A CLASS OF RECURSIVE SETS

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

In this article one builds a class of recursive sets, one establishes properties of these sets and one proposes applications. This article widens some results of [1].

1) Definitions, properties.

One calls recursive sets the sets of elements which are built in a recursive manner: let T be a set of elements and f_i for i between 1 and s, of operations n_i, such that $f_i : T^n \rightarrow T$. Let’s build by recurrence the set M included in T and such that:

(Def. 1) 1°) certain elements $a_1,...,a_n$ of T, belong to M.

2°) if $(\alpha_{i_1},...,\alpha_{i_n})$ belong to M, then $f_i(\alpha_{i_1},...,\alpha_{i_n})$ belong to M for all $i \in \{1,2,...,s\}$.

3°) each element of M is obtained by applying a number finite of times the rules 1° or 2°.

We will prove several proprieties of these sets M, which will result from the manner in which they were defined. The set M is the representative of a class of recursive sets because in the rules 1° and 2°, by particularizing the elements $a_1,...,a_n$ respectively $f_1,...,f_s$ one obtains different sets.

Remark 1: To obtain an element of M, it is necessary to apply initially the rule 1.

(Def. 2) The elements of M are called elements M-recursive.

(Def. 3) One calls order of an element a of M the smallest natural $p \geq 1$ which has the propriety that a is obtained by applying p times the rule 1° or 2°.

One notes M_p the set which contains all the elements of order p of M. It is obvious that $M_1 = \{a_1,...,a_n\}$.

$$M_2 = \bigcup_{i=1}^{s} \left(\bigcup_{(a_{i_1},...,a_{i_n}) \in M_1^n} f_i(\alpha_{i_1},...,\alpha_{i_n}) \right) \setminus M_1.$$

One withdraws M_1 because it is possible that $f_j(a_{j_1},...,a_{j_n}) = a_i$ which belongs to M_1, and thus does not belong to M_2.

One proves that for $k \geq 1$ one has:
\[M_{k+1} = \bigcup_{i=1}^{r} \left(\bigcup_{(a_1, \ldots, a_n) \in \prod_{i}^{(i)}} f_i(\alpha_{i_1}, \ldots, \alpha_{i_n}) \right) \setminus \bigcup_{h=1}^{k} M_h \]

where each

\[\prod_{k}^{(i)} = \left\{ (\alpha_{i_1}, \ldots, \alpha_{i_n}) \mid \alpha_{i_j} \in M_{q_j}, \ j \in \{1, 2, \ldots, n_i\}; \ 1 \leq q_j \leq k \right\} \]

The sets \(M_p, \ p \in \mathbb{N}^* \), form a partition of the set \(M \).

Theorem 1:

\[M = \bigcup_{p \in \mathbb{N}^*} M_p, \text{ where } \mathbb{N}^* = \{1, 2, 3, \ldots\}. \]

Proof:

From the rule 1° it results that \(M_1 \subseteq M \).

One supposes that this propriety is true for values which are less than \(p \). It results that \(M_p \subseteq M \), because \(M_p \) is obtained by applying the rule 2° to the elements of \(\bigcup_{i=1}^{p-1} M_i \).

Thus \(\bigcup_{p \in \mathbb{N}^*} M_p \subseteq M \). Reciprocally, one has the inclusion in the contrary sense in accordance with the rule 3°.

Theorem 2: The set \(M \) is the smallest set, which has the properties 1° and 2°.

Proof:

Let \(R \) be the smallest set having properties 1° and 2°. One will prove that this set is unique.

Let’s suppose that there exists another set \(R' \) having properties 1° and 2°, which is the smallest. Because \(R \) is the smallest set having these proprieties, and because \(R' \) has these properties also, it results that \(R \subseteq R' \); of an analogue manner, we have \(R' \subseteq R \): therefore \(R = R' \).

It is evident that \(M' \subseteq R \). One supposes that \(M_i \subseteq R \) for \(1 \leq i < p \). Then (rule 3°), and taking in consideration the fact that each element of \(M_p \) is obtained by applying rule 2° to certain elements of \(M_i \), \(1 \leq i < p \), it results that \(M_p \subseteq R \). Therefore \(\bigcup_{p \in \mathbb{N}^*} M_p \subseteq R \) (\(p \in \mathbb{N}^* \)), thus \(M \subseteq R \). And because \(R \) is unique, \(M = R \).

Remark 2. The theorem 2 replaces the rule 3° of the recursive definition of the set \(M \) by: "\(M \) is the smallest set that satisfies proprieties 1° and 2°."

Theorem 3: \(M \) is the intersection of all the sets of \(T \) which satisfy conditions 1° and 2°.

Proof:
Let \(T_{12} \) be the family of all sets of \(T \) satisfying the conditions 1° and 2°. We note \(I = \bigcap_{A \in T_{12}} A \).

\(I \) has the properties 1° and 2° because:
1) For all \(i \in \{1,2,...,n\} \), \(a_i \in I \), because \(a_i \in A \) for all \(A \) of \(T_{12} \).
2) If \(\alpha_{i_1},...,\alpha_{i_n} \in I \), it results that \(\alpha_{i_1},...,\alpha_{i_n} \) belong to \(A \) that is \(A \) of \(T_{12} \).

Therefore,
\[\forall i \in \{1,2,...,s\}, \ f_i(\alpha_{i_1},...,\alpha_{i_n}) \in A \] which is \(A \) of \(T_{12} \), therefore \(f_i(\alpha_{i_1},...,\alpha_{i_n}) \in I \)

for all \(i \) from \(\{1,2,...,s\} \).

From theorem 2 it results that \(M \subseteq I \).
Because \(M \) satisfies the conditions 1° and 2°, it results that \(M \in T_{12} \), from which \(I \subseteq M \). Therefore \(M = I \)

(Def. 4) A set \(A \subseteq I \) is called closed for the operation \(f_{b_0} \) if and only if for all \(\alpha_{b_1},...,\alpha_{b_{n_0}} \) of \(A \), one has \(f_{b_0}(\alpha_{b_1},...,\alpha_{b_{n_0}}) \) belong to \(A \).

(Def. 5) A set \(A \subseteq T \) is called \(M \)-recursively closed if and only if:
1) \(\{a_1,...,a_n\} \subseteq A \).
2) \(A \) is closed in respect to operations \(f_1,...,f_s \).

With these definitions, the precedent theorems become:

Theorem 2': The set \(M \) is the smallest \(M \)-recursively closed set.

Theorem 3': \(M \) is the intersection of all \(M \)-recursively closed sets.

(Def. 6) The system of elements \(\langle \alpha_1,...,\alpha_m \rangle, \ m \geq 1 \) and \(\alpha_i \in T \) for \(i \in \{1,2,...,m\} \), constitute a \(M \)-recursive description for the element \(\alpha \), if \(\alpha_m = \alpha \) and that each \(\alpha_i \) (\(i \in \{1,2,...,m\} \)) satisfies at least one of the proprieties:
1) \(\alpha_i \in \{a_1,...,a_n\} \).
2) \(\alpha_i \) is obtained starting with the elements which precede it in the system by applying the functions \(f_j, \ 1 \leq j \leq s \) defined by property 2° of (Def. 1).

(Def. 7) The number \(m \) of this system is called the length of the \(M \)-recursive description for the element \(\alpha \).

Remark 3: If the element \(\alpha \) admits a \(M \)-recursive description, then it admits an infinity of such descriptions.

Indeed, if \(\langle \alpha_1,...,\alpha_m \rangle \) is a \(M \)-recursive description of \(\alpha \) then \(\langle a_{1},...,a_{h},\alpha_{1},...,\alpha_{m} \rangle \) is also a \(M \)-recursive description for \(\alpha \), \(h \) being able to take all values from \(\mathbb{N} \).
Theorem 4: The set M is identical with the set of all elements of T which admit a M-recursive description.

Proof: Let D be the set of all elements, which admit a M-recursive description. We will prove by recurrence that $M_p \subseteq D$ for all p of \mathbb{N}^*.

For $p=1$ we have: $M_1 = \{a_1,\ldots,a_n\}$, and the a_j, $1 \leq j \leq n$, having as M-recursive description: $\langle a_j \rangle$. Thus $M_1 \subseteq D$. Let’s suppose that the property is true for the values smaller than p. M_p is obtained by applying the rule 2° to the elements of $\bigcup_{i=1}^{p-1} M_i$; $\alpha \in M_p$ implies that $\alpha \in f_j(\alpha_{i_1},\ldots,\alpha_{i_{n_1}})$ and $\alpha_{i_j} \in M_{h_j}$ for $h_j < p$ and $1 \leq j \leq n_i$.

But a_j, $1 \leq j \leq n_i$, admits M-recursive descriptions according to the hypothesis of recurrence, let’s have $\langle \beta_{j_1},\ldots,\beta_{j_{n_j}} \rangle$. Then $\langle \beta_{j_1},\ldots,\beta_{j_{n_1}},\beta_{2j_{1}},\ldots,\beta_{2j_{2}},\ldots,\beta_{n_{j_1}},\ldots,\beta_{n_{j_{n_j}}},\alpha \rangle$ constitute a M-recursive description for the element α. Therefore if α belongs to D, then $M_p \subseteq D$ which is $M = \bigcup_{p \in \mathbb{N}} M_p \subseteq D$.

Reciprocally, let x belong to D. It admits a M-recursive description $\langle b_1,\ldots,b_t \rangle$ with $b_1 = x$. It results by recurrence by the length of the M-recursive description of the element x, that $x \in M$. For $t = 1$ we have $\langle b_1 \rangle$, $b_1 = x$ and $b_1 \in \{a_1,\ldots,a_n\} \subseteq M$. One supposes that all elements y of D which admit a M-recursive description of a length inferior to t belong to M. Let $x \in D$ be described by a system of length t: $\langle b_1,\ldots,b_t \rangle$, $b_t = x$. Then $x \in \{a_1,\ldots,a_n\} \subseteq M$, where x is obtained by applying the rule 2° to the elements which precede it in the system: b_1,\ldots,b_{t-1}. But these elements admit the M-recursive descriptions of length which is smaller that t: $\langle b_1 \rangle,\langle b_1,b_2 \rangle,\ldots,\langle b_1,\ldots,b_{t-1} \rangle$. According to the hypothesis of the recurrence, b_1,\ldots,b_{t-1} belong to M. Therefore b_t belongs also to M. It results that $M \equiv D$.

Theorem 5: Let b_1,\ldots,b_q be elements of T, which are obtained from the elements a_1,\ldots,a_n by applying a finite number of times the operations f_1,f_2,\ldots, f_s. Then M can be defined recursively in the following mode:

1) Certain elements $a_1,\ldots,a_n,b_1,\ldots,b_q$ of T belong to M.

2) M is closed for the applications f_i, with $i \in \{1,2,\ldots,s\}$.

3) Each element of M is obtained by applying a finite number of times the rules (1) or (2) which precede.

Proof: evident. Because b_1,\ldots,b_q belong to T, and are obtained starting with the elements a_1,\ldots,a_n of M by applying a finite number of times the operations f_i, it results that b_1,\ldots,b_q belong to M.

4
Theorem 6: Let’s have g_j, $1 \leq j \leq r$, of the operations n_j, where $g_j : T^{n_j} \rightarrow T$ such that M to be closed in rapport to these operations. Then M can be recursively defined in the following manner:

1) Certain elements $a_1, ..., a_n$ de T belong to M.
2) M is closed for the operations f_i, $i \in \{1,2,...,s\}$ and g_j, $j \in \{1,2,...,r\}$.
3) Each element of M is obtained by applying a finite number of times the precedent rules.

Proof is simple: Because M is closed for the operations g_j (with $j \in \{1,2,...,r\}$), one has, that for any $\alpha_{j_1},...,\alpha_{j_n}$ from M, $g_j(\alpha_{j_1},...,\alpha_{j_n}) \in M$ for all $j \in \{1,2,...,r\}$.

From the theorems 5 and 6 it results:

Theorem 7: The set M can be recursively defined in the following manner:

1) Certain elements $a_1, ..., a_n, b_1, ..., b_q$ of T belong to M.
2) M is closed for the operations f_i ($i \in \{1,2,...,s\}$) and for the operations g_j ($j \in \{1,2,...,r\}$) previously defined.
3) Each element of M is defined by applying a finite number of times the previous 2 rules.

(Def. 8) The operation f_i conserves the property P iff for any elements $\alpha_{i_1},...,\alpha_{i_n}$ having the property P, $f_i(\alpha_{i_1},...,\alpha_{i_n})$ has the property P.

Theorem 8: If $a_1, ..., a_n$ have the property P, and if the functions $f_1, ..., f_s$ preserve this property, then all elements of M have the property P.

Proof:

$$M = \bigcup_{p \in \mathbb{N}} M_p.$$ The elements of M_1 have the property P.

Let’s suppose that the elements of M_i for $i < p$ have the property P. Then the elements of M_p also have this property because M_p is obtained by applying the operations $f_1, f_2, ..., f_s$ to the elements of: $\bigcup_{i=1}^{p} M_i$, elements which have the property P.

Therefore, for any p of \mathbb{N}, the elements of M_p have the property P.

Thus all elements of M have it.

Corollary 1: Let’s have the property P: ”x can be represented in the form $F(x)$”.

If $a_1, ..., a_n$ can be represented in the form $F(a_1), ..., F(a_n)$, and if $f_1, ..., f_s$ maintains the property P, then all elements α of M can be represented in the form $F(\alpha)$.

Remark. One can find more other equivalent def. of M.

2) APPLICATIONS, EXAMPLES.
In applications, certain general notions like: M - recursive element, M -recursive description, M - recursive closed set will be replaced by the attributes which characterize the set M. For example in the theory of recursive functions, one finds notions like: recursive primitive functions, primitive recursive description, primitively recursive closed sets. In this case “ M ” has been replaced by the attribute “primitive” which characterizes this class of functions, but it can be replaced by the attributes ”general”, ”partial”.

By particularizing the rules 1^o and 2^o of the def. 1, one obtains several interesting sets:

Example 1: (see [2], pp. 120-122, problem 7.97).

Example 2: The set of terms of a sequence defined by a recurring relation constitutes a recursive set.

Let’s consider the sequence: $a_{n+k} = f(a_n,a_{n+1},...,a_{n+k-1})$ for all n of \mathbb{N}^+, with $a_i = a_0^i$, $1 \leq i \leq k$. One will recursively construct the set $A = \{a_m\}_{m \in \mathbb{N}^+}$ and one will define in the same time the position of an element in the set A:

1°) $a_1^0,...,a_k^0$ belong to A, and each a_i^0 ($1 \leq i \leq k$) occupies the position i in the set A;

2°) if $a_n,a_{n+1},...,a_{n+k-1}$ belong to A, and each a_j for $n \leq j \leq n+k-1$ occupies the position j in the set A, then $f(a_n,a_{n+1},...,a_{n+k-1})$ belongs to A and occupies the position $n+k$ in the set A.

3°) each element of B is obtained by applying a finite number of times the rules 1^o or 2^o.

Example 3: Let $G = \{e,a^1,a^2,...,a^p\}$ be a cyclic group generated by the element a. Then (G, \cdot) can be recursively defined in the following manner:

1°) a belongs to G.

2°) if b and c belong to G then $b \cdot c$ belongs to G.

3°) each element of G is obtained by applying a finite number of times the rules 1 or 2.

Example 4: Each finite set $ML = \{x_1,x_2,...,x_n\}$ can be recursively defined (with $ML \subseteq T$):

1°) The elements $x_1,x_2,...,x_n$ of T belong to ML.

2°) If a belongs to ML, then $f(a)$ belongs to ML, where $f : T \rightarrow T$ such that $f(x) = x$;

3°) Each element of ML is obtained by applying a finite number of times the rules 1^o or 2^o.

Example 5: Let L be a vectorial space on the commutative corps K and $\{x_1,...,x_m\}$ be a base of L. Then L, can be recursively defined in the following manner:

1°) $x_1,...,x_m$ belong to L;

2°) if x,y belong to L and if a belongs to K, then $x \perp y$ y belong to L and $a \ast x$ belongs to L;

3°) each element of L is recursively obtained by applying a finite number of times the rules 1^o or 2^o.

6
The operators \(\perp \) and \(\ast \) are respectively the internal and external operators of the vectorial space \(L \).

Example 6: Let \(X \) be an \(A \)-module, and \(M \subset X \) (\(M \neq \emptyset \)), with \(M = \{ x_i \}_{i \in I} \). The sub-module generated by \(M \) is:

\[
\langle M \rangle = \left\{ x \in X / x = a_1 x_1 + \ldots + a_n x_n , \ a_i \in A, \ x_i \in M, \ i \in \{ 1, \ldots , n \} \right\}
\]

can be recursively defined in the following way:

1°) for all \(i \) of \(\{ 1, 2, \ldots , n \} \), \(\{ 1, 2, \ldots , n \} \) \(x_i \in \langle M \rangle \);

2°) if \(x \) and \(y \) belong to \(\langle M \rangle \) and \(a \) belongs to \(A \), then \(x + y \) belongs to \(\langle M \rangle \), and \(ax \) also;

3°) each element of \(\langle M \rangle \) is obtained by applying a finite number of times the rules 1° or 2°.

In accordance to the paragraph 1 of this article, \(\langle M \rangle \) is the smallest sub-set of \(X \) that verifies the conditions 1° and 2°, that is \(\langle M \rangle \) is the smallest sub-module of \(X \) that includes \(M \). \(\langle M \rangle \) is also the intersection of all the subsets of \(X \) that verify the conditions 1° and 2°, that is \(\langle M \rangle \) is the intersection of all sub-modules of \(X \) that contain \(M \). One also directly refines some classic results from algebra.

One can also talk about sub-groups or ideal generated by a set: one also obtains some important applications in algebra.

Example 7: One also obtains like an application the theory of formal languages, because, like it was mentioned, each regular language (linear at right) is a regular set and reciprocally. But a regular set on an alphabet \(\Sigma = \{ a_1, \ldots , a_n \} \) can be recursively defined in the following way:

1°) \(\emptyset, \{ \epsilon \}, \{ a_1 \}, \ldots , \{ a_n \} \) belong to \(R \).

2°) if \(P \) and \(Q \) belong to \(R \), then \(P \cup Q \), \(PQ \), and \(P^* \) belong to \(R \), with \(P \cup Q = \{ x / x \in P \ or \ x \in Q \} ; \ PQ = \{ xy / x \in P \ and \ y \in Q \} \), and \(P^* = \bigcup_{n=0}^{\infty} P^n \) with \(P^n = P \cdot P \cdot \ldots \cdot P \) and, by convention, \(P^0 = \{ \epsilon \} \).

3°) Nothing else belongs to \(R \) other than those which are obtained by using 1° or 2°.

From which many properties of this class of languages with applications to the programming languages will result.

REFERENCES:
