Two Remarkable Ortho-Homological Triangles

Prof. Ion Pătrașcu - The National College “Frații Buzești”, Craiova, Romania
Prof. Florentin Smarandache – University of New Mexico, U.S.A.

In a previous paper [5] we have introduced the ortho-homological triangles, which are triangles that are orthological and homological simultaneously.

In this article we call attention to two remarkable ortho-homological triangles (the given triangle \(ABC\) and its first Brocard’s triangle), and using the Sondat’s theorem relative to orthological triangles, we emphasize on four important collinear points in the geometry of the triangle. Orthological / homological / orthohomological triangles in the 2D-space are generalized to orthological / homological / orthohomological polygons in 2D-space, and even more to orthological / homological / orthohomological triangles, polygons, and polyhedrons in 3D-space.

Definition 1

The first Brocard triangle of a given triangle \(ABC\) is the triangle formed by the projections of the symmedian center of the triangle \(ABC\) on its perpendicular bisectors.

Observation

In figure 1 we note with \(K\) the symmedian center, \(OA', OB', OC'\) the perpendicular bisectors of the triangle \(ABC\) and \(A_1B_1C_1\) the first Brocard’s triangle.

![Fig. 1](image-url)
Theorem 1
If \(ABC\) is a given triangle and \(A_1B_1C_1\) is its first triangle Brocard, then the triangles \(ABC\) and \(A_1B_1C_1\) are ortho-homological.

We’ll perform the proof of this theorem in two stages.
I. We prove that the triangles \(A_1B_1C_1\) and \(ABC\) are orthological.
 The perpendiculars from \(A_1, B_1, C_1\) on \(BC, CA\) respectively \(AB\) are perpendicular bisectors in the triangle \(ABC\), therefore are concurrent in \(O\), the center of the circumscribed circle of triangle \(ABC\) which is the orthological center for triangles \(A_1B_1C_1\) and \(ABC\).
II. We prove that the triangles \(A_1B_1C_1\) and \(ABC\) are homological, that is the lines \(AA_1, BB_1, CC_1\) are concurrent.
To continue with these proves we need to refresh some knowledge and some helpful results.

Definition 2
In any triangle \(ABC\) there exist the points \(\Omega\) and \(\Omega’\) and the angle \(\omega\) such that:
\[
m(\angle \Omega'AB) = \angle \Omega'BC = \angle \Omega'CA = \omega
\]
\[
m(\angle \Omega'BA) = \angle \Omega'CA = \angle \Omega'AB = \omega
\]

The points \(\Omega\) and \(\Omega’\) are called the first, respectively the second point of Brocard and \(\omega\) is called the Brocard’s angle.

Lemma 1
In the triangle \(ABC\) let \(\Omega\) the first point of Brocard and \(\{A''\}\{A''\} = A\Omega \cap BC\), then:
\[
\frac{BA''}{CA''} = \frac{c^2}{a^2}
\]

Proof

\[
A_{\triangle ABA''} = \frac{1}{2} AB \cdot AA'' \sin \omega \tag{1}
\]

\[
A_{\triangle ACA''} = \frac{1}{2} AC \cdot AA'' \sin (A-\omega) \tag{2}
\]

From (1) and (2) we find:

\[
\frac{A_{\triangle ABA''}}{A_{\triangle ACA''}} = \frac{AB \cdot \sin \omega}{AC \cdot \sin (A-\omega)} \tag{3}
\]

On the other side, the mentioned triangles have the same height built from \(A\), therefore:

\[
\frac{A_{\triangle ABA''}}{A_{\triangle ACA''}} = \frac{BA''}{CA''} \tag{4}
\]

From (3) and (4) we have:

\[
\frac{BA''}{CA''} = \frac{AB \cdot \sin \omega}{AC \cdot \sin (A-\omega)} \tag{5}
\]

Applying the sinus theorem in the triangle \(A\Omega C\) and in the triangle \(B\Omega C\), it results:

\[
\frac{C\Omega}{\sin (A-\omega)} = \frac{AC}{\sin A\Omega C} \tag{6}
\]

\[
\frac{C\Omega}{\sin \omega} = \frac{BC}{\sin B\Omega C} \tag{7}
\]

Because

\[
m(\angle A\Omega C) = 180^\circ - A
\]

\[
m(\angle B\Omega C) = 180^\circ - C
\]

From the relations (6) and (7) we find:

\[
\frac{\sin \omega}{\sin (A-\omega)} = \frac{AC \cdot \sin C}{BC \cdot \sin A} \tag{8}
\]

Applying the sinus theorem in the triangle \(ABC\) leads to:

\[
\frac{\sin C}{\sin A} = \frac{AB}{BC} \tag{9}
\]

The relations (5), (8), (9) provide us the relation:

\[
\frac{BA''}{CA''} = \frac{c^2}{a^2}
\]

Remark 1

By making the notations: \(\{B''\} = B\Omega C \cap AC\) and \(\{C''\} = C\Omega A \cap AB\) we obtain also the relations:

\[
\frac{CB''}{AB''} = \frac{a^2}{b^2} \quad \text{and} \quad \frac{AC''}{BC''} = \frac{b^2}{c^2}
\]
Lemma 2
In a triangle \(ABC \), the Brocard’s Cevian \(B\Omega \), symmedian from \(C \) and the median from \(A \) are concurrent.

Proof
It is known that the symmedian \(CK \) of triangle \(ABC \) intersects \(AB \) in the point \(C_2 \) such that \(\frac{AC_2}{BC_2} = \frac{b^2}{c^2} \). We had that the Cevian \(B\Omega \) intersects \(AC \) in \(B' \) such that \(\frac{BC''}{B''A} = \frac{a^2}{b^2} \).

The median from \(A \) intersects \(BC \) in \(A' \) and \(BA' = CA' \).

Because \(\frac{A'B \cdot B''C \cdot C_2A}{A'C \cdot B''A \cdot C_2B} = 1 \), the reciprocal of Ceva’s theorem ensures the concurrency of the lines \(B\Omega, CK \) and \(AA' \).

Lemma 3
Give a triangle \(ABC \) and \(\omega \) the Brocard’s angle, then
\[
\cot \omega = \cot A + \cot B + \cot C
\]

Proof
From the relation (8) we find:
\[
\sin (A - \omega) = \frac{a}{b} \cdot \frac{\sin A}{\sin C} \cdot \sin \omega
\]

From the sinus’ theorem in the triangle \(ABC \) we have that
\[
\frac{a}{b} = \frac{\sin A}{\sin B}
\]

Substituting it in (10) it results:
\[
\sin (A - \omega) = \frac{\sin^2 A \cdot \sin \omega}{\sin B \cdot \sin C}
\]

Furthermore we have:
\[
\sin (A - \omega) = \sin A \cdot \cos \omega - \sin \omega \cdot \cos A
\]
\[
\sin A \cdot \cos \omega - \sin \omega \cdot \cos A = \frac{\sin^2 A \cdot \sin \omega}{\sin B \cdot \sin C}
\]

Dividing relation (11) by \(\sin A \cdot \sin \omega \) and taking into account that \(\sin A = \sin(B + C) \), and \(\sin(B + C) = \sin B \cdot \cos C + \sin C \cdot \cos B \) we obtain relation (5).

Lemma 4
If in the triangle \(ABC \), \(K \) is the symmedian center and \(K_1, K_2, K_3 \) are its projections on the sides \(BC, CA, AB \), then:
Proof:

Let AA_2 the symmedian in the triangle ABC, we have:

$$\frac{BA_2}{CA_2} = \frac{A_{AA_2}}{A_{CAA_2}},$$

where E and F are the projection of A_2 on AC respectively AB.

It results that $\frac{A_2F}{A_2E} = \frac{c}{b}$.

From the fact that $\triangle AKK_1 \sim \triangle AA_2F$ and $\triangle AKK_2 \sim \triangle AA_2E$ we find that $\frac{KK_1}{KK_2} = \frac{A_2F}{A_2E}$.

Also: $\frac{KK_2}{b} = \frac{KK_3}{c}$, and similarly: $\frac{KK_1}{a} = \frac{KK_2}{b}$, consequently:

$$\frac{KK_1}{a} = \frac{KK_2}{b} = \frac{KK_3}{c} \quad (12)$$

The relation (12) is equivalent to:

$$\frac{aKK_1}{a^2} = \frac{bKK_2}{b^2} = \frac{cKK_3}{c^2} = \frac{aKK_1 + bKK_2 + cKK_3}{a^2 + b^2 + c^2}$$

Because

$$aKK_1 + bKK_2 + cKK_3 = 2A_{AA_2}ABC = 2S,$$

we have:

$$\frac{KK_1}{a} = \frac{KK_2}{b} = \frac{KK_3}{c} = 2S \quad \frac{2S}{a^2 + b^2 + c^2}.$$

If we note H_1, H_2, H_3 the projections of A, B, C on BC, CA, AB, we have

$$\cot A = \frac{H_2A}{BH_2} = \frac{bc \cos A}{2S}.$$
From the cosine’s theorem it results that: \(b \cdot c \cdot \cos A = \frac{b^2 + c^2 - a^2}{2} \), and therefore

\[
\cot A = \frac{b^2 + c^2 - a^2}{4S}
\]

Taking into account the relation (9), we find:

\[
\cot \omega = \frac{a^2 + b^2 + c^2}{4S},
\]

then

\[
tg \omega = \frac{4S}{a^2 + b^2 + c^2}
\]

and then

\[
\frac{KK_1}{a} = \frac{2S}{a^2 + b^2 + c^2} = \frac{1}{2} \cot \omega.
\]

Lemma 5

The Cevians \(AA_1, BB_1, CC_1 \) are the isotomics of the symmedians \(AA_2, BB_2, CC_2 \) in the triangle \(ABC \).

Proof:
In figure 5 we note J the intersection point of the Cevians from the Lemma 2.

Because $KA \parallel BC$, we have that $A_iA' = KK_1 = \frac{1}{2} atg \omega$. On the other side from the right triangle $A'A_iB$ we have: $tg \angle A_iBA' = \frac{A_iA'}{BA'} = tg \omega$, consequently the point A_i, the vertex of the first triangle of Brocard belongs to the Cevians $B \Omega$.

We note $\{J'\} = A_iK \cap AA'$, and evidently from $A_iK \parallel BC$ it results that JJ' is the median in the triangle JA_iK, therefore $A_iJ' = J'K$.

We note with A'_2 the intersection of the Cevians AA_i with BC, because $A_iK \parallel A'_2A_2$ and AJ' is a median in the triangle AA_iK it results that AA' is a median in triangle AA'_2A_2 therefore the points A'_2 and A_2 are isometric.

Similarly it can be shown that BB'_2 and CC'_2 are the isometrics of the symmedians BB_2 and CC_2.

The second part of this proof: Indeed it is known that the isometric Cevians of certain concurrent Cevians are concurrent and from Lemma 5 along with the fact that the symmedians of a triangle are concurrent, it results the concurrency of the Cevians AA_i, BB_i, CC_i and therefore the triangle ABC and the first triangle of Brocard are homological. The homology’s center (the concurrency point) of these Cevians is marked in some works with $\Omega"$ with and it is called the third point of Brocard.

From the previous proof, it results that $\Omega"$ is the isotomic conjugate of the symmedian center K.

Remark 2

The triangles ABC and $A_1B_1C_1$ (first Brocard triangle) are *triple-homological*, since first time the Cevians AB_1, BC_1, CA_1 are concurrent (in a Brocard point), second time the Cevians
AC_1, BA_1, CB_1 are also concurrent (in the second Brocard point), and third time the Cevians AA_1, BB_1, CC_1 are concurrent as well (in the third point of Brocard).

Definition 3
It is called the Tarry point of a triangle ABC, the concurrency point of the perpendiculars from A, B, C on the sides $B_i C_1$, $C_i A_1$, $A_i B_1$ of the Brocard’s first triangle.

Remark 3
The fact that the perpendiculars from the above definition are concurrent results from the theorem 1 and from the theorem that states that the relation of triangles’ orthology is symmetric. We continue to prove the concurrency using another approach that will introduce supplementary information about the Tarry’s point.
We’ll use the following:

Lemma 6:
The first triangle Brocard of a triangle and the triangle itself are similar.

Proof
From $KA_i \parallel BC$ and $OA' \perp BC$ it results that
$$m(\angle KA_i O) = 90^\circ$$
(see Fig. 1), similarly
$$m(\angle KB_i O) = m(\angle KC_i O) = 90^\circ$$
and therefore the first triangle of Brocard is inscribed in the circle with OK as diameter (this circle is called the Brocard circle).
Because
$$m(\angle A_i O C_i) = 180^\circ - B$$
and A_i, B_i, C_i, O are concyclic, it results that $\angle A_i B_i C_i = \angle B$, similarly
$$m(\angle B'O C_i') = 180^\circ - A$$,
it results that
$$m(\angle B_i O C_i) = m(A)$$
but
$$\angle B_i O C_i \equiv \angle B_i A_i C_i$$,
therefore
$$\angle B_i A_i C_i = \angle A$$
and the triangle $A_i B_i C_i$ is similar with the triangle ABC.

Theorem 2
The orthology center of the triangle ABC and of the first triangle of Brocard is the Tarry’s point T of the triangle ABC, and T belongs to the circumscribed circle of the triangle ABC.

Proof
We mark with T the intersection of the perpendicular raised from B on A_iC_i with the perpendicular raised from C on A_iB_i and let

\[
\{B_i, C_i\} = BT \cap A_iC_i, \quad A_i \{C_i\} = A_iB_i \cap CT.
\]

We have

\[
m(\triangle B_iC_i'T) = 180^\circ - m(\triangle C_iA_iB_i)
\]

But because of Lemma 6 $\angle C_iA_iB_i = \angle A$.

It results that $m(\angle B_iC_i'T) = 180^\circ - \angle A$, therefore

\[
m(\angle BTC') + m(\angle BAC) = 180^\circ
\]

Therefore T belongs to the circumscribed circle of triangle ABC.

If \{A_i\} = B_1C_1 \cap AT and if we note with T' the intersection of the perpendicular raised from A on B_1C_1 with the perpendicular raised from B on A_iC_i, we observe that

\[
m(\angle B_i'A_i') = m(\angle A_iC_iB_i)
\]

therefore

\[
m(\angle B'TA') + m(\angle BCA)
\]

and it results that T' belongs to the circumscribed triangle ABC.

Therefore $T = T'$ and the theorem is proved.

Theorem 3
If through the vertexes A, B, C of a triangle are constructed the parallels to the sides B_iC_i, C_iA_i respectively A, B_i of the first triangle of Brocard of this triangle, then these lines are concurrent in a point S (the Steiner point of the triangle)

Proof
We note with S the polar intersection constructed through A to B_iC_i with the polar constructed through B to A_iC_i (see Fig. 6).

We have

$$m(\angle ASB) = 180^\circ - m(\angle A_iC_iB_i)$$

(angles with parallel sides)

because

$$m(\angle A_iC_iB_i) = m\angle C,$$
we have

$$m(\angle ASB) = 180^\circ - m\angle C,$$

therefore $A_iSB_iC_i$ are concyclic.

Similarly, if we note with S' the intersection of the polar constructed through A to B_iC_i with the parallel constructed through C to A_iB_i we find that the points A_iS', B_iC_i are concyclic.

Because the parallels from A to B_iC_i contain the points A, S', S'' and the points S, S', A are on the circumscribed circle of the triangle, it results that $S = S'$ and the theorem is proved.

Remark 4
Because $SA \parallel B_iC_i$ and $B_iC_i \perp AT$, it results that

$$m(\angle SAT) = 90^\circ,$$

but S and T belong to the circumscribed circle to the triangle ABC, consequently the Steiner’s point and the Tarry point are diametric opposed.

Theorem 4
In a triangle ABC the Tarry point T, the center of the circumscribed circle O, the third point of Brocard Ω" and Steiner’s point S are collinear points

Proof
The P. Sondat’s theorem relative to the orthological triangles (see [4]) says that the points T, O, Ω" are collinear, therefore the points: $T, O, \Omega", S$ are collinear.

Open Questions
1) Is it possible to have two triangles which are four times, five times, or even six times orthological? But triangles which are four times, five times, or even six times homological? What about orthohomological? What is the largest such rank? For two triangles $A_1B_1C_1$ and $A_2B_2C_2$, we can have (in the case of orthology, and similarity in the cases of homology and orthohomology) the following 6 possibilities:

1) the perpendicular from A_1 onto B_2C_2, the perpendicular from B_1 onto C_2A_2, and
the perpendicular from C_1 onto A_2B_2 concurrent;
2) the perpendicular from A_1 onto B_2C_2, the perpendicular from B_1 onto A_2B_2, and the perpendicular from C_1 onto C_2A_2 concurrent;
3) the perpendicular from B_1 onto B_2C_2, the perpendicular from A_1 onto C_2A_2, and the perpendicular from C_1 onto A_2B_2 concurrent;
4) the perpendicular from B_1 onto B_2C_2, the perpendicular from A_1 onto A_2B_2, and the perpendicular from C_1 onto C_2A_2 concurrent;
5) the perpendicular from C_1 onto B_2C_2, the perpendicular from B_1 onto C_2A_2, and the perpendicular from A_1 onto A_2B_2 concurrent;
6) the perpendicular from C_1 onto B_2C_2, the perpendicular from B_1 onto A_2B_2, and the perpendicular from A_1 onto C_2A_2 concurrent.

2) We generalize the orthological, homological, and orthohomological triangles to respectively orthological, homological, and orthohomological polygons and polyhedrons. Can we have double, triple, etc. orthological, homological, or orthohomological polygons and polyhedrons? What would be the largest rank for each case?

3) Let’s have two triangles in a plane. Is it possible by changing their positions in the plane and to have these triangles be orthological, homological, orthohomological? What is the largest rank they may have in each case?

4) Study the orthology, homology, orthohomology of triangles and poligons in a 3D space.

5) Let’s have two triangles, respectively two polygons, in a 3D space. Is it possible by changing their positions in the 3D space to have these triangles, respectively polygons, be orthological, homological, or orthohomological? Similar question for two polyhedrons?

References