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 Abstract 

In this paper, we analyzed surfaces family possessing a Mannheim partner curve of a 
given curve as a geodesic. Using the Frenet frame of the curve in Euclidean 3-space, we 

express the family of surfaces as a linear combination of the components of this frame 
and derive the necessary and sufficient conditions for coefficients to satisfy both the ge-
odesic and isoparametric requirements. The extension to ruled surfaces is also outlined. 
Finally, examples are given to show the family of surfaces with common Mannheim 
geodesic curve. 
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1. Introduction 

At the corresponding points of associated curves, one of the Frenet vectors of a curve coincides with one of the Frenet 
vectors of other curve. This has attracted the attention of many mathematicians. One of the well-known curves is the 
Mannheim curve, where the principal normal line of a curve coincides with the binormal line of another curve at the 

corresponding points of these curves. The first study of Mannheim curves has been presented by Mannheim in 1878 and 
has a special position in the theory of curves (Blum, 1966). Other studies have been revealed, which introduce some 
characterized properties in the Euclidean and Minkowski space (Lee, 2011; Liu & Wang, 2008; Orbay &Kasap, 2009; 
Öztekin & Ergüt, 2011). Liu and Wang called these new curves as Mannheim partner curves: Let x and x1 be two curves 
in the three dimensional Euclidean E3. If there exists a corresponding relationship between the space curves x and x1 such 
that, at the corresponding points of the curves, the principal normal lines of x coincides with the binormal lines of x1, 
then x is called a Mannheim curve, and x1 is called a Mannheim partner curve of x. The pair {x, x1} is said to be a Mann-
heim pair. They showed that the curve: x1 (s1) is the Mannheim partner curve of the curve x(s) if and only if the curvature 

1
 and the torsion 

1   of x1 (s1 ) satisfy following equation 

 2 21
1

1

' 1
d

ds


  


  

 

for some non-zero constant  . They also study the Mannheim curves in Minkowski 3-space. The generalizations of the 

Mannheim curves in the 4-dimensional spaces have been given (Matsuda & Yorozu, 2009; Akyiğit, et al. 2011). Later, 
Mannheim offset the ruled surfaces and dual Mannheim curves have been defined in Orbay et al.2009; Özkaldı et al. 

2009; Güngör & Tosun, 2010). Apart from these, some properties of Mannheim curves have been analyzed according to 
different frames such as the weakened Mannheim curves, quaternionic Mannheim curves and quaternionic Mannheim 
curves of  Aw(k) - type  (Karacan, 2011; Okuyucu, 2013; Önder & Kızıltuğ, 2012; Kızıltuğ & Yaylı, 2015). In 
differential geometry, there are many important consequences and properties of curves ( O’Neill, 1966; do Carmo, 1976). 
Researches follow labours about the curves. One of most significant curve on a surface is geodesic curve. Geodesics are 
important in the relativistic description of gravity. Einstein’s principle of equivalence tells us that geodesics represent the 
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paths of freely falling particles in a given space. (Freely falling in this context means moving only under the influence of 
gravity, with no other forces involved). The geodesics principle states that the free trajectories are the geodesics of space. 
It plays a very important role in a geometric-relativity theory, since it means that the fundamental equation of dynamics 

is completely determined by the geometry of space, and therefore has not to be set as an independent equation. In 
architecture, some special curves have nice properties in terms of structural functionality and manufacturing cost. One 
example is planar curves in vertical planes, whichcan be used as support elements. Another example is geodesic curves, 
Deng described methods to create patterns of special curves on surfaces, which find applications in design and 
realization of freeform architecture. (Deng, B. 2011). He presented an evolution approach to generate a series of curves 
which are either geodesic or piecewise geodesic, starting from a given source curve on a surface. The concept of family 
of surfaces having a given characteristic curve was first introduced by Wang et.al. in Euclidean 3-space. Kasap et.al. 
generalized the work of Wang by introducing new types of marching-scale functions, coefficients of the Frenet frame 

appearing in the parametric representation of surfaces. Atalay and Kasap , studied the problem: given a curve (with 
Bishop frame), how to characterize those surfaces that posess this curve as a common isogeodesic and Smarandache 
curve in Euclidean 3-space. Also they studied the problem: given a curve (with Frenet frame), how to characterize those 
surfaces that posess this curve as a common isogeodesic and Smarandache curve in Euclidean 3-space. 
As is well-known, a surface is said to be “ruled” if it is generated by moving a straight line continuously in Euclidean 
space E3 (O'Neill, 1997). Ruled surfaces are one of the simplest objects in geometric modeling. One important fact about 
ruled surfaces is that they can be generated by straight lines. A practical application of this type surfaces is that they are 
used in civil engineering and physics (Guan et al.,1997). Since building materials such as wood are straight, they can be 

considered as straight lines. The result is that if engineers are planning to construct something with curvature, they can 
use a ruled surface since all the lines are straight (Orbay et al., 2009). 
In this paper, we analyzed surfaces family possessing an Mannheim partner of a given curve as a geodesic. Using the 
Frenet frame of the curve in Euclidean 3-space, we express the family of surfaces as a linear combination of the 
components of this frame, and derive the necessary and sufficient conditions for coefficents to satisfy both the geodesic 
and isoparametric requirements. The extension to ruled surfaces is also outlined. Finally, examples are given to show the 
family of surfaces with common Mannheim geodesic curve. 

2. Preliminaries 

Let 
3E be a 3-dimensional Euclidean space provided with the metric given by 

2 2 2

1 2 3, dx dx dx      

where 1 2 3( , , )x x x is a rectangular coordinate system of 
3E . Recall that, the norm of a arbitrary vector 

3X E is given 

by ,X X X   . Let 
3( ) :s I IR E     is an arbitrary curve of arc-length parameter s. The curve  is 

called a unit speed curve if velocity vector '  of a satisfies ' 1.  Let T(s), N(s),B(s) be the moving Frenet frame 

along  , Frenet formulas is given by 

 
 
 

 
   

 

 
 
 

0 0

0 ,

0 0

    
    

     
        

T s s T s
d

N s s s N s
ds

B s s B s



 



 

where the function  s  and  s  are called the curvature and torsion of the curve  s , respectively. 

Let C:   (s) be the Mannheim curve in E3 parameterized by its arc length s and C*:  *(s *) is the Mannheim partner 

curve of C with an arc length parameter s *. Denote by {T(s), N(s), B(s)} the Frenet frame field along C:  (s), that is; 
T(s) is the tangent vector field, N(s) is the normal vector field, and B(s) is the binormal vector field of the curve C 

respectively also denote by {T*(s), N*(s), B*(s)} the Frenet frame field along C*:  * (s), that is; T*(s) is the tangent 

vector field, N*(s) is the normal vector field, and B*(s) is the binormal vector field of the curve C* respectively. If there 
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exists one to one correspondence between the points of the space curves C and C* such that the binormal vector of C is 
in the direction of the principal normal vector of the curve C*, then the (C, C* ) curve couple is called Mannheim pairs 
(Liu & Wang, 2008). 

 
Figure 1. The Mannheim partner curves. 

 

From the figure1, we can write (s*)B*(s*)(s) *(s*)   . 

A curve on a surface is geodesic if and only if the normal vector to the curve is everywhere parallel to the local normal 
vector of the surface. Another criterion for a curve in a surface M to be geodesic is that its geodesic curvature vanishes. An 
isoparametric curve α(s) is a curve on a surface Ψ=Ψ(s,t) is that has a constant s or t-parameter value. In other words, there 
exist a parameter    or     such that α(s)= Ψ(s,  ) or α(t)= Ψ(   ,  ). Given a parametric curve α(s), we call α(s) an 

isogeodesic of a surface Ψ if it is both a geodesic and an isoparametric curve on Ψ. 

3. Surfaces with common Mannheim geodesic curve 

Suppose we are given a 3-dimensional parametric curve ( )s , 1 2L s L  , in which s  is the arc length and 

''( ) 0.s   Let 
__

( )s , 1 2L s L  , be the Mannheim partner of the given curve ( )s .   

Surface family that interpolates  
__

( )s
 as a common curve is given in the parametric form as 

__ __ __ __

(s, v) [x(s, v) T(s) y(s, v) N(s) z(s, v) (s)](s) B     , 1 2 1 2,L s L T v T    ,           (3.1) 

where ( , ), ( , )x s v y s v  and ( , )z s v are 
1C  functions. The values of the marching-scale functions  ( , ), ( , )x s v y s v and 

( , )z s v  indicate, respectively; the extension-like, flexion-like and retortion-like effects, by the point unit through the time 

v, starting from 
__

( )s  and 
__ __ __

T(s), N(s) ,B(s)
 
 
 

 is the Frenet frame associated with the curve 
__

( )s . 

Our goal is to find the necessary and sufficient conditions for which the Mannheim partner curve of the unit space curve 

( )s  is an parametric curve and a geodesic curve on the surface  ,s v . 

Firstly, since Mannheim partner curve of the curve ( )s  is an parametric curve on the surface  ,s v , there exists a 

parameter  1 2,0v T T  such that  

      1 2 1 2, , , 0, ,0 0 0 0x s v y s v z s v L s L T v T       .            (3.2) 

Secondly, since Mannheim partner curve of ( )s  is a geodesic curve on the surface  ,s v , there exist a parameter 

 1 2,0v T T such that  
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0( , )n s v //
__

N(s) .                                        (3.3) 

where n is a normal vector of ( , )s v   and 
__

N  is a normal vector of  
__

( )s . 

Theorem 3.1: Let ( )s  ,
1 2L s L  , be a unit speed curve with nonvanishing curvature and 

__

( )s ,
1 2L s L  , be a 

Mannheim partner curve. 
__

  is a geodesic curve on the surface (3.1) if and only if 

0 0 0

0 0

x(s, v ) y(s, v ) z(s, v ) 0,

y(s, v ) z(s, v )
0 and 0

v v

  

 

 
 

 

Proof: Let 
__

( )s  be a Mannheim partner of the curve ( )s . From (3.1) , ( , )s v  parametric surface is defined by as 

follows: 

__ __ __ __

(s, v) [x(s, v) T(s) y(s, v) N(s) z(s, v) (s)](s) B     . 

 Let 
__

( )s  Mannheim partner curve of the curve ( )s  is an parametric curve on the surface  ,s v , there exists a 

parameter  1 2,0v T T  such that, 

      1 2 1 0 2 0,, , , 0, ( )0 0 0 L s L T v T vx s v y s v z s v fixed     
           

(3.4) 

Secondly, since Mannheim partner curve of ( )s  is an geodesic curve on the surface  ,s v , there exist a parameter 

 1 2,0v T T  such that 0( , )n s v //
__

N(s) where n is a normal vector of ( , )s v   and 
__

N  is a normal vector of  

__

( )s .    

The normal vector can be expressed as 
____ __ __

____ __

( , ) ( , ) ( , ) ( , )
( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

( , ) ( , ) ( , ) ( , )
( ) ( , ) 1 ( ) ( , ) ( )

z s v y s v y s v z s v
n s v s x s v s z s v s y s v T s

v s v s

x s v z s v z s v x s v
s y s v s y s v N s

v s v s

y

  

 

       
        

       

       
        

       




____ __ __( , ) ( , ) ( , ) ( , )
1 ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

s v x s v x s v y s v
s y s v s x s v s z s v B s

v s v s
  

      
        

            

(3.5) 

Thus, if we let 

 

 

 

__ __ __
0 0 0 0

1 0 0 0 0

__ __
0 0 0

2 0 0 0

3 0

( , ) ( , ) ( , ) ( , )
, ( ) ( , ) ( ) ( , ) ( ) ( , ) ,

( , ) ( , ) ( , )( , )
, ( ) ( , ) 1 ( ) ( , ) ,

,

z s v y s v y s v z s v
s v s x s v s z s v s y s v

v s v s

x s v z s v x s vz s v
s v s y s v s y s v

v s v s

s v

   

  



      
       

      

     
       

      


__ __ __

0 0 0 0
0 0 0

( , ) ( , ) ( , ) ( , )
1 ( ) ( , ) ( ) ( , ) ( ) ( , ) .

y s v x s v x s v y s v
s y s v s x s v s z s v

v s v s
  







       

        
      
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We obtain 

     
__ __ __

0 1 0 2 0 3 0( , ) , ( ) , ( ) , ( )n s v s v T s s v N s s v B s                        (3.6) 

We know that 
__

( )s  is a geodesic curve if and only if  

     1 0 3 0 2 0, , 0, , 0s v s v s v                            (3.7) 

From (3.4),  

 

 

 

1 0

0
3 0

0
2 0

, 0

( , )
, 0, 0

( , )
, 0, 0

 

s v

y s v
s v we have

v

z s v
s v we have

v













 



   

 
                     (3.8)

 

Combining the conditions (3.4) and (3.8), we have found the necessary and sufficient conditions for the  ,s v to have 

the Mannheim partner curve of the curve ( )s  is an isogeodesic.  

Now let us consider other types of the marching-scale functions. In the Eqn. (3.1) marching-scale functions

     , , ,  and z ,x s v y s v s v  can be choosen in two different forms: 

1) If we choose 

     

   

     

1

1

2

1

3

1

, ,

, ( ) ,

, ,

p
k k

k

k

p
kk

k

k

p
k k

k

k

x s v a l s x v

y s v a m s y v

z s v a n s z v


























 

then we can simply express the sufficient condition for which the curve 
__

( )s  is a geodesic curve on the surface  

 ,s v as 

     

 
 

 
 

0 0 0

0

21

0

31

0,

0 0  or  0,

0 , 0 0

x v y v z v

dy v
a or m s

dv

dz v
a n s and const

dv


  




  



   


                        (3.9) 
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where            , , , ,  and l s m s n s x v y v z v  are 
1C  functions, 

ija IR , 1,2,3,   1,2,..., . i j p  

2) If we choose 

     

     

     

1

1

2

1

3

1

, ,

, ,

, ,

p
k k

k

k

p
k k

k

k

p
k k

k

k

x s v f a l s x v

y s v g a m s y v

z s v h a n s z v







  
  

 
  

  
 

  
   
  







 

then we can write the sufficient condition for which the curve 
__

( )s is a geodesic curve on the surface  ,s v as 

           

 
 

 

   
 

0 0 0

0

21

0

31

0 0 0 0,

0 0  or  0 ' 0 0,

0, 0 , ' 0 0 0.

x v y v z v f g h

dy v
a or m s or g

dv

dz v
a n s h and const

dv


     




   



    


                  (3.10) 

where             , , , , , , ,  and l s m s n s x v y v z v f g h  are 
1C  functions. 

Also conditions for different types of marching-scale functions can be obtained by using the Eqn. (3.4) and (3.8). 

4. Ruled surfaces with common Mannheim geodesic curve 

Ruled surfaces are one of the simplest objects in geometric modelling as they are generated basically by moving a line in 

space. A surface   is a called a ruled surface in Euclidean space, if it is a surface swept out by a straight line l  

moving alone a curve  . The generating line l  and the curve   are called the rulings and the base curve of the 

surface, respectively. 

We show how to derive the formulations of a ruled surfaces family such that the common Mannheim geodesic is also the 
base curve of ruled surfaces. 

Let ( , )s v  be a ruled surface with the Mannheim isogeodesic base curve. From the definition of ruled surface, there 

is a vector  R R s such that; 

0 0( , ) ( , ) ( ) ( )s v s v v v R s     

and where 3.1 is used , we get 

__ __ __

0( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )v v R s x s v T s y s v N s z s v B s     

For the solutions of three unknows ( , )x s v , ( , )y s v  and ( , )z s v we have, 
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__

0( , ) ( ) ( ), ( )x s v v v T s R s     

__

0( , ) ( ) ( ), ( )y s v v v N s R s   
                                (4.1)

 

__

0( , ) ( ) ( ), ( )z s v v v B s R s    . 

From (3.8) and (4.1), we have 

__

( ), ( ) 0N s R s   and
__

( ), ( ) 0B s R s                          (4.2) 

Including, 
__ __ __

( ) ( ) ( ) ( ) ( ) ( ) ( )R s x s T s y s N s z s B s    using (4.2) we obtain, 

( ) 0y s   and ( ) 0z s                                     (4.3) 

So, the ruled surfaces family with common Mannheim isoasymptotic given by; 

__ __ __

(s, v) v[x(s) T(s) (s)];(s) z(s)B z(s) 0                             (4.4) 

5. Examples of generating simple surfaces with common Mannheim geodesic curve 

Example 5.1. Let  
4

3cos , 3sin ,
5 5 5

s s
s s

    
     

    
 be a unit speed curve. Then it is easy to show that  

 

 

 

3 3 4
sin , cos , ,

5 5 5 5 5

cos ,sin ,0 ,
5 5

4 4 3
sin , cos , .

5 5 5 5 5

s s
T s

s s
N s

s s
B s

     
       

    
      

      
    

     
        
     

 

and the curvatures of this curve is  
3 4

25 25
and  

 
 . 

The parametric representation of the Mannheim partner (with respect to Frenet frame) curve 
__

(s)  of the curve  s  

is obtained as (where cons tan t  , for 1  ) 

 
__

(s) s N(s)

s s 4
4cos , 4sin , s

5 5 5

   

    
     

    

 

The Frenet vectors of the curve 
__

  are found as 
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 

 

 

__

__

__

2 2 7 2
sin , cos , ,

10 5 10 5 10

7 2 7 2 2
sin , cos , ,

10 5 10 5 10

cos ,sin ,0 .
5 5

s s
T s

s s
N s

s s
B s

     
           


     

            


           
     

 

If we take      , , 0, ,x s v y s v z s v v    and 
0 0v   then the Eqn. (3.4) and (3.8) are satisfied. Thus, we obtain a 

member of the surface with common Mannheim geodesic curve 
__

(s)  as 

__

( , )
4

4cos cos , 4sin sin ,
5 5 5 5 5

s v
s s s s s

v v
        

           
        

 

Also, for      , , 0, ,x s v y s v z s v v    and 
0 0v  , we obtain a member of the surface with common geodesic 

curve  (s)
 

as 

( , )
4 4 4 3

3cos cos , 3sin cos ,
5 5 5 5 5 5 5 5

s v
s s s s s v

v v
        

            
        

 

where ,  -1 1s v       (Fig.2). 

 

 

Figure 2.  ,s v surface with curve ( )s  and  
__

,s v
 
Mannheim offset surface with Mannheim partner curve (

__

( )s ) of 

the curve ( )s  

( , )s v  

__

( , )s v  
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If we take      , cos( / 5), , 0, , 1vx s v v s y s v z s v e      and 
0 0v   then the Eqn. (3.4) and (3.8) are satisfied. 

Thus, we obtain a member of the surface with common Mannheim geodesic curve as 

2

__

( , )

2 2
4cos cos sin ( 1)cos , 4sin cos

5 10 5 5 5 5 10 5

4 7 2
( 1)cos , cos

5 5 10 5

v

v

s v

s s s s s s
v e v

s s s
e v



            
                

            
 

   
       

    

 

Also, for      , cos( / 5), , 0, , 1vx s v s y s v z s v e      and 
0 0v  , we obtain a member of the surface with 

common geodesic curve as

 

( , )

4 4 4
3cos cos sin ( 1)sin , ( 1)cos ,

5 5 5 5 5 5 5 5

4 4 3
cos ( 1)

5 5 5 5

v v

v

s v

s s s s s
v e e

s v s
e



          
              

          
  

    
  

 

where 2 ,  -1 1
3

s v


     (Fig. 3). 

 

 

Figure 3.  ,s v surface with curve ( )s  and  
__

,s v
 
Mannheim offset surface with Mannheim partner curve (

__

( )s ) of 

the curve ( )s  

 

 
__

,s v  

( , )s v  
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( ) ( ) 0, ( )x s y s z s s    and 
0 0v   then the Eqn. (4.4) is satisfied. Thus, we obtain a member of the ruled surface 

with common Mannheim geodesic curve as 
__

( , )
4

4cos cos , 4sin sin ,
5 5 5 5 5

s v
s s s s s

vs vs
        

           
          

Also, for ( ) ( ) 0, ( )x s y s z s s    and 
0 0v  ,we obtain a member of the ruled surface with common geodesic 

curve as 

( , )
4 4 4 3

3cos cos , 3sin cos ,
5 5 5 5 5 5 5 5

s v
s s s s s vs

vs vs
        

            
        

 

where  (Fig.4). 

 

 
Figure 4.  as a member of the ruled surface and its Mannheim geodesic curve. 
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