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§1. Introduction and preliminaries

Let H denote the class of functions analytic in open unit disk E = {z : |z| < 1} and

let H[a, n] denote the subclass of H consisting of functions of the form f(z) = a + anz
n +

an+1z
n+1 + · · · where a ∈ C, n ∈ N. The class of analytic functions f, normalized by the

conditions f(0) = f ′(0)− 1 = 0 is denoted by A.

Let Σ be the class of functions of the form

f(z) =
1

z
+

∞∑
0

anz
n,

which are analytic in the punctured unit disc E0 = E \ {0}, where E = {z : |z| < 1}.
A function f ∈ Σ is said to be meromorphic starlike of order α if f(z) 6= 0 for z ∈ E0 and

−<
(
zf ′(z)

f(z)

)
> α, (0 ≤ α < 1; z ∈ E).

The class of such functions is denoted by MS∗(α) and write MS∗ = MS∗(0) - the class of

meromorphic starlike functions.

If f is analytic and g is analytic univalent in open unit disk E, we say that f(z) is subordinate to

g(z) in E and written as f(z) ≺ g(z) if f(0) = g(0) and f(E) ⊂ g(E). To derive certain sandwich-

type results, we use the dual concept of differential subordination and superordination.
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Let Φ : C2 × E −→ C (C is the complex plane) and h be univalent in E. If p is analytic in E
and satisfies the differential subordination

Φ(p(z), zp′(z); z) ≺ h(z),Φ(p(0), 0; 0) = h(0), (1)

then p is called a solution of the differential subordination (1). The univalent function q is called

a dominant of differential subordination (1) if p ≺ q for all p satisfying (1). A dominant q̃ ≺ q

for all dominants q of (1), is said to be the best dominant of (1).

Let Ψ : C2 × E −→ C (C is the complex plane) be analytic and univalent in domain C2 × E, h
be analytic in E, p is analytic and univalent in E, with (p(z), zp′(z); z) ∈ C2 × E for all z ∈ E.
Then p is called a solution of first order differential superordination if it satisfies

h(z) ≺ Ψ(p(z), zp′(z); z), h(0) = Ψ(p(0), 0; 0). (2)

An analytic function q is called a subordinant of differential superordination (2) if q ≺ p for all

p satisfying (2). A univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants q for (2), is

said to be the best subordinant of (2).

In the literature of meromorphic functions, many authors have been successfully used the tech-

nique of differential subordination to obtain the results involving meromorphic functions.

Nunokawa and Ahuja [2] proved the following result.

Theorem 1.1. Let α < 0 and γ ≥ 0. If

f ∈ Σ∗γ

(
2α− 2α2 + γα

2(1− α)

)
,

then f ∈MS∗(α)

Ravichandaran et al. [6] proved the following results.

Theorem 1.2. Let q(z) be univalent and q(z) 6= 0 in E and

(i)
zq′(z)

q(z)
is starlike univalent in E, and

(ii) <
[
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)
− q(z)

γ

]
> 0 for z ∈ E, γ 6= 0.

If f(z) ∈ Σ and

−
[
(1− γ)

zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)]
≺ q(z)− γ zq

′(z)

q(z)
,

then

−zf
′(z)

f(z)
≺ q(z)

and q(z) is the best dominant.

Theorem 1.3. Let α < 0, γ 6= 0. If f(z) ∈ Σ and

−
[
(1− γ)

zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)]
≺ 1 + 2[1− γ + (α− 1)γ]z + (1− 2α)2z2

1− 2αz − (1− 2α)z2
,

then −<zf
′(z)

f(z)
> α.

2
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Roshian and Ravichandaran [4] proved the following results.

Theorem 1.4. Let q(z) be univalent in E and
zq′(z)

q(z)
be starlike in E. If f ∈ Σp satisfies

α
zf ′(z)

f(z)
− zf ′′(z)

f ′(z)
≺ 1 + (1− α)p− zq′(z)

q(z)
,

then

−z
1+(1−α)pf ′(z)

pfα(z)
≺ q(z),

and q(z) is the best dominant.

Theorem 1.5. Let −1 ≤ B < A ≤ 1. If f ∈ Σ satisfies

α
zf ′(z)

f(z)
− zf ′′(z)

f ′(z)
≺ 2− α− (A−B)z

(1 +Az)(1 +Bz)
,

then

−z
2−αf ′(z)

fα(z)
≺ (1 +Az)

(1 +Bz)
.

The main objective of this paper is to generalize the results of above nature and obtain certain

sandwich-type results for starlike functions.

We shall use the following lemmas to prove our results.

Lemma 1.1. ([5])Let q be univalent in E and let θ and φ be analytic in a domain D containing

q(E), with φ(w) 6= 0, when w ∈ q(E). Set Q1(z) = zq′(z)φ[q(z)], h(z) = θ[q(z)] + Q1(z) and

suppose that either

(i) h is convex, or

(ii) Q1 is starlike.

In addition, assume that

(iii) <
(
zh′(z)

Q1(z)

)
> 0 for all z in E.

If p is analytic in E, with p(0) = q(0), p(E) ⊂ D and

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z)φ[q(z)], z ∈ E,

then p(z) ≺ q(z) and q is the best dominant.

Definition 1.1. We denote by Q the set of functions p that are analytic and injective on

E \ B(p), where

B(p) =

{
ζ ∈ ∂E : lim

z→ζ
p(z) =∞

}
,

and are such that p′(ζ) 6= 0 for ζ ∈ ∂E \ B(p).

Lemma 1.2. ([1]) Let q be the univalent in E and let θ and φ be analytic in a domain D
containing q(E). Set Q1(z) = zq′(z)φ[q(z)], h(z) = θ[q(z)] +Q1(z) and suppose that

(i)Q1(z) is starlike in E; and

(ii)<
(
θ′(q(z))

φ(q(z))

)
> 0, for z ∈ E.

if p ∈ H[q(0), 1] ∩Q, with p(E) ⊂ D and θ[p(z)] + zp′(z)φ[p(z)] is univalent in E and

θ[q(z)] + zq′(z)φ[q(z)] ≺ θ[p(z)] + zp′(z)φ[p(z)], z ∈ E,

then q(z) ≺ p(z) and q is the best subordinant.

3
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§2. Main Results

Theorem 2.1. Let q, q(z) 6= 0, be a univalent function in E satisfying therein the condition

(i) <
(

1 +
zq′′(z)

q′(z)
+ (γ − 1)

zq′(z)

q(z)

)
> 0,

(ii) <
(

1 +
zq′′(z)

q′(z)
+ (γ − 1)

zq′(z)

q(z)
+ (γ + 1)q(z) +

(1− α)γ

α

)
> 0 for all z ∈ E.

If f ∈ Σ,
zf ′(z)

f(z)
6= 0, z ∈ E, satisfies the differential subordination

(
−zf

′(z)

f(z)

)γ (
1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

))
≺ αzq′(z)qγ−1(z) + αqγ+1(z) + (1− α)qγ(z), (3)

where α, γ are complex numbers with α 6= 0, then −zf
′(z)

f(z)
≺ q(z) and q is the best dominant.

Proof. On writing p(z) = −zf
′(z)

f(z)
, the subordination (3) becomes:

αzp′(z)pγ−1(z) + αpγ+1(z) + (1− α)pγ(z) ≺ αzq′(z)qγ−1(z) + αqγ+1(z) + (1− α)qγ(z). (4)

Let us define the functions θ and φ as follows:

θ(w) = αwγ+1 + (1− α)wγ and φ(w) = αwγ−1

Clearly, the functions θ and φ are analytic in domain D = C \ {0} and φ(w) 6= 0 in D. Now,

define the function h as follows:

h(z) = αzq′(z)qγ−1(z) + αqγ+1(z) + (1− α)qγ(z). (5)

Differentiate (5) and simplifying a little, we get

zh′(z)

Q1(z)
= 1 +

zq′′(z)

q′(z)
+ (γ − 1)

zq′(z)

q(z)
+ (γ + 1)q(z) +

(1− α)γ

α

where Q1(z) = αzq′(z)qγ−1(z). In view of given conditions (i) and (ii), we have Q1 is starlike

in E and

<
(
zh′(z)

Q1(z)

)
> 0, z ∈ E.

In view of lemma 1.2 and subordination (3), we have

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z)φ[q(z)].

This completes the proof of our theorem.

Theorem 2.2. Let q, q(z) 6= 0, be a univalent function in E such that

(i) <
(

1 +
zq′′(z)

q′(z)
+ (γ − 1)

zq′(z)

q(z)

)
> 0,

(ii) <
(

(γ + 1)q(z) +
(1− α)γ

α

)
> 0 for all z ∈ E.

4
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If f ∈ Σ,−zf
′(z)

f(z)
∈ H[q(0), 1] ∩Q with

zf ′(z)

f(z)
6= 0, z ∈ E, satisfies the differential superordi-

nation

αzq′(z)qγ−1(z) + αqγ+1(z) + (1− α)qγ(z)

≺
(
−zf

′(z)

f(z)

)γ (
1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

))
= h(z), (6)

where α, γ are complex numbers with α 6= 0, then q(z) ≺ −zf
′(z)

f(z)
and q is the best subordinant.

Proof. Setting p(z) = −zf
′(z)

f(z)
, the superordination (6) becomes:

αzq′(z)qγ−1(z) + αqγ+1(z) + (1− α)qγ(z) ≺ αzp′(z)pγ−1(z) + αpγ+1(z) + (1− α)pγ(z). (7)

By defining the functions θ and φ and Q1 same as in case of Theorem 2.1 and observing that

θ′(q(z))

φ(q(z))
= (γ + 1)q(z) +

(1− α)γ

α
.

The use of lemma 1.2 along with (7) completes the proof on the same lines as in case of Theorem

2.1.

On combining Theorem 2.1 and Theorem 2.2, we obtain the following sandwich-type theorem.

Theorem 2.3. Suppose α, γ are complex numbers with α 6= 0 and suppose that q1, q2(q1 6=
0, q2 6= 0, z ∈ E) are univalent functions in E such that q1 satisfies the conditions (i) and (ii)

of Theorem 2.2 and q2 follows the conditions (i) and (ii) of Theorem 2.1. If f ∈ Σ,−zf
′(z)

f(z)
∈

H[q1(0), 1] ∩Q with
zf ′(z)

f(z)
6= 0, z ∈ E, satisfies the differential sandwich-type condition

αzq′1(z)qγ−11 (z) + αqγ+1
1 (z) + (1− α)qγ1 (z) ≺ h(z)

=

(
−zf

′(z)

f(z)

)γ {
1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)}
≺ αzq′2(z)qγ−12 (z) + αqγ+1

2 (z) + (1− α)qγ2 (z),

where h is univalent in E, then q1(z) ≺ −zf
′(z)

f(z)
≺ q2(z). Moreover q1 and q2 are, respectively,

the best subordinant and the best dominant.

Deductions

If we consider the dominant q(z) =
1 + (1− 2λ)z

1− z
, 0 ≤ λ < 1, a little calculation

yields that this dominant satisfies the conditions of Theorem 2.1 in the following

particular cases. Select γ = 1 in Theorem 2.1, we get the following result.

Corollary 2.1. Suppose that α(0 < α ≤ 1) is a real number and if f ∈

Σ,
zf ′(z)

f(z)
6= 0 in E, satisfies(

−zf
′(z)

f(z)

){
1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)}
5
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≺ 2α(1− 2λ)z

(1− z)2
+ α

(
1 + (1− 2λ)z

1− z

)2

+ (1− α)
1 + (1− 2λ)z

1− z
,

then

−zf
′(z)

f(z)
≺ 1 + (1− 2λ)z

1− z
, i.e. f ∈MS∗(λ), 0 ≤ λ < 1.

Taking α =
1

2
, λ = 0 in above corollary, we get:

Corollary 2.2. If f ∈ Σ,
zf ′(z)

f(z)
6= 0 in E, satisfies

(
−zf

′(z)

f(z)

)(
1 +

1

2

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 1 + 2z

(1− z)2

then f ∈MS∗.
Selecting γ = −1 in Theorem 2.1, we have:

Corollary 2.3. Suppose that α be a real number such that α ∈ (−∞, 0)∪ [1,∞]

and let f ∈ Σ,
zf ′(z)

f(z)
6= 0 in E, satisfy

1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
−zf

′(z)

f(z)

≺ α +
(1− α)(1− z)

1 + (1− 2λ)z
+

2α(1− λ)z

(1 + (1− 2λ)z)2
,

then

−zf
′(z)

f(z)
≺ 1 + (1− 2λ)z

1− z
, i.e. f ∈MS∗(λ), 0 ≤ λ < 1.

Taking γ = 0 in Theorem 2.1, we have:

Corollary 2.4. If f ∈ Σ,
zf ′(z)

f(z)
6= 0 in E, satisfies

1 +α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
≺ 1−α+

α(1 + (1− 2λ)z)

1− z
+

2α(1− λ)z

(1− z)(1 + (1− 2λ)z)
,

where α is a non-zero complex number. Then

−zf
′(z)

f(z)
≺ 1 + (1− 2λ)z

1− z
,

i.e. f ∈MS∗(λ), 0 ≤ λ < 1.

Selecting α = 1, λ = 1
2

in above corollary, we get the following result:

6
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Corollary 2.5. If f ∈ Σ,
zf ′(z)

f(z)
6= 0 in E, satisfies

1 +
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)
≺ 1 + z

1− z
,

then

−zf
′(z)

f(z)
≺ 1

1− z
,

i.e. f ∈MS∗(1
2
), z ∈ E.

When we consider the dominant q(z) =
1 + az

1− z
, − 1 < a ≤ 1, a little calculation

yields that it satisfies the conditions of Theorem 2.1 in following special cases and

consequently we obtain the next results.

Setting γ = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.6. Suppose that α(0 < α ≤ 1) is a real number and if f ∈

Σ,
zf ′(z)

f(z)
6= 0 in E, satisfies(

−zf
′(z)

f(z)

){
1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)}

≺ α(1 + a)z

(1− z)2
+ α

(
1 + az

1− z

)2

+ (1− α)
1 + az

1− z
,

then

−zf
′(z)

f(z)
≺ 1 + az

1− z
, z ∈ E, − 1 < a ≤ 1.

Selecting γ = −1 in Theorem 2.1, we have:

Corollary 2.7. Suppose that α be a real number such that α ∈ (−∞, 0)∪ [1,∞)

and let f ∈ Σ,
zf ′(z)

f(z)
6= 0 in E, satisfy

1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
−zf

′(z)

f(z)

≺ α +
(1− α)(1− z)

1 + az
+
α(1 + a)z

(1 + az)2
,

then

−zf
′(z)

f(z)
≺ 1 + az

1− z
, z ∈ E, − 1 < a ≤ 1.

7
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Taking γ = 0 in Theorem 2.1, we have:

Corollary 2.8. If f ∈ Σ,
zf ′(z)

f(z)
6= 0 in E, satisfies

1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
≺ 1− α +

α(1 + az)

1− z
+

α(1 + a)z

(1− z)(1 + az)
,

then

−zf
′(z)

f(z)
≺ 1 + az

1− z
, z ∈ E, − 1 < a ≤ 1.

§3. Sandwich-type Results

In this section, we apply Theorem 2.3 to find certain sandwich-type results which

give the best subordinant and the best dominant for −zf
′(z)

f(z)
. By selecting the

subordinant q1(z) = 1 + az and the dominant q2(z) = 1 + bz, 0 < a < b, in

Theorem 2.3, we deduce, below, some criteria for starlike functions. Keeping

γ = 1 in Theorem 2.3, we obtain:

Corollary 3.1. Suppose α, a, b are real numbers such that 0 < α ≤ 1, 0 < a <

b < 1. If f ∈ Σ is such that −zf
′(z)

f(z)
∈ H[1, 1]∩Q, with −zf

′(z)

f(z)
6= 0 and satisfies

the condition

1 + (1 + 2α)az + αa2z2 ≺ −zf
′(z)

f(z)

(
1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

))
≺ 1 + (1 + 2α)bz + αb2z2, z ∈ E,

where −zf
′(z)

f(z)

(
1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

))
is univalent in E, then

1 + az ≺ −zf
′(z)

f(z)
≺ 1 + bz.

Example 3.1. For α = 1, a = 1/10, b = 9/10 and f same as in above corollary,

we obtain:

1 +
3

10
z +

1

100
z2 ≺ −zf

′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
≺ 1 +

27

10
z +

81

100
z2 (8)

then

1 +
1

10
z ≺ −zf

′(z)

f(z)
≺ 1 +

9

10
z. (9)

8
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Writing γ = −1 in Theorem 2.3, we obtain:

Corollary 3.2. Let α, a, b be real numbers such that α ∈ (−∞, 0) ∪ (1,∞), 0 <

a < b < 1. If f ∈ Σ is such that −zf
′(z)

f(z)
∈ H[1, 1] ∩ Q, with

zf ′(z)

f(z)
6= 0 and

1 + α

(
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
−zf

′(z)

f(z)

is univalent in E, then

α+
1− α
1 + az

+
αaz

(1 + az)2
≺

1 +

(
α
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
−zf

′(z)

f(z)

≺ α+
1− α
1 + bz

+
αbz

(1 + az)2
, z ∈ E,

implies

1 + az ≺ −zf
′(z)

f(z)
≺ 1 + bz, z ∈ E.

Writing γ = 0 in Theorem 2.3, we obtain:

Corollary 3.3. Suppose α is a non-zero complex number and a, b are real

numbers such that α ∈ (−∞, 0) ∪ (1,∞), 0 < a < b < 1. If f ∈ Σ is such

that −zf
′(z)

f(z)
∈ H[1, 1] ∩ Q, with

zf ′(z)

f(z)
6= 0 and 1 +

(
α
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
is

univalent in E, then

1 + αaz +
αaz

(1 + az)
≺ 1 +

(
α
zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
≺ 1 + αbz +

αbz

(1 + az)
, z ∈ E,

implies

1 + az ≺ −zf
′(z)

f(z)
≺ 1 + bz, z ∈ E.

Example 3.2. For α = 1, a = 1/4, b = 3/4 and f same as in above corollary,

we obtain:

1 +
1

4
z +

z

4 + z
≺ −zf

′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− 2

zf ′(z)

f(z)

)
≺ 1 +

3

4
z +

3z

4 + 3z
(10)

then

1 +
1

4
z ≺ −zf

′(z)

f(z)
≺ 1 +

3

4
z. (11)

9
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Abstract A loop (GH , ·) is called a special loop of the loop (G, ·) if the pair (H, ·) is an arbi-

trary non-trivial subloop of (G, ·). In particular, (GH , ·) is called a second Smarandache Bol

loop (S2ndBL) if it obeys the second Smarandache Bol loop identity (xs ·y)s = x(sy · s) for all

x, y ∈ G and s ∈ H. This paper present some characterizations of Smarandache nuclei of sec-

ond Smarandache Bol loops and its second Smarandache Moufang part (S2ndM(GH)). Some

results that holds in classical Bol loops were investigated and generalised. The algebraic con-

nections between right(left) and middle Smarandache nuclei of S2ndBL and its (S2ndM(GH))

via Smarandache autotopism nuclei were shown

Keywords Special loops, Smarandache Nuclei Bol Loops, Smarandache Moufang loops.
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§1. Introduction

A groupoid (Q, ·) is a non- empty set Q with a binary operation ” · ” on Q such that

x · y ∈ Q for all x, y ∈ Q. If the equations: a ·x = b and y · a = b have unique solutions x, y ∈ Q
for all a, b ∈ Q, then (Q, ·) is called a quasigroup. Let (Q, ·) be a quasigroup and there exist

a unique element e ∈ Q called the identity element such that for all x ∈ Q, x · e = e · x = x,

then (Q, ·) is called a loop. At times, we shall write xy instead of x · y and stipulate that · has

lower priority than juxtaposition among factors to be multiplied. Let (Q, ·) be a groupoid and

a be a fixed element in Q, then the left and right translations La and Ra of a are respectively

defined by xLa = a · x and xRa = x · a for all x ∈ Q. It can now be seen that a groupoid (Q, ·)
is a quasigroup if its left and right translation mappings are permutations. Since the left and

right translation mappings of a quasigroup are bijective, then the inverse mappings L−1x and

R−1x exist.

Let

a\b = bL−1a and a/b = aR−1b

and note that

a\b = c⇐⇒ a · c = b and a/b = c⇐⇒ c · b = a.

Thus, for any quasigroup (Q, ·), there exist another two new binary operations; right division (/)

and left division (\) for any fixed a ∈ Q. Consequently, (Q, \) and (Q, /) are also quasigroups.

Using the operations (\) and (/), the definition of a loop can be restated as follows.
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A loop (Q, ·, /, \, e) is a set G together with three binary operations (·), (/), (\) and one

nullary operation e such that

1. a · (a\b) = b, (b/a) · a = b for all a, b ∈ Q,

2. a\(a · b) = b, (b · a)/a = b for all a, b ∈ Q and

3. a\a = b/b or e · a = a for all a, b ∈ Q.

We also stipulate that (/) and (\) have higher priority than (·) among factors to be mul-

tiplied. For instance, a · b/z and a · b\z stand for a(b/z) and a(b\z) respectively.

In a loop (Q, ·) with identity element e, the left inverse element of a ∈ Q is the element

xJλ = aλ ∈ Q such that aλ · a = e while the right inverse element of a ∈ G is the element

xJρ = aρ ∈ G such that a · aρ = e. For more on quasigroups and loops, check Jaiyéo. lá [13],

Pflugfelder [5] and Shcherbacov [3]

Smarandache concept in groupoid was first introduced and studied by (W . B Vasantha

Kandasamy [18], 2002). In her first paper [20] and her book on Smarandache concept in the

study of loops [19], where she initially defined Smarandache loop (S-loop) as a loop with at

least a subloop which forms a subgroup under the binary operation of the loop, have started

gaining more attractive attention of researchers.

(Muktibodh, [24, 25].2005, 2006 ) defined Smarandache quasigroup as a non trivial subset

H of a quasigroup (G, ·) such that (H, ·) is an associative subquasigroup of the quasigroup

(G, ·).
Immediately after the work of Muktibodh, (Jaiyéo. lá. [6], 2006) presented a study on holo-

morphic structures of loop under Smarandache concept. The paper revealed that a loop is

a Smarandache loop if and only if its holomorph is a Smarandache loop and he furthered

announced that the statement is also true for some weak Smarandache loops such as inverse

property, weak inverse property but false for others (conjugacy closed, Bol, central, extra, Burn,

A- homogeneous except if their holomorphs are nuclear or central.

In (Jaiyéo. lá . [8,9], 2006) carried out a comprehensive study on parastrophic invariants of

Smarandache quasigroups and presented a ground view of the studies of universality of some

Smarandache loops of Bol -Moufang type. It was shown in [9] that Smarandache quasigroup

(loop) is universal if all its f, g−principal isotopes are Smarandache f, g− principal isotopes.

(Jaiyéo. lá . [10–12, 14, 15], 2008) in furtherance to his exploit, presented more character-

izations of Smarandache concept in the study of quasigroup(loop) structures. In particular,

Smarandache isotopic quasigroup and holomorphic study of Smarandache automorphic and

cross inverse property loops was investigated in the same manner as the isotopy theory was

carried out for groupoids, quasigroups and loops. The same author in [15] introduced the study

of double cryptography using the concept of Smarandache Keedwell Cross inverse quasigroup.

In [16, 17], the author furthered his exploration of Smarandache quasigroups(loops) theo-

ry by classifying the structures into first Smarandache quasigroup(loop) and second Smaran-

dache quasigroup(loop). The author announced that the most comprehensive study in the Bol

Moufang-type identities called Bol loop falls into the second class of Smarandache loops. Hence,

the second Smarandache loop is a particular case of the first Smarandache loops and a second

Smarandache Bol loop is a generalised form of Bol loops.

12
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In (Osoba et al. [21,22] , 2018) studied relationship of multiplication groups and isostroph-

ic quasigroups and some algebraic characterisations of middle Bol loops while the algebraic

connections between left and middle Bol loops and their cores were presented in [23]. More

results on the algebraic properties of middle Bol loops were further investigated by (Oyebo and

Osoba, [26]).

Furtherance to earlier studies, this research is therefore presented to establish the connec-

tions between right left(middle) Smarandache nuclei. Characterisation of Smarandache nuclei

of second Smarandache Bol loop were introduced. Some results in this study agreed with or

generalised the results in classical cases. In particular, this paper revealed that if (GH , ·) is

a second Smarandache Bol loop, then SNρ(GH) = SNµ(GH), SNρ(GH) ⊆ SNλ(GH) and

SNρ(GH) = SZ(GH). In addition, if s ∈ S2ndM(GH) then (Ls, Rs, RsLs) ∈ S1stAUT(GH , ·)
. It was shown that if the special loop is S2ndBL, then SNλ(GH) ∩ SNρ(GH) ⊆ S2ndM(GH),

SNρ(GH) ∩ S2ndM(GH) ⊆ SNλ(GH) and SNµ(GH) ∩ S2ndM(GH) ⊆ SNρ(GH)

§2. Preliminaries

Theorem 2.1. [Jaiyeola, [16]] Let the special loop (GH , ·) be a S2ndBL. Then, S2ndBL

satisfies S2ndRIPL and S2ndRAPL

Definition 2.2. A special loop (GH , ·) is called a second Smarandache automorphic

inverse loop (S2ndAIPL) if (s · x)−1 = s−1 · x−1 for all s ∈ H and x ∈ G
Lemma 2.3.[Jaiyeola, [16]] Let (GH , ·) be a special loop.

1. if (A,B,C) ∈ S2ndRAUT (GH , ·) and GH has the S2ndRIP, then

(C, J ′ρBJ
′
ρ, A) ∈ S2ndRAUT (GH , ·)

2. if (A,B,C) ∈ S2ndRAUT (GH , ·) and GH has the S2ndLIP, then

(J ′λAJ
′
λ, C,B) ∈ S2ndLAUT (GH , ·)

Theorem 2.4. [Jaiyeola, [16]] Let (GH , ·) be a special loop. (GH , ·) is a S2ndBL if and

only if (R−1s , LsRs, Rs) ∈ S1stAUT (GH , ·).
Definition 2.5. Let (GH , ·) be special groupoid(quasigroup). The Smarandache left, right

and middle nucleus are denoted by SNρ(GH), SNρ(GH) and SNµ(GH) respectively.

1. The Smarandache left nucleus of GH is define as SNλ(GH , ·) = SNλ(G) ∩H = {s ∈ H :

s · xy = sx · y for all x, y ∈ G}

2. The Smarandache right nucleus of GH is define as SNρ(GH , ·) = SNρ(G) ∩ H = {s ∈
H : xy · s = xy · s for all x, y ∈ G}

3. The Smarandache middle nucleus of GH is define as SNµ(GH , ·) = SNµ(G) ∩H = {s ∈
H : x · sy = xs · y for all x, y ∈ G}

4. The Smarandache nucleus of (GH) is define as SC(GH) = SN(GH , ·) ∩ SNρ(GH , ·) ∩
SNµ(GH , ·)

5. The Smarandache center SZ of GH is define as SZ(GH , ·) = {s ∈ H : s · x = x ·
s for all x ∈ G}, where SN is the Smarandache nucleus of (GH , ·)

13
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Definition 2.6. Let (GH , ·) be a special quasigroup(loop). A mapping φ ∈ SSYM(GH)

is called a

1. second Smarandache semi-automorphism(S2ndSemi-automorphism) if and only if eφ = e

and (sy · s)φ = (sφ · yφ)sφ for all y ∈ G and all s ∈ H

2. second right Smarandache pseudo-automorphism (S2nd right pseudo

-automorphism) of GH if and only if there exists c ∈ H such that (φ, φRc, φRc) ∈
S2ndRAUM(GH ·) where c is the second Smarandache companion (S2nd companion) of

φ. The set of such φs is denoted by S2ndRAUM(GH , ·) = S2ndRAUM(GH).

Definition 2.7. Let the special loop (GH , ·) be a S2ndBL. The second Smarandache

Moufang part (S2ndM(GH)) of (GH , ·) is define as

S2ndM(GH)= {for all s ∈ H : (s · ys)x = s(y · sx) for all x, y ∈ G}

§3. Main Results

Lemma 3.1. Let (GH , ·) be a special loop. The following hold.

1. if s ∈ SNρ(GH), then (I,Rs, Rs) ∈ S1stAUT (GH , ·) for all s ∈ H

2. if s ∈ SNµ(GH), then (R−1s , Ls, I) ∈ S1stAUT (GH , ·) for all s ∈ H

3. if s ∈ SNλ(GH), then (Ls, I, Ls) ∈ S1stAUT (GH , ·) for all s ∈ H

Proof. 1. s ∈ SNρ(GH)⇔ xz ·s = x·zs⇔ x·zRs = (xz)Rs ⇔ (I,Rs, Rs) ∈ S1stAUT (GH , ·)
for all s ∈ H and x, z ∈ G.

2. Let s ∈ SNµ(GH)⇔ xs·z = x·sz ⇔ xRs ·z = x·zLs ⇔ xz = xR−1s ·zLs ⇔ (R−1s , Ls, I) ∈
S1stAUT (GH , ·) for all s ∈ H and x, z ∈ G.

3. Let s ∈ SNλ(GH) ⇔ sx · z = s · xz ⇔ xLs · z = (xz)Ls ⇔ (I, Ls, Ls) ∈ S1stAUT (GH , ·)
for all s ∈ H and x, z ∈ G.

Lemma 3.2. Let φ be a second right Smarandache pseudo- automorphism of a special loop

(GH , ·) with second Smarandache companion c. Then, φ−1 is also a second right Smarandache

pseudo- automorphism.

Proof. If φ is a second right Smarandache pseudo- automorphism with second Smarandache

companion c, then

(φ, φRc, φRc) ∈ S2ndRAUM(GH , ·)

So, the inverse (φ, φRc, φRc)
−1 = (φ−1, R−1c φ−1, R−1c φ−1) ∈ S2ndRAUM(GH ·) Let

(φ−1, R−1c φ−1, R−1c φ−1) = (φ−1, φ−1Rc, φ
−1Rc) ∈ S2ndRAUM(GH , ·) (1)

14
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To complete the proof, we only need to show that (1) hold. That is, R−1c φ−1 = φ−1Rc for

all c ∈ H. Let t ∈ G, then tR−1c φ−1 = tφ−1Rc. Setting t = tc, give

(tc)R−1c φ−1 = (tc)φ−1Rc ⇒ tφ−1 = tφ−1 · cφ−1Rc ⇒ aφ−1Rc = e,

where e is Smarandache identity element. From (1), we have (φ−1, φ−1Rc, φ
−1Rc) ∈ S2ndRAUM(GH , ·)

for all c ∈ H

Lemma 3.3. Let (GH , ·) be a special loop.

1. if (GH , ·) is a S2ndRIP of (G, ·), then xρ
2

= x and xρ = xλ for all x ∈ G

2. if (GH , ·) is a S2ndLIP of (G, ·), then xλ
2

= x and xρ = xλ for all x ∈ G

3. (GH , ·) has S2ndRIP ⇔ Rs−1 = R−1s

4. (GH , ·) has S2ndLIP ⇔ Ls−1 = L−1s

5. if (GH , ·) is a S2ndRIP, then JλRsJρ = Ls−1 for all s ∈ H

6. if (GH , ·) is a S2ndLIP, then JλLsJρ = Rs−1 for all s ∈ H

Proof. 1. Consider the expression (sx · xρ)(xρ)ρ, then

(sx · xρ)(xρ)ρ =︸︷︷︸
2ndRIP

s(xρ)ρ = sx⇒ xρ
2

= x⇒ J2
ρ = I ⇒ J−1ρ = Jρ ⇒ Jλ = Jρ

2. Consider the expression (xλ · xs)(xλ)λ, then

(xλ · xs)(xλ)λ =︸︷︷︸
2ndLIP

(xλ)λs = xs⇒ xλ
2

= x⇒ J2
λ = I ⇒ Jλ−1 = Jρ ⇒ Jλ = Jρ

3. ys · s−1 = y ⇔ yRsRs−1 = y ⇔ RsRs−1 = I ⇔ R−1s = Rs−1

4. sλ · sx = x⇔ xLsLs−1 = x⇔ LsLs−1 = I ⇔ L−1s = Ls−1

5. xJλRsJρ = (xλs)ρ ⇒︸︷︷︸
S2ndRIP

s−1(x−1)−1 = s−1x = xLs−1

6. xJλLsJρ = (sxλ)ρ ⇒︸︷︷︸
S2ndLIP

(x−1)−1s−1 = xs−1 = xRs−1

Theorem 3.4. Let the special loop (GH , ·) be a S2ndBL. Then

SNρ(GH) = SNµ(GH)

Proof. Let (GH , ·) be a S2ndBL. Suppose that s ∈ SNρ(GH), then

(xs · z)s = x(sz · s) = (x · sz)s

for all s ∈ H, and x, z ∈ G. So, xs · z = x · sz. Thus s ∈ SNµ(GH) for all s ∈ H.

15
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Conversely, Suppose that s ∈ SNµ(GH), then

x(sz · s) = (xs · z)s = (x · sz)s

Thus, s ∈ SNρ(GH) for all s ∈ H.

Theorem 3.5. Let the special loop (GH , ·) be a S2ndBL with a S2ndAIPL. Then,

1. SNρ(GH) ⊆ SNλ(GH)

2. SNρ(GH) = SZ(GH)

Proof. Let J ′ρ : x 7→ x−1, where x ∈ G. Using Lemma 3.3 and S2ndAIP,

xJ ′ρRsJ
′
ρ = (x−1 · s)−1 = x · s−1 = xRs−1

Since in Theorem 3.4 (GH , ·) is a S2ndRIPL, it give

J ′ρRsJ
′
ρ = R−1s (2)

for all s ∈ H and x ∈ G.
Let s ∈ SNµ(GH), recalling Lemma 3.1, (R−1s , Ls, I) ∈ S1stAUT (GH , ·). Use Lemma 2.3

on Lemma 3.1 since (GH , ·) is a S2ndRIPL, give

A = (I, J ′ρL
−1
s J ′ρ, R

−1
s ) ∈ S2ndRAUT (GH , ·). Since in Theorem ,

SNµ(GH) = SNρ(GH),

then s ∈ SNρ(GH). So B= (I,Rs, Rs) ∈ S1stRAUT (GH , ·) for all s ∈ SNρ(GH).

The product, AB = (I, J ′ρL
−1
s J ′ρ, R

−1
s )(I,Rs, Rs) = (I, J ′ρL

−1
s J ′ρRs, R

−1
s Rs) = (I, J ′ρL

−1
s J ′ρRs, I)

is also first Smarandache autotopism of GH . So,

J ′ρLsJ
′
ρ = R−1s (3)

From (2) and (3), we have Ls = Rs for all s ∈ SNρ(GH). In addition, suppose that SC(GH) =

{s ∈ H : sx = xs for all x ∈ G},
then

s ∈ SNρ(GH) ⊆ SC(GH)

Analogously, let s ∈ SNρ(GH). Using Theorem 3.4 and s ∈ SNρ(GH) ⊆ SC(GH), we have

s · xz = xz · s = x · zs = x · sz = xs · z = sx · z

for all s ∈ H and x, z ∈ G. So, s ∈ SNλ(GH). Thus,

SNρ(GH) ⊆ SC(GH) ∩ SNλ(GH)

Hence,

SNρ(GH) ⊆ SC(GH) ∩ SNλ(GH) ∩ SNρ(GH) = SZ(GH)

But, SZ(GH) ⊆ SNρ(GH). Thus, SNρ(GH) = SZ(GH)

16
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Remark 3.6. In detains, under the hypothesis of Theorem 3.2, SNρ(GH) ⊆ SNλ(GH) ∩
SC(GH). It does not apparent seems to be true that

SNρ(GH) = SNλ(GH) ∩ SC(GH)

Let s ∈ SNλ(GH) ∩ SC(GH), then Rs = Ls and

(Ls, I, Ls) = (Rs, I, Rs) ∈ S1stAUT (GH , ·) (4)

Since (GH , ·) is a S2nd(GH)BL, by Theorem 2.4,

(R−1s , LsRs, Rs) = (R−1s , R2
s, Rs) ∈ S1stAUT (GH , ·) (5)

Using (4) in (5), give (I,R2
s, R

2
s) = (I,Rs2 , Rs2) ∈ S1stAUT (GH , ·) for all s ∈ H. Thus,

s2 ∈ SNρ(GH)

Theorem 3.7. Let special loop (GH , ·) be a S2ndBL with second Smarandache Moufang

part S2ndM(GH) of (GH , ·). Then, the following are equivalent:

1. s ∈ S2ndM(GH).

2. (Ls, Rs, RsLs) ∈ S1stAUT(GH , ·)

Proof. Suppose that s ∈ S2ndM(GH) for all s ∈ H, we have

(s · ys)x = s(y · sx) (6)

Put y = s−1 in (6), we get sx = s(s−1 · sx) ⇔ x = s−1 · sx ⇔ xLsLs−1 = x ⇔ LsLs−1 = e ⇔
L−1s = Ls−1 .

Consequently, L−1s = Ls−1 and Ls−1Ls = e, that is

s · s−1x = x (7)

for all s ∈ H, and x ∈ G.

Replacing x by s−1x in (6) and use (7), give (s · ys)(s−1x) = s · yx for all s ∈ H and

x, y ∈ G. So,

yRsLs · xLs−1 = (yx)Ls ⇒

A= (RsLs, Ls−1 , Ls) ∈ S1stAUT (GH , ·). Since (GH , ·) is a second Smarandache Bol loop, by

Theorem 2.4, (R−1s , LsRs, Rs) ∈ S1stAUT (GH , ·).
Let B=

(RsLs, Ls−1 , Ls)(R
−1
s , LsRs, Rs) = (Ls, LsRsLs−1 , RsLs) ∈ S1stAUT (GH , ·)

for all s ∈ H. So, for all a, b ∈ G, we have

aLs · bLsRsLs−1 = (ab)RsLs (8)

Set a = e in (8), give

bLsRsLs−1Ls = bRsLs ⇔ LsRs = RsLs

17
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So, use the last equality in (8), give a new form of B as B= (Ls, Rs, RsLs) ∈ S1stAUT (GH , ·)
for all s ∈ H. Thus, 2 hold.

Now, suppose that 2 hold, for all a, b ∈ G we have

aLs · bRs = (ab)RsLs

for all s ∈ H. Set b = e, we get LsRs = RsLs.

Let C= (Ls, LsRsLs−1 , RsLs) ∈ S1stAUT (GH , ·) for all s ∈ H.

Using Theorem 2.4, the product

(R−1s , LsRs, Rs)
−1(Ls, LsRsLs−1 , RsLs) = (RsLs, Ls−1 , Ls) ∈ S1stAUT (GH , ·)

for all s ∈ H. That is, for all a, b,∈ G, we have

(s · as)(s−1b) = s · ab (9)

Let b 7→ (sb) in 9, give

(s · as)b = s(a · sb)

for all s ∈ H. Thus, 1 hold

Theorem 3.8. Let the special loop GH , ·) be a S2ndBL. Then

1. SNλ(GH) ∩ SNρ(GH) ⊆ S2ndM(GH)

2. SNρ(GH) ∩ S2ndM(GH) ⊆ SNλ(GH)

3. SNµ(GH) ∩ S2ndM(GH) ⊆ SNρ(GH)

Proof. 1. Using Lemma 3.1. Let A = (I,Rs, Rs), B = (Ls, I, Ls) and C = (Ls, Rs, RsLs)

where A, B and C are all first Smarandache autotopisms of GH for all s ∈ H. Under the

componentwise multiplication, we have AB = C, that is

(I,Rs, Rs)(Ls, I, Ls) = (Ls, Rs, RsLs) ∈ S1stAUT (GH , ·)

Thus, SNλ(GH) ∩ SNρ(GH) ⊆ S2ndM(GH)

2. Under the componentwise multiplication, give

(I,Rs, Rs)(Ls, Rs, RsLs) = (Ls, R
2
s, R

2
sLs) = (Ls, I, LS)(I,R2

s, R
2
s)

Thus, SNρ(GH) ∩ S2ndM(GH) ⊆ SNλ(GH)

3. Under the componentwise multiplication, we have

(R−1s , Ls, I)(Ls, Rs, RsLs) = (R−1s Ls, LsRs, RsLs) = (I,RS , RS)(R−1s Ls, Ls, Ls)

Thus, SNµ(GH) ∩ S2ndM(GH) ⊆ SNρ(GH)

18
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Remark 3.9. Theorem 3.8 revealed that under the componentwise multiplication, when-

ever any two of A, B and C are first Smarandache autotopisms of the special loop (GH , ·), then

the third is also.

Theorem 3.10. Let the special loop GH , ·) be a S2ndBL and φ be a second Smarandache

right pseudo-automorphism of GH with second Smarandache companion c. Then

1. SNλ(GH)φ = SNλ(GH) and φ is a first Smarandache automorphism of SNλ(GH)

2. SNρ(GH)φ = SNρ(GH) and φ is a first Smarandache automorphism of SNρ(GH)

Proof. Let φ be a second Smarandache right pseudo-automorphism of GH with second Smaran-

dache companion c (S2nd − companion). Let a ∈ SNρ(GH).

aφ · (xφ · (yφ · c)) = aφ · ((xy)φ · c) = (a · xy)φ · c

= (ax · y)φ · c = (ax)φ · (yφ · c)

Thus,

aφ · (xφ · (yφ · c) = (ax)φ · (yφ · c) (10)

for all c ∈ H and x, y ∈ G. Put y = c−1φ−1 in (10), give

aφ · xφ = (ax)φ (11)

Thus, φ is first Smarandache automorphism of GH , ·) for all a ∈ SNλ(G) ∩H and x ∈ G.

Putting (12) in (10), give

aφ · (xφ · (yφ · c)) = (aφ · xφ) · (yφ · c)

Thus, SNλ(GH)φ ⊆ SNλ(GH). Since in Lemma 3.2, φ−1 is also second right Smarandache

pseudo-automorphism of GH , ·), we have SNλ(GH)φ = SNλ(GH)

Similarly, one can also obtain that SNρ(GH)φ = SNρ(GH) and φ is a first Smarandache

automorphism of SNρ(GH) for all s ∈ H and x, y ∈ G.

Theorem 3.11. Let the special loop GH , ·) be a S2ndBL and φ be a second Smarandache

right pseudo-automorphism of GH with second Smarandache companion c. Then

1. φ is a second Smarandache semi-automorphism.

2. S2ndM(GH)φ = S2ndM(GH) if φ−1 is a second Smarandache right pseudo-automorphism

of (GH ·)

Proof. Let s ∈ S2ndM(GH) for all s ∈ H. Then

sφ ·
[
yφ(sφ · (xφ · c))

]
= sφ ·

[
yφ((sx)φ · c)

]
= sφ ·

[
(y · sx)φ · c)

]
=
[
s(y · sx)

]
φ · c =

[
(s · ys)x

]
φ · c = (s · ys)φ · (xφ · c)

19
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for all s ∈ H and x, y ∈ G.

Thus, sφ ·
[
yφ(sφ · (xφ · c))

]
= (s · ys)φ · (xφ · c). Let a = xφ · c in the last equality, give

sφ ·
[
yφ(sφ · a

]
= (s · ys)φ · a (12)

for all s ∈ H and x, y ∈ G.

Let a = e in (12), we get

sφ · (yφ · sφ) = (s · ys)φ (13)

Thus, φ is a second Smarandache semi-automorphism. Put (13) in (12), get

sφ ·
[
yφ(sφ · a

]
= [sφ · (yφ · sφ)] · a

For all s ∈ H. Then, sφ ∈ S2ndM(GH) whenever s ∈ S2ndM(GH).

For the fact that φ−1 is also second Smarandache right pseudo-automorphism of (GH ·), give

S2ndM(GH)φ = S2ndM(GH)

for all s ∈ H and x, y ∈ G.
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[9] T. G. Jaiyéo. lá. On the universality of some Smarandache loops of Bol- Moufang

type, Scientia Magna Journal , 2 (2006 ), No. 4, pp. 45-58. MR2298502. China/USA.

http://doi.org/10.5281/zenodo.9639 http://doi.org/10.5281/zenodo.9033
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§1. Introduction

With the aid of the powerful PSLQ algorithm [3,4], Bailey, Borwein and Plouffe [2] estab-

lished an amazing series for π:

π =

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (1)

The formula is significant as it permits the computation of the nth hexadecimal digit of π

without calculation the preceding n−1 digits. Also in [2], these authors presented the following

series:

π2 =
9

8

∞∑
k=0

1

64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1

(6k + 5)2

)
. (2)

Since the publication of [2], formulas of similar form have been discovered and have become

known as BBP-type series. A base-b BBP-type formula is a convergent series formula of the

type

C =

∞∑
k=0

p(k)

bkq(k)
,

where p(k) and q(k) are integer polynomials in k (see [1] and [4, pp. 54 and 128-129]). Bailey [1]

and Borwein and Bailey [4, 128-129] gave a collection of such series.

Ramanujan [6] gave 17 series for 1/π which are of the following form:

1

π
=

∞∑
k=0

( 1
2 )k(s)k(1− s)k

(1)3k
(a+ bk)xk, (s)k =

Γ(s+ k)

Γ(s)
, (3)
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where s ∈ {1/2, 1/4, 1/3, 1/6} and the parameters x, a, b are algebraic numbers. One example

is

1

π
=

1

16

∞∑
k=0

( 1
2 )3k

(1)3k

42k + 5

26k
=

1

16

∞∑
k=0

(
2k

k

)3
42k + 5

212k
=

1

16

∞∑
k=0

((2k)!)3

(k!)6
42k + 5

4096k
. (4)

For n ≥ 1, let

βn =

n∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
, (5)

γn =
9

8

n∑
k=0

1

64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1

(6k + 5)2

)
(6)

and

ρn =
1

16

n∑
k=0

((2k)!)3

(k!)6
42k + 5

4096k
. (7)

Mortici [5] considered the error estimates and proved that for all integers n ≥ 1,

1(
64n2 + 184n+ 114 + 21

n+1

)
16n

< π − βn <
1(

64n2 + 184n+ 114
)
16n

, (8)

9

8
(
108n2 + 348n+ 883

3 + 644
27(n+1)

)
64n

< γn − π2 <
9

8
(
108n2 + 348n+ 883

3

)
64n

(9)

and

ρ(1)n <
1

π
− ρn < ρ(2)n , (10)

where

ρ(1)n =
((2n+ 2)!)3

16((n+ 1)!)64096n+1

(
128

3
n+

1280

27
+

32

9(9n+ 19)

)
and

ρ(2)n =
((2n+ 2)!)3

16((n+ 1)!)64096n+1

(
128

3
n+

1280

27
+

128(n+ 1)

324n2 + 1008n+ 677

)
.

Using the Maple software, from (8), (9) and (10) we find, as n→∞,

π − βn =
1

16n

{
1

64n2
− 23

512n3
+

415

4096n4
+O

(
1

n5

)}
, (11)

γn − π2 =
1

64n

{
1

96n2
− 29

864n3
+

827

10368n4
+O

(
1

n5

)}
(12)

and

1

π
− ρn =

((2n)!)3n

16(n!)64096n

{
2

3
− 7

27n
+

32

81n2
− 320

729n3
+O

(
1

n4

)}
. (13)

Using the Maple software, formula (13) is given in the appendix.

In this paper, we develop the formulas (11), (12) and (13) to produce complete asymptotic

expansions, and then establish the asymptotic inequalities for π − βn, γn − π2 and 1
π − ρn.

The numerical values given in this paper have been calculated via the computer program

MAPLE 13.

23
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§2. BBP-type series

Theorem 2.1. As n→∞, we have

π − βn ∼
1

16n

∞∑
k=2

λk
nk

=
1

16n

(
1

64n2
− 23

512n3
+

415

4096n4
− 7091

32768n5
+

123871

262144n6
− 2321003

2097152n7
+ . . .

)
, (14)

where the coefficients λk (k ≥ 2) are given by the recurrence relation

λ2 =
1

64
and

λk =
1

15

{
k−1∑
j=2

λj(−1)k−j
(
k − 1

k − j

)

+ (−1)k

(
1

8

(
7

4

)k−1
− 1

2

(
9

8

)k−1
+

1

8

(
13

8

)k−1
+

1

4

(
3

2

)k−1)}
(15)

for k ≥ 3.

Proof. In view of (11), we can let

π − βn ∼
1

16n

∞∑
k=2

λk
nk

as n→∞,

where λk (k ≥ 2) are real numbers to be determined. Denote

Xn = π − βn and Yn =
1

16n

∞∑
k=2

λk
nk
.

We can let Xn ∼ Yn and

∆Xn := Xn+1 −Xn ∼ Yn+1 − Yn =: ∆Yn as n→∞.

We have

∆Xn = βn − βn+1 = − 1

16n+1

120n2 + 391n+ 318

(4n+ 7)(8n+ 9)(8n+ 13)(2n+ 3)

= − 1

16n+1

(
− 1

8n(1 + 7
4n )

+
1

2n(1 + 9
8n )
− 1

8n(1 + 13
8n )
− 1

4n(1 + 3
2n )

)
=

1

16n+1

∞∑
k=2

(−1)k−1

(
1

8

(
7

4

)k−1
− 1

2

(
9

8

)k−1
+

1

8

(
13

8

)k−1
+

1

4

(
3

2

)k−1)
1

nk
. (16)

Direct computation yields

∞∑
k=2

λk
(n+ 1)k

=

∞∑
k=2

λk
nk

(
1 +

1

n

)−k
=

∞∑
k=2

λk
nk

∞∑
j=0

(
−k
j

)
1

nj

=

∞∑
k=2

λk
nk

∞∑
j=0

(−1)j
(
k + j − 1

j

)
1

nj
=

∞∑
k=2

k∑
j=2

λj(−1)k−j
(
k − 1

k − j

)
1

nk
. (17)
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We then obtain

∆Yn =
1

16n+1

∞∑
k=2


k∑
j=2

λj(−1)k−j
(
k − 1

k − j

)
− 16λk

 1

nk
. (18)

Equating coefficients of the term n−k on the right-hand sides of (16) and (18) yields

(−1)k−1

(
1

8

(
7

4

)k−1
− 1

2

(
9

8

)k−1
+

1

8

(
13

8

)k−1
+

1

4

(
3

2

)k−1)

=

k∑
j=2

λj(−1)k−j
(
k − 1

k − j

)
− 16λk for k ≥ 2.

For k = 2 we obtain λ2 = 1
64 , and for k ≥ 3 we have

(−1)k−1

(
1

8

(
7

4

)k−1
− 1

2

(
9

8

)k−1
+

1

8

(
13

8

)k−1
+

1

4

(
3

2

)k−1)

=
k−1∑
j=2

λj(−1)k−j
(
k − 1

k − j

)
− 15λk,

which gives the desired formula (15). The proof of Theorem 2.1 is complete.

Theorem 2.2. For all integers n ≥ 1, we have

β(1)
n < π − βn < β(2)

n , (19)

where

β(1)
n =

1

16n

(
1

64n2
− 23

512n3
+

415

4096n4
− 7091

32768n5

)
and

β(2)
n =

1

16n

(
1

64n2
− 23

512n3
+

415

4096n4
− 7091

32768n5
+

123871

262144n6

)
.

Proof. For n ≥ 1, let

xn = π − βn − β(1)
n and yn = π − βn − β(2)

n .

By (14), we have

lim
n→∞

xn = lim
n→∞

yn = 0.

In order to prove (19), it suffices to show that the sequence {xn} is strictly decreasing and {yn}
is strictly increasing for n ≥ 1. Direct computation yields

xn+1 − xn = βn − βn+1 + β(1)
n − β

(1)
n+1

= − P8(n)

524288n5(8n+ 9)(2n+ 3)(8n+ 13)(4n+ 7)(n+ 1)516n
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and

yn+1 − yn = βn − βn+1 + β(2)
n − β

(2)
n+1

=
P9(n)

4194304n6(8n+ 9)(2n+ 3)(8n+ 13)(4n+ 7)(n+ 1)616n
,

where

P8(n) = 118916160n8 + 1077123864n7 + 4233436082n6 + 9449307021n5

+ 13127042608n4 + 11639027744n3 + 6435166400n2

+ 2027757648n+ 278761392

and

P9(n) = 2228162880n9 + 22006726904n8 + 96209251962n7 + 244893891841n6

+ 400582591808n5 + 436904487312n4 + 317620640864n3

+ 148305960784n2 + 40341894144n+ 4869616752.

Hence, we have, for n ≥ 1,

xn+1 < xn and yn+1 > yn.

The proof of Theorem 2.2 is complete.

Remark 2.1. For all integers n ≥ 1, we have

β(3)
n < π − βn < β(2)

n , (20)

where

β(3)
n =

1

16n

(
1

64n2
− 23

512n3
+

415

4096n4
− 7091

32768n5
+

123871

262144n6
− 2321003

2097152n7

)
.

Following the same method as was used in the proof of Theorem 2.2, we can prove the left-hand

side of (20). Here, we omit the proof. For n ≥ 20, the inequalities (20) are sharper than the

inequalities (8). Write (20) as

rn < π < sn, (21)

where

rn = βn + β(3)
n and sn = βn + β(2)

n .

For n = 10 in (21), we have

r10 = 3.1415926535897932384 . . . ,

s10 = 3.1415926535897932385 . . . .

We then get the approximate value of π,

π ≈ 3.141592653589793238.

26
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The choice n = 100 in (21) yields the approximate value of π,

π ≈3.14159265358979323846264338327950288419716939937510

58209749445923078164062862089986280348253421170679

8214808651328230664709384460955058.

Theorem 2.3. As n→∞, we have

γn − π2 ∼ 1

64n

∞∑
k=2

µk
nk

=
1

64n

(
1

96n2
− 29

864n3
+

827

10368n4
− 7831

46656n5
+

1121965

3359232n6
− 6580343

10077696n7
+ . . .

)
,

(22)

with the coefficients µk (k ≥ 2) given by the recurrence relation

µ2 =
1

96
, µk =

1

63

64qk +

k−1∑
j=2

µj(−1)k−j
(
k − 1

k − j

) , (23)

where

qk =
(−1)k(k − 1)

5464166400

(
− 31363200

(
7

6

)k
+ 36018675

(
4

3

)k
+ 9486400

(
3

2

)k
+ 5762988

(
5

3

)k
− 793800

(
11

6

)k)
for k ≥ 3.

Proof. In view of (12), we can let

γn − π2 ∼ 1

64n

∞∑
k=2

µk
nk

as n→∞,

where µk (k ≥ 2) are real numbers to be determined. Denote

In = γn − π2 and Jn =
1

64n

∞∑
k=2

µk
nk
.

We can let In ∼ Jn and

∆In := In+1 − In ∼ Jn+1 − Jn =: ∆Jn as n→∞.

Direct computation yields

∆In = γn+1 − γn = − 1

64n
Q8(n)

1204(6n+ 7)2(3n+ 4)2(2n+ 3)2(3n+ 5)2(6n+ 11)2
,

where

Q8(n) = 76444252 + 446923440n+ 1124695053n2 + 1595519856n3 + 1398337506n4

27
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+ 776449152n5 + 267058944n6 + 52068096n7 + 4408992n8.

We find

Q8(n)

1204(6n+ 7)2(3n+ 4)2(2n+ 3)2(3n+ 5)2(6n+ 11)2

=
− 9

32

(6n+ 7)2
+

27
256

(3n+ 4)2
+

1
64

(2n+ 3)2
+

27
1024

(3n+ 5)2
+

− 9
512

(6n+ 11)2

=
− 9

32

(6n)2(1 + 7
6n )2

+
27
256

(3n)2(1 + 4
3n )2

+
1
64

(2n)2(1 + 3
2n )2

+
27

1024

(3n)2(1 + 5
3n )2

+
− 9

512

(6n)2(1 + 11
6n )2

=

∞∑
k=2

qk
nk
,

where

qk =
(−1)k(k − 1)

5464166400

{
− 31363200

(
7

6

)k
+ 36018675

(
4

3

)k
+ 9486400

(
3

2

)k
+ 5762988

(
5

3

)k
− 793800

(
11

6

)k}
.

We then obtain

64n+1∆In = −
∞∑
k=2

64qk
nk

. (24)

Using (17), we find

64n+1∆Jn =

∞∑
k=2


k∑
j=2

µj(−1)k−j
(
k − 1

k − j

)
− 64µk

 1

nk
. (25)

Equating coefficients of the term n−k on the right-hand sides of (24) and (25) yields

−64qk =

k∑
j=2

µj(−1)k−j
(
k − 1

k − j

)
− 64µk for k ≥ 2.

For k = 2 we obtain µ2 = 1
96 , and for k ≥ 3 we have

−64qk =

k−1∑
j=2

µj(−1)k−j
(
k − 1

k − j

)
− 63µk,

which gives the desired formula (23). The proof of Theorem 2.3 is complete.

Following the same method as was used in the proof of Theorem 2.2, we can prove Theorem

2.4 below. Here, we omit the proof.

Theorem 2.4. For all integers n ≥ 1, we have

γ(1)n < γn − π2 < γ(2)n , (26)

28
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where

γ(1)n =
1

64n

(
1

96n2
− 29

864n3
+

827

10368n4
− 7831

46656n5
+

1121965

3359232n6
− 6580343

10077696n7

)
and

γ(2)n =
1

64n

(
1

96n2
− 29

864n3
+

827

10368n4
− 7831

46656n5
+

1121965

3359232n6

)
.

Remark 2.2. For n ≥ 44, the inequalities (26) are sharper than the inequalities (9).

§3. Ramanujan-type series for 1/π

Theorem 3.1. As n→∞, we have

1

π
− ρn ∼

((2n)!)3n

16(n!)64096n

∞∑
k=0

νk
nk

=
((2n)!)3n

16(n!)64096n

{
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

3256

6561n4
− 3896

6561n5

+
46730

59049n6
− 652264

531441n7
+

7137977

3188646n8
− . . .

}
, (27)

where the coefficients νk (k ≥ 0) are given by the recurrence relation

ν0 =
2

3
, ν1 = − 7

27
,

νk =
64

63

{
(−1)k

(
153

512
+

49

1024
k − 5

1024
k2
)

+

k−1∑
j=0

νj(−1)k−j
[

1

64

(
k − 1

k − j

)
+

1

128

(
k − 2

k − j − 1

)]

+

k∑
j=2

k−j∑
`=0

(−1)k−`
(j + 4)ν`

512

(
k − j − 1

k − j − `

)}
(28)

for k ≥ 2.

Proof. In view of (13), we can let

1

π
− ρn ∼

((2n)!)3n

16(n!)64096n

∞∑
k=0

νk
nk

as n→∞,

where νk (k ≥ 0) are real numbers to be determined. Denote

Un =
1

π
− ρn and Vn =

((2n)!)3n

16(n!)64096n

∞∑
k=0

νk
nk
.

We can let Un ∼ Vn and

∆Un := Un+1 − Un ∼ Vn+1 − Vn =: ∆Vn as n→∞.

29
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We have

∆Un = ρn − ρn+1 = − ((2n+ 2)!)3

16 · ((n+ 1)!)6
42(n+ 1) + 5

4096n+1

= − ((2n)!)3n

16 · (n!)64096n
(42n+ 47)(2n+ 1)3

512n(n+ 1)3

= − ((2n)!)3n

16 · (n!)64096n

{
21

32
+

1

512

(
47

n
− 175

n+ 1
+

17

(n+ 1)2
+

5

(n+ 1)3

)}
. (29)

Direct computation yields

47

n
− 175

n+ 1
+

17

(n+ 1)2
+

5

(n+ 1)3
= −128

n
+

∞∑
k=2

(−1)k
(

153 +
49

2
k − 5

2
k2
)

1

nk
. (30)

Substituting (30) into (29) yields, as n→∞,

16 · (n!)64096n

((2n)!)3n
∆Un ∼ −

21

32
+

1

4n
+

∞∑
k=2

pk
nk
, (31)

where

pk = (−1)k−1
(

153

512
+

49

1024
k − 5

1024
k2
)
, k ≥ 2.

We have

∆Vn =
((2n+ 2)!)3(n+ 1)

16((n+ 1)!)64096n+1

∞∑
k=0

νk
(n+ 1)k

− ((2n)!)3n

16(n!)64096n

∞∑
k=0

νk
nk

=
((2n)!)3n

16(n!)64096n

{
(2n+ 1)3

512n(n+ 1)2

∞∑
k=0

νk
(n+ 1)k

−
∞∑
k=0

νk
nk

}
.

It is easy to see that

(2n+ 1)3

512n(n+ 1)2
=

1

512

(
8 +

1

n
− 5

n+ 1
+

1

(n+ 1)2

)
=

1

512

(
8− 4

n
+

∞∑
k=2

(−1)k(k + 4)

nk

)
=

∞∑
k=0

ak
nk
,

where

a0 =
1

64
, a1 = − 1

128
and ak =

(−1)k(k + 4)

512
for k ≥ 2.

Direct computation yields

∞∑
k=0

νk
(n+ 1)k

=

∞∑
k=0

νk
nk

(
1 +

1

n

)−k
=

∞∑
k=0

νk
nk

∞∑
j=0

(
−k
j

)
1

nj

=

∞∑
k=0

νk
nk

∞∑
j=0

(−1)j
(
k + j − 1

j

)
1

nj
=

∞∑
k=0

bk
nk
,
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where

bk =

k∑
`=0

ν`(−1)k−`
(
k − 1

k − `

)
.

We then obtain, as n→∞,

16(n!)64096n

((2n)!)3n
∆Vn ∼

(2n+ 1)3

512n(n+ 1)2

∞∑
k=0

νk
(n+ 1)k

−
∞∑
k=0

νk
nk

=

∞∑
k=0

ak
nk

∞∑
k=0

bk
nk
−
∞∑
k=0

νk
nk

=

∞∑
k=0


k∑
j=0

ajbk−j − νk

 1

nk
. (32)

Equating coefficients of the term n−k on the right-hand sides of (31) and (32), we obtain

−21

32
= a0b0 − ν0 =

1

64
ν0 − ν0 =⇒ ν0 =

2

3
,

1

4
= a0b1 + a1b0 − ν1 =

1

64
ν1 +

(
− 1

128

)
ν0 − ν1 =⇒ ν1 = − 7

27
,

and for k ≥ 2,

pk =

k∑
j=0

ajbk−j − νk = a0bk + a1bk−1 +

k∑
j=2

ajbk−j − νk,

νk = −pk +
1

64

k∑
j=0

νj(−1)k−j
(
k − 1

k − j

)
− 1

128
bk−1 +

k∑
j=2

ajbk−j ,

νk = −pk +
1

64

k−1∑
j=0

νj(−1)k−j
(
k − 1

k − j

)
+

1

64
νk −

1

128
bk−1 +

k∑
j=2

ajbk−j ,

νk =
64

63

−pk +
1

64

k−1∑
j=0

νj(−1)k−j
(
k − 1

k − j

)
− 1

128
bk−1 +

k∑
j=2

ajbk−j

 ,

which gives the desired formula (28). The proof of Theorem 3.1 is complete.

By using the formula (28), we now show how easily we can determine νk’s in (27). We

obtain the first few coefficients λk as follows:

ν0 =
2

3
, ν1 = − 7

27
,

ν2 =
8

21
+

1

84
ν0 −

1

42
ν1 =

32

81
,

ν3 = −17

42
− 1

72
ν0 +

1

28
ν1 −

5

126
ν2 = −320

729
,

31
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ν4 =
211

504
+

1

63
ν0 −

25

504
ν1 +

19

252
ν2 −

1

18
ν3 =

3256

6561
,

ν5 = − 71

168
− 1

56
ν0 +

11

168
ν1 −

1

8
ν2 +

11

84
ν3 −

1

14
ν4 = −3896

6561
,

ν6 =
5

12
+

5

252
ν0 −

1

12
ν1 +

4

21
ν2 −

43

168
ν3 +

17

84
ν4 −

11

126
ν5 =

46730

59049
,

ν7 = −101

252
− 11

504
ν0 +

13

126
ν1 −

23

84
ν2 +

25

56
ν3 −

11

24
ν4 +

73

252
ν5 −

13

126
ν6 = −652264

531441
,

ν8 =
3

8
+

1

42
ν0 −

1

8
ν1 +

95

252
ν2 −

121

168
ν3 +

19

21
ν4 −

377

504
ν5 +

11

28
ν6 −

5

42
ν7 =

7137977

3188646
.

We note that the values of νk (for k = 0, 1, 2, 3) here are equal to the coefficients of 1/nk (for

k = 0, 1, 2, 3) in (13), respectively.

Theorem 3.2. For all integers n ≥ 1, we have

ρ(3)n <
1

π
− ρn < ρ(4)n (33)

and

ρ(5)n <
1

π
− ρn < ρ(6)n , (34)

where

ρ(3)n =
((2n)!)3n

16(n!)64096n

(
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

3256

6561n4
− 3896

6561n5

)
,

ρ(4)n =
((2n)!)3n

16(n!)64096n

(
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

3256

6561n4
− 3896

6561n5
+

46730

59049n6

)
,

ρ(5)n =
((2n)!)3n

16(n!)64096n

(
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

3256

6561n4
− 3896

6561n5
+

46730

59049n6
− 652264

531441n7

)
and

ρ(6)n =
((2n)!)3n

16(n!)64096n

(
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

3256

6561n4

− 3896

6561n5
+

46730

59049n6
− 652264

531441n7
+

7137977

3188646n8

)
.

Proof. We only prove inequality (33). The proof of (34) is analogous. For n ≥ 1, let

θn =
1

π
− ρn − ρ(3)n and ϑn =

1

π
− ρn − ρ(4)n .

We have

lim
n→∞

θn = lim
n→∞

ϑn = 0.

In order to prove (33), it suffices to show that the sequence {θn} is strictly decreasing and {ϑn}
is strictly increasing for n ≥ 1. Direct computation yields

θn+1 − θn = ρn − ρn+1 + ρ(3)n − ρ
(3)
n+1

32
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= − ((2n)!)3n

16 · (n!)64096n
(42n+ 47)(2n+ 1)3

512n(n+ 1)3

+
((2n)!)3n

16(n!)64096n

(
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

3256

6561n4
− 3896

6561n5

)
− ((2n)!)3n

16(n!)64096n
((2n+ 2)(2n+ 1))3

4096(n+ 1)6

(
1 +

1

n

)
×
(

2

3
− 7

27(n+ 1)
+

32

81(n+ 1)2
− 320

729(n+ 1)3
+

3256

6561(n+ 1)4
− 3896

6561(n+ 1)5

)
= − ((2n)!)3n

16 · (n!)64096n
P6(n)

419904n5(n+ 1)7

and

ϑn+1 − ϑn = ρn − ρn+1 + ρ(4)n − ρ
(4)
n+1

= − ((2n)!)3n

16 · (n!)64096n
(42n+ 47)(2n+ 1)3

512n(n+ 1)3

+
((2n)!)3n

16(n!)64096n

(
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

3256

6561n4
− 3896

6561n5
+

46730

59049n6

)
− ((2n)!)3n

16(n!)64096n
((2n+ 2)(2n+ 1))3

4096(n+ 1)6

(
1 +

1

n

)
×
(

2

3
− 7

27(n+ 1)
+

32

81(n+ 1)2
− 320

729(n+ 1)3
+

3256

6561(n+ 1)4

− 3896

6561(n+ 1)5
+

46730

59049(n+ 1)6

)
=

((2n)!)3n

16 · (n!)64096n
P7(n)

15116544n6(n+ 1)8
,

where

P6(n) = 249344 + 1537024n+ 3961856n2 + 5475328n3 + 4290732n4 + 1816203n5 + 327110n6

and

P7(n) = 11962880 + 86726656n+ 270651392n2 + 471961600n3 + 497662976n4

+ 318319755n5 + 114970790n6 + 18263392n7.

Hence, we have, for n ≥ 1,

θn+1 < θn and ϑn+1 > ϑn.

The proof of Theorem 3.2 is complete.

Remark 3.1. For n ≥ 14, the inequalities (34) are sharper than the inequalities (10).

Write (34) as

un < π < vn, (35)

33
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where

un =
1

ρn + ρ
(6)
n

and vn =
1

ρn + ρ
(5)
n

.

For n = 10 in (35), we have

u10 = 3.1415926535897932384626433831 . . . ,

v10 = 3.1415926535897932384626433838 . . . .

We then get the approximate value of π,

π ≈ 3.141592653589793238462643383.

The choice n = 100 in (35) yields the approximate value of π,

π ≈3.14159265358979323846264338327950288419716939937510

58209749445923078164062862089986280348253421170679

82148086513282306647093844609550582231725359408128

48111745028410270193852110555964462294895493038.

Appendix A. A derivation of formula (13)

Using the Maple software, we find, as n→∞,

ρ(1)n =
((2n)!)3

16(n!)64096n
((2n+ 2)(2n+ 1))3

(n+ 1)64096

(
128

3
n+

1280

27
+

32

9(9n+ 19)

)
∼ ((2n)!)3n

16(n!)64096n

{
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

26041

52488n4
− . . .

}
and

ρ(2)n =
((2n)!)3

16(n!)64096n
((2n+ 2)(2n+ 1))3

(n+ 1)64096

(
128

3
n+

1280

27
+

128(n+ 1)

324n2 + 1008n+ 677

)
∼ ((2n)!)3n

16(n!)64096n

{
2

3
− 7

27n
+

32

81n2
− 320

729n3
+

3256

6561n4
− . . .

}
.

We then obtain the following asymptotic formula for 1
π − ρn:

1

π
− ρn =

((2n)!)3n

16(n!)64096n

{
2

3
− 7

27n
+

32

81n2
− 320

729n3
+O

(
1

n4

)}
, n→∞.
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§1. Introduction and Main results

Throughout this paper, Γ = SL(2,Z) is the full modular group. Let H∗k be the set of

primitive holomorphic cusp forms of even integral weight k for Γ. Let λf (n), λg(n) and λh(n)

be the normalized Fourier coefficients of holomorphic Hecke cusp forms f(z) ∈ H∗k1 , g(z) ∈ H∗k2
and h(z) ∈ H∗k3 , respectively. f(z) has the following Fourier expansions at the cusp ∞,

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e2πiz.

By the Hecke operators theory, for integers m ≥ 1 and n ≥ 1, λf (n) is real and multiplicative.

In 1974, Deligne proved that

| λf (n) |≤ d(n), (1)

where d(n) is the divisor function.

For <e(s) > 1, the Hecke L-function associated with f(z) is defined by

L(f, s) =

∞∑
n=1

λf (n)

ns
=
∏
p

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1
,

where αf (p) and βf (p) satisfy

λf (p) = αf (p) + βf (p), αf (p)βf (p) = |αf (p)| = |βf (p)| = 1.
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For any fixed integer j ≥ 1, we define

L(f, s)j =

∞∑
n=1

λj,f (n)

ns
.

It’s easy to find that

λj,f (n) =
∑

n=n1n2···nj

λf (n1)λf (n2) · · ·λf (nj).

The sums
∑
n≤x

λj,f (n) has been studied by many researchers. Hecke [2] firstly gave the

result ∑
n≤x

λf (n)� x
1
2+ε.

Furthermore, Wu [13] proved that ∑
n≤x

λf (n)� x
1
3 (log x)δ,

where δ = −0.118.... Moreover, Landau’s classical results implied that∑
n≤x

λj,f (n)� x
2j−1
2j+1+ε.

Recently, Lü [6] showed that

∑
n≤x

λj,f (n)� x
3
5+ε, j = 3,

and ∑
n≤x

λj,f (n)� x
2j−3
2j +ε, j ≥ 4.

For f(z) ∈ H∗k1 , g(z) ∈ H∗k2 and h(z) ∈ H∗k3 , the associated triple product L-function is

given by

L(f × g × h, s) =

∞∑
n=1

λf×g×h(n)

ns

=
∏
p

1∏
m=0

1∏
u=0

1∏
v=0

(
1− αf (p)1−mβf (p)mαg(p)

1−uβg(p)
uαh(p)1−vβh(p)v

ps

)−1
,

where <e(s) > 1.

Then

L(f × g × h, s)j =

∞∑
n=1

λj,f×g×h(n)

ns

for <e(s) > 1. We can show that

λj,f×g×h(n) =
∑

n=n1n2···nj

λf×g×h(n1)λf×g×h(n2) · · ·λf×g×h(nj).

37
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For f(z) = g(z) = h(z), Liu [5] established∑
n≤x

λj,f×f×f (n)� x1−
3

10j+ε.

In this paper, our first aim is to investigate the sums

Sj(x) =
∑
n≤x

λj,f×g×h(n), (2)

where f(z), g(z) and h(z) are different.

Theorem 1.1. For any ε > 0 and j ≥ 1, we have

Sj(x)� x
4j−1
4j +ε.

Some scholars studied the shifted convolution sums which plays an important role in many

aspects, such as subconvexity and unique ergodicity. The shifted convolution sums of GL(3)

Fourier coefficients was first investigated by Pitt [12]. Based on the work of [8], Lü and Wang [9]

recently gave the upper bounds for shifted convolution sums of coefficients of L(f, s)j ,∑
l≤H

∑
N<n≤2N

λ2,f (n)λ2,f (n+ l)� N
6
5+εH

2
5 , N

1
3+ε ≤ H ≤ N1−ε,

∑
l≤H

∑
N<n≤2N

λ3,f (n)λ3,f (n+ l)� N
4
3+εH

1
3 , N

1
2+ε ≤ H ≤ N1−ε,

and for j ≥ 4∑
l≤H

∑
N<n≤2N

λj,f (n)λj,f (n+ l)� N
4j+1
2j+4+vj+εH

2
j+2 , N

2j−3
2j +ε ≤ H ≤ N1−ε.

In fact, the proof of [9] would apply to any L-function for which analogous subconvexity

and moment estimates are known. The argument is structured in such a way that improved

moment estimates would immediately yield an better result. Motivated by this, our second aim

is to study the averages of shifted convolution sums of triple product L-function,

Sj(N,H) :=
∑
l≤H

∑
N<n≤2N

λj,f×g×h(n)λj,f×g×h(n+ l), (3)

where f(z), g(z) and h(z) are different. Then we have the following result.

Theorem 1.2. Suppose 1 ≤ H ≤ N. For any ε > 0 and j ≥ 1, we have

Sj(N,H)� N
8j

4j+1H
1

4j+1 ,

where 1 ≤ H ≤ N
1
4j .

§2. Preliminaries

In this section, we will give some lemmas for the proof of Theorem 1.1 and Theorem 1.2.

38
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A series of works [1,3,11] established the automorphy and cuspidality of the triple product

π1×π2×π3, where π1, π2 and π3 are unitary automorphic cuspidal representations of GL2(QA)

with Fourier coefficients λπi(n) (i = 1, 2, 3). Hence we know L(f × g × h, s) is automorphic

and it’s also a general L-function (see [10]). We can get the following averaged and individual

convexity bounds of L(f × g × h, s) with degree 8 by Lemma 2.5 of [7].

Lemma 2.1. Suppose f(z) ∈ H∗k1 , g(z) ∈ H∗k2 and h(z) ∈ H∗k3 , we have

∫ 2T

T

| L (f × g × h, σ + it) |2 dt� Tmax{8(1−σ),1}+ε, (4)

L(f × g × h, σ + it)� (1+ | t |)4(1−σ)+ε (5)

uniformly for 1
2 ≤ σ ≤ 1 + ε, T ≥ 1 and | t |≥ 1.

Lemma 2.2. Suppose that the series f(s) =
∑
n≥1

ann
−s converges absolutely for σ > 1

and |an| ≤ A(n), where A(n) is a positive monotonously increasing function of n and∑
n≥1

|an|n−σ = O
(
(σ − 1)−α

)
, σ → 1+

for some α > 0. The formula

∑
n≤x

an =
1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds+O

(
xb

T (b− 1)α

)
+O

(
xA(2x) lnx

T

)

holds truly for 1 < b ≤ b0, T ≥ 2 and x = N + 1
2 (the constants in O-symbols depend on b0).

Proof. See Karatsuba and Voronin [4] pp. 334-336.

§3. Proof of Theorem 1.1.

Suppose f(z) ∈ H∗k1 , g(z) ∈ H∗k2 and h(z) ∈ H∗k3 are different. Since L(f × g × h, s) is

automorphic, there is no pole for <e(s) > 1. By Lemma 2.2, we can express (2) in the form

Sj(x) =
1

2πi

∫ 1+ε+iT

1+ε−iT
L(f × g × h, s)j x

s

s
ds+O

(
x1+ε

T

)
,

where T is a parameter to be chosen later.

The line of integration can be shifted to the parallel segment <e(s) = 1
2 + ε by Cauchy

Residue Theorem ,

Sj(x) =
1

2πi

(∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1+ε+iT

1
2+ε+iT

+

∫ 1
2+ε−iT

1+ε−iT

)
L(f × g × h, s)j x

s

s
ds+O

(
x1+ε

T

)
:=J1 + J2 + J3 +O

(
x1+ε

T

)
.

(6)
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By (4) and (5), J1 becomes

J1 �x
1
2+ε

∫ T

1

∣∣∣∣L(f × g × h, 1

2
+ ε+ it)

∣∣∣∣jt−1dt+ x
1
2+ε

�x 1
2+ε log T max

T1≤T

1

T1
max

T1
2 ≤t≤T1

{
L(f × g × h, 1

2
+ ε+ it)j−2

×
∫ T1

T1
2

∣∣∣∣L(f × g × h, 1

2
+ ε+ it)

∣∣∣∣2 dt}+ x
1
2+ε

�x 1
2+εT 2j−1 + x

1
2+ε.

For the integral over the horizontal segments, we also use (5) to get

J2 + J3 �
∫ 1+ε

1
2+ε

xσ | L(f × g × h, σ + iT ) |j T−1dσ

� max
1
2+ε≤σ≤1+ε

xσT 4j(1−σ)+εT−1

� x1+ε

T
+ x

1
2+εT 2j−1+ε.

Taking T = x
1
4j , we obtain that

J1 + J2 + J3 � x
4j−1
4j +ε. (7)

Now inserting (7) into (6), we can get the result of Theorem 1.

§4. Proof of Theorem 1.2.

For j ≥ 1, we change the order of summations of (3) to get

Sj(N,H) =
∑
l≤H

∑
N<n≤2N

λj,f×g×h(n)λj,f×g×h(n+ l)

=
∑

N<n≤2N

λj,f×g×h(n)
∑
l≤H

λj,f×g×h(n+ l).
(8)

By Lemma 2.2 and Cauchy Residue Theorem, it follows that∑
l≤H

λj,f×g×h(n+ l) =
∑

m≤n+H

λj,f×g×h(m)−
∑
m≤n

λj,f×g×h(m)

=
1

2πi

∫ 1+ε+iT

1+ε−iT
L(f × g × h, s)j

(
(n+H)s − ns

)ds
s

+O

(
N1+ε

T

)
=

1

2πi

(∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1+ε+iT

1
2+ε+iT

+

∫ 1
2+ε−iT

1+ε−iT

)
L(f × g × h, s)j

×
(

(n+H)s − ns
)ds
s

+O

(
N1+ε

T

)
:=I1 + I2 + I3 +O

(
N1+ε

T

)
.

(9)
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We can estimate I2 + I3 by (5) to get

I2 + I3 �
N1+ε

T
+N

1
2+εT 2j−1+ε � N1+ε

T
, (10)

where T ≤ N
1
4j .

Inserting (10) into (9), we have∑
l≤H

λj,f×g×h(n+ l) =
1

2πi

∫ 1
2+ε+iT

1
2+ε−iT

L(f × g × h, s)j
(

(n+H)s − ns
)ds
s

+O

(
N1+ε

T

)
. (11)

Taking (11) into the second equation of (8), it can be easily seen that

Sj(N,H)�
∑

N<n≤2N

λj,f×g×h(n)

{
1

2πi

∫ 1
2+ε+iT

1
2+ε−iT

L(f × g × h, s)j
(

(n+H)s − ns
)ds
s

}

+
N1+ε

T

∑
N<n≤2N

| λj,f×g×h(n) |

:=G1(N,H) +G2(N,H).

(12)

The Deligne’s bound (1) and multiplicative property of λf×g×h(n) imply that

G2(N,H)� N2+ε

T
. (13)

For G1(N,H), we change the order of integration and summation to get

G1(N,H) =
1

2πi

∫ 1
2+ε+iT

1
2+ε−iT

L(f × g × h, s)j
∑

N<n≤2N

λj,f×g×h(n)
(

(n+H)s − ns
)ds
s
. (14)

Using Abel transformation to the sum over n, then∑
N<n≤2N

λj,f×g×h(n)
(

(n+H)s − ns
)

=
∑

N<n≤2N

((
1 +

H

n

)s
− 1

)
λj,f×g×h(n)ns

=

((
1 +

H

2N

)s
− 1

) ∑
N<n≤2N

λj,f×g×h(n)ns

+ sH

∫ 2N

N

(
1 +

H

x

)s−1( ∑
N<n≤x

λj,f×g×h(n)ns
)
dx

x2
.

(15)

Inserting (15) into (14), we have

G1(N,H) =
1

2πi

∫ 1
2+ε+iT

1
2+ε−iT

L(f × g × h, s)j
((

1 +
H

2N

)s
− 1

)( ∑
N<n≤2N

λj,f×g×h(n)ns
)
ds

s

+
1

2πi

∫ 1
2+ε+iT

1
2+ε−iT

∫ 2N

N

sH · L(f × g × h, s)j
(

1 +
H

x

)s−1
×
( ∑
N<n≤x

λj,f×g×h(n)ns
)
dx

x2
ds

s

:=G1
1(N,H) +G2

1(N,H).

(16)
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By Newton–Leibniz formula, we get

G1
1(N,H) =

1

2πi

∫ H

0

∫ 1
2+ε+iT

1
2+ε−iT

L(f × g × h, s)j

×
(

1 +
θ

2N

)s−1( ∑
N<n≤2N

λj,f×g×h(n)ns
)
dsdθ.

(17)

Moreover, (16) and (17) imply that

G1(N,H)� H

N
max

N<x≤2N

∫ T

−T

∣∣∣∣L(f × g × h, 1

2
+ ε+ it

)∣∣∣∣j∣∣∣∣ ∑
N<n≤x

λj,f×g×h(n)n
1
2+ε+it

∣∣∣∣dt.
(18)

Applying Lemma 2.2, the inner summation of (17) can be written as

∑
N<n≤x

λj,f×g×h(n)n
1
2+ε+it =

1

2πi

∫ 3
2+ε+2iT

3
2+ε−2iT

L

(
f × g × h, s1 −

(1

2
+ ε+ it

))j

×
(
xs1 −Ns1

)ds1
s1

+O

(
N

3
2+ε

T

)
,

where −T ≤ t ≤ T and 2 ≤ T ≤ N is a parameter to be chosen later.

By Cauchy Residue Theorem, we change the line of integration to the parallel with <e(s) =

1 to obtain∑
N<n≤x

λj,f×g×h(n)n
1
2+ε+it

=
1

2πi

{∫ 1+ε+2iT

1+ε−2iT
+

∫ 3
2+ε+2iT

1+ε+2iT

+

∫ 1+ε−2iT

3
2+ε−2iT

}
L

(
f × g × h, s1 −

(1

2
+ ε+ it

))j
×
(
xs1 −Ns1

)ds1
s1

+O

(
N

3
2+ε

T

)

:=H1 +H2 +H3 +O

(
N

3
2+ε

T

)
.

(19)

Similarly, for H2 +H3, we use (5) to get

H2 +H3 � NT 2j−1 +N
3
2T−1 � N

3
2T−1, (20)

where we suppose T ≤ N
1
4j .

Taking (20) into (19), then

∑
N<n≤x

λj,f×g×h(n)n
1
2+ε+it =

1

2πi

∫ 1+ε+2iT

1+ε−2iT
L

(
f × g × h, s1 −

(1

2
+ ε+ it

))j

×
(
xs1 −Ns1

)ds1
s1

+O

(
N

3
2+ε

T

)
.

(21)
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(18) and (21) imply that

G1(N,H)�H

N
max

N<N≤2N

∫ T

−T

∫ 1+ε+2iT

1+ε−2iT

∣∣∣∣L(f × g × h, 1

2
+ ε+ it

)∣∣∣∣j
×
∣∣∣∣L(f × g × h, s1 − (1

2
+ ε+ it

))j(
xs1 −Ns1

)∣∣∣∣ds1s1 dt
+
H

N

∫ T

−T

∣∣∣∣L(f × g × h, 1

2
+ ε+ it

)∣∣∣∣jN 3
2+ε

T
dt

:=E1(N,H) + E2(N,H).

(22)

By (5), it follows that

E1(N,H)�H
∫ 2T

−2T

(∫ T

−T

∣∣∣∣L(f × g × h, 1

2
+ ε+ it

)j∣∣∣∣2dt) 1
2

×
(∫ T

−T

∣∣∣∣L(f × g × h, 1

2
+ ε+ i(t1 − t)

)j∣∣∣∣2dt) 1
2 dt1

1 + |t1|

�HT 4j .

(23)

For E2(N,H), we have

E2(N,H)� H

N
N

3
2+εT 2j−1 = HN

1
2+εT 2j−1. (24)

(22), (23) and (24) imply that

G1(N,H)� HT 4j +HN
1
2+εT 2j−1. (25)

Inserting (13) and (25) into (12) to get

Sj(N,H)� HT 4j +HN
1
2+εT 2j−1 +N2+εT−1.

Noting T ≤ N
1
4j , hence we deduce that

Sj(N,H)� N
8j

4j+1H
1

4j+1 ,

where we take T = N
2

4j+1+εH
−1

4j+1+ε. This completes the proof of Theorem 1.2.
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Abstract Let f and g be two holomorphic cusp forms for the full modular group SL(2,Z).

Denote by λf (n) and λg(n) the Hecke eigenvalue of f and g, respectively. In this paper, we are

interested in Dirichlet density on sets of primes for linear combinations of λf (n) and λg(n).
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§1. Introduction and Main results

Let H∗k be the set of Hecke primitive eigencuspforms of even integral weight k ≥ 2 for the

full modular group SL(2,Z). Suppose that f ∈ H∗k is an eigenfunction of Hecke operators,

Tnf = λf (n)f,

where the Hecke operators is defined by

(Tnf)(z) =
1√
n

∑
ad=n

(a
d

)k ∑
b mod d

f
(az + b

d

)
.

Then the primitive cusp form f has the following Fourier expansion at the cusp ∞

f(z) =

∞∑
n=1

λf (n)n
(k−1)

2 e2πniz,

here λf (n) ∈ R and λf (1) = 1. From the theory of Hecke operators, for all integers m,n ≥ 1,

λf (n) is real and satisfies the Hecke multiplicity:

λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
, (1)

Hence λf (n) is not only the n-th normalized Fourier coefficient of f but also the normalized

eigenvalue of Tn, abbreviated Hecke eigenvalues in this paper.
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Now we recall the definition of Dirichlet density. A set E of primes has Dirichlet density

(or analytic density) γ > 0 if and only if∑
p∈E

1

ps
∼ γ

∑
p

1

ps
, s→ 1+.

In this paper, we write δ(E) = γ.

Kowalski et al. [4] firstly showed if the sign of λf (p) is the same as λg(p) for any primes up

to the exceptional set of Dirichlet density at least 1
32 , then f = g. Motivated by [4], Chiriac [1]

successfully proved that

δ({p|λf (p) < λg(p)}) ≥
1

16
,

δ({p|λ2f (p) < λ2g(p)}) ≥
1

16

for p ∈ P, where P is the set of all primes and f, g ∈ H∗k are different.

Very recently, based on the work of [1], Lao [5] considered the Hecke eigenvalues at prime

powers, i.e., for p ∈ P,

δ({p|λf (pj) < λg(p
j)}) ≥ 1

16[ j+1
2 ]2

, 1 ≤ j ≤ 8,

δ({p|λ2f (pj) < λ2g(p
j)}) ≥ 1

4j(j + 1)2
, 1 ≤ j ≤ 4,

where f, g ∈ H∗k are different.

Chiriac and Jorza [2] were able to prove the density bound for the set {v|a < λ1av(π1) +

λ2av(π2) < b} in the context of unitary cuspidal representations that satisfy the Ramanujan

conjecture. Recently, by using ideas of Chiriac [1], Gao [3] obtained the Dirichlet densities for

the set {p|λf (p) +mλg(p) +n < 0} and {p|λ2f (p) +mλ2g(p) +n < 0}. In this paper, We further

consider the Hecke eigenvalues at prime powers and generalize the results of Gao [3].

Theorem 1.1. Let f, g ∈ H∗k be two different cusp forms. Then

δ({p|λf (pj) +mλg(p
j) + n < 0}) ≥ 1 +m2 − n(j + 1)(1 + |m|)

2(j + 1)(j + 1 + (j + 1)|m| − n)(1 + |m|)
,

where m ∈ R and −(j + 1)(1 + |m|) < n < 1+m2

(j+1)(1+|m|) .

Theorem 1.2. Let f, g ∈ H∗k be two different cusp forms.

(i) For m ≥ 0 and −(j + 1)2(1 +m) < n < − (j2+j)m2+(2j2+4j)m+j2+j
(j2+2j)(1+m) ,

δ({p|λ2f (pj) +mλ2g(p
j) + n < 0})

≥ (j2 + j)m2 + (2j2 + 4j)m+ (j2 + 2j)n+ (j2 + 2j)mn+ j2 + j

n(j + 1)2(1 +m)
.

(ii) For m < 0 and −(j + 1)2 < n < (j+1)m2+(1−j2−2j)m−j2−j
j2+2j−m ,

δ({p|λ2f (pj) +mλ2g(p
j) + n < 0})

≥ (j + 1)m2 + (1− j2 − 2j)m+ (−j2 − 2j)n+mn− j2 − j
(j + 1)2(−(j + 1)2m− n)(1−m)

.
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§2. Preliminaries

In this section, we will recall and establish some preliminary results which are used to

prove Theorems 1.1 – 1.2.

Let f ∈ H∗k be a cusp form. The i-th symmetric power L-function attached to f is defined

by

L(symif, s) =
∏
p

i∏
m=0

(
1− αf (p)i−mβf (p)m

ps

)−1
, Rs > 1, (2)

where αf (p) and βf (p) are two complex numbers satisfying

αf (p)βf (p) = |αf (p)| = |βf (p)| = 1, λf (p) = αf (p) + βf (p). (3)

We express it as a Dirichlet series:

L(symif, s) =

∞∑
n=1

λsymif (n)

ns
=
∏
p

(
1 +

∞∑
v=1

λsymif (pv)

pvs

)
, Rs > 1,

where λsymif (n) is a real multiplicative function, and

λsymif (p) =

i∑
m=0

αf (p)i−mβf (p)m = λf (pi). (4)

Let f, g ∈ H∗k be two different cusp forms, Rankin–Selberg L-function attached to symif

and symjg is defined by

L(symif × symjg, s) =
∏
p

i∏
m=0

j∏
m′=0

(
1− αf (p)i−mβf (p)mαg(p)

j−m′βg(p)
m′

ps

)−1
, Rs > 1.

(5)

For Rs > 1, we expand it into a Dirichlet series

L(symif × symjg, s) =

∞∑
n=1

λsymif×symjg(n)

ns
=
∏
p

(
1 +

∞∑
v=1

λsymif×symjg(p
v)

pvs

)
, (6)

where λsymif×symjg(n) is real and multiplicative. By the multiplicative property and the defi-

nitions of (3) and (4), it’s easily seen that

λsymif×symjg(p) =

i∑
m=0

j∑
m′=0

αf (p)i−mβf (p)mαg(p)
j−m′βg(p)

m′ = λsymif (p)λsymjg(p), (7)

where i, j are positive integers.

Lemma 2.1. Let f ∈ H∗k be a Hecke cusp form. Then for j ≥ 1, we have

|λf (pj)| ≤ j + 1,

and

|λ2f (pj)| ≤ (j + 1)2.

47



48 He Zhu and Huixue Lao No. 1

Proof. Using (3) and (4), we can easily obtain the conclusion.

Lemma 2.2. Let f ∈ H∗k be a Hecke cusp form. Then for j ≥ 1, L(symjf, s) has an

analytic continuation as an entire function in the whole complex plane C (see Lemma 1 of [6]).

According to Lemma 2.2 and a series of definitions of (4) – (7), it is not hard to deduce

that for j ≥ 1, ∑
p

λf (pj)

ps
= O(1), s→ 1+. (8)

Lemma 2.3. Let f, g ∈ H∗k be two different cusp forms. Then for i, j ≥ 1, L(symif ×
symjg, s) has an analytic continuation as an entire function in the whole complex plane C. In

particular, when f = g, L(symif × symjg, s) has simple poles at s = 0, 1 (see Lemma 2 of [6]).

Hence, when f = g, we have∑
p

λf (pj)λg(p
j)

ps
=
∑
p

1

ps
+O(1), s→ 1+. (9)

In other cases, we get ∑
p

λf (pj)λg(p
j)

ps
= O(1), s→ 1+. (10)

The next lemma follows plainly from [6, Lemma 7].

Lemma 2.4. Let f, g ∈ H∗k be two cusp forms. Then

1) when f = g, we have∑
p

λ2f (pj)λ2g(p
j)

ps
= (j + 1)

∑
p

1

ps
+O(1), s→ 1+, (11)

2) when f 6= g, we have∑
p

λ2f (pj)λ2g(p
j)

ps
=
∑
p

1

ps
+O(1), s→ 1+. (12)

Lemma 2.5. Let f, g ∈ H∗k be two different cusp forms. Then for j ≥ 1, we have∑
p

(λf (pj) +mλg(p
j) + n)2

ps
= (1 +m2 + n2)

∑
p

1

ps
+O(1), s→ 1+,

∑
p

(λ2f (pj) +mλ2g(p
j) + n)2

ps
= H(m,n)

∑
p

1

ps
+O(1), s→ 1+,

where

H(m,n) = (j + 1)m2 + n2 + 2m+ 2n+ 2mn+ (j + 1).

Proof. We have∑
p

(λf (pj) +mλg(p
j) + n)2

ps

=
∑
p

λ2f (pj) +m2λ2g(p
j) + 2mλf (pj)λg(p

j) + 2nλf (pj) + 2mnλg(p
j) + n2

ps
.
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According to Lemma 2.4 and a series of results (8) – (10), we obtain

∑
p

(λf (pj) +mλg(p
j) + n)2

ps
= (1 +m2 + n2)

∑
p

1

ps
+O(1), s→ 1+.

Similarly, we get that as s→ 1+,

∑
p

(λ2f (pj) +mλ2g(p
j) + n)2

ps

=
∑
p

λ4f (pj) +m2λ4g(p
j) + 2mλ2f (pj)λ2g(p

j) + 2nλ2f (pj) + 2mnλ2g(p
j) + n2

ps

=
(

(j + 1)m2 + n2 + 2m+ 2n+ 2mn+ (j + 1)
)∑

p

1

ps
+O(1).

§3. Proof of Theorem 1.1

Proof. Let

A = {p|λf (pj) +mλg(p
j) + n < 0}

for any fixed m,n ∈ R and define

A(f, g, p) = λf (pj) +mλg(p
j) + n.

Let δ(A) be the Dirichlet density of A, we know that 0 < δ(A) < 1. Then we have the

following inequations

min
p∈P

A(f, g, p) < 0,

max
p∈P

A(f, g, p) > 0.

Then by Lemma 2.1, we have

−(j + 1)− (j + 1)|m|+ n < 0,

j + 1 + (j + 1)|m|+ n > 0.

By a straightforward calculation, we get

−(j + 1)(1 + |m|) < n < (j + 1)(1 + |m|). (13)

On the one hand, for p ∈ A, we have

A(f, g, p) < 0.

Then we obtain

|A(f, g, p)| = −λf (pj)−mλg(pj)− n ≤ (j + 1)(1 + |m|)− n. (14)
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Hence ∑
p∈A

A2(f, g, p)

ps
≤
(
(j + 1)(1 + |m|)− n

)2∑
p∈A

1

ps
. (15)

On the other hand, for p /∈ A, we konw that

A(f, g, p) ≥ 0.

It follows from Lemma 2.1 that

|A(f, g, p)| = λf (pj) +mλg(p
j) + n ≤ (j + 1)(1 + |m|) + n. (16)

Using (16), we deduce that as s→ 1+,∑
p/∈A

A2(f, g, p)

ps
≤
(
(j + 1)(1 + |m|) + n

)∑
p/∈A

A(f, g, p)

ps

=
(
(j + 1)(1 + |m|) + n

)(∑
p

A(f, g, p)

ps
−
∑
p∈A

A(f, g, p)

ps

)

=
(
(j + 1)(1 + |m|) + n

)(∑
p

A(f, g, p)

ps
+
∑
p∈A

|A(f, g, p)|
ps

)
.

From (8), we have

∑
p

A(f, g, p)

ps
=
∑
p

λf (pj) +mλg(p
j) + n

ps
= n

∑
p

1

ps
+O(1), s→ 1+, (17)

Combining (14) with (17) yields∑
p/∈A

A2(f, g, p)

ps
≤ n

(
(j + 1)(1 + |m|) + n

)∑
p

1

ps
+H1(m,n)

∑
p∈A

1

ps
+O(1), s→ 1+, (18)

where

H1(m,n) = (j + 1)2(1 + |m|)2 − n2.

By (15) and (18), it is shown that as s→ 1+∑
p

A2(f, g, p)

ps
≤ n

(
(j + 1)(1 + |m|) + n

)∑
p

1

ps
+H2(m,n)

∑
p∈A

1

ps
+O(1), (19)

where

H2(m,n) = 2(j + 1)(1 + |m|)
(
(j + 1)(1 + |m|)− n

)
.

Applying Lemma 2.5 on the left-hand side in (19), we can see that∑
p∈A

1

ps
≥ 1 +m2 − n(j + 1)(1 + |m|)

2(j + 1)(1 + |m|)
(
(j + 1)(1 + |m|)− n

) ∑
p

1

ps
+O(1), s→ 1+.

Hence, we get

δ(A) ≥ 1 +m2 − n(j + 1)(1 + |m|)
2(j + 1)(1 + |m|)

(
(j + 1)(1 + |m|)− n

) .
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Then, in order to δ(A) > 0, we need

1 +m2 − n(j + 1)(1 + |m|)
2(j + 1)(1 + |m|)

(
(j + 1)(1 + |m|)− n

) > 0.

According to the above inequality and (13), we have

−(j + 1)(1 + |m|) < n <
1 +m2

(j + 1)(1 + |m|)
.

This completes the proof of Theorem 1.1.

§4. Proof of Theorem 1.2

Proof. For fixed m,n ∈ R, the set B is defined by

B = {p|λ2f (pj) +mλ2g(p
j) + n < 0}

and let

B(f, g, p) = λ2f (pj) +mλ2g(p
j) + n.

We only consider the case m ≥ 0, since the case m < 0 is similar. Let δ(B) be the analytic

density of B, we need to limit δ(B), such that 0 < δ(B) < 1. Then

min
p∈P

B(f, g, p) < 0,

max
p∈P

B(f, g, p) > 0,

By Lemma 2.1 and a simple calculation, we have

−(j + 1)2(1 +m) < n < 0. (20)

Firstly, for p ∈ B, we get

B(f, g, p) < 0.

It is easy to see that

|B(f, g, p)| = −λ2f (pj)−mλ2g(pj)− n ≤ −n. (21)

Hence, we obtain ∑
p∈B

B2(f, g, p)

ps
≤ n2

∑
p∈B

1

ps
. (22)

Then, for p /∈ B, we have

B(f, g, p) ≥ 0.

Therefore, one can find that

|B(f, g, p)| = λ2f (pj) +mλ2g(p
j) + n ≤ (j + 1)2(1 +m) + n. (23)
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From (23), we show that as s→ 1+,

∑
p/∈B

B2(f, g, p)

ps
≤
(
(j + 1)2(1 +m) + n

)∑
p/∈B

B(f, g, p)

ps

=
(
(j + 1)2(1 +m) + n

)(∑
p

B(f, g, p)

ps
−
∑
p∈B

B(f, g, p)

ps

)

=
(
(j + 1)2(1 +m) + n

)(∑
p

B(f, g, p)

ps
+
∑
p∈B

|B(f, g, p)|
ps

)
.

By (9) and (19), we deduce that

∑
p/∈B

B2(f, g, p)

ps
≤ H3(m,n)

∑
p

1

ps
+H4(m,n)

∑
p∈B

1

ps
+O(1), s→ 1+, (24)

where

H3(m,n) =
(
(j + 1)2(1 +m) + n

)
(1 +m+ n),

H4(m,n) =− n
(
(j + 1)2(1 +m) + n

)
.

Combining (22) with (24) implies

∑
p

B2(f, g, p)

ps
≤ H3(m,n)

∑
p

1

ps
+H5(m,n)

∑
p∈B

1

ps
+O(1), s→ 1+, (25)

where

H5(m,n) = −n(j + 1)2(1 +m).

By Lemma 2.5, we obtain

δ(B) ≥ (j2 + j)m2 + (2j2 + 4j)m+ (j2 + 2j)n+ (j2 + 2j)mn+ j2 + j

n(j + 1)2(1 +m)
.

To ensure δ(B) > 0 it suffices that

(j2 + j)m2 + (2j2 + 4j)m+ (j2 + 2j)n+ (j2 + 2j)mn+ j2 + j

n(j + 1)2(1 +m)
> 0. (26)

From (20) and (26), we have

−(j + 1)2 < n <
(j + 1)m2 + (1− j2 − 2j)m− j2 − j

j2 + 2j −m
.

This finishes the proof of Theorem 1.2.
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§1. Introduction

In 1965, Zadeh[31] introduced the notion of a fuzzy subset of a set as a method for repre-

senting uncertainty in real physical world. The idea of intuitionistic fuzzy set was first published

by Atanassov[2, 3] as a generalization of the notion of fuzzy sets. Imai and Iseki introduced the

notion of BCI-algebra[5]. Touqeer and Aslam Malik[30] considerd the intuitionistic fuzzifica-

tion of the concept of BCI-positive implicative ideals in BCI-algebras and investigated some

of their properties. The author by using norms, investigated some properties of fuzzy algebraic

structures[8-29]. In this work, we define the concepts of intuitionistic fuzzy subalgebras, intu-

itionistic fuzzy ideals and intuitionistic fuzzy positive implicative ideals of BCI-algebras under

t-norm T and t-conorm C and obtaine some basic properties of them. Next we show the char-

acterization properties of them with subalgebras, ideals and implicative ideals of BCI-algebras.

Finally, we consider them under intersections, direct products and BCI-homomorphisms(image

and preimage) and prove some basic properties of them.

§2. Preliminaries

In this section we cite the fundamental definitions and results that will be used in the

sequel.

Definition 2.1.([30]) an algebra (X, ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies

the following conditions:
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(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0

(2) (x ∗ (x ∗ y)) ∗ y = 0

(3) x ∗ x = 0

(4) x ∗ y = 0 and y ∗ x = 0 imply x = y

(5) (x ∗ y) ∗ z = (x ∗ z) ∗ y
(6) x ∗ 0 = x

(7) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)

(8) 0 ∗ (0 ∗ (x ∗ y)) = 0 ∗ (y ∗ x)

for all x, y, z ∈ X.
In a BCI-algebra, we can define a partial ordering ” ≤ ” by x ≤ y if and only if x ∗ y = 0.

(9) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x
(10) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y
for all x, y, z ∈ X.

Definition 2.2.([6]) A non-empty subset I of a BCI-algebra X is called an ideal of X if

(1) 0 ∈ I,
(2) x ∗ y ∈ I and y ∈ I imply that x ∈ I for all x, y ∈ X.

Definition 2.3.([6]) A non-empty subset I of a BCI-algebra X is said to be a positive

implicative ideal of X if it satisfies:

(1) 0 ∈ I,
(2) ((x ∗ z) ∗ z) ∗ (y ∗ z) ∈ I and y ∈ I imply x ∗ z ∈ I,
for all x, y, z ∈ X. 3

Definition 2.4.([30]) A non-empty subset I of a BCI-algebra X is called subalgebra of

X if x ∗ y ∈ I for all x, y ∈ I.
Definition 2.5.([30]) A mapping f : X → Y of BCI-algebras is called a homomorphism

if f(x ∗ y) = f(x) ∗ f(y), for all x, y ∈ X.
Definition 2.6.([7]) Let X be an arbitrary set. A fuzzy subset of X, we mean a function

from X into [0, 1]. The set of all fuzzy subsets of X is called the [0, 1]-power set of X and is

denoted [0, 1]X . For a fixed s ∈ [0, 1], the set µs = {x ∈ X : µ(x) ≥ s} is called an upper level

of µ and the set µt = {x ∈ X : µ(x) ≤ t} is called a lower level of µ.

Definition 2.7.([2, 3]) Let X be a nonempty set. A complex mapping A = (µA, νA) :

X → [0, 1]× [0, 1] is called an intuitionistic fuzzy set (in short, IFS) in X if µA + νA ≤ 1 where

the mappings µA : X → [0, 1] and νA : X → [0, 1] denote the degree of membership (namely

µA(x)) and the degree of non-membership (namely νA(x)) for each x ∈ X to A, respectively. In

particular ∅X and UX denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole

set in X defined by ∅X(x) = (0, 1) ∼ 0 and UX(x) = (1, 0) ∼ 1, respectively. We will denote

the set of all IFSs in X as IFS(X).

Definition 2.8.([7]) Let ϕ be a function from set X into set Y such that A = (µA, νA) ∈
IFS(X) and B = (µB , νB) ∈ IFS(Y ). For all x ∈ X, y ∈ Y, we define

ϕ(A)(y) = (ϕ(µA)(y), ϕ(νA)(y))

=

 (sup{µA(x) | x ∈ X,ϕ(x) = y}, inf{νA(x) | x ∈ X,ϕ(x) = y}) if ϕ−1(y) 6= ∅

(0, 1) if ϕ−1(y) = ∅
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Also ϕ−1(B)(x) = (ϕ−1(µB)(x), ϕ−1(νB)(x)) = (µB(ϕ(x)), νB(ϕ(x))).

Definition 2.9.([4]) A t-norm T is a function T : [0, 1]× [0, 1]→ [0, 1] having the following

four properties:

(T1) T (x, 1) = x (neutral element),

(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),

(T3) T (x, y) = T (y, x) (commutativity),

(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),

for all x, y, z ∈ [0, 1].

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T (x1, y1) ≥ T (x2, y2).

Example 2.1. (1) Standard intersection t-norm Tm(x, y) = min{x, y}.
(2) Bounded sum t-norm Tb(x, y) = max{0, x+ y − 1}.
(3) algebraic product t-norm Tp(x, y) = xy.

(4) Drastic t-norm

TD(x, y) =


y if x = 1

x if y = 1

0 otherwise.

(5) Nilpotent minimum t-norm

TnM (x, y) =

 min{x, y} if x+ y > 1

0 otherwise.

(6) Hamacher product T -norm

TH0
(x, y) =

 0 if x = y = 0

xy
x+y−xy otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise

largest t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].

Definition 2.10.([4]) A t-norm C is a function C : [0, 1]×[0, 1]→ [0, 1] having the following

four properties:

(1) C(x, 0) = x,

(2) C(x, y) ≤ C(x, z) if y ≤ z,
(3) C(x, y) = C(y, x),

(4) C(x,C(y, z)) = C(C(x, y), z) ,

for all x, y, z ∈ [0, 1].

We say that T and C be idempotent if for all x ∈ [0, 1] we have T (x, x) = x and C(x, x) = x.

Example 2.2. The basic t-conorms are

Cm(x, y) = max{x, y},

Cb(x, y) = min{1, x+ y}

and

Cp(x, y) = x+ y − xy
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for all x, y ∈ [0, 1].

Sm is standard union, Cb is bounded sum, Cp is algebraic sum.

Definition 2.11.([8]) Let A = (µA, νA) ∈ IFS(X) and B = (µB , νB) ∈ IFS(X). Define

A ∩B = (µA∩B , νA∩B) : X → [0, 1]

as µA∩B(x) = T (µA(x), µB(x)) and νA∩B(x) = C(νA(x), νB(x)) for all x ∈ X.
Definition 2.12.([8]) Let A = (µA, νA) ∈ IFS(X) and B = (µB , νB) ∈ IFS(Y ). The

cartesian product of A and B is denoted by A×B : X × Y → [0, 1] is defined by

(A×B)(x, y) = ((µA, νA)× (µB , νB))(x, y) = (µA×B , νA×B)(x, y)

= (µA×B(x, y), νA×B(x, y)) = (T (µA(x), µB(y)), C(νA(x), νB(y)))

for all (x, y) ∈ X × Y.
Lemma 2.1.([1]) Let C be a t-conorm and T be a t-norm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

and

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].

§3. (T,C)IFS(X), (T,C)IFI(X), (T,C)IFPII(X)

Definition 3.1. Let A = (µA, νA) ∈ IFS(X) then A is called an intuitionistic fuzzy

subalgebra of BCI-algebra X under norms(t-norm T and t-conorm C) if

(1) µA(x ∗ y) ≥ T (µA(x), µA(y)),

(2) νA(x ∗ y) ≤ C(νA(x), νA(y))

for all x, y ∈ X.
Denote by (T,C)IFS(X), the set of all intuitionistic fuzzy subalgebras of BCI-algebra X under

norms ( t-norm T and t-conorm C).

Example 3.1. Let X = {0, a, b, c} be a set given by the following Cayley table:

* 0 a b c

0 0 0 0 0

a a 0 0 a

b b a 0 b

c c c c 0

Then (X, ∗, 0) is a BCI-algebra.

Define fuzzy subset µA : (X, ∗, 0)→ [0, 1] as

µA(x) =

 0.55 if x = 0, a, c

0.25 if x = b

57



58 Rasul Rasuli No. 1

and

νA(x) =

 0.15 if x = 0, a, c

0.45 if x = b.

Let T (a, b) = Tp(a, b) = ab and C(a, b) = Cp(a, b) = a + b − ab for all a, b ∈ [0, 1] then

A = (µA, νA) ∈ (T,C)IFS(X).

Proposition 3.1. Let A = (µA, νA) ∈ IFS(X) and T,C be idempotent. Then A =

(µA, νA) ∈ (T,C)IFS(X) if and only if the set

As,t = {x ∈ X : A(x) ⊇ (s, t)}

be either empty or a subalgebra of X for every s, t ∈ [0, 1].

Proof. Let A = (µA, νA) ∈ IFSN(X) and x, y ∈ As,t. Then

µA(x ∗ y) ≥ T (µA(x), µA(y)) ≥ T (s, s) = s

and

νA(x ∗ y) ≤ C(νA(x), νA(y)) ≤ C(t, t) = t

so

A(x ∗ y) = (µA(x ∗ y), νA(x ∗ y)) ⊇ A(s, t)

thus x ∗ y ∈ As,t and so As,t will be a subalgebra of X for every s, t ∈ [0, 1].

Conversely, let As,t is either empty or a subalgebra of X for every s, t ∈ [0, 1]. Let s =

T (µA(x), µA(y)) and t = C(νA(x), νA(y)) and x, y ∈ As,t. As As,t is a subalgebra of X so

x ∗ y ∈ As,t and thus

µA(x ∗ y) ≥ s = T (µA(x), µA(y))

and

νA(x ∗ y) ≤ t = C(νA(x), νA(y))

so A = (µA, νA) ∈ (T,C)IFS(X).

Proposition 3.2. Let A = (µA, νA) ∈ (T,C)IFS(X) and T,C be idempotent. Then

A(0) ⊇ A(x) for all x ∈ X.

Proof. Let x ∈ X. Then

µA(0) = µA(x ∗ x) ≥ T (µA(x), µA(x)) = µA(x)

and

νA(0) = νA(x ∗ x) ≤ C(νA(x), νA(x)) = νA(x)

thus

A(0) = (µA(0), νA(0)) ⊇ (µA(x), νA(x)) = A(x).
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Definition 3.2. Define A = (µA, νA) ∈ IFS(X) is an intuitionistic fuzzy ideal of BCI-

algebra X under norms(t-norm T and t-conorm C) if it satisfies the following inequalities:

(1) µA(0) ≥ µA(x),

(2) µA(x) ≥ T (µA(x ∗ y), µA(y)),

(3) νA(0) ≤ νA(x),

(4) νA(x) ≤ C(νA(x ∗ y), νA(y)),

for all x, y ∈ X.
Denote by (T,C)IFI(X), the set of all intuitionistic fuzzy ideals of X under norms(t-norm T

and t-conorm C).

Example 3.2. Let X = {0, a, 1, 2, 3} be a set given by the following Cayley table:

* 0 a 1 2 3

0 0 0 3 2 1

a a 0 3 2 1

1 1 1 0 3 2

2 3 2 1 0 3

3 3 3 2 1 0

Then (X, ∗, 0) is a BCI-algebra. Define A = (µA, νA) ∈ IFS(X) as

µA(x) =


t0 if x = 0,

t1 if x = a,

t2 if x = 1, 2, 3,

and

νA(x) =


s0 if x = 0,

s1 if x = a,

s2 if x = 1, 2, 3,

with t0 > t1 > t2 and s0 < s1 < s2 such that 0 < ti + si < 1 and ti, si ∈ [0, 1].

Let T (a, b) = Tp(a, b) = ab and C(a, b) = Cp(a, b) = a + b − ab for all a, b ∈ [0, 1] then

A = (µA, νA) ∈ (T,C)IFI(X).

Proposition 3.3. Let A = (µA, νA) ∈ IFS(X) and T,C be idempotent. Then A =

(µA, νA) ∈ (T,C)IFI(X) if and only if the

As,t = {x ∈ X : A(x) ⊇ (s, t)}

be either empty or an ideal of BCI-algebra X for every s, t ∈ [0, 1].

Proof. Let A = (µA, νA) ∈ (T,C)IFI(X) and x, y ∈ X. Then µA(0) ≥ µA(x) ≥ s and νA(0) ≤
νA(x) ≤ t so A(0) = (µA(0), νA(0)) ⊇ (s, t) and then 0 ∈ As,t. Also let x∗y ∈ As,t and y ∈ As,t.

Then

µA(x) ≥ T (µA(x ∗ y), µA(y)) ≥ T (s, s) = s
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and

νA(x) ≤ C(νA(x ∗ y), νA(y)) ≤ C(t, t) = t

then A(x) = (µA(x), νA(x)) ⊇ (s, t) thus x ∈ As,t. Then As,t will be an ideal of BCI-algebra

X for every t ∈ [0, 1].

Conversely, let As,t be either empty or an ideal of BCI-algebra X for every s, t ∈ [0, 1]. Let

s = T (µA(x ∗ y), µA(y)) and t = C(νA(x ∗ y), νA(y)) with x ∗ y ∈ As,t and y ∈ As,t. Then

x ∈ As,t thus

µA(x) ≥ s = T (µA(x ∗ y), µA(y))

and

νA(x) ≤ t = C(νA(x ∗ y), νA(y))

so A = (µA, νA) ∈ (T,C)IFI(X).

Proposition 3.4. Let A = (µA, νA) ∈ (T,C)IFI(X) and x ∗ y ≤ z. Then µA(x) ≥
T (µA(y), µA(z)) and νA(x) ≤ C(νA(y), νA(z)) for all x, y, z ∈ X.

Proof. As x ∗ y ≤ z so (x ∗ y) ∗ z = 0 for all x, y, z ∈ X. Then

µA(x) ≥ T (µA(x ∗ y), µA(y))

≥ T (T (µA((x ∗ y) ∗ z), µA(z)), µA(y))

= T (T (µA(0), µA(z)), µA(y))

= T (µA(z), µA(y))

= T (µA(y), µA(z))

thus µA(x) ≥ T (µA(y), µA(z)). Also

νA(x) ≤ C(νA(x ∗ y), νA(y))

≤ C(C(νA((x ∗ y) ∗ z), νA(z)), νA(y))

= C(C(νA(0), νA(z)), νA(y))

= C(νA(z), νA(y))

= C(νA(y), νA(z))

so νA(x) ≤ C(νA(y), νA(z)).

Proposition 3.5. Let A = (µA, νA) ∈ (T,C)IFI(X) and x ≤ y for all x, y ∈ X. Then

A(x) ⊇ A(y).

Proof. Since x ≤ y so x ∗ y = 0 for all x, y ∈ X. Then

µA(x) ≥ T (µA(x ∗ y), µA(y)) = T (µA(0), µA(y)) = µA(y)

and

νA(x) ≤ C(νA(x ∗ y), νA(y)) = C(νA(0), νA(y)) = νA(y)
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therefore

A(x) = (µA(x), νA(x)) ⊇ (µA(y), νA(y)) = A(y).

Following proposition provides that every (T,C)IFI(X) is (T,C)IFS(X).

Proposition 3.6. LetA = (µA, νA) ∈ (T,C)IFI(X). ThenA = (µA, νA) ∈ (T,C)IFS(X).

Proof. We know that x ∗ y ≤ x and from Proposition 3.2 we get that A(x ∗ y) ⊇ A(x). Now

µA(x ∗ y) ≥ µA(x) ≥ T (µA(x ∗ y), µA(y)) ≥ T (µA(x), µA(y))

and

νA(x ∗ y) ≤ νA(x) ≤ C(νA(x ∗ y), νA(y)) ≤ C(νA(x), νA(y))

and then A = (µA, νA) ∈ (T,C)IFS(X).

Remark 3.1. The converse of Proposition 3.6 may not be true. For example in Example

3.1we have that A = (µA, νA) ∈ (T,C)IFS(X) but since µA(b) = 0.25 � T (µA(b ∗ a), µA(a)) =

T (µA(a), µA(a)) = µA(a) = 0.55 so A = (µA, νA) /∈ (T,C)IFI(X).

As under a condition every (T,C)IFS(X) is (T,C)IFI(X).

Proposition 3.7. Let A = (µA, νA) ∈ (T,C)IFS(X). If µA(x) ≥ T (µA(y), µA(z)) and

νA(x) ≤ C(νA(y), νA(z)) and x ∗ y ≤ z for all x, y, z ∈ X, then A = (µA, νA) ∈ (T,C)IFI(X).

Proof. As Proposition 3.4 we get that µA(0) ≥ µA(x) and νA(0) ≤ νA(x). As x ∗ (x ∗ y) ≤ y so

µA(x) ≥ T (µA(x ∗ y), µA(y)) and νA(x) ≤ C(νA(x ∗ y), νA(y)). (From the hypothesis)

Then A = (µA, νA) ∈ (T,C)IFI(X).

Proposition 3.8. Let A = (µA, νA) ∈ IFS(X). Then

A = (µA, νA) ∈ (T,C)IFI(X)⇐⇒4A = (µA, µ̄A) ∈ (T,C)IFI(X)

and 5A = (ν̄A, νA) ∈ (T,C)IFI(X)

such that µ̄A = 1− µA and ν̄A = 1− νA.

Proof. Let x, y ∈ X. Let A = (µA, νA) ∈ (T,C)IFI(X) then

µA(0) ≥ µA(x) (1)

and

µA(x) ≥ T (µA(x ∗ y), µA(y)) (2)

also

µ̄A(0) = 1− µA(0) ≤ 1− µA(x) = µ̄A(x) (3)

and

µ̄A(x) = 1− µA(x) ≤ 1− T (µA(x ∗ y), µA(y)) = C(µ̄A(x ∗ y), µ̄A(y)) (4)
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thus 4A = (µA, µ̄A) ∈ IFIN(X).

Also

νA(0) ≤ νA(x) (1)

and

νA(x) ≤ C(νA(x ∗ y), νA(y)) (2)

and

ν̄A(0) = 1− νA(0) ≥ 1− νA(x) = ν̄A(x) (3)

and

ν̄A(x) = 1− νA(x) ≥ 1− C(νA(x ∗ y), νA(y)) = T (ν̄A(x ∗ y), ν̄A(y)) (4)

thus 5A = (ν̄A, νA) ∈ IFIN(X).

Conversely, let 4A = (µA, µ̄A) ∈ (T,C)IFI(X) and 5A = (ν̄A, νA) ∈ IFIN(X) then we will

have that A = (µA, νA) ∈ (T,C)IFI(X).

Definition 3.3. We say that A = (µA, νA) ∈ IFS(X) is an intuitionistic fuzzy positive

implicative ideal of BCI-algebra X under norms(t-norm T and t-conorm C) if it satisfies the

following inequalities:

(1) µA(0) ≥ µA(x),

(2) µA(x ∗ z) ≥ T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y)),

(3) νA(0) ≤ νA(x),

(4) νA(x ∗ z) ≤ C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νA(y)),

for all x, y, z ∈ X.
Denote by A = (µA, νA) ∈ (T,C)IFPII(X), the set of all intuitionistic fuzzy positive implica-

tive ideals of BCI-algebra X under norms(t-norm T and t-conorm C).

Example 3.3. Let X = {0, 1, 2, 3} be a set given by the following Cayley table:

* 0 1 2 3

0 0 0 0 3

1 1 0 0 3

2 2 2 0 3

3 3 3 3 0

Then (X, ∗, 0) is a BCI-algebra. Define A = (µA, νA) ∈ IFS(X) as

µA(x) =

 1 if x = 0, 3

t if x = 1, 2

and

νA(x) =

 0 if x = 0, 3

s if x = 1, 2

such that 0 < t + s ≤ 1 and t, s ∈ (0, 1). Let T (a, b) = Tp(a, b) = ab and C(a, b) = Cp(a, b) =

a+ b− ab for alla, b ∈ [0, 1] then A = (µA, νA) ∈ (T,C)IFPII(X).
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Proposition 3.9. Let A = (µA, νA) ∈ IFS(X) and T,C be idempotent. Then A =

(µA, νA) ∈ (T,C)IFPII(X) if and only if the set

As,t = {x ∈ X : A(x) ⊇ (s, t)}

be either empty or a positive implicative ideal of BCI-algebra X for every s, t ∈ [0, 1].

Proof. Let A = (µA, νA) ∈ (T,C)IFPII(X) and As,t = {x ∈ X : A(x) ⊇ (s, t)} be not

empty then for any x ∈ As,t we have µA(x) ≥ s and νA(x) ≤ t so µA(0) ≥ µA(x) ≥ s and

νA(0) ≤ νA(x) ≤ t thus A(0) ⊇ (s, t) which means that 0 ∈ As,t.

Also let ((x ∗ z) ∗ z) ∗ (y ∗ z) ∈ As,t and y ∈ As,t. Then

µA(x ∗ z) ≥ T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y)) ≥ T (s, s) = s

and

νA(x ∗ z) ≤ C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νA(y)) ≤ C(t, t) = t

thus x ∗ z ∈ As,t. Then As,t is a posive implicative ideal of X for every s, t ∈ [0, 1].

Conversely, let As,t be not empty and be a positive implicative ideal of X for every s, t ∈ [0, 1].

Then for any x ∈ As,t we have A(0) ⊇ (s, t) then A(0) ⊇ (s, t) and so µA(x) ≥ s and νA(x) ≤ t.
Let s = T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y)) and t = C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νA(y)) with

((x ∗ z) ∗ z) ∗ (y ∗ z) ∈ As,t and y ∈ As,t. Thus x ∗ z ∈ As,t. Therefore

µA(x ∗ z) ≥ s = T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y))

and

νA(x ∗ z) ≤ t = C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νA(y))

so A = (µA, νA) ∈ (T,C)IFPII(X).

We prove that every (T,C)IFPII(X) will be (T,C)IFI(X) as following proposition.

Whereas the converse of this proposition may not be true. For this consider the following

example.

Proposition 3.10. IfA = (µA, νA) ∈ (T,C)IFPII(X), thenA = (µA, νA) ∈ (T,C)IFI(X).

Proof. Let x, y, z ∈ X and A = (µA, νA) ∈ (T,C)IFPII(X). Then

(1) µA(0) ≥ µA(x),

(2) µA(x ∗ z) ≥ T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y)),

(3) νA(0) ≤ νA(x),

(4) νA(x ∗ z) ≤ C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νA(y)).

Now in (2) and (4) let z = 0 then

µA(x ∗ 0) ≥ T (µA(((x ∗ 0) ∗ 0) ∗ (y ∗ 0)), µA(y))

and

νA(x ∗ 0) ≤ C(νA(((x ∗ 0) ∗ 0) ∗ (y ∗ 0)), νA(y))

which mean that

µA(x) ≥ T (µA(x ∗ y), µA(y))
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and

νA(x) ≤ C(νA(x ∗ y, νA(y)).

Therefore A = (µA, νA) ∈ (T,C)IFI(X).

Example 3.4. Consider the BCI-algebra X = {0, 1, 2, 3, 4} with the following caley table:

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 3 4 1 0

Then (X, ∗, 0) is a BCI-algebra. Define A = (µA, νA) ∈ IFS(X) as

µA(x) =

 1 if x = 0, 2

t if x = 1, 3, 4

and

νA(x) =

 0 if x = 0, 2

s if x = 1, 3, 4

such that 0 < t + s ≤ 1 and t, s ∈ (0, 1). Let T (a, b) = Tp(a, b) = ab and C(a, b) =

Cp(a, b) = a + b − ab for all a, b ∈ [0, 1] then A = (µA, νA) ∈ (T,C)IFI(X) but A =

(µA, νA) /∈ (T,C)IFPII(X) because: as we let x = 4, z = 3, y = 2 so from µA(x ∗ z) ≥
T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y)) we get that t ≥ 1 and this is a contradition with t, s ∈ (0, 1).

Proposition 3.11. IfA = (µA, νA) ∈ (T,C)IFPII(X), then4A = (µA, µ̄A) ∈ (T,C)IFPII(X).

Proof. Let x, y, z ∈ X. As A = (µA, νA) ∈ (T,C)IFPII(X) so

µA(0) ≥ µA(x) (1)

and then 1− µA(0) ≤ 1− µA(x) then

µ̄A(0) ≤ µ̄A(x). (2)

Also

µA(x ∗ z) ≥ T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y)), (3)

thus

1− µA(x ∗ z) ≤ 1− T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y))

then

µ̄A(x ∗ z) ≤ C(1− µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), 1− µA(y))

then

µ̄A(x ∗ z) ≤ C(µ̄A(((x ∗ z) ∗ z) ∗ (y ∗ z)), µ̄A(y)). (4)

Now (1)-(4) give us that 4A = (µA, µ̄A) ∈ (T,C)IFPII(X).
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Proposition 3.12. IfA = (µA, νA) ∈ (T,C)IFPII(X), then5A = (ν̄A, νA) ∈ (T,C)IFPII(X).

Proof. Let x, y, z ∈ X. As A = (µA, νA) ∈ (T,C)IFPII(X) so

νA(0) ≤ νA(x) (1)

and then 1− νA(0) ≥ 1− νA(x) then

ν̄A(0) ≥ ν̄A(x). (2)

Also

νA(x ∗ z) ≤ C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νA(y)) (3)

thus

1− νA(x ∗ z) ≥ 1− C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νA(y))

then

ν̄A(x ∗ z) ≥ T (1− νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), 1− νA(y)))

then

ν̄A(x ∗ z) ≥ T (ν̄A(((x ∗ z) ∗ z) ∗ (y ∗ z)), ν̄A(y)). (4)

As (1)-(4) so 5A = (µA, µ̄A) ∈ IFPIIN(X).

Proposition 3.13. A = (µA, νA) ∈ (T,C)IFPII(X) if and only if 4A = (µA, µ̄A) ∈
(T,C)IFPII(X) and 5A = (ν̄A, νA) ∈ (T,C)IFPII(X).

Proof. Use Proposition 3.11 and Proposition 3.12.

§4. (T,C)IFS(X), (T,C)IFI(X), (T,C)IFPII(X) under inter-

sections, cartesian products and homomorphisms

Proposition 4.1. Let A = (µA, νA) ∈ (T,C)IFS(X) and B = (µB , νB) ∈ (T,C)IFS(X).

Then A ∩B ∈ (T,C)IFS(X).

Proof. Let x, y ∈ X. Then

µA∩B(x ∗ y) = T (µA(x ∗ y), µB(x ∗ y))

≥ T (T (µA(x), µA(y)), T (µB(x), µB(y)))

= T (T (µA(x), µB(x)), T (µA(y), µB(y)))

= T (µA∩B(x), µA∩B(y))

thus

µA∩B(x ∗ y) ≥ T (µA∩B(x), µA∩B(y)).

Also
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νA∩B(x ∗ y) = C(νA(x ∗ y), νB(x ∗ y))

≤ C(C(νA(x), νA(y)), C(νB(x), νB(y)))

= C(C(νA(x), νB(x)), C(νA(y), νB(y)))

= C(νA∩B(x), νA∩B(y))

then

νA∩B(x ∗ y) ≤ C(νA∩B(x), νA∩B(y)).

Thus A ∩B = (µA∩B , νA∩B) ∈ (T,C)IFS(X).

Proposition 4.2. Let A = (µA, νA) ∈ (T,C)IFI(X) and B = (µB , νB) ∈ (T,C)IFI(X).

Then A ∩B ∈ (T,C)IFI(X).

Proof. Let x, y ∈ X. Then

(1)

µA∩B(0) = T (µA(0), µB(0)) ≥ T (µA(x), µB(x)) = µA∩B(x)

thus

µA∩B(0) ≥ µA∩B(x).

(2)

µA∩B(x) = T (µA(x), µB(x))

≥ T (T (µA(x ∗ y), µA(y)), T (µB(x ∗ y), µB(y)))

= T (T (µA(x ∗ y), µB(x ∗ y)), T (µA(y), µB(y)))

= T (µA∩B(x ∗ y), µA∩B(y))

so

µA∩B(x) ≥ T (µA∩B(x ∗ y), µA∩B(y)).

(3)

νA∩B(0) = C(νA(0), µB(0)) ≤ C(νA(x), νB(x)) = νA∩B(x)

so

νA∩B(0) ≤ νA∩B(x).

(4)

νA∩B(x) = C(νA(x), µB(x))

≤ C(C(νA(x ∗ y), νA(y)), C(νB(x ∗ y), νB(y)))

= C(C(νA(x ∗ y), νB(x ∗ y)), C(νA(y), νB(y)))

= C(νA∩B(x ∗ y), νA∩B(y))
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then

νA∩B(x) ≤ C(νA∩B(x ∗ y), νA∩B(y)).

Now (1)-(4) give us that A ∩B = (µA∩B , νA∩B) ∈ (T,C)IFI(X).

Proposition 4.3. LetA = (µA, νA) ∈ (T,C)IFPII(X) andB = (µB , νB) ∈ (T,C)IFPII(X).

Then A ∩B ∈ (T,C)IFPII(X).

Proof. Let x, y, z ∈ X. Then

(1)

µA∩B(0) = T (µA(0), µB(0)) ≥ T (µA(x), µB(x)) = µA∩B(x)

thus

µA∩B(0) ≥ µA∩B(x).

(2)

µA∩B(x ∗ z) = T (µA(x ∗ z), µB(x ∗ z))

≥ T (T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µA(y)), T (µB(((x ∗ z) ∗ z) ∗ (y ∗ z)), µB(y)))

= T (T (µA(((x ∗ z) ∗ z) ∗ (y ∗ z)), µB(((x ∗ z) ∗ z) ∗ (y ∗ z))), T (µA(y), µB(y)))

= T (µA∩B(((x ∗ z) ∗ z) ∗ (y ∗ z))), µA∩B(y))

so

µA∩B(x ∗ z) ≥ T (µA∩B(((x ∗ z) ∗ z) ∗ (y ∗ z))), µA∩B(y)).

(3)

νA∩B(0) = C(νA(0), µB(0)) ≤ C(νA(x), νB(x)) = νA∩B(x)

so

νA∩B(0) ≤ νA∩B(x).

(4)

νA∩B(x ∗ z) = C(νA(x ∗ z), νB(x ∗ z))

≤ C(C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νA(y)), C(νB(((x ∗ z) ∗ z) ∗ (y ∗ z)), νB(y)))

= C(C(νA(((x ∗ z) ∗ z) ∗ (y ∗ z)), νB(((x ∗ z) ∗ z) ∗ (y ∗ z))), C(νA(y), νB(y)))

= C(νA∩B(((x ∗ z) ∗ z) ∗ (y ∗ z))), νA∩B(y))

so

νA∩B(x ∗ z) ≤ C(νA∩B(((x ∗ z) ∗ z) ∗ (y ∗ z))), νA∩B(y)).

Now (1)-(4) give us that A ∩B = (µA∩B , νA∩B) ∈ (T,C)IFPII(X).

Proposition 4.4. Let A = (µA, νA) ∈ (T,C)IFS(X) and B = (µB , νB) ∈ (T,C)IFS(Y ).

Then A×B ∈ (T,C)IFS(X × Y ).
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Proof. Let (x1, y1), (x2, y2) ∈ X × Y. Then

(µA×B)((x1, y1) ∗ (x2, y2)) = (µA×B)(x1 ∗ x2, y1 ∗ y2)

= T (µA(x1 ∗ x2), µB(y1 ∗ y2))

≥ T (T (µA(x1), µA(x2)), T (µB(y1), µB(y2)))

= T (T (µA(x1), µB(y1)), T (µA(x2), µB(y2)))

= T (µA×B(x1, y1), µA×B(x2, y2))

thus

µA×B((x1, y1) ∗ (x2, y2)) ≥ T (µA×B(x1, y1), µA×B(x2, y2)).

Also

(νA×B)((x1, y1) ∗ (x2, y2)) = (νA×B)(x1 ∗ x2, y1 ∗ y2)

= C(νA(x1 ∗ x2), νB(y1 ∗ y2))

≤ C(C(νA(x1), νA(x2)), C(νB(y1), νB(y2)))

= C(C(νA(x1), νB(y1)), C(νA(x2), νB(y2)))

= C(νA×B(x1, y1), νA×B(x2, y2))

then

νA×B((x1, y1) ∗ (x2, y2)) ≤ C(νA×B(x1, y1), νA×B(x2, y2)).

Therefore

A×B = (µA×B , νA×B) ∈ (T,C)IFS(X × Y ).

Proposition 4.5. Let A = (µA, νA) ∈ (T,C)IFI(X) and B = (µB , νB) ∈ (T,C)IFI(Y ).

Then A×B ∈ (T,C)IFI(X × Y ).

Proof. Let (x, y) ∈ X × Y. Then

µA×B(0, 0) = T (µA(0), µB(0)) ≥ T (µA(x), µB(y)) = µA×B(x, y)

and

νA×B(0, 0) = C(νA(0), νB(0)) ≤ C(νA(x), νB(y)) = νA×B(x, y).

Also let xi ∈ X and yi ∈ Y for i = 1, 2. Now

µA×B(x1, y1) = T (µA(x1), µB(y1))

≥ T (T (µA(x1 ∗ x2), µA(x2)), T (µB(y1 ∗ y2), µB(y2)))

= T (T (µA(x1 ∗ x2), µB(y1 ∗ y2)), T (µA(x2), µB(y2)))

= T (µA×B(x1 ∗ x2, y1 ∗ y2), µA×B(x2, y2))
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= T (µA×B((x1, y1) ∗ (x2, y2)), µA×B(x2, y2))

thus

µA×B(x1, y1) ≥ T (µA×B((x1, y1) ∗ (x2, y2)), µA×B(x2, y2)).

Also

νA×B(x1, y1) = C(νA(x1), νB(y1))

≤ C(C(νA(x1 ∗ x2), νA(x2)), C(νB(y1 ∗ y2), νB(y2)))

= C(C(νA(x1 ∗ x2), νB(y1 ∗ y2)), C(νA(x2), νB(y2)))

= C(νA×B(x1 ∗ x2, y1 ∗ y2), νA×B(x2, y2))

= C(νA×B((x1, y1) ∗ (x2, y2)), νA×B(x2, y2))

thus

νA×B(x1, y1) ≤ C(νA×B((x1, y1) ∗ (x2, y2)), νA×B(x2, y2)).

Therefore

A×B = (µA×B , νA×B) ∈ (T,C)IFI(X × Y ).

Proposition 4.6. LetA = (µA, νA) ∈ (T,C)IFPII(X) andB = (µB , νB) ∈ (T,C)IFPII(Y ).

Then A×B ∈ (T,C)IFPII(X × Y ).

Proof. Let (x, y) ∈ X × Y. Then

µA×B(0, 0) = T (µA(0), µB(0)) ≥ T (µA(x), µB(y)) = µA×B(x, y)

and

νA×B(0, 0) = C(νA(0), νB(0)) ≤ C(νA(x), νB(y)) = νA×B(x, y).

Also let (x1, x2), (y1, y2), (z1, z2) ∈ X × Y. Then

µA×B((x1, x2) ∗ (z1, z2)) = µA×B(x1 ∗ z1, x2 ∗ z2) = T (µA(x1 ∗ z1), µB(x2 ∗ z2))

≥ T (T (µA(((x1 ∗ z1) ∗ z1) ∗ (y1 ∗ z1)), µA(y1)), T (µB(((x2 ∗ z2) ∗ z2) ∗ (y2 ∗ z2)), µB(y2)))

= T (T (µA(((x1 ∗ z1) ∗ z1) ∗ (y1 ∗ z1)), µB(((x2 ∗ z2) ∗ z2) ∗ (y2 ∗ z2))), T (µA(y1), µB(y2)))

= T (µA×B(((x1 ∗ z1) ∗ z1) ∗ (y1 ∗ z1), ((x2 ∗ z2) ∗ z2) ∗ (y2 ∗ z2)), µA×B(y1, y2))

= T (µA×B((((x1, x2) ∗ (z1, z2)) ∗ (z1, z2)) ∗ ((y1, y2) ∗ (z1, z2))), µA×B(y1, y2))

therefore

µA×B((x1, x2)∗(z1, z2)) ≥ T (µA×B((((x1, x2)∗(z1, z2))∗(z1, z2))∗((y1, y2)∗(z1, z2))), µA×B(y1, y2)).

Also

νA×B((x1, x2) ∗ (z1, z2)) = νA×B(x1 ∗ z1, x2 ∗ z2) = C(νA(x1 ∗ z1), νB(x2 ∗ z2))
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≤ C(C(νA(((x1 ∗ z1) ∗ z1) ∗ (y1 ∗ z1)), νA(y1)), C(νB(((x2 ∗ z2) ∗ z2) ∗ (y2 ∗ z2)), νB(y2)))

= C(C(νA(((x1 ∗ z1) ∗ z1) ∗ (y1 ∗ z1)), νB(((x2 ∗ z2) ∗ z2) ∗ (y2 ∗ z2))), C(νA(y1), νB(y2)))

= C(νA×B(((x1 ∗ z1) ∗ z1) ∗ (y1 ∗ z1), ((x2 ∗ z2) ∗ z2) ∗ (y2 ∗ z2)), νA×B(y1, y2))

= C(νA×B((((x1, x2) ∗ (z1, z2)) ∗ (z1, z2)) ∗ ((y1, y2) ∗ (z1, z2))), νA×B(y1, y2))

therefore

νA×B((x1, x2)∗(z1, z2)) ≤ C(νA×B((((x1, x2)∗(z1, z2))∗(z1, z2))∗((y1, y2)∗(z1, z2))), νA×B(y1, y2)).

Therefore

A×B = (µA×B , νA×B) ∈ (T,C)IFPII(X × Y ).

Proposition 4.7. If A = (µA, νA) ∈ (T,C)IFS(X) and ϕ : X → Y be a homomorphism

of BCI-algebras, then ϕ(A) ∈ (T,C)IFS(Y ).

Proof. Let y1, y2 ∈ Y and x1, x2 ∈ X such that ϕ(x1) = y1 and ϕ(x2) = y2. Then

ϕ(µA)(y1 ∗ y2) = sup{µA(x1 ∗ x2) | x1, x2 ∈ X,ϕ(x1) = y1, ϕ(x2) = y2}

≥ sup{T (µA(x1), µA(x2) | x1, x2 ∈ X,ϕ(x1) = y1, ϕ(x2) = y2}

= T (sup{µA(x1) | x1 ∈ X,ϕ(x1) = y1}, sup{µA(x2) | x2 ∈ X,ϕ(x2) = y2})

= T (ϕ(µA)(y1), ϕ(µA)(y2))

thus

ϕ(µA)(y1 ∗ y2) ≥ T (ϕ(µA)(y1), ϕ(µA)(y2)).

Also

ϕ(νA)(y1 ∗ y2) = inf{νA(x1 ∗ x2) | x1, x2 ∈ X,ϕ(x1) = y1, ϕ(x2) = y2}

≤ inf{C(νA(x1), νA(x2) | x1, x2 ∈ X,ϕ(x1) = y1, ϕ(x2) = y2}

= C(inf{µA(x1) | x1 ∈ X,ϕ(x1) = y1}, inf{νA(x2) | x2 ∈ X,ϕ(x2) = y2})

= C(ϕ(νA)(y1), ϕ(µA)(y2))

so

ϕ(νA)(y1 ∗ y2) ≤ C(ϕ(νA)(y1), ϕ(νA)(y2)).

Then ϕ(A) = (ϕ(µA), ϕ(νA)) ∈ (T,C)IFS(Y ).

Proposition 4.8. If B = (µB , νB) ∈ (T,C)IFS(Y ) and ϕ : X → Y be a homomorphism

of BCI-algebras, then ϕ−1(B) ∈ (T,C)IFS(X).
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Proof. Let x1, x2 ∈ X. Then

ϕ−1(µB)(x1 ∗ x2) = µB(ϕ(x1 ∗ x2))

= µB(ϕ(x1) ∗ ϕ(x2))

≥ T (µB(ϕ(x1)), µB(ϕ(x2)))

= T (ϕ−1(µB)(x1), ϕ−1(µB)(x2))

thus

ϕ−1(µB)(x1 ∗ x2) ≥ T (ϕ−1(µB)(x1), ϕ−1(µB)(x2)).

Also

ϕ−1(νB)(x1 ∗ x2) = νB(ϕ(x1 ∗ x2))

= νB(ϕ(x1) ∗ ϕ(x2))

≤ C(νB(ϕ(x1)), νB(ϕ(x2)))

= C(ϕ−1(νB)(x1), ϕ−1(νB)(x2))

then

ϕ−1(νB)(x1 ∗ x2) ≤ C(ϕ−1(νB)(x1), ϕ−1(νB)(x2)).

Therefore ϕ−1(B) = (ϕ−1(µB), ϕ−1(νB)) ∈ (T,C)IFS(X).

Proposition 4.9. If A = (µA, νA) ∈ (T,C)IFI(X) and ϕ : X → Y be a homomorphism

of BCI-algebras, then ϕ(A) ∈ (T,C)IFI(Y ).

Let x ∈ X and y ∈ Y with ϕ(x) = y. Now

ϕ(µA)(0) = sup{µA(0) | 0 ∈ X,ϕ(0) = 0} ≥ sup{µA(x) | x ∈ X,ϕ(x) = y} = ϕ(µA)(y)

thus

ϕ(µA)(0) ≥ ϕ(µA)(y)

and

ϕ(νA)(0) = inf{νA(0) | 0 ∈ X,ϕ(0) = 0} ≤ inf{νA(x) | x ∈ X,ϕ(x) = y} = ϕ(νA)(y)

then

ϕ(νA)(0) ≤ ϕ(νA)(y).

Also let x, x1 ∈ X such that ϕ(x) = y, ϕ(x1) = y1. Then

ϕ(µA)(y) = sup{µA(x) | x ∈ X,ϕ(x) = y}

≥ sup{T (µA(x ∗ x1), µA(x1)) | x, x1 ∈ X,ϕ(x) = y, ϕ(x1) = y1}

= T (sup{µA(x ∗ x1) | x, x1 ∈ X,ϕ(x) = y, ϕ(x1) = y1}, sup{µA(x1) | x1 ∈ X,ϕ(x1) = y1})

= T (sup{µA(x ∗ x1) | x, x1 ∈ X,ϕ(x ∗ x1) = y ∗ y1}, sup{µA(x1) | x1 ∈ X,ϕ(x1) = y1}
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= T (ϕ(µA)(y ∗ y1), ϕ(µA)(y1))

therefore

ϕ(µA)(y) ≥ T (ϕ(µA)(y ∗ y1), ϕ(µA)(y1)).

And

ϕ(νA)(y) = inf{νA(x) | x ∈ X,ϕ(x) = y}

≤ inf{C(νA(x ∗ x1), νA(x1)) | x, x1 ∈ X,ϕ(x) = y, ϕ(x1) = y1}

= C(inf{νA(x ∗ x1) | x, x1 ∈ X,ϕ(x) = y, ϕ(x1) = y1}, inf{νA(x1) | x1 ∈ X,ϕ(x1) = y1})

= C(inf{νA(x ∗ x1) | x, x1 ∈ X,ϕ(x ∗ x1) = y ∗ y1}, inf{νA(x1) | x1 ∈ X,ϕ(x1) = y1}

= C(ϕ(νA)(y ∗ y1), ϕ(νA)(y1))

thus

ϕ(νA)(y) ≤ C(ϕ(νA)(y ∗ y1), ϕ(νA)(y1)).

Therefore ϕ(A) = (ϕ(µA), ϕ(νA)) ∈ (T,C)IFI(Y ).

Proposition 4.10. If B = (µB , νB) ∈ (T,C)IFI(Y ) and ϕ : X → Y be a homomorphism

of BCI-algebras, then ϕ−1(B) ∈ (T,C)IFI(X).

Proof. Let x ∈ X. Then

ϕ−1(µB)(0) = µB(ϕ(0)) ≥ µB(ϕ(x)) = ϕ−1(µB)(x)

and

ϕ−1(νB)(0) = νB(ϕ(0)) ≤ νB(ϕ(x)) = ϕ−1(νB)(x).

Let x, x1 ∈ X. As

ϕ−1(µB)(x) = µB(ϕ(x))

≥ T (µB(ϕ(x) ∗ ϕ(x1)), µB(ϕ(x1)))

= T (µB(ϕ(x ∗ x1)), µB(ϕ(x1)))

= T (ϕ−1(µB)(x ∗ x1), ϕ−1(µB)(x1))

so

ϕ−1(µB)(x) ≥ T (ϕ−1(µB)(x ∗ x1), ϕ−1(µB)(x1))

and

ϕ−1(νB)(x) = νB(ϕ(x))

≤ C(νB(ϕ(x) ∗ ϕ(x1)), νB(ϕ(x1)))

= C(νB(ϕ(x ∗ x1)), νB(ϕ(x1)))

= C(ϕ−1(νB)(x ∗ x1), ϕ−1(νB)(x1))

thus

ϕ−1(νB)(x) ≤ C(ϕ−1(νB)(x ∗ x1), ϕ−1(νB)(x1)).

Therefore ϕ−1(B) = (ϕ−1(µB), ϕ−1(νB)) ∈ (T,C)IFI(X).
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Proposition 4.11. If A = (µA, νA) ∈ (T,C)IFPII(X) and ϕ : X → Y be a homomor-

phism of BCI-algebras, then ϕ(A) ∈ (T,C)IFPII(Y ).

Let x ∈ X and y ∈ Y with ϕ(x) = y. Now

ϕ(µA)(0) = sup{µA(0) | 0 ∈ X,ϕ(0) = 0} ≥ sup{µA(x) | x ∈ X,ϕ(x) = y} = ϕ(µA)(y)

thus

ϕ(µA)(0) ≥ ϕ(µA)(y)

and

ϕ(νA)(0) = inf{νA(0) | 0 ∈ X,ϕ(0) = 0} ≤ inf{νA(x) | x ∈ X,ϕ(x) = y} = ϕ(νA)(y)

then

ϕ(νA)(0) ≤ ϕ(νA)(y).

Also let xi ∈ X such that ϕ(xi) = yi and i = 1, 2, 3. Then

ϕ(µA)(y1 ∗ y2) = sup{µA(x1 ∗ x2) | xi ∈ X,ϕ(xi) = yi}

≥ sup{T (µA(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)), µA(x3)) | xi ∈ X,ϕ(xi) = yi}

= T (sup{µA(((x1 ∗x2)∗x2)∗(x3 ∗x2)) | xi ∈ X,ϕ(xi) = yi}, sup{µA(x3) | x3 ∈ X,ϕ(x3) = y3})

= T (ϕ(µA)(((y1 ∗ y2) ∗ y2) ∗ (y3 ∗ y2)), ϕ(µA)(y3))

therefore

ϕ(µA)(y1 ∗ y2) ≥ T (ϕ(µA)(((y1 ∗ y2) ∗ y2) ∗ (y3 ∗ y2)), ϕ(µA)(y3)).

And

ϕ(νA)(y1 ∗ y2) = inf{νA(x1 ∗ x2) | xi ∈ X,ϕ(xi) = yi}

≤ inf{C(νA(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)), µA(x3)) | xi ∈ X,ϕ(xi) = yi}

= C(inf{νA(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)) | xi ∈ X,ϕ(xi) = yi}, inf{νA(x3) | x3 ∈ X,ϕ(x3) = y3})

= C(ϕ(νA)(((y1 ∗ y2) ∗ y2) ∗ (y3 ∗ y2)), ϕ(νA)(y3))

therefore

ϕ(νA)(y1 ∗ y2) ≤ C(ϕ(νA)(((y1 ∗ y2) ∗ y2) ∗ (y3 ∗ y2)), ϕ(νA)(y3)).

Therefore ϕ(A) = (ϕ(µA), ϕ(νA)) ∈ (T,C)IFPII(Y ).

Proposition 4.12. If B = (µB , νB) ∈ (T,C)IFPII(Y ) and ϕ : X → Y be a homomor-

phism of BCI-algebras, then ϕ−1(B) ∈ (T,C)IFPII(X).

Proof. Let x ∈ X. Then

ϕ−1(µB)(0) = µB(ϕ(0)) ≥ µB(ϕ(x)) = ϕ−1(µB)(x)

and

ϕ−1(νB)(0) = νB(ϕ(0)) ≤ νB(ϕ(x)) = ϕ−1(νB)(x).

Let x1, x2, x3 ∈ X. As
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ϕ−1(µB)(x1 ∗ x2) = µB(ϕ(x1 ∗ x2))

= µB(ϕ(x1) ∗ ϕ(x2))

≥ T (µB(((ϕ(x1) ∗ ϕ(x2)) ∗ ϕ(x2)) ∗ (ϕ(x3) ∗ ϕ(x2)))), µB(ϕ(x3)))

= T (µB(ϕ)(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)), µB(ϕ(x3)))

= T (ϕ−1(µB)(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)), ϕ−1(µB)(x3))

so

ϕ−1(µB)(x1 ∗ x2) ≥ T (ϕ−1(µB)(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)), ϕ−1(µB)(x3)).

Also

ϕ−1(νB)(x1 ∗ x2) = νB(ϕ(x1 ∗ x2))

= νB(ϕ(x1) ∗ ϕ(x2))

≤ C(νB(((ϕ(x1) ∗ ϕ(x2)) ∗ ϕ(x2)) ∗ (ϕ(x3) ∗ ϕ(x2)))), νB(ϕ(x3)))

= C(νB(ϕ)(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)), νB(ϕ(x3)))

= C(ϕ−1(νB)(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)), ϕ−1(νB)(x3))

so

ϕ−1(νB)(x1 ∗ x2) ≤ C(ϕ−1(νB)(((x1 ∗ x2) ∗ x2) ∗ (x3 ∗ x2)), ϕ−1(νB)(x3)).

Therefore ϕ−1(B) = (ϕ−1(µB), ϕ−1(νB)) ∈ (T,C)IFPII(X).
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Abstract We exhibit representations of the coefficients of the characteristic polynomial of

any matrix An×n, especially in terms of the (exponential) complete Bell polynomials. Besides,

we use the Faddeev-Sominsky method to obtain the Lanczos formula for the resolvent of a

matrix. We indicate that the Newton’s recurrence formula can be solved via the inversion of
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§1. Introduction

For an arbitrary matrix An×n = (Ai
j) its characteristic polynomial [1–3]:

p(λ) ≡ λn + a1λ
n−1 + ...+ an−1λ+ an, (1)

can be obtained, through several procedures [1,4–8], directly from the condition det (Ai
j−λδij) =

0. The method of Leverrier-Takeno [4, 9–13] is a simple and interesting technique to construct

(1) based in the traces of the powers Ar, r = 1, ..., n.

On the other hand, it is well known that an arbitrary matrix satisfies its characteristic

equation, which is the Cayley-Hamilton-Frobenius identity [1–3,14]:

An + a1A
n−1 + ...an−1A+ anI = 0. (2)

If A is non-singular (that is, det A 6= 0), then from (2) we obtain its inverse matrix:

A−1 = − 1

an

(
An−1 + a1A

n−2 + ...+ an−1I

)
, (3)
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where an 6= 0 because an = (−1)n det A.

Faddeev-Sominsky [15–24] proposed an algorithm to determine A−1 in terms of Ar and

their traces, which is equivalent [23] to the Cayley-Hamilton-Frobenius theorem (2) plus the

Leverrier-Takeno’s method to construct the characteristic polynomial of a matrix A. In Sec.

2, we use the Faddeev-Sominsky’s procedure to deduce the Lanczos expression [25] for the

resolvent of A [20, 21,26,27], that is, the Laplace transform of exp (tA) [28].

§2. Leverrier-Takeno technique

If we define the quantities:

a0 = 1, sk = tr Ak k = 1, 2, ..., n (4)

then the approach of Leverrier-Takeno [4,9–13] implies (1) wherein the ai are determined with

the Newton’s recurrence relation:

rar + s1ar−1 + s2ar−2 + ...+ sr−1a1 + sr = 0, r = 1, 2, ..., n (5)

therefore:

a1 = −s1, 2! a2 = (s1)2 − s2, 3! a3 = −(s1)3 + 3s1s2 − 2s3,

4! a4 = (s1)4 − 6(s1)2s2 + 8s1s3 + 3(s2)2 − 6s4, (6)

5! a5 = −24s5 − (s1)5 + 10(s1)3s2 − 20(s1)2s3 − 15(s2)2s1 + 30s1s4 + 20s2s3, etc,

in particular, det A = (−1)nan, that is, the determinant of any matrix only depends on the

traces sr, which means that A and its transpose have the same determinant. In [29–31] we find

the general expression:

ak =
(−1)k

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 k − 1 0 ... 0

s2 s1 k − 2 ... 0

... ... ... ... ...

... ... ... ... ...

sk−1 sk−2 ... ... 1

sk sk−1 ... ... s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, k = 1, ..., n, (7)

which allows reproduce the values (6).

We can exhibit a relation to determine the coefficients aj via the complete Bell polynomials

[8, 32–40], in fact, we have the following representation [8]:

m! am = Ym

(
− 0!s1,−1!s2,−2!s3,−3!s4, ...,−(m− 2)!sm−1,−(m− 1)!sm

)
. (8)

78



Vol. 17 Leverrier-Takeno and Faddeev-Sominsky algorithms 79

such that [37, 41]:

Ym(x1, x2, ..., xm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m−1
0

)
x1

(
m−1
1

)
x2 ...

(
m−1
m−2

)
xm−1

(
m−1
m−1

)
xm

−1
(
m−2
0

)
x1 ...

(
m−2
m−3

)
xm−2

(
m−2
m−2

)
xm−1

0 −1 ...
(
m−3
m−4

)
xm−3

(
m−3
m−3

)
xm−2

... ... ... ... ...

... ... ... ... ...

0 0 ...
(
1
0

)
x1

(
1
1

)
x2

0 0 ... −1
(
0
0

)
x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (9)

therefore:

Y0 = 1, Y1 = x1, Y2 = x21 + x2,

Y3 = x31 + 3 x1x3 + x3, Y4 = x41 + 6 x21x2 + 4 x1x3 + 3 x22 + x4,

Y5 = x51 + 10 x31x2 + 10 x21x3 + 15 x1x
2
2 + 5 x1x4 + 10 x2x3 + x5, ... (10)

We see that (8) and (10) imply (6) if we employ x1 = −s1, x2 = −s2, x3 = −2s3, x4 = −6s4,

x5 = −24s5, ... It is simple to prove that (9) with xk = −(k − 1)! sk gives (7), thus the coef-

ficients of the characteristic polynomial (1) are generated by the (exponential) complete Bell

polynomials.

In the Newtons formula (5) the quantities sr are known, and the aj are solutions of the

triangular linear system [42–44]:

An×n (aj)n×1 ≡

1 0 0 ... ... 0

s1 2 0 ... ... 0

s2 s1 3 ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... 0

sn−1 sn−2 sn−3 ... s1 n





a1

a2

a3

...

...

...

an


= −



s1

s2

s3

...

...

...

sn


, (11)

then: 
a1

...

...

an

 = −A−1


s1

...

...

sn

 , (12)
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which gives the opportunity to invert a triangular matrix via interesting algorithms applying

the Faddeev-Sominsky method [15–24], matrix multiplication [45,46] or binomial series [47].

§3. Faddeev-Sominsky procedure

The Faddeev-Sominsky’s technique to obtain A−1 is a sequence of algebraic computations

on the powers Ar and their traces, in fact, this algorithm is given via the following instructions:

B1 = A, q1 = tr B1, C1 = B1 − q1I,

B2 = C1 A, q2 =
1

2
tr B2, C2 = B2 − q2I,

... ... ...

... ... ... (13)

Bn−1 = Cn−2 A, qn−1 =
1

n− 1
tr Bn−1, Cn−1 = Bn−1 − qn−1I,

Bn = Cn−1 A, qn =
1

n
tr Bn,

then:

A−1 =
1

qn
Cn−1. (14)

For example, if we apply (13) for n = 4, then it is easy to see that the corresponding qr imply (6)

with qj = −aj , and besides (14) reproduces (3). By mathematical induction one can prove that

(13) and (14) are equivalent to (3), (4) and (5), showing [23] thus that the Faddeev-Sominsky’s

technique has its origin in the Leverrier-Takeno method plus the Cayley-Hamilton-Frobenius

theorem.

From (13) we can see that [26]:

Ck = Ak+a1A
k−1+a2A

k−2+...+ak−1A+akI, k = 1, 2, ..., n−1, Cn = Bn−qnI = 0, (15)

and for k = n− 1:

Cn−1 = An−1 + a1A
n−2 + a2A

n−3 + ...+ an−2A+ an−1I
(3)
= − anA−1

in harmony with (14) because an = −qn. The property Cn = 0 is equivalent to (2); if A is

singular, the process (13) gives the adjoint matrix of A [2,3,16], in fact, Adj A = (−1)n+1Cn−1.

If the roots of (1) have distinct values, then the Faddeev-Sominsky’s algorithm allows

obtain the corresponding eigenvectors of A [6]:

A~uk = λk~uk, k = 1, 2, ..., n, (16)

because for a given value of k, each column of:

Qk ≡ λn−1k I + λn−2k C1 + ...+ Cn−1. (17)
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satisfies (16) [16, 18, 27], and therefore all columns of Qk are proportional to each other, that

is, rank Qk = 1 [18]; we note that Qk = Q(λk) with the participation of the matrix:

Q(z) ≡ zn−1I + zn−2C1 + zn−3C2 + ...+ zCn−2 + Cn−1. (18)

By synthetic division of two polynomials [1]:

p(z)

z − λ
=

n−1∑
r=0

(
λr + a1λ

r−1 + a2λ
r−2 + ...+ ar−1λ+ ar

)
zn−1−r,

then under the change λ → A we obtain the Lanczos expression [25] for the resolvent of a

matrix [20,21,26,27]:

1

zI −A
=

1

p(z)

n−1∑
r=0

zn−1−r Cr =
Q(a)

p(z)
, (19)

if A is non-singular, then [19] for z = 0 implies (14). McCarthy [48] used (19) and the Cauchy’s

integral theorem in complex variable to show the Cayley-Hamilton-Frobenius identity indicated

in (2); the relation (19) is the Laplace transform of exp (tA) [28].

On the other hand, Sylvester [49–52] obtained the following interpolating definition of

f(A):

f(A) =

n∑
j=1

f(λj)
∏
k 6=j

A− λkI
λj − λk

, (20)

which is valid if all eigenvalues are different from each other. Buchheim [53] generalized (20) to

multiple proper values using Hermite interpolation, thereby giving the first completely general

definition of a matrix function. From (19) and (20) for f(s) = 1/(z−s) we deduce the properties:

Q(z) =

n∑
j=1

n∏
k=1,k 6=j

z − λk
λj − λk

(
A− λkI

)
, Qj =

n∏
k=1,k 6=j

(
A− λkI

)

Qj ~uj =

n∏
k=1,k 6=j

(
λj − λk

)
~uj , (21)

hence the eigenvectors of A showed in (16) also are proper vectors of the matrices Qj . Besides,

from (16) and (21):

A Qj ~uj =

n∏
k=1,k 6=j

(
λj − λk

)
λj~uj = λj Qj ~uj , A Qj = λj Qj (22)

that is, each column of Qj is eigenvector of A with proper value λj . The resolvent (19) implies

the relation (A−zI)Q(z) = −p(z)I, then (A−λkI)Q(λk) = −p(λk)I = 0 in according with (22).

From the Sylvester’s formula (20) with f(z) = p(z) we obtain p(A) = 0, which is the

Cayley-Hamilton-Frobenius theorem indicated in (2). If f(z) = etz, then (20) allows to con-

struct exp (tA) that, in particular, is valuable to determine the motion of classical charged

particles into a homogeneous electromagnetic field, and to integrate the Frenet-Serret equation-

s with constant curvatures [54]. In [51, 55] we find that the book of Frazer-Duncan-Collar [56]
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emphasizes the important role of the matrix exponential in solving differential equations and

was the first to employ matrices as an engineering tool, and indeed the first book to treat

matrices as a branch of applied mathematics.
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Abstract For any integer k ≥ 1, denoting by [1, 2, · · · , k] the least common multiple (LCM)

of the integers 1 through k, the Smarandache LCM function, denoted by SL(n), is defined

as the minimum k such that n divides [1, 2, ..., k]. Also, the pseudo Smarandache function,

denoted by Z(n), is defined as the minimum m such that n divides m(m+1)
2

. This paper

considers two Diophantine equations involving the functions SL(n) and Z(n), namely, the

equations Z(n) = SL(n) and Z(n) + SL(n) = n.

Keywords Smarandache LCM function, Pseudo Smarandache function, Diophantine equation.
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§1. Introduction and preliminaries

The pseudo Smarandache function Z(n), introduced by Kashihara [1], is defined as follows:

Z(n) = min {m : n divides m(m+1)
2 }.

Some elementary properties of Z(n) have been studied by Kashihara [1], Ibstedt [2], Ashbacher

[3] and Majumdar [4, 5]. For a recent review of the pseudo Smarandache function, we refer the

reader to Liu [6].

The Smarandache LCM function, denoted by SL(n), is defined as

SL(n) = min {k ≥ 1 : n divides [1, 2, · · · , k]},
where [1, 2, · · · , k] is the least common multiple (LCM) of the integers 1, 2, · · · , k for any k ≥ 1.

The reader is referred to Xiaolin Chen [7] for a brief survey on the Smarandache LCM

function. An explicit expression of SL(n), due to Murthy [8], is given in the following lemma.

Lemma 1.1. Let n = pα1
1 pα2

2 · · · pαr
r be the (unique) representation of the integer n in terms

of its r prime factors p1, p2, · · · , pr. Then,

SL(n) = max {pα1
1 , pα2

2 , · · · , pαr
r }.

Clearly, SL(p) = p for any prime p ≥ 2. Using Lemma 1.1, we may derive the following

values of SL(n) :

SL(1) = 1, SL(2) = 2, SL(3) = 3, SL(4) = 4, SL(5) = 5, SL(6) = 3,

SL(7) = 7, SL(8) = 8, SL(9) = 9, SL(10) = 5, SL(11) = 11, SL(12) = 4,

SL(13) = 13, SL(14) = 7, SL(15) = 5, SL(16) = 16, SL(17) = 17.
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Murthy [8] proposed the solution of the Diophantine equation S(n) = SL(n), where S(n)

is the Smarandache function. The complete solution of the equation has been given by Maohua

[9]. This paper considers the following two Diophantine equations:

Z(n) = SL(n), (1.1)

Z(n) + SL(n) = n. (1.2)

In connection with the equation (1.1), we would need the following results, proofs of which are

given in Majumdar [4].

Lemma 1.2. Let p(≥ 3) be a prime and let n(≥ 1) be an integer such that 2n divides p + 1.

Then, Z(np) = p.

Lemma 1.3. Let p(≥ 3) be a prime and let n(≥ 1) be an integer such that 2n divides p2 + 1.

Then, Z(np2) = p2.

Xin Xu [10] considers the Diophantine equation (1.2). This paper follows a simple approach

to the solution of the equation. To do so, we would need the following result. Theorem 4.2.2

in Majumdar [4] gives a method of finding Z(pq), where p and q(> p) are distinct primes. We

follow the same method to find Z(2kpα) for some special cases in the lemma below.

Lemma 1.4. Let the integer n be of the form n = 2kpα, where p ≥ 3 is a prime, and k ≥ 1

and α ≥ 1 are integers. Then,

(i) Z(n) = pα(2k − 1), if 2k divides (pα − 1) but 2k+1 does not divide (pα − 1),

(ii) Z(n) = 2k(pα − 1), if pα divides (2k − 1),

(iii) Z(n) = pα − 1, if 2k+1 divides (pα − 1).

Proof. Since

Z(n) = Z(2kpα) = min {m : 2kpα divides m(m+1)
2 },

the following two possibilities may arise :

Case 1. When 2k+1 divides m, pα divides (m+ 1).

In this case, there are integers x ≥ 1 and y ≥ 1 such that

m = 2k+1x,m+ 1 = pαy,

which lead to the combined Diophantine equation :

pαy − 2k+1x = 1. (1)

Case 2. When 2k+1 divides (m+ 1), pα divides m.

Then, there are integers x ≥ 1 and y ≥ 1 such that

m+ 1 = 2k+1x,m = pαy,

so that the combined Diophantine equation is

2k+1x− pαy = 1. (2)

Now, we consider the following three possible cases.

(i) Let 2k divide (pα − 1) but 2k+1 does not divide (pα − 1). Then,

pα − 1 = 2kb for some integer b ≥ 1, b 6= 2.

Therefore, the equations (1) and (2) can be recast as

(2kb+ 1)y − 2k+1x = 1, 2k+1x− (2kb+ 1)y = 1,

that is,

2k(by − 2x) + y = 1, (3)

2k(2x− by)− y = 1. (4)

In this case, the minimum solution, obtained from (4), is as follows :
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2x− by = 1, y = 2k − 1,

Thus, the minimum m is m = pαy = pα(2k − 1).

(ii) Let pα divide (2k − 1). Here,

2k − 1 = pαc for some integer c ≥ 1.

Then, the equations (1) and (2) become

pαy − 2(pαc+ 1)x = 1, 2(pαc+ 1)x− pαy = 1,

that is,

pα(y − 2cx)− 2x = 1, (5)

pα(2cx− y) + 2x = 1. (6)

The minimum solution, obtained from (5), is

y − 2cx = 1, 2x = pα − 1.

Consequently, the minimum m is m = 2k+1x = 2k(pα − 1).

(iii) Let 2k+1 divide (pα − 1). Then,

pα − 1 = 2k+1a for some integer a ≥ 1.

Then, from the equations (1) and (2), we get

(2k+1a+ 1)y − 2k+1x = 1, 2k+1x− (2k+1a+ 1)y = 1,

that is,

2k+1(ay − x) + y = 1, (7)

2k+1(x− ay)− y = 1. (8)

Therefore, the minimum solution is obtained from (7) with

y = 1, ay − x = 0.

Hence, the minimum m is given by m = pα − 1.

All these complete the proof of the lemma.

Lemma 1.5. For any integer a ≥ 1, (1) 3 divides 22a − 1, (2) 3 divides 22a−1 + 1.

Proof. The proof is by induction on a. The results are true for a = 1. So, we assume that the

results hold true for some integer a. Now, writing

22(a+1) − 1 = 4(22a − 1) + 3,

it follows, by the induction hypothesis, that 3 divides 22(a+1) − 1. Again, since

22a+1 + 1 = 4(22a−1 + 1)− 3,

we see that 22a+1 + 1 is divisible by 3. All these complete the proof by induction.

Lemma 1.6. For any integer a ≥ 1, (1) 22 divides 5a − 1, (2) 23 divides 52a − 1.

Proof. The proof is by induction on a. The result is true for a = 1. So, we assume that the

result is true for some integer a. Now, since

5a+1 − 1 = 5(5a − 1) + 4,

it follows, by the induction hypothesis, that 22 divides 5a+1 − 1. Again, since

52(a+1) − 1 = 25(52a − 1) + 24,

we see that 52(a+1) − 1 is divisible by 23. All these complete the proof.

Example 1.1. Since 23 divides 32 − 1, by part (i) of Lemma 1.4, Z(23.32) = 32(23 − 1) = 63.

Also, by part (iii) of Lemma 1.4, Z(22.32) = 32 − 1 = 8. Again, since 3 divides 22 − 1, using

Lemma 1.5, we get, by part (ii) of Lemma 1.4, Z(22.3) = 8, Z(24.3) = 32.

Example 1.2. Since 22 divides 5− 1, by part (i) of Lemma 1.4, Z(22.5) = 15. Again, since 5

divides 24−1, by part (ii) of Lemma 1.4, Z(24.5) = 64. Finally, noting that 23 divides 52−1, and
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24 divides 54 − 1, we get Z(22.52) = 24, Z(23.52) = 175, Z(23.54) = 624 and Z(24.54) = 9375.

§2. Main Results

This section gives the solutions of the Diophantine equations (1.1) and (1.2), posed in

Section 1. First, we consider the equation (1.1). The following theorem shows that the equation

possesses infinite number of solutions.

Theorem 2.1. n = kp is a solution of the Diophantine equation Z(n) = SL(n), where p(≥ 3)

is a prime and k(≥ 1) is an integer such that 2k divides (p+ 1).

Proof. Let n = kp, where p(≥ 3) is a prime and 2k divides (p + 1). Then, clearly, p > n, so

that, by Lemma 1.1, SL(n) = max{k, p} = p. Now, appealing to Lemma 1.2, the theorem is

proved.

From Theorem 2.1, note that, in particular,

Z(2p) = SL(2p) = p for any prime p(≥ 3) such that 4 divides (p+ 1).

Note that, any p satisfying the condition above must be of the form p = 4a+ 3(a ≥ 1). A few

examples are given below.

Z(6) = SL(6) = 3, Z(14) = SL(14) = 7, Z(22) = SL(22) = 11.

It may be mentioned here that, if p(≥ 3) is a prime and k(≥ 1) is an integer such that 2k

divides (p2 + 1), then by virtue of Lemma 1.3 and Lemma 1.1,

Z(kp2) = p2 = SL(kp2).

Thus, for example, Z(5.32) = SL(5.32) = 32, Z(5.72) = SL(5.72) = 72, Z(13.52) = SL(13.52) =

52.

Theorem 2.2. The Diophantine equation Z(n) + SL(n) = n has the solution

n = 2kpα,

where 2k and pα satisfy one of the two conditions (i) and (ii) of Lemma 1.4.

Proof. With n = 2kpα, by Lemma 1.1, SL(n) = max{2k, pα}. Now, if the condition (i) of

Lemma 2.1 is satisfied, then pα > 2k, while 2k > pα if the condition (ii) of Lemma 2.1 holds.

In either case, the given equation is satisfied.

References

[1] Kenichiro Kashihara. Comments and Topics on Smarandache Notions and Problems. Erhus Uni-

versity Press, U.S.A., 1996.

[2] Henry Ibstedt. Surfing on the Ocean of Numbers - A Few Smarandache Notions and Similar Topics.

Erhus University Press, USA, 1997.

[3] Charles Ashbacher. Pluckings from the Tree of Smarandache Sequencesand Functions. American

Research Press, Lupton, AZ, USA, 1998.

[4] A. A. K. Majumdar. Wandering in the World of Smarandache Numbers. In ProQuest, U.S.A.,

2010.

[5] A. A. K. Majumdar. Smarandache Numbers Revisited, Pons Publishing House, Belgium, 2018.

88



Vol. 17 A note on the Smarandache LCM function 89

[6] Huaning Liu. A Survey on Smarandache Notions in Number Theory II : Pseudo Smarandache

Function. Scientia Magna, Vol. 12 (2017), No. 1, 145-153.

[7] Chen Xiaolin. A Survey on Smarandache Notions in Number Theory III : Smarandache LCM

Function. Scientia Magna, Vol. 13 (2018), No. 1, 141-153.

[8] Murthy Amarnath. Some Notions on Least Common Multiples. Smarandache Notions Journal,

Vol. 12 (2001), No. 2, 307-309.

[9] Maohua Le. An Equation Concerning the Smarandache LCM Function. Smarandache Notions

Journal, Vol. 14 (2004), 186-188.

[10] Xin Xu. An Equation Involving the Pseudo Smarandache Function and F. Smarandache LCM

Function. Scientia Magna, Vol. 5 (2009), No. 4, 41-46.

89



Scientia Magna

Vol. 17 (2022), No. 1, 90-101

A note on the pseudo Smarandache square-free
function

S. M. Shahidul Islam1 and A. A. K. Majumdar2

1Dept. of Mathematics, Hajee Mohammad Danesh Science and Technology University

Dinajpur-5200, Bangladesh

E-mail: sislam.math@gmail.com
2Beppu-shi Yamanote-Cho 17-2, Beppu-shi 874-0828

Postal code: 874-0828, Japan

E-mail: aakmajumdar@gmail.com

Abstract The pseudo Smarandache square-free function, denoted by Zw(n), is a

Smarandache-type arithmetic function, and is defined as the minimum integer m(≥ 1) such

that n divides mn. This paper derives some properties of Zw(n). Some relationships involving

the functions Zw(n) and the Smarandache function S(n) as well as the pseudo Smarandache

function Z(n) have been established.

Keywords Pseudo Smarandache spuare-free function, Smarandache function, Pseudo Smarandache

function, Diophantine equation.

2010 Mathematics Subject Classification 11D04, 11N99, 11Z05.

§1. Introduction

The pseudo Smarandache square-free function, denoted by Zw(n), is defined as the smallest

integer m(≥ 1) such that n divides mn (see, Russo [1]). That is

Zw(n) = min m : n divides mn, n ≥ 1.

An alternative definition, due to Smarandache [2] is that, Zw(n) is the largest square-free integer

that divides n (that is, the square-free kernel of n). Recall that an integer N(> 0) is called

square free if for some prime p, p divides N but p2 does not divide N .

Some of the properties of Zw(n) have been studied by Russo [1], who also posed several

open problems, some of which were later addressed by Maohua [3], Guan [4] and Li [5]. Russo [1]

also provides a table of values of Zw(n) for 1 ≤ n ≤ 100. The first few values of Zw(n) are

listed below.

Zw(1) = 1, Zw(2) = 2, Zw(3) = 3, Zw(4) = 2, Zw(5) = 5, Zw(6) = 6,

Zw(7) = 7, Zw(8) = 2, Zw(9) = 3, Zw(10) = 10, Zw(11) = 11, Zw(12) = 6,

Zw(13) = 13, Zw(14) = 14, Zw(15) = 15, Zw(16) = 2, Zw(17) = 17.

Since n divides nn for any integer n(≥ 1), it follows that

Zw(n) ≤ n for all n ≥ 1. (1.1)

An explicit expression of Zw(n) is given in the theorem below (see Russo [1] and Maohua [3]).

Theorem 1.1. Let n = pα1
1 pα2

2 · · · pαrr be the (unique) representation of the integer n in terms
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of its r prime factors p1, p2, · · · , pr(α1, α2, · · · , αr being non-negative integers). Then,

Zw(n) = p1p2 · · · pr.
From Theorem 1.1, we see immediately that the range of the function Zw(n) is the set of all

square-free integers. Using Theorem 1.1, we may derive the following result.

Lemma 1.1. Zw(n) is even if and only if n is even.

Proof. Note that, in Theorem 1.1, Zw(n) is even if and only if one of the r prime factors is 2,

and in such a case, n is also even.

An immediate consequence of Lemma 1.1 is that the equation Zw(n+ 1) = Zw(n) has no

solution. Some of the properties of the function Zw(n) are given in the following corollary.

Corollary 1.1. The following properties hold :

(1) Zw(n)=p1p2...pr for some distinct primes p1, p2, ..., pr if and only if n is of the form

n = pα1
1 pα2

2 ... pαrr for some non-negative integers α1, α2, ..., αr,

(2) Zw(n) ≥ 1 for all n ≥ 1 and Zw(n) = 1 if and only if n = 1,

(3) 0 < Zw(n)
n ≤ 1 for any n ≥ 1,

(4) Zw(p) = p for any prime p ≥ 2,

(5) Zw(n) = n if and only if n is square-free,

(6) Zw(.) is multiplicative, that is, for any pair of positive integers n and m with (n,m) = 1,

Zw(nm) = Zw(n)Zw(m),

(7) Zw(.) is not additive, that is, it is not true that

Zw(n+m) = Zw(n) + Zw(m) for any positive integers n and m.

Proof. See Russo [1].

Recall that an arithmetic function f(n) is called completely multiplicative if

f(nm) = f(n)f(m) for all integers n(≥ 1) and m(≥ 1).

The pseudo Smarandache square-free function Zw(n) is one of the few Smarandache-type func-

tions that is multiplicative; however, note that Zw(n) is not completely multiplicative. For

example,

Zw(4) = 2 6= Zw(2)Zw(2).

The Smarandache function, denoted by S(n), is defined as follows :

S(n) = min {m : n divides m!}.
The function S(n) has been studied to some extent by Ashbacher [6] and Sandor [7]. Some more

results may be found by Majumdar [8, 9], which also summarizes the significant contributions

of other researchers as well. For a recent review of the pseudo Smarandache function may be

found in Liu [10].

The pseudo Smarandache function Z(n), introduced by Kashihara [11], is defined as follows :

Z(n) = min {m : n divides m(m+1)
2 }.

Some of the properties of the function Z(n) have been studied by Kashihara [11], Ibstedt [12],

Ashbacher [13] and Majumdar [8, 9]. A recent review of the pseudo Smarandache function may

be found in Liu [14].

This paper studies some interesting properties of the pseudo Smarandache Square-free

function Zw(n). This is done in Section 3, where some relationships between the function Zw(n)

and each of the functions S(n) and Z(n) are established. Some of the problems addressed here

were listed as open problems in Russo [1]. Some background materials are given in Section 2.

91



92 S. M. Shahidul Islam and A. A. K. Majumdar No. 1

We conclude the paper with some remarks and open problems in the final Section 4.

§2. Background Material

In this section, we give some background material that would be needed later. We start

with the lemma below, whose proof is simple and is omitted here.

Lemma 2.1. For any integer n ≥ 1,

gcd(n, n+ 1) = 1, gcd(2n+ 1, 2n+ 3) = 1, gcd(2n, 2(n+ 1)) = 2.

Lemma 2.2. For any integer k ≥ 1, 3 divides 22k − 1.

Proof. The proof is by induction on k. The result is clearly true for k = 1. So we assume that

the result is true for some k. Now, writing 22(k+1) − 1 as follows

22(k+1) − 1 = 4(22k − 1) + 3,

we see that 3 divides 22(k+1) − 1, so that the result is true for k + 1 as well.

Corollary 2.1. For any integer k ≥ 1, 3 does not divides 22k+1 − 1.

Proof. Since 22k+1 − 1 = 2(22k − 1) + 1, the result follows by virtue of Lemma 2.2.

The two lemmas below gives the forms of S(n) is some particular cases of n. The proofs

of the lemmas may be found in Majumdar [8].

Lemma 2.3. Let n = pα1
1 pα2

2 ... pαrr be the (unique) factorization of n in terms of its r primes

factors p1, p2,, ..., pr (where α1, α2, ..., αr are non-negative integers). Then,

S(n) = max{S(pα1
1 ), S(pα2

2 ), ..., S(pαrr )}.
Corollary 2.2. S(p1, p2, ..., pr) = max{p1, p2, ..., pr} for any distinct primes p1, p2, ..., pr.

Lemma 2.4. For any prime p(≥ 2), S(p) = p, S(p2) = 2p, S(pp) = p2 = S(pp+1).

The following lemma gives the expressions of Z(2p) and Z(3p) for some particular cases of

the prime p. For proof of the lemma, we refer the reader to Majumdar [8].

Lemma 2.5. The following results hold :

(1) Z(2p) = p for any prime p(≥ 3) such that 4 divides (p+ 1),

(2) Z(3p) = p for any prime p(≥ 5) such that 3 divides (p+ 1).

The two lemmas below, due to Majumdar [8], give explicit expressions of Z(2k),

Z(pk)(p ≥ 3), Z(3.22k), Z(5.24k), Z(5.24k+1) and Z(7.23k).

Lemma 2.6. For any integer k ≥ 1,

(1) Z(2k) = 2k+1 − 1, (2) Z(pk) = pk − 1 for any prime p ≥ 3.

Lemma 2.7. For any integer k ≥ 1,

(1) Z(3.22k) = 22k+1, (2) Z(5.24k) = 24k+2, Z(5.24k+1) = 24k+2, (3) Z(7.23k) = 3.23k+1.

Given a multiplicative function f(n), we can form another multiplicative function using

the lemma below.

Lemma 2.8. Let f(n) be a multiplicative function. Let

F (n) =
∑

d divides n

f(d).

Then, the function F (n) is multiplicative.

Proof. See, for example, Gioia [15] or Hardy and Wright [16, Theorem 265].

Example 2.1. Given the multiplicative function Zw(n), using Lemma 2.8 above, we can form

the following new multiplicative function G(n) :
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G(n) =
∑

d divides n

Zw(d).

Thus, for example, since for any prime p(≥ 2) has just two divisors, namely, 1 and p, with

Zw(1) = 1 and Zw(p) = p, it follows that

G(p) = 1 + p for any prime p(≥ 2).

Similarly, to find G(pq), where p and q are distinct primes, note that the only divisors of pq are

1, p, q and pq, so that

G(pq) = 1 + p+ q + pq for any two distinct primes p and q.

Again, since the only divisors of pk (where p(≥ 2) is a prime and k is any positive integer) are

1, p, p2, ..., pk, it follows that

G(pk) = 1 + kp for any prime p(≥ 2).

Thus, for example, G(1) = 1, G(2) = 3, G(3) = 4, G(4) = 5, G(5) = 6 and G(6) = 12. Note

that, as expected, G(2.3) = 12 = G(2)G(3) = 3× 4.

The main results of the paper are given in the next section.

§3. Main Results

This section gives some interesting properties satisfied by the function Zw(n). By equation

(1.1), Zw(2n) ≤ 2n for any integer n ≥ 1. However, we can prove the result below.

Lemma 3.1. If n(≥ 2) is an even integer, then Zw(2n) ≤ n.

Proof. Let

n = 2αpα1
1 pα2

2 ... pαrr with α ≥ 1;α1, α2, ..., αr ≥ 0,

where p1, p2, ..., pr are r odd (distinct) prime factors of n. Then, by Theorem 1.1,

Zw(2n) = 2p1p2...pr ≤ n.

From the proof of Lemma 3.1, we see that

Zw(2n) ≤ 2n for any odd integer n(≥ 3).

Another immediate consequence of Lemma 3.1 is the following.

Corollary 3.1. Zw(2(p− 1)) ≤ p− 1 for any prime p ≥ 3.

The following result is mentioned in Russo [1]. We give here a more general proof.

Lemma 3.2. k(≥ 1) being an integer, neither of the equations
Zw(n)
Zw(n+1) = k or Zw(n+1)

Zw(n) = k

has a solution.

Proof. Since (n, n+ 1) = 1, let

n = pα1
1 pα2

2 ... pαrr , n+ 1 = qβ1

1 qβ2

2 ... qβss ,

where p1, p2, ..., pr, q1, q2, ..., qs are (r+ s) number of distinct primes, and α1, α2, ..., αr ≥ 0 (not

all of which are zero) and β1, β2, ..., βs ≥ 0 (not all zero) are non-negative integers. Then,
Zw(n)
Zw(n+1) = p1p2...pr

q1q2...qs
,

which shows that the ratio on the R.H.S. cannot be an integer (since, for example, the prime q1

does not divide any of the r primes in the numerator). By similar reasoning, Zw(n+1)
Zw(n) cannot

be an integer.

Lemma 3.3. Each of the inequalities Zw(n)
Zw(n+1) < 1 and Zw(n)

Zw(n+1) > 1 is satisfied for an infinite

number of integers n.

Proof. Let n = 2α for α ≥ 1. Then, Zw(n) = 2. Now, since any prime factor of n+1 is greater
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than or equal to 3, it follows that Zw(n+ 1) ≥ 3. Therefore, with this n,
Zw(n)
Zw(n+1) = 2

Zw(2α+1) ≤ 1 for any α ≥ 1.

Next, let n+ 1 = 2β for β ≥ 1. Then, Zw(n+ 1) = 2, Zw(n) = Zw(2β − 1) ≥ 3. Then, with this

n,
Zw(n)
Zw(n+1) = Zw(2β−1)

2 > 1 for any β ≥ 1.

The first few terms of the sequence { 2
Zw(2α+1)}

∞
α=1 are

2
3 ,

2
5 ,

2
3 ,

2
17 ,

2
33 ,

2
65 ,

2
129 , ...,

and the first few leading terms of the sequence {Zw(2β−1)
2 }∞β=1 are

3
2 ,

7
2 ,

15
2 ,

31
2 ,

21
2 ,

127
2 , ...,

while the first few terms of the sequence { Zw(n)
Zw(n+1)}

∞
n = 1 are

1
2 ,

2
3 ,

3
2 ,

2
5 ,

5
6 ,

6
7 ,

7
2 ,

2
3 ,

3
10 ,

10
11 ,

11
6 ,

6
13 , ... .

Lemma 3.4. For any ε > 0, however small, there is an integer n(> 1) such that Zw(n)
n .

Proof. Let n = 2k for some integer k(≥ 1). Then, Zw(n)
n = 2

2k
= 1

2k−1 . Therefore, given real

number ε > 0, choose k > − lnε
ln2 + 1. With this n and k,

Zw(n)
n = 1

2k−1 < ε.

For example, if ε = 0.001, then choose n = 211 so that Zw(n)
n = 1

210 < 0.001.

Lemma 3.5. |Zw(n+ 1)− Zw(n)| is unbounded.

Proof. Let n be a prime of the form n = 4m + 3,m ≥ 1, so that (by Corollary 1.1) Zw(n) =

4m+ 3. Now, by Lemma 3.1, Zw(n+ 1) ≥
√

2(m+ 1). Therefore,

|Zw(n+ 1)− Zw(n)| = Zw(n)− Zw(n+ 1) ≥ 4m+ 3−
√

2(m+ 1),

which may be made arbitrarily large by the proper choice of m such that n = 4m+ 3 is prime.

Lemma 3.6. The equation Zw(mn) = mkZw(n) has an infinite number of solutions.

Proof. Clearly, the equation is trivially satisfied when m = 1. So, we assume that m ≥ 2. To

find a solution of the equation

Zw(mn) = mkZw(n) (3.1)

we proceed as follows : Let gcd(m,n) = 1, so that Zw(mn) = Zw(m)Zw(n). Then, the equation

(3.1) takes the form Zw(m)Zw(n) = mkZw(n), so that we must have Zw(m) = mk. Then, by

Theorem 1.1, k = 1; moreover, m must be square-free. Thus,

k = 1, m is a square-free integer, n is any integer with gcd(m,n) = 1

is a solution of the equation (3.1). In particular, k = 1,m = 2, n = p (p ≥ 3 being a prime) is

a solution of the equation (3.1), which shows that the equation possesses an infinite number of

solutions.

Lemma 3.7. None of the equations below has a solution :

(1) Zw(n).Zw(n+ 1) = Zw(n+ 2),

(2) Zw(n) = Zw(n+ 1).Zw(n+ 2),

(3) Zw(n).Zw(n+ 1) = Zw(n+ 2).Zw(n+ 3).

Proof. To prove part (1), we assume that the equation is satisfied for some n, and then we

would reach to a contradiction. Now, since gcd(n+ 1, n+ 2) = 1, let

n+ 1 = qβ1

1 qβ2

2 ...qβss , n+ 2 = rγ11 r
γ2
2 ...r

γt
t ,

so that the equation takes the form

Zw(n)q1q2...qs = r1r2...rt,

and we arrive at a contradiction (since neither of the s primes q1, q2, ..., qs divides any of the t
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primes r1, r2, ..., rt).

To prove part (2), let the equation be satisfied for some n. Now, letting

n = pα1
1 pα2

2 ...pαrr , n+ 1 = qβ1

1 qβ2

2 ...qβss
the equation becomes

p1p2...pr = q1q2...qsZw(n+ 2),

and we reach to a contradiction.

To prove part (3), let the equation be satisfied for some integer n. Then, letting

n+ 1 = qβ1

1 qβ2

2 ...qβss , n+ 2 = rγ11 r
γ2
2 ...r

γt
t ,

we get

Zw(n)q1q2...qs = r1r2...rtZw(n+ 3).

Now, by Lemma 2.1, if n is odd, so also is n+ 2 with (n, n+ 2) = 1; on the other hand, if n is

even, so also is n + 2 with gcd(n, n + 2) = 2. In either case, none of the t primes r1, r2, ..., rt

divides Zw(n), and we arrive at a contradiction.

Lemma 3.8. The equation [Zw(n)]k = kZw(kn) has an infinite number of solutions.

Proof. There is nothing to prove if k = 1. So, let k ≥ 2. Now, we prove that gcd(k, n) 6= 1.

For otherwise, the equation, after simplification (since Zw(n) 6= 0), becomes

[Zw(n)]k−1 = kZw(k).

Since in the equation above, only square-free prime factors of the integers n and k appear, we

must have k = 2, so that

Zw(n) = 2Zw(2) = 4.

But there is no integer n satisfying the above condition. Hence, gcd(k, n) 6= 1.

Now, let p be a prime factor of k. Since Zw(kn) is square-free, the prime factor of k appears on

the R.H.S. of the equation as (at most) second power. Thus, k ≤ 2. With k = 2, the equation

reads as

[Zw(n)]2 = 2Zw(2n),

where n must be even. Then, n cannot have any prime factor greater than 2. Letting n =

2α, α ≥ 1, it is easy to verify that the above equation is satisfied.

The proof above shows that, any (non-trivial) solution of the equation [Zw(n)]k = kZw(kn)

must be of the form k = 2, n = 2α, α ≥ 1 being an integer.

As has been mentioned in Russo [1], the equation Zw(n) = n has an infinite number of

solutions, namely, n = p, where p(≥ 2) is a prime. However, we have the following result.

Lemma 3.9. If k ≥ 2, then the following equation has no solution :

[Zw(n)]k + [Zw(n)]k−1 + ...+ Zw(n) = n.

Proof. If possible, let the equation have a solution of the form

n = pα1
1 pα2

2 ...pαrr
for some integer k(≥ 2), where p1, p2, ..., pr are the distinct prime factors of n, and α1, α2, ..., αr

are all non-negative integers. Then, substituting in the equation, we get, after canceling out

the common factor p1p2...pr on both sides,

(p1p2...pr)
k−1 + (p1p2...pr)

k−2 + ...+ 1 = pα1−1
1 pα2−1

2 ...pαr−1r .

Then, we must have α1 − 1 = 0 = α2 − 1 = ... = αr − 1. But then we have

(p1p2...pr)
k−1 + (p1p2...pr)

k−2 + ...+ p1p2...pr = 0,

which is absurd.
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Since S(p) = p = Zw(p) for any prime p(≥ 2), it follows that the Diophantine equation

S(n) = Zw(n) has an infinite number of solutions. Russo [1] asks for composite n satisfying the

S(n) = Zw(n). The lemma below answers his question.

Lemma 3.10. Let n = 2p2 where p(≥ 3) is a prime. Then, S(n) = Zw(n).

Proof. By Theorem 1.1, Z(n) = 2p. Now, by Lemma 2.3 and Lemma 2.4,

S(n) = max{S(2), S(p2)} = S(p2) = 2p for all p ≥ 3.

Hence, S(n) = Zw(n).

A more general solution to the equation S(n) = Zw(n) has been given by Guan [4]. The

following five lemmas gives more relationships involving S(n) and Zw(n). The first two lemmas

show that each of the inequalities Zw(n) > S(n) and Zw(n) < S(n) is satisfied for an infinite

number of integers n.

Lemma 3.11. There is an infinite number of integers n satisfying the inequality Zw(n) > S(n).

Proof. Let p and q be two primes with q > p ≥ 2. Then, using Corollary 2.2,

Zw(pq) = pq > q = S(pq).

Thus, with such p and q, n = pq satisfies the given inequality.

Note that, we can find other n satisfying the inequality Zw(n) > S(n). For example,

n = pqr also satisfies the inequality, where p, q and r are distinct primes with r > q > p ≥ 2.

Lemma 3.12. There is an infinite number of n satisfying the inequality S(n) > Zw(n).

Proof. We have, using Lemma 2.4,

S(pp) = p2 > p = Zw(pp).

Therefore, n = pp satisfies the given inequality.

Since S(pp+1) = p2 > p = Zw(pp+1), we see that n = pp+1 also satisfies the inequality S(n) >

Zw(n).

Lemma 3.13. There is an infinite number of integers n such that S(Zw(n)) = Zw(S(n)).

Proof. Let p and q be two primes with q > p ≥ 2. Then,

S(Zw(pq)) = S(pq) = q, Zw(S(pq)) = Zw(q) = q,

so that S(Zw(pq)) = Zw(S(pq)).

Lemma 3.14. The inequality Zw(S(n)) > S(Zw(n)) is satisfied by an infinite number of n.

Proof. Let p(≥ 3) be any prime. Then, by Lemma 2.4,

Zw(S(p2)) = Zw(2p) = 2p, S(Zw(p2)) = S(p) = p.

Thus, with n = p2 (p ≥ 3 being a prime), the inequality Zw(S(n)) > S(Zw(n)) is satisfied.

Lemma 3.15. The inequality Zw(S(n)) < S(Zw(n)) is satisfied by an infinite number of n.

Proof. Let p and q be two primes with q > p(≥ 3) such that p2 > 2q. Then, by Lemma 2.3

and Lemma 2.4,

S(ppq2) = max{S(pp), S(q2)} = max{p2, 2q} = p2,

so that

Zw(S(ppq2)) = Zw(p2) = p, S(Zw(ppq2)) = S(pq) = q.

Thus, with this n = ppq2, the inequality Zw(S(n)) < S(Zw(n)) is satisfied.

It may be mentioned here that, given any prime p(≥ 3), there always exists another prime

q(> p) such that p2 > 2q. To see this, it is sufficient to consider the case when p and q = p+ 2

are the twin primes. Now,

p2 > 2(p+ 2) if and only if p ≥ 3.
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The following five lemmas involve the two functions Z(n) and Zw(n).

Lemma 3.16. The equation Zw(n) = Z(n) has no solution.

Proof. If possible, let n = pα1
1 pα2

2 ...pαrr be a solution of the given equation, where, without

any loss of generality the r prime factors of n satisfies the inequality p1 < p2 < ... < pr, and

α1, α2, ..., αr are non-negative integers. Then,

Z(n) = p1p2...pr,

so that, by definition, p1p2...pr is the minimum integer such that n divides

Hence, we must have α1 = 1 = α2 = ... = αr, so that n has the form n = p1p2...pr. If p1 = 2,

then n = 2p2...pr cannot divide p2...pr(p1p2...pr+1). On the other hand, if all the prime factors

of n are odd, then n = p1p2...pr divides p1p2...pr(p1p2...pr−1)
2 so that Z(n) ≤ p1p2...pr − 1, and

we reach to a contradiction.

Though the equation Zw(n) = Z(n) has no solution, the two lemmas below prove that each of

the inequalities Zw(n) > Z(n) and Zw(n) < Z(n) is satisfied by an infinite number of n.

Lemma 3.17. There is an infinite number of integers n satisfying Zw(n) > Z(n).

Proof. Let p ≥ 3 be a prime such that 4 divides (p+ 1). Then, using Lemma 2.5,

Zw(2p) = 2p > p = Z(2p).

Thus, with such p, n = 2p satisfies the given inequality.

Lemma 3.16 finds the integer n such that Zw(n) > Z(n). We can find more such n. For

example, let n = 3p, where p(≥ 5) is a prime such that 3 divides (p+ 1). Then, using Lemma

2.5, we get

Zw(3p) = 3p > p = Z(3p).

Lemma 3.18. There is an infinite number of n satisfying the inequality Z(n) > Zw(n).

Proof. Using Lemma 2.6, we get

Z(2k) = 2k+1 − 1 > 2 = Zw(2k) for any k ≥ 1.

Let p(≥ 3) be a prime. Then, using Lemma 2.6, we get

Z(pk) = pk − 1 > p = Zw(pk) for any k ≥ 2.

This provides a second example of n such that Z(n) > Zw(n). Note that

Zw(Z(2)) = Zw(3) = 3 = Z(2) = Z(Zw(2)), Zw(Z(3)) = Zw(2) = 2 = Z(3) = Z(Zw(3)).

The following lemma proves more.

Lemma 3.19. The equation Zw(Z(n)) = Z(Zw(n)) has an infinite number of solution n.

Proof. Let p be an odd prime such that 4 divides (p+ 1). Then, using Lemma 2.5,

Zw(Z(2p)) = Zw(p) = p, Z(Zw(2p)) = Z(2p) = p,

so that for such p, Zw(Z(2p)) = Z(Zw(2p)).

It is possible to construct other examples of n such that Zw(Z(n)) = Z(Zw(n)). For example,

let p(≥ 5) be a prime such that 3 divides (p+ 1). Then, using Lemma 2.5,

Zw(Z(3p)) = Zw(p) = p = Z(Zw(3p)) = Z(3p).

Lemma 3.20. There is an infinite number of integers n satisfying Z(Zw(n)) > Zw(Z(n)).

Proof. By Lemma 2.7, for any k ≥ 1,

Z(Zw(3.22k)) = Z(3.2) = 3, Zw(Z(3.22k)) = Zw(22k+1) = 2.

Therefore, Z(Zw(3.22k)) > Zw(Z(3.22k)) for all k ≥ 1.

To find other n such that Z(Zw(n)) > Zw(Z(n)), note that, by Lemma 2.7, for any k ≥ 1,

Z(Zw(5.24k)) = Z(5.2) = 4, Zw(Z(5.24k)) = Zw(24k+2) = 2,
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so that Z(Zw(5.24k)) > Zw(Z(5.24k)). Again, since

Z(Zw(5.24k+1)) = Z(5.2) = 4, Zw(Z(5.24k+1)) = Zw(24k+2) = 2,

we see that Z(Zw(5.24k+1)) > Zw(Z(5.24k)). Finally, since for any k ≥ 1,

Z(Zw(7.23k)) = Z(7.2) = 7, Zw(Z(7.23k)) = Zw(3.23k+1) = 3.2,

it follows that Z(Zw(7.23k)) > Zw(Z(7.23k)).

Lemma 3.21. There is an infinite number of integers n such that Z(Zw(n)) < Zw(Z(n)).

Proof. By Lemma 2.6, k ≥ 1,

Z(Zw(22k)) = Z(2) = 3, Zw(Z(22k)) = Zw(22k+1 − 1).

But, by Corollary 2.1, any prime factor of 22k+1−1 is greater than 3, so that Zw(22k+1−1) > 5

for all k ≥ 1. Thus,

Z(Zw(22k)) < Zw(Z(22k)) for all k ≥ 1.

§4. Some Remarks

This paper gives some new results related to the pseudo Smarandache Square-free function

Zw(n). It addresses some open problems posed by Russo [1]. In several cases, we found multiple

solutions. For example, two examples are mentioned to illustrate that each of the inequalities

Zw(n) > S(n) and Zw(n) < S(n) has an infinite number of solutions. Thus, we may set the

following problems.

Problem 4.1. Find all values of n such that Zw(n) > S(n).

Problem 4.2. Find all values of n such that Zw(n) < S(n).

Problem 4.3. Find all values of n such that S(Zw(n)) = Zw(S(n)).

Problem 4.4. Find all values of n such that S(Zw(n)) > Zw(S(n)).

Problem 4.5. Find all values of n such that S(Zw(n)) < Zw(S(n)).

Lemma 3.16 shows that the equation Zw(n) = Z(n) has no solution; however, it has been

proved that each of the inequalities Zw(n) > Z(n) and Zw(n) < Z(n) has an infinite number

of solutions, and in each case, two examples are given. This tempts us to pose the following

problems.

Problem 4.6. Find all values of n such that Zw(n) > Z(n).

Problem 4.7. Find all values of n such that Zw(n) < Z(n).

Lemmas 3.19-3.21 involve the functions Z(Zw(n)) and Zw(Z(n)). Two examples are pro-

vided to demonstrate that Z(Zw(n)) = Zw(Z(n)), while in support of the inequality Z(Zw(n)) >

Zw(Z(n)), four examples have been found. We thus reiterate the following problems.

Problem 4.8. Find all values of n such that Z(Zw(n)) = Zw(Z(n)).

Problem 4.9. Find all values of n such that Z(Zw(n)) > Zw(Z(n)).

Problem 4.10. Find all values of n such that Z(Zw(n)) < Zw(Z(n)).

Russo [1] asks the following question.

Problem 4.11. For what values of k(≥ 2),m(≥ 2) and n(≥ 2) does the functional equation

[Zw(n)]k + [Zw(n)]k−1 + ...+ [Zw(n)]2 + Zw(n) = mn (4.1)

has a solution?

We find an answer to Problem 4.11, note that, when k = 1, the equation (4.1) becomes

Z(n) = mn, so that we must have m = 1 (since, by (1.1), mn = Z(n) ≤ n). So, let k ≥ 2. We
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now find a partial answer to Problem 4.11 under the assumption that n is a square-free integer,

so that Z(n) = n. Then, the equation (4.1) takes the form

nk + nk−1 + ...+ n2 + n = mn,

that is,

nk−1 + nk−2 + ...+ n+ 1 = m, (4.2)

which does not have a solution if m = 1, k ≥ 2. Now, for any k ≥ 2 fixed, the equation (4.2)

has a solution for any square-free integer n(≥ 2) if and only if m = nk−1
n−1 . Thus, for example,

when n = 2, the equation (4.1) has a solution only if m = 2k − 1; k = 1, 2, · · · .

The following problem, posed by Russo [1], still remains open.

Open Problem 4.1. Solve the equation

Zw(n) + Zw(n+ 1) = Zw(n+ 2). (4.3)

Clearly, in the equation (4.3) above, all the three integers n, n+ 1 and n+ 2 cannot be square

free. Now, the L.H.S. is odd, and hence, Z(n+ 2) is odd, so that n+ 2 is also odd. Then, Z(n)

and n both are odd. Assuming that

n = pα1
1 pα2

2 ...pαrr , n+ 1 = 2βqβ1

1 qβ2

2 ...qβss , n+ 2 = rγ11 r
γ2
2 ...r

γt
t , (4.4)

we get

p1p2...pr + 2q1q2...qs = r1r2...rt, (4.5)

where the three sets of primes, namely, {p1, p2, ..., pr}, {q1, q2, ..., qs} and {r1, r2, ..., rt} are all

odd and distinct with

rγ11 r
γ2
2 ...r

γt
t = 2βqβ1

1 qβ2

2 ...qβss + 1 = pα1
1 pα2

2 ...pαrr + 2. (4.6)

Russo [1] reports that, searching for 1 ≤ n ≤ 1000 such that Zw(n) satisfies (4.3), only six

solutions are found, which are as follows :

Zw(1) + Zw(2) = Zw(3), Zw(3) + Zw(4) = Zw(5),

Zw(15) + Zw(16) = Zw(17), Zw(31) + Zw(32) = Zw(33),

Zw(127) + Zw(128) = Zw(129), Zw(255) + Zw(256) = Zw(257).

Note that, in all of the above six cases, n+ 1 is of the form n+ 1 = 2β for some integer β ≥ 1.

Searching for 1 ≤ n ≤ 100, the solution of the inequality Zw(n) > Zw(n+ 1) + Zw(n+ 2), the

following 8 instances have been observed :

Zw(7) > Zw(8) + Zw(9), Zw(23) > Zw(24) + Zw(25),

Zw(26) > Zw(27) + Zw(28), Zw(47) > Zw(48) + Zw(49),

Zw(62) > Zw(63) + Zw(64), Zw(74) > Zw(75) + Zw(76),

Zw(79) > Zw(80) + Zw(81), Zw(97) > Zw(98) + Zw(99).

Thus, we have the following problems.

Open Problem 4.2. Find all values n such that Zw(n) > Zw(n+ 1) + Zw(n+ 2).

Open Problem 4.3. Solve the inequality : Zw(n) < Zw(n+ 1) + Zw(n+ 2).

In addition, we have the following open problem, posed by Russo [1].

Open Problem 4.4. Solve the equation

Zw(n) = Zw(n+ 1) + Zw(n+ 2). (4.7)

Russo [1] reports that, searching for 1 ≤ n ≤ 1000, no solution of the equation (4.7) has been

found. Note that the R.H.S. of (4.7) is odd, and hence, Z(n) (and n) is odd, so that Z(n+ 2)

(and n+ 2) is also odd. Assuming solution of the form (4.4), we get

p1p2...pr = 2q1q2...qs + r1r2...rt, (4.8)
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where the primes p1, p2, ..., pr, q1, q2, ..., qs and r1, r2, ..., rt are all odd and distinct with

rγ11 r
γ2
2 ...r

γt
t = 2βqβ1

1 qβ2

2 ...qβss + 1 = pα1
1 pα2

2 ...pαrr + 2.

Searching for 1 ≤ n ≤ 100, the solution of Z(n + 1) − Zw(n) = Zw(n + 2) − Zw(n + 1), the

following 14 instances have been found :

Z(2)− Zw(1) = Zw(3)− Zw(2), Z(6)− Zw(5) = Zw(7)− Zw(6),

Z(14)− Zw(13) = Zw(15)− Zw(14), Z(22)− Zw(21) = Zw(23)− Zw(22),

Z(30)− Zw(29) = Zw(31)− Zw(30), Z(34)− Zw(33) = Zw(35)− Zw(34),

Z(38)− Zw(37) = Zw(39)− Zw(38), Z(42)− Zw(41) = Zw(43)− Zw(42),

Z(58)− Zw(57) = Zw(59)− Zw(58), Z(66)− Zw(65) = Zw(67)− Zw(66),

Z(70)− Zw(69) = Zw(71)− Zw(70), Z(78)− Zw(77) = Zw(79)− Zw(78),

Z(86)− Zw(85) = Zw(87)− Zw(86), Z(94)− Zw(93) = Zw(95)− Zw(94).

We now pose the following problem.

Open Problem 4.5. Find all values n such that

Z(n+ 1)− Zw(n) = Zw(n+ 2)− Zw(n+ 1). (4.9)

The equation (4.9) is satisfied if the integers n, n+ 1 and n+ 2 are all square-free. Assuming a

solution of the form

n = p1p2...pr, n+ 1 = q1q2...qs, n+ 2 = r1r2...rt, (4.10)

we get

p1p2...pr + r1r2...rt = 2q1q2...qs, (4.11)

where p1, p2, ..., pr, q1, q2, ..., qs, r1, r2, ..., rt are distinct primes with

q1q2...qs = p1p2...pr + 1, (4.12)

r1r2...rt = q1q2...qs + 1. (4.13)

Without any loss of generality, we may assume that

p1 < p2 < ... < pr; q1 < q2 < ... < qs; r1 < r2 < ... < rt. (4.14)

Now, if q1q2...qs is odd, then p1p2...pr is even (with p1 = 2), so that, q1q2...qs = 2p2...pr + 1.

But then from (4.13), r1r2...rt = 2p2...pr + 2 is even (with r1 = 2), so that

2r2r3...rt = 2p2p3...pr + 2,

that is,

r2r3...rt = p2p3...pr + 1,

and we arrive at a contradiction. Hence, q1q2...qs must be even, say, q1q2...qs = 2q2q3...qs.

In the simplest case, Zw(n + 1) = 2q (q is a prime), and then Zw(n) = p = 2q − 1 and

Zw(n + 2) = r = 2q + 1 are twin primes. For example, corresponding to q = 3, the solu-

tion p = 5, r = 7 is obtained. Another possibility is that Zw(n + 1) = 2q, Zw(n) = p =

2q − 1, Zw(n + 2) = r1r2 = 2q + 1. Then, corresponding to q = 7, we get the solution

(Zw(n), Zw(n + 1), Zw(n + 2)) = (13, 14, 15), while the solution corresponding to q = 19

is (Zw(n), Zw(n + 1), Zw(n + 2)) = (37, 38, 39). The third possibility is that Zw(n + 1) =

2q, Zw(n) = p1p2 = 2q − 1, Zw(n + 2) = r = 2q + 1. In this case, corresponding to q = 11,

we get the solution (Zw(n), Zw(n + 1), Zw(n + 2)) = (21, 22, 23), and with q = 29, the so-

lution (Zw(n), Zw(n + 1), Zw(n + 2)) = (57, 58, 59). Considering the fourth possibility that

Zw(n + 1) = 2q1q2, Zw(n) = p = 2q1q2 − 1, Zw(n + 2) = r = 2q1q2 + 1, we get the solutions

(Zw(n), Zw(n+ 1), Zw(n+ 2)) = (29, 30, 31) corresponding to p = 29, and the solution (41, 42,

43) corresponding to p = 41. The fifth possibility is that Zw(n + 1) = 2q, Zw(n) = p1p2 =
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2q − 1, Zw(n + 2) = r1r2 = 2q + 1. Here, corresponding to q = 17, 43, 47, we get respectively

the solutions (Zw(n), Zw(n + 1), Zw(n + 2)) = (33, 34, 35), (85, 86, 87), (93, 94, 95). The sixth

possibility is that Zw(n + 1) = 2q1q2, Zw(n) = p1p2 = 2q1q2 − 1, Zw(n + 2) = r = 2q + 1.

Examples are the solutions (Zw(n), Zw(n+1), Zw(n+2)) = (65, 66, 67), (69, 70, 71), (77, 78, 79),

corresponding to r = 67, 71, 79 respectively.
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§1. Introduction

In 1966, K. Iséki [12] introduced BCK algebras as algebras connected to certain kinds of

logics. Hundred of papers and the books [16] and [10] were writen on BCK algebras. To solve

some problems on BCK algebras, in 1983, Y. Komori [13,14] introduced BCC algebras. These

algebras (also called BIK+-algebras) are an algebraic model of BIK+-logic and they have been

widely investigated in literature (see e.g. [2]– [5]). In 2001, G. Georgescu and A. Iorgules-

cu [6] defined pseudo-BCK algebras as a non-commutative extension of BCK-algebras. The

paper [6] contains basic properties of pseudo-BCK algebras and their connections with some

other algebras of logic. Y. B. Jun [11] obtained a characterization of pseudo-BCK algebras. A

symplified axiomatization of these algebras was given by A. Walendziak in [19]. A. Iorgulescu

defined and studied reversed BCK-algebras (cf. part I of [10]) and reversed pseudo-BCK alge-

bras (cf. part II of [10]), see also [9]. The monograph [15] (the habilitation thesis of J. Kühr)

presents many of the most important results on pseudo-BCK algebras. In 2009, C. Prabpayak

and U. Leerawat [17] introduced KU-algebras. Later on, in 2017, A. Iampan [8] introduced

UP-algebras. Recently, D. A. Romano [18] defined pseudo-UP and pseudo-KU algebras as a

natural generalizations of UP-algebras and KU-algebras, respectively.

In this paper, we show that UP-algebras are the same as Komori’s BCC-algebras and that

KU-algebras are reversed BCK-algebras. Moreover, we prove that pseudo-KU algebras are in

fact reversed pseudo-BCK algebras.

§2. Results

We start with the following

Definition 2.1. ( [8]) An algebra (A, ·, 0) of type (2, 0) is called a UP-algebra if it verifies

the following axioms:
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(UP-1) (y · z) · ((x · y) · (x · z)) = 0,

(UP-2) 0 · x = x,

(UP-3) x · 0 = 0,

(UP-4) x · y = 0 = y · x =⇒ x = y.

We consider here the concept of BCC-algebra defined by Y. Komori as follows:

Definition 2.2. ( [13,14]) An algebra (A,→, 1) of type (2, 0) is called a BCC-algebra if it

verifies the following axioms:

(BCC-1) (y → z)→ ((x→ y)→ (x→ z)) = 1,

(BCC-2) 1→ x = x,

(BCC-3) x→ 1 = 1,

(BCC-4) x→ y = 1 = y → x =⇒ x = y,

(BCC-5) x→ x = 1.

Remark 2.3. Note that in the papers [2]– [5] on BCC-algebras, the dual notation with ·
and 0 is used.

Replacing ”·” by ”→” and ”0” by ”1” in (UP-1)–(UP-4), we obtain (BCC-1)–(BCC-4).

Observe that (BCC-5) follows from (BCC-1) and (BCC-2). Indeed, putting x = y = 1 in

(BCC-1), we get (1→ z)→ ((1→ 1)→ (1→ z)) = 1. Hence, by (BCC-2), we have z → z = 1,

that is, (BCC-5) holds. Conversely, replacing ”→” by ”·” and ”1” by ”0” in (BCC-1)–(BCC-4),

we obtain (UP-1)–(UP-4). Then, we have the following

Theorem 2.4. An algebra is a UP-algebra if and only if it is a BCC-algebra.

The notion of KU-algebra was defined by C. Prabpayak and U. Leerawat as follows:

Definicja 2.5. ( [17]) An algebra (A, ·, 0) of type (2, 0) is called a KU-algebra if it verifies

the following axioms: (UP-2)–(UP-4) and

(KU-1) (y · x) · ((x · z) · (y · z)) = 0.

Now, we recall the definition of a BCK-algebra.

Definicja 2.6. An algebra (A, ∗, 0) of type (2, 0) is called a BCK-algebra ( [12]) if it

verifies the following axioms:

(1) ((z ∗ y) ∗ (z ∗ x)) ∗ (x ∗ y) = 0,

(2) (x ∗ (x ∗ y)) ∗ y = 0,

(3) x ∗ x = 0,

(4) x ∗ y = 0 = y ∗ x =⇒ x = y,

(5) 0 ∗ x = 0,

or, equivalently, ( [7]) verifies the axioms:

(BCK-1) ((z ∗ y) ∗ (z ∗ x)) ∗ (x ∗ y) = 0,

(BCK-2) x ∗ 0 = x,

(BCK-3) 0 ∗ x = 0

(BCK-4) x ∗ y = 0 = y ∗ x =⇒ x = y.

The reversed BCK-algebra is obtained by reversing the operation ∗, that is, by replacing

x ∗ y by y → x for all x, y. We obtain the following definition:

Definicja 2.7. ( [10]) A reserved BCK-algebra is an algebra (A,→, 0) of type (2, 0)

verifying the following axioms:

(BCK-1’) (y → x) · ((x→ z)→ (y → z)) = 0,
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(BCK-2’) 0→ x = x

(BCK-3’) x→ 0 = 0,

(BCK-4’) x→ y = 0 = y → x =⇒ x = y.

Remark 2.8. R. A. Borzooei and S. Khosravi Shoar [1] defined and investigated dual

BCK-algebras. Note that these algebras are the same as reserved BCK-algebras.

Combining Definitions 2.5 and 2.7, we get

Theorem 2.9. A KU-algebra is in fact a reserved BCK-algebra.

D. A. Romano introduced the following notion:

Definicja 2.10. ( [18]) A pseudo-KU algebra is a structure (A,≤, ·, ∗, 0), where ≤ is a

binary relation on a set A, · and ∗ are binary operation on A and 0 is an element of A, verifying

the following axioms:

(pKU-1) y · x ≤ (x · z) ∗ (y · z), y ∗ x ≤ (x ∗ z) · (y ∗ z),

(pKU-2) 0 · x = 0 ∗ x = x,

(pKU-3) x ≤ 0,

(pKU-4) (x ≤ y and y ≤ x) =⇒ x = y,

(pKU-5) x ≤ y ⇐⇒ x · y = 0⇐⇒ x ∗ y = 0,

or, equivalently, it is an algebra (A, ·, ∗, 0) of type (2, 2, 0) verifying the axioms:

(pKU-1’) (y · x) ∗ ((x · z) ∗ (y · z)) = 0, (y ∗ x) · ((x ∗ z) · (y ∗ z)) = 0,

(pKU-2’) 0 · x = 0 ∗ x = x,

(pKU-3’) x · 0 = x ∗ 0 = 0,

(pKU-4’) x · y = 0 = y ∗ x =⇒ x = y,

(pKU-5’) x · y = 0⇐⇒ x ∗ y = 0.

Now we recall the notion of pseudo-BCK algebra introduced by G. Georgescu and A.

Iorgulescu as follows:

Definicja 2.11. ( [6]) A pseudo-BCK algebra is a structure A = (A,≤, ∗, ◦, 0), where ≤ is

a binary relation on A, ∗ and ◦ are binary operations on A and 0 is an element of A, verifying

the axioms:

(A-1) (z ∗ y) ◦ (z ∗ x) ≤ x ∗ y, (z ◦ y) ∗ (z ◦ x) ≤ x ◦ y,
(A-2) 0 ≤ x,

(A-3) (x ≤ y and y ≤ x) =⇒ x = y,

(A-4) x ≤ y ⇔ x ∗ y = 0⇐⇒ x ◦ y = 0,

(A-5) x ∗ (x ◦ y) ≤ y, x ◦ (x ∗ y) ≤ y,

(A-6) x ≤ x.

Lemma 2.12. (Theorem 1.6 (9) of [6]) A pseudo-BCK algebra satisfies

(A-7) x ∗ 0 = x = x ◦ 0.

Proposition 2.13. A structure A = (A,≤, ∗, ◦, 0) is a pseudo-BCK algebra if and only if

it satisfies (A-1)–(A-4) and (A-7).

Proof. LetA satisfy (A-1)–(A-4) and (A-7). Putting y = 0 in (A-1), we get (z∗0)◦(z∗x) ≤
x ∗ 0 and (z ◦ 0) ∗ (z ◦ x) ≤ x ◦ 0. Applying (A-7), we obtain z ◦ (z ∗ x) ≤ x and z ∗ (z ◦ x) ≤ x,

that is, (A-5) holds. To prove (A-6), we first put y = 0 in (A-5). Then x ∗ (x ◦ 0) ≤ 0. Hence,

using (A-7), we have x ∗ x ≤ 0. By (A-2), 0 ≤ x ∗ x. From (A-3) we conclude that x ∗ x = 0.

Applying (A-4), we see that x ≤ x. Thus A satisfies (A-6).
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Conversely, let A be a pseudo-BCK algebra. By definition and Lemma 2.12, (A-1)–(A-4)

and (A-7) hold in A. �

According to the above proposition, we say that (A, ∗, ◦, 0) is a pseudo BCK-algebra if it

verifies

(pBCK-1) ((z ∗ y) ◦ (z ∗ x)) ◦ (x ∗ y) = 0, ((z ◦ y) ∗ (z ◦ x)) ∗ (x ◦ y) = 0,

(pBCK-2) x ∗ 0 = x = x ◦ 0,

(pBCK-3) 0 ∗ x = 0 = 0 ◦ x,
(pBCK-4) x ∗ y = 0 = y ◦ x =⇒ x = y,

(pBCK-5) x ∗ y = 0⇐⇒ x ◦ y = 0.

The reversed pseudo-BCK algebra is obtained by reversing the operations ∗ and ◦, i.e., by

replacing x ∗ y by y → x and x ◦ y by y  x, for all x, y (see [9] or [10]). We have

Definicja 2.14. A reversed pseudo-BCK algebra is an algebra (A,→, , 0) of type (2, 2, 0)

verifying the following the axioms:

(pBCK-1’) (y → x) ((x→ z) (y → z)) = 0

(y  x)→ ((x z)→ (y  z)) = 0,

(pBCK-2’) 0→ x = x = 0 x,

(pBCK-3’) x→ 0 = 0 = x 0,

(pBCK-4’) x→ y = 0 = y  x =⇒ x = y,

(pBCK-5’) x→ y = 0⇐⇒ x y = 0.

Combaining Definitions 2.10 and 2.14, we obtain

Theorem 2.15. A pseudo-KU algebra is in fact a reversed pseudo-BCK algebra.
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§1. Introduction

In mathematics and abstract algebra, group theory studies the algebraic structures known

as groups. The concept of a group is central to abstract algebra: other well-known algebraic

structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with

additional operations and axioms. Groups recur throughout mathematics, and the methods of

group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are

two branches of group theory that have experienced advances and have become subject areas

in their own right. Various physical systems, such as crystals and the hydrogen atom, may be

modelled by symmetry groups. Thus group theory and the closely related representation theory

have many important applications in physics, chemistry, and materials science. Group theory

is also central to public key cryptography. In mathematics, a module is one of the fundamental

algebraic structures used in abstract algebra. A module over a ring is a generalization of the

notion of vector space over a field, wherein the corresponding scalars are the elements of an arbi-

trary given ring (with identity) and a multiplication (on the left and/or on the right) is defined

between elements of the ring and elements of the module. Thus, a module, like a vector space,

is an additive abelian group; a product is defined between elements of the ring and elements of

the module that is distributive over the addition operation of each parameter and is compatible

with the ring multiplication. Modules are very closely related to the representation theory of

groups. They are also one of the central notions of commutative algebra and homological al-

gebra, and are used widely in algebraic geometry and algebraic topology. A vector space (also

called a linear space) is a collection of objects called vectors, which may be added together and

multiplied (”scaled”) by numbers, called scalars. Scalars are often taken to be real numbers, but

there are also vector spaces with scalar multiplication by complex numbers, rational numbers,

or generally any field. The operations of vector addition and scalar multiplication must satisfy
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certain requirements. Euclidean vectors are an example of a vector space. In mathematics, giv-

en a group G, a G-module is an abelian group M on which G acts compatibly with the abelian

group structure on M . This widely applicable notion generalizes that of a representation of G.

Group (co)homology provides an important set of tools for studying general G-modules. The

term G-module is also used for the more general notion of an R-module on which G acts linearly

(i.e. as a group of R-module automorphisms). Representation theory (G-module theory) has

had its origin in the 20th century. In the 19th century, groups were generally regarded as subsets

of some permutation set, or of the set GL(V ) of automorphisms of a vector space V , closed

under composition and inverse. Only in the 20th century was the notion of an abstract group

formed, making it possible to make a distincton between properties of the abstract group and

properties of the particular realizatior as a subgroup of the permutation group or GL(V ). Most

of the problems in economics, engineering, medical science, environments etc. have various

uncertainties. We cannot successfully use classical methods to solve these uncertainties because

of various uncertainties typical for those problems. Hence some kinds of theories were given like

theory of fuzzy sets, i.e., which we can use as mathematical tools for dealing with uncertainties.

In 1965, Zadeh [33] introduced the concept of fuzzy subset as a generalization of the notion of

characteristic function in classicalset theory. Shery Fernadez introduced and studied the notion

of fuzzy G-modules in [4]. The triangular norm, T -norm, originated from the studies of proba-

bilistic metric spaces in which triangular inequalities were extended using the theory of T -norm.

Later, Hohle [6], Alsina et al. [2] introduced the T -norm and the S-norm into fuzzy set theory

and suggested that the T -norm be used for the intersection and union of fuzzy sets. Since then,

many other researchers have presented various types of T -norms for particular purposes [5,32].

In practice, Zadeh’s conventional T -norm,
∧

and
∨

, have been used in almost every design for

fuzzy logic controllers and even in the modelling of other decision-making processes. However,

some theoretical and experimental studies seem to indicate that other types of T -norms may

work better in some situations, especially in the context of decisionmaking processes. The au-

thor by using norms, investigated some properties of fuzzy algebraic structures [10] - [29]. Here

in this paper, we introduced fuzzy G-submodules under t-norms and some related results like

intersection, sum and direct sum of them has also been discussed. Also some of their properties

has been investigated under G-module homomorphisms.

§2. Preliminaries

Throughout the paper, Q,R,C will always be rational, real and complex numbers, respec-

tively.

Definition 2.1. (See [8]) Let R be a ring. A commutative group (M,+) is called a left

R-module or a left module over R with respect to a mapping

. : R×M →M

if for all r, s ∈ R and m,n ∈M ,

(1) r.(m+ n) = r.m+ r.n,

(2) r.(s.m) = (rs).m,
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(3) (r + s).m = r.m+ s.m.

If R has an identity 1 and if 1.m = m for all m ∈ M , then M is called a unitary or unital left

R-module.

A right R-module can be defined in a similar fashion.

Definition 2.2. (See [8]) Let M be an R-module and N be a nonempty subset of M .

Then N is called a submodule of M if N is a subgroup of M and for all r ∈ R, a ∈ N , we have

ra ∈ N.
Definition 2.3. (See [3]) Let G be a finite group. A vector space M over a field K is

called a G-module if for every g ∈ G and m ∈M, there exist a product ( called the action of G

on M ) m.g ∈M satisfyirlg the following axioms:

(1) m.1G = m,∀m ∈M ( 1G being the identity element in G),

(2) m.(g.h) = (m.g).h , ∀m ∈M : g, h ∈ G and

(3) (k1m1 + k2m2).g = k1(m1.g) + k2(m2.g) ∀m1,m2 ∈M : g ∈ G : k1, k2 ∈ K.
Example 2.1. Let G = {1,−1, i,−i} and M = Cn with n ≥ 1. Then M is a vector spacc

over C and under the usual addition and multiplication of complex numbers, we can show that

M is a G-module.

Remark 2.1. The operation (m, g) → m.g defined above may be called a right-action of

G on M and M may be said to be a right G-module. In a similar way, we can define left-action

and left G-module. We shall consider all G-modules as left G-modules.

Definition 2.4. (See [3]) Let M be a G-module. A vector subspaee N of M is a G-

submodule if N is also a G-module under the same action of G. Thus N is G-submodule of

G-module M if and only if N is submodule of M and N be a G-module.

Example 2.2. Let Q be the field of rationals and G = {1,−1} and M = R. Then M is a

G-module over Q. Now for each r /∈ Q we get that N = Q(r) is a G-submodule of M.

Definition 2.5. (See [7]) Let M and N be G-modules. A mapping f : M → M is a

G-module homomorphism if

(1) f(k1m1 + k2m2) = k1f(m1) + k2f(m2)

(2) f(gm) = gf(m)

for all m1,m2m ∈M and k1, k2 ∈ K and g ∈ G.
Definition 2.6. (See [9]) Let X a non-empty sets. A fuzzy subset µ of X is a function

µ : X → [0, 1]. Denote by [0, 1]X , the set of all fuzzy subset of X.

Definition 2.7. (See [31]) A fuzzy set µ of a non-empty set M is a mapping µ : M → [0, 1].

For any α ∈ [0, 1], the set U(µ, α) = {x ∈ M : µ(x) ≥ α} and L(µ, α) = {x ∈ M : µ(x) ≤ α}
are, respectively, called the upper α-level cut and the lower α-level cut of µ.

Definition 2.8. (See [9]) Let f be a mapping from R-module M into R-module N.

Let µ ∈ [0, 1]M and ν ∈ [0, 1]N . Define f(µ) ∈ [0, 1]N and f−1(ν) ∈ [0, 1]M as ∀y ∈ N,

f(µ)(y) = sup{µ(x) | x ∈ M,f(x) = y} if f−1(y) 6= ∅ and f(µ)(y) = 0 if f−1(y) = ∅. Also

∀x ∈M , f−1(ν)(x) = ν(f(x)).

Definition 2.9. (See [1]) A t-norm T is a function T : [0, 1] × [0, 1] → [0, 1] having the

following four properties:

(T1) T (x, 1) = x (neutral element),

(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
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(T3) T (x, y) = T (y, x) (commutativity),

(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),

for all x, y, z ∈ [0, 1].

We say that T be idempotent if T (x, x) = x for all x ∈ [0, 1].

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T (x1, y1) ≥ T (x2, y2).

Example 2.3. (1) Standard intersection T -norm Tm(x, y) = min{x, y}.
(2) Bounded sum T -norm Tb(x, y) = max{0, x+ y − 1}.
(3) algebraic product T -norm Tp(x, y) = xy.

(4) Drastic T -norm

TD(x, y) =


y if x = 1

x if y = 1

0 otherwise.

(5) Nilpotent minimum T -norm

TnM (x, y) =

 min{x, y} if x+ y > 1

0 otherwise.

(6) Hamacher product T -norm

TH0
(x, y) =

 0 if x = y = 0

xy
x+y−xy otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest

t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].

Lemma 2.1. (See [1]) Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.10. (See [30]) The intersection of fuzzy subsets µ1 and µ1 in a set X with

respect to a t-norm T we mean the fuzzy subset µ = µ1 ∩ µ2 in the set X such that for any

x ∈ X
µ(x) = (µ1 ∩ µ2)(x) = T (µ1(x), µ2(x)).

§3. Main Results

Definition 3.1. Let G be a finite group and M be a G-module over K, which is a subfield

of C. Then a fuzzy G-module on M under t-norm T (T -fuzzy G-submodule of M) is a fuzzy

subset µ : M → [0, 1] such that

(1) µ(ax+ by) ≥ T (µ(x), µ(y))

(2) µ(gm) ≥ µ(m)
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for all a, b ∈ K : x, y ∈M : m ∈M and g ∈ G.
Denote by TFG(M), the set of all T -fuzzy G-submodules of M.

Example 3.1. Let G = {1,−1} and M = R4 is a vector space over real field R. Then M

is a G-module over R. Define µ : M → [0, 1] by

µ(x) =

 1 if xi = 0,∀i

0.60 if atleast one xi = 0

where x = (x1, x2, x3, x4) ∈ R4 such that xi ∈ R. If T be standard intersection t-norm T (a, b) =

Tm(a, b) = min{a, b} for all a, b ∈ [0, 1], then µ ∈ TFG(M).

Example 3.2. Let F be a field, K be an extension field of F and a ∈ K. Let F (a) be the

field obtained by adjoining a to F as F (a) = {b0 + b1a+ b2a
2 + ...} with bi ∈ F . If G = (a), be

the cyclic group generated by a, then M = F (a) will be G-module. Define µ : M → [0, 1] by

µ(x) =


1 if x = 0

0.5 if x ∈ F − {0}

0.25 if x ∈ F (a)− F.

Let T be bounded sum t-norm T (a, b) = Tb(a, b) = max{0, a + b − 1} for all a, b ∈ [0, 1] then

µ ∈ TFG(M).

Example 3.3. Consider the G-module M = C over the field R where G = {±1}
Define µ : M → [0, 1] by

µ(z) =


1 if z = 0

0.65 if z ∈ R− {0}

0.45 if z ∈ C− R.

Let T be algebraic product t-norm T (x, y) = Tp(x, y) = xy for all x, y ∈ [0, 1] then µ ∈
TFG(M).

Proposition 3.1. Let M be a G-module over K and µ be a fuzzy set of M. If µ ∈ TFG(M)

and T be idempotent t-norm, then U(µ, α) will be G-submodule of M.

Proof. If U(µ, α) = ∅, then nothing to prove. Therefore, suppose that U(µ, α) 6= ∅, and

let x, y ∈ U(µ, α) and a, b ∈ K. Then µ(x) ≥ α and µ(y) ≥ α and as µ ∈ TFG(M) so

µ(ax+ by) ≥ T (µ(x), µ(y)) ≥ T (α, α) = α and then µ(ax+ by) ≥ α so ax+ by ∈ U(µ, α). Also

µ(gx) ≥ µ(x) ≥ α and then gx ∈ U(µ, α). Thus U(µ, α) is G-submodule of M.

Proposition 3.2. Let µ1, µ2 ∈ TFG(M). Then (µ1 ∩ µ2) ∈ TFG(M).

Proof. Let x, y ∈M and a, b ∈ K and g ∈ G.
(1)

(µ1 ∩ µ2)(ax+ by) = T (µ1(ax+ by), µ2(ax+ by))

≥ T (T (µ1(x), µ1(y)), T (µ2(x), µ2(y)))
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= T (T (µ1(x), µ2(x)), T (µ1(y), µ2(y))) (from Lemma 2.1)

= T ((µ1 ∩ µ2)(x), (µ1 ∩ µ2)(y)).

(2)

(µ1 ∩ µ2)(gx) = T (µ1(gx), µ2(gx)) ≥ T (µ1(x), µ2(x)) = (µ1 ∩ µ2)(x).

Thus (µ1 ∩ µ2) ∈ TFG(M).

Corollary 3.1. Let {µi | i ∈ In = 1, 2, ..., n} ⊆ TFG(M). Then so is ∩i∈In µi.

Proposition 3.3. Let f : M → N be a G-module epimorphism. If µ ∈ TFG(M), then

f(µ) ∈ TFG(N).

Proof. Let y1, y2 ∈ N and a, b ∈ K.
(1)

f(µ)(ay1 + by2) = sup{µ(ax1 + bx2) | x1, x2 ∈M,f(ax1) = ay1, f(bx2) = by2}

= sup{µ(ax1 + bx2) | x1, x2 ∈M,af(x1) = ay1, bf(x2) = by2}

≥ sup{T (µ(x1), µ(x2)) | x1, x2 ∈M,f(x1) = y1, f(x2) = y2}

= T (sup{µ(x1) | f(x1) = y1}, sup{µ(x2) | f(x2) = y2})

= T (f(µ)(y1), f(µ)(y2)).

(2) Let y ∈ N and g ∈ G.

f(µ)(gy) = sup{µ(gx) | x ∈M,f(gx) = gy}

= sup{µ(gx) | x ∈M, gf(x) = gy}

≥ sup{µ(x) | x ∈M,f(x) = y}

= f(µ)(y).

Therefore f(µ) ∈ TFG(N).

Proposition 3.4. Let f : M → N be a G-module homomorphism. If ν ∈ TFG(N), then

f−1(ν) ∈ TFG(M).

Proof. Let x1, x2 ∈M and a, b ∈ K. Then

(1)

f−1(ν)(ax1 + bx2) = ν(f(ax1 + bx2))

= ν(f(ax1) + f(bx2))

= ν(af(x1) + bf(x2))

≥ T (ν(f(x1), ν(f(x2))

= T (f−1(ν)(x1), f−1(ν)(x2)).
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(2) Let x ∈M and g ∈ G. Then

f−1(ν)(gx) = ν(f(gx)) = ν(gf(x)) ≥ ν(f(x)) = f−1(ν)(x).

Hence f−1(ν) ∈ TFG(M).

Definition 3.2. The sum of two µ1, µ2 ∈ TFG(M) is defined as follows:

(µ1 + µ2)(x) = sup{T (µ1(y), µ2(z)) | x = y + z ∈M}.

Proposition 3.5. Let µ1, µ2 ∈ TFG(M). Then (µ1 + µ2) ∈ TFG(M).

Proof. (1) Let x1, x2, y1, y2, z1, z2 ∈M and a, b ∈ K. Then

(µ1 + µ2)(ax1 + bx2)

= sup{T (µ1(ay1 + by2), µ2(az1 + bz2)) | ax1 + bx2 = ay1 + by2 + az1 + bz2}

≥ sup{T (T (µ1(y1), µ1(y2)), T (µ2(z1), µ2(z2))) | ax1 + bx2 = ay1 + az1 + by2 + bz2}

= sup{T (T (µ1(y1), µ1(y2)), T (µ2(z1), µ2(z2))) | ax1 = ay1 + az1, bx2 = by2 + bz2}

= sup{T (T (µ1(y1), µ1(y2)), T (µ2(z1), µ2(z2))) | x1 = y1 + z1, x2 = y2 + z2}

( from Lemma 2.1 )

= sup{T (T (µ1(y1), µ2(z1)), T (µ1(y2), µ2(z2))) | x1 + x2 = y1 + z1 + y2 + z2}

= T (sup{T (µ1(y1), µ2(z1)) | x1 = y1 + z1)}, sup{T (µ1(y2), µ2(z2)) | x2 = y2 + z2})

= T ((µ1 + µ2)(x1), (µ1 + µ2)(x2)).

(2) Let x, y, z ∈M and g ∈ G.

(µ1 + µ2)(gx) = sup{T (µ1(gy), µ2(gz)) | gx = gy + gz}

≥ sup{T (µ1(y), µ2(z)) | x = y + z}

= (µ1 + µ2)(x).

Therefore (µ1 + µ2) ∈ TFG(M).

Proposition 3.6. Let M be a G-module and N be a subset of M . Let

µ(x) =

 1 if x ∈ N

α if x /∈ N

with α ∈ [0, 1). Then µ ∈ TFG(M) if and only if N is a G-submodule of M .
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Proof. Let µ ∈ TFG(M) and we prove that N is a submodule of M . Let x, y ∈ N ⊆ M and

a, b ∈ K. Now

µ(ax+ by) ≥ T (µ(x), µ(y)) = T (1, 1) = 1

so µ(ax+ by) = 1 and then ax+ by ∈ N.
Also let g ∈ G and then µ(gx) ≥ µ(x) = 1 so µ(gx) = 1 and then gx ∈ N.
Therefore N is a submodule of M and since N be a subset of M so N will be N is a G-submodule

of M .

Conversely, let N is a submodule of M and we prove that µ ∈ TFG(M). Suppose x, y ∈ M
and a, b ∈ K and we investigate the following conditions:

(1) If x, y ∈ N , then

µ(ax+ by) = 1 ≥ 1 = T (1, 1) = T (µ(x), µ(y)).

(2) For any x ∈ N and y 6∈ N then ax+ by /∈ N and so

µ(ax+ by) = α ≥ 0 = T (1, 0) = T (µ(x), µ(y)).

(3) Let x 6∈ N and y ∈ N then ax+ by /∈ N and then

µ(ax+ by) = α ≥ 0 = T (0, 1) = T (µ(x), µ(y)).

(4) Finally, if x, y 6∈ N , ax+ by /∈ N and so

µ(ax+ by) = α ≥ 0 = T (0, 0) = T (µ(x), µ(y)).

Therefore from (1)-(4) we have that

µ(ax+ by) ≥ T (µ(x), µ(y)).

Now let x ∈M and g ∈ G. Then we have:

(1) If x ∈ N then gx ∈ N and then µ(gx) = 1 ≥ µ(x).

(2) If x 6∈ N , then gx /∈ N and so µ(gx) = 0 ≥ 0 = µ(x).

Therefore from (1) and (2) we have that µ(gx) ≥ µ(x).

Hence µ ∈ TFG(M).

Proposition 3.7. Any n-dimensional G-module M has a T -fuzzy G-module µ with | µ |=
n+ 1 where | µ | is called level cardinality of µ.

Proof. Let B = {m1,m2, ...mn} hc the basis for M. Then µ : M → [0, 1] with
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µ(c1m1 + c2m2 + ...+ cnmn) =



1 if c1 = c2 = ... = cn = 0

1
2 if c1 6= 0, c2 = c3 = ... = cn = 0

1
3 if c2 6= 0, c3 = ... = cn = 0

1
4 if c3 6= 0, c4 = c5 = ... = cn = 0

.

.

.

.

1
n+1 if cn 6= 0

then µ ∈ TFG(M) with | µ |= n+ 1.

Example 3.4. Let G = {±1} and M = R4 be G-module over field K = R. Let B =

{m1 = (1, 0, 0, 0),m2 = (0, 1, 0, 0),m3 = (0, 0, 1, 0),m4 = (0, 0, 0, 1)} be the standard ordered

basis for M. Define µ : M → [0, 1] by

µ(c1m1 + c2m2 + ...+ cnmn) =



1 if c1 = c2 = c3 = c4 = 0

1
2 if c1 6= 0, c2 = c3 = c4 = 0

1
3 if c2 6= 0, c3 = c4 = 0

1
4 if c3 6= 0, c4 = 0

1
5 if c4 6= 0.

Let T be algebraic product t-norm T (x, y) = Tp(x, y) = xy for all x, y ∈ [0, 1] then µ ∈ TFG(M)

with | µ |= 5.

Remark 3.1. The above construction can be extended to infinite dimensional G-modules

also.

Proposition 3.8. Let M be a G-module over K and M = ⊕n
i=1Mi, where Mi are G-

submodules of M. Define µ : M = ⊕n
i=1Mi → [0, 1] by µ(m =

∑n
i mi) =

∧
{µi(mi) : i =

1, 2, 3, ..., n} where
∧

denote minimum [infimum]. If µi ∈ TFG(Mi), then µ ∈ TFG(M).

Proof. Let x =
∑n

i mi and y =
∑n

j mj and a, b ∈ K and g ∈ G. Then

(1)

µ(ax+ by) = µ(a

n∑
i

mi + b

n∑
j

mj)

= µ(

n∑
i

ami +

n∑
j

bmj)

=
∧
{µi(ami + bmj) : i, j = 1, 2, 3, ..., n}

≥
∧
{T (µi(mi,mj) : i, j = 1, 2, 3, ..., n} (Since µi ∈ TFG(Mi))
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= T (
∧
{µi(mi) : i = 1, 2, 3, ..., n},

∧
{µi(mj) : j = 1, 2, 3, ..., n})

= T (µ(x), µ(y)).

(2)

µ(gx) = µ(g

n∑
i

mi)

= µ(

n∑
i

gmi)

=
∧
{µi(gmi) : i = 1, 2, 3, ..., n}

≥
∧
{µi(mi) : i = 1, 2, 3, ..., n} (Since µi ∈ TFG(Mi))

=
∧
{µi(mi) : i = 1, 2, 3, ..., n}

= µ(x).

Therefore µ ∈ TFG(M).

Remark 3.2. In thc above proposition, if µi(0) are all equal then we have µ(0) =
∧
{µi(0) :

i = 1, 2, 3, ..., n} = µi(0) for all i.

Definition 3.3. The T -fuzzy G-module µ on M = ⊕n
i=1Mi, in Proposition 3.8 with

µ(0) = µi(0) for all i is called the direct sum of the T -fuzzy G-modules µi, and is denoted by

µ = ⊕n
i=1µi.

Example 3.5. Let G = {±1} and M = C over R. Then M is a G-module. We have

M = M1 ⊕M2, where M1 = R and M2 = iR. Let T be algebraic product t-norm T (x, y) =

Tp(x, y) = xy for all x, y ∈ [0, 1]. Define µ : M → [0, 1] as

µ(x+ iy) =


1 if x = y = 0

1
2 if x 6= 0, y = 0

1
3 if y 6= 0,

then µ ∈ TFG(M). Also define

µ1 : M1 → [0, 1] as

µ1(x) =

 1 if x = 0

1
2 if x 6= 0,

and

µ2 : M2 → [0, 1] as

µ2(y) =

 1 if y = 0

1
3 if y 6= 0,

then µ1 ∈ TFG(M1) and µ2 ∈ TFG(M2). Also we obtain that µ = µ1 ⊕ µ2.
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