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D - Form of SMARANDACHE GROUPOID 

Abstract· 

f2J~v~- .!J7"'a&£dap 
Head Dept . of Mathematics 
NALBARI COLLEGE 
Nalbari : Assam : India 

The set of p different equivalence classes is Zp = { [0], [1], [2], ------ [ k] ----- [ P - 1 ]}. 

For convenience, we have omitted the brackets and written k in place of [ k ]. Thus 

Zp = { 0, 1, 2, ------ k ----- p-1 } 

The elements of Zp can be written uniquely as m - adic numbers. If r = (a a --- a a 'I n-I no: I rYm 

and s = (bn_1bn_: ------ blbo)m be any two elements of Zp, then rLls is defined as 

(lan_l - bn-Illan-z- bn-zl----Ial - biliao - boDm then (Zp, Ll) is a groupoid known as S~1ARANDACHE 

GROUPOID. Ifwe define a binary relation r == s ~ r Ll C(r) = s 11 C(s), where C(r) and C(s) 

are the complements of r and s respectively, then we see that this relation is 

equivalence relation and partitions Zp into some equivalence classes. The equivalence class 

D suo(Zp) = {r E Zp : r Ll C(r) = Sup(Zp)} is defined as D - form. Properties of 

SMARANDACHE GROUPOID and D - form are discussed here. 

Key Words: SMARANDACHE GROUPOID, complement element and D - form. 

1. Introduction: 
Let m be a positive integer greater than one. Then every positive integer r can be written 

uniquely in the form r = an-Imn-I + an-2mn-2 + -- + aim + ao where n ~ 0, ~ is an integer, ° ::;; ~ < m, 

m is called the base ofr, which is denoted by (an_Ian_Z --- alaJm' The absolute difference of two 

integers r = (an_l an_2 
----- al aJm and s = (bn_1 bn_2 

----- b i bJm denoted by r Ll s and defined as 

r 11 s = Can_I - bn_11Ian_z - bn_zl ----- lal - b1iiao - bol)m 

= (c c ------- c C \ where c. = la - bl for i = 0 1 2 - - - - - n-l. 
n·l n-2 1 cYm' 1 ( I ' , 

In this operation, r Ll s is not necessarily equal to Ir - sl i. e. absolute difference of r and s. 

If the equivalence classes ofZp are expressed as m - adic numbers, then Zp with binary 

operation 11 is a groupoid, which contains some non-trivial groups. This groupoid is defined as 

SMARANDACHE GROUPOID. Some properties of this groupoid are established here. 

2. Preliminaries: 
We recall the following definitions and properties to introduce SMARANDACHE GROUPOID. 
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Definition 2.1 ( 2 ) 

Let p be a fixed integer greater than one. If a and b are integers such that a-b is divisible 

by p, then a is congruent to b modulo p and indicate this by writting a == b (mod p). This congru

ence relation is an equivalence relation on the set of all integers. 

The set of p different equivalence classes is Zp = { 0, 1, 2, 3, - - - - - - p-l } 

Proposition 2.2 ( 1 ) 

Ifa == b (mod p) and c == d (mod p) 

Then i) a + c = b + d 
p p 

ii) a x c = b x d 
p p 

Proposition 2.3 ( 2 ) 

Let m be a positive integer greater than one. Then every integer r can be written uniquely 

in the form 

r = a mn
•
l + a mn

-
2 + - - - - - + a m + a 

n-l n-2 I 0 

n-l 
= ~ a ml for i = 0 1 2 - - - - - m-l' ..LJ i ' , , " 

i=O 

Where n ~ 0, a is an integer 0:::; a < m. Here m is called the base of r, which is 
1 1 

denoted by (a
n

_1an_2 ... a1aJm' 

Proposition 2.4 

If r = (a ,a 2 ... ajaJm and s=(b1b, ... b1bJm' n-l n- n- n-_ then 

i) r=s if and only if a. =b. for i = 0, 1, 2, - - - - - , n-l. 
1 1 

ii) r<s if and only if (an_1an_2··· a1aJm < (bn_Ibn_2 ... 

iii) r>s if and only if (a la 2··· a1aJm > (bn-Ibn_z ... n- n-

3. Smarandache groupoid: 
Definition 3. 1 

Let r = (an_1an_2 ... a j a1aJm and s = (bn_1bn.z ... b 
1 

b b ) then 
10m' -

the absolute difference denoted by ~ of r and s is defined as 

r~s=(c c --- Cl' ---c1c\m' where c=la-bJ for i=0,1,2-----n-1. 
n-1 n .. 2 oJ I 1 1 

Here, r ~ s is not necessarily equal to Ir - sl· For example 

5=(101)2 and 6=(110)2 and 5~6=(011)2=3 but 15-61=1 

In this paper, we shall consider 5 ~ 6 = 3, not 5 ~ 6 = 1. 

Definition 3.2 

Let (Zp, +p) be a commulative group of order p = mn. If the elements of Zp are 
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expressed as m - adic numbers as shown below: 

0=(00 

1 = (00 

2 = (00 ... 

m - 1 = (00 

m=(OO 

m + 1 = (00 

m" - 1 = (00 

m" = (00 

00) 
m 

01) 
m 

02) 
m 

Om-I) 
m 

1 0) 
m 

1 1) 
m 

m-1 m-l) 
m 

1 0 0) 
m 

mn - 1 = (m-1 m-1 ... m-1 m-1)m 

The set Zp is closed under binary operation~. Thus (Zp, ~ ) is a groupoid. The elements 

(00 ... ... OO)m and (m-1 m-1 ... '" m-1 m-1)m are called infimum and supremum ofZp. 

The set HI of the elements noted below: 

0=(00 OO)m 

1 = (00 Ol)m 

m = (00 10)m 

m+ 1 =(00 ll)m 

mn-I-m 
---=(01 
m-1 

1 O)m = ex (say) 

mn
-
1 -1 

m-1 
(0 1 

mn - 1 = (1 1 
m-l 

1 1) = ~ (say) 
m 

1 1) = 8 (say) 
m 

is a proper subset of Zp. 
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( HI' t1 ) is a group of order 2n and its group table is as follows: 

t1 0 1 m m+l 

0 0 1 m m+l 

1 1 0 m+l m 

m m m+l 0 1 

m+l m+l m 1 0 

.... . .. . .. . .. . .. 

.... . .. . .. . .. . .. 

a a ~ y 8 
-

~ ~ a 8 y 

y y 8 a ~ 
8 8 Y ~ a 

Similarly the proper sub-sets 

H
2
= {O, 2, 2m, 2(m+ 1) 

~= {O, 3, 3m, 3(m+ 1) ... 

... . .. a 

... ... a 

... . .. ~ 

... . .. y 

... . .. 8 

. .. . .. ... 

. .. . .. ... 

... . .. 0 

... ... 1 

... . .. m 

... . .. m+l 

Table - 1 

... 2a, 2~, 2y, 28 } 

3a, 3~, 3y, 38 } 

~ 

~ 
a 

8 

Y 
. .. 

. .. 

1 

0 

m+l 

m 

y 8 

y 8 

8 y 

a ~ 
~ a 

. .. . .. 

. .. . .. 

m m+l 

m+l m 

0 1 

1 0 

H = { 0 m-I m(m-I) m2-1 m-I " , 
... (m-I)a, (m-l)~, (m-l)"f, (m-l)8 } 

are groups of order 2n under the operation absolute difference. So the groupoid 

(Zp, t1) contains mainly the groups ( Hl' t1 ), ( 1\, t1 ), ( ~, t1 ) .... ... ( Hm-I' t1 ) and this 

groupoid is defined as SMARANDACHE GROUPOID. Here we use S.Gd. in 

place of SMARANDACHE GROUPOID. 

Remarks 3.2 

i) Let (Zp, +p) be a commutative group of order p, where mn
-
I < p < mn, 

then (Zp, t1) is not groupoid. 

For example (Zs' +5) is a commutative group of order 5, where 22 < P < 23 

Here Zs = { 0, 1,2,3,4} and 

o = ( 0 0 0)2 4 = ( 1 0 0)2 

1 = ( 0 0 1)2 5 = ( 1 0 1)2 

2 = ( 0 1 0)2 

3 = ( 0 1 1)2 

6 = ( 1 1 0)2 

7 = ( 1 1 1)2 
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A composition table of Zs is given below: 

.0. 0 1 2 ... 4 ~ 

0 0 1 2 ... 4 ~ 

1 1 0 ... 2 5 ~ 

2 2 ... 0 1 6 ~ 

.., ... 2 1 0 7 ~ ~ 

4 4 5 6 7 0 

Table - 2 

Hence Z, is not closed under the operation .0.. ie (Z" .0.) is not a groupoid 

ii) S Gd is not necessarily associative. 

Let 1 = ( 00 01) 
m 

:2 = (00 ... ... 02)m and 

3 = (00 ... 03) be three elements of (Zp, .0.), then 
m 

(1 .0. 2) .0. 3 = 2 and 

1.0.(2.0.3)=0 

Le. (1.0. 2).0. 3:;; 1.0. (2.0. 3) 

iii) S Gd. is commutative. 

iv) S. Gd. has identity element 0 = ( 00 ... O)m 

v) Each element of S. Gd. is self inverse Le. 'If p E Zp, p.0. P = o. 

Proposition 3.3 

If (H, .0.) and (K, .0.) be two groups of order 2n contained in S. Gd. (Zp, .0.), then H is 

isomorphic to K. 

Proof is obvious. 

4. Complement element in S. Gd. (Zp, ~). 

Definition 4.1 

Let (Zp, .0.) be a S. Gd., then the complement of any element p E Zp is equal to 

p.0. Sup(Zp) = p.0. mn-1 I.e. cep) = mn-1 .0. p. This function is known as complement func

tion and it satisfies the following propenies 

i) C(O) = mn - 1 

ii) cemn - 1) = 0 

ii) CCCCp» = p 'If P E Zp 

iv) If p::; q then cep) 2: ceq) 
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Definition 4.2 

An element p of as. Gd. Zp is said to be self complement if p ~ sup(Zp) = p i.e. C(p) = p. 

If m is an odd integer greater than one, then mn - 1 is the self complement of (Zp, ~) 
2 

Ifm is an even integer, then there exists no self complement in (Zp, ~). 

Remarks 4.3 

i) The complement of an element belonging to a S. Gd. is unique. 

ii) The S. Gd. is closed under complement operation. 

5. A binary relation in S. Gd. 
Definition 5. 1 

Let (Zp, ~) be a S. Gd. An element p of Zp is said to be related to q E Zp 

iff p ~ C(p) = q ~ C(q) and written as p == q ¢::> p ~ C(p) = q ~ CCq). 

Proposition 5.2 

For the elements p and q ofS. Gd. (Zp, M, p == q ¢::> C(p) == C(q). 

Proof: By definition 

p == q ¢::> p ~ C(p) = q ~ C( q). 

¢::> CCp) ~ p = CCq) ~ q 

¢::> C(p) ~ C(C(p» = C(q) ~ C(C(q» 

¢::> C(p) == C( q) 

Proposition 5.3 

Let (Zp, ~) be a S. Gd., then a binary relation p == q ¢::> p ~ C(p) = q ~ C(q) for 

p, q E Zp, is an equivalence relation. 

Proof: Let (Zp, ~) be a S. Gd. and for any two elements p and q of Zp, 

let us define a binary relation p == q ¢::> p ~ CCp) = q ~ C( q). 

This relation is 

i) reflexive for if p is an arbitrary element of Zp, we get p ~ C(p) = P ~ CCp) for 

all p E Zp. Hence p == p ¢::> p ~ C(p) = P ~ CCp) 't:j P E Zp. 

ii) Symmetric, for ifp and q are any elements ofZp such that 

p == q, then p == q ¢::> p ~ C(p) = q ~ CC q) 

¢::> q ~ C(q) = P ~ C(p) 

¢::>q==p 

10 



iii) transitive, for p, q, r are any three elements of Zp such that 

p == q and q == r, then 

p == q Q P 6 C(p) = q 6 qq) and 

q == r Q q tl qq) = r 6 qr) 

Thus p tl qp) = r tl qr) Q p == r 

Hence p == q and q == r implies p == r 

6. D - Form of S. Gd. 

Let (Zp, tl) be a S. Gd. of order m". Then the equivalence relation referred in the propo

sition 53 partitions Zp into mutuaHy disjoint classes. 

Definition 6.1 

If r be any element of S. Gd. (Zp, 6) such that r 6 qr) = x, then the equivalence class 

generated by x is denoted by Ox and defined by 

Ox = {. r E Zp : r tl qr) = x } 

The equivalence class generated by sup(Zp) and defined by 

. 0SUP'ZPI = ( r E Zp : r tl qr) = sup(Zp)} is called the 0 - form of (Zp, tl). 

Example 6.2 

Let (Z9' +9) be a commutative group, then Z9 = { 0, 1,2,3,4,5,6, 7, 8 }. If the elements 

of Z" are written as 3-adic numbers, then 

Z~ = {(OO)" (01)3' (02)3' (10)3' (11)3' (12)3' (20\, (21)3' (22),) and 

(Zy, tl) is a S. Gd. of order 32 = 9. Its composition table is as follows: 

tl 0 1 2 3 4 5 6 7 8 

0 0 1 2 3 4 5 6 7 8 

I I 0 1 4 3 4 7 6 7 

2 2 I 0 5 4 3 8 7 6 

3 
..., 

4 5 0 1 2 3 4 5 .J 

4 4 
.., 

4 1 0 1 4 
..., 

4 .J .J 

5 5 4 '"' 2 1 0 5 4 3 .J 

6 6 7 8 '"' 4 5 0 1 2 .J 

7 7 6 7 4 '"' 4 1 0 1 .J 

8 8 7 6 5 4 
..., 

2 I 0 .J 

Table - 3 
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Here 0 ~ C(O) = 0 ~ 8 = 8 

1 ~ C(l) = 1 ~ 7 = 6 

2 ~ C(2) = 2 ~ 6 = 8 

3 ~ C(3) = 3 ~ 5 = 2 

4~C(4)=4~4=0 

5 ~ C( 5) = 5 ~ 3 = 2 

6~C(6)=6~2=8 

7 ~ C(7) = 7 ~ 1 = 6 

8 ~ C(8) = 8 ~ 0 = 8 

Hence Dg = { 0, 2, 6, 8 } = {(00)3' (02)3' (20)3' (22)3 } 

D6 = { 1, 7 } 

D: = { 3, 5 } 

Do = { 4 } 

The self complement element of(Z9'~) is 4 and D- form of this S. Gd. is {O, 2, 6, 8}= Dg 

Here Z9=DoUD:uD6UDg. 

Proposition 6.3 

Any two equivalence classes in a S. Gd. (Zp, ~) are either disjoint or identical. 

Proof is obvious. 

Proposition 6.4 

Every S. Gd. (Zp, M is equal to the union of its equivalence classes. 

Proof is obvious. 

Proposition 6.5 

Every D- form of as. Gd. (Zp, ~) is a commutative group. 

Proof: Let (Zp,~) be as. Gd. of order P = mn. The elements ofD- form ofthis groupoid 

are as follows. 

o = (00 

m - 1 = (00 

m2 
- m = (00 

m: - 1 = (00 

mn-1_ m= (0 m-1 

mn- 1_ 1 = (0 m-l 

mn_ m = (m-l m-1 

00) rn 
... 0 m-1)rn 

m-lO) 
'm 

m-l m-l) 
m 

... m-1 0) 
m 

m-l m-l) 

m-10) 
m 

m 

mn_ 1 = (m-1 m-1 ... . .. m-l m-1) 

12 

m 



Here (Dmn_l, .6. ) is a commutative group and its table is given below: 

.6. 0 m-l m2-m m2-1 ... mn.1_m mn-l_l m"-m mn-l 

0 0 m-l " m2-1 mn-l_m mn-l_l mn-m mn-I m--m ... 

m-I m-I 0 m2-I " mn-l_1 mn-l_m mn-I mn-m m--m ... 
" " m:-l 0 m-l mn-m mn-1 mn-l_m mn-1_1 m--m m--m ... 

m2-1 m:-l " m-l 0 mn-l mn-m mn-l_l mn-I_m m--m ... 

- - - - - - - - - - - -... 

mn-I-m mn-I-m mn-I-l mr'-m mn-l ... 0 m-1 m"-m mC-l 

mn-1-1 mn-l_l mn-!-m mn-l mn-m m-l 0 m2-1 " ... m--m 

mn-m mn-m mn-l mn-1_m mn-l_l " m2-1 0 m-l ... m--m 

mn-l mn-l mn-m mn-l_l mn-l_m ... m2-1 m2-m m-l 0 

Table - 4 

Remarks 6.6 

Let (Zp, .6.) be a S. Gd. of order mn. 

The equivalence relation p == q ~ p .6. C(p) = q.6. C(q) partitions Zp into some equivalence classes. 

i) If m is odd integer, then the number of elements belonging to the equivalence classes 

are not equal. In the example 6.2, the number of elements belonging to the equivalence classes 

Do, D
2

, D6, Dg are not equal due to m = 3. 

ii) If m is even integer, then the number of elements belonging to the equivalence classes 

are equal. 

For example, ZI6 = { 0, 1,2, - - - - - - -, 15 } be a commutative group. If the elements 

of Zl6 are expressed as 4- adic numbers, then (ZI6' .6.) is a S. Gd. The composition table of 

(ZI6' .6.) is given below: 
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D. 0 1 2 
.., 

4 5 6 7 8 9 10 11 12 13 .) 

0 0 1 2 
.., 

4 5 6 7 8 9 10 11 12 13 .) 

I I 0 I 2 5 4 5 6 9 8 9 10 13 12 

2 2 1 0 1 6 5 4 5 10 9 8 9 14 13 
... ... 2 I 0 7 6 5 4 11 10 9 8 15 14 .) .) 

4 4 5 6 7 0 1 2 ... 4 5 6 7 8 9 .) 

5 5 4 5 6 1 0 1 2 5 4 5 6 9 8 

6 6 5 4 5 2 1 0 1 10 5 6 7 8 9 

7 7 6 5 4 ... 2 1 0 7 6 5 4 11 10 .) 

8 8 9 10 11 4 5 6 7 0 1 2 ... 4 5 .) 

9 9 8 9 10 5 4 5 6 1 0 1 2 5 4 

10 10 9 8 9 6 5 4 5 2 I 0 1 6 5 

11 11 10 9 8 7 6 5 4 ... 2 1 0 7 6 .) 

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 

13 13 12 13· 14 9 8 9 10 5 4 5 6 1 0 

14 14 13 12 13 10 9 8 9 6 5 4 5 2 1 

15 15 14 13 12 11 10 9 8 7 6 5 4 ... 2 .) 

Table - 5 

Here 0 D. C(O) = 15 = 15 D. C(15) 

1 D. C(I) = 13 = 14 D. C(14) 

2 D. C(2) = 13 = 13 D. C(13) 

3 D. C(3) = 15 = 12 D. C(12) 

4 D. C(4) = 7 = 11 D. C(ll) 

5 D. C(5) = 5 = 10 D. C(10) 

6 t. C(6) = 5 = 9 D. C(9) 

7 D. C(7) = 7 = 8 D. C(8) 

Hence DIS = { 0, 3, 12, 15 }, 

D7 = { 4, 8, 7, 11 }, 

Dl3 = { 1,2, 13, 14 } 

Ds = { 5,6,9, 10 } 

14 15 

14 15 

13 14 

12 13 

13 12 

10 11 

9 10 

10 11 

9 8 

6 7 

5 6 

4 5 

5 4 

2 ... 
.) 

1 2 

0 I 

I 0 

The number of elements of the equivalence classes are equal due to m = 4, which is even integer. 
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The notions of the SMARANDACHE GROUP and the 
SMARANDACHE BOOLEAN RING 

V.7~. 
Deptt. of Mathematics 
Nalbari College, Nalbari 
Assam, India 

The notions of the Snmarandache group and the Smarandache Boolean ring are intro

duced here with the help of group action and ring action i.e. module respectively. The centre of 

the Smarandache groupoid is determined. These are very important for the study of Algebraic 

structures. 

1. The centre of the Smarandache groupoid: 

Definition 1. 1 

An element a of the smarandache groupoid (Zp, Ll) is said to be conjugate to b if there 

exists r in Zp such that a = r Ll b Ll r. 

Definition 1.2 

An element a of the smarandache groupoid (Zp, Ll ) is called a self conjugate element of 

Zp if a = r Ll a Ll r for all r E Zp. 

Definition 1.3 

The set Zp* of all self conjugate elements of (Zp, Ll ) is called the centre of Zp i e 

Zp* = { a E Zp : a = r Ll all r 'r:;j r E Zp}. 

Definition 1.4 

Let (Z9' +9) be a commutative group, then Z9={ 0, 1,2,3,4,5,6, 7, 8 }. If the elements 

of Z are written as 3-adic numbers, then 
9 

Z9 = { (00)3' (01)3' (02)3' (10)3' (11)3' (12)3' (20)3' (21)3' (22)3 } 

and (Z9' Ll) is a smarandache groupoid of order 9. Conjugacy relations among the elements of 

Z are determined as follows: 
o 
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O~O~O=O 0~1~0=1 0~2~0=2 0~3~0=3 0~4~0=4 

1~0~1=0 1 ~ 1 ~ 1 = 1 1~2~1=0 1~3~1=3 1~4~1=4 

2~0~2=0 2~1~2=1 2~2~2=2 2~3~2=3 2~4~2=4 

3~0~3=0 3~1~3=1 3~2~3=2 3~3~3=3 3~4~3=4 

4~0~4=0 4~1~4=1 4~2~4=0 4~3~4=3 4~4~4=4 

5~0~5=0 5~1~5=1 5~2~5=2 5~3~5=3 5~4~5=4 

6~0~6=0 6~1~6=1 6~2~6=2 6~3~6=3 6~4~6=4 

7~0~7=0 7~1~7=1 7~2~7=0 7~3~7=3 7~4~7=4 

8~0~8=0 8~1~8=1 8~2~8=2 8~3~8=3 8~4~8=4 

0~5~0=5 0~6~0=6 0~7~0=7 0~8~0=8 

1~5~1=3 1~6~1=6 1~7~1=7 1~8~1=6 

2~5~2=5 2~6~2=6 2~7~2=7 2~8~2=8 

3~5~3=5 3~6~3=0 3~7~3=1 3~8~3=2 

4~5~4=3 4~6~4=0 4~7~4=1 4~8~4=0 Table - 1 

5~5~5=5 5~6~5=0 5~7~5=1 5~8~5=2 

6~5~6=5 6~6~6=6 6~7~6=7 6~8~6=8 

7~5~7=3 7~6~7=6 7~7~7=7 7~8~7=6 

8~5~8=5 8~6~8=6 8~7~8=7 8~8~8=8 

Here Z/ = { 0, 1, 3, 4 }, the set of all self conjugate elements of Z9 is called the centre 

of(Z9' ~). Again (Z9*' M is an abelian group. 

D-form of the Smarandache groupoid (Z9' ~) is given by Dg = { 0, 2, 6, 8 }. Again 

(Ds' ~) is an abelian group. The group table (2) and group table (3) are given below 

~ 0 1 " 4 ;) ~ 0 2 6 8 

0 0 1 3 4 0 0 2 6 8 

1 1 0 4 3 2 2 0 8 6 

" " 4 0 1 ;) ;) 6 6 8 0 2 

4 4 " 1 0 ;) 8 8 6 2 0 

Table - 2 Table - 3 

From table (2) and table (3); it is clear that (Z9 *,~) and (Dg,~) are isomorphic to each other. 

Definition 1.3 
The groups (Zp*, M and (Dsup(zP)'~) of the Smarandache groupoid (Zp, ~) are isomor-

phic to each other. 

Proof is obvious. 
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2. The Smarandache group: 

To introduce the Smarandache group, we have to explain group action on a set. Let A be 

a group and B a set. An action of A on B is a map, B x A -7 B written (b, p) -7 b 6 P such that 

i) for every p, q E A and b E B, we have 

«b, p), q) = «b 6 p) 6 q) = (b 6 p) 6 q = b 6 (p 6 q) 

and ii) for every b E B, we have (b, 0) = b 6 0 = b 

where 0 denotes the identity element of the group A. 

If a group A has an action on B, we say that B is a A-set or A-space. Here in this paper 

we shall use B(A) in place of "B is a A - space". 

Note: 
If B is a proper subgroup of A, then we get a map A x B -7 A defined by 

(a, b) -7 a 6 b E A. This is a group action ofB on A. Then we say that A is a B - set or B - space 

i.e. A(B) is a B - space. In this paper, by proper subgroup, we mean a group contained in A, 

different from the trivial groups. 

Definition 2.1 
The smarandache group is defined to be a group A such that A(B) is a B - space, where 

B is a proper subgroup of A 

Examples 2.2 
i) The D - form of (Zp, 6) defined by 

Dsup(zP) = { r E Zp : r 6 C(r) = Sup(Zp)} = A is a Smarandache group. IfB is a 

proper subgroup of A, then the action ofB on A is the map, A x B -7 A defined 

by (a, q) = a 6 q for all a E A and q E B. This action is a B - action i.e. ACB) is a 

B - space. 

ii) The centre of (Zp, 6) defined by 

Zp* = { a E Zp : a = r 6 a 6 r \:j r E Zp} = A is a Smarandache group. IfB be 

a proper subgroup of A, then the action ofB on A is the map, A x B -7 A defined 

by (a, p) = a 6 p for all a E A and for all p E B. This action is a B - space i.e. ACB) 

is a B - space. 

iii) The Addition modulo m of two integers r = (a a ------------------ a a) and n-I no: 10m 

S = (b
n

_
I
b

n
_
2 

--------- blbJrr. denoted by I+m\ and defined as 

r 1+ m \ s = (a
n

_I an-2 ... alaJm /+ m \ (bn_Ibn_2 '" ... blbJm 

= (an)+ m \bn_1 anj+ m \bn_2 ... a/+ m \b l a/+ m' bJm 

= (c
n

_
1 

c
n

_
2 

... clco)m' where ci = aJ+m\ bi for i = 0,1,2, .. ' n-l. 
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The group (Zp, 1+ m \) is a Smarandache group. The group (Zp, I+p\) contains a proper 

subgroup (H = { 0,1,2,3, ... ... ... p-l}, I+m\) 

Then the action ofH on Zp is the map Zp x H -7 Zp defined by (a, r) = a/+ m \r for all 

a E Zp and for all r E H. This action is a H - space i.e. Zp(H) is a H - space. 

iv) The set Z16 = { 0, 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15 } can be written as 

Z16 = {(00)4' (01)4' (02)4' (03)4' (10)4' (11)4' (12)4' (13)4' (20).1' (21).1' (22).1' 

(23)4' (30)4' (31)4' (32)4' (33)4 } 

is a smarandache group under the operation 1+4\ and its group table is as follows: 

1+ \ 0 1 2 ""' 4 5 6 7 8 9 10 11 12 13 14 15 -' 4 
0 0 1 2 ""' 4 5 6 7 8 9 10 11 12 13 14 15 -' 

1 1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12 

2 2 
.., 

0 1 6 7 4 5 10 11 8 9 14 15 12 13 -' 
.., .., 

0 1 2 7 4 5 6 11 8 9 10 15 12 13 14 .) -' 

4 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 
.., 
-' 

5 5 6 7 4 9 10 11 8 13 14 15 12 1 2 
.., 

0 -' 

6 6 7 4 5 10 11 8 9 14 15 12 13 2 
.., 

0 1 -' 

7 7 4 5 6 11 8 9 10 15 12 13 14 
.., 

0 1 2 -' 

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 

9 9 10 11 8 13 14 15 12 1 2 
.., 

0 5 6 7 4 -' 

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 

11 11 8 9 10 15 12 13 14 
.., 

0 1 2 7 4 5 6 -' 

12 12 13 14 15 0 1 2 
.., 

4 5 6 7 8 9 10 11 -' 

13 13 14 15 12 1 2 
.., 

0 5 6 7 4 9 10 11 8 -' 

14 14 15 12 13 2 ""' 0 1 6 7 4 5 10 11 8 9 -' 

15 15 12 13 14 3 0 1 2 7 4 5 6 11 8 9 10 

Table - 4 

From above group table, it is clear that (H = { 0, 1, 2, 3, 8, 9, 10, 11 }, 1+..\) is a 

subgroup of (Z16' I+}). Then the action of H on Z16 is the map Z16 x H -7 Z16 defined by 

(a, r) = a/+-l\r for all a E Z16 and for all r E H. This action is a H - space i.e. Z16(H) is a H - space. 

Here (K = { 0, 1,2,3 }, I+}) be a subgroup of(H, 1+4\). Then the action ofK on H is the 

map, H x K -7 H defined by (b, p) = b/+-l\p for all bE H and for all p E K. This action is a K

space i.e. H(K) is a K - space Hence H is a Smarandache group contained in the Smarandache 

group Z16. So it is called the Smarandache sub-group. 
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3. The Smarandache sub-group: 

Definition 3.1 

The smarandache sub-group is defined to be a smarandache group B which is a proper 

subset of smarandache group A (with respect to the same induced operation). 

4. Smarandache quotient group: 

Let (H, .6) be smarandache subgroup of the Smarandache group (B, .6), then the quotient 

group B/H = V is defined as smarandache quotient group such that V(K) is a K - space, where K 

is a proper subgroup of V i.e. the group action ofK on V is a map V x K ~ V, defined by 

((H.6 a), H.6 p) = (H.6 a).6 (H.6 p) for all H L1 a E V and H L1 P E K 

5. Smarandache Boolean ring: 

Definition 5. 1 
The intersection of two integers r = (a

n
_
1
a

n
_
2 

aiaO)m and 

s = (b
n

_
1
b

n
_
2 

... ... b1bo)m denoted by r (\ s and defined as 

r (\ s = (a
n

_
l 
(\ b

n
_
l 
a

n
_
2 
(\ b

n
_
2 

... ... a i (\ b
l 
ao (\ bcJm 

= (c
n

_1cn
_2 ... ciccJm 

where c = a (\ b = min (a, b) for i = 0, 1,2, 
I : I 1 1 

, n-l 

If the equivalence classes of are expressed as m - adic numbers, then with binary opera

tion (\ is a groupoid, which contains some non trivial groups. This groupoid is smarandache 

groupoid. Here (Zp*, .6, (\) and (Zsup(zP)' .6, (\) are Boolean ring. 

Definition 5.2 
The smarandache Boolean ring is defined to be a Boolean ring A such that the Abelian 

group (A, .6) has both left and right B - module, where B is a non trivial sub-ring of A. 

From above, we mean an Abelian group (A, L1) together with a map, B x A ~ A., written 

(b, p) = b (\ pEA such that for every b, c E Band p, q E A, we have 

i) b (\ (p .6 q) = (b (\ p) .6 (b (\ q) 

ii) (b L1 c) (\ p = (b (\ p) .6 (c (\ p) iii) (b (\ c) (\ p = b (\ (c n p) 

Again from the map, A x B ~ A, written (p, b) = p (\ b E A such that for every 

p, q E A and b, c E B, we get 

i) (p .6 q) (\ b = (p (\ b) .6 (q (\ b) 

ii) p (\ (b L1 c) = (p (\ b) .6 (p (\ c) iii) P (\ (b (\ c) = (p (\ b) (\ c 

20 



Definition 5.3 
The smarandache Boolean sub-ring is defined to be a smrandache Boolean ring B which 

is a proper subset of a Smarandache Boolean ring A. (with respect to the same induced operation). 

Definition 5.4 
The smarandache Boolean ideal is defined to be an ideal B of Sma rand ache Boolean ring 

A such that the Abelian group (C, Ll) has both left and right B - module, where C is a proper 

subset ofB From above we mean an Abelian group (C, ~) together with a map, C x B ~ C 

written (c, p) = C n P E C such that this mapping satisfies all the postulates of both left and right 

B - module. 

Examples 5.5 
Let (Z::5ci' +::56) be an Abelian group, then Z::56 = { 0, 1, 2, ... 255} If the 

elements Z::56 of are written as 4 - adic numbers, then 

Z256 = { (0000)4' (0001)4' (0002)4' (0003)4' (0010)4' ... ... ... ... ,(3333) .. }and 

(Z::56' ~) is a smarandache groupoid of order 256. The centre of (Z256' ~) is 

Z·Z56 = { 0,1,4,5,16,17,20,21,64,65,68,69,80,81,84,85 }. Here (Z·::56'~' n) is 

a Smarandache Boolean ring and its composition tables are given below: 

~ 0 1 4 5 16 17 20 21 64 65 68 69 80 81 84 85 

0 0 1 4 5 16 17 20 21 64 65 68 69 80 81 84 85 

1 1 0 5 4 17 16 21 20 65 64 69 68 81 80 85 84 

4 4 5 0 1 20 21 16 17 68 69 64 65 84 85 80 81 

5 5 4 1 0 21 20 17 16 69 68 65 64 85 84 81 80 

16 16 17 20 21 0 1 4 5 80 81 84 85 64 65 68 69 

17 17 16 21 20 1 0 5 4 81 80 85 84 65 64 69 68 

20 20 21 16 17 4 5 0 1 84 85 80 81 68 69 64 65 

21 21 20 17 16 5 4 1 0 85 84 81 80 69 68 65 64 

64 64 65 68 69 80 81 84 85 0 1 4 5 16 17 20 21 

65 65 64 69 68 81 80 85 84 1 0 5 4 17 16 21 20 

68 68 69 64 65 84 85 80 81 4 5 0 1 20 21 16 17 

69 69 68 65 64 85 84 81 80 5 4 1 0 21 20 17 16 

80 80 81 84 85 64 65 68 69 16 17 20 21 0 1 4 5 

81 81 80 85 84 65 64 69 68 17 16 21 20 1 0 5 4 

84 84 85 80 81 68 69 64 65 20 21 16 17 4 5 0 1 

85 85 84 81 80 69 68 65 64 21 20 17 16 5 4 1 0 

Table - 5 
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n 0 1 4 5 16 17 20 21 64 65 68 69 80 81 84 85 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

4 0 0 4 4 0 0 4 4 0 0 4 4 0 0 4 4 . 
5 0 1 4 5 0 1 4 5 0 1 4 5 0 1 4 5 

16 0 0 0 0 16 16 16 16 0 0 0 0 16 16 16 16 

17 0 1 0 1 16 17 16 17 0 1 0 1 16 17 16 17 

20 0 0 4 4 16 16 20 20 0 0 4 4 16 16 20 20 

21 0 1 4 5 16 17 20 21 0 1 4 5 16 17 20 21 

64 0 0 0 0 0 0 0 0 64 64 64 64 64 64 64 64 

65 0 1 0 1 0 1 0 1 64 65 64 65 64 65 64 65 

68 0 0 4 4 0 0 4 4 64 64 68 68 64 64 68 68 

69 0 1 4 5 0 1 4 5 64 65 68 69 64 65 68 69 

80 0 0 0 0 16 16 16 16 64 64 64 64 80 80 80 80 

81 0 1 0 1 16 17 16 17 64 65 64 65 80 81 80 81 

84 0 0 4 4 16 16 20 20 64 64 68 68 80 80 84 84 

85 0 1 4 5 16 17 20 21 64 65 68 69 80 81 84 85 

Table - 6 

Some smarandache Boolean sub-rings of (Z· 256' Ll, n) are given below: 

i) Hj={O, 1,4,5, 16, 17,20,21} 

H2 = { 0, 1,4, 5, 64, 65, 68, 69 } 

H3 = { 0, 1,4,5,80,81,84,85 } 

H. = {O, 5,16,21,64,69,80,85} 

H5 = {O, 1, 16, 17,64,65,80,81 } 

H6 = { 0, 1,4, 5 } 

~ = { 0, 1, 16, 17 } 

Hs = { 0, 1, 64, 65 } 

H9 = { 0, 1, 80, 81} etc. 

Here smarandache Boolean subrings HI' H2, H6'~' Hg are ideals of (Z·256' Ll). 
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ABSTRACT 

It is considered the notion of absolute Geometry in its evolution, from the 
first Non-euclidpan Geometry of Lobacewski, Bolyai and Gauss till tha t of 
Smaranclache Anti-Geometry, 

Key words: Euclidean Geometry, Non-euclidean Geometry, Hilbert's axioms and in
cidence structnrE'S decluced from them, Smarandache Geometries, Hjelmslev-Barbilian 
structures 

Any theory or deductive system has two distingnishable parts: 
1. the specifica! part 
2, the logical part. 
'When we formalize one, or both of parts of a theory, we obtain next classification for 

axiomatical theories: 
1. nonformalized, 
2. semiformalized, or 
3. formalized axiomatical theory, 
When J. Bolyai in [3J in 1831, and N. Lobacewski in [12], in 1826 began the studies 

about non-euclidean Geometries the formalization in mathematics was not yet introduced. 
Their contributions should be considered as more important as at that moment the for
malized system of axioms of Geomptry of D. Hilbert was not given. 

The way we can establish the metamathpmatical analyse of a theory are two: 
1. sintactical (that is directly) 
2. semantical. hy the interpretations and models. 
J, Bolyai and N, Lobacevski worked only sintactically and not semantica lly in the 

study of the metamathematical analyse of their theory. 
On the first way, non-contradiction of their Geometry given in (:3J and [12J could 

not be proved, because in a such a way they could not convince that the set )f correct 
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affirmations of their theory were exhausted and that has excluded the possibility to meet 
a proposition p correct constructed such that p and -'p to be verified in their Geometry. 
Later were given semantically the proofs that their non-euclidean Geometry is consistent, 
and so is non-cont.radictory, by the models of Berltrami in 1868, after that of Cayley-Klein 
in 1871 and of H. Poincare in 1882. 

In Bolyai-Lob<lrf'wski's absolute Geometry from a point A to a line a, A. is not incident 
with a, there exists a p<lr<lllel. In this absolute Geometry we have only two po!'sibilities: 

1. the Euclidf'an Gf'ometry 
2. the Hypf'rholical Gf'ometry. 
The elliptir<ll Geomf'try with none parallel through a point to a line, are excluded 

from this absolute Geomf'try. Also this absolute Geometry contained only continuous 
Geometry. 

In 190:3 in [6], D. Hilhert proved that the hyperbolical plane geometry can be intro
duced without to use the tridimensional space, and that is possible to renounce to the 
axioms of contin1lity. This is an important moment for research in Geometry because 
from that moment the notion of absolute Geometry changes its meaning and begins to be 
different considl'r('d to differf'nt momf'nts and to different authors. The absolute plane of 
Bolyai becomes a particular case of the absolute plane in recently researches of Geometry. 

From 1889, whf'n D. Hilbert in [.'5] gave a formalized system of axioms for absolute Ge
ometry, appeared more directions of investigation in Geometry. The incidence structures 
are largely used and so are introduced a great variety of affine and projective planes and 
affine and projective spaces. 

The great importance of geometrical transformations for geometrical problems was 
put by F. Elein in "The programme from Erlangen" in 1872, when he began to consider 
the Geometry as the study of invariant properties to a group of transformations. From 
that moment the system of axioms of many Geometries are based on the notions of 
theory of gronps. This group is given as an abstract group, and geometrical slructure is 
a consequence of strnrtnrf' of group. This fact was possible, after' that it was proved that 
the geometry can be transposed in the group of its automorphisms generated by axial 
symmetries. A such a system of axioms is more simple than a classical one, it is easily 
adopted to the special rtualities of non-euclidean Geometries. Compared with a such a 
system of axioms, the system of axioms of D. Hilbert is more complicated. 

As it is the calcnllns in a field for Analytical Geometry a method of work, as the 
caIcullns in the group generated by the axial symmetries becomes a method for proofs in 
Geometry, after J. Hjelmslev in [7] introduced it. In [16] Thompsen proved that this can 
become an efficient method of demonstration for the theorems of Euclidean Geometry. 
This is an attrative method because the hypothesis and conclusions of a theorem can be 
written simply as relations of group. 

The first system of axioms of absolute plane geometry formnlated in theory of groups 
was given by A. Schmidt in [B], and after that F. Bachman in [1]. From that date this 
method is largely I1sf'd in Geometry as in [9], [10], [ll], [11] and many others works. 

In 19.54 after E. Sperner gives a group proof of theorem of Desargues for a large classes 
of Geometries, in absolnte geometry are included new-types of geometry, as geometry with 
centre, with pf'rpf'ndinllar nuclei [10], and many others. 
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The cla.c;siral Geomf'trif'S are extended, because are not made hypothesis of order, of 
continuity or mohility [1], [9], [11]. [17]. 

In 1967 H. Wolf in [21]. includf's near Euclidean, elliptical, and hyperbolical Geometry, 
also Minkowski's Cf'ometry. 

The geometries constructed over a field of characteristic 2 are included later, by a 
more general system of axioms of R. Lingenberg in [11]. 

Another generalization of incidence structures was that in which it were considered 
geometrical structures to which the line incident with two different points is not unique. 
A such a theory is consistent and as a model for it we have the Geometry over a ring. Such 
structures were introduced by J. Hjelmslev in [8] ancl D. Barbilian in [2]. A new direction 
of study in Geometry begins from this moment, in which we have also some results. 

The resear,hes of absolute Geometry have a natural continuity, the notion of absolute 
Geometry is a notion in evolntion in the modern literature of speciality. This help us to 
understand bettN the life, the transformations in the life. and finally this could bring us 
more wisdom and increasing degree of understanding of human condition, an d such to 
answer to the deep desire of their creatores: that the mathematics to become aiso a force 
of life. 

Such Florentin Smarandache even in 1969 said that it is natural to consider a new 
Geometry denying not only one axiom from the axioms of D.H. Hilbert from [5] but more 
or even all of them. what he did in 1985 in [14] and in 1997 in [15]. 

So he introd1\ced so called "Smarandache Anti-Geometry". It seems strange but it 
is natural. We should remember that when J. Bolyai the genial discoverer of first non
euclidean Geometry was deeply implied in his great work even the great C1auss said 
that the people are not prepared to receive a new Geometry. a such a new theory. And 
that was the truth. J. Bolyai suffered very much at that time seing that he can not be 
understood. bllt he was convinced that not only in Mathematics, but in the whole history 
of thinking his conception represents a crucial point. Besides the value of his discoveries in 
Mathematics, J. Bolyai must be discovered and then, inevitable loved, as a great thinker 
preoccupied of the problems of harmonious integration in the life. As we showed in [18], 
[19] J. Bolyai always was thirsty of harmony and with a stoical wisdom he supported his 
ideas until the end of his life, a life full of misunderstanding. In spite of all wb",t he met 
as nonunderstanding he continued to believe in what he created and he felt them to be 
true. 

As .1. Bolyai, N. Lohi'lcevski was not understood during his life and his work was not 
recognized at that time. Their contributions today have to be appreciate even more as at 
their time the formalized theories has not been introduced. 

Beyond the matlwmatical contribution their works represent an opening meditation 
of human conc!i hon which have not been enough exploited. Feeling the potent ial of this 
opening in the unrlerstanding of the human complexity we suggested it as a direction 
of research and to try to imply. we all scientists, to get an amelioration of the human 
condition as in [18], [19], [20] we did. This research can be done by the utilisation of 
mathematical ideas and theories to the construction of a model of self-knowledge. Have 
we ever put the question which are the axioms which stay at the base of the existence? 
As any theory the human existence should have some axioms, propositions, theorems, 
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conjectures. false affirmations etc. The consequences of false affirmations in our behaviour 
can be clearly observed: the pollution of the mind, of the nature, ecological perturbations 
etc. 

vVe all can realize that the elimination or diminuation of false affirmations about 
the existence and man. could bring harmony and peace. Taking in consideration the 
profoundness and crc>dihility of scientists we can hope more and more from us paing 
a.ttention to this noble work. The incH'dible technical progress and discoveries of the 
science have a corres[)Qnclent in the science of selfknowleclge. 

The Anti-CC'omdry introduced by Florentin Smarandaclw in [14]. [15] would corre
spond to the undc>rstanding of the degradation of human condition. Even tn.is "Anti
Geometry" could be a model for this kind of "inner Geometry". in the sense that the 
degree of degradation represents the different levels of negation of our inner possibilities, 
of our natural qualities. 
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Smarandache:s new geometries 
a provocation for an ammelioration 

of human condition 

Ana-ela Vasiu o 

:\Iathf'matics D<"partment, "Babe§-Bolyai" lTniversity Cluj, Romania 

ABSTRACT 

Are remarkf'd tIl<" new Geometries of Smarandache and it is given a relation
ship and an application of Smarandache Paradoxist Geometry to the amme
jioration of hnman condition by a better understanding of ourselves and of 
others. 

Key words: Non-euclidean Geometry, Bolyai/Lobacewski/Gauss and Riemann Geo
metry, Smarandache Paradoxist Geometry 

In [2J. [3J, Florf'ntin Smarandache introduced a new type of Geometry. In this Smaran
dacheian space it is proposed to be considered the theory deduced from the Absolute 
Geometry of Bolyai and Lobacewski in which the axiom of parallel it is accepted for some 
pairs of points and lin('s and it is denied for others. This new Geometry generalizes and 
unites in the same time: Euclid, Bolyai/Lobacewski/Gauss and Riemann Geometries. 

If the first Non-euclidean Geometry introduced by Lobacewski, Bolyai and Gauss 
surprised the world. snch that Gauss said that the people were not prepared to receive 
a new theory, now we know and accept many kinds of new Geometries. Even in 1969 
Florentin Smarandache had put the problem to study a new Geometry in which the 
parallel from a point to a line to be unique only for some pairs of points and lines and for 
others: none or more. even infinitely many parallels could be drawn through some points 
to a line. 

Are nowadays p<,ople surprise for such new ideas and new Geometries? Certainly 
not! After thm thf' formalized theories were introduced in Mathematics, a lot of new 
Geometries conld be aCTf'pted and semantically to be proved to be non-contradictory by 
the models ([('ared for them as in [1]. 

In [4] we introduced a new notion for understanding the great diversity of human 
condition, that of "inner Geometry". Conformly with this notion we differ so much after 
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the degree of manifestation of our inner possibilities, and from here, after our own blockade 
of them. To be able to understand and to improve our interhuman relationships these new 
types of Geometries could help in at least two directions. For a hand, we are in different 
type of "inner Geometry" from a moment to another moment, and for the other hand: 
from a person to other one, this" inner Geometry" could be different. In this acceptation 
we can treat each other with more wisdom, we can find an explanation of so exposed 
human condition, to be more conscious about the greatness of self knowledge and to 
imply more in the ammelioration of the existence as a theory in which we want to be 
with more concilliation. Smarandache's Geometries could be considered in this way, as an 
important reflection about human condition and his Paradoxist Geometry to find a new 
model in the theory of existence. 
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THE A VER;\GE OF THE ERDOS FUNCTION 

Sabin Tabirca* Tatiana Tabirca* 
""Transilvania Univ=iry ofBrasov, Computer Science Department 

The aim of this article is to establish the complexity order of the Erdos function average. This will 

be studied based on some recent results about the Smarandache function. 

1. INTRODUCTION 

The main results used in this paper are reviewed in the following. These deal with the main 

properties of the Smarandache and Erdos functions. 

The Smarandache function [Smarandache, 1980] is S:N* ~ N defined by 

Sen) = min{k E Nlk!= Mn} (Vn EN *). (1) 

The function P : N* ~ N defined by 

pen) = min{ pEN In =Mp 1\ pis prim}(Vn E N * \{I}), P(l) = 0 (2) 

is named classically the Erdos function. Both functions satisfy the same main properties: 

(Va,b E N*) (a,b) = I=:>S(a· b) = max{S(a),S(b)}, P(a· b) = max{P(a),P(b)}. (3) 

(Va E N *) pea) ~ Sea) ~ a and the equalities occur iifa is prim. (4) 

Erdos [1991] found that these two functions have the same values for all most of the natural 

I~ = l,n I P(i) < S(i)} 
numbers lim = O. This important result was extended by Ford [1999] to 

n-+co n 

I ~ = I, n I P(i) < Sci)} = n· e-(.J2+a
.}';lnn-inln

n 
, where lim an = 0 . 

n-+co 
(5) 

Obviously, both functions are neither increasing nor decreasing functions. In this situation, many 

researchers have tried to study properties concerning their average. Many results that have been 

published so far deal with complexity orders of the average. 

1 n 

Let us denote EU(n» = -. "LI(n) the average of function I: N* ~ R. The average E(S(n)) 
n ;=1 

was intensively studied by Tabirca [1997, 1998] and Luca [1999]. Tabirca [1998] proved that 

(V n> c ) E(S(n» ~ a p • n + bp , where lim a p = lim bp = O. This means that the order O(n) 
p p- p-

31 



is not properly chosen for E(S(n)). Tabirca [1998] conjectured that the average E(S(n)) satisfies 

n 
the equation E(S(n)) ~ -. Finally and the most important, Luca [1999] proposed the equation 

inn 

1 r r] 5 1 31 _. pr(n)-Jr(vn) < E(S(n)) < Jr(n) + -·lnlnn+-+-
2 2 n 5 

(7) 

where ;r(x) denotes the number of prim numbers less than or equal to x. Thus, the complexity order 

for the average E(S(n)) is indeed o(_n_J . 
logn 

2. THE COMPLEXITY ORDER FOR THE ERDOS FUNCTION 

Some of the above results are used to find the complexity order of E(P(n)). Based on the well

known formula lim Jr(n) = 1, Equation (7) gives 
n-+"" n 

Inn 

.!. ~ lim inf E(S(n)) ~ lim sup E(S(n)) ~ 1. 
2 n-+"" n n-+"" n 

(8) 

Inn Inn 

Theorem 1. 

lim inf E(S(n)) = lim inf E(P(n)) , lim sup E(S(n)) = lim sup E(P(n)) (9) 
n-+"" n n-+"" n n-+oo n n-+"" n 

Inn Inn Inn Inn 

Proof Let us denote A = {i = l,n I SCi) > P(i)} the set of the numbers that do not satisfy the 

equation S(i)=P(i). The cardinal of this set is 1 A 1= n· e-(.J2+a·}~Ivn.lnlnn , where lim an = o. 
n-+"" 

The proof is started from the following equation 

IE(S(n)) - E(P(n)~ = ~. t SCi) - tp(i) = ~ {~(S(i) - P(i))] " ~ S~) (10) 

Because we have (\1' i = 1, n) S (i) ~ n , Equation (10) gives 

iE(S(n))-E(P(n))1 ~ I A 1= n.e-(.J2+a.}JIvn.lnlnn and 

E(S(n)) _ E(P(n)) ~ Inn.e-(.J2+a.}JIvn.lnlnn. 
n n 

Inn Inn 
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Because lim a" = 0, the equation lim In n· e-(~+a.}'/""'.Inln " = 0 
"~<D ,,~ 

lim inf 
E(S(n)) = lim inf 

E(P(n)) 
, lim sup 

E(S(n)) 
n-+<D n "~<D n 

"~<D 
n 

Inn Inn Inn 

Theorem 2 is obtained as a direct consequence of Theorem 1. 

Theorem 2 

E(P(n)) = O(-.!!.-) 
Inn 

= lim sup 
n~<D 

IS found true, thus 

E(P(n)) 
holds. • n 

Inn 

f Th . 1 1· ·nf E(P(n)) I· E(P(n)) 1· fi d I Proo e equatIon -::; 1m 1 --'--';"""";";-::; 1m sup ::; IS oun true app ying 
2 n~<D n "~<D n 

Inn Inn 

Theorem 1. From that, there is a natural number NJ such that that 

('\I n ~ NJ (.!. -E). -.!!.- ::; E(P(n)) ::; (1 + E)· -.!!.-. 
2 ~n ~n 

(12) 

Therefore, the equation E(P(n)) = O(-.!!.-) holds. 
Inn • 

n 
The right question that comes from (12) is the following "Is the equation E(P(n))::;-

Inn 

true?". This has been investigated for all the natural numbers less than 1000000 and it has been 

found true. Equation (7) can be adapt to the average E(p(n)) but obviously the inequality that is 

found is not an answer to the question. Therefore, we may conjecture the following: The equation 

n 
E(P(n))::; - holds for all n>1. 

Inn 
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ON THE CONVERGENCE OF THE ERDOS HA.R.tWONIC SERIES 

Tatiana Tabirca* Sabin Tabirca* 

"Transilvania Univenity of Brasov, Computer Science Department 

The purpose of this article is to study the convergence of a few series .... ith the Erdos function. The 

work is based on results concerning the convergence of some series with the Smarandache function. 

1. INTRODUCTION 

The results used in this article are presented briefly in the following. These concern the relationship 

between the Smarandache and the Erdos functions and the convergence of some series. These two 

functions are important function in Number Theory. They are defined as follows: 

• The Smarandache function [Smarandache, 1980] is S: N* ~ N defined by 

Sen) = min{k E Nlk! =Mn} ('in EN *). (1) 

• The Erdos function is P : N* ~ N defined by 

Pen) = min{p E N In =Mp /\ pis prirn}('in E N*\{l}), P(1) = o. (2) 

The main properties of them are: 

('ia,b E N*) (a,b) = l~S(a· b) = max{S(a),S(b)}, P(a· b) = max{P(a),P(b)}. (3) 

('ia E N*) Pea) ~ Sea) ~ a and the equalities occur iifa is prim. (4) 

Erdos [1991] found the relationship between these two functions that is given by 

. I~ = l,n \ P(i) < Sci)} 
hm ' = o. (5) 
"-+(1) n 

This important result was extended by Ford [1999] to 

I~ = 1, n I P(i) < SCi)} = n· e-(J2 ... a.}~ , where lim an = o. 
I n~~ 

(6) 

Equations (5-6) are very important because allow us to translate convergence properties on the 

Smarandache function to convergence properties on the Erdos function. This translation represents 

the main technique that is used to obtain the convergence of some series .... ith the function P. 

2. THE ERDOS HARMONIC SERIES 
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The Erdos hannonic series can be defined by L _1_. This is one of the important series with 
"":?2pQ(n) 

the Erdos function and its convergence is studied starting from the convergence of the 

Srnarandache hannonic series L _1_. Some results concerning series with the function S are 
,,":?2 SQ(n) 

reviewed briefly in the following: 

• If (x"),,>o is an increasing sequence such that lim x" = 00, then the series L X,,+I - x" IS 
,,~'" ,,>1 S(x,,) 

• 

• 

divergent. [Cojocaru, 1997]. 

(7) 

The series L-21
- is divergent. [Tabirca, 1998] 

,,":?2 S (n) 

(8) 

The series L_1- is divergent for all a>O. [Luca, 1999] 
,,":?2 SQ(n) 

These above results are translated to the similar properties on the Erdos function. 

(9) 

Theorem 1. If (x,,),,> 0 is an increasing sequence such that lim x" = 00, then the series 
,,~'" 

L X,,+I - x" is divergent. 
,,>1 P(x,,) 

Proof The proof is obvious based on the equation P(x,.)::; S(x,,). Therefore, the equation 

x -x x -x "x -x 
,,+1 " ~ ,,+1 " and the divergence of the series L..J ,,+1 " give that the series 
P(x,,) S(x,,) ,,>1 S(x,,) 

x -x l: ,,+1 " is divergent. 
01 P(x,,) 

• 
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1 
A direct consequence of Theorem 1 is the divergence of the series L ' where a,b>O 

11>1 P(a·n+b) 

are positive numbers. This gives that L_l- is divergent and moreover that L_l- is 
II?2 pen) II?2 pQ(n) 

divergent for all a<1. 

Theorem 2. The series L _1_ is divergent for all a> 1. 
II?2 pQ(n) 

Proof The proof studies two cases. 

1 
Case 1. a ~ - . 

2 

1 
In this case, the proof is made by using the divergence of L--' 

II?2 SQ(n) 

Denote A = f = 2,n 1 SCi) = P(i)} and B = f = 2,n 1 SCi) > P(i)} a partition of the set 

f = l,n }. We start from the following simple transfonnation 

(10) 

An i E B satisfies SQ (i) - PQ (i) ~ 1 and PCi) < SCi) :::;; n thus, (10) becomes 

II 1 II 1 1 II 1 1 
,,-> ,,-+ ,,-= "-+-'1 B 1 ~PQ(') - ~SQ(') ~ 2·Q ~SQ(') :'Q . 
;=2 1 i=2 1 IEB n 1=2 1 n 

(11) 

IS divergent because the senes 
1 . L -- IS divergent and 

II?2 SQ(n) 

I B I . -(J2+a.)-Jlnn·lnlnll 1 
I· I' n e I' 0 Im-= 1m = 1m = 
""""" n2'

Q """"" n2'
Q 

II .... "" n2'Q-1 • e( J2 +Q. )·JIn II·1n In II . 

1 
Case 2. - > a > 1. 

2 

1 
The first case gives that the series L-I- is divergent. 

II?2 p: (n) 
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n 1 n 1 
Based on p2(n) > pa(n), the inequality ,,-- > ,,-- IS found. Thus, the series 

L. pa(i) L. !.. 
1=2 1=2 p2 (i) 

1 L -- is divergent. 
n~2 sa(n) • 

The technique that has been applied to the proof of Theorem 2 can be used in the both ways. 

Theorem 2 started from a property of the Smarandache function and found a property of the Erdos 

ilnS~i) 

function. Opposite, Finch [1999] found the property lim i=2 Inl = 1 based on the similar 
n-+'" n 

i InP(i) 

property lim i=2 In i = 1, where ),=0.6243299 is the Golomb-Dickman constant. Obviously, 
n-+'" n 

many other properties can be proved using this technique. Moreover, Equations (5-6) gives a very 

interesting fact - "the Smarandache and Erdos function may have the same behavior on the 

convergence problems." 
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An experimental evidence on the validity of third Smarandache conjecture on 
primes 

Abstract 

Felice Russo 
_\/tcr()J7 7ecil17()/o!!:1' 110/\' 

'- - -
.-1 re~~CIl7() (-1(1) IW(1' 

In this note v.e report the results regarding ,he check of the third Smarandache conjecture on 

primes [1 J.[2] for P ~ 225 and 2 ~ k ~ 10, In the range analysed the conjecture is true, 
n 

\loreover. according to experimental data obtained. it seems likely that the conjecture is true for 
all primes and for all positi\'e values ofk, 

J ntrod uction 

In [1] and [2] the follo\ving function has been defined: 

\vhere Pn is the n-th prime and k is a positive integer \loreover in the above mentioned papers 
the follov ... -ing conjecture has been fomlUlated by F, Smarandache 

2 
C(n,k)< k for k~2 

This conjecture is the generalization of the Andrica conjecture (k=2) [3] that has not yet been 

proven This third Smarandache conjecture has been tested for P ~ 225 
. 2 ~ k ~ 10 and in this 

n 

note the result of this search is reported The computer code has been written utilizing the L oasic 
software package 

Experimental Results 

In the follov,ing graph the Smarandache function for k=-1- and n< I 000 is reported As we can see 
the value ofC(k.n) is modulated by the prime-s gap indicated by dn = Pn+l - Pn 

We call this graph the Smarandache --comet" 
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, 

Smarandache function for k=4, 1<=n<=1000 
Smarandache comet 
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In the following table, instead. we report 

• the largest value ~\'lax_ C( nJ..:) of Smarandache function for 2::::;; k ::::;; 10 and p ::::;; 225 

n 

• the ditference .1(k) between 2/k and \lax_ C(n.k) 

• the value of Pn that maximize C( n.k) 

• the value of 11k 

k 2 3 4 5 6 7 8 9 10 

;\'1ax C(n.k) 0.67087 0.31105 0.19458 0.13962 0.10821 0.08857 0.07564 0.06598 0.05850 

~ 
0.32913 0.35562 0.30542 0.26038 0.22512 0.19715 0.17436 0.15624 0.14150 

7 7 7 7 
Pn 

7 3 3 3 3 

2/k 1 0.666 .. 0.5 0.4 0.333 .. 0.2857 .. 0.25 0.222 .. 0.20 

According to previous data the third Smarandache conjecture is veritied in the range of k and Pn 
analysed due to the fact that ~ is always positive. 
\Ioreover since the Smarandache C(n.k) function falls asymptotically as f1 increases it IS likelv 

that the estimated maximum is valid also for p > 225 
. 

n 
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We can also analyse the behaviour of difference I:!(k) versus the k parameter that In the 

following graph is showed with white dots We have estimated an interpolating function: 

1 
I:!(k) ~ 0.88· kO.78 

\\ith a \ery good R2 \'alue (see the continuous CUf\e) This result reinforces the validit\· of the 
third Smarandache conjecture since 

I:!(k) ~ ° for k ~ 00 

II:! (k ) vs kl y = 0.8829x..,·71102 

R2 = 0.9904 
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~ew Question 

According to previous experimental data can we reformulate the third Smarandache conjecture 
v,ith a tighter limit as showed below'') 

2 
C(n,k)<--

2·a 
k 0 

where k ~ 2 and ao is the Smarandache constant [-+ ].[ I ] 
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Abstract 

Some results about four Smarandache U-product sequences 

Felice Russo 
Micron Technology Italy 

Avezzano (Aq) - Italy 

In this paper four Smarandache product sequences have been studied: Smarandache Square 
product sequence, Smarandache Cubic product sequence, Smarandache Factorial product 
sequence and Smarandache Palprime product sequence. In particular the number of primes, the 
convergence value for Smarandache Series, Smarandache Continued Fractions, Smarandache 
Infinite product of the mentioned sequences has been calculated utilizing the Ubasic software 
package. Moreover for the first time the notion of Smarandache Continued Radicals has been 
introduced. One conjecture about the number of primes contained in these sequences and new 
questions are posed too. 

Introduction 

In [1] Iacobescu describes the so called Smarandache U-product sequence. 
Let Un n ~ 1, be a positive integer sequence. Then a U-sequence is defined as follows: 

In this paper differently from [1], we will call this sequence a U-sequence of the first kind 
because we will introduce for the first time aU-sequence of the second kind defined as follows: 

In this paper we will discuss about the "Square product", "Cubic product", "Factorial product" 
and "Primorial product" sequences. In particular we will analyze the question posed by 
Iacobescu in [1] on the number of primes contained in those sequences. We will also analyze the 
convergence values of the Smarandache Series [2], Infinite product [3], Simple Continued 
Fractions [4] of the four sequences. Moreover for the first time we will introduce the notion of 
Smarandache Continued Radicals and we will analyse the convergence of sequences reported 
above. 
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Sequences details 

o Smarandaclte square product sequence of tlte first and second kind. 

In this case the sequence un is given by: 

1,4.9, 16,25,36,49,64,81, 100. 121, 144 ........ . 

that is the square of n. The first 20 tenns of the sequence Un (1:::; n :::; 20) both the first and 

second kind are reported in the table below: 

Smarandache Square product sequence (first kind) Smarandache Square product sequence (second kind) 
2 0 
5 3 
,~ 

J/ I 35 
577 575 
14401 14399 
518401 518399 
25401601 25401599 
1625702401 1625702399 
131681894401 131681894399 
13168189440001 i 13168189439999 
1593350922240001 1593350922239999 
229442532802560001 229442532802559999 
38775788043632640001 38775788043632639999 
7600054456551997440001 7600054456551997439999 
1710012252724199424000001 1710012252724199423999999 
437763136697395052544000001 437763136697395052543999999 
126513546505547170185216000001 126513546505547170185215999999 
40990389067797283140009984000001 40990389067797283140009983999999 
14797530453474819213543604224000001 14797530453474819213543604223999999 
5919012181389927685417441689600000001 5919012181389927685417441689599999999 

o Smarandache cubic product sequence of the first and second kind. 

In this case the sequence un is given by: 

1,8,27, 64, 125,216,343,512,729,1000,1331,1728 ..... . 

that is the cube of n. Here the first 17 tenns for the sequence Un of the first and second kind. 

43 



I 
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Smarandache Cubic product sequence (first kind) Smarandache Cubic product sequence (second kind) 
2 0 
9 7 
217 215 
13825 13823 
1728001 1727999 
373248001 373247999 
128024064001 I 128024063999 
65548320768001 65548320767999 
47784725839872001 47784725839871999 
47784725839872000001 47784725839871999999 
63601470092869632000001 I 63601470092869631999999 
109903340320478724096000001 109903340320478724095999999 
241457638684091756838912000001 241457638684091756838911999999 
662559760549147780765974528000001 662559760549147780765974527999999 
22361391918533 7 3760085164032000000001 2236139191853373760085164031999999999 
9159226129831418921308831875072000000001 9159226129831418921308831875071999999999 
44999277975861761160390291002228736000000001 44999277975861761160390291002228735999999999 

o Smaralldaclte factorial product sequence of the first and second kind. 

In this case the sequence un is given by: 

1,2,6, 24. 120,720.5040,40320,362880 ...... . 

that is the factorial of n. The first 13 tem1S of the Un sequence of the first and second kind 

follow. 

Smarandache Factorial product sequence (first kind) Smarandache Factolial product sequence (second kind) 
2 0 
3 1 
13 11 
289 287 
34561 34559 
24883201 24883199 
1254i 1328001 , 12541 1327999 
5056584744960001 5056584744959999 
1834933472251084800001 1834933472251084799999 
6658606584104736522240000001 6658606584104736522239999999 
265790267296391946810949632000000001 i 265790267296391946810949631999999999 
127313963299399416749559771247 411200000000001 127313963299399416749559771247411199999999999 

7927866975957967956073 77086400S7148855296/X)()(X)OOOOOOO I 792786097595796795(1)737708640()87I 488552959t}99999999999 
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o Smarandache primoriai product sequence of the first and second kind. 

In this case the sequence un is given by: 

2,3, 5, 7,11,101,121,131, 151, 181, 191,313,353,353,373 ..... . 

that is the sequence of palindromic primes. Belo\v the first 17 tenns of the Un sequence of the 

first and second kind. 

Smarandache Palprime product se~uence (first kind) Smarandache Palprimeproduct sequence (second kind) 
, I 1 -' 
7 5 
31 29 
211 209 
2311 2309 
233311 233309 
28230511 28230509 
3698196811 3698196809 
558-127718311 558427718309 
10107541701-1111 10107541701-1109 
19305404649695011 19305404649695009 
604259165535-1538131 6042591655354538129 
2133034854340151959891 2133034854340151959889 
795622000668876681038971 795622000668876681038969 
30-1723226256179768837925511 304723226256179768837925509 
221533785488242691945171845771 221533785488242691945171845769 
167701075614599717802495087247891 167701075614599717802495087247889 

Results 

For all above sequences the following qestions have been shldied: 

1. How many terms are prime? 
2. Is the Smarandache Series convergent? 
3. Is the Smarandache Infinite product convergent? 
4. Is the Smarandache Simple Continued Fractions convergent? 
5. Is the Smarandache Continued Radicals convergent? 

For this purpose the software package lJbasic Rev. 9 has been utilized. In particular for the item 
n. 1, a strong pseudoprime test code has been written [5]. Moreover, as already mentioned 
above, the item 5 has been introduced for the first time; a Smarandache Continued Radicals is 
defined as follows: 

~ a(1) + ~a(2) + ~ a(3) + ~a(4) + ..... . 
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where a(n) is the nth term of a Smarandache sequence. Here below a summary table of the 
obtained results: 

# Primes SS cv SIP cv SSCF cv 
Square l't kind 121456=0.026 0.7288315379 ..... 0 1 2.1989247812 .... 
Square 2nu kind li463=0.0021 C1J ! C1J 0.3301888340 .... 
Cubic 15t kind Cd; I 0.615792320 1 ..... 0 2.1110542477 .... 
Cubic 2A<1 kind (a' ::0 ::0 0.1427622842 .... 

Factoriall't kind 5/70=0.071 I 0.9137455924 ..... 0 2.3250021620 .... 
Factorial 2nd kind 2;66=0.033 i ::0 ex:; ! 0.9166908563 .... 
Palprime 151 kind 10:363=0.027 i 0.5136249121. .... 0 i 3.1422019345 .... 
Palprime 2nd kind 9:363=0.024 1.2397048573 ..... i 0 1.1986303614 .... 

Legel1d: 

# primes 
SS cv 
SIP cv 
SSCF cv 
SCR cv 

(Number of primes/number of sequence terms checked) 
(Smarandache Series convergence value) 
(Smarandache Infinite Product convergence value) 
(Smarandache Simple Continued Fractions convergence value) 
(Smarandache Continued Radicals convergence value) 

SCR cv 
2.3666079803 .... 
1.8143775546 .... 
2.6904314681.. .. 

I 2.2446613806 .... 
1 2.233215221 8 .... 

1.6117607295 .... 
2.5932060878 .... 

I 2.1032632883 .... 

@ (This sequence contain only one prime as proved by M. Le and K. Wu [6] ) 

About the items 2.3,4 and 5 according to these results the answer is: yes, all the analyzed 
sequences converge except the Smarandache Series and the Smarandache Infinite product for the 
square product (2nd kind). cubic product (2nd kind) and factorial product (2nd kind). In particular 
notice the nice result obtained with the convergence of Smarandache Simple Continued Fractions 
of Smarandache pal prime product sequence of the first kind. 
The value of convergence is roughly 1t with the first two decimal digits correct. 

1 
1t::::: 3+-------------------

1 
7 +----------------

1 
31+--------------------------

1 
211+---------------------

1 
2311+----------------

1 
233311 + ----------

28230511 + ... 

Analogously for the cubic product sequence of the second kind the simple continued fraction 
converge roughly to 1t - 3, while for the factorial product sequence of the second kind the 
continued radical converge roughly (two first decimal digits correct) to the golden ratio ¢, that 

IS: 
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1 
1t:::: 3 + 0+-----------------

1 
7 +----------------

215+------------------------
13823 + _____ 1 ___ _ 

1727999 + ___ 1 __ _ 
373247999 + ... 

About the item 1, the following table reports the values of n in the sequence that generate a 
strong pseudoprime number and its digit's number. 

n d 
Square 1st kind I !2i3!4!5!9!1 Oil 1/1324/65/76 1/1/2!3;5!12!14;16/20/48!l82!223 

Square 2nCl kind 2 I 
Cubic 1 Sf kind I 1 
Cubic 2nd kind 2 I 

Factorial 1st kind 1/2/3i7!14 1!Jf2!125!65 

Factroial 2nd kind 317 2/12 .. 
Palprime 1'1 kind l!2/3!4!5i7!1 O! 19/57/234 111/2/314/8/15/39/198/1208 

Palprime 2nd kind 2/3i4!5f7!10/l 9/57/234 \12/3/4:8/15/39/198/1208 

Please note that the primes in the sequence of pal prime of the first and second kind generate 
pairs of twin primes. The first ones follow: 

(3.5) (5.7) (29.31) (209,211) (2309,2311) (28230509,28230511) (101075417014109.101075417014111) ....... . 

Due to the fact that the percentage of primes found is very small and that according to Prime 
Number Theorem, the probability that a randomly chosen number of size n is prime decreases as 
lid (where d is the number of digits of n) we are enough confident to pose the following 
conjecture: 

• The number of primes colltailled in the Smarandache Square product sequence (lSI and 
r d kind), Smarandache Factorial product sequence (lSI and 2J1d kind) and Smarandaclle 
Palprime product sequence (lSI and r d kind) is finite. 
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New Questions 

• Is there any Smarandache sequence whose SS, SIP, SSCF and SCR converge to some 
known mathematical constants? 

• Are all the estimated convergence values irrational or trascendental? 

• Is there for each prime inside the Smarandache Palprime product sequence of the second kind 
the correspondent twin prime in the Smarandache Palprime product sequence of the first 
kind? 

• Are there any two Smarandache sequences a(n) and ben) whose Smarandache Infinite 
Product ratio converge to some value k different from zero? 

1 
TI-

lim 
n a(n) 

n ~ aJ 1 
TI-
n b(n) 

• Is there any Smarandache sequence a(n) such that: 

• For the four sequences of first kind a(n), study: 

lim I a(n) 
n~oo R(a(n» 

n 

k 

where R(a(n» is the reverse ofa(n). (For example ifa(n)=17 then R(a(n»=71 and so on). 
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On an unsolved question about the Smarandache Square-Partial-Digital 
Subsequence 

Abstract 

Felice Russo 
1vIicrolZ Technology ltal)/ 

Avezzano (Aq) - ItaZv 

In this not~ we r~port the solution of an unsolved qu~stion on Smarandache Squar~-Partial-Digital Subsequ~nce. 
We have found it by ~xtesi\'~ computer search. 
Some n~w questions about palindromic numb~rs and prime numbers in SSPDS are posed too. 

Introduction 

The Smarandache Square-Partial-Digital Subsequence (SSPDS) is the sequenc~ of square int~g~rs which admits a 
partition for \vhich each s~gment is a square integer [1].[2].[3). 
The tirst tenns of the s~qu~nce follow: 

49,144.169.361,441,1225.1369.1444,1681,1936. 3249,4225.4900,11449,12544.14641,15625,16900 ... 

or 

7.12.13.19.21,35,37,38.41. 44.57,65,70,107.112.121,125,130,190.191,204,205, 209. 212. 223, 253 ... 

reporting th~ value o1'n/\2 that can be partitioned into t\vo or more numbers that are also squares (A048653) [5]. 
Differently from the sequences reported in [I], [2] and [3] the proposed ones don't contain tenns that admit 0 as 
partition. In fact as reported in [4] we don't consider the number zero a perfect square. 
So, for example. the term 256036 and the term 506 respectively. are not reported in the above sequences because the 
partion 2S6iOi36 contains the number zero. 
L. Widmer explored some properties of S SPDS's and posed the following question [2]: 

Is there a sequence of three or more consecutive integers whose squares are in SPDS') 

Tnis note gives an anS\Ver to this question. 

Results 

A computer code has been \vritten in l.Jbasic Rev. 9. 
After about three week of work only a solution for three consecutive integers has been found. Those consecutive 
integers are: 12225,12226.12227. 
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n n"2 Partition 
12225 149450625 1. 4, 9, 4,50625 
12226 149475076 1, 4, 9, 4, 75076 
12227 149499519 1,4,9,4.9,9,529 

~o other three consecutive integers or more have been found for terms in SSPDS up to about 3,3E'"'9, Below a graph 
of distance dn between the temlS of sequence A048653 versus n is given; in particular dn=a(n'" I)-a(n) where n is 
the n-th term of the sequence, 

dn=a(n+1)-a(n) vs n 

1 32 63 94 125156 187218249280311 342 373404 435 

n 

According to the previous results we are enough confident to offer the following conjecnrre: 

• There are no four cOllsecmive integers whose squares are in SSPDS. 

New Questions 

Starting with the sequence (A048646). reported above. the following sequence can be created [5] (A048653): 

7,13,19,37.41. 107, 191,223.379,487,1093,1201, 1301, 1907,3019,3371, 5081, 9041, 9721, 9907.. .... 

that we can call .. Smarandache Prime-Square-Partial-Digital-Subsequence " because all the squares of these primes 
can be partitioned into two or more numbers that are also squares. 
By looking this sequence the following questions can be posed: 

1. Are there otlter palindromic primes in this sequence beyond the pa/prime 191? 

2. Is there at least olle plan drom ic prime in this sequellce which square is a palindromic square? 

3. Are there ill this sequellce other two or more cOllsecuth'e primes beyond 37 alld 41? 
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ffwe look no\v at the terms of the sequence A048653 we discover that t"vo of them are very interesting: 

121 and 212 

Both numbers are palindromes and their squares are in SSPDS and palindromes too. In fact 121 "2=146-f I can be 
partitioned as: I ,4.64,4 and 2 I 2"2=44944 can be partitioned in five squares that are also palindromes: 4. 4, 9, 4. 4. 
These are the only terms found by our computer search. So the following questJon arises: 

1. How mallY other SSPDS palindromes do e.·dst ? 
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On A Conjecture By Russo 

Charles Ashbacher 
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Hiawatha, Iowa USA 
e-mail 71603.522@compuserve.com 

The Smarandache Square-Partial-Digital Subsequence(SSPDS) is the sequence of square integers which 
can be partitioned so that each element of the partition is a perfect square[l][2][3]. For example, 3249 is in 
SSPDS since 3249 can be partitioned into 324 = 182 and 9 = 32

. 

The first terms of the sequence are: 

49,144,169,361,441, 1225, 1369, 1444, 1681, 1936,3249,4225,4900,11449,12544,14641, ". 

where the square roots are 

7,12,13, 19,21,35,37,38,41,44,57,65,70, 107, 112, 121, ... 

this sequence is assigned the identification code A048653[4]. 

L. Widmer examined this sequence and posed the following question[2]: 

Is there a sequence of three or more consecutive integers whose squares are in SPDS? 

For the purposes of this examination, we will assume that 0 is not a perfect square. For example, the 
number 90 will not be considered as a number that can be partitioned into two perfect squares. 
Furthermore, elements of the partition are not allowed to have leading zeros. For example, 101 cannot be 
partitioned into perfect squares. 

Russo[5] considered this question and concluded that the only additional solution to the Widmer question 
up to 3.3E+9 was 

n 
12225 
12226 
12227 

and made the following conjecture: 

n2 

149450625 
149475076 
149499529 

Partition 
1,4,9,4,50625 
1,4,9,4,75076 
1,4,9,4,9,9,529 

There are no four consecutive integers whose squares are in SSPDS. 

The purpose of this short paper is to present several additional solutions to the Widmer question as well as a 
counterexample to the Russo conjecture. 

A computer program was written in the language Delphi Ver. 4 and run for all numbers n, where 
n $; 100,000,000 and the following ten additional solutions were found 

n 
376779 
376780 
376781 

n2 

141962414841 
141963168400 
141963921961 
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Partition 
1,4, 1,9,6241,4,841 
1,4,196,3168400 
1,4,196392196,1 



n 
974379 
974380 
974381 

n 
999055 
999056 
999057 

n 
999056 
999057 
999058 

n 
2000341 
2000342 
2000343 

n 
2063955 
2063956 
2063957 

n 
2083941 
2083942 
2083943 

n 
4700204 
4700205 
4700206 

n 
5500374 
5500375 
5500376 

n 
80001024 
80001025 
80001026 

n2 

949414435641 
949416384400 
949418333161 

n2 

998110893025 
998112891136 
998114889249 

0 n-

998112891136 
998114889249 
998116887364 

n2 

4001364116281 
4001368116964 
4001372117649 

n2 

4259910242025 
4259914369936 
4259918497849 

n2 

4342810091481 
4342814259364 
4342818427249 

n2 

22091917641616 
22091927042025 
22091936442436 

n2 

30254114139876 
30254125140625 
30254136141376 

n2 

6400163841048576 
6400164001050625 
6400164161052676 
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Partition 
9,4,9,4, 1,4,4356,4, 1 
9,4,9,4,16,384400 
9,4,9,4,1833316,1 

Partition 
9,9,81,1089,3025 
9,9,81,1,289,1,1,36 
9,9,81,1,4,889249 

Partition 
9,9,81,1,289,1,1,36 
9,9,81, 1,4,889249 
9,9,81,16,887364 

Partition 
400,1,36,4,116281 
400, 1,36,81,16,9,64 
400,1,3721,1764,9 

Partition 
4,25,9,9,1024,2025 
4,25,9,9, 1,4,36,9,9,36 
4,25,9,9,1849,784,9 

Partition 
43428100,9,1,4,81 
434281,4,25,9,36,4 
434281,842724,9 

Partition 
2209,1,9,1764, 16, 16 
2209,1,9,2704,2025 
2209,1,9,36,4,42436 

Partition 
3025,4,1,1,4,139876 
3025,4,1,25,140625 
3025,4,1,36,141376 

Partition 
6400, 16384, 1048576 
6400, 1,6400, 1050625 
6400, 1,64, 16, 1052676 



n 
92000649 
92000650 
92000651 

n2 

8464119416421201 
8464119600422500 
8464119784423801 

Partition 
8464,1,1,9,4,16,421201 
8464, I, 19600,4,22500 
8464, I, 1,9,784,423801 

Pay particular attention to the four consecutive numbers 999055, 999056, 999057 and 999058. These four 
numbers are a counterexample to the conjecture by Russo. 

Given the frequency of three consecutive integers whose squares are in SSPDS, the following conjecture is 
made: 

There are an infinite number of three consecutive integer sequences whose squares are in SSPDS. 

In tenns of larger sequences, the following conjecture also appears to be a safe one: 

There is an upper limit to the length of consecutive integer sequences whose squares are in SSPDS. 

We close with an unsolved question: 

What is the length of the largest sequence of consecutive integers whose squares are in SSPDS? 
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A functional recurrence to obtain the prime numbers using the 
Smarandache prime function. 

Sebastian Martin Ruiz. Avda de Regla, 43. Chipiona 1 1 550Cadiz Spain. 

Theorem: We are considering the function: 

For n ~ 2 , integer: 

[ 1 ±r d L )-Ef cl) )_2lj 211 m \ -C\J \ J 
FI 

F(n) = n + 1 + L I1 -
_._. ~(E{i )-E{ :' ))-. j 

one has: Pk+l =F(Pk) for all k~ 1 where {Pk}.Ql are the prime nwnbers and E(x) 
is the greatest integer less than or equal to x. 

Observe that the knowledge of Pk+l only depends on knowledge of Pk and the 
knowledge of the fore primes is unnecessary. 

Observe that this is a functional recurrence strictly closed too. 

Proof: 

Suppose that we have found a function G(i) with the following property: 

G(i) = { 1 i( i i~ ~om~nd 
o if liS pnme 

This function is called Smarandache Prime Function (Reference) 

Consider the following product: 

m 

I1 G(i) 
r-=Pt+! 

m 

I1 G(i) = 1 since i: Pk + 1 ~ i ~ m are all compounds. 
i=Pt+1 
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m 

If m ~Pk+! IT G(i) = 0 smce the G(pk+!) = 0 factor is in the product. 
i=Pl+! 

Here is the sum: 

2Pk m Ph-I-! m 2Pk m Pk+I-! 

L IT G(i) = L IT G(i) + L IT G(i) = L 1 = 
m=Pk+! t=Pk+! m=Pl+! t=Pk+! m=Pk+1 i=Pk+! m=pk+! 

The second sum is zero since all products have the factor 

G(Pk+l) = o. 

Therefore we have the following relation of recurrence: 

2Pl m 

Pk+! = Pk + 1 + L IT G(z) 
m=pk+! r-pk+! 

Let's now see that we can find G(z) with the asked property. 
Considerer: 

j = 1,2, ... , i i ~ 1 

We shall deduce this later. 

We deduce of this relation: 

d(i) =~( EG) -E( ~! )) where d(z) is the number of divisors of i. 

If i is prime d(i) = 2 therefore: 

-Ef - d(t}-2 ] - 0 L d(i}-! -

If i is compound d(z) > 2 therefore: 

d(i}-2 ....r d(t}-2 ] 
0< d(iH < 1 => -.t..L - d(i}-! = 1 
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Therefore we have obtained the function G(i) which is: 

1 ±(~; )-~ 7 ) )-zl 
G(i) = - ~l J 

L(~; )-~ ~l) )-! 
FI 

i ~ 2 integer 

To finish the demonstratioll of the theorem it is necessary to prove (1) 

If j = 1 j I i E(7) - Eej! ) = i - (i - 1) = 1 

If j> 1 

i=jE(y)+r O~r<j 

i-I = jEe;!) +5 0 ~5 <j 

. 1 

If j Ii=> r = 0 => jE(y) = jEe;! ) + 5 + 1 => } I 5 + 1. ~ => j = 5 + 1 
5+ 1 ~J j 

=> }E(y) = }E(~!) + j => E(y) =E(~!) + 1 

If }li=>r>O=>O=}(E(y)-E(~!» +(r-5)+1 =>) I r-5+1 

Therefore r-s+ 1 = 0 or r-s+ 1 = j 

With this, the theorem is already proved. 
Reference: 
[1] E. Burton, "Smarandache Prime and Coprime Functions", 
http://www.galiup.unm.edul-smarandache/primfnct.txt 
[2] F. Smarandache, "Collected Papers", Vol. II, 200 p., p. 137, 
Kishinev University Press, Kishinev, 1997. 
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The general term of the prime number sequence and the 
Smarandache prime function. 

Sebastian Martin Ruiz. Avda de RegIa, 43 Chipiona 11550 Cadiz SPain. 

Let I s consider the function d(i) = number of divisors of the positive integer 
number i. We have found the following expression for this function: 

d(i) = ~ E(t) -E('~!) 
We proved this expression in the article "A functional recurrence to obtain the 
prime numbers using the Smarandache Prime Function". 

We deduce that the folowing function: 

G(i) = -E[ - d(i;-2 ] 

This function is called the Smarandache Prime Function (Reference) 
It takes the next values: 

. {o if i is prime 
G(l) = 1 if i is compound 

Let is consider now n:(n) =number of prime numbers smaller or equal than n. 
It is simple to prove that: 

" n:(n) = L(1 - G(z)) 
i=2 

Let is have too: 

If 1 $k$p,,-l ~ E("~») =0 

If C" ~k~p" ~ E(~k:») = 1 

We will see what conditions have to cany C". 

Therefore we have te following expression for p" n-th prime number: 

_ c. (*)1 
p" - 1 + L(1-E ") 

k=! 

If we obtain C" that only depends on n, this expression will be the general term 
of the prime numbers sequence, since n: is in function with G and G does with 
d(i) that is expressed in function with i too. Therefore the expression only 
depends on n. 

E[x]=The highest integer equal or less than n 
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Let is consider Cn = 2(E(nlogn) + IJ 
Sincepn - nlogn from ofa certain no it will be true that 

(1) pn:S:; 2(£(nlogn) + I} 

If no it is not too big, we can prove that the inequality is true for smaller or equal 
values than no. 

It is necessary to that: 

If we check the inequality: 

(2) n(2(E(n logn) + 1)) < 2n 
We will obtain that: 

7r(C
n

n) < 2 => ....r
L 

"(Cn~) ] _< 1 C r:f 1f(Cn) l 1 l:.i ; n ~pn => LL-n- J = 

We can experimentaly check this last inequality saying that it checks for a lot of 
values and the difference tends to increase, ",rich makes to think that it is true for 
all n. 

Therefore if we prove that the next inequalities are true: 

(1) Pn:S:;2(E(nlogn)+I) 

(2) n(2(E(nlogn) + I)) < 21\ 

whi~h seems to be very probable; we will have that the general term of the prime 
numbers sequence is: 

2(E(n logn)+l) 

pn = 1 + L 1-
k=! 

M 

L 
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If now we consider the general tenn defined in the same way but for all real 
number QIeater than zero the following wafic is obtained: 

25 

20 

15 

10 

5 

2 4 6 8 10 
Let is observe that If U<x<l P(x)= 1 si x= 1 P(x)=2 and for n - 1 < x::; n P(x)= pn 

Reference: 
[1] E. Burton, "Smarandache Prime and Coprime Functions" 
Http://www.gallup.unm.edui-Smarandache/primfuct.txt 
[2] F. Smarandache, "Collected Papers", Vol. II, 200 p.,p.137, Kishinev 
University Press. 
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Expressions of the Smarandache Coprime Function 

Sebastian Martin Ruiz, Avda de RegIa, 43 Chipiona, 11550 Cadiz, Spain 

Smarandache Coprime Function is defined this way: 

)
_{ 0 if nl,n2,···,nkarecoprimenumbers 

Ck(nl,n2,···,nk -
1 otherwise 

\Ye see two expressions of the Smarandache Coprime Function for k=2. 
EXPRESSION 1: 

C( ) E[ nln2-tcm(nl,n2)] 
2 nl, n2 =-

nln2 

E( x) = the biggest integer number smaller or equal than x. 

If nl, n2 are coprime numbers: 

If nl, n2 aren't coprime numbers: 
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EXPRESSION 2: 

II II Id-d'i 
d I nl d' I n2 

d> 1 d' > 1 

If nl, n2 are coprime numbers then d =I d' V d, d' =I 1 

II II Id-d'i 
d I nl d' I n2 

d> 1 d' > 1 
:::} 0 < --=-=:::------ < 1 :::} C2 ( n 1, n2) = 0 II II(d+d') 

din, din, 

Ifnl,n2 aren't coprime numbers 3d= d' d> I,d' > I:::} C2(nl,n2) = 1 
Smarandache coprime function for k 2: 2. 

If nl , n2, ... ,nl; are coprime numbers: 

If nl, n2,···, nl; aren't coprime numbers: GCD(nl, n2,···, nl;) > 1 

References: 
1. E. Burton, "Smarandache Prime and Coprime Functions" 

2. F. Smarandache, "Collected Papers", Vol. II, 200 p.,p. 137, Kishinev 
University Press. 
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I.e., 

NOTE ON THE DIOPHANTINE EQUATION 2X2 - 3y2 = P 

Mladen V. Vassilev - l\lissaha and Kra.ssimir T. Atanassov 

The solving of the Diophantine equation 

»2 '32 -_x -. y =.J 

2X2 - 3y2 - .j = 0 

(1) 

was put as an open Problem 78 by F. Smaranclache in [1]. Below this problem is solved 
completely. Also, we consider here the Diophantive eqlla.t.ion 

I.e., 

and the Pellian equation 

I.e., 
u1 - 61'·2 - I = O. 

Here we use variables x ane! y only for equation (1) and I, m for equation (2). 
We will need the following denotations and definitions: 

A r - {I .) >3 } . .I" - ,_,. , ••. , 

if 
F(t,w)=O 

is an Diophantive equation, then: 

(2) 

(3) 

(ad we use the denotation < t, W > if and only if (or briefly: iff) t and ware integers which 
satisfy this equation. 

(a2) we use the denotation < t, w >E ;V1 iff t and ware positive integers; 
f{(t, w) denotes the set of all < t, w >; 
f{O(t,w) denotes the set of all < t,w >E .IV'2; 

f{'(t, w) = f{°(t, w) - {< 2,1 >}. 

LEMMA 1: If < t, w >E N2 and < :1:, y >#< 2,1 >, then there exists < I, m >, such that 
< I, m >E N2 and the equa.lities 

x = [ + :3m and !J = [ + "2m (4) 

hold. 
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LEMMA 2: Let < I,m >E Jo.r2. If x and yare given by (1), then x and y satisfy (4) 
and < x,y >E Af2. 

We shall note that lemmas 1 and 2 show that the map 'P: f{°(l,m) - /{'(x,y) given by 
(4) is a bijection. 

Proof of Lemma 1: Let < x, y >E )\!2 be chosen a.rbitrarily, but < x, y >#< 2,1 >. 
Then y 2: 2 and x > y. Therefore, 

x=y+m (5) 

and m is a positive integer. Subtracting (5) into (1), Wf' obtain 

y2 _ 4my +.5 - 2m2 = O. (6) 

Hence 
!J = Y1.2 = 2m ± J6m 2 - ."i. (7) 

For m = 1 (7) yields only 
.1J = Yt = :3. 

indeed 

1=Y=Y2<2 

contradicts to y 2: 2. 
Let m> 1. Then 

2m - J6m2 - :) < O. 

Therefore y = Y2 is impossible again. Thus we always ha.ve 

Y = VI = 2m + J6m 2 - ·5. (8) 

Hence 
y - 2m = J6m2 - 5. (9) 

The left-hand side of (9) is a positive integer. Therefore, there exists a positive integer 1 
such that 

6m 2 -.5 = 12. 

Hence 1 and m satisfy (2) and < 1, m >E N2. 
The equalities (4) hold because of (5) and (8). 0 

Proof of Lemma 2: Let < I,m >E N2. Then we check the equality 

2(l + 3m)2 - 3(/ + 2m)2 = 5, 

under the assumption of validity of (2) and the lemma is proved. 0 
Theorem 108 a, Theorem 109 and Theorem 110 from [2] imply the following 

THEOREM 1: There exist sets J\;(l, m) s11ch that 

f{; ( /, m) C 1\ ( I, m. ) (i = 1,:2), 
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f{l (/, m) n f{"l(/, m) = 0, 

and f{(l, m) admits the representation 

J{(l, m) = 1\d/, m) U 1\2(/' m). 

The fundamental solution of 1\d I, m) is < -1, 1 > and the fundamental solution of 
]{2(1, m) is < 1,1 >. 

Moreover, if < u, v> runs 1\(lL, v), then: 
(bd < I, m > runs ]{l (1, m) iff the equality 

/ + m/6 = (-1 + )6)(11 + uv6) 

holds; 
(b2) < 1, m > runs 1\2(/' m) iff the equality 

1 + m/6 = (1 + v6)(u + 1'v6) 

holds. 

( 10) 

(11) 

We must note that the fundamental solution of (:3) is < .5,:2 >. Let Un and Vn be given 
by 

(12) 

Then Un and u" satisfy (11) and < U,,' lin >E /vl.. i\Ioreover, if n runs N, then < U,,' Vn > 
runs J(O( u, v). 

Let the sets J(t(l,m) (i = 1,2) are introduced by 

As a corollary from the above remark and Theorem 1 we obtain 

THEOREM 2: The set ]{0(l, m) may be represented as 

where 
f{~(l,m)n 1\~(/,m) = 0. 

Moreover: 
(C1) If n runs N and the integers In and mn are defined by 

then 1" and m" satisfy (2) and < In,mn > runs f{f(l,m); 
(C2) If n runs N U {O} and the integers In and m" are defined by 

then In and mn satisfy (2) and < In, Tnn > fIlIlS l{~(l, 77l). 
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Let cp be the above mentioned bijection. The sets K;O(x,y) (i = 1,2) are introduced by 

(18) 

From Theorem 2, and especially from (14), (15), and (IS) we obtain 

THEOREM 3: The set K'O(x,y) may have the representation 

( 19) 

where 
I\~(x,y) n K~(x,y) = 0. (20) 

Moreover: 
(dr) If n runs N and the integers :r nand ]In are defined hy 

(21) 

where in and mn are introduced by (16), thf:n Xn and !In satisfy (1) and < Xn,Yn > runs 
J(f(x,y); 

(d2 ) If n runs Nu {OJ and the integers Xn and]J" are defined again by (21), but in and mn 
now are introduced by (17), then Xn and]Jn satisfy (1) and < Xn,Yn > runs Iq(x,y). 

Theorem 3 completely solves F. Smarandache's Problem 7S from [1], because in and mn 
could be expressed in explicit form using (16) or (17) as well. 

* 
* * 

Below we shall introduce a generalization of Smarandache's problem 87 from [IJ. 
If we have to consider the Diophantine equation 

.) 2 3 2 _x -. y = p, (22) 

where p # 2 is a prime number, then using [2, eh. VII, exercize 2] and the same method as 
in the case of (1), we obtain the following result. 
THEOREM 4: (1) The necessary and sufficient condition for the solvability of (22) is: 

p == .j( mod24) or p == 2:3( mod24) (23); 

(2) If (23) is valid, then there exists exactly one solution < x, Y >E N2 
of (22) such that the inequalities x < jfp; y < jfp hold. Every 

other solution < x,]J >E .. V2 of (22) ha~ the form: 

x = i + :3m 

y = 1 + 2m, 

where < I, m >E N1. is a solution of the Diophantine equation 
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The question how to solve the Diophantine eqnation, a. special case of which is the above 
one, is considered in Theorem 110 from [2]. 

REFERENCES: 
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REMARK ON THE 62-th SMARANDACHE'S PROBLEM 
Hristo Aladjov and Krassimir Atanassov 

In [1] Florian Smarandache formulated 10·') 1lnsolved problems. 
The 62-th problem is the following: 

Let 1 ~ al < a2 < ... be an infinite seqltence of inle.rlf'/'.s sitch that any three members do not 
constitute an arithmetic pT'og7·ession. Is it trite that a/ways 

\' ~ ~ '2'? 
n~l an 

In [2-4] some counterexamples are given. 
Easily it can be seen that the set of llumhers {1. :2. 4. 3, 10} does not contain three numbers 

which are members of an arithmetic progrr·ssioll. 011 the other hand 

1 1 1 1 1 1 
- + - + - + - + - = '2- > 2. 
1 '2 cl .'i 1 0 '20 

Therefore, Smarandache's problem is llot true ill the present form, because the sum of 
the members of everyone sequence with the a.bove property and with first members 1, 2, 4, 
5, 10 will be bigger than 2. 

Some modifications of the above problem are discussed in [:3,4]. 
Vve can construct the sequence which conta.ins the minimal possible members, satisfying 

the Smarandache's property. The first 100 nwmhers of this sequence are: 

1,2,4,5,10,11,13,14,28,29,31,32,37.38,JO.41.82,83,85,86,91,92,94,95,109,110,112, 

113,118,119,121,122,244,245,247,248.253.214,236,257,271,272,274,275,280,281,283, 

284,325,326,328,329,334,335,337,338,352.353,335,356,361,362,364,365,730,731,733, 

734,739,740,742, 743,757,758,760,761,766. 767,769,770,811,812,814,815,820,821,823, 

824,838,839,841,842,847,848,850,851,973,974,976,977 

In another paper the properties of this sequence will be discussed in details. Some of 
them are given in [3,4]. 

'vVe must note that it was checked by a computer that the sum of the first 18567 mem
bers of the sequence (the 18567-th memher is -\.062:316) is :3.00000013901583 ... , i.e. for this 
sequence 

\' 1 - >:1-
n~l (Ln 

It can be easily seen that if the first membC'r of the sequence satisfying the Smarandache's 
property is not 1, or if its second member i::; not 2. then 
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On the other hand, there are an infinit.e I1l1mher of sequences for which 

I 
- >:2, 

because, for example, all sequences (their IIllmber is, obviollsly, infinite) generated by the 
above one without only one of its members will satisfy the last inequality. 

This number will be discussed in the next paper of ours, too. 
~ow we shall cite the following lIIlsotvC'd probkll1 from [:2]: 

Given a sequence of integers al ~ (£2 ~ ••. ~ (lk ~ ... where no three form an arithmetic 
progression, is there any bound on the s1lm 

From the above remark it follows that :~ IS a bOllncl of all sequences with the above 
property without the first sequence shown ahove. Samto' properties of this bound also will be 
discussed in the next paper of ours. 

REFERENCES; 
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[2J C. Ashbacher, Pluckings from the Tree of Smarandache Sequences and Functions. Ame

rican Research Press, Lupton, 1998. 
[3J K. Atanassov, On the 62-nd Smarctnclache's problem. l'o"otes on Number Theory and 

Discrete Mathematics, Vo!' .) (19<)<)). No. :3, 100-101. 
[4J K. Atanassov, On Some of the Smcll"Clnditclw's Problems. American Research Press, 

Lupton, 1999. 
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The Integral Values oflog S(nk) 
n 

k 

Maohua Le 

Abstract: Let k, n be distinct positive integers. In this paper, we prove that log D S(nk) is never a positive 
~~ k 

Key words: Smarandache function, logarithm, integral value. 

For any positive integer a, let Sea) denote the Smarandache function of a. In [2, Problem 22], Muller posed 
the following problem: 

Problem: Is it possible to find two distinct positive integers k and n such that log n S(nk) is a positive 
integer? .. 

In this paper, we completely solve the above problem as follows: 

Theorem: For any distinct positive integers k and n, log S(nk) is never a positive integer. 
n 

k 

Proof: If log n S(nk) is a positive integer, then we have k > I, n> 1 and 
k 

(I) log S(nk) = m, 
D 

k 

where m is a positive integer. By (I), we get 

By (I), we have 

Therefore, by (2) and (3), we get 

(4) Ie""'::;; kS(n) ::;; kn. 

Ifk> n > 1, then from (4) we obtain 

(5) k2 ::;; Ie"::;; Ie""'::;; kn::;; k(k-l) < ~ 

a contradiction. If n > k > I, then we have 

(6) 2n::;; Ie" ::;; Ie"'" ::;; kn ::;; (n-l )n. 

It is impossible, since n ~ 3. Thus, the theorem is proved. 
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On the Functional Equation S(n)2 + Sen) = kn 

Rongi Chen and Maohua Le 

Abstract 

For any positive integer a, let Sea) denote the Smarandache function of a. In this paper, we prove that the 
equation S(ni + Sen) = kn has infinitely many positive integer solutions for every positive integer k. 
Moreover, the size of the number of solutions does not depend on the parity ofk. 

KI!)l Words: Smarandache function, functional equation, number of solutions. 

1. Introduction 

Let N be the set of positive integers. For any positive integer a, let 

(I) S(a)=min{rlrEN,alr!}. 

Then Sea) is called the Smarandache function ofa. Let k be a fIxed positive integer. In this paper we deal 
with the equation 

(2) S(n)z + Sen) = kn, n E N. 

For any positive integer x, let N(k,x) denote the number of solutions n with n :s; x, and let N(k) denote the 
number of all solutions n of (2). A computer search showed that N(l, 104

) = 23, N(2, 104
) = 33, 

N(3, 104
) = 20, N( 4,104

) = 24, N(5, 1 04
) = 11 and N(6, 104

) = 26. In [1] Ashbacher posed the following 
questions: 

Question 1: Is N(k) = co for k = 1,2, 3, 4, 5 or 6? 
Question 2: Is there a positive integer k for which N(k) = O? 
Question 3: Is there a largest positive integer for which N(k) > O? 
Question 4: Is there more solutions n when k is even than when k is odd? 

In this paper, we completely solve the above-mentioned questions. In fact, we prove a general result as 
follows: 

Theorem: The positive integer n is a solution of (2) if and only one of the following conditions is satisfIed. 

(i) n = 1 for k = 2. 
(ii) n = 4 for k = 5. 
(iii) n = p(p+ 1) for k = 1, where p is a prime with p > 3. 
(iv) n = p(p+ 1)/k for k > I, where p is a prime with p = -1 (mod k). 

Corollary 1: As x ~ co, we have 

NCk,x) - 2 -V (kx) / (q>(k)log(kx») . 

Corollary 2: For any positive integers kl and kl' we have 

N(k l) Cjl(kz) 

-------- ~ (k l/kl) 

N(k1) Cjl(k l) 
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By our results, we observe that (2) has infmitely many solutions n for every positive integer k. Moreover, 
the size ofN(k,x) does not depend on the parity ofk. 

2. Preliminaries 

Lemma 1: For any positive integers u and v, we have S(u)::; S(uv). 

Proof: Let a = S(u) and b = S(uv). By (1), a and b are least positive integers satisfying u: a! and uv! b! 
respectively. So we have a ::; b. The lemma is proved. 

Lemma 2: For any positive integer u with u > I, there exists a prime factor d such that d i S(u). 

Proof: Let u = P1llP212 ... Pktlc be the prime factorization ofu. Then, by [2], we have 

S(u) = max ( S(PI II), S(P212), ... ,S(Pk tic) ) 

and PI I S(PiO) for i = 1,2,3, ... ,k. This proves the lemma. 

Lemma 3: For any positive integer u, we have 

= u, ifu = 1,4 or p, where p is a prime. 
S(u) 

::; U/2, otherwise. 

Proof: See [4]. 

Lemma 4: For any coprime positive integers, u and v, we have S(uv) = max (S(u), S(v) ). 

Proof: Let a = S(u), b = S(v) and c = S(uv). By (1), a, b and c are least positive integers satisfying u I a!, 
v I b! and uv I c! respectively. This implies that c ~ max(a,b). 
If a ~ b, then we have u I a! and v I a!. Since gcd(u,v) = 1, we get uv I a!. So we have a ~ c. This implies that 

c = a = max(a,b). By the same method, we can prove that if a ::; b, then c = b = max (a,b). The lemma is 
proved. 

Lemma 5: For any positive number x, let Il(x) denote the number of primes p with p::; x. As x ~~, we 
have Il(x) - X/logx. 

Proof: See [3]. 

Lemma 6: Let a,b be integers satisfying a > land gcd(a,b) = l. For any positive number x, let Il(x;a,b) 
denote the number of primes p such that p ::; x and p == b(mod a). As x ~ ~, we have 
Il(x;a,b) - x/<p(a)logx, where <pea) is the Euler function ofa. 

Proof: See [5]. 

3. Proofs 

Proof of Theorem: Clearly, ifn satisfy (i) or (ii), then it is a solution of(2). Ifn satisfy (iii), then 
n = p(p+1), where p is a prime with p > 3. Since gcd(p,p+l) = I, by Lemma 4, we get 

(5) Sen) = S(p(P'" 1» = max(S(p ),S(p+ 1 ». 
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Further, since p.t-! ~ 6 is not a prime, by Lemma 3, we get S(p+ I) :5 (p+ 1)/2 < p. Hence, we see from (5) 
that Sen) = S(p) = p. It implies that S(n/ + Sen) = p2 + P = nand n is a solution of (2) for k = I. By the 
same method, we can prove that ifn satisfY the condition (iv), then it is a solution of (2) for k > L Thus, the 
sufficient condition of our theorem is proved. 

We now prove the necessary condition. Let n be a solution of(2), and let t = Sen). We get from (2) that 

(6) t(t+I)=kn. 

If n = I or 4, then t = I or 4, and n is a solution of (2) for k = 2 or 5. From below, we may assume that 
n;:: I or 4. Since gcd(t,t'rl) = I, by Lemma 4, we get from (6) that 

(7) S(kn) = S(t(t+I)) = max(S(t),S(t+I». 

If Set) :5 S(t+ I), then from (7) we get 

(8) S(kn) = S(t+I). 

By Lemma I, we have S(kn) ~ Sen) = t Hence, by (8) we obtain 

(9) S(t+l) ~ t 

Since n ;:: I or 4, by Lemma 3, we see from (9) that either t = 3 or t = p-l, where p is a prime. When t = 3, 
we get n = 3 or 6. Then n satisfies the condition (iv). When t = p-l, we have Sen) = p-l and 

(10) S(kn) = p, 

by (8). Since p is a prime, by Lemma 2, we see from (10) that p I kn. If P I k, then kip is a positive integer 
and t = p - 1 = kn/p by (6). However, by Lemmas 1 and 3, it implies that 

p - I > S(p - 1) = S(kn/p) ~ Sen) = t = p - 1, a contradiction. 

If Set) > S(t+ 1), then from (17) we get 

(11) S(kn) = Set). 

Since S(kn) ~ Sen) = t, by Lemmas 1 and 3, we see from (11) that Set) = t. Since n;:: 1 or 4, by Lemma 4, 
we get t = p, where p is a prime. Hence, by (6), we obtain 

(12) p(p+ 1) = kn. 

Further, since Sen) = p, by Lemma 2, we have pin and nJp is a positive integer. Then, by (12) we get 
p == -I(mod k). Furthermore, since n;:: 4, we get from (12) that p > 3, for k = L This implies that n satisfies 
the condition (iii) of (iv). Thus, the theorem is proved. 

Proof of Corollaries 1 and 2. Let II(x) and II(x;a,b) be defined as in Lemmas 5 and 6 respectively. By 
Theorem, we have 
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ifk= I, 

DC ~(2x + Yo) - ~), ifk=2, 

N(k,x) 

DC ..J(5x + Yo) - ~; 5,-1) -L- 1, ifk = 5, 

DC ..J(kx + Yo) - ~; k,-I), otherwise. 

Therefore, by Lemmas 5 and 6, we get the corollaries immediately. 
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On The Functional Equation Zen) + <pen) = den) 

Zhong Li and Maohua Le 

Abstract: For any positive integer n, let den), <pen) and Zen) denote the divisor function, the Euler function 
and the pseudo-Smarandache function ofn respectively. In this paper, we prove that the functional equation 
Zen) + <pen) = den) has no solution n. 

Key words: divisor function, Euler function, pseudo-Smarandache function. 

Let N be the set of all positive integers. For any positive integer n, let 

(1) den) = L 1, 

din 

(2) cp(n) = 

19n~ 

gcd(m,n)=1 

1, 

a 

(3) Zen) = min { a I a c N, niL: j }. 
j=1 

Then den), <pen) and Zen) are called the divisor function, the Euler function and the Pseudo-Smarandache 
function ofn respectively. In [1], Ashbacher posed the following unsolved question: 

Question: How many solutions n are there to the functional equation 

(4) Z(n) + <p(n) = den), n EN? 

In this paper, we completely solve the above-mentioned question as follows: 

Theorem: The equation Zen) + <pen) = den), n E N has no solution. 

Proof: Let n be a solution of(4). A computer search showed that (4) has no solution with n ~ 10000 (see 
[1 D· SO we have n > 10000. Let 

(5) 

be the prime factorization ofn. By [2, theorems 62 and 273], we see from (1), (2) and (5) that 

(6) 

(7) 

den) = (rl + 1)(r2 + 1) ... (r. + I) 
k 

<pen) = n II (l-l/pi) 
i=l 

On the other hand, it is a well-known fact that 
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(8) n I Y2 Z(n)(Z(n) + I) 

(see [I]). From (8) we get 

Zen) ~ ...J (2n + ~ - ~) . 

Therefore, by (4), (5), (6), (7) and (9), we obtain 

(10) 

where 

(11 ) 

(12) 

1 ~ fen) + g(n) 

k 

fen) = II (l - I/pi)(pri/(r,+I», 
i=1 

k k 

g(n) = ~ 2 II (Pi [1,'2/(r,+I» - Y2 II l/(ri + 1). 
i=I i=I 

Clearly, we see from (12) that g(n) > 0 for any positive integer n with n > 1. Hence, we get from (10) that 

(13) fen) < 1. 

Ifk = 1, then n = Plrl and Zen) 2: p/I - 1 by (3). Hence, by (1) and (2), n is not a solution of(4). This 
implies that k 2: 2. 
Ifk 2: 3, then Pk 2: 5 and fen) 2: 1, by (11). This contradicts with (13). So we have k = 2. Then (11) can be 

written as 

Ifp2> 3, then from (14) we get fen) 2: 1, a contradiction. Hence, we deduce that PI = 2 and P2 = 3. Then, by 
(13) and (14), we obtain 

From (15), we can calculate that (rj,r2) = (1,1) or (2,1). This implies that n ~ 12, a contradiction. Thus, (4) 
has no solution n. The theorem is proved. 
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Key Words: 

SMARANDACHE RELATIONSHIPS AND SUBSEQUENCES* 

M. Bencze 
2212 Sacele, Grasov, Romania 

ABSTRACT 

Some Smarandache relationships between the terms of a given sequence 
are studied in the fIrst paragraph. In the second paragraph, are studied 
Smarandache subsequences (whose terms have the same property as the 
initial sequence). In the third paragraph are studied the Smarandache 
magic squares and cubes of order n and some conjectures in number 
theory. 

Smarandache p-q relationships, Smarandache p-q-<>-subsequence, 
Smarandache type subsequences, Smarandache type partition, Smarandache 
type defmitions, Smarandache type conjectures in number theory. 

1) Smarandache Relationships 

Let { a n}, n ~ I be a sequence of numbers and p, q integers ~ 1. Then we say that the terms 

a k+l ,ak+2 , ... , a k+p,a k+p+l ,a k+p+2, ... , ak+p+q 

verify a Smarandache p-q relationship if 

a k+l <> a k+2 <> ... <> ~+p = ~+P+l <> ~"""2 <> ... <> ~+p+q 

where "<>" may be any arithmetic or algebraic or analytic operation (generally a binary law on 
{ al , az , a3 , ... }). 

If this relationship is verifIed for any k ~ 1 (i.e. by all terms of the 
sequence), then 

{ ~ }, n ~ 1 is called a Smarandache p-q-<> sequence 

where "<>" is replaced by "additive" if <> = +, "multiplicative" if <> = *, etc. [according to the operation 
(<» used]. 

As a particular case, we can easily see that FibonaccilLucas sequence 

(~ + ~+l = ~+2 ), for n ~ 1 

is a Smarandache 2-1 additive sequence. 

A Tribonacci sequence (~ + ~l + ~2 = ~+3 ), n ~ 1 is a Smarandache 3-1 additive sequence. Etc. 

Now, if we consider the sequence of Smarandache numbers, 

1,2,3,4,5,3,7,4,6,5,11,4, 13,7,5,6,17, ... , 
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i.e. for each n the smallest number Sen) such that Sen)! is divisible by n [See(I)] (the values of the 
Smarandache Function), it raises the questions: 

(a) How many quadruplets verify a Smarandache 2-2 additive relationship i.e. 

S(n+l) + S(n+2) = S(n+3) + S(n+4)? 

I found: S(6)'" S(7) = S(8) + S(9), 3 + 7 = 4 + 6; 

S(7) + S(8) = S(9) + S(10), 7 + 4 = 6 + 5; 

S(28) + S(29) = S(30) + S(31), 7 + 29 = 5 + 31. 

But, what about others? I am not able to tell you if there exist a fInite or infmite number (?) 

(b) How many quadruplets verify a Smarandache 2-2-subtractive relationship, i.e. 

S(n+l) - S(n+2) = S(n+3) - S(n+4)? 

I found: S(I) - S(2) = S(3) - S(4), 1-2 = 3 - 4; 

S(2) - S(3) = S(4) - S(5), 2 - 3 = 4 - 5; 

S(49) - S(50) = S(51) - S(52), 14 - 10 = 17 - 13. 

(c) How many sextuplets verify a Smarandache 3-3 additive relationship, i.e. 

S(n"'l) + S(n+2) + S(n+3) = S(n+4) + S(n+5) + S(n+6)? 

I found: S(5) + S(6) + S(7) = S(8) + S(9) + S(10), 5 + 3 + 7 = 4 + 6 + 5. 

I read that Charles Ashbacher has a computer program that calculates the Smarandache 
Function's values, therefore he may be able to add more solutions to mine. 

More generally: 

If fp is a p-ary relation and ~ is a q-ary relation, both of them defIned on 

3.; I ,au , ... , 3.;p , a; I ,aj2 , ... ,ajq 

verify a Smarandache J;, - gq - relationship if 

If this relationship is verifIed by all terms of the sequence, then {a" }, n ~ 1 is called a 
Smarandache J;, -gq -sequence. 

Study some Smarandache fp -~ - relationships for well-known sequences (perfect numbers, Ulam numbers, 
abundant numbers, Catalan numbers, Cullen numbers, etc.). 

For example: a Smarandache 2-2-additive, or subtractive, or multiplicative relationship, etc. 

If fp is a p-ary relation on { al ,a2 ,a3 , ... } and 
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for all ail< ,ajk ,where k = 1, 2, ... ,p, and for all p ;:: 1, then {lin }, n ;:: 1, is called a Smarandache perfect f 
sequence. 

Ifnot all p-plets (lljl , ai2 , ... ,lljp ) and (ajl ,aj2 , ... , ajp ) verify the fp relation, or not for all p;:: 1, the 
relation fp is verified, then {lin }, n ;:: I is called a Smarandache partial perfect /-sequence. 

An example: a Smarandache partial perfect additive sequence: 

1,1,0,2,-1,1,1,3,-2,0,0,2,1,1,3,5,-4,-2,-1,1,-1, I, 1,3,0,2, ... 

This sequence has the property that 

P 2p 

L: aj = L: a :J. 

i=1 j=p+1 

for all p;:: 1. 

It is constructed in the following way: 

for all p ;:: 1. 

(a) Can you, readers, find a general expression of lin (as function ofn)? 

It is periodical, or convergent or bounded? 

(b) Please design (invent) yourselves other Smarandache perfect (or partial perfect) sequences. 

Think about a multiplicative sequence of this type. 

2) Smarandache Subsequences 

Let {lin }, n;:: 1 be a sequence defmed by a property (or a relationship involving its terms) P. 

Now, we screen this sequence, selecting only its terms those digits hold the property (or relationship 
involving the digits) P. 

The new sequence obtained is called: 

(I) Smarandache P-digital subsequences. 

For example: 
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(a) Smarandache square-digital subsequence: 

0, 1,4,9,49, 100, 144,400,441, ... 

i.e. from 0, 1,4, 9, 16,25, 36, ... , n2
, ... we choose only the terms whose digits are all perfect squares 

(therefore only 0, 1, 4, and 9). 

Disregarding the square numbers of the form NO ... 0, where N is also a perfect 
2k zeros 

square, how many other numbers belong to this sequence? 

(b) Smarandache cube-digital subsequence: 

0, 1, 8, 1000, 8000, ... 

i.e. from 0, 1,8,27,64, 125,216, ... , n3
, .•. we choose only the terms whose digits are all perfect cubes 

(therefore only 0, 1 and 8). 

Similar question, disregarding the cube numbers of the form MO . . . ° 
3k zeros 

where M is a perfect cube. 

(c) Smarandache prime digital subsequence: 

2,3,5, 7, 23, 37, 53, 73, ... 

i.e. the prime numbers whose digits are all primes. 

Conjecture: this sequence is infmite. 

In the same general conditions of a given sequence, we screen it selecting only its terms whose groups of 
digits hold the property (or relationship involving the groups of digits) P. 

[ A group of digits may contain one or more digits, but not the whole term.] 

The new sequence obtained is called: 

(2) Smarandache P-partial digital subsequence. 

Similar examples: 

(a) Smarandache square-partial-digital subsequence: 

49,100,144,169,361,400,441, ... 

i.e. the square members that is to be partitioned into groups of digits which 
are also perfect squares. (169 can be partitioned as 16 = 42 and 9 = 32

, etc.) 

Disregarding the square numbers of the form 

NO . . . 0, where N is also a perfect square, 
2k zeros 

how many other numbers belong to this sequence? 
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(b) Smarandache cube-partial digital subsequence: 

1000,8000,10648,27000, ... 

i.e. the cube numbers that can be partitioned into groups of digits which are also perfect cubes. 

(10648 can be partitioned as 1 = 13,0 = 03,64 = 43
, and 8 = 2\ 

Same question: disregarding the cube numbers of the fonn: 

MO . . . 0 where M is also a perfect cube, how many other numbers belong 
3k zeros 

to this sequence? 

(c) Smarandache prime-partial digital subsequence: 

23,37,53,73,113,137,173,193,197, ... 

i.e. prime numbers, that can be partitioned into groups of digits which are also prime, 

(113 can be partitioned as II and 3, both primes). 

Conjecture: this sequence is infmite. 

(d) Smarandache Lucas-partial digital sunsequence 

123, ... 

i.e. the sum of the two first groups of digits is equal to the last group of digits, and the whole number 
belongs to Lucas numbers: 

2, 1,3,4,7, II, 18,29,47,76,123,199, ... 

(beginning at 2 and L(n+2) = L(n+I) + L(n), n ~ 1) ( 123 is partitioned as 1,2 and 3, then 3 = 2 + 1). 

Is 123 the only Lucas number that verifies a Smarandache type partition? 

Study some Smarandache P - (partial) - digital subsequences associated to: 

- Fibonacci numbers (we were not able to fmd any Fibonacci number verifying a Smarandache type 
partition, but we could not investigate large numbers; can you? Do you think none of them would 
belong to a Smarandache F - partial-digital subsequence? 

- Smith numbers, Eulerian numbers, Bernoulli numbers, Mock theta numbers, Smarandache type 
sequences etc. 

Remark: Some sequences may not be smarandachely partitioned (i.e. their associated Smarandache type 
subsequences are empty). 

If a sequence {<In }, n ~ I is defmed by <In = f{n) ( a function ofn), then a Smarandachefdigital 
subsequence is obtained by screening the sequence and selecting only its tenns that can be partitioned in 
two groups of digits gl and g 2 such that gz = f{gl ). 
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(3) Study similar questions for this case, which is more complex. 

An interesting law may be 

Smarandache prime conjecture: 

Any odd number can be expressed as the sum of two primes minus a third prime (not including the trivial 
solution p = p + q - q when the odd number is the prime itself). 

For example: 

I = 3 + 5 - 7 = 5 + 7 - 11 = 7 + 11 - 17 = 11 + 13 - 24 = ... 
3 = 5 + 11 - 13 = 7 + 19 - 23 = 17 + 23 - 37 = . . . 
5=3+13-11= .. . 
7=11+13-17= .. . 
9=5+7-3= ... 
11=7+17-13= ... 

(a) Is this conjecture equivalent to Goldbach's conjecture (any odd number ~ 9 can be expressed as a sum 
of three primes - finally solved by Vinogradov in 1937 for any odd number greater than 3315 )? 

(b) The number of times each odd number can be expressed as a sum of two primes minus a third prime are 
called Smarandache prime conjecture numbers. None of them are known! 

(c) Write a computer program to check this conjecture for as many positive odd numbers as possible. 

(2) There are infmitely many numbers that cannot be expressed as the difference between a cube and a 
square (in absolute value). 

They are called Smarandache bad numbers(!) 

For example: 5, 6, 7, 10, 13, 14, ... are probably such bad numbers (F. Smarandache has conjectured, 
see[ I D, while 

1,2, 3, 4, 8, 9, 11, 12, 15, ... are not, because 

3 = ! 13 
- 221 
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(a) Write a computer program to get as many non Smarandache bad numbers (it's easier this way!) as 
possible, 

i.e. fmd an ordered array of a's such that 

a = 1 x3 
- .; I, for x and y integers ~ I. 
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A SET OF CONJECTURES ON SMARANDACHE SEQlJENCES* 

Sylvester Smith 
Department of Mathematics, Yuma Community College 

ABSTRACT 

Searching through the Archives of the Arizona State 
University, I found interesting sequences of numbers and 
problems related to them. I display some of them, and 
the readers are welcome to contribute with solutions or ideas. 

Key words: Smarandache P-digital subsequences, Smarandache 
P-partial subsequences, Smarandache type 
partition, Smarandache S-sequences, Smarandache 
uniform sequences, Smarandache operation sequences. 

Let { a" }, n > 1 be a sequence defmed by a property (or a relationship involving its terms P.) 

Now, we screen this sequence, selecting only its terms whose digits hold the property (or relationship 
involving the digits) P. 

The new sequence obtained is called: 

(1) Smarandache P-digital subsequences. 

For example: 

(a) Smarandache square-digital subsequence: 

0, 1,4,9,49, 100, 144,400,441, ... 

i.e. from 0, 1,4,9, 16,25,36, ... , n2
, ••• we choose only the terms whose digits are all perfe~t squares 

(therefore only 0, 1,4, and 9). 

Disregarding the square numbers of the form NO ... 0, where N is also a perfect 
2k zeros 

square, how many other numbers belong to this sequence? 

(b) Smarandache cube-digital subsequence: 

0,1,8,1000,8000, ... 

i.e. from 0, 1,8,27,64, 125,216, ... , n3
, ••. we choose only the terms whose digits are all perfect cubes 

(therefore only 0, I and 8). 

Similar question, disregarding the cube numbers of the form MO . . . 0 
3k zeros 

where M is a perfect cube. 

(c) Smarandache prime digital subsequence: 

2,3,5, 7, 23, 37, 53, 73, ... 
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i.e. the prime numbers whose digits are all primes. 

Conjecture: this sequence is infmite. 

In the same general conditions of a given sequence, we screen it selecting only its terms whose groups of 
digits hold the property (or relationship involving the groups of digits) P. 

[ A group of digits may contain one or more digits, but not the whole term.] 

The new sequence obtained is called: 

(2) Smarandache P-partial digital subsequence. 

Similar examples: 

(a) Smarandache square-partial-digital subsequence: 

49,100,144,169,361,400,441, ... 

i.e. the square members that is to be partitioned into groups of digits which 
are also perfect squares. (169 can be partitioned as 16 = 42 and 9 = 32

, etc.) 

Disregarding the square numbers of the form 

NO . . . 0, where N is also a perfect square, 
2k zeros 

how many other numbers belong to this sequence? 

(b) Smarandache cube-partial digital subsequence: 

1000,8000,10648,27000, ... 

i.e. the cube numbers that can be partitioned into groups of digits which are also perfect cubes. 

(10648 can be partitioned as 1 = 13,0 = 03,64 = 43
, and 8 = 2\ 

Same question: disregarding the cube numbers of the form: 

MO . . . 0 where M is also a perfect cube, how many other numbers belong 
3k zeros 

to this sequence. 

(c) Smarandache prime-partial digital subsequence: 

23,37,53,73,113,137,173,193,197, ... 

i.e. prime numbers, that can be partitioned into groups of digits which are 
also prime, 

(113 can be partitioned as 11 and 3, both primes). 

Conjecture: this sequence is infmite. 
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(d) Smarandache Lucas-partial digital sunsequence 

123, ... 

i.e. the sum of the two fIrst groups of digits is equal to the last group of digits, and the whole number 
belongs to Lucas numbers: 

2,1,3,4,7, 11, 18,29,47,76,123,199, ... 

(beginning at 2 and L(n+2) = L(n+ 1) + L(n), n> 1) ( 123 is partitioned as 1,2 and 3, then 3 = 2 + 1). Is 
123 the only Lucas number that verifIes a Smarandache type partition? 

Study some Smarandache P - (partial) - digital subsequences associated to: 

- Fibonacci numbers (we were not able to fInd any Fibonacci number verifying a Smarandache type 
partition, but we could not investigate large numbers; can you? Do you think none of them would 
belong to a Smarandache F - partial-digital subsequence? 

- Smith numbers, Eulerian numbers, Bernoulli numbers, Mock theta numbers, Smarandache type 
sequences etc. 

Remark: Some sequences may not be smarandachely partitioned (i.e. their associated Smarandache type 
subsequences are empty). 

If a sequence {a,. }, n;?: 1 is defmed by a,. = f(n) ( a function of n), then 

Smarandache f-digital subsequence is obtained by screening the sequence and selecting only its terms 
that can be partitioned in two groups of digits gl and g 2 such that g2 = f(gl ). 

For example: 

(a) If a,. = 2n, n;?: 1, then 

Smarandache even-digital subsequence is: 

12,24,36,48,510,612,714,816,918, 1020, 1122, 1224, ... 

(i.e. 714 can be partitioned as g 1 = 7, g 2 = 14, such that 14 = 2*7, etc. ) 

(b) Smarandache lucky-digital subsequence 

37,49, ... 

(i.e. 37 can be partitioned as 3 and 7, and L3 = 7; the lucky numbers are 

1,3,7,9,13,15,21,25,31,33,37,43,49,51,63, ... 

How many other numbers belong to this subsequence? Study the Smarandache f-digital subsequence 
associated to other well-known sequences. 

(3) Smarandache odd sequence: 

1,3,135,1357,13579,1357911,135791113, 13579111315, 1357911131517, ... 
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How many of them are prime? 

(4) Smarandache even sequence: 

2,24,246,2468,246810,24681012,2468101214,246810121416, ... 

Conjecture: None of them is a perfect power! 

(5) Smarandache prime sequence: 

2,23,235,2357,235711,23571113,2357111317,235711131719, 
23571113171923, ... 

How many of them are prime? 

(Conjecture: a [mite number). 

(6) Smarandache S-sequence: 

General definition: 

Let SI , S2, S3 , ... , Sn, ... be an infinite integer sequence (noted by S). Then 

is called the Smarandache S-sequence. 

Question: 

(a) How many of the Smarandache S-sequence belong to the initial S sequence? 

(b) Or, how many of the Smarandache S-sequence verify the relation of other given sequences? 

For example: 

IfS is the sequence of odd numbers 1,3,5,7,9, ... then the Smarandache S-sequence is 1, 13, 135, 1357, 
... [(i.e. I)] and all the other terms are odd; 

Same ifS is the sequence of even numbers [(i.e. 2)] 

The question (a) is trivial in this case. 

But,when S is the sequence of primes [i.e. 3], the question becomes much harder. 

Study the case when S (replaced by F) is the Fibonacci sequence (for one example): 

1, 1,2,3,5,8,13,21, .... 

Then the Smarandache F - sequence 

1, II, 112, 1123, 11235, 112358, ... 

How many primes does it contain? 
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(7) Smarandache uniform sequences: 

General defmition: 

Let n be an integer not equal to zero and d1 , d2, ... ,dr digits in a base B (of course r < B). 

Then: multiples ofn, written with digits d1 ,d2 , ••• ,dr only (but all r of them), in base B, increasingly 
ordered, are called the Smarandache uniform sequence. 

As a particular case it's important to study the multiples written with one digit only (when r = 1). 

Some examples (in base 10): 

(a) Multiples of7 written with digit 1 only: 

111111, 111111,111111, 111111,111111,111111,111111,111111,111111,111111, ... 

(b) Multiples of7 written with digit 2 only: 

222222, 222222222222, 222222222222222222, 222222222222222222222222, ... 

(c) Multiples of79365 written with digit 5 only: 

555555, 555555555555, 555555555555555555, 555555555555555555555555, ... 

For some cases, the Smarandache uniform sequence may be empty (impossible): 

(d) Multiples of79365 written with digit 6 only (because any multiple of79365 will end in 0 or 5. 

Remark: If there exists at least a multiple m ofn, written with digits d1 ,d2 , ... , dr only, in base B, then 
there exists an infmite number of multiples of n (they have the form: 

m, mm, mmm, mmmm, ... ). 

With a computer program it's easy to select all mUltiples (written with certain digits) of a given number
up to some limit. 

Exercise: Find the general term expression for multiples of7 written with digits 1,3,5 only in base 10. 

(8) Smarandache operation sequences: 

General definition: 

Let E be an ordered set of elements, E = { el ,e2 , ... } and e a set of binary 

operations well-defmed for these elements. Then: 

al is an element of { el ,e2, ... }. 

where all ej are operations belonging to e, is called the Smarandache operation sequence. 
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Some examples: 

(a) When E is the natural number set, and 8 is formed by the four arithmetic 
operations: +, -, *, I. 

Then: al = 1 

a,,-I = min { I 8 I 2 82 ..• 8n (n+ 1) } > a" , for n > 1, 

(therefore, all 8 i may be chosen among addition, subtraction, multiplication or division in a convenient 
way). 

Questions: Find this Smarandache arithmetics operation infinite sequence. Is it possible to get a general 
expression formula for this sequence (which starts with 1,2,3,5, 4,? 

(b) A fmite sequence 

a n+1 = min { 1 8 1 2 82 ••• 898 99 } > a" 

for n > 1, where all 8 i are elements of { +, -, *, I}. 

Same questions for this Smarandache arithmetics operation finite sequence. 

(c) Similarly for Smarandache algebraic operation infinite sequence 

a,,+ I = min { I 8 I 2 82 •.. 8n (n+ 1) } > a" for n > 1, 

where all 8i are elements of {+, -, *, I, **, Y..,j} 

( X**y means XY and Y..,j x means the yth root ofx). 

The same questions become harder but more exciting. 

(d) Similarly for Smarandache algebraic operation finite sequence: 

lin+ I = min { I 8 I 2 82 .•• 898 99} > a , for n > 1, 

where all 8i are elements of { +, -, *, I, **, Y..,j} 

( X**y means XY and Y..,jx means the yth root of x). 

Same questions. 

More generally: one replaces "binary operations" by "Ki -ary operations" where all Ki are integers 2: 2). 
Therefore, 
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a,,-I mint 161 (\) 61 (K 1 ) ... 6 1 (K 1 ) KI 
6

1 
(K

1
) is KI _ ary 

62(K2) (K2 ..;.. 1)62 (\) ... 62 (\) (KI ..;.. Kz -1) . 
62 (KZ) is Kz - ary 

Of course K 1 + (K2 - 1) + ... (Kr - 1) = n+ 1. 

Remark: The questions are much easier when 6 = { +, -}; study the Smarandache operation type sequences 
in this case. 

(9) Smarandache operation sequences at random: 

Same defmitions and questions as for the previous sequences, except that 

(i.e. it's no "min" any more, therefore a,,+l will be chosen at random, but greater than a", for any n > 1). 
Study these sequences with a computer program for random variables (under weak conditions). 

REFERENCES 

1. Smarandache, F. (1975) "Properties of the Numbers", University ofCraiova Archives, [see also Arizona 
State University, Special Collections, Tempe, Arizona, USA]. 

* Originally appeared in Bulletin of Pure and Applied Sciences, Vol. 15 E(No. 1) 1996; p. 101-107 
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SMARANDACHE PARTITION TYPE AND OTHER SEQUENCES* 

Eng. Dr. Fanel IACOBESCU 
Electrotechnic Faculty of Craiova, Romania 

ABSTRACT 

Thanks to C. Dumitrescu and Dr. V. Seleacu of the 
University of Craiova, Department of Mathematics, 
I became familiar with some of the Smarandache 
Sequences. I list some of them, as well as questions 
related to them. Now I'm working in a few conjectures 
involving these sequences. 

Examples of Smarandache Partition type sequences: 

A. 1, 1, 1,2, 2, 2, 2, 3, 4, 4, .... 

(How many times is n written as a sum of non-null squares, disregarding 
the order of the terms: 
for example: 

9 = 12+ 12 + 12 + 12 + 12 + 12 + 12 + 12+ 12 
= 12 + 12 + 12 + 12 + 12 + 22 
= 12 + 22 + 22 

= 32
, 

therefore ns(9) = 4.) 

8.1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4, 
4, 5, 5, 5, 5, 5, 6, 6, ... 

(How many times is n written as a sum of non-null cubes, disregarding the 
order of the terms: 
for example: 

9= 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 

= 13 + 23
, 

therefore, nc(9) = 2.) 

C. General-partition type sequence: 

Let f be an arithmetic function and R a relation among numbers. 
(How many times can n be written under the form: 

n = R(f(nl)' f(n2 ), ... , [(nk )) 

for some k and nl , n2, ... , nk such that 

nl + n2 + ... + nk = n? } 
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Examples of other sequences: 

(I) Smarandache Anti-symmetric sequence: 

11, 1212, 123123, 12341234, 1234512345, 123456123456, 
12345671234567, 1234567812345678, 123456789, 123456789, 
1234567891012345678910,1234567891011,1234567891011, ... 

(2) Smarandache Triangular base: 

1,2, 10, 11, 12,100, 101, 102, 110, 1000, 1001, 1002, 1010, 1011, 
10000, 10001, 10002, 10010, 10011, 10012, 100000, 100001, 100002, 
100010,100011,100012,100100,1000000,1000001, 1000002, 1000010, 
1000011, 1000012, 1000100, ... 

(Numbers v,Titten in the triangular base, defmed as follows: 

ten) = (n(n+ 1))/2, for n ~ 1.) 

(3) Smarandache Double factorial base: 

1, 10, 100, 101, 110,200,201, 1000, 1001, 1010, 1100, 1101, 1110, 
1200,10000, 10001, 10010, 10100, 10101, 10110, 10200, 10201, 11000, 
11001, 11010, 11100, 11101, 11110, 11200, 11201, 12000, ... 

(Numbers v-Titten in the double factorial base, defmed as follows: 

df(n) = n!!) 

(4) Smarandache Non-multiplicative sequence: 

General defmition: Let mh m2, ... , mk be the fIrst k terms of the 
sequence, where k ~ 2; 

then mi, for i >= k+ 1, is the smallest number not equal to the product of k previous distinct terms. 

(5) Smarandache Non-arithmetic progression: 

1,2,4,5, 10, 11, 13, 14,28,29,31,32,37,38,40,41,64, ... 

General defmition: ifml , m2, are the fIrst two terms of the sequence, 

then m k, for k ~ 3, is the smallest number such that no 3-term arithmetic 

progression is in the sequence. 

In our case the fIrst two terms are 1, respectively 2. 

Generalization: same initial conditions, but no i-term arithmetic progression 
in the sequence (for a given i ~ 3). 
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(6) Smarandache Prime product sequence: 

2, 7,31,211,2311,30031,510511,9699691,223092871,6469693231, 
200560490131, 7420738134811, 304250263527211, ... 

Pn = I + PI P2 ... PIc, where Pk is the k-th prime. 

Question: How many of them are prime? 

(7) Smarandache Square product sequence: 

2,5,37,577,14401,518401,25401601, 1625702401, 131681894401, 
13168189440001,1593350922240001, ... 

Sk = I + Sl S2 ... Sk , where Sk is the k-th square number. 

Question: How many of them are prime? 

(8) Smarandache Cubic product sequence: 

2,9,217,13825,1728001,373248001, 128024064001,65548320768001, ... 

Ck = 1 + CI C2 ... Ck , where Ck is the k-th cubic number. 

Question: How many of them are prime? 

(9) Smarandache Factorial product sequence: 

2,3, 13,289,34561,24883201, 125411328001,5056584744960001, '" 

Fk = 1 + fl f2 ... fk' where fk is the k-th factorial number. 

Question: How many of them are prime? 

(10) Smarandache U-product sequence {generalization}: 

Let Un ,n ~ 1, be a positive integer sequence. Then we define a U-sequence as follows: 

Un = 1 + u\ U2 ... Un . 

(II) Smarandache Non-geometric progression. 

1,2,3,5,6,7,8, 10, II, 13, 14, 15, 16, 17, 19,21,22,23,24, 
26,27,29,30,31,33,34,35,37,38,39,40,41,42,43,45,47, 
48,50,51,53, ... 

General defmition: ifm\ ,m2 , are the first two terms of the sequence, then m., for k ~ 3, is the smallest 
number such that no 3-term geometric progression is in the sequence. In our case the fIrst two terms 
are 1, respectively 2. 
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(12) Smarandache Unary sequence: 

11,111,11111,1111111,11111111111, 1111111111111, 1111111111111111, 
1111111111111111111, 11111111111111111111111, 
11111111111111111111111111111, 1111111111111111111111111111111, ... 

u(n) = 1 1...1, Pn digits of "1", where Pn is the n-th prime. 

The old question: are there are infmite number of primes belonging to the sequence? 

(13) Smarandache No-prime-digit sequence: 

1,4,6,8,9,10.11,1,1,14,1,16.1,18,19,0,1,4,6,8,9, 
0, 1,4,6,8,9,40,41,42,4,44,4,46,48,49,0, ... 

(Take out all prime digits ofn.) 

(14) Smarandache No-square-digit-sequence. 

2,3,5,6,7,8,2,3,5,6,7,8,2,2,22,23,2,25,26,27,28, 
2,3,3,32,33,3,35,36,37,38,3,2,3,5,6,7,8,5,5,52,53, 
5,55,56,57,58,5,6,6,62, ... 

(Take out all square digits ofn.) 

• This paper fIrst appeared in Bulletin of Pure and Applied Sciences, Vol. 16 E(No. 2) 1997; P. 237-240. 
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SMARANDACHE CONCATENATE TYPE SEQUENCES* 

Helen Marirnutha 
Northland Pioneer College (USA) 

ABSTRACT 

Professor Anthony Begay of Navajo Community College influenced me in writing this 
paper. I enjoyed the Smarandache concatenation. The sequences shown here have been 
extracted from the Arizona State University(Tempe) Archives. They are defmed as 
follows: 

(I) Smarandache Concatenated natural sequence: 

1,22,333,4444,55555,666666, 7777777,88888888,999999999,10101010101010101010, 
1111111111111111111111, 121212121212121212121212, 13131313131313131313131313, 
1414141414141414141414141414, 151515151515151515151515151515, ... 

(2) Smarandache Concatenated prime sequence: 

2,23,235,2357,235711,23571113,2357111317, 235711131719, 2357 1113171923, ... 

Conjecture: there are infinitely many primes among these numbers! 

(3) Smarandache Concatenated odd sequence: 

1,13,135,1357,13579,1357911,135791113, 13579111315, 1357911131517, ... 

Conjecture: there are infmitely many primes among these numbers! 

(4) Smarandache Concatenated even sequence: 

2,24,246,2468,246810,24681012, 2468101214, 246810121416, ... 

Conjecture: none of them is a perfect power! 

(5) Smarandache Concatenated S-sequence { generalization}: 

Let Sl> S2, S3, S4, ... , s.., ... be an infinite integer sequence (noted by S). Then: 

is called the Concatenated S-sequence. 

Questions: (a) How many terms of the Concatenated S-sequence belong to the initial S-sequence? 

(b) Or, how many terms of the Concatenated S-sequence verify the relation of other given 
sequences? 

The fIrst three cases are particular. 

Look now at some other examples, when S is a sequence of squares, cubes, Fibonacci 
respectively (and one can go so on). 
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(6) Smarandache Concatenated Square sequence: 

1,14,149,14916,1491625,149162536, 14916253649, 1491625364964, ... 

How many of them are perfect squares? 

(7) Smarandache Concatenated Cubic sequence: 

1,18,1827,182764,182764125, 182764125216, 182764125216343, ... 

How many of them are perfect cubes? 

(8) Smarandache Concatenated Fibonacci sequence: 

1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, ... 

Does any of these nwnbers is a Fibonacci nwnber? 

REFERENCES 

1. Smarandache, F. (1997). Collected Papers Vol. II, University of Kishinev. 
2. Smarandache, F. (1975). "Properties of the Nwnbers", University of Craiova Archives. 

[See also Arizona State University Special Collections, Tempe, Arizona, USA]. 

* This paper originally appeared in Bulletin of Pure and Applied Sciences, Vol. 16 ECNo. 2) 1997; 
p.225-226 
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SMARANDACHE RECURRENCE TYPE SEQUENCES* 

Mihaly Beneze 
Brasov, Romania 

ABSTRACT 

Eight particular, Smarandache Recurrence Sequences and a 
Smarandache General-Recurrence Sequence are defmed below 
and exemplified (found in State Archives, Rm, Valcea, Romania). 

A. 1,2,5,26,29,677,680, 701, 842, 845, 866, 1517,458330,458333,458354, ... 

(ss2(n) is the smallest nwnber, strictly greater than the previous one, which is the squares swn of two 
previous distinct terms of the sequence; in our particular case the first two terms are I and 2.) 

Recurrence definition: 

(1) The nwnbers a ~ b belong to SS2; 
(2) Ifb, c belong to SS2, then b2 + c2 belongs to SS2 too; 
(3) Only nwnbers, obtained by rules [(1) and/or (2)] applied a fmite nwnber oftimes, belong to SS2. 

The sequence (set) SS2 is increasingly ordered. 

[ Rule (1) may be changed by: the given nwnbers ab a2, a3, ... , ak, where k 2: 2, belongs to SS2.] 

B.l, 1,2,4,5,6, 16, 17, 18,20,21,22,25,26,27,29,30,31,36,37,38,40,41,42,43,45,46, ... 

(SS I(n) is the smallest nwnber, strictly greater than the previous one, (for n 2: 3), which is the squares swn 
of one or more previous distinct terms of the sequence; in our particular case the first term is I.) 

Recurrence defmition: 

(I) The nwnber a belongs to SS 1; 
(2) Ifb b b2, ... , bk belong to SS 1, where k 2: 1, then b l

2 + ~ 2 + ... +b/ belongs to SS 1 too; 
(3) Only nwnbers, obtained by rules [(1) and/or (2)] applied a finite number oftimes, belong to SS!. 

The sequence (set) SS 1 is increasingly ordered. 

[Rule (1) may be changed by: the given nwnbers ab a2, ... , ax, where k 2: 1, belong to SS!.] 

C. 1,2,3,4,6,7,8,9,11, 12, 14,15,16,18,19,21, ... 

(NSS2(n) is the smallest nwnber, strictly greater than the previous one, which is NOT the squares swn of 
two previous distinct terms of the sequence; in our particular case the first two terms are 1 and 2.) 

Recurrence defmition: 

(1) The nwnbers a ~ b belong to NSS2; 
(2) If b, c belong to NSS2, then b2 + c2 DOES NOT belong to NSS2; any other nwnbers belong to 

NSS2; 
(3) Only nwnbers, obtained by rules [(1) and/or (2)] applied a finite nwnber oftimes, belong to NSS2. 
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The sequence (set) NSS2 is increasingly ordered. 

[Rule (1) may be changed by; the given numbers ai, a2, ... , ak, where k ~ 2, belong to NSS2.] 

D. 1,2,3,6,7,8,11,12,15,16,17, 18, 19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35, 
38,39,42,43,44,47, .. , 

(NSS 1 (n) is the smallest number, strictly greater than the previous one, which is NOT the squares sum of 
one or more of the previous distinct terms of the sequence; in our particular case the first term is 1.) 

Recurrence defmition: 

(1) The number a belongs to NSS 1 ; 
(2) lfbl> b2, ... , bk belong to NSSl, where k ~ 1, then b/ + b/ + ... +bk

2 DOES NOT belong to 
NSS 1; any other numbers belong to NSS 1; 

(3) Only numbers, obtained by rules [(1) and/or (2)] applied a finite number oftimes, belong to NSS1. 

[Rule (I) may be changed by: the given numbers aj, a2, ... , ak, where k ~ 1, belong to NSS1.] 

E. 1,2,9,730,737,389017001,389017008,389017729, ... 

(CS2(n) is the smallest number, strictly greater than the previous one, which is the cubes sum of two 
previous distinct terms of the sequence; in our particular case the first two terms are 1 and 2.) 

Recurrence defmition: 

(I) The numbers a ::; b belong to CS2; 
(2) If c,d belong to CS2, then c3 + d3 belongs to CS2 too; 
(3) Only numbers, obtained by rules [(1) and/or (2)] applied a fmite number oftimes, belong to CS2. 

The sequence (set) CS2 is increasingly ordered. 

[ Rule (1) may be changed by: the given numbers a\, a2, ... , ak, where k ~ 2, belong to CS2.j 

F. I, 1,2,8,9,10,512,513,514,520,521,522,729,730,731, 737, 738,739, 1241, ... 

(CS 1 (n) is the smallest number, strictly greater than the previous one (for n ~ 3), which is the cubes sum 
of one or more previous distinct terms of the sequence; in our particular case the first term is 1; 

Recurrence defmition: 

(1) The number a belongs to CS 1; 
(2) lfbj,~, ... , bk belong to CSI, where k ~ 1, then b l

3 + b2
3 + ... + bk

3 belongs to CS2 too; 
(3) Only numbers, obtained by rules [(1) and/or (2)] applied a finite number oftimes, belong to CSI. 

The sequence (set) CS 1 is increasingly ordered. 

[Rule (1) may be changed by: the given numbers aj, a2, ... , a., where k ~ 2, belong to CSl.] 

G. 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17, 18, 19,20,21,22,23,24,25,26,27,29,30,31,32, 
33,34,36,37,38, ... 

(NCS2(n) is the smallest number, strictly greater than the previous one, which is NOT the cubes sum of 
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two previous distinct tenns of the sequence; in our particular case the first two tenns are 1 and 2.) 

Recurrence definition: 

(1) The numbers a ~ b belong to NCS2. 
(2) If c,d belong to NCS2, then c3 + d3 DOES NOT belong to NCS2; any other numbers do belong to 

NCS2. 
(3) Only numbers, obtained by rules [(1) and/or (2)] applied a fmite number oftimes, belong to NCS2. 

The sequence (set) NCS2 is increasingly ordered. 

[ Rule (1) may be changed by: the given numbers at. a2, ... , lik, where k ~ 2, belong to NCS2.] 

H.I,2,3,4,5,6, 7,10,11,12,13,14,15,16,17, 18, 19,20,21,22,23,24,25,26,29,30,31,32,33,34, 
37,38,39, ... 

(NCS 1 (n) is the smallest number, strictly greater than the previous one, which is NOT the cubes sum of 
one or more previous distinct tenns of the sequence; in our particular case the first tenn is 1.) 

Recurrence defmition: 

(1) The number a belongs to NCS1. 
(2) Ifbt. b2, ... , bk belong to NCS1, where k ~ 1, then b1

2 + b/ + ... + bk
2 DOES NOT belong to 

NCS1. 
(3) Only numbers, obtained by rules [(1) and/or (2)] applied a finite number oftimes, belong to NCS 1. 

The sequence (set) NCS 1 is increasingly ordered. 

[ Rule (1) may be changed by: the given numbers a\, a2, ... , lik, where k ~ 2, belong to NCS 1.] 

1. General recurrence type sequence: 

General recurrence defmition: 

Let k ~j be natural numbers, and at. a2, ... , ak be given elements, and Raj-relationship (relation among 
j elements). 

Then: 

(I) The elements at. a2, ... , ak belong to SGR. 
(2) Ifmb m2, ... , mj belong to SGR, then R(mb m2, ... , m) belongs to SGR too. 
(3) Only numbers, obtained by rules [(1) and/or (2)] applied a finite number oftimes, belong to SGR. 

The sequence (set) SGR is increasingly ordered. 

Method of construction of the general recurrence sequence: 

-level I: the given elements ab a2, ... , ak belong to SGR; 

-level 2: apply the relationship R for all combinations ofj elements among ab a2, ... ,~; the results 
belong to SGR too; 

order all elements of levels 1 and 2 together, 
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-level i+ 1: 

ifbI.~' ... , bm are all elements of levels 1,2, ... , i-I and CI. C2, ... , Cn are all elements of level i, then 
apply the relationship R for all combinations ofj elements among bI. b2, ... , bm, CI. C2, ... , Cn such that 
at least an element is from the level i; 

the results belong to SGR too; 

order all elements of levels i and i+ I together; 

and so on ... 

* Originally appeared in Bulletin of Pure and Applied Sciences, Vol. 16 E(No. 2) 1997; P. 231-236. 
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About Smarandache-Multiplicative Functions 

Sabin Tabirca 
Bucks University College, Computing Department, England. 

The main objective of this note is to introduce the notion of the S-multiplicative function and to give some 
simple properties concerning it. The name ofS-multiplicative is short for Smarandache-multiplicative and 
reflects the main equation of the Smarandache function. 

Definition 1. A function f: N* -+ N* is called S-multiplicative if: 

(1) (a,b) = 1 => f(a * b) = max { f(a), f(b)} 

The following functions are obviously S-multiplicative: 

1. The constant function f: N* -+ N*, f(n) = 1. 
2. The Erdos function f: N* -+ N*, f(n) = max { pip is prime and n:p }. [1]. 

3. The Smarandache function S: N* -+ N, Sen) = max { pip! : n }. [3]. 

Certainly, many properties of multiplicative functions[2] can be translated for S-multiplicative functions. 
The main important property of this function is presented in the following. 

-
Definition 2. Iff:N* -+ N is a function, then f: N* -+ N is defined by 

-
f(n) = min {f(d)1 n:d}. 

-
Theorem 1. Iff is S-multiplicative function, then f is S-multiplicative. 

Proof. This proof is made using the following simple remark: 

(2). (dla*b 1\ (a,b)=I) => «3 d I 1 a)(3 d 2Ib)(d hd2 ) = 1 Ad = (d l * d 2) 

If d l and d 2 satisfy (2), then f( d I * d2 ) = max {f( d l ),f( d 2)}. 

Let a,b be two natural numbers, such that (a,b) = 1. Therefore, we have 

-
(3) f(a * b) = min fed) = min f(d l * d2 ) = min min max {f(dl), f(d2)}. 

dla*b d lla,d2la d l la d2 la 

Applying the distributing property of the max and min functions, equation (3) is transformed as follows: 

- - -
f(a*b) = max {min f(d l), min f(d2) } = max { f(a), f(b) }. Therefore, 

dlla d2 1a 

-
the function f is S-multiplicative. 

We believe that many other properties can be deduced for S-multiplicative functions. Therefore, it will be 
in our attention to further investigate these functions. 
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ON SMARANDACBE MTXIi:D NON-EUCLIDEAN GEClMETRIES 

Professor Emeritus Anghel N. Rugina 
Northeastern University, Boston, MA 02130, USA 

Abstract. 
In this short paper I compare the Smarandache's Non-Euclidean Geometries [2] with my Orientation Table For Any Science (1]. 

Introduction: 
Here it is An Orientation Table For Any Science (Natural or social) 

Bui~ding blockS: 

S = stable (equilibrium) elements, forces, values, behavior 
U = unstable (disequilibrium) elements, forces, values,behavior 

Models: S u 

Ml = 100% s o 

M2 = 95% S + 5% U 

M3 = 65% S + 35% 0 

M4 : 50% S + 50% U 

M5 = 35% S + 65% U 

M6 = 5% S + 95% U 

Description 

A system of general stable equilibrium 
at its limit of perfection 

The methodological habitat for truths 
in the abstract or the pure classical 
model in science, in the senae Of 
Newton (physics) or Walras (economics) 

A system of stable equilibrium but 
with minor deviations • This is the 
aethodological habitat for truths in 
the concrete. It is the case for 
special relativity. (Einstein and 
Newton) 

A mixed system of siaple anomalies or 
relativity of the first order. The 
equilibrium elements still prevail. 
Habitat for truths in the concrete. 

A mixed system of unstable equilibrium. In economics it represents the Keynes
ian model of "equilibriua with un
employ.ent but adding the prefix of 
·unstable". It is the usual model in 
modern science guided by unstable 
equilibrium or Rstable disequilibriumR• 

A mixed model of compound anomalies 
or relativity of the second order 
where disequilibrium elements prevail. 
A weak major disequilibrium. 

A borderline mixed system where dis
equilibrium elements dominate to a 
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M7 = 100% U 

My non-understandings are: 

very large degree. A strong major 
disequilibrium. 

A system of total disequilibrium 
dominated completely by pure contra
dictions, real chaos. 

1. "Mixed Non-Euclidean Geometries" cannot mean the same thing 
with "Anti-Geometry". Tis would involve that all Non
Euclidean Geometries deny each other. 

2. The"Euclidean Geometry" is just one model, specifically Model MI 
on my Orietation Table. Indeed, a similar Orientation Table can be 

constructed for Geometry. See: enclosure:p.5 

3. Independent of Kodel KI (Euclidean), there is an unlimited number 
of possible mixed, Noneuclidean, concentrated just for study 
purposes in 6 other models. Only Model M7 which represents the 
Geometry of total disequilibrium or chaos negates model KI and 
therefore may be called the Anti-Euclidean or Anti-Classical system 
of Geometry. Actually this is the only case when we can talk about 
K7 Anti-Geometry with specification. 

4. The Non-Euclidean M2,M3,M4, M5 and M6 which represent a minor dis
equilibrium, a neutral disequilibrium (M4) or unstable equilibrium 
-and major disequilibria (MS,M6) systems of Geometry do not "run 
counter to the classical ones" (Ml with truth in the abstract and 
K2 with truth in the concrete) but they are just different in various 
degrees. There is no contradiction here or,if there is one then 
iti~ partial or imperfect but not complete. 

5. To "transrorm the apparently unscientific ideas into scientific 
ones" is a treacherous operation. To me something "unscientific" 
means being "untrue" and I do not see how you can transform logi
cally something which is not true into something which is true! 
Unless, one is willing to use a "Hocus-Pocus" logic (just a joke) 
or incomplete logic" which closer to "Fuzzy Logic" (a more recent 
term). I do not know how Bertrand Russell would react to the 
"Fuzzy-Logic" name! 

6. The term "Anti-Geometry" is not quite correct, at least not complete 
Anti-Classical or-Euclidean Geometry is O.k. but with the under
standing that it rerers to Model M7. 
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SMARANDACHE NUMBER RELATED TRIANGLES 

K. R. S. Sastry 
Jeevan Sandhya, Doddakalsandra Post, Raghuvana Halli 

Bangalore 560 062, INDIA 

ABSTRACT 

Given a triangle in Euclidean geometry it is well known that 
there exist an infinity of triangles each of which is similar to 
the given one. In Section I we make certain observations on 
Smarandache numbers. This enables us to impose a constraint on the 
lenghts of the corresponding sides of similar triangles. In 
Section II we do this to see that infinite class of similar 
triangles reduces to a finite one. In section III we disregard the 
similarity requirement. Finally, in section IV we pose a set of 
open problems. 

I SMARANDACHE NUMBERS: SOME OBSERVATIONS 

Suppose a natural number n is given. The Smarandache number 
of n is the least number denoted by S (n) whith the following 
property: n divides Sen)! but not (S(n)-1)!. Below is a short 
table containing nand Sen) for 1 ~ n ~ 12. 

n 1 2 3 4 5 6 7 8 9 10 11 

S (n) 1 2 3 4 5 3 7 4 6 5 11 

A look at the above table shows that S(3) = S(6) = 3, 
S ( 4) = S (8) = S ( 12 ) = 4, ..• . 

12 

4 

Let a natural number k be given. Then the equation Sex) = k 
cannot have an inf ini ty of solutions x. This is because the 
largest solution is x=k!. This observation enables us to impose a 
restriction on the lengths of the corresponding sides of similar 
triangles. In the next section we shall see how to do this. 
Throughout this paper the triangles are assumed to have natural 
number side lengths. Also, the triangles are non degenerate. 

II SMARANDACHE SIMILAR TRIANGLES 

Let us denote by T{a,b,c) the triangle ABC with side lengths 
a, b, c. Then the two similar triangles T(a,b,c) and T' (a',b',c') 
are said to be Smarandache Similar if Sea) = Sea'), S(b) = S(b'), 
S{c) = S(c'). Trivially, a given triangle is Smarandache similar 
to itself. Non trivially the two pytagorean triangles (right 
triangles with natural number side lengths) T(3,4,5) and T'(6,8,10) 
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are Smarandache similar because 
S(3) = S(6) = 3, S(4) = S(8) = 4, S(5) = S(10) = 5. 
However, the Similar triangles (3,4,5) and (9,12,15) are not 
Smarandache Similar because S(3) = 3 * S(9) which is 6. In fact 
the class of Smarandache Similar triangles generated by T(3,4,5) 
contains just two: T(3,4,5) and T'(6,8,10) in view of the fact that 
the solution set of the equation Sex) = 3 consists of just two 
members x = 3, 6. 

For another illustration let us determine the class of 
Smarandache Similar Triangles generated by the 60° triangle 
T(a,b,c) = (5,7,8). The algorithm to do this is as follows: First 
we calculate S(5) = 5, S(7) = 7, S(8) = 4. Next we solve the 
equations Sea') = 5, S(b') = 7, S(c') = 4. Let us solve the last 
equation first. 

S(c') = 4 - c' = 4, 8, 12, 24. 
Here the largest value c' = 24 = 3c. Hence we need not to solve 
the other two equations beyond the solutions a' = 3a, b' = 3b. 
This observation therefore gives us 

Sea') = 5 - a' = 5, 10, 15 and 
S(b') = 7 - b' = 7, 14, 21. 

It is now clear that the class of Smarandache similar triangles 
contains just two members: (5,7,8) and (15,21,24). 

III SMARANDACHE RELATED TRIANGLES 

In this section we do not insist on the similarirty 
requirement that we had in section II. Hence the definition: Given 
a triangle T(a,b,c) we say that a triangle T' (a' ,b' ,c') is 
Smarandache related to T if Sea') = Sea), S(b') = S(b), S(c') = 
S(c). Note that the triangles T and T' mayor may not be similar. 
As an illustration let us determine all the triangles that are 
Smarandache related to T(3,4,5). To do this we follow the same 
algorithm that we mentioned in section II but we have to find all 
the solutions of the equations Sea') = 3, S(b') = 4, S(c') = 5. 
Therefore 

S (a' ) 
S (b') 
S (c') 

This gives 
(3,12,10); 
(6,24,20) . 

= 3 - a' = 3, 6; 
= 4 - b' = 4, 8, 12, 24; 
= 5 - c' = 5, 10, 15, 20, 30, 40, 60, 120. 
us the complete solution (a',b',c') = (3,4,5); (3,8,10); 

(6,4,5); (6,8,5); (6,8,10); (6,12,10); (6,12,15); 

IV CONCLUSION 

In the present discussion I have used small natural numbers k 
so that the solution of the equations S (x) = k can be easily 
determined. I do not know if this interesting converse problem of 
determining all natural numbers x for given k of the Smarandache 
equation S(x)=k has been disscused by someone already. In case if 
this has not been already considered, I invite the reader to devise 
efficient methods to solve the preceding equation. We conclude 
this section by posing the following open problems to the reader. 

(A) Are there two distinct dissimilar Phytagorean triangles 
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that are Smarandache related? i.e. both T(a,b,c) and T' (a',b',c') 
are Pythagorean such that Sea') = Sea), S(b') = S(b), S(c') = S(c) 
but T and T' are not similar. 

(B) Are there two distinct and dissimilar 60° triangles (120° 
triangles) that are Smarandache related? 

(c) Given a triangle T{a,b,c). Is it possible to give either 
an exact formula or an uper bound for the total number of triangles 
(without actually determining all of them) that are Smarandache 
related to T? 

(D) Consider other ways of relating two triangles in the 
Smarandache number sense. For example, are there two triplets of 
natural numbers (o,~,V) and (o',~',V') such that 0 + ~ + V = 0' + 
~' + V' = 180 and S{o) = S(o'), S(~) = S(~'), S(v) = S{v'). 
If such distinct triplets exist the two triangles would be 
Smarandache related via their angles. Of course in this 
relationship the side lengths of the triangles may not be natural 
numbers. 
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Solutions To Some Sastry Problems On Smarandache 
Number Related Triangles 

Charles Ashbacher 
Charles Ashbacher Technologies 

Box 294 
Hiawatha, IA 52233 USA 

e-maiI71603.522@compuserve.com 

In his recent paper[l], Sastry defines two triangles T(a,b,c) and T(a',b',c') to be 
Smarandache related ifS(a) = Sea'), S(b) = S(b') and S(c) = S(c'). The function S is known 
as the Smarandache function and is defmed in the following way. 

For n any integer greater than zero, the value of the Smarandache function Sen) is the 
smallest integer m such that n divides m!. 

He closes the paper by asking the following questions: 

A) Are there two distinct dissimilar Pythagorean triangles that are Smarandache related? 
A triangle T(x,y,z) is Pythagorean ifx*x + y*y = z*z. 

B)Are there two distinct and dissimilar 60(120) degrees triangles that are Smarandache 
related? A 60( 120) degrees triangle is one containing an angle of 60( 120) degrees. 

C) Given a triangle T(a,b,c), is it possible to give either an exact formula or an upper 
bound for the total number of triangles (without actually determining them), which are 
Smarandache related to T? 

D) Consider other ways of relating two triangles in the Smarandache number sense. For 
example, are there two triplets of natural numbers (a,b,c) and (a',b',c') such that 
a + b + C = a' + b' + c' = 180 and Sea) = Sea'), S(b) = S(b') and S(c) = S(c')? If this were 
true, then the angles, in degrees, of the triangles would be Smarandache related. 

In this paper, we will consider and answer questions (A), (B) and (D). Furthermore, we 
will also explore these questions using the Pseudo Smarandache function Zen). 

Given any integer n >0, the value of the Pseudo Smarandache function is the smallest 
integer m such that n evenly divides 

m 

L: k. 
k=l 

A) The following theorem is easy to prove. 
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Theorem: There are an infinite family of pairs of dissimilar Pythagorean triangles that 
are Smarandache related. 

Proof: 
Start with the two Pythagorean triangles 

T(3,4,5) and T(5,12,13) 

Clearly, these two triangles are not similar. Now, let p be an odd prime greater than 13 
and form the triples 

T(3p,4p,5p) T(5p,12p,13p) 

Obviously, these triples are also Pythagorean. It is well-known that if n = kp, where k < P 
and p is a prime, then S(kp) = p. Therefore, 

S(3p) = S(4p) = S(5p) = S(12p) = S(13p) = p 

and the triples form triangles that are not similar since the originals were not. Therefore, 
we have the desired infInite family of solutions. 

DefInition: Given two triangles T(a,b,c) and T(a',b',c'), we say that they are Pseudo 
Smarandache related ifZ(a) = Z(a'), Z(b) = Z(b') and Z(c) = Z(c'). 

A computer program was written to search for dissimilar pairs of Pythagorean triples 
T(x,y,z) and T(u,v,w) that are also Pseudo Smarandache related. Several were found and 
a few are given below. 

x=49, y=168,z=175 
Z(x) = 48, Z(y) = 48, Z(z) = 49 
u= 147, v= 196, w=245 
Z(u) = 48, Z(v)=48, Z(w) = 49 

x=96,y=128,z =160 
Z(x) = 63, Z(y) = 255, Z(z) = 64 
u = 128, v = 504, w = 520 
Z(u) = 255, Z(v) = 63, Z(w) = 64 

x = 185, y = 444, z = 481 
Z(x) = 74, Z(y) = 111, Z(z) = 221 
u = 296, v = 555, w = 629 
Z(u) = 111, Z(v) = 74, Z(w) = 221 
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x = 238, y = 816, Z = 850 
Z(x) = 84, Z(y) = 255, Z(z) = 424 
u = 510, v = 680, w = 850 
Z(u) = 84, Z(v) = 255, Z(w) = 424 

While these numbers do not readily display the pattern of an infinite family of solutions, 
there is no real reason to think that there is only a finite number of solutions. 

Conjecture: There are an infinite number of pairs of Pythagorean triples T(x,y,z) and 
T(u,v,w) that are Pseudo Smarandache related. 

C) A computer program was written to search for two dissimilar 60 degrees triangles 
T(a,b,c) and T(aI,b1,c1) that are Smarandache related and several solutions were found. 

a = 10, b = 14, c = 16, Sea) = 5, S(b) = 7, S(c) = 6 
a1 = 30, b1 = 70, cI = 80, S(a1) = 5, S(b1) = 7, S(c1) = 6 

a = 10, b = 14, c = 16, Sea) = 5, S(b) = 7, S(c) = 6 
a1 = 45, b1 = 105, c1 = 120, S(a1) = 6, S(b1) = 7, S(c1) = 5 

Note that the triangles T(30,70,80) and T(45, 105,120) are similar. 

a = 16, b = 19, c = 21, Sea) = 6, S(b) = 19, S(c) = 7 
a1 = 80, b1 = 304, c1 = 336, S(a1) = 6, S(bl) = 19, S(c1) = 7 

a = 20, b = 28, c = 32, Sea) = 5, S(b) = 7, S(c) = 8 
a1 = 60, b1 = 140, c1 = 160, S(a1) = 5, S(b1) = 7, S(c1) = 8 

a = 20, b = 28, c = 32, Sea) = 5, S(b) = 7, S(c) = 8 
a1 = 120, b1 = 280, c1 = 320, S(a1) = 5, S(b1) = 7, S(c1) = 8 

Note again that the triangles T(60,140,160) and T(120, 280,320) are similar. Given the 
number of solutions found in this limited search, the following conjecture seems safe. 

Conjecture: There are an infinite number of dissimilar 60 degrees triangles that are 
Smarandache related. 

Another computer program was written to search for dissimilar 60 degree triangles 
T(a,b,c) and T(a1,bl,c1) that are Pseudo Smarandache related. Only four pairs were found 
in a limited search and they are given below. 

a = 24, b = 56, c = 64, Z(a) = 15, Z(b) = 48, Z(c) = 127 
a1 = 40, bl = 56, c1 = 64, Z(a1) = 15, Z(bl) = 48, Z(c1) = 64 
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a = 49, b = 91, c = 105, lea) = 48, l(b) = 13, l(c) = 14 
al = 56, bl = 91, c1 = 105, l(a1) = 48, l(b1) = 13, l(c1) = 14 

a = 42, b = 98, c = 112, lea) = 20, l(b) = 48, l(c) = 63 
a1 = 70, b1 = 98, c1 = 112, l(a1) = 20, l(b1) = 48, l(c1) = 63 

a = 42, b = 98, c = 112, lea) = 20, l(b) = 48, l(c) = 63 
a1 = 210, b1 = 294, c1 = 336, l(a1) = 20, l(b1) = 48, l(c1) = 63 

Question: Are there an infinite number of dissimilar 60 degrees triangles that are Pseudo 
Smarandache related? 

Solutions to the corresponding problem for dissimilar 120 degrees triangles T(a,b,c) and 
T(a1,b1,c1) that are Smarandache related were also searched for using another computer 
program. Several were found, although they appear to be sparser than the corresponding 
60 degrees triangles. The solutions that were found are as follows. 

a = 32, b = 98, c = 78, Sea) = 8, S(b) = 14, S(c) = 13 
a1 = 196, b1 = 364, c1 = 224, S(a1) = 14, S(b1) = 13, S(c1) = 8 

a = 32, b = 98, c = 78, Sea) = 8, S(b) = 14, S(c) = 13 
a1 = 392, b1 = 728, c1 = 448, S(a1) = 14, S(b1) = 13, S(c1) = 8 

a = 51, b = 119, c = 17, Sea) = 17, S(b) = 17, S(c) = 17 
a1 = 119, bl = 221, c1 = 136, S(a1) = 17, S(b1) = 17, S(c1) = 17 

a = 51, b = 119, c = 17, S( a) = 17, S(b) = 17, S( c) = 17 
a1 = 238, b1 = 442, c1 = 272, S(a1) = 17, S(b1) = 17, S(c1) = 17 

a = 51, b = 119, c = 17, Sea) = 17, S(b) = 17, S(c) == 17 
a1 = 357, b1 = 663, c1 = 408, S(a1) = 17, S(b1) = 17, S(c1) = 17 

a = 51, b = 119, c = 17, Sea) = 17, S(b) = 17, S(c) = 17 
a1 = 272, b1 = 833, c1 = 663, S(a1) = 17, S(b1) = 17, S(c1) = 17 

a = 51, b = 119, c = 17, Sea) = 17, S(b) = 17, S(c) = 17 
a1 = 476, b1 = 884, c1 = 544, Seal) = 17, S(b1) = 17, S(c1) = 17 

Note the cases where the second triangles of pairs are similar. 

Question: Is there an infInite family of dissimilar 120 degrees triangles that are 
Smarandache related? 

Finding dissimilar 120 degrees triangles that are Pseudo Smarandache related proved to 
be more difficult. In a search for all b ~ 337, a ~ 1000, c ~ 1000, a1 ~ 1000, 
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b 1 ~ 1000 and cl ~ 1000, only one solution, 

a = 168, b = 312, c = 192, Z(a) = 48, Z(b) = 143, Z(c) = 128 
al = 192, bl = 588, c1 = 468, Z(a) = 128, Z(bl) = 48, Z(cl) = 143 

was found. 

Question: Is there an infinite number of dissimilar 120 degrees triangles that are Pseudo 
Smarandache related? 

D) A computer program was written to check for triplets of natural numbers (a,b,c) and 
(a',b',c') such that a + b + c = a' + b' + c' = 180 and Sea) = Sea'), S(b) = S(b') and 
S(c) = S(c') and many such pairs of triplets were found. While it is obvious that the 
number is finite, the following list is not exhaustive. 

a= 1, b= II,c= 168, S(a)=O, S(b) = 11, S(c)=7 
a' = 1, b' = 14, c' = 165, Sea') = 0, S(b') = 7, S(c') = 11 

a = 2, b = 7, c = 171, Sea) = 2, S(b) = 7, S(c) = 19 
a' = 2, b' = 38, c' = 140, Sea') = 2, S(b') = 19, S(c') = 7 

a = 3, b = 7, c = 170, Sea) = 3, S(b) = 7, S(c) = 17 
a' = 6, b' = 21, c' = 153, Sea') = 3, S(b') = 7, S(c') = 17 

The last being an example of a pair of triples where there is no number in common. 

An exhaustive computer search revealed that all possible angle measures 1 through 178 
can be an angle in such a pair of triangles except 83,97,107, 113, 121, 127, 137, 139, 
149, 151, 163, 166, 167, 169, 172, 173, 174, 175, 176, 177, and 178. 

The corresponding problem using the Pseudo Smarandache function is as follows. 

Are there two triplets of natural numbers (a,b,c) and (a',b',c') such that 
a + b + c = a' + b' + c' = 180 and Z(a) = Z(a'), Z(b) = Z(b') and Z(c) = Z(c')? 

Another computer program was written that used Zen) rather than Sen) in the search for 
such triples. Many solutions exist and some are given below. 

a = 2, b = 24, c = 154, Z(2) = 3, Z(24) = 15, Z(154) = 55 
a' = 6, b' = 20, c' = 154, Z(6) = 3, Z(20) = 15, Z(154) = 55 

a= 4, b = 8, c = 168, Z(4) = 7, Z(8) = 15, Z(168) = 48 
a' = 4, b' = 56, c' = 120, Z(4) = 7, Z(56) = 48, Z(120) = 15 
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a = 4, b = 16, c = 160, Z(4) = 7, Z(16) = 31, Z(160) = 64 
a' = 14, b' = 62, c' = 104, Z(14) = 7, Z(62) = 31, Z(104) = 64 

The last solution shows us that there are solutions where there are no numbers common to 
the triples. 

There are many solutions to this expression. An exhaustive computer search was 
performed for all possible values 1 :::; a :::; 178 and the following numbers did not 
appear in any triple. 

1, 15,23,35,41,45,51,59,65,67,71,73,77,79,82,83,86,87,89,90,91,97,101, 
102,105, 107, 109, 113, 115, 116, 118, 121, 123, 125, 126, 127, 131, 134, 135, 137, 139, 
141,142,143,148,149,151,152,153,157,158,159,161, 163, 164, 166, 167, 169, 170, 
171,172,173,174,175,176,177,178. 

Reference 

1. K. R. S. Sastry, 'Smarandache Number Related Triangles'. Appeared on the world 
wide web at http://www.gallup.unm.edul-smarandache. 
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On the Difference S(Z(n» - Z(S(n) 
Maohua Le 

Abstract: In this paper, we prove that there exist infmitely many positive integers 
n satisfying S(Z(n»> Z(S(n» or S(Z(n» < Z(S(n». 

Key words: Smarandache function, Pseudo-Smarandache function, composite function, difference. 

For any positive integer n, let Sen), Zen) denote the Smarandache function and the Pseudo-Smarandache 
function ofn respectively. In this paper, we prove the following results: 

Theorem 1: There exist infmitely many n satisfying S(Z(n» > Z(S(n». 

Theorem 2: There exist infinitely many n satisfying S(Z(n» < Z(S(n». 

The above mentioned results solve Problem 21 of [I]. 

Proof of Theorem 1. 
Let p be an odd prime. If n = (112)p(P+ 1), then we have 

(1) S(Z(n» = S(Z«(1I2)p(P+ 1») = S(p) = P 

and 

(2) Z(S(n» = Z(S«(1I2)p(p+l») = Z(p) = p-1. 

We see from (I) and (2) that S(Z(n» > Z(S(n» for any odd prime p. It is a well-known fact that 
there exist infmitely many odd primes p. Thus, the theorem is proved. 

Proof of Theorem 2. 
If n = p, where p is an odd prime, then we have 

(3) S(Z(n» = S(Z(p» = S(P-l) < p-l 

and 

(4) Z(S(n» = Z(S(P» = Z(P) = p-1. 

By (3) and (4), we get S(Z(n» < Z(S(n» for any p. Thus, the theorem is proved. 
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SMARANDACHE CEIL FUNCTIONS* 

Anthony Begay 
Navajo Community College, Arizona (USA) 

ABSTRACT 

In this paper some defmitions, examples and conjectures are exposed related to the Smarandache type 
functions, found in the Archives of the Arizona State University, Tempe, USA Special Collections. 

(I) Smarandache Ceil Function of Second Order: 

2,4,3,6,4,6,10,12,5,9,14,8,6,20,22,15,12,7,10,26, 18,28,30,21,8,34,12,15,38,20,9,42, 
44,30,46,24,14,33,10,52, 18,28,58,39,60, 11,62,25,42, 16,66,45,68,70,12,21,74,30,76,51, 
78,40,18,82,84,13,57,86, ... 

(S (n) = m, where m is the smallest positive integer for which n divides mI\2.) 
2 

Reference: 

(a) Surfing on the Ocean of Numbers - a few Smarandache Notions and Similar 
Topics, by Heruy Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30. 

(2) Smarandache Ceil Function of Third Order: 

2,2,3,6,4,6,10,6,5,3,14,4,6,10,22,15, 12,7,10,26,6,14,30,21,4,34,6,15,38,20,9,42,22, 
30,46,12,14,33,10,26,6,28,58,39,30,11,62,5,42,8,66, 15,34,70, 12,21,74,30,38,51,78,20, 
18,82,42,13,57,86, ... 

(S (n) = m, where m is the smallest positive integer for which n divides mI\3.) 
3 

Reference: 

(a) Surfing on the Ocean of Numbers - a few Smarandache Notions and Similar 
Topics, by Heruy Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30. 

(3) Smarandache Ceil Function of Fourth Order: 

2,2,3,6,2,6,10,6,5,3,14,4,6,10,22,15,6,7, 10,26,6, 14,30,21,4,34,6, 15,38, 10,3,42,22, 
30,46,12, 14,33,10,26,6,14,58,39,30,11,62,5,42,4,66,15,34,70, 6, 21, 74, 30, 38, 51, 78,20, 
6,82,42, 13,57,86, ... 

(S (n) = m, where m is the smallest positive integer for which n divides mI\4.) 
4 

Reference: 

(a) Surfing on the Ocean of Numbers - a few Smarandache Notions and Similar 
Topics, by Heruy Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30. 
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(4) Smarandache Ceil Function of Fifth Order: 

2,2,3,6,2,6, 10,6,5,3,14,2,6, 10,22, 15,6, 7,10,26,6,14,30,21,4,34,6, 15,38, 10,3,42,22, 
30,46,6,14,33,10,26,6,14,58,39,30, I 1,62, 5,42,4,66,15,34,70,6,21,74,30,38,51,78,10, 
6,82,42, 13,57,86, ... 

(S (n) =m, where m is the smallest positive integer for which n divides mI\5.) 
5 

Reference: 

(a) Surfing on the Ocean of Numbers - a few Smarandache Notions and Similar 
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30. 

(5) Smarandache Ceil Function of Sixth Order: 

2,2,3,6,2,6,10,6,5,3,14,2,6,10,22,15,6,7, 10,26,6, 14,30,21,2,34,6, 15,38, 10,3,42,22, 
30,46,6, 14,33, 10,26,6, 14,58,39,30,11,62,5,42,4,66,15,34,70,6,21,74,30, 38,51,78, 10,6, 
82,42, 13,57,86, ... 

(S (n) = m, where m is the smallest positive integer for which n divides m"6.) 
6 

Reference: 

(a) Surfing on the Ocean of Numbers - a few Smarandache Notions and Similar 
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 27-30. 

(6) Smarandache - Fibonacci triplets: 

11, 121,4902,26245,32112,64010,368140,415664,2091206,2519648,4573053, 7783364, 
79269727, 136193976,321022289,445810543,559199345,670994143,836250239,893950202, 
937203749,1041478032,1148788154, ... 

(An integer n such that Sen) = S(n-l) + S(n-2) where S(k) is the Smarandache 
function: the smallest number k such that S(k)! is divisible by k.) 

Remarks: 

It is not known if this sequence has infmitely or fmitely many terms. 

H. Ibstedt and C. Ashbacher independently conjectured that there are infmitely many. 

H. I. found the biggest known number: 19448047080036. 

References: 

(a) Surfing on the Ocean of Numbers - a few Smarandache Notions and Similar 
Topics, by Henry Thstedt, Erhus University Press, Vail, USA, 1997; p. 19-23. 

(b) C. Ashbacher and M. Mudge, <Personal Computer World>, London, October 
1995; p. 302. 
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(7) Smarandache-Radu duplets 

224,2057,265225,843637,6530355,24652435,35558770,40201975,45388758, 
46297822,67697937,138852445, 157906534, 171531580,299441785,551787925, 
1223918824, 1276553470, 1655870629, 1853717287, 1994004499,2256222280, ... 

(An integer n such that between Sen) and S(n+ 1) there is no prime [Sen) and 
Sen + 1) included]. 

where S(k) is the Smarandache function: the smallest number k such that S(k)! 
is divisible by k.) 

Remarks: 

It is not known if this sequence has infmitely or fmitely many terms. 

H. Ibstedt conjectured that there are infmitely many. 

H. 1. found the biggest known number: 

270329975921205253634707051822848570391313! 

References: 

(a) Surfing on the Ocean of Numbers - a few Smarandache Notions and Similar 
Topics, by Henry Ibstedt, Erhus University Press, Vail, USA, 1997; p. 19-23. 

(b) I. M. Radu, <Mathematical Spectrum>, Sheffield University, UK, Vol. 27, (No. 
2), 1994/5; p. 43. 

* Originally appeared in Bulletin of Pure and Applied Sciences, Vol. 16E(No. 2), 1997; p. 227-229. 
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Some Problems Concerning The Smarandache Deconstructive Sequence* 

Charles Ashbacher 
Charles Ashbacher Technologies 

Box 294 
Hiawatha, IA 52233 

e-mail 71603.522@compuserve.com 

The Smarandache Deconstructive Sequence (SDS(n)) of integers is constructed by 
sequentially repeating the digits 1-9 in the following way: 

1,23,456, 7891, 23456, 789123, 4567891, 23456789, 123456789, 1234567891, ... 

and first appeared in the collection by Smarandache[l]. In a later collection by 
Kashihara[2], the question was asked: 

How many primes are there in this sequence? 

In this article, we will briefly explore that question and raise a few others concerning this 
sequence. 
The values of the first thirty elements of this sequence appear in Table 1. From the list, it 

seems clear that the trailing digits repeat the pattern, 

1,3,6,1,6,3,1,9,9,1,3,6,1,6,3,1,9,9,1, ... 

and it is simple to prove that this is indeed the case. Given the rules used in the 
construction of this sequence, the remaining columns also have similar patterns. 
It is also simple to prove that every third element in the sequence is evenly divisible by 3. 

More specifically, 3 I SDS(n) if and only if 3 In. 
The list contains the eight primes 

23,4567891,23456789, 1234567891,23456789123456789,23456789123456789123, 
4567891234567891234567891, 1234567891234567891234567891. 

If we do not consider the first element in the list, the percentage of primes is 289 = 0.276. 
Given this, admittedly slim, numeric evidence and the regular nature of the digits, the 
author is confident enough to offer the following conjecture. 

Conjecture 1: The Smarandache Deconstructive Sequence contains an infinite number of 
pnmes. 

Two out of every nine numbers end in 6. In examining the factorizations of these 
numbers, we see that 456 is divisible by 23,23456 by 25, and all others by 27. This 
prompts the question: 
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Table 1. 

1 1 
2 23 
..., 456 .) 

4 7891 
5 23456 
6 789123 
7 4567891 
8 23456789 
9 123456789 
10 1234567891 
11 23456789123 
12 456789123456 
13 7891234567891 
14 23456789123456 
15 789123456789123 
16 4567891234567891 
17 23456789123456789 
18 123456789123456789 
19 1234567891234567891 
20 23456789123456789123 
21 456789123456789123456 
22 7891234567891234567891 
23 23456789123456789123456 
24 789123456789123456789123 
25 4567891234567891234567891 
26 23456789123456789123456789 
27 123456789123456789123456789 
28 1234567891234567891234567891 
29 23456789123456789123456789123 
30 456789123456789123456789123456 

Question 1: Does every even element of the Smarandache Deconstructive Sequence 
contain at least three instances of the prime 2 as a factor? 

Even more specifically, 

Question 2: If we form a sequence from the elements of SDS(n) that end in a 6, 
do the powers of 2 that divide them form a monotonically increasing 
sequence? 

The following is prompted by examining the divisors of the elements of the sequence. 
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Question 3: Let k be the largest integer such that 3k I nand j the largest integer such 
that 3j I SDS(n). Is it true that k is always equal to j? 

And we close with the question 

Question 4: Are there any other patterns of divisibility in this sequence? 

* This paper originally appeared in Journal of Recreational Mathematics, Vol. 29, 
No.2. 
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S-PRIMALITY DEGREE OF A NUMBER AND S-PRIME NUMBERS 

Abstract. 

by Emi I Burton 
Department of Mathematics 
Babe~-Bolyai University 
3400 Cluj-Napoca, Romania 

In this paper we define the S-Primality Degree of a Number, the 5-
Prime Numbers, and make some considerations on them. 

The depths involved by the Smarandache function are far from 
being exhausted or completely explored. 
If one takes 5(1) = 1 then 

{ 
n(x)+l, if 1~x<4; 

E l S(n)/n J = n(x)+2, if x~4; 
l~n~x 

where Sen) is the Smarandache function, n(x) the number of primes 
less than or equal to x, and a J the greatest integer less than or 
equal to a (integer part) . 

The ratio S(n)/n measures the S-Primality Degree (5 stands for. 
Smarandache) of the number n. 

Whereas n is called S-Prime if S(n)/n = 1. 
Therefore, the set of S-Prime numbers is P U {1, 4}, with P = {2, 
3, 5, 7, 11, 13, 17, ... } the set of traditional prime numbers. 

Traversing the natural number set N° = {1, 2, 3, 4, 5, 6, ..• } 
we meet "the most composite" numbers (= the most "broken up"), i. 
e. those of the form n = k! for which S(k!)/k! = k/k! = 1/(k-1)! 
The philosophy of this clasification of the natural numbers is that 
number 4, for example, appears as a prime (S-Prime) and in the same 
time composite (broken up). 
It is not surprising that in the approachment of Fermat Last 
THeorem's proof, ~+~=zn doesn't have nonzero integer solutions for 
n ~ 3, it had had to treat besides the cases n E {3, 5, 7, 11, 13, 
17, .•• } the special case n=4 as well because, for example, X

8+y8=Z8 
is reduceable to (X2)4+(y2)4=(Z2)4. 
Also, it is not surprising that Einstein (intuitevily) chosed the 
R4 space to treat the relativity theory. 
It is not surprising that the mUltiplication of triplets 
(a,b,c) (m,n,p) does not really work when we want to sink R2 into R3

, 

while the multiplication of quadruplets (a,b,c,d) (m,n,p,q) led to 
the quaternions theory. 
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Some Elementary Algebraic 
Considerations Inspired by 

Smarandache Type Functions (II) 

E. Radescu 

"University of Craiova: Department of :\Iathematics: 
1100 Craiova: Romania 

Abstract 

The paper presents new properties for some functions constructed sim

ilarly to the functiol} ry :" N* -- N* , the Smarandache function, defined by 
"In E N*, ry(n) = min{kJk! is divisible by n} - "Smarandache's type func
tion" " 

The Smarandache "I function and its principal properties are al
ready known in the literature of speciality. Other functions were built 
analogously, among which the following ones. 

The function TJI. Starting from a sequence of positive integers 
a : N* -- N* satisfying the condition 

"In E N*, 3mn E N*, "1m ~ mn =:} n/a(m) (1) 

an associated function was built "II : N* -- N* , defined by 

TJI(n) = min {mnlmn is given by (1) }, "In E N* . (2) 

Such sequences - possibly satisfying an extra condition - considered 
by G. Christol to generalise the p-adic numbers were called also mul
tiplicative convergent to zero (m.c.z.). An example is a : N* -- N* 
with a(n) = n!. For n = 6, there is m~ = 4 such that "1m ~ 4 =:} 6/m! 
( 6/4! for m = 4; 6/5! for m = 5) but there is and m~ = 7 such that 
"1m ~ 7 =:} 6/m!; because the smallest of them is ms = 3 such that 
"1m ~ 3 =:} 6/3!, it results TJI(6) = 3. 
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We note that for 0"( n) = n! the associated function 1J1 is just the 
TJ function - from where the ideea of building the TJi functions (by 
generalization of the sequence). 

The function TJ2. A sequence of positive integers 0" : N* ---- N* is 
called "of divisibility sequence (d.s.)'"' if: 

min ~ O"(m)/O"(n), (3) 

and "of strong divisibility sequence (s.d.s.)" if 

O"((m,n)) = (O"(m),O"(n)), 'im,n E N-, (4) 

(m, n) being the greatest common factor. 
(Strong divisibility sequences are studied for instance by N. Jensen 

in [5]. It is known that the Fibonacci sequence is a s.d.s.). 
Starting from a sequence 0" : N* -> N* satisfying the condition 

'in E N*,3mn E N-,'im E N*, mn/m ~ n/O"(m) (5) 

an associated function was built that is TJ2 : N* ..... N* defined by 

TJ2(n) = min {mnlmn is given by (5)}-, 'in EN-. (6) • 
If the sequence 0" is d.s. or s.d.s., the function TJ2 has new properties 
with interesting algebraic interpretations. 

We observe that in (1) appeared both the natural order (m ~ m n ) 

and the divisibility as relation of order on N* (n/O"(m)) and in (5), 
only the divisibility as relation of order on N*. From the alternation 
of the two relations of order on N* can be defined analogously two 
more functions 1/3 and TJ4. (see [1]) 

Starting from a sequence 0" : N* --+ N* satisfying the condition 

'in E N*,3mn E N*,'im E N-,mn/m ~ n::; O"(m) (7) 

an associated function was built that is 1/3 : N- -> N- , defined by 

TJ3(n) = min {mnlmn is given by (7) }, 'in EN- . (8) 

Also, starting from a sequence 0" : N- ..... N- satisfying the condition 

'in E N-,3mn E N-,'im E N*,mn::; m ~ n::; O"(m) (9) 

an associated function was built that is TJ4 : N- ..... N* , defined by 

TJ4(n) = min {mnlmn is given by (9)}, 'in EN-. (10) 

The principal properties of the functions above are divided in three 
groups: 
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I The arithmetical properties of the proper function. 

II The properties of sumatory function associated to each of the nu
merical functions above. (see [3]) 

III The algebraical properties of the proper function. Thanks to the 
arithmetical properties, every function can be viewed as mor
phism (endomorphism) between certain universal algebras (we 
can be obtain several situations considering various operations 
ofN*). (see [2], [4]) 

This paper presents a construction from group III which guides 
to a prolongation S4 of the function 174 for more complexe universal 
algebras. 

If the initial sequence is s.d.s., the associated function 174 has a 
series of important properties from which we retain: 

174 (max{ a, b}) = max {174( a), 174 ( b)} ; (ll) 

174 (min{a,b}) = min {174(a),174(b)}Va, b E N*. (12) 

We may stand out, from other possible structures on N* , the uni
versal algebra (N*, n) where the set of operati.ons is n = {v,!\, ?Po} 
with V,!\ : (N*)2 -+ N* defined by a V b· = sup{ a, b}, a !\ b = 
inf {a, b}, Va, b E N* (N* is a lattice with the natural order) and 
?Po : (N*)o -+ N* - a null operation that fixes 1, the unique particular 
element with the role of neutral element for "v ": 1 = ev . 

Therefore, the universal algebra (N*, n) is of type r = (~ ~ ~o) 
= (2,2,0). 

With the properties (ll) and (12) the function 174 is endomorphism 
for the universal algebra above. It can be stated 

Teorema 1 If 174 : N* -+ N* is the fu.nction defined by (10), endo
morphism for the universal algebra (N*, n) and I is a set, then there is 
a unique S4 : (N*)I --.. (N* / , endomorphism for the universal algebra 

((N*/ , n) so that Pi 0 S4 = 174 0 Pi, Vi E I, where Pj : (N*)! -+ N* 

with Va = {a;}iEI E (N*/, pj(a) = aj, Vj E I, are the canonical 

projections, morphisms between ((N*)! ,n) and (N*,n). 

The proof can be done directly: it is shown that the correspon
dence 174 is a function, endomorphism and complies with the required 
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conditions. The operations of n for the universal algebra ((N*/ ,n ) 
are made "on components". 

The algebraic properties of S4 - the prolongation to more ampler 
universal algebra of the function 1]4 - for its restriction to N* , could 
bring new properties for the function 1]4 that we considered above. 

The paper contents, in completion, a formula of calcul for the 
sumatory function F~ of function 172 . 

If the initial sequence is s.d.s., this formula is: 

It It 

F'12 (n) = 1]2(1) + L [1]2 (Ph) , 1]2(Pt)] + L [1]2(Ph), 1J2(Pt), 1]2(Pq)] + 
h,t=1 
h# 

h,t,q=1 
h##q 

+ ... + 1]2 ( n), 'in = PI . P2 ... Pit, Pi, i = 1, k - prime numbers 

and 1J2(pa) = F'12(pa) - F'12(pa-I). 
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ON THE FUNCTIONAL EQUATION 
(S(n) )r+ (S(n) )r-l + ... + S(n) == n 

Rongji Chen 

Abstract For any positive integer n, let S (n) be the Smaran

dache function of n. Let r be a fixed positive integer with r~3. In this 

paper we give a necessary and sufficient condition for the functional e

quation (S( n) Y + (S( n) y-l + ... + S( n) = n to have positive integer 

solutions n. 

Key words Smarandache function, functional equation, solvabili-

ty. 

1 Introduction 

Let N be the set of all positive integers. For any n EN, let the 

arithmetic function 

(1) S(n)=minlalaEN, nla!1 

Then S ( n) is called the Smarandache function of n For a fixed r E N 

with r ~3, we discuss the solvability of the functional equation 

(2) (S(n)Y+(S(n)Y-l+···+S(n)=n,nEN 

There are many unsolved questions concerned this equation (see [1]). A 

computer search showed that if r = 3, then (2) has no solution n with n 

~10000. In this paper we prove a general result as follows. 
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Theorem For any fixed r E~' with r ~3, a positive integer n is a 

solution of (2) if and only if n = p ( pT - 1 + pT - 2 + ... + 1), where p is 

an odd prime satisfying pT - 1 + pT - 2 + ... + 11 (p - I)! . 

By our theorem, we find that if r = 3, then (2) has exactly two s0-

lutions n =305319 and n =499359 with n<1000000. 

2 Preliminaries 

Lerrma 1 For any u, v EN with gcd( u , v) = 1, we have 

S( uv) = max ( S (u), S( v». 

Proof Let a = S ( u ), b = S ( v) and c = S ( uv ). By (1), a, b , c 

are least positive integers satisfying 

(3) u I a !, v I b !, uv Ie! , 
respectively. We see from (3) that 

(4) c~max(a ,b) 

If a ~b, then u I a! and v I a! by (3). Since gcd (u, v ) = 1, we 

get uv I a !. It implies that a ~c. Therefore, by (4), we obtain c = a 

= max(a, b). By the same method, we can prove that if a:::;;;b, then c 

= b = max( a ,b). The lemma is proved. 

Lerrma 2 If S( u) = u, then u = 1,4 or p, where P is a prime. 

Proof See [3]. 

Lerrma 3 If u > 1, where u EN, then u has a prime factor P 

such that piS ( u ) . 

Proof Let u = PI! p~.'. P'il be the factorization of u. It is a well 

known fact that S( u) = max(S (PI! ), S(p~), "', S(P'il» and Pi I S(pii) 

for i = 1,2, ... , k (see [2]). The lemma follows immediately. 
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3 Proof of Theorem 

Let n = p(pT-l + pT-2 + ... + 1), where p is an odd prime satisfy

ing pT - 1 + pT - 2 + ... + 11 (p - 1 ) !. Then, by (1), we get S ( n ) = p. 

Therefore, n is a solution of (2). 

On the other hand, let n be a solution of (2). Then we have n> 

1. Further, let t = S( n). We get from (2) that 

(5) t ( t T - 1 + t T - 2 + ... + 1) = n . 

Since gcd ( t, t T -1 + tT - 2 + ... + 1) = 1, by Lemma 1, we see from (5) 

that 

(6) t =S(n)=S(t(tT- 1 +tT- 2 +"'+1» 

=max(S(t), S(tT- 1 + t T- 2 + ... + 1» 

If S(t)~S(tT-l+tT-2+"'+1), then from (6) we get 

(7) t = S(t T
-

1 + t r - 2 + ... + 1) 

Since t r- 1 +tr- 2+"'+1>1, by Lemma 3, t r - 1 +tr- 2+"'+1 has a 

prime factor p such that piS (tr- 1 + t r- 2 + ... + 1 ). Hence, by (7), 

we get pit. However, since gcd (t, t r- 1 + t r- 2 + ... + 1) = 1, it is im

possible. So we have 

( 8) S ( t ) > S ( t r - 1 + t T 
-

2 + ... + 1) 

and 

(9) t=S(t), 

by (6) 

On applying Lemma 2, we see from (9) that either t = 4 or t = P , 

where p is a prime. If t = 4, then n = 4, 8, 12 or 24. However, since 

r;?:3, we get from (5) that t T + t T
-

1 + ... + t;?:43 +42 + 4>24;?:n , a 

contradiction. If t = p, then from (8) and (9) we obtain 

(10) S(pT-l + pr-2 + ... + 1)< S(t) = S(p) = p 
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It implies that pr-l + pr-2 + ... + 11 (p -I)! and p >2. Therefore, we 

see from (5) that if n is a solution of (2), then n = p(pr-l + pr-2 + ... 

+ 1), where p is an odd prime satisfying pr-l + pr-2 + ... + 11 (p -

1 ) !. Thus, the theorem is proved. 
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SOLUTION OF TWO QUESTIONS CONCERNING 

THE DIVISOR FUNCTION AND THE PSEUDO

SMARANDACHE FUNCTION 

Zhong Li 

Abstract In this paper we completely solve two questions concerning 

the divisor function and the pseudo - Smarandache function. 

Key words divisor function, pseudo - Smarandache function, function

al equation 

1 Introduction 

Let N be the set of all positive integers . For any n E 1\1 ,let 

(1) d(n)=~l, 
din 

a 

(2) Z(n)=min{alaEN,nl~j! 
j=l 

Then d ( n ) and Z ( n ) are called the divisor function and the pseudo -

Smarandache function of n, respectively, In[l] ,Ashbacher posed the follow

ing unsolved questions. 

Question 1 How many solutions n are there to the functional equa-

tion. 

(3) Z(n)=d(n),nEN? 

Question 2 How many solutions n are there to the functional equa-

tion. 
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(4) Z ( n ) + d (n ) = 11 , n E : ;~? 

In this paper we completely solve the above questions as follows. 

Theorem 1 The equation (3) has only the solutions n = 1,3 and 10. 

Theorem 2 The equation (4) has only the solution n = 56. 

2 Proof of Theorem 1 

A computer search showed that (3) has only the solutions n = 
1,3 and 10 with n~10000(see [1]) 

We now let n be a solution of (3) with n =1= 1,3 or 10 . Then we 

have n > 10000. Let 

(5) n = Pl r
lp2 r2 ···Pkr

• 

be the factorization of n . By [2, Theorem 273] ,we get from (1) 

and (5) that 

(6) d(n)=(rl+1)(r2+1)···(rk+1). 
a 

On the other hand, since ~ j = a (a + 1) /2 for any a E·N, we see 
;=1 

from (2) that nIZ(n)(Z(n)+I)J2.It implies that Z(n)(Z(n) 

+ 1)J2~n. So we have 

(7) Z(nr~J2n+!-~ 
Hence, by (3), (5) , ( 6) and (7), we get 

(8) 

If P1>3,then from (8) we get Pl~5 and 

1~(1)k - 2k1+1 >1. 
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a contradiction. Therefore, if (8) holds, then either PI = 2 or PI = 3 . By 

the same method, then n must satisfy one of the following condi

tions. 

(i) PI = 2 and TI~4 . 

( ii ) PI = 3 and r 1 = 1 . 

However, by (8), we can calculate that n < 10000, a contradiction. 

Thus, the theorem is proved. 

3 Proof of Theorem 2 

A computer search showed that (4) has only the solution n = 56 with n 

~10000 (see (1]). We now let n be a solution of (4) with n#56. Then we 

have n >10000. We see from (4) that 

(9) Z(n)==-d(n) (mod n) 

It implies that. 

(10) zen) + 1==1- den) (mod n) 

By the proof of Theorem 1, we have n I Z ( n ) ( Z ( n ) + 1) 12, by (2). It can 

be written as 

(11) Z ( n ) ( Z ( n ) + 1) ==0 (mod n). 

Substituting (9) and (10) into (11), we get 

( 12) d ( n )( d ( n ) - 1) ==0 (mod n). 

Notice that d (n) > 1 if n > 1. We see from (12)that 

(13) (d(n»2>n 

Let (5) be the factorization of n . By (5), ( 6) and (13), we obtain 

(14) 
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On the other hand, it is a well known fact that Z (pr)?: pr -1> (r + 1)2 

for any prime power pT with pr>32. We find from (14) that k?:2. 

If PI >3, then p{i/( ri + 1 )2?:5/4 > 1 for i = 1,2, ... k , It implies that 

if (14) holds, then either PI = 2 or PI = 3 . By the same method, then n 

must satisfy one of the following conditions: 

(i) PI =2,P2=3 and (rI,r2)= (1,1),(2,1),(3,1),(4,1),(5,1), 

(6,1),(1,2),(2,2),(3,2),(4,2)or (5,2). 

(ii) PI =2,P2>3 and rl~5. 

(iii) PI = 3 and rl = 1. 

However, by (14), we can calculate that n < 10000, a contradiction. Thus, 

the theorem is proved. 
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ON A CONJECTURE OF SMARANDACHE ON PRIME NUMBERS 

J. Sandor 
Department of Mathematics 
Babe9-Bolyai University 
Cluj-Napoca, Romania 

Let Pn denote the n-th prime number. One of Smarandache's 
conjectures in [3] is the following inequality: 

Pn+IiPn ~ 5/3, with equality for n = 2. (1) 

Clearly, for n = 1, 2, 3, 4 this is true, and for n = 2 there is 
equality. Let n > 4. Then we prove that (1) holds true with 
strict inequality. Indeed, by a result of Dressler, Pigno and 
Young (see [1] or [2]) we have 

2 ". 2 2. Pn+l ". Pn 

Thus Pn+IiPn ~ ~2 ~ 5/3, since 3~2 < 5 (Le. 18 < 25). 
This finishes the proof of (1). 
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On the Srnarandache Irrationality Conjecture 

Florian Luca 

The Smarandache Irratioality Conjecture (see [lD claims: 

Conjecture. 

Let a(n) be the nth term of a Smarandache sequence. Then, the number 

0.a(1)a(2) ... a(n) ... 

is irrational. 

Here is an immediate proof in the following cases: 

1. a(n) = n: 

2. a(n) = d(n) =number of divisors of n; 

3. a(n) = w(n) =number of distinct prime divisors of n: 

4. a(n) = D(n) =number of total prime divisors of n (that is. counted with repetitions): 

5. a(n) = dJ(n) =the Euler function of n: 

6. a( n) = cr( n) =the sum of the divisors of n; 

7. a(n) = Pn =the nth prime: 

8. a(n) = 71(n) =the number of primes smaller than n: 

9. a(n) = S(n) =the Smarandache function of n; 

10. a(n) = n!; 

11. a(n) = an, where a is any fixed positive integer coprime to 10 and larger than 1; 

12. a(n) =any fixed non-constant polynomial in one of the above; 

Here is the argument: 
Assume that 

0.a(1)a(2) ... a(n) ... 

is rational. Write it under the form 

O.a( l)a(2) ... a(n) ... = O.ABBBB ... , 

where A is some block of digits and B is some other repeting block ~f digits. Asume that B 
has length t. If there exist infinitely many a(n)'s such that the decimal representation of a(n) 
contains at least 2t consecutive zeros. then, since B has lenght t, it follows that the block of these 
2t consecutive zeros will contain a full period B. Hence. B = a and the number has, in fact. only 
finitely many nonzero decimals. which is impossible because a( n) is never zero. 

All it is left to do is to notice that if a(n) is any of the 12 sequences above, then a(n) has 
the property that there exist arbitrarily many consecutive zero's in the decimal representation of 
a( n). This is clear for the sequences 1. 2, 3, 4, 8 and 9 because these functions are onto, hence 
they have all the positive integers in their range. It is also obvious for the sequence 10 because n! 
becomes divisible with arbitrarily large powers of 10 when n is large. For the sequence 7, fix any 
t and choose infinitely many primes from the progression (10 2t+2 k + Ih~o whose first term is 1 
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and whose difference is 1Q2t+2. This is possible by Dirichlet's theorem. Such a prime will end in 
... 00000001 with 2t + 1 consecutive zero's. For the sequence 5, notice that the Euler function of 
the primes constructed above is of the form 102tT2 k, hence it ends in 2t + 2 zeros, while for the 
sequence 6, notice that the divisor sum of the above primes is of the form 102t+2 k + 2, hence it 
ends in ... 000002 with 2t + 1 consecutive zeros. For the sequence 11, since a is coprime to 10, it 
follows that for any t there exist infinitely many n's such that an == 1 (mod 102t+2). To see why 
this happens, simply choose n to be any multiple of the Euler function of 102t+2. vVhat the above 
congruence says, is that an is of the form ..... 0000001 with at least 2t + 1 consecutive zero's (here 
is why we don't want a to be 1). 

Now 12 should also be obvious. It is also clear that the argument can be extended to any 
base. 

It certainly seems much harder to conclude if anyone of those series is transcendal or not. 
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A NOTE ON S (n), WHERE n IS AN EVEN PERFECT NUMBER 

J. Sandor 
Department of Mathematics 

Babe~-Bolyai University, 3400 Cluj-Napoca, Romania 

In a recent paper [1] the following result is proved: 
If n = 2Jc

-
1 (2 Jc-l), 2Jc-l = prime, is an even perfect number, then S (n) 

= 2Jc-l, where Sen) is the well-known Smarandache Function. 
Since SCab) = max {Sea), S(b)} for (a, b) = 1, and Sea) s a 

with equality for a = 1, 4, and a = prime (see [3]), we have the 
folowwing one-line proof of this result: 
S ( 2 Jc-l ( 2 Jc -1) ) = max { S ( 2 Jc-I) , S ( 2 Jc -1) } = 2 Jc -1 , 
since S (2 Jc- I

) s 2 Jc
-

1 < 2 Jc-l for k ~ 2. 
On the other hand, if 2 Jc-l is prime, then we have S(2 Jc-l) = 1 (mod 
k)i an interesting table is considered in [2]. Indeed, k must be 
a prime too, k = Poi while Fermat's little theorem gives 2P-l = 1 
(mod p). From 2 P-l = (2P-l) (2P+l) and (2P-l, 2P+l) = 1 we can 
deduce S (22P-l) = max { S (2P-l), S (2P+l) } = 2P-l since 2P+l is being 
composite, S(2P+l) < 2/3(2P+l) < 2P-l for p ~ 3. Thus, if 2 Jc-l is 
a Mersenne prime, then S(2 Jc-l) = S(22Jc-l) = 1 (mod k). If 2P-l and 
22p+l are both primes, then 
S(2 4P-l) = max { S(22P-l), S(22P+l) } = 22p+l • 1 (mod 4p). 
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MOMENTS OF THE SMARANDACHE FUNCTIO~ 

Steven R Finch 
MathSoft Inc. 

101 Main Street 
Cambridge, MA, USA 02142 

sjinch@mathsojt.com 

Given a positive integer n, let P(n) denote the largest prime factor of nand S(n) denote the 
smallest integer m such that n divides m! 

This paper extends earlier work [1] on the average value of the Smarandache function S(n) 
and is based on a recent asymptotic result [2]: 

( W J I{n ~ N:P(n) < S(n)}j = 01 • 
I ~ln(N)J 

for any positive integer j 

due to Ford. We first prove: 

Theorem 1. 

where((x) is the Riemann zeta function. In particular, 

In(N) ;r2 
lim -N . E(S(N» = - = 0.82246703 ... 
N~oo 12 

In(N) ((3) 
lim -2-' Var(S(N» = -..,- = 0.40068563 ... 
N~oo N ~ 

Sketch of Proof. On one hand, 

In(n) k In(n) k In(N) f k 
L(k) = lim -k-' E(P(n) ) ~ lim -k-' E(S(n) ) = 15m ---;:;:!. L..S(n) 

n~oo n n~oc n N ~"" N n=! 

The above summation, on the other hand, breaks into two parts: 

In(N) ( k k'1 
lim ~·I L pen) + LS(n) j 

N-+oo N \..P(n)=S(n) P(n)<S(n) 
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The second part vanishes: 

lim In(N) . ( L (s(n»)k '1 ~ lim In(N).r Ll 1 = lim In(N). (~) = 0 
N~«J N ~(n)<s(n) N j N~«J N lp(n)<s(n)j N~oo N ~ln(N) 

while the first part is bounded from above: 

lim In(;:?.( LP(n/:J~ lim In(~) .fP(n)k = lim In(;) .E(P(n)k)=L(k) 
N __ N P(n)=S(n) N-+«J N n=l "-- n 

A formula for L(k) was found by Knuth and Trabb Pardo [3] and the remaining second
order details follow similarly. 

Observe that the ratio .JVar(S(N» / £(S(N» ~ 00 as N ~ 00, which indicates that the 

traditional sample moments are unsuitable for estimating the probability distribution of 
S(N). An alternative estimate involves the relative number of digits in the output of S per 
digit in the input. A proof of the following is similar to [1]; the integral formulas were 
discovered by Shepp and Lloyd [4]. 

Theorem 2. 
0.62432998 if k =1 

I· ~{ln(S(N»}kJ _ fcc X

k

-

1 

[ fCC e-
Y ely}-1m - --·exp -x- - -

N__ In(N) k! y 
o x 

0.42669576 if k=2 

0.31363067 if k =3 

0.24387660 if k=4 

0.19792289 if k=5 

The mean output of S hence has asymptotically 62.43% of the number of digits of the 
input, with a standard deviation of 19.21 %. A web-based essay on the Golomb-Dickman 
constant 0.62432998 ... appears in [5] and has further extensions and references. 
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THE INTANGIBLE ABSOLUTE TRUTH 

by Gheorghe Dinulescu-Campina, 
"N. Grigorescu" College, Campina, Romania 

In my own work "The Modelling of the Rationality" under the 
basis of the MESER licence, I have enlightened a new spiritual 
doctrine sustained by scientific and logical hypotheses. 

The reception of the soundnes of the mentioned notion proceeds 
from the Einstein's principle concerning "The internal perfection 
and its external ackhowlegment" but, like other responsible 
"creators", I felt that it was necessary to consider the expression 
of the feelings of the uncertainty, mine first. 

Al though I found many external recognitions in our great 
forerunners' ideas and theories, we have not had a proven 
sUbstantiation yet (which is not by all means necessary wi th 
philosophical hypotheses) of the hypotheses that I have forwarded. 

I am willing to belive it was not accidentally that I got 
knowledge of the ideas set forth by the mathematician and 
philosopher Florentin Smarandache, the creator of the Neutrosophy, 
as a branch of Philosophy, that studies the origin, the character, 
the aim and the interactions of the neutralities from the spectrum 
of ideality. 

I have established that the Neutrosophy Theory, that belongs 
to the mentioned thinker, sets up as the scientifically 
demonstrated fundament for the great majority of the hypotheses I 
have set forth in "The Modelling of Rationality". 

Esentially, Professor Smarandache' s Neutrosophy stimulates 
that for any idea <A> there is also an idea <anti A> and another 
<neut A>. 

The fundamental thesis of the Neutrosophy is: if <A> is t% 
true and f% false, as bivalent extremes, as a matter of course i% 
is indeterminant, as a result, t+i+f=100 (or t%+i%+f%=l) which 
gives a meaning, easily altered, to the usual notions as, for 
example, the one of complementarity. 

Consequently, the complement of t is not f, but i+f, and the 
complement of f is not t, but t+i. 

Florentin Smarandache's theory of Neutrosophy suggests also 
the fact that any hypothesis has a nature of extreme (it allows an 
anty-hypothesis and a neutro-hypothesis) which is not bad because 
t+i+f=100 must be considered dialectically, where both t and f tend 
to be decreasing without annihilating each other in the advantage 
of i. 

Far from the idea that any hypothesis should not have a nature 
of extreme, just such a nature is desirable to generate polemics 
which, in case of confrontation, draws nearer t and f aiming at the 
neutral equilibrium of the t+f+i=100 relationship, that provides 
the opportunity of accomplishment. 

The theory of Neutrosophy makes obvious the relative nature of 
the truth and the false, only the neutral nature tending to the 
absolute owing to its force of accomplishment. 
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Thanks to the specifications that are stimulated in 
Smarandache's Neutrosophy, the hypothesis of the MESER concept as: 
the complementarity between the sacred and the profane, between the 
divine creation and the intra-specific evolution, the non
contradiction between science and religion, 
materialism (substantialism) and idealism, between gnosticism and 
agnosticism, prove to be rational and therefore real and the 
paradoxes become justified. 

Related to the sense of knowledge the MESER concept identifies 
two modalities: the scientific knowledge that specialises knowledge 
"more and more from that «less and less»" and the philosophic, 
encyclopaedic knowledge "less and less from that«more and more»". 

If the first modality is limited especially by the 
posibilities of communication, the second one is also limited by 
the insufficient power of comprehensibility of the human mind. 

The equilibrium between the two directions which, in the last 
analysis signifies the way to the truth, is ddetermined by the 
divine laws of the dissociations, purification (the selection and 
the dissolving of what is settled, established for good) and those 
of monadic recomposition, laws that ascertain for the general 
knowledge a social character, expressed by the syntagme "more and 
more from «more and more»" rendered by the well-known paradox 
"the more you learn, the less you know." 

After all, the fundamental law of Neutrosophy is a succesful 
attempt for resolving the paradox of the knowledge and confirms 
that the absolute truth is intangible not in a derogatory way but 
in an optimistic one, approved and significant by the will of God. 

Being operative even in the case of the characteristic 
interpretations, as the present one, Neutrosophy confirms its 
viability even by the fact that it suggests methods, modalities of 
evaluations, and new interpretative views. 
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ADVANCE OF SMARANDACHE APPROACH TO 
SOLVING SYSTEMS OF DIOPHANTll'-.'E EQUATIONS 

Y. Y. CHEBRAKOY 
Department of Mathematics, Technical University, 

Nevsky 3-11,191186, St-Petersburg, Russia 
E-mail: chebra@phdeg.hop.stu.neva.ru 

By developing F. Smarandache (algebraic) approach to solving systems of 
Diophantine equations we elaborate a set of new computative algorithms and 
analytical formulae, which may be used for fmding numerical solutions of some 
combinatorial and number-theoretic problems. 

Key words: systems of Diophantine equations, algebraic approach, comb ina
tories, number theory, Magic and Latin squares. 

1 Introduction 

Let it be required to solve some system of Diophantine equations. In this case 1 alge
braic methods can be applied for 

a) constructing the total algebraic solution of the system; 
b) finding the transformations translating an algebraic solution of the system 

from one form into another one; 
c) elucidating the general legitimacies existing between the elements of the alge

braic solution; 
d) replacing the total algebraic solution containing L arbitrary selected parame

ters by a set of algebraic solutions containing less than L parameters. 
This paper is devoted to further advance of algebraic approach to solving 

systems of Diophantine equations. In particular, in this investigation we 
1) describe the simple way of obtaining a total solution of systems of 

Diophantine linear equations in the integer numbers, and show (see Sect. 2) that this 
way may be considered as some modification of F. Smarandache algorithm 3 from 
his work 2

; 

2) demonstrate the effectiveness of the algebraic approach to the elaboration of 
computative algorithms and analytical formulae, which may be used respectively for 
obtaining the required numerical solutions of the discussed systems and for count
ing of the total quantity of solutions from a given class of numbers (Sect. 3); 

3) derive analytical formulae available for constructing classical Magic squares 
of both odd and even orders (Sect. 4). 

2 The way of obtaining the total solution of systems of Diophantine 
linear equations in the integer numbers 

Let it be required to solve some system of linear Diophantine equations in the 
integer numbers. It seems to be evident, that there is no complication in solving this 
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problem at present For instance, one may rmd in the work 2 as many as five 
different algorithms to obtain a total solution of this problem. which correctness are 
proved by mathematical methods and illustrated by concrete examples. In particular, 
to illustrate the correctness of an algorithm 3, the system from three following 
equations 

{ 

3Xl +4X2 + 22x. - 8xs = 25 

6x1 + 46x. -12xs = 2 

4X2 + 3X3 - x. + 9xs = 26 

(1) 

are solved in the work 2. The final solution, obtained for (1) by the mentioned algo
rithm, has form 

Xl = -40kl - 92k2 + 27; x2 = 3kl + 3k2 + 4; X3 = -llkl + 8; (2) 

x4 = 6kl + 12k2 -4; Xs = 3kl - 2, 

where kl and k2 are any integer numbers. 
Let us clear up a question whether (2) is the total solution of system (1) in the 

integer numbers. To make it we will solve (2) by the algebraic methods with testing 
their correctness on every step of our computations. 

1. As well-known 1 - 3, the total algebraic solution of the system (1) may be found 
by standard algebraic methods (for instance, by Gauss method). In our case it has the 
form 

{

XI =-(23x.-6xs-l)/3 

x2 = (X4 + 2xs + 24) /4 

X3 = (-llxs+2)/3 

(3) 

that coincides with the solution found on the first step of the algorithm 3 of the 
work 2. 

2. As well-known from the theory of comparison 3.4, the total solution in the inte
ger numbers for the last equation of the system (3) has the form X3 = {-1l(3ml+ 
mo)+2}/3, where ml is any integer number; the value of mo is equal 0, ±1 or ±2 and 
is chosen from the condition that the number (-11mo +2)/3 must be integer. Thus, 
we fmd on second step of our computations that Xs = 3ml+ 1 and X3 = -llml-3. 

We note that the solution Xs = 3kl-2 of (2) may be obtained from our solution 
by change of the variable ml to kl-1. Thus, both values of Xs are identical 
solutions. 

3. Let us get to solving the second equation of the system (3) in the integer num
bers. Replacing the value of Xs by 3ml+l in this equation we obtain that 
X2= 6 + (6ml+ X4+2)/4. Hence it appears (see point 2) that X4= (-2+4/1)ml-2+4/2, 
where II and h are any integer numbers. 

4. Replacing the value of X4 by (-2+4/1)ml-2+412 in the first equation of the sys
tem (3) we obtain that Xl = 2xs-{23(-2+4/1)ml + 92h - 47 }/3. Hence it appears (see 
points 2 and 3) that II = 3m2+2 and h= 3m3+1 and, consequently, the total solution 
of the system (1) in the integer numbers has the form 
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Xl = -4ml (23m2 + 10) - 92m3 -13; x2 = 3ml (m2 + 1) + 3m3 + 7; 

X3 = -11~ - 3; x .. = 6m1 (2~ + 1) + 2(6m3 + 1); Xs = 3m1 + 1, 

where mh m2 and m3 are any integer numbers. 

Comparing (4) with (2) we find that 
a) the solution (4) contains greater by one parameter than solution (2); 

(4) 

b) if m2= 0, ml = kl-1 and m3= k2 in the solution (4) then the solution (4) coin
cides with the solution (2). 

Thus, the solution (4) contains all numerical solutions of the system (1), which 
may be obtained from (2), but a part of numerical solutions, which may be obtained 
by (4), can not obtain from (2) or, in other words, (2) is not the total solution of the 
system (1) in the integer numbers. 

We add that, in general, a partial loss of numerical solutions of systems of linear 
Diophantine equations may have more serious consequences than in the discussed 
case. For instance, as it has been proved in the work s by using the algebraic 
approach to solving systems of Diophantine equations, 

if Magic squares of 4th order contain in its cells 8 even and 8 odd numbers then 
they can not have structure patterns another than 12 ones, adduced in works 1.3.5-7 

for Magic squares, contained integer numbers from 1 to 16. 

In reality, this statement is incorrect because yet several new structure patterns 
may exist for Magic squares from 8 even and 8 odd numbers 1.3. 

3 Analysing a system from 8 linear Diophantine equations 

To demonstrate the effectiveness of the algebraic approach to solving some combi
natorial and number-theoretic problems, presented in the fonn of systems of Dio
phantine equations, in this section we will analyse the following system from 8 
linear Diophantine equations 

1. al + a2 + a3 = S, 4. al + G4 + a7 = S, 7. al + as + a9 = S, (5) 

2. a4 + as + a6 = S, 5. a2 + as + a8 = S, 8. a3 + as + a7 = S. 

3. a7 + a8 + a9 = S, 6. a3 + ll6 + a9 = S, 

We note if symbols aI, a2, ... , a9 are arranged as in the table 1, shown in figure, 
and their values are replaced by ones, which are taken from some total algebraic 
solution of the system (5), then table 1 will be transfonned into the total algebraic 
fonnula of Magic squares of 3rd order. In other words, the discussed problem on 
solving the system (5) connects direct with the well-know ancient mathematical 
problem on constructing numerical examples of Magic squares of 3rd order. 

3.1 Requirements to a set of numbers, which is the solution of the system (5) 

Proposition 1. A set of nine numbers is a solution of the system (5) only in the case 
if one succeeds to represent these nine numbers in the form of such three arithmetic 

146 



progressions from 3 numbers whose differences are identical and the first tenns of 
all three progressions are also fonning an arithmetic progression. 

Proof Using standard algebraic methods (for instance, Gauss method) we find 
that the total algebraic solution of the system (5) has the fonn 

al = 2aS-ll9; a2 = 2a9 + Cl6 - 2as; a3 = 3as - a6 - a9; a4 = 2as - a6; (6) 

a7 = a9 + Cl6 - as; as = 4as - 2a9 - a6, 

where values of parameters as, a6 and a9 are chosen arbitrarily. Arranging solutions 
(4) in order, shown in the table 2 (see figure), we obtain the table 3. It is noteworthy 
that arithmetic progressions with the difference 2as - Cl6 - a9 place in the rows of 
the table 3, whereas ones, having the difference as - ll9, place in its columns. If one 
introduces three new parameters a, band c by the equalities as = a + b+ c, Cl6 = a + 
2c and a9 = a + b into the table 3, then this table will acquire more elegant form, 
which it has in table 4, and so the fact of existing of the arithmetic progressions in it 
will receive more visual impression. Thus, the proof of Proposition 1 follows 
directly from the construction of tables 3 and/or 4 and it is appeared as a result of 
using the algebraic methods, mentioned in the points (a) and (c) of Sect. 1. 

al a2 a3 2119 + Cl6 - 2as a9 2as - Cl6 

a4 as a6 a9 + Cl6 - as as 3as - Cl6 - a9 

a7 as a9 a6 2as- a9 4as - 2a9 - Cl6 

(1) (3) 

a2 a9 a4 a a+b a+2b 

a7 as a3 a+c a+b+c a+2b+c 

a6 al as a+2c a+b+2c a+2b+2c 
(2) (4) 

Figure. Elucidating the general legitimacies existing between the elements of 
the solution (6). 

3.2 Elaboration of a universal algorithm for fmding all numerical solutions of the 
system (5) from a given class of numbers 

Let it be required to fmd all numerical solutions of the system (5), which belong to 
the given class of numbers and has as = f For elaboration of a universal algorithm, 
solving this problem, we first write out all possible decompositions of the number 'If 
in the two summands of the following form 

(7) 

where j is the number of a decomposition; Xl (j) and X2( j) are two such numbers 
that Xl(j) < X2(j) and both ones belong to the given class of numbers. In a complete 
set of various decompositions of the kind, we fix only one, having, for instance, the 
number k. Determine for it the number d(k) 

d(k) = 2/- Xl(j). (8) 
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Proposition 2. The desirable nwnerical solution of the system (5), which con
tains as = f and numbers xdk) and x2(k) of (7), can be found only in the case, if one 
succeeds to find, among the remaining nwnbers of the fonn xdk), an arithmetic pro
gression from three nwnbers with the difference d(k). 

Proof The truth of Proposition 2 follows from the construction of the tables 3 
and/or 4, shown in figure. 

It is evident also, to obtain a complete set of solutions of the system (5) from the 
given class of numbers, one should repeat the foregoing actions for all the differ
ences d(k). 

3.3 Deriving an analytical fonnula for counting the quantity of various solutions of 
the system (5) from natural numbers 

Proposition 3. If A(m) is the total nwnber of various solutions of the system (5) 

from natural numbers and a5 = m then its value may be computed by the fonnula 

A(m) = 9 [mJ6]2 + (3(mmod6)- 8}[mJ6] +2- 2[{(mmod6)+5}/6]+ (9) 

[(m mod 6)/5]. 

Proof We first write out all possible decompositions of the number 2m in two 
distinct terms. 

2m = 1 + (2m - 1) 

2m = 2 + (2m - 2) 
(j = 1, 

(j= 2, 

d( 1) = m-l), 

d( 2) = m- 2), 

2m = m - 2 + (m + 2) (j = m - 2, d(m - 2) = 2), 

2m = m - 1 + (m + 1) (j = m - 1, d(m - 1) = 1). 

(10) 

The problem on counting total number of various solutions of the system (5) with 
as = m is now reduced, in accordance with the universal algorithm of Sect. 3.2, to 
counting a total number of various arithmetic progressions consisting of three num
bers, which may be composed from the numbers 1,2, ... , m - 2, m - 1 and such that 
the differences in these progressions are respectively equal to d(m - 1), d(m - 2), ... , 
d(1). 

To simplify this new problem we shall deduce a recurrence relation which will 
link the total numbers of various solutions having as = m and as = m - 1. For this 
aim we decompose all the solutions with as = m in two groups. The solutions, hav
ing number 1, will be attributed to the first group. A total number of such solutions 
will be denoted by A1(m). All the remaining solutions we shall attribute to the 
second group. We decrease now each number by 1 in all solutions of the second 
group. After this operation, a lot of the second group solutions will represent by 
themselves a complete set of various solutions from natural numbers with as = m - 1. 
Thus, the following relation 

A(m) = Al(m) + A(m -1) (11) 
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is valid or, in other words, if we know a value of A(m - 1) then for finding the value 
A(m) it will be sufficient to count the number of the solutions containing as = m and 
the number 1. This new combinatorial problem can be reformulated as the following 
one 

to find a total number of various arithmetic progressions from three numbers 
which can be composed from the sequence of numbers 1, 2, ... , m - 2, m - 1 and 
such that the first number of these progressions is number 1 and the differences of 
the progressions are respectively equal to d(m -1), d(m - 2), ... , d( 1). 

It seems to be evident, that a total number of the desired progressions coincides 
with the maximal difference value of the progression Dmax for which one can still 
find an arithmetic progression of the required form from the set of numbers 1, 2, ... , 
m - 2, m - 1. The value of Dmax can be found from the correlation 1 + 2Dmu. = m - 1, 
whence Dmax = [(m - 2)12], where square brackets denote the integer part. But in 
reality this value of Dmax is not always coinciding with the value of Al(m): to elimi
nate this non-coincidence we must decrease the total number of arithmetic progres
sions by one if numbers 1 + d(k) or 1 + 2d(k) coincide with the number xl(k) of 
(7). 

Let us determine at which values of d(k) this coincidence occurs: 

(12) 

whence d(k1) = (m - 1)12, and d(k2) = (m - 1)/3. If d(k1) = (m - 1)/2 the number 1 + 
2d(k1) > m - 1. Consequently, this case is never fulfilled. The coincidence occurs in 
the second case if m - 1 is multiple of 3. 

If we decompose all m-numbers in six classes so that the numbers of the form 6k 
will be attributed to the first class and those of the form 6k + 1 - to the second one 
and so on, where k = 1,2, ... , then for all six classes of the m-numbers one can write 
out in the explicit form the values of Dmax and Al(m): 

m=6k, Dmax = 3k-l, Al(6k) = 3k-l; (13) 

m = 6k+ 1, Dmax = 3k-l, A1(6k+ 1) = 3k- 2; 

m = 6k+ 2, Dmax = 3k, A 1(6k + 2) = 3k; 

m= 6k+3, Dmax = 3k, A1(6k + 3) = 3k; 

m= 6k+4, Dmax = 3k+ 1, A1(6k + 4) = 3k; 

m = 6k+ 5, Dmax = 3k+ 1, A1(6k+5) = 3k+ 1. 

Further we shall need the value of the difference M(k, i) of the following form 

M(k, 0 = A(6(k + 1) + 0 - A(6k + 0, (14) 

where i = 0, 1, ... , 5. Using (14), (13) and (11) we may find an explicit expressions 
for M(k, i). Let, for instance, i = O. Then 

M(k, 0) = A(6(k + 1» - A(6k) = Al(6(k + 1» + Al(6k + 5) + 

+ Al(6k + 4) + Al(6k +3» + A1(6k+ 2) + Al(6k + 1) = 
= (3(k + 1) - I} + (3k + 1) + 3k + 3k + 3k + (3k - 2) = 18k + 1. 

Remaining values of M(k, 0 for i = 0, 1, ... ,5 can be found analogously: 
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M(k, z) = 18k + 1 + 3i. (16) 

It is evident, since the M(k, z) is a linear function from k, values A(6k + i) may 
be obtained from the second degree polynomial 

A(6k + z) = b,.(z) J? + b1(z) k + bo(l), (17) 

where b2(z) = 9, bl(z) = 3i - 8, bo(i) = 2 - 2[(i + 5)/6] + [il5]; square brackets mean 
the integer part. Taking into account that i = (m mod 6), k = [m/6] and 6k + i = m 

we may obtain (9) from (17). 
It should be noted that using regression analysis methods one may appreciably 

simplify 8, 9 the expression (9): 

A(m) = g{ (3m2 
- 16m + 18.5)/12}, 

where the notation g{a} means the nearest integer to a. 

4 Algebraic approach to deriving analytical formulae available for 
constructing classical Magic squares of the n-th order 

(18) 

We remind that in the general case 1.3 Magic squares represent by themselves 
numerical or analytical square tables, whose elements satisfy a set of definite basic 
and additional relations. The basic relations therewith assign some constant property 
for the elements located in the rows, columns and two main diagonals of a square 
table, and additional relations, assign additional characteristics for some other sets of 
its elements. In particular, when the constant property is a significance of sum of 
various elements in rows, columns or main diagonals of the square, then this square 
is an Additive one. If an Additive square is composed of successive natural numbers 
from 1 to n2

, then it is a Classical one. 
It is evident 3.10,11 that, from the point of view of mathematics, . the analytical 

solution of the problem on constructing Oassical squares of the n-th order consists 
of determining a fonn of f and g functions, which permit to compute the position for 
any natural number N from 1 to n2 in cells of these squares: x = fiN, n) and y = g(N, 
n). 

In this section we 
1) adduce two types of analytical functions, by which one may construct Oassi-

cal squares of odd orders; 
2) reveal a connection between these analytical functions and Latin squares; 
3) give an algebraic generalisation of the notion "Latin square"; 
4) derive analytical fonnulae available for constructing Classical squares of both 

odd and even orders. 

4.1 Classical approach to deriving analytical fonnulae available for constructing 
Magic squares of odd order from natural numbers 

For any linear algorithmic methods of constructing Classical squares of odd orders, 
the functions f and g have the following fonns 3, 10. 11: 
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fiN, n) == aI(N - 1) + bI[ (N - 1)/n] + CI (mod n), 

g(N, n) == a2(N - 1) +~[ (N - 1)/n] + C2 (mod n), 

(19) 

where square brackets mean the integer part; a sign "=" is the modulo n equality; N 
is any natural number from 1 to n2

; ah bh CI and a2, ~, C2 are such integral coeffi
cients, that the numbers ah a2, bI.~; al~ - a2bl; a2 - aI. ~ - bl, a2 + al and in + 
b l are mutually disjoint with n. 

There is no difficulty in counting that in formula (19) the coefficients {aI, bl, CI, 
a2, b2, C2} are equal 3. 10. 11 

- { 1, 1, - [nI2]; 1, -1, [n/2] } for Terrace algorithmic method of constructing 
Classical squares; 

- {I, -1, n/2]; 1, -2, n - I} for Siamese method; 
- {I, -1, [n/2]; 2, 2,0 } for Knight method; 
- { (3 - a)q + (a + 1)12, (3 - a)q + (a - 1)12, 0; (3 - a)q + (a - 1)/2, (3 - a)q 

+ (a + 1)/2,0 } (where q = [(n + 1)/6], a = n - 6q) for the classical square of the n
th order, which, if n is an odd number, non-divisible by three, can be formed also 
from a pair of orthogonal Latin squares, constructed by the pair of comparisons x + 
2y (mod n) and 2x + Y (mod n); and so on. 

It should be noted, that the above conditions for coefficients of functions f and g 
become contradictory for even n. For example, by the conditions, the coefficients 
at. a2, bl and ~ of the functions f and g of (19) should be mutually disjoint with n, 
and consequently, if n is even, they must be odd. The same requirement must be the 
true for the number d = al~ - a2bl. But if at. a2, bi and ~ are odd, the number d, 
which is the difference of the two odd numbers, will be an even number. 

Thus, an essential fault of linear formulae of (19) is the impossibility of using 
them for constructing Classical squares of even orders. 

4.2 Revealing a connection between Latin squares and analytical formulae of (19) 

Proposition 4. If a Classical square of the n-th order is constructed by fonnulae 
( 19), then it may be constructed also by the fonnula 

N(x,y) = np(x,y) + r(x,y) + 1, (20) 

wherep(x,y) = <XIX + f3lY+ 0'1 and r(x,y) = <X2X+ f32Y + 0'2· 

Proof The equivalence of formulae (19) and (20) appears from their linearity 
and the fact, that (20) are inverse formulae to (19). In particular, if values of 
coefficients {ah bl , Ch a2, ~, c2l of formulae (19) are known then values of {<Xl, 131, 
0'1, <X2, 132, 0'2} of formulae (2) may be computed from following linear equations 11 

m<XI = - a2; m~1 = a1; mO'I = a2CI - a1C2; (21) 

m<X2 == b2; mfu == - bl ; m0'2 == b1c2 -inCI; 

m = al~-a2b1 
and, reciprocally, at the reverse task, the values of {aI, bl , Ct. a2, b2, C2} may be 
computed from equations: 
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J..La1 == - ~l; J.1.h1 == /32,; J..I.CI == ~la2 - /32,al; 

J..La2 == 0.1; Jlbz == - 0.2; J..I.C2 == a2al - ala2; 

Jl = 0.1/32, - a.2~1. 

For instance, values of {at. ~l' at. 0.2, fu, a2} of formulae (20) are equal 

- {(n+l)l2, (n-1)I2, (n-1)I2; (n+l)l2, (n+l)l2, O} for Terrace method; 

- {I, n-l, (n-l)l2; 2,n-l, (n-l)12 \} for Siamese method; 

(22) 

- {[nI2], a, n - a; (n+l)l2, a, a } for Knight method, where a = de + (n- d) (I-

c), d = [(n+ 1)/4], c = [(n mod 4)12]. 

We remind 3.12 that, a quadratic table n><n in size is Latin square of n-th order if 
only n elements of this table are different and each of these n elements occurs only 
one time in each row and column of the table. The two Latin squares P and R of the 
same order n are called orthogonal if all the pairs, formed by their elements Pij and 
rjj (i is the number of a row;j is the number of a column) are different. 

Proposition 5. If elements of a Latin square of the n-th order are numbers 0, 1, 
... , n - 1, then, for constructing such Latin square, one may use a linear comparison 

u...X, y) == ax+ ~y + a, (23) 

where a and f3 are integer numbers, which are to be mutually disjoint with n; (f is 
any integer number. 

Proof. Let the numbers L(x, y) of (23) are located in each cells of a quadratic 
table n><n in size. We consider n numbers, which are located in row Yo of this table. 
Since the discussed numbers are obtained from the linear comparison (23) at x = 0, 
1, ... , n - 1, to show that all they are different, we should demonstrate that they 
belong to different modulo n classes. Let Xl > X2 and a Xl + J3 yo + a == a X2 

+ J3 Yo + a. Since ~ Yo + cr is a constant, in accordance with the properties of com
parisons 3.4, we obtain the new equality aXI == aX2. Hence, since a is mutually dis
joint with n, Xl == X2. But this equality contradicts our assumption. Thus, each of 
numbers 0, 1, ... , n - 1 occurs only one time in each row and column of the dis
cussed table and so this table is Latin square of n-th order. 

Proposition 6. Every Classical square of the odd order, decomposed on two 
orthogonal Latin squares, may be constructed by the fonnulae (19) and otherwise. 

Proof. The truth of Proposition 6 follows directly from Propositions 4 and 5 and 
conditions for coefficients of functions f and g of (19). 

4.3 Deriving analytical formulae available for constructing Classical squares of 
both odd and even orders 

The way 1. Let us give an algebraic generalisation of the notion "Latin square": 

a quadratic table nxn in size is the generalised Latin square of n-th order if only 
n elements of this table are different and each of these n elements occurs only n 
times in this table. 
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Proposition 7. Every Classical square of a order n may be decomposed on two 
orthogonal generalised Latin squares P and R of the order 11. 

Proof. To prove Proposition 7, it is sufficient to note that 
a) any integer number N from 1 to n2 may be presented in the form 

N=np+r+ 1, (24) 

where p and r can take values only 0,1, ... , n -1; 
b) each of values 0,1, ... , n -1 of parameters p and r occurs n times precisely 

in the decomposition (24) of numbers N. 
Thus, to construct two orthogonal generalised Latin squares P and R from a 

Classical square of a order n, one should replace in the Classical square all numbers 
N by respectively (N -1) mod n and [(N -I)/n]. 

Proposition 8. Every Classical square of order n may be constructed by the 
fonnula (20), in which functions p(x, y) and r(x, y) may belong, in general case, to 
both linear and non-linear classes of ones. 

Proof. The truth of Proposition 8 follows directly from Propositions 7 and mate
rials of Sect. 4.1. 

We note, in particular, one may construct Classical squares of even-even orders n 
(n = 4k; k = 1,2, ... ) by the analytical formula (20), in which functions p(x, y) and 
r(x, y) have the following forms 3. 11. 13 

p(x,y)=cx+(I-c)(n-x-I) and r(x,y)=(I-c)y+c(n-y-I), (25) 

where c = {[ (x+I)/2] + [(y+I)/2]} mod 2; or 

p(x, y) = cd-x-I + (1-c)(n -d) and r (x, y) = by + (1- b)(n - y-I), (26) 

wherec=(x+y+a)mod2; d=(1-a)y +a(n-y-l); b={[(x+3)/2]+[y/2]+ 
a} mod 2; a = [2y/n]; and so on. 

The way 2. It is evident, we may consider Classical squares not only as the sum 
of two orthogonal generalised Latin squares (see the way 1) but, for instance, as 
quadratic tables whose rows contain certain numerical sequences. Let us look into 
the problem on fmding universal analytical formulae for constructing Classical 
squares from this new point of view. 

Proposition 9. If a Classical square of the n-th order is constructed by fonnulae 
( 19), then it may be constructed also by the fonnula 

N(x, y) == a + b - A.C, (27) 

where a, b and c are any integer numbers; A is 0 or 1, the sign "=" is the modulo 
2 I' n equa lty .. 

Proof. Let a Classical square of an odd order is constructed by formulae (19). It 
follows from Proposition 4 that this square may be constructed also by formulae 
(20). We deduct x-th element of first row from every x-th element of all y-th rows of 
the Classical square. It is evident that the number 

153 



( n{(al x + f31 Y + al) mod n} - n((al x + al) mod n} + (28) 

(a2 x + fu y + (2) mod n - (a2 x + (2) mod n ) mod n2. 

will be located in the cell (x, y) of the reformed Classical square {see (20)}. Using 
the equality (dn) mod n2 = n (d mod n) we present (28) as the sum of two summands 

n{(~IY)} mod n + {(a2 x +fu y +(2) mod n - (a2 x + (2) mod n}. (29) 

The second summand of (29) may have only two values: (fuy) mod n or n - (fu y) 
mod n. Thus, we obtain that numbers of any y-th row of the reformed Classical 
square may have only two values. By using the mentioned method of constructing 
formula (27), we find that parameters of this formula a, b, c and A are connected 
with parameters of the formula (20) by correlations 

a = n{ (al x + al) mod n} + (a2 x + (2) mod n, (30) 

b = n{(~l y) mod n} + (fuy) mod n, c = n, 

A = [ 1 - sign { (a2 x + fu y + (64) mod n - (a2 x + (64) mod n } ]12, 

where sign(x) = I x Yx if x:t; 0 and sign(O) = O. 

It should be noted, if we get off the sign "E" in the formula (27) and translate 
correlations (30) into language of numerical sequences (see the point (c) of Sect. I}, 
we obtain that, for algorithmic methods which mentioned in Sect. 4.1 and 4.2, the 
parameters of formula (23) are determined by correlations 

a = - (_I)t n(n - 1)/4 + k(n + 1)/2 +(n(n - 3) +2}/4, (31) 

b=n-l-y, c=n, A=[sign{(h-y)+2}12], 

h = [z12 ] -1 + (n + 1) (z12 - [z12 ] ), 

ay(z) = y + z + 2 - n [sign{ (y + z - n + 1)+2 }/2], kl = ay(x) 

where the numerical sequence {at}, if its values are computed at k = 0,1, ... , n -1, 
coincides with the numerical sequence, located in the first row of the Classical 
square; ay(t) is a permutation operator of numbers 0, 1, ... , n -1 and for 

- Terrace method k = kl. Z = kl - 1; 

- Siamese method z E (n - 2(kl - I)} mod n, k = z + 1; 

- Knight method k2 = ay(kl- 1), z = - (-1) l-l nl4 + k!t2 + (n+4)/4, k = z + l. 
It is evident, using the formula (27) with parameters (31), one can have no diffi

culty in discovering "genetic connections" between different Classical squares 
and constructing methods and in generating a set of new methods. For instance, if n 
is an odd number, non-divisible by three, the new algorithmic methods for 
constructing Oassical squares of odd orders appear when kl = a/(x) or kl = ay\x) 
in (31), or the form of ayand/or the numerical sequence {at} is changed. 

It remains for us to add that parameters of the formula (27) are determined by 
correlations 

a = nk, b = w, c = n - 2w -1, A = [«k+2) mod 4)/2], 

aw(Z) = 1 + { z - h ( 2 ( (z + h) mod 2) -1 ) } mod n, 
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h = y + c [ yl[ y 12 ]], kl = aw(z) 

for fonnulae (25) and (26), where aw (z) = 1 + (z - h (2«z + h) mod 2) -1)} mod n; h 
= y + c [yl[ yl2]]; kl = aw(z) and for 

- the formula (26) z = r, w = y; k = k1; 

- the fonnula (25) A,. = [« y + 1) mod 4 )12]; 

4)12]; z == (xs + n - h (1 - 2(xs mod 2») mod n; 

w = A,. y +(1 - Ax) ( n - y -1). 
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ANALYTICAL APPROACH TO DESCRIPTION OF SOME 
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We discuss the theme on translating different descriptions of computative algorithms 
into high-level programming languages, enumerate some advantages of analytical 
descriptions and demonstrate that logical functions may be used effectively to create 
analytical formulae available for describing a set of combinatorial and number-theo
retic computative algorithms. In particular, we adduce analytical formulae to 
generate /-th prime numbers PI, permutations of order m, k-th numbers of 
Smarandache sequences of 1st and 2nd kinds and classical Magic squares of an 
order n. 

Key words: computative algorithms, analytical approach, logical functions, 
combinatorics, number theory. 

1 Introduction 

As well-known 1.2 verbal and diagram (graph-diagram) techniques available for 
describing computative algorithms are the most wide-spread at present. For instance, 
Euclidean algorithm, allowing to fmd the greatest common divisor (GCD) of the 
positive integers a and b (a > b) has the following verbal description 3 

1. Assign m = a, n = b; 
2. Find r = m mod n; 
3. If r > 0, then pass to 4. Otherwise, pass to 5; 
4. Assign m = n, n = r and pass to 2; 
5. Answer: GCD(a, b) = n. 

Since all computative algorithms are realised, as the rule, on computer at present, 
the main fault of the verbal description of computative algorithms is the necessity of 
translating this description into one of special computer-oriented languages. 

The diagram form of the description of computative algorithms allows to 
simplify slightly the process of such translation. In particular, the diagram form of 
Euclidean algorithm is shown in figure 1, where squares with digits 1, 2, 4, 5 and 
the rhomb with the condition r > 0 mean respectively to points 1, 2, 4, 5 and 3 of 
the verbal description. 

Figure 1. Diagram form of the description of Eudidean algorithm. 
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The logical technique 4 available for describing computative algorithms is less 
known than verbal and diagram descriptions, but just it gives easier way to obtain a 
program code. In particular, we may present the logical description of Euclidean 
algorithm in the form 

AIJ..2A2ex.3il~~i2J,IAs, (1) 

where A.; are elements of the vector operator A = {(m = a, n = b), (r = m mod n), 
(0), (m = n, n = r), (n)}; Cl.j are elements of the vector conditional jump ex. = {(0), 
(0), (r> 0), (0), (0)}; (0) is the blank in A and a.; i i and J, i are arrows 

indicating respectively points of departures and destinations; ~ is the unconditional 
jump instruction. 

We note that, generally speaking, an one-to-one correspondence exists between 
three foregoing techniques for describing computative algorithms. In other words 
these techniques are identical in substance. 

One of modem techniques available for describing computative algorithms is 
using the built-in predicates calculus, realised, for instance, in Prolog 5. In particular, 
we may represent Prolog description of Euclidean algorithm by three statements 

GCD(O,V,V). 
GCD(NS,VS,V):-NSI is VS modNS, GCD(NSl,NS,V). 
?-GCD(b, a, V). 

(2) 

Where the second statement is the direct record of the recursive computative 
procedure, allowing to find GCD(a, b); the first one determines the condition to 
finish this procedure; the third one is constructed to introduce the concrete values of 
numbers of Euclidean algorithm; NS, NSl, V and VS are internal variables of the 
procedure and V = GCD(a, b) after calculations. The main obstacle of this technique 
spreading is necessity of preliminary good knowledge of predicates calculus theory. 

This paper is devoted to an advance of analytical approach to de~cribing some 
combinatorial and number-theoretic computative algorithms. Since at present any 
analytical description of the computative algorithms allows to automate the process 
of obtaining the program code, we suppose that the discussed theme appears to be 
interesting. 

2 Constructing analytical formulae by using logical functions 

2.1 Formulae to generate n-th prime number Pit 

In our view, the most impressive application of logical functions in elementary 
number theory is the formula 3,6 to generate n-th prime number Pit: 

(n+1)2+1 m 

PIt = L sg(n+l- 2({(k-l)!}2_k[{(k-l)!}2 / kD), (3) 
m=O k=2 

where po = 2, PI = 3, ... ; square brackets mean the integer part; sg is a logical 
function: sg(x) = I if x > 0 and sg(x) = 0 if x ~ O. Let us find another analytical 
formula for Pit without factorials. 
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As well-known 3, 7, any prime number has exactly two divisors: the unit and 
itself. Thus, any integer number a is a prime one if it has not divisors among integer 

numbers from 2 to [ ~ ] or, in the language of analytical formulae, if 

~ 
Xa = 11 {sg(a - j[i / j])}, (4) 

j=2 

then a is a prime only when Xa = 1. It appears directly from (4) and (3) that the 

desirable formula for Pit has form 

(11+1)2+1 m 

p" = L sg(n-l- LXa), (5) 
m=O a=3 

where P2 = 2,P3 = 3,P4 = 5, .... 

2.2 The analytical description of the permutations generator 

As well-known 2, 3 

a) the permutation of order m is called any arrangement of m various objects in a 
senes; 

b) the verbal description of the simple algorithm available for constructing all the 
permutations from m objects, if all the permutations from m - 1 objects have been 
already constructed, has form 

Enumerate m - 1 various objects by the numbers 1, 2, ... , m - 1. For each 
permutation of 01, 02, ••• , 0_1' containing the numbers 1, 2, ... , m - 1, form mother 

permutations by putting the number m in all the possible places. As a result 
obtain the permutations: 

m, 01, 02, ••• , 0_1; 

01, m, 02, ••• , 0_1; 

.............. . -, 

(6) 

It is evident that one can obtain all the permutations of order m by this algorithm 
and none of the permutations of (6) may be obtained more than once. If this verbal 
description we translate into one of special computer-oriented languages, for 
instance, into Pascal, then we obtain the program code, shown in table 1. This 
program works correctly at initial conditions m4 = I; nl = m and the array nb3 
contains such numbers in the first m cells, which should be rearranged, and has 
following advantages over the verbal description 

a) the knowledge of all permutations from m - 1 objects is not required for 
generating the permutations of order m; 

b) permutations are realised with any set of numbers, contained in the first m 

cells of the array nb3. 
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Table 1. The representation of the pennutations generator as Pascal program. 

Procedure Perm(Var m4,n1,n:lnteger; 
Var nb3,nb4,nb5:Ten); 
Label A28,A29.A30; 
Var nt,k,m2:lnteger; 
Begin 

If m4=1 Then 
Begin 

m4:=O;n:=n1 ; 
For k:=2 to n do 
Begin 

nb4[k1:=O; 
nb5[k1:=1; 

End; 
Exit; 

End; 
k:=O; n:=n1; 

A28: 
m2:=nb4[n1+nb5[n1;nb4[n1:=m2; 

Ifm2=n Then 
Begin 

nb5[n]:=-1 ;Goto A29; 
End; 
If Abs(m2»O Then Gota A30; 
nb5[n1:=1 ;Inc(k); 

A29: 
If n>2 Then 
Begin 

Oec(n);Gota A28; 
End; 
1nc(m2);m4:=1 ; 

A30: 
m2:=m2+k; 
nt=nb3[m21; 
nb3[m2]:=nb3[m2+11; 
nb3[m2+11:=nt 

End; 

It should be noted that the main fault of both the verbal description and the 
program code is the fact that the knowledge of the previous permutation of order m 
is required for constructing the next permutation from m objects. To eliminate this 
fault one may use a set of analytical formulae 6 

rj = pj - Zl +1, pj = j - 1 + J(1 - Cj) + Cj (m - j - /), 

J = t j _1 - (m - j + l)[t j _t /(m - j + 1)], 

tj = [ k / IT (m - q + 1) ]. 
q=l 

Zl= sg(l+ Pj-t-pj -Z2) +z2, Z2 = sg(l+ Pj-2-pj -Z3) + Z3, 

(7) 

... , 

where k is a number of permutation, generated of (7); rj is a number, which j-th 
element of the initial sequence nb3 has in k-th permutation; the all another 
parameters in (7) are auxiliary. 

2.3 The formula for counting the value ofGCD(a, b) 

We may present one of possible formulae available for counting the value of 
GCD(a, b) {see Sect. I} as 

GCD(a, b) = b{l- signer)} + k signer), r = a - b[a/ b], (8) 

[..Jb] 
k= MAX {i(l-d)}, d=sign{a-i[a/i]} xsign{b-i[b/i]}, 

i=2 
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where the function MAX(aI, a2, ... , a I) gives the greatest from numbers aI, a2 • ... , 

a;; sign(x) = I x II x if x;eO and sign(O) = o. 

2.4 Formulae for the calculation of n-th numbers in Smarandache sequences of 
1 st and 2nd kinds 

As we found earlier 7, the terms of six Smarandache sequences of 1st kind 8 may be 
computed by means of one general recurrent expression 

a ()=cr(a 10'l'(all )+a +1) (9) q>n n n, 

where cp(n) and 'V(all) are some functions; cr is an operator. For instance, 
a) if <pC n) = n + 1, cr = 1 and '1'( all) = [lg( n + 1)] + 1 then the following sequence 

of the numbers, denoted as Srsequence, is generated by (9) 

1, 12, 123, 1234, 12345, 123456, ... 

Let each number X k, determined as 

[lg(k+O,5)] 

Xk = -1 + L(k+l-l0j
), 

j=O 

(10) 

(11) 

correspond to each number at of sequences (10), where the notation "[lg(y)]" means 
integer part from decimal logarithm of y . Using (11) we may construct the following 
analytical formula for the calculation of n-th number in the Sl-sequence: 

n 

all = lOXII L(i I 10Xi); (12) 
i=l 

b) if cp( n) = n+ 1; cr = Y is the operator of mirror-symmetric extending the number 
a [(n+l)I2] of Sl-sequence from the right with I-truncating the reflected number from 

the left, if n is the odd number, and without truncating the reflected number, if n is 
the even number; 'V(all) = [lg([(n+l)12] + 1)] + 1, then the following sequence of 
the numbers, denoted as S2-sequence, is generated by (9) 

1, 11, 121, 1221, 12321, 123321, 1234321, ... (13) 

The analytical formula for the calculation of n-th number in the S2-sequence has the 
form 

[nl2] [(n+1)I2] 
an = Li lOXi -[lg i) + Li 10d , (14) 

i=l i=l 

where d= 1 + X[(n+l)I2] + X[nl2] -Xi; and so on. 

We fmd recently that the terms of Smarandache sequences of 2nd kind 8 may be 
computed also by the universal analytical formula {compare with formulae (12) and 
(5)} 
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U" m 

a,,= L sg(n+2-b- LXi), (15) 
m=l i=b 

where X i are the characteristic numbers for Smarandache sequences of the 2nd 

kind; U" is an up-estimation for the value a,,; b is a constant. For instance, if 

g! [~] 
U" = n2

, b = 2, Xi = sg (L I1 sg (c-q[c / q])}, g = [lg z1 + 1, (16) 
k=l q=l 

g 

c = 109 L { [i / 109-P]-10 [i / 109-p+lJ } / 10rp 
, 

p=l 

the following sequence ofSmarandache numbers of 2nd kind is generated by (15) 

1,2,3,5, 7, 11, 13, 14, 16, 17, 19,20,23,29,30,31,32,34, ... (17) 

We note that 
a) in formula (16): k is a number of the permutation, which is generated from 

digits of the number i; rj is a number, which j-th digit of the number i has in k-th 
permutation {see (7)}; 

b) only such integer numbers belong to the sequence (17), which are prime 
numbers or can be derived to prime numbers by a permutation of digits in the initial 
natural numbers {the number 1 is related to prime numbers in this sequence}. 

2.5 Formulae for analytical description of Magic squares constructing methods 

As we discovered earlier 3, 11, logical functions may be used effectively to create 
analytical formulae available for describing computative algorithms on constructing 
Magic squares of any order n. For instance, let us consider a well-known "Method of 
two squares", whose verbal description has the form 3,12: 

1. Make a drawing of two square tables of any order n = 4k + 2 (k = 1, 2, ... ). 
Divide every table in four equal squares which we shall call A, B, C and D squares 
respectively {see figure 2(1)}; 

2. Place a Magic square of order m = 2k + 1 in the A, B, C and D squares of the 
first table. It is obvious {see figure 2(2)}, the first table will have the same sum of 
numbers in its rows, columns and main diagonals; 

3. Fill the cells of the second table: all cells of A square are to have zeros; cells 
of D square - numbers u = m2

; cells of B square - numbers 2u and cells of C 
square - numbers 3u. The obtained table {see figure 2(3)} will have the same sum 
of numbers only in its columns; 

4. Perform such rearrangement of the numbers in the table 2(3) that the new table 
will have the same sum of numbers in its rows, columns and main diagonals. It can 
be achieved, for instance, by operations 

a) underline in the square A of the second table 
- k zeros, located in the extreme left positions of all rows, excepting the middle 

row {see figure 2(3)}; 
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- the zero, located in the central cell of the middle row, and another k-l zeros, 
located left of the central cell. 

Exchange all marked zeros against the respective numbers of the square C {see 
figure 2(4)} and otherwise; 

b) mark k - 1 numbers 2u in the extreme right positions of every row of 
square B {see figure 2(3)}, and then exchange ones against corresponding numbers 
of the square D (see figure 2(4)) and otherwise. 

5. Add (cell-wise) two auxiliary tables {the Magic square of order 10, obtained 
as a result of adding auxiliary squares 2(2) and 2(4) is shown in figure 2(5)}. 

A B 

C 0 

(1) 

15 14 6 22 3 15 14 6 22 3 Q Q 0 0 0 50 50 50 50 50 

21 2 18 10 9 21 2 18 10 9 Q Q 0 a 0 50 50 50 50 ~ 

13 5 24 1 17 13 5 24 1 17 0 Q Q 0 0 50 50 50 50 ~ 

4 16 12 8 20 4 16 12 8 20 Q Q 0 0 0 50 50 50 50 50 

7 23 0 19 11 7 23 0 19 11 0 0 0 0 0 50 50 50 50 50 

15 14 6 22 3 15 14 6 22 3 75 75 75 75 75 25 25 25 25 25 

21 2 18 10 9 21 2 18 10 9 75 75 75 75 75 25 25 25 25 25 

13 5 24 1 17 13 5 24 1 17 75 75 75 75 75 25 25 25 25 25 

4 16 12 8 20 4 16 12 8 20 75 75 75 75 75 25 25 25 25 25 

7 23 0 19 11 7 23 0 19 11 75 75 75 75 75 25 25 25 25 25 

(2) (3) 

75 75 0 0 0 50 50 50 50 25 90 89 6 22 3 65 64 56 72 28 

75 75 0 0 0 50 50 50 50 25 96 77 18 10 9 71 52 68 60 34 

0 75 75 0 0 50 50 50 50 25 13 80 99 1 17 63 55 74 51 42 

75 75 0 0 0 50 50 50 50 25 79 91 12 8 20 54 66 62 58 45 

75 75 0 0 0 50 50 50 50 25 82 98 0 19 11 57 73 50 69 36 

a 0 75 75 75 25 25 25 25 50 15 14 81 97 78 40 39 31 47 53 

0 0 75 75 75 25 25 25 25 50 21 2 93 85 84 46 27 43 35 59 

75 0 0 75 75 25 25 25 25 50 88 5 24 76 92 38 30 49 26 67 

a a 75 75 75 25 25 25 25 50 4 16 87 83 95 29 41 37 33 70 

0 0 75 75 75 25 25 25 25 50 7 23 75 94 86 32 48 25 44 61 

(4) (5) 

Figure 2. Method of two squares. 
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Table 2. The representation of computative algorithm "Method of two squares" as Pascal program. 

Procedure BuildMS; 
{ Build Magic square of order n=4k+2 } 
Var m,i,j,n2:Byte; 

z.x,Y,nn:lnteger; 
Begin 

z:=O;n2:=n; 
n:=o2 Shr 1; 
m:=n Shr 1; 
nn:=Sqr(n); 

{ Build an auxiliary square of order n=4k+2} 
{ Place a Magic square in A square } 
For z:=1 to nn do 
Begin 

x:=(fX(z)-1+n)Mod n+1; 
y:=(gY(z)-1+n)Mod n+1; 
mk{(x-1 )*n2+y]:=z; 

End; 
n:=o2;o2:=n Shr 1; 
For i:=1 to n2 do For j:=1 to 02 do 
Begin 

{ Place the Magic square in B, C and 0 squares} 
mk{lnd(i,j+o2)]:=mk{lnd(i,j)]+nn Shl 1; 
mk{lnd(i+o2,j)]:=mk{lnd(i,j)]+nn Shl 1 +nn; 
mk{lnd(i+o2,j+n2)]:=mk{lnd(i,j)]+nn; 

End; 

{Modify the auxiliary square } 
{ Modify A and C squares} 

For i:=1 to 02 do 
If i<>n2 Shr 1 +1 Then 
Begin 

For j:=1 to m do 
Begin 

Inc(mk{lnd(i,j)],nn*3); 
Dec(mk[lnd(i+n2,m,nn*3); 

End; 
End; 
i:=o2 Shr 1+1; 
For j:=i Oownto i-m+1 do 
Begin 

Inc(mk{lnd(i,j)],nn*3); 
Oec(mk{lnd(i+n2,m,nn*3); 

End; 
{ Modify Band 0 squares} 

For j:=n Downto n-m+2 do 
For i:=1 to 02 do 
Begin 

Dec(mk{lnd(i,m,nn); 
Inc(mk{lnd(i+n2,Dl,nn); 

End; 
End; 

If the foregoing verbal description we translate into Pascal, we obtain the 
program code, shown in table 2. In this program code 

a) the Magic square of order m = 2k + 1, located in the A, B, C and D squares of 
the auxiliary square, may be built for instance, by the functions 3, 11, 13 

j{z, m) == (z - 1) + [(z- l)/m] - [m/2] , 

g(z, m) == (z - 1) - [(z - 1)/m] + [m/2], 

(18) 

where square brackets mean the integer part; a sign ''::'' is the modulo m equality; z 
is any natural number from 1 to m2

; functions f and g afford to compute the position 
of any natural number z in cells of the Magic square: x = j{z, n) and y = g(z, n). In 
particular, functions (18) may be presented as following two distinct Pascal
procedures 

Function fX(z:lnteger):lnteger, 
Begin 

fX:=1+(z-1)+(z-1}div n - n shr 1; 
End; 

Function gY(z:lnteger):lnteger, 
Begin 

gY:=1+(z-1)-{z-1)Div n + n shr 1; 
End; 

b) two procedures "Ind" and "Sign" are auxiliary and have the fonn 

Function Ind(x,y:lnteger):lnteger, 
Begin 

Ind:=(x-1 )*n+y; 
End; 

Function Sign(n:Word):Shortlnt; 
Begin 

If Odd(n) Then Sign:= -1 Else Sign:=1; 
End; 
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The analytical description of "Method of two squares" has the form 3 

x = i + Cl m - 1; y = (1 - C3 - C6 - cs) (j + C2 m) + (C3 + C6 + cs) (1 + (19) 

+ {(j + (C2 + 1)m - 1) mod n}) - 1; 

u =m2
; z=1+{(N-I)modu}; i=f(z, m) + 1; 

j = g(z, m) + 1; Cl = [{( [ (N - 1)/ u] + 1) mod 4}/2 ]; 

C2 == [(N -1)/u] mod 2, C3 = [(sign(cl m + i - 3k- 4) + 2)/2]; 

C4 = asg(j - k- 1); C6 = C4 [ (sign(k- i - Cl m) + 2)/2 ]; 

Cs = (1 - C4)(1- CI)[ {sign(i - 1)+ 1}/2 ]x[ (sign(k- i + 1) + 2)/2], 

where n = 4k + 2 is an order of the desirable Magic square, contained natural 
numbers N from 1 to n2

; m = 2k + 1; functions f (z, m) and g(z, m) are determined 
by the expression (18); asg(x) = 1 if x * 0 and asg(O) = 0 {asg(x) = I sign(x) I 
= sign! x I = s~ x ~. 
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NUMERICAL FUNCTIONS AND 
TRIPLETS 

I. BaHicenoiu, D. Bordea, V. Seleacu 

\Ve consider the functions: fs, fd, f p, F: N* ~ N, where 
fs(k) = n, fd(k) = n, fp(k) = n, F(k) = n, n being, respectively, the least 
natural number such that kin! - 1, kin! + 1, kin! ± 1 , kin! or kin! ± 1. 
This functions have the next properties: 

1. Obviouvsly, from definition of this function, it results: 

F(k) = min{S(k), fp(k)} = min{S(k), fs(k), /d(k)} 

where S is the Smarandache function (see [3]). 

2. F(k) ~ S(k), F(k) ~ fs(k), F(k) ~ fd(k), F(k) ~ fp(k) 

3. F(k) = S(k) if k is even, k ~ 4. 
Proof. For any n E N, n > 2, n! is even, n! ± 1 are odd. If k is even, 
then k cannot divide n! ± 1. So F(k) = S(k) = n ~ 2 if k is even, 
k ~4. 

4. If p > 3 is prime number, then F(P) ~ p - 2. 
Proof. According to vVilson's theorem (p - I)! + 1 = !vIp. Because 
(p- 2)! -1 + (P-1)! + 1 = (p- 2)!p results for p > 3, (p- 2)! -1 = Mp 
and so F(P) ~ p- 2. 

5. F(m!) = F(m! ± 1) = S(m!) = m. 

6. The equation F(k) = F(k + 1) has infinitly many solutions, because, 
according to the property 5), there is the solutions k = m! , mE N* . 
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7. If F(k) = S(k) and n is the least natural number such that kin!, then 
k not divide s! ± 1 for s < n. 
Let k = prj . p~2 ... pr:- . According to S(k) = ~~;,{Spi(ai)}' it results 

that S(k) 2: Ph, where Ph = min{Pl,P2,'" ,Pr}. 
If k not divide s! ± 1 for s $ Ph , then k not divide t! ± 1 for t > Ph . 
Consequently, if k not divide (n - I)!, kin! and k not divide s! ± 1 for 
s $ min{ n,Ph} , then F(k) = S(k) = n. 
Obviously, the numbers k = 3t, t being odd, t =I 1, have Ph = 3 and 
they satisfy the condition 3t not divide s! ± 1 for s = 1,2,3. 
Therefore, for k = 3t, todd, t =I 1, F(3t) = S(3t) = n, n being the 
least natural number such that 3tln! . 

8. The partition "bai" of the odd numbers. 

L~t A = {k E Nlk odd and F(k) = S(k)} 

B = {k E Nlk odd and F(k) < S(k)} 

(A, B) is the partition "bai" of the odd numbers. 
Into A there are numbers k = 3t, todd, t =I L Obviously, A has 
infinitly many elements. 
Into B there are numbers k = t! ± 1 with t 2: 3, tEN. Obviously, B 
has infinitly many elements. 

Definition 1 Let n E N*. We called triplet it, the set: 
n -1, n, n+ 1. 

Definition 2 Let k < n. The triplets k, it are separated if 
k + 1 < n - 1, i. e. n - k > 2 . 

Definition 3 The triplets k, it are ls-relatively prime if 
(k - 1, n - 1) = 1, (k + 1, n + 1) =I 1. 

For example: 6 and 72 are ls-relatively prime. 

Definition 4 The triplets k, it are ld-relatively prime if 
(k - 1, n - 1) =I 1, (k + 1, n + 1) = 1 . 

Definition 5 The triplets k, it are l-relatively prime if 
(k - 1, n - 1) = 1, (k + 1, n + 1) = 1. 
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Definition 6 The triplets k, n are d-relatively prime if 
(k - 1, n + 1) = 1, (k + 1, n - 1) = 1. 

For example: 2 and 6 are d-relatively prime. 

Definition 7 Let k < n. The triplets k, n are ds-relatively prime if 
(k - 1, n + 1) = 1, (k + 1, n - 1) =I 1 . 

For example: 6 and 120 are ds-relatively prime. 

Definition 8 Let k < n. The triplets k, n are dd-relatively prime if 
(k - 1, n + 1) =I 1, (k + 1, n - 1) = 1. 

Example: 6 and 24 are dd-relatively prime. 

Definition 9 The triplets k, n are p-relatively prime if 
(k - 1, n - 1) = 1, (k -1, n + 1) = 1, (k + 1, n - 1) = 1, (k + 1, n + 1) = 1. 

Obviously, if k, n are p-relatively prime, then they are i and d-relatively 
pnme. 
For example: 24 and ffo are p-relatively prime. 

Definition 10 Let k < n. The triplets k, n are F -relatively prime if 

(k -1, n - 1) = 1, (k + 1, n - 1) = 1, 
(k - 1,"n) = 1, (k + 1, n) = 1 

(k - 1, n + 1) = 1, (k + 1, n + 1) = 1. 

Definition 11 The triplets k, n are t-relatively prime if 
(k - 1, n - 1) . (k - 1, n) . (k - 1, n + 1) . (k, n - 1) . (k, n) . (k, n + 1)· 
(k + 1, n ~ 1) . (k + 1, n) . (k + 1, n + 1) = 6. 

For example: :2 and 4 and t-relatively prime. 

Definition 12 Let H c N*. The triplet n, n E H is, respectively, 
is, id, I, d, ds, dd,P, F, t-prime concerned at H, if "is E H, s < n, the triplets 
S, n are, respectively, ls, ld, l, d, ds, dd,P, F, t-relatively prime. 

L€t H = {n!ln E N*}. For the triplets m, m E H there are particular 
properties. 

- -Proposition 1 Let k < n. The triplets (k!) , (n!) are separated if 
n > max{2, k}. 
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Proof. Obviously, n! - k! > 2 if n > 2 and k < n, i.e. n > max{2, k} . 

Proposition 2 Letn > ma."<:{2, k} and i'vfkn = {m E Njk!+1 < m < n!-I}. 
If kl < k2 and nl > ma."<:{2, k l } , n2 > max{2, k2} , then 
nl - kl :-::; n2 - k2 ~ card Nlk 1 nl < cardlvlk2n2 . 

Proof. For n > k ~ 2 it is true that 

n! - (n - I)! > k! - (k - 1)1 (1) 

Let n > k ~ 2, 1 :-::; 8 ::; k. Using (1) we can write: 

n! - (n - I)! > k! - (k - I)! 
(n - I)! - (n - 2)1> (k - 1)1 - (k - 2)1 

(n - 8 -I)! - (n - 8)1> (k - 8 - I)! - (k - 8)! 

By summing this inequalities, it results: 

n! - (n - 8)! > k! - (k - 8)! (2) 

Let 2 :-::; kl < nl , 2 :-::; k2 < n2 , kl < k2 , nl - kl :-::; n2 - k2 . Then n2 - nl ~ 
k2 - kl ~ 1 and there is n3 such that n2 > n3 ~ nl and n2 - n3 = k2 - kl . 
Using (2) we can write: 
n2! - n3! > k2! - kl! 
Since n3! ~ nI! we have: 

According to cardMk1n1 = nl! - 1 - (kl ! + 1), 
cardMk2n2 = n2! - 1 - (k2! + 1) , it results that: 

That is, taking into account (3), cardMk1n1 < cardAfk2n2 . 

Definition 13 Let k < n. The triplets (k!) , (~ are linked if 
k! - 1 = n or k! + 1 = n . 

(3) 

Propositio~ ~ k E N* there is p prime number, such that for any 8 ~ P 

the triplets (k!) , (8!) are not F-relatively prime. 
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Proof. Obviously, for k = 1 and k = 2, the proposition is true. 
If n = pr1 . p~2 ... pf' divide k! - 1 or k! + 1 , then Pi > k 2: 3 , for 
j E {1,2, ... ,i}. 
Let Ti = PI . P2 ... p. and P = max {p .} . 

• ISiSi J 

Obviously, Ti 2: 3 because p > k 2: 3, Til ~- 1~ Tilk! + 1 . 
For any s 2: p, Til s! and so, the triplets (k!) , (s!) are not F-relatively prime. 

Remark 1 i) Let k < n. If (k!), (n!) are linked, then n - k = k! - k ± 1 . 

If 2 < kI < nI, (Q) with (;;J) are linked and k2 < n2, (k;i) with (~) are 
linked, then kI < k2 ~ nI - kl < n2 - k2 and in view of the proposition 2, 
results cardMk1n1 < cardMk2n2 . 

ii) There a~win prime numbers with the triplet (n!). For example 5 with 

7 are from (3!) . 

Definition 14 Considering the canonical decomposition of natuml numbers 
- 0:1 0:2 O:r d:fi - _ {0:1 0:2 O:r} n - PI . P2 ... Pr ,we e ne n - PI , P2 , ... , Pr , 

M = {nln E N*}. 

Definition 15 On M we consider the relation of order c: defined by: 

{pr1 
, p~2 , ... , pC::-} c: {r/i1 , eli: , ... , rf:t } 

if and only if {PI,]J2, ... ,Pr} C {ql, Q2,··· , qt} and if Pi = 9.i ' then Cl!i ~ {3i . 

Remark 2 For any triplet (n!) , n E N* , we consider the sets: 

An = {k E N*lk c: n!}, ~ = {k E Anlk ~ Ah far h < n} 
Bn = {k E N*lk c: nf= I}, B~ = {k E Bnlk ~ Bhfarh < n} 
en = {k E N*lk c: n! + I}, C~ = {k E Cnlk ~ Ch far h < n} 
Mn = {k E N*lk c: n! or k ~ nf=' 1 or k c: n! + I} 
M~ = {k E Mnlk ~ Mhfarh < n}. 
It is obvious that: 
~ = S-l(n) , B~ = f;l(n) , C~ = fil(n) , M~ = F-l(n) . 
If k E ~, it is said that k has a factorial signature which is equivalent with 
the factorial signature of n! (see Il)}. 
Let k E B~, k = t~l . t;2 ... t~i. Then {tr} g n! for r = 1, i and for any 

h < n, there are t? ' 1 ~ j ~ i, such that {t?} g hf=' 1 . 

Similarly, for k E C~ : {tr} g n! for r = 1, i and for any h < n, there are 

t? ' 1 ~ j ~ i, such that {q} g h!+ l. 
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EXPLORING SOME NEW IDEAS ON SMARANDACHE TYPE 
SETS, FUNCTIONS AND SEQUENCES 

(Amarnath Murthy ,Superintending Engineer(E&T),Well logging Section ,Oil And Natural Gas 
Corporation Ltd., Chandkheda, Ahmedabad, India-38000S) 

ABSTRACT: In this article I have defined a number of 
SMARANDACHE type sets ,sequences which I found very 
interesting. The problems and conjectures proposed would give 
food for thought and would pave ways for more work in this field, 

(1)SMARANDACHE PATTERNED PERFECT SQUARE SEQUENCES. 

Consider following sequence of numbers 
13,133,1333,13333, ... --------(1) 

The sequence formed by the square of the numbers is 

169, 17689, 1776889, 177768889, .. , -------(2) 
We define (1) as the root sequence 

It is evident that the above sequence (2) follows a pattern. 
i.e. The square of one followed by n three's is ,one followed by (n-
1) seven's, followed by a six, followed by (n-1) eight's followed by 
a nine. 
There are a finite number of such patterned perfect square 
sequences. Here we list the root sequences. 

(I) 13,133,1333,13333, 
(2) 16,166,1666,16666, 
(3) 19, 199, 1999, 19999, 
(4) 23, 233, 2333, 23333, .. . 
(5) 26, 266, 2666, 26666, .. . 
(6) 29, 299, 2999, 29999, .. . 

on similar lines we have the root sequences with the first terms as 
(7) 33, (8) 36, (9) 39,(10) 43,{ 11) 46,(12) 49, (13) 53,(14) 66, 

(15) 73, (16) 93,(17) 96,(18) 99. 
There are some root sequences which start with a three digit 
number, like 
799, 7999, 79999, ... 

The patterned perfect square sequence is 

638401 , 639840Q1 , 63998400Q1 , 6399984000Qi, ... 

( the nine's and zero's inserted are shown in darker print to identify 
the pattern.) 
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Open Problem: (1) Are there any patterned perfect cube 
sequences? 

(2) Are there any patterned higher perfect power sequences? 

(2) SMARANDACHE BREAKUP SQUARE SEQUENCES 

4, 9, 284, 61209, ... 

the terms are such that we have 
4 = 22 
49 = 72 

49284 = 2222 
4928461209 = 702032 

Tn = the smallest number whose digits when placed adjacent to 
other terms of the sequence in the following manner 

Lt 
1 Ok 

n~oo 

where k is the number of digits in the 

numerator for this kind of sequence can be analyzed. As it is evident that 
for large values of n the value of ( T,T2 ••• Tn• 1Tn )112 is 

close to either 2.22 .... or to 7.0203 ... 

(3) SMARANDACHE BREAKUP CUBE SEQUENCES 
On similar lines SMARANDACHE BREAKUP CUBE SEQUENCES 
can be defined. The same idea can be extended to define 

SMARANDACHE BREAKUP PERFECT POWER SEQUENCES 

(4) SMARANDACHE BREAKUP INCREMENTED PERFECT 
POWER SEQUENCES 

1, 6, 6375, 

1 = 11 , 16 = 42 
, 166375 = 553 

, etc. 

Tn = the smallest number whose digits when placed adjacent to 
other terms of the sequence in the following manner 
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(5) SMARANDACHE BREAKUP PRIME SEQUENCE 

2 , 3, 3, ... 

2, 23, 233 etc. are primes. 

(6) SMARANDACHE SYMMETRIC PERFECT SQUARE SEQUENCE 
1,4, 9, 121, 484, 14641, ... 

(7) SMARANDACHE SYMMETRIC PERFECT CUBE SEQUENCE 

1, 8, 343, 1331 ... 

This can be extended to define 
(8) SMARANDACHE SYMMETRIC PERFECT POWER SEQUENCE 

(9) SMARANDACHE DIVISIBLE BY n SEQUENCE 

1, 2, 3, 2, 5, 2, 5, 6, 1, 0, 8, 4 ... 

the terms are the smallest numbers such that n divides T 1 T 2 ... T n-1 Tn the 
terms placed adjacent digit wise. 
e.g. 1 divides 1 , 2 divides 12 , 3 divides 123 , 4 divides 1232 , 

5 divides 12325 , 6 divides 123252 , 7 divides 1232535 , 8 divides 
12325256 9 divides 123252561 , 10 divides 1232525610 , 11 divides 
12325256108 , 
12 divides 123252561084 , etc. 

(9) SMARANDACHE SEQUENCE OF NUMBERS WITH SUM OF THE 
DIGIT'S = PRIME 

2,3,5,7,11,12,14,16,20,21,23,25,29, ... 

(10) SMARANDACHE SEQUENCE OF PRIMES WITH SUM OF THE DIGIT'S 
= PRIME 

2,3,5,7,11,23,29,41,43,47,61,67,83,89, ... 

(11) SMARANDACHE SEQUENCE OF PRIMES SUCH THAT 2P + 1 IS 
ALSO A PRIME 

2,3,5,11,23,29,41,53, ... 
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(11) SMARANDACHE SEQUENCE OF PRIMES SUCH THAT 2P - 1 IS 
ALSO A PRIME 

3.7.19.31 .... 

(13) SMARANDACHE SEQUENCE OF PRIMES SUCH THAT p2 + 2 IS 
ALSO A PRIME 

3. 17 •... 

(14) SMARANDACHE SEQUENCE OF SMALLEST PRIME WHICH DIFFER 
BY 2n FROM ITS PREDECESSOR 

5. 17 • 29. 97. . .. 

(Tl = 5 = 3+ 2. T2 = 17 = 13 + 4, T3= 29 = 23 + 6 ,T", = 97 = 89 + 8 etc.) 

(15)) SMARANOACHE SEQUENCE OF SMALLEST PRIME P FOR 
WHICH P + 2r IS A PRIME 

3, 13, 23. 89 •... 

3 + 2 X 1 = 5 is a prime, 13 + 2 X 2 = 17 is a prime. 23 + 2 X 3 = 29 , 
89 + 2 X 4 = 97 is a prime etc. 

(16) SMARANDACHE SEQUENCE OF THE SMALLEST NUMBER WHOSE 
SUM OF DIGITS IS n • 

1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 199, 299. 399. 
499, 599, 699 .... 

It is a sequence of the only numbers which have the following property. 

k 

N + 1 = n ( a r +1 ) 
r=1 

PROOF: 
Let N be a k-digit number with ar the rth digit (a1 = LSB ) such that 

k 

N + 1= n ( ar +1 ) ---------------(1) 
r=l 

to find all such k -digit numbers. 
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The largest k-digit number is N = 10k - 1 I with all the digits as 9 . It 
can be verified that this is a solution. Are there other solutions? 

let the mth digit be changed from 9 to am (am < 9) . 
Then the right member of (1) becomes 1 O(k-1) (am +1 ) .This 
amounts to the reduction in value by 1 O(k-1)( 9-a m ). The value of 
the k-digit number N goes down by 10(m-1)(9-am). For the new 
number to be a solution these two values have to be equal which 
occurs only at m = k. This gives 8 more solutions. In all there are 
9 solutions given by a.1 Ok - 1, for a = 1 to 9. 
e.g. for k = 3 the solutions are 

199 , 299 , 399 , 499, ,599 , 699 , 799 , 899 , 999 ,. 

Are there infinitely many primes in this sequence. 

(17) SMARANDACHE SEQUENCE OF NUMBERS SUCH THAT THE SUM 
OF THE DIGITS DIVIDES n 

1,3,6,9,1 0, 12,18,20,21,24,27,30,36,40,42,45,48,50,54,60,63,72,80,81,84,90, 
1 00, 1 02, 1 08, 11 0, 11 2, 114, 1 20, 1 26, 1 32, 1 33, 1 35, 1 40, 1 44, 1 50, . . . 

(18) ) SMARANDACHE SEQUENCE OF NUMBERS SUCH THAT EACH 
DIGIT DIVIDES n 

1,2,3,4,5,6,7,8,9,10,11, 12, 15,20,22,24,30,33,36,40,44,50,55,60,66, ... 

(19) ) SMARANDACHE POWER STACK SEQUENCE FOR n 

SPSS(2) 

1,12,124,1248,124816,12481632, 
The n th term is obtained by placing the digits of the powers of 2 starting 
from 2° to 2 n from left to right. 

SPSS(3) 
1,13,139,13927,1392781,1392781243, ... 

Problem: If n is an odd number not divisible by 5 how many of 
the above sequence SPSS(n) are prime? ( It is evident that n 
divides Tn iff n == 0 mod (5) ). 

(20) SMARANDACHE SELF POWER STACK SEQUENCE 

SSPSS 
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1,14,1427,1427256,14272563125,142725631257776, ... 

T, = Tr-1a1a2a3 ... ak where , rr = a1 a2a3 ... ak 

( the digits are placed adjacent). 

How many terms of the above sequence, SSPSS are prime? 

(21) SMARANDACHE PERFECT SQUARE COUNT PARTITION 
SEQUENCE 

the rth term of SPSCPS (n) Is defined as 

T r = 0 { X I X is a perfect square, nr + 1 ~ x ~ nr + n} 

o stands for the order of the set 

e.g. for n = 12 SPSCPS(12) is 

3, 1, 2, 0, 1, ° , 1 , 0, 0, 1, ° , 1, 0, 1! 1 , 0, 0, 1, 0, 1 

( number of perfect squares ~ 12 is 3 (1, 4, and 9). number of 
perfect squares between 13 to 24 is 1 (only 16) etc.) 

(21) SMARANDACHE PERFECT POWER COUNT PARTITION SEQUENCE 

The rth term of SPPCPS ( n,k) is defined as 

Tr = O{ X I X is a kth perfect power, nr +1 ~ X ~ nr + n} 
where 0 stands for the order of the set 

By this definition we get 

SPSCPS(12) = SPPCPS ( 12,2) 

Another example, SPPCPS ( 100,3 )is 
4,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0, 0, 0,1, ... 

Problem: Does L (Tr/(nr» converge as n ~ 00 ? 

(22) SMARANDACHE BERTRAND PRIME SEQUENCE 

According to Bertrand's postulate there exists a prime between nand 2n. 
Starting from 2 let us form a sequence by taking the largest prime less 
than double of the previous prime in the sequence. We get 
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2,3,5,7, 13,23,43,83,163, ... 

(23) SMARANDACHE SEMI- PERFECT NUMBER SEQUENCE 

6, 12, 18, 20, 24, 30, 36, 40, ... 

A semi perfect number is defined as one which can be expressed as the sum 
of its ( all or fewer) distinct divisors. 

e.g. 12 = 2 + 4 + 6 = 1 + 2 + 3 + 6 
20 = 1 + 4 + 5 + 10 
30 = 2 + 3 + 10 + 15 = 5 + 10 + 15 = 1 + 3 + 5 + 6 + 15 etc. 

It is evident that every perfect number is also a semi perfect number. 

THEOREM: There are infinitely many semi perfect numbers. 
Proof: We shall prove that N = 2" p where p is a prime less than 

2"+1 - 1 , is a semi- perfect number. 

The divisors of N are 

row 1------

row 2------

n-1 

we have L 2r p = p ( 1 + 2+ 22 + 23 + ... 2n
-
1

) = p(2n -1) = M 
r =0 

M is short of N by p. The task ahead is to express p as the sum of 
divisors from the first row. It is an established fact that every number can 
be expressed as the sum of powers of 2 .i.e. 

where ar = 0 or ar = 1. iff p:$ 2"+1 - 1 ,the 

equality giving a perfect number. 

(note:a1a2a3 ... an is the binary representation of p). 

N = M + P is expressible as the sum of its divisors. 
Remark: This of-course is not exhaustive. There are many more such 
examples possible giving infinitely many semi perfect numbers. One can 
explore the possibility of more such expressions. 
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(24) SMARANDACHE CO-PRIME BUT NO PRIME SEQUENCE 

4, 9, 10, 21, 22, 25, 26, 27, 28, 33,34 , 35 , 36 ,49, 50, 51, 52 , ... 

The nth term Tn is defined as follows 

Tn = {xl (Tn -1 , x) =1, x is not a prime and (Tn-1 , y) *- 1 for Tn-1 < y< x} 

The smallest number which is not a prime but is relatively prime to the 
previous term in the sequence. 

Open problem: Is it possible to as large as we want but finite increasing 
sequence k, k+1 , k+2 , k+3 , ... included in the above sequence? 

DEFINITION: We define a prime to be week, strong or balanced prime 
accordingly as pr < = or > (Pr-1 + pr+l ) /2. where Pr is the rth prime. 
e.g. 3 < (2+5)/2 3 is week prime. 5= (3 + 7)/2 is a balanced prime. 71 > 
( 67 + 73 )/2 is a strong prime. 

(25) SMARANDACHE WEEK PRIME SEQUENCE: 

3,7 ,13,19,23,29,31,37, 

(26) SMARANDACHE STRONG PRIME SEQUENCE: 

11,17,41, ... 

(27) SMARANDACHE BALANCED PRIME SEQUENCE: 

5 ,157,173,257,263,373, ... 

It is evident that for a balanced prime > 5, Pr = pr-1 + 6k _ 

OPEN PROBLEM: Are there infinitly many terms in the SMARANDACHE 
BALANCED PRIME SEQUENCE? 

178 



How big is N? One of the ~t estimates of its size was approximately [6]: 

But this is a rather large number; to test all odd numbers up to this limit would take 
more time and computer power than we have. Recent work has improved the 
estimate ofN. In 1989 J.R. Chen and T. Wang computed N to be approximately [7]: 

This new value for N is much smaller than the previous one, and suggests that some 
day soon we will be able to test all odd numbers up to this limit to see if they can be 
written as the sum of three primes. 
Anyway assuming the truth of the generalized Riemann hypothesis [5], the number 

N has been reduced to 1020 by Zinoviev [9], Saouter [10] and Deshouillers. 
Effmger, te Riele and Zinoviev[11] have now successfully reduced N to 5. 
Therefore the weak Goldbach conjecture is true, subject to the truth of the 
generalized Riemann hypothesis. 
Let's now analyse the generalizations of Goldbach conjectures reported in [3] and 
[4]; six different conjectures for odd numbers and four conjectures for even 
numbers have been formulated. We will consider only the conjectures 1,4 and 5 for 
the odd numbers and the conjectures 1, 2 and 3 for the even ones. 

4.1 First Smarandache Goldbach conjecture on even numbers. 

Every even integer n can be written as the difference of two odd primes, that is 
n = p - q with p and q two primes. 

This conjecture is equivalent to: 

For each even integer n, we can find a prime q such that the sum of n and q is itself 
aprimep. 

A program in Ubasic language to check this conjecture has been written. 
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for SLES and SLOS. 

(2) SMARANDACHE DIVISOR SEQUENCES: 

Define An = {xl d(x) = n } 
Then 

A1 = {1 } 

A2 = { pip is a prime} 

A3 = { x I x = p2 , P is a prime} 

~ = { x I x = p3 or x = P1P2 , P , P1 ,P2 are primes} . 

6 , 8 , 10 , 14 , 15 , 21 , 22 , 26 , 27 , ... 

We have 

I 11 Tn =1 for A1 

This limit does not exist for A2 

Lt I 1ITn exists and is less than rr?16 for A3 as Lt I1/n2 = ,iI6. 
n~C() 

The above limit does exist for Ap where p is a prime . 

.., Whether these limits exist for ~. As etc is to be explored. 

DIVISOR SUB SEQUENCES 

The sub sequences for ~ As etc can be defined as follows: 

B( r1, r2, r3, . , . rk ) is the sequence of numbers 

in increasing order ,where P1. P2, P3 .... Pk are primes. All the 

numbers having the same unique factorization structure. 

DIVISOR MULTIPLE SEQUENCE 

SDMS = { n I n = k. d(n) }. 

SDMS~ 1,2,8,9,12, ... 

(3) SMARANDACHE QUAD PRIME SEQUENCE GENERATOR: 

SQPSG = { r I 90r+11 , 90r+13, 90r+17, 90r+ 19 are all primes} 
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SQPSG o , 1,2 , ... 

Are there infintely many terms in the above sequence? 

(4) SMARANDACHE PRIME LOCATION SEQUENCES 

Define Po = sequence of primes. 

P 1 = sequence of primeth primes 

P1 ~ 3 , 5 , 11 , 17, ... 

P2 = sequence of primeth , primeth prime. 

Pr = sequence of primeth , primeth , ... r times ,primes 

* If Tn is the nth term of Pr , then what is the minimum value of r for which 

Lt I 1fTn exists? 
n~C() 

(5) SMARANDACHE PARTITION SEQUENCES 

(i) PRIME PARTITION 

Number of partitions into prime parts 

Spp(n) ~ 0, 1, 1, 1 ,1 2, 2, 3, ... 

(ii) COMPOSITE PARTITION 

Number of partitions into composite parts 

Spc(n) ~ 1,1,1,2,1,3, ... 

(iii) DIVISOR PARTITIONS 

Number of partitions into parts which are the divisors of n. 

SP d(n) ~ 1, ,1 ,1 ,2 ,1, 
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On similar lines following two partition sequences can be defined. 

(iv) CO-PRIME PARTITIONS : SPcp(n) 

Number of partitions into co-prime parts. 

(v) NON- CO-PRIME PARTITIONS SPncp(n) 

Number of partitions into non coprime parts. 

(vi) PRIME SQUARE PARTITIONS 

Partitions into prime square parts. 

This idea could be generalised to define more such functions. 

(6) SMARANDACHE COMBINATORIAL SEQUENCES. 

(I) Let the first two terms of a sequence be 1 & 2. The (n+1)th 

term is defined as 

T n+1 = sum of all the products of the previous terms of the 

sequence taking two at a time. 

T 1 = 1, T 2 = 2, => T 3 = 2 , and T 4 = 8 , 

SCS(2) = 1, 2, 2, 8 ,48, ... 

The above definition can be generalized as follows: 

Let T k = k for k = 1 to n . 

T n+1 = sum of all the products of the previous terms of the 

sequence taking r at a time. This defines SCS(r). 

Another generalization could be : 

Let T k = k for k = 1 to n . 

Tr = sum of all products of (r-1) terms of the sequence taking 

(r-2) at a time (r > n). This defines SCvS. 

for n = 2 T 1 = 1 , T 2 = 2 , T 3 = 3 , T 4 = 17 etc 

SCvS ~ 1 , 2 , 3, 17 , ... 
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PROBLEM: (1) How many of the consecutive terms of SCS(r) are pairwise 
coprime? 

(2) How many of the terms of SCvS are primes? 

(ii) SMARANDACHE PRIME PRODUCT SEQUENCES 

SPPS(n) 

Tn = sum of all the products of primes chosen from first n primes 

taking (n-1) primes at a time. 

SPPS(n) ~ 1, 5, 31, 247, 2927 ... 

Tl =1 , T2 = 2 + 3 , T3 = 2"3 + 2"5 + 3"5 = 31. 

T 4 = 2"3"5 + 2"3"7 + 2"5"7 + 3"5"7 = 247 etc. 

How many of these are primes? 

(7) SMARANDACHE $ -SEQUENCE 

(S$S) = { n I n = k "$(n) } 

S$S ~ 1, 2 , 4 , 6 , 8 , 12 ... 

(8) SMARANDACHE PRIME DIVISIBILITY SEQUENCE 

SPDS = { n I n divides Pn +1 , Pn is the nth prime. } 

SPDS~ 1 , 2 , 3 , 4 , 10 , ... 
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ON THE DIVISORS OF SMARANDACHE UNARY SEQUENCE 

(Amarnath Murthy, Superintending Engineer(E& T),Well Logging Section 
Oil And Natural Gas Corporation Ltd., Chandkheda, Ahmedabad, India-

380005) 

ABSTRACT: Smarandache Unary Sequence is defined as follows: 

u(n) = 1111 ... , Pn digits of"1" , where Pn is the nth prime. 

11,111, 11111,1111111 ... 
Are there an infinite number of primes in this sequence? It is still an unsolved 
problem. The following property of a divisor of u(n) is established. 
If 'd' is a divisor of u(n) then d == 1 (mod Pn). ,for all n > 3 ---(1), 

DESCRIPTION: Let I(m) = 1111 , ... m times = (10m 
- 1) 19 

Then u(n) = I(Pn) . 
Following proposition will be applied to establish (1). 
Proposition: I(p -1) == 0 (mod p) .----(2) 
PROOF: 9 divides 10P-1 -1 . From Fermat's little theorem if p ~ 7 is a prime 
then p divides (1 OP-1 -1) 19 
as (p, 9) = (p, 10) = 1. Hence p divides l(p-1) 

Coming back to the main proposition, let 'd' be a divisor of u(n). 

Let d =. paqbrC .. ,where p , q, r, are prime factors of d . 

p dividesl 'd' => P divides u(n) also p divides l(p-1) from proposition (2). in 
other words 

p divides (10P-1 -1) 19 and p divides (10P - 1) 19 

P divides (10 A(p-1) -1) 19 and p divides COB.P - 1) 19 

P divides (1 0(A(p-1) -B.p )/9 

P divides 1 OB.p { ( 1 OA(p-1) -B.p - 1) 1 9}. 

P divides (1 OA(p-1) - B.p - 1) 1 9. ------(3) 

There exist A and B such that 
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A(p - 1) - B.Pn = ( P - 1 , Pn ) . As Pn is a prime there are two possibilities: 

(i) . ( p - 1 , Pn ) = 1 or (ii). (p - 1 , Pn ) = Pn . 

In the first case, from (3) we get p divides (10 - 1 )/9 or p 

divides 1, which is absurd as p > 1. hence ( p - 1 , Pn ) = Pn " 
or Pn divides p - 1 

p == 1 ( mod Pn) 

on similar lines 

This completes the proof. 

COROLLARY: For any prime p there exists at least one prime q such that 
q == 1 (mod p) 

Proof: As u(n) == 1 ( mod Pn) , and also every divisor of u(n) is 

== 1 ( mod Pn) , the corollary stands proved. Also clearly such a 'q' is greater 
than p , this gives us a proof of the infinitude of the prime numbers as a by 
product. . 
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On Iterations That Alternate the Pseudo-Smarandache 
and Classic Functions of Number Theory 

Charles Ashbacher 
Charles Ashbacher Technologies 

Box 294 
Hiawatha, IA 52233 USA 

The Pseudo-Smarandache function was recently defined in a book by Kashihara[ 1]. 

Definition: For n > 0 and an integer, the value of the Pseudo-Smarandache function Zen) 
is the smallest number m such that n evenly divides 

m 

Note: It is well-known that this is equivalent to n evenly dividing m(~+l) . 

The classic functions of number theory are also well-known and have the following 
definitions. 

Let n be any integer greater than 1 with prime factorization 

n = pQlpQ2 pQk 
1 2 ... k 

Definition: For n > 0 and an integer, the number of divisors function is denoted by den). 
It is well-known that den) = (od + 1)(0:2 + 1) ... (o:k + 1). 

Definition: For n > 0 and an integer, the sum of the positive divisors of n is denoted by 
(l(n). It is well-known that 

(l(n) = (1 + PI + pi + ... + p?1 ) ... ( 1 + Pk + Pk + ... +Pkk ) 

Definition: For n > 0 and an integer, the Euler phi function <p(n), is the number of 
integers k, 1 :::; k < n that are relatively prime to n. It is well-known that 

Choosing a number n and repeatedly iterating a function is something that has been done 
many times before. What we \\,111 do here now is alternate the iterations between two 
different functions. 
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ExampJe: 
Construct the sequence of function iterations by starting \vith the nwnber of divisors 
function and then alternate it with the Pseudo-Smarandache function. 

For example, ifn = 3, then the iterations would be 

d(3) = 2 Z(2) = 3. d(3) = 2 Z(2) = 3 

Or notationally 

Z( ... d(Z(d(Z(d(n))))) ... ) 

For reference purposes, we will refer to this is as the Z-d sequence. 

Note that for n = 3, the sequence of numbers is a two-cycle. This is no accident and it is 
easy to prove that this is a general result. We do this in a roundabout way. 

Theorem 1: Let p be a prime, then the Z-d sequence will always be the two cycle 

232323 ... 

Proof: Since d(P) = 2 for p any prime and Z(2) = 3, which is also a prime, the result is 
immediate. 

This behavior is even more general. 

Theorem 2: lfn = PIP2, then the Z-d sequence will always be the two cycle 

472323 ... 

Proof: Since den) = 4 and Z( 4) = 7 and d(7) = 2, which starts the repeated 2 3 2 3 ... 
cycle. 

Theorem 3: lfn = p2 , the Z-d sequence will always be the two cycle 

322323232 ... 

Proof: Since den) = 3, Z(3) = 2, d(2) = 2, Z(2) = 3 and d(3) = 2. the result follows. 

This behavior is a general one that is easy to prove. 

Theorem: If n is any integer greater than 1, then the Z-d sequence will always reduce to 
the 2 cycle 

23232323 ... 
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Proof: Explicitly testing all numbers n ::; 50, the result holds. To complete the proof, we 
rely on two simple lenunas. 

Lemma 1: Ifn > 50, then d~) > 3. 

Proof: By a double induction on the number of prime factors and their exponents. 

Basis: Ifp > 50 is prime, then den) = 2. 

Inductive 1: Assume that n = pk > 50 and that d0) > 3. Then the ratio of 

~--EL L 
dUJk-rl) - k+hl > k-'-I > 3. 

Ind t· ? A th t ~ = Ctl Ctj ~ > .., Add dd·t· I . [; t uc lve _. ssume a lor n PI ... Pj 'd(n) -'. an a IlOna pnme actor 0 

n to some power. Since the additional prime factor is not necessarily larger than the 
others, we will call it q and append it to the end noting that the primes are not necessarily 
in ascending order. 

since d is mUltiplicative. Furthermore, it is well-known that den) ::; n for all n > 1. 
Therefore, we have 

d~) > 3. 

and the proof is complete. 

Lemma 2: If n > 1 is an integer, then the largest value that the ratio Z~n) can have is 2. 

Proof: It is well-known that if n = 2k, then Zen) = 2k+1 -1. For all other values of n, Zen) 
is at most n. 

Therefore, we have an alternating sequence of numbers where one at most doubles the 
previous value and the other always reduces it by at least a factor of three. Since the one 
that always reduces by a factor of three is done fIrst this guarantees that the iterations will 
eventually reduce the value to a number less than 50. 

Since the iteration of the Z-d sequence always goes to the same 2-cyc1e, the result will be 
the same if the order of the iterations is reversed to the d-Z sequence. 

Another iterated sequence that can be constructed involves the Euler phi function and the 
Pseudo-Smarandache function. 
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Definition: For n > 1, the Z-pbi sequence is the alternating iteration of the Euler phi 
function followed by the Pseudo-Smarandache function. 

Z( ... (¢(Z(<;D(n»» ... ) 

The sequence is the rather boring 

1 1 1 1 1 

for n=2. 

This result is not universal, as for all numbers 3 < n ::; 14, the iterations move to the 
same 

232323 

2-cycle. However, this is not a universal result, as when n = 15, the iteration creates the 
2-cycle 

8 15 8 158 158 15 ... 

which is also the cycle for 16 and 17. 

Examining the behavior of the Z-phi iteration for all numbers n < 254, all create either 
the 

232323 ... 

or 

8 15 8 15 8 15 8 ... 

2-cycles. However, when n =255, the iteration creates the new 2-cycle 

128255 128255 128 ... 

which is also the cycle for 256. 

Creating and running a computer program to check for 2-cycles that are different from 
the previous three, no new 2-cycle is encountered until for n=65535 

32768 65535 32768 65535 32768 ... 

which is also the cycle for n=65536. 
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The pattern so far is clear and is summarized in the following chart 

Pattern First Instance 
2 -3 3 = 22 - 1 

8 - 15 15 = 24 -1 

128 - 255 255 = 28 - 1 
32768 - 65535 65535 = 216 - 1 

which raises several questions. 

1) Does the Z-phi sequence always reduce to a 2-cycle of the form 22k
- 1 - 22k - 1 for 

k 2: I? 

2) Does any additional patterns always appear first for n = 22k - I? 

A computer search was conducted to test these questions. 

Definition: For n > 1, the Z-sigma sequence is the alternating iteration of the sigma, 
sum of divisors function followed by the Pseudo-Smarandache function. 

Z( .. . (a(Z(a(n)))) ... ) 

For n = 2, the Z-sigma sequence creates the 2-cycle 

3232 ... 

and for 3 ~ n ~ 15, the Z-sigma sequence creates the 2-cycle 

24 15 24 15 24 15 ... 

However, for n = 16, we get our first cycle that is not a 2-cycle, but is in fact a 12-cycle. 

63 10464127126312 143 16848124313263 10464127126312143 16848 ... 

The numbers 17 ~ n ~ 19 all generate the 2-cycle 24 15 24 15 ... , but n = 20 
generates the 2-cycle 

42 20 42 20 42 20 ... 

and n = 21 generates the 12-cycle 

63 10464127 126312 143 16848 12431 3263 10464127126312 143 16848 ... 
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The numbers 20 < n ~ 24 all generate the 2-cycle 24 15, but n = 25 generates the 12-
cycle 

63 10464127126312143 16848 124313263 10464127126312 143 16848 ... 

and n = 26 the 2-cycle 42 20 42 20 ... 

It is necessary to go up to n=381 before we get the new cycle 1023153610231536 ... 
and a search up to n = 552,000 revealed no additional generated cycles. This leads to 
some obvious additional questions. 

1) Is there another cycle generated by the Z-sigma sequence? 

2) Is there an infinite number of numbers n that generate the 2-cycle 42 20? 

3) Are there any other numbers n that generate the two cycle 2 3? 

4) Is there a pattern to the first appearance of a new cycle? 

In conclusion, the iterated sequences created by alternating a classic function of number 
theory with the Pseudo-Smarandache functions yields some interesting results that are 
only touched upon here. The author strongly encourages others to further explore these 
problems and is interested in hearing of any additional work in this area. 
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THE ALMOST PRESUMABLE 
MAXIMALITY OF SOME 
TOPOLOGICAL LEMMA 
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Abstract 

Some splitting lemma of topological nature provides fundamental 
information when dealing with dynamics (see [1], pg.79). Because the 
set involved, namely X \ P:;, is neither open nor closed, a natural 
question arise: can this set be modified in order to obtain aditional 
data? cnfortunately, the answer is negative. 

For a metric space X which is locally connected and locally com
pact and for some continuous mapping f : X -+ X: the set w-set of 
each element x of X is given by the formula 

J.)(x) = {Y E Xly = lim fkn(X) , lim kn = +oo} . 
n ...... +x n ...... += 

vVe also denote by Wj(X) , 1 :S j :S r: the set 

,",-"j(x) = {Y E Xly = lim fmnr+j(X) , lim ffin = +oo}. 
n-+x n-+= 

~ ow: :.u( x) can be spli tted according to the following lemma. 

r 
Lemma 1 a) .... ,(x) = U :.uj(x) ; 

j=1 

b) f (,",-"j(x)) C wU+l)moor' 

• e-mail address:munteanufm@hotmail.com 
- t-mail address: Octawian@mail.yahoo.com 
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Its proof relies upon the properties of :.u( x) . 

Lemma 2 For some nonvoid subset S oj X we consider e a compo
nent oj X \ S. i.e. a maximal connected set (see [2/, pg. 54). Then: 

a) C'< C C U (5 n &'< 5) : 
b) aX e c (e n aX c) U ( 5 n aX s) . 
1L·here eX signifies the closure oj e under the topology oj X while 
if'< e is the boundary oj C under the same topology. 

Remark 1 For instance. if 5 is closed. then aXe c aX 5 as the 
components of a locally connected space are open. 

Proof. a) First, let's show that eX c e uS. For x E X \ (e uS) = 
(X \ S) \ e, as e is closed in X \ S, there will be some open G C X 
such that 

x E G n (X \ S) eX \ (e uS). 

Obviously, 

[G n (X \ S)],'"I e = G n e = 0 

and so 
x~ eX. 

Further on, let's assume that x E eX n S. If x E X \ aX S: then 

x ~ X \ SX. There will be some open W C X such that 

xEvV; wnX\SX =0. 

-x In particular, W n e = 0 and so x ~ e . 
b) According to a): we have: 

aX e c (e n X \ ax) u [( S n aX s) n X \ eX] 

( en X \ eX) u (s n aX 5) 

because of S ,'"I ax S eSc X \ e . 
Obviously: 

• 
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Remark 2 It worths noticing that the sets (C n aX C) and (5 n aX 5) 
are disjoint; in other words. f)-)( C is piecewise-made. Lemma 2 works 
equally well in any topological space. 

Lemma 3 (j'vlelbourne, Dellnitz, Golubitsky) 
For some nonvoid subset 5 of X. we denote by P s the union 

::c 

Ps(J) = U (j)-l (5) 
n=O 

Let x be some element of 5. Then either ~(x) C P; or the following 
are valid: 
a) ~(x)\Ps is covered by finitely many (connected) components Co, .. ·, Cr - 1 

of X \ P s ; 

b) These components can be ordered so that 

f(Ci ) C C(i+l) mod r; 
-x -x 

c) ~(x) C Co U ... U C r - 1 . 

Remark 3 Notice the splitting in relation with lemma 1. A.s we men
tioned in the A.bstract. it is qu-ite natural to ask if X\ P s can be replaced 
by the easier-to-work-with X \ P s' The following lemma shows that 
this would imply no more the presence of finitely many components. 

Lemma 4 Let 5 be some nonvoid subset of X which is not dense in 

X, i.e. SX =1= X. We consider C a component of X \ SX and D a 
component of X \ 5 such that C CD. Then any element x of D \ C 

X -x belongs either to a 5 or to any other component of X \ 5 . 

Proof. If x rt. X \ S then x E (X \ 5) n SX c f)-Y 5 .• 
An example would be appropriate: in R2, we denote by 1'(O,r) the 

r-disk centered in 0. Now, for X = 1'(0, 2)R2 , 5 = 1'(0,1) U (1,2] U 
[-2, -1), we have 

-R2 R2 
5 = 1'(0,1) U [1, 2] U [-2, -1] 

D = X \ 5, C E { ( X \ SR2) n (y > 0) , (X \ SR2) n (y < 0) } . 

Further exemples can be architectured easily even to obtain infinitely 

many components of X \ SX . 
In other words, finitely many components of X \ 5 may include infi

nitely many components of X \ SX . 
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ON THE CONVERGENCE OF THE EULER 

HARMONIC SERIES 

Sabin Tabirca" Tatiana Tabirca* 

Abstract: The aim oj this article is to study the convergence oj the Euler 
harmonic series. Firstly, the results concerning the convergence oj the 
Smaralldache and Erdos harmonic junctions are reviewed Secondly, the Euler 
harmonic series is proved to be convergent jor a> I, and divergent otherwise. 
Finally, the slims of the Euler harmonic series are given 

Key words: series, convergence, Euler function. 

The purpose of this article is to introduce the Euler harmonic series and to study its 
convergence. This problem belongs to a new research direction in Number Theory that is 
represented by convergence properties of series made with the most used Number Theory 
functions. 

1. Introduction 

In this section, the important results concerning the hannonic series for the Smarandache and 
Erdos function are reviewed. 

• ~ 1 
Definition 1. If f: N ~ N is a function, then the series ~--- is the harmonic series 

n<!! JQ(n) 

associated to f and is shortly named the /harmonic series. 

The convergence of this sort of series has been studied for the Smarandache and Erdos 
functions so far. Both are important functions in Number Theory being intensely studied. The 
defInitions and main properties of these two important functions are presented in the 
following: 
• The Smarandache function is S: N* ~ N defIned by 

• Computer Science Depanment, Transilvania University ofBrasov 
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Sen) = min~k E: ly';k' =Mn } ('itn EN *). 
• The Erdos fWlction is P : :.V* ~ i'i defmed by 

(1) 

pen) = max~pE Ni n =Mp A pisprim}('itnE: /'i*' [I}), P(l) = O. (2) 
TIle main propel1ies of them are: 

('-i a,b E N *) (a,b) = l~S(a· b) = max ~S(a ),5(b)}, P(a· b) = max {P(a),P(b)} . 

('ita E N *) P(a) ~ Sea) ~ a and the equalities occur iifa is prim. 

Erdos [1995] found the relationship between these 1:\'';0 fWlctions that is given by 

. tv = l,n j P(i) < S(i)} 
lim = O. 

n 

1 1 
The series I-- and I-- are obviously divergent from Equation (4). 

n~2 Sen) n~2 pen) 

(3) 

(4) 

(5) 

1 
The divergence of the series I-,- was an open problem for more than ten years. Tabirca 

n~2 S-(n) 

[1998J proved the its divergence using an analytical technique. Luca [1999] was able to prove 
1 

the divergence of the series I-- refming Tabirca's technique. TIlllS, the Smarandache 
n~2 SG(n) 

1 
hannonic series I-a-" a E R is divergent. Based on this result and on Equation (5), 

n~2 S (n) 

1 
Tabirca [1999] showed t.ltat the Erdos hannonic series I--, a E R is divergent too. 

n~2 pU(n) 

Unfortunately, this convergence property has not been studied for the Euler function. This 

function is defmed as follow: rp:N ~ N, ('lin EN) rp(n) = i{k = 1,2, ... ,ni (k,n) = I}I. 
The main properties [Hardy & Wright, 1979] of this function are enumerated in the followmg: 

('v' a,b E N)(a,b) = 1 ~ rp(a' b) = rp(a)· rp(b) - the multiplicative property (6) 

a=p~' .p';' ..... p;' ~rp(a)=a-(l- fpJ-(l- fpJ .... -(l- fpJ (7) 

('v'aEN)Irp(d)=a. (8) 
dla 

More properties concerning this function can be found in [Hardy & Wright, 1979], [Jones & 
Jones, 1998] or [Rosen, 1993] 

2. The Convergence of the Euler Harmonic Series 
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In this section, the problem of the convergence for the Euler harmonic series is totally solved. 

The Euler harmonic series I_I_, (J EO R is proved to have the same behavior as the 
n:!l rpLl(n) 

1 
harmonic series I -;-, a E R. 

n~1 n 

1 
Proposition 1. The series )' -- is divergent for a ~ 1 . 

~ rp"(n) 

Proof 
The proof is based on the equation 

rp( n) ~ n (vr n ~ 1). (9) 

1 1 1 1 
Since -a- ~ -;; (~ n ~ 1) and I -;; is divergent, it follows that I-- is divergent 

rp (n) n ,,~I n n~1 rp"(n) 

too . 

• 
The convergence of the series for a> 1 is more difficult than the previous and is studied in the 
following. 

Let us defme the function d: N* ~ N by d(n) = 1{P prime: n ==Afp}. The main properties of 

this function are given by the next proposition. 

Proposition 2. The function d satisfies the following equation: 
a) d(l)=O. 

b) ('it a,b E N*)(a,b) = 1 => d(a·b) = d(a)+d(b). 

c) ('it n E N *) den) ~ log2(n). 
Proof 
Equation (lOa.) is obvious. 

(lOa.) 

(lOb.) 

(lOc.) 

L m, m~ "', d b k, k, k, b th' b d . . f et a=PI 'pz ·····Ps an =ql' 'q2' ·····qt e epnmenwn er ecomposlllono 

I · . b Th b m, m. M ", k, k· th two re atlve pnme num ers. us, a· = PI . P2' ..... Ps ' . ql . q2' ..... qr' gIves e 

prime number decomposition for abo Since the equation d (a . b) = s + t, d (a) = s and 

d (b) = t hold in the above hypothesises, Equation (lOb) is true. 

Let n = P;"" . P;~ ..... p;. be the prime nwnber decomposition of n. Equation (lOb) gives 

the following inequality 

den) = d(p~l . P;~ ..... p;') = d(P,m,) + d(p;~) + ... + d(p;') = 1 + 1 + ... + 1 ~ 

~ logz (elM, )+ log2 (p;~ ) + ... + log2 (p~, ) = log2 (p~l . p;~ ..... P;' ) = logz (n) 

that proves Equation (lOc). 

The following proposition proposes a new inequality concerning the Euler fWICtiOIl. 
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Proposition 3. ('\1' n ~ l)cp(n) ~ n . 
1 + logz n 

Proof 

Let n = p;" . P;' ..... P;' be the prime nwnber decomposition of n such that 

PI <P2 <···<Ps· Thus, cp(n)=n.(I- 1/ ).(1- 1/ ) ..... (1- 1/ I holds. Using 
/ PI / P2 \ / Ps) 

the order PI <pz <···<Ps, it follows that 2~PI,3~p2,.··,d(n)+I<ps. These 

inequalities are used as follows: 

cp(n)=nJll--liJll-_l J ..... [I--1 J~ 
PI) P2 . Ps 

;, n (l-H( I-H(l- d(n~+ 1) ~ d(:;+ 1 
n 

Equation (lOc) used in the last inequality gives cp(n) ~ ----
1+ log2 n 

(1+10 0 n)a 
Proposition 4. If a> 1, then the series II ~2 is convergent. 

n2!1 \ n 
Proof 

• 

The proof uses the following convergence test: "if (an )n>O is a decreasing sequence, then the 

series Ian and I2" ·a
2
" have the same convergence". 

n>O n>O 

Because the sequence (C + 1:g2 n J) is decreasing, the above test can be applied. The 

n>O 

I 2n [ 1 + 10g2 2" Ja I (1 + n t - 2a - 1 I n
a 

condensed series is . " - that is obviously 
2 - ?".(a-I) 2,,·(a-l) 

n2!1 n2!! - n2!2 

convergent. 

Th eorem 5. If a> 1, then the series I. _1_ is convergent. 
n~! cpa(n) 

Proof 

• 

d· .. 4 th . ,(1+IOg2 n)a. p ....... Accor mg to PropOSItIon , e senes L.. IS convergent. roposioon.J gIVes the 
nd n 

inequality thus the series is convergent too. 

• 
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The interesting fact is that the Euler harmonic series has the same beha\iour as the classical 
harmonic series. Therefore, both are convergent for a> 1 and both are divergent for a~ 1. The 
right question is to fInd information about the sum of the series in the convergence case. Let 

1 
us denote £ (a) = I -- the sum of the Euler harmonic series for a> 1. These constants 

n"j rpG(n) 

can be computed by using a simple computation. They are presented in Table 1 for a=2,3, 
... ,7. 

a E(a) a E(a) 
2 3.39049431 5 2.09837919 
3 2.47619474 6 2.04796102 
4 ! 2.20815078 7 I 2.02369872 

Table 1. The values for E(a). 

Unfortunately, none of the above constants are known. Moreover, a relationship 
between the classical constants (n; e, .) and them are not obvious. Finding 
properties concerning the constants £(a) still remains an open research problem. 
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On two notes by M. Bencze 

J~Sandor 

Babe~-Bolyai University, 3400 Cluj-Napoca. Romania 

In vol 10 of this Journal M. Bencze has published two notes on certain 

inequalities for the Smarandache function. In [2] it is proved that 

(1 ) 

This, in other form is exactly inequality (2) from our paper [5], and follows 

easily from Le's inequality S(ab) ~ S(a) + S(b) 

In [1l it is proved that 

The proof follows the method of the problem from [3}, i.e. 

S(mln ) ~ m· 11 

(2) 

(3) 

This appears also in [4], [5]. We note here that relation (2) is a direct 

consequence of (1) and (3), since 

Sb/)'··anF·)~ S6tF')-r-· + S(anfn)~ blat + . -'- blla" 
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On certain generalizations of the Smarandache 

function 

J. Sandor 

Babe§-Bolyai University, 3400 Cluj-Napoca, Romania 

J1 

1. The famous Smarandache function is defined by S(n) := min{k EN: nlk~}, n ~ 1 

positive integer. This arithmetical function is connected to the number of divisors of n, 

and other important number theoretic functions (see e.g. [6], [7], [9], [10]). A very natural 

generalization is the following one: Let f : N* ~ N* be an arithmetical function which 

satisfies the following property: 

(Pd For each n E N* there exists at least a k E N* such that nlf(k). 

Let Fj : N* ~ N- defined by 

Fj(n) = min{k EN: nlf(k)}. (1) 

Since every subset of natural numbers is well-ordered, the definition (1) is correct, and 

clearly Fj ( n) ~ 1 for all n E N-. 

Examples. 1) Let id( k) = k for all k ~ 1. Then clearly (Pd is satisfied, and 

(2) 
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2) Let f(k) = kL Then F!(n) = S(n) - the Smarandache function. 

3) Let f(k) = Pk!, where Pk denotes the kth prime number. Then 

(3) 

Here (PI) is satisfied, as we can take for each n 2: 1 the least prime greater than n. 

4) Let J(k) = c.p(k), Euler's totient. First we prove that (PI) is satisfied. Let n ~ 1 

be given. By Dirichlet's theorem on arithmetical progressions ([1]) there exists a positive 

integer a SLlch that k = an + 1 is prime (in fact for infinitely many a's). Then clearly 

r.p(k) = an, which is divisible by n. 

We shall denote this function by F",. (4) 

5) Let J(k) = cr(k), the sum of divisors of k. Let k be a prime of the form an - 1, 

where n ~ 1 is given. Then clearly cr(n) = an divisible by n. Thus (Pd is satisfied. One 

obtains the arithmetical function Fa. 

2. Let A c N., A =I 0 a nonvoid subset of N, having the property: 

(P2 ) For each n 2: 1 there exists k E A such that n\k!. 

Then the following arithmetical function may be introduced: 

SA(n) = min{k E A: nlk!}. 

Examples. 1) Let A = N-. Then SN(n) == S(n) - the Smarandache function. 

(5) 

(6) 

2) Let A = Nl = set of odd positive integers. Then clearly (P2 ) is satisfied. (7) 

3) Let A = N2 = set of even positive integers. One obtains a new Smarandache-type 

function. (8) 

4) Let A = P = set of prime numbers. Then Sp(n) = min{k E P: nlk!}. We shall 

203 



denote this function by P( n), as we will consider more closely this function. (9) 

3. Let 9 : N* -1- N· be a given arithmetical function. Suppose that 9 satisfies the 

following assumption: 

(P3 ) For each n ~ 1 there exists k ~ 1 such that g(k)ln. 

Let the function Gg : N* -1- N· be defined as follows: 

Gg(n) = max{k E N*: g(k)ln}. 

(10) 

(11 ) 

This is not a generalization of S(n), but for g(k) = k!, in fact one obtains a "dual"

function of 5 (n), namely 

G!(n) = max{k E N*: k!ln}. (12) 

Let us denote this function by S.(n). 

There are many other particular cases, but we stop here, and study in more detail 

some of the above stated functions. 

4. The function P( n) 

This has been defined in (9) by: the least prime P such that nip!. Some values are: 

P(l) = 1, P(2) = 2, P(3) = 3, P(4) = 5, P(5) = 5, P(6) = 3, P(7) = 7, P(8) = 5, 

P(9) = 7, P(10) = 5, P(l1) = 11, ... 

Proposition 1. For each prime p one has P(p) 

P(n) = greatest prime divisor of n. 

p, and if n is squarefree, then 

Proof. Since pip! and p f q! with q < p, clearly P(p) = p. If n = PIP2 ... pr is squarefree, 

with Pl,""P,· distinct primes, if Pr = max{Pl,···,Pr}, then Pl·.·PrIPr!. On the other 

hand, PI ... p,. t q! for q < pr, since pr f q!. Thus pr is the least prime with the required 

property. 
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The calculation of P(p2) is not so simple but we can state the following result: 

Proposition 2. One has the inequality P(p2) ~ 2p + 1. If 2p + 1 = q is prime, then 

P(p2) = q. More generally, p(pm) ~ mp + 1 for all primes p and all integers m. There is 

equality, if mp + 1 is prime. 

Proof. From p21 (1· 2 ... p )(p+ 1) ... (2p) we have p21 (2p )!. Thus P(p2) ~ 2p+ 1. One has 

equality, if 2p+ 1 is prime. By writing pmll ·2 .. . p(p + 1) ... 2p ... [(m -l)p + 1] ... mp, 
~~' v J 

where each group of p consecutive terms contains a member divisible by p, one obtains 

Remark. If 2p + 1 is not a prime, then clearly P(p2) ~ 2p + 3. 

It is not known if there exist infinitely many primes p such that 2p + 1 is prime too 

(see (4)). 

Proposition 3. The following double inequality is true: 

2p + 1 ~ p(p2) ~ 3p - 1 (13) 

mp + 1 :::; p(pm) :::; (m + l)p - 1 (14) 

if p ~ Po. 

Proof. Vie use the known fact from the prime number theory ([1], [8]) tha for all a ~ 2 

there exists at least a prime between 2a and 3a. Thus between 2p and 3p there is at least 

a prime, implying P(p2) :::; 3p - 1. On the same lines, for sufficiently large p, there is a 

prime between mp and (m + l)p. This gives the inequality (14). 

Proposition 4. For all n, m 2: lone has: 

S(n) :::; Pen) :::; 2S(n) - 1 (15) 
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and 

P(nm) ::; 2[P(n) + P(m)]- 1 (16) 

where S( n) is the Smarandache function. 

Proof. The left side of (15) is a consequence of definitions of S(n) and P(n), while the 

right-hand side follows from Chebyshev's theorem on the existence of a prime between a 

and 2a (where a = S(n), when 2a is not a prime). 

For the right side of (16) we use the inequality S(mn) ::; S(n) + S(m) (see [5]): 

P(nm) ::; 2S(nm) - 1 ::; 2[S(n) + S(m)]- 1 ::; 2[P(n) + P(m)]- 1, by (15). 

Corollary. 

lim y'P(n) = 1. 
n-+oo 

(17) 

This is an easy consequence of (15) and the fact that lim y'S(n) = 1. (For other 
n-+oo 

limits, see [6]). 

5. The function S.(n) 

As we have seen in (12), S.(n) IS m certain sense a dual of S(n), and clearly 

(S.(n))!JnJ(S(n))! which implies 

thus, as a consequence, 

1 ::; S.(n) ::; S(n) ::; n 

lim )S.(n) = 1. 
n-+oo V S(n) 

On the other hand, from known properties of S it follows that 

. . S.(n) 
Ilmmf-

S
( ) = 0, 

n-+oo n 

. S.(n) 
ltm sup -S( ) = l. 

n-+oo n 

For odd values n, we clearly have S.(n) = 1. 
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Proposition 5. For n ~ 3 one has 

S.(n! + 2) = 2 (21) 

and more generally, if p is a prime, then for n ~ p we have 

S.(n! + (p - I)!) = P - 1. (22) 

Proof. (21) is true, since 21(n! + 2) and if one assumes that k!l(n! + 2) with k 2: 3, 

then 3!(n! + 2), impossible, since for n ~ 3, 3In!. So k < 2, and remains k = 2. 

For the general case, let us remark that if n ~ k + I, then, since kl(n! + k!), we have 

S.(n! + k!) ~ k. 

On the other hand, if for some s ~ k + 1 we have s!l(n! + k!), by k + 1 ::; n we get 

(k + l)l(n! + k!) yielding (k + l)lk!, since (k + l)ln!. So, if (k + l)lk! is not true, then we 

have 

S.(n! + k!) = k. (23) 

Particularly, for k = p - 1 (p prime) we have p t (p - I)!. 

Corollary. For infinitely many m one has S.(m) = p - 1, where p is a given prime. 

Proposition 6. For all k, m 2: 1 we have 

S.(k!m) ~ k (24) 

and for all a, b 2: 1, 

S.(ab) ~ max{S.(a), S.(b)}. (25) 

Proof. (24) trivially follows from k!l(k!m), while (25) is a consequence of (S.(a))!ja ~ 

(S.(a))!I(ab) so S.(ab) 2: S.(a). This is true if a is replaced by b, so (25) follows. 
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Proposition 7. S.[x(x - 1) ... (x - a + 1)] 2: a for all x 2: a (x positive integer).(26) 

Proof. This is a consequence of the known fact that the product of Q consecutive 

integers is divisible by a!. 

We now investigate certain properties of S_(a~b~). By (24) or (2.5) we have S.(a!b~) 2: 

max{ a, b}. If the equation 

arb! = c! (27) 

is solvable, then clearly S.( arb!) = c. For example, since 3!· 5! = 6!, we have S.(3! ·5!) = 6. 

The equation (27) has a trivial solution c = k!, a = k! -1, b = k. Thus S.(k!(k! -1)!) = k. 

In general, the nontrivial solutions of (27) are not known (see e.g. [3], [1]). 

We now prove: 

Proposition 8. S.((2k)!(2k + 2)!) = 2k + 2, if 2k + 3 is a prime; 

S.((2k)!(2k + 2)!) 2: 2k + 4, if 2k + 3 is not a prime. 

(28) 

(29) 

Proof. If 2k + 3 = p is a prime, (28) is obvious, since (2k + 2)!1(2k)!(2k + 2)!, but 

(2k + 3)! f (2k)!(2k + 2)!. We shall prove first that if 2k + 3 is not prime, then 

(2k + 3)1(1 ·2 ... (2k)) 

Indeed, let 2k + 3 = ab, with a, b 2: 3 odd numbers. If a < b, then a < k, and 

2 
from 2k + 3 2: 3b we have b ::; '3k + 1 < k. So (2k)! is divisible by ab, since a,b are 

distinct numbers between 1 and k. If a = b, i.e. 2k + 3 = a2
, then (*) is equ~valent with 

a 2 J(1 ·2 ... a)(a + 1) ... (a 2 
- 3). We show that there is a positive integer k such that 

a+ 1 < ka::; a2 -3 or. Indeed, a(a-3) = a2 -3a < a2 -3 for a> 3 and a(a-3) > a+1 

by a 2 > 4a + I, valid for a 2: 5. For a = 3 we can verifiy (*) directly. :-row (*) gives 

(2k + 3)!J(2k)!(2k + 2)!, if 2k + 3 =1= prime (** ) 
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implying inequality (29). 

For consecutive odd numbers, the product of factorials gives for certain values 

5.(3! . 5!) = 6, 5.(5!· 71) = 8, 5.(7!· 9!) = 10, 

5.(9! . ll!) = 12, 5.(ll!· 13!) = 16, 5.(13!· 15!) = 16, 5.(15!· 17!) = 18, 

5.(17! ·191) = 22, 5.(19!· 211) = 22, 5.(211·231) = 28. 

The following conjecture arises: 

Conjecture. 5.((2k - 1)!(2k + 1)1) = qk - 1, where qk is the first prime following 

2k + 1. 

Corollary. From (qk - 1)!\(2k - 1)!(2k + I)! it follows that qk> 2k + 1. On the other 

hand, by (2k - 1)!(2k + 1)!j(4k)!, we get qk :S 4k - 3. Thus between 2k + 1 and 4k + 2 

there is at least a prime qk. This means that the above conjecture, if true, is stronger than 

Bertrand's postulate (Chebyshev's theorem [1), (8)). 

6. Finally, we make some remarks on the functions defined by (4), (5), other functions 

of this type, and certain other generalizations and analogous functions for further study, 

related to the Smarandache function. 

First, consider the function F.., of (4), defined by 

F.., = min{k E N* : nllP(k)}. 

First observe that if n + 1 = prime, then n = <pen + 1), so F..,(n) = n + 1. Thus 

n + 1 = prime => FAn) = n + 1. (30) 

This is somewhat converse to the <p-function property 

n + 1 = prime => <pC n + 1) = n. 
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Proposition 9. Let cPn be the nth cyclotomic polynomial. Then for each a > 2 

(integer) one has 

F",(n) ::; cPn(a) for all n. (31 ) 

Proof. The cyclotomic polynomial is the irreducible polynomial of grade cp( n) with 

integer coefficients with the primitive roots of order n as zeros. It is known (see [2]) the 

following property: 

nlcp(cPn(a)) for all n ~ 1, all a ~ 2. (32) 

The definition of F", gives immediately inequality (31). 

Remark. 'vVe note that there exist in the literature a number of congruence properties 

of the function cpo E.g. it is known that nlcp(an 
- 1) for all n ~ 1, a ~ 2. But this is a 

consequence of (32), since <Pn(a)lan - 1, and ulv =:;. cp('u)lcp(v) implies (known property 

of cp) what we have stated. 

The most famous congruence property of cp is the following 

Conjecture. (D.H. Lehmer (see [4])) If cp(n)l(n - 1), then n = prime. 

Another congruence property of cp is contained in Euler's theorem: ml(a",(m) - 1) for 

(a, m) = 1. In fact this implies 

S.[a",(m!) - 1] ~ m for (a, m!) = 1 (33) 

and by the same procedure, 

S.(cp(an! - 1)] ~ n for all n. (34) 

As a corollary of (34) we can state that 

limsupS.[cp(k)] = +00. (35) 
k~co 
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(It is sufficient to take k = an! - 1 -r 00 as n -r 00). 

7. In a completely similar way one can define Fd(n) = miu{k: nld(k)}, where d(k) is 

the number of distinct divisors of k. Since d(2n-l) = n, one has 

(36) 

Let now n = p~I ... p~r be the canonical factorization of the number n. Then Smaran-

dache ([91) proved that S(n) = max{S(p~l), ... ,S(]J~r)}. 

In the analogous way, we may define the functions S,,:-( n) = max{ r..p(p~ 1), ... , c.p(p~r)}, 

5<7 ( n) = max{ a(p~l ), ... , a(p~r)}, etc. 

But we can define S~( n) = min{ cp(p~l), . .. ,cp(p~r)}, Sl( n) = min{ c.p(p~l), ... ,<p(p~r)}, 

etc. For an arithmetical function f one can define 

~f(n) = l.c.m.{f(p~l), ... , f(p~r)} 

and 

is f( n) = g.c.d. {f(p~l ), ... , f(p~r)}. 

For the function ~<p(n) the following divisibility property is known (see [8], p.140, 

Problem 6). 

If (a, n) = 1, then 

nl[a~",(n) - 1]. (37) 

These functions and many related others may be studied in the near (or further) 

future. 

211 



References 

[1] T.M. Apostol, An introduction to analytic number theory, Springer Verlag, 1976. 

[2] M. Deaconescu and J. Sandor, Variations on a theme by Hllrwit=, Cazeta ?vIat. (Pe::!. 

Met.) .-\,8(1987), :-';0.4, 186-191. 

[3] P. Erdos, Quelques problemes de theorie des nombres, L 'Enseigneme:1t ~lath. 1963, 

pp. 81-135. 

[4] R.K. Cuy, Unsolved problems in number theory, Springer Verlag, Second ed. 1994. 

[5] M. Le, An inequality concerning the Smarandache function, Smarandache Notions J. 

9( 1998), No.1-2, 124-125. 

[6] J. Sandor, On certain new inequalities and limits for the Smarandache function, 

Smarandache Notion J. 9(1998), 63-69. 

[7] J. Sandor, On values of arithmetical functions at factorials, I (submitted). 

[8] H.N. Shapiro, Introduction to the theory of numbers, Wiley, 1983. 

[9] F. Smarandache, A function in the number theory, An. Univ. Timi~oara, Ser. Mat., 

vol. 38(1980), 79-88. 

[10] Smarandache Notion Journal (collection). 

This paper has appeared in Notes Num. Theory Discr. Math. (Bulgaria), 5(1999),2,41-51. 

212 



On the numerical function Srni~ 

Vasile Seleacu 
Department of Mathematics, University of Craiova 

13~ AI. 1. Cuza st., Craiova 1100, Romania 

In [1] on defines S;;Jn : N \ {I} ~ N, s~ln (x) = min {S-l(X)} ,where 
S-l (x) = {a E N I S(a) = x} , and S is the Smarandache function. 
For example S-1(6) = {24 24 .3 24.32 32 32 .2 32 .22 32 .23 24 .3.5 , , " , ) , , 
23 .32 . 5,24.32 .5,32 .5, 24 .5, 32 .5, 32 . 24} and Srci~(6) = 32 • 

If 5(x) = n one knows that caTd (S-l(n)) = d(n!) - d((n - I)!) where d is 
the number of divisors of n. 
If x is a prime number, then caTd (S-l(n)) = d((n - I)!). 
We give below a table of the values of Srci1n (n) : 

n 2 3 4 15 6 7 8 12 
5mi

1
n (n) 2 3 4 15 3:l 7 25 35 

In 
I 

16 21 24 i 27 36 40 52 56 

15 
5J 

6"0 
5mi

1
n (n) 212 73 310 I 311 316 59 I 134 I 78 I 54 

One knows ~2] that if p < q are two prime numbers, and n > 1 is a natural 
number such that p. q In, then plp(n) > qlq(n) , where lp(n) is the exponent 
of p in the prime factors decomposition of n! . 
According to the above properties we can deduce the calculus formula for 
f . S-1 unctlon min: 

(1\ 
\ ) 

where P1 < P2 < ... < pr are the prime numbers in the canonical decompo
sition of the number n. 
vVe list a set of properties of the function S~~, which result directly from 
the definition and from formula (1): 

1. S~ln(P) = p if p is a prime number. 

213 



2. S;;.ln (p. q) = qP if p and q are prime numbers and p < q. 

4. S;;.ln(qP) = p' q if p and q are prime numbers and p < q. 

5. S;;.ln (x) < S;;.ln (y) if x and y contain as the greatest prime factor Pr and 
x < y. 

6. The equation S;;'~(x) = S;;'~(x + 1) has not solutions. 

7. s;;.ln (S(x)) is generally not equal to S(x). 

8. A (S~~ (x)) = log pr , where A is the Mangoltd function. 

It is open the problem to find other properties of the function S:ci~ . 
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On Numbers Where the Values of the Pseudo-Smarandache 
Function Of It and The Reversal Are Identical 
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The Pseudo-Smarandache function was introduced by Kenichiro Kashihara in a book 
that is highly recommended[l]. 

Definition: For any n 2: 1, the value of the Pseudo-Smarandache function is the 
smallest integer m such that n evenly divides 

m 

'Lk. 
k=l 

Definition: Let d = ala2 ... ak be a decimal integer. The reversal of d, Rev(d) is the 
number obtained by reversing the order of the digits of d. 

If d contains trailing zeros, they are dropped when they become leading zeros. 

In this paper, we will look for numbers n, such that Zen) = Z(Rev(n)) and note some of 
the interesting properties of the solutions. If n is palindromic, then the above property is 
true by default. Therefore, we will restrict our set of interest to all non-palindromic 
numbers n such that Zen) = Z(Rev(n)). 

A computer program was written to search for all such n for 1 < n ~ 100,000 and the 
solutions are summarized below. 

Z(l80) = 80 = Z(81) 
Z(990) = 44 = Z(99) 
Z(l010) = 100 = Z(101) 
Z(l089)=242 = Z(980I) 
Z(l210) = 120 = Z(121) 
Z(1313) = 403 = Z(3131) 
Z(1572) = 392 = Z(2751) 
Z(l8IO) = 180 = Z(lSI) 
Z(l81S) = 404 = Z(SISl) 
Z(2120) = 159 = Z(212) 
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Z(2178) = 1088 = Z(8712) 
Z(2420) = 120 = Z(242) 
Z(2626) = 403 = Z(6262) 
Z(2720) = 255 = Z(272) 
Z(2997) = 1295 = Z(7992) 
Z(3630) = 120 = Z(363) 
Z(3636) = 504 = Z(6363) 
Z(4240) = 159 = Z(424) 
Z(4284) = 1071 = Z(4842) 
Z(4545) = 404 = Z(5454) 
Z(4640) = 319 = Z(464) 
Z(5050) = 100 = Z(505) 
Z(6360) = 159 = Z(636) 
Z(7170) = 239 = Z(717) 
Z(8780) = 439 = Z(878) 
Z(9090) = 404 = Z(909) 
Z(9490) = 364 = Z(949) 
Z(9890) = 344 = Z(989) 
Z(13332) = 1616 = Z(23331) 
Z(15015) = 714 = Z(51051) 
Z(16610) = 604 = Z(1661) 
Z(21296) = 6655 = Z(69212) 
Z(25520) = 319 = Z(2552) 
Z(26664) = 1616 = Z(46662) 
Z(27027) = 2079 = Z(72072) 
Z(29970) = 1295 = Z(7992) 
Z(32230) = 879 = Z(3223) 
Z(37730) = 1715 = Z(3773) 
Z(39960) = 1295 = Z(6993) 
Z(45045) = 2079 = Z(54054) 
Z(46662) = 1616 = Z(26664) 
Z(49940) = 1815 = Z(4994) 
Z(56650) = 824 = Z(5665) 
Z(57057) = 2925 = Z(75075) 
Z(63630) = 504 = Z(3636) 
Z( 64460) = 879 = Z( 6446) 
Z(80080) = 2079 = Z(8008) 
Z(80640) = 4095 = Z( 4608) 
Z(81810) = 404 = Z(1818) 
Z(92290) = 3355 = Z(9229) 
Z(93390) = 1980 = Z(9339) 
Z(96690) = 879 = Z(9669) 
Z(97790) = 2540 = Z(9779) 
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Several items to note from the previous list. 

a) Of the 52 solutions discovered, 35 of the numbers have one trailing zero, where many 
of them are palindromes when the zeros are dropped. While no numbers with two trailing 
zeros were found, it seems likely that there are such numbers. 

Unsolved Question: Given that Zen) = Z(Rev(n)), what is the largest number of trailing 
zeros that n can have? 

The previous question is directly related to the speed with which the Pseudo
Smarandache function grows. 

Unsolved Question: Is this a pattern, in the sense that there is an infinite set of numbers 
n, such that n = dl d20 ... Odl d2 and Zen) = Z(Rev(n))? 

e) Only three of the numbers contain unique nonzero digits and there are none with five 
digits. 

Unsolved Question: What is the largest number of unique nonzero digits that a number n 
can have when Zen) = Z(Rev(n)? 

f) Three of the numbers exhibit the pattern dl d2 ... d2d3, with the largest interior pattern 
being three digits in length. 

Unsolved Question: What is the largest interior pattern of repeating digits d2 ... d2 that 
can appear in a number n = dl d2 ... d2d3 such that Zen) = Z(Rev(n))? 
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SMARANDACHE RECIPROCAL PARTITION OF UNITY 
SETS AND SEQUENCES 

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: Expression of unity as the sum of the reciprocals 

of natural numbers is explored. And in this connection 

Smarandache Reciprocal partition of unity sets and sequences are 

defined. Some results and Inequalities are derived and a few open 

problems are proposed. 

DISCUSSION: 

Define Smarandache. Repeatable Reciprocal partition of unity 

set as follows: 
n 

SRRPS(n) = {x I x = ( a1, a2, ... , an ) where I (1/a r ) = 1.} 

fRP(n) = order of the set SRRPS(n). 

We have 

SRRPS(1) = {(1)}, fRP(1) = 1. 

SRRPS(2) = { (2,2) } , f RP (2) = 1. 

r= 1 

SRRPS(3) = { (3,3,3),(2,3,6), (2,4,4) } , fRP(3) = 3.,1 = 1/2 + 1/3 + 
1/6 etc. 

SRRPS(4) = { (4,4,4,4), (2,4,6,12), (2,3,7,42), (2,4,5,20), 

(2,6,6,6),(2,4,8,8,),(2,3,12,12), (4,4,3,6), (3,3,6,6), (2,3,10,15)} 

fRP(4) = 10. 

SMARANDACHE REPEATABLE RECIPROCAL PARTITION OF 

UNITY SEQUENCE is defined as 
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1,"1,3,10 ... 

where the nth term = fRP(n) . 

Define SMARANDACHE DISTINCT RECIPROCAL PARTITION OF 

UNITY SET 

as follows 
n 

SDRPS(n) = { x I x = (a1, a2, ... , an) where I (1/a r ) = 1 and aj = 
a j <=> i = j} r= 1 

fop(n) = order of SDRPS(n). 

SDRPS(1) = {(1)}, fop(1) = 1. 

SDRPS(2) = { }, fRP(2) = o. 

SDRPS(3) = { (2,3,6) } , fo~(3) = 1. 

SRRPS(4) = {(2,4,6,12), (2,3,7,42), (2,4,5,20),(2,3,10,15)} 

fop(4) = 4. 

Smarandache Distinct Reciprocal partition of unity sequences 

defined as follows 
1,0,1,4,12 ... 

the nth term is fop(n). 

Following Inequality regarding the function fop(n) has been 

established. 

THEOREM(1.1 ) 

n-1 

fop(n) ~ L fop(k) + (n 2 
- 5n + 8)/2 ,n > 3 

k=3 

This inequality will be established in two steps. 
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Proposition (1.A) 

For every n there exists a set of n natural numbers sum of 

whose reciprocais is 1. 

Proof: This wi" be proved by induction. Let the proposition be true 

for n = r. 

Let a1 < a2 < a3 < ... <an-1 < an = k be r distinct natural numbers 

such that 

1/a1 + 1/a2 + 1/a3 + ... + 1/a r = 1 

We have, 11k = 1 /(k+1) + 11 (k(k+1)) , which gives us a set of r+1 

distinct numbers a1 < a2 < a3 < ... < a r-1 < k+1 < k(k+1), sum of 

whose reciprocals is 1. 

P(r) => P(r+1) , and as P(3) is true I.e. 1/2 + 1/3 + 1/6 = 1 , 

·The proposition is true for a" n. 

This completes the proof of proposition (1.A). 

Note: If a1 ,a2 , a3 , ... an-1 are n-1 distinct natural numbers 

given by 

a1 = 2. 
a2 = a1 + 1. 
a3 = a1a2 + 1 

an-2 = a1a2a3 ... an-3 + 1 
an-1 = a1 a2a3··· an-2 
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then these numbers form a set of (n - 1) distinct natural numbers 
such that 

n-1 

I 1 fat = 1. 
t= 1 

we have at = at-1(at-1 - 1) + 1 except when t = n - 1 in which 

case 

Let the above set be called Principle Reciprocal Partition. 

*** It can easily be proved in the above set that 

a2t == 3 mod(10) and a2t+1 == 7 mod (10) for t 2: 1. 

Consider the principle reciprocal partition for n-1 numbers. Each 

at contributes one to fop(n) if broken into at + 1 , at(at + 1) except 

for t = 1. (as 2, if broken into 3 and 6, to give 1/2 =1/3 + 116, the 

number 3 is repeated and the condition of all distinct number is 

not fulfilled). There is a contribution of n - 2 from the principle set 

to fop(n). The remaining fop(n- 1) -1 members (excluding the 

p ri nciple partition) of SO R P S (n-1) wou Id contribute at least one 

each to fop(n) (breaking the largest number in each such set into 

two parts) . The contribution to fop(n) thus is at least 

n-2 + fop(n-1) - 1 = fop(n-1) + n - 3 

----------(1.2) 
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Also for each member (b 1 , b2 , ... , bn - 1 ) of SDRPS(n-1) there 

exists a member of SDRPS(n) i.e. (2, 2b 1 ,2b 2 , ... ,2b n- 1 ) as we 

can see that 

1 = (1/2)( 1+ 1/b 1 + 1/b2 + ... + 1/b n- 1 ) = 1/2 +1/2b 1 + + 

1/2b n_1 . 

In this way there is a contribution of fop(n-1) to fop(n) . -------(1.3) 

Taking into account all these contributions to fop(n) we get 

fop(n) 2 fop(n-1) + n - 3 + fop(n-1) 

fop(n) 2 2fop(n-1) + n - 3 

fop(n) - fop(n-1) 2 fop(n-1) + n - 3 -------------(1.4) 

from (4) by replacing n by n-1 , n-2 ,etc. we get 

fop(n-1) - fop(n-2) 2 fop(n-2) + n - 4 

fop(n-2) - fop(n-3) 2 fop(n-3) + n - 5 

fop(4) - fop(3) 2 fop(3) + 1 

summing up all the above inequalities we get 

n-1 n-1 . 
fop(n) - fop(3) 2 L fop(k) + L r 

k=3 r= 1 

n-1 

fop(n) 2 L fop(k) + (n-3)(n-2)/2 + 1 
k=3 

n-1 

fop(n) 2 I fop(k) + (n 2 -5n +8)/2 , n > 3 
k=3 
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Remarks: Readers can come up with stronger results as in my 

opinion the order of fop(n) should be much more than what has 

been arrived at. This will be clear from the following theorem. 

THEOREM(1.2): 

If m is a member of an element of SRRPS(n) say, 

n 

(a1, a2, a3 , ... , an ).We have ak = m for some k and L 1/ak = 1. 
k=1 

then m contributes [{d(m) + 1}/2 ] elements to SRRPS(n+1), 

where the symbol [] stands for integer value and d(m) is the 

number of divisors of m. 

Proof: For each divisor d of m there corresponds another 

divisor mid =d'. 

Case-I: m is not a perfect square. Then d(m). is even and there 

are d(m)/2 pairs of the type (d,d') such that dd' = m . 

Consider the following identity 

1/(p.q) = 1/(p(p +q)) + 1/(q(p+q)) ------------ (1 .5) 

for each divisor pair (d,d') of m we have the following breakup 

1/(d.d') = 1/(d(d+d')) + 1/(d'(d+d')) 

Hence the contribution of m to SRRPS(n+1) IS d(m)/2. As d(m) 

is even d(m)/2 = [ {d(m) +1}/2] Also. 
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Case-II m is a perfect square. In this case d(m) is odd and there 

is a divisor pair d=d' = m 1/2 
. This will contribute one to 

SRRPS(n+1) .The remaining {d(m) -1}/2 pairs of distinct divisors 

will contribute as many i.e. say ({d(m) -1}/2) .Hence the total 

contribution in this case would be 

{d(m) -1 }/2 + 1 = {d(m) +1 }/2 =[ {d(m) +1 }/2] 

Hence m contributes [{d(m) + 1}/2 J elements to SRRPS(n+1) 

This completes the proof. 

Remarks:(1) The total contribution to SRRPS(n+1) by any element 

of SRRPS(n) is L [ {d(ak ) + 1}/2] --------- (1 .6), 

where each ak IS considered only once irrespective of its' 

repeated occurrence. 

(2) In case of SDRPS(n+1) , the contribution by an element of 

SDRPS(n) is given by 

n 
L [{d(ak )}/2 ] 
k=1 

-----------( 1.7) 

because the divisor pair d =d'= ak 1/2 does not contribute. 

Hence the total contribution of SDRP(n) to generate SDRPS(n+1) 

is the summation over all the elements of SDRPS(n) . 

n 
L {L [{d(ak )}/2 1 } ----------- (1.8) 
fop(n) k=1 

Generalizing the above approach. 
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The readers can further extend this work by considering the 

following identity 

1 111 
= + + ----(1.9) 

pqr pq(p+q+r) qr(p+q+r) rp(p+q+r) 

which also suggests 

1 r r r 

= -------( 1 .1 0) 
k=1 t=1,t;l!:k 5=1 

The above identity can easily be established by just summing up 

the right hand member. 

From (1.10), the contribution of the elements of SDRPS(n) to 

SDRPS(n+r) can be evaluated if an answer to following tedious 

querries could be found. 

OPEN PROBLEMS: 

(1) In how many ways a number can be expressed as the product 

of 3 of its divisors? 

(2) In general in how many ways a number can be expressed as 

the product of r of its' divisors? 

(3) Finally in how many ways a number can be expressed as the 

product of its divisors? 
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An attempt to get the answers to the above querries leads to the 

need of the generalization of the theory of partition function. 

REFERENCES: 

[1] 'Smarandache Notion Journal' Vol. 10 ,No. 1-2-3, Spring 1999. 
Number Theory Association of the UNIVERSITY OF 
CRAIOVA. 

[2] "The Florentine Smarandache " Special Collection, Archives 
of American Mathematics, Centre for American History, 
University of Texax at Austin, USA. 

226 



GENERALIZATION OF PARTITION FUNCTION, 
INTRODUCING SMARANDACHE FACTOR PARTITION 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

Partition function P(n) is defined as the number of ways that 

a positive integer can be expressed as the sum of positive 

integers. Two partitions are not considered to be different if they 

differ only in the order of their summands. A number of results 

concerning the partition function were discovered using analytic 

functions by Euler, Jacobi, Hardy, Ramanujan and others. Also a 

number of congruence properties of the function were derived. In 

the paper Ref.[1] 

"SMARANDACHE RECIPROCAL PARTITION OF UNITY 

SETS AND SEQUENCES" 

while dealing with the idea of Smarandache Reciprocal Partitions 

of unity we are confronted with the problem as to in how many 

ways a number can be expressed as the product of its divisors. 

Exploring this lead to the generalization of the theory of partitions. 

DISCUSSION: 

Definition : SMARANDACHE FACTOR PARTITION FUNCTION: 

Let CX1, CX2 , CX3 , ... CX r be a set of r natural numbers and P1 I P2, 

P3 , ... Pr be arbitrarily chosen distinct primes then 
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F(a1 , a2 , a3 , ... a r ) called the Smarandache Factor Partition of 

(a1 , a2 , a3 , ... a r ) is defined as the number of ways in which the 

number 

a1 a2 a3 ar 

N = Pr could be expressed as the 

product of its' divisors. 

Example: F(1,2) = ?, 

Let P1 = 2 and P2 = 3 , N = P1. p/ = 2.32 =18 

N can be expressed as the product of its divisors in following 4 

ways: 

(1) N = 18, (2) N = 9 X 2 

(3) N = 6 X 3 (4) N = 3 X 3 X 2. As per our definition F (1,2) = 4. 

It is evident from the definition that F(a1 , (2) = F(a2 , (1) or In 

general the order of ai in F(a1 , a2 , a3 , ... ai ... a r ) is 

immaterial. Also the primes P1 , P2, P3 , ... Pr are dummies and can 

be chosen arbitrarily. 

We start with some elementry results to buildup the concept. 

THEOREM(2.1) : F (a) = P(a) 

where pea) is the number of partitions of a. 

PROOF: Let p be any prime and N = pa . 

Let a = X1 + X2 + ... + Xm be a partition of a. 
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Then N = ( pX1 ) ( pX2) (pX3) ... (pxn) is a SFP of N .i.e. each 

partition of a contributes one SFP. ---------(2.1) 

Also let one of the SFP of N be 

N = (N1 ).(N2 .)(N3 ) ... (Nk ) . Each Ni has to be such that Ni = pai 

N = (pa1)( pa2 ) ... ( pak ) 

N = p (a 1 +a2+a3+ ... +an) 

cx = a 1 + a2 + ... + ak 

which gives a partition of cx. Obviously each SFP of N gives one 

unique partition of a. --------(2.2). 

from (2.1) and (2.2) we get 

F (a) = P(a) 

a 
THEOREM (2.2) F(u,1) = L P(k) 

k=O 

PROOF: Let N Ct = P1 P2, where P1, P2 are arbitrarily chosen 

primes. 

Case(1) Writing N = (P2 ) P1 Ct keeping P2 as a separate entity 

( one of the factors in the factor partition of N) ,would yield pea) 

Smarandache factor partitions .( from theorem (2.1» . 

Case(2) Writing N = (P1.P2 ). P1 Ct
-
1 keeping (p1p2) as a separate 

entity ( one of the factors in the SFP of N) ,would yield P(a-1) 

SFPs. 
229 



Case (r) In general writing N = (p/ .P2 ). P1a.-r and keeping (p/ 

.P2) as a separate entity would yield P(u-r) SFPs. 

Contributions towards F(N) in each case (1), (2), (r) are 

mutually disjoint as p/ .P2 is unique for a gIven r. which 

ranges from zero to u. These are exhaustive also. 

Hence 

F(a,1) - L P(a-r) 
r=O 

Let a - r = k r=O=> k= a 
r=a=> k=O 

o 
F(a, 1) - I P{k) 

k=a 

a 
F{a, 1) - I P(k) 

k=O 

This completes the proof of the theorem (2.2) 

Some examples: 
(1) F(3) = P(3) = 3, Let p = 2 , N = 23 = 8 

(I) N = 8, (2) N = 4 X 2, (3) N = 2 X 2 X 2 . 

(2) 4 

F(4,1) = L P(k) = P(O) + P(1) + P(2) +P(3) + P(4) 
k=O 

= 1 + 1 + 2 + 3 + 5 = 12 
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Let N = 24 X 3 = 48 here P1 =2 ,P2 =3 . 

The Smarandache factor partitions of 48 are 

(1) N = 48 
(2) N = 24 X 2 
(3) N = 16 X 3 
(4) N = 12X4 
(5) N = 12 X 2 X 2 
(6) N = 8 X 6 
(7) N = 8 X 3 X 2 
(8) N = 6 X 4 X 2 
(9) N = 6 X 2 X 2 X 2 
(10)N=4X4X3 
(11)N=4X3X2X2 
(12) N = 3 X 2 X 2 X 2 X 2 

DEFINITIONS: 
In what follows in the coming pages let us denote (for simplicity) 

where 

N = Pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

(2) Also for the case (N is a square free number) 

= a r = ... = an = 1 

Let us denote 

F ( 1 , 1, 1, '1, 1 ... ) = F ( 1 #n) 
~ n - ones -+ 

Examples: F (1#2) = F(1, 1) = F'(6) = 2, 6 = 2 X 3 = P1 X P2. 

F (1#3) = F (1 , 1, 1 ) = F' ( 2 X 3 X 5 ) = F' (30) = 5. 

(3) Smarandache Star Function 
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F'·( N} = I, F'(d r } where d r IN 
dIN 

F'·( N) = sum of F'(d r ) over all the divisors of N. 

e.g. N = 12, divisors are 1,2,3,4,6,12 

= 1 +1 +1 +2+2+4 =11 
THEOREM (2.3) 

F'·( N) = F'(Np) , (p,N) = 1, p is a prime. 

PROOF: We have by definition 

F'·( N} = L F'(d r } where dr IN 
dIN 

consider d r a divisor of N . 

then 

for any divisor dr of N ,g(d r } is unique 

Considering g(d r) as a single term (an entity, not further split 

into factors) in the SFP of N.p one gets F'(d r ) SFPs. 

Each g(d r ) contributes F'(d r ) factor partitions. 

The condition p does not divide N, takes care that g(d j ) 7= dj for 

any divisor. because p divides g(d j ) and p does not divide dj . 

This ensures that contribution towards F'(Np) from each g(d r ) IS 

distinct and there is no repetition. Summing over all g(d r ) 's we get 

F'(Np) = L F'(d r ) 

dIN 
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or 

This completes the proof of the theorem (3) . 

An application of theorem (2.3) 

Theorem (2.2) follows from theorem (2.3) 
To prove 

a 

F(a, 1) = L P(k) 
k=O 

from theorem (2.3) 

d/pll 

The divisor of pU are pO, P 1, p2, ... pU 

hence 

=P(O)+P(1) +P(2)+ ... +P(a-1)+P(a) 

or 
CL 

F(a, 1) - I P(k) 
k=O 

THEOREM (2.4): n 

F ( 1# (n+1)) = L nCr F(1#r) 
r=O 

PROOF: From theorem (2.3) we have F'(Np) = F'* (N) , p does not 

divide N. Consider the case N = P1P2P3· .. Pn . We have , F'(N) 
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= F (1#n) and F'( Np) = F (1#(n+1)) as p does not divide N. 

Finally we get 

F (1#(n+1)) = F'* (N) -------- (2.3) 

The number of divisors of N of the type P1P2P3 ... Pro ( containing 

exactly r primes is nCr. Each of the nCr divisors of the type P1P2P3 . 

. . Pr has the same number of SFPs F(1#r). Hence 

n 

F'* (N) = L nCr F(1#r) 
r=O 

From (2.3) and (2.4) we get. 

n 
F ( 1# (n+1)) = L nCr F(1#r) 

r=O 

-------------(2.4) 

NOTE: It is to be noted that F(1#n) is the nth Bell number. 

Example: F(1#O) =F'(1) = 1. 

F(1#1) = F'(pd = 1. 

F(1#2) = F'(Pi pz) = 2. 

F(1#2) = F'(Pi pz P3) = 5. 

(i) Pi P2 P3 
(ii) (P1 pz) X P3 
(iii) (P1 P3) X pz 
(iv) (P2P3) X Pi 
(v) Pi X pz X P3 

Let Theorem (4) be applied to obtain F (1#4) 

3 
F (1 #4) = L nCr F (1 #r) 
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r=O 

F(1#4) = 3CO F(1#O) + 3C1F(1#1) +3 C2 F(1#2) + 3C3 F(1#3) 

= 1X1+ 3X1 + 3X2 + 1X5 = 15 

F ( 1 #4) = F' ( 2 X 3 X 5 X 7) = F' ( 2 1 0) = 1 5 . 

(I) 210 
(ii) 105 X 2 
(iii) 70 X 3 
(iv) 42 X 5 
(v) 35 X 6 
(vi) 35 X 3 X 2 
(vii) 30 X 7 
(viii) 21 X 10 
(ix) 21X5X2 
(x) 15 X 14 
(xi) 15 X 7 X 2 
(xii) 14 X 5 X 3 
(xiii) 10 X 7 X 3 
(ixv) 7 X 6 X 5 
(xv) 7 X 5 X 3 X2 

On similar lines one can obtain 

F(1#5) = 52, F(1#6) = 203, F(1#7) = 877, F(1#8) == 4140. 

F(1#9) = 21,147. 

DEFINITION: 

F'** ( N) = L Fl* (d r ) 

dr/N 

dr ranges over all the divisors of N. 

If N is a square free number with n prime factors, let us denote 

F'*'*' ( N ) = F** ( 1#n) 
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Example: 
F'**(P1P2P3) = F** (1#3) = L F' (d r ) 

dr/N 

F**( 1#3) = 1 + 6 + 15 + 15 = 37. 

An interesting observation is 

(1) F**(1#O) + F(1#1) = F(1#2) 
or 

F**(1#O) + F*(1#O) = F(1#2) 

(2) F**(1#1) + F(1#2) = F(1#3) 
or 

F**(1#1) +F*(1#1) = F (1 #3) 

(3) F**(1#5) + F(1 #6) = F (1 #7) 
or 

F**(1#5) + F*(1#5) = F(1#7) 

which suggests the possibility of 

F**(1#n) + F*(1#n) = F(1#(n+2» 

A stronger proposition 

F'(Np1P2) = F'*(N) + F'**(N) 

is established in theorem (2.5). 

DEFINITION: 

F,n*(N) _. L F'(n-1)* (d r) 

dr/N 

where F'*(N) = 

n > 1 
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and d r ranges over all the divisors of N. 

THEOREM(2.5) : 

F'(Np1P2) = F'*(N) + F'**(N) 

from theorem (3) we have 

F'(Np1P2) = F'*(Np1) 

Let d 1, d2 , ... , d n be all the divisors of N. The divisors of Np1 

would be 

••• J 

d 1P1 , d 2 P1 , ... , d nP1 

F'*(Np1) = [ F'(dd + F'(d2) + ... + F'(d n) ] + [F'(d 1P1)+ F'( d2 P1) + 

... + F'(d nP1)] 

= F'*(N) + [F'*(d 1) + F'*(d 2 ) + ... + F'*(d n ) ] 

F'*(Np1) = F'*(N) + F'**(N) ( by definition) 

= F'*(N) + F'2*(N) 

This completes the proof of theorem (2.5). 

THEOREM(2.6): 

PROOF: 

Also If 

the 

F'(Np1P2P3) = F'*(N) +3F,2*(N) + F,3*(N) 

From theorem (2.3) we have 

F'(Np1P2P3) = F'*(Np1P2). 

... , be all the divisors of N. Then 
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divisors of Np1P2 would be 

d 1, d 2 , ... , d n 

... , 

... , 

Hence 

= [F'(d 1) +F'(d2) + ... + F'(d n )] + 

[F'{d 1P1) + F'(d 2P1) + .,. F'(d nP1)] -: 

[F'(d 1P2) + F'(d2P2) + ... + F'(d nP2)] + 

[F'(d 1P1P2) + F'(d2P1P2) + ... + F'(d nP1P2)] 

= F'*(N) + 2[F'*(d 1) + F'*(d2) + ... + F'*(d n)] + S ----(2.5) 

where 

Now from theorem (2.5) we get, 

F'(d 1p1p2) = F'*(d 1) + F'**(d 1) 

F'(d2P1P2) = F'*(d2) + F'**(d 2 ) 

F'(d np1p2) = F'*(d n ) + F'**(d n ) 

on summing up (1), (2) ... upto (n) we get 

S = 

substituting the value of S in (A) and also taking 

F'*(d 1) + F'*(d 2 ) + ... + F'*(d n ) = F,2*(N) 

we get., 
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F'(Np1P2P3)"= F'*(N) + 2F,2*(N) + F,2*(N) + F,3*(N) 

F'(Np1P2P3) = F'*(N) + 3F,2*(N) + F'3*(N) 

This completes the proof of theorem (2.6).The above result which 

has been observed to follow a beautiful pattern can further be 

generalized. 
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A GENERAL RESULT ON THE SMARANDACHE STAR 
FUNCTION 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRCT: In this paper ,the result ( theorem-2.6) Derived in 

REF. [2], the paper "Generalization Of Partition Function, 

Introducing 'Smarandache Factor Partition' which has been 

observed to follow a beautiful pattern has been generalized. 

DEFINITIONS In [2] we define SMARANDACHE FACTOR 

PARTITION FUNCTION, as follows: 

Let U1, U2 , U3 , ... Ur be a set of r natural numbers 

and P1, P2, P3 , .. ·Pr be arbitrarily chosen distinct primes then 

F(a1 , U2 , U3 , ... Ur ) called the Smarandache Factor Partition of 

(a1, U2 , U3 , ... u r ) is defined as the number of ways in which the 

number 

0.1 0.2 0.3 o.r 

N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(a1 , U2 , U3 , 

. Ur ) = F' (N) ,where 

N = pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

Also for the case 

240 



= U r = = an = 1 

we denote 

F(1,1,1,1,1 ... ) = F ( 1 #n) 
+- n - ones ~ 

Smarandache Star Function 

(1) F'-( N} = I. F'(d r } where d r IN 
diN 

(2) F'** ( N) = L F'* (d r ) 

dr/N 

d r ranges over all the divisors of N. 

If N is a square free num~er with n prime factors, let us denote 

F' ** ( N ) = F** ( 1 #n) 

Here we generalise the above idea by the following definition 

Smarandache Generalised Star Function 

(3) F,n*(N) = L F'(n-1)* (d r ) 

drlN n > 1 

and d r ranges over all the divisors of N. 

For simplicity we denote 

F'(Np1P2 ... Pn) = F'(N@1#n) ,where 

( N,Pi) = 1 for i = 1 to n and each Pi is a prime. 

F' (N@1 #n) is nothing but the Smarandache factor partition of (a 

number N multiplied by n primes which are coprime to N). 
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In [3J a proof of the following result is given: 

F'(Np1P2P3) = F'*(N) +3F,2*(N) + F,3*(N) 

The present paper aims at general ising the abve result. 

DISCUSSION: 

THEOREM(3.1 ) 

F'(N@1#n) = F'(Np1P2 ... Pn) = 

where 
m 

n 
I. [ 3(n,m) F,m*(N)] 
m=O 

3(n,m) = (11m!) I. (_1)m-k .mCk .kn 
k=1 

PROOF: 
Let the divisors of N be 

d 1 , ..... , 

Consider the divisors of (Np1P2. .Pn) arranged as follows 

. , -------say type (0) 

-------say type (1) 

-------say type (2) 

-------say type (t) 

( the rea ret p rim e sin the t e r m d 1 PiP j . . . a part fro m d 1 ) 

There are nCo divisors sets of the type (0) 

There are nC 1 divisors sets of the type (1) 

There are nC 2 divisors sets of the type (2) and so on 

There are nCt divisors sets of the type (t) 
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There are nCn divisors sets of the type (n) 

Let Np1P2 ... Pn = M .Then 

F*(M) = nCo[sum of the factor partitions of all the divisors of row (0) ] 

+ nC 1 [sum of the factor partitions of all the divisors of row (1) ] 

+ nC 2[sum of the factor partitions of all the divisors of row (2)] 

+ 
+ nCt[sum of the factor partitions of all the divisors of row (t)] 

+ 

+ nCn[sum of the factor partitions of all the divisors of row (n)] 

Let us consider the contributions of divisor sets one by one. 

Row (0) or type (0) contributes 

Row (1) or type (1) contributes 

= [F'*(d 1) + F'*(d2) + ... + F'*(d k)] 

= F,2*(N) 

Row (2) or type (2) contributes 

Applying theorem (5) on each of the terms 

on summing up 

F'(d 1p1p2) = F'*(dd + F'**(d 1) 

F'(d2P1P2) = F'*(d2) + F'**(d2) 

(1) ,(2) . upto (n) we get 

----(1) 

----(2) 

----(k) 

At this stage let us denote the coefficients as a(n.r) etc. say 
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Consider row (t) , one divisor set is 

and we have 

F'(d 1@1#t) = a(t,1}F'*(d 1) + a(t,2)F,2*(d 1) + + a(t,t)F,t*(d 1) 

F'(d2@1#t) = a(t,1)F'*(d 2 ) + a(t,2)F,2*(d2) + + a(t,t)F,t*(d 2 ) 

summing up both the sides ,columnwise we get for row (t) or 

divisors of type (t) one of the nC t divisor sets contributes 

F,2*(N) + F,3*(N) a(t,t)F,(t+1)*(N) a(t,1) a(t,2) + ... + 

similarly for row (n) we get 

All the divisor sets of type (0) contribute 

nco a(o,o)F'*(N) factor partitions. 

All the divisor sets of type (1) contribute 

All the divisor sets of type (2) contribute 

nC2 {a(2,1)F'2'~(N) +a(2,2)F,3*(N)} factor partitior:s. 

All the divisor sets of type (3) contribute 

nC3{a(3,1)F,2*(N) + a(3,2)F,3*(N) + a(3,3)F,4*(N} factor partitions. 
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All the divisor sets of row (t) or type (t) contribute 

nCt {a(t,1)F,2*(N) + a(t,2)F'3*(N) + ... + a(t,t)F,(t+1 h (N)} 

All the divisor sets of row (n) or type (n) contribute 

Summing up the contributions from the divisor sets of all the types 

and considering the coefficient of F,m*(N) for m = 1 to (n+1) we 

get, coefficient of F'*(N) = a(O,O) = 1 = a(n+1,1) 

coefficient of F,2*(N) 

= a(n+1,2) 

coefficient of F'3*(N) 

= a(n+1,3) 

coefficient of F,m*(N) = 

coefficient of F,(n+1)*(N) = 

n nC n- 1C nC n-1C a(n+1,n+1) = Cn.a(n,n) - n· n-1 .a(n-1,n-1) = n· n-1- - -

= 1 

Consider a(n+1,2) 

245 



= nC + nC + + nC 1 2· • • n 

= (2 n+1 
- 2)/2 . 

Consider a(n+1,3) 

n 
=( 1/2) { nC 2 2 2 + nC 323 + ... + nCn 2;-)} - { L nCr - nC 1 - nCo} 

r=O 
n 

= (1/2) { L nCr 2 r - nC 1.2 1 - nC o.2° } - { 2 n - n - 1 } 
r=O 

= ( 1 /2) { 3 n - 2 n - -I} - 2 n + n + 1 

=(1/2){3n _2n+1 +1} ---------- (3. 1 ) 

= {1/3!} { (1). 3 n + 1 _ (3). 2 n + 1 + (3). (1) n + 1 _ ( 1) (0) n+ 1 } 

Evaluating a(n+1.4) 

n n 

= (1/2)[ (1/3) {L nCr 3 f 
- 32 nC 2 - 3 nC 1 - nCo} +{ L nCr - nC2 - nC 1 

r=O r=O 
n 

_ nCo} - { L nC r .2r - 22 nC 2 - 2 nC 1 - nCo}] 
r=J 

= (1/2) [(1/3){ 4 n - 9n(n-1 )/2 - 3n -1 } + { 2
n 

- n(n-1 )/2 - n - 1 } 

246 



- { 3n - 4n(n-1 )/2 - 2n -1} 

a(n+1,4) = (1/4!) [(1) 4 n+1 - (4) 3n+1 + (6) 2 n+1 _ (4) 1n+1 + 1(0)n+1] 

Observing the pattern we can explore the possibility of 

r 

a(".r) = (1/r!) L (_1)r-k .rC k .k" -------(3.2) 
k=O 

which is yet to be established. Now we shall apply induction. 

Let the following proposition (3.3) be true for r and all n > r. 

r 

a(n+1,r) = (1/r!) I (_1)r-k .rC k .kn+1 
k=1 

Given (3.3) our aim is to prove that 

r+1 
a(n+1,r+1) = (1/(r+1 )!) L [(-1 )(r+1) - k .r+1Ck (k)n+1 ] 

k=1 
we have 

------(3.3) 

- nC "C nC + + nC a(n+1,r+1) - r a(r,r) + r+1 a(r+1,r~ + r+2 a(r+2,r) .. . n a(n,r) 

r r 
a(n+1,r+1) = nCr {(1/r!) I (_1/-k .rC k .kr} + nC r+1 {(1/r!) I (_1)r-k .rC k k r+

1 

k=O k=O 

r 
+ ... + nC n {(1/r!) I (_1/- k .rC k .kn } 

k=O 
r 

= (1/r!) L [(-1 r- k .rC k {nCr k r + nC r+1 k
r+1 + ... + nCn kn }] 

k=O 

r n 

= (1/r!) I [(-1 )r-I< .rCk { I nC q k q 
-

k=O q=O 

r 

= (1/r!) I [(_1)r-k .rC k (1+k)n]-
k=O 

r-1 
I nC q kq 

} ] 

q=O 

r-1 

(1/r!) I [(_1)r-k .rC k {I nC q k q
}] 

q=O 
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If we denote the 1st and the second term as T 1 and T 2 I we have 

----------( 3.4) 

r 

considerT 1 =(1/r!) L [(_1)r-k.rC k (1+k)n] 
k=O 

r 

= (1/r!) L [(_1)r-k {r!/((k!)(r-k)!)} (1+k)n] 
k=O 

r 

= (1/(r+1)!) L [(-1r-,< {(r+1)!/((k+1)!(r-k)!)}(1+k)n+1 ] 
k=O 

r 
= (1/(r+1)!) L [(_1)r-k .r+1C k+1 (1+k)n+1 ] 

k=O 

r 
= (1/(r+1)!) L [(_1)(r+1)-(k+1) .r+1Ck+1 (1+k)n+1 ] 

k=O 

Let· k + 1 = S I we get I s = 1 at k = 0 and s = r + 1 at k = r 

r+1 
= (1/(r+1)!) L [(_1)(r+1)-S .r+1C s (s)n+1 ]. 

5=1 

replacing s by k we get 
r+1 

= (1/(r+1 )!) L [(-1 )(r+1) - k .r+1Ck (k)n+1 ] 
k=1 

in this if we include k = 0 case we get 

r+1 
T1 =(1/(r+1)!) L [(_1)(r+1) - k .r+1C k (k)n+1] ----(3.5) 

k=O 

Tl is nothing but the right hand side member of (3.3). 

To prove (3.3) we have to prove a(n+1,r+1) = Tl 

I n view of (3.4) our next step is to prove that T 2 = 0 
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r r-1 

T 2 = (1 I r! ) I: [( -1 ) r- k . r C k { L n C q k q }] 

k=O q=O 

r 

= (11r!) L [(_1)r-i< .rCk {nCo kO + nC 1 k 1 + nC2 k
2 + ... + nCr_1 kr-1 }] 

k=O 

r r 

= (1/r!) L [(_1)r-k .rCk ] + nCd (1/r!) L {(_1)r-k .rCk k}] + 
k=O k=O 

r r 

nC 2 [(1/r!) L{(_1)r-k rC k k
2}] + ... + nC r_d(1/r!) L {(-1r-k .rCk k

r-1 }] 
k=O k=O 

r r 

= (1/r!) L [(_1)r-k .rCk ] + nC 1[ (1/r!) L {(_1)r-k .rCk k}] + 
k=O k=O 

[nC a + nc a + + nc a ] 2· (2,r) 3· (3,r) , _.. r-1 . (r-1.r) 

= X + y + Z say where 
r r 

. X = (1/r!) L [(_1)r-k .rCk ] 
k=O 

y = nC1[ (1/r!) L {(-1r-k .rCk k}] 
k=O -

We shall prove that X = 0 I Y = 0 I Z = 0 seperately. 

r 

(1) X = (1/r!) L [(_1)r-k .rCk ] 
k=O 

r 

= (1/r!) L [(_1)r-k .rCr_k ] 

k=O 

let r - k = w then we get at k = 0 w = r and at k = r w = o. 

o 
= (1/r!) L [(_1)W .rCw ] 

w=r 
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r 
= (1/r!) L [(_1)W .rew ] 

w=O 

=(1 - 1)r Ir! 

= 0 

We have proved that X = 0 

(2) r 
y = nC1[ (1/r!) l: {(-1 )r-k .rCk k }] 

k=O 
r 

= nCd (1/(r-1)!) l: {(_1)r-1-(k-1) .r-1Ck_1 }] 
k=1 

r-1 
= nC 1[ (1/(r-1)!) l: {(_1)r-1-(k-1) .r-1Ck_1 }] 

k-1 =0 

= 0 

We have proved that Y = 0 

(3) To prove 

Proof: 

Refer the matrix 

3(1,2) 3(1,3) 3(1,4) 

3(2,3) 3(2,4) 

a(3,2) aQdl 3(3,4) 

a(4,3) a£i..1l_ 3(4,5) ••• 

250 

3 (1, r) 

3(2,r) 

3(3,r) 

3(4,r) 



a(r-1,r-1) a(r-1,r) 

a(r,r-1) 

The Diagonal elements are underlined. And the the elements 

above the leading diagonal are shown with bold face. 

We have 

r 

= [(1/r!) I {(_1)r-k .rCk k}] = Y/ nC 1 = 0 for r >1 
k=O 

All the elements of the first row except a(1,1) (the one on the 
leading diagonal) are zero. 
Also 

a(n+1,r) = a(n,r-1) + r. a(n,r) --------(3.7) 

( This can be easily established by simplifying the right hand side.) 

(7) gives us 

a(2,r) = a(1,r-1) + r. a(1,r) = 0 for r > 2 

i.e. a(2,r) can be expresssed as a linear combination of two 

elements of the first row ( except the one on the leading diagonal) 

=> a(2,r) = 0 r > 2 

Similarly a(3,r) can be expresssed as a linear combination of two 

elements of the second row of the type a(2,r) with r > 3 

=> a(2,r) = 0 r > 3 

and so on a(r-1,r) = 0 

s u bstituti n g 

a(2,r) =.a(3,r) = ., = a(r-1,r) = 0 in (6) 

we get Z = 0 
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With X = Y = Z = 0 we get T 2 = 0 
ora (n + 1 ,r+ 1) = T 1 - T 2 = T 1 

from (5) we have 
r+1 

T1 =(1/(r+1 )!) L [(-1 )(r+1) - k r+1C k (k)n+1 ] 
k=O 

which gives 
r+ 1 

a(n+1,r+1) = (1/(r+1 )!) L [(-1 )(r+1) - k r+1C k (k)n+1 ] 
k=O 

We have proved ,if the propposition (3.3) is true for r it is true for 

(r+1) as well .We have already verified It for 1, 2, 3 etc. Hence by 

induction (3.3) is true for all n. 

This completes the proof of theorem (3.1) . 

Remarks: This proof is quite lengthy, clumsy and heavy in 

algebra. The readers can try some analytic, combinatorial 

approach. 
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MORE RESULTS AND APPLICATIONS OF THE 
GENERALIZED SMARANDACHE STAR FUNCTION 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRCT: In [1] we define SMARANDACHE FACTOR 

PARTITION FUNCTION, as follows: 

Let U1, U2 , U3 , ... Ur be a set of r natural numbers 

and P1, P2, P3 , .. ·Pr be arbitrarily chosen distinct primes then 

F(u1 , U2 , U3 , ... u r ) called the Smarandache Factor Partition of 

(U1 , U2 , U3 , ... Ur ) is defined as the number of ways in which the 

number 

a1 (l2 a3 ar 
N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(u1 , U2 , U3 , .. 

. Ur ) = F' (N) ,where 

an 

N = Pr Pn 

and Pr is the rth prime. P1 =2, pz = 3 etc. 

Also for the case 

= U r = = Un = 1 

Let us denote 

F(1,1,1,1,1 ... ) = F ( 1 #n) 
+-- n - ones ~ 

In [2] we define The Generalized Smarandache Star 
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Function as follows: 

Smarandache Star Function 

(1) F'·( N) = L F'(d r ) where d r IN 
dIN 

(2) F'** ( N) = I, F'* (d r ) 

d,/N 

dr ranges over all the divisors of N. 

If N is a square free number with n prime factors, let us denote 

F'** ( N ) = F** ( 1#n) 

Smarandache Generalised Star Function 

(3) F,n*{N) = I, F'(n-1)* (d r ) 

dr/N n > 1 

and d r ranges over all the divisors of N. 

For simplicity we denote 

F'{Np1P2 ... Pn) = F'(N@1#n) ,where 

( N,Pi) = 1 for i = 1 to n and each Pi is a prime. 

F'(N@1#n) is nothing but the Smarandache factor partition 

of (a number N multiplied by n primes which are coprime to N). 

In [3] I had derived a general result on the Smarandache 

Generalised Star Function. In the present note some more 

results and applications of Smarandache Generalised Star 

Function are explored and derived. 
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DISCUSSION: 

THEOREM(4.1) : 

a 

= '" n+k- 1C 
L. n-1 P( a-k) ------( 4.1 ) 

k=O 

Following proposition shall be applied in the proof of this 

a 
'" r+k- 1C = u+rC 
L. r-1 r -------( 4.2) 

k=O 

Let the proposition (4.1) be true for n = r to n = 1. 

a 

= '" r+k- 1C 
L. r-1 P(a-k) 

k=O 

a 
F' (r+1)* (pU) = I: F' r* (p t) 

t=O 

( p ranges over all the divisors of pU for t = 0 to a) 

from the proposition (4.3) we have 

a 

= '" r+k- 1 C 
L. r-1 

k=O 

expanding RHS from k = 0 to a 

similarly 

r+u- 3 C 
r-1 

P(a-k) 

P(1) +. 
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r-1 C + r-1 

-------( 4.3) 

P(a-1 ) 



F,r*(p) = rC r_1 P(O) + r- 1 C r_1 
P(1) 

F,r*( 1) = r-1 C r - 1 P(O) 

summing up left and right sides separately we find that the 

The RHS contains a + 1 terms in which P(O) occurs, a terms in which 

P(1) occurs etc .. 

ex ex-1 1 

RHS = [L r+k- 1C r_1 ].P(O) + L r+k- 1C r_1 P(1) + ... + L r+k- 1C r_1 P(a-1) 
k=O k=O k=O 

o 
+ L r+k- 1C r_1 P(a) 

k=O 
Applying proposition (4.2) ·to each of the L we get 

RHS = r+aC r P(O) + r+a- 1C r P(1) + r+a- 2 Cr P(2) +. 

ex 

= L r+kC r P(a-k) 
k=O 

ex 

= L r+kCr P(a-k) 
k=O 

The proposition is true for n = r+1 , as we have 

ex ex ex 

F'*(pa) = L P(a-k) = L kC O P(a-k) = L k+1-1C 1_1 P(a-k) 
k=O k=O k=O 

The proposition is true for n = 1 

Hence by induction the proposition is true for all n. 

This completes the proof of theorem (4.1). 

Following theorem shall be applied in the proof of theorem (4.3) 

THEOREM (4.2) 
n-r 
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L nC r + k r+kC r m k = nCr (1 +m)(n-r) 

k=O 
PROOF: 

n-r 

LHS = L nCr+k r+kC r m
k 

k=O 

n-r 

= L (n!)/{(r+k)!.(n-r-k)!} .(r+k)!/{(k)!.(r)!}. mk 

k=O 

n-r 

= L (n!)/{(r)!.(n-r)!} .(n-r)!/{(k)!.(n-r-k)!}. m k 

k=O 

n-r 
= nCr L n-rC k mk 

k=O 

This completes the proof of thec;>rem (4.2) 

THEOREM(4.3): 

Proof: 

n 

F
m *(1#n) = I, nCr m n

-
r F(1#r) 

r=O 

From theorem (2.4) (ref.[1] ne have 
n n 

F*(1#n) = F ( 1# (n+1)) = L nCr F(1#r) = L nCr (1)n-r F(1#r) 
r=O r=O 

hence the proposition is true for m = 1. 

Let the proposition be true for m = s. Then we have 

n 

F S *(1#n) = L nCr Sn-r F(1#r) 
r=O 

or 
0 1 

FS *( 1 #0) = L nCo SO-r F(1#0) Fh (1#1) = L nC 1 S1-r F(1#1) 
r=O r=O 

2 3 

Fh (1#2) = L nC2 S2-r F(1#1) F S *(1#3) = L nC 1 S3-r F(1#3) 
r=O r=O 
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FS *(1#0)= °Co F(1#0) ----(0) 

FS *(1#1) = 1CO S1 F(1#0) + 1C1 SOF(1#1) ---- (1 ) 

FS *(1#2) = 2C O S2 F(1#0) + 2C 1 S1F(1#1) + 2C2 SOF(1#2) ----(2) 

----(r) 

FS *(1#n) = nCo Sr F(1#O) + nC 1 S1F(1#1) + ... + nCn SOF(1#r) ----en) 

multiplying the rth equation with nCr and then summing up we get 

the RHS as 

[ ne re 0 ne r+1e 1 ne r+ke k ne ne n]F( # ) r r S + r+1 r S + ... + r+k r S + ... + n r S 1 r 

n n-r 

= L {L nCr+k r+kC r Sk } F(1#r) 

r=O k=O 

n 
= L nCr (1 +s)n-r F(1#n) , by theorem (4.2) 

r=O 
n 

LHS = L nCr FS *(1#r) 
r=O 

Let N = P1P2P3 ... Pn . Then there are nCr divisors of N containing 

exactly r primes. Then LHS = the sum of the sth Smarandache 

star functions of all the divisors of N. = F'(S+1)*(N) = F(S+1)*(1#n). 

Hence we have 
n 

F(S+1)*(1#n) = L nCr (1+s)n-r F(1#n) 
r=O 
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FS *(1#0)= °Co F(1#0) ----(0) 

FS *(1#1) = 1CO S1 F(1#0) + 1C1 SOF(1#1) ----( 1 ) 

FS *(1#2) = 2CO S2 F(1#O) + 2C 1 S 1F(1#1) + 2C2 SOF(1#2) ----(2) 

. 
Fh(1#r) = rCo sr F(1#O) + rC 1 S1F(1#1) + ... + rC r SOF(1#r) ----(r) 

FS *(1#n) = nCo Sr F(1#O) + nC 1 S1F(1#1) + ... + nCn SOF(1#r) ----(n) 

multiplying the rth equation with nCr and then summing up we get 

the RHS as 

rnc rC 0 nc r+1C 1 nC r+kC k nC nC n]F(1#) r r S + r+1 r S + ... + r+k r 5 + ... + n r 5 r 

n n-r 

= L {L nCr+k r+kC r Sk } F(1 #r) 

r=O k=O 

n 
= L nCr (1 +s)n-r F(1#n) , by theorem (4.2) 

r=O 
n 

LHS = L nCr FS *(1#r) 
r=O 

Let N = P1P2P3 ... Pn . Then there are nCr divisors of N containing 

exactly r primes. Then LHS = the sum of the sth Smarandache 

star functions of all the divisors of N. = F'(S+1)*(N) = F(S+1)*(1#n). 

Hence we have 
n 

F(S+1)*(1#n) = L nCr (1+s)n-r F(1#n) 
r=O 
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which takes the same format 

P(s) => P(s+1) 

and it has been verified that the proposition is true for m = 1 

hence by induction the proposition is true for all m. 
n 

Fm*(1#n) = L nCr m n-r F(1#r) 
r=O 

This completes the proof of theorem (4.3) 

NOTE: 
From theorem (3.1) we have 

n 
F'(N@1#n) = F'(Np1P2 ... Pn) = L a(n,m) F,m*(N) 

where 
m=O 

m 

a(n,m) = (11m!) L (-1 )m-k .mCk .kn 
k=1 

If N = P1P2 ... Pk Then we get 

n k 

F(1#(k+n) = L [a(n,m) L kC t mk
-
t F(1#t) ] 

m=O t=O 
------(4.4) 

The above result provides us with a formula to express Sn in 

terms of smaller Bell numbers. It is in a way generalisation of 

theorem (2.4) in Ref [5]. 

THEOREM(4.4): 
a n 

F(u,1#(n+1» = L L nCr F(k,1#r) 
k=O r=O 

. ·Pn ) + 2:F' ( all the divisors containing only po) + L:F' ( all the 
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divisors containing only p1) + L:F' ( all the divisors containing only 

p2) + ... + L:F' ( all the divisors containing only pr) + ... + L:F' ( all 

the divisors containing only pO:) 

n n n n 

= L nCr F(O, 1#r) + L nCr F(1, 1#r) + L nCr F(2, 1#r) + L nCr F(3,1#r) 
r=O r=O r=O r=O 

n n 

+ ... + L nCr F(k, 1#r) + ... + L nCr F(a,1#r) 
r=O r=O 

ex. n 

= L L nCr F(k,1#r) 
k=O r=O 

This is a reduction formula for F(a, 1 #(n+1» 

A Result of significance 

From theorem (3.1) of Ref.: [ 2 ] , we have 

n 
F'{pQ@1#{n+1)) = F(a,1#(n+1)) = L a(n+1,m) F,m*{N) 

m=O 
where 

m 
a(n+1,m) = (11m!) L (_1)m-k .mC k .kn+1 

k=1 
and 

a 
= ~ m+k-1 C L m-1 P(a-k) 

k=O 

This is the first result of some substance, giving a formula for 
evaluating the number of Smarandache Factor Partitions of 
numbers representable in a (one of the most simple) particular 
canonical form. The complexity is evident. The challenging task 
ahead for the readers is to derive similar expressions for other 
canonical forms. 
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PROPERTIES OF SMARANDACHE STAR TRIANGLE 

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural Gas 
Curporation Ltd. ,Sabarn1ati, Ahmedbad, India- 330005.) 

ABSTRCT: In [1] we defme SMARANDACHE FACTOR PARTITION 

FUNCTION, as follows: Let aI, al , a3 , ... <Xr be a set of r natural 

numbers and PI, Pl, P3 , ... Pr be arbitrarily chosen distinct primes then 

F(a} , a2, <X3, ... a r) called the Smarandache Factor Partition of (a}, a2, a3 

, ••. <Xc) is defrned as the number of ways in which the number 

a.} a.2 a.3 a.r 

N PI P2 P3 . .. pr could be expressed as the 

product of its' divisors. For simplicity, we denote F( a I , a2, a3 , .. 

. 
. a r ) = F eN) ,where 

0.1 0.2 0.3 a.-
N = PI P2 P3 ... Pc 

au 
pn 

and Pr is the rth prime. PI =2, P2 = 3 etc. 

Also for the case 

al = a2 = a3 = ... = a r = ... = an = 1 
Let us denote 

F ( 1 , 1, 1, 1, 1. .. ) - F ( 1 #n) 
~ n - ones ~ 

In [2] we define The Generalized Smarandache Star 

Function as follows: 
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Smarandache Star Function 

(I) F'*(N} = LF'(dr} where drl N 
dIN 

(2) F'** ( N) = L F'* (d r ) 

d,JN 

dr ranges over all the divisors of N. 

If N is a square free number with n prime factors , let us denote 

F'** (N) =F** (l#n) 

Smarandache Generalised Star Function 

(3) F,n*(N) = L F'(n-l)* (dr ) 

d,fN 

and dr ranges over all the dIvisors ofN. 

For simplicity we denote 

n>l 

F'(NPIP2 .. ·Pn) = F'(N@l#n) , where 

( N,Pi) = 1 for i = 1 to n and each Pi is a prime. 

F'(N@l#n) is nothing but the Smarandache factor partition of (a 

number N multiplied by n primes which are coprime to N). 

In [2] I had derived a general result on the Smarandache 

Generalised Star Function. In the· present note we defme 

SMARANDACHE STAR TRIANGLE' (SST) and derive some properties 

of SST. 

DISCUSSION: 
DEFI~"1TION: 'Sl\1ARANDACHE STAR TRIANGLE' (SST) 
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As established in [2] 
111 

3(n.rn) = (lIm!) L (_l)m-k .mCk.~ ---------- (1) 
k=1 

we have 3(n,n) = 3(n,1) = 1 and 3(n,m) = 0 for m > n. Now if one 

arranges these elements as follows 

3(1,1) 

3(2,1) 3(2,2) 

3(3,1) ~3,2) 3(3,3) 

~n,l) ~n,2) ... ~n,n-l) ~n,n) 

we get the following triangle which we call as the 'SMARANDACHE 

STAR TRIANGLE' in which ~r.rn) is the mth element of the rth row and is 

given by (A) above. It is to be noted here that the elements are the Stirling 

numbers of the flrst kind. 

1 

1 1 

1 3 1 

1 7 6 1 

1 15 25 10 1 
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Some propoerties of the SST. 

(1) The elements of the fIrst column and the last element of each row is 

unity. 

(2) The elements of the second column are 2n
-
1 

- 1 ,where n is the row 

number. 

(3) Sum of all the elements of the nth row is the nth Bell. 

PROOF: 
From tht:ort:m(3.1) of Rt:f; [2] wt: havt: 

n 

·F'(N@l#n) = F'(NP1P2 .. ·Po) 

if N = 1 we get F,m*(l) = F'(m-1)*(l) = F'(m-2)*(I) = ... = F'(l) = 1 

hence n 

f'(PIP2 .. ·Pn) = 2: acn,m) 
r=O 

(4)The elements of a row can be obtained by the following reduction formula 

S(n+l,m+l) = s(n,m) + (m+ 1) . S(n+l,m+l) 

instead of having to use the formula (4.5). 

(5) If N =p in theorem (3.1) Ref~[2] we get F'm*(p) = m + 1. Hence 

n 

- 2: 3.(u.m) F,m:t-(N) 
m=l 

n 

or Bn+1 - I (m+l) acn.m) 
m=l 
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(6) Elements of second leading diagonal are triangular numbers in their 

natural order. 

(7) If p is a prime, p divides all the elements of the pth row except the r t and 

the last, which are unity. This has been established in the following theorem. 

THEOREM(l.l): 

a(p,r)== 0 (mod p) if P is a prime and 1 < r < p 

Proof: 

Also, 

III 

~p.r) = (l/r!) L (-Irk .rCk .kP 

k=} 

~p.r) = 

r-l 

(l/(r-l)!) L (_ltl-k .r-IC~ .(k+l)p-l 
k=0 

r-l 

a{p,r) = (l/(r-l)!) I [(-lt l
-
k .r-1Ck • {(k+I)P-l -I}] + 

k=O 

r-I 
(l/(r-I)!) L (_lt l

-
k .r-1Ck 

k=Q 

applying Fermat's little theorem, we get 

~p,r) = a multiple of p + 0 

COROLLARY: (1.1) 

F(l#p) == 2 (mod p) 

~p,l) = ~p,p) = 1 
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F( l#p) = 

. F(l#p) == 2 (mod p) 

p-l 

2: au,,k) + 2 
k=2 

(8) The coefficient of the rth term b(n.r) in the expansion of xn as 

is equal to ~n,r) . 

THEOREM(1.2): B3n+2 is even else Bk is odd. 

From theorem (2.5) in REF. [1] we have 

F'(Nqlq2) = F'*(N) + F'**(N) where ql and q2 are pnme. 

and (N,q:) = (N,q2) = 1 

let N = PIP2P3 ... Pn then one can write 

or F(l#(n+2» = F(1#(n+I» + F**(l#n) 
but 

F**(1#n) = 

n-l 

n 

L nCr 2n-r F(1 #r) 
r=0 

F**(l#n) = I {nCr 2n-r F(1#r)} + F(l#n) 
r=\) 

the fIrst term is an even number say = E ,Tb.is gives us 

F(1#(n+2» - F(l#(n+1» - F(l#n) = E ,an even number. ---(1.1) 

Case- 1: F (1 #n) is even and F (1 #( n+ 1» is also even => 
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F(1#(n+2» is even. 

Case -II: F(l#n) is even and F(l#(n+ 1» is odd ~ F(l#(n+2» is 

odd. 

again by (1. 1 ) we get 

F(1#(n+3» - F(1#(n+2») - F(l#(n+ 1)) = E, ~ F(l#(n+3» is 

even. F in all y we get 

F(1 #n) is even <:::> F(1 #(n+ 3» is even 

we know that F(l#2) = 2 ~ F(l#2), F(1#5) , F(l#8), ... are 

even 

~ B3n+ 2 is even else Bk is· odd 

This completes the proof. 
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SMARANDACHE FACTOR PARTITIONS OF A 
TYPICAL CANONICAL FORM. 

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: In [1] we define SMARANDACHE FACTOR 

PARTITION FUNCTION, as follows: 

Let U1, U2 , CX3 , ... Ur be a set of r natural numbers 

and P1, P2, P3 , ... Pr be arbitrarily chosen distinct primes then 

F(u1 , U2 , U3 , ... Ur ) called the Smarandache Factor Partition of 

(U1 I U2 , U3 , ... cx r ) is defined as the number of ways in which the 

number 

0.1 0.2 0.3 o.r 
N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(u1 , U2 , U3 , .. 

. Ur ) = F' (N) ,where 

a.n 

N = Pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

In the present note we derive a formula forr the case N = P10.P22 

DISCUSSION: 
Theorem(5.1 ): 

P(i) 
k=O j=O i=O 

where r = [a/2] a =2r or a = 2r +1 
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PROOF: Following are the distinct mutually exclusive and 

exhaustive cases. Only the numbers in the bracket [] are to be 

further decomposed. 

a 
Case I: (P2) [P1 up/] gives F'*( P1 U

) = L P(i) 

ex 
Hence Case II contributes I P(i) 

1=0 

CL-2 

Hence Case" I contributes I P(i) 
i=O 

k=O 

------~ Pea) 

------~ Pea-a) =P(O) 

------~ P(a-2) 

------~ pea-a) =P(O) 

Case IV: {C1}~(P12 P2) (p/ P2 ) [P1 U
-
4] ------~ P(a-4) 

. 
{Cu-4}~(P/ P2)(P1 U

-
2 P2 ) [P1 U

-
U

] ------~ Pea-a) =P(O) 
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a-4 

Hence Case IV contributes I P(i) 
1=0 

{ NOTE: The factor partition (p/ P2) (P1 P2 ) [P1 a.-3] has already 

been covered in case III hence is omitted in case IV. The same 

logic is extended to remaining (following) cases also.} 

a-6 

Hence Case V contributes I P(i) 
1=0 

On similar lines case VI contributes a-8 

I P(i) 
1=0 

we get contributions upto a-2r 

I P(i) 
1=0 

where 2r < a < 2r +1 or r = [a/2] 

summing up all the cases we get 

a r a-2j 

P (i) 
k=O j=O i=O 

where r = [a/2] a =2r or a = 2r +1 

This completes the proof of theorem (5.1). 

COROLLARY:(5.1 ) 
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r 

F'(P1
C1

P2
2

) . = L (k+2) [ P(a-2k) + P(a-2k-1)] -----(5.1) 
k=O 

Proof: In theorem (5.1) consider the case a =2r, we have 
2r r a-2j 

F'(p/rp /) = F(a,2) = L P(k) + L L P(i) -------(5.2) 
k=O j=O i=O 

Second term on the RHS can be expanded as follows 

P(a) + P(a-1) + P(a-2) + P(ex-3) + ... + P(2) + P(1) + P(O) 

P(ex-2) + P(ex-3) + ... + P(2) + P(1) + P(O) 

P(ex-4) + ... P(2) + P(1) + P(O) 

P(2) + P(1) + P(O) 

P(O) 

summing up column wise 

= [P(a) + P(a-1)] +2 [P(ex-2) + P(ex-3)]+ 3 [ P(a-4) + P(a-5)]+ ... 

+ (r-1) [P(2) + P(1)] + r P(O). 

r 

= I (k+1) [ P(a-2k) + P(ex-2k-1)] 
k=O 

{Here P(-1) = 0 has been defined.} 

hence 

r r 

F'(P1
Ct p/) =I P(k) + I (k+1) [ P(ex-2k) + P(ex-2k-1)] 

k=O k=O 
or 

r 

F'(P1 Ct p2 2
) = I ( k + 2) [ .p ( ex - 2 k) + P ( ex - 2 k -1 ) ] 

k=O 

Consider the case ex =2r+1, the second term in the expression (5.2) 

can be expanded as 
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pea) + P(a-1) + P(a-2) + P(a-3) + ... + 
P(a-2) + P(a-3) + ... + 

P(2) + P(1) + P(O) 
P(2) + P(1) + P(O) 

P(a-4) + ... P(2) + P(1) + P(O) 

P(3)+ P(2) + P(1) + P(O) 

P(1)+ P(O) 
summing up column wise we get 

= [pea) + P(a-1)] +2 [P(a-2) + P(a-3)]+ 3 [ P(a-4) + P(a-5)]+ ... 

+ (r-1) [P(3) + P(2)] + r[ P(1) + P(O)]. 
r 

= I (k+1) [ P(a-2k) + P(a-2k-1)], a =2r+1 
k=O 

on adding the first term, we get 
r 

F'( P1 o.p2 2
) = I (k+2) [ P(a-2k) + P(a-2k-1)] 

k=O 

{Note here P(-1) shall not appear.} 
Hence for all values of ex we have 

[0:/2] 

F'(P1 I1p/) = I. (k+2) [P(a.-2k) + P(a.-2k-1)] 
k=D 

This completes the proof of the Corollary (5.1). 
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LENGTH I EXTENT OF SMARANDACHE FACTOR PARTITIONS 

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: In [1] we define SMARANDACHE FACTOR 

PARTITION FUNCTION (SFP), as follows: 

Let U1, U2 , U3 , ... Ur be a set of r natural numbers 

and P1, P2, P3 , .. ·Pr be arbitrarily chosen distinct primes then 

F(u1 , U2 , U3 , ... u r ) called the Smarandache Factor Partition of 

(U1 , U2 , U3 , ... Ur ) is defined as the number of ways in which the 

number 

a 1 a2 a3 ar 
N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(U1 , U2 , U3 , .. 

. Ur ) = F' (N) ,where 

U r 

N = Pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

Also for the case 

= U r = = Un = 1 

we denote 

F(1,1,1,1,1 ... ) = F ( 1 #n) 
+-- n - ones ~ 

In the present note we define two interesting parameters the 
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length and extent of an SFP and study the interesting 
properties they exhibit for square free numbers. 

DISCUSSION: 

DEFINITION: Let F'(N) = R 

LENGTH: If we denote each SFP of N , say like F1 , F2 

, ... FR arbtrarlly and let Fk be the SFP representation 

of N as the product of its divisors as follows: 

an entity in the SFP 'Fk' of N. Then T( Fk) = t IS 

defined as the 'length' of the factor partition Fk . 

e.g. say 60 = 15 X 2 X 2 ,is a factor partition Fk of 60. Then 

T(Fk) can also be defined as one more than the number of 

product signs in the factor partition. 

EXTENT: The extent of a number is defined as the sum of the 

lengths of all the SFPs. 

Consider F(1#3) 

N = P1P2P3 = 2 X 3 X 5 = 30. 

ISN Factor Partition length 

1 30 1 

2 15 X 2 2 
3 10 X 3 2 
4 6 X 5 2 
5 5 X 3 X 2 3. 

Extent (30) = L length = 10 

We observe that 
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F(1#4) - F(1#3) = 10. = Extent {F(1#4)} 

Consider F(1 #4) 

N =2X3X5X7 =210 

SN Factor Partition Length 
1 210 1 
2 105 X 2 2 
3 70 X 3 2 
4 42 X 5 2 
5 35 X 6 2 
6 35 X 3 X 2 3 
7 30 X 7 2 
8 21 X 10 2 
9 21 X 5 X 2 3 
10 15 X 14 2 
11 15X7X2 3 
12 14 X 5 X 2 3 
13 10X7X3 3 
14 7 X 6 X 5 3 
15 7X5X3X2 4 

Extent(210) = L length = 37 

We observe that 

F(1#5) - F(1#4) = 37. =Extent { F(1#4)} 

Similarly it has been verified that 

F(1#6) - F(1#5) = Extent { F(1#5)} 

CONJECTURE (6.1) 

F(1#(n+1)) - F(1#n) = Extent { F(1#n)} 

CONJECTURE (6.2) 
n 

F(1#(n+1)) = I Extent {F(1#r) 
r=O 

Motivation for this conjecture: 
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If conjecture (1) is true then we would have 

F(1#2) - F(1#1) = Extent {F(1#1)} 

F(1#3) - F(1#2) = Extent { F(1#2)} 

F(1#4) - F(1#3) = Extent { F(1#3)} 

F(1#(n+1)) - F(1#n) = Extent { F(1#n)} 

Summing up we would get 
n 

F(1#(n+1» - F(1#1) = I Extent {F(1#r) 
r=1 

F(1#1) = 1 = Extent {F(1#0) can be taken, hence we get 

n 
F(1#(n+1)) = I Extent {F(1#r) 

r=O 

Another Interesting Observation: 

Given below is the chart of r versus w where w is the number 
of 

SFPs having same length r. 

F (1 #0) = 1 ,I r. w = 1 

tr=[CJ 
~ 

F(1#1) =1 ,Ir.w=1 

~ 
~ 

F (1 #2) = 2 , I r. w = 3 

I ~ I ~ I ~ I 
F (1 #3) = 5 ,I r. w = 10 
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F ( 1 #4 ) = 1 5 , I: r. w = 3 7 

I r 2 I 3 i 4 I 
I w 7! 6 i; I 

F(1#5) = 52, Ir.w=151 

lr :1 :2 )3 14 Is 
I 

!w I, !15 ;25 jl0 !1 

The interesting observation is the row of w is the same as the nth row 

of the SMARANDACHE STAR TRIANGLE. (ref.: [4]) 

CONJECTURE (6.3) 
r 

Wr = a(n,r) = (1/rl) L (_1)r-k .rC k .kn 

k=O 

where Wr is the number of SFPs of F(1#n) having length r. 

Further Scope: One can study the length and contents of other 

cases ( other than the square-free numbers.) explore for patterns if 
any. 
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SOME MORE IDEAS ON SMARANDACHE FACTOR PARTITIONS 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: In [1] we define SMARANDACHE FACTOR 

PARTITION FUNCTION (SFP), as follows: 

Let <X1, <X2 , <X3 , ... <Xr be a set of r natural numbers 

and P1, P2, P3 I· • ·Pr be arbitrarily chosen distinct primes then 

F(<X1 1 <X2 1 <X3 1 ••• <Xr ) called the Smarandache Factor Partition of 

. 
(<X1 1 <X2 , <X3 1 ••• <Xr ) is defined as the number of ways in which the 

number 

a1 a2 a3 ar 
N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(<X1 , <X2 , <X3 , .. 

. 
. <Xr ) = F (N) ,where 

0.1 0.2 0.3 a. r a.n 

N = P1 P2 P3 Pr Pn 

and pr is the rth prime. P1 =2, P2 = 3 etc. 

In this note another result pertaining to SFPs has been derived. 

DISCUSSION: 

Let 
a.r 

N = Pr 

(1) L(N) = length of that factor partition of N which contains the 

maximum number of terms. In this case we have 
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r 

L(N) = L Uj 
i= 1 

(2) 
AL(N) = A set of L(N) distinct primes. 

(3) B(N) = { p: piN, p is a prime. } 

B (N) = { Pl·, P2 , ... Pr } 

(4) \!'[ N, AL(N)] = {x I d(x) = Nand B(x) c AL(N) } , whered(x) is the 

number of divisors of x. 

To derive an expression for the order of the set '¥[ N, AL(NJl defined 

above. 

There are F'(N) factor partitions of N. Let F1 be one of them. 

F 1 -----~ N = Sl X S2 X S3 X ... X St. 

if 

8 = 
St.-1 

·Pt 

where Pt E AL(N) , then 8 E \!'[ N, AL(N)] for 

o 0 

Pt+1 Pt+2 . 

d(8) = Sl X S2 X S3 X ... X St X 1 X 1 X 1 . .. = N 

o 
. PL(N) 

Thus each factor partition of N generates a few elements of \!' . 

Let E(F 1) denote the number of elements generated by F1 

F1 -----~N= Sl Xs2 X S3X ... XSt. 

multiplying the right member with unity as many times as required to make 

the number of terms in the product equal to L(N) . 

L(N) 

N = n Sk 
k=1 
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where SI+1 = St+2 = SI+3 = ... = SL{N) = 1 

Let X1 s's are equal 

X2 s's are equal 

Xm s's are equal 

such that Xl + X2 + X3 + ... + Xm = L(N). Where any Xi can be unity also. 

Then we get 

summing over all the factor partitions we get 

F'(N) 

0('1'[ N, AL(N)]) = L E(F k) -----------(7.1) 
k=1 

Example: 
N = 12 = 22.3 , L(N) = 3 , F'(N) = 4 

Let AL(N) = { 2,3,5} 

F 1 ------7 N = 12 = 12 X 1 X 1, Xl = 2 , X2 = 1 

E(F,) = 3! / {(2!){1!)} = 3 

F 2 ------7 N = 12 = 6 X 2 X 1 , Xl = 1 , X2 = 1. X3 = 1 

E(F 2) = 3! I {(1!) (1 !)(1!)) = 6 

F 3 ------7 N = 12 = 4 X 3 X 1 . Xl = 1 . X2 = 1. X3 = 1 

E(F3) = 3! / {(1!) (1 !)(1 i)} = 6 

F 4 ------7 N = 1 2 = 3 X 2 X 2 , Xl = 1 . X2 = 2 

E(F4) = 3! / {(2!){1 i)} = 3 
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F'(N) 

O(\f'[ N, Al(N)]) = :L E(F k ) = 3 + 6 + 6 + 3 = 18 
k=1 

To verify we have 

32 X 2 X 5, 52 X 2 X 3, } 
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A NOTE ON THE SMARANDACHE DIVISOR SEQUENCES 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: In [1] we define SMARANDACHE FACTOR 

PARTITION FUNCTION (SFP) , as follows: 

Let CX1, CX2 , CX3 , ... CX r be a set of r natural numbers 

and P1, P2, P3 , .. ·Pr be arbitrarily chosen distinct primes then 

F(cx1' CX2 , CX3 , ... cx r ) called the Smarandache Factor Partition of 

(CX1, CX2 , CX3 ,. . cx r ) is defined as the number of ways in which the 

number 

a 1 a2 a3 ar 
N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(cx1 , CX2 , CX3 , 

. CX r ) = F (N) ,where 

a1 0·.2 a3 a r an 

N = P1 P2 P3 Pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

In [2] we have defined SMARANDACHE DIVISOR SEQUENCES 

as follows 

P n = { x I d(x) = n} ,d(x) = number of divisors of n. 

P2 = { x I x is a prime} 

P3 = { x I x = p2, P is a prime} 

P4 = { x I x = p3 or x = P1P2 , P ,P1 ,P2 are primes} 

284 



Let F1 be a SFP of N. Let \f'F1 = { yl d(y) = N } , generated by 

the SFP F1 of N. It has been shown in Ref. [3] that each SFP 

generates some elements of \f' or Pn . Here each SFP generates 

i n fin it ely man y e I e men t s 0 f P n . S i mil a r I y \f' F 1 , \fI F 2 , '-:If F 3 ,... 

\fIF'(N) , are defined. It is evident that all these Fk'S are disjoint 

and also 

THEOREM(7.1) There are F'(N) disjoint and exhaustive subsets 

in which P N can be decomposed. 

PROOF: Let 0 E PN , and let it be expressed in canonical form 

as follows 
a r 

e = Pr 

Then d( e) = 

Hence e E \fIFk for some k where Fk is given by 

Again if e E \.f'Fs, and e E ~Ft then from unique factorisation 

theorem Fs and Ft are identical SFPs of N. 

REFERENCES: 
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ALGORITHM FOR LISTING OF SMARANDACHE FACTOR 
PARTITIONS 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: In [1] we define SMARANDACHE FACTOR 

PARTITION FUNCTION (SFP) , as follows: 

Let U1, U2 , U3 , ... Ur be a set of r natural numbers 

and P1, P2, P3 , ... Pr be arbitrarily chosen distinct primes then 

F(U1 , U2 , U3 , ... Ur ) called the Smarandache Factor Partition of 

(U1 , U2 , U3 , ... u r ) is defined as the number of ways in which the 

number 
«1 0.2 «3 «r 

N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(U1 , U2 , U3 , .. 

. Ur ) = F' (N) ,where 

a. r 

N = Pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

In this note an algorithm to list out all the SFPs of a number 

without missing any is developed. 

DISCUSSION: 
DEFINITION: F'x(Y) is defined as the number of those SFPs 

of Y which involve terms not greater than x. 

If F1 be a factor partition of y : 

F 1 ----~ X1 X X2 X X3 X ... Xr • then F 1 is included in F x' (y) iff 
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Xi .$ X fo r 1 .$ I:s;; r 

clearly F'x(y) s F'(y) , The equality holds good iff X ;::: y. 

Example: F'8(24) = 5. Out of 7 only the last 5 are included in F's(24). 

(1) 24 
(2) 12 X 2 
(3) 8 X 3 
(4) 6 X 4 
(5) 6 X 2 X 2 
(6) 4 X 3 X 2 
(7) 3 X 2 X 2 X 2. 

ALGORITHM: Let d 1 , d2 , d3 , ... dr be the divisors of N in 

descending order. For listing the factor partitions following are the 

steps: 

(A) (1) Start with d 1 = N. 

(2) Write all the factor partitions involving d2 and so on. 

(8) While listing care should be taken that the terms from left to 

right should be written in descending order. 

** At dk ;::: N1/2 ;::: dk+ 1 ,and onwards ,step (8) will ensure 

that there is no repeatition. 

Example: N = 36 , Divisors are 36, 18, 12, 9 , 6, 4, 3 I 2 I 1. 

36 --~ 36 
18 --~ 18 X 2 
12 --~ 12 X 3 
9 --~ 9 X 4 

9X2X2 
6 --~ 6 X 6 
6 --~ 6 X 3X 2 
---------------------------------d k = N 1/2 

4 --~ 4 X 3 X 3 
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3 --~3 X :3 X 2 X 2 
2 --~NIL 
1 --~NIL 

FORMULA FOR F'(N) 

F'{N) = L F'dr{N/dr) 

Example: 
N = 216 = 2 3 33 

(1) 216 
(2) 108X2 
(3) 72 X 3 
(4) 54 X 4 
(5) 54 X 2 X 2 
(6) 36 X 6 
(7) 36 X 3 X 2 
(8) 27 X 8 
(9) 27 X 4 X 2 
(10) 27 X 2 X 2 X 2 
(11) 24 X 9 
(12) 24X3X3 
(13)18X12 
(14) 18X6X2 
(15) 18X4X3 
(16) 18X3X2X2 
(17) 12X9X2 
(18) 12X6X3 
(19) 12X3X3X2 
(20) 9 X 8 X 3 
(21) 9X6X4 
(22) 9 X 6 X 2 X 2 
(23) 9 X 4 X 3 X 2 
(24) 9 X 3 X 2 X 2 

-------( 8. 1 ) 

--~F216(1) = 1 
--~F108(2) = 1 
--~F72(3) = 1 
--~F54(4) = 2 

= 3 

--~F8(27) = 1 (25) 8 X 3 X 3 X 3 
(26) 6 X 6 X 6 
(27) 6 X 6 X 3 X 2 
(28) 6 X 4 X 3 X 3 

--~F6(36) = 4 

(29) 6 X 3 X 3 X 2 X 2 
(30) 4 X 3 X 3 X 3 X 2 X 2 
(31) 3X3X3X2X2X2 

--~F4(54) = 1 
--~F3(72) = 1 
--~F2(108) = 0 
--~F1 (216) = 0 
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F'(216) = L F'dr{216/d r) = 31 
dr/N 

Remarks: This algorithm would be quite helpful! In developing 

a computer program for the listing of SFPs. 
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EXPANSION OF xn IN SMARANDACHE TERMS OF 
PERMUTATIONS 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India-38000S.) 

ABSTRACT: 

DEFINITION of SMARANDACHE TERM 

Consider the expansion of xn as follows 

xn = b(n,1) X + b(n,2) x(x-1) + b(n,3) x(x-1 )(x-2) + •.• + b(n,n) xPn ---(9.1) 

We define b(n,r) x(x-1 )(x-2) ... (x-r+1 )(x-r) as the rth 

SMARANDACHE TERM in the above expansion of xn . 

In the present note we study the coefficients b{n,r).of the the rth 

SMARANDACHE TERM in such an expansion. We are 

encountered with fascinating coincidences. 

DISCUSSION: 

Let us examine the coefficients b(n.r).of the the rth 

SMARANDACHE TERM in such an expansion. 

Taking x = 1 gives b(n.1) = 1 

Taking x = 2 gives b(n.2) = (2n - 2 )/2 

Taking x = 3 gives b(".3) = {3" - 3 - 6(2n - 2)/2}/6 

= {1/3!} {(1).3 n 
- (3). 2 n + (3). (1)" -(1) (O)"} 

Taking x = 4 gives 

b(".4) = (1/4!) [(1) 4" - (4) 3" + (6) 2" - (4) 1n + 1(0)"] 
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This suggests the possibility of 

r 
b(n,r) = (1/rl) L (-1 r-k .rC k .kn = a{n,r) 

k=1 

THEOREM (9.1) 

r 
b (11 ') "(_1)r-k .rCk .kn (n,r) = r. £... = a(n,r) 

k=1 
First Proof: 

This will be proved in two parts. First we shall prove the following 

proposition. 
b(n+1,r) = b(n,r-1) + r. b(n,r) 

we have 

xn = b(n,1) X + b(n.2) x(x-1) + b(n,3) x(x-1 )(x-2) + ... + b(n,n) XP n 

x = r , gives, 

rn = b(n,1) r + b(n,2) r(r-1) + b(n,3) r(r-1 )(r-2) + ... + b(n,n) rPn 

multiplying both the sides by r , 

rn+
1 = b(n,1) r.r + b(n,2) r(r-1) 4- b(n,3) r.r(r-1)(r-2) + ... + b(n,r) r. rPr + 

terms equal to zero. 

n+1 - b rp b rp b rp b rp r - (n,1)r. 1 + (n,2)r. 2 + (n,3)r. 3+"'+ (n,r)r. r 

Using the identity r. rp k = rp k+1 + k. rp k we can write 

n+1 b { rp 1 rp} b {rp 2 rp } b { rp r = (n,1) . 2 + 1 + (n,2) 3 + . 2 + ... + (n,r) r + r. 

rp r-1 } 

rn+
1 = b(n,1) rp1 + { b(n,1) + 2. b(n,2)} rp2 + { b(n,2) + 3. b(n,3}} rp3 + ... + 
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{ b(n.r-1) + r. b(n.r)} rPr ---------- (9.2) 

Otherwise also we have 

The coefficients of rp t (t < r) are independent of r hence 

these can seperately be equated giving us 

b(n+1.r) = b cn•r -1) + r.b(n.r) 

Now we shall proceed by induction. Let 
r 

b(n,r) = (1/r!) L (_1y-k .rCk .kn 
k=O 

r-1 
b(n,r-1) = (1/(r-1)!) L (_1)r-1-k .r-1Ck .k" 

k=O 
be true. Then the sum b(",r-1) + r.b(",r) equals 

r-1 r 
(1/(r-1)!) L (_1)r-1-k .r-1Ck .kn + r. (1/r!) L (_1)r-k .rCk .kn 

k=O k=O 

r-1 
= «-1 )r-1/r!) [ L(-1 rk r {r-1Ck - rCk}k"] + r"+1/r! 

k=O 

r-1 
= «-1 y- 1/r!) [ I(-1 rk 

{ -k. rCk}k"] + r"+1/r! 
k=O 

r-1 
=(1/r!) L (-1 )r-k rC k k

n+ 1 

k=O 

which gives us 

r-1 
b(n+1,r) = (1/rt) L (-1 )r-k rC k k"+1 

k=O 

b(n+1,r) also takes the same form. Hence by induction the proof is 

complete. 
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Second Proof: This proof is totally based on a combinatorial 

approach . This method also provides us with a proof of the 

Conecture (6.3) of ref. [3] as a by product. 

If n objects no two alike are to be distributed in x boxes, no 

two alike, the number of ways this can be done is x" since there 

are k alternatives for disposals of the first object, k alternatives for 

the disposal of the second, and so on. 

Alternately let us proceed with a different approach. Let 

us consider the number of distributions in which exactly a given 

set of r boxes is filled (rest are_empty.). Let it be called f(n,r). 

We derive a formula for f(n,r) by using the inclusion 

exclusion principle. The method is illustrated by the computation of 

f(n,5). Consider the total number of arrangements, 5" of n different 

objects in 5 different boxes. Say that such an arrangement has 

property 'a'. In case the first box is empty, property 'b' incase the 

second box is empty, and similar property 'c', 'd', and 'e'. for the 

other three boxes respectively. To find the number of distributions 

with no box empty, we simply count the number of distributions 

having none of the properties 'a', 'b' IC' , ,. .. etc. We can apply the 

following formula. 

N - rC 1.N(a) + rC 2.N(a,b) - rC 3.N(a,b,c) + ... ------(9.3) 
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Here N = Sn is the total number of distributions. By N(a) we mean 

the number of distributions with the first box empty.and so N(a) = 

4n. Similarly N(a,b) is the number of distributions with the first two 

boxes empty. But this is the same as the number of distributions 

into 3 boxes and N(a,b) = 3n
. Thus we can write 

N = 5n 
, N(a) = 4n 

, N(a,b) = 3n etc. N(a,b,c,d,e) = O. 

Applying formula (9.3) we get 

by the direct generalization of this with rin place of 5 , we see 
that 

f(n,r) = rn - rC 1 .(r-1)n + rC 2 .(r-2)n - rC 3 .(r-3)n + ... 
r 

f(n,r) = L (_1)k rC k (r-k).n 
k=O 

f(n,r) = rl . a(n.r) ,from theorem (3.1). of ref. [1] 

Now these r boxes out of the given x boxes can be chosen in xCr 

ways. Hence the total number of ways in which n distinct objects 

distributed in x distinct boxes occupying exactly r of them ( with 

the rest x-r boxes empty) , defined as d(n,r/x) ,is given by 

d(n,r/x) = rl . a(n.r) xC r 

d(n,r/x) = a(n.r)' xPr 

Summing up all the cases for r =0 to r = x, the total number of 

ways in which n distinct objects can be distributed in x distinct 

boxes is given by 
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x x 

L d(n,r/x» = L xPr a(n,r) -------(9.4) 
rcO r=O 

equating the two results obtained by two different approaches we 

get n 

xn = L XP r a(n,r) 
raO 

REMARKS: 
If n distinct objects are to be distributed in x 

distinct boxes with no box empty I then n < x IS mandetory for a 

possible distribution.e.g. 5 objects can not be placed in 7 boxes 

with no empty boxes ( a sort of converse of peigon hole principle) 

Hence we get the following result 

f(n,r) = 0, for n < k. 

r 

f(n,r) = L (_1)k rC k (r-k)n = 0 if n < r. 
k=O 

Further Generalisation: 

(1) One can go ahead with the following generalisation of 

expansion of xn as follows 

xn = 9.(n/k,1) X + 9(n/k,2) x(x-k) + 9(n/k,3) x(x-k)(x-2k) + ... + 

9(n/k,n) x(x-k)(x- 2k) ... (x-(n-1 )k)(x -nk+ k) 

9(n/k,r) = b(n,r) = 8(n,r) for k = 1 has been dealt with in this 

note. One can explore for beautiful patterns for k = 2 I 3 etc. 

We can call (define) 9(n/k,r) x(x-k)(x-2k) ... (x-(n-1 )k)(x-rk+ k) 

as the rth Smarandache Term of the kth kind in such an 
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expansion. 

(2) Another generalisation could be 

xn
! = C(n/k,1) (x-k) + C(n/k,2) (X_k)(X2_k) + C(n/k,3) (X-k)(x2-k)(x 3

-

k) + ... + ... + C(n/k,n) (x-k) (x2-k)(x 3-k) ... ( Xn - k) 

For k = 1 if we denote C(n/k,r) = c(n,r) for simplicity we get 

xnl = C(n,1) (x-1) + C(n,2) (x-1 )(x2-1) + C(n,3) (x-1 )(x2-1 )(x3-1) 

+ ... + ... + c(n,n) (x-1) (x2-1 )(x3-1 ) ... ( xn - 1) 

We can define 

rth Smarandache Factorial Term of the kth kind in the 

expansion of xrd. One ca'n again explore for patterns for the 

coefficient C(n/k,r). 
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MISCELLANEOUS RESULTS AND THEOREMS ON 
SMARANDACHE TERMS AND FACTOR PARTITIONS 

(Amarnath Murthy ,S.E. (E & T), Well'Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: In [1] we define SMARANDACHE FACTOR 

PARTITION FUNCTION (SFP) , as follows: 

Let U1, U2 , U3 , ... Ur be a set of r natural numbers 

and P1, P2, P3 , ... Pr be arbitrarily chosen distinct primes then 

F(u1 , U2 , U3 , ... u r ) called the Smarandache Factor Partition of 

(U1 , U2 , U3, ... u r ) is defined as the number of ways in which the 

number 

0.1 0.2 a3 ar 

N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(U1 , U2 , U3 , .. 

. U r ) = F' (N) ,where 

a r 

N = Pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

Also for the case 

= U r = = Un = 1 

we denote 

F ( 1 , 1, 1, 1, "1. . .) = F ( 1#n) 
~ n - ones ~ 

In [2] we define b(n,r) x(x-1)(x-2) ... (x-r+1)(x-r) as the rth 

SMARANDACHE TERM in the expansion of 
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xn = b(n,1) X + b(n,2) x(x-1) + b(n,3) x(x-1)(x-2) + ... + b(n,n) xPn 

In this note some more results depicting how closely the 

coefficients of the SMARANDACHE TERM and SFPs are related. 

are derived. 
DISCUSSION: 

Result on the [i j
] matrix: 

Theorem (9.1) in [2] gives us the following result 

n 

X n - ~ XP a - ~ r (n,r) which leads us to the following 
r=O 

bea utifu I res u It. 

x x 

L k n = L 
k=1 k=1 r=1 

In matrix notation the same can be written as follows for x = 4 = n. 

1 P1 0 0 0 1 1 1 1 

2P1 2P2 0 0 0 1 3 7 

3
P1 

3
P2 

3
P3 0 * 0 0 1 6 

4P1 4P2 4P3 4P4 0 0 0 1 

In gerneral 

p * A' - Q where P -

A = [a(i,~ and Q = [ii] 
nXn nXn 

(A' is the transpose of A) 

Consider the expansion of xn I again 
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= ePJ] -----( 1 O. 1 ) 
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xn = b(n.1) X + b(n.2) x(x-1) + b(n.3) x(x-1 )(x-2) + ... + b(n.n) xp n 

for x = 3 we get 

x
3 = b(3.1) x + b p .2 ) x(x-1) + b(3,3) x(x-1 )(x-2) 

comparing the coefficient of powers of x on both sides we get 

b(3.1) - b(3,2) 

b(3,2) 

I n matrix form 

C3-1 

1 

o 

o 

(C3-1)' 

-1 2 

1 

o 

-3 

1 

1 

0 

0 

+ 

-

2 b(3,3) = 0 

3 b(3,3) = 0 

* 

b(3,3) = 1 

b(3,1) 

b(3.2) 

0(3,3) 

= 

-1 
-1 2 

1 -3 

0 1 

1 0 0 

1 1 0 

1 3 1 
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o 

o 

1 

1 

0 

0 

1 1 

1 3 

0 1 



similarly it has been observed that 

1 0 

1 1 

1 3 

1 7 

o 

o 
1 

6 

o 

o 
o 

1 

The above observation leads to the following theorem. 

THEOREM (10.1) 

In the expansion of xn as 

xn = b(n,1) X + b(n,2) x(x-1) + b(n,3) x(x-1 )(x-2) + ... + b(n,n) xPn 

If Cn be the coefficient ~atrix of equations obtained by equating 

the coefficient of powers of x on both sides then 

-- r (i,j) ] = star matrix of order n r nXn 

PROOF: It is evident that C pq the element of the pth row and qth 

column of Cn is the coefficient of xP in xPq. And also Cpq is 

independent of n. The coefficient of xP on the RHS is 
n 

coefficient of xP = L b(n,q) Cpq , also 
q=1 

coefficient of xP = 1 if P = n 

coefficient of x P = =0 if p ;t n. 

in matrix notation 
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coefficient of xP = 

= 

L b(n,q) Cpq 
q=1 

n 

I b(n,q) C' qp 
q=1 

= inp where inp = 1 , if n = p and inp = 0, if n * p. 

= In (identity matrix of order n.) 

[b(n,q) ] [Cp,q J = In 

[a(n,q) ] [Cp,q J = In as b(n,q) = a(n,q) 

This completes the proof of theorem (10.1). 
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THEOREM (10.2) 

If Ck,n is the coefficient of Xk in the expansion of xPn , then 

n 

L F ( 1 # k) C k • n = 1 
k=1 

PROOF: In property (3) of the STAR TRIANGLE following 

proposition has been established. 

n 

F'(1#n) = L C(n,m) = Sn , in matrix notation the same can be 
m=1 

expressed as follows for n = 4 

[1 1 1 1J 1 1 1 1 ~1 8 2 8 3 B.] 
0 1 3 7 = 
0 0 1 6 

0 0 0 1 

In general 

[11 Xn 
I 

. [ ac .) 
lxn 

I,J 

(cn- 1), 

[BJ Xn . [ 
lxn 

= 

( cn) 

In Cn,n , Cp,q the pth row and qth column is the coefficient of xP 

in xP q. Hence we have 
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n n 

2: F(1#k) Ck,n = 1 = 2: Bk Ck,n 
k=1 k=1 

THEOREM(10.3) 

n n 

l: F(1#(k+1)) Ck,n = n + 1 = l: B k+ 1 Ck,n 
k=1 k=1 

PROOF: 
It has already been established that 

n 

8 n + 1 = l: (m+1) a(n,m) 
m=1 

In matrix notation 

nXn 

[ j+1] 
1 X n 

1 X n 

n 

l: B k + 1 C k n = n + 1 , 
k=1 

There exist ample scope for more such results. 
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SMARANDACHE MAXIMUM RECIPROCAL REPRESENTATION 
FUNCTION 

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

ABSTRACT: Smarandache Maximum Reciprocal Representation 

(SMRR) Function fsMRR(n) is defined as follows 

fSMRR(n) = t if 

t t+1 

L 1/r < n < L 1/r 
r= 1 r=1 

SMARANDACHE MAXIMUM RECIPROCAL REPRESENTATION 
SEQUENCE 

SMRRS is defined as Tn = fsMRR(n) 

fsMRR(1) =1 

fSMRR(2) = 3, ( 1 + 1 12 + 1 13 < 2 < 1 + 1 12 + 1 13 + 1 14) 

fSMRR(3) = 10 10 11 

L 1/r s 3 s L 1/r 
r=1 r=1 

SMRRS is 
'1,3,10, ... 

A note on The SMRR Function: 

The harmonic series L 1 In satisfies the following inequality 

log (n+1) < L 1/n < log n + 1 -------( 1 ) 
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This inequality can be derived as follows 
We have eX > 1 + x > ,x > 0 

and (1 + 1/n)(1 + 1In) > 1 , n > 0 

which gives 

1/(r+1) < log( 1 + 1/r) < 1/r 

summing up for r = 1 to n+ 1 and with some algebraic jugallary 

we get (1). With the help of (1) we get the following result on 

the SMRR function. 

If SMRR(n) = m then [Iog(m)]:::: n - 1 

Where [Iog(m)] stands for the integer value of log(m). 

SOME CONJECTURES: 

(1.1). Every positive integer can be expressed as the sum of the 

re~iprocal of a finite number of distinct natural numbers. ( in 

infinitely many ways.). 

Let us define a function Rm(n) as the minimum number of natural 

numbers required for such an expression. 

(1.2). Every natural number can be expressed as the sum of the 

reciprocals of a set of natural numbers which are in Arithmetic 

Progression. 

(1.3). Let 

L 1/r ~ n ~ L 1/(r+1) 

where L 1/r stands for the sum of the reciprocals of first r 
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natural numbers and let S1 = L 1/r 

and so on , then there exists a finite m such that 

Sm+1 + 1/(r+km) = n 

Remarks The veracity of conjecture (1.1) IS deducible from 

conjecture (1.3) . 

(1.4). (a) There are infinitely many disjoint sets of natural numbers 

sum of whose reciprocals is unity. 

(b) Among the sets mentioned in (a) , there are sets which can 

be organised in an order such that the largest element of any set 

is smaller than the smallest element of the next set. 

REFERENCES: 

[1] 'Smarandache Notion Journal' Vol. 10 ,No. 1-2-3, Spring 1999. 
Number Theory Association of the UNIVERSITY OF 
eRAIOVA. 

[2] "Amarnath Murthy" , 'Smara ndache Reciprocal Partition Of 
Unity Sets And Sequences', SNJ, Vol. 11, No. 1-2-3,2000. 
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University of Texax at Austin, USA. 
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OPEN PROBLEMS AND CONJECTURES ON THE 

FACTOR IRECIPROCAL PARTITION THEORY: 

(Amarnath Murthy ,S.E. (E & T), Well Logging Services,Oil And Natural 
Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

(1.1) To derive a formula for SFPs of given length m of paqs for 

any value of a. 

(1.2) To derive a formula for SFPs of 

2 2 2 

N = P1 P2 P3 . 
2 

Pr 

(1.3) To derive a formula for" SFPs of given length m of 

ex. ex. ex. ex. 

N = Pr 

(1.4) To derive a reduction formula for pSq8 as a linear 

combination of ps-rqa-r for r =0 to a-1. 

Similar reduction formulae for (t·2) and (1.:c 3) also. 

(1.5) In general, in how many ways a number can be expressed as 

the product of its divisors? 

(1.6). Every positive integer can be expressed as the sum of the 

reciprocal of a finite number of distinct natural numbers. ( in 

infinitely many ways.). 

Let us define a function Rm(n) as the minimum number of natural 

numbers required for such an expression. 

308 



(1.7). Every natural number can be expressed as the sum of the 

reciprocals of a set of natural numbers which are in Arithmetic 

Progression. 

(1.8). Let 

I1/r =:; n =:; I 1/(r+1) 

where I1/r stands for the sum of the reciprocals of first r 

natural numbers and let 51 = L 1/r 

let 52 = S1 + 1/(r+k1) such that S2 + 1/(r+k1+1) > n ~ S2 

let S3 = S2 + 1/(r+k2) such that S3 + 1 /(r+k2+ 1) > n ~ S3 

and so on I then there ex,ists a finite m such that 

Sm+1 + 1/(r+km) = n 

Remarks The veracity of conjecture (1.6) is deducible from 

conjecture (1.8) . 

(1.9). (a) There are infinitely many disjoint sets of natural numbers 

sum of whose reciprocals is unity. 

(b) Among the sets mentioned in (a) , there are sets which can 

be organised in an order such that the largest element of any set 

is smaller than the smallest element of the next set. 

DEFINITION: We can define Smarandache Factor Partition 

Sequence as follows: Tn = factor partion of n = F'(n) 

T1 = 1 - Te= 3_ T12_= 4 etc -
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SFPS is given by 

1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5, 1,4,1,4,2,2,1,7,2, ... , 

DEFINITION: Let S be the smallest number such that F'(S) = n. 

We define S a Vedam Number and the sequence formed 

by Vedam numbers as the Smarandache Vedam Sequence. 

Smarandache Vedam Sequence is given as follows:Tn = F'(S) 

1, 4, 8, 12, 16, -1- , 24 , ... 

Note: There exist no number whose factor partition is equal to 6. 

hence a question mark at the sixth slot. We define such numbers 

as Dull numbers. The readers can explore the distribution 

(frequency) and other properties of dull numbers. 

DEFINITION: A number n is said to be a Balu number if it 

satisfies the relation d(n) = F'(n) = r , and is the smallest such 

number. 

1, 16, 36 are all Balu numbers. 

d(1) = F'(1) = i d(16) = F'(16) = 5, d(36) = F-'(36) = 9. 

Each Balu number ~ 16 , generates a Balu Class Cs (n) of 

numbers having the same canonical form satisfying the equation 

d(m) = F'(m).e.g. Cs(16) = {x I x = p4 , P is a prime.} = { 16,81, 

256, ... }. Simiiarly C s (36) = { x I x = p2q2 , P and q are primes.} 
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Conjecture 

(1.10): There are only finite number of Balu Classes. 

In case Conjecture (1.10) is true, to find out the largest Balu 

number. 
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SMARANDACHE RECIPROCAL FUNCTION 
AND AN ELEMENTARY INEQUALITY 

( Amarnath Murthy, S.E.(E&T), Well Logging Services, 
ONGC , Sabarmati , Ahmedabad, INDIA) 

The Smarandache Function is defined as Sen) = k . Where k is the 

smallest integer such that n divides kl 

Let us define Seen) Smarandache Reciprocal Function as follows: 

Seen) = x where x + 1 does not divide n! and for every y =:;; x, yin! 

THEOREM-I. 

If Seen) = x ,and n::;c 3 , then x + 1 is the smal1est prime greater than n. 

PROO:F: It is obvious th~t n! is divisible by 1, 2, ... up to n. We have 

to prove that nl is also divisible by n + 1 , n + 2 , ... n + m (= x) ,where 

n + m + 1 is the smallest prime greater than n.. Let r be any of these 

composite numbers. Then r must be factorable into two factors each of 

which is :2: 2. Let r = p.q ,where p, q :2: 2. If one of the factors (say q ) is 

:2: n then r = p.q :2: 2n . But according to the Bertrand's postulate there 

must be a prime between nand 2n, there is a contradiction here since all 

the numbers fronl n + 1 to n + m (n + 1 s r < n + m) are assumed to be 

composite. I-Ience neither of the two factors p , q can be:2: n. So each must 

be < n. Now there are two possibilities: 
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Case-I P :I: q. 

In this case as each is < n so p.q = r divides nl 

Case-II p = q = prIme 

Tn this case r = p2 where p IS a pnme. There are agam three 

possibilities: 

(a) p ~ 5. Then r = p2 > 4p => 4p < r < 2n => 2p < n. Therefore both 

p and 2p are le3s than n so p2 divides n! 

(b) P = 3 , Then r = p2 = 9 Therefore n must be 7 or 8 . and 9 divides 7! 

and 8!. 

(c) p = 2 ,then r = p2 = 4 . Therefore n must be 3 . But 4 does not divide 

3! , Hence the theorem holds for all integral values of n except n = 3. This 

completes the proof. 

Remarks: Readers can note that nl IS divisible by all the composite 

numbers between nand 2n. 

Note: We have the well known inequality Sen) ::; n. ---------(2) 

From the above theorem one can deduce the followjng inequality. 

If Pr is the rlh prime and Pr ::; n < Pr+l then Sen) ::; Pr. (A slight 

improvement on (2)). 
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i.e. S(Pr) = Pr, S(Pr+ 1) < Pr, S(Pr+ 2) < Pr, .,. S(Pr+l - 1) < Pr ,S(Pr+L 

= Pr+l 

Summing up for all the numbers Pr :s; n < Pr+l one gets 

P,-l - p, - 1 

L S (Pr + t)::;; (Pr+ 1 - Pr ) Pr 
t = 0 

Summing up for all the numbers up to the sth pnme, defining po = 1, Wt 

get 

p. 5 

L S (k) ::;; L (Pr+l - pr ) Pr --------(3) 
k=l r=O 

More generally from Ref. [1] following inequality on the nth partial 

sum of the Smarandache ( Inferior) Prime Part Sequence directly 

follows. 

Smarandache ( Inferior) Prime Part Sequence 

For any positive real number n one defines pp(n) as the largest 

prime number less than or equal to n. In [1] Prof. Krassimir T. 

Atanassov proves that the value of the nth partial sum of this 

n 

sequence Xn = L pp(k) is given by 
k=1 

1t(n) 

Xn = L (Pk - Pk-l). Pk-l + (n - p1t(n) + 1 ). P1t(n) 
k=2 

From (3) and (4) we get 
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n 

L S (k) ~ Xn 
k=l 

REFERENCES: 
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SOME FDM'II' EXAMPLES OF SMARANDACHE LUCKY METHODS IN 
ALGEBRA, TRIGONOMETRY, AA1J> CALCULUS 

( Amamath Murthy, S.E.(E&T), Well Logging Services, 
ONGC , Sabannati , Ahmedabad, INDIA) 

ABSTRACT: A number is said to be a Smarandache Lucky Number if an incorrect 

calculation leads to a correct result. For example, the fraction 42/21 = (4-2)/(2-1) = 211 

= 2 is incorrectly calculated, but the result 2 is still correct. More generally a 

Smarandache Lucky Method is said to be any incorrect method which leads to a correct 

result. In Ref. [1] The following question is asked: 

(1) Are there infInitely many Smarandache Lucky Numbers? 

We claim that the answer is YES. 

Also in the present note we give some fascinating Smarandache Lucky Methods in 
algebra, trigonometry, and calculus. 

A SMARANDACHE LUCKY METHOD IN TRIGONOMETRY: 

Some students at the early stage of just having introduced to the concept of function, 

misunderstand the meaning of f(x) as the product of f and x. 

e.g. for them sin(x) = product of sin and x. This gives rise to a funny lucky method 

applicable to the following identity. 

To prove 
sin2(X) - sin2(y) = sin (x + y) . sin ( x - y) 

- {sin(x) + sin(y) } . {sin(x) - sin(y)} ----------(A) 

316 



Taking sin common from both the factors 

= {sin (x + y) }. {sin ( x - y) } 

= RHS 

The correct method from (A) onwards should have been 

{2 sin((x + y)/2). cos((x - y)/2)}. {2 cos((x + y)/2). sin((x - y)/2)}. 

= {2 sin((x + y)/2). cos((x + y)I2)}.{2 cos((x - y)/2sin((x - y)/2)}. 

= {sin (x + y) }. {sin ( x - y) } 

=RHS 

Remarks: The funny thing is the wrong lucky method is a shortcut more so to get 

carried away. 

A SMARANDACHE LUCKY METHOD IN ALGEBRA: 

In vector algebra the dot product of two vectors (al i + a2 j + a3 k) and 

(b l i + b2j + b3 k) is given by 

(ali +a2j +a3k). (b l i +b2j +b3k) = alb l +a2b2 +a3b3 

The same idea if extended to ordinary algebra would mean 

(a + b) ( c + d) = ac + bd. ----------(B) 

This wrong lucky method is applicable in proving the following algebraic identity. 

a3 + b3 + c3 - 3 abc = ( a + b + C ) ( a2 + b2 + c2 - ab -bc - ca) 
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RHS = (a + b + C ) ( a2 + b2 + c2 
- ab -bc - ca ) 

= (a + b + C ) { (a2 
- bc) +( b2 -ac) + (c2 

- ab ) } 

applying the wrong lucky method (B) ,one gets 

= a.( a2 
- bc) + b .( b2 -ac) + c. (c2 

- ab ) 

= a3 
- abc + b3 

- abc + c3 
- abc 

A SMARANDACHE LUCKY METHOD IN CALCULUS: 

The fun involved in the following lucky method in calculus is two fold. It goes like 

this . A student is asked to differentiate the product of two functions. Instead of 

applying the formula for differentiation of product of two functions he applies the 

method of integration of the product of two functions ( Integration by parts ) and gets 

the correct answer. The height of coincidence is if another student given the same 

product of two functions and asked to integrate does the reverse of it i.e. he ends up in 

applying the formula for differentiation of the product of two functions and yet gets 

the correct answer. I would take the liberty to call such a lucky method to be 

Smarandache superlucky method. The suspense ends. 

Consider the product of two functions x and sin (x) . 

f(x) = x and g(x) = sin(x) 

The Smarandache lucky method of differentiation (integration by parts) is 

d{ f(x).g(x)}/dx = f(x) f g(x)dx - f [{d(f(x»/dx}. f g(x)dx]dx 

d{(x).sin(x)}/dx = (x) f sin(x)dx - f [{d(x)/dx}. f Sin(x)dx]dx 
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= - (x) . (cos(x)) + sin(x) 

= - x . cos(x) + sin(x) 

The Smarandache lucky method of Integration 

f {(f(x)). g(x)}dx. = f(x).d{g(x)}/dx + g(x) d{f(x)}/dx 

Consider the same functions again we get by this lucky method 

f {(x).sin(x)}dx. = (x). { cos(x)} + {sin(x)} (1) 

or f {(x).sin(x)}dx. = x. cos(x) + sin(x) 

That, both the answers are correct, can be verified, by applying the right methods. 

REFERENCE: 
[1] 'M.L.PEREZ and K.ATANASSOV' Definitions, Conjectures, and Unsolved 

problems on Smarandache Notions. American Research Press, 1999. 
[2] 'F.SMARANDACHE', Funny Problems, Special Collections, Arizona State 

University, Hayden Library, Tempe, AZ, USA. 
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Review of 

Lion Hunting & Other Mathematical Pursuits: A Collection of Mathematics, Verse, and 
Stories by Ralph P. Boas, Jr., edited by Gerald L. Alexanderson and Dale H. Mugler, The 
Mathematical Association of America, Washington, D. c., 1995.320 pp., $35.00(paper). ISBN 
0-88385-323-X. 

As a collection of diverse persons, mathematicians suffer from more negative stereotypes than 
almost any other group. This is unfortunate, discouraging and most often wrong. Widely 
characterized as lacking in humor, abstract and considered to be brilliant, eccentric imbeciles by 
much of the public, mathematicians rarely fit that description. Of course, branding a group with a 
stereotype is often a mask for insecurities. Ralph P. Boas Jr. is a fascinating counterexample to 
most of these inaccurate assumptions. Filled with humor, verse and mathematics, his optimism 
and love of life are captured just like the lions so prominently featured in the book. 
So, how does an unarmed person capture a lion using only the weapons of mathematical 

thought? There are more ways than you would think. Over thirty different "proven" methods are 
given. My favorite is: "The lion is big game, hence certainly a game. There exists an optimal 
strategy. Follow it." It seems that every area of mathematics can be used to construct a way to 
capture a lion. Of course, some are more efficient than others. 
The verse varies from limericks to some that were seeded by material from Shakespeare. All are 
quite good, although it is necessary to read some of them twice in order to capture the intended 
meaning. Most mathematicians have heard of Nicolas Bourbaki, the mathematical polyglot who 
is in fact a pseudonym for a collection of French mathematicians. When it came time to publish 
the first material on the mathematics of lion hunting, Boas and his colleagues chose the 
pseudonym, Hector Petard, from the Shakespearean line, "the engineer, hoist with his own 
petard"; Hamlet Act III, Scene IV. To complete the circle, Boas and friends also "arranged" for a 
wedding between Betti Bourbaki and H. Petard and duly announced the upcoming event. 
Another main section of the book consists of reminiscences by Boas and those who knew 
him best. As a mathematical man of mischief and an educator, he had few equals. Several 
short papers describing some of his basic ideas for education are also included. These 
ideas share one common trait. Simple to understand and execute. No fancy or complex 
methods, just fundamental strategies to make mathematics more understandable. 
The final part of the book consists of short anecdotes about his experiences in 
mathematics. Some are about fellow mathematicians, others about students and the rest 
about whatever seemed to happen during his eventful life. At times amusing, other times 
profound, but at all times interesting, they are simple notes describing how the 
mathematical world works. 
Despite common misconceptions, there are some mathematicians who contain a bit of 

the sprite and Ralph P. Boas Jr. was such a person. That impishness is captured in this 
book, which is reason enough to read it. 
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Review of 

Non-Euclidean Geometry 6th Edition, by H. S. M. Coxeter, The Mathematical 
Association of America, Washington, D. c., 1998. 336 pp., $30.95(paper). 
ISBN 0-88385-522-4. 

Originally published in 1942, this book has lost none of its power in the last half century. 
It is a commentary on the recent demise of geometry in many curricula that 33 years 
elapsed between the publication of the fifth and sixth editions. Fortunately, like so many 
things in the world, trends in mathematics are cyclic, and one can hope that the geometric 
cycle is on the rise. We in mathematics owe so much to geometry. It is generally 
conceded that much of the origins of mathematics is due to the simple necessity of 
maintaining accurate plots in settlements. The only book from the ancient history of 
mathematics that all mathematicians have heard of is the Elements by Euclid. It is one of 
the most read books of all time, arguably the only book without a religious theme still in 
widespread use over 2000 years after the publication of the first edition. The geometry 
taught in high schools today is with only minor modifications found in the Euclidean 
classic. 
There are other reasons why geometry should occupy a special place in our hearts. Most of the 
principles of the axiomatic method, the concept of the theorem and many of the techniques used 
in proofs were born and nurtured in the cradle of geometry. For many centuries, it was nearly an 
act of faith that all of geometry was Euclidean. That annoying fifth postulate seemed so out of 
place and yet it could not be made to go away. Many tried to remove it, but finally the Holmsean 
dictum of ,"once you have eliminated the impossible, what is left, not matter how improbable, 
must be true", had to be admitted. There were in fact three geometries, all of which are of equal 
validity. The other two, elliptic and hyperbolic, are the main topics of this wonderful book. 
Coxeter is arguably the best geometer of this century but there can be no argument that he is the 
best explainer of geometry of this century. While fifty years is a mere spasm compared to the 
time since Euclid, it is certainly possible that students will be reading Coxeter far into the future 
with the same appreciation that we have when we read Euclid. His explanations of the 
non-Euclidean geometries is so clear that one cannot help but absorb the essentials. In so many 
ways, Euclidean geometry is but the middle way between the two other geometries. A point well 

made and in great detail by Coxeter. 
Geometry is ajewel that was born on the banks of the Nile river and we should treasure and 

respect it as the seed from which so much of our basic reasoning processes sprouted. For this 
reason, you should buy this book and keep a copy on your shelf. 

Reviewed by 

Charles Ashbacher 
Charles Ashbacher Technologies 
e-mail 71603.522@compuserve.com 
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Krassi.ir T. Atanassov, "On Some of the Saarandache's Problems". 
Lupton, AZ: American Research Press, 1999, 88pp, ISBN 
1-879585-72-3. (Box 199, Lupton, AZ 86508, USA.) 

This attractively, but inexpensively, produced monograph introduces 
the reader to the flavour of the problems proposed in recent years 
by Smarandache and others. These are qenerally of two kinds: those 
which deal with recurrinq patterns within sequences and those which 
extend classical number theoretic results. Those who are familiar 
with the author's style will recoqnise his inqenuity in the latter 
and his tenacity in the former. 

An example of the former is Smarandache Problem 22: "In the 
sequence of Smarandache Square Complements: 
{1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5, 
21,22,23,6,1,26,3,7,29,30,31,2,33,34,35,1,37, 
38,39,10,41,42,43,11,5,46,47,3,1,2,51,13,53,6,55, 
14,57,58,59,15,61,62,7,1,65,66,67,17,69,70,71,2, ••• }, for 
each inteqer n find the smallest inteqer k such that nk is a 
perfect square." 

An extension of a classical result is Smarandache Problem 117: "Let 
p be an odd positive number. Prove that p and p+2 are twin primes 
iff 

(p-1)!{(1/p)+(2/(p+2»}+(1/p)+(1/(p+2» is an inteqer." 

Atanassov develops and utilises properties of "new" functions such 
as the inverse factorial function defined by: x? -= y iff y! =x, and 
his diqit sua which has appeared in a number of papers over the 
last decade. These ensure that his solutions are always eleqant 
rather than the result of brute force. Readers miqht like to try 
their hands at the above two problems and then buy the book to 
enjoy Blore of these problems which are easy to understand but not 
always easy to solve. 

The book is in microfilm format too, and can be ordered from: UKI, 
PO Box 1346, Ann Arbor, HI 48106-1346, USA; 
tel: 1-800-521-0600. 

Tony Shannon PhD EdD DSc 
Professor Emeritus, University of Technoloqy, Sydney, 2007, and 
Provost, lCvB Institute of Technoloqy, North SYdney, 2060, Australia 
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