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§1. Definition and simple properties
For any fixed positive integer k and any positive integer n, the famous Smarandache ceil
function Si(n) is defined as follows:

Si(n) =min{m e N: n|m"}. (1.1)

Many people had studied elementary properties of Si(n), and obtained some interesting
results.

Z. Xu [18]. Define Q(n) = Q(p'p3?---pf") = a1 +as + -+ + a,. Let k be a given
positive integer. Then for any real number x > 3, we have the asymptotic formula

ZQ(Sk(n)) =zlnlnz+ Az + O (&) ,

n<z

1 1
where A = v + Z (111 <1 — ) + > , v s the Fuler constant and Z denotes the sum over
p p
P

P
all the primes.

J. Li [8]. Define Q(n) = Q(pT'ps? - py") =a1+az+---+an. Let k be a given positive
integer. Then for any integer n > 3, we have the asymptotic formula

Q(Sp(nl) = %(lnlnn +C)+0 (%) ,

where C is a computable constant.
Y. Wang [15]. Let k be a fized positive integer, then for any integer n > 3, we have the

asymptotic formula
nlnn

In(Sk(n!) = +0(n).
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§2. Mean values of the Smarandache Ceil function

L. Ding [1]. Let x > 2, for any fized positive integer k, we have the asymptotic formula

3 Si(n) (2;“_1)1;[[1]9@1“) (1+p22_3>} +0 (44,

n<z

where ((s) is the Riemann zeta function, H denotes the product over all prime p, and € is any

P
fixed positive number.

C. Wu [16]. 1) For any fized positive integer k > 2 and any positive integer n, let ax(n)

denote the k-th power complements of n. Then we have

(Sk(n)* = ax(n) - n.

2) Let k be a fized positive integer. For any real number x > 1, we have the asymptotic

formula

1 34e
Zs’f 2H< P2 +p  poh1g prh- 2)+O<$g+)>

n<x

where ((s) is the Riemann zeta function, € > 0 is any fized positive number.
X. Wang [13]. For any real number x > 2, we have the asymptotic formula

> Sgln - 3;1293 A+ Ay 40 (277,

where Ay and As are two computable constants, € is any fized positive integer.
Y. Wang [14]. 1) For any real number o > 1 and integer k > 2, we have the identity

= 1”1 20 —k—1 k
1
; (n) 2‘3“Jrk11;[(+p°‘1)7

where H denotes the product over all prime p.
P
2) For any positive integer n, the dual function of Sy,(n) is defined as Sk(n) = max {m € N: m" | n}.
For any real number o > 1 and integer k > 2, we have the identities

Sen) _ ¢(a)¢(ka — 1)
ne (k)

(=)™ Sk(n) _ C(@)¢(ka—1) {(2" D@t -1 1} 7

no N C(ka) 20—2(2ka _ 1)

M8

3
Il
—

M8

3
Il
-

where ((s) is the Riemann zeta function.
D. Ren [12]. Let d(n) denote the Dirichlet divisor function, and let k be a given positive

integer with k > 2. Then for any real number x > 1, we have the asymptotic formula

3 d(Sk(n 74( Jelne I1 (1 T +1pk_1> L0z +0 (ﬁ%) 7

n<lz p
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where ((s) is the Riemann zeta function, C' is a computable constant, and £ is any fixed positive

number.

X. He and J. Guo [7]. 1) Let a > 0, o4(n) = Zdo‘. Then for any real number x > 2,
d|n
and any fized positive integer k > 2, we have the asymptotic formula

_ 62t (a + 1)(k(at 1) — a)

> 0a (Sk(n) = @+ D R(a+1)4+0 (xa+% + e) ,

n<z

where ((s) is the Riemann zeta function, € is any fized positive number, and

1
Rla+1) = H (1 ~ pklatD—a _ p(k—l)(a-‘rl)) :
P

2) Let d(n) denote the Dirichlet divisor function. Then for any real number x > 1, and

any fized positive integer k > 2, we have the asymptotic formula

6¢(k)xInz 1 14
n<z p
where ((s) is the Riemann zeta function, C' is a computable constant, and ¢ is any fized positive

number.
L. Zhang, M. Lv and W. Zhai [20]. Let d3(n) denote the Piltz divisor function of
dimensional 3, then for any real number x > 2, we have
Z ds (Sk(n)) = 2Py i (logz) + O ($%€7c5(1)> ,
n<z
where Ps i (logx) is a polynimial of degree 2 in logx, 0(z) = log% z(loglog x)_%, c>0is an
absulute constant.
Y. Zhang, H. Liu and P. Zhao [21]. Let d(n) denote the Dirichlet divisor function,
Sk(n) denote the Smarandache ceil function, then for any real number % << %, 2012 <y <
xz, we have

Z d(Sk(n)) = H(z +y) — H(z) + O (yz~ 2 +277)

z<n<z+y
where H(z) = tyzlogx + tax, € denotes a fived but sufficiently small positive constant.
Q. Feng and R. Wang [4]. For any positive integer n, we define
ak(n):{n%], n=0,1,2,3,---.
Let ((s) be the Riemann zeta function, X be any positive number, and
g(s) = H(l Fplme —plRs _pme,
P

1) For any real number x > 1, k > 3, we have

1

S S (an(n) = (k= Dg(1)a +0 (1= 5+X)

n<lz
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2) For any real number © > 1, k < 2, we have

k 2 2 k2 k42 k2 k42

n<z

Q. Feng, J. Guo and R. Wang [5]. For any positive integer n and any natural number
m, we define

am(n) =max {i™: i™ <n, i € N}.

1) For any real number x > 1, n,m,k,t € N, m,t > 2, k =tm+ 1, we have
m

> Skan(m) = —Zw TGt -1)C((2t — m+2)

1 1 1 1 .
X 1- 1+ + (1—))]4—0(:6“'%"'5),
1;[ [ p(p+ 1) ( p2t=3 p(2t71)m71 p2t

where ((s) is the Riemann zeta function, € is any positive real number.
2) For any real number © > 1, n,m,k,t e N, m =2, t > 2, k=2t+1, we have

st~ 01 (1 ()]0,

n<zx

n<x

where ((s) is the Riemann zeta function, € is any positive real number.

3) For any real number x > 1, n,m,k,t € N, m,t > 2, k = tm, we have
S = g2t -1 o O (z'+ e
Z k(am(n))_mx (2t — )H —W + (95 " >,
n<x p
where ((s) is the Riemann zeta function, € is any positive real number.

4) For any real number x > 1, n,m, k,t € N, m,t > 2, m = kt, we have

Z Sk (am(n)) = 2t 40 (xl-',-ﬁ_kg) 7

n<x

m
m+1

where € is any positive real number.

J. Xu [17]. For any fized positive integer k and any integer n, we define

cp(n) = min{mk: m* >n, m e NT},

di(n) = max{mk: mF <n, meNT}.

For any real number x > 2, we have the asymptotic formula

> Sk(er(n) = % +0(a"7), D Sediln) = % +o (7).

n<z n<zx

L. Qi and Y. Zhao [11]. Let k > 2, m > 1 be two positive integers. For any real
number x > 1, we have the asymptotic formula

m2(m+1)

S o (Sk(n) = 2

n<z

+0 (:E"”%“) ,
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where ((s) is the Riemann zeta function, ¢(n) is the Euler function, € is any positive real
number, and

1 1 1 1 1 1 1 1\™
i) =TT 1 155 (5 + v * ot ~ s — (0 ) 5 (1))
p

E. Lv [10]. Define
um =1, Um=]]r
pln

Let k > 2 be a fixed positive integer. For any real number x > 1, we have the asymptotic formula

—9)y3 53k 23
S () - Uy = KBk H<11+p >+2<<3> H<1 ! >

2 2 3 2 T2 3
n<zx T P p +p ™ p p +p

_44(3)4(3’;?— 1)a® I (1 Lp=P —p* —p3k> L0 (mg+s) ,

T . pPk+3 | p3kt2

where ((s) is the Riemann zeta function, € > 0 is any positive real number.
Y. Xue and L. Gao [19]. Define

v =1, Um=]]r

pln

Let k > 2 be a fixed positive integer. For any real number x > 1, we have the asymptotic formula

271-2 p3 + p4

n<x

+9C(4)C(4k —2)2* H <1 1+ P34k 4 o=tk _ p24k>

212 - p3+p4
9C(M)C(4k — 1)zt 1 4 pp—4k _ pl—4k 4 ,3—dk
L) i )z H(l_ R At )
2w . pP+p

3¢(4)zt 1 4o
+ 2(7; E[(l—p3+p4>+o(m+),

where ((s) is the Riemann zeta function, € is any positive real number.

§3. The dual function of the Smarandache Ceil function
For any positive integer n and any fixed positive integer k, the dual function of Si(n) is
defined as follows:
Sk(n) =max{m e N: m" |n}.

J. Guo and Y. He [6]. 1) Let a >0, 0,(n) = Zdo‘. Then for any real number z > 1
d|n
and any fized positive integer k > 2, we have the asymptotic formula

() et atlye , B
> 0 (Sk(n)) = atr T F +O<x ’ )’ i a>k-1,

= C(k—a)z+0 (ﬁ“) , if a<k-1,
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where ((s) is the Riemann zeta function, and € is any fized positive number.
2) Let d(n) denote the Dirichlet divisor function. Then for any real number x > 1 and any

fized positive integer k > 2, we have

> d(Sk(n) = ¢(k)z+ 0 (2179),

n<x

where ((s) is the Riemann zeta function, and ¢ is any fized positive number.
Y. Lu [9]. Letd(n) denote the Dirichlet divisor function, and let k > 2 be a fived integer.

Then for any real number x > 1, we have the asymptotic formula

Zd(sil(n)) =zlnz+ 2y -1z +0 (x%) 7

n<x

> d (Si(m) = (e +¢ 1) ot +0 (s).

n<x

where v is the Euler constant, and ((s) is the Riemann zeta function.

L. Ding [2]. 1) Let x > 2, for any fized positive integer k > 2, we have the asymptotic

S Si(n) (k)l)x+0 (#3+),

n<x

formula

where ((s) is the Riemann zeta function, and € is any fized positive number.
2) For k = 2, we have the asymptotic formula

252 <lnm+C> +O<3:1+5),

where C' is a computable constant, and € is any fived positive number.
Q. Feng and J. Guo [3]. For any positive integer n and any fixed positive integer k > 2,
we define
cx(n) =min{m e N: nm=t" teN}.

1) For any real number x > 1, k, n € N, k > 2, we have

S Su(m)er(n) = ﬁxkﬂg(k LR 4+ k1)

(- s () £ (44).

where ((s) is the Riemann zeta function, and ¢ is any fized positive number.

n<z

2) For any real number x > 1, k, n € N, k > 2, we have

Z Sk(ck(n)) 7;32 H (1 + M) +0 (x%-he) ’

n<zx

where € is any fized positive number, and

1 ) 1 5 1
0=t~ i+ (9 (1 e ) 492
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3) For any real number x > 1, k, n € N, k > 2, we have

S Selmer(n) = ogatClh o+ D ~ 1)

n<x
1 1 1 ,
<TT(1- 14 - )) +O(xk+§+5),
1;[ ( PHp+1) ( preThmL phEt

where ((s) is the Riemann zeta function, and ¢ is any fized positive number.

4) For any real number x > 1, k, n € N, k > 2, we have

> Silem) =z +0 (att)

n<zx

where € is any fixed positive number
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§1. Definition and the mean value properties of the Smarandache multiplicative
function

For any positive integer n, f(n) is called a Smarandache multiplicative function if f(ab) =
max(f(a), f(b)), (a,b) =1, and if n = p"' p5? - - - pi* is the prime powers factorization of n, then

f(n) = max {f(p;")}, (L.1)

1<i<k

for any prime p and any positive integer «, f(n) is a new Smarandache multiplicative function
if f(p*) = ap. That is

f(n) = max {f(p;")} = max {a;p;}.

1<i<k 1<i<k

J. Ma [11]. For any real number x > 2, we have the asymptotic formula
2 2

Zf(n)zg-lfm—s—O( : )

2
ot In” x

Y. Liu, P. Gao [10]. A new arithmetical function Pi(n) is defined as

d(n)

Pd(n):Hdzn T,
d|n

where d(n) = Zd\n 1 is the Dirichlet divisor function. For any real number x > 2, we have the
asymptotic formula

7t z? x? x?
E P - .z L
n<zf( a(n)) 72 Inx +c In2z +0 (1113:6) ’

_ 5n* | 1y oo d(n)lnn
where C' = 555 + 5> -1 — 2 15 a constant.
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X. Zhang [24]. For any integer n € N, n is named as a simple number if the product
of all proper divisors of n is mo more than n. Now let A be a simple number set, that is
A=1{2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21,...}. For any real number x > 2 we have the
asymptotic formula

x? x2 2x 9g:2/3 z2
n%f("):Dlm+D2m%;+m+2lm+O(m3x>’
neA
where Dy, Dy are computable constants.

W. Xiong [19]. Let OF(N) denotes the number of all integers 1 < k < n such that f(n)

is odd, EF(n) denotes the number of all integer 1 < k < n such that f(n) is even. For any

positive integer n > 1, we have the asymptotic formula

o7t = (w)

From the formula above, it can be immediately deduced the following
|
00 OF(n)

J. Li [6]. For any real number x > 1, we have the asymptotic formula

2
NP z(lnl2n:l:)
Z —o nz In® 2 7

neN
f(n)<z
=1 1
where ¢ = Z M 1S a constant.
— n(n+1)

Z. Feng [1]. A natural number n is of the k-full number if for any prime p, p | n implies
pF | n. Let Ay be a simple number set, for any real number x > 2 we have the asymptotic
formula

z? z? 20 9x2/3 z?
—ol po 2T
T;f(n) Iz T 21n2x+lnx+21nx+ <1n3x)’

neAy

where C1,Cs are computable constants.

Y. Men [12]. Let Smd(n) = Zd|n ﬁd), for any real number x > 1, when n # 1,24, we
have

(D). Ifn = p"py® - pdep, pi" < ps* < - < pge < p, and p, pi(i = 1,2,...,s) are
primes, then Smd(n) is not a positive integer;

(2). If n = p1pa -+ ps,p1 < P2 < -+ < ps, pi(i =1,2,...,8) are primes, then Smd(n) is
not a positive integer.

R. Guo and X. Zhao [2]. 1. For any real number x > 1 and any fized positive integer

k > 2, we have the asymptotic formula

3 A f(0) = lenx Lo ().

k
e In" x
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where A(n) is the Mangoldt function, ¢;(i = 1,2,...,k) are computable constants and ¢; = %
2. For any real number x > 1 and any fized positive integer k > 2, we have the asymptotic

formula

oa x?
A(n)S(n) = 2* —— +0 ( ) ,
nz;m ()S(n) glnz_lz In*

where S(n) is the famous Smarandache function, S(n) = min{m : m € Nyn | m!}, ¢;(i =
1

§.

For any positive integers m and n, an arithmetical function h(n) is defined as follows

1,2,...,k) are computable constants and ¢y =

(m,n) = 1= h(mn) = max{h(m), h(n)}.

(o2

If n = p{'ps?---pp* is the prime powers factorization of n, defining

1
P(1) =1, hin) = éliagxk{ a; +1

I3 (1.2)

then h(n) is also a Smarandache multiplicative function.
J. Zhang and P. Zhang [22]. 1. For any real number x > 1, we have the asymptotic

formula

1
Z h(n) = 5 et O(a;%).
n<x
2. For any real number x > 1, we have the asymptotic formula

1\* 1 ¢3) L
> (h(n)—2) ) v+ O0(x3),

n<z

where ((n) is the Riemann Zeta-function.

The Smarandache multiplicative function g(n) can also be defined as follows

9(1) =0, (m,n) =1 = g(mn) = min{g(m), g(n)}. (1.3)
If n = p? péz -+ plr is the prime powers factorization of n, then
_ : t;
g(n) = min {f(p;')}, (14)

specifically let g(p') = min{¢, p}, then g(n) is a new Smarandache multiplicative function.

Z. Ren [13]. For any real number x > 1, we have the asymptotic formula

o) — 124:1/2 1 1821/3 1 LAx
Y9 =+ H(1+(p—|—1)(p%—l)>+ - H(1+( = >+O( ),

n<z P p p+1) pg_l)

where X is any fized positive number.

L. Li [8]. 1. For any positive integer n, if n = pilpt22~--pff is the prime powers
factorization of n, let A = max {t;},i=1,...,r and
1<i<r
P(1)=1.F(n) = min (=} = — (15)
= n) = min = — .
’ 1<i<r t; + 1 A+17
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then F(n) is a Smarandache multiplicative function. For any real number x > 1, we have the

asymptotic formula

Y F(n) = Ai 1x+0(x%).

n<x
2. For any real number x > 1, we have the asymptotic formula
1\? 12
> <F(n) - ) = VT +0(7).

2 2

n<zx

T. Zhang [23]. Let p be a prime and for any positive real number m, Up,(n) is defined

as follows

U1) = 1,Un(p®) = p* +m, (1.6)

if n = pi"p3?---pp* is the prime powers factorization of n, Uy (n) is defined as Un(n) =

Un(®7") - Un(py*). For any real number x > 1, we have the asymptotic formula

1 m 34
Z Um(n) = 51'21;[ (1 + p(p—l—l)) + O((L’2+ )

n<z

X. Wang [18]. Let I(n) be the multiplicative function such that for any prime p and any

integer o > 1, one has

then we have

where C' is an explicit constant.
L. Wang [16]. Let Ny > 1 be a fized integer and for the multiplicative function I(n), we

have

No
Z I(n) =3 log? x ( Z cilog™ z + O(log Vo™t x)) )

n<z i=1

where ¢;(i > 1) are computable constants.
§2. Some hybrid mean values involving the Smarandache multiplicative func-

tion

Y. Yi [21].  For any prime p and positive integer «, the Smarandache multiplicative

function f(n) is defined as f(p®) = pa. Letn = p'ps? - - - p&r is the prime powers factorization
of m, then from the definition of f(p®) we have

o) = e (00} = e {7 ).

1<i<r 1<i<r
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For any real number x > 3, we have the asymptotic formula

Dot/ 4
St - P = S o),

p)
ot In“ x

where {(n) denotes the Riemann zeta-function and P(n) is the greatest prime divisor of n.
W. Lu and L. Gao [9]. For any real number x > 3 and any real number or complex

number «, we have the asymptotic formula

2 ((a+3)¢(2a + 3)x2at3 "¢ - x2ots x2ot3
3 dalm) (£() — P())* = sy o),

(2a+3)Inz ~ 'z In"*t!

n<x

where ((n) denotes the Riemann zeta-function and all ¢; are computable constants.

H. Shen [14].  For any positive integer n, if n = p{'ps? ---p¥r is the prime powers

factorization of n, the Smarandache multiplicative function V(n) is defined as follows
V(l) = ]_,V(TL) = 1rga<x {a1p1u~~~7a7‘pr}' (21)

For any real number x > 1 and any fized positive integer r, we have the asymptotic formula

Z(V(n)—p(n>)g=$%i ; +O(1nflx>,

%
n<lz i=1 Iz

where p(n) is the least prime divisor of n and all ¢; are computable constants.
H. Liu and W. Cui [3]. Letn > 1 is a positive integer, we have the asymptotic formula

- 373&‘ .'173
Vn)p(n) = 4+ O —— |,
S Voot =37 ()

where all a;(i = 1,...,r) are computable constants.

§3. Mean values involving the Smarandache-type multiplicative function

The Smarandache-type multiplicative function Cp,(n) is defined as the m-th root of the
largest m-th power dividing n, J,(n) is denoted as m-th root of the smallest m-th power
divisible by n.

H. Liu and J. Gao [5]. 1. For any integer m > 3 and real number x > 1, we have

D Crnln) = C(?(LT;)”QC + o<x%+€>.

n<x
2. For any integer m > 1 and real number x > 1, we have

2

1 1 1 1
T 2m + 3~ 2mH1 T 2mt2 3
E Jm — I I 1 p p p p O 5te .
) 20(2) 4 [ T (- 5)(1 - 2&1)] T

p

n<lx

H. Liu and J. Gao [4]. 1. For any integer m > 3 and real number x > 1, we have

ST AM)Cn(n) =2+ 0(10236),

n<lx
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where A(n) is the Mangoldent function.
2. For any integer m > 2 and real number x > 1, we have

> A0)Tm(n) =2® + 0(15;5)’

n<x

The Smarandache-type multiplicative function K,,(n) is the largest m-th power-free num-
ber dividing n, L,,(n) is denoted as: n divided by the largest m-th power-free number dividing
n. That is, if n = p{*p3? - - - pi* is the prime powers factorization of n, it follows that

Kp(n) = pi'ps? - pp,

L?n (’I’L) = piylp;/Q t 'pzky
where 8; = min(a;, m — 1), 7, = max(0,; — m + 1)

C. Yang and C. Li [20]. 1. Let m > 2 is a given integer, then for any real number

r > 1, we have

5 i = g I (14 Grigry) +0 ()

n<x p

2. Let m > 2 is a given integer, then for any real number x > 1, we have

> o = (1 y (pm11><p+1>> y O(ﬁ%)’

n<x p

where ((s) is the Riemann Zeta-function.
J. Wang [15]. The asymptotic formula

> Kn(n) = 25;) 1;[ (1 + (p”’ll)(p+1)> + O(x“ie—%é(-@)).

n<z

holds, where co is an absolute positive constant and §(z) = (logx)3/°(loglog z)~1/5.

For any fixed positive integer n with the normal factorization pi" p5? ---pp*, (1 < i < k),
the Smarandache-type multiplicative function Fy,,(n), Gy, (n) are denoted as

o 1, if a; =mk,
Fm (pz l) - .
pi*, otherwise .
and
o 1, if «a; =mk,
Gm(p;') =

p;, otherwise .

J. Li and D. Liu [7]. 1. For any integer m > 2 and real number x > 1, we have

3 F(n) = S mm + DR(m + D™, 0<xm+%+e>,

w2
n<lz
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where € be any fized positive integer,and

1 1
R(m—|—1)=||<1— - )
m-+1 m m2 m2—1
s D +p P +p

2. For any integer m > 2 and real number x > 1, we have

Y~ Gmln) = ¢(2m)R(2)a” + O(2™),

n<z

where

1 )
= H ( P2 om—1 4 2m—2 )
» +p p +p

M. Wang [17]. 1. For any integer m > 2, A be a set without m-th power factor number,
we have

6¢(m + 1)am*? ( 1 1 ) ( ol )
F.n)=—2"T 0% TT(1— I +O(amti—e),
Z <n) T2 H pmfl +pm pmz _'_pm?fl z

n<z p
neA

where € be any fized positive number.

2. For any positive integer m > 2, A be a set without m-th power factor number, we have

1 i,
ZGm —.’E2H< p +p p2m—1 +p2m—2) +O<.’E2 )

n<x
neA
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Abstract We introduce r-fuzzy e*-open and r-fuzzy e*-closed sets in fuzzy topological s-
paces in the sense of Sostak’s. Also we introduce r-fuzzy e*-interior, r-fuzzy e*-closure and
investigate some of their properties.

Keywords r-fuzzy e*-open, r-fuzzy e*-closed, r-fuzzy e”-interior and r-fuzzy e*-closure.
2010 Mathematics Subject Classification 54A40, 54C05, 03E72.

81. Introduction and preliminaries

Sostak [23] introduced the fuzzy topology as an extension of Chang’s fuzzy topology [4].
It has been developed in many directions [11,12,21]. Weaker forms of fuzzy continuity between
fuzzy topological spaces have been considered by many authors [2,3,5,8,10,18,19] using the
concepts of fuzzy semi-open sets [2], fuzzy regular open sets [2], fuzzy preopen sets, fuzzy
strongly semiopen sets [3], fuzzy ~v-open sets [10], fuzzy J-semiopen sets [1], fuzzy d-preopen
sets [1], fuzzy semi d-preopen sets [25] and fuzzy e-open sets [22]. Recently, Bin Shahna [3]
introduced and investigated fuzzy strong semi-continuity and fuzzy precontinuity between fuzzy
topological spaces, one of which was independent and the other strictly stronger than fuzzy
semi-continuity [2]. Ganguly and Saha [9] introduced the notions of fuzzy J-cluster points in
fuzzy topological spaces in the sense of Chang [4]. Kim and Park [14] introduced r-d-cluster
points and d-closure operators in fuzzy topological spaces in view of the definition of Sostak.
It is a good extension of the notions of Ganguly and Saha [9]. Park et al. [17] introduced the
concept of fuzzy semi-preopen sets which is weaker than any of the concepts of fuzzy semi-open
or fuzzy preopen sets. Using these concepts he defined and studied fuzzy semi-precontinuous
mappings between fuzzy topological spaces in Chang’s sense. Sobana et al. [24], defined r-fuzzy

e-open and 7-fuzzy e-closed sets in a fuzzy topological space in the sense of Sostak. In 2008,



Vol. 14 Fuzzy e*-open sets in Sostak’s topological spaces 19

the initiations of e*-open sets in topological spaces was introduced by Erdal Ekici [6].

In this paper, we define r-fuzzy e*-open and r-fuzzy e*-closed sets in a fuzzy topological
space in the sense of Sostak [23]. Using these concepts, we define and study fuzzy e*-interior,
fuzzy e*-closure and some of their properties.

Throughout this paper, nonempty sets will be denoted by X, Y etc., I = [0, 1] and
In= (0, 1]. For a € I, a(z) = a for all z € X. A fuzzy point x, for t € Iy is an element of X

t ify==x
0 ifyéua.

The set of all fuzzy points in X is denoted by P¢(X). A fuzzy point x, € A iff ¢ < A(x).
A fuzzy set A is quasi-coincident with p, denoted by Aqu, if there exists x € X such that
A(z) + p(x) > 1. If A is not quasi-coincident with p, we denoted Agu. If A C X, we define the

1 ifzxeA,

0 ifxé¢ A
All other notations and definitions are standard, for all in the fuzzy set theory.
Lemma 1.1. [23] Let X be a nonempty set and X\, u € IX. Then

such that x;(y) =

characteristic function x4 on X by xa(z) =

(i) Aqu iff there exists xy € A such that xiqp.
(1) Aqu, then XA p # 0.
(i) Aqu iff A <1— p.
(i) A< piff x; € X implies x; € p iff xiq\ implies xiqu implies xiGA.
(v) x:q \/A wi iff there exists ig € A such that x.qu;,.
ic

Definition 1.1. [23] A function 7 : I* — I is called a fuzzy topology on X if it satisfies

the following conditions:
(1) 7(0) = (1) = 1,
(2) T(Vier 1) = Nier 7(1i), for any {pitier € I,
(3) (1 A pz) > 7(n) AT(p2), for any pr, pe € IX.

The pair (X, 7) is called a fuzzy topological space (for short, fts).

Remark 1.1. [20] Let (X, 7) be a fuzzy topological space. Then, for each r € Iy, T =
{ueI*X:7(u) >r} is a Change’s fuzzy topology on X .

Theorem 1.1. [21] Let (X, 7) be a fts. Then for each X € I*, r € Iy we define an
operator C, : IX x Iy — IX as follows: C.(\, v) = N{p € I : X<, 7(1 —pu) > r}. For
A\, € IX and r,s € Iy, the operator C, satisfies the following conditions: (1) C,(0,7) = 0,
(2) A< oA 1), (9) Coh 1)V Crlpts 1) = Cr AN i, 1), (4) Co(A, 1) < ColA, 8) if 7 < 5,
(5) Co(Cr (A 1), 7) = Co (A, 7).

Theorem 1.2. [21] Let (X, 7) be a fts. Then for each v € Iy, A € IX we define an
operator I, : IX x Iy — IX as follows: L;(\, ) = \/{p € IX : X > pu, 7(u) > r}. For
A\, € I* and r,s € Iy, the operator I, satisfies the following conditions: (1) I.(1,7) =1, (2)

19
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A> LA ), (8) LA, r)ANL(u, v) = Li(AAp, ), (4) I:(A, r) < I(A\ s) if s <r, (5)
LI\, r), ) =L:(A, 1), (6) (L= A1) =1—=Cr(A, 1) and C-(L— A1) =1—I(A, 1)
Definition 1.2. [15] Let (X, 7) be a fts. Then for each u € I, x, € P(X) and r € Iy,

(i) w is called r-open Q,-neighbourhood of xy if xiqu with T(u) > r.

(ii) p is called r-open R, -neighbourhood of xy if xiqu with p = I (Cr(X\, 1), 7).
We denote Q,(zy, ) = {pu € I* : xpqu, () > r}, Ro(xy, v) = {pn € I* : zyqp =
L(Cr(\ 1), )}

Definition 1.3. [15] Let (X, 7) be a fts. Then for each A € I, x; € Py(X) and r € Iy,
(i) x4 is called r-1 cluster point of X if for every u € Q. (x¢, r), we have ugA.
(#) x4 is called -8 cluster point of X if for every p € R, (x¢, ), we have ugA.

(iii) An §-closure operator is a mapping D, : IX x I — IX defined as follows: 6-Cr(\, 7) or
DA\, ) =\{z: € P(X) : x¢ is r-0-cluster point of \}

Definition 1.4. Let (X, 7) be a fuzzy topological space. For A € IX and r € I,

(i) A is called an r-fuzzy semiopen (resp. r-fuzzy semi-closed) [16] set if A < C(I (N, 1), r)
(resp. T.(C(\, 1), 7) < ).

(i) X\ is called an r-fuzzy preopen (resp. r-fuzzy preclosed) [13] set if A < L.(C-(A, 1), r)
(resp. C-(I:(\, 1), 1) < A).

(iii) X is called r-fuzzy §-closed [13] iff A = D (X, 7).

(iv) The complement of r-fuzzy semiopen (resp. r-fuzzy preopen, r-fuzzy semi-preopen and -
fuzzy d-closed) is r-fuzzy semi-closed (resp. r-fuzzy preclosed, r-fuzzy semi-preclosed and

r-fuzzy 0-open).
Definition 1.5. Let (X, 7) be a fuzzy topological space. N\, u € I and r € Iy,

(i) X\ is called an r-fuzzy 0-semiopen (resp. r-fuzzy O-semiclosed) [24] set if A < C,(6-
L\ r), ) (resp. I (6-C-(X, 1), ) <A).

(i) X is called an r-fuzzy §-preopen (resp. r-fuzzy 6-preclosed) [24] set if X < I (6-C- (X, 1), 1)
(resp. C.(6-I.(\, 1), r) <A).

(iii) X is called an r-fuzzy e-open (resp. r-fuzzy e-closed) [24] set if X < C.(0-I:(\, 1), )V
L (6-C- (A, 1), r) (resp. Cr(6L-(A, r), ) NI (6C-(A, 7), r) <A).

(iv) X is called an r-fuzzy B-open (resp.r-fuzzy B-closed) set if X < C(I.(C-(\, 1), 1), r)
(resp. I.(C.(I:(A, 7), 7), ) < )\).

Definition 1.6. [2/] Let (X,T) be a fuzzy topological space. \,ju € I and r € Iy,
(i) el (A, v)=\/{p € IX : u <\, pis a r-feo set } is called the r-fuzzy e-interior of .

(ii) eCr (N, ) = N{p € IX : p >N\, pis ar-fe*o set } is called the r-fuzzy e-closure of \.

20
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§2. r-fuzzy e*-open sets

We introduce the following definitions.

Definition 2.1. Let (X, 7) be a fuzzy topological space. For N\, u € IX and r € Iy, A
is called an r-fuzzy e*-open (resp. r-fuzzy e*-closed) set if X < C, (L (6-C-(X\, 1), T), 1) (Tesp.
L(CH(0-I:(\, ), 7), ) < \).

Definition 2.2. Let (X,7) be a fuzzy topological space. A\, u € IX and r € Iy,

(i) e*I.(\, r) =\ {peIX :u <\ pisar-fe*o set } is called the r-fuzzy e*-interior of \.
(ii) e*Cr(A, ) = N{p € IX : p >\, pis ar-fe*c set } is called the r-fuzzy e*-closure of \.

Obviously, e*C, (A, r) is the smallest r-fe*c set which contains A, and e*I, (A, r) is the
largest r-fe*o set which is contained in A. Also e*C,(A, ) = (A, r) for any r-fe*c set A and
e*I.(\, r) = (A, r) for any r-fe*o set \.

Hence we have

LA, 1) < 0sIy (A, r) <elr (A, 1) < BL (A, 7) S eI (A, r) < (A, 7).
(A, 1) S e*Cr(A, 1) < BC-(A, 1) < eCr(A, 1) < 0sCr (A, 1) < Cr(A, 7).
and
LA, r) < 0ple(A, v) <elr (A, r) S BI(A, r) e’ L-(A, 1) < (A, 7).
(A, 1) < e*Cr(A, 1) < BC-(A, 1) < eCr (X, 1) < 0pCr(A, 1) < Cr(A, 7).
Lemma 2.1. The following hold for a subset \ of a fts X.
(1) e*C-(\, 1) is r-fe*c.
(1)) 1 —e*Cr(A, r)=e*I.(1— (A, 7)).
Theorem 2.1. The following holds for a subset A of a fts X.
(i) (A, r)isr-fefo e (A )=\, r)ANC(L:(6C-(\, 1), T), 7).
(i) (A, r)isr-fefc s (A, )=\ r)VI(C(0I (N 1), 1), 7).
(iii) e*Cr(N\, )= (N, ) VI(C-(0I-(A, T), ), T).
(iv) e*I.(A, )= (A, r) NC(I;(6C- (A, T), ), T).
Proof. (i) Let A be r-fe*o. Then A < C(I.(6C-(A, r), r), r). We obtain
A )=, ) ANCAI(6C (A, 7)), 1), 7).

Conversely, let (A, r) = (A, 7) AC-(I:(6C (A, 7), ), r). We have
A, )= r)ANC-(I-(0C-(A, ), 7), 7).
< CT(IT((SCT()\7 T)7 ’I“), T)'
Hence (A, r) is r-fe*o.
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(ii) Taking complements, proof is similar to (i).

(iii) Since e*C,(\, r) is r-fe*c, we have,
L(C-(0L: (N, 7r),r),r) < L (Cr (0L (e"Cr (A, 7),7),1), ) < e*Cr(\, 7).

Hence, (A, 7)\/ I:(C; (61
L(Cr(0L-(AV I (C- (01

(A 1), ), 1) <e*Cr(A, r). On the other way, since

(0L (A, 7), 7), 7), ), ), T)

L(Cr(0L-( AN 0L (6C (6L (A, 7), 1), ), ), T), T)
:IT(CT@]T(A) T)\/ ( (61‘1’(}‘7 T)? T), T)7 T)v T)
:IT(CT((SIT((SCT((SIT(/\ T) )7 ’I“), T)a T)
=1(C:(01-(A, 1), 7), )

N, )V IL(CH(OL- (A, 1), 1), 7),

< F
then (A, )\ L-(C-(6L-(A\, ), 7), 7)
e Cr(A, 1) < (A, 1)\ I(C- (8L (\, 7), 1), 7).

Thus, we obtain e*C- (A, r) = (A, )\ I (C- (6L (\, 7), 1), ).
(iv) Similar to the proof of (iii). O

s r-fe*c containing A and hence

—-

Theorem 2.2. Let A be a subset of a fts X. Then the following hold
L(C. (0L (N, 1), T), 7).
I(Cr (81 (A, 1), 1), 7).

(i) e C- (61 (A, 1), 1) =
)

(iii) eI (6Cr(N, 1), 1) = 6C,(e* I (N, 1), 7) = Cr (L (6C7(N, 1), 7), 7).
)=
)

(i) 0L (e*Cr(\, 1), T

(iv) e*I.(eCr(A, L (6sCr (A, 1), 7) NopCr(A, 7).

(A7) ), )

(v) e*Cr(el (X, 1), r) =0sCr(dsI;(\, 1), )\ opL- (A, 7).
(A7) ), )
(A7) )

<

, T

(vi) eC(e*I (A, ), 1) =08 (6sC- (A, 1), 7) AIpCr(A, 7).

(vii) el (e*Cr (X, 1), r) =0sCr(dsI (N, 1), 7)\/ opI- (A, 7).
Proof. The Proof is similar to the proof of Theorem 2.15 in [7]. O

Remark 2.1. From the above definitions it is clear that the following implications are

true for r € Iy.

r-fuzzy open

r-fuzzy 6 semi open r-fuzzy 0 pre open

r-fuzzy e-open

r-fuzzy [ open r-fuzzy e*-open

22
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where r-fo, r-féso, r-fésc, r-fopo, r-fopc, r-feo, r-fec, r-ffo, r-ffc, r-fe*o, r-fe*care abbre-
viated by r-fuzzy open, r-fuzzy J- semiopen, r-fuzzy J-semiclosed, r-fuzzy dé-preopen, r-fuzzy
d-preclosed, r-fuzzy e-open, r-fuzzy e-closed, r-fuzzy B-open, r-fuzzy S-closed, r-fuzzy e*-open,
r-fuzzy e*-closed respectively.

From the above definitions, it is clear that every r-fépo is r-feo and every r-fdso is r-feo.
Also, it is clear that every r-feo set is r-fBo set and r-fe*o set. Also, every r-fo set is r-fe*o
set. The converses need not be true in general.

The converses of the above implications are not true as the following examples show:
Example 2.1. Let A, A2, A3 and Ay be fuzzy subsets of X = {a, b} defined as follows
a) = 0.2, A\ (b) =0.1;

)\4((1) = 0.2, )\4([)) =0.8.
Then T : IX — I defined as

1, ifA=0orl,
T()\) = %7 Zf)\ = Alv )\27 >\37
0, otherwise,

Then Ay is %-fﬁo but Ay is not %-feo set.
Example 2.2. Let A and u be fuzzy subsets of X = {a, b, ¢} defined as follows
Aa) = 0.4, A(b) = 0.5, A\(c) = 0.5;
w(a) =04, u(b) = 0.5, u(c) =0.4.
Then 7 : IX — I defined as

1, ifA=0orl,
i =),

1
2
0, otherwise,

T(A) =

Then p is %—feo set but pu is not %—féso set.
Example 2.3. Let A and u be fuzzy subsets of X = {a, b, ¢} defined as follows
Aa) = 0.5, A(b) = 0.3, A\(c) =0.2;
p(a) = 0.5, p(b) = 0.4, p(c) =04.
Then 1 : IX = I defined as

1, ifA=0orl,
T()‘) = %, Zf)\ = A,
0, otherwise,

Then w s % feo set but u is not %-fépo set.
Example 2.4. Let A\, p and w be fuzzy subsets of X = {a, b, ¢} defined as follows
Aa) = 0.3, A(b) = 0.5, \(c) = 0.2;
w(a) =04, pb) = 0.5, u(c) =0.5;
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w(a) =0.7, w(b) = 0.4, w(c) =0.8.
Then 1 : IX — I defined as

1, ifA=0orl,
TN =935 ifA=Xp
0, otherwise,

Then w is % fe*o set but w is not %-fﬁo set.
Example 2.5. Let A and u be fuzzy subsets of X = {a, b, ¢} defined as follows
Aa) = 0.4, A(b) = 0.5, M(c) = 0.2;
p(a) = 0.5, p(b) = 0.4, p(e) =0.7.
Then 7 : IX — I defined as

1, ifA=0orl,
T(A\) = %, if A=A,
0, otherwise,

Then p is %—fe*o set but p is not %—feo set. Also p is not %—fuzzy open set.
Theorem 2.3. Let (X, 7) be a fts and r € I,.

(i) Any union of r-fe*o sets is an r-fe* o set.
(i) Any intersection of r-fe* ¢ sets is an r-fe*c set.

Proof. (i) Let {A\y : @ € T'} be a family of r-fe*o sets.
For each a € ', A\, < C (I (6-Cr(Aw, T), T), 7).
V Aa <V Cr(I-(0-Cr (Mg 7), T), T).

acl a€el’
< Cr (I (0-Cr(VAg, 1), T), T).
(ii) Similar to the proof of (i). O

Theorem 2.4. Let (X, 7) be a fts. For A\, u € I and r € Iy. then,
(i) If T(p) > r, where p s a crisp subset and X is an r-fe*o set, then A\ A p is an r-fe* o set.

(i) If 7(1 — @) > r, where 1 s a crisp subset and X is an r-fe*c set, then AV u is an r-fe*c
set.

Proof. (i) Let A be r-fe*o and p € IX with 7(u) > r which is a crisp subset. Then
AN < Cr(I(0-Cr(A, 1), 1), ) A p
< Cr(I(6-Cr( AN py 1), ), 7).
Hence A A u is r-fe*o.
(ii) Similar to the proof of (i). O

Theorem 2.5. Let (X, 7) be a fts, A\, u € IX and r € Io.
(i) If \ is r-fe*o with 7(1 — X) > r, then X\ is r-fopo.

(i) If X\ is r-fe*c with T(\) > r, then X is r-fopc.

24



Vol. 14 Fuzzy e*-open sets in Sostak’s topological spaces 25

Proof. (i) Let A be an r-fe*o set and 7(1 — A) > r. Then
A< Cr (I (0-Cr(A, 7), ), 7).
< I (6-Cr(A, 1), 7).
Hence A is an r-fdpo set of X.
(ii) is similar to (i). O

Theorem 2.6. Let (X, 7) be a fts, For \, u € I’* and r € I.
(i) X\ isr-fe*o iff 1 — X is r-fe*c.
(i) If T(X) > r then X is r-fe*o set.
(iii) I (A, r) is an r-fe*o set.
(iv) C-(A\, r) is an r-fe*c set.

Proof. (i) and (ii) are trivial.
(iii) From the Definition of I, of Theorem 1.2 and Definition 1.1(3), since 7(I,(\, r)) > r, by
(ii) I (A, r) is an r-fe*o set.
(iv) Since 1-C (A, ) = I (1=, r), from Theorem 1.2 (6), by (iii) we have 7(1—C- (A, 7)) > r.
Hence 1 — C (A, r) is r-fe*o. By (i) C-(A, r) is an r-fe*c set. O

Theorem 2.7. Let (X, 7) be a fts. Let A€ IX and r € I,.
(i) Xisr-fe*o iff x=e*I.(\, r).
(i) Aisr-fe*c iff A =e*Cr (A, 7).
Theorem 2.8. Let (X, 7) be a fts. Let A € I and r € 1,, the following statements hold:
(i) eC.(0, r) =0 and e*I.(1, r) = 1.
(i) I;(\, r) <e I (A r) < A<e*Cr(A, 1) < Cr(\, 7).
(iii) A< p=e"I;(\ r)<eI(u r)and e*Cr (A, 1) < e*Cr(p, 7).
(i) e*C-(\, 1) Ve*Cr(p, 1) <e*C.(AVpu, 7).
(v) e*C.(e*C(\, 1), 1) =e*Cr(A\, r) and e*I(e*I.(\, 1), ) =e*L.(A, 7).
(vi) Cr(e*Cr(A, 1), 1) =€*Cr(Cr (N, 1), 7) =Cr(A, 7).

Proof. (i) It is trivial from the Definitions of e*C; and e*I.
(ii) and (iil) can be easily proved from Theorem 2.6.
(iv) Since A < AV p, by the definition of e*C,, we have

e*Cr(\, 1) <e*Cr(AV p, 7).
Similarly, e*C (X, r) < e*Cr(AV u, 7). Hence,

e Cr(\, r)VeC(u, 1) <e*Cr(AV pu, 7).
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(v) Tt is trivial from Theorem 2.7.

(vi) From Theorem 2.6 (iv), and Theorem 2.7 (ii), e*C(C-(X, r), r) = C-(A, 7). We only
show that Cr(e*C(A, 1), 1) = Cr(A, 7). Since A < e*C, (A, r), Cr(A\, ) < Cr(e*C-(A, 1), T).
Suppose that C.(\, r) < Cr(e*Cr(A, 1), 7). There exist z € X and pu € I with A < p and
7(1 — p) > r such that C-(e*C- (A, 7), r)(z) > p(x) > C- (A, r)(z). On the other hand, since
w=C-(\ r), A < pimplies

e'C (N, ) <e*Cr(p, 1) =€e"Cr(A, ) =Cr(\, ) = p.
Thus C;(e*C (A, 7), 7) < p. This is a contradiction. Hence C.(e*C, (A, r), r) = C-(A, r). O
Theorem 2.9. Let (X, 7) be a fts. For A € IX and r € Iy we have
(i) e I,(1 =X, r)=1—(e*Cr(\, 7)).
(i) e*Cr(1 =X\, r)=1—(e*I;(\, r)).
Proof. (i) For all A € I, r € Iy we have the following:
1—(e*Cr(A, 1)) =1=A{p:p>A\ pisr-fe*o}
=V{1-p:1=p<1-X 1-pisrfe*o}

=e*l.(1—- A, r).
(ii) Similar to the proof of (i). O
Theorem 2.10. Let (X, 7) be a fts, A\, p € IX and r € I,.
(i) If X is r-fBo set, 7(1 — \) > r and X is r-foc then X is r-feo.
(i) If X is r-fBc set, 7(A\) > r and X is r-fdo then X\ is r-fec.
Proof. (i) Let A be an r-ffo set and 7(1 — A) > r. Then
AL Cr(IA(Cr (N 7)), 7), T)
<CAI;(\ 1), 1)
=Cr(I;:(A\, r)VI(\ 1), 1)
< O (6_17'()‘7 T)v T) \/IT()\7 T)
=Cr(6-I; (N, 1), )V I (6-Cr(A, 1), 7).
Hence A is an r-feo set of X.

(ii) is similar to (i).

U
Theorem 2.11. Let (X, 7) be a fts, A\, p € IX and r € I,.
(i) If \ is r-fe*o with 7(1 — X) > r, then X is r-feo set.
(i) If X\ is r-fe*c with T7(\) > r, then X is r-fec set.
Proof. (i) Let A be an r-fe*o set and 7(1 — A) > r. Then
A< Cr(I-(0-Cr (N, 1), ), T).
= I, (6-C- (A, 1), 7).
< C(0-Ir (N, 1), r) VI (6-Cr(N, 1), 7).
Hence A is an r-feo set of X.
(ii) is similar to (i). O
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Theorem 2.12. Let (X, 7) be a fts, \, p € I and r € I,.

(i) If X is r-fe*o, 7(1 — X\) > r and X is r-fdc, then X is r-fBo set.

(ii) If X is r-fe*c 7(A) > r and X is r-fdo, then X is r-fB¢ set.

Proof. (i) Let A be an r-fe*o set and 7(1 — A) > r. Then

A< Cr(I(0-Cr(N, 7)), 1), 7).
:CT(IT(CT(A’ T)a T’), T)
Hence A is an r-f30 set of X.

(ii) is similar to (i). O

Conclusion

In this paper, r-fuzzy e*-open and r-fuzzy e*-closed sets are introduced in fuzzy topological

spaces in the sense of Sostak’s. We also introduce r-fuzzy e*-interior and r-fuzzy e*-closure.

Moreover, we investigated the relationships between r-fuzzy e*-open sets, r-fuzzy beta open

sets, r-fuzzy e-open sets, r-fuzzy J-semiopen sets and r-fuzzy J-preopen sets.
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81. Introduction

In 1945 R. Vaidyanathaswamy [25] introduced the concept of ideal topological spaces.
Hayashi [13] defined the local function and studied some topological properties using local
function in ideal topological spaces in 1964. Since then many mathematicians like Erdal Ekici
et. al. [9], Hatir and Jafari [12], Naseef and Hatir [15] studied various topological concepts
in ideal topological spaces. After the introduction of fuzzy sets by Zadeh [29] in 1965 and
fuzzy topology by Chang [4] in 1968, several researches were conducted on the generalization
of the notions of fuzzy sets and fuzzy topology. The hybridization of fuzzy topology and fuzzy
ideal theory was initiated by Mahmoud [14] and Sarkar [17] independently in 1997. They
( [14], [17]) introduced the concept of fuzzy ideal topological spaces as an extension of fuzzy
topological spaces and ideal topological spaces. The concept of fuzzy topology may be relevent
to quantum particle physics particularly in connection with string theory and E-infinite theory
[5-8]. Hatir and Jafari [12], Naseef and Hatir [15] introduced the concept of fuzzy semi-I-open
sets and fuzzy pre-IT-open sets in fuzzy ideal topological spaces. Yuksel et. al. [28] introduced
and studied fuzzy a-I-open sets and consequently Gupta and Rajneesh [11] introduced the
concept of fuzzy ~-I-open sets in fuzzy ideal topological spaces. In 2003, G. Thangaraj and
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G. Balasubramanian [20] introduced the concept of somewhat fuzzy continuous functions and
many others [1,3,10, 18,19, 21, 22, 27] have turned their attention to the various concepts of
fuzzy topology by considering somewhat fuzzy ideal topological spaces instead of somewhat
fuzzy topological spaces. Recently, A. Vadivel and E. Elavarasan [23] introduced and studied
the concept of fuzzy I,..,-closed sets in fuzzy ideal topological spaces which simultaneously
generalizes the concepts of I,,,-closed sets due to A. Vadivel and Mohanrao Navuluri [24] and
fuzzy rw-closed sets due to R. S. Wali [26]. In the present paper, to introduce and study the
concept of somewhat fuzzy I,,-continuous functions, somewhat fuzzy I,.,,~open functions and
somewhat fuzzy I.,-irresolute open functions in fuzzy ideal topological spaces. Also we have
introduced the concept of somewhat fuzzy I,.,,-homeomorphism, fuzzy I,.-resolvable and fuzzy
I,.,-irresolvabe spaces and we have given characterizations of fuzzy I,.,-resolvable and fuzzy
I,.,-irresolvable spaces in fuzzy ideal topological spaces.

§2. Preliminaries

Throughout this paper, (X, 7) always means fuzzy topological space in the sense of Chang
[4]. For a fuzzy subset A of X, the fuzzy interior of A is denoted by Int(\) and is defined as
Int(\) = \V{ulp < A, pis a fuzzy open subset of X} and the fuzzy closure of A is denoted by
Cl(X) and is defined as CI(A) = A{ulp > A, pis a fuzzy closed subset of X}. A fuzzy set A in
(X, 7) is said to be quasi-coincident with a fuzzy set u, denoted by Agu, if there exists a point
x € X such that A(z) + p(x) > 1 [12]. A fuzzy set p in (X, 7) is called a @-neighborhood of a
fuzzy point xs if there exists a fuzzy open set A of X such that zgg) < u [12].

A nonempty collection of fuzzy sets I of a set X is called a fuzzy ideal [11,12] if and
only if i) A € T and p < X, then p € I, (ii) if A € I and p € I, then AV pu € I. The
triple (X, 7, ) means a fuzzy ideal topological space with a fuzzy ideal I and fuzzy topology
7. The local function for a fuzzy set A of X with respect to 7 and I denoted by A*(r, I)
(briefly A*) in a fuzzy ideal topological space (X, 7, I) is the union of all fuzzy points zg such
that if p is a @-neighborhood of xg and d € I then for at least one point y € X for which
w(y) + A(y) — 1 > 8(y) [16]. The *-closure operator of a fuzzy set A denoted by CI*()) in
(X, 7, I) defined as CI*(\) = A\/ A* [16].

Definition 2.1. A fuzzy set A of fuzzy topological space (X, T) is called fuzzy regular
open [2] if X = int(cl(N\)). The complement of a fuzzy regular open set is called fuzzy regular
closed.

Definition 2.2. A fuzzy set A of fuzzy topological space (X, T) is said to be fuzzy regular
semi-open [26] if there is a fuzzy regular open set p such that p < X < cl(p). The complement
of a fuzzy reqular semi-open set is called fuzzy regular semi-closed.

Definition 2.3. A fuzzy set A of a fuzzy ideal topological space (X,7,I) is called fuzzy
Iw-closed [23] if \* < p, whenever A < p and p is fuzzy regular semi-open. The complement
of a fuzzy I,..,-closed set is called fuzzy I,.,-open.

The family of all fuzzy I,.,-closed (resp. fuzzy I,.,-open) subsets of (X, 7, I) is denoted by
FI,,-C(X) (resp. FI.,-O(X)).

The fuzzy I,,-closure and fuzzy I,.,-interior of a fuzzy set A are respectively, denoted by
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Ip-Cl(X\) and I.,,-Int(X\) and is defined as
Iy~ ClA) = AN{p | A< p,pp € FI,-C(X)} and
Trp=Int(N) = V{p | X > i, pp € FI,-O(X)}.

A fuzzy set A is said to be fuzzy I,..,-closed (resp. fuzzy I,.,-open) if and only if I,.,,-CI(\) =
A(resp. Inp-Int(A) = A). Clearly, 1.,-Cl(1 — ) = 1 — I,-Int(\) and I,-Int(1 — X\) =
Lw-ClL(N).

Definition 2.4. [23] A fuzzy ideal topological space (X, T, I) is fuzzy Iw-T1)9 if every
fuzzy L.,-closed set in X is fuzzy closed in X.

Definition 2.5. A function f: (X, 7,I) — (Y,0) is called fuzzy continuous [4] if f~*(p)
is fuzzy open in X for every fuzzy open set p €Y.

Definition 2.6. A function f: (X, 7) — (Y, 0) is called fuzzy open [4] if and only if for
any fuzzy open subset X of X, f()) € 0.

Definition 2.7. A function f : (X,7,I) = (Y,0) is called fuzzy I, -continuous [23] if
F~Y(p) is fuzzy I.,-open in X for every fuzzy open set u €Y.

Definition 2.8. A function [ : (X,7,I) = (Y,0) is called fuzzy I..,-irresolute [23] if
F7Y () is fuzzy Ly-open in X for every fuzzy IL.,-open set p €Y.

Definition 2.9. A function f: (X,7) — (Y,0) is called somewhat fuzzy continuous [20]
if for every fuzzy open set X in'Y such that f~1(\) # 0, there exists a fuzzy open set j # 0 in
(X, 7) such that p < f=Y(\). That is, int[f~1()\)] # 0.

Definition 2.10. A function f : (X,7) — (Y, 0) is called somewhat fuzzy open [20] if for
every fuzzy open set X in (X, T) such that A # 0, there exists a fuzzy open set y # 0 in (Y, 0)
such that p < f(X). That is, int[f(\)] # 0.

Lemma 2.1. [2] Let g : X — X XY be the graph of a function f: X — Y. Then, if X is
a fuzzy set of X and p is a fuzzy set of Y, g7 (A x p) = AA f7H(p).

83. Somewhat fuzzy I,,-continuous functions

Definition 3.1. A function [ : (X, 7,I) — (Y, 0) is called somewhat fuzzy I, -continuous
if for every fuzzy open set X in'Y such that f~1(\) # 0, there exists a fuzzy IL.,-open set u # 0
in (X,7) such that p < f~1(\).

It is clear that every fuzzy continuous function is somewhat fuzzy I,.,-continuous and also
every somewhat fuzzy continuous function is somewhat fuzzy I,,,-continuous but the converses
is not true as the following example shows.

Example 3.1. Let X ={a, b, ¢}, Y ={p, q, v} and the fuzzy sets A and p are defined
as follows: A(a) = 0.6, A(b) = 0.4, A) =0.5; u(p) = 0.7, w(g) = 0.6, wu(r)=0.5. Let
7={0, 1, A\}, 0 ={0, 1, u} be the fuzzy topology on X and Y respectively. Let I = {0} be the
fuzzy ideal on X and X is fuzzy IL.,-open set in X. Then the mapping f: (X, 7, I) — (Y, o)
defined by f(a) = p, f(b) = q and f(c) = r is somewhat fuzzy I..,-continuous but it not fuzzy
continuous.

Example 3.2. Let X ={a, b, ¢}, Y ={p, q, r} and the fuzzy sets A and u are defined
as follows: A(a) = 0.6, A(b) = 0.4, X(c) = 0.5; u(p) =04, pu(g) = 0.6, wu(r)=0.5. Let
7={0, 1, A}, 0 ={0, 1, p} be the fuzzy topology on X andY respectively. Let I = {0} be the
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fuzzy ideal on X and X is fuzzy I.,-open set in X. Then the mapping f: (X, 7, I) = (Y, o)
defined by f(a) = p, f(b) = q and f(c) = r is somewhat fuzzy I,.,-continuous but it not
somewhat fuzzy continuous.

Remark 3.1. The implications contained in the following diagram are true and the reverse

implications need not be true.

Definition 3.2. A fuzzy set A in a fuzzy ideal topological space (X, 7,1) is called fuzzy I, -
dense if there exists no fuzzy I,-closed set p such that A < p < 1 or equivalently I.,-Cl(\) =
1.

Theorem 3.1. If f : (X,7,I) = (Y,0) is a somewhat fuzzy I.,-continuous surjection
and g : (Y,0) = (Z,n) is somewhat fuzzy continuous, then go f : (X, 7,1) = (Z,n) somewhat

fuzzy L.,-continuous.

Proof. Let A be any non zero fuzzy open set of (Z,n) and (go f)~*(\) # 0. Then g=1()\) # 0.
Since g is somewhat fuzzy continuous, there exists u € o such that 0 # p < g='(A\). Since
f is surjective, 0 # f=*(u) < f~1(g7*(N\)). Since f is somewhat fuzzy I,,-continuous, There
exists an fuzzy I.,-open set § in (X,7,I) such that 0 # & < f~1(u). Therefore, we have
0#6<(gof)~1()\)). This shows that g o f is somewhat fuzzy I,.,,-continuous. O

Proposition 3.1. If f: (X, 7,I) = (Y,0) is a somewhat fuzzy I,-continuous function
and g : (Y,0) = (Z,n) is fuzzy continuous function, then go f: (X,7,I) = (Z,n) is somewhat

fuzzy L.,-continuous.

Proof. Let X\ be any non zero fuzzy open set of (Z,7n), then g7*(\) # 0. Since g is fuzzy
continuous function, g=*(A\) in (Y, o). Suppose that f~1(g71(A\)) # 0. Since by hypothesis,
f is somewhat fuzzy I,.,,-continuous function, there exists a fuzzy I,,-open set p in X such
that g # 0 and p < f=1(g71()\)). But f~1(g7*(\)) = (g o f)~1(N), which implies that u <
(go f)~1(N). Therefore (g o f) is somewhat fuzzy I,.,-continuous. O

Theorem 3.2.  For a function f : (X,7,I) — (Y,0), the following statements are

equivalent:
(i) [ is somewhat fuzzy I,.,,-continuous.

(ii) If X is a fuzzy closed set of Y such that f=*(\) # 1, then there exists a proper fuzzy
I,-closed set i of X such that > f~1(\).

(iii) If X is a fuzzy I..,-dense set, then f(\) is a fuzzy dense set in'Y.
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Proof. (1)=-(ii): Suppose f is somewhat fuzzy I,,,-continuous and X is any fuzzy closed set
in Y such that f='(\) # 1. Therefore, clearly 1 — X is a fuzzy open set and f~1(1 — \) =
1— f~Y(\) # 0. But by (i), there exists a fuzzy I,.,-open set u in (X, 7, I) such that p # 0 and
w< f7H1—=N). Therefore, 1 —pu>1—f1(1-X)=1—-(1—f"1(\)=f"1\). Put 1—p=24.
Clearly, 4 is a proper fuzzy I,.,-closed set such that § > f~1(\).

(ii)=(iii): Let A be a fuzzy I,,-dense set in X and suppose f(A) is not fuzzy dense in Y.
Then there exists a fuzzy closed set, say, p such that f(\) < u < 1. Now, p < 1= f~1(u) # 1.
Then by f(\) < p < 1, there exists a proper fuzzy I,.,-closed set ¢ in (X,7,I) such that
6 > f~Hp). But by (i), f~' () > fH(f(N) > A, that is, & > A. This implies that there
exists a proper fuzzy I,..,-closed set § such that § > A, which is a contradiction, since A is fuzzy
I,.,~dense.

(iii)=>(i): Let A be any fuzzy open set in (Y, o) and suppose f~1()\) # 0 and hence X # 0.
Suppose Iy-Int(f~1(\)) = 0. Then L.,-Cl(1 — f7*(N)) = 1 — Luy-Int(f71(A)) =1-0=1.
This means that 1— f~1()\) is a fuzzy I,.,-dense set in X. By (iii), f(1—f~1()\)) is a fuzzy dense
in Y. That is, CI(f(1— f~'(\)) =1, but f(1 — f~*(\) = f(f~*(1 —=N) <1 -\ =1, since
A # 0. Since 1 — X is fuzzy closed and f(1— f~1(\)) <1—X, CI(f(f~*(N\))) <1— A\ That is,
1 <1—X= XA <0 and hence A = 0, which is a contradiction to the fact that A # 0. Therefore,
we must have I.,-Int(f~1(\)) # 0. This means that, there exists a fuzzy I,,-open set p in
(X, 7,1) such that 0 # pu < f~1(\) and consequently f is somewhat fuzzy I,.,-continuous. [

Theorem 3.3. Let f: (X,7,1) — (Y,0) be a function, where X is product related to Y,
and g: X = X XY, the graph function of f. If g is somewhat fuzzy I, -continuous, then f is
s0.

Proof. Let A be a non-zero fuzzy open set in Y. Then by Lemma 2.4 of [2], we have f~1(\) =
1A f7Y(X) = g71(1 x \). Since g is somewhat fuzzy I,.,-continuous and 1 x X is a non-zero
fuzzy open set in X x Y, there exists a non-zero fuzzy I,.,-open set p of (X, 7,I) such that

w< g (1 x )= f~Y(\). This proves that f is a somewhat fuzzy I,.,,-continuous function. [

Proposition 3.2. Let (X, 7,I) and (Y, 0,I) be any two fuzzy ideal topological spaces. If the
function f: (X, 7,1) = (Y,0,1) is somewhat fuzzy I..,-continuous, onto and if I,-Int(A) =0
for any non-zero fuzzy set \ in (X, 7,1), then Im,—[nt(f()\)) =0in (Y,0,1).

Proof. Let A # 0 be a non-zero fuzzy set in (X, 7,I) such that I.,~-Int(A) = 0. Then 1 — I,.,-
Int(\) =1 —0 =1 implies that I,,,-Ci(1 — X\) = 1. Since f is somewhat fuzzy I,,,-continuous
and 1 — X is fuzzy I.-dense in (X, 7,1), f(1 — X) is fuzzy I.,-dense in (Y, 0, 1) [by Theorem .
That is, I,-Cl[f(1 — A)] = 1. Then I,.,-CI[1 — f(\)] = 1. [since f is onto]. Therefore we have
[1 — Iw-Int(f(A)] = 1 which implies that I.,,-Int(f(A)) = 0. Hence the proposition. O

Definition 3.3. A fuzzy ideal topological space (X, T,1I) is called a fuzzy Dy, -space (D-
space) if for every nonzero fuzzy Im,-open (fuzzy open) set in X is fuzzy I, -dense (fuzzy dense)
mn X.

Proposition 3.3. If f: (X,7,I) = (Y,0,1) is a somewhat fuzzy I.,-continuous surjec-
tion and (X, 7,I) is a fuzzy Dy, -space, then'Y is a fuzzy D-space.
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Proof. Let \ be a nonzero fuzzy open set in Y. We want to show that X is fuzzy dense in
Y. Suppose not, then there exists a fuzzy closed set p € Y such that A < p < 1. Therefore,
YO0 < f~Yu) < f741) = 1. Since X # 0, f~Y(\) # 0 and since f is somewhat fuzzy
I,.,-continuous there exists a fuzzy I.,-open set § # 0 in X such that 6 < f~1()\). Hence
§ < YN < f7Hp) < Luw-Cl(f~*(n)) < 1. That is, § < I.,-CI(f~*(p)) < 1. This
contradicts the fact that (X, 7,7) is a fuzzy Dy, -space, hence Y is a fuzzy D-space. O

Theorem 3.4. Let (X,7,I) be any fuzzy ideal topological space and (Y,o) any fuzzy
ideal topological space. If X\ is an fuzzy open set in X and f : (A 7/NI/N) — (Y,0,1) is
a somewhat fuzzy I.,-continuous function such that f(X) is fuzzy ILn,-dense in Y, then any

extension F : (X, 7,1) = (Y,0) of f is somewhat fuzzy I .,-continuous.

Proof. Let p be any fuzzy open set in (Y, o) such that F~!(u) # 0. Since f(\) <Y is dense in
Y and puA f(A) # 0, it follows that F~1(u) AX # 0. That is f~1(u) AX # 0. Hence by hypothesis
on f, there exists an fuzzy I,.,-open set 6 in A such that § # 0 and § < f~'(u) < F~1(u) which
implies F' is somewhat fuzzy I.,,-continuous. O

Theorem 3.5. Let (X, 7,1) and (Y,0,J) be any two fuzzy ideal topological spaces, X =
AV p where A and p are fuzzy I,-open subsets of X and f: (X, 7,I) = (Y,0,J) be a function
such that f/X\ and f/u are somewhat fuzzy I, -continuous. Then f is somewhat fuzzy Ip.,-

continuous.

Proof. Let § be any fuzzy open set in (Y, o, J) such that f=1(5) # 0. Then (f/\)~1(5) # 0 or
(f/1)1(8) # 0 or both (£/A)1(8) 0 and (£/)~"(5) #0.

Case (1) Suppose (f/A)71(d) # 0. Since f/\ is somewhat fuzzy I,.,-continuous, there
exists an fuzzy I,.,-open set v < X such that v # 0 and v < (f/\)71(d) < f~1(d). Since
is fuzzy I,-open in A and A is fuzzy I.,-open in X, 7 is fuzzy I.,-open in X. Thus f is
somewhat fuzzy I,.,,-continuous.

Case (2) the proof is similar with Case (1).

Case (3) Suppose (f/X\)71(8) # 0 and (f/u)~1(8) # 0. This follows from both the Cases

(1) and (2). Thus f is somewhat fuzzy I,-continuous. O

84. Fuzzy I,,-Weakly Equivalent Topologies

Definition 4.1. Let X be a set and 7 and o be topologies for X. Then T is said to be
fuzzy I.p-weakly equivalent to o provided that if a fuzzy IL.,-open set X in (X,7) and X\ # 0,
then there is an fuzzy I,-open set p in (X, o) such that u # 0 and p < X and a fuzzy I.,-open
set X in (X,0) and X # 0, then there is an fuzzy IL.,-open set set u in (X, T) such that p # 0
and p < \.

Theorem 4.1. Let f : (X, 7,I) — (Y,01,I) be a somewhat fuzzy I,.,-continuous surjective
function and let oo be a fuzzy topology for Y. If oo is weakly equivalent to o1, then the function

(X, 7, I) = (Y, 02) is somewhat fuzzy I..,-continuous.
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Proof. Since o9 is weakly equivalent to o1, the identity function i : (Y, 01) — (Y, 02) is somewhat
continuous. Therefore, by Theorem , f = foi: (X,7,1) — (Y,02) is somewhat fuzzy I,,-

continuous. O

Theorem 4.2. Let f : (X,71,I) = (Y,0) be a somewhat fuzzy continuous function and
let 7o be a fuzzy topology for X. If 1o is fuzzy I, -weakly equivalent to 11, then the function

[ (X, 1, 1) = (Y,0) is somewhat fuzzy I.,-continuous.

Proof. Since 7y is fuzzy I,.,-weakly equivalent to 71, the identity function i : (X,7,I) —
(X, 71,1I) is somewhat fuzzy I.,-continuous. Therefore, by Theorem , f = foi: (X, 7,1) —

(Y, o) is somewhat fuzzy I,.,-continuous. O

85. Somewhat fuzzy I,.,-open function

Definition 5.1. A function f: (X,7,I) — (Y,0,1) is called somewhat fuzzy I.,-open if
and only if for any fuzzy open set A, X\ # 0 in (X, 7, 1) implies that there exists a fuzzy I,-open
set win (Y,o,I) such that p # 0 and p < f(N).

It is clear that every fuzzy open function is somewhat fuzzy I,.,-open and also every
somewhat fuzzy open function is somewhat fuzzy I,.,,-open but the converses is not true as it
can be seen from the following example.

Example 5.1. Let X ={a, b, ¢}, Y ={p, q, r} and the fuzzy sets A and pu are defined
as follows: A(a) = 0.4, A(b) = 0.6, A(c) =0.5; u(p) =0.7, u(g) =0.8, wu(r)=0.9. Let
=40, 1, A\}, 0 = {0, 1, u} be the fuzzy topology on X and Y respectively. Let I = {0}
be the fuzzy ideal on X, A° and u® is fuzzy I.,-open sets in X and Y respectively. Then the
mapping [ : (X, 7, I) = (Y, o,1) defined by f(a) = p, f(b) = q and f(c) = r is somewhat
fuzzy L.,-open but not fuzzy open.

Example 5.2. In Ezample . Then the mapping f is somewhat fuzzy I..,-open but not
somewhat fuzzy open.

Remark 5.1. The implications contained in the above diagram are true and the reverse

implications need not be true.

Proposition 5.1. If f: (X, 7,1) = (Y,0,1) is fuzzy open function and g : (Y,o0,1) —
(Z,n,I) is somewhat fuzzy I.,-open functions, then go f : (X, 7) = (Z,n,I) is somewhat fuzzy
L -open.

Proof. Clear. O
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Proposition 5.2. Let (X,7,I) and (Y,0,I) be any two fuzzy ideal topological spaces. If
the function f: (X, 7,I) = (Y,0,1I) is somewhat fuzzy IL.,-open and if I.,-Int(\) =0 for any
non-zero fuzzy set X in (Y,0,1), then I,-Int(f~1(N\)) =0 in (X, 1,1).

Proof. Let A # 0 be a nonzero fuzzy set in (Y,o,I) such that I.,-Int(\) = 0. Then 1 — I,.,-
Int(A\) = 1—0 = 1 implies that I.,-CI(1 — \) = 1. Since the function f is somewhat fuzzy
I-open and 1— M\ is fuzzy I,.,-dense in (Y, o, 1), f~1(1—\) is fuzzy I,,-dense in (X, 7,I). That
is, Ip-Cl(f~1(1 — X)) = 1. Then I,.,-Cl[1 — f~1()\)] = 1. Therefore [1 — L.,-Int(f~1(\))] =1
implies that I,.,-Int(f~1(\)) = 0. Hence the proposition. O

Theorem 5.2. For a surjective function f : (X, 7,1) = (Y,0,1I), the following statements

are equivalent:
(i) f is somewhat fuzzy I,-open.

(i) If X is a fuzzy closed set in X such that f(\) # 1, then there exists a fuzzy I,-closed set
winY such that uw# 1 and p > f(N).

Proof. (1)=-(ii): Let A be a fuzzy closed set in X such that f(A) # 1. Then 1 —\ is a fuzzy open
set such that f(1—X) =1— f(\) # 0. Since f is somewhat fuzzy I,.,,-open, there exists a fuzzy
Ip-open set v in (Y, 0, 1) such that v # 0 and v < f(1 — A). Now 1 — v is fuzzy I.,-closed set
inY such that 1 —y#land y < f(1—A). Put 1 =y =p. Theny>1— f(1—X) = f(N).
(ii)=(i): Let A be a fuzzy open of X such that A # 0. Then 1 — X is fuzzy closed and
1—-X#1, f(1=X) =1- f()\) # 1. Hence by hypothesis, there exists a fuzzy I,.,,-closed set u
inY such that 4 # 1 and g > f(1 —X) =1— f(\), thatis, f(A) > 1 —pand let 1 — p = 4.
Clearly, 6 is a fuzzy I,-open set of Y such that § < f(A) and § # 0. Hence f is somewhat
fuzzy I,.,-open. U

Theorem 5.3. For a surjective function f : (X, 7,I) — (Y,0,I), the following statements

are equivalent:
(i) [ is somewhat fuzzy I.,-open.
(ii) If X is a fuzzy I.-dense set of Y, then f=1(N\) is fuzzy I..,-dense set in X.

Proof. (i)=-(ii): Suppose A is fuzzy I,.,-dense and fuzzy I,,-closed set of (Y, 7,I). We must
to show that f~1()\) is fuzzy I.,-dense in (X,7,I). Suppose not, then there exists a fuzzy
I.,-closed set p in X such that f=!(u) < u < 1. Since f is somewhat fuzzy I,.,-open and
1 — p is fuzzy I,.,-open, there exists a fuzzy I,.,-open set v in Y such that v < f(1 — p) and
v < 1—f(u). From f~Y(\) < p < 1, we have A < f(u) < 1. Then v < 1 — f(u) <1 —\. That
is, A <1 —+~ < 1. Since 1 — « is fuzzy I,,-closed set in Y, this implies that A is not a fuzzy
I,.,-dense, which is a contradicition. Therefore, f _1(/\) must be a fuzzy I,.,-dense set in X.
(i))=(i): Suppose f~1()) is fuzzy I,,-dense in (X, 7,I), where \ is fuzzy I,.,-dense set in
Y. We want to show that f is somewhat fuzzy I,,,-open. Assume that \ # 0 is fuzzy open and
fuzzy I,..,-open set in (X, 7,1). We have to show that I.,-Int(f(X)) # 0. Suppose not, then
Iw-Int(f(N\)) = 0 whenever X is fuzzy I.,-open. Then I,.,-Cl(1— f(\)) = 1— L,-Int(f(X)) =
1 —0=1. That is, 1 — f(\) is fuzzy I,,,-dense in Y. Therefore by assumption f=*(1 — f(\))
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is fuzzy I,.,-dense in X. Therefore, 1 = I,.,,-CI(f~*(1 — f(\))) = L,-CIl(1 —A) = 1 — . This
shows that A = 0, which is a contradiction and so I,.,-Int(f(\)) # 0. O

§6. Somewhat fuzzy I,,-irresolute open function

Definition 6.1. A function f : (X, 7,1) = (Y,0,1I) is called somewhat fuzzy I, -irresolute
open if and only if for any fuzzy I..,-open set A\, X\ # 0 in (X, 7,1) implies that there exists a
fuzzy I.,-open set pin (Y,0,1) such that p # 0 and u < f(N).

Proposition 6.1. If f: (X,7,I) — (Y,0,I) and g : (Y,0,1) — (Z,n,1) are somewhat
fuzzy In,-irresolute open functions, then go f : (X,7) — (Z,n,1I) is somewhat fuzzy I.,-

irresolute open.
Proof. Clear. O

Theorem 6.1. For a surjective function f : (X,7,I) — (Y, 0,I), the following statements

are equivalent:
(i) [ is somewhat fuzzy I.,-irresolute open.

(ii) If X is a fuzzy L., -closed set in X such that f(\) # 1, then there exists a fuzzy I, -closed
set pin'Y such that p# 1 and p > f(N).

Proof. (1)=(ii): Let A be a fuzzy I,,-closed set in X such that f(A) # 1. Then 1 — X is a
fuzzy I,..,-open set such that f(1 —\) = 1— f(A) # 0. Since f is somewhat fuzzy I,,-open,
there exists a fuzzy I,,-open set v in (Y,0,I) such that v # 0 and v < f(1 — A). Now 1 —«
is fuzzy I,,-closed set in Y such that 1 —v # 1 and v < f(1 — A). Put 1 —+ = p. Then
> 1-f(1-N) = ().

(ii)=(i): Let X be a fuzzy I,-open of X such that A # 0. Then 1 — A is fuzzy I,.,-closed
and 1 =X #1, f(1—X) =1- f(\) # 1. Hence by hypothesis, there exists a fuzzy I,.,-closed
set 4 in Y such that y # 1 and p > f(1—X) = 1— f()\), thatis, f(A\) >1—pandlet 1 —p=4.
Clearly, 6 is a fuzzy I,-open set of Y such that § < f(A) and § # 0. Hence f is somewhat
fuzzy I,.,-open. U

Theorem 6.2. For a surjective function f : (X,7,I) — (Y, 0,I), the following statements

are equivalent:
(i) f is somewhat fuzzy I ., -irresolute open.
(ii) If X is a fuzzy I -dense set of Y, then f=1(N\) is fuzzy I..,-dense set in X.

Proof. (i)=-(ii): Suppose A is fuzzy I,.,-dense and fuzzy I,,-closed set of (Y, 7,I). We must
to show that f=1()\) is fuzzy I.,-dense in (X,7,I). Suppose not, then there exists a fuzzy
I-closed set p in X such that f~!'(u) < p < 1. Since f is somewhat fuzzy I,,-open and
1 — p is fuzzy I,.,-open, there exists a fuzzy I,.,-open set v in Y such that v < f(1 — p) and
v < 1—f(u). From f~Y(\) < p < 1, we have A < f(u) < 1. Then v < 1 — f(u) <1 —\. That
is, A < 1— < 1. Since 1 — « is fuzzy I,-closed set in Y, this implies that A is not a fuzzy
I,.,-dense, which is a contradicition. Therefore, f~()\) must be a fuzzy I,,-dense set in X.
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(ii)=>(i): Suppose f~1()) is fuzzy I,.,-dense in (X, 7, I), where X is fuzzy I,.,,~dense set in Y.
We want to show that f is somewhat fuzzy I,.,-open. Assume that A # 0 and a fuzzy I,.,-open
set in (X, 7,I). We have to show that I,,-Int(f()\)) # 0. Suppose not, then I,,-Int(f(\)) =0
whenever A is fuzzy I,-open. Then I,.,-Cl(1 — f(A\)) = 1 — I-Int(f(A)) =1 —0=1. That
is, 1 — f(\) is fuzzy I,,-dense in Y. Therefore by assumption f~1(1 — f())) is fuzzy I,,-dense
in X. Therefore, 1 = I.,-CI(f~1(1 — f(N\))) = L,-Cl(1 — X\) = 1 — X\. This shows that A = 0,
which is a contradiction and so I.,-Int(f()\)) # 0. O

§7. Somewhat fuzzy I,,~-homeomorphism

Definition 7.1. A mapping f : (X,7,I) = (Y,0,I) is called somewhat fuzzy Ip,-
homeomorphism if f and f~' are somewhat fuzzy I, -continuous.

Definition 7.2. A mapping f : (X,7,1) = (Y,0,1) is called somewhat fuzzy I, *-
homeomorphism if f and f~1 are somewhat fuzzy I,.,-irresolute.

Theorem 7.1. Let f: (X,7,I) — (Y,0,I) be a bijective mapping. Then the following

are equivalent

(i) [ is somewhat fuzzy I,.,-homeomorphism.

(ii) f is somewhat fuzzy I..,-continuous and somewhat fuzzy I,.,-open map.
(iii) f is somewhat fuzzy I, -continuous and somewhat fuzzy I..,-closed map.

Proof. (i)= (ii) Let f be somewhat fuzzy I,,,-homeomorphism. Then f and f~! are somewhat
fuzzy I,.,-continuous. To prove that f is somewhat fuzzy I,.,-open map, let A\ be a fuzzy
open set in X. Since f~! : Y — X is somewhat fuzzy I,.,-continuous, (f~1)71(\) = f(\) is
somewhat fuzzy I,.,-open in Y. Therefore f(\) is somewhat fuzzy I,,-open in Y. Hence f is
somewhat fuzzy I,.,,-open.

(ii)= (i) Let f be somewhat fuzzy I,,-open and somewhat fuzzy I,.,-continuous map. To
prove that f~!:Y — X is somewhat fuzzy I,,-continuous. Let A be a fuzzy open set in X.
Then f(\) is somewhat fuzzy I,.,-open set in Y since f is somewhat fuzzy I,.,-open map. Now
(F~H7Y(\) = f()) is somewhat fuzzy I,,-open set in Y. Therefore f~1 : Y — X is somewhat
fuzzy I.,-continuous. Hence f is somewhat fuzzy I,.,-homeomorphism.

(ii)= (iil) Let f be somewhat fuzzy I,.,~continuous and somewhat fuzzy I,,,-open map. To
prove that f is somewhat fuzzy I,.,-closed map. Let p be a fuzzy closed set in X. Then 1 — p
is fuzzy open set in X. Since f is somewhat fuzzy I,.,-open map, f(1 — ) is somewhat fuzzy
I.p-open set in Y. Now f(1 —u) =1— f(u). Therefore f(u) is somewhat fuzzy I,,-closed in
Y. Hence f is a somewhat fuzzy I,,,-closed.

(iii)= (ii) Let f be somewhat fuzzy I,.,-continuous and somewhat fuzzy I,,-closed map.
To prove that f is somewhat fuzzy I,.,-open map. Let A be a fuzzy open set in X. Then 1 — A
is a fuzzy closed set in X. Since f is somewhat fuzzy I,.,-closed map, f(1 — A) is somewhat
fuzzy I.,-closed in Y. Now f(1 —A) =1 — f(X). Therefore f()) is somewhat fuzzy I,.,-open
in Y. Hence f is somewhat fuzzy I,.,-open. O
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Theorem 7.2. Let f: (X,7,1) = (Y,0,1) be a bijective function. Then the following

are equivalent:

(i) f is somewhat fuzzy I, *-homeomorphism.

(ii) f is somewhat fuzzy I, -irresolute and somewhat fuzzy L., *-open.
(iii) f is somewhat fuzzy I, -irresolute and somewhat fuzzy I, *-closed.

Proof. Similar by above Theorem . O

Theorem 7.3. If f: (X,7,1) — (Y,0,1) is somewhat fuzzy I,.,-homeomorphism and
g: (Y,0,I) — (Z,n) is somewhat fuzzy I.,-homeomorphism and Y is fuzzy Ir,-Ti/2 space,

then go f : X — Z is somewhat fuzzy I..,-homeomorphism.
Proof. Clear. O

Theorem 7.4. If f: (X,7,I) = (Y,0,I), g : (Y,0,1) = (Z,n,I) are somewhat fuzzy

I, *-homeomorphism then go f : X — Z is somewhat fuzzy I, *~homeomorphism.

Proof. Clear. O

§8. Fuzzy I,.,-resolvable and fuzzy [, -irresolvable spaces

Definition 8.1. A fuzzy ideal topological space (X, 1,1) is said to be fuzzy I,.,-resolvable if
there exists a non-zero fuzzy I, -dense set A in (X, 7,1I) such that Iy,-Cl(1—X) = 1. Otherwise
(X,7,1) is called a fuzzy I.,-irresolvable space.

Theorem 8.1. A fuzzy ideal topological space (X, T,1) is a fuzzy I..,-resolvable space if
and only if (X, 7,1) has a pair of fuzzy I.,-dense sets Ay and Ay such that Ay <1 — Ag.

Proof. Let (X, 7,I) be a fuzzy I,.,-resolvable space. Suppose that for all fuzzy I,.,-dense sets
A; and Aj, we have A\; £ 1 — A;. Then we have A\; > 1 — \; for some ¢ and j. Then, we have
Iw-Cl(N;) > Iry-Cl(1 — Aj) which implies that 1 > I,,,-Cl(1 — X;). Then I,.,,-Cl(1 — ;) # 1.
Also \j > 1—\;. Then I,.,,-Cl(X;) > I,-Cl(1—\;) which implies that 1 > I,.,,-Cl(1— ;). Then
L,-Cl(1—)\;) # 1. Hence I,.,-Cl(\;) = 1, but L.,,-Cl(1—\;) # 1 for all fuzzy I,.,-dense sets \;
in (X, 7,I), which is a contradiction to (X, 7,I) being a fuzzy I,,-resolvable space. Therefore
(X, 7,1) has a pair of fuzzy I,,,-dense sets A\; and Ay such that A; <1 — \.

Conversely, suppose that the fuzzy ideal topological space (X, 7,I) has a pair of fuzzy
I,,~dense sets A; and Ay such that \y < 1 — A\o. We want to show that (X,7,1I) is fuzzy
I.,-resolvable. Suppose that (X,7,I) is a fuzzy I.,-irresolvable space. Then for all fuzzy
I.,-dense sets \; in (X, 7,1), we have I,.,,-Cl(1 — \;) # 1. In particular I,.,-Cl(1 — Xy) # 1
implies that there exist a fuzzy I,,-closed set p in (X, 7,T) such that (1 — A3) < p < 1. Then
M <1l—-X<pu<l1l= X <up<l1, which is a contradiction to I,.,-Cl(A1) = 1. Hence our
assumption that (X, 7, I) is a fuzzy I.,-irresolvable space, is wrong. Hence (X, 7, ) is a fuzzy

I,..,-resolvable space. O
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Proposition 8.1. A fuzzy ideal topological space (X, 1,1) is a fuzzy I..,-resolvable space
i=n
if \V \i =1 where I.,-Int(\;) = 0.
i=1
Proof. v A; = 1 where I,.,-Int(\;) = 0, implies that 1— v A; = 0. Then we have 7\ (1-X) =
i=1 i=1 i=1
0. Then there must be at least two non-zero disjoint fuzzy sets 1 —X;, 1 — A; in (X, 7, I). Hence

(I—=X)+(1—X;) < 1. Therefore (1 — ;) < A; which implies that I;,,-Cl(1 — ;) < L.,-CIl(Aj).
But I,-Int(A;) = 0 implies that I,.,,-Cl(1 — A;) = 1. Hence 1 < I.,,-CI(\;) which implies that
I,-Cl(\;) = 1. Also I,,-Int();) = 0 implies that I,,-Cl(1 — \;) = 1. Therefore (X, 7,I) has
a fuzzy I,,,-dense set \; such that I,,,-Cl(1 — X;) = 1. Hence (X, 7, I) is a fuzzy I,.,-resolvable
space. O

Proposition 8.2. If (X,7,1) is fuzzy L.,-irresolvable if and only if I.,-Int(\) # 0 for
all fuzzy I.,-dense sets X in (X, 7,1).

Proof. Since (X, 7,1) is fuzzy I..-irresolvable, for all fuzzy I,,-dense sets A in (X,7,1), we
have I,.,-Cl(1 — X) # 1. Then 1 — I,.,,-Int(\) # 1 implies that I.,-int(\) # 0.

Conversely let I,.,-Int(A\) # 0 for each fuzzy I,,-dense set A\ in (X, 7,I). Suppose that
(X, 7,1) is fuzzy I,.,-resolvable. Then there exists a non-zero fuzzy I,.,,-dense set A in (X, 7, 1)
such that I,.,-CI(1 — X) = 1. Then we have 1 — I,.,,-Int(\) = 1 and therefore I,..,-Int(A) =0

which is a contradiction. Hence (X, 7, 1) is a fuzzy I,.,-irresolvable space. O

89. Functions and fuzzy I, ,-irresolvable spaces

Definition 9.1. A function f : (X, 7,I) — (Y,0,I) is said to be weakly somewhat fuzzy
Lw-open if for each I,.,-dense fuzzy set X in (Y, 0, 1) with I.,-Int(\) # 0, we have that f~1(\)
is also a fuzzy IL.,-dense set in (X, 7,1).

The above definition leads to a characterization of fuzzy I,.,-irresolvable space as follows:

Theorem 9.1. The following statements are equivalent for a fuzzy ideal topological space
(Y,0,I).

(1) (Y,0,1) is fuzzy I-irresolvable

(2) For every fuzzy ideal topological space (X, 7,I), every weakly somewhat fuzzy I.,-open
function f:(X,7,I) = (Y,0,1) is somewhat fuzzy I,.,-open.

Proof. (1) = (2) Let f : (X,7,1) = (Y,0,1) be a weakly somewhat fuzzy I,,-open function
from a fuzzy ideal topological spaces (X, 7,I) to a fuzzy I,,-irresolvable space (Y, o, I). Since
(Y,0,1) is fuzzy I,,-irresolvable space, (Y, o, I) has a pair of fuzzy I,.,-dense sets A; and Ao
such that Ay £ 1 — Aa. Now ILp-Int(A1) # 0 and I.,-Int(Ag) # 0. For, if I,.,-Int(A1) = 0 then,
1—=Tp-Cl(1=X1) = 0. Now Ay > 1— XAy = Ay > 1—Aq. Therefore I,.,,-Cl(A2) > I,-Cl(1—\1).
In other words 1 — I,-Cl(A2) < 1 — L,-Cl(1 — A1) = 0. Then 1 < I,.,,-Cl()\z) implies 1 < 1,
which is a contradiction. Therefore I,.,,-Int(A;) # 0. Similarly we can have I.,-Int(As) # 0.
Since f is weakly somewhat fuzzy I,.,-open, f=1(A\1) and f~!(\2) are fuzzy I,,-dense sets in

(X, 7,I). Therefore by Theorem , f is somewhat fuzzy I,.,,-open.

40



Vol. 14 Somewhat fuzzy I,-continuous functions 41

(2) = (1) Suppose that fuzzy ideal topological space (Y, 0, I) is fuzzy I,.,-resolvable. This
means that there exists a pair of fuzzy I,,-dense sets A\; and Ay such that A\; < 1 — Ay Let
X =Y and 7 = {0,1,\1}. Define f : (X,7,I) — (Y,0,I) to be the identity function. Then
f is not somewhat fuzzy I,,-open, since f~!()\2) is not a fuzzy I,,-dense set in (Y, 7,I). For,
F71) = Agand Ay <1 —XA; # 1. Then Ay <1 — A; = L,p-Cl(\2) < I,-Cl(1 — \p). Since
1—\q is fuzzy closed and hence I,.,-closed in (Y, 7, I), I,,,-Cl(A2) # 1. That is, Ag is not a fuzzy
I,,-dense set. We shall now show that f is weakly somewhat fuzzy I,.,-open. Let A be any
fuzzy I,.,-dense set in (Y,0,I) such that I,,,-Int(\) # 0. Then f~1(\) = X\. We have to show
that L.,-Cl[f 71 (N)] = Lw-Cl(\) = 1in (Y, 7,1). Now I.,-Int(\) # 0 and A; is fuzzy I,.,-dense
implies that A € 1 — Ay. Therefore I,.,,-CI(\) = 1. That is, A is fuzzy I,,-dense in (Y, 7, T). This
proves that f is weakly somewhat fuzzy I,,-open. Hence (2) = (1) is proved. O

Theorem 9.2. Let (X,7,1) and (Y,0,I) be any two fuzzy ideal topological spaces. Let
f:(X,nI) = (Y,0,I) be a somewhat fuzzy I..,-open function. If (X,7,1I) is a fuzzy Ip,-

irresolvable space, then (Y,0,1) is a fuzzy I..,-irresolvable space.

Proof. Let A # 0 be an arbitrary fuzzy set in (Y, o) such that I.,-Cl(\) = 1. We claim that
Lw-Int(N\) # 0. Assume the contrary. That is, I.,-Int(\) = 0. Then by Proposition , we have
Lw-Int(f~1(\)) = 0 in (X, 7,1). Now X is fuzzy I,,-dense in (Y,o, ), then by Theorem , we
have f~1()) is fuzzy I,.,-dense in (X, 7,I). Therefore for the fuzzy I,.,-dense that f~1()\), we
have I,.,-Int(f~1(\)) = 0 in (X, 7,I), which is a contradiction. [since (X, 7, 1) is fuzzy I.,-
irresolvable, by Proposition , I.,-Int(u) # 0 for all fuzzy I,.,-dense sets p in (X, 7,1) ]. Hence
we must have I.,-Int(u) # 0 for all fuzzy I,.,-dense sets A in (Y, o, I). Hence by Proposition ,

Y, o0, 1) is a fuzzy I,,-irresolvable space. O
(Y, o, y p

Theorem 9.3. Let (X,7,I) and (Y,0,I) be any two fuzzy ideal topological spaces and
f(X,1,I) = (Y,0,1) be a somewhat fuzzy I.,-continuous and onto function. If (Y,o,1I) is a

fuzzy I..,-irresolvable space, then (X, 7,1) is a fuzzy I..,-irresolvable space.

Proof. Let A # 0 be an arbitrary fuzzy set in (X, 7, I) such that I,,,-CI(\) = 1. We claim that
Lw-Int(X\) # 0. Assume the contrary. That is, I.,,-Int(A) = 0. Then by Proposition , we have
Iw-Int(f(X)) = 0. Now A is fuzzy I.,-dense in (X, 7,I), then by Theorem , we have f(\) is
fuzzy I,.,-dense in (X, T, I). Therefore for the fuzzy I,.,-dense set f(A) in (Y, 0, 1), we have I,.,,-
Int(f(N\)) =0, which is a contradiction. [since (Y, o, ) is fuzzy I.,-irresolvable, I,.,,-Int(u) # 0
for all fuzzy I,,,-dense sets p in (X, 7,T)]. Therefore we must have I,.,,-Int(A\) # 0 for all fuzzy
I,..,~dense sets A in (Y, 7,I). Hence by Proposition , the fuzzy ideal topological space (X, 7,I)

is a fuzzy I,,-irresolvable space. O
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Abstract Many scholars are interested in researching the divisor problem, and they have
obtained a large number of good results. However, there are many problems have not been
solved. In this paper we shall study the mean value of the exponential divisor function

involving a negative r-th power by the convolution method.
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§1. Introduction

Let n > 1 be an integer. The integer d = []}_, p?" is called an exponential divisor of
n=TI,_,p{, if b;|a; for every i € {1,2,--- s}, notation: d|.n. By convention 1|.1.

Let 7(¢)(n) denote the number of exponential divisors of n. The function 7(¢) is called the
exponential divisor function. Similarly to the generalization of di(n) from d(n), we define the

function 7',56) (n):

(6)
H dk al ,ZC > 2 (1)

pi¥i||ln

Obviously when &k = 2, that is 7(¢)(n). 7'3(6)(71) is obviously a multiplicative function.
Throughout this paper, € always denotes a fixed but sufficiently small positive constant.

J.Wu [1] got the following result:
Z 7 (n) = A(z) + Bz? + O(x% log ), 2)

n<lz

where

A= H1+Z a_l)),

B H +Z d(a—1) — d(a—2)+d(a—3)).

p2

M.V.Subbarao [3] also proved for some positive integer r:

> D @m) ~ A, (3)

n<z
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where

P | (R Y LI

a=2

Lészlé Téth [4] improved the result (3) and established a more precise asymptotic formula

for the r-th power of the function 7(¢)(n):

Z(T(e) (n))" = Ay + x%Py,g(log z) + O(z" ). (4)

n<x

Jing Huang and Ping Song [7] also proved that

Z(Tée)(n))r =Ax+ x%RBT;Q(log z) + Ozl + ¢), (5)

n<z

where b, = (see [7], Lemma 2.2), R3r_o(x) is a polynomial of degree 3" — 2 and

3—0437‘,1

o0
(ds(a))” — (ds(a—1))"
4, =TT+ 3 (bl = (=),
P a=2
In this paper, we shall study the mean value of the exponential divisor function involving
a negative r-th power of the function Tée)(n) by the convolution method, where » > 1 is an
integer.

Theorem 1.1. For every integer r > 1 and N > 1, then we have

N
Z(Tée) (n)™" =Crx+ r? logg—uz(z d;(r) log™ = + O(log71\771 x)), (6)
n<x 7=0
where do(r),d1(r), - ,dn(r) are computable constants, and

> a))” " — a—1))"
O = H(l + 2_22 (d3(a)) (d3(a—1)) ).

pa

§2. Preliminaries

In order to prove our theorem, we define for an arbitrary complex number z the general

divisor function d,(n) by

Zdz(n)n_s =(*(s) = H(l —p %)%, Res > 1, (7)
n=1

P

where a branch of (#(s) is defined by

oo

C*(s) = exp{zlog((s)} = exp(—zz Zj_lp_js), Res > 1. (8)

p j=1

45



46 Ao Han No. 1

The definition shows that d.(n) is multiplicative function of n which generalizes dg(n).
The divisor function di(n) (k > 2 a fixed integer) may be defined by

de(n)nfs = (F(s) = H(l —p %)% Res > 1. (9)

p

The proof of the Theorem 1.1 is based on the following lemmas.
Lemma 2.1. Suppose s is a complex number for with Res > 1, r > 1 is a fixed integer,
then

> (739 (n))—r —r
Fls) =3 BT (063 25)Gs, 1), (10)

where the Dirichlet series G(s,r) ==Y gflf) is absolutely convergent for Res > 1.

Proof. By the Euler product formula, we can get

F(s) = 1+ + + 4.
o =Tla+ " = = )
(e) —r (e) —r (e) —r (e) —r (€)(, 5\\—r
dsy (1 dsy (2 ds’ (3 dy’ (4
o @00 e @e)r | @ @en
» p p p p p
g-r 3-r 6" —-r
=[O0+ S+ )
» p

1 1 1 3= 37" 67" 377
=[[a-o)'[[0-)0+ =+ + S+ + 5+
. ( S ) ( ps )( ps p2s p33 p4s pSS )

p
37"—-1 677"—=-3T" 3 "—-67"
p2s p4s + p55

+)

(11)
where the infinite series
1 53— 37"—-1 67"7-3T" 37"-67"
G(S7T) :H<1_ 25)3 _1(1+ 2s 4s + 5s + )
» p p p p
Write G(s,7) =Y o0, gélf). It is absolutely convergent for Res > 1. O

Lemma 2.2. Let A > 0 be arbitrary but fived real number, and let Ny > 1 be an arbitrary
but fixed integer. If |z| < A, then uniformly in z

Z d.(n) =C1(2)zlog® ' o + Co(2)xlog” 2z 4 - -
- (12)
4 Oy (2)zlog" M & + Oz logfes=N1—1 ),

where Cj(z) = F(fii(jz_)l), (1 =1,2,---,N1) and each B;(z) is reqular for |z| < A.
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Proof. See Ivié [2], Theorem 14.9. O

Lemma 2.3. Let A > 0 be arbitrary but fived real number, and let M > 1 be an arbitrary
but fixed integer. If |z| < A, then uniformly in z

Z d( )x—i—x%(Kl(z) log® '@ + Ko (2)log” 22+ -
mn2<zx (13)
+ K (2) log>™ M x) + O(x% loghes—M-1 x),

where the functions K;(2)(j =1,2,--- , M) are regular in |z| < A.

Proof. Suppose 1 <y < z is a parameter to be determined later. We have

Y oam=Ydm Y 1+ Y Y dm- Y Ydm

mn2<zx n<y giz m< 7”2 n2< L mgy% n<y

(14)
=222
1 2 3
where
Z =>» d.,(n) 1
1 n<y m< o
Z = d.(n)
2 m<H ez
2= 2 > &M
3 m< o5 <y
For ), we have
= d$<n>[§1
1 n<y
(15)
—a ) &
n<y n<y

We see that |d,(n)| < di(n), if K = [A] + 1 and |z| < A. If we use the weak asymptotic
formula (see, Ivié¢[2])
S di(n) = 2Py (log ) + O(a751), (16)
n<x

k—1

the error term in ), is bounded by O(ylog™ " y).

So by lemma2.2 and the partial summation, we have

d-(n) k—1
—z Yy 3 (ylog™ " y)
n>y
2% ,
=C*(2)x + = ZC )log®™ ijer(zfj)Cj(z)logz_j_ly
Y= (17)
22 :
FEY )z -G DG )
j=1

+O( 108" y) 4 Ofylog"y).
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Using Lemma 2.2, it is seen that

DRI WAL

3 m< o5 Ny

S d.(n)(55 +0(1) )

n<y

fZC )log*~ Jy+0( log™** ™M1~ y) + O(ylog" ' y).

By similar computation, we can obtain

>- ZZC \fmg (Z

m<.n —

[N

)

+ 00/ Z1og™ =t ()

N1
1. LT [z s N1, T
=1 m< 5 m< %

(19)

logm)z_j

B log x

Ny
1 z—j z—j -1
=R O os e 5 mda

+ O(Vzloghes=M1=1 4 m?)

=3 +0(Elogh TNy
2,1 Y

where we define

Using Taylor formula and foregoing method, we can obtain

)= .\ logm
YIRVE WAL IS R AL
2,1 j=1 m<
(Z_j)(z_.j_l) )2_|_)

+ 91 (

logm

log x
o2 ; 21 (20)
=7 ZK Yog* ™ x — ZZ(Z_j)Cj(Z)IOg Yy

=1

S e - 1Oy ) o

j=1
_ x s N1
+ O(ylog"* 1y)JrO(QlogR M=ty

y_l’_...

where K (2), Ka(2), -+, Ky (z) are regular functions.
So by choosing y = \/Elogc(x), C = Rez— M —k and N; = 2M + k — Rez completes the
proof of the Lemma 2.3. O
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83. Prove of Theorem 1.1.

Now we go on with the proof of our main Theorem.

Proof. Combining Lemma 2.1 and Lemma 2.3, we get

S @)= Y dana)g(ns)

n<x nin3ns<w
=D g(ns) Y di(n2)
ny<z nlnggr/ns

where

and we choose z =37" — 1.

Then we just need to calculate the three sums separately.

Si(z) =2¢* "71(2) Y glng)ns ™!

oo

=2¢*(2) Y glna)ns ™' — w7 (2) Y gna)ng ™! (22)

naz=1 ng>x

=Ci(w) + Oz %)
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Analogously to ), ;, we have

n3

M
So(x) =e2 Y glna)ny ™3 > Kjlog® i)
j=1

ng<z

M 37" —1—j
_ .1 3T =15 L log ng
R SL T TS S TR e LY
j=1 n3<z 23)
M-1 (
. . , . —
=z2log® *z E;(r)log ™7z + O(x2 log® M2 1)
3=0
N
1 Q—1 . 1 —r
=22 log® %z Z d;j(r)log ™z + O(x2 log® N3 ),
§=0
where Ey(r), Ea(r),- -+, Ex(r) are computable constants depending on r, and we set N = M —1.
Similarly, we also have
1
T2 Rez—M—1, L
S = —)"1 —
s() =Y 9(na) (=) log ()
nsy<x
Rez—M—1
_ .1 Rez—M—1 -1 log ng
=12 log x 2 g(na)ny ™2 (1= 370 (24)
n3sT
<z? log?’ﬂ_M_2 T
=2 10g3_T7N*3 x.
Hence, the Theorem 1.1 is proved by (21)-(23). O
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Abstract Let n > 1 be an integer, the function T(E)(n) denote the exponential divisor
function. In this paper, we will study the mean value of T(e)(n) over cube-full numbers, that
is

Yo @ @)= () fs(n).

n<a n<z

n is cube — full
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§1. Introduction and preliminaries

An integer n = Hle p;*is called k-full number if all the exponents a; > k,a2 > k,--- ,as >
k. when k = 3, n is called cube-full integer, i.e.

17
fs(n) =

0, otherwise .

n is cube-full ,

Many scholars are interested in researching the divisor problem and have obtained a large
number of good results. But there are many problems hasn’t been solved. For example,
F.Smarandache gave some unsolved problems in his book Only problems, Not solutions! [6],
and one problem is that, a number n is called simple number if the product of its proper divisors
is less than or equal to n. Generally speaking, n = p, or n = p?, or n = p3, or pq, where p and
q are distinct primes. The properties of this simple number sequence has’t been studied yet.
And other problems are introduced in this book, such as proper divisor products sequence and
the largest exponent (of power p) which divides n, where p > 2 is an integer.

In the definition of exponential divisor: suppose n > 1 is an integer, and n = [[;_, p{*. If
d=1I_, pfi satisfies b;|a;,i = 1,2,--- s, then d is called an exponential divisor of n, notation
d|en. By convention 1].1.

J.Wu [4] improved the above result got the following result:

3" 7O (n) = A(z) + B + O(a? logz),

nx
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where

A=T[0+Y be—l))’
a=2

» p
B:H(1+Zd(a)_d(a_1) —pcé(a—?)-i—d(a—?)))'
D a=>5

M.V.Subbarao [2] also proved for some positive integer r,

S (7)) ~ A,

n<z

where

4, = Lo+ 35 W~ a1,

a=2

L.Toth [3] proved

ST (@) = Ap(x) + 22 Par_s(logz) + Oz +)

n<x

2rtl_g

where Pr_5(t) is a polynomial of degree 2" — 2 in ¢, u, = 7777+

Similarly to the generalization of dj(n) from d(n), we define the function T,ie) (n):

7 (n) = H di(ai), k > 2,

pitlln

Obviously when k = 2, that is 7(°)(n). Tée) (n) is obviously a multiplicative function. In
this paper we investigate the case k = 3, i.e. the properties of the functions Tée) (n).

In this paper, we will study the asymptotic formula for the mean value of the function
(T?SE) (n))? over cube-full numbers.

Theorem 1.1. We have the asymptotic formula

S (17 )? = 2%Qsa(logx) + 21 Qa5 (log ) + O(x70)

n<a

n is cube — full

where Qs1(t) is a polynomial of degree 8 in t, Q352(t) is a polynomial of degree 35 in t,

_ 3530376 _
0 = 11616525 — 0.241038422---.

Natation Through out this paper, € always denotes a fixed but sufficiently small positive

constant.

§2. Some lemmas

In the section, we give some lemmas which will be used in the proof of our theorem. Lemma
2.2, Lemma 2.3, and Lemma2.4 can be found in [5], [7], and [1].
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Lemma 2.1. Let

(e) H dS az

a
il
p; n

then we have

o )2 )
> B0 oggeeuso),

n=1

n is cube — full
o0
where the infinite series G(s) = > % is absolutely convergent for Rs > %
n=1
Proof. By Euler’s product formula, we can get

Q1+ B0, BOLG | BORG) | BOL) | EOLOY )
. ps p2s p33 p4s p55
di(3)  di(4)  di(5) )
= 1 .
1;[( + p35 + p4s + p5s +
32 62 32
— 14+ — 4+ — 4+ — ...
1;[<+p35+p4s+p5s+ )
36 9
=93 14+ = 4+ = ...
C(S)E[( oot
=("3s)¢*(4s) [J(1 )
P
= (*(35)¢™ (45)G(s)
where the infinite series G(s) := i QT(LZ) is absolutely convergent for Rs > % O

n=1

Lemma 2.2.  Suppose f(m), g(n) are arithmetical functions such that

Zf( Zx 7P;j(logz) + O(x Z|g z?),

m<z j=1 n<xz

where o > g > -+ > ay >a > B >0, Pj(t) is a polynomial in t, if h(n) = > f(m)g(d),
n=md

then

J
Z h(n) = Zxo‘ij(logx) + O(z%),

n<x j=1

where Q;(t) j =1,---,J is a polynomial in t.

o4
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Lemma 2.3. Let 3 <o <1,t>1y>2, we have

((o+it) < 75 logt.

Lemma 2.4. Let 1 <o <1, define

m(o) > 1 1<O’<§
~ 3—40’ 2 -8’
m(o) > 10 §<J<§
~5—60’ 8 ~ 54’
m(o) > 19 §< <£
~ 6—60’ 54 ~ 60’
2112 41 3
M2 s w0 ST
() 12408 3___5
~ 4537 — 48900’ 4 -6’
m(a)>74324 §<c7<z
~ 1031 — 10440’ 6 -8’
m(o)zﬁ, §<U§O'91591’
240 — 9
m(a)zm,0.91591<0§1—6.

Lemma 2.5.
Z d@3,---,3,4,--- ,4;n) = x%P&l(log x) + m%P3572(10g z) + O(z7°7°)
= ——— ——
n=r 9 36
where Pg 1(t) is a polynomial of degree 8 in t, Ps5o(t) is a polynomial of degree 35 in t, og =

3530376 __
Taeaesag — 0.241038422 - -

Proof. By the Perron’s formula, we have

zite

1 b+iT 78
S(z) =Y 6d(n)d(n) = —/b C9(3S)C36(4s)?ds +O( )

2w ;
n<x —iT

where b= % +¢, T = ¢ ¢ is a very large number of fixed numbers, 1 < 0 < ;. According to

the Residue theorem, we have

S(Jf) = 1‘%P871(10g5€) + $%P3572(10g17) + Il + IQ + 13 + 0(1),

L= e C9(3s)§36(4s)x—sds

L= 27TZ b—iT S ’
1 oo+it s

L= — 9(35)¢3%(45)=—d

2= g [, B Us) s,
1 b+iT s

Iy = — C9(35)¢%8 (45) Lds.
270 J yytiT S

%)



56 Xue Han No. 1

For I, I3, since oo > é—? +9, (s =0 +4T), and from Lemma 2.3, we have

i+e
I +13 < / |€(30 +13T)|°|¢ (40 + idT)|* 2" T do

[¢]

1 1 lie
4 3 3
< T—l(/ +/ +/ ¢ (30 +i3T)°|¢ (4o + i4T) 3627 do
o i 3
< T71+€ /Z T9(1;3c7)+36(13—4a) 2 do + T71+5 /§ T9(1g3a) 27 dor
oo

1
e
+T71+5/ z%do
3
<L gFT0Fe ppiT—ate g3 1He | patep-ide

< gpatep—ote

where ¢ is very small normal number, 6 > ¢.
T b
I < x7°(1 + / |C(30 + i3T)|°|¢ (40 + i4T) |36t~ Lat).
1

According to the partial integral formula, we have

T

Iy = / |C(30 +13T)|°|¢ (4o + i4T)|*Cdt < T,

1

If p; > 0, (i = 1,2) are real numbers, and p% + p% = 1, by Holder inequality, we have

T T
Iy < (/1 | (30 +Z'3T)|9p1)ﬁ(/l ¢ (40 +Z'4T)|36p2)%.

So we have to prove
T
/ |C(30 +43T)|?Prdt < T,
1

T
/ |C (40 + i4T)[3%P2dt < T,
1

Let m(30¢) = 9p1, m(4dog) = 36p2, since % + % =1, and from Lemma 2.4, we have
oo = £330 = 0.241038422 - - - O

83. Proof of Theorem 1.1

Proof. Let

¢9(35)¢30(48)G(s) = i fr(:)’ Rs > 1,

s d(3, - ,3,4--- ,4;n)
¢ (35)¢*0 (45) = g - :
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such that

f(n) = n;md d(37 : 9 73747 36 74;m)g(d) (1)

From Lemma 2.1, we have G(s) = 3. 2% is absolutely convergent for Rs > 1, and then
n=1

ns

> lg(n)| < @t @)

n<x
From Lemma 2.5, we have
> d(3,- 3,4, 4ym) = 27 Py (log x) + 27 Pys o (log z) + O(a7°+%),
~—— ’ ’ (3)

msz 9 36

where Ps1(t) is a polynomial of degree 8 in ¢, P35(t) is a polynomial of degree 35 in ¢,
Combining (1), (2) and (3), and applying lemma 2.2, we have

Z fln) = x%Qg,l(log x) + x%Q3572(10g x) + O(x7°FF)

n<lz

where Qg 1(t) is a polynomial of degree 8 in ¢, Q35 2(¢) is a polynomial of degree 35 in ¢, From

lemma 2.1,we have

(37 () fa(m) = D d(3,--- 3,4+ dim)g(d) = f(n)

n=md 9 36

Then we complete the proof of Theorem 1.1. U
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Abstract We have already defined and worked on the second order involute curve of a unit
speed curve in IL3. In this paper, we consider the second order involute of a spacelike curve
with timelike binormal in IL® . There are three kinds of casual caharacteristics of the second
order involute curve. All Frenet apparatus of their are examined in terms of Frenet apparatus
of the curve a.
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§1. Introduction and preliminaries

Basic properties of involute-evolute curves are very famous studies in differantial geometry.
In [5], [6] and [7] the second order involute curves , the second order Mannheim partner curve
and the n"th order Bertrand mate curves in Euclidean 3-space are examined, respectively.
In Lorenzt space there are two kind of non-null curve, which are timelike and spacelike. The
involutes of the spacelike Curve with a timelike binormal spacelike binormal are examined in [1]
and [2], respectively. In this study we will work on the second order involute curves in of a
spacelike curve with timelike binormal in Lorenzt 3-space.

(X,Y) = —z1y2 + 2292 + 23y3 (1)

is known Lorentz metric with index one, and {I R3,(, >} is 3-dimensional Lorentz space with
notation IL3. For X € IL? the casual characteristics of any vector X, are if (X, X) > 0, X is
spacelike vector, if (X, X) < 0, X is timelike vector, if (X, X) = 0, X is lightlike or null vector.
IX]| = v/I{X,X)| is norm of X , [9]. Vectorel product of X and Y is

XAY = (x3y2 — T2Y3, T1Y3 — T3Y1, T1Y2 — T2Y1) - (2)
Let a : I — E3 be the C?— class differentiable unit speed curve denote by {T, N, B} the

moving Frenet frame. For an arbitrary curve o € E2, with first and second curvature, x and
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7 respectively. Differential curve with Frenet frame, if tangent vector T is timelike (spacelike)
vector is called timelike (spacelike) curve.

. Frenet formulaes of a timelike curve are
T" = kN, N =xT—-7B, B =71N (3)
and
TANN = —-B, NAB=T, BAT=-N.

Darboux vector is
W = tT—kB, |W|=r"-7

see in , [9]. For any unit speed curve o : I — E3, the vector W is called Darboux vector defined
by [3] W = 7T + kB. If we consider the normalization of the unit Darboux vector C' = HWVH’
we can write. Let the angle between Darboux vector and binormal vector of first timelike curve
be ¢ and since B is spacelike,

If |k| > |7| then, W is spacelike vector and
k = |[W|coshy, 7=]|W|sinhe

If |k| < |7|then, is W is timelike vector and

k = ||W|sinhy , 7=|W]| coshep
oo Frenet formulaes of spacelike curve with timelike binormal are
T = kN, N =-xT+7B, B =1N (4)
and
TANN = B, NAB=-T, BAT=N.

Darboux vector is W = 7T — kB, see in [9]. Since B is timelike;

if |k| < || then W is spacelike vector

k = |[W|sinhep, 7=]|W|coshp, [W|*=7r>-k>

If || > |7| then W is timelike vector

ko= [Wleoshe, r=|W|sinhe, [W]?=x?—r2
see in [9].
eee Frenet formulaes of a spacelike curve with timelike normal vector
T" = kN, N =xT+7B, B =71N (5)
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and
TANN = —-B, NAB=-T, BAT=N.
Darboux vector is W = —7T + kB. Since B is spacelike,

If |k| < |7| then is W timelike vector and

k = ||W|sinhe, 7=|W]coshep
If |k| > |7| then W is spacelike vector then is timelike vector

k = |[W|coshe, 7=]|W]|sinhe.

The involute of a given curve is a well-known concept in Euclidean 3 — space. We can say that
evolute and involute is a method of deriving a new curve based on a given curve. The involute
of the curve is called sometimes the evolvent. Involvents play a part in the construction of gears.
The evolute is the locus of the centers of tangent circles of the given planar curve [8]. Here, we
will work on the second order involute of spacelike evolute curve with timelike binormal. Let
a: I — IL3Dbe a spacelike evolute curve with timelike binormal. If tangent vector of the curve
a, : I — IL? is perpendicular to tangent vector of the curve av: I — IL3, then o, : I — IL3 is
the involute curve of spacelike curve «, and we have the equation,

a,(s) = a(s) + A(s)T(s), Als) =c—s, [4] (6)

where ¢ = constant. Also <T,T; >=0 and T; = N.

Theorem 1.1. Frenet-Serret apparatus {T,,N,,B,,k,,7,} of involute curve «, of a
spacelike evolute curve «, with timelike binormal , are given based on the Frenet-Serret

apparatus {T, N, B, k,7} of evolute curve are

T = N,N, = B

—K T —T K
T+ B, B, = T+ B. (7
1 CVIE R VPR Y e AV e R

The curvatures of curve o and the involute «,, respectively are

coVR2 — 72 k! — kT +1 N, is space like
/{1 = s Tl = 3 370 60 =
(¢ — )kl (¢ = s)r[ |72 — w2 ~1 N, is time like
see in [1].

Theorem 1.2. Frenet-Serret apparatus {T,,N,, B,,k,,7,} of involute curve «, of a
spacelike evolute curve «, with spacelike binormal, are given based on the Frenet-Serret
apparatus {T, N, B, k,7} of evolute curve are

K T -7 K
T = N, N, = T-— B, B, = T
! YoVRZ 2 VK2 72 YoVRZ 2 VK2 72
The curvatures of curve o and the involute, «,, respectively, are
VK2 + 712 kT — K'T

A Ty v L TR e g 2 (10)

(9)
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§2. Second order involute of a spacelike curve with timelike

binormal

Let «, (s) be the involute of the curve o, (s).{T,,N,,B,,x,,7,} and {T,,N,,B,,k,,T,} are
collectively Frenet-Serret apparatus of the curve «, and the involute «,, respectively. «, has
the parametrization with arclength s; as the involute curve of a (s). «, (s) = a, (s) + M T, (s)

is the parametrization of second order involute curve. Hence, we can write
a, (8) = a(s) + A(s)T (s) + A1 (s)N (s) (11)
where it is given in terms of Frenet apparatus of evolute «, also \s is constant.
<Ty, T, >=0 and Ty = N;

see in [5].

Theorem 2.1. Involute and second involute curve of a spacelike evolute curve with
timelike normal N or timelike binormal B | has the casual characteristics as in the following
forms. Let {T,N,B,k,7}, {T,,N,,B,,k,,7,} and {T,,N,,B,,k,,7,} are collectively Frenet

apparatus of the evolute curve «, the involute o, and the second order involute a,, respectively.

evolute involute 2"%involute

sst
sst < (12)
sts
sst sts — tss

Proof. For a spacelike evolute curve with timelike binormal and spacelike principal normal,
hence
T spacelike N spacelike B timelike (13)
s s t
Since < T,Ty >=0 and Ty = N (spacelike), To must be spacelike. Hence the involute of a
spacelike curve with timelike binormal is always spacelike curve. So normal N; or binormal

Bi must be timelike, as in the following way,

Tangent Ty Normal Ny Binormal B,
s s t (14)
S t S

and spacelike involute with timelike binormal By, there are the following forms;

evolute involute 2™%involute
sst (15)
sst sst <
sts
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For a spacelike evolute curve with timelike normal N, binormal B is spacelike.

T spacelike N timelike B spacelike (16)
s t s
Since < T, Ty >=0 and Ty = N (timelike). It is trivial that T} must be timelike.The involute
of a spacelike curve with timelike normal is always timelike curve.
T, timelike Np spacelike By spacelike (17)
4 s s
Hence a spacelike evolute curve with timelike normal N, has the casual characteristics as in
the following form

evolute involute

sts — tss
as a result, we have the proof. O
Theorem 2.2. Frenet apparatus of second order involute o, of a curve o can be given
in terms of Frenet apparatus of «,

T = " 4T B

S R N C R
VEZ =12 kT —K'T

N [(c — $)K| N4 |(c — s)k| |72 — k2| (=TT + kB) if |k| > |7|, then N, spacelike
’ ¥ — kil VIt = K1 VIT? = K2 i |k| < |7|, then N, timelike
kT — K'T K2 — 12
B |(c — 8)k| |2 — K2| |(c — s)k| (=T +rxB) | if |s] > |7[, then B, timelike
’ IT¢ — K VITE =82 VI =k it |k| < |7|, then B, spacelike
for

evolute involute 2"%nvolute
sst

sst sst <
sts

Proof. Since for T} spacelike, Nispacelike, By timelike and T3 spacelike, Ny timelike, By space-

like we have already
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T, = N
N —K1 n T if |k1| > |m1|, then Ny spacelike (18)
= 1
’ 7 — kil 77 — 7| if |k1| <|7m1|, then N, timelike
B —Ty N K1 if|#1] > |71|, then Bs timelike
= 1
’ |77 — KTl 77 — k1| if|x1] < |71|, then B, spacelike
hence
T, - —kT+ 1B
|72 — k2|
K2 — 72 kT — K'T
N - [(c— $)K| |(c — s)k||m2 — k2| (=TT + kB) | if |x[ > ||, then N, spacelike
’ |77 — K1l VI = K1 VT2 — k2] if |k| < |7], then N, timelike
kT — K'T K2 — T2
B |(c = 8)k| |72 — K?| |(c — s)k| (=T +kB) if |k| > |7|, then B, timelike
’ |78 — KTl \/|712 — k3| \/|7'2 — K?| it |k < |7 , then B, spacelike
1

kT — K'T

2 _ 2
e <<c—s>n|72—/«»2|

(k7 — HIT)Q

)2<|<

kot

2
2 12
C—S)Ii|>

’|

|(c— s)r|” |72 -

2 2|3

B (k7' — /i’T)2 — ‘KZ -7

c—s)k* |2 — Kk2|?
(¢ — )k

The curvatures of curves , respectively, are

€1 I{%—’T%
R, = — T, =

K1T] — K|T1

2 (er = 8)ka] [(c1 — s)ra||7F

2 )
_Iil
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€1 =

P J(c— s)rf

+1,
~1, N,

Ny is space like
2 p (19)
is time like
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Theorem 2.3. Frenet-Serret apparatus {T,,N,, B,, &, , 7, } of involute curve «,, are given

based on the Frenet apparatus {T, N, B,k, 7} of evolute curve a;

T

- —K T—|— T B

Kkl T K

—T
Ny = N — ! T+ B 20
CVERR VEerVeEeel P .
—T1 K1 —T K
B, = N — T+ B,
2 N \/H%+T12 \/ITQ—K2| \/|72—/-@2|

for
evolute involute 2"%involute

sst sts — tss.

Proof. Frenet apparatus {T,,N,, B,,k,, T, } of involute curve «,, are given then [8] based on

the Frenet apparatus {T, N, B, k, 7} of evolute curve «; for

evolute involute

sst sts

if |k| > |7], then N, spacelike

—K T
= T+ B,
VP =R VI = K2 if |k| < |7], then N, timelike (21)

N.

B S o K B if |k| > |7|, then B, timelike
VAL VIT? = K2 , if |k| < ||, then B, spacelike.

The curvatures of curve o and the involute «,, respectively are

B

. eoVK2 — T2 o kT — KT ¢ = +1, N, is space like (22)
Yo le=s)kl Tt |(e—s)k||T2 — K2 —1, N, is time like
also

2
eoVK2 — 72 kT — KT 2
N (0 ) +<|( ) ,

c—S)k c— s)k| |12 — K2
(e — s)kl )El |

\/|I<32 — 7'2|3 + (k7! — ﬁ’7)2
VET+TE = .
(¢ = s)k||7? — K?|

involute 2™ jnyolute

For

sts tss.
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Since
k1 1 -7 K1
T, = Ni,Ny= T — B, ,B, = T — By,
: VK2 4T N RV s N
we have
—K T
T = T + B,
SRV e Ve
Kkl 1 —T K
Ny = N — T + ,
Ern VmrniEoa | e
B - —T1 K KR

-7
- N — ! T + B
2
K+ T VE?+ 12|12 — K2 |72 — k2|

The curvatures of the second order curve ay based on the involute «,, respectively are

Ve e — (art = s (e — )l |72 = 2

K9 — ) — , Ty = .
(¢ = s)kl[72 = &2[[(m — s)k1] |(m75)/-11|\/|f@277'2|3+(/£7"—/47')2
/2 2 [
Since kg = VAT and 7, = ALK S it is trivial. O
[(m — s)k1] |(m — s)k1| /KT + TE
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Abstract In this paper, we introduce the concept of slightly regular fuzzy continuous, s-

lightly generalized regular fuzzy continuous and somewhat slightly generalized regular fuzzy
continuous functions in fuzzy topological spaces in the sense of Sostak’s. Several interesting
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examples.
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§1. Introduction

Kubiak [11] and Sostak [18] introduced the fundamental concept of a fuzzy topological
structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that not
only the objects are fuzzified, but also the axiomatics. In [19, 20], Sostak gave some rules
and showed how such an extension can be realized. Chattopadhyay et al., [5] have redefined
the same concept under the name gradation of openness. A general approach to the study of
topological type structures on fuzzy power sets was developed in [7-9,11,12]. Balasubramanian
and Sundaram [1] gave the concept of generalized fuzzy closed sets in Chang’s fuzzy topology
as an extension of generalized closed sets of Levine [13] in topological spaces.

Jin Han Park and Jin Keun Park [16] introduced weaker form of generalized fuzzy closed
set and generalized fuzzy continuous mappings i.e, regular generalized fuzzy closed set and
generalizations of fuzzy continuous functions. Bhattacharya and Chakraborty [2] introduced
another generalization of fuzzy closed set i.e, generalized regular fuzzy closed set which is
the stronger form of the previous two generalizations. Recently, Vadivel and Elavarasan [23]
introduced the concepts of r-generalized regular fuzzy closed sets in fuzzy topological spaces in

the sense of Sostak.
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In 1980, jain [10] introduced the notion of slightly continuous functions. Recently, Nour [14]
defined slightly semicontinuous functions as a weak form of slightly continuity and investigat-
ed its properties. On the other hand, Takashi Noiri [15] introduced the concept of slightly
[-continuous functions. In 2004, Ekici and Caldas [6] introduced the notion of slightly ~-
continuity (slightly b-continuity). After that slightly fuzzy w-continuous functions and slightly
fuzzy continuous functions are introduced by sudha et al. [21,22]. Recently, [23] introduced the
concepts of r-generalized regular fuzzy closed sets, generalized regular fuzzy continuous func-
tions and generalized regular fuzzy irresolute functions and investigate interrelation between
them.

In this paper, we introduce the concept of slightly regular fuzzy continuous, slightly gen-
eralized regular fuzzy continuous and somewhat slightly generalized regular fuzzy continuous
functions in fuzzy topological spaces in the sense of Sostak’s. Several interesting properties and
characterizations are introduced and discussed. Furthermore, the relationship among the new

concepts are introduced and established with some interesting counter examples.

§2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0,1] and Iy = (0,1]. For A €
IX, Xz)=Xforall z € X. For x € X and t € Iy, a fuzzy point z; is defined by

t ify==
0 ify#uz.

Let Pt(X) be the family of all fuzzy points in X. A fuzzy point z; € X iff ¢ < A(x). All other
notations and definitions are standard, for all in the fuzzy set theory.
Definition 2.1. [18] A function 7 : I* — I is called a fuzzy topology on X if it satisfies

the following conditions:

zi(y) =

(01) 7(0) = (1) =1,
(02) T(Vier i) = Nier (1), for any {pi}ier € IX,
(03) (1 A pa) > 7(pa) A7(p2), for any pa, po € I¥.

The pair (X, 7) is called a fuzzy topological space (for short, fts ). A fuzzy set A is called
an r-fuzzy open (r-fo, for short) if 7(\) > r. A fuzzy set A is called an r-fuzzy closed (r-fc, for
short) set iff 1 — X is an r-fo set.

Theorem 2.1. [{] Let (X,7) be a fts. Then for each A\ € IX and r € Iy, we define an
operator C, : IX x Iy — IX as follows: C.(\, 7) = N{p € I*X : X< pu, 7(1—p) >r}. For
A\, € IX and r,s € Iy, the operator C; satisfies the following statements:

(C1) C-(0,r) =0,
(C2) A< Cr (N, 1),

(C3) Cr(\, )V Cr(p, 1) =Cr(AV p, 1),
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(C1) Cr(\, r) < Cr(A, s) ifr <s,
(C5) C(Cr(A, 1), 7) =Cr(A, 7).

Theorem 2.2.  [/] Let (X,7) be a fts. Then for each A € IX and r € Iy, we define
an operator I, : I* x Iy — IX as follows: I;(\, v) = \/{u € I : p < X\, 7(p) > r}. For
A, € IX and r,s € Iy, the operator I, satisfies the following statements:

(I1) I(Ir) =1,
(12) I:(A, 1) < A,
(13) Ir(As ) AN (py 1) = Ir(A A g, 1),
(I4) I:(A\, 1) S L(A, s) if s<r,
(15) (L, 1), 7) = L\ 7).
(I6) L,(1 = X\r)=1—C;(\,7r) and C.(1 = X\,r) =1—I.(\, )
Definition 2.2. [17] Let (X, 7) be a fts, A € IX and r € Iy. Then
(1) a fuzzy set X is called r-fuzzy regular open (for short, r-fro) if X = L.(Cr(\,7),7).
(2) a fuzzy set X is called r-fuzzy regular closed (for short, r-frc) if A = Cr(L.(A\,r),T).

(3) a fuzzy set X is called r-fuzzy regular clopen (for short, r-frco) set iff \ is r-frc set and

r-fro set.
Definition 2.3. [253] Let f : (X, 7) — (Y, o) be a function and r € Iy. Then f is called:

(1) fuzzy regular continuous (for short, fr-continuous) if f=*(\) is r-fro set in IX for each
A€ IV with o(\) > 7.

(2) fuzzy regular open (for short, fr-open) if f()\) is r-fro set in IY for each X\ € I with
T(A) >r.

(3) fuzzy regular closed (for short, fr-closed) if f(X) is r-frc set in IV for each \ € I with
T(1=X) >r.

Definition 2.4. [23] Let (X, 7) be a fts. For \,u € IX andr € .

(1) The r-fuzzy regular closure of X, denoted by RC,(\,r), and is defined by RC-(\,r) =
N € TX|ju > A is r-fre }.

(2) The r-fuzzy regular interiror of A\, denoted by RI-(\,r), and is defined by RI-(\,r) =
Vi€ ¥\ < A is rfro }.

Definition 2.5. [23] Let (X, 7) be a fts. For any \, u € IX and r € I.

(1) A fuzzy set X is called r-generalized regular fuzzy closed (for short, r-grfc) set if RC-(A\, 1) <
w, whenever A < u and T(p) > r.
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(2) A fuzzy set X is called r-generalized regular fuzzy open (for short, r-grfo) set if 1 — X is
r-grfec.

(8) A fuzzy set X is called r-generalized regular fuzzy clopen (for short, r-grfco) set iff A is
r-grfc set and r-grfo set.

Definition 2.6. [23] Let (X, 7) be a fts. For \,u € IX andr € Iy.

(1) The r-generalized reqular fuzzy closure of A\, denoted by GRC,(\,r) and is defined by
GRC, (A7) = N{p € IX| X<, p isr-grfe }.

(2) The r-generalized regular fuzzy interiror of X, denoted by GRI.(\,r) and is defined by
GRI-(\,7) =\{n € I*| X > p, p is r-grfo }.

Definition 2.7. [23] Let (X, 7) and (Y, ) be a fis’s. Let f : (X, 7) = (Y, n) be a
function.

(1) f is called generalized regular fuzzy continuous (for short, grf-continuous) iff f=1(u) is
r-grfc for each p € IY | r € Iy with n(1 —p) > r.

(2) f is called generalized regular fuzzy open (for short, grf-open) iff f(X\) is r-grfo for each
NeIX, rely witht(\) >r.

(3) f is called generalized reqular fuzzy closed (for short, grf-closed) iff f(\) is r-grfc for each
NelX, rely witht(T—X\)>r.

(4) generalized regular fuzzy irresolute (grfi, for short) if f=1(u) is an r-grfc set, for each
r-grfc set w € IV, r € I.

Definition 2.8. [22] Let (D, >) be a directed set. Let X be an ordinary set and f be
the collection of all fuzzy points in X. The function S : D — f is called a fuzzy net in X. In
other words, a fuzzy net is a pair (S, >) such that S is a function :D — f and > direct the
domain of S. Forn € D, S(n) is often denoted by S, and hence a net S is often denoted by
{S, :n € D}.

§3. Slightly regular fuzzy continuous functions

Definition 3.1. Let (X, 7) and (Y, n) be fts’s. A function f: (X, 7) — (Y, n) is called
slightly reqular fuzzy continuous (srfe, for short) if for each A\ € I, u € IY and r € Iy such
that p is an r-frco set and f(\) < u, there exists r-fro setv € IX, r € Iy, A < v and f(v) < p.

Proposition 3.1. Let (X, 7) and (Y, n) be fts’s. For the function f: (X, 7) — (Y, n),

the following statements are equivalent:
(1) f is srfc function.
(2) f~Y(v) is an r-fro set for each v € IV, r € Iy such that v is r-frco set.

(3) f~Y(v) is an r-frc set for each v € IV, r € Iy such that v is r-frco set.
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(4) f~Y(v) is an r-frco set for each v € IV, r € Iy such that v is r-frco set.

(5) For each fuzzy set X\ € IX r € Iy and for every fuzzy net {S,, : n € D} which converges
to A\, the fuzzy net {f(Sy) : m € D} is eventually in each r-frco set p with f(A) < p.

Proof. (1)=(2): Let v € IV ,r € Iy such that v is r-frco set and let A € IX such that A < f~1(v).
Since v is an r-freo set with f(\) < v. By (1), there exists r-fro set u € I, r € Iy, A < p and
f(u) < v. Hence f~1(v) is an r-fro set.
(2)=(3 ): et v € IY,r € Iy such that v is r-frco set, then 1 — v is r-frco. By (2),
v)=1— f~Y(v) is r-fro set in X, thus f~!(v) is r-frc set in X.
(4) It is 0bv10us from (2) and (3).
):

1 -
3)=
(4)=(5
be an r-frco set such that f(\) < p. By using (3), there exist an r-frco set v € IX, r € Iy such
that A < v and f(v) < p. Since the fuzzy net {S, : n € D} converges to A, S,, < A <v. Now
Sp <A <w. Thus f(S,) < f(v) < p. Hence {f(S,) : n € D} is eventually in each r-frco set pu.
(5)=(1): Suppose that f is not srfc function. Then for every A € IX, u € IV, r € Iy such
that u is an r-frco set and f(A) < u, there does not exist r-fro set v € I%X such that A < v and
f(v) < u. Hence f(S,) < p. That is, the fuzzy net {f(S,) : n € D} is not eventually in an
r-frco set p with f(\) < u, which is a contradiction. Hence f is srfc function. O

Let {S,, : n € D} be a fuzzy net converges to the r-frco set A € IX and let u € IV

Proposition 3.2. Let (X, m), (Y, 72) and (Z, 13) be fts’s. For the function f :
(X, 1) = (Y, ) and g: (Y, 72) = (Z, 13), the following statements are satisfied:

(1) If f and g are srfc functions, then so is go f.

(2) If f is a surjective fuzzy regular irresolute, fuzzy regular open function and g be any

function, then g o f is srfc function iff g is srfc.

Proof. (1): Clear.

(2): Suppose that g o f is srfc function, A € I%, r € Iy such that X is an r-frco set. By
using Proposition (2), f~1(g71(\)) = (go f)~1(\) is an r-fro set in 1. Since f is fuzzy regular
open, g~ 1(\) = f(f~1(g7*(N\))) is an r-fro set. Therefore by Proposition , g is srfc function.

Conversely, let v € IZ, r € I such that v an r-frco set. Since g is srfc function, g=1(v) is
an 7-fro set in IY and f is fuzzy regular irresolute function, f=*(g~1(v)) = (go f)~1(v) is an
r-fro set in IX. Therefore by Proposition , g o f is srfc function. O

Definition 3.2. Let (X, 7) is said to be an r-fuzzy reqular connected iff 0 and 1 are the
only fuzzy sets which are both r-fro and r-frc.
Proposition 3.3. Let (X, 7) and (Y, n) be fts’s, and let f : (X, 7) = (Y, n) be a

function. If (Y, n) is an r-fuzzy regqular connected, then f is srfc function.

Proof. Let (Y, n) be an r-fuzzy regular connected space. Then 0 and 1 are the only r-frco sets.
Since f~1(0) and f~1(1) are both r-fro in IX. Hence by Proposition , f is srfc function. O

Proposition 3.4. Let (X, 1) and (Y, n) be fts’s, and let f : (X, 7) = (Y, n) be srfc
function. If (X, T) is an r-fuzzy regular connected, then so is (Y, n).
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Proof. Suppose that (Y, 1) be an r-fuzzy regular disconnected space and v € IY —{0,1} be an
r-frco set. Since f is srfc function, f~1(v) is an r-frco set which is contradiction. Hence (Y, 7)

is an r-fuzzy regular connected. O

84. Slightly generalized regular fuzzy continuous functions

Definition 4.1. Let (X, 7) and (Y, n) be fts’s. A function f: (X, 7) = (Y, n) is called:
(1) almost x-generalized reqular fuzzy continuous (ax-grfe, for short) if for each A € I, €

IV, r € Iy such that n(p) > r and f(\) < u, there exists an r-grfo set v € I such that
>\ S v and f(]/) S In(Cn(er)vr)-

(2) Ox-generalized reqular fuzzy continuous (O%-grfc, for short) if for each A € I, p € IV, r €
Iy such that n(u) > r and f(\) < u, there exists an r-grfo set v € I such that A < v
and f(Cr(v,7)) < Cy(p, 7).

(3) weaklyx-generalized reqular fuzzy continuous (wk-grfe, for short) if for each A € I, u €
IV, r € Iy such that n(p) > r and f(\) < u, there exists an r-grfo set v € I such that
A<vand f(v) < Cy(u,r).

(4) slightly generalized regular fuzzy continuous (sgrfe, for short) if for each A € I, u €
IV, r € Iy such that p is an r-frco set and f(\) < p, there exists an r-grfo set v € IX
such that A <wv and f(v) < p.

Remark 4.1.
(1) Every ax-grfc function is Ox-grfc function.
(2) Every Ox-grfc function is sgrfc (resp. wx-grfc) function.
(8) Ewvery sgrfc function is wx-grfc function.

The above Definition and Remark show the following implication is true but the reverse

implication is not true in general.

Example 4.1. Let X =Y ={a, b, ¢} and f: (X, 7) = (Y, n) be the identity function.
Define \, § € I, u € IV as follows: \(a) = 0.3, A\(b) = 0.4, A(c) = 0.5; u(a) = 0.3, u(b) =
0.4, p(c) = 0.5; §(a) = 04, 5(b) = 0.4, 6(c) = 0.5. We define a fuzzy topologies T and n as
follows:

1 ifA=0ort, 1 ifA=0ort,
TN =93 ifrx=x 1N =93 ifr=p,
0 otherwise, 0 otherwise,
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For v = 1/2, then f is Ox-grfc function but not ax-grfc, because A\ € IX, u € IV, r € Iy
such that n(u) > r and f(\) < u, there em'sts an r-grfo set § € I*X and X < § such that
F(C(6,7)) < Color) but £(8) £ Ty(Colpss 1), 7).

Example 4.2. Let X=Y= {a, b, ¢} and f: (X, 1) = (Y, n) be the identity function.
Define \, § € I, u € IV as follows: A(a) = 0.3, A\(b) = 0.4, A(c) = 0.5; u(a) = 0.5, u(b) =
0.5, u(c) = 0.5; 6(a) = 0.4, 6(b) = 0.4, d(c) = 0.5. We define a fuzzy topologies 7 and n as
follows:

1 ifA=0orl, 1 ifA=0orl,
TN =93 A=A nN) =93 ifr=un
0 otherwise, 0 otherwise,

For r = 1/2, then f is wx-grfc function but not Ox-grfc, because X € IX, u € IV, r € Iy
such that n(p) > r and f( ) < w, there exists an r-grfo set § € I* and X\ < § such that
F(6) < Colp ) but F(Co(3,1)) £ Colpy

Example 4.3. In E:vample , f s sgrfc Sfunction but not 0x-grfc.

Example 4.4. Let X =Y ={a, b, ¢} and f: (X, 7) — (Y, n) be the identity function.
Define A, § € I, p €IV as follows: Ma) = 0.3, A\(b) = 0.4, A(c) = 0.5; pu(a) = 0.4, u(b) =
0.6, u(c) =0.5; 6(a) = 0.4, 6(b) = 0.4, d(c) = 0.5. We define a fuzzy topologies T and 1 as
follows:
ifA=0 orl, 1 ifA=0orl,
fA=X nN) =1 ifx=p,
0

0 otherwise,

[ [l

T(A) =
otherwise,
Forr =1/2, then f is wxgrfc function but not sgrfc, because A € I, € IY, r € Iy such that

n(w) > r and f(\) < u, there exists an r-grfo set § € I and A\ < § such that f(8) < Cy(u,7)
but p is not r-frco.

Proposition 4.1. Let (X, 7) and (Y, n) be fts’s. For the function f: (X, 7) — (Y, n),
the following statements are equivalent:

(1) f is sgrfec function.

(2) f~Y(v) is an r-grfo set for each v € IV |r € Iy such that v is r-grfco set.
(3) f~Y(v) is an r-grfc set for each v € IY, r € Iy such that v is r-grfco set.
(4) f~1(v) is an r-grfco set for each v € IY ,r € Iy such that v is r-grfco set.

(5) For each fuzzy set A € I, r € Iy and for every fuzzy net {S, : n € D} with converges to
A, the fuzzy net {f(Sy) : n € D} is eventually in each r-grfco set p with f(A\) < p.

Proof. (1)=(2): Let v € IV, r € Iy such that v is r-grfco set and let A € I* such that
A < f~1(v). Since v is an r-grfco set with f(\) < v. By (1), there exists u € I such that u is
an r-grfo, A < p and f(u) < v. Hence f~1(v) is an r-grfo set.

(2)=(3): Let v € IY,r € I, such that v is r-grfco set, then T — v is r-grfco. By (2),
1A —v) =1~ f~Y(v) is r-grfo set in X, thus f~1(v) is r-grfc set in X.

(3)=(4): It is obvious from (2) and (3).
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(4)=(5): Let {S, : n € D} be a fuzzy net converges to the r-grfco set A € I and let
wu € IV be an r-grfco set such that f(\) < p. By using (3), there exist an r-grfo set v € IX
such that A < p and f(v) < u. Since the fuzzy net {S,, : n € D} converges to A, S, < A <.
Thus {f(Sn) : n € D} is eventually in each r-grfco set p.

(5)=(1): Suppose that f is not sgrfc function. Then for every A € IX, u e IV, r € I
such that p is an r-grfo set and f(\) < u, there does not exist v € Ix such that A < v and
f(v) < p. Hence f(S,) < p. That is the fuzzy net {f(S,) : n € D} is not eventually in an
r-grfco set p with f(\) < u, which is a contradiction. Hence f is sgrfc function. O

Proposition 4.2.  Let (X, ), (Y, 72) and (Z, 13) be fts’s. For the function f :
(X, 1) = (Y, 7) and g: (Y, 72) = (Z, 13), the following statements are satisfied:

(1) If f and g are sgrfc functions, then so is go f.

(2) If [ is a surjective grfi, grfo function and g be any function, then g o f is sgrfc function
iff g is sgrfc.

Proof. (1): is clear.

(2): Suppose that go f is sgrfc function, A € IZ is an r-grfco set. By using Proposition (2),
g7t (v)) = (go f)~(v) is an r-grfo set in IX. Since f is grfo, g71(\) = f(f~1(g71(N))) is
an r-grfo set. Therefore by Proposition , g is sgrfc function.

Conversely, let v € I? be an r-grfco set where r € Iy. Since g is sgrfc function, g~1(v)
is an r-grfo set € IV and f is grfi function, f~1(¢~'(v)) = (go f)~1(v) is an r-grfo set € I*X.
Therefore by Proposition , g o f is sgrfc function. O

Definition 4.2. A fts (X, 7) is said to be an r-generalized reqular fuzzy connected iff 0
and 1 are the only fuzzy sets which are both r-grfo and r-grfc.
Proposition 4.3. Let (X, 7) and (Y, n) be fts’s, and let f : (X, 7) = (Y, n) be a

function. If (Y, n) is an r-generalized regular fuzzy connected, then f is sgrfc function.

Proof. Let (Y, n) be an r-generalized regular fuzzy connected space. Then 0 and 1 are the only
r-grfco sets. Since f~1(0) and f~!(1) are both r-grfo in IX. Hence by Proposition , f is sgrfc
function. O

Proposition 4.4. Let (X, 7) and (Y, n) be fts’s, and let f : (X, 7) — (Y, n) be sgrfc
function. If (X, 7) is an r-generalized reqular fuzzy connected, then so is (Y, n).

Proof. Suppose that (Y, n) be an r-generalized regular fuzzy disconnected space and v €
IY — {0,1} be an r-grfco set. Since f~!(v) is an r-grfco set which is contradiction. Hence

(Y, n) is an r-generalized regular fuzzy connected. O

Definition 4.3. A fts (X, 7) is said to be an r-generalized reqular fuzzy extremely
disconnected if GRC-(\,7) is an r-grfo set for each A € IX,r € Iy such that X is an r-grfo set.
Proposition 4.5. Let (X, 7) and (Y, n) be fts’s. If f : (X, ) — (Y, ) be sgrfc function

and (Y, n) is an r-generalized regular fuzzy extremely disconnected, then f is axgrfec function.
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Proof. A € I € IV, r € Iy such that \ and u are r-grfo sets. Since (Y, 1) is an r-generalized
regular fuzzy extremely disconnected, GRC, (11, r) is an r-grfco set. Now, f(\) < GRC,(u,r)
and since f is sgrfc function, there exists an r-grfo set v € IX such that A < v and f(v) <
C, (1, 7). Therefore, f is axgfc function. O

§5. Somewhat slightly generalized regular fuzzy continuous

and open functions

Definition 5.1. Let (X, 7) and (Y, n) be fts’s. A function f : (X, 7) = (Y, n) is
called somewhat slightly generalized regular fuzzy continuous (swsgrfc, for short) if for each
A€ IX, pelI¥ andr € Iy such that f~1(u) # 0 and f(\) < u, there exists an r-grfo set
0#velX suchthat \<v and v < f~1(u).

Remark 5.1.

(1) Euvrey srf-continuous function is sgrf-continuous.
(2) Euvrey srf-continuous (resp. sgrf-continuous) function is swsgrf-continuous.

The above Definitions , (4), and Remark show the following implication is true but the

reverse implication is not true in general.

Example 5.1. In Ezample , for r = 1/2, then [ is sgrfc function but not srfe, because
ANeIX, pel¥, rcly, such that n(p) > 7 and f(\) < p, there exists an r-grfo set 6 € IX
and A < § such that f(0) < p but § is not r-fro set.

Example 5.2. In Example , forr =1/2, then f is swsgrfc function but not sgrfc, because
ANe X, pel¥, relysuch that n(i) > 7 and f(\) < u, there exists an r-grfo set § € I and
A <6 such that f(8) < p but pu is not r-freo.

Example 5.3. In Example , [ is swsgrfc function but not srfc.

Definition 5.2. A fuzzy set A in a fts (X, 7) is called r-generalized regular fuzzy dense
(resp. r-fuzzy reqular dense) set if there exists no r-grfe (resp. r-frco) set u € I, r € Iy such
that A < p < 1.

Example 5.4. Let X = {a, b}. Define A\, u € IX as follows: p(a) = 0.9, u(b) = 0.9.
We define a fuzzy topology T as follows:

1 ifA=0o0rt,
TA) =43 ifA=u,
0 otherwise.
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So, if M(a) = 0.9, A\(b) = 0.8, then there exists no 1/3-grfc set u in IX such that A\ < p < 1.
Therefore, \ is an 1/3-generalized reqular fuzzy dense set in IX.
Example 5.5. In Ezample , if A(a) = 0.8, A(b) = 0.9, then there exists no 1/3-frco set
woin IX such that A < p < 1. Therefore, X is an 1/3-fuzzy regular dense set in IX.
Definition 5.3. Let (X, 7) be a fts. For a fuzzy set X € I, r € Iy, I” and CT are
defined as follows:

(1) It =\/{u € I* | u < X\ and p is r-freo},
(2) Cr = N{p €I | A< u and p is r-frco}.

Proposition 5.1. Let (X, 7) and (Y, n) be fts’s, and let f : (X, 7) — (Y, 1) be any

function. Then the following are equivalent:
(1) f is swsgrfc function.

(2) If X is an r-frco set such that f~1(\) # 1 and A < f(1—v), for each v € IX, r € I then
there exists an r-grfc set u <1 —v € IX such that u > f~1()).

(3) If X is r-generalized regular fuzzy dense set in IX, then f(\) is r-fuzzy reqular dense set
in IV such that every r-frco set u < f(1—v), for each v € IX and r € I.

Proof. (1)=-(2) Suppose f is swsgrfc function, and let A be any 7-frco set in IY such that
f7YN) # Tand A < f(1 —v), for each v € I, r € Iy. Then, T — A is r-frco in I¥ such
that f~1(1 — X) # 0 and f(r) < 1— A. Then by the hypothesis, there exists an r-grfo set
0#acIX, relysuchthat v < aand a < f~1(T - \). That is, T — a is an r-grfc set and
T—-a>T—f1YT-X)=f1)). Put T —a = p. Then u is an r-grfc set in IX such that
= ).

(2)=(3) Let A be an r-generalized regular fuzzy dense set in X, and suppose that f()) is
not a fuzzy regular dense set in 1Y, such that each r-frco set u < f(1—v), for each v € IX, r €
Iy. Then, there exists an r-frco set a € IY such that f(\) < a <1, since a <1, f~(a) # 1.

Now, « is an r-frco set such that f~!(a) # 1 and f(1 —v) > «, for each v € I*, r € .
Then by the hypothesis, there exists an r-grfc set v < T — v € IX such that v > f~!(a). But
F~Ya) > f~Y(f(N)) = A. That is, v > X. Therefore, there exists an r-grfc set v € IX,r € I
such that v > ), which is a contradiction. Therefore, f()\) is an r-fuzzy regular dense set in 1Y
such that v < f(T — v), for each v € I* and r-frco set v € IY.

(3)=(1) Let A be an r-frco set such that f~1()\) # 0 and f(v) < A, for each v € IXr € I,.
Then, A # 0. Now, suppose that v < o and GRI.(f~*(\),r) = 0 € I*X. Then, GRC,(T —
71O, r) =1¢e 1.

That is, T— f~1()) is an r-generalized regular fuzzy dense in IX. Then by (3), f(T—f~1()\))
is an r-fuzzy regular dense set such that there exists an r-frco set u < f(1 — v), for each
velXrely. But f(I1—f1(\) = f(f*(T-X) <T—-X<T,since T -\ is an r-frco and
FA—=fYN) <T—=X\ RC(f(1—f"*(\),r) <T—\ Thatis, 1—X>1= \=0, which is a
contradiction, since A # 0. Therefore, v < o and GRI(f~1()\),r) # 0. So f is swsgfc. O

Definition 5.4. Let (X, 7) and (Y,n) be fts’s. A function f: (X,7) = (Y,n) is called

(0]
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(1) slightly generalized reqular fuzzy open (briefly, sgrfo) if for each r-grfo set A\ € IX and
each p € I, v € Iy such that A < p, f(A\) is an r-frco set in IY and f(\) < f(u),

(2) somewhat generalized regular fuzzy open (briefly, swgrfo) if for each r-grfo set 0 # X\ €
IX,r € Iy there exists an r-grfo set in 0 # p € IY such that f(\) > pu,

(3) somewhat slightly generalized regular fuzzy open (briefly, swsgrfo) if for each r-grfo set
0 # X € IX such that A\ < v and for each v € IX,r € Iy, there exists an r-frco set
0#pel¥, u< f(v) such that f(\) > p.

That is, I”(f()\),r) # 0, and there exists an r-frco set p such that f(v) > g and A < v, for
each v € IX, r € I,.

Remark 5.2. Furey sgrfo (resp. swgrfo) function is swsgrfo function but the converse is
not true in general as shown by the following example.

Example 5.6. In Exzample , f is swsgrfo function but not sgrfo, since for each r-grfo set
A€ IX and each v € IX, v € Iy such that X < i, f()\) is not r-frco in IV and f(\) < f(p).

Example 5.7. Let X =Y = {a, b, ¢} and f : (X, 7) = (Y, n) be the function.
Define N\, A\, v € I, Xo, p € IV as follows: A\i(a) = 0.5, A\ (b) = 0.5, A\i(c) = 0.5;
A2(a) = 0.5, A2(b) = 0.5, A2(c) = 0.5; A(a) = 0.5, A(b) = 0.6, A(c) =0.5; p(a) = 0.5, u(b) =
0.5, u(c) = 0.5; v(a) = 0.7, v(b) = 0.6, v(c) = 0.5; §(a) = 0.5, §(b) = 0.6, d(c) = 0.6. We

define a fuzzy topologies T and n as follows:

1 ifA=0orl, 1 ifA=0orl,
TN =95 A=A, nA)=95 if A=A,
0 otherwise, 0 otherwise.

For r = 1/2, then f is swsgrfo function but not swgrfo, because for each r-grfo set 0 # X\ €
IX, r € Iy such that A\ < v for each v € IX, there exists an r-frco set 0 # pu € IV, p < f(v)
such that f(\) > u but for each r-grfo set 0 # X\ € IX, r € Iy there erxists an r-grfo set
0#6€IY, such that f(A\) % u .

Proposition 5.2. Let (X, 1), (Y, 72) and (Z, 73) be fts’s. If f: (X, 1) = (Y, 72)
and g : (Y, 1) = (Z, 13) are swsgrfo functions, then go f : (X, 1) — (Z, 73) are swsgrfo

function.

Proof. Let 0 # X\ € IX be an r-grfo set r € Iy such that A\ < p, for each fuzzy set u € IX, r € I.
Since f is swsgrfo, then there exists an r-frco set 0 # v € IV, and f(u) > v such that f(\) > v.
Now, GRI,,(f()\),r) is an r-grfo in IY such that
GRIL,(f(\),r) £0, GRI,(f(\),7) < f(u), for each f(u) € I"".
Since g is swsgrfo, then there exists an r-frco set 0 # v € I? and v < g(f(u)) such that
v < g(GRI.(f(A),r)). But g(GRI.,(f(A),r)) < g(f(A)). Thus, there exists an r-frco set
0#~€I? and (go f)(u) > 7, such that (go f)(\) > ~. Therefore, go f is swsgrfo. O

Proposition 5.3. Let (X, 7) and (Y, n) be fts’s, and let f : (X, 7) = (Y, n) be a

bijective function. Then the following are equivalent:

(1) f is swsgrfo function.
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and X\ > v for each v € IX, then there

(2) If X is an r-grfc set in I such that f(\) # 1
< u such that f(X) < p.

exists an r-frco set € IV, u#1 and f(v)

Proof. (1)=>(2) let A be an r-grfc set in IX such that f(\) # 1 and A > v, foreach v € I, r €
Io. Then, T— X is an r-grfo set in I such that f(1—\) #0and 1—\ < 1—v, for each v € I¥.
So T— A # 0. Since f is a swsgrfo, then there exists an r-frco set 0 # § € IV and f(1—v) >4
such that f(1—M\) > é.

Now, T—4 is an r-frco set in 1Y such that 1—¢& # Tand T—3 > f(v) such that T—§ > f(\).
Take 1 — & = p, so (2) is proved.

(2)=(1) Let A # 0 be any r-grfo set in I such that A\ < v, for each v € IX. Then, T — X
is an r-grfc set in IX such that T — X # T and T — X > 1 — v for each v € IX, r € . Now,
FA-A)=T— f(\)#£T. For, if T~ f(A) =T, then f(\) =0 = A = 0.

Hence by the hypothesis, there exists an r-frco set p € IV, T # p > f(I — v), such that
F(I—=X) <p. Thatis0#1—pu < f(v), such that T —pu < f(\). Let T —pu=+. Then, v# 0 is
an 7-frco set in IV such that f(v) > v and f(\) > ~. Therefore, f is swsgrfo function. O
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Abstract In this paper, we introduce the concepts of fuzzy upper and fuzzy lower e-continuous
multifunction, fuzzy upper and fuzzy lower e-irresolute multifunction on fuzzy topological s-

paces in Sostak sense. Several characterizations and properties of these fuzzy upper (resp.

fuzzy lower) e-continuous, fuzzy upper (resp. lower) e-irresolute multifunctions are presented

and their mutual relationships are established in L-fuzzy topological spaces. Later, composi-

tion and union between these multifunctions have been studied.
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§1. Introduction and preliminaries

Kubiak [15] and Sostak [23] introduced the notion of (L-)fuzzy topological space as a
generalization of L-topological spaces (originally called (L-) fuzzy topological spaces by Chang
[6] and Goguen [8]. Tt is the grade of openness of an L-fuzzy set. A general approach to the study
of topological type structures on fuzzy powersets was developed in [ [9]- [11], [15], [16], [23]- [25]].

Berge [5] introduced the concept multimapping F' : X — Y where X and Y are topological
spaces and Popa [21,22] introduced the notion of irresolute multimapping. After Chang intro-
duced the concept of fuzzy topology [6], continuity of multifunctions in fuzzy topological spaces
have been defined and studied by many authors from different view points (eg. see [3], [4], [18]-
[20]). Tsiporkova et al., [27,28] introduced the continuity of fuzzy multivalued mappings in the
Chang’s fuzzy topology [6]. Later, Abbas et al., [1] introduced the concepts of fuzzy upper and
fuzzy lower semi-continuous multifunctions in L-fuzzy topological spaces. Recently, Sobana [26]

and Vadivel [29] introduced r-feo sets (r-fec) sets, fuzzy e-continuity, fuzzy e-openness, fuzzy
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e-closedness and r-fuzzy e-irresolute in a smooth topological space.

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower e-continuous
multifunction, fuzzy upper and fuzzy lower e-irresolute multifunction on fuzzy topological spaces
in Sostak sense. Several characterizations and properties of these multifunctions are presented
and their mutual relationships are established in L-fuzzy topological spaces. Later, composition
and union between these multifunctions have been studied.

Throughout this paper, nonempty sets will be denoted by X, Y etc., L = [0, 1] and
Lo = (0, 1]. The family of all fuzzy sets in X is denoted by LX. The complement of an L-fuzzy
set A is denoted by A°. This symbol — for a multifunction.

For o € L, a(x) = « for all © € X. A fuzzy point z; for ¢ € Ly is an element of LX such

t ify=uz . o .

that z.(y) = The family of all fuzzy points in X is denoted by Pt(X). A fuzzy
0 ify#ux.

point x; € X iff t < A(x).

All other notations are standard notations of L-fuzzy set theory.

Definition 1.1. [1] Let F: X — Y, then F is called a fuzzy multifunction (FM, for short)
if and only if F(x) € LY for each x € X. The degree of membership of y in F(x) is denoted by
F(z)(y) = Gp(z, y) for any (x, y) € X x Y. The domain of F, denoted by domain(F') and the
range of F, denoted by rng(F), for any x € X and y € Y, are defined by :

dom(F)(x) = \/ Gr(x, y) and rng(F)(y) = \/ Gr(z, y).

yey zeX

Definition 1.2. [1] Let F: X — Y be a FM. Then F is called:
(i) Normalized iff for each © € X, there exizts yo € Y such that Gr(z, yo) = 1.
(ii) A crisp iff Gr(z, y) =1 for each x € X and y €Y.

Definition 1.3. [1] Let F: X —Y be a FM. Then

(i) The image of A € L™ is an L-fuzzy set F(\) € LY defined by

FN) =V [Gr(z, y) AA@)].

zeX
(ii) The lower inverse of u € LY is an L-fuzzy set F'(u) € LY defined by

Fl(u)() = \/ [Gr(z, y) A p(y)).

yey
(iii) The upper inverse of u € LY is an L-fuzzy set F"(u) € LX defined by

F(m)(@) = N (G5 (z, y) v u(y))-

yey
Theorem 1.1. [1] Let F: X — Y be a FM. Then

(i) F(M) < F(X2) if A < Ao
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(ii) F'(p) < F'(p2) and F* (1) < F*(pa), if pu < po.
(iii) F*(p) < F'(p), if F is normalized.

(iv) (F(\)¢ < F(X°), if F is surjective.

() (FY(w))° < F'(u®), if F is normalized.

(vi) F'(1—p) =1~ F*(u) and F*(1—p) =1~ F'(p).
(vii) F(F"(w)) < p if F is a crisp.
(viii) FU(F(\) > X if F is a crisp.

Definition 1.4. [1] Let F: X — Y and H : Y — Z be two FM. Then the composition
H o F is defined by
(HoF)(2))(z) = \/ [Gr(z, y) AGu(y, 2)].

yey
Theorem 1.2. [1] Let F: X —oY and H : Y — Z be FM. Then we have the following
(i) (HoF)=F(H).
(i) (Ho F)* = F"“(H").
(iii) (H o F)! = F'(HY).
Theorem 1.3. [1] Let F;: X — Y be a FM. Then we have the following

(i) (U F)A) = V F(N).

(i1) (LGJFE:)Z(M) = XFF;(”)'
(iii) (U Fi)"(w) = N F*(p)-
i€l el

Definition 1.5. [11,15,17,23] An L-fuzzy topological space (L-fts, in short) is a pair
(X, 7), where X is a nonempty set and 7 : LX — L is a mapping satisfying the following

properties.
(1) 7(0) =7(1) =1,
(2) T(uy A pz) > 7(ur) AT(p2), for any pun, pe € I
(3) T(Vier 1) = Nier 7(1i), for any {pi}ier C I¥,

Then 7 is called an L-fuzzy topology on X. For every A € LX, 7()\) is called the degree of
openness of the L-fuzzy set .

A mapping f: (X, 7) = (Y, n) is said to be continuous with respect to L-fuzzy topologies
7 and 7 iff 7(f~1(n)) > n(u) for each p € LY.

Theorem 1.4. [7,13,14,17] Let (X, 7) be a an L-fts. Then for each A € L, r € Lg, we
define L-fuzzy operators Cy and I : LX x Ly — LX as follows:
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Cor\, r)y= ANpeLlX:Xx<pu, 7(1—p) >rl).
L, r)=\V{pe LX: A >p, 7(u) > 7}
For A\, p € LX andr, s € Ly, the operator C, satisfies the following conditions:

(1) C-(0,r) =0,
(2) A< Cr(A, 1),
(3) Cr (A, 1)V Cr(p, 1) =Cr(AV p, 1),
(4) C-(Cr(A, 7

(5) Cr(\, 1) = X iff T(A) > 1

); 1) = Cr (A, 7),

(6) C-(X% 1) = (I (A, 7)) and I (A, r) = (C+(A, 7))°

Definition 1.6. [1] Let F : X — Y be a FM between two L-fts’s (X, 1), (Y, n) and
r € Lyg. Then F is called:

(i) Fuzzy upper semi continuous (or Fuzzy upper) (in short, FUS (or FU )-continuous) at
a L-fuzzy point x; € dom(F) iff z; € F“(u) for each p € LY and n(p) > r, there exists
A€ LX 7(\) > 7 and x; € X such that A\ dom(F) < F*(u). F is FU-continuous iff it

is FU-continuous at every x; € dom(F).

(#i) Fuzzy lower semi continuous (or Fuzzy lower) (in short, FLS (or FL)-continuous) at a L-
fuzzy point x; € dom(F) iff v, € F'(u) for each p € LY and n(p) > r, there exists A € L~
7(A) > r and x; € \ such that A < F'(u). F is FL-continuous iff it is F L-continuous at
every x; € dom(F).

(#i3) Puzzy continuous if it is FU-continuous and F L-continuous.

Theorem 1.5. [1] Let F : X — Y be a fuzzy multifunction between two L-fts’s (X, T)
and (Y, n). Let u € LY. Then we have the following

(1) F is FL-continuous iff T(F'(u)) > n(u).

(2) If F is normlized, then F is FU-continuous iff T(F“(u)) > n(w).

(3) F is FL-continuous iff (1 — F“(u)) > n(1 — p).
(4) If F is normalized, then F is FU-continuous iff 7(1 — F'(u)) > n(T — p).

Remark 1.1 [4,30] Let (X, 7) and (Y, n) be a fts’s. The fuzzy sets of the form A\ X u
with 7(A) > r and n(u) > r form a basis for the product fuzzy topology T x n on X XY, where
Jor any (x, y) € X x Y, (Ax p)(z, y) = min{A(z), p(y)}.

Definition 1.7. [4,19] Let F': X — Y be a FM between two fts’s (X, 7) and (Y, n). The
graph fuzzy multifunction Gy : X — X xY of F is defined as Gy(x) = x1 X F(x), for every
z e X.

Definition 1.8. [12] Let (X, 7) be a fts. For A\, p € I* and r € Iy, \ is called r-
fuzzy regular open (for short, r-fro) (resp. r-fuzzy reqular closed (for short, r-frc)) if A =
L(C.(\r),r) (resp. A=Cr(I(\r),r)).

Definition 1.9. [12] Let (X, 7) be a fts. Then for each u € I, x; € Pi(X) and r € Iy,
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(i) p is called r-open Qr-neighbourhood of x¢ if xiqu with T(p) > r.
(ii) w is called r-open R, -neighbourhood of x¢ if xiqu with p = L.(Cr(u, 7), 7).

We denoted
Qr(ze, ) ={p € I s aqu, 7(u) >},

Re(xg, m) = {p € I s wqu, p=1(Cr(p, 1), 7)}.
Definition 1.10. [12] Let (X, 7) be a fts. Then for each A € IX, x; € Py(X) and r € Iy,
(i) xy is called r-7 cluster point of A if for every p € Q- (xy, 1), we have pg.
(i1) xy¢ is called r-6 cluster point of \ if for every u € R, (x¢, 1), we have pug.

(iii) An 6-closure operator is a mapping DCy : I x I — IX defined as follows:
0C-(A, ) or DC (N, r) = \/{xs € P(X) : x¢ is r-d-cluster point of \}.
Equivalently, Cr(\, 7) = N{p € I’ : p >\, p is a r-frc set} and
SN, ) =V{peIX: u<\ pisar-fro set}.

Definition 1.11. [12] Let (X, 7) be a fuzzy topological space. For A € I and r € Iy, A
is called r-fuzzy d-closed iff A = 0C (N, r) or DC.(A, 7).

Definition 1.12. [26] Let (X, 7) be a an L-fts. Then for each A\, p € LX, r € Lo. Then
A s called

(1) X is called an r-fuzzy e-open (briefly, r-feo) set if X < Cr(5-(A, r), 7)VI(6C (A, ), T).
(2) X is called an r-fuzzy e-closed (briefly, r-feo) set if C(8L-(X, 7), r)AL(6C- (A, ), 1) < A.

Definition 1.13. [26] Let (X, 7) be an L-fts. Then for each A\, u € LX, r € Ly. Then A
1s called

(i) el (X, r)=\/{p € IX : u <\, pis a r-feo set } is called the r-fuzzy e-interior of .

(i) eCr (N, ) = N{p € IX : p > N\, pis a r-fec set } is called the r-fuzzy e-closure of .

§2. Fuzzy upper and lower e-continuous multifunctions

Definition 2.1. Let F: X — Y be a FM between two L-fts’s (X, 1), (Y, n) andr € Ly.
Then F' is called:

(i) Fuzzy upper e-continuous (FUe-continuous, in short) at any L-fuzzy point x; € dom(F)
iff zs € F*(u) for each pu € LY and n(p) > r there exists r-feo set, \ € L and x; € X
such that A A dom(F) < F*(u).

(i1) Fuzzy lower e-continuous (F Le-continuous, in short) at any L-fuzzy point xy € dom(F)
iff zv € F'(u) for each p € LY and n(p) > r there exists r-feo set, A € LX and x; € X
such that X < F'(p).

(iii) FUe-continuous (resp. FLe-continuous) iff it is FUe-continuous (resp. F Le-continuous)
at every xy € dom(F).
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Remark 2.1 Let F be a FM between two L-fts’s (X, 1) and (Y, n). For the mapping
F: X —oY, the following statements are valid:

(1) FU-continuous = FUe-continuous.
(2) FL-continuous = F Le-continuous.

The converse of the above Remark 2.1 need not be true as shown by the following examples.

Example 2.1 Let X = {x1, z2}, Y = {y1, y2, y3} and F: X — Y be a FM defined by
Gr(z1, y1) = 0.8, Gp(z1, y2) = 0.9, Gr(x1, y3) = 0.8, Gr(ze, y1) =1, Gr(za, y2) = 0.7, and
Gr(ze, ys) = 0.9. Let \y and g be a fuzzy subsets of X be defined as A1(x1) = 0.3, A1(z2) = 0.1
and Aa(x1) = 0.7, Ay(z2) = 0.7 and p be a fuzzy subset of Y defined as u(y1) = 0.7, u(y2) = 0.9,
u(ys) = 0.8. We assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies T : L*X — L and
n: LY — L as follows:

1, ifA=0o0rl, 1, ifpu=0o0rl,
T()\): %; Zf)‘:>‘1a T](,UJ): %a quzlu’7
0, otherwise, 0, otherwise.

are fuzzy topologies on X and Y. For 7“:%, as [ is %—fuzzy open in'Y and F*(u) = A2 is %—feo
set in X. Then F : X — Y is FUe-continuous. But F is not FU-continuous, because p s
%—fuzzy open in'Y and F*(u) = Ag is not %—fuzzy open set in X.

Example 2.2 Let X = {x1, 22}, Y = {y1, y2, y3} and F : X — Y be a FM defined
by Gr(z1, 11) = 0.2, Gp(z1, y2) = 1, Gp(z1, y3) =0, Gp(za, y1) = 0.5, Gp(z2, y2) = 0,
and Gp(xe, y3) = 0.3. Let Ay and My be a fuzzy subsets of X be defined as Ai(x1) = 0.4,
A1(x2) = 0.3; Aa(z1) = 0.9, Aa(z2) = 0.5 and p be a fuzzy subset of Y defined as u(y1) = 0.6,
w(y2) = 0.9, u(y3) = 0. We assume that T =1 and 0 = 0. Define L-fuzzy topologies T : L* — L
andn: LY — L as follows:

1, ifA=0o0r1, 1, fpu=0o0rl,
TA) =93 frA=A, n(w) =135, ifp=p
0, otherwise, 0, otherwise.

are fuzzy topologies on X and Y. For r:%, as [ is %—fuzzy open set in'Y and F'(u) = Ay is
% feo set in X. Then F : X — Y is F Le-continuous. But F is not F L-continuous, because [
is %-fuzzy open in'Y and F'(u) = Ay is not %-fuzzy open set in X.

Proposition 2.1 If F is normalized, then F is FUe-continuous at an L-fuzzy point
x; € dom(F) iff x; € F*(u) for each p € LY and n(p) > r there exists X\ € LX, X is r-feo set
and x; € A such that X < F*(u).

Theorem 2.1 Let F: X — Y be a FM between two L-fts’s (X, 1), (Y, 1) and p € LY,

then the following are equivalent:

(i) F is F Le-continuous.

(i) F'(u) is r-feo set, for any n(u) > r.
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(11i) F“(p) is r-fec set, for any n(1 — p) > r.
(i) C(F*(), ) < F*(Cy(ju,1)), for any & LY.
(v) Cr(OL(F*(n),),7) AL (8C(F*(p),7),m) < F(Cy(p,r)), for any pe LY.

Proof. (i) = (ii): Let zy € dom(F), u € LY, n(u) > r and oy € F'(p) then, there exist A € LX,
A is r-feo set and z; € X such that A < F'(u) and hence x; € el (F!'(u),r). Therefore, we
obtain F!(u) < el (F'(u),r). Thus F'(u) is r-feo set.

(ii) = (iii): Let u € LY and n(T — p) > r hence by (ii), FY(T — p) = T — F%(p) is r-feo.
Then F*(u) is r-fec.

(iii) = (iv): Let g € LY hence by (iii), F*(C,(p, 7)) is r-fec. Then we obtain

eCT(F"(u), 7“) < F“(Cn(,u’ T))
(iv) = (v): Let u € LY hence by (iv), we obtain
Cr(OL(F* (), ), 7) N7 (6C(F(p), 1), m) < eCr(F (), 1) < F*(Cy(p, 7).

(v) = (ii): Let u € LY, n(u) > r, hence by (v), we have
1-Fl(p)=F“(1-p)
> Cr (6L (FY(1 = p),7),r) AL (6C(F*(1 — ), 7),7)
= CT((sIT(T - Fl(u),T),T) A IT((;CT(T - Fl(/‘)vr)vr)
=1 [Cr(0L(F!(p),7),7) V I (6CH(F' (), ), 7)]
Flp) < CQOL(F (p),r),r) V I (6C-(F' (1), 7), 7).
Hence, F'(p) is r-feo.
(ii) = (i): Let x; € dom(F), u € LY, n(p) > r, with 2, € F!(u) we have by (ii), F'(u) is
r-feo-set. Let F'(u) = A(say), then there exists A € LX, \ is r-feo-set and x; € A such that
A< Fl(u). Thus F' is F'Le-continuous. O

Theorem 2.2 Let F : X —o Y be a FM and normalized between two L-fts’s (X, 7), (Y, 1)
and p € LY, then the following are equivalent:

(i) F is FUe-continuous.
(i) F“(u) is r-feo set, for any n(u) > r.
(iii) F'(p) is r-fec set, for any n(1 — u) > r.
(iv) eCr(F'(pn), r) < FY(Cy(p, 1)), for any p € LY.
(0) Cr6I(Fi (), 1), 1) A L(6CH(F' (), ), ) < F{(Cylps, 1)), for any o € LY.
Proof. This can be proved in a similar way as Theorem 2.1. O

Corollary 2.1 Let F : X — Y be a FM between two fts’s (X, 7), (Y, n) and p € LY.
Then we have the following:

(i) If F is normalized, then F is FUe-continuous at x; iff v+ € r-feo set of F“(u), for each
n(u) > r and xy € F*(u).
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(ii) F is FLe-continuous at x; iff v € r-feo set of F'(u), for each n(y) > r and x; € F'(u).

Remark 2.2 Let F: X —o Y be a FM between two fts’s (X, 7), (Y, n) and p € LY. Then
we will show that if F is FUe-continuous and not normalized then x; ¢ r-feo set of F*“(u), for
each n(p) > r, by the following example.

Example 2.3 Let X = {z1, 22}, Y ={y1, yo2, ys} and F : X — Y be a FM defined by
Gr(z1, 11) = 0.1, Gp(z1, y2) = 0.6, Gp(x1, y3) =0, Gr(za, 1) = 0.7, Gp(z2, y2) =0, and
Gr(xa, y3) =0.7. Let Ay and A be a fuzzy subsets of X be defined as A1 (x1) = 0.5, A1 (z2) = 0.5
and Aa(x1) = 0.6, Aa(z2) = 0.6 and p be a fuzzy subset of Y defined as u(y1) = 0.6, u(y2) = 0.6,
u(ys) = 0.6. We assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies T : L*X — L and
n: LY — L as follows:

1, ifA=0o0rl, 1, ifpu=0o0rl,
TA) =193, frA=A, (k) =193, ifp=u,
0, otherwise, 0, otherwise.

are fuzzy topologies on X and Y. Since dom(F)(x) = \ Gr(x,y), i.e x5 4 € dom(F) and
ey
23 - € dom(F). From Definition 2.3, we have ’
F“(0.6)(z1) = 0.6, Fe(0)(x1) =04, FY(I)(zy) =1
F*“(0.6)(z2) = 0.6, Fu(0)(x2) = 0.3, F“(1)(z2) = 1.
For r:%, as [ is %-fuzzy open in'Y and F*(u) = Ay is 5-feo set in X. Then
(i) F is FUe-continuous.
(i) F is not normalized.
(iii) The fuzzy point x, with 23 ; ¢ Aa where F¥(u) = X is r-feo set and n(p) > 1.
Theorem 2.3 Let {F;}ier be a family of FLe-continuous between two fts’s (X, 7) and

(Y, n). Then \J F; is FLe-continuous.
i€r

1
2

Proof. Let p € LY, then (U Fi)'(n) = V (Fi'(n)) by, Theorem 1.3 (ii). Since {F}}icr is a
i€l i€r
family of F Le-continuous between two fts’s (X, 7) and (Y, 7), then F;'(u) is r-feo for any
n(p) > r. Then we have (|J F;)'(n) = \/ieF(Fil(,u)) is r-feo for any n(u) > r. Hence |J F; is
i€l i€l
F Le-continuous. 0

Theorem 2.4 Let {F;};cr be a family of normalized FUe-continuous between two fts’s
(X, 1) and (Y, n). Then Fy | Fs is FUe-continuous.

Proof. Let € LY, then
(FLU Fy)" (1) = Fy"(p) A F2" (1)

by, Theorem 1.3 (iii). Since {F;};cr is a family of normalized FUe-continuous between two
fts’s (X, 7) and (Y, 1), then (F;"(u)) if r-feo, for any n(u) > r for each i € {1,2}. Then for
each u € LY, we have (Fy U Fy)"(n) = Fy"(u) A Fy®(u) is r-feo set for any n(u) > r. Hence
Fy U F5 is FUe-continuous. O
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Definition 2.2 A fuzzy set \ in a fts (X, T) is called r-fuzzy e-compact iff every family
in {u: p is r-feo, u € LX and r € L} covering \ has a finite subcover.

Definition 2.3 Let F: X — Y be a FM between two fts’s (X, 1), (Y, n) and r € Ly.
Then F' is called fuzzy e-compact valued iff F(x;) is r-fuzzy e-compact for each xy € dom(F).

Theorem 2.5 Let F': X — Y be a crisp FUe-continuous and e-compact valued between
two fts’s (X, 7) and (Y, n). Then the direct image of a r-fuzzy e-compact in X under F is also

r-fuzzy e-compact.

Proof. Let A be r-fuzzy e-compact set in X and {~; : v; is r-feo set in Y, ¢ € I'} be a family
of covering of F(A). i.e. F(A) < \/ ;. Since A = \/ 2, we have

el TiEN
FON=F(\ =)=\ Fz) < \/ 7
TLEN TLEA el

It follows that for each z; € A, F(x:) < \/ ~;. Since F is r-fuzzy e-compact valued, then there
i€r
exists finite subset 'y, of I' such that F(x;) < \/ 7, = 7s,. By Theorem 1.1 (viii), we have
n€ly,

xy < FY(F(x)) < F(7g,) and A = \/ Ty = \/ F“(yz,)-
TeEN TLEN

Since, (7, ) > 7, then from Theorem 2.2, we have F%(v,,) is m-feo-set. Hence {F"(vy,) :
F¥(v,,) is r-feo-set, z; € A} is a family covering the set A. Since ) is r-fuzzy e-compact, then

there exists finite index set N such that A < \/ F"(v,, ). From Theorem 1.1 (vii), we have
neN

neN nenN neN
Then F()) is r-fuzzy e-compact. O
Theorem 2.6 Let F: X —Y and H:Y —o Z be two FM’s and let (X, 1), (Y, 1) and
(Z, §) be three fts’s. Then we have the following:

(i) If F' and H are normalized, FUe-continuous, then H o F' is FUe-continuous.
(i) If F and H are F Le-continuous, then H o F' is F Le-continuous.

Proof. (i) Let F and H are normalized, FUe-continuous and v € L?. Then from Theorem
1.2, we have (H o F)"(v) = F“(H"(v)) is r-feo with v(H*(v)) > §(v). Thus H o F is FUe-
continuous.

(ii) Similar of (i). O

Theorem 2.7 Let F : X — Y and H : Y — Z be two FM’s and let (X, 7), (Y, n)
and (Z, §) be three L-fts’s. If F is FLe-continuous and H is FL-continuous, then H o F is

F Le-continuous.

Proof. Let v € L?, §(v) > r. Since H is F L-continuous, then by Theorem 1.5, H!(v) is r-fuzzy
open set in Y. Also, F is FLe-irresolute implies F'(H'(v)) is r-feo set in X. Hence, we have
(H o F){(v) = FY(H'(v)) is r-feo. Thus H o F is F Le-continuous. O
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Theorem 2.8 Let F : X —Y and H :'Y — Z be two FM’s and let (X, 7), (Y, n)
and (Z, 0) be three L-fts’s. If F and H are normalized, F is FUe-continuous and H is FU-

continuous, then H o F is FUe-continuous.
Proof. This can be proved in a similar way as Theorem 2.7. O

Theorem 2.9 Let F: X — Y be a FM between two fts’s (X, 7) and (Y, n). If Gy is

F Le-continuous, then F is F Le-continuous.

Proof. For the fuzzy sets p € LX, 7(p) > r,v € LY and n(v) > r, we take, (px
0, ifx ¢ p,

v)(z, y) = .
v(y), iftxep.

Let 2; € dom(F), p € LY and n(p) > r with oy € F'(u), then we have z; € Glf(X X 1)
and n(X x p) > r. Since Gy is FLe-continuous, it follows that there exists A € L¥, X is r-
feo and z; € A such that A < Glf(X x 11). From here, we obtain that A < F'(x). Thus F is
F Le-continuous. O

Theorem 2.10 Let F: X — Y be a FM between two fts’s (X, 1) and (Y, n). If Gy is

FUe-continuous, then F is FUe-continuous.
Proof. This can be proved in a similar way as Theorem 2.9. O

Theorem 2.11 Let (X, 7) and (X;, 7;) be L-fts's (i € I). If a FM F : X —o I;c; X; is
F Le-continuous (where Il;c; X; is the product space), then P; o F' is F Le-continuous for each
i € I, where P; : ;e X; — X; is the projection multifunction which is defined by P;(x;) = {x;}
for each i € 1.

Proof. Let p;, € L*i and 7;(p1;,) > 7. Then
(I)Z 0 F)Z(Mio) = Fl(Pilg(:uio)) = Fl(:uio X Hi?éioXi)'

Since F' is F'Le-continuous and 7; (1, X ILiz;, X;) > r, it follows that FY(pg, x T2, X;) is m-feo
set. Then P; o F'is an F Le-continuous. O

We state the following result without proof in view of the above theorem.

Theorem 2.12 Let (X, 7) and (X;, 7;) be L-fts's (i € I). If a FM F : X —o I;c; X; is
FUe-continuous (where ;cr X; is the product space), then P; o F' is FUe-continuous for each
i € I, where P; : W;er X; — X; is the projection multifunction which is defined by P;(x;) = {x;}
for each i e 1.

Theorem 2.13 Let (X;, 7)) and (Y;, n;) be L-fts’s and F; : X; — Y; be a FM for
each © € I. Suppose that F : I;e; X; —o Ilic1Y; is defined by F(x;) = WierFi(x;). If F is
F Le-continuous, then F; is F' Le-continuous for each i € I.

Proof. Let u; € LYi and n;(u;) > r. Then n;(u; x II;+;Y;) > r. Since F' is F'Le-continuous, it
follows that F'(u; x I1;2;Y;) = F'(u;) x ;2;X; is r-feo. Consequently, we obtain that F!(u;)
is r-feo for each ¢ € I. Thus, F; is F'Le-continuous. O
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We state the following result without proof in view of above theorem.

Theorem 2.14 Let (X;, 1) and (Y;, n;) be L-fts’s and F; : X; — Y; be a FM for
each i € I. Suppose that F : W;e; X; —o Iic1Y; is defined by F(x;) = WierFi(x;). If F is
FUe-continuous, then F; is FUe-continuous for each i € I.

§3. Fuzzy upper and lower e-irresolute multifunctions

Definition 3.1 Let F: X — Y be a FM between two L-fts’s (X, 1), (Y, n) and r € L.
Then F is called:

(i) Fuzzy upper e-irresolute (FUe-irresolute, in short) at an L-fuzzy point xy € dom(F) iff
xy € F*(p) for each u € LY and p is r-feo, there exists A\ € LX, X is r-feo and x; € X
such that A A dom(F) < F*(u).

(ii) Fuzzy lower e-irresolute (F Le-irresolute, in short) at an L-fuzzy point x; € dom(F) iff
xy € Fl(u) for each p € LY and p is r-feo, there ewists X € LX, X is r-feo and x; €
such that A\ < F'(p).

(iii) FUe-irresolute (resp. FLe-irresolute) iff it is FUe-irresolute (resp. F Le-irresolute) at
every x; € dom(F).

Example 3.1 Let X = {z1, 22}, Y ={y1, 42, ys} and F : X — Y be a FM defined by
Gr(z1, y1) = 0.1, Gp(x1, y2) =1, Gr(z1, y3) =0, Gp(xse, y1) = 0.5, Gr(za, y2) = 0, and
Gr(ze, y3) = 1. Let A1 and Ao be a fuzzy subsets of X be defined as A(z1) = 0.5, M(z2) = 0.5:
w1 and po be a fuzzy subsets of Y defined as pi(y1) = 0.5, pi(y2) = 0.5, p1(ys) = 0.5 and
wua(y1) = 0.4, pa(y2) = 0.4, pa(ys) = 0.4. We assume that 1 = 1 and 0 = 0. Define L-fuzzy
topologies T : LX — L and n: LY — L as follows:

1, ifA=0o0rl, 1, ifpu=0o0rl,
TA) =S4 ifa=A n(p) =95, if =,
0, otherwise, 0, otherwise.

are fuzzy topologies on X and Y. For r = %, then F is FUe-irresolute and F Le-irresolute.
Proposition 3.1 F is normalized implies F is FUe-irresolute at xy € dom(F) iff x; €
F“(u) for each pu € LY and p is r-feo, there exists X € LX, X is r-feo and x; € \ such that
A< F(p).
Remark 3.1 Let F be a FM between two L-fts’s (X, 1) and (Y, n). For the mapping
F: X —oY, the following statements are valid:

(1) FUe-irresolute = FUe-continuous.
(2) FLe-irresolute = F Le-continuous.

In general, the converse of Remark 3.1 need not be true from the following examples.
Example 3.2 Let X = {x1,22}, Y = {y1, 42, y3} and F : X — Y be a FM defined by
Gr(r1, y1) = 0.8, Gp(z1, y2) = 0.9, Gr(x1, y3) = 0.8, Gr(z2, y1) =1, Gp(x2, y2) = 0.7,
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and Gp(xa, y3) = 0.9. Let Ay and Ay be a fuzzy subset of X be defined as Ai(x1) = 0.3,
A1(z2) = 0.1; Aao(z1) = 0.1, Xo(x2) = 0.2 and w1 and pe be a fuzzy subsets of Y defined as

pi(y1) = 0.7, pa(y2) = 0.9, pi(ys) = 0.8 and pa(y1) = 0.3, pa2(y2) = 0.1, pa(ys) = 0.2 We
assume that T =1 and 0 = 0. Define L-fuzzy topologies T : LX — L andn : LY — L as follows:

1, ifA=0o0rl, 1, ifpu=0o0rl,
T()\): %5 Zf)‘*Ala T’(H): %a Zf/’l’:,ufla
0, otherwise, 0, otherwise.

are fuzzy topologies on X and Y. For r = %, then F' : X —o Y 1s FUe-continuous but not
FUe-irresolute because iz is 3-feo in (Y, n), F*(u2) = A2 is not 3-feo set in (X, 7).

Example 3.3 Let X = {z1,22}, Y = {y1, y2, y3} and F : X — Y be a FM defined
by Gp(z1, 11) = 0.2, Gp(x1, y2) =1, Gr(z1, y3) =0, Gr(ze, y1) = 0.5, Gp(za, y2) =0,
and Gp(x2, y3) = 0.3. Let Ay and A2 be a fuzzy subsets of X be defined as A\i(x1) = 0.4,
A(z) = 0.3; Aa(z1) = 0.2, Ao(xo) = 04, p1 and ps be a fuzzy subsets of Y defined as
pi(y1) = 0.6, pi(y2) = 0.9, pa(ys) = 0; p2(y1) = 0.4, pa(ye) = 0.1, pa(ys) = 1. We assume
that T=1 and 0 = 0. Define L-fuzzy topologies 7 : LX — L and n: LY — L as follows:

1, ifA=0o0rl, 1, ifpu=0o0rl,
TA) =93 ifa= A, n(p) =<5, if p=p,
0, otherwise, 0, otherwise.

are fuzzy topologies on X and Y. For r:%, then F': X — Y is FLe-continuous but not F Le-
irresolute because iy is 1-feo in (Y, 1), F'(u2) = Ao, is not 2-feo set in (X, 7).
Theorem 3.1 Let F: X — Y be a FM between two L-fts’s (X, ), (Y, 1) and p € LY,

then the following are equivalent:
(i) F is F Le-irresolute.
(ii) F'(u) is r-feo set, for any p is r-feo.
(iii) F“(u) is r-fec set, for any p is r-fec.
(iv) eCr(F“(n),r) < F(eCy(p, 1)), for any pu € LY.
(0) Cr(8L(F" (), ),7) A L(6C (F (1), ),) < F(eCy(u,1)), for any € LY.

Proof. (i) = (ii): Let x;y € dom(F), u € LY, p is r-feo and z; € F'(p) then, there exist A € L,
Ais 7-feo set and x; € X such that A < F'(u) thus a; € el (F'(u),r). Therefore, we obtain
Fl'(p) < el (F'(u),r). Thus F'(u) is r-feo set.

(ii) = (iii): Let u € LY and p is r-fec. Hence by (i), F'(T — u) = 1T — F“(u) is r-feo. Then
F*(u) is r-fec.

(iii) = (iv): Let u € LY hence by (iii), F*(eC,, (11, 7)) is r-fec. Then we obtain

eCr(F*(u),r) < F(eCy(p,1)).
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(iv) = (v): Let u € LY hence by (iv), we obtain
Cr (0L (F*(p), ), 7) A (0C(F* (), 1), 7) < eCr(F* (), ) < F*(eCy(p, 7).

(v) = (ii): Let p € LY and p is r-feo. Hence by (v), we have
T—F(u) =F*“(1-p)
> CT((SIT(Fu(l - ,u),r),r) N IT(6CT(FU(1 - M)a 7“),7“)
= CL (BT (T = F' (), ), ) A L (5C (T — Fl(a), 1), )
=T (CHOL(F (1), 7),1) V L (6C- (F (1), ), 7)]
Fl(g) < Co@L(F (), ), 1) V L(6C(Fl (), ), 7).
Hence, F'(u1) is r-feo.
(i) = (i): Let z; € dom(F), p € LY and p is r-feo, with z; € F!(u) we have by
(i), F'(u) = A(say) is r-feo, then there exists A € LX, X is r-feo-set and x; € \ such that
A < Fl(pu). Thus F is F Le-irreesolute. O

Theorem 3.2 Let F : X — Y be a FM and normalized between two L-fts’s (X, 7), (Y, 1)
and p € LY, then the following are equivalent:

(i) F is FUe-irresolute.
(ii) F*“(u) is r-feo set, for any u is r-feo.
(iii) F'(u) is r-fec set, p is r-fec.
(iv) eC-(F'(pn),r) < Fl(eCy(p,1)), for any pu € LY.
(v) C-(8I(F'(n), 1), 1) NI (8C-(F!(p),r),m) < F'(eCy(p,7)), for any p € LY.
Proof. This can be proved in a similar way as Theorem 3.1. O

Corollary 3.1 Let F: X — Y be a FM between two fts’s (X, 7), (Y, n) and p € LY.

Then we have the following:

(i) If F is normalized, then F is FUe-irresolute at a fuzzy point x; iff x+ € r-feo set of
F“(u), for each u is r-feo and xy € F* ().

(ii) F is F Le-irresolute at a fuzzy point z; iff x¢ € r-feo set of F'(u), for each u is r-feo and
Ty € Fl(,u)

Theorem 3.3 Let {F;}ier be a family of FLe-irresolute between two fts’s (X, 7) and

(Y, n). Then |J F; is F Le-irresolute.
i€l
Proof. Let p € LY, then (| Fi)'(1) = V (F}(n)) by, Theorem 1.3 (ii). Since {F;}ier is a
el i€r
family of FLe-irresolute between two fts’s (X, 7) and (Y, n), then F!(u) is r-feo for any u
is 7-feo. Then we have (|J F;)! (n) = V,er(F} (1)) is 7-feo for any p is r-feo. Hence |J F is
i€l i€r

F Le-irresolute. O

Theorem 3.4 Let {F;};cr be a family of normalized FUe-irresolute between two fts’s

(X, 7) and (Y, n). Then Fy | Fz is FUe-irresolute.
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Proof. Let € LY, then
(F1UF2)"(p) = F1*(p) A F2" (1)

by, Theorem 1.3 (iii). Since {F;}ier is a family of normalized FUe-irresolute between two fts’s
(X, 7) and (Y, n), then F;“(u) is r-feo, for any p is r-feo, for each i € {1,2}. Then for each
p € LY, we have (Fy U Fy)"(n) = F1*(un) AFy®(p) is r-feo, for any p is r-feo set. Hence Fy U Fh

is F'Ue-irresolute. O

Theorem 3.5 Let F': X — Y be a crisp FUe-irresolute and e-compact valued between
two fts’s (X, 1) and (Y, n). Then the direct image of a r-fuzzy e-compact in X under F is also

r-fuzzy e-compact.

Proof. Let X\ be r-fuzzy e-compact set in X and {~; : v; is r-feo set in Y, i € T'} be a family of
covering of FI(A). i.e. F(A) < \/ ;. Since A= \/ x, we have

el Tt EAX
FO)=F(\ 20) =\ Fle) < \/
TLEX TLEX i€l

It follows that for each x; € A, F(xz:) < \/ ;. Since F' is fuzzy e-compact valued, then there
i€l
exists finite subset I';,, of I' such that F(x;) < \/ 7, = 7s,. By Theorem 1.1 (viii), we have,
neFmt

2y < FY(F(2,)) < F'(70,) and A= \/ 2 = \/ F"(yz,).
TEN TEN

Since, 7, is r-feo, then from Theorem 2.2, we have F“(y,,) is r-feo. Hence {F“(7ys,) :
F¥(~yg,) is r-feo, x; € A} is a family covering the set A. Since A is r-fuzzy e-compact, then there
exists finite index set N such that A < \/ F*(v,, ). From Theorem 1.1 (vii), we have

neN
FQ)<F(V F*'(%,,) = V FIF"(%,,)) < V 7a,-
neN neN nenN
Then F()\) is r-fuzzy e-compact. O

Theorem 3.6 Let F : X — Y and H :' Y — Z be two FM’s and let (X, 7), (Y, n)
and (Z, 0) be three L-fts’s. If F is FLe-irresolute and H is F Le-irresolute, then H o F is
F Le-irresolute.

Proof. Let v € L?, v is r-feo. Since H is F Le-irresolute, then by Theorem 3.1, H'(v) is r-
feo set in Y. Also, F is FLe-irresolute implies F'(H!(v)) is r-feo set in X. Hence, we have
(H o F){(v) = FY(H'(v)) is r-feo. Thus H o F is F Le-irresolute. O

Theorem 3.7. Let F: X —Y and H :Y — Z be two FM’s and let (X, 1), (Y, n)
and (Z, 0) be three L-fts’s. If F is FUe-irresolute and H is FUe-irresolute, then H o F is

FUe-irresolute.

Proof. This can be proved in a similar way as Theorem 3.6. O
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Theorem 3.8. Let F: X —Y and H :Y — Z be two FM’s and let (X, 1), (Y, n)
and (Z, §) be three L-fts’s. If F is FLe-irresolute and H is F Le-continuous, then H o F is

F Le-continuous.

Proof. Let v € L?, §(v) > r. Since H is FLe-continuous, then by Theorem 2.1, H!(v) is
r-feo set in Y. Also, F is FLe-irresolute implies F!(H!(v)) is r-feo set in X. Hence, we have
(H o F){(v) = FY(H'(v)) is r-feo. Thus H o F is F Le-continuous. O

Theorem 3.9. Let FF: X —oY and H :' Y — Z be two FM’s and let (X, 7), (Y, n)
and (Z, &) be three L-fts’s. If F and H are normalized, F is FUe-irresolute and H is FUe-

continuous, then H o F is FUe-continuous.
Proof. This can be proved in a similar way as Theorem 3.8. O

Theorem 3.10. Let F: X —Y and H:Y — Z be two FM’s and let (X, 7), (Y, n)
and (Z, §) be three L-fts’s. If F is normalized and FUe-irresolute and H is F Le-continuous,
then H o F' is FUe-continuous.

Proof. Let v € L?, §(v) > r. Since H is F Le-continuous, then from Theorem 2.1, H'(v) is
r-feo set in Y. Also, F' is normalized and FUe-irresolute implies F*(H!(v)) is r-feo set in X
by, Theorem 3.2. Hence, we have (H o F)%(v) = F*(H'(v)) is r-feo. Thus H o F is FUe-

continuous. O

Theorem 3.11. Let F: X —Y and H : Y —o Z be two FM’s and let (X, 7), (Y, 1)
and (Z, 0) be three L-fts’s. If H is normalized and FUe-continuous, F is F Le-irresolute, then
H o F is F Le-continuous.

Proof. Let v € L?, §(v) > r. Since H is FUe-continuous, then H*(v) is r-feo set in Y. Also,
F is FLe-irresolute implies F'(H"(v)) is r-feo set in X by, Theorem 3.1. Hence, we have
(H o F){(v) = FY{(H"(v)) is r-feo. Thus H o F is F Le-continuous. O
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Abstract In the present paper, we study the class Ry(y, a) given as

L(n, NI(2) | I(n+ 1, AW)) >, z€ E} .

zP zP

R )= {7 € Ay ((1-0)

We find the integral representation of I,(n, A)f(z) as a sufficient condition for f € A, to be
a member of the class Ry(7y, «). The results of some known classes in this direction appear

as particular cases of our main result.

Keywords multivalent function, analytic function, multiplier transformation, extreme points.
2010 Mathematics Subject Classification 30C45

81. Introduction

Let A be the class of functions f, analytic in the open disk E = {z : |z| < 1} in the complex
plane C and normalized by the conditions f(0) = f’(0) — 1 = 0. Then f € A has the Taylor

series expansion
o0
fz)y=2z+ Z apz”.
k=2

Let A, denote the class of functions of the form

fe)=2"+ > az®, peN={1,2 3.},
k=p+1

analytic and multivalent in the open disk E. Note that 4; = A. For f € A,, define a multiplier

transformation I, (n, A)f(z), as follows:

) arz®, (A >0, n € Ng = NU{0}),
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The special case I1(n, 0) of the above defined operator is the well-known Salagean [9] derivative
operator D™, defined for f € A as given below:

D"f(z)=z+ Z E"agz".
k=2
Singh et al. [11], Krzyz [5] and Chichra [2] studied the class R(8), § < 1, defined as:
R(B) ={f € A:R(f'(2) + 2/"(2)) > B, z € B},
where § is given by
Bs =inf{B: R(B) C S}
and

Bs+ =1inf{f8: R(B) C §*}.

Later on, Singh et al. [12] showed that Bs+ < —+ which was further improved by Ali [1]. Gao [3]
and Silverman [10] proved independently and obtained fg- < %. In 2007, Gao et al. [4]
studied the following subclass of A :

R(B, o) ={f € A: R(f'(2) + azf"(2)) > B, z €E},

where 8 < 1, a > 0. They determined the extreme points of R(S, «) and obtain sharp bounds
for R(f'(2)) and R(f(z)/z). They also determined the number S(«) such that R(8, a) C S,
for certain fixed number « in [1, oo). Recently, Wang et al. [13] studied the class Q(a, 53, )
defined as:

Qla, B, v)={fe A:Rla(f(2)/2) +Bf(2)] >, (o, B) >0, 0<y<a+B<1; z€E}

They provided the extreme points and radius of univalence for the members of this class. In the

present paper, we study the following subclass R, (v, «) of A, involving multivalent functions :

Ip(n, M) f(2) _|_ajp(”+ 1 /\)f(z)> >, 2 € IE}

2P zP

R 0= {rea,w (1=

where « >0 and 0 <y < a <1.

§2. Main Result

Theorem 2.1 A function f € A, is in Ry(y, «) if and only if Iy(n, A)f(z) can be

expressed as

xmzm+1’

b VA = [ l@vl)zu@zv) > ST | ) 1)

m=0

where p(x) is the probability measure defined on the X = {x : |x| = 1}. For fized § and

a, Ry(v, a) and the probability measures {u} defined on X are one-to-one by the expression

(1).
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Proof. Let u(z) = M

Differentiating lograthmizcally, we have :
2u'(z) _ 2(Ip(n, N)f(2)
u(z) Ip(n, A)f(2)

In the view of relation

2L (n, ) f(2) = 0+ Np(n+1, ) f(2) = My(n, \)f(z),

(2) becomes

zu'(z) 1= I,(n+1, X\)f(2))
(p+ Mu(z) Ip(n, \)f(z)
Hence
I,(n+1, \)f(2) — ulz 1 (2
Ip(n, N f(z) ( )+p+/\ (2).
Now I(n, A f Ln+1, \f
(1o D) | BOE L D) o) 4 o), 3)

where 3 = }%. Since f € R,(y, «), therefore

R(u(z) + B2u/(2)) > .
Let P denote the normalized class of analytic functions which have positive real part. Therefore
f € Ry(7, «) if and only if
u(z) + Bzu'(z) —
1=~
By Herglotz expression of functions in P, we have

u(z) + Bzu/(2) — _ / H—idu(m),
\

1—7v ol=1 1 —xz

T ep, u(0)=1.

which is equivalent to

L) 4wz = L 1+ -2zz,
i) e =g [ S )

Therefore

[ (prora)dra=g [ (o0 RSO )

ie.

which is equivalent to

In V1) = |

|z|=1

mZer
((27—1%’ (2 - 27) Zxﬁ+1p> (z),

Since the probability measures {u} and the class P as well as class P and R,(y, «) are one-to-
one, so the second part of the theorem is true and can be proved by deduction. This completes
the proof of Theorem 2.1. O
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Corollary 2.2 The extreme points of the class Ry(vy, «) are

(o ]
xmzm-&-P

L(n Nfa(s) = 2y = D)+ 2 -29) 3 T Jal =1, (4)
m=0

Proof. Using the notation I,(n, A)fs(2), equation (1) can be written as
B VG = [ D VGG
z|=1

By Theorem 2.1, the map y — f, is one-to-one, so the proof follows. O

For p=1and n =0 = X in the Theorem 2.1, we get:

Corollary 2.3 For f € Ri(v, «a), where a >0 and 0 <y < a <1,

f(z)

w(a-nlD+5r6)) >0 -0

therefore

1(0. 1) = 1) = |

|z|=1

<(27—1)Z+(2—27 Z%) ().

For a« = 1 — 8, the above expression obtained by Wang et al. [13]. Saitoh [8] and Owa [6, 7]
discussed the related properties of Q(1 — 8, £,v) = Ri(v, 1 —75).

Selecting p =1 =n and A = 0 in Theorem 2.1, we have the following result:
Corollary 2.4 If f € Ri(v, «), where a >0 and 0 < vy < o < 1, satisfies

§R<(1—a)11(1’ 0/() , D2 0f()

z z

) — R + BF(2) > 7,

where § = a > 0, then

™ m+1
n(, 0)f(Z)=zf’(2)=/| 1((27—1 B - ﬁH)du( )
= m=0

which on further simplification gives

J“(Z)Z/|=1 ((27—1)z+ 2 - 29)z Z :1;H)>du(w)-

0

This result was obtained by Gao et al. [4]. If we select 5 =1 in the above result, we get:

Corollary 2.5 If f € Ri(y, 1), wherea =5 =1 and 0 <y < 1, then
B > .Q?Z m+1

f(z) = / ((27 —1)z+(2-27)7 Z )1> dp()
|z|=1 m:O m+ )
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_ /|x_1 </OZ (2y — 1) + (2742)5:1%;(1 — () dC> du(x),

this result was also obtained by Silverman [10].

Selecting p =1, n =2 and A = 0, we get the following result from Theorem 2.1:

Corollary 2.6 If f € Ri(vy, @), a >0 and 0 <y < o < 1, satisfies

3%((1_0[)]1(2, O)f(Z) +O¢Il(3’ 0)f(2>> :%(f/(2)+(1+25)2f//(2))+622f/”(2’)) >,

z z
where f =a >0, 0 <~y <1, then

n(2, 0)() = 7') + 217() = |

|z|=1

™M ym 1
<(27 —1)z+(2—27) Z 5:1) du(z)

m=0
Further, we get
oo M m+1
Zf(Z):/lm—l ((27—1 z4( z:o mE D) mﬂ—i—l))du(x)'
Hence -
1= (er-nere-mey —C ) 5)
|z|=1 = (m+1)2(mpB +1)

Corollary 2.7 If f € A and
R(f'(2) + (1 +28)2f"(2)) + 822" (2)) > 7,
where B> 0, 0 <7 < 1, then extreme points of this class are given by (5) as

(xz)m Tt

(m+1)2(mB+1)’

F) =@y -1+ 2292 Y 2 = L. (6)

m=0
Corollary 2.8 If f € A and
R(f'(2) + (1 +28)2f"(2)) + B> f"(2)) > 7,

where B >0, 0 <~ <1, then

2(1—19)

lan| <

The result is sharp.

Proof. The coeflicient bounds are maximized at an extreme point.Thus from (6), f,(z) can be

expressed as

m—lzm

foz)=z2+20-7) Y m2(;(m_1)+1), 2| = 1.

and hence the result follows. O
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