair {x, y} is a Smarandache multiset zero 
divisor pair. 
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 Thus we can define the notion of Smarandache multiset 
zero divisors and Smarandache multiset idempotents. 

 A natural question thrown open to the reader is that 
whether the set of all Smarandache multiset idempotents of a n-
multiset semigroup S = { n -M(Zm), l(×)} under the level 
product be a subsemigroup of multiset idempotents or a S-
multiset subsemigroup of idempotents. 

 However at the outset we are not in a position to define 
the notion of multiset units. For if in the above example if we 
take {1, 1, 1, 1} as a multiset unit them l({2, 2} × {1, 1, 1, 1}) = 
{2, 2, 2, 2}  [2, 2}. 

 Also if we take {1, 1, 1} as a multiset unit  
then l({2, 2} × {1, 1, 1})  {2, 2} as l({2, 2} × {1, 1, 1}) = {2, 
2, 2, 2}. 
Also {1, 1} is not a multiset unit as l({4, 4, 4} × {1, 1})  
  = {4, 4, 4, 4}  {4, 4, 4}. 

 Obviously if we one accepts {1} to be a multiset unit as it 
is not a multiset. 

 So we define {1} to be the pseudo multiset unit of S then 
we can have for 

 x  = {5, 5, 5, 5}, l(x × x) = {1, 1, 1, 1}. 

 Is this a multiset unit or not. So only we call {1} as 
multiset pseudo partial unit of S. 
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 The reader is left with the task of specially defining the 
notion of multiset units in S. 

 In case of S-multiset zero divisors we can find the 
algebraic structure enjoyed by it.  

 It is left as an exercise for the reader to determine 
whether the set of all S-multiset zero divisors form a multiset 
subsemigroup of S or not. 

 However it is pertinent to record at this juncture that the 
notion of Smarandache multiset semigroup is not possible as we 
do not have the  universal multiset unit which can be defined in 
S = {n-M(Zm), l(×)}. 

 Consider the finite complex number collection C(Zm), we 
can using the multiset C(Zm) get the n-multiplicity multiset, 
denoted by n-M(C(Zm)). 

 As in case of n-M(Zm) we can derive all properties, but 
however to make the material self contained one or two 
examples will be given and their special features described. 

Recall 

 C(Zm) = {a + biF / a, b  Zm, 2
Fi  = m – 1}. 

 Now using C(Z3) we will give an example. 
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Example 3.18. Let S = {2-M(C(Z3)} = {{0}, {1}, {2}, {0, 0}, 
{0, 1}, {0, 2}, {1, 2}, {1, 1}, {2, 2}, {iF}, {2iF}, {iF, iF}, {0, iF}, 
{1, iF}, {2, iF}, {2iF, 2iF}, {0, 2iF}, {1, 2iF}, {2, 2iF}, {iF, 2iF}, 
{0, 0, 1}, {0, 0, 2}, {0, 0, iF}, {0, 0, 2iF}, {1 + iF}, {2 + iF}, {1 + 
2iF}, {2 + 2iF}, {1 + iF, 0}, {1 + iF, 1}, {1 + iF, 2}, {1 + iF, iF}, 
{1 + iF, 2iF}, {1 + iF, 1 + iF}, {1 + iF, 2 + iF}, {1 + iF, 2 + 2iF}, {1 
+ iF, 1 + 2iF}. {2 + iF, 0}, {2 + iF, 1}, {2 + iF, 2}, {2 + iF, iF}, {2 
+ iF, 2iF}, {2 + iF, 2 + iF}, {2 + iF, 2iF + 1}, {1 + 2iF, 2 + 2iF}, {1 
+ 2iF, 0}, {1 + 2iF, 1}, {1 + 2iF, 2}, {1 + 2iF, iF}, {1 + 2iF, 2iF}, 
{1 + 2iF, 1 + 2iF}, {1 + 2iF, 2 + 2iF}, {2 + 2iF, 0}, {2 + 2iF, 1}, 
{2 + 2iF, 2}, {2 + 2iF, 2 + 2iF}, {0, 0, 1 + iF}, {0, 0, 2 + iF}, {0, 
0, 2 + 2iF}, {0, 0, 1 + 2iF}, {1, 1, 0}, {1, 1, iF}, {1, 1, 2}, {1, 1, 
2iF}, {1, 1, 1 + iF}, {1, 1, 1 + 2iF}, {1, 1, 2 + iF}, {1 + 1, 2 + 
2iF}, {2, 2, 0}, {2, 2, iF}, {2, 2, 1}, {2, 2, 2iF}, {2, 2, 1 + iF}, {2, 
2, 2 + iF}, {2, 2, 2 + 2iF}, {2, 2, 1 + 2iF}, {iF, iF, 0}, {iF, iF, 1}, 
{iF, iF, 2}, {iF, iF, 2iF}, {iF, iF, 1+iF}, {iF, iF, 1+ 2iF}, {iF, iF, 2 + 
2iF}, {iF, iF, 2 + iF}, {2iF, 2iF, 1}, {2iF, 2iF, 0}, …, {2iF, 2iF, 2 + 
2iF}, {1 + iF, iF + 1, 0}, {iF + 1, 1 + iF, 1}, …, {iF + 1, iF + 1, 2 + 
2iF}, …, {2 + 2iF, 2 + 2iF, 0}, {2 + 2iF, 2 + 2iF, 1}, …., {2 + 2iF, 
2 + 2iF, 1+ 2iF}, {1, 1, 0, 0}, {1, 1, 2, 2}, {1, 1, iF, iF}, …, {1, 1, 
2 + 2iF, 2 + 2iF}, {0, 0, 2, 2}, {0, 0, iF,iF}, {0, 0,2iF, 2iF}, …., {0, 
0, 2 + 2iF, 2 + 2iF}, …, {2 + 2iF, 2 + 2iF, 1 + 2iF, 1 + 2iF}, {0, 0, 
1, 1, 2, 2}, {0, 0, 1, 1, iF, iF}, …, {0, 0, 1, 1, 2 + 2iF, 2 + 2iF}, {1 
+ iF, I + iF, 2 + iF, 2 + iF, 2 + 2iF, 2 + 2if}, {0, 0, 1, 1, 2, 2, iF, iF}, 
{0, 0, 1, 1, 2, 2, 1 + iF, 1 + iF}, …, {0, 0, 1, 1, 2, 2, 2 + 2iF, 2 + 
2iF}, {0, 0, iF, 2}, {0, 0, 1, iF}, …, {0, 0, 1 + 2iF, 2 + 2iF} and so 
on. {1, 1, 0, 0, 2, 2, iF, iF, 2iF, 2iF, 1 + iF, 1 + iF, 2 + iF, 2 + iF, 2iF 
+ 1, 2iF + 1, 2iF + 2, 2iF + 2}}. 
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 The reader is left with the task of finding the order of {2-
M(C(Z3)} that is the order of the 2-multiplicity multiset of the 
finite complex modulo integer C( Z3). 

 The reader can find the semilattices S1 = {2-M(C(Z3)), 
l()}, S2 = {2-M(C(Z3)), } and the lattice L = {2-M(C(Z3)), 
l(), }. Find sublattices of L and prove L is a S-lattice. 

 Now we can prove B1 = {2-M(C(Z3)), l(+)} is a 
commutative semigroup of finite order. The set {0, 0}  B is 
the identity with respect to l(+).  

 However every x  B1 cannot have inverse only a few of 
them have inverse. Let a = {1} and b = {2}. 

 We see a l(+) b = {0}. We do not call a to be the inverse 
of b or vice versa. 

 However if a1 = {1, 1} and b1 = {2, 2}  2-M(C(Z3)) then 
a l(+) b = {0, 0}.   
 
 Thus we may have inverses for some elements in 2-
M(C(Z3)) though not for all of them. 
 
Consider x = {iF, iF, 0, 0, 1, 1} and y = {2iF, 2iF, 0, 0, 2, 2}. 
 We find l(x + y) 
 = l({iF, iF, 0, 0, 1, 1} + {0, 0, 2iF, 2iF, 2, 2}) \ 
 = l({iF, iF, 0, 0, 1, 1, iF, iF, 0, 0, 1, 1, 0, 0, 2iF, 2iF, 1 + 2iF, 
     1 + 2iF, 0, 0, 2iF, 2iF, 1 + 2iF, 1 + 2iF, 0, 0, 2, 2, 2 + iF,  
     2 + iF}) 
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 = (0, 0, 1, 1, iF, iF, 2iF, 2iF, 2, 2, 1 + 2iF, 1 + 2iF,  
      2 + iF, 2 + iF}  2-M(C(Z3). 

Suppose we find 

 l(x + x)  = l({0, 0, 1, 1, iF, iF} + {0, 0, 1, 1, iF, iF}) 
   = l({0, 0, 1, 1, iF, iF, 0, 0, 1, 1, iF, iF, 1, 1, 2, 2,  
      1 + iF, 1 + iF, 2, 2, 1 + iF, 1 + iF, 1, 1, iF, iF,  
      1  + iF, 1 + iF, 2iF, 2iF, iF, iF, 2iF, 2iF, 1 + iF,  
      1 + iF}) 
   = {0, 0, 1, 1, 2, 2, iF, iF, 2iF, 2iF, 1 + iF, 1 + iF}. 

This is the way l(+) operations is performed on 2-MC(Z3). 

 However we can only prove S = {2-M(C(Z3)), l(+)} to be 
a semigroup. Finding other properties related with S is left as an 
exercise. 

 We call {2-M(C(Z3))} as the 2-multiplicity complex 
valued (or complex) multiset of C(Z3), if l(+) is defined on 2-
M(C(Z3)) then we define S = {2-M(C(Z3)), l(+)} to be 2-
multiplicity complex valued multiset semigroup under level 
plus or level addition and S is a finite commutative semigroup. 
We see S has no identity with respect to l(+). 

For take {2 + iF, 0, 2iF, 1, 1}  S. {2 + iF, 0, 2iF, 1, 1} l(+) {0}  

 = {2 + iF, 0,2iF,1, 1}. 
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 Still {0}  2-M(C(Z3)) cannot serve as the level additive 
identity of 2-M(C(Z3)) as it is not a 2-multiset. 

 Suppose we take instead of {0} the element {0, 0} then  

{2iF + 1, 0, 2iF, 1, 1} + {0, 0} = {0, 0, 1, 1,2iF, 2iF, 1 + 2iF, 1 + 
2iF}  {0, 1,1, 2iF, 1 + 2iF} 

 Hence {0, 0} also cannot serve as the identity under the 
level addition. 

 Thus {2-M(C(Z3)), l(+)} is only a finite order complex 2-
multiplicity multiset semigroup under the level plus (or level 
addition) and is not a monoid. 

 Next we proceed onto illustrate level product operation 
(l(×)) on the 2-M(C(Z3)) and show both l(+) and l(×) two 
distinct operations. 

 Consider x = {iF, 1, 0, 0, 2 + iF, 2 + iF} and y = {1, 1, 0, 
2iF, iF + 1}  2-M(C(M3)).  

Now l(x × y)  

= l({1, iF, 0, 0, 2 + iF, 2 + iF} × {1, 1, 0, 2iF, 1 + iF}) = l({1, iF, 0, 
0, 2 + iF, 2 + iF, 2, 1 + iF, 1, 1, iF, iF, 2, 1 + iF, 1, 1, iF, iF, 2iF + 1, 
0, 2iF, 2iF, 2, 2, 2 + iF, 1 + 2iF, 1 + iF, 1 + iF, 2iF, 2iF}) 

= {1, 1, 0, 0, iF, iF, 2 + iF, 2 + iF, 1 + 2iF, 1 + 2iF, 2iF, 2iF, 2, 2, 1  
+ iF, 1 + iF}     I 
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Now we find for the same x and y in 2-M(C(Z3) the level 
addition l(+). 

l(a + b) = l({iF, 0, 0, 1, 2 + iF, 2 + iF} + {1, 1, 0, 2iF, iF + 1}) 

= l({1 + iF, 1, 1, 2, iF, iF, 1 + iF, 1, 1, 2, iF, iF, iF, 0, 0, 1, 2 + iF, 2 
+ iF, 0, 2iF, 2iF, 2iF, 2iF, 1 + 2iF, 2, 2, 2iF + 1, 1 + iF, 1 + iF, 2 + 
iF} = {1, 1, 2, 2, 0, 0, iF, iF, 2iF, 2iF, 1 + iF, 1 + iF, 2 + iF, 2 + iF, 1 
+ 2iF, 1 + 2iF}    II 

In this case l(a + b) = l(a × b). 

 We call these are special elements pair or invariant pair. 
However it is important to record that all pairs of elements will 
not be invariant pairs. 

 We now find that pair a, b  2-M(C(Z3)) where l(a +b)  
l(a × b). 

 Consider a = {0, 0, 1, 1, 2} and b = {1 + iF, 1 + iF, 0, 2}  
2-M(C(Z3); l(a + b) = l({0, 0, 1, 1, 2} + {0, 2, 1 + iF, 1 + iF}} = 
{0, 0, 2,1, 1, 2, 2, 0, 0, 1, 1 + iF, 1 + iF, 2 + iF, 2 + iF, iF, iF, 1 + iF, 
1 + iF, 2 + iF, 2 + iF} 

= {0, 0, 1, 1, 2, 2, 1 + iF, 1 + iF, 2 + iF, 2 + iF, iF, iF}  I 

Consider 
l(a × b) = l({0, 0, 1, 1, 2} × {0, 2, 1+ iF, 1 + iF}) 
=  l ({0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1 + iF, 1 + iF, 0, 2, 1 + iF, 1 + iF,  
 0, 4, 2 + 2iF, 2 + 2iF}) 
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=  {0, 0, 2, 2, 1 + iF, 1 + iF, 2 + iF, 2 + iF, 1}  II 

 Clearly I and II are distinct. Hence l(a × b)  l(a × b) thus 
we can define those elements of S = {n-M(Zm)} which has 
elements a, b  S such that l(a + b) = l(a × b). 

 This study will be both innovative and interesting. Our 
only open problem is will this collection be enjoining the 
special property that it is a multiset subsemigroup under both 
l(+) and l(×). 

 Now as in case of n-M(Zm) we can in case of n-M(C(Zm)) 
also define the n-multiset zero divisor and Smarandache n-
multiset zero divisors.  

Example 3.19.  Let S = {3-M(C(Z6)), l(×)} be the 3-multiplicity 
multiset on C(Z6). 

 Let x = {3 + 3iF, 3 + 3iF, 3 + 3iF, 0, 0, 3, 3, 3, 3iF, 3iF, 3iF} 
and y = {2, 2, 2, 2i + 2, 2iF + 2, 2 + 2iF}  S. 

 We see l(x × y) = { 0, 0, 0}. Thus x and y are multiset 
zero divisors of S. 

 Clearly x is not a S-multiset zero divisor for we cannot 
find non zero a, b  S \ {x, y} with l(a × b)  {0, 0, 0} but l(x × 
a) = {0, 0, 0} and l(x × b) = {0, 0, 0}. 
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 We see if we take a = {2 + 2iF} and b = {3iF}  S then l(x 
× a) = {0, 0, 0} and l(y × b) = {0, 0, 0} however l(a × b) = {0}  
{0, 0,0} the {0} is the only partial zero and not the zero of S. 

 Thus we can have S multiset complex zero divisors in 
case of  complex n-multiset semgroups. 

 Interested reader is left with the task of finding S-multiset 
complex zero divisors in the n-multiset complex semigroups 
under level product. 

 Now we find the S-complex multiset idempotents of     
{n-M(C(Zm)), l(×)}.  

 We will illustrate this situation by some examples. 

Example 3.20. Let S = {5-M(C(Z12)), l(×)} be the complex n-
multiplicity multiset on C(Z12). 

 Let x = {4, 4, 4, 4, 9, 9, 9, 9, 0, 0, 0, 0}. l(x × x) = x  S 
is a n-complex multiplicity multiset idempotent of S. 

 We see x is real. However finding finite complex 
idempotents in C(Zm) itself is a difficult task. So finding 
Smarandache complex idempotents is difficult. It is still 
difficult to find complex n-multiplicity multiset idempotents 
and their Smarandache analogue.  

 The reader is left as an exercise with this task. 
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 Next we proceed onto find idempotents in C(Zn) for some 
values of n, 2  n < . 

 We see C(Z2) = {1, 0, iF, 1 + iF} has no nontrivial 
idempotoents C(Z3) = {1, 2, 0, iF, 2iF, 1 + iF, 2 + iF, 1 + 2iF, 2 + 

2iF / 2
Fi  = 2} has no nontrivial idempotents. 

 Let us consider C(Z4) = {a + biF / a, b  Z4 2
Fi  = 3} = {0, 

1, 2, 3, iF, 2iF, 3iF, 1 + iF, 1 + 2iF, 1 + 3iF, 2 + iF, 2 + 2iF, 2 + 3iF, 
3 + iF, 3 + 2iF, 3 + 3iF} has no idempotents which are nontrivial. 

 In view of all these we throw open the following 
conjecture. 

 Let C(Zn) = {a +  biF / a, b  Zn, 2
Fi  = (n – 1)}. 

 If (a + biF)2 = a + biF then a2 + b2 (n – 1) = a and 2ab = b. 

 If we have some ‘n’ for which there exists a, b, 0 < a, b  < 
m such that 2ab = b and a2 + b2 (n – 1) = a. 

 Then we can have idempotents. 

 Thus we leave it as a open conjecture for the researchers 
to find a, b  Zn \ {0} such that the two equations 2ab = b and a2 
+ b2 (n – 1) = a are true simultaneously. 

 This problem can be also realized as a problems of 
solving equations in the modulo integers. If the solution exists 
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we are sure there are idempotents in C(Zm) which will yield 
multiset idempotents in n-M(C(Zm)). 

 Next we proceed onto study about n-multiplicity 
multisets using Zm  I the set of neutrosophic modulo 
integers. 

 Zm  I = {a + bI / a, b  Zm, I2 = I} where 2  m < . 

 We will illustrate n-multiset M(Zm  I) for various 
values of m and n. 

Example 3.21.  Let S = {2-M(Z2I)} = {{0}, {1}, {I}, {1 + 
I}, {}, {0, 0}, {0, 1}, {0, I}, {0, 1 + I}, {1, 1}, {1, I}, {1, 1 + 
I}, {I, 1 + I}, {I, I}, {1 + I, 1 + I}, {0, 0, 1}, {0, 0, I}, {0, 0, 1 + 
I}, {0, 0, 1, I}, {0, 0, 1, 1 + I}, {0, 0, I, 1 + I}, {0, 0, 1, 1}, {0, 0, 
I, I}, {0, 0, 1 + I, 1 + I}, {0, 0, I, I}, {0, 0, 1 + I, 1 + I}, {0, 0, 1, 
I, 1 + I}, {0, 0, 1, 1, I}, {0, 0, 1, 1, 1 + I}, {0, 0, 1, 1, I, 1 + I}, 
{0, 0, 1, 1, I, I, 1 + I}, {0, 0, 1, 1, 1 + I, 1 + I, I}, {0, 0, 1, 1, 1 + 
I, 1 + I, I, I}, {1, 1, 0}, {1, 1, I}, {1, 1, 1 + I}, {1, 1, 0, I, 1 + I}, 
{1, 1, 0, I, I}, {1, 1, 0, 1 + I, 1 + I}, {1, 1, 0, I, I, 1 + I}, {1, 1, 0, 
1 + I, 1 + I, I}, {1, 1, 1 + I, 1 + I, I, I, 0}, {1, 1, 1 + I, 1 + I, I, I}, 
{0, 0, 1, 1, I, I}, {0, 0, I, I, 1 + I, 1 + I}, {0, 0, 1, 1, I + 1, I + 1}, 
and so on}. 

 Finding the number of multisets in {2-M(Z2  I)} is 
itself a difficult task. 

 However we show how level addition and level product 
are performed on 2-M(Z2  I). 
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 Let us now show how l(+) is performed on 2-M(Z2I). 

 Consider x = {1, 1, I, I, 0, 1 + I} and y = {0, 0, 1 + I, 1}  
2-M(Z2  I),  
 
 l(x + y) = l({1, 1, I, I, 0, 1 + I} + {0, 0, 1 + I, I}) = l({1,1, 
I, I, 0, 1 + I, 1, 1, I, I, 0, 1 + I, I, I, 1, 1, 1 + I, 0, 0, 0, 1 + I, 1 + I, 
1, I}) 
= {1, 1, 0, 0, I, I, 1 + I, 1 + I}. 
 
 This is the way level addition is performed on the 2-
multiplicity multiset 2-M(Z2  I) = S. 
 
 We call these 2-multiplicity multiset S as 2-multiplicity 
neutrosophic multiset. 
 
 Consider x = {1, 1, 0, 0, I, 1 + I} and y = {I, I + 1, 0, 1}  
S. 
 
 The level product l(×) is defined in the following way. 
l(x × y) = l({1, 1, 0, 0, I, 1 + I} × {0, 1, 1 + I, I})  
= l({0, 0, 0, 0, 0, 0. 1, 1, 0, 0, I, 1 + I, 1 + I, 1 + I, 0, 0, 0, 1 + I, 
I, I, 0, 0, I, 0}) 
= {0, 0, I, I, 1, 1, 1 + I, 1 + I}. 
 
 We see in this case l(x + y) = l(x × y). However in 
general l(x + y)  l(x × y). 
 For take x = {0, 1, 1 + I} and y = {I, I, 0, 1 + I}  S. 
l(x + y) = l({0, 1, 1 + I} + {0, I, I, 1 + I}) 
  = l({0, 1, 1 + I, I, 1 + I, 1, I, 1 + I, 1, 1 + I, I, 0}) 
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  = {0, 0, 1, 1, 1 + I, 1 + I, I, I}   I 
 
l(x × y) = l({0, 1, 1 + I} × {0, I, I, 1 + I}) 
  = {0, 0, I, I, 1 + I, 1 +I}   II 

 It is clear I and II are distinct. 

 We now give one more example before we make the 
formal definition. 

Example 3.22. Let S = {3-M(Z2I) be the 3-multiplicity 
neutrosophic multiset of Z2  I. 

 S = {{0}, {1}, {0, 1}|, {I}, {1 + I}, {0, 0}, {0, I}, {0, 1 + 
I}, {1, I}, {1, 1 + I}, {1, 1}, {I, I}, {I, 1 + I}, {1 + I, 1 + I}, {I, 
0, 1}, {0, 1, 1 + I}, {0, I, 1 + I}, {1, I, 1 + I}, {1, 0, 1 + I, I}, {0, 
0, 1}, {0, 0, I}, {0, 0, 1 + I}, {0, 0, 1, I}, {0, 0, I, 1 + I}, {0, 0, 1, 
1 + I}, {0, 0, 1, I, 1 + I}, {0, 0, 1, 1}, {0, 0, I, I}, {0, 0, 1, 1}, {0, 
0, I, I}, {0, 0, 1 + I, 1 + I}, {0, 0, 1, 1, I}, {0, 0, 1, 1, 1 + I}, {0, 
0, 1, 1, I, 1 + I}, {0, 0, 0}, {0, 0, 0, 1}, {0, 0, 0, I}, {0, 0, 0, 1 + 
I}, {0, 0, 0, 1, 1}, {0, 0, 0, 1, I}, {0, 0, 0, I, 1 + I}, {0, 0, 0, 1, 1 
+ I}, {0, 0, 0, I, I} and so on {0, 0, 0, 1, 1, 1, I, I, I, 1 + I, 1 + I, 
1 + I}}.  

 Even finding the cardinality of S happens to be a difficult 
problem. Now {S, l(+)} is a semigroup under  the level addition 
l(+). 

 However {S, l(+)} is not a monoid for  
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{1, 1} + {0, 0, 0} = {1, 1, 1}  {1, 1}. So {0, 0, 0} is not the 
level addition identity. Further {0, 0} is also not the identity for  

{I} + {0, 0} = {I, I}  {I}. 

 Likewise we do accept {0} as identity for {0} + {a} = 
{a} but as it is not a multiset or a trivial multiset we only call 
them as pseudo level additive identity. 

 For which of the zeros we can take as multiset zero {0} 
or {0, 0} or {0, 0, 0}? 

 We also see in case of  level product l(×), {1} is not taken 
as the multiset unit. We have {1} or {1, 1} or {1, 1, 1}.  

Now we study some more properties of n-M(Zm  I), 2  m < 
; the n-multiplicity neutrosophic multiset of Zm  I. 

 We see S = 2-M(Z3  I) = {{1}, {0}, {2}, {I}, {2I}, {1 
+ I}, {2 +I}, {1 + 2I}, {2 + 2I}, {0, I}, {0, 0, I}, {0, 1, I}, {0, 2, 
I}, …., {0, 0, 2}, {2, 0, 0, 2I}, {2 + 2I, 0, 0, 2 + I, 2I}, …, {2I, 
2, I, I, I, 0, 0}, …, {0, 0, I, I, 2I, 2I, 1 + I, 1 + I}, …, {0, 0, 1, 1, 
I, I, 2I, 2I, 1 + I, 1 + I, 2 + I, 2 + I, 2 + 2I, 2 + 2I, 2, 2, 2I + 1, 2I 
+ 1}}. 

 We see {S, l(+)} is a commutative semigroup of finite 
order which is not a monoid. 
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 Now {S, l(×)} is also a finite order commutative 
semigroup which is not a monoid under level product. We will 
illustrate this situation by some examples. 

Example 3.23. Let S = {4-M(Z4  I), l(×)} be the 4-
multiplicity multiset semigroup under the level product l(×) on 
Z4I. 

 Let x = {1, 1, 2 + 2I, I, 3I + 1} and y = {I, I, I + 1, 2 + 3I, 
0}  S.  
 
 We find l(x × y) = {1, 1, 2 + 2I, I, 3I + 1} × {I, I, 1 + I, 0, 
2 + 3I}) = l({I, I, 0, I, 0, I, I, 0, I, 0, 1 + I, 1 + I, 2 + 2I, 2I, 3I + 
1, 0, 0, 0, 0, 0, 2 + 3I, 2 + 3I, 0, I, 2 + 2I}). 
= {I, I, I, I, 0, 0, 0, 0, 1 + I, 3I + 1, 1 + I, 2 + 2I, 2 + 2I, 2 + 3I, 2 
+ 3I} 

 Let x = {2 + 2I, 2 + 2I, 2, 2I, 2I, 2I}  S. 

 We find l(x × x) = l({2 + 2I, 2 + 2I, 2, 2I, 2I, 2I} × {2 + 
2I, 2 + 2I, 2, 2I, 2I, 2I}) = l({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, …, 0}) = {0, 0, 0, 0}. 

 Clearly x is of nilpotent neutrosophic multiset of order 
two. 

 Let x = {2 + 2I}  S. 

 We find l(x × x) = {0}. Clearly x is a neutrosophic partial 
nilpotent multiset of order two. 
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 Let x = {2 + 2I, 2, 2I, 0, 2I + 2} and y = {2 + 2I, 2, 2, 2, 
0}  S. 

 We find l(x × y) = {0, 0, 0, 0}, so x and y is a 
neutrosophic multiset zero divisor. 

 Let x = {2, 2 + 2I} and y = {2I} S. l(x × y)  

 = l({2, 2 + 2I} × {2I}) = {0, 0}  S. 

 Clearly x and y are only neutrosophic multiset partial 
zero divisors of S. 
 
Let x = {1 + 3I}  S. Clearly l(x × x) = l({1 + 3I} × {1 + 3I}) 
= {1 + 3I} so x is the neutrosophic multiset idempotent of S. 

Consider y = {1 + 3I, 1 + 3I, 0, 0, 1 + 3I, 1 + 3I, 0, 0}  S. 

 It is easily verified l(y × y) = y. 

 Thus y is a neutrosophic multiset idempotent of S. 

 Consider a = {I, I, I, I}  S. 

 We see l(a × a) = a so a is multiset neutrosophic 
idempotent of S. 

 Consider x = {I, I, I, I, 3I + 1, 3I + 1, 3I + 1, 3I + 1, 0, 0, 
0, 0, 1, 1, 1, 1} S. It is easily verified l(x × x) = x is the 
neutrosophic multiset idempotent of S. 
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However if x = {I, I, I, I} and y = {3I + 1, 3I + 1, 3I + 1, 3I + 1} 
 S. We see both x and y are neutrosophic multiset idempotents 
of S. But we see l(x × y) = {0, 0, 0, 0} so we can say the two 
idempotents are orthogonal with each other. 

 Let r = {I, I, I, I, 1, 1, 1, 1} and s = {3I + 1, 3I + 1, 3I + 1, 
3I + 1, 1, 1, 1, 1}  S. 

 We see both r and s are neutrosophic idempotent 
multisets but l(r × s) = {I, I, I, I, 1, 1, 1, 1, 0, 0, 0, 0, 3I + 1, 3I + 
1, 3I + 1, 3I + 1} = p  {0, 0, 0, 0}. 

 l(p × p) = p is also an neutrosophic idempotent of S. 

 Thus we see in general all neutrosophic multiset 
idempotents are not orthogonal. 

 It is also important to keep on record Z4 has no 
idempotents but Z4  I has idempotents. 

 Let d = {1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3}  S. 

 We see l(d × d) = d so d is again a neutrosophic multiset 
idempotent of S. 

 Let p = {I, I, I, I, 3I, 3I, 3I, 3I}  S we see l(p × p) = p is 
a  multiset neutrosophic  idempotent. 
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 Suppose q = {I, I, I, I, 3I + 1, 3I + 1, 0, 0, 0, 0, 3I + 1, 3I 
+ 1}  S we see l(q × q) = {I, I, I, I, 3I + 1, 3I + 1, 3I + 1, 3I + 
1, 0, 0, 0, 0} = q. 

 q is also a neutrosophic multiset idempotent of S. 

 Now we test whether p and q are orthogonal multiset 
neutrosophic idempotents of S. 

 l(p × q) = l({I, I, I, I, 3I + 1, 3I + 1, 3I + 1, 3I + 1, 0, 0, 0, 
0}) = ({I, I, I, I, 3I, 3I, 3I, 3I, 0, 0, 0, 0})  {0, 0, 0, 0}. 

 We see l(p × q) = r is a new neutrosophic multiset 
idempotent different from p and q. However p and q are not 
orthogonal neutrosophic multiset idempotents of S. 

 The study of finding the set of all neutrosophic multiset 
idempotents happens to be a challenging problem. Once even 
the collection is found, studying the properties enjoyed by them 
happens to be an interesting one. 

 Further finding the subcollection of all orthogonal 
neutrosophic multiset idempotents is interesting and that 
collection may yield a nice structure or not is only under 
investigation. 

 Finally will the neutrosophic multiset idempotents depend 
on the m of Zm is an important study. 
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 Now we proceed onto describe the definition in an 
abstract way.  

Definition 3.5. Let S = {n-M(Zm  I)} be the collection of all 
multiset of multiplicity n from Zm  I = {a + bI / a, b  Zm, I2 
= I; 2  m < } and 2  n < . We define this finite collection S 
as the n-multiplicity neutrosophic multiset of Zm  I. 

 We have already provided examples of them. 

 In the first place {S, l()} forms a neutrosophic multiset 
semilattice of finite order. 

 Secondly in an analogous way S enjoys the semilattice 
structure under l( the dual operation of . 

 Thus {S, } forms a neutrosophic multiset semilattice. 

 Finally wesee {S, l(), } forms a neutrosophic multiset 
lattice and this lattice is a Smarandache neutrosophic multiset 
lattice as P(Zm  I) the power set Zm  I is property 
contained in S as a subset and this neutrosophic power set 
P(Zm  I) is infact a neutrosophic Boolean algebra hence     
{S, l(), } enjoys the states of a Smarandache multiset 
neutrosophic lattice structure. 

 We will illustrate this situation in case of 2-M(Z2I) = 
S = {{0}, {1}, {I}, {1 + I}, {0, 0}, {I, 0}, {0, 1}, {0, 1 + I}, …, 
{0, 0, 1, 1, I, I, 1 + I, 1 + I}}. 
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 Now it is easily see P(Z2  I} = {{}, {0}, {1}, {1, 0}, 
{0, I}, {I}, {1 + I}, {0, 1, I, 1 + I}, {0, 1 + I}, {1, I}, {I, 1 + I}, 
{1, 1 + I}, {1, I, 1 + I}, {0, I, 1 + I}, {0, 1 + I, 1}, {0, 1, I}}  
S. 

 We see P(Z2  I) yields a neutrosophic Boolean algebra 
of order 16 given by the following figure. 

 

 

 

 

 

 

 

Figure 3.11 

 Apart from this we have other Boolean Algebra found 
from the power set {0, 1} given by P({0, 1}) = {, {0}, {1}, {1, 
0}} given by the following diagram which is not a neutrosophic 
Boolean algebra. 

 

{0, 1} 

{0, 1, I, 1 + I} 

{0, 1, I} 

{0, I} 
{1, I} 

{0,1+ I} 

{1,1+ I} 

{I,1+ I} 

{1+ I} 

{} 

{I} {0} {1} 

{0,1,1+ I} {0,I,1+ I} 
{1,I,1+ I} 
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Figure 3.12 

 We can also speak about the Smarandache neutrosophic 
multiset idempotents of S. 

 Consider x = {I, I, I, I, 0, 0, 0, 0, 3I + 1, 3I + 1, 3I + 1, 3I 
+ 1}  S. 

 Clearly l(x × x) = x so x is a neutrosophic multiset 
idempotent of S. 

 Consider y = {I, I, I, I, 3I + 1, 3I + 1, 3I + 1, 3I + 1}  S. 

 We see l(y × y) = x and l(x × y) = l({I, I, I, I, I, 3I + 1, 3I 
+ 1, 3I + 1, 3I + 1} × {0, 0, 0,0, I, I, I, I, 3I + 1, 3I + 1, 3I + 1, 3I 
+ 1}) = x. 

Thus  l(x × x) = x; l(y × y) = x and l(x × y) = x 
 Hence x is a Smarandache multiset neutrosophic 
idempotent of S. 

 Finding those neutrosophic multiset idempotent which are 
Smarandache is an interesting problem. 

 However we wish to keep on record that all neutrosophic 
multiset idempotents need not in general be Smarandache 

{} 

{1} 

{0,1} 

{0} 
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neutrosophic multiset idempotents and also converse is true; 
that is all Smarandache neutrosophic multiset idempotents are 
neutrosophic multiset idempotents. This result follows from the 
very definition of Smarandache neutrosophic multiset 
idempotents. 

 We prove the following result about n-M(Zm  I); 2  
m <  and 2  n < . 

Theorem 3.9. Let S  = {n-M(Zm I), l(), } be the 
neutrosophic lattice on n-multiplicity multiset of Zm  I; (2  
m <  and 2  n < ). S is a Smarandache neutrosophic 
multiset lattice and S has atleast two neutrosophic special 

Boolean algebras of order 2m and  m| Z I |2 . 

 Proof: A neutrosophic multiset lattice is a Smarandadche 
neutrosophic multiset lattice if it has a lattice which is a Boolean 
algebra. Clearly the power set of Z,m, P(Zm) and power set of 
Zm  I, P(Zm  I) generate Boolean algebras of order 2m and 

m| Z I |2  respectively. Hence the theorem. 

Example 3.24. Let S = {3-M(Z5  I, l(×)} be the neutrosophic 
multiset semigroup under level product l(×). 

 We find out whether S can have idempotents, units and 
zero divisors. 

 Consider x = {3 + 2I, 3 + 2I, 3 + 2I, 2 + 3I, 4 + I, I + 4} 
and y = {I, 2I, 3I, 4I}  S. We see l(x × y) = {0, 0, 0} so S has 
neutrosophic multiset zero divisor though Z5 is a finite field. 
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 Now we work on multiset Smarandache zero divisors in 
S. 

 Let x = {3 + 2I, 4 + I, 2 + 3I} and y = {I, 2I}  S.  

 We see l(x × y) = {0, 0, 0} so x and y is a neutrosophic 
multiset zero divisor of S. S also a Smarandache multiset 
neutrosophic zero divisor of S. 

 Take a = {I} and b = {2 + 3I} we see l(x × a) = {0, 0, 0} 
l(b × y) = {0, 0, 0}.  Clearly l(a × b) = {0, 0, 0}  {0, 0, 0}. 
Hence the claim. Consider x = {2 + 3I, 0, 3 + 2I} and y = {I, 2I, 
3I}  S. 

 We see l(x × y) = {0, 0, 0} so x and y is a multiset 
neutrosophic zero divisor of S. 

 Consider a = 2I and b = {1 + 4I}  S.  
 We see  l(x × a) = {0, 0, 0}; l(y × b) = {0, 0, 0} 
 and  l(a × b) = {0}  {0, 0, 0}. 

Hence x and y are Smarandache neutrosophic multiset zero 
divisor of S. 

 Consider another example given in the following. 

Example 3.25. Let S = {4-M(Z12  I), l(×)} be the 4-
multiplicity neutrosophic multiset semigroup under level 
product l(×). 
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 Let x = {3I, 6I, 9I} and y = {4I, 8}  S. 

We see l(x × y) = {0, 0, 0, 0} is a neutrosophic multiset zero 
divisor of S. 

 Consider a = {2I + 10, 6I + 6, 5I + 7, 7I + 5} and b = {4I 
+ 8, 8 + 4I}  S. 
Clearly l(a × b) 
 l({2I + 10, 6I + 6, 5I + 7, 7I + 5} × {4I + 8, 8 + 4I} 
 l({8I + 40I + 16I + 80, 24I + 24I + 48I + 48, 20I + 28I  
  + 40I + 56, 28I + 20I + 56I + 40, 16I + 80 + 8I + 40I,  
 48I + 48, 24I + 24I, 40I + 56 + 20I + 28I, 56I + 40  
 + 28I + 20I}) 

 = l(4I + 8, 0, 8 + 4I, 8I + 8, 4I + 8, 0, 4I + 8, 8I + 4) 
 = {0, 0, 4I + 8, 4I + 8, 4I + 8, 8I + 4, 8 + 4I, 8I + 4}  
      {0, 0, 0, 0}. 

Consider l(x × a) = {0, 0, 0, 0} and l(b× y) = {0, 0, 0, 0}. 

 Hence x, y  S is a Smarandache multiset neutrosophic 
zero divisor of S.  

 We see {n-M(Zm  I) l(×)} be the neutrosophic multiset 
semigroup under the level product l(×); 2  n <  and 2  m < 
. Then we have the following result. 

Theorem 3.10. Let S = {n-M(Zm  I) l(×)} be the neutrosophic 
multiset semigroup under the level product l(×), 2  m <  and 
2  n < .  
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 S has Smarandache neutrosophic multiset zero divisor. 
2m > n. 

 Proof. Consider x = {t + sI/t, s  Zm \ {0}; t + s = m} and 

y = {I, 2I, 3I, …, rI}  S, r > n. Clearly l(x × y) = 
n-times

{0,0,...,0}  is 

a zero divisor. 

 Select a = {c + dI}; c + d = m, c, d  Zm \ {0} and b = 
{gI}, g  {0}. 

 Clearly l(x × b) = 
n-times

{0,...,0}  and l(y × a) = 
n-times

{0,...,0}  but   

l(a × b) = {0}  {0, …, 0}. 

 Thus S has Smarandache neutrosophic multiset zero 
divisors which are nontrivial. Hence the theorem. 

 Next we proceed onto study idempotents in  neutrosophic 
multiset semigroups and the product l(×). 

Example 3.26. Let S = {3-M(Z12  I), l(×)} be the 
neutrosophic multiset semigroup under the level product l(×). 

 We see x = {9, 9, 9, 9I, 9I, 9I, 0, 0, 0}  S is such that   
l(x × x) = x. 

 Consider y = {3, 3, 3, 3I, 3I, 3I, 0, 0, 0}  S. 
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 l(y × y) = l({3, 3, 3, 3I, 3I, 3I, 0, 0, 0} × {0, 0, 0, 3, 3, 3, 
3I, 3I, 3I)} = {9, 9, 9, 9I, 9I, 9I, 0, 0, 0} = x. 

 Consider l(x × y) = 

 l({0, 0, 0, 9, 9, 9, 9I, 9I, 9I} × {0, 0, 0, 3, 3, 3, 3I, 3I, 3I}) 
= {0, 0, 0, 3, 3, 3, 3I, 3I, 3I} = y. 

 So x is a Smarandache neutrosophic multiset idempotent 
of S. 

 Let x = {4, 4, 4, 4I, 4I, 4I, 0, 0, 0, 0}  S. Clearly l(x × x) 
= {0, 0, 0, 4, 4, 4, 4I, 4I, 4I} is a neutrosophic multiset 
idempotent. 

 Let y = {8, 8, 8, 8I, 8I, 8I, 0, 0, 0}  S. Consider l(y × y) 
= {4, 4, 4, 4I, 4I, 4I, 0, 0, 0} = x.  

 Further l(x × y) = l({4, 4, 4, 4I, 4I, 4I, 0, 0, 0} × {8, 8, 8, 
8I, 8I, 8I, 0, 0, 0} = {8, 8, 8, 8I, 8I, 8I, 0, 0, 0} = y. Thus x is a 
Smarandache neutrosophic multiset idempotent of S. 

 Let x = {2, 2, 2, 0, 0, 0, 4, 4, 4, 8, 8, 8, 2I, 2I, 2I, 4I, 4I, 
4I, 1, 1, 1, I, I, I, 8I, 8I, 8I}  S. 

 l(x × x) = {4, 4, 4, 0, 0, 0, 2I, 2I, 2I, 1, 1, 1, I, I, I, 8I, 8I, 
8I, 8, 8, 8, 4I, 4I, 4I, 2, 2, 2} is a neutrosophic multiset 
idempotent of S. 
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 The reader is left with the task of finding whether x is a 
Smarandache neutrosophic multiset idempotent of S or not. 

 Further if S = {n-M(Zm  I), l(×)} be the n-multiplicity 
multiset of neutrosophic elements semigroup under level 
product, S has nontrivial idempotents whatever be m. 

Theorem 3.11. S = {n-M(Zm  I), l(×)} be the n-multiplicity 
neutrosophic multiset semigroup under the level product l(×;)   
2  n <  and 2 m < . 

 S has nontrivial neutrosophic multiset idempotents as 
well as Smarandache neutrosophic multiset idempotents.  

 Proof. Sicne every, Smarandache multiset idempotents is 
also an multiset idempotent is enough if we prove S have 
Smarandache neutrosophic multiset idempotents. 

 Consider x = 
n-times

{I, I,I,I,..., I , 
n-times

0,0,...,0 , 3I, 2I, 4I, …,          

(m – 1)I}  S. Now take y = 
n-times

{I,I,..., I , 
n-times

0,0,0,...,0 , 
n-times

2I,2I,...,2I , 

n-times

3I,3I,...,3I , 
n-times

(m 1)I,...,(m 1)I}    S. 

 We see l(y × y) = y so y is a neutrosophic multiset 
idempotent of S. Consider l(x × x) = y and l(x × y) = y so x is a  
Smarandache multiset neutrosophic idempotent of S. 

 Hence the claim. 
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 Finding neutrosophic multliset nilpotents is a challenging 
problem. 

Example 3.27. Let S = {3-M(Z27  I), l(×)} be the 
neutrosophic multiset semigroup under level product l(×). 

 X = {9I, 9I}  S is a neutrosophic multiset nilpotent 
element of S. 

l(x × x) = l({9I, 9I}  × {9I, 9I}) = l({0, 0, 0, 0} = {0, 0, 0}. 

Take y = {9, 9I}  S we see l(y × y) = l({9, 9I} × {9, 9I})  

= {0, 0, 0} is again a neutrosophic multiset nilpotent of order 
two. 

 Infact we can find several neutrosophic multiset 
nilpotents in S. Thus if Zm or Zm  I has no nilpotents then the 
multisets will not contribute to nilpotents. 

 In view of all these we have the following theorem. 

Theorem 3.12. Let S = {n-M(Zm  I), l(×)} be the 
neutrosophic multiset semigroup under the level product. S has 
neutrosophic multiset nilpotents if and only if Zm and Zn  I 
has nontrivial nilpotents and neutrosophic nilpotents 
respectively. 

 Proof is left as an exercise for the reader. 
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 Next we proceed onto show first by examples that the n-
neutrosophic multiset semigroup under level product l(×) is a 
Smarandache neutrosophic multiset semigroup. 

Example 3.28. Let S = {5-M(Z9  I) l(×)} be the 5-
neutrosophic multiset semigroup under the level product l(×). 

 Consider P = {{1}, {8}}  5-M(Z9  I). 

 The table of {P, l(×)} is as follows. 

l(×) {1} {8} 

{1} {1} {8} 

{8} {8} {1} 
 

 With the special condition that {1} is the special identity 
for all multisets in 5-M(Z9  I). 

 So S is a Smarandache multiset neutrosophic semigroup 
under the operation l(×). 

 Consider the set B = {{1}, {7}, {2}, {4}, {5}, {8}}  S. 

 The table for B is as follows. 
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l(×) {1} {2} {4} {8} {7} {5} 

{1} {1} {2} {4} {8} {7} {5} 

{2} {2} {4} {8} {7} {5} {1} 

{4} {4} {8} {7} {5} {1} {2} 

{8} {8} {7} {5} {1} {2} {4} 

{7} {7} {5} {1} {2} {4} {8} 

{5} {5} {1} {2} {4} {8} {7} 
 

 Clearly B is a multiset group under the level product l(×). 
Hence S is a Smarandache neutrosophic multiset semigroup 
under level products. 

 In view of all these we have the following theorem. 

Theorem 3.13. Let  S = {n-M(Zm  I), l(×)} be the 
neutrosophic multiset semigroup under the level product l(×).    
S is a Smarandache neutrosophic multiset semigroup. 

 Proof. Given S is a neutrosophic multiset semigroup 
under level product l(×). Clearly Zm has subgroups under l(×). 

 Hence S is a Smarandache neutrosophic multiset 
semigroup.  

 Now having seen the structure and substructure our next 
aim would be to find the existence of multiset ideals in S. To 
this end first we will describe by some examples. 
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Example 3.29. Let S = {8-M(Z7  I), l(×)} be the 
neutrosophic multiset semigroup under level product. 

 Consider B = {8-M(Z7I)} = {all 8-multiplicity multisets 
from the set Z7I}  S = 8-M(Z7  I).  

 We see B is an ideal of S which is a neutrosophic multiset 
ideal of S. 

Example 3.30. Let S = {3-M(Z7  I), l(×)} be the 
neutrosophic multiset semigroup under the level product l(×). 

 Consider B = {3-M(Z4I)} = {{0}, {I},{2I}, {3I}, , {0, 
I}, {0, 2I}, {0, 3I}, {0, 0, I}, {0, 0, 2I}, {0, 0, 3I}, {0, I, 3I}, {0, 
2I, I}, {0, 2I, 3I}, {0, 0, I, 2I}, {0, 0, I, 3I}, {0, 0, 3I, 2I}, …, 
{0, 0, 0, I, I, I, 2I, 2I, 2I, 3I, 3I, 3I}}. 

 It is easily verified for every multiset x  S \ B we have 
for every y  S, l(x ×y)  B. 

 Further we see {B, l(×)} is a neutrosophic multiset 
subsemigroup under the level product of S.  

 Thus  B is a neutrosophic multiset ideal of S. 

 For let 

 x = {2, 2 + 3I, 0,1 + I, 3I}  S. Take y = {3I, 2I, 2I, 0, I, 
I, I}  B. We find l(x × y) = l({2 + 3I, 2, 0, 1 + I, 3I} × {3I, 2I, 
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2I, I, I, I, 0}) = {0, 0, 0, 3I, 3I, 2I, 2I, 2I, I, I, I}  B. Hence the 
claim.  

 Thus we have the following result. 

Theorem 3.14. Let S = {n-M(Zm  I), l(×)} be the 
neutrosophic multiset semigroup under level product l(×). S has 
a neutrosophic multiset ideal. 

Proof is left as an exercise to the reader. 

 Multisets using dual numbers Zm  g = {a + bg/a, b  
Zm, g2 = 0}. The multiset collection is infinite, however n-
multiplicity, multisets are finite 2  n < ; when n = 1 we get 
the powerset of Zm  g. 

 We will first illustrate this situation by some examples. 

Example 3.31. Let S = {2-M(Z2  g)} = {{0}, {1}, {g}, {1 + 
g}, {0, 0}, {0, 1}, {0, g}, {0, 1 + g}, {1, 1}, {1, g}, {1, 1 + g}, 
{g, 1 + g}, {0, 0, 1}, {0, 0, 5}, ..,{1, 1, 0, 0,g, g, 1 + g, 1 + g}} 

 We can as in case of n-M(Zm) or n-M(Zm  g) we can 
define on multiset dual numbers the noton of l(+) and l(×) the 
level sum and product respectively. 

 We will show by examples how l(+) and l(×) are 
performed on multiset dual numbers. 
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Example 3.32. Let S = {4-M(Zm  g), l(+)} be the dual 
number multiset semigroup under level addition. 

 Let x = {1 + g, 2g, 5g, 0, 2g, 1 + g, 8 + 9g} and y = {0, 0, 
1, 1, 5g + 5, 4g}  S. 

l(x + y) = l({1 + g, 2g, 5g, 0, 2g, 1 + g, 8 + 9g}  
+ {0, 0, 1, 1, 5g + 5,  4g}) 

= l({1 + g, 2g, 5g, 0, 2g, 1 + g, 8 + 9g, 1 + g, 2g, 5g, 0, 2g, 1 + 
g, 8 + 9g, 2g, 2g + 1, 5g + 1, 1, 2g + 1, 2 + g, 9 + 9g, 2g, 2g + 1, 
5g + 1, 1, 2g + 1, 2 + g, 9 + 9g, 6 + 6g, 7g + 5, 5, 5g + 5, 7g + 5, 

6 + 6g, 1 + 5g, 6g, 9g, 4g, 6g, 1 +5g, 8 + 3g}) = {1 + g, 2g, 2g, 
2g, 2g, 0, 0, 1 + g, 1 + g, 1 + g, 5g, 5g, 2 + g, 2 + g, 2g + 1, 2g+ 
1, 2g + 1, 2g + 1, 1 + 5g, 1 + 5g, 5, 5g + 5, 5g + 5, 1 + 5g, 8 + 
9g, 8 + 9g, 9 + 9g, 7g + 5, 7g + 5, 9g, 6g, 6g, 8 + 3g, 6 + 6g, 6 + 
6g}  S.  This is the way the level addition operation is 
performed on S. 

 Infact it can be easily proved S = {(n-M(Zm  g), l(+)} 
is a multiset dual number semigroup under l(+) and is of finite 
order. 

 Now if we want to find an identity S we only arrive at 
{0}, so we call this {0} as a special level pseudo identity of l(+) 
on S. 

 Now we proceed onto give examples of multiset dual 
number semigroup under l(×), the level product. 
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Example 3.33. Let S = {(6-M(Z5  g), l(×)} be the multiset 
dual number semigroup under level product l(×). 

 Consider x = {3g, 4g + 1, 2g + 3, 2, 4 + 3g} and y = {2 + 
2g, g, 3g, 3 + g, 4 + 2g}  S. 

 We find l(x × y) = l({3g, 4g + 1, 2g + 3, 2, 4 + 3g} × {2 + 
2g, g, 3g, 3 + g, 4 + 2g}) 

 = l({g, 0, 0, 4g, 2g, 2, g, 3g, 3 + 3g, 3g + 4, 1, 3g, 4g, 4 + 
4g, 2, 4 + 4g, 2g, g, 1 + 2g, 3 + 4g, 3 + 4g, 2g, 4g, 2 + 3g, 1}) 

= {g, 0, 0, 4g, 2g, g, 3g, 3g + 3, 2g, 4g, 3g + 4, 1, 3g, 4g, 4 + 4g, 
2, 1, 4 + 4g, 2g, g, 1 + 2g, 3 + 4g, 3 + 4g, 2 + 3g}  S. 

 This is the way level product operation l(×) is performed 
on S. 

 Now we show whatever be Zm, and n we have nilpotents 
unlike neutrosophic multiset semigroups. 

 Consider P = {6-M(Z5g), l(×)} = {collection of all 6-
multiplicity multisets from 6-M(Z5g), under the level product} = 
{{0}, {g}, {2g}, {3g}, {4g}, {0, 0}, {g, g}, {2g, 2g}, {3g, 3g}, 
…, {g g, g, g, g, g}, …, {4g, 4g, 4g, 4g, 4g, 4g},…, {0, 0, 0, 0, 
0, 0, g, g, g, g, g, g, 2g, 2g, 2g, 2g, 2g, 2g, 3g, 3g, 3g, 3g, 3g, 3g, 
4g, 4g, 4g, 4g, 4g}, l(×)}. 

 We see for any  x, y  P, l(x × y) = {0} or {0, 0} or {0, 0, 
0} or {0, 0, 0, 0} or {0, 0, 0, 0, 0} or {0, 0, 0, 0, 0, 0}. 
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 We define P to be a special zero square dual number 
multiset subsemigroup of S. 

 Infact for every x  S and for every y  P we have         
l(x × y) is in P. So P is infact a multiset nil ideal of S. 

 It is easily verified S has plenty of multiset zero divisors. 
The reader is left with the task of finding the existence of 
Smarandache multiset zero divisors in S. 

 However {1}  S serves as the special multiset unit of S. 
For every  x  S, xl(x){1} = x. However {1, 1}  S does not act 
as an identity for all multisets in S. If x = {1, 2, 3, 4, 5}  S 
then l({x}, × {1, 1})  
 = l ({1, 2, 3, 4, 5} × {1,1}) 
 = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5}  x. Hence the claim. 
 Likewise we see {0}, {0, 0} etc. are not zeros. For if x = 
{2, 1, 3, 3, 4} we see if x  {5-M(Z5), l(×)} = S then l(x × {0}) 
= l({2, 1, 3, 3, 4} × {0}) 
 = {0, 0, 0, 0, 0}. 
{0, 0, 0, 0, 0} is not a zero of S for if x = {4, 4, 4}  So then l(x 
× {0, 0, 0, 0, 0}) = l({4, 4, 4} × {0, 0, 0, 0, 0}) 
= {0, 0, 0, 0, 0, 0}  {0, 0, 0, 0, 0}. 
But it is pertinent to keep on record l(x × {0, 0, 0, 0, 0, 0}) 
  = {0, 0, 0, 0, 0, 0} for all x  S. 

Hence we wish to record that the multiset P = {6-M(Zgg)}  S 
is such that l(x × y) = {0} or {0, 0} or {0, 0, 0} or {0, 0, 0, 0, 
0}, {0, 0, 0, 0} or {0, 0, 0, 0, 0, 0}. 
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 So we define P to be only a pseudo zero square dual 
number multiset subsemigroup of S. 

 Inview of all these we have the following theorem. 

Theorem 3.15. Let S = {n-M(Zm g), Zm g = {a + bg / a, 
b  Zm with g2 = 0; 2  m <  and 2  n < , l(×)} be the n-
mutliplicity multiset of dual numbers. 

 S contains a pseudo zero square multiset dual number 
subsemigroup P such that l(P × P) = {{0}, {0, 0}, {0, 0, 0}, …, 

(n-1)times

{0,0,0,...,0} , 
n-times

{0,0,...,0} }. 

 Proof. Consider S = {n-M(Zm g), l(×)} the n-
multiplicity multiset of dual modulo integers semigroup under 
level product l(×). 

 Recall a pseudo zero square multiset dual number 
subsemigroup P of S is such that l(P × P) = {{0}, {0, 0}, {0, 0, 
0}, …, 

n-times

{0,0,0,0,0,0,...,0} . 

 Clearly if we take P ={n-M(Zmg), l(×)}  S we see       
l(P × P) = {{0}, {0, 0}, …, 

n-times

{0,0,...,0} }. Hence the claim. 

 A natural question would be does this property hold good 
only in case of n-multiplicity multiset dual noumbers. The 
answer is not in general true for we can  have multiset 
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semigroups which can have pseudo multiset zero square 
subsemigroups under the level product l(×). 

 This is illustrated by the following examples. 

Example 3.34. Let S = {3-M(Z9), l(×)} be the multiset 
semigroup under level product l(×). Let P = {3,3,3,0}, {3, 0, 0, 
0}, {3, 3,0, 0,0}, {0}, {3}, {3, 3}, {3, 0}, {3, 0, 0}, {3, 3, 0}, 
{3, 3, 0, 0}, {3, 3, 3, 0, 0, 0}, {3, 3, 3, 0, 0}, {0, 0}, {3, 3, 3}, 
{0, 0, 0}}  S. 

 Clearly l(P×P) = {{0}, {0, 0}, {0, 0, 0}}. So P is a pseudo 
multiset zero square subsemigroup of S under the level product 
l(×). 

 Let L = {{0}, {0, 0}, {0, 0, 0}, {3}, {6}, {3, 3}, {6,3}, 
{6, 6}, {3,3, 6}, {6, 6,3}, {6, 6, 6}, {3,3,3}, {3, 0}, {6, 0}, {3,3, 
0}, {3,3, 0, 0}, {3, 3,3, 0, 0, 0}, {3, 3,3, 6, 6}, …, {3, 3, 3, 6, 6, 
6, 0, 0, 0}}  S is such that l(L × L) = {{0}, {0, 0}, {0, 0, 0}}. 

 Take K = {{0}, {6}. {0, 6}, {6, 6}, {0, 0}, {6, 6, 0}, {0, 
0, 0}, {0, 6, 0}, {6, 6, 6}, {6, 6, 0, 0}, {6,6, 6, 0}, {0, 0, 0, 6}, 
{0, 0, 0, 6, 6}, {6, 6, 6, 0, 0}, {6, 6, 6, 0, 0, 0}}  S is again a 
pseudo multiset zero square subsemigroup of S under the level 
product l(×). 

 In view of all these we have the following theorem. 

Theorem 3.15. Let S = {n-M( 2p
Z ), l(×), p a prime} be the n-

multiplicity multiset semigroup under level product l(×). S has 
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pseudo zero square multiset subsemigroups under the level 
product l(×). 

 Proof. Any subset appropriately choosen from the 
multiset P = {n-M({p, 2p, 3p,…, (p – 1)p, 0}), l(×)} will give 
way to pseudo zero square subsemigroups of S. 

 We cannot claim the above result in case of Zm, m prime 
or m not of the form p, p a prime. 

Example 3.35. Let S = {4-M( 27
Z ), l(×)} be the 4-multiplicity 

multiset semigroup under the level product l(×). 

 Consider the P = {4-M({0, 7,14, 21, 28,35,42})}. Any 4-
multiset with {0}, {0, 0}, {0, 0, 0}, {0, 0, 0, 0} using P will 
yield a pseudo multiset zero square subsemigroup of S. 

 Q1 = {{0}, {0, 0}, {0, 0, 0}, {0, 0, 0, 0}, {7}, {7, 0}, {7, 
7}, {7, 7, 0}, {0, 0, 7}, …, {7, 7, 7, 7, 0, 0, 0, 0}}  P is a 
pseudo multiset zero square subsemigroup of S. Several such 
pseudo multiset zero square subsemigroups can be constructed 
using the set P by selecting elements appropriately. 

 Next we proceed onto describe n-multiplicity multiset 
using the special dual like numbers Zm  h = {a + bh /h2 = h, 
a, b Zm}.  

 Study in this direction can be done and we may not get 
pseudo multiset zero square subsemigroups for all m. 
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 However we will describe this new structure by an 
example or two. 

Example 3.36. Let S = {3-M(Z4  h), l(+)} be the multiset 
special dual like semigroup under the level addition. 

 We see if x = {3h,2h, 2h, h, 0} and y = {h, 2h, 1+ h, 3+ 
2h}  S then l(x + y) = l({3h, 2h, 2h, h,0} + {h, 2h, 1+ h, 3 + 
2h})  
= {0, 3h, 3h, 2h, h, h, 0, 0, 3h, 2h, 1, 1 + 3yh, 1 + 3h, 1 + 2h, 3 + 
h, 3, 3, 3 + 3h, 3 + 2h}) 
= {0, 3h, 3h, 3h, 2h, 2h, 0, 0,1 + 3h, 1 + 3h, h, h, 1, 3 + h, 1+ 2h, 
3, 3, 3+ 3h, 3 + 2h}  S. 

This is the way level addition operation is performed on S. 

 It is easily verified S is only a multiset special dual like 
number semigroup under l(+) and is not a monoid. 

 Interested reader can study the properties of these 
structures as it is considered as a matter of routine by authors. 

 Next we proceed onto give one example of multiset 
special dual like numbers semigroup under the level product 
l(×). 

Example 3.37. Let S = {4-M(Z5  h, l(×)} be the multiset 
special dual like semigroup under the level product l(×). 

 We just show how the level product is performed on S. 
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 Let x = {2 + h, h, 2h, 3h, h, 0} and y = {1, 2, 1 + h,1, h, 
2h, 3h} S. l(x× y) = l({2 + h, h, 2h, 3h, h, 0} × {1, 2, 1 + h, 1, 
h, 2h, 3h}) = l({2 + h, h, 2h, 3h, b, 0, 4 + 2h, 2h, 4h, h,2h, 0, 2 + 
4h, 2h, 4h, h, 2h, 0, 2+h, h, 2h, 3h, h, 0, 3h, h, 2h, 3h, h, 0, h, 2h, 
4h, h, 2h, 0, 4h, 3h, h, 4h,3h, 0}) 

= {0, 0, 0, 0, 2h, 2h, 2h, 2h, h, h, h, h, 3h, 3h, 3h, 3h, 4h, 4h, 4h, 
4h, 2 + h, 2 + h,2 + 4h,4 + 2h}  S. 

 This is the way the level product operation l(×) is 
performed on S. 

 The reader is left with the task of verifying that S under 
the level product is a multiset semigroup with {1} as its special 
identity. 

 Consider B = {4-M(Z5), l(×)}  S, clearly B is a multiset 
special dual like number subsemigroup of S under the level 
product. Infact B is an multiset ideal of S. 

 Another interesting feature enjoyed by B is that B2 = B. 

 In view of all these we have the following result. 

Theorem 3.17. Let S = {n-M(Zm  g) (or n-M(Zm  h)), 
l(×)} be the multiset dual number semigroup (or multiset of 
special dual like number semigroup) under the level product 
l(×). 
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 S has a multiset ideal given by P = {n-M(Zmg) (or n-
M(Zmh)) l(×)}  S 

 Proof is left  as an exercise to the reader. 

 Next we proceed onto study quasi special dual like 
numbers multisets by some examples. 

Example 3.38. Let S = {2-M(Z6  k)} where Z6  k = {a 
+bk/a,  b  Z6, k2 = 5k} be the 2-multiplicity special quasi dual 
like number multiset collection. We show how the operations 
l(+) and l(×) are defined on S. As S is a collection of multiset it 
is easy to verify that usual l() and  can be defined on S. 

 Let x = {3 + 2k, k, 2k, k, 0, 1, 1} and y = {2 + 4k, 2k, 5k, 
5k, 0}  S. 

 We find the level sum of x and y.  l(x + y) = l({3 + 2k, k, 
2k, k, 0, 1, 1} + {0, 5k, 5k, 2k, 2 + 4k}) 

 = l({3 + 2k, k, 2k, k, 0, 1, 1, 3 +k, 0,k, 0, 5k, 5k + 1,5k + 
1, 3 + k, 0, k, 0, 5k, 5k + 1, 5k + 1, 3 + 4k, 3k, 4k, 3k, 2k + 1, 2k 
+ 1, 5, 5k + 1, 2, 2 + 5k, 2 + 4k, 3 + 4k, 3 + 4k}) 

 = {0, 0, 1, 1, k, k, 3 + 2k, 3 +  k, 2k, 3k, 3k, 4k, 5k, 5k+1, 
5k+1, 4k, 3 + 4k, 2 + 5k, 2 + 5k, 3 + 4k, 2, 2 + 4k, 3 + 4k, 3 + 
4k, 5}      I 

 It is easily verified {S,l(+)} is a multiset special quasi 
dual number semigroup under level addition. 
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Consider the level product l(×) on S for the same x, y  S. 

l(x × y) = l({k, k, 1, 1, 0, 2k, 3 + 2k} × {5k, 5k, 0, 2k,2 + 4k} 

= l({k, k, 5k, 5k, 0, 2k, 5k, k, k, 5k, 5k, 0, 2k, 5k, 0, 0, 0, 0, 0, 0, 
0, 4k, 4k,2k, 2k, 0,2k, 2k, 4k, 4k, 2 + 4k, 2+ 4k, 0, 2k, 2k}) 

= {0, 0, k, k,2k, 2k, 5k, 5k, 4k, 4k, 2 + 4k, 2 +4k}  II 

 Thus S is closed under the level product l(×), {S, l(×)} is 
a multiset special quasi dual number semigroup. 

 We see I and II are distinct so in general  

l(x × y)  {x + y) for any x, y  S. 

 Finding multiset zero divisors Smarandache multiset zero 
divisors multiset nilpotents, multiset idempotents and 
Smarandache multiset idempotents in case of multiset dual 
numbers multiset special dual like numbers and multiset special 
quasi dual numbers. 

 Now we proceed onto describe the multiset of complex 
neutrosophic modulo numbers. 

Recall C(Zm  I) = {a + biF + cI + dIiF) a, b, c, d  Zm; I2 = I, 
2
Fi  = m – 1, (iFI)2 = (m – 1)I} is the complex neutrosophic 

modulo integers. 
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 Let n-M(C(Zm  I)) be the n-multiplicity multiset of 
complex neutrosophic modulo integers. 

 Let x = {I, i, I + 2, 5iF + 3, 4I + 3, I, 1 + iF + I, 2IiF} and y 
= {0,I, 2I, 2I, 3I + 1, I, 0}  2-M(C(Z6  I)). 

 Now we show how level sum l(+) and level product l(×) 
are defined on 2-M(C(Z6  I)). 

 l(x + y) = l({I, I, 2 + IiF, 5iF + 3, 4I + 3, 1 + iF + I + 2IiF} 
+ {0, 0,I, I, 2I, 2I, 3I + 1}) = l({I, I, 2 + IiF, 5iF + 3, 4I + 3, iF + 1 
+ I + 2IiF, I, I, 2 + IiF, 5iF + 3, 4I + 3, 2I, 2I, 2 + I + IiF, 2 + I + 
iFI, 5iF + 3 + , 2I, 2I, 5iF + 3 + I, 1 + iF + 2I + 2IiF, 1 + iF + 2I + 
2IiF, 3I, 3I, 3I, 3I, 2 + 2I + IiF, 2 + 2I + 2IiF, 5iF + 3 + 2I, 5iF + 3 
+ 2I, 3, 3, 1 + iF + 3I + 2IiF, 1 + iF + 3I + 2IiF, 4I + 1, 4I + 1, 4I + 
1, 4I + 1, 3I + 3 + IiF, 4 + 5iF + 3I, I + 4, 4I + 2 + iF + 2IiF}) 

= {I, I, 2 + IiF, 2 + IiF, 5iF + 3, 5iF + 3, 4I + 3, 4I + 3, 2I, 2I, iF + 
1 + I + 2iFI, iF + 1 + I + 2iFI, 2 + I + iFI, 2 + I + iFI, 5iF + 3 + I, 
5iF + 3 + I, 1 + iF + 2I + 2IiF, 1 + iF + 2I + 2IiF, 3I, 3I, 2 + 2I + 
2IiF, 2 + 2I + 2IiF, 3, 3, 5iF + 3 + 2I, 5iF + 3 + 2I, 1 + iF + 3I + 
2IiF, 1 + iF + 3I + 2IiF, 4I + 1, 4I + 1, I + 4, 4 + 5iF + 3I, 3I + 3 + 
IiF, 4I + 2 + iF + 2iFI}. 

 Clearly l(x + y) is again a multiset in that collection. 

 Infact it can be proved that {2-M(C(Z6  I))} under the 
level addition is a semigroup of finite order, will be known as 
the complex-neutrosophic multiset semigroup. 
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 Now we will just show how level product is performed on 
2-M(C(Z6  I)). 

Now for the same x, y  2-M(C(Z6  I)) we find l(x × y). 

 l(x × y) = l({I, I, 2 + IiF, 3 + 5iF, 4I + 3, iF + 1 + I + 2IiF} 
× {0, 0, I, I, 2I, 2I, 3I + 1}) 

= l({0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, I, I, 2I + 2IiF, 3I + 5IiF, I, 3IiF 
+ 2I, I, I, 2I + 2IiF, I, 3I + 5IiF, 3IiF + 2I, 2I, 2I, 2I + 2IiF, 4iFI, 2I, 
4I, 2I, 2I, 2I + 2IiF, 4iFI, 2I, 4I, 4I, 4I, 2, 2+4iFI, 3 + 3I + 5iF + 
3IiF, I + 3, 4I + 1 + 5IiF + iF}) 

= {0, 0, I, I, 2I, 2I, 4I, 4I, 4IiF, 4iFI, 3I + 5IiF, 3I + 5IiF, 2I + 3IiF, 
2I + 3IiF, 2I + 2IiF, 2I + 2IiF, I + 3, 2 + 4IiF, 3 + 3I + 5IiF + 3IiF, 
4I + 1 + 5IiF + iF}). 

 Clearly l(x × y)  2-M(C(Z6  I)). 

 It is easily verified that {2-M(C(Z6  I)), l(×)} is a 
complex - neutrosophic mod integers multiset semigroup under 
the level product ×.  

The task of finding mutliset idempotents, Smarandache multiset 
idempotents, multiset zero divisors, complex - neutrosophic 
multiset Smarandache idempotents etc. are left as an exercise to 
the reader. 
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 However we briefly give the abstract definition of 
multiset complex - neutrosophic modulo integer structures in 
the following. 

Definition 3.6. S = {n-M(C(Zm  I)) is defined as the complex 
- neutrosophic modulo integers n-multiplicity mutliset where 2  
n < , 2  m <  and Zm  I = {a + bI/a, b  Zm, I2 = I} and 

C(Zm  I) = {a + biF+ dI + ciFI / a, b, c, d  Zm, 2
Fi = (m – 1), 

(IiF)2 = I(m – 1)}. 

 We have already given example of it. But we give yet 
another example. 

Example 3.39. Let S = {4-M(C(Z12  I)), l(×)} be the 
complex-neutrosophic modulo integer multiset semigroup under 
level product l(×). 

 S has multiset zero divisors and Smarandache multiset 
zero divisors. 

 Take B = {aI + ciFI / a, c  Z12, I2 = I, 2
Fi  = 1, 1, and iFI = 

11I} and let P = {4-M(B), l(×)}  S. Clearly P is a complex - 
neutrosophic modulo integer multiset subsemigroup of S. Infact, 
P is an ideal of S. 

 Next we proceed onto define the multiset of complex - 
dual modulo integers first by some examples. 
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 Let N = C(Zm  g) = {a + bg + ciF + diFg / a, b, c, d,  

Zm; g2 = 0, 2
Fi  = (m – 1), (iFg)2 = 0} denotes the complex - dual 

modulo integers. n-M(C(Zm  g)) denotes the n-multiplicity 
multiset of complex-dual modulo integers, 2  n <  and 2  m 
< .  

Example 3.40. Let S = {3-M(CZ4  g)) be the 3-multiplicity 
multiset of complex - dual numbers. 

 We now show how the level addition and level product 
operations are performed on S. 

 Consider x = {3g + iFg + 1, 2g, g + iF, 2iF, 3g, 2g, 2g} and 
y = {0, 0, g + 2giF + iF + 3, 3, 3, g}  S. 

 We find l(x + y) = l({2g, 2g, 2g, 3g, 2iF, g + iF, 1 + 3g, + 
2iFg} + {0, 0, 3, 3, g, 3 + g + iF + 2g}) 

= l({2g, 2g, 2g, 3g, 2iF, g + iF, 1 + 3g + 2iFg, 2g, 2g, 2g, 3g, 2iF, 
g + iF, 1 + 3g + 2iFg, 2g + 3, 2g + 3, 2g + 3, 3 + 3g, 2iF + 3, 3 + 
g + iF, 3g + 2iFg, 2g + 3, 2g + 3, 2g + 3, 3 + 3g, 2iF + 3, 3 + g + 
iF, 3g + 2iFg, 3g, 3g, 3g, 0, 2iF + g, 2g + iF, 1 + 2iFg, 3 + 3g + iF, 
2giF, 3 + 3g + iF + 2giF, 3 + 3g + iF + 2giF, 3 + iF + 2giF, 3 + g + 
3iF + 2giF, 2g + 2iF + 2giF + 3, iF}) 

={2g, 2g, 2g, 3g, 3g, 3g, 2iF, 2iF, g + iF, g + iF, 1 + 3g + 2iFg, 1 + 
3g + 2iFg, 2g + 3, 2g + 3, 2g + 3, 3 + 3g, 2iF + 3, 3 + g + iF, 3+ 
3g, 2iF + 3, 3 + g + iF, 3g + 2iFg, 2iF + g, 2iFg + 1, 2g + iF}  S. 
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 This is the way the level addition operation l(+) is 
performed on S. 

 Infact the reader is left with the task of proving {S, l(+)} 
is the multiset dual complex number semigroup under level 
addition. 

 Consider l(x × y) = l({2g, 2g, 2g, 3g, 2iF, 2 + iF, 1 + 3g + 
2iFg} × {0, 0, 3, 3, g, g + 2giF + iF + 3}) = l({0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 2g, 2g, 2g, g, 2iF, 2 + 3iF, 3 + g + 2iFg, 2g, 2g, 2g, 
g, 2iF, 2 + 3iF, 3 + g + 2iFg, 0, 0, 0, 0, 2giF, 2g + giF, g, 0, 0, 0, 0, 
2giF, 2g + iFg + 2giF + 1 + iF, 3 + iF + 3iFg}) 

= {0, 0, 0, 2g, 2g, 2g, g, g, g, 2iF, 21iF, 2giF, 2giF, 2 + 3iF, 3 + g 
+ 2giF, 3 + g + 2iFg, 1 + iF, 3 + iF + 3iFg, 2g + 3iFg + 1 + iF, 2g + 
giF}  S. 

 Thus it is left as an exercise for the reader to prove that S 
under the level product l(×) is a multiset dual complex modulo 
integer semigroup of finite order. 

 On similar lines we can define multiset special dual like 
complex numbers n-M(C(Zm  h)) where C(Zm  h) =         

{a + bh + ciF + dhiF / a, b, c, d  Zm, h2 = h, 2
Fi  = m – 1, (h 2

Fi ) = 

h(m – 1)}; 2  m <  and 2  n < . 

 Further we can define on n-M(C(Zm  h)), the operation 
l(×) or l(+) or l() or  or both l() and  under which the 
collection will be a multiset semigroup or a lattice respectively. 
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 Next we proceed onto study special Smarandache 
properties enjoyed by them. 

 We set S = {n-M(C(Zm  h)), l(×)} under level product 
has multist zero divisors, idempotents and nilpotents mainly 
depending on the m; 2  m < . 

 Further analogous Smarandache structure can be built. 
Also S has multiset ideals and multiset subsemigroups which 
are not multiset ideal. 

 Study in this direction is a matter of routine so left as 
exercise to the reader. 

 However we give some examples which are relevant to 
this context. 

Example 3.41. Let S = {5-M(C(Z6  g  I  k)); l(×)} be the 
multiset dual, complex, neutrosophic special quasi dual ring of 
modulo integers where C(Z6  g  I  k) = {a0 + a1iF + a2g + 
a3k + a4I + a5iFI + a6iFg + a7iFgI + a8Ig + a9Ik + a10Ig + a11kgI + 

a12kgiF + a13gIiF + a14kIiF + a15gIiFk / ai  Z6; 0  i  15, 2
Fi  = 5, 

I2 = I, g2 = 0, k2 = 5k, (iFk)2 = k, (IiF)2 = 5I, (kI)2 = 5Ik, (gI)2 = 0 
= (giF)2 = (gk)2, (giFk)2 = 0, (gIiF)2 = 0 (gkI)2 = 0, (kIiF)2 = Ik} 
under the level product l(×) is a multiset semigroup. 

 This multiset complex - neutrosophic dual number special 
quasi dual number semigroup has multiset ideals, zero divisors, 
idempotents nilpotents and their multiset Smarandache 
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analogue. Study of their properties is left as an exercise to the 
reader. 

 The properties of n-multisets are different from multisets 
for in case of multisets even if the set on which multisets are 
constructed are finite still the collection of multisets are infinite. 

 However in case of n-multisets if the underlying set is 
finite then the collection of n-multisets are finite, but in case the 
underlying set is infinite then the n-multisets is also infinite. 

 Secondly, we see the special product l(×) and the special 
addition l(+) has no relevance for in case of multisets addition 
of product need not be leveled, without leveling the closure 
axiom is true. 

 Now one may ask can we study perfect n-multiset in 
which if an element from the underlying set occurs then it shout 
occur only n-times, not less than n or not greater than n. 

 We give examples of them. 

Example 3.42. Let {3-M(Z2)} = S be the perfect 3-multiplicity 
multiset S = {{0, 0, 0}, {1, 1, 1}, {0, 0, 0, 1, 1,1}, {}}  {, 
{1}, {0}, {0, 1}}  {, {1, 1}, {0, 0}, {0, 0, 1,1} and so on  
{{0, 0, …, 0}, {1, 1, 1, …,1}, {0, 0, 0, …, 0, 1, 1, …, 1}, {}. 

 Thus we see special n-multiset is isomorphic to the 
Boolean algebra so it does not contribute any special properties. 



156 Smarandache Special Elements in Multiset Semigroups  
 
 
 
 
 
 
 

 One may wonder can we define for any n-multiset under 
l(+) or l(×) the notion of t-multiset subsemigroup under l(+) (or 
l(×)) where 1  t < n. We cannot for closure property will not be 
true. However under both  and  we see the t-multiset 
subsemigroup, t < n. 

 Finally we see these n-multisets semigroup under l(×) the 
level product has both zero divisors and Smarandache zero 
divisors. They have nilpotents and Smarandache nilpotents 
depending on the basic set on which n-multisets are built. Study 
in this direction is interesting and we have found conditions for 
multisets built using Zm or Zm  I or Zm  g or Zm  h or 
Zm  k or C(Zm) and so on has only depending on m we can 
have multiset idempotents and multiset nilpotents and their 
Smarandache analogue. 

 We have left open several conjectures in case 
Smarandache elements in n-multiset M(Zm), M(Zm  I), 
M(Zm  g), M(C(Zm )), M(C(Zm  k)) and so on. 

 Finally we keep on record that on a n-multiset the level 
operations do not distribute over each other, that is 

l(al(×) (bl(+)c))  l[l(a × b) l(+) l(a × c)] for a, b, c  n-M(Zm) 
(or M(Zm  I) and so on) in general consequent of this we are 
not in a position define on the n-multisets semiring or ring 
structure. 

 All n-multisets under  and  happens to be a lattice. 
Infact all these n-multiset lattices are Smarandache lattices. 
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 Interested reader  can derive more properties about these 
structures. 

 Finally we wish to state that as l(×) and l(+) do not 
distribute over each other it is difficult to built on the multiset 
l(×) and l(+) simultaneous, however the only algebraic structure 
possible is multiset lattice that is {n-M(Zm), , }; 2  m <  
or 2  n < . 

 Several applications using multisets can be done. 
However the scope of this book is only to analyse the algebraic 
properties and study the special Smarandache elements of these 
multisets. 

 Further we are interested in studying the Smarandache 
structure on these elements. This study is both interesting and 
innovative. 

 Finally we suggest a few problems for the reader some of 
which are open conjectures. 

Problems 

1. Find the 4-multiplicity multiset of X = {1, 2, 5, 7, 9}. 

 i) What is the order of 4-M(X)? 

 ii) Obtain the lattice associated with the set 4-M(X). 

iii) How many maximal chains are there in L? 

iv) What is the greatest element of L? 

v) Prove L is a Smarandache lattice? 
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vi) Is L a modular lattice or a distributive lattice? 

vii) Obtain any other striking properties related with 4-
M(X). 

2. Prove 5-M(X) where X = {7, 9, 18, 2, 3, –1} is only a 
partially ordered set. 

 a) Study questions (i) to (vii) of problem (1) for this 5-
M(X). 

3. Let X = {a1, a2, …, am} be a set of cardinality m; 1  m < 
. Let n-multiplicity multiset of X be denoted by n-M(X); 
1  n < . 

 i) Prove if m = 1 and for all n, 1-M(X) is a chain 
lattice L=1. 

 ii) Find the length of the chain lattice L1? 

 iii) If m = 2 then prove 2-M(X) is not a chain lattice. 

 iv) Prove 1-M(X)  2-M(X). 

 v) How many maximal chain are there in the lattice L2 
associated with 2-M(X). 

 vi) What is the cardinality of the set 2-M(X)? 

 vii) Is the lattice L2 modular? 

viii) Prove L2 is a Smarandache lattice. 

ix) Let m = 3 that is 3-M(X) be the 3-multiplicity 
mutliset of X. L3 be the lattice associated with L3. 
Prove L1 and L2 are sublattices of L3. 
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x) Find all other sublattices of L3. 
xi) Find all sublattices lf L3 which are not sublattices of 

L2. 
xii) Find all sublattices of L3 which are not sublattices 

of L1. 

4. Let X = {a1, a2, …, a9} be a set of order 9. 8M(X) be the 
8-multiplicity multiset of X. 

 i) Find o(8-M(X)) 

 ii) Find the lattice L{8-M(X), , , }. 

iii) Prove L is a Smarandache lattice. S-lattice. 

iv) Proe L has a Boolean algebra of order 29 in L. 

v) Can L have Boolean algebras of lessor order? 

vi) Can L have a sublattice which is modular? 

vii) Find the largest modular sublattice in L? (if it 
exists?) 

5. Prove S = {5-M(Z12), l(+)} is a semigroup. 

 a) Find the order of S. 

 b) Can S be a Smarandache semigroup? 

 c) Can S have the identity with respect to l(+)? 

 d) Can {0} be identity of S with respect to l(+)? 

 e) Can S have multisets which has inverse with respect 
to l(+)? 
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 f) Obtain any other special feature enjoyed by {S, 
l(+)} 

6. Let M = {5-M(Z23), l(+)} be the five multiplicity multiset 
of Z23. 

 i) Study questions (a) to (f) of problem 5. 

 ii) Compare this M with S of problem 5. 

7. Let B = {n-M(Zm), l(+)} be the n-multiplicity multiset of 
Zm. Study questions (a) to (f) of problem (5) for this B. 

8. Let L = {18-M(Z99)} be the 18-multiplicity multiset of 
Z99. 

 i) Prove {L, l(×)} is a semigroup of finite order. 

 ii) Find all multiset zero divisors of (L, l(×)). 

 iii) Does the collection of all multiset zero divisors form 
a subsemigroup under l(×)? 

 iv) Find all multiset partial zero divisors of L and prove 
they are not closed under l(×) the level product. 

 v) Can {L1 l(×)} have multiset idempotents which are 
nontrivial? 

 vi) Prove there exists a multiset idempotent 
subsemgiroup of order 7 in L. 

 vii) Find the collection of strict idempotent multiset of L. 

9. Let 8-M(Z28) be the 8-multiplicity multiset of Z28. 
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 i) Find all multiset units of 8-M(Z28). 

 ii) How many multiset partial units of 8-M(Z28) exist? 

iii) Is x = {19, 19, 19, 19, 19, 19, 19, 19} and y = {3, 3, 3, 
3, 3, 3, 3, 3, 3}  8-M(Z28) is such that l(x × y) = {1, 
1, 1, 1, 1, 1, 1, 1, 1}? 

iv) Find all multiset zero divisors of 8-M(Z28). 

v) Find all multiset partial zero divisors of 8-M(Z28). 

vi) Can 8-M(Z28) have nontrivial multiset nilpotents? 

vii) Find all partial multiset nilpotents of 8-M(Z28). 

10. Let S = 9-M(Z29) be the 9-multiplicity multiset of Z29. 

 i) Prove S cannot have multiset zero divisors. 

 ii) Can S have partial multiset zero divisors? 

 iii) Find all multiset units of S. 

 iv) How many partial multiset unit exists in S? 

 v) Find all multiset idempotents of S. 

 vi) Can S contain multiset nilpotents? 

 vii) Is it possible for S to have partial multiset nilpotents? 

11. Let S = {3-M(Z29), l(×)} be the 3-multiplicity multiset of 
Z29. 

 i) Find all strict multiset units. 

 ii) Does the strict multiset units of S form a 
subsemigroup of S? 
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 iii) Find all strict multiset idempotents (nontrivial) of S 
and show it forms a subsemigroup of S? 

 iv) Can S have multiset zero divisors? Justify. 

v) Can S have multiset partial zero divisors? 

 vi) Prove S cannot have multiset nilpotents. 

12. Let B = {5-M(Z18), l(×)} be the semigroup 5-multiplicity 
multiset of Z18 under level product. 

 i) Study questions (i) to (vi) of problem (11) for this B. 

 ii) Compare this B with S of problem 11. 

13. What are the special features enjoyed by {n-M(Zm), 
l(+)}? 

14. Can {n-M(Zm)m l(+)} be a Smarandache semigroup? 

15. Let S ={9-M(Z12), l(×)} be the 9-multiplicity multiset 
semigroup under the level product l(×). 

 i) Define Smarandache multiset strict zero divisors in 
S. 

 ii) Can S have Smarandache multiset strict zero 
divisors? 

 iii) Define in S Smarandache strict multiset 
idempotents. 

 iv) Prove S have Smarandache multiset strict 
idempotents. 
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 v) Compare S-multiset strict idempotents of S with 
multiset strict idempotents. 

 vi) Is every S-multiset strict zero divisor a multiset 
strict zero divisor? 

 vii) Can we say if Z12 has S-zero divisors then S = {9-
M(Z12), l(×)} will have S-strict multiset zero 
divisors? 

viii) Prove or disprove if Z12 has S-idempotents then S = 
{9-M(Z12), l(×)} will have S-strict multiset 
idempotents and vice versa. 

16. Study questions (i) to (viii) problem 15 in case of B = {8-
M(Z27), l(×)} and compare it with S of problem 15. 

17. Study questions (i) to (viii) of problem 15 in case of D = 
{11-M(Z23), l(×)} and compare it with S of problem 15 
and B of problem 16. 

18. Do the collection of all S-strict multi idempotents of S in 
problem 15 form a subsemigroup? 

19. Is M={M(Zp), l(×)} where p is a prime a S n-multiset 
semigroup? 

20. Will S = {12-M(Z10), l(×)} be a S-n-multiset semigroup 
under the level product l(×)? 

21. Will the collection of S-strict multiset idempotents in 
problems (15), (16) and (17) from a multiset semigroup? 
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22. Define for M=(n-M( tp
Z ) l(×)} (p a prime t > 1) the 

notion of Smarandache strict multiset nilpotents? 

23. Does the collection of all strict multiset nilpotents of M in 
problem (22) form a semigroup under level product? 

24. Can we say (or prove) the collection of all multiset strict 
nilpotents of M in problem (22) form a Smarandache 
semigroup under l(×)? 

25. Can we say the collection of all Smarandache strict 
nilpotents of M in problem (22) form a S-semigroup 
under l(×)? 

26. Obtain any other special feature enjoyed by M given in 
problem (22). 

27. Let S = {9-M(Z64)} be a 9-multiset semigroup under the 
level product l(×). 

 i) Find all strict multiset nilpotents of S. 

 ii) Find all multiset S-strict nilpotents of S. 

 iii) Do the collection of multiset S-strict nilpotents form a 
subsemigroup under l(×) of S? 

 iv) Do the collection of all S-strict multiset idempotents 
of S form a subsemigroup and l(×) of S? 

 v) Prove or disprove the collection of all S-strict multiset 
zero divisors form a subsemigroup of S under l(×). 
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28. Let S = {5-M(Z10  I), l(×)} be the 5-multiplicity 
multiset neutrosophic modulo integer semigroup under 
level product l(×). 

 i) Find all multiset zero divisors of S. 

 ii) Prove S has a multiset neutrosophic modulo integer 
ideal. 

 iii) How  many multiset neutrosophic modulo 
subsemigroups of S are not ideals? 

 iv) Is B = {5-M(Z10), l(×)} a multiset subsemigroup or an 
ideal? Justify! 

 v) Find all multiset neutrosophic modulo integer zero 
divisors which are S-zero divisors. 

 vi) Enlist all multiset neutrosophic zero divisors which 
are not S-zero divisors. 

 vii) Can S have multiset nilpotents? (if yes enumerate 
them). 

 viii) Can S have multiset neutrosophic idempotents? 

ix) Find all multiset neutrosophic Smarandache 
idempotents of S. 

 x) Find all partial multiset zero divisors of S. 

29. Let D = {5-M(Z11  I), l(×)} be the 5-mutliplicity 
multiset neutrosophic modulo integer semigroups under 
the level product l(×). 
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 i) Study questions (i) to (x) of problem (28) for this D 
with appropriate changes. 

 ii) Compare the results of D and S and prove or 
disprove that prime Zp (Z11) has no effect on the 
multiset structures under the level product l(×). 

30. Let W = {3-M(Z12  I)), l(×)} be the multiset complex 
neutrosophic semigroup under level product l(×). 

 i) Study questions (i) to (x) of problem (28) for this W 
with appropriate changes. 

 ii) Compare W with S of problem (30) and D of 
problem (29). 

 iii) Find the cardinality of W. 

 iv) If T = {3-M(C(Z12)), l(×)}  W what is the 
cardinality of T. 

 v) If R = {3-M(Z12  I), l(×)} what is the cardinality 
of R. 

 vi) Which of the structures T or S enjoy more 
properties likes S-multiset zero divisor, multiset 
subsemigroups, multiset ideal? 

 vii) Let Q = {3-M(Z12), l(×)}  S, what is the 
cardinality of Q. 
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31. Prove or disprove the idempotent multiset subsemigroups 
of S = {n-M(Zm), l(×)} can never be a Smarandache 
idempotent multiset subsemigroup of S. 

32. Find all the orthogonal multiset idempotents of S = {5-
M(Z9), l(×)}. 

33. Can S = {10-M(Z43), l(×)} have S-multiset idempotent? 

34. Let S = {6-M( 2 5 23 2 5 7
Z

  
), l(×)} be the 6-multiplicity 

multiset semgroup under level product l(×). 

 i) Find all multiset idempotents of S. 

 ii) Can S have S-multiset idempotents? 

 iii) How many of these multiset idempotents are 
orthogonal? 

 iv) Find the algebraic structure enjoyed by the 
collection of all orthogonal multiset idempotents. 

v) Find the set of all multiset nilpotents of S. 

vi) Find all multiset zero divisors of S. 

vii) How many of these multiset zero divisors are 
Smarandache multiset zero divisors? 

viii) Find all multiset partial zero divisors of S. 

ix) Can S have multiset nilpotents? 

x) Enumerate all partial multiset nilpotents of S. 

xi) Obtain all the special features enjoyed by S. 
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35. Find the Smarandache multiset idempotents of S={5-
M(Z12), l(×)}? Let M = {6-M(Z210), l(×)} be the 6-
multiplicity multiset of Z210. 

 i) Find all mutliset idempotents of M. 

 ii) Can M have Smarandache multiset idempotents? 

 iii) Do the collection of all Smarandache multiset 
idempotents form a multiset subsemigroup of M? 

iv) Find all multiset idempotents of M which are not S-
multiset idempotents. 

v) Obtain any other interesting result associated with 
the S-multiset idempotents. 

36. Let L = {10-M(Z23), l(×)} be the 10-multiplicity multiset 
semigroup of Z23. 

 i) Study questions (i) to (v) of problem 35 for this L 

 ii) Compare M of problem  35 with this L. 

iii) Which of the multisets M or L has more number of 
S-idempotents? 

37. Let W = {12-M(Z256), l(×)} be the multiset semigroup 
under level product l(×). Study questions  of (i) to (v) of 
problem  for this W. 



N-Multiplicity - multisets and their …  169 
 

 
 
 
 
 
 
 

38. Let S = {3-MN(C(Z6)), l(×)} be the complex 3-
multiplicity multiset semigroup on level product using 
C(Z6). 

 i) Find all complex 3-multiset zero divisors of     
S={3-M(C(Z6), l(×)}. 

 ii) Find all S-complex multiset zero divisors of S. 

iii) How many complex multiset zero divisors of S are 
not  Smarandache multiset zero divisor? 

iv) Find all complex multiset zero divisors of S. 
v) Find all complex multiset nilpotents and partial 

nilpotents of S. 
vi) Can S have S-complex multiset idempotents? 
vii) Find all complex multiset idempotents of S which 

are not S-complex multiset idempotents. 

39. Let D = {7-M(C(Z13  I)), l(×)} be the complex 
neutrosophic multiset semigroup under level product l(×). 
Study questions (i) to (vii) of problem (38) for this D. 

40. Let E = {8-M(C(Z15  I)), l(×)} be the complex 
neutrosophic multisemigroup under level product l(×). 

 i) Study questions (i) to (vii) of problem (38) for this 
E. 

 ii) Compare D of problem (39) with E of this problem. 
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41. Let M = {99-M(Z20  g), l(×)} be the multiset modulo 
dual numbers of multiplicity? 

 i) Prove M has a special zero square multiset 
subsemigroup. 

 ii) Find order of M. 

 iii) Find the multiset subsemigroups of M which are not 
multiset ideals. 

 iv) Can M have multiset zero divisors which are 
Smarandache zero divisors? 

 v) Obtain any other special feature enjoyed by multiset 
modulo dual number semigroups undr the level 
product l(×). 

 vi) Can these mutliset dual numbers semigroup have 
multiset nilpotents of order greater than two? 
Justify your claim? 

 vii) Can this multiset dual numbers semigroup contain 
Smarandache multiset zero divisors? 

viii) Can this multiset dual number semigorup contain 
multiset idempotents which are Smarandache 
multiset idempotnts? 

ix) How many multiset nil ideals does the multiset 
semigroup M contains? 

42. Let B = {5-M(C(Z19  g)), l(×)} be the multiset 
complex dual modulo integers semigroup under the level 
product l(×). 
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 i) Find the cardinality of B. 

 ii) Show the lattice {B, , } is a Smarandache 
lattice. 

 iii) Find all the sublattices which are Boolean algebras 
of {B, , }. 

iv) Can B have multiset complex dual modulo integer 
ideals? Justify. 

v) Find all multiset complex dual modulo integer zero 
divisors of B. 

vi) Find all multiset complex dual modulo integer 
Smarandache zero divisors of B. 

vii) Prove B has a multiset dual complex special zero 
square subsemigroup under the level product l(×). 

viii) How many special multiset zero square 
subsemirings can B have? 

ix) Can B be a Smarandache multiset subsemigroup? 
Justify your claim. 

x) Obtain any other special feature associated with 
mutliset complex dual semigroups under level 
product l(×). 

43. Let S = {8-M(C(Z24  g)), l(×)} be the multiset 
complex dual modulo integer semigroup under level 
product l(×). 

 i) Study questions (i) to (x) of problem (42) for this S. 
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 ii) Compare B of problem (42) with this S. 

 iii) Which has more number of S-multiset zero divisors 
B of problem (42) or this S? 

44. Let W = {3-M(C(Z9  I)), l(×)} be the multiset 
complex  neutrosophic modulo integers semigroup under 
the level product l(×). 

 i) Study questions (i) to (x) of problem (42) for this S. 

 ii) Which question in problem (42) is irrelevant in this 
case? 

 iii) Prove there is a multiset neutrosophic complex 
modulo integer ideal in W under level product l(×). 

45. Let M = {4-M(C(Z12  k)), l(×)} be the multiset 
complex special quasi dual number semigroup under 
level product l(×). 

 i) Study questions (i) to (x) of problem (42) for this 
M. 

 ii) Compare this M with B of problem (42). 

 iii) Obtain all special features enjoyed by M. 

46. Let N = {3-M(Z10  g)), l(×)}, where Z10  g = {a + 
bI + ig + dgI/a, b, c, d  Z10, I2 = I, g2 = 0, (Ig)2 = 0} be 
the multiset neutrosophic dual modulo integer semigroup 
under level product l(×). 

 i) Study questions (i) to (x) of problem (42) for this N. 
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 ii) Enumerate all special features enjoyed by N. 

 iii) Compare this N with B of problem (42). 

 iv) Compare this N with S of problem (43). 

 v) Compare this N with W of problem (44). 

47. Let D = {5-M(Z19  g  I), l(×)} be the multiset dual 
neutrosophic modulo integer semigroup under the level 
product l(×), where Z9  g  I = {a + bg + cI + dgI /a, 
b, c, d  Z19, I2 = I, g2 = 0, (gI)2 = 0} 

 i) Study questions (i) to (x) of problem (42) for this D. 

 ii) Compare this D with N of problem (46). 

48. Let E = {4-M(CZ12  g  I)), l(×)| be the multiset 
complex dual neutrosophic modulo integer semigroup 
under level product l(×) where C(Z12  g  I) = {a + bg 
+ cI + diF + egiF + hgI + kIiF + lIiFg/a, b, c, d, e, h, k, l  

Z12, g2 = 0, 2
Fi  = 11, I2 = I, (gI)2 = 0 (IiF)2 = 11iF, (giF)2 = 

0, (iFgI)2 = 0}. 

 i) Study questions (i) to (x) of problem (42) for this E. 

 ii) Enumerate all special properties associated with this 
E. 

 iii) Compare this E with;  

a) D of problem 47, 

b) N of problem 46, 
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c) M of problem 45 and 

d) W of problem 44 

49. Let F = {8-M(C(Z9  I  k  g)), l(×)} be the multiset 
of complex neutrosophic dual special quasi dual modulo 
integers semigroup under the level product l(×), where 
C(Z9  I  k  g) = {a0 + a1g + a2k + a3I + a4iF + a5gK 
+ a6gI + a7giF + a8kI + a9kiF + a10IiF + a11gIk + a12gIiF + 
a13giF + a14iFkI + a15iFgkI / ai  Z9; 0  i  15, g2 = 0, I2 = 

I, k2 = 8k, 2
Fi  = 8, (gI)2 = 0 = (gk)2 = (giF)2 (IiF)2= 8I, (Ik)2 

= 8Ik, (kiF)2 = k, (gIk)2 = 0 = (gIiF)2= (gkiF)2, (IkiF)2 = kI, 
(iFgkI)2 = 0} 

 i) Study questions (i) to (x) of problem 42 for this F. 

 ii) Enumerate all the special features enjoyed by F. 

 iii) Find the lattice L, {8-M(C(Z9  I  g  k)),  , 
 

a) Is L a distributive lattice? 

b) Is L a Smarandache lattice? 

c) How many sublattices of L are Boolean 
algebras? 

 iv) Prove F  {8-M(C((Z9  I  k)), l(×)}  {8-
M(C(Z9  I)), l(×)}  {8-M(C(Z9)), l(×)}  {8-
M(Z9), l(×)} is chain of only multiset subsemigroup 
of F and not multiset ideals of F.  



 

Chapter Four 

 

 

MULTISET MATRICES 

 

 In this chapter authors for the first time introduce the new 
notion of multiset matrices. We call a matrix to be a multiset 
matrix if its entries are from the multisets M(R or Q or Z or C or 
Zn or Zn  I or R  I or C(Zn)) and so on. All these multiset 
matrices will be of infinite order. If we need to get finite order 
multiset matrices then it is mandatory, we define n-multiplicity 
multisets on finite sets which can be subsets. But in that case 
also we cannot perform level addition or level multiplication we 
need to take subsets from Zm or C(Zm) or Zm  I or Zm  g 
or so on; 2  m <  and 2  n < .  

 We will first illustrate both the situations by some 
examples. 

Example 4.1. Let S = {(a1, a2, a3) / ai  M(Z); 1  i  3} be the 
collection of all  1 × 3 matrices with entries from multiset M(Z) 
= {All multisets which takes to entries from Z}. 

 x = ({3, 3, 3, – 1, – 1, 2, 0}, {1, 1, 1, 1, 2, 9}, {9, 9, 9, 18, 
0, – 3, – 3, – 5})  S; x is defined as the row multiset matrix or 
multiset row matrix. 
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 The following observations are vitals  

 i)  o(Z) is infinite so M(Z) the multisets built using 
Z are infinite; hence S is a row matrix multiset 
of infinite order. 

 ii) Clearly on S we can define the operation  or 
 or both simultaneously. 

 iii) On S we can define + the usual addition {S, +} 
is a multiset matrix semigroup of infinite order. 

 iv) On S we can define ×, the product operation 
under which {S, ×} is a matrix multiset 
semigroup of infinite order 

 First we will illustrate these situations. 

 Let x = ({3, 3, 0, 1, 9, 2, 5, 0}, {2, 2, – 1, –1, 7, 9, 9, 9}, 
{9, 2, 0, –7, –9, 8, 2, 0}) and y = ({3, 1, –9, 0}, {2, –9, 9}, {0, 6, 
9})  S. We define  

 x  y = ((3, 3, 0, 1, 9, 2, 5, 0}, {2, 2, –1, –1, 7, 9, 9, 9}, 
{9, 2, 0, –7, –9, 8, 0, 2})  ({3, 1, –9, 0}, {2, –9, 9}, {0, 6, 9})   
= ({3, 3, 1, 0, 9, 2, 5, 0}  {3, 1, –9, 0}, {2, 2, –1, –1, 7, 9, 9, 9} 
 {2, –9, 9}, {9, 2, 0, –7, –9, 8, 0, 2} {0, 6, 9}) = ({3, 1, 0}, 
{2, 9}, {0, 9}). 

 Clearly x  y  S. Thus it is left as an exercise for the 
reader to prove {S, } is an infinite order multiset matrix 
semigroup under the intersection operation .  

 We can now show how the ‘’ operation is defined on 
the matrix multiset x  y = ({3, 3, 0, 1, 9, 2, 5, 0}, {2, 2, –1, –1, 
7, 9, 9, 9}, {9, 2, 0, –7, –9, 8, 2, 0})  ({3, 1, –9, 0}0, {2, –9, 
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9}, {0, 6, 9}) = ({3, 3, 0, 1, 9, 2, 5, 0}  {3, 1, –9, 0}, {2, 2, –1, 
–1, 7, 9, 9,9}  {2, –9, 9}, {9, 2, 0, –7, –9, 8, 2, 0}  {0, 6, 9}) 
= ({3, 3, 0, 1, 9, 2, 5, 0}  {3, 1, –9, 0}, {2, 2, –1, –1, 7, 9, 9, 9} 
 {2, –9, 9}, {9, 2, 0, –7, –9, 8, 2, 0}  {0, 6, 9}) = ({3, 3, 0, 1, 
9, 2, 5, 0, 3, 1, –9, 0}, {2, 2, –1, –1, 7, 9, 9, 9, 2, –9, 9}, {9, 2, 0, 
–7, –9, 8, 2, 0, 0, 6, 9})  S. 

 It is clear that union operation ‘’ increases the 
cardinality of each and every element in the multiset matrix. 
The situation it will not remain same even if the multiset matrix 
X is contained in the multiset matrix Y. 

 Now is a natural question would be what is the 
containment relation in multiset matrices. We say a multiset 
matrix X = ({a}, {a2}, {a3}) is contained in the multiset matrix  
Y = ({b1}, {b2}, {b3}) if and only if {a1}  {b1}, {a2}  {b2} 
and {a3}  {b3} or in short if {ai}  {bi}; i = 1, 2, 3 and we 
denote this by X  Y. 

 So we can say multiset matrices of same order will satisfy 
the containment relation. So the collection of all multiset 
matrices of same order satisfy the partial ordering. 

 Now based on all these observations we make the 
following result. 

 Hence we can prove the following result. 

Theorem 4.1. S = {(a1, …, am) / ai  M(Z) (or Q or R or C or Zn 
Zn  I  and so on); 1  i  m, , } is a multiset row matrix 
lattice of infinite order and S is a special  Smarandache lattice. 

Proof is direct and hence left as an exercise to the reader. 
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 Next we proceed onto show how on these multiset row 
matrices the notion sum of two row matrices is carried out. 

Example 4.2. Let S = {(a1, a2, a3, a4) / ai  M(R); 1  i  4} be 
the multiset matrix. We now define the operation of addition on 
S. 

 Let x = ({3, 0, –1, 2, 4, 0}, {0, 0, 0, 2, 2}, {–1, –1, 0, –1, 
–1}, {4, 4, 4, 4, 4, 4}) and y = ({2, 2, 0, 1, 1, 2}, {3, 3, 3, 3, 3}, 
{4, 2, 0, 1, 1, 1}, {–1, –1, –1, –1, –1})  S. 

 We now find the sum of x + y; x + y = ({3, 0, –1, 2, 4, 0}, 
{0, 0, 0, 2, 2}, {–1, –1, 0, –1, –1}, {4, 4, 4, 4, 4, 4}) + ({2, 2, 0, 
1, 1, 2}, {3, 3, 3, 3, 3}, {4, 2, 0, 1, 1, 1}, {–1, –1, –1, –1, –1}) = 
({5, 2, 1, 4, 6, 2, 5, 2, 1, 4, 6, 2, 3, 0, –1, 2, 4, 0, 4, 1, 0, 3, 5, 1, 
4, 1, 0, 3, 5, 1, 5, 2, 1, 4, 6, 2}, {3, 3, 3, 5, 5, 3, 3, 3, 5, 5, 3, 3, 3, 
5, 5, 3, 3, 3, 5, 5, 3, 3, 3, 5, 5}, {3, 3, 4, 3, 3, 1, 1, 0, 1, 1, –1, –1, 
0, –1, –1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}, {3, 3, 3, 3, 3, 3, 
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 3, 3})  S. 

 This is the way + operation is performed on S. It is 
important to note the following. 

 i) The cardinality of the multisets of the matrices 
under consideration increases drastically. 

 ii) The algebraic structure enjoyed by {S, +} is a 
semigroup of infinite order. We do not have the 
additive identity, if we want to have the special 
additive  identity  then  it  is  the set  {0};   as    
x + {0} = x for all x however we do not have 
{x} + {–x} = {0} for any x  S unless the set 
{x} is a singleton set. 
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For if {x} = {0, 2, –1, –1, 2} then {–x} = {0, –2, 1, 1, –2}. 

Now {x} + (–x} = {0, 2, –1, –1, 2} + {0, –2, 1, 1, –2}  

    = {0, 2, –1, –1, 2, 0, –2, –3, –3, 0,  

       1, –1, 0, 0, –1, 1, –1, 0, 0, –1,  

       –2, 0, –3, –3, 0}  {0}. 

 However yet another observation is mandatory. 

 If x = ({a1}, {a2}, …., {an}) then we associate with each x 
the multiset cardinality of x. We know x is a 1 × n row matrix x  

 The multiset cardinality of x is (|{a1}|, |{a2}|, …, |{an}|). 

 Thus |{(ai}|  0, and |{ai}| = 0 if and only if {ai} = {};  

 1   i  n. 

 We denote the cardinality of the multiset matrix x by |x|C 
= (|{a1}|, |{a2}|, …, |{an}|). 

 If |x|C = (|{a1}|, |{a2}|, …, |{an}|)  

and  |y|C = (|{b1}|, |{b2}|, |{b3}|, …, |{bn}|)  

then  |x + y|C = (|{a1}} × |{b1}|, |{a2}| |{b2}|,  

 …, |{an}| × |{bn}|). 

It can be easily verified that multiset matrix under + is an 
abelian semigroup of infinite order. Clearly it is not a monoid. 

 For ({0}, {0}, {0}, {0}) = ({0}) acts the special identity. 
The elements of S in which the cardinality of every multiset 
matrix is only one has inverse and none other multiset matrix 
has inverse. Though it is pertinent to record that if x = ({a1}, 
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{a2}, {a3}, {a4}) then –x= ({–a1}, {–a2}, {–a3}, {–a4})  S is 
such that x + (–x)  ({0}, {0}, {0}, {0}). 

 Let x = ({3, –3, 2}, {–5, –1, –5, –2, –3, –6},  

 {2, 1, 4, –3}, {4, 3, –4, 2})  S 

 –x = ({–3, 3, –2}, {5, 1, 5, 2, 3, 6}, {–2, –1, –4, 3} 

 {–4, –3, 4, –2}) {x} + {–x} = ({0, –6, –1, 0, 6, 1, –5, 0}, 
({0, 4, 0,3, 2, 1, –4, 0, –4, –1, –2, –5, 0, 4, 0, 3, 2, –1, –3, 1,  

–3, 0, –1, –4, –2, 2, –2, 1, 0, –3, 1, 5, 1, 4, 3, 0},  

{0, –1, 2, –5, 1, 0, 3, –4, –2, –3, 0, –7, 5, 4, 7, 0}, 

{0, 0, –1, –8, –2, 1, 0, –7, –1, 8, 7, 0, 6, 2, 1, 4})  ({0}, {0}, 
{0}, {0}). 

 Thus we see for every multiset matrix x we have the 
multiset matrix –x but x + (–x) is not the zero multiset matrix in 
general. 

 So in this case of multisets we see all mathematical 
operation + and × are different. Multisets under + is only a 
semigroup. No multiset of cardinality greater than one (or 
greater than or equal two) can have inverse. So property of 
inverse element is flouted. 

 Only {0} is the special additive identity. So {R, +} is the 
group of infinite order under +. 

 However M(R) the collection of multisets of R is not a 
group under + is only a semigroup and further –x; x M(R) has 
no significance. Thus all the arithmetic theory if x + y = {0} 
then x = –y or –x + x = 0 is not true in general for any multisets. 
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 So the class of multiset matrices also inherit the deviant 
behaviours of these multisets. We have just seen multiset row 
matrices and that collection under  or  or + are just 
semigroups only. 

 Now we proceed onto develop and describe the product 
operation  on row matrix multisets by some examples. 

Example 4.3. Let B = {(a1, a2, a3) | ai M(R) (or Zp or C(Zp) or 
Q or Z or C and so on; 1  i  3} be the row matrix multiset. 

 We now illustrate how product operation is performed on 
B. 

 Let x = ({3, 1, 0, 5, 5}, {2, 2, 2, 2}, {7, 0, 0, 0, 3, 4, 3}) 
and y = ({1, 1, 1, 1, 5, –1}, {0, 2, –1, 3}, {4, 4, 4, 4, 4})  B 

 We find out x × y = ({3, 1, 0, 5, 5}, {2, 2, 2, 2}, {7, 0, 0, 
0, 3, 4, –3}) × ({1, 1, 1, 1, 5, –1}, {0, 2, –1, 3}, {4, 4, 4, 4, 4}) = 
({3, 1, 0, 5, 5, 3, 1, 0, 5, 5, 3, 1, 0, 5, 5, 3, 1, 0, 5, 5, 15, 5, 0, 25, 
25, –3, –1, 0, –5, –5}, {0, 0, 0, 0, 4, 4, 4, 4, –2, –2, –2, –2, 6, 6, 
6, 6}, {28, 0, 0, 0, 12, 16, –12, 28, 0, 0, 0, 28, 0, 0, 0, 12, 16, –
12, 28, 0, 0, 0, 12, 16, –12, 28, 0, 0, 0, 12, 16, –12, 12, –16, –
12})  B. 

 This is the way × operation is performed on matrix 
multisets. However {B, ×} is a matrix multiset semigroup under 
×. 

 We see ({1}, {1}, {1})  B acts as x × ({1}, {1}, {1}) = 
x but ({1}, {1}, {1}) is defined only as a special row matrix 
identity. 
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 Further it is pertinent to record that we do not  have x, y 
 B such that x × y = ({1}, {1}, {1}) if the order of even one of 
the multisets is of order greater than one. 

 Thus these multiset matrices also behave in an odd way 
under the product operation. 

 However we can have multiset matrix special divisors. 

 If x = ({2, 1, 4}, {0, 0, 0}, {0}) and y = {{0, 0, 0, 0, 0}, 
{10, 9}, {9, 6})  B then x × y = ({2, 1, 4}, {0, 0, 0}, {0}) × 
({0, 0, 0, 0, 0}, {10, 9}, {9, 6}) = ({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0}) which is a special matrix 
zero so x and y contribute to special zero divisors. 

 Multiset matrix semigroups are abundant with special 
zero divisors. Here it is important to observe that there is no 
zero which is universal for the multiset zeros of any multiset 
collection M(R) are {0}, {0, 0}, {0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 
0, 0} and so on; the number of zeros in multisets can also be 
infinite varying from 1  n  . 

 With these properties in mind we see in general a row 
matrix multiset collection is an infinite order multiset matrix  
semigroup with infinite number of multiset special zero 
divisors. Study in this direction is both interesting and 
innovative with special unit element ({1}, {1}, …, {1}). 
However if cardinality of any of the multisets in a row matrix 
multiset is more than one then special inverse does not exist. 

 So it is very unusual to these semigroups of multiset 
matrix behave in a very deviant way both under × and +. 

 Next we proceed onto supply examples of multiset 
column matrices and define operations on them. 
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Example 4.4. Let D = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 / ai  M(Z); 1  i  4} be the 

multiset column matrix (column multiset matrix). We see , , 
+ and ×n can be defined where ×n is the natural product on 
matrices. 

 Let x = 

{3,1,0,5}
{2,2,2,2}
{0,0,0,0,0,1}
{4,2,1,5,1}

 
 
 
 
 
 

 and y = 

{7,0,1,1,1,2}
{0,0,1,15}
{1,2,0}
{0,1, 1}

 
 
 
 
 

 

  D. 

 We now define the union operation on D. 

x  y = 

{3,1,0,5}
{2,2,2,2}
{0,0,0,0,0,1}
{4,2,1,5,1}

 
 
 
 
 
 

 

{7,0,1,1,1,2}
{0,0,1,15}
{1,2,0}
{0,1, 1}

 
 
 
 
 

 

  

= 

{3,1,0,5} {7,0,1,1,1,2}
{2,2,2,2} {0,0,1,1,5}
{0,0,0,0,0,1} {1,2,0}
{4,2,1,5,1} {0,1, 1}

 
  
 
 

  

  

= 

{3,1,0,5,7,0,1,1,1,2}
{0,0,1,1,5,2,2,2,2}
{0,0,0,0,0,2,1,1}
{4,2,1,5,1,0,1, 1}

 
 
 
 
 

 

  D. 

This is the way ‘’ operation is performed on D. Infact {D, } 
is a semilattice or a semigroup of column matrix multisets 
which is not a monoid. 
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 Now we proceed onto define ‘’ operation on x, y  D. 

x  y = 

{3,1,0,5} {7,0,1,1,1,2}
{2,2,2,2} {0,0,1,1,5}
{0,0,0,0,0,1} {1,2,0}
{4,2,1,5,1} {0, 1,1}

 
  
 
 

  

 

= 

{0,1}
{ }
{0}
{1}

 
  
 
 
 

  D.  This is the way ‘’ operation is performed on 

D. {D, } is a multiset column matrix semigroup of infinite 
order or infact a semilattice of infinite order. 

 We further can prove {D, , } is a column matrix 
multiset lattice which is infinite order. 

 All these lattices are special Smarandache lattices. This 
lattice also has column matrix multisets sublattices which are of 
finite order. 

 Study in this direction can help in applying it to crystal 
theory and other applications where the concept involves 
multisets. As the scope of this book is only to study the 
algebraic structure on multiset matrices and find the 
Smarandache special elements in them like nilpotent multiset 
matrices, zero divisor multiset matrices, idempotent multiset 
matrices and their Smarandache analogue on multiset matrix 
semigroups under the natural product ×n on them. 

 Now we illustrate this situation by some examples. 
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Example 4.5. Let P = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 / ai  M (Z (or Zm or R or Q or 

C)); 1  i  5} be the multiset column matrix collection. 

 We show how the addition operation on the multiset 
column matrix P is performed. 

Let x = 

{3,3,3,0,1,2}
{4,4,0}
{5,5,1,2}
{8,9,9,9,9,9}
{7,0, 1,2,3}

 
 
 
 
 
 
  

 and y = 

{8, 3, 3, 1}
{ 4, 4, 4, 4, 9}
{ 1, 2,5,0}
{ 1,0,0,0, 1}
{2,1,3,0}

   
      
  
   
  

  P. 

We first find x + y 

x + y 

{3,3,3,0,1,2}
{4,4,0}
{5,5,1,2}
{8,9,9,9,9}
{7,0, 1,2,3}

 
 
 
 
 
 
  

 + 

{8, 3, 3, 1}
{ 4, 4, 4, 4, 9}
{ 1, 2,5,0}
{ 1,0,0,0, 1}
{1,2,3,0}

   
      
  
   
  

 

= 

{3,3,3,0,1,2} {8, 3, 3, 1}
{4,4,0} { 4, 4, 4, 9}
{5,5,1,2} { 1,2,5,0}
{8,9,9,9,9} { 1,0,0,0, 1}
{7,0, 1,2,3} {1,2,3,0}

    
      
  
    
     
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= 

{11,11,11,8,9,10,0,0,0, 3, 2, 1,
0,0,0, 3, 2, 1,2,2,2, 1,0,1}

{0,0, 4,0,0, 4,0,0, 4,0,0, 4, 5, 5, 9}
{4,4,0,1,7,7,3,4,10,10,6,7,5,5,1,2}
{7,8,8,8,8,8,9,9,9,9,8,9,9,9,9,8,9,9,9,9,

7,8,8,8,8}
{8,1,0,3,4,9,2,1

  
   

      

,4,5,10,3,2,5,6,7,0, 1,2,3}

 
 
 
 
 
 
 
 
 
  

  P. 

 It is easily verified that {P, +} is a multiset column matrix 
semigroup of infinite order which is commutative.  

 Clearly {P, +} is a special monoid with a special additive 

identity {0} = 

{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
  

. 

 We call this as special identity for x = 

1

2

3

4

5

{a }
{a }
{a }
{a }
{a }

 
 
 
 
 
 
  

 then  

– x = 

1

2

3

4

5

{a }
{a }
{a }
{a }
{a }

 
  
 
  
  

  P. We see x + (– x )  

{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
  

. 
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Recall if {ai} = {–5, 6, 2, 3, –1, 0, 0, –1, –5, 6, 2, –1, –1, 1} is in  
P then –{ai} = {–ai} = {5, –6, –2, –3, 1, 0, 0, 1, 5, –6, –2, 1, 1,      
–1}) P; however {ai} + {–ai}  {0}. 

 Now one can easily prove this situation to be true in case 
of column multiset matrix also. 

 We can find column multiset matrix collection which are 
subsemigroups under the plus operation; ‘+’. 

 Now we proceed onto define the order of any x multiset 
column matrix of M under the operation ‘+’ 

 Let x = 

{9, 10,2,3,0}
{1,1,1,1}
{2,2}
{5, 5,5}
{2,5,2,0,1}

 
 
 
 
  
  

  M. We first find x + x; 

x + x  = 

{18, 1,11,12, 1,20, 8, 7, 10
11, 8,4,5,2,12 7,5,6,3,9, 10,2,3,0}
{2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{4,4,4,4}
{10,0,10,0, 10,0,10,0,10}
{4,7,4,2,3,7,10,7,5,6,4,7,4,0,2,3,6,3,0,2}

     
    
 
 
 
 
 
  

  M.  

 We see as we add in m times the cardinality proved of the 
multisets in x increases exponentially. It can be easily proved as 

n times

x ... x


   as n   makes the cardinality of each multiset in x 

to have infinite number of times as infinite. 
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 However x + (–x)  

{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
  

. 

For x + (–x) = 

{0, 19, 7, 6, 9,19,0,12,13,10,7, 12,
0,1, 2,6, 13, 1,0, 3,9, 10,2,3,0}
{0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0}
{0,0,0,0}
{0, 10,0,10,0,10,0, 10,0}
{0,3,0, 2, 1, 3,0, 3, 5, 4,0,3,0, 2

1, 2,5,2,0,1,1,4,1, 1,0}

    
     


 
      

 






 
 
 
 
 
 

  

 

{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
  

 or any multiset with only zeros.   

We call zero multisets as {0}, {0,0}, {0, 0, 0}, {0, 0, 0,0}, …, 
{0, 0, 0, …,0} and so on. 

 Now one of the natural question is can we have multiset 
matrices x such that x + (–x) is a multiset matrix with zero 
multisets. The answer is we can have so which we will illustrate 
by some examples. 
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 Let x = 

{5,5,5}
{6,6,6,6,6}
{9,9,9,9}
{ 2, 2, 2}
{ 1, 1}

 
 
 
 
    
   

 we find x + (–x); x + (–x)  

= 

{0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,0,0}
{0,0,0,0}

 
 
 
 
 
 
 
 
  

 is a zero multiset 

column matrix.  

 So we can have x + (–x) to be a zero multiset matrix if 
and only if every multiset in the multiset matrix is just a single 
element from Z(or Q or C or R or Zn) which is repeated more 
than once. If it is not repeated and a multiset has only one 
element in the multiset matrix then we get x + (–x) is the special 
zero multiset matrix. 

 In view of all these we have the following theorem. 

Theorem. 4.2.  Let M = {

1

2

 
 
 
 
 
 



n

a
a

a

 / ai  M(Z) (Z or C or Q or R or 

Zn) 1  i  n, +} be the multiset column matrix semigroup under 
+ . 

i) For any x  M in general x + (–x) is not a 
multiset zero matrix. 
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ii) For x  M where x = 

1

2

n

a
a

a

 
 
 
 
 
 


 ai  M; 1  i  n is 

such that x + (–x) is a multiset zero matrix only if 
every ai in x is a multiset where only one element 
from Z(or Q or Zm or R or C) repeats itself. 

iii) If x = 

1

2

{ }
{ }

{0}

x
x

 
 
 
 
 
 


 

iv) If ({0}) is a multiset zero column matrix such that 
every entry in ({0}) is a zero multiset with 

cardinality 2
it ; 1  ti < , 1  i  n then 

corresponding to each ({0}) multizero matrix 
with this property there are infinitely many  
 

multiset matrix x = 

1

2

{ }
{ }

{ }n

a
a

a

 
 
 
 
 
 


 such that each {ai} ha 

the same element in the multiset repeated ti times, 
1  i   n. 

 Proof is left as an exercise to the reader. 

 However we give one example for the condition (iv) of 
the theorem with  n = 4 and entries from Z so as to enable the 
reader to understand this notion. 
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 Let ({0}) = 
25 times

64 times

{0,0,0,0}
{0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,...}

{0,0,...,0}

 
 
 
 
 
 
 
  





  B = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 / ai  

M(Z); 1  i  4}. 

 Now this zero multiset matrix has 2
1t  = 22, 2

2t  = 32, 2
3t  = 

52 and 2
4t  = 82 to number of zeros in the multisets in ({0}) 

matrix or to be more elaborative first multiset has 4 zeros, 
second multiset has 9 zeros, third multiset  has 25 zeros and the 
fourth multiset has 64 zero which comprises the zero multiset 
matrix ({0}). 

 Now we can  have any multiset matrix 

 y = 

1 1

2 2 2

3 3 3 3 3

4 4 4 4 4 4 4 4

{r ,r }
{r , r , r }
{r , r , r , r , r }
{r , r , r , r , r , r , r , r }

 
 
 
 
 
 

  B, where ri  Z; 1  i  4.  

 It can be verified. 

 (y) + (–y) = 
25 times

64 times

{0,0,0,0}
{0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,...}

{0,0,...,0}

 
 
 
 
 
 
 
  





. 

 It is left as an exercise to prove that for ri  Z are 
infinitely many, so we can say for a given zero multiset matrix 
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we can have infinitely many multiset matrices (y) of the said 
from such that (y) + (–y) = ({0}). 

 Hence the claim. 

 Now we illustrate by an example the natural product  

operation ×n on the multiset column matrices B = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

/ai  

M(Z or C or Q or R or Zn); 1  i  4}. 

 Let x = 

{3,0, 1, 1, 1,0}
{2,2,2,2}
{ 1, 1, 1}
{9,9,9,9,9}

   
 
 
   
 
 

 and y = 

{ 1, 1,9}
{ 9, 9}
{ 1,0,0}
{1,1,0,0,0,0}

  
   
 
 
 

  B. 

x ×n y = 

{ 3,0,1,1,1,0, 3,1,1,1,1,
0, 27,0, 27, 27, 27,0}
{ 18, 18, 18, 18, 18, 18, 18, 18}
{ 1, 1, 1,0,0,0,0,0,0}
{9,9,9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0}

  
     
        
    
 
 
  

. 

This is the way natural product operation ×n is performed on 
multiset column matrices. 

 It is pertinent to keep on record for any given multiset 
matrix x  B. We cannot find the inverse of B. However we call 
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the multiset column matrix ({1}) = 

{1}
{1}
{1}
{1}

 
 
 
 
 
 

 to be only a special  

 

unit and other multiset matrices ({x}) = 

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 where ai take only  

 
repeated value 1 as a quasi special multiset units. 

 However quasi special multiset units cannot act as 
multiset matrix identity. 

 For if x is a multiset column matrix and y is a multiset 
quasi special unit in B then x ×n y  x; however  

x × ({1}) = x ×n 

{1}
{1}
{1}
{1}

 
 
 
 
 
 

 = x. 

 We can have the concept of multiset special zero divisors 

however ({0}) = 

{0}
{0}
{0}
{0}

 
 
 
 
 
 

 does not serve as ({0}) multiset matrix 

as ({0}) × x  {0}.  

 All these can be illustrated by examples. Thus B is an 
abelian multiset column matrix semigroups under the natural 
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product ×n. It is important note B is not a monoid. However 
only depending on the set under consideration we can show 
whether B is a Smarandache semigroup or not using only  
 

special multiset matrix unit ({1}) = 

{1}
{1}
{1}
{1}

 
 
 
 
 
 

. 

 

 Further we wish to state that this multiset matrix 
semigroup cannot have idempotents. Every element x  B is 
torsion free in fact n n n

m times

x x ... x


    as m   leads to the 

resultant being a multiset matrix in which the resultant has the 
cardinality to be infinite in every multiset of the matrix. 
However as every multiset matrix is torsion free the question of 
getting finite multiset matrix subsemigroups does not arise. 

 Once a multiset in the multiset matrix has cardinality 
greater than one working with it under + or × only makes the 
cardinality increase each time. 

 If x  M(Z) and if number of elements in x is 20 say then 
x + x has cardinality 400. 

 x + x + x has cardinality 20 × 20 × 20 this 
t times

x x x


    

gives the cardinality of 
t times

x x x


   = 20t. 

 Now we just illustrate this situation by an example. 
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 x = {2, 0, 2, 2, 3, 3}  M(Z) |x| = 6, we find x + x;  

x + x = {2, 0, 2, 2, 3, 3} + {2, 0, 2, 2, 3, 3} = {4, 2, 4, 4, 5, 5, 0, 
2, 2, 2, 3, 3, 4, 2, 4, 4, 5, 5, 4, 2, 4, 4, 5, 5, 5, 3, 5, 5, 6, 6, 5, 3, 5, 
5, 6, 6}  M(Z)      I 

 Clearly number of elements in x + x is o(x + x) = |x + x| = 
36 = 62. 

 Hence our claim. 

 Consider x = {2, 2, 2, 0, 3, 3}  M(Z). x × x = x2 = {2, 2, 
2, 0, 3, 3} × {2, 2, 2, 0, 3, 3} = {4, 4, 4, 0, 6, 6, 4, 4, 4, 0, 6, 6, 4, 
4, 4, 0, 6, 6, 0, 0, 0, 0, 0, 0, 6, 6, 6, 0, 9, 9}  II 

 o(x) = 6 and 0(x2) = 62 = 36. 

 Clearly I and II are distinct however o(x2) = o(x + x) = 36 
= 62. 

 One can thus say any x  M(Z) is  such that x + …  + x 
as the number of times addition is performed increases the 
cardinality of the sum reaches exponentially larges hence the 
sum of infinite terms reaches infinity. 

 Similar result holds good for product x × x × … × x = xt 
as t  ; |xt|  . 

 Every element in M(Z) under both + and × are torsion 
free. 

 Thus in the multiset matrices when we perform infinite 
addition or infinite natural product.  

 We get every multiset in that multiset matrix is of infinite 
cardinality. 
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 Thus all multisets in M(Z or Q or R or C) are torsion free 
under + and ×. Similarly all multiset matrices with entries from 
M(Z or Q or R or C) are torsion free under + and ×n. 

 Thus getting idempotents or nilpotents or zero divisors is 
not possible. 

 Further we can have only S = {M(Z), , } to be a 
lattice as we have partial order defined on multisets M(Z). 
Finally it is important to record that a × (b + c)  a × b + a × c 
for a, b, c  M(Z). 

 Let a = {3, 3, 3, 4}, b = {2, 2, 2, 0} and  c = {1, 1,1 }  
M(Z); a × (b + c) = a × ({2, 2, 2, 0} + {1, 1, 1})  

 = a × ({3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1}) 

 = {3, 3, 3, 4} × {3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1} 

    = {9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 9, 9, 9, 9, 9, 9,9, 9, 9, 3,  

     3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 12, 12, 12, 12,  

     12, 12, 12, 12, 12, 4, 4, 4}        I 

Consider a × b + a × c = {3, 3, 3, 4} × {2, 2, 2, 0} + {3, 3, 3, 4}  

× {1, 1, 1} = {6, 6, 6, 0, 6, 6, 6, 0, 6, 6, 6, 0, 8, 8, 8, 0} 
+ {3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4} = {9, 9, 9, 3, 9, 9, 9, 3, 9, 9,  
9, 11, 11, 11, 3, 9, 9, 9, 3, 9, 9, 9, 3, 9, 9, 9, 9, 3, 11, 11, 11, 3,  
9, 9, 9, 3, 9, 9, 9, 3, 9, 9, 9, 3, 11, 11, 11, 3, 9, 9, 9, 3, 9, 9, 9,  
3, 9, 9, 9, 3, 11, 11, 11, 3, 9, 9, 9, 3, 9, 9, 9, 3, 9, 9, 9, 3, 9, 9,  
9, 3, 11, 11, 3, … 10, 10, 10, 0, 10, 10, 10, 0, 10, 10, 10, 0,  
12, 12, 12, 0}      II 

 Clearly I and II are distinct, hence distributive law is not 
true in case of mutlisets in general. 
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 Let x = 
{3,1,1} {0,0,2}
{1,2,3} {4,5,5,5}
 
 
 

 and  

y = 
{1,0,0,0} {2,2}

{5} {0,1}
 
 
 

  M = { 1 2

3 4

{a } {a }
{a } {a }
 
 
 

 / ai  M(Z);  

1  i  4}. 

x × y = 
{3,1,1} {0,0,2}
{1,2,3} {4,5,5,5}
 
 
 

 × 
{1,0,0,0} {2,2}

{5} {0,1}
 
 
 

 

= 
{3,1,1} {1,0,0,0} {0,0,2} {5} {1,1,1} {2,2}

{1,2,3} {2,2}
{1,2,3} {1,0,0,0} {4,5,5,5} {5}

{4,5,5,5} {0,1}

    
    
   

 

= 

{3,0,0,0,1,0,0,0,1,0,0,0} {2, 2, 2, 2, 2, 2}
{0,0,10} {0,0,0,0,0, 2}

{1,0,0,0, 2,0,0,0,3,0,0,0} {2,4,6, 2, 4,6}
{20, 25, 25, 25} (0,0,0,0, 4,5,5,5}

 
  
 
  

 

{3,0,0,0,1,0,0,0,1,2,0,0} {2,2,2,2,2,2,2,2,2,2,
3,0,0,0,1,0,0,0,1,0,0,0, 2,2,2,2,2,2,2,2,
13,10,10,10,11,10, 2,2,2,2,2,2,2,2,2,
10,10,11,10,10,10} 2,2,2,4,4,4,4,4,4}

{21,20,20,20,22,20,20,20,
23,20,20,20,26,25

{2,4,6,2,4,6,2,4,6,2,4,6
,25,25,

2,4,6,2,4,6,2,4,6,2,4,6,
27,25,25,25,28,25,25,25,

6,8,10,6,7,8,10,7,9,11,
26,25,25,25,27,25,25,25,

7,9,11,7,9,11,7,9,11,7,
28,25,25,25,26,25,25,25,

9,1
28,25,25,25,27,25,25,25}

1,7,9,11}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

I 
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 Consider the natural product ×n of x with y 

x ×n y = n

{3,1,1} {0,0,2} {1,0,0,0} {2,2}
{1,1,3} {4,5,5,5} {5} {0,1}

    
    

    
  

  

{3,1,1,0,0,0,0,0
{0,0,4,0,0,4}

0,0,0,0}
{5,10,15} {0,0,0,0,4,5,5,5}

 
 
 
  

          II 

 Clearly I and II are distinct hence we see x × y  x ×n y in 
general. 

 Now we show how the natural product ×n is performed on 
m × t matrices m  t by some examples. 

Example 4.6. Let A = 
{3,0, 1,0,0,2,1} {9,9,9,9,9}
{3,2,1} {1,1,1}
{4,4,0} {0,0,4,4}

 
 
 
  

 and  

B = 
{1,0,0,0} {4,4,0,0}
{1,1,1,0,1,9} {9,9,9, 9, 9}
[2, 1, 1,0} { 1, 1, 1}

 
   
      

 be two 3 × 2 multiset 

matrices with entries  from M(Z). 

 We now find A ×n B;  

A ×n  B = 
{3,0, 1,0,0,2,1} {9,9,9,9,9}
{3,2,1} {1,1,1}
{4,4,0} {0,0,4,4}

 
 
 
  

 ×n  

    

{1,0,0,0} {4,4,0,0}
{1,1,1,10,9} {9,9,9, 9, 9}
{2,0, 1, 1} { 1, 1, 1}

 
   
      

 



Multiset Matrices 199 
 

 
 
 
 
 
 
 
 

= 

{3,0, 1,0,0,2,1, {36,36,36,36,36,36,
0,0,0,0,0,0,0, 36,36,36,36,0,0,0,0,
0,0,0,0,0,0,0} 0,0,0,0,0,0}
{3,3,3,3,0,27,2,2,2, {9,9,9, 9, 9,9,9,9,
2,0,8,1,1,1,1,0,9} 9, 9,9,9,9, 9, 9}
{8,0, 4, 4,8,0, 4, 4 {0
0,0,0,0}



 
   

    ,0, 4, 4,0,0, 4, 4,
0,0, 4, 4}

 
 
 
 
 
 
 
 

    
   
  

 is again a  

3 × 2 multiset matrix. 

 This is the way the natural product on multiset matrices 
are carried out. 

 Clearly the collection of all multiset m × t matrices under 
natural product ×n is a semigroup. 

 We now give some more examples of them in the 
following. 

Example 4.7. Let W = {
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

 / ai  M(Z6); 1  i 

 12} be the collection of all 3 × 4 multiset matrices. We just 
illustrate how operations , , + and ×n are performed on W. 

 Consider x, y   W where x =  

{3,4,0,0} {0,0,0,0,0} {1,1} {4}
{2,2,2} {3,3} {1,0,1,1} {2,2,2}
{4,2,1,1} {5} {0,0,0} {0,1,2}

 
 
 
  

 and  
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y = 
{2,2,2} {1,2,3,4} {3,5} {0,0,1}
{4,1,1} {2,0} {0,1,1} {1,1,5}
{2} {3,0,1} {0} {1,1,1}

 
 
 
  

  W.  

We first find x  Y; 

x  y = 

{3,4,0,0} {0,0,0,0,0} {4}
{1,1} {3,5}

{2,2,2} {1,2,3,4} {0,0,1}
{2,2,2} {1,1,1,0} {2,2,2}

{3,3} {2,0}
{4,1,1} {0,1,1} {1,1,5}

{4,2,1,1} {0,0,0} {0,1,2}
{5} {3,0,1}

{2} {0} {1,1,1}

 
   

  
  

   
 

  

    

 

= 

{3,4,0,0, {0,0,0,0, {1,1,3,5} {4,0,0,1}
2,2,2} 1,2,3,4}
{2,2,2,4,1,1} {3,3,2,0} {1,1,1,0,0,1,1} {2,2,2,1,1,5}
{2,2,4,1,1,1} {5,3,0,1} {0,0,0,0} {1,1,1,1,0,2}

 
 
 
 
 
 
  

. 

We see x  y  W and infact {W, } is a multiset matrix semi-
lattice or semigroup of infinite order. 

 The repetition of elements in these multisets are only 
from Z6. However the elements repeat themselves infinitely. 
Next for the same pair x, y  W we show the operation of  is 
performed. 
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x  y = 

 

{3,4,0,0} {0,0,0,0,0} {1,1} {4}
2,2,2} 1,2,3,4} {3,5} {0,0,1}
{2,2,2} {3,3} {1,1,1,0} {2,2,2}
{4,1,1} {2,0} {0,1,1} {1,1,5}

{5} {0,0,0,0} {0,1,2}
{4,2,1,1} {2}

{3,0,1} {0} {1,1,1}

   
  
    
 
 
   

 
    

 

= 
{ } { } { } { }
{ } { } { } { }
{ } { } { } { }

    
     
     

W. 

 It is easily verified {W, } is a multiset matrix 
semilattice or semigroup of infinite order. Further it is vital to 
observe that {W, , } is a lattice multiset matrix of infinite 
order. 

 Now for the same pair, x, y we find the sum of x and y. 

x + y = 

{3,4,0,0} {0,0,0,0} {1,1} {4}
{2,2,2} {1,2,3,4} {3,5} {0,0,1}

{2,2,2} {3,3} {1,1,1,0} {2,2,2}
{4,1,1} {2,0} {0,1,1} {1,1,5}

{5} {0,0,0} {0,1,2}
{4,2,1,1}

{3,0,1} {0} {1,1,1}
{2}

   
  
 
 

  
  
 
    
  
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= 

{1,1,1,1,1,
{5,0,2,2,5,0, 2,2,2,2,2,

{4,0,4,0} {4,4,5}
2,2,5,0,2,2} 3,3,3,3,4,

4,4,4,4}
{1,1,1,0, (3,3,3,3,

{0,0,0,3,3,
{5,5,3,3} 2,2,2,1,2, 3,3,3,

3,3,3,3}
2,2,1} 1,1,1}

{1,2,3,1,
{0,4,3,3} {2,5,0} {0,0,0}

2,31,2,3}













 
 
 
 
 
 
 
 
 
 
 
 



  

x + y  W.  

 Infact {W, +} is a multiset matrix semigroup of infinite 
order. We see {W, +} is not a monoid.  

 Further we can have elements in W such that x + x = ({0} 
or {0, 0}, {0, 0, 0}, …, or {0, …, 0}).  

We will first illustrate this situation by an example. 

Let x = 
{3} {3,3} {3,3,3} {3,3,3,3,3}
{3,3,3,3} {3} {3,3} {3,3,3,3,3,3,3}
{3,3,3} {3,3,3,3} {3} {3,3,3,3}

 
 
 
  

 

 W 
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x + x = 

{0,0,0,0,
{0} {0,0,0,0}

0,0,0,0,0}
{0,0,0,0,0,0,
0,0,0,0,0,0,0, {0} {0,0,0,0}
0,0,0}

{0,0,0,0,0
{0,0,0,0,0,0,

0,0,0,0,0,0, {0}
0,0}

0,0,0,0,0}
















 
 

 

25 times

49 times

16 times

{0,0,0,...,0}

{0,0,0,0,...,0}

{0,0,0,...,0}

















  W is a multiset mixed zero matrix of 

W. Thus x + x = ({0}, …, {0, 0, 0, …, 0}) is possible. 

 Finally we find x ×n y where ×n is the natural product of 
matrices using the given x, y  W. 

x ×n y = 

{3,4,0,0} {0,0,0,0,0} {1,1} {4}
{2,2,2} {1,2,3,4} {3,5} {0,0,1}

{3,3} {1,1,1,0} {2,2,2}
{2,2,2}

{2,0} {0,1,1} {1,1,5}
{4,1,1}

{5} {0,0,0} {0,1,2}
{4,2,1,1}

{3,0,1} {0} {1,1,1}
{2}

 
   
  
 
   

 
 
 
  
 

  
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= 

20 times

{0,2,0,0,0,2,
{0,0,0,...,0} {3,5,3,5} {4,0,0}

0, 0, 0, 2, 0, 0}

{2, 2, 2, 2, 2, 2, {1,1,1,0,0,0, {2,2,2,2,2,
{0,0,0,0}

2,2,2} 0,0,1,1,1,0} 2,4,4,4}
{0,0,0,0,

{2,4,2,2} {3,0,5} {0,0,0}
1,2,3,0,1,2}











 






 

 W.  This is the way the natural product operation is 
performed on W.  Clearly {W, ×n} is a multiset matrix 
semigroup of infinite order. Since Z6 has zero divisors, and 
idempotents we see the multiset matrix collection has special 
quasi zero divisors and idempotents. 

 We will give some special quasi zero divisors and 
idempotents in W under the natural product ×n. 

Consider A = 
{3,3,0,3} {3,0} {3,3} {0,0}
{3,3,3,3,3} {0,3,3} {3} {0}
{3,3,3,0,0,0} {3} {0} {3,3,3}

 
 
 
  

 and  

B = 
{2,0} {2} {2,2,0} {2,2,2}
{2,2,2,2} {2,2} {2,2,2} {2}
{2,2,2,2,

{2,2,0} {2} {2,2,0}
0,0,0}

 
 
 
 
 
 
  

 



Multiset Matrices 205 
 

 
 
 
 
 
 
 
 
We see A ×n B = 

42 times

{0,0,0,0,0 {0,0,0 {0,0,0,0
{0,0}

0,0,0} 0,0,0} 0,0}

{0,0,0,0,0
{0,0,0,

0,0,0,0,0 {0,0,0} {0}
0,0,0}

0,0,0,0,0
0,0,0,0,0}

{0,0,0,0,
{0,0,....,0} {0,0,0} {0}

0,0,0,0,0}


 
 
 
 
 
 
 
 
 
 
 
 
 
  


 

is a special quasi zero multiset matrix. 

 Infact W has special quasi multiset matrix zero divisors. 

 W has no special multiset matrix idempotents if any of 
the multisets are of cardinality greater than one. 

 Thus in this case the notion of matrix multiset 
idempotents or its Smarandache analogous happens to be an 
impossibility. 

 Next we proceed onto define the notion of n-multiset 
matrices where 2  n < . We have defined n-multisets and 
described some of the vital properties enjoyed by them.  

 We first illustrate by examples n-multiset row matrices 
and define all the four operations on them. 

Example 4.8: Let S = {(a1, a2, a3, a4, a4) / ai  4 - M(Q); 1  i  
5} be the collection of all 1 × 5 row 4 multiset matrices with 
entries from the multiset 4-M(Q). We define , , + and × the 
operations on S. 
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 Let A = ({3, 0, 6, 4, 2}, {0, 0, 0, 6, 6}, {2, 2, 2, 2, 0}, {9, 
9, 9, 9}, {2, 2, 1}) and B = ({2, 0, 6, 6, 6}, {0, 0, 2, 2, 2}, {2, 2, 
0,0, 0, 0}, {9, 1, 1, 1, 1}, {3, 3, 5})  S. 

 We find A  B, A  B = ({3, 0, 6, 4, 2}, {0, 0, 0, 6, 6}, 
{2, 2, 2, 2, 0}, {9, 9, 9, 9}, {2, 2, 1})  ({2, 0, 6, 6, 6}, {0, 0, 2, 
2, 2}, {2, 2, 0, 0, 0, 0}, {9, 1, 1, 1, 1}, {3, 3, 5}) 

= ({3, 0, 6, 4,2}  {2, 0, 6, 6, 6}, {0, 0, 0, 6, 6}  {0, 0, 2, 2, 
2}, {2, 2, 2, 0, 2  {2, 2, 0, 0, 0, 0}, {9, 9, 9, 9}  {9, 1, 1, 1, 
1} + {2, 2, 1}  {3, 3, 5}) = ({3, 0, 6, 4, 2, 2, 0, 6, 6, 6}, {0, 0, 
0, 6, 6, 0, 0, 2, 2, 2}, {2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 0}, {9, 9, 9, 9, 9, 
1, 1, 1, 1}, {2, 2, 1, 3, 3, 5}) S. 

 So we define leveling of the union operation denoted by 
l(). 

 l(A  B) = l(({3, 0, 6, 4, 2, 2, 0, 6, 6, 6}, {0, 0, 0, 6, 6, 0, 
0, 2, 2, 2}, {2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 0}, {9, 9, 9, 9, 9, 1, 1, 1, 
1}, {2, 2, 1, 3, 3, 5}) = (l({3, 0, 6, 4, 2, 2, 0, 6, 6, 6}), l({0, 0, 0, 
0, 0, 6, 6, 2, 2, 2}), l({2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 0, 0}) l({9, 9, 9, 
9, 9, 1, 1, 1, 1}, l({2, 2, 1, 3, 3, 5})) = ({3, 0, 0, 2, 2, 4, 6, 6, 6}, 
{0, 0, 0, 0, 6, 6, 6, 2, 2, 2}, {2, 2, 2, 2, 0, 0, 0, 0, 0}, {9, 9, 9, 9, 
1, 1, 1, 1}, {1, 3, 3, 5, 2, 2})  S. 

 Thus S is not closed under the union operation .  Thus 
we make leveling of ‘’ and denote it by l(). We see {S, l()} 
is a 4-multiset row matrix semigroup under l().  

 Clearly o(S) is infinite so {S, l()} is an infinite 
commutative 4-multiset row matrix semigroup which is a 
monoid if {} the empty set is combined with any x  4-M(Q) 
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hence if ({}) = ({}, {}, {}, {}, {})  S then for any A  
S, l(A S, l(A  {}) = A. Hence the claim. 

 Further as the 4-multiset row matrices can be ordered by 
the containment relation in the following way we can prove {S, 
l()} is a leveled semilattice of infinite order. 

 Let A = ({a1}, {a2}, {a3}, {a4}, {a5}) and B = ({b1}, {b2}, 
{b3}, {b4}, {b5})  S. We say A  B (A  B) that is A is 
contained in B if each [ai}  {bi} i = 1, 2, …, 5. 

 Infact as 4-multiset M(Q) are partially ordered we can 
order S also. So {S } is  partially ordered collection of 4-
multiset row matrices. 

 We see (S, l()) is a semilattice of 4-multiset row 
matrices or equivalent (S, l()) is a 4-multiset row matrix 
semigroup. 

 We now describe on S the  operation. 

 Let A, B  S (given earlier). 

 A  B = ({3, 0, 6, 4, 2}  {2, 0, 6, 6, 6}, {0, 0, 0, 6, 6}  
{0, 0, 2, 2, 2}, {2, 2, 2, 0, 2}  {2, 2, 0, 0, 0, 0, 0}, {9, 9, 9, 9} 
 {9, 1, 1, 1, 1}, {2, 2, 1}  {3, 3, 5}) = ({2, 0, 6}), {0, 0}, {2, 
2, 0}, {9}, {})  S. 

 Clearly in case of intersection we need not use leveling as 
A B  S; in particular intersection of any n-multiset is a 
multiset. Hence {S, } is a n-multiset matrix semilattice of 
infinite order which is also a n-multiset matrix. It is pertinent to 
mention that we need not use leveling for  as for any multisets 
A, B  4-M(Q), A  B  4-M(Q). 



208 Smarandache Special Elements in Multiset Semigroups  
 
 
 
 
 
 
 
 

 Now for the same A, B  S we define + operation. A + B 
= ({3, 0, 6, 4, 2}, {0, 0, 0, 6, 6}, {2, 2, 2, 0, 2}, {9, 9, 9, 9}, {2, 
2, 1}) + ({2, 0, 6, 6, 6}, {0, 0, 2, 2, 2}, {2, 2, 0, 0, 0, 0}, {9, 1, 1, 
1}, {3, 3, 5}) = ({3, 0, 6, 4, 2} + {2, 0, 6, 6, 6}, {0, 0, 0, 6, 6} + 
{0, 0, 2, 2, 2}, {2, 2, 2, 2, 0} + {2, 2, 0, 0, 0, 0}, {9, 9, 9, 9} + 
{9, 1, 1, 1}, {2, 2, 1} + {3, 3, 5}) = ({5, 2, 8, 6, 4, 3, 0, 6,4, 2, 9, 
6, 12, 10, 8, 9, 6, 12, 10, 8, 9, 6, 12, 10, 8}, {0, 0, 0, 6, 6, 0, 0, 0, 
6, 6, 2, 2, 2, 8, 8, 2, 2, 2, 8, 8, 2, 2, 2, 8, 8}, {4, 4, 4, 4, 2, 4, 4, 4, 
4, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0}, {18, 18, 
18, 18, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10}, {5, 5, 4, 5, 
5, 4, 7, 7, 6})  S.  Hence we now see S not closed under the 
operation +. So we use only leveling of +, l(+) operation as in 
case of n-multisets to arrive at the compatability.  

 Now so l(A + B) = ({5, 2, 2, 3, 4, 4, 6, 6, 6, 6, 0, 8, 8, 8, 
8, 9, 9, 9, 12, 12, 12, 10, 10, 10}, {0, 0, 0, 0, 6, 6, 6, 6, 2, 2, 2, 2, 
8, 8, 8, 8}, {4, 4, 4, 4, 2, 2, 2, 2, 0, 0, 0, 0}, {18, 18, 18, 18, 10, 
10, 10, 10, 10}, {5, 5, 5, 5, 4, 4, 7, 7, 6}) S. Hence {S, l(+)} is 
a 4-multiset matrix monoid of infinite order.  

 We see ({0}) is the special identity with respect to l(+) as 
for any with respect to l(+) as for any A = ({a1}, {a2}, {a3}, 
{a4}, {a5})  S we have A + ({0}) = A where ({0}) = ({0}, {0}, 
{0}, {0}, {0}). 

 Next we proceed onto define × on S for the same pair A, 
B  S. 

 A × B = ({3, 0, 6, 4, 2} × {2, 0, 6, 6, 6}, {0, 0, 0, 6, 6} × 
{0, 0, 2, 2, 2}, {2, 2, 2, 2, 0} × {2, 2, 0, 0, 0, 0}, {9, 9, 9, 9} × 
{9, 1, 1, 1}, {2, 2, 1} × {3, 3, 5}) = ({6, 0, 12, 8, 4, 0, 0, 0, 0, 0, 
18, 0, 36, 24, 12, 18, 0, 36, 24, 12, 18, 0, 36, 24, 12}, {0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 0, 0, 0, 12, 12, 0, 0, 0, 12, 12}, {4, 
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4, 4, 4, 0, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
{81, 81, 81, 81, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9}, {6, 6, 3, 6, 6, 3, 
10, 10, 5})  S. 

 Hence to overcome this problem we define the notion of 
level product on 4-multiset matrices. 

 Applying level product  on A × B we get  

l(A × B) = ({0, 0, 0, 0, 18, 18, 18, 36, 36, 36, 24, 24, 24, 12, 12, 
12, 12, 6, 8, 4}, {0, 0, 0, 0, 12, 12, 12, 12}, {4, 4, 4, 4, 0, 0, 0, 
0}, {81, 81, 81, 81, 4, 4, 4, 4}, {6, 6, 6, 6, 3, 3, 56, 10, 10})  S. 

 Clearly {S, l(×)} is a 4-multiset matrix semigroup.  

 Clearly {S, l(×)} is not a 4-multiset matrix ({1})  S acts 
as the special 4-multiset matrix unit given  by ({1}) = ({1}, {1}, 
{1}, {1}, {1}). 

 We see for any A  S, A × ({1}) = ({1}) × A = A. 

 We see (S, l(×)) has idempotent matrices given by   

A = ({0, 0, 0, 0}, {1, 1, 1, 1}, {0, 0, 0, 0, 1, 1, 1, 1}, {0, 0, 0, 0}, 
{1, 1, 1, 1})  S is such that A l(×)A = A hence A is a 4-
multiset matrix idempotent of S. 

 B = ({1, 1, 1, 1}, {0, 0, 0, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {1, 
1, 1, 1, 0, 0, 0, 0})  S is such that B l(×) B = B. B is also a 4-
multiset matrix idempotent of S. Though 4-M(Q) has no 
multiset zero divisors still S has multiset matrix zero divisors 
given by   

A = ({0, 0, 0, 0}, {4, 2, 2, 10}, {0, 0, 0, 0}, {7, 4, 5, 2, 8, 9, 10, 
12}, {0, 0, 0, 0}) and B = ({4, 4, 2, 2, 8, 9, 7, 4}, {0, 0, 0, 0}, 
{3, 8, 9, 7, 4, 2, 1, 7}, {0, 0, 0, 0}, {3, 3, 3})  S.  
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We see l(A × B) = ({0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 
0, 0}, {0, 0, 0, 0}) is a special 4-multiset matrix zero divisor in 
S. S has several special 4-multiset zero divisors under the level 
product. Infact S has infinite number of special 4-multiset zero 
divisors. 

 The reader is left with the task of finding the 4-multiset 
matrix zero divisors in S. 

 Next we proceed onto describe 3-multiset column 
matrices with entries from 3-M(Z12). 

Example 4.9. Let B = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

/ ai 3-M(Z12); 1  i  4} be a 3-

multiset column matrix. We indicate the operations l(), , l(+) 
and l(×n) on B and show how B can have zero divisor multiset 
matrices, idempotent multiset matrices and nilpotent matrix  
 

multiset matrices using ({0, 0, 0}) = 

{0,0,0}
{0,0,0}
{0,0,0}
{0,0,0}

 
 
 
 
 
 

 is the multiset  

 

special zero matrix. However ({0}) = 

{0}
{0}
{0}
{0}

 
 
 
 
 
 

 is a special zero 

multiset matrix under which l(A + ({0})) = A for all A  B. 
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 Infact Al(×)({0})  ({0}) = 

{0}
{0}
{0}
{0}

 
 
 
 
 
 

 so we cannot call ({0}) 

as the zero multiset matrix of B.  

 

Further ({0, 0, 0}) = 

{0,0,0}
{0,0,0}
{0,0,0}
{0,0,0}

 
 
 
 
 
 

  B is such that for all A  B,  

A × ({0, 0, 0}) = {0, 0, 0} = 

{0,0,0}
{0,0,0}
{0,0,0}
{0,0,0}

 
 
 
 
 
 

. 

 Clearly B is of finite order. The reader is left with the task 
of finding the order of B. 

 Now let A = 

{0,2,2,2,4,4,4,6}
{1,5,7,8,9,10,11}

{2,3}
{6}

 
 
 
 
 
 

 and  

D = 

{6,6,6}
{0}

{6,6,5,4}
{2,6,10,8,4,3}

 
 
 
 
 
 

  B. 



212 Smarandache Special Elements in Multiset Semigroups  
 
 
 
 
 
 
 
 

We now find l(A  D) = Al()D = 

{0,2,2,2,4,4,4,6,6,6}
{1,5,7,8,9,10,11,0}
{2,3,6,6,5,4}
{2,6,6,10,8,4,3}

 
 
 
 
 
 

. 

 We see only under level union l() we can arrive at the 
closure operation. 

 For under ‘’ no n-multiset matrix would be closed only 
multiset matrices will be closed. 

 So it is mandatory to use leveling of union when n-
multiset matrix are analysed. Now in case of intersection 
leveling is not needed so we can have A  D  B. 

 Now A  D = 

{6}
{ }
{ }
{6}

 
  
 
 
 

  B. 

 Thus {B, l()} is a 3-multiset matrix semilattice. 

 We see in case of 3-multiset matrices {B, l(), } is a 
lattice.  

 Is {B, l(), } a distributive lattice? This is left for the 
reader to prove as an open problem. 

 We also leave open the problem of finding whether {B, 
l(), } is a Smarandache lattice of multiset matrices or not? 

 Now we show how + operation is performed on A and D 
 B.  
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A + D = {

{6,8,8,8,10,10,10,12,6,8,8,8,12,
10,10,10,12,6,8,8,8,10,10,10}

{1,5,7,8,9,10,11}
{8,9,8,9,7,8,6,7}
{8,12,16,14,10,9}

 
 
 
 
 
 
  

  B.  

Thus we perform the level addition operation on leveling of A + 
D.  

l(A + D) = 

{6,6,6,8,8,8,10,10,10,12,12,12}
{1,5,7,8,9,10,11}
{8,8,8,9,9,7,7,6}
{8,9,10,12,14,16}

 
 
 
 
 
 

 is in B.  

Hence the claim. 

 Thus {B, l(+)} is a multiset matrix semigroup of finite 
order. 

 Only ({0}) = 

{0}
{0}
{0}
{0}

 
 
 
 
 
 

  B is such that for any A  B;  

A + ({0}) = A. We do not have ({0, 0, 0}) = 

{0,0,0}
{0,0,0}
{0,0,0}
{0,0,0}

 
 
 
 
 
 

 to act as 

additive identity.  
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For if we take x = 

{2,2}
{3,3}
{4,4}
{5}

 
 
 
 
 
 

  B then l(x + ({0, 0, 0}) = l 

{2,2}
{3,3}
{4,4}
{5}

  
  
  
  
    

 +

{0,0,0}
{0,0,0}
{0,0,0}
{0,0,0}

 
 
 
 
    

 = 

{2,2,2}
{3,3,3}
{4,4,4}
{5,5,5}

 
 
 
 
 
 

 so  

l(x + ({0, 0, 0}))  x in general for all x  B. Hence ({0, 0, 0}) 
cannot serve as the additive identity of B. 

 We can find 3-multiset matrix subsemigroups of finite 
order. 

 Several interesting properties associated with n-multisets 
can be derived for these 3-multiset matrix. 

 Next we define natural product ×n on B. We see B is not 
closed under the natural product ×n. So we need to define only 
leveled natural product ×n on matrices as under ×n B is not 
closed. 

 For the same pair A, D  B we first define  

A ×n D = 

{0,0,0,0,0,0,0,6,0,0,0,0,0,
0,0,6,0,0,0,0,0,0,0,6}

{0,0,0,0,0,0,0}
{0,0,10,8,6,6,3,0}

{0,0,0,0,0,6}

 
 
 
 
 
 
  

  B.  

Thus we see the natural product ×n is not compatible in the 3-
multiset matrix collection B. 
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 Now if we used leveled natural product ×n instead of × 
we get  

l(A ×n D) = 

0,0,0,6,6,6}
{0,0,0}

{0,0,0,10,8,6,3,6}
{0,0,0,6}

 
 
 
 
 
 

. 

 Clearly l(A ×n D)  S. Thus (S, l(×n)) is a 3-multiset 
matrix groupoid under the natural product which is leveled. 

 We can have special zero divisors. It is pertinent to keep 

on record ({0}) = 

{0}
{0}
{0}
{0}

 
 
 
 
 
 

 does not serve as the zero element for 

the zero divisor as any l(A ×n ({0})  ({0}) in general. 

 For take A as above we see  

l(A ×n({0}) = 

{0,0,0}
{0,0,0}
{0,0,0}
{0,0,0}

 
 
 
 
 
 

({0}). 

 Infact we have several zero divisors. 

 Consider y = 

{8}
{9,6}

{1,2,3}
{4}

 
 
 
 
 
 

  B; we see  
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l(y ×n ({0, 0, 0}) = 

{0,0,0}
{0,0,0}
{0,0,0}
{0,0,0}

 
 
 
 
 
 

. 

  
So is a special 3-multiset matrix zero of B. 

However we see if we take x = 

{3,4,3,4,5}
{7,7,7,9}

{0,0}
{0,0,0}

 
 
 
 
 
 

 and 

{0}
{0}

{8,4,7,8}
{9}

 
 
 
 
 
 

  B, then  

l(x ×n y) = 

{0,0,0}
{0,0,0}
{0,0,0}
{0,0,0}

 
 
 
 
 
 

 is a special 3-multiset matrix zero divisors 

of {S, l(×n)}. 

Consider x = 

{2,4}
{8}
{4}
{2}

 
 
 
 
 
 

 and y = 

{6}
{6}

{6,6}
{6}

 
 
 
 
 
 

  B. 
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 We see l(x ×n y) = 

{0,0}
{0}

{0,0}
{0}

 
 
 
 
 
 

  ({0, 0, 0}) so x and y are 

not the  3-multiset matrix special zero divisors of B.  

 We call these as special pseudo quasi 3-multiset zero 
divisors of {B, l(×n)}. 

 Now we proceed onto give some examples of 3-multiset 
matrix idempotents in {B, l(×n)}. 

 Let x = 

{4,4,4}
{9,9,9}
{0,0,0}
{1,1,1}

 
 
 
 
 
 

  B.  

Clearly l(x ×n x) = 

{4,4,4}
{9,9,9}
{0,0,0}
{1,1,1}

 
 
 
 
 
 

 = x. Thus x is a 3-multiset matrix 

idempotent of {B, l(×n)}. 

 The reader is left with the task of finding all the 3-
multiset matrix idempotents and Smarandache 3-multiset matrix 
idempotents of {B, l(×n)}. 

 Next we proceed onto describe the 4-multiset square 
matrix using 4-M(Z10) by the following example. 

Example 4.10. Let S = { 1 2

3 4

a a
a a
 
 
 

 / ai  4-M(Z10) ; 1  i  4} 

be the 4-multiset square matrix collection.  
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 Clearly S is of finite order. Now for this S we can define 
five different and distinct types of operations on them; viz. l(), 
, l(×n) l(×) and l(+) where l(×) denotes usual product of 
matrices. 

 Consider A = 
{5,5,0,0,2} {4,4,4,4}

{6,6,6} {2,2,2}
 
 
 

 and  

B = 
{7,5,2,1,6} {3,2,1}
{1,2,3,4,5} {4,5,6,7,8,9}
 
 
 

  S.  

 We find out  

(A l(l(A  B) = 

{5,5,0,0,2,5 {4,4,4,4,
2,1,6,7} 3,2,1}
{6,6,6,1,2, {2,2,2,4,
3,4,5} 5,6,7,8,9}

 
 
 
 
 
   

I 

 Clearly l(A B)  S. Thus {S, l()} is a 4-multiset 
matrix semilattice (semigroup) of finite order. 

 We can now find the  operation of the collection S for 
the same pair. A, B  S. 

 Consider A  B = 
{5,2} { }
{ } { }

 
   

  S  II 

 Thus (S, } is a 4-multiset matrix semilattice 
(semigroup) of finite order. 

 Clearly I and II are distinct. Consider now for the same 
pair A, B. 
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 l(A ×n B) = 

{5,5,0,0,4,5,5, {2,2,2,2,8,8,
0,0,4,2,2} 4,4,8,8,4,4}

{6,2,8,4,0, {8,0,2,4,6,8
6,2,8,4,0 8,0,2,4,6,8,
6,2,8,4,0} 0,2,4,6}

 
 
 
 
 
 
  

 III 

is in S. 

 We see {S, l(×n)} is the 4-multiset matrix semigroup of 
finite order. 

 This semigroup {S, l(×n)} has nontrivial 4-multiset matrix 
zero divisors and 4-multiset matrix idempotents. 

 Infact ({0, 0, 0, 0}) = 
{0,0,0,0} {0,0,0,0}
{0,0,0,0} {0,0,0,0}
 
 
 

  S is the 

4-multiset matrix zero of S and for every x  S.  

We have l(x ×n {0, 0, 0, 0}) = ({0, 0, 0, 0}). 

 Next we consider the level addition for the same pair A, 
B in S. 

 l(A + B) = 

{2,2,7,7,9,0,0, {7,7,7,7,7,
5,5,7,7,2,2,4,6,6 6,6,6,6,5,5,
1,1,3,1,1,6,6,8} 5,5}

{6,7,8,9,0,1,
{7,8,9,0,1,7,8,9,

6,7,8,9,0,1,
0,1,7,8,9,0,1}

6,7,8,9,0}

 
 
 
 
 
 
 
 
  

   IV 

 Next we find first A × B then l(A × B), the level product 
of the usual product in matrices. 

 We show A × B  S in general so {S, ×} is not 
compatible under product. 
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 A × B = 

{5,5,0,4,5,5, {4,8,2,6,0,4,8,2,
0,0,0,0,0,0,0,4, 6,0,4,8,2,6,0,4,8,
5,5,0,0,2,0,0,0,2} 2,6,0}

{6,0,4,8,2,6,6,0,
{5,5,0,0,6,0,0,

4,8,2,6,6,0,4,8,2,
0,0,4,5,5,0,0,2}

6,6,0,4,8,2,6}











 

{2,0,2,6,6,2,0, {2,4,6,8,0,2,4,6,
2,6,6,2,0,2,6,6} 8,0,2,4,6,8,0}

{8,2,6,8,2,6, {8,0,2,4,6,8,8,0,2,
8,2,6} 4,6,8,8,0,2,4,6,8}


 




 


  S. 

 Thus we need to level the sum of the set. We just for the 
sake of understanding whether leveling after sum is the same as 
summing the level first find the levels of every component 
given in A × B. 

 Thus l(A × B) = 

{5,5,5,5,0,0,0,0 {2,2,2,2,6,6,6,6
2,2,4,4} {4,4,4, 0,0,0} {2,2,2,4,
4,6,6,6,6,8,8,8,8, 4,6,6,6,8,8,8,0,0,
0,0,0,0,2,2,2,2} 0}
{5,5,5,5,0,0,0,0, {8,8,8,6,6,6,2,2,
2,4,6} {6,6,6,6, 2} {8,8,
0,0,0,0,8,8,8,8,
2,2,2,2}

 

  8,8,0,0,
0,2,2,2,4,4,4,6,
6,6}

 
 
 
 
 
 
 
 
 
 
 
  
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          = 

{9,9,9,9,4,4,4, {2,2,2,2,6,
4,6,6,8,8,11,11,11, 6,6,6,8,8,8,
11,6,6,8,8,10,10,0, 8,4,4,4,4,0,
0,0,0,7,7,7,7} 0,0,0}
{0,0,0,0,5,5,5,5, {8,8,8,8,6,6,
6,6,6,6,2,2,2,2, 6,6,0,0,0,0,
11,111,11,11,1,1, 2,2,2
1,1,4,4,4,4}

,2,4,4,
4,4}

 
 
 
 
 
 
 
 
 
 
 
  

 V 

 V is different from I, II, III, IV. Thus {S, l(×)} is a 4-
multiset matrix semigroup under the level product of matrices. 

 We leave it as an exercise for the reader to prove or 
disprove l(a + b) = l[l(a) + l(b)] where a and b are multiset and l 
is the level sum (addition of two multisets). 

 Let x = {3, 3, 3, 4, 4, 4, 3, 4, 5, 3, 4} and y = {9, 9, 9, 9, 
9}  4-M(Z12). 

 l (x + y) = l({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0 , 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}) 

= {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2} l[l(x) + l(y)] = l[{3, 3, 3, 3, 4, 
4, 4, 4, 5} + {9, 9, 9, 9}0 = l[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 
2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}) = {0, 
0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2}. 

 We see l(l (a) + l(b)) = l(a + b). 

 Now finding zero divisors idempotents  in {S, l(×)} 
happens to be a challenging problem.  

 Further {S, l(×)} is a 4-multiset matrix semigroup of 
finite order which is non commutative. 
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 Clearly I2 × 2 = 
{1,1,1,1} {0,0,0,0}

{0,0,0,0} {1,1,1,1}
 
 
 

 may not serve as 

the identity with respect to the level product l(×). 

 Let A = 
{6,2} {1,5}
{3} {4,2,1}

 
 
 

  S.  

l(A × I2 × 2) = 

({6,6,6,6,2,2,2,2} {1,1,1,1,5,5,5,5}
{0,0,0,0} {0,0,0,0}

{0,0,0,0} {4,4,4,4,2,2,2,2
{3,3,3,3} 1,1,1,1}

 
   
 
 

 

  

 

 = 
{6,6,6,6,2,2,2,2} {1,1,1,1,5,5,5,55}

{4,4,4,4,2,2,2,2
{3,3,3,3}

1,1,1,1}

 
 
 
  

   A.  

Hence the claim. 

 However if we consider I = 
{1} {0}
{0} {1}
 
 
 

  S then we see 

for all A  S, l(A × I)  A so I also cannot be a unit. 

 Consider A = 
{1,2,3,4,5} {6,7,8}
{9,10,11,0} {2,9,9}
 
 
 

  S;  

     l(A × I) = 
{1,2,3,4,5} {6,7,8}

{0,0,0,0} {0,0,0}
{0,0,0,0,0} {0,0,0}

{9,10,11,0} {2,9,9}

 
 
 
 
 
 
   
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 = 

{1,2,3,4,5,1,
{6,7,9,6,7,8,

2,3,4,5,1,2,3,
6,7,8}

4,5,1,2,3,4,5}
{9,10,11,0,9,9,9, {2,9,9,2,9,9,
10,10,10,11,11,0,0,0} 2,9,9}

 
 
 
 
 
 
  

  A. 

 Hence the claim. 

 So for {S, l(×)} we do not have the concept of unit hence 
{S, l(×)} is only a 4-multiset matrix semigroup and is not a 4-
multiset matrix monoid. 

 How if A, B  S we say A and B are zero divisors if 
Al(×) B is a special zero 4-multiset matrix zero n given by 

{0,0,0,0} {0,0,0,0}
{0,0,0,0} {0,0,0,0}
 
 
 

 = ({0, 0, 0, 0}). 

 We see A × ({0, 0, 0, 0}) = ({0, 0, 0, 0}) for all A  S. 

 Now we seen l(×n) the leveled natural product for the 
same pair of 4-multiset matrices A and B. 

 With respect l(×n) also ({0, 0, 0, 0}) serves as the zero for 
A ×n ({0, 0, 0, 0}) =  {0, 0, 0, 0}) for all A  S.  

 Finding multiset matrix idempotents and zero divisors are 
left as an exercise for the reader. 

 Finally we give yet another example where the usual 
matrix product ×, cannot be defined. 

Example 4.11. Let M = { 1 2 3 4

5 6 7 8

a a a a
a a a a
 
 
 

 / ai  5 - M(Z15);    

1  i  8} be the 5-multiset matrices collection. 
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 Clearly order of M; o(M) = |M| is finite. 

 We can as in  case of other n-multiset matrices we can 
define l(, l(+) and l(×). 

 We will illustrate only the operation l(×n) on M as only 
the 5-multiset matrix semigroup {M, l(×n)} has 5-multiset 
matrix zero divisors and 5 - multiset matrix idempotents. 

 Let A = 
{5,3,2} {0} {1,1,1,1,1} {5,2}
{1,1,1} {3} {4,4,4} {3,1,1}

 
 
 

 

B = 
{10,10,10} {4,5,5,1,2} {3,2,4} {2,2,2,2}
{5,5,5,5} {3,3,3,3} {2,2,2,2} {6,6,9,9}

 
 
 

  M.  

We find l(A ×n B) = 

{3,3,3,3,3,2,
{5,5,5,0,0, {10,10,10,10,

{0,0,0,0,0} 2,2,2,2,4,
0,5,5} 4,4,4,4}

4,4,4,4}
{5,5,5,5,5, {8,8,8,8,8, {3,6,6,3,6,6,

{9,9,9,9}
4,4,4,4,4} 2,2,2} 12,9,9,12,9,9}

 
 
 
 
 
 
  

 M.  

This is the way natural product ×n is performed {M, l(×n)} is 
infact a finite 5-multiset matrix semigroup. 

 Now we give an idempotent of the 5-multiset matrix 
collection. 

  Let x = 

{10,10,10, {0,0,0, {0,0,0,
{6,6,6,6,6}

10,10} 0,0} 0,0}
{10,10,10,10}

{1,1,1, {1,1,1,
{6,6,6,6,6} 10,6,6,6,6,

1,1} 1,1}
6,0,0,0,0}

 
 
 
 
 
 
  

  M.  
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It is easily verified l(x ×n x) = x. Thus we see M has 5-multiset 
matrix idempotents. 

 Now we give an illustration of 5-multiset matrix zero 
divisor in M in the following. 

 Let A = 

{5,5,5,5,5} {10,10,10,10} {9,9,9} {0,0,0}
{3,3,3,3,3} {10,5,5} {10,5,10} {5,10,10,10}
 
 
 

 and   

B = 
{3} {6,6} {10,10,5,5} {3,6,5}
{10} {6,9} {6,6,9,3} {6,6,9}
 
 
 

  M. 

A ×n B = 
{0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0}
{0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0}
 
 
 

  

   = ({0, 0, 0, 0, 0}). 

 Thus A ×n B gives a 5-multiset matrix zero divisor of M. 

 Interested reader can get all the 5-multiset matrix zero 
divisors and Smarandache 5-multiset matrix idempotents in any. 

 Similar study can be made for 5-multiset matrix 
idempotents of M and then Smarandache analogue. 

 Finding units for M is a difficult task; however the special 
unit of the 5-multiset matrix is given by  

I = 
{1} {1} {1} {1}
{1} {1} {1} {1}
 
 
 

  M is such that for all A  M. 

A ×n I = A. 

 Infact ({1, 1, 1, 1, 1}) = 

{1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}
{1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}
 
 
 
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is not the 5-multiset matrix identity of M for if A = 

{2,1,1} {4,4} {5} {6,2}
{1,3} {9,9} {9} {9,9}

 
 
 

  M then A×n ({1, 1, 1, 1, 1}) = 

{2,2,2,2,2, {4,4,4, {5,5,5, {6,6,6,6,6,
1,1,1,1,1} 4,4} 5,5} 2,2,2,2,2}
{1,1,1,1,1, {9,9,9, {9,9, {9,9,
3,3,3,3,3} 9,9} 9,9} 9,9,9}

 
 
 
 
 
 

  A. 

 Thus ({1, 1, 1, 1, 1}) does not act as the 5-multiset matrix 
identity, which is clear from the above working. 

 Next we proceed onto prove the n-multiset matrix 
collection under both l() and  is a lattice, may be distributive 
or otherwise. However {M, l(+), l(×)} cannot have any 
algebraic structure as l(+) and l(×) does  not satisfy distributive 
law. 

 With this limitation we can define only special multiset 
semi vector spaces. 

 We first proceed onto define that if we have a multiset A 
and if x  M(Z) then what is xA. This we will illustrate by an 
example or two. We need this property if we wish to define the 
notion of multiset semivector spaces. 

Example 4.12.  Let S = {M(Z)} be the multiset of Z. 

 Let x = {3, 4, 0, 0, – 5} and a = 8  Z then ax = 8x = {24, 
32, 0, 0, –40}.  

 We see there is no condition on the number of elements 
in the number of elements in the multisets so multisets in M(Z) 
(or S) can be even of infinite order. 
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 We see the limitations of the distributive law should not 
impair the utility of these new algebraic structures. 

 Consider x = {3, –3, –2, 1, 5, 6, 0} and y = {–3, 2, –1, –5, 
–6, 0} and a = 9.  
 
 Now we find out a(x + y) and ax + ay where x, y  M(Z) 
and a = 9  Z = a({3, –3, –2, 1, 5, 6, 0} + {–3, 2, –1, –5, –6, 0}) 
= 9 × ({0, –6, –5, –2, 2, 3, –3, 5, –1, 0, 3, 7, 8, 2, 2,  
–4, –3, 0, 4, 5, –1, –2, –8, –7, –4, 0, 1, –5, –3, –9, –8, –5, –1, 0, 
–6, 3, –3, –2, 1, 5, 6, 0}) 

 = {0, –54, –45, –18, 18, 27, –27, 45, –9, 0, 27 63, 72, 18, 
18, –36, –27, 36, 45, –9, –18, –72, –63, –36, 0, 9, –45, –81, –27, 
–72, –45, –9, 0, –54, 27, –27, –18, 9, 45, 36, 0}  I 

We find ax + y = [(3, –3, –2, 1, 5, 6, 0} + 9{–3, 2, –1, –5, –6, 0} 
= {27, –27, –18, 9, 45, 54, 0} + {–27, 18, –9, –45, –54, 0} = {0, 
–54, –45, –18, 18, 27, –27, 45, –9, 0, 27, 63, 72, 18, 18, –36,  
–27, 0, 36, +45, –9, –18, –72, –63, –36, 0, 9, –45, –27, –81, –72, 
–45, –9, 0, –54}      II 

 Clearly I and II are identical. 

 However if we use n-multisets the above results will not 
hold good in. To this end we give some examples. 

Example 4.13.  Let S = {0, 2-M(Z12)} be the 2-multiset from 
using Z12. 

 Let x = 4  Z12, a = {0, 0, 4, 4, 6, 6} and b = {3, 3}  
M(Z12). 

 We find out (a + b) × x and ax + bx in the following 
x(a+b) = 4({0, 0, 4, 4, 6, 6} + {3, 3, 6}) = 4({3, 3, 7, 7,9, 9, 3, 3, 
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7, 7, 9, 9, 3, 3, 7, 7, 9, 9}) = {0, 0, 4, 4, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 
4, 4, 0, 0}      I 

ax + bx = 4{0, 0, 4, 4, 6, 6} + 4{3, 3} = {0, 0, 4, 4, 0, 0} + {0, 
0} = {0, 0, 4, 4, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 4, 4, 0, 0} II 

I and II are identical. 

 Now consider the set M = (2 - M(Z12)} we take x = {3, 9} 
and y = {9, 3, 2} and a = {1, 1, 3} in M. 

Consider l[l(ax) + l(ay)] = l[l({1, 1, 3} × {3, 9})  
+ l({1, 1, 3} × {9, 3, 2})] 
= l[l({3, 9, 3, 9, 9, 3}) + l({9, 3, 2, 9, 3, 2, 3, 9, 6})] 
= l[{3, 3, 9, 9} + {3, 3, 2, 2, 9, 9, 6}] 
= l({6, 6, 0, 0, 6, 6, 0, 0, 5, 5, 11, 11, 5, 5, 11, 11, 0, 0, 6, 6, 0, 0, 
6, 6, 9, 9, 3, 3}) 
= {0, 0, 6, 6 5, 5, 11, 11, 9, 9, 3, 3}   I 
 
l(a × l(x + y)) 
= l({1, 1, 3} × l({9, 3} + {9, 3, 2})) 
= l({1, 1, 3} × l({6, 0, 0, 6, 11, 5}) 
= l({1, 1, 3} × {6, 6, 0, 0, 11, 5}) 
= l({7, 7, 9, 7, 7, 9, 1, 1, 3, 1, 1, 3, 0, 0, 2, 6, 6, 8}) 
= {7, 7, 9, 9, 1, 1, 3, 3, 0, 0, 2, 8, 6, 6}   II 

 I and II are distinct hence the distributive law is not true 
for this set a, x, y  2-M(Z12). 

 So in general n-M(X) where X is any set and 2  n <  is 
such that the distributive law in general is not true for some x, y, 
z  n-M(X) under the level sum l(+) and level product l(×). 

 We suggest a few problems in the following: 
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Problems  

1. Prove multiset 3 × 4 matrices with multisets from Z16 is of 
infinite order. 

2. Show N = {

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
 
 
 
 

/ ai  M(Q), } is a semilattice of 

multiset matrices. 

3. Prove N in problem (2) cannot have any finite order 
multiset matrix sublattice of finite order. 

4. Let S = {
1 2 9

10 11 18

19 20 27

a a a
a a a
a a a

 
 
 
 
 





 / ai  M(Z); 1  i  27, } 

be the multiset matrix semilattice under . 

 i) Prove S can have finite order subsemilattices. 

 ii) Can every element in S be a trivial subsemilattice? 

 iii) Will A = {
1 2 9

10 11 18

19 20 27

a a a
a a a
a a a

 
 
 
 
 





/ai  {1, 2, 3, …, 10}; 

1  i  27}.  A generated under the operation  be a finite 
ordered multiset matrix subsemilattice? 

 iv) Find the order of A in (iii) 

 v) Show if x and y are any two multiset matrices from S 
such that all the multisets in both the matrices x and y are of 
finite order then x and y in S under the intersection 
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operation will only generate a multiset matrix 
subsemilattice T of finite order. Find the order of that T. 

 vi) Obtain any other special or interesting feature 
enjoyed by S. 

5. Let S = {

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a
a a a
a a a
a a a
a a a
a a a

 
 
 
 
 
 
 
 
  

 ai  / M(Z  I), ; 1  i  

18} be the neutrosophic multiset matrix semigroup 
under . 

 i) Can S contain subsemigroups of finite order? 

 ii) Can S contain idempotents? 

 iii) Prove S has subsemigroup of infinite order. 

 iv) Obtain all special features enjoyed by S. 

6. If for the S in problem 5 the operation ‘’ is replaced 
by the natural product ×n then 

 i) Prove {S, ×n} cannot have any finite 
subsemigroups. 

 ii) Prove {S, ×n} is a torsion free semigroup of 
infinite order. 

 iii) Prove {S, ×n} has ideals of infinite order. 

iv) Prove {S, ×n} has zero divisors. 

v) Can {S, ×n} have Smarandache zero divisors? 

vi) Can {S, ×n} have idempotents? 

vii) Can {S, ×n} have Smarandache idempotents? 
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viii) Prove {S, ×n} cannot have nontrivial nilpotents. 

ix) Enumerate all special features enjoyed by {S, 
×n} and compare it with {S, }. 

7. Let {S, +} be the structure defined on the set S in 
problem 5. 

 i) Prove {S, +} is a multiset matrix semigroup of 
infinite order. 

 ii) Can {S, +} be a multiset matrix monoid? 

 iii) Prove if A  S; then A – A  {0, …, 0}; {0, 
…,0} is the zero multiset in general if |A|  2. 

 iv) Can S have finite order multiset matrix 
subsemigroups? (Justify) 

v) Find all multiset matrix subsemigroups of S and 
prove all of them are of infinite order. 

vi) Can S have multiset matrix ideals? 
vii) Prove {S, l (+)} has no additive identity. 

8. Let M = {M (Q  g)} be a collection of multisets  

R = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

 / ai  M (Q  g); 1  i  

16} be the multiset matrix. 

 i) Find the structure of {M, } 

 ii) Is {M, } multiset matrix semilattice? 

 iii) Can (M, ×n} be a multiset matrix monoid? 
(Justify) 

 iv) Find multiset matrix idempotents in {M, ×n}, 
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v) Can multiset matrix zero divisors be in {M, ×n}? 

vi) Prove or disprove all multiset matrix subsemigroups are 
of infinite order. 

vii) What is the algebraic structure enjoyed by {M, +}? 

viii) Can any A  M be such that A – A = {0, …,0}? (A = 
{(aij)) |aij|  2 aij  M? 

ix) Prove every multiset matrix P in {M, +} is such that P, 
+, P under addition generates a multiset matrix 
subsemigroup of infinite order under +. 

x) Can {M, +} have multiset matrix subsemigroups of 
infinite order? 

xi) Can {M, +} be a multiset matrix monoid? 
xii) Can {M, +} be  a multiset matrix Smarandache 

semigroup? 
xiii) Prove {M, } is a multiset matrix semilattice. 
xiv) Can {M, } have multiset matrix subsemigroups 

subsemilattices of finite order? Justify your claim. 
xv) Is {M, } a multiset matrix semilattice? 
xvi) Prove {M, } can have finite order multiset  matrix 

subsemilattice? 
xvii) Can {M, } have multiset matrix idempotents? 

10. Let B = {M(Z25  I)} be the multisets collection  

P = {
1 2 9

10 11 18

19 20 27

a a a
a a a
a a a

 
 
 
  





 / ai  B; 1  i  27} be the 

multiset matrix. 

 i) Prove {P, } is a multiset matrix semilattice of 
infinite order. 
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 ii) Study questions (i) to (xv) of problem 9 for this 
P. 

 iii) Prove {P, ×n} has a multiset matrix ideal of 
infinite order. 

11. Let W = {M(Cg)} be the multiset collection V = {

1 2 3

4 5 6

25 26 27

a a a
a a a

a a a

 
 
 
 
 
 

  
 / ai  M(C  g) 1  i  27} be the 

multiset matrix of complex. 

Study questions (i) to (xv) of problem (9) for this V. 

12. Let T = {M(C(Z99  I)} be the multiset. 

 R = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 

 / ai T; 1  i  20} be 

the multiset matrix. 

 Study questions (i) to (xv) of problem (9) for this R. 

13. Let N = {9-M(R  I)} be the 9-multiplicity multiset. 

 M = {
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

/ ai  N; 1  i  0} be the  

9-multiset matrix collection. 

i) Prove {M, ×} is a 4-multiset matrix semigroup 
of infinite order which is non commutative. 

ii) Prove {M, ×n} is a 9-multiset matrix semigroup 
of infinite order which is commutative. 
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iii) Is P = P{M, } a 9-multiset matrix semigroup 
(semilattice) of infinite order. 

iv) Can P in (iii) have finite order 9-multiset matrix 
subsemigroups? If so give two or three 
examples of them. 

v) Prove Q = {M, l()} is an infinite order 9-
multiset matrix semigroup which has no finite 
order 9-multiset matrix subsemigroups. 

vi) Prove L = {M, +} is a 9-multiset matrix 
semigroup of infinite order. 

vii) Can L have finite order 9-multiset matrix 
subsemigroups? 

14. Let W = {3-M(Z12  g} be the 3-multiplicity multiset 
of dual modulo numbers. 

 P = {
1 2 6

7 8 12

13 14 18

a a a
a a a
a a a

 
 
 
  





 / ai  W; 1  i  18} be the 

3-multiset matrix. 

i) Prove |P| is finite 
ii) Prove {P, ×n} is a 3-multiset matrix semigroup. 
iii) Prove {P, ×n} has 3-multiset matrix zero 

divisors. 
iv) Can {P, ×n} contain 3-multiset matrix 

Smarandache zero divisors? 
v) Prove {P, ×n} has 3-multiset matrix nilpotents. 
vi) Prove or disprove {P, ×n} cannot have 3-

multiset matrix idempotents or Smarandache 3-
multiset matrix idempotents. 
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vii) Can {P, +} be a 3-mutiset matrix monoid? 
viii) Can {P, +} be a Smarandache multiset matrix 

semigroup? 
ix) Can {P, +} have any multiset matrix M = (mij) 

with |M|  2 have additive inverse? 
x) Obtain any other special feature enjoyed by {P, 

+} and {P, ×n}. 

15. Let S = {5-M(C(Z24))} be the 5-multiplicity multiset of 
finite complex numbers. 

 W = {

1 2

3 4

17 18

a a
a a

a a

 
 
 
 
 
 

 
 / ai  S, 1  i  18} be the 5-

multiplicity multiset matrix. Study questions (i) to (x) of 
problem (14) for this W. 

16. Let T = {9-M(C(Z15  I))} be the 9-multiplicity finite 
complex neutrosophic multiset collection. 

 Let X = {
1 2 9

10 11 18

19 20 27

a a a
a a a
a a a

 
 
 
  





 / ai  T; 1  i  27} be 

9-matrix multiset {X, } is a 9-complex. 

i) Prove modulo integer multiset matrix 
semigroup of finite order. 

ii) Prove every A  {X, } in general is not an 
idempotent. 

iii) Prove {P, } is a semigroup of finite order. 
iv) Find all idempotents of {P, }. 
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v) Is {P, +} a monoid? 
vi) Find 3-subsemigroups of finite order in {P, +}. 
vii) Prove {P, ×n} is a semigroup. 
viii) Find all idempotents of {P, ×n}. 
ix) Does {P, ×n} have Smarandache idempotents? 
x) Find special zero divisors if any in {P, ×n}. 
xi) If (0) = {(0, 0, 0, 0, 0, 0, 0, 0, 0)} is a zero find 

all x, y  X such that x ×n y = (0). 
xii) Can X have Smarandache zero divisors? 

17. Let S = {2-M(Z5  I  g  K)} the 2-multiplicity 
multiset from Z5  g  I  k = {a0 + a1I + a2g + a3K + 
a4gK + a5gI + a6KI + a7KIg / ai Z5  i  7, g2 = 0, I2 = 
I, k2 = 4k, (Ig)2 = 0, (kg)2 = 0 (KI)2 = 4KI}. 

 B = { 1 2

3 4

a a
a a
 
 
 

 / ai  S; 1  i  4} be the 2-multiset 

matrix collection. 

i) Study question (i) to (xii) of problem (16) for  
this B. 

ii) What is structure enjoyed by {B, ×n} and {B, 
×}? 

iii) Prove {B, ×} is a non commutative semigroup. 
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