SCIENTIA MAGNA

An international journal

Edited by School of Mathematics Northwest University, P. R.China

SCIENTIA MAGNA

An international journal

Edited by

School of Mathematics
Northwest University
Xi'an, Shaanxi, China

Information for Authors

Scientia Magna is a peer-reviewed, open access journal that publishes original research articles in all areas of mathematics and mathematical sciences. However, papers related to Smarandache's problems will be highly preferred.

The submitted manuscripts may be in the format of remarks, conjectures, solved/unsolved or open new proposed problems, notes, articles, miscellaneous, etc. Submission of a manuscript implies that the work described has not been published before, that it is not under consideration for publication elsewhere, and that it will not be submitted elsewhere unless it has been rejected by the editors of Scientia Magna.

Manuscripts should be submitted electronically, preferably by sending a PDF file to ScientiaMagna@hotmail.com.

On acceptance of the paper, the authors will also be asked to transmit the TeX source file. PDF proofs will be e-mailed to the corresponding author.

Contents

Xiaolin Chen: A survey on Smarandache notions in number theory VI: Smarandache Ceil function

Yuchan Qi: A survey on Smarandache notions in number theory VII: Smarandache multiplicative function 9
B. Vijayalakshmi, A. Vadivel and A. Prabhu: Fuzzy e^{*}-open sets in \hat{S} ostak's topological spaces 18
A. Vadivel and E. Elavarasan: Somewhat fuzzy $I_{r w}$-continuous functions 29

Ao Han: The mean value of $\tau_{3}^{(e)}(n)$ with a negative r-th power 44
Xue Han: The mean value of $\tau^{(e)}(n)$ over cube-full numbers 52
Şeyda Kılıçoğlu and Süleyman Şenyurt: On the second order involute of a spacelike curve with timelike binormal in $I L^{3}$ 58
E. Elavarasan: On several types of generalized regular fuzzy continuous functions $\quad 66$
B. Vijayalakshmi, A. Prabhu and A. Vadivel: On fuzzy upper and lower e-continuous multifunctions

Pardeep Kaur and Sukhwinder Singh Billing: An integral representation of a subclass of analytic functions 96

Scientia Magna

Vol. 14 (2019), No. 1, 1-8

A survey on Smarandache notions in number theory VI: Smarandache Ceil function

Xiaolin Chen
School of Mathematics, Northwest University
Xi'an 710127, China
E-mail: xlchen@stumail.nwu.edu.cn

Abstract In this paper we give a survey on recent results on Smarandache Ceil function.

Keywords Smarandache notion, Smarandache Ceil function, sequence, mean value.
2010 Mathematics Subject Classification 11A07, 11B50, 11L20, 11N25.

$\S 1$. Definition and simple properties

For any fixed positive integer k and any positive integer n, the famous Smarandache ceil function $S_{k}(n)$ is defined as follows:

$$
\begin{equation*}
S_{k}(n)=\min \left\{m \in \mathbb{N}: n \mid m^{k}\right\} . \tag{1.1}
\end{equation*}
$$

Many people had studied elementary properties of $S_{k}(n)$, and obtained some interesting results.
Z. Xu [18]. Define $\Omega(n)=\Omega\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}\right)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}$. Let k be a given positive integer. Then for any real number $x \geq 3$, we have the asymptotic formula

$$
\sum_{n \leq x} \Omega\left(S_{k}(n)\right)=x \ln \ln x+A x+O\left(\frac{x}{\ln x}\right)
$$

where $A=\gamma+\sum_{p}\left(\ln \left(1-\frac{1}{p}\right)+\frac{1}{p}\right)$, γ is the Euler constant and \sum_{p} denotes the sum over all the primes.
J. Li [8]. Define $\Omega(n)=\Omega\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}\right)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}$. Let k be a given positive integer. Then for any integer $n \geq 3$, we have the asymptotic formula

$$
\Omega\left(S_{k}(n!)\right)=\frac{n}{k}(\ln \ln n+C)+O\left(\frac{n}{\ln n}\right),
$$

where C is a computable constant.
Y. Wang [15]. Let k be a fixed positive integer, then for any integer $n \geq 3$, we have the asymptotic formula

$$
\ln \left(S_{k}(n!)\right)=\frac{n \ln n}{k}+O(n)
$$

§2. Mean values of the Smarandache Ceil function

L. Ding [1]. Let $x \geq 2$, for any fixed positive integer k, we have the asymptotic formula

$$
\sum_{n \leq x} S_{k}(n)=\frac{x^{2} \zeta(2 k-1)}{2} \prod_{p}\left[1-\frac{1}{p(p+1)}\left(1+\frac{1}{p^{2 k-3}}\right)\right]+O\left(x^{\frac{3}{2}+\varepsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta function, \prod_{p} denotes the product over all prime p, and ε is any fixed positive number.
C. Wu [16]. 1) For any fixed positive integer $k \geq 2$ and any positive integer n, let $a_{k}(n)$ denote the k-th power complements of n. Then we have

$$
\left(S_{k}(n)\right)^{k}=a_{k}(n) \cdot n .
$$

2) Let k be a fixed positive integer. For any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} S_{k}(n)=\frac{\zeta(2 k-1)}{2} x^{2} \prod_{p}\left(1-\frac{1}{p^{2}+p}-\frac{1}{p^{2 k-1}+p^{2 k-2}}\right)+O\left(x^{\frac{3}{2}+\varepsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta function, $\varepsilon>0$ is any fixed positive number.
X. Wang [13]. For any real number $x \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} \frac{1}{S_{2}(n)}=\frac{3 \ln ^{2} x}{2 \pi^{2}}+A_{1} \ln x+A_{2}+O\left(x^{-\frac{1}{4}+\varepsilon}\right)
$$

where A_{1} and A_{2} are two computable constants, ε is any fixed positive integer.
Y. Wang [14]. 1) For any real number $\alpha>1$ and integer $k \geq 2$, we have the identity

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{S_{k}^{\alpha}(n)}=\frac{2^{\alpha}-k-1}{2^{\alpha}+k-1} \prod_{p}\left(1+\frac{k}{p^{\alpha}-1}\right)
$$

where \prod_{p} denotes the product over all prime p.
2) For any positive integer n, the dual function of $S_{k}(n)$ is defined as $\overline{S_{k}}(n)=\max \left\{m \in \mathbb{N}: m^{k} \mid n\right\}$. For any real number $\alpha>1$ and integer $k \geq 2$, we have the identities

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\overline{S_{k}}(n)}{n^{\alpha}}=\frac{\zeta(\alpha) \zeta(k \alpha-1)}{\zeta(k \alpha)} \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \overline{S_{k}}(n)}{n^{\alpha}}=\frac{\zeta(\alpha) \zeta(k \alpha-1)}{\zeta(k \alpha)}\left[\frac{\left(2^{\alpha}-1\right)\left(2^{k \alpha-1}-1\right)}{2^{\alpha-2}\left(2^{k \alpha}-1\right)}-1\right],
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta function.
D. Ren [12]. Let $d(n)$ denote the Dirichlet divisor function, and let k be a given positive integer with $k \geq 2$. Then for any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} d\left(S_{k}(n)\right)=\frac{6 \zeta(k) x \ln x}{\pi^{2}} \prod_{p}\left(1-\frac{1}{p^{k}+p^{k-1}}\right)+C x+O\left(x^{\frac{1}{2}+\varepsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta function, C is a computable constant, and ε is any fixed positive number.
X. He and J. Guo [7]. 1) Let $\alpha>0, \sigma_{\alpha}(n)=\sum_{d \mid n} d^{\alpha}$. Then for any real number $x \geq 2$, and any fixed positive integer $k \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} \sigma_{\alpha}\left(S_{k}(n)\right)=\frac{6 x^{\alpha+1} \zeta(\alpha+1) \zeta(k(\alpha+1)-\alpha)}{(\alpha+1) \pi^{2}} R(\alpha+1)+O\left(x^{\alpha+\frac{1}{2}}+\varepsilon\right)
$$

where $\zeta(s)$ is the Riemann zeta function, ε is any fixed positive number, and

$$
R(\alpha+1)=\prod_{p}\left(1-\frac{1}{p^{k(\alpha+1)-\alpha}-p^{(k-1)(\alpha+1)}}\right) .
$$

2) Let $d(n)$ denote the Dirichlet divisor function. Then for any real number $x \geq 1$, and any fixed positive integer $k \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} d\left(S_{k}(n)\right)=\frac{6 \zeta(k) x \ln x}{\pi^{2}} \prod_{p}\left(1-\frac{1}{p^{k}+p^{k-1}}\right)+C x+O\left(x^{\frac{1}{2}+\varepsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta function, C is a computable constant, and ε is any fixed positive number.
L. Zhang, M. Lv and W. Zhai [20]. Let $d_{3}(n)$ denote the Piltz divisor function of dimensional 3, then for any real number $x \geq 2$, we have

$$
\sum_{n \leq x} d_{3}\left(S_{k}(n)\right)=x P_{2, k}(\log x)+O\left(x^{\frac{1}{2}} e^{-c \delta(x)}\right)
$$

where $P_{2, k}(\log x)$ is a polynlmial of degree 2 in $\log x, \delta(x)=\log ^{\frac{3}{5}} x(\log \log x)^{-\frac{1}{5}}, c>0$ is an absulute constant.
Y. Zhang, H. Liu and P. Zhao [21]. Let $d(n)$ denote the Dirichlet divisor function, $S_{k}(n)$ denote the Smarandache ceil function, then for any real number $\frac{1}{4}<\theta<\frac{1}{3}, x^{\theta+2 \varepsilon} \leq y \leq$ x, we have

$$
\sum_{x<n \leq x+y} d\left(S_{k}(n)\right)=H(x+y)-H(x)+O\left(y x^{-\frac{\varepsilon}{2}}+x^{\theta+\varepsilon}\right),
$$

where $H(x)=t_{1} x \log x+t_{2} x$, ε denotes a fixed but sufficiently small positive constant.
Q. Feng and R. Wang [4]. For any positive integer n, we define

$$
a_{k}(n)=\left[n^{\frac{1}{k}}\right], \quad n=0,1,2,3, \cdots .
$$

Let $\zeta(s)$ be the Riemann zeta function, X be any positive number, and

$$
g(s)=\prod_{p}\left(1+p^{1-s}-p^{1-k s}-p^{-s}\right) .
$$

1) For any real number $x \geq 1, k \geq 3$, we have

$$
\sum_{n \leq x} S_{k}\left(a_{k}(n)\right)=\frac{1}{k} \zeta(k-1) g(1) x+O\left(x^{1-\frac{1}{2 k}+X}\right)
$$

2) For any real number $x \geq 1, k \leq 2$, we have

$$
\sum_{n \leq x} S_{k}\left(a_{k}(n)\right)=\frac{k}{k^{2}-k+2} \zeta\left(\frac{2}{k}\right) g\left(\frac{2}{k}\right) x^{\frac{k^{2}-k+2}{k^{2}}}+O\left(x^{\frac{k^{2}-k+2}{k^{2}}+X}\right)
$$

Q. Feng, J. Guo and R. Wang [5]. For any positive integer n and any natural number m, we define

$$
a_{m}(n)=\max \left\{i^{m}: i^{m} \leq n, i \in \mathbb{N}\right\} .
$$

1) For any real number $x \geq 1, n, m, k, t \in \mathbb{N}, m, t \geq 2, k=t m+1$, we have

$$
\begin{aligned}
\sum_{n \leq x} S_{k}\left(a_{m}(n)\right)= & \frac{m}{m+1} x^{1+\frac{1}{m}} \zeta(2 t-1) \zeta((2 t-1) m+2) \\
& \times \prod_{p}\left[1-\frac{1}{p(p+1)}\left(1+\frac{1}{p^{2 t-3}}+\frac{1}{p^{(2 t-1) m-1}}\left(1-\frac{1}{p^{2 t}}\right)\right)\right]+O\left(x^{1+\frac{1}{2 m}+\varepsilon}\right)
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta function, ε is any positive real number.
2) For any real number $x \geq 1, n, m, k, t \in \mathbb{N}, m=2, t \geq 2, k=2 t+1$, we have
$\sum_{n \leq x} S_{k}\left(a_{m}(n)\right)=\frac{2}{3} x^{\frac{3}{2}} \zeta(4 t) \prod_{p}\left[1-\frac{1}{p(p+1)}\left(1+\frac{1}{p^{2 t-1}}+\frac{1}{p^{2(t-1)}}\left(1-\frac{1}{p^{2 t}}\right)\right)\right]+O\left(x^{\frac{5}{4}+\varepsilon}\right)$,
where $\zeta(s)$ is the Riemann zeta function, ε is any positive real number.
3) For any real number $x \geq 1, n, m, k, t \in \mathbb{N}, m, t \geq 2, k=t m$, we have

$$
\sum_{n \leq x} S_{k}\left(a_{m}(n)\right)=\frac{m}{m+1} x^{1+\frac{1}{m}} \zeta(2 t-1) \prod_{p}\left(1-\frac{p^{2 t}+p^{3}}{p^{2 t+2}+p^{2 t+1}}\right)+O\left(x^{1+\frac{1}{2 m}+\varepsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta function, ε is any positive real number.
4) For any real number $x \geq 1, n, m, k, t \in \mathbb{N}, m, t \geq 2, m=k t$, we have

$$
\sum_{n \leq x} S_{k}\left(a_{m}(n)\right)=\frac{m}{m+1} x^{1+\frac{t}{m}}+O\left(x^{1+\frac{t}{2 m}+\varepsilon}\right)
$$

where ε is any positive real number.
J. Xu [17]. For any fixed positive integer k and any integer n, we define

$$
\begin{aligned}
& c_{k}(n)=\min \left\{m^{k}: m^{k} \geq n, m \in \mathbb{N}^{+}\right\} \\
& d_{k}(n)=\max \left\{m^{k}: m^{k} \leq n, m \in \mathbb{N}^{+}\right\}
\end{aligned}
$$

For any real number $x>2$, we have the asymptotic formula

$$
\sum_{n \leq x} S_{k}\left(c_{k}(n)\right)=\frac{x^{2}}{2}+O\left(x^{\frac{2 k-1}{k}}\right), \quad \sum_{n \leq x} S_{k}\left(d_{k}(n)\right)=\frac{x^{2}}{2}+O\left(x^{\frac{2 k-1}{k}}\right)
$$

L. Qi and Y. Zhao [11]. Let $k \geq 2, m \geq 1$ be two positive integers. For any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} \varphi^{m}\left(S_{k}(n)\right)=\frac{6 \zeta(m+1) \zeta(k(m+1)-m) R(m+1) x^{m+1}}{\pi^{2}(m+1)}+O\left(x^{m+\frac{1}{2}+\varepsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta function, $\varphi(n)$ is the Euler function, ε is any positive real number, and
$R(m+1)=\prod_{p}\left[1-\frac{1}{1+p}\left(\frac{1}{p}+\frac{1}{p^{k(m+1)-m}}+\frac{1}{p^{m-1}}-\frac{1}{p^{(k-1)(m+1)-m}}-\left(1-\frac{1}{p^{k(m+1)}}\right) \cdot \frac{1}{p}\left(1-\frac{1}{p}\right)^{m}\right)\right]$.
E. Lv [10]. Define

$$
U(1)=1, \quad U(n)=\prod_{p \mid n} p
$$

Let $k \geq 2$ be a fixed positive integer. For any real number $x \geq 1$, we have the asymptotic formula

$$
\begin{aligned}
\sum_{n \leq x}\left(S_{k}(n)-U(n)\right)^{2}= & \frac{2 \zeta(3) \zeta(3 k-2) x^{3}}{\pi^{2}} \prod_{p}\left(1-\frac{1+p^{5-3 k}}{p^{2}+p^{3}}\right)+\frac{2 \zeta(3) x^{3}}{\pi^{2}} \prod_{p}\left(1-\frac{1}{p^{2}+p^{3}}\right) \\
& -\frac{4 \zeta(3) \zeta(3 k-1) x^{3}}{\pi^{2}} \prod_{p}\left(1+\frac{p-p^{2}-p^{4}-p^{3 k}}{p^{3 k+3}+p^{3 k+2}}\right)+O\left(x^{\frac{5}{2}+\varepsilon}\right)
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta function, $\varepsilon>0$ is any positive real number.
Y. Xue and L. Gao [19]. Define

$$
U(1)=1, \quad U(n)=\prod_{p \mid n} p
$$

Let $k \geq 2$ be a fixed positive integer. For any real number $x \geq 1$, we have the asymptotic formula

$$
\begin{aligned}
\sum_{n \leq x}\left(S_{k}(n)+U(n)\right)^{3}= & \frac{3 \zeta(4) \zeta(4 k-3) x^{4}}{2 \pi^{2}} \prod_{p}\left(1-\frac{1+p^{7-4 k}}{p^{3}+p^{4}}\right) \\
& +\frac{9 \zeta(4) \zeta(4 k-2) x^{4}}{2 \pi^{2}} \prod_{p}\left(1-\frac{1+p^{3-4 k}+p^{6-4 k}-p^{2-4 k}}{p^{3}+p^{4}}\right) \\
& +\frac{9 \zeta(4) \zeta(4 k-1) x^{4}}{2 \pi^{2}} \prod_{p}\left(1-\frac{1+p^{5-4 k}-p^{1-4 k}+p^{3-4 k}}{p^{3}+p^{4}}\right) \\
& +\frac{3 \zeta(4) x^{4}}{2 \pi^{2}} \prod_{p}\left(1-\frac{1}{p^{3}+p^{4}}\right)+O\left(x^{\frac{7}{2}+\varepsilon}\right)
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta function, ε is any positive real number.

§3. The dual function of the Smarandache Ceil function

For any positive integer n and any fixed positive integer k, the dual function of $S_{k}(n)$ is defined as follows:

$$
\overline{S_{k}}(n)=\max \left\{m \in \mathbb{N}: m^{k} \mid n\right\}
$$

J. Guo and Y. He [6]. 1) Let $\alpha>0, \sigma_{\alpha}(n)=\sum_{d \mid n} d^{\alpha}$. Then for any real number $x \geq 1$ and any fixed positive integer $k \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} \sigma_{\alpha}\left(\overline{S_{k}}(n)\right)= \begin{cases}\frac{k \zeta\left(\frac{\alpha+1}{k}\right)}{\alpha+1} x^{\frac{\alpha+1}{k}}+O\left(x^{\frac{\alpha+1}{2 k}+\varepsilon}\right), & \text { if } \alpha>k-1 \\ \zeta(k-\alpha) x+O\left(x^{\frac{1}{2}+\varepsilon}\right), & \text { if } \alpha \leq k-1\end{cases}
$$

where $\zeta(s)$ is the Riemann zeta function, and ε is any fixed positive number.
2) Let $d(n)$ denote the Dirichlet divisor function. Then for any real number $x \geq 1$ and any fixed positive integer $k \geq 2$, we have

$$
\sum_{n \leq x} d\left(\overline{S_{k}}(n)\right)=\zeta(k) x+O\left(x^{\frac{1}{2}+\varepsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta function, and ε is any fixed positive number.
Y. Lu [9]. Let $d(n)$ denote the Dirichlet divisor function, and let $k \geq 2$ be a fixed integer. Then for any real number $x>1$, we have the asymptotic formula

$$
\begin{aligned}
& \sum_{n \leq x} d\left(\overline{S_{1}}(n)\right)=x \ln x+(2 \gamma-1) x+O\left(x^{\frac{1}{3}}\right) \\
& \sum_{n \leq x} d\left(\overline{S_{k}}(n)\right)=\zeta(k) x+\zeta\left(\frac{1}{k}\right) x^{\frac{1}{k}}+O\left(x^{\frac{1}{k+1}}\right),
\end{aligned}
$$

where γ is the Euler constant, and $\zeta(s)$ is the Riemann zeta function.
L. Ding [2]. 1) Let $x \geq 2$, for any fixed positive integer $k>2$, we have the asymptotic formula

$$
\sum_{n \leq x} \overline{S_{k}}(n)=\frac{\zeta(k-1)}{\zeta(k)} x+O\left(x^{\frac{1}{2}+\varepsilon}\right)
$$

where $\zeta(s)$ is the Riemann zeta function, and ε is any fixed positive number.
2) For $k=2$, we have the asymptotic formula

$$
\sum_{n \leq x} \overline{S_{2}}(n)=x\left(\frac{3}{\pi^{2}} \ln x+C\right)+O\left(x^{\frac{3}{4}+\varepsilon}\right)
$$

where C is a computable constant, and ε is any fixed positive number.
Q. Feng and J. Guo [3]. For any positive integer n and any fixed positive integer $k \geq 2$, we define

$$
c_{k}(n)=\min \left\{m \in \mathbb{N}: n m=t^{k}, t \in \mathbb{N}\right\}
$$

1) For any real number $x \geq 1, k, n \in \mathbb{N}, k \geq 2$, we have

$$
\begin{aligned}
\sum_{n \leq x} S_{k}(n) c_{k}(n)= & \frac{6}{(k+1) \pi^{2}} x^{k+1} \zeta(k+2) \zeta\left(k^{2}+k-1\right) \\
& \times \prod_{p}\left(1-\frac{1}{p^{k-1}(p+1)}\left(\frac{1}{p^{2}}+\frac{1}{p^{k^{2}-1}}\right)\right)+O\left(x^{k+\frac{1}{2}+\varepsilon}\right)
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta function, and ε is any fixed positive number.
2) For any real number $x \geq 1, k, n \in \mathbb{N}, k \geq 2$, we have

$$
\sum_{n \leq x} S_{k}\left(c_{k}(n)\right)=\frac{3}{\pi^{2}} x^{2} \prod_{p}\left(1+\frac{R(2)}{(p+1)\left(p^{2}-2\right)}\right)+O\left(x^{\frac{3}{2}+\varepsilon}\right)
$$

where ε is any fixed positive number, and

$$
R(2)=1-\frac{1}{p^{2(k-2)}}+\left(p^{2}\left(1-\frac{1}{p^{2(k-1)}}\right)+p^{3}-p\right) \frac{1}{p^{2 k-1}}
$$

3) For any real number $x \geq 1, k, n \in \mathbb{N}, k \geq 2$, we have

$$
\begin{aligned}
\sum_{n \leq x} \overline{S_{k}}(n) c_{k}(n)= & \frac{6}{k \pi^{2}} x^{k} \zeta(k+1) \zeta\left(k^{2}-1\right) \\
& \times \prod_{p}\left(1-\frac{1}{p^{k}(p+1)}\left(1+\frac{1}{p^{k^{2}-k-1}}-\frac{1}{p^{k^{2}-1}}\right)\right)+O\left(x^{k+\frac{1}{2}+\varepsilon}\right)
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta function, and ε is any fixed positive number.
4) For any real number $x \geq 1, k, n \in \mathbb{N}, k \geq 2$, we have

$$
\sum_{n \leq x} \overline{S_{k}}\left(c_{k}(n)\right)=x+O\left(x^{\frac{1}{2}+\varepsilon}\right)
$$

where ε is any fixed positive number

References

[1] Liping Ding. On the mean value of Smarandache ceil function. Scientia Magna 1 (2005), no. 2, 74-77.
[2] Liping Ding. An arithmetical function and its mean value. Scientia Magna 2 (2006), no. 1, 99-101.
[3] Qiang Feng and Jinbao Guo. On the mean value of Smarandache ceil function and its dual function. Journal of Southwest University for Nationalities (Natural Science Edition) 33 (2007), no. 4, 713-717. (In Chinese with English abstract).
[4] Qiang Feng and Rongbo Wang. The Smarandache ceil function of order k and k-th roots of positive integer. Journal of Yanan University (Natural Science Edition) 24 (2005), no. 2, 10-12. (In Chinese with English abstract).
[5] Qiang Feng, Jinbao Guo and Rongbo Wang. On the mean values of m-th power part and Smarandache ceil function. Journal of Northwest Normal University (Natural Science Edition) 44 (2008), no. 3, 12-16. (In Chinese with English abstract).
[6] Jinbao Guo and Yanfeng He. Several asymptotic formula on a new arithmetical function. Research on Smarandache problems in number theory (2004), 115-118.
[7] Xiaolin He and Jinbao Guo. Some asymptotic properties involving the Smarandache ceil function. Research on Smarandache problems in number theory, 133-137.
[8] Jie Li. An asymptotic formula on Smarandache ceil function. Research on Smarandache problems in number theory (2004), 103-105.
[9] Yaming Lu. On a dual function of the Smarandache ceil function. Research on Smarandache problems in number theory II (2005), 55-57.
[10] Erbing Lv. On the mean value problem of the Smarandache ceil function. Basic Sciences Journal of Textile Universities 26 (2013), no. 2, 155-157. (In Chinese with English abstract).
[11] Lan Qi and Yuane Zhao. On a hybrid mean value of the Smarandache ceil function. Journal of Gansu Sciences 26 (2014), no. 3, 12-13. (In Chinese with English abstract).
[12] Dongmei Ren. On the Smarandache ceil function and the Dirichlet divisor function. Research on Smarandache problems in number theory II (2005), 51-54.
[13] Xiaoying Wang. On the mean value of the Smarandache ceil function. Scientia Magna 2 (2006), no. 1, 42-44.
[14] Yongxing Wang. Some identities involving the Smarandache ceil function. Scientia Magna 2 (2006), no. 1, 45-49.
[15] Yu Wang. An asymptotic formula for $S_{k}(n!)$. Scientia Magna 3 (2007), no. 3, 40-43.
[16] Chengjing Wu. Mean value of Smarandache ceil function. Basic Sciences Journal of Textile Universities 27 (2014), no. 4, 428-430. (In Chinese with English abstract).
[17] Junbao Xu. Research on the mean value of Smarandache ceil function. Journal of Hubei University for Nationalities (Natural Science Edition) 32 (2014), no. 1, 64-67. (In Chinese with English abstract).
[18] Zhefeng Xu. On the Smarandache ceil function and the number of prime factors. Research on Smarandache problems in number theory (2004), 73-76.
[19] Yang Xue and Li Gao. On the mean value problem of the Smarandache ceil function. Henan Science 34 (2016), no. 7, 1026-1030.
[20] Lulu Zhang, Meimei Lv and Wenguang Zhai. On the Smarandache ceil function and the Dirichlet divisor function. Scientia Magna 4 (2008), no. 4, 55-57.
[21] Yingying Zhang, Huafeng Liu and Peimin Zhao. A short interval result for the Smarandache ceil function and the Dirichlet divisor function. Scientia Magna 8 (2012), no. 3, 25-28.

A survey on Smarandache notions in number theory VII: Smarandache multiplicative function

Yuchan Qi
School of Mathematics, Northwest University
Xi'an 710127, China
E-mail: ycqimath@163.com

Abstract

In this paper we give a survey on recent results on Smarandache multiplicative function. Keywords Smarandache multiplicative function, sequence, mean value. 2010 Mathematics Subject Classification 11A07, 11B50, 11L20, 11N25.

$\S 1$. Definition and the mean value properties of the Smarandache multiplicative function

For any positive integer $n, f(n)$ is called a Smarandache multiplicative function if $f(a b)=$ $\max (f(a), f(b)),(a, b)=1$, and if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is the prime powers factorization of n, then

$$
\begin{equation*}
f(n)=\max _{1 \leq i \leq k}\left\{f\left(p_{i}^{\alpha_{i}}\right)\right\} \tag{1.1}
\end{equation*}
$$

for any prime p and any positive integer $\alpha, f(n)$ is a new Smarandache multiplicative function if $f\left(p^{\alpha}\right)=\alpha p$. That is

$$
f(n)=\max _{1 \leq i \leq k}\left\{f\left(p_{i}^{\alpha_{i}}\right)\right\}=\max _{1 \leq i \leq k}\left\{\alpha_{i} p_{i}\right\} .
$$

J. Ma [11]. For any real number $x \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} f(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+O\left(\frac{x^{2}}{\ln ^{2} x}\right)
$$

Y. Liu, P. Gao [10]. A new arithmetical function $P_{d}(n)$ is defined as

$$
P_{d}(n)=\prod_{d \mid n} d=n^{\frac{d(n)}{2}}
$$

where $d(n)=\sum_{d \mid n} 1$ is the Dirichlet divisor function. For any real number $x \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} f\left(P_{d}(n)\right)=\frac{\pi^{4}}{72} \cdot \frac{x^{2}}{\ln x}+C \cdot \frac{x^{2}}{\ln ^{2} x}+O\left(\frac{x^{2}}{\ln ^{3} x}\right)
$$

where $C=\frac{5 \pi^{4}}{288}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{d(n) \ln n}{n^{2}}$ is a constant.
X. Zhang [24]. For any integer $n \in \mathbb{N}^{+}$, n is named as a simple number if the product of all proper divisors of n is no more than n. Now let A be a simple number set, that is $A=\{2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21, \ldots\}$. For any real number $x \geq 2$ we have the asymptotic formula

$$
\sum_{\substack{n \leq x \\ n \in A}} f(n)=D_{1} \frac{x^{2}}{\ln x}+D_{2} \frac{x^{2}}{\ln ^{2} x}+\frac{2 x}{\ln x}+\frac{9 x^{2 / 3}}{2 \ln x}+O\left(\frac{x^{2}}{\ln ^{3} x}\right)
$$

where D_{1}, D_{2} are computable constants.
W. Xiong [19]. Let $O F(N)$ denotes the number of all integers $1 \leq k \leq n$ such that $f(n)$ is odd, $E F(n)$ denotes the number of all integer $1 \leq k \leq n$ such that $f(n)$ is even. For any positive integer $n>1$, we have the asymptotic formula

$$
\frac{E F(n)}{O F(n)}=O\left(\frac{1}{\ln n}\right)
$$

From the formula above, it can be immediately deduced the following

$$
\lim _{n \rightarrow \infty} \frac{E F(n)}{O F(n)}=0
$$

J. Li [6]. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{\substack{n \in \mathbb{N} \\ f(n) \leq x}}=\mathrm{e}^{c \frac{x}{\ln x}+O\left(\frac{x(\ln \ln x)^{2}}{\ln ^{2} x}\right)},
$$

where $c=\sum_{n=1}^{\infty} \frac{\ln (n+1)}{n(n+1)}$ is a constant.
Z. Feng [1]. A natural number n is of the k-full number if for any prime $p, p \mid n$ implies $p^{k} \mid n$. Let A_{k} be a simple number set, for any real number $x \geq 2$ we have the asymptotic formula

$$
\sum_{\substack{n \leq x \\ n \in A_{k}}} f(n)=C_{1} \frac{x^{2}}{\ln x}+C_{2} \frac{x^{2}}{\ln ^{2} x}+\frac{2 x}{\ln x}+\frac{9 x^{2 / 3}}{2 \ln x}+O\left(\frac{x^{2}}{\ln ^{3} x}\right)
$$

where C_{1}, C_{2} are computable constants.
Y. Men [12]. Let $\operatorname{Smd}(n)=\sum_{d \mid n} \frac{1}{f(d)}$, for any real number $x \geq 1$, when $n \neq 1,24$, we have
(1). If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}} p, p_{1}^{\alpha_{1}}<p_{2}^{\alpha_{2}}<\cdots<p_{s}^{\alpha_{s}}<p$, and $p, p_{i}(i=1,2, \ldots, s)$ are primes, then $\operatorname{Smd}(n)$ is not a positive integer;
(2). If $n=p_{1} p_{2} \cdots p_{s}, p_{1}<p_{2}<\cdots<p_{s}, \quad p_{i}(i=1,2, \ldots, s)$ are primes, then $\operatorname{Smd}(n)$ is not a positive integer.
R. Guo and X. Zhao [2]. 1. For any real number $x \geq 1$ and any fixed positive integer $k \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} \Lambda(n) f(n)=x^{2} \sum_{i=1}^{k} \frac{c_{i}}{\ln ^{i-1} x}+O\left(\frac{x^{2}}{\ln ^{k} x}\right)
$$

where $\Lambda(n)$ is the Mangoldt function, $c_{i}(i=1,2, \ldots, k)$ are computable constants and $c_{1}=\frac{1}{2}$.
2. For any real number $x \geq 1$ and any fixed positive integer $k \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} \Lambda(n) S(n)=x^{2} \sum_{i=1}^{k} \frac{c_{i}}{\ln ^{i-1} x}+O\left(\frac{x^{2}}{\ln ^{k} x}\right)
$$

where $S(n)$ is the famous Smarandache function, $S(n)=\min \{m: m \in \mathbb{N}, n \mid m!\}, c_{i}(i=$ $1,2, \ldots, k)$ are computable constants and $c_{1}=\frac{1}{2}$.

For any positive integers m and n, an arithmetical function $h(n)$ is defined as follows

$$
(m, n)=1 \Rightarrow h(m n)=\max \{h(m), h(n)\} .
$$

If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is the prime powers factorization of n, defining

$$
\begin{equation*}
h(1)=1, h(n)=\max _{1 \leq i \leq k}\left\{\frac{1}{\alpha_{i}+1}\right\}, \tag{1.2}
\end{equation*}
$$

then $h(n)$ is also a Smarandache multiplicative function.
J. Zhang and P. Zhang [22]. 1. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} h(n)=\frac{1}{2} \cdot x+O\left(x^{\frac{1}{2}}\right) .
$$

2. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x}\left(h(n)-\frac{1}{2}\right)^{2}=\frac{1}{36} \cdot \frac{\zeta\left(\frac{3}{2}\right)}{\zeta(3)} \cdot \sqrt{x}+O\left(x^{\frac{1}{3}}\right),
$$

where $\zeta(n)$ is the Riemann Zeta-function.
The Smarandache multiplicative function $g(n)$ can also be defined as follows

$$
\begin{equation*}
g(1)=0,(m, n)=1 \Rightarrow g(m n)=\min \{g(m), g(n)\} . \tag{1.3}
\end{equation*}
$$

If $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{r}^{t_{r}}$ is the prime powers factorization of n, then

$$
\begin{equation*}
g(n)=\min _{1 \leq i \leq r}\left\{f\left(p_{i}^{t_{i}}\right)\right\}, \tag{1.4}
\end{equation*}
$$

specifically let $g\left(p^{t}\right)=\min \{t, p\}$, then $g(n)$ is a new Smarandache multiplicative function.
Z. Ren [13]. For any real number $x>1$, we have the asymptotic formula
$\sum_{n \leq x} g(n)=x+\frac{12 x^{1 / 2}}{\pi^{2}} \prod_{p}\left(1+\frac{1}{(p+1)\left(p^{\frac{1}{2}}-1\right)}\right)+\frac{18 x^{1 / 3}}{\pi^{2}} \prod_{p}\left(1+\frac{1}{(p+1)\left(p^{\frac{1}{3}}-1\right)}\right)+O\left(x^{\frac{1}{4}+X}\right)$,
where X is any fixed positive number.
L. Li [8]. 1. For any positive integer n, if $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{r}^{t_{r}}$ is the prime powers factorization of n, let $\lambda=\max _{1 \leq i \leq r}\left\{t_{i}\right\}, i=1, \ldots, r$ and

$$
\begin{equation*}
F(1)=1, F(n)=\min _{1 \leq i \leq r}\left\{\frac{1}{t_{i}+1}\right\}=\frac{1}{\lambda+1}, \tag{1.5}
\end{equation*}
$$

then $F(n)$ is a Smarandache multiplicative function. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} F(n)=\frac{1}{\lambda+1} x+O\left(x^{\frac{1}{2}}\right)
$$

2. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x}\left(F(n)-\frac{1}{2}\right)^{2}=\frac{12}{\pi^{2}} \sqrt{x}+O\left(x^{\frac{1}{3}}\right)
$$

T. Zhang [23]. Let p be a prime and for any positive real number $m, U_{m}(n)$ is defined as follows

$$
\begin{equation*}
U(1)=1, U_{m}\left(p^{\alpha}\right)=p^{\alpha}+m, \tag{1.6}
\end{equation*}
$$

if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is the prime powers factorization of $n, \quad U_{m}(n)$ is defined as $U_{m}(n)=$ $U_{m}\left(p_{1}^{\alpha_{1}}\right) \cdots U_{m}\left(p_{k}^{\alpha_{k}}\right)$. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} U_{m}(n)=\frac{1}{2} x^{2} \prod_{p}\left(1+\frac{m}{p(p+1)}\right)+O\left(x^{\frac{3}{2}+\varepsilon}\right)
$$

X. Wang [18]. Let $I(n)$ be the multiplicative function such that for any prime p and any integer $\alpha \geq 1$, one has

$$
I\left(p^{\alpha}\right)=\frac{p^{\alpha+1}}{\alpha+1}
$$

then we have

$$
\sum_{m n \leq x} I(m) I(n)=C x^{3}+O\left(x^{\frac{5}{2}+\varepsilon}\right)
$$

where C is an explicit constant.
L. Wang [16]. Let $N_{0} \geq 1$ be a fixed integer and for the multiplicative function $I(n)$, we have

$$
\sum_{n \leq x} I(n)=x^{3} \log ^{\frac{1}{2}} x\left(\sum_{i=1}^{N_{0}} c_{i} \log ^{-i} x+O\left(\log ^{-N_{0}-1} x\right)\right)
$$

where $c_{i}(i \geq 1)$ are computable constants.
§2. Some hybrid mean values involving the Smarandache multiplicative function
Y. Yi [21]. For any prime p and positive integer α, the Smarandache multiplicative function $f(n)$ is defined as $f\left(p^{\alpha}\right)=p^{\frac{1}{\alpha}}$. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ is the prime powers factorization of n, then from the definition of $f\left(p^{\alpha}\right)$ we have

$$
f(n)=\max _{1 \leq i \leq r}\left\{f\left(p_{i}^{\alpha_{i}}\right)\right\}=\max _{1 \leq i \leq r}\left\{p_{i}^{\frac{1}{\alpha_{i}}}\right\}
$$

For any real number $x \geq 3$, we have the asymptotic formula

$$
\sum_{n \leq x}(f(n)-P(n))^{2}=\frac{2 \zeta\left(\frac{3}{2}\right) x^{\frac{3}{2}}}{3 \ln x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{2} x}\right)
$$

where $\zeta(n)$ denotes the Riemann zeta-function and $P(n)$ is the greatest prime divisor of n.
$\mathbf{W} . \operatorname{Lu}$ and L. Gao [9]. For any real number $x \geq 3$ and any real number or complex number α, we have the asymptotic formula

$$
\sum_{n \leq x} \delta_{\alpha}(n)(f(n)-P(n))^{2}=\frac{\zeta(\alpha+3) \zeta(2 \alpha+3) x^{2 \alpha+3}}{(2 \alpha+3) \ln x}+\sum_{i=2}^{r} \frac{c_{i} \cdot x^{2 \alpha+3}}{\ln ^{i} x}+O\left(\frac{x^{2 \alpha+3}}{\ln ^{r+1} x}\right)
$$

where $\zeta(n)$ denotes the Riemann zeta-function and all c_{i} are computable constants.
H. Shen [14]. For any positive integer n, if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ is the prime powers factorization of n, the Smarandache multiplicative function $V(n)$ is defined as follows

$$
\begin{equation*}
V(1)=1, V(n)=\max _{1 \leq i \leq r}\left\{\alpha_{1} p_{1}, \ldots, \alpha_{r} p_{r}\right\} \tag{2.1}
\end{equation*}
$$

For any real number $x \geq 1$ and any fixed positive integer r, we have the asymptotic formula

$$
\sum_{n \leq x}(V(n)-p(n))^{2}=x^{\frac{3}{2}} \sum_{i=1}^{r} \frac{c_{i}}{\ln ^{i} x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{r+1} x}\right)
$$

where $p(n)$ is the least prime divisor of n and all c_{i} are computable constants.
H. Liu and W. Cui [3]. Let $n \geq 1$ is a positive integer, we have the asymptotic formula

$$
\sum_{n \leq x} V(n) p(n)=\sum_{i=1}^{r} \frac{x^{3} a_{i}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{r+1} x}\right)
$$

where all $a_{i}(i=1, \ldots, r)$ are computable constants.
§3. Mean values involving the Smarandache-type multiplicative function
The Smarandache-type multiplicative function $C_{m}(n)$ is defined as the m-th root of the largest m-th power dividing $n, \quad J_{m}(n)$ is denoted as m-th root of the smallest m-th power divisible by n.
H. Liu and J. Gao [5]. 1. For any integer $m \geq 3$ and real number $x \geq 1$, we have

$$
\sum_{n \leq x} C_{m}(n)=\frac{\zeta(m-1)}{\zeta(m)} x+O\left(x^{\frac{1}{2}+\epsilon}\right)
$$

2. For any integer $m \geq 1$ and real number $x \geq 1$, we have

$$
\sum_{n \leq x} J_{m}(n)=\frac{x^{2}}{2 \zeta(2)} \prod_{p}\left[1+\frac{\frac{1}{p^{2 m}}+\frac{1}{p^{3}}-\frac{1}{p^{2 m+1}}-\frac{1}{p^{2 m+2}}}{\left(1+\frac{1}{p}\right)\left(1-\frac{1}{p^{2}}\right)\left(1-\frac{1}{p^{2 m-1}}\right)}\right]+O\left(x^{\frac{3}{2}+\epsilon}\right)
$$

H. Liu and J. Gao [4]. 1. For any integer $m \geq 3$ and real number $x \geq 1$, we have

$$
\sum_{n \leq x} \Lambda(n) C_{m}(n)=x+O\left(\frac{x}{\log x}\right)
$$

where $\Lambda(n)$ is the Mangoldent function.
2. For any integer $m \geq 2$ and real number $x \geq 1$, we have

$$
\sum_{n \leq x} \Lambda(n) J_{m}(n)=x^{2}+O\left(\frac{x^{2}}{\log x}\right)
$$

The Smarandache-type multiplicative function $K_{m}(n)$ is the largest m-th power-free number dividing $n, L_{m}(n)$ is denoted as: n divided by the largest m-th power-free number dividing n. That is, if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is the prime powers factorization of n, it follows that

$$
\begin{aligned}
& K_{m}(n)=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}, \\
& L_{m}(n)=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdots p_{k}^{\gamma_{k}},
\end{aligned}
$$

where $\beta_{i}=\min \left(\alpha_{i}, m-1\right), \gamma_{i}=\max \left(0, \alpha_{i}-m+1\right)$
C. Yang and C. Li [20]. 1. Let $m \geq 2$ is a given integer, then for any real number $x \geq 1$, we have

$$
\sum_{n \leq x} K_{m}(n)=\frac{x^{2}}{2 \zeta(m)} \prod_{p}\left(1+\frac{1}{\left(p^{m}-1\right)(p+1)}\right)+O\left(x^{\frac{3}{2}+\epsilon}\right) .
$$

2. Let $m \geq 2$ is a given integer, then for any real number $x \geq 1$, we have

$$
\sum_{n \leq x} \frac{1}{L_{m}(n)}=\frac{x}{\zeta(m)} \prod_{p}\left(1+\frac{1}{\left(p^{m}-1\right)(p+1)}\right)+O\left(x^{\frac{1}{2}+\epsilon}\right)
$$

where $\zeta(s)$ is the Riemann Zeta-function.
J. Wang [15]. The asymptotic formula

$$
\sum_{n \leq x} K_{m}(n)=\frac{x^{2}}{2 \zeta(m)} \prod_{p}\left(1+\frac{1}{\left(p^{m}-1\right)(p+1)}\right)+O\left(x^{1+\frac{1}{m}} e^{-c_{0} \delta(x)}\right)
$$

holds, where c_{0} is an absolute positive constant and $\delta(x)=(\log x)^{3 / 5}(\log \log x)^{-1 / 5}$.
For any fixed positive integer n with the normal factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}},(1 \leq i \leq k)$, the Smarandache-type multiplicative function $F_{m}(n), G_{m}(n)$ are denoted as

$$
F_{m}\left(p_{i}^{\alpha_{i}}\right)=\left\{\begin{aligned}
1, & \text { if } \alpha_{i}=m k \\
p_{i}^{m}, & \text { otherwise }
\end{aligned}\right.
$$

and

$$
G_{m}\left(p_{i}^{\alpha_{i}}\right)=\left\{\begin{aligned}
1, & \text { if } \alpha_{i}=m k \\
p_{i}, & \text { otherwise }
\end{aligned}\right.
$$

J. Li and D. Liu [7]. 1. For any integer $m \geq 2$ and real number $x \geq 1$, we have

$$
\sum_{n \leq x} F_{m}(n)=\frac{6 \zeta\left(m^{2}+m\right) \zeta(m+1) R(m+1) x^{m+1}}{\pi^{2}}+O\left(x^{m+\frac{1}{2}+\epsilon}\right)
$$

where ϵ be any fixed positive integer, and

$$
R(m+1)=\prod_{p}\left(1-\frac{1}{p^{m+1}+p^{m}}-\frac{1}{p^{m^{2}}+p^{m^{2}-1}}\right)
$$

2. For any integer $m \geq 2$ and real number $x \geq 1$, we have

$$
\sum_{n \leq x} G_{m}(n)=\zeta(2 m) R(2) x^{2}+O\left(x^{\frac{3}{2}+\epsilon}\right)
$$

where

$$
R(2)=\prod_{p}\left(1-\frac{1}{p^{2}+p}-\frac{1}{p^{2 m-1}+p^{2 m-2}}\right)
$$

M. Wang [17]. 1. For any integer $m \geq 2, A$ be a set without m-th power factor number, we have

$$
\sum_{\substack{n \leq x \\ n \in A}} F_{m}(n)=\frac{6 \zeta(m+1) x^{m+1}}{\pi^{2}} \prod_{p}\left(1-\frac{1}{p^{m-1}+p^{m}}-\frac{1}{p^{m^{2}}+p^{m^{2}-1}}\right)+O\left(x^{m+\frac{1}{2}-\epsilon}\right)
$$

where ϵ be any fixed positive number.
2. For any positive integer $m \geq 2, A$ be a set without m-th power factor number, we have

$$
\sum_{\substack{n \leq x \\ n \in A}} G_{m}(n)=x^{2} \prod_{p}\left(1-\frac{1}{p^{2}+p^{m}}-\frac{1}{p^{2 m-1}+p^{2 m-2}}\right)+O\left(x^{\frac{3}{2}-\epsilon}\right)
$$

References

[1] Zhiyu Feng. One hybrid Mean value formula involving of new Smarandache multiplicative function. Science Technology and Engineering 10 (2010), no. 24, 5967-5969. (In Chinese with English abstract).
[2] Rui Guo and Xiqing Zhao. A hybrid mean value formula involving Smarandache multiplicative function. Journal of Yanan University (Natural Science Edition) 35 (2016), no. 4, 5-7. (In Chinese with English abstract).
[3] Hua Liu and Wenxia Cui. One hybrid mean value involving Smarandache function. Journal of Natural Science of Heilongjiang University 27(2010), no. 3, 354-356. (In Chinese with English abstract).
[4] Huaning Liu and Jing Gao. Hybrid mean value on some Smarandache-type multiplicative functions and the Mangoldt function. Scientia Magna 1 (2005), no. 1, 149-151.
[5] Huaning Liu and Jing Gao. Mean value on two Smarandache-type multiplicative functions. Research on Smarandache problems in number theory. Vol. I, 69C72, Hexis, Phoenix, AZ, 2004.
[6] Jianghua Li. On the mean value of the F. Smarandache multiplicative function. Journal of Northwest University (Natural Science Edition) 39(2009), no. 2, 186-188. (In Chinese with English abstract).
[7] Junzhuang Li and Duansen Liu. On some asymptotic formulae involving Smarandache multiplicative functions. Research on Smarandache problems in number theory. Vol. I, 163C167, Hexis, Phoenix, AZ, 2004.
[8] Lujun Li. A mean value formula of new Smarandache multiplicative function. Science Technology and Engineering 10(2010), no. 23, 5695-5697. (In Chinese with English abstract).
[9] Weiyang Lu and Li Gao. On the hybrid mean value of the Smarandache multiplicative function and the divisor function. Journal of Yanan University (Natural Science Edition) 35(2016), no. 4, 12-14. (In Chinese with English abstract).
[10] Yanni Liu and Peng Gao. Smarandache multiplicative function. Scientia Magna 1 (2005), no. 1, 103-107.
[11] Jinping Ma. The Smarandache multiplicative function. Scientia Magna 1 (2005), no. 1, 125 - 128.
[12] Yaling Men. A result of the Smarandache multiplicative function. Journal of Weinan University 28 (2013), no. 9, 19-20. (In Chinese with English abstract).
[13] Zhibin Ren. Mean value on one kind of the F. Smarandache multiplicative function. Pure and Applied Mathematics 21 (2005), no. 3, 217-220. (In Chinese with English abstract).
[14] Hong Shen. A new arithmetical function and its value distribution. Pure and Applied Mathematics 23 (2007), no. 2, 235-238. (In Chinese with English abstract).
[15] Jia Wang. Mean value of a Smarandache-type function. Scientia Magna 2 (2006), no. 2, 31 - 34 .
[16] Lingling Wang. The asymptotic formula of $\sum_{n \leq x} I(n)^{1}$. Scientia Magna 4 (2008), no. 1, 3 7.
[17] Mingjun Wang. Mean value of the Smarandache-type multiplicative functions. Journal of Gansu Science 23 (2011), no. 4, 9-11. (In Chinese with English abstract).
[18] Xiaoying Wang. Doctoral thesis. Xi'an Jiaotong University, 2006.
[19] Wenjing Xiong. On a Smarandache multiplicative function and its parity. Scientia Magna 4 (2008), no. 1, 113-116.
[20] Cundian Yang and Chao Li. Asymptotic formulae of Smarandache-type multiplicative functions. Research on Smarandache problems in number theory. Vol. I, 139C142, Hexis, Phoenix, AZ, 2004.
[21] Yuan Yi. On the value distribution of the Smarandache multiplicative function ${ }^{1}$. Scientia Magna 4 (2008), no. 1, 67-71.
[22] Jin Zhang and Pei Zhang. Some notes on the paper " The mean value of a new arithmetical function". Scientia Magna 4 (2008), no. 2, 119-121.
[23] Tuo Zhang. A new arithmetical function and its mean value. Science Technology and Engineering 10 (2010), no. 28, 7221-7222. (In Chinese with English abstract).
[24] Xiaobeng Zhang. Mean value of Smarandache multiplicative function. Journal of Xi'an University of Post and Telecomm Unications 13 (2008), no. 1, 139-140. (In Chinese with English abstract).

Scientia Magna

Vol. 14 (2019), No. 1, 18-28

Fuzzy e^{*}-open sets in \hat{S} ostak's topological spaces

B. Vijayalakshmi ${ }^{1}$, A. Vadivel ${ }^{2}$ and A. Prabhu ${ }^{3}$
${ }^{1}$ Department of Mathematics, Government Arts College, C.Mutlur, Chidambaram, Tamil Nadu-608102. E-mail: mathvijaya2006au@gmail.com
${ }^{2}$ Department of Mathematics, Government Arts College(Autonomous), Karur, Tamil Nadu-639005. E-mail: avmaths@gmail.com
${ }^{3}$ Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu-608002.
E-mail: 1983mrp@gmail.com

Abstract

We introduce r-fuzzy e^{*}-open and r-fuzzy e^{*}-closed sets in fuzzy topological spaces in the sense of \hat{S} ostak's. Also we introduce r-fuzzy e^{*}-interior, r-fuzzy e^{*}-closure and investigate some of their properties.

Keywords r-fuzzy e^{*}-open, r-fuzzy e^{*}-closed, r-fuzzy e^{*}-interior and r-fuzzy e^{*}-closure.
2010 Mathematics Subject Classification 54A40, 54C05, 03 E 72.

§1. Introduction and preliminaries

Sostak [23] introduced the fuzzy topology as an extension of Chang's fuzzy topology [4]. It has been developed in many directions [11,12,21]. Weaker forms of fuzzy continuity between fuzzy topological spaces have been considered by many authors $[2,3,5,8,10,18,19]$ using the concepts of fuzzy semi-open sets [2], fuzzy regular open sets [2], fuzzy preopen sets, fuzzy strongly semiopen sets [3], fuzzy γ-open sets [10], fuzzy δ-semiopen sets [1], fuzzy δ-preopen sets [1], fuzzy semi δ-preopen sets [25] and fuzzy e-open sets [22]. Recently, Bin Shahna [3] introduced and investigated fuzzy strong semi-continuity and fuzzy precontinuity between fuzzy topological spaces, one of which was independent and the other strictly stronger than fuzzy semi-continuity [2]. Ganguly and Saha [9] introduced the notions of fuzzy δ-cluster points in fuzzy topological spaces in the sense of Chang [4]. Kim and Park [14] introduced r- δ-cluster points and δ-closure operators in fuzzy topological spaces in view of the definition of \hat{S} ostak. It is a good extension of the notions of Ganguly and Saha [9]. Park et al. [17] introduced the concept of fuzzy semi-preopen sets which is weaker than any of the concepts of fuzzy semi-open or fuzzy preopen sets. Using these concepts he defined and studied fuzzy semi-precontinuous mappings between fuzzy topological spaces in Chang's sense. Sobana et al. [24], defined r-fuzzy e-open and r-fuzzy e-closed sets in a fuzzy topological space in the sense of \hat{S} ostak. In 2008,
the initiations of e^{*}-open sets in topological spaces was introduced by Erdal Ekici [6].
In this paper, we define r-fuzzy e^{*}-open and r-fuzzy e^{*}-closed sets in a fuzzy topological space in the sense of \hat{S} ostak [23]. Using these concepts, we define and study fuzzy e^{*}-interior, fuzzy e^{*}-closure and some of their properties.

Throughout this paper, nonempty sets will be denoted by X, Y etc., $I=[0,1]$ and $I_{0}=(0,1]$. For $\alpha \in I, \bar{\alpha}(x)=\alpha$ for all $x \in X$. A fuzzy point x_{t} for $t \in I_{0}$ is an element of I^{X} such that $x_{t}(y)= \begin{cases}t & \text { if } y=x \\ 0 & \text { if } y \notin x .\end{cases}$

The set of all fuzzy points in X is denoted by $\operatorname{Pt}(X)$. A fuzzy point $x_{t} \in \lambda$ iff $t<\lambda(x)$. A fuzzy set λ is quasi-coincident with μ, denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x)+\mu(x)>1$. If λ is not quasi-coincident with μ, we denoted $\lambda \bar{q} \mu$. If $A \subset X$, we define the characteristic function χ_{A} on X by $\chi_{A}(x)= \begin{cases}1 & \text { if } x \in A, \\ 0 & \text { if } x \notin A .\end{cases}$

All other notations and definitions are standard, for all in the fuzzy set theory.
Lemma 1.1. [23] Let X be a nonempty set and $\lambda, \mu \in I^{X}$. Then
(i) $\lambda q \mu$ iff there exists $x_{t} \in \lambda$ such that $x_{t} q \mu$.
(ii) $\lambda q \mu$, then $\lambda \wedge \mu \neq \underline{0}$.
(iii) $\lambda \bar{q} \mu$ iff $\lambda \leq \underline{1}-\mu$.
(iv) $\lambda \leq \mu$ iff $x_{t} \in \lambda$ implies $x_{t} \in \mu$ iff $x_{t} q \lambda$ implies $x_{t} q \mu$ implies $x_{t} \bar{q} \lambda$.
(v) $x_{t} \bar{q} \bigvee_{i \in \Lambda} \mu_{i}$ iff there exists $i_{0} \in \Lambda$ such that $x_{t} \bar{q} \mu_{i_{0}}$.

Definition 1.1. [23] A function $\tau: I^{X} \rightarrow I$ is called a fuzzy topology on X if it satisfies the following conditions:
(1) $\tau(\underline{0})=\tau(\underline{1})=1$,
(2) $\tau\left(\bigvee_{i \in \Gamma} \mu_{i}\right) \geq \bigwedge_{i \in \Gamma} \tau\left(\mu_{i}\right)$, for any $\left\{\mu_{i}\right\}_{i \in \Gamma} \subset I^{X}$,
(3) $\tau\left(\mu_{1} \wedge \mu_{2}\right) \geq \tau\left(\mu_{1}\right) \wedge \tau\left(\mu_{2}\right)$, for any $\mu_{1}, \mu_{2} \in I^{X}$.

The pair (X, τ) is called a fuzzy topological space (for short, fts).
Remark 1.1. [20] Let (X, τ) be a fuzzy topological space. Then, for each $r \in I_{0}, \tau_{r}=$ $\left\{\mu \in I^{X}: \tau(\mu) \geq r\right\}$ is a Change's fuzzy topology on X.

Theorem 1.1. [21] Let (X, τ) be a fts. Then for each $\lambda \in I^{X}, r \in I_{0}$ we define an operator $C_{\tau}: I^{X} \times I_{0} \rightarrow I^{X}$ as follows: $C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in I^{X}: \lambda \leq \mu, \tau(\underline{1}-\mu) \geq r\right\}$. For $\lambda, \mu \in I^{X}$ and $r, s \in I_{0}$, the operator C_{τ} satisfies the following conditions: (1) $C_{\tau}(\underline{0}, r)=\underline{0}$, (2) $\lambda \leq C_{\tau}(\lambda, r)$, (3) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r)=C_{\tau}(\lambda \vee \mu, r)$, (4) $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda$, s) if $r \leq s$, (5) $C_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$.

Theorem 1.2. [21] Let (X, τ) be a fts. Then for each $r \in I_{0}, \lambda \in I^{X}$ we define an operator $I_{\tau}: I^{X} \times I_{0} \rightarrow I^{X}$ as follows: $I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X}: \lambda \geq \mu, \tau(\mu) \geq r\right\}$. For $\lambda, \mu \in I^{X}$ and $r, s \in I_{0}$, the operator I_{τ} satisfies the following conditions: (1) $I_{\tau}(\underline{1}, r)=\underline{1}$, (2)
$\lambda \geq I_{\tau}(\lambda, r)$, (3) $I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r)=I_{\tau}(\lambda \wedge \mu, r)$, (4) $I_{\tau}(\lambda, r) \leq I_{\tau}(\lambda, s)$ if $s \leq r$, (5) $I_{\tau}\left(I_{\tau}(\lambda, r), r\right)=I_{\tau}(\lambda, r)$, (6) $I_{\tau}(\underline{1}-\lambda, r)=\underline{1}-C_{\tau}(\lambda, r)$ and $C_{\tau}(\underline{1}-\lambda, r)=\underline{1}-I_{\tau}(\lambda, r)$

Definition 1.2. [15] Let (X, τ) be a fts. Then for each $\mu \in I^{X}, x_{t} \in P_{t}(X)$ and $r \in I_{0}$,
(i) μ is called r-open Q_{τ}-neighbourhood of x_{t} if $x_{t} q \mu$ with $\tau(\mu) \geq r$.
(ii) μ is called r-open R_{τ}-neighbourhood of x_{t} if $x_{t} q \mu$ with $\mu=I_{\tau}\left(C_{\tau}(\lambda, r), r\right)$. We denote $Q_{\tau}\left(x_{t}, r\right)=\left\{\mu \in I^{X}: x_{t} q \mu, \tau(\mu) \geq r\right\}, R_{\tau}\left(x_{t}, r\right)=\left\{\mu \in I^{X}: x_{t} q \mu=\right.$ $\left.I_{\tau}\left(C_{\tau}(\lambda, r), r\right)\right\}$.

Definition 1.3. [15] Let (X, τ) be a fts. Then for each $\lambda \in I^{X}, x_{t} \in P_{t}(X)$ and $r \in I_{0}$,
(i) x_{t} is called $r-\tau$ cluster point of λ if for every $\mu \in Q_{\tau}\left(x_{t}, r\right)$, we have $\mu q \lambda$.
(ii) x_{t} is called $r-\delta$ cluster point of λ if for every $\mu \in R_{\tau}\left(x_{t}, r\right)$, we have $\mu q \lambda$.
(iii) An δ-closure operator is a mapping $D_{\tau}: I^{X} \times I \rightarrow I^{X}$ defined as follows: $\delta-C_{\tau}(\lambda, r)$ or $D_{\tau}(\lambda, r)=\bigvee\left\{x_{t} \in P_{t}(X): x_{t}\right.$ is $r-\delta$-cluster point of $\left.\lambda\right\}$

Definition 1.4. Let (X, τ) be a fuzzy topological space. For $\lambda \in I^{X}$ and $r \in I_{0}$,
(i) λ is called an r-fuzzy semiopen (resp. r-fuzzy semi-closed) [16] set if $\lambda \leq C_{\tau}\left(I_{\tau}(\lambda, r), r\right)$ $\left(r e s p . I_{\tau}\left(C_{\tau}(\lambda, r), r\right) \leq \lambda\right)$.
(ii) λ is called an r-fuzzy preopen (resp. r-fuzzy preclosed) [13] set if $\lambda \leq I_{\tau}\left(C_{\tau}(\lambda, r), r\right)$ $\left(r e s p . C_{\tau}\left(I_{\tau}(\lambda, r), r\right) \leq \lambda\right)$.
(iii) λ is called r-fuzzy δ-closed [13] iff $\lambda=D_{\tau}(\lambda, r)$.
(iv) The complement of r-fuzzy semiopen (resp. r-fuzzy preopen, r-fuzzy semi-preopen and r fuzzy δ-closed) is r-fuzzy semi-closed (resp. r-fuzzy preclosed, r-fuzzy semi-preclosed and r-fuzzy δ-open).

Definition 1.5. Let (X, τ) be a fuzzy topological space. $\lambda, \mu \in I^{X}$ and $r \in I_{0}$,
(i) λ is called an r-fuzzy δ-semiopen (resp. r-fuzzy δ-semiclosed) [24] set if $\lambda \leq C_{\tau}(\delta$ $\left.I_{\tau}(\lambda, r), r\right)\left(r e s p . I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right) \leq \lambda\right)$.
(ii) λ is called an r-fuzzy δ-preopen (resp. r-fuzzy δ-preclosed) [24] set if $\lambda \leq I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right)$ $\left(r e s p . C_{\tau}\left(\delta-I_{\tau}(\lambda, r), r\right) \leq \lambda\right)$.
(iii) λ is called an r-fuzzy e-open (resp. r-fuzzy e-closed) [24] set if $\lambda \leq C_{\tau}\left(\delta-I_{\tau}(\lambda, r), r\right) \vee$ $I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right)\left(r e s p . C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right) \wedge I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right) \leq \lambda\right)$.
(iv) λ is called an r-fuzzy β-open (resp.r-fuzzy β-closed) set if $\lambda \leq C_{\tau}\left(I_{\tau}\left(C_{\tau}(\lambda, r), r\right), r\right)$ $\left(r e s p . I_{\tau}\left(C_{\tau}\left(I_{\tau}(\lambda, r), r\right), r\right) \leq \lambda\right)$.

Definition 1.6. [24] Let (X, τ) be a fuzzy topological space. $\lambda, \mu \in I^{X}$ and $r \in I_{0}$,
(i) $e I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X}: \mu \leq \lambda, \mu\right.$ is a r-feo set $\}$ is called the r-fuzzy e-interior of λ.
(ii) $e C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in I^{X}: \mu \geq \lambda, \mu\right.$ is a r-fe* o set $\}$ is called the r-fuzzy e-closure of λ.

$\S 2$. r-fuzzy e^{*}-open sets

We introduce the following definitions.
Definition 2.1. Let (X, τ) be a fuzzy topological space. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}, \lambda$ is called an r-fuzzy e^{*}-open (resp. r-fuzzy e^{*}-closed) set if $\lambda \leq C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right), r\right)$ (resp. $\left.I_{\tau}\left(C_{\tau}\left(\delta-I_{\tau}(\lambda, r), r\right), r\right) \leq \lambda\right)$.

Definition 2.2. Let (X, τ) be a fuzzy topological space. $\lambda, \mu \in I^{X}$ and $r \in I_{0}$,
(i) $e^{*} I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X}: \mu \leq \lambda, \mu\right.$ is a r-fe*o set $\}$ is called the r-fuzzy e^{*}-interior of λ.
(ii) $e^{*} C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in I^{X}: \mu \geq \lambda, \mu\right.$ is a r-fe $e^{*} c$ set $\}$ is called the r-fuzzy e^{*}-closure of λ.

Obviously, $e^{*} C_{\tau}(\lambda, r)$ is the smallest r-fe ${ }^{*} \mathrm{c}$ set which contains λ, and $e^{*} I_{\tau}(\lambda, r)$ is the largest r - $f e^{*} \mathrm{o}$ set which is contained in λ. Also $e^{*} C_{\tau}(\lambda, r)=(\lambda, r)$ for any r-fe $e^{*} \mathrm{c}$ set λ and $e^{*} I_{\tau}(\lambda, r)=(\lambda, r)$ for any r-fe*o set λ.

Hence we have

$$
\begin{gathered}
I_{\tau}(\lambda, r) \leq \delta s I_{\tau}(\lambda, r) \leq e I_{\tau}(\lambda, r) \leq \beta I_{\tau}(\lambda, r) \leq e^{*} I_{\tau}(\lambda, r) \leq(\lambda, r) . \\
(\lambda, r) \leq e^{*} C_{\tau}(\lambda, r) \leq \beta C_{\tau}(\lambda, r) \leq e C_{\tau}(\lambda, r) \leq \delta s C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r) .
\end{gathered}
$$

and

$$
I_{\tau}(\lambda, r) \leq \delta p I_{\tau}(\lambda, r) \leq e I_{\tau}(\lambda, r) \leq \beta I_{\tau}(\lambda, r) \leq e^{*} I_{\tau}(\lambda, r) \leq(\lambda, r) .
$$

$$
(\lambda, r) \leq e^{*} C_{\tau}(\lambda, r) \leq \beta C_{\tau}(\lambda, r) \leq e C_{\tau}(\lambda, r) \leq \delta p C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r) .
$$

Lemma 2.1. The following hold for a subset λ of a fts X.
(i) $e^{*} C_{\tau}(\lambda, r)$ is $r-f e^{*} c$.
(ii) $1-e^{*} C_{\tau}(\lambda, r)=e^{*} I_{\tau}(1-(\lambda, r))$.

Theorem 2.1. The following holds for a subset λ of a fts X.
(i) (λ, r) is r - $f e^{*} o \Leftrightarrow(\lambda, r)=(\lambda, r) \wedge C_{\tau}\left(I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right), r\right)$.
(ii) (λ, r) is $r-f e^{*} c \Leftrightarrow(\lambda, r)=(\lambda, r) \vee I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)$.
(iii) $e^{*} C_{\tau}(\lambda, r)=(\lambda, r) \vee I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)$.
(iv) $e^{*} I_{\tau}(\lambda, r)=(\lambda, r) \wedge C_{\tau}\left(I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right), r\right)$.

Proof. (i) Let λ be r-fe* ${ }^{*}$. Then $\lambda \leq C_{\tau}\left(I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right), r\right)$. We obtain

$$
(\lambda, r)=(\lambda, r) \wedge C_{\tau}\left(I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right), r\right) .
$$

Conversely, let $(\lambda, r)=(\lambda, r) \wedge C_{\tau}\left(I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right), r\right)$. We have

$$
\begin{aligned}
(\lambda, r) & =(\lambda, r) \wedge C_{\tau}\left(I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right), r\right) . \\
& \leq C_{\tau}\left(I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right), r\right) .
\end{aligned}
$$

Hence (λ, r) is r-fe* o .
(ii) Taking complements, proof is similar to (i).
(iii) Since $e^{*} C_{\tau}(\lambda, r)$ is $r-\mathrm{f} e^{*} \mathrm{c}$, we have,

$$
I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right) \leq I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right), r\right), r\right) \leq e^{*} C_{\tau}(\lambda, r)
$$

Hence, $(\lambda, r) \bigvee I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right) \leq e^{*} C_{\tau}(\lambda, r)$. On the other way, since

$$
I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}\left(\lambda \bigvee I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right), r\right), r\right), r\right)
$$

$$
=I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}\left(\lambda \bigvee \delta I_{\tau}\left(\delta C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right), r\right), r\right), r\right)
$$

$$
=I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r) \bigvee \delta I_{\tau}\left(\delta C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right), r\right), r\right)
$$

$$
=I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}\left(\delta C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right), r\right), r\right)
$$

$$
=I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)
$$

$$
\leq(\lambda, r) \bigvee I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)
$$

then $(\lambda, r) \bigvee I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)$ is r-fe e^{*} containing λ and hence

$$
e^{*} C_{\tau}(\lambda, r) \leq(\lambda, r) \bigvee I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)
$$

Thus, we obtain $e^{*} C_{\tau}(\lambda, r)=(\lambda, r) \bigvee I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)$.
(iv) Similar to the proof of (iii).

Theorem 2.2. Let λ be a subset of a fts X. Then the following hold
(i) $e^{*} C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right)=I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)$.
(ii) $\delta I_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)=I_{\tau}\left(C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right), r\right)$.
(iii) $e^{*} I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right)=\delta C_{\tau}\left(e^{*} I_{\tau}(\lambda, r), r\right)=C_{\tau}\left(I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right), r\right)$.
(iv) $e^{*} I_{\tau}\left(e C_{\tau}(\lambda, r), r\right)=\delta s I_{\tau}\left(\delta s C_{\tau}(\lambda, r), r\right) \bigwedge \delta p C_{\tau}(\lambda, r)$.
$(v) e^{*} C_{\tau}\left(e I_{\tau}(\lambda, r), r\right)=\delta s C_{\tau}\left(\delta s I_{\tau}(\lambda, r), r\right) \bigvee \delta p I_{\tau}(\lambda, r)$.
(vi) $e C_{\tau}\left(e^{*} I_{\tau}(\lambda, r), r\right)=\delta s I_{\tau}\left(\delta s C_{\tau}(\lambda, r), r\right) \bigwedge \delta p C_{\tau}(\lambda, r)$.
(vii) $e I_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)=\delta s C_{\tau}\left(\delta s I_{\tau}(\lambda, r), r\right) \bigvee \delta p I_{\tau}(\lambda, r)$.

Proof. The Proof is similar to the proof of Theorem 2.15 in [7].
Remark 2.1. From the above definitions it is clear that the following implications are true for $r \in I_{0}$.

$$
r \text {-fuzzy open }
$$

r-fuzzy δ semi open	r-fuzzy δ pre open
	r-fuzzy e-open
r-fuzzy β open	r-fuzzy e^{*}-open

where r-fo, r-f δ so, r-f $\delta \mathrm{sc}, \mathrm{r}-\mathrm{f} \delta \mathrm{po}, \mathrm{r}-\mathrm{f} \delta \mathrm{pc}, \mathrm{r}-\mathrm{feo}, \mathrm{r}-\mathrm{fec}, \mathrm{r}-\mathrm{f} \beta \mathrm{o}, \mathrm{r}-\mathrm{f} \beta \mathrm{c}, \mathrm{r}-\mathrm{f} e^{*} \mathrm{o}, \mathrm{r}-\mathrm{f} e^{*}$ care abbreviated by r-fuzzy open, r-fuzzy δ - semiopen, r-fuzzy δ-semiclosed, r-fuzzy δ-preopen, r-fuzzy δ-preclosed, r-fuzzy e-open, r-fuzzy e-closed, r-fuzzy β-open, r-fuzzy β-closed, r-fuzzy e^{*}-open, r-fuzzy e^{*}-closed respectively.

From the above definitions, it is clear that every r - $\mathrm{f} \delta$ po is r-feo and every r - $\mathrm{f} \delta$ so is r-feo. Also, it is clear that every r - $f e o$ set is r - $\mathrm{f} \beta$ o set and r - $\mathrm{f} e^{*}$ o set. Also, every r - $\mathrm{f} \beta$ o set is r - $\mathrm{f} e^{*} \mathrm{o}$ set. The converses need not be true in general.

The converses of the above implications are not true as the following examples show:
Example 2.1. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} be fuzzy subsets of $X=\{a, b\}$ defined as follows

$$
\begin{aligned}
& \lambda_{1}(a)=0.2, \lambda_{1}(b)=0.1 ; \\
& \lambda_{2}(a)=0.3, \lambda_{2}(b)=0.5 ; \\
& \lambda_{3}(a)=0.7, \lambda_{3}(b)=0.7 ; \\
& \lambda_{4}(a)=0.2, \lambda_{4}(b)=0.8
\end{aligned}
$$

Then $\tau: I^{X} \rightarrow I$ defined as

$$
\tau(\lambda)= \begin{cases}1, & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{2}, & \text { if } \lambda=\lambda_{1}, \lambda_{2}, \lambda_{3} \\ 0, & \text { otherwise }\end{cases}
$$

Then λ_{4} is $\frac{1}{2}$-fßo but λ_{4} is not $\frac{1}{2}$-feo set.
Example 2.2. Let λ and μ be fuzzy subsets of $X=\{a, b, c\}$ defined as follows

$$
\lambda(a)=0.4, \lambda(b)=0.5, \lambda(c)=0.5
$$

$$
\mu(a)=0.4, \mu(b)=0.5, \mu(c)=0.4
$$

Then $\tau: I^{X} \rightarrow I$ defined as

$$
\tau(\lambda)= \begin{cases}1, & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{2}, & \text { if } \lambda=\lambda \\ 0, & \text { otherwise }\end{cases}
$$

Then μ is $\frac{1}{2}$-feo set but μ is not $\frac{1}{2}-f \delta$ so set.
Example 2.3. Let λ and μ be fuzzy subsets of $X=\{a, b, c\}$ defined as follows
$\lambda(a)=0.5, \lambda(b)=0.3, \lambda(c)=0.2 ;$
$\mu(a)=0.5, \mu(b)=0.4, \mu(c)=0.4$.
Then $\tau: I^{X} \rightarrow I$ defined as

$$
\tau(\lambda)= \begin{cases}1, & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{2}, & \text { if } \lambda=\lambda \\ 0, & \text { otherwise }\end{cases}
$$

Then μ is $\frac{1}{2}$-feo set but μ is not $\frac{1}{2}$-ffpo set.
Example 2.4. Let λ, μ and ω be fuzzy subsets of $X=\{a, b, c\}$ defined as follows

$$
\lambda(a)=0.3, \lambda(b)=0.5, \lambda(c)=0.2
$$

$$
\mu(a)=0.4, \mu(b)=0.5, \mu(c)=0.5
$$

$$
\omega(a)=0.7, \omega(b)=0.4, \omega(c)=0.8
$$

Then $\tau: I^{X} \rightarrow I$ defined as

$$
\tau(\lambda)= \begin{cases}1, & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{2}, & \text { if } \lambda=\lambda, \mu \\ 0, & \text { otherwise }\end{cases}
$$

Then ω is $\frac{1}{2}-f e^{*} o$ set but ω is not $\frac{1}{2}-f \beta$ o set.
Example 2.5. Let λ and μ be fuzzy subsets of $X=\{a, b, c\}$ defined as follows
$\lambda(a)=0.4, \lambda(b)=0.5, \lambda(c)=0.2 ;$
$\mu(a)=0.5, \mu(b)=0.4, \mu(c)=0.7$.
Then $\tau: I^{X} \rightarrow I$ defined as

$$
\tau(\lambda)= \begin{cases}1, & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{2}, & \text { if } \lambda=\lambda \\ 0, & \text { otherwise }\end{cases}
$$

Then μ is $\frac{1}{2}-f e^{*} o$ set but μ is not $\frac{1}{2}$-feo set. Also μ is not $\frac{1}{2}$-fuzzy open set.
Theorem 2.3. Let (X, τ) be a fts and $r \in I_{o}$.
(i) Any union of r-fe* o sets is an r-fe* o set.
(ii) Any intersection of $r-f e^{*} c$ sets is an $r-f e^{*} c$ set.

Proof. (i) Let $\left\{\lambda_{\alpha}: \alpha \in \Gamma\right\}$ be a family of r-fe* o sets.
For each $\alpha \in \Gamma, \lambda_{\alpha} \leq C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}\left(\lambda_{\alpha}, r\right), r\right), r\right)$.

$$
\begin{aligned}
\bigvee_{\alpha \in \Gamma} \lambda_{\alpha} & \leq \bigvee_{\alpha \in \Gamma} C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}\left(\lambda_{\alpha}, r\right), r\right), r\right) . \\
& \leq C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}\left(\vee \lambda_{\alpha}, r\right), r\right), r\right) .
\end{aligned}
$$

(ii) Similar to the proof of (i).

Theorem 2.4. Let (X, τ) be a fts. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}$. then,
(i) If $\tau(\mu) \geq r$, where μ is a crisp subset and λ is an $r-f e^{*} o$ set, then $\lambda \wedge \mu$ is an r - $f e^{*} o$ set.
(ii) If $\tau(1-\mu) \geq r$, where μ is a crisp subset and λ is an $r-f e^{*} c$ set, then $\lambda \vee \mu$ is an $r-f e^{*} c$ set.

Proof. (i) Let λ be r-fe e^{*} and $\mu \in I^{X}$ with $\tau(\mu) \geq r$ which is a crisp subset. Then

$$
\begin{aligned}
\lambda \wedge \mu & \leq C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right), r\right) \wedge \mu \\
& \leq C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}(\lambda \wedge \mu, r), r\right), r\right)
\end{aligned}
$$

Hence $\lambda \wedge \mu$ is r-fe e^{*} o.
(ii) Similar to the proof of (i).

Theorem 2.5. Let (X, τ) be a fts, $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(i) If λ is r - $f e^{*} o$ with $\tau(1-\lambda) \geq r$, then λ is r - $f \delta p o$.
(ii) If λ is $r-f e^{*} c$ with $\tau(\lambda) \geq r$, then λ is $r-f \delta p c$.

Proof. (i) Let λ be an r-fe* o set and $\tau(1-\lambda) \geq r$. Then

$$
\begin{aligned}
\lambda & \leq C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right), r\right) \\
& \leq I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right)
\end{aligned}
$$

Hence λ is an r-f δ po set of X.
(ii) is similar to (i).

Theorem 2.6. Let (X, τ) be a fts, For $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(i) λ is $r-f e^{*} o$ iff $1-\lambda$ is $r-f e^{*} c$.
(ii) If $\tau(\lambda) \geq r$ then λ is $r-f e^{*} o$ set.
(iii) $I_{\tau}(\lambda, r)$ is an $r-f e^{*} o$ set.
(iv) $C_{\tau}(\lambda, r)$ is an $r-f e^{*} c$ set.

Proof. (i) and (ii) are trivial.
(iii) From the Definition of I_{τ} of Theorem 1.2 and Definition 1.1(3), since $\tau\left(I_{\tau}(\lambda, r)\right) \geq r$, by (ii) $I_{\tau}(\lambda, r)$ is an r-fe e^{*} o set.
(iv) Since $1-C_{\tau}(\lambda, r)=I_{\tau}(1-\lambda, r)$, from Theorem 1.2 (6), by (iii) we have $\tau\left(1-C_{\tau}(\lambda, r)\right) \geq r$. Hence $1-C_{\tau}(\lambda, r)$ is r-fe* o. By (i) $C_{\tau}(\lambda, r)$ is an r-fe* ${ }^{*}$ set.

Theorem 2.7. Let (X, τ) be a fts. Let $\lambda \in I^{X}$ and $r \in I_{o}$.
(i) λ is $r-f e^{*} o$ iff $\lambda=e^{*} I_{\tau}(\lambda, r)$.
(ii) λ is $r-f e^{*} c$ iff $\lambda=e^{*} C_{\tau}(\lambda, r)$.

Theorem 2.8. Let (X, τ) be a fts. Let $\lambda \in I^{X}$ and $r \in I_{o}$, the following statements hold:
(i) $e^{*} C_{\tau}(0, r)=0$ and $e^{*} I_{\tau}(1, r)=1$.
(ii) $I_{\tau}(\lambda, r) \leq e^{*} I_{\tau}(\lambda, r) \leq \lambda \leq e^{*} C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r)$.
(iii) $\lambda \leq \mu \Rightarrow e^{*} I_{\tau}(\lambda, r) \leq e^{*} I_{\tau}(\mu, r)$ and $e^{*} C_{\tau}(\lambda, r) \leq e^{*} C_{\tau}(\mu, r)$.
(iv) $e^{*} C_{\tau}(\lambda, r) \vee e^{*} C_{\tau}(\mu, r) \leq e^{*} C_{\tau}(\lambda \vee \mu, r)$.
(v) $e^{*} C_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)=e^{*} C_{\tau}(\lambda, r)$ and $e^{*} I_{\tau}\left(e^{*} I_{\tau}(\lambda, r), r\right)=e^{*} I_{\tau}(\lambda, r)$.
(vi) $C_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)=e^{*} C_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$.

Proof. (i) It is trivial from the Definitions of $e^{*} C_{\tau}$ and $e^{*} I_{\tau}$.
(ii) and (iii) can be easily proved from Theorem 2.6.
(iv) Since $\lambda \leq \lambda \vee \mu$, by the definition of $e^{*} C_{\tau}$, we have

$$
e^{*} C_{\tau}(\lambda, r) \leq e^{*} C_{\tau}(\lambda \vee \mu, r)
$$

Similarly, $e^{*} C_{\tau}(\lambda, r) \leq e^{*} C_{\tau}(\lambda \vee \mu, r)$. Hence,

$$
e^{*} C_{\tau}(\lambda, r) \vee e C_{\tau}(\mu, r) \leq e^{*} C_{\tau}(\lambda \vee \mu, r)
$$

(v) It is trivial from Theorem 2.7.
(vi) From Theorem 2.6 (iv), and Theorem 2.7 (ii), $e^{*} C_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$. We only show that $C_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$. Since $\lambda \leq e^{*} C_{\tau}(\lambda, r), C_{\tau}(\lambda, r) \leq C_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)$. Suppose that $C_{\tau}(\lambda, r)<C_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)$. There exist $x \in X$ and $\mu \in I^{X}$ with $\lambda \leq \mu$ and $\tau(1-\mu) \geq r$ such that $C_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)(x)>\mu(x) \geq C_{\tau}(\lambda, r)(x)$. On the other hand, since $\mu=C_{\tau}(\lambda, r), \lambda \leq \mu$ implies

$$
e^{*} C_{\tau}(\lambda, r) \leq e^{*} C_{\tau}(\mu, r)=e^{*} C_{\tau}(\lambda, r)=C_{\tau}(\lambda, r)=\mu
$$

Thus $C_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right) \leq \mu$. This is a contradiction. Hence $C_{\tau}\left(e^{*} C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$.
Theorem 2.9. Let (X, τ) be a fts. For $\lambda \in I^{X}$ and $r \in I_{0}$ we have
(i) $e^{*} I_{\tau}(1-\lambda, r)=1-\left(e^{*} C_{\tau}(\lambda, r)\right)$.
(ii) $e^{*} C_{\tau}(1-\lambda, r)=1-\left(e^{*} I_{\tau}(\lambda, r)\right)$.

Proof. (i) For all $\lambda \in I^{X}, r \in I_{0}$ we have the following:
$1-\left(e^{*} C_{\tau}(\lambda, r)\right)=1-\bigwedge\left\{\mu: \mu \geq \lambda, \mu\right.$ is $\left.r-\mathrm{f} e^{*} \mathrm{o}\right\}$

$$
\begin{aligned}
& =\bigvee\left\{1-\mu: 1-\mu \leq 1-\lambda, 1-\mu \text { is } r-\mathrm{f} e^{*} \mathrm{o}\right\} \\
& =e^{*} I_{\tau}(1-\lambda, r)
\end{aligned}
$$

(ii) Similar to the proof of (i).

Theorem 2.10. Let (X, τ) be a fts, $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(i) If λ is r-ffo set, $\tau(1-\lambda) \geq r$ and λ is r - $f \delta c$ then λ is r-feo.
(ii) If λ is $r-f \beta c$ set, $\tau(\lambda) \geq r$ and λ is $r-f \delta o$ then λ is r-fec.

Proof. (i) Let λ be an r - $\mathrm{f} \beta$ o set and $\tau(1-\lambda) \geq r$. Then

$$
\begin{aligned}
\lambda & \leq C_{\tau}\left(I_{\tau}\left(C_{\tau}(\lambda, r), r\right), r\right) \\
& \leq C_{\tau}\left(I_{\tau}(\lambda, r), r\right) \\
& =C_{\tau}\left(I_{\tau}(\lambda, r) \vee I_{\tau}(\lambda, r), r\right) \\
& \leq C_{\tau}\left(\delta-I_{\tau}(\lambda, r), r\right) \vee I_{\tau}(\lambda, r) \\
& =C_{\tau}\left(\delta-I_{\tau}(\lambda, r), r\right) \vee I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right)
\end{aligned}
$$

Hence λ is an r-feo set of X.
(ii) is similar to (i).

Theorem 2.11. Let (X, τ) be a fts, $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(i) If λ is r-fe* o with $\tau(1-\lambda) \geq r$, then λ is r-feo set.
(ii) If λ is $r-f e^{*} c$ with $\tau(\lambda) \geq r$, then λ is r-fec set.

Proof. (i) Let λ be an r-fe ${ }^{*}$ o set and $\tau(1-\lambda) \geq r$. Then

$$
\begin{aligned}
\lambda & \leq C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right), r\right) \\
& =I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right) \\
& \leq C_{\tau}\left(\delta-I_{\tau}(\lambda, r), r\right) \vee I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right)
\end{aligned}
$$

Hence λ is an r-feo set of X.
(ii) is similar to (i).

Theorem 2.12. Let (X, τ) be a fts, $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(i) If λ is r-fe* $o, \tau(1-\lambda) \geq r$ and λ is $r-f \delta c$, then λ is $r-f \beta$ o set.
(ii) If λ is $r-f e^{*} c \tau(\lambda) \geq r$ and λ is $r-f \delta o$, then λ is $r-f \beta c$ set.

Proof. (i) Let λ be an r-fe* o set and $\tau(1-\lambda) \geq r$. Then

$$
\begin{aligned}
& \lambda \leq C_{\tau}\left(I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right), r\right) . \\
& \quad=C_{\tau}\left(I_{\tau}\left(C_{\tau}(\lambda, r), r\right), r\right)
\end{aligned}
$$

Hence λ is an r - $\mathrm{f} \beta$ o set of X.
(ii) is similar to (i).

Conclusion

In this paper, r-fuzzy e^{*}-open and r-fuzzy e^{*}-closed sets are introduced in fuzzy topological spaces in the sense of \hat{S} ostak's. We also introduce r-fuzzy e^{*}-interior and r-fuzzy e^{*}-closure. Moreover, we investigated the relationships between r-fuzzy e^{*}-open sets, r-fuzzy beta open sets, r-fuzzy e-open sets, r-fuzzy δ-semiopen sets and r-fuzzy δ-preopen sets.

References

[1] Anjana Bhattacharyya and M. N. Mukherjee, On fuzzy δ-almost continuous and δ^{*}-almost continuous functions, J. Tripura Math. Soc., 2 (2000), 45-57.
[2] K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.
[3] A. S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44 (1991), 303-308.
[4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-189.
[5] J. R. Choi, B. Y. Lee and J. H. Park, On fuzzy θ-continuous mappings, Fuzzy Sets and Systems, 54 (1993), 107-113.
[6] Erdal Ekici, A Note on a-open sets and e^{*}-open sets, Faculty of Sciences and Mathematics University of Nis, Serbia, Filomat 22: 1 (2008), 89-96.
[7] Erdal Ekici, On e-open sets, DP*-sets and DPE*-sets and decomposition of continuity, Arabian J. Sci, 33 (2008), no.2, 269-282.
[8] S. Ganguly and S. Saha, A note on semi-open sets in fuzzy topological spaces, Fuzzy Sets and Systems, 18 (1986), 83-96.
[9] S. Ganguly and S. Saha, A note on δ-continuity and δ-connected sets in fuzzy set theory, Simon Stein, 62 (1988), 127-141.
[10] I. M. Hanafy, Fuzzy γ-open sets and fuzzy γ-continuity, J. Fuzzy Math. 7 (1999), no.2, 419-430.
[11] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems, 4 (1992), 79-82.
[12] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems, 49 (1992), no.2, 237-242.
[13] Y. C. Kim, A. A. Ramadam and S. E. Abbas, Weaker forms of continuity in \check{S} ostak fuzzy topology, Indian J. Pure Appl. Math., 34 (2003), no.2, 311-333.
[14] Y. C. Kim and J. W. Park, Some properties of r-generalized fuzzy closed sets, Far East J. of Math. Science, 7 (2002), no.3, 253-268.
[15] Y. C. Kim and J. W. Park, r-fuzzy δ-closure and r-fuzzy θ-closure sets, J. Korea Fuzzy Logic and Intelligent systems, 10 (2000), no.6, 557-563.
[16] S. J. Lee and E. P. Lee, Fuzzy r-semiopen sets and fuzzy r-continuous maps, Proc. of Korea Fuzzy Logic and Intelligent Systems, 7 (1997), 29-37.
[17] Jin Han Park and Bu Young Lee, Fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings, Fuzzy Sets and Systems, 67 (1994), 395-364.
[18] M. N. Mukherjee and S. P. Sinha, On some weaker forms of fuzzy continuous and fuzzy open mappings on fuzzy topological spaces, Fuzzy Sets and Systems, 32 (1989), 103-114.
[19] Z. Petricevic, Separation properties and mappings, Indian J. Pure Appl. Math., 22 (1991), 971-982.
[20] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems, 48 (1992), 371-375.
[21] S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology, Fuzzy closure operator, Fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems, 54 (1993), 207-212.
[22] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics, 8 (2014), no.1, 141-148.
[23] A. S. Šostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser. II, 11 (1985), 89-103.
[24] D. Sobana, V. Chandrasekar and A. Vadivel, Fuzzy e-continuity in Šostak's fuzzy topological spaces, in press.
[25] S. S. Thakur and R. K. Khare, Fuzzy semi δ-preopen sets and fuzzy semi δ-precontinuous mappings, Universitatea din Bacau studii si cerceturi Strintitice Seria Matematica, 14 (2004), 201-211.

Scientia Magna

Vol. 14 (2019), No. 1, 29-43

Somewhat fuzzy $I_{r w}$-continuous functions

A. Vadivel ${ }^{1}$ and E. Elavarasan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Govt Arts College
Karur, Tamil Nadu, India
E-mail: avmaths@gmail.com
${ }^{2}$ Department of Mathematics, Shree Raghavendra Arts and Science College (Affiliated to Thiruvalluvar University) Keezhamoongiladi, Chidambaram-608102, Tamil nadu, India
E-mail: maths.aras@gmail.com

Abstract

In this paper, we introduce and study the concept of somewhat fuzzy $I_{r w^{-}}$ continuous functions, somewhat fuzzy $I_{r w}$-open functions and Somewhat fuzzy $I_{r w}$-irresolute open functions in fuzzy ideal topological spaces and obtain some of its basic properties and characterizations. Also we have introduce the concept of somewhat fuzzy $I_{r w}$ homeomorphism, fuzzy $I_{r w}$-resolvable and fuzzy $I_{r w}$-irresolvabe spaces and we have given characterizations of fuzzy $I_{r w}$-resolvable and fuzzy $I_{r w}$-irresolvable spaces.

Keywords Fuzzy $I_{r w}$-open sets, Somewhat fuzzy $I_{r w}$-continuous functions, Somewhat fuzzy $I_{r w}$-open functions, Somewhat fuzzy $I_{r w}$-irresolute open functions, somewhat fuzzy $I_{r w}$-homeomorphism, fuzzy $I_{r w}$-resolvable and fuzzy $I_{r w}$-irresolvable spaces.
2010 Mathematics Subject Classification 54A40.

§1. Introduction

In 1945 R. Vaidyanathaswamy [25] introduced the concept of ideal topological spaces. Hayashi [13] defined the local function and studied some topological properties using local function in ideal topological spaces in 1964. Since then many mathematicians like Erdal Ekici et. al. [9], Hatir and Jafari [12], Naseef and Hatir [15] studied various topological concepts in ideal topological spaces. After the introduction of fuzzy sets by Zadeh [29] in 1965 and fuzzy topology by Chang [4] in 1968, several researches were conducted on the generalization of the notions of fuzzy sets and fuzzy topology. The hybridization of fuzzy topology and fuzzy ideal theory was initiated by Mahmoud [14] and Sarkar [17] independently in 1997. They ($[14],[17]$) introduced the concept of fuzzy ideal topological spaces as an extension of fuzzy topological spaces and ideal topological spaces. The concept of fuzzy topology may be relevent to quantum particle physics particularly in connection with string theory and E-infinite theory [5-8]. Hatir and Jafari [12], Naseef and Hatir [15] introduced the concept of fuzzy semi- I-open sets and fuzzy pre-I-open sets in fuzzy ideal topological spaces. Yuksel et. al. [28] introduced and studied fuzzy α-I-open sets and consequently Gupta and Rajneesh [11] introduced the concept of fuzzy γ-I-open sets in fuzzy ideal topological spaces. In 2003, G. Thangaraj and
G. Balasubramanian [20] introduced the concept of somewhat fuzzy continuous functions and many others $[1,3,10,18,19,21,22,27]$ have turned their attention to the various concepts of fuzzy topology by considering somewhat fuzzy ideal topological spaces instead of somewhat fuzzy topological spaces. Recently, A. Vadivel and E. Elavarasan [23] introduced and studied the concept of fuzzy $I_{r w}$-closed sets in fuzzy ideal topological spaces which simultaneously generalizes the concepts of $I_{r w}$-closed sets due to A. Vadivel and Mohanrao Navuluri [24] and fuzzy $r w$-closed sets due to R. S. Wali [26]. In the present paper, to introduce and study the concept of somewhat fuzzy $I_{r w}$-continuous functions, somewhat fuzzy $I_{r w}$-open functions and somewhat fuzzy $I_{r w}$-irresolute open functions in fuzzy ideal topological spaces. Also we have introduced the concept of somewhat fuzzy $I_{r w}$-homeomorphism, fuzzy $I_{r w}$-resolvable and fuzzy $I_{r w}$-irresolvabe spaces and we have given characterizations of fuzzy $I_{r w}$-resolvable and fuzzy $I_{r w}$-irresolvable spaces in fuzzy ideal topological spaces.

§2. Preliminaries

Throughout this paper, (X, τ) always means fuzzy topological space in the sense of Chang [4]. For a fuzzy subset λ of X, the fuzzy interior of λ is denoted by $\operatorname{Int}(\lambda)$ and is defined as $\operatorname{Int}(\lambda)=\bigvee\{\mu \mid \mu \leq \lambda, \mu$ is a fuzzy open subset of $X\}$ and the fuzzy closure of λ is denoted by $C l(\lambda)$ and is defined as $C l(\lambda)=\bigwedge\{\mu \mid \mu \geq \lambda, \mu$ is a fuzzy closed subset of $X\}$. A fuzzy set λ in (X, τ) is said to be quasi-coincident with a fuzzy set μ, denoted by $\lambda q \mu$, if there exists a point $x \in X$ such that $\lambda(x)+\mu(x)>1$ [12]. A fuzzy set μ in (X, τ) is called a Q-neighborhood of a fuzzy point x_{β} if there exists a fuzzy open set λ of X such that $x_{\beta} q \lambda \leq \mu[12]$.

A nonempty collection of fuzzy sets I of a set X is called a fuzzy ideal [11,12] if and only if (i) $\lambda \in I$ and $\mu \leq \lambda$, then $\mu \in I$, (ii) if $\lambda \in I$ and $\mu \in I$, then $\lambda \vee \mu \in I$. The triple (X, τ, I) means a fuzzy ideal topological space with a fuzzy ideal I and fuzzy topology τ. The local function for a fuzzy set λ of X with respect to τ and I denoted by $\lambda^{*}(\tau, I)$ (briefly λ^{*}) in a fuzzy ideal topological space (X, τ, I) is the union of all fuzzy points x_{β} such that if μ is a Q-neighborhood of x_{β} and $\delta \in I$ then for at least one point $y \in X$ for which $\mu(y)+\lambda(y)-1>\delta(y)$ [16]. The $*$-closure operator of a fuzzy set λ denoted by $C l^{*}(\lambda)$ in (X, τ, I) defined as $C l^{*}(\lambda)=\lambda \bigvee \lambda^{*}[16]$.

Definition 2.1. A fuzzy set λ of fuzzy topological space (X, τ) is called fuzzy regular open [2] if $\lambda=\operatorname{int}(\operatorname{cl}(\lambda))$. The complement of a fuzzy regular open set is called fuzzy regular closed.

Definition 2.2. A fuzzy set λ of fuzzy topological space (X, τ) is said to be fuzzy regular semi-open [26] if there is a fuzzy regular open set μ such that $\mu \leq \lambda \leq \operatorname{cl}(\mu)$. The complement of a fuzzy regular semi-open set is called fuzzy regular semi-closed.

Definition 2.3. A fuzzy set λ of a fuzzy ideal topological space (X, τ, I) is called fuzzy $I_{r w}$-closed [23] if $\lambda^{*} \leq \mu$, whenever $\lambda \leq \mu$ and μ is fuzzy regular semi-open. The complement of a fuzzy $I_{r w}$-closed set is called fuzzy $I_{r w}$-open.

The family of all fuzzy $I_{r w}$-closed (resp. fuzzy $I_{r w}$-open) subsets of (X, τ, I) is denoted by $F I_{r w}-C(X)$ (resp. $F I_{r w}-O(X)$).

The fuzzy $I_{r w}$-closure and fuzzy $I_{r w}$-interior of a fuzzy set λ are respectively, denoted by
$I_{r w}-C l(\lambda)$ and $I_{r w}-\operatorname{Int}(\lambda)$ and is defined as
$I_{r w^{-}} C l(\lambda)=\wedge\left\{\mu \mid \lambda \leq \mu, \mu \in F I_{r w^{-}} C(X)\right\}$ and
$I_{r w^{-}} \operatorname{Int}(\lambda)=\vee\left\{\mu \mid \lambda \geq \mu, \mu \in F I_{r w^{-}} O(X)\right\}$.
A fuzzy set λ is said to be fuzzy $I_{r w}$-closed (resp. fuzzy $I_{r w}$-open) if and only if $I_{r w}-C l(\lambda)=$ $\lambda\left(\right.$ resp. $\left.\quad I_{r w}-\operatorname{Int}(\lambda)=\lambda\right)$. Clearly, $I_{r w^{-}} C l(1-\lambda)=1-I_{r w^{-}} \operatorname{Int}(\lambda)$ and $I_{r w^{-}} \operatorname{Int}(1-\lambda)=$ $I_{r w}-C l(\lambda)$.

Definition 2.4. [23] A fuzzy ideal topological space (X, τ, I) is fuzzy $I_{r w}-T_{1 / 2}$ if every fuzzy $I_{r w}$-closed set in X is fuzzy closed in X.

Definition 2.5. A function $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is called fuzzy continuous [4] if $f^{-1}(\mu)$ is fuzzy open in X for every fuzzy open set $\mu \in Y$.

Definition 2.6. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called fuzzy open [4] if and only if for any fuzzy open subset λ of $X, f(\lambda) \in \sigma$.

Definition 2.7. A function $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is called fuzzy $I_{r w}$-continuous [23] if $f^{-1}(\mu)$ is fuzzy $I_{r w}$-open in X for every fuzzy open set $\mu \in Y$.

Definition 2.8. A function $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is called fuzzy $I_{r w}$-irresolute [23] if $f^{-1}(\mu)$ is fuzzy $I_{r w}$-open in X for every fuzzy $I_{r w}$-open set $\mu \in Y$.

Definition 2.9. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called somewhat fuzzy continuous [20] if for every fuzzy open set λ in Y such that $f^{-1}(\lambda) \neq 0$, there exists a fuzzy open set $\mu \neq 0$ in (X, τ) such that $\mu \leq f^{-1}(\lambda)$. That is, $\operatorname{int}\left[f^{-1}(\lambda)\right] \neq 0$.

Definition 2.10. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called somewhat fuzzy open [20] if for every fuzzy open set λ in (X, τ) such that $\lambda \neq 0$, there exists a fuzzy open set $\mu \neq 0$ in (Y, σ) such that $\mu \leq f(\lambda)$. That is, int $[f(\lambda)] \neq 0$.

Lemma 2.1. [2] Let $g: X \rightarrow X \times Y$ be the graph of a function $f: X \rightarrow Y$. Then, if λ is a fuzzy set of X and μ is a fuzzy set of $Y, g^{-1}(\lambda \times \mu)=\lambda \wedge f^{-1}(\mu)$.

§3. Somewhat fuzzy $I_{r w}$-continuous functions

Definition 3.1. A function $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is called somewhat fuzzy $I_{r w}$-continuous if for every fuzzy open set λ in Y such that $f^{-1}(\lambda) \neq 0$, there exists a fuzzy $I_{r w}$-open set $\mu \neq 0$ in (X, τ) such that $\mu \leq f^{-1}(\lambda)$.

It is clear that every fuzzy continuous function is somewhat fuzzy $I_{r w}$-continuous and also every somewhat fuzzy continuous function is somewhat fuzzy $I_{r w}$-continuous but the converses is not true as the following example shows.

Example 3.1. Let $X=\{a, b, c\}, Y=\{p, q, r\}$ and the fuzzy sets λ and μ are defined as follows: $\lambda(a)=0.6, \quad \lambda(b)=0.4, \quad \lambda(c)=0.5 ; \mu(p)=0.7, \quad \mu(q)=0.6, \quad \mu(r)=0.5$. Let $\tau=\{0,1, \lambda\}, \sigma=\{0,1, \mu\}$ be the fuzzy topology on X and Y respectively. Let $I=\{0\}$ be the fuzzy ideal on X and λ^{c} is fuzzy $I_{r w}$-open set in X. Then the mapping $f:(X, \tau, I) \rightarrow(Y, \sigma)$ defined by $f(a)=p, f(b)=q$ and $f(c)=r$ is somewhat fuzzy $I_{r w}$-continuous but it not fuzzy continuous.

Example 3.2. Let $X=\{a, b, c\}, Y=\{p, q, r\}$ and the fuzzy sets λ and μ are defined as follows: $\lambda(a)=0.6, \quad \lambda(b)=0.4, \quad \lambda(c)=0.5 ; \mu(p)=0.4, \quad \mu(q)=0.6, \quad \mu(r)=0.5$. Let $\tau=\{0,1, \lambda\}, \sigma=\{0,1, \mu\}$ be the fuzzy topology on X and Y respectively. Let $I=\{0\}$ be the
fuzzy ideal on X and λ^{c} is fuzzy $I_{r w}$-open set in X. Then the mapping $f:(X, \tau, I) \rightarrow(Y, \sigma)$ defined by $f(a)=p, f(b)=q$ and $f(c)=r$ is somewhat fuzzy $I_{r w}$-continuous but it not somewhat fuzzy continuous.

Remark 3.1. The implications contained in the following diagram are true and the reverse implications need not be true.

Definition 3.2. A fuzzy set λ in a fuzzy ideal topological space (X, τ, I) is called fuzzy $I_{r w^{-}}{ }^{-}$ dense if there exists no fuzzy $I_{r w}$-closed set μ such that $\lambda<\mu<1$ or equivalently $I_{r w}-C l(\lambda)=$ 1.

Theorem 3.1. If $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is a somewhat fuzzy $I_{r w}$-continuous surjection and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is somewhat fuzzy continuous, then $g \circ f:(X, \tau, I) \rightarrow(Z, \eta)$ somewhat fuzzy $I_{r w}$-continuous.

Proof. Let λ be any non zero fuzzy open set of (Z, η) and $(g \circ f)^{-1}(\lambda) \neq 0$. Then $g^{-1}(\lambda) \neq 0$. Since g is somewhat fuzzy continuous, there exists $\mu \in \sigma$ such that $0 \neq \mu \leq g^{-1}(\lambda)$. Since f is surjective, $0 \neq f^{-1}(\mu) \leq f^{-1}\left(g^{-1}(\lambda)\right)$. Since f is somewhat fuzzy $I_{r w}$-continuous, There exists an fuzzy $I_{r w}$-open set δ in (X, τ, I) such that $0 \neq \delta \leq f^{-1}(\mu)$. Therefore, we have $\left.0 \neq \delta \leq(g \circ f)^{-1}(\lambda)\right)$. This shows that $g \circ f$ is somewhat fuzzy $I_{r w}$-continuous.

Proposition 3.1. If $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is a somewhat fuzzy $I_{r w}$-continuous function and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is fuzzy continuous function, then $g \circ f:(X, \tau, I) \rightarrow(Z, \eta)$ is somewhat fuzzy $I_{r w}$-continuous.

Proof. Let λ be any non zero fuzzy open set of (Z, η), then $g^{-1}(\lambda) \neq 0$. Since g is fuzzy continuous function, $g^{-1}(\lambda)$ in (Y, σ). Suppose that $f^{-1}\left(g^{-1}(\lambda)\right) \neq 0$. Since by hypothesis, f is somewhat fuzzy $I_{r w}$-continuous function, there exists a fuzzy $I_{r w}$-open set μ in X such that $\mu \neq 0$ and $\mu \leq f^{-1}\left(g^{-1}(\lambda)\right)$. But $f^{-1}\left(g^{-1}(\lambda)\right)=(g \circ f)^{-1}(\lambda)$, which implies that $\mu \leq$ $(g \circ f)^{-1}(\lambda)$. Therefore $(g \circ f)$ is somewhat fuzzy $I_{r w}$-continuous.

Theorem 3.2. For a function $f:(X, \tau, I) \rightarrow(Y, \sigma)$, the following statements are equivalent:
(i) f is somewhat fuzzy $I_{r w}$-continuous.
(ii) If λ is a fuzzy closed set of Y such that $f^{-1}(\lambda) \neq 1$, then there exists a proper fuzzy $I_{r w}$-closed set μ of X such that $\mu \geq f^{-1}(\lambda)$.
(iii) If λ is a fuzzy $I_{r w}$-dense set, then $f(\lambda)$ is a fuzzy dense set in Y.

Proof. (i) \Rightarrow (ii): Suppose f is somewhat fuzzy $I_{r w}$-continuous and λ is any fuzzy closed set in Y such that $f^{-1}(\lambda) \neq 1$. Therefore, clearly $1-\lambda$ is a fuzzy open set and $f^{-1}(1-\lambda)=$ $1-f^{-1}(\lambda) \neq 0$. But by (i), there exists a fuzzy $I_{r w}$-open set μ in (X, τ, I) such that $\mu \neq 0$ and $\mu \leq f^{-1}(1-\lambda)$. Therefore, $1-\mu \geq 1-f^{-1}(1-\lambda)=1-\left(1-f^{-1}(\lambda)\right)=f^{-1}(\lambda)$. Put $1-\mu=\delta$. Clearly, δ is a proper fuzzy $I_{r w}$-closed set such that $\delta \geq f^{-1}(\lambda)$.
(ii) \Rightarrow (iii): Let λ be a fuzzy $I_{r w}$-dense set in X and suppose $f(\lambda)$ is not fuzzy dense in Y. Then there exists a fuzzy closed set, say, μ such that $f(\lambda)<\mu<1$. Now, $\mu<1 \Rightarrow f^{-1}(\mu) \neq 1$. Then by $f(\lambda)<\mu<1$, there exists a proper fuzzy $I_{r w}$-closed set δ in (X, τ, I) such that $\delta \geq f^{-1}(\mu)$. But by (i), $f^{-1}(\mu)>f^{-1}(f(\lambda)) \geq \lambda$, that is, $\delta>\lambda$. This implies that there exists a proper fuzzy $I_{r w}$-closed set δ such that $\delta>\lambda$, which is a contradiction, since λ is fuzzy $I_{r w}$-dense.
(iii) $\Rightarrow(\mathrm{i})$: Let λ be any fuzzy open set in (Y, σ) and suppose $f^{-1}(\lambda) \neq 0$ and hence $\lambda \neq 0$. Suppose $I_{r w^{-}} \operatorname{Int}\left(f^{-1}(\lambda)\right)=0$. Then $I_{r w^{-}} C l\left(1-f^{-1}(\lambda)\right)=1-I_{r w^{-}} \operatorname{Int}\left(f^{-1}(\lambda)\right)=1-0=1$. This means that $1-f^{-1}(\lambda)$ is a fuzzy $I_{r w}$-dense set in X. By (iii), $f\left(1-f^{-1}(\lambda)\right)$ is a fuzzy dense in Y. That is, $C l\left(f\left(1-f^{-1}(\lambda)\right)\right)=1$, but $f\left(1-f^{-1}(\lambda)\right)=f\left(f^{-1}(1-\lambda)\right) \leq 1-\lambda=1$, since $\lambda \neq 0$. Since $1-\lambda$ is fuzzy closed and $f\left(1-f^{-1}(\lambda)\right) \leq 1-\lambda, C l\left(f\left(f^{-1}(\lambda)\right)\right) \leq 1-\lambda$. That is, $1 \leq 1-\lambda \Rightarrow \lambda \leq 0$ and hence $\lambda=0$, which is a contradiction to the fact that $\lambda \neq 0$. Therefore, we must have $I_{r w}-\operatorname{Int}\left(f^{-1}(\lambda)\right) \neq 0$. This means that, there exists a fuzzy $I_{r w}$-open set μ in (X, τ, I) such that $0 \neq \mu \leq f^{-1}(\lambda)$ and consequently f is somewhat fuzzy $I_{r w}$-continuous.

Theorem 3.3. Let $f:(X, \tau, I) \rightarrow(Y, \sigma)$ be a function, where X is product related to Y, and $g: X \rightarrow X \times Y$, the graph function of f. If g is somewhat fuzzy $I_{r w}$-continuous, then f is so.

Proof. Let λ be a non-zero fuzzy open set in Y. Then by Lemma 2.4 of [2], we have $f^{-1}(\lambda)=$ $1 \wedge f^{-1}(\lambda)=g^{-1}(1 \times \lambda)$. Since g is somewhat fuzzy $I_{r w}$-continuous and $1 \times \lambda$ is a non-zero fuzzy open set in $X \times Y$, there exists a non-zero fuzzy $I_{r w}$-open set μ of (X, τ, I) such that $\mu \leq g^{-1}(1 \times \lambda)=f^{-1}(\lambda)$. This proves that f is a somewhat fuzzy $I_{r w}$-continuous function.

Proposition 3.2. Let (X, τ, I) and (Y, σ, I) be any two fuzzy ideal topological spaces. If the function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is somewhat fuzzy $I_{r w}$-continuous, onto and if $I_{r w}-\operatorname{Int}(\lambda)=0$ for any non-zero fuzzy set λ in (X, τ, I), then $I_{r w}-\operatorname{Int}(f(\lambda))=0$ in (Y, σ, I).

Proof. Let $\lambda \neq 0$ be a non-zero fuzzy set in (X, τ, I) such that $I_{r w}-\operatorname{Int}(\lambda)=0$. Then $1-I_{r w^{-}}$ $\operatorname{Int}(\lambda)=1-0=1$ implies that $I_{r w}-C l(1-\lambda)=1$. Since f is somewhat fuzzy $I_{r w}$-continuous and $1-\lambda$ is fuzzy $I_{r w}$-dense in $(X, \tau, I), f(1-\lambda)$ is fuzzy $I_{r w}$-dense in (Y, σ, I) [by Theorem]. That is, $I_{r w}-C l[f(1-\lambda)]=1$. Then $I_{r w}-C l[1-f(\lambda)]=1$. [since f is onto]. Therefore we have $\left[1-I_{r w}-\operatorname{Int}(f(\lambda)]=1\right.$ which implies that $I_{r w}-\operatorname{Int}(f(\lambda))=0$. Hence the proposition.

Definition 3.3. A fuzzy ideal topological space (X, τ, I) is called a fuzzy $D_{I_{r w}}$-space (D space) if for every nonzero fuzzy $I_{r w}$-open (fuzzy open) set in X is fuzzy $I_{r w}$-dense (fuzzy dense) in X.

Proposition 3.3. If $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is a somewhat fuzzy $I_{r w}$-continuous surjection and (X, τ, I) is a fuzzy $D_{I_{r w}}$-space, then Y is a fuzzy D-space.

Proof. Let λ be a nonzero fuzzy open set in Y. We want to show that λ is fuzzy dense in Y. Suppose not, then there exists a fuzzy closed set $\mu \in Y$ such that $\lambda<\mu<1$. Therefore, $f^{-1}(\lambda)<f^{-1}(\mu)<f^{-1}(1)=1$. Since $\lambda \neq 0, f^{-1}(\lambda) \neq 0$ and since f is somewhat fuzzy $I_{r w}$-continuous there exists a fuzzy $I_{r w}$-open set $\delta \neq 0$ in X such that $\delta<f^{-1}(\lambda)$. Hence $\delta<f^{-1}(\lambda)<f^{-1}(\mu)<I_{r w^{-}} C l\left(f^{-1}(\mu)\right)<1$. That is, $\delta<I_{r w} C l\left(f^{-1}(\mu)\right)<1$. This contradicts the fact that (X, τ, I) is a fuzzy $D_{I_{r w}}$-space, hence Y is a fuzzy D -space.

Theorem 3.4. Let (X, τ, I) be any fuzzy ideal topological space and (Y, σ) any fuzzy ideal topological space. If λ is an fuzzy open set in X and $f:(\lambda, \tau / \lambda, I / \lambda) \rightarrow(Y, \sigma, I)$ is a somewhat fuzzy $I_{r w}$-continuous function such that $f(\lambda)$ is fuzzy $I_{r w}$-dense in Y, then any extension $F:(X, \tau, I) \rightarrow(Y, \sigma)$ of f is somewhat fuzzy $I_{r w}$-continuous.

Proof. Let μ be any fuzzy open set in (Y, σ) such that $F^{-1}(\mu) \neq 0$. Since $f(\lambda)<Y$ is dense in Y and $\mu \wedge f(\lambda) \neq 0$, it follows that $F^{-1}(\mu) \wedge \lambda \neq 0$. That is $f^{-1}(\mu) \wedge \lambda \neq 0$. Hence by hypothesis on f, there exists an fuzzy $I_{r w}$-open set δ in λ such that $\delta \neq 0$ and $\delta<f^{-1}(\mu)<F^{-1}(\mu)$ which implies F is somewhat fuzzy $I_{r w}$-continuous.

Theorem 3.5. Let (X, τ, I) and (Y, σ, J) be any two fuzzy ideal topological spaces, $X=$ $\lambda \vee \mu$ where λ and μ are fuzzy $I_{r w}$-open subsets of X and $f:(X, \tau, I) \rightarrow(Y, \sigma, J)$ be a function such that f / λ and f / μ are somewhat fuzzy $I_{r w}$-continuous. Then f is somewhat fuzzy $I_{r w}{ }^{-}$ continuous.

Proof. Let δ be any fuzzy open set in (Y, σ, J) such that $f^{-1}(\delta) \neq 0$. Then $(f / \lambda)^{-1}(\delta) \neq 0$ or $(f / \mu)^{-1}(\delta) \neq 0$ or both $(f / \lambda)^{-1}(\delta) \neq 0$ and $(f / \mu)^{-1}(\delta) \neq 0$.

Case (1) Suppose $(f / \lambda)^{-1}(\delta) \neq 0$. Since f / λ is somewhat fuzzy $I_{r w}$-continuous, there exists an fuzzy $I_{r w}$-open set $\gamma \leq \lambda$ such that $\gamma \neq 0$ and $\gamma \leq(f / \lambda)^{-1}(\delta) \leq f^{-1}(\delta)$. Since γ is fuzzy $I_{r w}$-open in λ and λ is fuzzy $I_{r w}$-open in X, γ is fuzzy $I_{r w}$-open in X. Thus f is somewhat fuzzy $I_{r w}$-continuous.

Case (2) the proof is similar with Case (1).
Case (3) Suppose $(f / \lambda)^{-1}(\delta) \neq 0$ and $(f / \mu)^{-1}(\delta) \neq 0$. This follows from both the Cases (1) and (2). Thus f is somewhat fuzzy $I_{r w}$-continuous.

§4. Fuzzy $I_{r w}$-Weakly Equivalent Topologies

Definition 4.1. Let X be a set and τ and σ be topologies for X. Then τ is said to be fuzzy $I_{r w}$-weakly equivalent to σ provided that if a fuzzy $I_{r w}$-open set λ in (X, τ) and $\lambda \neq 0$, then there is an fuzzy $I_{r w}$-open set μ in (X, σ) such that $\mu \neq 0$ and $\mu \leq \lambda$ and a fuzzy $I_{r w}$-open set λ in (X, σ) and $\lambda \neq 0$, then there is an fuzzy $I_{r w}$-open set set μ in (X, τ) such that $\mu \neq 0$ and $\mu \leq \lambda$.

Theorem 4.1. Let $f:(X, \tau, I) \rightarrow\left(Y, \sigma_{1}, I\right)$ be a somewhat fuzzy $I_{r w}$-continuous surjective function and let σ_{2} be a fuzzy topology for Y. If σ_{2} is weakly equivalent to σ_{1}, then the function $f:(X, \tau, I) \rightarrow\left(Y, \sigma_{2}\right)$ is somewhat fuzzy $I_{r w}$-continuous.

Proof. Since σ_{2} is weakly equivalent to σ_{1}, the identity function $i:\left(Y, \sigma_{1}\right) \rightarrow\left(Y, \sigma_{2}\right)$ is somewhat continuous. Therefore, by Theorem , $f=f \circ i:(X, \tau, I) \rightarrow\left(Y, \sigma_{2}\right)$ is somewhat fuzzy $I_{r w^{-}}$ continuous.

Theorem 4.2. Let $f:\left(X, \tau_{1}, I\right) \rightarrow(Y, \sigma)$ be a somewhat fuzzy continuous function and let τ_{2} be a fuzzy topology for X. If τ_{2} is fuzzy $I_{r w}$-weakly equivalent to τ_{1}, then the function $f:\left(X, \tau_{2}, I\right) \rightarrow(Y, \sigma)$ is somewhat fuzzy $I_{r w}$-continuous.

Proof. Since τ_{2} is fuzzy $I_{r w}$-weakly equivalent to τ_{1}, the identity function $i:\left(X, \tau_{2}, I\right) \rightarrow$ $\left(X, \tau_{1}, I\right)$ is somewhat fuzzy $I_{r w}$-continuous. Therefore, by Theorem, $f=f \circ i:\left(X, \tau_{2}, I\right) \rightarrow$ (Y, σ) is somewhat fuzzy $I_{r w}$-continuous.

§5. Somewhat fuzzy $I_{r w}$-open function

Definition 5.1. A function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is called somewhat fuzzy $I_{r w}$-open if and only if for any fuzzy open set $\lambda, \lambda \neq 0$ in (X, τ, I) implies that there exists a fuzzy $I_{r w}$-open set μ in (Y, σ, I) such that $\mu \neq 0$ and $\mu \leq f(\lambda)$.

It is clear that every fuzzy open function is somewhat fuzzy $I_{r w}$-open and also every somewhat fuzzy open function is somewhat fuzzy $I_{r w}$-open but the converses is not true as it can be seen from the following example.

Example 5.1. Let $X=\{a, b, c\}, Y=\{p, q, r\}$ and the fuzzy sets λ and μ are defined as follows: $\lambda(a)=0.4, \quad \lambda(b)=0.6, \quad \lambda(c)=0.5 ; \mu(p)=0.7, \quad \mu(q)=0.8, \quad \mu(r)=0.9$. Let $\tau=\{0,1, \lambda\}, \sigma=\{0,1, \mu\}$ be the fuzzy topology on X and Y respectively. Let $I=\{0\}$ be the fuzzy ideal on X, λ^{c} and μ^{c} is fuzzy $I_{r w}$-open sets in X and Y respectively. Then the mapping $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ defined by $f(a)=p, f(b)=q$ and $f(c)=r$ is somewhat fuzzy $I_{r w}$-open but not fuzzy open.

Example 5.2. In Example. Then the mapping f is somewhat fuzzy $I_{r w}$-open but not somewhat fuzzy open.

Remark 5.1. The implications contained in the above diagram are true and the reverse implications need not be true.

Proposition 5.1. If $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is fuzzy open function and $g:(Y, \sigma, I) \rightarrow$ (Z, η, I) is somewhat fuzzy $I_{r w}$-open functions, then $g \circ f:(X, \tau) \rightarrow(Z, \eta, I)$ is somewhat fuzzy $I_{r w}$-open.

Proof. Clear.

Proposition 5.2. Let (X, τ, I) and (Y, σ, I) be any two fuzzy ideal topological spaces. If the function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is somewhat fuzzy $I_{r w}$-open and if $I_{r w}-\operatorname{Int}(\lambda)=0$ for any non-zero fuzzy set λ in (Y, σ, I), then $I_{r w}-\operatorname{Int}\left(f^{-1}(\lambda)\right)=0$ in (X, τ, I).

Proof. Let $\lambda \neq 0$ be a nonzero fuzzy set in (Y, σ, I) such that $I_{r w}-\operatorname{Int}(\lambda)=0$. Then $1-I_{r w^{-}}$ $\operatorname{Int}(\lambda)=1-0=1$ implies that $I_{r w}-C l(1-\lambda)=1$. Since the function f is somewhat fuzzy $I_{r w}$-open and $1-\lambda$ is fuzzy $I_{r w}$-dense in $(Y, \sigma, I), f^{-1}(1-\lambda)$ is fuzzy $I_{r w}$-dense in (X, τ, I). That is, $I_{r w}-C l\left(f^{-1}(1-\lambda)\right)=1$. Then $I_{r w}-C l\left[1-f^{-1}(\lambda)\right]=1$. Therefore $\left[1-I_{r w}-\operatorname{Int}\left(f^{-1}(\lambda)\right)\right]=1$ implies that $I_{r w}-\operatorname{Int}\left(f^{-1}(\lambda)\right)=0$. Hence the proposition.

Theorem 5.2. For a surjective function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$, the following statements are equivalent:
(i) f is somewhat fuzzy $I_{r w}$-open.
(ii) If λ is a fuzzy closed set in X such that $f(\lambda) \neq 1$, then there exists a fuzzy $I_{r w}$-closed set μ in Y such that $\mu \neq 1$ and $\mu>f(\lambda)$.

Proof. (i) \Rightarrow (ii): Let λ be a fuzzy closed set in X such that $f(\lambda) \neq 1$. Then $1-\lambda$ is a fuzzy open set such that $f(1-\lambda)=1-f(\lambda) \neq 0$. Since f is somewhat fuzzy $I_{r w}$-open, there exists a fuzzy $I_{r w}$-open set γ in (Y, σ, I) such that $\gamma \neq 0$ and $\gamma \leq f(1-\lambda)$. Now $1-\gamma$ is fuzzy $I_{r w}$-closed set in Y such that $1-\gamma \neq 1$ and $\gamma<f(1-\lambda)$. Put $1-\gamma=\mu$. Then $\gamma>1-f(1-\lambda)=f(\lambda)$.
$($ ii $) \Rightarrow(\mathrm{i})$: Let λ be a fuzzy open of X such that $\lambda \neq 0$. Then $1-\lambda$ is fuzzy closed and $1-\lambda \neq 1, f(1-\lambda)=1-f(\lambda) \neq 1$. Hence by hypothesis, there exists a fuzzy $I_{r w}$-closed set μ in Y such that $\mu \neq 1$ and $\mu>f(1-\lambda)=1-f(\lambda)$, that is, $f(\lambda)>1-\mu$ and let $1-\mu=\delta$. Clearly, δ is a fuzzy $I_{r w}$-open set of Y such that $\delta<f(\lambda)$ and $\delta \neq 0$. Hence f is somewhat fuzzy $I_{r w}$-open.

Theorem 5.3. For a surjective function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$, the following statements are equivalent:
(i) f is somewhat fuzzy $I_{r w}$-open.
(ii) If λ is a fuzzy $I_{r w}$-dense set of Y, then $f^{-1}(\lambda)$ is fuzzy $I_{r w}$-dense set in X.

Proof. (i) \Rightarrow (ii): Suppose λ is fuzzy $I_{r w}$-dense and fuzzy $I_{r w}$-closed set of (Y, τ, I). We must to show that $f^{-1}(\lambda)$ is fuzzy $I_{r w}$-dense in (X, τ, I). Suppose not, then there exists a fuzzy $I_{r w}$-closed set μ in X such that $f^{-1}(\mu)<\mu<1$. Since f is somewhat fuzzy $I_{r w}$-open and $1-\mu$ is fuzzy $I_{r w}$-open, there exists a fuzzy $I_{r w}$-open set γ in Y such that $\gamma<f(1-\mu)$ and $\gamma<1-f(\mu)$. From $f^{-1}(\lambda)<\mu<1$, we have $\lambda<f(\mu)<1$. Then $\gamma<1-f(\mu)<1-\lambda$. That is, $\lambda<1-\gamma<1$. Since $1-\gamma$ is fuzzy $I_{r w}$-closed set in Y, this implies that λ is not a fuzzy $I_{r w}$-dense, which is a contradicition. Therefore, $f^{-1}(\lambda)$ must be a fuzzy $I_{r w}$-dense set in X.
(ii) $\Rightarrow(\mathrm{i})$: Suppose $f^{-1}(\lambda)$ is fuzzy $I_{r w}$-dense in (X, τ, I), where λ is fuzzy $I_{r w}$-dense set in Y. We want to show that f is somewhat fuzzy $I_{r w}$-open. Assume that $\lambda \neq 0$ is fuzzy open and fuzzy $I_{r w}$-open set in (X, τ, I). We have to show that $I_{r w}-I n t(f(\lambda)) \neq 0$. Suppose not, then $I_{r w^{-}} \operatorname{Int}(f(\lambda))=0$ whenever λ is fuzzy $I_{r w}$-open. Then $I_{r w}-C l(1-f(\lambda))=1-I_{r w^{-}} \operatorname{Int}(f(\lambda))=$ $1-0=1$. That is, $1-f(\lambda)$ is fuzzy $I_{r w}$-dense in Y. Therefore by assumption $f^{-1}(1-f(\lambda))$
is fuzzy $I_{r w}$-dense in X. Therefore, $1=I_{r w}-C l\left(f^{-1}(1-f(\lambda))\right)=I_{r w}-C l(1-\lambda)=1-\lambda$. This shows that $\lambda=0$, which is a contradiction and so $I_{r w}-\operatorname{Int}(f(\lambda)) \neq 0$.

§6. Somewhat fuzzy $I_{r w}$-irresolute open function

Definition 6.1. A function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is called somewhat fuzzy $I_{r w}$-irresolute open if and only if for any fuzzy $I_{r w}$-open set $\lambda, \lambda \neq 0$ in (X, τ, I) implies that there exists a fuzzy $I_{r w}$-open set μ in (Y, σ, I) such that $\mu \neq 0$ and $\mu \leq f(\lambda)$.

Proposition 6.1. If $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ and $g:(Y, \sigma, I) \rightarrow(Z, \eta, I)$ are somewhat fuzzy $I_{r w}$-irresolute open functions, then $g \circ f:(X, \tau) \rightarrow(Z, \eta, I)$ is somewhat fuzzy $I_{r w}{ }^{-}$ irresolute open.

Proof. Clear.
Theorem 6.1. For a surjective function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$, the following statements are equivalent:
(i) f is somewhat fuzzy $I_{r w}$-irresolute open.
(ii) If λ is a fuzzy $I_{r w}$-closed set in X such that $f(\lambda) \neq 1$, then there exists a fuzzy $I_{r w}$-closed set μ in Y such that $\mu \neq 1$ and $\mu>f(\lambda)$.

Proof. (i) \Rightarrow (ii): Let λ be a fuzzy $I_{r w}$-closed set in X such that $f(\lambda) \neq 1$. Then $1-\lambda$ is a fuzzy $I_{r w}$-open set such that $f(1-\lambda)=1-f(\lambda) \neq 0$. Since f is somewhat fuzzy $I_{r w}$-open, there exists a fuzzy $I_{r w}$-open set γ in (Y, σ, I) such that $\gamma \neq 0$ and $\gamma \leq f(1-\lambda)$. Now $1-\gamma$ is fuzzy $I_{r w}$-closed set in Y such that $1-\gamma \neq 1$ and $\gamma<f(1-\lambda)$. Put $1-\gamma=\mu$. Then $\gamma>1-f(1-\lambda)=f(\lambda)$.
(ii) $\Rightarrow(\mathrm{i})$: Let λ be a fuzzy $I_{r w}$-open of X such that $\lambda \neq 0$. Then $1-\lambda$ is fuzzy $I_{r w}$-closed and $1-\lambda \neq 1, f(1-\lambda)=1-f(\lambda) \neq 1$. Hence by hypothesis, there exists a fuzzy $I_{r w}$-closed set μ in Y such that $\mu \neq 1$ and $\mu>f(1-\lambda)=1-f(\lambda)$, that is, $f(\lambda)>1-\mu$ and let $1-\mu=\delta$. Clearly, δ is a fuzzy $I_{r w}$-open set of Y such that $\delta<f(\lambda)$ and $\delta \neq 0$. Hence f is somewhat fuzzy $I_{r w}$-open.

Theorem 6.2. For a surjective function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$, the following statements are equivalent:
(i) f is somewhat fuzzy $I_{r w}$-irresolute open.
(ii) If λ is a fuzzy $I_{r w}$-dense set of Y, then $f^{-1}(\lambda)$ is fuzzy $I_{r w}$-dense set in X.

Proof. (i) \Rightarrow (ii): Suppose λ is fuzzy $I_{r w}$-dense and fuzzy $I_{r w}$-closed set of (Y, τ, I). We must to show that $f^{-1}(\lambda)$ is fuzzy $I_{r w}$-dense in (X, τ, I). Suppose not, then there exists a fuzzy $I_{r w}$-closed set μ in X such that $f^{-1}(\mu)<\mu<1$. Since f is somewhat fuzzy $I_{r w}$-open and $1-\mu$ is fuzzy $I_{r w}$-open, there exists a fuzzy $I_{r w}$-open set γ in Y such that $\gamma<f(1-\mu)$ and $\gamma<1-f(\mu)$. From $f^{-1}(\lambda)<\mu<1$, we have $\lambda<f(\mu)<1$. Then $\gamma<1-f(\mu)<1-\lambda$. That is, $\lambda<1-\gamma<1$. Since $1-\gamma$ is fuzzy $I_{r w}$-closed set in Y, this implies that λ is not a fuzzy $I_{r w}$-dense, which is a contradicition. Therefore, $f^{-1}(\lambda)$ must be a fuzzy $I_{r w}$-dense set in X.
(ii) $\Rightarrow(\mathrm{i})$: Suppose $f^{-1}(\lambda)$ is fuzzy $I_{r w}$-dense in (X, τ, I), where λ is fuzzy $I_{r w}$-dense set in Y. We want to show that f is somewhat fuzzy $I_{r w}$-open. Assume that $\lambda \neq 0$ and a fuzzy $I_{r w}$-open set in (X, τ, I). We have to show that $I_{r w}-\operatorname{Int}(f(\lambda)) \neq 0$. Suppose not, then $I_{r w}-\operatorname{Int}(f(\lambda))=0$ whenever λ is fuzzy $I_{r w}$-open. Then $I_{r w}-C l(1-f(\lambda))=1-I_{r w}-\operatorname{Int}(f(\lambda))=1-0=1$. That is, $1-f(\lambda)$ is fuzzy $I_{r w}$-dense in Y. Therefore by assumption $f^{-1}(1-f(\lambda))$ is fuzzy $I_{r w}$-dense in X. Therefore, $1=I_{r w^{-}} C l\left(f^{-1}(1-f(\lambda))\right)=I_{r w^{-}} C l(1-\lambda)=1-\lambda$. This shows that $\lambda=0$, which is a contradiction and so $I_{r w}-\operatorname{Int}(f(\lambda)) \neq 0$.

§7. Somewhat fuzzy $I_{r w}$-homeomorphism

Definition 7.1. A mapping $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is called somewhat fuzzy $I_{r w}{ }^{-}$ homeomorphism if f and f^{-1} are somewhat fuzzy $I_{r w}$-continuous.

Definition 7.2. A mapping $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is called somewhat fuzzy $I_{r w}{ }^{*}$ homeomorphism if f and f^{-1} are somewhat fuzzy $I_{r w}$-irresolute.

Theorem 7.1. Let $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ be a bijective mapping. Then the following are equivalent
(i) f is somewhat fuzzy $I_{r w}$-homeomorphism.
(ii) f is somewhat fuzzy $I_{r w}$-continuous and somewhat fuzzy $I_{r w}$-open map.
(iii) f is somewhat fuzzy $I_{r w}$-continuous and somewhat fuzzy $I_{r w}$-closed map.

Proof. (i) \Rightarrow (ii) Let f be somewhat fuzzy $I_{r w}$-homeomorphism. Then f and f^{-1} are somewhat fuzzy $I_{r w}$-continuous. To prove that f is somewhat fuzzy $I_{r w}$-open map, let λ be a fuzzy open set in X. Since $f^{-1}: Y \rightarrow X$ is somewhat fuzzy $I_{r w}$-continuous, $\left(f^{-1}\right)^{-1}(\lambda)=f(\lambda)$ is somewhat fuzzy $I_{r w}$-open in Y. Therefore $f(\lambda)$ is somewhat fuzzy $I_{r w}$-open in Y. Hence f is somewhat fuzzy $I_{r w}$-open.
(ii) \Rightarrow (i) Let f be somewhat fuzzy $I_{r w}$-open and somewhat fuzzy $I_{r w}$-continuous map. To prove that $f^{-1}: Y \rightarrow X$ is somewhat fuzzy $I_{r w}$-continuous. Let λ be a fuzzy open set in X. Then $f(\lambda)$ is somewhat fuzzy $I_{r w}$-open set in Y since f is somewhat fuzzy $I_{r w}$-open map. Now $\left(f^{-1}\right)^{-1}(\lambda)=f(\lambda)$ is somewhat fuzzy $I_{r w}$-open set in Y. Therefore $f^{-1}: Y \rightarrow X$ is somewhat fuzzy $I_{r w}$-continuous. Hence f is somewhat fuzzy $I_{r w}$-homeomorphism.
(ii) \Rightarrow (iii) Let f be somewhat fuzzy $I_{r w}$-continuous and somewhat fuzzy $I_{r w}$-open map. To prove that f is somewhat fuzzy $I_{r w}$-closed map. Let μ be a fuzzy closed set in X. Then $1-\mu$ is fuzzy open set in X. Since f is somewhat fuzzy $I_{r w}$-open map, $f(1-\mu)$ is somewhat fuzzy $I_{r w}$-open set in Y. Now $f(1-\mu)=1-f(\mu)$. Therefore $f(\mu)$ is somewhat fuzzy $I_{r w}$-closed in Y. Hence f is a somewhat fuzzy $I_{r w}$-closed.
(iii) \Rightarrow (ii) Let f be somewhat fuzzy $I_{r w}$-continuous and somewhat fuzzy $I_{r w}$-closed map. To prove that f is somewhat fuzzy $I_{r w}$-open map. Let λ be a fuzzy open set in X. Then $1-\lambda$ is a fuzzy closed set in X. Since f is somewhat fuzzy $I_{r w}$-closed map, $f(1-\lambda)$ is somewhat fuzzy $I_{r w}$-closed in Y. Now $f(1-\lambda)=1-f(\lambda)$. Therefore $f(\lambda)$ is somewhat fuzzy $I_{r w}$-open in Y. Hence f is somewhat fuzzy $I_{r w}$-open.

Theorem 7.2. Let $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ be a bijective function. Then the following are equivalent:
(i) f is somewhat fuzzy $I_{r w}{ }^{*}$-homeomorphism.
(ii) f is somewhat fuzzy $I_{r w}$-irresolute and somewhat fuzzy $I_{r w}{ }^{*}$-open.
(iii) f is somewhat fuzzy $I_{r w}$-irresolute and somewhat fuzzy $I_{r w}{ }^{*}$-closed.

Proof. Similar by above Theorem .
Theorem 7.3. If $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is somewhat fuzzy $I_{r w}$-homeomorphism and $g:(Y, \sigma, I) \rightarrow(Z, \eta)$ is somewhat fuzzy $I_{r w}$-homeomorphism and Y is fuzzy $I_{r w}-T_{1 / 2}$ space, then $g \circ f: X \rightarrow Z$ is somewhat fuzzy $I_{r w}$-homeomorphism.

Proof. Clear.
Theorem 7.4. If $f:(X, \tau, I) \rightarrow(Y, \sigma, I), g:(Y, \sigma, I) \rightarrow(Z, \eta, I)$ are somewhat fuzzy $I_{r w}{ }^{*}$-homeomorphism then $g \circ f: X \rightarrow Z$ is somewhat fuzzy $I_{r w}{ }^{*}$-homeomorphism.

Proof. Clear.

§8. Fuzzy $I_{r w}$-resolvable and fuzzy $I_{r w}$-irresolvable spaces

Definition 8.1. A fuzzy ideal topological space (X, τ, I) is said to be fuzzy $I_{r w}$-resolvable if there exists a non-zero fuzzy $I_{r w}$-dense set λ in (X, τ, I) such that $I_{r w}-C l(1-\lambda)=1$. Otherwise (X, τ, I) is called a fuzzy $I_{r w}$-irresolvable space.

Theorem 8.1. A fuzzy ideal topological space (X, τ, I) is a fuzzy $I_{r w}$-resolvable space if and only if (X, τ, I) has a pair of fuzzy $I_{r w}$-dense sets λ_{1} and λ_{2} such that $\lambda_{1} \leq 1-\lambda_{2}$.

Proof. Let (X, τ, I) be a fuzzy $I_{r w}$-resolvable space. Suppose that for all fuzzy $I_{r w}$-dense sets λ_{i} and λ_{j}, we have $\lambda_{i} \not \leq 1-\lambda_{j}$. Then we have $\lambda_{i}>1-\lambda_{j}$ for some i and j. Then, we have $I_{r w}-C l\left(\lambda_{i}\right)>I_{r w}-C l\left(1-\lambda_{j}\right)$ which implies that $1>I_{r w}-C l\left(1-\lambda_{j}\right)$. Then $I_{r w}-C l\left(1-\lambda_{j}\right) \neq 1$. Also $\lambda_{j}>1-\lambda_{i}$. Then $I_{r w}-C l\left(\lambda_{j}\right)>I_{r w}-C l\left(1-\lambda_{i}\right)$ which implies that $1>I_{r w}-C l\left(1-\lambda_{i}\right)$. Then $I_{r w^{-}} C l\left(1-\lambda_{i}\right) \neq 1$. Hence $I_{r w^{-}} C l\left(\lambda_{i}\right)=1$, but $I_{r w^{-}} C l\left(1-\lambda_{i}\right) \neq 1$ for all fuzzy $I_{r w^{-}}$-dense sets λ_{i} in (X, τ, I), which is a contradiction to (X, τ, I) being a fuzzy $I_{r w}$-resolvable space. Therefore (X, τ, I) has a pair of fuzzy $I_{r w}$-dense sets λ_{1} and λ_{2} such that $\lambda_{1} \leq 1-\lambda_{2}$.

Conversely, suppose that the fuzzy ideal topological space (X, τ, I) has a pair of fuzzy $I_{r w}$-dense sets λ_{1} and λ_{2} such that $\lambda_{1} \leq 1-\lambda_{2}$. We want to show that (X, τ, I) is fuzzy $I_{r w}$-resolvable. Suppose that (X, τ, I) is a fuzzy $I_{r w}$-irresolvable space. Then for all fuzzy $I_{r w}$-dense sets λ_{i} in (X, τ, I), we have $I_{r w}-C l\left(1-\lambda_{i}\right) \neq 1$. In particular $I_{r w}-C l\left(1-\lambda_{2}\right) \neq 1$ implies that there exist a fuzzy $I_{r w}$-closed set μ in (X, τ, I) such that $\left(1-\lambda_{2}\right)<\mu<1$. Then $\lambda_{1} \leq 1-\lambda_{2}<\mu<1 \Rightarrow \lambda_{1}<\mu<1$, which is a contradiction to $I_{r w}-C l\left(\lambda_{1}\right)=1$. Hence our assumption that (X, τ, I) is a fuzzy $I_{r w}$-irresolvable space, is wrong. Hence (X, τ, I) is a fuzzy $I_{r w}$-resolvable space.

Proposition 8.1. A fuzzy ideal topological space (X, τ, I) is a fuzzy $I_{r w}$-resolvable space if $\bigvee_{i=1}^{i=n} \lambda_{i}=1$ where $I_{r w}-\operatorname{Int}\left(\lambda_{i}\right)=0$.

Proof. $\bigvee_{i=1}^{i=n} \lambda_{i}=1$ where $I_{r w}$-Int $\left(\lambda_{i}\right)=0$, implies that $1-\bigvee_{i=1}^{i=n} \lambda_{i}=0$. Then we have $\bigwedge_{i=1}^{i=n}\left(1-\lambda_{i}\right)=$ 0 . Then there must be at least two non-zero disjoint fuzzy sets $1-\lambda_{i}, 1-\lambda_{j}$ in (X, τ, I). Hence $\left(1-\lambda_{i}\right)+\left(1-\lambda_{j}\right) \leq 1$. Therefore $\left(1-\lambda_{i}\right) \leq \lambda_{j}$ which implies that $I_{r w}-C l\left(1-\lambda_{i}\right) \leq I_{r w}-C l\left(\lambda_{j}\right)$. But $I_{r w}-\operatorname{Int}\left(\lambda_{i}\right)=0$ implies that $I_{r w}-C l\left(1-\lambda_{i}\right)=1$. Hence $1 \leq I_{r w}-C l\left(\lambda_{j}\right)$ which implies that $I_{r w}-C l\left(\lambda_{j}\right)=1$. Also $I_{r w}-\operatorname{Int}\left(\lambda_{j}\right)=0$ implies that $I_{r w}-C l\left(1-\lambda_{j}\right)=1$. Therefore (X, τ, I) has a fuzzy $I_{r w}$-dense set λ_{j} such that $I_{r w}-C l\left(1-\lambda_{j}\right)=1$. Hence (X, τ, I) is a fuzzy $I_{r w}$-resolvable space.

Proposition 8.2. If (X, τ, I) is fuzzy $I_{r w}$-irresolvable if and only if $I_{r w}-\operatorname{Int}(\lambda) \neq 0$ for all fuzzy $I_{r w}$-dense sets λ in (X, τ, I).

Proof. Since (X, τ, I) is fuzzy $I_{r w}$-irresolvable, for all fuzzy $I_{r w}$-dense sets λ in (X, τ, I), we have $I_{r w}-C l(1-\lambda) \neq 1$. Then $1-I_{r w}-\operatorname{Int}(\lambda) \neq 1$ implies that $I_{r w}-\operatorname{int}(\lambda) \neq 0$.

Conversely let $I_{r w}-\operatorname{Int}(\lambda) \neq 0$ for each fuzzy $I_{r w}$-dense set λ in (X, τ, I). Suppose that (X, τ, I) is fuzzy $I_{r w}$-resolvable. Then there exists a non-zero fuzzy $I_{r w}$-dense set λ in (X, τ, I) such that $I_{r w}-C l(1-\lambda)=1$. Then we have $1-I_{r w}-\operatorname{Int}(\lambda)=1$ and therefore $I_{r w}-\operatorname{Int}(\lambda)=0$ which is a contradiction. Hence (X, τ, I) is a fuzzy $I_{r w}$-irresolvable space.

§9. Functions and fuzzy $I_{r w}$-irresolvable spaces

Definition 9.1. A function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is said to be weakly somewhat fuzzy $I_{r w}$-open if for each $I_{r w}$-dense fuzzy set λ in (Y, σ, I) with $I_{r w}-\operatorname{Int}(\lambda) \neq 0$, we have that $f^{-1}(\lambda)$ is also a fuzzy $I_{r w}$-dense set in (X, τ, I).

The above definition leads to a characterization of fuzzy $I_{r w}$-irresolvable space as follows:
Theorem 9.1. The following statements are equivalent for a fuzzy ideal topological space (Y, σ, I).
(1) (Y, σ, I) is fuzzy $I_{r w}$-irresolvable
(2) For every fuzzy ideal topological space (X, τ, I), every weakly somewhat fuzzy $I_{r w}$-open function $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ is somewhat fuzzy $I_{r w}$-open.
Proof. (1) $\Rightarrow(2)$ Let $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ be a weakly somewhat fuzzy $I_{r w}$-open function from a fuzzy ideal topological spaces (X, τ, I) to a fuzzy $I_{r w}$-irresolvable space (Y, σ, I). Since (Y, σ, I) is fuzzy $I_{r w}$-irresolvable space, (Y, σ, I) has a pair of fuzzy $I_{r w}$-dense sets λ_{1} and λ_{2} such that $\lambda_{1} \not \leq 1-\lambda_{2}$. Now $I_{r w}-\operatorname{Int}\left(\lambda_{1}\right) \neq 0$ and $I_{r w}-\operatorname{Int}\left(\lambda_{2}\right) \neq 0$. For, if $I_{r w}-\operatorname{Int}\left(\lambda_{1}\right)=0$ then, $1-I_{r w}-C l\left(1-\lambda_{1}\right)=0$. Now $\lambda_{1}>1-\lambda_{2} \Rightarrow \lambda_{2}>1-\lambda_{1}$. Therefore $I_{r w}-C l\left(\lambda_{2}\right)>I_{r w}-C l\left(1-\lambda_{1}\right)$. In other words $1-I_{r w}-C l\left(\lambda_{2}\right)<1-I_{r w}-C l\left(1-\lambda_{1}\right)=0$. Then $1<I_{r w}-C l\left(\lambda_{2}\right)$ implies $1<1$, which is a contradiction. Therefore $I_{r w}-\operatorname{Int}\left(\lambda_{1}\right) \neq 0$. Similarly we can have $I_{r w}-\operatorname{Int}\left(\lambda_{2}\right) \neq 0$. Since f is weakly somewhat fuzzy $I_{r w}$-open, $f^{-1}\left(\lambda_{1}\right)$ and $f^{-1}\left(\lambda_{2}\right)$ are fuzzy $I_{r w}$-dense sets in (X, τ, I). Therefore by Theorem, f is somewhat fuzzy $I_{r w}$-open.
$(2) \Rightarrow(1)$ Suppose that fuzzy ideal topological space (Y, σ, I) is fuzzy $I_{r w}$-resolvable. This means that there exists a pair of fuzzy $I_{r w}$-dense sets λ_{1} and λ_{2} such that $\lambda_{1} \leq 1-\lambda_{2}$. Let $X=Y$ and $\tau=\left\{0,1, \lambda_{1}\right\}$. Define $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ to be the identity function. Then f is not somewhat fuzzy $I_{r w}$-open, since $f^{-1}\left(\lambda_{2}\right)$ is not a fuzzy $I_{r w}$-dense set in (Y, τ, I). For, $f^{-1}\left(\lambda_{2}\right)=\lambda_{2}$ and $\lambda_{2} \leq 1-\lambda_{1} \neq 1$. Then $\lambda_{2} \leq 1-\lambda_{1} \Rightarrow I_{r w}-C l\left(\lambda_{2}\right) \leq I_{r w}-C l\left(1-\lambda_{1}\right)$. Since $1-\lambda_{1}$ is fuzzy closed and hence $I_{r w}$-closed in $(Y, \tau, I), I_{r w}-C l\left(\lambda_{2}\right) \neq 1$. That is, λ_{2} is not a fuzzy $I_{r w}$-dense set. We shall now show that f is weakly somewhat fuzzy $I_{r w}$-open. Let λ be any fuzzy $I_{r w}$-dense set in (Y, σ, I) such that $I_{r w}-\operatorname{Int}(\lambda) \neq 0$. Then $f^{-1}(\lambda)=\lambda$. We have to show that $I_{r w^{-}} C l\left[f^{-1}(\lambda)\right]=I_{r w^{-}} C l(\lambda)=1$ in (Y, τ, I). Now $I_{r w}-\operatorname{Int}(\lambda) \neq 0$ and λ_{1} is fuzzy $I_{r w}$-dense implies that $\lambda \not \leq 1-\lambda_{1}$. Therefore $I_{r w}-C l(\lambda)=1$. That is, λ is fuzzy $I_{r w}$-dense in (Y, τ, I). This proves that f is weakly somewhat fuzzy $I_{r w}$-open. Hence $(2) \Rightarrow(1)$ is proved.

Theorem 9.2. Let (X, τ, I) and (Y, σ, I) be any two fuzzy ideal topological spaces. Let $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ be a somewhat fuzzy $I_{r w}$-open function. If (X, τ, I) is a fuzzy $I_{r w}{ }^{-}$ irresolvable space, then (Y, σ, I) is a fuzzy $I_{r w}$-irresolvable space.

Proof. Let $\lambda \neq 0$ be an arbitrary fuzzy set in (Y, σ) such that $I_{r w}-C l(\lambda)=1$. We claim that $I_{r w}-\operatorname{Int}(\lambda) \neq 0$. Assume the contrary. That is, $I_{r w^{-}}-\operatorname{Int}(\lambda)=0$. Then by Proposition, we have $I_{r w}-\operatorname{Int}\left(f^{-1}(\lambda)\right)=0$ in (X, τ, I). Now λ is fuzzy $I_{r w}$-dense in (Y, σ, I), then by Theorem, we have $f^{-1}(\lambda)$ is fuzzy $I_{r w}$-dense in (X, τ, I). Therefore for the fuzzy $I_{r w}$-dense that $f^{-1}(\lambda)$, we have $I_{r w^{-}} \operatorname{Int}\left(f^{-1}(\lambda)\right)=0$ in (X, τ, I), which is a contradiction. [since (X, τ, I) is fuzzy $I_{r w^{-}}$ irresolvable, by Proposition, $I_{r w}-\operatorname{Int}(\mu) \neq 0$ for all fuzzy $I_{r w}$-dense sets μ in $\left.(X, \tau, I)\right]$. Hence we must have $I_{r w}$ - $\operatorname{Int}(\mu) \neq 0$ for all fuzzy $I_{r w}$-dense sets λ in (Y, σ, I). Hence by Proposition, (Y, σ, I) is a fuzzy $I_{r w}$-irresolvable space.

Theorem 9.3. Let (X, τ, I) and (Y, σ, I) be any two fuzzy ideal topological spaces and $f:(X, \tau, I) \rightarrow(Y, \sigma, I)$ be a somewhat fuzzy $I_{r w}$-continuous and onto function. If (Y, σ, I) is a fuzzy $I_{r w}$-irresolvable space, then (X, τ, I) is a fuzzy $I_{r w}$-irresolvable space.

Proof. Let $\lambda \neq 0$ be an arbitrary fuzzy set in (X, τ, I) such that $I_{r w}-C l(\lambda)=1$. We claim that $I_{r w}-\operatorname{Int}(\lambda) \neq 0$. Assume the contrary. That is, $I_{r w}-\operatorname{Int}(\lambda)=0$. Then by Proposition, we have $I_{r w}-\operatorname{Int}(f(\lambda))=0$. Now λ is fuzzy $I_{r w}$-dense in (X, τ, I), then by Theorem, we have $f(\lambda)$ is fuzzy $I_{r w^{\prime}}$-dense in (X, τ, I). Therefore for the fuzzy $I_{r w}$-dense set $f(\lambda)$ in (Y, σ, I), we have $I_{r w^{-}}$ $\operatorname{Int}(f(\lambda))=0$, which is a contradiction. [since (Y, σ, I) is fuzzy $I_{r w}$-irresolvable, $I_{r w}$ - $\operatorname{Int}(\mu) \neq 0$ for all fuzzy $I_{r w}$-dense sets μ in (X, τ, I)]. Therefore we must have $I_{r w}-\operatorname{Int}(\lambda) \neq 0$ for all fuzzy $I_{r w}$-dense sets λ in (Y, τ, I). Hence by Proposition, the fuzzy ideal topological space (X, τ, I) is a fuzzy $I_{r w}$-irresolvable space.

Acknowledgements

The Second author sincerely acknowledges the financial support from U. G. C. New Delhi, grant no. F4-1/2006(BSR)/7-254/2009(BSR)-22.10.2013. India in the form of UGC-BSR Fellowship.

References

[1] B. Amudhambigai, M. K. Uma and E. Roja, On somewhat pairwise fuzzy open functions in smooth fuzzy bitopological spaces. Int. Journal of Math. Analysis, 5 (19), (2011), 911-922.
[2] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl., 82 (1989), 297-05.
[3] M. Caldas, S. Jafari, G. B. Navalagi and N. Rajesh, Somewhat fuzzy pre- I-continuous functions. IJECSM, 2 (2) (2011), 97-102.
[4] C. L. Chang, Fuzzy topological spaces. J. Math. Anal. Appl., 24 (1968), 182-90.
[5] M. S. El-Naschie, On the uncertainty of constrain geometry and the two-slit experiment. Chaos Solitons Fractals, 9 (3) (1998), 517-29.
[6] M. S. El-Naschie, Elementary prerequisite for E-infinity. Chaos Solitons Fractals, 30 (3) (2006), 579-05.
[7] M. S. El-Naschie, Advanced prerequisite for E-infinity theory. Chaos Solitons Fractals, 30 (2006), 636-41.
[8] M. S. El-Naschie, Topics in the mathematical physics of E-infinity theory, Chaos Solitons Fractals, 30 (2006), 656-63.
[9] Erdal Ekici, Neelamegarajan Rajesh and Mariam Lellis Thivagar, One \widetilde{g}-Semi-Homeomorphism in Topological Spaces. Annals of University of Craiova, Math. Comp. Sci. Ser., 33 (2006), 208-215.
[10] N. Gowrisankar and N. Rajesh, Somewhat fuzzy faintly pre- I-continuous functions. Annals of Fuzzy Mathematics and Informatics, 6 (2) (2013), 331-337.
[11] M. K. Gupta and Rajneesh, Fuzzy $\gamma-I$-open sets and a new decomposition of fuzzy semi- I continuity via fuzzy ideals. Int. J. Math. Anal., 3 (28) (2009), 1349-1357.
[12] E. Hatir and S. Jafari, Fuzzy semi- I-open sets and fuzzy semi- I-continuity via fuzzy idealization. Chaos Solitons and Fractals, 34 (2007), 1220-1224.
[13] E. Hayashi, Topologies defined by local properties. Math. Ann., 156 (1964), 114-178.
[14] R. A. Mahmoud, Fuzzy ideal, fuzzy local functions and fuzzy topology. J. Fuzzy Math., 5 (1) (1997), 165-172.
[15] A. A. Naseef and E. Hatir, On fuzzy pre- I-open sets and a decomposition of fuzzy- I-continuity. Chaos Solitons and Fractals, 40 (3) (2007), 1185-1189.
[16] P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighbourhood structure of a fuzzy point and MooreSmith convergence. J. Math. Anal. Appl., 76 (1980), 571-599.
[17] D. Sarkar, Fuzzy ideal theory, fuzzy local function and generated fuzzy topology. Fuzzy sets and systems, 87 (1997), 117-123.
[18] V. Seenivasan, G. Balasubramanian and G. Thangaraj, Somwwhat fuzzy almost α-irresolute functions. East Asian Mathematical Journal, 26 (1) (2010), 1-8.
[19] M. Sudha, E. Roja and M. K. Uma, On somewhat pairwise fuzzy faintly ω-continuous functions. Int. J. of Math. Sci. App., 1 (3), (2011), 1323-1328.
[20] G. Thangaraj and G. Balasubramanian, On somewhat fuzzy continuous functions. J. Fuzzy. Math., 11 (2) (2003), 725-736.
[21] G. Thangaraj and R. Palani, Somewhat fuzzy continuity and fuzzy Baire spaces. Ann. Fuzzy. Math. and Info.,(in press).
[22] G. Thangaraj and K. Dinakaran, On somewhat fuzzy δ-continuous functions. Ann. Fuzzy. Math. and Info., 10 (3) (2015), 433-446.
[23] A. Vadivel and E. Elavarasan, Fuzzy $I_{r w}$-closed sets and maps in fuzzy ideal topological spaces. The Journal of Fuzzy mathematics, 25 (3), 2017.
[24] A. Vadivel and Mohanarao Navuluri, Regular weakly closed sets in ideal topological spaces. International Journal of Pure and Applied Mathematics, 86 (4) (2003), 607-619.
[25] R. Vaidyanathaswamy, The localization theory in set topology. Proc. Indian Sci. Acad., 20 (1945), 51-61.
[26] R. S. Wali, Some topics in general and fuzzy topological spaces. Ph.D., Thesis, Karnataka University, Karnataka (2006).
[27] Young Bin Im, Joo Sung Lee and Yung Duk Cho, Somewhat fuzzy γ-irresolute continuous mappings. J. Appl. Math. and Informatics, 32 (1) (2014), 203-209.
[28] S. Yuksel, G. E. Caylak E. and A. Acikgoz, On fuzzy $\alpha-I$-open continuous and fuzzy α - I-open functions. Chaos Solitons and Fractals, 41 (4) (2009), 1691-1696.
[29] L. A. Zadeh, Fuzzy sets. Inform. and Control (Shenyang), 8 (1965), 338-353.

Scientia Magna

Vol. 14 (2019), No. 1, 44-51

The mean value of $\tau_{3}^{(e)}(n)$ with a negative r-th power

Ao Han
School of Mathematics and Statistics, Shandong Normal University
Shandong Jinan, China
E-mail: hanao1996@163.com

Abstract

Many scholars are interested in researching the divisor problem, and they have obtained a large number of good results. However, there are many problems have not been solved. In this paper we shall study the mean value of the exponential divisor function involving a negative r-th power by the convolution method.

Keywords The exponential divisor function, Euler product, Dirichlet convolution.
2010 Mathematics Subject Classification 11N37.

§1. Introduction

Let $n>1$ be an integer. The integer $d=\prod_{i=1}^{s} p_{i}^{b_{i}}$ is called an exponential divisor of $n=\prod_{i=1}^{s} p_{i}^{a_{i}}$, if $b_{i} \mid a_{i}$ for every $i \in\{1,2, \cdots, s\}$, notation: $\left.d\right|_{e} n$. By convention $\left.1\right|_{e} 1$.

Let $\tau^{(e)}(n)$ denote the number of exponential divisors of n. The function $\tau^{(e)}$ is called the exponential divisor function. Similarly to the generalization of $d_{k}(n)$ from $d(n)$, we define the function $\tau_{k}^{(e)}(n)$:

$$
\begin{equation*}
\tau_{k}^{(e)}(n)=\prod_{p_{i} a_{i} \| n} d_{k}\left(a_{i}\right), k \geq 2, \tag{1}
\end{equation*}
$$

Obviously when $k=2$, that is $\tau^{(e)}(n) . \tau_{3}^{(e)}(n)$ is obviously a multiplicative function.
Throughout this paper, ϵ always denotes a fixed but sufficiently small positive constant.
J.Wu [1] got the following result:

$$
\begin{equation*}
\sum_{n \leq x} \tau^{(e)}(n)=A(x)+B x^{\frac{1}{2}}+O\left(x^{\frac{2}{9}} \log x\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{gathered}
A=\prod_{p}\left(1+\sum_{a=2}^{\infty} \frac{d(a)-d(a-1)}{p^{a}}\right), \\
B=\prod_{p}\left(1+\sum_{a=5}^{\infty} \frac{d(a)-d(a-1)-d(a-2)+d(a-3)}{p^{\frac{a}{2}}}\right) .
\end{gathered}
$$

M.V.Subbarao [3] also proved for some positive integer r :

$$
\begin{equation*}
\sum_{n \leq x}\left(\tau^{(e)}(n)\right)^{r} \sim A_{r} x \tag{3}
\end{equation*}
$$

where

$$
A_{r}=\prod_{p}\left(1+\sum_{a=2}^{\infty} \frac{(d(a))^{r}-(d(a-1))^{r}}{p^{a}}\right) .
$$

László Tóth [4] improved the result (3) and established a more precise asymptotic formula for the r-th power of the function $\tau^{(e)}(n)$:

$$
\begin{equation*}
\sum_{n \leq x}\left(\tau^{(e)}(n)\right)^{r}=A_{r} x+x^{\frac{1}{2}} P_{2^{r}-2}(\log x)+O\left(x^{u_{r}+\epsilon}\right) . \tag{4}
\end{equation*}
$$

Jing Huang and Ping Song [7] also proved that

$$
\begin{equation*}
\sum_{n \leq x}\left(\tau_{3}^{(e)}(n)\right)^{r}=A_{r} x+x^{\frac{1}{2}} R_{3^{r}-2}(\log x)+O\left(x_{r}^{b}+\epsilon\right), \tag{5}
\end{equation*}
$$

where $b_{r}=\frac{1}{3-\alpha_{3^{r}-1}}$ (see [7], Lemma 2.2), $R_{3^{r}-2}(x)$ is a polynomial of degree $3^{r}-2$ and

$$
A_{r}=\prod_{p}\left(1+\sum_{a=2}^{\infty} \frac{\left(d_{3}(a)\right)^{r}-\left(d_{3}(a-1)\right)^{r}}{p^{a}}\right)
$$

In this paper, we shall study the mean value of the exponential divisor function involving a negative r-th power of the function $\tau_{3}^{(e)}(n)$ by the convolution method, where $r>1$ is an integer.

Theorem 1.1. For every integer $r>1$ and $N \geq 1$, then we have

$$
\begin{equation*}
\sum_{n \leq x}\left(\tau_{3}^{(e)}(n)\right)^{-r}=C_{r} x+x^{\frac{1}{2}} \log ^{3^{-r}-2}\left(\sum_{j=0}^{N} d_{j}(r) \log ^{-j} x+O\left(\log ^{-N-1} x\right)\right) \tag{6}
\end{equation*}
$$

where $d_{0}(r), d_{1}(r), \cdots, d_{N}(r)$ are computable constants, and

$$
C_{r}:=\prod_{p}\left(1+\sum_{a=2}^{\infty} \frac{\left(d_{3}(a)\right)^{-r}-\left(d_{3}(a-1)\right)^{(-r)}}{p^{a}}\right)
$$

§2. Preliminaries

In order to prove our theorem, we define for an arbitrary complex number z the general divisor function $d_{z}(n)$ by

$$
\begin{equation*}
\sum_{n=1}^{\infty} d_{z}(n) n^{-s}=\zeta^{z}(s)=\prod_{p}\left(1-p^{-s}\right)^{-z}, \text { Res }>1 \tag{7}
\end{equation*}
$$

where a branch of $\zeta^{z}(s)$ is defined by

$$
\begin{equation*}
\zeta^{z}(s)=\exp \{z \log \zeta(s)\}=\exp \left(-z \sum_{p} \sum_{j=1}^{\infty} j^{-1} p^{-j s}\right), \text { Res }>1 . \tag{8}
\end{equation*}
$$

The definition shows that $d_{z}(n)$ is multiplicative function of n which generalizes $d_{k}(n)$. The divisor function $d_{k}(n)$ ($k \geq 2$ a fixed integer) may be defined by

$$
\begin{equation*}
\sum_{n=1}^{\infty} d_{k}(n) n^{-s}=\zeta^{k}(s)=\prod_{p}\left(1-p^{-s}\right)^{-k}, \text { Res }>1 \tag{9}
\end{equation*}
$$

The proof of the Theorem 1.1 is based on the following lemmas.
Lemma 2.1. Suppose s is a complex number for with Res $>1, r \geq 1$ is a fixed integer, then

$$
\begin{equation*}
F(s):=\sum_{n=1}^{\infty} \frac{\left(\tau_{3}^{(e)}(n)\right)^{-r}}{n^{s}}=\zeta(s) \zeta^{3^{-r}-1}(2 s) G(s, r) \tag{10}
\end{equation*}
$$

where the Dirichlet series $G(s, r):=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$ is absolutely convergent for Res $>\frac{1}{4}$.
Proof. By the Euler product formula, we can get

$$
\begin{align*}
F(s) & =\prod_{p}\left(1+\frac{\left(\tau_{3}^{(e)}(p)\right)^{-r}}{p^{s}}+\frac{\left(\tau_{3}^{(e)}\left(p^{2}\right)\right)^{-r}}{p^{2 s}}+\frac{\left(\tau_{3}^{(e)}\left(p^{3}\right)\right)^{-r}}{p^{3 s}}+\cdots\right) \\
& =\prod_{p}\left(1+\frac{\left(d_{3}^{(e)}(1)\right)^{-r}}{p^{s}}+\frac{\left(d_{3}^{(e)}(2)\right)^{-r}}{p^{2 s}}+\frac{\left(d_{3}^{(e)}(3)\right)^{-r}}{p^{3 s}}+\frac{\left(d_{3}^{(e)}(4)\right)^{-r}}{p^{4 s}}+\frac{\left(\tau_{3}^{(e)}\left(p^{5}\right)\right)^{-r}}{p^{5 s}}+\cdots\right) \\
& =\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{3^{-r}}{p^{2 s}}+\frac{3^{-r}}{p^{3 s}}+\frac{6^{-r}}{p^{4 s}}+\frac{3^{-r}}{p^{5 s}}+\cdots\right) \\
& =\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p}\left(1-\frac{1}{p^{s}}\right)\left(1+\frac{1}{p^{s}}+\frac{3^{-r}}{p^{2 s}}+\frac{3^{-r}}{p^{3 s}}+\frac{6^{-r}}{p^{4 s}}+\frac{3^{-r}}{p^{5 s}}+\cdots\right) \\
& =\zeta(s) \prod_{p}\left(1+\frac{3^{-r}-1}{p^{2 s}}+\frac{6^{-r}-3^{-r}}{p^{4 s}}+\frac{3^{-r}-6^{-r}}{p^{5 s}}+\cdots\right) \\
& =\zeta(s) \zeta^{3^{-r}-1}(2 s) G(s, r) \tag{11}
\end{align*}
$$

where the infinite series

$$
G(s, r)=\prod_{p}\left(1-\frac{1}{p^{2 s}}\right)^{3^{-r}-1}\left(1+\frac{3^{-r}-1}{p^{2 s}}+\frac{6^{-r}-3^{-r}}{p^{4 s}}+\frac{3^{-r}-6^{-r}}{p^{5 s}}+\cdots\right)
$$

Write $G(s, r)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$. It is absolutely convergent for Res $>\frac{1}{4}$.
Lemma 2.2. Let $A>0$ be arbitrary but fixed real number, and let $N_{1} \geq 1$ be an arbitrary but fixed integer. If $|z| \leq A$, then uniformly in z

$$
\begin{align*}
\sum_{n \leq x} d_{z}(n)= & C_{1}(z) x \log ^{z-1} x+C_{2}(z) x \log ^{z-2} x+\cdots \tag{12}\\
& +C_{N_{1}}(z) x \log ^{z-N_{1}} x+O\left(x \log ^{R e z-N_{1}-1} x\right)
\end{align*}
$$

where $C_{j}(z)=\frac{B_{j}(z)}{\Gamma(z-j-1)},\left(j=1,2, \cdots, N_{1}\right)$ and each $B_{j}(z)$ is regular for $|z| \leq A$.

Proof. See Ivić [2], Theorem 14.9.
Lemma 2.3. Let $A>0$ be arbitrary but fixed real number, and let $M \geq 1$ be an arbitrary but fixed integer. If $|z| \leq A$, then uniformly in z

$$
\begin{align*}
\sum_{m n^{2} \leq x} d_{z}(n)= & \zeta^{z}(2) x+x^{\frac{1}{2}}\left(K_{1}(z) \log ^{z-1} x+K_{2}(z) \log ^{z-2} x+\cdots\right. \tag{13}\\
& \left.+K_{M}(z) \log ^{z-M} x\right)+O\left(x^{\frac{1}{2}} \log ^{R e z-M-1} x\right)
\end{align*}
$$

where the functions $K_{j}(z)(j=1,2, \cdots, M)$ are regular in $|z| \leq A$.
Proof. Suppose $1 \leq y \leq x$ is a parameter to be determined later. We have

$$
\begin{align*}
\sum_{m n^{2} \leq x} d_{z}(n) & =\sum_{n \leq y} d_{z}(n) \sum_{m \leq \frac{x}{n^{2}}} 1+\sum_{m \leq \frac{x}{y^{2}}} \sum_{n^{2} \leq \frac{x}{m}} d_{z}(n)-\sum_{m \leq \frac{x}{y^{2}}} \sum_{n \leq y} d_{z}(n) \tag{14}\\
& =\sum_{1}+\sum_{2}-\sum_{3}
\end{align*}
$$

where

$$
\begin{aligned}
& \sum_{1}=\sum_{n \leq y} d_{z}(n) \sum_{m \leq \frac{x}{n^{2}}} 1 \\
& \sum_{2}=\sum_{m \leq \frac{x}{y^{2}}} \sum_{n^{2} \leq \frac{x}{m}} d_{z}(n) \\
& \sum_{3}=\sum_{m \leq \frac{x}{y^{2}}} \sum_{n \leq y} d_{z}(n) .
\end{aligned}
$$

For \sum_{1}, we have

$$
\begin{align*}
\sum_{1} & =\sum_{n \leq y} d_{x}(n)\left[\frac{x}{n^{2}}\right] \\
& =x \sum_{n \leq y} \frac{d_{z}(n)}{n^{2}}+O\left(\sum_{n \leq y}\left|d_{z}(n)\right|\right) . \tag{15}
\end{align*}
$$

We see that $\left|d_{z}(n)\right| \leq d_{k}(n)$, if $k=[A]+1$ and $|z| \leq A$. If we use the weak asymptotic formula (see, Ivić[2])

$$
\begin{equation*}
\sum_{n \leq x} d_{k}(n)=x P_{k-1}(\log x)+O\left(x^{\frac{k}{k+1}}\right) \tag{16}
\end{equation*}
$$

the error term in \sum_{1} is bounded by $O\left(y \log ^{k-1} y\right)$.
So by lemma 2.2 and the partial summation, we have

$$
\begin{align*}
\sum_{1}= & x \sum_{n=1}^{\infty} \frac{d_{z}(n)}{n^{2}}-x \sum_{n>y} \frac{d_{z}(n)}{n^{2}}+O\left(y \log ^{k-1} y\right) \\
= & \zeta^{z}(2) x+\frac{x}{y} \sum_{j=1}^{N_{1}} C_{j}(z) \log ^{z-j} y+\frac{2 x}{y} \sum_{j=1}^{N_{1}}(z-j) C_{j}(z) \log ^{z-j-1} y \tag{17}\\
& +\frac{2 x}{y} \sum_{j=1}^{N_{1}}(z-j)(z-j-1) C_{j}(z) \log ^{z-j-2} y+\cdots \\
& +O\left(\frac{x}{y} \log ^{R e z-N_{1}-1} y\right)+O\left(y \log ^{k-1} y\right)
\end{align*}
$$

Using Lemma 2.2, it is seen that

$$
\begin{align*}
\sum_{3} & =\sum_{m \leq \frac{x}{y^{2}}} \sum_{n \leq y} d_{z}(n) \\
& =\sum_{n \leq y} d_{z}(n)\left(\frac{x}{y^{2}}+O(1)\right) \tag{18}\\
& =\frac{x}{y} \sum_{j=1}^{N_{1}} C_{j}(z) \log ^{z-j} y+O\left(\frac{x}{y} \log ^{R e z-N_{1}-1} y\right)+O\left(y \log ^{k-1} y\right) .
\end{align*}
$$

By similar computation, we can obtain

$$
\begin{align*}
\sum_{2}= & \sum_{m \leq \frac{x}{y^{2}}}\left[\sum_{j=1}^{N_{1}} C_{j}(z) \sqrt{\frac{x}{m}} \log ^{z-j}\left(\frac{x}{m}\right)^{\frac{1}{2}}+O\left(\sqrt{\frac{x}{m}} \log ^{R e z-L-1}\left(\frac{x}{m}\right)\right)\right] \\
= & \sqrt{x} \sum_{j=1}^{N_{1}} C_{j}(z) \sum_{m \leq \frac{x}{y^{2}}} m^{-\frac{1}{2}} \log ^{z-j}\left(\frac{x}{m}\right)^{\frac{1}{2}}+O\left(\sum_{m \leq \frac{x}{y^{2}}} \sqrt{\frac{x}{m}} \log ^{R e z-N_{1}-1}\left(\frac{x}{m}\right)\right) \\
= & \sqrt{x} \sum_{j=1}^{N_{1}} C_{j}(z)\left(\frac{1}{2}\right)^{z-j} \log ^{z-j} x \sum_{m \leq \frac{x}{y^{2}}} m^{-\frac{1}{2}}\left(1-\frac{\log m}{\log x}\right)^{z-j} \tag{19}\\
& +O\left(\sqrt{x} \log ^{R e z-N_{1}-1} x \sum_{m \leq \frac{x}{y^{2}}} m^{-\frac{1}{2}}\right) \\
= & \sum_{2,1}+O\left(\frac{x}{y} \log ^{R e z-N_{1}-1} x\right),
\end{align*}
$$

where we define

$$
\sum_{2,1}=\sqrt{x} \sum_{j=1}^{N_{1}} C_{j}(z)\left(\frac{1}{2}\right)^{z-j} \log ^{z-j} x \sum_{m \leq \frac{x}{y^{2}}} m^{-\frac{1}{2}}\left(1-\frac{\log m}{\log x}\right)^{z-j}
$$

Using Taylor formula and foregoing method, we can obtain

$$
\begin{align*}
\sum_{2,1}= & \sqrt{x} \sum_{j=1}^{N_{1}} C_{j}(z)\left(\frac{1}{2}\right)^{z-j} \log ^{z-j} x \sum_{m \leq \frac{x}{y^{2}}} m^{-\frac{1}{2}}\left(1-(z-j) \frac{\log m}{\log x}\right. \\
& \left.+\frac{(z-j)(z-j-1)}{2!}\left(\frac{\log m}{\log x}\right)^{2}+\cdots\right) \\
= & x^{\frac{1}{2}} \sum_{j=1}^{N_{1}} K_{j}(z) \log ^{z-j} x-\frac{2 x}{y} \sum_{j=1}^{N_{1}}(z-j) C_{j}(z) \log ^{z-j-1} y \tag{20}\\
& -\frac{2 x}{y} \sum_{j=1}^{N_{1}}(z-j)(z-j-1) C_{j}(z) \log ^{z-j-2} y+\cdots \\
& +O\left(y \log ^{R e z-1} y\right)+O\left(\frac{x}{y} \log ^{R e z-N_{1}-1} y\right),
\end{align*}
$$

where $K_{1}(z), K_{2}(z), \cdots, K_{M}(z)$ are regular functions.
So by choosing $y=\sqrt{x} \log ^{C}(x), C=\operatorname{Re} z-M-k$ and $N_{1}=2 M+k-\operatorname{Re} z$ completes the proof of the Lemma 2.3.

§3. Prove of Theorem 1.1.

Now we go on with the proof of our main Theorem.

Proof. Combining Lemma 2.1 and Lemma 2.3, we get

$$
\begin{align*}
\sum_{n \leq x}\left(\tau_{3}^{(e)}(n)\right)^{-r}= & \sum_{n_{1} n_{2}^{2} n_{3} \leq x} d_{z}\left(n_{2}\right) g\left(n_{3}\right) \\
= & \sum_{n_{3} \leq x} g\left(n_{3}\right) \sum_{n_{1} n_{2}^{2} \leq x / n_{3}} d_{z}\left(n_{2}\right) \\
= & \sum_{n_{3} \leq x} g\left(n_{3}\right)\left[\zeta^{z}(2)\left(\frac{x}{n_{3}}\right)+\left(\frac{x}{n_{3}}\right)^{\frac{1}{2}} \sum_{j=1}^{M} K_{j}(z) \log ^{z-j}\left(\frac{x}{n_{3}}\right)\right. \\
& \left.+O\left(\left(\frac{x}{n_{3}}\right)^{\frac{1}{2}} \log ^{R e z-M-1}\left(\frac{x}{n_{3}}\right)\right)\right] \tag{21}\\
= & x \zeta^{z}(2) \sum_{n_{3} \leq x} g\left(n_{3}\right) n_{3}^{-1}+x^{\frac{1}{2}} \sum_{n_{3} \leq x} g\left(n_{3}\right) n_{3}^{-\frac{1}{2}} \sum_{j=1}^{M} K_{j} \log ^{z-j}\left(\frac{x}{n_{3}}\right) \\
& +O\left(\sum_{n_{3} \leq x} g\left(n_{3}\right)\left(\frac{x}{n_{3}}\right)^{\frac{1}{2}} \log ^{R e z-M-1}\left(\frac{x}{n_{3}}\right)\right) \\
= & S_{1}(x)+S_{2}(x)+O\left(S_{3}(x)\right),
\end{align*}
$$

where

$$
\begin{aligned}
& S_{1}(x)=x \zeta^{z}(2) \sum_{n_{3} \leq x} g\left(n_{3}\right) n_{3}^{-1}, \\
& S_{2}(x)=x^{\frac{1}{2}} \sum_{n_{3} \leq x} g\left(n_{3}\right) n_{3}{ }^{-\frac{1}{2}} \sum_{j=1}^{M} K_{j} \log ^{z-j}\left(\frac{x}{n_{3}}\right), \\
& S_{3}(x)=\sum_{n_{3} \leq x} g\left(n_{3}\right)\left(\frac{x}{n_{3}}\right)^{\frac{1}{2}} \log ^{R e z-M-1}\left(\frac{x}{n_{3}}\right),
\end{aligned}
$$

and we choose $z=3^{-r}-1$.
Then we just need to calculate the three sums separately.

$$
\begin{align*}
S_{1}(x) & =x \zeta^{3^{-r}-1}(2) \sum_{n_{3} \leq x} g\left(n_{3}\right) n_{3}^{-1} \\
& =x \zeta^{z}(2) \sum_{n_{3}=1}^{\infty} g\left(n_{3}\right) n_{3}^{-1}-x \zeta^{z}(2) \sum_{n_{3}>x} g\left(n_{3}\right) n_{3}^{-1} \tag{22}\\
& =C_{r}(x)+O\left(x^{\frac{1}{4}+\epsilon}\right)
\end{align*}
$$

Analogously to $\sum_{2,1}$, we have

$$
\begin{align*}
& S_{2}(x)=x^{\frac{1}{2}} \sum_{n_{3} \leq x} g\left(n_{3}\right) n_{3}-\frac{1}{2} \\
& j=1 \\
&=x_{j} \log ^{\frac{1}{2}} \sum_{j=1}^{M} K_{j} \log ^{3^{-r}-1-j}\left(\frac{x}{n_{3}}\right) \tag{23}\\
&=x^{\frac{1}{2}} \log ^{3^{-r}-2} x \sum_{n_{3} \leq x} g\left(n_{3}\right) n_{3}^{-\frac{1}{2}}\left(1-\frac{\log n_{3}}{\log x}\right)^{3^{-r}-1-j} E_{j}(r) \log ^{-j} x+O\left(x^{\frac{1}{2}} \log ^{3^{-r}-M-2} x\right) \\
&=x^{\frac{1}{2}} \log ^{3^{-r}-2} x \sum_{j=0}^{N} d_{j}(r) \log ^{-j} x+O\left(x^{\frac{1}{2}} \log ^{3^{-r}-N-3} x\right),
\end{align*}
$$

where $E_{1}(r), E_{2}(r), \cdots, E_{N}(r)$ are computable constants depending on r, and we set $N=M-1$.
Similarly, we also have

$$
\begin{align*}
S_{3}(x) & =\sum_{n_{3} \leq x} g\left(n_{3}\right)\left(\frac{x}{n_{3}}\right)^{\frac{1}{2}} \log ^{R e z-M-1}\left(\frac{x}{n_{3}}\right) \\
& =x^{\frac{1}{2}} \log ^{R e z-M-1} x \sum_{n_{3} \leq x} g\left(n_{3}\right) n_{3}{ }^{-\frac{1}{2}}\left(1-\frac{\log n_{3}}{\log x}\right)^{R e z-M-1} \tag{24}\\
& \ll x^{\frac{1}{2}} \log ^{3^{-r}-M-2} x \\
& =x^{\frac{1}{2}} \log ^{3^{-r}-N-3} x .
\end{align*}
$$

Hence, the Theorem 1.1 is proved by (21)-(23).

Acknowledgements

The authors express their gratitude to the referee for a careful reading of the manuscript and many valuable suggestions which highly improve the quality of this paper.

References

[1] J.Wu, Problème de diviseeurs et entiers exponentiellement sans factor carré. J. Théor. Nombres Bordeaux, 7(1995), 133-141.
[2] A.Ivić, The Riemann Zeta-function, John Wiley and Sons, 1985.
[3] M.V.Subbarao, On some airthmetic convolutions, in The Theory of Arithmetic Functions, Lecture Notes in Mathematic, Springer, 251(1972), 247-271.
[4] László Tóth, An order result for the exponential divisor function, Publ. Math. Debrean, 71(2007), No.1-2, 165-171.
[5] I.KÁ TAI and M. V. SUBBARAO, On the distribution of exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., 22(2003), 161-180.
[6] Chenghua Zheng and Lixia Li, A negative order result for the exponential divisor function, Scientia Magna. 5(2009), No.4, 85-90.
[7] Jing Huang and Ping Song, On the mean value of exponential divisor function, Scientia Magna. 12(2017), No.1, 1-6.

The mean value of $\tau^{(e)}(n)$ over cube-full numbers

Xue Han

School of Mathematics and Statistics, Shandong Normal University
Shandong Jinan, China
E-mail: hanxuemath@163.com

Abstract

Let $n>1$ be an integer, the function $\tau^{(e)}(n)$ denote the exponential divisor function. In this paper, we will study the mean value of $\tau^{(e)}(n)$ over cube-full numbers, that

 is$$
\sum_{\substack{n \leq x \\ n \text { is cube- fuul }}}\left(\tau_{3}^{(e)}(n)\right)^{2}=\sum_{n \leq x}\left(\tau_{3}^{(e)}(n)\right)^{2} f_{3}(n) .
$$

Keywords asymptotic formula, exponential divisor, Dirichlet convolution.
2010 Mathematics Subject Classification 11N37.

§1. Introduction and preliminaries

An integer $n=\prod_{i=1}^{s} p_{i}^{a_{i}}$ is called k-full number if all the exponents $a_{1} \geq k, a_{2} \geq k, \cdots, a_{s} \geq$ k. when $k=3, n$ is called cube-full integer, i.e.

$$
f_{3}(n)= \begin{cases}1, & n \text { is cube-full } \\ 0, & \text { otherwise }\end{cases}
$$

Many scholars are interested in researching the divisor problem and have obtained a large number of good results. But there are many problems hasn't been solved. For example, F.Smarandache gave some unsolved problems in his book Only problems, Not solutions! [6], and one problem is that, a number n is called simple number if the product of its proper divisors is less than or equal to n. Generally speaking, $n=p$, or $n=p^{2}$, or $n=p^{3}$, or $p q$, where p and q are distinct primes. The properties of this simple number sequence has't been studied yet. And other problems are introduced in this book, such as proper divisor products sequence and the largest exponent (of power p) which divides n, where $p \geq 2$ is an integer.

In the definition of exponential divisor: suppose $n>1$ is an integer, and $n=\prod_{i=1}^{s} p_{i}^{a_{i}}$. If $d=\prod_{i=1}^{s} p_{i}^{b_{i}}$ satisfies $b_{i} \mid a_{i}, i=1,2, \cdots, s$, then d is called an exponential divisor of n, notation $\left.d\right|_{e} n$. By convention $\left.1\right|_{e} 1$.
J.Wu [4] improved the above result got the following result:

$$
\sum_{n \leqslant x} \tau^{(e)}(n)=A(x)+B x^{\frac{1}{2}}+O\left(x^{\frac{2}{9}} \log x\right)
$$

where

$$
\begin{gathered}
A=\prod_{p}\left(1+\sum_{a=2}^{\infty} \frac{d(a)-d(a-1)}{p^{a}}\right), \\
B=\prod_{p}\left(1+\sum_{a=5}^{\infty} \frac{d(a)-d(a-1)-d(a-2)+d(a-3)}{p^{\frac{a}{2}}}\right) .
\end{gathered}
$$

M.V.Subbarao [2] also proved for some positive integer r,

$$
\sum_{n \leq x}\left(\tau^{(e)}(n)\right)^{r} \sim A_{r} x
$$

where

$$
A_{r}=\prod_{p}\left(1+\sum_{a=2}^{\infty} \frac{(d(a))^{r}-(d(a-1))^{r}}{p^{a}}\right)
$$

L.Toth [3] proved

$$
\sum_{n \leq x}\left(\tau^{(e)}(n)\right)^{r}=A_{r}(x)+x^{\frac{1}{2}} P_{2^{r}-2}(\log x)+O\left(x^{u_{r}+\varepsilon}\right)
$$

where $P_{2^{r}-2}(t)$ is a polynomial of degree $2^{r}-2$ in $t, u_{r}=\frac{2^{r+1}-1}{2^{r+1}+1}$.
Similarly to the generalization of $d_{k}(n)$ from $d(n)$, we define the function $\tau_{k}^{(e)}(n)$:

$$
\tau_{k}^{(e)}(n)=\prod_{p_{i}^{a_{i}} \| n} d_{k}\left(a_{i}\right), k \geq 2,
$$

Obviously when $k=2$, that is $\tau^{(e)}(n) . \tau_{3}^{(e)}(n)$ is obviously a multiplicative function. In this paper we investigate the case $k=3$, i.e. the properties of the functions $\tau_{3}^{(e)}(n)$.

In this paper, we will study the asymptotic formula for the mean value of the function $\left(\tau_{3}^{(e)}(n)\right)^{2}$ over cube-full numbers.

Theorem 1.1. We have the asymptotic formula

$$
\sum_{\substack{n \leq x \\ n \text { is cube }- \text { full }}}\left(\tau_{3}^{(e)}(n)\right)^{2}=x^{\frac{1}{3}} Q_{8,1}(\log x)+x^{\frac{1}{4}} Q_{35,2}(\log x)+O\left(x^{\sigma_{0}+\varepsilon}\right)
$$

where $Q_{8,1}(t)$ is a polynomial of degree 8 in $t, Q_{35,2}(t)$ is a polynomial of degree $35 \mathrm{in} t$, $\sigma_{0}=\frac{3530376}{14646528}=0.241038422 \cdots$.

Natation Through out this paper, ε always denotes a fixed but sufficiently small positive constant.

§2. Some lemmas

In the section, we give some lemmas which will be used in the proof of our theorem. Lemma 2.2, Lemma 2.3, and Lemma2.4 can be found in [5], [7], and [1].

Lemma 2.1. Let

$$
\tau_{3}^{(e)}(n)=\prod_{p_{i}^{a_{i}} \| n} d_{3}\left(a_{i}\right)
$$

then we have

$$
\sum_{\substack{n=1 \\ n \text { is cube }- \text { full }}}^{\infty} \frac{\left(\tau_{3}^{(e)}(n)\right)^{2}}{n^{s}}=\zeta^{9}(3 s) \zeta^{36}(4 s) G(s),
$$

where the infinite series $G(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$ is absolutely convergent for $\Re s>\frac{1}{5}$.
Proof. By Euler's product formula, we can get

$$
\begin{aligned}
& \sum_{\substack{n=1 \\
n \text { is cube }- \text { full }}}^{\infty} \frac{\left(\tau_{3}^{(e)}(n)\right)^{2}}{n^{s}}=\sum_{n=1}^{\infty} \frac{\left(\tau_{3}^{(e)}(n)\right)^{2} f_{3}(n)}{n^{s}} \\
= & \prod_{p}\left(1+\frac{d_{3}^{2}(1) f_{3}(p)}{p^{s}}+\frac{d_{3}^{2}(2) f_{3}\left(p^{2}\right)}{p^{2 s}}+\frac{d_{3}^{2}(3) f_{3}\left(p^{3}\right)}{p^{3 s}}+\frac{d_{3}^{2}(4) f_{3}\left(p^{4}\right)}{p^{4 s}}+\frac{d_{3}^{2}(5) f_{3}\left(p^{5}\right)}{p^{5 s}}+\cdots\right) \\
= & \prod_{p}\left(1+\frac{d_{3}^{2}(3)}{p^{3 s}}+\frac{d_{3}^{2}(4)}{p^{4 s}}+\frac{d_{3}^{2}(5)}{p^{5 s}}+\cdots\right) \\
= & \prod_{p}\left(1+\frac{3^{2}}{p^{3 s}}+\frac{6^{2}}{p^{4 s}}+\frac{3^{2}}{p^{5 s}}+\cdots\right) \\
= & \zeta^{9}(3 s) \prod_{p}\left(1+\frac{36}{p^{4 s}}+\frac{9}{p^{5 s}}+\cdots\right) \\
= & \zeta^{9}(3 s) \zeta^{36}(4 s) \prod_{p}\left(1+\frac{9}{p^{5 s}}+\cdots\right) \\
= & \zeta^{9}(3 s) \zeta^{36}(4 s) G(s)
\end{aligned}
$$

where the infinite series $G(s):=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$ is absolutely convergent for $\Re s>\frac{1}{5}$.
Lemma 2.2. Suppose $f(m), g(n)$ are arithmetical functions such that

$$
\sum_{m \leq x} f(m)=\sum_{j=1}^{J} x_{j}^{\alpha_{j}} P_{j}(\log x)+O\left(x^{\alpha}\right), \quad \sum_{n \leq x}|g(n)|=O\left(x^{\beta}\right)
$$

where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{J}>\alpha>\beta>0, P_{j}(t)$ is a polynomial in t, if $h(n)=\sum_{n=m d} f(m) g(d)$, then

$$
\sum_{n \leq x} h(n)=\sum_{j=1}^{J} x^{\alpha_{j}} Q_{j}(\log x)+O\left(x^{\alpha}\right)
$$

where $Q_{j}(t) j=1, \cdots, J$ is a polynomial in t.

Lemma 2.3. Let $\frac{1}{2} \leq \sigma \leq 1, t \geq t_{0} \geq 2$, we have

$$
\zeta(\sigma+i t) \ll t^{\frac{1-\sigma}{3}} \log t
$$

Lemma 2.4. Let $\frac{1}{2}<\sigma<1$, define

$$
\begin{array}{rlrl}
m(\sigma) & \geq \frac{4}{3-4 \sigma}, & & \frac{1}{2}<\sigma \leq \frac{5}{8}, \\
m(\sigma) & \geq \frac{10}{5-6 \sigma}, & & \frac{5}{8}<\sigma \leq \frac{35}{54}, \\
m(\sigma) \geq \frac{19}{6-6 \sigma}, & & \frac{35}{54}<\sigma \leq \frac{41}{60}, \\
m(\sigma) \geq \frac{2112}{859-948 \sigma}, & & \frac{41}{60}<\sigma \leq \frac{3}{4}, \\
m(\sigma) \geq \frac{12408}{4537-4890 \sigma}, & & \frac{3}{4}<\sigma \leq \frac{5}{6}, \\
m(\sigma) \geq \frac{4324}{1031-1044 \sigma}, & & \frac{5}{6}<\sigma \leq \frac{7}{8}, \\
m(\sigma) & \geq \frac{98}{31-32 \sigma}, & & \frac{7}{8}<\sigma \leq 0.91591, \\
m(\sigma) & \geq \frac{24 \sigma-9}{(4 \sigma-1)(1-\sigma)}, 0.91591<\sigma \leq 1-\varepsilon .
\end{array}
$$

Lemma 2.5.

$$
\sum_{n \leq x} d(\underbrace{3, \cdots, 3}_{9}, \underbrace{4, \cdots, 4}_{36} ; n)=x^{\frac{1}{3}} P_{8,1}(\log x)+x^{\frac{1}{4}} P_{35,2}(\log x)+O\left(x^{\sigma_{0}+\varepsilon}\right)
$$

where $P_{8,1}(t)$ is a polynomial of degree 8 in $t, P_{35,2}(t)$ is a polynomial of degree 35 in $t, \sigma_{0}=$ $\frac{3530376}{14646528}=0.241038422 \cdots$.

Proof. By the Perron's formula, we have

$$
S(x)=\sum_{n \leq x} \delta(n) d(n)=\frac{1}{2 \pi i} \int_{b-i T}^{b+i T} \zeta^{9}(3 s) \zeta^{36}(4 s) \frac{x^{s}}{s} d s+O\left(\frac{x^{\frac{1}{3}+\varepsilon}}{T}\right)
$$

where $b=\frac{1}{3}+\varepsilon, T=x^{c}, c$ is a very large number of fixed numbers, $\frac{1}{5}<\sigma_{0}<\frac{1}{4}$. According to the Residue theorem, we have

$$
\begin{aligned}
S(x) & =x^{\frac{1}{3}} P_{8,1}(\log x)+x^{\frac{1}{4}} P_{35,2}(\log x)+I_{1}+I_{2}+I_{3}+O(1), \\
I_{1} & =\frac{1}{2 \pi i} \int_{b-i T}^{\sigma_{0}-i T} \zeta^{9}(3 s) \zeta^{36}(4 s) \frac{x^{s}}{s} d s, \\
I_{2} & =\frac{1}{2 \pi i} \int_{\sigma_{0}-i t}^{\sigma_{0}+i t} \zeta^{9}(3 s) \zeta^{36}(4 s) \frac{x^{s}}{s} d s, \\
I_{3} & =\frac{1}{2 \pi i} \int_{\sigma_{0}+i T}^{b+i T} \zeta^{9}(3 s) \zeta^{36}(4 s) \frac{x^{s}}{s} d s .
\end{aligned}
$$

For I_{1}, I_{3}, since $\sigma_{0}>\frac{14}{57}+\delta,(s=\sigma+i T)$, and from Lemma 2.3, we have

$$
\begin{aligned}
I_{1}+I_{3} & \leq \int_{\sigma_{0}}^{\frac{1}{3}+\varepsilon}|\zeta(3 \sigma+i 3 T)|^{9}|\zeta(4 \sigma+i 4 T)|^{36} x^{\sigma} T^{-1} d \sigma \\
& \ll T^{-1}\left(\int_{\sigma_{0}}^{\frac{1}{4}}+\int_{\frac{1}{4}}^{\frac{1}{3}}+\int_{\frac{1}{3}}^{\frac{1}{3}+\varepsilon}\right)|\zeta(3 \sigma+i 3 T)|^{9}|\zeta(4 \sigma+i 4 T)|^{36} x^{\sigma} d \sigma \\
& \ll T^{-1+\varepsilon} \int_{\sigma_{0}}^{\frac{1}{4}} T^{\frac{9(1-3 \sigma)}{3}+\frac{36(1-4 \sigma)}{3}} x^{\sigma} d \sigma+T^{-1+\varepsilon} \int_{\frac{1}{4}}^{\frac{1}{3}} T^{\frac{9(1-3 \sigma)}{3}} x^{\sigma} d \sigma \\
& +T^{-1+\varepsilon} \int_{\frac{1}{3}}^{\frac{1}{3}+\varepsilon} x^{\sigma} d \sigma \\
& \ll x^{\frac{1}{5}} T^{-\delta+\varepsilon}+x^{\frac{1}{4}} T^{-\frac{1}{4}+\varepsilon}+x^{\frac{1}{3}} T^{-1+\varepsilon}+x^{\frac{1}{3}+\varepsilon} T^{-1+\varepsilon} \\
& \ll x^{\frac{1}{3}+\varepsilon} T^{-\delta+\varepsilon}
\end{aligned}
$$

where δ is very small normal number, $\delta>\varepsilon$.

$$
I_{2} \ll x^{\sigma_{0}}\left(1+\int_{1}^{T}|\zeta(3 \sigma+i 3 T)|^{9}|\zeta(4 \sigma+i 4 T)|^{36} t^{-1} d t\right) .
$$

According to the partial integral formula, we have

$$
I_{4}=\int_{1}^{T}|\zeta(3 \sigma+i 3 T)|^{9}|\zeta(4 \sigma+i 4 T)|^{36} d t \ll T^{1+\varepsilon}
$$

If $p_{i} \geq 0,(i=1,2)$ are real numbers, and $\frac{1}{p_{1}}+\frac{1}{p_{2}}=1$, by Hölder inequality, we have

$$
I_{4} \leq\left(\int_{1}^{T}|\zeta(3 \sigma+i 3 T)|^{9 p_{1}}\right)^{\frac{1}{p_{1}}}\left(\int_{1}^{T}|\zeta(4 \sigma+i 4 T)|^{36 p_{2}}\right)^{\frac{1}{p_{2}}} .
$$

So we have to prove

$$
\begin{aligned}
& \int_{1}^{T}|\zeta(3 \sigma+i 3 T)|^{9 p_{1}} d t \ll T^{1+\varepsilon} \\
& \int_{1}^{T}|\zeta(4 \sigma+i 4 T)|^{36 p_{2}} d t \ll T^{1+\varepsilon}
\end{aligned}
$$

Let $m\left(3 \sigma_{0}\right)=9 p_{1}, m\left(4 \sigma_{0}\right)=36 p_{2}$, since $\frac{9}{m\left(3 \sigma_{0}\right)}+\frac{36}{m\left(4 \sigma_{0}\right)}=1$, and from Lemma 2.4, we have $\sigma_{0}=\frac{3530376}{14646528}=0.241038422 \cdots$.

§3. Proof of Theorem 1.1

Proof. Let

$$
\begin{aligned}
& \zeta^{9}(3 s) \zeta^{36}(4 s) G(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}, \quad \Re s>1 \\
& \zeta^{9}(3 s) \zeta^{36}(4 s)=\sum_{n=1}^{\infty} \frac{d(3, \cdots, 3,4 \cdots, 4 ; n)}{n^{s}}
\end{aligned}
$$

such that

$$
\begin{equation*}
f(n)=\sum_{n=m d} d(\underbrace{3, \cdots, 3}_{9}, \underbrace{4, \cdots, 4}_{36} ; m) g(d) \tag{1}
\end{equation*}
$$

From Lemma 2.1, we have $G(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$ is absolutely convergent for $\Re s>\frac{1}{5}$, and then

$$
\begin{equation*}
\sum_{n \leq x}|g(n)| \ll x^{\frac{1}{5}+\varepsilon} \tag{2}
\end{equation*}
$$

From Lemma 2.5, we have

$$
\begin{equation*}
\sum_{m \leq x} d(\underbrace{3, \cdots, 3}_{9}, \underbrace{4, \cdots, 4}_{36} ; m)=x^{\frac{1}{3}} P_{8,1}(\log x)+x^{\frac{1}{4}} P_{35,2}(\log x)+O\left(x^{\sigma_{0}+\varepsilon}\right) \tag{3}
\end{equation*}
$$

where $P_{8,1}(t)$ is a polynomial of degree 8 in $t, P_{35,2}(t)$ is a polynomial of degree 35 in t, Combining (1), (2) and (3), and applying lemma 2.2, we have

$$
\sum_{n \leq x} f(n)=x^{\frac{1}{3}} Q_{8,1}(\log x)+x^{\frac{1}{4}} Q_{35,2}(\log x)+O\left(x^{\sigma_{0}+\varepsilon}\right)
$$

where $Q_{8,1}(t)$ is a polynomial of degree 8 in $t, Q_{35,2}(t)$ is a polynomial of degree 35 in t, From lemma 2.1, we have

$$
\left(\tau_{3}^{(e)}(n)\right)^{2} f_{3}(n)=\sum_{n=m d} d(\underbrace{3, \cdots, 3}_{9}, \underbrace{4, \cdots, 4}_{36} ; m) g(d)=f(n)
$$

Then we complete the proof of Theorem 1.1.

Acknowledgements

The authors express their gratitude to the referee for a careful reading of the manuscript and many valuable suggestions which highly improve the quality of this paper.

References

[1] A.Ivić, The Riemann zeta-function:theory and applications.Oversea Publishing House,2003.
[2] M.V. Subbarao, On some arithmetic convolutions. In: The Theory of Arithmetic Functions. Lecture Notes in Mathematics. Vol, 251, Springer, 1972, 247-271.
[3] L.Tóth, An order result for the exponential divisor function. Publ. Math. Debrecen 71 (2007), no. 1-2, 165-171.
[4] J. Wu. Problème de diviseurs exponentiels at entiers exponentiellment sans facteur carré. J.Theor Nombres Bordeaux 7 (1995), no. 1,133C141.
[5] L. Zhang, M. Lü and W. Zhai, On the Smarandache ceil function and the Dirichlet divisor function. Sci. Magna,2008,4(4):55-57.
[6] F.Smarandache, Only problems, Not solutions! Chicago: Xiquan Publishing House, 1993.
[7] E.C. Titchmarsh, The theory of the Riemann zeta-function[M]. Oxford: Clarendon Press,1951.

Scientia Magna

Vol. 14 (2019), No. 1, 58-65

On the second order involute of a spacelike curve with timelike binormal in $I L^{3}$.

Şeyda Kılıçoğlu ${ }^{1}$ and Süleyman Şenyurt ${ }^{2}$
${ }^{1}$ Department of Education of Mathematics, Baskent University
Turkey
E-mail: seyda@baskent.edu.tr
${ }^{2}$ Department of Mathematics, Ordu University
Turkey
E-mail: senyurtsuleyman@hotmail.com

Abstract

We have already defined and worked on the second order involute curve of a unit speed curve in $I L^{3}$. In this paper, we consider the second order involute of a spacelike curve with timelike binormal in $I L^{3}$. There are three kinds of casual caharacteristics of the second order involute curve. All Frenet apparatus of their are examined in terms of Frenet apparatus of the curve α.

Keywords Lorentz metric, involute curve, second order involute curve
2010 Mathematics Subject Classification 53A04.

§1. Introduction and preliminaries

Basic properties of involute-evolute curves are very famous studies in differantial geometry. In [5], [6] and [7] the second order involute curves, the second order Mannheim partner curve and the n ^th order Bertrand mate curves in Euclidean 3-space are examined, respectively. In Lorenzt space there are two kind of non-null curve, which are timelike and spacelike. The involutes of the spacelike Curve with a timelike binormal spacelike binormal are examined in [1] and [2], respectively. In this study we will work on the second order involute curves in of a spacelike curve with timelike binormal in Lorenzt 3 -space.

$$
\begin{equation*}
\langle X, Y\rangle=-x_{1} y_{2}+x_{2} y_{2}+x_{3} y_{3} \tag{1}
\end{equation*}
$$

is known Lorentz metric with index one, and $\left\{I R^{3},\langle\rangle,\right\}$ is 3-dimensional Lorentz space with notation $I L^{3}$. For $X \in I L^{3}$ the casual characteristics of any vector X, are if $\langle X, X\rangle>0, X$ is spacelike vector, if $\langle X, X\rangle<0, X$ is timelike vector, if $\langle X, X\rangle=0, X$ is lightlike or null vector. $\|X\|=\sqrt{|\langle X, X\rangle|}$ is norm of $X,[9]$. Vectorel product of X and Y is

$$
\begin{equation*}
X \Lambda Y=\left(x_{3} y_{2}-x_{2} y_{3}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{2}-x_{2} y_{1}\right) . \tag{2}
\end{equation*}
$$

Let $\alpha: I \rightarrow \mathbb{E}^{3}$ be the C^{2} - class differentiable unit speed curve denote by $\{T, N, B\}$ the moving Frenet frame. For an arbitrary curve $\alpha \in \mathbb{E}^{3}$, with first and second curvature, κ and
τ respectively. Differential curve with Frenet frame, if tangent vector T is timelike (spacelike) vector is called timelike (spacelike) curve.

- Frenet formulaes of a timelike curve are

$$
\begin{equation*}
T^{\prime}=\kappa N, \quad N^{\prime}=\kappa T-\tau B, \quad B^{\prime}=\tau N \tag{3}
\end{equation*}
$$

and

$$
T \wedge N=-B, \quad N \wedge B=T, \quad B \wedge T=-N
$$

Darboux vector is

$$
W=\tau T-\kappa B, \quad\|W\|=\kappa^{2}-\tau^{2}
$$

see in, [9]. For any unit speed curve $\alpha: I \rightarrow \mathbb{E}^{3}$, the vector W is called Darboux vector defined by [3] $W=\tau T+\kappa B$. If we consider the normalization of the unit Darboux vector $C=\frac{W}{\|W\|}$, we can write. Let the angle between Darboux vector and binormal vector of first timelike curve be φ and since B is spacelike, If $|\kappa|>|\tau|$ then, W is spacelike vector and

$$
\kappa=\|W\| \cosh \varphi, \quad \tau=\|W\| \sinh \varphi
$$

If $|\kappa|<|\tau|$ then, is W is timelike vector and

$$
\kappa=\|W\| \sinh \varphi, \quad \tau=\|W\| \cosh \varphi
$$

-. Frenet formulaes of spacelike curve with timelike binormal are

$$
\begin{equation*}
T^{\prime}=\kappa N, \quad N^{\prime}=-\kappa T+\tau B, \quad B^{\prime}=\tau N \tag{4}
\end{equation*}
$$

and

$$
T \wedge N=B, \quad N \wedge B=-T, \quad B \wedge T=N
$$

Darboux vector is $W=\tau T-\kappa B$, see in [9]. Since B is timelike; if $|\kappa|<|\tau|$ then W is spacelike vector

$$
\kappa=\|W\| \sinh \varphi, \quad \tau=\|W\| \cosh \varphi, \quad\|W\|^{2}=\tau^{2}-\kappa^{2}
$$

If $|\kappa|>|\tau|$ then W is timelike vector

$$
\kappa=\|W\| \cosh \varphi, \quad \tau=\|W\| \sinh \varphi, \quad\|W\|^{2}=\kappa^{2}-\tau^{2}
$$

see in [9].
-•• Frenet formulaes of a spacelike curve with timelike normal vector

$$
\begin{equation*}
T^{\prime}=\kappa N, \quad N^{\prime}=\kappa T+\tau B, \quad B^{\prime}=\tau N \tag{5}
\end{equation*}
$$

and

$$
T \wedge N=-B, \quad N \wedge B=-T, \quad B \wedge T=N
$$

Darboux vector is $W=-\tau T+\kappa B$. Since B is spacelike,
If $|\kappa|<|\tau|$ then is W timelike vector and

$$
\kappa=\|W\| \sinh \varphi, \quad \tau=\|W\| \cosh \varphi
$$

If $|\kappa|>|\tau|$ then W is spacelike vector then is timelike vector

$$
\kappa=\|W\| \cosh \varphi, \quad \tau=\|W\| \sinh \varphi .
$$

The involute of a given curve is a well-known concept in Euclidean 3 - space. We can say that evolute and involute is a method of deriving a new curve based on a given curve. The involute of the curve is called sometimes the evolvent. Involvents play a part in the construction of gears. The evolute is the locus of the centers of tangent circles of the given planar curve [8]. Here, we will work on the second order involute of spacelike evolute curve with timelike binormal. Let $\alpha: I \rightarrow I L^{3}$ be a spacelike evolute curve with timelike binormal. If tangent vector of the curve $\alpha_{1}: I \rightarrow I L^{3}$ is perpendicular to tangent vector of the curve $\alpha: I \rightarrow I L^{3}$, then $\alpha_{1}: I \rightarrow I L^{3}$ is the involute curve of spacelike curve α, and we have the equation,

$$
\begin{equation*}
\alpha_{1}(s)=\alpha(s)+\lambda(s) T(s), \quad \lambda(s)=c-s, \quad[4] \tag{6}
\end{equation*}
$$

where $c=$ constant. Also $<T, T_{1}>=0$ and $T_{1}=N$.

Theorem 1.1. Frenet-Serret apparatus $\left\{T_{1}, N_{1}, B_{1}, \kappa_{1}, \tau_{1}\right\}$ of involute curve α_{1} of a spacelike evolute curve α, with timelike binormal, are given based on the Frenet-Serret apparatus $\{T, N, B, \kappa, \tau\}$ of evolute curve are

$$
\begin{equation*}
T_{1}=N, N_{1}=\frac{-\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B, B_{1}=\frac{-\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B . \tag{7}
\end{equation*}
$$

The curvatures of curve α and the involute α_{1}, respectively are

$$
\kappa_{1}=\frac{\epsilon_{0} \sqrt{\kappa^{2}-\tau^{2}}}{|(c-s) \kappa|}, \quad \tau_{1}=\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}, \quad \epsilon_{0}=\left\{\begin{array}{ccl}
+1 & N_{1} & \text { is space like } \tag{8}\\
-1 & N_{1} & \text { is time like }
\end{array}\right.
$$

see in [1].
Theorem 1.2. Frenet-Serret apparatus $\left\{T_{1}, N_{1}, B_{1}, \kappa_{1}, \tau_{1}\right\}$ of involute curve α_{1} of a spacelike evolute curve α, with spacelike binormal, are given based on the Frenet-Serret apparatus $\{T, N, B, \kappa, \tau\}$ of evolute curve are

$$
\begin{equation*}
T_{1}=N, N_{1}=\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} T-\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} B, B_{1}=\frac{-\tau}{\sqrt{\kappa^{2}+\tau^{2}}} T-\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B \tag{9}
\end{equation*}
$$

The curvatures of curve α and the involute, α_{1}, respectively, are

$$
\begin{equation*}
\kappa_{1}=\frac{\sqrt{\kappa^{2}+\tau^{2}}}{|(k-s) \kappa|}, \quad \tau_{1}=\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(k-s) \kappa| \sqrt{\kappa^{2}+\tau^{2}}} . \tag{10}
\end{equation*}
$$

§2. Second order involute of a spacelike curve with timelike binormal

Let $\alpha_{2}(s)$ be the involute of the curve $\alpha_{1}(s) \cdot\left\{T_{1}, N_{1}, B_{1}, \kappa_{1}, \tau_{1}\right\}$ and $\left\{T_{2}, N_{2}, B_{2}, \kappa_{2}, \tau_{2}\right\}$ are collectively Frenet-Serret apparatus of the curve α_{1} and the involute α_{2}, respectively. α_{1} has the parametrization with arclength s_{1} as the involute curve of $\alpha(s) . \alpha_{2}(s)=\alpha_{1}(s)+\lambda_{1} T_{1}(s)$ is the parametrization of second order involute curve. Hence, we can write

$$
\begin{equation*}
\alpha_{2}(s)=\alpha(s)+\lambda(s) T(s)+\lambda_{1}(s) N(s) \tag{11}
\end{equation*}
$$

where it is given in terms of Frenet apparatus of evolute α, also λ_{2} is constant.

$$
<T_{1}, T_{2}>=0 \text { and } \quad T_{2}=N_{1}
$$

see in [5].
Theorem 2.1. Involute and second involute curve of a spacelike evolute curve with timelike normal N or timelike binormal B, has the casual characteristics as in the following forms. Let $\{T, N, B, \kappa, \tau\},\left\{T_{1}, N_{1}, B_{1}, \kappa_{1}, \tau_{1}\right\}$ and $\left\{T_{2}, N_{2}, B_{2}, \kappa_{2}, \tau_{2}\right\}$ are collectively Frenet apparatus of the evolute curve α, the involute α_{1} and the second order involute α_{2}, respectively.

evolute	involute	$2^{\text {nd }}$ involute
	sst	$<$sst
sst	sts	\rightarrow tss

Proof. For a spacelike evolute curve with timelike binormal and spacelike principal normal, hence

$$
\begin{array}{ccc}
T \text { spacelike } & N \text { spacelike } & B \text { timelike } \\
s & s & t \tag{13}
\end{array}
$$

Since $<T, T_{1}>=0$ and $T_{1}=N$ (spacelike), T_{2} must be spacelike. Hence the involute of a spacelike curve with timelike binormal is always spacelike curve. So normal N_{1} or binormal B_{1} must be timelike, as in the following way,

Tangent T_{1}	Normal N_{1}	Binormal B_{1}
s	s	t
s	t	s

and spacelike involute with timelike binormal B_{1}, there are the following forms;

$$
\begin{array}{ccc}
\text { evolute } & \text { involute } & 2^{\text {nd }} \text { involute } \\
\text { sst } & \text { sst } & <\begin{array}{c}
\text { sst } \\
\text { sts }
\end{array} \tag{15}
\end{array}
$$

For a spacelike evolute curve with timelike normal N, binormal B is spacelike.

$$
\begin{array}{ccc}
T \text { spacelike } & N \text { timelike } & B \text { spacelike } \tag{16}\\
s & t & s
\end{array}
$$

Since $<T, T_{1}>=0$ and $T_{1}=N$ (timelike). It is trivial that T_{1} must be timelike. The involute of a spacelike curve with timelike normal is always timelike curve.

$$
\begin{array}{ccc}
T_{1} \text { timelike } & N_{1} \text { spacelike } & B_{1} \text { spacelike } \tag{17}\\
t & s & s
\end{array}
$$

Hence a spacelike evolute curve with timelike normal N, has the casual characteristics as in the following form

$$
\begin{array}{cc}
\text { evolute } & \text { involute } \\
\text { sts } \rightarrow & \text { tss }
\end{array}
$$

as a result, we have the proof.
Theorem 2.2. Frenet apparatus of second order involute α_{2} of a curve α can be given in terms of Frenet apparatus of α,

$$
\begin{aligned}
& T_{2}= \frac{-\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B \\
& N_{2}= \frac{-\frac{\sqrt{\kappa^{2}-\tau^{2}}}{|(c-s) \kappa|}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} N+\frac{\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} \frac{(-\tau T+\kappa B)}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}},\left\{\begin{array}{l}
\text { if }|\kappa|>|\tau|, \text { then } N_{1} \text { spacelike } \\
\text { if }|\kappa|<|\tau|, \text { then } N_{1} \text { timelike }
\end{array}\right. \\
& B_{2}=\frac{-\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} N+\frac{\frac{\sqrt{\kappa^{2}-\tau^{2}}}{|(c-s) \kappa|}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} \frac{(-\tau T+\kappa B)}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}},\left\{\begin{array}{l}
\text { if }|\kappa|>|\tau|, \text { then } B_{1} \text { timelike } \\
\text { if }|\kappa|<|\tau|, \text { then } B_{1} \text { spacelike }
\end{array}\right.
\end{aligned}
$$

for

$$
\begin{array}{ccc}
\text { evolute } & \text { involute } & 2^{\text {nd }} \text { involute } \\
\text { sst } & \text { sst } & <\begin{array}{c}
\text { sst } \\
\text { sts }
\end{array}
\end{array}
$$

Proof. Since for T_{1} spacelike, N_{1} spacelike, B_{1} timelike and T_{2} spacelike, N_{2} timelike, B_{2} spacelike we have already

$$
\begin{align*}
& T_{2}=N_{1} \\
& N_{2}=\frac{-\kappa_{1}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} T_{1}+\frac{\tau_{1}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} B_{1}\left\{\begin{array}{l}
\text { if }\left|\kappa_{1}\right|>\left|\tau_{1}\right|, \text { then } N_{2} \text { spacelike } \\
\text { if }\left|\kappa_{1}\right|<\left|\tau_{1}\right|, \text { then } N_{2} \text { timelike }
\end{array}\right. \tag{18}\\
& B_{2}=\frac{-\tau_{1}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} T_{1}+\frac{\kappa_{1}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} B_{1},\left\{\begin{array}{l}
\text { if }\left|\kappa_{1}\right|>\left|\tau_{1}\right|, \text { then } B_{2} \text { timelike } \\
\text { if }\left|\kappa_{1}\right|<\left|\tau_{1}\right|, \text { then } B_{2} \text { spacelike }
\end{array}\right.
\end{align*}
$$

hence

$$
\begin{aligned}
& T_{2}=\frac{-\kappa T+\tau B}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} \\
& N_{2}=\frac{-\frac{\sqrt{\kappa^{2}-\tau^{2}}}{|(c-s) \kappa|}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} N+\frac{\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} \frac{(-\tau T+\kappa B)}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}}\left\{\begin{array}{l}
\text { if }|\kappa|>|\tau|, \text { then } N_{1} \text { spacelike } \\
\text { if }|\kappa|<|\tau|, \text { then } N_{1} \text { timelike }
\end{array}\right. \\
& B_{2}=\frac{-\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}}{\sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}} N+\frac{\sqrt{\kappa^{2}-\tau^{2}}}{|(c-s) \kappa|} \\
& \sqrt{\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}
\end{aligned} \frac{(-\tau T+\kappa B)}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}},\left\{\begin{array}{l}
\text { if }|\kappa|>|\tau|, \text { then } B_{1} \text { timelike } \\
\text { if }|\kappa|<|\tau|, \text { then } B_{1} \text { spacelike }
\end{array}\right.
$$

$$
\begin{aligned}
\tau_{1}^{2}-\kappa_{1}^{2} & =\left(\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}\right)^{2}-\left(\frac{\sqrt{\kappa^{2}-\tau^{2}}}{|(c-s) \kappa|}\right)^{2} \\
& =\frac{\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right)^{2}}{|(c-s) \kappa|^{2}\left|\tau^{2}-\kappa^{2}\right|^{2}}-\frac{\left|\kappa^{2}-\tau^{2}\right|}{|(c-s) \kappa|^{2}} \\
& =\frac{\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right)^{2}-\left|\kappa^{2}-\tau^{2}\right|^{3}}{|(c-s) \kappa|^{2}\left|\tau^{2}-\kappa^{2}\right|^{2}}
\end{aligned}
$$

The curvatures of curves, respectively, are

$$
\kappa_{2}=\frac{\epsilon_{1} \sqrt{\kappa_{1}^{2}-\tau_{1}^{2}}}{\left|\left(c_{1}-s\right) \kappa_{1}\right|}, \quad \tau_{2}=\frac{\kappa_{1} \tau_{1}^{\prime}-\kappa_{1}^{\prime} \tau_{1}}{\left|\left(c_{1}-s\right) \kappa_{1}\right|\left|\tau_{1}^{2}-\kappa_{1}^{2}\right|}, \quad \epsilon_{1}=\left\{\begin{array}{cll}
+1, & N_{2} & \text { is space like } \tag{19}\\
-1, & N_{2} & \text { is time like }
\end{array}\right.
$$

Theorem 2.3. Frenet-Serret apparatus $\left\{T_{1}, N_{1}, B_{1}, \kappa_{1}, \tau_{1}\right\}$ of involute curve α_{1}, are given based on the Frenet apparatus $\{T, N, B, \kappa, \tau\}$ of evolute curve α;

$$
\left\{\begin{array}{l}
T_{2}=\frac{-\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B \tag{20}\\
N_{2}=\frac{\kappa 1}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} N-\frac{\tau_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} \frac{-\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B \\
B_{2}=\frac{-\tau_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} N-\frac{\kappa_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} \frac{-\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B
\end{array}\right.
$$

for

$$
\begin{array}{ccc}
\text { evolute } & \text { involute } & 2^{\text {nd }} \text { involute } \\
\text { sst } & \text { sts } & \rightarrow \text { tss. }
\end{array}
$$

Proof. Frenet apparatus $\left\{T_{1}, N_{1}, B_{1}, \kappa_{1}, \tau_{1}\right\}$ of involute curve α_{1}, are given then [8] based on the Frenet apparatus $\{T, N, B, \kappa, \tau\}$ of evolute curve α; for

$$
\begin{gather*}
\text { evolute involute } \\
\text { sst } \\
\left\{\begin{array}{l}
T_{1}=N, \\
N_{1}=\frac{-\kappa}{\sqrt{\left|\tau^{2}-\kappa,{ }^{2}\right|}} T+\frac{\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B,
\end{array}\right. \tag{21}\\
B_{1}=\frac{-\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\kappa}{\text { if }|\kappa|>|\tau|, \text { then } N_{1} \text { spacelike }} \begin{array}{l}
\text { if }|\kappa|<|\tau|, \text { then } N_{1} \text { timelike }
\end{array} \\
\sqrt{\left|\tau^{2}-\kappa^{2}\right|} B, \quad\left\{\begin{array}{l}
\text { if }|\kappa|>|\tau|, \text { then } B_{1} \text { timelike } \\
\text { if }|\kappa|<|\tau|, \text { then } B_{1} \text { spacelike }
\end{array}\right.
\end{gather*}
$$

The curvatures of curve α and the involute α_{1}, respectively are

$$
\kappa_{1}=\frac{\epsilon_{0} \sqrt{\kappa^{2}-\tau^{2}}}{|(c-s) \kappa|}, \quad \tau_{1}=\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}, \quad \epsilon_{0}=\left\{\begin{array}{cll}
+1, & N_{1} & \text { is space like } \tag{22}\\
-1, & N_{1} & \text { is time like }
\end{array}\right.
$$

also

$$
\begin{aligned}
\kappa_{1}^{2}+\tau_{1}^{2} & =\left(\frac{\epsilon_{0} \sqrt{\kappa^{2}-\tau^{2}}}{|(c-s) \kappa|}\right)^{2}+\left(\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}\right)^{2} \\
\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}} & =\frac{\sqrt{\left|\kappa^{2}-\tau^{2}\right|^{3}+\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right)^{2}}}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}
\end{aligned}
$$

For

$$
\begin{array}{cc}
\text { involute } & 2^{\text {nd }} \text { involute } \\
\text { sts } & \text { tss. }
\end{array}
$$

Since

$$
T_{2}=N_{1}, N_{2}=\frac{\kappa 1}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} T_{1}-\frac{\tau_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} B_{1}, B_{2}=\frac{-\tau_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} T_{1}-\frac{\kappa_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} B_{1}
$$

we have

$$
\begin{aligned}
T_{2} & =\frac{-\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B \\
N_{2} & =\frac{\kappa 1}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} N-\frac{\tau_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} \frac{-\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B \\
B_{2} & =\frac{-\tau_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} N-\frac{\kappa_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} \frac{-\tau}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} T+\frac{\kappa}{\sqrt{\left|\tau^{2}-\kappa^{2}\right|}} B
\end{aligned}
$$

The curvatures of the second order curve α_{2} based on the involute α_{1}, respectively are

$$
\kappa_{2}=\frac{\sqrt{\left|\kappa^{2}-\tau^{2}\right|^{3}+\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right)^{2}}}{|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|\left|(m-s) \kappa_{1}\right|}, \tau_{2}=\frac{\left(\kappa_{1} \tau_{1}^{\prime}-\kappa_{1}^{\prime} \tau_{1}\right)|(c-s) \kappa|\left|\tau^{2}-\kappa^{2}\right|}{\left|(m-s) \kappa_{1}\right| \sqrt{\left|\kappa^{2}-\tau^{2}\right|^{3}+\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right)^{2}}} .
$$

Since $\kappa_{2}=\frac{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}}{\left|(m-s) \kappa_{1}\right|}$ and $\tau_{2}=\frac{\kappa_{1} \tau_{1}^{\prime}-\kappa_{1}^{\prime} \tau_{1}}{\left|(m-s) \kappa_{1}\right| \sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}}$ it is trivial.

Acknowledgements

The authors express their gratitude to the referee for a careful reading of the manuscript and many valuable suggestions which highly improve the quality of this paper.

References

[1] M. Bilici and M. Çalışkan. On the Involutes of the Spacelike Curve with a Timelike Binormal in Minkowski 3-Space. International Mathematical Forum 4(2009), no. 31, 14971509
[2] B. Bukcu and M. K. Karacan. On the involute and evolute curves of the spacelike curve with a spacelike binormal in Minkowski 3-space. Int. Journal of Contemp. Math. Sciences 2(2007), no. 5-8, 221-232.
[3] A. Gray. Modern Differential Geometry of Curves and Surfaces with Mathematica. 2nd ed. Boca Raton, FL: CRC Press, pp. 205, 1997.
[4] H.H. Hacısalihoğlu. Differential Geometry (in Turkish). Academic Press Inc., Ankara, 1994.
[5] Ş. Kılıçoğlu and S. Senyurt. On the second order involute curves in IE^{3}. Commun. Fac. Sci. Univ. Ank. Series A1. 66(2)(2017), 332-339.
[6] S. Kılıçoğlu and S. Senyurt. On the Second Order Mannheim Partner Curve in IE 3. International J.Math. Combin. 1(2017), 71-77.
[7] Ş. Kılıçoğlu and S. Senyurt. On the n^th order Bertrand mate curves in E^3, Thai Journal of Mathematics, (accepted).
[8] M.M. Lipschutz. Differential Geometry. Schaum's Outlines, 1969.
[9] B. O'Neil. Semi-Riemannian geometry with applications to relativitiy. Academic Press. Inc., USA, 1983.

Scientia Magna

Vol. 14 (2019), No. 1, 66-78

On several types of generalized regular fuzzy continuous functions

Department of Mathematics, Shree Raghavendra Arts and Science College, Keezhamoongiladi, Chidambaram-608102
(Affiliated to Thiruvalluvar University), Tamil Nadu, India.
E-mail: maths.aras@gmail.com

Abstract

In this paper, we introduce the concept of slightly regular fuzzy continuous, slightly generalized regular fuzzy continuous and somewhat slightly generalized regular fuzzy continuous functions in fuzzy topological spaces in the sense of \check{S} ostak's. Several interesting properties and characterizations are introduced and discussed. Furthermore, the relationship among the new concepts are introduced and established with some interesting counter examples.

Keywords Generalized regular fuzzy closed sets, generalized regular fuzzy continuous, slightly regular fuzzy continuous, slightly generalized regular fuzzy continuous and somewhat slightly generalized regular fuzzy continuous functions.
2010 Mathematics Subject Classification 54A40, 45D05, 03E72.

§1. Introduction

Kubiak [11] and \check{S} ostak [18] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that not only the objects are fuzzified, but also the axiomatics. In [19, 20], $\check{S}_{\text {ostak }}$ gave some rules and showed how such an extension can be realized. Chattopadhyay et al., [5] have redefined the same concept under the name gradation of openness. A general approach to the study of topological type structures on fuzzy power sets was developed in $[7-9,11,12]$. Balasubramanian and Sundaram [1] gave the concept of generalized fuzzy closed sets in Chang's fuzzy topology as an extension of generalized closed sets of Levine [13] in topological spaces.

Jin Han Park and Jin Keun Park [16] introduced weaker form of generalized fuzzy closed set and generalized fuzzy continuous mappings i.e, regular generalized fuzzy closed set and generalizations of fuzzy continuous functions. Bhattacharya and Chakraborty [2] introduced another generalization of fuzzy closed set i.e, generalized regular fuzzy closed set which is the stronger form of the previous two generalizations. Recently, Vadivel and Elavarasan [23] introduced the concepts of r-generalized regular fuzzy closed sets in fuzzy topological spaces in the sense of \check{S} ostak.

In 1980, jain [10] introduced the notion of slightly continuous functions. Recently, Nour [14] defined slightly semicontinuous functions as a weak form of slightly continuity and investigated its properties. On the other hand, Takashi Noiri [15] introduced the concept of slightly β-continuous functions. In 2004, Ekici and Caldas [6] introduced the notion of slightly γ continuity (slightly b-continuity). After that slightly fuzzy ω-continuous functions and slightly fuzzy continuous functions are introduced by sudha et al. [21,22]. Recently, [23] introduced the concepts of r-generalized regular fuzzy closed sets, generalized regular fuzzy continuous functions and generalized regular fuzzy irresolute functions and investigate interrelation between them.

In this paper, we introduce the concept of slightly regular fuzzy continuous, slightly generalized regular fuzzy continuous and somewhat slightly generalized regular fuzzy continuous functions in fuzzy topological spaces in the sense of \check{S} ostak's. Several interesting properties and characterizations are introduced and discussed. Furthermore, the relationship among the new concepts are introduced and established with some interesting counter examples.

§2. Preliminaries

Throughout this paper, let X be a nonempty set, $I=[0,1]$ and $I_{0}=(0,1]$. For $\lambda \in$ $I^{X}, \bar{\lambda}(x)=\lambda$ for all $x \in X$. For $x \in X$ and $t \in I_{0}$, a fuzzy point x_{t} is defined by

$$
x_{t}(y)= \begin{cases}t & \text { if } y=x \\ 0 & \text { if } y \neq x\end{cases}
$$

Let $\operatorname{Pt}(X)$ be the family of all fuzzy points in X. A fuzzy point $x_{t} \in \lambda$ iff $t<\lambda(x)$. All other notations and definitions are standard, for all in the fuzzy set theory.

Definition 2.1. [18] A function $\tau: I^{X} \rightarrow I$ is called a fuzzy topology on X if it satisfies the following conditions:
(O1) $\tau(\overline{0})=\tau(\overline{1})=1$,
(O2) $\tau\left(\bigvee_{i \in \Gamma} \mu_{i}\right) \geq \bigwedge_{i \in \Gamma} \tau\left(\mu_{i}\right)$, for any $\left\{\mu_{i}\right\}_{i \in \Gamma} \subset I^{X}$,
(O3) $\tau\left(\mu_{1} \wedge \mu_{2}\right) \geq \tau\left(\mu_{1}\right) \wedge \tau\left(\mu_{2}\right)$, for any $\mu_{1}, \mu_{2} \in I^{X}$.
The pair (X, τ) is called a fuzzy topological space (for short, fts). A fuzzy set λ is called an r-fuzzy open (r-fo, for short) if $\tau(\lambda) \geq r$. A fuzzy set λ is called an r-fuzzy closed $(r$-fc, for short) set iff $\overline{1}-\lambda$ is an r-fo set.

Theorem 2.1. [4] Let (X, τ) be a fts. Then for each $\lambda \in I^{X}$ and $r \in I_{0}$, we define an operator $C_{\tau}: I^{X} \times I_{0} \rightarrow I^{X}$ as follows: $C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in I^{X}: \lambda \leq \mu, \tau(\overline{1}-\mu) \geq r\right\}$. For $\lambda, \mu \in I^{X}$ and $r, s \in I_{0}$, the operator C_{τ} satisfies the following statements:
(C1) $C_{\tau}(\overline{0}, r)=\overline{0}$,
(C2) $\lambda \leq C_{\tau}(\lambda, r)$,
$(C 3) C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r)=C_{\tau}(\lambda \vee \mu, r)$,
(C4) $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, s)$ if $r \leq s$,
$(C 5) C_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$.
Theorem 2.2. [4] Let (X, τ) be a fts. Then for each $\lambda \in I^{X}$ and $r \in I_{0}$, we define an operator $I_{\tau}: I^{X} \times I_{0} \rightarrow I^{X}$ as follows: $I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X}: \mu \leq \lambda, \tau(\mu) \geq r\right\}$. For $\lambda, \mu \in I^{X}$ and $r, s \in I_{0}$, the operator I_{τ} satisfies the following statements:
(I1) $I_{\tau}(\overline{1}, r)=\overline{1}$,
(I2) $I_{\tau}(\lambda, r) \leq \lambda$,
(I3) $I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r)=I_{\tau}(\lambda \wedge \mu, r)$,
(I4) $I_{\tau}(\lambda, r) \leq I_{\tau}(\lambda, s)$ if $s \leq r$,
(I5) $I_{\tau}\left(I_{\tau}(\lambda, r), r\right)=I_{\tau}(\lambda, r)$.
(I6) $I_{\tau}(\overline{1}-\lambda, r)=\overline{1}-C_{\tau}(\lambda, r)$ and $C_{\tau}(\overline{1}-\lambda, r)=\overline{1}-I_{\tau}(\lambda, r)$
Definition 2.2. [17] Let (X, τ) be a fts, $\lambda \in I^{X}$ and $r \in I_{0}$. Then
(1) a fuzzy set λ is called r-fuzzy regular open (for short, r-fro) if $\lambda=I_{\tau}\left(C_{\tau}(\lambda, r), r\right)$.
(2) a fuzzy set λ is called r-fuzzy regular closed (for short, r-frc) if $\lambda=C_{\tau}\left(I_{\tau}(\lambda, r), r\right)$.
(3) a fuzzy set λ is called r-fuzzy regular clopen (for short, r-frco) set iff λ is r-frc set and r-fro set.

Definition 2.3. [23] Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function and $r \in I_{0}$. Then f is called:
(1) fuzzy regular continuous (for short, fr-continuous) if $f^{-1}(\lambda)$ is r-fro set in I^{X} for each $\lambda \in I^{Y}$ with $\sigma(\lambda) \geq r$.
(2) fuzzy regular open (for short, fr-open) if $f(\lambda)$ is r-fro set in I^{Y} for each $\lambda \in I^{X}$ with $\tau(\lambda) \geq r$.
(3) fuzzy regular closed (for short, fr-closed) if $f(\lambda)$ is r-frc set in I^{Y} for each $\lambda \in I^{X}$ with $\tau(\overline{1}-\lambda) \geq r$.

Definition 2.4. [23] Let (X, τ) be a fts. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(1) The r-fuzzy regular closure of λ, denoted by $R C_{\tau}(\lambda, r)$, and is defined by $R C_{\tau}(\lambda, r)=$ $\bigwedge\left\{\mu \in I^{X} \mid \mu \geq \lambda, \mu\right.$ is r-frc $\}$.
(2) The r-fuzzy regular interiror of λ, denoted by $R I_{\tau}(\lambda, r)$, and is defined by $R I_{\tau}(\lambda, r)=$ $\bigvee\left\{\mu \in I^{X} \mid \mu \leq \lambda, \mu\right.$ is r-fro $\}$.

Definition 2.5. [23] Let (X, τ) be a fts. For any $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(1) A fuzzy set λ is called r-generalized regular fuzzy closed (for short, r-grfc) set if $R C_{\tau}(\lambda, r) \leq$ μ, whenever $\lambda \leq \mu$ and $\tau(\mu) \geq r$.
(2) A fuzzy set λ is called r-generalized regular fuzzy open (for short, r-grfo) set if $\overline{1}-\lambda$ is $r-g r f c$.
(3) A fuzzy set λ is called r-generalized regular fuzzy clopen (for short, r-grfco) set iff λ is r-grfc set and r-grfo set.

Definition 2.6. [23] Let (X, τ) be a fts. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(1) The r-generalized regular fuzzy closure of λ, denoted by $G R C_{\tau}(\lambda, r)$ and is defined by $G R C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in I^{X} \mid \lambda \leq \mu, \mu\right.$ is r-grfc $\}$.
(2) The r-generalized regular fuzzy interiror of λ, denoted by $G R I_{\tau}(\lambda, r)$ and is defined by $G R I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X} \mid \lambda \geq \mu, \mu\right.$ is r-grfo $\}$.

Definition 2.7. [23] Let (X, τ) and (Y, η) be a fts's. Let $f:(X, \tau) \rightarrow(Y, \eta)$ be a function.
(1) f is called generalized regular fuzzy continuous (for short, grf-continuous) iff $f^{-1}(\mu)$ is r-grfc for each $\mu \in I^{Y}, r \in I_{0}$ with $\eta(\overline{1}-\mu) \geq r$.
(2) f is called generalized regular fuzzy open (for short, grf-open) iff $f(\lambda)$ is r-grfo for each $\lambda \in I^{X}, r \in I_{0}$ with $\tau(\lambda) \geq r$.
(3) f is called generalized regular fuzzy closed (for short, grf-closed) iff $f(\lambda)$ is r-grfc for each $\lambda \in I^{X}, r \in I_{0}$ with $\tau(\overline{1}-\lambda) \geq r$.
(4) generalized regular fuzzy irresolute (grfi, for short) if $f^{-1}(\mu)$ is an r-grfc set, for each r-grfc set $\mu \in I^{Y}, r \in I_{0}$.

Definition 2.8. [22] Let (D, \geq) be a directed set. Let X be an ordinary set and f be the collection of all fuzzy points in X. The function $S: D \rightarrow f$ is called a fuzzy net in X. In other words, a fuzzy net is a pair (S, \geq) such that S is a function : $D \rightarrow f$ and \geq direct the domain of S. For $n \in D, S(n)$ is often denoted by S_{n} and hence a net S is often denoted by $\left\{S_{n}: n \in D\right\}$.

§3. Slightly regular fuzzy continuous functions

Definition 3.1. Let (X, τ) and (Y, η) be fts's. A function $f:(X, \tau) \rightarrow(Y, \eta)$ is called slightly regular fuzzy continuous (srfc, for short) if for each $\lambda \in I^{X}, \mu \in I^{Y}$ and $r \in I_{0}$ such that μ is an r-frco set and $f(\lambda) \leq \mu$, there exists r-fro set $\nu \in I^{X}, r \in I_{0}, \lambda \leq \nu$ and $f(\nu) \leq \mu$.

Proposition 3.1. Let (X, τ) and (Y, η) be fts's. For the function $f:(X, \tau) \rightarrow(Y, \eta)$, the following statements are equivalent:
(1) f is srfc function.
(2) $f^{-1}(\nu)$ is an r-fro set for each $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-frco set.
(3) $f^{-1}(\nu)$ is an r-frc set for each $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-frco set.
(4) $f^{-1}(\nu)$ is an r-frco set for each $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-frco set.
(5) For each fuzzy set $\lambda \in I^{X}, r \in I_{0}$ and for every fuzzy net $\left\{S_{n}: n \in D\right\}$ which converges to λ, the fuzzy net $\left\{f\left(S_{n}\right): n \in D\right\}$ is eventually in each r-frco set μ with $f(\lambda) \leq \mu$.

Proof. (1) $\Rightarrow(2)$: Let $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-frco set and let $\lambda \in I^{X}$ such that $\lambda \leq f^{-1}(\nu)$. Since ν is an r-frco set with $f(\lambda) \leq \nu$. By (1), there exists r-fro set $\mu \in I^{X}, r \in I_{0}, \lambda \leq \mu$ and $f(\mu) \leq \nu$. Hence $f^{-1}(\nu)$ is an r-fro set.
$(2) \Rightarrow(3):$ Let $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-frco set, then $\overline{1}-\nu$ is r-frco. By (2), $f^{-1}(\overline{1}-\nu)=\overline{1}-f^{-1}(\nu)$ is r-fro set in X, thus $f^{-1}(\nu)$ is r-frc set in X.
$(3) \Rightarrow(4)$: It is obvious from (2) and (3).
$(4) \Rightarrow(5)$: Let $\left\{S_{n}: n \in D\right\}$ be a fuzzy net converges to the r-frco set $\lambda \in I^{X}$ and let $\mu \in I^{Y}$ be an r-frco set such that $f(\lambda) \leq \mu$. By using (3), there exist an r-frco set $\nu \in I^{X}, r \in I_{0}$ such that $\lambda \leq \nu$ and $f(\nu) \leq \mu$. Since the fuzzy net $\left\{S_{n}: n \in D\right\}$ converges to $\lambda, S_{n} \leq \lambda \leq \nu$. Now $S_{n} \leq \lambda \leq \nu$. Thus $f\left(S_{n}\right) \leq f(\nu) \leq \mu$. Hence $\left\{f\left(S_{n}\right): n \in D\right\}$ is eventually in each r-frco set μ.
$(5) \Rightarrow(1)$: Suppose that f is not srfc function. Then for every $\lambda \in I^{X}, \mu \in I^{Y}, r \in I_{0}$ such that μ is an r-frco set and $f(\lambda) \leq \mu$, there does not exist r-fro set $\nu \in I^{X}$ such that $\lambda \leq \nu$ and $f(\nu) \leq \mu$. Hence $f\left(S_{n}\right) \leq \mu$. That is, the fuzzy net $\left\{f\left(S_{n}\right): n \in D\right\}$ is not eventually in an r-frco set μ with $f(\lambda) \leq \mu$, which is a contradiction. Hence f is srfc function.

Proposition 3.2. Let $\left(X, \tau_{1}\right),\left(Y, \tau_{2}\right)$ and $\left(Z, \tau_{3}\right)$ be fts's. For the function f : $\left(X, \tau_{1}\right) \rightarrow\left(Y, \tau_{2}\right)$ and $g:\left(Y, \tau_{2}\right) \rightarrow\left(Z, \tau_{3}\right)$, the following statements are satisfied:
(1) If f and g are srfc functions, then so is $g \circ f$.
(2) If f is a surjective fuzzy regular irresolute, fuzzy regular open function and g be any function, then $g \circ f$ is srfc function iff g is srfc.

Proof. (1): Clear.
(2): Suppose that $g \circ f$ is srfc function, $\lambda \in I^{Z}, r \in I_{0}$ such that λ is an r-frco set. By using Proposition (2), $f^{-1}\left(g^{-1}(\lambda)\right)=(g \circ f)^{-1}(\lambda)$ is an r-fro set in I^{X}. Since f is fuzzy regular open, $g^{-1}(\lambda)=f\left(f^{-1}\left(g^{-1}(\lambda)\right)\right)$ is an r-fro set. Therefore by Proposition, g is srfc function.

Conversely, let $\nu \in I^{Z}, r \in I_{0}$ such that ν an r-frco set. Since g is srfc function, $g^{-1}(\nu)$ is an r-fro set in I^{Y} and f is fuzzy regular irresolute function, $f^{-1}\left(g^{-1}(\nu)\right)=(g \circ f)^{-1}(\nu)$ is an r-fro set in I^{X}. Therefore by Proposition,$g \circ f$ is srfc function.

Definition 3.2. Let (X, τ) is said to be an r-fuzzy regular connected iff $\overline{0}$ and $\overline{1}$ are the only fuzzy sets which are both r-fro and r-frc.

Proposition 3.3. Let (X, τ) and (Y, η) be fts's, and let $f:(X, \tau) \rightarrow(Y, \eta)$ be a function. If (Y, η) is an r-fuzzy regular connected, then f is srfc function.

Proof. Let (Y, η) be an r-fuzzy regular connected space. Then $\overline{0}$ and $\overline{1}$ are the only r-frco sets. Since $f^{-1}(\overline{0})$ and $f^{-1}(\overline{1})$ are both r-fro in I^{X}. Hence by Proposition, f is srfc function.

Proposition 3.4. Let (X, τ) and (Y, η) be fts's, and let $f:(X, \tau) \rightarrow(Y, \eta)$ be srfc function. If (X, τ) is an r-fuzzy regular connected, then so is (Y, η).

Proof. Suppose that (Y, η) be an r-fuzzy regular disconnected space and $\nu \in I^{Y}-\{\overline{0}, \overline{1}\}$ be an r-frco set. Since f is srfc function, $f^{-1}(\nu)$ is an r-frco set which is contradiction. Hence (Y, η) is an r-fuzzy regular connected.

§4. Slightly generalized regular fuzzy continuous functions

Definition 4.1. Let (X, τ) and (Y, η) be fts's. A function $f:(X, \tau) \rightarrow(Y, \eta)$ is called:
(1) almost *-generalized regular fuzzy continuous (a*-grfc, for short) if for each $\lambda \in I^{X}, \mu \in$ $I^{Y}, r \in I_{0}$ such that $\eta(\mu) \geq r$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\nu \in I^{X}$ such that $\lambda \leq \nu$ and $f(\nu) \leq I_{\eta}\left(C_{\eta}(\mu, r), r\right)$.
(2) $\theta *$-generalized regular fuzzy continuous ($\theta *$-grfc, for short) if for each $\lambda \in I^{X}, \mu \in I^{Y}, r \in$ I_{0} such that $\eta(\mu) \geq r$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\nu \in I^{X}$ such that $\lambda \leq \nu$ and $f\left(C_{\tau}(\nu, r)\right) \leq C_{\eta}(\mu, r)$.
(3) weakly*-generalized regular fuzzy continuous ($w *$-grfc, for short) if for each $\lambda \in I^{X}, \mu \in$ $I^{Y}, r \in I_{0}$ such that $\eta(\mu) \geq r$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\nu \in I^{X}$ such that $\lambda \leq \nu$ and $f(\nu) \leq C_{\eta}(\mu, r)$.
(4) slightly generalized regular fuzzy continuous (sgrfc, for short) if for each $\lambda \in I^{X}, \mu \in$ $I^{Y}, r \in I_{0}$ such that μ is an r-frco set and $f(\lambda) \leq \mu$, there exists an r-grfo set $\nu \in I^{X}$ such that $\lambda \leq \nu$ and $f(\nu) \leq \mu$.

Remark 4.1.

(1) Every $a *-$ grfc function is $\theta *-g r f c$ function.
(2) Every θ *-grfc function is sgrfc (resp. $w *-g r f c$) function.
(3) Every sgrfc function is w*-grfc function.

The above Definition and Remark show the following implication is true but the reverse implication is not true in general.

Example 4.1. Let $X=Y=\{a, b, c\}$ and $f:(X, \tau) \rightarrow(Y, \eta)$ be the identity function. Define $\lambda, \delta \in I^{X}, \mu \in I^{Y}$ as follows: $\lambda(a)=0.3, \lambda(b)=0.4, \lambda(c)=0.5 ; \mu(a)=0.3, \mu(b)=$ $0.4, \mu(c)=0.5 ; \delta(a)=0.4, \delta(b)=0.4, \delta(c)=0.5$. We define a fuzzy topologies τ and η as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1 \quad \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2} \quad \text { if } \lambda=\lambda, \\
0 \quad \text { otherwise },
\end{array} \quad \eta(\lambda)= \begin{cases}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2} & \text { if } \lambda=\mu, \\
0 & \text { otherwise },\end{cases}\right.
$$

For $r=1 / 2$, then f is $\theta *$-grfc function but not a*-grfc, because $\lambda \in I^{X}, \mu \in I^{Y}, r \in I_{0}$ such that $\eta(\mu) \geq r$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\delta \in I^{X}$ and $\lambda \leq \delta$ such that $f\left(C_{\tau}(\delta, r)\right) \leq C_{\eta}(\mu, r)$ but $f(\delta) \not \leq I_{\eta}\left(C_{\eta}(\mu, r), r\right)$.

Example 4.2. Let $X=Y=\{a, b, c\}$ and $f:(X, \tau) \rightarrow(Y, \eta)$ be the identity function. Define $\lambda, \delta \in I^{X}, \mu \in I^{Y}$ as follows: $\lambda(a)=0.3, \lambda(b)=0.4, \lambda(c)=0.5 ; \mu(a)=0.5, \mu(b)=$ $0.5, \mu(c)=0.5 ; \delta(a)=0.4, \delta(b)=0.4, \delta(c)=0.5$. We define a fuzzy topologies τ and η as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1 & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2} \quad \text { if } \lambda=\lambda, \\
0 \quad \text { otherwise },
\end{array} \quad \eta(\lambda)= \begin{cases}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2} & \text { if } \lambda=\mu \\
0 & \text { otherwise }\end{cases}\right.
$$

For $r=1 / 2$, then f is $w *$-grfc function but not $\theta *$-grfc, because $\lambda \in I^{X}, \mu \in I^{Y}, r \in I_{0}$ such that $\eta(\mu) \geq r$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\delta \in I^{X}$ and $\lambda \leq \delta$ such that $f(\delta) \leq C_{\eta}(\mu, r)$ but $f\left(C_{\tau}(\delta, r)\right) \not \not \leq C_{\eta}(\mu, r)$.

Example 4.3. In Example, f is sgrfc function but not $\theta *-g r f c$.
Example 4.4. Let $X=Y=\{a, b, c\}$ and $f:(X, \tau) \rightarrow(Y, \eta)$ be the identity function. Define $\lambda, \delta \in I^{X}, \mu \in I^{Y}$ as follows: $\lambda(a)=0.3, \lambda(b)=0.4, \lambda(c)=0.5 ; \mu(a)=0.4, \mu(b)=$ $0.6, \mu(c)=0.5 ; \delta(a)=0.4, \delta(b)=0.4, \delta(c)=0.5$. We define a fuzzy topologies τ and η as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1 \quad \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2} \quad \text { if } \lambda=\lambda, \\
0 \quad \text { otherwise },
\end{array} \quad \eta(\lambda)= \begin{cases}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\
\frac{1}{2} & \text { if } \lambda=\mu \\
0 & \text { otherwise }\end{cases}\right.
$$

For $r=1 / 2$, then f is $w * g r f c$ function but not sgrfc, because $\lambda \in I^{X}, \mu \in I^{Y}, r \in I_{0}$ such that $\eta(\mu) \geq r$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\delta \in I^{X}$ and $\lambda \leq \delta$ such that $f(\delta) \leq C_{\eta}(\mu, r)$ but μ is not r-frco.

Proposition 4.1. Let (X, τ) and (Y, η) be fts's. For the function $f:(X, \tau) \rightarrow(Y, \eta)$, the following statements are equivalent:
(1) f is sgrfc function.
(2) $f^{-1}(\nu)$ is an r-grfo set for each $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-grfco set.
(3) $f^{-1}(\nu)$ is an r-grfc set for each $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-grfco set.
(4) $f^{-1}(\nu)$ is an r-grfco set for each $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-grfco set.
(5) For each fuzzy set $\lambda \in I^{X}, r \in I_{0}$ and for every fuzzy net $\left\{S_{n}: n \in D\right\}$ with converges to λ, the fuzzy net $\left\{f\left(S_{n}\right): n \in D\right\}$ is eventually in each r-grfco set μ with $f(\lambda) \leq \mu$.

Proof. (1) $\Rightarrow(2)$: Let $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-grfco set and let $\lambda \in I^{X}$ such that $\lambda \leq f^{-1}(\nu)$. Since ν is an r-grfco set with $f(\lambda) \leq \nu$. By (1), there exists $\mu \in I^{X}$ such that μ is an r-grfo, $\lambda \leq \mu$ and $f(\mu) \leq \nu$. Hence $f^{-1}(\nu)$ is an r-grfo set.
$(2) \Rightarrow(3)$: Let $\nu \in I^{Y}, r \in I_{0}$ such that ν is r-grfco set, then $\overline{1}-\nu$ is r-grfco. By (2), $f^{-1}(\overline{1}-\nu)=\overline{1}-f^{-1}(\nu)$ is r-grfo set in X, thus $f^{-1}(\nu)$ is r-grfc set in X.
$(3) \Rightarrow(4)$: It is obvious from (2) and (3).
$(4) \Rightarrow(5):$ Let $\left\{S_{n}: n \in D\right\}$ be a fuzzy net converges to the r-grfco set $\lambda \in I^{X}$ and let $\mu \in I^{Y}$ be an r-grfco set such that $f(\lambda) \leq \mu$. By using (3), there exist an r-grfo set $\nu \in I^{X}$ such that $\lambda \leq \mu$ and $f(\nu) \leq \mu$. Since the fuzzy net $\left\{S_{n}: n \in D\right\}$ converges to $\lambda, S_{n} \leq \lambda \leq \nu$. Thus $\left\{f\left(S_{n}\right): n \in D\right\}$ is eventually in each r-grfco set μ.
$(5) \Rightarrow(1)$: Suppose that f is not sgrfc function. Then for every $\lambda \in I^{X}, \mu \in I^{Y}, r \in I_{0}$ such that μ is an r-grfo set and $f(\lambda) \leq \mu$, there does not exist $\nu \in I_{X}$ such that $\lambda \leq \nu$ and $f(\nu) \leq \mu$. Hence $f\left(S_{n}\right) \leq \mu$. That is the fuzzy net $\left\{f\left(S_{n}\right): n \in D\right\}$ is not eventually in an r-grfco set μ with $f(\lambda) \leq \mu$, which is a contradiction. Hence f is sgrfc function.

Proposition 4.2. Let $\left(X, \tau_{1}\right),\left(Y, \tau_{2}\right)$ and $\left(Z, \tau_{3}\right)$ be fts's. For the function f : $\left(X, \tau_{1}\right) \rightarrow\left(Y, \tau_{2}\right)$ and $g:\left(Y, \tau_{2}\right) \rightarrow\left(Z, \tau_{3}\right)$, the following statements are satisfied:
(1) If f and g are sgrfc functions, then so is $g \circ f$.
(2) If f is a surjective grfi, grfo function and g be any function, then $g \circ f$ is sgrfc function iff g is sgrfc.

Proof. (1): is clear.
(2): Suppose that $g \circ f$ is sgrfc function, $\lambda \in I^{Z}$ is an r-grfco set. By using Proposition (2), $f^{-1}\left(g^{-1}(\nu)\right)=(g \circ f)^{-1}(\nu)$ is an r-grfo set in I^{X}. Since f is grfo, $g^{-1}(\lambda)=f\left(f^{-1}\left(g^{-1}(\lambda)\right)\right)$ is an r-grfo set. Therefore by Proposition, g is sgrfc function.

Conversely, let $\nu \in I^{Z}$ be an r-grfco set where $r \in I_{0}$. Since g is sgrfc function, $g^{-1}(\nu)$ is an r-grfo set $\in I^{Y}$ and f is grfi function, $f^{-1}\left(g^{-1}(\nu)\right)=(g \circ f)^{-1}(\nu)$ is an r-grfo set $\in I^{X}$. Therefore by Proposition,$g \circ f$ is sgrfc function.

Definition 4.2. A fts (X, τ) is said to be an r-generalized regular fuzzy connected iff $\overline{0}$ and $\overline{1}$ are the only fuzzy sets which are both r-grfo and r-grfc.

Proposition 4.3. Let (X, τ) and (Y, η) be fts's, and let $f:(X, \tau) \rightarrow(Y, \eta)$ be a function. If (Y, η) is an r-generalized regular fuzzy connected, then f is sgrfc function.

Proof. Let (Y, η) be an r-generalized regular fuzzy connected space. Then $\overline{0}$ and $\overline{1}$ are the only r-grfco sets. Since $f^{-1}(\overline{0})$ and $f^{-1}(\overline{1})$ are both r-grfo in I^{X}. Hence by Proposition , f is sgrfc function.

Proposition 4.4. Let (X, τ) and (Y, η) be fts's, and let $f:(X, \tau) \rightarrow(Y, \eta)$ be sgrfc function. If (X, τ) is an r-generalized regular fuzzy connected, then so is (Y, η).

Proof. Suppose that (Y, η) be an r-generalized regular fuzzy disconnected space and $\nu \in$ $I^{Y}-\{\overline{0}, \overline{1}\}$ be an r-grfco set. Since $f^{-1}(\nu)$ is an r-grfco set which is contradiction. Hence (Y, η) is an r-generalized regular fuzzy connected.

Definition 4.3. A fts (X, τ) is said to be an r-generalized regular fuzzy extremely disconnected if $G R C_{\tau}(\lambda, r)$ is an r-grfo set for each $\lambda \in I^{X}, r \in I_{0}$ such that λ is an r-grfo set.

Proposition 4.5. Let (X, τ) and (Y, η) be fts's. If $f:(X, \tau) \rightarrow(Y, \eta)$ be sgrfc function and (Y, η) is an r-generalized regular fuzzy extremely disconnected, then f is a*grfc function.

Proof. $\lambda \in I^{X}, \mu \in I^{Y}, r \in I_{0}$ such that λ and μ are r-grfo sets. Since (Y, η) is an r-generalized regular fuzzy extremely disconnected, $G R C_{\eta}(\mu, r)$ is an r-grfco set. Now, $f(\lambda) \leq G R C_{\eta}(\mu, r)$ and since f is sgrfc function, there exists an r-grfo set $\nu \in I^{X}$ such that $\lambda \leq \nu$ and $f(\nu) \leq$ $C_{\eta}(\mu, r)$. Therefore, f is a*gfc function.

§5. Somewhat slightly generalized regular fuzzy continuous and open functions

Definition 5.1. Let (X, τ) and (Y, η) be fts's. A function $f:(X, \tau) \rightarrow(Y, \eta)$ is called somewhat slightly generalized regular fuzzy continuous (swsgrfc, for short) if for each $\lambda \in I^{X}, \mu \in I^{Y}$ and $r \in I_{0}$ such that $f^{-1}(\mu) \neq \overline{0}$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\overline{0} \neq \nu \in I^{X}$ such that $\lambda \leq \nu$ and $\nu \leq f^{-1}(\mu)$.

Remark 5.1.

(1) Evrey srf-continuous function is sgrf-continuous.
(2) Evrey srf-continuous (resp. sgrf-continuous) function is swsgrf-continuous.

The above Definitions, (4), and Remark show the following implication is true but the reverse implication is not true in general.

Example 5.1. In Example, for $r=1 / 2$, then f is sgrfc function but not srfc, because $\lambda \in I^{X}, \mu \in I^{Y}, r \in I_{0}$, such that $\eta(\mu) \geq r$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\delta \in I^{X}$ and $\lambda \leq \delta$ such that $f(\delta) \leq \mu$ but δ is not r-fro set.

Example 5.2. In Example, for $r=1 / 2$, then f is swsgrfc function but not sgrfc, because $\lambda \in I^{X}, \mu \in I^{Y}, r \in I_{0}$ such that $\eta(\mu) \geq r$ and $f(\lambda) \leq \mu$, there exists an r-grfo set $\delta \in I^{X}$ and $\lambda \leq \delta$ such that $f(\delta) \leq \mu$ but μ is not r-frco.

Example 5.3. In Example, f is swsgrfc function but not srfc.
Definition 5.2. A fuzzy set λ in a fts (X, τ) is called r-generalized regular fuzzy dense (resp. r-fuzzy regular dense) set if there exists no r-grfc (resp. r-frco) set $\mu \in I^{X}, r \in I_{0}$ such that $\lambda<\mu<\overline{1}$.

Example 5.4. Let $X=\{a, b\}$. Define $\lambda, \mu \in I^{X}$ as follows: $\mu(a)=0.9, \mu(b)=0.9$. We define a fuzzy topology τ as follows:

$$
\tau(\lambda)= \begin{cases}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\ \frac{1}{3} & \text { if } \lambda=\mu, \\ 0 & \text { otherwise } .\end{cases}
$$

So, if $\lambda(a)=0.9, \lambda(b)=0.8$, then there exists no $1 / 3-$ grfc set μ in I^{X} such that $\lambda<\mu<\overline{1}$. Therefore, λ is an 1/3-generalized regular fuzzy dense set in I^{X}.

Example 5.5. In Example, if $\lambda(a)=0.8, \lambda(b)=0.9$, then there exists no $1 / 3$-frco set μ in I^{X} such that $\lambda<\mu<\overline{1}$. Therefore, λ is an $1 / 3$-fuzzy regular dense set in I^{X}.

Definition 5.3. Let (X, τ) be a fts. For a fuzzy set $\lambda \in I^{X}, r \in I_{0}, I_{\tau}^{r}$ and C_{τ}^{r} are defined as follows:
(1) $I_{\tau}^{r}=\bigvee\left\{\mu \in I^{X} \mid \mu \leq \lambda\right.$ and μ is r-frco $\}$,
(2) $C_{\tau}^{r}=\bigwedge\left\{\mu \in I^{X} \mid \lambda \leq \mu\right.$ and μ is $\left.r-f r c o\right\}$.

Proposition 5.1. Let (X, τ) and (Y, η) be fts's, and let $f:(X, \tau) \rightarrow(Y, \eta)$ be any function. Then the following are equivalent:
(1) f is swsgrfc function.
(2) If λ is an r-frco set such that $f^{-1}(\lambda) \neq \overline{1}$ and $\lambda \leq f(\overline{1}-\nu)$, for each $\nu \in I^{X}, r \in I_{0}$ then there exists an r-grfc set $\mu \leq \overline{1}-\nu \in I^{X}$ such that $\mu \geq f^{-1}(\lambda)$.
(3) If λ is r-generalized regular fuzzy dense set in I^{X}, then $f(\lambda)$ is r-fuzzy regular dense set in I^{Y} such that every r-frco set $\mu \leq f(\overline{1}-\nu)$, for each $\nu \in I^{X}$ and $r \in I_{0}$.

Proof. (1) \Rightarrow (2) Suppose f is swsgrfc function, and let λ be any r-frco set in I^{Y} such that $f^{-1}(\lambda) \neq \overline{1}$ and $\lambda \leq f(\overline{1}-\nu)$, for each $\nu \in I^{X}, r \in I_{0}$. Then, $\overline{1}-\lambda$ is r-frco in I^{Y} such that $f^{-1}(\overline{1}-\lambda) \neq \overline{0}$ and $f(\nu) \leq \overline{1}-\lambda$. Then by the hypothesis, there exists an r-grfo set $\overline{0} \neq \alpha \in I^{X}, r \in I_{0}$ such that $\nu \leq \alpha$ and $\alpha \leq f^{-1}(\overline{1}-\lambda)$. That is, $\overline{1}-\alpha$ is an r-grfc set and $\overline{1}-\alpha \geq \overline{1}-f^{-1}(\overline{1}-\lambda)=f^{-1}(\lambda)$. Put $\overline{1}-\alpha=\mu$. Then μ is an r-grfc set in I^{X} such that $\mu \geq f^{-1}(\lambda)$.
$(2) \Rightarrow(3)$ Let λ be an r-generalized regular fuzzy dense set in I^{X}, and suppose that $f(\lambda)$ is not a fuzzy regular dense set in I^{Y}, such that each r-frco set $\mu \leq f(\overline{1}-\nu)$, for each $\nu \in I^{X}, r \in$ I_{0}. Then, there exists an r-frco set $\alpha \in I^{Y}$ such that $f(\lambda)<\alpha<\overline{1}$, since $\alpha<\overline{1}, f^{-1}(\alpha) \neq \overline{1}$.

Now, α is an r-frco set such that $f^{-1}(\alpha) \neq \overline{1}$ and $f(\overline{1}-\nu) \geq \alpha$, for each $\nu \in I^{X}, r \in I_{0}$. Then by the hypothesis, there exists an r-grfc set $\gamma \leq \overline{1}-\nu \in I^{X}$ such that $\gamma \geq f^{-1}(\alpha)$. But $f^{-1}(\alpha)>f^{-1}(f(\lambda))=\lambda$. That is, $\gamma \geq \lambda$. Therefore, there exists an r-grfc set $\gamma \in I^{X}, r \in I_{0}$ such that $\gamma \geq \lambda$, which is a contradiction. Therefore, $f(\lambda)$ is an r-fuzzy regular dense set in I^{Y} such that $\gamma \leq f(\overline{1}-\nu)$, for each $\nu \in I^{X}$ and r-frco set $\gamma \in I^{Y}$.
$(3) \Rightarrow(1)$ Let λ be an r-frco set such that $f^{-1}(\lambda) \neq \overline{0}$ and $f(\nu) \leq \lambda$, for each $\nu \in I^{X}, r \in I_{0}$. Then, $\lambda \neq \overline{0}$. Now, suppose that $\nu \leq \alpha$ and $G R I_{\tau}\left(f^{-1}(\lambda), r\right)=\overline{0} \in I^{X}$. Then, $G R C_{\tau}(\overline{1}-$ $\left.f^{-1}(\lambda), r\right)=\overline{1} \in I^{X}$.

That is, $\overline{1}-f^{-1}(\lambda)$ is an r-generalized regular fuzzy dense in I^{X}. Then by $(3), f\left(\overline{1}-f^{-1}(\lambda)\right)$ is an r-fuzzy regular dense set such that there exists an r-frco set $\mu \leq f(\overline{1}-\nu)$, for each $\nu \in I^{X}, r \in I_{0}$. But $f\left(\overline{1}-f^{-1}(\lambda)\right)=f\left(f^{-1}(\overline{1}-\lambda)\right) \leq \overline{1}-\lambda<\overline{1}$, since $\overline{1}-\lambda$ is an r-frco and $f\left(\overline{1}-f^{-1}(\lambda)\right) \leq \overline{1}-\lambda, R C_{\tau}\left(f\left(\overline{1}-f^{-1}(\lambda)\right), r\right) \leq \overline{1}-\lambda$. That is, $\overline{1}-\lambda \geq \overline{1} \Rightarrow \lambda=\overline{0}$, which is a contradiction, since $\lambda \neq \overline{0}$. Therefore, $\nu \leq \alpha$ and $G R I_{\tau}\left(f^{-1}(\lambda), r\right) \neq \overline{0}$. So f is swsgfc.

Definition 5.4. Let (X, τ) and (Y, η) be fts's. A function $f:(X, \tau) \rightarrow(Y, \eta)$ is called
(1) slightly generalized regular fuzzy open (briefly, sgrfo) if for each r-grfo set $\lambda \in I^{X}$ and each $\mu \in I^{X}, r \in I_{0}$ such that $\lambda \leq \mu, f(\lambda)$ is an r-frco set in I^{Y} and $f(\lambda) \leq f(\mu)$,
(2) somewhat generalized regular fuzzy open (briefly, swgrfo) if for each r-grfo set $\overline{0} \neq \lambda \in$ $I^{X}, r \in I_{0}$ there exists an r-grfo set in $\overline{0} \neq \mu \in I^{Y}$ such that $f(\lambda) \geq \mu$,
(3) somewhat slightly generalized regular fuzzy open (briefly, swsgrfo) if for each r-grfo set $\overline{0} \neq \lambda \in I^{X}$ such that $\lambda \leq \nu$ and for each $\nu \in I^{X}, r \in I_{0}$, there exists an r-frco set $\overline{0} \neq \mu \in I^{Y}, \mu \leq f(\nu)$ such that $f(\lambda) \geq \mu$.

That is, $I_{\tau}^{r}(f(\lambda), r) \neq \overline{0}$, and there exists an r-frco set μ such that $f(\nu) \geq \mu$ and $\lambda \leq \nu$, for each $\nu \in I^{X}, r \in I_{0}$.

Remark 5.2. Evrey sgrfo (resp. swgrfo) function is swsgrfo function but the converse is not true in general as shown by the following example.

Example 5.6. In Example, f is swsgrfo function but not sgrfo, since for each r-grfo set $\lambda \in I^{X}$ and each $\nu \in I^{X}, r \in I_{0}$ such that $\lambda \leq \mu, f(\lambda)$ is not r-frco in I^{Y} and $f(\lambda) \leq f(\mu)$.

Example 5.7. Let $X=Y=\{a, b, c\}$ and $f:(X, \tau) \rightarrow(Y, \eta)$ be the function. Define $\lambda, \lambda_{1}, \nu \in I^{X}, \lambda_{2}, \mu \in I^{Y}$ as follows: $\lambda_{1}(a)=0.5, \lambda_{1}(b)=0.5, \lambda_{1}(c)=0.5$; $\lambda_{2}(a)=0.5, \lambda_{2}(b)=0.5, \lambda_{2}(c)=0.5 ; \lambda(a)=0.5, \lambda(b)=0.6, \lambda(c)=0.5 ; \mu(a)=0.5, \mu(b)=$ $0.5, \mu(c)=0.5 ; \nu(a)=0.7, \nu(b)=0.6, \nu(c)=0.5 ; \delta(a)=0.5, \delta(b)=0.6, \delta(c)=0.6$. We define a fuzzy topologies τ and η as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1 \quad \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2} \quad \text { if } \lambda=\lambda_{1}, \\
0 & \text { otherwise, }
\end{array} \quad \eta(\lambda)= \begin{cases}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2} & \text { if } \lambda=\lambda_{2}, \\
0 & \text { otherwise. }\end{cases}\right.
$$

For $r=1 / 2$, then f is swsgrfo function but not swgrfo, because for each r-grfo set $\overline{0} \neq \lambda \in$ $I^{X}, r \in I_{0}$ such that $\lambda \leq \nu$ for each $\nu \in I^{X}$, there exists an r-frco set $\overline{0} \neq \mu \in I^{Y}, \mu \leq f(\nu)$ such that $f(\lambda) \geq \mu$ but for each r-grfo set $\overline{0} \neq \lambda \in I^{X}, r \in I_{0}$ there exists an r-grfo set $\overline{0} \neq \delta \in I^{Y}$, such that $f(\lambda) \nsupseteq \mu$.

Proposition 5.2. Let $\left(X, \tau_{1}\right),\left(Y, \tau_{2}\right)$ and $\left(Z, \tau_{3}\right)$ be fts's. If $f:\left(X, \tau_{1}\right) \rightarrow\left(Y, \tau_{2}\right)$ and $g:\left(Y, \tau_{2}\right) \rightarrow\left(Z, \tau_{3}\right)$ are swsgrfo functions, then $g \circ f:\left(X, \tau_{1}\right) \rightarrow\left(Z, \tau_{3}\right)$ are swsgrfo function.

Proof. Let $\overline{0} \neq \lambda \in I^{X}$ be an r-grfo set $r \in I_{0}$ such that $\lambda \leq \mu$, for each fuzzy set $\mu \in I^{X}, r \in I_{0}$. Since f is swsgrfo, then there exists an r-frco set $\overline{0} \neq \nu \in I^{Y}$, and $f(\mu) \geq \nu$ such that $f(\lambda) \geq \nu$.

Now, $G R I_{\tau_{2}}(f(\lambda), r)$ is an r-grfo in I^{Y} such that $G R I_{\tau_{2}}(f(\lambda), r) \neq \overline{0}, G R I_{\tau_{2}}(f(\lambda), r) \leq f(\mu)$, for each $f(\mu) \in I^{Y}$.

Since g is swsgrfo, then there exists an r-frco set $\overline{0} \neq \gamma \in I^{Z}$ and $\gamma \leq g(f(\mu))$ such that $\gamma \leq g\left(G R I_{\tau_{2}}(f(\lambda), r)\right)$. But $g\left(G R I_{\tau_{2}}(f(\lambda), r)\right) \leq g(f(\lambda))$. Thus, there exists an r-frco set $\overline{0} \neq \gamma \in I^{Z}$ and $(g \circ f)(\mu) \geq \gamma$, such that $(g \circ f)(\lambda) \geq \gamma$. Therefore, $g \circ f$ is swsgrfo.

Proposition 5.3. Let (X, τ) and (Y, η) be fts's, and let $f:(X, \tau) \rightarrow(Y, \eta)$ be a bijective function. Then the following are equivalent:
(1) f is swsgrfo function.
(2) If λ is an r-grfc set in I^{X} such that $f(\lambda) \neq \overline{1}$ and $\lambda \geq \nu$ for each $\nu \in I^{X}$, then there exists an r-frco set $\mu \in I^{Y}, \mu \neq \overline{1}$ and $f(\nu) \leq \mu$ such that $f(\lambda) \leq \mu$.

Proof. (1) $\Rightarrow(2)$ let λ be an r-grfc set in I^{X} such that $f(\lambda) \neq \overline{1}$ and $\lambda \geq \nu$, for each $\nu \in I^{X}, r \in$ I_{0}. Then, $\overline{1}-\lambda$ is an r-grfo set in I^{X} such that $f(\overline{1}-\lambda) \neq \overline{0}$ and $\overline{1}-\lambda \leq \overline{1}-\nu$, for each $\nu \in I^{X}$. So $\overline{1}-\lambda \neq \overline{0}$. Since f is a swsgrfo, then there exists an r-frco set $\overline{0} \neq \delta \in I^{Y}$ and $f(\overline{1}-\nu) \geq \delta$ such that $f(\overline{1}-\lambda) \geq \delta$.

Now, $\overline{1}-\delta$ is an r-frco set in I^{Y} such that $\overline{1}-\delta \neq \overline{1}$ and $\overline{1}-\delta \geq f(\nu)$ such that $\overline{1}-\delta \geq f(\lambda)$. Take $\overline{1}-\delta=\mu$, so (2) is proved.
$(2) \Rightarrow(1)$ Let $\lambda \neq \overline{0}$ be any r-grfo set in I^{X} such that $\lambda \leq \nu$, for each $\nu \in I^{X}$. Then, $\overline{1}-\lambda$ is an r-grfc set in I^{X} such that $\overline{1}-\lambda \neq \overline{1}$ and $\overline{1}-\lambda \geq \overline{1}-\nu$ for each $\nu \in I^{X}, r \in I_{0}$. Now, $f(\overline{1}-\lambda)=\overline{1}-f(\lambda) \neq \overline{1}$. For, if $\overline{1}-f(\lambda)=\overline{1}$, then $f(\lambda)=\overline{0} \Rightarrow \lambda=\overline{0}$.

Hence by the hypothesis, there exists an r-frco set $\mu \in I^{Y}, \overline{1} \neq \mu \geq f(\overline{1}-\nu)$, such that $f(\overline{1}-\lambda) \leq \mu$. That is $\overline{0} \neq \overline{1}-\mu \leq f(\nu)$, such that $\overline{1}-\mu \leq f(\lambda)$. Let $\overline{1}-\mu=\gamma$. Then, $\gamma \neq \overline{0}$ is an r-frco set in I^{Y} such that $f(\nu) \geq \gamma$ and $f(\lambda) \geq \gamma$. Therefore, f is swsgrfo function.

Acknowledgements

The author would like to thank from the anonymous reviewers for carefully reading of the manuscript and giving useful comments, which will help us to improve the paper.

References

[1] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions. Fuzzy Sets and Systems 86 (1997), 93-100.
[2] B. Bhattacharya and J. Chakraborty, Generalized regular fuzzy closed sets and their Applications. The Journal of Fuzzy Mathematics 23 (1) (2015), 227-239.
[3] C. L. Chang, Fuzzy topological spaces. J. Math. Anal. Appl., 24 (1968), 182-190.
[4] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology. Fuzzy Sets and Systems 54 (1993), 207-212.
[5] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness. Fuzzy Sets and Systems 49 (2) (1992), 237-242.
[6] E. Ekici, M. Caldas, Slightly γ-continuous functions. Bol. Soc. Paran. Mat., 22 (2004), 63-74.
[7] U. Hohle, Upper semicontinuous fuzzy sets and applications. J. Math. Anall. Appl., 78 (1980), 659-673.
[8] U. Hohle and A. P. Šostak, A general theory of fuzzy topological spaces. Fuzzy Sets and Systems 73 (1995), 131-149.
[9] U. Hohle and A. P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, The Hand-books of fuzzy sets series, 3, Kluwer academic publishers, Dordrecht (Chapter 3), (1999).
[10] R.C. Jain, The role of regularly open sets in general topology. Ph.D. thesis, Meerut University, Institute of Advenced Studies, Meerut, India, 1990.
[11] T. Kubiak, On fuzzy topologies. Ph.D. Thesis, A. Mickiewicz, Poznan, (1985).
[12] T. Kubiak and A. P. Šostak, Lower set-valued fuzzy topologies. Quaestions Math., 20 (3) (1997), 423-429.
[13] N. Levine, Generalized closed sets in topology. Rend. Cirec. Math. Palermo 19 (1970), 89-96.
[14] T.M. Nour, Slightly semicontinuous functions. Bull. Calcutta Math. Soc., 87 (2) (1995), 187-190.
[15] T. Noiri, Slightly β-continuous functions. Int. J. Math. Math. Sci., 28 (8) (2001), 469-478.
[16] J. H. Park and J. K. Park, On regular generalized fuzzy closed sets and generalization of fuzzy continuous functions. Indian. J. Pure. Appl. Math., 34 (7) (2003), 1013-1024.
[17] S. J. Lee and E. P. Lee, Fuzzy r-regular open sets and fuzzy almost r-continuous maps. Bull. Korean Math. Soc., 39 (3) (2002), 441-453.
[18] A. P. Šostak, On a fuzzy topological structure. Rend. Circ. Matem. Palermo Ser II, 11 (1986), 89-103.
[19] A. P. Šostak, Two decades of fuzzy topology : Basic ideas, Notion and results. Russian Math. Surveys 44 (6) (1989), 125-186.
[20] A. P. Šostak, Basic structures of fuzzy topology. J. Math. Sci., 78 (6) (1996), 662-701.
[21] M. Sudha, E. Roja, M.K. Uma, Slighitly fuzzy ω-continuous mappings. Int. J. Math. Anal., 5 (16) (2011), 779-787.
[22] M. Sudha, E. Roja, M.K. Uma, Slightly fuzzy continuous mappings. East Asian Math. J., 25 (2009), 1-8.
[23] A. Vadivel and E. Elavarasan, Applications of r-generalized regular fuzzy closed sets. Annals of Fuzzy Mathematics and Informatics 12 (5) (2016), 719-738.

Scientia Magna

Vol. 14 (2019), No. 1, 79-95

On fuzzy upper and lower e-continuous multifunctions

B. Vijayalakshmi ${ }^{1}$, A. Prabhu ${ }^{2}$ and A. Vadivel ${ }^{3}$
${ }^{1}$ Department of Mathematics, Government Arts College, C.Mutlur, Chidambaram, Tamil Nadu-608102. E-mail: mathvijaya2006au@gmail.com
${ }^{2}$ Research Scholar, Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu-608002. E-mail: 1983mrp@gmail.com
${ }^{3}$ Department of Mathematics, Government Arts College(Autonomous), Karur, Tamil Nadu-639005.
E-mail: avmaths@gmail.com

Abstract

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower e-continuous multifunction, fuzzy upper and fuzzy lower e-irresolute multifunction on fuzzy topological spaces in \hat{S} ostak sense. Several characterizations and properties of these fuzzy upper (resp. fuzzy lower) e-continuous, fuzzy upper (resp. lower) e-irresolute multifunctions are presented and their mutual relationships are established in L-fuzzy topological spaces. Later, composition and union between these multifunctions have been studied.

Keywords fuzzy upper (resp. fuzzy lower) e-continuous multifunction, fuzzy upper (resp. lower) e-irresolute multifunction.
2010 Mathematics Subject Classification 54A40, 54C08, 54C60.

§1. Introduction and preliminaries

Kubiak [15] and \hat{S} ostak [23] introduced the notion of (L-)fuzzy topological space as a generalization of L-topological spaces (originally called (L-) fuzzy topological spaces by Chang [6] and Goguen [8]. It is the grade of openness of an L-fuzzy set. A general approach to the study of topological type structures on fuzzy powersets was developed in [[9]- [11], [15], [16], [23]- [25]].

Berge [5] introduced the concept multimapping $F: X \multimap Y$ where X and Y are topological spaces and Popa [21,22] introduced the notion of irresolute multimapping. After Chang introduced the concept of fuzzy topology [6], continuity of multifunctions in fuzzy topological spaces have been defined and studied by many authors from different view points (eg. see [3], [4], [18][20]). Tsiporkova et al., $[27,28]$ introduced the continuity of fuzzy multivalued mappings in the Chang's fuzzy topology [6]. Later, Abbas et al., [1] introduced the concepts of fuzzy upper and fuzzy lower semi-continuous multifunctions in L-fuzzy topological spaces. Recently, Sobana [26] and Vadivel [29] introduced r-feo sets (r-fec) sets, fuzzy e-continuity, fuzzy e-openness, fuzzy
e-closedness and r-fuzzy e-irresolute in a smooth topological space.
In this paper, we introduce the concepts of fuzzy upper and fuzzy lower e-continuous multifunction, fuzzy upper and fuzzy lower e-irresolute multifunction on fuzzy topological spaces in \hat{S} ostak sense. Several characterizations and properties of these multifunctions are presented and their mutual relationships are established in L-fuzzy topological spaces. Later, composition and union between these multifunctions have been studied.

Throughout this paper, nonempty sets will be denoted by X, Y etc., $L=[0,1]$ and $L_{0}=(0,1]$. The family of all fuzzy sets in X is denoted by L^{X}. The complement of an L-fuzzy set λ is denoted by λ^{c}. This symbol \multimap for a multifunction.

For $\alpha \in L, \bar{\alpha}(x)=\alpha$ for all $x \in X$. A fuzzy point x_{t} for $t \in L_{0}$ is an element of L^{X} such that $x_{t}(y)=\left\{\begin{array}{ll}t & \text { if } y=x \\ 0 & \text { if } y \neq x .\end{array}\right.$ The family of all fuzzy points in X is denoted by $\operatorname{Pt}(X)$. A fuzzy point $x_{t} \in \lambda$ iff $t \leq \lambda(x)$.

All other notations are standard notations of L-fuzzy set theory.
Definition 1.1. [1] Let $F: X \multimap Y$, then F is called a fuzzy multifunction (FM, for short) if and only if $F(x) \in L^{Y}$ for each $x \in X$. The degree of membership of y in $F(x)$ is denoted by $F(x)(y)=G_{F}(x, y)$ for any $(x, y) \in X \times Y$. The domain of F, denoted by domain (F) and the range of F, denoted by $r n g(F)$, for any $x \in X$ and $y \in Y$, are defined by :

$$
\operatorname{dom}(F)(x)=\bigvee_{y \in Y} G_{F}(x, y) \text { and } r n g(F)(y)=\bigvee_{x \in X} G_{F}(x, y)
$$

Definition 1.2. [1] Let $F: X \multimap Y$ be a $F M$. Then F is called:
(i) Normalized iff for each $x \in X$, there exixts $y_{0} \in Y$ such that $G_{F}\left(x, y_{0}\right)=\overline{1}$.
(ii) A crisp iff $G_{F}(x, y)=\overline{1}$ for each $x \in X$ and $y \in Y$.

Definition 1.3. [1] Let $F: X \multimap Y$ be a FM. Then
(i) The image of $\lambda \in L^{X}$ is an L-fuzzy set $F(\lambda) \in L^{Y}$ defined by

$$
F(\lambda)(y)=\bigvee_{x \in X}\left[G_{F}(x, y) \wedge \lambda(x)\right]
$$

(ii) The lower inverse of $\mu \in L^{Y}$ is an L-fuzzy set $F^{l}(\mu) \in L^{X}$ defined by

$$
F^{l}(\mu)(x)=\bigvee_{y \in Y}\left[G_{F}(x, y) \wedge \mu(y)\right]
$$

(iii) The upper inverse of $\mu \in L^{Y}$ is an L-fuzzy set $F^{u}(\mu) \in L^{X}$ defined by

$$
F^{u}(\mu)(x)=\bigwedge_{y \in Y}\left[G_{F}^{c}(x, y) \vee \mu(y)\right] .
$$

Theorem 1.1. [1] Let $F: X \multimap Y$ be a $F M$. Then
(i) $F\left(\lambda_{1}\right) \leq F\left(\lambda_{2}\right)$ if $\lambda_{1} \leq \lambda_{2}$.
(ii) $F^{l}\left(\mu_{1}\right) \leq F^{l}\left(\mu_{2}\right)$ and $F^{u}\left(\mu_{1}\right) \leq F^{u}\left(\mu_{2}\right)$, if $\mu_{1} \leq \mu_{2}$.
(iii) $F^{u}(\mu) \leq F^{l}(\mu)$, if F is normalized.
(iv) $(F(\lambda))^{c} \leq F\left(\lambda^{c}\right)$, if F is surjective.
(v) $\left(F^{l}(\mu)\right)^{c} \leq F^{l}\left(\mu^{c}\right)$, if F is normalized.
(vi) $F^{l}(\overline{1}-\mu)=\overline{1}-F^{u}(\mu)$ and $F^{u}(\overline{1}-\mu)=\overline{1}-F^{l}(\mu)$.
(vii) $F\left(F^{u}(\mu)\right) \leq \mu$ if F is a crisp.
(viii) $F^{u}(F(\lambda)) \geq \lambda$ if F is a crisp.

Definition 1.4. [1] Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two $F M$. Then the composition $H \circ F$ is defined by

$$
((H \circ F)(x))(z)=\bigvee_{y \in Y}\left[G_{F}(x, y) \wedge G_{H}(y, z)\right] .
$$

Theorem 1.2. [1] Let $F: X \multimap Y$ and $H: Y \multimap Z$ be $F M$. Then we have the following
(i) $(H \circ F)=F(H)$.
(ii) $(H \circ F)^{u}=F^{u}\left(H^{u}\right)$.
(iii) $(H \circ F)^{l}=F^{l}\left(H^{l}\right)$.

Theorem 1.3. [1] Let $F_{i}: X \multimap Y$ be a FM. Then we have the following
(i) $\left(\bigcup_{i \in \Gamma} F_{i}\right)(\lambda)=\bigvee_{i \in \Gamma} F_{i}(\lambda)$.
(ii) $\left(\bigcup_{i \in \Gamma} F_{i}\right)^{l}(\mu)=\bigvee_{i \in \Gamma} F_{i}^{l}(\mu)$.
(iii) $\left(\bigcup_{i \in \Gamma} F_{i}\right)^{u}(\mu)=\bigwedge_{i \in \Gamma} F_{i}^{u}(\mu)$.

Definition 1.5. [11, 15, 17, 23] An L-fuzzy topological space (L-fts, in short) is a pair (X, τ), where X is a nonempty set and $\tau: L^{X} \rightarrow L$ is a mapping satisfying the following properties.
(1) $\tau(\overline{0})=\tau(\overline{1})=1$,
(2) $\tau\left(\mu_{1} \wedge \mu_{2}\right) \geq \tau\left(\mu_{1}\right) \wedge \tau\left(\mu_{2}\right)$, for any $\mu_{1}, \mu_{2} \in I^{X}$.
(3) $\tau\left(\bigvee_{i \in \Gamma} \mu_{i}\right) \geq \bigwedge_{i \in \Gamma} \tau\left(\mu_{i}\right)$, for any $\left\{\mu_{i}\right\}_{i \in \Gamma} \subset I^{X}$,

Then τ is called an L-fuzzy topology on X. For every $\lambda \in L^{X}, \tau(\lambda)$ is called the degree of openness of the L-fuzzy set λ.

A mapping $f:(X, \tau) \rightarrow(Y, \eta)$ is said to be continuous with respect to L-fuzzy topologies τ and η iff $\tau\left(f^{-1}(\mu)\right) \geq \eta(\mu)$ for each $\mu \in L^{Y}$.

Theorem 1.4. $[7,13,14,17]$ Let (X, τ) be a an L-fts. Then for each $\lambda \in L^{X}, r \in L_{0}$, we define L-fuzzy operators C_{τ} and $I_{\tau}: L^{X} \times L_{0} \rightarrow L^{X}$ as follows:

$$
\begin{aligned}
& C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in L^{X}: \lambda \leq \mu, \tau(\overline{1}-\mu) \geq r\right\} \\
& I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in L^{X}: \lambda \geq \mu, \tau(\mu) \geq r\right\} .
\end{aligned}
$$

For $\lambda, \mu \in L^{X}$ and $r, s \in L_{0}$, the operator C_{τ} satisfies the following conditions:
(1) $C_{\tau}(\overline{0}, r)=\overline{0}$,
(2) $\lambda \leq C_{\tau}(\lambda, r)$,
(3) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r)=C_{\tau}(\lambda \vee \mu, r)$,
(4) $C_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$,
(5) $C_{\tau}(\lambda, r)=\lambda$ iff $\tau\left(\lambda^{c}\right) \geq r$.
(6) $C_{\tau}\left(\lambda^{c}, r\right)=\left(I_{\tau}(\lambda, r)\right)^{c}$ and $I_{\tau}\left(\lambda^{c}, r\right)=\left(C_{\tau}(\lambda, r)\right)^{c}$.

Definition 1.6. [1] Let $F: X \multimap Y$ be a $F M$ between two L-fts's $(X, \tau),(Y, \eta)$ and $r \in L_{0}$. Then F is called:
(i) Fuzzy upper semi continuous (or Fuzzy upper) (in short, FUS (or FU)-continuous) at a L-fuzzy point $x_{t} \in \operatorname{dom}(F)$ iff $x_{t} \in F^{u}(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu) \geq r$, there exists $\lambda \in L^{X}, \tau(\lambda) \geq r$ and $x_{t} \in \lambda$ such that $\lambda \wedge \operatorname{dom}(F) \leq F^{u}(\mu)$. F is $F U$-continuous iff it is $F U$-continuous at every $x_{t} \in \operatorname{dom}(F)$.
(ii) Fuzzy lower semi continuous (or Fuzzy lower) (in short, FLS (or FL)-continuous) at a Lfuzzy point $x_{t} \in \operatorname{dom}(F)$ iff $x_{t} \in F^{l}(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu) \geq r$, there exists $\lambda \in L^{X}$, $\tau(\lambda) \geq r$ and $x_{t} \in \lambda$ such that $\lambda \leq F^{l}(\mu) . F$ is $F L$-continuous iff it is $F L$-continuous at every $x_{t} \in \operatorname{dom}(F)$.
(iii) Fuzzy continuous if it is FU-continuous and FL-continuous.

Theorem 1.5. [1] Let $F: X \multimap Y$ be a fuzzy multifunction between two L-fts's (X, τ) and (Y, η). Let $\mu \in L^{Y}$. Then we have the following
(1) F is $F L$-continuous iff $\tau\left(F^{l}(\mu)\right) \geq \eta(\mu)$.
(2) If F is normlized, then F is $F U$-continuous iff $\tau\left(F^{u}(\mu)\right) \geq \eta(\mu)$.
(3) F is $F L$-continuous iff $\tau\left(\overline{1}-F^{u}(\mu)\right) \geq \eta(\overline{1}-\mu)$.
(4) If F is normalized, then F is $F U$-continuous iff $\tau\left(\overline{1}-F^{l}(\mu)\right) \geq \eta(\overline{1}-\mu)$.

Remark 1.1 [4,30] Let (X, τ) and (Y, η) be a fts's. The fuzzy sets of the form $\lambda \times \mu$ with $\tau(\lambda) \geq r$ and $\eta(\mu) \geq r$ form a basis for the product fuzzy topology $\tau \times \eta$ on $X \times Y$, where for any $(x, y) \in X \times Y,(\lambda \times \mu)(x, y)=\min \{\lambda(x), \mu(y)\}$.

Definition 1.7. $[4,19]$ Let $F: X \multimap Y$ be a FM between two fts's (X, τ) and (Y, η). The graph fuzzy multifunction $G_{f}: X \rightarrow X \times Y$ of F is defined as $G_{f}(x)=x_{1} \times F(x)$, for every $x \in X$.

Definition 1.8. [12] Let (X, τ) be a fts. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}, \lambda$ is called r fuzzy regular open (for short, r-fro) (resp. r-fuzzy regular closed (for short, r-frc)) if $\lambda=$ $I_{\tau}\left(C_{\tau}(\lambda, r), r\right)\left(r e s p . ~ \lambda=C_{\tau}\left(I_{\tau}(\lambda, r), r\right)\right)$.

Definition 1.9. [12] Let (X, τ) be a fts. Then for each $\mu \in I^{X}, x_{t} \in P_{t}(X)$ and $r \in I_{0}$,
(i) μ is called r-open Q_{τ}-neighbourhood of x_{t} if $x_{t} q \mu$ with $\tau(\mu) \geq r$.
(ii) μ is called r-open R_{τ}-neighbourhood of x_{t} if $x_{t} q \mu$ with $\mu=I_{\tau}\left(C_{\tau}(\mu, r), r\right)$.

We denoted

$$
\begin{gathered}
Q_{\tau}\left(x_{t}, r\right)=\left\{\mu \in I^{X}: x_{t} q \mu, \tau(\mu) \geq r\right\} \\
R_{\tau}\left(x_{t}, r\right)=\left\{\mu \in I^{X}: x_{t} q \mu, \mu=I_{\tau}\left(C_{\tau}(\mu, r), r\right)\right\}
\end{gathered}
$$

Definition 1.10. [12] Let (X, τ) be a fts. Then for each $\lambda \in I^{X}, x_{t} \in P_{t}(X)$ and $r \in I_{0}$,
(i) x_{t} is called $r-\tau$ cluster point of λ if for every $\mu \in Q_{\tau}\left(x_{t}, r\right)$, we have $\mu q \lambda$.
(ii) x_{t} is called $r-\delta$ cluster point of λ if for every $\mu \in R_{\tau}\left(x_{t}, r\right)$, we have $\mu q \lambda$.
(iii) An δ-closure operator is a mapping $D C_{\tau}: I^{X} \times I \rightarrow I^{X}$ defined as follows:
$\delta C_{\tau}(\lambda, r)$ or $D C_{\tau}(\lambda, r)=\bigvee\left\{x_{t} \in P_{t}(X): x_{t}\right.$ is r - δ-cluster point of $\left.\lambda\right\}$.
Equivalently, $\delta C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in I^{X}: \mu \geq \lambda, \mu\right.$ is a r-frc set $\}$ and $\delta I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X}: \mu \leq \lambda, \mu\right.$ is a r-fro set $\}$.

Definition 1.11. [12] Let (X, τ) be a fuzzy topological space. For $\lambda \in I^{X}$ and $r \in I_{0}, \lambda$ is called r-fuzzy δ-closed iff $\lambda=\delta C_{\tau}(\lambda, r)$ or $D C_{\tau}(\lambda, r)$.

Definition 1.12. [26] Let (X, τ) be a an L-fts. Then for each $\lambda, \mu \in L^{X}, r \in L_{0}$. Then λ is called
(1) λ is called an r-fuzzy e-open (briefly, r-feo) set if $\lambda \leq C_{\tau}\left(\delta_{\tau}(\lambda, r), r\right) \vee I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right)$.
(2) λ is called an r-fuzzy e-closed (briefly, r-feo) set if $C_{\tau}\left(\delta I_{\tau}(\lambda, r), r\right) \wedge I_{\tau}\left(\delta C_{\tau}(\lambda, r), r\right) \leq \lambda$.

Definition 1.13. [26] Let (X, τ) be an L-fts. Then for each $\lambda, \mu \in L^{X}, r \in L_{0}$. Then λ is called
(i) $e I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X}: \mu \leq \lambda, \mu\right.$ is a r-feo set $\}$ is called the r-fuzzy e-interior of λ.
(ii) $e C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in I^{X}: \mu \geq \lambda, \mu\right.$ is a r-fec set $\}$ is called the r-fuzzy e-closure of λ.

§2. Fuzzy upper and lower e-continuous multifunctions

Definition 2.1. Let $F: X \multimap Y$ be a FM between two L-fts's $(X, \tau),(Y, \eta)$ and $r \in L_{0}$. Then F is called:
(i) Fuzzy upper e-continuous (FUe-continuous, in short) at any L-fuzzy point $x_{t} \in \operatorname{dom}(F)$ iff $x_{t} \in F^{u}(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu) \geq r$ there exists r-feo set, $\lambda \in L^{X}$ and $x_{t} \in \lambda$ such that $\lambda \wedge \operatorname{dom}(F) \leq F^{u}(\mu)$.
(ii) Fuzzy lower e-continuous (FLe-continuous, in short) at any L-fuzzy point $x_{t} \in \operatorname{dom}(F)$ iff $x_{t} \in F^{l}(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu) \geq r$ there exists r-feo set, $\lambda \in L^{X}$ and $x_{t} \in \lambda$ such that $\lambda \leq F^{l}(\mu)$.
(iii) FUe-continuous (resp. FLe-continuous) iff it is FUe-continuous (resp. FLe-continuous) at every $x_{t} \in \operatorname{dom}(F)$.

Remark 2.1 Let F be a FM between two L-fts's (X, τ) and (Y, η). For the mapping $F: X \multimap Y$, the following statements are valid:
(1) FU-continuous $\Rightarrow F U e$-continuous.
(2) FL-continuous $\Rightarrow F L e$-continuous.

The converse of the above Remark 2.1 need not be true as shown by the following examples.

Example 2.1 Let $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $F: X \multimap Y$ be a FM defined by $G_{F}\left(x_{1}, y_{1}\right)=0.8, G_{F}\left(x_{1}, y_{2}\right)=0.9, G_{F}\left(x_{1}, y_{3}\right)=0.8, G_{F}\left(x_{2}, y_{1}\right)=\overline{1}, G_{F}\left(x_{2}, y_{2}\right)=0.7$, and $G_{F}\left(x_{2}, y_{3}\right)=0.9$. Let λ_{1} and λ_{2} be a fuzzy subsets of X be defined as $\lambda_{1}\left(x_{1}\right)=0.3, \lambda_{1}\left(x_{2}\right)=0.1$ and $\lambda_{2}\left(x_{1}\right)=0.7, \lambda_{2}\left(x_{2}\right)=0.7$ and μ be a fuzzy subset of Y defined as $\mu\left(y_{1}\right)=0.7, \mu\left(y_{2}\right)=0.9$, $\mu\left(y_{3}\right)=0.8$. We assume that $\overline{1}=1$ and $\overline{0}=0$. Define L-fuzzy topologies $\tau: L^{X} \rightarrow L$ and $\eta: L^{Y} \rightarrow L$ as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \lambda=\lambda_{1}, \\
0, & \text { otherwise },
\end{array} \quad \eta(\mu)= \begin{cases}1, & \text { if } \mu=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \mu=\mu, \\
0, & \text { otherwise } .\end{cases}\right.
$$

are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, as μ is $\frac{1}{2}$-fuzzy open in Y and $F^{u}(\mu)=\lambda_{2}$ is $\frac{1}{2}$-feo set in X. Then $F: X \multimap Y$ is $F U$-continuous. But F is not $F U$-continuous, because μ is $\frac{1}{2}$-fuzzy open in Y and $F^{u}(\mu)=\lambda_{2}$ is not $\frac{1}{2}$-fuzzy open set in X.

Example 2.2 Let $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $F: X \multimap Y$ be a $F M$ defined by $G_{F}\left(x_{1}, y_{1}\right)=0.2, G_{F}\left(x_{1}, y_{2}\right)=\overline{1}, G_{F}\left(x_{1}, y_{3}\right)=\overline{0}, G_{F}\left(x_{2}, y_{1}\right)=0.5, G_{F}\left(x_{2}, y_{2}\right)=\overline{0}$, and $G_{F}\left(x_{2}, y_{3}\right)=0.3$. Let λ_{1} and λ_{2} be a fuzzy subsets of X be defined as $\lambda_{1}\left(x_{1}\right)=0.4$, $\lambda_{1}\left(x_{2}\right)=0.3 ; \lambda_{2}\left(x_{1}\right)=0.9, \lambda_{2}\left(x_{2}\right)=0.5$ and μ be a fuzzy subset of Y defined as $\mu\left(y_{1}\right)=0.6$, $\mu\left(y_{2}\right)=0.9, \mu\left(y_{3}\right)=\overline{0}$. We assume that $\overline{1}=1$ and $\overline{0}=0$. Define L-fuzzy topologies $\tau: L^{X} \rightarrow L$ and $\eta: L^{Y} \rightarrow L$ as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \lambda=\lambda_{1}, \\
0, & \text { otherwise },
\end{array} \quad \eta(\mu)= \begin{cases}1, & \text { if } \mu=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \mu=\mu, \\
0, & \text { otherwise } .\end{cases}\right.
$$

are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, as μ is $\frac{1}{2}$-fuzzy open set in Y and $F^{l}(\mu)=\lambda_{2}$ is $\frac{1}{2}$-feo set in X. Then $F: X \multimap Y$ is FLe-continuous. But F is not $F L$-continuous, because μ is $\frac{1}{2}$-fuzzy open in Y and $F^{l}(\mu)=\lambda_{2}$ is not $\frac{1}{2}$-fuzzy open set in X.

Proposition 2.1 If F is normalized, then F is $F U e$-continuous at an L-fuzzy point $x_{t} \in \operatorname{dom}(F)$ iff $x_{t} \in F^{u}(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu) \geq r$ there exists $\lambda \in L^{X}$, λ is r-feo set and $x_{t} \in \lambda$ such that $\lambda \leq F^{u}(\mu)$.

Theorem 2.1 Let $F: X \multimap Y$ be a FM between two L-fts's $(X, \tau),(Y, \eta)$ and $\mu \in L^{Y}$, then the following are equivalent:
(i) F is FLe-continuous.
(ii) $F^{l}(\mu)$ is r-feo set, for any $\eta(\mu) \geq r$.
(iii) $F^{u}(\mu)$ is r-fec set, for any $\eta(\overline{1}-\mu) \geq r$.
(iv) $e C_{\tau}\left(F^{u}(\mu), r\right) \leq F^{u}\left(C_{\eta}(\mu, r)\right)$, for any $\mu \in L^{Y}$.
(v) $C_{\tau}\left(\delta I_{\tau}\left(F^{u}(\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(F^{u}(\mu), r\right), r\right) \leq F^{u}\left(C_{\eta}(\mu, r)\right)$, for any $\mu \in L^{Y}$.

Proof. (i) \Rightarrow (ii): Let $x_{t} \in \operatorname{dom}(F), \mu \in L^{Y}, \eta(\mu) \geq r$ and $x_{t} \in F^{l}(\mu)$ then, there exist $\lambda \in L^{X}$, λ is r-feo set and $x_{t} \in \lambda$ such that $\lambda \leq F^{l}(\mu)$ and hence $x_{t} \in e I_{\tau}\left(F^{l}(\mu), r\right)$. Therefore, we obtain $F^{l}(\mu) \leq e I_{\tau}\left(F^{l}(\mu), r\right)$. Thus $F^{l}(\mu)$ is r-feo set.
(ii) \Rightarrow (iii): Let $\mu \in L^{Y}$ and $\eta(\overline{1}-\mu) \geq r$ hence by (ii), $F^{l}(\overline{1}-\mu)=\overline{1}-F^{u}(\mu)$ is r-feo. Then $F^{u}(\mu)$ is r-fec.
(iii) \Rightarrow (iv): Let $\mu \in L^{Y}$ hence by (iii), $F^{u}\left(C_{\eta}(\mu, r)\right)$ is r-fec. Then we obtain

$$
e C_{\tau}\left(F^{u}(\mu), r\right) \leq F^{u}\left(C_{\eta}(\mu, r)\right)
$$

(iv) $\Rightarrow(\mathrm{v})$: Let $\mu \in L^{Y}$ hence by (iv), we obtain

$$
C_{\tau}\left(\delta I_{\tau}\left(F^{u}(\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(F^{u}(\mu), r\right), r\right) \leq e C_{\tau}\left(F^{u}(\mu), r\right) \leq F^{u}\left(C_{\eta}(\mu, r)\right)
$$

(v) \Rightarrow (ii): Let $\mu \in L^{Y}, \eta(\mu) \geq r$, hence by (v), we have

$$
\begin{aligned}
\overline{1}-F^{l}(\mu) & =F^{u}(\overline{1}-\mu) \\
& \geq C_{\tau}\left(\delta I_{\tau}\left(F^{u}(\overline{1}-\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(F^{u}(\overline{1}-\mu), r\right), r\right) \\
& =C_{\tau}\left(\delta I_{\tau}\left(\overline{1}-F^{l}(\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(\overline{1}-F^{l}(\mu), r\right), r\right) \\
& =\overline{1}-\left[C_{\tau}\left(\delta I_{\tau}\left(F^{l}(\mu), r\right), r\right) \vee I_{\tau}\left(\delta C_{\tau}\left(F^{l}(\mu), r\right), r\right)\right] \\
F^{l}(\mu) & \leq C_{\tau}\left(\delta I_{\tau}\left(F^{l}(\mu), r\right), r\right) \vee I_{\tau}\left(\delta C_{\tau}\left(F^{l}(\mu), r\right), r\right)
\end{aligned}
$$

Hence, $F^{l}(\mu)$ is r-feo.
(ii) \Rightarrow (i): Let $x_{t} \in \operatorname{dom}(F), \mu \in L^{Y}, \eta(\mu) \geq r$, with $x_{t} \in F^{l}(\mu)$ we have by (ii), $F^{l}(\mu)$ is r-feo-set. Let $F^{l}(\mu)=\lambda$ (say), then there exists $\lambda \in L^{X}, \lambda$ is r-feo-set and $x_{t} \in \lambda$ such that $\lambda \leq F^{l}(\mu)$. Thus F is $F L e$-continuous.

Theorem 2.2 Let $F: X \multimap Y$ be a $F M$ and normalized between two L-fts's $(X, \tau),(Y, \eta)$ and $\mu \in L^{Y}$, then the following are equivalent:
(i) F is FUe-continuous.
(ii) $F^{u}(\mu)$ is r-feo set, for any $\eta(\mu) \geq r$.
(iii) $F^{l}(\mu)$ is r-fec set, for any $\eta(\overline{1}-\mu) \geq r$.
(iv) $e C_{\tau}\left(F^{l}(\mu), r\right) \leq F^{l}\left(C_{\eta}(\mu, r)\right)$, for any $\mu \in L^{Y}$.
(v) $C_{\tau}\left(\delta I_{\tau}\left(F^{l}(\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(F^{l}(\mu), r\right), r\right) \leq F^{l}\left(C_{\eta}(\mu, r)\right)$, for any $\mu \in L^{Y}$.

Proof. This can be proved in a similar way as Theorem 2.1.
Corollary 2.1 Let $F: X \multimap Y$ be a FM between two fts's $(X, \tau),(Y, \eta)$ and $\mu \in L^{Y}$. Then we have the following:
(i) If F is normalized, then F is $F U e$-continuous at x_{t} iff $x_{t} \in r$-feo set of $F^{u}(\mu)$, for each $\eta(\mu) \geq r$ and $x_{t} \in F^{u}(\mu)$.
(ii) F is $F L e$-continuous at x_{t} iff $x_{t} \in r$-feo set of $F^{l}(\mu)$, for each $\eta(\mu) \geq r$ and $x_{t} \in F^{l}(\mu)$.

Remark 2.2 Let $F: X \multimap Y$ be a $F M$ between two fts's $(X, \tau),(Y, \eta)$ and $\mu \in L^{Y}$. Then we will show that if F is $F U e$-continuous and not normalized then $x_{t} \notin r$-feo set of $F^{u}(\mu)$, for each $\eta(\mu) \geq r$, by the following example.

Example 2.3 Let $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $F: X \multimap Y$ be a $F M$ defined by $G_{F}\left(x_{1}, y_{1}\right)=0.1, G_{F}\left(x_{1}, y_{2}\right)=0.6, G_{F}\left(x_{1}, y_{3}\right)=\overline{0}, G_{F}\left(x_{2}, y_{1}\right)=0.7, G_{F}\left(x_{2}, y_{2}\right)=\overline{0}$, and $G_{F}\left(x_{2}, y_{3}\right)=0.7$. Let λ_{1} and λ_{2} be a fuzzy subsets of X be defined as $\lambda_{1}\left(x_{1}\right)=0.5, \lambda_{1}\left(x_{2}\right)=0.5$ and $\lambda_{2}\left(x_{1}\right)=0.6, \lambda_{2}\left(x_{2}\right)=0.6$ and μ be a fuzzy subset of Y defined as $\mu\left(y_{1}\right)=0.6, \mu\left(y_{2}\right)=0.6$, $\mu\left(y_{3}\right)=0.6$. We assume that $\overline{1}=1$ and $\overline{0}=0$. Define L-fuzzy topologies $\tau: L^{X} \rightarrow L$ and $\eta: L^{Y} \rightarrow L$ as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \lambda=\lambda_{1}, \\
0, & \text { otherwise },
\end{array} \quad \eta(\mu)= \begin{cases}1, & \text { if } \mu=\overline{0} \text { or } \overline{1} \\
\frac{1}{2}, & \text { if } \mu=\mu, \\
0, & \text { otherwise } .\end{cases}\right.
$$

are fuzzy topologies on X and Y. Since $\operatorname{dom}(F)(x)=\bigvee_{y \in Y} G_{F}(x, y)$, i.e $x_{0.6}^{1} \in \operatorname{dom}(F)$ and $x_{0.7}^{2} \in \operatorname{dom}(F)$. From Definition 2.3, we have

$$
\begin{array}{lcc}
F^{u}(0.6)\left(x_{1}\right)=0.6, & F^{u}(\overline{0})\left(x_{1}\right)=0.4, & F^{u}(\overline{1})\left(x_{1}\right)=\overline{1} \\
F^{u}(0.6)\left(x_{2}\right)=0.6,, & F^{u}(\overline{0})\left(x_{2}\right)=0.3, & F^{u}(\overline{1})\left(x_{2}\right)=\overline{1}
\end{array}
$$

For $r=\frac{1}{2}$, as μ is $\frac{1}{2}$-fuzzy open in Y and $F^{u}(\mu)=\lambda_{2}$ is $\frac{1}{2}$-feo set in X. Then
(i) F is $F U e$-continuous.
(ii) F is not normalized.
(iii) The fuzzy point x_{t} with $x_{0.7}^{2} \notin \lambda_{2}$ where $F^{u}(\mu)=\lambda_{2}$ is r-feo set and $\eta(\mu) \geq \frac{1}{2}$.

Theorem 2.3 Let $\left\{F_{i}\right\}_{i \in \Gamma}$ be a family of FLe-continuous between two fts's (X, τ) and (Y, η). Then $\bigcup_{i \in \Gamma} F_{i}$ is FLe-continuous.

Proof. Let $\mu \in L^{Y}$, then $\left(\bigcup_{i \in \Gamma} F_{i}\right)^{l}(\mu)=\bigvee_{i \in \Gamma}\left(F_{i}^{l}(\mu)\right)$ by, Theorem 1.3 (ii). Since $\left\{F_{i}\right\}_{i \in \Gamma}$ is a family of $F L e$-continuous between two fts's (X, τ) and (Y, η), then $F_{i}^{l}(\mu)$ is r-feo for any $\eta(\mu) \geq r$. Then we have $\left(\bigcup_{i \in \Gamma} F_{i}\right)^{l}(\mu)=\bigvee_{i \in \Gamma}\left(F_{i}^{l}(\mu)\right)$ is r-feo for any $\eta(\mu) \geq r$. Hence $\bigcup_{i \in \Gamma} F_{i}$ is $F L e$-continuous.

Theorem 2.4 Let $\left\{F_{i}\right\}_{i \in \Gamma}$ be a family of normalized FUe-continuous between two fts's (X, τ) and (Y, η). Then $F_{1} \bigcup F_{2}$ is $F U e$-continuous.

Proof. Let $\mu \in L^{Y}$, then

$$
\left(F_{1} \cup F_{2}\right)^{u}(\mu)=F_{1}{ }^{u}(\mu) \wedge F_{2}^{u}(\mu)
$$

by, Theorem 1.3 (iii). Since $\left\{F_{i}\right\}_{i \in \Gamma}$ is a family of normalized $F U e$-continuous between two fts's (X, τ) and (Y, η), then $\left(F_{i}{ }^{u}(\mu)\right)$ if r-feo, for any $\eta(\mu) \geq r$ for each $i \in\{1,2\}$. Then for each $\mu \in L^{Y}$, we have $\left(F_{1} \cup F_{2}\right)^{u}(\mu)=F_{1}{ }^{u}(\mu) \wedge F_{2}{ }^{u}(\mu)$ is r-feo set for any $\eta(\mu) \geq r$. Hence $F_{1} \cup F_{2}$ is $F U e$-continuous.

Definition 2.2 A fuzzy set λ in a fts (X, τ) is called r-fuzzy e-compact iff every family in $\left\{\mu: \mu\right.$ is r-feo, $\mu \in L^{X}$ and $\left.r \in L\right\}$ covering λ has a finite subcover.

Definition 2.3 Let $F: X \multimap Y$ be a $F M$ between two fts's $(X, \tau),(Y, \eta)$ and $r \in L_{0}$. Then F is called fuzzy e-compact valued iff $F\left(x_{t}\right)$ is r-fuzzy e-compact for each $x_{t} \in \operatorname{dom}(F)$.

Theorem 2.5 Let $F: X \multimap Y$ be a crisp FUe-continuous and e-compact valued between two fts's (X, τ) and (Y, η). Then the direct image of a r-fuzzy e-compact in X under F is also r-fuzzy e-compact.

Proof. Let λ be r-fuzzy e-compact set in X and $\left\{\gamma_{i}: \gamma_{i}\right.$ is r-feo set in $\left.Y, i \in \Gamma\right\}$ be a family of covering of $F(\lambda)$. i.e. $F(\lambda) \leq \bigvee_{i \in \Gamma} \gamma_{i}$. Since $\lambda=\bigvee_{x_{t} \in \lambda} x_{t}$, we have

$$
F(\lambda)=F\left(\bigvee_{x_{t} \in \lambda} x_{t}\right)=\bigvee_{x_{t} \in \lambda} F\left(x_{t}\right) \leq \bigvee_{i \in \Gamma} \gamma_{i}
$$

It follows that for each $x_{t} \in \lambda, F\left(x_{t}\right) \leq \bigvee_{i \in \Gamma} \gamma_{i}$. Since F is r-fuzzy e-compact valued, then there exists finite subset $\Gamma_{x_{t}}$ of Γ such that $F\left(x_{t}\right) \leq \bigvee_{n \in \Gamma_{x_{t}}} \gamma_{n}=\gamma_{x_{t}}$. By Theorem 1.1 (viii), we have

$$
x_{t} \leq F^{u}\left(F\left(x_{t}\right)\right) \leq F^{u}\left(\gamma_{x_{t}}\right) \text { and } \lambda=\bigvee_{x_{t} \in \lambda} x_{t}=\bigvee_{x_{t} \in \lambda} F^{u}\left(\gamma_{x_{t}}\right)
$$

Since, $\eta\left(\gamma_{x_{t}}\right) \geq r$, then from Theorem 2.2, we have $F^{u}\left(\gamma_{x_{t}}\right)$ is r-feo-set. Hence $\left\{F^{u}\left(\gamma_{x_{t}}\right)\right.$: $F^{u}\left(\gamma_{x_{t}}\right)$ is r-feo-set, $\left.x_{t} \in \lambda\right\}$ is a family covering the set λ. Since λ is r-fuzzy e-compact, then there exists finite index set N such that $\lambda \leq \bigvee_{n \in N} F^{u}\left(\gamma_{x_{t_{n}}}\right)$. From Theorem 1.1 (vii), we have

$$
F(\lambda) \leq F\left(\bigvee_{n \in N} F^{u}\left(\gamma_{x_{t_{n}}}\right)\right)=\bigvee_{n \in N} F\left(F^{u}\left(\gamma_{x_{t_{n}}}\right)\right) \leq \bigvee_{n \in N} \gamma_{x_{t_{n}}}
$$

Then $F(\lambda)$ is r-fuzzy e-compact.
Theorem 2.6 Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two $F M$'s and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three fts's. Then we have the following:
(i) If F and H are normalized, $F U e$-continuous, then $H \circ F$ is $F U e$-continuous.
(ii) If F and H are $F L e$-continuous, then $H \circ F$ is $F L e$-continuous.

Proof. (i) Let F and H are normalized, $F U e$-continuous and $\nu \in L^{Z}$. Then from Theorem 1.2, we have $(H \circ F)^{u}(\nu)=F^{u}\left(H^{u}(\nu)\right)$ is r-feo with $\nu\left(H^{u}(\nu)\right) \geq \delta(\nu)$. Thus $H \circ F$ is $F U e$ continuous.
(ii) Similar of (i).

Theorem 2.7 Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two FM's and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three L-fts's. If F is FLe-continuous and H is $F L$-continuous, then $H \circ F$ is F Le-continuous.

Proof. Let $\nu \in L^{Z}, \delta(\nu) \geq r$. Since H is $F L$-continuous, then by Theorem 1.5, $H^{l}(\nu)$ is r-fuzzy open set in Y. Also, F is $F L e$-irresolute implies $F^{l}\left(H^{l}(\nu)\right)$ is r-feo set in X. Hence, we have $(H \circ F)^{l}(\nu)=F^{l}\left(H^{l}(\nu)\right)$ is r-feo. Thus $H \circ F$ is F Le-continuous.

Theorem 2.8 Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two FM's and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three L-fts's. If F and H are normalized, F is $F U$-continuous and H is $F U$ continuous, then $H \circ F$ is $F U$ e-continuous.

Proof. This can be proved in a similar way as Theorem 2.7.
Theorem 2.9 Let $F: X \multimap Y$ be a $F M$ between two fts's (X, τ) and (Y, η). If G_{f} is FLe-continuous, then F is $F L e$-continuous.

Proof. For the fuzzy sets $\rho \in L^{X}, \tau(\rho) \geq r, \nu \in L^{Y}$ and $\eta(\nu) \geq r$, we take,
$\nu)(x, y)= \begin{cases}0, & \text { if } x \notin \rho, \\ \nu(y), & \text { if } x \in \rho .\end{cases}$
Let $x_{t} \in \operatorname{dom}(F), \mu \in L^{Y}$ and $\eta(\mu) \geq r$ with $x_{t} \in F^{l}(\mu)$, then we have $x_{t} \in G_{f}^{l}(X \times \mu)$ and $\eta(X \times \mu) \geq r$. Since G_{f} is $F L e$-continuous, it follows that there exists $\lambda \in L^{X}, \lambda$ is r feo and $x_{t} \in \lambda$ such that $\lambda \leq G_{f}^{l}(X \times \mu)$. From here, we obtain that $\lambda \leq F^{l}(\mu)$. Thus F is $F L e$-continuous.

Theorem 2.10 Let $F: X \multimap Y$ be a $F M$ between two fts's (X, τ) and (Y, η). If G_{f} is FUe-continuous, then F is $F U e$-continuous.

Proof. This can be proved in a similar way as Theorem 2.9.
Theorem 2.11 Let (X, τ) and $\left(X_{i}, \tau_{i}\right)$ be L-fts's $(i \in I)$. If a FM $F: X \multimap \Pi_{i \in I} X_{i}$ is FLe-continuous (where $\Pi_{i \in I} X_{i}$ is the product space), then $P_{i} \circ F$ is $F L e$-continuous for each $i \in I$, where $P_{i}: \Pi_{i \in I} X_{i} \rightarrow X_{i}$ is the projection multifunction which is defined by $P_{i}\left(x_{i}\right)=\left\{x_{i}\right\}$ for each $i \in I$.

Proof. Let $\mu_{i_{0}} \in L^{X_{i_{0}}}$ and $\tau_{i}\left(\mu_{i_{0}}\right) \geq r$. Then

$$
\left(P_{i_{0}} \circ F\right)^{l}\left(\mu_{i_{0}}\right)=F^{l}\left(P_{i_{0}}^{l}\left(\mu_{i_{0}}\right)\right)=F^{l}\left(\mu_{i_{0}} \times \Pi_{i \neq i_{0}} X_{i}\right)
$$

Since F is $F L e$-continuous and $\tau_{i}\left(\mu_{i_{0}} \times \Pi_{i \neq i_{0}} X_{i}\right) \geq r$, it follows that $F^{l}\left(\mu_{i_{0}} \times \Pi_{i \neq i_{0}} X_{i}\right)$ is r-feo set. Then $P_{i} \circ F$ is an $F L e$-continuous.

We state the following result without proof in view of the above theorem.
Theorem 2.12 Let (X, τ) and $\left(X_{i}, \tau_{i}\right)$ be L-fts's $(i \in I)$. If a FM $F: X \multimap \Pi_{i \in I} X_{i}$ is FUe-continuous (where $\Pi_{i \in I} X_{i}$ is the product space), then $P_{i} \circ F$ is FUe-continuous for each $i \in I$, where $P_{i}: \Pi_{i \in I} X_{i} \rightarrow X_{i}$ is the projection multifunction which is defined by $P_{i}\left(x_{i}\right)=\left\{x_{i}\right\}$ for each $i \in I$.

Theorem 2.13 Let $\left(X_{i}, \tau_{i}\right)$ and $\left(Y_{i}, \eta_{i}\right)$ be L-fts's and $F_{i}: X_{i} \multimap Y_{i}$ be a FM for each $i \in I$. Suppose that $F: \Pi_{i \in I} X_{i} \multimap \Pi_{i \in I} Y_{i}$ is defined by $F\left(x_{i}\right)=\Pi_{i \in I} F_{i}\left(x_{i}\right)$. If F is FLe-continuous, then F_{i} is FLe-continuous for each $i \in I$.

Proof. Let $\mu_{i} \in L^{Y_{i}}$ and $\eta_{i}\left(\mu_{i}\right) \geq r$. Then $\eta_{i}\left(\mu_{i} \times \Pi_{i \neq j} Y_{j}\right) \geq r$. Since F is $F L e$-continuous, it follows that $F^{l}\left(\mu_{i} \times \Pi_{i \neq j} Y_{j}\right)=F^{l}\left(\mu_{i}\right) \times \Pi_{i \neq j} X_{j}$ is r-feo. Consequently, we obtain that $F^{l}\left(\mu_{i}\right)$ is r-feo for each $i \in I$. Thus, F_{i} is $F L e$-continuous.

We state the following result without proof in view of above theorem.
Theorem 2.14 Let $\left(X_{i}, \tau_{i}\right)$ and $\left(Y_{i}, \eta_{i}\right)$ be L-fts's and $F_{i}: X_{i} \multimap Y_{i}$ be a FM for each $i \in I$. Suppose that $F: \Pi_{i \in I} X_{i} \multimap \Pi_{i \in I} Y_{i}$ is defined by $F\left(x_{i}\right)=\Pi_{i \in I} F_{i}\left(x_{i}\right)$. If F is FUe-continuous, then F_{i} is FUe-continuous for each $i \in I$.

§3. Fuzzy upper and lower e-irresolute multifunctions

Definition 3.1 Let $F: X \multimap Y$ be a FM between two L-fts's $(X, \tau),(Y, \eta)$ and $r \in L_{0}$. Then F is called:
(i) Fuzzy upper e-irresolute (FUe-irresolute, in short) at an L-fuzzy point $x_{t} \in \operatorname{dom}(F)$ iff $x_{t} \in F^{u}(\mu)$ for each $\mu \in L^{Y}$ and μ is r-feo, there exists $\lambda \in L^{X}, \lambda$ is r-feo and $x_{t} \in \lambda$ such that $\lambda \wedge \operatorname{dom}(F) \leq F^{u}(\mu)$.
(ii) Fuzzy lower e-irresolute (FLe-irresolute, in short) at an L-fuzzy point $x_{t} \in \operatorname{dom}(F)$ iff $x_{t} \in F^{l}(\mu)$ for each $\mu \in L^{Y}$ and μ is r-feo, there exists $\lambda \in L^{X}, \lambda$ is r-feo and $x_{t} \in \lambda$ such that $\lambda \leq F^{l}(\mu)$.
(iii) FUe-irresolute (resp. FLe-irresolute) iff it is FUe-irresolute (resp. FLe-irresolute) at every $x_{t} \in \operatorname{dom}(F)$.

Example 3.1 Let $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $F: X \multimap Y$ be a FM defined by $G_{F}\left(x_{1}, y_{1}\right)=0.1, G_{F}\left(x_{1}, y_{2}\right)=\overline{1}, G_{F}\left(x_{1}, y_{3}\right)=\overline{0}, G_{F}\left(x_{2}, y_{1}\right)=0.5, G_{F}\left(x_{2}, y_{2}\right)=\overline{0}$, and $G_{F}\left(x_{2}, y_{3}\right)=\overline{1}$. Let λ_{1} and λ_{2} be a fuzzy subsets of X be defined as $\lambda\left(x_{1}\right)=0.5, \lambda\left(x_{2}\right)=0.5$: μ_{1} and μ_{2} be a fuzzy subsets of Y defined as $\mu_{1}\left(y_{1}\right)=0.5, \mu_{1}\left(y_{2}\right)=0.5, \mu_{1}\left(y_{3}\right)=0.5$ and $\mu_{2}\left(y_{1}\right)=0.4, \mu_{2}\left(y_{2}\right)=0.4, \mu_{2}\left(y_{3}\right)=0.4$. We assume that $\overline{1}=1$ and $\overline{0}=0$. Define L-fuzzy topologies $\tau: L^{X} \rightarrow L$ and $\eta: L^{Y} \rightarrow L$ as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \lambda=\lambda, \\
0, & \text { otherwise },
\end{array} \quad \eta(\mu)= \begin{cases}1, & \text { if } \mu=\overline{0} \text { or } \overline{1} \\
\frac{1}{2}, & \text { if } \mu=\mu_{1}, \\
0, & \text { otherwise } .\end{cases}\right.
$$

are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then F is $F U$-irresolute and $F L e$-irresolute.
Proposition 3.1 F is normalized implies F is $F U$-irresolute at $x_{t} \in \operatorname{dom}(F)$ iff $x_{t} \in$ $F^{u}(\mu)$ for each $\mu \in L^{Y}$ and μ is r-feo, there exists $\lambda \in L^{X}, \lambda$ is r-feo and $x_{t} \in \lambda$ such that $\lambda \leq F^{u}(\mu)$.

Remark 3.1 Let F be a FM between two L-fts's (X, τ) and (Y, η). For the mapping $F: X \multimap Y$, the following statements are valid:
(1) FUe-irresolute $\Rightarrow F U e$-continuous.
(2) FLe-irresolute $\Rightarrow F L e$-continuous.

In general, the converse of Remark 3.1 need not be true from the following examples.
Example 3.2 Let $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $F: X \multimap Y$ be a FM defined by $G_{F}\left(x_{1}, y_{1}\right)=0.8, G_{F}\left(x_{1}, y_{2}\right)=0.9, G_{F}\left(x_{1}, y_{3}\right)=0.8, G_{F}\left(x_{2}, y_{1}\right)=\overline{1}, G_{F}\left(x_{2}, y_{2}\right)=0.7$,
and $G_{F}\left(x_{2}, y_{3}\right)=0.9$. Let λ_{1} and λ_{2} be a fuzzy subset of X be defined as $\lambda_{1}\left(x_{1}\right)=0.3$, $\lambda_{1}\left(x_{2}\right)=0.1 ; \lambda_{2}\left(x_{1}\right)=0.1, \lambda_{2}\left(x_{2}\right)=0.2$ and μ_{1} and μ_{2} be a fuzzy subsets of Y defined as $\mu_{1}\left(y_{1}\right)=0.7, \mu_{1}\left(y_{2}\right)=0.9, \mu_{1}\left(y_{3}\right)=0.8$ and $\mu_{2}\left(y_{1}\right)=0.3, \mu_{2}\left(y_{2}\right)=0.1, \mu_{2}\left(y_{3}\right)=0.2$ We assume that $\overline{1}=1$ and $\overline{0}=0$. Define L-fuzzy topologies $\tau: L^{X} \rightarrow L$ and $\eta: L^{Y} \rightarrow L$ as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \lambda=\lambda_{1}, \\
0, & \text { otherwise },
\end{array} \quad \eta(\mu)= \begin{cases}1, & \text { if } \mu=\overline{0} \text { or } \overline{1} \\
\frac{1}{2}, & \text { if } \mu=\mu_{1}, \\
0, & \text { otherwise } .\end{cases}\right.
$$

are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then $F: X \multimap Y$ is FUe-continuous but not FUe-irresolute because μ_{2} is $\frac{1}{2}$-feo in $(Y, \eta), F^{u}\left(\mu_{2}\right)=\lambda_{2}$ is not $\frac{1}{2}$-feo set in (X, τ).

Example 3.3 Let $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $F: X \multimap Y$ be a FM defined by $G_{F}\left(x_{1}, y_{1}\right)=0.2, G_{F}\left(x_{1}, y_{2}\right)=\overline{1}, G_{F}\left(x_{1}, y_{3}\right)=\overline{0}, G_{F}\left(x_{2}, y_{1}\right)=0.5, G_{F}\left(x_{2}, y_{2}\right)=\overline{0}$, and $G_{F}\left(x_{2}, y_{3}\right)=0.3$. Let λ_{1} and λ_{2} be a fuzzy subsets of X be defined as $\lambda_{1}\left(x_{1}\right)=0.4$, $\lambda_{1}\left(x_{2}\right)=0.3 ; \lambda_{2}\left(x_{1}\right)=0.2, \lambda_{2}\left(x_{2}\right)=0.4, \mu_{1}$ and μ_{2} be a fuzzy subsets of Y defined as $\mu_{1}\left(y_{1}\right)=0.6, \mu_{1}\left(y_{2}\right)=0.9, \mu_{1}\left(y_{3}\right)=\overline{0} ; \mu_{2}\left(y_{1}\right)=0.4, \mu_{2}\left(y_{2}\right)=0.1, \mu_{2}\left(y_{3}\right)=\overline{1}$. We assume that $\overline{1}=1$ and $\overline{0}=0$. Define L-fuzzy topologies $\tau: L^{X} \rightarrow L$ and $\eta: L^{Y} \rightarrow L$ as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \text { if } \lambda=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \lambda=\lambda_{1}, \\
0, & \text { otherwise },
\end{array} \quad \eta(\mu)= \begin{cases}1, & \text { if } \mu=\overline{0} \text { or } \overline{1}, \\
\frac{1}{2}, & \text { if } \mu=\mu_{1}, \\
0, & \text { otherwise } .\end{cases}\right.
$$

are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then $F: X \multimap Y$ is $F L e$-continuous but not $F L e$ irresolute because μ_{2} is $\frac{1}{2}$-feo in $(Y, \eta), F^{l}\left(\mu_{2}\right)=\lambda_{2}$, is not $\frac{1}{2}$-feo set in (X, τ).

Theorem 3.1 Let $F: X \multimap Y$ be a FM between two L-fts's $(X, \tau),(Y, \eta)$ and $\mu \in L^{Y}$, then the following are equivalent:
(i) F is FLe-irresolute.
(ii) $F^{l}(\mu)$ is r-feo set, for any μ is r-feo.
(iii) $F^{u}(\mu)$ is r-fec set, for any μ is r-fec.
(iv) $e C_{\tau}\left(F^{u}(\mu), r\right) \leq F^{u}\left(e C_{\eta}(\mu, r)\right)$, for any $\mu \in L^{Y}$.
(v) $C_{\tau}\left(\delta I_{\tau}\left(F^{u}(\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(F^{u}(\mu), r\right), r\right) \leq F^{u}\left(e C_{\eta}(\mu, r)\right)$, for any $\mu \in L^{Y}$.

Proof. (i) \Rightarrow (ii): Let $x_{t} \in \operatorname{dom}(F), \mu \in L^{Y}, \mu$ is r-feo and $x_{t} \in F^{l}(\mu)$ then, there exist $\lambda \in L^{X}$, λ is r-feo set and $x_{t} \in \lambda$ such that $\lambda \leq F^{l}(\mu)$ thus $x_{t} \in e I_{\tau}\left(F^{l}(\mu), r\right)$. Therefore, we obtain $F^{l}(\mu) \leq e I_{\tau}\left(F^{l}(\mu), r\right)$. Thus $F^{l}(\mu)$ is r-feo set.
(ii) \Rightarrow (iii): Let $\mu \in L^{Y}$ and μ is r-fec. Hence by (ii), $F^{l}(\overline{1}-\mu)=\overline{1}-F^{u}(\mu)$ is r-feo. Then $F^{u}(\mu)$ is r-fec.
(iii) \Rightarrow (iv): Let $\mu \in L^{Y}$ hence by (iii), $F^{u}\left(e C_{\eta}(\mu, r)\right)$ is r-fec. Then we obtain

$$
e C_{\tau}\left(F^{u}(\mu), r\right) \leq F^{u}\left(e C_{\eta}(\mu, r)\right)
$$

(iv) $\Rightarrow(\mathrm{v})$: Let $\mu \in L^{Y}$ hence by (iv), we obtain

$$
C_{\tau}\left(\delta I_{\tau}\left(F^{u}(\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(F^{u}(\mu), r\right), r\right) \leq e C_{\tau}\left(F^{u}(\mu), r\right) \leq F^{u}\left(e C_{\eta}(\mu, r)\right)
$$

(v) \Rightarrow (ii): Let $\mu \in L^{Y}$ and μ is r-feo. Hence by (v), we have

$$
\begin{aligned}
\overline{1}-F^{l}(\mu) & =F^{u}(\overline{1}-\mu) \\
& \geq C_{\tau}\left(\delta I_{\tau}\left(F^{u}(\overline{1}-\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(F^{u}(\overline{1}-\mu), r\right), r\right) \\
& =C_{\tau}\left(\delta I_{\tau}\left(\overline{1}-F^{l}(\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(\overline{1}-F^{l}(\mu), r\right), r\right) \\
& =\overline{1}-\left[C_{\tau}\left(\delta I_{\tau}\left(F^{l}(\mu), r\right), r\right) \vee I_{\tau}\left(\delta C_{\tau}\left(F^{l}(\mu), r\right), r\right)\right] \\
F^{l}(\mu) & \leq C_{\tau}\left(\delta I_{\tau}\left(F^{l}(\mu), r\right), r\right) \vee I_{\tau}\left(\delta C_{\tau}\left(F^{l}(\mu), r\right), r\right) .
\end{aligned}
$$

Hence, $F^{l}(\mu)$ is r-feo.
(ii) \Rightarrow (i): Let $x_{t} \in \operatorname{dom}(F), \mu \in L^{Y}$ and μ is r-feo, with $x_{t} \in F^{l}(\mu)$ we have by (ii), $F^{l}(\mu)=\lambda$ (say) is r-feo, then there exists $\lambda \in L^{X}, \lambda$ is r-feo-set and $x_{t} \in \lambda$ such that $\lambda \leq F^{l}(\mu)$. Thus F is $F L e$-irreesolute.

Theorem 3.2 Let $F: X \multimap Y$ be a FM and normalized between two L-fts's $(X, \tau),(Y, \eta)$ and $\mu \in L^{Y}$, then the following are equivalent:
(i) F is $F U e$-irresolute.
(ii) $F^{u}(\mu)$ is r-feo set, for any μ is r-feo.
(iii) $F^{l}(\mu)$ is r-fec set, μ is r-fec.
(iv) $e C_{\tau}\left(F^{l}(\mu), r\right) \leq F^{l}\left(e C_{\eta}(\mu, r)\right)$, for any $\mu \in L^{Y}$.
(v) $C_{\tau}\left(\delta I_{\tau}\left(F^{l}(\mu), r\right), r\right) \wedge I_{\tau}\left(\delta C_{\tau}\left(F^{l}(\mu), r\right), r\right) \leq F^{l}\left(e C_{\eta}(\mu, r)\right)$, for any $\mu \in L^{Y}$.

Proof. This can be proved in a similar way as Theorem 3.1.
Corollary 3.1 Let $F: X \multimap Y$ be a $F M$ between two fts's $(X, \tau),(Y, \eta)$ and $\mu \in L^{Y}$. Then we have the following:
(i) If F is normalized, then F is $F U e$-irresolute at a fuzzy point x_{t} iff $x_{t} \in r$-feo set of $F^{u}(\mu)$, for each μ is r-feo and $x_{t} \in F^{u}(\mu)$.
(ii) F is $F L e$-irresolute at a fuzzy point x_{t} iff $x_{t} \in r$-feo set of $F^{l}(\mu)$, for each μ is r-feo and $x_{t} \in F^{l}(\mu)$.

Theorem 3.3 Let $\left\{F_{i}\right\}_{i \in \Gamma}$ be a family of FLe-irresolute between two fts's (X, τ) and (Y, η). Then $\bigcup_{i \in \Gamma} F_{i}$ is FLe-irresolute.

Proof. Let $\mu \in L^{Y}$, then $\left(\bigcup_{i \in \Gamma} F_{i}\right)^{l}(\mu)=\bigvee_{i \in \Gamma}\left(F_{i}^{l}(\mu)\right)$ by, Theorem 1.3 (ii). Since $\left\{F_{i}\right\}_{i \in \Gamma}$ is a family of $F L e$-irresolute between two fts's (X, τ) and (Y, η), then $F_{i}^{l}(\mu)$ is r-feo for any μ is r-feo. Then we have $\left(\bigcup_{i \in \Gamma} F_{i}\right)^{l}(\mu)=\bigvee_{i \in \Gamma}\left(F_{i}^{l}(\mu)\right)$ is r-feo for any μ is r-feo. Hence $\bigcup_{i \in \Gamma} F_{i}$ is $F L e$-irresolute.

Theorem 3.4 Let $\left\{F_{i}\right\}_{i \in \Gamma}$ be a family of normalized FUe-irresolute between two fts's (X, τ) and (Y, η). Then $F_{1} \bigcup F_{2}$ is FUe-irresolute.

Proof. Let $\mu \in L^{Y}$, then

$$
\left(F_{1} \cup F_{2}\right)^{u}(\mu)=F_{1}^{u}(\mu) \wedge F_{2}^{u}(\mu)
$$

by, Theorem 1.3 (iii). Since $\left\{F_{i}\right\}_{i \in \Gamma}$ is a family of normalized $F U e$-irresolute between two fts's (X, τ) and (Y, η), then $F_{i}{ }^{u}(\mu)$ is r-feo, for any μ is r-feo, for each $i \in\{1,2\}$. Then for each $\mu \in L^{Y}$, we have $\left(F_{1} \cup F_{2}\right)^{u}(\mu)=F_{1}{ }^{u}(\mu) \wedge F_{2}{ }^{u}(\mu)$ is r-feo, for any μ is r-feo set. Hence $F_{1} \cup F_{2}$ is $F U e$-irresolute.

Theorem 3.5 Let $F: X \multimap Y$ be a crisp FUe-irresolute and e-compact valued between two fts's (X, τ) and (Y, η). Then the direct image of a r-fuzzy e-compact in X under F is also r-fuzzy e-compact.

Proof. Let λ be r-fuzzy e-compact set in X and $\left\{\gamma_{i}: \gamma_{i}\right.$ is r-feo set in $\left.Y, i \in \Gamma\right\}$ be a family of covering of $F(\lambda)$. i.e. $F(\lambda) \leq \bigvee_{i \in \Gamma} \gamma_{i}$. Since $\lambda=\bigvee_{x_{t} \in \lambda} x_{t}$, we have

$$
F(\lambda)=F\left(\bigvee_{x_{t} \in \lambda} x_{t}\right)=\bigvee_{x_{t} \in \lambda} F\left(x_{t}\right) \leq \bigvee_{i \in \Gamma} \gamma_{i}
$$

It follows that for each $x_{t} \in \lambda, F\left(x_{t}\right) \leq \bigvee_{i \in \Gamma} \gamma_{i}$. Since F is fuzzy e-compact valued, then there exists finite subset $\Gamma_{x_{t}}$ of Γ such that $F\left(x_{t}\right) \leq \bigvee_{n \in \Gamma_{x_{t}}} \gamma_{n}=\gamma_{x_{t}}$. By Theorem 1.1 (viii), we have,

$$
x_{t} \leq F^{u}\left(F\left(x_{t}\right)\right) \leq F^{u}\left(\gamma_{x_{t}}\right) \text { and } \lambda=\bigvee_{x_{t} \in \lambda} x_{t}=\bigvee_{x_{t} \in \lambda} F^{u}\left(\gamma_{x_{t}}\right)
$$

Since, $\gamma_{x_{t}}$ is r-feo, then from Theorem 2.2, we have $F^{u}\left(\gamma_{x_{t}}\right)$ is r-feo. Hence $\left\{F^{u}\left(\gamma_{x_{t}}\right)\right.$: $F^{u}\left(\gamma_{x_{t}}\right)$ is r-feo, $\left.x_{t} \in \lambda\right\}$ is a family covering the set λ. Since λ is r-fuzzy e-compact, then there exists finite index set N such that $\lambda \leq \bigvee_{n \in N} F^{u}\left(\gamma_{x_{t_{n}}}\right)$. From Theorem 1.1 (vii), we have

$$
F(\lambda) \leq F\left(\bigvee_{n \in N} F^{u}\left(\gamma_{x_{t_{n}}}\right)\right)=\bigvee_{n \in N} F\left(F^{u}\left(\gamma_{x_{t_{n}}}\right)\right) \leq \bigvee_{n \in N} \gamma_{x_{t_{n}}}
$$

Then $F(\lambda)$ is r-fuzzy e-compact.
Theorem 3.6 Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two $F M$'s and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three L-fts's. If F is F Le-irresolute and H is $F L e$-irresolute, then $H \circ F$ is FLe-irresolute.

Proof. Let $\nu \in L^{Z}, \nu$ is r-feo. Since H is $F L e$-irresolute, then by Theorem 3.1, $H^{l}(\nu)$ is r feo set in Y. Also, F is $F L e$-irresolute implies $F^{l}\left(H^{l}(\nu)\right)$ is r-feo set in X. Hence, we have $(H \circ F)^{l}(\nu)=F^{l}\left(H^{l}(\nu)\right)$ is r-feo. Thus $H \circ F$ is $F L e$-irresolute.

Theorem 3.7. Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two $F M$'s and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three L-fts's. If F is FUe-irresolute and H is $F U e$-irresolute, then $H \circ F$ is FUe-irresolute.

Proof. This can be proved in a similar way as Theorem 3.6.

Theorem 3.8. Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two $F M$'s and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three L-fts's. If F is FLe-irresolute and H is F Le-continuous, then $H \circ F$ is $F L e-c o n t i n u o u s$.

Proof. Let $\nu \in L^{Z}, \delta(\nu) \geq r$. Since H is $F L e$-continuous, then by Theorem 2.1, $H^{l}(\nu)$ is r-feo set in Y. Also, F is $F L e$-irresolute implies $F^{l}\left(H^{l}(\nu)\right)$ is r-feo set in X. Hence, we have $(H \circ F)^{l}(\nu)=F^{l}\left(H^{l}(\nu)\right)$ is r-feo. Thus $H \circ F$ is $F L e$-continuous.

Theorem 3.9. Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two $F M$'s and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three L-fts's. If F and H are normalized, F is $F U e$-irresolute and H is $F U e$ continuous, then $H \circ F$ is $F U e$-continuous.

Proof. This can be proved in a similar way as Theorem 3.8.
Theorem 3.10. Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two $F M$'s and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three L-fts's. If F is normalized and $F U e$-irresolute and H is F Le-continuous, then $H \circ F$ is $F U$ e-continuous.

Proof. Let $\nu \in L^{Z}, \delta(\nu) \geq r$. Since H is $F L e$-continuous, then from Theorem 2.1, $H^{l}(\nu)$ is r-feo set in Y. Also, F is normalized and $F U e$-irresolute implies $F^{u}\left(H^{l}(\nu)\right)$ is r-feo set in X by, Theorem 3.2. Hence, we have $(H \circ F)^{u}(\nu)=F^{u}\left(H^{l}(\nu)\right)$ is r-feo. Thus $H \circ F$ is $F U e$ continuous.

Theorem 3.11. Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two $F M$'s and let $(X, \tau),(Y, \eta)$ and (Z, δ) be three L-fts's. If H is normalized and $F U e$-continuous, F is $F L e$-irresolute, then $H \circ F$ is F Le-continuous.

Proof. Let $\nu \in L^{Z}, \delta(\nu) \geq r$. Since H is $F U e$-continuous, then $H^{u}(\nu)$ is r-feo set in Y. Also, F is $F L e$-irresolute implies $F^{l}\left(H^{u}(\nu)\right)$ is r-feo set in X by, Theorem 3.1. Hence, we have $(H \circ F)^{l}(\nu)=F^{l}\left(H^{u}(\nu)\right)$ is r-feo. Thus $H \circ F$ is F Le-continuous.

Acknowledgements

The authors would like to thank from the anonymous reviewers for carefully reading of the manuscript and giving useful comments, which will help to improve the paper.

References

[1] S. E. Abbas, M. A. Hebeshi and I. M. Taha, On fuzzy upper and lower semi-continuous multifunctions, Journal of Fuzzy Mathematics, 22 (2014), no. 4, 951-962.
[2] S. E. Abbas, M. A. Hebeshi and I. M. Taha, On upper and lower contra-continuous fuzzy multifunctions, Journal of Mathematics, 47 (2015), no. 1, 1-13.
[3] K. M. A. Al-hamadi and S. B. Nimse, On fuzzy α-continuous multifunctions, Miskolc Mathematical Notes, 11 (2010), no. 2, 105-112.
[4] M. Alimohammady, E.Ekici, S.Jafari and M. Roohi, On fuzzy upper and lower contra continuous multifunctions, Iranian Journal of Fuzzy Systems, 8 (2011), no. 3, 149-158.
[5] C. Berge, Topological spaces including a treatment of multi-valued functions, Vector Spaces and Convexity, Oliver, Boyd London, (1963).
[6] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-189.
[7] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology : fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy sets and systems, 54 (2) (1993), 207-212.
[8] J. A. Goguen, The fuzzy Tychonoff Theorem, J. Math. Anal. Appl., 43 (1973), no. 3, 734-742.
[9] U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980), 659-673.
[10] U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems, 73 (1995), 131-149.
[11] U. Höhle and A. P. Šostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3, Kluwer Academic Publishers, (1999), 123-272.
[12] Y. C. Kim and J. W. Park, r-fuzzy δ-closure and r-fuzzy θ-closure sets, J. Korea Fuzzy Logic and Intelligent systems, 10 (2000), no. 6, 557-563.
[13] Y. C. Kim, A. A. Ramadan and S. E. Abbas, Weaker forms of continuity in Šostak's fuzzy topology, Indian J. Pure and Appl. Math., 34 (2003), no. 2, 311-333.
[14] Y. C. Kim, Initial L-fuzzy closure spaces, Fuzzy Sets and Systems., 133 (2003), 277-297.
[15] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, A. Mickiewicz, Poznan, (1985).
[16] T. Kubiak and A.P. Šostak, Lower set valued fuzzy topologies, Questions Math., 20 (1997), no. 3, 423-429.
[17] Y. Liu and M. Luo, Fuzzy topology, World Scientific Publishing Singapore., (1997), 229-236.
[18] R. A. Mahmoud, An application of continuous fuzzy multifunctions, Chaos, Solitons and Fractals, 17 (2003), 833-841.
[19] M. N. Mukherjee and S. Malakar, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems, 41 (1991), 113-125.
[20] N. S. Papageorgiou, Fuzzy topolgy and fuzzy multifunctions, J. Math. Anal. Appl., 109 (1985), 397-425.
[21] V. Popa, On Characterizations of irresolute multimapping, J. Univ. Kuwait (sci), 15 (1988), 21-25.
[22] V. Popa, Irresolute multifunctions, Internet J. Math and Math. Sci, 13 (1990), no. 2, 275-280.
[23] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo Ser II, 11 (1985), 89-103.
[24] A. P. Šostak, Two decades of fuzzy topology : Basic ideas, Notion and results, Russian Math. Surveys, 44 (1989), no .6, 125-186.
[25] A. P. Šostak, Basic structures of fuzzy topology, J. Math. Sciences, 78 (1996), no. 6, 662-701.
[26] D. Sobana, V. Chandrasekar and A. Vadivel, Fuzzy e-continuity in Šostak's fuzzy topological spaces, (Submitted).
[27] E. Tsiporkova, B. De Baets and E. Kerre, A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings, Fuzzy sets and systems, 85 (1997), 93-108.
[28] E. Tsiporkova, B. De Baets and E. Kerre, Continuity of fuzzy multivalued mappings, Fuzzy sets and systems, 94 (1998), 335-348.
[29] A. Vadivel and B. Vijayalakshmi, Fuzzy e-irresolute mappings and fuzzy e-connectedness in smooth topological spaces, (submitted).
[30] C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl, 45 (1974), 512-521.

Scientia Magna

Vol. 14 (2019), No. 1, 96-101

An integral representation of a subclass of analytic functions

Pardeep Kaur ${ }^{1}$ and Sukhwinder Singh Billing ${ }^{2}$
${ }^{1}$ Department of Applied Science, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib-140407, Punjab, India.
E-mail: aradhitadhiman@gmail.com
${ }^{2}$ Department of Mathematics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140407, Punjab, India.
E-mail: ssbilling@gmail.com

Abstract In the present paper, we study the class $R_{p}(\gamma, \alpha)$ given as

$$
R_{p}(\gamma, \alpha)=\left\{f \in \mathcal{A}_{p}: \Re\left((1-\alpha) \frac{I_{p}(n, \lambda) f(z)}{z^{p}}+\alpha \frac{I_{p}(n+1, \lambda) f(z)}{z^{p}}\right)>\gamma, z \in \mathbb{E}\right\} .
$$

We find the integral representation of $I_{p}(n, \lambda) f(z)$ as a sufficient condition for $f \in \mathcal{A}_{p}$ to be a member of the class $R_{p}(\gamma, \alpha)$. The results of some known classes in this direction appear as particular cases of our main result.
Keywords multivalent function, analytic function, multiplier transformation, extreme points. 2010 Mathematics Subject Classification 30C45

§1. Introduction

Let \mathcal{A} be the class of functions f, analytic in the open disk $\mathbb{E}=\{z:|z|<1\}$ in the complex plane \mathbb{C} and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. Then $f \in \mathcal{A}$ has the Taylor series expansion

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

Let \mathcal{A}_{p} denote the class of functions of the form

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, p \in \mathbb{N}=\{1,2,3 \ldots\}
$$

analytic and multivalent in the open disk \mathbb{E}. Note that $\mathcal{A}_{1}=\mathcal{A}$. For $f \in \mathcal{A}_{p}$, define a multiplier transformation $I_{p}(n, \lambda) f(z)$, as follows:

$$
I_{p}(n, \lambda) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k},\left(\lambda \geq 0, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)
$$

The special case $I_{1}(n, 0)$ of the above defined operator is the well-known Sǎlăgean [9] derivative operator D^{n}, defined for $f \in \mathcal{A}$ as given below:

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}
$$

Singh et al. [11], Krzyz [5] and Chichra [2] studied the class $R(\beta), \beta<1$, defined as:

$$
R(\beta)=\left\{f \in \mathcal{A}: \Re\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>\beta, z \in \mathbb{E}\right\}
$$

where β is given by

$$
\beta_{\mathcal{S}}=\inf \{\beta: R(\beta) \subset \mathcal{S}\}
$$

and

$$
\beta_{\mathcal{S}^{*}}=\inf \left\{\beta: R(\beta) \subset \mathcal{S}^{*}\right\} .
$$

Later on, Singh et al. [12] showed that $\beta_{\mathcal{S}^{*}} \leq-\frac{1}{4}$ which was further improved by Ali [1]. Gao [3] and Silverman [10] proved independently and obtained $\beta_{\mathcal{S}^{*}} \leq \frac{6-\pi^{2}}{24-\pi^{2}}$. In 2007, Gao et al. [4] studied the following subclass of \mathcal{A} :

$$
R(\beta, \alpha)=\left\{f \in \mathcal{A}: \Re\left(f^{\prime}(z)+\alpha z f^{\prime \prime}(z)\right)>\beta, z \in \mathbb{E}\right\}
$$

where $\beta<1, \alpha>0$. They determined the extreme points of $R(\beta, \alpha)$ and obtain sharp bounds for $\Re\left(f^{\prime}(z)\right)$ and $\Re(f(z) / z)$. They also determined the number $\beta(\alpha)$ such that $R(\beta, \alpha) \subset \mathcal{S}^{*}$, for certain fixed number α in $[1, \infty)$. Recently, Wang et al. [13] studied the class $Q(\alpha, \beta, \gamma)$ defined as:

$$
Q(\alpha, \beta, \gamma)=\left\{f \in \mathcal{A}: \Re\left[\alpha(f(z) / z)+\beta f^{\prime}(z)\right]>\gamma,(\alpha, \beta)>0,0 \leq \gamma<\alpha+\beta \leq 1 ; z \in \mathbb{E}\right\}
$$

They provided the extreme points and radius of univalence for the members of this class. In the present paper, we study the following subclass $R_{p}(\gamma, \alpha)$ of \mathcal{A}_{p} involving multivalent functions :

$$
R_{p}(\gamma, \alpha)=\left\{f \in \mathcal{A}_{p}: \Re\left((1-\alpha) \frac{I_{p}(n, \lambda) f(z)}{z^{p}}+\alpha \frac{I_{p}(n+1, \lambda) f(z)}{z^{p}}\right)>\gamma, z \in \mathbb{E}\right\}
$$

where $\alpha>0$ and $0 \leq \gamma<\alpha \leq 1$.

§2. Main Result

Theorem 2.1 A function $f \in \mathcal{A}_{p}$ is in $R_{p}(\gamma, \alpha)$ if and only if $I_{p}(n, \lambda) f(z)$ can be expressed as

$$
\begin{equation*}
I_{p}(n, \lambda) f(z)=\int_{|x|=1}\left[(2 \gamma-1) z^{p}+(2-2 \gamma) \sum_{m=0}^{\infty} \frac{x^{m} z^{m+p}}{m \beta+1}\right] d \mu(x) \tag{1}
\end{equation*}
$$

where $\mu(x)$ is the probability measure defined on the $X=\{x:|x|=1\}$. For fixed β and $\alpha, R_{p}(\gamma, \alpha)$ and the probability measures $\{\mu\}$ defined on X are one-to-one by the expression (1).

Proof. Let $u(z)=\frac{I_{p}(n, \lambda) f(z)}{z^{p}}$.
Differentiating lograthmically, we have:

$$
\begin{equation*}
\frac{z u^{\prime}(z)}{u(z)}=\frac{z\left(I_{p}(n, \lambda) f(z)\right)^{\prime}}{I p(n, \lambda) f(z)}-p \tag{2}
\end{equation*}
$$

In the view of relation

$$
z I_{p}^{\prime}(n, \lambda) f(z)=(p+\lambda) I_{p}(n+1, \lambda) f(z)-\lambda I_{p}(n, \lambda) f(z)
$$

(2) becomes

$$
\frac{z u^{\prime}(z)}{(p+\lambda) u(z)}+1=\frac{\left.I_{p}(n+1, \lambda) f(z)\right)}{I p(n, \lambda) f(z)} .
$$

Hence

$$
\frac{I_{p}(n+1, \lambda) f(z)}{I p(n, \lambda) f(z)}=u(z)+\frac{1}{p+\lambda} z u^{\prime}(z) .
$$

Now

$$
\begin{equation*}
(1-\alpha) \frac{I_{p}(n, \lambda) f(z)}{z^{p}}+\alpha \frac{I_{p}(n+1, \lambda) f(z)}{z^{p}}=u(z)+\beta z u^{\prime}(z), \tag{3}
\end{equation*}
$$

where $\beta=\frac{\alpha}{p+\lambda}$. Since $f \in R_{p}(\gamma, \alpha)$, therefore

$$
\Re\left(u(z)+\beta z u^{\prime}(z)\right)>\gamma .
$$

Let \mathcal{P} denote the normalized class of analytic functions which have positive real part. Therefore $f \in R_{p}(\gamma, \alpha)$ if and only if

$$
\frac{u(z)+\beta z u^{\prime}(z)-\gamma}{1-\gamma} \in \mathcal{P}, u(0)=1
$$

By Herglotz expression of functions in \mathcal{P}, we have

$$
\frac{u(z)+\beta z u^{\prime}(z)-\gamma}{1-\gamma}=\int_{|x|=1} \frac{1+x z}{1-x z} d \mu(x)
$$

which is equivalent to

$$
\frac{1}{\beta} u(z)+z u^{\prime}(z)=\frac{1}{\beta} \int_{|x|=1} \frac{1+(1-2 \gamma) x z}{1-x z} d \mu(x) .
$$

Therefore

$$
z^{-\frac{1}{\beta}} \int_{0}^{z}\left(\frac{1}{\beta} u(\zeta)+\zeta u^{\prime}(z)\right) \zeta^{\frac{1}{\beta}-1} d \zeta=\frac{1}{\beta} \int_{|x|=1}\left(z^{-\frac{1}{\beta}} \int_{0}^{z} \frac{1+(1-2 \gamma) x \zeta}{1-x \zeta} \zeta^{\frac{1}{\beta}-1} d \zeta\right) d \mu(x)
$$

i.e.

$$
u(z)=\int_{|x|=1}\left((2 \gamma-1)+(2-2 \gamma) \sum_{m=0}^{\infty} \frac{(x z)^{m}}{m \beta+1}\right) d \mu(x)
$$

which is equivalent to

$$
I_{p}(n, \lambda) f(z)=\int_{|x|=1}\left((2 \gamma-1) z^{p}+(2-2 \gamma) \sum_{m=0}^{\infty} \frac{x^{m} z^{m+p}}{m \beta+1}\right) d \mu(x)
$$

Since the probability measures $\{\mu\}$ and the class \mathcal{P} as well as class \mathcal{P} and $R_{p}(\gamma, \alpha)$ are one-toone, so the second part of the theorem is true and can be proved by deduction. This completes the proof of Theorem 2.1.

Corollary 2.2 The extreme points of the class $R_{p}(\gamma, \alpha)$ are

$$
\begin{equation*}
I_{p}(n, \lambda) f_{x}(z)=(2 \gamma-1) z^{p}+(2-2 \gamma) \sum_{m=0}^{\infty} \frac{x^{m} z^{m+p}}{m \beta+1},|x|=1 \tag{4}
\end{equation*}
$$

Proof. Using the notation $I_{p}(n, \lambda) f_{x}(z)$, equation (1) can be written as

$$
I_{p}(n, \lambda) f_{\mu}(z)=\int_{|x|=1} I_{p}(n, \lambda) f_{x}(z) d \mu(x)
$$

By Theorem 2.1, the map $\mu \rightarrow f_{\mu}$ is one-to-one, so the proof follows.
For $p=1$ and $n=0=\lambda$ in the Theorem 2.1, we get:

Corollary 2.3 For $f \in R_{1}(\gamma, \alpha)$, where $\alpha>0$ and $0 \leq \gamma<\alpha \leq 1$,

$$
\Re\left((1-\beta) \frac{f(z)}{z}+\beta f^{\prime}(z)\right)>\gamma, \beta=\alpha .
$$

therefore

$$
I_{1}(0,0) f(z)=f(z)=\int_{|x|=1}\left((2 \gamma-1) z+(2-2 \gamma) \sum_{m=0}^{\infty} \frac{x^{m} z^{m+1}}{m \beta+1}\right) d \mu(x)
$$

For $\alpha=1-\beta$, the above expression obtained by Wang et al. [13]. Saitoh [8] and Owa [6, 7] discussed the related properties of $Q(1-\beta, \beta, \gamma)=R_{1}(\gamma, 1-\beta)$.

Selecting $p=1=n$ and $\lambda=0$ in Theorem 2.1, we have the following result:
Corollary 2.4 If $f \in R_{1}(\gamma, \alpha)$, where $\alpha>0$ and $0 \leq \gamma<\alpha \leq 1$, satisfies

$$
\Re\left((1-\alpha) \frac{I_{1}(1,0) f(z)}{z}+\alpha \frac{I_{1}(2,0) f(z)}{z}\right)=\Re\left(f^{\prime}(z)+\beta f^{\prime \prime}(z)\right)>\gamma,
$$

where $\beta=\alpha>0$, then

$$
I_{1}(1,0) f(z)=z f^{\prime}(z)=\int_{|x|=1}\left((2 \gamma-1) z+(2-2 \gamma) \sum_{m=0}^{\infty} \frac{x^{m} z^{m+1}}{m \beta+1}\right) d \mu(x)
$$

which on further simplification gives

$$
f(z)=\int_{|x|=1}\left((2 \gamma-1) z+(2-2 \gamma) \bar{x} \sum_{m=0}^{\infty} \frac{(x z)^{m+1}}{(m+1)(m \beta+1)}\right) d \mu(x)
$$

This result was obtained by Gao et al. [4]. If we select $\beta=1$ in the above result, we get:

Corollary 2.5 If $f \in R_{1}(\gamma, 1)$, where $\alpha=\beta=1$ and $0 \leq \gamma<1$, then

$$
f(z)=\int_{|x|=1}\left((2 \gamma-1) z+(2-2 \gamma) \bar{x} \sum_{m=0}^{\infty} \frac{(x z)^{m+1}}{(m+1)^{2}}\right) d \mu(x)
$$

$$
=\int_{|x|=1}\left(\int_{0}^{z} \frac{(2 \gamma-1) \zeta+(2 \gamma-2) \bar{x} \log (1-x \zeta)}{\zeta} d \zeta\right) d \mu(x)
$$

this result was also obtained by Silverman [10].
Selecting $p=1, n=2$ and $\lambda=0$, we get the following result from Theorem 2.1:

Corollary 2.6 If $f \in R_{1}(\gamma, \alpha), \alpha>0$ and $0 \leq \gamma<\alpha \leq 1$, satisfies

$$
\left.\Re\left((1-\alpha) \frac{I_{1}(2,0) f(z)}{z}+\alpha \frac{I_{1}(3,0) f(z)}{z}\right)=\Re\left(f^{\prime}(z)+(1+2 \beta) z f^{\prime \prime}(z)\right)+\beta z^{2} f^{\prime \prime \prime}(z)\right)>\gamma
$$

where $\beta=\alpha>0,0 \leq \gamma<1$, then

$$
I_{1}(2,0) f(z)=z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)=\int_{|x|=1}\left((2 \gamma-1) z+(2-2 \gamma) \sum_{m=0}^{\infty} \frac{x^{m} z^{m+1}}{m \beta+1}\right) d \mu(x)
$$

Further, we get

$$
z f^{\prime}(z)=\int_{|x|=1}\left((2 \gamma-1) z+(2-2 \gamma) \sum_{m=0}^{\infty} \frac{x^{m} z^{m+1}}{(m+1)(m \beta+1)}\right) d \mu(x)
$$

Hence

$$
\begin{equation*}
f(z)=\int_{|x|=1}\left((2 \gamma-1) z+(2-2 \gamma) \bar{x} \sum_{m=0}^{\infty} \frac{(x z)^{m+1}}{(m+1)^{2}(m \beta+1)}\right) d \mu(x) \tag{5}
\end{equation*}
$$

Corollary 2.7 If $f \in \mathcal{A}$ and

$$
\left.\Re\left(f^{\prime}(z)+(1+2 \beta) z f^{\prime \prime}(z)\right)+\beta z^{2} f^{\prime \prime \prime}(z)\right)>\gamma
$$

where $\beta>0,0 \leq \gamma<1$, then extreme points of this class are given by (5) as

$$
\begin{equation*}
f_{x}(z)=(2 \gamma-1) z+(2-2 \gamma) \bar{x} \sum_{m=0}^{\infty} \frac{(x z)^{m+1}}{(m+1)^{2}(m \beta+1)},|x|=1 \tag{6}
\end{equation*}
$$

Corollary 2.8 If $f \in \mathcal{A}$ and

$$
\left.\Re\left(f^{\prime}(z)+(1+2 \beta) z f^{\prime \prime}(z)\right)+\beta z^{2} f^{\prime \prime \prime}(z)\right)>\gamma
$$

where $\beta>0,0 \leq \gamma<1$, then

$$
\left|a_{n}\right| \leq \frac{2(1-\gamma)}{m^{2}(\beta(m-1)+1)}, m \geq 2
$$

The result is sharp.
Proof. The coefficient bounds are maximized at an extreme point.Thus from (6), $f_{x}(z)$ can be expressed as

$$
f_{x}(z)=z+2(1-\gamma) \sum_{m=2}^{\infty} \frac{x^{m-1} z^{m}}{m^{2}(\beta(m-1)+1)},|x|=1 .
$$

and hence the result follows.

References

[1] R. M. Ali. On a subclass of starlike functions. Rocky Mountain J. Math. 24 (1994), no. 2, 447 451.
[2] P. N. Chichra. New subclasses of the class of close-to-convex functions. Proc. Amer. Math. Soc. 62 (1997), no. 1, $37-43$.
[3] C.-Y. Gao. On the starlikeness of the Alexander integral operator. Proc. Japan. Acad. Ser. A Math. Sci. 68 (1992), 330-333.
[4] C.-Y. Gao and S.-Q. Zhou. Certain subclass of starlike functions. Appl. Math. Comput. 187 (2007), 176-182.
[5] J. Krzyz. A counter example concerning univalent functions. Folias Sco. Scient. Lubliniensis, Mat. Fiz. Chem. 2 (1962), 57-58.
[6] S. Owa. Some properties of certain analytic functions. Soochow J. Math. 13 (1987), 197-201.
[7] S. Owa. Generalization properties for certain analytic functions. Internat. J. Math. \& Math. Sci. 21 (1998), 707-712.
[8] H. Saitoh. On inequalities for certain analytic functions. Math. Japon. 35(1990), 1073-1076.
[9] G. Sǎlăgean. Subclass of univalent functions. Lecture Notes in Math. 1013 (1983), 362-372.
[10] H. Silverman. A class of bounded starlike funtions. Internat. J. Math. \& Math. Sci. 17 (1994), 249 - 252.
[11] R. Singh and S. Singh. Starlikeness and convexity of certain integrals. Ann. Univ. Mariae CurieSklodowska Sect. A 35 (1981), 45-47.
[12] R. Singh and S. Singh. Convolution properties of a class of starlike functions. Proc. Amer. Math. Soc. 106 (1989), 145 - 152.
[13] Z. -G. Wang, C.-Y. Gao and S. -M. Yuan. On the univalency of certain analytic functions. J. Inequal. Pure Appl. Math. 7 (2006) No. 1, Art. 9.

SCIESVIIA MAGNA

An international journal

 ISSN 1556-6706

