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3 Chapter 4 : The Pseudo Smarandache Function 

PREFACE 

More than seven years ago, my first book on some of the Smarandache notions was published. 

The book consisted of five chapters, and the topics covered were as follows : (1) some recursive 

type Smarandache sequences, (2) Smarandache determinant sequences, (3) the Smarandache 

function, (4) the pseudo Smarandache function, and (5) the Smarandache function related and 

the pseudo Smarandache function related triangles. 

Since then, new and diversified results have been published by different researchers. The aim of 

this book to update some of the contents of my previous book, and add some new results. 

In Chapter 1, some recurrence type of Smarandache sequences are considered. These are : The 

Smarandache odd sequence, the Smarandache even sequence, the Smarandache circular seqence, 

the Smarandache square product sequences, the Smarandache permutation sequence, the 

Smarandache reverse sequence, the Smarandache symmetric sequence, and the Smarandache 

prime product sequence. It has been conjectured that none of these sequences contain infinitely 

many Fibonacci or Lucas numbers. In my earlier book, it has been shown that none of these 

sequences satisfies the recurrence relations of the Fibonacci and Lucas numbers. Here, we show 

that this result, in fact, follow from the common characteristic of these recursive sequences. 

Chapter 2 deals with two types of geometric type Smarandache determinant sequences; it is also 

shown that the results of some particular type of Smarandache determinant sequences are 

simplified with the introduction of the circulant matrices. In Chapter 3, some new expressions 

of the Smarandache function S(n) are given. Chapter 4 gives some new results on the pseudo 

Smarandache function, Z(n), including solutions of the Diophantine equations Z(n) + SL(n) = n 

and Z(n) = SL(n), where SL(n) is the Smarandache LCM function. In Chapter 4, we also 

consider the equation Z(mn) = mk Z(n), where m, n and k are positive integers. In connection 

with the Smarandache number related triangles, it is known that, if a, b and c are the sides of the 

60-degree and 120-degree triangles, then the Diophantine equations c2 = a2 + b2  ab are satisfied 

by a, b and c. Chapter 5 gives partial solutions to these Diophantine equations. Finally, in 

Chapter 6, some miscellaneous topics are treated. The five topics covered in Chapter 6 are 

(1) the triangular numbers and the Smarandache T-sequence, (2) the Smarandache friendly 

numbers, (3) the Smarandache reciprocal partition sets of unity, (4) the Smarandache LCM ratio, 

and (5) the Sandor-Smarandache function. Most of the results appeared before, but some results, 

particularly some in Chapter 2, Chapter 5 and Chapter 6, are new. Particular mention must be 

made of Section 6.5 dealing with the Sandor-Smarandache function. In writing the book, I took 

the freedom of including the more recent results, found by other researchers, to keep the 

expositions up-to-date. In the previous book, several open problems / conjectures / questions 

were listed, most of which still remain unsolved. In this book, we add some new open problems

and conjectures at the end of Chapter 1, Chapter 3, Chapter 4, Chapter 5 and Chapter 6. 

I would like to take this opportunity to thank the Department of Mathematics, Jahangirnagar 

University, Bangladesh, for hosting me as a guest Professor during the Academic Development 

Leave from the Ritsumeikan Asia-Pacific University, Japan, from April to September, 2018.  

A.A.K. Majumdar 

Ritsumeikan Asia-Pacific University, Japan 

The primary source of all 
mathematics is the integers 
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Notations  and  Symbols 

 

Fn = F(n) : The n-th term of the sequence of Fibonacci numbers 

Ln = L(n) : The n-th term of the sequence of Lucas numbers 

A = (aij) : The matrix A (of order IJ) whose entries are aij, 1 ≤ i ≤ I, 1 ≤ j ≤ J 

 i j i j ijC C :The columns C  and C  (of the matrix A = a ) are interchanged  

 i j i j ijR R :The rows R  and R  (of the matrix A = a ) are interchanged  

i i j j iC C + kC :The column C  is multiplied by the constant k and is added to the column C  

i i j j iR R + kR :The row R  is multiplied by the constant k and is added to the row R  

ijdD   : The determinant D with entries dij, 1 ≤ i, j ≤ n 

 x  : The integer part of the real number x > 0 (the floor of x) 

  : The set of positive integers 

m n : The integer m divides the integer n 

S(.) : The Smarandache function 

Z(.) : The pseudo Smarandache function 

SL(n) : The Smarandache LCM function 

(N1, N2, …, Nn) : GCD (Greatest Common Divisor) of the n (positive) integers N1, N2, …, Nn 

[N1, N2, …, Nn] : LCM (Least Common Multiple) of the n (positive) integers N1, N2, …, Nn 

(m, n) = 1 : The integers m and n are relatively prime 

T(n, r) : The Smarandache LCM ratio function of degree r 

SL(n, r) : The Smarandache LCM ratio function of the second type 

SRRPS(n) : The Smarandache repeatable reciprocal function of unity with n arguments 

FRP(n) : The order of the set SRRPS(n) 

SDRPS(n) : The Smarandache distinct reciprocal partition of unity with n integers 

fDP(n) : The order of the set SDRPS(n) 

 : The empty set 

n

k
 
 
 

 : The binomial coefficient n!
k! (n  k)!

n
;  0 k n

k 
 

   
 
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Chapter 0   Introduction 

 
Eight Smarandache sequences were considered in Majumdar(*). They are : (1) the Smarandache 

odd sequence, (2) the Smarandache even sequence, (3) the Smarandache circular sequence,      

(4) the Smarandache square product sequences, (5) the Smarandache permutation sequence,        

(6) the Smarandache reverse sequence, (7) the Smarandache symmetric sequence, and       

(8) the Smarandache prime product sequence. These sequences share the common characteristic 

that they are all recurrence type, that is, in each case, the n  – th term can be expressed in terms of 

one or more of the preceding terms. In case of the Smarandache odd, even, circular and 

symmetric sequences, we showed that none of these sequences satisfies the recurrence 

relationship for Fibonacci or Lucas numbers. We proved further that none of the Smarandache 

prime product and reverse sequences contains Fibonacci or Lucas numbers (in a consecutive 

row of three or more). In Chapter 1, we show the general result that the recurrence type 

sequences do not satisfy the recurrence relations of the Fibonacci or Lucas numbers. 
 

We recall that the sequence of Fibonacci numbers,  1nF(n) , and the sequence of Lucas 

numbers  1nL(n) , are defined through the following recurrence relations : 
 
 

F(1)   =   1, F(2)    =    1; F(n  +  2)    =   F(n   + 1)    +  F(n), n    1,                       (0.1) 
 
 

L(1)   =    1,         L(2)    =    3; L(n  + 2)    =    L(n   + 1)   +  L(n), n    1.                                        (0.2) 
 
 
 

From the recurrence relation (0.1), we see that F(n) is increasing in n  1; in fact, F(n) is 

strictly increasing in n  2, since 
 

F(n + 1) – F(n) = F(n – 1) > 0 for all n  2. 
 

Moreover, we have the following result, which shows that F(n) is strictly convex in the sense of 

the inequality. 
 

Lemma 0.1 : For n    1,                                       

F(n + 2) – F(n + 1) > F(n + 1) – F(n). 

Proof : Since for n  2, 
 

F(n + 2) – F(n + 1) = F(n) > F(n – 1) = F(n + 1) – F(n), 
 

the result follows. ■ 
 

In a similar manner, from (0.2), we see that L(n) is strictly increasing in n  1, with 
 

L(n + 2) – L(n + 1) > L(n + 1) – L(n) for all n  1. 
 

Lemmas 0.2 – 0.4 give some properties satisfied by the terms of  1nF(n)  and  1nL(n) . 
 

Lemma 0.2 : In the sequence of Fibonacci numbers,  1nF(n) , the terms F(3n – 2) and 

F(3n – 1) are odd, and the terms F(3n) are even, for all n ≥ 1. 
 
 

Proof : is by induction on n. From (0.1), we see that the result is true for n = 1. So, we 

assume that the result is true for some integer n. Now, since 
 

F(3n + 1) = F(3n) + F(3n – 1), 
 

F(3n + 2) = F(3n + 1) + F(3n), 
 

F(3(n + 1)) = F(3n + 2) + F(3n + 1). 
 

it follows that the result is true for n + 1 as well, completing induction. ■ 
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Lemma 0.3 : In the sequence of Lucas numbers,  1nL(n) , the terms L(3n – 2) and   

L(3n – 1) are odd, and the terms L(3n) are even, for all n ≥ 1. 
 

 

Proof : is by induction on n, similar to that of Lemma 0.2, and is omitted here. ■ 
 

Lemma 0.4 : For all n ≥ 1, 
 

(1) 3 divides F(4n), 
 

(2) 5 divides F(5n), 
 

(3) 4 divides F(6n). 
 

Proof : Since 
 

F(4) = 3, F(5) = 5, F(6) = 8, 
 

we see that the result is true for n = 1. To proceed by induction on n, we assume that the result is 

true for some integer n. Now, since 
 

F(4(n + 1)) = F(4n + 3) + F(4n + 2) 
 

= [F(4n + 2) + F(4n + 1)] + F(4n + 2) 
 

= 2 F(4n + 2) + F(4n + 1) 
 

= 2[F(4n + 1) + F(4n)] + F(4n + 1) 
 

= 3 F(4n + 1) + 2 F(4n), 
 

F(5(n + 1)) = F(5n + 4) + F(5n + 3) 
 

= [F(5n + 3) + F(5n + 2)] + F(5n + 3) 
 

= 2 F(5n + 3) + F(5n + 2) 
 

= 2[F(5n + 2) + F(5n + 1)] + F(5n + 2) 
 

= 3[F(5n + 1) + F(5n)] + 2 F(5n + 1) 
 

= 5 F(5n + 1) + 3 F(5n), 
 

F(6(n + 1)) = F(6n + 5) + F(6n + 4) 
 

= [F(6n + 4) + F(6n + 3)] + F(6n + 4) 
 

= 2 F(6n + 4) + F(6n + 3) 
 

= 2[F(6n + 3) + F(6n + 2)] + F(6n + 3) 
 

= 3 F(6n + 3) + 2 F(6n + 2) 
 

= 3[ F(6n + 2) + F(6n + 1)] + 2 F(6n + 2) 
 

= 5 F(6n + 2) + 3 F(6n + 1)]  
 

= 5[ F(6n + 1) + F(6n)] + 3 F(6n + 1) 
 

= 8 F(6n + 1) + 5 F(6n), 
 

we see that the result is true for n + 1 as well, thereby completing induction. ■ 

 

Let  1nna  be the sequence such that 
 

a1 = A, an+1 > 10 an for all n  1 (A > 0).                               (0.3) 

 

Lemma 0.5 : For the sequence  1nna  (defined in (0.3)), 
 

 

(1) an+1 > an, n  1, 
 

(2) an+2 – an+1 > an+1 – an, n  1, 
 

(3) an+2 > an+1 + an, n  1. 
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Proof : Clearly, all the terms of the sequence  1nna  are positive. 

Part (1) of the lemma follows from the fact that 
 

an+1 – an > 9 an > 0 for all n  1. 

Since 

an+2 – an+1 > 9an+1 > an+1 – an, 
 

part (2) of the lemma follows. 
 

Part (3) follows by virtue of the following chain of inequalities : 
 

an+2 – an > (an+2 – an+1) + (an+1 – an) > 9(an+1 + an) > an+1. 
 

All these complete the proof of the lemma. ■ 
 

From the proof of Lemma 0.5, we see that the inequality in part (3) holds for any sequence 

satisfying the condition (0.3). However, it should be kept in mind that the inequality in part (3) 

of Lemma 0.5 may hold true even for a sequence which does not satisfy the condition (0.3). 
 

Lemma 0.6 : Consider the sequence  1nna  (defined in (0.3)) with A  1. Then, 
 
 

(1) an+1 > F(n + 1) for all n  1, 
 

(2) an+1 > L(n + 1) for all n  1. 
 

Proof : First, note that 
 

a1  F(1) = L(1), a2 > 9A > F(2), a2 > L(2). 
 

The proof is now by induction on n. So, we assume that the result is true for some n (including 

all numbers less than n). Since (by virtue of part (3) of Lemma 0.5, together with the recurrence 

relation (0.1)) 
 

an+2 – F(n + 2) > [an+1 – F(n + 1)] + [an – F(n)], 
 

by the induction hypothesis, it follows that 
 

an+2 – F(n + 2) > 0, 
 

so that the result is true for n + 1 as well. 
 

The proof of part (2) is similar and is left to the reader. ■ 
 

The proof of Lemma 0.6 shows that the inequalities therein depend on the inequality given in 

part (3) of Lemma 0.5. Thus, the result in Lemma 0.6 may be true for a sequence not satisfying 

the condition in (0.3). 
 

Lemma 0.7 : Consider the sequence  1nna  (defined in (0.3)). 
 

 

(1) If an ≥ F(n + m) for some integers n ≥ 1 and m ≥ 1, then 
 

an+1 > F(n + m + 1), 
 

(2) If an ≥ L(n + m) for some integers n ≥ 1 and m ≥ 1, then 
 

an+1 > L(n + m + 1). 
 

Proof : The proofs of part (1) and part (2) are similar, and we prove part (1) only. 

To prove part (1), we observe that 
 

2F(n + m) ≥ F(n + m) + F(n + m – 1) = F(n + m + 1) for all n ≥ 1, m ≥ 1. 

Now, 

an+1 > 10an ≥ 10 F(n + m) ≥ 5 F(n + m + 1) > F(n + m + 1), 
 

and we get the result desired. ■ 

Chapter 0 : Introduction 
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Lemma 0.8 : Consider the sequence  1nna  (defined in (0.3)). Let 
 

an+2 = F(n + m + 2) for some integers n ≥ 1 and m ≥ 1. 

Then 
 

(1) an+1 < F(n + m + 1), 
 

(2) an < F(n + m). 
 

Proof : From the recurrence relation in (0.1) and part (3) of Lemma 0.5, 
 

0 = an+2 – F(n + m + 2) > an+1 – F(n + m + 1) + an – F(n + m). 
 

The proof is by contradiction. So, let an+1 > F(n + m + 1). But then, by Lemma 0.7, 
 

an+2 > F(n + m + 2), 
 

leading to the contradiction to the assumption. This contradiction establishes part (1) of the 

lemma. Again, if an ≥ F(n + m), then an+1 > F(n + m + 1), contradicting part (a). 

Thus, we get the result desired. ■ 

 

The proofs of Lemma 0.7 and Lemma 0.8 show that, in each case, the results mentioned are 

valid only for sequences satisfying the condition in (0.3). Lemma 0.7 states that, if the n-th term 

of the sequence  1nna  is greater than (or, equal to) the (n + m)-th term of the sequence of 

Fibonacci numbers for some integer m (  1), then the (n + 1)-st term of the sequence  1nna  is 

greater than the (n + m + 1)-st term of the sequence of the Fibonacci numbers. Similar result 

holds for the sequence of Lucas numbers as well. Again, Lemma 0.8 states that, if the (n + 2)-nd 

term of the sequence  1nna  equals the (n + m + 2)-nd term of the sequence of Fibonacci 

numbers (or, Lucas numbers) for some integer m (  1), then the n-th term of the sequence 

 1nna  must be less than the (n + m)-th term of the sequence of Fibonacci numbers (or, Lucas 

numbers), and the (n + 1)-st term must be less than the (n + m + 1)-st term of the sequence of 

Fibonacci (or, Lucas) numbers. 
 

Chapter 1 deals with eight recursive type Smarandache sequences, and it has been shown 

that none of these sequences satisfies the recurrence relation of the Fibonacci or Lucas numbers. 
 

Chapter 2 focuses on two types of Smarandache geometric determinant sequences, nanely, 

the bisymmetric geometric determinant sequence, and the cyclic geometric determinant 

sequence. The n-th terms of these sequences are derived. 
 
 

 

The Smarandache function S(n) and the pseudo Smarandache function Z(n), are the subject 

matters of Chapter 3 and Chapter 4 respectively, where we give some new results. 
 

 
 

Chapter 5 derives partial solutions of the Diophantine equations which arise in connection 

with the Smarandache number related (S-related and Z-related) 60-degree and 120-degree 

triangles. 
 

 

 

The final Chapter 6 gives some miscellaneous topics, such as the Smarandache T-Sequence, 

the Smarandache friendly numbers, the Smarandache reciprocal partition sets of unity, the 

Smarandache LCM ratio functions of two types, and the Sandor-Smarandache function. 
 
 
 

Some of the materials in Chapter 2, Chapter 3, Chapter 4, Chapter 5 and Chapter 6 are based 

on our previous papers, published in different journals. In the meantime, some new results have 

been found, which are also included in this book. Moreover, to keep the book up-to-date, we 

have included the results of other researchers as well, generally with simpler proofs. 
 

 

 

 

 

 

 

 

 

 

 

 

 

* Majumdar, A.A.K. Wandering in the World of Smarandache Numbers, InProQuest, U.S.A., 2010. 
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Chapter 1   Some  Recursive  Smarandache  Sequences 

 
In Majumdar(1), the following eight recurrence type Smarandache sequences were treated : 
    
 

(1) Smarandache odd sequence 
 

(2) Smarandache even sequence 
 

(3) Smarandache circular sequence 
 

(4) Smarandache square product sequences 
 

(5) Smarandache permutation sequence 
 

(6) Smarandache reverse sequence 
 

(7) Smarandache symmetric sequence 
 

(8) Smarandache prime product sequence 
 

   
 
 
 
 

It is conjectured that there are no Fibonacci or Lucas numbers in any of the Smarandache 

odd, even, circular and symmetric sequences. We showed that none of these sequences satisfies 

the recurrence relationship for Fibonacci or Lucas numbers. We proved further that none of the 

Smarandache prime product and reverse sequences contains Fibonacci or Lucas numbers (in a 

consecutive row of three or more). 
    

 
 

Definition 1.1 : The Smarandache odd sequence, denoted by  
n 1

OS(n)



, is the sequence 

of numbers formed by repeatedly concatenating the odd positive integers (Ashbacher(2)). 
 
 
 

 
 

 

 
 

 

The first few terms of the sequence are 
 
 

1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, … . 
 

 

 
 

 

In general, the n  – th term of the sequence is given by  
 
 

OS(n)  = 135 ... (2n 1), n 1.   
 
 
 
 

The Smarandache odd sequence satisfies the following inequality. 
 
 

 

 

 

Lemma 1.1 : For any integer n    1, OS(n  +  1)  >  10 OS(n). 
   

Definition 1.2 : The Smarandache even sequence, denoted by  1nES(n) , is the sequence 

of numbers formed by repeatedly concatenating the even positive integers (Ashbacher(2)). 
   

 

 

The n – th term of the sequence is given by  
 

 
 

ES(n)   = 24 ... (2n), n 1.   
 

 
 

The first few terms of the sequence are 
 

 
 

 

2, 24, 246, 2468, 246810, 24681012, 2468101214, … . 
 

In connection with the Smarandache even sequence, we have the result below. 
 

 

 

 

Lemma 1.2 : For any integer n    1, ES(n  +  1)  >  10 ES(n). 
 
 
 
 

Definition 1.3 : The Smarandache circular (also called consecutive) sequence, denoted by 

 1nCS(n) , is obtained by repeatedly concatenating the positive integers (Dumitrescu and 

Seleacu(3)).  
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The n – th tem of the circular sequence is given 
    
 

 

CS(n)   =  1.n ,1)(n)(n ... 123   
  

 

The first few terms of the sequence are  
 

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, … .  
 

For the Smarandache circular sequence, the result below holds true. 
 

Lemma 1.3 : For any integer n    1, CS(n   +   1)  >  10 CS(n). 
    

 

Definition 1.4 : The Smarandache square product sequence of the first kind, denoted by 

 
1n1(n)SPS , and the Smarandache square product sequence of the second kind, denoted by 

 
1n2 (n)SPS , are defined by (Russo(4)) 

 

 

SPS1(n)  =   1²2²     …     n²   + 1  =   (n!)²     +   1, n ≥ 1, 
 
 

SPS2(n)  =   1²2²      …     n²    –  1  =   (n!)²        1, n ≥ 1. 
 

 
 

 

 

We then have the following results. 
 
 

 
 

Lemma 1.4 : The following relationships hold : 
 

(1) SPS1(n    +  1)  >  10 SPS1(n), n    3, 
 

 

(2) SPS2(n    +  1)  >  10 SPS2(n), n    2. 
 

Proof : Using the definition, we see that 
 

SPS1(n + 1) ≡ [(n + 1)!]2 + 1 > 10[(n!)2 + 1] ≡ 10 SPS1(n) 
 

if and only if 
 

(n!)2 [(n + 1)2 – 10] > 9, 
 

which is true for n ≥ 3. This proves part (1) of the lemma. 
 

The proof of part (2) is similar, and is left as an exercise. ■ 
 

Definition 1.5 : The Smarandache permutation sequence, denoted by  1nPS(n) , is 

defined by (Dumitrescu and Seleacu(3))                                                       
 
 

 

PS(n)  =135 ... (2n 1)(2n)(2n 2) ... 42 ,  n 1.    

 

The first few terms of the sequence are 12, 1342, 135642, 13578642, 13579108642, … . 
 

In connection with the Smarandache permutation sequence, we define the sequence below. 
 

Definition 1.6 : The reverse even sequence, and denoted by  1nRES(n) , as follows : 
                                     
 

RES(n)  = (2n)(2n 2) ... 42,  n 1.   
 

The first few terms of the above sequence are 
 

2, 42, 642, 8642, 108642, 12108642, 1412108642, 161412108642, … . 
 

The terms of the sequence satisfy the following inequality. 
    
 
 

 

Lemma 1.5 : RES(n  +  2)  >   RES(n  +  1)    +    RES(n) for any integer n      1. 
 

Note that the sequences  1nPS(n)  and  1nRES(n)  are related through the relationship 
 

PS(n) = 10s OS(n) + RES(n) for some integer s  n. 
 

The lemma below gives the inequality satisfied by the Smarandache permutation sequence. 
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Lemma 1.6 : For any integer n    1, PS(n  +  2)  >  PS(n  +  1)   +   PS(n). 
    

 

 
 

 
 

Definition 1.7 : The Smarandache reverse sequence, denoted by  1nRS(n) , is the 

sequence of numbers formed by concatenating the consecutive integers on the left side, starting 

with RS(1)  =  1 (Ashbacher(2)). 
    
 

 

 
 

The first few terms of the sequence are  
 

1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, …,  
 

and in general, the n –  th term is given by                
 

RS(n)   = 1.n ,21 ... 1)n(n   
 
 

 
 

 

The Smarandache reverse sequence satisfies the inequality below. 
   
 
 

 

Lemma 1.7 : For any integer n    1, RS(n  +  2)  >  RS(n  +  1)   +   RS(n). 
   

 
 

Definition 1.8 : The Smarandache symmetric sequence, denoted by  1nSS(n) , is defined 

by (Ashbacher(2)) 
 
 

1, 11, 121, 12321, 1234321, 123454321, 12345654321, … . 
   
 

 

 
 

More precisely, the n – th term of the Smarandache symmetric sequence is 
   

 

SS(n)  =12 ... (n 2)(n 1)(n 2) ... 21,  n 3;     
 
 

 

SS(1)  = 1, SS(2)  = 11.                                

 

 

The Smarandache symmetric sequence can be expressed in terms of the Smarandache 

circular sequence and the Smarandache reverse sequence as follows : For all n     3, 
   

 

SS(n)  =  10s CS(n  –  1)   +    RS(n   –   2) for some integer s    1. 
   
 
 

 
   

 

Lemma 1.8 : For any integer n    1, SS(n +  2)  >  SS(n  +  1)   +   SS(n). 
   
 

 

Definition 1.9 : Let  n n 1
p




 be the (infinite) sequence of primes in their natural order, 

that is, 

p1 = 2, p2  = 3, p3  =  5, p4  = 7, p5  = 11, p6  = 13, … . 
 

The Smarandache prime product sequence, denoted by  
n 1

PPS(n) ,



is defined as follows 

(Smarandache(5)) : 
 
 
 

PPS(n)  =  p1  p2   …   pn  + 1, n  ≥  1. 
 
 

 
 
 

The following lemma gives a relation in connection with the prime product sequence. 
 

Lemma 1.9 : PPS(n  +  2)  >  PPS(n  +  1)  +   PPS(n) for all n    1. 

 

We now state and prove the following result. 
 

Theorem 1.1 : None of the Smarandache odd sequence, even sequence, circular sequence, 

square product sequences, permutation sequence, reverse sequence, symmetric sequence, and 

prime product sequence satisfies the recurrence relation of the Fibonacci (and Lucas) numbers. 
 

 

 

Proof : From Lemma 1.1, Lemma 1.2, Lemma 1.3 and Lemma 1.4, we see that the 

Smarandache odd sequence, even sequence, circular sequence and the square product sequences 

of two types each satisfies the condition (0.3). Thus, from Lemma 0.5, none of these four 

sequences satisfies the recurrence relations (0.1) and (0.2). For each of the Smarandache 

permutation sequence, reverse sequence, symmetric sequence and prime product sequence, the 

result follows from Lemma 1.6, Lemma 1.7, Lemma 1.8 and Lemma 1.9 respectively. ■ 

Chapter 1 : Recursive Smarandache Sequences  
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This chapter gives the common properties satisfied by eight Smarandache recurrence type 

sequences. We see that, the Smarandache odd sequence, the even sequence, the circular 

sequence and the square product sequences of two types, each satisfies the inequality (0.3), 

while each of the Smarandache permutation sequence, the reverse sequence, the symmetric 

sequence and the prime product sequence, satisfies the inequality below : 
 
 

 
 

 

an+2 > an+1 + an. 
 

 
 

 
 

The consequence of this fact is given in Theorem 1.1. 
 
 
 

In case of the Smarandache odd sequence, even sequence, prime product sequence, square 

product sequences of two types, permutation sequence, circular sequence and the reverse 

sequence, we have shown that none of these sequences satisfy the recurrence relation of the 

Fibonacci or Lucas numbers. This shows that, none of these sequences can contain three or 

more consecutive Fibonacci numbers or Lucas numbers in a row. The same result follows very 

simply from Lemma 0.2, which shows that the sequence of Fibonacci numbers F(n) (and Lucas 

numbers L(n)) are of the form 
 
 

 
 

 

 
 

O, O, E, O, O, E, O, O, E, …, 
 

 
 

 

 
 

 

(where the letter O stands for Odd number, and E denotes Even number). Thus, for example, all 

the terms of the Smarandache odd sequence are odd, and hence, this sequence cannot contain 

three (or, more) consecutive Fibonacci (or, Lucas) numbers in a row. Since all the terms are odd 

for each of the Smarandache square product sequences, reverse sequence, symmetric sequence 

and the prime product sequence, it follows that in each of these cases, there cannot be three (or, 

more) consecutive Fibonacci (or, Lucas) numbers in a row for any of these sequences. Again, all 

the terms of the Smarandache sequence are even, and by the same reasoning, this sequence 

cannot contain three (or, more) consecutive Fibonacci (or, Lucas) numbers in a row. The same 

argument holds for the Smarandache permutation sequence as well, whose all the terms are even. 

Finally, the terms of the Smarandache circular sequence are alternately odd and even, and so, 

this sequence also cannot contain three (or, more) consecutive Fibonacci (or, Lucas) numbers in 

a row. 
 

It should be mentioned here that our theorems don’t rule out the possibility of appearance of 

Fibonacci or Lucas numbers, scattered here and there, in any of these sequences. 
 

We conclude this chapter with the following conjecture. 
 

Conjecture 1.1 : For all n  1, PS(n + 1) > 100 PS(n), RS(n + 1) > 10 RS(n). 
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Chapter 2   Smarandache       Determinant       Sequences 

 
Murthy(1) introduced the Smarandache cyclic arithmetic determinant sequence (SCADS) and the 

Smarandache bisymmetric arithmetic determinant sequence (SBADS), defined as follows. 
 

 

Definition 2.1 : The Smarandache cyclic arithmetic determinant sequence, denoted by 

 1n)n(SCADS , is 
 

,...  ,

d2adaad3a

daad3ad2a

ad3ad2ada

d3ad2adaa

  ,

daad2a

ad2ada

d2adaa

  ,
ada

daa
  ,a



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


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




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














 

 

and the Smarandache bisymmetric arithmetic determinant sequence  1n)n(SBADS  is 
 
 
 

,... ,

adad2a

dad2ada

d2adaa

  ,
ada

daa
  ,a


























 

 

 

 

where a and d are any real numbers. 

 

The first few terms of the Smarandache cyclic arithmetic seterminant sequence are 
 

 
 

a, – (2ad + d2), – 9(a + d)d2, …, 
 

 

 

and the first few terms of the Smarandache bisymmetric arithmetic determinant sequence are 
 
 

 

a, – (2ad + d2), – 4(a + d)d2, …, 

 

The n-th terms of these sequences, derived by Majumdar(2) and independently by Maohua(3) 

(in a slightly different form), are reproduced in the following theorem. 

 

Theorem 2.1 : For any integer n ≥ 1, 
 

(1) SCAD(n) =  2
n

n 1

2
n 1( 1) a + d (nd) ,

 
     

 
 

(2) SBADS(n) =  2
n

n 1

2
n 1( 1) a + d (2d) .

 
     

 

In the particular case with a = 1, d = 1, we have respectively the Smarandache cyclic 

determinant natural sequence and the Smarandache bisymmetric determinant natural sequence. 

 

Bueno(4) extended the concept of the Smarandache cyclic arithmetic determinant sequence 

to the Smarandache cyclic geometric sequences of right circulant form, and derived formulas for 

the nth terms of the sequences. Later, Bueno(5) extended the concept of the Smarandache 

bisymmetric arithmetic determinant sequence to the Smarandache bisymmetric geometric 

determinant sequence. Section 2.1 treats the Smarandache bisymmetric geometric determinant 

sequence, followed by the Smarandache circulant geometric determinant sequence in    

Section 2.2. Section 2.3 introduces the Smarandache circulant arithmetic determinant sequence. 

In each case, the n-th term of the sequence is found. 

15 
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2.1  Smarandache  Bisymmetric  Geometric  Determinant  Sequence 

 
In this section, we consider the Smarandache bisymmetric geometric determinant sequence.  
 

We start with the following definition, which differs slightly from the definition given in 

Bueno(5). 
 

 

 

 

 

 

Definition 2.1.1 : The Smarandache bisymmetric geometric determinant sequence, denoted 

by  1n)n(SBGDS , is 
 
 

.... , 

1rr

rrr

rr1

  , 
1r

r1
  , 1  

2

2

2

















 

 

The first few terms of the Smarandache bisymmetric geometric determinant sequence are 
 

1, 1 – r2, – r2
  (r2 – 1)2, r6

 (r2 – 1)3, r12
 (r2 – 1)4, – r20

 (r2 – 1)5, … .    
 

The n-th term of the sequence is given in Theorem 2.1.1. To prove the theorem, we need the 

following results. 
 

Lemma 2.1.1 : Let D   ijd  (1 ≤ i, j ≤ n) be the square determinant of order n (  2) with 
 

     otherwise

1  i  n  j if

,0

,1
   dij







  

Then, 

2
n

D  0 0 ... 0 0 1  ( 1) .
0 0 ... 0 1 0

0 0 ... 1 0 0
  

...

0 1 ... 0 0 0

1 0 0 0 0 0

 
    

 

 

Proof : First, let n be odd, say,  
 
 

 

n = 2m + 1 for some integer m ≥ 1.  
 
 

 

Then, using the m column operations ),m  j  1(  C  C 2  j  m2j   that is, interchanging the j-th 

column Cj and the (2m – j + 2)-nd column C2m  –  j  +   2, we get 
 

 

m m1 0 ... 0 0 0   .D  ( 1)  ( 1)

0 1 ... 0 0 0

0 0 ... 1 0 0
  

...

0 0 ... 0 1 0

0 0 0 0 0 1

  

 

 
 

 
 

Next, let n = 2m (m ≥ 1). Then, using the column operations ),m  j  1(  C  C 1  j  m2j   we get 
 

D = (–1)m. 
 

 

Since, in either case,    ,  m
2
n the lemma is established. ■ 
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Lemma 2.1.2 : Let D   ijd  be the determinant of order 2m + 2 (m  1) with 
 

 















                                                    otherwise

1  m  j ,2  m  i or  ,2  m  j ,1  m  i if

                                            3  i  m2  j if

0,

,r

,1

   dij  

Then, 
 

2m 1 D  0 0 0 ... 0 0 ... 0 0 1   ( 1) (r  1).

0 0 0 ... 0 0 ... 0 1 0

... ...

0 0 0 ... 1 r ... 0 0 0
  
0 0 0 ... r 1 ... 0 0 0

... ...

0 1 0 ... 0 0 ... 0 0 0

1 0 0 ... 0 0 ... 0 0 0

   

 

 
 

 

Proof : Using the column operations ),m  j  1(  C  C 1  j  m2j    we get 

m 1

m m×2 m×m

2×m 2×m

m×m m×2 m

D ( 1)
I

r 1
   

1 r

I

0 0

0 0

0 0

 

 

 

 

 

 

where Im is the identity matrix of order m, 0m2 is the zero matrix of order m2, 02m is the zero 

matrix of order 2m, and 0mm is the zero matrix of order mm. Therefore, 
 
 

 

 

).1r( )1(
I  

r1

1r
  I

)1(D 21 m

mm

1m  

■ 

 

 

 

 

 

 

 

 

 

 

Theorem 2.1.1 : The nth term, SBGDS(n), of the Smarandache bisymmetric geometric 

determinant sequence is given by 
 
 

 

 

2 n 1 n 2 n 1

2 3 n 2 n 1 n 2

2 3 4 n 1 n 2 n 3

n 3 n 2 n 1 4 3 2

n 2 n 1 n 2 3 2

n 1 n 2 n 3 2

1 r r ... r r rSBGDS(n)  

r r r ... r r r

r r r ... r r r

  ...

r r r ... r r r

r r r ... r r r

r r r ... r r 1

  

  

  

  

  

  



 

 

 

 

 

 

 

 

=







 2
n

)1( r(n – 1)(n – 2) (1 – r2)n – 1.  
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Proof : Let 

,a )n(SBGDS  ij   
 

 

 
 

where the matrix (aij) is bisymmetric in the sense that 
 

aij = aji for all 1  i, j  n, 
 

aij = an–i+1,jn–j+1 for all 1  i, j   2
n . 

Note that 

a1j = an,n–j+1 = rj–1, an–j+1,j = rn–1; 1  j  n, 
 

and for 2  i  n – 1, 














nj2in

  1inj1
  

if

if
  

,r

  ,r
a

ji2n

2ji

ij
  

 

We consider separately the following two possible cases : 
 

Case 1. When n is odd, say, n = 2m + 1 (for some integer m ≥ 1).  

In this case, 
 

SBGDS(2m + 1) 
 

 

 

 

 

2 m 1 m m 1 2m 2 2m 1 2m

2 3 m m 1 m 2 2m 1 2m 2m 1

2 3 4 m 1 m 2 m 3 2m 2m 1 2m 2

m 1 m m 1 2m 2 2m 1 2m m 3 m 2 m 1
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m

m 1 m 2 m 3 2m 2m 1 2m 2 m 1 m m 1

2m 2 2m 1 2m m 3 m 2 m 1 4 3 2

2m 1 2m 2m 1 m 2 m 1 m 3 2

2m 2m 1 2m 2 m 1 m m 1 2

 r

r r r ... r r r ... r r r

... ...

r r r ... r r r ... r r r

r r r ... r r r ... r r r
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      

    

   

   

 

 

 

 
=  ij  , say, 
 

where for 1  i  2m + 1, 














1m2j3im2

       2im2j1
  

if

if
  
,r

    ,r
2ji4m

2ji

ij
 

Note that 








 



1m2i1m
       1mi1

  
if
if

  
,r

    ,r
)1i2(2m

)1i(2

ii   
 

 
 

 

ij = 2m–i+2,2m–j+2 for all 1  i, j  m; α2m–j+2,j = r2m for all 1 ≤ j ≤ 2m + 1. 
 
 

 
 

Then, the common factor in the column Cj (1 ≤ j ≤ 2m + 1) is 
 












12mj2m

        1mj1
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i = m + 1 

 

 

j = m + 1 
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We now take out the common factor r from the 2nd and the (2m)th columns, the common factor 

r2 from the 3rd and the (2m – 1)st columns, …, the common factor rm–1 from the mth and (m + 2)nd 

columns, and the common factor rm from the (m + 1)st column, so that the total common factor is 
 
 

2m2(1 + 2 + ... + m  1) + m
r = r .

  
Therefore, 
 

SBGDS(2m + 1)  
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Let the above determinant be denoted by  ij  . Then,  
 

 

ij = 2m–i+2,2m–j+2 for all 1  i, j  m, 
 
 

 
 

 

for 1  i  m + 1, 
 
 

 

ij = ri–1, if 1  j  m + 1, 
 
 

 

 
 

 

and for m + 2  i  2m + 1, 
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Therefore, the common factor in the row Ri (1 ≤ i ≤ 2m + 1) is 
 












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1m2i2m

        1mi1
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     ,r
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Now, taking out the common factor r from the 2nd and (2m)th rows, r2 from the 3rd and (2m – 1)st 

rows, …, rm–1 from the mth and (m + 2)nd rows, and rm from the (m + 1)st row (so that, as before, 

the common factors total to 
 

2m2(1 + 2 + ... + m  1) + m
r = r


).  

we get 

 

i = m + 1 

 

 
 

 

j = m + 1 
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SBGDS(2m + 1)  
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Denoting by  ij   the above determinant, we have 
 

 

ij = 2m–i+2,2m–j+2 for all 1  i, j  m, 
 



















1mj3im2  ,1m2i2m
       2im2j1  ,1m2i2m

                     1mj1  ,1mi1
  

if
if
if

  

,r

,r

          ,1

1)j2(m

)1m2(i

ij
 

 

 

We now perform the m row operations )m  i  1( R  R  R 1i ii    (the row Ri+1 is subtracted 

from the row Ri), and then the m row operations )m  i  1( R  R  R im 1im1im   , to get 
 
 

SBGDS(2m + 1)  
 

 

 

2m2 2m 2 2

2m 4 2 2m 4 2

2m 6 2 2m 6 2

2 2 2

2 2 2

2m 6 2 2m 6 2

0 0 ... 0 0 0 ... 0 r (r 1) r  

0 0 ... 0 0 0 ... r (r 1) r (r 1)

0 0 ... 0 0 0 ... r (r 1) r (r 1)

... ...

0 0 ... 0 0 r 1 ... r 1 r 1

 1 1 ... 1 1 1 ... 1 1

r 1 r 1 ... r 1 0 0 ... 0 0

... ...

r (r 1) r (r



 

 

 



 

 

  

  

 
2m 4 2 2m 4 2

2m 2 2

 

1) ... 0 0 0 ... 0 0

r (r 1) r (r 1) ... 0 0 0 ... 0 0

r (r 1) 0 ... 0 0 0 ... 0 0

 



 



 

 
 
 

 

In the above determinant, we have the common factors r2m
 

–
 

2(r2 – 1) in the 1st and the (2m + 1)st 

rows, r2m
 

–
 

4(r2 – 1) in the 2nd and the (2m)th rows, …, and (r2 – 1) in the mth and the (m + 2)nd rows, 

so that, the total common factor is 
 

 
 

.r r )1  m(m2 ]2  ...  )4  m2(  )2  m2[(2   

 
 

 
 

 

j = m + 1 

 

i = m + 1 

j = m + 1 

 

i = m + 1 
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Taking out the common factors out, we get, 
 

SBGDS(2m + 1) 
 

2m   2m(m  1)2 2 2m 0 0 0 ... 0 0 0 ... 0 0 1(r   1) r  

0 0 0 ... 0 0 0 ... 0 1 1

0 0 0 ... 0 0 0 ... 1 1 1

... ...

0 0 0 ... 0 0 1 ... 1 1 1

  1 1 1 ... 1 1 1 ... 1 1 1

1 1 1 ... 1 0 0 ... 0 0 0

... ...

1 1 1 ... 0 0 0 ... 0 0 0

1 1 0 ... 0 0 0 ... 0 0 0

1 0 0 ... 0 0 0 ... 0 0 0

  

 

 

 
 

 

 

 

 

 

 

Let the above determinant be denoted by  ij  . Then, 
 

 

 

ij = 2m–i+2,2m–j+2 for all 1  i, j  m, 
 

 

 
 

 

ij = 0 if 1  i  m, 1  j  m + 1, 
 
 

 
 

 

m+1,j = 1 for all 1  j  2m + 1. 
 
 

 

 
 

Finally, we perform the m column operations )m  j  1( C  C  C 1jjj   , followed by the m 

column operations )m  j  1( C  C  C jm 1jm1jm   , to get  

 

SBGDS(2m + 1) 
 

2m 2m(m  1)2 2 2m 0 0 0 ... 0 0 0 ... 0 0 1(r   1) r  

0 0 0 ... 0 0 0 ... 0 1 0

0 0 0 ... 0 0 0 ... 1 0 0

... ...

0 0 0 ... 0 0 1 ... 0 0 0

  0 0 0 ... 0 1 0 ... 0 0 0

0 0 0 ... 1 0 0 ... 0 0 0

... ...

0 0 1 ... 0 0 0 ... 0 0 0

0 1 0 ... 0 0 0 ... 0 0 0

1 0 0 ... 0 0 0 ... 0 0 0

  

 

  

 
 

 

Now, appealing to Lemma 2.1.1, we get 
 

SBGDS(2m + 1) .)1r(r)1( m22)1  m2(m2 m    

 

 
 

 

j = m + 1 

 

 
 

 
 

j = m + 1 

 

i = m + 1 

 

i = m + 1 
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Case 2. When n is even, say, n = 2m + 2 (for some integer m ≥ 1).  
 

In this case, 
 

 

SBGDS(2m + 2) 
 

2 m m 1 2m 1 2m 2m 1

2 3 m 1 m 2 2m 2m 1 2m

2 3 4 m 2 m 3 2m 1 2m 2m 1

m m 1 m 2 2m 2m 1 m 3 m 2 m 1

m 1 m 2 m 3 2m 1 2m m 2 m 1 m

2m 1

1 r r ... r r ... r r r 
r r r ... r r ... r r r

r r r ... r r ... r r r
... ...

r r r ... r r ... r r r
 

r r r ... r r ... r r r
... ...

r

  

  

   

     

     





2m 2m 1 m 3 m 2 4 3 2

2m 2m 1 2m m 2 m 1 3 2

2m 1 2m 2m 1 m 1 m 2

 

r r ... r r ... r r r

r r r ... r r ... r r r

r r r ... r r ... r r 1

  

  

  

 

 

 
 

 

 

 

 

 

 

Denoting by  ijx  the above determinant, we have 

xij = xji for all 1  i, j  2m + 2; xij = x2m–i+3,2m–j+3, 1  i, j  m + 1. 
 

Taking out the common factor r from the 2nd and (2m + 1)st columns, r2 from the 3rd and (2m)th 

columns, …, rm from the (m + 1)st and (m + 2)nd columns (so that the total common factor is 
 

 

 

 

r2(1 + 2 + … + m) = rm(m+1)), 

we get 
 

 
 

 

SBGDS(2m + 2) 
 

2m 3 2m 1 2m 1
m(m 1)

2 2m 2 2m 2m

2 2 2 2 3 2m 1 2m 1 2m 1

m m m m m 1 m 1 m 1 m 1

m 1 m 1 m 1 m 1 m m m m

2m 1 2m 1 2m 1 3

1 1 1 ... 1 r ... r r r r  
r r r ... r r ... r r r

r r r ... r r ... r r r
... ...

r r r ... r r ... r r r
 

r r r ... r r ... r r r
... ...

r r r ... r r

  




  

   

   

  



2 2 2 2

2m 2m 2m 2 2

2m 1 2m 1 2m 3

 

... r r r

r r r ... r r ... r r r

r r r ... r 1 ... 1 1 1



  

 

 
 

2m 3 2m 1 2m 1
2m(m 1)

2m 3 2m 1 2m 1

2m 3 2m 3 2m 3

2m 3 2m 3 2m 3

2m 1 2m 1 2m 3

2

1 1 1 ... 1 r ... r r r r  
1 1 1 ... 1 r ... r r r

1 1 1 ... 1 r ... r r r
... ...

1 1 1 ... 1 r ... r r r
 

r r r ... r 1 ... 1 1 1
... ...

r r r ... r 1 ... 1 1 1

r r r ... r 1 ... 1 1 1

r

  


  

  

  

  



m 1 2m 1 2m 3

 

r r ... r 1 ... 1 1 1  

 

 

i = m + 1 

 

 

j = m + 1 

 

i = m + 1 
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where the last determinant above is obtained from the preceding one after taking out the 

common factor r from the 2nd and (2m + 1)st rows, r2 from the 3rd and (2m)th rows, …, rm from 

the (m + 1)st and (m + 2)nd rows (so that the total common factor is r2(1 + 2 + … + m) = rm(m
  

+
  

1)).  
 
 

 

Now, performing in succession, the two row operations, )m  i  1( R  R  R 1i ii    and 

)m  i  1( R  R  R im 1im1im   , we get 

 

SBGDS(2m + 2)  
 

2m 1 22m(m  1)

2m 3 2 2m 3 2

2m 3 2 2m 3 2

2m 1 2

0 0 0 ... 0 0 0 r (r 1) r  

0 0 0 ... 0 0 r (r 1) r (r 1)

...

1 1 1 ... 1 r r r
  

r r r ... r 1 1 1

...

r (r 1) r (r 1) 0 ... 0 0 0 0

r (r 1) 0 0 ... 0 0 0 0



 

 





 

 



 

 

 

 

Denoting by 
 ijy  the determinant above, we have 

 

 
 

yij = y2m–i+3,2m–j+3 for all 1  i, j  m + 1. 
 

In the above determinant, we may take out the common factors r2m
 

–
 

1(r2 – 1) from the 1st and the 

(2m + 2)nd rows, r2m
 

–
 

3(r2 – 1) from the 2nd and the (2m + 1)st rows, …, and r(r2 – 1) from the mth 

and (m + 3)rd rows, and the total common factor is 

.r r
2m2 ]1  ...  )3  m2(  )1  m2[(2   

Therefore, 
 

SBGDS(2m + 2) 
 

2m(m 1) 2 2m 0 0 0 ... 0 0 ... 0 0 1 r (r 1)  
0 0 0 ... 0 0 ... 0 1 1
0 0 0 ... 0 0 ... 1 1 1

... ...
1 1 1 ... 1 r ... r r r

  
r r r ... r 1 ... 1 1 1

... ...
1 1 1 ... 0 0 ... 0 0 0
1 1 0 ... 0 0 ... 0 0 0
1 0 0 ... 0 0 ... 0 0 0

 

 

 

 

Letting 
 ijz  be the determinant above, we have 

 
 

 

zij = z2m–i+3,2m–j+3 for all 1  i, j  m + 1. 

Note that 
 

 
 

zij = 0 if 1  i  m, 1  j  m + 1. 
 

 
 

 

 
 

 
 

 
 

Now, we perform successively the m column operations )m  j  1( C  C  C 1jjj    and the m 

column operations )m  j  1( C  C  C 1jm 2jm2jm   , to get 

 
 

 

 
 

j = m + 1 

 

i = m + 1 
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SBGDS(2m + 2) 
 

2m(m 1) 2 2m 0 0 0 ... 0 0 ... 0 0 1 r (r 1)  

0 0 0 ... 0 0 ... 0 1 0

0 0 0 ... 0 0 ... 1 0 0

... ...

0 0 0 ... 1 r ... 0 0 0
  
0 0 0 ... r 1 ... 0 0 0

... ...

0 0 1 ... 0 0 ... 0 0 0

0 1 0 ... 0 0 ... 0 0 0

1 0 0 ... 0 0 ... 0 0 0

 

 

 

,)1r(r)1( 1  m22)1  m2(m2 1m    
 

where the last result follows from Lemma 2.1.2. 
 

All these complete the proof of the theorem. ■ 

 
2.2  Smarandache  Circulant  Geometric  Determinant  Sequence 

 
Bueno(4) introduced the concept of the Smarandache right circulant geometric matrix with 

geometric sequence, defined as follows : 
 

Definition 2.2.1 : The Smarandache right circulant matrix (of order n) with geometric 

sequence, denoted by SRCGM(n), is a matrix of the form 
 

 
 

2 n 2 n 1

n 1 n 3 n 2

n 2 n 1 n 4 n 3

2 3 4

2 3 n 1

1 r r ... r rSRCGM(n)  .
r 1 r ... r r

r r 1 ... r r
  

...

r r r ... 1 r

r r r ... r 1

 

  

   



 
 
 
 
 
 
 
 
 

 

 

Bueno(4) found an explicit form of the determinant, det(SRCGM(n)). However, using the 

known results of the circulant matrix, the expression of det(SRCGM(n)) follows readily, as 

Lemma 2.2.1 shows. After defining the circulant matrix, the expression of its determinant is 

given in Lemma 2.2.1. For a proof of the lemma, see Geller, Kra, Popescu and Simanca(8). 
 

 

 

 

 

 

 

Definition 2.2.2 : The circulant matrix with the vector C = (c0, c1, …, cn–1), denoted by C(n), 

is the matrix of the form 
 
 

 

0 1 2 n 2 n 1

n 1 0 1 n 3 n 2

n 2 n 1 0 n 4 n 3

2 3 4 0 1

1 2 3 n 1 0

C(n)  c c c ... c c .

c c c ... c c

c c c ... c c
  

...

c c c ... c c

c c c ... c c

 

  

   



  
 
 
 
 
 
 
 

 

 
 

 

 

 

 

The determinant of the circulant matrix above is given in the following lemma.  
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Lemma 2.2.1 : For any integer n  2, 

2 n 1
0 1 j 2 n 1 j j0 1 2 n 2 n 1

n 1 0 1 n 3 n 2

n 2 n 1 0 n 4 n 3

2 3 4 0 1

1 2 3 n 1 0

n 1

j  0

(c   c ω   c ω   ...  c ω ).c c c ... c c
c c c ... c c
c c c ... c c

  
...

c c c ... c c
c c c ... c c


 

  

   







    

 

where 
j

j
n

i2

e  


 (0 ≤ j ≤ n – 1) are the n nth roots of unity (with ω0  1). 
 

Lemma 2.2.2 : For n ≥ 1,  

det(SRCGM(n)) = (1 – rn)n–1. 

Proof : From Lemma 2.2.1 with cj = rj (0 ≤ j ≤ n – 1), we see that 
 

2 n 1

j j j

2 n 1  
n 1

j = 0

det SRCGM(n)  =  1 + rω  + r ω  + ... + r ω .( ) ( )


  

 

But, for any j with 0 ≤ j ≤ n – 1, 
n

j2 n 1

j j j
j j

n
2 n 1  

1  (rω ) 1  r1 + rω  + r ω  + ... + r ω  =  = .
1  rω 1  rω


 
 

                 (1) 

Since 

xn – 1 = (x – ω0)(x – ω1)(x – ω2) … (x – ωn–1), 
 

with ,  x r
1  we get 

 

0 1 2 n 1
n n

n (1  rω )(1  rω )(1  rω ) ... (1  rω )1  r
r r = ,

     

so that 

(1 – rω0)(1 – rω1)(1 – rω2) … (1 – rωn–1) = 1 – rn.                            (2) 
 

The lemma now follows by virtue of (1) and (2). ■ 

 
2.3  Smarandache  Circulant  Arithmetic  Determinant  Sequence 

 
Generalizing the concept of the Smarandache right circulant matrix with geometric sequence to 

the case of arithmetic sequence, we have the following definition. 
 

Definition 2.3.1 : The Smarandache right circulant matrix (of order n) with arithmetic 

sequence, denoted by SRCAM(n), is a matrix of the form 
 
 
 

 

SRCAM(n)  a a d a 2d ... a (n 2)d a (n 1)d .

a (n 1)d a a d ... a (n 3)d a (n 2)d

a (n 2)d a (n 1)d a ... a (n 4)d a (n 3)d
  

...

a 2d a 3d a 4d ... a a d

a d a 2d a 3d ... a (n 1)d a

       
       
        
 
 

    
      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The determinant of the above matrix is given in the Lemma 2.3.1 below, making use of 

Lemma 2.2.1. 
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26                                                                                                                                           Smarandache Numbers Revisited 

Lemma 2.3.1 : For any integer n ≥ 1, 
 

det(SRCAM(n)) =   .)nd(da)1( 1n 1n

2
1n    

Proof : From Lemma 2.2.1 with  
 

 
 

 
 

cj = a + jd (0 ≤ j ≤ n – 1),  

we have 
 

2 n 1

j j j

n 1

j  0

det SRCAM(n)    a  (a d)ω   (a 2d)ω   ...  a (n 1)d ω .( ) [ { } ]




          

Now, when j = 0, 
 

 
 

 

a + (a + d) + … + [a + (n – 1)d] = n(a + ,)d
2

1  n   
 

 

and for j with 1 ≤ j ≤ n – 1, 
 
 

 
 

 
 

 

2 n 1

j j j

2 n 1 2 n 1

j j j j j j

a + (a + d)ω  + (a + 2d)ω  + ... + a + (n 1)d ω  

= a 1 + ω  + ω  + ... +ω  + d ω  + 2ω  + ... + (n 1)ω .

[ ]

( ) [ ]



 




              (3) 

But, 
n

j2 n 1

j j j
j

1  ω
1 + ω  + ω  + ... + ω  =  =0,

1  ω





 

and using the formula 
 

 

x + 2x2 + … + (n – 1)xn–1 =
2

nn 1 11 
1 

+ (n  ) 
1  (  )

xx
xx

;  n 2,



   

we get, noting that ,1n
j   

2 n 1

j j j
j1

nω  + 2ω  + ... + (n 1)ω = .
ω

 


 

Therefore, from (3), we get 
 

 
 

2 n 1

j j j
j

nda + (a + d)ω  + (a + 2d)ω  + ... + a + (n 1)d ω  = ,  1 j n 1.
1 ω

[ ]     


 

And hence, 

j

n 1

j 1

1
2

n  nddet SRCAM(n)  n a d  .
1  ω

( )( ) ( )[ ]




 


                       (4) 

Since 

xn – 1 = (x – ω0)(x – ω1)(x – ω2) … (x – ωn–1), 
 

differentiating both sides with respect to x and then putting ,1 x 0   we get 
 

1 2 n 1(1  ω )(1  ω ) ... (1  ω ) n.                                              (5) 
 
 

 

We now get the desired expression from (4) and (5). ■ 

 
The first few terms of the Smarandache circulant arithmetic determinant sequence are 

 

 

 
 

a, – d(2a + d), 9(a + d)d2, …, 
 

 
 

 

while the first few terms of the Smarandache cyclic arithmetic determinant sequence are 
 

 

 

 

a, – d(2a + d), – 9(a + d)d2, … . 
 

 

 
 

 
 

Thus, the Smarandache cyclic arithmetic determinant sequence, defined in Definition 2.1, is a 

variant of the Smarandache circulant arithmetic determinant sequence, and the determinant 

SCAD(n) may be obtained from det(SRCAM(n)) by appropriate interchange of rows. 
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Remark 2.3.1 : In proving Lemma 2.3.1, we have made use of the result that 
 

 

 

 

 

x + 2x2 + … + (n – 1)xn–1 =
2

nn 1 11 
1 

+ (n  ) 
1  (  )

xx
xx

;  n 2.



   

The proof is as follows : Let 
 
 

 
 

 

S  x + 2x2 + 3x3 + … + (n – 2)xn
 

–
 

2 + (n – 1)xn
 

–
 

1.                         (6) 

Then, 
 

 
 

xS =     x2
 + 2x3 + … + (n – 3)xn–2 + (n – 2)xn

 

–
 

2 + (n – 1)xn.                          (7) 
 

 
 

 

 

Subtracting (7) from (6), term-by-term, we get 
 
 

 
 

 

 
 

(1 – x)S = x(1 + x + x2 + … + xn
 

–
 

2) – (n – 1)xn 
 

 
 

 
 

 

= x
n 11  

1  
x

x


 – (n – 1)xn 

 
 

 
 

 

 

=  

n1  
1  

x
x


 – 1 – (n – 1)xn, 

 
 

 

 
 

which gives the desired expression after simplification. 
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Chapter 3    The    Smarandache    Function 

The arithmetical function, introduced by Florentin Smarandache(1) is 
defined as follows (  being the set of positive integers). 

Definition 3.1 : For any integer n    1, the Smarandache function, denoted by S(n), is the 

smallest positive integer m such that 1.   2.    …     .  m     m! is divisible by n. That is, 

S(n)  =   min {  m : m  , n  |   m!  }; n     1.

Several researchers, including Ashbacher(2, 3), Sandor(4), Stuparu and Sharpe(5) and Farris 

and Mitchell(6), have studied some of the elementary properties satisfied by S(n). These are 

summarized below. 

Lemma 3.1 : For any composite number n    4, S(n)     max { S(d) : d  |  n }.

Lemma 3.2 : For any integers n1, n2, …, nk    1, S(n1 n2 … nk)    S(n1) + S(n2) + … + S(nk). 

Lemma 3.3 : Let n1, n2, …, nk    1 be k integers with (n1, n2, …, nk) = 1. Then, 

S(n1 n2 … nk) = max { S(n1), S(n2), …, S(nk) }.

Lemma 3.4 : p divides S(pk) for any prime p    2, and any integer k    1. 

Corollary 3.1 : For any prime p    2, and any integer k    1, 

S(pk) = p for some integer     1. 

Lemma 3.5 : For any integer n and integers k, r with k     r, S(nk)    S(nr
 ). 

Lemma 3.6 : For any integers n and m with n    m, S(nk)    S(mk) for any k    1. 

Lemma 3.7 : For any prime p    2, S(p
 

+
 

)    S(p)  S(p) for any integers ,       1. 

Lemma 3.8 : S(n2)    n – 1 for any integer n  p, 2p, 8, 9 (p being a prime). 

Theorem 3.1 : Let n be represented in terms of its distinct prime factors p, p1, p2, …, pk as 

1 2 k 

1 2 k

        n p p ..., pp
  



Then, 

 1 2 k  

1 2 k

       S(n) max  S( S(p   ), S(p   ), ..., S(p   ) .p ),
  



Thus, in order to find 

1 2 k

1 2 k

 
p    S(n) S( p   p ... p   ) ,

  


it is necessary and sufficient to know the values of 

1 2 k

1 2   k

   
S( ,    S(p   ),   S(p ),  ...,  S(p   ), p )

  

which are not available till now. However, we have expressions in some particular cases. 

Section  3.1 derives explicit forms of 






  kkp
2

p
pS , 







  kkp
2

p2
pS  and 







  1kp)1k(
2

kp
pS . 

Some remarks and conjectures are given in Section 3.2. 
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3.1     Some  Explicit          Expressions           for           S(n) 

 
 

In this section, we derive some explicit expressions for S(n). First, we mention the following 

well-known major results, giving the expressions for S(n) in some particular cases, which are 

available in the current literature. 
 

Lemma 3.1.1 : For any prime p    2, S(p) = p. 
 
 
 

Lemma 3.1.2 : For any integer n    1, S(n!) = n. 
 

Lemma 3.1.3 : For any prime p    2, 
 

(1) S(pk) = kp, if 1    k    p, (2) S(pp
 

+
 

1) = p2. 
 

 

 

 

Lemma 3.1.4 : For any prime p    2, 
   

(1) S(pp
 

+
 

k
 

+
 

1) = p2 + kp, if 1   k    p, (2) S(p2(p
 

+
 

1)) = 2p2, 
 

(3) S(2p–1 (2p – 1)) = 2p – 1 (2p – 1 being the Mercenne prime). 
   

 

 

 

Lemma 3.1.5 : For any prime p ≥ 2, 






 k
k

p
pS = (p – 1)pk for any integer k ≥ 1. 

 

Some more expressions of S(n), due to Majumdar(7), are given in the lemmas below. 
 

Lemma 3.1.6 : If N)p(S   (for some integers  ≥ 1 and N  N(p), p  2 being a prime) 

such that 1p   does not divide N!, then 
1+ α S(p ) = N + p.  

Proof : Since ,N)p(S   it follows that p  divides N!. Also, by Lemma 3.4, p divides 

N. Thus, p divides (N + p), but none of (N + p – 1), (N + p – 2) … (N + 1). Therefore, 1p   

divides (N + p)! = N! (N + 1)(N + 2) … (N + p). ■ 
 

Corollary 3.1.1 : If N)p(S   (for some integers  ≥ 1 and N  N(p), p  2 being a prime) 

such that 1p   does not divide N!, then 
  S(p )  N  p for   1,  2,  ...,  p  1.         

 

Proof : follows by repeated application of Lemma 3.1.6. ■ 
 

Lemma 3.1.7 : Let, for some integers s ≥ 1, t ≥ 1 and a0, a1, …, at, 
 

),p(P)pa   ...  paa(p)p(S ts
 t 10    

 

(where a0 ≠ 0 is not divisible by the prime p  2), such that S( 1p  ) ≠ P. Then, 
 

)p(P)p(S k   for k = 1, 2, …, s – 1. 

Proof : Since S( 1p  ) ≠ P, it follows that .pP)p(S 1   Now, 
 

.1s  ...,  ,2  ,1k all for p )!pP(  .pp                            

   p )!pP(  p      )!pP(  p

sk

1









 

This shows that ,1s  ...,  ,2  ,1k all for  !P  p k   which we intended to prove. ■ 
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Lemma 3.1.8 : For any prime p ≥ 2, 
 

p)1k(kp)p(S 2kp   for k = 1, 2, …, p – 1. 
 

 

Proof : The proof is by induction on k. By virtue of Lemma 3.1.4, the result is true for k = 1. 

So, we assume that the result is true for some k. Then, by Corollary 3.1.1, 
 

2kp
S(p ) kp (k 1)p,   1,   2,   ...,   p 1.


     

    
 

In particular, we have 
 

,pkpp)2k(p)1k(kp)p(S 22 }{2kkp 
 

 

.kp)p(S 21kkp   

Now, 

,)!kp(  p      p )!pkp(  p      )!pkp(  p 2222 kkpkkp2kkp    

so that 

.kp)p(S 2kkp   
 

By Corollary 3.1.1, 
 

2kp k
S(p ) kp p

 
 

     for  = 1, 2, …, p – 1. 
 

Choosing  = p – k, we get 
 

,kpp)1k(p)kp(kppS)p(S 22)( p)1k(pkp  
 

 

which shows that the result is true for k + 1 as well. 
 

This completes induction, thereby establishing the lemma. ■ 

 

In course of proving Lemma 3.1.8, we also found the following expressions : 

 

Corollary 3.1.2 : For any prime p ≥ 2, 
 

)()( kkp1kkp pSkppS 2    for k = 1, 2, …, p – 1. 

 

From Corollary 3.1.2, we get, in the particular case with k = p – 1, 
 
 

,pSp)1p(pS )()( 1p2p
2

2
2

                                 (3.1.1) 
 

which, together with Corollary 3.1.1, gives 
 

2 2p
S p (p 1)p ( 1)p;   1,   2,   ...,   p 1.( )

     
                    (3.1.2) 

 

In (3.1.2) above, the case  = p – 1 follows from the case  = p – 2 by virtue of Lemma 3.1.6. 

With  = p – 1, coupled with Lemma 3.1.7, we have 
 

.pSpSppS )()()( 1pppp1pp
22

3
2

                        (3.1.3) 
 

Using Corollary 3.1.1 once more, we get from (3.1.3), 
 

2 3p p
S p p ( 1)p;   2,   3,   ...,   p.( ) 

   
                          (3.1.4) 
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From (3.1.4) with  = p, together with Lemma 3.1.7, we have, for p ≥ 2, 
 

.pSpppS )()( 2p2p1p2p
2

23
2

                            (3.1.5) 

 

We now state and prove the general result. 
 
 

Lemma 3.1.9 : For any prime p ≥ 2, 

)()( kkpp1kkpp 2
23

2

pSp)1k(ppS    for k = 2, 3, …, p. 
 

Proof : is by induction on k. The validity of the result for k = 2 follows from (3.1.5). So, we 

assume that the result is true for some k. Then, by Corollary 3.1.1, 
 

2 2p kp k 3S p p (k 1)p p;   1,   2,   ...,   p 1.( )                         (3.1.6) 
 

With  = p – 1 in (3.1.6), we have 
 

,pkpppS 23
2

)( 1kp)1k(p   
 

 
 

so that, by Lemma 3.1.6, 
 

 

 

2    p (k 1)p k 3 2S p p kp ,( )     
 

and hence, by Lemma 3.1.7, 
 

.kpppS 23
2

)( 1kp)1k(p   
 

Thus, the result is also true for k + 1, completing induction. ■ 

 

Lemma 3.1.9 with k = p gives 
 

,pSpp2pS )()( pp21pp2 2
23

2    
 

and so, by Corollary 3.1.1, 
 

22 3 2p pS p 2p p p;   1,   2,   ...,   p 1.( )                             (3.1.7) 
 

From (3.1.7) with  = p – 1, we get 
 

,pp2pS 3
2

)( 1p2p2                                         (3.1.8) 
 

which, by Lemma 3.1.6 and Lemma 3.1.7, gives 
 

.pSpSp2pS )()()( 2p2p21p2p2p2p2 22
3

2                 (3.1.9) 
 

From (3.1.9), by virtue of Corollary 3.1.1, we get 
 

 
 

22 3p 2pS p 2p ( 2)p;   3,   4,   ...,   p 1,( )                                  (3.1.10) 
 
 

 

and in particular, 

,p)1p(p2pS 3
2

)( 1p3p2                                   (3.1.11) 
 
 

 

so that, by Lemma 3.1.7, 
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.pSpp2pS )()( 3p3p22p3p2 2
23

2                        (3.1.12) 
 

Continuing in this way, we get  

,pSp2p2pS )()( 4p4p23p4p2 2
23

2    
 

and in general, we have the following lemma. 

 

Lemma 3.1.10 : For any prime p ≥ 3, 

)()( kkpp21kkpp2
2

23
2

pSp)2k(p2pS    for k = 3, 4, …, p. 
 

Proof : The validity of the result for k = 3 follows from (3.1.12). To proceed by induction 

on k, we assume that the result is true for some k. Then, by Corollary 3.1.1, 
 
 

2 3 2p kp k2S p 2p (k 2)p p;   1,   2,   ...,   p.( )                                 (3.1.13) 
 

From (3.1.13) with  = p, we get 
 

,p)1k(p2pS 23
2

)( kp)1k(p2   
 

so that, by Lemma 3.1.7, 
 

.p)1k(p2pS 23
2

)( 1kp)1k(p2   
 

Thus, the result is also true for k + 1, thereby completing induction. ■ 

 

In the particular case when k = p (  3) in Lemma 3.1.10, we have 
 

,pSp2p3pS )()( pp31pp3
2

23
2

                            (3.1.14) 
 

so that, by Corollary 3.1.1, 
 
 

 
 

 

2 3 2p p3S p 3p 2p p;   1,   2,   ...,   p.( )                             (3.1.15) 
 

Corresponding to  = p (p ≥ 3), (3.1.15) gives 
 

,pSpp3pS )()( 1p2p3p2p3
2

23
2

                           (3.1.16) 
 

where the r.h.s. expression in (3.1.16) follows by virtue of Lemma 3.1.7. From (3.1.16), by 

Corollary 3.1.1, we have 
 

 
 

2 3 23p 2p
S p 3p p ( 1)p;  2,   3,   ...,   p 1,( ) 

     
                (3.1.17) 

 

which, in the particular case when  = p + 1 (p ≥ 5), gives 
 

,pSpSp3pS )()()( 3p3p32p3p31p3p3
22

3
2

               (3.1.18) 

where we have used Lemma 3.1.7 to get the expressions of )( 2p3p3
2

pS   as well as 

)( 3p3p3
2

pS   on the r.h.s. of (3.1.18). Then, for p ≥ 5, by Corollary 3.1.1, we have 
 

 
 

2 33p 3p
S p 3p ( 3)p;   4,   5,   ...,   p 3.( ) 

    
                    (3.1.19) 
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With  = p + 3 in (3.1.19), we get 
 

,pSpp3pS )()( 4p4p33p4p3
2

23
2

                        (3.1.20) 
 

where the r.h.s. of (3.1.20) follows by virtue of Lemma 3.1.7. 
 

We now state and prove the general case in the lemma below. 
 

Lemma 3.1.11 : For k = 4, 5, …, p + 2; (p ≥ 5 is a prime), 
 

 
 

 

 

2 23 23p + kp + k 1 3p + kp + k
S p = 3p + (k 3)p = S p( ) ( )

 . 
 

 

 
 

Proof : is by induction on k. From (3.1.20), we see that the result is true for k = 4. So, we 

assume that the result is true for some k. Then, by Corollary 3.1.1, we have  
 

2 3 23p kp k
S p 3p (k 3)p p;  1,   2,   ...,   p.( )  

    
                        (3.1.21) 

 

With  = p in (3.1.21), we have 
 

,p)2k(p3pS 23
2

)( kp)1k(p3   
 

so that, by Lemma 3.1.7, 
 

,p)2k(p3pS 23
2

)( 1kp)1k(p3   
 
 

 
 

which shows that the result is true for k + 1. This completes the proof by induction, thereby 

establishing the lemma. ■ 

 

Lemma 3.1.12 : For k = 1, 2, …, p – 1, 
 

 

 
 

 

 

 

(1) 
2 2 23kp + kp + k 2 kp + kp + k 1 kp + kp + k

S p = kp = S p = S p ,( ) ( ) ( ) 
 

 
 

 
 

(2) 
2 23 2kp + (k + 1)p + k kp + (k + 1)p + k + 1

S p = kp + p = S p .( ) ( )  

where p is a prime. 
 
 

 

Proof : In either case, the proof is by induction on k. 
 

From (3.1.3), we see that part (1) of the lemma is true for k = 1; and the validity of part (2) for  

k = 1 follows from (3.1.5). So, we assume that the results are true for some k. 
 
 

(1) By Corollary 3.1.1, together with the induction hypothesis, 
 
 

2 3 2kp (k  1)p k 1
S p kp p p;  1,   2,   ...,   p,( )    

   
               (3.1.22) 

 

which, for  = p, gives 
 

.pSp2kppS )()( 2pkp)1k(kp1pkp)1k(kp
2

23
2

         (3.1.23) 

 

In (3.1.23), the right-hand side expression follows by virtue of Lemma 3.1.7. 
 
 

 

 
 

Again, from (3.1.23), by virtue of Corollary 3.1.1, we get 
 

2 3 2kp (k 1)p k p 2
S p kp 2p p; 1,   2,   ...,   p,( )     

   
              (3.1.24) 

 

which, with  = p, gives 
 

2 23 2kp (k 1)p k 2p 2 kp (k 1)p k 2p 3
S p kp 3p S p .( ) ( )         

                    (3.1.25) 
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Note that, the right-hand expression in (3.1.25) follows by virtue of Lemma 3.1.7. 
 

Continuing in this way, we get 
 

2 23 2kp (k 1)p k ( 1)p 1 kp (k 1)p k ( 1)p
S p kp p S p ,( ) ( )               

    (3.1.26) 
 

which can be proved by induction on  for  = 1, 2, …, p. The case  = 1 follows from the 

induction hypothesis. Then, (3.1.23) proves the validity of the result for  = 2. To proceed 

by induction on , we assume that (3.1.26) is valid for some . Then, by Corollary 3.1.1, 
 

 

 
 

 

2 3 2kp (k 1)p k ( 1)p  m
S p kp p mp;  m 1,   2,   ...,   p.( )      

   
    

 

With m = p, we get 
 

2 23 2kp  (k 1)p k p kp (k 1)p k p 1
S p kp ( 1)p S p .( ) ( )          

   
     

 

Note that, the expression of 
2kp (k 1)p k p 1

S p( )      
 on the right-hand side above 

follows by virtue of Lemma 3.1.7. Thus, the result is true for  + 1. 
 

Now, (3.1.26) with  = p gives 
 

2 23(k 1)p  (k 1)p  k 1 (k 1)p  (k 1)p  k
S p (k 1)p S p ,( ) ( )        

          (3.1.27a) 
 

and then, by Lemma 3.1.7, 
 

2 3(k 1)p  (k 1)p  k 1
S p (k 1)p .( )    

                             (3.1.27b) 
 

The validity of part (1) of the lemma for k + 1 follows from (3.1.27). 
 

(2) From (3.1.27b), we get 
 

2 3(k 1)p  (k 1)p  k   1
S p (k 1)p p;  1,   2,   ...,   p,( )       

           (3.1.28) 
 

which, for  = p, gives 
 

2 3 2(k 1)p  (k 2)p  k 1
S p (k 1)p p ,( )    

                          (3.1.29a) 
 

so that, by Lemma 3.1.7, 
 

2 3 2(k 1)p  (k 2)p  k 1
S p (k 1)p p .( )    

                          (3.1.29b) 
 

(3.1.29) show that part (2) of the lemma is true for k + 1. 
 

All these complete the proof of the lemma. ■ 

 

From part (1) of Lemma 3.1.12 with k = p – 1, we get 
 

.pSpSp)1p(pS )()()( 1p2p3p
33

3
3

                      (3.1.30) 
 

From (3.1.27) with k = p – 1, we get 
 

.pSpSppS )()()( 1pppppp1ppp
2323

4
23

                  (3.1.31) 

 

In the next section, we make some observations and conjectures related to the Smarandache 

function. 
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3.2  Some  Remarks 

 
From Lemma 3.1.3, S(pk) is linear in p for 1 ≤ k ≤ p – 1. By Lemma 3.5 and Lemma 3.1.3, 
 

k > p     S(pk) ≥ S(pp) = p2. 
 

It then follows that S(pk) is linear in p if and only if 1 ≤ k ≤ p – 1. 
 

We conjecture the following, based on Lemma 3.1.5. 
 

Conjecture 3.2.1 : 
k  k  kp

S p (p  1)p  for all 1, 2, ..., k 1,   k 2;( ) 
    


  (p is a prime). 

 

The conjecture above follows from Lemma 3.1.5 by repeated application of Lemma 3.1.7, 

provided that )( 1kpk
pS  ≠ . p)1p( k  For k = 3, we refer the reader to (3.1.30). 

 
 

 

Also, based on the expressions of ,pS  andpS  ,pS )(  )()( 1ppp1pp1p
232

  given 

by Lemma 3.1.3, (3.1.3) and (3.1.31) respectively, we make the following conjecture. 
 

Conjecture 3.2.2 : For any prime p  3, .1k for ppS 1k
1kk

)( 1p  ...  pp  
   

 

We conclude this chapter with the following conjecture. 
 

Conjecture 3.2.3 : Let p and q be primes with q > p. Then, the equation 
 

S(p)       =         S(q)                                                 (3.2.1) 
 

has an infinite number of solutions. 

 

Since S(24) = 6 = S(32), we see that the equation (3.2.1) indeed possesses a solution. To find 

more solutions, we proceed as follows : Let the primes p (  3) and q be such that q = 2p – 1. 

Then, by Lemma 3.1.8, 
 

 
 

S(p2p) = 2p2 – p = p(2p – 1). 
 

Now, by Lemma 3.1.3, 
 

 

 

S(qp)       =           p q, 
 
 

 
 

 

so that S(p2p)       =         S(qp) for all such primes p and q. Then, a second solution of the equation 

(3.2.1) is : p = 3,  = 6, q = 5,  = 3, with 
 

 
 

 

 

S(36) = 15 = S(53). 
 
 

 

It is conjectured that the equation 
 

 

 

S(n) = S(n + 1)                                                (3.2.2) 
 

 
 

has no solution. Assuming that n = M p, n + 1 = N q for some primes p and q such that      

(M, p) = 1, (N, q) = 1, (M, N) = 1 with S(n) = p and S(n + 1) = q, we see that a necessary 

condition that the equation (3.2.2) has a solution is that the equation (3.2.1) possesses a solution. 

Thus, in order to look for solutions of the equation (3.2.2), it is necessary to concentrate our 

attention to the solution of the equation (3.2.1). As has been noted above, the minimum solution 

of the equation (3.2.1) is p = 24, q = 32, and it is easy to check that the Diophantine equation 

below has no solution : 
 
 

 

16M – 9N = 1,  
 
 

 

where (M, N) = 1, M < 16 with (M, 16) = 1, N < 9 with (N, 9) = 1. 
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We conclude this chapter with the following equation, proposed by Muller(8), and subsequently, 

taken up by Maohua(9) : 
 

 

 
 

 

S(mn) = mk S(n); m, n and k are positive integers.                     (3.2.3) 
 
 

 

 
 

Note that m = 1, n = 1, k = 1 is always a solution of the equation (3.2.3), called its trivial solution. 

To find non-trivial solutions of equation (3.2.3), first note that, there is nothing to prove if m = 1. 

Again, with n = 1, (3.2.3) reads as 
 

 
 

S(m) = mk,                                                   (3.2.4) 
 

 
 

and we must have k = 1 (since, by Lemma 3.7 in Majumdar(10), S(m)  m for all integer m  1). 

In this case, by Lemma 3.3.5 in Majumdar(10), the only solutions of the corresponding equation 

S(m) = m are m = 1, 4, p (where p  2 is a prime). If m = 2, then (3.2.3) takes the form 
 
 

 

 
 

S(2n) = 2k S(n),                                                (3.2.5) 
 

 

 

 

which has no solution if n  3 (since, by Lemma 3.9 in Majumdar(10), S(2n)  n for n  3). Clearly, 

when m = 2 and n = 2 in (3.2.3), we must have k = 1. With n = 2, the equation (3.2.3) becomes 
 

 
 

 

S(2m) = 2mk, 
 

 
 

which does not have any solution in integers m  3 and k  1. So, let n  3. Then, since 
 

 
 

 
 

mk S(n) = S(mn) ≤ S(m) + S(n), 

we get 

mk ≤ ,11
3)n(S

)m(S
 m  

and we are led to a contradiction. Thus, we must have n  2, and corresponding to n = 2, the only 

solution of the equation (3.2.3) is m = 2, n = 2, k = 1. 
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Chapter        4    The  Pseudo  Smarandache  Function 

 
This chapter is devoted to the pseudo Smarandache function, denoted by Z(n). 
 
 
 
 
 

The pseudo Smarandache function, introduced by Kashihara(1), is as follows : 
 
 
 

 

Definition 4.1 : For any integer n    1, the pseudo Smarandache function Z(n) is the 

smallest positive integer m such that 1  +  2  +  …  +  m   

2

m(m  1)
 is divisible by n. Thus, 

 
 

Z(n)  =   min { m : m  , n  |   

2

m(m  1) }; n    1,  
 

 

(where   is the set of all positive integers). 
 

 

 
 
 

 
 

Kashihara(1), Ibstedt(2), Ashbacher(3) and Pinch(4) studied some of the elementary properties 

satisfied by Z(n). Their findings are summarized below. 
 
 

 
 

Lemma 4.1 : 3      Z(n)      2n  – 1 for all integer n    4. 
 

 

Lemma 4.2 :   Z(n)     n  – 1 for any odd integer n    3. 
 

 

Lemma 4.3 : For any composite number n     4, Z(n)    max { Z(d) : d  |  n }. 
 

Lemma 4.4 : For any integer n    4, 1
2

Z(n) ( 1 8n 1) n.     

 

This chapter gives some new results related to the pseudo Smarandache function Z(n). 
 
 
 
 

In Section 4.1, we give some explicit forms for Z(n), which are available in the current 

literature. The values of Z(p.2k), p = 5, 7, 11, 13, 17, 19, 31 are available In the current literature. 

A closed-form expression of Z(23.2k) has been derived in Lemma 4.1.9 in Section 4.1 below. 

An expression for Z(pq) is given in Theorem 4.1.2, which shows that the method of finding the 

value of Z(pq) involves the solution of two Diophantine equations in p and q. Some particular 

cases of Theorem 4.1.2 are given in Corollariy 4.1.5  –   Corollary 4.1.8. Section 4.2 is devoted to 

the study of some miscellaneous topics, where the solutions of the three Diophantine equations, 

Z(n) + SL(n) = n, Z(n) = SL(n), and Z(mn) = mk S(n), are given, SL(n) being the Smarandache 

LCM function.  

 
4.1    Some  Explicit          Expressions           for           Z(n) 
 
 

 

Some closed-form expressions of Z(n), available in the current literature, are summarized in 

the following lemmas. 
 

 

 

Lemma 4.1.1 : Z(
2

)1  k(k  )  =  k for any integer k  1. 
 

 
 

Lemma 4.1.2 : For any integer k  1, Z(2k)  =  2k
 

+
 

1
  – 1. 

 
 

Lemma 4.1.3 : For any prime p    3 and any integer k  1, Z(pk)  =  pk
  –  1. 

 
 

 

Lemma 4.1.4 : If p    3 is a prime and n    2 is an integer (not divisible by p), then 
 

 p 1,  if 2n (p 1)
Z(np)

 p,       if 2n (p 1)

  


 
                                           

37 



 

 

 

38                                                                                                                                           Smarandache Numbers Revisited 

Lemma 4.1.5 : If p    3 is a prime and n  2 is an integer not divisible by p, then  
 

2 2
2

2 2

p 1,  if 2n (p 1)
Z(np )

 p ,       if 2n (p 1)

   
 

 
  

 
 
 

Lemma 4.1.6 : If p    3 is a prime and k    3 is an integer, then 
k

k

k

 if 4 (p 1)p ,  and k is odd
Z(2p )

otherwise1 ,p

  
  

 

 

In particular, the expressions for Z(np), are available when n = 4(1)13, 16, 32, 24, 48, 96, 

(where p is a prime). Also, available are the explicit forms of Z(p.2k), p = 5, 7, 11, 13, 17, 19, 31. 

These values are given in Majumdar(5).  
 

 
 

 
 

Lemma 4.1.9 gives an expression of Z(23.2k). To prove the lemma, we need the results 

below. 
 

Lemma 4.1.7 : If p = 2P + 1 is a prime, then 
 

(1) p divides 2P – 1 if p = 8ℓ  1 (for some integer ℓ), (2) p divides 2P + 1 if p = 8ℓ  3. 
 

 

Proof : See, for example, Theorem 18 in Daniel Shanks(6). ■ 
 

Corollary 4.1.1 : Given any prime p  3, p = 2P + 1, there is an integer n such that p divides   

2n – 1. 

Proof : If p is of the form 2n – 1 for some integer n  2, there is nothing to prove. 

So, let p be not of the form 2n – 1. Now, if p = 8ℓ  1, by Lemma 4.1.7, p divides 2P – 1, so that 

the result is true with n = P. On the other hand, if p = 8ℓ  3, then 
 

p 2P + 1      p (2P + 1)(2P – 1) = 22P – 1, 
 

and the result holds true with n = 2P. ■ 
 

Lemma 4.1.8 : If p divides 2n – 1 for some integer n ≥ 1, then p divides 2mn – 1 for any 

integer m  1. 
 

Proof : The proof is by induction on m. When m = 1, the result is clearly true. So, let the 

result be true for some integer m. 

Now, since 

2(m
  

+
 

1)n – 1 = 2n(2mn – 1) + 2n – 1, 
 

it follows that the result is true for m + 1 as well, completing induction. ■ 
 

The expression of Z(23.2k), due to Majumdar(7), is given in the following lemma. 
 

Lemma 4.1.9 : For any integer k  0, 
 

k 1

        
k 2

k 1

k 2

k 1

k 1

k 1

k 4

k

11.2 , if  11 k

3.2 1, if  11 (k 1)

3.2 1, if  11 (k 2)

5.2 , if  11 (k 3)

5.2 , if  11 (k 4)
Z(23.2 ) 9.2 1, if  11 (k 5)

7.2 , if  11 (k 6)

2 1,

  

     

     

         

        
      

          

  



















  

  

 

 

  

 





k 3

k 2

k 1

if  11 (k 7)

2 1, if  11 (k 8)

2 1, if  11 (k 9)

2 1, if  11 (k 10)

     
       
     
     







 

  

  

  

















k 1

   
k 2

k 1

k 2

k 1

k 1

k 1

k 4

11.2 , if  k = 11a

3.2 1, if  k = 11a 1

3.2 1, if  k = 11a 2

5.2 , if  k = 11a 3

5.2 , if  k = 11a 4

9.2 1, if  k = 11a 5

   7.2 , if  k = 11a 6

2 1,

 

      

     

        

        

     

            

   

















 

 





 







k 3

k 2

k 1

if  k = 11a 7

2 1, if  k = 11a 8

2 1, if  k = 11a 9

2 1, if  k = 11a 10

    
      
     
     









 

 

 
















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Proof : By definition, 
 

Z(23.2k) = min {m : 23.2k |
2

m(m  1) } = min {m : 23.2k+1 | m(m + 1)}.       (1) 
 

Here, 2k + 1 must divide one of m and m + 1, and 23 must divide the other. 

We now consider all the possible cases below : 
 

Case 1 : When k is of the form k = 11a for some integer a  1. 
 

 
 

 

By Corollary 4.1.1, 23 divides 211a – 1 = 2k – 1. Now, 
 

23(11.2k+1 + 1) = 22(2k – 1) + 23    23.2k+1(11.2k+1)(11.2k+1 + 1). 
 

Therefore, the minimum m in (1) can be taken as 11.2k+1. 
 

Case 2 : When k is of the form k = 11a + 1 for some integer a  0. 

Here, since 

3.2k+2 – 1 = 24(2k–1 – 1) + 23, 
 

by Corollary 4.1.1, 23 divides 3.2k
 

+
 

2 – 1 and hence, in this case, the minimum m in (1) may be 

taken as 3.2k+1 – 1. 
 

Case 3 : When k is of the form k = 11a + 2 for some integer a  0. 
 

In this case, since 
 

3.2k+1 – 1 = 24(2k–2 – 1) + 23, 
 

it follows that, 23 divides 3.2k+2 – 1, and hence, Z(23.2k) = 2k+3. 
 

Case 4 : When k is of the form k = 11a + 3 for some integer a  0. 
 

Here, since  

5.2k+2 + 1 = 160(2k–3 – 1) + 161, 
 

and since 23 divides both 2k–3 – 1 = 211a – 1 (by Corollary 4.1.1) and 161, it follows that 23 

divides 5.2k+2 – 1, and consequently, Z(23.2k) = 5.2k
 

+
 

2. 
 

Case 5 : When k is of the form k = 11a + 4 for some integer a  0. 
 

In this case, 
 

23 (5.2k+1 + 1) = 160(2k–4 – 1) + 161    Z(23.2k) = 5.2k+1. 
 

Case 6 : When k is of the form k = 11a + 5 for some integer a  0. 

Here, note that 
 

9.2k+1 – 1 = 576(2k–5 – 1) + 575    23(9.2k+1 – 1), 
 

and hence, Z(23.2k) = 9.2k+1 – 1. 
 

Case 7 : When k is of the form k = 11a + 6 for some integer a  0. 
 

Here, the result follows from the following chain of implications :   

 

7.2k+1 + 1 = 896(2k–6 – 1) + 897    23(7.2k+1 + 1)    Z(23.2k) = 7.2k+1. 
 

Case 8 : When k is of the form k = 11a + 7 for some integer a  0. 
 

 

In this case, 
 

2k+4 – 1 = 211(2k–7 – 1) + 211 – 1. 
 

Now, since 23 divides 2k–7 – 1 = 211a – 1 and 211 – 1 (by Corollary 4.1.1), it follows that 23 divides 

2k+4 – 1, and consequently, Z(23.2k) = 2k+4 – 1. 
 

Case 9 : When k is of the form k = 11a + 8 for some integer a  0. 
 

 

Here, by Corollary 4.1.1, 
 

23(2k+3 – 1) = 211(a+1) – 1    Z(23.2k) = 2k+3 – 1. 
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Case 10 : When k is of the form k = 11a + 9 for some integer a  0. 

In this case, since 23 divides 2k+2 – 1 = 211(a+1) – 1, it follows that Z(23.2k) = 2k+2 – 1. 
 

Case 11 : When k is of the form k = 11a + 10 for some integer a  0. 
 

 

Here, since 23 divides 2k+1 – 1 = 211(a+1) – 1, it follows that Z(23.2k) = 2k+1 – 1. 
 

All these complete the proof. ■ 

 

The following lemma gives a closed-form expression of Z(p.2k) for k ≥ 1 in the particular 

case when p is a prime of the form 2q – 1, that is, when p is a Mercenne prime. The result is due 

to Majumdar(8). 
 

Lemma 4.1.10 : Let p be a prime of the form p = 2q – 1, q  2. Then 
 













1qi1  ,ik divides q

                          k divides q
  

if

if
  

   ,2

,2)1p(
)2.p(Z

iqk

k
k

 

 

Proof : First note that, if p = 2q – 1 is prime, then by the Cataldi-Fermat Theorem, q must be 

a prime (see, for example, Theorem 4 in Daniel Shanks(6)). 

Now, by definition, 
 

Z(p.2k) = min {m : p.2k
    |   

2

m(m  1) } = min {m : p.2k+1 | m(m + 1)}.               (2) 
 

Here, p must divide one of m and m + 1, and 2k
 

+
 

1 must divide the other. 

We now consider all the possible cases below : 
 

Case (1) : When k is of the form k = qa for some integer a  1. 

Let p = 2P + 1. Now, since 
 

P.2k+1 + 1 = 2P(2k – 1) + (2P + 1) = 2P(2qa – 1) + p, 
 

it follows that p divides P.2k+1 + 1 (by Lemma 4.1.8), so that p.2k
 

+
 

1 divides P.2k+1(P.2k+1 + 1). 
 

Therefore, the minimum m in (2) can be taken as P.2k+1, and hence, 
 

Z(p.2k) = P.2k+1 = (p – 1)2k. 
 

Case (2) : When k is of the form k = qa + 1 for some integer a  0. 

Here, 

2q–2.2k+1 – 1 = 2q(2qa – 1) + 2q – 1, 
 

so that, p divides 2k+q–1 – 1 and hence, p.2k+1 divides 2k+q–1(2k+q–1 – 1). Thus, in this case, the 

minimum m in (2) may be taken as 2k+q–1 – 1, so that Z(p.2k) = 2k+q–1 – 1. 
 

Case (3) : When k is of the form k = qa + 2 for some integer a  0. 
 

In this case, since 
 

2q–3.2k+1 – 1 = 2q(2qa – 1) + 2q – 1, 
 

it follows that, p.2k+1 divides 2k+q–2(2k+q–2 – 1), and hence, Z(p.2k) = 2k+q–2 – 1. 

. 

. 

. 

Case (q) : When k is of the form k = qa + q – 1 for some integer a  0. 
 

Here, 

2k+1 – 1 = 2q(a+1) – 1, 
 

so that p.2k+1 divides 2k+1(2k+1 – 1), and consequently, Z(p.2k) = 2k+1 – 1. 
 

All these complete the proof of the lemma. ■ 
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Some particular cases of Lemma 4.1.10 are Z(3.2k) (corresponding to q = 2), Z(7.2k) 

(corresponding to q = 3), and Z(31.2k) (corresponding to q = 5). The explicit forms of Z(3.2k), 

Z(7.2k) and Z(31.2k) are given below. These results have been established by Majumdar(5) in 

detail by alternative methods. 
 

 

Corollary 4.1.2 : For any integer k  1, 
 

k 1
k

k 1

2 1, if k is odd
Z(3.2 )

 if k is even 2 ,      





 
 


 

Proof : Since this case corresponds to q = 2, q divides k if and only if k is even. The result 

then follows from Lemma 4.1.10 immediately. ■ 
 

Corollary 4.1.3 : For any integer k  1, 
 

k 1

k k 2

k 1

3.2 ,        if  3 k

Z(7.2 ) 2 1,     if  3 (k 1)

 2 1,     if  3 (k 2)







 


   
   

 

Proof : This case corresponds to q = 3, and so, there are three possibilities, namely, k is one 

of the three forms k = 3a, 3a + 1, 3a + 2. Then, appealing to Lemma 4.1.10, we get the desired 

expression for Z(7.2k). ■ 

 

Corollary 4.1.4 : For any integer k  1, 
 

k 1

k 4

k k 3

k 2

k 1

15.2 ,   if  5 k

2 1,  if  5 (k 1)
Z(31.2 )  2 1,  if  5 (k 2)

2 1,  if  5 (k 3)
2 1,  if  5 (k 4)











 
   


    
   


  

 

 

Proof : Here, k can be one of the five forms k = 5a, 5a + 1, 5a + 2, 5a + 3, 5a + 4. When    

k = 5a, by Lemma 4.1.10, Z(31.2k) = 30.2k = 15.2k+1. The other four cases also follow readily 

from Lemma 4.1.10. ■ 
 

The following result, due to Ibstedt(2), gives an expression for Z(pq), where p and q are two 

distinct primes. 
 

Theorem 4.1.1 : Let p and q be two primes with q  >  p. Let g  =  q  –   p. Then, 
 

Z(pq)  =  min { p(qk  1) q(pk  1)
g g,
  }, 

 

where both qk  +  1 and pk  –  1 are divisible by g. 
 

 

An alternative expression for Z(pq), due to Majumdar(5), is given below. 
   

 

 
 

Theorem 4.1.2 : Let p and q be two primes with q  >  p    5. Then, 
   

Z(pq)  =  min {qyo  –  1,  pxo  – 1}, 

where 

yo  =  min {y : x,  y  , q y  –  p x  =  1}, 
  
  

xo  =  min {x : x,  y  , p x  –  q y  =  1}. 
 
 
 
 
   

 

 

To apply Theorem 4.1.2 to find Z(pq), it is convenient, from the computational point of 

view, the two possible cases, considered in Remark 4.1.1 below. 
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Remark 4.1.1 : Let p and q be two primes with q  >  p    5. Let 
   

 

q  =  k p  +  ℓ for some integers k and ℓ with k    1 and 1    ℓ    p  –  1. 
   
 

We now consider the two cases given in Theorem 4.2.2 : 
   

Case 1 : When p divides m and q divides  (m  +  1). In this case, 
 

m  =  p x for some integer x    1, 
  
  

m  + 1  =  q y  =  (k  p   + ℓ)y for some integer y    1. 
   

From the above two equations, we get 
 
 

ℓ y  –  (x   –   k y)p  =  1.                                                                                                 
     

    (4.1.1) 
 
   

Case 2 : When p divides (m  +  1) and q divides m. Here, 
 

m  + 1  =  p x for some integer x    1, 
 

 

m  =  (k p   +  ℓ)y for some integer y    1. 
 

These two equations lead to  
 
 

(x  –   k  y)p   –   ℓ  y  =  1.                                                                                                         
   

      (4.1.2) 
 
 

 

 
 

Thus, to find Z(pq), it is necessary to solve the Diophantine equations (4.1.1) and 

(4.1.2) for minimum x or y.  

 

Some particular cases are given in Corollary 4.1.5 – Corollary 4.1.8 below, which illustrate 

the application of Theorem 4.1.2. 

 

When q = kp + 9, k ≥ 2, the Diophantine equations (4.1.1) and (4.1.2) become 
 

(kp + 9)y  px = 1, 
 

px  (kp + 9)y = 1, 

that is, 

9y  (x – ky)p = 1,                                              (4.1.3) 
 

(x – ky)p  9y = 1.                                                      (4.1.4) 

 

Corollary 4.1.5 : Let p and q > p be two primes; moreover, let q be of the form q = kp + 9 

for some integer k ≥ 2. Then, 
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Proof : We consider the following cases that may arise. 
 

Case 1. When p = 9a + 1 for some integer a ≥ 2. 
 

In this case, the Diophantine equations (4.1.3) and (4.1.4) take the following forms : 
 

1 = 9y  (x – ky)(9a + 1)p = 9[y – (x – ky)a] – (x – ky), 
 

1 = (x – ky)(9a + 1)  9y = (x – ky) – 9[y – (x – ky)a]. 
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The minimum solution is then obtained from the second of the above two equations with 
 

x – ky = 1, y – (x – ky)a = 0. 
 

Therefore, y = a, and consequently, the minimum m is given by 

9

q(p  1)
m = qy = .


 

 

 

Case 2. When p = 9a + 2 for some integer a ≥ 1. 
 

Here, (4.1.3) and (4.1.4) take the forms 
 

1 = 9y  (x – ky)(9a + 2)p = 9[y – (x – ky)a] – 2(x – ky), 
 

1 = (x – ky)(9a + 2)  9y = 2(x – ky) – 9[y – (x – ky)a]. 
 

The minimum solution is then obtained from the first of the above two Diophantine equations 

with 

x – ky = 4, y – (x – ky)a = 1, 
 

so that y = 4a + 1, and consequently, the minimum m is 
 

m = qy – 1 = q(4a + 1) – 1 1
9

q(4p + 1)
.   

 

 

Case 3. When p = 9a + 4 for some integer a ≥ 1. 
 

In this case, from (4.1.3) and (4.1.4), the Diophantine equations satisfied are 
 

1 = 9y  (x – ky)(9a + 4)p = 9[y – (x – ky)a] – 4(x – ky), 
 

1 = (x – ky)(9a + 4)  9y = 4(x – ky) – 9[y – (x – ky)a], 
 

and the minimum solution, obtained from the first equation, is 
 

x – ky = 2, y – (x – ky)a = 1. 
 

Therefore, y = 2a + 1, and the minimum m is 
 

m = qy – 1 = q(2a + 1) – 1 1
9

q(2p + 1)
.   

 
 

 
 

Case 4. When p = 9a + 5 for some integer a ≥ 0. 
 
 

Here, the Diophantine equations (4.1.3) and (4.1.4) become 
 

1 = 9y  (x – ky)(9a + 5)p = 9[y – (x – ky)a] – 5(x – ky), 
 

1 = (x – ky)(9a + 5)  9y = 5(x – ky) – 9[y – (x – ky)a]. 
 

Thus, the minimum solution is obtained from the second equation, with 
 

x – ky = 2, y – (x – ky)a = 1. 
 

Thus, y = 2a + 1, and the minimum m is given by 
 

m = qy = q(2a + 1)
9

q(2p  1)
.


   

Note that, in this case, when a = 0, we get 
 

Z(5q) = q for q = 5k + 9; k = 2, 4, …, 
 

which is true (by Lemma 4.2.17 in Majumdar(5)). 
 

Case 5. When p = 9a + 7 for some integer a ≥ 0. 
 

In this case, the Diophantine equations (4.1.3) and (4.1.4) reduce to 
 

1 = 9y  (x – ky)(9a + 7)p = 9[y – (x – ky)a] – 7(x – ky), 
 

1 = (x – ky)(9a + 7)  9y = 7(x – ky) – 9[y – (x – ky)a], 
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and the minimum solution is obtained from the second one as follows : 
 

x – ky = 4, y – (x – ky)a = 3. 
 

Then, y = 4a + 3, and the minimum m is given by 
 
 

m = qy = q(4a + 3)
9

q(4p  1)
.


   

When a = 0, we get 
 

Z(7q) = 3q, q = 7k + 9, k = 2, 4, 6, …, 
 

which is valid (by Lemma 4.2.19 in Majumdar(5)). 
 

Case 6. When p = 9a + 8 for some integer a ≥ 1. 
 

Here, the Diophantine equations (4.1.3) and (4.1.4) take the form 
 

1 = 9y  (x – ky)(9a + 8)p = 9[y – (x – ky)a] – 8(x – ky), 
 

1 = (x – ky)(9a + 8)  9y = 8(x – ky) – 9[y – (x – ky)a]. 
 

Clearly, the minimum solution is obtained from the first equation as follows : 
 

x – ky = 1, y – (x – ky)a = 1. 
 

Therefore, y = a + 1, and hence, the minimum m is 
 

 

m = qy – 1 = q(a + 1) – 1
9

q(p  1)
1.


   

 

 
 

All these complete the proof of the corollary. ■ 

 

With q = (k + 1) p – 9, the Diophantine equations (4.1.1) and (4.1.2) read as 
 

[(k + 1) p – 9]y  px = 1, 
 

px  [(k + 1) p – 9]y = 1, 

that is, 

1 = [(k + 1)y – x]p – 9y,                                               (4.1.5) 
 

1 = 9y – [(k + 1)y – x]p.                                              (4.1.6) 

 

Corollary 4.1.6 : Let p and q > p be two primes with q = (k + 1)p – 9 for some integer k ≥ 2. 

Then, 
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Proof : We consider the six possibilities that may arise : 
 

Case 1. When p = 9a + 1 for some integer a ≥ 2. 
 
 

In this case, the Diophantine equations (4.1.5) and (4.1.6) read respectively as 
 

1 = [(k + 1)y – x](9a + 1) – 9y = [(k + 1)y – x] – 9[y – {(k + 1)y – x}a], 
 

1 = 9y – [(k + 1)y – x](9a + 1) = 9[y – {(k + 1)y – x}a] – [(k + 1)y. 
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The first of the above two equations give the minimum solution, namely, 
 

(k + 1)y – x = 1, y – {(k + 1)y – x}a = 0. 
 

Therefore, y = a, and the minimum m is 
 

9

q(p  1)
m = qy 1 = 1.


   

 
 

Case 2. When p = 9a + 2 for some integer a ≥ 1. 
 

In this case, (4.1.5) and (4.1.6) become 
 

1 = [(k + 1)y – x](9a + 2) – 9y = 2 [(k + 1)y – x] – 9[y – {(k + 1)y – x}a], 
 

1 = 9y – [(k + 1)y – x](9a + 2) = 9[y – {(k + 1)y – x}a] – 2[(k + 1)y – x]. 
 

The minimum solution is then obtained from the second of the above two equations : 
 

(k + 1)y – x = 4, y – {(k + 1)y – x}a = 1. 
 

Then, y = 4a + 1, and the minimum m is 
 

9

q(4p  1)
m = qy = .


 

 

 

Case 3. When p = 9a + 4 for some integer a ≥ 1. 
 

Here, from (4.1.5) and (4.1.6), we have 
 

1 = [(k + 1)y – x](9a + 4) – 9y = 4 [(k + 1)y – x] – 9[y – {(k + 1)y – x}a], 
 

1 = 9y – [(k + 1)y – x](9a + 4) = 9[y – {(k + 1)y – x}a] – 4[(k + 1)y – x]. 
 

The minimum solution is then obtained from the second of the above two equation as follows : 
 

(k + 1)y – x = 2, y – {(k + 1)y – x}a = 1. 
 

Thus, y = 2a + 1, and the minimum m is 
 

9

q(2p  1)
m = qy = .


 

 

 

Case 4. When p = 9a + 5 for some integer a ≥ 0. 
 

From (4.1.5) and (4.1.6), we get 
 

1 = [(k + 1)y – x](9a + 5) – 9y = 5 [(k + 1)y – x] – 9[y – {(k + 1)y – x}a], 
 

1 = 9y – [(k + 1)y – x](9a + 5) = 9[y – {(k + 1)y – x}a] – 5[(k + 1)y – x]. 
 

The minimum solution, obtained from the first equation, is as follows : 
 

 

 

(k + 1)y – x = 2, y – {(k + 1)y – x}a = 1. 
 

This gives y = 2a + 1, and the minimum m is 
 

9

q(2p  1)
1 1m = qy  = .


   

It may be noted here that a = 0 gives 
 

Z(5q) = q – 1; q = 5k – 9, k = 4, 6, …, 
 

which is true (by Lemma 4.2.17 in Majumdar(5)). 
 

Case 5. When p = 9a + 7 for some integer a ≥ 0. 
 

In this case, from (4.1.5) and (4.1.6), we have 
 

1 = [(k + 1)y – x](9a + 7) – 9y = 7 [(k + 1)y – x] – 9[y – {(k + 1)y – x}a], 
 

1 = 9y – [(k + 1)y – x](9a + 7) = 9[y – {(k + 1)y – x}a] – 7[(k + 1)y – x]. 
 

The first equation gives the minimum solution as follows : 
 

(k + 1)y – x = 4, y – {(k + 1)y – x}a = 3. 
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Therefore, y = 4a + 3, and the minimum m is 
 

 

9

q(4p  1)
1 1m = qy  = .


   

In this case, for a = 0, we get 
 

Z(7q) = 3q – 1; q = 7k – 9, k = 4, 6, …, 
 

which is true (by virtue of Lemma 4.2.19 in Majumdar(5)). 
 

Case 6. When p = 9a + 8 for some integer a ≥ 1. 
 

From (4.1.5) and (4.1.6), we have 
 

1 = [(k + 1)y – x](9a + 8) – 9y = 8 [(k + 1)y – x] – 9[y – {(k + 1)y – x}a], 
 

1 = 9y – [(k + 1)y – x](9a + 8) = 9[y – {(k + 1)y – x}a] – 8[(k + 1)y – x]. 
 

The minimum solution is then obtained from the second equation, with 
 

(k + 1)y – x = 1, y – {(k + 1)y – x}a = 1. 
 

That is, y = a + 3, and the minimum m is 
 

 

9

q(p  1)
m = qy = .


 

 

 
 

All these complete the proof of the corollary. ■ 

 

When q = kp + 10, k ≥ 2, the Diophantine equations (4.1.1) and (4.1.2) become 
 

(kp + 10)y  px = 1, 
 

px  (kp + 10)y = 1, 

that is, 

10y  (x – ky)p = 1,                                             (4.1.7) 
 

(x – ky)p  10y = 1.                                                     (4.1.8) 
 

The corollary below gives the closed-form expression of Z(pq), where q = kp + 10. 
 

Corollary 4.1.7 : Let p and q > p be two primes; moreover, let q be of the form q = kp + 10 

for some integer k ≥ 2. Then, 
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Proof : We consider the following four cases that may arise. 
 

Case 1. When p = 10a + 1 for some integer a ≥ 1. 
 

In this case, the Diophantine equations (4.1.7) and (4.1.8) read as 
 

1 = 10y  (x – ky)(10a + 1)p = 10[y – (x – ky)a] – (x – ky), 
 

1 = (x – ky)(10a + 1)  10y = (x – ky) – 10[y – (x – ky)a]. 
 

Clearly, the minimum solution is obtained from the second of the above two equations with 
 

x – ky = 1, y – (x – ky)a = 0. 
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Then, the minimum solution is y = a, and hence, the minimum m is given by 
 

 

10

q(p  1)
m = qy = .


 

 
 

 

Case 2. When p = 10a + 3 for some integer a ≥ 1. 
 

Here, the Diophantine equations (4.1.7) and (4.1.8) become 
 

1 = 10y  (x – ky)(10a + 3)p = 10[y – (x – ky)a] – 3(x – ky), 
 

1 = (x – ky)(10a + 3)  10y = 3(x – ky) – 10[y – (x – ky)a]. 
 

The minimum solution is obtained from the first of the above two Diophantine equations with 
 

x – ky = 3, y – (x – ky)a = 1. 
 

Therefore, the minimum y is y = 3a + 1, and consequently, the minimum m is 
 

m = qy – 1 = q(3a + 1) – 1
10

1
q(3p + 1)

.   
 

 
 

Case 3. When p = 10a + 7 for some integer a ≥ 1. 
 

Here, the Diophantine equations satisfied are 
 

1 = 10y  (x – ky)(10a + 7)p = 10[y – (x – ky)a] – 7(x – ky), 
 

1 = (x – ky)(10a + 7)  10y = 7(x – ky) – 10[y – (x – ky)a], 
 

For which the minimum solution is obtained from the second equation as 
 
 

 

x – ky = 3, y – (x – ky)a = 2. 
 

Thus, the minimum solution is y = 3a + 2, and the minimum m is 
 

 

m = qy = q(3a + 2)
10

q(3p  1)
.


   

 

 
 

Case 4. When p = 10a + 9 for some integer a ≥ 1. 
 

In this case, the Diophantine equations (4.1.7) and (4.1.8) take the forms 
 

1 = 10y  (x – ky)(10a + 9)p = 10[y – (x – ky)a] – 9(x – ky), 
 

1 = (x – ky)(10a + 9)  9y = 10(x – ky) – 9[y – (x – ky)a]. 
 

Clearly, the minimum solution is obtained from the first equation, with 
 

x – ky = 1, y – (x – ky)a = 1. 
 

Thus, y = a + 1, and the minimum m is given by 
 

 

m = qy – 1 = q(a + 1) – 1 10
1

q(p  1)
.


   

 

 
 

 
 

All these complete the proof of the corollary. ■ 

 

When q = (k + 1) p – 10, the Diophantine equations (4.1.1) and (4.1.2) become 
 

[(k + 1) p – 10]y  px = 1, 
 

px  [(k + 1) p – 10]y = 1, 

that is, 

1 = [(k + 1)y – x]p – 10y,                                              (4.1.9) 
 

1 = 10y – [(k + 1)y – x]p.                                            (4.1.10) 
 

 

We now prove the following result, which gives an expression of Z(pq) when p and q ( > p) are 

primes with q = (k + 1)p – 10, k  2. 
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Corollary 4.1.8 : Let p and q > p be two primes with q = (k + 1)p – 10 for some integer k ≥ 2. 

Then, 
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Proof : We consider below separately the four cases that may arise : 
 

Case 1. When p = 10a + 1 for some integer a ≥ 1. 
 

In this case, the Diophantine equations (4.1.9) and (4.1.10) may be rewritten as 
 

1 = [(k + 1)y – x](10a + 1) – 10y = [(k + 1)y – x] – 10[y – {(k + 1)y – x}a], 
 

1 = 10y – [(k + 1)y – x](10a + 1) = 10[y – {(k + 1)y – x}a] – [(k + 1)y – x]. 
 

The first of these two give the minimum solution, namely, 
 

(k + 1)y – x = 1, y – {(k + 1)y – x}a = 0. 
 

The minimum solution is thus y = a, and consequently, the minimum m is 
 
 

10
1

q(p  1)
m = qy 1= .


   

 
 

Case 2. When p = 10a + 3 for some integer a ≥ 1. 
 

Here, (4.1.9) and (4.1.10) become 
 

1 = [(k + 1)y – x](10a + 3) – 10y = 3 [(k + 1)y – x] – 10[y – {(k + 1)y – x}a], 
 

1 = 10y – [(k + 1)y – x](10a + 3) = 10[y – {(k + 1)y – x}a] – 3[(k + 1)y – x]. 
 

The minimum solution, obtained from the second of the above two equations, is 
 

(k + 1)y – x = 3, y – {(k + 1)y – x}a = 1. 
 

Then, the minimum solution is y = 3a + 1, and the minimum m is 
 

 

10

q(3p  1)
m = qy = .


 

 

Case 3. When p = 10a + 7 for some integer a ≥ 1. 
 

In this case, from (4.1.9) and (4.1.10), we have 
 

1 = [(k + 1)y – x](10a + 7) – 10y = 7 [(k + 1)y – x] – 10[y – {(k + 1)y – x}a], 
 

1 = 10y – [(k + 1)y – x](10a + 7) = 10[y – {(k + 1)y – x}a] – 7[(k + 1)y – x]. 
 

The minimum solution is then obtained from the first equation as follows : 
 

(k + 1)y – x = 3, y – {(k + 1)y – x}a = 2. 
 

Thus, y = 3a + 2, and the minimum m is 
 
 

10
1

q(p  1)
m = qy 1= .


   

 

 

Case 4. When p = 10a + 9 for some integer a ≥ 1. 
 

From the Diophantine equations (4.1.9) and (4.1.10), we have 
 

1 = [(k + 1)y – x](10a + 9) – 10y = 9 [(k + 1)y – x] – 10[y – {(k + 1)y – x}a], 
 

1 = 10y – [(k + 1)y – x](10a + 9) = 10[y – {(k + 1)y – x}a] – 9[(k + 1)y – x]. 
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Clearly, the minimum solution is obtained from the second equation, which is 
 

(k + 1)y – x = 1, y – {(k + 1)y – x}a = 1. 
 

This gives the minimum solution y = a + 1, and the minimum m is 
 

 

10

q(p  1)
m = qy = .


 

 

 

All these complete the proof. ■ 
 

The following lemma derives an expression of Z(5.3k) for any integer k  1. 
 

Lemma 4.1.11 : For any integer k  1, 
 
 

 

k

k
k

k
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Proof : By definition, 

Z(5.3k) = min {m : 5.3k
  | 

2

m(m  1) }, 

where 3k must divide one of m and m + 1. 
 
 

 

We first prove that, for any integer n  1, 10 divides 32(2n
 

+
 

1) + 1. The proof is by induction on n. 

Clearly, the result is true for n = 1, as can easily be verified. So, we assume that the result is true 

for some integer m. Now, writing 
 

32(2n
 

+
 

3) + 1 = 81(32(2n
 

+
 

1) + 1) – 80, 
 
 

we see, by virtue of the induction hypothesis, that 10 divides 32(2n
 

+
 

3) + 1 as well. This in turn 

shows that the result is true for n + 1, which we intended to prove. 
 
 

The above analysis shows that 10.32(2n
 

+
 

1) divides 32(2n
 

+
 

1)
  [32(2n

 

+
 

1) + 1], and consequently, 
 
 

 

Z(5.32(2n
 

+
 

1)) = 32(2n
 

+
 

1), n  1. 
 
 

 

 

Next, we show that, 10 divides 34(n
 

+
 

1) – 1 for any integer n  1. Here also, the proof is by 

induction on n. The proof for n = 1 is straight-forward. So, we assume that the result is true for 

some integer n. Then, since 
 

 
 

 

34(n
 

+
 

2) – 1 = 81(34(n
 

+
 

1) – 1) + 80, 
 

 
 

 

this, together with the induction hypothesis, shows that the result is true for n + 1 as well. Thus, 

10 divides 34(n
 

+
 

1) – 1, and hence, 
 

 
 

Z(5.34(n
 

+
 

1)) = 34(n
 

+
 

1) – 1, n  1. 
 
 

 

To find Z(5.34n
 

+
 

1), we write 2.34n
 

+
 

1 – 1 as follows : 
 

 
 

2.34n
 

+
 

1 – 1 = 6.34n = 5.34n + (34n – 1), 
 

 
 

which shows that 5 divides 2.34n
 

+
 

1 – 1. Thus, 10.34n
 

+
 

1 divides 2.34n
 

+
 

1
  (2.34n

 

+
 

1 – 1), and hence, 
 

 
 

Z(5.34n
 

+
 

1) = 2.34n
 

+
 

1 – 1, n  1. 

Finally, since 

2.34n
 

+
 

3 + 1 = 6.34n
 

+
 

2 + 1 = 5.34n
 

+
 

2 + (34n
 

+
 

2 – 1), 
 
 

 

it follows that 5 divides 2.34n
 

+
 

3 + 1. Consequently, 
 

 
 

 

Z(5.34n
 

+
 

3) = 2.34n
 

+
 

3, n  1. 
 

 
 

 

All these complete the proof of the lemma. ■ 
 

 
 

 
 

 

 
 

 
 

 

It may be mentioned here that, the above result is valid for n = 0 as well, since 
 
 

 

Z(45) = 9, Z(405) = 80, Z(15) = 5, Z(135) = 54. 
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4.2     Miscellaneous  Topics 

 
In this section, we consider two Diophantine equations involving Z(n). The first one is the 

equation Z(n) + SL(n) = n, posed by Xin Wu(9), while the second one is Z(n) + SL(N) = n. In this 

section, we also introduce the Diophantine equation Z(mn) = mk Z(n) for which m = 1, n = 1,    

k = 1 is the trivial solution, and the problem is to find non-trivial solutions of the equation. The 

analysis shows that the equation Z(mn) = mk Z(n) is rather interesting. 

 

Xin Wu(9) considered the Diophantine equation 
 

Z(n) + SL(n) = n, 
 

where SL(n) is the Smarandache LCM function, defined below. 
 

Definition 4.2.1 : The Smarandache LCM function, denoted by SL(n), is defined as 
 

SL(n) = min {k ≥ 1 : n | [1, 2, ..., k]}, 
 

where [1, 2, ..., k] is the least common multiple of the integers 1, 2, ..., k. 
 

Then, we have the following result, which gives the expression of SL(n). 
 

Lemma 4.2.1 : Let 1 2
 

1 2 r

 rα  α  α
n = p p ... p be the representation of the integer n in terms of its r 

prime factors p1, p2, ..., pr. Then, 
 

SL(n) = max { 1 2
1 2 r

  α   α   αrp ,  p ,  ...,  p }. 

 

The solution of the Diophantine equation Z(n) + SL(n) = n is given in Theorem 4.2.1. To prove 

the theorem, we need the following result, which gives the expression of Z(2k pα) for some 

particular cases. 
 

Lemma 4.2.2 : Let n be of the form 
 

n = 2k pα, 
 

where p ≥ 3 is a prime, and k ≥ 1 and α ≥ 1 are integers. Then, 
 
 

 

(1) if 2k
 

+
 

1 divides (pα + 1), then Z(n) = pα, 
 
 

(2) if 2k
 

+
 

1 divides (pα  1), then Z(n) = pα  1, 
 

 

(3) if 2k divides (pα  1) but 2k
 

+
 

1 does not divide (pα  1), then Z(n) = pα (2k  1), 
 
 

(4) if pα divides (2k  1), then Z(n) = 2k (pα  1). 
 

 

Proof : By definition, 

Z(n) = Z(2k pα) = min {m : 2k pα |
2

)1  m(m  }. 

(1) If 2k
 

+
 

1 divides (pα + 1), then  
 
 

 

2k+1 p divides p (pα + 1),  
 
 

 

and consequently, Z(n) = pα. 
 

 
 

Now, to prove the remaining cases, we consider the two possibilities that may arise : 
 

Case 1. When 2k
 

+
 

1 divides m, and pα divides (m + 1). 

In this case, 

m = 2k
 

+
 

1 x, m + 1 = pα y for some integers x ≥ 1, y ≥ 1. 
 

Then, we have the following Diophantine equation : 
 

pα y  2k
 

+
 

1 x = 1.                                                           (3) 
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Case 2. When 2k
 

+
 

1 divides (m + 1), and pα divides m. 

Here, 

m + 1 = 2k
 

+
 

1 x, m = pα y for some integers x ≥ 1, y ≥ 1, 

resulting in the Diophantine equation  
 

2k
 

+
 

1 x  pα y = 1.                                                  (4) 
 

(2) Let 2k
 

+
 

1 divide (pα  1), so that 
 

pα  1 = 2k
 

+
 

1 a for some integer a ≥ 1. 
 

Since, pα = 2k
 

+
 

1 a + 1, plugging in the equations (3) and (4), we get 
 

(2k
 

+
 

1 a + 1)y  2k
 

+
 

1 x = 1, 2k
 

+
 

1 x  (2k
 

+
 

1 a + 1)y = 1, 

that is, 

2k
 

+
 

1(ay  x) + y = 1,                                                (5) 
 

2k
 

+
 

1(x  ay)  y = 1.                                                (6) 
 

Clearly, the minimum solution is obtained from (5) with 
 

y = 1, ay  x = 0. 
 

Thus, the minimum m is given by  
 

 

m = pα  1. 
 

(3) Let 2k divide (pα  1) but 2k
 

+
 

1 does not divide (pα  1). Then, 
 

pα  1 = 2k b for some integer b ≥ 1, b ≠ 2. 
 

Therefore, the equations (3) and (4) take the forms 
 

(2k a + 1)y  2k
 

+
 

1 x = 1, 2k+1 x  (2k a + 1)y = 1, 

that is, 

2k(ay  2x) + y = 1,                                                (7) 
 

2k(2x  ay)  y = 1.                                                (8) 
 

Then, (8) gives the minimum solution as follows : 
 

2x  ay = 1, y = 2k  1. 
 

Thus, the minimum m is 
 

 

m = pα y = pα (2k  1). 
 

(4) Let pα divide (2k  1). 

Then, 

2k  1= pα c for some integer c ≥ 1, 
 

and the Diophantine equations (3) and (4) become 
 

pα y  2(pα c + 1)x = 1, 2(pα c + 1)x  pαy = 1, 

that is, 

pα (y  2cx)  2x = 1,                                               (9) 
 

pα (2cx  y) + 2x = 1.                                                       (10) 
 

 
 

The minimum solution, obtained from (9), is 
 

y  2cx = 1, 2x = pα  1. 
 

Consequently, the minimum m is 
 

m = 2k
 

+
 

1 x = 2k(pα  1). 
 

All these complete the proof of the lemma. ■ 
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Theorem 4.2.1 below gives the solution of the Diophantine equation Z(n) + SL(n) = n. 
 

Theorem 4.2.1 : The Diophantine equation Z(n) + SL(n) = n has the solution 
 
 

n = 2k pα, 
 

 

where 2k and pα are such that either pα | (2k  1), or 2k | (pα  1) but 2k+1 does not divide (pα  1). 
 

Proof : If p divides 2k – 1, then by part (3) of Lemma 4.2.2, Z(n) = Z(2k pα) = 2k(p – 1). 

Now, since SL(n) = SL(2k pα) = 2k, we get 
 
 

 

Z(n) + SL(n) = n. 
 
 

 

On the other hand, if 2k divides (p – 1) (but 2k
 

+
 

1 does not divide (pα  1)), then (by part (4) of 

Lemma 4.2.2) Z(n) = Z(2k pα) = p(2k – 1). In this case, SL(n) = SL(2k pα) = p, and hence, 
    

 
 

Z(n) + SL(n) = n. ■ 
 

Theorem 4.2.1 proves that n = 2k p (satisfying either of the two conditions (3) and (4) of 

Lemma 4.2.2) is a solution of the Diophantine equation Z(n) + SL(n) = n. The question is 
 

Question 4.2.1 : Are there other solutions of the Diophantine equation Z(n) + SL(n) = n, 

besides those given in Theorem 4.2.1? 
 

It may be mentioned here that, in finding Z(2k pα) in Lemma 4.2.2, we have considered only 

those cases that ate relevant to the solution of the Diophantine equation Z(n) + SL(n) = n. In 

Lemma 4.2.2, there are other cases that remain to be considered. When  = 1 in Lemma 4.2.2, 

we get Z(p.2k), some of which have already been found (the cases p = 3, 5, 7, 11, 13, 17, 19, 31 

have been derived in Lemma 4.2.6, Lemma 4.2.7, Lemma 4.2.8, Lemma 4.2.9, Lemma 4.2.10, 

Lemma 4.2.11, Lemma 4.2.12 and Lemma 4.2.13 in Majumdar(5), while the explicit expression 

of Z(23.2k) appears in Lemma 4.1.9 in this book). We have the following open problem. 
 

Open Problem 4.2.1 : Find Z(2k pα), where p ≥ 3 is a prime, and k ≥ 1 and α ≥ 1 are integers. 
 

Though Lemma 4.2.2 provides only a partial expression for Z(2k pα), nevertheless, we can 

derive some important and interesting results from it. For example, in part (1) of Lemma 4.2.2,  

let  = 1, p = 2q – 1, where q  2 is a prime (so that p is a Mercenne prime). Now, choosing     

k + 1 = q, we get the following formula : 
 

 
 

Z(2q
 

–
 

1
 (2q – 1)) = 2q – 1, q  2 is a prime.                             (4.2.1) 

 

 
 

In particular, we get the following expressions : 
 

 
 

Z(2.3) = 3, Z(22.7) = 7, Z(24.31) = 31, Z(26.127) = 127. 
 

 
 

Again, note that, in part (2) of Lemma 4.2.2 (with p = 3,  = 2), both 22 and 23 divide p – 1 = 8, 

so that 

Z(2.32) = 8 = Z(22.32). 
 

 
 

On the other hand, since 23 divides p2 – 1 = 32 – 1 but 24 does not divide p2 – 1 = 8, it follows by 

part (3) of Lemma 4.2.2 that 
 
 

 

Z(23.32) = 32 (23 – 1) = 63. 
 
 

 

Finally, to demonstrate the result of part (4) of Lemma 4.2.2, note that 32 divides 26 – 1 and 33 

divides 218 – 1. Therefore, 
 

 

 

Z(26.32) = 512, Z(218.33) = 6815744. 
 

From part (4) of Lemma 4.2.2, we immediately get the following 
 

Corollary 4.2.1 : Let p (  3) be a prime, and let k ( > 0) be an integer such that p divides  

2k – 1. Then, 

Z(p.2k) = (p – 1)2k. 
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In Example 4.2.1, we consider in detail some straight-forward and elementary implications 

of Corollary 4.2.1. 
 

Example 4.2.1 : We consider several applications of Corollary 4.2.1 below. 
 

 

(1) We first prove the following result : 3 divides 22m – 1 for any integer m  1. 

The proof is by induction on m. Clearly, the result is true for m = 1. So, we assume that 

the result holds for some integer m. Now, writing 
 

 
 

22(m
 

+
 

1) – 1 = 4(2m – 1) + 3, 
 

 

we see, by virtue of the induction hypothesis, that 3 divides 22(m
 

+
 

1) – 1, showing that the 

result is true for m + 1 as well. This completes the proof by induction. 
 

 

Alternatively, since 2m – 1, 2m and 2m + 1 are three consecutive integers, it follows that 

one of 2m – 1 and 2m + 1 is divisible by 3, and hence, so also is (2m – 1)( 2m + 1) = 22m – 1. 

Having proved the above result, we get, by Corollary 4.2.1, 
 
 

 

Z(3.22m) = 22m
 

+
 

1, m  1. 
 
 

For an alternative proof, see Corollary 4.1.2 in Majumdar(5). 

Some particular cases of the above result are the following : 
 
 

 

Z(12) = 8, Z(48) = 32, Z(192) = 128, Z(768) = 512. 
 

(2) Before finding an explicit expression form of Z(5.24m), m  1, we prove that, 5 divides 

24m – 1 for any integer m  1. This can be proved by induction on m. The case m = 1 is 

trivial. So, we assume that the result is true for some integer m. Then, since 
 
 

 

24(m
 

+
 

1) – 1 = 16(24m – 1) + 15, 
 
 

we find, appealing to the induction hypothesis, that 24(m
 

+
 

1) – 1 is divisible by 5. Thus, the 

result is true for m + 1 as well. This proves the desired assertion. 

Hence, by Corollary 4.2.1, 
 

 
 

Z(5.24m) = 22(2m
 

+
 

1), m  1. 
 

 

The same result has been established in Lemma 4.2.7 in Majumdar(5). 

Using the above result, we get the following values : 
 

 
 

Z(80) = 64, Z(1280) = 1024, Z(20480) = 16384. 
 

 

 

(3) In order to find Z(7.23m), m  1, we need the following result : 7 divides 23m – 1 for any 

integer m  1. To prove the result by induction on m, we assume its validity for some 

integer m. Then, since 
 

 
 

23(m
 

+
 

1) – 1 = 8(23m – 1) + 7, 
 

 

we see that 23(m
 

+
 

1) – 1 is divisible by 7. This completes induction. 

By Corollary 4.2.1, 
 

 
 

Z(7.23m) = 3.23m
 

+
 

1, m  1, 
 

 

which matches with the result given in Corollary 4.1.3 in Majumdar(5). 

In particular, we get the following values : 
 

 

 

Z(56) = 48, Z(448) = 384, Z(3584) = 3072. 
 
 

 

(4) Since 11 divides 25 + 1 = 33, it follows that 11 divides (25 + 1)(25 – 1) = 210 – 1. It then 

follows that 11 divides 210m – 1 for any integer m  1. The proof is by induction on m. 

Assuming that 210m – 1 is divisible by 11 for some integer m, and then writing 
 

 

 

210(m
 

+
 

1) – 1 = 210 (210m – 1) + (210 – 1), 
 
 

we see that 11 divides 210(m
 

+
 

1) – 1, which we intended to prove to complete induction. 

By Corollary 4.2.1, 
 
 

 

Z(11.210m) = 5.210m
 

+
 

1, m  1. 
 

See also Lemma 4.2.9 in Majumdar(5) for an alternative proof. 
 

Chapter 4 : Pseudo Smarandache Function  



 

 

 

54                                                                                                                                           Smarandache Numbers Revisited 

(5) To find an expression of Z(13.212m), m  1, we note that 13 divides 26 + 1 = 65, so that 13 

divides (26 + 1)(26 – 1) = 212 – 1. We now prove that 13 divides 212m – 1 for any integer  

m  1. The proof is by induction on m. So, we assume that 212m – 1 is divisible by 13 for 

some integer m. Then, since 
 

 
 

212(m
 

+
 

1) – 1 = 212 (212m – 1) + (212 – 1), 
 

 

it follows that 13 divides 212(m
 

+
 

1) – 1, so that the result holds for m + 1 as well, thereby 

completing induction. 

By Corollary 4.2.1, 
 
 

 

Z(13.212m) = 3.22(6m
 

+
 

1), m  1. 
 

For an alternative proof, see also Lemma 4.2.10 in Majumdar(5). 
 
 

 

(6) It is easy to see that 17 divides 24 + 1. Thus, 17 divides (24 + 1)(24 – 1) = 28 – 1, and hence, 

by induction on m, 17 divides 28m – 1 for any integer m  1. To do so, let 28m – 1 be 

divisible by 17 for some integer m. Then, since 
 
 

 

28(m
 

+
 

1) – 1 = 28 (28m – 1) + (28 – 1), 
 
 

it follows that 17 divides 28(m
 

+
 

1) – 1, so that the result holds true for m + 1 as well. This 

completes induction. 

By Corollary 4.2.1, 
 

 
 

Z(17.28m) = 24(2m
 

+
 

1), m  1. 
 

For an alternative proof, see also Lemma 4.2.11 in Majumdar(5). 
 

 
 

(7) In order to apply Corollary 4.2.1, for a given prime p, we have to find the (smallest) 

integer k such that p divides 2k – 1. In simple cases, we may find such a k by inspection. 

In other cases, it may not be simple. In such a case, we may refer to Lemma 4.1.7. For 

example, consider the prime p = 19. Writing 19 = 29 + 1, and noting that 19 is of the 

form 8ℓ + 3, by part (2) of Lemma 4.1.7, 19 divides 29 + 1, and hence, by Corollary 4.1.1, 

19 divides (29 + 1)(29 – 1) = 218 – 1. We can then prove by induction on m that 19 divides 

218m – 1 for any integer m  1. Then, in a similar fashion, we can deduce that 
 

 

 

Z(19.218m) = 9.218m
 

+
 

1, m  1. 

 
Example 4.2.1 shows that, the equation 
 
 

 

Z(p.2k) = (p – 1)2k 
 
 

 

has an infinite number of solutions (both in p and k), which in turn proves that, the Diophantine 

equation Z(n) + SL(n) = n has an infinite number of solutions. Moreover, we may put the result 

in Corollary 4.2.1 as follows : The equation 
 
 

 

Z(p.2k) = 2k Z(p) (p  3 is a prime) 
 
 

 

has an infinite number of solutions. 
 

Corollary 4.2.2 : For any prime q  2, 
 

 

 

Z(2q (2q – 1)) = 2q
 

+
 

1 (2q
 

–
 

1 – 1). 
 

 
 

Proof : follows readily from Corollary 4.2.1, choosing k = q, p = 2q – 1. ■ 
 

From Corollary 4.2.2, we get 
 

 
 

Z(3.22) = 8, Z(7.23) = 48, Z(31.25) = 960. 
 

The problem below is related to the Diophantine equation involving both the functions Z(n) 

and SL(n). 
 

 

 

Problem 4.2.1 : Find all the solutions of the Diophantine equation Z(n) = SL(n). 
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If p  3 is a prime and n is such that 2n divides p + 1, then (by Lemma 4.2.4 in Majumdar(5)), 
 

 

Z(np) = p = SL(np); 
 
 

 

and for any prime p  3, and n such that 2n divides p2 + 1, (by Lemma 4.2.5 in Majumdar(5)), 
 
 

Z(np2) = p2 = SL(np2). 

 

 
 

This shows that the Diophantine equation Z(n) = SL(n) possesses solutions. So, the question is : 

Are there other solutions as well? 
 

In Section 3.2 (in Chapter 3), we have seen that the only solutions of the equation 
 

S(mn) = mk S(n) 
 

are (a) (m, n, k) = (1, 1, 1), (b) (m, n, k) = (4, 1, 1), (c) (m, n, k) = (p, 1, 1) (where p (  2) is a 

prime), and (d) (m, n, k) = (2, 2, 1). However, the situation is different in case of the equation  
 
 

 

Z(mn) = mk Z(n),                                              (4.2.1) 
 

 
 

where m, n and k are positive integers. 
 

There is nothing to prove if m = 1 in (4.2.1). Moreover, we would ignore the trivial solution 

(corresponding to m = 1, n = 1, k = 1). When n = 1, (4.2.1) becomes 
 

Z(m) = mk,                                                   (4.2.2)  

 

which has a solution only when k = 1 (since Z(m)  2m – 1 for all m  4), with the solution m = 1.  

Recall that Z(m) = m has no solution for m  2. When n = 2 in (4.2.1), the resulting equation 

Z(2m) = 3mk has no solution in m and k. However, we have the following result. 
 

Lemma 4.2.3 : The equation Z(mn) = mk Z(n) always has a solution, and has, in fact, an 

infinite number of solutions. 

Proof : Each of the nine examples in Example 4.2.1 shows that the equation has an infinite 

number of solutions when k = 1. ■ 
 

The (infinite number of) solutions of the equation Z(mn) = mk Z(n) corresponding to the 

primes p = 3, 5, 7, 11, 13, 17, 19 are given in Example 4.2.1. We found no solution of the 

equation (4.2.1) when n = 4, but for n = 6, the corresponding equation is 
 

 
 

Z(6m) = 3mk,                                                 (4.2.3) 
 

 
 

which possesses solutions. Appealing to Lemma 4.2.18 in Majumdar(5), we see that the equation 

(4.2.3) admits solutions when k = 1. In such a case, the solutions are given by  
 
 

 

(m, n, k) = (p, 6, 1), p is a prime such that 12 divides p – 5. 
 
 

 

Thus, for example, 
 

 

 

Z(65) = 15, Z(617) = 51, Z(629) = 87, Z(641) = 123, Z(689) = 267. 
 
 

 

In this case, by Lemma 4.1.6 (with p = 3), the second solution of (4.2.3) (with k = 1) is m = 32t : 
 
 

 

Z(6.32t) = 3.32t, t  1. 
 
 

 

 

When n = 10, the equation (4.2.2) reads as 
 
 

 

Z(10m) = 4mk.                                                (4.2.4) 
 
 

 

For k = 1, by Lemma 4.2.22 in Majumdar(5), m = p is a solution of (4.2.4), where p is a prime 

such that 20 divides p + 9. Thus, for example, 
 

 

Z(110) = 44, Z(310) = 124, Z(710) = 284, Z(1310) = 524, Z(1510) = 604. 
 

 
 

However, Lemma 4.2.7 in Majumdar(5) provides a second solution of the equation (4.2.1), 

namely, k = 1, m = 2s–1, n = 5, where 4 divides s – 1 (that is, m = 24m, m  1). Thus, for example, 
 

 

 

Z(10.24) = 4.24 = 64, Z(10.28) = 4.28 = 1024. 
 
 

 
 

 
 

 

 

We prove the result below involving Z(2pp) and Z(4pp). 
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Theorem 4.2.2 : Let p  3 be a prime. Then, 
 

 

(1) If p is of the form p = 8k + 1, then Z(4pp) = pp – 1, 
 
 

(2) If p is of the form p = 8k – 1, then Z(4pp) = pp, 
 

 

(3) If p is of the form p = 8k + 3, then Z(2pp) = pp – 1, 
 

 

(4) If p is of the form p = 8k + 5, then Z(2pp) = pp. 
 

 

Proof : To prove part (1) of the theorem, note that, by the Binomial expansion, 
 
 

 

(8k + 1)2m+1 =
2m+1

i=1
 

2m + 1 i
(8k) 1,  

i
for any integers m 1,

 
  

 
  k  1. 

 
 

 

This shows that 8 divides (8k + 1)2m+1 – 1 for all integers m  1, k  1. Hence,  
 

 
 

Z(4pp) = pp – 1. 
 

 
 

 
 

(2) Expanding (8k – 1)2m+1 by Binomial expansion, we see that 8 divides (8k – 1)2m+1 + 1, and so 
 

 

 

Z(4pp) = pp. 
 

 

 

 

(3) First note that, for any integers n  1 and m  1, (4n – 1)2m+1 + 1 is divisible by 4. Thus,   
 

 
 

 

4 divides (8k + 3)2m+1 – 1 = 2m i+12m+1

i=1
 

2m + 1 i
(8k) 1,  

i
3 for any integers m 1, 

  
 

  k  1. 

This gives the result desired. 
 

 

 

(4) Since (4n + 1)2m+1 – 1 is divisible by 4 for any integers n  1 and m  1, we see that 
 
 

 

4 divides (8k + 5)2m+1 + 1 = 2m i+12m+1

i=1
 

2m + 1 i
(8k) 1,  

i
5 for any integers m 1, 

  
 

  k  1. 

 

 
 

All these complete the proof of the theorem. ■ 

 

Open Problem 4.2.2 : Solve completely the equation Z(p.2k) = (p – 1)2k. 
 

Open Problem 4.2.3 : Solve the equation Z(mn) = mk Z(n) with k  2. 
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Chapter     5       Smarandache  Number  Related  Triangles 
 

 
This chapter is devoted to the Smarandache function related and pseudo Smarandache function 

related triangles. The concept of the Smarandache function related triangles was introduced by 

Sastry(1), which was extended by Ashbacher(2) to include the pseudo Smarandache function 

related triangles as well. 
 

 
 

 

 
 

 

 

Let ABC be a triangle with sides a = BC, b = AC, c = AB. Following Sastry(1), we denote 

by T(a, b, c) the triangle ABC. Let T(a, b, c) be a second triangle with sides of lengths a, b, c. 

Recall that the two triangles T(a, b, c) and T(a, b, c) are similar if and only if their three sides 

are proportional (in any order). Thus, for example, if 
 

a b c
a b c
 
  

 (or, if ,
acb
cba


  or if a b c
c a b
 
  

), 

 

then the two triangles T(a, b, c) and T(a, b, c) are similar. 
 

 

 
 

 

The following definition is due to Sastry(1) and Ashbacher(2). 
  

 

 

 

Definition 5.1 : Given are two triangles T(a, b, c) and T(a, b, c) (where a, b, c and a, b, c 

are all positive integers). 
 

 

(1) T(a, b, c) and T(a, b, c) are said to be Smarandache function related (or, S –  related) if 
 

 

S(a) = S(a), S(b) = S(b), S(c) = S(c), 
 

(where S(.) is the Smarandache function, defined in Chapter 3); 
 
 

(2) T(a, b, c) and T(a, b, c) are said to be pseudo Smarandache function related (or, Z –  related) 

if 
 

 

Z(a) = Z(a), Z(b) = Z(b), Z(c) = Z(c), 
 

(where Z(.) is the pseudo Smarandache function, treated in Chapter 4). 
  

 

 

 

 

 

  

 

A different way of relating two triangles has been proposed by Sastry(1) : The triangle 

ABC, with angles ,  and  (,  and  being positive integers), is denoted by T(, , ). Then, 

we have the following definition, due to Sastry(1) and Ashbacher(2). 
 

 

 

 

Definition 5.2 : Given two triangles, T(, , ) and T(, ,  ), with 
    

 +  +  = 180 =  +  +  ,                                                                                                                   (5.1) 
 

(1) they are said to be Smarandache function related (or, S –  related) if 
    

 

 

S() = S(), S() = S(), S() = S( ); 
 

 

(2) they are said to be pseudo Smarandache function related (or, Z –  related) if 
    

 

 

Z() = Z(), Z() = Z(), Z() = Z( ). 
       

 

 

 

 

Note that, in Definition 5.1, the sides of the pair of triangles are S  –  related  /  Z –  related, while 

their angles, measured in degrees, are S  –  related  /  Z –  related in Definition 5.2.  
 

 

 

   

       

Section 5.1 reproduces the results related to the 60-degree and 120-degree triangles, which 

show that the sides of such a triangle satisfies a Diophantine equation. A set of partial solutions 

of the Diophantine equation is derived in Section 5.2. Some remarks are given in the final 

Section 5.3. 
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5.1              60-Degree  and  120-Degree  Triangles 
   

 

 

 

 

 

 
 
 

Of particular interest is the triangle whose one angle is 600. The lemma below gives the 

Diophantine equation satisfied by the sides of such a triangle. 
 

 

 
 

 

  

 
 

 

 
           

 

 
           

 

 
      

 

 
      

 

 
      

 

 

 
 

 
 

The following lemma gives the Diophantine equation satisfied by the sides a, b and c of the 

triangle whose A = 1200.      

 
 

 
 

 

 

 
 

 

 

 

 

 

When A = 600, then a is in between the smallest and the largest sides of the triangle   

T(a, b, c); and if A = 1200, then a is the largest side of the triangle. Formally, we have 
      

 

 
 

 
 
      

  

Lemma 5.1.3 : If (a0, b0, c0) is a non – trivial solution of the Diophantine equation 
       

 

4a2 = (2c – b)2 + 3b2,                                                          (5.1.1) 
 

then min {b0, c0} < a0 < max {b0, c0}. 

 

 

 

 

 

By Lemma 5.1.3, if (a0, b0, c0) is a (non – trivial) solution of the Diophantine equation     

4a2 = (2c – b)2 + 3b2 (so that a, b, c are all positive and distinct), then, without loss of generality, 
       

b0 > a0 > c0. 
       

 

 

If one solution of the Diophantine equation (5.1.1) is known, then we can find a second 

independent solution of it. This is given in the following lemma. 
 

 
 

 
 

 

 
      

Lemma 5.1.4 : If (a0, b0, c0) is a solution of the Diophantine equation 
            

 

4a2 = (2c – b)2 + 3b2,                                                          (5.1.1) 
       

then (a0, b0, b0 – c0) is also a solution of (5.1.1).    
  

    

 

 

 

 

 

 

Lemma 5.1.4 shows that the Diophantine equation 4a2 = (2c – b)2 + 3b2 possesses (positive 

integer) solutions in pairs, namely, (a0, b0, c0) and (a0, b0, b0 – c0), which are independent. Note 

that, by symmetry, (a0, c0, b0) and (a0, b0 – c0, b0) are also solutions of the Diophantine equation. 

A 

 

b 

 
c 

 

a 

 

Let T(a, b, c) be the triangle with sides a, b and c, 

and angles A , B  and C , as shown in the 

figure. Then,   
a b c

sin A sin B sin C
  . 

 
B 

 

C 

 

A 

 
B 

 
c 

 

b 

 600 

 

a 

 

C 

 

C 

 

A 

 

B 

 
c 

 

b 

 
1200 

 

a 

 

Lemma 5.1.1 : Let T(a, b, c) be the triangle with 

sides a, b and c, whose A = 600 (as shown in the 

figure). Then, 

4a2 = (2c – b)2 + 3b2.                 (5.1.1) 

Lemma 5.1.2 : Let T(a, b, c) be the triangle with 

sides a, b and c, whose A = 1200 (as shown in the 

figure). Then, 
 

 

4a2 = (2c + b)2 + 3b2.                (5.1.2) 



 

 
 

59                                         Chapter 4 : The Pseudo Smarandache Function 

Next, we confine our attention to the Diophantine equation 
       

 

 

4a2 = (2c + b)2 + 3b2. 
       

 

 

In this case, we have the following result. 
      

 

 

 

  

Lemma 5.1.5 : If (a0, b0, c0) is a solution of the Diophantine equation   
 

       

4a2 = (2c + b)2 + 3b2,                                                               (5.1.2) 
      

 

then a0 > max {b0, c0}. 
       

 

 

 

       

The following lemma shows how the solutions of (5.1.1) and (5.1.2) are related. 
       

 

 

       

Lemma 5.1.6 : If (a0, b0, c0) is a solution of the Diophantine equation 
 

 

 

4a2 = (2c – b)2 + 3b2,                                                          (5.1.1) 
 

 

with b0 > c0, then (a0, b0 – c0, c0) is a solution of the Diophantine equation 
 

 
 

 

4a2 = (2c + b)2 + 3b2.                                                               (5.1.2) 
 

In Section 5.2, partial solutions of the Diophantine equations a2 = b2 + c2 ± bc are given. Note 

that, by Lemma 5.1.6, it is sufficient to consider the Diophantine equation a2
    =    b2

     +     c2
   –   bc only. 

 

 

 

 

 

 

 

 

 

5.2     Partial        Solutions         of         a2 = b2 + c2 ± bc 
     

 

 

 

First, we consider the Diophantine equation  
 
 

 

  

a2
    =    b2

     +     c2
   –   bc,                                                    (5.2.1) 

 
 

 
 

where, without loss of generality, we may assume that b    >   c > 0. One set of solutions of (5.2.1) is 

given below. 
 

Proposition 5.2.1 : The Diophantine equation a2
    =    b2

     +     c2
    –   bc (b  >  c > 0) has the following 

solutions : 

(1) For m   ≥   1, 

.1  m  a  )2  mm(3  c

,m  a  1  m4  m3  b

,1  m3  m3  a

2

2







 

(2) For m   ≥   2, 

.1  m  c

),2  m(m  b

,1  m  m  a

2

2







 

 

Proof : In the Diophantine equation (5.2.1), substituting 
 
 

 

 
 

b   =   X     +     Y, c   =   X     –     Y,                                           (5.2.2) 

so that 

),c  b(  Y  ),c  b(  X
2
1

2
1   

we get 

a2
   =   (X     +     Y)2

     +     (X     –     Y)2
     –     (X     +    Y)(X      –     Y)   =   X2

     +     3Y2, 

that is, 

(a     +    X)(a     –     X)   =   3Y2.                                                 (5.2.3) 
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We now consider the following cases that may arise : 
 

 
 

 
 

Case 1 : When a     +    X   =   3Y2, a     –    X   =   1. 
 

Here, 

).1  Y3(  X  ),1  Y3(  a 22

2
1

2
1   

 

 
 

Then, Y must be odd, say, Y   =   2m   +   1 for some integer m   ≥   1. Substituting this, we get 
 

 
 

,1  m6  m6 1  )1  m2(3  X

),1  m3  m3(2 1  )1  m2(3  a

22

22

 ][

 ][

2
1

2
1




 

which give 

.)2  m2m(3 Y  X  c

),1  m4  m3(2 Y  X  b

 
 2




 

 
 

 

We thus get the set of solutions (discarding the common factor 2) mentioned in part (1) of the 

proposition.  
 

Case 2 : When a     +    X   =   Y2, a     –    X   =   3. 
 

In this case, 

).3  Y(  X  ),3  Y(  a 22

2
1

2
1   

 

 
 

Then, Y must be odd, say, Y   =   2m   +   1 for some integer m   ≥   1. Substituting this, we get 
 

 
 

,1  m2  m2 3  )1  m2(  X

),1  m3  m(2 3  )1  m2(  a

22

22

 ][

 ][

2
1

2
1




 

which give 

.1) m2( Y  X  c

),2  m(m2 Y  X  b

2 

 




 

 

 
 

Therefore, corresponding to this case, we get the set of solutions (ignoring the common factor 2), 

stated in part (2) of the proposition.  
 
 

 

 
 

 

Case 3 : When a     +    X   =   3Y, a     –    X   =   Y. 
 

 
 

In this case, a   =   2Y, b   =   2Y, c   =   0, and hence, we exclude this case. 
 

 
 

 

This completes the proof. ■ 

 

Proposition 5.2.1 gives only partial solutions of the Diophantine equation a2
    =    b2

     +     c2
    –   bc  

(b  >  c   >   0). More solutions are given in Proposition 5.2.2 and Proposition 5.2.3. 

  

Proposition 5.2.2 : A second set of solutions of the Diophantine equation a2
    =    b2

     +     c2
    –   bc 

(b  >  c   >   0) is : 
 

 
 

 

(1) For m   ≥   2, 

.1  m2  m3  c  ,1  m2  m3  b

  ,1  m3  a

22

2




                                                       

 
 

(2) For m   ≥   4, 

.3  m2  m  c  ,3  m2  m  b

  ,3  m  a

22

2




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Proof : Let, in the Diophantine equation (5.2.3), Y be a multiple of 2, say,  
 

 
 

Y   =   2  Z for some integer Z   ≥   1. 
 

 
 

Then, (5.2.3) takes the form 
 

 

 

(a     +    X)(a     –     X)   =   12Z2.                                                          (5.2.4) 
 
 

 
 

 
 

We now consider the following two cases : 
 

 

 
 

Case 1 : When a     +    X   =   3Z2, a     –    X   =   4. 

In this case, 

).4  Z3(  X  ),4  Z3(  a 22

2
1

2
1   

 

 
 

Substituting Z   =   2m, we get   

 

 

),1   m3(2  X  ),1  m3(2  a 22   

and hence, 

).1  m2  m3(2 Y  X  c  ),1  m2  m3(2 Y  X  b 22     
 
 

 

Case 2 : When a     +    X   =   Z2, a     –    X   =   12. 

Here, 

).21  Z(  X  ),21  Z(  a 22

2
1

2
1   

 
 

 

We now substitute Z   =   2m to get 
 

),3   m(2  X  ),3  m(2  a 22   

so that 

).3  m2  m(2 Y  X  c  ),3  m2  m(2 Y  X  b 22     
 

 

In each case, disregarding the common factor 2, we get the desired results. ■ 
 
 

 
 

 

 

Proposition 5.2.3 : The Diophantine equation a2
    =    b2

     +     c2
    –   bc (b  >  c   >   0) has the following 

sets of solutions (p  3 being a prime) : 
 

(1) For m   ≥   1, 

).3  p2  p(
4
1  m)3  p(  m3  c  ),3  p2  p(

4
1  m3)  (p  m3  b

),3  p(
4
1  )m  m3(  a

22

2

22

2





                                                       

(2) For m   ≥   1, 

).3  p2  p(
4
1  m1)  (pp  mp  c  ),3  p2  p(

4
1  m1)  (pp  mp  b

),3  p(
4
1  )m  m(p  a

22

2

2 22 2

22





                                                                     

(3) For m   ≥   1, 

).1  p2  p3(
4
1  m1)  (3pp  m3p  c  ),1  p2  p3(

4
1  m1)  (3pp  mp3  b

),1  p3(
4
1  )m  m(3p  a

22

2

2 22 2

22





 

(4) For m   ≥   1, 

).1  p2  p3(
4
1  m1)  (p  m  c  ),1  p2  p3(

4
1  m1)  (p  m  b

),1  p3(
4
1  )m  m(  a

22

2

22

2




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Proof : Let, in (5.2.3), Y be a multiple of the prime p   ≥   3, that is,  
 

 
 

 
 

Y   =   p  Z for some integer Z   ≥   1.  
 

 

 

Then, (5.2.3) becomes 
 

(a     +    X)(a     –     X)   =   3p2
 Z2.                                                                        (5.2.5) 

 
 

 

 
 

 

We now consider the following four cases only, which give different sets of solutions of the 

equation : 
 

 
 

 

 

Case 1 : When a     +    X   =   3Z2, a     –    X   =   p2. 
 

Then, 

).p  Z3(  X  ),p  Z3(  a 2222

2
1

2
1   

 

 
 

Substituting Z   =   2m   +   1, we get 
 

 

2 2 
2 2

2 2
p  3 p  3

a 6(m  m)  ,   X = 6(m  m) ,
 

      

and hence, 

.
2

3p2p
  m)3  p(  m32  )1  m2(p  

2

3p
  )m  m(6 Y  X  c

,
2

3p2p
  m3)  (p  m32  )1  m2(p  

2

3p
  )m  m(6 Y  X  b

2
2

2
2

2
2

2
2

][ 

][ 













 

 
 

 

 
 

Case 2 : When a     +    X   =   p2
  Z2, a     –    X   =   3. 

 

 

In this case, 

).3  Zp(  X  ),3  Zp(  a 2 22 2

2
1

2
1   

 

 

 
 

 

Substituting Z   =   2m   +   1, we get   
 

 

,
2

3p
  )m  m(p2  X  ,

2

3p
  )m  m(p2  a

2
22

2
22 




  
 
 

 

 

which, in turn, gives 

.
2

3p2p
  m1)  (pp  mp2  )1  m2(p  

2

3p
  )m  m(2p Y  X  c

,
2

3p2p
  m1)  (pp  mp2  )1  m2(p  

2

3p
  )m  m(2p Y  X  b

2
2 2

2
22

2
2 2

2
22

][ 

][ 













 

 

 
 

 

 
 

 

Case 3 : When a     +    X   =   3p2
  Z2, a     –    X   =   1. 

 
 

Here, 

).1  Zp3(  X  ),1  Zp3(  a 2 22 2

2
1

2
1   

 

 
 

 
 

We substitute Z   =   2m   +   1, to get 
 

 

,
2

13p
  )m  m(p6  X  ,

2

13p
  )m  m(p6  a

2
22

2
22 




  
 

so that 

,
2

1p23p
  m1)  (3pp  mp32  )1  m2(p  

2

13p
  )m  m(6p Y  X  b

2
2 2

2
22 ][ 




  

 

 

.
2

1p23p
  m1)  (3pp  mp32  )1  m2(p  

2

13p
  )m  m(6p Y  X  c

2
2 2

2
22 ][ 




  
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Case 4 : When a     +    X   =    Z2, a     –    X   =   3p2. 
 

 

Here, 

).p3  Z(  X  ),p3  Z(  a 2222

2
1

2
1   

 

 
 

We substitute Z   =   2m   +   1, to get 
 

 

 
 

2 2
2 2

2 2
3p   1 3p   1

a  2(m  m)  ,   X  2(m  m)  ,
 

       
 
 

 

.
2

1p23p
  m1)  (p  m2  )1  m2(p  

2

13p
  )m  m(2 Y  X  c

,
2

1p23p
  m1)  (p  m2  )1  m2(p  

2

13p
  )m  m(2 Y  X  b

2
2

2
2

2
2

2
2

][ 

][ 













 

 

All these complete the proof. ■ 
 

Note that, in Proposition 5.2.3, we have made use of the fact that, p2
   +   3, 3p2

   +   1, p2
      2p   –   3 

and 3p2
      2p   –   1 are all divisible by 4 when p    ≥   3 is a prime. The proof is simple : For example, 

since p = 2q + 1 for some q  1, p2 + 3 = 4(q2 + q + 1), and then writing 3p2 + 1 = 3(p2 + 3) – 8, the 

proof follows for p2 + 3 and 3p2 + 1. The proofs of the other cases are similar. 
 

Some particular cases of Proposition 5.2.3 are given in the following five corollaries, for 

some particular values of p. 
 

Corollary 5.2.1 : Corresponding to p    =   3, there are two sets of (independent and distinct) 

solutions of the Diophantine equation (5.2.1), which are given below : 
 

 

 
 

(1) For m   ≥   1, 

.5  m24  m27  c  ,8  m03  m27  b

  ,7  27m  m27  a
22

2



                                                                      

 
 

 

(2) For m   ≥   5, 

.8  m2  m  c  ,5  m4  m  b

  ,7  m  m  a
22

2



                                                                                 

 

Corollary 5.2.2 : Corresponding to the prime p    =   5, the four sets of (independent) solutions 

of the Diophantine equation (5.2.1) are as follows : 
 
 

 
 

(1) For m   ≥   3, 

.8  m2  m3  c  ,3  m8  m3  b
  ,7  3m  m3  a

22

2


                                                        

 

 

 

(2) For m   ≥   1, 

.3  m20  m25  c  ,8  m03  m25  b
  ,7  25m  m25  a

22

2


                                                                      

 
 

 

(3) For m   ≥   1, 

.61  m70  m75  c  ,12  m08  m75  b
  ,91  75m  m75  a

22

2


                                                                                  

 
 

 

(4) For m   ≥   8, 

.12  m4  m  c  ,61  m6  m  b
  ,91  m  m  a

22

2


         
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Corollary 5.2.3 : When p   =   7, there are four sets of (independent) solutions of the 

Diophantine equation (5.2.1), which are as follows : 
 

 

(1) For m   ≥   4, 

.51  m4  m3  c  ,8  10m  m3  b  ,31  3m  m3  a
222

   

(2) For m   ≥   1, 

.8  m24  m49  c  ,51  56m  m49  b  ,31  49m  m49  a
222

   

(3) For m   ≥   1, 

.33  m70  m147  c  ,04  154m  m147  b  ,73  147m  m147  a
222

            

(4) For m   ≥   11, 

.04  m6  m  c  ,33  8m  m  b  ,73  m  m  a
222

   
 

Corollary 5.2.4 : When p   =   11, the four sets of (independent) solutions of the Diophantine 

equation (5.2.1) are  
 

 

(1) For m   ≥   6, 

.53  m8  m3  c  ,24 14m  m3  b  ,13  3m  m3  a
222

   

(2) For m   ≥   1, 

.42  m101  m121  c  ,35  132m  m121 b  ,13  121m  m121  a
222

   

(3) For m   ≥   1, 

.58  m523  m363  c  ,96  374m  m363  b  ,19  363m  m363  a
222

           

(4) For m   ≥   17, 

.69  m01  m  c  ,85 12m  m  b  ,19  m  m  a
222

   

 

Corollary 5.2.5 : When p   =   13, the four sets of (independent) solutions of the Diophantine 

equation (5.2.1) are given below. 
 
 

(1) For m   ≥   6, 

.84  m01  m3  c  ,53  16m  m3  b

  ,34  3m  m3  a
22

2



   

(2) For m   ≥   1, 

.53  m561  m169  c  ,84  182m  m169  b

  ,34  169m  m169  a
22

2



   

(3) For m   ≥   1, 

.201  m944  m507  c  ,331  520m  m507  b

  ,271  507m  m507  a
22

2



   

(4) For m   ≥   19, 

.331  m21  m  c  ,201  14m  m  b

  ,271  m  m  a
22

2



   

 
Eight sets of solutions of the Diophantine equation a2

    =    b2
     +     c2

    –   bc (b  >  c > 0) are given in 

Proposition 5.2.1 – Proposition 5.2.3, which are supplemented by the solutions, given as special 

cases, in Corollary 5.2.1 – Corollary 5.2.5. Note that, the solutions found in the three propositions 

and five corollaries are not exhaustive; moreover, some of the cases are overlapping. For 

example, when p = 3, the solutions given in parts (1) and (2) of Proposition 5.2.3 coincide with 

those given by Proposition 5.2.1. 
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Remark 5.2.1 : It may be mentioned here that, unrestricting m in Propositions 5.2.1   –     5.2.3, 

we get the solutions of the unrestricted Diophantine equation a2
    =    b2

     +     c2
    –   bc (with no 

restriction on the signs of a, b and c), and we have put restrictions on m only to guarantee 

that a, b, c are all positive (integers). Note that, if (a0, –  b0, –  c0) is a solution of the 

Diophantine equation (5.2.1), so also is (a0, b0, c0). We now state and prove the following 

result. 
 

Lemma 5.2.1 : Let (a0, b0, –  c0) be a solution of the Diophantine equation  
 

 

 
 

a2
    =    b2

     +     c2
    –   bc. 

 

 
 

Then, (a0, b0  +  c0, c0) is also a solution. 
 

 
 

Proof : Since (a0, b0, –  c0) be a solution of the Diophantine equation, we have  
 

 

 
 

 
 

a0
2

   =   b0
2

   +   c0
2

   +   b0c0. 

Now, since 
 
 

(b0   +   c0)2
   +   c0

2 – (b0   +   c0)c0   =   b0
2

   +   c0
2

   +   b0c0, 
 

 

 
 

we get the desired result. ■ 
 

 
 

For example, in part (3) of Corollary 5.2.1, m   =   0 gives the solution (7, –5, –8) of the 

unrestricted solution of the Diophantine equation a2
    =    b2

     +     c2
    –   bc, so that (7, 5, 8) is also a 

solution; again, m  =  2 gives the solution (13, 7, –8), so that by Lemma 5.2.1, (13, 15, 8) is 

also a solution. Again, from part (1) of Corollary 5.2.4, (91, 80, –19) is a solution 

corresponding to m   =   4, and hence, by Lemma 5.2.1, so also is (91, 99, 19).     

 
Next, we consider the Diophantine equation 

 

 

 

 

 

a2 = b2 + c2 + bc.                                                (5.2.2) 
 

 

 

From the solution of the Diophantine equation a2 = b2 + c2 – bc, we can find the solution of the 

Diophantine equation a2 = b2 + c2 + bc, using Lemma 5.1.6. Thus, using Proposition 5.2.1, we get 

the solution of (5.2.2) as follows. 
 

Proposition 5.2.4 : The following two sets of solutions are the solutions of the Diophantine 

equation a2
    =    b2

     +     c2
    +   bc : 

 

(1) For m   ≥   1, 

.)2  mm(3  c  ,1  m2  b

  ,1  m3  m3  a
2



                                                        

(2) For m   ≥   2, 

2

2

a m  m  1,   

b 2m 1,  c m  1.

  

   
                                                                    

 

Similarly, from Proposition 5.2.2, we get the following result. 
 

Proposition 5.2.5 : The Diophantine equation a2
    =    b2

     +     c2
    +   bc has the following solutions : 

 

 

(1) For m   ≥   2, 

.1  m2  m3  c  ,m4  b

  ,1  m3  a
2

2



                                                        

(2) For m   ≥   4, 

.3  m2  m  c  ,m4  b

  ,3  m  a
2

2



          

 

 
 

 

 
 

 
 

Finally, we have the following result, by virtue of Proposition 5.2.3. 
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Proposition 5.2.6 : The Diophantine equation a2
    =    b2

     +     c2
    +   bc has the following sets of 

solutions : 
 

(1) For m   ≥   1, 

).3  p2  p(
4
1  m)3  p(  m3  c  ,1)p(2m  b

),3  p(
4
1  )m  m3(  a

2

2

2

2




                                                       

(2) For m   ≥   1, 

).3  p2  p(
4
1  m1)  (pp  mp  c  ),1m2(p  b

),3  p(
4
1  )m  m(p  a

2

2

2 2

22




                                                                     

(3) For m   ≥   1, 

).1  p2  p3(
4
1  m1)  (3pp  m3p  c  ,1)p(2m  b

),1  p3(
4
1  )m  m(3p  a

2

2

2 2

22




 

(4) For m   ≥   1, 

).1  p2  p3(
4
1  m1)  (p  m  c  ,1)p(2m  b

),1  p3(
4
1  )m  m(  a

2

2

][ 2

2




         

 

Proposition 5.2.4 – Proposition 5.2.6 gives, in total, eight sets of solutions of the 

Diophantine equation a2
    =    b2

     +     c2
      +     bc. The following five corollaries are particular cases of 

Proposition 5.2.6 for p = 3, 5, 7, 11, 13. 

 

Corollary 5.2.6 : Corresponding to p   =   3, the two sets of solutions of a2
    =    b2

     +     c2
    +   bc are 

(1) For m   ≥   1, 

.5  m24  m27  c  ,38 m6  b

  ,7  27m  m27  a
2

2



                                                                      

(2) For m   ≥   5, 

.8  m2  m  c  ,3  m6  b

  ,7  m  m  a
2

2



                                                                                 

 

Corollary 5.2.7 : Corresponding to the prime p   =   5, the four sets of (independent) solutions 

of the Diophantine equation (5.2.2) are as follows : 
 

 

(1) For m   ≥   3, 

.8  m2  m3  c  ,)1  m5(2  b

  ,7  3m  m3  a
2

2




                                                       

(2) For m   ≥   1, 

.3  m20  m25  c  ,)1  m5(2  b

  ,7  25m  m25  a
2

2




                                                                     

(3) For m   ≥   1, 

.61  m70  m75  c  ,)1  m5(2  b

  ,91  75m  m75  a
2

2




                                                                                 

(4) For m   ≥   8, 

.12  m4  m  c  ,)1  m5(2  b

  ,91  m  m  a
2

2




        



 

 
 

67                                         Chapter 4 : The Pseudo Smarandache Function 

Corollary 5.2.8 : When p   =   7, there are four sets of (independent) solutions of the 

Diophantine equation (5.2.2), which are as follows : 
 

 

 

(1) For m   ≥   4, 

.51  m4  m3  c  ,)1  m(27  b

  ,31  3m  m3  a
2

2




                                                       

(2) For m   ≥   1, 

.8  m24  m49  c  ,)1  m2(7  b

  ,31  49m  m49  a
2

2




                                                                    

(3) For m   ≥   1, 

.33  m70  m147  c ,)1  m217(  b

  ,73  147m  m147  a
2

2




                                                                                

(4) For m   ≥   11, 

.04  m6  m  c  ,)7  m(27  b

  ,73  m  m  a
2

2




 

 
Corollary 5.2.9 : When p   =   11, the four sets of (independent) solutions of the Diophantine 

equation (5.2.2) are  
 
 

 

(1) For m   ≥   6, 

.53  m8  m3  c  ,)1  m11(2  b

  ,13  3m  m3  a
2

2



                                                        

(2) For m   ≥   1, 

.42  m101  m121  c  ,)1  m2(11  b

  ,13  121m  m121  a
2

2



                                                                     

(3) For m   ≥   1, 

.58  m523  m363  c  ,)1  m2(11  b

  ,19  363m  m363  a
2

2



                                                                                 

(4) For m   ≥   17, 

.69  m01  m  c  ,)1  m2(11  b

  ,19  m  m  a
2

2



  

 

Corollary 5.2.10 : When p   =   13, the four sets of (independent) solutions of the Diophantine 

equation (5.2.2) are given below. 
 
 

 

 

(1) For m   ≥   6, 

.84  m01  m3  c  ,1)  m13(2  b  ,34  3m  m3  a
22

   

(2) For m   ≥   1, 

.53  m561  m169  c  ),1 m13(2  b  ,34  169m  m169  a
22

   

(3) For m   ≥   1, 

.201  m944  m507  c  ),1 m2(13 b  ,271  507m  m507  a
22

   

(4) For m   ≥   17, 

.331  m21  m  c  ,1)  m13(2  b  ,271  m  m  a
22

   

Chapter 5 : Smarandache Number Related Triangles 



 

 

 

68                                                                                                                                           Smarandache Numbers Revisited 

In total, eight sets of solutions of the Diophantine equation a2 = b2 + c2 + bc are given in 

Proposition 5.2.4 – Proposition 5.2.6, which follow directly from the corresponding results for 

the Diophantine equation a2 = b2 + c2 – bc, by virtue of Lemma 5.1.6.  

 

 

5.3     Some        Remarks 
 

Note that, if (a0, b0, c0) is a solution of the Diophantine equation a2 = b2 + c2 – bc, so also is   

k(a0, b0, c0) for any integer k  1. Thus, in finding the solutions (of any of the two Diophantine 

equations), it seems reasonable to find the primitive solution, which corresponds to the case 

when a is a prime. Then, any other solution is a constant multiple of one of these solutions. Note 

that, the Diophantine equations have solutions only for certain primes; restricting a to 0 < a < 100, 

we get solutions only for a = 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97. As has been mentioned in 

Majumdar(4), a computer search with 0 < a < 100 revealed that the Diophantine equations have 

solutions only for these primes. Also note that, for the Diophantine equation a2 = b2 + c2 – bc, 

corresponding to such primes, there are two independent solutions, given in Lemma 5.1.4. 

Restricting a to 100 < a < 200, Propositions 5.2.1 – 5.2.3 and Corollaries 5.2.1 – 5.2.5 give 

solutions only for the primes a = 103, 109, 127, 139, 151, 157, 163, 181, 193, 199. These 

primitive solutions are given in Table 5.3.1 below. In the table, we also show the solutions when 

a = 169 and a = 133. 

 

 

Table 5.3.1 : The primitive solutions of the Diophantine equation a2
    =    b2

     +     c2
    –   bc (b   >   c > 0)  

for 100 < a < 200 
       

 

 

 

a b c   a b c   a b c 

103 117 77   163 187 112   169  195 91 

  117 40    187 75     195 104 

109 119 95  181 209 104    176 161 

  119 24    209 105     176 15 

127 133 120  193 207 175   133 152 57 

  133 13    207 32    152 95 

139 160 91  199 221 165    147 35 

  160 69   221 56    147 112 

151 171 56         143 120 

  171 115         143 23 

157 168 143        153 88 

  168 25         153 65 
 

 
Recall from Majumdar(4) that, for a = 49 = 72, there are four independent solutions of the 

Diophantine equation a2 = b2 + c2 – bc; two are 7(7, 8, 5) = (49, 56, 35) and 7(7, 8, 3) = (49, 56, 21), 

and the third one is (49, 55, 39), given by part (1) of Proposition 5.2.2. And when a = 91, there 

are eight independent solutions of the Diophantine equation a2 = b2 + c2 – bc. Since 91 = 713, 

four solutions are 
 
 

 

13(7, 8, 5) = (91, 104, 65), 13(7, 8, 3) = (91, 104, 39), 
 

 

 

 

 

7(13, 15, 8) = (91, 105, 56), 7(13, 15, 7) = (91, 105, 49). 
 

 

 
 



 

 
 

69                                         Chapter 4 : The Pseudo Smarandache Function 

 

The fifth one is (91, 96, 85), given by part (1) of Proposition 5.2.1 (with (91, 96, 11) as the sixth 

solution), and the seventh solution is (91, 99, 80), which can be obtained from part (2) of 

Proposition 5.2.1. From Table 5.3.1, we see that, when a = 169 = 132, there are four independent 

solutions of the Diophantine equation a2 = b2 + c2 – bc; two are  
 
 

 

 
 

13(13, 15, 8) = (169, 195, 104), 13(13, 15, 7) = (169, 195, 71),  
 

 
 

 

 

and the third one is (169, 176, 161), which may be obtained from part (1) of Corollary 5.2.1. 

And when a = 133 = 719, there are eight independent solutions of the Diophantine equation. 
 

Thus, we see that, in certain cases, the Diophantine equation (5.2.1) has more than two 

independent solutions. To find these solutions, we start with the Diophantine equation (5.1.1) in 

the form 

4a2 = (2b – c)2 + 3c2,                                                                (5.1.1) 
 
 

 

and consider the Diophantine equation 
 
 

 

 
 

x2 = y2 + 3z2,                                                                (5.3.1) 
 

 
 

 
 

where 

x = 2a, y = 2b – c, z = c.                                          (5.3.2) 
 
 

 

 
 

When b < c, we may still consider the above equation with the roles of b and c interchanged. 
 

For example, x = 7, y = 1, z = 4 is a solution of (5.3.1), and corresponding to x = 7, it is the only 

solution; however, when x = 14 = 2×7, there are three (independent) solutions, as shown below : 
 

 
 

 

 

142 = 132 + 3.32 = 112 + 3.52 = 22 + 3.82.                                 (1) 

Again,  

132 = 112 + 3.42, 

but 

262 = 232 + 3.72 = 222 + 3.82 = 12 + 3.152.                                (2) 

Finally, 

492 = 472 + 3.82, 

but 

982 = 712 + 3.392 = 232 + 3.552 = 942 + 3.162.                             (3) 
 

The above examples show that the Diophantine equation (5.1.1) and the Diophantine equation 

(5.3.1) are not equivalent; unlike (5.3.1), (5.1.1) admits only two independent solutions. 
 

Given a solution (x0, y0, z0) of the Diophantine equation (5.3.1), we can find the 

corresponding solution of the Diophantine equation (5.2.1), using the lemma below. 
 

Lemma 5.3.1 : Let (x0, y0, z0) be a solution of the Diophantine equation  
 

 
 

x2 = y2 + 3z2.                                                                (5.3.1) 
 

 

 

Then, (a0, b0, c0) is a solution of the Diophantine equation 
 
 

 
 

a2 = b2 + c2 – bc,                                                                       (5.2.1) 

where 

.  ),(
2
1

000000 zczyb  ,a
2
0x

  
 

 

Proof : follows from (5.3.2), noting that y0 = 2b0 – c0 > 0 when b0 > c0. ■ 
 

In applying Lemma 5.3.1 when c0 > b0, we have to interchange the roles of b0 and c0. 
 

Now, given a solution (x0, y0, z0) of the Diophantine equation (5.3.1), we can find a  

solution of it when x = x0
2. This is given in the following lemma. 
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Lemma 5.3.2 : Let (x0, y0, z0) be a solution of the Diophantine equation 
 

 
 

 

x2 = y2 + 3z2.                                                                (5.3.1) 
 
 

Then, (x0
2, | y0

2 – 3z0
2 |, 2y0 z0) is also a solution of (5.3.1). 

 

 
 

 

Proof : We write (y2 + 3z2)2 as follows : 
 
 

 

 
 

(y2 + 3z2)2 = (y2 – 3z2)2 + 12 y2 z2 = (y2 – 3z2)2 + 3(2yz)2, 

that is,       

(x2)2 = (y2 – 3z2)2 + 3(2yz)2. 
 

 
 

Hence, the lemma follows. ■ 
 

If (x0, y0, z0) is a solution of x2 = y2 + 3z2, then obviously (x0
2, x0 y0, x0 z0) is also its one 

solution; Lemma 5.3.2 gives another independent solution of x2 = y2 + 3z2. For example, starting 

with the solution, given in (1), we get, by virtue of Lemma 5.3.2, the following three solutions 

when x = 142 : 
 

 

x1 = 142, y1 = 142, z1 = 78, 
 
 

 

x1 = 142, y1 = 46, z1 = 110, 
 
 

 

x1 = 142, y1 = 188, z1 = 32, 
 
 

 

 
 

the last one giving the solution  
 

 

 

x1 = 72, y1 = 47, z1 = 8. 
 

 

 

Thus, corresponding to x = 142, there are, in total, six solutions of the Diophantine equation 

(5.3.1) 
 

 

Again, from the three solutions corresponding to x = 26 (given by (2)), by Lemma 5.3.2, we get 

the following three solutions when x = 262 : 
 
 

 

x1 = 262, y1 = 382, z1 = 322, 
 
 

 

x1 = 262, y1 = 292, z1 = 352, 
 

 
 

x1 = 262, y1 = 674, z1 = 30, 
 

 

the second one giving the solution  
 
 

 

x1 = 132, y1 = 73, z1 = 88. 
 

Proposition 5.3.1 : Let (a0, b0, c0) be a solution of the Diophantine equation 
 
 

 

a2 = b2 + c2 – bc.                                                             (5.2.1) 

Then, (a0
2, b0

2 – c0
2, c0(2b0 – c0)) is also a solution of (5.2.1). 

 

 
 

Proof : By Lemma 5.3.1, 

.  ),(
2
1

000000 zczyb  ,a
2
0x

  
 

 

 

Now, by Lemma 5.3.2, if (a1, b1, c1) is a solution of (5.2.1) corresponding to a = a1 = a0
2, then 

.  ,
0 01

2

0

2

011

2
0

1 zy2cz3yc  b2  ,a
2

x
  

 

 

 

Therefore, if y0
2 – 3z0

2 > 0, then 
 
 

 
 

 

2b1 = 2y0 z0 + (y0
2 – 3z0

2) = (z0 + y0)2 – 4z0
2 = 4(b0

2 – c0
2), 

so that 

b1 = 2(b0
2 – c0

2); 

also, 

a1 = 2a0
2, c1 = 2c0(2b0 – c0). 

 

 

 

Now, disregarding the common factor 2, the result follows. ■ 
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If the solution (x0, y0, z0) of the Diophantine equation (5.3.1) is known, then using   

Lemma 5.3.1, we may find the corresponding solution of the Diophantine equation (5.2.1). And 

if a solution (a0, b0, c0) of the Diophantine equation (5.2.1) is known, Proposition 5.3.1 may be 

exploited to find the solution of (5.3.1) corresponding to a = a0
2. For example, from the first two 

solutions given in (1), we get (by Lemma 5.3.1) 
 
 

 
 

 

a0 = 7, b0 = 8, c0 = 3,                                               (4) 
 

 
 

 
 

a0 = 7, b0 = 8, c0 = 5,                                               (5) 
 

 

 
 

while the third one in (1) gives, after interchanging the roles of b0 and c0, 
 

 
 

a0 = 7, b0 = 3, c0 = 8. 
 

 
 

Now, applying Proposition 5.3.1 to the solution (4), we get 
 

 

 

a1 = 72, b1 = 55, c1 = 39,                                             (6) 

while (5) gives 
 
 

 

a1 = 72, b1 = 39, c1 = 55, 
 
 

 

which is just the solution (6) with the roles of b1 and c1 interchanged. 
 

 
 

 
 

Thus, from the three solutions of the Diophantine equation (5.3.1), given in (1), we get only one 

(distinct) solution of the Diophantine equation (5.2.1), by applying Proposition 5.3.1. 
 
 

 

Again, from the first two solutions given in (2), we get 
 
 

 

 
 

a0 = 13, b0 = 15, c0 = 7,                                                      (7) 

 

 
 

 

a0 = 13, b0 = 15, c0 = 8,                                                      (8) 

which give 

a1 = 132, b1 = 176, c1 = 161,                                          (9) 
 
 

 
 

 

a1 = 132, b1 = 161, c1 = 176. 
 

 
 

Thus, applying Proposition 5.3.1 to the solution (2), we get only one solution of the Diophantine 

equation (5.2.1) corresponding to a = 132. 
 

The lemma below considers the case when two independent solutions of the Diophantine 

equation (5.3.1) are known. 
 

Lemma 5.3.3 : Let (X, Y, Z) and (A, B, C) be two independent solutions of the Diophantine 

equation 

x2 = y2 + 3z2.                                                                (5.3.1) 
 

 
 

Then, (X A, | BY – 3CZ |, BZ + CY) and (X A, BY + 3CZ, | BZ – CY |) are also solutions of (5.3.1). 
 

 
 

Proof : Note that X2 A2 = (Y2 + 3Z2)(B2 + 3C2) can be expressed in two ways as follows : 
 

 

 
 

 

(Y2 + 3Z2)(B2 + 3C2) = (BY – 3CZ)2 + 3 (BZ + CY )2 = (BY + 3CZ)2 + 3( BZ – CY)2. 
 
 

 

Thus, we get the desired result. ■ 
 

If two independent solutions of x2 = y2 + 3z2 are known, Lemma 5.3.3 enables us to find two 

more. For example, from the solutions given in (1) and (2), by Lemma 5.3.2, we get the six 

independent solutions, given below : 
 

 

 
 

 

(14×26)2 = 2362 + 3.1602 = 3622 + 3.222 
 
 

 
 

 

= 1482 + 3.1922 = 3582 + 3.382 
 

 
 

 
 

= 1222 + 3.1982 = 2142 + 3.1702. 
 

 
 

 

 

Thus, corresponding to x = 7×13, there are only two independent solutions of (5.3.1), namely, 
 
 

 
 

 

(7×13)2 = 592 + 3.402 = 372 + 3.482. 
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Proposition 5.3.2 : Let (a0, b0, c0) and (a1, b1, c1) be two independent solutions of the 

Diophantine equation 
 

 

 
 

a2 = b2 + c2 – bc.                                                (5.2.1) 
 

 
 

Then, (a0 a1, b0 b1 – c0 c1, c0(b1
 – c1) + b0 c1) and (a0 a1, b0(b1 – c1) + c0 c1, b1 c0

 – b0 c1) are also  

solutions of (5.2.1), where in the latter case, b1 c0
 – b0 c1 > 0; if b1 c0

 – b0 c1 < 0, interchange the 

roles of the first and the second solutions. 
 

 

Proof : By assumption, we have, in view of Lemma 5.3.1, 

,Zc  ),ZY(b  ,a 02
1

2 00
X   

 

 

 

 

 

.Cc  ),CB(b  ,a 12
1

2 11
A   

 

 

 

Now, by Lemma 5.3.2, 
 

 

 
 

 
 

,CYBZc  ,)CYBZ()CZ3BY(b  ,a 2][
2
1

2 22
XA    

 

 
 

 
 

 
 

.CYBZc  ,)CYBZ()CZ3BY(b  ,a 3][
2
1

2 33
XA    

 

 
 

 

We now simplify as follows : 
 
 

 

 
 

 
 

a2 = 2a0 a1, c2 = (2b1 – c1)c0 + (2b0 – c0)c1 = 2(b0 c1 + b1 c0 – c0 c1), 
 

 
 

 

 
 

 
 

BY – 3CZ = (2b1 – c1)(2b0 – c0) – 3c1 c0 = 2(2b0 b1 – b0 c1
 – b1 c0 – c0 c1), 

so that 

b2 = (2b0 b1 – b0 c1
 – b1 c0 – c0 c1) + (b0 c1 + b1 c0 – c0 c1) = 2(b0 b1 – c0 c1). 

Again, 

a3 = 2a0 a1, c3 = (2b1 – c1)c0 – (2b0 – c0)c1 = 2(b1 c0 – b0 c1), 
 

 
 

 
 

 
 

 

 

BY + 3CZ = (2b1 – c1)(2b0 – c0) + 3c1 c0 = 2(2b0 b1 + 2c0 c1
 – b0 c1 – b1 c0), 

so that 

b3 = (2b0 b1 + 2c0 c1
 – b0 c1 – b1 c0) + (b1 c0 – b0 c1) = 2(b0 b1 + c0 c1 – b0 c1). 

 

 

 

Now, ignoring the common factor 2, we get the desired result. ■ 

 

If (a0, b0, c0) and (a1, b1, c1) are two independent solutions of the Diophantine equation     

a2 = b2 + c2 – bc, then obviously (a0 a1, b0 a1, c0 a1) and (a0 a1, a0 b1, a0 c1) are its two independent 

solutions. Proposition 5.3.2 gives two more (independent) solutions corresponding to a = a0 a1. 

For example, the two solutions (5) and (7) together gives, by virtue of Proposition 5.3.2, the two 

independent solutions 
 

 
 

 
 

a2 = 713, b2 = 85, c2 = 96, 
 

 
 

 

 

a2 = 713, b2 = 99, c2 = 19. 
 

 

 
 

 

If we want to apply the second part of Proposition 5.3.2, we see that, with the two solutions (4) 

and (7) (in this order), c3 = – 11 < 0. Thus, we rewrite them as 
 

 

 

 

 

a0 = 13, b0 = 15, c0 = 7,                                              

 
 

 
 

 

a1 = 7, b1 = 8, c1 = 3,                                                
 

 
 

 
 

 

and then, by Proposition 5.3.2,  
 
 

 

 
 

a2 = 713, b2 = 99, c2 = 80, 
 

 
 

 
 

a2 = 713, b2 = 96, c2 = 11. 
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It can be seen easily that the two solutions obtained from (5) and (8) are not distinct from the 

two solutions obtained above. Thus, the four independent solutions of the Diophantine equation 

(5.2.1), obtained by the application of Proposition 5.3.2, are 
 
 

 

 

a2 = 713, b2 = 96, c2 = 85, 
 
 

 

a2 = 713, b2 = 96, c2 = 11, 
 
 

 

a2 = 713, b2 = 99, c2 = 80, 
 
 

 

a2 = 713, b2 = 96, c2 = 19. 
 
 

 

This explains why the Diophantine equation (5.2.1) possesses eight independent solutions 

corresponding to a = 713. 

 

The primitive solutions of the Diophantine equation a2 = b2 + c2 + bc (100 < a < 200), obtained 

from those of a2 = b2 + c2 – bc by applying Lemma 5.1.6, are given in Table 5.3.2. 
 

 

Table 5.3.2 : The positive primitive solutions of the Diophantine equation a2
    =    b2

     +     c2
    +   bc  

for 100  a  200 
 

a b c   a b c   a b c 

103 40 77   163 75 112   169  91 104 

109 24 95   181  104 105    15 161 

127 13 120   193 32 175   133 57 95 

139 69 91   199 56 165    35 112 

151 56 115         23 120 

157 25 143        65 88 
 

 
We conclude the chapter with the following questions. 

 

Question 5.3.1 : Restricting a to the primes on the range 100 < a < 200, are the solutions (of 

the Diophantine equation a2
    =    b2

     +     c2
    –   bc) given in Table 5.3.1 exhaustive? 

 

We conjecture that the solutions in Table 5.3.1 list all when a is a prime with 100 < a < 200. 

Thus, restricting a to the primes on 1 < a < 100, there are 11 solutions of the Diophantine 

equation a2
    =    b2

     +     c2
    –   bc, and the number is 10 when 100 < a < 200. 

 

We have already seen that, for certain primes p, the Diophantine equation (5.2.1) possesses 

two (distinct) independent solutions when a = p, given by (p, b0, c0) and (p, b0, b0 – c0) (assuming 

that b0 > c0). Proposition 5.3.1 shows that, corresponding to a = p2, there are four independent 

solutions of (5.2.1). Thus, for example, when p = 7, there are two independent solutions, and for 

p = 72, there are four independent solutions, namely, (72, 55, 39), (72, 55, 16), (72, 56, 35) and  

(72, 56, 21). So, the question arises : 
 

Question 5.3.2 : Let the Diophantine equation a2
    =    b2

     +     c2
    –   bc possess a solution when a = p. 

How many solutions are there when a = p3? a = p4? 

 

Corresponding to a = 73, there are six independent solutions of the Diophantine equation 

(5.2.1), namely, (73, 360, 323), (73, 360, 37), (73, 385, 273), (73, 385, 112), (73, 392, 245) and  

(73, 392, 147), and corresponding to a = 74, there are eight independent solutions. These are   

(74, 2769, 1504), (74, 2769, 1265), (74, 2695, 1911), (74, 2695, 784), (74, 2744, 1715),       

(74, 2744, 1715), (74, 2520, 2261), and (74, 2520, 259). 
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Question 5.3.3 : How many solutions are there of the Diophantine equation a2
    =    b2

     +     c2
    –   bc 

when a = pqr (where p, q and r are distinct primes, and (5.2.1) has solutions in all the three 

cases corresponding to each of a = p, a = q and a = r)?  

 

We find that, corresponding to a = 71319, there are as many as 26 independent solutions 

of the Diophantine equation a2
    =    b2

     +     c2
    –   bc. These are as follows (in increasing values of b) :  

 
 

 

 
 

(71319, 1775, 1679), (71319, 1775, 96), (71319, 1824, 1615),  
 

 
 

 

(71319, 1824, 209), (71319, 1840, 1591), (71319, 1840, 249),  
 
 

 
 

(71319, 1859, 1560), (71319, 1859, 299), (71319, 1881, 1520),  
 

 

 
 

(71319, 1881, 361), (71319, 1911, 1456), (71319, 1911, 455),  
 

 
 

 

(71319, 1925, 1421), (71319, 1925, 504), (71319, 1960, 1309),  
 
 

 
 

(71319, 1960, 651), (71319, 1961, 1305), (71319, 1961, 656),  
 

 
 

 

(71319, 1976, 1235), (71319, 1976, 741), (71319, 1984, 1185),  
 
 

 

 

(71319, 1984, 799), (71319, 1989, 1144), (71319, 1989, 845),  
 
 

 
 

(71319, 1995, 1064) and (71319, 1995, 931).  
 

 
 

 
 

These values have been calculated by repeated application of Proposition 5.3.2, considering, in 

succession, a0 = 713, a1 = 19; a0 = 719, a1 = 13; and a0 = 1319, a1 = 7. For example, to apply 

Proposition 5.3.2 when a0 = 713, b0 = 96; c0 = 11 and a1 = 19; b1 = 21, c1 = 5, we rewrite them as 

follows (to avoid negative signs) : 
 

 

 
 

a0 = 19; b0 = 21, c0 = 5, 
 

 
 

 

 

a1 = 713, bb = 96; c1 = 11. 
 

 

 
 

 

Now, applying Proposition 5.3.1, we get two additional solutions of the the Diophantine 

equation a2
    =    b2

     +     c2
    –   bc, namely, (71319, 1961, 656) and (71319, 1840, 249). 

 

The values shown bold are particular cases, not shared by the other two cases. 
 

Question 5.3.4 : What is the general solution of the Diophantine equation a2
    =    b2

     +     c2
    –   bc? 

 

The above problem is a challenging one, particularly since it admits different number of 

solutions depending on the value of a. 
 

Question 5.3.5 : What is the general solution of the Diophantine equation x2
    =    y2

     +     3z2? 

 

We have considered the Diophantine equation x2
    =    y2

     +     3z2 in connection with the 

Diophantine equation (5.1.1), but the Diophantine equation x2
    =    y2

     +     3z2 deserves closer study 

by its own right. The examples in the equations (1), (2) and (3) show that, if (x0, y0, z0) is a 

solution of the Diophantine equation x2
    =    y2

     +     3z2, then it possesses three (independent) 

solutions corresponding to x = 2x0. In fact, we can prove the following result. 
 

Lemma 5.3.4 : Let (x0, y0, z0) be a solution of the Diophantine equation 
 
 

 

x2
    =    y2

     +     3z2.                                                  (5.3.1) 

Then, 

(1) corresponding to x = 2x0, there are three independent solutions of (5.3.1), namely, 
 
 

 
 

 

4x0
2 = (2y0)2 + 3(2z0)2 = (y0 + 3z0)2 + 3(y0 – z0)2 = (y0 – 3z0)2 + 3(y0 + z0)2, 

 

 
 

 
 

(2) corresponding to x = 4x0, the solution of (5.3.1) is two times one of the three solutions of 

part (1) above. 
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Proof : By assumption, 
 

 
 

x0
2

    =    y0
2

     +     3z0
2.                                                   

Now, since 

4x0
2 = (2y0)2 + 3(2z0)2 = (y0 + 3z0)2 + 3(y0 – z0)2 = (y0 – 3z0)2 + 3(y0 + z0)2, 

 

 
 

 
 

part (1) of the lemma follows. 
 

 

To prove part (2), let 
 

 
 

 

4x2 = Y2 + 3Z2, 
 
 

 
 

where, by part (1), Y and Z satisfy one of the following three conditions : 
 

 

 
 

 

(i) Y = 2y, Z = 2z, 
 
 

 
 

(ii) Y = y + 3z, Z =  y – z , 
 

 

 
 

(iii) Y =  y – 3z , Z = y + z. 
 

 
 

 
 

 
 

Now, let 

16x2 = A2 + 3B2. 
 
 

 

 
 

If A = 2Y, B = 2Z, there is nothing to prove. So, we need to consider the following two cases : 
 

 
 

 

 

Case 1. When A = Y + 3Z, B =  Y – Z . 
 

 

 

If Y = 2y, Z = 2z, then 
 
 

 
 

 

A = 2(y + 3z), B = 2y – z. 
 
 

 

 
 

On the other hand, if Y = y + 3z, Z =y – z, there are two possibilities : If y > z, then 
 

 
 

 
 

A = (y + 3z) + 3(y – z) = 4y, B = (y + 3z) – (y – z) = 4z, 
 

 
 

and if y < z, then 
 

 

 

A = (y + 3z) + 3(z – y) = 2y – 3z, B = (y + 3z) – (z – y) = 2(y + z). 
 

 

 
 

 

Again, if Y = y – 3z, Z = y + z, then 
 
 

 
 

 

A = (y – 3z) + 3(y + z) = 4y, B = (y –3z) – (y + z) = 4z, 
 
 

 

if y > 3z, and if y < 3z, then 
 

 
 

A = (3z – y) + 3(y + z) = 2(y + 3z), B = (3z – y) – (y + z) = 2y – z. 
 

 
 

 
 

 

 

Case 2. When A = Y – 3Z, B = Y + Z. 
 

 

 
 

 

If Y = 2y, Z = 2z, then 
 
 

 
 

 

A = 2y – 3z, B = 2(y + z). 
 

 
 

 
 

If Y = y + 3z, Z =y – z, then 
 

 
 

 

 

A = (y + 3z) – 3(y – z) = 2y – 3z, B = (y + 3z) + (y – z) = 2(y + z), 
 

 

 
 

if y > z, and if y < z, then 
 

 
 

 
 

A = (y + 3z) – 3(z – y) = 4y, B = (y + 3z) + (z – y) = 4z 
 

 

 
 

 

Finally, if Y = y – 3z, Z = y + z, then 
 
 

 
 

 

A = (y – 3z) – 3(y + z) = 2(y + 3z), B = (y –3z) + (y + z) = 2(y + z), 
 
 

 

 
 

if y > 3z, and if y < 3z, then 
 

 
 

 

A = (3z – y) – 3(y + z) = 4y, B = (3z – y) + (y + z) = 4z. 
 
 

 
 

 

All these complete the proof of the lemma. ■ 
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By Lemma 5.3.4, from (1), we have 
 

 
 

282 = 262 + 3.62 = 222 + 3.102 = 42 + 3.162.                                  
 

In Chapter 3 in Majumdar(4), it has been shown that, the study of the 60-degree and 

120-degree triangles involves the two Diophantine equations a2
    =    b2

     +     c2
         bc. Of particular 

interest is the Diophantine equation a2
    =    b2

     +     c2
    –   bc (which arises for the 60-degree triangles). It 

is indeed interesting to find that the solution of the Diophantine equations a2
    =    b2

     +     c2
    +   bc can 

be obtained from the solutions of the Diophantine equation a2
    =    b2

     +     c2
    –   bc. It has been found 

that the solutions of the Diophantine equation a2
    =    b2

     +     c2
    –   bc have interesting features, some of 

which are given in Proposition 5.3.1 and Proposition 5.3.2. It is also interesting to find that, in 

general, we get the solutions of the Diophantine equation a2
    =    b2

     +     c2
    –   bc in pairs corresponding 

to particular value of a. This chapter gives partial solutions of the Diophantine equation  
 

 
 

a2
    =    b2

     +     c2
    –   bc, 

 

 
 

 

where the sides a, b, c of the triangle T(a, b, c) are all unequal. Note that, any equilateral triangle 

is necessarily a 60-degree triangle. Then, considering the three dissimilar triangles 
 

 
 

T(7p, 3p, 8p), T(7p, 5p, 8p) and T(p, p, p), 
 

 

 
 

 

where p  11 is a prime, we have a triplet of triangles, any two of which are S-related. And if we 

wish, we may enlarge the list; for example, the dissimilar triangles 
 

 
 

 
 

T(49p, 55p, 16p), T(49p, 55p, 39p), T(49p, 56p, 21p), T(49p, 56p, 35p), 
 

 

 
 

 

are pair-wise S-related for any prime p  17. 
 

When p is a prime of the form p = 30n – 1, n  1, the two dissimilar triangles T(7p, 3p, 8p) 

and T(7p, 5p, 8p) are Z-related. Is it possible to find three (or, more) dissimilar 60-degree and 

120-degree triangles which are pair-wise Z-related? 
 

Another problem of interest is the the study of similar S-related or Z-related triangles which 

are 60-degree or 120-degree or Pythagorean. Trivially, for any prime p  17, the 60-degree 

similar triangles 

T(p, p, p), T(2p, 2p, 2p), …, T(10p, 10p, 10p), 
 
 

 

are S-related. Again, the 120-degree triangles {T(7), T(3), T(5)} and {T(14), T(6), T(10)} are 

similar and S-related. An example of a pair of 60-degree similar triangles which are Z-related is 
{T(31), T(11), T(15)} and {T(155), T(65), T(105)}, since 
 
 

 

Z(31) = 30 = Z(155), Z(11) = 10 = Z(65), Z(35) = 14 = Z(105). 
 

 
 

It remains open to study in more detail the problems on similar S-related  /  Z-related triangles. 
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Chapter     6       Miscellaneous  Topics   

 
In this chapter, we consider some topics related to Smarandache notions. The topics covered are 

(1) the triangular numbers and the Smarandache T-sequence, (2) the Smarandache friendly 

numbers, (3) the Smarandache reciprocal partition sets, (4) the Smarandache LCM ratio of two 

types and (5) the Sandor-Smarandache function. They are treated in Section 6.1, Section 6.2, 

Section 6.3, Section 6.4 and Section 6.5 respectively. 

 
6.1  Triangular  Numbers  and  Smarandache  T-Sequence 

 
The n-th triangular number, denoted by Tn, is defined as follows : 

 

Tn =
 

2

n(n + 1)
,  n  1. 

 
 

The first few triangular numbers are 
 
 

 
 

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, …, 
 

 
 

 

 
 

and may be obtained recursively from the recurrence relation 
 

 

 
 

 

Tn + 1       =        Tn         +         (n       +       1), n       ≥       1; T1       =       1. 
 
 

 

 
 

 

 
 

Many interesting properties of the triangular numbers are well-known, some of which are given 

in Beiler(1) and Pickover(2). 
 

We start with the following results (see, for example, Hardy and Wright(3)), related to a 

particular type of Pell’s equation. 
 

Lemma 6.1.1 : The solutions of the Diophantine (Pell’s) equation x2 – 2y2
      =       1 are given by 

  ,1n, 21y 2x
n2

nn
  

or, recursively by 

xn + 1       =       3xn       +       4yn, yn + 1       =        2xn       +       3yn, n       ≥       1;  
 

x1       =       3, y1       =       2. 

 

Corollary 6.1.1 : For n      ≥       1, xn is odd and yn is even. 

Proof : is by induction on n, and is left to the reader. ■ 
 

We now state and prove the following result. 

Theorem 6.1.1 : An infinite number of terms of  1nnT  are perfect squares. 

Proof : Let 

2

2

n(n + 1)
m  for some integers n       ≥       1, m      ≥       1.                                                                 (1) 

 

,Xn
2
1                                                                              (2) 
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(1) takes the form 

4X2 – 8m2
       =       1. 

Now, letting x       =       2X, y        =       2m, we get the Diophantine equation x2
       –       2y2

       =       1, which possesses an 

infinite number of solutions, given by Lemma 6.1.1. Also, since 

,m  ),1x(n
2

y
2
1   

by Corollary 6.1.1, both n and m are (positive) integers. Thus, the theorem is established. ■ 
 

Theorem 6.1.1 proves that there is an infinite number of perfect squares in the sequence of 

triangular numbers. It is interesting to observe that, the first perfect square in the sequence of 

triangular numbers is T1, the next one is T8, the third one is T49, but the fourth one is T288. 
 

Next, we prove the result below. 
 

Theorem 6.1.2 : Any triangular number Tn, n    2, can be expressed as the difference of two 

other triangular numbers. 

Proof : We prove the result by actually constructing three such triangular numbers. So, let 

Tn = Tℓ – Tm for some (positive) integers n, ℓ and m with ℓ > m.  

Then, n, ℓ and m must satisfy the following relationship : 

n(n + 1) = (ℓ – m)(ℓ + m + 1)                                          (3) 

In (3), let 

ℓ – m = k,                                                        (4) 

so that (3) reads as 

n(n 1) k(k 2m 1).                                                 (5)                                                                                                         

Letting k  =  1, we have 

n(n + 1) = 2(m + 1) (and ℓ = m + 1).                                          (6) 

Now, for any n    2 fixed, (6) has a (unique) solution in m. This proves the theorem. ■ 
 

 

From the proof of Theorem 6.1.2 above, we see that, for any n    2, 

n nn T T 1T T T .   

This shows that the triangular number Tn can, in fact, be expressed as the difference of two 

consecutive triangular numbers. Thus, in particular, 
 

T2  =   T3 – T2, T3  =  T6 – T5, T4   =   T10 – T9, T5   =   T15 – T14, … . 
 

A consequence of Theorem 6.1.2 is the following 
 

 

Corollary 6.1.2 : There is an infinite number of triangular numbers, each of which can be 

expressed as the sum of two triangular numbers. 
 

In (5), choosing k   =   2, we get 

n(n + 1) = 2(2m + 3); n  3, m  1 (with ℓ = m + 2).                        (7) 
 

It can easily be shown that (7) permits solutions for m if and only if n is either of the forms    

n  =   4r   +  1 and n   =   2(2r   +  1), and the solutions are as follows : 
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if n    =     4r     +  1, then m  =  4r2
     +   3r – 1 (ℓ = m + 2),  

if n   =   2(2r   +  1), then m  =  r(4r     +   5) (ℓ = m + 2). 
 

This shows that, in some cases, Tn can be expressed as the difference of two triangular numbers 

in more than one way. Thus, for example, 
 

T5  =   T8 – T6, T6  =  T11 – T9, T9   =   T23 – T21, T10   =   T28 – T26, … . 
 

We may continue this process, choosing k   =  3, 4, … in succession, and we would have more 

cases of expressing some triangular numbers as the difference of other triangular numbers in 

more than two ways. For example, k  =  3 in (5) leads to the equation 
 

n(n 1) 6(m 2); n 4,  m 1      (with ℓ = m + 3).                                          (8) 
 

It can easily be shown that (8) has solutions for m if and only if n is of the form n   =  3r   –  1 or       

n   =   3r, with the solutions 
 

2
r(3r  1)

m 2


   (ℓ = m + 3), if n  =  3r   –  1,  
 

2
r(3r  1)

m 2


   (ℓ = m + 3), if n   =   3r. 

Thus, for example, 
 

T5  =   T6 – T3, T6  =  T8 – T5, T8   =   T13 – T10, T9   =   T16 – T13, T11   =   T23 – T20, … . 
 

Again, choosing k  =  4, (5) reads as 
 

n(n 1) 4(2m 5); n 6,  m 1      (with ℓ = m + 4).                                        
 

which has a solution if and only if n is of the form n   =  4(2r    +  1) with m  =  r(8r   +  9). 
 

The above analysis shows that, in some cases, a triangular number can be expressed as the 

difference of two other triangular numbers in more than one way. For example, each of T5, T6 

and T9 can be expressed as the difference of two other triangular numbers in three ways. 
 

Shyam Sunder Gupta(4) introduced the Smarandache T-sequence as follows : 
 

Definition 6.1.1 : The Smarandache T-Sequence, denoted by   , )n(ST 1n

  is defined by 

 

,1n  , T ... T T)n(ST n21   
 

which is obtained by successively concatenating the triangular numbers T1, T2, …, Tn.  

 

The first few terms of the Smarandache T-Sequence are 
 

1, 13, 136, 13610, 1361015, 136101521, 13610152128, 1361015212836, … . 
 

 

Note that, ST(n     +     1) can be expressed in terms of ST(n) as follows : 
 

n n1 2 n 1 1 2 n 1 n 1
s  s ST(n 1) T  T  ... T T  10 T  T  ... T T 10 ST(n) T ,         

 

where s (   ≥   1) is the number of digits in Tn + 1. 
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In the Smarandache T-sequence, the second and the sixth terms are primes. In fact, as has 

been reported by Shyam Sunder Gupta(4), these are the only primes in the first 1000 terms of the 

Smarandache T-Sequence. Furthermore, as has been observed by Shyam Sunder Gupta(4), 

(except for the first term) the third term of the Smarandache T-Sequence is the only triangular 

number in the first 1000 terms of the Smarandache T-Sequence.  

 

Note that, for n     ≥     3, Tn are composite numbers; in fact 
 

n

n

n divides T ,         if n is odd 
 
(n + 1) divides T , if n is even





 

Now, since 

T3n–1 = 2

3n(3n  1)
, T3n = 2

3n(3n + 1)
; n  1. 

 

it follows that, both T3n – 1 and T3n are divisible by 3, so that each of 
 

1        +        T3n + 1       +       T3n + 4           =          T3n        +        T3n + 3        +        6(n       +      1), 

and 

T3n + 1       +       T3n + 4       +       T3n + 7          =          T3n        +        T3n + 3               +       T3n + 6        +        3(2n       +      3), 
 

is divisible by 3. This, in turn, shows that 1       +      T3n + 1     +      T3n + 4      +     T3n + 7         +         T3n + 10        +     T3n + 13 is divisible 

by 3. Again, since 

T9n + 8      +      T9n + 9      +      T9n + 10      +      T9n + 11      +      T9n + 12      +      T9n + 13      +      T9n + 14      +      T9n + 15      +      T9n + 16 
 

=       T9n + 9 – (9n      +      9)            +      T9n + 9      +      T9n + 9      +      (9n      +      10) 
 

+       T9n + 11 – (9n      +      12)            +      T9n + 12      +      T9n + 12      +      (9n      +      13) 
 

+       T9n + 15 – (9n      +      15)            +      T9n + 15      +      T9n + 15      +      (9n      +      16) 
 

= 3(T9n + 9      +      T9n +12      +      T9n + 15     +      1), 
 

We see that 3 divides T9n + 8      +      T9n + 9      +      T9n + 10      +      T9n + 11      +      T9n + 12      +      T9n + 13      +      T9n + 14      +      T9n + 15      +      T9n + 16. 

We now state and prove the following result. 
 

Lemma 6.1.2 : For n      ≥      0, 3 divides ST(9n      +      7). 

Proof : It can easily be checked that 3 divides ST(7) = 13610152128. This proves the result 

for n      =      0. To proceed by induction on n, we assume that the result is true for some n      >      0. 

Now, 

 TT ... T T10)16n9(ST 7n921 n
  s

 +10a T9n + 8      +      10b T9n + 9      +      10c T9n + 10 

 

+      10d T9n + 11      +      10e T9n + 12       +      10f T9n + 13      +      10g T9n + 14       +      10h T9n + 15      +      T9n + 16, 
 

(for some non-negative integers s, a, b, c, d, e, f, g and h) so that, by virtue of the induction 

hypothesis, 3 divides ST(9n     +    16). Thus, the result is true for n       +      1, completing induction. ■ 
 

 

Since, for n      ≥      1, 

ST(4n      –      1)       =      10s ST(4n      –      2)      +      T4n – 1 for some integer s       ≥      1,  

ST(4n)      =      10t ST(4n      –      1)      +      T4n for some integer t       ≥      1,  
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it follows that both ST(4n       –      1) and ST(4n) are even. It is thus sufficient to look for the primes 

among the terms of the forms ST(4n       +      1) and ST(4n      +      2). Similarly, since 5 divides each of 

ST(5n      –      1) and ST(5n), it is sufficient to check the terms of the forms ST(5n       +      1), ST(5n      +      2) 

and ST(5n      +      3) for possible primes. 
 

Shyam Sunder Gupta(4) also introduced the Smarandache reverse T-Sequence, denoted by 

  , )n(SRT 1n

  and is defined as follows : 

 

.1n  , T ... T T)n(SRT 11nn    

Note that, all the terms of the Smarandache reverse T-Sequence are odd. Shyam Sunder Gupta(4) 

reports that, among the first 1000 terms of the Smarandache reverse T-Sequence, there are only 

six prime numbers, namely, SRT(2), SRT(3), SRT(4), SRT(10), SRT(12) and SRT(14); but 

there is no triangular number (except the first term). 
 

For the Smarandache reverse T-Sequence, the following result holds true. 
 

Lemma 6.1.3 : For n      ≥      0, 3 divides SRT(9n      +      7). 

Proof : follows immediately from Lemma 6.1.2. ■ 
 

In passing, we mention the following problems : 
 

Open Problem  6.1.1 : Given any integer k ≥ 2, are there triangular numbers Tm and Tn such 

that Tn = k Tm? 
 

In the equation Tn = k  Tm, using the transformation 1 1
2 2

,n X ,  m Y    we get the 

Diophantine equation A2 – kB2 = – (k – 1), where A = 2X, B = 2Y.  
 

 

Open Problem   6.1.2 : What is the general solution of the Diophantine equation (5)?  
 

In (5), fixing k       =        k0 (    ≥     2), we see that it has a solution if and only if 1   +    4k0(k0  +    2m   +    1) is a 

perfect square. 
 

 

Open Problem   6.1.3 : Is it possible to find the pattern of the triangular numbers which can 

be expressed as the difference of two other triangular numbers in more than one way? 
 

Open Problem    6.1.4 : How many terms of the Smarandache T-Sequence are primes? And 

how many terms are triangular numbers? 
 

Open Problem    6.1.5 : How many terms of the Smarandache reverse T-Sequence are 

primes? And how many of them are triangular numbers? 
 

Another problem of interest is the palindromic triangular number, that is, the triangular 

number that reads the same backward and forward. Pickover(2) mentions that 
 

T1111  =  617716, 
 

T111111  =  6172882716, 

are palindromic numbers. Here, in each case, the index is also palindromic. We find that 
 

T11111111  =  61728399382716 

is also palindromic, and is the maximum in this series, the minimum being T11  =  66. 
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6.2  Smarandache  Friendly  Numbers 

 
Murthy(5) defined the Smarandache friendly numbers as follows. 

 

Definition 6.2.1 : A pair of positive integers (m, n) (with n > m) is called the Smarandache 

friendly numbers if and only if 
 

m + (m + 1) + … + n = mn. 
 

For example, (3, 6) is a Smarandache friendly pair, since 
 

3 + 4 + 5 + 6 = 18 = 36. 
 

Khainar, Vyawahare and Salunke(6) considered the problem of finding Smarandache friendly 

pairs and Smarandache friendly primes, using computer search. 
 

In this section, we show that the problem of finding the Smarandache friendly pairs can be 

reduced to the problem of solving a particular type of Pell’s equation. 
 

The following result, related to the Diophantine equation x2 – 2y2 = –1, is well-known (see, 

for example, Hardy and Wright(3)). The equation is a particular type of Pell’s equation. 
 

Lemma 6.2.1 : The general solution of the Diophantine (Pell`s) equation x2 –2y2 = –1 is 
 

2 1x 2 y (1 2) ;  0.                                        (6.2.1) 

 

The lemma below gives a recurrence relation to find the solution of x2 – 2y2 = –1 recursively, 

starting with the fundamental solution x1 = 7, y1 = 5. 
 

Lemma 6.2.2 : Denoting by (x , y )   the -th solution of the Diophantine equation     

x2 – 2y2 = –1, (x , y )   satisfies the following recurrence relation : 
 

1 1x 3x 4y ,  y 2x 3y ;  1.                                          (6.2.2) 
 

 

Proof : Since  
2 3

1 1
x 2 y (1 2) 
 

                                                                                                     

2(x 2 y )(1 2)     
 

 

(x 2 y )(3 2 2)     
 
 

 

(3x 4 y ) 2(2x 3 y ),       

the result follows. ■ 
 

We now consider the problem of finding the pair of integers (m, n), with n > m > 0, such that 
 

 

 

m + (m + 1) + … + n = mn.                                              (6.2.3) 

Writing 

n = m + k for some integer k > 0,                                            (6.2.4) 
 

 

 
 

(6.2.3) takes the form 
 
 

m + (m + 1) + … + (m + k) = m(m + k) 
 
 

 

 
 

that is,               )km(m)1k(m
2

)1  k(k



 

 
 

 

which, after some algebraic manipulations, gives                                                                                    
 

 
 

 

k(k + 1) = 2m(m – 1).                                                     (6.2.5) 
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In (6.2.5), we substitute 
 

 
 

 

k = K – 2
1 , m = M + 2

1                                          (6.2.6) 

to get 

K2 – 4
1 = 2(M2 – 4

1 )                                                                                                  

 

that is,      4K2 – 8M2 = –1 
 

that is,      x2 – 2y2 = –1,                                                  (6.2.7) 
  

where 

x = 2K, y = 2M.                                                (6.2.8) 
  

Note that, in (6.2.8), though K and M are not integers, each of x and y is a positive integer. 
 

Lemma 6.2.3 : The sequence of Smarandache friendly pair of numbers,   1(m , n 


 , is 

given by 

),1yMm (
2
1

2
1     

 

),1xKk (
2
1

2
1                                          (6.2.9) 

 

),yx(kmn
2
1

   
 

where 

.0 ,)21(y 2x 12  
                                 (6.2.10) 

 
 

 

 

Proof : Since x and y satisfy (6.2.7), (6.2.10) follows from Lemma 6.2.2. ■ 
 
 

 
 

 
 

 

Lemma 6.2.4 : The sequence of Smarandache friendly pair of numbers   1(m , n 


  

satisfies the following recurrence relation : 
 

1 1m m 2n ,  n 2m 5n 1;  1.            

with 

m1 = 3, n1 = 6.                                                                                             
 

 
 

 

Proof : By Lemma 6.2.2, 
 
 

1 1x 3x 4y ,  y 2x 3y ;  1.                                                                                                       

Now, 

,mn2)1yyx)1y3x)1ym (
2
12(

2
1(

2
1

11     
 

 
 

][ )y3x2()y4x)yxn 3(
2
1(

2
1

111     
 

 
 

)y7x5(
2
1

   
 
 

  y)yx(
2
5  

 
 

 

),1m2(n5                                                                                                

and we get the desired results. ■ 
 

 

 
 

 
 

 
 

 

 
 

Lemma 6.2.4 shows that, if the pair (of numbers) (x , y )   is Smarandache friendly, so 

also is the pair )1n52m ,n2(m νννν  , which is, in fact, the next pair. Thus, starting with 

the first Smarandache friendly pair (3, 6), Lemma 6.2.4 may be employed to find the others 

recursively. Lemma 6.2.4 shows that there are infinite number of Smarandache friendly pairs. 
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The following table gives the first nine Smarandache pairs, which are obtained from the 

recurrence relation given in Lemma 6.2.4. 

 
 

Table 6.2.1 : The first nine Smarandache friendly pairs 

 
 

 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

 

9 
 

 

m 

 

3 
 

15 
 

85 
 

493 
 

2871 
 

16731 
 

97513 
 

568345 
 

 

3312555 
 

 

n 

 

6 
 

35 
 

204 
 

1189 
 

6930 
 

40391 
 

235416 
 

1372105 
 

 

799724 
 

 
 

From Table 6.2.1 above, we observe that the Smarandache friendly pairs grow quite rapidly. 

When  = 10, 
 

 

m10 = 19306983, n10 = 46611179. 

 

Similar to the Smarandache friendly pair of numbers, we have the Smarandache friendly 

pair of primes, defined as follows (see Murthy(5)) : 
 

Definition 6.2.2 : Let p and q be two primes with q > p  3. Then, the pair (p, q) is called a 

Smarandache pair of friendly primes if the sum of all the primes from p through q (including p 

and q) is equal to the product pq. 
 

For example, (2, 5) is a pair of Smarandache pair of friendly primes, since 
 
 

 

2 + 3 + 5 = 10 = 25. 
 

 
 

The next pair of Smarandache friendly primes is (3, 13), since 
 

 
 

3 + 5 + 7 + 11 + 13 = 39 = 313, 
 

 
 

followed by the pairs (5, 31) and (7, 53). This observation leads to the following open question. 
 

Question 6.2.1 : Given any prime p (  3), is it possible to find a prime q ( > p) such that   

(p, q) is a Smarandache pair of friendly primes? 
 

Let p1, p2, .., pn, … be any sequence of consecutive primes with p1  3 such that 
 
 

 
 

 

p1 + p2 + p3 + … + pn = p1 pn for some primes p1 and pn.                    (1) 
 

 
 

 
 

Since the primes p1, p2, ..., pn, … are all odd, it follows that the right-hand side product in the 

relationship (1) above is odd, and hence, n must be odd. Now, let 
 
 

 
 

 

p2 + p3 + … + pn+ pn+1 + … + pn+r = p2 pn+r for some prime pn+r.              (2) 
 

 
 

 
 

Then, r must be odd; moreover, r  3. To prove that r  3, first note that, by virtue of (1), 
 

 
 

 

 

p2 + p3 + … + pn+ pn+1 = p1 pn – p1 + pn+1 < p1 pn + pn+1.                                  

Now, 

p2 pn+1  (p1 + 2)pn+1 = p1 pn+1 + 2pn+1. 
 

 
 

Therefore, 

p2 pn+1  p1 pn+1 + 2pn+1 > p1 pn + pn+1 > p2 + p3 + … + pn+ pn+1, 
 
 

 

which shows that r  1. Again, if p2  p1 + 4, then  
 
 

p2 pn+1  (p1 + 4)pn+1 > p2 + p3 + … + pn+ pn+1+ pn+2+ pn+3, 
 

 
 

which shows that r  5. 
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6.3  Smarandache  Reciprocal  Partition  Sets  of  Unity 

 
 

The idea of the sets of Smarandache reciprocal partition of unity was introduced by Murthy(7), 

and was studied in a systematic manner by Murthy and Ashbacher(8). This section treats some 

properties related to the sets of the Smarandache reciprocal partition of unity. 

 

We start with the following definition. 

 

Definition 6.3.1 : The Smarandache repeatable reciprocal partition of unity in n partitions, 

denoted by SRRPS(n), is defined as follows : 
 
 

 

SRRPS(n) = {(a1, a2, …, an) : a1, a2, …, an are integers; 1  ...  
n21

aaa
111  }. 

 
 

 
 

 

The order (the number of elements) of the set SRRPS(n) is denoted by fRP(n). 

 

Note that, in the above definition, without any loss of generality, we may assume that the n 

integers a1, a2, …, an are arranged in increasing (non-decreasing) order, that is 
 

 
 

 

 

0 < a1  a2  …  an. 
 

 

 
 

With this convention, we get 
 

 
 

 
 

SRRPS(1) = {1}, the singleton set, 
 

 
 

SRRPS(2) = {(2, 2)}, the singleton set, 
 

 
 

SRRPS(3) = {(2, 3, 6), (2, 4, 4), (3, 3, 3)}, 
 

 
 

 
 

with  

fRP(1) = 1, fRP(2) = 1, fRP(3) = 3. 

 

In Definition 6.3.1, the n integers a1, a2, …, an are not necessarily distinct; if they are distinct, 

then we have the following definition. 
 

Definition 6.3.2 : The Smarandache distinct reciprocal partition of unity in n partitions, 

denoted by SDRPS(n), is defined as follows : 
 

 
 

SDRPS(n) = {(a1, a2, …, an) : 0 < a1 < a2 < …< an; 1  ...  
n21

aaa
111  }. 

The order of the set SDRPS(n) is denoted by fDP(n). 
 

Note that, SDRPS(2) =  (the empty set). Thus, in studying the sets SDRPS(n), it is 

sufficient to confine the attention to the case when n  3. 
 

Lemma 6.3.1 : In the set SDRPS(n), n  3, 2 ≤ a1  n – 1. 
 
 

Proof : Let, on the contrary a1 ≥ n, so that by the condition of Definition 6.3.2, 
 

 
 

ai > n for all i = 2, 3, …, n. 

But then 

1  ...  
n21

aaa
111  , 

contradicting the condition of the definition. ■ 
 

As a consequence of the above lemma, we can prove the following 
 
 

 

 
 

Corollary 6.3.1 : In the set SRRPS(n), n  3, if a1 = n, then ai = n for all 1  i  n. 
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Proof : By assumption, 
 

 
 

ai  a1 = n for all i = 2, 3, …, n. 
 

 
 

 
 

Now, if aj > n for some j, 2  j  n, then 
 

 

 

1  ...  
n21

aaa
111  , 

and we reach to a contradiction. 
 

 

 

This contradiction establishes the desired result. ■ 
 

Lemma 6.3.2 : For n  3, there always exist integers a1, a2, …, an, satisfying the condition 
 

 
 

2 = a1 < a2 < … < an 

such that 

1  ...  
n21

aaa
111  . 

Proof : is by induction on n. 

When n = 3, we choose 
 

 

 
 

 

a2 = 3, a3 = 6, 

so that 

1
321

aaa
111  . 

 

 
 

Thus, the result is true for n = 3. To proceed by induction on n, we assume that the result is true 

for some integer n, that is, we assume that there are n integers 2 = a1, a2, …, an with 
 
 

 
 

 

a1 < a2 < …< an 

such that 

1  ...  
n21

aaa
111  . 

 

 
 

We now define the integers b1, b2, …, bn, bn+1 as follows : 
 

 

 

b1 = a1, 
 
 

 

b2 = a2, 
 
 

⋮ 
bn–1 = an–1, 

 

 
 

bn = an + 1, 
 

 

 

bn+1 = an(an + 1). 
 
 

 
 

 

The numbers so defined satisfy the following two conditions : 
 
 

 

 
 

b1 < b2 < …< bn < bn+1, 
 

 
 

 
 

1  ...    ...  
n211nn21

aaabbbb
1111111 



. 

 

 
 

Thus, the result also holds for n + 1, completing induction. ■ 
 

To find SDRPS(3), we first note that, by Lemma 6.3.1, we must have a1 = 2. 
 

We first prove the following result. 
 

Lemma 6.3.3 : The only (positive) integer solutions of the Diophantine equation 
 

 
 

2ba
111                                                     (6.3.1) 

are (1) a = b = 4, (2) a = 3, b = 6. 



 

 
 

87                                         Chapter 4 : The Pseudo Smarandache Function 

Proof : From (6.3.1), we get 
 

 
 

 

2(a + b) = ab. 
 
 

 

 
 

Then, a must divide b, so that 
 

 
 

b = ka for some integer k  1. 
 

 
 

Therefore, we get 
 

 

 

2(1 + k) = ka. 
 

 

 

Since k does not divide 1 + k, it follows that a must divide 1 + k. 
 
 

 

Now, when k = 1, then a = 2(1 + k) = 4 (so that b = 4), and when k = 2, a = k + 1 = 3 (and b = 6). 

Then, we get the desired result. ■ 
 

From Lemma 6.3.3, we see that, under the restriction that b > a, the equation (6.3.1) has the 

unique solution a = 3, b = 6. 
 

Lemma 6.3.4 : SDRPS(3) is the singleton set SDRPS(3) = {(2, 3, 6)}. 

Proof : follows by virtue of Lemma 6.3.3. ■ 
 

Next, we find SDRPS(4). To do so, we need the following intermediate results. 
 

Lemma 6.3.5 : The only (positive) solutions of the Diophantine equation 
 

 
 

6ba
111                                                     (6.3.2) 

are (1) a = 7, b = 42, (2) a = 8, b = 24, (3) a = 9, b = 18, (4) a = 12 = b. 
 
 

Proof : We rewrite (6.3.2) as 
 

 
 

 

6(a + b) = ab. 
 

 
 

 
 

Now, a must divide b, say 
 

 

 

b = ka for some integer k  1. 
 

 

 

Then 

6(1 + k) = ka, 
 

 
 

so that a must divide 1 + k (since k does not divide 1 + k). 
 

 
 

Now, when k = 1, then a = 6(1 + k) = 12 (so that b = 12), and when k = 2, a = 3(k + 1) = 9 (and    

b = 18), when k = 3, then a = 2(1 + k) = 8 (and b = 24), and when k = 6, a = 1 + k = 7 (so that b = 42). 

Hence, we get the desired result. ■ 
 

Lemma 6.3.6 : The only (positive) solutions of the Diophantine equation  
 
 

 

4ba
111                                                     (6.3.3) 

 
 

 

are (1) a = 5, b = 20, (2) a = 6, b = 12, (3) a = 8 = b. 
 

 

Proof : We recast (6.3.2) in the form below : 
 
 

 

6(a + b) = ab. 
 
 

 

 

Now, a must divide b, so that 
 
 

 

b = ka for some integer k  1. 
 
 

 

Then 

4(1 + k) = ka, 
 

 
 

and hence, a must divide 1 + k (since k does not divide 1 + k). 
 

 
 

Now, when k = 1, then a = 4(1 + k) = 8 (so that b = 8), and when k = 2, a = 2(k + 1) = 6 (and b = 12), 

and when k = 4, then a = 1 + k = 5 (and b = 20). Hence, we get the desired result. ■ 
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Corollary 6.3.2 : Consider the Diophantine equation 
 

 

1
4321

aaaa
1111  ; 0 < a1 < a2

 < a3
 < a4

 < 1.                        (6.3.4) 
 

 

(1) Under the condition that a1 = 2, a2 = 3, the equation (6.3.4) has three solutions, namely,    

(i) a3 = 7, a4 = 42,  (ii) a3 = 8, a4 = 24, and (iii) a3 = 9, a4 = 18, 
 

 
 

(2) With a1 = 2, a2 = 4, (6.3.4) has two solutions, namely, (i) a3  = 5, a4   = 20, and (ii) a3   = 6, a4 = 12. 
 

 

Proof : Part (1) follows from Lemma 6.3.5, while part (2) is an immediate consequence of 

Lemma 6.3.6. ■ 
 

Lemma 6.3.7 : Consider the following Diophantine equation :  
 

 

2
1

cba
111  .                                                (5.3.5) 

 

 

Under the condition that c > b > a  5, (5.3.5) has no solution.                                        
 

 

Proof : First, let a = 5. Then, 

10
3

76
11  , 

but 

10
3

86
11  . 

This shows that a  5. 

Next, let a  6. Then, for c > b > a  6, 
 

 
 

10
3

876cba
111111  .  

 

 

Thus, a cannot be greater than 6. 

All these complete the proof of the lemma. ■ 
 

Lemma 6.3.8 : Consider the Diophantine equation  
 
 

3
2

cba
111  .                                                (6.3.6) 

Under the condition that c > b > a  4, (6.3.6) has no solution. 

Proof : follows from the fact that, for c > b > a  4, 
 

 
 

 

.
3
2

654cba
111111   ■ 

 

Lemma 6.3.9 : SDRPS(4) has exactly six elements, namely, 
 

 

SDRPS(4) = {(2, 3, 7, 42), (2, 3, 8, 24), (2, 3, 9, 18), (2, 3, 10, 15),  
 

(2, 4, 5, 20), (2, 4, 6, 12)}. 
 

 
 

Proof : To find SDRPS(4), first note that, by Lemma 6.3.1, a1 is either 2 or 3. By virtue of 

Lemma 6.3.7, a1  3. Hence, a1 must be 2. Again, by Lemma 6.3.7, a2 cannot be greater than 5. 

The result now follows by Corollary 6.3.2. ■ 
 

Now, given the set SDRPS(n) (with fDP(n) elements), we consider the problem of extending 

it to get some of the elements of the set SDRPS(n + 1). Here, the question is 
 

Question 6.3.1 : In how many ways the elements of SDRPS(n) can be extended to get the 

elements of SDRPS(n + 1)? And what is the number of elements of SDRPS(n)? 
 

Murthy and Ashbacher(8) suggest different methods of extending the elements of SDRPS(n) 

to get the elements of SDRPS(n + 1). One such method is stated in the lemma below. 
 

Lemma 6.3.10 : Let (a1, a2, …, an)SDRPS(n). Then, (2, 2a1, 2a2, …, 2an)SDRPS(n + 1). 
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Proof : By assumption, n – 1  a1 < a2 < … < an with 
 

 
 

1  ...  
n21

aaa
111  . 

Then, 

1  ...    ...  )(
n21n21

aaa222a2a2a2
111111111  . 

Hence, the lemma. ■ 
 

Lemma 6.3.11 : If (a1, a2, …, an)SDRPS(n), then (2, 3, 6a1, 6a2, …, 6an)SDRPS(n + 2). 
 

 

Proof : By assumption,  
 
 

2  a1 < a2 < … < an, 

with 

1  ...  
n21

aaa
111  . 

Therefore, 

.1  ...    ...  
66aaa666a6a6a32
151111511111 )(

n21n21

  
Thus, the lemma is established. ■ 
 

Since (2, 3, 6)SDRPS(3), it follows, by Lemma 6.3.11, that (2, 3, 12, 18, 36)SDRPS(5). 
 

Now, let (a1, a2, …, ai, …, an)SDRPS(n). Then, replacing ai (1  i  n) by bi1 and bi2, where 
 

 
 

 
 

 

bi1 = ai + 1, bi2 = ai(ai + 1),                                        (6.3.7) 
 
 

 

we see that (ai, a2, …, ai–1, bi1, bi2, ai+1, …, an) (rearranging the numbers, if necessary), we get an 

element of SDRPS(n + 1). The proof follows from the fact that 

iii

i

iiii2i1
a)1 a(a

1 a

)1 a(a1 abb
11111 






. 

 
 

 

The third method mentioned in Murthy and Ashbacher(8) is as follows : Let di1 and di2 be two 

distinct divisors of ai, so that ai = di1di2. Then, replacing ai by ci1 and ci2, where 
 

 
 

ci1 = di1(di1 + di2), ci2 = di2(di1 + di2),                                 (6.3.8) 
 

 

 
 

(and rearranging the terms, if necessary), we get an element of SDRPS(n + 1). Note that 
 

 
 

 

ii2 i1i2i1i2i2i1i1i2i1
add

1
)d d(d)d d(dcc

11111 


. 

 

 

 

In connection with the third method above, we have the following result. 
 

Lemma 6.3.12 : In the set SDRPS(n), n  3, an is not a prime. 
 

 

Proof : The proof is by contradiction. So, let an be a prime, say, an = p. Then, 

1 2 n 1

1 1 1
a a a p

1  p
  ...  .




                                        (6.3.9) 

Let 

1 2 n 1 1 2 n 1

1 1 1
a a a a  a  ... a

A  ...  ,
 

      

so that from (6.3.9), we get 

1 2 n 1 pa  a  ...  a
1  pA ,




   

that is, 

pA = (p – 1) a1 a2 … an, 
 

 

 

and we reach to a contradiction, since none of a1, a2, …, an is divisible by p. ■ 
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Since an is not a prime, it follows that an (if not a square) has at least two divisors (excepting 

the trivial ones 1 and an). Note that, if ai is a prime, say, ai = p, then by the third method (6.3.8), 

p is replaced by p + 1 and p(p + 1) to get the corresponding element of SDRPS(n + 1). 

 

Starting with the single element (2, 3, 6)SDPRS(3), by applying the three methods outlined 

above, we get the following three elements of SDRPS(4) : 
 

 
 

 
 

(2, 4, 6, 12), (2, 3, 7, 42), (2, 3, 10, 15). 
 

 
 

 

 

Note that, the three methods are overlapping, and do not generate all the elements of SDRPS(4). 

 

Let the sequence of integers  nj

n

j 3
a


, n  3, be defined as follows : 













3j  if
2j  if
1j  if

6,
3,
,2

 a
j3  

and for n ≥ 4, 









 nj2  if

       1j  if
,a

         ,2
 a

1j,1n
nj

 

Let 

An = (an1, an2, ..., ann), n ≥ 3, 

where 

2 = an1 < an2 < ... < ann. 

Then, as has been pointed out by Maohua(9), we have an infinite sequence of sets,  
3nn

A , the 

elements of each of which satisfy the condition of Definition 6.3.2. 

 

To find a lower bound for fDR(n), we confine our attention to SDRPS(4). A closer look at 

the elements of SDRPS(4) shows that the second procedure, outlined in (6.3.7), can be applied 

to only three (of the four components) in each of the first five elements of SDRSP(4), while its 

last element gives only two elements of SDRPS(5). Thus, by the second method, we get the 17 

elements of SDRPS(5) as follows : (2, 4, 7, 12, 42), (2, 3, 8, 42, 56), (2, 3, 7, 43, 1806),       

(2, 4, 8, 12, 24), (2, 3, 9, 24, 72), (2, 3, 8, 25, 600), (2, 4, 9, 12, 18), (2, 3, 10, 18, 90),           

(2, 3, 9, 19, 342), (2, 4, 10, 12, 15), (2, 3, 11, 15, 110), (2, 3, 10, 16, 240), (3, 4, 5, 6, 20),          

(2, 4, 6, 20, 30), (2, 4, 5, 21, 420), (2, 4, 6, 12, 20) and (2, 4, 6, 13, 156). Applying the third method, 

outlined in (6.3.8), the following eleven elements of SDRPS(5) are obtained : (2, 3, 7, 78, 91),  

(2, 3, 8, 33, 88), (2, 3, 8, 40, 60), (2, 3, 8, 28, 168), (2, 3, 9, 22, 99), (2, 3, 9, 27, 54),            

(2, 3, 14, 15, 35), (2, 3, 10, 24, 40), (2, 4, 5, 24, 120), (2, 4, 5, 36, 45), (2, 4, 6, 21, 28). And finally, 

by Lemma 6.3.10, the following four elements of SDRPS(5) result : (2, 4, 6, 14, 84),         

(2, 4, 6, 16, 48), (2, 4, 6, 18, 36) and (2, 4, 8, 10, 40). Thus, the suggested three methods together 

give only 32 elements of SDRPS(5), while Murthy and Ashbacher(8) reports that there are 72 

elements in the set SDRPS(5).  
 

 
 

 
 

 

 

Thus, the analysis with the elements of SDRPS(4) leads to the following estimate of 

SDRPS(n + 1) : 
 

 
 

 

fDR(n + 1)  (n – 1)[fDR(n) – 1] + n – 2 + fDR(n) = n fFD(n) – 1. 
 

 
 

 

In the above inequality, the number of elements of SDRPS(n + 1), obtained from the elements of 

SDRPS(n) by the method of (6.3.7) is (n – 1)[fDR(n) – 1] + n – 2, and since an is not a prime, we 

can safely say that the number of elements of SDRPS(n + 1), arising from the elements of 

SDRPS(n), by the third method outlined in (6.3.8), is fDR(n). With n = 4, we get fDR(5) ≥ 23, 

which is a better and more reasonable estimate than the one given in Murthy and Ashbacher(8). 
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6.4  Smarandache  LCM  Ratio 

 
 

In this section, we consider the Smarandache LCM ratio function, introduced by Murthy(10). As 

we shall see later, there are, in fact, two types of Smarandache LCM ratio functions in the 

literature. 

 

Given any number k of positive integers n1, n2, …, nk, we denote by (n1, n2, …, nk) the 

greatest common divisor (GCD) of n1, n2, …, nk, and by [n1, n2, …, nk] their least common 

multiple (LCM). Then, we have the following results, whose proofs may be found, for example, 

in Apostol(11). 
 

Lemma 6.4.1 : For any positive integers n and m, [n, m] = nm
(n, m)

. 

 

Lemma 6.4.2 : For any integers n1, n2, …, nk, 
 

 
 

 

(1) [n1, n2, …, nk] = [[n1, n2, …, nt], [nt+1, nt+2, …, nk]], t < k, 
 
 

 
 

 

(2) (n1, n2, …, nk) 
= ((n1, n2, …, nt), (nt+1, nt+2, …, nk)), t < k. 

 

The Smarandache LCM ratio function, proposed by Murthy(10), is as follows : 
 

Definition 64.1 : The Smarandache LCM ratio function of degree r, denoted by T(n, r), is 

given by 

[n,  n 1,  n 2,...,  n r 1]
T(n,  r) ;

[1,  2,  3,...,  r]

   
  n, rΝ. 

 

The explicit expressions for T(n, 1) and T(n, 2) are given in Murthy(10), and are reproduced 

in the following two lemmas. The proof of Lemma 6.4.3 is immediate from the definition, while 

Lemma 6.4.4 follows from the fact that (n, n + 1) = 1 for any integer n  1. 
 

Lemma 6.4.3 : T(n, 1) = n for all n  1. 
 

Lemma 6.4.4 : For n  1, T(n, 2) is given by 
 

 

T(n, 2) =
2

n(n + 1)
. 

 

The following two lemmas, due to Maohua(12), give explicit expressions for T(n, 3) and   

T(n, 4) respectively. 
 

Lemma 6.4.5 : For n  1, 
 

n(n 1)(n 2)

6

n(n 1)(n 2)

12

,  if n is odd 
T(n,3)  

,  if n is even

 

 




 



 

 

Lemma 6.4.6 : For n  1, 
 

n(n 1)(n 2)(n 3)

72

n(n 1)(n 2)(n 3)

24

,  if 3 divides n            
T(n,  4)  

,  if 3 does not divide n

  

  




 


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Finally, the expression for T(n, 4), given by Wang Ting(13), is 
 

Lemma 6.4.7 : For n  1, 
 

n(n 1)(n 2)(n 3)(n 4)
12 12 8

1440

n(n 1)(n 2)(n 3)(n 4)
12 1 12m 7                                   

120

n(n 1)(n 2)(n 3)(n 4)
12

720

,  if n m,  m                                      

,  if n m ,  

,  if n m
T(n,  5)  

   


   
 

   








2,  12m 6                                  

n(n 1)(n 2)(n 3)(n 4)
12 3,  12m 5,  12m 9,  12 11

360

n(n 1)(n 2)(n 3)(n 4)
12 4                                                   

480

n(n 1)(n 2)(

,  if n m m

,  if n m

 

   
   

   


 





n 3)(n 4)
12 10                                                 

240
,  if n m

 















 


 

 

Khairnar, Vyawahare and Salunke(14) treated a variant of the Smarandache LCM ratio 

function, defined as follows : 

 

Definition 6.4.2 : The Smarandache LCM ratio function, denoted by SL(n, r) is 
 

 
 

[n,  n 1,  n 2,  ..., n r 1]
SL(n, r) , r n;

[1,  2,  3,  ..., r]

   
   n, rΝ. 

 

The function SL(n, r), given in Definition 6.4.2 above, may be called the Smarandache 

LCM ratio function of the second type. 

 

Lemma 6.4.8 : For any integer n  1,  
 

 
 

SL(n, n) = 1. 
 

 

Proof : is trivial from Definition 6.4.2. ■ 

 

The following lemma gives the relationship between T(n, r) and SL(n, r). 

 

Lemma 6.4.9 : For any integer n  1 and r with 1  r  n, 
 

 

 

SL(n, r) = T(n – r + 1, r). 
 
 

 
 

 

Proof : is evident from Definition 6.4.1 and Definition 6.4.2. ■ 

 

Note that, in Lemma 6.4.9 above, the condition n – r + 1  1 requires that SL(n, r) is defined 

only for r  n. 
 

Lemma 6.4.10 : If p is a prime, then p divides SL(p, r) for all r < p. 
 
 

 

Proof : By definition, 
 
 

 
 

[p,  p 1,  p 2,  ...,  p r 1]
SL(p,  r) ,  r p.

[1,  2,  3,  ...,  r]

   
   

 

 

 
 

 

Now, p divides [p, p – 1, p – 2, …, p – r + 1] for all r < p, while p does not divide [1, 2, 3, …, r]. 

Thus, p divides SL(p, r). ■ 

 

Lemma 6.4.11 : If p is a prime, then p does not divide SL(2p, r) for any p  r  2p. 

Moreover, if q is the prime next to p, then q divides SL(2p, r) for all p  r  q – 1. 
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Proof : If p is a prime, then p divides [2p, 2p – 1, …, 2p – r + 1] for all r  2p, but p2 does 

not divide [2p, 2p – 1, …, 2p – r + 1]; also, p divides [1, 2, …, r] for all r  p. Hence, p does not 

divide 
 

 
 

[2p,  2p 1,  ...,  2p r 1]
SL(2p,  r) ,  p r 2p.

[1,  2,  ...,  r]

  
                        (6.4.1) 

 

 
 

 

To prove the remaining part of the lemma, first note that, by Bertrand’s postulate (see, for 

example, Hardy and Wright(3)), there is at least one prime, say, q, such that p < q < 2p. Now, 

from (6.4.1), q divides the numerator if p  r  q – 1, but q does not divide the denominator. As 

such, q divides SL(2p, r) for all p  r  q – 1. ■ 
 

The explicit expressions for the functions SL(n, 1), SL(n, 2), SL(n, 3), SL(n, 4) and SL(n, 5) 

are given in Theorem 6.4.1 – Theorem 6.4.5 below, which make use of Lemma 6.4.9, together 

with the expressions of T(n, 1), T(n, 2), T(n, 3), T(n, 4) and T(n, 5), given in the five lemmas, 

Lemma 6.4.3 – Lemma 6.4.7. An alternative method of derivations of these functions is given in 

the Appendix, where the definition of SL(n, r) is used. 
 

Theorem 6.4.1 : For any n  1, SL(n, 1) = n. 
 
 

Proof : SL(n, 1) = T(n, 1) = n. ■ 
 

Theorem 6.4.2 : For any n  2, SL(n, 2) =
2

n(n  1)
. 

Proof : By Lemma 6.4.4 and Lemma 6.4.9,  
 

 

SL(n, 2) = T(n – 1, 2) =
2

(n  1)n
.


 ■ 

 

Theorem 6.4.3 : For any n  3, 
 
 

n(n 1)(n 2)

6

n(n 1)(n 2)

12

,  if n is odd 
SL(n,3)  

,  if n is even

 

 




 



 

 
 

 
 

Proof : Using Lemma 6.4.5, together with Lemma 6.4.9, 
 

 
 

 

 

(n 2)(n 1)n

6

(n 2)(n 1)n

12

,  if n 2 is odd 
SL(n,  3) T(n 2,  3)  

,  if n 2 is even

 

 




   
 


                                      

 
 

 

Now, since n is odd if and only if n – 2 is odd, the result follows. ■ 
 

Theorem 6.4.4 : For any n  4, 
 
 

n(n 1)(n 2)(n 3)

72

n(n 1)(n 2)(n 3)

24

,  if 3 divides n            
SL(n, 4)  

,  if 3 does not divide n

  

  




 



 

 

 

 

Proof : By Lemma 6.4.6 and Lemma 6.4.9, 
 
 

 
 

 

(n 3)(n 2)(n 1)n

72

(n 3)(n 2)(n 1)n

24

,  if 3 divides n 3            
SL(n,  4) T(n 3,  4)  

,  if 3 does not divide n 3

  

  




   
 


 

 

 
 

 

Noting that, 3 divides n – 3 if and only if 3 divides n, the theorem follows. ■ 
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Theorem 6.4.5 : For any n  5, 
 

 
 

                                          8m12n

                          10m12 ,6m12n

                          11m12 ,5m12n

                                           2m12n

9m12 ,7m12 ,3m12 ,1m12n

                                  4m12 ,m12n

  

if

if

if

if

if

if

  

,

,

,

,

,

,

)5 ,n(SL

480

720

120

240

360

1440

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n















































 

 

 

 

Proof : By virtue of Lemma 6.4.7 and Lemma 6.4.9, 
 
 

 

(n 4)(n 3)(n 2)(n 1)n
12 12 8

1440

(n 4)(n 3)(n 2)(n 1)n
12 1 12m 7                                   

120

(n 4)(n

SL(n,  5) T(n 4,  5)

,  if n 4 m,  m                                      

,  if n 4 m ,  

             

   


   
 



 

 

 



3)(n 2)(n 1)n
12 2,  12m 6                                  

720

(n 4)(n 3)(n 2)(n 1)n
12 3,  12m 5,  12m 9,  12 11

360

(n 4)(n 3)(n 2)(n 1)n
12 4                              

480

,  if n 4 m

,  if n 4 m m

,  if n 4 m

  
 

   
   

   


 

 

                       

(n 4)(n 3)(n 2)(n 1)n
12 10                                                 

240
,  if n 4 m

   















  


      

 

 

 

Now, since n – 4 is of the form 12m if and only if n is of the form 12m + 4, n – 4 is of the form  

12m + 8 if and only if n is of the form 12m, n – 4 is of the form 12m + 1 if and only if n is of the 

form 12m + 5, n – 4 is of the form 12m + 7 if and only if n is of the form 12m + 11, n – 4 is of the 

form 12m + 2 if and only if n is of the form 12m + 6, n – 4 is of the form 12m + 6 if and only if n 

is of the form 12m + 10, n – 4 is of the form 12m + 3 if and only if n is of the form 12m + 7, n – 4 

is of the form 12m + 5 if and only if n is of the form 12m + 9, n – 4 is of the form 12m + 9 if and 

only if n is of the form 12m + 1, n – 4 is of the form 12m + 11 if and only if n is of the form  

12m + 3, n – 4 is of the form 12m + 4 if and only if n is of the form 12m + 8, and n – 4 is of the 

form 12m + 10 if and only if n is of the form 12m + 2, the result follows. ■ 

 

Using the values of SL(n, r), n  1, 1  r  n, the following table, due to Murthy(10), and called 

the Smarandache-Amar LCM triangle, is formed as follows : 
 

The 1st column contains the elements of the sequence  
n 1

SL(n,  1)



, the 2nd column is 

formed with the elements of the sequence  
n 2

SL(n,  2)



, and so on, and in general, the 

k-th column contains the elements of the sequence  
n k

SL(n,  k)



. 

 

Note that, the 1st column contains the natural numbers, and the 2nd column contains the 

triangular numbers. 
 

The Smarandache-Amar LCM triangle of size 1310 (13 rows and 10 columns) is given below. 
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  1-st   2-nd   3-rd   4-th   5-th   6-th   7-th   8-th  9-th  10-th 

column column column column column column column column column column

SL(n, 1) SL(n, 2) SL(n, 3) SL(n, 4) SL(n, 5) SL(n, 6) SL(n, 7) SL(n, 8) SL(n, 9) SL(n, 10)

1-st row 1

2-nd row 2 1

3-rd row 3 3 1

4-th row 4 6 2 1

5-th row 5 10 10 5 1

6-th row 6 15 10 5 1 1

7-th row 7 21 35 35 7 7 1

8-th row 8 28 28 70 14 14 2 1

9-th row 9 36 84 42 42 42 6 3 1

10-th row 10 45 60 210 42 42 6 3 1 1

11-th row 11 55 165 330 462 462 66 33 55 55

12-th row 12 66 440 165 66 462 66 33 11 11

13-th row 13 78 286 715 429 858 858 429 143 143

 

 

Note that, by Lemma 6.4.8, the leading diagonal contains all unity. 
 

Lemma 6.4.12 : If p is a prime, then sum of the elements of the p-th row  1 (mod p). 

Proof : The sum of the p-th row is 
 

 

 

SL(p, 1) + SL(p, 2) + … + SL(p, p – 1) + SL(p, p) 
 
 

 
 

= [SL(p, 1) + SL(p, 2) + … + SL(p, p – 1)] + 1 
 

 
 

 

 1 (mod p), 
 
 

 
 

by virtue of Lemma 6.4.10. ■ 
 

Open Problem 6.4.1 : Find a congruence property for the sum of the elements of the k-th 

row when k is a composite? 
 

Open Problem 6.4.2 : Find the sum of the elements of the k-th row? 
 

Note that, by Lemma 6.4.10 and Lemma 6.4.11, some of the elements of the (2p)-th row is 

divisible by p, and some elements are not divisible by p but are divisible by q, where q is the 

next larger prime to p. 
 

Looking at the 9th row of the triangle, we observe that the number 42 appears in three 

consecutive places. Note that, 42 is divisible by the prime next to p in the interval (p, 2p) with  

p = 5. 
 

Open Problem 6.4.3 : In the Smarandache-Amar triangle, is it possible to find (in some row) 

repeating values of arbitrary length? 
 

Note that, the above problem is related to the problem of finding the solutions of the 

equation 
 

SL(n, r) = SL(n, r + 1).                                                   (6.4.2) 
 

 

A necessary and sufficient condition that (6.4.2) holds is 
 
 

([n,  n 1,  ...,  n r 1],  n r)(r 1) ([1,  2,  ...,  r],  r 1)(n r).                  (6.4.3) 
 

 

The proof is as follows : The equation (6.4.2) holds for some n and r if and only if 
 
 

 

[n,  n 1,  ...,  n r 1] [n,  n 1,  ...,  n r]

[1,  2,  ...,  r] [1,  2,  ...,  r,  r 1]

    



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that is, if and only if 
 

 
 

 

[n,  n 1,  ...,  n r 1].[1,  2,  ...,  r,  r 1] [n,  n 1,  ...,  n r].[1,  2,  ...,  r]        
 

 

 

that is, if and only if 
 
 

[1,  2,  ...,  r](r 1) [n,  n 1,  ...,  n r 1](n r)
[n,  n 1,  ...,  n r 1]. .[1,  2,  ...,  r]

([1,  2,  ...,  r],  r 1) ([n,  n 1,  ...,  n r 1],  n r)

    
   

    
, 

 
 

which reduces to (6.4.3) after simplification. ■ 
 

Lemma 6.4.13 : If n is an odd (positive) integer, then the equation (6.4.2) has always a 

solution. 

Proof : We show that 
 
 

 

SL(2r + 1, r) = SL(2r + 1, r + 1) for any integer r  1.    
 
 

 

In this case, the necessary and sufficient condition (6.4.3) takes the form 
 
 

 

 

([2r 1,  2r,  ...,  r 2],  r 1)(r 1) ([1,  2,  ...,  r],  r 1)(r 1).                                                                  

Now, since 
 
 

([2r 1,  2r,  ...,  r 2],  r 1) ([1,  2,  ...,  r],  r 1) for any integer r 1,       
 
  

 

we see that (6.4.3) is satisfied, which, in turn, establishes the result. ■ 
 

If n is an even integer, the equation (6.4.2) may not have a solution. A counter-example is 

the case when n = 4. However, we have the following result. 
 

Lemma 6.4.14 : If n is an integer of the form n = 2p + 1, where p is a prime, then  
 
 

 

SL(2p, p) = SL(2p, p + 1)    

if and only if 

([1,  2,  ...,  p],  p 1) p 1.                                                              
 

 

Proof : If n = 2p + 1, then the l.h.s. of the condition (6.4.3) is 
 
 

 
 

 

([2p,  2p 1,  ...,  p 1],  p)(p 1) p(p 1),      
 

which, together with the r.h.s. of (6.4.3), gives the desired condition. ■ 
 

Conjecture 6.4.1 : The equation SL(n, r) = SL(n, r + 1) has always a solution for any n  5. 
 

In the worst case, SL(n, n – 1) = SL(n, n) = 1, and the necessary and sufficient condition is 

that n divides [1, 2, …, n – 1]. 
 

Another interesting problem is to find the solution of the equation 
 

SL(n + 1, r) = SL(n, r).                                           (6.4.4) 
 

The equation (6.4.4) holds for some n and r if and only if 
 
 

 
 

 

[n,  n 1,  ...,  n r 1] [n 1,  n,  ...,  n r 2]

[1,  2,  ...,  r] [1,  2,  ...,  r]

     
  

 
 

 

 
 

that is, if and only if 
 

 
 

 

 

[n,  n 1,  ...,  n r 2].(n r 1) (n 1).[n,  n 1,  ...,  n r 2]

([n,  n 1,  ...,  n r 2],  n r 1) ([n,  n 1, ...,  n r 2],  n 1)

        


        
, 

 
 

 

 
 

which, after simplification, leads to 
 

 
 

 
 

(n r 1).([n,  n 1, ...,  n r 2],  n 1) (n 1).([n,  n 1,  ...,  n r 2],  n r 1),               (6.4.5) 
 

 

which is the necessary and sufficient condition for the equation (6.4.4) to hold. 
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From (6.4.5), we observe the following facts : 
 

 
 

 

(1) n + 1 cannot be prime, for otherwise, 
 
 

 

([n,  n 1, ...,  n r 2],  n 1) 1,      
 
 

which leads to a contradiction. 
 

 
 

 
 

(2) In (6.4.5),  
 

 

 
 

[n,  n 1, ...,  n r 2],  n 1) n 1      ([n,  n 1,  ...,  n r 2],  n r 1) n r 1.                
 
 

 

 
 

(3) In (6.4.5), if n – r + 1 = 2, then  
 

 
 

 
 

([n,  n 1,  ...,  n r 2],  n r 1) 2      [n,  n 1, ...,  n r 2],  n 1) n 1.              
 

 
 

 
 

(4) If n – r + 1  2 is prime, then 
 

 
 

([n,  n 1,  ...,  n r 2],  n r 1) 1   

   n 1 (n r 1).([n,  n 1, ...,  n r 2],  n 1)

([n,  n 1, ...,  n r 2],  n 1)
   n 1 r,

([n,  n 1, ...,  n r 2],  n 1) 1

     

        

   
  

    

                  (6.4.6) 

 

after simplification, showing that ([n,  n 1, ...,  n r 2],  n 1) 1      must divide r. 
 
 

 
 

 

(5) In (6.4.5), if ([n,  n 1, ...,  n r 2],  n 1) n 1,       then n r 1   cannot be an odd prime, 

for otherwise, by (6.4.6), 
 

 
 

n 1n 1 r      n r,
(n 1) 1

   
 

                                             

 

which leads to a contradiction. 
 

Conjecture 6.4.2 : The equation SL(n + 1, r) = SL(n, r) has always a solution for any r  3. 
 

In the worst case, SL(r + 1, r) = SL(r, r) = 1, and the necessary and sufficient condition is that 

([1,  2, ...,  r],  r 1) r 1.    

 

Remark 6.4.1 : Khairnar, Vyawahare and Salunke(14) mentioned some identities involving 

the ratio and sum of reciprocals of two consecutive LCM ratios. The validity of these 

results depends on the fact that SL(n, r) can be expressed as 
 
 

 

n(n 1) .... (n r 1)
SL(n,  r) .

r!

  
                                  (6.4.7) 

 

 

If SL(n, r) can be represented as in (6.4.7), it can be deduced that 
 
 

 

SL(n,  r 1) n r 1 1 n 1,  .
SL(n,  r) r 1 SL(n,  r) SL(n,  r 1) (r 1).SL(n,  r 1)

    
   

 

 

 
 

However, the above results are valid only under certain conditions on n and r. For 

example, for r = 2, the above two identities are valid only for odd (positive) integers n. 

Thus, the next question is : What are the conditions on n and r for (6.4.7)? 
 

If r = p, where p is a prime, then SL(p! – 1, p) can be expressed as in (6.4.7), because in 

such a case 
 

[p! 1,  p! 2,  ...,  p! p] (p! 1)(p! 2) ... (p! p)
SL(p! 1,  p) .

[1,  2,  ...,  p] p!

     
    

 

In the Appendix, the expressions of SL(n, 1), SL(n, 2), SL(n, 3), SL(n, 4) and SL(n, 5) are 

derived directly from the definition. Some identities involving SL(n, 1), SL(n, 2), SL(n, 3),  

SL(n, 4) and SL(n, 5) are also given. 
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APPENDIX 
 

 

The derivations of the expressions for SL(n, 1), SL(n, 2), SL(n, 3), SL(n, 4) and SL(n, 5) are 

given in Theorem A.1 – Theorem A.5 below.  
 

Theorem A.1 : For any n  1, SL(n, 1) = n. 
 

 

Proof : follows immediately from Definition 6.4.2. ■ 
 

Theorem A.2 : For any n  2, SL(n, 2) =
1

2

n(n  )
. 

Proof : Since for any positive integer n, (n, n – 1) = 1, it follows from Lemma 6.4.1 that       

[n, n – 1] = n(n – 1). Thus, the result follows from Definition 6.4.2. ■ 
 

Theorem A.3 : For any n  3, 
 
 

n(n 1)(n 2)

6

n(n 1)(n 2)

12

,  if n is odd 
SL(n,3)  

,  if n is even

 

 




 



 

Proof : By Definition 6.4.2, 
 

 

1 2 3

[n, n  1, n  2]
6

[n,  n 1,  n 2]
SL(n,3) ;  n 3.

[ ,  ,  ]
  

                          (1) 
 
 

 
 

 

To find [n, n – 1, n – 2], we consider the two possible cases separately below : 
 
 

Case 1 : When n is odd, say n = 2m + 1 for some integer m  1. In this case, 
 

 

 
 

[n, n – 1, n – 2] = [2m + 1, 2m, 2m – 1] = [[2m + 1, 2m], 2m – 1]. 

But,  

[2m + 1, 2m] = 2m(2m + 1),  
 
 

 
 

 

[[2m + 1, 2m], 2m – 1] 
= [2m(2m + 1), 2m – 1] = 2m(2m + 1)(2m – 1). 

 

Now, inserting the above expression in (1), the result follows. 
 

 

Case 2 : When n is even, say n = 2m for some integer m  2. In this case, since 
 

(n, n – 2) = (2m, 2m – 2) = 2, 
 

it follows that 

[n, n – 1, n – 2] = [[2m, 2m – 2], 2m – 1] 
 
 

 

= [ 2

2

2m(2m  )
, 2m – 1]  

 

 
 

= m(2m – 2)(2m – 1). 
 

 
 

The above expression now gives the desired result. ■ 
 

Theorem A.4 : For any n  4, 
 

n(n 1)(n 2)(n 3)

72

n(n 1)(n 2)(n 3)

24

,  if 3 divides n            
SL(n, 4)  

,  if 3 does not divide n

  

  




 



 

 

Proof : Appealing to Definition 6.4.2, we get 
 

1 2 3,  4

[n, n  1, n  2, n  3]
12

[n,  n 1,  n 2,n 3]
SL(n,4) ;  n 4.

[ ,  ,  ]
    

                (2) 
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To find [n, n – 1, n – 2, n – 3], we consider the three possibilities separately below : 
 

 
 

 
 

 

Case 1 : When n is of the form n = 3m for some integer m  2.  
 
 

 

In this case, 
 

 
 

(n, n – 3) = (3m, 3m – 3) = 3, (n – 1, n – 2) = 1, 

so that 

[n, n – 3] = [3m, 3m – 3] =
3

3

3m(3m  )
,  

 

 
 

 

[n – 1, n – 2] = [3m – 1, 3m – 2] = (3m – 1)(3m – 2). 

Therefore, 
 

[n, n – 1, n – 2, n – 3] = [3m, 3m – 1, 3m – 2, 3m – 3] 
 

= [[3m, 3m – 3], [3m – 1, 3m – 2]]  
 

= [ 3

3

3m(3m  )
, (3m – 1)(3m – 2)] 

 

=
3 2

3m(3m  1)(3m  2)(3m  3)


  
                       (3) 

 

where the last expression follows by virtue of the fact that 
 

(3m(m – 1), (3m – 1)(3m – 2)) = 2. 
 

Now, (2) and (3) give the desired result. 
 

Case 2 : When n is of the form n = 3m + 1 for some integer m  1.  
 
 

In this case,  
 

(n, n – 1) = (3m + 1, 3m) = 1 = (3m – 1, 3m – 2) = (n – 2, n – 3). 

Therefore, 
 

[n, n – 1, n – 2, n – 3] = [3m + 1, 3m, 3m – 1, 3m – 2] 
 

= [[3m + 1, 3m], [3m – 1, 3m – 2]]  
 

= [3m(3m + 1), (3m – 1)(3m – 2)] 
 

=
2

3m(3m  1)(3m  2)(3m  3)  
                       (4) 

 

using the fact that  
 

(3m(3m + 1), (3m – 1)(3m – 2)) = 2. 
 

Substituting the expression of [n, n – 1, n – 2, n – 3] in (2), we get the result. 
 

Case 3 : When n is of the form n = 3m + 2 for some integer m  1.  
 

In this case, the proof is similar to that of Case 2 above, and is left with the reader. ■ 

 

In course of proving Theorem A.4, we found explicit expressions of [n, n – 1, n – 2, n – 3], 

which are summarized in the following lemma. These values would be required later for the 

proof of Theorem A.5. 
 

Lemma A.1 : For any n  4, 
 
 

 
 

n(n 1)(n 2)(n 3)

6

n(n 1)(n 2)(n 3)

2

,  if 3 divides n            
[n,  n 1,  n 2,  n 3]  

,  if 3 does not divide n

  

  




    


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Theorem A.5 : For any n  5, 
 

                                          8m12n

                          10m12 ,6m12n

                          11m12 ,5m12n

                                           2m12n

9m12 ,7m12 ,3m12 ,1m12n

                                  4m12 ,m12n

  

if

if

if

if

if

if

  

,

,

,

,

,

,

)5 ,n(SL

480

720

120

240

360

1440

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n

)4n)(3n)(21)(nn(n















































 

 

Proof : By Definition 6.4.2, 
 

1 2 3,  4, 5

[n, n  1, n  2, n  3, n  4]
60

[n,  n 1,  n 2,n 3,  n 4]
SL(n,5) ;  n 5.

[ ,  ,  ]
      

      (5) 
 

 

Now, by Lemma 6.4.1, 
 

[n, n – 1, n – 2, n – 3, n – 4] = [[n, n – 1, n – 2, n – 3], n – 4]                            
 

=
[n,  n 1,  n 2,  n 3](n 4)

([n,  n 1,  n 2,  n 3],  n 4)

   

   
.               (6) 

 

To find ([n, n – 1, n – 2, n – 3], n – 4), we consider the following 12 possibilities that may arise : 
 

Case 1 : When n is of the form n = 12m for some integer m  1.  
 

In this case, by Lemma A.1, 
 

[n, n – 1, n – 2, n – 3] = [12m, 12m – 1, 12m – 2, 12m – 3] 
 

=
6

12m(12m  1)(12m  2)(12m  3)  
 

 

= 12m(12m – 1)(6m – 1)(4m – 1), 

so that, 

([n, n – 1, n – 2, n – 3], n – 4) = (12m(12m – 1)(6m – 1)(4m – 1), 12m – 4) = 4. 
 

Therefore, from (6), using Lemma A.1, we get 
 

[n, n – 1, n – 2, n – 3, n – 4] =
6 4

n(n  1)(n  2)(n  3)(n  4)
.


   

                            
 

Plugging in this expression in (5), we get the desired result. 
 

Case 2 : When n is of the form n = 12m + 1 for some integer m  1.  

Here,  

[n, n – 1, n – 2, n – 3] = [12m + 1, 12m, 12m – 1, 12m – 2] 
 

=
2

12m(12m  1)(12m  1)(12m  2)  
 

 

= 12m(12m + 1)(12m – 1)(6m – 1), 

so that, 

([n, n – 1, n – 2, n – 3], n – 4) = (12m(12m + 1)(12m – 1)(6m – 1), 12m – 3) = 3, 

and hence 

[n, n – 1, n – 2, n – 3, n – 4] =
32

)4n)(3n)(2n)(1n(n



.                           
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Case 3 : When n is of the form n = 12m + 2 for some integer m  1.  
 

In this case,  

[n, n – 1, n – 2, n – 3] = [12m + 2, 12m + 1, 12m, 12m – 1]   
 

=
2

12m(12m  1)(12m  2)(12m  1)  
 

 

= 12m(12m + 1)(6m + 1)(12m – 1), 

and hence, 

([n, n – 1, n – 2, n – 3], n – 4) = (12m(12m + 1)(6m + 1)(12m – 1), 12m – 2) = 2, 

and  

[n, n – 1, n – 2, n – 3, n – 4] =
2 2

n(n  1)(n  2)(n  3)(n  4)


   
. 

 

Case 4 : When n is of the form n = 12m + 3 for some integer m  1.  
 

In this case, [n, n – 1, n – 2, n – 3] and ([n, n – 1, n – 2, n – 3], n – 4) are given as follows : 
 

[n, n – 1, n – 2, n – 3] = [12m + 3, 12m + 2, 12m + 1, 12m]    
 

=
6

12m(12m  1)(12m  2)(12m  3)  
 

 

= 12m(12m + 1)(6m + 1)(4m + 1), 
 

([n, n – 1, n – 2, n – 3], n – 4) = (12m(12m + 1)(6m + 1)(4m + 1), 12m – 1) = 1. 
 

Consequently, 

[n, n – 1, n – 2, n – 3, n – 4] =
6

n(n  1)(n  2)(n  3)(n  4)
.

   
 

 

Case 5 : When n is of the form n = 12m + 4 for some integer m  1.  
 

Corresponding to this case, [n, n – 1, n – 2, n – 3] and ([n, n – 1, n – 2, n – 3], n – 4) are 
 

[n, n – 1, n – 2, n – 3] = [12m + 4, 12m + 3, 12m + 2, 12m + 1]    
 

=
2

(12m  1)(12m  2)(12m  3)(12m  4)   
 

 

= 12(12m + 1)(6m + 1)(4m + 1)(3m + 1), 
 

([n, n – 1, n – 2, n – 3], n – 4) = (12(12m + 1)(6m + 1)(4m + 1)(3m + 1), 12m) = 12, 

and so, 

[n, n – 1, n – 2, n – 3, n – 4] =
2 12

n(n  1)(n  2)(n  3)(n  4)


   
. 

 

Case 6 : When n is of the form n = 12m + 5 for some integer m  0.  
 

In this case, since 
 

[n, n – 1, n – 2, n – 3] = [12m + 5, 12m + 4, 12m + 3, 12m + 2]    
 

=
2

(12m  2)(12m  3)(12m  4)(12m  5)   
 

 

= 12(6m + 1)(4m + 1)(3m + 1)(12m + 5), 
 

([n, n – 1, n – 2, n – 3], n – 4) 
= (12(6m + 1)(4m + 1)(3m + 1)(12m + 5), 12m + 1) = 1, 

we get, 

[n, n – 1, n – 2, n – 3, n – 4] =
2

n(n  1)(n  2)(n  3)(n  4)
.

   
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Case 7 : When n is of the form n = 12m + 6 for some integer m  0.  
 

In this case, the expressions for [n, n – 1, n – 2, n – 3] and ([n, n – 1, n – 2, n – 3], n – 4) are 
 

[n, n – 1, n – 2, n – 3] = [12m + 6, 12m + 5, 12m + 4, 12m + 3]    
 

=
6

(12m  3)(12m  4)(12m  5)(12m  6)   
 

 

= 12(4m + 1)(3m + 1)(12m + 5)(2m +1), 
 

([n, n – 1, n – 2, n – 3], n – 4) 
= (12(4m + 1)(3m + 1)(12m + 5)(2m + 1), 12m + 2) = 2, 

and hence, 

[n, n – 1, n – 2, n – 3, n – 4] =
6 2

n(n  1)(n  2)(n  3)(n  4)
.


   

 
 

Case 8 : When n is of the form n = 12m + 7 for some integer m  0.  
 

Here,  
 

[n, n – 1, n – 2, n – 3] = [12m + 7, 12m + 6, 12m + 5, 12m + 4]    
 

=
2

(12m  4)(12m  5)(12m  6)(12m  7)   
 

 

= 12(3m + 1)(12m + 5)(2m + 1)(12m + 7), 
 

([n, n – 1, n – 2, n – 3], n – 4) 
= (12(3m + 1)(12m + 5)(2m + 1)(12m + 7), 12m + 3) = 3, 

 

and consequently, 

[n, n – 1, n – 2, n – 3, n – 4] =
2 3

n(n  1)(n  2)(n  3)(n  4)
.


   

 
 

Case 9 : When n is of the form n = 12m + 8 for some integer m  0.  
 

Here,  

[n, n – 1, n – 2, n – 3] = [12m + 8, 12m + 7, 12m + 6, 12m + 5]    
 

=
2

(12m  5)(12m  6)(12m  7)(12m  8)   
 

 

= 12(12m + 5)(2m + 1)(12m + 7)(3m + 2), 
 

([n, n – 1, n – 2, n – 3], n – 4) 
= (12(12m + 5)(2m + 1)(12m + 7)(3m + 2), 12m + 4) = 4, 

 

and consequently, 
 

[n, n – 1, n – 2, n – 3, n – 4] =
2 4

n(n  1)(n  2)(n  3)(n  4)
.


   

 
 

Case 10 : When n is of the form n = 12m + 9 for some integer m  0.  
 

In this case, the expressions for [n, n – 1, n – 2, n – 3] and ([n, n – 1, n – 2, n – 3], n – 4) are 
 

[n, n – 1, n – 2, n – 3] = [12m + 9, 12m + 8, 12m + 7, 12m + 6]    
 

=
6

(12m  6)(12m  7)(12m  8)(12m  9)   
 

 

= 12(2m + 1)(12m + 7)(3m + 2)(4m + 3), 
 

 

([n, n – 1, n – 2, n – 3], n – 4) 
= (12(2m + 1)(12m + 7)(3m + 2)(4m + 3), 12m + 5) = 1, 

 

and hence, 
 

[n, n – 1, n – 2, n – 3, n – 4] =
6

n(n  1)(n  2)(n  3)(n  4)
.

   
 

102                                                        Smarandache Numbers Revisited 



 

 
 

103                                         Chapter 4 : The Pseudo Smarandache Function 

Case 11 : When n is of the form n = 12m + 10 for some integer m  0.  
 

Here, the expressions for [n, n – 1, n – 2, n – 3] and ([n, n – 1, n – 2, n – 3], n – 4) are as follows : 
 

[n, n – 1, n – 2, n – 3] = [12m + 10, 12m + 9, 12m + 8, 12m + 7]    
 

=
2

(12m  7)(12m  8)(12m  9)(12m  10)   
 

 

= 12(12m + 7)(3m + 2)(4m + 3)(6m + 5), 
 

([n, n – 1, n – 2, n – 3], n – 4) 
= (12(12m + 7)(3m + 2)(4m + 3)(6m + 5), 12m + 6) = 6, 

Therefore, 

[n, n – 1, n – 2, n – 3, n – 4] =
2 6

n(n  1)(n  2)(n  3)(n  4)
.


   

 
 

Case 12 : When n is of the form n = 12m + 11 for some integer m  0.  
 

In this case, the expressions for [n, n – 1, n – 2, n – 3] and ([n, n – 1, n – 2, n – 3], n – 4) are  
 

[n, n – 1, n – 2, n – 3] = [12m + 11, 12m + 10, 12m + 9, 12m + 8]    
 

=
2

(12m  8)(12m  9)(12m  10)(12m  11)   
 

 

= 12(3m + 2)(4m + 3)(6m + 5)(12m + 11), 
 

([n, n – 1, n – 2, n – 3], n – 4) 
= (12(3m + 2)(4m + 3)(6m + 5)(12m + 11), 12m + 7) = 1, 

and hence, 

[n, n – 1, n – 2, n – 3, n – 4] =
2

n(n  1)(n  2)(n  3)(n  4)
.

   
 

 

In each of the above cases, substituting the expression of [n, n – 1, n – 2, n – 3, n – 4] in (1), the 

result follows. ■ 
 

In proving Theorem A.5, we also found the expression of [n, n – 1, n – 2, n – 3, n – 4], which 

is summarized below. These values would be necessary to find the expression of SL(n, 6). 
 

Lemma A.2 : For any n  5, 

n(n 1)(n 2)(n 3)(n 4)
12 12 4

1440

n(n 1)(n 2)(n 3)(n 4)
12 1 12 3,  12m 7,  12m 9

120

n(n 1)(n 2)(n 3)(n 4)
12 2     

720

,  if n m,  m                                    

,  if n m ,  m

,  if n m
[n,  n 1,  n 2,  n 3,  n 4]  

   


   
   

   







    

                                            

n(n 1)(n 2)(n 3)(n 4)
12 5,  12 11                               

360

n(n 1)(n 2)(n 3)(n 4)
12 6,  12m 10                               

480

n(n 1)

,  if n m m

,  if n m

   
 

   
 







(n 2)(n 3)(n 4)
12 8                                                  

240
,  if n m

  















 


 

 
Some identities of the forms SL(n, r) – SL(n – 1, r) are given in the five lemmas below. 

 

Lemma A.3 : SL(n, 3) satisfies the following recurrence relations : 
 

 
 

(1) 12

12

(n  1)(n  2)(n  3)

(n  1)(n  2)(6  n)

,  if n 5 is odd 
SL(n,  3) SL(n 1,  3)  

,  if n 4 is even

  

  

 
   

 

 

(2) 

2

2

2
(n  2)

(n 2) ,    if n 5 is odd  
SL(n,  3) SL(n 2,  3)  

,  if n 6 is even


  
   


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Proof : To prove the lemma, we make use of Theorem A.3. 
 

(1) If n  5 is odd, then     

n(n  1)(n  2) (n  1)(n  2)(n 3)
6 12

SL(n,  3) SL(n 1,  3) ,
    

     
 

which gives the desired result after some algebraic manipulation. 
 

Again, if n  4 is even, then 
 

n(n  1)(n  2) (n  1)(n  2)(n  3) (n  1)(n  2)(6  n)
12 6 6

SL(n,  3) SL(n 1,  3) ,
       

      
 

(2) If n  5 is odd, then 
 

n(n  1)(n  2) (n  2)(n  3)(n  4) (n  2)(6n  12)
6 6 6

SL(n,  3) SL(n 2,  3) ,
      

      
 

from which the result is immediate. 
 

 
 

On the other hand, if n  4 is even, then 
 

 
 

 

12 12 12
n(n  1)(n  2) (n  2)(n  3)(n  4) (n  2)(6n  12)

SL(n,  3) SL(n 2,  3) .
      

      

All these complete the proof of the lemma. ■ 

 

Lemma A.4 : SL(n, 4) satisfies the recurrence relations below : 
 
 

 
 

(1) 
(3n  1)(3n  2)(n  1)(n  2)

4
SL(3n,  4) SL(3n 1,  4) ,

   
     n  2, 

 
 

 

 

(2) 
n(n  1)(3n  1)(3n  2)

4
SL(3n 1,  4) SL(3n,  4) ,

  
    n  2, 

 

 
 

 

(3) 
n(3n  1)(3n  1)

2
SL(3n 2,  4) SL(3n 1,  4) ,

 
     n  2. 

 
 

 

Proof : To prove part (1) of the lemma, using Theorem A.4, we get 
 

3n(3n  1)(3n  2)(3n  3) (3n  1)(3n  2)(3n  3)(3n  4)
72 24

SL(3n,  4) SL(3n 1,  4) ,
      

     

 

which then gives the desired result after some algebraic manipulation. 
 

To prove part (2), note that, by Theorem A.4, 
 
 

 
 

 

 

3n(3n  1)(3n  1)(3n  2) 3n(3n  1)(3n  2)(3n  3)
24 72

SL(3n 1,  4) SL(3n,  4) ,
     

     
 

giving the desired result after simplification. 
 

Finally, since 

3n(3n  1)(3n  1)(3n  2) 3n(3n  1)(3n  1)(3n  2)
24 24

SL(3n 2,  4) SL(3n 1,  4) ,
     

      

part (3) of the lemma follows. ■ 

 

The following lemma involves three identities of the forms SL(3n + 1, 4) – SL(3n – 1, 4), 

SL(3n + 2, 4) – SL(3n, 4) and SL(3n + 3, 4) – SL(3n + 1, 4). 
 

Lemma A.5 : SL(n, 4) satisfies the following recurrence formulas : 
 

(1) 
(3n  1)(3n  2)(2n  1)

2
SL(3n 1,  4) SL(3n 1,  4) ,

  
     n ≥ 2,  

 

(2) 
 2n (3n  1)(3n  7)

4
SL(3n 2,  4) SL(3n,  4) ,

 
    n ≥ 2, 

 

(3) 
2 n (3n  1)(3n  7)

4
SL(3n 3,  4) SL(3n 1,  4) ,

 
     n ≥ 3. 
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Proof : Since 
 

(1) 
3n(3n  1)(3n  1)(3n  2) (3n  1)(3n  2)(3n  3)(3n  4)

24 24
SL(3n 1,  4) SL(3n 1,  4) ,

      
      

 

(2) 
3n(3n  2)(3n  1)(3n  1) 3n(3n  1)(3n  2)(3n  3)

24 72
SL(3n 2,  4) SL(3n,  4) ,

     
     

 

(3) 
3n(3n  3)(3n  2)(3n  1) 3n(3n  1)(3n  1)(3n  2)

72 24
SL(3n 3,  4) SL(3n 1,  4) ,

     
      

 

the result follows after simplifications. ■ 
 

Lemma A.6 : If n  7 is not divisible by 3, then 
 

2(n  3)(n   6n  10)
2

SL(n,  4) SL(n 3,  4) .
  

    
 

Proof : If n  7 is not divisible by 3, then by Theorem A.4, 
 

n(n  1)(n  2)(n  3) (n  3)(n  4)(n  5)(n  6)
24 24

SL(n,  4) SL(n 3,  4) ,
      

     
 

which, after simplification, gives the result desired. ■ 
 

Lemma A.7 : SL(n, 5) satisfies the following recurrence relations : 
 

(1) 1
5

SL(12n 1,  5) SL(12n,  5) n(12n 1)(6n 1)(4n 1)(9n 2);  n 1,         
 

(2) 2
5

SL(12n 2,  5) SL(12n 1,  5) n(12n 1)(12n 1)(6n 1)(n 1);  n 1,          
 

(3) 2
5

SL(12n 3,  5) SL(12n 2,  5) n(6n 1)(12n 1)(12n 1)(n 1);  n 1,           
 

(4) 1
5

SL(12n 4,  5) SL(12n 3,  5) n(4n 1)(6n 1)(12n 1)(9n 2);  n 1,           
 

(5) 1
5

SL(12n 5,  5) SL(12n 4,  5) (3n 1)(4n 1)(6n 1)(12n 1)(11n 5);  n 1,           
 

(6) SL(12n 6,  5) SL(12n 5,  5) 2n(3n 1)(4n 1)(6n 1)(12n 5);  n 0,           
 

(7) 6
5

SL(12n 7,  5) SL(12n 6,  5) (2n 1)(3n 1)(4n 1)(12n 5)(n 1);  n 0,           
 

(8) 1
5

SL(12n 8,  5) SL(12n 7,  5) (2n 1)(3n 1)(12n 5)(12n 7)(n 1);  n 0,            
 

(9) 1
5

SL(12n 9,  5) SL(12n 8,  5) (2n 1)(3n 2)(12n 5)(12n 7)(n 2);  n 0,           
 

(10) 7
5

SL(12n 10,  5) SL(12n 9,  5) n(2n 1)(3n 2)(4n 3)(12n 7);  n 0,           
 

(11) SL(12n 11,  5) SL(12n 10,  5) 2(3n 2)(4n 3)(6n 5)(12n 7)(n 1);  n 0,           
 

(12) 1
5

SL(12(n 1),  5) SL(12n 11,  5) (3n 2)(4n 3)(6n 5)(12n 11)(11n 6);  n 0.            

Proof : follows from Theorem A.5. ■ 

 

In parts (6) – (12) of Lemma A.7 above, the case n = 0 can easily be verified using the 

values of the sequence  n 5
SL(n,  5)




, the first few terms of which are given by 

 

1, 1, 7, 14, 42, 42, 462, 66, 429, 1001, 1001, 364, 6188, 1428, … . 

 

It is indeed interesting to find that the LCM ratio function SL(n, r) is related to function 

SS(n), called the Sandor-Smarandache function, treated in the next section. The function SS(n) 

itself is related to the binomial coefficient 
n

.
k

 
 
 
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6.5  Sandor-Smarandache  Function 

 
 

Sandor(19) introduced a new Smarandache type function, involving the binomial coefficient. The 

new function would be called the Sandor-Smarandache function. 
 

Given any integer n (  1), the binomial coefficient, denoted by C(n, k), is defined by 
 

 

 
 

0n!
k! (n k)!

n
C(n, k) ,  k n,

k 
 

    
 

 

where, by definition,  
 

 

 

C(n, 0) = 1 for all n  1.  
 

 

 

Then, the Sandor-Smarandache function, denoted by SS(n) is defined as follows : 
 

Definition 6.5.1 : For n  3 fixed, the Sandor-Smarandache function, SS(n), is defined by 
 

 
 

 

 

n
SS(n) = max k : 1 k n 2, n divides ,

k

  
    

  
  

where, by convention,  
 
 

 
 

 

SS(1) = 1, SS(2) = 1. 
 

Clearly, for any n (  2), n divides 
n n

,
1 n 1

   
      

 so that, as Sandor(19) has pointed out, the 

condition k < n – 1 is introduced to make the problem non-trivial. However, observe that 6 does 

not divide any of the three numbers 
6 6

15,
2 4

   
    

   

 6
20,

3

 
 

 
 and it divides only the two 

trivial ones, namely, 
6 6

.
1 5

   
   

   
 Similar case happens with n = 4. Thus,  

SS(4) = 1, SS(6) = 1.  
 

 
 

More generally, 
 

 
 

 
 

SS(n)  1 for any integer n  1. 
 

 

 
 

 

Since 

n
k
 
 
 

= n
k

n 1
 ,

k 1
 

  
 

 
 

we have the following theorem. 
 

Theorem 6.5.1 : For some n (  2) and k, n divides 
n

k
 
 
 

 if and only if k divides 
n 1

k 1

 
  

. 

Moreover, we have the following result, proved by Sandor(19). 
 

Theorem 6.5.2 : If (n, k) = 1, then n divides 
n

k
 
 
 

. 

 

 

 
 

 

Since (57, 4) = 1, the above Theorem 6.5.2 guarantees that 57 divides 
57

4

 
 
 

. By virtue of 

Theorem 6.5.1, 4 divides 
56

3

 
 
 

. Note that 57 divides 
57

6

 
 
 

, though (57, 6) = 3. This example 

shows that the condition in Theorem 6.5.2 is sufficient but not necessary. 
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Remark 6.5.1 : Since, for any integer n  2 fixed and 1  k  n – 1, we have 
n n

,
k n k
   

      
 

Definition 6.5.1 is equivalent to the following one : 
 

 

 
 

 

n
SS(n) = min k : 1 k n 2, n divides .

n k

  
      

 

 

 

In calculating the binomial coefficient 
n

C(n, k) = 
k
 
 
 

 when k < 2n, the (computationally) 

useful formula is the following : 
 

 
 

 

 

n(n  1)(n  2) ... (n  k + 1)
k!

n
C(n, k) = ,  0 k n.

k

   
   

 
 

 

 

 

For finding SS(n), the above formula has been employed. 

 

In view of Remark 6.5.1 above, we may redefine SS(n) as follows : 
 

 

 

 n(n  1)(n  2) ... (n  k + 1)
k!

SS(n) = max k : 1 k n 2, n divides ,
  

    

 

Lemma 6.5.1 : If n (  3) is an odd integer, then SS(n) = n – 2. 

Proof : Let n = 2a + 1 for some integer a  1. Then, since 
 
 

 
 

2

2a(2a  1)2a + 1 2a + 1
C(n, n 2) ,

2a 1 2

   
         

 

 

 

 

obviously n = 2a + 1 divides C(n, n – 2). This proves the lemma. ■ 
 

An immediate consequence of the above lemma are the following two corollaries. 
 

Corollary 6.5.1 : SS(p) = p – 2 for any prime p  3.  
 

Corollary 6.5.2 : SS(pq) = pq – 2 for any two primes p and q with q > p > 2. 
 

Corollary 6.5.2 may be extended to any number of odd primes as follows : 
 

Corollary 6.5.3 : If p1, p2, …, pn be any n number of odd primes, then 
 

 
 

SS(p1 p2 … pn) = p1 p2 … pn – 2. 
 

Corollary 6.5.4 : The function SS(n) is not multiplicative. 
 

 

Proof : Let p and q be two distinct odd primes. Then, by Corollary 6.5.2, 
 
 

SS(pq) = pq – 2  (p – 2)(q – 2) = SS(p) SS(q). ■ 
 

Lemma 6.5.2 : For some integer n (  3), SS(n) = n – 2 if and only if n is odd.  
 

Proof : The “if” part of the lemma follows from Lemma 6.5.1. To prove the converse, let 

SS(n) = n – 2, so that n – 2 ( < n – 1) is the maximum number such that n divides 
 

 

2
n(n  1)n n

.
n 2 2

   
       

 

 

 

Then, n must be odd, for otherwise, we are led to a contradiction. ■ 
 

Corollary 6.5.5 : SS(n) > n – 2 for any composite number n (  4). 
 

Lemma 6.5.3 : Let n be an integer of the form 2a, where a is not a multiple of 3. Then,  
 
 

 

SS(n) = n – 3. 
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Proof : Let n = 2a (a  1) be an integer not divisible by 3. Clearly, 2a does not divide 
 
 

 
 

 

2

2a(2a  1)2a
.

2a 2

 
  

 

Now, consider 
 

2 3 3

2a(2a  1)(2a  2) 2a(2a  1)(a  1)2a
.

2a 3 

    
   

 

 

 
 

Here, since 2(a – 1), 2a – 1 and 2a are three consecutive integers, one of them must be divisible 

by 3; and hence, one of 2(a – 1) and 2a – 1 is divisible by 3 (since, a is not a multiple of 3). Thus, 

6 divides 2(a – 1)(2a – 1). Hence, n = 2a divides 
2a

.
2a 3
 
  

 ■ 

 

Corollary 6.5.6 : SS(2p) = 2p – 3 for any prime p  5. 

Proof : follows from Lemma 6.5.3. ■ 
 

Generalizing Corollary 6.5.6 above to any number of odd primes, we get the following 
 

Corollary 6.5.7 : SS(2p1 p2 … pn) = 2p1 p2 … pn – 3 for any odd primes p1, p2, …, pn. 
 

Lemma 6.5.4 : Let p (  2) be a prime and n (  1) be any integer. Then, 
 

 

 

n
n

n

p 2, if p 3          
SS(p )

if p 2,  n 3p 3,

  
   

 

Proof : By Lemma 6.5.2, it remains to prove the second part only. To do so, consider  
 

 
 

n n
n 2 2

2 3
(   1)(   2)

2 ,[ ]


 
 

 

 
 

where the term (2n – 1)(2n – 2) is obviously divisible by 6. ■ 
 

Lemma 6.5.5 : Let p (  3) be a prime and n (  1) be any integer. Then, 
 

 

 

n

n n

n

2p 3, if p 3                      

SS(2p ) 2p 4, if p = 3 and n is even

if p = 3 and n is odd 2p 5,

  


 
 

 

Proof : First, let p  3. Then, the first part is a consequence of Lemma 6.5.3. Next, let p = 3. 

Here, we have to consider separately the two possibilities : 

Case (A) : When n is even, say, n = 2b for some integer b  1. 

Here, consider the expression below : 
 

 
 

 

2b 2b 2b
2b

2 3 4
(2.3   1)(2.3   2)(2.3   3)

2.3 [ ]
 

  
 

 

 
 

=
2b 2b 2b 1

2b

4
(2.3   1)(3   1)(2.3   1)

2.3 .[ ]  
 

 
 

 

Since 32b – 1 = (3b – 1)(3b + 1) is divisible by 4, the second part of the lemma follows. 
 

 

Next, let n be odd, say, n = 2c + 1 for some integer c  1. Now, consider the expression 
 

 

 
 

 

2c+1 2c+1 2c 1 2c 1
2c+1

2 3 4 5
(2.3   1)(2.3   2)(2.3   3)(2.3   4)

2.3 [ ] 

  
   

 
 

 
 

 

 

=
2c+1 2c+1 2c 2c 1

2c+1

2 5
(2.3   1)(3   1)(2.3   1)(3   2)

2.3 .[ ]


   

 
 

 

Clearly, 10 divides (2.32c+1 – 1)(32c – 1)(2.32c – 1)(32c+1 – 2) (since 5 does not divide 32c+1). 
 
 

All these complete the proof of the lemma. ■ 
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Lemma 6.5.6 : Let n be an integer of the form n = 6m, m  1. Then, 
 

 

SS(n) = n – 4, if m is of the form 4s + 3 for any integer s  0.  
 

 

Proof : Clearly, n = 6m does not divide any of 
6m

6m 2
 
  

 and 
6m

.
6m 3
 
  

 Consider 

 

 

2 3 4
(6m  1)(6m  2)(6m  3)6m

6m
6m 4

[ ]
 

   
   4

(6m  1)(3m  1)(2m  1)
6m .[ ]  

  

 
 

Now, if m = 4s + 3 for some integer s  0, then 3m – 1 = 4(3s + 2) is divisible by 4, and hence,   

n = 6m divides 
6m n

.
6m 4 n 4
   

       
 

 

This proves the lemma. ■ 
 

Observe that, in Lemma 6.5.6, m = 4s + 3 for some integer s  0 if and only if 3m = 4t + 1 

for some integer t  2. The “only if” part is immediate. To prove the other part, let 3m = 4t + 1. 

Then, t must be of the form t = 3s + 2. Also, note that, Lemma 6.5.6 is valid for m = p, where p is 

a prime of the form p = 4s + 3 (s  0). Thus, for example, 
 
 

SS(63) = 14, SS(67) = 38, SS(611) = 62, SS(619) = 110, SS(623) = 134. 
 

Lemma 6.5.7 : Let m be an integer of the form m = 4s + 3, s  0. Then, 
 
 

SS(30m) = 30m – 4. 
 

 

Proof : We start with 
 
 

2 3 4 4
(30m  1)(30m  2)(30m  3) (30m  1)(15m  1)(10m  1)

30m 30m .[ ] [ ]
 

     
  

 

 

Now, note that, if m = 4s + 3, then 15m – 1 = 4(15s + 11), so that 4 divides the term inside the 

square bracket. ■ 
 

Note that, the lemma above is valid for m = p, where p  7 is a prime of the form p = 4s + 3. 
 

 
 

 

 
 

In Lemma 6.5.7 above, observe that 4 divides 15m – 1 if and only if m = 4s + 3 for some 

integer s  0. The proof is as follows : Let 15m – 1 = 4a for some integer a, so that 15m = 4a + 1. 

The solution of the equation is a = 15s + 11, s  0. Then, 4a + 1 = 15(4s + 3), and we get the 

desired result. As an illustration of Lemma 6.5.7, we mention the following : 
 

 
 

SS(210) = 206, SS(330) = 326, SS(450) = 446, SS(570) = 566, SS(690) = 686, SS(810) = 806. 
   

Lemma 6.5.8 : Let n = 6m, where 5 does not divide m. Then, SS(n)  n – 6. 

Proof : We start with 
 

2 3 4 5 6
(6m  1)(6m  2)(6m  3)(6m  4)(6m  5)6m 6m

6m ,
6m 6 6

[ ]
   

       
       

 

 

which simplifies to 
 

 

2 5 6
(6m  1)(3m  1)(2m  1)(3m  2)(6m  5)6m

6m .
6m 6

[ ]
 

     
  

 

Now, inside the square bracket, only one of 3m – 1 and 3m – 2 is even. Moreover, if 5 does not 

divide m, then the last term (that is, 6m – 5) is inactive. ■ 
 

Lemma 6.5.9 : Let p be a prime of the form p = 6u + 1, u  1. Then,  
 

 

SS(p + 1) = p – 2. 
 
 

 

Proof : If p = 6u + 1, then clearly p + 1 divides 
 
 

 

(p + 1)p(p  1)
3!

p + 1
.

3

 
 

 
 ■ 
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Lemma 6.5.10 : Let p be a prime of the form p = 6u + 5 for some integer u  1. Then,  
 

SS(p + 1) = p – 3  

if and only if  

u = 2(2s + 1), s  0 being an integer. 
 

 
 

Proof : We start with the expression  
 

 

(p + 1)p(p  1)(p  2)
4!

.
   

 

 

When p = 6u + 5, the above expression simplifies to 
 

 

(3u  2)(2u  1)
4

(p + 1)p .[ ]   
 

 

 

 

Thus, in order that the expression inside the square bracket is an integer, 4 must divide 3u + 2, so 

that 

3u = 4a – 2 for some integer a  1. 
 
 

The solution of the above Diophantine equation is  
 

 

 

u = 2(2s + 1) for any integer s  0. 
 

 

 

This completes the proof of the lemma. ■ 
 

Applying Lemma 6.5.10 for small values of u, we get the following functions : 
 

 
 

SS(18) = 14, SS(42) = 38, SS(90) = 86, SS(114) = 110. 
 

 

 
 

 
 

 

From Lemma 6.5.10, we see that, if p = 6u + 5 with u  2(2s + 1) (for any integer s  0), then  

SS(p + 1)  p – 4. 
 

 
 

 
 

We now state and prove the following lemma. 
 

Lemma 6.5.11 : Let p be a prime of the form p = 6u + 5, for some integer u  1, with      

u  2(2s + 1) for any integer s  0. Then,  
 

 
 

SS(p + 1) = p – 4, 
 

 

if and only if u is of any of the three forms : u = 5x + 1 (x  0), u = 5y + 2 (y  1), u = 5z + 3 (z  0). 
 
 

Proof : With p = 6u + 5, we have 
 

 

(p  1)(p  2)(p  3)
5!

(p 1)p
  

 =
(3u  2)(2u  1)(3u + 1)

2 5
(p + 1)p .[ ] 


 

 

 

 

 

 

Since one of the two numbers, 3u + 1 and 3u + 2, is even, it is sufficient to find the condition 

such that 5 divides one of the three factors, 3u + 2, 2u + 1 and 3u + 1.  

Now, if 5 divides 3u + 2, then 
 

3u = 5a – 2 for some integer a  1, 
 

with the solution  

u = 5x + 1 for any integer x  0.  
 

Again, if 5 divides 2u + 1, then 
 

2u = 5b – 1 for some integer b  1, 
 

whose solution is  

u = 5y + 2, y  1 being an integer.  
 

 

Finally, if 5 divides 3u + 1, then 
 

3u = 5c – 1 for some integer c  1. 
 

The solution of the above Diophantine equation is  
 

u = 5z + 3 for any integer z  0. 
 
 

All these complete the proof of the lemma. ■ 
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Using Lemma 6.5.11, we get the following functions : 
 

 
 

 

SS(12) = 7, SS(72) = 67, SS(102) = 97, SS(132) = 125, SS(192) = 187, SS(252) = 247, 
 
 

 

 

SS(48) = 43, SS(108) = 103, SS(168) = 163, SS(198) = 193, SS(228) = 223, 
 
 

 
 

 

SS(24) = 19, SS(54) = 49, SS(84) = 79, SS(174) = 169. 

 

Lemma 6.5.10 and Lemma 6.5.11 are concerned with the function SS(p + 1), when p is a 

prime of the form p = 6u + 5 (for some integer u  1). Lemma 6.5.11 gives the condition that 

must be satisfied for SS(p + 1) = p – 4. It can readily be shown that, the three conditions given in 

Lemma 6.5.11 are satisfied if and only if p is of one of the three forms p = 5u + 1, p = 5u + 2 and 

p = 5u + 3 respectively : When u = 5x + 1, then p = 6(5x + 1) + 5 = 5(6x + 2) + 1, when u = 5y + 2, 

then p = 6(5y + 2) + 5 = 5(6y + 3) + 2, and with u = 5z + 3, p = 6(5z + 3) + 5 = 5(6z + 4) + 3. where p 

is a prime of the form p = 5u + 3. In the next five lemmas, we consider the problem of finding 

SS(p + 1) when the prime p is of the form p = 5u + 4. 
 

Lemma 6.5.12 : Let p be a prime of the form p = 5u + 4. Then, 
 

 

SS(p + 1) = p – 3, 
 
 

if u is of one of the following three forms : 
 

(1) u = 24s + 17, s  0 being an integer, 
 

 
 

(2) u = 72s + 41, s  0 is any integer, 
 

 
 

(3) u = 48s + 41, s  0 being an integer. 
 

 
 

Proof : With p = 5u + 4, the expression 
 

 

 
 

4!
(p  1)(p  2)

(p + 1)p ,
 

 

takes the form 
 

 

2 3 4
(5u  3)(5u  2)

(p + 1)p .[ ]
 

 
                                     

 

 
 

 

 

(1) We consider the case when 8 divides 5u + 3 and 3 divides 5u + 2. Then,  
 

 

 

5u = 8a – 3, 5u = 3b – 2 for some integers a (  1) and b (  1),                
 
 

with the respective solutions 
 

 
 

u = 8c + 1, u = 3d + 2; c (  0) and d (  0) being integers. 
 

 
 

 

Then, solving the combined Diophantine equation (that is, 8c = 3d + 1), we get 
 

 
 

c = 3s + 2, s  0. 

Therefore, 

u = 8(3s + 2) + 1 = 24s + 17, 
 
 

 

which is the desired condition.  
 

 
 

 

(2) We now consider the case when 8 divides 5u + 3 and 9 divides 5u + 2, so that 
 
 

5u = 8a – 3, 5u = 9b – 2 for some integers a (  1) and b (  1), 
 

 
 

with the respective solutions 
 

 

u = 8c + 1, u = 9d + 5 for any integers c (  0) and d (  0). 
 
 

 

 

Then, solving the combined Diophantine equation, (namely, 8c = 9d + 4), we get 
 
 

 

c = 9s + 5, s  0. 
 
 

 

Therefore, finally 
 
 

 

 

u = 8(9s + 5) + 1 = 72s + 41, 
 
 

 

which is the condition desired.  
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(3) We consider the case when 16 divides 5u + 3 and 3 divides 5u + 2. In this case, we have 
 

5u = 16a – 3, 5u = 3b – 2 for some integers a (  1) and b (  1), 

whose solutions are 
 

u = 16c + 9, u = 3d + 2 for any integers c (  0) and d (  0). 
 
 

Now, solving the combined Diophantine equation, in the form 16c = 3d – 7, we get 
 

 

c = 3s + 2 for any integer s (  0). 

Hence, finally 

u = 16(3s + 2) + 9 = 48s + 41.  

All these complete the proof of the lemma. ■ 
 

Lemma 6.5.13 : Let p be a prime of the form p = 5u + 4. Then, SS(p + 1)  p – 4. 

Proof : Considering the expression 
 

 
 

 
 

5!
(p  1)(p  2)(p  3)

(p + 1)p
  

=
2 3 4 5

(5u  3)(5u  2)(5u  1)
(p + 1)p ,[ ]

  
  

 
 

 
 

 
 

the result follows since 5 does not divide any of 5u + 3, 5u + 2 and 5u + 1. ■ 

 

Lemma 6.5.14 : Let p be a prime of the form p = 5u + 4, u = 72s + 59 (s  0 being an integer). 

Then, 

SS(p + 1) = p – 5. 
 
 

Proof : With p = 5u + 4, the expression 
 

 
 

 

 

6!
(p  1)(p  2)(p  3)(p  4)

(p + 1)p ,
   

 

 
 

2 3 4 6
(5u  3)(5u  2)(5u  1)u

(p + 1)p .[ ]
  

  
                            

 
 

 
 

Clearly, the product term inside the square bracket is an integer if the numerator is divisible by 

169. Here, one possibility is that 9 divides 5u + 2 and 8 divides 5u + 1, leading to the equations 
 
 

5u = 9a – 2, 5u = 8b – 1 for some integers a (  1) and b (  1), 
 

 

with the respective solutions 
 
 

u = 9c + 5, u = 8d + 3; c (  0) and d (  0) being any integers. 
 

 

Combining these two together, we have to solve the Diophantine equation 
 
 

9c = 8d – 2, 

whose solution is 

c = 8s + 6, s  0 being an integer. 

Therefore, 

u = 9(8s + 6) + 5 = 72c + 59, 
 

 
 

which we intended to establish. ■ 
 

Lemma 6.5.15 : Let p be a prime of the form p = 5u + 4, u = 24s + 11 (s  0 being an integer), 

such that s  3y + 2 for any integer y (  0) and 7 does not divide p + 1. Then, 
 

 

SS(p + 1) = p – 6. 
 
 

Proof : Substituting in 
 

 
 

 

7!
(p  1)(p  2)(p  3)(p  4)(p  5)

(p + 1)p ,
    

 

p = 5u + 4, we get 
 

 
 

2 3 4 6 7
(5u  3)(5u  2)(5u  1)(5u  1)u

(p + 1)p .[ ]
   

   
                      

 
 

becomes 
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Now, we consider the case when 3 divides 5u + 2 and 8 divides 5u + 1, so that 
 

5u = 3a – 2, 5u = 8b – 1 for some integers a (  1) and b (  1). 
 

 

The solutions of the above equations are  
 
 

u = 3c + 2, u = 8d + 3 (for any integers c (  0) and d (  0)) 
 

 
 

respectively. This, in turn, leads to the Diophantine equation below : 
 

 
 

3c = 8d + 1, 
 

with the solution  

c = 8s + 3, s  0 being an integer. 

Thus,  

u = 3(8s + 3) + 2. 
 

 

 

Now, if s = 3y + 2, then u = 24s + 11 = 72y + 59, and by Lemma 6.5.14, SS(p + 1) = p – 5; 

Otherwise, since 7 does not divide p + 1, SS(p + 1) = p – 6. ■ 
 

Lemma 6.5.16 : Let p be a prime of the form p = 5u + 4, u = 12s + 5 (s  0 being an integer). 

Then, 

SS(p + 1) =
p 3, if s is odd                                          

 
p 6, if s is even,  7 does not divide p 1




 
 

 

Proof : We start with  
 

 
 

 

7!
(p  1)(p  2)(p  3)(p  4)(p  5)

(p + 1)p
    

 
 
 

 
 

 

=
2 3 4 6 7

(5u  3)(5u  2)(5u  1)u(5u  1)
(p + 1)p .[ ]

   
   

                       (1) 
 

 

 
 

 

Now, we consider the case when 12 divides 5u – 1, so that 
 
 

 

5u = 12a + 1 for some integer a (  1). 
 
 

 

The solutions of the above equation is  
 

 

u = 12s + 5, s  0 being an integer. 

Now, note that 
 
 

5u + 3 = 4(15s + 7), 5u + 2 = 3(20s + 9), 5u + 1 = 2(30s + 23), 5u – 1 = 12(5s + 2). 
 

 

 

Thus, if s odd, then 5u + 3 is divisible by 8, and thus, in (1), the term (5u + 3)(5u + 2) is divisible 

by 234, so that 
 

 
 

SS(p + 1) = p – 3.  

Otherwise, the term inside the square bracket in (1) is divisible by 7, and hence, 
 

 

SS(p + 1) = p – 6. 
 

 

All these complete the proof of the lemma. ■ 
 
 

 
 

 

 
 

 
 

Example 6.5.1 : The first few instances of part (1) Lemma 6.5.12 are as follows : 
 

 

SS(90) = 86, SS(450)) = 446, SS(570) = 566, SS(810) = 806. 
 
 

 

Part (2) of Lemma 6.5.12 gives the following expressions of SS(n) : 
 

 
 

SS(570) = 566, SS(930) = 926, SS(1290) = 1286, SS(1650) = 1646; 
 

 

and from part (3) of Lemma 6.5.12, we get the following expressions : 
 
 

SS(450) = 446, SS(930) = 926, SS(1410) = 1406. 
 

 

Lemma 6.5.14 gives the functions SS(660) = 654, SS(1020) = 1014, SS(2100) = 2094. 
 

Using Lemma 6.5.15, we get the first two functions as SS(180) = 173, SS(1500) = 1493. 
 

 

The first few functions obtained from Lemma 6.5.16 are as follows : 
 

 

SS(30) = 23, SS(90) = 86, SS(150) = 143, SS(270) = 263. 
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Remark 6.5.2 : The eight lemmas, Lemma 6.5.9 – Lemma 6.5.16, are concerned with the 

problem of finding SS(p + 1), where p is a prime. Since the pattern of the primes is 

unknown, we have to consider the possible cases. Needless to say, these eight lemmas 

do not cover all the primes; moreover, some of the cases may be overlapping (in 

Lemma 6.5.9 – Lemma 6.5.16). Note that, in case of Lemmas 6.5.9 – 6.5.12 as well as 

in Lemmas 6.5.14 – 6.5.16, both p + 1 and p(p + 1) divide 
p + 1

k

 
 
 

. 

 
 
 

Remark 6.5.3 : If u = 5 in Lemma 6.5.16, we get the prime p = 29. Then, by virtue of the 

lemma, SS(30) = 23. This shows that Lemma 6.5.16 is valid when s = 0 as well. Also, 

corresponding to u = 17, we get the prime p = 89, with SS(90) = 86; and corresponding 

to s = 7, we get u = 89 in Lemma 6.5.16, we get the prime p = 449, and hence,  

SS(450) = 446. In Lemma 6.5.16, we assume that p + 1 is not a multiple of 7 to 

guarantee that one of the five terms inside the square bracket in (1) is divisible by 7. 

However, searching for a prime p with p + 1 being divisible by 7, we found that the 

first such prime is p = 349 = 569 + 4, with SS(350) = 346. Note that, in Lemma 6.5.16, 

the problem of finding p such that p + 1 is a multiple of 7 reduces to the problem of 

solving the Diophantine equation 
 

u – 7a = 1. 

 

Lemma 6.5.17 : Let n = 6m, where m  4s + 3 for any integer s  0. Then, 
 

SS(6m) = 6m – 5, if m is not divisible by 5. 
 

Proof : We start with 
 
 

2 3 4 5
(6m  1)(6m  2)(6m  3)(6m  4)

6m[ ]
  

   
2 5

(6m  1)(3m  1)(2m  1)(3m  2)
6m .[ ]


   

  
 

 

Clearly, one of the two numbers, 3m – 1 and 3m – 2, is divisible by 2; moreover, the terms in the 

numerator inside the square bracket is divisible by 5, if m is not a multiple of 5. 

Thus, the lemma is proved. ■ 
 

The corollary below follows from Lemma 6.5.17 in case of primes. 
 

Corollary 6.5.8 : SS(6p) = 6p – 5 for any prime p  4s + 3 for any integer s  0. 
 

Lemma 6.5.18 : Let n = 6m, where m  4s + 3 for any integer s  0. Then, 
 
 

6m 6,  if m = 10(6s + 5), s 0                                                 

6m 7,  if m 10(6s + 5) for any s 0, m is not divisible by 7 
SS(6m)

6m 8,  if m = 35(8s + 3), s 0                       

6m 11, if

 

  


 



                          

m = 35(12s + 7), s = 2, 6, 10, ...                                








 

 

Proof : To find the condition such that SS(6m) = 6m – 6, we start with 
 

 
 

 

 
 

2 3 4 5 6
(6m  1)(6m  2)(6m  3)(6m  4)(6m  5)

6m[ ]
   

    
 

 

=
2 5 6

(6m  1)(3m  1)(2m  1)(3m  2)(6m  5)
6m .[ ]

 
    

 
 

Now, the numerator inside the square bracket must be divisible by 256; moreover, the last 

term 6m – 5 (which is divisible by neither 2 nor 3) must be divisible by 5. Note that, of the five 

terms, three are odd, and only one of the two terms 3m – 1 and 3m – 2 is even. Thus, the three  

conditions below must be satisfied simultaneously :  
 

 

(1) 2m – 1 must be a multiple of 3, (2) 4 must divide 3m – 2, and (3) m must be divisible by 5. 
 

Now, from first condition, we get 
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m = 3a + 2 for any integer a  0. 

Then, since 3m – 2 = 9a + 4, the second condition requires that a = 4b (for some integer b  1), so 

that 

m = 2(6b + 1). 
 

 

Again, by the third condition, m = 5c for some integer c  1. Combined together, we get  

2(6b + 1) = 5d, 
 

with the solution 
 

b = 5s + 4, s  0. 

Thus, finally 

m = 2[6(5s + 4) + 1] = 10(6s + 5), s  1, 
 

 

which is the desired condition on m such that  
 

 

SS(6m) = 6m – 6. 
 
 

Next, let m  10(6s + 5) for any integer s  0. We consider 
 

 
 

 
 

2 5 7
(6m  1)(3m  1)(2m  1)(3m  2)(6m  5)(m  1)

6m .[ ]
 

     
 

 
 

Clearly, the term (6m – 1)(3m – 1)(2m – 1)(3m – 2)(6m – 5)(m – 1) in the numerator inside the 

square bracket is divisible by 257, if m is not a multiple of 7. Thus, 

 
 

 

 

SS(6m) = 6m – 7, if 7 does not divide m. 
 

Next, we find the condition such that SS(6m) = 6m – 8. To do so, we start with the reduced 

simplified expression : 
 

 

2 5 7 8
(6m  1)(3m  1)(2m  1)(3m  2)(6m  5)(m  1)(6m  7)

6m .[ ]
  

      
 

 

 

Clearly, the numerator inside the square bracket on the right is an integer if the following three 

conditions are satisfied simultaneously : (1) m is a multiple of 5, (2) m is divisible by 7, and  

(3) 8 divides m – 1. 
 
 

Now, from the first two conditions, we see that 35 must divide m (so that, m = 35a, a  1); 

moreover, from the third condition, m = 8b + 1, b  1. Thus, we have to solve the equation 
 

 

 

35a = 8b + 1. 
 
 

The solution of the above equation is a = 8s + 3, s  0 being any integer. Therefore, 
 

 
 

m = 35(8s + 3), s  0. 
 

 

Thus, we get the condition such that  
 
 

SS(6m) = 6m – 8.  
 

 

Finally, we find the condition such that SS(6m) = 6m – 11 as follows : Consider the reduced, 

simplified expression 
 

 

3 4 5 7 10 11

(6m  1)(3m  1)(2m  1)(3m  2)(6m  5)(m  1)(6m  7)(3m  4)(2m  3)(3m  5)
6m .[ ]

    

         
 

 

 
 

Now, one of 3m – 1 and 3m – 2 is even, so that 4 must divide m – 1 (so that m = 4a + 1 for some 

integer a  1). Also, 35 must divide m (that is, m = 35b, b  1). Moreover, 3 must divide 2m – 1. 

Thus, we have to solve the three simultaneous Diophantine equations : 
 
 

70b = 3c + 1 = 8a + 2. 
 

The left-hand side equation gives the solution b = 3d + 1, d  0, and so, it remains to solve 
 

m – 1 = 105d + 34 = 4a, 
 

whose solution is d = 4s + 2, s  0. Hence, finally, we get 
 

m = 35(12s + 7), s = 2, 6, 10, …, 
 

which is the condition we intended to find. 
 

All these complete the proof of the lemma. ■ 

Chapter 6 : Miscellaneous Topics 



 

 

 

116                                                                                                                                           Smarandache Numbers 

Revisited 

In the example below, we illustrate Lemma 6.5.17 and Lemma 6.5.18 with the help of some 

simple examples. Note that, it remains to find SS(6m), when m is divisible by 5711. 
 

Example 6.5.2 : Since the number n = 54 is of the form 6(4s + 1), by Lemma 6.5.17 above,  

SS(54) = 49. Similarly, SS(78) = 73. Again, the number n = 30 is divisible by 5 but not by 7, so 

that, by Lemma 6.5.18, SS(30) = 23. Similarly, SS(150) = 143. The number 105 is the first 

number of the form 35(8s + 3), and hence, by Lemma 6.5.18, SS(6105) = SS(630) = 622. Since  

2310 = 3566, SS(2310) = 2302. Finally, since n = 1470 = 6245=6(735), by Lemma 6.5.18, 

SS(1470) = 1459. By the application of Lemma 6.5.17, we have 
 

 
 

SS(12) = 7, SS(24) = 19, SS(36) = 31, SS(48) = 43, SS(84) = 79, SS(324) = 319. 
 

We now concentrate our attention to the expression SS(60m). Since 
 
 

 

3! 3
(60m  1)(60m  2) (60m  1)(30m  1)

60m 60m ,
   

  
 

4! 4
(60m  1)(60m  2)(60m  3) (60m  1)(30m  1)(20m  1)

60m 60m ,
     

  
 

 

55!
(60m  1)(60m  2)(60m  3)(60m  4) (60m  1)(30m  1)(20m  1)(15m  1)

60m 60m ,
       

  
we see that SS(60m)  60m – 3, SS(60m)  60m – 4, SS(60m)  60m – 5 for any integer m.  

 

Lemma 6.5.19 : For m  1, 
 

60m 6, if m = 6s + 5, s 0                              

SS(60m) 60m 7, if m 6s + 5 and 7 does not divide m

60m 8, if m = 7(8s + 9), s 0                         

 


  
  

 

 

Proof : The first part is just a restatement of the first part of Lemma 6.5.18. To prove the 

second part, consider 
 
 

7
(60m  1)(30m  1)(20m  1)(15m  1)(12m  1)(10m  1)

60m .[ ]     
 

 

 

Now, (60m – 1)(60m – 2)(60m – 3)(60m – 4)(60m – 5)(60m – 6) is divisible by 7, if m is not a 

multiple of 7. 

Next, we consider  

8!
(60m  1)(60m  2)(60m  3)(60m  4)(60m  5)(60m  6)(60m  7)

60m
        

 

 

 

=
7 8

(60m  1)(30m  1)(20m  1)(15m  1)(12m  1)(10m  1)(60m  7)
60m .[ ]


        

 

 

 

Here, we have to find the condition such that the term inside the square bracket is an integer. So, 

we consider the case when 7 divides m and 8 divides 15m – 1. Thus, 
 
 

 

m = 7a, 15m = 8b + 1 for some integers a  1, b  1. 
 

 

 

The solution of the second equation is 
 
 

m = 8b + 7 for any integer b  0. 
 

 
 

Now, considering the combined equation 
 

 

 

7a = 8b + 7, 

we get the solution 

a = 8s + 9, s  0 being an integer, 
 

 

and hence finally, 
 
 

m = 7(8s + 9). 
 

 

All these complete the proof of the lemma. ■ 
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Lemma 6.5.20 : Let either m = 7(9s + 4), s  0, or m = 7(9t + 2), t  0. Then, 
 

 
 

SS(60m) = 60m – 9. 
 

 

Proof : To prove the lemma, we start with  
 
 

 
 

 

 

9!
(60m  1)(60m  2)(60m  3)(60m  4)(60m  5)(60m  6)(60m  7)(60m  8)

60m ,
         

 

 
 

 

=
2 7 9

(60m  1)(30m  1)(20m  1)(15m  1)(12m  1)(10m  1)(60m  7)(15m  2)
60m .[ ]

 
         

 

 

 

 

 

Now, we find the condition such that the term inside the square bracket is an integer. 
 

 

First, note that, one of the two terms, 15m – 1 and 15m – 2 is even. It is thus sufficient to find the 

condition that the term inside the square bracket is divisible by 79. Now, note that m must be 

divisible by 7. Thus, 
 
 

 

m = 7a for some integer a  1. 
 
 

 

Next, note that, if 3 divides 10m – 1, so that 
 

 
 

10m = 3 + 1 for some integer   1, 
 

 
 

then 20m – 1 = 6 + 1, so that 3 does not divide 20m – 1. Thus, we have only two possibilities : 
 

 

Case 1 : When 9 divides 10m – 1. 

Then,  

10m = 9b + 1 for some integer b  1. 
 

 

 

Thus, we are lead with the two Diophantine equations : 
 
 

 

m = 7a, 10m = 9b + 1. 
 
 

 

Combining together, we have, 70a = 9b + 1, whose solution is 
 
 

 

a = 9s + 4, s  0 being an integer. 
 
 

 

Hence, 
 

 
 

m = 7(9s + 4), s  0. 
 

 
 

 
 

Case 2 : When 9 divides 20m – 1. 
 

 

In this case,  
 

 

20m = 9c + 1 for some integer c  1, 
 

 

 

so that we are faced with the two Diophantine equations : 
 
 

 

m = 7a, 20m = 9c + 1. 
 
 

 

Writing the second equation as 140a = 9c + 1, we get the solution  
 
 

 

a = 9t + 2 for any integer t  0. 
 

Consequently, 
 

 
 

m = 7(9s + 4), t  0, 
 

 
 

which is the desired condition. 

Thus, the lemma is established. ■ 
 

 

Lemma 6.5.21 : SS(60m) = 60m – 10 if m = 42(10s + 9), s  0 being any integer. 

Proof : we start with  
 

 
 

(60m  1)(60m  2)(60m  3)(60m  4)(60m  5)(60m  6)(60m  7)(60m  8)(60m  9)
10!

60m
          

 

 

 

 
 

 

 
 

=
2 3 4 5 7

(60m  1)(30m  1)(20m  1)(15m  1)(12m  1)(10m  1)(60m  7)(15m  2)
60m .[ ]

   
         
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We now have to find the condition such that the term inside the square bracket is an integer. To 

do so, we consider the case when 7 divides m, 3 divides 20m – 3, 5 divides 12m – 1, and 4 

divides 15m – 2, so that, we have,  
 

 
 

m = 7a, 20m = 3b + 3, 12m = 5c + 1, 15m = 4d + 2  
 

 

for some integers a  1, b  1, c  1 and d  1. The solutions of the last three equations are 
 
 

m = 3 + 3, m = 5 + 3, m = 4 + 2 for any integers   0,   0,   0. 
 

 

Considering the two equations 
 
 

 

7a = 3 + 3, 5 = 4 – 1, 
 
 

we get the respective solutions  
 

 

a = 3(r + 1) (so that, m = 21(r + 1) for any integer r  0), 

and 

 = 4w + 3 (so that, m = 5(4w + 3) + 3 = 2(10w + 9) for any integer w  0). 
 
 

 

Next, we consider the combined Diophantine equation 
 
 

 

21r = 20w – 3, 

which shows that w must be a multiple of 3, say, 
 

 
 

w = 3t for some integer t  1. 
 

 
 

Thus, we need to consider the equation 
 

 

 

7r = 20t – 1, 
 
 

 

whose solution is 
 
 

 

t = 7s + 6 for any integer s  0. 

Therefore, 

w = 3t = 3(7s + 6). 

Hence, finally 
 

 

m = 20w + 18 = 60t + 18 = 60(7s + 6) + 18, 
 
 

which gives the desired result after some algebraic manipulation. ■ 
 

To find SS(60m) when m is a multiple of 7, let m = 7a for some integer a  1. We first state 

and prove the lemma below. 
 

Lemma 6.5.22 : SS(420a) = 420a – 6 if a = 6s + 5, s  0. 

Proof : We start with 

6!
(420a  1)(420a  2)(420a  3)(420a  4)(420a  5)

420a[ ]      
 

 

 

 

 

=
6

(420a  1)(210a  1)(140a  1)(105a  1)(84a  1)
420a .[ ]      

 

 

 

Then, we have to find the condition such that the term inside the square bracket is an integer. To 

do so, we consider the case when 3 divides 140a – 1 and 2 divides 105a – 1, so that 
 

 

140a = 3 + 1, 105a = 2 + 1 for some integers  and . 
 

 

 

The solutions of the above equations are 
 
 

 

a = 3b + 2, a = 2c + 1; b (  0) and c (  0) being integers. 
 
 

 

And the solution of the combined equation 3b = 2c – 1 is 
 
 

 

b = 2s + 1 for any integer s  0. 
 
 

Therefore, we finally get 
 

 

a = 3(2s + 1) + 2 = 6s + 5, s  0. 
 
 

This establishes the lemma. ■ 
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However, note that, SS(420a)  420a – 7, which is evident from the expression below : 
 

 

 

7!
(420a  1)(420a  2)(420a  3)(420a  4)(420a  5)(420a  6)

420a[ ]       
 

 

 

 

=
7

(420a  1)(210a  1)(140a  1)(105a  1)(84a  1)(70a  1)
420a .[ ]     

 

 

Now, consider 
 

 
 

 

(420a  1)(210a  1)(140a  1)(105a  1)(84a  1)(70a  1)(60a  1)
8

420a .[ ]        
 

When a is of the form 
 

 
 

a = 8b + 1, b  1, 
 

 
 

 

then 105a – 1 = 8(105b + 13) is divisible by 8, and consequently, 
 

 
 

 

SS(420a) = 420a – 8 when a = 8b + 1, b  0. 
 
 

Next, consider 
 

 
 

 

(420a  1)(210a  1)(140a  1)(105a  1)(84a  1)(70a  1)(60a  1)(105a  2)
420

2 9
a .[ ]       


 

 
 

 
 

Here, one of the two numbers 105a – 1 and 105a – 2 is even, depending on whether a is odd or 

even. Now, there are two possibilities : Either 9 divides 140a – 1, or else, 9 divides 70a – 1. It 

can easily be be verified that 140a – 1 is divisible by 9 if a is of the form a = 9b + 2, b  0, and 

70a – 1 is divisible by 9 if a = 9c + 4, c  0. Thus,  
 

 

SS(420a) = 420a – 9 when a = 9b + 2, b  0; or when a = 9c + 4, c  0. 

Now, consider 
 

 
 

 

(420a  1)(210a  1)(140a  1)(105a  1)(84a  1)(70a  1)(60a  1)(105a  2)(140a  3)(42a  1)
420

2 3 11
a .[ ]         

 
 

 

 

Here, one of the ten terms in the numerator inside the square bracket is divisible by 11, provided 

that a is not a multiple of 11. Also, note that, one of (105a – 1) and (105a – 2) is even; and one of 

the three numbers 140a – 1, 70a – 1 and 140a – 3 is divisible by 3. Thus, if a is not a multiple of 

11, then 
 

 
 

SS(420a) = 420a – 11, if a is an integer, not of the form 8b + 1, or 9c + 2. 
 

 
 

 

 
 

 

The above discussions are summarized in the lemma below, where part (4) is just a 

restatement of Lemma 6.5.21 : 
 

Lemma 6.5.23 : We have the following result : 
 

(1) SS(420a) = 420a – 8, when a = 8b + 1, b  0, a  6s + 5 for any s  0, 
 
 

(2) SS(420a) = 420a – 9, when a = 9b + 2, b  0; or when a = 9c + 4, c  0, 
 

 

(3) SS(420a) = 420a – 11, if a is not of any of the forms 8b + 1, 9c + 2, 9d + 4, 
 
 

(4) SS(420a) = 420a – 10, if a = 6(10s + 9) for any integer s  0. 
 

 

Example 6.5.3 : By (the first part of) Lemma 6.5.19, SS(300) = 294, SS(660)=654; and by 

the second part, SS(60) = 53, SS(120) = 113, SS(180) = 173, SS(240) = 233, SS(360) = 353. Also, 

(by the third part of Lemma 6.5.19), SS(3780) = 3772. By Lemma 6.5.20, SS(1680) = 1671, 

SS(840) = 831. By Lemma 6.5.21, SS(22680) = 22670. By Lemma 6.5.22, SS(2100) = 2094. And 

by Lemma 6.5.23, SS(420) = 412, SS(840) = 831. 

 

From Lemmas 6.5.1 – 6.5.23, we see that, given any integer k with 2  k  11, there is an 

integer n such that SS(n) = n – k. Some generalizations are given in the following lemmas.  
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Lemma 6.5.24 : SS(2mp) = 2mp – 3 if the prime p  3 and 3 does not divide the integer m. 

Proof : Consider the expression below : 

 

2mp 2mp 2mp mp
2 3 3

(   1)(   2) (   1)(   1)
2mp 2mp .[ ] [ ]


   

  
 

If p  3 and 3 does not divide m, then the term inside the square bracket is an integer. ■ 
 

Lemma 6.5.25 : SS(6mp) = 6mp – 4 if one of m and p is of the form 4a + 1, and the other 

one is of the 4b + 3 (for some integers a  0 and b  0). 
 

Proof : Consider the expression 
 

 

 
 

6mp 6mp
2 3 4

(   1)(   2)(6mp  3)
6mp[ ]

 
  

=
6mp 3mp

4
(   1)(   1)(2mp  1)

6mp .[ ]    
 

 

 

Now, if, for example, p = 4a + 1, m = 4b + 3 for some integers a  0 and b  0, then 
 

 

 

3mp – 1 = 3(4a + 1)(3b + 3) – 1 = 4(4ab + 3a + b + 2), 
 

 
 

 

which is divisible by 4. ■ 

 

Lemma 6.5.26 : Let p (  3) be a prime and m (  1) be an integer such that the condition of 

the above Lemma 6.5.25 is not satisfied. Let p  5, and 5 do not divide m. Moreover, let p and m 

satisfy any one of the following sets of conditions (for some integers a (  0) and b (  0)) : 
 

 

Set 1 : m = 5a + 1, p = 5b + 4, 
 

m = 5a + 2, p = 5b + 2, 
 

m = 5a + 3, p = 5b + 3, 
 

m = 5a + 4, p = 5b + 1; 
 

 
 

Set 2 : m = 5a + 1, p = 5b + 3, 
 

m = 5a + 2, p = 5b + 4, 
 

m = 5a + 3, p = 5a + 1, 
 

m = 5a + 4, p = 5b + 2; 
 

mp  20s + 3, s  0; 
 

 
 

Set 3 : m = 5a + 1, p = 5b + 2, 
 

m = 5a + 2, p = 5a + 1 
 

m = 5a + 3, p = 5b + 4, 
 

m = 5a + 4, p = 5b + 3; 
 

mp  20s + 7, s  0; 
 

 
 

Set 4 : m = 5a + 1, p = 5b + 1, 
 

m = 5a + 2, p = 5b + 3, 
 

m = 5a + 3, p = 5b + 2, 
 

m = 5a + 4, p = 5b + 4; 
 

3mp  20s + 13, s  1. 

Then, 

SS(6mp) = 6mp – 5. 
 

 

Proof : We start with  
 
 

 
 

 

 

6mp 6mp
2 3 4 5

(   1)(   2)(6mp  3)(6mp  4)
6mp[ ]

  
   

=
6mp 3mp

2 5
(   1)(   1)(2mp  1)(3mp  2)

6mp .[ ]


     
 

 

 

 

 

Now, one of 3mp – 1 and 3mp – 2 is even. Consequently, to prove the lemma, it is sufficient to 

find the conditions such that any of 6mp – 1, 3mp – 1, 2mp – 1 and 3mp – 2, is divisible by 5.  

It can easily be verified that 3mp – 2 is divisible by 5 whenever any of the four conditions in the 

first Set 1 is satisfied. For example, when m = 5a + 1 and p = 5b + 4, then 
 

120                                                                          Smarandache Numbers Revisited 



 

 
 

121                                         Chapter 4 : The Pseudo Smarandache Function 

3mp – 2 = (5a + 1)(5b + 4) – 2 = 5(15ab + 12a + 3b + 2). 
 

 
 

 
 

Again, if any of the four conditions in Set 2 is satisfied, then 2mp – 1 is divisible by 5. For 

example, with the first condition in Set 2, we have 
 
 

 

 
 

2mp – 1 = 2(5a + 1)(5b + 3) – 2 = 5(10ab + 6a + 2b + 1). 
 

 
 

 

However, note that, in this case, even if 5 divides 2mp – 1, we need the extra condition that 4 

does not divide 3mp – 1 (otherwise, SS(6mp)  6mp – 5). Thus, we find the condition such that 4 

divides 3mp – 1, and hence, we get the following two Diophantine equations : 
 
 

 

2mp – 1 = 5x, 3mp – 1 = 4y for some integers x (  1) and y (  1). 
 
 

 

These two equations, when combined together, leads to the Diophantine equation 
 
 

15x = 8y – 1 
 

 

with the solution 
 

x = 8s + 1, y = 15t + 2 (s (  0) and t (  0) being any integers). 

Therefore, 

2mp = 5x + 1 = 5(8s + 1) + 1 = 2(20s + 3). 
 
 

Thus, the condition 

mp  20s + 3, s  0, 
 

 

guarantees that 4 does not divide 3mp – 1. 

Now, if any of the four conditions in Set 3 is satisfied, then 5 divides 3mp – 1. For example, 

with m = 5a + 1 and p = 5b + 2, we have 
 
 

 

3mp – 1 = 3(5a + 1)(5b + 2) – 1 = 5(15ab + 6a + b + 1). 
 

 
 

 

In this case also, we require the additional condition that 4 does not divide 3mp – 1. To do so, 

we consider the following two Diophantine equations 
 

 

3mp – 1 = 5x, 3mp – 1 = 4y, 
 

whose solutions are 

x = 4(a + 1), y = 5(t + 1) for any integers a (  0) and t (  0). 

Therefore, 

3mp = 5x + 1 = 20a + 21, 
 
 

 

which shows that a must be a multiple of 3, say, a = 3s for some integer s (  1). Then, 
 

mp = 20s + 7, s  0.  
 
 

 

Finally, as can easily be checked, any of the four conditions in Set 4 guarantees that 5 divides 

6mp – 1. As an example, consider the first condition in Set 4; here, we get 
 

 

6mp – 1 = 6(5a + 1)(5b + 1) – 1 = 5(20ab + 6a + 6b + 1). 
 

 
 

In this case, the condition that ensures that 3mp – 1 is not a multiple of 4 is : 
 

 

3mp  20s + 13, s  1. 
 
 

 

All these complete the proof of the lemma. ■ 
 

Example 6.5.4 : We give below some examples illustrating each set in Lemma 6.5.26. 

Note that, Lemma 6.4.26 is to be applied in conjunction with Lemma 6.4.25. 
 
 

 

 

SS(114) = 109, SS(84) = 79, SS(54) = 49, SS(264) = 260 (Set 1), 
 

 

 
 

SS(78) = 73, SS(228) = 223, SS(198) = 193, SS(168) = 163 (Set 2), 
 

 
 

but SS(18) = 14 (why?), SS(1218) = 1214 (why?), SS(2418) = 2414 (why?), SS(378) = 374 (why?), 
 

 

 

SS(252) = 247, SS(132) = 127, SS(342) = 337, SS(72) = 67, 
 
 

 

but SS(42) = 38 (why?), SS(1722) = 1718 (why?), SS(522) = 518 (why?), SS(162) = 158 (why?), 
 
 

 

SS(396)=391, SS(156)=151, SS(126)=121, SS(456)=451. 
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Remark 6.5.4 : Here, we give an alternative method of proof of Lemma 6.5.26. To do so, 

we have to consider the following four possible cases : 

Case 1. When m = 5a + 1 for some integer a  1. Then, 
 

 

3mp – 2 = 15ap + (3p – 2). 
 

 

We now want to find the condition such that 5 divides 3p – 2. Thus, we get 
 
 

3p – 2 = 5x for some integer x  1. 
 

 

The above equation has the solution p = 5b + 4 for any integer b  1. 
 

 

Case 2. When m = 5a + 2 for some integer a  1. In this case, 

3mp – 2 = 15ap + (6p – 2), 

and the condition that 5 divides 3mp – 2 leads to the Diophantine equation 

6p – 2 = 5y for some integer y  1. 

The solution is found to be p = 5c + 2, c  1 being an integer. 
 

 

Case 3. When m = 5a + 3 for some integer a  1. Here, 

3mp – 2 = 15ap + (9p – 2). 

We now want to find the condition that 5 divides 9p – 2. Thus, we have  

9p – 2 = 5z for some integer z  1, 

whose solution is p = 5d + 3, d  1 being an integer. 
 

 

Case 4. When m = 5a + 4 for some integer a  1. Here,  

3mp – 2 = 15ap + (12p – 2), 

and the condition that 5 divides 3mp – 2 gives rise to the Diophantine equation 

12p – 2 = 5u for some integer u  1, 

with the solution p = 5e + 1 for any integer e  1. 

We thus get the four conditions in Set 1, any of which guarantees that 5 divides 3mp – 2. 
 
 

 

Proceeding in the same way, we get the four conditions in Set 2, any of which ensures 

that 5 divides 2mp – 1. However, in this case, in addition, we have to ensure that 4 does 

not divide 3mp – 1. To do so, we solve the simultaneous Diophantine equations : 

2mp – 1 = 5x, 3mp – 1 = 4y for some integers x  1, y  1. 
 

The combined Diophantine equation is 15x = 8y – 1, with the solutions  

x = 8s + 1, y = 15t + 2 for any integers x  1 and y  1. 

Then,  

mp = 20s + 3, s  1. 
 

Hence, if the above relationship is satisfied, we have SS(6mp) = 6mp – 4. 
 
 

Any condition in Set 3 guarantees that 5 divides 3mp – 1. Here also, we have to ensure 

that 4 does not divide 3mp – 1, and so, we consider the two simultaneous equations 

3mp – 1 = 5x, 3mp – 1 = 4y for some integers x  1 and y  1, 

whose solutions are 

x = 4(s + 1), y = 5(t + 1); s  1 and t  1 being any integers. 

Now,  

3mp = 5x + 1 = 20s + 21, 

and hence, 3 must divide s. Let s = 3a for some integer a  1. Thus, finally, we get 

mp = 20a + 7, a  0, 

and the violation of the above condition ensures that SS(6mp) = 6mp – 5. 
 
 

 

Finally, to find the conditions such that 5 divides 6mp – 1 but 4 does not divide 3mp – 1, 

we solve 
 

6mp = 5x + 1, 3mp = 4y + 1 for some integers x  1 and y  1. 
 

The first equation gives the four conditions of Set 4, while the combined equations give 
 

3mp = 20s + 13, s  1, 
 

the violation of which guarantees that SS(6mp) = 6mp – 5. 
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We now consider the case when m = 5, that is, the case of SS(30p), p (  3) being a prime.  
 

Corollary 6.5.9 : SS(30p) = 30p – 4, if the prime p is of the form p = 4s + 3, s  0. 

Proof : follows from Lemma 6.5.25. ■ 
 

However, we have the following lemma. 
 

Lemma 6.5.27 : For any prime p, (1) SS(30p)  30p – 5, (2) SS(30p)  30p – 6. 

Proof : From the expression 
 

 

30p 30p
2 3 4 5

(   1)(   2)(30p  3)(30p  4)
30p ,[ ]

  
   

 

part (1) is evident. The proof of part (2) is similar. ■   

 

Lemma 6.5.28 : SS(30p) = 30p – 7, if the prime p (  7) is of the form p = 4s + 1, s  1. 
 

Proof : Consider the expression 
 

 

2 3 4 5 6 7
(30p  1)(30p  2)(30p  3)(30p  4)(30p  5)(30p  6)

30p[ ]
    

       
 

 

 

 

 

 

=
2 7

(30p  1)(15p  1)(10p  1)(15p  2)(6p  1)(5p  1)
30p .[ ]


       

 

 

 

Now, one of of the two numbers 15p – 1 and 15p – 2 is even. Therefore, since p  7, the term 

inside the square bracket is an integer. ■ 
 

Next, we confine our attention to the function SS(60p), where p is a prime.  
 

Lemma 6.5.29 : For any prime p, (1) SS(60p)  60p – 4, (2) SS(60p)  60p – 5. 

Proof : Part (1) is evident from the expression below : 

2 3 4 4
(60p  1)(60p  2)(60p  3) (60p  1)(30p  1)(20p  1)

60p 60p .[ ] [ ]
 

     
  

 

The proof of the remaining part is similar. ■ 
 

Lemma 6.5.30 : SS(60p) = 60p – 6, if the prime p is of the form p = 3s + 2, s  1. 

Proof : We start with 
 

2 3 4 5 6
(60p  1)(60p  2)(60p  3)(60p  4)(60p  5)

60p[ ]
   

      
 

 
 

 

 

=
6

(60p  1)(30p  1)(20p  1)(15p  1)(12p  1)
60p .[ ]      

 

Now, 15p – 1 is even when p is an odd prime. It is thus sufficient to find the condition that 3 

divides 20p – 1, that is, we have to solve the Diophantine equation 
 

20p = 3a + 1 for some integer a  1. 
 

The solution of the above equation is p = 3s + 2, s  1, which is the desired condition such that 
 

 

SS(60p) = 60p – 6. 
 

All these complete the proof of the lemma. ■ 
 

Lemma 6.5.31 : Let p (  11) be a prime such that p  3s + 2, s  1. Then, SS(60p) = 60p – 7. 

Proof : We consider 
 

 

 

2 3 4 5 6 7
(60p  1)(60p  2)(60p  3)(60p  4)(60p  5)(60p  6)

60p[ ]
    

     
, 

 

 
 

 

=
7

(60p  1)(30p  1)(20p  1)(15p  1)(12p  1)(10p  1
60p[ ]     

. 
 

 

The result is now evident from the above expression (since 7 does not divide p). ■ 
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Lemma 6.5.26 gives an expression of SS(6mp) under the restrictive condition that none of 

m and p is divisible by 5. We now consider the case of SS(30mp), where m (  1) is an integer 

and p is a prime. The following lemma is simple, and the proof is left for the reader. 
 

Lemma 6.5.32 : For any integer m (  1) and for any prime p (  3),  
 

SS(30mp)  30mp – 3. 
 
 

Proof : is evident from the following expression : 
 

 
 

2 3 3
(30mp  1)(30mp  2) (30mp  1)(15mp  1)

30mp 30mp ,[ ] [ ]


   
  

 

 

since the term in the numerator inside the square bracket on the right side is not divisible by 3. ■ 
 

However, we have the following lemma. 
 

Lemma 6.5.33 : Let m (  1) be an integer and p (  3) be a prime. Then,  
 

SS(30mp) = 30mp – 4, 
 

if and only if mp = 4s + 3 for some integer s  0. 
 

Proof : We consider the expression 
 

 

2 3 4
(30mp  1)(30mp  2)(30mp  3)

30mp[ ]
 

  
=

4
(30mp  1)(15mp  1)(10mp  1)

30mp .[ ]    
 

 

Then, the term inside the square bracket is an integer if and only if 4 divides 15mp – 1, that is, 
 
 

15mp = 4a + 1 for some integer a (  1). 
 

 

The solution of the above Diophantine equations is 
 

 

mp = 4s + 3, s  0 being an integer. 
 

 

We thus get the desired condition to be satisfied by m and p such that SS(30mp) = 30mp – 4. ■ 
 

From the condition of Lemma 6.5.33, we see that, m must be odd. When m = 1, the 

condition of Lemma 6.5.33 becomes  
 
 

p = 4s + 3 for some integer s  0. 
 

 

When p = 3 (corresponding to s = 0), we get, by Lemma 6.5.33, SS(3013) = SS(90) = 86. The 

next prime is p = 7 (for s = 1), with SS(210) = 206. A few more solutions are p = 11 with  

SS(330) = 326, p = 19 with SS(570) = 566, p = 23 with SS(690) = 686, p = 31 with SS(930) = 926, 

and p = 43 with SS(1290) = 1286. When m = 3, the condition takes the form 3p = 4s + 3, with the 

solution p = 4a + 1 (a  1 being an integer). The first few functions in this case are SS(450) = 446, 

SS(1170) = 1166, SS(1530) = 1526, SS(2610) = 2606, SS(3330) = 3326, SS(3690) = 3686, 

SS(4770) = 4766 and SS(5490) = 5486. When m = 5, the condition is 5p = 4s + 3, which gives the 

solution p = 4b + 3 (b  0 being an integer). In this case, for small values of p, we get the 

functions SS(1050) = 1046, SS(1650) = 1646 and SS(2850) = 2846. For m = 7, the condition 

becomes 7p = 4s + 3 with the solution p = 4c + 1 (c  1 is an integer). Some of the functions 

obtained in this case are SS(2730) = 2726, SS(3570) = 3566, SS(6090) = 6086, SS(7770) = 7766 

and SS(8610) = 8606. 
 

Lemma 6.5.34 : For any integer m (  1) and for any prime p (  3), SS(30mp)  30mp – 5. 
 

Proof : Considering the expression 
 

 

 
 

 

2 3 4 5

2 5

(30mp  1)(30mp  2)(30mp  3)(30mp  4)

(30mp  1)(15mp  1)(10mp  1)(15mp  2)

30mp

30mp ,

[ ]

[ ]

  



   

   


 

 

 

the result follows readily. ■ 
 

Lemma 6.5.35 : SS(30mp) = 30mp – 6 if mp = 2(6s + 5), s  0 being an integer. 
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Proof : We start with 
 

 
 

 
 

2 3 4 5 6

2 6

(30mp  1)(30mp  2)(30mp  3)(30mp  4)(30mp  5)

(30mp  1)(15mp  1)(10mp  1)(15mp  2)(6mp  1)

30mp

30mp .

[ ]

[ ]

   



    

    


 

 
 

 

Now, we have to find the condition such that the term inside the square bracket is an integer. 

To do so, we consider the case when 3 divides 10mp – 1 and 4 divides 15mp – 2. Thus, we 

have the following two Diophantine equations : 
 
 

 

10mp = 3a + 1, 15mp = 4b + 2 for some integers a  1, b  1. 
 
 

 

The solutions of the above equations are 
 
 

 

mp = 3c + 1, mp = 4d + 2 (c  1 and d  1 being integers) 
 
 

 

respectively. Next, we consider the combined equation, namely, 3c = 4d + 1, whose solution is 
 

 
 

c = 4s + 3, s  0 being any integer. 
 

 

Hence, finally, we get 
 

mp = 3(4s + 3) + 1, 
 
 

which gives the desired condition after simplification. ■ 
 

It may be remarked here that, another possibility in the proof of Lemma 6.5.35 is that 3 

divides 10mp – 1 and 4 divides 15mp – 1; but then, SS(30mp) = 30mp – 4. From Lemma 6.5.35, 

we see that m must be an even integer in order that the condition therein is satisfied; in fact, 

letting m = 2x, the condition becomes xp = 6s + 5, which has a solution if and only if (x, 6) = 1. 

For example, when m = 2, the condition reads as p = 6s + 5, and we get successively the 

functions SS(300) = 294 (when p = 5), SS(660) = 654 (when p = 11), SS(1020) = 1014 (when    

p = 17), SS(1380) = 1374 (when p = 23), and SS(1740) = 1734. However, when m = 4, the 

condition becomes 2p = 6s + 5, which has no solution. Again, for m = 6, the condition takes the 

form 3p = 6s + 5, which has no solution. There is no solution when m = 8 (since the condition is 

4p = 6s + 5). But, for m = 10, the condition becomes 5p = 6s + 5, which possesses a solution, 

namely, p = 6a + 7 (a  0 being an integer). The first few functions corresponding to this case are 

SS(2100) = 2094, SS(3900) = 3894 and SS(5700) = 5694. For m = 12, the condition becomes  

6p = 6s + 5, which clearly has no solution. But when m = 14, the condition can be rewritten as  

7p = 6s + 5, with the solution p = 6b + 5 (b  0 being an integer). Some of the functions in this 

case are SS(4620) = 4614, SS(7140) = 7134, SS(9660) = 9656 and SS(12180) = 12174. 
 

Lemma 6.5.36 : If none of m and p is divisible by 7, mp  4s + 3, and mp  2(6t + 5) (for 

any integers s  1 and t  1), then 
 

SS(30mp) = 30mp – 7. 
 

Proof : is left as an exercise. ■ 
 

The following lemma is simple, and the proof is left for the reader. 
 

Lemma 6.5.37 : For any integer m (  1) and for any prime p (  3),  
 

(1) SS(60mp)  60mp – 4, (2) SS(60mp)  60mp – 5. 
 

Lemma 6.5.38 : Let m (  1) be an integer and p (  5) be a prime such that mp = 6s + 5 (for 

some integer s  1). Then, SS(60mp) = 60mp – 6. 

Proof : follows from Lemma 6.5.35. ■ 
 

 

 

 
 

 

Lemma 6.5.39 : If none of m and p is divisible by 7, and mp  6s + 5 (for any s  1), then 
 

SS(60mp) = 60mp – 7. 
 

Proof : is left as an exercise. ■ 
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We now focus our attention to the function SS(210mp). The proof of the lemma below is 

easy, and is left as an exercise. 
 

Lemma 6.5.40 : SS(210mp)  210mp – 3 for any integer m (  1) and any prime p (  3). 
 

But we have the following result. 
 

Lemma 6.5.41 : SS(210mp) = 210mp – 4, if mp = 4s + 1, s  1 being an integer. 

Proof : We start with  
 

 
 

 

2 3 4
(210mp  1)(210mp  2)(210mp  3)

210mp[ ]
 

  
 

 

 
 

 

 

=
4

(210mp  1)(105mp  1)(70mp  1)
210mp .[ ]  

 
 

 
 

Now, noting that the term inside the square bracket is an integer if and only if 105mp – 1 is 

divisible by 4, we get the equation : 
 
 

 

105mp = 4a + 1 for some integer a  1.  
 
 

 

The solution of the above Diophantine equation is mp = 4s + 1. ■ 
 

For any odd prime p, the equation mp = 4s + 1 (s  1) has a solution if and only if m is an odd 

integer. For example, when m = 1, the condition is simply p = 4s + 1, and the first few primes of 

this form are p = 5, 13, 17, 29, with SS(1050) = 1046, SS(2730) = 2726, SS(3570) = 3566 and 

SS(6090) = 6086. When m = 3, the condition becomes 3p = 4s + 1, with the solution p = 4t + 3   

(t  1). Corresponding to this case, we get the functions SS(1890) = 1886, SS(4410) = 4406, 

SS(6930) = 6926. When m = 5, the condition is 5p = 4s + 1 with the solution p = 4v + 1 (v  1). 

The first few functions corresponding to this case are SS(5250) = 5246, SS(13650) = 13646 and 

SS(17850) = 17846. 
 

The proof of the following lemma is left to the reader. 
 

Lemma 6.5.42 : SS(210mp)  210mp – 5 for any integer m (  1) and any prime p (  3). 
 

Lemma 6.5.43 : SS(210mp) = 210mp – 6 if mp = 2(6s + 5), s  0 being an integer. 
 
 

Proof : Consider the expression below :  
 

 
 

2 3 4 5 6
(210mp  1)(210mp  2)(210mp  3)(210mp  4)(210mp  5)

210mp[ ]
   

    
 

 
 

 

 

=
3 4

(210mp  1)(105mp  1)(70mp  1)(105mp  2)(42mp  1)
210mp .[ ]


    

 
 

 
 

We now consider the case when 3 divides 70mp – 1 and 4 divides 105mp – 2. Then, 
 

 

70mp = 3a + 1, 105mp = 4b + 2 for some integers a  1, b  1.  
 
 

The solutions of the above Diophantine equations are respectively  
 

 

mp = 3c + 1, mp = 4d + 2 (c  1 and d  1 being integers). 
 
 

 

Combining together, we have the equation 3c = 4d + 1, which gives the desired condition. ■ 
 

From Lemma 6.5.43, we see that, the condition mp = 2(6s + 5) is satisfied only if m is even. 

More specifically, letting m = 2y, the condition has a solution if and only if (y, 6) = 1. For 

example, when m = 2, the condition becomes p = 6s + 5 (s  0). In this case, we successively get 

the primes p = 5, 11, 17, with SS(2100) = 2094, SS(4620) = 4614 and SS(7140) = 7134. The next 

value of m for which there is a solution is m = 10. In this case, the solution is p = 6t + 7 (t  0 

being an integer). The first few primes corresponding to this case are p = 7, 13, 19, with 

SS(14700) = 14694, SS(27300) = 27294, SS(39900) = 39894. 
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The following lemma is easy to prove, and is left as an exercise for the reader. 
 

Lemma 6.5.44 : SS(210mp)  210mp – 7 for any integer m (  1) and any prime p (  3). 
 

However, we have the result below. 
 

Lemma 6.5.45 : SS(210mp) = 210mp – 8 if one of the following conditions is satisfied : 
 

(1) mp = 2(8s + 1) (s  1 being an integer), (2) mp = 16t + 11 (t  0 being an integer). 
 

Proof : We start with the following expression :  
 
 

 
 

2 3 4 5 6 7 8
(210mp  1)(210mp  2)(210mp  3)(210mp  4)(210mp  5)(210mp  6)(210mp  7)

210mp[ ]
     

      
 

 

 
 

 
 

 
 

=
16

(210mp  1)(105mp  1)(70mp  1)(105mp  2)(42mp  1)(35mp  1)(30mp  1)
210mp .[ ]      

 
 

 
 

 

We now want to find the condition such that the term inside the square bracket is an integer. To 

do so, we have to consider the following two possible cases : 
 

 

Case 1. When 16 divides 105mp – 2. 
 
 

In this case, we have the Diophantine equation 
 

 

 

105mp = 16a + 2 for some integer a  1, 
 

 

whose solution is mp = 2(8s + 1), s  1 being an integer. 
 
 

Case 2. When 16 divides 35mp – 1. 

Here, we have 

35mp = 16b + 1 for some integer b  1, 
 

 

with the solution mp = 16t + 11, t  0 being an integer. 
 

Thus, the proof is complete. ■ 
 

From part (1) of Lemma 6.5.45, we see that, if the prime p is odd, m must be even. In fact, 

letting m = 2 (for some integer   1), the condition takes the form p = 8s + 1, which admits 

solutions only when (, 8) = 1. For m = 2, the condition is p = 8s + 1, and the first few primes 

corresponding to this case are p = 17, 41, 73, 89, which give the functions SS(7140) = 7132, 

SS(17220) = 17212, SS(30660) = 30652 and SS(37380) = 37372. For m = 6, the condition 

becomes 3p = 8s + 1, with the solution p = 8 + 3 (  0 being an integer). The first few functions 

corresponding to this case are SS(3780) = 3772 (for p = 3), SS(13860) = 13852 (for p = 11) and 

SS(23940) = 23932 (for p = 19). When m = 10 (for which the condition is 5p = 8s + 1), there is a 

solution, namely, p = 8u + 5 (u  0 being an integer). In this case, to mention a few, we get the 

functions SS(10500) = 10492, SS(27300) = 27292, SS(60900) = 60892 and SS(77700) = 77692. 

When m = 14, there is a solution. In this case, the condition takes the form 7p = 8s + 1, which 

gives p = 8v + 7 (v  0 being an integer). Here, we get the functions SS(20580) = 20572, 

SS(67620) = 67612 and SS(91140) = 91132. From part (2), we see that the condition admits 

solutions for p only when m is odd. For m = 1, the condition is simply p = 16t + 11, and we get 

successively the primes p = 11, 43, 59, 107, with the respective functions SS(2310) = 2302,  

SS(9030) = 9022, SS(12390) = 12382, SS(22470) = 22462. When m = 3, the condition takes the 

form 3p = 16t + 11 with the solution p = 16w + 9 (w  2 being an integer). A few functions in this 

case are SS(25830) = 25822, SS(45990) = 45982 and SS(56070) = 56062. When m = 5, the 

condition is 5p = 16t + 11, with the solution p = 16r + 15 (r  1 being an integer). Some of the 

functions in this case are SS(32550) = 32542, SS(49350) = 49342 and SS(82950) = 82942. 

 

From Lemma 6.5.33, Lemma 6.5.35, Lemma 6.5.38, Lemma 6.5.41, Lemma 6.5.43 and 

Lemma 6.5.45, we see that we need to solve equations like mp = ax + b. It may be recalled here 

that, letting (m, a) = d, the equation has a solution if and only if d divides b. 
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Lemma 6.5.46 : SS(210mp) = 210mp – 9 if  

(1) mp = 4(9s + 11) (s  0 being an integer), (2) mp = 2(18t + 13), t  4 + 2 for any   0. 
 

 

Proof : We consider the expression below :  
 
 

 
 

2 3 4 5 6 7 8 9
(210mp  1)(210mp  2)(210mp  3)(210mp  4)(210mp  5)(210mp  6)(210mp  7)(210mp  8)

210mp[ ]
      

         
 

 
 

 
 

 

 

=
8 9

(210mp  1)(105mp  1)(70mp  1)(105mp  2)(42mp  1)(35mp  1)(105mp  4)
210mp ,[ ]


      

 
 
 

 

 

where we have to find the condition that the term in the numerator inside the square bracket is 

an integer. We consider the following two possibilities : 
 

 

Case 1. When 9 divides 35mp – 1 and 4 divides 105mp – 4. In this case 

35mp = 9a + 1, 105mp = 4b + 4 for some integers a  1, b  1, 
 
 

with the respective solutions   

mp = 9c + 8, mp = 4d + 4 for any integers c  0, d  0. 
 
 

Then, the combined Diophantine equation is 9c = 4d – 4, whose solution is 
 

 

c = 4(s + 1), s  0 being an integer. 

Therefore,  

mp = 36(s + 1) + 8 = 4(9s + 11). 
 
 

Case 2 . When 9 divides 35mp – 1 and 4 divides 105mp – 2. Here,   

105mp = 4e + 2 for some integer e  0, 

with the solution  

mp = 4w + 2 for any integer w  0. 
 

 

Then, considering the combined equation, 9c = 4w – 6, we get the solution 

c = 4t + 2, t  0 being an integer, 

with 

mp = 9(4t + 2) + 8 = 2(18t + 13).  

However, note that, when t = 4 + 2,   0, then 

mp = 2[8(9 + 6) + 1], 
 

which shows, by part (1) of Lemma 6.5.45, that SS(210mp) = 210mp – 8. Otherwise,  
 

 

SS(210mp) = 210mp – 9. ■ 
 

Lemma 6.5.47 : SS(210mp) = 210mp – 10 if mp = 12(10s + 9) (s  0 being an integer). 
 

Proof : We consider the following expression :  
 

 

 
 

2 3 4 5 6 7 8 9 10
(210mp  1)(210mp  2)(210mp  3)(210mp  4)(210mp  5)(210mp  6)(210mp  7)(210mp  8)(210mp  9)

210mp[ ]
       

          
 

 
 

 
 

=
3 5 16

(210mp  1)(105mp  1)(70mp  1)(105mp  2)(42mp  1)(35mp  1)(105mp  4)(70mp  3)
210mp .[ ]

 
       

 
 
 

 
 

We consider the case when 3 divides 70mp – 3, 5 divides 42mp – 1 and 8 divides 105mp – 4. 

Then, 

70mp = 3a + 3, 42mp = 5b + 1, 105mp = 8c + 4 for some integers a  1, b  1, c  1, 
 

 

with the respective solutions  

mp = 3x + 3, mp = 5y + 3, mp = 8z + 4 for any integers x  0, y  0, z  0. 
 
 

The solution of the first two equations is x = 5(d + 1), which gives 
 

 

 

mp = 15(d + 1) + 3 = 3(5d + 6), d  0 being an integer. 
 

 

Combining with the third equation, we get 15d = 8z – 14, whose solution is d = 2(4s + 3), s  0. 

Then,  

mp = 30(4s + 3) + 18 = 12(10s + 9),  
 

which we intended to find. ■ 
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Lemma 6.5.48 : Let mp be not be divisible by 11. Then, 

SS(210mp) = 210mp – 11 if mp = 12(s + 1) (s  0 being an integer). 

Proof : To prove the lemma, we start with the expression :  

2 3 4 5 6 7 8 9 10 11
(210mp  1)(210mp  2)(210mp  3)(210mp  4)(210mp  5)(210mp  6)(210mp  7)(210mp  8)(210mp  9)(210mp  10)

210mp[ ]
        

         

=
3 8 11

(210mp  1)(105mp  1)(70mp  1)(105mp  2)(42mp  1)(35mp  1)(105mp  4)(70mp  3)(21mp  1)
210mp .[ ]

 
        

We now consider the case when 3 divides 70mp – 3 and 4 divides 105mp – 4. Then, 

70mp = 3a + 3, 105mp = 4b + 4 for some integers a  1, b  1, 

with the solutions  

mp = 3(c + 1), mp = 4(d + 1), for any integers c  0, d  0, 

respectively. Now, the combined equation is 3c = 4d + 1, whose solution is c = 4s + 3, s  0. Then, 

mp = 3(4s + 3) + 3,  

which gives the desired condition. ■ 

In the examples following Lemma 6.5.41, Lemma 6.5.43 and Lemma 6.5.45, we have seen 

that, in each case, for the admissible values of the integer m, the prime p can be found from the 

equation involving mp. But, the situation is different in case of Lemma 6.5.46, Lemma 6.5.47 

and Lemma 6.5.48, in the sense that, in each case, though the possible values of mp are known, 

it might be complicated to solve the equation in mp for p. From part (1) of Lemma 6.5.46, we 

get the functions : 

SS(9240) = 9231, SS(16800) = 16791, SS(24360) = 24351, SS(31920) = 31911, 

while part (2) gives the functions below :  

SS(5460) = 5451, SS(13020) = 13011, SS(28140) = 28131, SS(35700) = 35691. 

Recall that, part (2) is valid if t  4 + 2 for any   0; otherwise, we get the functions below : 

SS(20580) = 20572, SS(50820) = 50812, SS(81060) = 81052. 

Lemma 6.5.47 gives the following functions : 

SS(22680) = 22670, SS(47880) = 47870, SS(73080) = 73070, SS(98280) = 98270. 

Some of the functions obtained from Lemma 6.5.48 are 

SS(2520) = 2509, SS(5040) = 5029, SS(10080) = 10069. 

Lemma 6.5.48 assumes that 11 does not divide mp. What happens if 11 divides mp? It thus 

remains an open problem to find SS(11210mp), where 11 does not divide mp. In this context, 

the lemma below gives a partial answer. 

Lemma 6.5.49 : Let mp = 11(4s + 4) for any integer s  0. Then, SS(210mp) = 210mp – 4. 

Proof : Writing mp in the form mp = 4(11s + 8) + 1, and then appealing to Lemma 6.5.41, 

we result follows immediately. ■ 

After studying the function SS(210mp) (to some extent), it is also of interest to study the 

behavior of the function SS(420mp). The following lemma is straight-forward to prove. 

Lemma 6.5.50 : For any integer m  1 and any prime p  3, 

(1) SS(420mp)  420mp – 4, (2) SS(420mp)  420mp – 5, (3) SS(420mp)  420mp – 7. 

Part (1) of Lemma 6.5.50 makes the difference between SS(420mp) and SS(210mp) (see 

Lemma 6.5.41). Using the corresponding results for SS(210mp), we can readily deduce the 

conditions such that SS(420mp) = 420mp – 6, SS(420mp) = 420mp – 8, SS(420mp) = 420mp – 9, 

SS(420mp) = 420mp – 10 and SS(420mp) = 420mp – 11. 
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The following four corollaries give equations involving the function SS(n). 
 

Corollary 6.5.10 : The equation SS(n) = n – 2 has an infinite umber of solutions. 

Proof : Let n be an odd integer of the form n = 2m + 1 for all m  3. Then, by Lemma 6.5.1, 

SS(n) = n – 2, which clearly possesses an infinite number of solution. ■ 
 

Corollary 6.5.11 : The equation SS(n) = n – 3 has an infinite number of solutions. 

Proof : Let n be an even integer of the form n = 2m, where m  4 is such that 3 does not 

divide m. Then, by Lemma 6.5.3, such an n satisfies the given equation. ■ 
 

It may be mentioned here that, by virtue of Lemma 6.5.2, the solution of the equation given 

in Corollary 6.5.8 (that is, the equation SS(n) = n – 2) is unique, while the equation SS(n) = n – 3 

has other solutions as well (see, for example, Corollary 6.6.7 and Lemma 6.5.4). 
 

Corollary 6.5.12 : The equation SS(n) = SS(n + 1) has an infinite number of solutions. 

Proof : Let n and n + 1 be two integers, not divisible by 3. Then, with n odd, 
 

 

SS(n) = n – 2 = SS(n + 1). ■ 
 
 

 

 
 

The following corollary involves three Smarandache type arithmetic functions. 
 

 
 

 

 
 

 
 

 

Corollary 6.5.13 : The equation S(n) + SS(n) = 2 Z(n) has an infinite number of solutions. 

Proof : Since S(p) = p, SS(p) = p – 2, Z(p) = p – 1 for any odd prime p, the result follows. ■ 
 

Given any integer n (  1), there are n + 1 binomial coefficients, namely, 
n

k
 
 
 

, 0  k  n; and 

for n (  3) fixed, in general, there are two integers k such that n divides 
n

k
 
 
 

, namely, k = 1 and 

k = n – 1. If n is an odd prime, then there are exactly two such numbers. But, in some cases, there 

are more than two. Consider the following example, which is one of the very extreme cases. 
 

Example 6.5.5 : Given SS(n) = n – k for some integers n (  3) and k (1  k  n – 2), it is 

understood that k divides 
n

k
 
 
 

 (and k is the largest such integer, so that k + 1 does not divide 

n

k
 
 
 

). But is it possible that k – 1 divides 
n

k
 
 
 

? Consider the case n = 57. Clearly, 57 divides 

each of 
57

1

 
 
 

 and 
57

2

 
 
 

, but 57 does not divide 
57

3

 
 
 

. In fact, SS(57) = 54. It can easily be 

checked that 57 divides 
57

4

 
 
 

; In fact, 57 divides each of the next 14 binomial coefficients 

(from 
57

5

 
 
 

 through 
57

19

 
 
 

). Actually, of the possible 57 binomial coefficients, 51 of them is 

divided by 57 (excepting 
57

54

 
 
 

=
57

3

 
 
 

, 
57

19

 
 
 

=
57

38

 
 
 

, 
57

27

 
 
 

=
57

30

 
 
 

). Note that 57 divides 
57

6

 
 
 

, 

though (57, 6)  1.  

 

The above example leads us to pose the problem below. 
 

Problem 6.5.1 : For a given integer n, let SS(n) = n – k. Find the number of integers k such 

that n divides 
n

k
 
 
 

. Note that, in the worst situation, there are 2 elements. 
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Remark 6.5.5 : Since n = 42 divides 42 41 40 39
4!

42
,

4
   

 
 

it follows that SS(42) = 38. 

Note that, k = 4 divides 41 40 39
3!

41
.

3
  

 
 

 In this particular case, n divides 
n

k
 
 
 

and 

(n – 1) divides 
n 1

.
k 1

 
  

Note that, SS(41) = 39, SS(43) = 41. In Example 6.5.5 above 

also, we would find several instances where n divides both 
n

k
 
 
 

and 
n

.
k 1
 
  

 

Like other Smarandache type arithmetic functions, particularly, the Smarandache function 

and the pseudo Smarandache function, the Sandor-Smarandache function also has many open 

problems which remain to be solved. We close this chapter, and therefore stop writing further, 

with the following comments, questions and open problems. 

Open Problem 6.5.1 : Find SS(6m), m  4s + 3, when 11 divides m (see Lemma 6.5.18). 

Question 6.5.1 : Given any integer k (  2), is it always possible to find an integer n such 

that SS(n) = n – k? 

If k = 2, then by virtue of Lemma 6.5.1 (and Lemma 6.5.2), for any odd integer n, we have 

SS(n) = n – 2; and if k = 3, then by Lemma 5.5.3, SS(n) = n – 3 for any even integer n, not 

divisible by 3. In fact, the proof of Lemma 6.5.3 shows that, SS(n) = n – 3 for some integer n if 

and only if n is of the form n = 2m, where m (  4) is an integer not divisible by 3. Observe that, 

Lemma 6.5.9 gives a condition such that SS(p + 1) = (p + 1) – 3, where p is a prime of the form 

p = 6u + 1. But what happens when k  4? To find an integer n such that SS(n) = n – k, k  4, we 

have to keep in mind two points : The first condition is that, such an n must be even, and 

secondly, 3 must divide n, that is, such an n must be of the form n = 6m (for some integer m  1). 

Lemma 6.5.6 deals with the case when SS(n) = n – 4. The proof of Lemma 6.5.6 shows that 

SS(6m) = 6m – 4 if and only if m = 4s + 3 for some integer s (  0). Lemma 6.5.7 gives a second 

instance, such that SS(30m) = 30m – 4 under the condition specified. Lemma 6.5.10 shows that, 

under the given condition, we can find n such that SS(n) = n – 4, while Lemma 6.5.11 gives the 

conditions on n such that SS(n) = n – 5. Lemma 6.5.14 finds the conditions on the prime p such 

that SS(p + 1) = (p + 1) – 6. Lemma 6.5.18 gives the conditions on n such that SS(n) = n – 7, 

SS(n) = n – 8, and SS(n) = n – 11. Lemma 6.5.20 finds the condition such that SS(n) = n – 9, and 

the condition for SS(n) = n – 10 is given in Lemma 6.5.21. We thus see that, given any integer k 

with 2  k  11, we can find n such that SS(n) = n – k. In this context, we make the following 

conjectures. 

Conjecture 6.5.1 : Given any integer k, there is an integer n such that SS(n) = n – k. 

Conjecture 6.5.2 : Given any integer k, there is an infinite number of integers n such that 

SS(n) = n – k. 

In passing, we point out that the binomial coefficient can be expressed as 

(1, 2, ..., k)

n, (n  1), ... ,(n  k + 1)n
SL(n, k) ,

k

( ){ }  
 

 

where SL(n, k) (k  n) is the Smarandache LCM ratio function (of the second type), defined in 

Definition 6.4.2. This formula offers an alternative method of finding SL(n, k). For example, for 

k = 2, since (1, 2) = 1, (n, n – 1) = 2, we get 

SL(n, 2) =
2

n(n  1)
.

Chapter 6 : Miscellaneous Topics 



132   Smarandache Numbers 

Revisited 

References 

1. Beiler, Albert H. Recreations in the Theory of Numbers – The Queen of Mathematics

Entertains. Dover Publications, Inc., N.Y. 1966.

2. Pickover, Clifford A. Wonders of Numbers – Adventures in Mathematics, Mind and

Meaning. Oxford University Press, N.Y. 2001.

3. Hardy, G.H. and Wright, E.M. An Introduction to the Theory of Numbers. Oxford

University Press, U.K. 2002.

4. Shyam Sunder Gupta. Smarandache Sequence of Triangular Numbers. Smarandache

Notions Journal, 14 (2004), 366 – 368.

5. Murthy, Amarnath. Smarandache Friendly Numbers and a Few More Sequences.

Smarandache Notions Journal, 12 (2001), 264 – 267.

6. Khairnar, S.M., Vyawahare, A.W. and Salunke, J.N. Smarandache Friendly Numbers –

Another Approach. Scientia Magna, 5(3) (2009), 32 – 39.

7. Murthy, Amarnath. Smarandache Reciprocal Partition of Unity Sets and Sequences,

Smarandache Notions Journal, 11 (2000).

8. Murthy, Amarnath and Ashbacher, Charles. Generalized Partitions and Some New Ideas on

Number Theory and Smarandache Sequences. InProQuest, Hexis, Phoenix, 2005.

9. Maohua Le. A Conjecture Concerning the Reciprocal Partition Theory. Smarandache

Notions Journal, 12 (2001), 242 – 243.

10. Murthy, Amarnath. Some Notions on Least Common Multiples. Smarandache Notions

Journal, 14 (2004), 307 – 308.

11. Apostol, Tom M. Introduction to Analytic Number Theory. Springer-Verlag, N.Y. 1976.

12. Maohua Le. Two Formulas for Smarandache LCM Ratio Sequences. Smarandache Notions

Journal, 14 (2004), 183 – 185.

13. Wang Ting. A Formula for Smarandache LCM Ratio Sequence. Research on Smarandache

Problems in Number Theory (Vol. II), Edited by Zang Wengpeng, Li Junzhuang and Liu

Duansen, Hexis, Phoenix AZ, 2005, 45 – 46.

14. Khairnar, S.M., Vyawahare, A. W. and Salunke, J.N. On Smarandache Least Common

Multiple Ratio. Scientia Magna, 5(1) (2009), 29 – 36.

15. Majumdar, A.A.K. On the Smarandache LCM Ratio. Scientia Magna, 11(1) (2016), 4 – 11.

16. Majumdar, A.A.K. A Note on Triangular Numbers. Jahangirnagar Journal of Mathematics

and Mathematical Sciences, 28 (2013), 97 – 104.

17. Majumdar, A.A.K. On Smarandache Friendly Numbers. Scientia Magna, 8(2) (2012),

15 – 18.

18. Majumdar, A.A.K. On Some Identities Related to the Smarandache LCM Ratio.

Jahangirnagar Journal of Mathematics and Mathematical Sciences, 26 (2011), 45 – 58.

19. Sandor, J. On a New Smarandache Type Function, Smarandache Notions Journal 12 (2001),

247 – 248.

132                         References 



133 Chapter 4 : The Pseudo Smarandache Function 

SUBJECT   INDEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circulant matrix 24, 25 

with arithmetic sequence 25 

with geometric sequence 24 

determinant of 25, 26 

Circulant arithmetic determinant sequence 25 

Circulant geometric determinant sequence 24 

Diophantine equation 37, 42, 50, 52, 58, 59, 65, 76, 82 

a2 = b2 + c2 + bc 59, 65 

a2 = b2 + c2 – bc 59, 65 

Fibonacci and Lucas numbers 7 

Greatest and least common divisors 91 

Mercenne prime 29, 40, 52 

Pell’s equation 77, 82 

x2 – 2y2 = 1 77 

x2 – 2y2 = –1 82 

Primitive solution 68 

Pseudo Smarandache function 37 

definition of 37 

explicit expressions of 37 

properties of 37 

related triangles 57 

Z(n) + SL(n) = n 50, 54 

Z(n) = SL(n) 54 

Right circulant arithmetic matrix 25 

Right circulant geometric matrix 24 

Sandor-Smarandache function 106 

Smarandache-Amar LCM triangle 94, 95 

Smarandache determinant sequences 15 

bisymmetric arithmetic determinant 

sequence 15 

bisymmetric determinant natural 

sequence 15 

bisymmetric geometric determinant 

sequence 15, 16, 17 

cyclic arithmetic determinant sequence 15 

cyclic determinant natural sequence 15 

Smarandache friendly numbers 82 

friendly primes 84 

Smarandache function 28 

definition of 28 

explicit expressions of 29 

properties of 28 

related triangles 57 

Smarandache reciprocal partition sets 85 

repeatable 85 

distinct 85  

Smarandache sequences 11 

circular sequence 11  

determinant sequences 15 

circulant geometric 24 

circulant arithmetic 25 

even sequence 11 

odd sequence 11 

permutation sequence 12 

prime product sequence 13 

reverse sequence 13 

reverse T-sequence 81 

square product sequences 12 

symmetric sequence 13 

T-sequence 79 

S–related triangles 57 

60 degrees triangles 58 

120 degrees triangles 58 

Smarandache LCM function 50, 52 

Smarandache LCM ratio function 91, 92 

of the second type 92 

explicit expressions of 98 

Smarandache reverse T-sequence 81 

Smarandache T-sequence 79 

Triangular numbers 77 

palindromic 81 

Z–related triangles 57 

60 degrees triangles 58 

120 degrees triangles 58 

133                             Subject Index 






