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logical spaces 18

A. Vadivel and E. Elavarasan: Somewhat fuzzy Irw-continuous functions 29

Ao Han: The mean value of τ
(e)
3 (n) with a negative r-th power 44

Xue Han: The mean value of τ (e)(n) over cube-full numbers 52
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§1. Definition and simple properties

For any fixed positive integer k and any positive integer n, the famous Smarandache ceil

function Sk(n) is defined as follows:

Sk(n) = min
{
m ∈ N : n | mk

}
. (1.1)

Many people had studied elementary properties of Sk(n), and obtained some interesting

results.

Z. Xu [18]. Define Ω(n) = Ω(pα1
1 pα2

2 · · · pαrr ) = α1 + α2 + · · · + αr. Let k be a given

positive integer. Then for any real number x ≥ 3, we have the asymptotic formula∑
n≤x

Ω (Sk(n)) = x ln lnx+Ax+O
( x

lnx

)
,

where A = γ +
∑
p

(
ln

(
1− 1

p

)
+

1

p

)
, γ is the Euler constant and

∑
p

denotes the sum over

all the primes.

J. Li [8]. Define Ω(n) = Ω(pα1
1 pα2

2 · · · pαrr ) = α1 +α2 + · · ·+αr. Let k be a given positive

integer. Then for any integer n ≥ 3, we have the asymptotic formula

Ω (Sk(n!)) =
n

k
(ln lnn+ C) +O

( n

lnn

)
,

where C is a computable constant.

Y. Wang [15]. Let k be a fixed positive integer, then for any integer n ≥ 3, we have the

asymptotic formula

ln(Sk(n!)) =
n lnn

k
+O (n) .
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§2. Mean values of the Smarandache Ceil function

L. Ding [1]. Let x ≥ 2, for any fixed positive integer k, we have the asymptotic formula∑
n≤x

Sk(n) =
x2ζ(2k − 1)

2

∏
p

[
1− 1

p(p+ 1)

(
1 +

1

p2k−3

)]
+O

(
x

3
2+ε
)
,

where ζ(s) is the Riemann zeta function,
∏
p

denotes the product over all prime p, and ε is any

fixed positive number.

C. Wu [16]. 1) For any fixed positive integer k ≥ 2 and any positive integer n, let ak(n)

denote the k-th power complements of n. Then we have

(Sk(n))
k

= ak(n) · n.

2) Let k be a fixed positive integer. For any real number x ≥ 1, we have the asymptotic

formula ∑
n≤x

Sk(n) =
ζ(2k − 1)

2
x2
∏
p

(
1− 1

p2 + p
− 1

p2k−1 + p2k−2

)
+O

(
x

3
2+ε
)
,

where ζ(s) is the Riemann zeta function, ε > 0 is any fixed positive number.

X. Wang [13]. For any real number x ≥ 2, we have the asymptotic formula

∑
n≤x

1

S2(n)
=

3 ln2 x

2π2
+A1 lnx+A2 +O

(
x−

1
4+ε
)
,

where A1 and A2 are two computable constants, ε is any fixed positive integer.

Y. Wang [14]. 1) For any real number α > 1 and integer k ≥ 2, we have the identity

∞∑
n=1

(−1)n−1

Sαk (n)
=

2α − k − 1

2α + k − 1

∏
p

(
1 +

k

pα − 1

)
,

where
∏
p

denotes the product over all prime p.

2) For any positive integer n, the dual function of Sk(n) is defined as Sk(n) = max
{
m ∈ N : mk | n

}
.

For any real number α > 1 and integer k ≥ 2, we have the identities

∞∑
n=1

Sk(n)

nα
=
ζ(α)ζ(kα− 1)

ζ(kα)
,

∞∑
n=1

(−1)n−1Sk(n)

nα
=
ζ(α)ζ(kα− 1)

ζ(kα)

[
(2α − 1)(2kα−1 − 1)

2α−2(2kα − 1)
− 1

]
,

where ζ(s) is the Riemann zeta function.

D. Ren [12]. Let d(n) denote the Dirichlet divisor function, and let k be a given positive

integer with k ≥ 2. Then for any real number x ≥ 1, we have the asymptotic formula∑
n≤x

d (Sk(n)) =
6ζ(k)x lnx

π2

∏
p

(
1− 1

pk + pk−1

)
+ Cx+O

(
x

1
2+ε
)
,
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where ζ(s) is the Riemann zeta function, C is a computable constant, and ε is any fixed positive

number.

X. He and J. Guo [7]. 1) Let α > 0, σα(n) =
∑
d|n

dα. Then for any real number x ≥ 2,

and any fixed positive integer k ≥ 2, we have the asymptotic formula∑
n≤x

σα (Sk(n)) =
6xα+1ζ(α+ 1)ζ(k(α+ 1)− α)

(α+ 1)π2
R(α+ 1) +O

(
xα+

1
2 + ε

)
,

where ζ(s) is the Riemann zeta function, ε is any fixed positive number, and

R(α+ 1) =
∏
p

(
1− 1

pk(α+1)−α − p(k−1)(α+1)

)
.

2) Let d(n) denote the Dirichlet divisor function. Then for any real number x ≥ 1, and

any fixed positive integer k ≥ 2, we have the asymptotic formula∑
n≤x

d (Sk(n)) =
6ζ(k)x lnx

π2

∏
p

(
1− 1

pk + pk−1

)
+ Cx+O

(
x

1
2+ε
)
,

where ζ(s) is the Riemann zeta function, C is a computable constant, and ε is any fixed positive

number.

L. Zhang, M. Lv and W. Zhai [20]. Let d3(n) denote the Piltz divisor function of

dimensional 3, then for any real number x ≥ 2, we have∑
n≤x

d3 (Sk(n)) = xP2,k(log x) +O
(
x

1
2 e−cδ(x)

)
,

where P2,k(log x) is a polynlmial of degree 2 in log x, δ(x) = log
3
5 x(log log x)−

1
5 , c > 0 is an

absulute constant.

Y. Zhang, H. Liu and P. Zhao [21]. Let d(n) denote the Dirichlet divisor function,

Sk(n) denote the Smarandache ceil function, then for any real number 1
4 < θ < 1

3 , xθ+2ε ≤ y ≤
x, we have ∑

x<n≤x+y

d(Sk(n)) = H(x+ y)−H(x) +O
(
yx−

ε
2 + xθ+ε

)
,

where H(x) = t1x log x+ t2x, ε denotes a fixed but sufficiently small positive constant.

Q. Feng and R. Wang [4]. For any positive integer n, we define

ak(n) =
[
n

1
k

]
, n = 0, 1, 2, 3, · · · .

Let ζ(s) be the Riemann zeta function, X be any positive number, and

g(s) =
∏
p

(1 + p1−s − p1−ks − p−s).

1) For any real number x ≥ 1, k ≥ 3, we have∑
n≤x

Sk (ak(n)) =
1

k
ζ(k − 1)g(1)x+O

(
x1−

1
2k+X

)
.
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2) For any real number x ≥ 1, k ≤ 2, we have∑
n≤x

Sk (ak(n)) =
k

k2 − k + 2
ζ

(
2

k

)
g

(
2

k

)
x
k2−k+2

k2 +O

(
x
k2−k+2

k2
+X

)
.

Q. Feng, J. Guo and R. Wang [5]. For any positive integer n and any natural number

m, we define

am(n) = max {im : im ≤ n, i ∈ N} .

1) For any real number x ≥ 1, n,m, k, t ∈ N, m, t ≥ 2, k = tm+ 1, we have∑
n≤x

Sk (am(n)) =
m

m+ 1
x1+

1
m ζ(2t− 1)ζ((2t− 1)m+ 2)

×
∏
p

[
1− 1

p(p+ 1)

(
1 +

1

p2t−3
+

1

p(2t−1)m−1

(
1− 1

p2t

))]
+O

(
x1+

1
2m+ε

)
,

where ζ(s) is the Riemann zeta function, ε is any positive real number.

2) For any real number x ≥ 1, n,m, k, t ∈ N, m = 2, t ≥ 2, k = 2t+ 1, we have∑
n≤x

Sk (am(n)) =
2

3
x

3
2 ζ(4t)

∏
p

[
1− 1

p(p+ 1)

(
1 +

1

p2t−1
+

1

p2(t−1)

(
1− 1

p2t

))]
+O

(
x

5
4+ε
)
,

where ζ(s) is the Riemann zeta function, ε is any positive real number.

3) For any real number x ≥ 1, n,m, k, t ∈ N, m, t ≥ 2, k = tm, we have∑
n≤x

Sk (am(n)) =
m

m+ 1
x1+

1
m ζ(2t− 1)

∏
p

(
1− p2t + p3

p2t+2 + p2t+1

)
+O

(
x1+

1
2m+ε

)
,

where ζ(s) is the Riemann zeta function, ε is any positive real number.

4) For any real number x ≥ 1, n,m, k, t ∈ N, m, t ≥ 2, m = kt, we have∑
n≤x

Sk (am(n)) =
m

m+ 1
x1+

t
m +O

(
x1+

t
2m+ε

)
,

where ε is any positive real number.

J. Xu [17]. For any fixed positive integer k and any integer n, we define

ck(n) = min
{
mk : mk ≥ n, m ∈ N+

}
,

dk(n) = max
{
mk : mk ≤ n, m ∈ N+

}
.

For any real number x > 2, we have the asymptotic formula∑
n≤x

Sk (ck(n)) =
x2

2
+O

(
x

2k−1
k

)
,

∑
n≤x

Sk (dk(n)) =
x2

2
+O

(
x

2k−1
k

)
.

L. Qi and Y. Zhao [11]. Let k ≥ 2, m ≥ 1 be two positive integers. For any real

number x ≥ 1, we have the asymptotic formula∑
n≤x

ϕm (Sk(n)) =
6ζ(m+ 1)ζ(k(m+ 1)−m)R(m+ 1)xm+1

π2(m+ 1)
+O

(
xm+ 1

2+ε
)
,
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where ζ(s) is the Riemann zeta function, ϕ(n) is the Euler function, ε is any positive real

number, and

R(m+1) =
∏
p

[
1− 1

1 + p

(
1

p
+

1

pk(m+1)−m +
1

pm−1
− 1

p(k−1)(m+1)−m −
(

1− 1

pk(m+1)

)
· 1

p

(
1− 1

p

)m)]
.

E. Lv [10]. Define

U(1) = 1, U(n) =
∏
p|n

p.

Let k ≥ 2 be a fixed positive integer. For any real number x ≥ 1, we have the asymptotic formula∑
n≤x

(Sk(n)− U(n))
2

=
2ζ(3)ζ(3k − 2)x3

π2

∏
p

(
1− 1 + p5−3k

p2 + p3

)
+

2ζ(3)x3

π2

∏
p

(
1− 1

p2 + p3

)

−4ζ(3)ζ(3k − 1)x3

π2

∏
p

(
1 +

p− p2 − p4 − p3k

p3k+3 + p3k+2

)
+O

(
x

5
2+ε
)
,

where ζ(s) is the Riemann zeta function, ε > 0 is any positive real number.

Y. Xue and L. Gao [19]. Define

U(1) = 1, U(n) =
∏
p|n

p.

Let k ≥ 2 be a fixed positive integer. For any real number x ≥ 1, we have the asymptotic formula∑
n≤x

(Sk(n) + U(n))
3

=
3ζ(4)ζ(4k − 3)x4

2π2

∏
p

(
1− 1 + p7−4k

p3 + p4

)

+
9ζ(4)ζ(4k − 2)x4

2π2

∏
p

(
1− 1 + p3−4k + p6−4k − p2−4k

p3 + p4

)

+
9ζ(4)ζ(4k − 1)x4

2π2

∏
p

(
1− 1 + p5−4k − p1−4k + p3−4k

p3 + p4

)

+
3ζ(4)x4

2π2

∏
p

(
1− 1

p3 + p4

)
+O

(
x

7
2+ε
)
,

where ζ(s) is the Riemann zeta function, ε is any positive real number.

§3. The dual function of the Smarandache Ceil function

For any positive integer n and any fixed positive integer k, the dual function of Sk(n) is

defined as follows:

Sk(n) = max
{
m ∈ N : mk | n

}
.

J. Guo and Y. He [6]. 1) Let α > 0, σα(n) =
∑
d|n

dα. Then for any real number x ≥ 1

and any fixed positive integer k ≥ 2, we have the asymptotic formula

∑
n≤x

σα
(
Sk(n)

)
=


kζ(α+1

k )
α+1 x

α+1
k +O

(
x
α+1
2k +ε

)
, if α > k − 1,

ζ(k − α)x+O
(
x

1
2+ε
)
, if α ≤ k − 1,
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where ζ(s) is the Riemann zeta function, and ε is any fixed positive number.

2) Let d(n) denote the Dirichlet divisor function. Then for any real number x ≥ 1 and any

fixed positive integer k ≥ 2, we have∑
n≤x

d
(
Sk(n)

)
= ζ(k)x+O

(
x

1
2+ε
)
,

where ζ(s) is the Riemann zeta function, and ε is any fixed positive number.

Y. Lu [9]. Let d(n) denote the Dirichlet divisor function, and let k ≥ 2 be a fixed integer.

Then for any real number x > 1, we have the asymptotic formula∑
n≤x

d
(
S1(n)

)
= x lnx+ (2γ − 1)x+O

(
x

1
3

)
,

∑
n≤x

d
(
Sk(n)

)
= ζ(k)x+ ζ

(
1

k

)
x

1
k +O

(
x

1
k+1

)
,

where γ is the Euler constant, and ζ(s) is the Riemann zeta function.

L. Ding [2]. 1) Let x ≥ 2, for any fixed positive integer k > 2, we have the asymptotic

formula ∑
n≤x

Sk(n) =
ζ(k − 1)

ζ(k)
x+O

(
x

1
2+ε
)
,

where ζ(s) is the Riemann zeta function, and ε is any fixed positive number.

2) For k = 2, we have the asymptotic formula∑
n≤x

S2(n) = x

(
3

π2
lnx+ C

)
+O

(
x

3
4+ε
)
,

where C is a computable constant, and ε is any fixed positive number.

Q. Feng and J. Guo [3]. For any positive integer n and any fixed positive integer k ≥ 2,

we define

ck(n) = min
{
m ∈ N : nm = tk, t ∈ N

}
.

1) For any real number x ≥ 1, k, n ∈ N, k ≥ 2, we have∑
n≤x

Sk(n)ck(n) =
6

(k + 1)π2
xk+1ζ(k + 2)ζ(k2 + k − 1)

×
∏
p

(
1− 1

pk−1(p+ 1)

(
1

p2
+

1

pk2−1

))
+O

(
xk+

1
2+ε
)
,

where ζ(s) is the Riemann zeta function, and ε is any fixed positive number.

2) For any real number x ≥ 1, k, n ∈ N, k ≥ 2, we have∑
n≤x

Sk(ck(n)) =
3

π2
x2
∏
p

(
1 +

R(2)

(p+ 1)(p2 − 2)

)
+O

(
x

3
2+ε
)
,

where ε is any fixed positive number, and

R(2) = 1− 1

p2(k−2)
+

(
p2
(

1− 1

p2(k−1)

)
+ p3 − p

)
1

p2k−1
.
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3) For any real number x ≥ 1, k, n ∈ N, k ≥ 2, we have∑
n≤x

Sk(n)ck(n) =
6

kπ2
xkζ(k + 1)ζ(k2 − 1)

×
∏
p

(
1− 1

pk(p+ 1)

(
1 +

1

pk2−k−1
− 1

pk2−1

))
+O

(
xk+

1
2+ε
)
,

where ζ(s) is the Riemann zeta function, and ε is any fixed positive number.

4) For any real number x ≥ 1, k, n ∈ N, k ≥ 2, we have∑
n≤x

Sk(ck(n)) = x+O
(
x

1
2+ε
)
,

where ε is any fixed positive number
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§1. Definition and the mean value properties of the Smarandache multiplicative

function

For any positive integer n, f(n) is called a Smarandache multiplicative function if f(ab) =

max(f(a), f(b)), (a, b) = 1, and if n = pα1
1 pα2

2 · · · p
αk
k is the prime powers factorization of n, then

f(n) = max
1≤i≤k

{f(pαii )}, (1.1)

for any prime p and any positive integer α, f(n) is a new Smarandache multiplicative function

if f(pα) = αp. That is

f(n) = max
1≤i≤k

{f(pαii )} = max
1≤i≤k

{αipi}.

J. Ma [11]. For any real number x ≥ 2, we have the asymptotic formula∑
n≤x

f(n) =
π2

12
· x

2

lnx
+O

(
x2

ln2 x

)
.

Y. Liu, P. Gao [10]. A new arithmetical function Pd(n) is defined as

Pd(n) =
∏
d|n

d = n
d(n)

2 ,

where d(n) =
∑
d|n 1 is the Dirichlet divisor function. For any real number x ≥ 2, we have the

asymptotic formula∑
n≤x

f(Pd(n)) =
π4

72
· x

2

lnx
+ C · x2

ln2 x
+O

(
x2

ln3 x

)
,

where C = 5π4

288 + 1
2

∑∞
n=1

d(n) lnn
n2 is a constant.
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X. Zhang [24]. For any integer n ∈ N+, n is named as a simple number if the product

of all proper divisors of n is no more than n. Now let A be a simple number set, that is

A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, . . .}. For any real number x ≥ 2 we have the

asymptotic formula∑
n≤x
n∈A

f(n) = D1
x2

lnx
+D2

x2

ln2 x
+

2x

lnx
+

9x2/3

2 lnx
+O

(
x2

ln3 x

)
,

where D1, D2 are computable constants.

W. Xiong [19]. Let OF (N) denotes the number of all integers 1 ≤ k ≤ n such that f(n)

is odd, EF (n) denotes the number of all integer 1 ≤ k ≤ n such that f(n) is even. For any

positive integer n > 1, we have the asymptotic formula

EF (n)

OF (n)
= O

(
1

lnn

)
.

From the formula above, it can be immediately deduced the following

lim
n→∞

EF (n)

OF (n)
= 0.

J. Li [6]. For any real number x > 1, we have the asymptotic formula

∑
n∈N

f(n)≤x

= e
c
x

lnx
+O

(
x(ln lnx)2

ln2 x

)
,

where c =

∞∑
n=1

ln(n+ 1)

n(n+ 1)
is a constant.

Z. Feng [1]. A natural number n is of the k-full number if for any prime p, p | n implies

pk | n. Let Ak be a simple number set, for any real number x ≥ 2 we have the asymptotic

formula ∑
n≤x
n∈Ak

f(n) = C1
x2

lnx
+ C2

x2

ln2 x
+

2x

lnx
+

9x2/3

2 lnx
+O

(
x2

ln3 x

)
,

where C1, C2 are computable constants.

Y. Men [12]. Let Smd(n) =
∑
d|n

1
f(d) , for any real number x ≥ 1, when n 6= 1, 24, we

have

(1). If n = pα1
1 pα2

2 · · · pαss p, pα1
1 < pα2

2 < · · · < pαss < p, and p, pi(i = 1, 2, . . . , s) are

primes, then Smd(n) is not a positive integer;

(2). If n = p1p2 · · · ps, p1 < p2 < · · · < ps, pi(i = 1, 2, . . . , s) are primes, then Smd(n) is

not a positive integer.

R. Guo and X. Zhao [2]. 1. For any real number x ≥ 1 and any fixed positive integer

k ≥ 2, we have the asymptotic formula∑
n≤x

Λ(n)f(n) = x2
k∑
i=1

ci

lni−1 x
+O

(
x2

lnk x

)
,
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where Λ(n) is the Mangoldt function, ci(i = 1, 2, . . . , k) are computable constants and c1 = 1
2 .

2. For any real number x ≥ 1 and any fixed positive integer k ≥ 2, we have the asymptotic

formula

∑
n≤x

Λ(n)S(n) = x2
k∑
i=1

ci

lni−1 x
+O

(
x2

lnk x

)
,

where S(n) is the famous Smarandache function, S(n) = min{m : m ∈ N, n | m!}, ci(i =

1, 2, . . . , k) are computable constants and c1 = 1
2 .

For any positive integers m and n, an arithmetical function h(n) is defined as follows

(m,n) = 1⇒ h(mn) = max{h(m), h(n)}.

If n = pα1
1 pα2

2 · · · p
αk
k is the prime powers factorization of n, defining

h(1) = 1, h(n) = max
1≤i≤k

{ 1

αi + 1
}, (1.2)

then h(n) is also a Smarandache multiplicative function.

J. Zhang and P. Zhang [22]. 1. For any real number x > 1, we have the asymptotic

formula ∑
n≤x

h(n) =
1

2
· x+O(x

1
2 ).

2. For any real number x > 1, we have the asymptotic formula∑
n≤x

(
h(n)− 1

2

)2

=
1

36
·
ζ( 3

2 )

ζ(3)
·
√
x+O(x

1
3 ),

where ζ(n) is the Riemann Zeta-function.

The Smarandache multiplicative function g(n) can also be defined as follows

g(1) = 0, (m,n) = 1⇒ g(mn) = min{g(m), g(n)}. (1.3)

If n = pt11 p
t2
2 · · · ptrr is the prime powers factorization of n, then

g(n) = min
1≤i≤r

{f(ptii )}, (1.4)

specifically let g(pt) = min{t, p}, then g(n) is a new Smarandache multiplicative function.

Z. Ren [13]. For any real number x > 1, we have the asymptotic formula∑
n≤x

g(n) = x+
12x1/2

π2

∏
p

(
1 +

1

(p+ 1)(p
1
2 − 1)

)
+

18x1/3

π2

∏
p

(
1 +

1

(p+ 1)(p
1
3 − 1)

)
+O(x

1
4+X),

where X is any fixed positive number.

L. Li [8]. 1. For any positive integer n, if n = pt11 p
t2
2 · · · ptrr is the prime powers

factorization of n, let λ = max
1≤i≤r

{ti}, i = 1, . . . , r and

F (1) = 1, F (n) = min
1≤i≤r

{ 1

ti + 1
} =

1

λ+ 1
, (1.5)



12 Y. Qi No. 1

then F (n) is a Smarandache multiplicative function. For any real number x > 1, we have the

asymptotic formula ∑
n≤x

F (n) =
1

λ+ 1
x+O(x

1
2 ).

2. For any real number x > 1, we have the asymptotic formula∑
n≤x

(
F (n)− 1

2

)2

=
12

π2

√
x+O(x

1
3 ).

T. Zhang [23]. Let p be a prime and for any positive real number m, Um(n) is defined

as follows

U(1) = 1, Um(pα) = pα +m, (1.6)

if n = pα1
1 pα2

2 · · · p
αk
k is the prime powers factorization of n, Um(n) is defined as Um(n) =

Um(pα1
1 ) · · ·Um(pαkk ). For any real number x > 1, we have the asymptotic formula∑

n≤x

Um(n) =
1

2
x2
∏
p

(
1 +

m

p(p+ 1)

)
+O(x

3
2+ε).

X. Wang [18]. Let I(n) be the multiplicative function such that for any prime p and any

integer α ≥ 1, one has

I(pα) =
pα+1

α+ 1
,

then we have ∑
mn≤x

I(m)I(n) = Cx3 +O(x
5
2+ε),

where C is an explicit constant.

L. Wang [16]. Let N0 ≥ 1 be a fixed integer and for the multiplicative function I(n), we

have ∑
n≤x

I(n) = x3 log
1
2 x

( N0∑
i=1

ci log−i x+O(log−N0−1 x)

)
,

where ci(i ≥ 1) are computable constants.

§2. Some hybrid mean values involving the Smarandache multiplicative func-

tion

Y. Yi [21]. For any prime p and positive integer α, the Smarandache multiplicative

function f(n) is defined as f(pα) = p

1

α . Let n = pα1
1 pα2

2 · · · pαrr is the prime powers factorization

of n, then from the definition of f(pα) we have

f(n) = max
1≤i≤r

{f(pαii )} = max
1≤i≤r

{
p

1
αi
i

}
.
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For any real number x ≥ 3, we have the asymptotic formula

∑
n≤x

(f(n)− P (n))
2

=
2ζ( 3

2 )x
3
2

3 lnx
+O

(
x

3
2

ln2 x

)
,

where ζ(n) denotes the Riemann zeta-function and P (n) is the greatest prime divisor of n.

W. Lu and L. Gao [9]. For any real number x ≥ 3 and any real number or complex

number α, we have the asymptotic formula∑
n≤x

δα(n) (f(n)− P (n))
2

=
ζ(α+ 3)ζ(2α+ 3)x2α+3

(2α+ 3) lnx
+

r∑
i=2

ci · x2α+3

lni x
+O

(
x2α+3

lnr+1 x

)
,

where ζ(n) denotes the Riemann zeta-function and all ci are computable constants.

H. Shen [14]. For any positive integer n, if n = pα1
1 pα2

2 · · · pαrr is the prime powers

factorization of n, the Smarandache multiplicative function V (n) is defined as follows

V (1) = 1, V (n) = max
1≤i≤r

{α1p1, . . . , αrpr}. (2.1)

For any real number x ≥ 1 and any fixed positive integer r, we have the asymptotic formula∑
n≤x

(V (n)− p(n))
2

= x
3
2

r∑
i=1

ci

lni x
+O

(
x

3
2

lnr+1 x

)
,

where p(n) is the least prime divisor of n and all ci are computable constants.

H. Liu and W. Cui [3]. Let n ≥ 1 is a positive integer, we have the asymptotic formula

∑
n≤x

V (n)p(n) =

r∑
i=1

x3ai

lni x
+O

(
x3

lnr+1 x

)
,

where all ai(i = 1, . . . , r) are computable constants.

§3. Mean values involving the Smarandache-type multiplicative function

The Smarandache-type multiplicative function Cm(n) is defined as the m-th root of the

largest m-th power dividing n, Jm(n) is denoted as m-th root of the smallest m-th power

divisible by n.

H. Liu and J. Gao [5]. 1. For any integer m ≥ 3 and real number x ≥ 1, we have∑
n≤x

Cm(n) =
ζ(m− 1)

ζ(m)
x+O

(
x

1
2+ε

)
.

2. For any integer m ≥ 1 and real number x ≥ 1, we have

∑
n≤x

Jm(n) =
x2

2ζ(2)

∏
p

[
1 +

1
p2m + 1

p3 −
1

p2m+1 − 1
p2m+2

(1 + 1
p )(1− 1

p2 )(1− 1
p2m−1 )

]
+O(x

3
2+ε).

H. Liu and J. Gao [4]. 1. For any integer m ≥ 3 and real number x ≥ 1, we have∑
n≤x

Λ(n)Cm(n) = x+O

(
x

log x

)
,



14 Y. Qi No. 1

where Λ(n) is the Mangoldent function.

2. For any integer m ≥ 2 and real number x ≥ 1, we have∑
n≤x

Λ(n)Jm(n) = x2 +O

(
x2

log x

)
,

The Smarandache-type multiplicative function Km(n) is the largest m-th power-free num-

ber dividing n, Lm(n) is denoted as: n divided by the largest m-th power-free number dividing

n. That is, if n = pα1
1 pα2

2 · · · p
αk
k is the prime powers factorization of n, it follows that

Km(n) = pβ1

1 p
β2

2 · · · p
βk
k ,

Lm(n) = pγ11 p
γ2
2 · · · p

γk
k ,

where βi = min(αi,m− 1), γi = max(0, αi −m+ 1)

C. Yang and C. Li [20]. 1. Let m ≥ 2 is a given integer, then for any real number

x ≥ 1, we have∑
n≤x

Km(n) =
x2

2ζ(m)

∏
p

(
1 +

1

(pm − 1)(p+ 1)

)
+O

(
x

3
2+ε

)
.

2. Let m ≥ 2 is a given integer, then for any real number x ≥ 1, we have∑
n≤x

1

Lm(n)
=

x

ζ(m)

∏
p

(
1 +

1

(pm − 1)(p+ 1)

)
+O

(
x

1
2+ε

)
,

where ζ(s) is the Riemann Zeta-function.

J. Wang [15]. The asymptotic formula

∑
n≤x

Km(n) =
x2

2ζ(m)

∏
p

(
1 +

1

(pm − 1)(p+ 1)

)
+O

(
x1+

1
m e−c0δ(x)

)
.

holds, where c0 is an absolute positive constant and δ(x) = (log x)3/5(log log x)−1/5.

For any fixed positive integer n with the normal factorization pα1
1 pα2

2 · · · p
αk
k , (1 ≤ i ≤ k),

the Smarandache-type multiplicative function Fm(n), Gm(n) are denoted as

Fm(pαii ) =

 1, if αi = mk,

pmi , otherwise .

and

Gm(pαii ) =

 1, if αi = mk,

pi, otherwise .

J. Li and D. Liu [7]. 1. For any integer m ≥ 2 and real number x ≥ 1, we have

∑
n≤x

Fm(n) =
6ζ(m2 +m)ζ(m+ 1)R(m+ 1)xm+1

π2
+O

(
xm+ 1

2+ε

)
,
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where ε be any fixed positive integer,and

R(m+ 1) =
∏
p

(
1− 1

pm+1 + pm
− 1

pm2 + pm2−1

)
.

2. For any integer m ≥ 2 and real number x ≥ 1, we have∑
n≤x

Gm(n) = ζ(2m)R(2)x2 +O(x
3
2+ε),

where

R(2) =
∏
p

(
1− 1

p2 + p
− 1

p2m−1 + p2m−2

)
.

M. Wang [17]. 1. For any integer m ≥ 2, A be a set without m-th power factor number,

we have∑
n≤x
n∈A

Fm(n) =
6ζ(m+ 1)xm+1

π2

∏
p

(
1− 1

pm−1 + pm
− 1

pm2 + pm2−1

)
+O

(
xm+ 1

2−ε
)
,

where ε be any fixed positive number.

2. For any positive integer m ≥ 2, A be a set without m-th power factor number, we have∑
n≤x
n∈A

Gm(n) = x2
∏
p

(
1− 1

p2 + pm
− 1

p2m−1 + p2m−2

)
+O

(
x

3
2−ε
)
.
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Abstract We introduce r-fuzzy e∗-open and r-fuzzy e∗-closed sets in fuzzy topological s-

paces in the sense of Ŝostak’s. Also we introduce r-fuzzy e∗-interior, r-fuzzy e∗-closure and
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§1. Introduction and preliminaries

Ŝostak [23] introduced the fuzzy topology as an extension of Chang’s fuzzy topology [4].

It has been developed in many directions [11,12,21]. Weaker forms of fuzzy continuity between

fuzzy topological spaces have been considered by many authors [2, 3, 5, 8, 10, 18, 19] using the

concepts of fuzzy semi-open sets [2], fuzzy regular open sets [2], fuzzy preopen sets, fuzzy

strongly semiopen sets [3], fuzzy γ-open sets [10], fuzzy δ-semiopen sets [1], fuzzy δ-preopen

sets [1], fuzzy semi δ-preopen sets [25] and fuzzy e-open sets [22]. Recently, Bin Shahna [3]

introduced and investigated fuzzy strong semi-continuity and fuzzy precontinuity between fuzzy

topological spaces, one of which was independent and the other strictly stronger than fuzzy

semi-continuity [2]. Ganguly and Saha [9] introduced the notions of fuzzy δ-cluster points in

fuzzy topological spaces in the sense of Chang [4]. Kim and Park [14] introduced r-δ-cluster

points and δ-closure operators in fuzzy topological spaces in view of the definition of Ŝostak.

It is a good extension of the notions of Ganguly and Saha [9]. Park et al. [17] introduced the

concept of fuzzy semi-preopen sets which is weaker than any of the concepts of fuzzy semi-open

or fuzzy preopen sets. Using these concepts he defined and studied fuzzy semi-precontinuous

mappings between fuzzy topological spaces in Chang’s sense. Sobana et al. [24], defined r-fuzzy

e-open and r-fuzzy e-closed sets in a fuzzy topological space in the sense of Ŝostak. In 2008,
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the initiations of e∗-open sets in topological spaces was introduced by Erdal Ekici [6].

In this paper, we define r-fuzzy e∗-open and r-fuzzy e∗-closed sets in a fuzzy topological

space in the sense of Ŝostak [23]. Using these concepts, we define and study fuzzy e∗-interior,

fuzzy e∗-closure and some of their properties.

Throughout this paper, nonempty sets will be denoted by X, Y etc., I = [0, 1] and

I0 = (0, 1]. For α ∈ I, α(x) = α for all x ∈ X. A fuzzy point xt for t ∈ I0 is an element of IX

such that xt(y) =

t if y = x

0 if y /∈ x.
The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point xt ∈ λ iff t < λ(x).

A fuzzy set λ is quasi-coincident with µ, denoted by λqµ, if there exists x ∈ X such that

λ(x) + µ(x) > 1. If λ is not quasi-coincident with µ, we denoted λq̄µ. If A ⊂ X, we define the

characteristic function χA on X by χA(x) =

1 if x ∈ A,

0 if x /∈ A.
All other notations and definitions are standard, for all in the fuzzy set theory.

Lemma 1.1. [23] Let X be a nonempty set and λ, µ ∈ IX . Then

(i) λqµ iff there exists xt ∈ λ such that xtqµ.

(ii) λqµ, then λ ∧ µ 6= 0.

(iii) λq̄µ iff λ ≤ 1− µ.

(iv) λ ≤ µ iff xt ∈ λ implies xt ∈ µ iff xtqλ implies xtqµ implies xtq̄λ.

(v) xtq̄
∨
i∈Λ

µi iff there exists i0 ∈ Λ such that xtq̄µi0 .

Definition 1.1. [23] A function τ : IX → I is called a fuzzy topology on X if it satisfies

the following conditions:

(1) τ(0) = τ(1) = 1,

(2) τ(
∨
i∈Γ µi) ≥

∧
i∈Γ τ(µi), for any {µi}i∈Γ ⊂ IX ,

(3) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), for any µ1, µ2 ∈ IX .

The pair (X, τ) is called a fuzzy topological space (for short, fts).

Remark 1.1. [20] Let (X, τ) be a fuzzy topological space. Then, for each r ∈ I0, τr =

{µ ∈ IX : τ(µ) ≥ r} is a Change’s fuzzy topology on X.

Theorem 1.1. [21] Let (X, τ) be a fts. Then for each λ ∈ IX , r ∈ I0 we define an

operator Cτ : IX × I0 → IX as follows: Cτ (λ, r) =
∧
{µ ∈ IX : λ ≤ µ, τ(1 − µ) ≥ r}. For

λ, µ ∈ IX and r, s ∈ I0, the operator Cτ satisfies the following conditions: (1) Cτ (0, r) = 0,

(2) λ ≤ Cτ (λ, r), (3) Cτ (λ, r) ∨ Cτ (µ, r) = Cτ (λ ∨ µ, r), (4) Cτ (λ, r) ≤ Cτ (λ, s) if r ≤ s,

(5) Cτ (Cτ (λ, r), r) = Cτ (λ, r).

Theorem 1.2. [21] Let (X, τ) be a fts. Then for each r ∈ I0, λ ∈ IX we define an

operator Iτ : IX × I0 → IX as follows: Iτ (λ, r) =
∨
{µ ∈ IX : λ ≥ µ, τ(µ) ≥ r}. For

λ, µ ∈ IX and r, s ∈ I0, the operator Iτ satisfies the following conditions: (1) Iτ (1, r) = 1, (2)

19
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λ ≥ Iτ (λ, r), (3) Iτ (λ, r) ∧ Iτ (µ, r) = Iτ (λ ∧ µ, r), (4) Iτ (λ, r) ≤ Iτ (λ, s) if s ≤ r, (5)

Iτ (Iτ (λ, r), r) = Iτ (λ, r), (6) Iτ (1− λ, r) = 1− Cτ (λ, r) and Cτ (1− λ, r) = 1− Iτ (λ, r)

Definition 1.2. [15] Let (X, τ) be a fts. Then for each µ ∈ IX , xt ∈ Pt(X) and r ∈ I0,

(i) µ is called r-open Qτ -neighbourhood of xt if xtqµ with τ(µ) ≥ r.

(ii) µ is called r-open Rτ -neighbourhood of xt if xtqµ with µ = Iτ (Cτ (λ, r), r).

We denote Qτ (xt, r) = {µ ∈ IX : xtqµ, τ(µ) ≥ r}, Rτ (xt, r) = {µ ∈ IX : xtqµ =

Iτ (Cτ (λ, r), r)}.

Definition 1.3. [15] Let (X, τ) be a fts. Then for each λ ∈ IX , xt ∈ Pt(X) and r ∈ I0,

(i) xt is called r-τ cluster point of λ if for every µ ∈ Qτ (xt, r), we have µqλ.

(ii) xt is called r-δ cluster point of λ if for every µ ∈ Rτ (xt, r), we have µqλ.

(iii) An δ-closure operator is a mapping Dτ : IX × I → IX defined as follows: δ-Cτ (λ, r) or

Dτ (λ, r) =
∨
{xt ∈ Pt(X) : xt is r-δ-cluster point of λ}

Definition 1.4. Let (X, τ) be a fuzzy topological space. For λ ∈ IX and r ∈ I0,

(i) λ is called an r-fuzzy semiopen (resp. r-fuzzy semi-closed) [16] set if λ ≤ Cτ (Iτ (λ, r), r)

(resp. Iτ (Cτ (λ, r), r) ≤ λ).

(ii) λ is called an r-fuzzy preopen (resp. r-fuzzy preclosed) [13] set if λ ≤ Iτ (Cτ (λ, r), r)

(resp. Cτ (Iτ (λ, r), r) ≤ λ).

(iii) λ is called r-fuzzy δ-closed [13] iff λ = Dτ (λ, r).

(iv) The complement of r-fuzzy semiopen (resp. r-fuzzy preopen, r-fuzzy semi-preopen and r-

fuzzy δ-closed) is r-fuzzy semi-closed (resp. r-fuzzy preclosed, r-fuzzy semi-preclosed and

r-fuzzy δ-open).

Definition 1.5. Let (X, τ) be a fuzzy topological space. λ, µ ∈ IX and r ∈ I0,

(i) λ is called an r-fuzzy δ-semiopen (resp. r-fuzzy δ-semiclosed) [24] set if λ ≤ Cτ (δ-

Iτ (λ, r), r) (resp. Iτ (δ-Cτ (λ, r), r) ≤ λ).

(ii) λ is called an r-fuzzy δ-preopen (resp. r-fuzzy δ-preclosed) [24] set if λ ≤ Iτ (δ-Cτ (λ, r), r)

(resp. Cτ (δ-Iτ (λ, r), r) ≤ λ).

(iii) λ is called an r-fuzzy e-open (resp. r-fuzzy e-closed) [24] set if λ ≤ Cτ (δ-Iτ (λ, r), r) ∨
Iτ (δ-Cτ (λ, r), r) (resp. Cτ (δIτ (λ, r), r) ∧ Iτ (δCτ (λ, r), r) ≤ λ).

(iv) λ is called an r-fuzzy β-open (resp.r-fuzzy β-closed) set if λ ≤ Cτ (Iτ (Cτ (λ, r), r), r)

(resp. Iτ (Cτ (Iτ (λ, r), r), r) ≤ λ).

Definition 1.6. [24] Let (X, τ) be a fuzzy topological space. λ, µ ∈ IX and r ∈ I0,

(i) eIτ (λ, r) =
∨
{µ ∈ IX : µ ≤ λ, µ is a r-feo set } is called the r-fuzzy e-interior of λ.

(ii) eCτ (λ, r) =
∧
{µ ∈ IX : µ ≥ λ, µ is a r-fe∗o set } is called the r-fuzzy e-closure of λ.
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§2. r-fuzzy e∗-open sets

We introduce the following definitions.

Definition 2.1. Let (X, τ) be a fuzzy topological space. For λ, µ ∈ IX and r ∈ I0, λ

is called an r-fuzzy e∗-open (resp. r-fuzzy e∗-closed) set if λ ≤ Cτ (Iτ (δ-Cτ (λ, r), r), r) (resp.

Iτ (Cτ (δ-Iτ (λ, r), r), r) ≤ λ).

Definition 2.2. Let (X, τ) be a fuzzy topological space. λ, µ ∈ IX and r ∈ I0,

(i) e∗Iτ (λ, r) =
∨
{µ ∈ IX : µ ≤ λ, µ is a r-fe∗o set } is called the r-fuzzy e∗-interior of λ.

(ii) e∗Cτ (λ, r) =
∧
{µ ∈ IX : µ ≥ λ, µ is a r-fe∗c set } is called the r-fuzzy e∗-closure of λ.

Obviously, e∗Cτ (λ, r) is the smallest r-fe∗c set which contains λ, and e∗Iτ (λ, r) is the

largest r-fe∗o set which is contained in λ. Also e∗Cτ (λ, r) = (λ, r) for any r-fe∗c set λ and

e∗Iτ (λ, r) = (λ, r) for any r-fe∗o set λ.

Hence we have

Iτ (λ, r) ≤ δsIτ (λ, r) ≤ eIτ (λ, r) ≤ βIτ (λ, r) ≤ e∗Iτ (λ, r) ≤ (λ, r).

(λ, r) ≤ e∗Cτ (λ, r) ≤ βCτ (λ, r) ≤ eCτ (λ, r) ≤ δsCτ (λ, r) ≤ Cτ (λ, r).

and

Iτ (λ, r) ≤ δpIτ (λ, r) ≤ eIτ (λ, r) ≤ βIτ (λ, r) ≤ e∗Iτ (λ, r) ≤ (λ, r).

(λ, r) ≤ e∗Cτ (λ, r) ≤ βCτ (λ, r) ≤ eCτ (λ, r) ≤ δpCτ (λ, r) ≤ Cτ (λ, r).

Lemma 2.1. The following hold for a subset λ of a fts X.

(i) e∗Cτ (λ, r) is r-fe∗c.

(ii) 1− e∗Cτ (λ, r)=e∗Iτ (1− (λ, r)).

Theorem 2.1. The following holds for a subset λ of a fts X.

(i) (λ, r) is r-fe∗o ⇔ (λ, r) = (λ, r) ∧ Cτ (Iτ (δCτ (λ, r), r), r).

(ii) (λ, r) is r-fe∗c ⇔ (λ, r) = (λ, r) ∨ Iτ (Cτ (δIτ (λ, r), r), r).

(iii) e∗Cτ (λ, r) = (λ, r) ∨ Iτ (Cτ (δIτ (λ, r), r), r).

(iv) e∗Iτ (λ, r) = (λ, r) ∧ Cτ (Iτ (δCτ (λ, r), r), r).

Proof. (i) Let λ be r-fe∗o. Then λ ≤ Cτ (Iτ (δCτ (λ, r), r), r). We obtain

(λ, r) = (λ, r) ∧ Cτ (Iτ (δCτ (λ, r), r), r).

Conversely, let (λ, r) = (λ, r) ∧ Cτ (Iτ (δCτ (λ, r), r), r). We have

(λ, r) = (λ, r) ∧ Cτ (Iτ (δCτ (λ, r), r), r).

≤ Cτ (Iτ (δCτ (λ, r), r), r).

Hence (λ, r) is r-fe∗o.
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(ii) Taking complements, proof is similar to (i).

(iii) Since e∗Cτ (λ, r) is r-fe∗c, we have,

Iτ (Cτ (δIτ (λ, r), r), r) ≤ Iτ (Cτ (δIτ (e∗Cτ (λ, r), r), r), r) ≤ e∗Cτ (λ, r).

Hence, (λ, r)
∨
Iτ (Cτ (δIτ (λ, r), r), r) ≤ e∗Cτ (λ, r). On the other way, since

Iτ (Cτ (δIτ (λ
∨
Iτ (Cτ (δIτ (λ, r), r), r), r), r), r)

= Iτ (Cτ (δIτ (λ
∨
δIτ (δCτ (δIτ (λ, r), r), r), r), r), r)

= Iτ (Cτ (δIτ (λ, r)
∨
δIτ (δCτ (δIτ (λ, r), r), r), r), r)

= Iτ (Cτ (δIτ (δCτ (δIτ (λ, r), r), r), r), r)

= Iτ (Cτ (δIτ (λ, r), r), r)

≤ (λ, r)
∨
Iτ (Cτ (δIτ (λ, r), r), r),

then (λ, r)
∨
Iτ (Cτ (δIτ (λ, r), r), r) is r-fe∗c containing λ and hence

e∗Cτ (λ, r) ≤ (λ, r)
∨
Iτ (Cτ (δIτ (λ, r), r), r).

Thus, we obtain e∗Cτ (λ, r) = (λ, r)
∨
Iτ (Cτ (δIτ (λ, r), r), r).

(iv) Similar to the proof of (iii).

Theorem 2.2. Let λ be a subset of a fts X. Then the following hold

(i) e∗Cτ (δIτ (λ, r), r) = Iτ (Cτ (δIτ (λ, r), r), r).

(ii) δIτ (e∗Cτ (λ, r), r) = Iτ (Cτ (δIτ (λ, r), r), r).

(iii) e∗Iτ (δCτ (λ, r), r) = δCτ (e∗Iτ (λ, r), r) = Cτ (Iτ (δCτ (λ, r), r), r).

(iv) e∗Iτ (eCτ (λ, r), r) = δsIτ (δsCτ (λ, r), r)
∧
δpCτ (λ, r).

(v) e∗Cτ (eIτ (λ, r), r) = δsCτ (δsIτ (λ, r), r)
∨
δpIτ (λ, r).

(vi) eCτ (e∗Iτ (λ, r), r) = δsIτ (δsCτ (λ, r), r)
∧
δpCτ (λ, r).

(vii) eIτ (e∗Cτ (λ, r), r) = δsCτ (δsIτ (λ, r), r)
∨
δpIτ (λ, r).

Proof. The Proof is similar to the proof of Theorem 2.15 in [7].

Remark 2.1. From the above definitions it is clear that the following implications are

true for r ∈ I0.

r-fuzzy open

r-fuzzy e-open

r-fuzzy e∗-open

r-fuzzy δ semi open r-fuzzy δ pre open

r-fuzzy β open

22



Vol. 14 Fuzzy e∗-open sets in Ŝostak’s topological spaces 23

where r-fo, r-fδso, r-fδsc, r-fδpo, r-fδpc, r-feo, r-fec, r-fβo, r-fβc, r-fe∗o, r-fe∗care abbre-

viated by r-fuzzy open, r-fuzzy δ- semiopen, r-fuzzy δ-semiclosed, r-fuzzy δ-preopen, r-fuzzy

δ-preclosed, r-fuzzy e-open, r-fuzzy e-closed, r-fuzzy β-open, r-fuzzy β-closed, r-fuzzy e∗-open,

r-fuzzy e∗-closed respectively.

From the above definitions, it is clear that every r-fδpo is r-feo and every r-fδso is r-feo.

Also, it is clear that every r-feo set is r-fβo set and r-fe∗o set. Also, every r-fβo set is r-fe∗o

set. The converses need not be true in general.

The converses of the above implications are not true as the following examples show:

Example 2.1. Let λ1, λ2, λ3 and λ4 be fuzzy subsets of X = {a, b} defined as follows

λ1(a) = 0.2, λ1(b) = 0.1;

λ2(a) = 0.3, λ2(b) = 0.5;

λ3(a) = 0.7, λ3(b) = 0.7;

λ4(a) = 0.2, λ4(b) = 0.8.

Then τ : IX → I defined as

τ(λ) =


1, if λ = 0 or 1,

1
2 , if λ = λ1, λ2, λ3,

0, otherwise,

Then λ4 is 1
2 -fβo but λ4 is not 1

2 -feo set.

Example 2.2. Let λ and µ be fuzzy subsets of X = {a, b, c} defined as follows

λ(a) = 0.4, λ(b) = 0.5, λ(c) = 0.5;

µ(a) = 0.4, µ(b) = 0.5, µ(c) = 0.4.

Then τ : IX → I defined as

τ(λ) =


1, if λ = 0 or 1,

1
2 , if λ = λ,

0, otherwise,

Then µ is 1
2 -feo set but µ is not 1

2 -fδso set.

Example 2.3. Let λ and µ be fuzzy subsets of X = {a, b, c} defined as follows

λ(a) = 0.5, λ(b) = 0.3, λ(c) = 0.2;

µ(a) = 0.5, µ(b) = 0.4, µ(c) = 0.4.

Then τ : IX → I defined as

τ(λ) =


1, if λ = 0 or 1,

1
2 , if λ = λ,

0, otherwise,

Then µ is 1
2 -feo set but µ is not 1

2 -fδpo set.

Example 2.4. Let λ, µ and ω be fuzzy subsets of X = {a, b, c} defined as follows

λ(a) = 0.3, λ(b) = 0.5, λ(c) = 0.2;

µ(a) = 0.4, µ(b) = 0.5, µ(c) = 0.5;
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ω(a) = 0.7, ω(b) = 0.4, ω(c) = 0.8.

Then τ : IX → I defined as

τ(λ) =


1, if λ = 0 or 1,

1
2 , if λ = λ, µ,

0, otherwise,

Then ω is 1
2 -fe∗o set but ω is not 1

2 -fβo set.

Example 2.5. Let λ and µ be fuzzy subsets of X = {a, b, c} defined as follows

λ(a) = 0.4, λ(b) = 0.5, λ(c) = 0.2;

µ(a) = 0.5, µ(b) = 0.4, µ(c) = 0.7.

Then τ : IX → I defined as

τ(λ) =


1, if λ = 0 or 1,

1
2 , if λ = λ,

0, otherwise,

Then µ is 1
2 -fe∗o set but µ is not 1

2 -feo set. Also µ is not 1
2 -fuzzy open set.

Theorem 2.3. Let (X, τ) be a fts and r ∈ Io.

(i) Any union of r-fe∗o sets is an r-fe∗o set.

(ii) Any intersection of r-fe∗c sets is an r-fe∗c set.

Proof. (i) Let {λα : α ∈ Γ} be a family of r-fe∗o sets.

For each α ∈ Γ, λα ≤ Cτ (Iτ (δ-Cτ (λα, r), r), r).∨
α∈Γ

λα ≤
∨
α∈Γ

Cτ (Iτ (δ-Cτ (λα, r), r), r).

≤ Cτ (Iτ (δ-Cτ (∨λα, r), r), r).
(ii) Similar to the proof of (i).

Theorem 2.4. Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0. then,

(i) If τ(µ) ≥ r, where µ is a crisp subset and λ is an r-fe∗o set, then λ ∧ µ is an r-fe∗o set.

(ii) If τ(1 − µ) ≥ r, where µ is a crisp subset and λ is an r-fe∗c set, then λ ∨ µ is an r-fe∗c

set.

Proof. (i) Let λ be r-fe∗o and µ ∈ IX with τ(µ) ≥ r which is a crisp subset. Then

λ ∧ µ ≤ Cτ (Iτ (δ-Cτ (λ, r), r), r) ∧ µ.
≤ Cτ (Iτ (δ-Cτ (λ ∧ µ, r), r), r).

Hence λ ∧ µ is r-fe∗o.

(ii) Similar to the proof of (i).

Theorem 2.5. Let (X, τ) be a fts, λ, µ ∈ IX and r ∈ I0.

(i) If λ is r-fe∗o with τ(1− λ) ≥ r, then λ is r-fδpo.

(ii) If λ is r-fe∗c with τ(λ) ≥ r, then λ is r-fδpc.
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Proof. (i) Let λ be an r-fe∗o set and τ(1− λ) ≥ r. Then

λ ≤ Cτ (Iτ (δ-Cτ (λ, r), r), r).

≤ Iτ (δ-Cτ (λ, r), r).

Hence λ is an r-fδpo set of X.

(ii) is similar to (i).

Theorem 2.6. Let (X, τ) be a fts, For λ, µ ∈ IX and r ∈ I0.

(i) λ is r-fe∗o iff 1− λ is r-fe∗c.

(ii) If τ(λ) ≥ r then λ is r-fe∗o set.

(iii) Iτ (λ, r) is an r-fe∗o set.

(iv) Cτ (λ, r) is an r-fe∗c set.

Proof. (i) and (ii) are trivial.

(iii) From the Definition of Iτ of Theorem 1.2 and Definition 1.1(3), since τ(Iτ (λ, r)) ≥ r, by

(ii) Iτ (λ, r) is an r-fe∗o set.

(iv) Since 1−Cτ (λ, r) = Iτ (1−λ, r), from Theorem 1.2 (6), by (iii) we have τ(1−Cτ (λ, r)) ≥ r.
Hence 1− Cτ (λ, r) is r-fe∗o. By (i) Cτ (λ, r) is an r-fe∗c set.

Theorem 2.7. Let (X, τ) be a fts. Let λ ∈ IX and r ∈ Io.

(i) λ is r-fe∗o iff λ = e∗Iτ (λ, r).

(ii) λ is r-fe∗c iff λ = e∗Cτ (λ, r).

Theorem 2.8. Let (X, τ) be a fts. Let λ ∈ IX and r ∈ Io, the following statements hold:

(i) e∗Cτ (0, r) = 0 and e∗Iτ (1, r) = 1.

(ii) Iτ (λ, r) ≤ e∗Iτ (λ, r) ≤ λ ≤ e∗Cτ (λ, r) ≤ Cτ (λ, r).

(iii) λ ≤ µ⇒ e∗Iτ (λ, r) ≤ e∗Iτ (µ, r) and e∗Cτ (λ, r) ≤ e∗Cτ (µ, r).

(iv) e∗Cτ (λ, r) ∨ e∗Cτ (µ, r) ≤ e∗Cτ (λ ∨ µ, r).

(v) e∗Cτ (e∗Cτ (λ, r), r) = e∗Cτ (λ, r) and e∗Iτ (e∗Iτ (λ, r), r) = e∗Iτ (λ, r).

(vi) Cτ (e∗Cτ (λ, r), r) = e∗Cτ (Cτ (λ, r), r) = Cτ (λ, r).

Proof. (i) It is trivial from the Definitions of e∗Cτ and e∗Iτ .

(ii) and (iii) can be easily proved from Theorem 2.6.

(iv) Since λ ≤ λ ∨ µ, by the definition of e∗Cτ , we have

e∗Cτ (λ, r) ≤ e∗Cτ (λ ∨ µ, r).

Similarly, e∗Cτ (λ, r) ≤ e∗Cτ (λ ∨ µ, r). Hence,

e∗Cτ (λ, r) ∨ eCτ (µ, r) ≤ e∗Cτ (λ ∨ µ, r).
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(v) It is trivial from Theorem 2.7.

(vi) From Theorem 2.6 (iv), and Theorem 2.7 (ii), e∗Cτ (Cτ (λ, r), r) = Cτ (λ, r). We only

show that Cτ (e∗Cτ (λ, r), r) = Cτ (λ, r). Since λ ≤ e∗Cτ (λ, r), Cτ (λ, r) ≤ Cτ (e∗Cτ (λ, r), r).

Suppose that Cτ (λ, r) < Cτ (e∗Cτ (λ, r), r). There exist x ∈ X and µ ∈ IX with λ ≤ µ and

τ(1− µ) ≥ r such that Cτ (e∗Cτ (λ, r), r)(x) > µ(x) ≥ Cτ (λ, r)(x). On the other hand, since

µ = Cτ (λ, r), λ ≤ µ implies

e∗Cτ (λ, r) ≤ e∗Cτ (µ, r) = e∗Cτ (λ, r) = Cτ (λ, r) = µ.

Thus Cτ (e∗Cτ (λ, r), r) ≤ µ. This is a contradiction. Hence Cτ (e∗Cτ (λ, r), r) = Cτ (λ, r).

Theorem 2.9. Let (X, τ) be a fts. For λ ∈ IX and r ∈ I0 we have

(i) e∗Iτ (1− λ, r) = 1− (e∗Cτ (λ, r)).

(ii) e∗Cτ (1− λ, r) = 1− (e∗Iτ (λ, r)).

Proof. (i) For all λ ∈ IX , r ∈ I0 we have the following:

1− (e∗Cτ (λ, r)) = 1−
∧
{µ : µ ≥ λ, µ is r-fe∗o}

=
∨
{1− µ : 1− µ ≤ 1− λ, 1− µ is r-fe∗o}

= e∗Iτ (1− λ, r).
(ii) Similar to the proof of (i).

Theorem 2.10. Let (X, τ) be a fts, λ, µ ∈ IX and r ∈ I0.

(i) If λ is r-fβo set, τ(1− λ) ≥ r and λ is r-fδc then λ is r-feo.

(ii) If λ is r-fβc set, τ(λ) ≥ r and λ is r-fδo then λ is r-fec.

Proof. (i) Let λ be an r-fβo set and τ(1− λ) ≥ r. Then

λ ≤ Cτ (Iτ (Cτ (λ, r), r), r)

≤ Cτ (Iτ (λ, r), r)

= Cτ (Iτ (λ, r) ∨ Iτ (λ, r), r)

≤ Cτ (δ-Iτ (λ, r), r) ∨ Iτ (λ, r)

= Cτ (δ-Iτ (λ, r), r) ∨ Iτ (δ-Cτ (λ, r), r).

Hence λ is an r-feo set of X.

(ii) is similar to (i).

Theorem 2.11. Let (X, τ) be a fts, λ, µ ∈ IX and r ∈ I0.

(i) If λ is r-fe∗o with τ(1− λ) ≥ r, then λ is r-feo set.

(ii) If λ is r-fe∗c with τ(λ) ≥ r, then λ is r-fec set.

Proof. (i) Let λ be an r-fe∗o set and τ(1− λ) ≥ r. Then

λ ≤ Cτ (Iτ (δ-Cτ (λ, r), r), r).

= Iτ (δ-Cτ (λ, r), r).

≤ Cτ (δ-Iτ (λ, r), r) ∨ Iτ (δ-Cτ (λ, r), r).

Hence λ is an r-feo set of X.

(ii) is similar to (i).
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Theorem 2.12. Let (X, τ) be a fts, λ, µ ∈ IX and r ∈ I0.

(i) If λ is r-fe∗o, τ(1− λ) ≥ r and λ is r-fδc, then λ is r-fβo set.

(ii) If λ is r-fe∗c τ(λ) ≥ r and λ is r-fδo, then λ is r-fβc set.

Proof. (i) Let λ be an r-fe∗o set and τ(1− λ) ≥ r. Then

λ ≤ Cτ (Iτ (δ-Cτ (λ, r), r), r).

= Cτ (Iτ (Cτ (λ, r), r), r)

Hence λ is an r-fβo set of X.

(ii) is similar to (i).

Conclusion

In this paper, r-fuzzy e∗-open and r-fuzzy e∗-closed sets are introduced in fuzzy topological

spaces in the sense of Ŝostak’s. We also introduce r-fuzzy e∗-interior and r-fuzzy e∗-closure.

Moreover, we investigated the relationships between r-fuzzy e∗-open sets, r-fuzzy beta open

sets, r-fuzzy e-open sets, r-fuzzy δ-semiopen sets and r-fuzzy δ-preopen sets.
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[23] A. S. Šostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser. II, 11 (1985),

89-103.

[24] D. Sobana, V. Chandrasekar and A. Vadivel, Fuzzy e-continuity in Šostak’s fuzzy topological

spaces, in press.

[25] S. S. Thakur and R. K. Khare, Fuzzy semi δ-preopen sets and fuzzy semi δ-precontinuous mappings,

Universitatea din Bacau studii si cerceturi Strintitice Seria Matematica, 14 (2004), 201-211.

28



Scientia Magna

Vol. 14 (2019), No. 1, 29-43

Somewhat fuzzy Irw-continuous functions

A. Vadivel1 and E. Elavarasan2

1Department of Mathematics, Govt Arts College

Karur, Tamil Nadu, India

E-mail: avmaths@gmail.com
2Department of Mathematics, Shree Raghavendra Arts and Science College

(Affiliated to Thiruvalluvar University)

Keezhamoongiladi, Chidambaram-608102, Tamil nadu, India

E-mail: maths.aras@gmail.com

Abstract In this paper, we introduce and study the concept of somewhat fuzzy Irw-

continuous functions, somewhat fuzzy Irw-open functions and Somewhat fuzzy Irw-irresolute

open functions in fuzzy ideal topological spaces and obtain some of its basic proper-

ties and characterizations. Also we have introduce the concept of somewhat fuzzy Irw-

homeomorphism, fuzzy Irw-resolvable and fuzzy Irw-irresolvabe spaces and we have given

characterizations of fuzzy Irw-resolvable and fuzzy Irw-irresolvable spaces.

Keywords Fuzzy Irw-open sets, Somewhat fuzzy Irw-continuous functions, Somewhat fuzzy Irw-open

functions, Somewhat fuzzy Irw-irresolute open functions, somewhat fuzzy Irw-homeomorphism, fuzzy

Irw-resolvable and fuzzy Irw-irresolvable spaces.

2010 Mathematics Subject Classification 54A40.

§1. Introduction

In 1945 R. Vaidyanathaswamy [25] introduced the concept of ideal topological spaces.

Hayashi [13] defined the local function and studied some topological properties using local

function in ideal topological spaces in 1964. Since then many mathematicians like Erdal Ekici

et. al. [9], Hatir and Jafari [12], Naseef and Hatir [15] studied various topological concepts

in ideal topological spaces. After the introduction of fuzzy sets by Zadeh [29] in 1965 and

fuzzy topology by Chang [4] in 1968, several researches were conducted on the generalization

of the notions of fuzzy sets and fuzzy topology. The hybridization of fuzzy topology and fuzzy

ideal theory was initiated by Mahmoud [14] and Sarkar [17] independently in 1997. They

( [14], [17]) introduced the concept of fuzzy ideal topological spaces as an extension of fuzzy

topological spaces and ideal topological spaces. The concept of fuzzy topology may be relevent

to quantum particle physics particularly in connection with string theory and E-infinite theory

[5–8]. Hatir and Jafari [12], Naseef and Hatir [15] introduced the concept of fuzzy semi-I-open

sets and fuzzy pre-I-open sets in fuzzy ideal topological spaces. Yuksel et. al. [28] introduced

and studied fuzzy α-I-open sets and consequently Gupta and Rajneesh [11] introduced the

concept of fuzzy γ-I-open sets in fuzzy ideal topological spaces. In 2003, G. Thangaraj and
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G. Balasubramanian [20] introduced the concept of somewhat fuzzy continuous functions and

many others [1, 3, 10, 18, 19, 21, 22, 27] have turned their attention to the various concepts of

fuzzy topology by considering somewhat fuzzy ideal topological spaces instead of somewhat

fuzzy topological spaces. Recently, A. Vadivel and E. Elavarasan [23] introduced and studied

the concept of fuzzy Irw-closed sets in fuzzy ideal topological spaces which simultaneously

generalizes the concepts of Irw-closed sets due to A. Vadivel and Mohanrao Navuluri [24] and

fuzzy rw-closed sets due to R. S. Wali [26]. In the present paper, to introduce and study the

concept of somewhat fuzzy Irw-continuous functions, somewhat fuzzy Irw-open functions and

somewhat fuzzy Irw-irresolute open functions in fuzzy ideal topological spaces. Also we have

introduced the concept of somewhat fuzzy Irw-homeomorphism, fuzzy Irw-resolvable and fuzzy

Irw-irresolvabe spaces and we have given characterizations of fuzzy Irw-resolvable and fuzzy

Irw-irresolvable spaces in fuzzy ideal topological spaces.

§2. Preliminaries

Throughout this paper, (X, τ) always means fuzzy topological space in the sense of Chang

[4]. For a fuzzy subset λ of X, the fuzzy interior of λ is denoted by Int(λ) and is defined as

Int(λ) =
∨
{µ|µ ≤ λ, µ is a fuzzy open subset of X} and the fuzzy closure of λ is denoted by

Cl(λ) and is defined as Cl(λ) =
∧
{µ|µ ≥ λ, µ is a fuzzy closed subset of X}. A fuzzy set λ in

(X, τ) is said to be quasi-coincident with a fuzzy set µ, denoted by λqµ, if there exists a point

x ∈ X such that λ(x) + µ(x) > 1 [12]. A fuzzy set µ in (X, τ) is called a Q-neighborhood of a

fuzzy point xβ if there exists a fuzzy open set λ of X such that xβqλ ≤ µ [12].

A nonempty collection of fuzzy sets I of a set X is called a fuzzy ideal [11, 12] if and

only if (i) λ ∈ I and µ ≤ λ, then µ ∈ I, (ii) if λ ∈ I and µ ∈ I, then λ ∨ µ ∈ I. The

triple (X, τ, I) means a fuzzy ideal topological space with a fuzzy ideal I and fuzzy topology

τ . The local function for a fuzzy set λ of X with respect to τ and I denoted by λ∗(τ, I)

(briefly λ∗) in a fuzzy ideal topological space (X, τ, I) is the union of all fuzzy points xβ such

that if µ is a Q-neighborhood of xβ and δ ∈ I then for at least one point y ∈ X for which

µ(y) + λ(y) − 1 > δ(y) [16]. The ∗-closure operator of a fuzzy set λ denoted by Cl∗(λ) in

(X, τ, I) defined as Cl∗(λ) = λ
∨
λ∗ [16].

Definition 2.1. A fuzzy set λ of fuzzy topological space (X, τ) is called fuzzy regular

open [2] if λ = int(cl(λ)). The complement of a fuzzy regular open set is called fuzzy regular

closed.

Definition 2.2. A fuzzy set λ of fuzzy topological space (X, τ) is said to be fuzzy regular

semi-open [26] if there is a fuzzy regular open set µ such that µ ≤ λ ≤ cl(µ). The complement

of a fuzzy regular semi-open set is called fuzzy regular semi-closed.

Definition 2.3. A fuzzy set λ of a fuzzy ideal topological space (X, τ, I) is called fuzzy

Irw-closed [23] if λ∗ ≤ µ, whenever λ ≤ µ and µ is fuzzy regular semi-open. The complement

of a fuzzy Irw-closed set is called fuzzy Irw-open.

The family of all fuzzy Irw-closed (resp. fuzzy Irw-open) subsets of (X, τ, I) is denoted by

FIrw-C(X) (resp. FIrw-O(X)).

The fuzzy Irw-closure and fuzzy Irw-interior of a fuzzy set λ are respectively, denoted by

30



Vol. 14 Somewhat fuzzy Irw-continuous functions 31

Irw-Cl(λ) and Irw-Int(λ) and is defined as

Irw-Cl(λ) = ∧{µ | λ ≤ µ, µ ∈ FIrw-C(X)} and

Irw-Int(λ) = ∨{µ | λ ≥ µ, µ ∈ FIrw-O(X)}.
A fuzzy set λ is said to be fuzzy Irw-closed (resp. fuzzy Irw-open) if and only if Irw-Cl(λ) =

λ(resp. Irw-Int(λ) = λ). Clearly, Irw-Cl(1 − λ) = 1 − Irw-Int(λ) and Irw-Int(1 − λ) =

Irw-Cl(λ).

Definition 2.4. [23] A fuzzy ideal topological space (X, τ, I) is fuzzy Irw-T1/2 if every

fuzzy Irw-closed set in X is fuzzy closed in X.

Definition 2.5. A function f : (X, τ, I)→ (Y, σ) is called fuzzy continuous [4] if f−1(µ)

is fuzzy open in X for every fuzzy open set µ ∈ Y .

Definition 2.6. A function f : (X, τ)→ (Y, σ) is called fuzzy open [4] if and only if for

any fuzzy open subset λ of X, f(λ) ∈ σ.

Definition 2.7. A function f : (X, τ, I) → (Y, σ) is called fuzzy Irw-continuous [23] if

f−1(µ) is fuzzy Irw-open in X for every fuzzy open set µ ∈ Y .

Definition 2.8. A function f : (X, τ, I) → (Y, σ) is called fuzzy Irw-irresolute [23] if

f−1(µ) is fuzzy Irw-open in X for every fuzzy Irw-open set µ ∈ Y .

Definition 2.9. A function f : (X, τ)→ (Y, σ) is called somewhat fuzzy continuous [20]

if for every fuzzy open set λ in Y such that f−1(λ) 6= 0, there exists a fuzzy open set µ 6= 0 in

(X, τ) such that µ ≤ f−1(λ). That is, int[f−1(λ)] 6= 0.

Definition 2.10. A function f : (X, τ)→ (Y, σ) is called somewhat fuzzy open [20] if for

every fuzzy open set λ in (X, τ) such that λ 6= 0, there exists a fuzzy open set µ 6= 0 in (Y, σ)

such that µ ≤ f(λ). That is, int[f(λ)] 6= 0.

Lemma 2.1. [2] Let g : X → X × Y be the graph of a function f : X → Y . Then, if λ is

a fuzzy set of X and µ is a fuzzy set of Y , g−1(λ× µ) = λ ∧ f−1(µ).

§3. Somewhat fuzzy Irw-continuous functions

Definition 3.1. A function f : (X, τ, I)→ (Y, σ) is called somewhat fuzzy Irw-continuous

if for every fuzzy open set λ in Y such that f−1(λ) 6= 0, there exists a fuzzy Irw-open set µ 6= 0

in (X, τ) such that µ ≤ f−1(λ).

It is clear that every fuzzy continuous function is somewhat fuzzy Irw-continuous and also

every somewhat fuzzy continuous function is somewhat fuzzy Irw-continuous but the converses

is not true as the following example shows.

Example 3.1. Let X = {a, b, c}, Y = {p, q, r} and the fuzzy sets λ and µ are defined

as follows: λ(a) = 0.6, λ(b) = 0.4, λ(c) = 0.5; µ(p) = 0.7, µ(q) = 0.6, µ(r) = 0.5. Let

τ = {0, 1, λ}, σ = {0, 1, µ} be the fuzzy topology on X and Y respectively. Let I = {0} be the

fuzzy ideal on X and λc is fuzzy Irw-open set in X. Then the mapping f : (X, τ, I)→ (Y, σ)

defined by f(a) = p, f(b) = q and f(c) = r is somewhat fuzzy Irw-continuous but it not fuzzy

continuous.

Example 3.2. Let X = {a, b, c}, Y = {p, q, r} and the fuzzy sets λ and µ are defined

as follows: λ(a) = 0.6, λ(b) = 0.4, λ(c) = 0.5; µ(p) = 0.4, µ(q) = 0.6, µ(r) = 0.5. Let

τ = {0, 1, λ}, σ = {0, 1, µ} be the fuzzy topology on X and Y respectively. Let I = {0} be the
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fuzzy ideal on X and λc is fuzzy Irw-open set in X. Then the mapping f : (X, τ, I)→ (Y, σ)

defined by f(a) = p, f(b) = q and f(c) = r is somewhat fuzzy Irw-continuous but it not

somewhat fuzzy continuous.

Remark 3.1. The implications contained in the following diagram are true and the reverse

implications need not be true.

Definition 3.2. A fuzzy set λ in a fuzzy ideal topological space (X, τ, I) is called fuzzy Irw-

dense if there exists no fuzzy Irw-closed set µ such that λ < µ < 1 or equivalently Irw-Cl(λ) =

1.

Theorem 3.1. If f : (X, τ, I) → (Y, σ) is a somewhat fuzzy Irw-continuous surjection

and g : (Y, σ) → (Z, η) is somewhat fuzzy continuous, then g ◦ f : (X, τ, I) → (Z, η) somewhat

fuzzy Irw-continuous.

Proof. Let λ be any non zero fuzzy open set of (Z, η) and (g ◦ f)−1(λ) 6= 0. Then g−1(λ) 6= 0.

Since g is somewhat fuzzy continuous, there exists µ ∈ σ such that 0 6= µ ≤ g−1(λ). Since

f is surjective, 0 6= f−1(µ) ≤ f−1(g−1(λ)). Since f is somewhat fuzzy Irw-continuous, There

exists an fuzzy Irw-open set δ in (X, τ, I) such that 0 6= δ ≤ f−1(µ). Therefore, we have

0 6= δ ≤ (g ◦ f)−1(λ)). This shows that g ◦ f is somewhat fuzzy Irw-continuous.

Proposition 3.1. If f : (X, τ, I) → (Y, σ) is a somewhat fuzzy Irw-continuous function

and g : (Y, σ)→ (Z, η) is fuzzy continuous function, then g ◦ f : (X, τ, I)→ (Z, η) is somewhat

fuzzy Irw-continuous.

Proof. Let λ be any non zero fuzzy open set of (Z, η), then g−1(λ) 6= 0. Since g is fuzzy

continuous function, g−1(λ) in (Y, σ). Suppose that f−1(g−1(λ)) 6= 0. Since by hypothesis,

f is somewhat fuzzy Irw-continuous function, there exists a fuzzy Irw-open set µ in X such

that µ 6= 0 and µ ≤ f−1(g−1(λ)). But f−1(g−1(λ)) = (g ◦ f)−1(λ), which implies that µ ≤
(g ◦ f)−1(λ). Therefore (g ◦ f) is somewhat fuzzy Irw-continuous.

Theorem 3.2. For a function f : (X, τ, I) → (Y, σ), the following statements are

equivalent:

(i) f is somewhat fuzzy Irw-continuous.

(ii) If λ is a fuzzy closed set of Y such that f−1(λ) 6= 1, then there exists a proper fuzzy

Irw-closed set µ of X such that µ ≥ f−1(λ).

(iii) If λ is a fuzzy Irw-dense set, then f(λ) is a fuzzy dense set in Y .
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Proof. (i)⇒(ii): Suppose f is somewhat fuzzy Irw-continuous and λ is any fuzzy closed set

in Y such that f−1(λ) 6= 1. Therefore, clearly 1 − λ is a fuzzy open set and f−1(1 − λ) =

1− f−1(λ) 6= 0. But by (i), there exists a fuzzy Irw-open set µ in (X, τ, I) such that µ 6= 0 and

µ ≤ f−1(1−λ). Therefore, 1−µ ≥ 1−f−1(1−λ) = 1− (1−f−1(λ)) = f−1(λ). Put 1−µ = δ.

Clearly, δ is a proper fuzzy Irw-closed set such that δ ≥ f−1(λ).

(ii)⇒(iii): Let λ be a fuzzy Irw-dense set in X and suppose f(λ) is not fuzzy dense in Y .

Then there exists a fuzzy closed set, say, µ such that f(λ) < µ < 1. Now, µ < 1⇒ f−1(µ) 6= 1.

Then by f(λ) < µ < 1, there exists a proper fuzzy Irw-closed set δ in (X, τ, I) such that

δ ≥ f−1(µ). But by (i), f−1(µ) > f−1(f(λ)) ≥ λ, that is, δ > λ. This implies that there

exists a proper fuzzy Irw-closed set δ such that δ > λ, which is a contradiction, since λ is fuzzy

Irw-dense.

(iii)⇒(i): Let λ be any fuzzy open set in (Y, σ) and suppose f−1(λ) 6= 0 and hence λ 6= 0.

Suppose Irw-Int(f−1(λ)) = 0. Then Irw-Cl(1 − f−1(λ)) = 1 − Irw-Int(f−1(λ)) = 1 − 0 = 1.

This means that 1−f−1(λ) is a fuzzy Irw-dense set in X. By (iii), f(1−f−1(λ)) is a fuzzy dense

in Y . That is, Cl(f(1 − f−1(λ))) = 1, but f(1 − f−1(λ)) = f(f−1(1 − λ)) ≤ 1 − λ = 1, since

λ 6= 0. Since 1− λ is fuzzy closed and f(1− f−1(λ)) ≤ 1− λ, Cl(f(f−1(λ))) ≤ 1− λ. That is,

1 ≤ 1−λ⇒ λ ≤ 0 and hence λ = 0, which is a contradiction to the fact that λ 6= 0. Therefore,

we must have Irw-Int(f−1(λ)) 6= 0. This means that, there exists a fuzzy Irw-open set µ in

(X, τ, I) such that 0 6= µ ≤ f−1(λ) and consequently f is somewhat fuzzy Irw-continuous.

Theorem 3.3. Let f : (X, τ, I) → (Y, σ) be a function, where X is product related to Y ,

and g : X → X × Y , the graph function of f . If g is somewhat fuzzy Irw-continuous, then f is

so.

Proof. Let λ be a non-zero fuzzy open set in Y . Then by Lemma 2.4 of [2], we have f−1(λ) =

1 ∧ f−1(λ) = g−1(1 × λ). Since g is somewhat fuzzy Irw-continuous and 1 × λ is a non-zero

fuzzy open set in X × Y , there exists a non-zero fuzzy Irw-open set µ of (X, τ, I) such that

µ ≤ g−1(1×λ) = f−1(λ). This proves that f is a somewhat fuzzy Irw-continuous function.

Proposition 3.2. Let (X, τ, I) and (Y, σ, I) be any two fuzzy ideal topological spaces. If the

function f : (X, τ, I)→ (Y, σ, I) is somewhat fuzzy Irw-continuous, onto and if Irw-Int(λ) = 0

for any non-zero fuzzy set λ in (X, τ, I), then Irw-Int
(
f(λ)

)
= 0 in (Y, σ, I).

Proof. Let λ 6= 0 be a non-zero fuzzy set in (X, τ, I) such that Irw-Int(λ) = 0. Then 1 − Irw-

Int(λ) = 1− 0 = 1 implies that Irw-Cl(1 − λ) = 1. Since f is somewhat fuzzy Irw-continuous

and 1− λ is fuzzy Irw-dense in (X, τ, I), f(1− λ) is fuzzy Irw-dense in (Y, σ, I) [by Theorem ].

That is, Irw-Cl[f(1− λ)] = 1. Then Irw-Cl[1− f(λ)] = 1. [since f is onto]. Therefore we have

[1− Irw-Int(f(λ)] = 1 which implies that Irw-Int(f(λ)) = 0. Hence the proposition.

Definition 3.3. A fuzzy ideal topological space (X, τ, I) is called a fuzzy DIrw -space (D-

space) if for every nonzero fuzzy Irw-open (fuzzy open) set in X is fuzzy Irw-dense (fuzzy dense)

in X.

Proposition 3.3. If f : (X, τ, I)→ (Y, σ, I) is a somewhat fuzzy Irw-continuous surjec-

tion and (X, τ, I) is a fuzzy DIrw -space, then Y is a fuzzy D-space.
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Proof. Let λ be a nonzero fuzzy open set in Y . We want to show that λ is fuzzy dense in

Y . Suppose not, then there exists a fuzzy closed set µ ∈ Y such that λ < µ < 1. Therefore,

f−1(λ) < f−1(µ) < f−1(1) = 1. Since λ 6= 0, f−1(λ) 6= 0 and since f is somewhat fuzzy

Irw-continuous there exists a fuzzy Irw-open set δ 6= 0 in X such that δ < f−1(λ). Hence

δ < f−1(λ) < f−1(µ) < Irw-Cl(f−1(µ)) < 1. That is, δ < Irw-Cl(f−1(µ)) < 1. This

contradicts the fact that (X, τ, I) is a fuzzy DIrw -space, hence Y is a fuzzy D-space.

Theorem 3.4. Let (X, τ, I) be any fuzzy ideal topological space and (Y, σ) any fuzzy

ideal topological space. If λ is an fuzzy open set in X and f : (λ, τ/λ, I/λ) → (Y, σ, I) is

a somewhat fuzzy Irw-continuous function such that f(λ) is fuzzy Irw-dense in Y , then any

extension F : (X, τ, I)→ (Y, σ) of f is somewhat fuzzy Irw-continuous.

Proof. Let µ be any fuzzy open set in (Y, σ) such that F−1(µ) 6= 0. Since f(λ) < Y is dense in

Y and µ∧f(λ) 6= 0, it follows that F−1(µ)∧λ 6= 0. That is f−1(µ)∧λ 6= 0. Hence by hypothesis

on f , there exists an fuzzy Irw-open set δ in λ such that δ 6= 0 and δ < f−1(µ) < F−1(µ) which

implies F is somewhat fuzzy Irw-continuous.

Theorem 3.5. Let (X, τ, I) and (Y, σ, J) be any two fuzzy ideal topological spaces, X =

λ∨ µ where λ and µ are fuzzy Irw-open subsets of X and f : (X, τ, I)→ (Y, σ, J) be a function

such that f/λ and f/µ are somewhat fuzzy Irw-continuous. Then f is somewhat fuzzy Irw-

continuous.

Proof. Let δ be any fuzzy open set in (Y, σ, J) such that f−1(δ) 6= 0. Then (f/λ)−1(δ) 6= 0 or

(f/µ)−1(δ) 6= 0 or both (f/λ)−1(δ) 6= 0 and (f/µ)−1(δ) 6= 0.

Case (1) Suppose (f/λ)−1(δ) 6= 0. Since f/λ is somewhat fuzzy Irw-continuous, there

exists an fuzzy Irw-open set γ ≤ λ such that γ 6= 0 and γ ≤ (f/λ)−1(δ) ≤ f−1(δ). Since γ

is fuzzy Irw-open in λ and λ is fuzzy Irw-open in X, γ is fuzzy Irw-open in X. Thus f is

somewhat fuzzy Irw-continuous.

Case (2) the proof is similar with Case (1).

Case (3) Suppose (f/λ)−1(δ) 6= 0 and (f/µ)−1(δ) 6= 0. This follows from both the Cases

(1) and (2). Thus f is somewhat fuzzy Irw-continuous.

§4. Fuzzy Irw-Weakly Equivalent Topologies

Definition 4.1. Let X be a set and τ and σ be topologies for X. Then τ is said to be

fuzzy Irw-weakly equivalent to σ provided that if a fuzzy Irw-open set λ in (X, τ) and λ 6= 0,

then there is an fuzzy Irw-open set µ in (X,σ) such that µ 6= 0 and µ ≤ λ and a fuzzy Irw-open

set λ in (X,σ) and λ 6= 0, then there is an fuzzy Irw-open set set µ in (X, τ) such that µ 6= 0

and µ ≤ λ.

Theorem 4.1. Let f : (X, τ, I)→ (Y, σ1, I) be a somewhat fuzzy Irw-continuous surjective

function and let σ2 be a fuzzy topology for Y . If σ2 is weakly equivalent to σ1, then the function

f : (X, τ, I)→ (Y, σ2) is somewhat fuzzy Irw-continuous.
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Proof. Since σ2 is weakly equivalent to σ1, the identity function i : (Y, σ1)→ (Y, σ2) is somewhat

continuous. Therefore, by Theorem , f = f ◦ i : (X, τ, I) → (Y, σ2) is somewhat fuzzy Irw-

continuous.

Theorem 4.2. Let f : (X, τ1, I) → (Y, σ) be a somewhat fuzzy continuous function and

let τ2 be a fuzzy topology for X. If τ2 is fuzzy Irw-weakly equivalent to τ1, then the function

f : (X, τ2, I)→ (Y, σ) is somewhat fuzzy Irw-continuous.

Proof. Since τ2 is fuzzy Irw-weakly equivalent to τ1, the identity function i : (X, τ2, I) →
(X, τ1, I) is somewhat fuzzy Irw-continuous. Therefore, by Theorem , f = f ◦ i : (X, τ2, I) →
(Y, σ) is somewhat fuzzy Irw-continuous.

§5. Somewhat fuzzy Irw-open function

Definition 5.1. A function f : (X, τ, I)→ (Y, σ, I) is called somewhat fuzzy Irw-open if

and only if for any fuzzy open set λ, λ 6= 0 in (X, τ, I) implies that there exists a fuzzy Irw-open

set µ in (Y, σ, I) such that µ 6= 0 and µ ≤ f(λ).

It is clear that every fuzzy open function is somewhat fuzzy Irw-open and also every

somewhat fuzzy open function is somewhat fuzzy Irw-open but the converses is not true as it

can be seen from the following example.

Example 5.1. Let X = {a, b, c}, Y = {p, q, r} and the fuzzy sets λ and µ are defined

as follows: λ(a) = 0.4, λ(b) = 0.6, λ(c) = 0.5; µ(p) = 0.7, µ(q) = 0.8, µ(r) = 0.9. Let

τ = {0, 1, λ}, σ = {0, 1, µ} be the fuzzy topology on X and Y respectively. Let I = {0}
be the fuzzy ideal on X, λc and µc is fuzzy Irw-open sets in X and Y respectively. Then the

mapping f : (X, τ, I) → (Y, σ, I) defined by f(a) = p, f(b) = q and f(c) = r is somewhat

fuzzy Irw-open but not fuzzy open.

Example 5.2. In Example . Then the mapping f is somewhat fuzzy Irw-open but not

somewhat fuzzy open.

Remark 5.1. The implications contained in the above diagram are true and the reverse

implications need not be true.

Proposition 5.1. If f : (X, τ, I) → (Y, σ, I) is fuzzy open function and g : (Y, σ, I) →
(Z, η, I) is somewhat fuzzy Irw-open functions, then g ◦ f : (X, τ)→ (Z, η, I) is somewhat fuzzy

Irw-open.

Proof. Clear.
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Proposition 5.2. Let (X, τ, I) and (Y, σ, I) be any two fuzzy ideal topological spaces. If

the function f : (X, τ, I)→ (Y, σ, I) is somewhat fuzzy Irw-open and if Irw-Int(λ) = 0 for any

non-zero fuzzy set λ in (Y, σ, I), then Irw-Int(f−1(λ)) = 0 in (X, τ, I).

Proof. Let λ 6= 0 be a nonzero fuzzy set in (Y, σ, I) such that Irw-Int(λ) = 0. Then 1 − Irw-

Int(λ) = 1 − 0 = 1 implies that Irw-Cl(1 − λ) = 1. Since the function f is somewhat fuzzy

Irw-open and 1−λ is fuzzy Irw-dense in (Y, σ, I), f−1(1−λ) is fuzzy Irw-dense in (X, τ, I). That

is, Irw-Cl(f−1(1− λ)) = 1. Then Irw-Cl[1− f−1(λ)] = 1. Therefore [1− Irw-Int(f−1(λ))] = 1

implies that Irw-Int(f−1(λ)) = 0. Hence the proposition.

Theorem 5.2. For a surjective function f : (X, τ, I)→ (Y, σ, I), the following statements

are equivalent:

(i) f is somewhat fuzzy Irw-open.

(ii) If λ is a fuzzy closed set in X such that f(λ) 6= 1, then there exists a fuzzy Irw-closed set

µ in Y such that µ 6= 1 and µ > f(λ).

Proof. (i)⇒(ii): Let λ be a fuzzy closed set in X such that f(λ) 6= 1. Then 1−λ is a fuzzy open

set such that f(1−λ) = 1− f(λ) 6= 0. Since f is somewhat fuzzy Irw-open, there exists a fuzzy

Irw-open set γ in (Y, σ, I) such that γ 6= 0 and γ ≤ f(1− λ). Now 1− γ is fuzzy Irw-closed set

in Y such that 1− γ 6= 1 and γ < f(1− λ). Put 1− γ = µ. Then γ > 1− f(1− λ) = f(λ).

(ii)⇒(i): Let λ be a fuzzy open of X such that λ 6= 0. Then 1 − λ is fuzzy closed and

1− λ 6= 1, f(1− λ) = 1− f(λ) 6= 1. Hence by hypothesis, there exists a fuzzy Irw-closed set µ

in Y such that µ 6= 1 and µ > f(1 − λ) = 1 − f(λ), that is, f(λ) > 1 − µ and let 1 − µ = δ.

Clearly, δ is a fuzzy Irw-open set of Y such that δ < f(λ) and δ 6= 0. Hence f is somewhat

fuzzy Irw-open.

Theorem 5.3. For a surjective function f : (X, τ, I)→ (Y, σ, I), the following statements

are equivalent:

(i) f is somewhat fuzzy Irw-open.

(ii) If λ is a fuzzy Irw-dense set of Y , then f−1(λ) is fuzzy Irw-dense set in X.

Proof. (i)⇒(ii): Suppose λ is fuzzy Irw-dense and fuzzy Irw-closed set of (Y, τ, I). We must

to show that f−1(λ) is fuzzy Irw-dense in (X, τ, I). Suppose not, then there exists a fuzzy

Irw-closed set µ in X such that f−1(µ) < µ < 1. Since f is somewhat fuzzy Irw-open and

1 − µ is fuzzy Irw-open, there exists a fuzzy Irw-open set γ in Y such that γ < f(1 − µ) and

γ < 1− f(µ). From f−1(λ) < µ < 1, we have λ < f(µ) < 1. Then γ < 1− f(µ) < 1− λ. That

is, λ < 1 − γ < 1. Since 1 − γ is fuzzy Irw-closed set in Y , this implies that λ is not a fuzzy

Irw-dense, which is a contradicition. Therefore, f−1(λ) must be a fuzzy Irw-dense set in X.

(ii)⇒(i): Suppose f−1(λ) is fuzzy Irw-dense in (X, τ, I), where λ is fuzzy Irw-dense set in

Y . We want to show that f is somewhat fuzzy Irw-open. Assume that λ 6= 0 is fuzzy open and

fuzzy Irw-open set in (X, τ, I). We have to show that Irw-Int(f(λ)) 6= 0. Suppose not, then

Irw-Int(f(λ)) = 0 whenever λ is fuzzy Irw-open. Then Irw-Cl(1−f(λ)) = 1− Irw-Int(f(λ)) =

1 − 0 = 1. That is, 1 − f(λ) is fuzzy Irw-dense in Y . Therefore by assumption f−1(1 − f(λ))

36



Vol. 14 Somewhat fuzzy Irw-continuous functions 37

is fuzzy Irw-dense in X. Therefore, 1 = Irw-Cl(f−1(1− f(λ))) = Irw-Cl(1− λ) = 1− λ. This

shows that λ = 0, which is a contradiction and so Irw-Int(f(λ)) 6= 0.

§6. Somewhat fuzzy Irw-irresolute open function

Definition 6.1. A function f : (X, τ, I)→ (Y, σ, I) is called somewhat fuzzy Irw-irresolute

open if and only if for any fuzzy Irw-open set λ, λ 6= 0 in (X, τ, I) implies that there exists a

fuzzy Irw-open set µ in (Y, σ, I) such that µ 6= 0 and µ ≤ f(λ).

Proposition 6.1. If f : (X, τ, I) → (Y, σ, I) and g : (Y, σ, I) → (Z, η, I) are somewhat

fuzzy Irw-irresolute open functions, then g ◦ f : (X, τ) → (Z, η, I) is somewhat fuzzy Irw-

irresolute open.

Proof. Clear.

Theorem 6.1. For a surjective function f : (X, τ, I)→ (Y, σ, I), the following statements

are equivalent:

(i) f is somewhat fuzzy Irw-irresolute open.

(ii) If λ is a fuzzy Irw-closed set in X such that f(λ) 6= 1, then there exists a fuzzy Irw-closed

set µ in Y such that µ 6= 1 and µ > f(λ).

Proof. (i)⇒(ii): Let λ be a fuzzy Irw-closed set in X such that f(λ) 6= 1. Then 1 − λ is a

fuzzy Irw-open set such that f(1 − λ) = 1 − f(λ) 6= 0. Since f is somewhat fuzzy Irw-open,

there exists a fuzzy Irw-open set γ in (Y, σ, I) such that γ 6= 0 and γ ≤ f(1 − λ). Now 1 − γ
is fuzzy Irw-closed set in Y such that 1 − γ 6= 1 and γ < f(1 − λ). Put 1 − γ = µ. Then

γ > 1− f(1− λ) = f(λ).

(ii)⇒(i): Let λ be a fuzzy Irw-open of X such that λ 6= 0. Then 1− λ is fuzzy Irw-closed

and 1 − λ 6= 1, f(1 − λ) = 1 − f(λ) 6= 1. Hence by hypothesis, there exists a fuzzy Irw-closed

set µ in Y such that µ 6= 1 and µ > f(1−λ) = 1−f(λ), that is, f(λ) > 1−µ and let 1−µ = δ.

Clearly, δ is a fuzzy Irw-open set of Y such that δ < f(λ) and δ 6= 0. Hence f is somewhat

fuzzy Irw-open.

Theorem 6.2. For a surjective function f : (X, τ, I)→ (Y, σ, I), the following statements

are equivalent:

(i) f is somewhat fuzzy Irw-irresolute open.

(ii) If λ is a fuzzy Irw-dense set of Y , then f−1(λ) is fuzzy Irw-dense set in X.

Proof. (i)⇒(ii): Suppose λ is fuzzy Irw-dense and fuzzy Irw-closed set of (Y, τ, I). We must

to show that f−1(λ) is fuzzy Irw-dense in (X, τ, I). Suppose not, then there exists a fuzzy

Irw-closed set µ in X such that f−1(µ) < µ < 1. Since f is somewhat fuzzy Irw-open and

1 − µ is fuzzy Irw-open, there exists a fuzzy Irw-open set γ in Y such that γ < f(1 − µ) and

γ < 1− f(µ). From f−1(λ) < µ < 1, we have λ < f(µ) < 1. Then γ < 1− f(µ) < 1− λ. That

is, λ < 1 − γ < 1. Since 1 − γ is fuzzy Irw-closed set in Y , this implies that λ is not a fuzzy

Irw-dense, which is a contradicition. Therefore, f−1(λ) must be a fuzzy Irw-dense set in X.
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(ii)⇒(i): Suppose f−1(λ) is fuzzy Irw-dense in (X, τ, I), where λ is fuzzy Irw-dense set in Y .

We want to show that f is somewhat fuzzy Irw-open. Assume that λ 6= 0 and a fuzzy Irw-open

set in (X, τ, I). We have to show that Irw-Int(f(λ)) 6= 0. Suppose not, then Irw-Int(f(λ)) = 0

whenever λ is fuzzy Irw-open. Then Irw-Cl(1− f(λ)) = 1− Irw-Int(f(λ)) = 1− 0 = 1. That

is, 1− f(λ) is fuzzy Irw-dense in Y . Therefore by assumption f−1(1− f(λ)) is fuzzy Irw-dense

in X. Therefore, 1 = Irw-Cl(f−1(1− f(λ))) = Irw-Cl(1− λ) = 1− λ. This shows that λ = 0,

which is a contradiction and so Irw-Int(f(λ)) 6= 0.

§7. Somewhat fuzzy Irw-homeomorphism

Definition 7.1. A mapping f : (X, τ, I) → (Y, σ, I) is called somewhat fuzzy Irw-

homeomorphism if f and f−1 are somewhat fuzzy Irw-continuous.

Definition 7.2. A mapping f : (X, τ, I) → (Y, σ, I) is called somewhat fuzzy Irw*-

homeomorphism if f and f−1 are somewhat fuzzy Irw-irresolute.

Theorem 7.1. Let f : (X, τ, I) → (Y, σ, I) be a bijective mapping. Then the following

are equivalent

(i) f is somewhat fuzzy Irw-homeomorphism.

(ii) f is somewhat fuzzy Irw-continuous and somewhat fuzzy Irw-open map.

(iii) f is somewhat fuzzy Irw-continuous and somewhat fuzzy Irw-closed map.

Proof. (i)⇒ (ii) Let f be somewhat fuzzy Irw-homeomorphism. Then f and f−1 are somewhat

fuzzy Irw-continuous. To prove that f is somewhat fuzzy Irw-open map, let λ be a fuzzy

open set in X. Since f−1 : Y → X is somewhat fuzzy Irw-continuous, (f−1)−1(λ) = f(λ) is

somewhat fuzzy Irw-open in Y . Therefore f(λ) is somewhat fuzzy Irw-open in Y . Hence f is

somewhat fuzzy Irw-open.

(ii)⇒ (i) Let f be somewhat fuzzy Irw-open and somewhat fuzzy Irw-continuous map. To

prove that f−1 : Y → X is somewhat fuzzy Irw-continuous. Let λ be a fuzzy open set in X.

Then f(λ) is somewhat fuzzy Irw-open set in Y since f is somewhat fuzzy Irw-open map. Now

(f−1)−1(λ) = f(λ) is somewhat fuzzy Irw-open set in Y . Therefore f−1 : Y → X is somewhat

fuzzy Irw-continuous. Hence f is somewhat fuzzy Irw-homeomorphism.

(ii)⇒ (iii) Let f be somewhat fuzzy Irw-continuous and somewhat fuzzy Irw-open map. To

prove that f is somewhat fuzzy Irw-closed map. Let µ be a fuzzy closed set in X. Then 1− µ
is fuzzy open set in X. Since f is somewhat fuzzy Irw-open map, f(1− µ) is somewhat fuzzy

Irw-open set in Y . Now f(1− µ) = 1− f(µ). Therefore f(µ) is somewhat fuzzy Irw-closed in

Y . Hence f is a somewhat fuzzy Irw-closed.

(iii)⇒ (ii) Let f be somewhat fuzzy Irw-continuous and somewhat fuzzy Irw-closed map.

To prove that f is somewhat fuzzy Irw-open map. Let λ be a fuzzy open set in X. Then 1− λ
is a fuzzy closed set in X. Since f is somewhat fuzzy Irw-closed map, f(1 − λ) is somewhat

fuzzy Irw-closed in Y . Now f(1 − λ) = 1 − f(λ). Therefore f(λ) is somewhat fuzzy Irw-open

in Y . Hence f is somewhat fuzzy Irw-open.
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Theorem 7.2. Let f : (X, τ, I) → (Y, σ, I) be a bijective function. Then the following

are equivalent:

(i) f is somewhat fuzzy Irw*-homeomorphism.

(ii) f is somewhat fuzzy Irw-irresolute and somewhat fuzzy Irw*-open.

(iii) f is somewhat fuzzy Irw-irresolute and somewhat fuzzy Irw*-closed.

Proof. Similar by above Theorem .

Theorem 7.3. If f : (X, τ, I) → (Y, σ, I) is somewhat fuzzy Irw-homeomorphism and

g : (Y, σ, I) → (Z, η) is somewhat fuzzy Irw-homeomorphism and Y is fuzzy Irw-T1/2 space,

then g ◦ f : X → Z is somewhat fuzzy Irw-homeomorphism.

Proof. Clear.

Theorem 7.4. If f : (X, τ, I) → (Y, σ, I), g : (Y, σ, I) → (Z, η, I) are somewhat fuzzy

Irw*-homeomorphism then g ◦ f : X → Z is somewhat fuzzy Irw*-homeomorphism.

Proof. Clear.

§8. Fuzzy Irw-resolvable and fuzzy Irw-irresolvable spaces

Definition 8.1. A fuzzy ideal topological space (X, τ, I) is said to be fuzzy Irw-resolvable if

there exists a non-zero fuzzy Irw-dense set λ in (X, τ, I) such that Irw-Cl(1−λ) = 1. Otherwise

(X, τ, I) is called a fuzzy Irw-irresolvable space.

Theorem 8.1. A fuzzy ideal topological space (X, τ, I) is a fuzzy Irw-resolvable space if

and only if (X, τ, I) has a pair of fuzzy Irw-dense sets λ1 and λ2 such that λ1 ≤ 1− λ2.

Proof. Let (X, τ, I) be a fuzzy Irw-resolvable space. Suppose that for all fuzzy Irw-dense sets

λi and λj , we have λi 6≤ 1 − λj . Then we have λi > 1 − λj for some i and j. Then, we have

Irw-Cl(λi) > Irw-Cl(1− λj) which implies that 1 > Irw-Cl(1− λj). Then Irw-Cl(1− λj) 6= 1.

Also λj > 1−λi. Then Irw-Cl(λj) > Irw-Cl(1−λi) which implies that 1 > Irw-Cl(1−λi). Then

Irw-Cl(1−λi) 6= 1. Hence Irw-Cl(λi) = 1, but Irw-Cl(1−λi) 6= 1 for all fuzzy Irw-dense sets λi

in (X, τ, I), which is a contradiction to (X, τ, I) being a fuzzy Irw-resolvable space. Therefore

(X, τ, I) has a pair of fuzzy Irw-dense sets λ1 and λ2 such that λ1 ≤ 1− λ2.
Conversely, suppose that the fuzzy ideal topological space (X, τ, I) has a pair of fuzzy

Irw-dense sets λ1 and λ2 such that λ1 ≤ 1 − λ2. We want to show that (X, τ, I) is fuzzy

Irw-resolvable. Suppose that (X, τ, I) is a fuzzy Irw-irresolvable space. Then for all fuzzy

Irw-dense sets λi in (X, τ, I), we have Irw-Cl(1 − λi) 6= 1. In particular Irw-Cl(1 − λ2) 6= 1

implies that there exist a fuzzy Irw-closed set µ in (X, τ, I) such that (1 − λ2) < µ < 1. Then

λ1 ≤ 1 − λ2 < µ < 1 ⇒ λ1 < µ < 1, which is a contradiction to Irw-Cl(λ1) = 1. Hence our

assumption that (X, τ, I) is a fuzzy Irw-irresolvable space, is wrong. Hence (X, τ, I) is a fuzzy

Irw-resolvable space.
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Proposition 8.1. A fuzzy ideal topological space (X, τ, I) is a fuzzy Irw-resolvable space

if
i=n∨
i=1

λi = 1 where Irw-Int(λi) = 0.

Proof.
i=n∨
i=1

λi = 1 where Irw-Int(λi) = 0, implies that 1−
i=n∨
i=1

λi = 0. Then we have
i=n∧
i=1

(1−λi) =

0. Then there must be at least two non-zero disjoint fuzzy sets 1−λi, 1−λj in (X, τ, I). Hence

(1−λi) + (1−λj) ≤ 1. Therefore (1−λi) ≤ λj which implies that Irw-Cl(1−λi) ≤ Irw-Cl(λj).

But Irw-Int(λi) = 0 implies that Irw-Cl(1− λi) = 1. Hence 1 ≤ Irw-Cl(λj) which implies that

Irw-Cl(λj) = 1. Also Irw-Int(λj) = 0 implies that Irw-Cl(1 − λj) = 1. Therefore (X, τ, I) has

a fuzzy Irw-dense set λj such that Irw-Cl(1− λj) = 1. Hence (X, τ, I) is a fuzzy Irw-resolvable

space.

Proposition 8.2. If (X, τ, I) is fuzzy Irw-irresolvable if and only if Irw-Int(λ) 6= 0 for

all fuzzy Irw-dense sets λ in (X, τ, I).

Proof. Since (X, τ, I) is fuzzy Irw-irresolvable, for all fuzzy Irw-dense sets λ in (X, τ, I), we

have Irw-Cl(1− λ) 6= 1. Then 1− Irw-Int(λ) 6= 1 implies that Irw-int(λ) 6= 0.

Conversely let Irw-Int(λ) 6= 0 for each fuzzy Irw-dense set λ in (X, τ, I). Suppose that

(X, τ, I) is fuzzy Irw-resolvable. Then there exists a non-zero fuzzy Irw-dense set λ in (X, τ, I)

such that Irw-Cl(1 − λ) = 1. Then we have 1 − Irw-Int(λ) = 1 and therefore Irw-Int(λ) = 0

which is a contradiction. Hence (X, τ, I) is a fuzzy Irw-irresolvable space.

§9. Functions and fuzzy Irw-irresolvable spaces

Definition 9.1. A function f : (X, τ, I) → (Y, σ, I) is said to be weakly somewhat fuzzy

Irw-open if for each Irw-dense fuzzy set λ in (Y, σ, I) with Irw-Int(λ) 6= 0, we have that f−1(λ)

is also a fuzzy Irw-dense set in (X, τ, I).

The above definition leads to a characterization of fuzzy Irw-irresolvable space as follows:

Theorem 9.1. The following statements are equivalent for a fuzzy ideal topological space

(Y, σ, I).

(1) (Y, σ, I) is fuzzy Irw-irresolvable

(2) For every fuzzy ideal topological space (X, τ, I), every weakly somewhat fuzzy Irw-open

function f : (X, τ, I)→ (Y, σ, I) is somewhat fuzzy Irw-open.

Proof. (1) ⇒ (2) Let f : (X, τ, I) → (Y, σ, I) be a weakly somewhat fuzzy Irw-open function

from a fuzzy ideal topological spaces (X, τ, I) to a fuzzy Irw-irresolvable space (Y, σ, I). Since

(Y, σ, I) is fuzzy Irw-irresolvable space, (Y, σ, I) has a pair of fuzzy Irw-dense sets λ1 and λ2

such that λ1 6≤ 1−λ2. Now Irw-Int(λ1) 6= 0 and Irw-Int(λ2) 6= 0. For, if Irw-Int(λ1) = 0 then,

1−Irw-Cl(1−λ1) = 0. Now λ1 > 1−λ2 ⇒ λ2 > 1−λ1. Therefore Irw-Cl(λ2) > Irw-Cl(1−λ1).

In other words 1 − Irw-Cl(λ2) < 1 − Irw-Cl(1 − λ1) = 0. Then 1 < Irw-Cl(λ2) implies 1 < 1,

which is a contradiction. Therefore Irw-Int(λ1) 6= 0. Similarly we can have Irw-Int(λ2) 6= 0.

Since f is weakly somewhat fuzzy Irw-open, f−1(λ1) and f−1(λ2) are fuzzy Irw-dense sets in

(X, τ, I). Therefore by Theorem , f is somewhat fuzzy Irw-open.
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(2)⇒ (1) Suppose that fuzzy ideal topological space (Y, σ, I) is fuzzy Irw-resolvable. This

means that there exists a pair of fuzzy Irw-dense sets λ1 and λ2 such that λ1 ≤ 1 − λ2. Let

X = Y and τ = {0, 1, λ1}. Define f : (X, τ, I) → (Y, σ, I) to be the identity function. Then

f is not somewhat fuzzy Irw-open, since f−1(λ2) is not a fuzzy Irw-dense set in (Y, τ, I). For,

f−1(λ2) = λ2 and λ2 ≤ 1 − λ1 6= 1. Then λ2 ≤ 1 − λ1 ⇒ Irw-Cl(λ2) ≤ Irw-Cl(1 − λ1). Since

1−λ1 is fuzzy closed and hence Irw-closed in (Y, τ, I), Irw-Cl(λ2) 6= 1. That is, λ2 is not a fuzzy

Irw-dense set. We shall now show that f is weakly somewhat fuzzy Irw-open. Let λ be any

fuzzy Irw-dense set in (Y, σ, I) such that Irw-Int(λ) 6= 0. Then f−1(λ) = λ. We have to show

that Irw-Cl[f−1(λ)] = Irw-Cl(λ) = 1 in (Y, τ, I). Now Irw-Int(λ) 6= 0 and λ1 is fuzzy Irw-dense

implies that λ 6≤ 1−λ1. Therefore Irw-Cl(λ) = 1. That is, λ is fuzzy Irw-dense in (Y, τ, I). This

proves that f is weakly somewhat fuzzy Irw-open. Hence (2)⇒ (1) is proved.

Theorem 9.2. Let (X, τ, I) and (Y, σ, I) be any two fuzzy ideal topological spaces. Let

f : (X, τ, I) → (Y, σ, I) be a somewhat fuzzy Irw-open function. If (X, τ, I) is a fuzzy Irw-

irresolvable space, then (Y, σ, I) is a fuzzy Irw-irresolvable space.

Proof. Let λ 6= 0 be an arbitrary fuzzy set in (Y, σ) such that Irw-Cl(λ) = 1. We claim that

Irw-Int(λ) 6= 0. Assume the contrary. That is, Irw-Int(λ) = 0. Then by Proposition , we have

Irw-Int(f−1(λ)) = 0 in (X, τ, I). Now λ is fuzzy Irw-dense in (Y, σ, I), then by Theorem , we

have f−1(λ) is fuzzy Irw-dense in (X, τ, I). Therefore for the fuzzy Irw-dense that f−1(λ), we

have Irw-Int(f−1(λ)) = 0 in (X, τ, I), which is a contradiction. [since (X, τ, I) is fuzzy Irw-

irresolvable, by Proposition , Irw-Int(µ) 6= 0 for all fuzzy Irw-dense sets µ in (X, τ, I) ]. Hence

we must have Irw-Int(µ) 6= 0 for all fuzzy Irw-dense sets λ in (Y, σ, I). Hence by Proposition ,

(Y, σ, I) is a fuzzy Irw-irresolvable space.

Theorem 9.3. Let (X, τ, I) and (Y, σ, I) be any two fuzzy ideal topological spaces and

f : (X, τ, I)→ (Y, σ, I) be a somewhat fuzzy Irw-continuous and onto function. If (Y, σ, I) is a

fuzzy Irw-irresolvable space, then (X, τ, I) is a fuzzy Irw-irresolvable space.

Proof. Let λ 6= 0 be an arbitrary fuzzy set in (X, τ, I) such that Irw-Cl(λ) = 1. We claim that

Irw-Int(λ) 6= 0. Assume the contrary. That is, Irw-Int(λ) = 0. Then by Proposition , we have

Irw-Int(f(λ)) = 0. Now λ is fuzzy Irw-dense in (X, τ, I), then by Theorem , we have f(λ) is

fuzzy Irw-dense in (X, τ, I). Therefore for the fuzzy Irw-dense set f(λ) in (Y, σ, I), we have Irw-

Int(f(λ)) = 0, which is a contradiction. [since (Y, σ, I) is fuzzy Irw-irresolvable, Irw-Int(µ) 6= 0

for all fuzzy Irw-dense sets µ in (X, τ, I)]. Therefore we must have Irw-Int(λ) 6= 0 for all fuzzy

Irw-dense sets λ in (Y, τ, I). Hence by Proposition , the fuzzy ideal topological space (X, τ, I)

is a fuzzy Irw-irresolvable space.
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Abstract Many scholars are interested in researching the divisor problem, and they have

obtained a large number of good results. However, there are many problems have not been

solved. In this paper we shall study the mean value of the exponential divisor function
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§1. Introduction

Let n > 1 be an integer. The integer d =
∏s
i=1 p

bi
i is called an exponential divisor of

n =
∏s
i=1 p

ai
i , if bi|ai for every i ∈ {1, 2, · · · , s}, notation: d|en. By convention 1|e1.

Let τ (e)(n) denote the number of exponential divisors of n. The function τ (e) is called the

exponential divisor function. Similarly to the generalization of dk(n) from d(n), we define the

function τ
(e)
k (n):

τ
(e)
k (n) =

∏
piai ||n

dk(ai), k ≥ 2, (1)

Obviously when k = 2, that is τ (e)(n). τ
(e)
3 (n) is obviously a multiplicative function.

Throughout this paper, ε always denotes a fixed but sufficiently small positive constant.

J.Wu [1] got the following result:∑
n≤x

τ (e)(n) = A(x) +Bx
1
2 +O(x

2
9 log x), (2)

where

A =
∏
p

(1 +

∞∑
a=2

d(a)− d(a− 1)

pa
),

B =
∏
p

(1 +

∞∑
a=5

d(a)− d(a− 1)− d(a− 2) + d(a− 3)

p
a
2

).

M.V.Subbarao [3] also proved for some positive integer r:∑
n≤x

(τ (e)(n))r ∼ Arx, (3)
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where

Ar =
∏
p

(1 +

∞∑
a=2

(d(a))r − (d(a− 1))r

pa
).

László Tóth [4] improved the result (3) and established a more precise asymptotic formula

for the r-th power of the function τ (e)(n):∑
n≤x

(τ (e)(n))r = Arx+ x
1
2P2r−2(log x) +O(xur+ε). (4)

Jing Huang and Ping Song [7] also proved that∑
n≤x

(τ
(e)
3 (n))r = Arx+ x

1
2R3r−2(log x) +O(xbr + ε), (5)

where br = 1
3−α3r−1

(see [7], Lemma 2.2), R3r−2(x) is a polynomial of degree 3r − 2 and

Ar =
∏
p

(1 +

∞∑
a=2

(d3(a))r − (d3(a− 1))r

pa
).

In this paper, we shall study the mean value of the exponential divisor function involving

a negative r-th power of the function τ
(e)
3 (n) by the convolution method, where r > 1 is an

integer.

Theorem 1.1. For every integer r > 1 and N ≥ 1, then we have

∑
n≤x

(τ
(e)
3 (n))−r = Crx+ x

1
2 log3−r−2(

N∑
j=0

dj(r) log−j x+O(log−N−1 x)), (6)

where d0(r), d1(r), · · · , dN (r) are computable constants, and

Cr :=
∏
p

(1 +

∞∑
a=2

(d3(a))−r − (d3(a− 1))(−r)

pa
).

§2. Preliminaries

In order to prove our theorem, we define for an arbitrary complex number z the general

divisor function dz(n) by

∞∑
n=1

dz(n)n−s = ζz(s) =
∏
p

(1− p−s)−z, Res > 1, (7)

where a branch of ζz(s) is defined by

ζz(s) = exp{z log ζ(s)} = exp(−z
∑
p

∞∑
j=1

j−1p−js), Res > 1. (8)
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The definition shows that dz(n) is multiplicative function of n which generalizes dk(n).

The divisor function dk(n) (k ≥ 2 a fixed integer) may be defined by

∞∑
n=1

dk(n)n−s = ζk(s) =
∏
p

(1− p−s)−k, Res > 1. (9)

The proof of the Theorem 1.1 is based on the following lemmas.

Lemma 2.1. Suppose s is a complex number for with Res > 1, r ≥ 1 is a fixed integer,

then

F (s) :=

∞∑
n=1

(τ
(e)
3 (n))−r

ns
= ζ(s)ζ3−r−1(2s)G(s, r), (10)

where the Dirichlet series G(s, r) :=
∑∞
n=1

g(n)
ns is absolutely convergent for Res > 1

4 .

Proof. By the Euler product formula, we can get

F (s) =
∏
p

(1 +
(τ

(e)
3 (p))−r

ps
+

(τ
(e)
3 (p2))−r

p2s
+

(τ
(e)
3 (p3))−r

p3s
+ · · · )

=
∏
p

(1 +
(d

(e)
3 (1))−r

ps
+

(d
(e)
3 (2))−r

p2s
+

(d
(e)
3 (3))−r

p3s
+

(d
(e)
3 (4))−r

p4s
+

(τ
(e)
3 (p5))−r

p5s
+ · · · )

=
∏
p

(1 +
1

ps
+

3−r

p2s
+

3−r

p3s
+

6−r

p4s
+

3−r

p5s
+ · · · )

=
∏
p

(1− 1

ps
)−1

∏
p

(1− 1

ps
)(1 +

1

ps
+

3−r

p2s
+

3−r

p3s
+

6−r

p4s
+

3−r

p5s
+ · · · )

= ζ(s)
∏
p

(1 +
3−r − 1

p2s
+

6−r − 3−r

p4s
+

3−r − 6−r

p5s
+ · · · )

= ζ(s)ζ3−r−1(2s)G(s, r),

(11)

where the infinite series

G(s, r) =
∏
p

(1− 1

p2s
)3−r−1(1 +

3−r − 1

p2s
+

6−r − 3−r

p4s
+

3−r − 6−r

p5s
+ · · · ).

Write G(s, r) =
∑∞
n=1

g(n)
ns . It is absolutely convergent for Res > 1

4 .

Lemma 2.2. Let A > 0 be arbitrary but fixed real number, and let N1 ≥ 1 be an arbitrary

but fixed integer. If |z| ≤ A, then uniformly in z∑
n≤x

dz(n) =C1(z)x logz−1 x+ C2(z)x logz−2 x+ · · ·

+ CN1
(z)x logz−N1 x+O(x logRez−N1−1 x),

(12)

where Cj(z) =
Bj(z)

Γ(z−j−1) , (j = 1, 2, · · · , N1) and each Bj(z) is regular for |z| ≤ A.
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Proof. See Ivić [2], Theorem 14.9.

Lemma 2.3. Let A > 0 be arbitrary but fixed real number, and let M ≥ 1 be an arbitrary

but fixed integer. If |z| ≤ A, then uniformly in z∑
mn2≤x

dz(n) =ζz(2)x+ x
1
2 (K1(z) logz−1 x+K2(z) logz−2 x+ · · ·

+KM (z) logz−M x) +O(x
1
2 logRez−M−1 x),

(13)

where the functions Kj(z)(j = 1, 2, · · · ,M) are regular in |z| ≤ A.

Proof. Suppose 1 ≤ y ≤ x is a parameter to be determined later. We have∑
mn2≤x

dz(n) =
∑
n≤y

dz(n)
∑
m≤ x

n2

1 +
∑
m≤ x

y2

∑
n2≤ x

m

dz(n)−
∑
m≤ x

y2

∑
n≤y

dz(n)

=
∑

1

+
∑

2

−
∑

3

,
(14)

where ∑
1

=
∑
n≤y

dz(n)
∑
m≤ x

n2

1

∑
2

=
∑
m≤ x

y2

∑
n2≤ x

m

dz(n)

∑
3

=
∑
m≤ x

y2

∑
n≤y

dz(n).

For
∑

1, we have ∑
1

=
∑
n≤y

dx(n)[
x

n2
]

= x
∑
n≤y

dz(n)

n2
+O(

∑
n≤y

|dz(n)|).
(15)

We see that |dz(n)| ≤ dk(n), if k = [A] + 1 and |z| ≤ A. If we use the weak asymptotic

formula (see, Ivić[2]) ∑
n≤x

dk(n) = xPk−1(log x) +O(x
k

k+1 ), (16)

the error term in
∑

1 is bounded by O(y logk−1 y).

So by lemma2.2 and the partial summation, we have∑
1

=x

∞∑
n=1

dz(n)

n2
− x

∑
n>y

dz(n)

n2
+O(y logk−1 y)

=ζz(2)x+
x

y

N1∑
j=1

Cj(z) logz−j y +
2x

y

N1∑
j=1

(z − j)Cj(z) logz−j−1 y

+
2x

y

N1∑
j=1

(z − j)(z − j − 1)Cj(z) logz−j−2 y + · · ·

+O(
x

y
logRez−N1−1 y) +O(y logk−1 y).

(17)
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Using Lemma 2.2, it is seen that∑
3

=
∑
m≤ x

y2

∑
n≤y

dz(n)

=
∑
n≤y

dz(n)(
x

y2
+O(1))

=
x

y

N1∑
j=1

Cj(z) logz−j y +O(
x

y
logRez−N1−1 y) +O(y logk−1 y).

(18)

By similar computation, we can obtain

∑
2

=
∑
m≤ x

y2

[

N1∑
j=1

Cj(z)

√
x

m
logz−j(

x

m
)

1
2 +O(

√
x

m
logRez−L−1(

x

m
))]

=
√
x

N1∑
j=1

Cj(z)
∑
m≤ x

y2

m−
1
2 logz−j(

x

m
)

1
2 +O(

∑
m≤ x

y2

√
x

m
logRez−N1−1(

x

m
))

=
√
x

N1∑
j=1

Cj(z)(
1

2
)z−j logz−j x

∑
m≤ x

y2

m−
1
2 (1− logm

log x
)z−j

+O(
√
x logRez−N1−1 x

∑
m≤ x

y2

m−
1
2 )

=
∑
2,1

+O(
x

y
logRez−N1−1 x),

(19)

where we define ∑
2,1

=
√
x

N1∑
j=1

Cj(z)(
1

2
)z−j logz−j x

∑
m≤ x

y2

m−
1
2 (1− logm

log x
)z−j .

Using Taylor formula and foregoing method, we can obtain

∑
2,1

=
√
x

N1∑
j=1

Cj(z)(
1

2
)z−j logz−j x

∑
m≤ x

y2

m−
1
2 (1− (z − j) logm

log x

+
(z − j)(z − j − 1)

2!
(
logm

log x
)2 + · · · )

=x
1
2

N1∑
j=1

Kj(z) logz−j x− 2x

y

N1∑
j=1

(z − j)Cj(z) logz−j−1 y

− 2x

y

N1∑
j=1

(z − j)(z − j − 1)Cj(z) logz−j−2 y + · · ·

+O(y logRez−1 y) +O(
x

y
logRez−N1−1 y),

(20)

where K1(z),K2(z), · · · ,KM (z) are regular functions.

So by choosing y =
√
x logC(x), C = Rez −M − k and N1 = 2M + k −Rez completes the

proof of the Lemma 2.3.
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§3. Prove of Theorem 1.1.

Now we go on with the proof of our main Theorem.

Proof. Combining Lemma 2.1 and Lemma 2.3, we get

∑
n≤x

(τ
(e)
3 (n))−r =

∑
n1n2

2n3≤x

dz(n2)g(n3)

=
∑
n3≤x

g(n3)
∑

n1n2
2≤x/n3

dz(n2)

=
∑
n3≤x

g(n3)[ζz(2)(
x

n3
) + (

x

n3
)

1
2

M∑
j=1

Kj(z) logz−j(
x

n3
)

+O((
x

n3
)

1
2

logRez−M−1(
x

n3
))]

=xζz(2)
∑
n3≤x

g(n3)n3
−1 + x

1
2

∑
n3≤x

g(n3)n3
− 1

2

M∑
j=1

Kj logz−j(
x

n3
)

+O(
∑
n3≤x

g(n3)(
x

n3
)

1
2

logRez−M−1(
x

n3
))

=S1(x) + S2(x) +O(S3(x)),

(21)

where

S1(x) = xζz(2)
∑
n3≤x

g(n3)n3
−1,

S2(x) = x
1
2

∑
n3≤x

g(n3)n3
− 1

2

M∑
j=1

Kj logz−j(
x

n3
),

S3(x) =
∑
n3≤x

g(n3)(
x

n3
)

1
2

logRez−M−1(
x

n3
),

and we choose z = 3−r − 1.

Then we just need to calculate the three sums separately.

S1(x) =xζ3−r−1(2)
∑
n3≤x

g(n3)n3
−1

=xζz(2)

∞∑
n3=1

g(n3)n3
−1 − xζz(2)

∑
n3>x

g(n3)n3
−1

=Cr(x) +O(x
1
4 +ε)

(22)
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Analogously to
∑

2,1, we have

S2(x) =x
1
2

∑
n3≤x

g(n3)n3
− 1

2

M∑
j=1

Kj log3−r−1−j(
x

n3
)

=x
1
2

M∑
j=1

Kj log3−r−1−j x
∑
n3≤x

g(n3)n3
− 1

2 (1− log n3

log x
)
3−r−1−j

=x
1
2 log3−r−2 x

M−1∑
j=0

Ej(r) log−j x+O(x
1
2 log3−r−M−2 x)

=x
1
2 log3−r−2 x

N∑
j=0

dj(r) log−j x+O(x
1
2 log3−r−N−3 x),

(23)

where E1(r), E2(r), · · · , EN (r) are computable constants depending on r, and we setN = M−1.

Similarly, we also have

S3(x) =
∑
n3≤x

g(n3)(
x

n3
)

1
2

logRez−M−1(
x

n3
)

=x
1
2 logRez−M−1 x

∑
n3≤x

g(n3)n3
− 1

2 (1− log n3

log x
)
Rez−M−1

�x 1
2 log3−r−M−2 x

=x
1
2 log3−r−N−3 x.

(24)

Hence, the Theorem 1.1 is proved by (21)-(23).
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Abstract Let n > 1 be an integer, the function τ (e)(n) denote the exponential divisor

function. In this paper, we will study the mean value of τ (e)(n) over cube-full numbers, that

is ∑
n ≤ x

n is cube − full

(τ
(e)
3 (n))2 =

∑
n≤x

(τ
(e)
3 (n))2f3(n).

Keywords asymptotic formula, exponential divisor, Dirichlet convolution.
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§1. Introduction and preliminaries

An integer n =
∏s
i=1 p

ai
i is called k-full number if all the exponents a1 ≥ k, a2 ≥ k, · · · , as ≥

k. when k = 3, n is called cube-full integer, i.e.

f3(n) =

1, n is cube-full ,

0, otherwise .

Many scholars are interested in researching the divisor problem and have obtained a large

number of good results. But there are many problems hasn’t been solved. For example,

F.Smarandache gave some unsolved problems in his book Only problems,Not solutions! [6],

and one problem is that, a number n is called simple number if the product of its proper divisors

is less than or equal to n. Generally speaking, n = p, or n = p2, or n = p3, or pq, where p and

q are distinct primes. The properties of this simple number sequence has’t been studied yet.

And other problems are introduced in this book, such as proper divisor products sequence and

the largest exponent (of power p) which divides n, where p ≥ 2 is an integer.

In the definition of exponential divisor: suppose n > 1 is an integer, and n =
∏s
i=1 p

ai
i . If

d =
∏s
i=1 p

bi
i satisfies bi|ai, i = 1, 2, · · · , s, then d is called an exponential divisor of n, notation

d|en. By convention 1|e1.

J.Wu [4] improved the above result got the following result:∑
n6x

τ (e)(n) = A(x) +Bx
1
2 +O(x

2
9 log x),



Vol. 14 The mean value of τ (e)(n) over cube-full numbers 53

where

A =
∏
p

(1 +

∞∑
a=2

d(a)− d(a− 1)

pa
),

B =
∏
p

(1 +

∞∑
a=5

d(a)− d(a− 1)− d(a− 2) + d(a− 3)

p
a
2

).

M.V.Subbarao [2] also proved for some positive integer r,∑
n≤x

(τ (e)(n))r ∼ Arx,

where

Ar =
∏
p

(1 +

∞∑
a=2

(d(a))r − (d(a− 1))r

pa
)

L.Toth [3] proved∑
n≤x

(τ (e)(n))r = Ar(x) + x
1
2P2r−2(log x) +O(xur+ε)

where P2r−2(t) is a polynomial of degree 2r − 2 in t, ur = 2r+1−1
2r+1+1 .

Similarly to the generalization of dk(n) from d(n), we define the function τ
(e)
k (n):

τ
(e)
k (n) =

∏
p
ai
i ||n

dk(ai), k ≥ 2,

Obviously when k = 2, that is τ (e)(n). τ
(e)
3 (n) is obviously a multiplicative function. In

this paper we investigate the case k = 3, i.e. the properties of the functions τ
(e)
3 (n).

In this paper, we will study the asymptotic formula for the mean value of the function

(τ
(e)
3 (n))2 over cube-full numbers.

Theorem 1.1. We have the asymptotic formula∑
n ≤ x

n is cube − full

(τ
(e)
3 (n))2 = x

1
3Q8,1(log x) + x

1
4Q35,2(log x) +O(xσ0+ε)

where Q8,1(t) is a polynomial of degree 8 in t, Q35,2(t) is a polynomial of degree 35 in t,

σ0 = 3530376
14646528 = 0.241038422 · · · .
Natation Through out this paper, ε always denotes a fixed but sufficiently small positive

constant.

§2. Some lemmas

In the section, we give some lemmas which will be used in the proof of our theorem. Lemma

2.2, Lemma 2.3, and Lemma2.4 can be found in [5], [7], and [1].
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Lemma 2.1. Let

τ
(e)
3 (n) =

∏
p
ai
i ||n

d3(ai),

then we have

∞∑
n = 1

n is cube − full

(τ
(e)
3 (n))2

ns
= ζ9(3s)ζ36(4s)G(s),

where the infinite series G(s) =
∞∑
n=1

g(n)
ns is absolutely convergent for <s > 1

5 .

Proof. By Euler’s product formula, we can get

∞∑
n = 1

n is cube − full

(τ
(e)
3 (n))2

ns
=

∞∑
n=1

(τ
(e)
3 (n))2f3(n)

ns

=
∏
p

(
1 +

d23(1)f3(p)

ps
+
d23(2)f3(p2)

p2s
+
d23(3)f3(p3)

p3s
+
d23(4)f3(p4)

p4s
+
d23(5)f3(p5)

p5s
+ · · ·

)

=
∏
p

(
1 +

d23(3)

p3s
+
d23(4)

p4s
+
d23(5)

p5s
+ · · ·

)

=
∏
p

(
1 +

32

p3s
+

62

p4s
+

32

p5s
+ · · ·

)
= ζ9(3s)

∏
p

(1 +
36

p4s
+

9

p5s
+ · · · )

= ζ9(3s)ζ36(4s)
∏
p

(1 +
9

p5s
+ · · · )

= ζ9(3s)ζ36(4s)G(s)

where the infinite series G(s) :=
∞∑
n=1

g(n)
ns is absolutely convergent for <s > 1

5 .

Lemma 2.2. Suppose f(m), g(n) are arithmetical functions such that

∑
m≤x

f(m) =

J∑
j=1

x
αj
j Pj(log x) +O(xα),

∑
n≤x

|g(n)| = O(xβ),

where α1 ≥ α2 ≥ · · · ≥ αJ > α > β > 0, Pj(t) is a polynomial in t, if h(n) =
∑

n=md

f(m)g(d),

then

∑
n≤x

h(n) =

J∑
j=1

xαjQj(log x) +O(xα),

where Qj(t) j = 1, · · · , J is a polynomial in t.
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Lemma 2.3. Let 1
2 ≤ σ ≤ 1, t ≥ t0 ≥ 2, we have

ζ(σ + it)� t
1−σ
3 log t.

Lemma 2.4. Let 1
2 < σ < 1, define

m(σ) ≥ 4

3− 4σ
,

1

2
< σ ≤ 5

8
,

m(σ) ≥ 10

5− 6σ
,

5

8
< σ ≤ 35

54
,

m(σ) ≥ 19

6− 6σ
,

35

54
< σ ≤ 41

60
,

m(σ) ≥ 2112

859− 948σ
,

41

60
< σ ≤ 3

4
,

m(σ) ≥ 12408

4537− 4890σ
,

3

4
< σ ≤ 5

6
,

m(σ) ≥ 4324

1031− 1044σ
,

5

6
< σ ≤ 7

8
,

m(σ) ≥ 98

31− 32σ
,

7

8
< σ ≤ 0.91591,

m(σ) ≥ 24σ − 9

(4σ − 1)(1− σ)
, 0.91591 < σ ≤ 1− ε.

Lemma 2.5.∑
n≤x

d(3, · · · , 3︸ ︷︷ ︸
9

, 4, · · · , 4︸ ︷︷ ︸
36

;n) = x
1
3P8,1(log x) + x

1
4P35,2(log x) +O(xσ0+ε)

where P8,1(t) is a polynomial of degree 8 in t, P35,2(t) is a polynomial of degree 35 in t, σ0 =
3530376
14646528 = 0.241038422 · · · .

Proof. By the Perron’s formula, we have

S(x) =
∑
n≤x

δ(n)d(n) =
1

2πi

∫ b+iT

b−iT
ζ9(3s)ζ36(4s)

xs

s
ds+O(

x
1
3+ε

T
)

where b = 1
3 + ε, T = xc, c is a very large number of fixed numbers, 1

5 < σ0 <
1
4 . According to

the Residue theorem, we have

S(x) = x
1
3P8,1(log x) + x

1
4P35,2(log x) + I1 + I2 + I3 +O(1),

I1 =
1

2πi

∫ σ0−iT

b−iT
ζ9(3s)ζ36(4s)

xs

s
ds,

I2 =
1

2πi

∫ σ0+it

σ0−it
ζ9(3s)ζ36(4s)

xs

s
ds,

I3 =
1

2πi

∫ b+iT

σ0+iT

ζ9(3s)ζ36(4s)
xs

s
ds.
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For I1, I3, since σ0 >
14
57 + δ, (s = σ + iT ), and from Lemma 2.3, we have

I1 + I3 ≤
∫ 1

3+ε

σ0

|ζ(3σ + i3T )|9|ζ(4σ + i4T )|36xσT−1dσ

� T−1(

∫ 1
4

σ0

+

∫ 1
3

1
4

+

∫ 1
3+ε

1
3

)|ζ(3σ + i3T )|9|ζ(4σ + i4T )|36xσdσ

� T−1+ε
∫ 1

4

σ0

T
9(1−3σ)

3 +
36(1−4σ)

3 xσdσ + T−1+ε
∫ 1

3

1
4

T
9(1−3σ)

3 xσdσ

+ T−1+ε
∫ 1

3+ε

1
3

xσdσ

� x
1
5T−δ+ε + x

1
4T−

1
4+ε + x

1
3T−1+ε + x

1
3+εT−1+ε

� x
1
3+εT−δ+ε

where δ is very small normal number, δ > ε.

I2 � xσ0(1 +

∫ T

1

|ζ(3σ + i3T )|9|ζ(4σ + i4T )|36t−1dt).

According to the partial integral formula, we have

I4 =

∫ T

1

|ζ(3σ + i3T )|9|ζ(4σ + i4T )|36dt� T 1+ε.

If pi ≥ 0, (i = 1, 2) are real numbers, and 1
p1

+ 1
p2

= 1, by Hölder inequality, we have

I4 ≤ (

∫ T

1

|ζ(3σ + i3T )|9p1)
1
p1 (

∫ T

1

|ζ(4σ + i4T )|36p2)
1
p2 .

So we have to prove ∫ T

1

|ζ(3σ + i3T )|9p1dt� T 1+ε,∫ T

1

|ζ(4σ + i4T )|36p2dt� T 1+ε.

Let m(3σ0) = 9p1, m(4σ0) = 36p2, since 9
m(3σ0)

+ 36
m(4σ0)

= 1, and from Lemma 2.4, we have

σ0 = 3530376
14646528 = 0.241038422 · · · .

§3. Proof of Theorem 1.1

Proof. Let

ζ9(3s)ζ36(4s)G(s) =

∞∑
n=1

f(n)

ns
, <s > 1,

ζ9(3s)ζ36(4s) =

∞∑
n=1

d(3, · · · , 3, 4 · · · , 4;n)

ns
,
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such that

f(n) =
∑
n=md

d(3, · · · , 3︸ ︷︷ ︸
9

, 4, · · · , 4︸ ︷︷ ︸
36

;m)g(d)
(1)

From Lemma 2.1, we have G(s) =
∞∑
n=1

g(n)
ns is absolutely convergent for <s > 1

5 , and then

∑
n≤x

|g(n)| � x
1
5+ε. (2)

From Lemma 2.5, we have∑
m≤x

d(3, · · · , 3︸ ︷︷ ︸
9

, 4, · · · , 4︸ ︷︷ ︸
36

;m) = x
1
3P8,1(log x) + x

1
4P35,2(log x) +O(xσ0+ε),

(3)

where P8,1(t) is a polynomial of degree 8 in t, P35,2(t) is a polynomial of degree 35 in t,

Combining (1), (2) and (3), and applying lemma 2.2, we have∑
n≤x

f(n) = x
1
3Q8,1(log x) + x

1
4Q35,2(log x) +O(xσ0+ε)

where Q8,1(t) is a polynomial of degree 8 in t, Q35,2(t) is a polynomial of degree 35 in t, From

lemma 2.1,we have

(τ
(e)
3 (n))2f3(n) =

∑
n=md

d(3, · · · , 3︸ ︷︷ ︸
9

, 4, · · · , 4︸ ︷︷ ︸
36

;m)g(d) = f(n)

Then we complete the proof of Theorem 1.1.
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Abstract We have already defined and worked on the second order involute curve of a unit

speed curve in IL3. In this paper, we consider the second order involute of a spacelike curve

with timelike binormal in IL3 . There are three kinds of casual caharacteristics of the second

order involute curve. All Frenet apparatus of their are examined in terms of Frenet apparatus

of the curve α.

Keywords Lorentz metric, involute curve, second order involute curve
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§1. Introduction and preliminaries

Basic properties of involute-evolute curves are very famous studies in differantial geometry.

In [5], [6] and [7] the second order involute curves , the second order Mannheim partner curve

and the nˆth order Bertrand mate curves in Euclidean 3-space are examined, respectively.

In Lorenzt space there are two kind of non-null curve, which are timelike and spacelike. The

involutes of the spacelike Curve with a timelike binormal spacelike binormal are examined in [1]

and [2], respectively. In this study we will work on the second order involute curves in of a

spacelike curve with timelike binormal in Lorenzt 3-space.

〈X,Y 〉 = −x1y2 + x2y2 + x3y3 (1)

is known Lorentz metric with index one, and
{
IR3, 〈, 〉

}
is 3-dimensional Lorentz space with

notation IL3. For X ∈ IL3 the casual characteristics of any vector X, are if 〈X,X〉 > 0, X is

spacelike vector, if 〈X,X〉 < 0, X is timelike vector, if 〈X,X〉 = 0, X is lightlike or null vector.

‖X‖ =
√
|〈X,X〉| is norm of X , [9]. Vectorel product of X and Y is

XΛY = (x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1) . (2)

Let α : I → E3 be the C2− class differentiable unit speed curve denote by {T,N,B} the

moving Frenet frame. For an arbitrary curve α ∈ E3, with first and second curvature, κ and
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τ respectively. Differential curve with Frenet frame, if tangent vector T is timelike (spacelike)

vector is called timelike (spacelike) curve.

• Frenet formulaes of a timelike curve are

T ′ = κN , N ′ = κT − τB , B′ = τN (3)

and

T ∧N = −B , N ∧B = T , B ∧ T = −N.

Darboux vector is

W = τT − κB , ‖W‖ = κ2 − τ2

see in , [9]. For any unit speed curve α : I → E3, the vector W is called Darboux vector defined

by [3] W = τT + κB. If we consider the normalization of the unit Darboux vector C = W
‖W‖ ,

we can write. Let the angle between Darboux vector and binormal vector of first timelike curve

be ϕ and since B is spacelike,

If |κ| > |τ | then, W is spacelike vector and

κ = ‖W‖ coshϕ , τ = ‖W‖ sinhϕ

If |κ| < |τ |then, is W is timelike vector and

κ = ‖W‖ sinhϕ , τ = ‖W‖ coshϕ

•• Frenet formulaes of spacelike curve with timelike binormal are

T ′ = κN , N ′ = −κT + τB , B′ = τN (4)

and

T ∧N = B , N ∧B = −T , B ∧ T = N.

Darboux vector is W = τT − κB , see in [9]. Since B is timelike;

if |κ| < |τ | then W is spacelike vector

κ = ‖W‖ sinhϕ , τ = ‖W‖ coshϕ , ‖W‖2 = τ2 − κ2.

If |κ| > |τ | then W is timelike vector

κ = ‖W‖ coshϕ , τ = ‖W‖ sinhϕ , ‖W‖2 = κ2 − τ2

see in [9].

••• Frenet formulaes of a spacelike curve with timelike normal vector

T ′ = κN , N ′ = κT + τB , B′ = τN (5)

59
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and

T ∧N = −B , N ∧B = −T , B ∧ T = N.

Darboux vector is W = −τT + κB. Since B is spacelike,

If |κ| < |τ | then is W timelike vector and

κ = ‖W‖ sinhϕ , τ = ‖W‖ coshϕ

If |κ| > |τ | then W is spacelike vector then is timelike vector

κ = ‖W‖ coshϕ , τ = ‖W‖ sinhϕ.

The involute of a given curve is a well-known concept in Euclidean 3− space. We can say that

evolute and involute is a method of deriving a new curve based on a given curve. The involute

of the curve is called sometimes the evolvent. Involvents play a part in the construction of gears.

The evolute is the locus of the centers of tangent circles of the given planar curve [8]. Here, we

will work on the second order involute of spacelike evolute curve with timelike binormal. Let

α : I → IL3be a spacelike evolute curve with timelike binormal. If tangent vector of the curve

α1 : I → IL3 is perpendicular to tangent vector of the curve α : I → IL3, then α1 : I → IL3 is

the involute curve of spacelike curve α, and we have the equation,

α
1
(s) = α(s) + λ(s)T (s), λ(s) = c− s, [4] (6)

where c = constant. Also < T, T1 >= 0 and T1 = N.

Theorem 1.1. Frenet-Serret apparatus {T
1
, N

1
, B

1
, κ

1
, τ

1
} of involute curve α

1
of a

spacelike evolute curve α, with timelike binormal , are given based on the Frenet-Serret

apparatus {T,N,B, κ, τ} of evolute curve are

T
1

= N , N
1

=
−κ√
|τ2 − κ2|

T +
τ√

|τ2 − κ2|
B , B

1
=

−τ√
|τ2 − κ2|

T +
κ√

|τ2 − κ2|
B. (7)

The curvatures of curve α and the involute α
1
, respectively are

κ
1

=
ε0
√
κ2 − τ2

|(c− s)κ|
, τ

1
=

κτ ′ − κ′τ
|(c− s)κ| |τ2 − κ2|

, ε0 =

 +1 N1 is space like

−1 N
1

is time like
(8)

see in [1].

Theorem 1.2. Frenet-Serret apparatus {T
1
, N

1
, B

1
, κ

1
, τ

1
} of involute curve α

1
of a

spacelike evolute curve α, with spacelike binormal, are given based on the Frenet-Serret

apparatus {T,N,B, κ, τ} of evolute curve are

T
1

= N , N
1

=
κ√

κ2 + τ2
T − τ√

κ2 + τ2
B , B

1
=

−τ√
κ2 + τ2

T − κ√
κ2 + τ2

B. (9)

The curvatures of curve α and the involute, α
1
, respectively, are

κ1 =

√
κ2 + τ2

|(k − s)κ|
, τ1 =

κτ ′ − κ′τ
|(k − s)κ|

√
κ2 + τ2

. (10)
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§2. Second order involute of a spacelike curve with timelike

binormal

Let α
2

(s) be the involute of the curve α
1

(s) . {T
1
, N

1
, B

1
, κ

1
, τ

1
} and {T

2
, N

2
, B

2
, κ

2
, τ

2
} are

collectively Frenet-Serret apparatus of the curve α
1

and the involute α
2
, respectively. α

1
has

the parametrization with arclength s1 as the involute curve of α (s). α2 (s) = α1 (s) + λ1T1 (s)

is the parametrization of second order involute curve. Hence, we can write

α
2

(s) = α (s) + λ(s)T (s) + λ1(s)N (s) (11)

where it is given in terms of Frenet apparatus of evolute α, also λ2 is constant.

< T1, T2 >= 0 and T2 = N1

see in [5].

Theorem 2.1. Involute and second involute curve of a spacelike evolute curve with

timelike normal N or timelike binormal B , has the casual characteristics as in the following

forms. Let {T,N,B, κ, τ}, {T1 , N1 , B1 , κ1 , τ1} and {T2 , N2 , B2 , κ2 , τ2} are collectively Frenet

apparatus of the evolute curve α, the involute α1 and the second order involute α2 , respectively.

evolute involute 2ndinvolute

sst <
sst

sts

sst sts → tss

(12)

Proof. For a spacelike evolute curve with timelike binormal and spacelike principal normal,

hence

T spacelike N spacelike B timelike

s s t
(13)

Since < T, T1 >= 0 and T1 = N (spacelike), T2 must be spacelike. Hence the involute of a

spacelike curve with timelike binormal is always spacelike curve. So normal N1 or binormal

B1 must be timelike, as in the following way,

Tangent T1 Normal N1 Binormal B1

s

s

s

t

t

s

(14)

and spacelike involute with timelike binormal B1, there are the following forms;

evolute involute 2ndinvolute

sst sst <
sst

sts

(15)
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For a spacelike evolute curve with timelike normal N , binormal B is spacelike.

T spacelike N timelike B spacelike

s t s
(16)

Since < T, T1 >= 0 and T1 = N (timelike). It is trivial that T1 must be timelike.The involute

of a spacelike curve with timelike normal is always timelike curve.

T1 timelike N1 spacelike B1 spacelike

t s s
(17)

Hence a spacelike evolute curve with timelike normal N , has the casual characteristics as in

the following form

evolute involute

sts→ tss

as a result, we have the proof.

Theorem 2.2. Frenet apparatus of second order involute α
2

of a curve α can be given

in terms of Frenet apparatus of α,

T2 =
−κ√
|τ2 − κ2|

T +
τ√

|τ2 − κ2|
B

N2 =

−
√
κ2 − τ2
|(c− s)κ|√
|τ21 − κ21|

N +

κτ ′ − κ′τ
|(c− s)κ| |τ2 − κ2|√

|τ21 − κ21|
(−τT + κB)√
|τ2 − κ2|

,

 if |κ| > |τ | , then N
1

spacelike

if |κ| < |τ | , then N1 timelike

B2 =

− κτ ′ − κ′τ
|(c− s)κ| |τ2 − κ2|√

|τ21 − κ21|
N +

√
κ2 − τ2
|(c− s)κ|√
|τ21 − κ21|

(−τT + κB)√
|τ2 − κ2|

,

 if |κ| > |τ | , then B
1

timelike

if |κ| < |τ | , then B1 spacelike

for

evolute involute 2ndinvolute

sst sst <
sst

sts

Proof. Since for T1 spacelike, N1spacelike, B1 timelike and T2 spacelike, N2 timelike, B2 space-

like we have already
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T
2

= N1

N2 =
−κ1√
|τ21 − κ21|

T1 +
τ1√
|τ21 − κ21|

B1

 if |κ1| > |τ1| , then N2 spacelike

if |κ1| < |τ1| , then N2 timelike
(18)

B2 =
−τ1√
|τ21 − κ21|

T1 +
κ1√
|τ21 − κ21|

B1,

 if |κ1| > |τ1| , then B2 timelike

if |κ1| < |τ1| , then B2 spacelike

hence

T
2

=
−κT + τB√
|τ2 − κ2|

N
2

=

−
√
κ2 − τ2
|(c− s)κ|√
|τ21 − κ21|

N +

κτ ′ − κ′τ
|(c− s)κ| |τ2 − κ2|√

|τ21 − κ21|
(−τT + κB)√
|τ2 − κ2|

 if |κ| > |τ | , then N1 spacelike

if |κ| < |τ | , then N
1

timelike

B
2

=

− κτ ′ − κ′τ
|(c− s)κ| |τ2 − κ2|√

|τ21 − κ21|
N +

√
κ2 − τ2
|(c− s)κ|√
|τ21 − κ21|

(−τT + κB)√
|τ2 − κ2|

,

 if |κ| > |τ | , then B
1

timelike

if |κ| < |τ | , then B
1

spacelike

τ21 − κ21 =

(
κτ ′ − κ′τ

|(c− s)κ| |τ2 − κ2|

)2

−

(√
κ2 − τ2
|(c− s)κ|

)2

=
(κτ ′ − κ′τ)

2

|(c− s)κ|2 |τ2 − κ2|2
−
∣∣κ2 − τ2∣∣
|(c− s)κ|2

=
(κτ ′ − κ′τ)

2 −
∣∣κ2 − τ2∣∣3

|(c− s)κ|2 |τ2 − κ2|2
.

The curvatures of curves , respectively, are

κ2 =
ε1
√
κ21 − τ21

|(c1 − s)κ1|
, τ2 =

κ1τ
′
1 − κ′1τ1

|(c1 − s)κ1| |τ21 − κ21|
, ε1 =

 +1 , N2 is space like

−1 , N2 is time like
(19)
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Theorem 2.3. Frenet-Serret apparatus {T
1
, N

1
, B

1
, κ

1
, τ

1
} of involute curve α

1
, are given

based on the Frenet apparatus {T,N,B, κ, τ} of evolute curve α;

T
2

=
−κ√
|τ2 − κ2|

T +
τ√

|τ2 − κ2|
B

N2 =
κ1√
κ21 + τ21

N − τ1√
κ21 + τ21

−τ√
|τ2 − κ2|

T +
κ√

|τ2 − κ2|
B

B
2

=
−τ1√
κ21 + τ21

N − κ1√
κ21 + τ21

−τ√
|τ2 − κ2|

T +
κ√

|τ2 − κ2|
B,

(20)

for

evolute involute 2ndinvolute

sst sts → tss.

Proof. Frenet apparatus {T
1
, N

1
, B

1
, κ

1
, τ

1
} of involute curve α

1
, are given then [8] based on

the Frenet apparatus {T,N,B, κ, τ} of evolute curve α; for

evolute involute

sst sts

T1 = N,

N
1

=
−κ√
|τ2 − κ,2 |

T +
τ√

|τ2 − κ2|
B,

 if |κ| > |τ | , then N
1

spacelike

if |κ| < |τ | , then N
1

timelike

B
1

=
−τ√
|τ2 − κ2|

T +
κ√

|τ2 − κ2|
B,

 if |κ| > |τ | , then B
1

timelike

if |κ| < |τ | , then B
1

spacelike.

(21)

The curvatures of curve α and the involute α
1
, respectively are

κ
1

=
ε0
√
κ2 − τ2

|(c− s)κ|
, τ

1
=

κτ ′ − κ′τ
|(c− s)κ| |τ2 − κ2|

, ε0 =

 +1 , N
1

is space like

−1, N
1

is time like
(22)

also

κ21 + τ21 =

(
ε0
√
κ2 − τ2

|(c− s)κ|

)2

+

(
κτ ′ − κ′τ

|(c− s)κ| |τ2 − κ2|

)2

,

√
κ21 + τ21 =

√
|κ2 − τ2|3 + (κτ ′ − κ′τ)

2

|(c− s)κ| |τ2 − κ2|
.

For

involute 2nd involute

sts tss.
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Since

T2 = N1 , N2 =
κ1√
κ21 + τ21

T1 −
τ1√

κ21 + τ21
B1 , B2 =

−τ1√
κ21 + τ21

T1 −
κ1√
κ21 + τ21

B1,

we have

T2 =
−κ√
|τ2 − κ2|

T +
τ√

|τ2 − κ2|
B,

N2 =
κ1√
κ21 + τ21

N − τ1√
κ21 + τ21

−τ√
|τ2 − κ2|

T +
κ√

|τ2 − κ2|
B,

B2 =
−τ1√
κ21 + τ21

N − κ1√
κ21 + τ21

−τ√
|τ2 − κ2|

T +
κ√

|τ2 − κ2|
B.

The curvatures of the second order curve α2 based on the involute α
1
, respectively are

κ2 =

√
|κ2 − τ2|3 + (κτ ′ − κ′τ)

2

|(c− s)κ| |τ2 − κ2| |(m− s)κ1|
, τ2 =

(κ1τ
′
1 − κ′1τ1) |(c− s)κ|

∣∣τ2 − κ2∣∣
|(m− s)κ1|

√
|κ2 − τ2|3 + (κτ ′ − κ′τ)

2
.

Since κ2 =

√
κ21 + τ21

|(m− s)κ1|
and τ2 =

κ1τ
′
1 − κ′1τ1

|(m− s)κ1|
√
κ21 + τ21

it is trivial.
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[7] Ş. Kılıçoğlu and S. Senyurt. On the nˆth order Bertrand mate curves in Eˆ3, Thai Journal of

Mathematics, ( accepted).

[8] M.M. Lipschutz. Differential Geometry. Schaum’s Outlines, 1969.

[9] B. O’Neil. Semi-Riemannian geometry with applications to relativitiy. Academic Press. Inc., USA,

1983.

65



Scientia Magna

Vol. 14 (2019), No. 1, 66-78

On several types of generalized regular fuzzy
continuous functions

E. Elavarasan

Department of Mathematics,

Shree Raghavendra Arts and Science College,

Keezhamoongiladi, Chidambaram-608102

(Affiliated to Thiruvalluvar University), Tamil Nadu, India.

E-mail: maths.aras@gmail.com

Abstract In this paper, we introduce the concept of slightly regular fuzzy continuous, s-

lightly generalized regular fuzzy continuous and somewhat slightly generalized regular fuzzy

continuous functions in fuzzy topological spaces in the sense of Šostak’s. Several interesting

properties and characterizations are introduced and discussed. Furthermore, the relation-

ship among the new concepts are introduced and established with some interesting counter

examples.
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§1. Introduction

Kubiak [11] and Šostak [18] introduced the fundamental concept of a fuzzy topological

structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that not

only the objects are fuzzified, but also the axiomatics. In [19, 20], Šostak gave some rules

and showed how such an extension can be realized. Chattopadhyay et al., [5] have redefined

the same concept under the name gradation of openness. A general approach to the study of

topological type structures on fuzzy power sets was developed in [7–9,11,12]. Balasubramanian

and Sundaram [1] gave the concept of generalized fuzzy closed sets in Chang’s fuzzy topology

as an extension of generalized closed sets of Levine [13] in topological spaces.

Jin Han Park and Jin Keun Park [16] introduced weaker form of generalized fuzzy closed

set and generalized fuzzy continuous mappings i.e, regular generalized fuzzy closed set and

generalizations of fuzzy continuous functions. Bhattacharya and Chakraborty [2] introduced

another generalization of fuzzy closed set i.e, generalized regular fuzzy closed set which is

the stronger form of the previous two generalizations. Recently, Vadivel and Elavarasan [23]

introduced the concepts of r-generalized regular fuzzy closed sets in fuzzy topological spaces in

the sense of Šostak.
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In 1980, jain [10] introduced the notion of slightly continuous functions. Recently, Nour [14]

defined slightly semicontinuous functions as a weak form of slightly continuity and investigat-

ed its properties. On the other hand, Takashi Noiri [15] introduced the concept of slightly

β-continuous functions. In 2004, Ekici and Caldas [6] introduced the notion of slightly γ-

continuity (slightly b-continuity). After that slightly fuzzy ω-continuous functions and slightly

fuzzy continuous functions are introduced by sudha et al. [21,22]. Recently, [23] introduced the

concepts of r-generalized regular fuzzy closed sets, generalized regular fuzzy continuous func-

tions and generalized regular fuzzy irresolute functions and investigate interrelation between

them.

In this paper, we introduce the concept of slightly regular fuzzy continuous, slightly gen-

eralized regular fuzzy continuous and somewhat slightly generalized regular fuzzy continuous

functions in fuzzy topological spaces in the sense of Šostak’s. Several interesting properties and

characterizations are introduced and discussed. Furthermore, the relationship among the new

concepts are introduced and established with some interesting counter examples.

§2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0, 1] and I0 = (0, 1]. For λ ∈
IX , λ(x) = λ for all x ∈ X. For x ∈ X and t ∈ I0, a fuzzy point xt is defined by

xt(y) =

t if y = x

0 if y 6= x.

Let Pt(X) be the family of all fuzzy points in X. A fuzzy point xt ∈ λ iff t < λ(x). All other

notations and definitions are standard, for all in the fuzzy set theory.

Definition 2.1. [18] A function τ : IX → I is called a fuzzy topology on X if it satisfies

the following conditions:

(O1) τ(0) = τ(1) = 1,

(O2) τ(
∨
i∈Γ µi) ≥

∧
i∈Γ τ(µi), for any {µi}i∈Γ ⊂ IX ,

(O3) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), for any µ1, µ2 ∈ IX .

The pair (X, τ) is called a fuzzy topological space (for short, fts ). A fuzzy set λ is called

an r-fuzzy open (r-fo, for short) if τ(λ) ≥ r. A fuzzy set λ is called an r-fuzzy closed (r-fc, for

short) set iff 1− λ is an r-fo set.

Theorem 2.1. [4] Let (X, τ) be a fts. Then for each λ ∈ IX and r ∈ I0, we define an

operator Cτ : IX × I0 → IX as follows: Cτ (λ, r) =
∧
{µ ∈ IX : λ ≤ µ, τ(1 − µ) ≥ r}. For

λ, µ ∈ IX and r, s ∈ I0, the operator Cτ satisfies the following statements:

(C1) Cτ (0, r) = 0,

(C2) λ ≤ Cτ (λ, r),

(C3) Cτ (λ, r) ∨ Cτ (µ, r) = Cτ (λ ∨ µ, r),
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(C4) Cτ (λ, r) ≤ Cτ (λ, s) if r ≤ s,

(C5) Cτ (Cτ (λ, r), r) = Cτ (λ, r).

Theorem 2.2. [4] Let (X, τ) be a fts. Then for each λ ∈ IX and r ∈ I0, we define

an operator Iτ : IX × I0 → IX as follows: Iτ (λ, r) =
∨
{µ ∈ IX : µ ≤ λ, τ(µ) ≥ r}. For

λ, µ ∈ IX and r, s ∈ I0, the operator Iτ satisfies the following statements:

(I1) Iτ (1, r) = 1,

(I2) Iτ (λ, r) ≤ λ,

(I3) Iτ (λ, r) ∧ Iτ (µ, r) = Iτ (λ ∧ µ, r),

(I4) Iτ (λ, r) ≤ Iτ (λ, s) if s ≤ r,

(I5) Iτ (Iτ (λ, r), r) = Iτ (λ, r).

(I6) Iτ (1− λ, r) = 1− Cτ (λ, r) and Cτ (1− λ, r) = 1− Iτ (λ, r)

Definition 2.2. [17] Let (X, τ) be a fts, λ ∈ IX and r ∈ I0. Then

(1) a fuzzy set λ is called r-fuzzy regular open (for short, r-fro) if λ = Iτ (Cτ (λ, r), r).

(2) a fuzzy set λ is called r-fuzzy regular closed (for short, r-frc) if λ = Cτ (Iτ (λ, r), r).

(3) a fuzzy set λ is called r-fuzzy regular clopen (for short, r-frco) set iff λ is r-frc set and

r-fro set.

Definition 2.3. [23] Let f : (X, τ)→ (Y, σ) be a function and r ∈ I0. Then f is called:

(1) fuzzy regular continuous (for short, fr-continuous) if f−1(λ) is r-fro set in IX for each

λ ∈ IY with σ(λ) ≥ r.

(2) fuzzy regular open (for short, fr-open) if f(λ) is r-fro set in IY for each λ ∈ IX with

τ(λ) ≥ r.

(3) fuzzy regular closed (for short, fr-closed) if f(λ) is r-frc set in IY for each λ ∈ IX with

τ(1− λ) ≥ r.

Definition 2.4. [23] Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0.

(1) The r-fuzzy regular closure of λ, denoted by RCτ (λ, r), and is defined by RCτ (λ, r) =∧
{µ ∈ IX |µ ≥ λ, µ is r-frc }.

(2) The r-fuzzy regular interiror of λ, denoted by RIτ (λ, r), and is defined by RIτ (λ, r) =∨
{µ ∈ IX |µ ≤ λ, µ is r-fro }.

Definition 2.5. [23] Let (X, τ) be a fts. For any λ, µ ∈ IX and r ∈ I0.

(1) A fuzzy set λ is called r-generalized regular fuzzy closed (for short, r-grfc) set if RCτ (λ, r) ≤
µ, whenever λ ≤ µ and τ(µ) ≥ r.
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(2) A fuzzy set λ is called r-generalized regular fuzzy open (for short, r-grfo) set if 1 − λ is

r-grfc.

(3) A fuzzy set λ is called r-generalized regular fuzzy clopen (for short, r-grfco) set iff λ is

r-grfc set and r-grfo set.

Definition 2.6. [23] Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0.

(1) The r-generalized regular fuzzy closure of λ, denoted by GRCτ (λ, r) and is defined by

GRCτ (λ, r) =
∧
{µ ∈ IX | λ ≤ µ, µ is r-grfc }.

(2) The r-generalized regular fuzzy interiror of λ, denoted by GRIτ (λ, r) and is defined by

GRIτ (λ, r) =
∨
{µ ∈ IX | λ ≥ µ, µ is r-grfo }.

Definition 2.7. [23] Let (X, τ) and (Y, η) be a fts’s. Let f : (X, τ) → (Y, η) be a

function.

(1) f is called generalized regular fuzzy continuous (for short, grf-continuous) iff f−1(µ) is

r-grfc for each µ ∈ IY , r ∈ I0 with η(1− µ) ≥ r.

(2) f is called generalized regular fuzzy open (for short, grf-open) iff f(λ) is r-grfo for each

λ ∈ IX , r ∈ I0 with τ(λ) ≥ r.

(3) f is called generalized regular fuzzy closed (for short, grf-closed) iff f(λ) is r-grfc for each

λ ∈ IX , r ∈ I0 with τ(1− λ) ≥ r.

(4) generalized regular fuzzy irresolute (grfi, for short) if f−1(µ) is an r-grfc set, for each

r-grfc set µ ∈ IY , r ∈ I0.

Definition 2.8. [22] Let (D, ≥) be a directed set. Let X be an ordinary set and f be

the collection of all fuzzy points in X. The function S : D → f is called a fuzzy net in X. In

other words, a fuzzy net is a pair (S, ≥) such that S is a function :D → f and ≥ direct the

domain of S. For n ∈ D, S(n) is often denoted by Sn and hence a net S is often denoted by

{Sn : n ∈ D}.

§3. Slightly regular fuzzy continuous functions

Definition 3.1. Let (X, τ) and (Y, η) be fts’s. A function f : (X, τ)→ (Y, η) is called

slightly regular fuzzy continuous (srfc, for short) if for each λ ∈ IX , µ ∈ IY and r ∈ I0 such

that µ is an r-frco set and f(λ) ≤ µ, there exists r-fro set ν ∈ IX , r ∈ I0, λ ≤ ν and f(ν) ≤ µ.

Proposition 3.1. Let (X, τ) and (Y, η) be fts’s. For the function f : (X, τ)→ (Y, η),

the following statements are equivalent:

(1) f is srfc function.

(2) f−1(ν) is an r-fro set for each ν ∈ IY , r ∈ I0 such that ν is r-frco set.

(3) f−1(ν) is an r-frc set for each ν ∈ IY , r ∈ I0 such that ν is r-frco set.
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(4) f−1(ν) is an r-frco set for each ν ∈ IY , r ∈ I0 such that ν is r-frco set.

(5) For each fuzzy set λ ∈ IX , r ∈ I0 and for every fuzzy net {Sn : n ∈ D} which converges

to λ, the fuzzy net {f(Sn) : n ∈ D} is eventually in each r-frco set µ with f(λ) ≤ µ.

Proof. (1)⇒(2): Let ν ∈ IY , r ∈ I0 such that ν is r-frco set and let λ ∈ IX such that λ ≤ f−1(ν).

Since ν is an r-frco set with f(λ) ≤ ν. By (1), there exists r-fro set µ ∈ IX , r ∈ I0, λ ≤ µ and

f(µ) ≤ ν. Hence f−1(ν) is an r-fro set.

(2)⇒(3): Let ν ∈ IY , r ∈ I0 such that ν is r-frco set, then 1 − ν is r-frco. By (2),

f−1(1− ν) = 1− f−1(ν) is r-fro set in X, thus f−1(ν) is r-frc set in X.

(3)⇒(4): It is obvious from (2) and (3).

(4)⇒(5): Let {Sn : n ∈ D} be a fuzzy net converges to the r-frco set λ ∈ IX and let µ ∈ IY

be an r-frco set such that f(λ) ≤ µ. By using (3), there exist an r-frco set ν ∈ IX , r ∈ I0 such

that λ ≤ ν and f(ν) ≤ µ. Since the fuzzy net {Sn : n ∈ D} converges to λ, Sn ≤ λ ≤ ν. Now

Sn ≤ λ ≤ ν. Thus f(Sn) ≤ f(ν) ≤ µ. Hence {f(Sn) : n ∈ D} is eventually in each r-frco set µ.

(5)⇒(1): Suppose that f is not srfc function. Then for every λ ∈ IX , µ ∈ IY , r ∈ I0 such

that µ is an r-frco set and f(λ) ≤ µ, there does not exist r-fro set ν ∈ IX such that λ ≤ ν and

f(ν) ≤ µ. Hence f(Sn) ≤ µ. That is, the fuzzy net {f(Sn) : n ∈ D} is not eventually in an

r-frco set µ with f(λ) ≤ µ, which is a contradiction. Hence f is srfc function.

Proposition 3.2. Let (X, τ1), (Y, τ2) and (Z, τ3) be fts’s. For the function f :

(X, τ1)→ (Y, τ2) and g : (Y, τ2)→ (Z, τ3), the following statements are satisfied:

(1) If f and g are srfc functions, then so is g ◦ f .

(2) If f is a surjective fuzzy regular irresolute, fuzzy regular open function and g be any

function, then g ◦ f is srfc function iff g is srfc.

Proof. (1): Clear.

(2): Suppose that g ◦ f is srfc function, λ ∈ IZ , r ∈ I0 such that λ is an r-frco set. By

using Proposition (2), f−1(g−1(λ)) = (g ◦f)−1(λ) is an r-fro set in IX . Since f is fuzzy regular

open, g−1(λ) = f(f−1(g−1(λ))) is an r-fro set. Therefore by Proposition , g is srfc function.

Conversely, let ν ∈ IZ , r ∈ I0 such that ν an r-frco set. Since g is srfc function, g−1(ν) is

an r-fro set in IY and f is fuzzy regular irresolute function, f−1(g−1(ν)) = (g ◦ f)−1(ν) is an

r-fro set in IX . Therefore by Proposition , g ◦ f is srfc function.

Definition 3.2. Let (X, τ) is said to be an r-fuzzy regular connected iff 0 and 1 are the

only fuzzy sets which are both r-fro and r-frc.

Proposition 3.3. Let (X, τ) and (Y, η) be fts’s, and let f : (X, τ) → (Y, η) be a

function. If (Y, η) is an r-fuzzy regular connected, then f is srfc function.

Proof. Let (Y, η) be an r-fuzzy regular connected space. Then 0 and 1 are the only r-frco sets.

Since f−1(0) and f−1(1) are both r-fro in IX . Hence by Proposition , f is srfc function.

Proposition 3.4. Let (X, τ) and (Y, η) be fts’s, and let f : (X, τ) → (Y, η) be srfc

function. If (X, τ) is an r-fuzzy regular connected, then so is (Y, η).

70



Vol. 14 On several types of generalized regular fuzzy continuous functions 71

Proof. Suppose that (Y, η) be an r-fuzzy regular disconnected space and ν ∈ IY −{0, 1} be an

r-frco set. Since f is srfc function, f−1(ν) is an r-frco set which is contradiction. Hence (Y, η)

is an r-fuzzy regular connected.

§4. Slightly generalized regular fuzzy continuous functions

Definition 4.1. Let (X, τ) and (Y, η) be fts’s. A function f : (X, τ)→ (Y, η) is called:

(1) almost ∗-generalized regular fuzzy continuous (a∗-grfc, for short) if for each λ ∈ IX , µ ∈
IY , r ∈ I0 such that η(µ) ≥ r and f(λ) ≤ µ, there exists an r-grfo set ν ∈ IX such that

λ ≤ ν and f(ν) ≤ Iη(Cη(µ, r), r).

(2) θ∗-generalized regular fuzzy continuous (θ∗-grfc, for short) if for each λ ∈ IX , µ ∈ IY , r ∈
I0 such that η(µ) ≥ r and f(λ) ≤ µ, there exists an r-grfo set ν ∈ IX such that λ ≤ ν

and f(Cτ (ν, r)) ≤ Cη(µ, r).

(3) weakly∗-generalized regular fuzzy continuous (w∗-grfc, for short) if for each λ ∈ IX , µ ∈
IY , r ∈ I0 such that η(µ) ≥ r and f(λ) ≤ µ, there exists an r-grfo set ν ∈ IX such that

λ ≤ ν and f(ν) ≤ Cη(µ, r).

(4) slightly generalized regular fuzzy continuous (sgrfc, for short) if for each λ ∈ IX , µ ∈
IY , r ∈ I0 such that µ is an r-frco set and f(λ) ≤ µ, there exists an r-grfo set ν ∈ IX

such that λ ≤ ν and f(ν) ≤ µ.

Remark 4.1.

(1) Every a∗-grfc function is θ∗-grfc function.

(2) Every θ∗-grfc function is sgrfc (resp. w∗-grfc) function.

(3) Every sgrfc function is w∗-grfc function.

The above Definition and Remark show the following implication is true but the reverse

implication is not true in general.

Example 4.1. Let X = Y = {a, b, c} and f : (X, τ)→ (Y, η) be the identity function.

Define λ, δ ∈ IX , µ ∈ IY as follows: λ(a) = 0.3, λ(b) = 0.4, λ(c) = 0.5; µ(a) = 0.3, µ(b) =

0.4, µ(c) = 0.5; δ(a) = 0.4, δ(b) = 0.4, δ(c) = 0.5. We define a fuzzy topologies τ and η as

follows:

τ(λ) =


1 if λ = 0 or 1,

1
2 if λ = λ,

0 otherwise,

η(λ) =


1 if λ = 0 or 1,

1
2 if λ = µ,

0 otherwise,
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For r = 1/2, then f is θ∗-grfc function but not a∗-grfc, because λ ∈ IX , µ ∈ IY , r ∈ I0

such that η(µ) ≥ r and f(λ) ≤ µ, there exists an r-grfo set δ ∈ IX and λ ≤ δ such that

f(Cτ (δ, r)) ≤ Cη(µ, r) but f(δ) � Iη(Cη(µ, r), r).

Example 4.2. Let X = Y = {a, b, c} and f : (X, τ)→ (Y, η) be the identity function.

Define λ, δ ∈ IX , µ ∈ IY as follows: λ(a) = 0.3, λ(b) = 0.4, λ(c) = 0.5; µ(a) = 0.5, µ(b) =

0.5, µ(c) = 0.5; δ(a) = 0.4, δ(b) = 0.4, δ(c) = 0.5. We define a fuzzy topologies τ and η as

follows:

τ(λ) =


1 if λ = 0 or 1,

1
2 if λ = λ,

0 otherwise,

η(λ) =


1 if λ = 0 or 1,

1
2 if λ = µ,

0 otherwise,

For r = 1/2, then f is w∗-grfc function but not θ∗-grfc, because λ ∈ IX , µ ∈ IY , r ∈ I0

such that η(µ) ≥ r and f(λ) ≤ µ, there exists an r-grfo set δ ∈ IX and λ ≤ δ such that

f(δ) ≤ Cη(µ, r) but f(Cτ (δ, r)) � Cη(µ, r).

Example 4.3. In Example , f is sgrfc function but not θ∗-grfc.

Example 4.4. Let X = Y = {a, b, c} and f : (X, τ)→ (Y, η) be the identity function.

Define λ, δ ∈ IX , µ ∈ IY as follows: λ(a) = 0.3, λ(b) = 0.4, λ(c) = 0.5; µ(a) = 0.4, µ(b) =

0.6, µ(c) = 0.5; δ(a) = 0.4, δ(b) = 0.4, δ(c) = 0.5. We define a fuzzy topologies τ and η as

follows:

τ(λ) =


1 if λ = 0 or 1,

1
2 if λ = λ,

0 otherwise,

η(λ) =


1 if λ = 0 or 1,

1
2 if λ = µ,

0 otherwise,

For r = 1/2, then f is w∗grfc function but not sgrfc, because λ ∈ IX , µ ∈ IY , r ∈ I0 such that

η(µ) ≥ r and f(λ) ≤ µ, there exists an r-grfo set δ ∈ IX and λ ≤ δ such that f(δ) ≤ Cη(µ, r)

but µ is not r-frco.

Proposition 4.1. Let (X, τ) and (Y, η) be fts’s. For the function f : (X, τ)→ (Y, η),

the following statements are equivalent:

(1) f is sgrfc function.

(2) f−1(ν) is an r-grfo set for each ν ∈ IY , r ∈ I0 such that ν is r-grfco set.

(3) f−1(ν) is an r-grfc set for each ν ∈ IY , r ∈ I0 such that ν is r-grfco set.

(4) f−1(ν) is an r-grfco set for each ν ∈ IY , r ∈ I0 such that ν is r-grfco set.

(5) For each fuzzy set λ ∈ IX , r ∈ I0 and for every fuzzy net {Sn : n ∈ D} with converges to

λ, the fuzzy net {f(Sn) : n ∈ D} is eventually in each r-grfco set µ with f(λ) ≤ µ.

Proof. (1)⇒(2): Let ν ∈ IY , r ∈ I0 such that ν is r-grfco set and let λ ∈ IX such that

λ ≤ f−1(ν). Since ν is an r-grfco set with f(λ) ≤ ν. By (1), there exists µ ∈ IX such that µ is

an r-grfo, λ ≤ µ and f(µ) ≤ ν. Hence f−1(ν) is an r-grfo set.

(2)⇒(3): Let ν ∈ IY , r ∈ I0 such that ν is r-grfco set, then 1 − ν is r-grfco. By (2),

f−1(1− ν) = 1− f−1(ν) is r-grfo set in X, thus f−1(ν) is r-grfc set in X.

(3)⇒(4): It is obvious from (2) and (3).
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(4)⇒(5): Let {Sn : n ∈ D} be a fuzzy net converges to the r-grfco set λ ∈ IX and let

µ ∈ IY be an r-grfco set such that f(λ) ≤ µ. By using (3), there exist an r-grfo set ν ∈ IX

such that λ ≤ µ and f(ν) ≤ µ. Since the fuzzy net {Sn : n ∈ D} converges to λ, Sn ≤ λ ≤ ν.

Thus {f(Sn) : n ∈ D} is eventually in each r-grfco set µ.

(5)⇒(1): Suppose that f is not sgrfc function. Then for every λ ∈ IX , µ ∈ IY , r ∈ I0
such that µ is an r-grfo set and f(λ) ≤ µ, there does not exist ν ∈ IX such that λ ≤ ν and

f(ν) ≤ µ. Hence f(Sn) ≤ µ. That is the fuzzy net {f(Sn) : n ∈ D} is not eventually in an

r-grfco set µ with f(λ) ≤ µ, which is a contradiction. Hence f is sgrfc function.

Proposition 4.2. Let (X, τ1), (Y, τ2) and (Z, τ3) be fts’s. For the function f :

(X, τ1)→ (Y, τ2) and g : (Y, τ2)→ (Z, τ3), the following statements are satisfied:

(1) If f and g are sgrfc functions, then so is g ◦ f .

(2) If f is a surjective grfi, grfo function and g be any function, then g ◦ f is sgrfc function

iff g is sgrfc.

Proof. (1): is clear.

(2): Suppose that g ◦f is sgrfc function, λ ∈ IZ is an r-grfco set. By using Proposition (2),

f−1(g−1(ν)) = (g ◦ f)−1(ν) is an r-grfo set in IX . Since f is grfo, g−1(λ) = f(f−1(g−1(λ))) is

an r-grfo set. Therefore by Proposition , g is sgrfc function.

Conversely, let ν ∈ IZ be an r-grfco set where r ∈ I0. Since g is sgrfc function, g−1(ν)

is an r-grfo set ∈ IY and f is grfi function, f−1(g−1(ν)) = (g ◦ f)−1(ν) is an r-grfo set ∈ IX .

Therefore by Proposition , g ◦ f is sgrfc function.

Definition 4.2. A fts (X, τ) is said to be an r-generalized regular fuzzy connected iff 0

and 1 are the only fuzzy sets which are both r-grfo and r-grfc.

Proposition 4.3. Let (X, τ) and (Y, η) be fts’s, and let f : (X, τ) → (Y, η) be a

function. If (Y, η) is an r-generalized regular fuzzy connected, then f is sgrfc function.

Proof. Let (Y, η) be an r-generalized regular fuzzy connected space. Then 0 and 1 are the only

r-grfco sets. Since f−1(0) and f−1(1) are both r-grfo in IX . Hence by Proposition , f is sgrfc

function.

Proposition 4.4. Let (X, τ) and (Y, η) be fts’s, and let f : (X, τ) → (Y, η) be sgrfc

function. If (X, τ) is an r-generalized regular fuzzy connected, then so is (Y, η).

Proof. Suppose that (Y, η) be an r-generalized regular fuzzy disconnected space and ν ∈
IY − {0, 1} be an r-grfco set. Since f−1(ν) is an r-grfco set which is contradiction. Hence

(Y, η) is an r-generalized regular fuzzy connected.

Definition 4.3. A fts (X, τ) is said to be an r-generalized regular fuzzy extremely

disconnected if GRCτ (λ, r) is an r-grfo set for each λ ∈ IX , r ∈ I0 such that λ is an r-grfo set.

Proposition 4.5. Let (X, τ) and (Y, η) be fts’s. If f : (X, τ)→ (Y, η) be sgrfc function

and (Y, η) is an r-generalized regular fuzzy extremely disconnected, then f is a∗grfc function.
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Proof. λ ∈ IX , µ ∈ IY , r ∈ I0 such that λ and µ are r-grfo sets. Since (Y, η) is an r-generalized

regular fuzzy extremely disconnected, GRCη(µ, r) is an r-grfco set. Now, f(λ) ≤ GRCη(µ, r)

and since f is sgrfc function, there exists an r-grfo set ν ∈ IX such that λ ≤ ν and f(ν) ≤
Cη(µ, r). Therefore, f is a∗gfc function.

§5. Somewhat slightly generalized regular fuzzy continuous

and open functions

Definition 5.1. Let (X, τ) and (Y, η) be fts’s. A function f : (X, τ) → (Y, η) is

called somewhat slightly generalized regular fuzzy continuous (swsgrfc, for short) if for each

λ ∈ IX , µ ∈ IY and r ∈ I0 such that f−1(µ) 6= 0 and f(λ) ≤ µ, there exists an r-grfo set

0 6= ν ∈ IX such that λ ≤ ν and ν ≤ f−1(µ).

Remark 5.1.

(1) Evrey srf-continuous function is sgrf-continuous.

(2) Evrey srf-continuous (resp. sgrf-continuous) function is swsgrf-continuous.

The above Definitions , (4), and Remark show the following implication is true but the

reverse implication is not true in general.

Example 5.1. In Example , for r = 1/2, then f is sgrfc function but not srfc, because

λ ∈ IX , µ ∈ IY , r ∈ I0, such that η(µ) ≥ r and f(λ) ≤ µ, there exists an r-grfo set δ ∈ IX

and λ ≤ δ such that f(δ) ≤ µ but δ is not r-fro set.

Example 5.2. In Example , for r = 1/2, then f is swsgrfc function but not sgrfc, because

λ ∈ IX , µ ∈ IY , r ∈ I0 such that η(µ) ≥ r and f(λ) ≤ µ, there exists an r-grfo set δ ∈ IX and

λ ≤ δ such that f(δ) ≤ µ but µ is not r-frco.

Example 5.3. In Example , f is swsgrfc function but not srfc.

Definition 5.2. A fuzzy set λ in a fts (X, τ) is called r-generalized regular fuzzy dense

(resp. r-fuzzy regular dense) set if there exists no r-grfc (resp. r-frco) set µ ∈ IX , r ∈ I0 such

that λ < µ < 1.

Example 5.4. Let X = {a, b}. Define λ, µ ∈ IX as follows: µ(a) = 0.9, µ(b) = 0.9.

We define a fuzzy topology τ as follows:

τ(λ) =


1 if λ = 0 or 1,

1
3 if λ = µ,

0 otherwise.
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So, if λ(a) = 0.9, λ(b) = 0.8, then there exists no 1/3-grfc set µ in IX such that λ < µ < 1.

Therefore, λ is an 1/3-generalized regular fuzzy dense set in IX .

Example 5.5. In Example , if λ(a) = 0.8, λ(b) = 0.9, then there exists no 1/3-frco set

µ in IX such that λ < µ < 1. Therefore, λ is an 1/3-fuzzy regular dense set in IX .

Definition 5.3. Let (X, τ) be a fts. For a fuzzy set λ ∈ IX , r ∈ I0, Irτ and Crτ are

defined as follows:

(1) Irτ =
∨
{µ ∈ IX | µ ≤ λ and µ is r-frco},

(2) Crτ =
∧
{µ ∈ IX | λ ≤ µ and µ is r-frco}.

Proposition 5.1. Let (X, τ) and (Y, η) be fts’s, and let f : (X, τ) → (Y, η) be any

function. Then the following are equivalent:

(1) f is swsgrfc function.

(2) If λ is an r-frco set such that f−1(λ) 6= 1 and λ ≤ f(1− ν), for each ν ∈ IX , r ∈ I0 then

there exists an r-grfc set µ ≤ 1− ν ∈ IX such that µ ≥ f−1(λ).

(3) If λ is r-generalized regular fuzzy dense set in IX , then f(λ) is r-fuzzy regular dense set

in IY such that every r-frco set µ ≤ f(1− ν), for each ν ∈ IX and r ∈ I0.

Proof. (1)⇒(2) Suppose f is swsgrfc function, and let λ be any r-frco set in IY such that

f−1(λ) 6= 1 and λ ≤ f(1 − ν), for each ν ∈ IX , r ∈ I0. Then, 1 − λ is r-frco in IY such

that f−1(1 − λ) 6= 0 and f(ν) ≤ 1 − λ. Then by the hypothesis, there exists an r-grfo set

0 6= α ∈ IX , r ∈ I0 such that ν ≤ α and α ≤ f−1(1 − λ). That is, 1 − α is an r-grfc set and

1 − α ≥ 1 − f−1(1 − λ) = f−1(λ). Put 1 − α = µ. Then µ is an r-grfc set in IX such that

µ ≥ f−1(λ).

(2)⇒(3) Let λ be an r-generalized regular fuzzy dense set in IX , and suppose that f(λ) is

not a fuzzy regular dense set in IY , such that each r-frco set µ ≤ f(1−ν), for each ν ∈ IX , r ∈
I0. Then, there exists an r-frco set α ∈ IY such that f(λ) < α < 1, since α < 1, f−1(α) 6= 1.

Now, α is an r-frco set such that f−1(α) 6= 1 and f(1 − ν) ≥ α, for each ν ∈ IX , r ∈ I0.

Then by the hypothesis, there exists an r-grfc set γ ≤ 1 − ν ∈ IX such that γ ≥ f−1(α). But

f−1(α) > f−1(f(λ)) = λ. That is, γ ≥ λ. Therefore, there exists an r-grfc set γ ∈ IX , r ∈ I0
such that γ ≥ λ, which is a contradiction. Therefore, f(λ) is an r-fuzzy regular dense set in IY

such that γ ≤ f(1− ν), for each ν ∈ IX and r-frco set γ ∈ IY .

(3)⇒(1) Let λ be an r-frco set such that f−1(λ) 6= 0 and f(ν) ≤ λ, for each ν ∈ IX , r ∈ I0.

Then, λ 6= 0. Now, suppose that ν ≤ α and GRIτ (f−1(λ), r) = 0 ∈ IX . Then, GRCτ (1 −
f−1(λ), r) = 1 ∈ IX .

That is, 1−f−1(λ) is an r-generalized regular fuzzy dense in IX . Then by (3), f(1−f−1(λ))

is an r-fuzzy regular dense set such that there exists an r-frco set µ ≤ f(1 − ν), for each

ν ∈ IX , r ∈ I0. But f(1 − f−1(λ)) = f(f−1(1 − λ)) ≤ 1 − λ < 1, since 1 − λ is an r-frco and

f(1− f−1(λ)) ≤ 1− λ, RCτ (f(1− f−1(λ)), r) ≤ 1− λ. That is, 1− λ ≥ 1⇒ λ = 0, which is a

contradiction, since λ 6= 0. Therefore, ν ≤ α and GRIτ (f−1(λ), r) 6= 0. So f is swsgfc.

Definition 5.4. Let (X, τ) and (Y, η) be fts’s. A function f : (X, τ)→ (Y, η) is called
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(1) slightly generalized regular fuzzy open (briefly, sgrfo) if for each r-grfo set λ ∈ IX and

each µ ∈ IX , r ∈ I0 such that λ ≤ µ, f(λ) is an r-frco set in IY and f(λ) ≤ f(µ),

(2) somewhat generalized regular fuzzy open (briefly, swgrfo) if for each r-grfo set 0 6= λ ∈
IX , r ∈ I0 there exists an r-grfo set in 0 6= µ ∈ IY such that f(λ) ≥ µ,

(3) somewhat slightly generalized regular fuzzy open (briefly, swsgrfo) if for each r-grfo set

0 6= λ ∈ IX such that λ ≤ ν and for each ν ∈ IX , r ∈ I0, there exists an r-frco set

0 6= µ ∈ IY , µ ≤ f(ν) such that f(λ) ≥ µ.

That is, Irτ (f(λ), r) 6= 0, and there exists an r-frco set µ such that f(ν) ≥ µ and λ ≤ ν, for

each ν ∈ IX , r ∈ I0.

Remark 5.2. Evrey sgrfo (resp. swgrfo) function is swsgrfo function but the converse is

not true in general as shown by the following example.

Example 5.6. In Example , f is swsgrfo function but not sgrfo, since for each r-grfo set

λ ∈ IX and each ν ∈ IX , r ∈ I0 such that λ ≤ µ, f(λ) is not r-frco in IY and f(λ) ≤ f(µ).

Example 5.7. Let X = Y = {a, b, c} and f : (X, τ) → (Y, η) be the function.

Define λ, λ1, ν ∈ IX , λ2, µ ∈ IY as follows: λ1(a) = 0.5, λ1(b) = 0.5, λ1(c) = 0.5;

λ2(a) = 0.5, λ2(b) = 0.5, λ2(c) = 0.5; λ(a) = 0.5, λ(b) = 0.6, λ(c) = 0.5; µ(a) = 0.5, µ(b) =

0.5, µ(c) = 0.5; ν(a) = 0.7, ν(b) = 0.6, ν(c) = 0.5; δ(a) = 0.5, δ(b) = 0.6, δ(c) = 0.6. We

define a fuzzy topologies τ and η as follows:

τ(λ) =


1 if λ = 0 or 1,

1
2 if λ = λ1,

0 otherwise,

η(λ) =


1 if λ = 0 or 1,

1
2 if λ = λ2,

0 otherwise.

For r = 1/2, then f is swsgrfo function but not swgrfo, because for each r-grfo set 0 6= λ ∈
IX , r ∈ I0 such that λ ≤ ν for each ν ∈ IX , there exists an r-frco set 0 6= µ ∈ IY , µ ≤ f(ν)

such that f(λ) ≥ µ but for each r-grfo set 0 6= λ ∈ IX , r ∈ I0 there exists an r-grfo set

0 6= δ ∈ IY , such that f(λ) � µ .

Proposition 5.2. Let (X, τ1), (Y, τ2) and (Z, τ3) be fts’s. If f : (X, τ1) → (Y, τ2)

and g : (Y, τ2) → (Z, τ3) are swsgrfo functions, then g ◦ f : (X, τ1) → (Z, τ3) are swsgrfo

function.

Proof. Let 0 6= λ ∈ IX be an r-grfo set r ∈ I0 such that λ ≤ µ, for each fuzzy set µ ∈ IX , r ∈ I0.

Since f is swsgrfo, then there exists an r-frco set 0 6= ν ∈ IY , and f(µ) ≥ ν such that f(λ) ≥ ν.

Now, GRIτ2(f(λ), r) is an r-grfo in IY such that

GRIτ2(f(λ), r) 6= 0, GRIτ2(f(λ), r) ≤ f(µ), for each f(µ) ∈ IY .

Since g is swsgrfo, then there exists an r-frco set 0 6= γ ∈ IZ and γ ≤ g(f(µ)) such that

γ ≤ g(GRIτ2(f(λ), r)). But g(GRIτ2(f(λ), r)) ≤ g(f(λ)). Thus, there exists an r-frco set

0 6= γ ∈ IZ and (g ◦ f)(µ) ≥ γ, such that (g ◦ f)(λ) ≥ γ. Therefore, g ◦ f is swsgrfo.

Proposition 5.3. Let (X, τ) and (Y, η) be fts’s, and let f : (X, τ) → (Y, η) be a

bijective function. Then the following are equivalent:

(1) f is swsgrfo function.
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(2) If λ is an r-grfc set in IX such that f(λ) 6= 1 and λ ≥ ν for each ν ∈ IX , then there

exists an r-frco set µ ∈ IY , µ 6= 1 and f(ν) ≤ µ such that f(λ) ≤ µ.

Proof. (1)⇒(2) let λ be an r-grfc set in IX such that f(λ) 6= 1 and λ ≥ ν, for each ν ∈ IX , r ∈
I0. Then, 1−λ is an r-grfo set in IX such that f(1−λ) 6= 0 and 1−λ ≤ 1−ν, for each ν ∈ IX .

So 1− λ 6= 0. Since f is a swsgrfo, then there exists an r-frco set 0 6= δ ∈ IY and f(1− ν) ≥ δ
such that f(1− λ) ≥ δ.

Now, 1−δ is an r-frco set in IY such that 1−δ 6= 1 and 1−δ ≥ f(ν) such that 1−δ ≥ f(λ).

Take 1− δ = µ, so (2) is proved.

(2)⇒(1) Let λ 6= 0 be any r-grfo set in IX such that λ ≤ ν, for each ν ∈ IX . Then, 1− λ
is an r-grfc set in IX such that 1 − λ 6= 1 and 1 − λ ≥ 1 − ν for each ν ∈ IX , r ∈ I0. Now,

f(1− λ) = 1− f(λ) 6= 1. For, if 1− f(λ) = 1, then f(λ) = 0⇒ λ = 0.

Hence by the hypothesis, there exists an r-frco set µ ∈ IY , 1 6= µ ≥ f(1 − ν), such that

f(1− λ) ≤ µ. That is 0 6= 1− µ ≤ f(ν), such that 1− µ ≤ f(λ). Let 1− µ = γ. Then, γ 6= 0 is

an r-frco set in IY such that f(ν) ≥ γ and f(λ) ≥ γ. Therefore, f is swsgrfo function.
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Abstract In this paper, we introduce the concepts of fuzzy upper and fuzzy lower e-continuous

multifunction, fuzzy upper and fuzzy lower e-irresolute multifunction on fuzzy topological s-

paces in Ŝostak sense. Several characterizations and properties of these fuzzy upper (resp.

fuzzy lower) e-continuous, fuzzy upper (resp. lower) e-irresolute multifunctions are presented

and their mutual relationships are established in L-fuzzy topological spaces. Later, composi-

tion and union between these multifunctions have been studied.
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§1. Introduction and preliminaries

Kubiak [15] and Ŝostak [23] introduced the notion of (L-)fuzzy topological space as a

generalization of L-topological spaces (originally called (L-) fuzzy topological spaces by Chang

[6] and Goguen [8]. It is the grade of openness of an L-fuzzy set. A general approach to the study

of topological type structures on fuzzy powersets was developed in [ [9]- [11], [15], [16], [23]- [25]].

Berge [5] introduced the concept multimapping F : X ( Y where X and Y are topological

spaces and Popa [21,22] introduced the notion of irresolute multimapping. After Chang intro-

duced the concept of fuzzy topology [6], continuity of multifunctions in fuzzy topological spaces

have been defined and studied by many authors from different view points (eg. see [3], [4], [18]-

[20]). Tsiporkova et al., [27,28] introduced the continuity of fuzzy multivalued mappings in the

Chang’s fuzzy topology [6]. Later, Abbas et al., [1] introduced the concepts of fuzzy upper and

fuzzy lower semi-continuous multifunctions in L-fuzzy topological spaces. Recently, Sobana [26]

and Vadivel [29] introduced r-feo sets (r-fec) sets, fuzzy e-continuity, fuzzy e-openness, fuzzy
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e-closedness and r-fuzzy e-irresolute in a smooth topological space.

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower e-continuous

multifunction, fuzzy upper and fuzzy lower e-irresolute multifunction on fuzzy topological spaces

in Ŝostak sense. Several characterizations and properties of these multifunctions are presented

and their mutual relationships are established in L-fuzzy topological spaces. Later, composition

and union between these multifunctions have been studied.

Throughout this paper, nonempty sets will be denoted by X, Y etc., L = [0, 1] and

L0 = (0, 1]. The family of all fuzzy sets in X is denoted by LX . The complement of an L-fuzzy

set λ is denoted by λc. This symbol ( for a multifunction.

For α ∈ L, α(x) = α for all x ∈ X. A fuzzy point xt for t ∈ L0 is an element of LX such

that xt(y) =

t if y = x

0 if y 6= x.
The family of all fuzzy points in X is denoted by Pt(X). A fuzzy

point xt ∈ λ iff t ≤ λ(x).

All other notations are standard notations of L-fuzzy set theory.

Definition 1.1. [1] Let F : X ( Y, then F is called a fuzzy multifunction (FM, for short)

if and only if F (x) ∈ LY for each x ∈ X. The degree of membership of y in F (x) is denoted by

F (x)(y) = GF (x, y) for any (x, y) ∈ X × Y. The domain of F, denoted by domain(F ) and the

range of F, denoted by rng(F ), for any x ∈ X and y ∈ Y, are defined by :

dom(F )(x) =
∨
y∈Y

GF (x, y) and rng(F )(y) =
∨
x∈X

GF (x, y).

Definition 1.2. [1] Let F : X ( Y be a FM. Then F is called:

(i) Normalized iff for each x ∈ X, there exixts y0 ∈ Y such that GF (x, y0) = 1.

(ii) A crisp iff GF (x, y) = 1 for each x ∈ X and y ∈ Y.

Definition 1.3. [1] Let F : X ( Y be a FM. Then

(i) The image of λ ∈ LX is an L-fuzzy set F (λ) ∈ LY defined by

F (λ)(y) =
∨
x∈X

[GF (x, y) ∧ λ(x)].

(ii) The lower inverse of µ ∈ LY is an L-fuzzy set F l(µ) ∈ LX defined by

F l(µ)(x) =
∨
y∈Y

[GF (x, y) ∧ µ(y)].

(iii) The upper inverse of µ ∈ LY is an L-fuzzy set Fu(µ) ∈ LX defined by

Fu(µ)(x) =
∧
y∈Y

[GcF (x, y) ∨ µ(y)].

Theorem 1.1. [1] Let F : X ( Y be a FM. Then

(i) F (λ1) ≤ F (λ2) if λ1 ≤ λ2.
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(ii) F l(µ1) ≤ F l(µ2) and Fu(µ1) ≤ Fu(µ2), if µ1 ≤ µ2.

(iii) Fu(µ) ≤ F l(µ), if F is normalized.

(iv) (F (λ))c ≤ F (λc), if F is surjective.

(v) (F l(µ))c ≤ F l(µc), if F is normalized.

(vi) F l(1− µ) = 1− Fu(µ) and Fu(1− µ) = 1− F l(µ).

(vii) F (Fu(µ)) ≤ µ if F is a crisp.

(viii) Fu(F (λ)) ≥ λ if F is a crisp.

Definition 1.4. [1] Let F : X ( Y and H : Y ( Z be two FM. Then the composition

H ◦ F is defined by

((H ◦ F )(x))(z) =
∨
y∈Y

[GF (x, y) ∧GH(y, z)].

Theorem 1.2. [1] Let F : X ( Y and H : Y ( Z be FM. Then we have the following

(i) (H ◦ F ) = F (H).

(ii) (H ◦ F )u = Fu(Hu).

(iii) (H ◦ F )l = F l(H l).

Theorem 1.3. [1] Let Fi : X ( Y be a FM. Then we have the following

(i) (
⋃
i∈Γ

Fi)(λ) =
∨
i∈Γ

Fi(λ).

(ii) (
⋃
i∈Γ

Fi)
l(µ) =

∨
i∈Γ

F li (µ).

(iii) (
⋃
i∈Γ

Fi)
u(µ) =

∧
i∈Γ

Fui (µ).

Definition 1.5. [11, 15, 17, 23] An L-fuzzy topological space (L-fts, in short) is a pair

(X, τ), where X is a nonempty set and τ : LX → L is a mapping satisfying the following

properties.

(1) τ(0) = τ(1) = 1,

(2) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), for any µ1, µ2 ∈ IX .

(3) τ(
∨
i∈Γ µi) ≥

∧
i∈Γ τ(µi), for any {µi}i∈Γ ⊂ IX ,

Then τ is called an L-fuzzy topology on X. For every λ ∈ LX , τ(λ) is called the degree of

openness of the L-fuzzy set λ.

A mapping f : (X, τ)→ (Y, η) is said to be continuous with respect to L-fuzzy topologies

τ and η iff τ(f−1(µ)) ≥ η(µ) for each µ ∈ LY .
Theorem 1.4. [7,13,14,17] Let (X, τ) be a an L-fts. Then for each λ ∈ LX , r ∈ L0, we

define L-fuzzy operators Cτ and Iτ : LX × L0 → LX as follows:
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Cτ (λ, r) =
∧
{µ ∈ LX : λ ≤ µ, τ(1− µ) ≥ r}.

Iτ (λ, r) =
∨
{µ ∈ LX : λ ≥ µ, τ(µ) ≥ r}.

For λ, µ ∈ LX and r, s ∈ L0, the operator Cτ satisfies the following conditions:

(1) Cτ (0, r) = 0,

(2) λ ≤ Cτ (λ, r),

(3) Cτ (λ, r) ∨ Cτ (µ, r) = Cτ (λ ∨ µ, r),

(4) Cτ (Cτ (λ, r), r) = Cτ (λ, r),

(5) Cτ (λ, r) = λ iff τ(λc) ≥ r.

(6) Cτ (λc, r) = (Iτ (λ, r))c and Iτ (λc, r) = (Cτ (λ, r))c.

Definition 1.6. [1] Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η) and

r ∈ L0. Then F is called:

(i) Fuzzy upper semi continuous (or Fuzzy upper) (in short, FUS (or FU)-continuous) at

a L-fuzzy point xt ∈ dom(F ) iff xt ∈ Fu(µ) for each µ ∈ LY and η(µ) ≥ r, there exists

λ ∈ LX , τ(λ) ≥ r and xt ∈ λ such that λ ∧ dom(F ) ≤ Fu(µ). F is FU -continuous iff it

is FU -continuous at every xt ∈ dom(F ).

(ii) Fuzzy lower semi continuous (or Fuzzy lower) (in short, FLS (or FL)-continuous) at a L-

fuzzy point xt ∈ dom(F ) iff xt ∈ F l(µ) for each µ ∈ LY and η(µ) ≥ r, there exists λ ∈ LX ,
τ(λ) ≥ r and xt ∈ λ such that λ ≤ F l(µ). F is FL-continuous iff it is FL-continuous at

every xt ∈ dom(F ).

(iii) Fuzzy continuous if it is FU -continuous and FL-continuous.

Theorem 1.5. [1] Let F : X ( Y be a fuzzy multifunction between two L-fts’s (X, τ)

and (Y, η). Let µ ∈ LY . Then we have the following

(1) F is FL-continuous iff τ(F l(µ)) ≥ η(µ).

(2) If F is normlized, then F is FU -continuous iff τ(Fu(µ)) ≥ η(µ).

(3) F is FL-continuous iff τ(1− Fu(µ)) ≥ η(1− µ).

(4) If F is normalized, then F is FU -continuous iff τ(1− F l(µ)) ≥ η(1− µ).

Remark 1.1 [4, 30] Let (X, τ) and (Y, η) be a fts’s. The fuzzy sets of the form λ × µ
with τ(λ) ≥ r and η(µ) ≥ r form a basis for the product fuzzy topology τ × η on X × Y , where

for any (x, y) ∈ X × Y, (λ× µ)(x, y) = min{λ(x), µ(y)}.
Definition 1.7. [4,19] Let F : X ( Y be a FM between two fts’s (X, τ) and (Y, η). The

graph fuzzy multifunction Gf : X → X × Y of F is defined as Gf (x) = x1 × F (x), for every

x ∈ X.
Definition 1.8. [12] Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0, λ is called r-

fuzzy regular open (for short, r-fro) (resp. r-fuzzy regular closed (for short, r-frc)) if λ =

Iτ (Cτ (λ, r), r) (resp. λ = Cτ (Iτ (λ, r), r)).

Definition 1.9. [12] Let (X, τ) be a fts. Then for each µ ∈ IX , xt ∈ Pt(X) and r ∈ I0,
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(i) µ is called r-open Qτ -neighbourhood of xt if xtqµ with τ(µ) ≥ r.

(ii) µ is called r-open Rτ -neighbourhood of xt if xtqµ with µ = Iτ (Cτ (µ, r), r).

We denoted

Qτ (xt, r) = {µ ∈ IX : xtqµ, τ(µ) ≥ r},

Rτ (xt, r) = {µ ∈ IX : xtqµ, µ = Iτ (Cτ (µ, r), r)}.

Definition 1.10. [12] Let (X, τ) be a fts. Then for each λ ∈ IX , xt ∈ Pt(X) and r ∈ I0,

(i) xt is called r-τ cluster point of λ if for every µ ∈ Qτ (xt, r), we have µqλ.

(ii) xt is called r-δ cluster point of λ if for every µ ∈ Rτ (xt, r), we have µqλ.

(iii) An δ-closure operator is a mapping DCτ : IX × I → IX defined as follows:

δCτ (λ, r) or DCτ (λ, r) =
∨
{xt ∈ Pt(X) : xt is r-δ-cluster point of λ}.

Equivalently, δCτ (λ, r) =
∧
{µ ∈ IX : µ ≥ λ, µ is a r-frc set} and

δIτ (λ, r) =
∨
{µ ∈ IX : µ ≤ λ, µ is a r-fro set}.

Definition 1.11. [12] Let (X, τ) be a fuzzy topological space. For λ ∈ IX and r ∈ I0, λ

is called r-fuzzy δ-closed iff λ = δCτ (λ, r) or DCτ (λ, r).

Definition 1.12. [26] Let (X, τ) be a an L-fts. Then for each λ, µ ∈ LX , r ∈ L0. Then

λ is called

(1) λ is called an r-fuzzy e-open (briefly, r-feo) set if λ ≤ Cτ (δτ (λ, r), r)∨ Iτ (δCτ (λ, r), r).

(2) λ is called an r-fuzzy e-closed (briefly, r-feo) set if Cτ (δIτ (λ, r), r)∧Iτ (δCτ (λ, r), r) ≤ λ.

Definition 1.13. [26] Let (X, τ) be an L-fts. Then for each λ, µ ∈ LX , r ∈ L0. Then λ

is called

(i) eIτ (λ, r) =
∨
{µ ∈ IX : µ ≤ λ, µ is a r-feo set } is called the r-fuzzy e-interior of λ.

(ii) eCτ (λ, r) =
∧
{µ ∈ IX : µ ≥ λ, µ is a r-fec set } is called the r-fuzzy e-closure of λ.

§2. Fuzzy upper and lower e-continuous multifunctions

Definition 2.1. Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η) and r ∈ L0.

Then F is called:

(i) Fuzzy upper e-continuous (FUe-continuous, in short) at any L-fuzzy point xt ∈ dom(F )

iff xt ∈ Fu(µ) for each µ ∈ LY and η(µ) ≥ r there exists r-feo set, λ ∈ LX and xt ∈ λ
such that λ ∧ dom(F ) ≤ Fu(µ).

(ii) Fuzzy lower e-continuous (FLe-continuous, in short) at any L-fuzzy point xt ∈ dom(F )

iff xt ∈ F l(µ) for each µ ∈ LY and η(µ) ≥ r there exists r-feo set, λ ∈ LX and xt ∈ λ
such that λ ≤ F l(µ).

(iii) FUe-continuous (resp. FLe-continuous) iff it is FUe-continuous (resp. FLe-continuous)

at every xt ∈ dom(F ).
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Remark 2.1 Let F be a FM between two L-fts’s (X, τ) and (Y, η). For the mapping

F : X ( Y, the following statements are valid:

(1) FU -continuous ⇒ FUe-continuous.

(2) FL-continuous ⇒ FLe-continuous.

The converse of the above Remark 2.1 need not be true as shown by the following examples.

Example 2.1 Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM defined by

GF (x1, y1) = 0.8, GF (x1, y2) = 0.9, GF (x1, y3) = 0.8, GF (x2, y1) = 1, GF (x2, y2) = 0.7, and

GF (x2, y3) = 0.9. Let λ1 and λ2 be a fuzzy subsets of X be defined as λ1(x1) = 0.3, λ1(x2) = 0.1

and λ2(x1) = 0.7, λ2(x2) = 0.7 and µ be a fuzzy subset of Y defined as µ(y1) = 0.7, µ(y2) = 0.9,

µ(y3) = 0.8. We assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies τ : LX → L and

η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,

1
2 , if λ = λ1,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,

1
2 , if µ = µ,

0, otherwise.

are fuzzy topologies on X and Y. For r= 1
2 , as µ is 1

2 -fuzzy open in Y and Fu(µ) = λ2 is 1
2 -feo

set in X. Then F : X ( Y is FUe-continuous. But F is not FU -continuous, because µ is
1
2 -fuzzy open in Y and Fu(µ) = λ2 is not 1

2 -fuzzy open set in X.

Example 2.2 Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM defined

by GF (x1, y1) = 0.2, GF (x1, y2) = 1, GF (x1, y3) = 0, GF (x2, y1) = 0.5, GF (x2, y2) = 0,

and GF (x2, y3) = 0.3. Let λ1 and λ2 be a fuzzy subsets of X be defined as λ1(x1) = 0.4,

λ1(x2) = 0.3; λ2(x1) = 0.9, λ2(x2) = 0.5 and µ be a fuzzy subset of Y defined as µ(y1) = 0.6,

µ(y2) = 0.9, µ(y3) = 0. We assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies τ : LX → L

and η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,

1
2 , if λ = λ1,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,

1
2 , if µ = µ,

0, otherwise.

are fuzzy topologies on X and Y. For r= 1
2 , as µ is 1

2 -fuzzy open set in Y and F l(µ) = λ2 is
1
2 -feo set in X. Then F : X ( Y is FLe-continuous. But F is not FL-continuous, because µ

is 1
2 -fuzzy open in Y and F l(µ) = λ2 is not 1

2 -fuzzy open set in X.

Proposition 2.1 If F is normalized, then F is FUe-continuous at an L-fuzzy point

xt ∈ dom(F ) iff xt ∈ Fu(µ) for each µ ∈ LY and η(µ) ≥ r there exists λ ∈ LX , λ is r-feo set

and xt ∈ λ such that λ ≤ Fu(µ).

Theorem 2.1 Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η) and µ ∈ LY ,
then the following are equivalent:

(i) F is FLe-continuous.

(ii) F l(µ) is r-feo set, for any η(µ) ≥ r.
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(iii) Fu(µ) is r-fec set, for any η(1− µ) ≥ r.

(iv) eCτ (Fu(µ), r) ≤ Fu(Cη(µ, r)), for any µ ∈ LY .

(v) Cτ (δIτ (Fu(µ), r), r) ∧ Iτ (δCτ (Fu(µ), r), r) ≤ Fu(Cη(µ, r)), for any µ ∈ LY .

Proof. (i)⇒ (ii): Let xt ∈ dom(F ), µ ∈ LY , η(µ) ≥ r and xt ∈ F l(µ) then, there exist λ ∈ LX ,

λ is r-feo set and xt ∈ λ such that λ ≤ F l(µ) and hence xt ∈ eIτ (F l(µ), r). Therefore, we

obtain F l(µ) ≤ eIτ (F l(µ), r). Thus F l(µ) is r-feo set.

(ii) ⇒ (iii): Let µ ∈ LY and η(1 − µ) ≥ r hence by (ii), F l(1 − µ) = 1 − Fu(µ) is r-feo.

Then Fu(µ) is r-fec.

(iii) ⇒ (iv): Let µ ∈ LY hence by (iii), Fu(Cη(µ, r)) is r-fec. Then we obtain

eCτ (Fu(µ), r) ≤ Fu(Cη(µ, r)).

(iv) ⇒ (v): Let µ ∈ LY hence by (iv), we obtain

Cτ (δIτ (Fu(µ), r), r) ∧ Iτ (δCτ (Fu(µ), r), r) ≤ eCτ (Fu(µ), r) ≤ Fu(Cη(µ, r)).

(v) ⇒ (ii): Let µ ∈ LY , η(µ) ≥ r, hence by (v), we have

1− F l(µ) = Fu(1− µ)

≥ Cτ (δIτ (Fu(1− µ), r), r) ∧ Iτ (δCτ (Fu(1− µ), r), r)

= Cτ (δIτ (1− F l(µ), r), r) ∧ Iτ (δCτ (1− F l(µ), r), r)

= 1− [Cτ (δIτ (F l(µ), r), r) ∨ Iτ (δCτ (F l(µ), r), r)]

F l(µ) ≤ Cτ (δIτ (F l(µ), r), r) ∨ Iτ (δCτ (F l(µ), r), r).

Hence, F l(µ) is r-feo.

(ii) ⇒ (i): Let xt ∈ dom(F ), µ ∈ LY , η(µ) ≥ r, with xt ∈ F l(µ) we have by (ii), F l(µ) is

r-feo-set. Let F l(µ) = λ(say), then there exists λ ∈ LX , λ is r-feo-set and xt ∈ λ such that

λ ≤ F l(µ). Thus F is FLe-continuous.

Theorem 2.2 Let F : X ( Y be a FM and normalized between two L-fts’s (X, τ), (Y, η)

and µ ∈ LY , then the following are equivalent:

(i) F is FUe-continuous.

(ii) Fu(µ) is r-feo set, for any η(µ) ≥ r.

(iii) F l(µ) is r-fec set, for any η(1− µ) ≥ r.

(iv) eCτ (F l(µ), r) ≤ F l(Cη(µ, r)), for any µ ∈ LY .

(v) Cτ (δIτ (F l(µ), r), r) ∧ Iτ (δCτ (F l(µ), r), r) ≤ F l(Cη(µ, r)), for any µ ∈ LY .

Proof. This can be proved in a similar way as Theorem 2.1.

Corollary 2.1 Let F : X ( Y be a FM between two fts’s (X, τ), (Y, η) and µ ∈ LY .

Then we have the following:

(i) If F is normalized, then F is FUe-continuous at xt iff xt ∈ r-feo set of Fu(µ), for each

η(µ) ≥ r and xt ∈ Fu(µ).
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(ii) F is FLe-continuous at xt iff xt ∈ r-feo set of F l(µ), for each η(µ) ≥ r and xt ∈ F l(µ).

Remark 2.2 Let F : X ( Y be a FM between two fts’s (X, τ), (Y, η) and µ ∈ LY . Then

we will show that if F is FUe-continuous and not normalized then xt /∈ r-feo set of Fu(µ), for

each η(µ) ≥ r, by the following example.

Example 2.3 Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM defined by

GF (x1, y1) = 0.1, GF (x1, y2) = 0.6, GF (x1, y3) = 0, GF (x2, y1) = 0.7, GF (x2, y2) = 0, and

GF (x2, y3) = 0.7. Let λ1 and λ2 be a fuzzy subsets of X be defined as λ1(x1) = 0.5, λ1(x2) = 0.5

and λ2(x1) = 0.6, λ2(x2) = 0.6 and µ be a fuzzy subset of Y defined as µ(y1) = 0.6, µ(y2) = 0.6,

µ(y3) = 0.6. We assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies τ : LX → L and

η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,

1
2 , if λ = λ1,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,

1
2 , if µ = µ,

0, otherwise.

are fuzzy topologies on X and Y. Since dom(F )(x) =
∨
y∈Y

GF (x, y), i.e x1
0.6 ∈ dom(F ) and

x2
0.7 ∈ dom(F ). From Definition 2.3, we have

Fu(0.6)(x1) = 0.6, Fu(0)(x1) = 0.4, Fu(1)(x1) = 1

Fu(0.6)(x2) = 0.6, , Fu(0)(x2) = 0.3, Fu(1)(x2) = 1.

For r= 1
2 , as µ is 1

2 -fuzzy open in Y and Fu(µ) = λ2 is 1
2 -feo set in X. Then

(i) F is FUe-continuous.

(ii) F is not normalized.

(iii) The fuzzy point xt with x2
0.7 /∈ λ2 where Fu(µ) = λ2 is r-feo set and η(µ) ≥ 1

2 .

Theorem 2.3 Let {Fi}i∈Γ be a family of FLe-continuous between two fts’s (X, τ) and

(Y, η). Then
⋃
i∈Γ

Fi is FLe-continuous.

Proof. Let µ ∈ LY , then (
⋃
i∈Γ

Fi)
l(µ) =

∨
i∈Γ

(Fi
l(µ)) by, Theorem 1.3 (ii). Since {Fi}i∈Γ is a

family of FLe-continuous between two fts’s (X, τ) and (Y, η), then Fi
l(µ) is r-feo for any

η(µ) ≥ r. Then we have (
⋃
i∈Γ

Fi)
l
(µ) =

∨
i∈Γ(Fi

l(µ)) is r-feo for any η(µ) ≥ r. Hence
⋃
i∈Γ

Fi is

FLe-continuous.

Theorem 2.4 Let {Fi}i∈Γ be a family of normalized FUe-continuous between two fts’s

(X, τ) and (Y, η). Then F1

⋃
F2 is FUe-continuous.

Proof. Let µ ∈ LY , then

(F1 ∪ F2)
u
(µ) = F1

u(µ) ∧ F2
u(µ)

by, Theorem 1.3 (iii). Since {Fi}i∈Γ is a family of normalized FUe-continuous between two

fts’s (X, τ) and (Y, η), then (Fi
u(µ)) if r-feo, for any η(µ) ≥ r for each i ∈ {1, 2}. Then for

each µ ∈ LY , we have (F1 ∪ F2)
u
(µ) = F1

u(µ) ∧ F2
u(µ) is r-feo set for any η(µ) ≥ r. Hence

F1 ∪ F2 is FUe-continuous.
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Definition 2.2 A fuzzy set λ in a fts (X, τ) is called r-fuzzy e-compact iff every family

in {µ : µ is r-feo, µ ∈ LX and r ∈ L} covering λ has a finite subcover.

Definition 2.3 Let F : X ( Y be a FM between two fts’s (X, τ), (Y, η) and r ∈ L0.

Then F is called fuzzy e-compact valued iff F (xt) is r-fuzzy e-compact for each xt ∈ dom(F ).

Theorem 2.5 Let F : X ( Y be a crisp FUe-continuous and e-compact valued between

two fts’s (X, τ) and (Y, η). Then the direct image of a r-fuzzy e-compact in X under F is also

r-fuzzy e-compact.

Proof. Let λ be r-fuzzy e-compact set in X and {γi : γi is r-feo set in Y , i ∈ Γ} be a family

of covering of F (λ). i.e. F (λ) ≤
∨
i∈Γ

γi. Since λ =
∨
xt∈λ

xt, we have

F (λ) = F (
∨
xt∈λ

xt) =
∨
xt∈λ

F (xt) ≤
∨
i∈Γ

γi.

It follows that for each xt ∈ λ, F (xt) ≤
∨
i∈Γ

γi. Since F is r-fuzzy e-compact valued, then there

exists finite subset Γxt of Γ such that F (xt) ≤
∨

n∈Γxt

γn = γxt . By Theorem 1.1 (viii), we have

xt ≤ Fu(F (xt)) ≤ Fu(γxt
) and λ =

∨
xt∈λ

xt =
∨
xt∈λ

Fu(γxt
).

Since, η(γxt) ≥ r, then from Theorem 2.2, we have Fu(γxt) is r-feo-set. Hence {Fu(γxt) :

Fu(γxt
) is r-feo-set, xt ∈ λ} is a family covering the set λ. Since λ is r-fuzzy e-compact, then

there exists finite index set N such that λ ≤
∨
n∈N

Fu(γxtn
). From Theorem 1.1 (vii), we have

F (λ) ≤ F (
∨
n∈N

Fu(γxtn
)) =

∨
n∈N

F (Fu(γxtn
)) ≤

∨
n∈N

γxtn
.

Then F (λ) is r-fuzzy e-compact.

Theorem 2.6 Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η) and

(Z, δ) be three fts’s. Then we have the following:

(i) If F and H are normalized, FUe-continuous, then H ◦ F is FUe-continuous.

(ii) If F and H are FLe-continuous, then H ◦ F is FLe-continuous.

Proof. (i) Let F and H are normalized, FUe-continuous and ν ∈ LZ . Then from Theorem

1.2, we have (H ◦ F )u(ν) = Fu(Hu(ν)) is r-feo with ν(Hu(ν)) ≥ δ(ν). Thus H ◦ F is FUe-

continuous.

(ii) Similar of (i).

Theorem 2.7 Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F is FLe-continuous and H is FL-continuous, then H ◦ F is

FLe-continuous.

Proof. Let ν ∈ LZ , δ(ν) ≥ r. Since H is FL-continuous, then by Theorem 1.5, H l(ν) is r-fuzzy

open set in Y. Also, F is FLe-irresolute implies F l(H l(ν)) is r-feo set in X. Hence, we have

(H ◦ F )l(ν) = F l(H l(ν)) is r-feo. Thus H ◦ F is FLe-continuous.
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Theorem 2.8 Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F and H are normalized, F is FUe-continuous and H is FU -

continuous, then H ◦ F is FUe-continuous.

Proof. This can be proved in a similar way as Theorem 2.7.

Theorem 2.9 Let F : X ( Y be a FM between two fts’s (X, τ) and (Y, η). If Gf is

FLe-continuous, then F is FLe-continuous.

Proof. For the fuzzy sets ρ ∈ LX , τ(ρ) ≥ r, ν ∈ LY and η(ν) ≥ r, we take, (ρ×

ν)(x, y) =

0, if x /∈ ρ,

ν(y), if x ∈ ρ.
Let xt ∈ dom(F ), µ ∈ LY and η(µ) ≥ r with xt ∈ F l(µ), then we have xt ∈ Glf (X × µ)

and η(X × µ) ≥ r. Since Gf is FLe-continuous, it follows that there exists λ ∈ LX , λ is r-

feo and xt ∈ λ such that λ ≤ Glf (X × µ). From here, we obtain that λ ≤ F l(µ). Thus F is

FLe-continuous.

Theorem 2.10 Let F : X ( Y be a FM between two fts’s (X, τ) and (Y, η). If Gf is

FUe-continuous, then F is FUe-continuous.

Proof. This can be proved in a similar way as Theorem 2.9.

Theorem 2.11 Let (X, τ) and (Xi, τi) be L-fts’s (i ∈ I). If a FM F : X ( Πi∈IXi is

FLe-continuous (where Πi∈IXi is the product space), then Pi ◦ F is FLe-continuous for each

i ∈ I, where Pi : Πi∈IXi → Xi is the projection multifunction which is defined by Pi(xi) = {xi}
for each i ∈ I.

Proof. Let µi0 ∈ LXi0 and τi(µi0) ≥ r. Then

(Pi0 ◦ F )l(µi0) = F l(P li0(µi0)) = F l(µi0 ×Πi 6=i0Xi).

Since F is FLe-continuous and τi(µi0 ×Πi6=i0Xi) ≥ r, it follows that F l(µi0 ×Πi 6=i0Xi) is r-feo

set. Then Pi ◦ F is an FLe-continuous.

We state the following result without proof in view of the above theorem.

Theorem 2.12 Let (X, τ) and (Xi, τi) be L-fts’s (i ∈ I). If a FM F : X ( Πi∈IXi is

FUe-continuous (where Πi∈IXi is the product space), then Pi ◦ F is FUe-continuous for each

i ∈ I, where Pi : Πi∈IXi → Xi is the projection multifunction which is defined by Pi(xi) = {xi}
for each i ∈ I.

Theorem 2.13 Let (Xi, τi) and (Yi, ηi) be L-fts’s and Fi : Xi ( Yi be a FM for

each i ∈ I. Suppose that F : Πi∈IXi ( Πi∈IYi is defined by F (xi) = Πi∈IFi(xi). If F is

FLe-continuous, then Fi is FLe-continuous for each i ∈ I.

Proof. Let µi ∈ LYi and ηi(µi) ≥ r. Then ηi(µi × Πi 6=jYj) ≥ r. Since F is FLe-continuous, it

follows that F l(µi ×Πi6=jYj) = F l(µi)×Πi 6=jXj is r-feo. Consequently, we obtain that F l(µi)

is r-feo for each i ∈ I. Thus, Fi is FLe-continuous.
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We state the following result without proof in view of above theorem.

Theorem 2.14 Let (Xi, τi) and (Yi, ηi) be L-fts’s and Fi : Xi ( Yi be a FM for

each i ∈ I. Suppose that F : Πi∈IXi ( Πi∈IYi is defined by F (xi) = Πi∈IFi(xi). If F is

FUe-continuous, then Fi is FUe-continuous for each i ∈ I.

§3. Fuzzy upper and lower e-irresolute multifunctions

Definition 3.1 Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η) and r ∈ L0.

Then F is called:

(i) Fuzzy upper e-irresolute (FUe-irresolute, in short) at an L-fuzzy point xt ∈ dom(F ) iff

xt ∈ Fu(µ) for each µ ∈ LY and µ is r-feo, there exists λ ∈ LX , λ is r-feo and xt ∈ λ
such that λ ∧ dom(F ) ≤ Fu(µ).

(ii) Fuzzy lower e-irresolute (FLe-irresolute, in short) at an L-fuzzy point xt ∈ dom(F ) iff

xt ∈ F l(µ) for each µ ∈ LY and µ is r-feo, there exists λ ∈ LX , λ is r-feo and xt ∈ λ
such that λ ≤ F l(µ).

(iii) FUe-irresolute (resp. FLe-irresolute) iff it is FUe-irresolute (resp. FLe-irresolute) at

every xt ∈ dom(F ).

Example 3.1 Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM defined by

GF (x1, y1) = 0.1, GF (x1, y2) = 1, GF (x1, y3) = 0, GF (x2, y1) = 0.5, GF (x2, y2) = 0, and

GF (x2, y3) = 1. Let λ1 and λ2 be a fuzzy subsets of X be defined as λ(x1) = 0.5, λ(x2) = 0.5:

µ1 and µ2 be a fuzzy subsets of Y defined as µ1(y1) = 0.5, µ1(y2) = 0.5, µ1(y3) = 0.5 and

µ2(y1) = 0.4, µ2(y2) = 0.4, µ2(y3) = 0.4. We assume that 1 = 1 and 0 = 0. Define L-fuzzy

topologies τ : LX → L and η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,

1
2 , if λ = λ,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,

1
2 , if µ = µ1,

0, otherwise.

are fuzzy topologies on X and Y. For r = 1
2 , then F is FUe-irresolute and FLe-irresolute.

Proposition 3.1 F is normalized implies F is FUe-irresolute at xt ∈ dom(F ) iff xt ∈
Fu(µ) for each µ ∈ LY and µ is r-feo, there exists λ ∈ LX , λ is r-feo and xt ∈ λ such that

λ ≤ Fu(µ).

Remark 3.1 Let F be a FM between two L-fts’s (X, τ) and (Y, η). For the mapping

F : X ( Y, the following statements are valid:

(1) FUe-irresolute ⇒ FUe-continuous.

(2) FLe-irresolute ⇒ FLe-continuous.

In general, the converse of Remark 3.1 need not be true from the following examples.

Example 3.2 Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM defined by

GF (x1, y1) = 0.8, GF (x1, y2) = 0.9, GF (x1, y3) = 0.8, GF (x2, y1) = 1, GF (x2, y2) = 0.7,
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and GF (x2, y3) = 0.9. Let λ1 and λ2 be a fuzzy subset of X be defined as λ1(x1) = 0.3,

λ1(x2) = 0.1; λ2(x1) = 0.1, λ2(x2) = 0.2 and µ1 and µ2 be a fuzzy subsets of Y defined as

µ1(y1) = 0.7, µ1(y2) = 0.9, µ1(y3) = 0.8 and µ2(y1) = 0.3, µ2(y2) = 0.1, µ2(y3) = 0.2 We

assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies τ : LX → L and η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,

1
2 , if λ = λ1,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,

1
2 , if µ = µ1,

0, otherwise.

are fuzzy topologies on X and Y. For r = 1
2 , then F : X ( Y is FUe-continuous but not

FUe-irresolute because µ2 is 1
2 -feo in (Y, η), Fu(µ2) = λ2 is not 1

2 -feo set in (X, τ).

Example 3.3 Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM defined

by GF (x1, y1) = 0.2, GF (x1, y2) = 1, GF (x1, y3) = 0, GF (x2, y1) = 0.5, GF (x2, y2) = 0,

and GF (x2, y3) = 0.3. Let λ1 and λ2 be a fuzzy subsets of X be defined as λ1(x1) = 0.4,

λ1(x2) = 0.3; λ2(x1) = 0.2, λ2(x2) = 0.4, µ1 and µ2 be a fuzzy subsets of Y defined as

µ1(y1) = 0.6, µ1(y2) = 0.9, µ1(y3) = 0; µ2(y1) = 0.4, µ2(y2) = 0.1, µ2(y3) = 1. We assume

that 1 = 1 and 0 = 0. Define L-fuzzy topologies τ : LX → L and η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,

1
2 , if λ = λ1,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,

1
2 , if µ = µ1,

0, otherwise.

are fuzzy topologies on X and Y. For r= 1
2 , then F : X ( Y is FLe-continuous but not FLe-

irresolute because µ2 is 1
2 -feo in (Y, η), F l(µ2) = λ2, is not 1

2 -feo set in (X, τ).

Theorem 3.1 Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η) and µ ∈ LY ,
then the following are equivalent:

(i) F is FLe-irresolute.

(ii) F l(µ) is r-feo set, for any µ is r-feo.

(iii) Fu(µ) is r-fec set, for any µ is r-fec.

(iv) eCτ (Fu(µ), r) ≤ Fu(eCη(µ, r)), for any µ ∈ LY .

(v) Cτ (δIτ (Fu(µ), r), r) ∧ Iτ (δCτ (Fu(µ), r), r) ≤ Fu(eCη(µ, r)), for any µ ∈ LY .

Proof. (i)⇒ (ii): Let xt ∈ dom(F ), µ ∈ LY , µ is r-feo and xt ∈ F l(µ) then, there exist λ ∈ LX ,

λ is r-feo set and xt ∈ λ such that λ ≤ F l(µ) thus xt ∈ eIτ (F l(µ), r). Therefore, we obtain

F l(µ) ≤ eIτ (F l(µ), r). Thus F l(µ) is r-feo set.

(ii) ⇒ (iii): Let µ ∈ LY and µ is r-fec. Hence by (ii), F l(1−µ) = 1−Fu(µ) is r-feo. Then

Fu(µ) is r-fec.

(iii) ⇒ (iv): Let µ ∈ LY hence by (iii), Fu(eCη(µ, r)) is r-fec. Then we obtain

eCτ (Fu(µ), r) ≤ Fu(eCη(µ, r)).
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(iv) ⇒ (v): Let µ ∈ LY hence by (iv), we obtain

Cτ (δIτ (Fu(µ), r), r) ∧ Iτ (δCτ (Fu(µ), r), r) ≤ eCτ (Fu(µ), r) ≤ Fu(eCη(µ, r)).

(v) ⇒ (ii): Let µ ∈ LY and µ is r-feo. Hence by (v), we have

1− F l(µ) = Fu(1− µ)

≥ Cτ (δIτ (Fu(1− µ), r), r) ∧ Iτ (δCτ (Fu(1− µ), r), r)

= Cτ (δIτ (1− F l(µ), r), r) ∧ Iτ (δCτ (1− F l(µ), r), r)

= 1− [Cτ (δIτ (F l(µ), r), r) ∨ Iτ (δCτ (F l(µ), r), r)]

F l(µ) ≤ Cτ (δIτ (F l(µ), r), r) ∨ Iτ (δCτ (F l(µ), r), r).

Hence, F l(µ) is r-feo.

(ii) ⇒ (i): Let xt ∈ dom(F ), µ ∈ LY and µ is r-feo, with xt ∈ F l(µ) we have by

(ii), F l(µ) = λ(say) is r-feo, then there exists λ ∈ LX , λ is r-feo-set and xt ∈ λ such that

λ ≤ F l(µ). Thus F is FLe-irreesolute.

Theorem 3.2 Let F : X ( Y be a FM and normalized between two L-fts’s (X, τ), (Y, η)

and µ ∈ LY , then the following are equivalent:

(i) F is FUe-irresolute.

(ii) Fu(µ) is r-feo set, for any µ is r-feo.

(iii) F l(µ) is r-fec set, µ is r-fec.

(iv) eCτ (F l(µ), r) ≤ F l(eCη(µ, r)), for any µ ∈ LY .

(v) Cτ (δIτ (F l(µ), r), r) ∧ Iτ (δCτ (F l(µ), r), r) ≤ F l(eCη(µ, r)), for any µ ∈ LY .

Proof. This can be proved in a similar way as Theorem 3.1.

Corollary 3.1 Let F : X ( Y be a FM between two fts’s (X, τ), (Y, η) and µ ∈ LY .

Then we have the following:

(i) If F is normalized, then F is FUe-irresolute at a fuzzy point xt iff xt ∈ r-feo set of

Fu(µ), for each µ is r-feo and xt ∈ Fu(µ).

(ii) F is FLe-irresolute at a fuzzy point xt iff xt ∈ r-feo set of F l(µ), for each µ is r-feo and

xt ∈ F l(µ).

Theorem 3.3 Let {Fi}i∈Γ be a family of FLe-irresolute between two fts’s (X, τ) and

(Y, η). Then
⋃
i∈Γ

Fi is FLe-irresolute.

Proof. Let µ ∈ LY , then (
⋃
i∈Γ

Fi)
l(µ) =

∨
i∈Γ

(F li (µ)) by, Theorem 1.3 (ii). Since {Fi}i∈Γ is a

family of FLe-irresolute between two fts’s (X, τ) and (Y, η), then F li (µ) is r-feo for any µ

is r-feo. Then we have (
⋃
i∈Γ

Fi)
l(µ) =

∨
i∈Γ(F li (µ)) is r-feo for any µ is r-feo. Hence

⋃
i∈Γ

Fi is

FLe-irresolute.

Theorem 3.4 Let {Fi}i∈Γ be a family of normalized FUe-irresolute between two fts’s

(X, τ) and (Y, η). Then F1

⋃
F2 is FUe-irresolute.
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Proof. Let µ ∈ LY , then

(F1 ∪ F2)u(µ) = F1
u(µ) ∧ F2

u(µ)

by, Theorem 1.3 (iii). Since {Fi}i∈Γ is a family of normalized FUe-irresolute between two fts’s

(X, τ) and (Y, η), then Fi
u(µ) is r-feo, for any µ is r-feo, for each i ∈ {1, 2}. Then for each

µ ∈ LY , we have (F1 ∪ F2)
u
(µ) = F1

u(µ)∧F2
u(µ) is r-feo, for any µ is r-feo set. Hence F1∪F2

is FUe-irresolute.

Theorem 3.5 Let F : X ( Y be a crisp FUe-irresolute and e-compact valued between

two fts’s (X, τ) and (Y, η). Then the direct image of a r-fuzzy e-compact in X under F is also

r-fuzzy e-compact.

Proof. Let λ be r-fuzzy e-compact set in X and {γi : γi is r-feo set in Y , i ∈ Γ} be a family of

covering of F (λ). i.e. F (λ) ≤
∨
i∈Γ

γi. Since λ =
∨
xt∈λ

xt, we have

F (λ) = F (
∨
xt∈λ

xt) =
∨
xt∈λ

F (xt) ≤
∨
i∈Γ

γi.

It follows that for each xt ∈ λ, F (xt) ≤
∨
i∈Γ

γi. Since F is fuzzy e-compact valued, then there

exists finite subset Γxt
of Γ such that F (xt) ≤

∨
n∈Γxt

γn = γxt
. By Theorem 1.1 (viii), we have,

xt ≤ Fu(F (xt)) ≤ Fu(γxt) and λ =
∨
xt∈λ

xt =
∨
xt∈λ

Fu(γxt).

Since, γxt
is r-feo, then from Theorem 2.2, we have Fu(γxt

) is r-feo. Hence {Fu(γxt
) :

Fu(γxt) is r-feo, xt ∈ λ} is a family covering the set λ. Since λ is r-fuzzy e-compact, then there

exists finite index set N such that λ ≤
∨
n∈N

Fu(γxtn
). From Theorem 1.1 (vii), we have

F (λ) ≤ F (
∨
n∈N

Fu(γxtn
)) =

∨
n∈N

F (Fu(γxtn
)) ≤

∨
n∈N

γxtn
.

Then F (λ) is r-fuzzy e-compact.

Theorem 3.6 Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F is FLe-irresolute and H is FLe-irresolute, then H ◦ F is

FLe-irresolute.

Proof. Let ν ∈ LZ , ν is r-feo. Since H is FLe-irresolute, then by Theorem 3.1, H l(ν) is r-

feo set in Y. Also, F is FLe-irresolute implies F l(H l(ν)) is r-feo set in X. Hence, we have

(H ◦ F )l(ν) = F l(H l(ν)) is r-feo. Thus H ◦ F is FLe-irresolute.

Theorem 3.7. Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F is FUe-irresolute and H is FUe-irresolute, then H ◦ F is

FUe-irresolute.

Proof. This can be proved in a similar way as Theorem 3.6.
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Theorem 3.8. Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F is FLe-irresolute and H is FLe-continuous, then H ◦ F is

FLe-continuous.

Proof. Let ν ∈ LZ , δ(ν) ≥ r. Since H is FLe-continuous, then by Theorem 2.1, H l(ν) is

r-feo set in Y. Also, F is FLe-irresolute implies F l(H l(ν)) is r-feo set in X. Hence, we have

(H ◦ F )l(ν) = F l(H l(ν)) is r-feo. Thus H ◦ F is FLe-continuous.

Theorem 3.9. Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F and H are normalized, F is FUe-irresolute and H is FUe-

continuous, then H ◦ F is FUe-continuous.

Proof. This can be proved in a similar way as Theorem 3.8.

Theorem 3.10. Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F is normalized and FUe-irresolute and H is FLe-continuous,

then H ◦ F is FUe-continuous.

Proof. Let ν ∈ LZ , δ(ν) ≥ r. Since H is FLe-continuous, then from Theorem 2.1, H l(ν) is

r-feo set in Y. Also, F is normalized and FUe-irresolute implies Fu(H l(ν)) is r-feo set in X

by, Theorem 3.2. Hence, we have (H ◦ F )u(ν) = Fu(H l(ν)) is r-feo. Thus H ◦ F is FUe-

continuous.

Theorem 3.11. Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If H is normalized and FUe-continuous, F is FLe-irresolute, then

H ◦ F is FLe-continuous.

Proof. Let ν ∈ LZ , δ(ν) ≥ r. Since H is FUe-continuous, then Hu(ν) is r-feo set in Y. Also,

F is FLe-irresolute implies F l(Hu(ν)) is r-feo set in X by, Theorem 3.1. Hence, we have

(H ◦ F )l(ν) = F l(Hu(ν)) is r-feo. Thus H ◦ F is FLe-continuous.
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Abstract In the present paper, we study the class Rp(γ, α) given as

Rp(γ, α) =

{
f ∈ Ap : <

(
(1− α)

Ip(n, λ)f(z)

zp
+ α

Ip(n+ 1, λ)f(z)

zp

)
> γ, z ∈ E

}
.

We find the integral representation of Ip(n, λ)f(z) as a sufficient condition for f ∈ Ap to be

a member of the class Rp(γ, α). The results of some known classes in this direction appear

as particular cases of our main result.

Keywords multivalent function, analytic function, multiplier transformation, extreme points.

2010 Mathematics Subject Classification 30C45

§1. Introduction

Let A be the class of functions f, analytic in the open disk E = {z : |z| < 1} in the complex

plane C and normalized by the conditions f(0) = f ′(0) − 1 = 0. Then f ∈ A has the Taylor

series expansion

f(z) = z +

∞∑
k=2

akz
k.

Let Ap denote the class of functions of the form

f(z) = zp +

∞∑
k=p+1

akz
k, p ∈ N = {1, 2, 3. . . . },

analytic and multivalent in the open disk E. Note that A1 = A. For f ∈ Ap, define a multiplier

transformation Ip(n, λ)f(z), as follows:

Ip(n, λ)f(z) = zp +

∞∑
k=p+1

(
k + λ

p+ λ

)n
akz

k, (λ ≥ 0, n ∈ N0 = N ∪ {0}),
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The special case I1(n, 0) of the above defined operator is the well-known Sǎlǎgean [9] derivative

operator Dn, defined for f ∈ A as given below:

Dnf(z) = z +

∞∑
k=2

knakz
k.

Singh et al. [11], Krzyz [5] and Chichra [2] studied the class R(β), β < 1, defined as:

R(β) = {f ∈ A : <(f ′(z) + zf ′′(z)) > β, z ∈ E},

where β is given by

βS = inf{β : R(β) ⊂ S}

and

βS∗ = inf{β : R(β) ⊂ S∗}.

Later on, Singh et al. [12] showed that βS∗ ≤ − 1
4 which was further improved by Ali [1]. Gao [3]

and Silverman [10] proved independently and obtained βS∗ ≤ 6−π2

24−π2 . In 2007, Gao et al. [4]

studied the following subclass of A :

R(β, α) = {f ∈ A : <(f ′(z) + αzf ′′(z)) > β, z ∈ E},

where β < 1, α > 0. They determined the extreme points of R(β, α) and obtain sharp bounds

for <(f ′(z)) and <(f(z)/z). They also determined the number β(α) such that R(β, α) ⊂ S∗,
for certain fixed number α in [1, ∞). Recently, Wang et al. [13] studied the class Q(α, β, γ)

defined as:

Q(α, β, γ) = {f ∈ A : <[α(f(z)/z) + βf ′(z)] > γ, (α, β) > 0, 0 ≤ γ < α+ β ≤ 1; z ∈ E}.

They provided the extreme points and radius of univalence for the members of this class. In the

present paper, we study the following subclass Rp(γ, α) of Ap involving multivalent functions :

Rp(γ, α) =

{
f ∈ Ap : <

(
(1− α)

Ip(n, λ)f(z)

zp
+ α

Ip(n+ 1, λ)f(z)

zp

)
> γ, z ∈ E

}
,

where α > 0 and 0 ≤ γ < α ≤ 1.

§2. Main Result

Theorem 2.1 A function f ∈ Ap is in Rp(γ, α) if and only if Ip(n, λ)f(z) can be

expressed as

Ip(n, λ)f(z) =

∫
|x|=1

[
(2γ − 1)zp + (2− 2γ)

∞∑
m=0

xmzm+p

mβ + 1

]
dµ(x) (1)

where µ(x) is the probability measure defined on the X = {x : |x| = 1}. For fixed β and

α, Rp(γ, α) and the probability measures {µ} defined on X are one-to-one by the expression

(1).
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Proof. Let u(z) =
Ip(n, λ)f(z)

zp
.

Differentiating lograthmically, we have :

zu′(z)

u(z)
=
z(Ip(n, λ)f(z))′

Ip(n, λ)f(z)
− p. (2)

In the view of relation

zI
′

p(n, λ)f(z) = (p+ λ)Ip(n+ 1, λ)f(z)− λIp(n, λ)f(z),

(2) becomes
zu′(z)

(p+ λ)u(z)
+ 1 =

Ip(n+ 1, λ)f(z))

Ip(n, λ)f(z)
.

Hence
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)
= u(z) +

1

p+ λ
zu′(z).

Now

(1− α)
Ip(n, λ)f(z)

zp
+ α

Ip(n+ 1, λ)f(z)

zp
= u(z) + βzu′(z), (3)

where β =
α

p+ λ
. Since f ∈ Rp(γ, α), therefore

<(u(z) + βzu′(z)) > γ.

Let P denote the normalized class of analytic functions which have positive real part. Therefore

f ∈ Rp(γ, α) if and only if

u(z) + βzu′(z)− γ
1− γ

∈ P, u(0) = 1.

By Herglotz expression of functions in P, we have

u(z) + βzu′(z)− γ
1− γ

=

∫
|x|=1

1 + xz

1− xz
dµ(x),

which is equivalent to

1

β
u(z) + zu′(z) =

1

β

∫
|x|=1

1 + (1− 2γ)xz

1− xz
dµ(x).

Therefore

z−
1
β

∫ z

0

(
1

β
u(ζ) + ζu′(z)

)
ζ

1
β−1dζ =

1

β

∫
|x|=1

(
z−

1
β

∫ z

0

1 + (1− 2γ)xζ

1− xζ
ζ

1
β−1dζ

)
dµ(x)

i.e.

u(z) =

∫
|x|=1

(
(2γ − 1) + (2− 2γ)

∞∑
m=0

(xz)m

mβ + 1

)
dµ(x),

which is equivalent to

Ip(n, λ)f(z) =

∫
|x|=1

(
(2γ − 1)zp + (2− 2γ)

∞∑
m=0

xmzm+p

mβ + 1

)
dµ(x),

Since the probability measures {µ} and the class P as well as class P and Rp(γ, α) are one-to-

one, so the second part of the theorem is true and can be proved by deduction. This completes

the proof of Theorem 2.1.
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Corollary 2.2 The extreme points of the class Rp(γ, α) are

Ip(n, λ)fx(z) = (2γ − 1)zp + (2− 2γ)

∞∑
m=0

xmzm+p

mβ + 1
, |x| = 1. (4)

Proof. Using the notation Ip(n, λ)fx(z), equation (1) can be written as

Ip(n, λ)fµ(z) =

∫
|x|=1

Ip(n, λ)fx(z)dµ(x).

By Theorem 2.1, the map µ→ fµ is one-to-one, so the proof follows.

For p = 1 and n = 0 = λ in the Theorem 2.1, we get:

Corollary 2.3 For f ∈ R1(γ, α), where α > 0 and 0 ≤ γ < α ≤ 1,

<
(

(1− β)
f(z)

z
+ βf ′(z)

)
> γ, β = α.

therefore

I1(0, 0)f(z) = f(z) =

∫
|x|=1

(
(2γ − 1)z + (2− 2γ)

∞∑
m=0

xmzm+1

mβ + 1

)
dµ(x).

For α = 1 − β, the above expression obtained by Wang et al. [13]. Saitoh [8] and Owa [6, 7]

discussed the related properties of Q(1− β, β, γ) = R1(γ, 1− β).

Selecting p = 1 = n and λ = 0 in Theorem 2.1, we have the following result:

Corollary 2.4 If f ∈ R1(γ, α), where α > 0 and 0 ≤ γ < α ≤ 1, satisfies

<
(

(1− α)
I1(1, 0)f(z)

z
+ α

I1(2, 0)f(z)

z

)
= <(f ′(z) + βf ′′(z)) > γ,

where β = α > 0, then

I1(1, 0)f(z) = zf ′(z) =

∫
|x|=1

(
(2γ − 1)z + (2− 2γ)

∞∑
m=0

xmzm+1

mβ + 1

)
dµ(x)

which on further simplification gives

f(z) =

∫
|x|=1

(
(2γ − 1)z + (2− 2γ)x̄

∞∑
m=0

(xz)m+1

(m+ 1)(mβ + 1)

)
dµ(x).

This result was obtained by Gao et al. [4]. If we select β = 1 in the above result, we get:

Corollary 2.5 If f ∈ R1(γ, 1), where α = β = 1 and 0 ≤ γ < 1, then

f(z) =

∫
|x|=1

(
(2γ − 1)z + (2− 2γ)x̄

∞∑
m=0

(xz)m+1

(m+ 1)2

)
dµ(x)
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=

∫
|x|=1

(∫ z

0

(2γ − 1)ζ + (2γ − 2)x̄ log(1− xζ)

ζ
dζ

)
dµ(x),

this result was also obtained by Silverman [10].

Selecting p = 1, n = 2 and λ = 0, we get the following result from Theorem 2.1:

Corollary 2.6 If f ∈ R1(γ, α), α > 0 and 0 ≤ γ < α ≤ 1, satisfies

<
(

(1− α)
I1(2, 0)f(z)

z
+ α

I1(3, 0)f(z)

z

)
= <(f ′(z) + (1 + 2β)zf ′′(z)) + βz2f ′′′(z)) > γ,

where β = α > 0, 0 ≤ γ < 1, then

I1(2, 0)f(z) = zf ′(z) + z2f ′′(z) =

∫
|x|=1

(
(2γ − 1)z + (2− 2γ)

∞∑
m=0

xmzm+1

mβ + 1

)
dµ(x)

Further, we get

zf ′(z) =

∫
|x|=1

(
(2γ − 1)z + (2− 2γ)

∞∑
m=0

xmzm+1

(m+ 1)(mβ + 1)

)
dµ(x).

Hence

f(z) =

∫
|x|=1

(
(2γ − 1)z + (2− 2γ)x̄

∞∑
m=0

(xz)m+1

(m+ 1)2(mβ + 1)

)
dµ(x). (5)

Corollary 2.7 If f ∈ A and

<(f ′(z) + (1 + 2β)zf ′′(z)) + βz2f ′′′(z)) > γ,

where β > 0, 0 ≤ γ < 1, then extreme points of this class are given by (5) as

fx(z) = (2γ − 1)z + (2− 2γ)x̄

∞∑
m=0

(xz)m+1

(m+ 1)2(mβ + 1)
, |x| = 1. (6)

Corollary 2.8 If f ∈ A and

<(f ′(z) + (1 + 2β)zf ′′(z)) + βz2f ′′′(z)) > γ,

where β > 0, 0 ≤ γ < 1, then

|an| ≤
2(1− γ)

m2(β(m− 1) + 1)
, m ≥ 2.

The result is sharp.

Proof. The coefficient bounds are maximized at an extreme point.Thus from (6), fx(z) can be

expressed as

fx(z) = z + 2(1− γ)

∞∑
m=2

xm−1zm

m2(β(m− 1) + 1)
, |x| = 1.

and hence the result follows.
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