








EXPANSION OF xn IN SMARANDACHE TERMS OF 
PERMUTATIONS 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India-38000S.) 

ABSTRACT: 

DEFINITION of SMARANDACHE TERM 

Consider the expansion of xn as follows 

xn = b(n,1) X + b(n,2) x(x-1) + b(n,3) x(x-1 )(x-2) + •.• + b(n,n) xPn ---(9.1) 

We define b(n,r) x(x-1 )(x-2) ... (x-r+1 )(x-r) as the rth 

SMARANDACHE TERM in the above expansion of xn . 

In the present note we study the coefficients b{n,r).of the the rth 

SMARANDACHE TERM in such an expansion. We are 

encountered with fascinating coincidences. 

DISCUSSION: 

Let us examine the coefficients b(n.r).of the the rth 

SMARANDACHE TERM in such an expansion. 

Taking x = 1 gives b(n.1) = 1 

Taking x = 2 gives b(n.2) = (2n - 2 )/2 

Taking x = 3 gives b(".3) = {3" - 3 - 6(2n - 2)/2}/6 

= {1/3!} {(1).3 n 
- (3). 2 n + (3). (1)" -(1) (O)"} 

Taking x = 4 gives 

b(".4) = (1/4!) [(1) 4" - (4) 3" + (6) 2" - (4) 1n + 1(0)"] 
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This suggests the possibility of 

r 
b(n,r) = (1/rl) L (-1 r-k .rC k .kn = a{n,r) 

k=1 

THEOREM (9.1) 

r 
b (11 ') "(_1)r-k .rCk .kn (n,r) = r. £... = a(n,r) 

k=1 
First Proof: 

This will be proved in two parts. First we shall prove the following 

proposition. 
b(n+1,r) = b(n,r-1) + r. b(n,r) 

we have 

xn = b(n,1) X + b(n.2) x(x-1) + b(n,3) x(x-1 )(x-2) + ... + b(n,n) XP n 

x = r , gives, 

rn = b(n,1) r + b(n,2) r(r-1) + b(n,3) r(r-1 )(r-2) + ... + b(n,n) rPn 

multiplying both the sides by r , 

rn+
1 = b(n,1) r.r + b(n,2) r(r-1) 4- b(n,3) r.r(r-1)(r-2) + ... + b(n,r) r. rPr + 

terms equal to zero. 

n+1 - b rp b rp b rp b rp r - (n,1)r. 1 + (n,2)r. 2 + (n,3)r. 3+"'+ (n,r)r. r 

Using the identity r. rp k = rp k+1 + k. rp k we can write 

n+1 b { rp 1 rp} b {rp 2 rp } b { rp r = (n,1) . 2 + 1 + (n,2) 3 + . 2 + ... + (n,r) r + r. 

rp r-1 } 

rn+
1 = b(n,1) rp1 + { b(n,1) + 2. b(n,2)} rp2 + { b(n,2) + 3. b(n,3}} rp3 + ... + 
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{ b(n.r-1) + r. b(n.r)} rPr ---------- (9.2) 

Otherwise also we have 

The coefficients of rp t (t < r) are independent of r hence 

these can seperately be equated giving us 

b(n+1.r) = b cn•r -1) + r.b(n.r) 

Now we shall proceed by induction. Let 
r 

b(n,r) = (1/r!) L (_1y-k .rCk .kn 
k=O 

r-1 
b(n,r-1) = (1/(r-1)!) L (_1)r-1-k .r-1Ck .k" 

k=O 
be true. Then the sum b(",r-1) + r.b(",r) equals 

r-1 r 
(1/(r-1)!) L (_1)r-1-k .r-1Ck .kn + r. (1/r!) L (_1)r-k .rCk .kn 

k=O k=O 

r-1 
= «-1 )r-1/r!) [ L(-1 rk r {r-1Ck - rCk}k"] + r"+1/r! 

k=O 

r-1 
= «-1 y- 1/r!) [ I(-1 rk 

{ -k. rCk}k"] + r"+1/r! 
k=O 

r-1 
=(1/r!) L (-1 )r-k rC k k

n+ 1 

k=O 

which gives us 

r-1 
b(n+1,r) = (1/rt) L (-1 )r-k rC k k"+1 

k=O 

b(n+1,r) also takes the same form. Hence by induction the proof is 

complete. 
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Second Proof: This proof is totally based on a combinatorial 

approach . This method also provides us with a proof of the 

Conecture (6.3) of ref. [3] as a by product. 

If n objects no two alike are to be distributed in x boxes, no 

two alike, the number of ways this can be done is x" since there 

are k alternatives for disposals of the first object, k alternatives for 

the disposal of the second, and so on. 

Alternately let us proceed with a different approach. Let 

us consider the number of distributions in which exactly a given 

set of r boxes is filled (rest are_empty.). Let it be called f(n,r). 

We derive a formula for f(n,r) by using the inclusion 

exclusion principle. The method is illustrated by the computation of 

f(n,5). Consider the total number of arrangements, 5" of n different 

objects in 5 different boxes. Say that such an arrangement has 

property 'a'. In case the first box is empty, property 'b' incase the 

second box is empty, and similar property 'c', 'd', and 'e'. for the 

other three boxes respectively. To find the number of distributions 

with no box empty, we simply count the number of distributions 

having none of the properties 'a', 'b' IC' , ,. .. etc. We can apply the 

following formula. 

N - rC 1.N(a) + rC 2.N(a,b) - rC 3.N(a,b,c) + ... ------(9.3) 
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Here N = Sn is the total number of distributions. By N(a) we mean 

the number of distributions with the first box empty.and so N(a) = 

4n. Similarly N(a,b) is the number of distributions with the first two 

boxes empty. But this is the same as the number of distributions 

into 3 boxes and N(a,b) = 3n
. Thus we can write 

N = 5n 
, N(a) = 4n 

, N(a,b) = 3n etc. N(a,b,c,d,e) = O. 

Applying formula (9.3) we get 

by the direct generalization of this with rin place of 5 , we see 
that 

f(n,r) = rn - rC 1 .(r-1)n + rC 2 .(r-2)n - rC 3 .(r-3)n + ... 
r 

f(n,r) = L (_1)k rC k (r-k).n 
k=O 

f(n,r) = rl . a(n.r) ,from theorem (3.1). of ref. [1] 

Now these r boxes out of the given x boxes can be chosen in xCr 

ways. Hence the total number of ways in which n distinct objects 

distributed in x distinct boxes occupying exactly r of them ( with 

the rest x-r boxes empty) , defined as d(n,r/x) ,is given by 

d(n,r/x) = rl . a(n.r) xC r 

d(n,r/x) = a(n.r)' xPr 

Summing up all the cases for r =0 to r = x, the total number of 

ways in which n distinct objects can be distributed in x distinct 

boxes is given by 
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x x 

L d(n,r/x» = L xPr a(n,r) -------(9.4) 
rcO r=O 

equating the two results obtained by two different approaches we 

get n 

xn = L XP r a(n,r) 
raO 

REMARKS: 
If n distinct objects are to be distributed in x 

distinct boxes with no box empty I then n < x IS mandetory for a 

possible distribution.e.g. 5 objects can not be placed in 7 boxes 

with no empty boxes ( a sort of converse of peigon hole principle) 

Hence we get the following result 

f(n,r) = 0, for n < k. 

r 

f(n,r) = L (_1)k rC k (r-k)n = 0 if n < r. 
k=O 

Further Generalisation: 

(1) One can go ahead with the following generalisation of 

expansion of xn as follows 

xn = 9.(n/k,1) X + 9(n/k,2) x(x-k) + 9(n/k,3) x(x-k)(x-2k) + ... + 

9(n/k,n) x(x-k)(x- 2k) ... (x-(n-1 )k)(x -nk+ k) 

9(n/k,r) = b(n,r) = 8(n,r) for k = 1 has been dealt with in this 

note. One can explore for beautiful patterns for k = 2 I 3 etc. 

We can call (define) 9(n/k,r) x(x-k)(x-2k) ... (x-(n-1 )k)(x-rk+ k) 

as the rth Smarandache Term of the kth kind in such an 
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expansion. 

(2) Another generalisation could be 

xn
! = C(n/k,1) (x-k) + C(n/k,2) (X_k)(X2_k) + C(n/k,3) (X-k)(x2-k)(x 3

-

k) + ... + ... + C(n/k,n) (x-k) (x2-k)(x 3-k) ... ( Xn - k) 

For k = 1 if we denote C(n/k,r) = c(n,r) for simplicity we get 

xnl = C(n,1) (x-1) + C(n,2) (x-1 )(x2-1) + C(n,3) (x-1 )(x2-1 )(x3-1) 

+ ... + ... + c(n,n) (x-1) (x2-1 )(x3-1 ) ... ( xn - 1) 

We can define 

rth Smarandache Factorial Term of the kth kind in the 

expansion of xrd. One ca'n again explore for patterns for the 

coefficient C(n/k,r). 
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MISCELLANEOUS RESULTS AND THEOREMS ON 
SMARANDACHE TERMS AND FACTOR PARTITIONS 

(Amarnath Murthy ,S.E. (E & T), Well'Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: In [1] we define SMARANDACHE FACTOR 

PARTITION FUNCTION (SFP) , as follows: 

Let U1, U2 , U3 , ... Ur be a set of r natural numbers 

and P1, P2, P3 , ... Pr be arbitrarily chosen distinct primes then 

F(u1 , U2 , U3 , ... u r ) called the Smarandache Factor Partition of 

(U1 , U2 , U3, ... u r ) is defined as the number of ways in which the 

number 

0.1 0.2 a3 ar 

N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(U1 , U2 , U3 , .. 

. U r ) = F' (N) ,where 

a r 

N = Pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

Also for the case 

= U r = = Un = 1 

we denote 

F ( 1 , 1, 1, 1, "1. . .) = F ( 1#n) 
~ n - ones ~ 

In [2] we define b(n,r) x(x-1)(x-2) ... (x-r+1)(x-r) as the rth 

SMARANDACHE TERM in the expansion of 
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xn = b(n,1) X + b(n,2) x(x-1) + b(n,3) x(x-1)(x-2) + ... + b(n,n) xPn 

In this note some more results depicting how closely the 

coefficients of the SMARANDACHE TERM and SFPs are related. 

are derived. 
DISCUSSION: 

Result on the [i j
] matrix: 

Theorem (9.1) in [2] gives us the following result 

n 

X n - ~ XP a - ~ r (n,r) which leads us to the following 
r=O 

bea utifu I res u It. 

x x 

L k n = L 
k=1 k=1 r=1 

In matrix notation the same can be written as follows for x = 4 = n. 

1 P1 0 0 0 1 1 1 1 

2P1 2P2 0 0 0 1 3 7 

3
P1 

3
P2 

3
P3 0 * 0 0 1 6 

4P1 4P2 4P3 4P4 0 0 0 1 

In gerneral 

p * A' - Q where P -

A = [a(i,~ and Q = [ii] 
nXn nXn 

(A' is the transpose of A) 

Consider the expansion of xn I again 
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xn = b(n.1) X + b(n.2) x(x-1) + b(n.3) x(x-1 )(x-2) + ... + b(n.n) xp n 

for x = 3 we get 

x
3 = b(3.1) x + b p .2 ) x(x-1) + b(3,3) x(x-1 )(x-2) 

comparing the coefficient of powers of x on both sides we get 

b(3.1) - b(3,2) 

b(3,2) 

I n matrix form 

C3-1 

1 

o 

o 

(C3-1)' 

-1 2 

1 

o 

-3 

1 

1 

0 

0 

+ 

-

2 b(3,3) = 0 

3 b(3,3) = 0 

* 

b(3,3) = 1 

b(3,1) 

b(3.2) 

0(3,3) 

= 

-1 
-1 2 

1 -3 

0 1 

1 0 0 

1 1 0 

1 3 1 
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o 

o 

1 

1 

0 

0 

1 1 

1 3 

0 1 



similarly it has been observed that 

1 0 

1 1 

1 3 

1 7 

o 

o 
1 

6 

o 

o 
o 

1 

The above observation leads to the following theorem. 

THEOREM (10.1) 

In the expansion of xn as 

xn = b(n,1) X + b(n,2) x(x-1) + b(n,3) x(x-1 )(x-2) + ... + b(n,n) xPn 

If Cn be the coefficient ~atrix of equations obtained by equating 

the coefficient of powers of x on both sides then 

-- r (i,j) ] = star matrix of order n r nXn 

PROOF: It is evident that C pq the element of the pth row and qth 

column of Cn is the coefficient of xP in xPq. And also Cpq is 

independent of n. The coefficient of xP on the RHS is 
n 

coefficient of xP = L b(n,q) Cpq , also 
q=1 

coefficient of xP = 1 if P = n 

coefficient of x P = =0 if p ;t n. 

in matrix notation 
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coefficient of xP = 

= 

L b(n,q) Cpq 
q=1 

n 

I b(n,q) C' qp 
q=1 

= inp where inp = 1 , if n = p and inp = 0, if n * p. 

= In (identity matrix of order n.) 

[b(n,q) ] [Cp,q J = In 

[a(n,q) ] [Cp,q J = In as b(n,q) = a(n,q) 

This completes the proof of theorem (10.1). 
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THEOREM (10.2) 

If Ck,n is the coefficient of Xk in the expansion of xPn , then 

n 

L F ( 1 # k) C k • n = 1 
k=1 

PROOF: In property (3) of the STAR TRIANGLE following 

proposition has been established. 

n 

F'(1#n) = L C(n,m) = Sn , in matrix notation the same can be 
m=1 

expressed as follows for n = 4 

[1 1 1 1J 1 1 1 1 ~1 8 2 8 3 B.] 
0 1 3 7 = 
0 0 1 6 

0 0 0 1 

In general 

[11 Xn 
I 

. [ ac .) 
lxn 

I,J 

(cn- 1), 

[BJ Xn . [ 
lxn 

= 

( cn) 

In Cn,n , Cp,q the pth row and qth column is the coefficient of xP 

in xP q. Hence we have 
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n n 

2: F(1#k) Ck,n = 1 = 2: Bk Ck,n 
k=1 k=1 

THEOREM(10.3) 

n n 

l: F(1#(k+1)) Ck,n = n + 1 = l: B k+ 1 Ck,n 
k=1 k=1 

PROOF: 
It has already been established that 

n 

8 n + 1 = l: (m+1) a(n,m) 
m=1 

In matrix notation 

nXn 

[ j+1] 
1 X n 

1 X n 

n 

l: B k + 1 C k n = n + 1 , 
k=1 

There exist ample scope for more such results. 
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SMARANDACHE MAXIMUM RECIPROCAL REPRESENTATION 
FUNCTION 

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: Smarandache Maximum Reciprocal Representation 

(SMRR) Function fsMRR(n) is defined as follows 

fSMRR(n) = t if 

t t+1 

L 1/r < n < L 1/r 
r= 1 r=1 

SMARANDACHE MAXIMUM RECIPROCAL REPRESENTATION 
SEQUENCE 

SMRRS is defined as Tn = fsMRR(n) 

fsMRR(1) =1 

fSMRR(2) = 3, ( 1 + 1 12 + 1 13 < 2 < 1 + 1 12 + 1 13 + 1 14) 

fSMRR(3) = 10 10 11 

L 1/r s 3 s L 1/r 
r=1 r=1 

SMRRS is 
'1,3,10, ... 

A note on The SMRR Function: 

The harmonic series L 1 In satisfies the following inequality 

log (n+1) < L 1/n < log n + 1 -------( 1 ) 
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This inequality can be derived as follows 
We have eX > 1 + x > ,x > 0 

and (1 + 1/n)(1 + 1In) > 1 , n > 0 

which gives 

1/(r+1) < log( 1 + 1/r) < 1/r 

summing up for r = 1 to n+ 1 and with some algebraic jugallary 

we get (1). With the help of (1) we get the following result on 

the SMRR function. 

If SMRR(n) = m then [Iog(m)]:::: n - 1 

Where [Iog(m)] stands for the integer value of log(m). 

SOME CONJECTURES: 

(1.1). Every positive integer can be expressed as the sum of the 

re~iprocal of a finite number of distinct natural numbers. ( in 

infinitely many ways.). 

Let us define a function Rm(n) as the minimum number of natural 

numbers required for such an expression. 

(1.2). Every natural number can be expressed as the sum of the 

reciprocals of a set of natural numbers which are in Arithmetic 

Progression. 

(1.3). Let 

L 1/r ~ n ~ L 1/(r+1) 

where L 1/r stands for the sum of the reciprocals of first r 
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natural numbers and let S1 = L 1/r 

and so on , then there exists a finite m such that 

Sm+1 + 1/(r+km) = n 

Remarks The veracity of conjecture (1.1) IS deducible from 

conjecture (1.3) . 

(1.4). (a) There are infinitely many disjoint sets of natural numbers 

sum of whose reciprocals is unity. 

(b) Among the sets mentioned in (a) , there are sets which can 

be organised in an order such that the largest element of any set 

is smaller than the smallest element of the next set. 
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OPEN PROBLEMS AND CONJECTURES ON THE 

FACTOR IRECIPROCAL PARTITION THEORY: 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

(1.1) To derive a formula for SFPs of given length m of paqs for 

any value of a. 

(1.2) To derive a formula for SFPs of 

2 2 2 

N = P1 P2 P3 . 
2 

Pr 

(1.3) To derive a formula for" SFPs of given length m of 

ex. ex. ex. ex. 

N = Pr 

(1.4) To derive a reduction formula for pSq8 as a linear 

combination of ps-rqa-r for r =0 to a-1. 

Similar reduction formulae for (t·2) and (1.:c 3) also. 

(1.5) In general, in how many ways a number can be expressed as 

the product of its divisors? 

(1.6). Every positive integer can be expressed as the sum of the 

reciprocal of a finite number of distinct natural numbers. ( in 

infinitely many ways.). 

Let us define a function Rm(n) as the minimum number of natural 

numbers required for such an expression. 
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(1.7). Every natural number can be expressed as the sum of the 

reciprocals of a set of natural numbers which are in Arithmetic 

Progression. 

(1.8). Let 

I1/r =:; n =:; I 1/(r+1) 

where I1/r stands for the sum of the reciprocals of first r 

natural numbers and let 51 = L 1/r 

let 52 = S1 + 1/(r+k1) such that S2 + 1/(r+k1+1) > n ~ S2 

let S3 = S2 + 1/(r+k2) such that S3 + 1 /(r+k2+ 1) > n ~ S3 

and so on I then there ex,ists a finite m such that 

Sm+1 + 1/(r+km) = n 

Remarks The veracity of conjecture (1.6) is deducible from 

conjecture (1.8) . 

(1.9). (a) There are infinitely many disjoint sets of natural numbers 

sum of whose reciprocals is unity. 

(b) Among the sets mentioned in (a) , there are sets which can 

be organised in an order such that the largest element of any set 

is smaller than the smallest element of the next set. 

DEFINITION: We can define Smarandache Factor Partition 

Sequence as follows: Tn = factor partion of n = F'(n) 

T1 = 1 - Te= 3_ T12_= 4 etc -
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SFPS is given by 

1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5, 1,4,1,4,2,2,1,7,2, ... , 

DEFINITION: Let S be the smallest number such that F'(S) = n. 

We define S a Vedam Number and the sequence formed 

by Vedam numbers as the Smarandache Vedam Sequence. 

Smarandache Vedam Sequence is given as follows:Tn = F'(S) 

1, 4, 8, 12, 16, -1- , 24 , ... 

Note: There exist no number whose factor partition is equal to 6. 

hence a question mark at the sixth slot. We define such numbers 

as Dull numbers. The readers can explore the distribution 

(frequency) and other properties of dull numbers. 

DEFINITION: A number n is said to be a Balu number if it 

satisfies the relation d(n) = F'(n) = r , and is the smallest such 

number. 

1, 16, 36 are all Balu numbers. 

d(1) = F'(1) = i d(16) = F'(16) = 5, d(36) = F-'(36) = 9. 

Each Balu number ~ 16 , generates a Balu Class Cs (n) of 

numbers having the same canonical form satisfying the equation 

d(m) = F'(m).e.g. Cs(16) = {x I x = p4 , P is a prime.} = { 16,81, 

256, ... }. Simiiarly C s (36) = { x I x = p2q2 , P and q are primes.} 
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Conjecture 

(1.10): There are only finite number of Balu Classes. 

In case Conjecture (1.10) is true, to find out the largest Balu 

number. 
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SMARANDACHE RECIPROCAL FUNCTION 
AND AN ELEMENTARY INEQUALITY 

( Amarnath Murthy, S.E.(E&T), Well Logging Services, 
ONGC , Sabarmati , Ahmedabad, INDIA) 

The Smarandache Function is defined as Sen) = k . Where k is the 

smallest integer such that n divides kl 

Let us define Seen) Smarandache Reciprocal Function as follows: 

Seen) = x where x + 1 does not divide n! and for every y =:;; x, yin! 

THEOREM-I. 

If Seen) = x ,and n::;c 3 , then x + 1 is the smal1est prime greater than n. 

PROO:F: It is obvious th~t n! is divisible by 1, 2, ... up to n. We have 

to prove that nl is also divisible by n + 1 , n + 2 , ... n + m (= x) ,where 

n + m + 1 is the smallest prime greater than n.. Let r be any of these 

composite numbers. Then r must be factorable into two factors each of 

which is :2: 2. Let r = p.q ,where p, q :2: 2. If one of the factors (say q ) is 

:2: n then r = p.q :2: 2n . But according to the Bertrand's postulate there 

must be a prime between nand 2n, there is a contradiction here since all 

the numbers fronl n + 1 to n + m (n + 1 s r < n + m) are assumed to be 

composite. I-Ience neither of the two factors p , q can be:2: n. So each must 

be < n. Now there are two possibilities: 
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Case-I P :I: q. 

In this case as each is < n so p.q = r divides nl 

Case-II p = q = prIme 

Tn this case r = p2 where p IS a pnme. There are agam three 

possibilities: 

(a) p ~ 5. Then r = p2 > 4p => 4p < r < 2n => 2p < n. Therefore both 

p and 2p are le3s than n so p2 divides n! 

(b) P = 3 , Then r = p2 = 9 Therefore n must be 7 or 8 . and 9 divides 7! 

and 8!. 

(c) p = 2 ,then r = p2 = 4 . Therefore n must be 3 . But 4 does not divide 

3! , Hence the theorem holds for all integral values of n except n = 3. This 

completes the proof. 

Remarks: Readers can note that nl IS divisible by all the composite 

numbers between nand 2n. 

Note: We have the well known inequality Sen) ::; n. ---------(2) 

From the above theorem one can deduce the followjng inequality. 

If Pr is the rlh prime and Pr ::; n < Pr+l then Sen) ::; Pr. (A slight 

improvement on (2)). 
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i.e. S(Pr) = Pr, S(Pr+ 1) < Pr, S(Pr+ 2) < Pr, .,. S(Pr+l - 1) < Pr ,S(Pr+L 

= Pr+l 

Summing up for all the numbers Pr :s; n < Pr+l one gets 

P,-l - p, - 1 

L S (Pr + t)::;; (Pr+ 1 - Pr ) Pr 
t = 0 

Summing up for all the numbers up to the sth pnme, defining po = 1, Wt 

get 

p. 5 

L S (k) ::;; L (Pr+l - pr ) Pr --------(3) 
k=l r=O 

More generally from Ref. [1] following inequality on the nth partial 

sum of the Smarandache ( Inferior) Prime Part Sequence directly 

follows. 

Smarandache ( Inferior) Prime Part Sequence 

For any positive real number n one defines pp(n) as the largest 

prime number less than or equal to n. In [1] Prof. Krassimir T. 

Atanassov proves that the value of the nth partial sum of this 

n 

sequence Xn = L pp(k) is given by 
k=1 

1t(n) 

Xn = L (Pk - Pk-l). Pk-l + (n - p1t(n) + 1 ). P1t(n) 
k=2 

From (3) and (4) we get 
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n 

L S (k) ~ Xn 
k=l 

REFERENCES: 
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SOME FDM'II' EXAMPLES OF SMARANDACHE LUCKY METHODS IN 
ALGEBRA, TRIGONOMETRY, AA1J> CALCULUS 

( Amamath Murthy, S.E.(E&T), Well Logging Services, 
ONGC , Sabannati , Ahmedabad, INDIA) 

ABSTRACT: A number is said to be a Smarandache Lucky Number if an incorrect 

calculation leads to a correct result. For example, the fraction 42/21 = (4-2)/(2-1) = 211 

= 2 is incorrectly calculated, but the result 2 is still correct. More generally a 

Smarandache Lucky Method is said to be any incorrect method which leads to a correct 

result. In Ref. [1] The following question is asked: 

(1) Are there infInitely many Smarandache Lucky Numbers? 

We claim that the answer is YES. 

Also in the present note we give some fascinating Smarandache Lucky Methods in 
algebra, trigonometry, and calculus. 

A SMARANDACHE LUCKY METHOD IN TRIGONOMETRY: 

Some students at the early stage of just having introduced to the concept of function, 

misunderstand the meaning of f(x) as the product of f and x. 

e.g. for them sin(x) = product of sin and x. This gives rise to a funny lucky method 

applicable to the following identity. 

To prove 
sin2(X) - sin2(y) = sin (x + y) . sin ( x - y) 

- {sin(x) + sin(y) } . {sin(x) - sin(y)} ----------(A) 
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Taking sin common from both the factors 

= {sin (x + y) }. {sin ( x - y) } 

= RHS 

The correct method from (A) onwards should have been 

{2 sin((x + y)/2). cos((x - y)/2)}. {2 cos((x + y)/2). sin((x - y)/2)}. 

= {2 sin((x + y)/2). cos((x + y)I2)}.{2 cos((x - y)/2sin((x - y)/2)}. 

= {sin (x + y) }. {sin ( x - y) } 

=RHS 

Remarks: The funny thing is the wrong lucky method is a shortcut more so to get 

carried away. 

A SMARANDACHE LUCKY METHOD IN ALGEBRA: 

In vector algebra the dot product of two vectors (al i + a2 j + a3 k) and 

(b l i + b2j + b3 k) is given by 

(ali +a2j +a3k). (b l i +b2j +b3k) = alb l +a2b2 +a3b3 

The same idea if extended to ordinary algebra would mean 

(a + b) ( c + d) = ac + bd. ----------(B) 

This wrong lucky method is applicable in proving the following algebraic identity. 

a3 + b3 + c3 - 3 abc = ( a + b + C ) ( a2 + b2 + c2 - ab -bc - ca) 
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RHS = (a + b + C ) ( a2 + b2 + c2 
- ab -bc - ca ) 

= (a + b + C ) { (a2 
- bc) +( b2 -ac) + (c2 

- ab ) } 

applying the wrong lucky method (B) ,one gets 

= a.( a2 
- bc) + b .( b2 -ac) + c. (c2 

- ab ) 

= a3 
- abc + b3 

- abc + c3 
- abc 

A SMARANDACHE LUCKY METHOD IN CALCULUS: 

The fun involved in the following lucky method in calculus is two fold. It goes like 

this . A student is asked to differentiate the product of two functions. Instead of 

applying the formula for differentiation of product of two functions he applies the 

method of integration of the product of two functions ( Integration by parts ) and gets 

the correct answer. The height of coincidence is if another student given the same 

product of two functions and asked to integrate does the reverse of it i.e. he ends up in 

applying the formula for differentiation of the product of two functions and yet gets 

the correct answer. I would take the liberty to call such a lucky method to be 

Smarandache superlucky method. The suspense ends. 

Consider the product of two functions x and sin (x) . 

f(x) = x and g(x) = sin(x) 

The Smarandache lucky method of differentiation (integration by parts) is 

d{ f(x).g(x)}/dx = f(x) f g(x)dx - f [{d(f(x»/dx}. f g(x)dx]dx 

d{(x).sin(x)}/dx = (x) f sin(x)dx - f [{d(x)/dx}. f Sin(x)dx]dx 
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= - (x) . (cos(x)) + sin(x) 

= - x . cos(x) + sin(x) 

The Smarandache lucky method of Integration 

f {(f(x)). g(x)}dx. = f(x).d{g(x)}/dx + g(x) d{f(x)}/dx 

Consider the same functions again we get by this lucky method 

f {(x).sin(x)}dx. = (x). { cos(x)} + {sin(x)} (1) 

or f {(x).sin(x)}dx. = x. cos(x) + sin(x) 

That, both the answers are correct, can be verified, by applying the right methods. 

REFERENCE: 
[1] 'M.L.PEREZ and K.ATANASSOV' Definitions, Conjectures, and Unsolved 

problems on Smarandache Notions. American Research Press, 1999. 
[2] 'F.SMARANDACHE', Funny Problems, Special Collections, Arizona State 

University, Hayden Library, Tempe, AZ, USA. 
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Review of 

Lion Hunting & Other Mathematical Pursuits: A Collection of Mathematics, Verse, and 
Stories by Ralph P. Boas, Jr., edited by Gerald L. Alexanderson and Dale H. Mugler, The 
Mathematical Association of America, Washington, D. c., 1995.320 pp., $35.00(paper). ISBN 
0-88385-323-X. 

As a collection of diverse persons, mathematicians suffer from more negative stereotypes than 
almost any other group. This is unfortunate, discouraging and most often wrong. Widely 
characterized as lacking in humor, abstract and considered to be brilliant, eccentric imbeciles by 
much of the public, mathematicians rarely fit that description. Of course, branding a group with a 
stereotype is often a mask for insecurities. Ralph P. Boas Jr. is a fascinating counterexample to 
most of these inaccurate assumptions. Filled with humor, verse and mathematics, his optimism 
and love of life are captured just like the lions so prominently featured in the book. 
So, how does an unarmed person capture a lion using only the weapons of mathematical 

thought? There are more ways than you would think. Over thirty different "proven" methods are 
given. My favorite is: "The lion is big game, hence certainly a game. There exists an optimal 
strategy. Follow it." It seems that every area of mathematics can be used to construct a way to 
capture a lion. Of course, some are more efficient than others. 
The verse varies from limericks to some that were seeded by material from Shakespeare. All are 
quite good, although it is necessary to read some of them twice in order to capture the intended 
meaning. Most mathematicians have heard of Nicolas Bourbaki, the mathematical polyglot who 
is in fact a pseudonym for a collection of French mathematicians. When it came time to publish 
the first material on the mathematics of lion hunting, Boas and his colleagues chose the 
pseudonym, Hector Petard, from the Shakespearean line, "the engineer, hoist with his own 
petard"; Hamlet Act III, Scene IV. To complete the circle, Boas and friends also "arranged" for a 
wedding between Betti Bourbaki and H. Petard and duly announced the upcoming event. 
Another main section of the book consists of reminiscences by Boas and those who knew 
him best. As a mathematical man of mischief and an educator, he had few equals. Several 
short papers describing some of his basic ideas for education are also included. These 
ideas share one common trait. Simple to understand and execute. No fancy or complex 
methods, just fundamental strategies to make mathematics more understandable. 
The final part of the book consists of short anecdotes about his experiences in 
mathematics. Some are about fellow mathematicians, others about students and the rest 
about whatever seemed to happen during his eventful life. At times amusing, other times 
profound, but at all times interesting, they are simple notes describing how the 
mathematical world works. 
Despite common misconceptions, there are some mathematicians who contain a bit of 

the sprite and Ralph P. Boas Jr. was such a person. That impishness is captured in this 
book, which is reason enough to read it. 
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Review of 

Non-Euclidean Geometry 6th Edition, by H. S. M. Coxeter, The Mathematical 
Association of America, Washington, D. c., 1998. 336 pp., $30.95(paper). 
ISBN 0-88385-522-4. 

Originally published in 1942, this book has lost none of its power in the last half century. 
It is a commentary on the recent demise of geometry in many curricula that 33 years 
elapsed between the publication of the fifth and sixth editions. Fortunately, like so many 
things in the world, trends in mathematics are cyclic, and one can hope that the geometric 
cycle is on the rise. We in mathematics owe so much to geometry. It is generally 
conceded that much of the origins of mathematics is due to the simple necessity of 
maintaining accurate plots in settlements. The only book from the ancient history of 
mathematics that all mathematicians have heard of is the Elements by Euclid. It is one of 
the most read books of all time, arguably the only book without a religious theme still in 
widespread use over 2000 years after the publication of the first edition. The geometry 
taught in high schools today is with only minor modifications found in the Euclidean 
classic. 
There are other reasons why geometry should occupy a special place in our hearts. Most of the 
principles of the axiomatic method, the concept of the theorem and many of the techniques used 
in proofs were born and nurtured in the cradle of geometry. For many centuries, it was nearly an 
act of faith that all of geometry was Euclidean. That annoying fifth postulate seemed so out of 
place and yet it could not be made to go away. Many tried to remove it, but finally the Holmsean 
dictum of ,"once you have eliminated the impossible, what is left, not matter how improbable, 
must be true", had to be admitted. There were in fact three geometries, all of which are of equal 
validity. The other two, elliptic and hyperbolic, are the main topics of this wonderful book. 
Coxeter is arguably the best geometer of this century but there can be no argument that he is the 
best explainer of geometry of this century. While fifty years is a mere spasm compared to the 
time since Euclid, it is certainly possible that students will be reading Coxeter far into the future 
with the same appreciation that we have when we read Euclid. His explanations of the 
non-Euclidean geometries is so clear that one cannot help but absorb the essentials. In so many 
ways, Euclidean geometry is but the middle way between the two other geometries. A point well 

made and in great detail by Coxeter. 
Geometry is ajewel that was born on the banks of the Nile river and we should treasure and 

respect it as the seed from which so much of our basic reasoning processes sprouted. For this 
reason, you should buy this book and keep a copy on your shelf. 

Reviewed by 

Charles Ashbacher 
Charles Ashbacher Technologies 
e-mail 71603.522@compuserve.com 
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Krassi.ir T. Atanassov, "On Some of the Saarandache's Problems". 
Lupton, AZ: American Research Press, 1999, 88pp, ISBN 
1-879585-72-3. (Box 199, Lupton, AZ 86508, USA.) 

This attractively, but inexpensively, produced monograph introduces 
the reader to the flavour of the problems proposed in recent years 
by Smarandache and others. These are qenerally of two kinds: those 
which deal with recurrinq patterns within sequences and those which 
extend classical number theoretic results. Those who are familiar 
with the author's style will recoqnise his inqenuity in the latter 
and his tenacity in the former. 

An example of the former is Smarandache Problem 22: "In the 
sequence of Smarandache Square Complements: 
{1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5, 
21,22,23,6,1,26,3,7,29,30,31,2,33,34,35,1,37, 
38,39,10,41,42,43,11,5,46,47,3,1,2,51,13,53,6,55, 
14,57,58,59,15,61,62,7,1,65,66,67,17,69,70,71,2, ••• }, for 
each inteqer n find the smallest inteqer k such that nk is a 
perfect square." 

An extension of a classical result is Smarandache Problem 117: "Let 
p be an odd positive number. Prove that p and p+2 are twin primes 
iff 

(p-1)!{(1/p)+(2/(p+2»}+(1/p)+(1/(p+2» is an inteqer." 

Atanassov develops and utilises properties of "new" functions such 
as the inverse factorial function defined by: x? -= y iff y! =x, and 
his diqit sua which has appeared in a number of papers over the 
last decade. These ensure that his solutions are always eleqant 
rather than the result of brute force. Readers miqht like to try 
their hands at the above two problems and then buy the book to 
enjoy Blore of these problems which are easy to understand but not 
always easy to solve. 

The book is in microfilm format too, and can be ordered from: UKI, 
PO Box 1346, Ann Arbor, HI 48106-1346, USA; 
tel: 1-800-521-0600. 

Tony Shannon PhD EdD DSc 
Professor Emeritus, University of Technoloqy, Sydney, 2007, and 
Provost, lCvB Institute of Technoloqy, North SYdney, 2060, Australia 
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