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Reality: To Be or Not To Be

( Preface )

A thing is complex, and hybrid with other things sometimes. Then, what is the reality of a

thing? The reality of a thing is its state of existed, exists, or will exist in the world, independent

on the understanding of human beings, which implies that the reality holds on by human beings

maybe local or gradual, not the reality of a thing. Hence, to hold on the reality of things is the

main objective of science in the history of human development.

One or the main function of mathematics in science is it can establish exact mathematical

expressions for scientific models on things. Observing and collecting measurements, as well

as the hypothesizing and predicting often require extensive applying mathematical techniques,

including mathematical physics, mathematical chemistry, mathematical biology, mathematical

finance, and mathematical economics, i.e., the reality of things by human beings is mostly

dependent on mathematical reality.

But, a mathematical conclusion really reflects the reality of a thing? The answer is not cer-

tain because the practices of human beings show the mathematical conclusion do not correspond

to the reality of a thing sometimes, for instance the Ames Room. Usually, the understanding of

a thing is by observation of human beings, which is dependent on the observable model, data

collection by scientific instruments with data processing by mathematics. Such a observation

brings about a unilateral, or an incomplete knowledge on a thing. In this case, the mathemat-

ical conclusion reflects partial datum, not all the collection, and in fact, all collection data (by

different observers with different model) with data processed is not a mathematical system, even

with contradictions in usual unless a data set, which implies that there are no mathematical

subfields applicable. In recent years, there are more and more examples supporting this claim

with social development.

Physics. The matters consist of two classes particles, i.e., bosons with integer spin n,

fermions with fractional spin n/2, n ≡ 1(mod2), and by a widely held view, the elementary

particles consists of quarks, leptons with interaction quanta including photons and other par-

ticles of mediated interactions ([16]), which constitute hadrons, i.e., mesons, baryons and their

antiparticles. Thus, a hadron has an internal structure, which implies that all hadrons are

not elementary but leptons are, viewed as point particles in elementary physics ([2],[3]). The

quark model is a formal classification scheme for hadrons in terms of quarks, i.e., the quarks

and antiquarks, which completely changed the usual notion that a hadron is an geometrical

abstract point or a subset of space for characterizing its behavior. For example, a baryon is

predominantly formed by three quarks, and a meson is mainly composed of a quark and an

antiquark in quark models of Sakata, or Gell-Mann and Ne’eman. But a free quark was never

found in experiments. Thus, the quark model is only a model for classifying hadrons motivated

by physicists. However, it opened a new way for understanding the reality of a hadron in notion,

i.e., we are not need to insist again that a hadron is a geometrical point or a subset of space



ii Mathematical Reality

such as those of assumptions in determinable science.

Biology. The biological populations are dependent each other by food web, i.e., a natural

interconnection of food chains and a graphical representation of what-eats-what in an ecological

community on the earth. For example, a food chain starts from producer organisms (such as

grass or trees which use radiation from the sun to make their food) and end at apex predator

species (like grizzly bears or killer whales), detritivores (like earthworms or woodlice), or decom-

poser species (such as fungi or bacteria). Usually, a model of a biological system is converted

into a system of equations. The solution of the equations, by either analytical or numerical

means, describes how the biological system behaves either over time or at equilibrium. In fact,

a food web is an interaction system in physics which can be mathematically characterized by

the strength of what action on what. For a biological 2-system, let x, y be the two species with

the action strength F ′(x→ y), F (y → x) of x to y and y to x on their growth rate, ([1]). Such

a biological 2-system can be quantitatively characterized by differential equations





ẋ = F (y → x)

ẏ = F ′(x→ y)

on the populations of species x and y. However, this method can be only applied to the small

number (≤ 3) of populations in this web. If the number of populations≥ 4, one can not get the

solution of equations in general and can be only by data approximating simulation. Thus, even

in mathematical biology one has no a mathematical branch applicable for the reality of biology

unless differential equations and statistical analysis.

Economy. Today, the world trade rules enables each one of his member develops exten-

sively on other members. Achieving mutual benefit, and finally striving for trade balance is the

purpose of the world or regional trade organization. This situation appears both in the global

or area economy because there are few countries or areas still in self-sufficient today. The trade

surplus and deficit usually result in the trade disputing in members, processes the multilateral

negotiations, and then reach a new ruler for members in the international trade. Usually, one

can obtains statistical data published by customs or statistical services in a country or an area,

but there are no a mathematical subfield for characterizing the global or local changing in

economy.

Certainly, we can easily get other fields that there are no mathematical subfields applicable.

For example, the complex network, including community network, epidemic spreading network

with their behaviors. Then, can one holds the reality of things? For this question, there are

always two answers. One is the reality of things can not completely understanding, i.e., one

can only holds on the approximate reality of things. Another is one can finally understanding

the reality of things by Theory of Everything.

For the first answer, there is a well-known philosophical book: TAO TEH KING written

by an ideologist Lao Zi in ancient China. In this book, it discussed extensively on the relation

of TAO with name and things, shown in its first but central chapter ([4]):

The Tao that experienced is not the eternal Tao;

The Name named is not the eternal Name;
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The unnamable is the eternally real and naming is the origin of all particular things;

Freely desire, you realize the mystery but caught in desire, you see only the manifestations;

The mystery and manifestations arise from the same source called darkness;

The darkness within darkness, the gateway to all understanding.

Therefore, it is difficult to know the reality of all things according to Lao Zi, and all

mathematical reality is only approximate reality.

The second answer is the main trending in scientific community today, i.e., the physical

world is nothing else but a mathematical structure ([6]). That is to say, mathematical reality

is the reality of things.

Generally, the reality of a thing is an interaction system in an micro world view, and if one

enters the internal of the thing, the equations established on the observing datum usually are

non-solvable, or contradictory. However, the trend of mathematical developing in 20th century

shows that a mathematical system is more concise, and its conclusion is more extended, then

farther to the reality of things because it abandons more and more characters of things, and

in logic, each mathematical subfield should be in coordination, i.e., without contradictions.

This result implies that even if the physical world is a mathematical structure, one can only

understands partial or local reality by classical mathematics.

For establishing the mathematical model on the reality of things, there are two questions

should be solved. One is the contradiction between things, i.e., different things should be in

equal rights, and another is the dependence of things. Today, we have known a kind geometry

breaking through the non-contradiction in classical mathematics, i.e., Smarandache geometry

(1969) by introducing a new type axiom for space. An axiom is said to be Smarandachely

denied if the axiom behaves in at least two different ways within the same space, i.e., validated

and invalided, or only invalided but in multiple distinct ways. A Smarandache geometry [6] is

a geometry which has at least one Smarandachely denied axiom (1969). If A is a Smarandache

denied axiom on space T , then all points in T with A validated or invalided consist of points

sets TH(A ) and TN(A ), and if it is in multiple distinct ways invalided, without loss of generality,

let s be its multiplicity. Then all points of T are classified into TA
1 , TA

2 , · · · , TA
s . Hence, we

get a partition on points of space T as follow:

T = TH(A )
⋃
TN(A ), or T = TA

1

⋃
TA

2

⋃
· · ·
⋃
TA
s .

This shows that T should be a Smarandace multispace.

Generally, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical spaces, different two

by two. A Smarandache multispace Σ̃ is a union
m⋃
i=1

Σi with rules R̃ =
m⋃
i=1

Ri on Σ̃, i.e., the rule

Ri on Σi for integers 1 ≤ i ≤ m ([2],[8]). Thus, the reality of things, even approximate should be

characterized or found out on Smarandache multispaces. Certainly, a Smarandache multispace

inherited a graph structure (intersection graph) GL[Σ̃], labeled its each vertex by Σi. Thus, the

Smarandache multispace solved better the contradiction in classical mathematics. However,

an abstract Smarandache multispace is nothing else but an algebraic or set problem ([8]), and

can not extensively applies achievements in classical mathematics. Thus, for understanding the

reality of things, a new envelope theory should be established on Smarandache multispace, i.e.,

mathematical combinatorics.
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What is mathematical combinatorics? The mathematical combinatorics is such a mathe-

matics over topological graphs
−→
G . And how to combine classical mathematics with topological

graphs
−→
G? I found a typical set of labeled graphs

−→
GL can be viewed as mathematical elements,

i.e., labeling their edges by elements in a Banach space B with two end-operators on B and

holding on the continuity equation on each vertex in
−→
G . Then, such a set of labeled graphs

−→
GL

inherits the character of classical mathematics, i.e., if
−→
G1,
−→
G2, · · · ,

−→
Gn are oriented topological

graphs and B a Banach space, then all such labeled graphs
−→
GL with linear end-operators is

also a Banach space, and furthermore, if B is a Hilbert space, all such labeled graphs
−→
GL with

linear end-operators is a Hilbert space too. This fact enables one to apply achievements of

classical mathematics in mathematical combinatorics, which can be find in this book.

As the time enters the 21st century, sciences such as those of theoretical physics, com-

plex system and network, cytology, biology and economy developments change rapidly, and

meanwhile, a few global questions constantly emerge, such as those of local war, food safety,

epidemic spreading network, environmental protection, multilateral trade dispute, more and

more questions accompanied with the overdevelopment and applying the internet, · · · , etc. In

this case, how to keep up mathematics with the developments of other sciences? Clearly, today’s

mathematics is no longer adequate for the needs of other sciences. New mathematical theory

or techniques should be established by mathematicians. Certainly, solving problem is the main

objective of mathematics, proof or calculation is the basic skill of a mathematician. When it

develops in problem-oriented, a mathematician should makes more attentions on the reality of

things in mathematics because it is the main topic of human beings.
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Chapter 1 Mathematics with Reality

Why fails to see the true face of Lushan mountain,

Because he is just in these mountains.

By SuShi, a well-known poet in Chinese Song dynasty.
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Complex System with Flows and Synchronization

Abstract: A complex system S consists of m components, maybe inconsistence with

m ≥ 2 such as those of self-adaptive systems, particularly the biological systems and usually,

a system with contradictions, i.e., there are no a classical mathematical subfield applicable.

Then, how can we hold its global and local behaviors or true face? All of us know that

there always exists universal connections between things in the world, i.e., a topological

graph
−→
G underlying parts in S . We can thereby establish mathematics over a graph family{−→

G1,
−→
G2, · · ·

}
for characterizing the dynamic behaviors of system S on the time t, i.e.,

complex flows. Formally, a complex flow
−→
GL is a topological graph

−→
G associated with

a mapping L : (v, u) → L(v, u), 2 end-operators A+
vu : L(v, u) → LA+

vu(v, u) and A+
uv :

L(u, v) → LA+
uv (u, v) on a Banach space B over a field F with L(v, u) = −L(u, v) and

A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→

G
)

holding with continuity equations

dxv

dt
=

∑

u∈NG(v)

LA+
vu (v, u) , ∀v ∈ V

(−→
G
)

,

where xv is a variable on vertex v for ∀v ∈ E
(−→

G
)
. Particularly, if dxv/dt = 0 for

∀v ∈ V
(−→

G
)
, such a complex flow

−→
GL is nothing else but an action flow or conservation

flow. The main purpose of this lecture is to clarify the complex system with that of contra-

dictory system and its importance to the reality of a thing T by extending Banach or Hilbert

spaces to Banach or Hilbert continuity flow spaces over topological graphs
{−→

G1,
−→
G2, · · ·

}

and establishing the global differential theory on complex flows, characterize the global dy-

namic behaviors of complex systems, particularly, complex networks independent on graphs,

for instance the synchronization of complex systems by applying global differential on the

complex flows
−→
GL.

Key Words: Complex system, Smarandache multispace, continuity flow, Banach space,

Hilbert space, differential, Taylor formula, L’Hospital’s rule, mathematical combinatorics.

AMS(2010): 34A26, 35A08, 46B25, 92B05, 05C10, 05C21, 34D43, 51D20.

§1. Introduction

Is our mathematical theory can already be used for understanding the reality of all things in

the world? This is a simple but essential question on the developing direction of mathematics,

and it’s answer is not positive. All of us live in a world full of colors, encountering various

phenomena such as those of gorgeous guppy or peacock shown in Fig.1 each day and cant help

1An invited J.C.& K.L.Saha Memorial Lecture in the International Conference on Geometry and Mathe-

matical Models in Complex Phenomena, December 05-07, 2017.
2Bull. Cal. Math. Soc., 109, (6) 461–484 (2017)
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ourselves: Why are they looks like this, not that, i.e., the reality of things in the macro and

micro world

Fig.1

For example, we all known or heard that birds flying in the sky and fishes swimming in the

ocean from disorderly to orderly in the macro world, and also words that the superposition,

i.e., a quantum particle is both in two or more possible states of being in the micro world. All

of these show a beauty of the scenery in one’s eyes. It should be noted that the superposition

not only appeared in the micro world but also in the macro world. For example, there is a

most reluctant to answer question for a Chinese man. That is, if one’s wife and his mother fell

simultaneously in a river, who will he save first, his mother or his wife? This Chinese question

is also equivalent to the famous thought model of Schrödinger’s cat, which assumed that a cat,

a flask of poison and a radioactive source are placed in a sealed box. If an internal monitor

detects radioactivity, the flask is shattered, releasing the poison which kills the cat. Yet, when

one looks in the box, one sees the cat either alive or dead, but not both alive and dead. Then,

Schrödinger asked: Is the cat alive or dead? Certainly, the two questions both show that the

superposition can be also happen in the macro world.

Then, what is the reality of a thing and where do the complex systems come from? The

word reality is the state of things as they actually exist, including everything that is and has

been, whether or not it is observable or comprehensible. Can one really hold on the reality of

things? Usually, a thing T is multilateral or complex, and so to hold on its reality is difficult for

human beings, where the world complex implies the cognitive system on a thing T is complex,

i.e., a system composes of many components which maybe interact with each other. A typical

example for explaining the complex of cognitive system on a thing is the well-known fable “the

blind men with an elephant ”.

In this fable, a group of blind men heard that a strange animal, called an elephant had

been brought to the town but none of them were aware of its shape and form. “We must inspect

and know it by touch of which we are capable ”. The first person hand landed on the trunk,

said: “this being is like a thick snake ”. The 2nd one whose hand reached its ear, claimed it

like a kind of fan. The 3rd person hand was upon its leg, said the elephant is a pillar like a

tree-trunk. The 4th man hand upon its side said: “the elephant is a wall ”. The 5th felt its tail,

described it as a rope and the last felt its tusk, stated the elephant is that being hard, smooth

and like a spear. They then entered into an endless argument! “All of you are right” ! A wise
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man explained to them: “why are you telling it differently is because each one of you touched

the different part of the elephant ”.

Fig.2

What is the philosophical meaning of this fable to human beings? It lies in that the situation

of human beings hold on the reality of things is analogous to these blind men, i.e., a complex

system. Usually, the reality of thing T identified with known characters on it at one time. For

example, let νi, i ≥ 1 be unknown and µ1, µ2, · · · , µn known characters at time t. Then, the

reality of thing T should be understood by

T =

(
n⋃

i=1

{µi}
)
⋃

⋃

k≥1

{νk}


 , (1.1)

i.e., a Smarandache multispace in logic with an approximation T ◦ =
n⋃
i=1

{µi} at time t ([22]),

which also implies that the cognition on the reality of a thing T is only an approximation, and

also the complex, i.e., the reality of a thing T is nothing else but a complex system.

Einstein once said the reality of things with that of mathematics: “As far as the laws of

mathematics refer to reality, they are not certain; and as far as they are certain, they do not

refer to reality ”. Why did Einstein say these words? Because we have no a mathematical

subfield applicable to complex system, i.e., the reality of thing T, and generally, we get a

contradictory system in mathematics.

The main purpose of this lecture is applying the contradictory universality and the existence

of universal connections between things T in the world, i.e., a topological graph
−→
G underlying

its parts in philosophy to establish a global mathematics over a graph family
{−→
G1,
−→
G2, · · ·

}
for

characterizing dynamic behaviors of a system on the time t, i.e., complex flows such as those of

to extend Banach or Hilbert spaces to Banach or Hilbert continuity flow spaces over topological

graphs
{−→
G1,
−→
G2, · · ·

}
to establish the global differential theory on complex flows and how to

characterize the global dynamic behaviors of complex systems by the global differential theory

over graphs. These results can be also applied to complex networks and analyze their dynamic

behaviors particularly, , for instance the synchronization of complex networks independent on

graphs by applying global differential on the complex flows
−→
GL.
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For terminologies and notations not mentioned here, we follow references [1] for mechanics,

[4]] for complex network, [5] for functional analysis, [7] for combinatorial geometry, [19] for

biological mathematics, [21] for elementary particles, [6] and [30] for Smarandache systems and

multispaces, and all phenomenons discussed in this paper are assumed to be true in the nature.

§2. Contradictory Systems

The formula (1.1) implies that one’s recognition on a thing T is usually non-completed, which

is the origination of contradiction. In classical logic, a contradictory system consists of a logical

incompatibility between two or more propositions, which is abandoned without discussion in

classical mathematics because a mathematical system should be compatibility in logic. However,

different things are contradictory in the eyes of human beings. This is the reason why classical

mathematics can not provides a complete recognition on things T .

Usually, a physical phenomenon of a thing T is characterized by differential equations. If

there is only one cell or one bird flying in the sky such as the flying bird, its dynamic behavior

can be characterized easily by a orbit in the space, i.e., a differential equation

ẋ = F (t, x), (2.1)

Fig.3

where, ẋ = dx/dt, t is the time parameter and x is the position of bird in R3. But how can one

characterize the behavior of a complex system of m cells with m ≥ 2 in Fig.3? For example, a

water molecule H2O consists of 2 hydrogen atoms and 1 oxygen atom, and we have known the

behavior of a particle is characterized by the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Uψ (2.2)

in quantum mechanics ([21]).
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Fig.4

Can we conclude this equation is absolutely right for atoms H and O in water molecule H2O?

Certainly not because equation (2.2) is always established with an additional assumption, i.e.,

the geometry on a particle P is a point in classical mechanics or a field in quantum mechanics.

In this case, if equation (2.2) is true for toms H and O, we get three differential equations

following 



−i~∂ψO
∂t

=
~2

2mO
∇2ψO − V (x)ψO

−i~∂ψH1

∂t
=

~2

2mH1

∇2ψH1 − V (x)ψH1

−i~∂ψH2

∂t
=

~2

2mH2

∇2ψH2 − V (x)ψH2

(2.3)

on atoms H and O. Which is the right model on H2O, the (2.2) or (2.3) dynamic equations?

The answer is not so easy because the equation model (2.2) can only characterizes those of

coherent behavior of atoms H and O in H2O. Although equation (2.3) characterize the different

behaviors of atoms H and O but it is non-solvable in mathematics ([14], [15]). Generally, when

one wish to hold on the reality of a thing, i.e., a complex system, he usually get a contradictory

system, which also implies that the mathematical known is not absolutely equal to the reality

of a thing T. Thus, establish mathematics on non-mathematics, i.e., an envelope theory on

mathematics for reality is needed ([11]).

Now, are these contradictory systems meaningless for human beings? The answer is not!

For example, let T1, T2, T3, T4 and T ′1, T
′
2, T

′
3, T

′
4 be respectively two groups of horses running

constraint with

(LESN4 )





x+ y = 2

x+ y = −2

x− y = −2

x− y = 2

(LESS4 )





x = y

x+ y = 4

x = 2

y = 2

on the earth. It is clear that (LESN4 ) is non-solvable because x + y = −2 is contradictious

to x + y = 2, and so that for equations x − y = −2 and x − y = 2. But system (LESS4 ) is

solvable with x = 2 and y = 2. Can we conclude that things T ′1, T
′
2, T

′
3, T

′
4 are x = 2, y = 2 and

T1, T2, T3, T4 are nothing? Certainly not because all of them are horses running on the earth,
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Fig.5

and their solvability only implies the orbits intersection in R2 such as those shown in Fig.6.

-6
O

x

y

x+ y = 2

x+ y = −2x− y = 2

x− y = −2

A

B

C

D -
6

x

y

x = yx = 2

y = 2
P

x+ y = 4

O

(LESN4 ) (LESS4 )

Fig.6

Denoted by La,b,c = {(x, y)|ax+by = c, ab 6= 0} be points in R2. We are easily know the be-

haviors of horses T1, T2, T3, T4 and T ′1, T
′
2, T

′
3, T

′
4 are nothings else but the unions L1,−1,0

⋃
L1,1,4⋃

L1,0,2

⋃
L0,1,2 and L1,1,2

⋃
L1,1,−2

⋃
L1,−1,−2

⋃
L1,−1,2, i.e., Smarandache multispaces, re-

spectively.

Generally, let F1,F2, · · · ,Fm be m mappings holding in conditions of the implicit map-

ping theorem and let SFi
⊂ Rn be a manifold such that Fi : SFi

→ 0 for integers 1 ≤ i ≤ m.

Consider the equations 



F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn) = 0

(2.4)

in Euclidean space Rn, n ≥ 1. Geometrically, the system (2.4) is non-solvable or not dependent

on
m⋂

i=1

SFi
= ∅ or 6= ∅.
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Definition 2.1 A G-solution of system (2.4) is a labeling graph GL defined by

V (G) = {SFi
, 1 ≤ i ≤ n};

E(G) =
{
(SFi

, SFj
) if SFi

⋂
SFj

6= ∅ for integers 1 ≤ i, j ≤ n
}

with a labeling

L : SFi
→ SFi

, (SFi
, SFj

)→ SFi

⋂
SFj

.

For example, the G-solutions of (LESN4 ) and (LESS4 ) are respectively labeling graphs CL4
and KL

4 shown in Fig.7.

L1,−1,−2 L1,1,2

L1,−1,2L1,1,−2

L1,0,2 L1,−1,0

L0,1,2L1,1,4

A

B

C

D P

P

P

P

P P

CL4
KL

4

Fig.7

Example 2.2 Let (LDES1
6) be a system of linear homogeneous differential equations





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Clearly, (LDES1

6) is a non-solvable system with solution bases

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} respectively on equations (1) − (6)

and G-solution shown in Fig.8,
〈
et, e2t

〉 〈
e2t, e3t

〉

〈
e3t, e4t

〉

〈
e4t, e5t

〉〈
e5t, e6t

〉

〈
e6t, et

〉

〈
e2t
〉

〈
e3t
〉

〈
e4t
〉

〈
e5t
〉

〈
e6t
〉

〈et〉

Fig.8

where 〈∆〉 denotes the linear space generalized by elements in ∆.

A more interesting application of the G-solution is it can be applied to characterizing the

global stability of differential equations (2.4), even it is non-solvable. See [8-12] for details.
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§3. Complex Flows

3.1 Complex Flows

Holding on the reality of things, i.e., complex systems enables us to present an element called

complex flow in mathematics on oriental philosophy, i.e.,there always exist the universal con-

tradiction and connection between things in the world. Then, what is a complex flow ? what is

its role in understanding things in the world ?

Definition 3.1 A continuity flow
(−→
G ;L,A

)
is an oriented embedded graph

−→
G in a topological

space S associated with a mapping L : v → L(v), (v, u) → L(v, u), 2 end-operators A+
vu :

L(v, u)→ LA
+
vu(v, u) and A+

uv : L(u, v)→ LA
+
uv (u, v) on a Banach space B over a field F-L(v, u)A+

vu A+
uv

L(v) L(u)

v u
Fig.9

with L(v, u) = −L(u, v) and A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→
G
)

holding with

continuity equation ∑

u∈NG(v)

LA
+
vu (v, u) = L(v) for ∀v ∈ V

(−→
G
)

such as those shown for vertex v in Fig.10 following

-
-

-

-
-

-
L(v)

L(u1)

L(u2)

L(u3)

L(u4)

L(u5)

L(u6)

L(u1, v)

L(u2, v)

L(u3, v)

L(v, u4)

L(v, u5)

L(v, u6)

u1

u2

u3

v

u4

u5

u6

A1

A2

A3

A4

A5

A6

Fig.10

with a continuity equation

LA1(v, u1) + LA2(v, u2) + LA3(v, u3)− LA4(v, u4)− LA5(v, u5)− LA6(v, u6) = L(v),

where L(v) is the surplus flow on vertex v.
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Particularly, we have known continuity flows following:

(1) L(v) = ẋv, v ∈ V
(−→
G
)
. In this case,

(−→
G ;L,A

)
is said to be a complex flow, discussed

in this lecture;

(2) For v ∈ V
(−→
G
)
, xv is a constant vv dependent on v. In this case,

(−→
G ;L,A

)
is said

to be an action flow, which was discussed extensively in [16] with applications [14]-[15], [17] to

elementary physics and biological systems;

(3) L(v) =constant independent on v, v ∈ V
(−→
G
)
, which is a special case of action flow

called A0
−→
G-flow and shown can be applied to synchronization of system in this lecture;

(4) If A = 1V ,
(−→
G ;L,A

)
is said to be a

−→
G -flow, which was discussed in [13];

(5) If A = 1V and V is a number field Z or R,
(−→
G ;L,A

)
is said to be a complex network,

which was already discussed extensively in publications, for examples, [2]-[4] and [20].

For example, let the L : (v, u)→ L(v, u) ∈ R
n × R

+ with end-operators A+
vu = avu

∂

∂t
and

avu : Rn → R for any edge (v, u) ∈ E
(−→
G
)

in Fig.11 following.

?6 - �� �
u v

wt

+
Fig.11

Then the conservation laws are partial differential equations





atu1

∂L(t, u)1

∂t
+ atu2

∂L(t, u)2

∂t
= auv

∂L(u, v)

∂t

auv
∂L(u, v)

∂t
= avw1

∂L(v, w)1

∂t
+ avw2

∂L(v, w)2

∂t
+ avt

∂L(v, t)

∂t

avw1

∂L(v, w)1

∂t
+ avw2

∂L(v, w)2

∂t
= awt

∂L(w, t)

∂t

awt
∂L(w, t)

∂t
+ avt

∂L(v, t)

∂t
= atu1

∂L(t, u)1

∂t
+ atu2

∂L(t, u)2

∂t

which maybe solvable or not but characterize the behavior of things.

3.2 Extended Linear Space

Let
−→
G ,
−→
G1,
−→
G2, · · · ,

−→
Gn be oriented graphs embedded in S with

−→
G =

n⋃
i=1

−→
G i, i.e., each

−→
G i

be a subgraph of
−→
G for integers 1 ≤ i ≤ n. In this case, these is naturally an embedding

ι :
−→
G i →

−→
G . Can we construct linear space by reviewing continuity flows

−→
GL1

1 ,
−→
GL2

2 , · · · ,−→GLn
n

not only labeling graphs but mathematical elements? The answer is yes!

Let V be a linear space over a field F . A vector labeling L :
−→
G → V is a mapping with
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L(v), L(e) ∈ V for ∀v ∈ V (
−→
G ), e ∈ E(

−→
G). Define

−→
GL1

1 +
−→
GL2

2 =
(−→
G1 \

−→
G2

)L1 ⋃(−→
G1

⋂−→
G2

)L1+L2 ⋃(−→
G2 \

−→
G1

)L2

(3.1)

and

λ · −→GL =
−→
Gλ·L (3.2)

for ∀λ ∈ F . Clearly, if
−→
GL,
−→
GL1

1 ,
−→
GL2

2 are continuity flows with linear end-operators A+
vu and

A+
uv for ∀(v, u) ∈ E

(−→
G
)
,
−→
GL1

1 +
−→
GL2

2 and λ · −→GL are continuity flows also. If we consider each

continuity flow
−→
GL
i a continuity subflow of

−→
G L̂, where L̂ :

−→
G i = L(

−→
G i) but L̂ :

−→
G \ −→G i → 0

for integers 1 ≤ i ≤ n, and define O :
−→
G → 0, then we get the following result.

Theorem 3.1([18]) If A+
vu and A+

uv are linear end-operators for ∀(v, u) ∈ E
(−→

G
)
, all con-

tinuity flows on oriented graphs
−→
G1,
−→
G2, · · · ,

−→
Gn naturally form a linear space, denoted by(〈−→

G i, 1 ≤ i ≤ n
〉V

; +, ·
)

over a field F under operations (3.1) and (3.2).

Particularly, for action flows, we get the following result.

Theorem 3.2([13], [16]) Let G be all action flows
(−→
G ;L,A

)
with linear end-operators A ∈

O(V ). Then

dimG = (dimO(V )× dimV )
β(
−→
G)

if both V and O(V ) are finite. Otherwise, dimG is infinite.

Particularly, if operators A ∈ V ∗, the dual space of V on graph
−→
G , then

dimG = (dimV )2β(
−→
G) ,

where β
(−→
G
)

= ε
(−→
G
)
−
∣∣∣−→G
∣∣∣+ 1 is the Betti number of

−→
G .

Notice that
−→
GL1

1 +
−→
GL2

2 6= −→GL1
1 or

−→
GL1

1 +
−→
GL2

2 6= −→GL2
2 if and only if

−→
G1 6�

−→
G2 with

L1 :
−→
G1 \

−→
G2 6→ 0 or if

−→
G2 6�

−→
G1 with L2 :

−→
G2 \

−→
G1 6→ 0, and generally, we say a continuity

flow family {−→GL1
1 ,
−→
GL2

2 , · · · ,−→GLn
n } is linear irreducible if for any integer i,

−→
G i 6�

⋃

l 6=i

−→
G l with Li :

−→
G i \

⋃

l 6=i

−→
G l 6→ 0,

where 1 ≤ i ≤ n. We know the following result on linear generated sets.

Theorem 3.3([18]) Let V be a linear space over a field F and let
{−→
GL1

1 ,
−→
GL2

2 , · · · ,−→GLn
n

}
be

an linear irreducible family, Li :
−→
G i → V for integers 1 ≤ i ≤ n with linear operators A+

vu,

A+
uv for ∀(v, u) ∈ E

(−→
G
)
. Then,

{−→
GL1

1 ,
−→
GL2

2 , · · · ,−→GLn
n

}
is an independent generated set of
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〈−→
G i, 1 ≤ i ≤ n

〉V

, called basis, i.e.,

dim
〈−→
G i, 1 ≤ i ≤ n

〉V
= n.

3.3 Extended Commutative Rings

Furthermore, if V is a commutative ring (R; +, ·), can we extend it over oriented graph family

{−→G1,
−→
G2, · · · ,

−→
Gn} by introducing operation “ + ” with (3.1) and operation “ · ” following:

−→
GL1

1 ·
−→
GL2

2 =
(−→
G1 \

−→
G2

)L1 ⋃(−→
G1

⋂−→
G2

)L1·L2 ⋃(−→
G2 \

−→
G1

)L2

,

where L1 · L2 : x→ L1(x) · L2(x) ? The answer is yes! We get the following result:

Theorem 3.4([18]) Let (R; +, ·) be a commutative ring and let
{−→
GL1

1 ,
−→
GL2

2 , · · · ,−→GLn
n

}
be a

linear irreducible family, Li :
−→
G i → R for integers 1 ≤ i ≤ n with linear operators A+

vu, A
+
uv

for ∀(v, u) ∈ E
(−→
G
)
. Then,

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +, ·
)

is a commutative ring.

3.4 Banach or Hilbert Space

We have shown that
−→
GV is a Banach space, and furthermore, Hilbert space if V is a Banach

or Hilbert space for an oriented graph
−→
G embedded in topological space S in [13] and [16].

Generally, let {−→GL1
1 ,
−→
GL2

2 , · · · ,−→GLn
n } be a basis of

〈−→
G i, 1 ≤ i ≤ n

〉V

, where V is a Banach

space with a norm ‖ · ‖. Can we extend Banach space V over
〈−→
G i, 1 ≤ i ≤ n

〉
? And similarly,

can we extend Hilbert space V over
〈−→
G i, 1 ≤ i ≤ n

〉
? The answer is yes!

For ∀−→GL ∈
〈−→
G i, 1 ≤ i ≤ n

〉V
, define

∥∥∥−→GL
∥∥∥ =

∑

e∈E
(−→
G
)
‖L(e)‖

or

〈−→
GL1

1 ,
−→
GL2

2

〉
=

∑

e∈E
(−→
G1\
−→
G2

)
〈L1(e), L1(e)〉

+
∑

e∈E
(−→
G1

⋂ −→
G2

)
〈L1(e), L2(e)〉+

∑

e∈E
(−→
G2\
−→
G1

)
〈L2(e), L2(e)〉 . (2.10)

Then we are easily know also that

Theorem 3.5([18]) Let
−→
G1,
−→
G2, · · · ,

−→
Gn be oriented graphs embedded in a space S and V

a Banach space over a field F . Then
〈−→
G i, 1 ≤ i ≤ n

〉V

with linear operators A+
vu, A

+
uv for

∀(v, u) ∈ E
(−→
G
)

is a Banach space, and furthermore, if V is a Hilbert space,
〈−→
G i, 1 ≤ i ≤ n

〉V
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is a Hilbert space too.

Therefore, we can consider calculus and differentials on Hilbert space
〈−→
G i, 1 ≤ i ≤ n

〉V

.

Now, if L is kth differentiable to t on a domain D ⊂ R, where k ≥ 1 and we define

d
−→
GL

dt
=
−→
G

dL
dt and

t∫

0

−→
GLdt =

−→
G

t∫
0

Ldt
.

Then, what will happens? We can generalize Taylor formula on differentiable functions in〈−→
G i, 1 ≤ i ≤ n

〉V

following.

Theorem 3.6(Taylor)([18]) Let
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

and there exist kth order derivative

of L to t on a domain D ⊂ R, where k ≥ 1. If A+
vu, A

+
uv are linear for ∀(v, u) ∈ E

(−→
G
)
, then

−→
GL =

−→
GL(t0) +

t− t0
1!

−→
GL′(t0) + · · ·+ (t− t0)k

k!

−→
GL(k)(t0) + o

(
(t− t0)−k

−→
G
)
,

for ∀t0 ∈ D , where o
(
(t− t0)−k

−→
G
)

denotes such an infinitesimal term L̂ of L that

lim
t→t0

L̂(v, u)

(t− t0)k
= 0 for ∀(v, u) ∈ E

(−→
G
)
.

Particularly, if L(v, u) = f(t)cvu, where cvu is a constant, denoted by f(t)
−→
GLC with LC :

(v, u)→ cvu for ∀(v, u) ∈ E
(−→
G
)

and

f(t) = f(t0) +
(t − t0)

1!
f ′(t0) +

(t − t0)
2

2!
f ′′(t0) + · · · +

(t − t0)
k

k!
f (k)(t0) + o

(
(t − t0)

k
)

,

then

f(t)
−→
GLC = f(t) · −→GLC .

This formula for continuity flow
−→
GL enables one to find interesting results and formulas

on
−→
GL by f

(
t
−→
G
)

such as those of the following.

Corollary 3.7 Let f(t) be a k differentiable function to t on a domain D ⊂ R with 0 ∈ D and

f(0
−→
G) = f(0)

−→
G . If A+

vu, A
+
uv are linear for ∀(v, u) ∈ E

(−→
G
)
, then

f(t)
−→
G = f

(
t
−→
G
)
.

For examples,

et
−→
G = et

−→
G =

−→
G +

t

1!

−→
G +

t2

2!

−→
G + · · ·+ tk

k!

−→
G + · · ·
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and for a real number α if |t| < 1,

(−→
G + t

−→
G
)α

=
−→
G +

αt

1!

−→
G + · · ·+ α(α − 1) · · · (α− n+ 1)tn

n!

−→
G + · · · .

§4. Synchronization Independent on Graphs

How can we characterize the behavior of a self-adaptive system with cells m ≥ 2, for instance

a flock of m birds ? A natural way for characterizing the behavior of m birds is to collect all

dynamic equations of cells, i.e., 



ẋ1 = F1(t, x1)

ẋ2 = F2(t, x2)

· · · · · · · · · · · · · · ·
˙xm = Fm(t, xm)

(4.1)

to characterize the global behavior of the system.

However, birds or generally, cells in a self-adaptive system are interacted each other. The

system (1.2) only is a collection of equation of each cell, not a global characterizing of the

biological system in space. Including the interaction of cells enables one to apply m geometrical

points in R3 and characterizing the system by a system of differential equations following





ẋ1 = F1(t, x1) +
∑
j 6=1

Hj(xj → x1)

ẋ2 = F2(t, x2) +
∑
j 6=2

Hj(xj → x2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
˙xm = Fm(t, xm) +

∑
j 6=m

Hj(xj → xm)

, (4.2)

where Fi : R3 → R3 is generally a nonlinear function characterizing the external appearance of

ith cell and Hj(xj → xi) is the action strength of the jth cell to the ith cell in this system for

integers 1 ≤ i, j ≤ m.

Then, what is the synchronization of a self-adaptive system ? The synchronization charac-

terizes the behavior of a self-adaptive system from disorderly to orderly, such as those of birds

flock or fishes shoal. By system (4.2) of differential equations, the synchronization nature is

formally defined following.

Definition 4.1([4]) The system (4.2) is said to be complete synchronization if

lim
t→∞

‖xi(t)− xj(t)‖ = 0

for all integers i, j = 1, 2 · · · ,m, where ‖ · ‖ is the Euclidean norm.

In the past decades, many researchers discussed the synchronization of (4.2) in case of
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F1 = F2 = · · · = Fm and Hj = H , i.e., a network of m identical nodes with a constant coupling

c and action strength H(xj) of node xj to xi for i, j = 1, 2, · · · ,m such as those shown in the

following model ([2-4, 20])





ẋ1 = f(x1) + c
m∑
j=1

a1jH(xj)

ẋ2 = f(x2) + c
m∑
j=1

a2jH(xj)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
˙xm = f(xm) + c

m∑
j=1

amjH(xj)

(4.3)

where xi =
(
x

(1)
i , x

(2)
i , · · · , x(n)

i

)T
∈ Rn is the state vector, f is generally a nonlinear function

satisfying a Lipschitz condition, H : Rn → Rn is the inner action and A = [aij ]m×m is the outer

coupling matrix defined by aij = aji = 1 if there is a connection between nodes i and j, i 6= j,

otherwise, aij = aji = 0 and the diagonal elements with i = j are defined by

aii = −
∑

j=1,j 6=i

aij = −
∑

j=1,j 6=i

aji = −ki, i = 1, 2, · · · ,m

where ki is the degree of node i. Hence, the matrix A is actually the negative Laplacian matrix.

Today, we have known the synchronization of (4.3) is so dependent on eigenvalues λ2 and

λm of matrix A ([2-4, 20]), which classified the regions leading to the synchronization of (4.3),

called synchronized region into 4 cases following by a master stability function ([20]):

Type I. Synchronized region is (α1,∞). In this type, the synchronization of (4.3) is

determined by λ2, i.e., if cλ2 > α1, the system (4.3) is synchronized.

Type II. Synchronized region is (α2, α3) ⊂ (0,∞). In this type, the synchronization of

(4.3) is determined by λ2 and λm, i.e., if
α2

λ2
< c <

α3

λm
, the system (4.3) is synchronized.

Type III. Synchronized region is the union of several intervals of (0,∞), for instance

(α2, α3)
⋃

(α4, α5)
(
α6,∞).

Type IV. Synchronized region does not exist.

But, the criterions I-IV were so strange that the synchronization is a global behavior of

individuals in a self-adaptive system and can not be completely dependent on its underlying

graph or in other words, the eigenvalues of matrix A. However, they appears because of

one’s assumptions on system (4.3), i.e., the synchronization of a self-adaptive system should be

independent on the underlying structure of individuals in general. Can we view a self-adaptive

system as a mathematical element and characterize the synchronization of system ? The answer

is positive, i.e., by complex flows
−→
GL!

Notice that the synchronization state of a complex flow
−→
GL is nothing else but a non-zero

A0 flows, i.e., L(v) = v 6= 0 for ∀v ∈ V
(−→
G
)
.

Example 4.2 Let
−→
G =

−→
C n or

−→
P n for an integer n ≥ 1. If there is an A0

−→
G -flow on

−→
C n such
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as those shown in Fig.12. - ?
���6

v1 v2

v3vivi+1vn

f1

f2

f3fi

fn

Fig.12

We are easily know that

f1 − fn = f2 − f1 = f3 − f2 = · · · = fi+1 − fi = · · · = fn − fn−1

by the definition of A0-flow, which only have solutions f1 = f2 = · · · = fn. Thus, it is a zero

A0 flows.

Similarly, if there is an A0
−→
G -flow on

−→
P n such as those shown in Fig.13.

v1 vnviv2 vi−1 vi+1 vn−1

f1 f2 fi−1 fi fi+1 fn−1- - - -- -
Fig.13

We are easily know that

−f1 = f2 − f1 = · · · = fi − fi−1 = · · · = fn−1 − fn−2 = fn−1

by the definition of A0 flow, which only have solutions f1 = f2 = · · · = fn = 0. Thus, it is a

zero A0 flows also.

A complex A0 flow
−→
GL exists in

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

if and only if L(v) = F (t, x) for

∀v ∈ V
(−→
G
)
, where F (t, x) is independent on the interaction in

−→
GL. i.e., the system of

continuity equations ∑

u∈NG(v)

LA
+
vu (v, u) = F (t, x), ∀v ∈ V

(−→
G
)

(4.4)

with the same solvable differential equation

dxv
dt

= F (t, x)

characterizing the behavior of variables on v ∈ V
(−→
G
)
, which is homogenous.Thus, we know
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the following result by definition.

Theorem 4.3 A complex A0 flow
−→
GL exists in Hilbert space

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

if and only

if the ordinary differential equation
dx

dt
= F (t, x) (4.5)

is solvable in Hilbert space
〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

.

Such a solution is usually called a multispace solution of (4.5).

Definition 4.4 Let
−→
GL,
−→
GL1

1 ∈
〈−→
G i, 1 ≤ i ≤ n

〉V

with L,L1 dependent on a variable t ∈
[a, b] ⊂ (−∞,+∞) and linear continuous end-operators A+

vu for ∀(v, u) ∈ E
(−→
G
)
. For t0 ∈

[a, b] and any number ε > 0, if there is always a number δ(ε) such that if |t − t0| ≤ δ(ε)

then
∥∥∥−→GL1

1 −
−→
GL
∥∥∥ < ε, then,

−→
GL1

1 is said to be converged to
−→
GL as t → t0, denoted by

lim
t→t0

−→
GL1

1 =
−→
GL. Particularly, if

−→
GL is a continuity flow with a constant L(v) for ∀v ∈ V

(−→
G
)

and t0 = +∞,
−→
GL1

1 is said to be
−→
G-synchronized.

These is a well-known result on liner operators following, which is useful to determining

the synchronization of systems.

Theorem 4.5([5]) Let B1,B2 be Banach spaces over a field F with norms ‖ · ‖1 and ‖ · ‖2,
respectively. Then, a linear operator T : B1 → B2 is continuous if and only if it is bounded,

or equivalently,

‖T‖ := sup
0 6=v∈B1

‖T(v)‖2
‖v‖1

< +∞.

According to Theorem 4.5, if A+
vu is liner continuous operator there must be a constant

cvu such that ‖A+
vu‖ ≤ cvu for ∀(v, u) ∈ E

(−→
G
)
. Let

cmax
G1G =

{
max

(v,u)∈E(G1)
c+vu, max

(v,u)∈E(G1)
c+vu

}
.

Then, we get an equivalent condition for lim
t→t0

−→
GL1

1 =
−→
GL following.

Theorem 4.6 lim
t→t0

−→
GL1

1 =
−→
GL if and only if for any number ε > 0 there is always a number δ(ε)

such that if |t − t0| ≤ δ(ε) then ‖L1(v, u)‖ < ε for (v, u) ∈ E
(−→
G1 \

−→
G
)
, ‖(L1 − L)(v, u)‖ < ε

for (v, u) ∈ E
(−→
G1

⋂−→
G
)

and ‖ − L(v, u)‖ < ε for (v, u) ∈ E
(−→
G \ −→G1

)
,i.e.,

−→
GL1

1 −
−→
GL is an

infinitesimal or lim
t→t0

(−→
GL1

1 −
−→
GL
)

= O.
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Proof Clearly,

∥∥∥−→GL1
1 −

−→
GL
∥∥∥

=

∥∥∥∥
(−→

G1 \
−→
G
)L1

∥∥∥∥ +

∥∥∥∥
(−→

G1

⋂−→
G
)L1−L

∥∥∥∥ +

∥∥∥∥
(−→

G \
−→
G1

)−L
∥∥∥∥

=
∑

u∈NG1\G(v)

∥∥∥∥L
A′+
vu

1 (v, u)

∥∥∥∥ +
∑

u∈NG1
⋂
G(v)

∥∥∥∥
(

L
A′+
vu

1 − L
A+
vu

vu

)
(v, u)

∥∥∥∥ +
∑

u∈NG\G1
(v)

∥∥∥−LA+
vu(v, u)

∥∥∥

≤
∑

u∈NG1\G(v)

c+
vu‖L1(v, u)‖ +

∑

u∈NG1
⋂
G(v)

c+
vu‖ (L1 − L) (v, u)‖ +

∑

u∈NG\G1
(v)

c+
vu‖ − L(v, u)‖

and ‖L(v, u)‖ ≥ 0 for (v, u) ∈ E
(−→
G
)

and E
(−→
G1

)
. If

∥∥∥−→GL1
1 −

−→
GL
∥∥∥ < ε, we are easily

knowing that ‖L1(v, u)‖ < cmax
G1G

ε for (v, u) ∈ E
(−→
G1 \

−→
G
)
, ‖(L1 − L)(v, u)‖ < cmax

G1G
ε for

(v, u) ∈ E
(−→
G1

⋂−→
G
)

and ‖ − L(v, u)‖ < cmax
G1G

ε for (v, u) ∈ E
(−→
G \ −→G1

)
.

Conversely, if ‖L1(v, u)‖ < ε for (v, u) ∈ E
(−→
G1 \

−→
G
)
, ‖(L1 − L)(v, u)‖ < ε for (v, u) ∈

E
(−→
G1

⋂−→
G
)

and ‖ − L(v, u)‖ < ε for (v, u) ∈ E
(−→
G \ −→G1

)
, we easily find that

∥∥∥−→GL1
1 −

−→
GL
∥∥∥ =

∑

u∈NG1\G(v)

∥∥∥LA
′+
vu

1 (v, u)
∥∥∥+

∑

u∈NG1
⋂
G(v)

∥∥∥
(
L
A′+
vu

1 − LA
+
vu

vu

)
(v, u)

∥∥∥

+
∑

u∈NG\G1
(v)

∥∥∥−LA+
vu(v, u)

∥∥∥

≤
∑

u∈NG1\G(v)

c+vu‖L1(v, u)‖+
∑

u∈NG1
⋂
G(v)

c+vu‖ (L1 − L) (v, u)‖

+
∑

u∈NG\G1
(v)

c+vu‖ − L(v, u)‖

<
∣∣∣−→G1 \

−→
G
∣∣∣ cmax
G1Gε+

∣∣∣−→G1

⋂−→
G
∣∣∣ cmax
G1Gε+

∣∣∣−→G \ −→G1

∣∣∣ cmax
G1Gε =

∣∣∣−→G1

⋃−→
G
∣∣∣ cmax
G1Gε.

This completes the proof. 2
An application of Theorem 4.6 enables us to get a result on synchronization of complex

flows following, which is independent on the underlying structure of cells of a self-adaptive

system.

Theorem 4.7 A complex flow
−→
GL with linear continuous end-operator A+

vu for ∀(v, u) ∈ E
(−→
G
)

is
−→
G -synchronized if and only if for any number ε > 0 if t ≥ N(ε) then ‖L(v)− L(u)‖ < ε for

∀v, u ∈ V
(−→
G
)
, i.e., flows on vertex are synchronized.

Proof By definition, if
−→
GL is synchronized, there must be a non-zero A0 flow

−→
GL0

0 and

a number N(ε) such that
∥∥∥−→GL −−→GL0

0

∥∥∥ < ε if t ≥ N(ε), which implies that ‖L(v, u)‖ < ε

for u ∈ V
(−→
G \ −→G0

)
, ‖(L − L0)(v, u)‖ < ε for u ∈ V

(−→
G
⋂−→
G0

)
and ‖ − L0(v, u)‖ < ε for

u ∈ V
(−→
G0 \

−→
G
)

by Theorem 4.6.
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Therefore,

‖L(v)‖ =
∑

u∈NG(v)

∥∥∥LA
+
vu(v, u)

∥∥∥ ≤
∑

u∈NG(v)

c+vu‖L(v, u)‖ ≤ |NG(v)|cmax
GG0

ε

for ∀v ∈ V
(−→
G
)

by applying Theorem 4.6. Thus,

‖L(v)− L(u)‖ ≤ ‖L(v)‖+ ‖L(u)‖ ≤ (|NG(v)| + |NG(u)|)cmax
GG0

ε < ε

for ∀v, u ∈ V
(−→
G
)

if t ≥ N
(

ε

cmax
GG0

(|NG(v)|+ |NG(u)|)

)
.

Conversely, if there is a number ε > 0 such that ‖L(v) − L(u)‖ < ε if t ≥ N(ε) for

∀v, u ∈ V
(−→
G
)
, we are easily know that lim

t→∞
L(v) = lim

t→∞
L(u) = v for ∀v, u ∈ V

(−→
G
)
. Let

lim
t→∞

−→
GL =

−→
GL0 . Then,

−→
GL0 is a non-zero A0 flow by definition and follows that

∥∥∥−→GL −−→GL0

∥∥∥ =
∑

u∈NG(v)

∥∥∥LA
+
vu(v, u)

∥∥∥

≤
∑

(v,u)∈E
(−→
G
)
cmax
G ‖(L− L0)(v, u)‖

=
1

2

∑

v∈V
(−→
G
)
cmax
G ‖(L− L0) (v)‖ ≤

∣∣∣−→G
∣∣∣ cmax
G ε < ε

if t ≥ N


 ε

cmax
G

∣∣∣−→G
∣∣∣


, i.e., an infinitesimal which completes the proof. 2

Denoted by
−→△ =

−→
GL1

1 −
−→
GL in Definition 4.1. Then,

−→△ is an infinitesimal by Theorem

4.5, denoted by o
(
t
−→
G
)
. We therefore know a conclusion following by Theorem 4.7, which

completely changed the notion that synchronization dependent on the structure of
−→
G .

Theorem 4.8 A continuity flow
−→
GL with liner continuous end-operator A+

vu for ∀(v, u) ∈
E
(−→
G
)

is
−→
G-synchronized if and only if there is a non-zero A0 flow

−→
GL0

0 such that

−→
GL =

−→
GL0

0 + o
(
t−1−→G

)
,

independent on the structure of
−→
G .

Notice that

d

dt


 ∑

u∈NG(v)

LA
+
vu (v, u)


 =

∑

u∈NG(v)

d

dt
LA

+
vu (v, u)

for ∀v ∈ V
(−→
G
)

and
d ln |t|
dt

= t−1. We get the following result on a synchronized complex flow.
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Theorem 4.9 A complex flow
−→
GL with liner continuous end-operators A+

vu for ∀(v, u) ∈ E
(−→
G
)

is
−→
G-synchronized if and only if there is a non-zero A0 flow

−→
GL0 such that

−→
GL =

−→
GL0 + o

(
ln |t|−→G

)
.

Particularly, if each A+
vu is a constant for ∀(v, u) ∈ E

(−→
G
)
, we get the conclusion following.

Corollary 4.10 A complex flow
−→
GL with A+

vu = cvu, a constant for ∀(v, u) ∈ E
(−→
G
)

is

synchronized if and only if there is a non-zero A0 flow
−→
GL0 such that

−→
GL =

−→
GL0 + o

(
ln |t|−→G

)
.

For example, let A+
vivi+1

= 1, A+
vivi−1

= 2 and

fi =
f1 +

(
2i−1 − 1

)
F (t, x)

2i−1

for integers 1 ≤ i ≤ n in Fig.12. We have known
−→
C f
n with f : (vi, vi+1)→ fi is a non-zero A0

flow. Construct a complex flow
−→
C L
n by letting

L : (vi, vi+1)→
f1 +

(
2i−1 − 1

)
F (t, x)

2i−1
+
n!

ti

and

L∆ : (vi, vi+1)→
n!

ti
.

Notice that
−→
C L∆
n = o

(
t−1−→C n

)
. We therefore known that the complex flow

−→
C L
n is

−→
G -

synchronized by Corollary 4.10. However, by the master stability functions in [20] we can only

conclude that it is difficult to attain the synchronization for
−→
C n, n ≥ 3.

§5. Conclusion

The reality of a thing T is essentially a complex system, even a contradictory system in the eyes

of human beings, and there are no a mathematical subfield applicable until today. Thus, a new

mathematical theory should be established for holding on the reality of things in the world. For

this objective, the mathematical combinatorics, i.e., mathematics over graphs and particularly,

the mathematics on complex flows
−→
GL is a candidate because every thing T is not isolated but

connected with other things in the world, and a complex system or a contradictory system in

classical is nothing else but a mathematics over a graph
−→
G .
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Mathematics with Natural Reality – Action Flows

Abstract: The universality of contradiction implies that the reality of a thing is only hold

on observation with level dependent on the observer standing out or in and lead respectively

to solvable equation or non-solvable equations on that thing for human beings. Notice

that all contradictions are artificial, not the nature of things. Thus, holding on reality of

things forces one extending contradictory systems in classical mathematics to a compatible

one by combinatorial notion, particularly, action flow on differential equations, which is in

fact an embedded oriented graph
−→
G in a topological space S associated with a mapping

L : (v, u) → L(v, u), 2 end-operators A+
vu : L(v, u) → LA+

vu(v, u) and A+
uv : L(u, v) →

LA+
uv (u, v) on a Banach space B with L(v, u) = −L(u, v) and A+

vu(−L(v, u)) = −LA+
vu(v, u)

for ∀(v, u) ∈ E
(−→

G
)

holding with conservation laws

∑

u∈NG(v)

LA+
vu (v, u) = 0, ∀v ∈ V

(−→
G
)

.

The main purpose of this paper is to survey the powerful role of action flows to mathematics

such as those of extended Banach
−→
G -flow spaces, the representation theorem of Fréchet and

Riesz on linear continuous functionals, geometry on action flows or non-solvable systems of

solvable differential equations with global stability, · · · etc., and their applications to physics,

ecology and other sciences. All of these makes it clear that knowing on the reality by solvable

equations is local, only on coherent behaviors but by action flow on equations and generally,

contradictory system is universal, which is nothing else but a mathematical combinatorics.

Key Words: Action flow,
−→
G -flow, natural reality, observation, Smarandache multi-space,

differential equation, topological graph, CC conjecture.

AMS(2010): 03A10,05C15,20A05, 34A26,35A01,51A05,51D20,53A35.

§1. Introduction

A thing P is usually complex, even hybrid with other things but the understanding of human

beings is bounded, brings about a unilateral knowledge on P identified with its known char-

acters, gradually little by little. For example, let µ1, µ2, · · · , µn be its known and νi, i ≥ 1

unknown characters at time t. Then, thing P is understood by

P =

(
n⋃

i=1

{µi}
)
⋃

⋃

k≥1

{νk}


 , (1.1)

1A plenary talk in the National Conference on Emerging Trends in Mathematics and Mathematical Sciences,
Calcutta Mathematical Society, December 17 - 19, 2015, Kolkata, India.

2Bull.Cal.Math.Soc., 107,(6)443 – 474(2015)
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i.e., a Smarandache multispace in logic with an approximation P ◦ =
n⋃
i=1

{µi} at time t, reveals

the diversity of things such as those shown in Fig.1 for the universe,

Fig.1

and that the reality of a thing P is nothing else but the state characters (1.1) of existed, existing

or will existing things whether or not they are observable or comprehensible by human beings

from a macro observation at a time t.

Generally, one establishes mathematical equation

F (t, x1, x2, x3, ψt, ψx1 , ψx2 , · · · , ψx1x2 , · · · ) = 0 (1.2)

to determine the behavior of a thing P , for instance the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Uψ (1.3)

on particles, where ~ = 6.582 × 10−22MeV s is the Planck constant. Can we conclude the

mathematical equation (1.2) characterize the reality of thing P by solution ψ? The answer is

not certain, particularly, for the equation (1.3) on the superposition, i.e., in two or more possible

states of being of particles, but the solution ψ of (1.3) characterizes only its one position.

Notice that things are inherently related, not isolated in the nature, observed characters are

filtering sensory information on things. Whence these is a topological structure on things, i.e.,

an inherited topological graph G in space. On the other hand, any oriented graph G =
(
V,
−→
E
)

can be embedded into Rn if n ≥ 3 because if there is an intersection p between edges ϕ(e) and

ϕ (e′) in embedding (G,ϕ) of G, we can always operate a surgery on curves ϕ(e) and ϕ (e′)

in a sufficient small neighborhood N(p) of p such that there are no intersections again and

this surgery can be operated on all intersections in (G,ϕ). Furthermore, if G is simple, i.e.,

without loops or multiple edges, we can choose n points v1 =
(
t1, t

2
1, t

3
1

)
, v2 =

(
t2, t

2
2, t

3
2

)
, · · · ,

vn =
(
tn, t

2
n, t

3
n

)
for different ti, 1 ≤ i ≤ n, n = |G| on curve

(
t, t2, t3

)
. Then it is clear that the

straight lines vivj , vkvl have no intersections for any integers 1 ≤ i, j, k, l ≤ n ([26]). Thus, there

is such a mapping ϕ in this case that all edges of (G,ϕ) are straight segments, i.e., rectilinear

embedding in Rn for G if n ≥ 3. We therefore conclude that

Oriented Graphs in R
n ⇔ Inherent Structure of Natural Things.
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Thus, for understanding the reality, particularly, multiple behavior of a thing P , an effective

way is return P to its nature and establish a mathematical theory on embedded graphs in

Rn, n ≥ 3, which is nothing else but flows in dynamical mechanics, such as the water flow in a

river shown in Fig.2.

Fig.2

There are two commonly properties known to us on water flows. Thus, the rate of flow is

continuous on time t, and for its any cross section C, the in-flow is always equal to the out-flow

on C. Then, how can we describe the water flow in Fig.2 on there properties? Certainly, we

can characterize it by network flows simply. A network is nothing else but an oriented graph

G = (V,
−→
E ) with a continuous function f :

−→
E → R holding with conditions f(u, v) = −f(v, u)

for ∀(u, v) ∈ −→E and
∑

u∈NG(v)

f(v, u) = 0. For example, the network shown in Fig.3 is the

abstracted model for water flow in Fig.2 with conservation equation a(t) = b(t) + c(t), where

a(t), b(t) and c(t) are the rates of flow on time t at the cross section of the river.- - - - -7 w
a(t) a(t) a(t) a(t)

b(t) b(t)

c(t)

Fig.3

A further generalization of network by extending flows to elements in a Banach space with

actions results in action flow following.

Definition 1.1 An action flow
(−→
G ;L,A

)
is an oriented embedded graph

−→
G in a topological

space S associated with a mapping L : (v, u) → L(v, u), 2 end-operators A+
vu : L(v, u) →

LA
+
vu(v, u) and A+

uv : L(u, v) → LA
+
uv(u, v) on a Banach space B with L(v, u) = −L(u, v) and

A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→
G
)-u v

L(u, v)A+
uv A+

vu

Fig.4
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holding with conservation laws

∑

u∈NG(v)

LA
+
vu (v, u) = 0 for ∀v ∈ V

(−→
G
)

such as those shown for vertex v in Fig.5 following---
---v

u1

u2

u3

u4

u5

u6

L(v, u1)

A1
L(v, u2) A2

L(v, u3)
A3

L(v, u4)

A4
L(v, u5)A5

L(v, u6)
A6

Fig.5

with a conservation law

−LA1(v, u1)− LA2(v, u2)− LA4(v, u3) + LA4(v, u4) + LA5(v, u5) + LA6(v, u6) = 0,

where an embedding of G in S is a 2-tuple (G,ϕ) with a 1− 1 continuous mapping ϕ : G→ S

such that an intersection only appears at end vertices of G in S , i.e., ϕ(p) 6= ϕ(q) if p 6= q for

∀p, q ∈ G.

Notice that action flows is also an expression of the CC conjecture, i.e., any mathematical

science can be reconstructed from or made by combinatorialization ([7], [20]). But they are

elements for hold on the nature of things.

The main purpose of this paper is to survey the powerful role of action flows in mathe-

matics and other sciences such as those of extended Banach
−→
G -flow spaces, the representation

theorem of Fréchet and Riesz on linear continuous functionals, , geometry on action flows and

geometry on non-solvable systems of solvable differential equations, combinatorial manifolds,

global stability of action flows, · · · , etc. on two cases following with applications to physics and

other sciences:

Case 1.
−→
G-flows, i.e., action flows

(−→
G ;L,1B

)
, which enable one extending Banach space

to Banach
−→
G -flow space and find new interpretations on physical phenomenons. Notices that

an action flow with A+
vu = A+

uv for ∀(v, u) ∈ E
(−→
G
)

is itself a
−→
G -flow if replacing L(u, v) by

LA
+
vu(v, u) on (v, u).

Case 2. Differential flows, i.e., action flows
(−→
G ;L,A

)
with ordinary differential or partial

differential operators A+
vu on some edges (v, u) ∈ E

(−→
G
)
, which includes classical geometrical

flow as the particular in cases of
∣∣∣−→G
∣∣∣ = 1. Usually, if

∣∣∣−→G
∣∣∣ ≥ 2, such a flow characterizes

non-solvable system of physical equations.

For example, let the L : (v, u) → L(v, u) ∈ R
n × R

+ with action operators A+
vu = avu

∂

∂t
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and avu : Rn → R for any edge (v, u) ∈ E
(−→
G
)

in Fig.6 following.

?6 - �� �
u v

wt

+
Fig.6

Then the conservation laws are partial differential equations





atu1

∂L(t, u)1

∂t
+ atu2

∂L(t, u)2

∂t
= auv

∂L(u, v)

∂t

auv
∂L(u, v)

∂t
= avw1

∂L(v, w)1

∂t
+ avw2

∂L(v, w)2

∂t
+ avt

∂L(v, t)

∂t

avw1

∂L(v, w)1

∂t
+ avw2

∂L(v, w)2

∂t
= awt

∂L(w, t)

∂t

awt
∂L(w, t)

∂t
+ avt

∂L(v, t)

∂t
= atu1

∂L(t, u)1

∂t
+ atu2

∂L(t, u)2

∂t

For terminologies and notations not mentioned here, we follow references [1] for mechanics,

[2] for functional analysis, [11] for graphs and combinatorial geometry, [4] and [27] for differential

equations, [22] for elementary particles, and [23] for Smarandache multispaces.

§2.
−→
G-Flows

The divisibility of matter initiates human beings to search elementary constituting cells of

matter and interpretation on the superposition of microcosmic particles such as those of quarks,

leptons with those of their antiparticles, and unmatters between a matter and its antimatter([24-

25]). For example, baryon and meson are predominantly formed respectively by three or two

quarks in the model of Sakata, or Gell-Mann and Ne’eman, and H.Everett’s multiverse ([5])

presented an interpretation for the cat in Schrödinger’s paradox in 1957, such as those shown

in Fig.7.

Quark Model Multiverse on Schrödinger’s Cat

Fig.7
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Notice that we only hold coherent behaviors by an equation on a natural thing, not the indi-

vidual because that equation is established by viewing abstractly a particle to be a geometrical

point or an independent field from a macroscopic point, which leads physicists always assum-

ing the internal structures mechanically for hold on the behaviors of matters, likewise Sakata,

Gell-Mann, Ne’eman or H.Everett. However, such an assumption is a little ambiguous in math-

ematics, i.e., we can not even conclude which is the point or the independent field, the matter

or its submatter. But
−→
G -flows verify the rightness of physicists ([17]).

2.1 Algebra on Graphs

Let
−→
G be an oriented graph embedded in Rn, n ≥ 3 and let (A ; ◦) be an algebraic system in

classical mathematics, i.e., for ∀a, b ∈ A , a◦b ∈ A . Denoted by
−→
GL

A all of those labeled graphs−→
GL with labeling L : E

(−→
G
)
→ A . We extend operation ◦ on elements in

−→
GL

A by a ruler

following:

R : For ∀−→GL1 ,
−→
GL2 ∈ −→GL

A , define
−→
GL1 ◦−→GL2 =

−→
GL1◦L2 , where L1◦L2 : e→ L1(e)◦L2(e)

for ∀e ∈ E
(−→
G
)
.

For example, such an extension on graph
−→
C 4 is shown in Fig.8, where, a3=a1◦a2, b3 =b1◦b2,

c3=c1◦c2, d3 =d1◦d2.- ?�6 ?�6 ?�6v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

- -
Fig.8

Notice that
−→
GL

A is also an algebraic system under ruler R, i.e.,
−→
GL1 ◦ −→GL2 ∈ −→GL

A by

definition. Furthermore,
−→
GL

A is a group if (A , ◦) is a group because of

(1)
(−→
GL1 ◦ −→GL2

)
◦ −→GL3 =

−→
GL1 ◦

(−→
GL2 ◦ −→GL3

)
for ∀−→GL1 ,

−→
GL2 ,

−→
GL3 ∈ −→GL

A because

(L1(e) ◦ L2(e)) ◦ L3(e) = L1(e) ◦ (L2(e) ◦ L3(e)) for e ∈ E
(−→
G
)
.

(2) there is an identify
−→
GL1A in

−→
GL

A , where L1A : e→ 1A for ∀e ∈ E
(−→
G
)
;

(3) there is an uniquely element
−→
GL−1

holding with
−→
GL−1 ◦ −→GL =

−→
GL1A for ∀−→GL ∈ −→GL

A .

Thus, an algebraic system can be naturally extended on an embedded graph, and this fact

holds also with those of algebraic systems of multi-operations. For example, let R = (R; +, ·)
be a ring and (V ; +, ·) a vector space over field F . Then it is easily know that

−→
GL

R,
−→
GL

V

are respectively a ring or a vector space with zero vector O =
−→
GL0 , where L0 : e → 0 for

∀e ∈ E
(−→
G
)
, such as those shown for

−→
GL

V on
−→
C 4 in Fig.8 with a, b, c, d, ai, bi, ci, di ∈ V

for i = 1, 2, 3, x3=x1+x2 for x=a, b, c or d and α ∈ F .



28 Mathematical Reality- ?�6 ?�6 ?�6v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

- -
- ?�6 - ?�6α

v1 v2 v1 v2

v3v4 v3v4

a

b

c

d

α·a

α·b

α·c

α·d

Fig.9

2.2 Action Flow Spaces

Notice that the algebra on graphs only is a formally operation system provided without the

characteristics of flows, particularly, conservation, which can not be a portrayal of a natural

thing because a measurable property of a physical system is usually conserved with connections.

The notion wishing those of algebra on graphs with conservation naturally leads to that
−→
G -flows,

i.e., action flows
(−→
G : L,1V

)
come into being. Thus, a

−→
G -flow is a subfamily of

−→
GL

V limited

by conservation laws. For example, if
−→
G =

−→
C 4, there must be a=b=c=d and ai=bi=ci=di

for i = 1, 2, 3 in Fig.9. Clearly, all
−→
G -flows

(−→
G ;L,1V

)
on
−→
G for a vector space V over field F

form a vector space by ruler R, denoted by
−→
GV .

Generally, a conservative action family is a pair {{v}, {A(v)}} with vectors {v} ⊂ V and

operators A on V such that
∑

v∈V

vA(v) = 0. Clearly, action flow consists of conservation action

families. The result following establishes its inverse.

Theorem 2.1([17]) An action flow
(−→
G ;L,A

)
exists on

−→
G if and only if there are conservation

action families L(v) in a Banach space V associated an index set V with

L(v) = {LA+
vu(v, u) ∈ V for some u ∈ V }

such that A+
vu(−L(v, u)) = −LA+

vu(v, u) and

L(v)
⋂

(−L(u)) = L(v, u) or ∅.

2.3 Banach
−→
G-Flow Space

Let (V ; +, ·) be a Banach or Hilbert space with inner product 〈·, ·〉. We can furthermore
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introduce the norm and inner product on
−→
GV by

∥∥∥−→GL
∥∥∥ =

∑

(u,v)∈E
(−→
G
)
‖L(u, v)‖

and 〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈E
(−→
G
)
〈L1(u, v), L2(u, v)〉

for ∀−→GL,
−→
GL1 ,

−→
GL2 ∈ −→GV , where ‖L(u, v)‖ is the norm of L(u, v) in V .

Then, it can be easily verified that ([17]):

(1)
∥∥∥−→GL

∥∥∥ ≥ 0 and
∥∥∥−→GL

∥∥∥ = 0 if and only if
−→
GL = O;

(2)
∥∥∥−→GξL

∥∥∥ = ξ
∥∥∥−→GL

∥∥∥ for any scalar ξ;

(3)
∥∥∥−→GL1 +

−→
GL2

∥∥∥ ≤
∥∥∥−→GL1

∥∥∥+
∥∥∥−→GL2

∥∥∥;

(4)
〈−→
GL,
−→
GL
〉
≥ 0 and

〈−→
GL,
−→
GL
〉

= 0 if and only if
−→
GL = O;

(5)
〈−→
GL1 ,

−→
GL2

〉
=
〈−→
GL2 ,

−→
GL1

〉
for ∀−→GL1 ,

−→
GL2 ∈ −→GV ;

(6) For
−→
GL,
−→
GL1 ,

−→
GL2 ∈ −→GV and λ, µ ∈ F ,

〈
λ
−→
GL1 + µ

−→
GL2 ,

−→
GL
〉

= λ
〈−→
GL1 ,

−→
GL
〉

+ µ
〈−→
GL2 ,

−→
GL
〉
.

Thus,
−→
GV is also a normed space by (1)-(3) or inner space by (4)-(6). By showing that

any Cauchy sequence in
−→
GV is converged also holding with conservation laws in [17], we know

the result following.

Theorem 2.2 For any oriented graph
−→
G embedded in topological space S ,

−→
GV is a Banach

space, and furthermore, if V is a Hilbert space, so is
−→
GV .

A
−→
GL-flow is orthogonal to

−→
GL′

if
〈−→
GL,
−→
GL′

〉
= O. We know the orthogonal decomposi-

tion of Hilbert space
−→
GV following.

Theorem 2.3([17]) Let V be a Hilbert space with an orthogonal decomposition V = V ⊕V⊥

for a closed subspace V ⊂ V . Then there is also an orthogonal decomposition

−→
GV = Ṽ ⊕ Ṽ⊥,

where, Ṽ =
{−→
GL1 ∈ −→GV

∣∣∣L1 : X
(−→
G
)
→ V

}
and Ṽ⊥ =

{−→
GL2 ∈ −→GV

∣∣∣L2 : X
(−→
G
)
→ V⊥

}
,

i.e., for ∀−→GL ∈ −→GV , there is a uniquely decomposition
−→
GL =

−→
GL1+

−→
GL2 with L1 : X

(−→
G
)
→ V

and L2 : X
(−→
G
)
→ V⊥.
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2.4 Actions on
−→
G-Flow Spaces

Let V be a Hilbert space consisting of measurable functions f(x1, x2, · · · , xn) on the functional

space L2[∆] with inner product

〈f (x) , g (x)〉 =
∫

∆

f(x)g(x)dx for f(x), g(x) ∈ L2[∆]

and

D =
n∑

i=1

ai
∂

∂xi
and

∫

∆

,

∫

∆

are respectively differential operators and integral operators linearly defined byD
−→
GL =

−→
GDL(u,v)

and

∫

∆

−→
GL =

∫

∆

K(x,y)
−→
GL[y]dy =

−→
G
∫
∆
K(x,y)L(u,v)[y]dy,

∫

∆

−→
GL =

∫

∆

K(x,y)
−→
GL[y]dy =

−→
G
∫
∆
K(x,y)L(u,v)[y]dy

for ∀(u, v) ∈ E
(−→
G
)
, where ai,

∂ai
∂xj
∈ C

0(∆) for integers 1 ≤ i, j ≤ n and K(x,y) : ∆×∆→
C ∈ L2(∆×∆,C) with ∫

∆×∆

K(x,y)dxdy <∞.

For example, let let f(t) = t, g(t) = et, K(t, τ) = t2 + τ2 for ∆ = [0, 1] and let
−→
GL be the−→

G -flow shown on the left in Fig.10, =6
-
-}

-
-=}-� ?�6?6 -
=} =}-

-
-
-- ?�6 -�6

D

∫
[0,1],

∫
[0,1]

t

t

t

t

et

et et

et

t

t

tt

et

et

et et

et

et

et
et

1

1

1

1

a(t)

a(t) ?a(t)

a(t)

b(t)

b(t)

b(t) b(t)

Fig.10

where a(t) =
t2

2
+

1

4
and b(t) = (e− 1)t2 + e− 2. We know the result following.

Theorem 2.4([17]) D :
−→
GV → −→GV and

∫

∆

:
−→
GV → −→GV .
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Thus, operators D,

∫

∆

and

∫

∆

are linear operators action on
−→
GV .

Generally, let V be Banach space V over a field F . An operator T :
−→
GV → −→GV is linear

if

T
(
λ
−→
GL1 + µ

−→
GL2

)
= λT

(−→
GL1

)
+ µT

(−→
GL2

)

for ∀−→GL1 ,
−→
GL2 ∈ −→GV and λ, µ ∈ F , and is continuous at a

−→
G -flow

−→
GL0 if there always exist

such a number δ(ε) for ∀ǫ > 0 that

∥∥∥T
(−→
GL
)
−T

(−→
GL0

)∥∥∥ < ε if
∥∥∥−→GL −−→GL0

∥∥∥ < δ(ε).

The following result extends the Fréchet and Riesz representation theorem on linear con-

tinuous functionals to linear functionals T :
−→
GV → C on

−→
G -flow space

−→
GV , where C is the

complex field.

Theorem 2.5([17]) Let T :
−→
GV → C be a linear continuous functional, where V is a Hilbert

space. Then there is a unique
−→
G L̂ ∈ −→GV such that T

(−→
GL
)

=
〈−→
GL,
−→
G L̂
〉

for ∀−→GL ∈ −→GV .

2.5
−→
G-Flows on Equations

Let
−→
G be an oriented graph embedded in space Rn, n ≥ 3 and let

f(x1, x2, · · · , xn) = 0

be a solvable equation in a field F . We are naturally consider its F -extension equation

f(X1, X2, · · · , Xn) = O

in
−→
GF by viewing an element b ∈ F as b =

−→
GL if L(u, v) = b for (u, v) ∈ X

(−→
G
)

and

0 6= a ∈ F . For example, the extension of equation ax = b is
−→
GLaX =

−→
GLb in

−→
GF with a−→

G -flow solution x =
−→
Ga−1L, such as those shown in Fig.11 for

−→
G =

−→
C 4, a = 3 and b = 5. Thus

we can entrust a combinatorial structure
−→
G on its solution.- ?�6 5

3

5
3

5
3

5
3

Fig.11

Generally, for a solvable system of linear equations, let [Lij ]m×n be a matrix with entries

Lij : uv → V . Denoted by [Lij ]m×n (u, v) the matrix [Lij (u, v)]m×n. A result on
−→
G -flow
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solutions of linear systems was known in [17] following.

Theorem 2.6 A linear system (LESnm) of equations





a11X1 + a12X2 + · · ·+ a1nXn =
−→
GL1

a21X1 + a22X2 + · · ·+ a2nXn =
−→
GL2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1X1 + am2X2 + · · ·+ amnXn =
−→
GLm

(LESnm)

with aij ∈ C and
−→
GLi ∈ −→GV for integers 1 ≤ i ≤ n and 1 ≤ j ≤ m is solvable for Xi ∈−→

GV , 1 ≤ i ≤ m if and only if

rank [aij ]m×n = rank [aij ]
+
m×(n+1) (u, v)

for ∀(u, v) ∈ −→G , where

[aij ]
+
m×(n+1) =




a11 a12 · · · a1n L1

a21 a22 · · · a2n L2

. . . . . . . . . . . . . . .

am1 am2 · · · amn Lm



.

For
−→
GL ∈ −→GV , let

∂
−→
GL

∂t
=
−→
G

∂L
∂t and

∂
−→
GL

∂xi
=
−→
G

∂L
∂xi , 1 ≤ i ≤ n.

We consider the Cauchy problem on heat equation in
−→
GV , i.e.,

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial values X |t=t0 and constant c 6= 0.

Theorem 2.7([17]) For ∀−→GL′ ∈ −→GV and a non-zero constant c in R, the Cauchy problems on

differential equations

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X |t=t0 =
−→
GL′ ∈ −→GV is solvable in

−→
GV if L′ (u, v) is continuous and bounded

in R
n for ∀(u, v) ∈ X

(−→
G
)
.
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For an integral kernel K(x,y), N ,N ∗ ⊂ L2[∆] are defined respectively by

N =

{
φ(x) ∈ L2[∆]|

∫

∆

K (x,y)φ(y)dy = φ(x)

}
,

N ∗ =

{
ϕ(x) ∈ L2[∆]|

∫

∆

K (x,y)ϕ(y)dy = ϕ(x)

}
.

Then

Theorem 2.8([17]) For ∀GL ∈ −→GV , if dimN = 0 the integral equation

−→
GX −

∫

∆

−→
GX = GL

is solvable in
−→
GV with V = L2[∆] if and only if

〈−→
GL,
−→
GL′

〉
= 0, ∀−→GL′ ∈ N ∗.

In fact, if
−→
G is circuit decomposable, we can generally extend solutions of an equation to−→

G -flows following.

Theorem 2.9([17]) If the topological graph
−→
G is strong-connected with circuit decomposition

−→
G =

l⋃
i=1

−→
C i such that L(e) = Li (x) for ∀e ∈ E

(−→
C i

)
, 1 ≤ i ≤ l and the Cauchy problem





Fi (x, u, ux1 , · · · , uxn , ux1x2 , · · · ) = 0

u|x0 = Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for integers 1 ≤ i ≤ l, then the Cauchy

problem 



Fi (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0 =
−→
GL

such that L (e) = Li(x) for ∀e ∈ E
(−→
C i

)
is solvable for X ∈ −→GV .

§3. Geometry on Action Flows

In physics, a thing P , particularly, a particle such as those of water molecule H2O and its

hydrogen or oxygen atom shown in Fig.12 is characterized by differential equation established on

observed characters of µ1, µ2, · · · , µn for its state function ψ(t, x) by the principle of stationary

action δS = 0 in R4 with

S =

t2∫

t1

dtL (q(t), q̇(t)) or S =

∫ τ1

τ2

d4xL(φ, ∂µψ), (3.1)
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Fig.12

i.e., the Euler-Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0 and

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0, (3.2)

where q(t), q̇(t), ψ are the generalized coordinates, the velocities, the state function, and

L (q(t), q̇(t)), L are the Lagrange function or density on P , respectively by viewing P as an

independent system or a field.

For examples, let

LS =
i~

2

(
∂ψ

∂t
ψ − ∂ψ

∂t
ψ

)
− 1

2

(
~2

2m
|∇ψ|2 + V |ψ|2

)
.

Then we get the Schrödinger equation by (1.3) and similarly, the Dirac equation

(
iγµ∂µ −

mc

~

)
ψ(t, x) = 0 (3.3)

for a free fermion ψ(t, x), the Klein-Gordon equation

(
1

c2
∂2

∂t2
−∇2

)
ψ(x, t) +

(mc
~

)2

ψ(x, t) = 0 (3.4)

for a free boson ψ(t, x) on particle with masses m hold in relativistic forms, where ~ = 6.582×
10−22MeV s is the Planck constant.

Notice that the equation (1.3) is dependent on observed characters µ1, µ2, · · · , µn and

different position maybe results in different observations. For example, if an observer receives

information stands out of H2O by viewing it as a geometrical point then he only receives

coherent information on atoms H and O with H2O ([18]), but if he enters the interior of the

molecule, he will view a different sceneries for atom H and atom O with a non-solvable system
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of 3 dynamical equations following ([19]).





−i~∂ψO
∂t

=
~2

2mO
∇2ψO − V (x)ψO

−i~∂ψH1

∂t
=

~
2

2mH1

∇2ψH1 − V (x)ψH1

−i~∂ψH2

∂t
=

~2

2mH2

∇2ψH2 − V (x)ψH2

Thus, an in-observation on a physical thing P results in a non-solvable system of solvable equa-

tions, which is also in accordance with individual difference in epistemology. However, the atoms

H and O are compatible in the water molecule H2O without contradiction. Thus, accompa-

nying with the establishment of compatible systems, we are also needed those of contradictory

systems, particularly, non-solvable equations for holding on the reality of things ([15]).

3.1 Geometry on Equations

Physicist characterizes a natural thing usually by solutions of differential equations. However,

if they are non-solvable such as those of equations for atoms H and O on in-observation, how to

determine their behavior in the water molecule H2O? Holding on the reality of things motivates

one to leave behind the solvability of equation, extend old notion to a new one by machinery.

The knowledge of human beings concludes the social existence determine the consciousness.

However, if we can not characterize a thing until today, we can never conclude that it is

nothingness, particularly on those of non-solvable system consisting of solvable equations. For

example, consider the two systems of linear equations following:

(LESN4 )





x+ y = 1

x+ y = −1

x− y = −1

x− y = 1

(LESS4 )





x = y

x+ y = 2

x = 1

y = 1

Clearly, (LESN4 ) is non-solvable because x + y = −1 is contradictious to x + y = 1, and so

x− y = −1 to x− y = 1. But (LESS4 ) is solvable with x = 1 and y = 1.

-6
O

x

y

x+ y = 1

x+ y = −1
x− y = 1

x− y = −1

A

C
D B -

6
x

y

x = yx = 1

y = 1

x+ y = 2

O

(LESN4 ) (LESS4 )

Fig.13
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What is the geometrical essence of a system of linear equations? In fact, each linear

equation ax+ by = c with ab 6= 0 is in fact a point set Lax+by=c = {(x, y)|ax + by = c} in R2,

such as those shown in Fig.13 for the linear systems (LESN4 ) and (LESS4 ).

Clearly,

Lx+y=1

⋂
Lx+y=−1

⋂
Lx−y=1

⋂
Lx−y=−1 = ∅

but

Lx=y
⋂
Lx+y=2

⋂
Lx=1

⋂
Ly=1 = (1, 1)

in the Euclidean plane R2.

Generally, a solution manifold of an equation f(x1, x2, · · · , xn, y) = 0, n ≥ 1 is defined to

be an n-manifold

Sf = (x1, x2, · · · , xn, y(x1, x2, · · · , xn)) ⊂ R
n+1

if it is solvable, otherwise ∅ in topology. Clearly, a system

(ESm)





f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn) = 0

of algebraic equations with initial values fi(0), 1 ≤ i ≤ m in Euclidean space Rn+1 is solvable

or not dependent on
m⋂
i=1

Sfi 6= ∅ or = ∅ in geometry.

Particularly, let (PDESm) be a system of partial differential equations with





F1(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

F2(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

on a function u(x1, · · · , xn, t). Its symbol is determined by





F1(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0,

i.e., substitute pα1
1 pα2

2 · · · pαnn into (PDESm) for the term uxα1
1 x

α2
2 ···x

αn
n

, where αi ≥ 0 for integers

1 ≤ i ≤ n.

Definition 3.1 A non-solvable (PDESm) is algebraically contradictory if its symbol is non-

solvable. Otherwise, differentially contradictory.
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For example, the system of partial differential equations following





ux + 2uy + 3uz = 2 + y2 + z2

yzux + xzuy + xyuz = x2 − y2 − z2

(yz + 1)ux + (xz + 2)uy + (xy + 3)uz = x2 + 1

is algebraically contradictory because its symbol





p1 + 2p2 + 3p3 = 2 + y2 + z2

yzp1 + xzp2 + xyp3 = x2 − y2 − z2

(yz + 1)p1 + (xz + 2)p2 + (xy + 3)p3 = x2 + 1

is non-solvable. A necessary and sufficient condition on the solvability of Cauchy problem on

(PDESm) was found in [16] following.

Theorem 3.2 A Cauchy problem on systems





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

(PDESm)

of partial differential equations of first order is non-solvable with initial values





xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0 (x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0
−
n−1∑

i=0

p0
i

∂x0
i

∂sj0
6= 0.

Particularly, we immediately get a conclusions on quasilinear partial differential equations

following.
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Corollary 3.3 A Cauchy problem (PDESCm) of quasilinear partial differential equations with

initial values u|xn=x0
n

= u0 is non-solvable if and only if the system (PDESm) of partial

differential equations is algebraically contradictory.

Geometrically, the behavior of (ESm) is completely characterized by a union
m⋃
i=1

Sfi , i.e.,

a Smarandache multispace with an inherited graph GL [ESm] following:

V
(
GL [ESm]

)
= {Sfi , 1 ≤ i ≤ m},

E
(
GL [ESm]

)
= { (Sfi , Sfj ) | Sfi

⋂
Sfj 6= ∅, 1 ≤ i, j ≤ m}

with a vertex and edge labeling

L : Sfi → Sfi and L : (Sfi , Sfj )→ Sfi
⋂
Sfj if

for integers 1 ≤ i ≤ m and
(
Sfi , Sfj

)
∈ E

(
GL[ESm]

)
.

For example, it is clear that Lx+y=1

⋂
Lx+y=−1 = ∅ = Lx−y=1

⋂
Lx−y=−1 = ∅, Lx+y=1

⋂

Lx−y=−1 = {A}, Lx+y=1

⋂
Lx−y=1 = {B}, Lx+y=−1

⋂
Lx−y=1 = {C}, Lx+y=−1

⋂
Lx−y=−1 =

{D} for the system (LESN4 ) with an inherited graph CL4 shown in Fig.14.

Lx+y=1

Lx+y=−1Lx−y=1

Lx−y=−1A

B

C

D

Fig.14

Generally, we can determine the graphG
[
S̃
]
. In fact, let C (fi) be a maximal contradictory

class including equation fi = 0 in (ESm) for an integer 1 ≤ i ≤ m and let classes C 1,C 2, · · · ,C l

be a partition of equations in (ESm). Then we are easily know that

G
[
S̃
]
≃ K

(
C 1,C 2, · · · ,C l

)
.

Particularly, a result on Cauchy problem of partial differential equations following. .

Theorem 3.4([16]) A Cauchy problem on system (PDESm) of partial differential equations

of first order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth equation in (PDESm),

1 ≤ k ≤ m such that

∂u
[k]
0

∂sj
−

n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0

is uniquely G-solvable, i.e., G[PDESCm] is uniquely determined.
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3.2 Geometry on Action Flows

Let
(−→
G ;L,A

)
be an action flow on Banach space B. By the closed graph theorem in functional

analysis, i.e., if X and Y are Banach spaces with a linear operator ϕ : X → Y , then ϕ is

continuous if and only if its graph

Γ[X,Y ] = {(x, y) ∈ X × Y |Tx = y}

is closed in X × Y , if L(v, u) : Rn → Rn is Cr differentiable for ∀(v, u) ∈ E
(−→
G
)
, then

Γ[v, u] = {((x1, · · · , xn) , L(v, u)) |(x1, · · · , xn) ∈ R
n}

is a C
rvu differentiable n-dimensional manifold, where rvu ≥ 0 is an integer. Whence, the

geometry of action flow
(−→
G ;L,A

)
is nothing else but a combination of Crvu differentiable

manifolds for rvu ≥ 0, (v, u) ∈ E
(−→
G
)
, such as those combinatorial manifolds (a) and (b) shown

in Fig.15 for r = 0.

M3
B1 T2

(a)

T2

B1 B1

(b)

Fig.15

Definition 3.5 For a given integer sequence 0 < n1 < n2 < · · · < nm, m ≥ 1, a com-

binatorial manifold M̃ is a Hausdorff space such that for any point p ∈ M̃ , there is a lo-

cal chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in M̃ and a homoeomorphism

ϕp : Up → R̃(n1(p), · · · , ns(p)(p)) with

{
n1(p), · · · , ns(p)(p)

}
⊆ {n1, · · · , nm} ,

⋃

p∈M̃

{
n1(p), · · · , ns(p)(p)

}
= {n1, · · · , nm} ,

denoted by M̃ (n1, n2, · · · , nm) or M̃ on the context and

Ã =
{

(Up, ϕp)
∣∣∣p ∈ M̃ (n1, n2, · · · , nm) )

}

its an atlas. Particularly, a combinatorial manifold M̃ is finite if it is just combined by finite

manifolds without one manifold contained in the union of others.

Similarly, an inherent structure GL
[
M̃
]

on combinatorial manifolds M̃ =
m⋃

i=1

Mi is defined
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by

V (GL[M̃ ]) = {M1,M2, · · · ,Mm},
E(GL[M̃) = { (Mi,Mj) | Mi

⋂
Mj 6= ∅, 1 ≤ i, j ≤ n}

with a labeling mapping L determined by

L : Mi →Mi, L : (Mi,Mj)→Mi

⋂
Mj

for integers 1 ≤ i, j ≤ m. The result following enables one to construct Cr differentiable

combinatorial manifolds.

Theorem 3.6([8]) Let M̃ be a finitely combinatorial manifold. If ∀M ∈ V
(
GL
[
M̃
])

is

Cr-differential for integer r ≥ 0 and ∀(M1,M2) ∈ E
(
G
[
M̃
])

there exist atlas

A1 = {(Vx;ϕx) |∀x ∈M1} A2 = {(Wy;ψy) |∀y ∈M2}

such that ϕx|Vx ⋂Wy
= ψy|Vx ⋂Wy

for ∀x ∈M1, y ∈M2, then there is a differential structures

Ã =
{
(Up; [̟p]) |∀p ∈ M̃

}

such that
(
M̃ ; Ã

)
is a combinatorial Cr-differential manifold.

For the basis of tangent and cotangent vectors on combinatorial manifold M̃ , we know

results following in [8].

Theorem 3.7 For any point p ∈ M̃(n1, n2, · · · , nm) with a local chart (Up; [ϕp]), the dimension

of TpM̃(n1, n2, · · · , nm) is

dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))¸

with a basis matrix

[
∂

∂x

]

s(p)×ns(p)

=




1
s(p)

∂
∂x11 · · · 1

s(p)
∂

∂x1ŝ(p)
∂

∂x1(ŝ(p)+1) · · · ∂
∂x1n1

· · · 0

1
s(p)

∂
∂x21 · · · 1

s(p)
∂

∂x2ŝ(p)
∂

∂x2(ŝ(p)+1) · · · ∂
∂x2n2

· · · 0

· · · · · · · · · · · · · · · · · ·
1
s(p)

∂
∂xs(p)1

· · · 1
s(p)

∂
∂xs(p)ŝ(p)

∂
∂xs(p)(ŝ(p)+1) · · · · · · ∂

∂x
s(p)(ns(p)−1)

∂

∂x
s(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely there is a smoothly functional matrix

[vij ]s(p)×ns(p) such that for any tangent vector v at a point p of M̃(n1, n2, · · · , nm),

v =

〈
[vij ]s(p)×ns(p) , [

∂

∂x
]s(p)×ns(p)

〉
,
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where 〈[aij ]k×l, [bts]k×l〉 =
k∑
i=1

l∑
j=1

aijbij, the inner product on matrixes.

Theorem 3.8 For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã) with a local chart (Up; [ϕp]), the dimension of

T ∗p M̃(n1, n2, · · · , nm) is

dimT ∗p M̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))¸

with a basis matrix [dx]s(p)×ns(p) =




dx11

s(p) · · · dx1ŝ(p)

s(p) dx1(ŝ(p)+1) · · · dx1n1 · · · 0

dx21

s(p) · · · dx2ŝ(p)

s(p) dx2(ŝ(p)+1) · · · dx2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
dxs(p)1

s(p) · · · dxs(p)ŝ(p)

s(p) dxs(p)(ŝ(p)+1) · · · · · · dxs(p)ns(p)−1 dxs(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely for any co-tangent vector d at a point

p of M̃(n1, n2, · · · , nm), there is a smoothly functional matrix [uij ]s(p)×s(p) such that,

d =
〈
[uij ]s(p)×ns(p) , [dx]s(p)×ns(p)

〉
.¸

Then, we can establish tensor theory with connections on smoothly combinatorial manifolds

([8]) and [11]. For example, we can get the curvature R̃ formula following.

Theorem 3.9([8]) Let M̃ be a finite combinatorial manifold, R̃ : X (M̃)×X (M̃)×X (M̃)×
X (M̃)→ C∞(M̃) a curvature on M̃ . Then for ∀p ∈ M̃ with a local chart (Up; [ϕp]),

R̃ = R̃(σς)(ηθ)(µν)(κλ)dx
σς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ,

where

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)
∂xκλ∂xηθ

+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+ Γϑι(µν)(σς)Γ
ξo
(κλ)(ηθ)g(ξo)(ϑι) − Γξo(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),

and g(µν)(κλ) = g(
∂

∂xµν
,
∂

∂xκλ
).

All these results on differentiable combinatorial manifolds enable one to characterize the

combination of classical fields, such as the Einstein’s gravitational fields and other fields on

combinatorial spacetimes and hold their behaviors (see [10] for details).

3.3 Classification

Definition 3.10 Let
(−→
G1;L1, A1

)
and

(−→
G2;L2, A2

)
be 2 action flows on Banach space B with

−→
G1 ≃

−→
G2. Then they are said to be combinatorially homeomorphic if there is a homeomorphism

h on B and a 1− 1 mapping ϕ : V
(−→
G1

)
→ V

(−→
G2

)
such that h(L1(v, u)) = L2(ϕ(v, u)) and



42 Mathematical Reality

Avu = Aϕ(vu) for ∀(v, u) ∈ V
(−→
G1

)
, denoted by

(−→
G1;L1, A1

)
h∼
(−→
G2;L2, A2

)
. Particularly, if

B = R
n for an integer n ≥ 3, h is an isometry, they are said to be combinatorially isometric,

denoted by
(−→
G1;L1, A1

)
h≃
(−→
G2;L2, A2

)
, and identical if h = 1Rn, denoted by

(−→
G1;L1, A1

)
=

(−→
G2;L2, A2

)
. - ?�6 � 6-? - ?�63 k sv1 v2

v3v4

L12

L23

L34

L41 L42

v2 v1v1 v2

v3 v4

L12

L43v3 v4

L21

L13

L34

L42L41 L42 L41L23

(
−→
G1;L1,1B) (

−→
G2;L2,1B) (

−→
G3;L3,1B)

Fig.16

Notice that the mapping ϕ in Definition 3.10 maybe not a graph isomorphism. For ex-

ample, the action flows
(−→
G1;L1,1Rn

)
=

(−→
G2;L2,1Rn

)
because there is a 1-1 mapping

ϕ = (v1v2)(v3)(v4) : V
(−→
G1

)
→
(−→
G2

)
holding with L(u, v) = L(ϕ(u, v)) for ∀(u, v) ∈ E

(−→
G
)
,

which is not a graph isomorphism between
−→
G1 and

−→
G2 but

(−→
G1;L1,1Rn

)
6=
(−→
G3;L3,1Rn

)
for

−→
G1 6≃

−→
G3 in Fig.16. Thus if we denote by Aut

(−→
G ;L,A

)
all such 1-1 mappings ϕ : V

(−→
G
)
→

V
(−→
G
)

holding with L(u, v) = L(ϕ(u, v)) and Auv = Aϕ(uv) for ∀(u, v) ∈ E
(−→
G
)
, then it is

clearly a group itself holding with the following result.

Theorem 3.11 If V
(−→
G
)

= {v1, v2, · · · , vp}, then Aut
(−→
G ;L,A

)
= Aut

−→
G
⊗

(Sp)−→G , par-

ticularly, Aut
(−→
G ;L,A

)
≻ Aut

−→
G , where (Sp)−→G is the stabilizer of symmetric group Sp on

∆ = {1, 2, · · · , p}.

For an isometry h on Rn, let
(−→
G ;L,A

)h
=
(−→
G ;hLh−1, A

)
be an action flow, i.e., replacing

x1, x2, · · · , xn by h(x1), h(x2), · · · , h(xn). The result following is clearly known by definition.

Theorem 3.12
(−→
G1;L1, A1

)
h≃
(−→
G2;L2, A2

)
if and only if

(−→
G1;L1, A1

)h
=
(−→
G2;L2, A2

)
.

Certainly, we can also classify action flows geometrically. For example, two finitely com-

binatorial manifolds M̃1, M̃2 are said to be homotopically equivalent if there exist continu-

ous mappings f : M̃l → M̃2 and g : M̃2 → M̃1 such that gf ≃identity: M̃2 → M̃2 and

fg ≃identity: M̃1 → M̃1. Then we know

Theorem 3.13([7]) Let M̃1 and M̃2 be finitely combinatorial manifolds with an equivalence ̟ :

GL[M̃1 → GL[M̃2]. If for ∀M1,M2 ∈ V (GL[M̃1]), Mi is homotopic to ̟(Mi) with homotopic

mappings fMi
: Mi → ̟(Mi), gMi

: ̟(Mi) → Mi such that fMi
|Mi

⋂
Mj

= fMj
|Mi

⋂
Mj

,

gMi
|Mi

⋂
Mj

= gMj
|Mi

⋂
Mj

providing (Mi,Mj) ∈ E(GL[M̃1]) for 1 ≤ i, j ≤ m, then M̃1 is

homotopic to M̃2.



1.2 Mathematics with Natural Reality – Action Flows 43

§4. Stable Action Flows

The importance of stability for a model on natural things P results in determining the predic-

tion and controlling of its behaviors. The same also happens to those of action flows for the

perturbation of things such as those shown in Fig.17 on operating of the universe.

Fig.17

As we shown in Theorem 3.4, the Cauchy problem on partial differential equations of first

order is uniquely G-solvable. Thus it is significant to consider the stability of action flows. Let(−→
G ;L(t), A

)
be an action flow on Banach space B with initial values

(−→
G ;L(t0), A

)
and let

ω :
(−→
G ;L,A

)
→ R be an index function. It is said to be ω-stable if there exists a number δ(ε)

for any number ε > 0 such that

∥∥∥ω
(−→
G ;L1(t)− L2(t), A

)∥∥∥ < ε,

or furthermore, asymptotically ω-stable if

lim
t→∞

∥∥∥ω
(−→
G ;L1(t)− L2(t), A

)∥∥∥ = 0

if initial values holding with

‖L1(t0)(v, u)− L2(t0)(v, u)‖ < δ(ε)

for ∀(v, u) ∈ E
(−→
G
)
, for instance the norm-stable or sum-stable by letting

ω
(−→
G ;L,A

)
=

∑

(v,u)∈E
(−→
G
)

∥∥∥LA
+
vu(v, u)

∥∥∥ .

Particularly, let

ω
(−→
G ;L,1B

)
=

∑

(v,u)∈E
(−→
G
)
‖L(v, u)‖

or (−→
G ;L,A

)
= ‖

∑

(v,u)∈E
(−→
G
)
L(v, u)‖, A 6= 1B.

The following result on the stability of
−→
G -flow solution was obtained in [17], which is a
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commonly norm-stability on
−→
G -flows.

Theorem 4.1 Let V be the Hilbert space L2[∆]. Then, the
−→
G-flow solution X of equation





F (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0 =
−→
GL

in
−→
GV is norm-stable if and only if the solution u(x) of equation





F (x, u, ux1 , · · · , uxn , ux1x2 , · · · ) = 0

u|x0 = ϕ(x)

on (v, u) is stable for ∀(v, u) ∈ E
(−→
G
)
.

In fact, we only need to consider the stability of
(−→
G ;O, A

)
after letting flows 0 =

L(t)(v, u)− L(t)(v, u) on ∀(v, u) ∈ E
(−→
G
)

without loss of generality.

Similarly, if there is a Liapunov ω-function L(ω(t)) : O → R, n ≥ 1 on
−→
G with O ⊂ R

n

open such that L(ω(t)) ≥ 0 with equality hold only if (x1, x2, · · · , xn) = (0, 0, · · · , 0) and if

t ≥ t0, L̇(ω(t)) ≤ 0, then it can be likewise Theorem 3.8 of [12] to know the next result, where

L̇(ω) =
dL(ω)

dt
.

Theorem 4.2 If there is a Liapunov ω-function L(ω(t)) : O → R on
−→
G , then

(−→
G ;O, A

)
is ω-

stable, and furthermore, if L̇(ω(t)) < 0 for
(−→
G ;L(t), A

)
6= O, then

(−→
G ;O, A

)
is asymptotically

ω-stable.

For example, let
(−→
G ;L,A

)
be the action flow with operators Azi+1zi = −d

dt
for z =

v, u, · · · , w and A+
vivi+1

= λ1i, A
+
uiui+1

= λ2i, · · · , A+
wiwi+1

= λni for integer i ≡ (modn), such

as those shown in Fig.18.- ?����6 - ?����6 - ?�6���6
v1 v2

v3vn

u1 u2

u3un

w1 w2

w3wn

x1

x1
x1

x1x1

x2

x2

x2

x2

x2

xn

xn

xnxn

xn

Fig.18
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Then its conservation equations are respectively





ẋ1 = λ11x1

ẋ1 = λ12x1

· · · · · · · · ·
ẋ1 = λ1nx1

,





ẋ2 = λ21x2

ẋ2 = λ22x2

· · · · · · · · ·
ẋ2 = λ2nx2

, · · · ,





ẋn = λn1xn

ẋn = λn2xn

· · · · · · · · ·
ẋn = λnnxn

,

where all λij , 1 ≤ i, j ≤ n are real and λij1 6= λij2 if j1 6= j2 for integers 1 ≤ i ≤ n. Let

L = x2
1 + x2

2 + · · · + x2
n. Then L̇ = λi11x

2
1 + λi22x

2
2 + · · · + λinnx

2
n for integers 1 ≤ i ≤ n,

where 1 ≤ ij ≤ n for integers 1 ≤ j ≤ n. Whence, it is a Liapunov ω-function for action flow(−→
G ;L,A

)
if λij < 0 for integers 1 ≤ i, j ≤ n.

§5. Applications

As a powerful theory, action flow extends classical mathematics on embedded graph, which can

be used as a model nearly for moving things in the nature, particularly, applying to physics

and mathematical ecology.

5.1 Physics

For diversity of things, two typical examples are respectively the superposition behavior of

microcosmic particle and the quarks model of Sakata, or Gell-Mann and Ne’eman by assuming

internal structures of hadrons and gluons, which can not be commonly understanding.

63Y�o o 7
ψ1 ∈ V1

ψ11 ∈ V11 ψ12 ∈ V12

ψ31 ∈ V31

ψ32 ∈ V32
ψ33 ∈ V33 ψ34 ∈ V34

Fig.19

Certainly, H.Everett’s multiverse interpretation in Fig.6 presented the superposition of particles

but with a little machinery, i.e., viewed different worlds in different quantum mechanics and

explained the superposition of a particle to be 2 branch tree such as those shown in Fig.19,

where the multiverse is
⋃
i≥1

Vi with Vkl = V for integers k ≥ 1, 1 ≤ l ≤ 2k but in different

positions.

Similarly, the quark model assumes internal structures K2,K3 respectively on hadrons and

gluons mechanically for hold the behaviors of particles. However, such an assumption is a little

ambiguous in logic, i.e., we can not even conclude which is the point, the hadron and gluon

or its subparticle, the quark. However, the action flows imply the rightness of H.Everett’s
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multiverse interpretation, also the assumption of physicists on the internal structures for hold

the behaviors of particles because there are infinite many such graphs
−→
G satisfying conditions

of Theorem 2.9.

P Pψ1ψ2ψN ψ−1
1 ψ−1

2 ψ−1
N

� -
Particle Antiparticle

Fig.20

For example, let
−→
G =

−→
Bn or

−→
D⊥0,2N,0, i.e., a bouquet or a dipole. Then we can respectively

establish a
−→
G -flow model for fermions, leptons, quark P with an antiparticle P , and the mediate

interaction particles presented in Banach space
−→
BV
N or

−→
D⊥V

0,2N,0, such as those shown in Figs.20

and 21,

P P

ψ
N

2

2

1

1

ψ
N

ψ

ψ

ψ

ψ

−→
D⊥

Lψ
0,2N,0

Fig.21

where, the vertex P, P ′ denotes particles, and arcs or loops with state functions ψ1, ψ2, · · · , ψN
are its states with inverse functions ψ−1

1 , ψ−1
2 , · · · , ψ−1

N . Notice that
−→
B
Lψ
N and

−→
D⊥

Lψ
0,2N,0 both

are a union of N circuits. We know the following result.

Theorem 5.1([18]) For any integer N ≥ 1, there are indeed
−→
D⊥

Lψ
0,2N,0-flow solution on Klein-

Gordon equation (3.5), and
−→
B
Lψ
N -flow solution on Dirac equation (3.6).

For a particle P̃ consisted of l elementary particles P1, P1, · · · , Pl underlying a graph
−→
G
[
P̃
]
,

its
−→
G -flow is obtained by replace vertices v by

−→
B
Lψv
Nv

and arcs e by
−→
D⊥

Lψe
0,2Ne,0

in
−→
G
[
P̃
]
, denoted

by
−→
GLψ

[−→
B v,
−→
De

]
. Then we know that

Theorem 5.2([18]) If P̃ is a particle consisted of elementary particles P1, P2, · · · , Pl, then−→
GLψ

[−→
B v,
−→
De

]
is a
−→
G -flow solution on the Schrödinger equation (1.1) whenever its size index
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λG is finite or infinite, where

λG =
∑

v∈V
(−→
G
)
Nv +

∑

e∈V
(−→
G
)
Ne.

5.2 Mathematical Ecology

Action flows can applied to be a model of ecological systems. For example, let u and v denote

respectively the density of two species that compete for a common food supply. Then the

equations of growth of the two populations may be characterized by ([6])





u̇ = M(u, v)u

v̇ = N(u, v)v
(5.1)

particularly, the Lotaka-Volterra competition model is given by





u̇ = a1u (1− u/K1 − α12v/K1)

v̇ = a2v (1− v/K2 − α21u/K2)
(5.2)

in ordinary differentials ([21]), or





ut = d1∆u+ a1u(1−K1u− α12v/K1)

vt = d2∆v + a2v(1−K2u− α21v/K2)
(5.3)

in partial differentials on a boundary domain Ω ⊂ Rn for an integer n ≥ 1 with initial conditions
∂u

∂ν
=

∂v

∂ν
= 0 on unit normal out vector ν, u(x, 0) = u0(x), v(x, 0) = v0(x) ([28]), where

u(x, t), v(x, t) are respectively the density of 2 competitive species at (x, t) ∈ Ω× (0,∞), M,N

and positive parameters a1, a2 are the growth rates, K1,K2 are the carrying capacities, αij

denotes the interaction between the two species, i.e., the effect of species i on species j for

i, j = 1 or 2, and d1, d2 are the diffusion rate of species 1 and 2, respectively. This system is

nothing else but an action flow on loop B1 on a boundary domain Ω ⊂ Rn for an integer n ≥ 16(u, v) ∂/∂t

A
O

Fig.22

with initial conditions
∂u

∂ν
=
∂v

∂ν
= 0 on unit normal out vector ν and u(x, 0) = u0(x), v(x, 0) =

v0(x) for (x, t) ∈ Ω×(0,∞) such as those shown in Fig.22, where A(u, v) = (uM(u, v), vN(u, v)).

For example, M(u, v) = a1 (1− u/K1 − α12v/K1), N(u, v) = a2 (1− v/K2 − α21u/K2) in

equations (5.2) or M(u, v) = d1∆u/u + a1(1 −K1u − α12v/K1), N(u, v) = d2∆v/v + a2(1 −
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K2u− α21v/K2) in equations (5.3) for ∀(x, t) ∈ Ω× (0,∞).

Similarly, assume there are four kind groups in persons at time t, i.e., susceptible S(t),

infected but in the incubation period E(t), infected with infectious I(t) and recovered R(t) and

new recognition Λ with removal rates κ, α, contact rate β and natural mortality rate µ, such

as the action flow shown in Fig.23. -
?6 R 	� I� I)

v1

v2 v3

v4
O

S

Λ

−µS

d/dt

βSI

E

−µE

d/dt

κE

αI

I

−µI

d/dt

R

−µR+N

d/dt

Fig.23

Then, we are easily to get the SEIR model on infectious by conservative laws respectively at

vertices v1, v2, v3 and v4 following:





Ṡ = Λ− µS − βSI
Ė = βSI − (µ+ κ)E

İ = κE − (µ+ α)I

Ṙ = αI − µR

(5.4)

where, N = S +R+ E + I − µ(S + R+ E + I) and all end-operators are 1 if it is not labeled

in Fig.23. Notice that the systems (5.1)-(5.4) of differential equations are solvable. Whence,

the behavior of action flows in Figs.22 and 23 can be characterized respectively by solution of

system (5.1)-(5.4).

Generally, an ecological system is such an action flow
(−→
G ;L,A

)
on an oriented graph with

a loop on its each vertex, where flows on loops and other edges denote respectively the density

of species or interactions of one species action on another. If the conservation laws of an action

flow are not solvable, then holding on the reality of competitive species by solution of equations

will be not suitable again. -6 6(u, v) (u, v)
A1 A2

∂/∂t ∂/∂t
O1 O2

B1 B2(u, v)

Fig.24
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For example, the action flow shown in Fig.24 is such an ecological system with conservation

laws 



(ut, vt) = A1(u, v) + B1(u, v)

(ut, vt) = A2(u, v) + B2(u, v)

under initial conditions
∂u

∂ν
=
∂v

∂ν
= 0, u(x, 0) = u0(x), v(x, 0) = v0(x) for (x, t) ∈ Ω × (0,∞),

where

A1(u, v) = (d1∆u+ a1u(1−K1u− α12v/K1), d2∆v + a2v(1−K2u− α21v/K2))

A2(u, v) = (d3∆u+ a3u(1−K3u− α34v/K3), d4∆v + a4v(1−K4u− α43v/K4))

B1(u, v) = (U1(u, v), V1(u, v)) , B2(u, v) = (U2(u, v), V2(u, v))

for ∀(x, t) ∈ Ω × (0,∞) and U1, U2, V1, V2 are known functions. They are non-solvable in

general but we can characterize its behaviors, for instance, the global stability by application

of Theorem 4.2.

In fact, all ecological systems are interaction fields in physics. Let C1,C2, · · · ,Cm be m

interaction fields with respective Hamiltonians H [1], H [2], · · · , H [m], where

H [k] : (q1, · · · , qn, p2, · · · , pn, t)→ H [k](q1, · · · , qn, p1, · · · , pn, t)¸

for integers 1 ≤ k ≤ m, i.e.,

∂H [k]

∂pi
=

dqi
dt

∂H [k]

∂qi
= −dpi

dt
, 1 ≤ i ≤ n





1 ≤ k ≤ m.

Such a system is equivalent to the Cauchy problem on the system of partial differential equations

∂u

∂t
= Hk(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[k]
0 (x1, x2, · · · , xn−1)



 1 ≤ k ≤ m. (PDESm)

and is in fact an action flows on m dipoles
−→
D0,2,0. For example, a system of interaction field is

shown in Fig.25 in m = 4 with A = A′ =
∂

∂t
and A1 = A1 = 1.- - - -����u

H1

u

H2

u

H3 H4

u

A A′

A1A′1

A

A′1

A′

A1

A

A′1

A′

A1

A

A′1

A′

A1

Fig.25

By choosing Liapunov sum-function L(ω(t))(X) =
m∑
i=1

Hi(X) on
−→
G in Theorem 3.15, the

following result was obtained in [16] on the stability of system (PDESm).
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Theorem 5.3 Let X
[i]
0 be an equilibrium point of the ith equation in (PDESm) for each

integer 1 ≤ i ≤ m. If
m∑
i=1

Hi(X) > 0 and
m∑
i=1

∂Hi

∂t
≤ 0 for X 6=

m∑
i=1

X
[i]
0 , then the system

(PDESm) is sum-stability, i.e., G[t]
Σ∼ G[0]. Furthermore, if

m∑
i=1

∂Hi

∂t
< 0 for X 6=

m∑
i=1

X
[i]
0 ,

then G[t]
Σ→ G[0].

§6. Conclusion

The main function of mathematics is provide quantitative analysis tools or ways for holding

on the reality of things by observing from a macro or micro view. In fact, the out or macro

observation is basic but the in-observation is cardinal, and an in-observation characterizes

the individual behavior of things but with non-solvable equations in mathematics. However,

the trend of mathematical developing in 20th century shows that a mathematical system is

more concise, its conclusion is more extended, but farther to the true face of the natural

things. Is a mathematical true inevitable lead to the natural reality of a thing? Certainly not

because more characters of thing P have been abandoned in its mathematical model. Then, is

there a mathematical envelope theory on classical mathematics reflecting the nature of things?

Answer this question motivates the mathematical combinatorics, i.e., extending mathematical

systems on topological graphs
−→
G because the reality of things is nothing else but a multiverse

on a topological structure under action, i.e., action flows, which is an appropriated way for

understanding the nature because things are in connection, also with contradiction.
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Mathematics, the Continuous or the Discrete

Which is Better to Reality of Things

Abstract: There are 2 contradictory views on our world, i.e., continuous or discrete, which

results in that only partially reality of a thing T can be understood by one of continuous

or discrete mathematics because of the universality of contradiction and the connection

of things in the nature, just as the philosophical meaning in the story of the blind men

with an elephant. Holding on the reality of natural things motivates the combination of

continuous mathematics with that of discrete, i.e., an envelope theory called mathematical

combinatorics which extends classical mathematics over topological graphs because a thing

is nothing else but a multiverse over a spacial structure of graphs with conservation laws

hold on its vertices. Such a mathematical object is said to be an action flow. The main

purpose of this report is to introduce the powerful role of action flows, or mathematics

over graphs with applications to physics, biology and other sciences, such as those of G-

solution of non-solvable algebraic or differential equations, Banach or Hilbert
−→
G -flow spaces

with multiverse, multiverse on equations, · · · and with applications to, for examples, the

understanding of particles, spacetime and biology. All of these make it clear that holding on

the reality of things by classical mathematics is only on the coherent behaviors of things for

its homogenous without contradictions, but the mathematics over graphs G is applicable for

contradictory systems because contradiction is universal only in eyes of human beings but

not the nature of a thing itself.

Key Words: Graph, Banach space, Smarandache multispace,
−→
G -flow, observation, natural

reality, non-solvable equation, mathematical combinatorics.

AMS(2010): 03A10,05C15,20A05, 34A26,35A01,51A05,51D20,53A35.

§1. Introduction

Generally, the reality of a thing T is its state of existed, exists, or will exist in the world, whether

or not they are observable or comprehensible by human beings. However, the recognized reality

maybe very different from that of the truth because it depends on the way of the observer and

his world view is continuous or discrete, i.e., view the behavior of thing T a continuous function

f , or an infinite or finite sequence x1, x2, · · · , xn with n ≥ 1 on time t.

Is our world continuous or discrete? Certainly not because there exist both continuous or

discrete things in the eyes of human beings. For example, all apples on a tree is discrete but

1A plenary talk in the 2017 Spring International Conference on Applied and Engineering Mathematics, April
18-20, 2017, Chengdu, P.R.China.

2International J.Math. Combin., Vol.2(2017), 11-33
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the moving of a car on the road is continuous, such as those figures (a) and (b) shown in Fig.1.

(a) (b)

Fig.1

And historically, holding on the behavior of things mutually develops the continuous and discrete

mathematics, i.e., research a discrete (continuous) question by that of continuous (discrete)

mathematical methods. For example, let x, y be the populations in a self-system of cats and

rats, such as Tom and Jerry shown in Fig.2,

Fig.2

then they were continuously characterized by Lotka-Volterra with differential equations ([4])





ẋ = x( λ− by),
ẏ = y(−µ− cx).

(1.1)

Similarly, all numerical calculations by computer for continuous questions are carried out

by discrete methods because algorithms language recognized by computer is essentially discrete.

Such a typical example is the movies by discrete images for a continuous motion shown in Fig.3.

Thus, the reality of things needs the combination of the continuous mathematics with that of

the discrete.

Fig.3
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Physically, the behavior of things T is usually characterized by differential equation

F (t, x1, x2, x3, ψt, ψx1 , ψx2 , · · · , ψx1x2 , · · · ) = 0 (1.2)

established on observed characters of µ1, µ2, · · · , µn for its state function ψ(t, x) in reference

system R3 by Newtonian and R4 by Einstein ([2]).

Fig.4

Usually, these physical phenomenons of a thing is complex, and hybrid with other things.

Is the reality of particle P all solutions of that equation (1.2) in general? Certainly not because

the equation (1.2) only characterizes the behavior of P on some characters of µ1, µ2, · · · , µn
at time t abstractly, not the whole in philosophy. For example, the behavior of a particle is

characterized by the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Uψ (1.3)

in quantum mechanics ([24]) but observation shows it in two or more possible states of being,

i.e., superposition such as the asking question of Schrödinger for the alive or dead of the cat

in the box with poison switch shown in Fig.4. We can not even say which solution of the

Schrödinger equation (1.3) is the particle because each solution is only for one determined

state.

Fig.5
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Furthermore, can we conclude the equation (1.2) is absolutely right for a particle P? Cer-

tainly not also because the dynamic equation (1.2) is always established with an additional

assumption, i.e., the geometry on a particle P is a point in classical mechanics or a field in

quantum mechanics and dependent on the observer is out or in the particle. For example, a

water molecule H2O consists of 2 hydrogen atoms and 1 oxygen atom such as those shown in

Fig.5. If an observer receives information on the behaviors of hydrogen or oxygen atom but

stands out of the water molecule H2O by viewing it a geometrical point, then he can only re-

ceives coherent information on atoms H and O with the water molecule H2O. But if he enters

the interior of the molecule, he will view a different sceneries for atoms H and O, which are

respectively called out-observation and in-observation, and establishes equation (1.3) on H2O

or 3 dynamic equations





−i~∂ψO
∂t

=
~2

2mO
∇2ψO − V (x)ψO

−i~∂ψH1

∂t
=

~
2

2mH1

∇2ψH1 − V (x)ψH1

−i~∂ψH2

∂t
=

~2

2mH2

∇2ψH2 − V (x)ψH2

(1.4)

on atoms H and O. Which is the right model on H2O, the (1.3) or (1.4) dynamic equations?

The answer is not easy because the equation model (1.3) can only characterizes those of coherent

behavior of atoms H and O in H2O, but equations (1.4) have no solutions, i.e., non-solvable in

mathematics ([17]).

The main purpose of this report is to clarify that the reality of a thing T should be

a contradictory system in one’s eyes, or multiverse with non-solvable systems of equations

in geometry, conclude that they essentially describe its nature, which results in mathematical

combinatorics, i.e., mathematics over graphs in space, and show its powerful role to mathematics

with applications to elementary particles, gravitational field and other sciences, such as those

of extended Banach or Hilbert
−→
G -flow spaces, geometry on non-solvable systems of solvable

differential equations, · · · with applications to the understanding of particles, population biology

and other sciences.

For terminologies and notations not mentioned here, we follow references [1] for mechanics,

[4] for biological mathematics, [8] for combinatorial geometry, [23]-[24] for elementary particles,

and [25] for Smarandache systems and multispaces, and all phenomenons discussed in this paper

are assumed to be true in the nature.

§2. Contradiction, a By-product of Non-complete Recognizing

A philosophical proposition following clarifies the fundamental relation between the reality and

the reality understood by classical mathematics, which is clear but few peoples noted in the

past.

Proposition 2.1 Let R and MR be respectively the sets of reality and the reality known by
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classical mathematics on things. Then

MR ⊂ R and MR 6= R. (2.1)

Proof Notice that classical mathematical systems are homogenous without contradictions,

i.e. a compatible one in logic but contradictions exist everywhere in philosophy. Thus, the

reality known by classical mathematics on things can be only a subset of the reality set, i.e.,

the relation (2.1)

MR ⊂ R and MR 6= R. 2
Although Proposition 2.1 is simple but it implies that for holding on reality of things, an

envelope theory on classical mathematics, i.e., mathematics including contradictions is needed

to establish for human beings.

2.1 Thinking Models

Let us discuss 3 thinking models following.

T1. The Blind Men with an Elephant. This is a famous story in Buddhism which

implies the entire consisting of its parts but we always hold on parts. In this story, there are six

blind men were asked to determine what an elephant looked like by feeling different parts of an

elephant’s body. The man touched the elephant’s leg, tail, trunk, ear, belly or tusk respectively

claims it’s like a pillar, a rope, a tree branch, a hand fan, a wall or a solid pipe, such as those

shown in Fig.6.

Fig.6

Each of these blind men insisted on his own’s right, not accepted others, and then entered

into an endless argument. All of you are right! A wise man explains to them: why are you

telling it differently is because each one of you touched the different part of the elephant. So,

actually the elephant has all those features what you all said. Hence, the wise man told these
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blind man that an elephant seemingly looked

An elephant = {4 pillars}
⋃
{1 rope}

⋃
{1 tree branch}

⋃
{2 hand fans}

⋃
{1 wall}

⋃
{1 solid pipe} (2.2)

What is the implication of this story for human beings? It lies in the situation that human

beings understand things in the world is analogous to these blind men. Usually, a thing T is

understand by its known characters at one by one time and known gradually. For example, let

µ1, µ2, · · · , µn be known and νi, i ≥ 1 unknown characters on a thing T at time t. Then, T is

understood by

T =

(
n⋃

i=1

{µi}
)
⋃

⋃

k≥1

{νk}


 (2.3)

in logic and with an approximation T ◦ =
n⋃
i=1

{µi} at time t. The equation (2.3) is called the

Smarandache multispace ([8], [25]), a combination of discrete characters for understanding a

thing T .

T2. Everett’s Multiverse on Superposition. The multiverse interpretation by H.Everett

[3] on wave function of equation (1.3) in 1957 answered the superposition of particles in ma-

chinery. By an assumption that the wave function of an observer would be interacted with a

superposed object, he concluded different worlds in different quantum system obeying equation

(1.3) and the superposition of a particle be liked those separate arms of a 2-branching universe

([16], [17]) such as those shown in Fig.7,

Fig.7

which revolutionary changed an ambiguous interpretation in quantum mechanics before him,

i.e., an observer will cause the wave function to collapse randomly into one of the alternatives

with all others disappearing. Everett’s multiverse interpretation on the superposition of particle

is in fact alluded in thinking model T 1, i.e., the story of blind men with an elephant because

if one views each of these pillar, rope, tree branch, hand fan, wall and solid pipe by these

blind men feeling on different parts of the elephant to be different spaces, then the looks of an

elephant of the wise man told these blind men (2.2) is nothing else but an Everett’s multiverse.

T3. Quarks Model. The divisibility of matter initiates human beings to search elemen-
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tary constituting cells of matter, i.e., elementary particles such as those of quarks, leptons with

interaction quanta including photons and other particles of mediated interactions, also with

those of their antiparticles at present ([23], [24]), and unmatters between a matter and its anti-

matter which is partially consisted of matter but others antimatter ([26], [27]). For example, a

baryon is predominantly formed by three quarks, and a meson is mainly composed of a quark

and an antiquark in the models of Sakata, or Gell-Mann and Ne’eman, such as those shown in

Fig.8, where there is also a particle composed of 5 quarks.

Fig.8

However, a free quark was never found in experiments. We can not even conclude the

Schrödinger equations (1.3) is the right equation on quarks. But why is it believed without a

shadow of doubt that the dynamical equation of elementary particles such as those of quarks,

leptons with interaction quanta is (1.3) in physics? The reason is because that all observations

come from a macro viewpoint, the human beings, not the quarks, and which can only lead

to coherent behaviors, not the individuals. In mathematics, it is just an equation on those of

particles viewed abstractly to be a geometrical point or an independent field from a macroscopic

point, which results in physicists assuming the internal structures mechanically for understand-

ing behaviors of particles, such as those shown in Fig.8. However, such an assumption is a little

ambiguous in logic, i.e., we can not even distinguish who is the geometrical point or the field,

the particle or its quark.

2.2 Contradiction Originated in Non-complete Recognizing

If we completely understand a thing T , i.e., T = T o in formula (2.3) at time t, there are no

contradiction on T . However, this is nearly impossible for human beings, concluded in the

first chapter of TAO TEH KING written by Lao Zi, a famous ideologist in China, i.e., “Name

named is not the eternal; the without is the nature and naming the origin of things”, which

also implies the universality of contradiction and a generalization of equation (2.1).

Certainly, the looks (2.2) of the wise man on the elephant is a complete recognizing but

these of the blind men is not. However, which is the right way of recognizing? The answer

depends on the standing view of observer. The observation of these blind men on the elephant

are a microscopic or in-observing but the wise man is macroscopic or out-observing. If one

needs only for the macroscopic of an elephant, the wise man is right, but for the microscopic,

these blind men are right on the different parts of the elephant. For understanding the reality
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of a thing T , we need the complete by individual recognizing, i.e., the whole by its parts. Such

an observing is called a parallel observing ([17]) for avoiding the defect that each observer can

only observe one behavior of a thing, such as those shown in Fig.9 on the water molecule H2O

with 3 observers.

1 ? Y?
I>

O1

P1

O2

P2

O3

P3

Fig.9

Thus, the looks of the wise man on an elephant is a collection of parallel observing by

these 6 blind men and finally results in the recognizing (2.2), and also the Everett’s multi-

verse interpretation on the superposition, the models of Sakata, or Gell-Mann and Ne’eman on

particles. This also concludes that multiverse exists everywhere if we observing a thing T by

in-observation, not only those levels of I − IV classified by Max Tegmark in [28].

However, these equations (1.2) established on parallel observing datum of multiverse, for

instance the equations (1.4) on 2 hydrogen atoms and 1 oxygen atom ([17]), and generally,

differential equations (1.2) on population biology with more than 3 species are generally non-

solvable. Then, how to understand the reality of a thing T by mathematics holding with an

equality MR = R? The best answer on this question is the combination of continuous mathe-

matics with that of the discrete, i.e., turn these non-mathematics in the classical to mathematics

by a combinatorial manner ([13]), i.e., mathematical combinatorics, which is the appropriated

way for understanding the reality because all things are in contradiction.

§3. Mathematical Combinatorics

3.1 Labeled Graphs

A graph G is an ordered 2-tuple (V,E) with V 6= ∅ and E ⊂ V × V , where V and E are finite

sets and respectively called the vertex set, the edge set of G, denoted by V (G) or E(G), and

a graph G is said to be embeddable into a topological space T if there is a 1 − 1 continuous

mapping φ : G→ T with φ(p) 6= φ(q) if p, q 6∈ V (G). Particularly, if T = R3 such a topological

graph is called spacial graph such as those shown in Fig.10 for cube C4 × C4,
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v1 v2

v3

u1 u2

u3

v4

u4

e1

e2e3
e4

e5 e6

e7e8
e9

e10e11
e12

Fig.10

and a labeling on a graph G is a mapping L : V (G)
⋃
E(G)→ L with a labeling set L . For

example, L = {vi, ui, ej , 1 ≤ i ≤ 4, 1 ≤ j ≤ 12} in Fig.10. Notice that the inherent structure

of an elephant finding by these blind men is a labeled tree shown in Fig.11,

t1

e1

e2

h

l1

l2

l3

l4

t2

Fig.11

where, {t1} =tusk, {e1, e2} =ears, {h} =head, {b} =belly, {l1, l2, l3, l4} =legs and {t2} =tail.

Then, how can one rebuilt the geometric space of an elephant from the labeled tree in space

R
3? First, one can blows up all edges, i.e., e → a cylinder for ∀e ∈ E(GL) and then, homeo-

morphically transforms these cylinders as parts of an elephant. After these transformations, a

3-dimensional elephant is built again in R3 such as those shown in Fig.12.

Fig.12

All of these discussions implies that labeled graph should be a mathematical element for

understanding things ([20]), not only a labeling game because of

Labeled Graphs in R
n ⇔ Inherent Structure of Things.
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But what are labels on labeled graphs, is it just different symbols? And are such labeled

graphs a mechanism for the reality of things, or only a labeling game? In fact, labeled graphs are

researched mainly on symbols, not mathematical elements. If one puts off this assumption, i.e.,

labeling a graph by elements in mathematical systems, what will happens? Are these resultants

important for understanding things in the world? The answer is certainly yes ([6], [7]) because

this step will enable one to pullback more characters of things, particularly the metrics in

physics, characterize things precisely and then holds on the reality of things.

3.2 G-Solutions on Equations

Let F : Rn × Rm → Rm be a Ck, 1 ≤ k ≤ ∞ mapping with F (x0, y0) = 0 for x0 ∈ Rn,

y0 ∈ Rm and a non-singular m × m matrix
(
∂F j/∂yi(x0, y0)

)
. Then the implicit mapping

theorem concludes that there exist opened neighborhoods V ⊂ R
n of x0, W ⊂ R

m of y0 and a

Ck mapping φ : V →W such that T (x, φ(x)) = 0, i.e.,equation (1.2) is always solvable.

Let F1,F2, · · · ,Fm be m mappings holding in conditions of the implicit mapping theorem

and let SFi
⊂ Rn be a manifold such that Fi : SFi

→ 0 for integers 1 ≤ i ≤ m. Consider the

equations 



F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn) = 0

(3.1)

in Euclidean space Rn, n ≥ 1. Geometrically, the system (3.1) is non-solvable or not dependent

on

m⋂

i=1

SFi
= ∅ or 6= ∅.

Now, is the non-solvable case meaningless for understanding the reality of things? Certainly

not because the non-solvable case of (3.1) only concludes the intersection

m⋂

i=1

SFi
= ∅, the

behavior of the solvable and non-solvable cases should be both characterized by the union
m⋃

i=1

SFi
such as those shown in (2.2) for the elephant.

For example, if things T1, T2, T3, T4 and T ′1, T
′
2, T

′
3, T

′
4 are respectively characterized by

systems of equations following

(LESN4 )





x+ y = 1

x+ y = −1

x− y = −1

x− y = 1

(LESS4 )





x = y

x+ y = 2

x = 1

y = 1

it is clear that (LESN4 ) is non-solvable because x + y = −1 is contradictious to x + y = 1,

and so that for equations x − y = −1 and x − y = 1, i.e., there are no solutions x0, y0 hold

with this system. But (LESS4 ) is solvable with x = 1 and y = 1. Can we conclude that

things T ′1, T
′
2, T

′
3, T

′
4 are x = 1, y = 1 and T1, T2, T3, T4 are nothing? Certainly not because
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(x, y) = (1, 1) is the intersection of straight line behavior of things T ′1, T
′
2, T

′
3, T

′
4 and there are

no intersection of T1, T2, T3, T4 in plane R2. However, they are indeed exist in R2 such as those

shown in Fig.13.

-6
O

x

y

x+ y = 1

x+ y = −1x− y = 1

x− y = −1

A

B

C

D -
6

x

y

x = yx = 1

y = 1
P

x+ y = 2

O

(LESN4 ) (LESS4 )

Fig.13

Let La,b,c = {(x, y)|ax + by = c, ab 6= 0} be points in R2. We are easily know the

straight line behaviors of T1, T2, T3, T4 and T ′1, T
′
2, T

′
3, T

′
4 are nothings else but the unions

L1,−1,0

⋃
L1,1,2

⋃
L1,0,1

⋃
L0,1,1 and L1,1,1

⋃
L1,1,−1

⋃
L1,−1,−1

⋃
L1,−1,1, respectively.

L1,−1,−1 L1,1,1

L1,−1,1L1,1,−1

L1,0,1 L1,−1,0

L0,1,1L1,1,2

A

B

C

D P

P

P

P

P P

CL4
KL

4

Fig.14

Definition 3.1 A G-solution of system (3.1) is a labeling graph GL defined by

V (G) = {SFi
, 1 ≤ i ≤ n};

E(G) =
{
(SFi

, SFj
) if SFi

⋂
SFj

6= ∅ for integers 1 ≤ i, j ≤ n
}

with a labeling

L : SFi
→ SFi

, (SFi
, SFj

)→ SFi

⋂
SFj

.¸

For Example, the G-solutions of (LESN4 ) and (LESS4 ) are respectively labeling graphs CL4
and KL

4 shown in Fig.14. Generally, we know the following result.

Theorem 3.2 A system (3.1) of equations is G-solvable if Fi ∈ C1 and Fi|(x0
1,x

0
2,··· ,x

0
n) = 0

but
∂Fi

∂xi

∣∣∣∣
(x0

1,x
0
2,··· ,x

0
n)

6= 0 for any integer i, 1 ≤ i ≤ n.
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More results on combinatorics of non-solvable algebraic, ordinary or partial differential

equations can be found in references [9]-[14]. For example, let (LDES1
m) be a system of linear

homogeneous differential equations





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Clearly, this system is non-solvable with solution bases {et, e2t},

{e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} respectively on equations (1) − (6) and its

G-solution is shown in Fig.15,

〈
et, e2t

〉 〈
e2t, e3t

〉

〈
e3t, e4t

〉

〈
e4t, e5t

〉〈
e5t, e6t

〉

〈
e6t, et

〉

〈
e2t
〉

〈
e3t
〉

〈
e4t
〉

〈
e5t
〉

〈
e6t
〉

〈et〉

Fig.15

where 〈∆〉 denotes the linear space generalized by elements in ∆.

3.3 Mathematics over Graph

Let (A ; ◦1, ◦2, · · · , ◦k) be an algebraic system, i.e., a ◦i b ∈ A for ∀a, b ∈ A , 1 ≤ i ≤ k and let−→
G be an oriented graph embedded in space T . Denoted by

−→
GL

A all of those labeled graphs
−→
GL

with labeling L : E
(−→
G
)
→ A constraint with ruler:

R1 : For ∀−→GL1 ,
−→
GL2 ∈ −→GL

A , define
−→
GL1 ◦i

−→
GL2 =

−→
GL1◦iL2 , where L1 ◦i L2 : e →

L1(e) ◦i L2(e) for ∀e ∈ E
(−→
G
)

and integers 1 ≤ i ≤ k.

For example, such a ruler on graph
−→
C 4 is shown in Fig.16, where a3=a1◦ia2, b3 =b1◦ib2,

c3=c1◦ic2, d3 =d1◦id2.
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Then,
−→
GL1 ◦i

−→
GL2 =

−→
GL1◦iL2 ∈ −→GL

A by the ruler R1, and generally,

−→
GL1 ◦i1

−→
GL2 ◦i2 · · · ◦is

−→
GLs+1 ∈ −→GL

A

for integers 1 ≤ i1, i2, · · · , is ≤ k, i.e.,
−→
GL

A is also an algebraic system, and it is commutative

on an operation ◦i if (A ; ◦1, ◦2, · · · , ◦k) is commutative on an operation ◦i for an integer

i, 1 ≤ i ≤ k. Particularly, if k = 1,
−→
GL

A is a group if (A ; ◦1) is a group. Thus, we extend

(A ; ◦1, ◦2, · · · , ◦k) and obtain an algebraic system over graph
−→
G underlying a geometrical

structure in space T .

Notice that such an extension
−→
GL

A is only a pure extension of algebra over
−→
G without

combining the nature of things, i.e., the conservation of matter which states that the amount

of the conserved quantity at a point or within a volume can only change by the amount of

the quantity which flows in or out of that volume. Thus, understanding the reality of things

motives the extension of mathematical systems (A ; ◦1, ◦2, · · · , ◦k) over graph
−→
G constrained

also on the laws of conservation

R2 :
∑

l

F(v)−l =
∑

s

F(v)+s , where F(v)−l , l ≥ 1 and F(v)+s , s ≥ 1 denote respectively

the output and input amounts at vertex v ∈ E(
−→
G ).

This notion brings about a new mathematical element finally, i.e., action flows, which

combines well the continuous mathematics with that of the discrete.

Definition 3.3([19]) An action flow
(−→
G ;L,A

)
is an oriented embedded graph

−→
G in a topological

space S associated with a mapping L : (v, u) → L(v, u), 2 end-operators A+
vu : L(v, u) →

LA
+
vu(v, u) and A+

uv : L(u, v)→ LA
+
uv(u, v) on a Banach space B-u v

L(u, v)A+
uv A+

vu

Fig.17

with L(v, u) = −L(u, v) and A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→
G
)

holding with

conservation laws ∑

u∈NG(v)

LA
+
vu (v, u) = cv for ∀v ∈ V

(−→
G
)

such as those shown for vertex v in Fig.18 following
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with a conservation law

−LA1(v, u1)− LA2(v, u2)− LA4(v, u3) + LA4(v, u4) + LA5(v, u5) + LA6(v, u6) = cv,

where cv is the surplus flow on vertex v, and usually, let cv = 0.

Indeed, action flow is an element both with the character of continuous and discrete math-

ematics. For example, the conservation laws on an action flow over dipole shown in Fig.19--��v u

(x, y)t

(x, y)t

(x, y)t

(x, y)t

A1

A2

A3

A4

B1

B2

B3

B4

Fig.19

are partial differential equations





a1
∂2x

∂t2
+ b1

∂2y

∂t2
− a3

∂x

∂t
+ (a2 − a4)x+ (b2 − b3 − b4)y = 0

c2
∂2x

∂t2
+ d2

∂2y

∂t2
− d4

∂y

∂t
+ (c1 − c3 − c4)x+ (d1 − d3)y = 0

,

where, A1 = (a1∂
2/∂t2, b1∂

2/∂t2), A2 = (a2, b2), A3 = (a3∂/∂t, b3), A4 = (a4, b4), B1 =

(c1, d1), B2 = (c2∂
2/∂t2, d2∂

2/∂t2), B3 = (c3, d3), B4 = (c4, d4∂/∂t).

Certainly, not all mathematical systems can be extended over a graph
−→
G constraint with

the laws of conservation at v ∈ V (
−→
G) unless

−→
G with special structure but such an extension of

linear space A can be always done.

Theorem 3.4([20]) Let (A ; +, ·) be a linear space,
−→
G an embedded graph in space T and

A+
vu = A+

uv = 1A for ∀(v, u) ∈ E(
−→
G). Then,

(−→
GL

A ; +, ·
)

is also a linear space under rulers

R1 and R2 with dimension dimA β(
−→
G) if dimV <∞, where β(

−→
G) = |E(

−→
G )| − |V (

−→
G)|+ 1, or

infinite.
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An action flow
(−→
G ;L,1A

)
, i.e., A+

vu = A+
uv = 1A for ∀(v, u) ∈ E(

−→
G) is usually called

−→
G-

flows, denoted by
−→
GL and the linear space

(−→
GL

A ; +, ·
)

extended over
−→
G by

−→
GA for simplicity.

§4. Banach
−→
G-Flow Spaces with Multiverses

4.1 Banach
−→
G-Flow Space

A Banach or Hilbert space is respectively a linear space A over a field R or C equipped with

a complete norm ‖ · ‖ or inner product 〈·, ·〉, i.e., for every Cauchy sequence {xn} in A , there

exists an element x in A such that

lim
n→∞

‖xn − x‖A = 0 or lim
n→∞

〈xn − x, xn − x〉A = 0,

which can be extended over graph
−→
G by introducing the norm of a

−→
G -flow

−→
GL following

∥∥∥−→GL
∥∥∥ =

∑

(v,u)∈E(
−→
G)

‖L(v, u)‖ ,

where ‖L(v, u)‖ is the norm of L(v, u) in A .

Theorem 4.1([15]) For any graph
−→
G ,
−→
GA is a Banach space, and furthermore, if A is a

Hilbert space,
−→
GA is a Hilbert space too.

We can also consider operators action on the Banach or Hilbert
−→
G -flow space

−→
GA . Par-

ticularly, an operator T :
−→
GA → −→GA is linear if

T
(
λ
−→
GL1 + µ

−→
GL2

)
= λT

(−→
GL1

)
+ µT

(−→
GL2

)

for ∀−→GL1 ,
−→
GL2 ∈ −→GA , λ, µ ∈ F , which enables one to generalize the representation theorem

of Fréchet and Riesz on linear continuous functionals of Hilbert space to Hilbert
−→
G -flow space−→

GA following.

Theorem 4.2([15]) Let T :
−→
GA → C be a linear continuous functional. Then there is a unique−→

G L̂ ∈ −→GA such that T
(−→
GL
)

=
〈−→
GL,
−→
G L̂
〉

for ∀−→GL ∈ −→GA .

Notice that linear continuous functionals exist everywhere in mathematics, particularly,

the differential and integral operators. For example, let A be a Hilbert space consisting of

measurable functions f(x1, x2, · · · , xn) on a set

∆ = {(x1, x2, · · · , xn) ∈ R
n|ai ≤ xi ≤ bi, 1 ≤ i ≤ n} ,
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which is a functional space L2[∆] with inner product

〈f (x) , g (x)〉 =
∫

∆

f(x)g(x)dx for f(x), g(x) ∈ L2[∆],

where x = (x1, x2, · · · , xn). By Theorem 4.1, A can be extended to Hilbert
−→
G -flow space

−→
GA ,

and the differential or integral operators

D =

n∑

i=1

ai
∂

∂xi
and

∫

∆

on A are extended to
−→
GA respectively by D

−→
GL =

−→
GDL(v,u) and

∫

∆

−→
GL =

∫

∆

K(x,y)
−→
GL[y]dy =

−→
G
∫
∆
K(x,y)L(v,u)[y]dy

for ∀(v, u) ∈ E(
−→
G ), where ai,

∂ai
∂xj

∈ C
0(∆) for integers 1 ≤ i, j ≤ n and K(x,y) : ∆ ×∆ →

C ∈ L2(∆×∆,C) with ∫

∆×∆

K(x,y)dxdy <∞.

Theorem 4.3([15]) The differential or integral operator D :
−→
GA → −→GA ,

∫

∆

:
−→
GA → −→GA

both are linear operators on
−→
GA .

For example, let f(t) = t, g(t) = et, K(t, τ) = t2 + τ2 for ∆ = [0, 1] and let
−→
GL be the−→

G -flow shown on the left in Fig.20. Then we get the
−→
G -flows on the right in Fig.20 by the

differential or integral operator action on. =6
-
-}

-
-=}-� ?�6?6 -
=} =}-

-
-
-- ?�6 -�6

D

∫
[0,1]

t

t
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et

et et

et
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t
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et
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et et
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et

1

1

1

1

a(t)

a(t) ?a(t)

a(t)

b(t)

b(t)

b(t) b(t)

Fig.20

where a(t) =
t2

2
+

1

4
and b(t) = (e− 1)t2 + e− 2.
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4.2 Multiverses on Equations

Notice that solving Schrödinger equation (1.3) with initial data only get one state of a particle

P but the particle is in superposition, which brought the H.Everett multiverse on superposition

and the quark model of Sakata, or Gell-Mann and Ne’eman on particles machinery. However,

Theorems 4.1−4.3 enables one to get multiverses constraint with linear equations (3.1) in
−→
GA .

For example, we can consider the Cauchy problem

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial values X |t=t0 in
−→
GR

n×R, i.e., Hilbert space Rn×R over graph
−→
G , and get multiverse

solutions of heat equation following.

Theorem 4.4([15]) For ∀−→GL′ ∈ −→GR
n×R and a non-zero constant c in R, the Cauchy problems

on differential equation

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X |t=t0 =
−→
GL′ ∈ −→GR

n×R is solvable in
−→
GR

n×R if L′ (v, u) is continuous and

bounded in Rn for ∀(v, u) ∈ E
(−→
G
)
.

And then, the H.Everett’s multiverse on the Schrödinger equation (1.3) is nothing else but

a 2-branch tree

63Y�o o 7
ψ1

ψ11 ψ12

ψ111 ψ112 ψ121 ψ122

Fig.21

with equalities ψ1 = ψ11 + ψ12, ψ11 = ψ111 + ψ112, ψ12 = ψ121 + ψ122, · · · ([16], [17]).

If the equations (3.1) is not linear, we can not immediately apply Theorems 4.1−4.3 to get

multiverse over any graphs
−→
G . However, if the graph

−→
G is prescribed with special structures,

for instance the circuit decomposable, we can also solve the Cauchy problem on an equation

in Hilbert
−→
G -flow space

−→
GA if it is solvable in A and obtain a general conclusion following,

which enable us to interpret also the superposition of particles ([17]), biological diversity and

establish multiverse model of spacetime in Einstein’s gravitation.
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Theorem 4.5([15]) If the graph
−→
G is strong-connected with circuit decomposition

−→
G =

l⋃
i=1

−→
C i

such that L(v, u) = Li (x) for ∀(v, u) ∈ E
(−→
C i

)
, 1 ≤ i ≤ l and the Cauchy problem





Fi (x, u, ux1, · · · , uxn , ux1x2 , · · · ) = 0

u|x0 = Li(x)

is solvable in a Hilbert space A on domain ∆ ⊂ Rn for integers 1 ≤ i ≤ l, then the Cauchy

problem 



Fi (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0 =
−→
GL

such that L (v, u) = Li(x) for ∀(v, u) ∈ X
(−→
C i

)
is solvable for X ∈ −→GA .

Theorem 4.5 enables one to explore the multiverse, particularly, the solutions of Einstein’s

gravitational equations

Rµν − 1

2
Rgµν + λgµν = −8πGT µν,

where Rµν = Rµανα = gαβR
αµβν , R = gµνR

µν are the respective Ricci tensor, Ricci scalar

curvature, G = 6.673 × 10−8cm3/gs2, κ = 8πG/c4 = 2.08 × 10−48cm−1 · g−1 · s2. In fact,

Einstein’s general relativity is established on R4. However, if the dimension n of the universe>

4, how can we characterize the structure of spacetime for the universe? In fact, if the dimension

of the universe> 4, all observations are nothing else but a projection of the true faces on our

six organs because the dimension of human beings is 3 hold with

R
n =

m⋃

i=1

R
4
i and

∣∣∣∣∣

m⋂

i=1

R
4
i

∣∣∣∣∣ = 1

such as those shown in Fig.22 for a projection of 3-dimensional objects on Euclidean plane R2.

Fig.22

In this case, we can characterize the spacetime with a complete graph KL
m labeled by R4

([7]-[8]). For example, if m = 4 there are 4 Einstein’s gravitational equations respectively on
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v ∈ V
(
KL

4

)
. We can solve them one by one by applying the spherically symmetric solution in

R4 and construct KL
4 shown in Fig.23,

Sf1 Sf2

Sf3 Sf4

Fig.23

where, each SFi
is the geometrical space of the Schwarzschild spacetime

ds2 = f(t)
(
1− rs

r

)
dt2 − 1

1− rs
r

dr2 − r2(dθ2 + sin2 θdφ2)

for integers 1 ≤ i ≤ 4.

Notice that m = 4 is only an assumption. We do not know the exact value of m at

present. Similarly, by Theorem 4.5 we can also get a conclusion on multiverse of the Einstein’s

gravitational equations, even in R4. Certainly, we do not know also which is the real spacetime

of the universe.

Theorem 4.6([15], [19]) There are infinite many
−→
G -flow solutions on Einstein’s gravitational

equations

Rµν − 1

2
Rgµν = −8πGT µν

in
−→
GC, particularly on those graphs with circuit-decomposition

−→
G =

m⋃
i=1

−→
C i labeled with Schwarzschild

spacetime on their edges.

For example, let
−→
G =

−→
C 4. We are easily find

−→
C 4-flow solution of Einstein’s gravitational

equations such as those shown in Fig.24. - ?y6 Sf1

Sf2

Sf3

Sf4

v1 v2

v3v4

Fig.24

Then, the spacetime of the universe is nothing else but a curved ring in space such as those

shown in Fig.25.
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Fig.25

Generally, if
−→
G is the union of m orientated circuits

−→
C i, 1 ≤ i ≤ m, Theorem 4.6 implies the

spacetime of Einstein’s gravitational equations is a multiverse consisting of m curved rings over

graph
−→
G in space.

Notice that a graph
−→
G is circuit decomposable if and only if it is an Eulerian graph. Thus,

Theorems 4.1−4.5 can be also applied to biology with global stability of food webs on n species

following.

Theorem 4.7([21]) A food web
−→
GL with initial value

−→
GL0 is globally stable or asymptotically

stable if and only if there is an Eulerian multi-decomposition

(−→
G
⋃←−

G
)L̂

=

s⊕

i=1

−→
HL
i

with solvable stable or asymptotically stable conservative equations on Eulerian subgraphs
−→
HL
i

for integers 1 ≤ i ≤ s, where
(−→
G
⋃←−
G
)L̂

is the bi-digraph of
−→
G defined by

−→
G
⋃←−
G with a

labeling L̂ : V (
−→
G
⋃←−
G) → L

(
V (
−→
G)
)
, L̂ : E

(−→
G
⋃←−
G
)
→ L

(
E
(−→
G
⋃←−
G
))

by L̂ : (u, v) →
{0, (x, y), yf ′}, (v, u)→ {xf, (x, y), 0} if L : (u, v)→ {xf, (x, y), yf ′} for ∀(u, v) ∈ E(

−→
G ), such

as those shown in Fig.26,

ẋ ẏ ẏ- �ẋ

-
u v

xf (x, y) yf ′
0

(x, y)

yf ′

xf

(x, y)

0

u v

Fig.26

and a multi-decomposition
s⊕
i=1

−→
HL
i of

(−→
G
⋃←−
G
)L̂

is defined by

(−→
G
⋃←−

G
)L̂

=
s⋃

i=1

−→
H i
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with
−→
H i 6=

−→
H j,

−→
H i

⋂−→
H j = ∅ or 6= ∅ for integers 1 ≤6= j ≤ s.

Theorem 4.8([21]) A food web
−→
GL with initial value

−→
GL0 is globally asymptotically stable if

there is an Eulerian multi-decomposition

(−→
G
⋃←−

G
)L̂

=

s⊕

k=1

−→
HL
k

with solvable conservative equations such that Reλi < 0 for characteristic roots λi of Av in the

linearization

AvXv = 0hv×hv

of conservative equations at an equilibrium point
−→
HL0

k in
−→
HL
k for integers 1 ≤ i ≤ hv and

v ∈ V (
−→
HL
k ), where V (

−→
HL
k ) = {v1, v2, · · · , vhv},

Av =




av11 av12 · · · av1hv

av21 av22 · · · av2hv

· · · · · · · · · · · ·
avh1 avh2 · · · avhhv




a constant matrix and Xk = (xv1 , xv2 , · · · , xvhv )T for integers 1 ≤ k ≤ s.

§5. Conclusion

Answer the question which is better to the reality of things on the continuous or discrete

mathematics is not easy because our world appears both with the continuous and discrete

characters. However, contradictions exist everywhere which are all artificial, not the nature of

things. Thus, holding on the reality of things motivates one to turn contradictory systems to

compatible systems, i.e., giving up the notion that contradiction is meaningless and establish an

envelope theory on mathematics, which needs the combination of the continuous mathematics

with that of discrete, i.e., mathematical combinatorics because a non-mathematics in classical

is in fact a mathematics over a graph
−→
G (See [13] for details).
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A New Understanding of

Particles by
−→
G-Flow Interpretation of Differential Equation

Abstract: Applying mathematics to understanding of particles classically enables one with

an assumption, i.e., if the variables t and x1, x2, x3 hold with a system of dynamical equations

Fi (t, x1, x2, x3, ut, ux1 , · · · , ux1x2 , · · · ) = 0, 1 ≤ i ≤ m, (DEq4
m)

they are a point (t, x1, x2, x3) in R
4. However, if we put off this assumption, how can we

interpret the solution space of equations? And are these resultants important for understand-

ing the world? Recently, the author extended Banach and Hilbert spaces on a topological

graph to introduce
−→
G -flows and showed that all such flows on a topological graph

−→
G also

form a Banach or Hilbert space, which enables one to find the multiverse solution of equa-

tions (DEq4
m) on

−→
G . Applying this result, This paper discusses the

−→
G -flow solutions on

Schrödinger equation, Klein-Gordon equation and Dirac equation, i.e., the field equations of

particles, bosons or fermions, answers previous questions by YES, and establishes the many

world interpretation of quantum mechanics of H.Everett by purely mathematics in logic, i.e.,

mathematical combinatorics.

Key Words: Klein-Gordon equation, Dirac equation,
−→
G -solution, many-world interpreta-

tion, multiverse, fermions, bosons, field.

AMS(2010): 03A10,05C15,20A05, 34A26,35A01,51A05,51D20,53A35

§1. Introduction

All matters consist of two classes particles, i.e., bosons with integer spin n, fermions with

fractional spin n/2, n ≡ 1(mod2), and by a widely held view, the elementary particles consists

of quarks and leptons with interaction quanta including photons and other particles of mediated

interactions ([16]), which constitute hadrons, i.e., mesons, baryons and their antiparticles. Thus,

a hadron has an internal structure, which implies that all hadrons are not elementary but leptons

are, viewed as point particles in elementary physics. Furthermore, there are also unmatter

which is neither matter nor antimatter, but something in between ([19-21]). For example, an

atom of unmatter is formed either by electrons, protons, and antineutrons, or by antielectrons,

antiprotons, and neutrons.

Usually, a particle is characterized by solutions of differential equation established on its

wave function ψ(t, x). In non-relativistic quantum mechanics, the wave function ψ(t, x) of a

1Progress in Physics, Vol.11, 3 (2015),193-201
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particle of mass m obeys the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + U, (1.1)

where, ~ = 6.582×10−22MeV s is the Planck constant, U is the potential energy of the particle

in applied field and

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
and ∇2 =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
.

Consequently, a free boson ψ(t, x) hold with the Klein-Gordon equation

(
1

c2
∂2

∂t2
−∇2

)
ψ(x, t) +

(mc
~

)2

ψ(x, t) = 0 (1.2)

and a free fermion ψ(t, x) satisfies the Dirac equation

(
iγµ∂µ −

mc

~

)
ψ(t, x) = 0 (1.3)

in relativistic forms, where, γµ =
(
γ0, γ1, γ2, γ3

)
, ∂µ =

(
1

c

∂

∂t
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
, c is the speed

of light and

γ0 =


 I2×2 0

0 −I2×2


 , γi =


 0 σi

−σi 0




with the usual Pauli matrices

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 .

It is well known that the behavior of a particle is on superposition, i.e., in two or more

possible states of being. But how to interpret this phenomenon in according with equation (1.1)-

(1.3) ? The many worlds interpretation by H.Everett [2] on wave function of equation (1.1)

in 1957 answered the question in machinery, i.e., viewed different worlds in different quantum

mechanics and the superposition of a particle be liked those separate arms of a branching

universe ([15], also see [1]). In fact, H.Everett’s interpretation claimed that the state space of

particle is a multiverse, or parallel universe ([20]), an application of philosophical law that the

integral always consists of its parts, or formally, the following.

Definition 1.1([6],[17]-[18]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical or

physical systems, different two by two. A Smarandache multisystem Σ̃ is a union
m⋃
i=1

Σi with

rules R̃ =
m⋃
i=1

Ri on Σ̃, denoted by
(
Σ̃; R̃

)
.

Furthermore, things are inherently related, not isolated in the world. Thus, every particle
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in natural is a union of elementary particles underlying a graph embedded in space, where,

a graph G is said to be embeddable into a topological space E if there is a 1 − 1 continuous

mapping f : G → E with f(p) 6= f(q) if p 6= q for ∀p, q ∈ G, i.e., edges only intersect at end

vertices in E . For example, a planar graph such as those shown in Fig.1.

v1 v2

v3v4

u1 u2

u3u4

Fig.1

Definition 1.2([6]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be a Smarandache multisystem con-

sisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topological

structures GL
[
Σ̃; R̃

]
on
(
Σ̃; R̃

)
is defined by

V
(
GL
[
Σ̃; R̃

])
= {vΣ1 , vΣ2 , · · · , vΣm},

E
(
GL
[
Σ̃; R̃

])
= {(vΣi , vΣj )|Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with a labeling

L : vΣi → L(vΣi) = Σi and L : (vΣi , vΣj )→ L(vΣi , vΣj ) = Σi
⋂

Σj,¸

where Σi
⋂

Σj denotes the intersection of spaces, or action between systems Σi with Σj for

integers 1 ≤ i 6= j ≤ m.

For example, let Σ̃ = Σ1

⋃
Σ2

⋃
Σ3

⋃
Σ4 with Σ1 = {a, b, c}, Σ2 = {a, b}, Σ3 = {b, c, d},

Σ4 = {c, d} and Ri = ∅. Calculation shows that Σ1

⋂
Σ2 = {a, b}, Σ1

⋂
Σ3 = {b, c}, Σ1

⋂
Σ4 =

{c}, Σ2

⋂
Σ3 = {b}, Σ2

⋂
Σ4 = ∅, Σ3

⋂
Σ4 = {c, d}. Then, the graph GL

[
Σ̃; R̃

]
is shown in

Fig.2.

{a, b}

{b}

{c, d}

{c}
{b, c}

Σ1 Σ2

Σ3Σ4

Fig.2

Generally, a particle should be characterized by
(
Σ̃; R̃

)
in theory. However, we can only

verify it by some of systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) for the limitation of human
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beings because he is also a system in
(
Σ̃; R̃

)
. Clearly, the underlying graph in H.Everett’s

interpretation on wave function is in fact a binary tree and there are many such traces in the

developing of physics. For example, a baryon is predominantly formed from three quarks, and

a meson is mainly composed of a quark and an antiquark in the models of Sakata, or Gell-

Mann and Ne’eman on hadrons ([14]), such as those shown in Fig.3, where, qi ∈ {u,d, c, s, t,b}
denotes a quark for i = 1, 2, 3 and q2 ∈

{
u,d, c, s, t,b

}
, an antiquark. Thus, the underlying

graphs
−→
G of a meson, a baryon are respectively

−→
K2 and

−→
K3 with actions. In fact, a free quark

was not found in experiments until today. So it is only a machinery model on hadrons. Even

so, it characterizes well the known behavior of particles.

q1

q2 q3

q1 q2

....................................

...................

.................................

Baryon Meson

Fig.3

It should be noted that the geometry on Definition 1.1−1.2 can be also used to characterize

particles by combinatorial fields ([7]), and there is a priori assumption for discussion in physics,

namely, the dynamical equation of a subparticle of a particle is the same of that particle. For

example, the dynamical equation of quark is nothing else but the Dirac equation (1.3), a

characterizing on quark from the macroscopic to the microscopic, the quantum level in physics.

However, the equation (1.3) can not provides such a solution on the behaviors of 3 quarks.

We can only interpret it similar to that of H.Everett, i.e., there are 3 parallel equations (1.3)

in discussion, a seemly rational interpretation in physics, but not perfect for mathematics.

Why this happens is because the interpretation of solution of equation. Usually, we identify a

particle to the solution of its equation, i.e., if the variables t and x1, x2, x3 hold with a system

of dynamical equations

Fi (t, x1, x2, x3, ut, ux1, · · · , ux1x2 , · · · ) = 0, 1 ≤ i ≤ m, (DEq4m)

the particle in R×R3 is a point (t, x1, x2, x3), and if more than one points (t, x1, x2, x3) hold with

(ESq4m), the particle is nothing else but consisting of all such points. However, the solutions of

equations (1.1)-(1.3) are all definite on time t. Is this interpretation can be used for particles in

all times? Certainly not because a particle can be always decomposed into elementary particles,

and it is a little ambiguous which is a point, the particle itself or its one of elementary particles

sometimes.

This speculation naturally leads to a question on mathematics, i.e., what is the right in-
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terpretation on the solution of differential equation accompanying with particles? Recently, the

author extended Banach spaces on topological graphs
−→
G with operator actions in [13], and

shown all of these extensions are also Banach space, particularly, the Hilbert space with unique

correspondence in elements on linear continuous functionals, which enables one to solve lin-

ear functional equations in such extended space, particularly, solve differential equations on a

topological graph, i.e., find multiverse solutions for equations. This scheme also enables us to

interpret the superposition of particles in accordance with mathematics in logic.

The main purpose of this paper is to present an interpretation on superposition of particles

by
−→
G -flow solutions of equations (1.1)-(1.3) in accordance with mathematics. Certainly, the

geometry on non-solvable differential equations discussed in [9]-[12] brings us another general

way for holding behaviors of particles in mathematics. For terminologies and notations not

mentioned here, we follow references [16] for elementary particles, [6] for geometry and topology,

and [17]-[18] for Smarandache multi-spaces, and all equations are assumed to be solvable in this

paper.

§2. Extended Banach
−→
G-Flow Spaces

2.1 Conservation Laws

A conservation law, such as those on energy, mass, momentum, angular momentum and con-

servation of electric charge states that a particular measurable property of an isolated physical

system does not change as the system evolves over time, or simply, constant of being. Usually,

a local conservation law is expressed mathematically as a continuity equation, which states that

the amount of the conserved quantity at a point or within a volume can only change by the

amount of the quantity which flows in or out of the volume. According to Definitions 1.1 and

1.2, a matter in the nature is nothing else but a Smarandache system
(
Σ̃; R̃

)
, or a topological

graph GL
[(

Σ̃; R̃
)]

embedded in R3, hold with conservation laws

∑

k

F(v)−k =
∑

l

F(v)+l

on ∀v ∈ V
(
GL
[(

Σ̃; R̃
)])

, where, F(v)
−
k , k ≥ 1 and F(v)

+
l , l ≥ 1 denote respectively the

input or output amounts on a particle or a volume v.

2.2
−→
G-Flow Spaces

Classical operation systems can be easily extended on a graph
−→
G constraint on conditions for

characterizing the unanimous behaviors of groups in the nature, particularly, go along with

the physics. For this objective, let
−→
G be an oriented graph with vertex set V (G) and arc set

X(G) embedded in R3 and let (A ; ◦) be an operation system in classical mathematics, i.e.,

for ∀a, b ∈ A , a ◦ b ∈ A . Denoted by
−→
GL

A all of those labeled graphs
−→
GL with labeling

L : X
(−→
G
)
→ A . Then, we can extend operation ◦ on elements in

−→
GA by a ruler following:
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R : For ∀−→GL1 ,
−→
GL2 ∈ −→GL

A , define
−→
GL1 ◦−→GL2 =

−→
GL1◦L2 , where L1◦L2 : e→ L1(e)◦L2(e)

for ∀e ∈ X
(−→
G
)
.

For example, such an extension on graph
−→
C 4 is shown in Fig.4, where, a3=a1◦a2, b3 =b1◦b2,

c3=c1◦c2, d3 =d1◦d2.- ?�6 ?�6 ?�6v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

- -
Fig.4

Clearly,
−→
GL1 ◦ −→GL2 ∈ −→GL

A by definition, i.e.,
−→
GL

A is also an operation system under ruler R,

and it is commutative if (A , ◦) is commutative,

Furthermore, if (A , ◦) is an algebraic group,
−→
GL

A is also an algebraic group because

(1)
(−→
GL1 ◦ −→GL2

)
◦ −→GL3 =

−→
GL1 ◦

(−→
GL2 ◦ −→GL3

)
for ∀−→GL1 ,

−→
GL2 ,

−→
GL3 ∈ −→GA because

(L1(e) ◦ L2(e))◦L3(e) = L1(e)◦(L2(e) ◦ L3(e)) for e ∈ X
(−→
G
)
, i.e.,

−→
G (L1◦L2)◦L3 =

−→
GL1◦(L2◦L3).

(2) there is an identify
−→
GL1A in

−→
GL

A , where L1A : e→ 1A for ∀e ∈ X
(−→
G
)
;

(3) there is an uniquely element
−→
GL−1

for ∀−→GL ∈ −→GL
A .

However, for characterizing the unanimous behaviors of groups in the nature, the most

useful one is the extension of vector space (V ; +, ·) over field F by defining the operations +

and · on elements in
−→
GV such as those shown in Fig.5 on graph

−→
C 4, where a, b, c, d, ai, bi,

ci, di ∈ V for i = 1, 2, 3, x3=x1+x2 for x=a, b, c or d and α ∈ F .- ?�6 ?�6 ?�6v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

- -
- ?�6 - ?�6α

v1 v2 v1 v2

v3v4 v3v4

a

b

c

d

α·a

α·b

α·c

α·d

Fig.5

A
−→
G-flow on

−→
G is such an extension hold with L (u, v) = −L (v, u) and conservation laws

∑

u∈NG(v)

L (v, u) = 0
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for ∀v ∈ V
(−→
G
)
, where 0 is the zero-vector in V . Thus, a

−→
G -flow is a subfamily of

−→
GL

V limited

by conservation laws. For example, if
−→
G =

−→
C 4, there must be a=b=c=d and ai=bi=ci=di

for i = 1, 2, 3 in Fig.5.

Clearly, all conservation
−→
G -flows on

−→
G also form a vector space over F under operations

+ and · with zero vector O =
−→
GL0 , where L0 : e → 0 for ∀e ∈ X

(−→
G
)
. Such an extended

vector space on
−→
G is denoted by

−→
GV .

Furthermore, if (V ; +, ·) is a Banach or Hilbert space with inner product 〈·, ·〉, we can also

introduce the norm and inner product on
−→
GV by

∥∥∥−→GL
∥∥∥ =

∑

(u,v)∈X
(−→
G
)
‖L(u, v)‖

or 〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→
G
)
〈L1(u, v), L2(u, v)〉

for ∀−→GL,
−→
GL1 ,

−→
GL2 ∈ −→GV , where ‖L(u, v)‖ is the norm of L(u, v) in V . Then it can be verified

that

(1)
∥∥∥−→GL

∥∥∥ ≥ 0 and
∥∥∥−→GL

∥∥∥ = 0 if and only if
−→
GL = O;

(2)
∥∥∥−→GξL

∥∥∥ = ξ
∥∥∥−→GL

∥∥∥ for any scalar ξ;

(3)
∥∥∥−→GL1 +

−→
GL2

∥∥∥ ≤
∥∥∥−→GL1

∥∥∥+
∥∥∥−→GL2

∥∥∥;

(4)
〈−→
GL,
−→
GL
〉

=
∑

(u,v)∈X
(−→
G
) 〈L(uv), L(uv)〉 ≥ 0 and

〈−→
GL,
−→
GL
〉

= 0 if and only if
−→
GL =

O;

(5)
〈−→
GL1 ,

−→
GL2

〉
=
〈−→
GL2 ,

−→
GL1

〉
for ∀−→GL1 ,

−→
GL2 ∈ −→GV ;

(6) For
−→
GL,
−→
GL1 ,

−→
GL2 ∈ −→GV and λ, µ ∈ F ,

〈
λ
−→
GL1 + µ

−→
GL2 ,

−→
GL
〉

= λ
〈−→
GL1 ,

−→
GL
〉

+ µ
〈−→
GL2 ,

−→
GL
〉
.

The following result is known by showing that any Cauchy sequence in
−→
GV is converges

hold with conservation laws.

Theorem 2.1([13]) For any topological graph
−→
G ,
−→
GV is a Banach space, and furthermore, if

V is a Hilbert space,
−→
GV is a Hilbert space also.

According to Theorem 2.1, the operators action on Banach or Hilbert space (V ; +, ·) can

be extended on
−→
GV , for example, the linear operator following.

Definition 2.2 An operator T :
−→
GV → −→GV is linear if

T
(
λ
−→
GL1 + µ

−→
GL2

)
= λT

(−→
GL1

)
+ µT

(−→
GL2

)
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for ∀−→GL1 ,
−→
GL2 ∈ −→GV and λ, µ ∈ F , and is continuous at a

−→
G-flow

−→
GL0 if there always exist

a number δ(ε) for ∀ǫ > 0 such that

∥∥∥T
(−→
GL
)
−T

(−→
GL0

)∥∥∥ < ε if
∥∥∥−→GL −−→GL0

∥∥∥ < δ(ε).

The following interesting result generalizes the result of Fréchet and Riesz on linear con-

tinuous functionals, which opens us mind for applying
−→
G -flows to hold on the nature.

Theorem 2.3([13]) Let T :
−→
GV → C be a linear continuous functional. Then there is a unique−→

G L̂ ∈ −→GV such that

T
(−→
GL
)

=
〈−→
GL,
−→
G L̂
〉

for ∀−→GL ∈ −→GV .

Particularly, if all flows L(u, v) on arcs (u, v) of
−→
G are state function, we extend the

differential operator on
−→
G -flows. In fact, a differential operator

∂

∂t
or

∂

∂xi
:
−→
GV → −→GV is

defined by
∂

∂t
:
−→
GL → −→G ∂L

∂t ,
∂

∂xi
:
−→
GL → −→G

∂L
∂xi

for integers 1 ≤ i ≤ 3. Then, for ∀µ, λ ∈ F ,

∂

∂t

(
λ
−→
GL1 + µ

−→
GL2

)
=

∂

∂t

(−→
GλL1+µL2

)
=
−→
G

∂
∂t

(λL1+µL2)

=
−→
G

∂
∂t

(λL1)+
∂
∂t

(µL2) =
−→
G

∂
∂t

(λL1) +
−→
G

∂
∂t

(µL2)

=
∂

∂t

−→
G (λL1) +

∂

∂t

−→
G (µL2) = λ

∂

∂t

−→
GL1 + µ

∂

∂t

−→
GL2 ,

i.e.,
∂

∂t

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∂

∂t

−→
GL1 + µ

∂

∂t

−→
GL2 .

Similarly, we know also that

∂

∂xi

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∂

∂xi

−→
GL1 + µ

∂

∂xi

−→
GL2

for integers 1 ≤ i ≤ 3. Thus, operators
∂

∂t
and

∂

∂xi
, 1 ≤ i ≤ 3 are all linear on

−→
GV .- ?�6 }= - ?�6 =}-

-
-
--t

t

t

t

et

et

et
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1

11

1

∂

∂t

Fig.6
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Similarly, we introduce integral operator

∫
:
−→
GV → −→GV by

∫
:
−→
GL → −→G

∫
Ldt,

−→
GL → −→G

∫
Ldxi

for integers 1 ≤ i ≤ 3 and know that

∫ (
µ
−→
GL1 + λ

−→
GL2

)
= µ

∫ (−→
GL1

)
+ λ

∫ (−→
GL2

)

for ∀µ, λ ∈ F , ∫
◦
(
∂

∂t

)
and

∫
◦
(
∂

∂xi

)
:
−→
GL → −→GL +

−→
GLc ,

where Lc is such a labeling that Lc(u, v) is constant for ∀(u, v) ∈ X
(−→
G
)
.

§3. Particle Equations in
−→
G-Flow Space

We are easily find particle equations with nonrelativistic or relativistic mechanics in
−→
GV . Notice

that

i~
∂ψ

∂t
= Eψ, −i~∇ψ = −→p 2ψ

and

E =
1

2m
−→p 2 + U,

in classical mechanics, where ψ is the state function, E,−→p , U are respectively the energy, the

momentum, the potential energy and m the mass of the particle. Whence,

O =
−→
G(E− 1

2m
−→p 2−U)ψ =

−→
GEψ −−→G 1

2m
−→p 2ψ −−→GUψ

=
−→
G i~ ∂ψ

∂t −−→G− ~

2m∇
2ψ −−→GUψ = i~

∂
−→
GLψ

∂t
+

~

2m
∇2−→GLψ −−→GLU

−→
GLψ ,

where Lψ : e → state function and LU : e → potential energy on e ∈ X
(−→
G
)
. According to

the conservation law of energy, there must be
−→
GU ∈ −→GV . We get the Schrödinger equation in−→

GV following.

−i~∂
−→
GLψ

∂t
=

~

2m
∇2−→GLψ − Û−→GLψ , (3.1)

where Û =
−→
GLU ∈ −→GV . Similarly, by the relativistic energy-momentum relation

E2 = c2−→p 2 +m2c4

for bosons and

E = cαk
−→p k + α0mc

2
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for fermions, we respectively get the Klein-Gordon equation and Dirac equation

(
1

c2
∂2

∂t2
−∇2

)−→
GLψ +

(cm
~

)−→
GLψ = O (3.2)

and (
iγµ∂µ −

mc

~

)−→
GLψ = O, (3.3)

of particles in
−→
GV . Particularly, let

−→
G be such a topological graph with one vertex and one

arc. Then, the equations (3.1)-(3.3) are nothing else but equations (1.1)-(1.3), respectively.

§4.
−→
G-Flow Solutions on Particle Equations

Formally, we can establish equations in
−→
GV by equations in Banach space V such as those

equations (3.1)-(3.3). However, the important thing is not just on such establishing but finding−→
G -flows on equations in V and then interpret the superposition of particles by

−→
G -flows.

4.1
−→
G-Flow Solutions on Equation

Theorem 2.3 concludes that there are
−→
G -flow solutions for a linear equations in

−→
GV for Hilbert

space V over field F , including algebraic equations, linear differential or integral equations

without considering the topological structure. For example, let ax = b. We are easily getting

its
−→
G -flow solution x =

−→
Ga−1L if we view an element b ∈ V as b =

−→
GL, where L(u, v) = b for

∀(u, v) ∈ X
(−→
G
)

and 0 6= a ∈ F , such as those shown in Fig.7 for
−→
G =

−→
C 4 and a = 3, b = 5.- ?�6 5

3

5
3

5
3

5
3

Fig.7

Generally, we know the following result .

Theorem 4.1([13]) A linear system of equations





a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = bm
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with aij , bj ∈ F for integers 1 ≤ i ≤ n, 1 ≤ j ≤ m holding with

rank [aij ]m×n = rank [aij ]
+
m×(n+1)

has
−→
G -flow solutions on infinitely many topological graphs

−→
G , where

[aij ]
+
m×(n+1) =




a11 a12 · · · a1n L1

a21 a22 · · · a2n L2

. . . . . . . . . . . . . .

am1 am2 · · · amn Lm



.

We can also get
−→
G -flow solutions for linear partial differential equations ([14]). For example,

the Cauchy problems on differential equations

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X |t=t0 =
−→
GL′ ∈ −→GV is also solvable in

−→
GV if L′ (u, v) is continuous and

bounded in Rn for ∀(u, v) ∈ X
(−→
G
)

and ∀−→GL′ ∈ −→GV . In fact, X =
−→
GLF with LF : (u, v)→

F (u, v) for ∀(u, c) ∈ X
(−→
G
)
, where

F (u, v) =
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t L′ (u, v) (y1, · · · , yn)dy1 · · · dyn

is such a solution.

Generally, if
−→
G can be decomposed into circuits

−→
C , the next result concludes that we can

always find
−→
G -flow solutions on equations, no matter what the equation looks like, linear or

non-linear ([13]).

Theorem 4.2 If the topological graph
−→
G is strong-connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i

such that L(u, v) = Li (x) for ∀(u, v) ∈ X
(−→
C i

)
, 1 ≤ i ≤ l and the Cauchy problem





Fi (x, u, ux1, · · · , uxn , ux1x2 , · · · ) = 0

u|x0
= Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for integers 1 ≤ i ≤ l, then the Cauchy
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problem 



Fi (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0 =
−→
GL

such that L (u, v) = Li(x) for ∀(u, v) ∈ X
(−→
C i

)
is solvable for X ∈ −→GV .

In fact, such a solution is constructed by X =
−→
GLu(x) with Lu(x) (u, v) = u(x) for (u, v) ∈

X
(−→
G
)

by applying the input and the output at vertex v all being u(x) on
−→
C , which implies

that all flows at vertex v ∈ V
(−→
G
)

is conserved.

4.2
−→
G-Flow Solutions on Particle Equation

The existence of
−→
G -flow solutions on particle equations (1.1)-(1.3) is clearly concluded by The-

orem 4.2, also implied by equations (3.1)-(3.3) for any
−→
G . However, the superposition of a

particle P shows that there are N ≥ 2 states of being associated with a particle P . Considering

this fact, a convenient
−→
G -flow model for elementary particle fermions, the lepton or quark P

is by a bouquet
−→
B
Lψ
N , and an antiparticle P of P presented by

−→
B
L
ψ−1

N with all inverse state

functions on its loops, such as those shown in Fig.8.

P Pψ1ψ2ψN ψ−1
1 ψ−1

2 ψ−1
N

� -
Particle Antiparticle

Fig.8

Similarly, an elementary unparticle is an intermediate form between an elementary particle

and its antiparticle, which can be presented by
−→
B
LCψ
N , where LCψ : e → Lψ−1(e) if e ∈ C but

LCψ : e→ Lψ(e) if e ∈ X
(−→
BN

)
\ C for a subset C ⊂ X

(−→
BN

)
.

P P

ψ
N

2

2

1

1

ψ
N

ψ

ψ

ψ

ψ

−→
D⊥

Lψ
0,2N,0

Fig.9
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Thus, an elementary particle with its antiparticles maybe annihilate or appears in pair

at a time, and unparticles are constructed by combinations of these state functions with their

inverses on the particle, and the mediate interaction particles quanta, i.e., boson by dipole−→
D⊥

Lψ
0,2N,0 with dotted lines, such as those shown in Fig.9, where, the vertex P, P ′ denotes

particles, and arcs with state functions ψ1, ψ2, · · · , ψN are the N states of P . Notice that
−→
B
Lψ
N

and
−→
D⊥

Lψ
0,2N,0 both are a union of N circuits. According to Theorem 4.2, we consequently get

the following conclusion.

Theorem 4.3 For any integer N ≥ 1, there are indeed
−→
D⊥

Lψ
0,2N,0-flow solution on Klein-Gordon

equation (1.2), and
−→
B
Lψ
N -flow solution on Dirac equation (1.3).

Generally, this model enables us to know that the
−→
G -flow constituents of a particle also.

Thus, if a particle P̃ is consisted of l elementary particles P1, P1, · · · , Pl underlying a graph−→
G
[
P̃
]
, its

−→
G -flow is obtained by replace each vertex v by

−→
B
Lψv
Nv

and each arc e by
−→
D⊥

Lψe
0,2Ne,0

in
−→
G
[
P̃
]
, denoted by

−→
GLψ

[−→
B v,
−→
De

]
.

...............ψk · · · ψ2 ψ1

p q
ψ′1 ψ′2 · · · ψ′l

--- ���
Fig.10 Meson

For example, the model of Sakata, or Gell-Mann and Ne’eman on hadrons claims the meson

and the baryon are respectively the diploe
−→
D⊥

Lψe
k,2N,l-flow shown in Fig.10 and the triplet

−→
G -flow

−→
C⊥

Lψ
k,l,s shown in Fig.11,

.............................................
..
..
..
..
..
..
..
..
..
..

q1 q2

q3

ψ1
k ψ1

2ψ
1
1

ψ2
l

ψ2
2

ψ2
1

ψ3
sψ3

2ψ3
1

---
- -- ���

Fig.11 Baryon
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where, the dotted lines denote the dipole
−→
D⊥

Lψe
0,2Ne,0

-flows, p,q1,q2,q3 are quarks, q an antiquark

and integers k, l, s ≥ 1.

For a constructed
−→
G -flow

−→
GLψ

[−→
B v,
−→
De

]
, its size index λG is determined by

λG =
∑

v∈V
(−→
G
)
Nv +

∑

e∈X
(−→
G
)
Ne,

which is in fact the number of states in P .

Theorem 4.4 If P̃ is a particle consisted of elementary particles P1, P1, · · · , Pl, then
−→
GLψ

[−→
B v,
−→
De

]

is a
−→
G-flow solution on the Schrödinger equation (1.1) whenever λG is finite or infinite.

Proof If λG is finite, the conclusion follows Theorem 4.2 immediately. We only consider

the case of λG →∞. In fact, if λG →∞, calculation shows that

i~ lim
λG→∞

(
∂

∂t

(−→
GLψ

[−→
B v,
−→
De

]))
= lim

λG→∞

(
i~
∂

∂t

(−→
GLψ

[−→
B v,
−→
De

]))

= lim
λG→∞

(
− ~

2

2m
∇2−→GLψ

[−→
B v,
−→
De

]
+
−→
GLU

)

= − ~2

2m
∇2 lim

λG→∞

−→
GLψ

[−→
B v,
−→
De

]
+
−→
GLU ,

i.e.,

i~ lim
λG→∞

(
∂

∂t

(−→
GLψ

[−→
B v,
−→
De

]))
= − ~2

2m
∇2 lim

λG→∞

−→
GLψ

[−→
B v,
−→
De

]
+
−→
GLU .

Particularly,

i~ lim
N→∞

(
∂
−→
B
Lψ
N

∂t

)
= − ~2

2m
∇2 lim

N→∞

−→
B
Lψ
N +

−→
GLU ,

i~ lim
N→∞

∂

∂t

(−→
D⊥

Lψ
0,2N,0

)
= − ~2

2m
∇2 lim

N→∞

−→
D⊥

Lψ
0,2N,0 +

−→
GLU .

for bouquets and dipoles. 2
§5.

−→
G-Flow Interpretation on Particle Superposition

The superposition of a particle P is depicted by a Hilbert space V over complex field C with or-

thogonal basis |1〉 , |2〉 , · · · , |n〉 , · · · in quantum mechanics. In fact, the linearity of Schrödinger

equation concludes that all states of particle P are in such a space. However, an observer can

grasp only one state, which promoted H.Everett devised a multiverse consisting of states in split-

ting process, i.e., the quantum effects spawn countless branches of the universe with different

events occurring in each, not influence one another, such as those shown in Fig.12,
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ψ1 ∈ V1

ψ11 ∈ V11 ψ12 ∈ V12

ψ31 ∈ V31
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ψ33 ∈ V33 ψ34 ∈ V34

Fig.12

and the observer selects by randomness, where the multiverse is
⋃
i≥1

Vi with Vkl = V for integers

k ≥ 1, 1 ≤ l ≤ 2k but in different positions.

Why it needs an interpretation on particle superposition in physics lies in that we charac-

terize the behavior of particle by dynamic equation on state function and interpret it to be the

solutions, and different quantum state holds with different solution of that equation. However,

we can only get one solution by solving the equation with given initial datum once, and hold

one state of the particle P , i.e., the solution correspondent only to one position but the particle

is in superposition, which brought the H.Everett interpretation on superposition. It is only a

biological mechanism by infinite parallel spaces V but loses of conservations on energy or mat-

ter in the nature, whose independently runs also overlook the existence of universal connection

in things, a philosophical law.

Even so, it can not blot out the ideological contribution of H.Everett to sciences a shred

because all of these mentions are produced by the interpretation on mathematical solutions

with the reality of things, i.e., scanning on local, not the global. However, if we extend the

Hilbert space V to
−→
B
Lψ
N ,
−→
D⊥

Lψ
0,2N,0 or

−→
GLψ

[−→
B v,
−→
De

]
in general, i.e.,

−→
G -flow space

−→
GV , where

−→
G is the underling topological graph of P , the situation has been greatly changed because

−→
GV

is itself a Hilbert space, and we can identify the
−→
G -flow on

−→
G to particle P , i.e.,

P =
−→
GLψ

[−→
B v,
−→
De

]
(5.1)

for a globally understanding the behaviors of particle P whatever λG →∞ or not by Theorem

4.4. For example, let P =
−→
B
Lψ
N , i.e., a free particle such as those of electron e−, muon µ−, tauon

τ−, or their neutrinos νe, νµ, ντ . Then the superposition of P is displayed by state functions ψ

on N loops in
−→
BN hold on its each loop with

input ψi = ouput ψi at vertex P
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for integers 1 ≤ i ≤ N . Consequently,

input
∑

i∈I

ψi = ouput
∑

i∈I

ψi at vertex P (5.2)

for ∀I ⊂ {1, 2, · · · , N}, the conservation law on vertex P . Furthermore, such a
−→
B
Lψ
N is not only

a disguise on P in form but also a really mathematical element in Hilbert space
−→
BV , and can

be also used to characterize the behavior of particles such as those of the decays or collisions

of particles by graph operations. For example, the β-decay n → p+ e− + µ−e is transferred to

a decomposition formula

−→
C⊥

Lψn
k,l,s =

−→
C⊥

Lψp
k1,l1,s1

⋃−→
B
Lψe
N1

⋃−→
B
Lψµ
N2

,

on graph, where,
−→
C⊥

Lψp
k1,l1,s1

,
−→
B
Lψe
N1

,
−→
B
Lψµ
N2

are all subgraphs of
−→
C⊥

Lψn
k,l,s. Similarly, the β- collision

νe + p→ n+ e+ is transferred to an equality

−→
B
Lψνe
N1

⋃−→
C⊥

Lψp
k1,l1,s1

=
−→
C⊥

Lψn
k2,l2,s2

⋃−→
B
Lψe
N2

.

Even through the relation (5.1) is established on the linearity, it is in fact truly for the linear

and non-liner cases because the underlying graph of
−→
GLψ

[−→
B v,
−→
De

]
-flow can be decomposed

into bouquets and dipoles, hold with conditions of Theorem 4.2. Thus, even if the dynamical

equation of a particle P is non-linear, we can also adopt the presentation (5.1) to characterize

the superposition and hold on the global behavior of P . Whence, it is a presentation on

superposition of particles, both on linear and non-linear.

§6. Further Discussions

Usually, a dynamic equation on a particle characterizes its behaviors. But is its solution the

same as the particle? Certainly not! Classically, a dynamic equation is established on characters

of particles, and different characters result in different equations. Thus the superposition of

a particle should characterized by at lest 2 differential equations. However, for a particle P ,

all these equations are the same one by chance, i.e., one of the Schrödinger equation, Klein-

Gordon equation or Dirac equation, which lead to the many world interpretation of H.Everett,

i.e., put a same equation or Hilbert space on different place for different solutions in Fig.12. As

it is shown in Theorems 4.1 − 4.4, we can interpret the solution of equation (1.1)-(1.3) to be

a
−→
GLψ

[−→
B v,
−→
De

]
-flow, which properly characterizes the superposition behavior of particles by

purely mathematics.

The
−→
G -flow interpretation on differential equation opens a new way for understanding the

behavior of nature, particularly on superposition of particles. In general, the dynamic equations

on different characters maybe different, which would bring about contradicts equations, i.e.,

non-solvable equations. For example, we characterize the behavior of meson or baryon by Dirac

equation (1.3). However, we never know the dynamic equation on quark. Although we can

say it obeying the Dirac equation but it is not a complete picture on quark. If we find its
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equation some day, they must be contradicts because it appear in different positions in space

for a meson or a baryon at least. As a result, the
−→
G -solutions on non-solvable differential

equations discussed in [9]-[12] are valuable for understanding the reality of the nature with−→
G -flow solutions a special one on particles.

As it is well known for scientific community, any science possess the falsifiability but which

depends on known scientific knowledge and technical means at that times. Accordingly, it is

very difficult to claim a subject or topic with logical consistency is truth or false on the nature

sometimes, for instance the multiverse or parallel universes because of the limitation of knowing

things in the nature for human beings. In that case, a more appreciated approach is not denied

or ignored but tolerant, extends classical sciences and developing those of well known technical

means, and then get a better understanding on the nature because the pointless argument

would not essentially promote the understanding of nature for human beings.
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A Review on Natural Reality with Physical Equations

Abstract: A natural behavior is used to characterized by differential equation established

on human observations, which is assumed to be on one particle or one field complied with

reproducibility. However, the multilateral property of a particle P and the mathematical

consistence determine that such a understanding is only local, not the whole reality on

P , which leads to a central thesis for knowing the nature, i.e., how to establish a physical

equation with a proper interpretation on a thing. As it is well-known, a thing consists of

parts. Reviewing on observations, we classify them into two categories, i.e., out-observation

and in-observation for discussion. The former is such an observation that the observer is

out of the particle or the field P , which is in fact a macroscopic observation and its dynamic

equation characterizes the coherent behavior of all parts in P , but the later is asked into

the particle or the field by arranging observers simultaneously on different subparticles or

subfields in P and respectively establishing physical equations, which are contradictory and

given up in classical because there are not applicable conclusions on contradictory systems in

mathematics. However, the existence naturally implies the necessity of the nature. Applying

a combinatorial notion, i.e., GL-solutions on non-solvable equations, a new notion for holding

on the reality of nature is suggested in this paper, which makes it clear that the knowing

on the nature by solvable equations is macro, only holding on these coherent behaviors of

particles, but the non-coherent naturally induces non-solvable equations, which implies that

the knowing by GL-solution of equations is the effective, includes the classical characterizing

as a special case by solvable equations, i.e., mathematical combinatorics.

Key Words: Natural reality, out or in-observation, Smarandache multi-space, particle or

field equation, interpretation, mathematical combinatorics.

AMS(2010): 51M15, 53B15, 53B40, 57N16, 81P05, 83C05, 83F05.

§1. Introduction

An observation on a physical phenomenon, or characters of a thing in the nature is the received

information via hearing, sight, smell, taste or touch, i.e., sensory organs of the observer himself,

little by little for human beings fulfilled with the reproducibility. However, it is difficult to hold

the true face of a thing for human beings because he is analogous to a blind man in “the blind

men with an elephant”, a famous fable for knowing the nature. For example, let µ1, µ2, · · · , µn
be all observed and νi, i ≥ 1 unobserved characters on a particle P at time t. Then, P should

1Progress in Physics, Vol.11, 3 (2015),276-282
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be understood by

P =

(
n⋃

i=1

{µi}
)
⋃

⋃

k≥1

{νk}


 (1.1)

in logic with an approximation P ◦ =
n⋃
i=1

{µi} for P at time t. All of them are nothing else but

Smarandache multispaces ([17]). Thus, P ≈ P ◦ is only an approximation for its true face of P ,

and it will never be ended in this way for knowing P as Lao Zi claimed “Name named is not

the eternal Name” in the first chapter of his TAO TEH KING ([3]), a famous Chinese book.

A physical phenomenon of particle P is usually characterized by differential equation

F (t, x1, x2, x3, ψt, ψx1 , ψx2 , · · · , ψx1x2 , · · · ) = 0 (1.2)

in physics established on observed characters of µ1, µ2, · · · , µn for its state function ψ(t, x) in

R4. Usually, these physical phenomenons of a thing is complex, and hybrid with other things.

Is the reality of particle P all solutions of that equation (1.2) in general? Certainly not because

the equation (1.2) only characterizes the behavior of P on some characters of µ1, µ2, · · · , µn
at time t abstractly, not the whole in philosophy. For example, the behavior of a particle is

characterized by the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Uψ (1.3)

in quantum mechanics but observation shows it in two or more possible states of being, i.e.,

superposition. We can not even say which solution of the Schrödinger equation (1.3) is the

particle because each solution is only for one determined state. Even so, the understanding of

all things is inexhaustible by (1.1).

Fig.1

Furthermore, can we conclude the equation (1.2) is absolutely right for a particle P? Cer-

tainly not also because the dynamic equation (1.2) is always established with an additional

assumption, i.e., the geometry on a particle P is a point in classical mechanics or a field in

quantum mechanics and dependent on the observer is out or in the particle. For example, a

water molecule H2O consists of 2 hydrogen atoms and 1 oxygen atom such as those shown in
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Fig.1. If an observer receives information on the behaviors of hydrogen or oxygen atom but

stands out of the water molecule H2O by viewing it a geometrical point, then such an observa-

tion is an out-observation because it only receives such coherent information on atoms H and

O with the water molecule H2O.

If an observer is out the water molecule H2O, his all observations on the hydrogen atom

H and oxygen atom O are the same, but if he enters the interior of the molecule, he will view

a different sceneries for atom H and atom O, which are respectively called out-observation and

in-observation, and establishes 1 or 3 dynamic equations on the water molecule H2O.

The main purpose of this paper is to clarify the natural reality of a particle with that of

differential equations, and conclude that a solvable one characterizes only the reality of elemen-

tary particles but non-solvable system of differential equations essentially describe particles,

such as those of baryons or mesons in the nature.

For terminologies and notations not mentioned here, we follow references [1] for mechanics,

[5] for combinatorial geometry, [15] for elementary particles, and [17] for Smarandache systems

and multispaces, and all phenomenons discussed in this paper are assumed to be true in the

nature.

§2. Out-Observations

An out-observation observes on the external, i.e., these macro but not the internal behaviors of

a particle P by human senses or via instrumental, includes the size, magnitudes or eigenvalues

of states, · · · , etc..

Certainly, the out-observation is the fundamental for quantitative research on matters of

human beings. Usually, a dynamic equation (1.2) on a particle P is established by the principle

of stationary action δS = 0 with

S =

t2∫

t1

dtL (q(t), q̇(t)) (2.1)

in classical mechanics, where q(t), q̇(t) are respectively the generalized coordinates, the velocities

and L (q(t), q̇(t)) the Lagrange function on the particle, and

S =

∫ τ1

τ2

d4xL(φ, ∂µψ) (2.2)

in field theory, where ψ is the state function and L the Lagrangian density with τ1, τ2 the

limiting surfaces of integration by viewed P an independent system of dynamics or a field. The

principle of stationary action δS = 0 respectively induced the Euler-Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0 and

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0 (2.3)

in classical mechanics and field theory, which enables one to find the dynamic equations of
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particles by properly choice of L or L. For examples, let

LS =
i~

2

(
∂ψ

∂t
ψ − ∂ψ

∂t
ψ

)
− 1

2

(
~2

2m
|∇ψ|2 + V |ψ|2

)
,

LD = ψ
(
iγµ∂µ −

mc

~

)
ψ, LKG =

1

2

(
∂µψ∂

µψ −
(mc

~

)2

ψ2

)
.

Then we respectively get the Schrödinger equation (1.3) or the Dirac equation

(
iγµ∂µ −

mc

~

)
ψ(t, x) = 0 (2.4)

for a free fermion ψ(t, x) and the Klein-Gordon equation

(
1

c2
∂2

∂t2
−∇2

)
ψ(x, t) +

(mc
~

)2

ψ(x, t) = 0 (2.5)

for a free boson ψ(t, x) hold in relativistic forms by equation (2.3), where ~ = 6.582×10−22MeV s

is the Planck constant, c is the speed of light,

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∇2 =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
,

∂µ =

(
1

c

∂

∂t
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
, ∂µ =

(
1

c

∂

∂t
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)

and γµ =
(
γ0, γ1, γ2, γ3

)
with

γ0 =


 I2×2 0

0 −I2×2


 , γi =


 0 σi

−σi 0




with the usual Pauli matrices

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 .

Furthermore, let L =
√−gR, where R = gµνRµν , the Ricci scalar curvature on the gravi-

tational field. The equation (2.3) then induces the vacuum Einstein gravitational field equation

Rµν −
1

2
gµνR = 0. (2.6)

Usually, the equation established on the out-observations only characterizes those of co-

herent behaviors of all parts in a particle P . For example, a water molecule H2O obeys the

Schrödinger equation (1.3), we assume its hydrogen atom H and oxygen atom O also obey the

Schrödinger equation (1.3) as a matter of course. However, the divisibility of matter initiates

human beings to search elementary constituting cells of matter, i.e., elementary particles such

as those of quarks, leptons with interaction quanta including photons and other particles of
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mediated interactions, also with those of their antiparticles at present ([14]), and unmatters

between a matter and its antimatter which is partially consisted of matter but others antimat-

ter ([8-19]). For example, a baryon is predominantly formed from three quarks, and a meson

is mainly composed of a quark and an antiquark in the models of Sakata, or Gell-Mann and

Ne’eman on hadron and meson, such as those shown in Fig.2, where, qi ∈ {u,d, c, s, t,b} de-

notes a quark for i = 1, 2, 3 and q2 ∈
{
u,d, c, s, t,b

}
, an antiquark. But a free quark was

never found in experiments. We can not even conclude the Schrödinger equations (1.3) is the

right equation (1.2) for quarks because it is established on an independent particle, can not be

divided again in mathematics.

q1

q2 q3

q1 q2

....................................

...................

.................................

Baryon Meson

Fig.2

Then, why is it believed without a shadow of doubt that the dynamical equations of elemen-

tary particles such as those of quarks, leptons with interaction quanta are (1.3) in physics? It

is because that all our observations come from a macro viewpoint, the human beings, not the

particle itself, which rationally leads to H.Everett’s multiverse interpretation on the superpo-

sition by letting parallel equations for the wave functions ψ(t, x) on positions of a particle in

1957 ([2]). We only hold coherent behaviors of elementary particles, such as those of quarks,

leptons with interaction quanta and their antiparticles by equation (1.3), not the individual,

and it is only an equation on those of particles viewed abstractly to be a geometrical point or

an independent field from a macroscopic point, which leads physicists to assume the internal

structures mechanically for hold the behaviors of particles such as those shown in Fig.2 on

hadrons. However, such an assumption is a little ambiguous in logic, i.e., we can not even

conclude which is the point or the independent field, the hadron or its subparticle, the quark.

In fact, a point is non-dividable in geometry. Even so, the assumption on the internal

structure of particles by physicists was mathematically verified by extending Banach spaces to

extended Banach spaces on topological graphs
−→
G in [12]:

Let (V ; +, ·) be a Banach space over a field F and
−→
G a strong-connected topological graph

with vertex set V and arc set X . A vector labeling
−→
GL on

−→
G is a 1− 1 mapping L :

−→
G → V
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such that L : (u, v)→ L(u, v) ∈ V for ∀(u, v) ∈ X
(−→
G
)

and it is a
−→
G -flow if it holds with

L (u, v) = −L (v, u) and
∑

u∈NG(v)

L (vu) = 0

for ∀(u, v) ∈ X
(−→
G
)
, ∀v ∈ V (

−→
G ), where 0 is the zero-vector in V .

For
−→
G -flows

−→
GL,

−→
GL1 ,

−→
GL2 on a topological graph

−→
G and ξ ∈ F a scalar, it is clear that−→

GL1 +
−→
GL2 and ξ · −→GL are also

−→
G -flows, which implies that all

−→
G -flows on

−→
G form a linear

space over F with unit O under operations + and ·, denoted by
−→
GV , where O is such a

−→
G -flow

with vector 0 on (u, v) for ∀(u, v) ∈ X
(−→
G
)
. Then, it was shown that

−→
GV is a Banach space,

and furthermore a Hilbert space if introduce

∥∥∥−→GL
∥∥∥ =

∑

(u,v)∈X
(−→
G
)
‖L(u, v)‖ ,

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→
G
)
〈L1(u, v), L2(u, v)〉

for ∀−→GL,
−→
GL1 ,

−→
GL2 ∈ −→GV , where ‖L(u, v)‖ is the norm of L(u, v) and 〈·, ·〉 the inner product

in V if it is an inner space. The following result generalizes the representation theorem of

Fréchet and Riesz on linear continuous functionals on
−→
G -flow space

−→
GV , which enables us to

find
−→
G -flow solutions on linear equations (1.2).

Theorem 2.1([12]) Let T :
−→
GV → C be a linear continuous functional. Then there is a unique−→

G L̂ ∈ −→GV such that

T
(−→
GL
)

=
〈−→
GL,
−→
G L̂
〉

for ∀−→GL ∈ −→GV .

For non-linear equations (1.2), we can also get
−→
G -flow solutions on them if

−→
G can be

decomposed into circuits.

Theorem 2.2([12]) If the topological graph
−→
G is strong-connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i

such that L(uv) = Li (x) for ∀(u, v) ∈ X
(−→
C i

)
, 1 ≤ i ≤ l and the Cauchy problem





Fi (x, u, ux1 , · · · , uxn , ux1x2 , · · · ) = 0

u|x0 = Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for integers 1 ≤ i ≤ l, then the Cauchy
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problem 



Fi (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0 =
−→
GL

such that L (uv) = Li(x) for ∀(u, v) ∈ X
(−→
C i

)
is solvable for X ∈ −→GV .

Theorems 2.1 − 2.2 conclude the existence of
−→
G -flow solution on linear or non-linear dif-

ferential equations for a topological graph
−→
G , such as those of the Schrödinger equation (1.3),

Dirac equation (2.4) and the Klein-Gordon equation (2.5), which all implies the rightness of

physicists assuming the internal structures for hold the behaviors of particles because there

are infinite many such graphs
−→
G satisfying conditions of Theorem 2.1 − 2.2, particularly, the

bouquet
−→
B
Lψ
N , the dipoles

−→
D⊥

Lψ
0,2N,0 for elementary particles in [13].

§3. In-Observations

An in-observation observes on the internal behaviors of a particle, particularly, a composed

particle P . Let P be composed by particles P1, P2, · · · , Pm. Different from out-observation

from a macro viewing, an in-observation requires the observer holding the respective behaviors

of particles P1, P2, · · · , Pm in P , for instance an observer enters a water molecule H2O receiving

information on the hydrogen or oxygen atoms H,O.

For such an observation, there are 2 observing ways:

(1) there is an apparatus such that an observer can simultaneously observes behaviors of

particles P1, P2, · · · , Pm, i.e., P1, P2, · · · , Pm can be observed independently as particles at the

same time for the observer;

(2) there are m observers O1, O2, · · · , Om simultaneously observe particles P1, P2, · · · , Pm,

i.e., the observer Oi only observes the behavior of particle Pi for 1 ≤ i ≤ m, called parallel

observing, such as those shown in Fig.3 for the water molecule H2O with m = 3.1 ? Y?
I>

O1

P1

O2

P2

O3

P3

Fig.3

Certainly, each of these observing views a particle in P to be an independent particle,

which enables us to establish the dynamic equation (1.2) by Euler-Lagrange equation (2.3) for
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Pi, 1 ≤ i ≤ m, respectively, and then we can apply the system of differential equations





∂L1

∂q
− d

dt

∂L1

∂q̇
= 0

∂L2

∂q
− d

dt

∂L2

∂q̇
= 0

. . . . . . . . . . . . . . . . . . . . .
∂Lm
∂q
− d

dt

∂Lm
∂q̇

= 0

q(t0) = q0, q̇(t0) = q̇0

(3.1)

for characterizing particle P in classical mechanics, or





∂L1

∂ψ
− ∂µ

∂L1

∂(∂µψ)
= 0

∂L2

∂ψ
− ∂µ

∂L2

∂(∂µψ)
= 0

. . . . . . . . . . . . . . . . . . . . . .
∂Lm
∂ψ
− ∂µ

∂Lm
∂(∂µψ)

= 0

ψ(t0) = ψ0

(3.2)

for characterizing particle P in field theory, where the ith equation is the dynamic equation of

particle Pi with initial data q0, q̇0 or ψ0.

m

M 6?
P1

P2

g

g

Fig.4

We discuss the solvability of systems (3.1) and (3.2). Let

Sqi =

{
(xi, yi, zi)(qi, t) ∈ R

3

∣∣∣∣
∂L1

∂qi
− d

dt

∂L1

∂q̇i
= 0, qi(t0) = q0, q̇i(t0) = q̇0

}

for integers 1 ≤ i ≤ m. Then, the system (3.1) of equations is solvable if and only if

D(q) =
m⋂

i=1

Sqi 6= ∅. (3.3)
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Otherwise, the system (3.1) is non-solvable. For example, let particles P1, P2 of masses M,m

be hanged on a fixed pulley, such as those shown in Fig.4. Then, the dynamic equations on P1

and P2 are respectively

P1 : ẍ = g, x(t0) = x0 and P2 : ẍ = −g, x(t0) = x0

but the system 



ẍ = g

ẍ = −g, x(t0) = x0

is contradictory, i.e., non-solvable.

Similarly, let ψi(x, t) be the state function of particle Pi, i.e., the solution of





∂L1

∂ψi
− ∂µ

∂L1

∂(∂µψi)
= 0

ψ(t0) = ψ0

Then, the system (3.2) is solvable if and only if there is a state function ψ(x, t) on P hold with

each equation of system (3.2), i.e.,

ψ(x, t) = ψ1(x, t) = · · · = ψm(x, t), x ∈ R
3,

which is impossible because if all state functions ψi(x, t), 1 ≤ i ≤ m are the same, the particles

P1, P2, · · · , Pm are nothing else but just one particle. Whence, the system (3.2) is non-solvable

if m ≥ 2, which implies we can not characterize the behavior of particle P by classical solutions

of differential equations.

For example, if the state function ψO(x, t) = ψH1(x, t) = ψH2(x, t) in the water molecule

H2O for x ∈ R3 hold with





−i~∂ψO
∂t

=
~2

2mO
∇2ψO − V (x)ψO

−i~∂ψH1

∂t
=

~2

2mH1

∇2ψH1 − V (x)ψH1

−i~∂ψH2

∂t
=

~2

2mH2

∇2ψH2 − V (x)ψH2

Then ψO(x, t) = ψH1(x, t) = ψH2 (x, t) concludes that

AOe
− i

~
(EOt−pOx) = AH1e

− i
~ (EH1 t−pH1x) = AH2e

− i
~(EH2 t−pH2x)

for ∀x ∈ R
3 and t ∈ R, which implies that

AO = AH1 = AH2 , EO = EH1 = EH2 and pO = pH1 = pH2 ,

a contradiction.

Notice that each equation in systems (3.1) and (3.2) is solvable but the system itself is
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non-solvable in general, and they are real in the nature. Even if the system (3.1) holds with

condition (3.3), i.e., it is solvable, we can not apply the solution of (3.1) to characterize the

behavior of particle P because such a solution only describes the coherent behavior of particles

P1, P2, · · · , Pm. Thus, we can not characterize the behavior of particle P by the solvability of

systems (3.1) or (3.2). We should search new method to characterize systems (3.1) or (3.2).

Philosophically, the formula (1.1) is the understanding of particle P and all of these particles

P1, P2, · · · , Pm are inherently related, not isolated, which implies that P naturally inherits a

topological structure GL[P ] in space of the nature, which is a vertex-edge labeled topological

graph determined by:

V
(
GL [P ]

)
= {P1, P2, · · · , Pm},

E
(
GL [P ]

)
= {(Pi, Pj)|Pi

⋂
Pj 6= ∅, 1 ≤ i 6= j ≤ m}

with labeling

L : Pi → L(Pi) = Pi and L : (Pi, Pj)→ L(Pi, Pj) = Pi
⋂
Pj

for integers 1 ≤ i 6= j ≤ m. For example, the topological graphs GL[P ] of water molecule H2O,

meson and baryon in the quark model of Gell-Mann and Ne’eman are respectively shown in

Fig.5,

H H

O

H ∩ O H ∩ O

H2O

q1

q2q3

q1 ∩ q3 q1 ∩ q2

q2 ∩ q3

Baryon

q q′
q ∩ q′

Meson

Fig.5

where O,H , q, q′ and qi, 1 ≤ i ≤ 3 obey the Dirac equation but O∩H, q∩ q′, qk ∩ ql, 1 ≤ k, l ≤ 3

comply with the Klein-Gordon equation.

Such a vertex-edge labeled topological graph GL[P ] is called GL-solution of systems (3.1)

or (3.2). Clearly, the global behaviors of particle P are determined by particles P1, P2, · · · , Pm.

We can hold them on GL-solution of systems (3.1) or (3.2). For example, let u[v] be the solution

of equation at vertex v ∈ V
(
GL[P ]

)
with initial value u

[v]
0 and GL0 [P ] the initial GL-solution,

i.e., labeled with u
[v]
0 at vertex v. Then, a GL-solution of systems (3.1) or (3.2) is sum-stable if

for any number ε > 0 there exists δv > 0, v ∈ V (GL0 [P ]) such that each GL
′

-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < δv, ∀v ∈ V (GL0 [P ])
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exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣

∑

v∈V (GL′ [P ])

u′
[v] −

∑

v∈V (GL[P ])

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by GL[P ]
Σ∼ GL0 [P ]. Furthermore, if there exists a number βv > 0 for ∀v ∈

V (GL0 [P ]) such that every GL
′

[P ]-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < βv, ∀v ∈ V (GL0 [P ])

satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (GL′ [P ])

u′
[v] −

∑

v∈V (GL[P ])

u[v]

∣∣∣∣∣∣
= 0,

then the GL[P ]-solution is called asymptotically stable, denoted by GL[P ]
Σ→ GL0 [P ].

Similarly, the energy integral of GL-solution is determined by

E(GL[P ]) =
∑

G≤GL0 [P ]

(−1)|G|+1

∫

OG

(
∂uG

∂t

)2

dx1dx2 · · · dxn−1,

where uG is the C2 solution of system

∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]
0 (x1, x2, · · · , xn−1)



 v ∈ V (G)

and OG =
⋂

v∈V (G)

Ov with Ov ⊂ Rn determined by the vth equation





∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]
0 (x1, x2, · · · , xn−1)

All of these global properties were extensively discussed in [7-11], which provides us to hold

behaviors of a composed particle P by its constitutions P1, P2, · · · , Pm.

§4. Reality

Generally, the reality is the state characters (1.1) of existed, existing or will existing things

whether or not they are observable or comprehensible by human beings, and the observing

objective is on the state of particles, which then enables us to find the reality of a particle.

However, an observation is dependent on the perception of the observer by his organs or through

by instruments at the observing time, which concludes that to hold the reality of a particle P

can be only little by little, and determines local reality of P from a macro observation at a
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time t, no matter what P is, a macro or micro thing. Why is this happening because we always

observe by one observer on one particle assumed to be a point in space, and then establish

a solvable equation (1.2) on coherent, not individual behaviors of P . Otherwise, we get non-

solvable equations on P contradicts to the law of contradiction, the foundation of classical

mathematics which results in discussions following:

4.1 States of Particles are Multiverse. A particle P understood by formula (1.1) is in fact

a multiverse consisting of known characters µ1, µ2, · · · , µn and unknown characters νk, k ≥ 1,

i.e., different characters characterize different states of particle P . This fact also implies that

the multiverse exist everywhere if we understand a particle P with in-observation, not only

those levels of I − IV of Max Tegmark in [24]. In fact, the infinite divisibility of a matter M in

philosophy alludes nothing else but a multiverse observed on M by its individual submatters.

Thus, the nature of a particle P is multiple in front of human beings, with unity character

appeared only in specified situations.

4.2 Reality Only Characterized by Non-Compatible System. Although the dynamical

equations (1.2) established on unilateral characters are individually compatible but they must

be globally contradictory with these individual features unless all characters are the same one.

It can not be avoided by the nature of a particle P . Whence, the non-compatible system,

particularly, non-solvable systems consisting of solvable differential equations are suitable tools

for holding the reality of particles P in the world, which also partially explains a complaint of

Einstein on mathematics, i.e., as far as the laws of mathematics refer to reality, they are not

certain; and as far as they are certain, they do not refer to reality because the multiple nature

of all things.

4.3 Reality Really Needs Mathematics on Graph. As we known, there always exist

a universal connection between things in a family in philosophy. Thus, a family F of things

naturally inherits a topological graph GL[F ] in space and we therefore conclude that

F = GL[F ] (4.1)

in that space. Particularly, if all things in F are nothing else but manifolds MT (x1, x2, x3; t)

of particles P determined by equation

fT (x1, x2, x3; t) = 0, T ∈ F (4.2)

in R
3 × R, we get a geometrical figure

⋃
T∈F

MT (x1, x2, x3; t), a combinatorial filed ([6]) for F .

Clearly, the graph GL[F ] characterizes the behavior of F no matter what the system (4.2) is

solvable or not. Calculation shows that the system (4.2) of equations is non-solvable or not

dependent on ⋂

T∈F

MT (x1, x2, x3; t) = ∅ or not.

Particularly, if
⋂

T∈F

MT (x1, x2, x3; t) = ∅, the system (4.2) is non-solvable and we can not

just characterize the behavior of F by the solvability of system (4.2). We must turn the
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contradictory system (4.2) to a compatible one, such as those shown in [10] and have to extend

mathematical systems on graph GL[F ] ([12]) for holding the reality of F .

Notice that there is a conjectured for developing mathematics in [4] called CC conjecture

which claims that any mathematical science can be reconstructed from or turned into combina-

torization. Such a conjecture is in fact a combinatorial notion for developing mathematics on

topological graphs, i.e., finds the combinatorial structure to reconstruct or generalize classical

mathematics, or combines different mathematical sciences and establishes a new enveloping

theory on topological graphs for hold the reality of things F .

§5. Conclusion

Reality of a thing is hold on observation with level dependent on the observer standing out or

in that thing, particularly, a particle classified to out or in-observation, or parallel observing

from a macro or micro view and characterized by solvable or non-solvable differential equations,

consistent with the universality principle of contradiction in philosophy. For holding on the re-

ality of things, the out-observation is basic but the in-observation is cardinal. Correspondingly,

the solvable equation is individual but the non-solvable equations are universal. Accompanying

with the establishment of compatible systems, we are also needed to characterize those of con-

tradictory systems, particularly, non-solvable differential equations on particles and establish

mathematics on topological graphs, i.e., mathematical combinatorics, and only which is the

appropriated way for understanding the nature because all things are in contradiction.
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Chapter 2 Contradiction with Reality

Contradictions are the resource, and the motive force of human beings for

creation.

By Karl Heinrich Marx, a Prussian philosopher and political economist.
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Mathematics on Non-Mathematics

– A Combinatorial Contribution

Abstract: A classical system of mathematics is homogenous without contradictions. But

it is a little ambiguous for modern mathematics, for instance, the Smarandache geometry.

Let F be a family of things such as those of particles or organizations. Then, how to hold

its global behaviors or true face? Generally, F is not a mathematical system in usual unless

a set, i.e., a system with contradictions. There are no mathematical subfields applicable.

Indeed, the trend of mathematical developing in 20th century shows that a mathemati-

cal system is more concise, its conclusion is more extended, but farther to the true face

for its abandoned more characters of things. This effect implies an important step should

be taken for mathematical development, i.e., turn the way to extending non-mathematics

in classical to mathematics, which also be provided with the philosophy. All of us know

there always exists a universal connection between things in F . Thus there is an underlying

structure, i.e., a vertex-edge labeled graph G for things in F . Such a labeled graph G is

invariant accompanied with F . The main purpose of this paper is to survey how to extend

classical mathematical non-systems, such as those of algebraic systems with contradictions,

algebraic or differential equations with contradictions, geometries with contradictions, and

generally, classical mathematics systems with contradictions to mathematics by the under-

lying structure G. All of these discussions show that a non-mathematics in classical is in

fact a mathematics underlying a topological structure G, i.e., mathematical combinatorics,

and contribute more to physics and other sciences.

Key Words: Non-mathematics, topological graph, Smarandache system, non-solvable

equation, CC conjecture, mathematical combinatorics.

AMS(2010): 03A10,05C15,20A05, 34A26,35A01,51A05,51D20,53A35

§1. Introduction

A thing is complex, and hybrid with other things sometimes. That is why it is difficult to know

the true face of all things, included in “Name named is not the eternal Name; the unnamable is

the eternally real and naming the origin of all things”, the first chapter of TAO TEH KING [9],

a well-known Chinese book written by an ideologist, Lao Zi of China. In fact, all of things with

universal laws acknowledged come from the six organs of mankind. Thus, the words “existence”

and “non-existence” are knowledged by human, which maybe not implies the true existence or

not in the universe. Thus the existence or not for a thing is invariant, independent on human

knowledge.

1International J.Math.Combin, Vol.3 (2014), 1-34.
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The boundedness of human beings brings about a unilateral knowledge for things in the

world. Such as those shown in a famous proverb “the blind men with an elephant”. In this

proverb, there are six blind men were asked to determine what an elephant looked like by feeling

different parts of the elephant’s body. The man touched the elephant’s leg, tail, trunk, ear,

belly or tusk respectively claims it’s like a pillar, a rope, a tree branch, a hand fan, a wall or a

solid pipe, such as those shown in Fig.1 following. Each of them insisted on his own and not

accepted others. They then entered into an endless argument.

Fig.1

All of you are right! A wise man explains to them: why are you telling it differently is because

each one of you touched the different part of the elephant. So, actually the elephant has all

those features what you all said. Thus, the best result on an elephant for these blind men is

An elephant = {4 pillars}
⋃
{1 rope}

⋃
{1 tree branch}

⋃ {2 hand fans}
⋃
{1 wall}

⋃
{1 solid pipe}

What is the meaning of this proverb for understanding things in the world? It lies in that

the situation of human beings knowing things in the world is analogous to these blind men.

Usually, a thing T is identified with its known characters ( or name ) at one time, and this

process is advanced gradually by ours. For example, let µ1, µ2, · · · , µn be its known and νi, i ≥ 1

unknown characters at time t. Then, the thing T is understood by

T =

(
n⋃

i=1

{µi}
)
⋃

⋃

k≥1

{νk}


 (1.1)

in logic and with an approximation T ◦ =
n⋃
i=1

{µi} for T at time t. This also answered why

difficult for human beings knowing a thing really.

Generally, let Σ be a finite or infinite set. A rule or a law on a set Σ is a mapping

Σ× Σ · · · × Σ︸ ︷︷ ︸
n

→ Σ for some integers n. Then, a mathematical system is a pair (Σ;R), where
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R consists those of rules on Σ by logic providing all these resultants are still in Σ.

Definition 1.1([28]-[30]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical system,

different two by two. A Smarandache multisystem Σ̃ is a union
m⋃
i=1

Σi with rules R̃ =
m⋃
i=1

Ri

on Σ̃, denoted by
(
Σ̃; R̃

)
.

Consequently, the thing T is nothing else but a Smarandache multisystem (1.1). However,

these characters νk, k ≥ 1 are unknown for one at time t. Thus, T ≈ T ◦ is only an approximation

for its true face and it will never be ended in this way for knowing T , i.e., “Name named is not

the eternal Name”, as Lao Zi said.

But one’s life is limited by its nature. It is nearly impossible to find all characters νk, k ≥ 1

identifying with thing T . Thus one can only understands a thing T relatively, namely find

invariant characters I on νk, k ≥ 1 independent on artificial frame of references. In fact, this

notion is consistent with Erlangen Programme on developing geometry by Klein [10]: given a

manifold and a group of transformations of the same, to investigate the configurations belonging

to the manifold with regard to such properties as are not altered by the transformations of the

group, also the fountainhead of General Relativity of Einstein [2]: any equation describing the

law of physics should have the same form in all reference frame, which means that a universal

law does not moves with the volition of human beings. Thus, an applicable mathematical theory

for a thing T should be an invariant theory acting on by all automorphisms of the artificial

frame of reference for thing T .

All of us have known that things are inherently related, not isolated in philosophy, which

implies that these is an underlying structure in characters µi, 1 ≤ i ≤ n for a thing T , namely,

an inherited topological graph G. Such a graph G should be independent on the volition of

human beings. Generally, a labeled graph G for a Smarandache multi-space is introduced

following.

Definition 1.2([21]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be a Smarandache multisystem con-

sisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topological

structure G[S̃] of
(
Σ̃; R̃

)
is a topological vertex-edge labeled graph defined following:

V (G[S̃]) = {Σ1,Σ2, · · · ,Σm},
E(G[S̃]) = {(Σi,Σj)|Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L(Σi) = Σi and L : (Σi,Σj)→ L(Σi,Σj) = Σi
⋂

Σj

for integers 1 ≤ i 6= j ≤ m.

However, classical combinatorics paid attentions mainly on techniques for catering the need

of other sciences, particularly, the computer science and children games by artificially giving

up individual characters on each system (Σ,R). For applying more it to other branch sciences

initiatively, a good idea is pullback these individual characters on combinatorial objects again,

ignored by the classical combinatorics, and back to the true face of things, i.e., an interesting

conjecture on mathematics following:
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Conjecture 1.3(CC Conjecture, [15],[19]) A mathematics can be reconstructed from or turned

into combinatorization.

Certainly, this conjecture is true in philosophy. So it is in fact a combinatorial notion on

developing mathematical sciences. Thus:

(1) One can combine different branches into a new theory and this process ended until it

has been done for all mathematical sciences, for instance, topological groups and Lie groups.

(2) One can selects finite combinatorial rulers and axioms to reconstruct or make general-

izations for classical mathematics, for instance, complexes and surfaces.

From its formulated, the CC conjecture brings about a new way for developing mathemat-

ics, and it has affected on mathematics more and more. For example, it contributed to groups,

rings and modules ([11]-[14]), topology ([23]-[24]), geometry ([16]) and theoretical physics ([17]-

[18]), particularly, these 3 monographs [19]-[21] motivated by this notion.

A mathematical non-system is such a system with contradictions. Formally, let R be

mathematical rules on a set Σ. A pair (Σ; R) is non-mathematics if there is at least one rulerR ∈
R validated and invalided on Σ simultaneously. Notice that a multi-system defined in Definition

1.1 is in fact a system with contradictions in the classical view, but it is cooperated with logic

by Definition 1.2. Thus, it lights up the hope of transferring a system with contradictions to

mathematics, consistent with logic by combinatorial notion.

The main purpose of this paper is to show how to transfer a mathematical non-system, such

as those of non-algebra, non-group, non-ring, non-solvable algebraic equations, non-solvable or-

dinary differential equations, non-solvable partial differential equations and non-Euclidean ge-

ometry, mixed geometry, differential non- Euclidean geometry, · · · , etc. classical mathematics

systems with contradictions to mathematics underlying a topological structure G, i.e., math-

ematical combinatorics. All of these discussions show that a mathematical non-system is a

mathematical system inherited a non-trivial topological graph, respect to that of the classical

underlying a trivial K1 or K2. Applications of these non-mathematic systems to theoretical

physics, such as those of gravitational field, infectious disease control, circulating economical

field can be also found in this paper.

All terminologies and notations in this paper are standard. For those not mentioned here,

we follow [1] and [19] for algebraic systems, [5] and [6] for algebraic invariant theory, [3] and [32]

for differential equations, [4], [8] and [21] for topology and topological graphs and [20], [28]-[31]

for Smarandache systems.

§2. Algebraic Systems

Notice that the graph constructed in Definition 1.2 is in fact on sets Σi, 1 ≤ i ≤ m with

relations on their intersections. Such combinatorial invariants are suitable for algebraic systems.

All operations ◦ : A × A → A on a set A considered in this section are closed and single

valued, i.e., a ◦ b is uniquely determined in A , and it is said to be Abelian if a ◦ b = b ◦ a for

∀a, b ∈ A .
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2.1 Non-Algebraic Systems

An algebraic system is a pair (A ;R) holds with a ◦ b ∈ A for ∀a, b ∈ A and ◦ ∈ R. A

non-algebraic system ¬(A ;R) on an algebraic system (A ;R) is

AS−1: there maybe exist an operation ◦ ∈ R, elements a, b ∈ A with a ◦ b undetermined.

Similarly to classical algebra, an isomorphism on ¬(A ;R) is such a mapping on A that

for ∀◦ ∈ R,

h(a ◦ b) = h(a) ◦ h(b)

holds for ∀a, b ∈ A providing a ◦ b is defined in ¬(A ;R) and h(a) = h(b) if and only if a = b.

Not loss of generality, let ◦ ∈ R be a chosen operation. Then, there exist closed subsets Ci, i ≥ 1

of A . For instance,

〈a〉◦ = {a, a ◦ a, a ◦ a ◦ a, · · · , a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸
k

, · · · }

is a closed subset of A for ∀a ∈ A . Thus, there exists a decomposition A ◦1 ,A
◦
2 , · · · , A ◦n of A

such that a ◦ b ∈ A ◦i for ∀a, b ∈ A ◦i for integers 1 ≤ i ≤ n.

Define a topological graph G[¬(A ; ◦)] following:

V (G[¬(A ; ◦)]) = {A ◦1 ,A ◦2 , · · · ,A ◦n };
E(G[¬(A ; ◦)]) = {(A ◦i ,A ◦j ) if A ◦i

⋂
A ◦j 6= ∅, 1 ≤ i, 6= j ≤ n}

with labels

L : A ◦i ∈ V (G[¬(A ; ◦)])→ L(A ◦i ) = A ◦i ,

L : (A ◦i ,A
◦
j ) ∈ E(G[¬(A ; ◦)])→ A ◦i

⋂
A ◦j for integers 1 ≤ i 6= j ≤ n.

For example, let A ◦1 = {a, b, c}, A ◦2 = {a, d, f}, A ◦3 = {c, d, e}, A ◦4 = {a, e, f} and

A ◦5 = {d, e, f}. Calculation shows that A ◦1
⋂

A ◦2 = {a}, A ◦1
⋂

A ◦3 = {c}, A ◦1
⋂

A ◦4 = {a},
A ◦1

⋂
A ◦5 = ∅, A ◦2

⋂
A ◦3 = {d}, A ◦2

⋂
A ◦4 = {a}, A ◦2

⋂
A ◦5 = {d, f},A ◦3

⋂
A ◦4 = {e},

A ◦3
⋂

A ◦5 = {d, e} and A ◦4
⋂

A ◦5 = {e, f}. Then, the labeled graph G[¬(A ; ◦)] is shown

in Fig.2.

A ◦1

A ◦2
A ◦3 A ◦4

A ◦5

{a} {c} {a}
{d} {e}

{d, e}
{d, f} {e, f}

{a}

Fig.2
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Let h : A → A be an isomorphism on ¬(A ; ◦). Then ∀a, b ∈ A ◦i ), h(a) ◦ h(b) =

h(a ◦ b) ∈ h(A◦i ) and h(A◦i )
⋂
h(A◦j ) = h(A◦i

⋂
A◦j ) = ∅ if and only if A◦i

⋂
A◦j = ∅ for integers

1 ≤ i 6= j ≤ n. Whence, if Gh[¬(A ; ◦)] defined by

V (Gh[¬(A ; ◦)]) = {h(A ◦1 ), h(A ◦2 ), · · · , h(A ◦n )};
E(Gh[¬(A ; ◦)]) = {(h(A ◦i ), h(A ◦j )) if h(A ◦i )

⋂
h(A ◦j ) 6= ∅, 1 ≤ i, 6= j ≤ n}

with labels

Lh : h(A ◦i ) ∈ V (Gh[¬(A ; ◦)])→ L(h(A ◦i )) = h(A ◦i ),

Lh : (h(A ◦i ), h(A ◦j )) ∈ E(Gh[¬(A ; ◦)])→ h(A ◦i )
⋂
h(A ◦j )

for integers 1 ≤ i 6= j ≤ n. Thus h : A → A induces an isomorphism of graph h∗ :

G[¬(A ; ◦)]→ Gh[¬(A ; ◦)]. We therefore get the following result.

Theorem 2.1 A non-algebraic system ¬(A ; ◦) in type AS−1 inherits an invariant G[¬(A ; ◦)]
of labeled graph.

Let

G[¬(A ;R)] =
⋃

◦∈R

G[¬(A ; ◦)]

be a topological graph on ¬(A ;R). Theorem 2.1 naturally leads to the conclusion for non-

algebraic system ¬(A ;R) following.

Theorem 2.2 A non-algebraic system ¬(A ;R) in type AS−1 inherits an invariant G[¬(A ;R)]

of topological graph.

Similarly, we can also discuss algebraic non-associative systems, algebraic non-Abelian sys-

tems and find inherited invariants G[¬(A ; ◦)] of graphs. Usually, we adopt different notations

for operations in R, which consists of a multi-system (A ;R). For example, R = {+, ·} in an

algebraic field (R; +, ·). If we view the operation + is the same as ·, throw out 0 · a, a · 0 and

1 + a, a + 1 for ∀a ∈ R in R, then (R; +, ·) comes to be a non-algebraic system (R; ·) with

topological graph G[R; ·] shown in Fig.3.

R \ {1} R \ {0}
R \ {0, 1}

Fig.3

2.2 Non-Groups

A group is an associative system (G ; ◦) holds with identity and inverse elements for all elements

in G . Thus, for a, b, c ∈ G , (a ◦ b) ◦ c = a ◦ (b ◦ c), ∃1G ∈ G such that 1G ◦ a = a ◦ 1G = a and

for ∀a ∈ G , ∃a−1 ∈ A G such that a ◦ a−1 = 1G . A non-group ¬(G ; ◦) on a group (G ; ◦) is an
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algebraic system in 3 types following:

AG−1
1 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ G such that (a1 ◦ b1) ◦ c1 = a1 ◦ (b1 ◦ c1)

but (a2 ◦ b2) ◦ c2 6= a2 ◦ (b2 ◦ c2), also holds with identity 1G and inverse element a−1 for all

elements in a ∈ G .

AG−1
2 : there maybe exist distinct 1G , 1

′
G ∈ G such that a1 ◦ 1G = 1G ◦ a1 = a1 and

a2 ◦ 1′G = 1′G ◦ a2 = a2 for a1 6= a2 ∈ G , also holds with associative and inverse elements a−1

on 1G and 1′G for ∀a ∈ G .

AG−1
3 : there maybe exist distinct inverse elements a−1, ȧ−1 for a ∈ G , also holds with

associative and identity elements.

Notice that (a ◦ a) ◦ a = a ◦ (a ◦ a) always holds with a ∈ G in an algebraic system.

Thus there exists a decomposition G1,G2, · · · , Gn of G such that (Gi; ◦) is a group for integers

1 ≤ i ≤ n for Type AG−1
1 .

Type AG−1
2 is true only if 1G ◦ 1′G 6= 1G and 6= 1′G . Thus 1G and 1′G are local, not a global

identity on G . Define

G (1G ) = {a ∈ G if a ◦ 1G = 1G ◦ a = a}.

Then G (1G ) 6= G (1′G ) if 1G 6= 1′G . Denoted by I(G ) the set of all local identities on G . Then

G (1G ), 1G ∈ I(G ) is a decomposition of G such that (G (1G ); ◦) is a group for ∀1G ∈ I(G ).

Type AG−1
3 is true only if there are distinct local identities 1G on G . Denoted by I(G )

the set of all local identities on G . We can similarly find a decomposition of G with group

(G (1G ); ◦) holds for ∀1G ∈ I(G ) in this type.

Thus, for a non-group ¬(G ; ◦) of AG−1
1 -AG−1

3 , we can always find groups (G1; ◦), (G2; ◦), · · · ,
(Gn; ◦) for an integer n ≥ 1 with G =

n⋃
i=1

Gi. Particularly, if (G ; ◦) is itself a group, then such

a decomposition is clearly exists by its subgroups.

Define a topological graph G[¬(G ; ◦)] following:

V (G[¬(G ; ◦)]) = {G1,G2, · · · ,Gn};
E(G[¬(G ; ◦)]) = {(Gi,Gj) if Gi

⋂
Gj 6= ∅, 1 ≤ i, 6= j ≤ n}

with labels

L : Gi ∈ V (G[¬(G ; ◦)])→ L(Gi) = Gi,

L : (Gi,Gj) ∈ E(G[¬(G ; ◦)])→ Gi
⋂

Gj for integers 1 ≤ i 6= j ≤ n.

For example, let G1 = 〈α, β〉, G2 = 〈α, γ, θ〉, G3 = 〈β, γ〉, G4 = 〈β, δ, θ〉 be 4 free Abelian

groups with α 6= β 6= γ 6= δ 6= θ. Calculation shows that G1

⋂
G2 = 〈α〉, G2

⋂
G3 = 〈γ〉,

G3

⋂
G4 = 〈δ〉, G1

⋂
G4 = 〈β〉 and G2

⋂
G4 = 〈θ〉. Then, the topological graph G[¬(G ; ◦)] is

shown in Fig.4.
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G1 G2

G4 G3

〈α〉

〈γ〉

〈δ〉

〈β〉 〈θ〉

Fig.4

For an isomorphism g : G → G on ¬(G ; ◦), it naturally induces a 1-1 mapping g∗ :

V (G[¬(G ; ◦)]) → V (G[¬(G ; ◦)]) such that each g∗(Gi) is also a group and g∗(Gi)
⋂
g∗(Gj) 6= ∅

if and only if Gi
⋂

Gj 6= ∅ for integers 1 ≤ i 6= j ≤ n. Thus g induced an isomorphism g∗ of

graph from G[¬(G ; ◦)] to g∗(G[¬(G ; ◦)]), which implies a conclusion following.

Theorem 2.3 A non-group ¬(G ; ◦) in type AG−1
1 -AG−1

3 inherits an invariant G[¬(G ; ◦)] of

topological graph.

Similarly, we can discuss more non-groups with some special properties, such as those

of non-Abelian group, non-solvable group, non-nilpotent group and find inherited invariants

G[¬(G ; ◦)]. Notice that([19]) any group G can be decomposed into disjoint classes C(H1),

C(H2), · · · , C(Hs) of conjugate subgroups, particularly, disjoint classes Z(a1), Z(a2), · · · , Z(al)

of centralizers with |C(Hi)| = |G : NG (Hi)|, |Z(aj)| = |G : ZG (aj)|, 1 ≤ i ≤ s, 1 ≤ j ≤ l and

|C(H1)|+ |C(H2)|+ · · ·+ |C(Hs)| = |G |, |Z(a1)|+ |Z(a2)|+ · · ·+ |Z(al)| = |G |, where NG (H),

Z(a) denote respectively the normalizer of subgroup H and centralizer of element a in group

G . This fact enables one furthermore to construct topological structures of non-groups with

special classes of groups following:

Replace a vertex Gi by si (or li) isolated vertices labeled with C(H1), C(H2), · · · , C(Hsi)

(or Z(a1), Z(a2), · · · , Z(ali)) in G[¬(G ; ◦)] and denoted the resultant by Ĝ[¬(G ; ◦)].
We then get results following on non-groups with special topological structures by Theorem

2.3.

Theorem 2.4 A non-group ¬(G ; ◦) in type AG−1
1 -AG−1

3 inherits an invariant Ĝ[¬(G ; ◦)] of

topological graph labeled with conjugate classes of subgroups on its vertices.

Theorem 2.5 A non-group ¬(G ; ◦) in type AG−1
1 -AG−1

3 inherits an invariant Ĝ[¬(G ; ◦)] of

topological graph labeled with Abelian subgroups, particularly, with centralizers of elements in G

on its vertices.

Particularly, for a group the following is a readily conclusion of Theorems 2.4 and 2.5.

Corollary 2.6 A group (G ; ◦) inherits an invariant Ĝ[G ; ◦] of topological graph labeled with

conjugate classes of subgroups (or centralizers) on its vertices, with E(Ĝ[G ; ◦]) = ∅
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2.3 Non-Rings

A ring is an associative algebraic system (R; +, ◦) on 2 binary operations “+”, “◦”, hold with an

Abelian group (R; +) and for ∀x, y, z ∈ R, x◦ (y+z) = x◦y+x◦z and (x+y)◦z = x◦z+y ◦z.
Denote the identity by 0+, the inverse of a by −a in (R; +). A non-ring ¬(R; +, ◦) on a ring

(R; +, ◦) is an algebraic system on operations “+”, “◦” in 5 types following:

AR−1
1 : there maybe exist a, b ∈ R such that a + b 6= b + a, but hold with the associative

in (R; ◦) and a group (R; +);

AR−1
2 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ R such that (a1 ◦ b1)◦ c1 = a1 ◦ (b1 ◦ c1),

(a2 ◦ b2) ◦ c2 6= a2 ◦ (b2 ◦ c2), but holds with an Abelian group (R; +).

AR−1
3 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ R such that (a1+b1)+c1 = a1+(b1+c1),

(a2 + b2) + c2 6= a2 + (b2 + c2), but holds with (a ◦ b) ◦ c = a ◦ (b ◦ c), identity 0+ and −a in

(R; +) for ∀a, b, c ∈ R.

AR−1
4 : there maybe exist distinct 0+, 0

′
+ ∈ R such that a + 0+ = 0+ + a = a and

b+ 0′+ = 0′+ + b = b for a 6= b ∈ R, but holds with the associative in (R; +), (R; ◦) and inverse

elements −a on 0+, 0′+ in (R; +) for ∀a ∈ R.

AR−1
5 : there maybe exist distinct inverse elements −a,−ȧ for a ∈ R in (R; +), but holds

with the associative in (R; +), (R; ◦) and identity elements in (R; +).

Notice that (a+ a) + a = a+ (a+ a), a+ a = a+ a and a ◦ a = a◦ always hold in non-ring

¬(R; +, ◦). Whence, for Types AR−1
1 and AR−1

2 , there exists a decomposition R1, R2, · · · , Rn
of R such that a + b = b + a and (a ◦ b) ◦ c = a ◦ (b ◦ c) if a, b, c ∈ Ri, i.e., each (Ri; +, ◦) is

a ring for integers 1 ≤ i ≤ n. A similar discussion for Types AG−1
1 -AG−1

3 in Section 2.2 also

shows such a decomposition (Ri; +, ◦), 1 ≤ i ≤ n of subrings exists for Types 3 − 5. Define a

topological graph G[¬(R; +, ◦)] by

V (G[¬(R; +, ◦)]) = {R1, R2, · · · , Rn};
E(G[¬(R; +, ◦)]) = {(Ri, Rj) if Ri

⋂
Rj 6= ∅, 1 ≤ i, 6= j ≤ n}

with labels

L : Ri ∈ V (G[¬(R; +, ◦)])→ L(Ri) = Ri,

L : (Ri, Rj) ∈ E(G[¬(R; +, ◦)])→ Ri
⋂
Rj for integers 1 ≤ i 6= j ≤ n.

Then, such a topological graph G[¬(R; +, ◦)] is also an invariant under isomorphic actions

on ¬(R; +, ◦). Thus,

Theorem 2.7 A non-ring ¬(R; +, ◦) in types AR−1
1 -AR−1

5 inherits an invariant G[¬(R; +, ◦)]
of topological graph.

Furthermore, we can consider non-associative ring, non-integral domain, non-division ring,

skew non-field or non-field, · · · , etc. and find inherited invariants G[¬(R; +, ◦)] of graphs. For

example, a non-field ¬(F ; +, ◦) on a field (F ; +, ◦) is an algebraic system on operations “+”,
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“◦” in 8 types following:

AF−1
1 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ F such that (a1 ◦ b1) ◦ c1 = a1 ◦ (b1 ◦ c1),

(a2 ◦ b2) ◦ c2 6= a2 ◦ (b2 ◦ c2), but holds with an Abelian group (F ; +), identity 1◦, a
−1 for a ∈ F

in (F ; ◦).
AF−1

2 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ F such that (a1+b1)+c1 = a1+(b1+c1),

(a2 + b2) + c2 6= a2 + (b2 + c2), but holds with an Abelian group (F ; ◦), identity 1+, −a for

a ∈ F in (F ; +).

AF−1
3 : there maybe exist a, b ∈ F such that a ◦ b 6= b ◦ a, but hold with an Abelian group

(F ; +), a group (F ; ◦);
AF−1

4 : there maybe exist a, b ∈ F such that a+ b 6= b + a, but hold with a group (F ; +),

an Abelian group (F ; ◦);
AF−1

5 : there maybe exist distinct 0+, 0
′
+ ∈ F such that a+ 0+ = 0+ + a = a and b+ 0′+ =

0′+ + b = b for a 6= b ∈ F , but holds with the associative, inverse elements −a on 0+, 0′+ in

(F ; +) for ∀a ∈ F , an Abelian group (F ; ◦);
AF−1

6 : there maybe exist distinct 1◦, 1
′
◦ ∈ F such that a ◦ 1◦ = 1◦ ◦ a = a and b ◦ 1′◦ =

1′◦ ◦ b = b for a 6= b ∈ F , but holds with the associative, inverse elements a−1 on 1◦, 1′◦ in (F ; ◦)
for ∀a ∈ F , an Abelian group (F ; +);

AF−1
7 : there maybe exist distinct inverse elements −a,−ȧ for a ∈ F in (F ; +), but holds

with the associative, identity elements in (F ; +), an Abelian group (F ; ◦).
AF−1

8 : there maybe exist distinct inverse elements a−1, ȧ−1 for a ∈ F in (F ; ◦), but holds

with the associative, identity elements in (F ; ◦), an Abelian group (F ; +).

Similarly, we can show that there exists a decomposition (Fi; +, ◦), 1 ≤ i ≤ n of fields for

non-fields ¬(F ; +, ◦) in Types AF−1
1 -AF−1

8 and find an invariant G[¬(F ; +, ◦)] of graph.

Theorem 2.8 A non-ring ¬(F ; +, ◦) in types AF−1
1 -AF−1

8 inherits an invariant G[¬(F ; +, ◦)]
of topological graph.

2.4 Algebraic Combinatorics

All of previous discussions with results in Sections 2.1-2.3 lead to a conclusion alluded in

philosophy that a non-algebraic system ¬(A ;R) constraint with property can be decomposed into

algebraic systems with the same constraints, and inherits an invariant G[¬(A ;R)] of topological

graph labeled with those of algebraic systems, i.e., algebraic combinatorics, which is in accordance

with the notion for developing geometry that of Klein’s. Thus, a more applicable approach for

developing algebra is including non-algebra to algebra by consider various non-algebraic systems

constraint with property, but such a process will never be ended if we do not firstly determine

all algebraic systems. Even though, a more feasible approach is by its inverse, i.e., algebraic

G-systems following:

Definition 2.9 Let (A1;R1), (A2;R2), · · · , (An;Rn) be algebraic systems. An algebraic G-

system is a topological graph G with labeling L : v ∈ V (G) → L(v) ∈ {A1,A2, · · · ,An} and
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L : (u, v) ∈ E(G)→ L(u)
⋂
L(v) with L(u)

⋂
L(v) 6= ∅, denoted by G[A ,R], where A =

n⋃
i=1

Ai

and R =
n⋃
i=1

Ri.

Clearly, if G[A ,R] is prescribed, these algebraic systems (A1;R1), (A2;R2), · · · , (An;Rn)

with intersections are determined.

Problem 2.10 Characterize algebraic G-systems G[A ,R], such as those of G-groups, G-rings,

integral G-domain, skew G-fields, G-fields, · · · , etc., or their combination G−{groups, rings},
G− {groups, integral domains}, G− {groups, fields}, G− {rings, fields} · · · . Particularly,

characterize these G-algebraic systems for complete graphs G = K2,K3,K4, path P3, P4 or

circuit C4 of order≤ 4.

In this perspective, classical algebraic systems are nothing else but mostly algebraic K1-

systems, also a few algebraic K2-systems. For example, a field (F ; +, ·) is in fact a K2-group

prescribed by Fig.3.

§3. Algebraic Equations

All equations discussed in this paper are independent, maybe contain one or several unknowns,

not an impossible equality in algebra, for instance 2x+y+z = 0.

3.1 Geometry on Non-Solvable Equations

Let (LES1
4), (LES2

4) be two systems of linear equations following:

(LES1
4)





x = y

x = −y
x = 2y

x = −2y

(LES2
4)





x+ y = 1

x+ y = 4

x− y = 1

x− y = 4

Clearly, the system (LES1
4) is solvable with x = 0, y = 0 but (LES2

4) is non-solvable because

x + y = 1 is contradicts to that of x + y = 4 and so for x − y = 1 to x − y = 4. Even so, is

the system (LES2
4) meaningless in the world? Similarly, is only the solution x = 0, y = 0 of

system (LES1
4) important to one? Certainly NOT! This view can be readily come into being

by all figures on R2 of these equations shown in Fig.5. Thus, if we denote by





L1 = {(x, y) ∈ R2|x = y}
L2 = {(x, y) ∈ R

2|x = −y}
L3 = {(x, y) ∈ R2|x = 2y}
L4 = {(x, y) ∈ R

2|x = −2y}





and





L′1 = {(x, y) ∈ R2|x+ y = 1}
L′2 = {(x, y) ∈ R

2|x+ y = 4}
L′3 = {(x, y) ∈ R2|x− y = 1}
L′4 = {(x, y) ∈ R

2|x− y = 4}





,
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- x

y

x+ y = 1
x+ y = 4

x− y = 1
x− y = 4

O
-

6
x

y

x = yx = −y

x = 2yx = −2y

O

(LES1
4) (LES2

4)
Fig.5

the global behavior of (LES1
4), (LES2

4) are lines L1− L4, lines L′1 − L′4 on R2 and

L1

⋂
L2

⋂
L3

⋂
L4 = {(0, 0)} but L′1

⋂
L′2
⋂
L′3
⋂
L′4 = ∅.

Generally, let

(ESm)





f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn) = 0

be a system of algebraic equations in Euclidean space Rn for integers m,n ≥ 1 with non-empty

point set Sfi ⊂ Rn such that fi(x1, x2, · · · , xn) = 0 for (x1, x2, · · · , xn) ∈ Sfi , 1 ≤ i ≤ m.

Clearly, the system (ESm) is non-solvable or not dependent on

m⋂

i=1

Sfi = ∅ or 6= ∅.

Conversely, let G be a geometrical space consisting of m parts G1,G2, · · · ,Gm in R
n, where,

each Gi is determined by a system of algebraic equations





f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn) = 0

Then, the system of equations

f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn) = 0





1 ≤ i ≤ m
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is non-solvable or not dependent on

m⋂

i=1

Gi = ∅ or 6= ∅.

Thus we obtain the following result.

Theorem 3.1 The geometrical figure of equation system (ESm) is a space G consisting of

m parts Gi determined by equation fi(x1, x2, · · · , xn) = 0, 1 ≤ i ≤ m in (ESm), and is non-

solvable if
m⋂
i=1

Gi = ∅. Conversely, if a geometrical space G consisting of m parts,G1,G2, · · · ,Gm,

each of them is determined by a system of algebraic equations in Rn, then all of these equations

consist a system (ESm), which is non-solvable or not dependent on
m⋂
i=1

Gi = ∅ or not.

For example, let G be a planar graph with vertices v1, v2, v3, v4 and edges v1v2, v1v3, v2v3,

v3v4, v4v1, shown in Fig.6.

-
6

O
x

y

y = 8

y = 2

x = 2 x = 12

v1 v2

v3v4

Fig.6

Then, a non-solvable system of equations with figure G on R2 consists of

(LE5)





x = 2

y = 8

x = 12

y = 2

3x+ 5y = 46.

Thus G is an underlying graph of non-solvable system (LE5).

Definition 3.2 Let (ESmi) be a solvable system of mi equations





f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn) = 0
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with a solution space Sf [i] in Rn for integers 1 ≤ i ≤ m. A topological graph G[ESm] is defined

by

V (G[ESm]) = {Sf [i] , 1 ≤ i ≤ m};
E(G[ESm]) = {(Sf [i] , Sf [j]) if Sf [i]

⋂
Sf [j] 6= ∅, 1 ≤ i 6= j ≤ m}

with labels

L : Sf [i] ∈ V (G[ESm)])→ L(Sf [i]) = Sf [i] ,

L : (Sf [i] , Sf [j]) ∈ E(G[ESm)])→ Sf [i]

⋂
Sf [j] for integers 1 ≤ i 6= j ≤ m.

Applying Theorem 3.1, a conclusion following can be readily obtained.

Theorem 3.3 A system (ESm) consisting of equations in (ESmi), 1 ≤ i ≤ m is solvable if and

only if G[ESm] ≃ Km with ∅ 6= S ⊂
m⋂
i=1

Sf [i] . Otherwise, non-solvable, i.e., G[ESm] 6≃ Km, or

G[ESm] ≃ Km but
m⋂
i=1

Sf [i] = ∅.

Let T : (x1, x2, · · · , xn) → (x′1, x
′
2, · · · , x′n) be linear transformation determined by an

invertible matrix [aij ]n×n, i.e., x′i = ai1x1+ai2x2+· · ·+ainxn, 1 ≤ i ≤ n and let T (Sf [k]) = S′
f [k]

for integers 1 ≤ k ≤ m. Clearly, T : {Sf [i] , 1 ≤ i ≤ m} → {S′
f [i] , 1 ≤ i ≤ m} and

S′f [i]

⋂
S′f [j] 6= ∅ if and only if Sf [i]

⋂
Sf [j] 6= ∅

for integers 1 ≤ i 6= j ≤ m. Consequently, if T : (ESm)← (′ESm), then G[ESm] ≃ G[′ESm].

Thus T induces an isomorphism T ∗ of graph from G[ESm] to G[′ESm], which implies the

following result:

Theorem 3.4 A system (ESm) of equations fi(x) = 0, 1 ≤ i ≤ m inherits an invariant G[ESm]

under the action of invertible linear transformations on Rn.

Theorem 3.4 enables one to introduce a definition following for algebraic system (ESm) of

equations, which expands the scope of algebraic equations.

Definition 3.5 If G[ESm] is the topological graph of system (ESm) consisting of equations in

(ESmi) for integers 1 ≤ i ≤ m, introduced in Definition 3.2, then G[ESm] is called a G-solution

of system (ESm).

Thus, for developing the theory of algebraic equations, a central problem in front of one

should be:

Problem 3.6 For an equation system (ESm), determine its G-solution G[ESm].

For example, the solvable system (ESm) in classical algebra is nothing else but a Km-

solution with
m⋂
i=1

Sf [i] 6= ∅, as claimed in Theorem 3.3. The readers are refereed to references

[22] or [26] for more results on non-solvable equations.
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3.2 Homogenous Equations

A system (ESm) is homogenous if each of its equations fi(x0, x1, · · · , xn), 1 ≤ i ≤ m is

homogenous, i.e.,

fi(λx0, λx1, · · · , λxn) = λdfi(x0, x1, · · · , xn)

for a constant λ, denoted by (hESm). For such a system, there are always existing a Km-

solution with {xi = 0, 0 ≤ i ≤ n} ⊂
m⋂
i=1

Sf [i] and each fi(x0, x1, · · · , xn) = 0 passes through

O = (0, 0, · · · , 0︸ ︷︷ ︸
n+1

) in Rn. Clearly, an invertible linear transformation T action on such a Km-

solution is also a Km-solution.

However, there are meaningless for such a Km-solution in projective space Pn because O 6∈
Pn. Thus, new invariants for such systems under projective transformations (x′0, x

′
1, · · · , x′n) =

[aij ](n+1)×(n+1) (x0, x1, · · · , xn) should be found, where [aij ](n+1)×(n+1) is invertible. In R2,

two lines P (x, y), Q(x, y) are parallel if they are not intersect. But in P2, this parallelism will

never appears because the Bézout’s theorem claims that any two curves P (x, y, z), Q(x, y, z)

of degrees m,n without common components intersect precisely in mn points. However, de-

noted by I(P,Q) the set of intersections of homogenous polynomials P (x) with Q(x) with

x = (x0, x1, · · · , xn). The parallelism in Rn can be extended to Pn following, which enables one

to find invariants on systems homogenous equations.

Definition 3.7 Let P (x), Q(x) be two complex homogenous polynomials of degree d with x =

(x0, x1, · · · , xn). They are said to be parallel, denoted by P ‖ Q if d ≥ 1 and there are constants

a, b, · · · , c (not all zero) such that for ∀x ∈ I(P,Q), ax0 + bx1 + · · · + cxn = 0, i.e., all

intersections of P (x) with Q(x) appear at a hyperplane on PnC, or d = 1 with all intersections

at the infinite xn = 0. Otherwise, P (x) are not parallel to Q(x), denoted by P 6‖ Q.

Definition 3.8 Let P1(x) = 0, P2(x) = 0, · · · , Pm(x) = 0 be homogenous equations in (hESm).

Define a topological graph G[hESm] in Pn by

V (G[hESm]) = {P1(x), P2(x), · · · , Pm(x)};
E(G[hESm]) = {(Pi(x), Pj(x))|Pi 6‖ Pj , 1 ≤ i, j ≤ m}

with a labeling

L : Pi(x)→ Pi(x), (Pi(x), Pj(x))→ I(Pi, Pj), where 1 ≤ i 6= j ≤ m.

For any system (hESm) of homogenous equations, G[hESm] is an indeed invariant under

the action of invertible linear transformations T on Pn. By definition in [6], a covariant C(ak, x)

on homogenous polynomials P (x) is a polynomial function of coefficients ak and variables x.

We furthermore find a topological invariant on covariants following.

Theorem 3.9 Let (hESm) be a system consisting of covariants Ci(ak, x) on homogenous

polynomials Pi(x) for integers 1 ≤ i ≤ m. Then, the graph G[hESm] is a covariant under the

action of invertible linear transformations T , i.e., for ∀Ci(ak, x) ∈ (ESm), there is Ci′(ak, x) ∈
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(ESm) with

Ci′(a
′
k
, x′) = ∆pCi(ak, x)

holds for integers 1 ≤ i ≤ m, where p is a constant and ∆ is the determinant of T .

Proof Let GT [hESm] be the topological graph on transformed system T (hESm) defined

in Definition 3.8. We show that the invertible linear transformation T naturally induces an

isomorphism between graphs G[hESm] and GT [hESm]. In fact, T naturally induces a mapping

T ∗ : G[hESm] → GT [hESm] on Pn. Clearly, T ∗ : V (G[hESm]) → V (GT [hESm]) is 1 − 1,

also onto by definition. In projective space Pn, a line is transferred to a line by an invertible

linear transformation. Therefore, CTu ‖ CTv in T (ESm) if and only if Cu ‖ Cv in (hESm),

which implies that (CTu , C
T
v ) ∈ E(GT [ESm]) if and only if (Cu, Cv) ∈ E(G[hESm]). Thus,

G[hESm] ≃ GT [hESm] with an isomorphism T ∗ of graph.

Notice that I
(
CTu , C

T
v

)
= T (I(Cu, Cv)) for ∀(Cu, Cv) ∈ E(G[hESm]). Consequently, the

induced mapping

T ∗ : V (G[hESm])→ V (GT [hESm]), E(G[hESm])→ E(GT [hESm])

is commutative with that of labeling L, i.e., T ∗ ◦L = L ◦T ∗. Thus, T ∗ is an isomorphism from

topological graph G[hESm] to GT [hESm]. 2
Particularly, let p = 0, i.e., (ESm) consisting of homogenous polynomials P1(x), P2(x),

· · · , Pm(x) in Theorem 3.9. Then we get a result on systems of homogenous equations following.

Corollary 3.10 A system (hESm) of homogenous equations fi(x) = 0, 1 ≤ i ≤ m inherits an

invariant G[hESm] under the action of invertible linear transformations on Pn.

Thus, for homogenous equation systems (hESm), the G-solution in Problem 3.6 should be

substituted by G[hESm]-solution.

§4. Differential Equations

4.1 Non-Solvable Ordinary Differential Equations

For integers m, n ≥ 1, let

Ẋ = Fi(X), 1 ≤ i ≤ m (DES1
m)

be a differential equation system with continuous Fi : Rn → Rn, Ẋ =
dX

dt
such that Fi(0) = 0,

particularly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order with

Ẋ = (ẋ1, ẋ2, · · · , ẋn)t = (
dx1

dt
,
dx2

dt
, · · · , dxn

dt
)
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and 



x(n) + a
[0]
11x

(n−1) + · · ·+ a
[0]
1nx = 0

x(n) + a
[0]
21x

(n−1) + · · ·+ a
[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · ·+ a
[0]
mnx = 0

(LDEnm)

a linear differential equation system of order n with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)



,

where, x(n) =
dnx

dtn
, all a

[k]
ij , 0 ≤ k ≤ m, 1 ≤ i, j ≤ n are numbers. Such a system (DES1

m) or

(LDES1
m) (or (LDEnm)) are called non-solvable if there are no function X(t) (or x(t)) hold with

(DES1
m) or (LDES1

m) (or (LDEnm)) unless constants. For example, the following differential

equation system

(LDE2
6)





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

is a non-solvable system.

According to theory of ordinary differential equations ([32]), any linear differential equation

system (LDES1
1) of first order in (LDES1

m) or any differential equation (LDEn1 ) of order n

with complex coefficients in (LDEnm) are solvable with a solution basis B = { βi(t)| 1 ≤ i ≤ n}
such that all general solutions are linear generated by elements in B.

Denoted the solution basis of systems (DES1
m) or (LDES1

m) (or (LDEnm)) of ordinary dif-

ferential equations by B1,B2, · · · ,Bm and define a topological graph G[DES1
m] or G[LDES1

m]

(or G[LDEnm]) in Rn by

V (G[DES1
m]) = V (G[LDES1

m]) = V (G[LDEnm]) = {B1,B2, · · · ,Bm};
E(G[DES1

m]) = E(G[LDES1
m]) = E(G[LDEnm])

= {(Bi,Bj) if Bi

⋂
Bj 6= ∅, 1 ≤ i, j ≤ m}

with a labeling

L : Bi → Bi, (Bi,Bj)→ Bi

⋂
Bj for 1 ≤ i 6= j ≤ m.
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Let T be a linear transformation on Rn determined by an invertible matrix [aij ]n×n. Let

T : {Bi, 1 ≤ i ≤ m} → {B′i, 1 ≤ i ≤ m}.

It is clear that B′i is the solution basis of the ith transformed equation in (DES1
m) or (LDES1

m)

(or (LDEnm)), and B′i
⋂

B′j 6= ∅ if and only if Bi

⋂
Bj 6= ∅. Thus T naturally induces an

isomorphism T ∗ of graph with T ∗ ◦ L = L ◦ T ∗ on labeling L.

Theorem 4.1 A system (DES1
m) or (LDES1

m) (or (LDEnm)) of ordinary differential equations

inherits an invariant G[DES1
m] or G[LDES1

m] (or G[LDEnm]) under the action of invertible

linear transformations on Rn.

Clearly, if the topological graph G[DES1
m] or G[LDES1

m] (or G[LDEnm]) are determined,

the global behavior of solutions of systems (DES1
m) or (LDES1

m) (or (LDEnm)) in Rn are

readily known. Such graphs are called respectively G[DES1
m]-solution or G[LDES1

m]-solution

(or G[LDEnm]-solution) of systems of (DES1
m) or (LDES1

m) (or (LDEnm)). Thus, for developing

ordinary differential equation theory, an interesting problem should be:

Problem 4.2 For a system of (DES1
m) (or (LDES1

m), or (LDEnm)) of ordinary differential

equations, determine its G[DES1
m]-solution ( or G[LDES1

m]-solution, or G[LDEnm]-solution).

For example, the topological graph G[LDE2
6 ] of system (LDE2

6) of linear differential equa-

tion of order 2 in previous is shown in Fig.7.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}

{e5t}

{e6t}

{et}

Fig.7

4.2 Non-Solvable Partial Differential Equations

Let L1, L2, · · · , Lm be m partial differential operators of first order (linear or non-linear) with

Lk =

n∑

i=1

aki
∂

∂xi
, 1 ≤ k ≤ m.

Then the system of partial differential equations

Li[u(x1, x2, · · · , xn)] = hi, 1 ≤ i ≤ m, (PDESm)
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or the Cauchy problem





Li[u] = hi

u(x1, x2, · · · , xn−1, x
0
n) = ̟i, 1 ≤ i ≤ m

(PDESCm)

is non-solvable if there are no function u(x1, · · · , xn) on a domain D ⊂ Rn with (PDESm)

or (PDESCm) holds, where hi, 1 ≤ i ≤ m and ̟i 1 ≤ i ≤ m are all continuous functions on

D ⊂ R
n.

Clearly, the ith partial differential equation is solvable [3]. Denoted by S0
i the solution of

ith equation in (PDESm) or (DEPSCm). Then the system (PDESm) or (DEPSCm) of partial

differential equations is solvable only if
m⋂
i=1

S0
i 6= ∅. Because u : Rn → Rn is differentiable, so

the (PDESm) or (DEPSCm) is solvable only if
m⋂
i=1

S0
i is a non-empty functional set on a domain

D ⊂ R
n. Otherwise, non-solvable, i.e.,

m⋂
i=1

S0
i = ∅ for any domain D ⊂ R

n.

Define a topological graph G[PDESm] or G[DEPSCm] in Rn by

V (G[PDESm]) = V (G[DEPSCm]) = {S0
i , 1 ≤ i ≤ m};

E(G[PDESm]) = E(G[DEPSCm])

= {(S0
i , S

0
j ) if S0

i

⋂
S0
j 6= ∅, 1 ≤ i, j ≤ m}

with a labeling

L : S0
i → S0

i , (S0
i , S

0
j ) ∈ E(G[PDESm]) = E(G[DEPSCm])→ S0

i

⋂
S0
j

for 1 ≤ i 6= j ≤ m. Similarly, if T is an invertible linear transformation on Rn, then T (S0
i ) is the

solution of ith transformed equation in (PDESm) or (DEPSCm), and T (S0
i )
⋂
T (S0

j ) 6= ∅ if and

only if S0
i

⋂
S0
j 6= ∅. Accordingly, T induces an isomorphism T ∗ of graph with T ∗ ◦L = L ◦ T ∗

holds on labeling L. We get the following result.

Theorem 4.3 A system (PDESm) or (DEPSCm) of partial differential equations of first order

inherits an invariant G[PDESm] or G[DEPSCm] under the action of invertible linear transfor-

mations on R
n.

Such a topological graphG[PDESm] orG[DEPSCm] are said to be the G[PDESm]-solution

or G[DEPSCm]-solution of systems (PDESm) and (DEPSCm), respectively. For example, the

G[DEPSC3 ]-solution of Cauchy problem





ut + aux = 0

ut + xux = 0

ut + aux + et = 0

u|t=0 = φ(x)

(DEPSC3 )
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is shown in Fig.8

S[1] S[2] S[3]
S[1]

⋂
S[2] S[2]

⋂
S[3]

Fig.8

Clearly, system (DEPSC3 ) is contradictory because et 6= 0 for t. However,





ut + aux = 0

u|t=0 = φ(x)





ut + xux = 0

u|t=0 = φ(x)
and





ut + aux + et = 0

u|t=0 = φ(x)

are solvable with respective solutions S[1] = {φ(x−at)}, S[2] = {φ( xet )} and S[3] = {φ(x−at)−
et + 1}, and S[1]

⋂
S[2] = {φ(x − at) = φ( xet )}, S[2]

⋂
S[3] = {φ( xet ) = φ(x − at) − et + 1}, but

S[1]
⋂
S[3] = ∅.

Similar to ordinary case, an interesting problem on partial differential equations is the

following:

Problem 4.4 For a system of (PDESm) or (DEPSCm) of partial differential equations, deter-

mine its G[PDESm]-solution or G[DEPSCm]-solution.

It should be noted that for an algebraically contradictory linear system





Fi(x1, · · · , xn, u, p1, · · · , pn, ) = 0

Fj(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

if

Fk(x1, · · · , xn, u, p1, · · · , pn, ) = 0

is contradictory to one of there two partial differential equations, then it must be contradictory

to another. This fact enables one to classify equations in (LPDESm) by the contradictory

property and determine G[LPDESCm]. Thus if C1, · · · ,Cl are maximal contradictory classes

for equations in (LPDES), then G[LPDESCm] ≃ K(C1, · · · ,Cl), i.e., an l-partite complete

graph. Accordingly, all G[LPDESCm]-solutions of linear systems (LPDESm) are nothing else

but K(C1, · · · ,Cs)-solutions. More behaviors on non-solvable ordinary or partial differential

equations of first order, for instance the global stability can be found in references [25]-[27].

4.3 Equation’s Combinatorics

All these discussions in Sections 3 and 4.2− 4.3 lead to a conclusion that a non-solvable system

(ES) of equations in n variables inherits an invariant G[ES] of topological graph labeled with

those of individually solutions, if it is individually solvable, i.e., equation’s combinatorics by

view it with the topological graph G[ES] in Rn. Thus, for holding the global behavior of a

system (ES) of equations, the right way is not just to determine it is solvable or not, but its
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G[ES]-solution. Such a G[ES]-solution is existent by philosophy and enables one to include

non-solvable equations, no matter what they are algebraic, differential, integral or operator

equations to mathematics by G-system following:

Definition 4.5 A G-system (ESm) of equations Oi(X) = 0, 1 ≤ i ≤ m with constraints

C is a topological graph G with labeling L : v ∈ V (G) → L(v) ∈ {SOi ; 1 ≤ i ≤ m} and

L : (u, v) ∈ E(G)→ L(u)
⋂
L(v) with L(u)

⋂
L(v) 6= ∅, denoted by G[ESm], where, SOi is the

solution space of equation Oi(X) = 0 with constraints C for integers 1 ≤ i ≤ m.

Thus, holding the true face of a thing T characterized by a system (ESm) of equations

needs one to determine its G-system, i.e., G[ESm]-solution, not only solvable or not for its

objective reality.

Problem 4.6 Determine G[ESm] for equation systems (ESm), such as those of algebraic,

differential, integral, operator equations, or their combination, or conversely, characterize G-

systems of equations for given graphs G, foe example, these G-systems of equations for complete

graphs G = Km, complete bipartite graph K(n1, n2) with n1 + n2 = m, path Pm−1 or circuit

Cm.

By this view, a solvable system (ESm) of equations in classical mathematics is nothing else

but such aKm-system with
⋂

e∈E(Km)

L(e) 6= ∅. However, as we known, more systems of equations

established on characters µi, 1 ≤ i ≤ n for a thing T are non-solvable with contradictions if

n ≥ 2. It is nearly impossible to solve all those systems in classical mathematics. Even so, its

G-systems reveals behaviors of thing T to human beings.

§5. Geometry

As what one sees with an immediately form on things, the geometry proves to be one of

applicable means for portraying things by its homogeneity with distinction. Nevertheless, the

non-geometry can also contributes describing things complying with the Erlangen Programme

that of Klein.

5.1 Non-Spaces

Let K n = {(x1, x2, · · · , xn)} be an n-dimensional Euclidean ( affine or projective ) space with

a normal basis ǫi, 1 ≤ i ≤ n, x ∈ K n and let
−→
V x, x

−→
V be two orientation vectors with end or

initial point at x. Such as those shown in Fig.9.- - - >
x x

−→
V x x

−→
V

−→
V x

x
−→
V

(a) (b)

Fig.9
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For point ∀x ∈ K n, we associate it with an invertible linear mapping

µ : {ǫ1, ǫ2, · · · , ǫn} → {ǫ′1, ǫ′2, · · · , ǫ′n}

such that µ(ǫi) = ǫ′i, 1 ≤ i ≤ n, called its weight, i.e.,

(ǫ′1, ǫ
′
2, · · · , ǫ′n) = [aij ]n×n (ǫ1, ǫ2, · · · , ǫn)t

where, [aij ]n×n is an invertible matrix. Such a space is a weighted space on points in K n,

denoted by (K n, µ) with µ : x → µ(x) = [aij ]n×n. Clearly, if µ(x1) =
[
a′ij
]
, µ(x2) =

[
a′′ij
]
,

then µ(x1) = µ(x2) if and only if there exists a constant λ such that
[
a′ij
]
n×n

=
[
λa′′ij

]
n×n

, and

(K n, µ) = Rn ( An or Pn), i.e., n-dimensional Euclidean ( affine or projective space ) if and

only if [aij ]n×n = In×n for ∀x ∈ K n. Otherwise, non-Euclidean, non-affine or non-projective

space, abbreviated to non-space.

Notice that
[
a′ij
]
n×n

=
[
λa′′ij

]
n×n

is an equivalent relation on invertible n × n matrixes.

Thus, for ∀x0 ∈ K n, define

C (x0) = {x ∈ K n|µ(x) = λµ(x0), λ ∈ R},

an equivalent set of points to x0. Then there exist representatives Cκ, κ ∈ Λ constituting a

partition of K n in all equivalent sets C (x), x ∈K n of points, i.e.,

K n =
⋃

κ∈Λ

Cκ with Cκ1

⋂
Cκ2 = ∅ for κ1, κ2 ∈ Λ if κ1 6= κ2,

where Λ maybe countable or uncountable.

Let µ(x) = [aij ]n×n = Aκ for x ∈ Cκ. For viewing behaviors of orientation vectors in an

equivalent set Cκ of points, define µAκ : K n → µAκ(K
n) by µAκ(x) = Aκ. Then (K n, µAκ)

is also a non-space if Aκ 6= In×n. However, (K n, µAκ) approximates to K n with homogeneity

because each orientation vector only turns a same direction passing through a point. Thus,

(K n, µAκ) can be viewed as space K n, denoted by K n
µA . Define a topological graph G[K n, µ]

by

V (G[K n, µ]) = {K n
µκ , κ ∈ Λ};

E(G[K n, µ]) = {(K n
µκ1

,K n
µκ2

) if K n
µκ1

⋂
K n
µκ2
6= ∅, κ1, κ2 ∈ Λ, κ1 6= κ2}

with labels

L : K n
µκ ∈ V (G[K n, µ])→ K n

µκ ,

L : (K n
µκ1

,K n
µκ2

) ∈ E(G[K n, µ])→ K n
µκ1

⋂
K n
µκ2

, κ1 6= κ2 ∈ Λ.

Then, we get an overview on (K n, µ) with Euclidean spaces K n
µκ , κ ∈ Λ by combinatorics.

Clearly, K n
⋂

K n
µκ = Cκ and K n

µκ1

⋂
K n
µκ2

= ∅ if none of K n
µκ1

,K n
µκ2

being K n. Thus,

G[K n, µ] ≃ K1,|Λ|−1, a star with center K n, such as those shown in Fig.10. Otherwise,
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G[K n, µ] ≃ K|Λ|, i.e., |Λ| isolated vertices, which can be turned into K1,|Λ| by adding an

imaginary center vertex K n.

K n

K n
κ1

K n
κ2

K n
|Λ|−1

C3

C1

C4

C2C|Λ|−1

K n
κ4

K n
κ3

Fig.10

Let T be an invertible linear transformation on K n determined by (x′) = [αij ]n×n (x)t.

Clearly, T : K n → K n, K n
µκ → T (K n

κ ) and T (K n
κ1

)
⋂
T (K n

κ2
) 6= ∅ if and only if

K n
κ1

⋂
K n
κ2
6= ∅. Furthermore, one of T (K n

κ1
), T (K n

κ2
) should be K n. Thus T induces an

isomorphism T ∗ from G[K n, µ] to G[T (K n), µ] of graph. Accordingly, we know the result

following.

Theorem 5.1 An n-dimensional non-space (K n, µ) inherits an invariant G[K n, µ], i.e., a

star K1,|Λ|−1 or K1,|Λ| under the action of invertible linear transformations on K
n, where Λ is

an index set such that all equivalent sets Cκ, κ ∈ Λ constitute a partition of space K n.

5.2 Non-Manifolds

LetM be an n-dimensional manifold with an alta A = { (Uλ;ϕλ) | λ ∈ Λ}, where ϕλ : Uλ → Rn

is a homeomorphism with countable Λ. A non-manifold ¬M on M is such a topological space

with ϕ : Uλ → Rnλ for integers nλ ≥ 1, λ ∈ Λ, which is a special but more applicable case of

non-space (Rn, µ). Clearly, if nλ = n for λ ∈ Λ, ¬M is nothing else but an n-manifold.

For an n-manifold M , each Uλ is itself an n-manifold for λ ∈ Λ by definition. Generally, let

Mλ be an nλ-manifold with an alta Aλ = { (Uλκ;ϕλκ) | κ ∈ Λλ}, where ϕλκ : Uλκ → Rnλ . A

combinatorial manifold M̃ on M is such a topological space constituted by Mλ, λ ∈ Λ. Clearly,⋃
λ∈Λ

Λλ is countable. If nλ = n, i.e., all Mλ is an n-manifold for λ ∈ Λ, then the union M of

Mλ, λ ∈ Λ is also an n-manifold with alta

Ã =
⋃

λ∈Λ

Aλ = {(Uλκ;ϕλκ) | κ ∈ Λλ, λ ∈ Λ}.

Theorem 5.2 A combinatorial manifold M̃ is a non-manifold on M , i.e.,

M̃ = ¬M .
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Accordingly, we only discuss non-manifolds ¬M . Define a topological graph G[¬M ] by

V (G[¬M ]) = {Uλ, λ ∈ Λ};
E(G[¬M ]) = {(Uλ1 , Uλ2) if Uλ1

⋂
Uλ2 6= ∅, λ1, λ2 ∈ Λ, λ1 6= λ2}

with labels

L : Uλ ∈ V (G[¬M ])→ Uλ,

L : (Uλ1 , Uλ2) ∈ E(¬M ])→ Uλ1

⋂
Uλ2 , λ1 6= λ2 ∈ Λ,

which is an invariant dependent only on alta A of M .

Particularly, if each Uλ is a Euclidean spaces R
λ, λ ∈ Λ, we get another topological graph

G[Rλ, λ ∈ Λ] on Euclidean spaces Rλ, λ ∈ Λ, a special non-manifold called combinatorial

Euclidean space. The following result on ¬M is easily obtained likewise the proof of Theorem

2.1 in [23].

Theorem 5.3 A non-manifold ¬M on manifold M with alta

A = { (Uλ;ϕλ) | λ ∈ Λ}

inherits an topological invariant G[¬M ]. Furthermore, if M is locally compact, G[¬M ] is

topological homeomorphic to G[Rλ, λ ∈ Λ] if

ϕ : Uλ → R
nλ , λ ∈ Λ.

It should be noted that Whitney proved that an n-manifold can be topological embedded

as a closed submanifold of R2n+1 with a sharply minimum dimension 2n+ 1 in 1936. Applying

this result, one can easily show that a non-manifold ¬M can be embedded into R2nmax+1 if

nmax = max{nλ ∈ Λ} <∞. Furthermore, let Uλ itself be a subset of Euclidean space R
nmax+1

for λ ∈ Λ, then xnmax+1 = ϕλ(x1, x2, · · · , xnλ) in Rnmax+1. Thus, one gets an equation

xnmax+1 − ϕλ(x1, x2, · · · , xnλ) = 0

in Rnmax+1. Particularly, if Λ = {1, 2, · · · ,m} is finite, one gets a system (ESm) of equations





xnmax+1 − ϕλ(x1, x2, · · · , xn1) = 0

xnmax+1 − ϕλ(x1, x2, · · · , xn2) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xnmax+1 − ϕλ(x1, x2, · · · , xnm) = 0

(ESm)

in Rnmax+1. Generally, this system (ESm) is non-solvable, which enables one getting Theorem

3.1 once again.
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5.3 Differentiable Non-Manifolds

For ∀Mλ ∈ ¬M , if Mλ is differentiable determined by a system of differential equations

(DESmλ)





Fλ1(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

Fλ2(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fλmλ(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

Then the system (DESm) consisting of systems (DESmλ), 1 ≤ λ ≤ m of differential equations

with prescribed initial values xi0 , u0, pi0 for integers i = 1, 2, · · · , n is generally non-solvable

with a geometrical figure of differentiable non-manifold ¬M .

Notice that a main characters for points p in non-manifold ¬M is that the number of vari-

ables for determining its position in space is not a constant. However, it can also introduces dif-

ferentials on non-manifolds constrained with ϕκ|Uκ ⋂ Uλ = ϕλ|Uκ ⋂ Uλ for ∀(Uκ, ϕκ), (Uλ, ϕλ) ∈
A , and smooth functions f : ¬M → R at a point p ∈ ¬M . Denoted respectively by Xp, Tp¬M
all smooth functions and all tangent vectors v : Xp → R at a point p ∈ ¬M . If ϕ(p) ∈

s⋂
i=1

Rni(p)

and ŝ(p) = dim(
s⋂
i=1

Rni(p)), a simple calculation shows the dimension of tangent vector space

dimTp¬M = ŝ(p) +

s(p)∑

i=1

(ni − ŝ(p))

with a basis

{
∂

∂xij

∣∣∣∣
p

, 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni with xil = xjl if 1 ≤ l ≤ ŝ(p)
}

and similarly, for cotangent vector space dimT ∗p¬M = dimTp¬M with a basis

{
dxij |p , 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni with xil = xjl if 1 ≤ l ≤ ŝ(p)

}
,

which enables one to introduce vector field X (¬M) =
⋃

p∈¬M
Xp, tensor field T rs (¬M) =

⋃
p∈¬M

T rs (p,¬M), where,

T rs (p,¬M) = Tp¬M ⊗ · · · ⊗ Tp¬M︸ ︷︷ ︸
r

⊗T ∗p¬M ⊗ · · · ⊗ T ∗p¬M︸ ︷︷ ︸
s

and connection D : X (¬M) × T rs (¬M) → T rs (¬M) with DXτ = D(X, τ) such that for

∀X,Y ∈ X (¬M), τ, π ∈ T rs (¬M), λ ∈ R, f ∈ C∞(¬M),

(1) DX+fY τ = DXτ + fDY τ and DX(τ + λπ) = DXτ + λDXπ;

(2) DX(τ ⊗ π) = DXτ ⊗ π + σ ⊗DXπ;
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(3) For any contraction C on T rs (¬M), DX(C(τ)) = C(DXτ).

Particularly, let g ∈ T 0
2 (¬M). If g is symmetrical and positive, then ¬M is called a

Riemannian non-manifold, denoted by (¬M, g). It can be readily shown that there is a unique

connection D on Riemannian non-manifold (¬M, g) with equality

Z(g(X,Y )) = g(DZ , Y ) + g(X,DZY )

holds. Such a D with (¬M, g), denoted by (¬M, g,D) is called a Riemannian non-geometry.

Now let D ∂

∂xkl

∂

∂xij
= Γ

(ij)(kl)
(st)

∂

∂xij
on (Up;ϕ) for point p ∈ (¬M, g,D). Then Γ

(ij)(kl)
(st) =

Γ
(kl)(ij)
(st) and

Γ
(kl)(ij)
st =

1

2
g(st)(uv)(

∂g(kl)(uv)

∂xij
+
∂g(uv)(ij)

∂xkl
− ∂g(kl)(ij)

∂xuv
),

where g = g(kl)(ij)dxkldxij and g(st)(uv) is an element in matrix [g(kl)(ij)]−1.

Similarly, a Riemannian curvature tensor

R : X (¬M)×X (¬M)×X (¬M)×X (¬M)→ C∞(¬M)

of type (0, 4) is defined by R(X,Y, Z,W ) = g(R(Z,W )X,Y ) for ∀X,Y, Z,W ∈ X (¬M) and

with a local form

R = R(ij)(kl)(st)(uv)dxij ⊗ dxkl ⊗ dxst ⊗ dxuv,

where

R(ij)(kl)(st)(uv) =
1

2

(
∂2g(st)(ij)

∂xuv∂xkl
+
∂2g(uv)(kl)

∂xst∂xij
− ∂2g(st)(kl)

∂xuv∂xij
− ∂2g(uv)(ij)

∂xst∂xkl

)

+Γ
(st)(ij)
ab Γ

(uv)(kl)
cd g(cd)(ab) − Γ

(st)(kl)
ab Γ(uv)(ij)cdg(cd)(ab),

for ∀p ∈ ¬M and g(ij)(kl) = g(
∂

∂xij
,
∂

∂xkl
), which can be also used for measuring the curved

degree of (¬M, g,D) at point p ∈ ¬M (see [16] or [21] for details).

Theorem 5.4 A Riemannian non-geometry (¬M, g,D) inherits an invariant, i.e., the curvature

tensor R : X (¬M)×X (¬M)×X (¬M)×X (¬M)→ C∞(¬M).

5.4 Smarandache Geometry

A fundamental image of geometry G is that of space consisting of point p, line L, plane P ,

etc. elements with inclusions P,L ∋ p and P ⊃ L and a geometrical axiom is a premise

logic function T on geometrical elements p, L, P, · · · ∈ G with T (p, L, P, · · · ) = 1 in classical

geometry. Contrast to the classic, a Smarandache geometry SG is such a geometry with at least

one axiom behaves in two different ways within the same space, i.e., validated and invalided,

or only invalided but in multiple distinct ways. Thus, T (p, L, P, · · · ) = 1, ¬T (p, L, P, · · · ) = 1

hold simultaneously, or 0 < ¬T (p, L, P, · · · ) = I1, I2, · · · , Ik < 1 for an integer k ≥ 2 in SG ,
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which enables one to discuss Smarandache geometriy in two cases following:

Case 1. T (p, L, P, · · · ) = 1 ∧ ¬T (p, L, P, · · · ) = 1 in SG .

Denoted by U = T−1(1) ⊂ SG , V = ¬T−1(1) ⊂ SG . Clearly, if U
⋂
V 6= ∅ and there are

p, L, P, · · · ∈ U ⋂V . Then there must be T (p, L, P, · · · ) = 1 and ¬T (p, L, P, · · · ) = 1 in U
⋂
V ,

a contradiction. Thus, U
⋂
V = ∅ or U

⋂
V 6= ∅ but some of elements p, L, P, · · · ∈ SG for T

are missed in U
⋂
V .

Not loss of generality, let

U =

m⊕

k=1

UkC and V =

n⊕

i=1

V iC ,

where UkC , V
i
C are respectively connected components in U and V . Define a topological graph

G[U, V ] following:

V (G[U, V ]) = {UkC ; 1 ≤ k ≤ m}
⋃
{V iC ; 1 ≤ i ≤ n};

E(G[U, V ]) = {(UkC , V iC) if UkC
⋂
V iC 6= ∅, 1 ≤ k ≤ m, 1 ≤ i ≤ n}

with labels

L : UkC ∈ V (G[U, V ])→ UkC , V iC ∈ V (G[U, V ])→ V iC

L : (UkC , V
i
C) ∈ E(G[U, V ])→ UkC

⋂
V iC , 1 ≤ k ≤ m, 1 ≤ i ≤ n.

Clearly, such a graph G[U, V ] is bipartite, i.e., G[U, V ] ≤ Km,n with labels.

Case 2. 0 < ¬T (p, L, P, · · · ) = I1, I2, · · · , Ik < 1, k ≥ 2 in SG .

Denoted by A1 = ¬T−1(I1) ⊂ SG , A2 = ¬T−1(I2) ⊂ SG , · · · , Ak = ¬T−1(Ik) ⊂ SG .

Similarly, if Ai
⋂
Aj 6= ∅ and there are p, L, P, · · · ∈ Ai

⋂
Aj . Then there must be Ai

⋂
Aj = ∅

or Ai
⋂
Aj 6= ∅ but some of elements p, L, P, · · · ∈ SG for T are missed in A1

⋂
Aj for integers

1 ≤ i 6= j ≤ k.

Let Ai =

mi⊕

l=1

AilC with AilC , 1 ≤ l ≤ mi connected components in Ai. Define a topological

graph G[Ai, [1, k]] following:

V (G[Ai, [1, k]]) =

k⋃

i=1

{AilC ; 1 ≤ l ≤ mi};

E(G[Ai, [1, k]]) =

k⋃

i,j=1

i6=j

{(AilC , AjsC ) if AilC
⋂
AjsC 6= ∅, 1 ≤ l ≤ mi, 1 ≤ s ≤ mj}

with labels

L : AilC ∈ V (G[Ai, [1, k]])→ AilC , AjsC ∈ V (G[Ai, [1, k]])→ AjsC

L : (AilC , A
js
C ) ∈ E(G[Ai, [1, k]])→ AilC

⋂
AjsC , 1 ≤ l ≤ mi, 1 ≤ s ≤ mj
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for integers 1 ≤ i 6= j ≤ k. Clearly, such a graph G[Ai, [1, k]] is k-partite, i.e., G[Ai, [1, k]] ≤
Km1,m2,··· ,mk with labels.

For an invertible transformation T on geometry SG , it is clear that T (p), T (L), T (P ), · · ·
also constitute the elements of SG with graphs G[U, V ] and G[Ai, [1, k]] invariant. Thus, we

know

Theorem 5.5 A Smarandache geometry SG inherits a bipartite invariant G[U, V ] or k-partite

G[Ai, [1, k]] under the action of its linear invertible transformations.

5.5 Geometrical Combinatorics

All previous discussions on non-space (K n, µ), non-manifold ¬M or differentiable non-manifold

¬M and Smarandache geometry SG allude a philosophical notion that any non-geometry can be

decomposed into geometries inheriting an invariant G[K n, µ], G[¬M ], G[U, V ] or G[Ai, [1, k]]

of topological graph labeled with those of geometries, i.e., geometrical combinatorics accordant

with that notion of Klein’s. Accordingly, for extending field of geometry, one needs to determine

the inherited invariants G[K n, µ], G[¬M ], G[U, V ] or G[Ai, [1, k]] and then know geometrical

behaviors on non-geometries. But this approach is passive for including non-geometry to ge-

ometry. A more initiative way with realization is geometrical G-systems following:

Definition 5.6 Let (G1;A1), (G2;A2, · · · , (Gm;Am) be m geometrical systems, where Gi, Ai
be respectively the geometrical space and the system of axioms for an integer 1 ≤ i ≤ m.

A geometrical G-system is a topological graph G with labeling L : v ∈ V (G) → L(v) ∈
{G1,G2, · · · ,Gm} and L : (u, v) ∈ E(G) → L(u)

⋂
L(v) with L(u)

⋂
L(v) 6= ∅, denoted by

G[G ,A], where G =
m⋃
i=1

Gi and A =
m⋃
i=1

Ai.

Clearly, a geometricalG-system can be applied for holding on the global behavior of systems

G1,G2, · · · ,Gm. For example, a geometrical K4−{e}-system is shown in Fig.11, where, R3
i , 1 ≤

i ≤ 4 are Euclidean spaces with dimensional 3 and R3
i

⋂
R3
j maybe homeomorphic to R,R2 or

R3 for 1 ≤ i, j ≤ 4.

R3
1 R3

2

R3
4 R3

3

R3
1

⋂
R3

2

R3
2

⋂
R3

3

R3
3

⋂
R3

4

R3
1

⋂
R3

4
R3

2

⋂
R3

4

Fig.11

Problem 5.7 Characterize geometrical G-systems G[G ,A]. Particularly, characterize these ge-
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ometrical G-systems, such as those of Euclidean geometry, Riemannian geometry, Lobachevshy-

Bolyai-Gauss geometry for complete graphs G = Km, complete k-partite graph Km1,m2,··· ,mk ,

path Pm or circuit Cm.

Problem 5.8 Characterize geometrical G-systems G[G ,A] for topological or differentiable man-

ifold, particularly, Euclidean space, projective space for complete graphs G = Km, complete

k-partite graph Km1,m2,··· ,mk , path Pm or circuit Cm.

It should be noted that classic geometrical system are mostly K1-systems, such as those

of Euclidean geometry, projective geometry,· · · , etc., also a few K2-systems. For example, the

topological group and Lie group are in fact geometrical K2-systems, but neither Km-system

with m ≥ 3, nor G 6≃ Km-system.

§6. Applications

As we known, mathematical non-systems are generally faced up human beings in scientific

fields. Even through, the mathematical combinatorics contributes an approach for holding on

their global behaviors.

6.1 Economics

A circulating economic system is such a overall balance input-output M(t) =
m⋃
i=1

Mi(t) under-

lying a topological graph G[M(t)] that there are no rubbish in each producing department.

Whence, there is a circuit-decomposition G [M(t)] =
l⋃
i=1

−→
C s such that each output of a produc-

ing department Mi(t), 1 ≤ i ≤ m is on a directed circuit
−→
C s for an integer 1 ≤ s ≤ l, such as

those shown in Fig.12.

-/ oM1(t)

M2(t) Ms(t)

Fig.12

Assume that there are m producing departments M1(t), M2(t), · · · ,Mm(t), xij output

values of Mi(t) for the department Mj(t) and di for the social demand. Let Fi(x1i, x2i, · · · , xni)
be the producing function in Mi(t). Then the input-output model of a circulating economic
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system can be characterized by a system of equations





F1(x) =
m∑
j=1

x1j + d1

F2(x) =
m∑
j=1

x2j + d2

. . . . . . . . . . . . . . . . . . . . . .

Fm(x) =
m∑
j=1

xmj + dm

Generally, this system is non-solvable even if it is a linear system. Nevertheless, it is a G-

system of equations. The main task is not finding its solutions, but determining whether it

runs smoothly, i.e., a macro-economic behavior of system.

6.2 Epidemiology

Assume that there are three kind groups in persons at time t, i.e., infected I(t), susceptible

S(t) and recovered R(t) with S(t) + I(t) + R(t) = 1. Then one established the SIR model of

infectious disease as follows:





dS

dt
= −kIS,

dI

dt
= kIS − hI,

S(0) = S0, I(0) = I0, R(0) = 0,

,

which are non-linear equations of first order.

If the number of persons in an area is not constant, let C1, C2, · · · , Cm be m segregation

areas with respective N1, N2, · · · , Nm persons. Assume at time t, there are Ui(t), Vi(t) persons

moving in or away Ci. Thus Si(t) + Ii(t) − Ui(t) + Vi(t) = Ni. Denoted by cij(t) the persons

moving from Ci to Cj for integers 1 ≤ i, j ≤ m. Then

m∑

s=1

csi(t) = Ui(t) and

m∑

s=1

cis(t) = Vi(t).

N1 N2

N3 N4

-
?�6 s 6� �

-Y
c21

c12

c13 c31
c14

c41

c43

c34

c42c24

Fig.13
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A combinatorial model of infectious disease is defined by a topological graph G following:

V (G) = {C1, C2, · · · , Cm},
E (G) = {(Ci, Cj)| there are traffic means from Ci to Cj , 1 ≤ i, j ≤ m},
L (Ci) = Ni, L+(Ci, Cj) = cij for ∀(Ci, Cj) ∈ E

(
Gl
)
, 1 ≤ i, j ≤ m,

such as those shown in Fig.13.

In this case, the SIR model for areas Ci, 1 ≤ i ≤ m turns to

dSi
dt

= −kIiSi,
dIi
dt

= kIiSi − hIi,
Si(0) = Si0, Ii(0) = Ii0, R(0) = 0,





1 ≤ i ≤ m,

which is a non-solvable system of differential equations.

Even if the number of an area is constant, the SIR model works only with the assumption

that a healed person acquired immunity and will never be infected again. If it does not hold,

the SIR model will not immediately work, such as those of cases following:

Case 1. there are m known virus V1,V2, · · · ,Vm with infected rate ki, heal rate hi for

integers 1 ≤ i ≤ m and an person infected a virus Vi will never infects other viruses Vj for

j 6= i.

Case 2. there are m varying V1,V2, · · · ,Vm from a virus V with infected rate ki, heal

rate hi for integers 1 ≤ i ≤ m such as those shown in Fig.14.

V1 V2
- - - Vm

Fig.14

However, it is easily to establish a non-solvable differential model for the spread of viruses

following by combining SIR model:





Ṡ = −k1SI

İ = k1SI − h1I

Ṙ = h1I





Ṡ = −k2SI

İ = k2SI − h2I

Ṙ = h2I

· · ·





Ṡ = −kmSI
İ = kmSI − hmI
Ṙ = hmI

Consider the equilibrium points of this system enables one to get a conclusion ([27]) for

globally control of infectious diseases, i.e., they decline to 0 finally if

0 < S <

m∑

i=1

hi

/
m∑

i=1

ki ,

particularly, these infectious viruses are globally controlled if each of them is controlled in that

area.
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6.3 Gravitational Field

What is the true face of gravitation? Einstein’s equivalence principle says that there are no

difference for physical effects of the inertial force and the gravitation in a field small enough,

i.e., considering the curvature at each point in a spacetime to be all effect of gravitation, called

geometrization of gravitation, which finally resulted in Einstein’s gravitational equations ([2])

Rµν − 1

2
Rgµν + λgµν = −8πGT µν

in R4, where Rµν = Rµανα = gαβR
αµβν , R = gµνR

µν are the respective Ricci tensor, Ricci

scalar curvature, G = 6.673 × 10−8cm3/gs2, κ = 8πG/c4 = 2.08 × 10−48cm−1 · g−1 · s2 and

Schwarzschild spacetime with a spherically symmetric Riemannian metric

ds2 = f(t)
(
1− rg

r

)
dt2 − 1

1− rg
r

dr2 − r2(dθ2 + sin2 θdφ2)

for λ = 0. However, a most puzzled question faced up human beings is whether the dimension

of the universe is really 3? if not, what is the meaning of one’s observations? Certainly, if the

dimension≥ 4, all these observations are nothing else but a projection of the true faces on our

six organs, a pseudo-truth.

For a gravitational field Rn with n ≥ 4, decompose it into dimensional 3 Euclidean spaces

R3
u, R3

v, · · · , R3
w. Then there are Einstein’s gravitational equations:

Rµuνu − 1

2
gµuνuR = −8πGT µuνu ,

Rµvνv − 1

2
gµvνvR = −8πGT µvνv ,

· · · · · · · · · · · · · · · ,

Rµwνw − 1

2
gµwνwR = −8πGT µwνw

for each R3
u, R3

v, · · · , R3
w, such as a K4-system shown in Fig.15,

R3 R3

R3 R3

P1 P2

P3 P4

- ? ?�
- 6 �6

Fig.15
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where P1, P2, P3, P4 are the observations. In this case, these gravitational equations can be

represented by

R(µν)(στ) − 1

2
g(µν)(στ)R = −8πGT (µν)(στ)

with a coordinate matrix

[xp] =




x11 · · · x1m̂ · · · x13

x21 · · · x2m̂ · · · x23

· · · · · · · · · · · · · · ·
xm1 · · · xmm̂ · · · xm3




for ∀p ∈ Rn, where m̂ = dim

(
m⋂
i=1

Rni

)
a constant for ∀p ∈

m⋂
i=1

Rni and xil =
xl

m
for 1 ≤

i ≤ m, 1 ≤ l ≤ m̂. Then, by the Projective Principle, i.e., a physics law in a Euclidean space

Rn ≃ R̃ =
n⋃
i=1

R3 with n ≥ 4 is invariant under a projection on R3 from Rn, one can determines

its combinatorial Schwarzschild metric. For example, if m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and

φµ = φ for 1 ≤ µ ≤ m, then ([18])

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2)

and furthermore, if mµ = M for 1 ≤ µ ≤ m, then

ds2 =

(
1− 2GM

c2r

)
mdt2 −

(
1− 2GM

c2r

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2),

which is the most enjoyed case by human beings. If so, all the behavior of universe can be

realized finally by human beings. But if m̂ ≤ 3, there are infinite underlying connected graphs,

one can only find an approximating theory for the universe, i.e., “Name named is not the eternal

Name”, claimed by Lao Zi.
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Non-Solvable Spaces of Linear Equation Systems

Abstract: A Smarandache system (Σ;R) is such a mathematical system that has at least

one Smarandachely denied rule in R, i.e., there is a rule in (Σ;R) that behaves in at least

two different ways within the same set Σ, i.e., validated and invalided, or only invalided but

in multiple distinct ways. For such systems, the linear equation systems without solutions,

i.e., non-solvable linear equation systems are the most simple one. We characterize such non-

solvable linear equation systems with their homeomorphisms, particularly, the non-solvable

linear equation systems with 2 or 3 variables by combinatorics. It is very interesting that

every planar graph with each edge a straight segment is homologous to such a non-solvable

linear equation with 2 variables.

Key Words: Smarandachely denied axiom, Smarandache system, non-solvable linear equa-

tions, ∨-solution, ∧-solution.

AMS(2010): 15A06, 68R10

§1. Introduction

Finding the exact solution of equation system is a main but a difficult objective unless the

case of linear equations in classical mathematics. Contrary to this fact, what is about the

non-solvable case? In fact, such an equation system is nothing but a contradictory system,

and characterized only by non-solvable equations for conclusion. But our world is overlap and

hybrid. The number of non-solvable equations is more than that of the solvable. The main

purpose of this paper is to characterize the behavior of such linear equation systems.

Let Rm, Rm be Euclidean spaces with dimensional m, n ≥ 1 and T : Rn × Rm → Rm be

a Ck, 1 ≤ k ≤ ∞ function such that T (x0, y0) = 0 for x0 ∈ Rn, y0 ∈ Rm and the m×m matrix

∂T j/∂yi(x0, y0) is non-singular, i.e.,

det(
∂T j

∂yi
)
∣∣
(x0,y0) 6= 0, where1 ≤ i, j ≤ m.

Then the implicit function theorem ([1]) implies that there exist opened neighborhoods V ⊂ R
n

of x0, W ⊂ Rm of y0 and a Ck function φ : V →W such that

T (x, φ(x)) = 0.

Thus there always exists solutions for the equation T (x, (y)) = 0 if T is Ck, 1 ≤ k ≤ ∞. Now

let T1, T2, · · · , Tm, m ≥ 1 be different Ck functions Rn × Rm → Rm for an integer k ≥ 1. An

1International J.Math. Combin. Vol.2(2012), 9-23.
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equation system discussed in this paper is with the form following

Ti(x, y) = 0, 1 ≤ i ≤ m. (Eq)

A point (x0, y0) is a ∨-solution of the equation system (Eq) if

Ti(x0, y0) = 0

for some integers i, 1 ≤ i ≤ m, and a ∧-solution of (Eq) if

Ti(x0, y0) = 0

for all integers 1 ≤ i0 ≤ m. Denoted by S0
i the solutions of equation Ti(x, y) = 0 for integers

1 ≤ i ≤ m. Then
m⋃
i=1

S0
i and

m⋂
i=1

S0
i are respectively the ∨-solutions and ∧-solutions of equations

(Eq). By definition, we are easily knowing that the ∧-solution is nothing but the same as the

classical solution.

Definition 1.1 The ∨-solvable, ∧-solvable and non-solvable spaces of equations (Eq) are re-

spectively defined by
m⋃

i=1

S0
i ,

m⋂

i=1

S0
i and

m⋃

i=1

S0
i −

m⋂

i=1

S0
i .

Now we construct a finite graph G[Eq] of equations (Eq) following:

V (G[Eq]) = {vi|1 ≤ i ≤ m},

E(G[Eq]) = {(vi, vj)|∃(x0, y0)⇒ Ti(x0, y0) = 0 ∧ Tj(x0, y0) = 0, 1 ≤ i, j ≤ m}.

Such a graph G[Eq] can be also represented by a vertex-edge labeled graph GL[Eq] following:

V (GL[Eq]) = {S0
i |1 ≤ i ≤ m},

E(G[Eq]) = {(S0
i , S

0
j ) labeled with S0

i

⋂
S0
j |S0

i

⋂
S0
j 6= ∅, 1 ≤ i, j ≤ m}.

For example, let S0
1 = {a, b, c}, S0

2 = {c, d, e}, S0
3 = {a, c, e} and S0

4 = {d, e, f}. Then its

edge-labeled graph G[Eq] is shown in Fig.1 following.

S0
1 S0

2

S0
3 S0

4

{c}

{d, e}

{e}

{c, e}{a, c}

Fig.1
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Notice that
m⋃
i=1

S0
i =

m⋃
i=1

S0
i , i.e., the non-solvable space is empty only if m = 1 in (Eq).

Generally, let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems, where Ri is a rule

on Σi for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6= Σj or Σi = Σj but

Ri 6= Rj , then they are said to be different, otherwise, identical.

Definition 1.2([12]-[13]) A rule in R a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Thus, such a Smarandache system is a contradictory system. Generally, we know the

conception of Smarandache multi-space with its underlying combinatorial structure defined

following.

Definition 1.3([8]-[10]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m ≥ 2 mathematical spaces,

different two by two. A Smarandache multispace Σ̃ is a union
m⋃
i=1

Σi with rules R̃ =
m⋃
i=1

Ri on

Σ̃, i.e., the rule Ri on Σi for integers 1 ≤ i ≤ m, denoted by
(
Σ̃; R̃

)
.

Similarly, the underlying graph of a Smarandache multispace
(
Σ̃; R̃

)
is an edge-labeled

graph defined following.

Definition 1.4([8]-[10]) Let
(
Σ̃; R̃

)
be a Smarandache multispace with Σ̃ =

m⋃
i=1

Σi and R̃ =

m⋃
i=1

Ri. Its underlying graph G
[
Σ̃, R̃

]
is defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
G
[
Σ̃, R̃

])
= { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}

with an edge labeling

lE : (Σi,Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi,Σj) = ̟

(
Σi
⋂

Σj

)
,

where ̟ is a characteristic on Σi
⋂

Σj such that Σi
⋂

Σj is isomorphic to Σk
⋂

Σl if and only

if ̟(Σi
⋂

Σj) = ̟ (Σk
⋂

Σl) for integers 1 ≤ i, j, k, l ≤ m.

We consider the simplest case, i.e., all equations in (Eq) are linear with integers m ≥ n

and m,n ≥ 1 in this paper because we are easily know the necessary and sufficient condition of

a linear equation system is solvable or not in linear algebra. For terminologies and notations

not mentioned here, we follow [2]-[3] for linear algebra, [8] and [10] for graphs and topology.

Let

AX = (b1, b2, · · · , bm)T (LEq)
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be a linear equation system with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




and X =




x1

x2

· · ·
xn




for integers m, n ≥ 1. Define an augmented matrix A+ of A by (b1, b2, · · · , bm)T following:

A+ =




a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

· · · · · · · · · · · ·
am1 am2 · · · amn bm




We assume that all equations in (LEq) are non-trivial, i.e., there are no numbers λ such that

(ai1, ai2, · · · , ain, bi) = λ(aj1, aj2, · · · , ajn, bj)

for any integers 1 ≤ i, j ≤ m. Such a linear equation system (LEq) is non-solvable if there are

no solutions xi, 1 ≤ i ≤ n satisfying (LEq).

§2. A Necessary and Sufficient Condition for Non-Solvable Linear Equations

The following result on non-solvable linear equations is well-known in linear algebra([2]-[3]).

Theorem 2.1 The linear equation system (LEq) is solvable if and only if rank(A) = rank(A+).

Thus, the equation system (LEq) is non-solvable if and only if rank(A) 6= rank(A+).

We introduce the conception of parallel linear equations following.

Definition 2.2 For any integers 1 ≤ i, j ≤ m, i 6= j, the linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

are called parallel if there exists a constant c such that

c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain 6= bj/bi.

Then we know the following conclusion by Theorem 2.1.
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Corollary 2.3 For any integers i, j, i 6= j, the linear equation system





ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

is non-solvable if and only if they are parallel.

Proof By Theorem 2.1, we know that the linear equations

ai1x1 + ai2x2 + · · · ainxn = bi,

aj1x1 + aj2x2 + · · ·ajnxn = bj

is non-solvable if and only if rankA′ 6= rankB′, where

A′ =


 ai1 ai2 · · · ain

aj1 aj2 · · · ajn


 , B′ =


 ai1 ai2 · · · ain b1

aj1 aj2 · · · ajn b2


 .

It is clear that 1 ≤ rankA′ ≤ rankB′ ≤ 2 by the definition of matrixes A′ and B′. Consequently,

rankA′ = 1 and rankB′ = 2. Thus the matrix A′, B′ are respectively elementary equivalent to

matrixes


 1 0 · · · 0

0 0 · · · 0


 ,


 1 0 · · · 0 0

0 1 · · · 0 0


 .

i.e., there exists a constant c such that c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain but c 6= bj/bi.

Whence, the linear equations

ai1x1 + ai2x2 + · · · ainxn = bi,

aj1x1 + aj2x2 + · · ·ajnxn = bj

is parallel by definition. 2
We are easily getting another necessary and sufficient condition for non-solvable linear

equations (LEq) by three elementary transformations on a m × (n + 1) matrix A+ defined

following:

(1) Multiplying one row of A+ by a non-zero scalar c;

(2) Replacing the ith row of A+ by row i plus a non-zero scalar c times row j;

(3) Interchange of two row of A+.

Such a transformation naturally induces a transformation of linear equation system (LEq),

denoted by T (LEq). By applying Theorem 2.1, we get a generalization of Corollary 2.3 for non-

solvable linear equation system (LEq) following.
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Theorem 2.4 A linear equation system (LEq) is non-solvable if and only if there exists a

composition T of series elementary transformations on A+ with T (A+) the forms following

T (A+) =




a′11 a′12 · · · a′1n b′1

a′21 a′22 · · · a′2n b′2

· · · · · · · · · · · ·
a′m1 a′m2 · · · a′mn b′m




and integers i, j with 1 ≤ i, j ≤ m such that the equations

a′i1x1 + a′i2x2 + · · · a′inxn = b′i,

a′j1x1 + a′j2x2 + · · ·a′jnxn = b′j

are parallel.

Proof Notice that the solution of linear equation system following

T (A)X = (b′1, b
′
2, · · · , b′m)T (LEq∗)

has exactly the same solution with (LEq). If there are indeed integers k and i, j with 1 ≤
k, i, j ≤ m such that the equations

a′i1x1 + a′i2x2 + · · · a′inxn = b′i,

a′j1x1 + a′j2x2 + · · ·a′jnxn = b′j

are parallel, then the linear equation system (LEq∗) is non-solvable. Consequently, the linear

equation system (LEq) is also non-solvable.

Conversely, if for any integers k and i, j with 1 ≤ k, i, j ≤ m the equations

a′i1x1 + a′i2x2 + · · · a′inxn = b′i,

a′j1x1 + a′j2x2 + · · ·a′jnxn = b′j

are not parallel for any composition T of elementary transformations, then we can finally get a

linear equation system





xl1 + c1,s+1xls+1 + · · ·+ c1,nxln = d1

xl2 + c2,s+1xls+1 + · · ·+ c2,nxln = d2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xls + cs,s+1xls+1 + · · ·+ cs,nxln = ds

(LEq∗∗)

by applying elementary transformations on (LEq) from the knowledge of linear algebra, which

has exactly the same solution with (LEq). But it is clear that (LEq∗∗) is solvable, i.e., the
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linear equation system (LEq) is solvable. Contradicts to the assumption. 2
This result naturally determines the combinatorial structure underlying a linear equation

system following.

Theorem 2.5 A linear equation system (LEq) is non-solvable if and only if there exists a

composition T of series elementary transformations such that

G[T (LEq)] 6≃ Km,

where Km is a complete graph of order m.

Proof Let T (A+) be

T (A+) =




a′11 a′12 · · · a′1n b′1

a′21 a′22 · · · a′2n b′2

· · · · · · · · · · · ·
a′m1 a′m2 · · · a′mn b′m



.

If there are integers 1 ≤ i, j ≤ m such that the linear equations

a′i1x1 + a′i2x2 + · · · a′inxn = b′i,

a′j1x1 + a′j2x2 + · · ·a′jnxn = b′j

are parallel, then there must be S0
i

⋂
S0
j = ∅, where S0

i , S
0
j are respectively the solutions of

linear equations a′i1x1 + a′i2x2 + · · · a′inxn = b′i and a′j1x1 + a′j2x2 + · · · a′jnxn = b′j . Whence,

there are no edges (S0
i , S

0
j ) in G[LEq] by definition. Thus G[LEq] 6≃ Km. 2

We wish to find conditions for non-solvable linear equation systems (LEq) without elemen-

tary transformations. In fact, we are easily determining G[LEq] of a linear equation system

(LEq) by Corollary 2.3. Let Li be the ith linear equation. By Corollary 2.3, we divide these

equations Li, 1 ≤ i ≤ m into parallel families

C1,C2, · · · ,Cs

by the property that all equations in a family Ci are parallel and there are no other equations

parallel to lines in Ci for integers 1 ≤ i ≤ s. Denoted by |Ci| = ni, 1 ≤ i ≤ s. Then the

following conclusion is clear by definition.

Theorem 2.6 Let (LEq) be a linear equation system for integers m,n ≥ 1. Then

G[LEq] ≃ Kn1,n2,··· ,ns

with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family with ni = |Ci| for integers

1 ≤ i ≤ s in (LEq) and (LEq) is non-solvable if s ≥ 2.
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Proof Notice that equations in a family Ci is parallel for an integer 1 ≤ i ≤ m and each of

them is not parallel with all equations in
⋃

1≤l≤m,l 6=i

Cl. Let ni = |Ci| for integers 1 ≤ i ≤ s in

(LEq). By definition, we know

G[LEq] ≃ Kn1,n2,··· ,ns

with n1 + n+ 2 + · · ·+ ns = m.

Notice that the linear equation system (LEq) is solvable only ifG[LEq] ≃ Km by definition.

Thus the linear equation system (LEq) is non-solvable if s ≥ 2. 2
Notice that the conditions in Theorem 2.6 is not sufficient, i.e., if G[LEq] ≃ Kn1,n2,··· ,ns ,

we can not claim that (LEq) is non-solvable or not. For example, let (LEq∗) and (LEq∗∗) be

two linear equations systems with

A+
1 =




1 0 0

0 1 0

1 1 0

1 −1 0




A+
2 =




1 0 0

0 1 0

1 2 2

−1 2 2




.

Then G[LEq∗] ≃ G[LEq∗∗] ≃ K4. Clearly, the linear equation system (LEq∗) is solvable with

x1 = 0, x2 = 0 but (LEq∗∗) is non-solvable. We will find necessary and sufficient conditions

for linear equation systems with two or three variables just by their combinatorial structures

in the following sections.

§3. Linear Equation System with 2 Variables

Let

AX = (b1, b2, · · · , bm)T (LEq2)

be a linear equation system in 2 variables with

A =




a11 a12

a21 a22

· · · · · ·
am1 am2




and X =


 x1

x2




for an integer m ≥ 2. Then Theorem 2.4 is refined in the following.

Theorem 3.1 A linear equation system (LEq2) is non-solvable if and only if one of the following

conditions hold:

(1) there are integers 1 ≤ i, j ≤ m such that ai1/aj1 = ai2/aj2 6= bi/bj;
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(2) there are integers 1 ≤ i, j, k ≤ m such that

∣∣∣∣∣∣
ai1 ai2

aj1 aj2

∣∣∣∣∣∣
∣∣∣∣∣∣
ai1 ai2

ak1 ak2

∣∣∣∣∣∣

6=

∣∣∣∣∣∣
ai1 bi

aj1 bj

∣∣∣∣∣∣
∣∣∣∣∣∣
ai1 bi

ak1 bk

∣∣∣∣∣∣

.

Proof The condition (1) is nothing but the conclusion in Corollary 2.3, i.e., the ith equation

is parallel to the jth equation. Now if there no such parallel equations in (LEq2), let T be the

elementary transformation replacing all other jth equations by the jth equation plus (−aj1/ai1)
times the ith equation for integers 1 ≤ j ≤ m. We get a transformation T (A+) of A+ following

T (A+) =




0

∣∣∣∣∣∣
ai1 ai2

a11 a12

∣∣∣∣∣∣

∣∣∣∣∣∣
ai1 bi

a11 b1

∣∣∣∣∣∣
· · · · · · · · ·

0

∣∣∣∣∣∣
ai1 ai2

as1 as2

∣∣∣∣∣∣

∣∣∣∣∣∣
ai1 bi

as1 bs

∣∣∣∣∣∣
ai1 ai2 bi

0

∣∣∣∣∣∣
ai1 ai2

at1 at2

∣∣∣∣∣∣

∣∣∣∣∣∣
ai1 bi

at1 bt

∣∣∣∣∣∣
· · · · · · · · ·

0

∣∣∣∣∣∣
ai1 ai2

am1 am2

∣∣∣∣∣∣

∣∣∣∣∣∣
ai1 bi

am1 bm

∣∣∣∣∣∣




,

where s = i − 1, t = i + 1. Applying Corollary 2.3 again, we know that there are integers

1 ≤ i, j, k ≤ m such that ∣∣∣∣∣∣
ai1 ai2

aj1 aj2

∣∣∣∣∣∣
∣∣∣∣∣∣
ai1 ai2

ak1 ak2

∣∣∣∣∣∣

6=

∣∣∣∣∣∣
ai1 bi

aj1 bj

∣∣∣∣∣∣
∣∣∣∣∣∣
ai1 bi

ak1 bk

∣∣∣∣∣∣

.

if the linear equation system (LEQ2) is non-solvable. 2
Notice that a linear equation ax1 + bx2 = c with a 6= 0 or b 6= 0 is a straight line on R2.

We get the following result.

Theorem 3.2 A liner equation system (LEq2) is non-solvable if and only if one of conditions

following hold:

(1) there are integers 1 ≤ i, j ≤ m such that ai1/aj1 = ai2/aj2 6= bi/bj;
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(2) let

∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣
6= 0 and

x0
1 =

∣∣∣∣∣∣
b1 a21

b2 a22

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣

, x0
2 =

∣∣∣∣∣∣
a11 b1

a21 b2

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣

.

Then there is an integer i, 1 ≤ i ≤ m such that

ai1(x1 − x0
1) + ai2(x2 − x0

2) 6= 0.

Proof If the linear equation system (LEq2) has a solution (x0
1, x

0
2), then

x0
1 =

∣∣∣∣∣∣
b1 a21

b2 a22

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣

, x0
2 =

∣∣∣∣∣∣
a11 b1

a21 b2

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣

and ai1x
0
1 + ai2x

0
2 = bi, i.e., ai1(x1 − x0

1) + ai2(x2 − x0
2) = 0 for any integers 1 ≤ i ≤ m. Thus,

if the linear equation system (LEq2) is non-solvable, there must be integers 1 ≤ i, j ≤ m such

that ai1/aj1 = ai2/aj2 6= bi/bj, or there is an integer 1 ≤ i ≤ m such that

ai1(x1 − x0
1) + ai2(x2 − x0

2) 6= 0.

This completes the proof. 2
For a non-solvable linear equation system (LEq2), there is a naturally induced intersection-

free graph I[LEq2] by (LEq2) on the plane R2 defined following:

V (I[LEq2]) = {(xij1 , xij2 )|ai1xij1 + ai2x
ij
2 = bi, aj1x

ij
1 + aj2x

ij
2 = bj , 1 ≤ i, j ≤ m}.

E(I[LEq2]) = {(vij , vil)|the segament between points (xij1 , x
ij
2 ) and (xil1 , x

il
2 ) in R2}. (where

vij = (xij1 , x
ij
2 ) for 1 ≤ i, j ≤ m).

Such an intersection-free graph is clearly a planar graph with each edge a straight segment

since all intersection of edges appear at vertices. For example, let the linear equation system

be (LEq2) with

A+ =




1 1 2

1 1 3

1 2 3

1 2 4



.
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Then its intersection-free graph I[LEq2] is shown in Fig.2.

-
6

1

2

3

1 2 3

x1 + x2 = 2
x1 + x2 = 3

x1

x2

x1 + 2x2 = 3

4

x1 + 2x2 = 4

v13 = v15 = v35

v14

v23

v24

O

v14

v24

v13 = v15 = v35

v24

I[LEq2]

x1 = 1

v45
v45

Fig.2

Let H be a planar graph with each edge a straight segment on R2. Its c-line graph LC(H)

is defined by

V (LC(H)) = {straight lines L = e1e2 · · · el, s ≥ 1 in H};
E(LC(H)) = {(L1, L2)| if e1i and e2j are adjacent in H for L1 = e11e

1
2 · · · e1l , L2 =

e21e
2
2 · · · e2s, l, s ≥ 1}.

The following result characterizes the combinatorial structure of non-solvable linear equa-

tion systems with two variables by intersection-free graphs I[LEq2].

Theorem 3.3 A linear equation system (LEq2) is non-solvable if and only if

G[LEq2] ≃ LC(H)),

where H is a planar graph of order |H | ≥ 2 on R2 with each edge a straight segment

Proof Notice that there is naturally a one to one mapping φ : V (G[LEq2])→ V (LC(I[LEq2]))

determined by φ(S0
i ) = S1

i for integers 1 ≤ i ≤ m, where S0
i and S1

i denote respectively the

solutions of equation ai1x1 +ai2x2 = bi on the plane R2 or the union of points between (xij1 , x
ij
2 )

and (xil1 , x
il
2 ) with 




ai1x
ij
1 + ai2x

ij
2 = bi

aj1x
ij
1 + aj2x

ij
2 = bj

and 



ai1x
il
1 + ai2x

il
2 = bi

al1x
il
1 + al2x

il
2 = bl

for integers 1 ≤ i, j, l ≤ m. Now if (S0
i , S

0
j ) ∈ E(G[LEq2]), then S0

i

⋂
S0
j 6= ∅. Whence,

S1
i

⋂
S1
j = φ(S0

i )
⋂
φ(S0

j ) = φ(S0
i

⋂
S0
j ) 6= ∅
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by definition. Thus (S1
i , S

1
j ) ∈ LC(I(LEq2)). By definition, φ is an isomorphism between

G[LEq2] and LC(I[LEq2]), a line graph of planar graph I[LEq2] with each edge a straight

segment.

Conversely, let H be a planar graph with each edge a straight segment on the plane R2. Not

loss of generality, we assume that edges e1,2 , · · · , el ∈ E(H) is on a straight line L with equation

aL1x1 +aL2x2 = bL. Denote all straight lines in H by C . Then H is the intersection-free graph

of linear equation system

aL1x1 + aL2x2 = bL, L ∈ C . (LEq2∗)

Thus,

G[LEq2∗] ≃ H.

This completes the proof. 2
Similarly, we can also consider the liner equation system (LEq2) with condition on x1 or

x2 such as

AX = (b1, b2, · · · , bm)T (L−Eq2)

with

A =




a11 a12

a21 a22

· · · · · ·
am1 am2



, X =


 x1

x2




and x1 ≥ x0 for a real number x0 and an integer m ≥ 2. In geometry, each of there equation

is a ray on the plane R2, seeing also references [5]-[6]. Then the following conclusion can be

obtained like with Theorems 3.2 and 3.3.

Theorem 3.4 A linear equation system (L−Eq2) is non-solvable if and only if

G[LEq2] ≃ LC(H)),

where H is a planar graph of order |H | ≥ 2 on R2 with each edge a straight segment.

§4. Linear Equation Systems with 3 Variables

Let

AX = (b1, b2, · · · , bm)T (LEq3)
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be a linear equation system in 3 variables with

A =




a11 a12 a13

a21 a22 a23

· · · · · · · · ·
am1 am2 am3




and X =




x1

x2

x3




for an integer m ≥ 3. Then Theorem 2.4 is refined in the following.

Theorem 4.1 A linear equation system (LEq3) is non-solvable if and only if one of the following

conditions hold:

(1) there are integers 1 ≤ i, j ≤ m such that ai1/aj1 = ai2/aj2 = ai3/aj3 6= bi/bj;

(2) if (ai1, ai2, ai3) and (aj1, aj2, aj3) are independent, then there are numbers λ, µ and an

integer l, 1 ≤ l ≤ m such that

(al1, al2, al3) = λ(ai1, ai2, ai3) + µ(aj1, aj2, aj3)¸

but bl 6= λbi + µbj;

(3) if (ai1, ai2, ai3), (aj1, aj2, aj3) and (ak1, ak2, ak3) are independent, then there are num-

bers λ, µ, ν and an integer l, 1 ≤ l ≤ m such that

(al1, al2, al3) = λ(ai1, ai2, ai3) + µ(aj1, aj2, aj3) + ν(ak1, ak2, ak3)¸

but bl 6= λbi + µbj + νbk.

Proof By Theorem 2.1, the linear equation system (LEq3) is non-solvable if and only

if 1 ≤ rankA 6= rankA+ ≤ 4. Thus the non-solvable possibilities of (LEq3) are respectively

rankA = 1, 2 ≤ rankA+ ≤ 4, rankA = 2, 3 ≤ rankA+ ≤ 4 and rankA = 3, rankA+ = 4. We

discuss each of these cases following.

Case 1 rankA = 1 but 2 ≤ rankA+ ≤ 4

In this case, all row vectors in A are dependent. Thus there exists a number λ such that

λ = ai1/aj1 = ai2/aj2 = ai3/aj3 but λ 6= bi/bj.

Case 2 rankA = 2, 3 ≤ rankA+ ≤ 4

In this case, there are two independent row vectors. Without loss of generality, let

(ai1, ai2, ai3) and (aj1, aj2, aj3) be such row vectors. Then there must be an integer l, 1 ≤ l ≤ m
such that the lth row can not be the linear combination of the ith row and jth row. Whence,

there are numbers λ, µ such that

(al1, al2, al3) = λ(ai1, ai2, ai3) + µ(aj1, aj2, aj3)

but bl 6= λbi + µbj .

Case 3 rankA = 3, rankA+ = 4
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In this case, there are three independent row vectors. Without loss of generality, let

(ai1, ai2, ai3), (aj1, aj2, aj3) and (ak1, ak2, ak3) be such row vectors. Then there must be an

integer l, 1 ≤ l ≤ m such that the lth row can not be the linear combination of the ith row,

jth row and kth row. Thus there are numbers λ, µ, ν such that

(al1, al2, al3) = λ(ai1, ai2, ai3) + µ(aj1, aj2, aj3) + ν(ak1, ak2, ak3)

but bl 6= λbi + µbj + νbk. Combining the discussion of Case 1-Case 3, the proof is complete. 2
Notice that the linear equation system (LEq3) can be transformed to the following (LEq3∗)

by elementary transformation, i.e., each jth row plus −aj3/ai3 times the ith row in (LEq3) for

an integer i, 1 ≤ i ≤ m with ai3 6= 0,

A′X = (b′1, b
′
2, · · · , b′m)T (LEq3∗)

with

A′+ =




a′11 a′12 0 b′1

· · · · · · · · · · · ·
a′(i−1)1 a′(i−1)2 0 b′i−1

ai1 ai2 ai3 bi

a′(i+1)1 a′(i+1)2 0 b′i+1

a′m1 a′m2 0 b′m




,

where a′j1 = aj1 − aj3ai1/a13, a
′
j2 = aj2 − aj2ai2/ai3 and b′j = bj − aj3bi/ai3 for integers

1 ≤ j ≤ m. Applying Theorem 3.3, we get the a combinatorial characterizing on non-solvable

linear systems (LEq3) following.

Theorem 4.2 A linear equation system (LEq3) is non-solvable if and only if G[LEq3] 6≃ Km

or G[LEq3∗] ≃ u + LC(H), where H denotes a planar graph with order |H | ≥ 2, size m − 1

and each edge a straight segment, u+G the join of vertex u with G.

Proof By Theorem 2.4, the linear equation system (LEq3) is non-solvable if and only if

G[LEq3] 6≃ Km or the linear equation system (LEq3∗) is non-solvable, which implies that the

linear equation subsystem following

BX ′ = (b′1, · · · , b′i−1, b
′
i+1 · · · , b′m)T (LEq2∗)

with

B =




a′11 a′12

· · · · · ·
a′(i−1)1 a′(i−1)2

a′(i+1)1 a′(i+1)2

a′m1 a′m2




and X ′ = (x1, x2)
T
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is non-solvable. Applying Theorem 3.3, we know that the linear equation subsystem (LEq2∗)

is non-solvable if and only if G[LEq2∗] ≃ LC(H)), where H is a planar graph H of size m− 1

with each edge a straight segment. Thus the linear equation system (LEq3∗) is non-solvable if

and only if G[LEq3∗] ≃ u+ LC(H). 2
§5. Linear Homeomorphisms Equations

A homeomorphism on Rn is a continuous 1− 1 mapping h : Rn → Rn such that its inverse h−1

is also continuous for an integer n ≥ 1. There are indeed many such homeomorphisms on Rn.

For example, the linear transformations T on Rn. A linear homeomorphisms equation system

is such an equation system

AX = (b1, b2, · · · , bm)T (LhEq)

with X = (h(x1), h(x2), · · · , h(xn))T , where h is a homeomorphism and

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




for integers m, n ≥ 1. Notice that the linear homeomorphism equation system





ai1h(x1) + ai2h(x2) + · · · ainh(xn) = bi,

aj1h(x1) + aj2(x2) + · · · ajnh(xn) = bj

is solvable if and only if the linear equation system





ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

is solvable. Similarly, two linear homeomorphism equations are said parallel if they are non-

solvable. Applying Theorems 2.6, 3.3, 4.2, we know the following result for linear homeomor-

phism equation systems (LhEq).

Theorem 5.1 Let (LhEq) be a linear homeomorphism equation system for integers m,n ≥ 1.

Then

(1) G[LEq] ≃ Kn1,n2,··· ,ns with n1 + n+ 2 + · · ·+ns = m, where C h
i is the parallel family

with ni = |C h
i | for integers 1 ≤ i ≤ s in (LhEq) and (LhEq) is non-solvable if s ≥ 2;

(2) If n = 2, (LhEq) is non-solvable if and only if G[LhEq] ≃ LC(H)), where H is a

planar graph of order |H | ≥ 2 on R2 with each edge a homeomorphism of straight segment, and

if n = 3, (LhEq) is non-solvable if and only if G[LhEq] 6≃ Km or G[LEq3∗] ≃ u + LC(H),
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where H denotes a planar graph with order |H | ≥ 2, size m−1 and each edge a homeomorphism

of straight segment.
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Global Stability of Non-Solvable

Ordinary Differential Equations With Applications

Abstract: Different from the system in classical mathematics, a Smarandache system is

a contradictory system in which an axiom behaves in at least two different ways within the

same system, i.e., validated and invalided, or only invalided but in multiple distinct ways.

Such systems exist extensively in the world, particularly, in our daily life. In this paper, we

discuss such a kind of Smarandache system, i.e., non-solvable ordinary differential equation

systems by a combinatorial approach, classify these systems and characterize their behaviors,

particularly, the global stability, such as those of sum-stability and prod-stability of such

linear and non-linear differential equations. Some applications of such systems to other

sciences, such as those of globally controlling of infectious diseases, establishing dynamical

equations of instable structure, particularly, the n-body problem and understanding global

stability of matters with multilateral properties can be also found.

Key Words: Global stability, non-solvable ordinary differential equation, general solution,

G-solution, sum-stability, prod-stability, asymptotic behavior, Smarandache system, inherit

graph, instable structure, dynamical equation, multilateral matter.

AMS(2010): 05C15, 34A30, 34A34, 37C75, 70F10, 92B05

§1. Introduction

Finding the exact solution of an equation system is a main but a difficult objective unless some

special cases in classical mathematics. Contrary to this fact, what is about the non-solvable

case for an equation system? In fact, such an equation system is nothing but a contradictory

system, and characterized only by having no solution as a conclusion. But our world is overlap

and hybrid. The number of non-solvable equations is much more than that of the solvable

and such equation systems can be also applied for characterizing the behavior of things, which

reflect the real appearances of things by that their complexity in our world. It should be noted

that such non-solvable linear algebraic equation systems have been characterized recently by

the author in the reference [7]. The main purpose of this paper is to characterize the behavior

of such non-solvable ordinary differential equation systems.

Assume m, n ≥ 1 to be integers in this paper. Let

Ẋ = F (X) (DES1)

1International J.Math. Combin. Vol.1(2013), 01-37.
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be an autonomous differential equation with F : Rn → Rn and F (0) = 0, particularly, let

Ẋ = AX (LDES1)

be a linear differential equation system and

x(n) + a1x
(n−1) + · · ·+ anx = 0 (LDEn)

a linear differential equation of order n with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann




X =




x1(t)

x2(t)

· · ·
xn(t)




and F (t,X) =




f1(t,X)

f2(t,X)

· · ·
fn(t,X)



,

where all ai, aij , 1 ≤ i, j ≤ n are real numbers with

Ẋ = (ẋ1, ẋ2, · · · , ẋn)T

and fi(t) is a continuous function on an interval [a, b] for integers 0 ≤ i ≤ n. The following

result is well-known for the solutions of (LDES1) and (LDEn) in references.

Theorem 1.1([13]) If F (X) is continuous in

U(X0) : |t− t0| ≤ a, ‖X −X0‖ ≤ b (a > 0, b > 0)

then there exists a solution X(t) of differential equation (DES1) in the interval |t − t0| ≤ h,

where h = min{a, b/M}, M = max
(t,X)∈U(t0,X0)

‖F (t,X)‖.

Theorem 1.2([13]) Let λi be the ki-fold zero of the characteristic equation

det(A− λIn×n) = |A− λIn×n| = 0

or the characteristic equation

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0

with k1 + k2 + · · ·+ ks = n. Then the general solution of (LDES1) is

n∑

i=1

ciβi(t)e
αit,

where, ci is a constant, βi(t) is an n-dimensional vector consisting of polynomials in t deter-
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mined as follows

β1(t) =




t11

t21

· · ·
tn1




β2(t) =




t11t+ t12

t21t+ t22

· · · · · · · · ·
tn1t+ tn2




· · · · · · · · · · · · · · · · · · · · · · · · · · ·

βk1(t) =




t11
(k1−1)! t

k1−1 + t12
(k1−2)! t

k1−2 + · · ·+ t1k1
t21

(k1−1)! t
k1−1 + t22

(k1−2)! t
k1−2 + · · ·+ t2k1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tn1

(k1−1)! t
k1−1 + tn2

(k1−2)! t
k1−2 + · · ·+ tnk1




βk1+1(t) =




t1(k1+1)

t2(k1+1)

· · · · · ·
tn(k1+1)




βk1+2(t) =




t11t+ t12

t21t+ t22

· · · · · · · · ·
tn1t+ tn2




· · · · · · · · · · · · · · · · · · · · · · · · · · ·

βn(t) =




t1(n−ks+1)

(ks−1)! tks−1 +
t1(n−ks+2)

(ks−2)! tks−2 + · · ·+ t1n
t2(n−ks+1)

(ks−1)! tks−1 +
t2(n−ks+2)

(ks−2)! tks−2 + · · ·+ t2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tn(n−ks+1)

(ks−1)! tks−1 +
tn(n−ks+2)

(ks−2)! tks−2 + · · ·+ tnn




with each tij a real number for 1 ≤ i, j ≤ n such that det([tij ]n×n) 6= 0,

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;
λs, if k1 + k2 + · · ·+ ks−1 + 1 ≤ i ≤ n.
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The general solution of linear differential equation (LDEn) is

s∑

i=1

(ci1t
ki−1 + ci2t

ki−2 + · · ·+ ci(ki−1)t+ ciki )e
λit,

with constants cij , 1 ≤ i ≤ s, 1 ≤ j ≤ ki.

Such a vector family βi(t)e
αit, 1 ≤ i ≤ n of the differential equation system (LDES1) and

a family tleλit, 1 ≤ l ≤ ki, 1 ≤ i ≤ s of the linear differential equation (LDEn) are called the

solution basis, denoted by

B = { βi(t)eαit | 1 ≤ i ≤ n } or C = { tleλit | 1 ≤ i ≤ s, 1 ≤ l ≤ ki }.

We only consider autonomous differential systems in this paper. Theorem 1.2 implies that

any linear differential equation system (LDES1) of first order and any differential equation

(LDEn) of order n with real coefficients are solvable. Thus a linear differential equation system

of first order is non-solvable only if the number of equations is more than that of variables, and

a differential equation system of order n ≥ 2 is non-solvable only if the number of equations

is more than 2. Generally, such a contradictory system, i.e., a Smarandache system [4]-[6] is

defined following.

Definition 1.3([4]-[6]) A rule R in a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule R.

Generally, let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems, where Ri is a

rule on Σi for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6= Σj or Σi = Σj but

Ri 6= Rj , then they are said to be different, otherwise, identical. We also know the conception

of Smarandache multi-space defined following.

Definition 1.4([4]-[6]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m ≥ 2 mathematical spaces,

different two by two. A Smarandache multispace Σ̃ is a union
m⋃
i=1

Σi with rules R̃ =
m⋃
i=1

Ri on

Σ̃, i.e., the rule Ri on Σi for integers 1 ≤ i ≤ m, denoted by
(
Σ̃; R̃

)
.

A Smarandache multispace
(
Σ̃; R̃

)
inherits a combinatorial structure, i.e., a vertex-edge

labeled graph defined following.

Definition 1.5([4]-[6]) Let
(
Σ̃; R̃

)
be a Smarandache multispace with Σ̃ =

m⋃
i=1

Σi and R̃ =

m⋃
i=1

Ri. Its underlying graph G
[
Σ̃, R̃

]
is a labeled simple graph defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1,Σ2, · · · ,Σm},
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E
(
G
[
Σ̃, R̃

])
= { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}

with an edge labeling

lE : (Σi,Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi,Σj) = ̟

(
Σi
⋂

Σj

)
,

where ̟ is a characteristic on Σi
⋂

Σj such that Σi
⋂

Σj is isomorphic to Σk
⋂

Σl if and only

if ̟(Σi
⋂

Σj) = ̟ (Σk
⋂

Σl) for integers 1 ≤ i, j, k, l ≤ m.

Now for integers m, n ≥ 1, let

Ẋ = F1(X), Ẋ = F2(X), · · · , Ẋ = Fm(X) (DES1
m)

be a differential equation system with continuous Fi : Rn → Rn such that Fi(0) = 0, particu-

larly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order and





x(n) + a
[0]
11x

(n−1) + · · ·+ a
[0]
1nx = 0

x(n) + a
[0]
21x

(n−1) + · · ·+ a
[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · ·+ a
[0]
mnx = 0

(LDEnm)

a linear differential equation system of order n with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

Definition 1.6 An ordinary differential equation system (DES1
m) or (LDES1

m) (or (LDEnm))

are called non-solvable if there are no function X(t) (or x(t)) hold with (DES1
m) or (LDES1

m)

(or (LDEnm)) unless the constants.

The main purpose of this paper is to find contradictory ordinary differential equation

systems, characterize the non-solvable spaces of such differential equation systems. For such

objective, we are needed to extend the conception of solution of linear differential equations in

classical mathematics following.

Definition 1.7 Let S0
i be the solution basis of the ith equation in (DES1

m). The ∨-solvable, ∧-
solvable and non-solvable spaces of differential equation system (DES1

m) are respectively defined
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by
m⋃

i=1

S0
i ,

m⋂

i=1

S0
i and

m⋃

i=1

S0
i −

m⋂

i=1

S0
i ,

where S0
i is the solution space of the ith equation in (DES1

m).

According to Theorem 1.2, the general solution of the ith differential equation in (LDES1
m)

or the ith differential equation system in (LDEnm) is a linear space spanned by the elements

in the solution basis Bi or Ci for integers 1 ≤ i ≤ m. Thus we can simplify the vertex-edge

labeled graph G
[∑̃

, R̃
]

replaced each
∑
i by the solution basis Bi (or Ci) and

∑
i

⋂∑
j by

Bi

⋂
Bj (or Ci

⋂
Cj) if Bi

⋂
Bj 6= ∅ (or Ci

⋂
Cj 6= ∅) for integers 1 ≤ i, j ≤ m. Such a vertex-

edge labeled graph is called the basis graph of (LDES1
m) ((LDEnm)), denoted respectively by

G[LDES1
m] or G[LDEnm] and the underlying graph of G[LDES1

m] or G[LDEnm], i.e., cleared

away all labels on G[LDES1
m] or G[LDEnm] are denoted by Ĝ[LDES1

m] or Ĝ[LDEnm].

Notice that
m⋂
i=1

S0
i =

m⋃
i=1

S0
i , i.e., the non-solvable space is empty only if m = 1 in

(LDEq). Thus G[LDES1] ≃ K1 or G[LDEn] ≃ K1 only if m = 1. But in general, the

basis graph G[LDES1
m] or G[LDEnm] is not trivial. For example, let m = 4 and B0

1 =

{eλ1t, eλ2t, eλ3t}, B0
2 = {eλ3t, eλ4t, eλ5t}, B0

3 = {eλ1t, eλ3t, eλ5t} and B0
4 = {eλ4t, eλ5t, eλ6t},

where λi, 1 ≤ i ≤ 6 are real numbers different two by two. Then its edge-labeled graph

G[LDES1
m] or G[LDEnm] is shown in Fig.1.

B0
1 B0

2

B0
3 B0

4

{eλ3t}

{eλ4t, eλ5t}

{eλ5t}

{eλ3t, eλ5t}{eλ1t, eλ3t}

Fig.1

If some functions Fi(X), 1 ≤ i ≤ m are non-linear in (DES1
m), we can linearize these

non-linear equations Ẋ = Fi(X) at the point 0, i.e., if

Fi(X) = F ′i (0)X +Ri(X),

where F ′i (0) is an n× n matrix, we replace the ith equation Ẋ = Fi(X) by a linear differential

equation

Ẋ = F ′i (0)X

in (DES1
m). Whence, we get a uniquely linear differential equation system (LDES1

m) from

(DES1
m) and its basis graph G[LDES1

m]. Such a basis graph G[LDES1
m] of linearized differen-

tial equation system (DES1
m) is defined to be the linearized basis graph of (DES1

m) and denoted

by G[DES1
m].
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All of these notions will contribute to the characterizing of non-solvable differential equation

systems. For terminologies and notations not mentioned here, we follow the [13] for differential

equations, [2] for linear algebra, [3]-[6], [11]-[12] for graphs and Smarandache systems, and [1],

[12] for mechanics.

§2. Non-Solvable Linear Ordinary Differential Equations

2.1 Characteristics of Non-Solvable Linear Ordinary Differential Equations

First, we know the following conclusion for non-solvable linear differential equation systems

(LDES1
m) or (LDEnm).

Theorem 2.1 The differential equation system (LDES1
m) is solvable if and only if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1

i.e., (LDEq) is non-solvable if and only if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) = 1.

Similarly, the differential equation system (LDEnm) is solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) 6= 1,

i.e., (LDEnm) is non-solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) = 1,

where Pi(λ) = λn + a
[0]
i1 λ

n−1 + · · ·+ a
[0]
i(n−1)λ+ a

[0]
in for integers 1 ≤ i ≤ m.

Proof Let λi1, λi2, · · · , λin be the n solutions of equation |Ai − λIn×n| = 0 and Bi the

solution basis of ith differential equation in (LDES1
m) or (LDEnm) for integers 1 ≤ i ≤ m.

Clearly, if (LDES1
m) ((LDEnm)) is solvable, then

m⋂

i=1

Bi 6= ∅, i.e.,

m⋂

i=1

{λi1, λi2, · · · , λin} 6= ∅

by Definition 1.5 and Theorem 1.2. Choose λ0 ∈
m⋂
i=1

{λi1, λi2, · · · , λin}. Then (λ − λ0) is a

common divisor of these polynomials |A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|. Thus

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1.
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Conversely, if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1,

let (λ−λ01), (λ−λ02), · · · , (λ−λ0l) be all the common divisors of polynomials |A1−λIn×n, |A2−
λIn×n|, · · · , |Am − λIn×n|, where λ0i 6= λ0j if i 6= j for 1 ≤ i, j ≤ l. Then it is clear that

C1e
λ01 + C2e

λ02 + · · ·+ Cle
λ0l

is a solution of (LEDq) ((LDEnm)) for constants C1, C2, · · · , Cl. 2
For discussing the non-solvable space of a linear differential equation system (LEDS1

m) or

(LDEnm) in details, we introduce the following conception.

Definition 2.2 For two integers 1 ≤ i, j ≤ m, the differential equations





dXi

dt
= AiX

dXj

dt
= AjX

(LDES1
ij)

in (LDES1
m) or 




x(n) + a
[0]
i1 x

(n−1) + · · ·+ a
[0]
inx = 0

x(n) + a
[0]
j1x

(n−1) + · · ·+ a
[0]
jnx = 0

(LDEnij)

in (LDEnm) are parallel if Bi

⋂
Bj = ∅.

Then, the following conclusion is clear.

Theorem 2.3 For two integers 1 ≤ i, j ≤ m, two differential equations (LDES1
ij) (or (LDEnij))

are parallel if and only if

(|Ai| − λIn×n, |Aj | − λIn×n) = 1 (or (Pi(λ), Pj(λ)) = 1),

where (f(x), g(x)) is the least common divisor of f(x) and g(x), Pk(λ) = λn + a
[0]
k1λ

n−1 + · · ·+
a
[0]
k(n−1)λ+ a

[0]
kn for k = i, j.

Proof By definition, two differential equations (LEDS1
ij) in (LDES1

m) are parallel if and

only if the characteristic equations

|Ai − λIn×n| = 0 and |Aj − λIn×n| = 0

have no same roots. Thus the polynomials |Ai| − λIn×n and |Aj | − λIn×n are coprime, which

means that

(|Ai − λIn×n, |Aj − λIn×n) = 1.

Similarly, two differential equations (LEDn
ij) in (LDEnm) are parallel if and only if the
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characteristic equations Pi(λ) = 0 and Pj(λ) = 0 have no same roots, i.e., (Pi(λ), Pj(λ)) = 1.2
Let f(x) = a0x

m + a1x
m−1 + · · ·+ am−1x+ am, g(x) = b0x

n + b1x
n−1 + · · ·+ bn−1x+ bn

with roots x1, x2, · · · , xm and y1, y2, · · · , yn, respectively. A resultant R(f, g) of f(x) and g(x)

is defined by

R(f, g) = am0 b
n
0

∏

i,j

(xi − yj).

The following result is well-known in polynomial algebra.

Theorem 2.4 Let f(x) = a0x
m + a1x

m−1 + · · ·+ am−1x+ am, g(x) = b0x
n + b1x

n−1 + · · ·+
bn−1x+ bn with roots x1, x2, · · · , xm and y1, y2, · · · , yn, respectively. Define a matrix

V (f, g) =




a0 a1 · · · am 0 · · · 0 0

0 a0 a1 · · · am 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 a0 a1 · · · am

b0 b1 · · · bn 0 · · · 0 0

0 b0 b1 · · · bn 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 b0 b1 · · · bn




Then

R(f, g) = detV (f, g).

We get the following result immediately by Theorem 2.3.

Corollary 2.5 (1) For two integers 1 ≤ i, j ≤ m, two differential equations (LDES1
ij) are

parallel in (LDES1
m) if and only if

R(|Ai − λIn×n|, |Aj − λIn×n|) 6= 0,

particularly, the homogenous equations

V (|Ai − λIn×n|, |Aj − λIn×n|)X = 0

have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T if |Ai − λIn×n| = a0λ
n + a1λ

n−1 + · · · + an−1λ + an and

|Aj − λIn×n| = b0λ
n + b1λ

n−1 + · · ·+ bn−1λ+ bn.

(2) For two integers 1 ≤ i, j ≤ m, two differential equations (LDEnij) are parallel in

(LDEnm) if and only if

R(Pi(λ), Pj(λ)) 6= 0,
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particularly, the homogenous equations V (Pi(λ), Pj(λ))X = 0 have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T .

Proof Clearly, |Ai − λIn×n| and |Aj − λIn×n| have no same roots if and only if

R(|Ai − λIn×n|, |Aj − λIn×n|) 6= 0,

which implies that the two differential equations (LEDS1
ij) are parallel in (LEDS1

m) and the

homogenous equations

V (|Ai − λIn×n|, |Aj − λIn×n|)X = 0

have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T . That is the conclusion (1). The proof for the conclusion (2)

is similar. 2
Applying Corollary 2.5, we can determine that an edge (Bi,Bj) does not exist inG[LDES1

m]

or G[LDEnm] if and only if the ith differential equation is parallel with the jth differential equa-

tion in (LDES1
m) or (LDEnm). This fact enables one to know the following result on linear

non-solvable differential equation systems.

Corollary 2.6 A linear differential equation system (LDES1
m) or (LDEnm) is non-solvable if

Ĝ(LDES1
m) 6≃ Km or Ĝ(LDEnm) 6≃ Km for integers m,n > 1.

2.2 A Combinatorial Classification of Linear Differential Equations

There is a natural relation between linear differential equations and basis graphs shown in the

following result.

Theorem 2.7 Every linear homogeneous differential equation system (LDES1
m) (or (LDEnm))

uniquely determines a basis graph G[LDES1
m] (G[LDEnm]) inherited in (LDES1

m) (or in (LDEnm)).

Conversely, every basis graph G uniquely determines a homogeneous differential equation system

(LDES1
m) ( or (LDEnm)) such that G[LDES1

m] ≃ G (or G[LDEnm] ≃ G).

Proof By Definition 1.4, every linear homogeneous differential equation system (LDES1
m)

or (LDEnm) inherits a basis graph G[LDES1
m] or G[LDEnm], which is uniquely determined by

(LDES1
m) or (LDEnm).

Now let G be a basis graph. For ∀v ∈ V (G), let the basis Bv at the vertex v be Bv =

{ βi(t)eαit | 1 ≤ i ≤ nv} with

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;
λs, if k1 + k2 + · · ·+ ks−1 + 1 ≤ i ≤ nv

We construct a linear homogeneous differential equation (LDES1) associated at the vertex v.
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By Theorem 1.2, we know the matrix

T =




t11 t12 · · · t1nv

t21 t22 · · · t2nv

· · · · · · · · · · · ·
tnv1 tnv2 · · · tnvnv




is non-degenerate. For an integer i, 1 ≤ i ≤ s, let

Ji =




λi 1 0 · · · 0 0

0 λi 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 λi




be a Jordan black of ki × ki and

A = T




J1 O

J2

. . .

O Js



T−1.

Then we are easily know the solution basis of the linear differential equation system

dX

dt
= AX (LDES1)

with X = [x1(t), x2(t), · · · , xnv (t)]T is nothing but Bv by Theorem 1.2. Notice that the Jordan

black and the matrix T are uniquely determined by Bv. Thus the linear homogeneous differen-

tial equation (LDES1) is uniquely determined by Bv. It should be noted that this construction

can be processed on each vertex v ∈ V (G). We finally get a linear homogeneous differential

equation system (LDES1
m), which is uniquely determined by the basis graph G.

Similarly, we construct the linear homogeneous differential equation system (LDEnm) for

the basis graphG. In fact, for ∀u ∈ V (G), let the basis Bu at the vertex u be Bu = { tleαit | 1 ≤
i ≤ s, 1 ≤ l ≤ ki}. Notice that λi should be a ki-fold zero of the characteristic equation P (λ) = 0

with k1 + k2 + · · · + ks = n. Thus P (λi) = P ′(λi) = · · · = P (ki−1)(λi) = 0 but P (ki)(λi) 6= 0

for integers 1 ≤ i ≤ s. Define a polynomial Pu(λ) following

Pu(λ) =

s∏

i=1

(λ − λi)ki

associated with the vertex u. Let its expansion be

Pu(λ) = λn + au1λ
n−1 + · · ·+ au(n−1)λ+ aun.
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Now we construct a linear homogeneous differential equation

x(n) + au1x
(n−1) + · · ·+ au(n−1)x

′ + aunx = 0 (LhDEn)

associated with the vertex u. Then by Theorem 1.2 we know that the basis solution of (LDEn)

is just Cu. Notices that such a linear homogeneous differential equation (LDEn) is uniquely

constructed. Processing this construction for every vertex u ∈ V (G), we get a linear homoge-

neous differential equation system (LDEnm). This completes the proof. 2
Example 2.8 Let (LDEnm) be the following linear homogeneous differential equation system





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Then the solution basis of equations (1) − (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} and its basis graph is shown in Fig.2.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}
{e5t}

{e6t}

{et}

Fig.2 The basis graph H

Theorem 2.7 enables one to extend the conception of solution of linear differential equation

to the following.

Definition 2.9 A basis graph G[LDES1
m] (or G[LDEnm]) is called the graph solution of the

linear homogeneous differential equation system (LDES1
m) (or (LDEnm)), abbreviated to G-

solution.

The following result is an immediately conclusion of Theorem 3.1 by definition.

Theorem 2.10 Every linear homogeneous differential equation system (LDES1
m) (or (LDEnm))

has a unique G-solution, and for every basis graph H, there is a unique linear homogeneous

differential equation system (LDES1
m) (or (LDEnm)) with G-solution H.
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Theorem 2.10 implies that one can classifies the linear homogeneous differential equation

systems by those of basis graphs.

Definition 2.11 Let (LDES1
m), (LDES1

m)′ (or (LDEnm), (LDEnm)′) be two linear homo-

geneous differential equation systems with G-solutions H, H ′. They are called combinato-

rially equivalent if there is an isomorphism ϕ : H → H ′, thus there is an isomorphism

ϕ : H → H ′ of graph and labelings θ, τ on H and H ′ respectively such that ϕθ(x) = τϕ(x) for

∀x ∈ V (H)
⋃
E(H), denoted by (LDES1

m)
ϕ≃ (LDES1

m)′ (or (LDEnm)
ϕ≃ (LDEnm)′).

{e−t, e−2t} {e−2t, e−3t}

{e−3t, e−4t}

{e−4t, e−5t}{e−5t, e−6t}

{−e6t, e−t}

{e−2t}

{e−3t}

{e−4t}

{e−5t}

{e−6t}

{e−t}

Fig.3 The basis graph H’

Example 2.12 Let (LDEnm)′ be the following linear homogeneous differential equation system





ẍ+ 3ẋ+ 2x = 0 (1)

ẍ+ 5ẋ+ 6x = 0 (2)

ẍ+ 7ẋ+ 12x = 0 (3)

ẍ+ 9ẋ+ 20x = 0 (4)

ẍ+ 11ẋ+ 30x = 0 (5)

ẍ+ 7ẋ+ 6x = 0 (6)

Then its basis graph is shown in Fig.3.

Let ϕ : H → H ′ be determined by ϕ({eλit, eλjt}) = {e−λit, e−λjt} and

ϕ({eλit, eλjt}
⋂
{eλkt, eλlt}) = {e−λit, e−λjt}

⋂
{e−λkt, e−λlt}

for integers 1 ≤ i, k ≤ 6 and j = i+ 1 ≡ 6(mod6), l = k + 1 ≡ 6(mod6). Then it is clear that

H
ϕ≃ H ′. Thus (LDEnm)′ is combinatorially equivalent to the linear homogeneous differential

equation system (LDEnm) appeared in Example 2.8.

Definition 2.13 Let G be a simple graph. A vertex-edge labeled graph θ : G → Z+ is called

integral if θ(uv) ≤ min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ .

Let GIθ1 and GIτ2 be two integral labeled graphs. They are called identical if G1
ϕ≃ G2 and

θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)
⋃
E(G1), denoted by GIθ1 = GIτ2 .

For example, these labeled graphs shown in Fig.4 are all integral on K4−e, but GIθ1 = GIτ2 ,
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GIθ1 6= GIσ3 .

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ1 GIτ2

2 2

1

1

GIσ3

Fig.4

Let G[LDES1
m] (G[LDEnm]) be a basis graph of the linear homogeneous differential equa-

tion system (LDES1
m) (or (LDEnm)) labeled each v ∈ V (G[LDES1

m]) (or v ∈ V (G[LDEnm]))

by Bv. We are easily get a vertex-edge labeled graph by relabeling v ∈ V (G[LDES1
m]) (or

v ∈ V (G[LDEnm])) by |Bv| and uv ∈ E(G[LDES1
m]) (or uv ∈ E(G[LDEnm])) by |Bu

⋂
Bv|.

Obviously, such a vertex-edge labeled graph is integral, and denoted by GI [LDES1
m] (or

GI [LDEnm]). The following result completely characterizes combinatorially equivalent linear

homogeneous differential equation systems.

Theorem 2.14 Let (LDES1
m), (LDES1

m)′ (or (LDEnm), (LDEnm)′) be two linear homogeneous

differential equation systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃ (LDES1
m)′

(or (LDEnm)
ϕ≃ (LDEnm)′) if and only if H = H ′.

Proof Clearly, H = H ′ if (LDES1
m)

ϕ≃ (LDES1
m)′ (or (LDEnm)

ϕ≃ (LDEnm)′) by defini-

tion. We prove the converse, i.e., if H = H ′ then there must be (LDES1
m)

ϕ≃ (LDES1
m)′ (or

(LDEnm)
ϕ≃ (LDEnm)′).

Notice that there is an objection between two finite sets S1, S2 if and only if |S1| = |S2|.
Let τ be a 1 − 1 mapping from Bv on basis graph G[LDES1

m] (or basis graph G[LDEnm]) to

Bv′ on basis graph G[LDES1
m]′ (or basis graph G[LDEnm]′) for v, v′ ∈ V (H ′). Now if H = H ′,

we can easily extend the identical isomorphism idH on graph H to a 1 − 1 mapping id∗H :

G[LDES1
m]→ G[LDES1

m]′ (or id∗H : G[LDEnm]→ G[LDEnm]′) with labelings θ : v → Bv and

θ′v′ : v′ → Bv′ on G[LDES1
m], G[LDES1

m]′ (or basis graphs G[LDEnm], G[LDEnm]′). Then

it is an immediately to check that id∗Hθ(x) = θ′τ(x) for ∀x ∈ V (G[LDES1
m])

⋃
E(G[LDES1

m])

(or for ∀x ∈ V (G[LDEnm])
⋃
E(G[LDEnm])). Thus id∗H is an isomorphism between basis graphs

G[LDES1
m] and G[LDES1

m]′ (or G[LDEnm] and G[LDEnm]′). Thus (LDES1
m)

id∗H≃ (LDES1
m)′

(or (LDEnm)
id∗H≃ (LDEnm)′). This completes the proof. 2

According to Theorem 2.14, all linear homogeneous differential equation systems (LDES1
m)

or (LDEnm) can be classified by G-solutions into the following classes:

Class 1. Ĝ[LDES1
m] ≃ Km or Ĝ[LDEnm] ≃ Km for integers m,n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on Km and

any two linear differential equations in (LDES1
m) or (LDEnm) are parallel, which characterizes



2.3 Global Stability of Non-Solvable Ordinary Differential Equations With Applications 173

m isolated systems in this class.

For example, the following differential equation system





ẍ+ 3ẋ+ 2x = 0

ẍ− 5ẋ+ 6x = 0

ẍ+ 2ẋ− 3x = 0

is of Class 1.

Class 2. Ĝ[LDES1
m] ≃ Km or Ĝ[LDEnm] ≃ Km for integers m,n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on complete

graphs Km in this class. By Corollary 2.6, we know that Ĝ[LDES1
m] ≃ Km or Ĝ[LDEnm] ≃ Km

if (LDES1
m) or (LDEnm) is solvable. In fact, this implies that

⋂

v∈V (Km)

Bv =
⋂

u,v∈V (Km)

(Bu

⋂
Bv) 6= ∅.

Otherwise, (LDES1
m) or (LDEnm) is non-solvable.

For example, the underlying graphs of linear differential equation systems (A) and (B) in

the following

(A)





ẍ− 3ẋ+ 2x = 0

ẍ− x = 0

ẍ− 4ẋ+ 3x = 0

ẍ+ 2ẋ− 3x = 0

(B)





ẍ− 3ẋ+ 2x = 0

ẍ− 5ẋ+ 6x = 0

ẍ− 4ẋ+ 3x = 0

are respectively K4, K3. It is easily to know that (A) is solvable, but (B) is not.

Class 3. Ĝ[LDES1
m] ≃ G or Ĝ[LDEnm] ≃ G with |G| = m but G 6≃ Km, Km for integers

m,n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on G and all

linear differential equation systems (LDES1
m) or (LDEnm) are non-solvable in this class, such

as those shown in Example 2.12.

2.3 Global Stability of Linear Differential Equations

The following result on the initial problem of (LDES1) and (LDEn) are well-known for differ-

ential equations.

Lemma 2.15([13]) For t ∈ [0,∞), there is a unique solution X(t) for the linear homogeneous

differential equation system
dX

dt
= AX (LhDES1)
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with X(0) = X0 and a unique solution for

x(n) + a1x
(n−1) + · · ·+ anx = 0 (LhDEn)

with x(0) = x0, x
′(0) = x′0, · · · , x(n−1)(0) = x

(n−1)
0 .

Applying Lemma 2.15, we get easily a conclusion on the G-solution of (LDES1
m) with

Xv(0) = Xv
0 for ∀v ∈ V (G) or (LDEnm) with x(0) = x0, x

′(0) = x′0, · · · , x(n−1)(0) = x
(n−1)
0 by

Theorem 2.10 following.

Theorem 2.16 For t ∈ [0,∞), there is a unique G-solution for a linear homogeneous dif-

ferential equation systems (LDES1
m) with initial value Xv(0) or (LDEnm) with initial values

xv(0), x′v(0), · · · , x(n−1)
v (0) for ∀v ∈ V (G).

For discussing the stability of linear homogeneous differential equations, we introduce the

conceptions of zero G-solution and equilibrium point of that (LDES1
m) or (LDEnm) following.

Definition 2.17 A G-solution of a linear differential equation system (LDES1
m) with initial

value Xv(0) or (LDEnm) with initial values xv(0), x′v(0), · · · , x(n−1)
v (0) for ∀v ∈ V (G) is called

a zero G-solution if each label Bi of G is replaced by (0, · · · , 0) (|Bi| times) and Bi

⋂
Bj by

(0, · · · , 0) (|Bi

⋂
Bj | times) for integers 1 ≤ i, j ≤ m.

Definition 2.18 Let dX/dt = AvX, x(n) + av1x
(n−1) + · · ·+ avnx = 0 be differential equations

associated with vertex v and H a spanning subgraph of G[LDES1
m] (or G[LDEnm]). A point

X∗ ∈ Rn is called a H-equilibrium point if AvX
∗ = 0 in (LDES1

m) with initial value Xv(0)

or (X∗)n + av1(X
∗)n−1 + · · · + avnX

∗ = 0 in (LDEnm) with initial values xv(0), x′v(0), · · · ,
x

(n−1)
v (0) for ∀v ∈ V (H).

We consider only two kind of stabilities on the zero G-solution of linear homogeneous

differential equations in this section. One is the sum-stability. Another is the prod-stability.

2.3.1 Sum-Stability

Definition 2.19 Let H be a spanning subgraph of G[LDES1
m] or G[LDEnm] of the linear

homogeneous differential equation systems (LDES1
m) with initial value Xv(0) or (LDEnm) with

initial values xv(0), x′v(0), · · · , x(n−1)
v (0). Then G[LDES1

m] or G[LDEnm] is called sum-stable

or asymptotically sum-stable on H if for all solutions Yv(t), v ∈ V (H) of the linear differential

equations of (LDES1
m) or (LDEnm) with |Yv(0)−Xv(0)| < δv exists for all t ≥ 0, | ∑

v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)| < ε, or furthermore, lim
t→0
| ∑
v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)| = 0.

Clearly, an asymptotic sum-stability implies the sum-stability of thatG[LDES1
m] orG[LDEnm].

The next result shows the relation of sum-stability with that of classical stability.

Theorem 2.20 For a G-solution G[LDES1
m] of (LDES1

m) with initial value Xv(0) (or G[LDEnm]

of (LDEnm) with initial values xv(0), x′v(0), · · · , x(n−1)
v (0)), let H be a spanning subgraph of
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G[LDES1
m] (or G[LDEnm]) and X∗ an equilibrium point on subgraphs H. If G[LDES1

m] (or

G[LDEnm]) is stable on any ∀v ∈ V (H), then G[LDES1
m] (or G[LDEnm]) is sum-stable on H.

Furthermore, if G[LDES1
m] (or G[LDEnm]) is asymptotically sum-stable for at least one vertex

v ∈ V (H), then G[LDES1
m] (or G[LDEnm]) is asymptotically sum-stable on H.

Proof Notice that

|
∑

v∈V (H)

pvYv(t)−
∑

v∈V (H)

pvXv(t)| ≤
∑

v∈V (H)

pv|Yv(t)−Xv(t)|

and

lim
t→0
|
∑

v∈V (H)

pvYv(t)−
∑

v∈V (H)

pvXv(t)| ≤
∑

v∈V (H)

pv lim
t→0
|Yv(t)−Xv(t)|.

Then the conclusion on sum-stability follows. 2
For linear homogenous differential equations (LDES1) (or (LDEn)), the following result

on stability of its solution X(t) = 0 (or x(t) = 0) is well-known.

Lemma 2.21 Let γ = max{ Reλ| |A − λIn×n| = 0}. Then the stability of the trivial solution

X(t) = 0 of linear homogenous differential equations (LDES1) (or x(t) = 0 of (LDEn)) is

determined as follows:

(1) if γ < 0, then it is asymptotically stable;

(2) if γ > 0, then it is unstable;

(3) if γ = 0, then it is not asymptotically stable, and stable if and only if m′(λ) = m(λ)

for every λ with Reλ = 0, where m(λ) is the algebraic multiplicity and m′(λ) the dimension of

eigenspace of λ.

By Theorem 2.20 and Lemma 2.21, the following result on the stability of zero G-solution

of (LDES1
m) and (LDEnm) is obtained.

Theorem 2.22 A zero G-solution of linear homogenous differential equation systems (LDES1
m)

(or (LDEnm)) is asymptotically sum-stable on a spanning subgraph H of G[LDES1
m] (or G[LDEnm])

if and only if Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1) or Reλv < 0 for each tlveλvt ∈ Cv

in (LDEnm) hold for ∀v ∈ V (H).

Proof The sufficiency is an immediately conclusion of Theorem 2.20.

Conversely, if there is a vertex v ∈ V (H) such that Reαv ≥ 0 for βv(t)e
αvt ∈ Bv in

(LDES1) or Reλv ≥ 0 for tlveλvt ∈ Cv in (LDEnm), then we are easily knowing that

lim
t→∞

βv(t)e
αvt →∞

if αv > 0 or βv(t) 6=constant, and

lim
t→∞

tlveλvt →∞

if λv > 0 or lv > 0, which implies that the zero G-solution of linear homogenous differential
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equation systems (LDES1) or (LDEn) is not asymptotically sum-stable on H . 2
The following result of Hurwitz on real number of eigenvalue of a characteristic polynomial

is useful for determining the asymptotically stability of the zero G-solution of (LDES1
m) and

(LDEnm).

Lemma 2.23 Let P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an be a polynomial with real coefficients

ai, 1 ≤ i ≤ n and

∆1 = |a1|, ∆2 =

∣∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣∣
, · · ·∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0

a3 a2 a1 0 · · · 0

a5 a4 a3 a2 a1 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then Reλ < 0 for all roots λ of P (λ) if and only if ∆i > 0 for integers 1 ≤ i ≤ n.

Thus, we get the following result by Theorem 2.22 and lemma 2.23.

Corollary 2.24 Let ∆v
1,∆

v
2 , · · · ,∆v

n be the associated determinants with characteristic polyno-

mials determined in Lemma 4.8 for ∀v ∈ V (G[LDES1
m]) or V (G[LDEnm]). Then for a spanning

subgraph H < G[LDES1
m] or G[LDEnm], the zero G-solutions of (LDES1

m) and (LDEnm) is

asymptotically sum-stable on H if ∆v
1 > 0,∆v

2 > 0, · · · ,∆v
n > 0 for ∀v ∈ V (H).

Particularly, if n = 2, we are easily knowing that Reλ < 0 for all roots λ of P (λ) if and

only if a1 > 0 and a2 > 0 by Lemma 2.23. We get the following result.

Corollary 2.25 Let H < G[LDES1
m] or G[LDEnm] be a spanning subgraph. If the characteristic

polynomials are λ2 + av1λ + av2 for v ∈ V (H) in (LDES1
m) (or (LhDE2

m)), then the zero G-

solutions of (LDES1
m) and (LDE2

m) is asymptotically sum-stable on H if av1 > 0, av2 > 0 for

∀v ∈ V (H).

2.3.2 Prod-Stability

Definition 2.26 Let H be a spanning subgraph of G[LDES1
m] or G[LDEnm] of the linear

homogeneous differential equation systems (LDES1
m) with initial value Xv(0) or (LDEnm) with

initial values xv(0), x′v(0), · · · , x(n−1)
v (0). Then G[LDES1

m] or G[LDEnm] is called prod-stable

or asymptotically prod-stable on H if for all solutions Yv(t), v ∈ V (H) of the linear differential

equations of (LDES1
m) or (LDEnm) with |Yv(0)−Xv(0)| < δv exists for all t ≥ 0, | ∏

v∈V (H)

Yv(t)−
∏

v∈V (H)

Xv(t)| < ε, or furthermore, lim
t→0
| ∏
v∈V (H)

Yv(t)−
∏

v∈V (H)

Xv(t)| = 0.

We know the following result on the prod-stability of linear differential equation system

(LDES1
m) and (LDEnm).
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Theorem 2.27 A zero G-solution of linear homogenous differential equation systems (LDES1
m)

(or (LDEnm)) is asymptotically prod-stable on a spanning subgraph H of G[LDES1
m] (or G[LDEnm])

if and only if
∑

v∈V (H)

Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1) or

∑
v∈V (H)

Reλv < 0 for

each tlveλvt ∈ Cv in (LDEnm).

Proof Applying Theorem 1.2, we know that a solution Xv(t) at the vertex v has the form

Xv(t) =

n∑

i=1

ciβv(t)e
αvt.

Whence,

∣∣∣∣∣∣

∏

v∈V (H)

Xv(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∏

v∈V (H)

n∑

i=1

ciβv(t)e
αvt

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

i=1

∏

v∈V (H)

ciβv(t)e
αvt

∣∣∣∣∣∣
=

∣∣∣∣∣∣

n∑

i=1

∏

v∈V (H)

ciβv(t)

∣∣∣∣∣∣
e

∑
v∈V (H)

αvt

.

Whence, the zero G-solution of homogenous (LDES1
m) (or (LDEnm)) is asymptotically sum-

stable on subgraph H if and only if
∑

v∈V (H)

Reαv < 0 for ∀βv(t)eαvt ∈ Bv in (LDES1) or

∑
v∈V (H)

Reλv < 0 for ∀tlveλvt ∈ Cv in (LDEnm). 2
Applying Theorem 2.22, the following conclusion is a corollary of Theorem 2.27.

Corollary 2.28 A zero G-solution of linear homogenous differential equation systems (LDES1
m)

(or (LDEnm)) is asymptotically prod-stable if it is asymptotically sum-stable on a spanning

subgraph H of G[LDES1
m] (or G[LDEnm]). Particularly, it is asymptotically prod-stable if the

zero solution 0 is stable on ∀v ∈ V (H).

Example 2.29 Let a G-solution of (LDES1
m) or (LDEnm) be the basis graph shown in Fig.5,

where v1 = {e−2t, e−3t, e3t}, v2 = {e−3t, e−4t}, v3 = {e−4t, e−5t, e3t}, v4 = {e−5t, e−6t, e−8t},
v5 = {e−t, e−6t}, v6 = {e−t, e−2t, e−8t}. Then the zero G-solution is sum-stable on the triangle

v4v5v6, but it is not on the triangle v1v2v3. In fact, it is prod-stable on the triangle v1v2v3.

{e−8t} {e3t}

v1

v2

v3v4

{e−2t}

{e−3t}

{e−4t}

{e−5t}

{e−6t}

{e−t}
v5

v6

Fig.5 A basis graph
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§3. Global Stability of Non-Solvable Non-Linear Differential Equations

For differential equation system (DES1
m), we consider the stability of its zero G-solution of

linearized differential equation system (LDES1
m) in this section.

3.1 Global Stability of Non-Solvable Differential Equations

Definition 3.1 Let H be a spanning subgraph of G[DES1
m] of the linearized differential equation

systems (DES1
m) with initial value Xv(0). A point X∗ ∈ Rn is called a H-equilibrium point of

differential equation system (DES1
m) if fv(X

∗) = 0 for ∀v ∈ V (H).

Clearly, 0 is a H-equilibrium point for any spanning subgraphH of G[DES1
m] by definition.

Whence, its zero G-solution of linearized differential equation system (LDES1
m) is a solution

of (DES1
m).

Definition 3.2 Let H be a spanning subgraph of G[DES1
m] of the linearized differential equation

systems (DES1
m) with initial value Xv(0). Then G[DES1

m] is called sum-stable or asymptoti-

cally sum-stable on H if for all solutions Yv(t), v ∈ V (H) of (DES1
m) with ‖Yv(0)−Xv(0)‖ < δv

exists for all t ≥ 0, ∥∥∥∥∥∥

∑

v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
< ε,

or furthermore,

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
= 0,

and prod-stable or asymptotically prod-stable on H if for all solutions Yv(t), v ∈ V (H) of

(DES1
m) with ‖Yv(0)−Xv(0)‖ < δv exists for all t ≥ 0,

∥∥∥∥∥∥

∏

v∈V (H)

Yv(t)−
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
< ε,

or furthermore,

lim
t→0

∥∥∥∥∥∥

∏

v∈V (H)

Yv(t)−
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
= 0.

Clearly, the asymptotically sum-stability or prod-stability implies respectively that the

sum-stability or prod-stability.

Then we get the following result on the sum-stability and prod-stability of the zero G-

solution of (DES1
m).

Theorem 3.3 For a G-solution G[DES1
m] of differential equation systems (DES1

m) with initial

value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m]. If the zero G-solution of (DES1

m)
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is sum-stable or asymptotically sum-stable on H1 and H2, then the zero G-solution of (DES1
m)

is sum-stable or asymptotically sum-stable on H1

⋃
H2.

Similarly, if the zero G-solution of (DES1
m) is prod-stable or asymptotically prod-stable on

H1 and Xv(t) is bounded for ∀v ∈ V (H2), then the zero G-solution of (DES1
m) is prod-stable

or asymptotically prod-stable on H1

⋃
H2.

Proof Notice that

‖X1 +X2‖ ≤ ‖X1‖+ ‖X2‖ and ‖X1X2‖ ≤ ‖X1‖‖X2‖

in Rn. We know that

∥∥∥∥∥∥

∑

v∈V (H1)
⋃
V (H2)

Xv(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t) +
∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

and

∥∥∥∥∥∥

∏

v∈V (H1)
⋃
V (H2)

Xv(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)
∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
.

Whence, ∥∥∥∥∥∥

∑

v∈V (H1)
⋃
V (H2)

Xv(t)

∥∥∥∥∥∥
≤ ǫ or lim

t→0

∥∥∥∥∥∥

∑

v∈V (H1)
⋃
V (H2)

Xv(t)

∥∥∥∥∥∥
= 0

if ǫ = ǫ1 + ǫ2 with ∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ1 and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ ǫ2

or

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
= 0 and lim

t→0

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= 0.

This is the conclusion (1). For the conclusion (2), notice that

∥∥∥∥∥∥

∏

v∈V (H1)
⋃
V (H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤Mǫ
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if ∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ and

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤M.

Consequently, the zero G-solution of (DES1
m) is prod-stable or asymptotically prod-stable on

H1

⋃
H2. 2

Theorem 3.3 enables one to get the following conclusion which establishes the relation of

stability of differential equations at vertices with that of sum-stability and prod-stability.

Corollary 3.4 For a G-solution G[DES1
m] of differential equation system (DES1

m) with initial

value Xv(0), let H be a spanning subgraph of G[DES1
m]. If the zero solution is stable or

asymptotically stable at each vertex v ∈ V (H), then it is sum-stable, or asymptotically sum-

stable and if the zero solution is stable or asymptotically stable in a vertex u ∈ V (H) and Xv(t)

is bounded for ∀v ∈ V (H) \ {u}, then it is prod-stable, or asymptotically prod-stable on H.

It should be noted that the converse of Theorem 3.3 is not always true. For example, let

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ a+ ǫ and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ −a+ ǫ.

Then the zero G-solution G[DES1
m] of differential equation system (DES1

m) is not sum-stable

on subgraphs H1 and H2, but

∥∥∥∥∥∥

∑

v∈V (H1

⋃
H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= ǫ.

Thus the zero G-solution G[DES1
m] of differential equation system (DES1

m) is sum-stable on

subgraphs H1

⋃
H2. Similarly, let

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ

tr
and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ tr

for a real number r. Then the zero G-solution G[DES1
m] of (DES1

m) is not prod-stable on

subgraphs H1 and Xv(t) is not bounded for v ∈ V (H2) if r > 0. However, it is prod-stable on

subgraphs H1

⋃
H2 for

∥∥∥∥∥∥

∏

v∈V (H1

⋃
H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= ǫ.

3.2 Linearized Differential Equations

Applying these conclusions on linear differential equation systems in the previous section, we



2.3 Global Stability of Non-Solvable Ordinary Differential Equations With Applications 181

can find conditions on Fi(X), 1 ≤ i ≤ m for the sum-stability and prod-stability at 0 following.

For this objective, we need the following useful result.

Lemma 3.5([13]) Let Ẋ = AX + B(X) be a non-linear differential equation, where A is a

constant n×n matrix and Reλi < 0 for all eigenvalues λi of A and B(X) is continuous defined

on t ≥ 0, ‖X‖ ≤ α with

lim
‖X‖→0

‖B(X)‖
‖X‖ = 0.

Then there exist constants c > 0, β > 0 and δ, 0 < δ < α such that

‖X(0)‖ ≤ ε ≤ δ

2c
implies that ‖X(t)‖ ≤ cεe−βt/2.

Theorem 3.6 Let (DES1
m) be a non-linear differential equation system, H a spanning subgraph

of G[DES1
m] and

Fv(X) = F ′v
(
0
)
X +Rv(X)

such that

lim
‖X‖→0

‖Rv(X)‖
‖X‖ = 0

for ∀v ∈ V (H). Then the zero G-solution of (DES1
m) is asymptotically sum-stable or asymp-

totically prod-stable on H if Reαv < 0 for each βv(t)e
αvt ∈ Bv, v ∈ V (H) in (DES1

m).

Proof Define c = max{cv, v ∈ V (H)}, ε = min{εv, v ∈ V (H)} and β = min{βv, v ∈
V (H)}. Applying Lemma 3.5, we know that for ∀v ∈ V (H),

‖Xv(0)‖ ≤ ε ≤ δ

2c

implies that

‖Xv(t)‖ ≤ cεe−βt/2.

Whence,

∥∥∥∥∥∥

∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
≤

∑

v∈V (H)

‖Xv(t)‖ ≤ |H |cεe−βt/2

∥∥∥∥∥∥

∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
≤

∏

v∈V (H)

‖Xv(t)‖ ≤ c|H|ε|H|e−|H|βt/2.

Consequently,

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
→ 0 and lim

t→0

∥∥∥∥∥∥

∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
→ 0.

Thus the zero G-solution (DESnm) is asymptotically sum-stable or asymptotically prod-stable

on H by definition. 2
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3.3 Liapunov Functions on G-Solutions

We have know Liapunov functions associated with differential equations. Similarly, we introduce

Liapunov functions for determining the sum-stability or prod-stability of (DES1
m) following.

Definition 3.7 Let (DES1
m) be a differential equation system, H < G[DES1

m] a spanning

subgraph and a H-equilibrium point X∗ of (DES1
m). A differentiable function L : O → R

defined on an open subset O ⊂ Rn is called a Liapunov sum-function on X∗ for H if

(1) L(X∗) = 0 and L

(
∑

v∈V (H)

Xv(t)

)
> 0 if

∑
v∈V (H)

Xv(t) 6= X∗;

(2) L̇

(
∑

v∈V (H)

Xv(t)

)
≤ 0 for

∑
v∈V (H)

Xv(t) 6= X∗,

and a Liapunov prod-function on X∗ for H if

(1) L(X∗) = 0 and L

(
∏

v∈V (H)

Xv(t)

)
> 0 if

∏
v∈V (H)

Xv(t) 6= X∗;

(2) L̇

(
∏

v∈V (H)

Xv(t)

)
≤ 0 for

∏
v∈V (H)

Xv(t) 6= X∗.

Then, the following conclusions on the sum-stable and prod-stable of zero G-solutions of

differential equations holds.

Theorem 3.8 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H be a spanning subgraph of G[DES1
m] and X∗ an equilibrium point of

(DES1
m) on H.

(1) If there is a Liapunov sum-function L : O → R on X∗, then the zero G-solution

G[DES1
m] is sum-stable on X∗ for H. Furthermore, if

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[DES1
m] is asymptotically sum-stable on X∗

for H.

(2) If there is a Liapunov prod-function L : O → R on X∗ for H, then the zero G-solution

G[DES1
m] is prod-stable on X∗ for H. Furthermore, if

L̇


 ∏

v∈V (H)

Xv(t)


 < 0

for
∏

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[DES1
m] is asymptotically prod-stable on X∗

for H.

Proof Let ǫ > 0 be a so small number that the closed ball Bǫ(X
∗) centered at X∗ with
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radius ǫ lies entirely in O and ̟ the minimum value of L on the boundary of Bǫ(X
∗), i.e.,

the sphere Sǫ(X
∗). Clearly, ̟ > 0 by assumption. Define U = {X ∈ Bǫ(X

∗)|L(X) < ̟}.
Notice that X∗ ∈ U and L is non-increasing on

∑
v∈V (H)

Xv(t) by definition. Whence, there are

no solutions Xv(t), v ∈ V (H) starting in U such that
∑

v∈V (H)

Xv(t) meet the sphere Sǫ(X
∗).

Thus all solutions Xv(t), v ∈ V (H) starting in U enable
∑

v∈V (H)

Xv(t) included in ball Bǫ(X
∗).

Consequently, the zero G-solution G[DES1
m] is sum-stable on H by definition.

Now assume that

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗. Thus L is strictly decreasing on
∑

v∈V (H)

Xv(t). If Xv(t), v ∈ V (H) are

solutions starting in U − X∗ such that
∑

v∈V (H)

Xv(tn) → Y ∗ for n → ∞ with Y ∗ ∈ Bǫ(X∗),

then it must be Y ∗ = X∗. Otherwise, since

L


 ∑

v∈V (H)

Xv(t)


 > L(Y ∗)

by the assumption

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for all
∑

v∈V (H)

Xv(t) 6= X∗ and

L


 ∑

v∈V (H)

Xv(tn)


→ L(Y ∗)

by the continuity of L, if Y ∗ 6= X∗, let Yv(t), v ∈ V (H) be the solutions starting at Y ∗. Then

for any η > 0,

L


 ∑

v∈V (H)

Yv(η)


 < L(Y ∗).

But then there is a contradiction

L


 ∑

v∈V (H)

Xv(tn + η)


 < L(Y ∗)

yields by letting Yv(0) =
∑

v∈V (H)

Xv(tn) for sufficiently large n. Thus, there must be Y ∗v = X∗.

Whence, the zero G-solution G[DES1
m] is asymptotically sum-stable on H by definition. This

is the conclusion (1).

Similarly, we can prove the conclusion (2). 2
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The following result shows the combination of Liapunov sum-functions or prod-functions.

Theorem 3.9 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m], X∗ an equilibrium point of

(DES1
m) on H1

⋃
H2 and

R+(x, y) =
∑

i≥0,j≥0

ai,jx
iyj

be a polynomial with ai,j ≥ 0 for integers i, j ≥ 0. Then R+(L1, L2) is a Liapunov sum-function

or Liapunov prod-function on X∗ for H1

⋃
H2 with conventions for integers i, j, k, l ≥ 0 that

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)




= aijL
i
1


 ∑

v∈V (H1)

Xv(t)


Lj2


 ∑

v∈V (H2)

Xv(t)




+aklL
k
1


 ∑

v∈V (H1)

Xv(t)


Ll2


 ∑

v∈V (H2)

Xv(t)




if L1, L2 are Liapunov sum-functions and

aijL
i
1L

j
2


 ∏

v∈V (H1
⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∏

v∈V (H1
⋃
V (H2)

Xv(t)




= aijL
i
1


 ∏

v∈V (H1)

Xv(t)


Lj2


 ∏

v∈V (H2)

Xv(t)




+aklL
k
1


 ∏

v∈V (H1)

Xv(t)


Ll2


 ∏

v∈V (H2)

Xv(t)




if L1, L2 are Liapunov prod-functions on X∗ for H1 and H2, respectively. Particularly, if

there is a Liapunov sum-function (Liapunov prod-function) L on H1 and H2, then L is also a

Liapunov sum-function (Liapunov prod-function) on H1

⋃
H2.

Proof Notice that

d
(
aijL

i
1L

j
2

)

dt
= aij

(
iLi−1

1 L̇1L
j
2 + jLi1L

j−1
1 L̇2

)

if i, j ≥ 1. Whence,

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


 ≥ 0
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if

L1


 ∑

v∈V (H1)

Xv(t)


 ≥ 0 and L2


 ∑

v∈V (H2)

Xv(t)


 ≥ 0

and

d(aijL
i
1L

j
2)

dt


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


 ≤ 0

if

L̇1


 ∑

v∈V (H1)

Xv(t)


 ≤ 0 and L̇2


 ∑

v∈V (H2)

Xv(t)


 ≤ 0.

Thus R+(L1, L2) is a Liapunov sum-function on X∗ for H1

⋃
H2.

Similarly, we can know that R+(L1, L2) is a Liapunov prod-function on X∗ for H1

⋃
H2 if

L1, L2 are Liapunov prod-functions on X∗ for H1 and H2. 2
Theorem 3.9 enables one easily to get the stability of the zero G-solutions of (DES1

m).

Corollary 3.10 For a differential equation system (DES1
m), let H < G[DES1

m] be a spanning

subgraph. If Lv is a Liapunov function on vertex v for ∀v ∈ V (H), then the functions

LHS =
∑

v∈V (H)

Lv and LHP =
∏

v∈V (H)

Lv

are respectively Liapunov sum-function and Liapunov prod-function on graph H. Particularly,

if L = Lv for ∀v ∈ V (H), then L is both a Liapunov sum-function and a Liapunov prod-function

on H.

Example 3.11 Let (DES1
m) be determined by





dx1/dt = λ11x1

dx2/dt = λ12x2

· · · · · · · · ·
dxn/dt = λ1nxn





dx1/dt = λ21x1

dx2/dt = λ22x2

· · · · · · · · ·
dxn/dt = λ2nxn

· · ·





dx1/dt = λn1x1

dx2/dt = λn2x2

· · · · · · · · ·
dxn/dt = λnnxn

where all λij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are real and λij1 6= λij2 if j1 6= j2 for integers 1 ≤ i ≤ m.

Let L = x2
1 + x2

2 + · · ·+ x2
n. Then

L̇ = λi1x
2
1 + λi2x

2
2 + · · ·+ λinx

2
n

for integers 1 ≤ i ≤ n. Whence, it is a Liapunov function for the ith differential equation if

λij < 0 for integers 1 ≤ j ≤ n. Now let H < G[LDES1
m] be a spanning subgraph ofG[LDES1

m].

Then L is both a Liapunov sum-function and a Liapunov prod-function on H if λvj < 0 for

∀v ∈ V (H) by Corollaries 3.10.
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Theorem 3.12 Let L : O → R be a differentiable function with L(0) = 0 and L

(
∑

v∈V (H)

X

)
>

0 always holds in an area of its ǫ-neighborhood U(ǫ) of 0 for ε > 0, denoted by U+(0, ε) such

area of ε-neighborhood of 0 with L

(
∑

v∈V (H)

X

)
> 0 and H < G[DES1

m] be a spanning subgraph.

(1) If ∥∥∥∥∥∥
L


 ∑

v∈V (H)

X



∥∥∥∥∥∥
≤M

with M a positive number and

L̇


 ∑

v∈V (H)

X


 > 0

in U+(0, ǫ), and for ∀ǫ > 0, there exists a positive number c1, c2 such that

L


 ∑

v∈V (H)

X


 ≥ c1 > 0 implies L̇


 ∑

v∈V (H)

X


 ≥ c2 > 0,

then the zero G-solution G[DES1
m] is not sum-stable on H. Such a function L : O → R is

called a non-Liapunov sum-function on H.

(2) If ∥∥∥∥∥∥
L


 ∏

v∈V (H)

X



∥∥∥∥∥∥
≤ N

with N a positive number and

L̇


 ∏

v∈V (H)

X


 > 0

in U+(0, ǫ), and for ∀ǫ > 0, there exists positive numbers d1, d2 such that

L


 ∏

v∈V (H)

X


 ≥ d1 > 0 implies L̇


 ∏

v∈V (H)

X


 ≥ d2 > 0,

then the zero G-solution G[DES1
m] is not prod-stable on H. Such a function L : O → R is

called a non-Liapunov prod-function on H.

Proof Generally, if ‖L(X)‖ is bounded and L̇ (X) > 0 in U+(0, ǫ), and for ∀ǫ > 0, there

exists positive numbers c1, c2 such that if L (X) ≥ c1 > 0, then L̇ (X) ≥ c2 > 0, we prove that

there exists t1 > t0 such that ‖X(t1, t0)‖ > ǫ0 for a number ǫ0 > 0, where X(t1, t0) denotes

the solution of (DESnm) passing through X(t0). Otherwise, there must be ‖X(t1, t0)‖ < ǫ0 for

t ≥ t0. By L̇ (X) > 0 we know that L(X(t)) > L(X(t0)) > 0 for t ≥ t0. Combining this fact
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with the condition L̇ (X) ≥ c2 > 0, we get that

L(X(t)) = L(X(t0)) +

t∫

t0

dL(X(s))

ds
≥ L(X(t0)) + c2(t− t0).

Thus L(X(t)) → +∞ if t → +∞, a contradiction to the assumption that L(X) is bounded.

Whence, there exists t1 > t0 such that

‖X(t1, t0)‖ > ǫ0.

Applying this conclusion, we immediately know that the zero G-solution G[DES1
m] is not sum-

stable or prod-stable on H by conditions in (1) or (2). 2
Similar to Theorem 3.9, we know results for non-Liapunov sum-function or prod-function

by Theorem 3.12 following.

Theorem 3.13 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m], 0 an equilibrium point of

(DES1
m) on H1

⋃
H2. Then R+(L1, L2) is a non-Liapunov sum-function or non-Liapunov

prod-function on 0 for H1

⋃
H2 with conventions for

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)




and

aijL
i
1L

j
2


 ∏

v∈V (H1
⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∏

v∈V (H1
⋃
V (H2)

Xv(t)




the same as in Theorem 3.9 if L1, L2 are non-Liapunov sum-functions or non-Liapunov prod-

functions on 0 for H1 and H2, respectively. Particularly, if there is a non-Liapunov sum-

function (non-Liapunov prod-function) L on H1 and H2, then L is also a non-Liapunov sum-

function (non-Liapunov prod-function) on H1

⋃
H2.

Proof Similarly, we can show that R+(L1, L2) satisfies these conditions on H1

⋃
H2 for

non-Liapunov sum-functions or non-Liapunov prod-functions in Theorem 3.12 if L1, L2 are

non-Liapunov sum-functions or non-Liapunov prod-functions on 0 for H1 and H2, respectively.

Thus R+(L1, L2) is a non-Liapunov sum-function or non-Liapunov prod-function on 0. 2
Corollary 3.14 For a differential equation system (DES1

m), let H < G[DES1
m] be a spanning

subgraph. If Lv is a non-Liapunov function on vertex v for ∀v ∈ V (H), then the functions

LHS =
∑

v∈V (H)

Lv and LHP =
∏

v∈V (H)

Lv

are respectively non-Liapunov sum-function and non-Liapunov prod-function on graph H. Par-
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ticularly, if L = Lv for ∀v ∈ V (H), then L is both a non-Liapunov sum-function and a non-

Liapunov prod-function on H.

Example 3.15 Let (DES1
m) be





ẋ1 = λ1x
2
1 − λ1x

2
2

ẋ2 =
λ1

2
x1x2





ẋ2 = λ2x
2
1 − λ2x

2
2

ẋ2 =
λ2

2
x1x2

· · ·





ẋ1 = λmx
2
1 − λmx2

2

ẋ2 =
λm
2
x1x2

with constants λi > 0 for integers 1 ≤ i ≤ m and L(x1, x2) = x2
1 − 2x2

2. Then L̇(x1, x2) =

4λix1L(x1, x2) for the i-th equation in (DES1
m). Calculation shows that L(x1, x2) > 0 if

x1 >
√

2x2 or x1 < −
√

2x2 and L̇(x1, x2) > 4c
3
2 for L(x1, x2) > c in the area of L(x1, x2) > 0.

Applying Theorem 3.12, we know the zero solution of (DES1
m) is not stable for the i-th equation

for any integer 1 ≤ i ≤ m. Applying Corollary 3.14, we know that L is a non-Liapunov sum-

function and non-Liapunov prod-function on any spanning subgraph H < G[DES1
m].

§4. Global Stability of Shifted Non-Solvable Differential Equations

The differential equation systems (DES1
m) discussed in previous sections are all in a same

Euclidean space Rn. We consider the case that they are not in a same space Rn, i.e., shifted

differential equation systems in this section. These differential equation systems and their

non-solvability are defined in the following.

Definition 4.1 A shifted differential equation system (SDES1
m) is such a differential equation

system

Ẋ1 = F1(X1), Ẋ2 = F2(X2), · · · , Ẋm = Fm(Xm) (SDES1
m)

with

X1 = (x1, x2, · · · , xl, x1(l+1), x1(l+2), · · · , x1n),

X2 = (x1, x2, · · · , xl, x2(l+1), x2(l+2), · · · , x2n),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Xm = (x1, x2, · · · , xl, xm(l+1), xm(l+2), · · · , xmn),

where x1, x2, · · · , xl, xi(l+j), 1 ≤ i ≤ m, 1 ≤ j ≤ n− l are distinct variables and Fs : Rn → Rn

is continuous such that Fs(0) = 0 for integers 1 ≤ s ≤ m.

A shifted differential equation system (SDES1
m) is non-solvable if there are integers i, j, 1 ≤

i, j ≤ m and an integer k, 1 ≤ k ≤ l such that x
[i]
k (t) 6= x

[j]
k (t), where x

[i]
k (t), x

[j]
k (t) are solutions

xk(t) of the i-th and j-th equations in (SDES1
m), respectively.

The number dim(SDES1
m) of variables x1, x2, · · · , xl, xi(l+j), 1 ≤ i ≤ m, 1 ≤ j ≤ n − l in

Definition 4.1 is uniquely determined by (SDES1
m), i.e., dim(SDES1

m) = mn− (m − 1)l. For

classifying and finding the stability of these differential equations, we similarly introduce the

linearized basis graphs G[SDES1
m] of a shifted differential equation system to that of (DES1

m),

i.e., a vertex-edge labeled graph with
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V (G[SDES1
m]) = {Bi|1 ≤ i ≤ m},

E(G[SDES1
m]) = {(Bi,Bj)|Bi

⋂
Bj 6= ∅, 1 ≤ i, j ≤ m},

where Bi is the solution basis of the i-th linearized differential equation Ẋi = F ′i (0)Xi for

integers 1 ≤ i ≤ m, called such a vertex-edge labeled graph G[SDES1
m] the G-solution of

(SDES1
m) and its zero G-solution replaced Bi by (0, · · · , 0) (|Bi| times) and Bi

⋂
Bj by

(0, · · · , 0) (|Bi

⋂
Bj | times) for integers 1 ≤ i, j ≤ m.

Let (LDES1
m), (LDES1

m)′ be linearized differential equation systems of shifted differential

equation systems (SDES1
m) and (SDES1

m) with G-solutions H, H ′. Similarly, they are called

combinatorially equivalent if there is an isomorphism ϕ : H → H ′ of graph and labelings

θ, τ on H and H ′ respectively such that ϕθ(x) = τϕ(x) for ∀x ∈ V (H)
⋃
E(H), denoted by

(SDES1
m)

ϕ≃ (SDES1
m)′. Notice that if we remove these superfluous variables from G[SDES1

m],

then we get nothing but the same vertex-edge labeled graph of (LDES1
m) in Rl. Thus we can

classify shifted differential similarly to (LDES1
m) in Rl. The following result can be proved

similarly to Theorem 2.14.

Theorem 4.2 Let (LDES1
m), (LDES1

m)′ be linearized differential equation systems of two

shifted differential equation systems (SDES1
m), (SDES1

m)′ with integral labeled graphs H, H ′.

Then (SDES1
m)

ϕ≃ (SDES1
m)′ if and only if H = H ′.

The stability of these shifted differential equation systems (SDES1
m) is also similarly to

that of (DES1
m). For example, we know the results on the stability of (SDES1

m) similar to

Theorems 2.22, 2.27 and 3.6 following.

Theorem 4.3 Let (LDES1
m) be a shifted linear differential equation systems and H < G[LDES1

m]

a spanning subgraph. A zero G-solution of (LDES1
m) is asymptotically sum-stable on H if and

only if Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1) hold for ∀v ∈ V (H) and it is asymptot-

ically prod-stable on H if and only if
∑

v∈V (H)

Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1).

Theorem 4.4 Let (SDES1
m) be a shifted differential equation system, H < G[SDES1

m] a

spanning subgraph and

Fv(X) = F ′v
(
0
)
X +Rv(X)

such that

lim
‖X‖→0

‖Rv(X)‖
‖X‖ = 0

for ∀v ∈ V (H). Then the zero G-solution of (SDES1
m) is asymptotically sum-stable or asymp-

totically prod-stable on H if Reαv < 0 for each βv(t)e
αvt ∈ Bv, v ∈ V (H) in (SDES1

m).

For the Liapunov sum-function or Liapunov prod-function of a shifted differential equation

system (SDES1
m), we choose it to be a differentiable function L : O ⊂ Rdim(SDES1

m) → R with

conditions in Definition 3.7 hold. Then we know the following result similar to Theorem 3.8.

Theorem 4.5 For a G-solution G[SDES1
m] of a shifted differential equation system (SDES1

m)

with initial value Xv(0), let H be a spanning subgraph of G[DES1
m] and X∗ an equilibrium
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point of (SDES1
m) on H.

(1) If there is a Liapunov sum-function L : O ⊂ Rdim(SDES1
m) → R on X∗, then the zero

G-solution G[SDES1
m] is sum-stable on X∗ for H, and furthermore, if

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[SDES1
m] is asymptotically sum-stable on

X∗ for H.

(2) If there is a Liapunov prod-function L : O ⊂ Rdim(SDES1
m) → R on X∗ for H, then

the zero G-solution G[SDES1
m] is prod-stable on X∗ for H, and furthermore, if

L̇


 ∏

v∈V (H)

Xv(t)


 < 0

for
∏

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[SDES1
m] is asymptotically prod-stable on

X∗ for H.

§5. Applications

5.1 Global Control of Infectious Diseases

An immediate application of non-solvable differential equations is the globally control of infec-

tious diseases with more than one infectious virus in an area. Assume that there are three kind

groups in persons at time t, i.e., infected I(t), susceptible S(t) and recovered R(t), and the

total population is constant in that area. We consider two cases of virus for infectious diseases:

Case 1 There are m known virus V1,V2, · · · ,Vm with infected rate ki, heal rate hi for integers

1 ≤ i ≤ m and an person infected a virus Vi will never infects other viruses Vj for j 6= i.

Case 2 There are m varying V1,V2, · · · ,Vm from a virus V with infected rate ki, heal rate hi

for integers 1 ≤ i ≤ m such as those shown in Fig.6.

V1 V2
- - - Vm

Fig.6

We are easily to establish a non-solvable differential model for the spread of infectious



2.3 Global Stability of Non-Solvable Ordinary Differential Equations With Applications 191

viruses by applying the SIR model of one infectious disease following:





Ṡ = −k1SI

İ = k1SI − h1I

Ṙ = h1I





Ṡ = −k2SI

İ = k2SI − h2I

Ṙ = h2I

· · ·





Ṡ = −kmSI
İ = kmSI − hmI
Ṙ = hmI

(DES1
m)

Notice that the total population is constant by assumption, i.e., S + I + R is constant.

Thus we only need to consider the following simplified system





Ṡ = −k1SI

İ = k1SI − h1I





Ṡ = −k2SI

İ = k2SI − h2I
· · ·





Ṡ = −kmSI
İ = kmSI − hmI

(DES1
m)

The equilibrium points of this system are I = 0, the S-axis with linearization at equilibrium

points





Ṡ = −k1S

İ = k1S − h1





Ṡ = −k2S

İ = k2S − h2

· · ·





Ṡ = −kmS
İ = kmS − hm

(LDES1
m)

Calculation shows that the eigenvalues of the ith equation are 0 and kiS−hi, which is negative,

i.e., stable if 0 < S < hi/ki for integers 1 ≤ i ≤ m. For any spanning subgraphH < G[LDES1
m],

we know that its zero G-solution is asymptotically sum-stable on H if 0 < S < hv/kv for

v ∈ V (H) by Theorem 2.22, and it is asymptotically sum-stable on H if

∑

v∈V (H)

(kvS − hv) < 0 i.e., 0 < S <
∑

v∈V (H)

hv

/
∑

v∈V (H)

kv

by Theorem 2.27. Notice that if Ii(t), Si(t) are probability functions for infectious viruses

Vi, 1 ≤ i ≤ m in an area, then
m∏
i=1

Ii(t) and
m∏
i=1

Si(t) are just the probability functions for

all these infectious viruses. This fact enables one to get the conclusion following for globally

control of infectious diseases.

Conclusion 5.1 For m infectious viruses V1,V2, · · · ,Vm in an area with infected rate ki, heal

rate hi for integers 1 ≤ i ≤ m, then they decline to 0 finally if

0 < S <

m∑

i=1

hi

/
m∑

i=1

ki ,

i.e., these infectious viruses are globally controlled. Particularly, they are globally controlled if

each of them is controlled in this area.

5.2 Dynamical Equations of Instable Structure

There are two kind of engineering structures, i.e., stable and instable. An engineering structure
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is instable if its state moving further away and the equilibrium is upset after being moved

slightly. For example, the structure (a) is engineering stable but (b) is not shown in Fig.7,

A1

B1 C1

A2

B2

C2

D2

(a) (b)

Fig.7

where each edge is a rigid body and each vertex denotes a hinged connection. The motion of

a stable structure can be characterized similarly as a rigid body. But such a way can not be

applied for instable structures for their internal deformations such as those shown in Fig.8.

A B

C D

BA

C D

moves

Fig.8

Furthermore, let P1,P2, · · · ,Pm be m particles in R3 with some relations, for instance,

the gravitation between particles Pi and Pj for 1 ≤ i, j ≤ m. Thus we get an instable structure

underlying a graph G with

V (G) = {P1,P2, · · · ,Pm};

E(G) = {(Pi,Pj)|there exists a relation between Pi and Pj}.

For example, the underlying graph in Fig.5.4 is C4. Assume the dynamical behavior of particle

Pi at time t has been completely characterized by the differential equations Ẋ = Fi(X, t),

where X = (x1, x2, x3). Then we get a non-solvable differential equation system

Ẋ = Fi(X, t), 1 ≤ i ≤ m

underlying the graph G. Particularly, if all differential equations are autonomous, i.e., depend

on X alone, not on time t, we get a non-solvable autonomous differential equation system

Ẋ = Fi(X), 1 ≤ i ≤ m.
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All of these differential equation systems particularly answer a question presented in [3] for

establishing the graph dynamics, and if they satisfy conditions in Theorems 2.22, 2.27 or 3.6,

then they are sum-stable or prod-stable. For example, let the motion equations of 4 members

in Fig.5.3 be respectively

AB : ẌAB = 0; CD : ẌCD = 0, AC : ẌAC = aAC , BC : ẌBC = aBC ,

where XAB, XCD, XAC and XBC denote central positions of members AB,CD,AC,BC and

aAC , aBC are constants. Solving these equations enable one to get

XAB = cABt+ dAB, XAC = aACt
2 + cACt+ dAC ,

XCD = cCDt+ dCD, XBC = aBCt
2 + cBCt+ dBC ,

where cAB, cAC , cCD, cBC , dAB, dAC , dCD, dBC are constants. Thus we get a non-solvable dif-

ferential equation system

Ẍ = 0; Ẍ = 0, Ẍ = aAC , Ẍ = aBC ,

or a non-solvable algebraic equation system

X = cABt+ dAB, X = aACt
2 + cACt+ dAC ,

X = cCDt+ dCD, X = aBCt
2 + cBCt+ dBC

for characterizing the behavior of the instable structure in Fig.5.3 if constants cAB, cAC , cCD,

cBC , dAB, dAC , dCD, dBC are different.

Now let X1, X2, · · · , Xm be the respectively positions in R3 with initial values X0
1 , X

0
2 , · · · ,

X0
m, Ẋ0

1 , Ẋ
0
2 , · · · , Ẋ0

m and M1,M2, · · · ,Mm the masses of particles P1,P2, · · · ,Pm. If m = 2,

then from Newton’s law of gravitation we get that

Ẍ1 = GM2
X2 −X1

|X2 −X1|3
, Ẍ2 = GM1

X1 −X2

|X1 −X2|3
,

where G is the gravitational constant. Let X = X2−X1 = (x1, x2, x3). Calculation shows that

Ẍ = −G (M1 +M2)
X

|X |3
.

Such an equation can be completely solved by introducing the spherical polar coordinates





x1 = r cosφ cos θ

x2 = r cosφ cos θ

x3 = r sin θ

with r ≥ 0, 0 ≤ φ ≤ π, 0 ≤ θ < 2π, where r = ‖X‖, φ = ∠Xoz, θ = ∠X ′ox with X ′

the projection of X in the plane xoy are parameters with r = α/(1 + ǫ cosφ) hold for some
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constants α, ǫ. Whence,

X1(t) = GM2

∫ (∫
X

|X |3
dt

)
dt and X2(t) = −GM1

∫ (∫
X

|X |3
dt

)
dt.

Notice the additivity of gravitation between particles. The gravitational action of particles

P1,P2, · · · ,Pm on P can be regarded as the respective actions of P1,P2, · · · ,Pm on P,

such as those shown in Fig.9.

P1 P2 Pm

P

F1

K >}
F2 Fm

Fig.9

Thus we can establish the differential equations two by two, i.e., P1 acts on P, P2 acts on

P, · · · , Pm acts on P and get a non-solvable differential equation system

Ẍ = GMi
Xi −X
|Xi −X |3

, Pi 6= P, 1 ≤ i ≤ m.

Fortunately, each of these differential equations in this system can be solved likewise that of

m = 2. Not loss of generality, assume X̂i(t) to be the solution of the differential equation in

the case of Pi 6= P, 1 ≤ i ≤ m. Then

X(t) =
∑

Pi 6=P

X̂i(t) = G
∑

Pi 6=P

Mi

∫ (∫
Xi −X
|Xi −X |3

dt

)
dt

is nothing but the position of particle P at time t in R3 under the actions of Pi 6= P for

integers 1 ≤ i ≤ m, i.e., its position can be characterized completely by the additivity of

gravitational force.

5.3 Global Stability of Multilateral Matters

Usually, one determines the behavior of a matter by observing its appearances revealed before

one’s eyes. If a matter emerges more lateralities before one’s eyes, for instance the different

states of a multiple state matter. We have to establish different models, particularly, differential

equations for understanding that matter. In fact, each of these differential equations can be

solved but they are contradictory altogether, i.e., non-solvable in common meaning. Such a

multilateral matter is globally stable if these differential equations are sum or prod-stable in all.

Concretely, let S1, S2, · · · , Sm be m lateral appearances of a matter M in R3 which are



2.3 Global Stability of Non-Solvable Ordinary Differential Equations With Applications 195

respectively characterized by differential equations

Ẋi = Hi(Xi, t), 1 ≤ i ≤ m,

where Xi ∈ R3, a 3-dimensional vector of surveying parameters for Si, 1 ≤ i ≤ m. Thus we get

a non-solvable differential equations

Ẋ = Hi(X, t), 1 ≤ i ≤ m (DES1
m)

in R3. Noticing that all these equations characterize a same matter M , there must be equilib-

rium points X∗ for all these equations. Let

Hi(X, t) = H ′i(X
∗)X +Ri(X

∗),

where

H ′i(X
∗) =




h
[i]
11 h

[i]
12 · · · h

[i]
1n

h
[i]
21 h

[i]
22 · · · h

[i]
2n

· · · · · · · · · · · ·
h

[i]
n1 h

[i]
n2 · · · h

[i]
nn




is an n× n matrix. Consider the non-solvable linear differential equation system

Ẋ = H ′i(X
∗)X, 1 ≤ i ≤ m (LDES1

m)

with a basis graph G. According to Theorem 3.6, if

lim
‖X‖→X∗

‖Ri(X)‖
‖X‖ = 0

for integers 1 ≤ i ≤ m, then the G-solution of these differential equations is asymptotically

sum-stable or asymptotically prod-stable on G if each Reα
[i]
k < 0 for all eigenvalues α

[i]
k of

matrix H ′i(X
∗), 1 ≤ i ≤ m. Thus we therefore determine the behavior of matter M is globally

stable nearly enough X∗. Otherwise, if there exists such an equation which is not stable at the

point X∗, then the matter M is not globally stable. By such a way, if we can determine these

differential equations are stable in everywhere, then we can finally conclude that M is globally

stable.

Conversely, let M be a globally stable matter characterized by a non-solvable differential

equation

Ẋ = Hi(X, t)

for its laterality Si, 1 ≤ i ≤ m. Then the differential equations

Ẋ = Hi(X, t), 1 ≤ i ≤ m (DES1
m)

are sum-stable or prod-stable in all by definition. Consequently, we get a sum-stable or prod-
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stable non-solvable differential equation system.

Combining all of these previous discussions, we get an interesting conclusion following.

Conclusion 5.2 Let MGS ,M
GS

be respectively the sets of globally stable multilateral matters,

non-stable multilateral matters characterized by non-solvable differential equation systems and

DE ,DE the sets of sum or prod-stable non-solvable differential equation systems, not sum or

prod-stable non-solvable differential equation systems. then

(1) ∀M ∈MGS ⇒ ∃(DES1
m) ∈ DE ;

(2) ∀M ∈M
GS ⇒ ∃(DES1

m) ∈ DE .

Particularly, let M be a multiple state matter. If all of its states are stable, then M is

globally stable. Otherwise, it is unstable.
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Cauchy Problem on Non-solvable Systems of

First Order Partial Differential Equations with Applications

Abstract: Let L1, L2, · · · , Lm be m partial differential operators of first order and

h1, h2, · · · , hm continuously differentiable functions. Then is the partial differential equa-

tion system Li[u] = hi, 1 ≤ i ≤ m solvable for a differential mapping u : R
n → R

n or not?

Similarly, let ϕ be a continuous function ϕ : R
n−1 → R

n−1. Then is the Cauchy problem

Li[u] = hi, 1 ≤ i ≤ m with u(x1, x2, · · · , xn−1, t0) = ϕ(x1, x2, · · · , xn−1) solvable or not?

If not, how can we characterize the behavior of such a function u? All these questions are

ignored in classical mathematics only by saying not solvable! In fact, non-solvable equation

systems are nothing but Smarandache systems, i.e., contradictory systems themselves, in

which a ruler behaves in at least two different ways within the same system, i.e., validated

and invalided, or only invalided but in multiple distinct ways. They are widely existing in

the natural world and our daily life. In this paper, we discuss non-solvable partial differential

equation systems of first order by a combinatorial approach, classify these systems by un-

derlying graphs, particularly, these non-solvable linear systems, characterize their behaviors,

such as those of global stability, energy integral and their geometry, which enables one to

find a differentiable manifold with preset m vector fields. Applications of such non-solvable

systems to interaction fields and flows in network are also included in this paper.

Key Words: Non-solvable partial-differential equation, Smarandache system, vertex-edge

labeled graph, global stability, energy integral, combinatorial manifold.

AMS(2010): 05C15, 34A30, 34A34, 37C75, 70F10, 92B05

§1. Introduction

A partial differential equation

F (x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0 (PDE)

on functions u(x1, · · · , xn) is non-solvable if there are no function u(x1, · · · , xn) on a domain

D ⊂ R
n with (PDE) holds. For example, the equation eux1+ux2 = 0. Similarly, a system of

partial differential equations

1Methods and Applications of Analysis, Vol.22, 2(2015), 171-200.
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F1(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

F2(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

(PDES)

is non-solvable if there are no function u(x1, · · · , xn) on a domain D ⊂ Rn with (PDES) holds.

Such non-solvable systems of partial differential equations are indeed existing. For example,

H.Lewy [5] proved that there exists a function F (x1, x2, x3) ∈ C∞(R3) such that the partial

differential equation

−ux1 − iux2 + 2i (x1 + ix2)ux3 = 0

is non-solvable. R.Rubinsten [14] proved that

utt + tnuxx + (i− tm)ux = 0, n > 4m+ 2, m ≡ 1(mod2)

ut − tnuxx + itmux = 0, n > 2m+ 1, n ≡ 0(mod2)

are non-solvable locally at the origin. It should be noted that these non-solvable linear algebraic

or ordinary differential equation systems have been characterized recently by the author in the

references [12]-[13].

The objective of this paper is to characterize those non-solvable partial differential equation

systems of first order on one function u(x1, x2, · · · , xn) by a combinatorial approach, classify

these systems and characterize their behaviors with some applications. For such a objective, we

should know its counterpart, i.e., solvable conditions on partial differential equations (PDE).

The following result is well-known from standard textbooks, such as those of [4] and [15].

Theorem 1.1 Let





xi = xi(t, s1, s2, · · · , sn−1)

u = u(t, s1, s2, · · · , sn−1)

pi = pi(t, s1, s2, · · · , sn−1), i = 1, 2, · · · , n
(SDE)

be a solution of system

dx1

Fp1
=

dx2

Fp2
= · · · = dxn

Fpn
=

du
n∑
i=1

piFpi

= − dp1

Fx1 + p1Fu
= · · · = − dpn

Fxn + pnFu
= dt

with initial values
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xi0 = xi0 (s1, s2, · · · , sn−1)

u0 = u0(s1, s2, · · · , sn−1)

pi0 = pi0(s1, s2, · · · , sn−1), i = 1, 2, · · · , n
(IDE)

such that 



F (x10 , x20 , · · · , xn0 , u, p10 , p20 , · · · , pn0) = 0

∂u0

∂sj
−

n∑

i=0

pi0
∂xi0
∂sj

= 0, j = 1, 2, · · · , n− 1.

Then (SDE) is the solution of partial differential equation

F (x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0 (PDE)

of first order with initial values (1-2), where pi =
∂u

∂xi
and Fpi =

∂F

∂pi
for integers 1 ≤ i ≤ n.

Particularly, if such a partial differential equation (PDE) of first order is linear or quasi-

linear, let

L =

n∑

i=1

ai
∂

∂xi

be a partial differential operator of first order with continuously differentiable functions ai, 1 ≤
i ≤ n. Then such a linear or quasilinear partial differential equation (PDE) of first order can

be denoted by

L[u] ≡
n∑

i=1

ai
∂u

∂xi
= c, (LPDE)

where c is a continuously differentiable function. Let L1, L2, · · · , Lm be m partial differential

operators of first order (linear or non-linear) and hi, 1 ≤ i ≤ m continuously differentiable

functions on Rn. Then is the partial differential equation system

Li[u(x1, x2, · · · , xn)] = hi, 1 ≤ i ≤ m (PDESm)

solvable or not for a differential mapping u : Rn → Rn? Similarly, let ̟i 1 ≤ i ≤ m be

continuous functions on Rn. Then is the Cauchy problem





Li[u] = hi

u(x1, x2, · · · , xn−1, x
0
n) = ̟i, 1 ≤ i ≤ m

(PDESCm)

solvable or not? Denoted by S0
i the solution of ith equation in system (PDESm) or (DEPSCm).

Then the partial differential equation system (PDESm) or (DEPSCm) is solvable only if
m⋂
i=1

S0
i 6=

∅. Notice that u : Rn → Rn is differentiable. Thus the systems (PDESm) or (DEPSCm) is

solvable only if
m⋂
i=1

S0
i is a non-empty functional set on a domain D ⊂ Rn. Otherwise, non-

solvable, i.e.,
m⋂
i=1

S0
i = ∅ for any domain D ⊂ Rn. In fact, if such a system is non-solvable, it is
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nothing but a Smarandache system defined in the following.

Definition 1.4 A rule R in a mathematical system (Σ;R) is said to be Smarandachely denied

if it behaves in at least two different ways within the same set Σ, i.e., validated and invalided,

or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule R.

Let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems, where Ri is a rule on Σi

for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6= Σj or Σi = Σj but

Ri 6= Rj , then they are said to be different, otherwise, identical. We also know the conception

of Smarandache multi-space defined following.

Definition 1.5 Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m ≥ 2 mathematical spaces, different

two by two. A Smarandache multispace Σ̃ is a union
m⋃
i=1

Σi with rules R̃ =
m⋃
i=1

Ri on Σ̃, i.e.,

the rule Ri on Σi for integers 1 ≤ i ≤ m, denoted by
(
Σ̃; R̃

)
.

A Smarandache multispace
(
Σ̃; R̃

)
inherits a combinatorial structure, i.e., a vertex-edge

labeled graph defined following.

Definition 1.6 Let
(
Σ̃; R̃

)
be a Smarandache multispace with Σ̃ =

m⋃
i=1

Σi and R̃ =
m⋃
i=1

Ri. Its

underlying graph G
[
Σ̃, R̃

]
is a labeled simple graph defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
G
[
Σ̃, R̃

])
= { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}

with an edge labeling

lE : (Σi,Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi,Σj) = ̟

(
Σi
⋂

Σj

)
,

where ̟ is a characteristic on Σi
⋂

Σj such that Σi
⋂

Σj is isomorphic to Σk
⋂

Σl if and only

if ̟(Σi
⋂

Σj) = ̟ (Σk
⋂

Σl) for integers 1 ≤ i, j, k, l ≤ m.

An equation or a system of equations is said reducible if it can be reduced from another(s)

with the same solutions. Now let (PDESm) be a system of partial differential equations with





F1(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

F2(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1, · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0
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on a function u(x1, · · · , xn, t). Then its symbol is determined by





F1(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0,

i.e., substitute pα1
1 , pα2

2 , · · · , pαnn into (PDESm) for the term uxα1
1 x

α2
2 ···x

αn
n

, where αi ≥ 0 for

integers 1 ≤ i ≤ n.

Definition 1.7 A non-solvable (PDESm) is algebraically contradictory if its symbol is non-

solvable. Otherwise, differentially contradictory.

For example, the system of partial differential equations following





ux + 2uy + 3uz = 2 + y2 + z2

yzux + xzuy + xyuz = x2 − y2 − z2

(yz + 1)ux + (xz + 2)uy + (xy + 3)uz = x2 + 1

is algebraically contradictory because its symbol





p1 + 2p2 + 3p3 = 2 + y2 + z2

yzp1 + xzp2 + xyp3 = x2 − y2 − z2

(yz + 1)p1 + (xz + 2)p2 + (xy + 3)p3 = x2 + 1

is non-solvable.

All terminologies and notations in this paper are standard. For those not mentioned here,

we follow the [4] and [15] for partial differential equation. [8]-[10], [16] for algebra, topology

and Smarandache systems, and [1]-[2] for mechanics.

§2. Non-Solvable Systems of Partial Differential Equations

First, we get the non-solvability of Cauchy problem of partial differential equations of first order

following.

Theorem 2.1 A Cauchy problem on systems





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0
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of partial differential equations of first order is non-solvable with initial values





xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0 (x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0
−
n−1∑

i=0

p0
i

∂x0
i

∂sj0
6= 0.

Proof If the Cauchy problem

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

xi|xn=x0
n

= x0
i , u|xn=x0

n
= u0, pi|xn=x0

n
= p0

i , i = 1, 2, · · · , n



 , 1 ≤ k ≤ m

of partial differential equations of first order is solvable, it is clear that the symbol of system of

partial differential equations





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

can not be contradictory, i.e., compatible. Furthermore, if it is algebraically contradictory, then

there must be an integer k0 such that

Fk0(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0.

Otherwise, the x0
i , u0, p

0
i , 1 ≤ i ≤ n is a solution of the system, a contradiction.

Notice that u0 = u(x0
1, · · · , x0

n) = u(x0
1(s1, · · · , sn−1), · · · , x0

n(s1, · · · , sn−1)). There must

be
∂u0

∂sj
−
n−1∑

i=0

p0
i

∂x0
i

∂sj
= 0

for any integer j, 1 ≤ j ≤ n− 1.
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Now if the system of partial differential equations





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

is not algebraically contradictory, we can find its non-trivial solutions x0
i , u0, p

0
i , 1 ≤ i ≤ n.

Furthermore, if

∂u0

∂sj
−
n−1∑

i=0

p0
i

∂x0
i

∂sj
= 0

for any integer j, 1 ≤ j ≤ n− 1, then the Cauchy problem





Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

xi|xn=x0
n

= x0
i , u|xn=x0

n
= u0, pi|xn=x0

n
= p0

i , i = 1, 2, · · · , n

is solvable by Theorem 1.1.

Let 



x
[k]
i = x

[k]
i (t, s1, s2, · · · , sn−1)

u[k] = u[k](t, s1, s2, · · · , sn−1)

p
[k]
i = p

[k]
i (t, s1, s2, · · · , sn−1), i = 1, 2, · · · , n

be the solution of Cauchy problem





Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

xi|xn=x0
n

= x0
i , u|xn=x0

n
= u0, pi|xn=x0

n
= p0

i , i = 1, 2, · · · , n

of partial differential equation of first order for an integer 1 ≤ k ≤ m, i.e., the solution of its

characteristic system

dx1

Fkp1
=

dx2

Fkp2
= · · · = dxn

Fkpn
=

du
n∑
i=1

piFkpi

= − dp1

Fkx1 + p1Fku
= · · · = − dpn

Fkxn + pnFku
= dt

with initial values x0
i , u0, p

0
i , 1 ≤ i ≤ n.

Without loss of generality, denoted by S[k] all of its solutions x
[k]
i , u[k], p

[k]
i , 1 ≤ i ≤ n. Then

m⋂

k=1

S[k] ⊇ {x0
i , u0, p

0
i , 1 ≤ i ≤ n} 6= ∅.
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Thus the Cauchy problem on partial differential equations





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

of first order with initial values





x0
i = x0

i (s1, s2, · · · , sn−1)

u0 = u0(s1, s2, · · · , sn−1)

p0
i = p0

i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

is solvable. This completes the proof. 2
Corollary 2.2 Let 




F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

be an algebraically contradictory system of partial differential equations of first order. Then

there are no values x0
i , u0, p

0
i , 1 ≤ i ≤ n such that





F1(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) = 0,

F2(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) = 0.

Corollary 2.3 A Cauchy problem





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

of first order with

Fk(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) = 0, 1 ≤ k ≤ m

for values x0
i , u0, p

0
i , 1 ≤ i ≤ n is non-solvable if and only if there is an integer j0, 1 ≤ j0 ≤ n−1

such that
∂u0

∂sj0
−
n−1∑

i=0

p0
i

∂x0
i

∂sj0
6= 0.
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If the system (PDESm) is linear or quasilinear, i.e.,

n∑

i=1

a
[k]
i

∂u

∂xi
= c[k], 1 ≤ k ≤ m, (LPDESm)

then

Fk =
n∑

i=1

a
[k]
i

∂u

∂xi
− c[k] =

n∑

i=1

a
[k]
i pi + b[k]pt − c[k]

for integers 1 ≤ k ≤ m.

Calculation shows that Fkpi = a
[k]
i , 1 ≤ k ≤ m and

n∑

i=1

piFkpi =

n∑

i=1

a
[k]
i pi = c[k],

Fkxl =

n∑

i=1

a
[k]
ixl
pi − c[k]xi , Fku =

n∑

i=1

a
[k]
iu pi − c[k]u

and

∂

∂xl

(
n∑

i=1

a
[k]
i pi − c[k]

)
=

n∑

i=1

(
a
[k]
ixl
pi + a

[k]
iu plpi + a

[k]
i pixl

)
−
(
c[k]xl + c[k]u pl

)
= 0.

We know that

Fkxl + plFu =

n∑

i=1

a
[k]
i pixl =

n∑

i=1

a
[k]
i plxi .

Notice that on a solution surface u(x1, · · · , xn),

dpl
dxl

=

n∑

i=1

plxi
dxi
dxl

=

n∑

i=1

plxi
a
[k]
i

a
[k]
l

,

which implies that
dxi

a
[k]
i

=
dpl

Fkxl + plFu
=

dpl
n∑
i=1

a
[k]
i plxi

is an identity. Thus, if the system (PDESm) is linear or quasilinear system (LPDESm), we

only need to consider the characteristic system

dx1

Fkp1
=

dx2

Fkp2
= · · · = dxn

Fkpn
=

du
n∑
i=1

piFkpi

for finding solutions u(x1, · · · , xn). Furthermore, we only need to prescribe the initial data by

u|xn=x0
n
, then the condition

∂u0

∂sj0
−

n∑

i=0

p0
i

∂x0
i

∂sj0
= 0
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is naturally hold by pi0 =
∂u

∂xi

∣∣∣∣
xn=0

in this case. Consequently, we can get simpler conditions

for linear or quasilinear non-solvable (LPDESm) than that of Theorem 2.1.

Corollary 2.4 A Cauchy problem (LPDESCm) of quasilinear partial differential equations with

initial values u|xn=x0
n

= u0 is non-solvable if and only if the system (LPDESm) of partial

differential equations is algebraically contradictory.

Particularly, if the Cauchy problem (LPDESCm) of partial differential equations is linear

with c[i] = 0, 1 ≤ i ≤ m, we know the following conclusion.

Corollary 2.5 A Cauchy problem (LPDESCm) of linear partial differential equations with

c[i] = 0, 1 ≤ i ≤ m and initial values u|xn=x0
n

= u0 is non-solvable if and only if the system

(LPDESm) of partial differential equations is algebraically contradictory.

If a (PDESm) is not algebraic contradictory, we can find initial values x0
i , u0, p

0
i , 1 ≤ i ≤ n

by solving the algebraic system





F1(x1, x2, · · · , xn−1, x
0
n, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn−1, x
0
n, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn−1, x
0
n, u, p1, p2, · · · , pn) = 0.

Generally, all these datum x0
i , u0, p

0
i , 1 ≤ i ≤ n appeared in Theorem 2.1, particularly, these

datum x0
i , 1 ≤ i ≤ n in Corollaries 2.4 and 2.5 consist a domain, i.e., a manifold for u, such as

those shown in the following example.

Example 2.6 Let us consider the partial differential equation system





(z − y)ux + (x− z)uy + (y − x)uz = 0

xzux + yzuy + zuz = 0

u|z=0 = ex+y

The characteristic system of its first equation is

dx

z − y =
dy

x− z =
dz

y − x

and we are easily to find two independent initial integrals

ϕ1 = x+ y + z, ϕ2 = x2 + y2 + z2.

Consequently,

x+ y = ϕ1|z=0 = ϕ1, x2 + y2 = ϕ2|z=0 = ϕ2.
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Solving this algebraic system, we know that





x =
ϕ1 ±

√
ϕ2 − ϕ2

1

2
,

y =
ϕ1 ∓

√
ϕ2 − ϕ2

1

2
.

Hence, the solution of





(z − y)ux + (x− z)uy + (y − x)uz = 0

u|z=0 = ex+y

is u = ex+y = eϕ1 = ex+y+z.

Similarly, the characteristic system of its second equation is

dx

xz
=
dy

yz
=
dz

z

with two independent initial integrals

ψ1 =
x

ez
, ψ2 =

y

ez
,

which implies that x = ψ1, y = ψ2. Whence, the solution of





xzux + yzuy + zuz = 0

u|z=0 = ex+y

is u = ex+y = e
x+y
ez . Consequently, u = ex+y+z = e

x+y
ez . Calculation shows that

x+ y +
ez

ee − 1
z = 0,

which is the domain of solutions of the partial differential equation system.

For the non-solvability of shifted partial differential equations of first order, we know the

following result.

Theorem 2.7 A Cauchy problem on systems





F1(x1, · · · , xn, x[1]
n+1, · · · , x

[1]
n1 , u, p1, · · · , pn, p[1]

n+1, · · · , p
[1]
n1) = 0

F2(x1, · · · , xn, x[2]
n+1, · · · , x

[2]
n2 , u, p1, · · · , pn, p[2]

n+1, · · · , p
[2]
n2) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, · · · , xn, x[m]
n+1, · · · , x

[m]
nm , u, p1, · · · , pn, p[m]

n+1, · · · , p
[m]
nm) = 0

of partial differential equations of first order is non-solvable with initial values
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u0 = u0(s1, s2, · · · , snm−1)

x0
i = x0

i (s1, s2, · · · , snm−1), 1 ≤ i ≤ n and x0
i = 0, i ≥ n+ 1

p0
i = p0

i (s1, s2, · · · , snm−1), 1 ≤ i ≤ n and p0
i = 0, i ≥ n+ 1,

where x1, · · · , xn, x[1]
n+1, · · · , x

[1]
n1 , x

[2]
n+1, · · · , x

[2]
n2 , · · · , x[m]

n+1, · · · , x
[m]
nm are independent, p

[i]
k = ∂u/∂x

[i]
k

and n ≤ n1 ≤ n2 ≤ · · · ≤ nm if and only if there are integers {ni1 , ni2 , · · · , nil} ⊂ {n1, n2, · · · , nm},
ni1 = ni2 = · · · = nil = n such that the system





Fi1(x1, · · · , xn, u, p1, · · · , pn) = 0

Fi2(x1, · · · , xn, u, p1, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fil(x1, · · · , xn, u, p1, · · · , pn) = 0

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ l such that

Fik0 (x0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ nm − 1 such that

∂u0

∂sj0
−

n∑

i=0

p0
i

∂x0
i

∂sj0
6= 0.

Proof Notice that x1, · · · , xn, x[1]
n+1, · · · , x

[1]
n1 , x

[2]
n+1, · · · , x

[2]
n2 , · · · , x[m]

n+1, · · · , x
[m]
nm are inde-

pendent. Whence, if ni 6= nj , the system





Fi(x1, · · · , xn, x[1]
n+1, · · · , x

[1]
n1 , u, p1, · · · , pn, p[1]

n+1, · · · , p
[1]
n1) = 0

Fj(x1, · · · , xn, x[2]
n+1, · · · , x

[2]
n2 , u, p1, · · · , pn, p[2]

n+1, · · · , p
[2]
n2) = 0

must be algebraically compatible. Furthermore, for any integer 1 ≤ k ≤ m we know the Cauchy

problem





Fk(x1, · · · , xn, x[k]
n+1, · · · , x

[k]
n1 , u, p1, · · · , pn, p[k]

n+1, · · · , p
[k]
n1) = 0,

xi|xn=x0
n

= x0
i (s1, s2, · · · , snm−1), 1 ≤ i ≤ n; x

[k]
i |xn=x0

n
= 0, i ≥ n+ 1,

u|xn=x0
n

= u0(s1, s2, · · · , snm−1),

pi|xn=x0
n

= p0
i (s1, s2, · · · , snm−1), 1 ≤ i ≤ n; p

[k]
i |xn=x0

n
= 0, i ≥ n+ 1

is solvable by Theorem 1.1 if

∂u0

∂sj
−

n∑

i=0

p0
i

∂x0
i

∂sj
= 0

for any integer 1 ≤ j ≤ nm − 1. Whence, the conclusion follows by a similar way to that of

Theorem 2.1. 2
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§3. Combinatorial Classification of Partial Differential Equations

According to Theorem 2.1 and Corollary 2.2, if the system of partial differential equations





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

is algebraically contradictory, there are no initial values x0
i , u0, p

0
i , 1 ≤ i ≤ n such that the

Cauchy problem





Fk(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

xi|xn=x0
n

= x0
i , u|xn=x0

n
= u0, pi|xn=x0

n
= p0

i , i = 1, 2, · · · , n

is all solvable for any integer 1 ≤ k ≤ m. Whence, we need to prescribe different initial values

x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for integers 1 ≤ k ≤ m. In fact, the following two steps enable one

to find these initial values with minimum numbers:

Step 1: Decompose (PDESm) into minimal compatible families F1,F2, · · · ,Fs such

that:

(1) All equations in Fi is maximal algebraically compatible for any integer 1 ≤ i ≤ s;
(2) |F1|+ |F2|+ · · ·+ |Fs| = m.

Step 2: Solve family Fi and prescribe initial values x
[i0]
j , u

[i]
0 , p

[i0]
j , 1 ≤ j ≤ n in the

algebraic solution of Fi for integers 1 ≤ i ≤ s.

Furthermore, we assume these initial values x
[k0 ]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n hold with

∂u
[k0]
0

∂sj
−

n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0

for integers 1 ≤ j ≤ n− 1, 1 ≤ k ≤ s and denote the solution space of Cauchy problem





Fk(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

xi|xn=x0
n

= x
[k0]
i , u|xn=x0

n
= u

[k]
0 , pi|xn=x0

n
= p

[k0]
i

by S[k]. Then we can define a vertex-edge labeled graph G[PDESCm] as follows:

V (G[PDESCm]) = {S[i]|1 ≤ i ≤ m},
E(G[PDESCm]) = {(S[i], S[j])|Si⋂Sj 6= ∅, 1 ≤ i, j ≤ m}

with labels l(S[i]) = S[i], l(S[i], S[j]) = Si
⋂
Sj for integers 1 ≤ i, j ≤ m. Its underlying graph

of G[PDESCm], i.e., without labels is denoted by Ĝ[PDESCm]. Particularly, by replacing each

label S[i] with S
[i]
0 = {u[i]

0 } and S[i]
⋂
S[j] by S

[i]
0

⋂
S

[j]
0 for integers 1 ≤ i, j ≤ m, we get a new
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vertex-edge labeled graph, denoted by G0[PDES
C
m]. Clearly, Ĝ[PDESCm] ≃ Ĝ0[PDES

C
m].

Then the following results on Ĝ[PDESCm] are easily know by definition.

Theorem 3.1 If Ĝ[PDESCm] 6≃ Km, or Ĝ[PDESCm] ≃ Km but there are integers 1 ≤ i, j, k ≤
m such that S[i]

⋂
S[j]

⋂
S[k] = ∅, where m is the number of equations in (PDESCm), then

(PDESCm) is non-solvable.

Proof Clearly, if the system (PDESCm) is solvable, then any subsystem of equations in

(PDESCm) is solvable. This fact implies that Ĝ[PDESCm] is a complete graph and for three

integers 1 ≤ i, j, k ≤ m, S[i]
⋂
S[j]

⋂
S[k] 6= ∅. Thus, if Ĝ[PDESCm] 6≃ Km, or S[i]

⋂
S[j]

⋂
S[k] =

∅ for three integers 1 ≤ i, j, k ≤ m, then the Cauchy problem (PDESCm) is non-solvable. 2
The following result enables one to introduce the conception of G-solution of partial dif-

ferential equations of first order.

Theorem 3.2 For any system (PDESCm) of partial differential equations of first order, Ĝ[PDESCm]

is simple. Conversely, for any simple graph G, there is a system (PDESCm) of partial differential

equations of first order such that Ĝ[PDESCm] ≃ G.

Proof By definition, it is clear that the graph Ĝ[PDESCm] is simple for any system

(PDESCm) of partial differential equations of first order. Notice that for any partial differ-

ential equation

F (x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0,

there are infinitely partial differential equations algebraically contradictory with it, for example,

the equation

F (x1, x2, · · · , xn, u, p1, p2, · · · , pn) + s = 0,

and there are also infinitely partial differential equations not algebraically contradictory with

it, for example, the equation

F (x1, x2, · · · , xn, u, p1 + s, p2 + s, · · · , pn + s) = 0

for a real number s 6= 0. All of these facts enables one to construct a system (PDESCm) of

partial differential equations such that G[PDESCm] ≃ G.

For ∀v1 ∈ V (G), label it with S[v1], where S[v1] is the solution space of Cauchy problem





Fv1(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

xi|xn=x0
n

= xv1i0 , u|xn=x0
n

= uv10 , pi|xn=x0
n

= pv1i0 .

If vertices v1, v2, · · · , vk have been labeled and V (G)\{v1, v2, · · · , vk} 6= ∅, let vk+1 ∈ V (G)\
{v1, v2, · · · , vk}. Not loss of generality, assume {v1, v2, · · · , vk} = {vi1 , vi2 , · · · , vil}

⋃{vj1 , vj2 , · · · , vjk−l}
such that vk+1vis ∈ E(G), 1 ≤ s ≤ k and vk+1vjt 6∈ E(G), 1 ≤ t ≤ k − l. Label the vertex
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vk+1 by S[vk+1], where S[vk+1] is the solution space of such a Cauchy problem





Fvk+1
(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

xi|xn=x0
n

= x
vk+1

i0
, u|xn=x0

n
= u

vk+1

0 , pi|xn=x0
n

= p
vk+1

i0

that 



Fvk+1
(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

Fvis (x1, · · · , xn, u, p1, · · · , pn, ) = 0

is algebraically compatible for integers 1 ≤ s ≤ l but the system





Fvk+1
(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

Fvjt (x1, · · · , xn, u, p1, · · · , pn, ) = 0

is algebraically contradictory for integers 1 ≤ t ≤ k− l. As we discussed previous, such a partial

differential equation

Fvk+1
(x1, · · · , xn, u, p1, · · · , pn, ) = 0

can be always chosen.

Continuing this process, all vertices in G are labeled by the induction and we get a system

(PDESCm) of partial differential equations





Fv(x1, · · · , xn, u, p1, · · · , pn, ) = 0, v ∈ V (G),

xi|xn=x0
n

= xvi0 , u|xn=x0
n

= uv0, pi|xn=x0
n

= pvi0 .

Clearly, such a system (PDESC) with Ĝ[PDESCm] ≃ G by construction. In fact, the

bijection ϕ : S[v] ∈ V (G[PDESCm]) → v ∈ V (G) is a graph isomorphism from Ĝ[PDESCm] to

G. This completes the proof. 2
Notice that the symbol of a linear partial differential equation

F (x1, · · · , xn, u, p1, · · · , pn, ) = 0

of first order is a superplane in R
2n+1. Thus for an algebraically contradictory linear system





Fi(x1, · · · , xn, u, p1, · · · , pn, ) = 0

Fj(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

if

Fk(x1, · · · , xn, u, p1, · · · , pn, ) = 0

is contradictory to one of there two partial differential equations, then it must be contradictory

to another. This fact enables one to classify equations in (LPDESm) by contradictory property

and determine its Ĝ[LPDESCm] following.
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Theorem 3.3 Let (LPDESm) be a system of linear partial differential equations of first

order with maximal contradictory classes C1,C2, · · · ,Cs on equations in (LPDES). Then

Ĝ[LPDESCm] ≃ K(C1,C2, · · · ,Cs), i.e., an s-partite complete graph.

Proof By definition, these equations in a contradictory class Ci, 1 ≤ i ≤ s are contradictory.

Thus there are no edges between them. Similarly, these equations in two different contradictory

classes Ci,Cj , 1 ≤ i 6= j ≤ s can not be contradictory. Thus there are edges between them.

Whence, Ĝ[LPDESCm] is nothing but the s-partite complete graph K(C1,C2, · · · ,Cs). 2
Example 3.4 Let us consider the following Cauchy problems





ut + aux = 0

ut + xux = 0

ut + aux + et = 0

u|t=0 = φ(x).

(3.1)

Clearly, it is algebraically contradictory because et 6= 0 for any value t but





ut + aux = 0

ut + xux = 0

u|t=0 = φ(x)

and





tut + ux = 0

ut + aux + et = 0

u|t=0 = φ(x)

are not algebraically contradictory. The vertex-edge labeled graph G[(3.1)] of Cauchy problem

(3.1) is shown in Fig.1,

S[1] S[2] S[3]
S[1]

⋂
S[2] S[2]

⋂
S[3]

Fig.1

where S[1], S[2] and S[3] are determined by solving these Cauchy problems

(1)





ut + aux = 0

u|t=0 = φ(x)
, (2)





ut + xux = 0

u|t=0 = φ(x)
and (3)





ut + aux + et = 0

u|t=0 = φ(x),

respectively. Calculation shows that

S[1] = {φ(x− at)}, S[2] = {φ(
x

et
)}, S[3] = {φ(x− at)− et + 1}

and

S[1]
⋂
S[2] = {φ(x − at) = φ(

x

et
)}, S[2]

⋂
S[3] = {φ(

x

et
) = φ(x− at)− et + 1}.
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Definition 3.5 Let (PDESCm) be the Cauchy problem of a partial differential equation system

of first order. Then the vertex-edge labeled graph G[PDESCm] is called its topological graph

solution and G0[PDES
C
m] the initial topological graph solution, abbreviated to G-solution, initial

G-solution, respectively.

Combining this definition with that of Theorems 3.2 and 3.3, the following conclusion is

holden immediately.

Theorem 3.6 A Cauchy problem on system (PDESm) of partial differential equations of first

order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth equation in (PDESm), 1 ≤ k ≤ m

such that
∂u

[k]
0

∂sj
−

n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0

is uniquely G-solvable, i.e., G[PDES] is uniquely determined.

Applying the combinatorial structures of G-solutions of partial differential equations, we

classify them following.

Definition 3.7 Let (PDES)1 and (PDES)2 be two reduced systems of partial differential

equations of first order in Rn with vertex-edge labeled graphs G1[PDES], G2[PDES]. The

two systems (PDES)1 and (PDES)2 are called to be isometric if Ĝ1[PDES]
θ≃ Ĝ2[PDES]

with h(l(v)) = l(θ(v)) for ∀v ∈ Ĝ1[PDES], where h is an isometry on Rn+1, denoted by

(PDES)1
θ∼ (PDES)2. Particularly, if h =identity, i.e., l(v) = l(θ(v)) for ∀v ∈ Ĝ1[PDES],

(PDES)1 and (PDES)2 are called to be isotopy, denoted by (PDES)1
θ
= (PDES)2.

Let h be an isometry on R
n+1. Denoted by (PDES)h such a system replaced x1, x2, · · · , xn

by h(x1), h(x2), · · · , h(xn) and pi by ∂u/∂h(xi) for each equation in (PDES). Then we know

the following result on isometric equations.

Theorem 3.8 (PDES)1
θ∼ (PDES)2 if and only if there is an isometry h on Rn+1 such

that (PDES)h1
θ
= (PDES)2. Particularly, (PDES)1

θ
= (PDES)2 if and only if G1[PDES]

θ≃
G2[PDES], i.e., reduced partial differential equations in (PDES)1 are the same as those of

reduced equations in (PDES)2.

Proof Notice that G1[PDES]
θ≃ G2[PDES] in Rn+1 if and only if the G-solutions of

(PDES)1 and (PDES)2 are coincident. By definition, if (PDES)1
θ∼ (PDES)2, then there is

an isometry h such that Ĝ1[PDES] ≃ Ĝ2[PDES] with h(l(v)) = l(θ(v)) for ∀v ∈ Ĝ1[PDES],

i.e., h is an isometry between the G-solutions of (PDES)1 and (PDES)2. Without loss of

generality, let h map the G1-solution to G2-solution. Then it implies that G[(PDES)h1 ]
θ≃

G2[PDES]. Thus (PDES)h1
θ
= (PDES)2.

Particularly, if (PDES)1
θ
= (PDES)2, there must be Ĝ1[PDES]

θ≃ Ĝ2[PDES] and l(v) =

l(θ(v)) for ∀v ∈ Ĝ1[PDES]. Thus G1[PDES]
θ≃ G2[PDES], i.e., the G1-solutions of (PDES)1

are coincident with that of (PDES)2. This fact implies that all reduced partial differential

equations in (PDES)1 are the same as those of reduced equations in (PDES)2. 2
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Corollary 3.9 Let (PDES) be a system of partial differential equations of first order in Rn,

[A]n×n an orthogonal matrix and h = [A]n×n(x1, x2, · · · , xn)T . Then (PDES)h
θ∼ (PDES).

For example, let h be a linear transformation on R2 determined by





x1 = ax+ by

y1 = −bx+ ay

with a2 + b2 = 1, a, b ∈ R. Then





∂u

∂x
= a

∂u

∂x1
− b∂u

∂y
∂u

∂y
= b

∂u

∂x1
+ a

∂u

∂y1
.

Thus, the equation
∂u

∂x
+
∂u

∂y
= 0

is isometric to

(a+ b)
∂u

∂x
+ (a− b)∂u

∂y
= 0

since G-solution of them is K2 with labels transformed by h each other.

§4. Characterizing G-Solutions

4.1 Global Stability of G-Solutions

Denoted a solution u(x1, x2, · · · , xn) by u(x1, x2, · · · , xn−1, t) and G-solution, G0-solution by

G[t]-solution, G[0]-solution in this section. We discuss the global stability of G(t)-solutions of

partial differential equation systems of first order, i.e., sum-stability and prod-stability following.

Definition 4.1 Let (PDESCm) be a Cauchy problem on a system of partial differential equations

of first order in Rn, and u[v] the solution of the vth equation with initial value u
[v]
0 . Then

(1) The system (PDESCm) is sum-stable if for any number ε > 0 there exists δv > 0, v ∈
V (Ĝ[0]) such that each G(t)-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < δv, ∀v ∈ V (Ĝ[0])

exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣

∑

v∈V (Ĝ[t])

u′
[v] −

∑

v∈V (Ĝ[t])

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by G[t]
Σ∼ G[0]. Furthermore, if there exists a number βv > 0, v ∈ V (Ĝ[0]) such
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that every G′[t]-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < βv, ∀v ∈ V (Ĝ[0])

satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (Ĝ[t])

u′
[v] −

∑

v∈V (Ĝ[t])

u[v]

∣∣∣∣∣∣
= 0,

then the G[t]-solution is called asymptotically stable, denoted by G[t]
Σ→ G[0].

(2) The system (PDESCm) is prod-stable if for any number ε > 0 there exists δv > 0, v ∈
V (Ĝ[0]) such that each G(t)-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < δv, ∀v ∈ V (Ĝ[0])

exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣

∏

v∈V (Ĝ[t])

u′
[v] −

∏

v∈V (Ĝ[t])

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by G[t]
Π∼ G[0]. Furthermore, if there exists a number βv > 0, v ∈ V (G[t]) such

that every G′[t]-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < βv, ∀v ∈ V (Ĝ[0])

satisfies

lim
t→∞

∣∣∣∣∣∣

∏

v∈V (Ĝ[t])

u′
[v] −

∏

v∈V (Ĝ[t])

u[v]

∣∣∣∣∣∣
= 0,

Then the G[t]-solution is called asymptotically prod-stable, denoted by G[t]
Π→ G[0].

Denote by lnG[t] such aG[t]-solution replaced u[v] by lnu[v] for ∀v ∈ V (G[t]). The following

result follows immediately from the definition of sum and prod-stability of G[t]-solution.

Theorem 4.2 Let (PDESCm) be a Cauchy problem of partial differential equations of first order

in Rn. Then

(1) G[t]
Π∼ G[0] if and only if lnG[t]

Σ∼ lnG[0], and G[t]
Π→ G[0] if and only if lnG[t]

Σ→
lnG[0].

(2) If there is a permutation π action on V (G[t]) such that

∣∣∣v′[v]0 − u[v]
0

∣∣∣ < δv, ∀v ∈ V (Ĝ[0])

exists with the inequality ∣∣∣u′[v] − u[vπ]
∣∣∣ < ε
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holds for ∀v ∈ V (G[t]), then G[t]
Σ∼ G[0]. Furthermore, if there exists a number βv > 0, v ∈

V (Ĝ[0]) such that every G′[t]-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < βv, ∀v ∈ V (Ĝ[0])

satisfies

lim
t→∞

∣∣∣u′[v] − u[vπ]
∣∣∣ = 0,

then G[t]
Σ→ G[0]. Particularly, if u[v] is stable or asymptotically stable for ∀v ∈ V (G[t]), then

G[t]
Σ∼ G[0] or G[t]

Σ→ G[0]

Proof Notice that

ln

∣∣∣∣∣∣

∏

v∈V (Ĝ[0])

u[v]

∣∣∣∣∣∣
=

∑

v∈V (Ĝ[0])

ln
∣∣∣u[v]

∣∣∣

and if a G[t]-solution is prod-stable or asymptotically prod-stable, its G′[t]-solution replacing

some u[v] by −u[v] is also prod-stable or asymptotically prod-stable, we get the conclusion (1).

For any permutation π on V (G[t]), it is clear that

∑

v∈V (G[t])

u[vπ] =
∑

v∈V (G[t])

u[v],

which implies the conclusion (2) by definition. 2
Notice that the characteristic system of the ith equation in (PDESm) is

dx1

Fkp1
=

dx2

Fkp2
= · · · = dxn

Fkpn
=

du
n∑
i=1

piFkpi

= − dp1

Fkx1 + p1Fku
= · · · = − dpn

Fkxn + pnFku
= dt.

Whence, the sum and prod-stability of Cauchy problem (PDESCm) are equivalent to that of

the ordinary differential equations consisting of all characteristic systems of partial differential

equations in (PDESCm) with the same initial values. Particularly, let the system (PDESCm) be

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m (APDESCm)

A point X
[i]
0 = (t0, x

[i]
10, · · · , x

[i]
(n−1)0) with Hi(t0, x

[i]
10, · · · , x

[i]
(n−1)0) = 0 for an integer 1 ≤

i ≤ m is called an equilibrium point of the ith equation in (APDESm). Then a result on the

global stability of (APDESm) is found in the following.
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Theorem 4.3 Let X
[i]
0 be an equilibrium point of the ith equation in (APDESCm),

XΣ
0 =

m∑

i=1

X
[i]
0 , XΣ(G[t]) =

∑

v∈V (Ĝ[0])

Xv(t),

XΠ
0 =

m∏

i=1

X
[i]
0 , XΠ(G[t]) =

∏

v∈V (Ĝ[0])

Xv(t)

and L : O ⊂ Rn → R a differentiable function on an open set O ⊂ Rn containing XΣ
0 and XΠ

0 .

If

L
(
XΣ(G[t])

)
> 0 and L̇

(
XΣ(G[t])

)
≤ 0

for X ∈ O −XΣ
0 , the system (APDESCm) is sum-stability, i.e., G[t]

Σ∼ G[0]. Furthermore, if

L̇
(
XΣ(G[t])

)
< 0

for X ∈ O −XΣ
0 , then G[t]

Σ→ G[0].

Similarly, if

L
(
XΠ(G[t])

)
> 0 and L̇

(
XΠ(G[t])

)
≤ 0

for X ∈ O −XΠ
0 , the system (APDESCm) is prod-stability, i.e., G[t]

Π∼ G[0]. Furthermore, if

L̇
(
XΠ(G[t])

)
< 0

for X ∈ O −XΠ
0 , then G[t]

Π→ G[0].

Proof Let ǫ > 0 be a so small number that the closed ball Bǫ(X
Σ
0 ) centered at XΣ

0

with radius ǫ entirely lies in O and let Λ0 be the minimum value of L
(
XΣ(G[t])

)
on the

boundary of Bǫ(X
Σ
0 ), i.e., the sphere Sǫ(X

Σ
0 ). Clearly, Λ0 > 0 by assumption. Define U =

{X ∈ Bǫ(X
Σ
0 )|L(X) < Λ0}. Notice that XΣ

0 ∈ U and L is non-increasing on
(
XΣ(G[t])

)

by definition in O − XΣ
0 . There are no solutions Xv(t), v ∈ V (Ĝ[0]) starting in U such

that L
(
XΣ(G[t])

)
meet the sphere Sǫ(X

Σ
0 ) because of the decrease of L

(
XΣ(G[t])

)
. Thus

all solutions Xv(t), v ∈ V (Ĝ[0]) starting in U enable L
(
XΣ(G[t])

)
included in ball Bǫ(X

Σ
0 ).

Consequently, G[t]
Σ∼ G[0] by definition.

Now assume that L̇
(
XΣ(G[t])

)
< 0 for XΣ(G[t]) 6= XΣ

0 . Thus L is strictly decreasing on

XΣ(G[t]) in O−XΣ
0 . If Xv(tn), v ∈ V (Ĝ[0]) are all solutions of (APDESCm) starting in U−XΣ

0

such that XΣ(G[tn])→ Y0 for n→∞ with Y0 ∈ Bǫ(XΣ
0 ), then it must be Y0 = XΣ

0 . Otherwise,

since L
(
XΣ(G[tn])

)
> L(Y0) by the assumption L̇

(
XΣ(G[t])

)
< 0 for XΣ(G[t]) ∈ O −XΣ

0 and

L
(
XΣ(G[t])

)
→ L(Y0) for n→∞ by the continuity of L, if Y0 6= XΣ

0 , let Yv(t), v ∈ V (Ĝ[0]) be

the solutions starting at Y0. Then for any η > 0,

L


 ∑

v∈V (Ĝ[0])

Yv(η)


 < L(Y0).
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But then a contradiction

L


 ∑

v∈V (Ĝ[0])

Xv(tn + η)


 < L(Y0)

yields by letting Y0 = XΣ(G[tn]) for sufficiently large n. So there must be Y0 = XΣ
0 . Thus

G[t]
Σ→ G[0].

It should be noted that by replacing XΣ
0 , X

Σ(G[t]) by XΠ
0 , X

Π(G[t]) and Bǫ(X
Σ
0 ) by

Bǫ(X
Π
0 ) in the previous discussion, the conclusion is also hold, which enables one to know

that G[t]
Π∼ G[0] or G[t]

Π→ G[0]. This completes the proof. 2
According to Theorem 4.3, if we find a differential function L : O ⊂ Rn → R, then we are

easily known the sum or prod-stability of (APDESCm). Calculation shows that the characteristic

system of the ith equation in (APDESm) is

dt =
dx1

∂Hi

∂p1

= · · · = dxn−1

∂Hi

∂pn−1

= − dp1

∂Hi

∂x1

= · · · = − dpn−1

∂Hi

∂xn−1

=
du

n−1∑

l=0

pl
∂Hi

∂pl
+
∂u

∂t

and
dxl
dt

=
∂Hi

∂pl
,

dpl
dt

= −∂Hi

∂xl
.

for integers 1 ≤ i ≤ m, 1 ≤ l ≤ n− 1. Whence,

dHi

dt
=

∂Hi

∂t
+

n−1∑

l=1

∂Hi

∂xl

dxl
dt

+

n−1∑

l=1

∂Hi

∂pl

dpl
dt

=
∂Hi

∂t
+

n−1∑

l=1

∂Hi

∂xl

∂Hi

∂pl
−
n−1∑

l=1

∂Hi

∂pl

∂Hi

∂xl
≡ ∂Hi

∂t

for integers 1 ≤ i ≤ m. This fact enables us to find conditions for the global stability of partial

differential systems (APDESCm).

Theorem 4.4 Let X
[i]
0 be an equilibrium point of the ith equation in (APDESm) for each

integer 1 ≤ i ≤ m. If
m∑

i=1

Hi(X) > 0 and
m∑

i=1

∂Hi

∂t
≤ 0

for X 6=
m∑
i=1

X
[i]
0 , then the system (APDESm) is sum-stability, i.e., G[t]

Σ∼ G[0]. Furthermore,

if
m∑

i=1

∂Hi

∂t
< 0

for X 6=
m∑
i=1

X
[i]
0 , then G[t]

Σ→ G[0].
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Similarly, if
m∏

i=1

Hi(X) > 0 and

m∑

i=1

1

Hi(X)

∂Hi

∂t
≤ 0

for X 6=
m∏
i=1

X
[i]
0 , then G[t]

Π∼ G[0]. Furthermore, if

m∑

i=1

1

Hi(X)

∂Hi

∂t
< 0

for X 6=
m∏
i=1

X
[i]
0 , then G[t]

Π→ G[0].

Proof Define L(X) =
m∑
i=1

Hi(X). Then L̇(X) =
m∑
i=1

Ḣi(X). By assumption, if

m∑

i=1

Hi(X) > 0,

m∑

i=1

∂Hi

∂t
≤ 0 or

m∑

i=1

∂Hi

∂t
< 0,

we know that

L(X) > 0, L̇(X) ≤ 0 or L̇(X) < 0

for X 6=
m∑
i=1

X
[i]
0 . Applying Theorem 4.3, we get that G[t]

Σ∼ G[0], or furthermore, G[t]
Σ→ G[0]

if
m∑

i=1

∂Hi

∂t
< 0. Thus we get the sum-stability of G[t]-solution of (APDESCm).

For the prod-stability of G[t]-solution of (APDESCm), let L(X) =
m∏
i=1

Hi(X). Then

L̇(X) =

m∑

j=1

Ḣj(X)
m∏
i=1

Hi(X)

Hj(X)
=

m∏

i=1

Hi(X)




m∑

j=1

Ḣj(X)

Hj(X)


 .

Whence, if

m∏

i=1

Hi(X) > 0,

m∑

i=1

1

Hi(X)

∂Hi

∂t
≤ 0 or

m∑

i=1

1

Hi(X)

∂Hi

∂t
< 0

for integers 1 ≤ i ≤ m, then

L(X) > 0, L̇(X) ≤ 0 or L̇(X) < 0

for X 6=
m∏
i=1

X
[i]
0 . Applying Theorem 4.3, we know that G[t]

Π∼ G[0], or furthermore, G[t]
Π→ G[0]

if
m∑

i=1

1

Hi(X)

∂Hi

∂t
< 0.
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for X 6=
m∏
i=1

X
[i]
0 . 2

Corollary 4.5 An equilibrium point X∗ of the Cauchy problem





∂u

∂t
= H(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u0(x1, x2, · · · , xn−1)

is stable if H(X) > 0,
∂H

∂t
≤ 0, and is asymptotically stable if

∂H

∂t
≤ 0 for X 6= X∗.

Let us see a simple example in the following.

Example 4.6 Let (APDESCm) be





∂u

∂t
= H1(t, x) = x2e−t+x

u|t=0 = ϕ(x),





∂u

∂t
= H2(t, x) = x4e−5t+x2

u|t=0 = ζ(x).

Clearly, (t, 0) is its an equilibrium point. Calculation shows that

H1(t, x) +H2(t, x) = x2e−t+x + x4e−5t+x2

> 0,

Ḣ1(t, x) + Ḣ2(t, x) = −x2e−t+x − 5x4e−5t+x2

< 0

and

H1(t, x)H2(t, x) = x6e−6t+x+x2

> 0,

˙H1H2(t, x) = −6x6e−6t+x+x2

< 0

if x 6= 0. Thus the equilibrium point (t, 0) of (APDESCm) is both sum and prod-stable by

Theorem 4.4.

4.2 Energy Integral of G-Solution

Definition 4.7 Let G[t] be the G-solution of Cauchy problem (APDESCm). The v-energy

E(v[t]) and G-energy E(G[t]) are defined respectively by

E(v[t]) =

∫

Ov

(
∂u[v]

∂t

)2

dx1dx2 · · ·dxn−1,

where Ov ⊂ Rn is determined by the vth equation





∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]
0 (x1, x2, · · · , xn−1)
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and

E(G[t]) =
∑

G≤Ĝ[0]

(−1)|G|+1

∫

OG

(
∂uG

∂t

)2

dx1dx2 · · · dxn−1,

where uG is the C2 solution of system

∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]
0 (x1, x2, · · · , xn−1)



 v ∈ V (G)

and OG =
⋂

v∈V (G)

Ov. Particularly, if Ĝ[0] ≃ Kn, i.e., all equations in (APDESCm) is non-

solvable two by two, then

E(G[t]) =
∑

v∈Ĝ[0]

∫

Ov

(
∂uv

∂t

)2

dx1dx2 · · ·dxn−1 =
∑

v∈Ĝ[0]

E(v[t]).

We determine the non-empty domain OG ⊂ Rn in the following.

Theorem 4.8 Let the Cauchy problem be (APDESCm), G ⊂ Ĝ[0] with OG 6= ∅. Then

⋂

v∈V (G)

Ov = {X ∈ R
n|Hu(X) = Hv(X), ∀u, v ∈ V (G)}.

if |G| ≥ 2.

Proof Noticing that if OG 6= ∅, there is a solution uG of the system

∂uG

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

uG|t=t0 = u
[v]
0 (x1, x2, · · · , xn−1)



 v ∈ V (G).

Whence, Hv = uGt for ∀v ∈ V (G) in OG, which implies that

⋂

v∈V (G)

Ov ⊂ {X ∈ R
n|Hv(X) = Hu(X), ∀u, v ∈ V (G)}.

Conversely, for ∀X ∈ {X ∈ R
n|Hv(X) = Hu(X), ∀u, v ∈ V (G)}, there are Hv(X) =

Hu(X) = H(X) for ∀u, v ∈ V (G). Thus the system

∂uG

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1), v ∈ V (G)

is equivalent to the partial differential equation

∂u

∂t
= H(t, x1, · · · , xn−1, p1, · · · , pn−1).

Now by Theorem 1.1, this equation is always solvable with suitable initial values, which means
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that

{X ∈ R
n|Hv(X) = Hu(X), ∀u, v ∈ V (G)} ⊂

⋂

v∈V (G)

Ov. 2
Theorem 4.8 enables one to introduce the conception of energy-index for the system

(APDESCm) following.

Definition 4.9 Let the Cauchy problem be (APDESCm) with each Hi in C2 for integers 1 ≤
i ≤ m. Its energy-index indE(G) is defined by

indE(G) =
∑

G≤Ĝ[0]

(−1)|G|+1

∫

⋂
v∈V (G)

Ov

HGḢGdx1dx2 · · ·dxn−1,

where HG = Hv for ∀v ∈ V (G) with OG 6= ∅.

Denoted by

indG(v) =

∫

⋂
v∈V (G)

Ov

Hv
∂Hv

∂t
dx1dx2 · · · dxn−1

for G ≤ Ĝ[0]. We know a result on the energy-index following.

Theorem 4.10 Let (APDESCm) be a Cauchy problem with G-solution G[t] and all Hi in C2

for integers 1 ≤ i ≤ m. Then

indE(G) =

m∑

i=1

(−1)i+1

i

∑

v∈V (Ki), Ki≤Ĝ[0]

indKi(v).

Proof Clearly, indG(v) = indE(v) if G = 〈v〉 and indG(v) = 0 if G 6≃ Ks for some integer

1 ≤ s ≤ m. By definition, we know that

indE(G) =
∑

G≤Ĝ[0]

(−1)|G|+1

∫

⋂
v∈V (G)

Ov

HGḢGdx1dx2 · · · dxn−1

=
∑

G≤Ĝ[0]

(−1)|G|+1

∫

⋂
v∈V (G)

Ov

HG
∂HG

∂t
dx1dx2 · · ·dxn−1

=

m∑

i=1

∑

Ki≤Ĝ[0]

(−1)i+1 1

i

∑

v∈V (Ki)

indKi(v)

=

m∑

i=1

(−1)i+1

i

∑

v∈V (Ki), Ki≤Ĝ[0]

indKi(v). 2
Particularly, if Ĝ[0] is K3-free, i.e., there are no induced subgraphs isomorphic to K3 in

Ĝ[0], then
⋂

v∈V (Ki)

Ov = ∅ for integers i ≥ 3. We get the following conclusion.
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Corollary 4.11 For a Cauchy problem (APDESCm) with G-solution G[t], if Ĝ[0] is K3-free,

then

indE(G) =
∑

v∈V (Ĝ[0])

indE(v)− 1

2

∑

e∈E(Ĝ[0])

∫

Ou
⋂

Ov

He
∂He

∂t
dx1dx2 · · · dxn−1,

where He = Hu = Hv for e = (u, v) ∈ E(Ĝ[0]).

Applying the energy-index indE(G), we know a G-energy inequality following.

Theorem 4.12 Let G[t] be the G-solution of Cauchy problem (APDESCm). If inE(G) > 0,

then E(G[t1]) > E(G[t0]) for t1 > t0.

Proof By definition we know that

E(G[t1])− E(G[t0]) =
∑

G≤Ĝ[0]

(−1)|G|+1

∫

HG

(
∂uG

∂t

)2

dx1 · · · dxn−1

∣∣∣∣∣
t=t1

−
∑

G≤Ĝ[0]

(−1)|G|+1

∫

HG

(
∂uG

∂t

)2

dx1 · · · dxn−1

∣∣∣∣∣
t=t0

=
∑

G≤Ĝ[0]

(−1)|G|+1

∫

HG

t1∫

t0

dH2
G

dt
dtdx1 · · ·dxn−1

=
∑

G≤Ĝ[0]

(−1)|G|+1

∫

HG

t1∫

t0

HGḢGdtdx1 · · · dxn−1

=

t1∫

t0


 ∑

G≤Ĝ[0]

(−1)|G|+1

∫

HG

HGḢGdx1 · · ·dxn−1


 dt

=

t1∫

t0

inG(G)dt > 0

if t1 > t0, where the interchangeable of integral orders is holden by the C2 property. Therefore,

E(G[t1]) > E(G[t0]). 2
Particularly, let G = 〈v〉, we get a v-energy inequality following.

Corollary 4.13 Let G[t] be the G-solution of Cauchy problem (APDESCm), v ∈ V (Ĝ[0]) with

HvḢv > 0. Then E(v[t1]) > E(v[t0]) if t1 > t0.

4.3 Geometry of G-Solution

Let u : Rn → Rn be differentiable. We define its n-dimensional graph Γ[u] by the set of ordered

pairs

Γ[u] = {((x1, · · · , xn) , u (x1, · · · , xn))) |(x1, · · · , xn) ∈ R
n}.
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Similarly, for a system (PDESCm) of partial differential equations of first order (solvable or

non-solvable), its n-geometrical graph is defined by

Γ[PDESCm] = {((x1, · · · , xn) , uv (x1, · · · , xn))) |(x1, · · · , xn) ∈ R
n, v ∈ V (Ĝ[0])}.

Then, a conclusion on Γ[PDESCm] can be determined in the following.

Theorem 4.14 Let the Cauchy problem be (PDESCm). Then every connected component of

Γ[PDESCm] is a differentiable n-manifold with atlas A = {(Uv, φv)|v ∈ V (Ĝ[0])} underlying

graph Ĝ[0], where Uv is the n-dimensional graph G[u[v]] ≃ Rn and φv the projection

φv : ((x1, x2, · · · , xn) , u (x1, x2, · · · , xn)))→ (x1, x2, · · · , xn)

for ∀ (x1, x2, · · · , xn) ∈ Rn.

Proof Clearly, Uv is open and

φ−1
v : (x1, x2, · · · , xn)→ ((x1, x2, · · · , xn) , u (x1, x2, · · · , xn)))

for ∀v ∈ V (Ĝ[0]). Notice that u is differentiable in Rn and φvφ
−1
v = 1Uu∩Uv and φvφ

−1
u =

1Uu∩Uv on Uu
⋂
Uv are also differentiable by definition of Uu

⋂
Uv for u, v ∈ V (Ĝ[0]). Thus the

connected n-dimensional component of Γ[PDESCm] is a differential manifold. 2
Notice that it is shown in [11] that manifolds can be classified by n-dimensional graphs

and listed by graphs. However, Theorem 4.14 enables one to get such n-dimensional graphs for

differentiable manifolds by systems (PDESCm) of partial differential equations. We know that

the standard basis of a vector field T (M) on a differentiable n-manifold M is

{
∂

∂xi
, 1 ≤ i ≤ n

}

and a vector field X can be viewed as a first order partial differential operator

X =

n∑

i=1

ai
∂

∂xi
,

where ai is C∞-differentiable for integers 1 ≤ i ≤ n. Combining Theorems 3.6 and 4.14 enables

one to get the following result on vector fields.

Theorem 4.15 For any integer m ≥ 1, let Ui, 1 ≤ i ≤ m be open sets in Rn underlying a

connected graph defined by

V (G) = {Ui|1 ≤ i ≤ m}, E(G) = {(Ui, Uj)|Ui
⋂
Uj 6= ∅, 1 ≤ i, j ≤ m}.¸

If Xi is a vector field on Ui for integers 1 ≤ i ≤ m, then there always exists a differentiable

manifold M ⊂ Rn with atlas A = {(Ui, φi)|1 ≤ i ≤ m} underlying graph G and a function
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uG ∈ Ω0(M) such that

Xi(uG) = 0, 1 ≤ i ≤ m.

Proof For any integer 1 ≤ k ≤ m, let

Xk =
n∑

i=1

a
[k]
i

∂

∂xi
.

Notice that the system (PDESCm) of partial differential equations

a
[v]
1

∂u

∂x1
+ a

[v]
2

∂u

∂x2
+ · · ·+ a

[v]
1

∂u

∂xn
= 0

u|
xn=x

[0]
n

= u
[0]
v



 v ∈ V (G)

has aG-solution by Theorem 3.6. According to Theorem 4.14, its n-dimensional graph Γ[PDESCm]

is an n-dimensional manifold M . We construct a differentiable function uG on M . In fact, let

uv be a solution of the vth equation of system (PDESCm) and {hv, v ∈ V (G)} a partition of

unity on open sets {Uv, v ∈ V (G)}. Define

uG =
∑

v∈V (G)

hvuv.

Then, it is clear that

Xk(uG) =

n∑

i=1

a
[k]
i

∂u

∂xi
= 0

for any integers 1 ≤ k ≤ m. 2
Generally, we can also characterize these systems of shifted partial differential equations in-

troduced in Theorem 2.7 by that of a generalization of manifold, i.e. differentiable combinatorial

manifold defined following.

Definition 4.16([6],[10]) Let nν , ν ∈ Λ be positive integers. A differentiable combinatorial

manifold M̃(nν , ν ∈ Λ) is a second countable Hausdorff space with a maximal atlas A =

{(Uν , φν)|ν ∈ Λ} for a countable set Λ such that φν : Uν → Rnν , φνφ
−1
µ : φµ(Uµ ∩ Uν) →

φν(Uµ ∩ Uν) are differentiable for ∀µ, ν ∈ Λ.

Clearly, a combinatorial manifold underlies a connected graph G[M̃(nν , ν ∈ Λ)] defined by

V (G[M̃(nν , ν ∈ Λ)]) = {Uν, ν ∈ Λ} and E(G[M̃ (nν , ν ∈ Λ)]) = {(Uµ, Uν)|Uµ
⋂
Uν 6= ∅, µ, ν ∈

Λ}. Particularly, if Λ is finite, then G[M̃(nν , ν ∈ Λ)] is nothing but an finite connected graph.,

i.e., a compact M̃(nν , ν ∈ Λ). The following results are a generalization of Theorems 4.14 and

4.15, which can be similarly obtained.
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Theorem 4.17 Let the Cauchy problem be





F1(x1, · · · , xn, x[1]
n+1, · · · , x

[1]
n1 , u, p1, · · · , pn, p[1]

n+1, · · · , p
[1]
n1) = 0

F2(x1, · · · , xn, x[2]
n+1, · · · , x

[2]
n2 , u, p1, · · · , pn, p[2]

n+1, · · · , p
[2]
n2) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, · · · , xn, x[m]
n+1, · · · , x

[m]
nm , u, p1, · · · , pn, p[m]

n+1, · · · , p
[m]
nm) = 0

of partial differential equations of first order with initial values u0, x
0
i , p

0
i , 1 ≤ i ≤ n and x0

i =

0, p0
i = 0 for integers i ≥ n+1, where x1, · · · , xn, x[1]

n+1, · · · , x
[1]
n1 , x

[2]
n+1, · · · , x

[2]
n2 , · · · , x[m]

n+1, · · · , x
[m]
nm

are independent, p
[i]
k = ∂u/∂x

[i]
k and n ≤ n1 ≤ n2 ≤ · · · ≤ nm. Then every connected com-

ponent of Γ[PDESCm] is a differentiable combinatorial manifold M̃(ni, 1 ≤ i ≤ m) with atlas

A = {(Uv, φv)|v ∈ V (Ĝ[0])} underlying graph Ĝ[0], where Uv is the nv-dimensional graph

G[u[v]] ≃ R
nv and φv is a projection determined by

φv : ((x1, x2, · · · , xnv ) , u (x1, x2, · · · , xnv )))→ (x1, x2, · · · , xnv )

for ∀ (x1, x2, · · · , xnv ) ∈ Rnv .

Theorem 4.18 For any integer m ≥ 1, let Ui, 1 ≤ i ≤ m be open sets in Rni underlying a

connected graph defined by

V (G) = {Ui|1 ≤ i ≤ m}, E(G) = {(Ui, Uj)|Ui
⋂
Uj 6= ∅, 1 ≤ i, j ≤ m}.

If Xi is a vector field on Ui for integers 1 ≤ i ≤ m, then there always exists a differentiable

combinatorial manifold M̃ ⊂ R
m̂+

m∑
i=1

(ni−m̂)
with atlas A = {(Ui, φi)|1 ≤ i ≤ m} underlying

graph G, where

m̂ = dim

(
m⋂

i=1

R
ni

)

and a function uG ∈ Ω0(M̃) such that

Xi(uG) = 0, 1 ≤ i ≤ m.

Theorems 4.14, 4.15 and 4.17, 4.18 show the differentiable geometry on combinatorial man-

ifolds discussed in [6] and [10] is more valuable for knowing the global behavior of a thing in

the world.

§5. Applications

5.1 Interaction fields

Let F1,F2, · · · ,Fm be m interaction fields with respective Hamiltonians H [1], H [2], · · · , H [m],

i.e., a combinatorial field F̃ introduced in [7], where
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H [k] : (q1, · · · , qn, p2, · · · , pn, t)→ H [k](q1, · · · , qn, p1, · · · , pn, t)¸

for integers 1 ≤ k ≤ m. Thus

∂H [k]

∂pi
=

dqi
dt

∂H [k]

∂qi
= −dpi

dt
, 1 ≤ i ≤ n





1 ≤ k ≤ m.

Such an interaction system naturally underlies a graph G with

V (G) = {H [i]|1 ≤ i ≤ m},
E(G) = {(H [i], H [j])|H [i] interacts with H [j] for integers 1 ≤ i, j ≤ m}.
For example, let m = 4. Then such an interaction system are shown in Fig.2. Such a

system is equivalent to the system (APDESCm) of non-solvable partial differential equations

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[k]
0 (x1, x2, · · · , xn−1)



 1 ≤ k ≤ m.

H [1] H [2]

H [3] H [4]

Fig.2

Whence, if X
[i]
0 be an equilibrium point of the ith equation in this system,

m∑

k=1

H [k](X) > 0 and
m∑

k=1

∂H [k]

∂t
≤ 0

for X 6=
m∑
k=1

X
[k]
0 , then F̃ is sum-stable and furthermore, if

m∑

k=1

∂H [k]

∂t
< 0

for X 6=
m∑
k=1

X
[k]
0 , then it is also asymptotically sum-stable by Theorem 4.4.
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Similarly, if
m∏

k=1

H [k](X) > 0 and

m∑

k=1

1

H [k](X)

∂H [k]

∂t
≤ 0

for X 6=
m∏
k=1

X
[k]
0 , then F̃ is prod-stable and furthermore, if

m∑

k=1

1

H [k](X)

∂H [k]

∂t
< 0

for X 6=
m∏
k=1

X
[k]
0 , then it is also asymptotically prod-stable by Theorem 4.4. Such combinatorial

fields are extensively existed in theoretical physics (See references [7], [9]-[10] for details).

5.2 Flows in network

Let N be a network and let q(x, t), ρ(x, t), u(x, t) be the respective rate, density and velocity of

1-dimensional flow on an arc (x, y) of N at time t. Then the continuity equation of 1-dimension

enables one knowing that
∂ρ

∂t
+
∂q

∂x
= 0 and q = ρu.

Particularly, if u(x, t) depends on ρ(x, t), the density, let u(x, t) = u(ρ(x, t)), then q(x, t) =

ρ(x, t)u(ρ(x, t)) and
∂q

∂x
=

(
u+ ρ

∂u

∂x

)
∂ρ

∂x
= φ(ρ)

∂ρ

∂x
,

where, φ(ρ) = u+ ρ
∂u

∂x
. Consequently,

∂ρ

∂t
+ φ(ρ)

∂ρ

∂x
= 0.

Now let O be a node in N incident with m in-flows and 1 out-flow. Such as those shown

in Fig.3. 66- �f1 fm

F

f2 fm−1

O }3
Fig.3

Then how can we characterize the behavior of flow F? Denote the rate, density of flow fi by
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ρ[i] for integers 1 ≤ i ≤ m and that of F by ρ[F ], respectively. Then we know that

∂ρ[i]

∂t
+ φi(ρ

[i])
∂ρ[i]

∂x
= 0, 1 ≤ i ≤ m.

Assume these flows f [i], 1 ≤ i ≤ m to be conservation at the node O. Then we know that

ρ[F ] =
m∑
i=1

ρ[i]. Whence,

∂ρ[F ]

∂t
=

m∑

i=1

∂ρ[i]

∂t
= −

m∑

i=1

φi(ρ
[i])
∂ρ[i]

∂x
.

Thus
∂ρ[F ]

∂t
+

m∑

i=1

φi(ρ
[i])
∂ρ[i]

∂x
= 0

by the continuity equation of 1-dimension. Generally, it is difficult to determine the behavior

of flow F by this equation.

We prescribe the initial value of ρ[i] by ρ[i](x, t0) at time t0. Replacing each ρ[i] by ρ in

these flow equations of fi, 1 ≤ i ≤ m, we then get a non-solvable system (PDESCm) of partial

differential equations following.

∂ρ

∂t
+ φi(ρ)

∂ρ

∂x
= 0

ρ |t=t0 = ρ[i](x, t0)



 1 ≤ i ≤ m.

Let ρ
[i]
0 be an equilibrium point of the ith equation, i.e., φi(ρ

[i]
0 )
∂ρ

[i]
0

∂x
= 0. Applying Theorem

4.4, if
m∑

i=1

φi(ρ) < 0 and

m∑

i=1

φ(ρ)

[
∂2ρ

∂t∂x
− φ′(ρ)

(
∂ρ

∂x

)2
]
≥ 0

for X 6=
m∑
k=1

ρ
[i]
0 , then we know that the flow F is stable and furthermore, if

m∑

i=1

φ(ρ)

[
∂2ρ

∂t∂x
− φ′(ρ)

(
∂ρ

∂x

)2
]
< 0

for X 6=
m∑
k=1

ρ
[i]
0 , then it is also asymptotically stable.
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Geometry on Non-Solvable Equations

– A Review on Contradictory Systems

Abstract: As we known, an objective thing not moves with one’s volition, which implies

that all contradictions, particularly, in these semiotic systems for things are artificial. In clas-

sical view, a contradictory system is meaningless, contrast to that of geometry on figures of

things catched by eyes of human beings. The main objective of sciences is holding the global

behavior of things, which needs one knowing both of compatible and contradictory systems

on things. Usually, a mathematical system including contradictions is said to be a Smaran-

dache system. Beginning from a famous fable, i.e., the 6 blind men with an elephant, this

report shows the geometry on contradictory systems, including non-solvable algebraic linear

or homogenous equations, non-solvable ordinary differential equations and non-solvable par-

tial differential equations, classify such systems and characterize their global behaviors by

combinatorial geometry, particularly, the global stability of non-solvable differential equa-

tions. Applications of such systems to other sciences, such as those of gravitational fields,

ecologically industrial systems can be also found in this report. All of these discussions

show that a non-solvable system is nothing else but a system underlying a topological graph

G 6≃ Kn, or ≃ Kn without common intersection, contrast to those of solvable systems under-

lying Kn being with common non-empty intersections, where n is the number of equations

in this system. However, if we stand on a geometrical viewpoint, they are compatible and

both of them are meaningful for human beings.

Key Words: Smarandache system, non-solvable system of equations, topological graph,

GL-solution, global stability, ecologically industrial systems, gravitational field, mathemati-

cal combinatorics.

AMS(2010): 03A10,05C15,20A05, 34A26,35A01,51A05,51D20,53A35

§1. Introduction

A contradiction is a difference between two statements, beliefs, or ideas about something that

con not both be true, exists everywhere and usually with a presentation as argument, debate,

disputing, · · · , etc., even break out a war sometimes. Among them, a widely known contra-

diction in philosophy happened in a famous fable, i.e., the 6 blind men with an elephant in

following. In this fable, there are 6 blind men were asked to determine what an elephant looked

like by feeling different parts of the elephant’s body. The man touched the elephant’s leg, tail,

trunk, ear, belly or tusk respectively claims it’s like a pillar, a rope, a tree branch, a hand fan,

1An inverted talk in the International Conference on Geometry and Its Applications, Jardpour University,
October 16-18, 2014, Kolkata, India.

2International J.Math. Combin. Vol.4(2014), 18-38.
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a wall or a solid pipe, such as those shown in Fig.1.

Fig.1

Each of them insisted on his own and not accepted others. They then entered into an endless

argument. All of you are right! A wise man explains to them: why are you telling it differently

is because each one of you touched the different part of the elephant. So, actually the elephant

has all those features what you all said. Thus, the best result on an elephant for these blind

men is

An elephant = {4 pillars}
⋃
{1 rope}

⋃
{1 tree branch}

⋃ {2 hand fans}
⋃
{1 wall}

⋃
{1 solid pipe},

i.e., a Smarandache multi-space ([23]-[25]) defined following.

Definition 1.1([12]-[13]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical systems,

different two by two. A Smarandache multisystem Σ̃ is a union
m⋃
i=1

Σi with rules R̃ =
m⋃
i=1

Ri

on Σ̃, denoted by
(
Σ̃; R̃

)
.

Then, what is the philosophical meaning of this fable for one understanding the world? In

fact, the situation for one realizing behaviors of things is analogous to the blind men determin-

ing what an elephant looks like. Thus, this fable means the limitation or unilateral of one’s

knowledge, i.e., science because of all of those are just correspondent with the sensory cognition

of human beings.

Besides, we know that contradiction exists everywhere by this fable, which comes from

the limitation of unilateral sensory cognition, i.e., artificial contradiction of human beings, and

all scientific conclusions are nothing else but an approximation for things. For example, let

µ1, µ2, · · · , µn be known and νi, i ≥ 1 unknown characters at time t for a thing T . Then, the



2.5 Geometry on Non-Solvable Equations – A Review on Contradictory Systems 233

thing T should be understood by

T =

(
n⋃

i=1

{µi}
)
⋃

⋃

k≥1

{νk}




in logic but with an approximation T ◦ =
n⋃
i=1

{µi} for T by human being at time t. Even for

T ◦, these are maybe contradictions in characters µ1, µ2, · · · , µn with endless argument between

researchers, such as those implied in the fable of 6 blind men with an elephant. Consequently,

if one stands still on systems without contradictions, he will never hold the real face of things

in the world, particularly, the true essence of geometry for limited of his time.

However, all things are inherently related, not isolated in philosophy, i.e., underlying an

invariant topological structure G ([4],[22]). Thus, one needs to characterize those things on con-

tradictory systems, particularly, by geometry. The main objective of this report is to discuss

the geometry on contradictory systems, including non-solvable algebraic equations, non-solvable

ordinary or partial differential equations, classify such systems and characterize their global be-

haviors by combinatorial geometry, particularly, the global stability of non-solvable differential

equations. For terminologies and notations not mentioned here, we follow references [11], [13] for

topological graphs, [3]-[4] for topology, [12],[23]-[25] for Smarandache multi-spaces and [2],[26]

for partial or ordinary differential equations.

§2. Geometry on Non-Solvable Equations

Loosely speaking, a geometry is mainly concerned with shape, size, position, · · · etc., i.e., local

or global characters of a figure in space. Its mainly objective is to hold the global behavior of

things. However, things are always complex, even hybrid with other things. So it is difficult to

know its global characters, or true face of a thing sometimes.

Let us beginning with two systems of linear equations in 2 variables:

(LESS4 )





x+ 2y = 4

2x+ y = 5

x− 2y = 0

2x− y = 3

(LESN4 )





x+ 2y = 2

x+ 2y = −2

2x− y = −2

2x− y = 2

Clearly, (LESS4 ) is solvable with a solution x = 2 and y = 1, but (LESN4 ) is not because

x+2y = −2 is contradictious to x+2y = 2, and so that for equations 2x−y = −2 and 2x−y = 2.

Thus, (LESN4 ) is a contradiction system, i.e., a Smarandache system defined following.

Definition 2.1([11]-[13]) A rule in a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.
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In geometry, we are easily finding conditions for systems of equations solvable or not. For

integers m,n ≥ 1, denote by

Sfi = {(x1, x2, · · · , xn+1)|fi(x1, x2, · · · , xn+1) = 0} ⊂ R
n+1

the solution-manifold in Rn+1 for integers 1 ≤ i ≤ m, where fi is a function hold with conditions

of the implicit function theorem for 1 ≤ i ≤ m. Clearly, the system

(ESm)





f1(x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn+1) = 0

is solvable or not dependent on
m⋂

i=1

Sfi 6= ∅ or = ∅.

Conversely, if D is a geometrical space consisting of m manifolds D1,D2, · · · ,Dm in Rn+1,

where,

Di = {(x1, x2, · · · , xn+1)|f [i]
k (x1, x2, · · · , xn+1) = 0, 1 ≤ k ≤ mi} =

mi⋂

k=1

S
f
[i]
k

.

Then, the system

f
[i]
1 (x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn+1) = 0





1 ≤ i ≤ m

is solvable or not dependent on the intersection

m⋂

i=1

Di 6= ∅ or = ∅.

Thus, we obtain the following result.

Theorem 2.2 If a geometrical space D consists of m parts D1,D2, · · · ,Dm, where, Di =

{(x1, x2, · · · , xn+1)|f [i]
k (x1, x2, · · · , xn+1) = 0, 1 ≤ k ≤ mi}, then the system (ESm) consisting

of

f
[i]
1 (x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn+1) = 0





1 ≤ i ≤ m

is non-solvable if
m⋂

i=1

Di = ∅.
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Now, whether is it meaningless for a contradiction system in the world? Certainly not! As

we discussed in the last section, a contradiction is artificial if such a system indeed exists in the

world. The objective for human beings is not just finding contradictions, but holds behaviors of

such systems. For example, although the system (LESN4 ) is contradictory, but it really exists,

i.e., 4 lines in R
2, such as those shown in Fig.2.

-
6

O
x

y

x+ 2y = 2

x+ 2y = −2

2x− y = −2

2x− y = 2

A

B

C

D

Fig.2

Generally, let

AX = (b1, b2, · · · , bm)T (LEq)

be a linear equation system with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




and X =




x1

x2

· · ·
xn




for integers m, n ≥ 1. A vertex-edge labeled graph GL[LEq] on such a system is defined by:

V (GL[LEq]) = {P1, P2, · · · , Pm}, where Pi = {(x1, x2, · · · , xn)|ai1x1+ax2x2+· · ·+ainxn =

bi}, E(GL[LEq]) = {(Pi, Pj), Pi
⋂
Pj 6= ∅, 1 ≤ i, j ≤ m} and labeled with L : Pi → Pi,

L : (Pi, Pj) → Pi
⋂
Pj for integers 1 ≤ i, j ≤ m with an underlying graph Ĝ[LEq] without

labels.

For example, let L1 = {(x, y)|x+2y = 2}, L2 = {(x, y)|x+2y = −2}, L3 = {(x, y)|2x−y =

2} and L3 = {(x, y)|2x − y = −2} for the system (LESN4 ). Clearly, L1

⋂
L2 = ∅, L1

⋂
L3 =

{B}, L1

⋂
L4 = {A}, L2

⋂
L3 = {C}, L2

⋂
L4 = {D} and L3

⋂
L4 = ∅. Then, the system

(LESN4 ) can also appears as a vertex-edge labeled graph Cl4 in R2 with labels vertex labeling

l(Li) = Li for integers 1 ≤ i ≤ 4, edge labeling l(L1, L3) = B, l(L1, L4) = A, l(L2, L3) = C and
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l(L2, L4) = D, such as those shown in Fig.3.

L1

L2L3

L4A

B

C

D

Fig.3

We are easily to determine Ĝ[LEq] for systems (LEq). For integers 1 ≤ i, j ≤ m, i 6= j,

two linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

are called parallel if there exists a constant c such that

c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain 6= bj/bi.

Otherwise, non-parallel. The following result is known in [16].

Theorem 2.3([16]) Let (LEq) be a linear equation system for integers m,n ≥ 1. Then

Ĝ[LEq] ≃ Kn1,n2,··· ,ns with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family by

the property that all equations in a family Ci are parallel and there are no other equations par-

allel to lines in Ci for integers 1 ≤ i ≤ s, ni = |Ci| for integers 1 ≤ i ≤ s in (LEq) and (LEq)

is non-solvable if s ≥ 2.

Particularly, for linear equation system on 2 variables, let H be a planar graph with edges

straight segments on R2. The c-line graph LC(H) on H is defined by

V (LC(H)) = {straight lines L = e1e2 · · · el, s ≥ 1 in H};
E(LC(H)) = {(L1, L2)| L1 = e11e

1
2 · · · e1l , L2 = e21e

2
2 · · · e2s, l, s ≥ 1

and there adjacent edges e1i , e
2
j in H, 1 ≤ i ≤ l, 1 ≤ j ≤ s}.

Then, a simple criterion in [16] following is interesting.

Theorem 2.4([16]) A linear equation system (LEq2) on 2 variables is non-solvable if and only

if Ĝ[LEq2] ≃ LC(H), where H is a planar graph of order |H | ≥ 2 on R
2 with each edge a

straight segment

Generally, a Smarandache multisystem is equivalent to a combinatorial system by following,

which implies the CC Conjecture for mathematics, i.e., any mathematics can be reconstructed

from or turned into combinatorization (see [6] for details).
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Definition 2.5([11]-[13]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be a Smarandache multisystem

consisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topo-

logical structure GL
[
S̃
]

of
(
Σ̃; R̃

)
is a topological vertex-edge labeled graph defined following:

V
(
GL
[
S̃
])

= {Σ1,Σ2, · · · ,Σm},

E
(
GL
[
S̃
])

= {(Σi,Σj) |Σi
⋂

Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L (Σi) = Σi and L : (Σi,Σj)→ L (Σi,Σj) = Σi
⋂

Σj

for integers 1 ≤ i 6= j ≤ m.

Therefore, a Smarandache system is equivalent to a combinatorial system, i.e.,
(
Σ̃; R̃

)
≃

GL
[
S̃
]
, a labeled graph ĜL

[
S̃
]

by this notion. For examples, denoting by a = {tusk}b =

{nose}c1, c2 = {ear}d = {head} e = {neck} f = {trunk} g1, g2, g3, g4 = {leg}h = {tail} for an

elephantthen a topological structure for an elephant is shown in Fig.4 following.

a

b

d

c1

c2

e f

g1 g2

h

g3 g4

a ∩ d c1 ∩ d

b ∩ d
c2 ∩ d

d ∩ e e ∩ f
g1 ∩ f g2 ∩ f

g3 ∩ f g4 ∩ f

f ∩ h

Fig.4 Topological structure of an elephant

For geometry, let these mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be geomet-

rical spaces, for instance manifolds M1,M2, · · · ,Mm with respective dimensions n1, n2, · · · , nm
in Definition 2.3, we get a geometrical space M̃ =

m⋃
i=1

Mi underlying a topological graph

GL
[
M̃
]
. Such a geometrical space GL

[
M̃
]

is said to be combinatorial manifold, denoted

by M̃(n1, n2, · · · , nm). Particularly, if ni = n, 1 ≤ i ≤ m, then a combinatorial manifold

M̃(n1, · · · , nm) is nothing else but an n-manifold underlying GL
[
M̃
]
. However, this presen-

tation of GL-systems contributes to manifolds and combinatorial manifolds (See [7]-[15] for

details). For example, the fundamental groups of manifolds are characterized in [14]-[15] fol-

lowing.

Theorem 2.6([14]) For any locally compact n-manifold M , there always exists an inherent

graph Ginmin[M ] of M such that π(M) ∼= π(Ginmin[M ]).

Particularly, for an integer n ≥ 2 a compact n-manifold M is simply-connected if and only

if Ginmin[M ] is a finite tree.

Theorem 2.7([15]) Let M̃ be a finitely combinatorial manifold. If for ∀(M1,M2) ∈ E(GL
[
M̃
]
),
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M1 ∩M2 is simply-connected, then

π1(M̃) ∼=


 ⊕

M∈V (G[M̃ ])

π1(M)


⊕π1(G

[
M̃
]
).

Furthermore, it provides one with a listing of manifolds by graphs in [14].

Theorem 2.8([14]) Let A [M ] = { (Uλ;ϕλ) | λ ∈ Λ} be a atlas of a locally compact n-manifold

M . Then the labeled graph GL|Λ| of M is a topological invariant on |Λ|, i.e., if HL1

|Λ| and GL2

|Λ| are

two labeled n-dimensional graphs of M , then there exists a self-homeomorphism h : M → M

such that h : HL1

|Λ| → GL2

|Λ| naturally induces an isomorphism of graph.

For a combinatorial surface consisting of surfaces associated with homogenous polynomials

in R3, we can further determine its genus. Let

P1(x), P2(x), · · · , Pm(x) (ESn+1
m )

be m homogeneous polynomials in variables x1, x2, · · · , xn+1 with coefficients in C and

∅ 6= SPi = {(x1, x2, · · · , xn+1)|Pi (x) = 0} ⊂ P
n
C

for integers 1 ≤ i ≤ m, which are hypersurfaces, particularly, curves if n = 2 passing through

the original of Cn+1.

Similarly, parallel hypersurfaces in Cn+1 are defined following.

Definition 2.9 Let P (x), Q(x) be two complex homogenous polynomials of degree d in n + 1

variables and I(P,Q) the set of intersection points of P (x) with Q(x). They are said to be

parallel, denoted by P ‖ Q if d > 1 and there are constants a, b, · · · , c (not all zero) such that

for ∀x ∈ I(P,Q), ax1 + bx2 + · · ·+ cxn+1 = 0, i.e., all intersections of P (x) with Q(x) appear

at a hyperplane on PnC, or d = 1 with all intersections at the infinite xn+1 = 0. Otherwise,

P (x) are not parallel to Q(x), denoted by P 6‖ Q.

Then, these polynomials in (ESn+1
m ) can be classified into families C1,C2, · · · ,Cl by this

parallel property such that Pi ‖ Pj if Pi, Pj ∈ Ck for an integer 1 ≤ k ≤ l, where 1 ≤ i 6= j ≤ m
and it is maximal if each Ci is maximal for integers 1 ≤ i ≤ l, i.e., for ∀P ∈ {Pk(x), 1 ≤
k ≤ m}\Ci, there is a polynomial Q(x) ∈ Ci such that P 6‖ Q. The following result is a

generalization of Theorem 2.3.

Theorem 2.10([19]) Let n ≥ 2 be an integer. For a system (ESn+1
m ) of homogenous polynomials

with a parallel maximal classification C1,C2, · · · ,Cl,

Ĝ[ESn+1
m ] ≤ K(C1,C2, · · · ,Cl)

and with equality holds if and only if Pi ‖ Pj and Ps 6‖ Pi implies that Ps 6‖ Pj, where
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K(C1,C2, · · · ,Cl) denotes a complete l-partite graphs. Conversely, for any subgraph G ≤
K(C1,C2, · · · ,Cl), there are systems (ESn+1

m ) of homogenous polynomials with a parallel max-

imal classification C1,C2, · · · ,Cl such that

G ≃ Ĝ[ESn+1
m ].

Particularly, if all polynomials in (ESn+1
m ) be degree 1, i.e., hyperplanes with a parallel

maximal classification C1,C2, · · · ,Cl, then

Ĝ[ESn+1
m ] = K(C1,C2, · · · ,Cl).

The following result is immediately known by definition.

Theorem 2.11 Let (ESn+1
m ) be a GL-system consisting of homogenous polynomials P (x1), P (x2),

· · · , P (xm) in n+1 variables with respectively hypersurfaces SPi , 1 ≤ i ≤ m. Then, M̃ =
m⋃
i=1

SPi

is an n-manifold underlying graph Ĝ[ESn+1
m ] in Cn+1.

For n = 2, we can further determine the genus of surface M̃ in R3 following.

Theorem 2.12([19]) Let S̃ be a combinatorial surface consisting of m orientable surfaces

S1, S2, · · · , Sm underlying a topological graph GL[S̃] in R3. Then

g(S̃) = β(Ĝ
〈
S̃
〉
) +

m∑

i=1

(−1)i+1
∑

i⋂
l=1

Skl 6=∅

[
g

(
i⋂

l=1

Skl

)
− c

(
i⋂

l=1

Skl

)
+ 1

]
,

where g

(
i⋂
l=1

Skl

)
, c

(
i⋂
l=1

Skl

)
are respectively the genus and number of path-connected com-

ponents in surface Sk1
⋂
Sk2

⋂ · · ·⋂Ski and β(Ĝ
〈
S̃
〉
) denotes the Betti number of topological

graph Ĝ
〈
S̃
〉
.

Notice that for a curve C determined by homogenous polynomial P (x, y, z) of degree d in

P2C, there is a compact connected Riemann surface S by the Noether’s result such that

h : S − h−1(Sing(C))→ C − Sing(C)

is a homeomorphism with genus

g(S) =
1

2
(d− 1)(d− 2)−

∑

p∈Sing(C)

δ(p),

where δ(p) is a positive integer associated with the singular point p in C. Furthermore, if

Sing(C) = ∅, i.e., C is non-singular then there is a compact connected Riemann surface S

homeomorphism to C with genus
1

2
(d− 1)(d− 2). By Theorem 2.12, we obtain the genus of S̃
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determined by homogenous polynomials following.

Theorem 2.13([19]) Let C1, C2, · · · , Cm be complex curves determined by homogenous polyno-

mials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component, and let

RPi,Pj =

deg(Pi)deg(Pj)∏

k=1

(cijk z − b
ij
k y)

eij
k , ωi,j =

deg(Pi)deg(Pj)∑

k=1

∑

eij
k
6=0

1

be the resultant of Pi(x, y, z), Pj(x, y, z) for 1 ≤ i 6= j ≤ m. Then there is an orientable surface

S̃ in R3 of genus

g(S̃) = β(Ĝ
〈
C̃
〉
) +

m∑

i=1


(deg(Pi)− 1)(deg(Pi)− 2)

2
−

∑

pi∈Sing(Ci)

δ(pi)




+
∑

1≤i6=j≤m

(ωi,j − 1) +
∑

i≥3

(−1)i
∑

Ck1
⋂
···
⋂
Cki 6=∅

[
c
(
Ck1

⋂
· · ·
⋂
Cki

)
− 1
]

with a homeomorphism ϕ : S̃ → C̃ =
m⋃
i=1

Ci. Furthermore, if C1, C2, · · · , Cm are non-singular,

then

g(S̃) = β(Ĝ
〈
C̃
〉
) +

m∑

i=1

(deg(Pi)− 1)(deg(Pi)− 2)

2

+
∑

1≤i6=j≤m

(ωi,j − 1) +
∑

i≥3

(−1)i
∑

Ck1
⋂
···
⋂
Cki 6=∅

[
c
(
Ck1

⋂
· · ·
⋂
Cki

)
− 1
]
,

where

δ(pi) =
1

2

(
Ipi

(
Pi,

∂Pi
∂y

)
− νφ(pi) + |π−1(pi)|

)

is a positive integer with a ramification index νφ(p
i) for pi ∈ Sing(Ci), 1 ≤ i ≤ m.

Notice that Ĝ
[
ES3

m

]
= Km. We then easily get conclusions following.

Corollary 2.14 Let C1, C2, · · · , Cm be complex non-singular curves determined by homoge-

nous polynomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component, any inter-

section point p ∈ I(Pi, Pj) with multiplicity 1 and





Pi(x, y, z) = 0

Pj(x, y, z) = 0,

Pk(x, y, z) = 0

∀i, j, k ∈ {1, 2, · · · ,m}

has zero-solution only. Then the genus of normalization S̃ of curves C1, C2, · · · , Cm is

g(S̃) = 1 +
1

2
×

m∑

i=1

deg(Pi) (deg(Pi)− 3) +
∑

1≤i6=j≤m

deg(Pi)deg(Pj).
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Corollary 2.15 Let C1, C2, · · · , Cm be complex non-singular curves determined by homogenous

polynomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component and Ci
⋂
Cj =

m⋂
i=1

Ci with

∣∣∣∣
m⋂
i=1

Ci

∣∣∣∣ = κ > 0 for integers 1 ≤ i 6= j ≤ m. Then the genus of normalization S̃ of

curves C1, C2, · · · , Cm is

g(S̃) = g(S̃) = (κ− 1)(m− 1) +

m∑

i=1

(deg(Pi)− 1)(deg(Pi)− 2)

2
.

Particularly, if all curves in C3 are lines, we know an interesting result following.

Corollary 2.16 Let L1, L2, · · · , Lm be distinct lines in P2C with respective normalizations

of spheres S1, S2, · · · , Sm. Then there is a normalization of surface S̃ of L1, L2, · · · , Lm with

genus β(Ĝ
〈
L̃
〉
). Particularly, if Ĝ

〈
L̃
〉
) is a tree, then S̃ is homeomorphic to a sphere.

§3. Geometry on Non-Solvable Differential Equations

Why the system (ESm) consisting of

f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn) = 0





1 ≤ i ≤ m

is non-solvable if
m⋂
i=1

Di = ∅ in Theorem 2.2? In fact, it lies in that the solution-manifold of

(ESm) is the intersection of Di, 1 ≤ i ≤ m. If it is allowed combinatorial manifolds to be

solution-manifolds, then there are no contradictions once more even if
m⋂
i=1

Di = ∅. This fact

implies that including combinatorial manifolds to be solution-manifolds of systems (ESm) is a

better understanding things in the world.

3.1 GL-Systems of Differential Equations

Let 



F1(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

F2(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

(PDESm)

be a system of ordinary or partial differential equations of first order on a function u(x1, · · · , xn, t)



242 Mathematical Reality

with continuous Fi : Rn → Rn such that Fi(0) = 0. Its symbol is determined by





F1(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn) = 0,

i.e., substitutes ux1 , ux2, · · · , uxn by p1, p2, · · · , pn in (PDESm).

Definition 3.1 A non-solvable (PDESm) is algebraically contradictory if its symbol is non-

solvable. Otherwise, differentially contradictory.

Then, we know conditions following characterizing non-solvable systems of partial differ-

ential equations.

Theorem 3.2([18],[21]) A Cauchy problem on systems





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

of partial differential equations of first order is non-solvable with initial values





xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0 (x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0
−
n−1∑

i=0

p0
i

∂x0
i

∂sj0
6= 0.

Particularly, the following conclusion holds with quasilinear system (LPDESCm).

Corollary 3.3 A Cauchy problem (LPDESCm) on quasilinear, particularly, linear system of
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partial differential equations with initial values u|xn=x0
n

= u0 is non-solvable if and only if the

system (LPDESm) of partial differential equations is algebraically contradictory. Particularly,

the Cauchy problem on a quasilinear partial differential equation is always solvable.

Similarly, for integers m, n ≥ 1, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order and





x(n) + a
[0]
11x

(n−1) + · · ·+ a
[0]
1nx = 0

x(n) + a
[0]
21x

(n−1) + · · ·+ a
[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · ·+ a
[0]
mnx = 0

(LDEnm)

a linear differential equation system of order n with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n. Then it is known a

criterion from [16] following.

Theorem 3.4([17]) A differential equation system (LDES1
m) is non-solvable if and only if

(|A1 − λIn×n|, |A2 − λIn×n|, · · · , |Am − λIn×n|) = 1.

Similarly, the differential equation system (LDEnm) is non-solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) = 1,

where Pi(λ) = λn + a
[0]
i1 λ

n−1 + · · · + a
[0]
i(n−1)λ + a

[0]
in for integers 1 ≤ i ≤ m. Particularly,

(LDES1
1) and (LDEn1 ) are always solvable.

According to Theorems 3.3 and 3.4, for systems (LPDESCm), (LDES1
m) or (LDEnm), there

are equivalent systems GL[LPDESCm], GL[LDES1
m] or GL[LDEnm] by Definition 2.5, called

GL[LPDESCm]-solution, GL[LDES1
m] -solution or GL[LDEnm]-solution of systems (LPDESCm),

(LDES1
m) or (LDEnm), respectively. Then, we know the following conclusion from [17]-[18], [21].

Theorem 3.5([17]-[18],[21]) The Cauchy problem on system (PDESm) of partial differential

equations of first order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth equation in
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(PDESm), 1 ≤ k ≤ m such that

∂u
[k]
0

∂sj
−

n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0,

and the linear homogeneous differential equation system (LDES1
m) (or (LDEnm)) both are

uniquely GL-solvable, i.e., GL[PDES], GL[LDES1
m] and GL[LDEnm] are uniquely determined.

For ordinary differential systems (LDES1
m) or (LDEnm), we can further replace solution-

manifolds S[k] of the kth equation in GL[LDES1
m] and GL[LDEnm] by their solution basis

B[k] = { β[k]

i (t)eα
[k]
i t | 1 ≤ i ≤ n } or C [k] = { tleλ[k]

i t | 1 ≤ i ≤ s, 1 ≤ l ≤ ki } because each

solution-manifold of (LDES1
m) (or (LDEnm)) is a linear space.

For example, let a system (LDEnm) be





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Then the solution basis of equations (1) − (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} with its GL[LDEnm] shown in Fig.5.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}

{e5t}

{e6t}

{et}

Fig.5

Such a labeling can be simplified to labeling by integers for combinatorially classifying

systems GL[LDES1
m] and GL[LDEnm], i.e., integral graphs following.

Definition 3.6 Let G be a simple graph. A vertex-edge labeled graph θ : G → Z+ is called

integral if θ(uv) ≤ min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ .

For two integral labeled graphs GIθ1 and GIτ2 , they are called identical if G1
ϕ≃ G2 and

θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)
⋃
E(G1), denoted by GIθ1 = GIτ2 .

Otherwise, non-identical.
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For example, the graphs shown in Fig.6 are all integral on K4 − e, but GIθ1 = GIτ2 , GIθ1 6=
GIσ3 .

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ1 GIτ2

2 2

1

1

GIσ3

Fig.6

Applying integral graphs, the systems (LDES1
m) and (LDEnm) are combinatorially classi-

fied in [17] following.

Theorem 3.7([17]) Let (LDES1
m), (LDES1

m)′ (or (LDEnm), (LDEnm)′) be two linear homo-

geneous differential equation systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃
(LDES1

m)′ (or (LDEnm)
ϕ≃ (LDEnm)′) if and only if H = H ′.

3.2 Differential Manifolds on GL-Systems of Equations

By definition, the union M̃ =
m⋃
k=1

S[k] is an n-manifold. The following result is immediately

known.

Theorem 3.8([17]-[18],[21]) For any simply graph G, there are differentiable solution-manifolds

of (PDESm), (LDES1
m), (LDEnm) such that Ĝ[PDES] ≃ G, Ĝ[LDES1

m] ≃ G and Ĝ[LDEnm] ≃
G.

Notice that a basis on vector field T (M) of a differentiable n-manifold M is

{
∂

∂xi
, 1 ≤ i ≤ n

}

and a vector field X can be viewed as a first order partial differential operator

X =

n∑

i=1

ai
∂

∂xi
,

where ai is C∞-differentiable for all integers 1 ≤ i ≤ n. Combining Theorems 3.5 and 3.8

enables one to get a result on vector fields following.

Theorem 3.9([21]) For an integer m ≥ 1, let Ui, 1 ≤ i ≤ m be open sets in Rn underlying a

graph defined by V (G) = {Ui|1 ≤ i ≤ m}, E(G) = {(Ui, Uj)|Ui
⋂
Uj 6= ∅, 1 ≤ i, j ≤ m}. If Xi

is a vector field on Ui for integers 1 ≤ i ≤ m, then there always exists a differentiable manifold
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M ⊂ Rn with atlas A = {(Ui, φi)|1 ≤ i ≤ m} underlying graph G and a function uG ∈ Ω0(M)

such that Xi(uG) = 0, 1 ≤ i ≤ m.

§4. Applications

In philosophy, every thing is a GL-system with contradictions embedded in our world, which

implies that the geometry on non-solvable system of equations is in fact a truthful portraying

of things with applications to various fields, particularly, the understanding on gravitational

fields and the controlling of industrial systems.

4.1 Gravitational Fields

An immediate application of geometry on GL-systems of non-solvable equations is that it can

provides one with a visualization on things in space of dimension≥ 4 by decomposing the space

into subspaces underlying a graph GL. For example, a decomposition of a Euclidean space into

R3 is shown in Fig.7, where GL ≃ K4, a complete graph of order 4 and P1,P2,P3,P4 are

the observations on its subspaces R3. This space model enable one to hold well local behaviors

of the spacetime in R3 as usual and then determine its global behavior naturally, different from

the string theory by artificial assuming the dimension of the universe is 11.

R3 R3

R3 R3

P1 P2

P3 P4

- ? ?�
- 6 �6

Fig.7

Notice that R3 is in a general position and maybe R3
⋂

R3 6≃ R3 here. Generally, if GL ≃ Km,

we know its dimension following.

Theorem 4.1([9],[13]) Let EKm(3) be a Km-space of R
3
1, · · · ,R3

︸ ︷︷ ︸
m

. Then its minimum dimension

dimminEKm(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10,

2 + ⌈√m⌉, if m ≥ 11
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and maximum dimension

dimmaxEKm(3) = 2m− 1

with R3
i

⋂
R3
j =

m⋂
i=1

R3
i for any integers 1 ≤ i, j ≤ m.

For the gravitational field, by applying the geometrization of gravitation in R3, Einstein

got his gravitational equations with time ([1])

Rµν − 1

2
Rgµν + λgµν = −8πGT µν

where Rµν = Rµανα = gαβR
αµβν , R = gµνR

µν are the respective Ricci tensor, Ricci scalar

curvature, G = 6.673× 10−8cm3/gs2, κ = 8πG/c4 = 2.08× 10−48cm−1 · g−1 · s2, which has a

spherically symmetric solution on Riemannian metric, called Schwarzschild spacetime

ds2 = f(t)
(
1− rs

r

)
dt2 − 1

1− rs
r

dr2 − r2(dθ2 + sin2 θdφ2)

for λ = 0 in vacuum, where rg is the Schwarzschild radius. Thus, if the dimension of the

universe≥ 4, all these observations are nothing else but a projection of the true faces on our six

organs, a pseudo-truth. However, we can characterize its global behavior by KL
m-space solutions

of R
3 (See [8]-[10] for details). For example, if m = 4, there are 4 Einstein’s gravitational

equations for ∀v ∈ V
(
KL

4

)
. We can solving it locally by spherically symmetric solutions in R3

and construct a KL
4 -solution Sf1 , Sf2 , Sf3 and Sf4 , such as those shown in Fig.8,

Sf1 Sf2

Sf3 Sf4

Fig.8

where, each Sfi is a geometrical space determined by Schwarzschild spacetime

ds2 = f(t)
(
1− rs

r

)
dt2 − 1

1− rs
r

dr2 − r2(dθ2 + sin2 θdφ2)

for integers 1 ≤ i ≤ m. Certainly, its global behavior depends on the intersections Sfi
⋂
Sfj , 1 ≤

i 6= j ≤ 4.

4.2 Ecologically Industrial Systems

Determining a system, particularly, an industrial system on initial values being stable or not is
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an important problem because it reveals that this system is controllable or not by human beings.

Usually, such a system is characterized by a system of differential equations. For example, let





A→ X

2X + Y → 3X

B +X → Y +D

X → E

be the Brusselator model on chemical reaction, where A,B,X, Y are respectively the concentra-

tions of 4 materials in this reaction. By the chemical dynamics if the initial concentrations for

A, B are chosen sufficiently larger, then X and Y can be characterized by differential equations

∂X

∂t
= k1∆X +A+X2Y − (B + 1)X,

∂Y

∂t
= k2∆Y +BX −X2Y.

As we known, the stability of a system is determined by its solutions in classical sciences.

But if the system of equations is non-solvable, what is its stability? It should be noted that

non-solvable systems of equations extensively exist in our daily life. For example, an industrial

system with raw materials M1,M2, · · · ,Mn, products (including by-products) P1, P2, · · · , Pm
but W1,W2, · · · ,Ws wastes after a produce process, such as those shown in Fig.9 following,

Fi(x)

M1

M2

Mn

6?-x1i

x2i

xni

P1

P2

Pm

--
-

xi1

xi2

xin

W1 W2 Ws

? ? ?
Fig.9

which is an opened system and can be transferred to a closed one by letting the environment

as an additional cell, called an ecologically industrial system. However, such an ecologically

industrial system is usually a non-solvable system of equations by the input-output model in

economy, see [20] for details.

Certainly, the global stability depends on the local stabilities. Applying the G-solution of

a GL-system (DESm) of differential equations, the global stability is defined following.

Definition 4.2 Let (PDESCm) be a Cauchy problem on a system of partial differential equations

of first order in Rn, H ≤ G[PDESCm] a spanning subgraph, and u[v] the solution of the vth



2.5 Geometry on Non-Solvable Equations – A Review on Contradictory Systems 249

equation with initial value u
[v]
0 , v ∈ V (H). It is sum-stable on the subgraph H if for any

number ε > 0 there exists, δv > 0, v ∈ V (H) such that each G(t)-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < δv, ∀v ∈ V (H)

exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣

∑

v∈V (H)

u′
[v] −

∑

v∈V (H)

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by G[t]
H∼ G[0] and G[t]

Σ∼ G[0] if H = G[PDESCm]. Furthermore, if there exists

a number βv > 0, v ∈ V (H) such that every G′[t]-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < βv, ∀v ∈ V (H)

satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (H)

u′
[v] −

∑

v∈V (H)

u[v]

∣∣∣∣∣∣
= 0,

then the G[t]-solution is called asymptotically stable, denoted by G[t]
H→ G[0] and G[t]

Σ→ G[0]

if H = G[PDESCm].

Let (PDESCm) be a system

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m (APDESCm)

A point X
[i]
0 = (t0, x

[i]
10, · · · , x

[i]
(n−1)0) with Hi(t0, x

[i]
10, · · · , x

[i]
(n−1)0) = 0 for an integer 1 ≤

i ≤ m is called an equilibrium point of the ith equation in (APDESm). A result on the

sum-stability of (APDESm) is known in [18] and [21] following.

Theorem 4.3([18],[21]) Let X
[i]
0 be an equilibrium point of the ith equation in (APDESm) for

each integer 1 ≤ i ≤ m. If

m∑

i=1

Hi(X) > 0 and
m∑

i=1

∂Hi

∂t
≤ 0

for X 6=
m∑
i=1

X
[i]
0 , then the system (APDESm) is sum-stability, i.e., G[t]

Σ∼ G[0]. Furthermore,

if
m∑

i=1

∂Hi

∂t
< 0

for X 6=
m∑
i=1

X
[i]
0 , then G[t]

Σ→ G[0].
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Particularly, if the non-solvable system is a linear homogenous differential equation systems

(LDES1
m), we further get a simple criterion on its zeroGL-solution, i.e., all vertices with 0 labels

in [17] following.

Theorem 4.4([17]) The zero G-solution of linear homogenous differential equation systems

(LDES1
m) is asymptotically sum-stable on a spanning subgraph H ≤ G[LDES1

m] if and only if

Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1) hold for ∀v ∈ V (H).

§5. Conclusions

For human beings, the world is hybrid and filled with contradictions. That is why it is said

that all contradictions are artificial or man-made, not the nature of world in this paper. In

philosophy, a mathematics is nothing else but a set of symbolic names with relations. However,

as Lao Zi said name named is not the eternal name, the unnamable is the eternally real and

naming is the origin of things for human beings in his TAO TEH KING, a well-known Chinese

book. It is difficult to establish such a mathematics join tightly with the world. Even so, for

knowing the world, one should develops mathematics well by turning all these mathematical

systems with artificial contradictions to a compatible system, i.e., out of the classical run in

mathematics but return to their origins. For such an aim, geometry is more applicable, which

is an encouraging thing for mathematicians in 21th century.
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Chapter 3 Combinatorial Notion on Reality

Profound thoughts like nails, once the nail in my mind, what also can’t pull

it out.

By Denis Diderot, a French philosopher, art critic and writer.
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Combinatorial Speculation

And Combinatorial Conjecture for Mathematics

Abstract Extended: This survey was widely spread after reported at a combinatorial

conference of China in 2006. As a powerful tool for dealing with relations among objectives,

combinatorics mushroomed in the past century, particularly in catering to the need of com-

puter science and children games. However, an even more important work for mathematician

is to apply it to other mathematics and other sciences besides just to find combinatorial be-

havior for objectives. How can it contributes more to the entirely mathematical science, not

just in various games, but in metric mathematics? What is a right mathematical theory for

the original face of our world? I presented a well-known proverb, i.e., the six blind men and

an elephant in the 3th Northwest Conference on Number Theory and Smarandache’s Notion

of China and answered the second question to be Smarandache multi-spaces in logic. Prior to

that explaining, I have brought a heartening conjecture for advancing mathematics in 2005,

i.e., mathematical science can be reconstructed from or made by combinatorialization after a

long time speculation, also a bringing about Smarandache multispace for mathematics. This

conjecture is not just like an open problem, but more like a deeply thought for advancing the

modern mathematics. The main trend of modern sciences is overlap and hybrid. Whence the

mathematics of 21st century should be consistency with the science development in the 21st

century, i.e., the mathematical combinatorics resulting in the combinatorial conjecture for

mathematics. For introducing more readers known this heartening mathematical notion for

sciences, there would be no simple stopping point if I began to incorporate the more recent

development, for example, the combinatorially differential geometry, so it being published

here in its original form to survey these thinking and ideas for mathematics and cosmolog-

ical physics, such as those of multispaces, map geometries and combinatorial structures of

cosmoses. Some open problems are also included for the advance of 21st mathematics by a

combinatorial speculation. More recent progresses can be found in papers and books nearly

published, for example, in [20]-[23] for details.

Key words: combinatorial speculation, combinatorial conjecture for mathematics,

Smarandache multispace, M-theory, combinatorial cosmos.

AMS(2000): 03C05,05C15,51D20,51H20,51P05,83C05,83E50.

§1. The role of classical combinatorics in mathematics

Modern science has so advanced that to find a universal genus in the society of sciences is nearly

impossible. Thereby a scientist can only give his or her contribution in one or several fields.

1Reported at the 2nd Conference on Combinatorics and Graph Theory of China, August 16-19, 2007, Tian-
jing, P.R.China

2International J.Math.Combin, Vol.1 (2007), 1-19.
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The same thing also happens for researchers in combinatorics. Generally, combinatorics deals

with twofold:

Question 1.1. to determine or find structures or properties of configurations, such as those

structure results appeared in graph theory, combinatorial maps and design theory,..., etc..

Question 1.2. to enumerate configurations, such as those appeared in the enumeration of

graphs, labeled graphs, rooted maps, unrooted maps and combinatorial designs,...,etc..

Consider the contribution of a question to science. We can separate mathematical questions

into three ranks:

Rank 1 they contribute to all sciences.

Rank 2 they contribute to all or several branches of mathematics.

Rank 3 they contribute only to one branch of mathematics, for instance, just to the graph

theory or combinatorial theory.

Classical combinatorics is just a rank 3 mathematics by this view. This conclusion is despair

for researchers in combinatorics, also for me 5 years ago. Whether can combinatorics be applied

to other mathematics or other sciences? Whether can it contributes to human’s lives, not just

in games?

Although become a universal genus in science is nearly impossible, our world is a combi-

natorial world. A combinatorician should stand on all mathematics and all sciences, not just

on classical combinatorics and with a real combinatorial notion, i.e., combining different fields

into a unifying field ([29]-[32]), such as combine different or even anti-branches in mathematics

or science into a unifying science for its freedom of research ([28]). This notion requires us

answering three questions for solving a combinatorial problem before. What is this problem

working for? What is its objective? What is its contribution to science or human’s society? Af-

ter these works be well done, modern combinatorics can applied to all sciences and all sciences

are combinatorialization.

§2. The metrical combinatorics and mathematics combinatorialization

There is a prerequisite for the application of combinatorics to other mathematics and other

sciences, i.e, to introduce various metrics into combinatorics, ignored by the classical combina-

torics since they are the fundamental of scientific realization for our world. This speculation

was firstly appeared in the beginning of Chapter 5 of my book [16]:

· · · our world is full of measures. For applying combinatorics to other branch of mathe-

matics, a good idea is pullback measures on combinatorial objects again, ignored by the clas-

sical combinatorics and reconstructed or make combinatorial generalization for the classical

mathematics, such as those of algebra, differential geometry, Riemann geometry, Smarandache

geometries, · · · and the mechanics, theoretical physics, · · · .
The combinatorial conjecture for mathematics, abbreviated to CCM is stated in the fol-

lowing.
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Conjecture 2.1(CCM Conjecture) Mathematical science can be reconstructed from or made

by combinatorialization.

Remark 2.1 We need some further clarifications for this conjecture.

(1) This conjecture assumes that one can select finite combinatorial rulers and axioms to

reconstruct or make generalization for classical mathematics.

(2) Classical mathematics is a particular case in the combinatorialization of mathematics,

i.e., the later is a combinatorial generalization of the former.

(3) We can make one combinatorialization of different branches in mathematics and find

new theorems after then.

Therefore, a branch in mathematics can not be ended if it has not been combinatorialization

and all mathematics can not be ended if its combinatorialization has not completed. There is an

assumption in one’s realization of our world, i.e., science can be made by mathematicalization,

which enables us get a similar combinatorial conjecture for the science.

Conjecture 2.2(CCS Conjecture) Science can be reconstructed from or made by combinatori-

alization.

A typical example for the combinatorialization of classical mathematics is the combinatorial

map theory, i.e., a combinatorial theory for surfaces([14]-[15]). Combinatorially, a surface is

topological equivalent to a polygon with even number of edges by identifying each pairs of

edges along a given direction on it. If label each pair of edges by a letter e, e ∈ E , a surface S

is also identifying to a cyclic permutation such that each edge e, e ∈ E just appears two times

in S, one is e and another is e−1. Let a, b, c, · · · denote the letters in E and A,B,C, · · · the

sections of successive letters in a linear order on a surface S (or a string of letters on S). Then,

a surface can be represented as follows:

S = (· · · , A, a,B, a−1, C, · · · ),

where, a ∈ E ,A,B,C denote a string of letters. Define three elementary transformations as

follows:

(O1) (A, a, a−1, B)⇔ (A,B);

(O2) (i) (A, a, b, B, b−1, a−1)⇔ (A, c,B, c−1);

(ii) (A, a, b, B, a, b)⇔ (A, c,B, c);

(O3) (i) (A, a,B,C, a−1, D)⇔ (B, a,A,D, a−1, C);

(ii) (A, a,B,C, a,D)⇔ (B, a,A,C−1, a,D−1).

If a surface S can be obtained from S0 by these elementary transformations O1-O3, we

say that S is elementary equivalent with S0, denoted by S ∼El S0. Then we can get the

classification theorem of compact surface as follows([29]):

Any compact surface is homeomorphic to one of the following standard surfaces:

(P0) the sphere: aa−1;
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(Pn) the connected sum of n, n ≥ 1 tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·anbna−1
n b−1

n ;

(Qn) the connected sum of n, n ≥ 1 projective planes:

a1a1a2a2 · · · anan.

A map M is a connected topological graph cellularly embedded in a surface S. In 1973,

Tutte suggested an algebraic representation for an embedding graph on a locally orientable

surface ([16]):

A combinatorial map M = (Xα,β ,P) is defined to be a basic permutation P , i.e, for any

x ∈ Xα,β , no integer k exists such that Pkx = αx, acting on Xα,β , the disjoint union of

quadricells Kx of x ∈ X (the base set), where K = {1, α, β, αβ} is the Klein group satisfying

the following two conditions:

(i) αP = P−1α;

(ii) the group ΨJ =< α, β,P > is transitive on Xα,β.
For a given map M = (Xα,β ,P), it can be shown that M∗ = (Xβ,α,Pαβ) is also a map,

call it the dual of the map M . The vertices of M are defined as the pairs of conjugate orbits

of P action on Xα,β by the condition (i) and edges the orbits of K on Xα,β , for example, for

∀x ∈ Xα,β , {x, αx, βx, αβx} is an edge of the map M . Define the faces of M to be the vertices

in the dual map M∗. Then the Euler characteristic χ(M) of the map M is

χ(M) = ν(M)− ε(M) + φ(M)

where,ν(M), ε(M), φ(M) are the number of vertices, edges and faces of the mapM , respectively.

For each vertex of a map M , its valency is defined to be the length of the orbits of P action on

a quadricell incident with u.

For example, the graph K4 on the tours with one face length 4 and another 8 is shown in

Fig.1 -
-

6 6
?3Y� ~= 1

1

2 2

x

y

z

w

u

v

Fig.1
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can be algebraically represented by (Xα,β ,P) with Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv, αw,
βx, βy, βz, βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and

P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

×(αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv)

with 4 vertices, 6 edges and 2 faces on an orientable surface of genus 1.

By the view of combinatorial maps, these standard surfaces P0, Pn, Qn for n ≥ 1 is nothing

but the bouquet Bn on a locally orientable surface with just one face. Therefore, combinatorial

maps are the combinatorialization of surfaces.

Many open problems are motivated by the CCM Conjecture. For example, a Gauss mapping

among surfaces is defined as follows:

Let S ⊂ R3 be a surface with an orientation N. The mapping N :S → R3 takes its value

in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientation N. The map N :S → S2, thus defined, is called the Gauss mapping.

We know that for a point P ∈ S such that the Gaussian curvature K(P ) 6= 0 and V a

connected neighborhood of P with K does not change sign,

K(P ) = lim
A→0

N(A)

A
,

where A is the area of a region B ⊂ V and N(A) is the area of the image of B by the Gauss

mapping N : S → S2([2],[4]). Now the questions are

(i) what is its combinatorial meaning of the Gauss mapping? How to realizes it by combi-

natorial maps?

(ii) how can we define various curvatures for maps and rebuilt these results in the classical

differential geometry?

Let S be a compact orientable surface. Then the Gauss-Bonnet theorem asserts that

∫ ∫

S

Kdσ = 2πχ(S),

where K is the Gaussian curvature of S.

By the CCM Conjecture, the following questions should be considered.

(i) How can we define various metrics for combinatorial maps, such as those of length,

distance, angle, area, curvature,· · · ?
(ii) Can we rebuilt the Gauss-Bonnet theorem by maps for dimensional 2 or higher dimen-

sional compact manifolds without boundary?

One can see references [15] and [16] for more open problems for the classical mathematics

motivated by this CCM Conjecture, also raise new open problems for his or her research works.
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§3. The contribution of combinatorial speculation to mathematics

3.1. The combinatorialization of algebra

By the view of combinatorics, algebra can be seen as a combinatorial mathematics itself. The

combinatorial speculation can generalize it by the means of combinatorialization. For this

objective, a Smarandache multi-algebraic system is combinatorially defined in the following

definition.

Definition 3.1([17],[18]) For any integers n, n ≥ 1 and i, 1 ≤ i ≤ n, let Ai be a set with an

operation set O(Ai) such that (Ai, O(Ai)) is a complete algebraic system. Then the union

n⋃

i=1

(Ai, O(Ai))

is called an n multi-algebra system.

An example of multi-algebra systems is constructed by a finite additive group. Now let n be

an integer, Z1 = ({0, 1, 2, · · · , n− 1},+) an additive group (modn) and P = (0, 1, 2, · · · , n− 1)

a permutation. For any integer i, 0 ≤ i ≤ n− 1, define

Zi+1 = P i(Z1)

satisfying that if k + l = m in Z1, then P i(k) +i P
i(l) = P i(m) in Zi+1, where +i denotes the

binary operation +i : (P i(k), P i(l))→ P i(m). Then we know that

n⋃

i=1

Zi

is an n multi-algebra system .

The conception of multi-algebra systems can be extensively used for generalizing concep-

tions and results for these existent algebraic structures, such as those of groups, rings, bodies,

fields and vector spaces, · · · , etc.. Some of them are explained in the following.

Definition 3.2 Let G̃ =
n⋃
i=1

Gi be a closed multi-algebra system with a binary operation set

O(G̃) = {×i, 1 ≤ i ≤ n}. If for any integer i, 1 ≤ i ≤ n, (Gi;×i) is a group and for ∀x, y, z ∈ G̃
and any two binary operations “× and ◦, × 6= ◦, there is one operation, for example the

operation × satisfying the distribution law to the operation “◦ provided their operation results

exist , i.e.,

x× (y ◦ z) = (x× y) ◦ (x× z),

(y ◦ z)× x = (y × x) ◦ (z × x),

then G̃ is called a multigroup.

For a multigroup (G̃, O(G)), G̃1 ⊂ G̃ and O(G̃1) ⊂ O(G̃), call (G̃1, O(G̃1)) a submultigroup
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of (G̃, O(G)) if G̃1 is also a multigroup under the operations in O(G̃1), denoted by G̃1 � G̃.

For two sets A and B, if A
⋂
B = ∅, we denote the union A

⋃
B by A

⊕
B. Then we get a

generalization of the Lagrange theorem of finite group.

Theorem 3.1([18]) For any submultigroup H̃ of a finite multigroup G̃, there is a representation

set T , T ⊂ G̃, such that

G̃ =
⊕

x∈T

xH̃.

For a submultigroup H̃ of G̃, × ∈ O(H̃) and ∀g ∈ G̃(×), if for ∀h ∈ H̃ ,

g × h× g−1 ∈ H̃,

then call H̃ a normal submultigroup of G̃. An order of operations in O(G̃) is said an oriented

operation sequence, denoted by
−→
O (G̃). We get a generalization of the Jordan-Hölder theorem

for finite multi-groups.

Theorem 3.2([18]) For a finite multigroup G̃ =
n⋃
i=1

Gi and an oriented operation sequence

−→
O (G̃), the length of maximal series of normal submultigroups is a constant, only dependent on

G̃ itself.

In Definition 2.2, choose n = 2, G1 = G2 = G̃. Then G̃ is a body. If (G1;×1) and (G2;×2)

both are commutative groups, then G̃ is a field. For multi-algebra systems with two or more

operations on one set, we introduce the conception of multi-rings and multi-vector spaces in

the following.

Definition 3.3 Let R̃ =
m⋃
i=1

Ri be a closed multi-algebra system with double binary operation

set O(R̃) = {(+i,×i), 1 ≤ i ≤ m}. If for any integers i, j, i 6= j, 1 ≤ i, j ≤ m, (Ri; +i,×i) is a

ring and for ∀x, y, z ∈ R̃,

(x+i y) +j z = x+i (y +j z), (x×i y)×j z = x×i (y ×j z)

and

x×i (y +j z) = x×i y +j x×i z, (y +j z)×i x = y ×i x+j z ×i x

provided all their operation results exist, then R̃ is called a multi-ring. If for any integer

1 ≤ i ≤ m, (R; +i,×i) is a filed, then R̃ is called a multifiled.

Definition 3.4 Let Ṽ =
k⋃
i=1

Vi be a closed multi-algebra system with binary operation set

O(Ṽ ) = {(+̇i, ·i) | 1 ≤ i ≤ m} and F̃ =
k⋃
i=1

Fi a multi-filed with double binary operation set

O(F̃ ) = {(+i,×i) | 1 ≤ i ≤ k}. If for any integers i, j, 1 ≤ i, j ≤ k and ∀a,b, c ∈ Ṽ , k1, k2 ∈ F̃ ,

(i) (Vi; +̇i, ·i) is a vector space on Fi with vector additive +̇i and scalar multiplication ·i;
(ii) (a+̇ib)+̇jc = a+̇i(b+̇jc);
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(iii) (k1 +i k2) ·j a = k1 +i (k2 ·j a);

provided all those operation results exist, then Ṽ is called a multi-vector space on the multi-filed

F̃ with a binary operation set O(Ṽ ), denoted by (Ṽ ; F̃ ).

Similar to multigroups, we can also obtain results for multirings and multi-vector spaces

to generalize classical results in rings or linear spaces. Certainly, results can be also found in

the references [17] and [18].

3.2. The combinatorialization of geometries

First, we generalize classical metric spaces by the combinatorial speculation.

Definition 3.5 A multi-metric space is a union M̃ =
m⋃
i=1

Mi such that each Mi is a space with

metric ρi for ∀i, 1 ≤ i ≤ m.

We generalized two well-known results in metric spaces.

Theorem 3.3([19]) Let M̃ =
m⋃
i=1

Mi be a completed multi-metric space. For an ǫ-disk sequence

{B(ǫn, xn)}, where ǫn > 0 for n = 1, 2, 3, · · · , the following conditions hold:

(i) B(ǫ1, x1) ⊃ B(ǫ2, x2) ⊃ B(ǫ3, x3) ⊃ · · · ⊃ B(ǫn, xn) ⊃ · · · ;
(ii) lim

n→+∞
ǫn = 0.

Then
+∞⋂
n=1

B(ǫn, xn) only has one point.

Theorem 3.4([19]) Let M̃ =
m⋃
i=1

Mi be a completed multi-metric space and T a contraction on

M̃ . Then

1 ≤# Φ(T ) ≤ m.

Particularly, let m = 1. We get the Banach fixed-point theorem again.

Corollary 3.1(Banach) Let M be a metric space and T a contraction on M . Then T has just

one fixed point.

Smarandache geometries were proposed by Smarandache in [29] which are generalization of

classical geometries, i.e., these Euclid, Lobachevshy-Bolyai-Gauss and Riemann geometries may

be united altogether in a same space, by some Smarandache geometries under the combinatorial

speculation. These geometries can be either partially Euclidean and partially Non-Euclidean,

or Non-Euclidean. In general, Smarandache geometries are defined in the next.

Definition 3.6 An axiom is said to be Smarandachely denied if the axiom behaves in at least

two different ways within the same space, i.e., validated and invalided, or only invalided but in

multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied

axiom(1969).
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For example, let us consider an euclidean plane R2 and three non-collinear points A,B and

C. Define s-points as all usual euclidean points on R2 and s-lines as any euclidean line that

passes through one and only one of points A,B and C. Then this geometry is a Smarandache

geometry because two axioms are Smarandachely denied comparing with an Euclid geometry:

(i) The axiom (A5) that through a point exterior to a given line there is only one parallel

passing through it is now replaced by two statements: one parallel and no parallel. Let L be an

s-line passing through C and is parallel in the euclidean sense to AB. Notice that through any

s-point not lying on AB there is one s-line parallel to L and through any other s-point lying

on AB there is no s-lines parallel to L such as those shown in Fig.2(a).

A B

D

C
L

l1

l2
(a)

A B

C

D

E

l1

(b)

Fig.2

(ii) The axiom that through any two distinct points there exists one line passing through

them is now replaced by; one s-line and no s-line. Notice that through any two distinct s-points

D,E collinear with one of A,B and C, there is one s-line passing through them and through

any two distinct s-points F,G lying on AB or non-collinear with one of A,B and C, there is

no s-line passing through them such as those shown in Fig.3.1(b).

A Smarandache n-manifold is an n-dimensional manifold that supports a Smarandache

geometry. Now there are many approaches to construct Smarandache manifolds for n = 2. A

general way is by the so called map geometries without or with boundary underlying orientable

or non-orientable maps proposed in references [14] and [15] firstly.

Definition 3.7 For a combinatorial map M with each vertex valency≥ 3, endow with a real

number µ(u), 0 < µ(u) < 4π
ρM (u) , to each vertex u, u ∈ V (M). Call (M,µ) a map geometry

without boundary, µ(u) an angle factor of the vertex u and orientablle or non-orientable if M

is orientable or not.

Definition 3.8 For a map geometry (M,µ) without boundary and faces f1, f2, · · · , fl ∈ F (M), 1 ≤
l ≤ φ(M)−1, if S(M)\{f1, f2, · · · , fl} is connected, then call (M,µ)−l = (S(M)\{f1, f2, · · · , fl}, µ)

a map geometry with boundary f1, f2, · · · , fl, where S(M) denotes the locally orientable surface

underlying map M .

The realization for vertices u, v, w ∈ V (M) in a space R3 is shown in Fig.3, where

ρM (u)µ(u) < 2π for the vertex u, ρM (v)µ(v) = 2π for the vertex v and ρM (w)µ(w) > 2π
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for the vertex w, are called to be elliptic, Euclidean or hyperbolic, respectively.

u

ρ(u)µ(u) < 2π

v

ρ(v)µ(v) = 2π

w

ρ(w)µ(w) > 2π

Fig.3

On an Euclid plane R2, a straight line passing through an elliptic or a hyperbolic point is

shown in Fig.4.

- * - jL1

a
L2

a

Fig.4

Theorem 3.5([17]) There are Smarandache geometries, including paradoxist geometries, non-

geometries and anti-geometries in map geometries without or with boundary.

Generally, we can ever generalize the ideas in Definitions 3.7 and 3.8 to a metric space and

find new geometries.

Definition 3.9 Let U and W be two metric spaces with metric ρ, W ⊆ U . For ∀u ∈ U , if

there is a continuous mapping ω : u → ω(u), where ω(u) ∈ Rn for an integer n, n ≥ 1 such

that for any number ǫ > 0, there exists a number δ > 0 and a point v ∈ W , ρ(u − v) < δ such

that ρ(ω(u)− ω(v)) < ǫ, then U is called a metric pseudo-space if U = W or a bounded metric

pseudo-space if there is a number N > 0 such that ∀w ∈ W , ρ(w) ≤ N , denoted by (U, ω) or

(U−, ω), respectively.

For the case n = 1, we can also explain ω(u) being an angle function with 0 < ω(u) ≤ 4π

as in the case of map geometries without or with boundary, i.e.,

ω(u) =





ω(u)(mod4π), if u ∈W,

2π, if u ∈ U \W (∗)
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and get some interesting metric pseudo-space geometries. For example, let U = W = Euclid plane =∑
, then we obtained some interesting results for pseudo-plane geometries (

∑
, ω) as shown in

the following([17]).

Theorem 3.6 In a pseudo-plane (
∑
, ω), if there are no Euclidean points, then all points of

(
∑
, ω) is either elliptic or hyperbolic.

Theorem 3.7 There are no saddle points and stable knots in a pseudo-plane plane (
∑
, ω).

Theorem 3.8 For two constants ρ0, θ0, ρ0 > 0 and θ0 6= 0, there is a pseudo-plane (
∑
, ω) with

ω(ρ, θ) = 2(π − ρ0

θ0ρ
) or ω(ρ, θ) = 2(π +

ρ0

θ0ρ
)

such that

ρ = ρ0

is a limiting ring in (
∑
, ω).

Now for an m-manifold Mm and ∀u ∈ Mm, choose U = W = Mm in Definition 3.9 for

n = 1 and ω(u) a smooth function. We get a pseudo-manifold geometry (Mm, ω) on Mm. By

definitions in the reference [2], a Minkowski norm on Mm is a function F : Mm → [0,+∞) such

that

(i) F is smooth on Mm \ {0};
(ii) F is 1-homogeneous, i.e., F (λu) = λF (u) for u ∈Mm and λ > 0;

(iii) for ∀y ∈Mm \ {0}, the symmetric bilinear form gy : Mm ×Mm → R with

gy(u, v) =
1

2

∂2F 2(y + su+ tv)

∂s∂t
|t=s=0

is positive definite and a Finsler manifold is a manifold Mm endowed with a function F :

TMm → [0,+∞) such that

(i) F is smooth on TMm \ {0} =
⋃{TxMm \ {0} : x ∈Mm};

(ii) F |TxMm → [0,+∞) is a Minkowski norm for ∀x ∈Mm.

As a special case, we choose ω(x) = F (x) for x ∈Mm, then (Mm, ω) is a Finsler manifold.

Particularly, if ω(x) = gx(y, y) = F 2(x, y), then (Mm, ω) is a Riemann manifold. Therefore,

we get a relation for Smarandache geometries with Finsler or Riemann geometry.

Theorem 3.9 There is an inclusion for Smarandache, pseudo-manifold, Finsler and Riemann

geometries as shown in the following:

{Smarandache geometries} ⊃ {pseudo−manifold geometries}
⊃ {Finsler geometry}
⊃ {Riemann geometry}.
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Other purely mathematical results on the combinatorially differential geometry, partic-

ularly the combinatorially Riemannian geometry can be found in recently finished papers

[20]− [23] of mine.

§4. The contribution of combinatorial speculation to theoretical physics

The progress of theoretical physics in last twenty years of the 20th century enables human

beings to probe the mystic cosmos: where are we came from? where are we going to?. Today,

these problems still confuse eyes of human beings. Accompanying with research in cosmos, new

puzzling problems also arose: Whether are there finite or infinite cosmoses? Are there just one?

What is the dimension of the Universe? We do not even know what the right degree of freedom

in the Universe is, as Witten said([3]).

We are used to the idea that our living space has three dimensions: length, breadth and

height, with time providing the fourth dimension of spacetime by Einstein. Applying his princi-

ple of general relativity, i.e. all the laws of physics take the same form in any reference system

and equivalence principle, i.e., there are no difference for physical effects of the inertial force

and the gravitation in a field small enough., Einstein got the equation of gravitational field

Rµν −
1

2
Rgµν + λgµν = −8πGTµν .

where Rµν = Rνµ = Rαµiν ,

Rαµiν =
∂Γiµi
∂xν

− ∂Γiµν
∂xi

+ ΓαµiΓ
i
αν − ΓαµνΓ

i
αi,

Γgmn =
1

2
gpq(

∂gmp
∂un

+
∂gnp
∂um

− ∂gmn
∂up

)

and R = gνµRνµ.

Combining the Einstein’s equation of gravitational field with the cosmological principle,

i.e., there are no difference at different points and different orientations at a point of a cosmos

on the metric 104l.y. , Friedmann got a standard model of cosmos. The metrics of the standard

cosmos are

ds2 = −c2dt2 + a2(t)[
dr2

1−Kr2 + r2(dθ2 + sin2 θdϕ2)]

and

gtt = 1, grr = − R2(t)

1−Kr2 , gφφ = −r2R2(t) sin2 θ.

The standard model of cosmos enables the birth of big bang model of the Universe in

thirties of the 20th century. The following diagram describes the developing process of the

Universe in different periods after the Big Bang.
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Fig.5

4.1. The M-theory

The M-theory was established by Witten in 1995 for the unity of those five already known string

theories and superstring theories, which postulates that all matter and energy can be reduced to

branes of energy vibrating in an 11 dimensional space, then in a higher dimensional space solve

the Einstein’s equation of gravitational field under some physical conditions ([1],[3],[26]-[27]).

Here, a brane is an object or subspace which can have various spatial dimensions. For any

integer p ≥ 0, a p-brane has length in p dimensions. For example, a 0-brane is just a point or

particle; a 1-brane is a string and a 2-brane is a surface or membrane, · · · .
We mainly discuss line elements in differential forms in Riemann geometry. By a geomet-

rical view, these p-branes in M-theory can be seen as volume elements in spaces. Whence, we

can construct a graph model for p-branes in a space and combinatorially research graphs in

spaces.

Definition 4.1 For each m-brane B of a space Rm, let (n1(B), n2(B), · · · , np(B)) be its unit

vibrating normal vector along these p directions and q : Rm → R4 a continuous mapping. Now

construct a graph phase (G, ω,Λ) by

V (G) = {p− branes q(B)},

E(G) = {(q(B1), q(B2))|there is an action between B1 and B2},

ω(q(B)) = (n1(B), n2(B), · · · , np(B)),

and

Λ(q(B1), q(B2)) = forces between B1 and B2.

Then we get a graph phase (G, ω,Λ) in R4. Similarly, if m = 11, it is a graph phase for the
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M-theory.

As an example for applying M-theory to find an accelerating expansion cosmos of 4-

dimensional cosmoses from supergravity compactification on hyperbolic spaces is the Townsend-

Wohlfarth type metric in which the line element is

ds2 = e−mφ(t)(−S6dt2 + S2dx2
3) + r2Ce

2φ(t)ds2Hm ,

where

φ(t) =
1

m− 1
(lnK(t)− 3λ0t),

S2 = K
m
m−1 e−

m+2
m−1λ0t

and

K(t) =
λ0ζrc

(m− 1) sin[λ0ζ|t+ t1|]

with ζ =
√

3 + 6/m. This solution is obtainable from space-like brane solution and if the

proper time ς is defined by dς = S3(t)dt, then the conditions for expansion and acceleration are
dS
dς > 0 and d2S

dς2 > 0. For example, the expansion factor is 3.04 if m = 7, i.e., a really expanding

cosmos.

According to M-theory, the evolution picture of our cosmos started as a perfect 11 dimen-

sional space. However, this 11 dimensional space was unstable. The original 11 dimensional

space finally cracked into two pieces, a 4 and a 7 dimensional subspaces. The cosmos made the

7 of the 11 dimensions curled into a tiny ball, allowing the remaining 4 dimensions to inflate at

enormous rates, the Universe at the final.

4.2. The combinatorial cosmos

The combinatorial speculation made the following combinatorial cosmos in the reference [17].

Definition 4.2 A combinatorial cosmos is constructed by a triple (Ω,∆, T ), where

Ω =
⋃

i≥0

Ωi, ∆ =
⋃

i≥0

Oi

and T = {ti; i ≥ 0} are respectively called the cosmos, the operation or the time set with the

following conditions hold.

(1) (Ω,∆) is a Smarandache multi-space dependent on T , i.e., the cosmos (Ωi, Oi) is

dependent on time parameter ti for any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-cosmos sequence

(S) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0

in the cosmos (Ωi, Oi) and for two sub-cosmoses (Ωij , Oi) and (Ωil, Oi), if Ωij ⊃ Ωil, then there

is a homomorphism ρΩij ,Ωil : (Ωij , Oi)→ (Ωil, Oi) such that
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(i) for ∀(Ωi1, Oi), (Ωi2, Oi), (Ωi3, Oi) ∈ (S), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3 = ρΩi1,Ωi2 ◦ ρΩi2,Ωi3 ,

where ◦ denotes the composition operation on homomorphisms.

(ii) for ∀g, h ∈ Ωi, if for any integer i, ρΩ,Ωi(g) = ρΩ,Ωi(h), then g = h.

(iii) for ∀i, if there is an fi ∈ Ωi with

ρΩi,Ωi
⋂

Ωj (fi) = ρΩj ,Ωi
⋂

Ωj (fj)

for integers i, j,Ωi
⋂

Ωj 6= ∅, then there exists an f ∈ Ω such that ρΩ,Ωi(f) = fi for any integer

i.

By this definition, there is just one cosmos Ω and the sub-cosmos sequence is

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P} ⊃ R−7 ⊃ · · · ⊃ R−1 ⊃ R−0 = {Q}.

in the string/M-theory. In Fig.6, we have shown the idea of the combinatorial cosmos.

human

cosmos
visual

higher cosmos

= dimensional≥ 4

Fig.6

For 5 or 6 dimensional spaces, it has been established a dynamical theory by this combina-

torial speculation([24]-[25]). In this dynamics, we look for a solution in the Einstein’s equation

of gravitational field in 6-dimensional spacetime with a metric of the form

ds2 = −n2(t, y, z)dt2 + a2(t, y, z)d

2∑

k

+b2(t, y, z)dy2 + d2(t, y, z)dz2

where d
∑2

k represents the 3-dimensional spatial sections metric with k = −1, 0, 1 respec-

tive corresponding to the hyperbolic, flat and elliptic spaces. For 5-dimensional spacetime,

deletes the indefinite z in this metric form. Now consider a 4-brane moving in a 6-dimensional

Schwarzschild-ADS spacetime, the metric can be written as

ds2 = −h(z)dt2 +
z2

l2
d

2∑

k

+h−1(z)dz2,
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where

d

2∑

k

=
dr2

1− kr2 + r2dΩ2
(2) + (1− kr2)dy2

and

h(z) = k +
z2

l2
− M

z3
.

Then the equation of a 4-dimensional cosmos moving in a 6-spacetime is

2
R̈

R
+ 3(

Ṙ

R
)2 = −3

κ4
(6)

64
ρ2 −

κ4
(6)

8
ρp− 3

κ

R2
− 5

l2

by applying the Darmois-Israel conditions for a moving brane. Similarly, for the case of a(z) 6=
b(z), the equations of motion of the brane are

d2ḋṘ− dR̈√
1 + d2Ṙ2

−
√

1 + d2Ṙ2

n
(dṅṘ+

∂zn

d
− (d∂zn− n∂zd)Ṙ2) = −

κ4
(6)

8
(3(p+ ρ) + p̂),

∂za

ad

√
1 + d2Ṙ2 = −

κ4
(6)

8
(ρ+ p− p̂),

∂zb

bd

√
1 + d2Ṙ2 = −

κ4
(6)

8
(ρ− 3(p− p̂)),

where the energy-momentum tensor on the brane is

T̂µν = hναT
α
µ −

1

4
Thµν

with Tαµ = diag(−ρ, p, p, p, p̂) and the Darmois-Israel conditions

[Kµν ] = −κ2
(6)T̂µν ,

where Kµν is the extrinsic curvature tensor.

The combinatorial cosmos also presents new questions to combinatorics, such as:

(i) to embed a graph into spaces with dimensional≥ 4;

(ii) to research the phase space of a graph embedded in a space;

(iii) to establish graph dynamics in a space with dimensional≥ 4, · · · , etc..

For example, we have gotten the following result for graphs in spaces in [17].

Theorem 4.1 A graph G has a nontrivial including multi-embedding on spheres P1 ⊃ P2 ⊃
· · · ⊃ Ps if and only if there is a block decomposition G =

s⊎
i=1

Gi of G such that for any integer

i, 1 < i < s,

(i) Gi is planar;

(ii) for ∀v ∈ V (Gi), NG(x) ⊆ (
i+1⋃
j=i−1

V (Gj)).

Further research of the combinatorial cosmos will richen the knowledge of combinatorics
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and cosmology, also get the combinatorialization for cosmology.
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Combinatorial Mathematics After CC Conjecture

— Combinatorial Notions and Achievements

Abstract: As a powerful technique for holding relations in things, combinatorics has expe-

rienced rapidly development in the past century, particularly, enumeration of configurations,

combinatorial design and graph theory. However, the main objective for mathematics is

to bring about a quantitative analysis for other sciences, which implies a natural question

on combinatorics. Thus, how combinatorics can contributes to other mathematical sciences,

not just in discrete mathematics, but metric mathematics and physics? After a long time

speculation, I brought the CC conjecture for advancing mathematics by combinatorics, i.e.,

any mathematical science can be reconstructed from or made by combinatorialization in my

postdoctoral report for Chinese Academy of Sciences in 2005, and reported it at a few aca-

demic conferences in China. After then, my surveying paper Combinatorial Speculation and

Combinatorial Conjecture for Mathematics published in the first issue of International Jour-

nal of Mathematical Combinatorics, 2007. Clearly, CC conjecture is in fact a combinatorial

notion and holds by a philosophical law, i.e., all things are inherently related, not isolated

but it can greatly promote the developing of mathematical sciences. The main purpose

of this report is to survey the roles of CC conjecture in developing mathematical sciences

with notions, such as those of its contribution to algebra, topology, Euclidean geometry and

differential geometry, non-solvable differential equations or classical mathematical systems

with contradictions to mathematics, quantum fields after it appeared 10 years ago. All of

these show the importance of combinatorics to mathematical sciences in the past and future.

Key Words: CC conjecture, Smarandache system, GL-system, non-solvable system of

equations, combinatorial manifold, geometry, quantum field.

AMS(2010): 03C05,05C15,51D20,51H20,51P05,83C05,83E50.

§1. Introduction

There are many techniques in combinatorics, particularly, the enumeration and counting with

graph, a visible, also an abstract model on relations of things in the world. Among them,

the most interested is the graph. A graph G is a 3-tuple (V,E, I) with finite sets V,E and a

mapping I : E → V × V , and simple if it is without loops and multiple edges, denoted by

(V ;E) for convenience. All elements v in V , e in E are said respectively vertices and edges.

A graph with given properties are particularly interested. For example, a path Pn in a graph

G is an alternating sequence of vertices and edges u1, e1, u2, e2, · · · , en, un1 , ei = (ui, ui+1) with

1A plenary talk in the International Conference on Combinatorics, Graph Theory, Topology and Geometry,
January 29-31, 2015, Shanghai, P.R.China.

2International J.Math.Combin, Vol.2(2015), 1-31.
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distinct vertices for an integer n ≥ 1, and if u1 = un+1, it is called a circuit or cycle Cn. For

example, v1v2v3v4 and v1v2v3v4v1 are respective path and circuit in Fig.1. A graph G is

connected if for u, v ∈ V (G), there are paths with end vertices u and v in G.

A complete graph Kn = (Vc, Ec; Ic) is a simple graph with Vc = {v1, v2, · · · , vn}, Ec =

{eij , 1 ≤ i, j ≤ n, i 6= j} and Ic(eij) = (vi, vj), or simply by a pair (V,E) with V =

{v1, v2, · · · , vn} and E = {vivj , 1 ≤ i, j ≤ n, i 6= j}.
A simple graphG = (V,E) is r-partite for an integer r ≥ 1 if it is possible to partition V into

r subsets V1, V2, · · · , Vr such that for ∀e(u, v) ∈ E, there are integers i 6= j, 1 ≤ i, j ≤ r such that

u ∈ Vi and v ∈ Vj . If there is an edge eij ∈ E for ∀vi ∈ Vi, ∀vj ∈ Vj , where 1 ≤ i, j ≤ r, i 6= j,

then, G is called a complete r-partite graph, denoted by G = K(|V1|, |V2|, · · · , |Vr|). Thus a

complete graph is nothing else but a complete 1-partite graph. For example, the bipartite graph

K(4, 4) and the complete graph K6 are shown in Fig.1.

K(4, 4) K6

Fig.1

Notice that a few edges in Fig.1 have intersections besides end vertices. Contrast to this

case, a planar graph can be realized on a Euclidean plane R2 by letting points p(v) ∈ R2 for

vertices v ∈ V with p(vi) 6= p(vj) if vi 6= vj , and letting curve C(vi, vj) ⊂ R
2 connecting points

p(vi) and p(vj) for edges (vi, vj) ∈ E(G), such as those shown in Fig.2.

v1 v2

v3v4

e1 e2

e3e4

e5

e6e7

e8

e9 e10

Fig.2

Generally, let E be a topological space. A graph G is said to be embeddable into E ([32])

if there is a 1 − 1 continuous mapping f : G → E with f(p) 6= f(q) if p 6= q for ∀p, q ∈ G, i.e.,

edges only intersect at vertices in E . Such embedded graphs are called topological graphs.

There is a well-known result on embedding of graphs without loops and multiple edges in

Rn for n ≥ 3 ([32]), i.e., there always exists such an embedding of G that all edges are straight

segments in Rn, which enables us turn to characterize embeddings of graphs on R2 and its
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generalization, 2-manifolds or surfaces ([3]).

However, all these embeddings of G are established on an assumption that each vertex

of G is mapped exactly into one point of E in combinatorics for simplicity. If we put off this

assumption, what will happens? Are these resultants important for understanding the world?

The answer is certainly YES because this will enables us to pullback more characters of things,

characterize more precisely and then hold the truly faces of things in the world.

All of us know an objective law in philosophy, namely, the integral always consists of its

parts and all of them are inherently related, not isolated. This idea implies that every thing in

the world is nothing else but a union of sub-things underlying a graph embedded in space of

the world.

Σ1 Σ2

Σ3 Σ4

{c}

{d, e}

{e}

{c, e}{a, c}

Fig.3

Formally, we introduce some conceptions following.

Definition 1.1([30]-[31], [12]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical

systems, different two by two. A Smarandache multisystem Σ̃ is a union
m⋃
i=1

Σi with rules

R̃ =
m⋃
i=1

Ri on Σ̃, denoted by
(
Σ̃; R̃

)
.

Definition 1.2([11]-[13]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be a Smarandache multisystem

consisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topolog-

ical structure GL
[
Σ̃; R̃

]
of
(
Σ̃; R̃

)
is a topological vertex-edge labeled graph defined following:

V
(
GL
[
Σ̃; R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
GL
[
Σ̃; R̃

])
= {(Σi,Σj)|Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L(Σi) = Σi and L : (Σi,Σj)→ L(Σi,Σj) = Σi
⋂

Σj

for integers 1 ≤ i 6= j ≤ m, also denoted by GL
[
Σ̃; R̃

]
for

(
Σ̃; R̃

)
.

For example, let Σ1 = {a, b, c}, Σ2 = {c, d, e}, Σ3 = {a, c, e}, Σ4 = {d, e, f} and Ri = ∅
for integers 1 ≤ i ≤ 4, i.e., all these system are sets. Then the multispace

(
Σ̃; R̃

)
with

Σ̃ =
4⋃
i=1

Σi = {a, b, c, d, e, f} and R̃ = ∅ underlying a topological graph GL
[
Σ̃; R̃

]
shown

in Fig.3. Combinatorially, the Smarandache multisystems can be classified by their inherited
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topological structures, i.e., isomorphic labeled graphs following.

Definition 1.3 ([13]) Let

G1
L1 =

(
m⋃

i=1

Σ
(1)
i ;

m⋃

i=1

R(1)
i

)
and G2

L2 =

(
n⋃

i=1

Σ
(2)
i ;

n⋃

i=1

R(2)
i

)
.

be two Smarandache multisystems underlying topological graphs G1 and G2, respectively. They

are isomorphic if there is a bijection ̟ : G1
L1 → G2

L2 with ̟ :
m⋃
i=1

Σ
(1)
i →

n⋃
i=1

Σ
(2)
i and

̟ :
m⋃
i=1

R(1)
i →

n⋃
i=1

R(2)
i such that

̟|Σi
(
aR(1)

i b
)

= ̟|Σi(a)̟|Σi
(
R(1)
i

)
̟|Σi(b)

for ∀a, b ∈ Σ
(1)
i , 1 ≤ i ≤ m, where ̟|Σi denotes the constraint of ̟ on (Σi,Ri).

Consequently, the previous discussion implies that

Every thing in the world is nothing else but a topological graph GL in space of the world,

and two things are similar if they are isomorphic.

After speculation over a long time, I presented the CC conjecture on mathematical sciences

in the final chapter of my post-doctoral report for Chinese Academy of Sciences in 2005 ([9],[10]),

and then reported at The 2nd Conference on Combinatorics and Graph Theory of China in 2006,

which is in fact an inverse of the understand of things in the world.

CC Conjecture([9-10],[14]) Any mathematical science can be reconstructed from or made by

combinatorialization.

Certainly, this conjecture is true in philosophy. It is in fact a combinatorial notion for

developing mathematical sciences following.

Notion 1.1 Finds the combinatorial structure, particularly, selects finite combinatorial rulers

to reconstruct or make a generalization for a classical mathematical science.

This notion appeared even in classical mathematics. For examples, Hilbert axiom system

for Euclidean geometry, complexes in algebraic topology, particularly, 2-cell embeddings of

graphs on surface are essentially the combinatorialization for Euclidean geometry, topological

spaces and surfaces, respectively.

Notion 1.2 Combine different mathematical sciences and establish new enveloping theory on

topological graphs, with classical theory being a special one, and this combinatorial process will

never end until it has been done for all mathematical sciences.

A few fields can be also found in classical mathematics on this notion, for instance the

topological groups, which is in fact a multi-space of topological space with groups, and similarly,

the Lie groups, a multi-space of manifold with that of diffeomorphisms.

Even in the developing process of physics, the trace of Notions 1.1 and 1.2 can be also



3.2 Combinatorial Mathematics After CC Conjecture – Combinatorial Notions and Achievements 275

found. For examples, the many-world interpretation [2] on quantum mechanics by Everett in

1957 is essentially a multispace formulation of quantum state (See [35] for details), and the

unifying the four known forces, i.e., gravity, electro-magnetism, the strong and weak nuclear

force into one super force by many researchers, i.e., establish the unified field theory is nothing

else but also a following of the combinatorial notions by letting Lagrangian L being that a

combination of its subfields, for instance the standard model on electroweak interactions, etc..

Even so, the CC conjecture includes more deeply thoughts for developing mathematics by

combinatorics i.e., mathematical combinatorics which extends the field of all existent mathemat-

ical sciences. After it was presented, more methods were suggested for developing mathematics

in last decade. The main purpose of this report is to survey its contribution to algebra, topol-

ogy and geometry, mathematical analysis, particularly, non-solvable algebraic and differential

equations, theoretical physics with its producing notions in developing mathematical sciences.

All terminologies and notations used in this paper are standard. For those not mentioned

here, we follow reference [5] and [32] for topology, [3] for topological graphs, [1] for algebraic

systems, [4], [34] for differential equations and [12], [30]-[31] for Smarandache systems.

§2. Algebraic Combinatorics

Algebraic systems, such as those of groups, rings, fields and modules are combinatorial them-

selves. However, the CC conjecture also produces notions for their development following.

Notion 2.1 For an algebraic system (A ;O), determine its underlying topological structure

GL[A ,O] on subsystems, and then classify by graph isomorphism.

Notion 2.2 For an integer m ≥ 1, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) all be algebraic systems

in Definition 1.2 and
(
G̃ ;O

)
underlying GL

[
G̃ ;O

]
with G̃ =

m⋃
i=1

Σi and O =
m⋃
i=1

Ri, i.e., an

algebraic multisystem. Characterize
(
G̃ ;O

)
and establish algebraic theory, i.e., combinatorial

algebra on
(
G̃ ;O

)
.

For example, let

〈G1; ◦1〉 =
〈
a, b|a ◦1 b = b ◦1 a, a2 = bn = 1

〉

〈G2; ◦2〉 =
〈
b, c|b ◦2 c = c ◦2 b, c5 = bn = 1

〉

〈G3; ◦3〉 =
〈
c, d|c ◦3 d = d ◦3 c, d2 = c5 = 1

〉

be groups with respective operations ◦1, ◦2 and ◦3. Then the set (G̃ ; {◦1, ◦2, ◦3}) is an algebraic

multisyatem with G̃ =
3⋃
i=1

Gi.

2.1 KL
2 -Systems

A KL
2 -system is such a multi-system consisting of exactly 2 algebraic systems underlying a

topological graph KL
2 , including bigroups, birings, bifields and bimodules, etc.. For example, an
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algebraic field (R; +, ·) is aKL
2 -system. Clearly, (R; +, ·) consists of groups (R; +) and (R\{0}; ·)

underlying KL
2 such as those shown in Fig.4, where L : V

(
KL

2

)
→ {(R; +), (R \ {0}; ·)} and

L : E
(
KL

2

)
→ {R \ {0}}.

(R; +) (R \ {0}, ·)
R \ {0}

Fig.4

A generalization of field is replace R \ {0} by any subset H ≤ R in Fig.4. Then a bigroup

comes into being, which was introduced by Maggu [8] for industrial systems in 1994, and then

Vasantha Kandasmy [33] further generalizes it to bialgebraic structures.

Definition 2.3 A bigroup (biring, bifield, bimodule, · · · ) is a 2-system (G ; ◦, ·) such that

(1) G = G1

⋃
G2;

(2) (G1; ◦) and (G2; ·) both are groups (rings, fields, modules,· · · ).

For example, let P̃ be a permutation multigroup action on Ω̃ with

P̃ = P1

⋃
P2 and Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8}

⋃
{1, 2, 5, 6, 9, 10, 11, 12},

where P1 = 〈(1, 2, 3, 4), (5, 6, 7, 8)〉 and P2 = 〈(1, 5, 9, 10), (2, 6, 11, 12)〉. Clearly, P̃ is a per-

mutation bigroup.

Let (G1; ◦1, ·1) and ((G2; ◦2, ·2)) be bigroups. A mapping pair (φ, ι) with φ : G1 → G2 and

ι : {◦1, ·1} → {◦2, ·2} is a homomorphism if

φ(a • b) = φ(a)ι(•)φ(b)

for ∀a, b ∈ G1 and • ∈ {◦1, ·1} provided a • b existing in (G1; ◦1, ·1). Define the image Im(φ, ι)

and kernel Ker(φ, ι) respectively by

Im(φ, ι) = { φ(g) | g ∈ G1 },
Ker(φ, ι) = { g ∈ G1| φ(g) = 1•, ∀• ∈ {◦2, ·2}},

where 1• denotes the unit of (G•; •) with G• a maximal closed subset of G on operation •.
For subsets H̃ ⊂ G̃, O ⊂ O, define (H̃ ;O) to be a submultisystem of

(
G̃;O

)
if (H̃ ;O)

is multisystem itself, denoted by
(
H̃;O

)
≤
(
G̃;O

)
, and a subbigroup (H ; ◦, ·) of (G ; ◦, ·) is

normal, denoted by H � G if for ∀g ∈ G ,

g •H = H • g,

where g •H = {g • h|h ∈H provided g • h existing} and H • g = {h • g|h ∈H provided h •
g existing} for ∀• ∈ {◦, ·}. The next result is a generalization of isomorphism theorem of group
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in [33].

Theorem 2.4([11]) Let (φ, ι) : (G1; {◦1, ·1})→ (G2; {◦2, ·2}) be a homomorphism. Then

G1/Ker(φ, ι) ≃ Im(φ, ι).

Particularly, if (G2; {◦2, ·2}) is a group (A ; ◦), we know the corollary following.

Corollary 2.5 Let (φ, ι) : (G ; {◦, ·})→ (A ; ◦) be an epimorphism. Then

G1/Ker(φ, ι) ≃ (A ; ◦).

Similarly, a bigroup (G ; ◦, ·) is distributive if

a · (b ◦ c) = a · b ◦ a · c

hold for all a, b, c ∈ G . Then, we know the following result.

Theorem 2.6([11]) Let (G ; ◦, ·) be a distributive bigroup of order≥ 2 with G = A1 ∪A2 such

that (A1; ◦) and (A2; ·) are groups. Then there must be A1 6= A2. consequently, if (G ; ◦) it a

non-trivial group, there are no operations · 6= ◦ on G such that (G ; ◦, ·) is a distributive bigroup.

2.2 GL-Systems

Definition 2.2 is easily generalized also to multigroups, i.e., consisting of m groups underlying a

topological graph GL, and similarly, define conceptions of homomorphism, submultigroup and

normal submultigroup, · · · of a multigroup without any difficult.

For example, a normal submultigroup of (G̃ ; Õ) is such submutigroup (H̃ ;O) that holds

g ◦ H̃ = H̃ ◦ g

for ∀g ∈ G̃ , ∀◦ ∈ O, and generalize Theorem 2.3 to the following.

Theorem 2.7([16]) Let (φ, ι) : (G̃1; Õ1)→ (G̃2; Õ2) be a homomorphism. Then

G̃1/Ker(φ, ι) ≃ Im(φ, ι).

Particularly, for the transitive of multigroup action on a set Ω̃, let P̃ be a permutation

multigroup action on Ω̃ with P̃ =
m⋃
i=1

Pi, Ω̃ =
m⋃
i=1

Ωi and for each integer i, 1 ≤ i ≤ m, the

permutation group Pi acts on Ωi, which is globally k-transitive for an integer k ≥ 1 if for

any two k-tuples x1, x2, · · · , xk ∈ Ωi and y1, y2, · · · , yk ∈ Ωj , where 1 ≤ i, j ≤ m, there are

permutations π1, π2, · · · , πn such that

xπ1π2···πn
1 = y1, x

π1π2···πn
2 = y2, · · · , xπ1π2···πn

k = yk
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and abbreviate the globally 1-transitive to that globally transitive of a permutation multigroup.

The following result characterizes transitive multigroup.

Theorem 2.8([17]) Let P̃ be a permutation multigroup action on Ω̃ with

P̃ =
m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi,

where, each permutation group Pi transitively acts on Ωi for each integers 1 ≤ i ≤ m. Then

P̃ is globally transitive on Ω̃ if and only if the graph GL
[
Ω̃
]

is connected.

Similarly, let R̃ =
m⋃
i=1

Ri be a completed multisystem with a double operation set O
(
R̃
)

=

O1

⋃O2, where O1 = { ·i, 1 ≤ i ≤ m}, O2 = {+i, 1 ≤ i ≤ m}. If for any integers i, 1 ≤ i ≤ m,

(Ri; +i, ·i) is a ring, then R̃ is called a multiring, denoted by
(
R̃;O1 →֒ O2

)
and (+i, ·i) a

double operation for any integer i, which is integral if for ∀a, b ∈ R̃ and an integer i, 1 ≤ i ≤ m,

a ·i b = b ·i a, 1·i 6= 0+i and a ·i b = 0+i implies that a = 0+i or b = 0+i . Such a multiring(
R̃;O1 →֒ O2

)
is called a skew multifield or a multifield if each (R; +i, ·i) is a skew field or a

field for integers 1 ≤ i ≤ m. The next result is a generalization of finitely integral ring.

Theorem 2.9([16]) A finitely integral multiring is a multifield.

For multimodule, let O = { +i | 1 ≤ i ≤ m}, O1 = {·i|1 ≤ i ≤ m} and O2 = {+̇i|1 ≤ i ≤
m} be operation sets, (M ;O) a commutative multigroup with units 0+i and (R;O1 →֒ O2)

a multiring with a unit 1· for ∀· ∈ O1. A pair (M ;O) is said to be a multimodule over

(R;O1 →֒ O2) if for any integer i, 1 ≤ i ≤ m, a binary operation ×i : R ×M →M is defined

by a×i x for a ∈ R, x ∈M such that the conditions following

(1) a×i (x+i y) = a×i x+i a×i y;
(2) (a+̇ib)×i x = a×i x+i b×i x;
(3) (a ·i b)×i x = a×i (b×i x);
(4) 1·i ×i x = x.

hold for ∀a, b ∈ R, ∀x, y ∈ M , denoted by Mod(M (O) : R(O1 →֒ O2)). Then we know the

following result for finitely multimodules.

Theorem 2.10([16]) Let Mod(M (O) : R(O1 →֒ O2)) =
〈
Ŝ|R

〉
be a finitely generated

multimodule with Ŝ = {u1, u2, · · · , un}. Then

Mod(M (O) : R(O1 →֒ O2)) ∼= Mod(R(n) : R(O1 →֒ O2)),

where Mod(R(n) : R(O1 →֒ O2)) is a multimodule on R(n) = {(x1, x2, · · · , xn) | xi ∈ R, 1 ≤
i ≤ n} with

(x1, x2, · · · , xn) +i (y1, y2, · · · , yn) = (x1+̇iy1, x2+̇iy2, · · · , xn+̇iyn),

a×i (x1, x2, · · · , xn) = (a ·i x1, a ·i x2, · · · , a ·i xn)
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for ∀a ∈ R, integers 1 ≤ i ≤ m. Particularly, a finitely module over a commutative ring

(R; +, ·) generated by n elements is isomorphic to the module Rn over (R; +, ·).

§3. Geometrical Combinatorics

Classical geometry, such as those of Euclidean or non-Euclidean geometry, or projective geome-

try are not combinatorial. Whence, the CC conjecture produces combinatorial notions for their

development further, for instance the topological space shown in Fig.5 following.

P1 P2

P3 P4

P0

P1

⋂
P2

P2

⋂
P4

P3

⋂
P4

P1

⋂
P3

P1

⋂
P0 P2

⋂
P0

P3

⋂
P0 P4

⋂
P0

Fig.5

Notion 3.1 For a geometrical space P, determine its underlying topological structure GL[A ,O]

on subspaces, for instance, n-manifolds and classify them by graph isomorphisms.

Notion 3.2 For an integer m ≥ 1, let P1, P2, · · · , Pm all be geometrical spaces in Definition

1.2 and P̃ underlying GL
[
P̃
]

with P̃ =
m⋃
i=1

Pi, i.e., a geometrical multispace. Characterize

P̃ and establish geometrical theory, i.e., combinatorial geometry on P̃.

3.1 Euclidean Spaces

Let ǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, 0 · · · , 0), · · · , ǫn = (0, · · · , 0, 1) be the normal basis of a

Euclidean space Rn in a general position, i.e., for two Euclidean spaces Rnµ ,Rnν , Rnµ ∩Rnν 6=
Rmin{nµ,nν}. In this case, let Xvµ be the set of orthogonal orientations in R

nvµ , µ ∈ Λ. Then

Rnµ ∩ Rnν = Xvµ ∩ Xvν , which enables us to construct topological spaces by the combination.

For an index set Λ, a combinatorial Euclidean space EGL(nν ; ν ∈ Λ) underlying a connected

graph GL is a topological spaces consisting of Euclidean spaces R
nν , ν ∈ Λ such that

V
(
GL
)

= { Rnν | ν ∈ Λ };
E
(
GL
)

= { (Rnµ ,Rnν ) | Rnµ ∩ Rnν 6= ∅, µ, ν ∈ Λ } and labeling

L : Rnν → Rnν and L : (Rnµ ,Rnν )→ Rnµ
⋂

Rnν¸

for (Rnµ ,Rnν ) ∈ E
(
GL
)
, ν, µ ∈ Λ.

Clearly, for any graph G, we are easily construct a combinatorial Euclidean space under-

lying G, which induces a problem following.
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Problem 3.3 Determine the dimension of a combinatorial Euclidean space consisting of m

Euclidean spaces Rn1 ,Rn2 , · · · ,Rnm .

Generally, the combinatorial Euclidean spaces EGL(n1, n2, · · · , nm) are not unique and to

determine dimEGL(n1, n2, · · · , nm) converts to calculate the cardinality of |Xn1

⋃ · · ·⋃Xnm |,
where Xni is the set of orthogonal orientations in R

ni for integers 1 ≤ i ≤ m, which can be

determined by the inclusion-exclusion principle, particularly, the maximum dimension following.

Theorem 3.4([21]) dimEGL(n1, · · · , nm) ≤ 1 −m+
m∑
i=1

ni and with the equality holds if and

only if dim (Rni ∩ Rnj ) = 1 for ∀ (Rni ,Rnj ) ∈ E
(
GL
)
, 1 ≤ i, j ≤ m.

To determine the minimum dimEGL(n1, · · · , nm) is still open. However, we know this

number for G = Km and ni = r for integers 1 ≤ i ≤ m, i.e., EKm(r) by following results.

Theorem 3.5([21]) For any integer r ≥ 2, let EKm(r) be a combinatorial Euclidean space of

R
r, · · · ,Rr︸ ︷︷ ︸

m

, and there exists an integer s, 0 ≤ s ≤ r − 1 such that


 r + s− 1

r


 < m ≤


 r + s

r


 .

Then

dimminEKm(r) = r + s.

Particularly,

dimminEKm(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10,

2 + ⌈√m⌉, if m ≥ 11.

3.2 Manifolds

An n-manifold is a second countable Hausdorff space of locally Euclidean n-space without

boundary, which is in fact a combinatorial Euclidean space EGL(n). Thus, we can further

replace these Euclidean spaces by manifolds and to get topological spaces underlying a graph,

such as those shown in Fig.6.
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Fig.6

Definition 3.6([22]) Let M̃ be a topological space consisting of finite manifolds Mµ, µ ∈ Λ.

An inherent graph Gin
[
M̃
]

of M̃ is such a graph with

V
(
Gin

[
M̃
])

= {Mµ, µ ∈ Λ};

E
(
Gin

[
M̃
])

= {(Mµ,Mν)i , 1 ≤ i ≤ κµν + 1|Mµ ∩Mν 6= ∅, µ, ν ∈ Λ},

where κµν + 1 is the number of arcwise connected components in Mµ ∩Mν for µ, ν ∈ Λ.

Notice that Gin
[
M̃
]

is a multiple graph. If replace all multiple edges (Mµ,Mν)i , 1 ≤ i ≤
κµν + 1 by (Mµ,Mν), such a graph is denoted by G[M̃ ], also an underlying graph of M̃ .

Clearly, if m = 1, then M̃(ni, i ∈ Λ) is nothing else but exactly an n1-manifold by

definition. Even so, Notion 3.1 enables us characterizing manifolds by graphs. The following

result shows that every manifold is in fact homeomorphic to combinatorial Euclidean space.

Theorem 3.7([22]) Any locally compact n-manifold M with an alta A = { (Uλ;ϕλ)| λ ∈ Λ} is

a combinatorial manifold M̃ homeomorphic to a combinatorial Euclidean space EGL(n, λ ∈ Λ)

with countable graphs Gin[M ] ∼= G.

Topologically, a Euclidean space Rn is homeomorphic to an opened ball Bn(R) = {(x1, x2,

· · · , xn)|x2
1+x

2
2+· · ·+x2

n < R}. Thus, we can view a combinatorial Euclidean space EG(n, λ ∈ Λ)

as a graph with vertices and edges replaced by ball Bn(R) in space, such as those shown in

Fig.6, a 3-dimensional graph.

Definition 3.8 An n-dimensional graph M̃n[G] is a combinatorial ball space B̃ of Bn, µ ∈ Λ

underlying a combinatorial structure G such that

(1) V (G) is discrete consisting of Bn, i.e., ∀v ∈ V (G) is an open ball Bnv ;

(2) M̃n[G] \ V (M̃n[G]) is a disjoint union of open subsets e1, e2, · · · , em, each of which is

homeomorphic to an open ball Bn;
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(3) the boundary ei − ei of ei consists of one or two Bn and each pair (ei, ei) is homeo-

morphic to the pair (B
n
, Bn);

(4) a subset A ⊂ M̃n[G] is open if and only if A ∩ ei is open for 1 ≤ i ≤ m.

Particularly, a topological graph T [G] of a graph G embedded in a topological space P is

1-dimensional graph.

According to Theorem 3.7, an n-manifold is homeomorphic to a combinatorial Euclidean

space, i.e., n-dimensional graph. This enables us knowing a result following on manifolds.

Theorem 3.9([22]) Let A [M ] = { (Uλ;ϕλ) | λ ∈ Λ} be a atlas of a locally compact n-manifold

M . Then the labeled graph GL|Λ| of M is a topological invariant on |Λ|, i.e., if HL1

|Λ| and GL2

|Λ| are

two labeled n-dimensional graphs of M , then there exists a self-homeomorphism h : M → M

such that h : HL1

|Λ| → GL2

|Λ| naturally induces an isomorphism of graph.

Theorem 3.9 enables us listing manifolds by two parameters, the dimensions and inherited

graph. For example, let |Λ| = 2 and then Amin[M ] = {(U1;ϕ1), (U2;ϕ2)}, i.e., M is double

covered underlying a graphs DL
0,κ12+1,0 shown in Fig.7,

U1 U2

e1

e2

e3

eκ12+1

¸

Fig.7

For example, let U1 = R2, ϕ1 = z, U2 = (R2 \ {(0, 0)}∪ {∞}, ϕ2 = 1/z and κ12 = 0. Then

the 2-manifold is nothing else but the Riemannian sphere.

The GL-structure on combinatorial manifold M̃ can be also applied for characterizing a few

topological invariants, such as those fundamental groups, for instance the conclusion following.

Theorem 3.10([23]) For ∀(M1,M2) ∈ E
(
GL
[
M̃
])

, if M1 ∩M2 is simply connected, then

π1

(
M̃
)
∼=




⊗

M∈V (G[M̃])

π1(M)



⊗

π1

(
Gin

[
M̃
])
.

Particularly, for a compact n-manifold M with charts {(Uλ, ϕλ)| ϕλ : Uλ → Rn, λ ∈ Λ},
if Uµ ∩ Uν is simply connected for ∀µ, ν ∈ Λ, then

π1(M) ∼= π1

(
Gin[M ]

)
.
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3.3 Algebraic Geometry

The topological group, particularly, Lie group is a typical example ofKL
2 -systems that of algebra

with geometry. Generally, let

AX = (b1, b2, · · · , bm)T (LEq)

be a linear equation system with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




and X =




x1

x2

· · ·
xn




for integers m, n ≥ 1, and all equations in (LEq) are non-trivial, i.e., there are no numbers λ

such that (ai1, ai2, · · · , ain, bi) = λ(aj1, aj2, · · · , ajn, bj) for any integers 1 ≤ i, j ≤ m.

-
6

O
x

y

x+ 2y = 2

x+ 2y = −2

2x− y = −2

2x− y = 2

A

B

D

C

Fig.8

It should be noted that the geometry of a linear equation in n variables is a plane in R
n.

Whence, a linear system (LEq) is non-solvable or not dependent on their intersection is empty

or not. For example, the linear system shown in Fig.8 is non-solvable because their intersection

is empty.

Definition 3.11 For any integers 1 ≤ i, j ≤ m, i 6= j, the linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

are called parallel if there no solution x1, x2, · · · , xn hold both with the 2 equations.

Define a graph GL[LEq] on linear system (LEq) following:

V
(
GL[LEq]

)
= { the solution space Si of ith equation |1 ≤ i ≤ m},
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E
(
GL[Eq]

)
= { (Si, Sj) | Si

⋂
Sj 6= ∅, 1 ≤ i, j ≤ m} and with labels

L : Si → Si and L : (Si, Sj)→ Si
⋂
Sj¸

for ∀Si ∈ V
(
GL[LEq]

)
, (Si, Sj) ∈ E

(
GL[LEq]

)
. For example, the system of equations shown

in Fig.8 is 



x+ 2y = 2

x+ 2y = −2

2x− y = −2

2x− y = 2

and CL4 is its underlying graph GL[LEq] shown in Fig.9.

S1

S2S3

S4B

A

C

D

Fig.9

Let Li be the ith linear equation. By definition we divide these equations Li, 1 ≤ i ≤ m

into parallel families

C1,C2, · · · ,Cs

by the property that all equations in a family Ci are parallel and there are no other equations

parallel to lines in Ci for integers 1 ≤ i ≤ s. Denoted by |Ci| = ni, 1 ≤ i ≤ s. Then, we can

characterize GL[LEq] following.

Theorem 3.12([24]) Let (LEq) be a linear equation system for integers m,n ≥ 1. Then

GL[LEq] ≃ KL
n1,n2,··· ,ns

with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family with ni = |Ci| for integers

1 ≤ i ≤ s in (LEq) and (LEq) is non-solvable if s ≥ 2.

Notice that this result is not sufficient, i.e., even if GL[LEq] ≃ Kn1,n2,··· ,ns , we can not

claim that (LEq) is solvable or not. How ever, if n = 2, we can get a necessary and sufficient

condition on non-solvable linear equations.

Let H be a planar graph with each edge a straight segment on R2. Its c-line graph LC(H)

is defined by

V (LC(H)) = {straight lines L = e1e2 · · · el, s ≥ 1 in H};
E(LC(H)) = {(L1, L2)| if e1i and e2j are adjacent in H for L1 = e11e

1
2 · · · e1l , L2 =

e21e
2
2 · · · e2s, l, s ≥ 1}.
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Theorem 3.13([24]) A linear equation system (LEq2) is non-solvable if and only if GL[LEq2] ≃
LC(H)), where H is a planar graph of order |H | ≥ 2 on R2 with each edge a straight segment

Similarly, let

P1(x), P2(x), · · · , Pm(x) (ESn+1
m )

be m homogeneous polynomials in n + 1 variables with coefficients in C and each equation

Pi(x) = 0 determine a hypersurface Mi, 1 ≤ i ≤ m in Rn+1, particularly, a curve Ci if n = 2.

We introduce the parallel property following.

Definition 3.14 Let P (x), Q(x) be two complex homogeneous polynomials of degree d in n+ 1

variables and I(P,Q) the set of intersection points of P (x) with Q(x). They are said to be

parallel, denoted by P ‖ Q if d > 1 and there are constants a, b, · · · , c (not all zero) such that

for ∀x ∈ I(P,Q), ax1 + bx2 + · · ·+ cxn+1 = 0, i.e., all intersections of P (x) with Q(x) appear

at a hyperplane on PnC, or d = 1 with all intersections at the infinite xn+1 = 0. Otherwise,

P (x) are not parallel to Q(x), denoted by P 6‖ Q.

Define a topological graph GL
[
ESn+1

m

]
in Cn+1 by

V
(
GL
[
ESn+1

m

])
= {P1(x), P2(x), · · · , Pm(x)};

E
(
GL
[
ESn+1

m

])
= {(Pi(x), Pj(x))|Pi 6‖ Pj , 1 ≤ i, j ≤ m}

with a labeling

L : Pi(x)→ Pi(x), (Pi(x), Pj(x))→ I(Pi, Pj),

where 1 ≤ i 6= j ≤ m, and the topological graph of GL
[
ESn+1

m

]
without labels is denoted by

G
[
ESn+1

m

]
. The following result generalizes Theorem 3.12 to homogeneous polynomials.

Theorem 3.15([26]) Let n ≥ 2 be an integer. For a system (ESn+1
m ) of homogeneous polyno-

mials with a parallel maximal classification C1,C2, · · · ,Cl,

G[ESn+1
m ] ≤ K(C1,C2, · · · ,Cl)

and with equality holds if and only if Pi ‖ Pj and Ps 6‖ Pi implies that Ps 6‖ Pj, where

K(C1,C2, · · · ,Cl) denotes a complete l-partite graphs

Conversely, for any subgraph G ≤ K(C1,C2, · · · ,Cl), there are systems (ESn+1
m ) of homo-

geneous polynomials with a parallel maximal classification C1,C2, · · · ,Cl such that

G ≃ G[ESn+1
m ].

Particularly, if n = 2, i.e., an (ES3
m) system, we get the condition following.

Theorem 3.16([26]) Let GL be a topological graph labeled with I(e) for ∀e ∈ E
(
GL
)
. Then

there is a system
(
ES3

m

)
of homogeneous polynomials such that GL

[
ES3

m

]
≃ GL if and only if
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there are homogeneous polynomials Pvi(x, y, z), 1 ≤ i ≤ ρ(v) for ∀v ∈ V
(
GL
)

such that

I(e) = I



ρ(u)∏

i=1

Pui ,

ρ(v)∏

i=1

Pvi




for e = (u, v) ∈ E
(
GL
)
, where ρ(v) denotes the valency of vertex v in GL.

These GL-system of homogeneous polynomials enables us to get combinatorial manifolds,

for instance, the following result appeared in [26].

Theorem 3.17 Let (ESn+1
m ) be a GL-system consisting of homogeneous polynomials P1(x), P2(x),

· · · , Pm(x) in n + 1 variables with respectively hypersurfaces S1, S2, · · · , Sm. Then there is a

combinatorial manifold M̃ in Cn+1 such that π : M̃ → S̃ is 1 − 1 with GL
[
M̃
]
≃ GL

[
S̃
]
,

where, S̃ =
m⋃
i=1

Si.

Particularly, if n = 2, we can further determine the genus of surface g
(
S̃
)

by closed

formula as follows.

Theorem 3.18([26]) Let C1, C2, · · · , Cm be complex curves determined by homogeneous poly-

nomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component, and let

RPi,Pj =

deg(Pi)deg(Pj)∏

k=1

(
cijk z − b

ij
k y
)eij

k

, ωi,j =

deg(Pi)deg(Pj)∑

k=1

∑

eij
k
6=0

1

be the resultant of Pi(x, y, z), Pj(x, y, z) for 1 ≤ i 6= j ≤ m. Then there is an orientable surface

S̃ in R3 of genus

g
(
S̃
)

= β
(
G
〈
C̃
〉)

+

m∑

i=1


 (deg(Pi)− 1)(deg(Pi)− 2)

2
−

∑

pi∈Sing(Ci)

δ(pi)




+
∑

1≤i6=j≤m

(ωi,j − 1) +
∑

i≥3

(−1)i
∑

Ck1
⋂
···
⋂
Cki 6=∅

[
c
(
Ck1

⋂
· · ·
⋂
Cki

)
− 1
]

with a homeomorphism ϕ : S̃ → C̃ =
m⋃
i=1

Ci. Furthermore, if C1, C2, · · · , Cm are non-singular,

then

g
(
S̃
)

= β
(
G
〈
C̃
〉)

+

m∑

i=1

(deg(Pi)− 1)(deg(Pi)− 2)

2

+
∑

1≤i6=j≤m

(ωi,j − 1) +
∑

i≥3

(−1)i
∑

Ck1
⋂
···
⋂
Cki 6=∅

[
c
(
Ck1

⋂
· · ·
⋂
Cki

)
− 1
]
,

where

δ(pi) =
1

2

(
Ipi

(
Pi,

∂Pi
∂y

)
− νφ(pi) + |π−1(pi)|

)
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is a positive integer with a ramification index νφ(p
i) for pi ∈ Sing(Ci), 1 ≤ i ≤ m.

Theorem 3.17 enables us to find interesting results in projective geometry, for instance the

following result.

Corollary 3.19 Let C1, C2, · · · , Cm be complex non-singular curves determined by homogeneous

polynomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component and Ci
⋂
Cj =

m⋂
i=1

Ci with

∣∣∣∣
m⋂
i=1

Ci

∣∣∣∣ = κ > 0 for integers 1 ≤ i 6= j ≤ m. Then the genus of normalization S̃ of

curves C1, C2, · · · , Cm is

g(S̃) = g(S̃) = (κ− 1)(m− 1) +

m∑

i=1

(deg(Pi)− 1)(deg(Pi)− 2)

2
.

Particularly, if C1, C2, · · · , Cm are distinct lines in P
2C with respective normalizations of

spheres S1, S2, · · · , Sm. Then there is a normalization of surface S̃ of C1, C2, · · · , Cm with

genus β
(
G
〈
L̃
〉)

. Furthermore, if G
〈
L̃
〉
) is a tree, then S̃ is homeomorphic to a sphere.

3.4 Combinatorial Geometry

Furthermore, we can establish combinatorial geometry by Notion 3.2. For example, we have

3 classical geometries, i.e., Euclidean, hyperbolic geometry and Riemannian geometries for de-

scribing behaviors of objects in spaces with different axioms following:

Euclid Geometry:

(A1) There is a straight line between any two points.

(A2) A finite straight line can produce a infinite straight line continuously.

(A3) Any point and a distance can describe a circle.

(A4) All right angles are equal to one another.

(A5) If a straight line falling on two straight lines make the interior angles on the same

side less than two right angles, then the two straight lines, if produced indefinitely, meet on that

side on which are the angles less than the two right angles.

Hyperbolic Geometry:

Axioms (A1)− (A4) and the axiom (L5) following:

(L5) there are infinitely many lines parallel to a given line passing through an exterior

point.

Riemannian Geometry:

Axioms (A1)− (A4) and the axiom (R5) following:

there is no parallel to a given line passing through an exterior point.

Then whether there is a geometry established by combining the 3 geometries, i.e., partially

Euclidean and partially hyperbolic or Riemannian. Today, we have know such theory really

exists, called Smarandache geometry defined following.
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Definition 3.20([12]) An axiom is said to be Smarandachely denied if the axiom behaves in at

least two different ways within the same space, i.e., validated and invalided, or only invalided

but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom

(1969).

L3

E

LL1

B
A

F C

D

(b)(a)

D C E

A BF G

l1

L2

Fig.10

For example, let us consider a Euclidean plane R
2 and three non-collinear points A,B and

C shown in Fig.10. Define s-points as all usual Euclidean points on R2 and s-lines any Euclidean

line that passes through one and only one of points A,B and C. Then such a geometry is a

Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there exist one line

passing through them is now replaced by: one s-line and no s-line. Notice that through any

two distinct s-points D,E collinear with one of A,B and C, there is one s-line passing through

them and through any two distinct s-points F,G lying on AB or non-collinear with one of A,B

and C, there is no s-line passing through them such as those shown in Fig.10(a).

Observation 2. The axiom (E5) that through a point exterior to a given line there is

only one parallel passing through it is now replaced by two statements: one parallel and no

parallel. Let L be an s-line passes through C and D on L, and AE is parallel to CD in the

Euclidean sense. Then there is one and only one line passing through E which is parallel to L,

but passing a point not on AE, for instance, point F there are no lines parallel to L such as

those shown in Fig.10(b).

Generally, we can construct a Smarandache geometry on smoothly combinatorial manifolds

M̃ , i.e., combinatorial geometry because it is homeomorphic to combinatorial Euclidean space

EGL (n1, n2, · · · , nm) by Definition 3.6 and Theorem 3.7. Such a theory is founded on the results

for basis of tangent and cotangent vectors following.

Theorem 3.21([15]) For any point p ∈ M̃(n1, n2, · · · , nm) with a local chart (Up; [ϕp]), the

dimension of TpM̃(n1, n2, · · · , nm) is

dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))
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with a basis matrix

[
∂

∂x

]

s(p)×ns(p)

=




1
s(p)

∂
∂x11 · · · 1

s(p)
∂

∂x1ŝ(p)
∂

∂x1(ŝ(p)+1) · · · ∂
∂x1n1

· · · 0

1
s(p)

∂
∂x21 · · · 1

s(p)
∂

∂x2ŝ(p)
∂

∂x2(ŝ(p)+1) · · · ∂
∂x2n2

· · · 0

· · · · · · · · · · · · · · · · · ·
1
s(p)

∂
∂xs(p)1

· · · 1
s(p)

∂
∂xs(p)ŝ(p)

∂
∂xs(p)(ŝ(p)+1) · · · · · · ∂

∂x
s(p)(ns(p)−1)

∂

∂x
s(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely there is a smoothly functional matrix

[vij ]s(p)×ns(p) such that for any tangent vector v at a point p of M̃(n1, n2, · · · , nm),

v =

〈
[vij ]s(p)×ns(p) , [

∂

∂x
]s(p)×ns(p)

〉
,

where 〈[aij ]k×l, [bts]k×l〉 =
k∑
i=1

l∑
j=1

aijbij, the inner product on matrixes.

Theorem 3.22([15]) For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã) with a local chart (Up; [ϕp]), the dimen-

sion of T ∗p M̃(n1, n2, · · · , nm) is

dimT ∗p M̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))¸

with a basis matrix [dx]s(p)×ns(p) =




dx11

s(p) · · · dx1ŝ(p)

s(p) dx1(ŝ(p)+1) · · · dx1n1 · · · 0

dx21

s(p) · · · dx2ŝ(p)

s(p) dx2(ŝ(p)+1) · · · dx2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
dxs(p)1

s(p) · · · dxs(p)ŝ(p)

s(p) dxs(p)(ŝ(p)+1) · · · · · · dxs(p)ns(p)−1 dxs(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely for any co-tangent vector d at a point

p of M̃(n1, n2, · · · , nm), there is a smoothly functional matrix [uij ]s(p)×s(p) such that,

d =
〈
[uij ]s(p)×ns(p) , [dx]s(p)×ns(p)

〉
.

Then we can establish tensor theory with connections on smoothly combinatorial manifolds

([15]). For example, we can establish the curvatures on smoothly combinatorial manifolds, and

get the curvature R̃ formula following.

Theorem 3.23([18]) Let M̃ be a finite combinatorial manifold, R̃ : X (M̃)×X (M̃)×X (M̃)×
X (M̃)→ C∞(M̃) a curvature on M̃ . Then for ∀p ∈ M̃ with a local chart (Up; [ϕp]),

R̃ = R̃(σς)(ηθ)(µν)(κλ)dx
σς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ,
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where

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+ Γϑι(µν)(σς)Γ
ξo
(κλ)(ηθ)g(ξo)(ϑι) − Γξo(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),

and g(µν)(κλ) = g( ∂
∂xµν ,

∂
∂xκλ

).

This enables us to characterize the combination of classical fields, such as the Einstein’s

gravitational fields and other fields on combinatorial spacetimes and hold their behaviors ( See

[19]-[20] for details).

§4. Differential Equation’s Combinatorics

Let

(Eqm)





f1(x1, x2, · · · , xn+1) = 0

f2(x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn+1) = 0

be a system of equations. It should be noted that the classical theory on equations is not

combinatorics. However, the solutions of an equation usually form a manifold in the view of

geometry. Thus, the CC conjecture bring us combinatorial notions for developing equation

theory similar to that of geometry further.

Notion 4.1 For a system (Eqm) of equations, solvable or non-solvable, determine its un-

derlying topological structure GL[Eqm] on each solution manifold and classify them by graph

isomorphisms and transformations.

Notion 4.2 For an integer m ≥ 1, let D1, D2, · · · , Dm be the solution manifolds of an

equation system (Eqm) in Definition 1.2 and D̃ underlying GL
[
D̃
]

with D̃ =
m⋃
i=1

Di, i.e.,

a combinatorial solution manifold. Characterize the system (Eqm) and establish an equation

theory, i.e., equation’s combinatorics on (Eqm).

Geometrically, let

Sfi = {(x1, x2, · · · , xn+1)|fi(x1, x2, · · · , xn+1) = 0} ⊂ R
n+1

the solution-manifold in Rn+1 for integers 1 ≤ i ≤ m, where fi is a function hold with conditions

of the implicit function theorem for 1 ≤ i ≤ m. Then we are easily finding criterions on the

solubility of system (ESm), i.e., it is solvable or not dependent on

m⋂

i=1

Sfi 6= ∅ or = ∅.
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Whence, if the intersection is empty, i.e., (ESm) is non-solvable, there are no meanings in

classical theory on equations, but it is important for hold the global behaviors of a complex

thing. For such an objective, Notions 4.1 and 4.2 are helpful.

Let us begin at a linear differential equations system such as those of

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

or 



x(n) + a
[0]
11x

(n−1) + · · ·+ a
[0]
1nx = 0

x(n) + a
[0]
21x

(n−1) + · · ·+ a
[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · ·+ a
[0]
mnx = 0

(LDEnm)

with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

For example, let (LDE2
6) be the following linear homogeneous differential equation system





ẍ+ 3ẋ+ 2x = 0 (1)

ẍ+ 5ẋ+ 6x = 0 (2)

ẍ+ 7ẋ+ 12x = 0 (3)

ẍ+ 9ẋ+ 20x = 0 (4)

ẍ+ 11ẋ+ 30x = 0 (5)

ẍ+ 7ẋ+ 6x = 0 (6)

Certainly, it is non-solvable. However, we can easily solve equations (1)-(6) one by one and

get their solution spaces as follows:

S1 =
〈
e−t, e−2t

〉
= {C1e

−t + C2e
−2t|C1, C2 ∈ R} = {x|ẍ+ 3ẋ+ 2x = 0}

S2 =
〈
e−2t, e−3t

〉
= {C1e

−2t + C2e
−3t|C1, C2 ∈ R} = {x|ẍ+ 5ẋ+ 6x = 0}

S3 =
〈
e−3t, e−4t

〉
= {C1e

−3t + C2e
−4t|C1, C2 ∈ R} = {x|ẍ+ 7ẋ+ 12x = 0}

S4 =
〈
e−4t, e−5t

〉
= {C1e

−4t + C2e
−5t|C1, C2 ∈ R} = {x|ẍ+ 9ẋ+ 20x = 0}

S5 =
〈
e−5t, e−6t

〉
= {C1e

−5t + C2e
−6t|C1, C2 ∈ R} = {x|ẍ+ 11ẋ+ 30x = 0}

S6 =
〈
e−6t, e−t

〉
= {C1e

−6t + C2e
−t|C1, C2 ∈ R} = {x|ẍ+ 7ẋ+ 6x = 0}

Replacing each Σi by solution space Si in Definition 1.2, we get a topological graph
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GL[LDE2
6 ] shown in Fig.11 on the linear homogeneous differential equation system (LDE2

6).

Thus we can solve a system of linear homogeneous differential equations on its underlying graph

GL, no matter it is solvable or not in the classical sense.

〈
e−t, e−2t

〉 〈
e−2t, e−3t

〉

〈
e−3t, e−4t

〉

〈
e−4t, e−5t

〉〈
e−5t, e−6t

〉

〈
−e6t, e−t

〉

〈
e−2t

〉

〈
e−3t

〉

〈
e−4t

〉

〈
e−5t

〉

〈
e−6t

〉

〈e−t〉

Fig.11

Generally, we know a result on GL-solutions of homogeneous equations following.

Theorem 4.3([25]) A linear homogeneous differential equation system (LDES1
m) (or (LDEnm))

has a unique GL-solution, and for every HL labeled with linear spaces
〈
βi(t)e

αit, 1 ≤ i ≤ n
〉

on

vertices such that

〈
βi(t)e

αit, 1 ≤ i ≤ n
〉⋂〈

βj(t)e
αjt, 1 ≤ j ≤ n

〉
6= ∅

if and only if there is an edge whose end vertices labeled by
〈
βi(t)e

αit, 1 ≤ i ≤ n
〉

and
〈
βj(t)e

αjt,

1 ≤ j ≤ n〉 respectively, then there is a unique linear homogeneous differential equation system

(LDES1
m) (or (LDEnm)) with GL-solution HL, where αi is a ki-fold zero of the characteristic

equation, k1 + k2 + · · ·+ ks = n and βi(t) is a polynomial in t with degree≤ ki − 1.

Applying GL-solution, we classify such systems by graph isomorphisms.

Definition 4.4 A vertex-edge labeling θ : G→ Z+ is said to be integral if θ(uv) ≤ min{θ(u), θ(v)}
for ∀uv ∈ E(G), denoted by GIθ , and two integral labeled graphs GIθ1 and GIτ2 are called iden-

tical if G1
ϕ≃ G2 and θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)

⋃
E(G1),

denoted by GIθ1 = GIτ2 .

For example, GIθ1 = GIτ2 but GIθ1 6= GIσ3 for integral graphs shown in Fig.12.

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ1 GIτ2

2 2

1

1

GIσ3

Fig.12
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The following result classifies the systems (LDES1
m) and (LDEnm) by graphs.

Theorem 4.5([25]) Let (LDES1
m), (LDES1

m)′ (or (LDEnm), (LDEnm)′) be two linear homo-

geneous differential equation systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃
(LDES1

m)′ (or (LDEnm)
ϕ≃ (LDEnm)′) if and only if H = H ′.

For partial differential equations, let





F1(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

F2(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

(PDESm)

be such a system of first order on a function u(x1, · · · , xn, t) with continuous Fi : Rn → Rn

such that Fi(0) = 0.

Definition 4.6 The symbol of (PDESm) is determined by





F1(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn) = 0,

i.e., substitutes ux1 , ux2 , · · · , uxn by p1, p2, · · · , pn in (PDESm), and it is algebraically contra-

dictory if its symbol is non-solvable. Otherwise, differentially contradictory.

For example, the system of partial differential equations following





(z − y)ux + (x− z)uy + (y − x)uz = 0

zux + xuy + yuz = x2 + y2 + z2 + 1

yux + zuy + xuz = x2 + y2 + z2 + 4

is algebraically contradictory because its symbol





(z − y)p1 + (x − z)p2 + (y − x)p3 = 0

zp1 + xp2 + yp3 = x2 + y2 + z2 + 1

yp1 + zp2 + xp3 = x2 + y2 + z2 + 4

is contradictory. Generally, we know a result for Cauchy problem on non-solvable systems of

partial differential equations of first order following.
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Theorem 4.7([28]) A Cauchy problem on systems





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

of partial differential equations of first order is non-solvable with initial values





xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0 (x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0
−
n−1∑

i=0

p0
i

∂x0
i

∂sj0
6= 0.

According to Theorem 4.7, we know conditions for uniquely GL-solution of Cauchy problem

on system of partial differential equations of first order following.

Theorem 4.8([28]) A Cauchy problem on system (PDESm) of partial differential equations

of first order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth equation in (PDESm),

1 ≤ k ≤ m such that

∂u
[k]
0

∂sj
−

n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0

is uniquely GL-solvable, i.e., GL[PDES] is uniquely determined.

Applying the GL-solution of a GL-system (DESm) of differential equations, the global

stability, i.e, sum-stable or prod-stable of (DESm) can be introduced. For example, the sum-

stability of (DESm) is defined following.

Definition 4.9 Let (DESCm) be a Cauchy problem on a system of differential equations in Rn,

HL ≤ GL
[
DESCm

]
a spanning subgraph, and u[v] the solution of the vth equation with initial

value u
[v]
0 , v ∈ V

(
HL
)
. It is sum-stable on the subgraph HL if for any number ε > 0 there
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exists, δv > 0, v ∈ V
(
HL
)

such that each GL(t)-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < δv, ∀v ∈ V
(
HL
)

exists for all t ≥ 0 and the inequality

∣∣∣∣∣∣

∑

v∈V (HL)

u′
[v] −

∑

v∈V (HL)

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by GL[t]
H∼ GL[0] and GL[t]

Σ∼ GL[0] if HL = GL
[
DESCm

]
. Furthermore, if

there exists a number βv > 0, v ∈ V
(
HL
)

such that every GL
′

[t]-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < βv, ∀v ∈ V
(
HL
)

satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (H)

u′
[v] −

∑

v∈V (HL)

u[v]

∣∣∣∣∣∣
= 0,

then the GL[t]-solution is called asymptotically stable, denoted by GL[t]
H→ GL[0] and GL[t]

Σ→
GL[0] if HL = GL

[
DESCm

]
.

For example, let the system (SDESCm) be

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m

(
SDESCm

)

and a point X
[i]
0 = (t0, x

[i]
10, · · · , x

[i]
(n−1)0) with Hi(t0, x

[i]
10, · · · , x

[i]
(n−1)0) = 0 for an integer 1 ≤ i ≤

m is equilibrium of the ith equation in (SDESCm). A result on the sum-stability of (SDESCm)

is obtained in [30] following.

Theorem 4.10([28]) Let X
[i]
0 be an equilibrium point of the ith equation in (SDESCm) for each

integer 1 ≤ i ≤ m. If
m∑

i=1

Hi(X) > 0 and

m∑

i=1

∂Hi

∂t
≤ 0

for X 6=
m∑
i=1

X
[i]
0 , then the system (SDESCm) is sum-stable, i.e., GL[t]

Σ∼ GL[0].

Furthermore, if
m∑

i=1

∂Hi

∂t
< 0

for X 6=
m∑
i=1

X
[i]
0 , then GL[t]

Σ→ GL[0].
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§5. Field’s Combinatorics

The modern physics characterizes particles by fields, such as those of scalar field, Maxwell field,

Weyl field, Dirac field, Yang-Mills field, Einstein gravitational field, · · · , etc., which are in fact

spacetime in geometry, isolated but non-combinatorics. Whence, the CC conjecture can bring

us a combinatorial notion for developing field theory further, which enables us understanding

the world and discussed extensively in the first edition of [13] in 2009, and references [18]-[20].

Notion 5.1 Characterize the geometrical structure, particularly, the underlying topological

structure GL[D ] of spacetime D on all fields appeared in theoretical physics.

Notice that the essence of Notion 5.1 is to characterize the geometrical spaces of particles.

Whence, it is in fact equivalent to Notion 3.1.

Notion 5.2 For an integer m ≥ 1, let D1, D2, · · · , Dm be spacetimes in Definition 1.2

and D̃ underlying GL
[
D̃
]

with D̃ =
m⋃
i=1

Di, i.e., a combinatorial spacetime. Select suitable

Lagrangian or Hamiltonian density L̃ to determine field equations of D̃ , hold with the principle

of covariance and characterize its global behaviors.

There are indeed such fields, for instance the gravitational waves in Fig.13.

Fig.13

A combinatorial field D̃ is a combination of fields underlying a topological graph GL

with actions between fields. For this objective, a natural way is to characterize each field

Ci, 1 ≤ i ≤ n of them by itself reference frame {x}. Whence, the principles following are

indispensable.

Action Principle of Fields. There are always exist an action
−→
A between two fields C1 and

C2 of a combinatorial field if dim(C1 ∩ C2) ≥ 1, which can be found at any point on a spatial

direction in their intersection.

Thus, a combinatorial field depends on graph GL
[
D̃
]
, such as those shown in Fig.14.
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C1 C2

C3 C4

Fig.14

−→
C 1
←−
C 2

−→
C 2
←−
C 3

−→
C 3
←−
C 4

−→
C 4
←−
C 1

For understanding the world by combinatorial fields, the anthropic principle, i.e., the born

of human beings is not accidental but inevitable in the world will applicable, which implies the

generalized principle of covariance following.

Generalized Principle of Covariance([20]) A physics law in a combinatorial field is invari-

ant under all transformations on its coordinates, and all projections on its a subfield.

Then, we can construct the Lagrangian density L̃ and find the field equations of combi-

natorial field D̃ , which are divided into two cases ([13], first edition).

Case 1. Linear

In this case, the expression of the Lagrange density LGL[D̃] is

LGL[D̃] =

n∑

i=1

aiLDi +
∑

(Di,Dj)∈E(GL[D̃])

bijTij ,

where ai, bij are coupling constants determined only by experiments.

Case 2. Non-Linear

In this case, the Lagrange density LGL[D̃] is a non-linear function on LDi and Tij for

1 ≤ i, j ≤ n. Let the minimum and maximum indexes j for (Mi,Mj) ∈ E
(
GL
[
D̃
])

are il and

iu, respectively. Denote by

x = (x1, x2, · · · ) = (LD1 ,LD2 , · · · ,LDn ,T11l , · · · ,T11u , · · · ,T22l , · · · , ).

If LGL[D̃] is k + 1 differentiable, k ≥ 0, by Taylor’s formula we know that

LGL[D̃] = LGL[D̃](0) +

n∑

i=1

[
∂LGL[D̃]

∂xi

]

xi=0

xi +
1

2!

n∑

i,j=1

[
∂2LGL[D̃]

∂xi∂xj

]

xi,xj=0

xixj

+ · · ·+ 1

k!

n∑

i1,i2,··· ,ik=1

[
∂kLGL[D̃]

∂xi1∂xi2 · · · ∂xik

]

xij=0,1≤j≤k

xi1xi2 · · ·xik

+R(x1, x2, · · · ),
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where

lim
‖x‖→0

R(x1, x2, · · · )
‖x‖ = 0,

and choose the first k terms

LGL[D̃](0) +

n∑

i=1

[
∂LGL[D̃]

∂xi

]

xi=0

xi +
1

2!

n∑

i,j=1

[
∂2LGL[D̃]

∂xi∂xj

]

xi,xj=0

xixj

+ · · ·+ 1

k!

n∑

i1,i2,··· ,ik=1

[
∂kLGL[D̃]

∂xi1∂xi2 · · · ∂xik

]

xij=0,1≤j≤k

xi1xi2 · · ·xik

to be the asymptotic value of Lagrange density LGL[D̃], particularly, the linear parts

LGL[D̃](0) +
n∑

i=1

[
∂LGL[D̃]

∂LDi

]

LDi
=0

LMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

[
∂LGL[D̃]

∂Tij

]

Tij=0

Tij .

Notice that such a Lagrange density maybe intersects. We need to consider those of

Lagrange densities without intersections. For example,

LGL[D̃] =

4∑

i=1

L 2
Ci −

4∑

i=1

L−→
C i
←−
C i+1

for the combinatorial field shown in Fig.14.

Then, applying the Euler-Lagrange equations, i.e.,

∂µ
∂LGL[D̃]

∂∂µφD̃

−
∂LGL[D̃]

∂φD̃

= 0,

where φD̃ is the wave function of combinatorial field D̃(t), we are easily find the equations of

combinatorial field D̃ .

For example, for a combinatorial scalar field φD̃ , without loss of generality let

φD̃ =
n∑

i=1

ciφDi

LGL[D̃] =
1

2

n∑

i=1

(∂µiφDi∂
µiφDi −m2

iφ
2
Di) +

∑

(Di,Dj)∈E(GL[D̃])

bijφDiφDj ,

i.e., linear case

LGL[D̃] =
n∑

i=1

LDi +
∑

(Di,Dj)∈E(GL[D̃])

bijTij

with LDi = 1
2 (∂µiφDi∂

µiφDi −m2
iφ

2
Di

), Tij = φDiφDj , µi = µDi and constants bij , mi, ci for
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integers 1 ≤ i, j ≤ n. Then the equation of combinatorial scalar field is

n∑

i=1

1

ci
(∂µ∂

µi +m2
i )φMi

−
∑

(Mi,Mj)∈E(GL[M̃ ])

bij

(
φMj

ci
+
φMi

cj

)
= 0.

Similarly, we can determine the equations on combinatorial Maxwell field, Weyl field, Dirac

field, Yang-Mills field and Einstein gravitational field in theory. For more such conclusions, the

reader is refers to references [13], [18]-[20] in details.

Notice that the string theory even if arguing endlessly by physicists, it is in fact a combina-

torial field R4×R7 under supersymmetries, and the same also happens to the unified field theory

such as those in the gauge field of Weinberg-Salam on Higgs mechanism. Even so, Notions 5.1

and 5.2 produce developing space for physics, merely with examining by experiment.

§6. Conclusions

The role of CC conjecture to mathematical sciences has been shown in previous sections by

examples of results. Actually, it is a mathematical machinery of philosophical notion: there

always exist universal connection between things T with a disguise GL[T ] on connections,

which enables us converting a mathematical system with contradictions to a compatible one

([27]), and opens thoroughly new ways for developing mathematical sciences. However, is a

topological graph an element of a mathematical system with measures, not only viewed as a

geometrical figure? The answer is YES!

Recently, the author introduces
−→
G -flow in [29], i.e., an oriented graph

−→
G embedded in a

topological space S associated with an injective mappings L : (u, v)→ L(u, v) ∈ V such that

L(u, v) = −L(v, u) for ∀(u, v) ∈ X
(−→
G
)

holding with conservation laws

∑

u∈NG(v)

L (v, u) = 0 for ∀v ∈ V
(−→
G
)
,

where V is a Banach space over a field F and showed all these
−→
G -flows

−→
GV form a Banach

space by defining ∥∥∥−→GL
∥∥∥ =

∑

(u,v)∈X
(−→
G
)
‖L(u, v)‖

for ∀−→GL ∈ −→GV , and furthermore, Hilbert space by introducing inner product similarly, where

‖L(u, v)‖ denotes the norm of F (uv) in V , which enables us to get
−→
G -flow solutions, i.e.,

combinatorial solutions on differential equations.
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Chapter 4 Envelope Mathematics on Reality

Thinking the development of the world, in a sense, is constantly out of marvel.

By Albert Einstein, an American theoretical physicist.



Linfan MAO: Mathematical Reality, 303-338

Extended Banach
−→
G -Flow Spaces on Differential

Equations with Applications

Abstract: Let V be a Banach space over a field F . A
−→
G-flow is a graph

−→
G embedded in

a topological space S associated with an injective mappings L : uv → L(uv) ∈ V such that

L(uv) = −L(vu) for ∀(u, v) ∈ X
(−→

G
)

holding with conservation laws

∑

u∈NG(v)

L (vu) = 0 for ∀v ∈ V
(−→

G
)

,

where uv denotes the semi-arc of (u, v) ∈ X
(−→

G
)
, which is a mathematical object for things

embedded in a topological space. The main purpose of this paper is to extend Banach spaces

on topological graphs with operator actions and show all of these extensions are also Banach

space with a bijection with a bijection between linear continuous functionals and elements,

which enables one to solve linear functional equations in such extended space, particularly,

solve algebraic, differential or integral equations on a topological graph, find multi-space

solutions on equations, for instance, the Einstein’s gravitational equations. A few well-

known results in classical mathematics are generalized such as those of the fundamental

theorem in algebra, Hilbert and Schmidt’s result on integral equations, and the stability of

such
−→
G -flow solutions with applications to ecologically industrial systems are also discussed

in this paper.

Key Words: Banach space, topological graph, conservation flow, topological graph, dif-

ferential flow, multispace solution of equation, system control.

AMS(2010): 05C78,34A26,35A08,46B25,46E22,51D20

§1. Introduction

Let V be a Banach space over a field F . All graphs
−→
G , denoted by (V (

−→
G), X(

−→
G)) considered

in this paper are strong-connected without loops. A topological graph
−→
G is an embedding of

an oriented graph
−→
G in a topological space C . All elements in V (

−→
G) or X(

−→
G) are respectively

called vertices or arcs of
−→
G . An arc e = (u, v) ∈ X(

−→
G) can be divided into 2 semi-arcs, i.e.,

initial semi-arc uv and end semi-arc vu, such as those shown in Fig.1 following.-u vuv vuL(uv)

Fig.1

1Electronic Journal of Mathematical Analysis and Applications, Vol. 3(2) July 2015, pp. 59-91.
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All these semi-arcs of a topological graph
−→
G are denoted by X 1

2

(−→
G
)
.

A vector labeling
−→
GL on

−→
G is a 1−1 mapping L :

−→
G → V such that L : uv → L(uv) ∈ V

for ∀uv ∈ X 1
2

(−→
G
)
, such as those shown in Fig.1. For all labelings

−→
GL on

−→
G , define

−→
GL1 +

−→
GL2 =

−→
GL1+L2 and λ

−→
GL =

−→
GλL.

Then, all these vector labelings on
−→
G naturally form a vector space. Particularly, a

−→
G-flow

on
−→
G is such a labeling L : uv → V for ∀uv ∈ X 1

2

(−→
G
)

hold with L (uv) = −L (vu) and

conservation laws ∑

u∈NG(v)

L (vu) = 0

for ∀v ∈ V (
−→
G ), where 0 is the zero-vector in V . For example, a conservation law for vertex v

in Fig.2 is −L(vu1)− L(vu2)− L(vu3) + L(vu4) + L(vu5) + L(vu6) = 0.---
---v

u1

u2

u3

u4

u5

u6

L(vu1)

L(vu2)

L(vu3)

L(vu4)

L(vu5)

F (vu6 )

Fig.2

Clearly, if V = Z and O = {1}, then the
−→
G -flow

−→
GL is nothing else but the network flow

X(
−→
G)→ Z on

−→
G .

Let
−→
GL,

−→
GL1 ,

−→
GL2 be

−→
G -flows on a topological graph

−→
G and ξ ∈ F a scalar. It is clear

that
−→
GL1 +

−→
GL2 and ξ · −→GL are also

−→
G -flows, which implies that all conservation

−→
G -flows on−→

G also form a linear space over F with unit
−→
G0 under operations + and ·, denoted by

−→
GV ,

where
−→
G0 is such a

−→
G -flow with vector 0 on uv for (u, v) ∈ X

(−→
G
)
, denoted by O if

−→
G is clear

by in the context.

The flow representation for graphs are first discussed in [5], and then applied to differential

operators in [6], which has shown its important role both in mathematics and applied sciences.

It should be noted that a conservation law naturally determines an autonomous systems in the

world. We can also find
−→
G -flows by solving conservation equations

∑

u∈NG(v)

L (vu) = 0, v ∈ V
(−→
G
)
.

Such a system of equations is non-solvable in general, only with
−→
G -flow solutions such as

those discussions in references [10]-[19]. Thus we can also introduce
−→
G -flows by Smarandache

multisystem ([21]-[22]). In fact, for any integerm ≥ 1 let
(
Σ̃; R̃

)
be a Smarandache multisystem

consisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm), different two by two.
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A topological structure GL
[
Σ̃; R̃

]
on
(
Σ̃; R̃

)
is inherited by

V
(
GL
[
Σ̃; R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
GL
[
Σ̃; R̃

])
= {(Σi,Σj) |Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L (Σi) = Σi and L : (Σi,Σj)→ L (Σi,Σj) = Σi
⋂

Σj

for integers 1 ≤ i 6= j ≤ m, i.e., a topological vertex-edge labeled graph. Clearly, GL
[
Σ̃; R̃

]
is

a
−→
G -flow if Σi

⋂
Σj = v ∈ V for integers 1 ≤ i, j ≤ m.

The main purpose of this paper is to establish the theoretical foundation, i.e., extending

Banach spaces, particularly, Hilbert spaces on topological graphs with operator actions and

show all of these extensions are also Banach space with a bijection between linear continu-

ous functionals and elements, which enables one to solve linear functional equations in such

extended space, particularly, solve algebraic or differential equations on a topological graph,

i.e., find multi-space solutions for equations, such as those of algebraic equations, the Einstein

gravitational equations and integral equations with applications to controlling of ecologically

industrial systems. All of these discussions provide new viewpoint for mathematical elements,

i.e., mathematical combinatorics.

For terminologies and notations not mentioned in this section, we follow references [1] for

functional analysis, [3] and [7] for topological graphs, [4] for linear spaces, [8]-[9], [21]-[22] for

Smarandache multi-systems, [3], [20] and [23] for differential equations.

§2.
−→
G-Flow Spaces

2.1 Existence

Definition 2.1 Let V be a Banach space. A family V of vectors v ∈ V is conservative if

∑

v∈V

v = 0,

called a conservative family.

Let V be a Banach space over a field F with a basis {α1, α2, · · · , αdimV }. Then, for v ∈ V
there are scalars xv

1 , x
v
2 , · · · , xv

dimV ∈ F such that

v =
dimV∑

i=1

xv
i αi.

Consequently,
∑

v∈V

dimV∑

i=1

xv
i αi =

dimV∑

i=1

(
∑

v∈V

xv
i

)
αi = 0

implies that ∑

v∈V

xv
i = 0
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for integers 1 ≤ i ≤ dimV .

Conversely, if ∑

v∈V

xv
i = 0, 1 ≤ i ≤ dimV ,

define

vi =

dimV∑

i=1

xv
i αi

and V = {vi, 1 ≤ i ≤ dimV }. Clearly,
∑
v∈V

v = 0, i.e., V is a family of conservation vectors.

Whence, if denoted by xv
i = (v, αi) for ∀v ∈ V , we therefore get a condition on families of

conservation in V following.

Theorem 2.2 Let V be a Banach space with a basis {α1, α2, · · · , αdimV }. Then, a vector

family V ⊂ V is conservation if and only if

∑

v∈V

(v, αi) = 0

for integers 1 ≤ i ≤ dimV .

For example, let V = {v1,v2,v3,v4} ⊂ R3 with

v1 = (1, 1, 1), v2 = (−1, 1, 1),

v3 = (1,−1,−1), v4 = (−1,−1,−1)

Then it is a conservation family of vectors in R
3.

Clearly, a conservation flow consists of conservation families. The following result estab-

lishes its inverse.

Theorem 2.3. A
−→
G -flow

−→
GL exists on

−→
G if and only if there are conservation families L(v)

in a Banach space V associated an index set V with

L(v) = {L(vu) ∈ V for some u ∈ V }

such that L(vu) = −L(uv) and

L(v)
⋂

(−L(u)) = L(vu) or ∅.

Proof Notice that ∑

u∈NG(v)

L(vu) = 0

for ∀v ∈ V
(−→
G
)

implies

L(vu) = −
∑

w∈NG(v)\{u}

L(vw).
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Whence, if there is an index set V associated conservation families L(v) with

L(v) = {L(vu) ∈ V for some u ∈ V }

for ∀v ∈ V such that L(vu) = −L(uv) and L(v)
⋂

(−L(u)) = L(vu) or ∅, define a topological

graph
−→
G by

V
(−→
G
)

= V and X
(−→
G
)

=
⋃

v∈V

{(v, u)|L(vu) ∈ L(v)}

with an orientation v → u on its each arcs. Then, it is clear that
−→
GL is a

−→
G -flow by definition.

Conversely, if
−→
GL is a

−→
G -flow, let

L(v) = {L(vu) ∈ V for ∀(v, u) ∈ X
(−→
G
)
}

for ∀v ∈ V
(−→
G
)
. Then, it is also clear that L(v), v ∈ V

(−→
G
)

are conservation families

associated with an index set V = V
(−→
G
)

such that L(v, u) = −L(u, v) and

L(v)
⋂

(−L(u)) =





L(vu) if (v, u) ∈ X
(−→
G
)

∅ if (v, u) 6∈ X
(−→
G
)

by definition. 2
Theorems 2.2 and 2.3 enables one to get the following result.

Corollary 2.4. There are always existing
−→
G-flows on a topological graph

−→
G with weights λv

for v ∈ V , particularly, λeαi on ∀e ∈ X
(−→
G
)

if
∣∣∣X
(−→
G
)∣∣∣ ≥

∣∣∣V
(−→
G
)∣∣∣+ 1.

Proof Let e = (u, v) ∈ X
(−→
G
)
. By Theorems 2.2 and 2.3, for an integer 1 ≤ i ≤ dimV ,

such a
−→
G -flow exists if and only if the system of linear equations

∑

u∈V
(−→
G
)
λ(v,u) = 0, v ∈ V

(−→
G
)

is solvable. However, if
∣∣∣X
(−→
G
)∣∣∣ ≥

∣∣∣V
(−→
G
)∣∣∣ + 1, such a system is indeed solvable by linear

algebra. 2
2.2

−→
G -Flow Spaces

Define ∥∥∥−→GL
∥∥∥ =

∑

(u,v)∈X
(−→
G
)
‖L(uv)‖

for ∀−→GL ∈ −→GV , where ‖L(uv)‖ is the norm of F (uv) in V . Then
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(1)
∥∥∥−→GL

∥∥∥ ≥ 0 and
∥∥∥−→GL

∥∥∥ = 0 if and only if
−→
GL =

−→
G0 = O.

(2)
∥∥∥−→GξL

∥∥∥ = ξ
∥∥∥−→GL

∥∥∥ for any scalar ξ.

(3)
∥∥∥−→GL1 +

−→
GL2

∥∥∥ ≤
∥∥∥−→GL1

∥∥∥+
∥∥∥−→GL2

∥∥∥ because of

∥∥∥−→GL1 +
−→
GL2

∥∥∥ =
∑

(u,v)∈X
(−→
G
)
‖L1(u

v) + L2(u
v)‖

≤
∑

(u,v)∈X
(−→
G
)
‖L1(u

v)‖+
∑

(u,v)∈X
(−→
G
)
‖L2(u

v)‖ =
∥∥∥−→GL1

∥∥∥+
∥∥∥−→GL2

∥∥∥ .

Whence, ‖ · ‖ is a norm on linear space
−→
GV .

Furthermore, if V is an inner space with inner product 〈·, ·〉, define

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→
G
)
〈L1(u

v), L2(u
v)〉 .

Then we know that

(4)
〈−→
GL,
−→
GL
〉

=
∑

(u,v)∈X
(−→
G
) 〈L(uv), L(uv)〉 ≥ 0 and

〈−→
GL,
−→
GL
〉

= 0 if and only if L(uv) =

0 for ∀(u, v) ∈ X(
−→
G), i.e.,

−→
GL = O.

(5)
〈−→
GL1 ,

−→
GL2

〉
=
〈−→
GL2 ,

−→
GL1

〉
for ∀−→GL1 ,

−→
GL2 ∈ −→GV because of

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→
G
)
〈L1(u

v), L2(u
v)〉 =

∑

(u,v)∈X
(−→
G
)
〈L2(uv), L1(uv)〉

=
∑

(u,v)∈X
(−→
G
)
〈L2(uv), L1(uv)〉 =

〈−→
GL2 ,

−→
GL1

〉

(6) For
−→
GL,
−→
GL1 ,

−→
GL2 ∈ −→GV , there is

〈
λ
−→
GL1 + µ

−→
GL2 ,

−→
GL
〉

= λ
〈−→
GL1 ,

−→
GL
〉

+ µ
〈−→
GL2 ,

−→
GL
〉
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because of

〈
λ
−→
GL1 + µ

−→
GL2 ,

−→
GL
〉

=
〈−→
GλL1 +

−→
GµL2 ,

−→
GL
〉

=
∑

(u,v)∈X(
−→
G)

〈λL1(u
v) + µL2(u

v), L(uv)〉

=
∑

(u,v)∈X(
−→
G)

〈λL1(u
v), L(uv)〉+

∑

(u,v)∈X(
−→
G)

〈µL2(u
v), L(uv)〉

=
〈−→
GλL1 ,

−→
GL
〉

+
〈−→
GµL2 ,

−→
GL
〉

= λ
〈−→
GL1 ,

−→
GL
〉

+ µ
〈−→
GL2 ,

−→
GL
〉
.

Thus,
−→
GV is an inner space also and as the usual, let

∥∥∥−→GL
∥∥∥ =

√〈−→
GL,
−→
GL
〉

for
−→
GL ∈ −→GV . Then it is a normed space. Furthermore, we know the following result.

Theorem 2.5 For any topological graph
−→
G ,
−→
GV is a Banach space, and furthermore, if V is

a Hilbert space,
−→
GV is a Hilbert space also.

Proof As shown in the previous,
−→
GV is a linear normed space or inner space if V is an

inner space. We show that it is also complete, i.e., any Cauchy sequence in
−→
GV is converges.

In fact, let
{−→
GLn

}
be a Cauchy sequence in

−→
GV . Thus for any number ε > 0, there always

exists an integer N(ε) such that ∥∥∥−→GLn −−→GLm
∥∥∥ < ε

if n,m ≥ N(ε). By definition,

‖Ln(uv)− Lm(uv)‖ ≤
∥∥∥−→GLn −−→GLm

∥∥∥ < ε

i.e., {Ln(uv)} is also a Cauchy sequence for ∀(u, v) ∈ X
(−→
G
)
, which is converges on in V by

definition.

Let L(uv) = lim
n→∞

Ln(u
v) for ∀(u, v) ∈ X

(−→
G
)
. Then it is clear that

lim
n→∞

−→
GLn =

−→
GL.

However, we are needed to show
−→
GL ∈ −→GV . By definition,

∑

v∈NG(u)

Ln(u
v) = 0
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for ∀u ∈ V
(−→
G
)

and integers n ≥ 1. Let n→∞ on its both sides. Then

lim
n→∞


 ∑

v∈NG(u)

Ln(u
v)


 =

∑

v∈NG(u)

lim
n→∞

Ln(u
v)

=
∑

v∈NG(u)

L(uv) = 0.

Thus,
−→
GL ∈ −→GV . 2

Similarly, two conservation
−→
G -flows

−→
GL1 and

−→
GL2 are said to be orthogonal if

〈−→
GL1 ,

−→
GL2

〉
=

0. The following result characterizes those of orthogonal pairs of conservation
−→
G -flows.

Theorem 2.6 Let
−→
GL1 ,

−→
GL2 ∈ −→GV . Then

−→
GL1 is orthogonal to

−→
GL2 if and only if 〈L1(u

v), L2(u
v)〉 =

0 for ∀(u, v) ∈ X
(−→
G
)
.

Proof Clearly, if 〈L1(u
v), L2(u

v)〉 = 0 for ∀(u, v) ∈ X
(−→
G
)
, then,

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→
G
)
〈L1(u

v), L2(u
v)〉 = 0,

i.e.,
−→
GL1 is orthogonal to

−→
GL2 .

Conversely, if
−→
GL1 is indeed orthogonal to

−→
GL2 , then

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→
G
)
〈L1(u

v), L2(u
v)〉 = 0

by definition. We therefore know that 〈L1(u
v), L2(u

v)〉 = 0 for ∀(u, v) ∈ X
(−→
G
)

because of

〈L1(u
v), L2(u

v)〉 ≥ 0. 2
Theorem 2.7 Let V be a Hilbert space with an orthogonal decomposition V = V⊕V⊥ for a

closed subspace V ⊂ V . Then there is a decomposition

−→
GV = Ṽ⊕ Ṽ

⊥
,

where,

Ṽ =
{−→
GL1 ∈ −→GV

∣∣∣L1 : X
(−→
G
)
→ V

}

Ṽ
⊥

=
{−→
GL2 ∈ −→GV

∣∣∣ L2 : X
(−→
G
)
→ V⊥

}
,

i.e., for ∀−→GL ∈ −→GV , there is a uniquely decomposition

−→
GL =

−→
GL1 +

−→
GL2
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with L1 : X
(−→
G
)
→ V and L2 : X

(−→
G
)
→ V⊥.

Proof By definition, L(uv) ∈ V for ∀(u, v) ∈ X
(−→
G
)
. Thus, there is a decomposition

L(uv) = L1(u
v) + L2(u

v)

with uniquely determined L1(u
v) ∈ V but L2(u

v) ∈ V⊥.

Let
[−→
GL1

]
and

[−→
GL2

]
be two labeled graphs on

−→
G with L1 : X 1

2

(−→
G
)
→ V and L2 :

X 1
2

(−→
G
)
→ V⊥. We need to show that

[−→
GL1

]
,
[−→
GL2

]
∈
〈−→
G,V

〉
. In fact, the conservation

laws show that

∑

v∈NG(u)

L(uv) = 0, i.e.,
∑

v∈NG(u)

(L1(u
v) + L2(u

v)) = 0

for ∀u ∈ V
(−→
G
)
. Consequently,

∑

v∈NG(u)

L1(u
v) +

∑

v∈NG(u)

L2(u
v) = 0.

Whence,

0 =

〈
∑

v∈NG(u)

L1(u
v) +

∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L1(u
v) +

∑

v∈NG(u)

L2(u
v)

〉

=

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
+

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉

+

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L2(u
v)

〉
+

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L1(u
v)

〉

=

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
+

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉

+
∑

v∈NG(u)

〈L1(u
v), L2(u

v)〉+
∑

v∈NG(u)

〈L2(u
v), L1(u

v)〉

=

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
+

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉
.

Notice that

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
≥ 0,

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉
≥ 0.
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We therefore get that

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
= 0,

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉
= 0,

i.e., ∑

v∈NG(u)

L1(u
v) = 0 and

∑

v∈NG(u)

L2(u
v) = 0.

Thus,
[−→
GL1

]
,
[−→
GL2

]
∈ −→GV . This completes the proof. 2

2.3 Solvable
−→
G -Flow Spaces

Let
−→
GL be a

−→
G -flow. If for ∀v ∈ V

(−→
G
)
, all flows L (vu) , u ∈ N+

G (v) \
{
u+

0

}
are determined

by equations

Fv

(
L (vu) ; L (wv) , w ∈ N−G (v)

)
= 0

unless L(vu0), such a
−→
G -flow is called solvable, and L(vu0) the co-flow at vertex v. For

example, a solvable
−→
G -flow is shown in Fig.3.-

� ?6
�

- 6?v1 v2

v3v4

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(0, 1)

(0, 1)(0, 1)

(0, 1)

Fig.3

A
−→
G -flow

−→
GL is linear if each L

(
vu

+
)
, u+ ∈ N+

G (v) \ {u+
0 } is determined by

L
(
vu

+
)

=
∑

u−∈N−
G (v)

au−L
(
u−

v)
,

with scalars au− ∈ F for ∀v ∈ V
(−→
G
)

unless L
(
vu

+
0

)
, and is ordinary or partial differential

if L (vu) is determined by ordinary differential equations

Lv

(
d

dxi
; 1 ≤ i ≤ n

)(
L(vu

+

);L
(
u−

v)
, u− ∈ N−G (v)

)
= 0

or

Lv

(
∂

∂xi
; 1 ≤ i ≤ n

)(
L(vu

+

);L
(
u−

v)
, u− ∈ N−G (v)

)
= 0
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unless L
(
vu

+
0

)
for ∀v ∈ V

(−→
G
)
, where, Lv

(
d

dxi
; 1 ≤ i ≤ n

)
, Lv

(
∂

∂xi
; 1 ≤ i ≤ n

)
denote an

ordinary or partial differential operators, respectively.

Notice that for a strong-connected graph
−→
G , there must be a decomposition

−→
G =

(
m1⋃

i=1

−→
C i

)
⋃
(
m2⋃

i=1

−→
T i

)
,

where
−→
C i,
−→
T j are respectively directed circuit or path in

−→
G with m1 ≥ 1,m2 ≥ 0. The following

result depends on the structure of
−→
G .

Theorem 2.8 For a strong-connected topological graph
−→
G with decomposition

−→
G =

(
m1⋃

i=1

−→
C i

)
⋃
(
m2⋃

i=1

−→
T i

)
, m1 ≥ 1, m2 ≥ 0,

there always exist linear
−→
G -flows

−→
GL, not all flows being zero on

−→
G .

Proof For an integer 1 ≤ k ≤ m1, let
−→
C k = uk1u

k
2 · · ·uksk and L

(
uki

uki+1

)
= vk, where

i + 1 ≡ (mods). Similarly, for integers 1 ≤ j ≤ m2, if
−→
T j = wj1w

j
2 · · ·wjt , let L

(
wtj

wtj+1

)
= 0.

Clearly, the conservation law hold at ∀v ∈ V
(−→
G
)

by definition, and each flow L

(
uki

uki+1

)
, i+

1 ≡ (modsk) is linear determined by

L

(
uki

uki+1

)
= L

(
uki−1

uki

)
+ 0×

∑

j 6=i

∑

v∈N−
Cj

(uki )

L
(
vu

k
i

)
+

m2∑

j=1

∑

v∈N−
Tj

(uki )

L
(
vu

k
i

)

= vk + 0 +

m2∑

j=1

∑

v∈N−
Tj

(uki )

0 = vk.

Thus,
−→
GL is a linear solvable

−→
G -flow and not all flows being zero on

−→
G . 2

All
−→
G -flows constructed in Theorem 2.8 can be also replaced by vectors dependent on

the time t, i.e., v(t). Furthermore, if m1 ≥ 2, there is at least two circuits
−→
C ,
−→
C ′ in the

decomposition of
−→
G . Let flows on

−→
C and

−→
C ′ be respectively x and f(x, t). We then know the

conservation laws hold for vertices in
−→
G , and similarly, there are indeed flows on

−→
G determined

by ordinary differential equations.

Theorem 2.9 For a strong-connected topological graph
−→
G with decomposition

−→
G =

(
m1⋃

i=1

−→
C i

)
⋃
(
m2⋃

i=1

−→
T i

)
, m1 ≥ 2, m2 ≥ 0,

there always exist ordinary differential
−→
G-flows

−→
GL, not all flows being zero on

−→
G .
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For example, the
−→
G -flow shown in Fig.4 is an ordinary differential

−→
G -flow in a vector space

if ẋ = f(x, t) is solvable with x|t=t0 = x0. -
� ?6
�

- 6?v1 v2

v3v4

x

x

x

x

f(x, t)

f(x, t)f(x, t)

f(x, t)

Fig.4

Similarly, we know the existence of non-trivial partial differential
−→
G -flows. Let x =

(x1, x2, · · · , xn). If





xi = xi(t, s1, s2, · · · , sn−1)

u = u(t, s1, s2, · · · , sn−1)

pi = pi(t, s1, s2, · · · , sn−1), i = 1, 2, · · · , n

is a solution of system

dx1

Fp1
=

dx2

Fp2
= · · · = dxn

Fpn
=

du
n∑
i=1

piFpi

= − dp1

Fx1 + p1Fu
= · · · = − dpn

Fxn + pnFu
= dt

with initial values





xi0 = xi0 (s1, s2, · · · , sn−1), u0 = u0(s1, s2, · · · , sn−1)

pi0 = pi0(s1, s2, · · · , sn−1), i = 1, 2, · · · , n

such that





F (x10 , x20 , · · · , xn0 , u, p10 , p20 , · · · , pn0) = 0

∂u0

∂sj
−

n∑

i=0

pi0
∂xi0
∂sj

= 0, j = 1, 2, · · · , n− 1,

then it is the solution of Cauchy problem



4.1 Extended Banach G-Flow Spaces on Differential Equations with Applications Equations with Applications 315





F (x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

xi0 = xi0(s1, s2, · · · , sn−1), u0 = u0(s1, s2, · · · , sn−1)

pi0 = pi0(s1, s2, · · · , sn−1), i = 1, 2, · · · , n
,

where pi =
∂u

∂xi
and Fpi =

∂F

∂pi
for integers 1 ≤ i ≤ n.

For partial differential equations of second order, the solutions of Cauchy problem on heat

or wave equations





∂u

∂t
= a2

n∑

i=1

∂2u

∂x2
i

u|t=0 = ϕ (x)

,





∂2u

∂t2
= a2

n∑

i=1

∂2u

∂x2
i

u|t=0 = ϕ (x) ,
∂u

∂t

∣∣∣∣
t=0

= ψ (x)

are respectively known

u (x, t) =
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t ϕ(y1, · · · , yn)dy1 · · · dyn

for heat equation and

u (x1, x2, x3, t) =
∂

∂t




1

4πa2t

∫

SMat

ϕdS


+

1

4πa2t

∫

SMat

ψdS

for wave equations in n = 3, where SMat denotes the sphere centered at M (x1, x2, x3) with

radius at. Then, the result following on partial
−→
G -flows is similarly known to that of Theorem

2.9.

Theorem 2.10 For a strong-connected topological graph
−→
G with decomposition

−→
G =

(
m1⋃

i=1

−→
C i

)
⋃
(
m2⋃

i=1

−→
T i

)
, m1 ≥ 2, m2 ≥ 0,

there always exist partial differential
−→
G -flows

−→
GL, not all flows being zero on

−→
G .

§3. Operators on
−→
G-Flow Spaces

3.1 Linear Continuous Operators

Definition 3.1 Let T ∈ O be an operator on Banach space V over a field F . An operator

T :
−→
GV → −→GV is bounded if ∥∥∥T

(−→
GL
)∥∥∥ ≤ ξ

∥∥∥−→GL
∥∥∥
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for ∀−→GL ∈ −→GV with a constant ξ ∈ [0,∞) and furthermore, is a contractor if

∥∥∥T
(−→
GL1

)
−T

(−→
GL2

)∥∥∥ ≤ ξ
∥∥∥−→GL1 −−→GL2)

∥∥∥

for ∀−→GL1 ,
−→
GL1 ∈ −→GV with ξ ∈ [0, 1).

Theorem 3.2 Let T :
−→
GV → −→GV be a contractor. Then there is a uniquely conservation

G-flow
−→
GL ∈ −→GV such that

T
(−→
GL
)

=
−→
GL.

Proof Let
−→
GL0 ∈ −→GV be a G-flow. Define a sequence

{−→
GLn

}
by

−→
GL1 = T

(−→
GL0

)
,

−→
GL2 = T

(−→
GL1

)
= T2

(−→
GL0

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
−→
GLn = T

(−→
GLn−1

)
= Tn

(−→
GL0

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We prove
{−→
GLn

}
is a Cauchy sequence in

−→
GV . Notice that T is a contractor. For any

integer m ≥ 1, we know that

∥∥∥−→GLm+1 −−→GLm
∥∥∥ =

∥∥∥T
(−→
GLm

)
−T

(−→
GLm−1

)∥∥∥

≤ ξ
∥∥∥−→GLm −−→GLm−1

∥∥∥ =
∥∥∥T
(−→
GLm−1

)
−T

(−→
GLm−2

)∥∥∥

≤ ξ2
∥∥∥−→GLm−1 −−→GLm−2

∥∥∥ ≤ · · · ≤ ξm
∥∥∥−→GL1 −−→GL0

∥∥∥ .

Applying the triangle inequality, for integers m ≥ n we therefore get that

∥∥∥−→GLm −−→GLn
∥∥∥

≤
∥∥∥−→GLm −−→GLm−1

∥∥∥+ + · · ·+
∥∥∥−→GLn−1 −−→GLn

∥∥∥

≤
(
ξm + ξm−1 + · · ·+ ξn−1

)
×
∥∥∥−→GL1 −−→GL0

∥∥∥

=
ξn−1 − ξm

1− ξ ×
∥∥∥−→GL1 −−→GL0

∥∥∥

≤ ξn−1

1− ξ ×
∥∥∥−→GL1 −−→GL0

∥∥∥ for 0 < ξ < 1.

Consequently,
∥∥∥−→GLm −−→GLn

∥∥∥ → 0 if m → ∞, n → ∞. So the sequence
{−→
GLn

}
is a

Cauchy sequence and converges to
−→
GL. Similar to the proof of Theorem 2.5, we know it is a
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G-flow, i.e.,
−→
GL ∈ −→GV . Notice that

∥∥∥−→GL −T
(−→
GL
)∥∥∥ ≤

∥∥∥−→GL −−→GLm
∥∥∥+

∥∥∥−→GLm −T
(−→
GL
)∥∥∥

≤
∥∥∥−→GL −−→GLm

∥∥∥+ ξ
∥∥∥−→GLm−1 −−→GL

∥∥∥ .

Let m → ∞. For 0 < ξ < 1, we therefore get that
∥∥∥−→GL −T

(−→
GL
)∥∥∥ = 0, i.e., T

(−→
GL
)

=
−→
GL.

For the uniqueness, if there is an another conservation G-flow
−→
GL′ ∈ −→GV holding with

T
(−→
GL′

)
=
−→
GL, by

∥∥∥−→GL −−→GL′
∥∥∥ =

∥∥∥T
(−→
GL
)
−T

(−→
GL′

)∥∥∥ ≤ ξ
∥∥∥−→GL −−→GL′

∥∥∥ ,

it can be only happened in the case of
−→
GL =

−→
GL′

for 0 < ξ < 1. 2
Definition 3.3 An operator T :

−→
GV → −→GV is linear if

T
(
λ
−→
GL1 + µ

−→
GL2

)
= λT

(−→
GL1

)
+ µT

(−→
GL2

)

for ∀−→GL1 ,
−→
GL2 ∈ −→GV and λ, µ ∈ F , and is continuous at a

−→
G-flow

−→
GL0 if there always exist

a number δ(ε) for ∀ǫ > 0 such that

∥∥∥T
(−→
GL
)
−T

(−→
GL0

)∥∥∥ < ε if
∥∥∥−→GL −−→GL0

∥∥∥ < δ(ε).

The following result reveals the relation between conceptions of linear continuous with that

of linear bounded.

Theorem 3.4 An operator T :
−→
GV → −→GV is linear continuous if and only if it is bounded.

Proof If T is bounded, then

∥∥∥T
(−→
GL
)
−T

(−→
GL0

)∥∥∥ =
∥∥∥T
(−→
GL −−→GL0

)∥∥∥ ≤ ξ
(−→
GL −−→GL0

)

for an constant ξ ∈ [0,∞) and ∀−→GL,
−→
GL0 ∈ −→GV . Whence, if

∥∥∥−→GL −−→GL0

∥∥∥ < δ(ε) with δ(ε) =
ε

ξ
, ξ 6= 0,

then there must be ∥∥∥T
(−→
GL −−→GL0

)∥∥∥ < ε,

i.e., T is linear continuous on
−→
GV . However, this is obvious for ξ = 0.

Now if T is linear continuous but unbounded, there exists a sequence
{−→
GLn

}
in
−→
GV such



318 Mathematical Reality

that ∥∥∥−→GLn
∥∥∥ ≥ n

∥∥∥−→GLn
∥∥∥ .

Let −→
GL∗

n =
1

n
∥∥∥−→GLn

∥∥∥
×−→GLn .

Then
∥∥∥−→GL∗

n

∥∥∥ =
1

n
→ 0, i.e.,

∥∥∥T
(−→
GL∗

n

)∥∥∥→ 0 if n→∞. However, by definition

∥∥∥T
(−→
GL∗

n

)∥∥∥ =

∥∥∥∥∥∥
T



−→
GLn

n
∥∥∥−→GLn

∥∥∥



∥∥∥∥∥∥

=

∥∥∥T
(−→
GLn

)∥∥∥

n
∥∥∥−→GLn

∥∥∥
≥
n
∥∥∥−→GLn

∥∥∥

n
∥∥∥−→GLn

∥∥∥
= 1,

a contradiction. Thus, T must be bounded. 2
The following result is a generalization of the representation theorem of Fréchet and Riesz

on linear continuous functionals, i.e., T :
−→
GV → C on

−→
G -flow space

−→
GV , where C is the

complex field.

Theorem 3.5 Let T :
−→
GV → C be a linear continuous functional. Then there is a unique−→

G L̂ ∈ −→GV such that

T
(−→
GL
)

=
〈−→
GL,
−→
G L̂
〉

for ∀−→GL ∈ −→GV .

Proof Define a closed subset of
−→
GV by

N (T) =
{−→
GL ∈ −→GV

∣∣∣T
(−→
GL
)

= 0
}

for the linear continuous functional T. If N (T) =
−→
GV , i.e., T

(−→
GL
)

= 0 for ∀−→GL ∈ −→GV ,

choose
−→
G L̂ = O. We then easily obtain the identity

T
(−→
GL
)

=
〈−→
GL,
−→
G L̂
〉
.

Whence, we assume that N (T) 6= −→GV . In this case, there is an orthogonal decomposition

−→
GV = N (T)⊕N ⊥(T)

with N (T) 6= {O} and N ⊥(T) 6= {O}.
Choose a

−→
G -flow

−→
GL0 ∈ N ⊥(T) with

−→
GL0 6= O and define

−→
GL∗

=
(
T
(−→
GL
))−→

GL0 −
(
T
(−→
GL0

))−→
GL
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for ∀−→GL ∈ −→GV . Calculation shows that

T
(−→
GL∗

)
=
(
T
(−→
GL
))

T
(−→
GL0

)
−
(
T
(−→
GL0

))
T
(−→
GL
)

= 0,

i.e.,
−→
GL∗ ∈ N (T). We therefore get that

0 =
〈−→
GL∗

,
−→
GL0

〉

=
〈(

T
(−→
GL
))−→

GL0 −
(
T
(−→
GL0

))−→
GL,
−→
GL0

〉

= T
(−→
GL
)〈−→

GL0 ,
−→
GL0

〉
−T

(−→
GL0

)〈−→
GL,
−→
GL0

〉
.

Notice that
〈−→
GL0 ,

−→
GL0

〉
=
∥∥∥−→GL0

∥∥∥
2

6= 0. We find that

T
(−→
GL
)

=
T
(−→
GL0

)

∥∥∥−→GL0

∥∥∥
2

〈−→
GL,
−→
GL0

〉
=

〈
−→
GL,

T
(−→
GL0

)

∥∥∥−→GL0

∥∥∥
2

−→
GL0

〉
.

Let

−→
G L̂ =

T
(−→
GL0

)

∥∥∥−→GL0

∥∥∥
2

−→
GL0 =

−→
GλL0 ,

where λ =
T
(−→
GL0

)

∥∥∥−→GL0

∥∥∥
2 . We consequently get that T

(−→
GL
)

=
〈−→
GL,
−→
G L̂
〉
.

Now if there is another
−→
G L̂′ ∈ −→GV such that T

(−→
GL
)

=
〈−→
GL,
−→
G L̂′

〉
for ∀−→GL ∈ −→GV ,

there must be
〈−→
GL,
−→
G L̂ −−→G L̂′

〉
= 0 by definition. Particularly, let

−→
GL =

−→
G L̂ − −→G L̂′

. We

know that ∥∥∥−→G L̂ −−→G L̂′
∥∥∥ =

〈−→
G L̂ −−→G L̂′

,
−→
G L̂ −−→G L̂′

〉
= 0,

which implies that
−→
G L̂ −−→G L̂′

= O, i.e.,
−→
G L̂ =

−→
G L̂′

. 2
3.2 Differential and Integral Operators

Let V be Hilbert space consisting of measurable functions f(x1, x2, · · · , xn) on a set

∆ = {x = (x1, x2, · · · , xn) ∈ R
n|ai ≤ xi ≤ bi, 1 ≤ i ≤ n} ,

i.e., the functional space L2[∆], with inner product

〈f (x) , g (x)〉 =
∫

∆

f(x)g(x)dx for f(x), g(x) ∈ L2[∆]

and
−→
GV its

−→
G -extension on a topological graph

−→
G . The differential operator and integral
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operators

D =

n∑

i=1

ai
∂

∂xi
and

∫

∆

,

∫

∆

on
−→
GV are respectively defined by

D
−→
GL =

−→
GDL(uv)

and

∫

∆

−→
GL =

∫

∆

K(x,y)
−→
GL[y]dy =

−→
G
∫
∆
K(x,y)L(uv)[y]dy,

∫

∆

−→
GL =

∫

∆

K(x,y)
−→
GL[y]dy =

−→
G
∫
∆
K(x,y)L(uv)[y]dy

for ∀(u, v) ∈ X
(−→
G
)
, where ai,

∂ai
∂xj
∈ C

0(∆) for integers 1 ≤ i, j ≤ n and K(x,y) : ∆×∆→
C ∈ L2(∆×∆,C) with ∫

∆×∆

K(x,y)dxdy <∞.

Such integral operators are usually called adjoint for

∫

∆

=

∫

∆

by K (x,y) = K (x,y).

Clearly, for
−→
GL1 ,

−→
GL2 ∈ −→GV and λ, µ ∈ F ,

D
(
λ
−→
GL1(u

v) + µ
−→
GL2(u

v)
)

= D
(−→
GλL1(u

v)+µL2(u
v)
)

=
−→
GD(λL1(uv)+µL2(uv))

=
−→
GD(λL1(uv))+D(µL2(uv)) =

−→
GD(λL1(uv)) +

−→
GD(µL2(u

v))

= D
(−→
G (λL1(u

v)) +
−→
G (µL2(uv))

)
= λD

(−→
GL1(u

v)
)

+D
(
µ
−→
GL2(u

v)
)

for ∀(u, v) ∈ X
(−→
G
)
, i.e.,

D
(
λ
−→
GL1 + µ

−→
GL2

)
= λD

−→
GL1 + µD

−→
GL2 .

Similarly, we know also that

∫

∆

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∫

∆

−→
GL1 + µ

∫

∆

−→
GL2 ,

∫

∆

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∫

∆

−→
GL1 + µ

∫

∆

−→
GL2 .

Thus, operators D,

∫

∆

and

∫

∆

are al linear on
−→
GV .
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For example, let f(t) = t, g(t) = et, K(t, τ) = t2 + τ2 for ∆ = [0, 1] and let
−→
GL be the−→

G -flow shown on the left in Fig.6. Then, we know that Df = 1, Dg = et,

∫ 1

0

K(t, τ)f(τ)dτ =

∫ 1

0

K(t, τ)f(τ)dτ =

∫ 1

0

(
t2 + τ2

)
τdτ =

t2

2
+

1

4
= a(t),

∫ 1

0

K(t, τ)g(τ)dτ =

∫ 1

0

K(t, τ)g(τ)dτ =

∫ 1

0

(
t2 + τ2

)
eτdτ

= (e− 1)t2 + e− 2 = b(t)

and the actions D
−→
GL,

∫

[0,1]

−→
GL and

∫

[0,1]

−→
GL are shown on the right in Fig.5.

Furthermore, we know that both of them are injections on
−→
GV .

Theorem 3.6 D :
−→
GV → −→GV and

∫

∆

:
−→
GV → −→GV .

Proof For ∀−→GL ∈ −→GV , we are needed to show that D
−→
GL and

∫

∆

−→
GL ∈ −→GV , i.e., the

conservation laws ∑

v∈NG(u)

DL(uv) = 0 and
∑

v∈NG(u)

∫

∆

L(uv) = 0

hold with ∀v ∈ V
(−→
G
)
.

However, because of
−→
GL(uv) ∈ −→GV , there must be

∑

v∈NG(u)

L(uv) = 0 for ∀v ∈ V
(−→
G
)
,
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we immediately know that

0 = D


 ∑

v∈NG(u)

L(uv)


 =

∑

v∈NG(u)

DL(uv)

and

0 =

∫

∆


 ∑

v∈NG(u)

L(uv)


 =

∑

v∈NG(u)

∫

∆

L(uv)

for ∀v ∈ V
(−→
G
)
. 2

§4.
−→
G-Flow Solutions of Equations

As we mentioned, all G-solutions of non-solvable systems on algebraic, ordinary or partial

differential equations determined in [13]-[19] are in fact
−→
G -flows. We show there are also

−→
G -

flow solutions for solvable equations, which implies that the
−→
G -flow solutions are fundamental

for equations.

4.1 Linear Equations

Let V be a field (F ; +, ·). We can further define

−→
GL1 ◦ −→GL2 =

−→
GL1·L2

with L1 · L2(u
v) = L1(u

v) · L2(u
v) for ∀(u, v) ∈ X

(−→
G
)
. Then it can be verified easily that

−→
GF is also a field

(−→
GF ; +, ◦

)
with a subfield F̂ isomorphic to F if the conservation laws is

not emphasized, where

F̂ =
{−→
GL ∈ −→GF |L (uv) is constant in F for ∀(u, v) ∈ X

(−→
G
)}

.

Clearly,
−→
GF ≃ F

∣∣∣E
(−→
G
)∣∣∣

. Thus
∣∣∣−→GF

∣∣∣ = p
n
∣∣∣E
(−→
G
)∣∣∣

if |F | = pn, where p is a prime number.

For this F -extension on
−→
G , the linear equation

aX =
−→
GL

is uniquely solvable for X =
−→
Ga−1L in

−→
GF if 0 6= a ∈ F . Particularly, if one views an element

b ∈ F as b =
−→
GL if L(uv) = b for (u, v) ∈ X

(−→
G
)

and 0 6= a ∈ F , then an algebraic equation

ax = b

in F also is an equation in
−→
GF with a solution x =

−→
Ga−1L such as those shown in Fig.6 for−→

G =
−→
C 4, a = 3, b = 5 following.
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Let [Lij ]m×n be a matrix with entries Lij : uv → V . Denoted by [Lij ]m×n (uv) the matrix

[Lij (uv)]m×n. Then, a general result on
−→
G -flow solutions of linear systems is known following.

Theorem 4.1 A linear system (LESnm) of equations





a11X1 + a12X2 + · · ·+ a1nXn =
−→
GL1

a21X1 + a22X2 + · · ·+ a2nXn =
−→
GL2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1X1 + am2X2 + · · ·+ amnXn =
−→
GLm

(LESnm)

with aij ∈ C and
−→
GLi ∈ −→GV for integers 1 ≤ i ≤ n and 1 ≤ j ≤ m is solvable for Xi ∈−→

GV , 1 ≤ i ≤ m if and only if

rank [aij ]m×n = rank [aij ]
+
m×(n+1) (uv)

for ∀(u, v) ∈ −→G , where

[aij ]
+
m×(n+1) =




a11 a12 · · · a1n L1

a21 a22 · · · a2n L2

. . . . . . . . . . . . . .

am1 am2 · · · amn Lm



.

Proof Let Xi =
−→
GLxi with Lxi (u

v) ∈ V on (u, v) ∈ X
(−→
G
)

for integers 1 ≤ i ≤ n. For

∀(u, v) ∈ X
(−→
G
)
, the system (LESnm) appears as a common linear system





a11Lx1 (uv) + a12Lx2 (uv) + · · ·+ a1nLxn (uv) = L1 (uv)

a21Lx1 (uv) + a22Lx2 (uv) + · · ·+ a2nLxn (uv) = L2 (uv)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1Lx1 (uv) + am2Lx2 (uv) + · · ·+ amnLxn (uv) = Lm (uv)
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By linear algebra, such a system is solvable if and only if ([4])

rank [aij ]m×n = rank [aij ]
+
m×(n+1) (uv)

for ∀(u, v) ∈ −→G .

Labeling the semi-arc uv respectively by solutions Lx1 (uv), Lx2 (uv), · · · , Lxn (uv) for

∀(u, v) ∈ X
(−→
G
)
, we get labeled graphs

−→
GLx1 ,

−→
GLx2 , · · · ,−→GLxn . We prove that

−→
GLx1 ,

−→
GLx2 , · · · ,

−→
GLxn ∈ −→GV .

Let rank [aij ]m×n = r. Similar to that of linear algebra, we are easily know that





Xj1 =
m∑
i=1

c1i
−→
GLi + c1,r+1Xjr+1 + · · · c1nXjn

Xj2 =
m∑
i=1

c2i
−→
GLi + c2,r+1Xjr+1 + · · · c2nXjn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xjr =
m∑
i=1

cri
−→
GLi + cr,r+1Xjr+1 + · · · crnXjn

,

where {j1, · · · , jn} = {1, · · · , n}. Whence, if
−→
G
Lxjr+1 , · · · ,−→GLxjn ∈ −→GV , then

∑

v∈NG(u)

Lxk (uv) =
∑

v∈NG(u)

m∑

i=1

ckiLi (u
v)

+
∑

v∈NG(u)

c2,r+1Lxjr+1
(uv) + · · ·+

∑

v∈NG(u)

c2nLxjn (uv)

=

m∑

i=1

cki


 ∑

v∈NG(u)

Li (u
v)




+c2,r+1

∑

v∈NG(u)

Lxjr+1
(uv) + · · ·+ c2n

∑

v∈NG(u)

Lxjn (uv) = 0

Whence, the system (LESnm) is solvable in
−→
GV . 2

The following result is an immediate conclusion of Theorem 4.1.

Corollary 4.2 A linear system of equations





a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = bm

with aij , bj ∈ F for integers 1 ≤ i ≤ n, 1 ≤ j ≤ m holding with

rank [aij ]m×n = rank [aij ]
+
m×(n+1)
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has
−→
G -flow solutions on infinitely many topological graphs

−→
G .

Let the operator D and ∆ ⊂ Rn be the same as in Subsection 3.2. We consider differential

equations in
−→
GV following.

Theorem 4.3 For ∀GL ∈ −→GV , the Cauchy problem on differential equation

DGX = GL

is uniquely solvable prescribed with
−→
G
X|xn=x0n =

−→
GL0 .

Proof For ∀(u, v) ∈ X
(−→
G
)
, denoted by F (uv) the flow on the semi-arc uv. Then the

differential equation DGX = GL transforms into a linear partial differential equation

n∑

i=1

ai
∂F (uv)

∂xi
= L (uv)

on the semi-arc uv. By assumption, ai ∈ C0(∆) and L (uv) ∈ L2[∆], which implies that there

is a uniquely solution F (uv) with initial value L0 (uv) by the characteristic theory of partial

differential equation of first order. In fact, let φi (x1, x2, · · · , xn, F ) , 1 ≤ i ≤ n be the n

independent first integrals of its characteristic equations. Then

F (uv) = F ′ (uv)− L0

(
x′1, x

′
2 · · · , x′n−1

)
∈ L2[∆],

where, x′1, x
′
2, · · · , x′n−1 and F ′ are determined by system of equations





φ1

(
x1, x2, · · · , xn−1, x

0
n, F

)
= φ1

φ2

(
x1, x2, · · · , xn−1, x

0
n, F

)
= φ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φn
(
x1, x2, · · · , xn−1, x

0
n, F

)
= φn

Clearly,

D


 ∑

v∈NG(u)

F (uv)


 =

∑

v∈NG(u)

DF (uv) =
∑

v∈NG(u)

L(uv) = 0.

Notice that
∑

v∈NG(u)

F (uv)

∣∣∣∣∣∣
xn=x0

n

=
∑

v∈NG(u)

L0(u
v) = 0.

We therefore know that ∑

v∈NG(u)

F (uv) = 0.
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Thus, we get a uniquely solution
−→
GX =

−→
GF ∈ −→GV for the equation

DGX = GL

prescribed with initial data
−→
G
X|xn=x0n =

−→
GL0 . 2

We know that the Cauchy problem on heat equation

∂u

∂t
= c2

n∑

i=1

∂2u

∂x2
i

is solvable in Rn×R if u(x, t0) = ϕ(x) is continuous and bounded in Rn, c a non-zero constant

in R. For
−→
GL ∈ −→GV in Subsection 3.2, if we define

∂
−→
GL

∂t
=
−→
G

∂L
∂t and

∂
−→
GL

∂xi
=
−→
G

∂L
∂xi , 1 ≤ i ≤ n,

then we can also consider the Cauchy problem in
−→
GV , i.e.,

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial values X |t=t0 , and know the result following.

Theorem 4.4 For ∀−→GL′ ∈ −→GV and a non-zero constant c in R, the Cauchy problems on

differential equations

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X |t=t0 =
−→
GL′ ∈ −→GV is solvable in

−→
GV if L′ (uv) is continuous and bounded

in R
n for ∀(u, v) ∈ X

(−→
G
)
.

Proof For (u, v) ∈ X
(−→
G
)
, the Cauchy problem on the semi-arc uv appears as

∂u

∂t
= c2

n∑

i=1

∂2u

∂x2
i

with initial value u|t=0 = L′ (uv) (x) if X =
−→
GF . According to the theory of partial differential

equations, we know that

F (uv) (x, t) =
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t L′ (uv) (y1, · · · , yn)dy1 · · ·dyn.

Labeling the semi-arc uv by F (uv) (x, t) for ∀(u, v) ∈ X
(−→
G
)
, we get a labeled graph

−→
GF

on
−→
G . We prove

−→
GF ∈ −→GV .
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By assumption,
−→
GL′ ∈ −→GV , i.e., for ∀u ∈ V

(−→
G
)
,

∑

v∈NG(u)

L′ (uv) (x) = 0,

we know that

∑

v∈NG(u)

F (uv) (x, t)

=
∑

v∈NG(u)

1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t L′ (uv) (y1, · · · , yn)dy1 · · · dyn

=
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t


 ∑

v∈NG(u)

L′ (uv) (y1, · · · , yn)


 dy1 · · · dyn

=
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t (0) dy1 · · ·dyn = 0

for ∀u ∈ V
(−→
G
)
. Therefore,

−→
GF ∈ −→GV and

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X |t=t0 =
−→
GL′ ∈ −→GV is solvable in

−→
GV . 2

Similarly, we can also get a result on Cauchy problem on 3-dimensional wave equation in−→
GV following.

Theorem 4.5 For ∀−→GL′ ∈ −→GV and a non-zero constant c in R, the Cauchy problems on

differential equations
∂2X

∂t2
= c2

(
∂2X

∂x2
1

+
∂2X

∂x2
2

+
∂2X

∂x2
3

)

with initial value X |t=t0 =
−→
GL′ ∈ −→GV is solvable in

−→
GV if L′ (uv) is continuous and bounded

in Rn for ∀(u, v) ∈ X
(−→
G
)
.

For an integral kernel K(x,y), the two subspaces N ,N ∗ ⊂ L2[∆] are determined by

N =

{
φ(x) ∈ L2[∆]|

∫

∆

K (x,y)φ(y)dy = φ(x)

}
,

N ∗ =

{
ϕ(x) ∈ L2[∆]|

∫

∆

K (x,y)ϕ(y)dy = ϕ(x)

}
.

Then we know the result following.
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Theorem 4.6 For ∀GL ∈ −→GV , if dimN = 0, then the integral equation

−→
GX −

∫

∆

−→
GX = GL

is solvable in
−→
GV with V = L2[∆] if and only if

〈−→
GL,
−→
GL′

〉
= 0, ∀−→GL′ ∈ N ∗.

Proof For ∀(u, v) ∈ X
(−→
G
)

−→
GX −

∫

∆

−→
GX = GL and

〈−→
GL,
−→
GL′

〉
= 0, ∀−→GL′ ∈ N ∗

on the semi-arc uv respectively appear as

F (x)−
∫

∆

K (x,y)F (y) dy = L (uv) [x]

if X (uv) = F (x) and

∫

∆

L (uv) [x]L′ (uv) [x]dx = 0 for ∀−→GL′ ∈ N ∗.

Applying Hilbert and Schmidt’s theorem ([20]) on integral equation, we know the integral

equation

F (x)−
∫

∆

K (x,y)F (y) dy = L (uv) [x]

is solvable in L2[∆] if and only if

∫

∆

L (uv) [x]L′ (uv) [x]dx = 0

for ∀−→GL′ ∈ N ∗. Thus, there are functions F (x) ∈ L2[∆] hold for the integral equation

F (x)−
∫

∆

K (x,y)F (y) dy = L (uv) [x]

for ∀(u, v) ∈ X
(−→
G
)

in this case.

For ∀u ∈ V
(−→
G
)
, it is clear that

∑

v∈NG(u)

(
F (uv) [x]−

∫

∆

K(x,y)F (uv) [x]

)
=

∑

v∈NG(u)

L (uv) [x] = 0,
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which implies that,

∫

∆

K(x,y)


 ∑

v∈NG(u)

F (uv) [x]


 =

∑

v∈NG(u)

F (uv) [x].

Thus, ∑

v∈NG(u)

F (uv) [x] ∈ N .

However, if dimN = 0, there must be

∑

v∈NG(u)

F (uv) [x] = 0

for ∀u ∈ V
(−→
G
)
, i.e.,

−→
GF ∈ −→GV . Whence, if dimN = 0, the integral equation

−→
GX −

∫

∆

−→
GX = GL

is solvable in
−→
GV with V = L2[∆] if and only if

〈−→
GL,
−→
GL′

〉
= 0, ∀−→GL′ ∈ N ∗.

This completes the proof. 2
Theorem 4.7 Let the integral kernel K(x,y) : ∆×∆→ C ∈ L2(∆×∆) be given with

∫

∆×∆

|K(x,y)|2dxdy > 0, dimN = 0 and K(x,y) = K(x,y)

for almost all (x,y) ∈ ∆ × ∆. Then there is a finite or countably infinite system
−→
G-flows{−→

GLi
}
i=1,2,···

⊂ L2(∆,C) with associate real numbers {λi}i=1,2,··· ⊂ R such that the integral

equations ∫

∆

K(x,y)
−→
GLi[y]dy = λi

−→
GLi[x]

hold with integers i = 1, 2, · · · , and furthermore,

|λ1| ≥ |λ2| ≥ · · · ≥ 0 and lim
i→∞

λi = 0.

Proof Notice that the integral equations

∫

∆

K(x,y)
−→
GLi[y]dy = λi

−→
GLi[x]
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is appeared as ∫

∆

K(x,y)Li (u
v) [y]dy = λiLi (u

v) [x]

on (u, v) ∈ X
(−→
G
)
. By the spectral theorem of Hilbert and Schmidt ([20]), there is indeed a

finite or countably system of functions {Li (uv) [x]}i=1,2,··· hold with this integral equation, and

furthermore,

|λ1| ≥ |λ2| ≥ · · · ≥ 0 with lim
i→∞

λi = 0.

Similar to the proof of Theorem 4.5, if dimN = 0, we know that

∑

v∈NG(u)

Li (u
v) [x] = 0

for ∀u ∈ V
(−→
G
)
, i.e.,

−→
GLi ∈ −→GV for integers i = 1, 2, · · · . 2

4.2 Non-linear Equations

If
−→
G is strong-connected with a special structure, we can get a general result on

−→
G -solutions of

equations, including non-linear equations following.

Theorem 4.8 If the topological graph
−→
G is strong-connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i

such that L(uv) = Li (x) for ∀(u, v) ∈ X
(−→
C i

)
, 1 ≤ i ≤ l and the Cauchy problem





Fi (x, u, ux1, · · · , uxn , ux1x2 , · · · ) = 0

u|x0
= Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for integers 1 ≤ i ≤ l, then the Cauchy

problem 



Fi (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0
=
−→
GL

such that L (uv) = Li(x) for ∀(u, v) ∈ X
(−→
C i

)
is solvable for X ∈ −→GV .

Proof Let X =
−→
GLu(x) with Lu(x) (uv) = u(x) for (u, v) ∈ X

(−→
G
)
. Notice that the

Cauchy problem 



Fi (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0 = GL
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then appears as 



Fi (x, u, ux1, · · · , uxn , ux1x2 , · · · ) = 0

u|x0 = Li(x)

on the semi-arc uv for (u, v) ∈ X
(−→
G
)
, which is solvable by assumption. Whence, there exists

solution u (uv) (x) holding with





Fi (x, u, ux1, · · · , uxn , ux1x2 , · · · ) = 0

u|x0
= Li(x)

Let
−→
GLu(x) be a labeling on

−→
G with u (uv) (x) on uv for ∀(u, v) ∈ X

(−→
G
)
. We show that

−→
GLu(x) ∈ −→GV . Notice that

−→
G =

l⋃

i=1

−→
C i

and all flows on
−→
C i is the same, i.e., the solution u (uv) (x). Clearly, it is holden with conser-

vation on each vertex in
−→
C i for integers 1 ≤ i ≤ l. We therefore know that

∑

v∈NG(u)

Lx0 (uv) = 0, u ∈ V
(−→
G
)
.

Thus,
−→
GLu(x) ∈ −→GV . This completes the proof. 2

There are many interesting conclusions on
−→
G -flow solutions of equations by Theorem 4.8.

For example, if Fi is nothing else but polynomials of degree n in one variable x, we get a

conclusion following, which generalizes the fundamental theorem in algebra.

Corollary 4.9 (Generalized Fundamental Theorem in Algebra) If
−→
G is strong-connected with

circuit decomposition

−→
G =

l⋃

i=1

−→
C i

and Li (u
v) = ai ∈ C for ∀(u, v) ∈ X

(−→
C i

)
and integers 1 ≤ i ≤ l, then the polynomial

F (X) =
−→
GL1 ◦Xn +

−→
GL2 ◦Xn−1 + · · ·+−→GLn ◦X +

−→
GLn+1

always has roots, i.e., X0 ∈
−→
GC such that F (X0) = O if

−→
GL1 6= O and n ≥ 1.

Particularly, an algebraic equation

a1x
n + a2x

n−1 + · · ·+ anx+ an+1 = 0

with a1 6= 0 has infinite many
−→
G-flow solutions in

−→
GC on those topological graphs

−→
G with

−→
G =

l⋃

i=1

−→
C i.
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Notice that Theorem 4.8 enables one to get
−→
G -flow solutions both on those linear and

non-linear equations in physics. For example, we know the spherical solution

ds2 = f(t)
(
1− rg

r

)
dt2 − 1

1− rg
r

dr2 − r2(dθ2 + sin2 θdφ2)

for the Einstein’s gravitational equations ([9])

Rµν − 1

2
Rgµν = −8πGT µν

with Rµν = Rµανα = gαβR
αµβν , R = gµνR

µν , G = 6.673 × 10−8cm3/gs2, κ = 8πG/c4 =

2.08× 10−48cm−1 · g−1 · s2. By Theorem 4.8, we get their
−→
G -flow solutions following.

Corollary 4.10 The Einstein’s gravitational equations

Rµν − 1

2
Rgµν = −8πGT µν,

has infinite many
−→
G-flow solutions in

−→
GC, particularly on those topological graphs

−→
G =

l⋃

i=1

−→
C i

with spherical solutions of the equations on their arcs.

For example, let
−→
G =

−→
C 4. We are easily find

−→
C 4-flow solution of Einstein’s gravitational

equations,such as those shown in Fig.7. - ?y6 S1

S2

S3

S4

v1 v2

v3v4

Fig.7

where, each Si is a spherical solution

ds2 = f(t)
(
1− rs

r

)
dt2 − 1

1− rs
r

dr2 − r2(dθ2 + sin2 θdφ2)

of Einstein’s gravitational equations for integers 1 ≤ i ≤ 4.

As a by-product, Theorems 4.5-4.6 can be also generalized on those topological graphs

with circuit-decomposition following.

Corollary 4.11 Let the integral kernel K(x,y) : ∆×∆→ C ∈ L2(∆×∆) be given with

∫

∆×∆

|K(x,y)|2dxdy > 0, K(x,y) = K(x,y)
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for almost all (x,y) ∈ ∆×∆, and

−→
GL =

l⋃

i=1

−→
C i

such that L(uv) = L[i] (x) for ∀(u, v) ∈ X
(−→
C i

)
and integers 1 ≤ i ≤ l. Then, the integral

equation
−→
GX −

∫

∆

−→
GX = GL

is solvable in
−→
GV with V = L2[∆] if and only if

〈−→
GL,
−→
GL′

〉
= 0, ∀−→GL′ ∈ N ∗.

Corollary 4.12 Let the integral kernel K(x,y) : ∆×∆→ C ∈ L2(∆×∆) be given with

∫

∆×∆

|K(x,y)|2dxdy > 0, K(x,y) = K(x,y)

for almost all (x,y) ∈ ∆×∆, and

−→
GL =

l⋃

i=1

−→
C i

such that L(uv) = L[i] (x) for ∀(u, v) ∈ X
(−→
C i

)
and integers 1 ≤ i ≤ l. Then, there is a finite

or countably infinite system
−→
G-flows

{−→
GLi

}
i=1,2,···

⊂ L2(∆,C) with associate real numbers

{λi}i=1,2,··· ⊂ R such that the integral equations

∫

∆

K(x,y)
−→
GLi[y]dy = λi

−→
GLi[x]

hold with integers i = 1, 2, · · · , and furthermore,

|λ1| ≥ |λ2| ≥ · · · ≥ 0 and lim
i→∞

λi = 0.

§5. Applications to System Control

5.1 Stability of
−→
G-Flow Solutions

Let X =
−→
GLu(x) and X2 =

−→
GLu1(x) be respectively solutions of

F (x, Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

on the initial values X |x0
=
−→
GL or X |x0

=
−→
GL1 in

−→
GV with V = L2[∆], the Hilbert space.

The
−→
G -flow solution X is said to be stable if there exists a number δ(ε) for any number ε > 0
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such that

‖X1 −X2‖ =
∥∥∥−→GLu1(x) −−→GLu(x)

∥∥∥ < ε

if
∥∥∥−→GL1 −−→GL

∥∥∥ ≤ δ(ε). By definition,

∥∥∥−→GL1 −−→GL
∥∥∥ =

∑

(u,v)∈X
(−→
G
)
‖L1 (uv)− L (uv)‖

and ∥∥∥−→GLu1(x) −−→GLu(x)

∥∥∥ =
∑

(u,v)∈X
(−→
G
)
‖u1 (uv) (x)− u (uv) (x)‖ .

Clearly, if these
−→
G -flow solutions X are stable, then

‖u1 (uv) (x)− u (uv) (x)‖ ≤
∑

(u,v)∈X
(−→
G
)
‖u1 (uv) (x)− u (uv) (x)‖ < ε

if

‖L1 (uv)− L (uv)‖ ≤
∑

(u,v)∈X
(−→
G
)
‖L1 (uv)− L (uv)‖ ≤ δ(ε),

i.e., u (uv) (x) is stable on uv for (u, v) ∈ X
(−→
G
)
.

Conversely, if u (uv) (x) is stable on uv for (u, v) ∈ X
(−→
G
)
, i.e., for any number ε/ε

(−→
G
)
>

0 there always is a number δ(ε) (uv) such that

‖u1 (uv) (x)− u (uv) (x)‖ < ε

ε
(−→
G
)

if ‖L1 (uv)− L (uv)‖ ≤ δ(ε) (uv), then there must be

∑

(u,v)∈X
(−→
G
)
‖u1 (uv) (x)− u (uv) (x)‖ < ε

(−→
G
)
× ε

ε
(−→
G
) = ε

if

‖L1 (uv)− L (uv)‖ ≤ δ(ε)

ε
(−→
G
) ,

where ε
(−→
G
)

is the number of arcs of
−→
G and

δ(ε) = min
{
δ(ε) (uv) |(u, v) ∈ X

(−→
G
)}

.

Whence, we get the result following.
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Theorem 5.1 Let V be the Hilbert space L2[∆]. The
−→
G-flow solution X of equation





F (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0
=
−→
GL

in
−→
GV is stable if and only if the solution u(x) (uv) of equation





F (x, u, ux1, · · · , uxn , ux1x2 , · · · ) = 0

u|x0 =
−→
GL

is stable on the semi-arc uv for ∀(u, v) ∈ X
(−→
G
)
.

This conclusion enables one to find stable
−→
G -flow solutions of equations. For example, we

know that the stability of trivial solution y = 0 of an ordinary differential equation

dy

dx
= [A]y

with constant coefficients, is dependent on the number γ = max{Reλ : λ ∈ σ[A]} ([23]), i.e., it is

stable if and only if γ < 0, or γ = 0 but m′(λ) = m(λ) for all eigenvalues λ with Reλ = 0, where

σ[A] is the set of eigenvalue of the matrix [A], m(λ) the multiplicity and m′(λ) the dimension

of corresponding eigenspace of λ.

Corollary 5.2 Let [A] be a matrix with all eigenvalues λ < 0, or γ = 0 but m′(λ) = m(λ) for

all eigenvalues λ with Reλ = 0. Then the solution X = O of differential equation

dX

dx
= [A]X

is stable in
−→
GV , where

−→
G is such a topological graph that there are

−→
G-flows hold with the

equation.

For example, the
−→
G -flow shown in Fig.8 following-

�66 ?j�v1 v2

v3v4

f(x)

f(x)

f(x)
f(x) ?g(x)

g(x)

g(x)

g(x)

Fig.8

is a
−→
G -flow solution of the differential equation

d2X

dx2
+ 5

dX

dx
+ 6X = 0
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with f(x) = C1e
−2x + C′1e

−3x and g(x) = C2e
−2x + C′2e

−3x, where C1, C
′
1 and C2, C

′
2 are

constants.

Similarly, applying the stability of solutions of wave equations, heat equations and elliptic

equations, the conclusion following is known by Theorem 5.1.

Corollary 5.3 Let V be the Hilbert space L2[∆]. Then, the
−→
G-flow solutions X of equations

following





∂2X

∂t2
− c2

(
∂2X

∂x2
1

+
∂2X

∂x2
2

)
=
−→
GL

X |t0 =
−→
GLφ(x1,x2) ,

∂X

∂t

∣∣∣∣
t0

=
−→
GLϕ(x1,x2) , X |∂∆ =

−→
GLµ(t,x1,x2)

,





∂2X

∂t2
− c2 ∂X

∂x1
=
−→
GL

X |t0 =
−→
GLφ(x1,x2)

and





∂2X

∂x2
1

+
∂2X

∂x2
2

+
∂2X

∂x2
3

= O

X |∂∆ =
−→
GLg(x1,x2,x3)

are stable in
−→
GV , where

−→
G is such a topological graph that there are

−→
G-flows hold with these

equations.

5.2 Industrial System Control

An industrial system with raw materials M1,M2, · · · ,Mn, products (including by-products)

P1, P2, · · · , Pm but w1, w2, · · · , ws wastes after a produce process, such as those shown in Fig.9

following,

F (x)

M1

M2

Mn

6?-
x1

x2

xn

P1

P2

Pm

---
y1

y2

ym

w1 w2 ws
? ? ?

Fig.9

i.e., an input-output system, where,

(y1, y2, · · · , ym) = F (x1, x2, · · · , xn)

determined by differential equations, called the production function and constrained with the
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conservation law of matter, i.e.,

m∑

i=1

yi +

s∑

i=1

wi =

n∑

i=1

xi.

Notice that such an industrial system is an opened system in general, which can be trans-

ferred into a closed one by letting the nature as an additional cell, i.e., all materials comes

from and all wastes resolves by the nature, a classical one on human beings with the nature.

However, the resolvability of nature is very limited. Such a classical system finally resulted in

the environmental pollution accompanied with the developed production of human beings.

Different from those of classical industrial systems, an ecologically industrial system is a

recycling system ([24]), i.e., all outputs of one of its subsystem, including products, by-products

provide the inputs of other subsystems and all wastes are disposed harmless to the nature.

Clearly, such a system is nothing else but a
−→
G -flow because it is holding with conservation

laws on each vertex in a topological graph
−→
G , where

−→
G is determined by the technological

process for products, wastes disposal and recycle, and can be characterized by differential

equations in Banach space
−→
GV . Whence, we can determine such a system by

−→
GLu with

Lu : uv → u (uv) (t,x) for (u, v) ∈ X
(−→
G
)
, or ordinary differential equations





−→
GL0 ◦ d

kX

dtk
+
−→
GL1 ◦ d

k−1X

dtk−1
+ · · ·+−→GLu(t,x) = O

X |t=t0 =
−→
GLh0(x) ,

dX

dt

∣∣∣∣
t=t0

=
−→
GLh1(x) , · · · , dX

k−1

dtk−1

∣∣∣∣
t=t0

=
−→
G
Lhk−1(x)

for an integer k ≥ 1, or a partial differential equation





−→
GL0 ◦ ∂X

∂t
+
−→
GL1 ◦ ∂X

∂x1
+ · · ·+−→GLn ◦ ∂X

∂xn
=
−→
GLu(t,x)

X |t=t0 =
−→
GLu(x)

and characterize its stability by Theorem 5.1, where, the coefficients
−→
GLi , i ≥ 0 are determined

by the technological process of production.
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Hilbert Flow Spaces with Operators over

Topological Graphs

Abstract: A complex system S consists m components, maybe inconsistence with m ≥ 2,

such as those of biological systems or generally, interaction systems and usually, a system

with contradictions, which implies that there are no a mathematical subfield applicable.

Then, how can we hold on its global and local behaviors or reality? All of us know that there

always exists universal connections between things in the world, i.e., a topological graph
−→
G

underlying components in S . We can thereby establish mathematics over graphs
−→
G1,

−→
G2, · · ·

by viewing labeling graphs
−→
GL1

1 ,
−→
GL2

2 , · · · to be globally mathematical elements, not only

game objects or combinatorial structures, which can be applied to characterize dynamic

behaviors of the system S on time t. Formally, a continuity flow
−→
GL is a topological graph

−→
G

associated with a mapping L : (v, u) → L(v, u), 2 end-operators A+
vu : L(v, u) → LA+

vu(v, u)

and A+
uv : L(u, v) → LA+

uv (u, v) on a Banach space B over a field F with L(v, u) = −L(u, v)

and A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→

G
)

holding with continuity equations

∑

u∈NG(v)

LA+
vu (v, u) = L(v), ∀v ∈ V

(−→
G
)

.

The main purpose of this paper is to extend Banach or Hilbert spaces to Banach or Hilbert

continuity flow spaces over topological graphs
{−→

G1,
−→
G2, · · ·

}
and establish differentials on

continuity flows for characterizing their globally change rate. A few well-known results such

as those of Taylor formula, L’Hospital’s rule on limitation are generalized to continuity flows,

and algebraic or differential flow equations are discussed in this paper. All of these results

form the elementary differential theory on continuity flows, which contributes mathematical

combinatorics and can be used to characterizing the behavior of complex systems, particu-

larly, the synchronization.

Key Words: Complex system, Smarandache multispace, continuity flow, Banach space,

Hilbert space, differential, Taylor formula, L’Hospital’s rule, mathematical combinatorics.

AMS(2010): 34A26, 35A08, 46B25, 92B05, 05C10, 05C21, 34D43, 51D20.

§1. Introduction

A Banach or Hilbert space is respectively a linear space A over a field R or C equipped with a

complete norm ‖ · ‖ or inner product 〈 · , · 〉, i.e., for every Cauchy sequence {xn} in A , there

1An invited J.C.& K.L.Saha Memorial Lecture in the International Conference on Geometry and Mathe-

matical Models in Complex Phenomena, December 05-07, 2017.
2International J.Math.Combin, Vol.4(2017), 19-45.
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exists an element x in A such that

lim
n→∞

‖xn − x‖A = 0 or lim
n→∞

〈xn − x, xn − x〉A = 0

and a topological graph ϕ(G) is an embedding of a graph G with vertex set V (G), edge set

E(G) in a space S , i.e., there is a 1 − 1 continuous mapping ϕ : G → ϕ(G) ⊂ S with

ϕ(p) 6= ϕ(q) if p 6= q for ∀p, q ∈ G, i.e., edges of G only intersect at vertices in S , an embedding

of a topological space to another space. A well-known result on embedding of graphs without

loops and multiple edges in Rn concluded that there always exists an embedding of G that all

edges are straight segments in R
n for n ≥ 3 ([22]) such as those shown in Fig.1.

Fig.1

As we known, the purpose of science is hold on the reality of things in the world. However,

the reality of a thing T is complex and there are no a mathematical subfield applicable unless

a system maybe with contradictions in general. Is such a contradictory system meaningless

to human beings? Certain not because all of these contradictions are the result of human

beings, not the nature of things themselves, particularly on those of contradictory systems in

mathematics. Thus, holding on the reality of things motivates one to turn contradictory systems

to compatible one by a combinatorial notion and establish an envelope theory on mathematics,

i.e., mathematical combinatorics ([9]-[13]). Then, Can we globally characterize the behavior of a

system or a population with elements≥ 2, which maybe contradictory or compatible? The answer

is certainly YES by continuity flows, which needs one to establish an envelope mathematical

theory over topological graphs, i.e., views labeling graphs GL to be mathematical elements

([19]), not only a game object or a combinatorial structure with labels in the following sense.

Definition 1.1 A continuity flow
(−→
G ;L,A

)
is an oriented embedded graph

−→
G in a topological

space S associated with a mapping L : v → L(v), (v, u) → L(v, u), 2 end-operators A+
vu :

L(v, u)→ LA
+
vu(v, u) and A+

uv : L(u, v)→ LA
+
uv (u, v) on a Banach space B over a field F-L(v, u)A+

vu A+
uv

L(v) L(u)

v u
Fig.2
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with L(v, u) = −L(u, v) and A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→
G
)

holding with

continuity equation ∑

u∈NG(v)

LA
+
vu (v, u) = L(v) for ∀v ∈ V

(−→
G
)

such as those shown for vertex v in Fig.3 following

-
-

-

-
-

-
L(v)

L(u1)

L(u2)

L(u3)

L(u4)

L(u5)

L(u6)

L(u1, v)

L(u2, v)

L(u3, v)

L(v, u4)

L(v, u5)

L(v, u6)

u1

u2

u3

v

u4

u5

u6

A1

A2

A3

A4

A5

A6

Fig.3

with a continuity equation

LA1(v, u1) + LA2(v, u2) + LA3(v, u3)− LA4(v, u4)− LA5(v, u5)− LA6(v, u6) = L(v),

where L(v) is the surplus flow on vertex v.

Particularly, if L(v) = ẋv or constants vv, v ∈ V
(−→
G
)
, the continuity flow

(−→
G ;L,A

)

is respectively said to be a complex flow or an action A flow, and
−→
G-flow if A = 1V , where

ẋv = dxv/dt, xv is a variable on vertex v and v is an element in B for ∀v ∈ E
(−→
G
)
.

Clearly, an action flow is an equilibrium state of a continuity flow
(−→
G ;L,A

)
. We have

shown that Banach or Hilbert space can be extended over topological graphs ([14],[17]), which

can be applied to understanding the reality of things in [15]-[16], and we also shown that

complex flows can be applied to hold on the global stability of biological n-system with n ≥ 3

in [19]. For further discussing continuity flows, we need conceptions following.

Definition 1.2 Let B1,B2 be Banach spaces over a field F with norms ‖ · ‖1 and ‖ · ‖2,
respectively. An operator T : B1 → B2 is linear if

T (λv1 + µv2) = λT (v1) + µT (v2)

for λ, µ ∈ F, and T is said to be continuous at a vector v0 if there always exist such a number
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δ(ε) for ∀ǫ > 0 that

‖T (v)−T (v0)‖2 < ε

if ‖v − v0‖1 < δ(ε) for ∀v,v0,v1,v2 ∈ B1.

Definition 1.3 Let B1,B2 be Banach spaces over a field F with norms ‖ · ‖1 and ‖ · ‖2,
respectively. An operator T : B1 → B2 is bounded if there is a constant M > 0 such that

‖T (v)‖2 ≤M ‖v‖1 , i.e.,
‖T(v)‖2
‖v‖1

≤M

for ∀v ∈ B and furthermore, T is said to be a contractor if

‖T (v1)−T (v2)‖ ≤ c ‖v1 − v2)‖

for ∀v1,v2 ∈ B with c ∈ [0, 1).

We only discuss the case that all end-operators A+
vu, A

+
uv are both linear and continuous.

In this case, the result following on linear operators of Banach space is useful.

Theorem 1.4 Let B1,B2 be Banach spaces over a field F with norms ‖·‖1 and ‖·‖2, respectively.

Then, a linear operator T : B1 → B2 is continuous if and only if it is bounded, or equivalently,

‖T‖ := sup
0 6=v∈B1

‖T(v)‖2
‖v‖1

< +∞.

Let
{−→
G1,
−→
G2, · · ·

}
be a graph family. The main purpose of this paper is to extend Ba-

nach or Hilbert spaces to Banach or Hilbert continuity flow spaces over topological graphs{−→
G1,
−→
G2, · · ·

}
and establish differentials on continuity flows, which enables one to characterize

their globally change rate constraint on the combinatorial structure. A few well-known results

such as those of Taylor formula, L’Hospital’s rule on limitation are generalized to continuity

flows, and algebraic or differential flow equations are discussed in this paper. All of these

results form the elementary differential theory on continuity flows, which contributes math-

ematical combinatorics and can be used to characterizing the behavior of complex systems,

particularly, the synchronization.

For terminologies and notations not defined in this paper, we follow references [1] for

mechanics, [4] for functionals and linear operators, [22] for topology, [8] combinatorial geometry,

[6]-[7],[25] for Smarandache systems, Smarandache geometries and Smaarandache multispaces

and [2], [20] for biological mathematics.

§2. Banach and Hilbert Flow Spaces

2.1 Linear Spaces over Graphs

Let
−→
G1,
−→
G2, · · · ,

−→
Gn be oriented graphs embedded in topological space S with

−→
G =

n⋃
i=1

−→
G i,
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i.e.,
−→
G i is a subgraph of

−→
G for integers 1 ≤ i ≤ n. In this case, these is naturally an embedding

ι :
−→
G i →

−→
G .

Let V be a linear space over a field F . A vector labeling L :
−→
G → V is a mapping with

L(v), L(e) ∈ V for ∀v ∈ V (
−→
G ), e ∈ E(

−→
G). Define

−→
GL1

1 +
−→
GL2

2 =
(−→
G1 \

−→
G2

)L1 ⋃(−→
G1

⋂−→
G2

)L1+L2 ⋃(−→
G2 \

−→
G1

)L2

(2.1)

and

λ · −→GL =
−→
Gλ·L (2.2)

for ∀λ ∈ F . Clearly, if , and
−→
GL,
−→
GL1

1 ,
−→
GL2

2 are continuity flows with linear end-operators

A+
vu and A+

uv for ∀(v, u) ∈ E
(−→
G
)
,
−→
GL1

1 +
−→
GL2

2 and λ · −→GL are continuity flows also. If we

consider each continuity flow
−→
GL
i a continuity subflow of

−→
G L̂, where L̂ :

−→
G i = L(

−→
G i) but

L̂ :
−→
G \ −→G i → 0 for integers 1 ≤ i ≤ n, and define O :

−→
G → 0, then all continuity flows,

particularly, all complex flows, or all action flows on oriented graphs
−→
G1,
−→
G2, · · · ,

−→
Gn naturally

form a linear space, denoted by

(〈−→
G i, 1 ≤ i ≤ n

〉V

; +, ·
)

over a field F under operations (2.1)

and (2.2) because it holds with:

(1) A field F of scalars;

(2) A set
〈−→
G i, 1 ≤ i ≤ n

〉V

of objects, called continuity flows;

(3) An operation “+”, called continuity flow addition, which associates with each pair of

continuity flows
−→
GL1

1 ,
−→
GL2

2 in
〈−→
G i, 1 ≤ i ≤ n

〉V

a continuity flows
−→
GL1

1 +
−→
GL2

2 in
〈−→
G i, 1 ≤ i ≤ n

〉V

,

called the sum of
−→
GL1

1 and
−→
GL2

2 , in such a way that

(a) Addition is commutative,
−→
GL1

1 +
−→
GL2

2 =
−→
GL2

2 +
−→
GL1

1 because of

−→
GL1

1 +
−→
GL2

2 =
(−→
G1 −

−→
G2

)L1⋃(−→
G1

⋂−→
G2

)L1+L2 ⋃(−→
G2 −

−→
G1

)L2

=
(−→
G2 −

−→
G1

)L2⋃(−→
G1

⋂−→
G2

)L2+L1 ⋃(−→
G1 −

−→
G2

)L1

=
−→
GL2

2 +
−→
GL1

1 ;

(b) Addition is associative,
(−→
GL1

1 +
−→
GL2

2

)
+
−→
GL3

3 =
−→
GL1

1 +
(−→
GL2

2 +
−→
GL3

3

)
because if we

let

L+
ijk(x) =





Li(x), if x ∈ −→G i \
(−→
G j

⋃−→
Gk

)

Lj(x), if x ∈ −→G j \
(−→
G i

⋃−→
Gk

)

Lk(x), if x ∈ −→Gk \
(−→
G i

⋃−→
G j

)

L+
ij(x), if x ∈

(−→
G i

⋂−→
G j

)
\ −→Gk

L+
ik(x), if x ∈

(−→
G i

⋂−→
Gk

)
\ −→G j

L+
jk(x), if x ∈

(−→
G j

⋂−→
Gk

)
\ −→G i

Li(x) + Lj(x) + Lk(x) if x ∈ −→G i

⋂−→
G j

⋂−→
Gk

(2.3)
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and

L+
ij(x) =





Li(x), if x ∈ −→G i \
−→
G j

Lj(x), if x ∈ −→G j \
−→
G i

Li(x) + Lj(x), if x ∈ −→G i

⋂−→
G j

(2.4)

for integers 1 ≤ i, j, k ≤ n, then

(−→
GL1

1 +
−→
GL2

2

)
+
−→
GL3

3 =
(−→
G1

⋃−→
G2

)L+
12

+
−→
GL3

3 =
(−→
G1

⋃−→
G2

⋃−→
G3

)L+
123

=
−→
GL1

1 +
(−→
G2

⋃−→
G3

)L+
23

=
−→
GL1

1 +
(−→
GL2

2 +
−→
GL3

3

)
;

(c) There is a unique continuity flow O on
−→
G hold with O(v, u) = 0 for ∀(v, u) ∈ E

(−→
G
)

and

V
(−→

G
)

in
〈−→
G i, 1 ≤ i ≤ n

〉V

, called zero such that
−→
GL+O =

−→
GL for

−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉V

;

(d) For each continuity flow
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉V

there is a unique continuity flow
−→
G−L such that

−→
GL +

−→
G−L = O;

(4) An operation “·, called scalar multiplication, which associates with each scalar k in F

and a continuity flow
−→
GL in

〈−→
G i, 1 ≤ i ≤ n

〉V

a continuity flow k ·−→GL in V , called the product

of k with
−→
GL, in such a way that

(a) 1 · −→GL =
−→
GL for every

−→
GL in

〈−→
G i, 1 ≤ i ≤ n

〉V

;

(b) (k1k2) ·
−→
GL = k1(k2 ·

−→
GL);

(c) k · (−→GL1
1 +

−→
GL2

2 ) = k · −→GL1
1 + k · −→GL2

2 ;

(d) (k1 + k2) ·
−→
GL = k1 ·

−→
GL + k2 ·

−→
GL.

Usually, we abbreviate

(〈−→
G i, 1 ≤ i ≤ n

〉V

; +, ·
)

to
〈−→
G i, 1 ≤ i ≤ n

〉V

if these operations

+ and · are clear in the context.

By operation (1.1),
−→
GL1

1 +
−→
GL2

2 6=
−→
GL1

1 if and only if
−→
G1 6�

−→
G2 with L1 :

−→
G1 \

−→
G2 6→ 0 and−→

GL1
1 +
−→
GL2

2 6=
−→
GL2

2 if and only if
−→
G2 6�

−→
G1 with L2 :

−→
G2\

−→
G1 6→ 0, which allows us to introduce

the conception of linear irreducible. Generally, a continuity flow family {−→GL1
1 ,
−→
GL2

2 , · · · ,−→GLn
n }

is linear irreducible if for any integer i,

−→
G i 6�

⋃

l 6=i

−→
G l with Li :

−→
G i \

⋃

l 6=i

−→
G l 6→ 0, (2.5)

where 1 ≤ i ≤ n. We know the following result on linear generated sets.

Theorem 2.1 Let V be a linear space over a field F and let
{−→
GL1

1 ,
−→
GL2

2 , · · · ,−→GLn
n

}
be an

linear irreducible family, Li :
−→
G i → V for integers 1 ≤ i ≤ n with linear operators A+

vu,

A+
uv for ∀(v, u) ∈ E

(−→
G
)
. Then,

{−→
GL1

1 ,
−→
GL2

2 , · · · ,−→GLn
n

}
is an independent generated set of
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〈−→
G i, 1 ≤ i ≤ n

〉V

, called basis, i.e.,

dim
〈−→
G i, 1 ≤ i ≤ n

〉V
= n.

Proof By definition,
−→
GLi
i , 1 ≤ i ≤ n is a linear generated of

〈−→
G i, 1 ≤ i ≤ n

〉V

with

Li :
−→
G i → V , i.e.,

dim
〈−→
G i, 1 ≤ i ≤ n

〉V

≤ n.

We only need to show that
−→
GLi
i , 1 ≤ i ≤ n is linear independent, i.e.,

dim
〈−→
G i, 1 ≤ i ≤ n

〉V

≥ n,

which implies that if there are n scalars c1, c2, · · · , cn holding with

c1
−→
GL1

1 + c2
−→
GL2

2 + · · ·+ cn
−→
GLn
n = O,

then c1 = c2 = · · · = cn = 0. Notice that {−→G1,
−→
G2, · · · ,

−→
Gn} is linear irreducible. We are easily

know
−→
Gi \

⋃
l 6=i

−→
G l 6= ∅ and find an element x ∈ E(

−→
Gi \

⋃
l 6=i

−→
G l) such that ciLi(x) = 0 for integer

i, 1 ≤ i ≤ n. However, Li(x) 6= 0 by (1.5). We get that ci = 0 for integers 1 ≤ i ≤ n. 2
A subspace of

〈−→
G i, 1 ≤ i ≤ n

〉V

is called an A0-flow space if its elements are all continuity

flows
−→
GL with L(v), v ∈ V

(−→
G
)

are constant v. The result following is an immediately

conclusion of Theorem 2.1.

Theorem 2.2 Let
−→
G,
−→
G1,
−→
G2, · · · ,

−→
Gn be oriented graphs embedded in a space S and V

a linear space over a field F . If
−→
Gv,
−→
Gv1

1 ,
−→
Gv2

2 , · · · ,−→Gvn
n are continuity flows with v(v) =

v,vi(v) = vi ∈ V for ∀v ∈ V
(−→
G
)
, 1 ≤ i ≤ n, then

(1)
〈−→
Gv
〉

is an A0-flow space;

(2)
〈−→
Gv1

1 ,
−→
Gv2

2 , · · · ,−→Gvn
n

〉
is an A0-flow space if and only if

−→
G1 =

−→
G2 = · · · =

−→
Gn or

v1 = v2 = · · · = vn = 0.

Proof By definition,
−→
Gv1

1 +
−→
Gv2

2 and λ
−→
Gv are A0-flows if and only if

−→
G1 =

−→
G1 or

v1 = v2 = 0 by definition. We therefore know this result. 2
2.2 Commutative Rings over Graphs

Furthermore, if V is a commutative ring (R; +, ·), we can extend it over oriented graph family

{−→G1,
−→
G2, · · · ,

−→
Gn} by introducing operation + with (2.1) and operation · following:

−→
GL1

1 ·
−→
GL2

2 =
(−→
G1 \

−→
G2

)L1 ⋃(−→
G1

⋂−→
G2

)L1·L2 ⋃(−→
G2 \

−→
G1

)L2

, (2.6)
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where L1 · L2 : x → L1(x) · L2(x), and particularly, the scalar product for Rn, n ≥ 2 for

x ∈ −→G1

⋂−→
G2.

As we shown in Subsection 2.1,

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +

)
is an Abelian group. We show

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +, ·
)

is a commutative semigroup also.

In fact, define

L×ij(x) =





Li(x), if x ∈ −→G i \
−→
G j

Lj(x), if x ∈ −→G j \
−→
G i

Li(x) · Lj(x), if x ∈ −→G i

⋂−→
G j

Then, we are easily known that
−→
GL1

1 ·
−→
GL2

2 =
(−→
G1

⋃−→
G2

)L×
12

=
(−→
G1

⋃−→
G2

)L×
21

=
−→
GL2

2 ·
−→
GL1

1

for ∀−→GL1
1 ,
−→
GL2

2 ∈
(〈−→

G i, 1 ≤ i ≤ n
〉R

; ·
)

by definition (2.6), i.e., it is commutative.

Let

L×ijk(x) =





Li(x), if x ∈ −→G i \
(−→
G j

⋃−→
Gk

)

Lj(x), if x ∈ −→G j \
(−→
G i

⋃−→
Gk

)

Lk(x), if x ∈ −→Gk \
(−→
G i

⋃−→
G j

)

Lij(x), if x ∈
(−→
G i

⋂−→
G j

)
\ −→Gk

Lik(x), if x ∈
(−→
G i

⋂−→
Gk

)
\ −→G j

Ljk(x), if x ∈
(−→
G j

⋂−→
Gk

)
\ −→G i

Li(x) · Lj(x) · Lk(x) if x ∈ −→G i

⋂−→
G j

⋂−→
Gk

Then,

(−→
GL1

1 ·
−→
GL2

2

)
· −→GL3

3 =
(−→
G1

⋃−→
G2

)L×
12 · −→GL3

3 =
(−→
G1

⋃−→
G2

⋃−→
G3

)L×
123

=
−→
GL1

1 ·
(−→
G2

⋃−→
G3

)L×
23

=
−→
GL1

1 ·
(−→
GL2

2 ·
−→
GL3

3

)
.

Thus, (−→
GL1

1 ·
−→
GL2

2

)
· −→GL3

3 =
−→
GL1

1 ·
(−→
GL2

2 ·
−→
GL3

3

)

for ∀−→GL,
−→
GL1

1 ,
−→
GL2

2 ∈
(〈−→

G i, 1 ≤ i ≤ n
〉R

; ·
)

, which implies that it is a semigroup.

We are also need to verify the distributive laws, i.e.,

−→
GL3

3 ·
(−→
GL1

1 +
−→
GL2

2

)
=
−→
GL3

3 ·
−→
GL1

1 +
−→
GL3

3 ·
−→
GL2

2 (2.7)

and (−→
GL1

1 +
−→
GL2

2

)
· −→GL3

3 =
−→
GL1

1 ·
−→
GL3

3 +
−→
GL2

2 ·
−→
GL3

3 (2.8)
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for ∀−→G3,
−→
G1,
−→
G2 ∈

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +, ·
)

. Clearly,

−→
GL3

3 ·
(−→
GL1

1 +
−→
GL2

2

)
=
−→
GL3

3 ·
(−→
G1

⋃−→
G2

)L+
12

=
(−→
G3

(−→
G1

⋃−→
G2

))L×
3(21)

=
(−→
G3

⋃−→
G1

)L×
31
⋃(−→

G3

⋃−→
G2

)L×
32

=
−→
GL3

3 ·
−→
GL1

1 +
−→
GL3

3 ·
−→
GL2

2 ,

which is the (2.7). The proof for (2.8) is similar. Thus, we get the following result.

Theorem 2.3 Let (R; +, ·) be a commutative ring and let
{−→
GL1

1 ,
−→
GL2

2 , · · · ,−→GLn
n

}
be a linear

irreducible family, Li :
−→
G i → R for integers 1 ≤ i ≤ n with linear operators A+

vu, A
+
uv for

∀(v, u) ∈ E
(−→
G
)
. Then,

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +, ·
)

is a commutative ring.

2.3 Banach or Hilbert Flow Spaces

Let {−→GL1
1 ,
−→
GL2

2 , · · · ,−→GLn
n } be a basis of

〈−→
G i, 1 ≤ i ≤ n

〉V

, where V is a Banach space with a

norm ‖ · ‖. For ∀−→GL ∈
〈−→
G i, 1 ≤ i ≤ n

〉V

, define

∥∥∥−→GL
∥∥∥ =

∑

e∈E
(−→
G
)
‖L(e)‖ . (2.9)

Then, for ∀−→G,−→GL1
1 ,
−→
GL2

2 ∈
〈−→
G i, 1 ≤ i ≤ n

〉V

we are easily know that

(1)
∥∥∥−→GL

∥∥∥ ≥ 0 and
∥∥∥−→GL

∥∥∥ = 0 if and only if
−→
GL = O;

(2)
∥∥∥−→GξL

∥∥∥ = ξ
∥∥∥−→GL

∥∥∥ for any scalar ξ;

(3)
∥∥∥−→GL1

1 +
−→
GL2

2

∥∥∥ ≤
∥∥∥−→GL1

1

∥∥∥+
∥∥∥−→GL2

2

∥∥∥ because of

∥∥∥−→GL1
1 +

−→
GL2

2

∥∥∥ =
∑

e∈E
(−→
G1\
−→
G2

)
‖L1(e)‖

+
∑

e∈E
(−→
G1

⋂ −→
G2

)
‖L1(e) + L2(e)‖+

∑

e∈E
(−→
G2\
−→
G1

)
‖L2(e)‖

≤




∑

e∈E
(−→
G1\
−→
G2

)
‖L1(e)‖+

∑

e∈E
(−→
G1

⋂ −→
G2

)
‖L1(e)‖




+




∑

e∈E
(−→
G2\
−→
G1

)
‖L2(e)‖+

∑

e∈E
(−→
G1

⋂ −→
G2

)
‖L2(e)‖


 =

∥∥∥−→GL1
1

∥∥∥+
∥∥∥−→GL2

2

∥∥∥ .

for ‖L1(e) + L2(e)‖ ≤ ‖L1(e)‖ + ‖L2(e)‖ in Banach space V . Therefore, ‖ · ‖ is also a norm
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on
〈−→
G i, 1 ≤ i ≤ n

〉V

.

Furthermore, if V is a Hilbert space with an inner product 〈·, ·〉, for ∀−→GL1
1 ,
−→
GL2

2 ∈
〈−→
G i, 1 ≤ i ≤ n

〉V

,

define

〈−→
GL1

1 ,
−→
GL2

2

〉
=

∑

e∈E
(−→
G1\
−→
G2

)
〈L1(e), L1(e)〉

+
∑

e∈E
(−→
G1

⋂ −→
G2

)
〈L1(e), L2(e)〉+

∑

e∈E
(−→
G2\
−→
G1

)
〈L2(e), L2(e)〉 . (2.10)

Then we are easily know also that

(1) For ∀−→GL ∈
〈−→
G i, 1 ≤ i ≤ n

〉V

,

〈−→
GL,
−→
GL
〉

=
∑

e∈E
(−→
G
)
〈L(e), L(e)〉 ≥ 0

and
〈−→
GL,
−→
GL
〉

= 0 if and only if
−→
GL = O.

(2) For ∀−→GL1 ,
−→
GL2 ∈

〈−→
G i, 1 ≤ i ≤ n

〉V

,

〈−→
GL1

1 ,
−→
GL2

2

〉
=
〈−→
GL2

2 ,
−→
GL1

1

〉

because of

〈−→
GL1

1 ,
−→
GL2

2

〉
=

∑

e∈E
(−→
G1\
−→
G2

)
〈L1(e), L1(e)〉+

∑

e∈E
(−→
G1

⋂ −→
G2

)
〈L1(e), L2(e)〉

+
∑

e∈E
(−→
G2\
−→
G1

)
〈L2(e), L2(e)〉

=
∑

e∈E
(−→
G1\
−→
G2

)
〈L1(e), L1(e)〉+

∑

e∈E
(−→
G1

⋂ −→
G2

)
〈L2(e), L1(e)〉

+
∑

e∈E
(−→
G2\
−→
G1

)
〈L2(e), L2(e)〉 =

〈−→
GL2

2 ,
−→
GL1

1

〉

for 〈L1(e), L2(e)〉 = 〈L2(e), L1(e)〉 in Hilbert space V .

(3) For
−→
GL,
−→
GL1

1 ,
−→
GL2

2 ∈
〈−→
G i, 1 ≤ i ≤ n

〉V

and λ, µ ∈ F , there is

〈
λ
−→
GL1

1 + µ
−→
GL2

2 ,
−→
GL
〉

= λ
〈−→
GL1

1 ,
−→
GL
〉

+ µ
〈−→
GL2

2 ,
−→
GL
〉
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because of

〈
λ
−→
GL1

1 + µ
−→
GL2

2 ,
−→
GL
〉

=
〈−→
GλL1

1 +
−→
GµL2

2 ,
−→
GL
〉

=

〈(−→
G1 \

−→
G2

)λL1 ⋃(−→
G1

⋂−→
G2

)λL1+µL2 ⋃(−→
G2 \

−→
G1

)µL2

,
−→
GL

〉
.

Define L1λ2µ :
−→
G1

⋃−→
G2 → V by

L1λ2µ(x) =





λL1(x), if x ∈ −→G1 \
−→
G2

µL2(x), if x ∈ −→G2 \
−→
G1

λL1(x) + µL2(x), if x ∈ −→G2

⋂−→
G1

Then, we know that

〈
λ
−→
GL1

1 + µ
−→
GL2

2 ,
−→
GL
〉

=
∑

e∈E
((−→
G1

⋃ −→
G2

)
\
−→
G
)

〈
L1λ2µ(e), L1λ2µ(e)

〉

+
∑

e∈E
((−→
G1

⋃ −→
G2

) ⋂ −→
G
)

〈
L1λ2µ(e), L(e)

〉

+
∑

e∈E
(−→
G\

(−→
G1

⋃ −→
G2

))
〈L(e), L(e)〉 .

and

λ
〈−→
GL1

1 ,
−→
GL
〉

+ µ
〈−→
GL2

2 ,
−→
GL
〉

=
∑

e∈E
(−→
G1\
−→
G
)
〈λL1(e), λL1(e)〉+

∑

e∈E
(−→
G1

⋂ −→
G
)
〈λL1(e), L(e)〉

+
∑

e∈E
(−→
G\
−→
G1

)
〈L(e), L(e)〉+

∑

e∈E
(−→
G2\
−→
G
)
〈µL2(e), µL2(e)〉

+
∑

e∈E
(−→
G2

⋂ −→
G
)
〈µL2(e), L(e)〉+

∑

e∈E
(−→
G\
−→
G2

)
〈L(e), L(e)〉 .

Notice that

∑

e∈E
((−→
G1

⋃ −→
G2

)
\
−→
G
)

〈
L1λ2µ(e), L1λ2µ(e)

〉

=
∑

e∈E
(−→
G1\
−→
G
)
〈λL1(e), λL1(e)〉+

∑

e∈E
(−→
G2\
−→
G
)
〈µL2(e), µL2(e)〉

+
∑

e∈E
((−→
G1

⋃ −→
G2

) ⋂ −→
G
)

〈
L1λ2µ(e), L(e)

〉
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=
∑

e∈E
(−→
G1

⋂ −→
G
)
〈λL1(e), L(e)〉+

∑

e∈E
(−→
G2

⋂ −→
G
)
〈µL2(e), L(e)〉

+
∑

e∈E
(−→
G\
−→
G2

)
〈L(e), L(e)〉

=
∑

e∈E
(−→
G\
−→
G1

)
〈L(e), L(e)〉+

∑

e∈E
(−→
G\
−→
G2

)
〈L(e), L(e)〉 .

We therefore know that

〈
λ
−→
GL1

1 + µ
−→
GL2

2 ,
−→
GL
〉

= λ
〈−→
GL1

1 ,
−→
GL
〉

+ µ
〈−→
GL2

2 ,
−→
GL
〉
.

Thus,
−→
GV is an inner space

If {−→GL1
1 ,
−→
GL2

2 , · · · ,−→GLn
n } is a basis of space

〈−→
G i, 1 ≤ i ≤ n

〉V

, we are easily find the exact

formula on L by L1.L2, · · · , Ln. In fact, let

−→
GL = λ1

−→
GL1

1 + λ2
−→
GL2

2 + · · ·+ λn
−→
GLn
n ,

where (λ1, λ2, · · · , λn) 6= (0, 0, · · · , 0), and let

L̂ :

(
i⋂

l=1

−→
Gkl

)
\


 ⋃

s6=kl,··· ,ki

−→
Gs


→

i∑

l=1

λklLkl

for integers 1 ≤ i ≤ n. Then, we are easily knowing that L̂ is nothing else but the labeling L

on
−→
G by operation (2.1), a generation of (2.3) and (2.4) with

∥∥∥−→GL
∥∥∥ =

n∑

i=1

∑

e∈E
(−→
G i
)

∥∥∥∥∥

i∑

l=1

λklLkl(e)

∥∥∥∥∥ , (2.11)

〈−→
GL,
−→
G′L

′
〉

=

n∑

i=1

∑

e∈E
(−→
G i
)

〈
i∑

l=1

λklL
1
kl(e),

i∑

s=1

λ′ksL
2
ks

〉
, (2.12)

where
−→
G′L

′

= λ′1
−→
GL1

1 + λ′2
−→
GL2

2 + · · ·+ λ′n
−→
GLn
n and

−→
G i =

(
i⋂

l=1

−→
Gkl

)
\


 ⋃

s6=kl,··· ,ki

−→
Gs


 .

We therefore extend the Banach or Hilbert space V over graphs
−→
G1,
−→
G2, · · · ,

−→
Gn following.

Theorem 2.4 Let
−→
G1,
−→
G2, · · · ,

−→
Gn be oriented graphs embedded in a space S and V a Banach

space over a field F . Then
〈−→
G i, 1 ≤ i ≤ n

〉V

with linear operators A+
vu, A

+
uv for ∀(v, u) ∈

E
(−→
G
)

is a Banach space, and furthermore, if V is a Hilbert space,
〈−→
G i, 1 ≤ i ≤ n

〉V
is a

Hilbert space too.
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Proof We have shown,
〈−→
G i, 1 ≤ i ≤ n

〉V

is a linear normed space or inner space if V is a

linear normed space or inner space, and for the later, let

∥∥∥−→GL
∥∥∥ =

√〈−→
GL,
−→
GL
〉

for
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉V

. Then
〈−→
G i, 1 ≤ i ≤ n

〉V

is a normed space and furthermore, it is

a Hilbert space if it is complete. Thus, we are only need to show that any Cauchy sequence is

converges in
〈−→
G i, 1 ≤ i ≤ n

〉V

.

In fact, let
{−→
HLn
n

}
be a Cauchy sequence in

〈−→
G i, 1 ≤ i ≤ n

〉V

, i.e., for any number ε > 0,

there always exists an integer N(ε) such that

∥∥∥−→HLn
n −

−→
HLm
m

∥∥∥ < ε

if n,m ≥ N(ε). Let G V be the continuity flow space on
−→
G =

n⋃
i=1

−→
G i. We embed each

−→
HLn
n to

a
−→
G L̂ ∈ −→G V by letting

L̂n(e) =





Ln(e), if e ∈ E (Hn)

0, if e ∈ E
(−→

G \ −→Hn

)
.

Then

∥∥∥−→G L̂n −−→G L̂m
∥∥∥ =

∑

e∈E
(−→
Gn\

−→
Gm

)
‖Ln(e)‖+

∑

e∈E
(−→
Gn

⋂ −→
Gm

)
‖Ln(e)− Lm(e)‖

+
∑

e∈E
(−→
Gm\

−→
Gn

)
‖−Lm(e)‖ =

∥∥∥−→HLn
n −

−→
HLm
m

∥∥∥ ≤ ε.

Thus,
{−→

G L̂n
}

is a Cauchy sequence also in
−→
G V . By definition,

∥∥∥L̂n(e)− L̂m(e)
∥∥∥ ≤

∥∥∥
−→
G Ln −−→G Lm

∥∥∥ < ε,

i.e., {Ln(e)} is a Cauchy sequence for ∀e ∈ E
(−→

G
)
, which is converges on in V by definition.

Let

L̂(e) = lim
n→∞

L̂n(e)

for ∀e ∈ E
(−→

G
)
. Then it is clear that lim

n→∞

−→
G L̂n =

−→
G L̂, which implies that {−→G L̂n}, i.e.,

{−→
HLn
n

}
is converges to

−→
G L̂ ∈ −→G V , an element in

〈−→
G i, 1 ≤ i ≤ n

〉V

because of L̂(e) ∈ V for

∀e ∈ E
(−→

G
)

and
−→
G =

n⋃
i=1

−→
G i. 2
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§3. Differential on Continuity Flows

3.1 Continuity Flow Expansion

Theorem 2.4 enables one to establish differentials and generalizes results in classical calculus in

space
〈−→
G i, 1 ≤ i ≤ n

〉V

. Let L be kth differentiable to t on a domain D ⊂ R, where k ≥ 1.

Define

d
−→
GL

dt
=
−→
G

dL
dt and

t∫

0

−→
GLdt =

−→
G

t∫
0

Ldt
.

Then, we are easily to generalize Taylor formula in
〈−→
G i, 1 ≤ i ≤ n

〉V

following.

Theorem 3.1(Taylor) Let
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

and there exist kth order derivative of

L to t on a domain D ⊂ R, where k ≥ 1. If A+
vu, A

+
uv are linear for ∀(v, u) ∈ E

(−→
G
)
, then

−→
GL =

−→
GL(t0) +

t− t0
1!

−→
GL′(t0) + · · ·+ (t− t0)k

k!

−→
GL(k)(t0) + o

(
(t− t0)−k

−→
G
)
, (3.1)

for ∀t0 ∈ D , where o
(
(t− t0)−k

−→
G
)

denotes such an infinitesimal term L̂ of L that

lim
t→t0

L̂(v, u)

(t− t0)k
= 0 for ∀(v, u) ∈ E

(−→
G
)
.

Particularly, if L(v, u) = f(t)cvu, where cvu is a constant, denoted by f(t)
−→
GLC with LC :

(v, u)→ cvu for ∀(v, u) ∈ E
(−→
G
)

and

f(t) = f(t0) +
(t − t0)

1!
f ′(t0) +

(t − t0)
2

2!
f ′′(t0) + · · · +

(t − t0)
k

k!
f (k)(t0) + o

(
(t − t0)

k
)

,

then

f(t)
−→
GLC = f(t) · −→GLC .

Proof Notice that L(v, u) has kth order derivative to t on D for ∀(v, u) ∈ E
(−→
G
)
. By

applying Taylor formula on t0, we know that

L(v, u) = L(v, u)(t0) +
L′(v, u)(t0)

1!
(t− t0) + · · ·+ L(k)(v,u)(t0)

k!
+ o

(
(t− t0)k

)

if t→ t0, where o
(
(t− t0)k

)
is an infinitesimal term L̂(v, u) of L(v, u) hold with

lim
t→t0

L̂(v, u)

(t− t0)t
= 0
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for ∀(v, u) ∈ E
(−→
G
)
. By operations (2.1) and (2.2),

−→
GL1 +

−→
GL2 =

−→
GL1+L2 and λ

−→
GL =

−→
Gλ
−→
L

because A+
vu, A

+
uv are linear for ∀(v, u) ∈ E

(−→
G
)
. We therefore get

−→
GL =

−→
GL(t0) +

(t− t0)
1!

−→
GL′(t0) + · · ·+ (t− t0)k

k!

−→
GL(k)(t0) + o

(
(t− t0)−k

−→
G
)

for t0 ∈ D , where o
(
(t− t0)−k

−→
G
)

is an infinitesimal term L̂ of L, i.e.,

lim
t→t0

L̂(v, u)

(t− t0)t
= 0

for ∀(v, u) ∈ E
(−→
G
)
. Calculation also shows that

f(t)
−→
GLC(v,u) =

−→
Gf(t)LC(v,u) =

−→
G

(
f(t0)+

(t−t0)
1! f ′(t0)···+

(t−t0)k

k! f(k)(t0)+o((t−t0)k)
)
cvu

= f(t0)cvu
−→
G +

f ′(t0)(t− t0)
1!

cvu
−→
G +

f”(t0)(t− t0)2
2!

cvu
−→
G

+ · · ·+ f (k)(t0) (t− t0)k
k!

cvu
−→
G + o

(
(t− t0)k

)−→
G

=

(
f(t0) +

(t− t0)
1!

f ′(t0) · · ·+
(t− t0)k

k!
f (k)(t0) + o

(
(t− t0)k

))
cvu
−→
G

= f(t)cvu
−→
G = f(t) · −→GLC(v,u),

i.e.,

f(t)
−→
GLC = f(t) · −→GLC .

This completes the proof. 2
Taylor expansion formula for continuity flow

−→
GL enables one to find interesting results on−→

GL such as those of the following.

Theorem 3.2 Let f(t) be a k differentiable function to t on a domain D ⊂ R with 0 ∈ D and

f(0
−→
G) = f(0)

−→
G . If A+

vu, A
+
uv are linear for ∀(v, u) ∈ E

(−→
G
)
, then

f(t)
−→
G = f

(
t
−→
G
)
. (3.2)

Proof Let t0 = 0 in the Taylor formula. We know that

f(t) = f(0) +
f ′(0)

1!
t+

f ′′(0)

2!
t2 + · · ·+ f (k)(0)

k!
tk + o

(
tk
)
.
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Notice that

f(t)
−→
G =

(
f(0) +

f ′(0)

1!
t+

f ′′(0)

2!
t2 + · · ·+ f (k)(0)

k!
tk + o

(
tk
))−→

G

=
−→
Gf(0)+ f′(0)

1! t+ f′′(0)
2! t2+···+ f(k)(0)

k! tk+o(tk)

= f(0)
−→
G +

f ′(0)t

1!

−→
G + · · ·+ f (k)(0)tk

k!

−→
G + o

(
tk
)−→
G

and by definition,

f
(
t
−→
G
)

= f
(
0
−→
G
)

+
f ′(0)

1!

(
t
−→
G
)

+
f ′′(0)

2!

(
t
−→
G
)2

+ · · ·+ f (k)(0)

k!

(
t
−→
G
)k

+ o

((
t
−→
G
)k)

= f
(
0
−→
G
)

+
f ′(0)

1!
t
−→
G +

f ′′(0)

2!
t2
−→
G + · · ·+ f (k)(0)

k!
tk
−→
G + o

(
tk
)−→
G

because of
(
t
−→
G
)i

=
−→
G ti = ti

−→
G for any integer 1 ≤ i ≤ k. Notice that f(0

−→
G) = f(0)

−→
G . We

therefore get that

f(t)
−→
G = f

(
t
−→
G
)
. 2

Theorem 3.2 enables one easily getting Taylor expansion formulas by f
(
t
−→
G
)
. For example,

let f(t) = et. Then

et
−→
G = et

−→
G (3.3)

by Theorem 3.5. Notice that (et)
′
= et and e0 = 1. We know that

et
−→
G = et

−→
G =

−→
G +

t

1!

−→
G +

t2

2!

−→
G + · · ·+ tk

k!

−→
G + · · · (3.4)

and

et
−→
G · es

−→
G =

−→
Get · −→G es =

−→
Get·es =

−→
Get+s = e(t+s)

−→
G , (3.5)

where t and s are variables, and similarly, for a real number α if |t| < 1,

(−→
G + t

−→
G
)α

=
−→
G +

αt

1!

−→
G + · · ·+ α(α − 1) · · · (α− n+ 1)tn

n!

−→
G + · · · (3.6)

3.2 Limitation

Definition 3.3 Let
−→
GL,
−→
GL1

1 ∈
〈−→
G i, 1 ≤ i ≤ n

〉V

with L,L1 dependent on a variable t ∈
[a, b] ⊂ (−∞,+∞) and linear continuous end-operators A+

vu for ∀(v, u) ∈ E
(−→
G
)
. For t0 ∈

[a, b] and any number ε > 0, if there is always a number δ(ε) such that if |t − t0| ≤ δ(ε)

then
∥∥∥−→GL1

1 −
−→
GL
∥∥∥ < ε, then,

−→
GL1

1 is said to be converged to
−→
GL as t → t0, denoted by

lim
t→t0

−→
GL1

1 =
−→
GL. Particularly, if

−→
GL is a continuity flow with a constant L(v) for ∀v ∈ V

(−→
G
)

and t0 = +∞,
−→
GL1

1 is said to be
−→
G-synchronized.
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Applying Theorem 1.4, we know that there are positive constants cvu ∈ R such that

‖A+
vu‖ ≤ c+vu for ∀(v, u) ∈ E

(−→
G
)
.

By definition, it is clear that

∥∥∥−→GL1
1 −

−→
GL
∥∥∥

=

∥∥∥∥
(−→

G1 \
−→
G
)L1

∥∥∥∥ +

∥∥∥∥
(−→

G1

⋂−→
G
)L1−L

∥∥∥∥ +

∥∥∥∥
(−→

G \
−→
G1

)−L
∥∥∥∥

=
∑

u∈NG1\G(v)

∥∥∥∥L
A′+
vu

1 (v, u)

∥∥∥∥ +
∑

u∈NG1
⋂
G(v)

∥∥∥∥
(

L
A′+
vu

1 − L
A+
vu

vu

)
(v, u)

∥∥∥∥ +
∑

u∈NG\G1
(v)

∥∥∥−LA+
vu(v, u)

∥∥∥

≤
∑

u∈NG1\G(v)

c+
vu‖L1(v, u)‖ +

∑

u∈NG1
⋂
G(v)

c+
vu‖ (L1 − L) (v, u)‖ +

∑

u∈NG\G1
(v)

c+
vu‖ − L(v, u)‖.

and ‖L(v, u)‖ ≥ 0 for (v, u) ∈ E
(−→
G
)

and E
(−→
G1

)
. Let

cmax
G1G =

{
max

(v,u)∈E(G1)
c+vu, max

(v,u)∈E(G1)
c+vu

}
.

If
∥∥∥−→GL1

1 −
−→
GL
∥∥∥ < ε, we easily get that ‖L1(v, u)‖ < cmax

G1G
ε for (v, u) ∈ E

(−→
G1 \

−→
G
)
,

‖(L1 − L)(v, u)‖ < cmax
G1G

ε for (v, u) ∈ E
(−→
G1

⋂−→
G
)

and ‖ − L(v, u)‖ < cmax
G1G

ε for (v, u) ∈
E
(−→
G \ −→G1

)
.

Conversely, if ‖L1(v, u)‖ < ε for (v, u) ∈ E
(−→
G1 \

−→
G
)
, ‖(L1 − L)(v, u)‖ < ε for (v, u) ∈

E
(−→
G1

⋂−→
G
)

and ‖ − L(v, u)‖ < ε for (v, u) ∈ E
(−→
G \ −→G1

)
, we easily know that

∥∥∥−→GL1
1 −

−→
GL
∥∥∥ =

∑

u∈NG1\G(v)

∥∥∥LA
′+
vu

1 (v, u)
∥∥∥+

∑

u∈NG1
⋂
G(v)

∥∥∥
(
L
A′+
vu

1 − LA
+
vu

vu

)
(v, u)

∥∥∥

+
∑

u∈NG\G1
(v)

∥∥∥−LA+
vu(v, u)

∥∥∥

≤
∑

u∈NG1\G(v)

c+vu‖L1(v, u)‖+
∑

u∈NG1
⋂
G(v)

c+vu‖ (L1 − L) (v, u)‖

+
∑

u∈NG\G1
(v)

c+vu‖ − L(v, u)‖

<
∣∣∣−→G1 \

−→
G
∣∣∣ cmax
G1Gε+

∣∣∣−→G1

⋂−→
G
∣∣∣ cmax
G1Gε+

∣∣∣−→G \ −→G1

∣∣∣ cmax
G1Gε =

∣∣∣−→G1

⋃−→
G
∣∣∣ cmax
G1Gε.

Thus, we get an equivalent condition for lim
t→t0

−→
GL1

1 =
−→
GL following.

Theorem 3.4 lim
t→t0

−→
GL1

1 =
−→
GL if and only if for any number ε > 0 there is always a number δ(ε)

such that if |t − t0| ≤ δ(ε) then ‖L1(v, u)‖ < ε for (v, u) ∈ E
(−→
G1 \

−→
G
)
, ‖(L1 − L)(v, u)‖ < ε

for (v, u) ∈ E
(−→
G1

⋂−→
G
)

and ‖ − L(v, u)‖ < ε for (v, u) ∈ E
(−→
G \ −→G1

)
,i.e.,

−→
GL1

1 −
−→
GL is an

infinitesimal or lim
t→t0

(−→
GL1

1 −
−→
GL
)

= O.
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If lim
t→t0

−→
GL, lim

t→t0

−→
G1

L1 and lim
t→t0

−→
G2

L2 exist, the formulas following are clearly true by defi-

nition:

lim
t→t0

(−→
G1

L1 +
−→
G2

L2

)
= lim

t→t0

−→
G1

L1 + lim
t→t0

−→
G2

L2 ,

lim
t→t0

(−→
G1

L1 · −→G2
L2

)
= lim

t→t0

−→
G1

L1 · lim
t→t0

−→
G2

L2 ,

lim
t→t0

(−→
GL ·

(−→
G1

L1 +
−→
G2

L2

))
= lim
t→t0

−→
GL · lim

t→t0

−→
G1

L1 + lim
t→t0

−→
GL · lim

t→t0

−→
G2

L2 ,

lim
t→t0

((−→
G1

L1 +
−→
G2

L2

)
· −→GL

)
= lim
t→t0

−→
G1

L1 · lim
t→t0

−→
GL + lim

t→t0

−→
G2

L2 · lim
t→t0

−→
GL

and furthermore, if lim
t→t0

−→
G2

L2 6= O, then

lim
t→t0

(−→
G1

L1

−→
G2

L2

)
= lim

t→t0

(−→
G1

L1 · −→G2
L−1

2

)
=

lim
t→t0

−→
G1

L1

lim
t→t0

−→
G2

L2

.

Theorem 3.5(L’Hospital’s rule) If lim
t→t0

−→
G1

L1 = O, lim
t→t0

−→
G2

L2 = O and L1, L2 are differentiable

respect to t with lim
t→t0

L′1(v, u) = 0 for (v, u) ∈ E
(−→
G1 \

−→
G2

)
, lim
t→t0

L′2(v, u) 6= 0 for (v, u) ∈

E
(−→
G1

⋂−→
G2

)
and lim

t→t0
L′2(v, u) = 0 for (v, u) ∈ E

(−→
G2 \

−→
G1

)
, then,

lim
t→t0

(−→
G1

L1

−→
G2

L2

)
=

lim
t→t0

−→
G1

L′
1

lim
t→t0

−→
G2

L′
2

.

Proof By definition, we know that

lim
t→t0

(−→
G1

L1

−→
G2

L2

)
= lim

t→t0

(−→
G1

L1 · −→G2
L−1

2

)

= lim
t→t0

(−→
G1 \

−→
G2

)L1
(−→
G1

⋂−→
G2

)L1·L
−1
2
(−→
G2 \

−→
G1

)L2

= lim
t→t0

(−→
G1

⋂−→
G2

)L1·L
−1
2

= lim
t→t0

(−→
G1

⋂−→
G2

) L1

L
−1
2

=
(−→
G1

⋂−→
G2

) lim
t→t0

L1

L
−1
2 =

(−→
G1

⋂−→
G2

)
lim
t→t0

L′
1

lim
t→t0

L′−1
2

=
(−→
G1 \

−→
G2

) lim
t→t0

L′
1
(−→
G1

⋂−→
G2

) lim
t→t0

L′
1 · lim

t→t0
L′−1

2
(−→
G2 \

−→
G1

) lim
t→t0

L′
2

=
−→
G

lim
t→t0

L′
1

1 · −→G
lim
t→t0

L′−1
2

2 =
lim
t→t0

−→
G
L′

1
1

lim
t→t0

−→
G
L′

2
2

.

This completes the proof. 2
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Corollary 3.6 If lim
t→t0

−→
GL1 = O, lim

t→t0

−→
GL2 = O and L1, L2 are differentiable respect to t with

lim
t→t0

L′2(v, u) 6= 0 for (v, u) ∈ E
(−→
G
)
, then

lim
t→t0

(−→
GL1

−→
GL2

)
=

lim
t→t0

−→
GL′

1

lim
t→t0

−→
GL′

2

.

Generally, by Taylor formula

−→
GL =

−→
GL(t0) +

t− t0
1!

−→
GL′(t0) + · · ·+ (t− t0)k

k!

−→
GL(k)(t0) + o

(
(t− t0)−k

−→
G
)
,

if L1(t0) = L′1(t0) = · · · = L
(k−1)
1 (t0) = 0 and L2(t0) = L′2(t0) = · · · = L

(k−1)
2 (t0) = 0 but

L
(k)
2 (t0) 6= 0, then

−→
GL1

1 =
(t− t0)k

k!

−→
G
L

(k)
1 (t0)

1 + o
(
(t− t0)−k

−→
G1

)
,

−→
GL2

2 =
(t− t0)k

k!

−→
G
L

(k)
2 (t0)

2 + o
(
(t− t0)−k

−→
G2

)
.

We are easily know the following result.

Theorem 3.7 If lim
t→t0

−→
G1

L1 = O, lim
t→t0

−→
G2

L2 = O and L1(t0) = L′1(t0) = · · · = L
(k−1)
1 (t0) = 0

and L2(t0) = L′2(t0) = · · · = L
(k−1)
2 (t0) = 0 but L

(k)
2 (t0) 6= 0, then

lim
t→t0

−→
G1

L1

−→
GL2

2

=
lim
t→t0

−→
G
L

(k)
1 (t0)

1

lim
t→t0

−→
G
L

(k)
2 (t0)

2

.

Example 3.8 Let
−→
G1 =

−→
G2 =

−→
C n, A+

vivi+1
= 1, A+

vivi−1
= 2 and

fi =
f1 +

(
2i−1 − 1

)
F (x)

2i−1
+

n!

(2n+ 1)et

for integers 1 ≤ i ≤ n in Fig.4. - ?���6
v1 v2

v3vivi+1vn

f1

f2

f3fi

fn

Fig.4
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Calculation shows That

L(vi) = 2fi+1 − fi = 2× f1 +
(
2i − 1

)
F (x)

2i
− f1 +

(
2i−1 − 1

)
F (x)

2i−1

= F (x) +
n!

(2n+ 1)et
.

Calculation shows that lim
t→∞

L(vi) = F (x), i.e., lim
t→∞

−→
C L
n =

−→
C L̂
n , where, L̂(vi) = F (x) for

integers 1 ≤ i ≤ n, i.e.,
−→
C L
n is
−→
G -synchronized.

§4. Continuity Flow Equations

A continuity flow
−→
GL is in fact an operator L :

−→
G → B determined by L(v, u) ∈ B for

∀(v, u) ∈ E
(−→
G
)
. Generally, let

[L]m×n =




L11 L12 · · · L1n

L21 L22 · · · L2n

· · · · · · · · · · · ·
Lm1 Lm2 · · · Lmn




with Lij :
−→
G → B for 1 ≤ i ≤ m, 1 ≤ j ≤ n, called operator matrix. Particularly, if for integers

1 ≤ i ≤ m, 1 ≤ j ≤ n, Lij :
−→
G → R, we can also determine its rank as the usual, labeled the

edge (v, u) by Rank[L]m×n for ∀(v, u) ∈ E
(−→
G
)

and get a labeled graph
−→
GRank[L]. Then we

get a result following.

Theorem 4.1 A linear continuity flow equations





x1
−→
GL11 + x2

−→
GL12 + · · ·+ xn

−→
GLn1 =

−→
GL1

x1
−→
GL21 + x2

−→
GL22 + · · ·+ xn

−→
GL2n =

−→
GL2

· · · · · · · · · · · · · · · · · · · · · · · ·
x1
−→
GLn1 + x2

−→
GLn2 + · · ·+ xn

−→
GLnn =

−→
GLn

(4.1)

is solvable if and only if −→
GRank[L] =

−→
GRank[L], (4.2)

where

[L] =




L11 L12 · · · L1n

L21 L22 · · · L2n

· · · · · · · · · · · ·
Ln1 Ln2 · · · Lnn




and
[
L
]

=




L11 L12 · · · L1n L1

L21 L22 · · · L2n L2

· · · · · · · · · · · ·
Ln1 Ln2 · · · Lnn Ln



.
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Proof Clearly, if (4.1) is solvable, then for ∀(v, u) ∈ E
(−→
G
)
, the linear equations





x1L11(v, u) + x2L12(v, u) + · · ·+ xnLn1(v, u0 = L1(v, u)

x1L21(v, u) + x2L22(v, u) + · · ·+ xnL21(v, u0 = L2(v, u)

· · · · · · · · · · · · · · · · · · · · · · · ·
x1Ln1(v, u) + x2Ln2(v, u) + · · ·+ xnLnn(v, u0 = Ln(v, u)

is solvable. By linear algebra, there must be

Rank




L11(v, u) L12(v, u) · · · L1n(v, u)

L21(v, u) L22(v, u) · · · L2n(v, u)

· · · · · · · · · · · ·
Ln1(v, u) Ln2(v, u) · · · Lnn(v, u)




=

Rank




L11(v, u) L12(v, u) · · · L1n(v, u) L1(v, u)

L21(v, u) L22(v, u) · · · L2n(v, u) L2(v, u)

· · · · · · · · · · · ·
Ln1(v, u) Ln2(v, u) · · · Lnn(v, u) Ln(v, u)



,

which implies that −→
GRank[L] =

−→
GRank[L].

Conversely, if the (4.2) is hold, then for ∀(v, u) ∈ E
(−→
G
)
, the linear equations





x1L11(v, u) + x2L12(v, u) + · · ·+ xnLn1(v, u0 = L1(v, u)

x1L21(v, u) + x2L22(v, u) + · · ·+ xnL21(v, u0 = L2(v, u)

· · · · · · · · · · · · · · · · · · · · · · · ·
x1Ln1(v, u) + x2Ln2(v, u) + · · ·+ xnLnn(v, u0 = Ln(v, u)

is solvable, i.e., the equations (4.1) is solvable. 2
Theorem 4.2 A continuity flow equation

λs
−→
GLs + λs−1−→GLs−1 + · · ·+−→GL0 = O (4.3)

always has solutions
−→
GLλ with Lλ : (v, u) ∈ E

(−→
G
)
→ {λvu1 , λvu2 , · · · , λvus }, where λvui , 1 ≤ i ≤ s

are roots of the equation

αvus λs + αvus−1λ
s−1 + · · ·+ αvu0 = 0 (4.4)

with Li : (v, u)→ αv,ui , αvus 6= 0 a constant for (v, u) ∈ E
(−→
G
)

and 1 ≤ i ≤ s.

For (v, u) ∈ E
(−→
G
)
, if nvu is the maximum number i with Li(v, u) 6= 0, then there are
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∏

(v,u)∈E
(−→
G
) n

vu solutions
−→
GLλ , and particularly, if Ls(v, u) 6= 0 for ∀(v, u) ∈ E

(−→
G
)
, there are

s

∣∣∣E
(−→
G
)∣∣∣

solutions
−→
GLλ of equation (4.3).

Proof By the fundamental theorem of algebra, we know there are s roots λvu1 , λvu2 , · · · , λvus
for the equation (4.3). Whence, Lλ

−→
G is a solution of equation (4.2) because of

(
λ
−→
G
)s
· −→GLs +

(
λ
−→
G
)s−1

· −→GLs−1 + · · ·+
(
λ
−→
G
)0

· −→GL0

=
−→
GλsLs +

−→
Gλs−1Ls−1 + · · ·+−→Gλ0L0 =

−→
GλsLs+λ

s−1Ls−1+···+L0

and

λsLs + λs−1Ls−1 + · · ·+ L0 : (v, u)→ αvus λs + αvus−1λ
s−1 + · · ·+ αvu0 = 0,

for ∀(v, u) ∈ E
(−→
G
)
, i.e.,

(
λ
−→
G
)s
· −→GLs +

(
λ
−→
G
)s−1

· −→GLs−1 + · · ·+
(
λ
−→
G
)0

· −→GL0 = 0
−→
G = O.

Count the number of different Lλ for (v, u) ∈ E
(−→
G
)
. It is nothing else but just nvu.

Therefore, the number of solutions of equation (4.3) is
∏

(v,u)∈E
(−→
G
) n

vu. 2
Theorem 4.3 A continuity flow equation

d
−→
GL

dt
=
−→
GLα · −→GL (4.5)

with initial values
−→
GL
∣∣∣
t=0

=
−→
GLβ always has a solution

−→
GL =

−→
GLβ ·

(
etLα
−→
G
)
,

where Lα : (v, u)→ αvu, Lβ : (v, u)→ βvu are constants for ∀(v, u) ∈ E
(−→
G
)
.

Proof A calculation shows that

−→
G

dL
dt =

d
−→
GL

dt
=
−→
GLα · −→GL =

−→
GLα·L,

which implies that
dL

dt
= αvuL (4.6)

for ∀(v, u) ∈ E
(−→
G
)
.

Solving equation (4.6) enables one knowing that L(v, u) = βvue
tαvu for ∀(v, u) ∈ E

(−→
G
)
.
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Whence, the solution of (4.5) is

−→
GL =

−→
GLβe

tLα

=
−→
GLβ ·

(
etLα
−→
G
)

and conversely, by Theorem 3.2,

d
−→
GLβe

tLα

dt
=
−→
G

d(LβetLα)
dt =

−→
GLαLβe

tLα

=
−→
GLα · −→GLβe

tLα

,

i.e.,

d
−→
GL

dt
=
−→
GLα · −→GL

if
−→
GL =

−→
GLβ ·

(
etLα
−→
G
)
. This completes the proof. 2

Theorem 4.3 can be generalized to the case of L : (v, u)→ Rn, n ≥ 2 for ∀(v, u) ∈ E
(−→
G
)
.

Theorem 4.4 A complex flow equation

d
−→
GL

dt
=
−→
GLα · −→GL (4.7)

with initial values
−→
GL
∣∣∣
t=0

=
−→
GLβ always has a solution

−→
GL =

−→
GLβ ·

(
etLα
−→
G
)
,

where Lα : (v, u) →
(
α1
vu, α

2
vu, · · · , αnvu

)
, Lβ : (v, u) →

(
β1
vu, β

2
vu, · · · , βnvu

)
with constants

αivu, β
i
vu, 1 ≤ i ≤ n for ∀(v, u) ∈ E

(−→
G
)
.

Theorem 4.5 A complex flow equation

−→
GLαn · d

n−→GL

dtn
+
−→
GLαn−1 · d

n−1−→GL

dtn−1
+ · · ·+−→GLα0 · −→GL = O (4.8)

with Lαi : (v, u) → αvui constants for ∀(v, u) ∈ E
(−→
G
)

and integers 0 ≤ i ≤ n always has a

general solution
−→
GLλ with

Lλ : (v, u)→
{

0,

s∑

i=1

hi(t)e
λvui t

}

for (v, u) ∈ E
(−→
G
)
, where hmi(t) is a polynomial of degree≤ mi−1 on t, m1+m2+· · ·+ms = n

and λvu1 , λvu2 , · · · , λvus are the distinct roots of characteristic equation

αvun λn + αvun−1λ
n−1 + · · ·+ αvu0 = 0
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with αvun 6= 0 for (v, u) ∈ E
(−→
G
)
.

Proof Clearly, the equation (4.8) on an edge (v, u) ∈ E
(−→
G
)

is

αvun
dnL(v, u)

dtn
+ αvun−1

dn−1L(v, u)

dtn−1
+ · · ·+ α0 = 0. (4.9)

As usual, assuming the solution of (4.6) has the form
−→
GL = eλt

−→
G . Calculation shows that

d
−→
GL

dt
= λeλt

−→
G = λ

−→
G,

d2−→GL

dt2
= λ2eλt

−→
G = λ2−→G,

· · · · · · · · · · · · · · · · · · · · · · · · ,
dn
−→
GL

dtn
= λneλt

−→
G = λn

−→
G.

Substituting these calculation results into (4.8), we get that

(
λn
−→
GLαn + λn−1−→GLαn−1 + · · ·+−→GLα0

)
· −→GL = O,

i.e., −→
G(λn·Lαn+λn−1·Lαn−1

+···+Lα0)·L = O,

which implies that for ∀(v, u) ∈ E
(−→
G
)
,

λnαvun + λn−1αvun−1 + · · ·+ α0 = 0 (4.10)

or

L(v, u) = 0.

Let λvu1 , λvu2 , · · · , λvus be the distinct roots with respective multiplicities mvu
1 ,mvu

2 , · · · ,mvu
s

of equation (4.8). We know the general solution of (4.9) is

L(v, u) =

s∑

i=1

hi(t)e
λvui t

with hmi(t) a polynomial of degree≤mi−1 on t by the theory of ordinary differential equations.

Therefore, the general solution of (4.8) is
−→
GLλ with

Lλ : (v, u)→
{

0,

s∑

i=1

hi(t)e
λvui t

}

for (v, u) ∈ E
(−→
G
)
. 2
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§5. Complex Flow with Continuity Flows

The difference of a complex flow
−→
GL with that of a continuity flow

−→
GL is the labeling L on a

vertex is L(v) = ẋv or xv. Notice that

d

dt


 ∑

u∈NG(v)

LA
+
vu (v, u)


 =

∑

u∈NG(v)

d

dt
LA

+
vu (v, u)

for ∀v ∈ V
(−→
G
)
. There must be relations between complex flows

−→
GL and continuity flows

−→
GL.

We get a general result following.

Theorem 5.1 If end-operators A+
vu, A

+
uv are linear with

[∫ t

0

, A+
vu

]
=

[∫ t

0

, A+
uv

]
= 0 and

[
d

dt
, A+

vu

]
=

[
d

dt
, A+

uv

]
= 0 for ∀(v, u) ∈ E

(−→
G
)
, and particularly, A+

vu = 1V , then
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

is a continuity flow with a constant L(v) for ∀v ∈ V
(−→
G
)

if and only if
∫ t

0

−→
GLdt is such a continuity flow with a constant one each vertex v, v ∈ V

(−→
G
)
.

Proof Notice that if A+
vu = 1V , there always is

[∫ t

0

, A+
vu

]
= 0 and

[
d

dt
, A+

vu

]
= 0, and by

definition, we know that

[∫ t

0

, A+
vu

]
= 0 ⇔

∫ t

0

◦A+
vu = A+

vu ◦
∫ t

0

,

[
d

dt
, A+

vu

]
= 0 ⇔ d

dt
◦A+

vu = A+
vu ◦

d

dt
.

If
−→
GL is a continuity flow with a constant L(v) for ∀v ∈ V

(−→
G
)
, i.e.,

∑

u∈NG(v)

LA
+
vu (v, u) = v for ∀v ∈ V

(−→
G
)
,

we are easily know that

∫ t

0


 ∑

u∈NG(v)

LA+
vu (v, u)


 dt =

∑

u∈NG(v)

(∫ t

0

◦A+
vu

)
L(v, u)dt =

∑

u∈NG(v)

(
A+

vu ◦

∫ t

0

)
L(v, u)dt

=
∑

u∈NG(v)

A+
vu

(∫ t

0

L(v, u)dt

)
=

∫ t

0

vdt

for ∀v ∈ V
(−→
G
)

with a constant vector

∫ t

0

vdt, i.e.,

∫ t

0

−→
GLdt is a continuity flow with a

constant flow on each vertex v, v ∈ V
(−→
G
)
.

Conversely, if

∫ t

0

−→
GLdt is a continuity flow with a constant flow on each vertex v, v ∈
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V
(−→
G
)
, i.e.,

∑

u∈NG(v)

A+
vu ◦

∫ t

0

L(v, u)dt = v for ∀v ∈ V
(−→
G
)
,

then

−→
GL =

d

(∫ t

0

−→
GLdt

)

dt

is such a continuity flow with a constant flow on vertices in
−→
G because of

d

(
∑

u∈NG(v)

LA
+
vu(v, u)

)

dt
=

∑

u∈NG(v)

d

dt
◦A+

vu ◦
∫ t

0

L(v, u)dt

=
∑

u∈NG(v)

A+
vu ◦

d

dt
◦
∫ t

0

L(v, u)dt =
∑

u∈NG(v)

L(v, u)A
+
vu =

dv

dt

with a constant flow
dv

dt
on vertex v, v ∈ V

(−→
G
)
. This completes the proof. 2

If all end-operatorsA+
vu andA+

uv are constant for ∀(v, u) ∈ E
(−→
G
)
, the conditions

[∫ t

0

, A+
vu

]
=

[∫ t

0

, A+
uv

]
= 0 and

[
d

dt
, A+

vu

]
=

[
d

dt
, A+

uv

]
= 0 are clearly true. We immediately get a conclu-

sion by Theorem 5.1 following.

Corollary 5.2 For ∀(v, u) ∈ E
(−→
G
)
, if end-operators A+

vu and A+
uv are constant cvu, cuv for

∀(v, u) ∈ E
(−→
G
)
, then

−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

is a continuity flow with a constant L(v)

for ∀v ∈ V
(−→
G
)

if and only if

∫ t

0

−→
GLdt is such a continuity flow with a constant flow on each

vertex v, v ∈ V
(−→
G
)
.
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Labeled Graph – A Mathematical Element

Abstract: The universality of contradiction and connection of things in nature implies

that a thing is nothing else but a labeled topological graph GL with a labeling map L :

V (G)
⋃

E(G) → L in space, which concludes also that labeled graph should be an element

for understanding things in the world. This fact proposes 2 directions on labeled graphs: (1)

verify a graph family G whether or not they can be labeled by a labeling L constraint on

special conditions, and (2) establish mathematical systems such as those of groups, rings,

linear spaces or Banach spaces over graph G, i.e., view labeled graphs GL as elements of that

system. However, all results on labeled graphs are nearly concentrated on the first in past

decades, which is in fact searching structure G of the labeling set L . The main purpose of this

survey is to show the role of labeled graphs in extending mathematical systems over graphs G,

particularly graphical tensors and
−→
G -flows with conservation laws and applications to physics

and other sciences such as those of labeled graphs with sets or Euclidean spaces R
n labeling,

labeled graph solutions of non-solvable systems of differential equations with global stability

and extended Banach or Hilbert
−→
G -flow spaces. All of these makes it clear that holding

on the reality of things by classical mathematics is partial or local, only on the coherent

behaviors of things for itself homogenous without contradictions, but the mathematics over

graphs G is applicable for contradictory systems over G because contradiction is universal in

the nature, which can turn a contradictory system to a compatible one, i.e., mathematical

combinatorics.

Key Words: Topological graph, labeling, group, linear space, Banach space, Smarandache

multispace, non-solvable equation, graphical tensor,
−→
G -flow, mathematical combinatorics.

AMS(2010): 03A10,05C15,20A05, 34A26,35A01,51A05,51D20,53A35.

§1. Introduction

Just as the philosophical question on human beings: where we come from, and where to go?

There is also a question on our world: Is our world continuous or discrete? Different peoples

with different world views will answer this question differently, particularly for researchers on

continuous or discrete sciences, for instance, the fluid mechanics or elementary particles with

interactions. Actually, a natural thing T is complex, ever hybrid with other things on the eyes

of human beings sometimes. Thus, holding on the true face of thing T is difficult, maybe result

in disputation for persons standing on different views or positions for T , which also implies that

all contradictions are man made, not the nature of things. For this fact, a typical example was

1A plenary report at the 4th International Conference on Discrete Mathematics and Graph Theory Day-XII,
June 10-11, 2016, Banglore, India.

2International J.Math.Combin, Vol.3(2016), 27-56.
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shown once by the famous fable “the blind men with an elephant”. In this fable, there are six

blind men were asked to determine what an elephant looked like by feeling different parts of the

elephant’s body. The man touched the elephant’s leg, tail, trunk, ear, belly or tusk respectively

claims it’s like a pillar, a rope, a tree branch, a hand fan, a wall or a solid pipe, such as those

shown in Fig.1 following. Each of them insisted on his own and not accepted others. They then

entered into an endless argument.

Fig.1

All of you are right! A wise man explains to them: why are you telling it differently is

because each one of you touched the different part of the elephant. So, actually the elephant has

all those features what you all said.

Thus, the best result on an elephant for these blind men is

An elephant = {4 pillars}
⋃
{1 rope}

⋃
{1 tree branch}

⋃ {2 hand fans}
⋃
{1 wall}

⋃
{1 solid pipe}

A thing T is usually identified with known characters on it at one time, and this process

is advanced gradually by ours. For example, let µ1, µ2, · · · , µn be the known and νi, i ≥ 1 the

unknown characters at time t. Then, the thing T is understood by

T =

(
n⋃

i=1

{µi}
)
⋃

⋃

k≥1

{νk}


 (1.1)

in logic and with an approximation T ◦ =
n⋃
i=1

{µi} at time t. Particularly, how can the wise man

tell these blind men the visual image of an elephant in fable of the blind men with an elephant?

If the wise man is a discrete mathematician, he would tell the blind men that an elephant looks

like nothing else but a labeled tree shown in Fig.2.
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t1 t2
h

e1

e2

b

l1 l3

l2 l4

Fig.2

where, {t1} =tusk, {e1, e2} =ears, {h} =head, {b} =belly, {l1, l2, l3, l4} =legs and {t2} =tail.

Hence, labeled graphs are elements for understanding things of the world in our daily life. What

is the philosophical meaning of this fable for understanding things in the world? It lies in that

the situation of human beings knowing things in the world is analogous to these blind men. We

can only hold on things by canonical model (1.1), or the labeled tree in Fig.2.

q1

q2 q3

q q′

Baryon Meson

a(q, q′)
a(q1, q2) a(q1, q3)

a(q2, q3)

Fig.3

Notice that the elementary particle theory is indeed a discrete notion on matters in the

nature. For example, a baryon is predominantly formed from three quarks, and a meson

is mainly composed of a quark and an antiquark in the quark models of Sakata, or Gell-

Mann and Ne’eman ([27], [32]) such as those shown in Fig.3, which are nothing else but both

multiverses ([3]), or graphs labeled by quark qi ∈ {u,d, c, s, t,b} for i = 1, 2, 3 and antiquark

q′ ∈
{
u,d, c, s, t,b

}
, where a(q, q′) denotes the strength between quarks q and q′.

Certainly, a natural thing can not exist out of the live space, the universe. Thus, the

labeled graphs in Fig.2 and 3 are actually embedded in the Euclidean space R3, i.e. a labeled

topological graph. Generally, a topological graph ϕ(G) in a space S is an embedding of

ϕ : G → ϕ(G) ⊂ S with ϕ(p) 6= ϕ(q) if p 6= q for ∀p, q ∈ G, i.e., edges of G only intersect at

vertices in S . There is a well-known result on embedding of graphs without loops and multiple

edges in Rn for n ≥ 3 ([10]), i.e., there always exists an embedding of G that all edges are

straight segments in Rn.

Mathematically, a labeling on a graph G is a mapping L : V (G)
⋃
E(G) → L with a

labeling set L such as two labeled graphs on K4 with integers in {1, 2, 3, 4} shown in Fig.4,

and they have been concentrated more attentions of researchers, particularly, the dynamical

survey paper [4] first published in 1998. Usually, L is chosen to be a segment of integers Z and a

labeling L : V (G)→ L with constraints on edges in E(G). Only on the journal: International
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Journal of Mathematical Combinatorics in the past 9 years, we searched many papers on labeled

graphs. For examples, the graceful, harmonic, Smarandache edge m-mean labeling ([29]) and

quotient cordial labeling ([28]) are respectively with edge labeling |L(u)−L(v)|, |L(u) +L(v)|,⌈
f(u) + f(v)

m

⌉
for m ≥ 2,

[
f(u)

f(v)

]
or

[
f(v)

f(u)

]
according f(u) ≥ f(v) or f(v) > f(u) for

∀uv ∈ E(G), and a Smarandache-Fibonacci or Lucas graceful labeling is such a labeling L :

V (G) → {S(0), S(1), S(2), · · · , S(q)} that the induced edge labeling is {S(1), S(2), · · · , S(q)}
by L(uv) = |L(u) − L(v)| for ∀uv ∈ E(G) for a Smarandache-Fibonacci or Lucas sequence

{S(i), i ≥ 1} ([23]).

1

2

3

1

1

1

4
2

3

4

2

3 4

4

1 1
2

2 1

2

Fig.4

Similarly, an n-signed labeling is a n-tuple of {−1,+1}n or {0, 1}-vector labeling on edges

of graph G with |ef (0)− ef(1)| ≤ 1, where ef (0) and ef(1) respectively denote the number of

edges labeled with even integer or odd integer([26]), and a graceful set labeling is a labeling

L : V (G) → 2X on vertices of G by subsets of a finite set X with induced edge labeling

L(uv) = L(u)⊕ L(v) for ∀uv ∈ E(G), where “ ⊕ ” denotes the binary operation of taking the

symmetric difference of the sets in 2X ([30]). As a result, the combinatorial structures on L

were partially characterized.

However, for understanding things in the world we should ask ourself: what are labels

on a labeled graph, is it just different symbols? And are such labeled graphs a mechanism

for understanding the reality of things, or only a labeling game? Clearly, labeled graphs G

considered by researchers are graphs mainly with number labeling, vector symbolic labeling

without operation, or finite set labeling, and with an additional assumption that each vertex of

G is mapped exactly into one point of space S in topology. However, labels all are space objects

in Fig.2 and 3. If we put off this assumption, i.e., labeling a topological graph by geometrical

spaces, or elements with operations in a linear space, what will happens? Are these resultants

important for understanding things in the world? The answer is certainly YES because this step

will enable one to pullback more characters of things, characterize more precisely and then hold

on the reality of things in the world, i.e., combines continuous mathematics with the discrete,

which is nothing else but the mathematical combinatorics.

The main purpose of this report is to survey the role of labeled graphs in extending math-

ematical systems over graphs G, particularly graphical tensors and
−→
G -flows with conservation

laws and applications to mathematics, physics and other sciences such as those of labeled graphs

with sets or Euclidean spaces Rn labeling, labeled graph solutions of non-solvable systems of
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differential equations with global stability, labeled graph with elements in a linear space, and

extended Banach or Hilbert
−→
G -flow spaces, · · · , etc. All of these makes it clear that holding

on the reality of things by classical mathematics is partial, only on the coherent behaviors of

things for itself homogenous without contradictions but the extended mathematics over graphs

G can characterize contradictory systems, and accordingly can be applied to hold on the reality

of things because contradiction is universal in the nature.

For terminologies and notations not mentioned here, we follow references [5] for functional

analysis, [9]-[11] for graphs and combinatorial geometry, [2] for differential equations, [27] for

elementary particles, and [1],[10] for Smarandache multispaces or multisystems.

§2. Graphs Labeled by Sets

Notice that the understanding form (1.1) of things is in fact a Smarandache multisystem fol-

lowing, which shows the importance of labeled graphs for things.

Definition 2.1([1],[10]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical systems,

different two by two. A Smarandache multisystem Σ̃ is a union
m⋃
i=1

Σi with rules R̃ =
m⋃
i=1

Ri
on Σ̃, denoted by (Σ̃; R̃).

Definition 2.2([9]-[11]) For an integer m ≥ 1, let (Σ̃; R̃) be a Smarandache multisystem

consisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited combi-

natorial structure GL[Σ̃; R̃] of (Σ̃; R̃) is a labeled topological graph defined following:

V
(
GL[Σ̃; R̃]

)
= {Σ1,Σ2, · · · ,Σm},

E
(
GL[Σ̃; R̃]

)
= {(Σi,Σj)|Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L(Σi) = Σi and L : (Σi,Σj)→ L(Σi,Σj) = Σi
⋂

Σj

for integers 1 ≤ i 6= j ≤ m.

For example, let Σ1 = {a, b, c}, Σ2 = {a, b, e}, Σ3 = {b, c, e}, Σ4 = {a, c, e} and Ri = ∅
for integers 1 ≤ i ≤ 4. The multisystem (Σ̃; R̃) with Σ̃ =

4⋃
i=1

Σi = {a, b, c, d, e} and R̃ = ∅ is

characterized by the labeled topological graph GL[Σ̃; R̃] shown in Fig.5.

Σ1 Σ2

Σ3 Σ4

{a, b}

{a, c}{b, c} {a, e}{b, e}

{c, e}

Fig.5
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2.1 Exact Labeling

A multiset S̃ =
m⋃
i=1

Si is exact if Si =
m⋃

j=1,j 6=i
(Sj

⋂
Si) for any integer 1 ≤ i ≤ m, i.e., for any

vertex v ∈ V
(
GL[Σ̃; R̃]

)
, Sv =

⋃
u∈N

GL
(v)

(Sv
⋂
Su) such as those shown in Fig.5. Clearly, a

multiset S̃ uniquely determines a labeled graph GL by Definition 2.2, and conversely, if GL is

a graph labeled by sets, we are easily get an exact multiset

S̃ =
⋃

v∈V (GL)

Sv with Sv =
⋃

u∈N
GL

(v)

(
Sv
⋂
Su

)
.

This concludes the following result.

Theorem 2.3([10]) A multiset S̃ uniquely determine a labeled graph GL[S̃], and conversely,

any graph GL labeled by sets uniquely determines an exact multiset S̃.

All labeling sets on edges of graph in Fig.4 are 2-sets. Generally, we know

Theorem 2.4 For any graph G, if |S| ≥ kχ(G) ≥ ∆(G)χ(G) or


 |S|

k


 ≥ χ′(G), there is

a labeling L with k-subset labels of S on all vertices or edges on G, where ε(G), ∆(G) χ(G)

and χ′(G) are respectively the size, the maximum valence, the chromatic number and the edge

chromatic number of G.

Furthermore, if G is an s-regular graph, there exist integers k, l such that there is a labeling

L on G with k-set, l-set labels on its vertices and edges, respectively.

Proof Clearly, if


 |S|

k


 ≥ χ′(G), we are easily find χ′(G) different k-subsets C1, C2, · · · , Cχ′(G)

of S labeled on edges in G, and if |S| ≥ kχ(G) ≥ ∆(G)χ(G), there are χ(G) different k-subsets

C1, C2, · · · , Cχ(G) of S labeled on vertices in G such that Si
⋂
Sj = ∅ or not if and only if

uv 6∈ E(G) or not, where u and v are labeled by Si and Sj , respectively.

Furthermore, ifG is an s-regular graph, we can always allocate χ′(G) l-sets {C1, C2, · · · , Cχ′(G)}
with Ci

⋂
Cj = ∅ for integers 1 ≤ i 6= j ≤ χ′(G) on edges in E(G) such that colors on adjacent

edges are different, and then label vertices v in G by
⋃

u∈NG(v)

C(vu), which is a sl-set. The proof

is complete for integer k = sl. 2
2.2 Linear Space Labeling

Let (Ṽ ;F ) be a multilinear space consisting of subspaces Vi, 1 ≤ i ≤ |G| of linear space V

over a field F . Such a multilinear space (Ṽ ;F ) is said to be exact if Vi =
⊕
j 6=i

(Vi
⋂
Vj) holds for

integers 1 ≤ i ≤ n. According to linear algebra, two linear spaces V and V ′ over a field F are

isomorphic if and only if dimV = dimV ′, which enables one to characterize a vector V space by

its basis B(V ) and label edges of G[Ṽ ;F ] by L : VuVv → B (Vu
⋂
Vv) for ∀VuVv ∈ E

(
G[Ṽ ;F ]

)
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in Definition 2.2 such as those shown in Fig.6.

Vu Vv

B(Vu
⋂
Vv)

Fig.6

.

Clearly, if (Ṽ ;F ) is exact, i.e., Vi =
⊕
j 6=i

(Vi
⋂
Vj), then it is clear that

B(V ) =
⋃

V V ′∈E(G[Ṽ ;F ])

B(V
⋂
V ′) and (B(V

⋂
V ′))

⋂
(B(V

⋂
V ′′) = ∅

by definition. Conversely, if

B(V ) =
⋃

V V ′∈E(G[Ṽ ;F ])

B(V
⋂
V ′) and B

(
V
⋂
V ′
)⋂

B
(
V
⋂
V ′′
)

= ∅

for V ′, V ′′ ∈ NG[Ṽ ;F ](V ). Notice also that V V ′ ∈ E
(
G[Ṽ ;F ]

)
if and only if V

⋂
V ′ 6= ∅, we

know that

Vi =
⊕

j 6=i

(Vi
⋂
Vj)

for integers 1 ≤ i ≤ n. This concludes the following result.

Theorem 2.5([10]) Let (Ṽ ;F ) be a multilinear space with Ṽ =
n⋃
i=1

Vi. Then it is exact if and

only if

B(V ) =
⋃

V V ′∈E(G[Ṽ ;F ])

B
(
V
⋂
V ′
)

and B
(
V
⋂
V ′
)⋂

B
(
V
⋂
V ′′
)

= ∅

for V ′, V ′′ ∈ NG[Ṽ ;F ](V ).

2.3 Euclidean Space Labeling

Let Rn be a Euclidean space with normal basis B(Rn) = {ǫ1, ǫ2, · · · , ǫn}, where ǫ1 = (1, 0, · · · , 0),

ǫ2 = (0, 1, 0 · · · , 0), · · · , ǫn = (0, · · · , 0, 1) and let (Ṽ ;F ) be a multilinear space with Ṽ =
m⋃
i=1

Rni

in Theorem 2.5, where Rni
⋂

Rnj 6= Rmin{i,j} for integers 1 ≤ i 6= j ≤ nm. If the labeled graph

G[Ṽ ;F ] is known, we are easily determine the dimension of dimṼ . For example, let GL be

a labeled graph shown in Fig.7. We are easily finding that B(R̃) = {ǫ1, ǫ2, ǫ3, ǫ4, ǫ5, ǫ6}, i.e.,

dimṼ = 6.
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R3 R3

R3 R3

{ǫ1} {ǫ1}

{ǫ2}

{ǫ2}

Fig.7

Notice that Ṽ is not exact in Fig.7 because basis ǫ3, ǫ4, ǫ5, ǫ6 are additional. Generally, we

are easily know the result by the inclusion-exclusion principle.

Theorem 2.6([8]) Let GL be a graph labeled by Rnv1 , Rnv2 , · · · , R
nv|G| . Then

dimGL =
∑

〈vi∈V (G)|1≤i≤s〉∈CLs(G)

(−1)s+1dim(Rnv1
⋂

Rnv2
⋂
· · ·
⋂

Rnvs ),

where CLs(G) consists of all complete graphs of order s in GL.

However, if edge labelings B(Rnu
⋂

Rnv ) are not known for uv ∈ E
(
GL
)
, can we still

determine the dimension dimGL? In fact, we only get the maximum and minimum dimensions

dimmaxG
L, dimminG

L in case.

Theorem 2.7([8]) Let GL be a graph labeled by Rnv1 , Rnv2 , · · · , R
nv|G| on vertices. Then its

maximum dimension dimmaxG
L is

dimmaxG
L = 1−m+

∑

v∈V (GL)

nv

with conditions dim(Rnu ∩Rnv) = 1 for ∀uv ∈ E
(
GL
)
.

However, for determining the minimum value dimminG
L of graph GL labeled by Euclidean

spaces is a difficult problem in general. We only know the following result on labeled complete

graphs Km,m ≥ 3.

Theorem 2.8([8]) For any integer r ≥ 2, let KL
m(r) be a complete graph Km labeled by

Euclidean space Rr on its vertices, and there exists an integer s, 0 ≤ s ≤ r − 1 such that


 r + s− 1

r


 < m ≤


 r + s

r


 .

Then

dimminK
L
m(r) = r + s.
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Particularly,

dimminK
L
m(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10,

2 + ⌈√m⌉, if m ≥ 11.

All of these results presents a combinatorial model for characterizing things in the space

Rn, n ≥ 4, particularly, the GL solution of equations in the next subsection.

2.4 GL-Solution of Equations

Let Rm, Rn be Euclidean spaces of dimensional m, n ≥ 1 and let T : Rn × Rm → Rm be a

Ck, 1 ≤ k ≤ ∞ mapping such that T (x0, y0) = 0 for x0 ∈ Rn, y0 ∈ Rm and the m×m matrix

∂T j/∂yi(x0, y0) is non-singular, i.e.,

det(
∂T j

∂yi
)
∣∣
(x0,y0)

6= 0, where 1 ≤ i, j ≤ m.

Then the implicit mapping theorem concludes that there exist opened neighborhoods V ⊂ Rn

of x0, W ⊂ R
m of y0 and a C

k mapping φ : V → W such that T (x, φ(x)) = 0. Thus there

always exists solution y for the equation T (x, y) = 0 in case.

By the implicit function theorem, we can always choose mappings T1, T2, · · · , Tm and

subsets STi ⊂ Rn where STi 6= ∅ such that Ti : STi → 0 for integers 1 ≤ i ≤ m. Consider the

system of equations 



T1(x1, x2, · · · , xn) = 0

T2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

Tm(x1, x2, · · · , xn) = 0

(ESm)

in Euclidean space R
n, n ≥ 1. Clearly, the system (ESm) is non-solvable or not dependent on

m⋂

i=1

STi = ∅ or 6= ∅.

This fact implies the following interesting result.

Theorem 2.9 A system (ESm) of equations is solvable if and only if
m⋂
i=1

STi 6= ∅.

Furthermore, if (ESm) is solvable, it is obvious that GL[ESm] ≃ KL
m. We conclude that

(ESm) is non-solvable if GL[ESm] 6≃ KL
m. Thus the case of solvable is special respect to the

general case, non-solvable. However, the understanding on non-solvable case was abandoned in

classical for a wrongly thinking, i.e., meaningless for hold on the reality of things.

By Definition 2.2, all spaces STi , 1 ≤ i ≤ m exist for the system (ESm) and we are easily

get a labeled graph GL[ESm], which is in fact a combinatorial space, a really geometrical figure
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in Rn. For example, in cases of linear algebraic equations, we can further determine GL[ESm]

whatever the system (ESm) is solvable or not as follows.

A parallel family C of system (ESm) of linear equations consists of linear equations in

(ESm) such that they are parallel two by two but there are no other linear equations parallel

to any one in C . We know a conclusion following on GL[ESm] for linear algebraic systems.

Theorem 2.10([12]) Let (ESm) be a linear equation system for integers m,n ≥ 1. Then

GL[ESm] ≃ KL
n1,n2,··· ,ns

with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family with ni = |Ci| for integers

1 ≤ i ≤ s in (ESm) and it is non-solvable if s ≥ 2.

Similarly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

Notice that the solution space of the ith in (LDES1
m) is a linear space. We know the result

following.

Theorem 2.11([13], [14]) Every linear system (LDES1
m) of homogeneous differential equations

uniquely determines a labeled graph GL[LDES1
m], and conversely, every graph GL labeled by

basis of linear spaces uniquely determines a homogeneous differential equation system (LDES1
m)

such that GL[LDES1
m] ≃ GL.

For example, let (LDES1
m) be the system of linear homogeneous differential equations





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Then the solution basis of equations (1) − (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} with a labeled graph shown in Fig.8.
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{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}

{e5t}

{e6t}

{et}

Fig.8

An integral labeled graphGL
I

is such a labeling LI : G→ Z+ that LI(uv) ≤ min{LI(u), LI(v)}
for ∀uv ∈ E(G), and two integral labeled graphs GL

I

1 and GL
′I

2 are said to be identical, de-

noted by GL
I

1 = GL
′I

2 if G1
ϕ≃ G2 and LI1(x) = LI2(ϕ(x)) for graph isomorphisms ϕ and

∀x ∈ V (G1)
⋃
E(G1). For example, these labeled graphs shown in Fig.9 are all integral on

K4 − e, we know G
LI1
1 = G

LI2
2 but G

LI1
1 6= G

LI3
3 by definition.

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

G
LI1
1 G

LI2
2

2 2

1

1

G
LI3
3

Fig.9

For 2 linear systems (LDES1
m), (LDES1

m)′ of ordinary differential equations, they are

called combinatorially equivalent, denoted by (LDES1
m)

ϕ≃ (LDES1
m)′ if there is an isomorphism

ϕ : GL[LDES1
m] → GL

′

[LDES1
m] of graph, linear isomorphisms ξ : x → ξ(x) of spaces and

labelings L1, L2 such that ϕL1(x) = L2ϕ(ξ(x)) for ∀x ∈ V (GL[LDES1
m])

⋃
E(GL[LDES1

m]),

which are completely characterized by the integral labeled graphs.

Theorem 2.12([13], [14]) Let (LDES1
m), (LDES1

m)′ be two linear system of ordinary differ-

ential equations with integral labeled graphs GL
I

[LDES1
m], GL

′I

[LDES1
m]′. Then (LDES1

m)
ϕ≃

(LDES1
m)′ if and only if GL

I

[LDES1
m] = GL

′I

[LDES1
m]′.

§3. Graphical Tensors

As shown in last section, labeled graphs by sets, particularly, geometrical sets such as those

of Euclidean spaces Rn, n ≥ 1 are useful for holding on things characterized by non-solvable

systems of equations. A further question on labeled graphs is
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For labeled graphs GL1 , G
L
2 , G

L
3 , is there a binary operation o : (GL1 , G

L
2 )→ GL3 ? And can

we established algebra on labeled graphs?

Answer these questions enables one to extend linear spaces over graphs G hold with con-

servation laws on its each vertex and establish tensors underlying graphs.

3.1 Action Flows

Let (V ; +, ·) be a linear space over a field F . An action flow
(−→
G ;L,A

)
is an oriented embedded

graph
−→
G in a topological space S associated with a mapping L : (v, u) → L(v, u), 2 end-

operators A+
vu : L(v, u) → LA

+
vu(v, u) and A+

uv : L(u, v) → LA
+
uv(u, v) on V with L(v, u) =

−L(u, v) and A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→
G
)-u v

L(u, v)A+
uv A+

vu

Fig.10

holding with conservation laws

∑

u∈NG(v)

LA
+
vu (v, u) = 0 for ∀v ∈ V

(−→
G
)

such as those shown for vertex v in Fig.11 following---
---v

u1

u2

u3

u4

u5

u6

L(u1, v)

A1
L(u2, v) A2

L(u3, v)
A3

L(v, u4)

A4
L(v, u5)A5

L(v, u6)
A6

Fig.11

with a conservation law

−LA1(v, u1)− LA2(v, u2)− LA4(v, u3) + LA4(v, u4) + LA5(v, u5) + LA6(v, u6) = 0,

and such a set {−LAi(v, ui), 1 ≤ i ≤ 3}⋃{LAj , 4 ≤ j ≤ 6} is called a conservation family at

vertex v.

Action flow is a useful model for holding on natural things. It combines the discrete with

that of analytical mathematics and therefore, it can help human beings understanding the

nature.

For example, let L : (v, u) → L(v, u) ∈ Rn × R+ with action operators A+
vu = avu

∂

∂t
and

avu : R
n → R for any edge (v, u) ∈ E

(−→
G
)

in Fig.12.
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?6 - �� �
u v

wt

+
Fig.12

Then the conservation laws are partial differential equations





atu1

∂L(t, u)1

∂t
+ atu2

∂L(t, u)2

∂t
= auv

∂L(u, v)

∂t

auv
∂L(u, v)

∂t
= avw1

∂L(v, w)1

∂t
+ avw2

∂L(v, w)2

∂t
+ avt

∂L(v, t)

∂t

avw1

∂L(v, w)1

∂t
+ avw2

∂L(v, w)2

∂t
= awt

∂L(w, t)

∂t

awt
∂L(w, t)

∂t
+ avt

∂L(v, t)

∂t
= atu1

∂L(t, u)1

∂t
+ atu2

∂L(t, u)2

∂t

,

which maybe solvable or not but characterizes behavior of natural things.

If A = 1V , an action flows
(−→
G ;L,1V

)
is called

−→
G -flow and denoted by

−→
GL for simplicity.

We naturally define −→
GL1 +

−→
GL2 =

−→
GL1+L2 and λ · −→GL =

−→
Gλ·L

for ∀λ ∈ F . All
−→
G -flows

−→
GV on

−→
G naturally form a linear space

(−→
GV ; +, ·

)
because it hold

with:

(1) A field F of scalars;

(2) A set
−→
GV of objects, called extended vectors;

(3) An operation “+”, called extended vector addition, which associates with each pair of

vectors
−→
GL1 ,

−→
GL2 in

−→
GV a extended vector

−→
GL1+L2 in

−→
GV , called the sum of

−→
GL1 and

−→
GL2 ,

in such a way that

(a) Addition is commutative,
−→
GL1 +

−→
GL2 =

−→
GL2 +

−→
GL1 ;

(b) Addition is associative,
(−→
GL1 +

−→
GL2

)
+
−→
GL3 =

−→
GL1 +

(−→
GL2 +

−→
GL3

)
;

(c) There is a unique extended vector
−→
G0, i.e., 0(v, u) = 0 for ∀(v, u) ∈ E

(−→
G
)

in
−→
GV ,

called zero vector such that
−→
GL +

−→
G0 =

−→
GL for all

−→
GL in

−→
GV ;

(d) For each extended vector
−→
GL there is a unique extended vector

−→
G−L such that

−→
GL +−→

G−L =
−→
G0 in

−→
GV ;

(4) An operation “·, called scalar multiplication, which associates with each scalar k in F

and an extended vector
−→
GL in

−→
GV an extended vector k · −→GL in V , called the product of k

with
−→
GL, in such a way that

(a) 1 · −→GL =
−→
GL for every

−→
GL in

−→
GV ;

(b) (k1k2) ·
−→
GL = k1(k2 ·

−→
GL);
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(c) k · (−→GL1 +
−→
GL2) = k · −→GL1 + k · −→GL2 ;

(d) (k1 + k2) ·
−→
GL = k1 ·

−→
GL + k2 ·

−→
GL.

3.2 Dimension of Action Flow Space

Theorem 3.1 Let G be all action flows
(−→
G ;L,A

)
with A ∈ O(V ). Then

dimG = (dimO(V )× dimV )
β(
−→
G)

if both V and O(V ) are finite. Otherwise, dimG is infinite.

Particularly, if operators A ∈ V ∗, the dual space of V on graph
−→
G , then

dimG = (dimV )2β(
−→
G) ,

where β
(−→
G
)

= ε
(−→
G
)
−
∣∣∣−→G
∣∣∣+ 1 is the Betti number of

−→
G .

Proof The infinite case is obvious. Without loss of generality, we assume
−→
G is connected

with dimensions of V and O(V ) both finite. Let L(v) = {LA+
vu(v, u) ∈ V for some u ∈

V
(−→
G
)
}, v ∈ V

(−→
G
)

be the conservation families in V associated with
(−→
G ;L,A

)
such that

LA
+
vu(v, u) = −A+

uv(L(u, v)) and L(v)
⋂

(−L(u)) = LA
+
vu(v, u) or ∅. An edge (v, u) ∈ E

(−→
G
)

is flow freely or not in
−→
GV if LA

+
vu(v, u) can be any vector in V or not. Notice that L(v) =

{LA+
vu(v, u) ∈ V for some u ∈ V

(−→
G
)
}, v ∈ V

(−→
G
)

are the conservation families associated

with action flow
(−→
G ;L,A

)
. There is one flow non-freely edges for any vertex in

−→
G at least

and dimG is nothing else but the number of independent vectors L(v, u) and independent

end-operators A+
vu on edges in

−→
G which can be chosen freely in V .

We claim that all flow non-freely edges form a connected subgraph T in
−→
G . If not, there

are two components C1(T ) and C2(T ) in T such as those shown in Fig.13.

.............

.............
v0

u0

C1(T ) C2(T )

Fig.13

In this case, all edges between C1(T ) and C2(T ) are flow freely in
−→
G . Let v0 be such a

vertex in C1(T ) adjacent to a vertex in C2(T ). Beginning from the vertex v0 in C1(T ), we
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choose vectors on edges in

EG (v0, NG(v0))
⋂
〈C1(T )〉G ,

EG (NG(v0) \ {v0}, NG(NG(v0)) \NG(v0))
⋂
〈C1(T )〉G ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

in 〈C1(T )〉G by conservation laws, and then finally arrive at a vertex u0 ∈ V (C2(T )) such that

all flows from V (C1(T )) \ {u0} to u0 are fixed by conservation laws of vertices NG(u0), which

result in that there are no conservation law of flows on the vertex u0, a contradiction. Hence,

all flow freely edges form a connected subgraph in
−→
G . Hence, we get that

dimG ≤ dimO(V ))|E(
−→
G)−E(T )| × (dimV )

|E(
−→
G)−E(T )|

= (dimO(V )× dimV )β(
−→
G) .

We can indeed determine a flow non-freely tree T in
−→
G by programming following:

STEP 1. Define X1 = {v1} for ∀v1 ∈ V
(−→
G
)
;

STEP 2. If V
(−→
G
)
\X1 6= ∅, choose v2 ∈ NG (v1)\X1 and let (v1, v2) be a flow non-freely

edge by conservation law on v1 and define X2 = {v1, v2}. Otherwise, T = v0.

STEP 3. If V
(−→
G
)
\X2 6= ∅, choose v3 ∈ NG (X1)\X2. Without loss of generality, assume

v3 adjacent with v2 and let (v2, v3) be a flow non-freely edge by conservation law on v2 with

X3 = {v1, v2, v3}. Otherwise, T = v1v2.

STEP 4. For any integer k ≥ 2, if Xk has been defined and V
(−→
G
)
\ Xk 6= ∅, choose

vk+1 ∈ NG (Xk)\Xk. Assume vk1 adjacent with vk ∈ Xk and let (vk, vk+1) be a flow non-freely

edge by conservation law on vk with Xk+1 = Xk

⋃{vk+1}. Otherwise, T is the flow non-freely

tree spanned by 〈Xk〉 in
−→
G .

STEP 5. The procedure is ended if X
|
−→
G|

has been defined which enable one get a spanning

flow non-freely tree T of
−→
G .

Clearly, all edges in E
(−→
G
)
\ E(T ) are flow freely in V . We therefore know

dimG ≥ (dimO(V ))
ε
(−→
G
)
−ε(T ) × (dimV )

ε
(−→
G
)
−ε(T )

= (dimO(V )× dimV )
ε
(−→
G
)
−
∣∣∣−→G
∣∣∣+1

= (dimO(V )× dimV )2β(
−→
G) .

Thus,

dimG = (dimO(V )× dimV )
2β(
−→
G)
. (3.1)

If operators A ∈ V ∗, dimV ∗ = dimV . We are easily get

dimG = (dimV )
2β(
−→
G)

by the equation (3.1). This completes the proof. 2
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Particularly, for action flows
(−→
G ;L,1V

)
, i.e.,

−→
G -flow space we have a conclusion on its

dimension following

Corollary 3.2 dim
−→
GV = (dimV )

β(
−→
G)

if V is finite. Otherwise, dimH is infinite.

3.3 Graphical Tensors

Definition 3.3 Let
(−→
G1;L1, A1

)
and

(−→
G2;L2, A2

)
be action flows on linear space V . Their

tensor product
(−→
G1;L1, A1

)
⊗
(−→
G2;L2, A2

)
is defined on graph

−→
G1 ⊗

−→
G2 with mapping

L : ((v1, u1), (v2, u2))→ (L1(v1, u1), L2(v2, u2))

on edge ((v1, u1), (v2, u2)) ∈ E
(−→
G1 ⊗

−→
G2

)
and end-operators A+

(v1,u1)(v2,u2)
= A+

v1u1
⊗ A+

v2u2
,

A+
(v2,u2)(v1,u1)

= A+
u1v1 ⊗A+

u2v2 , such as those shown in Fig.14.-- -v1

v2

u1

u2

L(v1, u1)

L2(v2, u2)

A+
v1u1

A+
v2u2

A+
u1v1

A+
u2v2

⊗ L

(v1, v2) (u1, u2)

A A′

Fig.14

with L = (L1(v1, u1), L2(v2, u2)) and A = A+
v1u1
⊗A+

v2u2
,A′ = A+

u1v1 ⊗A+
u2v2 , where

−→
G1 ⊗

−→
G2

is the tensor product of
−→
G1 and

−→
G2 with

V
(−→
G1 ⊗

−→
G2

)
= V

(−→
G1

)
× V

(−→
G2

)

and E
(−→
G1 ⊗

−→
G2

)
= {((v1, v2), (u1, u2)) | if and only if

(v1, u1) ∈ E
(−→
G1

)
and (v2, u2) ∈ E

(−→
G2

)
}

with an orientation O+ : (v1, v2)→ (u1, u2) on ((v1, v2), (u1, u2)) ∈ E
(−→
G1 ⊗

−→
G2

)
.

Indeed,
(−→
G1;L1, A1

)
⊗
(−→
G2;L2, A2

)
is an action flow with conservation laws on each

vertex in
−→
G1 ⊗

−→
G2 because

∑

(u1,u2)∈NG1⊗G2 (v1,v2)

A+
v1u1
⊗A+

v2u2
(L1(v1, u1), L2(v2, u2))

=
∑

(u1,u2)∈NG1⊗G2(v1,v2)

A+
v1u1

(L1(v1, u1))A
+
v2u2

(L2(v2, u2))

=


 ∑

u1∈NG1(v1)

(L1(v1, u1))
A+
v1u1


×


 ∑

u2∈NG2(v2)

(L2(v2, u2))
A+
v2u2


 = 0
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for ∀(v1, v2) ∈ V
(−→
G1 ⊗

−→
G2

)
by definition.

Theorem 3.4 The tensor operation is associative, i.e.,

((−→
G1;L1, A1

)⊗(−→
G2;L2, A2

))⊗(−→
G3;L3, A3

)

=
(−→
G1;L1, A1

)⊗((−→
G2;L2, A2

)⊗(−→
G3;L3, A3

))
.

Proof By definition,
(−→
G1 ⊗

−→
G2

)
⊗ −→G3 =

−→
G1 ⊗

(−→
G2 ⊗

−→
G3

)
. Let (v1, u1) ∈ E

(−→
G1

)
,

(v2, u2) ∈ E
(−→
G2

)
and (v3, u3) ∈ E

(−→
G3

)
. Then, ((v1, v2, v3), (u1, u2, u3)) ∈ E

(−→
G1 ⊗

−→
G2 ⊗

−→
G3

)

with flows (L1(v1, u1), L2(v2, u2), L3(v3, u3)), and end-operators
(
A+
v1u1
⊗A+

v2,u2

)
⊗ A+

v3u3
in((−→

G1;L1, A1

)
⊗
(−→
G2;L2, A2

))
⊗
(−→
G3;L3, A3

)
but A+

v1u1
⊗
(
A+
v2,u2

⊗A+
v3u3

)
in
(−→
G1;L1, A1

)
⊗

((−→
G2;L2, A2

)
⊗
(−→
G3;L3, A3

))
on the vertex (v1, v2, v3). However,

(
A+
v1u1
⊗A+

v2,u2

)
⊗A+

v3u3
= A+

v1u1
⊗
(
A+
v2,u2

⊗A+
v3u3

)

for tensors. This completes the proof. 2
Theorem 3.4 enables one to define the product

n⊗
i=1

(−→
G i;Li, Ai

)
. Clearly, if

{−→
GLi1
i ,
−→
GLi2
i ,

· · · ,−→GLini
i

}
is a base of

−→
GV
i , then

−→
G
L1i1
1 ⊗−→GL2i2

2 ⊗ · · · ⊗ −→GLnin
n , 1 ≤ ij ≤ ni, 1 ≤ i ≤ n form

a base of
−→
GV1

1 ⊗
−→
GV2

2 ⊗ · · · ⊗
−→
GVn
n . This implies a result by Theorem 3.1 and Corollary 3.2.

Theorem 3.5 dim

(
m⊗

i=1

(−→
G i;Li, Ai

))
=

m∏

i=1

dimV
2β(
−→
Gi)

i .

Particularly, dim

(
m⊗

i=1

−→
GVi
i

)
=

m∏

i=1

dimV
β(
−→
Gi)

i and furthermore, if Vi = V for integers

1 ≤ i ≤ m, then

dim

(
m⊗

i=1

−→
GV
i

)
= dimV

m∑
i=1

β(
−→
Gi)

,

and if each
−→
G i is a circuit

−→
C ni , or each

−→
G i is a bouquet

−→
Bni for integers 1 ≤ i ≤ m, then

dim

(
n⊗

i=1

−→
GV
i

)
= dimV n or dim

(
n⊗

i=1

−→
GV
i

)
= dimV n1+n2+·+nm .

§4. Banach
−→
G-Flow Spaces

The Banach and Hilbert spaces are linear space V over a field R or C respectively equipped

with a complete norm ‖ · ‖ or inner product 〈·, ·〉, i.e., for every Cauchy sequence {xn} in V ,

there exists an element x in V such that

lim
n→∞

‖xn − x‖V = 0 or lim
n→∞

〈xn − x, xn − x〉V = 0.
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We extend Banach or Hilbert spaces over graph
−→
G by a kind of edge labeled graphs, i.e.,

−→
G -flows

in this section.

4.1 Banach
−→
G-Flow Spaces

Let V be a Banach space over a field F with F = R or C. For any
−→
G -flow

−→
GL ∈ −→GV , define

∥∥∥−→GL
∥∥∥ =

∑

(v,u)∈E
(−→
G
)
‖L(v, u)‖ ,

where ‖L(v, u)‖ is the norm of L(v, u) in V . Then it is easily to check that

(1)
∥∥∥−→GL

∥∥∥ ≥ 0 and
∥∥∥−→GL

∥∥∥ = 0 if and only if
−→
GL =

−→
G0.

(2)
∥∥∥−→GξL

∥∥∥ = ξ
∥∥∥−→GL

∥∥∥ for any scalar ξ.

(3)
∥∥∥−→GL1 +

−→
GL2

∥∥∥ ≤
∥∥∥−→GL1

∥∥∥+
∥∥∥−→GL2

∥∥∥.

Whence, ‖ · ‖ is a norm on linear space
−→
GV . Furthermore, if V is an inner space, define

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈E
(−→
G
)
〈L1(v, u), L2(v, u)〉 .

Then

(4)
〈−→
GL,
−→
GL
〉
≥ 0 and

〈−→
GL,
−→
GL
〉

= 0 if and only if L(v, u) = 0 for ∀(v, u) ∈ E(
−→
G ), i.e.,

−→
GL =

−→
G0.

(5)
〈−→
GL1 ,

−→
GL2

〉
=
〈−→
GL2 ,

−→
GL1

〉
for ∀−→GL1 ,

−→
GL2 ∈ −→GV .

(6) For
−→
GL,
−→
GL1 ,

−→
GL2 ∈ −→GV , there is

〈
λ
−→
GL1 + µ

−→
GL2 ,

−→
GL
〉

= λ
〈−→
GL1 ,

−→
GL
〉

+ µ
〈−→
GL2 ,

−→
GL
〉
.

Thus,
−→
GV is an inner space. As the usual, let

∥∥∥−→GL
∥∥∥ =

√〈−→
GL,
−→
GL
〉

for
−→
GL ∈ −→GV . Then it is also a normed space.

If the norm ‖ · ‖ and inner product 〈·, ·〉 are complete, then
∥∥∥−→GL

∥∥∥ and
〈−→
GL,
−→
GL
〉

are too

also, i.e., any Cauchy sequence in
−→
GV is converges. In fact, let

{−→
GLn

}
be a Cauchy sequence

in
−→
GV . Then for any number ε > 0, there exists an integer N(ε) such that

∥∥∥−→GLn −−→GLm
∥∥∥ < ε



384 Mathematical Reality

if n,m ≥ N(ε). By definition,

‖Ln(v, u)− Lm(v, u)‖ ≤
∥∥∥−→GLn −−→GLm

∥∥∥ < ε

i.e., {Ln(v, u)} is also a Cauchy sequence for ∀(v, u) ∈ E
(−→
G
)
, which is converges in V by

definition.

Now let L(v, u) = lim
n→∞

Ln(v, u) for ∀(v, u) ∈ E
(−→
G
)
. Clearly,

lim
n→∞

−→
GLn =

−→
GL.

Even so, we are needed to show that
−→
GL ∈ −→GV . By definition,

∑

u∈NG(v)

Ln(v, u) = 0, v ∈ V
(−→
G
)

for any integer n ≥ 1. If n→∞ on both sides, we are easily knowing that

lim
n→∞


 ∑

u∈NG(v)

Ln(v, u)


 =

∑

u∈NG(v)

lim
n→∞

Ln(v, v)

=
∑

u∈NG(v)

L(v, u) = 0.

Thus,
−→
GL ∈ −→GV , which implies that the norm is complete, which can be also applied to the

case of Hilbert space. Thus we get the following result.

Theorem 4.1([18], [22]) For any graph
−→
G ,
−→
GV is a Banach space, and furthermore, if V is

a Hilbert space,
−→
GV is a Hilbert space also.

An operator T :
−→
GV → −→GV is a contractor if

∥∥∥T
(−→
GL1

)
−T

(−→
GL2

)∥∥∥ ≤ ξ
∥∥∥−→GL1 −−→GL2)

∥∥∥

for ∀−→GL1 ,
−→
GL1 ∈ −→GV with ξ ∈ [0, 1). The next result generalizes the fixed point theorem of

Banach to Banach
−→
G -flow space.

Theorem 4.2([18]) Let T :
−→
GV → −→GV be a contractor. Then there is a uniquely G-flow−→

GL ∈ −→GV such that T
(−→
GL
)

=
−→
GL.

An operator T :
−→
GV → −→GV is linear if

T
(
λ
−→
GL1 + µ

−→
GL2

)
= λT

(−→
GL1

)
+ µT

(−→
GL2

)

for ∀−→GL1 ,
−→
GL2 ∈ −→GV and λ, µ ∈ F . The following result generalizes the representation theorem

of Fréchet and Riesz on linear continuous functionals to Hilbert
−→
G -flow space

−→
GV .
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Theorem 4.3([18], [22]) Let T :
−→
GV → C be a linear continuous functional. Then there is a

unique
−→
G L̂ ∈ −→GV such that T

(−→
GL
)

=
〈−→
GL,
−→
G L̂
〉

for ∀−→GL ∈ −→GV .

4.3 Examples of Linear Operator on Banach
−→
G -Flow Spaces

Let H be a Hilbert space consisting of measurable functions f(x1, x2, · · · , xn) on a set

∆ = {(x1, x2, · · · , xn) ∈ R
n|ai ≤ xi ≤ bi, 1 ≤ i ≤ n} ,

which is a functional space L2[∆], with inner product

〈f (x) , g (x)〉 =
∫

∆

f(x)g(x)dx for f(x), g(x) ∈ L2[∆],

where x = (x1, x2, · · · , xn) and
−→
G an oriented graph embedded in a topological space. As we

shown in last section, we can extended H on graph
−→
G to get Hilbert

−→
G -flow space

−→
GH .

The differential and integral operators

D =

n∑

i=1

ai
∂

∂xi
and

∫

∆

on H are extended respectively by

D
−→
GL =

−→
GDL(uv)

and

∫

∆

−→
GL =

∫

∆

K(x,y)
−→
GL[y]dy =

−→
G
∫
∆
K(x,y)L(uv)[y]dy,

for ∀(u, v) ∈ E
(−→
G
)
, where ai,

∂ai
∂xj
∈ C

0(∆) for integers 1 ≤ i, j ≤ n and K(x,y) : ∆×∆→
C ∈ L2(∆×∆,C) with ∫

∆×∆

K(x,y)dxdy <∞.

Clearly,

D
(
λ
−→
GL1(v,u) + µ

−→
GL2(v,u)

)
= D

(−→
GλL1(v,u)+µL2(v,u)

)

=
−→
GD(λL1(v,u)+µL2(v,u)) =

−→
GD(λL1(v,u))+D(µL2(v,u))

=
−→
GD(λL1(v,u)) +

−→
GD(µL2(v,u)) = D

(−→
G (λL1(v,u)) +

−→
G (µL2(v,u))

)

= λD
(−→
GL1(v,u)

)
+D

(
µ
−→
GL2(v,u)

)
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for
−→
GL1 ,

−→
GL2 ∈ −→GH and λ, µ ∈ R, i.e.,

D
(
λ
−→
GL1 + µ

−→
GL2

)
= λD

−→
GL1 + µD

−→
GL2 .

Similarly, we can show also that

∫

∆

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∫

∆

−→
GL1 + µ

∫

∆

−→
GL2 ,

i.e., the operators D and

∫

∆

are linear.

Notice that
−→
GL(v,u) ∈ −→GH , there must be

∑

u∈NG(v)

L(v, u) = 0 for ∀v ∈ V
(−→
G
)
,

We therefore know that

0 = D


 ∑

u∈NG(v)

L(v, u)


 =

∑

u∈NG(v)

DL(v, u)

and

0 =

∫

∆


 ∑

u∈NG(v)

L(v, u)


 =

∑

u∈NG(v)

∫

∆

L(v, u)

for ∀v ∈ V
(−→
G
)
. Consequently,

D :
−→
GH → −→GH , and

∫

∆

:
−→
GH → −→GH

are linear operators on
−→
GH . =6

-
-}
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For example, let f(t) = t, g(t) = et, K(t, τ) = 1 on ∆ = [0, x] and let
−→
GL be the

−→
G -flow

shown on the left side in Fig.15. Calculation shows that Df = 1, Dg = et,

∫ x

0

K(t, τ)f(τ)dτ =

∫ x

0

τdτ =
x2

2
,

∫ x

0

K(t, τ)g(τ)dτ =

∫ x

0

eτdτ = ex − 1

and the actions D
−→
GL,

∫

[0,1]

−→
GL are shown on the right in Fig.15.

Particularly, the Cauchy problem on heat equation

∂u

∂t
= c2

n∑

i=1

∂2u

∂x2
i

is solvable in R
n × R if u(x, t0) = ϕ(x) is continuous and bounded in R

n, and c is a non-zero

constant in R. Certainly, we can also consider the Cauchy problem in
−→
GH , i.e.,

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial values X |t=t0 , and get the following result.

Theorem 4.4([18]) For ∀−→GL′ ∈ −→GR
n×R and a non-zero constant c in R, the Cauchy problems

on differential equations

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X |t=t0 =
−→
GL′ ∈ −→GR

n×R is solvable in
−→
GR

n×R if L′ (v, u) is continuous and

bounded in Rn for ∀(v, u) ∈ E
(−→
G
)
.

Fortunately, if the graph
−→
G is prescribed with special structures, for instance the circuit

decomposable, we can always solve the Cauchy problem on an equation in Hilbert
−→
G -flow space−→

GH if this equation is solvable in H .

Theorem 4.5([18], [22]) If the graph
−→
G is strong-connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i

such that L(v, u) = Li (x) for ∀(v, u) ∈ E
(−→
C i

)
, 1 ≤ i ≤ l and the Cauchy problem





Fi (x, u, ux1, · · · , uxn , ux1x2 , · · · ) = 0

u|x0
= Li(x)

is solvable in a Hilbert space H on domain ∆ ⊂ Rn for integers 1 ≤ i ≤ l, then the Cauchy
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problem 



Fi (x, X,Xx1 , · · · , Xxn , Xx1x2 , · · · ) = 0

X |x0 =
−→
GL

such that L (v, u) = Li(x) for ∀(v, u) ∈ X
(−→
C i

)
is solvable for X ∈ −→GH .

§5. Applications

Notice that labeled graph combines the discrete with that of analytic mathematics. This char-

acter implies that it can be used as a model for living things in the nature and contributes to

system control, gravitational field, interaction fields, economics, traffic flows, ecology, epidemi-

ology and other sciences. But we only mention 2 applications of labeled graphs for limitation

of the space, i.e., global stability and spacetime in this section. More its applications can be

found in references [6]-[7], [13]-[23].

Fig.16

5.1 Global Stability

The stability of systems characterized by differential equations (ESm) addresses the stability

of solutions of (ESm) and the trajectories of systems with small perturbations on initial values,

such as those shown for Big Dipper in Fig.16.

In mathematics, a solution of system (ESm) of differential equations is called stable or

asymptotically stable ([25]) if for all solutions Y (t) of the differential equations (ESm) with

|Y (0)−X(0)| < δ(ε),

exists for all t ≥ 0,

|Y (t)−X(t)| < ε

for ∀ε > 0 or furthermore,

lim
t→0
|Y (t)−X(t)| = 0.

However, by Theorem 2.9 if
m⋂
i=1

STi = ∅ there are no solutions of (ESm). Thus, the classical

theory of stability is failed to apply. Then how can one characterizes the stability of system
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(ESm)? As we have shown in Subsection 2.4, we always get a labeled graph solution GL[ESm]

of system (ESm) whenever it is solvable or not, which can be applied to characterize the stability

of system (ESm).

Without loss of generality, assume GL(t) be a solution of (ESm) with initial values GL(t0)

and let ω : V
(
GL[ESm]

)
→ R be an index function. It is said to be ω-stable if there exists a

number δ(ε) for any number ε > 0 such that

∥∥∥ω
(
GL1(t)−L2(t)

)∥∥∥ < ε,

or furthermore, asymptotically ω-stable if

lim
t→∞

∥∥∥ω
(
GL1(t)−L2(t)

)∥∥∥ = 0

if initial values hold with

‖L1(t0)(v)− L2(t0)(v)‖ < δ(ε)

for ∀v ∈ V
(−→
G
)
. If there is a Liapunov ω-function L(ω(t)) : O → R, n ≥ 1 on

−→
G with O ⊂ Rn

open such that L(ω(t)) ≥ 0 with equality hold only if (x1, x2, · · · , xn) = (0, 0, · · · , 0) and if

t ≥ t0,
dL(ω)

dt
≤ 0, for the ω-stability of

−→
G -flow, we then know a result on ω-stability of (ESm)

following.

Theorem 5.1([22]) If there is a Liapunov ω-function L(ω(t)) : O → R on GL[ESm] of system

(ESm), then GL[ESm] is ω-stable, and furthermore, if L̇(ω(t)) < 0 for GL[ESm] 6= G0[ESm],

then GL[ESm] is asymptotically ω-stable.

For linear differential equations (LDES1
m), we can further introduce the sum-table sub-

graph following.

Definition 5.2 Let HL be a spanning subgraph of GL[LDES1
m] of systems (LDES1

m) with ini-

tial value Xv(0), v ∈ V
(
G[LDES1

m]
)
. Then GL[LDES1

m] is called sum-stable or asymptotically

sum-stable on HL if for all solutions Yv(t), v ∈ V (HL) of the linear differential equations of

(LDES1
m) with |Yv(0)−Xv(0)| < δv exists for all t ≥ 0,

∣∣∣∣∣∣

∑

v∈V (HL)

Yv(t)−
∑

v∈V (HL)

Xv(t)

∣∣∣∣∣∣
< ε,

or furthermore,

lim
t→0

∣∣∣∣∣∣

∑

v∈V (HL)

Yv(t)−
∑

v∈V (HL)

Xv(t)

∣∣∣∣∣∣
= 0.

We get a result on the global stability for G-solutions of (LDES1
m) following.

Theorem 5.3([13]) A labeled graph solution G0[LDES1
m] of linear homogenous differen-

tial equation systems (LDES1
m) is asymptotically sum-stable on a spanning subgraph HL of
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GL[LDES1
m] if and only if Reαv < 0 for each βv(t)e

αvt ∈ Bv, ∀v ∈ V (HL) in GL
[
LDES1

m

]
.

Example 5.4 Let a labeled graph solution GL[LDES1
m] of (LDES1

m) be shown in Fig.17,

where v1 = {e−2t, e−3t, e3t}, v2 = {e−3t, e−4t}, v3 = {e−4t, e−5t, e3t}, v4 = {e−5t, e−6t, e−8t},
v5 = {e−t, e−6t}, v6 = {e−t, e−2t, e−8t}. Then the labeled graph solution G0[LDES1

m] is sum-

stable on the labeled triangle v4v5v6 but not on the triangle v1v2v3.

{e−8t} {e3t}

v1

v2

v3v4

{e−2t}

{e−3t}

{e−4t}
{e−5t}

{e−6t}

{e−t}

v5

v6

Fig.17

Similarly, let the system (PDESCm) of linear partial differential equations be

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m (APDESCm)

A point X
[i]
0 = (t0, x

[i]
10, · · · , x

[i]
(n−1)0) with Hi(t0, x

[i]
10, · · · , x

[i]
(n−1)0) = 0 for 1 ≤ i ≤ m is

called an equilibrium point of the ith equation in (APDESCm). Then we know the following

result, which can be applied to the ecological mathematics for the number of species≥ 3 ([31]).

Theorem 5.5([17]) Let X
[i]
0 be an equilibrium point of the ith equation in (APDESCm) for

integers 1 ≤ i ≤ m. If
m∑
i=1

Hi(X) > 0 and
m∑
i=1

∂Hi

∂t
≤ 0 for X 6=

m∑
i=1

X
[i]
0 , then the labeled

graph solution GL[APDESCm] of system (APDESCm) is sum-stable. Furthermore, if
m∑
i=1

∂Hi

∂t
<

0 for X 6=
m∑
i=1

X
[i]
0 , then the labeled graph solution GL[APDESCm] of system (APDESCm) is

asymptotically sum-stable. 66- �f1 fm

F

f2 fm−1

O }3
Fig.18

An immediately application of Theorem 5.5 is the control of traffic flows. For example, let

O be a node in N incident with m in-flows and 1 out-flow such as those shown in Fig.18. Then,
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what conditions will make sure the flow F being stable? Denote the density of flow F by ρ[F ]

and fi by ρ[i] for integers 1 ≤ i ≤ m, respectively. Then, by traffic theory,

∂ρ[i]

∂t
+ φi(ρ

[i])
∂ρ[i]

∂x
= 0, 1 ≤ i ≤ m.

We prescribe the initial value of ρ[i] by ρ[i](x, t0) at time t0. Replacing each ρ[i] by ρ in

these flow equations of fi, 1 ≤ i ≤ m, we get a non-solvable system (PDESCm) of partial

differential equations
∂ρ

∂t
+ φi(ρ)

∂ρ

∂x
= 0

ρ |t=t0 = ρ[i](x, t0)



 1 ≤ i ≤ m.

Denote an equilibrium point of the ith equation by ρ
[i]
0 , i.e., φi(ρ

[i]
0 )
∂ρ

[i]
0

∂x
= 0. By Theorem

5.5, if
m∑

i=1

φi(ρ) < 0 and
m∑

i=1

φ(ρ)

[
∂2ρ

∂t∂x
− φ′(ρ)

(
∂ρ

∂x

)2
]
≥ 0

for X 6=
m∑
k=1

ρ
[i]
0 , then the flow F is stable, and furthermore, if

m∑

i=1

φ(ρ)

[
∂2ρ

∂t∂x
− φ′(ρ)

(
∂ρ

∂x

)2
]
< 0

for X 6=
m∑
k=1

ρ
[i]
0 , it is asymptotically stable.

5.2 Spacetime

Usually, different spacetime determine different structure of the universe, particularly for the

solutions of Einstein’s gravitational equations

Rµν − 1

2
Rgµν + λgµν = −8πGT µν,

where Rµν = Rµανα = gαβR
αµβν , R = gµνR

µν are the respective Ricci tensor, Ricci scalar

curvature, G = 6.673× 10−8cm3/gs2, κ = 8πG/c4 = 2.08× 10−48cm−1 · g−1 · s2 ([24]).

Fig.19

Certainly, Einstein’s general relativity is suitable for use only in one spacetime R4, which
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implies a curved spacetime shown in Fig.19. But, if the dimension of the universe> 4,

How can we characterize the structure of spacetime for the universe?

Generally, we understanding a thing by observation, i.e., the received information via

hearing, sight, smell, taste or touch of our sensory organs and verify results on it in R3 ×R. If

the dimension of the universe> 4, all these observations are nothing else but a projection of the

true faces on our six organs, a partially truth. As a discrete mathematicians, the combinatorial

notion should be his world view. A combinatorial spacetime (CG|t) ([7]) is in fact a graph GL

labeled by Euclidean spaces R
n, n ≥ 3 evolving on a time vector t under smooth conditions in

geometry. We can characterize the spacetime of the universe by a complete graph KL
m labeled

by R4 (See [9]-[11] for details).

For example, if m = 4, there are 4 Einstein’s gravitational equations for ∀v ∈ V
(
KL

4

)
.

We solve it locally by spherically symmetric solutions in R4 and construct a graph KL
4 -solution

labeled by Sf1 , Sf2 , Sf3 and Sf4 of Einstein’s gravitational equations, such as those shown in

Fig.20,

Sf1 Sf2

Sf3 Sf4

Fig.20

where, each Sfi is a geometrical space determined by Schwarzschild spacetime

ds2 = f(t)
(
1− rs

r

)
dt2 − 1

1− rs
r

dr2 − r2(dθ2 + sin2 θdφ2)

for integers 1 ≤ i ≤ 4. Certainly, its global behavior depends on the intersections Sfi
⋂
Sfj , 1 ≤

i 6= j ≤ 4.

Notice that m = 4 is only an assumption. We do not know the exact value of m at present.

Similarly, by Theorem 4.5, we also get a conclusion on spacetime of the Einstein’s gravitational

equations and we do not know also which labeled graph structure is the real spacetime of the

universe.

Theorem 5.6([17]) There are infinite many
−→
G-flow solutions on Einstein’s gravitational equa-

tions

Rµν − 1

2
Rgµν = −8πGT µν
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in
−→
GC, particularly on those graphs with circuit-decomposition

−→
G =

m⋃

i=1

−→
C i with Schwarzschild

spacetime on their edges.

For example, let
−→
G =

−→
C 4. We are easily find

−→
C 4-flow solution of Einstein’s gravitational

equations such as those shown in Fig.21. - ?y6 Sf1

Sf2

Sf3

Sf4

v1 v2

v3v4

Fig.21

Then, the spacetime of the universe is nothing else but a curved ring such as those shown in

Fig.22.

Fig.22

Generally, if
−→
G can be decomposed into m orientated circuits

−→
C i, 1 ≤ i ≤ m, then Theorem

5.6 implies such a spacetime of Einstein’s gravitational equations consisting of m curved rings

over graph
−→
G in space.

§6. Conclusion

What are the elements of mathematics? Certainly, the mathematics consists of elements, include

numbers 1, 2, 3, · · · , maps, functions f(x), vectors, matrices, points, lines, opened sets · · · ,
etc. with relations. However, these elements are not enough for understanding the reality

of things because they must be a system without contradictions in its subfield of classical

mathematics, i.e., a compatible system but contradictions exist everywhere, things are all in

full of contradiction in the world. Thus, turn a systems with contradictions to mathematics is

an important step for hold on the reality of things in the world. For such an objective, labeled
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graphs GL are elements because a non-mathematics in classical is in fact a mathematics over

a graph G ([16]), i.e., mathematical combinatorics. Thus, we should pay more attentions to

labeled graphs, not only as a labeling technique on graphs but also a really mathematical

element.
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Chapter 5 Combinatorial Models on Reality

That is the essence of science: ask an impertinent question, and you are on

the way to the pertinent answer.

By Jacob Bronowski, a Polish-born British mathematician.



Linfan MAO: Mathematical Reality, 397-419.

Combinatorial Field - An Introduction

Dedicated to Prof. Feng Tian on his 70th Birthday

Abstract: A combinatorial field WG is a multifield underlying a graph G, established on a

smoothly combinatorial manifold. This paper first presents a quick glance to its mathemati-

cal basis with motivation, such as those of why the WORLD is combinatorial? and what is a

topological or differentiable combinatorial manifold? After then, we explain how to construct

principal fiber bundles on combinatorial manifolds by the voltage assignment technique, and

how to establish differential theory, for example, connections on combinatorial manifolds.

We also show applications of combinatorial fields to other sciences in this paper.

Key Words: Combinatorial field, Smarandache multi-space, combinatorial manifold,

WORLD, principal fiber bundle, gauge field.

AMS(2000): 51M15, 53B15, 53B40, 57N16, 83C05, 83F05.

§1. Why is the WORLD a Combinatorial One?

The multiplicity of the WORLD results in modern sciences overlap and hybrid, also implies its

combinatorial structure. To see more clear, we present two meaningful proverbs following.

Proverb 1. Ames Room

An Ames room is a distorted room constructed so that from the front it appears to be

an ordinary cubic-shaped room, with a back wall and two side walls parallel to each other and

perpendicular to the horizontally level floor and ceiling. As a result of the optical illusion, a

person standing in one corner appears to the observer to be a giant, while a person standing

in the other corner appears to be a dwarf. The illusion is convincing enough that a person

walking back and forth from the left corner to the right corner appears to grow or shrink. For

details, see Fig.1 below. This proverb means that it is not all right by our visual sense for the

multiplicity of world.

1Reported at Nanjing Normal University, October 3-4, 2009.
2International J.Math. Combin., Vol.3 (2009), 01-22
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Fig.1

Proverb 2. Blind men with an elephant

In this proverb, there are six blind men were be asked to determine what an elephant

looked like by feeling different parts of the elephant’s body, seeing Fig.2 following. The man

touched the elephant’s leg, tail, trunk, ear, belly or tusk claims it’s like a pillar, a rope, a tree

branch, a hand fan, a wall or a solid pipe, respectively. They then entered into an endless

argument and each of them insisted his view right.

Fig.2

All of you are right! A wise man explains to them: Why are you telling it differently is because

each one of you touched the different part of the elephant. So, actually the elephant has all

those features what you all said. Then

What is the meaning of Proverbs 1 and 2 for understanding the structure of WORLD?

The situation for one realizing behaviors of the WORLD is analogous to the observer in

Ames room or these blind men in the second proverb. In fact, we can distinguish the WORLD

by known or unknown parts simply, such as those shown in Fig.3.
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known

unkown

unknown

unknown

unknown

Fig.3

The laterality of human beings implies that one can only determines lateral feature of

the WORLD by our technology. Whence, the WORLD should be the union of all characters

determined by human beings, i.e., a Smarandache multi-space underlying a combinatorial struc-

ture in logic. Then what can we say about the unknown part of the WORLD? Is it out order?

No! It must be in order for any thing having its own right for existing. Therefore, these is

an underlying combinatorial structure in the WORLD by the combinatorial notion, shown in

Fig.4.

known part now

unknown unknown

Fig.4

In fact, this combinatorial notion for the WORLD can be applied for all sciences. I pre-

sented this combinatorial notion in Chapter 5 of [8], then formally as the CC conjecture for

mathematics in [11], which was reported at the 2nd Conference on Combinatorics and Graph

Theory of China in 2006.

Combinatorial Conjecture A mathematical science can be reconstructed from or made by

combinatorialization.

This conjecture opens an entirely way for advancing the modern sciences. It indeed means

a deeply combinatorial notion on mathematical objects following for researchers.

(i) There is a combinatorial structure and finite rules for a classical mathematical system,

which means one can make combinatorialization for all classical mathematical subjects.

(ii) One can generalizes a classical mathematical system by this combinatorial notion such
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that it is a particular case in this generalization.

(iii) One can make one combination of different branches in mathematics and find new

results after then.

(iv) One can understand our WORLD by this combinatorial notion, establish combinato-

rial models for it and then find its behavior, and so on.

This combinatorial notion enables ones to establish a combinatorial model for the WORLD

and develop modern sciences combinatorially. Whence, a science can not be ended if its com-

binatorialization has not completed yet.

§2. Topological Combinatorial Manifold

Now how can we characterize these unknown parts in Fig.1.4 by mathematics? Certainly, these

unknown parts can be also considered to be fields. Today, we have known a best tool for

understanding the known field, i.e., a topological or differentiable manifold in geometry ([1],

[2]). So it is more natural to think each unknown part is itself a manifold. That is the motivation

of combinatorial manifolds.

Loosely speaking, a combinatorial manifold is a combination of finite manifolds, such as

those shown in Fig.5.

M3
B1 T2

(a)

T2

B1 B1

(b)

Fig.5

In where (a) represents a combination of a 3-manifold, a torus and 1-manifold, and (b) a torus

with 4 bouquets of 1-manifolds.

2.1 Euclidean Fan-Space

A combinatorial Euclidean space is a combinatorial system CG of Euclidean spaces Rn1 , Rn2 ,

· · · , Rnm underlying a connected graph G defined by

V (G) = {Rn1,Rn2 , · · · ,Rnm},

E(G) = { (Rni ,Rnj ) | Rni
⋂

Rnj 6= ∅, 1 ≤ i, j ≤ m},

denoted by EG(n1, · · · , nm) and abbreviated to EG(r) if n1 = · · · = nm = r, which enables us

to view an Euclidean space Rn for n ≥ 4. Whence it can be used for models of spacetime in

physics.

A combinatorial fan-space R̃(n1, · · · , nm) is the combinatorial Euclidean space EKm(n1, · · · , nm)
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of Rn1 , Rn2 , · · · , Rnm such that for any integers i, j, 1 ≤ i 6= j ≤ m,

Rni
⋂

Rnj =

m⋂

k=1

Rnk .

A combinatorial fan-space is in fact a p-brane with p = dim
m⋂
k=1

Rnk in String Theory ([21],

[22]), seeing Fig.6 for details.

-�
?
6 �

	 p-brane

Fig.6

For ∀p ∈ R̃(n1, · · · , nm) we can present it by an m × nm coordinate matrix [x] following

with xil = xl
m for 1 ≤ i ≤ m, 1 ≤ l ≤ m̂,

[x] =




x11 · · · x1m̂ x1(m̂)+1) · · · x1n1 · · · 0

x21 · · · x2m̂ x2(m̂+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ xm(m̂+1) · · · · · · xmnm−1 xmnm



.

Let Mn×s denote all n× s matrixes for integers n, s ≥ 1. We introduce the inner product

〈(A), (B)〉 for (A), (B) ∈Mn×s by

〈(A), (B)〉 =
∑

i,j

aijbij .

Then we easily know that Mn×s forms an Euclidean space under such product.

2.2 Topological Combinatorial Manifold

For a given integer sequence 0 < n1 < n2 < · · · < nm, m ≥ 1, a combinatorial manifold M̃ is a

Hausdorff space such that for any point p ∈ M̃ , there is a local chart (Up, ϕp) of p, i.e., an open

neighborhood Up of p in M̃ and a homoeomorphism ϕp : Up → R̃(n1(p), n2(p), · · · , ns(p)(p)), a

combinatorial fan-space with
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{n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm},⋃
p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm},

denoted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm).

A combinatorial manifold M̃ is finite if it is just combined by finite manifolds with an

underlying combinatorial structure G without one manifold contained in the union of others.

Certainly, a finitely combinatorial manifold is indeed a combinatorial manifold. Examples of

combinatorial manifolds can be seen in Fig.2.1.

For characterizing topological properties of combinatorial manifolds, we need to introduced

the vertex-edge labeled graph. A vertex-edge labeled graph G([1, k], [1, l]) is a connected graph

G = (V,E) with two mappings

τ1 : V → {1, 2, · · · , k}, τ2 : E → {1, 2, · · · , l}

for integers k, l ≥ 1. For example, two vertex-edge labeled graphs on K4 are shown in Fig.7.

1

2

3

1

1

1

4
2

3

4

2

3 4

4

1 1
2

2 1

2

Fig.7

Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold and d, d ≥ 1 an integer. We

construct a vertex-edge labeled graph Gd[M̃(n1, n2, · · · , nm)] by

V (Gd[M̃(n1, n2, · · · , nm)]) = V1

⋃
V2,

where V1 = {ni−manifolds Mni in M̃(n1, · · · , nm)|1 ≤ i ≤ m} and V2 = {isolated intersection

points OMni ,Mnj ofMni ,Mnj in M̃(n1, n2, · · · , nm) for 1 ≤ i, j ≤ m}. Label ni for each

ni-manifold in V1 and 0 for each vertex in V2 and

E(Gd[M̃(n1, n2, · · · , nm)]) = E1

⋃
E2,

where E1 = {(Mni ,Mnj ) labeled with dim(Mni
⋂
Mnj ) | dim(Mni

⋂
Mnj) ≥ d, 1 ≤ i, j ≤ m}

and E2 = {(OMni ,Mnj ,Mni), (OMni ,Mnj ,Mnj ) labeled with 0|Mni tangent Mnj at the point

OMni ,Mnj for 1 ≤ i, j ≤ m}.
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Now denote by H(n1, n2, · · · , nm) all finitely combinatorial manifolds M̃(n1, n2, · · · , nm)

and G[0, nm] all vertex-edge labeled graphs GL with θL : V (GL) ∪ E(GL) → {0, 1, · · · , nm}
with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 in G is a union of complete graphs

and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edge e = (u, v) ∈ E(G), τ2(e) ≤ min{τ1(u), τ1(v)}.
Then we know a relation between sets H(n1, n2, · · · , nm) and G([0, nm], [0, nm]) following.

Theorem 2.1 Let 1 ≤ n1 < n2 < · · · < nm,m ≥ 1 be a given integer sequence. Then

every finitely combinatorial manifold M̃ ∈ H(n1, n2, · · · , nm) defines a vertex-edge labeled graph

G([0, nm]) ∈ G[0, nm]. Conversely, every vertex-edge labeled graph G([0, nm]) ∈ G[0, nm] defines

a finitely combinatorial manifold M̃ ∈ H(n1, n2, · · · , nm) with a 1−1 mapping θ : G([0, nm])→
M̃ such that θ(u) is a θ(u)-manifold in M̃ , τ1(u) = dimθ(u) and τ2(v, w) = dim(θ(v)

⋂
θ(w))

for ∀u ∈ V (G([0, nm])) and ∀(v, w) ∈ E(G([0, nm])).

2.4 Fundamental d-Group

For two points p, q in a finitely combinatorial manifold M̃(n1, n2, · · · , nm), if there is a sequence

B1, B2, · · · , Bs of d-dimensional open balls with two conditions following hold.

(1) Bi ⊂ M̃(n1, n2, · · · , nm) for any integer i, 1 ≤ i ≤ s and p ∈ B1, q ∈ Bs;
(2) The dimensional number dim(Bi

⋂
Bi+1) ≥ d for ∀i, 1 ≤ i ≤ s− 1.

Then points p, q are called d-dimensional connected in M̃(n1, n2, · · · , nm) and the sequence

B1, B2, · · · , Be a d-dimensional path connecting p and q, denoted by P d(p, q). If each pair p, q

of points in the finitely combinatorial manifold M̃(n1, n2, · · · , nm) is d-dimensional connected,

then M̃(n1, n2, · · · , nm) is called d-pathwise connected and say its connectivity≥ d.
Choose a graph with vertex set being manifolds labeled by its dimension and two manifold

adjacent with a label of the dimension of the intersection if there is a d-path in this combinatorial

manifold. Such graph is denoted byGd. For example, these correspondent labeled graphs gotten

from finitely combinatorial manifolds in Fig.2.1 are shown in Fig.8, in where d = 1 for (a) and

(b), d = 2 for (c) and (d).

1 3 2

1 3 2

1

1

1

1

0

0

2

2

0

0

1

1

1

1

1 2

2

0

0

0

0
0

0

0 0
0

0

0

0

0

0

(a) (b)

(c) (d)

Fig.8
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Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold of d-arcwise connectedness for

an integer d, 1 ≤ d ≤ n1 and ∀x0 ∈ M̃(n1, n2, · · · , nm), a fundamental d-group at the point

x0, denoted by πd(M̃(n1, n2, · · · , nm), x0) is defined to be a group generated by all homotopic

classes of closed d-pathes based at x0. If d = 1, then it is obvious that πd(M̃(n1, n2, · · · , nm), x0)

is the common fundamental group of M̃(n1, n2, · · · , nm) at the point x0 ([18]). For some special

graphs, their fundamental d-groups can be immediately gotten, for example, the d-dimensional

graphs following.

A combinatorial Euclidean space EG(

m︷ ︸︸ ︷
d, d, · · · , d) of Rd underlying a combinatorial structure

G, |G| = m is called a d-dimensional graph, denoted by M̃d[G] if

(1) M̃d[G] \V (M̃d[G]) is a disjoint union of a finite number of open subsets e1, e2, · · · , em,

each of which is homeomorphic to an open ball Bd;

(2) the boundary ei − ei of ei consists of one or two vertices Bd, and each pair (ei, ei) is

homeomorphic to the pair (B
d
, Sd−1).

Then we get the next result by definition.

Theorem 2.2 πd(M̃d[G], x0) ∼= π1(G, x0), x0 ∈ G.

Generally, we know the following result for fundamental d-groups of combinatorial mani-

folds ([13], [17]).

Theorem 2.3 Let M̃(n1, n2, · · · , nm) be a d-connected finitely combinatorial manifold for an

integer d, 1 ≤ d ≤ n1. If ∀(M1,M2) ∈ E(GL[M̃(n1, n2, · · · , nm)]), M1∩M2 is simply connected,

then

(1) for ∀x0 ∈ Gd, M ∈ V (GL[M̃(n1, n2, · · · , nm)]) and x0M ∈M ,

πd(M̃(n1, n2, · · · , nm), x0) ∼= (
⊕

M∈V (Gd)

πd(M,xM0))
⊕

π(Gd, x0),

where Gd = Gd[M̃(n1, n2, · · · , nm)] in which each edge (M1,M2) passing through a given point

xM1M2 ∈ M1 ∩M2, π
d(M,xM0), π(Gd, x0) denote the fundamental d-groups of a manifold M

and the graph Gd, respectively and

(2) for ∀x, y ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= πd(M̃(n1, n2, · · · , nm), y).

2.5 Homology Group

For a subspace A of a topological space S and an inclusion mapping i : A →֒ S, it is readily

verified that the induced homomorphism i♯ : Cp(A)→ Cp(S) is a monomorphism. Let Cp(S,A)

denote the quotient group Cp(S)/Cp(A). Similarly, we define the p-cycle group and p-boundary

group of (S,A) by ([19])

Zp(S,A) = Ker∂p = { u ∈ Cp(S,A) | ∂p(u) = 0 },
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Bp(S,A) = Im∂p+1 = ∂p+1(Cp+1(S,A)),

for any integer p ≥ 0.It follows that Bp(S,A) ⊂ Zp(S,A) and the pth relative homology group

Hp(S,A) is defined to be

Hp(S,A) = Zp(S,A)/Bp(S,A).

We know the following result.

Theorem 2.4 Let M̃ be a combinatorial manifold, M̃d(G) ≺ M̃ a d-dimensional graph with

E(M̃d(G)) = {e1, e2, · · · , em} such that

M̃ \ M̃d[G] =
k⋃
i=2

li⋃
j=1

Bij .

Then the inclusion (el, ėl) →֒ (M̃, M̃d(G)) induces a monomorphism Hp(el, ėl)→ Hp(M̃, M̃d(G))

for l = 1, 2 · · · ,m and

Hp(M̃, M̃d(G)) ∼=





Z⊕ · · ·Z︸ ︷︷ ︸
m

, if p = d,

0, if p 6= d.

§3. Differentiable Combinatorial Manifolds

3.1 Definition

For a given integer sequence 1 ≤ n1 < n2 < · · · < nm, a combinatorial Ch-differential man-

ifold (M̃(n1, · · · , nm); Ã) is a finitely combinatorial manifold M̃(n1, · · · , nm), M̃(n1, · · · , nm)

=
⋃
i∈I

Ui, endowed with a atlas Ã = {(Uα;ϕα)|α ∈ I} on M̃(n1, n2, · · · , nm) for an integer

h, h ≥ 1 with conditions following hold.

(1) {Uα;α ∈ I} is an open covering of M̃(n1, n2, · · · , nm).-
-?Uα

Uβ

Uα ∩ Uβ

ϕα

ϕβ

ϕβ(Uα
⋂
Uβ)

ϕβ(Uα
⋂
Uβ)

ϕβϕ
−1
α

Fig.9

(2) For ∀α, β ∈ I, local charts (Uα;ϕα) and (Uβ ;ϕβ) are equivalent, i.e., Uα
⋂
Uβ = ∅ or

Uα
⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ)→ ϕβ(Uβ) and ϕβϕ

−1
α : ϕα(Uα

⋂
Uβ)→ ϕα(Uα)
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are Ch-mappings, such as those shown in Fig.3.1.

(3) Ã is maximal, i.e., if (U ;ϕ) is a local chart of M̃(n1, n2, · · · , nm) equivalent with one

of local charts in Ã, then (U ;ϕ) ∈ Ã.

Denote by (M̃(n1, n2, · · · , nm); Ã) a combinatorial differential manifold. A finitely combi-

natorial manifold M̃(n1, n2, · · · , nm) is said to be smooth if it is endowed with a C∞-differential

structure. For the existence of combinatorial differential manifolds, we know the following result

([13],[17]).

Theorem 3.1 Let M̃(n1, · · · , nm) be a finitely combinatorial manifold and d, 1 ≤ d ≤ n1 an

integer. If for ∀M ∈ V (Gd[M̃(n1, · · · , nm)]) is Ch-differential and

∀(M1,M2) ∈ E(Gd[M̃(n1, · · · , nm)])

there exist atlas

A1 = {(Vx;ϕx)|∀x ∈M1} A2 = {(Wy ;ψy)|∀y ∈M2}

such that ϕx|Vx ⋂Wy
= ψy|Vx ⋂Wy

for ∀x ∈M1, y ∈M2, then there is a differential structures

Ã = {(Up; [̟p])|∀p ∈ M̃(n1, · · · , nm)}

such that (M̃(n1, · · · , nm); Ã) is a combinatorial Ch-differential manifold.

3.2 Local Properties of Combinatorial Manifolds

Let M̃1(n1, · · · , nm), M̃2(k1, · · · , kl) be smoothly combinatorial manifolds and

f : M̃1(n1, · · · , nm)→ M̃2(k1, · · · , kl)

be a mapping, p ∈ M̃1(n1, n2, · · · , nm). If there are local charts (Up; [̟p]) of p on M̃1(n1, n2, · · · , nm)

and (Vf(p); [ωf(p)]) of f(p) with f(Up) ⊂ Vf(p) such that the composition mapping

f̃ = [ωf(p)] ◦ f ◦ [̟p]
−1 : [̟p](Up)→ [ωf(p)](Vf(p))

is a Ch-mapping, then f is called a Ch-mapping at the point p. If f is Ch at any point p of

M̃1(n1, · · · , nm), then f is called a Ch-mapping. Denote by Xp all these C∞-functions at a

point p ∈ M̃(n1, · · · , nm).

Now let (M̃(n1, · · · , nm), Ã) be a smoothly combinatorial manifold and p ∈ M̃(n1, · · · , nm).

A tangent vector v at p is a mapping v : Xp → R with conditions following hold.

(1) ∀g, h ∈Xp, ∀λ ∈ R, v(h+ λh) = v(g) + λv(h);

(2) ∀g, h ∈Xp, v(gh) = v(g)h(p) + g(p)v(h).

Let γ : (−ǫ, ǫ)→ M̃ be a smooth curve on M̃ and p = γ(0). Then for ∀f ∈Xp, we usually

define a mapping v : Xp → R by

v(f) =
df(γ(t))

dt
|t=0.
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We can easily verify such mappings v are tangent vectors at p.

Denote all tangent vectors at p ∈ M̃(n1, n2, · · · , nm) by TpM̃(n1, n2, · · · , nm) and define

addition+and scalar multiplication·for ∀u, v ∈ TpM̃(n1, n2, · · · , nm), λ ∈ R and f ∈ Xp by

(u+ v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM̃(n1, n2, · · · , nm) is a vector space under these two

operations+and·. Let

X (M̃(n1, n2, · · · , nm)) =
⋃
p∈M̃

TpM̃(n1, n2, · · · , nm).

A vector field on M̃(n1, n2, · · · , nm) is a mapping X : M̃ → X (M̃(n1, n2, · · · , nm)), i.e.,

chosen a vector at each point p ∈ M̃(n1, n2, · · · , nm). Then the dimension and basis of the

tangent space TpM̃(n1, n2, · · · , nm) are determined in the next result.

Theorem 3.2 For any point p ∈ M̃(n1, n2, · · · , nm) with a local chart (Up; [ϕp]), the dimension

of TpM̃(n1, n2, · · · , nm) is

dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))

with a basis matrix

[
∂

∂x
]s(p)×ns(p) =




1
s(p)

∂
∂x11 · · · 1

s(p)
∂

∂x1ŝ(p)
∂

∂x1(ŝ(p)+1) · · · ∂
∂x1n1

· · · 0

1
s(p)

∂
∂x21 · · · 1

s(p)
∂

∂x2ŝ(p)
∂

∂x2(ŝ(p)+1) · · · ∂
∂x2n2

· · · 0

· · · · · · · · · · · · · · · · · ·
1
s(p)

∂
∂xs(p)1

· · · 1
s(p)

∂
∂xs(p)ŝ(p)

∂
∂xs(p)(ŝ(p)+1) · · · · · · ∂

∂x
s(p)(ns(p)−1)

∂

∂x
s(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely there is a smoothly functional matrix

[vij ]s(p)×ns(p) such that for any tangent vector v at a point p of M̃(n1, n2, · · · , nm),

v =

〈
[vij ]s(p)×ns(p) , [

∂

∂x
]s(p)×ns(p)

〉
,

where 〈[aij ]k×l, [bts]k×l〉 =
k∑
i=1

l∑
j=1

aijbij, the inner product on matrixes.

For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã), the dual space T ∗p M̃(n1, n2, · · · , nm) is called a co-

tangent vector space at p. Let f ∈ Xp, d ∈ T ∗p M̃(n1, n2, · · · , nm) and v ∈ TpM̃(n1, n2, · · · , nm).

Then the action of d on f , called a differential operator d : Xp → R, is defined by

df = v(f).

We know the following result.
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Theorem 3.3 For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã) with a local chart (Up; [ϕp]), the dimension

of T ∗p M̃(n1, n2, · · · , nm) is dimT ∗p M̃(n1, n2, · · · , nm) = dimTpM̃(n1, n2, · · · , nm) with a basis

matrix [dx]s(p)×ns(p) =




dx11

s(p) · · · dx1ŝ(p)

s(p) dx1(ŝ(p)+1) · · · dx1n1 · · · 0

dx21

s(p) · · · dx2ŝ(p)

s(p) dx2(ŝ(p)+1) · · · dx2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
dxs(p)1

s(p) · · · dxs(p)ŝ(p)

s(p) dxs(p)(ŝ(p)+1) · · · · · · dxs(p)ns(p)−1 dxs(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely for any co-tangent vector d at a point

p of M̃(n1, n2, · · · , nm), there is a smoothly functional matrix [uij ]s(p)×s(p) such that,

d =
〈
[uij ]s(p)×ns(p) , [dx]s(p)×ns(p)

〉
.

3.3 Tensor Field

Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold and p ∈ M̃(n1, n2, · · · , nm). A

tensor of type (r, s) at the point p on M̃(n1, n2, · · · , nm) is an (r + s)-multilinear function τ ,

τ : T ∗p M̃ × · · · × T ∗p M̃︸ ︷︷ ︸
r

×TpM̃ × · · · × TpM̃︸ ︷︷ ︸
s

→ R,

where TpM̃ = TpM̃(n1, n2, · · · , nm) and T ∗p M̃ = T ∗p M̃(n1, n2, · · · , nm). Denoted by T rs (p, M̃)

all tensors of type (r, s) at a point p of M̃(n1, n2, · · · , nm). We know its structure as follows.

Theorem 3.4 Let M̃(n1, · · · , nm) be a smoothly combinatorial manifold and p ∈ M̃(n1, · · · , nm).

Then

T rs (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸ ︷︷ ︸
r

⊗T ∗p M̃ ⊗ · · · ⊗ T ∗p M̃︸ ︷︷ ︸
s

,

where TpM̃ = TpM̃(n1, · · · , nm) and T ∗p M̃ = T ∗p M̃(n1, · · · , nm), particularly,

dimT rs (p, M̃) = (ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)))r+s.

3.4 Curvature Tensor

A connection on tensors of a smoothly combinatorial manifold M̃ is a mapping D̃ : X (M̃) ×
T rs M̃ → T rs M̃ with D̃Xτ = D̃(X, τ) such that for ∀X,Y ∈ X M̃ , τ, π ∈ T rs (M̃),λ ∈ R and

f ∈ C∞(M̃),

(1) D̃X+fY τ = D̃Xτ + fD̃Y τ ; and D̃X(τ + λπ) = D̃Xτ + λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;

(3) for any contraction C on T rs (M̃),

D̃X(C(τ)) = C(D̃Xτ).
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A combinatorial connection space is a 2-tuple (M̃, D̃) consisting of a smoothly combinatorial

manifold M̃ with a connection D̃ on its tensors. Let (M̃, D̃) be a combinatorial connection

space. For ∀X,Y ∈ X (M̃), a combinatorial curvature operator R̃(X,Y ) : X (M̃)→ X (M̃) is

defined by

R̃(X,Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z

for ∀Z ∈X (M̃).

Let M̃ be a smoothly combinatorial manifold and g ∈ A2(M̃) =
⋃
p∈M̃

T 0
2 (p, M̃). If g is

symmetrical and positive, then M̃ is called a combinatorial Riemannian manifold, denoted by

(M̃, g). In this case, if there is a connection D̃ on (M̃, g) with equality following hold

Z(g(X,Y )) = g(D̃Z , Y ) + g(X, D̃ZY )

then M̃ is called a combinatorial Riemannian geometry, denoted by (M̃, g, D̃). In this case,

calculation shows that ([14])

R̃ = R̃(σς)(ηθ)(µν)(κλ)dx
σς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ

with

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+ Γϑι(µν)(σς)Γ
ξo
(κλ)(ηθ)g(ξo)(ϑι) − Γξo(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),

where g(µν)(κλ) = g( ∂
∂xµν ,

∂
∂xκλ

).

§4. Principal Fiber Bundles

In classical differential geometry, a principal fiber bundle ([3]) is an application of covering

space to smoothly manifolds. Topologically, a covering space ([18]) S′ of S consisting of a

space S′ with a continuous mapping π : S′ → S such that each point x ∈ S has an arcwise

connected neighborhood Ux and each arcwise connected component of π−1(Ux) is mapped

homeomorphically onto Ux by π, such as those shown in Fig.10.

V1 V2 Vk

?
x ∈ Ux

π

Fig.10
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where Vi = π−1(Ux) for integers 1 ≤ i ≤ k.
A principal fiber bundle ([3]) consists of a manifold P action by a Lie group G , which is

a manifold with group operation G × G → G given by (g, h) → g ◦ h being C∞ mapping, a

projection π : P → M , a base pseudo-manifold M , denoted by (P,M,G ), seeing Fig.4.2 such

that conditions (1), (2) and (3) following hold.

(1) there is a right freely action of G on P,, i.e., for ∀g ∈ G , there is a diffeomorphism

Rg : P → P with Rg(p) = pg for ∀p ∈ P such that p(g1g2) = (pg1)g2 for ∀p ∈ P , ∀g1, g2 ∈ G

and pe = p for some p ∈ P , e ∈ G if and only if e is the identity element of G .

(2) the map π : P →M is onto with π−1(π(p)) = {pg|g ∈ G }.
(3) for ∀x ∈M there is an open set U with x ∈ U and a diffeomorphism TU : π−1(U)→ U×

G of the form TU (p) = (π(p), sU (p)), where sU : π−1(U)→ G has the property sU (pg) = sU (p)g

for ∀g ∈ G , p ∈ π−1(U).

V V V

?
x ∈ U

π−1

P

M

- U × G
TU

Fig.11

where V = π−1(U). Now can we establish principal fiber bundles on smoothly combinatorial

manifolds? This question can be formally presented as follows:

Question For a family of k principal fiber bundles P1(M1,G1), P2(M2,G2),· · · , Pk(Mk,Gk)

over manifolds M1, M2, · · · , Mk, how can we construct principal fiber bundles on a smoothly

combinatorial manifold consisting of M1,M2, · · · ,Mk underlying a connected graph G?

The answer is YES! For this object, we need some techniques in combinatorics.

4.1 Voltage Graph with Its Lifting

Let G be a connected graph and (Γ; ◦) a group. For each edge e ∈ E(G), e = uv, an orientation

on e is an orientation on e from u to v, denoted by e = (u, v) , called plus orientation and its

minus orientation, from v to u, denoted by e−1 = (v, u). For a given graph G with plus and

minus orientation on its edges, a voltage assignment on G is a mapping α from the plus-edges

of G into a group Γ satisfying α(e−1) = α−1(e), e ∈ E(G). These elements α(e), e ∈ E(G) are

called voltages, and (G,α) a voltage graph over the group (Γ; ◦).
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For a voltage graph (G,α), its lifting (See [6], [9] for details) Gα = (V (Gα), E(Gα); I(Gα))

is defined by

V (Gα) = V (G)× Γ, (u, a) ∈ V (G)× Γ abbreviated to ua;

E(Gα) = {(ua, va◦b)|e+ = (u, v) ∈ E(G), α(e+) = b}.
For example, let G = K3 and Γ = Z2. Then the voltage graph (K3, α) with α : K3 → Z2

and its lifting are shown in Fig.12.

u

w

10

0

(G,α)

v

u0

u1

v0

v1

w0

w1

Gα

Fig.12

Similarly, let GL be a connected vertex-edge labeled graph with θL : V (G) ∪E(G)→ L of

a label set and Γ a finite group. A voltage labeled graph on a vertex-edge labeled graph GL is

a 2-tuple (GL;α) with a voltage assignments α : E(GL)→ Γ such that

α(u, v) = α−1(v, u), ∀(u, v) ∈ E(GL).

Similar to voltage graphs, the importance of voltage labeled graphs lies in their labeled

lifting GLα defined by

V (GLα) = V (GL)× Γ, (u, g) ∈ V (GL)× Γ abbreviated to ug;

E(GLα) = { (ug, vg◦h) | for ∀(u, v) ∈ E(GL) with α(u, v) = h }

with labels ΘL : GLα → L following:

ΘL(ug) = θL(u), and ΘL(ug, vg◦h) = θL(u, v)

for u, v ∈ V (GL), (u, v) ∈ E(GL) with α(u, v) = h and g, h ∈ Γ.

For a voltage labeled graph (GL, α) with its lifting GLα, a natural projection π : GLα → GL

is defined by π(ug) = u and π(ug, vg◦h) = (u, v) for ∀u, v ∈ V (GL) and (u, v) ∈ E(GL) with

α(u, v) = h. Whence, (GLα , π) is a covering space of the labeled graph GL. In this covering,

we can find

π−1(u) = { ug | ∀g ∈ Γ}

for a vertex u ∈ V (GL) and

π−1(u, v) = { (ug, vg◦h) | ∀g ∈ Γ }
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for an edge (u, v) ∈ E(GL) with α(u, v) = h. Such sets π−1(u), π−1(u,v) are called fibres

over the vertex u ∈ V (GL) or edge (u, v) ∈ E(GL), denoted by fibu or fib(u,v), respectively.

A voltage labeled graph with its labeled lifting are shown in Fig.13, in where, GL = CL3 and

Γ = Z2.

3

4

12

2

(GL, α)

5

3

3

5

5

4

4

GLα

2

2

1
1

2

2

Fig.13

A mapping g : GL → GL is acting on a labeled graph GL with a labeling θL : GL → L if

gθL(x) = θLg(x) for ∀x ∈ V (GL) ∪ E(GL), and a group Γ is acting on a labeled graph GL if

each g ∈ Γ is acting on GL. Clearly, if Γ is acting on a labeled graph GL, then Γ ≤ AutG.

Now let A be a group of automorphisms of GL. A voltage labeled graph (GL, α) is called

locally A-invariant at a vertex u ∈ V (GL) if for ∀f ∈ A and W ∈ π1(G
L, u), we have

α(W ) = identity ⇒ α(f(W )) = identity

and locally f -invariant for an automorphism f ∈ AutGL if it is locally invariant with respect to

the group 〈f〉 in AutGL. Then we know a criterion for lifting automorphisms of voltage labeled

graphs.

Theorem 4.1 Let (GL, α) be a voltage labeled graph with α : E(GL) → Γ and f ∈ AutGL.

Then f lifts to an automorphism of GLα if and only if (GL, α) is locally f -invariant.

4.2 Combinatorial Principal Fiber Bundles

For construction principal fiber bundles on smoothly combinatorial manifolds, we need to in-

troduce the conception of Lie multi-group. A Lie multi-group LG is a smoothly combinato-

rial manifold M̃ endowed with a multi-group (Ã (LG); O(LG)), where Ã (LG) =
m⋃
i=1

Hi and

O(LG) =
m⋃
i=1

{◦i} such that

(i) (Hi; ◦i) is a group for each integer i, 1 ≤ i ≤ m;

(ii) GL[M̃ ] = G;

(iii) the mapping (a, b) → a ◦i b−1 is C∞-differentiable for any integer i, 1 ≤ i ≤ m and

∀a, b ∈Hi.

Notice that if m = 1, then a Lie multi-group LG is nothing but just the Lie group ([24])

in classical differential geometry.

Now let P̃ , M̃ be a differentiably combinatorial manifolds and LG a Lie multi-group
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(Ã (LG); O(LG)) with

P̃ =

m⋃

i=1

Pi, M̃ =

s⋃

i=1

Mi, Ã (LG) =

m⋃

i=1

H◦i ,O(LG) =

m⋃

i=1

{◦i}.

Then a differentiable principal fiber bundle over M̃ with group LG consists of a differentiably

combinatorial manifold P̃ , an action of LG on P̃ , denoted by P̃ (M̃,LG) satisfying following

conditions PFB1-PFB3:

PFB1. For any integer i, 1 ≤ i ≤ m, H◦i acts differentiably on Pi to the right without

fixed point, i.e.,

(x, g) ∈ Pi ×H◦i → x ◦i g ∈ Pi and x ◦i g = x implies that g = 1◦i ;

PFB2. For any integer i, 1 ≤ i ≤ m, M◦i is the quotient space of a covering manifold

P ∈ Π−1(M◦i) by the equivalence relation R induced by H◦i :

Ri = {(x, y) ∈ P◦i × P◦i |∃g ∈H◦i ⇒ x ◦i g = y},

written by M◦i = P◦i/H◦i , i.e., an orbit space of P◦i under the action of H◦i . These is a

canonical projection Π : P̃ → M̃ such that Πi = Π|P◦i
: P◦i → M◦i is differentiable and each

fiber Π−1
i (x) = {p ◦i g|g ∈H◦i ,Πi(p) = x} is a closed submanifold of P◦i and coincides with an

equivalence class of Ri;

PFB3. For any integer i, 1 ≤ i ≤ m, P ∈ Π−1(M◦i) is locally trivial over M◦i , i.e., any

x ∈M◦i has a neighborhood Ux and a diffeomorphism T : Π−1(Ux)→ Ux ×LG with

T |Π−1
i (Ux)

= T xi : Π−1
i (Ux)→ Ux ×H◦i ; x→ T xi (x) = (Πi(x), ǫ(x)),

called a local trivialization (abbreviated to LT) such that ǫ(x ◦i g) = ǫ(x) ◦i g for ∀g ∈ H◦i ,

ǫ(x) ∈H◦i .

Certainly, if m = 1, then P̃ (M̃,LG) = P (M,H ) is just the common principal fiber bundle

over a manifold M .

4.3 Construction by Voltage Assignment

Now we show how to construct principal fiber bundles over a combinatorial manifold M̃ .

Construction 4.1 For a family of principal fiber bundles over manifolds M1,M2, · · · , Ml,

such as those shown in Fig.14, where H◦i is a Lie group acting on PMi
for 1 ≤ i ≤ l satisfying

conditions PFB1-PFB3, let M̃ be a differentiably combinatorial manifold consisting of Mi,

1 ≤ i ≤ l and (GL[M̃ ], α) a voltage graph with a voltage assignment α : GL[M̃ ] → G over a

finite group G,
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PM1?
M1

PM2

M2

? PMl

Ml

?? ? ?H◦1 H◦2 H◦l

ΠM1 ΠMl
ΠM2

Fig.14

which naturally induced a projection π : GL[P̃ ] → GL[M̃ ]. For ∀M ∈ V (GL[M̃ ]), if π(PM ) =

M , place PM on each lifting vertex MLα in the fiber π−1(M) of GLα [M̃ ], such as those shown

in Fig.15.

PM PM PM
︸ ︷︷ ︸

π−1(M)?
M

Fig.15

Let Π = πΠMπ
−1 for ∀M ∈ V (GL[M̃ ]). Then P̃ =

⋃
M∈V (GL[M̃ ])

PM is a smoothly combinato-

rial manifold and LG =
⋃

M∈V (GL[M̃ ])

HM a Lie multigroup by definition. Such a constructed

combinatorial fiber bundle is denoted by P̃Lα(M̃,LG).

For example, let G = Z2 and GL[M̃ ] = C3. A voltage assignment α : GL[M̃ ]→ Z2 and its

induced combinatorial fiber bundle are shown in Fig.16.
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Then we know the existence result following.

Theorem 4.2 A combinatorial fiber bundle P̃α(M̃,LG) is a principal fiber bundle if and only

if for ∀(M ′,M ′′) ∈ E(GL[M̃ ]) and (PM ′ , PM ′′ ) = (M ′,M ′′)Lα ∈ E(GL[P̃ ]), ΠM ′ |PM′∩PM′′ =

ΠM ′′ |PM′∩PM′′ .

We assume P̃α(M̃,LG) satisfying conditions in Theorem 4.2, i.e., it is indeed a principal

fiber bundle over M̃ . An automorphism of P̃α(M̃,LG) is a diffeomorphism ω : P̃ → P̃ such

that ω(p ◦i g) = ω(p) ◦i g for g ∈H◦i and

p ∈ ⋃
P∈π−1(Mi)

P , where 1 ≤ i ≤ l.

Theorem 4.3 Let P̃α(M̃,LG) be a principal fiber bundle. Then

AutP̃α(M̃,LG) ≥ 〈L〉 ,

where L = { ĥωi | ĥ : PMi
→ PMi

is 1PMi determined by h((Mi)g) = (Mi)g◦ih for h ∈
G and gi ∈ AutPMi

(Mi,H◦i), 1 ≤ i ≤ l}.

A principal fiber bundle P̃ (M̃,LG) is called to be normal if for ∀u, v ∈ P̃ , there exists

an ω ∈ AutP̃ (M̃,LG) such that ω(u) = v. We get the necessary and sufficient conditions of

normally principal fiber bundles P̃α(M̃,LG) following.

Theorem 4.4 P̃α(M̃,LG) is normal if and only if PMi
(Mi,H◦i) is normal, (H◦i ; ◦i) = (H ; ◦)

for 1 ≤ i ≤ l and GLα [M̃ ] is transitive by diffeomorphic automorphisms in AutGLα [M̃ ].

4.4 Connection on Principal Fiber Bundles over Combinatorial Manifolds

A local connection on a principal fiber bundle P̃α(M̃,LG) is a linear mapping iΓu : Tx(M̃)→
Tu(P̃ ) for an integer i, 1 ≤ i ≤ l and u ∈ Π−1

i (x) = iFx, x ∈ Mi, enjoys with properties

following:

(i) (dΠi)
iΓu = identity mapping on Tx(M̃);

(ii) iΓiRg◦iu = d iRg ◦i iΓu, where iRg is the right translation on PMi
;

(iii) the mapping u→ iΓu is C∞.

Similarly, a global connection on a principal fiber bundle P̃α(M̃,LG) is a linear mapping

Γu : Tx(M̃)→ Tu(P̃ ) for a u ∈ Π−1(x) = Fx, x ∈ M̃ with conditions following hold:

(i) (dΠ)Γu = identity mapping on Tx(M̃);

(ii) ΓRg◦u = dRg ◦ Γu for ∀g ∈ LG, ∀◦ ∈ O(LG), where Rg is the right translation on P̃ ;

(iii) the mapping u→ Γu is C∞.

Local or global connections on combinatorial principal fiber bundles are characterized by

results following.

Theorem 4.5 For an integer i, 1 ≤ i ≤ l, a local connection iΓ in P̃ is an assignment
iH : u→ iHu ⊂ Tu(P̃ ), of a subspace iHu of Tu(P̃ ) to each u ∈ iFx with

(i) Tu(P̃ ) = iHu ⊕i Vu, u ∈ iFx;
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(ii) (d iRg)
iHu = iHu◦ig for ∀u ∈ iFx and ∀g ∈H◦i ;

(iii) iH is a C∞-distribution on P̃ .

Theorem 4.6 A global connection Γ in P̃ is an assignment H : u→ Hu ⊂ Tu(P̃ ), of a subspace

Hu of Tu(P̃ ) to each u ∈ Fx with

(i) Tu(P̃ ) = Hu ⊕ Vu, u ∈ Fx;
(ii) (dRg)Hu = Hu◦g for ∀u ∈ Fx, ∀g ∈ LG and ◦ ∈ O(LG);

(iii) H is a C∞-distribution on P̃ .

Theorem 4.7 Let iΓ be a local connections on P̃α(M̃,LG) for 1 ≤ i ≤ l. Then a global

connection on P̃α(M̃,LG) exists if and only if (H◦i ; ◦i) = (H ; ◦), i.e., LG is a group and
iΓ|Mi∩Mj

= jΓ|Mi∩Mj
for (Mi,Mj) ∈ E(GL[M̃ ]), 1 ≤ i, j ≤ l.

A curvature form of a local or global connection is a Y(H◦i , ◦i) or Y(LG)-valued 2-form

iΩ = (d iω)h, or Ω = (dω)h,

where (d iω)h(X,Y ) = d iω(hX, hY ), (dω)h(X,Y ) = dω(hX, hY ) for X,Y ∈ X (PMi
) or

X,Y ∈ X (P̃ ). Notice that a 1-form ωh(X1, X2) = 0 if and only if ih(X1) = 0 or ih(X12) = 0.

We generalize classical structural equations and Bianchi’s identity on principal fiber bundles

following.

Theorem 4.8(E.Cartan) Let iω, 1 ≤ i ≤ l and ω be local or global connection forms on a

principal fiber bundle P̃α(M̃,LG). Then

(d iω)(X,Y ) = −[ iω(X),i ω(Y )] + iΩ(X,Y )

and

dω(X,Y ) = −[ω(X), ω(Y )] + Ω(X,Y )

for vector fields X,Y ∈ X (PMi
) or X (P̃ ).

Theorem 4.9(Bianchi) Let iω, 1 ≤ i ≤ l and ω be local or global connection forms on a

principal fiber bundle P̃α(M̃,LG). Then

(d iΩ)h = 0, and (dΩ)h = 0.

§5. Applications

A gauge field is such a mathematical model with local or global symmetries under a group, a

finite-dimensional Lie group in most cases action on its gauge basis at an individual point in

space and time, together with a set of techniques for making physical predictions consistent

with the symmetries of the model, which is a generalization of Einstein’s principle of covariance

to that of internal field characterized by the following ([3],[23],[24]).
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Gauge Invariant Principle A gauge field equation, particularly, the Lagrange density of a

gauge field is invariant under gauge transformations on this field.

We wish to find gauge fields on combinatorial manifolds, and then to characterize WORLD

by combinatorics. A globally or locally combinatorial gauge field is a combinatorial field M̃ under

a gauge transformation τ
M̃

: M̃ → M̃ independent or dependent on the field variable x. If a

combinatorial gauge field M̃ is consisting of gauge fields M1,M2, · · · ,Mm, we can easily find

that M̃ is a globally combinatorial gauge field only if each gauge field is global.

Let Mi, 1 ≤ i ≤ m be gauge fields with a basis BMi
and τi : BMi

→ BMi
a gauge

transformation, i.e., LMi
(BτiMi

) = LMi
(BMi

). A gauge transformation τ
M̃

:
m⋃
i=1

BMi
→

m⋃
i=1

BMi

is such a transformation on the gauge multi-basis
m⋃
i=1

BMi
and Lagrange density L

M̃
with

τ
M̃
|Mi

= τi,LM̃
|Mi

= LMi
for integers 1 ≤ i ≤ m such that

L
M̃

(

m⋃

i=1

BMi
)τM̃ = L

M̃
(

m⋃

i=1

BMi
).

A multibasis
m⋃
i=1

BMi
is a combinatorial gauge basis if for any automorphism g ∈ AutGL[M̃ ],

L
M̃

(

m⋃

i=1

BMi
)τM̃◦g = L

M̃
(

m⋃

i=1

BMi
),

where τ
M̃
◦ g means τ

M̃
composting with an automorphism g, a bijection on gauge multi-

basis
m⋃
i=1

BMi
. Whence, a combinatorial field consisting of gauge fields M1,M2, · · · ,Mm is a

combinatorial gauge field if Mα
1 = Mα

2 for ∀Mα
1 ,M

α
2 ∈ Ωα, where Ωα, 1 ≤ α ≤ s are orbits

of M1,M2, · · · ,Mm under the action of AutGL[M̃ ]. Therefore, combining existent gauge fields

underlying a connected graph G in space enables us to find more combinatorial gauge fields.

For example, combinatorial gravitational fields M̃(t) determined by tensor equations

R(µν)(στ) −
1

2
g(µν)(στ)R = −8πGE(µν)(στ)

in a combinatorial Riemannian manifold (M̃, g, D̃) with M̃ = M̃(n1, n2, · · · , nm).

Now let
1
ω be the local connection 1-form,

2

Ω= d̃
1
ω the curvature 2-form of a local connection

on P̃α(M̃,LG) and Λ : M̃ → P̃ , Π ◦Λ = id
M̃

be a local cross section of P̃α(M̃,LG). Consider

Ã = Λ∗
1
ω=

∑

µν

Aµνdx
µν ,

F̃ = Λ∗
2

Ω=
∑

F(µν)(κλ)dx
µν ∧ dxκλ, d̃ F̃ = 0,

called the combinatorial gauge potential and combinatorial field strength, respectively. Let
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γ : M̃ → R and Λ′ : M̃ → P̃ , Λ′(x) = eiγ(x)Λ(x). If Ã′ = Λ′∗
1
ω, then we have

1

ω′ (X) = g−1 1
ω (X ′)g + g−1dg, g ∈ LG,

for dg ∈ Tg(LG), X = d̃RgX
′ by properties of local connections on combinatorial principal

fiber bundles discussed in Section 4.4, which finally yields equations following

Ã′ = Ã+ d̃ Ã, d̃ F̃ ′ = d̃ F̃ ,

i.e., the gauge transformation law on field. This equation enables one to obtain the local form

of F̃ as they contributions to Maxwell or Yang-Mills fields in classical gauge fields theory.

Certainly, combinatorial fields can be applied to any many-body system in natural or social

science, such as those in mechanics, cosmology, physical structure, economics,· · · , etc..
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Curvature Equations on Combinatorial Manifolds

with Applications to Theoretical Physics

Abstract Curvature equations are very important in theoretical physics for describing vari-

ous classical fields, particularly for gravitational field by Einstein. For applying Smarandache

multispaces to parallel universes, the conception of combinatorial manifolds was introduced

under a combinatorial speculation for mathematical sciences in [9], which are similar to

manifolds in the local but different in the global. Similarly, we introduce curvatures on

combinatorial manifolds and find their structural equations in this paper. These Einstein’s

equations for a gravitational field are established again by the choice of a combinatorial Rie-

mannian manifold as its spacetime and some multi-space solutions for these new equations

are also gotten by applying the projective principle on multi-spaces in this paper.

Key Words: curvature, combinatorial manifold, combinatorially Euclidean space, equa-

tions of gravitational field, multi-space solution.

AMS(2000): 51M15, 53B15, 53B40, 57N16, 83C05, 83F05.

§1. Introduction

As an efficiently mathematical tool used by Einstein in his general relativity, tensor analysis

mainly dealt with transformations on manifolds had gotten considerable developments by both

mathematicians and physicists in last century. Among all of these, much concerns were concen-

trated on an important tensor called curvature tensor for understanding the behavior of curved

spaces. For example, the famous Einstein’s gravitational field equations

Rµν −
1

2
gµνR = −8πGTµν

are consisted of curvature tensors and energy-momentum tensors of the curved space.

Notice that all curved spaces considered in classical fields are homogenous. Achievements of

physics had shown that the multiple behavior of the cosmos in last century, enables the model

of parallel universe for the cosmos born([14]). Then can we construct a new mathematical

theory, or generalized manifolds usable for this multiple, non-homogenous physics appeared in

21st century? The answer is YES in logic at least. That is the Smarandache multi-space theory,

see [7] for details.

For applying Smarandache multispaces to parallel universes, combinatorial manifolds were

introduced endowed with a topological or differential structure under a combinatorial specu-

lation for mathematical sciences in [9], i.e. mathematics can be reconstructed from or turned

into combinatorization([8]), which are similar to manifolds in the local but different in the

1International J.Math. Combin., Vol.1 (2008), 16-35
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global. Whence, geometries on combinatorial manifolds are nothing but these Smarandache

geometries([12]-[13]).

Now we introduce the conception of combinatorial manifolds in the following. For an

integer s ≥ 1, let n1, n2, · · · , ns be an integer sequence with 0 < n1 < n2 < · · · < ns. Choose s

open unit balls Bn1
1 , Bn2

2 , · · · , Bnss with
s⋂
i=1

Bnii 6= ∅ in Rn, where n = n1 + n2 + · · ·ns. A unit

open combinatorial ball of degree s is a union

B̃(n1, n2, · · · , ns) =

s⋃

i=1

Bnii .

A combinatorial manifold M̃ is defined in the next.

Definition 1.1 For a given integer sequence n1, n2, · · · , nm,m ≥ 1 with 0 < n1 < n2 < · · · <
nm, a combinatorial manifold M̃ is a Hausdorff space such that for any point p ∈ M̃ , there is

a local chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in M̃ and a homoeomorphism

ϕp : Up → B̃(n1(p), n2(p), · · · , ns(p)(p)) with {n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm}
and

⋃
p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}, denoted by M̃(n1, n2, · · · , nm) or M̃

on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm). The maximum value of s(p) and the dimension ŝ(p) of
s(p)⋂
i=1

Bnii

are called the dimension and the intersectional dimensional of M̃(n1, n2, · · · , nm) at the point

p, denoted by d(p) and d̂(p), respectively.

A combinatorial manifold M̃ is called finite if it is just combined by finite manifolds with-

out one manifold contained in the union of others, is called smooth if it is finite endowed

with a C∞ differential structure. For a smoothly combinatorial manifold M̃ and a point

p ∈ M̃ , it has been shown in [9] that dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)) and

dimT ∗p M̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)) with a basis

{ ∂

∂xhj
|p|1 ≤ j ≤ ŝ(p)}

⋃
(

s(p)⋃

i=1

ni⋃

j=ŝ(p)+1

{ ∂

∂xij
|p | 1 ≤ j ≤ s})

or

{dxhj |p|}1 ≤ j ≤ ŝ(p)}
⋃

(

s(p)⋃

i=1

ni⋃

j=ŝ(p)+1

{dxij |p | 1 ≤ j ≤ s}

for a given integer h, 1 ≤ h ≤ s(p).

Definition 1.2 A connection D̃ on a smoothly combinatorial manifold M̃ is a mapping D̃ :

X (M̃) × T rs M̃ → T rs M̃ on tensors of M̃ with D̃Xτ = D̃(X, τ) such that for ∀X,Y ∈ X M̃ ,
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τ, π ∈ T rs (M̃),λ ∈ R and f ∈ C∞(M̃),

(1) D̃X+fY τ = D̃Xτ + fD̃Y τ ; and D̃X(τ + λπ) = D̃Xτ + λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;

(3) for any contraction C on T rs (M̃), D̃X(C(τ)) = C(D̃Xτ).

A combinatorially connection space is a 2-tuple (M̃, D̃) consisting of a smoothly combina-

torial manifold M̃ with a connection D̃ and a torsion tensor T̃ : X (M̃)×X (M̃)→X (M̃) on

(M̃, D̃) is defined by T̃ (X,Y ) = D̃XY − D̃YX − [X,Y ] for ∀X,Y ∈ X (M̃). If T̃ |U (X,Y ) ≡ 0

in a local chart (U, [ϕ]), then D̃ is called torsion-free on (U, [ϕ]).

Similar to that of Riemannian geometry, metrics on a smoothly combinatorial manifold

and the combinatorially Riemannian geometry are defined in next definition.

Definition 1.3 Let M̃ be a smoothly combinatorial manifold and g ∈ A2(M̃) =
⋃
p∈M̃

T 0
2 (p, M̃).

If g is symmetrical and positive, then M̃ is called a combinatorially Riemannian manifold,

denoted by (M̃, g). In this case, if there is a connection D̃ on (M̃, g) with equality following

hold

Z(g(X,Y )) = g(D̃Z , Y ) + g(X, D̃ZY )

then M̃ is called a combinatorially Riemannian geometry, denoted by (M̃, g, D̃).

It has been showed that there exists a unique connection D̃ on (M̃, g) such that (M̃, g, D̃)

is a combinatorially Riemannian geometry in [9].

We all known that curvature equations are very important in theoretical physics for describ-

ing various classical fields, particularly for gravitational field by Einstein. The main purpose

of this paper is to establish curvature tensors with equations on combinatorial manifolds and

apply them to describe the gravitational field. For this objective, we introduce the concep-

tion of curvatures on combinatorial manifolds and establish symmetrical relations for curvature

tensors, particularly for combinatorially Riemannian manifolds in the next two sections. Struc-

tural equations of curvature tensors on combinatorial manifolds are also established. These

generalized Einstein’s equations of gravitational field on combinatorially Riemannian manifolds

are constructed in Section 4. By applying the projective principle on multi-spaces, multi-space

solutions for these new equations are gotten in Section 5.

Terminologies and notations used in this paper are standard and can be found in [1], [4] for

those of manifolds [9]− [11] for combinatorial manifolds and [6]− [7] for graphs, respectively.

§2. Curvatures on Combinatorially Connection Spaces

As a first step for introducing curvatures on combinatorial manifolds, we define combinatorially

curvature operators on smoothly combinatorial manifolds in the next.

Definition 2.1 Let (M̃, D̃) be a combinatorially connection space. For ∀X,Y ∈ X (M̃), a
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combinatorially curvature operator R̃(X,Y ) : X (M̃)→X (M̃) is defined by

R̃(X,Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z

for ∀Z ∈ X (M̃).

For a given combinatorially connection space (M̃, D̃), we know properties following on

combinatorially curvature operators similar to those of the Riemannian geometry.

Theorem 2.1 Let (M̃, D̃) be a combinatorially connection space. Then for ∀X,Y, Z ∈ X (M̃),

∀f ∈ C∞(M̃),

(1) R̃(X,Y ) = −R̃(Y,X);

(2) R̃(fX, Y ) = R̃(X, fY ) = fR̃(X,Y );

(3) R̃(X,Y )(fZ) = fR̃(X,Y )Z.

Proof For ∀X,Y, Z ∈ X (M̃), we know that R̃(X,Y )Z = −R̃(Y,X)Z by definition.

Whence, R̃(X,Y ) = −R̃(Y,X).

Now since

R̃(fX, Y )Z = D̃fXD̃Y Z − D̃Y D̃fXZ − D̃[fX,Y ]Z

= fD̃XD̃Y Z − D̃Y (fD̃XZ)− D̃f [X,Y ]−Y (f)XZ

= fD̃XD̃Y Z − Y (f)D̃XZ − fD̃Y D̃XZ

− fD̃[X,Y ]Z + Y (f)D̃XZ

= fR̃(X,Y )Z,

we get that R̃(fX, Y ) = fR̃(X,Y ). Applying the quality (1), we find that

R̃(X, fY ) = −R̃(fY,X) = −fR̃(Y,X) = fR̃(X,Y ).

This establishes (2). Now calculation shows that

R̃(X,Y )(fZ) = D̃XD̃Y (fZ)− D̃Y D̃X(fZ)− D̃[X,Y ](fZ)

= D̃X(Y (f)Z + fD̃Y Z)− D̃Y (X(f)Z + fD̃XZ)

− ([X,Y ](f))Z − fD̃[X,Y ]Z

= X(Y (f))Z + Y (f)D̃XZ +X(f)D̃YZ

+ fD̃XD̃Y Z − Y (X(f))Z −X(f)D̃YZ − Y (f)D̃XZ

− fD̃Y D̃XZ − ([X,Y ](f))Z − fD̃[X,Y ]Z

= fR̃(X,Y )Z.

Whence, we know that

R̃(X,Y )(fZ) = fR̃(X,Y )Z. 2
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Theorem 2.2 Let (M̃, D̃) be a combinatorially connection space. If the torsion tensor T̃ ≡ 0

on D̃, then the first and second Bianchi equalities following hold.

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0

and

(D̃XR̃)(Y, Z)W + (D̃Y R̃)(Z,X)W + (D̃ZR̃)(X,Y )W = 0.

Proof Notice that T̃ ≡ 0 is equal to D̃XY −D̃YX = [X,Y ] for ∀X,Y ∈X (M̃). Thereafter,

we know that

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y

= D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z + D̃Y D̃ZX − D̃ZD̃YX

− D̃[Y,Z]X + D̃ZD̃XY − D̃XD̃ZY − D̃[Z,X]Y

= D̃X(D̃Y Z − D̃ZY )− D̃[Y,Z]X + D̃Y (D̃ZX − D̃XZ)

− D̃[Z,X]Y + D̃Z(D̃XY − D̃YX)− D̃[X,Y ]Z

= D̃X [Y, Z]− D̃[Y,Z]X + D̃Y [Z,X ]− D̃[Z,X]Y

+ D̃Z [X,Y ]− D̃[X,Y ]Z

= [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]].

By the Jacobi equality [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0, we get that

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0.

By definition, we know that

(D̃XR̃)(Y, Z)W =

D̃XR̃(Y, Z)W − R̃(D̃XY, Z)W − R̃(Y, D̃XZ)W − R̃(Y, Z)D̃XW

= D̃XD̃Y D̃ZW − D̃XD̃ZD̃YW − D̃XD̃[Y,Z]W − D̃D̃XY
D̃ZW

+D̃ZD̃D̃XY
W + D̃[D̃XY,Z]W − D̃Y D̃D̃XZ

W + D̃D̃XZ
D̃YW

+D̃[Y,D̃XZ]W − D̃Y D̃ZD̃XW + D̃ZD̃Y D̃XW + D̃[Y,Z]D̃XW.

Let

AW (X,Y, Z) = D̃XD̃Y D̃ZW − D̃XD̃ZD̃YW − D̃Y D̃ZD̃XW + D̃ZD̃Y D̃XW,

BW (X,Y, Z) = −D̃XD̃D̃Y Z
W + D̃XD̃D̃ZY

W + D̃ZD̃D̃XY
W − D̃Y D̃D̃XZ

W,

CW (X,Y, Z) = −D̃D̃XY
D̃ZW + D̃D̃XZ

D̃YW + D̃D̃Y Z
D̃XW − D̃D̃ZY

D̃XW

and

DW (X,Y, Z) = D̃[D̃XY,Z]W − D̃[D̃XZ,Y ]W.
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Applying the equality D̃XY − D̃YX = [X,Y ], we find that

(D̃XR̃)(Y, Z)W = AW (X,Y, Z) +BW (X,Y, Z) + CW (X,Y, Z) +DW (X,Y, Z).

We can check immediately that

AW (X,Y, Z) +AW (Y, Z,X) +AW (Z,X, Y ) = 0,

BW (X,Y, Z) +BW (Y, Z,X) +BW (Z,X, Y ) = 0,

CW (X,Y, Z) + CW (Y, Z,X) + CW (Z,X, Y ) = 0

and

DW (X,Y, Z) +DW (Y, Z,X) +DW (Z,X, Y )

= D̃[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]]W = D̃0W = 0

by the Jacobi equality [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0. Therefore, we get finally that

(D̃XR̃)(Y, Z)W + (D̃Y R̃)(Z,X)W + (D̃ZR̃)(X,Y )W

= AW (X,Y, Z) +BW (X,Y, Z) + CW (X,Y, Z) +DW (X,Y, Z)

+AW (Y, Z,X) +BW (Y, Z,X) + CW (Y, Z,X) +DW (Y, Z,X)

+AW (Z,X, Y ) +BW (Z,X, Y ) + CW (Z,X, Y ) +DW (Z,X, Y ) = 0.

This completes the proof. 2
According to Theorem 2.1, the curvature operator R̃(X,Y ) : X (M̃)→X (M̃) is a tensor

of type (1, 1). By applying this operator, we can define a curvature tensor in the next definition.

Definition 2.2 Let (M̃, D̃) be a combinatorially connection space. For ∀X,Y, Z ∈ X (M̃), a

linear multi-mapping R̃ : X (M̃)×X (M̃)×X (M̃)→X (M̃) determined by

R̃(Z,X, Y ) = R̃(X,Y )Z

is said a curvature tensor of type (1, 3) on (M̃, D̃).

Let (M̃, D̃) be a combinatorially connection space and

{eij|1 ≤ i ≤ s(p), 1 ≤ j ≤ ni and ei1j = ei2j for 1 ≤ i1, i2 ≤ s(p) if 1 ≤ j ≤ ŝ(p)}

a local frame with a dual

{ωij |1 ≤ i ≤ s(p), 1 ≤ j ≤ ni and ωi1j = ωi2j for 1 ≤ i1, i2 ≤ s(p) if 1 ≤ j ≤ ŝ(p)},

abbreviated to {eij} and {ωij} at a point p ∈ M̃ , where M̃ = M̃(n1, n2, · · · , nm). Then there
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exist smooth functions Γσς(µν)(κλ) ∈ C∞(M̃) such that

D̃eκλeµν = Γσς(µν)(κλ)eσς

called connection coefficients in the local frame {eij}. Define

ωσςµν = Γσς(µν)(κλ)ω
κλ.

We get that

D̃eκλ = ωσςµνeσς .

Theorem 2.3 Let (M̃, D̃) be a combinatorially connection space and {eij} a local frame with

a dual {ωij} at a point p ∈ M̃ . Then

d̃ωµν − ωκλ ∧ ωµνκλ =
1

2
T̃ µν(κλ)(σς)ω

κλ ∧ ωσς ,

where T̃ µν(κλ)(σς) is a component of the torsion tensor T̃ in the frame {eij}, i.e., T̃ µν(κλ)(σς) =

ωµν(T̃ (eκλ, eσς)) and

d̃ωκλµν − ωσςµν ∧ ωκλσς =
1

2
R̃κλ(µν)(σς)(ηθ)ω

σς ∧ ωηθ

with R̃κλ(µν)(σς)(σς)eκλ = R̃(eσς , eηθ)eµν .

Proof By definition, for any given eσς , eηθ we know that (see Theorem 3.6 in [9])

(d̃ωµν − ωκλ ∧ ωµνκλ)(eσς , eηθ) = eσς(ω
µν(eηθ))− eηθ(ωµν(eσς))− ωµν([eσς , eηθ])

− ωκλ(eσς)ω
µν
κλ(eηθ) + ωκλ(eηθ)ω

µν
κλ(eσς)

= −ωµνσς (eηθ) + ωµνηθ (eσς)− ωµν([eσς , eηθ])
= −Γµν(σς)(ηθ) + Γµν(ηθ)(σς) − ωµν([eσς , eηθ])
= ωµν(D̃eσς eηθ − D̃eηθeσς − [eσς , eηθ])

= ωµν(T̃ (eσς , eηθ)) = T̃ µν(σς)(ηθ).

Whence,

d̃ωµν − ωκλ ∧ ωµνκλ =
1

2
T̃ µν(κλ)(σς)ω

κλ ∧ ωσς .

Now since

(d̃ωκλµν − ωϑιµν ∧ ωκλϑι )(eσς , eηθ)
= eσς(ω

κλ
µν (eηθ))− eηθ(ωκλµν (eσς))− ωκλµν ([eσς , eηθ])

−ωϑιµν(eσς)ωκλϑι (eηθ) + ωϑιµν(eηθ)ω
κλ
ϑι (eσς)

= eσς(Γ
κλ
(µν)(ηθ))− eηθ(Γκλ(µν)(σς))− ωϑι([eσς , eηθ])Γκλ(µν)(ϑι)

−Γϑι(µν)(σς)Γ
κλ
(ϑι)(ηθ) + Γϑι(µν)(ηθ)Γ

κλ
(ϑι)(σς)
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and

R̃(eσς , eηθ)eµν = D̃eσς D̃eηθeµν − D̃eηθ D̃eσς eµν − D̃[eσς ,eηθ ]eµν

= D̃eσς (Γ
κλ
(µν)(ηθ)eκλ)− D̃eηθ (Γ

κλ
(µν)(σς)eκλ)− ωϑι([eσς , eηθ])Γκλ(µν)(ϑι)eκλ

= (eσς(Γ
κλ
(µν)(ηθ))− eηθ(Γκλ(µν)(σς)) + Γϑι(µν)(ηθ)Γ

κλ
(ϑι)(σς)

− Γϑι(µν)(σς)Γ
κλ
(ϑι)(ηθ) − ωϑι([eσς , eηθ])Γκλ(µν)(ϑι))eκλ

= (d̃ωκλµν − ωϑιµν ∧ ωκλϑι )(eσς , eηθ)eκλ.

Therefore, we get that

(d̃ωκλµν − ωϑιµν ∧ ωκλϑι )(eσς , eηθ) = R̃κλ(µν)(σς)(ηθ),

that is,

d̃ωκλµν − ωσςµν ∧ ωκλσς =
1

2
R̃κλ(µν)(σς)(ηθ)ω

σς ∧ ωηθ. 2
Definition 2.3 Let (M̃, D̃) be a combinatorially connection space. Differential 2-forms Ωµν =

d̃ωµν − ωµν ∧ ωµνκλ, Ωκλµν = d̃ωκλµν − ωσςµν ∧ ωκλσς and equations

d̃ωµν = ωκλ ∧ ωµνκλ + Ωµν , d̃ωκλµν = ωσςµν ∧ ωκλσς + Ωκλµν

are called torsion forms, curvature forms and structural equations in a local frame {eij} of

(M̃, D̃), respectively.

By Theorem 2.3 and Definition 2.3, we get local forms for torsion tensor and curvature

tensor in a local frame following.

Corollary 2.1 Let (M̃, D̃) be a combinatorially connection space and {eij} a local frame with

a dual {ωij} at a point p ∈ M̃ . Then

T̃ = Ωµν ⊗ eµν and R̃ = ωµν ⊗ eκλ ⊗ Ωκλµν ,

i.e., for ∀X,Y ∈X (M̃),

T̃ (X,Y ) = Ωµν(X,Y )eµν and R̃(X,Y ) = Ωκλµν(X,Y )ωµν ⊗ eµν .

Theorem 2.4 Let (M̃, D̃) be a combinatorially connection space and {eij} a local frame with

a dual {ωij} at a point p ∈ M̃ . Then

d̃Ωµν = ωκλ ∧ Ωµνκλ − Ωκλ ∧ ωµνκλ and d̃Ωκλµν = ωσςµν ∧ Ωκλσς − Ωσςµν ∧ ωκλσς .

Proof Notice that d̃2 = 0. Differentiating the equality Ωµν = d̃ωµν − ωµν ∧ ωµνκλ on both
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sides, we get that

d̃Ωµν = −d̃ωµν ∧ ωµνκλ + ωµν ∧ d̃ωµνκλ
= −(Ωκλ + ωσς ∧ ωκλσς ) ∧ ωµνκλ + ωκλ ∧ (Ωµνκλ + ωσςκλ ∧ ωµνσς )
= ωκλ ∧ Ωµνκλ − Ωκλ ∧ ωµνκλ.

Similarly, differentiating the equality Ωκλµν = d̃ωκλµν − ωσςµν ∧ ωκλσς on both sides, we can also find

that

d̃Ωκλµν = ωσςµν ∧ Ωκλσς − Ωσςµν ∧ ωκλσς . 2
Corollary 2.2 Let (M,D) be an affine connection space and {ei} a local frame with a dual

{ωi} at a point p ∈M . Then

dΩi = ωj ∧Ωij − Ωj ∧ ωij and dΩji = ωki ∧ Ωjk − Ωki ∧ Ωjk.

According to Theorems 2.1− 2.4 there is a type (1, 3) tensor

R̃p : TpM̃ × TpM̃ × TpM̃ → TpM̃

determined by R̃(w, u, v) = R̃(u, v)w for ∀u, v, w ∈ TpM̃ at each point p ∈ M̃ . Particularly, we

get its a concrete local form in the standard basis { ∂
∂xµν }.

Theorem 2.5 Let (M̃, D̃) be a combinatorially connection space. Then for ∀p ∈ M̃ with a local

chart (Up; [ϕp]),

R̃ = R̃ηθ(σς)(µν)(κλ)dx
σς ⊗ ∂

∂xηθ
⊗ dxµν ⊗ dxκλ

with

R̃ηθ(σς)(µν)(κλ) =
∂Γηθ(σς)(κλ)

∂xµν
−
∂Γηθ(σς)(µν)

∂xκλ
+ Γϑι(σς)(κλ)Γ

ηθ
(ϑι)(µν) − Γϑι(σς)(µν)Γ

ηθ
(ϑι)(κλ))

∂

∂xϑι
,

where, Γσς(µν)(κλ) ∈ C∞(Up) is determined by

D̃ ∂
∂xµν

∂

∂xκλ
= Γσς(κλ)(µν)

∂

∂xσς
.

Proof We only need to prove that for integers µ, ν, κ, λ, σ, ς, ι and θ,

R̃(
∂

∂xµν
,

∂

∂xκλ
)
∂

∂xσς
= R̃ηθ(σς)(µν)(κλ)

∂

∂xηθ
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at the local chart (Up; [ϕp]). In fact, by definition we get that

R̃(
∂

∂xµν
,

∂

∂xκλ
)
∂

∂xσς

= D̃ ∂
∂xµν

D̃ ∂

∂xκλ

∂

∂xσς
− D̃ ∂

∂xκλ
D̃ ∂

∂xµν

∂

∂xσς
− D̃[ ∂

∂xµν
, ∂

∂xκλ
]

∂

∂xσς

= D̃ ∂
∂xµν

(Γηθ(σς)(κλ)

∂

∂xηθ
)− D̃ ∂

∂xκλ
(Γηθ(σς)(µν)

∂

∂xηθ
)

=
∂Γηθ(σς)(κλ)

∂xµν
∂

∂xηθ
+ Γηθ(σς)(κλ)D̃ ∂

∂xµν

∂

∂xηθ
−
∂Γηθ(σς)(µν)

∂xκλ
∂

∂xηθ
− Γηθ(σς)(µν)D̃ ∂

∂xκλ

∂

∂xηθ

= (
∂Γηθ(σς)(κλ)

∂xµν
−
∂Γηθ(σς)(µν)

∂xκλ
)
∂

∂xηθ
+ Γηθ(σς)(κλ)Γ

ϑι
(ηθ)(µν)

∂

∂xϑι
− Γηθ(σς)(µν)Γ

ϑι
(ηθ)(κλ)

∂

∂xϑι

= (
∂Γηθ(σς)(κλ)

∂xµν
−
∂Γηθ(σς)(µν)

∂xκλ
+ Γϑι(σς)(κλ)Γ

ηθ
(ϑι)(µν) − Γϑι(σς)(µν)Γ

ηθ
(ϑι)(κλ))

∂

∂xϑι

= R̃ηθ(σς)(µν)(κλ)

∂

∂xηθ
.

This completes the proof. 2
For the curvature tensor R̃ηθ(σς)(µν)(κλ), we can also get these Bianchi identities in the next

result.

Theorem 2.6 Let (M̃, D̃) be a combinatorially connection space. Then for ∀p ∈ M̃ with a

local chart (Up, [ϕp]), if T̃ ≡ 0, then

R̃µν(κλ)(σς)(ηθ) + R̃µν(σς)(ηθ)(κλ) + R̃µν(ηθ)(κλ)(σς) = 0

and

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) + D̃σςR̃

κλ
(µν)(ηθ)(ϑι) + D̃ηθR̃

κλ
(µν)(ϑι)(σς) = 0,

where,

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) = D̃ ∂

∂xϑι
R̃κλ(µν)(σς)(ηθ).

Proof By definition of the curvature tensor R̃ηθ(σς)(µν)(κλ), we know that

R̃µν(κλ)(σς)(ηθ) + R̃µν(σς)(ηθ)(κλ) + R̃µν(ηθ)(κλ)(σς)

= R̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xκλ
+ R̃(

∂

∂xηθ
,

∂

∂xκλ
)
∂

∂xσς
+ R̃(

∂

∂xκλ
,
∂

∂xσς
)
∂

∂xηθ

= 0

with

X =
∂

∂xσς
, Y =

∂

∂xηθ
and Z =

∂

∂xκλ
. ♮
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in the first Bianchi equality and

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) + D̃σςR̃

κλ
(µν)(ηθ)(ϑι) + D̃ηθR̃

κλ
(µν)(ϑι)(σς)

= D̃ϑιR̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xκλ
+ D̃σς R̃(

∂

∂xηθ
,
∂

∂xϑι
)
∂

∂xκλ
+ D̃ηθR̃(

∂

∂xϑι
,
∂

∂xσς
)
∂

∂xκλ

= 0.

with

X =
∂

∂xϑι
, Y =

∂

∂xσς
, Z =

∂

∂xηθ
, W =

∂

∂xκλ

in the second Bianchi equality of Theorem 2.2. 2
§3. Curvatures on Combinatorially Riemannian Manifolds

Now we turn our attention to combinatorially Riemannian manifolds and characterize curvature

tensors on combinatorial manifolds further.

Definition 3.1 Let (M̃, g, D̃) be a combinatorially Riemannian manifold. A combinatorially

Riemannian curvature tensor

R̃ : X (M̃)×X (M̃)×X (M̃)×X (M̃)→ C∞(M̃)

of type (0, 4) is defined by

R̃(X,Y, Z,W ) = g(R̃(Z,W )X,Y )

for ∀X,Y, Z,W ∈X (M̃).

Then we find symmetrical relations of R̃(X,Y, Z,W ) following.

Theorem 3.1 Let R̃ : X (M̃) ×X (M̃) ×X (M̃) ×X (M̃) → C∞(M̃) be a combinatorially

Riemannian curvature tensor. Then for ∀X,Y, Z,W ∈X (M̃),

(1) R̃(X,Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X,Z) = 0.

(2) R̃(X,Y, Z,W ) = −R̃(Y,X,Z,W ) and R̃(X,Y, Z,W ) = −R̃(X,Y,W,Z).

(3) R̃(X,Y, Z,W ) = R̃(Z,W,X, Y ).

Proof For the equality (1), calculation shows that

R̃(X,Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X,Z)

= g(R̃(Z,W )X,Y ) + g(R̃(W,X)Z, Y ) + g(R̃(X,Z)W,Y )

= g(R̃(Z,W )X + R̃(W,X)Z + R̃(X,Z)W,Y ) = 0

by definition and Theorem 2.1(4).
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For (2), by definition and Theorem 2.1(1), we know that

R̃(X,Y, Z,W ) = g(R̃(Z,W )X,Y ) = g(−R̃(W,Z)X,Y )

= −g(R̃(W,Z)X,Y ) = −R̃(X,Y,W,Z).

Now since D̃ is a combinatorially Riemannian connection, we know that ([9])

Z(g(X,Y )) = g(D̃ZX,Y ) + g(X, D̃ZY ).

Therefore, we find that

g(D̃ZD̃WX,Y ) = Z(g(D̃WX,Y ))− g(D̃WX, D̃ZY )

= Z(W (g(X,Y )))− Z(g(X, D̃WY ))

− W (g(X, D̃ZY )) + g(X, D̃W D̃ZY ).

Similarly, we have that

g(D̃W D̃ZX,Y ) = W (Z(g(X,Y ))) −W (g(X, D̃ZY ))

− Z(g(X, D̃WY )) + g(X, D̃ZD̃WY ).

Notice that

g(D̃[Z,W ], Y ) = [Z,W ]g(X,Y )− g(X, D̃[Z,W ]Y ).

By definition, we get that

R̃(X,Y, Z,W ) = g(D̃ZD̃WX − D̃W D̃ZX − D̃[Z,W ]X,Y )

= g(D̃ZD̃WX,Y )− g(D̃W D̃ZX,Y )− g(D̃[Z,W ]X,Y )

= Z(W (g(X,Y )))− Z(g(X, D̃WY ))−W (g(X, D̃ZY ))

+ g(X, D̃W D̃ZY )−W (Z(g(X,Y ))) +W (g(X, D̃ZY ))

+ Z(g(X, D̃WY ))− g(X, D̃ZD̃WY )− [Z,W ]g(X,Y )

− g(X, D̃[Z,W ]Y )

= Z(W (g(X,Y )))−W (Z(g(X,Y ))) + g(X, D̃W D̃ZY )

− g(X, D̃ZD̃WY )− [Z,W ]g(X,Y )− g(X, D̃[Z,W ]Y )

= g(X, D̃W D̃ZY − D̃ZD̃WY + D̃[Z,W ]Y )

= −g(X, R̃(Z,W )Y ) = −R̃(Y,X,Z,W ).

Applying the equality (1), we know that

R̃(X,Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X,Z) = 0, (3.1)

R̃(Y, Z,W,X) + R̃(W,Z,X, Y ) + R̃(X,Z, Y,W ) = 0. (3.2)
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Then (3.1) + (3.2) shows that

R̃(X,Y, Z,W ) + R̃(W,Y,X,Z)

+ R̃(W,Z,X, Y ) + R̃(X,Z, Y,W ) = 0

by applying (2). We also know that

R̃(W,Y,X,Z)− R̃(X,Z, Y,W ) = −(R̃(Z, Y,W,X)− R̃(W,X,Z, Y ))

= R̃(X,Y, Z,W )− R̃(Z,W,X, Y ).

This enables us getting the equality (3)

R̃(X,Y, Z,W ) = R̃(Z,W,X, Y ). 2
Applying Theorems 2.2, 2.3 and 3.1, we also get the next result.

Theorem 3.2 Let (M̃, g, D̃) be a combinatorially Riemannian manifold and Ω(µν)(κλ) =

Ωσςµνg(σς)(κλ). Then

(1) Ω(µν)(κλ) = 1
2 R̃(µν)(κλ)(σς)(ηθ)ω

σς ∧ ωηθ;
(2) Ω(µν)(κλ) + Ω(κλ)(µν) = 0;

(3) ωµν ∧Ω(µν)(κλ) = 0;

(4) d̃Ω(µν)(κλ) = ωσςµν ∧ Ω(σς)(κλ) − ωσςκλ ∧Ω(σς)(µν).

Proof Notice that T̃ ≡ 0 in a combinatorially Riemannian manifold (M̃, g, D̃). We find

that

Ωκλµν =
1

2
R̃κλ(µν)(σς)(ηθ)ω

σς ∧ ωηθ

by Theorem 2.2. By definition, we know that

Ω(µν)(κλ) = Ωσςµνg(σς)(κλ)

=
1

2
R̃σς(µν)(ηθ)(ϑι)g(σς)(κλ)ω

ηθ ∧ ωϑι =
1

2
R̃(µν)(κλ)(σς)(ηθ)ω

σς ∧ ωηθ.

Whence, we get the equality (1). For (2), applying Theorem 3.1(2), we find that

Ω(µν)(κλ) + Ω(κλ)(µν) =
1

2
(R̃(µν)(κλ)(σς)(ηθ) + R̃(κλ)(µν)(σς)(ηθ))ω

σς ∧ ωηθ = 0.

By Corollary 2.1, a connection D̃ is torsion-free only if Ωµν ≡ 0. This fact enables us to

get these equalities (3) and (4) by Theorem 2.3. 2
For any point p ∈ M̃ with a local chart (Up, [ϕp]), we can also find a local form of R̃ in the

next result.

Theorem 3.3 Let R̃ : X (M̃) ×X (M̃) ×X (M̃) ×X (M̃) → C∞(M̃) be a combinatorially
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Riemannian curvature tensor. Then for ∀p ∈ M̃ with a local chart (Up; [ϕp]),

R̃ = R̃(σς)(ηθ)(µν)(κλ)dx
σς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ

with

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+ Γϑι(µν)(σς)Γ
ξo
(κλ)(ηθ)g(ξo)(ϑι) − Γξo(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),

where g(µν)(κλ) = g( ∂
∂xµν ,

∂
∂xκλ

).

Proof Notice that

R̃(σς)(ηθ)(µν)(κλ) = R̃(
∂

∂xσς
,
∂

∂xηθ
,

∂

∂xµν
,

∂

∂xκλ
) = R̃(

∂

∂xµν
,

∂

∂xκλ
,
∂

∂xσς
,
∂

∂xηθ
)

= g(R̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xµν
,

∂

∂xκλ
) = R̃ϑι(µν)(σς)(ηθ)g(ϑι)(κλ)

By definition and Theorem 3.1(3). Now we have know that (eqn.(3.5) in [9])

∂g(µν)(κλ)

∂xσς
= Γηθ(µν)(σς)g(ηθ)(κλ) + Γηθ(κλ)(σς)g(µν)(ηθ).

Applying Theorem 2.4, we get that

R̃(σς)(ηθ)(µν)(κλ)

= (
∂Γϑι(σς)(κλ)

∂xµν
−
∂Γϑι(σς)(µν)

∂xκλ
+ Γξo(σς)(κλ)Γ

ϑι
(ξo)(µν) − Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
∂

∂xµν
(Γϑι(σς)(κλ)g(ϑι)(ηθ))− Γϑι(σς)(κλ)

∂g(ϑι)(ηθ)
∂xµν

− ∂

∂xκλ
(Γϑι(σς)(µν)g(ϑι)(ηθ))

+Γϑι(σς)(µν)

∂g(ϑι)(ηθ)

∂xκλ
+ Γξo(σς)(κλ)Γ

ϑι
(ξo)(µν)g(ϑι)(κλ) − Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ)g(ϑι)(ηθ)

=
∂

∂xµν
(Γϑι(σς)(κλ)g(ϑι)(ηθ))−

∂

∂xκλ
(Γϑι(σς)(µν)g(ϑι)(ηθ))

+Γϑι(σς)(µν)(Γ
ξo
(ϑι)(κλ)g(ξo)(ηθ) + Γξo(ηθ)(κλ)g(ϑι)(ξo)) + Γξo(σς)(κλ)Γ

ϑι
(ξo)(µν)g(ϑι)(κλ)

−Γϑι(σς)(κλ)(Γ
ξo
(ϑι)(µν)g(ξo)(ηθ) + Γξo(ηθ)(µν)g(ϑι)(ξo))− Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
1

2

∂

∂xµν
(
∂g(σς)(ηθ)

∂xκλ
+
∂g(κλ)(ηθ)

∂xσς
− ∂g(σς)(κλ)

∂xηθ
) + Γξo(σς)(κλ)Γ

ϑι
(ξo)(µν)g(ϑι)(κλ)

−1

2

∂

∂xκλ
(
∂g(σς)(ηθ)

∂xµν
+
∂g(µν)(ηθ)

∂xσς
− ∂g(σς)(µν)

∂xηθ
)− Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+Γξo(σς)(κλ)Γ
ϑι
(ξo)(µν)g(ϑι)(κλ) − Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ).

This completes the proof. 2
Combining Theorems 2.5, 3.1 and 3.3, we have the following consequence.
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Corollary 3.1 Let R̃(µν)(κλ)(σς)(ηθ) be a component of a combinatorially Riemannian curvature

tensor R̃ in a local chart (U, [ϕ]) of a combinatorially Riemannian manifold (R̃, g, D̃). Then

(1) R̃(µν)(κλ)(σς)(ηθ) = −R̃(κλ)(µν)(σς)(ηθ) = −R̃(µν)(κλ)(ηθ)(σς);

(2) R̃(µν)(κλ)(σς)(ηθ) = R̃(σς)(ηθ)(µν)(κλ);

(3) R̃(µν)(κλ)(σς)(ηθ) + R̃(ηθ)(κλ)(µν)(σς) + R̃(σς)(κλ)(ηθ)(µν) = 0;

(4) D̃ϑιR̃(µν)(κλ)(σς)(ηθ) + D̃σςR̃(µν)(κλ)(ηθ)(ϑι) + D̃ηθR̃(µν)(κλ)(ϑι)(σς) = 0.

§4. Einstein’s Gravitational Equations on Combinatorial Manifolds

Application of results in last two sections enables us to establish these Einstein’ gravitational

filed equations on combinatorially Riemannian manifolds in this section and find their multi-

space solutions in next section under a projective principle on the behavior of particles in

multi-spaces.

Let (M̃, g, D̃) be a combinatorially Riemannian manifold. A type (0, 2) tensor E : X (M̃)×
X (M̃)→ C∞(M̃) with

E = E(µν)(κλ)dx
µν ⊗ dxκλ (4.1)

is called an energy-momentum tensor if it satisfies the conservation laws D̃(E ) = 0, i.e., for any

indexes κ, λ, 1 ≤ κ ≤ m, 1 ≤ λ ≤ nκ,

∂E(µν)(κλ)

∂xκλ
− Γσς(µν)(κλ)E(σς)(κλ) − Γσς(κλ)(κλ)E(µν)(σς) = 0 (4.2)

in a local chart (Up, [ϕp]) for any point p ∈ M̃ . Define the Ricci tensor R̃(µν)(κλ), Rocci scalar

tensor R and Einstein tensor G(µν)(κλ) respectively by

R̃(µν)(κλ) = R̃σς(µν)(σς)(κλ), R = g(µν)(κλ)R̃(µν)(κλ) (4.3)

and

G(µν)(κλ) = R̃(µν)(κλ) −
1

2
g(µν)(κλ)R. (4.4)

Then we get results following hold by Theorems 2.4, 2.5 and 3.1.

R̃(µν)(κλ) = R̃(κλ)(µν), (4.5)

R̃(µν)(κλ) ==
∂Γσς(µν)(κλ)

∂xσς
−
∂Γσς(µν)(σς)

∂xκλ
+ Γϑι(µν)(κλ)Γ

σς
(ϑι)(σς) − Γϑι(µν)(σς)Γ

σς
(ϑι)(κλ). (4.6)

and
∂G(µν)(κλ)

∂xκλ
− Γσς(µν)(κλ)G(σς)(κλ) − Γσς(κλ)(κλ)G(µν)(σς) = 0. (4.7)

i.e., D̃(G ) = 0. Einstein’s principle of general relativity says that a law of physics should take

a same form in any reference system, which claims that a right form for a physics law should

be presented by tensors in mathematics. For a multi-spacetime, we conclude that Einstein’s
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principle of general relativity is still true, if we take the multi-spacetime being a combinatorially

Riemannian manifold. Whence, a physics law should be also presented by tensor equations in

the multi-spacetime case.

Just as the establishing of Einstein’s gravitational equations in the classical case, these

equations should satisfy two conditions following.

(C1) They should be (0, 2) type tensor equations related to the energy-momentum tensor E

linearly;

(C2) Their forms should be the same as in a classical gravitational field.

By these two conditions, Einstein’s gravitational equations in a multi-spacetime should be

taken the following form

G = cE

with c a constant. Now since these equations should take the same form in the classical case,

i.e.,

Gij = −8πGEij

for 1 ≤ i, j ≤ n at a point p in a manifold of M̃ not contained in the others. Whence, it must

be c = −8πG for c being a constant. This enables us finding these Einstein’s gravitational

equations in a multi-spacetime to be

R̃(µν)(κλ) −
1

2
Rg(µν)(κλ) = −8πGE(µν)(κλ). (4.8)

Certainly, we can also add a cosmological term λg(µν)(κλ) in (4.8) and obtain these gravitational

equations

R̃(µν)(κλ) −
1

2
Rg(µν)(κλ) + λg(µν)(κλ) = −8πGE(µν)(κλ). (4.9)

All of these equations (4.8) and (4.9) mean that there are multi-space solutions in classical

Einstein’s gravitational equations by a multi-spacetime view, which will be shown in the next

section.

§5. Multi-Space Solutions of Einstein’s Equations

For given integers 0 < n1 < n2 < · · · < nm,m ≥ 1, let (M̃, g, D̃) be a combinatorial Riemannian

manifold with M̃ = M̃(n1, n2, · · · , nm) and (Up, [ϕp]) a local chart for p ∈ M̃ . By definition,

if ϕp : Up →
s(p)⋃
i=1

Bni(p) and ŝ(p) = dim(
s(p)⋂
i=1

Bni(p)), then [ϕp] is an s(p) × ns(p) matrix shown

following.

[ϕp] =




x11

s(p) · · · x1ŝ(p)

s(p) x1(ŝ(p)+1) · · · x1n1 · · · 0

x21

s(p) · · · x2ŝ(p)

s(p) x2(ŝ(p)+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xs(p)1

s(p) · · · xs(p)ŝ(p)

s(p) xs(p)(ŝ(p)+1) · · · · · · xs(p)ns(p)−1 xs(p)ns(p)
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with xis = xjs for 1 ≤ i, j ≤ s(p), 1 ≤ s ≤ ŝ(p).
For given non-negative integers r, s, r + s ≥ 1, choose a type (r, s) tensor F ∈ T rs (M̃).

Then how to get multi-space solutions of a tensor equation

F = 0 ?

We need to apply the projective principle following.

[Projective Principle] Let (M̃, g, D̃) be a combinatorial Riemannian manifold and F ∈〈
T |T ∈ T rs (M̃)

〉
with a local form F(µ1ν1)(µ2ν2)···(µsνs)ω

µ1ν1 ⊗ωµ2ν2 ⊗ · · ·⊗ωµnνn in (Up, [ϕp]).

If

F(µ1ν1)(µ2ν2)···(µnνn) = 0

for integers 1 ≤ µi ≤ s(p), 1 ≤ νi ≤ nµi with 1 ≤ i ≤ s, then for any integer µ, 1 ≤ µ ≤ s(p),

there must be

F(µν1)(µν2)···(µνs) = 0

for integers νi, 1 ≤ νi ≤ nµ with 1 ≤ i ≤ s.

Now we solve these vacuum Einstein’s gravitational equations

R̃(µν)(κλ) −
1

2
g(µν)(κλ)R = 0 (5.1)

by the projective principle on a combinatorially Riemannian manifold (M̃, g, D̃). For a given

point p ∈ M̃ , we get s(p) tensor equations

R̃(µν)(µλ) −
1

2
g(µν)(µλ)R = 0, 1 ≤ µ ≤ s(p) (5.2)

as these usual vacuum Einstein’s equations in classical gravitational field, where 1 ≤ ν, λ ≤ nµ.
For line elements in M̃ , the next result is easily obtained.

Theorem 5.1 If each line element dsµ is uniquely determined by equations (5.2), Then d̃s is

uniquely determined in M̃ .

Proof For a given index µ, let

ds2µ =

nµ∑

i=1

a2
µidx

2
µi.

Then we know that

d̃s2 =

ŝ(p)∑

i=1

(

s(p)∑

µ=1

aµi)
2dx2

µi +

s(p)∑

µ=1

nµ∑

i=ŝ(p)+1

a2
µidx

2
µi.

Therefore, the line element d̃s is uniquely determined in M̃ if dsµi is uniquely determined

by (5.2). 2
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We consider a special case for these Einstein’s gravitational equations (5.1), solutions of

combinatorially Euclidean spaces M̃ =
⋃m
i=1 Rni with a matrix ([11])

[x] =




x11 · · · x1m̂ x1(m̂)+1) · · · x1n1 · · · 0

x21 · · · x2m̂ x2(m̂+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ xm(m̂+1) · · · · · · xmnm−1 xmnm




for any point x ∈ M̃ , where m̂ = dim(
m⋂
i=1

Rni) is a constant for ∀p ∈
m⋂
i=1

Rni and xil = xl

m for

1 ≤ i ≤ m, 1 ≤ l ≤ m̂. In this case, we have a unifying solution for these equations (5.1), i.e.,

d̃s2 =
m̂∑

i=1

(
m∑

µ=1

aµi)
2dx2

µi +
m∑

µ=1

nµ∑

i=m̂+1

a2
µidx

2
µi

for each point p ∈ M̃ by Theorem 5.1.

For usually undergoing, we consider the case of nµ = 4 for 1 ≤ µ ≤ m since line elements

have been found concretely in classical gravitational field in these cases. Now establish m

spherical coordinate subframe (tµ; rµ, θµ, φµ) with its originality at the center of the mass space.

Then we have known its a spherically symmetric solution for the line element dsµ with a given

index µ by Schwarzschild (see also [3]) for (5.2) to be

ds2µ = (1− rµs
rµ

)c2dt2µ − (1− rµs
rµ

)−1dr2µ − r2µ(dθ2µ + sin2 θµdφ
2
µ).

for 1 ≤ µ ≤ m, where rµs = 2Gmµ/c
2. Applying Theorem 5.1, the line element d̃s in M̃ is

d̃s = (
m∑

µ=1

√
1− rµs

rµ
)2c2dt2 −

m∑

µ=1

(1− rµs
rµ

)−1dr2µ −
m∑

µ=1

r2µ(dθ
2
µ + sin2 θµdφ

2
µ)

if m̂ = 1, tµ = t for 1 ≤ µ ≤ m and

d̃s = (

m∑

µ=1

√
1− rµs

rµ
)2c2dt2 − (

m∑

µ=1

√
(1− rµs

rµ
)−1)2dr2 −

m∑

µ=1

r2µ(dθ
2
µ + sin2 θµdφ

2
µ)

if m̂ = 2, tµ = t, rµ = r for 1 ≤ µ ≤ m and

d̃s = (

m∑

µ=1

√
1− rµs

rµ
)2c2dt2 − (

m∑

µ=1

√
(1 − rµs

rµ
)−1)2dr2 −m2r2dθ2 −

m∑

µ=1

r2µ sin2 θµdφ
2
µ

if m̂ = 3, tµ = t, rµ = r, θµ = θ for 1 ≤ µ ≤ m and

d̃s = (

m∑

µ=1

√
1− rµs

rµ
)2c2dt2 − (

m∑

µ=1

√
(1− rµs

rµ
)−1)2dr2 −m2r2dθ2 −m2r2 sin2 θdφ2
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if m̂ = 4, tµ = t, rµ = r, θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

For another interesting case, let m̂ = 3, rµ = r, θµ = θ, φµ = φ and

dΩ2(r, θ, φ) = (1− rs
r

)−1dr2 − r2(dθ2 + sin2 θdφ2).

Then we can choose a multi-time system {t1, t2, · · · , tm} to get a cosmic model of m,m ≥ 2

combinatorially R4 spaces with line elements

ds21 = −c2dt21 + a2(t1)dΩ
2(r, θ, φ),

ds22 = −c2dt22 + a2(t2)dΩ
2(r, θ, φ),

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

ds2m = −c2dt2m + a2(tm)dΩ2(r, θ, φ).

In this case, the line element d̃s is

d̃s =

m∑

µ=1

(1− rµs
rµ

)c2dt2µ − (

m∑

µ=1

√
(1− rµs

rµ
)−1)2dr2 −m2r2dθ2 −m2r2 sin2 θdφ2.

As a by-product for our universe R3, these formulas mean that these beings with time

notion different from human being will recognize differently the structure of our universe if

these beings are intellectual enough for the structure of the universe.
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Relativity in Combinatorial Gravitational Fields

Abstract: A combinatorial spacetime (CG|t) is a smoothly combinatorial manifold C un-

derlying a graph G evolving on a time vector t. As we known, Einstein’s general relativity

is suitable for use only in one spacetime. What is its disguise in a combinatorial space-

time? Applying combinatorial Riemannian geometry enables us to present a combinatorial

spacetime model for the Universe and suggest a generalized Einstein’s gravitational equation

in such model. For finding its solutions, a generalized relativity principle, called projective

principle is proposed, i.e., a physics law in a combinatorial spacetime is invariant under a

projection on its a subspace and then a spherically symmetric multi-solutions of generalized

Einstein’s gravitational equations in vacuum or charged body are found. We also consider

the geometrical structure in such solutions with physical formations, and conclude that an

ultimate theory for the Universe maybe established if all such spacetimes in R
3. Otherwise,

our theory is only an approximate theory and endless forever.

Key Words: Combinatorial spacetime, combinatorial Riemannian geometry, Einstein’s

gravitational equation, projective principle, combinatorial Reissner-Nordström metric, multi-

space solution.

AMS(2000): 83C05, 83C15.

§1. Combinatorial Spacetimes

The multi-laterality of our Universe implies the best spacetime model should be a combinatorial

one. However, classical spacetimes are all in solitude. For example, the Newton’s spacetime

(R3|t) is a geometrical space (x1, x2, x3) ∈ R3 with an absolute time t ∈ R+. With his

deep insight in physical laws, Einstein was aware of that all reference frames were established

by human beings, which made him realized that a physics law is invariant in any reference

frame. Whence, the Einstein’s spacetime is (R3|t) ∼= R4 with t ∈ R+, i.e., a warped spacetime

generating gravitation. In this kind of spacetime, its line element is

ds2 =
∑

0≤µ,ν≤3

gµν(x)dxµdxν ,

where gµν , 0 ≤ µ, ν ≤ 3 are Riemanian metrics with local flat, i.e., the Minkowskian spacetime

ds2 = −c2dt2 + dx2
1 + dx2

2 + dx2
3,

where c is the light speed. Wether the spacetime of Universe is isolated? In fact, there are

1Progress in Physics (Special Report), Vol.3 (2010), 39-50
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no justifications for Newton’s or Einstein’s choice but only dependent on mankind’s perception

with the geometry of visible, i.e., the spherical geometry(see [1]-[4] for details).

Certainly, different standpoints had unilaterally brought about particular behaviors of

the Universe such as those of electricity, magnetism, thermal, optics · · · in physics and their

combinations, for example, the thermodynamics, electromagnetism, · · · , etc.. But the true

colours of the Universe should be hybrid, not homogenous or unilateral. They should be a

union or a combination of all these features underlying a combinatorial structure. That is the

origin of combinatorial spacetime established on smoothly combinatorial manifolds following

([5]-[9]), another form of Smarandache multi-space ([10]-[11]) underlying a connected graph.

Definition 1.1 Let ni, 1 ≤ i ≤ m be positive integers. A combinatorial Euclidean space is

a combinatorial system CG of Euclidean spaces Rn1 , Rn2 , · · · , Rnm underlying a connected

graph G defined by

V (G) = {Rn1 ,Rn2 , · · · ,Rnm},
E(G) = { (Rni ,Rnj) | Rni

⋂
Rnj 6= ∅, 1 ≤ i, j ≤ m},

denoted by EG(n1, · · · , nm) and abbreviated to EG(r) if n1 = · · · = nm = r.

A combinatorial fan-space R̃(n1, · · · , nm) is a combinatorial Euclidean space EKm(n1, · · · , nm)

of Rn1 , Rn2 , · · · , Rnm such that for any integers i, j, 1 ≤ i 6= j ≤ m, Rni
⋂

Rnj =
m⋂
k=1

Rnk ,

which is in fact a p-brane with p = dim
m⋂
k=1

Rnk in string theory ([12]), seeing Fig.1 for details.

-� ?
6 �

	 p-brane

Fig.1

For ∀p ∈ R̃(n1, · · · , nm) we can present it by an m × nm coordinate matrix [x] following

with xil =
xl
m

for 1 ≤ i ≤ m, 1 ≤ l ≤ m̂,

[x] =




x11 · · · x1m̂ · · · x1n1 · · · 0

x21 · · · x2m̂ · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

xm1 · · · xmm̂ · · · · · · · · · xmnm




.

A topological combinatorial manifold M̃ is defined in the next.
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Definition 1.2 For a given integer sequence 0 < n1 < n2 < · · · < nm, m ≥ 1, a topological

combinatorial manifold M̃ is a Hausdorff space such that for any point p ∈ M̃ , there is a

local chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in M̃ and a homoeomorphism

ϕp : Up → R̃(n1(p), · · · , ns(p)(p)) with

{n1(p), · · · , ns(p)(p)} ⊆ {n1, · · · , nm},
⋃

p∈M̃

{n1(p), · · · , ns(p)(p)} = {n1, · · · , nm},

denoted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm).

A topological combinatorial manifold M̃ is finite if it is just combined by finite manifolds

without one manifold contained in the union of others.

For a finite combinatorial manifold M̃ consisting of manifolds Mi, 1 ≤ i ≤ m, we can

construct a vertex-edge labeled graph GL[M̃ ] defined by

V (GL[M̃ ]) = {M1,M2, · · · ,Mm},
E(GL[M̃) = { (Mi,Mj) | Mi

⋂
Mj 6= ∅, 1 ≤ i, j ≤ n}

with a labeling mapping

Θ : V (GL[M̃ ]) ∪ E(GL[M̃ ])→ Z+

determined by

Θ(Mi) = dimMi, Θ(Mi,Mj) = dimMi

⋂
Mj

for integers 1 ≤ i, j ≤ m, which is inherent structure of combinatorial manifolds. A differ-

entiable combinatorial manifold is defined by endowing differential structure on a topological

combinatorial manifold following.

Definition 1.3 For a given integer sequence 1 ≤ n1 < n2 < · · · < nm, a combinatorial Ch-

differential manifold (M̃(n1, n2 · · · , nm); Ã) is a finite combinatorial manifold M̃(n1, · · · , nm),

M̃(n1, · · · , nm) =
⋃
i∈I

Ui, endowed with an atlas Ã = {(Uα;ϕα)| α ∈ I} on M̃(n1, · · · , nm) for

an integer h, h ≥ 1 with conditions following hold.

(1) {Uα;α ∈ I} is an open covering of M̃(n1, n2, · · · , nm).

(2) For ∀α, β ∈ I, local charts (Uα;ϕα) and (Uβ ;ϕβ) are equivalent, i.e., Uα
⋂
Uβ = ∅ or

Uα
⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ)→ ϕβ(Uβ),

ϕβϕ
−1
α : ϕα(Uα

⋂
Uβ)→ ϕα(Uα)

both are Ch-mappings, such as those shown in Fig.2 following.
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Uα

Uβ

Uα ∩ Uβ

ϕα

ϕβ

ϕβ(Uα
⋂
Uβ)

ϕβ(Uα
⋂
Uβ)

ϕβϕ
−1
α

Fig.2

(3) Ã is maximal, i.e., if (U ;ϕ) is a local chart of M̃(n1, · · · , nm) equivalent with one of

local charts in Ã, then (U ;ϕ) ∈ Ã.

A finite combinatorial manifold M̃(n1, · · · , nm) is smooth if it is endowed with a C∞-

differential structure. Now we are in the place introducing combinatorial spacetime.

Definition 1.4 A combinatorial spacetime (CG|t) is a smooth combinatorial manifold C un-

derlying a graph G evolving on a time vector t, i.e., a geometrical space C with a time system

t such that (x|t) is a particle’s position at a time t for x ∈ C .

The existence of combinatorial spacetime in the Universe is a wide-ranging, even if in

the society science. By the explaining in the reference [13], there are four-level hierarchy

of multi-spaces analyzed by knowledge of mankind already known, such as those of Hubble

volumes, chaotic inflation, wavefunction and mathematical equations, etc.. Each level is allowed

progressively greater diversity.

Question 1.5 How to deal behaviors of these different combinatorial spacetimes definitely with

mathematics, not only qualitatively?

Recently, many researchers work for brane-world cosmology, particular for the case of

dimensional ≤ 6, such as those researches in references [14]-[18] and [3] etc.. This brane-

world model was also applied in [19] for explaining a black hole model for the Universe by

combination. Notice that the underlying combinatorial structure of brane-world cosmological

model is essentially a tree for simplicity.

Now we have established a differential geometry on combinatorial manifolds in references

[5]− [9], which provides us with a mathematical tool for determining the behavior of combina-

torial spacetimes. The main purpose of this paper is to apply it to combinatorial gravitational

fields combining with spacetime’s characters, present a generalized relativity in combinatorial

fields and use this principle to solve the gravitational field equations. We also discuss the con-

sistency of this combinatorial model for the Universe with some observing data such as the

cosmic microwave background (CMB) radiation by WMAP in 2003.
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§2. Curvature Tensor on Combinatorial Manifolds

Applying combinatorial spacetimes to that of gravitational field needs us to introduce curva-

ture tensor for measuring the warping of combinatorial manifolds. In this section, we explain

conceptions with results appeared in references [5]-[8], which are applied in this paper.

First, the structure of tangent and cotangent spaces TpM̃ , T ∗p M̃ at any point p ∈ M̃ in a

smoothly combinatorial manifold M̃ is similar to that of differentiable manifold. It has been

shown in [5] that dimTpM̃(n1, · · · , nm) = ŝ(p)+
s(p)∑
i=1

(ni− ŝ(p)) and dimT ∗p M̃(n1, n2, · · · , nm) =

ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)) with a basis

{ ∂

∂xi0j
|p|1 ≤ j ≤ ŝ(p)}

⋃
(

s(p)⋃

i=1

{ ∂

∂xij
|p | ŝ(p) + 1 ≤ j ≤ ni}),

{dxi0j |p|}1 ≤ j ≤ ŝ(p)}
⋃

(

s(p)⋃

i=1

{dxij |p | ŝ(p) + 1 ≤ j ≤ ni}

for any integer i0, 1 ≤ i0 ≤ s(p), respectively. These mathematical structures enable us to

construct tensors, connections on tensors and curvature tensors on smoothly combinatorial

manifolds.

Definition 2.1 Let M̃ be a smoothly combinatorial manifold, p ∈ M̃ . A tensor of type (r, s)

at the point p on M̃ is an (r + s)-multilinear function τ ,

τ : T ∗p M̃ × · · · × T ∗p M̃︸ ︷︷ ︸
r

×TpM̃ × · · · × TpM̃︸ ︷︷ ︸
s

→ R.

Let M̃(n1, · · · , nm) be a smoothly combinatorial manifold. Denoted by T rs (p, M̃) all tensors

of type (r, s) at a point p of M̃(n1, · · · , nm). Then for ∀p ∈ M̃(n1, · · · , nm), we have known

that

T rs (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸ ︷︷ ︸
r

⊗T ∗p M̃ ⊗ · · · ⊗ T ∗p M̃︸ ︷︷ ︸
s

,

where

TpM̃ = TpM̃(n1, · · · , nm), T ∗p M̃ = T ∗p M̃(n1, · · · , nm),

particularly,

dimT rs (p, M̃) = (ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)))r+s

by argumentations in [5]− [7]. A connection on tensors of a smooth combinatorial manifold is

defined by

Definition 2.2 Let M̃ be a smooth combinatorial manifold. A connection on tensors of M̃

is a mapping D̃ : X (M̃) × T rs M̃ → T rs M̃ with D̃Xτ = D̃(X, τ) such that for ∀X,Y ∈ X M̃ ,
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τ, π ∈ T rs (M̃),λ ∈ R and f ∈ C∞(M̃),

(1) D̃X+fY τ = D̃Xτ + fD̃Y τ and D̃X(τ + λπ) = D̃Xτ + λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;

(3) for any contraction C on T rs (M̃),

D̃X(C(τ)) = C(D̃Xτ).

For a smooth combinatorial manifold M̃ , we have shown in [5] that there always exists a

connection D̃ on M̃ with coefficients Γκλ(σς)(µν) determined by

D̃ ∂
∂xµν

∂

∂xσς
= Γκλ(σς)(µν)

∂

∂xσς
.

A combinatorially connection space (M̃, D̃) is a smooth combinatorial manifold M̃ with a

connection D̃.

Definition 2.3 Let M̃ be a smoothly combinatorial manifold and g ∈ A2(M̃) =
⋃
p∈M̃

T 0
2 (p, M̃).

If g is symmetrical and positive, then M̃ is called a combinatorially Riemannian manifold,

denoted by (M̃, g). In this case, if there is also a connection D̃ on (M̃, g) with equality following

hold

Z(g(X,Y )) = g(D̃Z , Y ) + g(X, D̃ZY ),

then M̃ is called a combinatorially Riemannian geometry, denoted by (M̃, g, D̃).

It has been proved in [5] and [7] that there exists a unique connection D̃ on (M̃, g) such

that (M̃, g, D̃) is a combinatorially Riemannian geometry.

Definition 2.4 Let (M̃, D̃) be a combinatorially connection space. For ∀X,Y ∈ X (M̃), a

combinatorially curvature operator R̃(X,Y ) : X (M̃)→X (M̃) is defined by

R̃(X,Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z

for ∀Z ∈ X (M̃).

Definition 2.5 Let (M̃, D̃) be a combinatorially connection space. For ∀X,Y, Z ∈ X (M̃), a

linear multi-mapping R̃ : X (M̃)×X (M̃)×X (M̃)→X (M̃) determined by

R̃(Z,X, Y ) = R̃(X,Y )Z

is said a curvature tensor of type (1, 3) on (M̃, D̃).

Calculation in [7] shows that for ∀p ∈ M̃ with a local chart (Up; [ϕp]),

R̃ = R̃ηθ(σς)(µν)(κλ)dx
σς ⊗ ∂

∂xηθ ⊗ dxµν ⊗ dxκλ
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with

R̃ηθ(σς)(µν)(κλ) =
∂Γηθ(σς)(κλ)

∂xµν
−
∂Γηθ(σς)(µν)

∂xκλ
+ Γϑι(σς)(κλ)Γ

ηθ
(ϑι)(µν)

−Γϑι(σς)(µν)Γ
ηθ
(ϑι)(κλ))

∂

∂xϑι
,

where, Γσς(µν)(κλ) ∈ C∞(Up) is determined by

D̃ ∂
∂xµν

∂

∂xκλ
= Γσς(κλ)(µν)

∂

∂xσς
.

Particularly, if (M̃, g, D̃) is a combinatorially Riemannian geometry, we know the combinatori-

ally Riemannian curvature tensor in the following.

Definition 2.6 Let (M̃, g, D̃) be a combinatorially Riemannian manifold. A combinatorially

Riemannian curvature tensor R̃ : X (M̃)×X (M̃)×X (M̃)×X (M̃)→ C∞(M̃) of type (0, 4)

is defined by

R̃(X,Y, Z,W ) = g(R̃(Z,W )X,Y )

for ∀X,Y, Z,W ∈X (M̃).

Now let (M̃, g, D̃) be a combinatorially Riemannian manifold. For ∀p ∈ M̃ with a local

chart (Up; [ϕp]), we have known that ([8])

R̃ = R̃(σς)(ηθ)(µν)(κλ)dx
σς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ

with

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+Γϑι(µν)(σς)Γ
ξo
(κλ)(ηθ)g(ξo)(ϑι) −−Γξo(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),

where g(µν)(κλ) = g(
∂

∂xµν
,

∂

∂xκλ
).

Application of these mechanisms in Definitions 2.1−2.6 with results obtained in references

[5]-[9], [20]-[23] enables us to find physical laws in combinatorial spacetimes by mathematical

equations, and then find their multi-solutions in following sections.

§3. Combinatorial Gravitational Fields

3.1 Gravitational Equations

The essence in Einstein’s notion on the gravitational field is known in two principles following.

Principle 3.1 These gravitational forces and inertial forces acting on a particle in a gravita-

tional field are equivalent and indistinguishable from each other.

Principle 3.2 An equation describing a law of physics should have the same form in all
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reference frame.

By Principle 3.1, one can introduce inertial coordinate system in Einstein’s spacetime which

enables it flat locally, i.e., transfer these Riemannian metrics to Minkowskian ones and eliminate

the gravitational forces locally. Principle 3.2 means that a physical equation should be a tensor

equation. But how about the combinatorial gravitational field? We assume Principles 3.1 and

3.2 hold in this case, i.e., a physical law is characterized by a tensor equation. This assumption

enables us to deduce the gravitational field equation following.

Let L
GL[M̃ ]

be the Lagrange density of a combinatorial spacetime (CG|t). Then we know

equations of the combinatorial gravitational field (CG|t) to be

∂µ
∂L

GL[M̃ ]

∂∂µφM̃
−
∂L

GL[M̃ ]

∂φ
M̃

= 0, (3− 1)

by the Euler-Lagrange equation, where φ
M̃

is the wave function of (CG|t). Choose its Lagrange

density LGL[M̃ ] to be

L
GL[M̃ ]

= R̃− 2κLF ,

where κ = −8πG and LF the Lagrange density for all other fields with

R̃ = g(µν)(κλ)R̃(µν)(κλ), R̃(µν)(κλ) = R̃σς(µν)(σς)(κλ).

Applying the Euler-Lagrange equation we get the equation of combinatorial gravitational field

following

R̃(µν)(κλ) −
1

2
R̃g(µν)(κλ) = κE(µν)(κλ), (3− 2)

where E(µν)(κλ) is the energy-momentum tensor.

The situation for combinatorial gravitational field is a little different from classical field by

its combinatorial character with that one can only determines unilateral or part behaviors of the

field. We generalize the Einstein’s notion to combinatorial gravitational field by the following

projective principle, which is coordinated with one’s observation.

Principle 3.3 A physics law in a combinatorial field is invariant under a projection on its a

field.

By Principles 3.1 and 3.2 with combinatorial differential geometry shown in Section 2,

Principle 3.3 can be rephrased as follows.

Projective Principle Let (M̃, g, D̃) be a combinatorial Riemannian manifold and F ∈ T rs (M̃)

with a local form

F
(κ1λ1)···(κrλr)
(µ1ν1)···(µsνs)

eκ1λ1 ⊗ · · · ⊗ eκrλrωµ1ν1 ⊗ · · · ⊗ ωµsνs

in (Up, [ϕp]). If

F
(κ1λ1)···(κrλr)
(µ1ν1)···(µsνs)

= 0
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for integers 1 ≤ µi ≤ s(p), 1 ≤ νi ≤ nµi with 1 ≤ i ≤ s and 1 ≤ κj ≤ s(p), 1 ≤ λj ≤ nκj with

1 ≤ j ≤ r, then for any integer µ, 1 ≤ µ ≤ s(p), there must be

F
(µλ1)···(µλr)
(µν1)···(µνs)

= 0

for integers νi, 1 ≤ νi ≤ nµ with 1 ≤ i ≤ s.

Certainly, we can only determine the behavior of space which we live. Then what is about

these other spaces in (CG|t)? Applying the projective principle, we can simulate each of them

by that of our living space. In other words, combining geometrical structures already known to

a combinatorial one (CG|t) and then find its solution for equation (3− 2).

3.2 Combinatorial Metric

Let Ã be an atlas on (M̃, g, D̃). Choose a local chart (U ;̟) in Ã. By definition, if ϕp : Up →
s(p)⋃
i=1

Bni(p) and ŝ(p) = dim(
s(p)⋂
i=1

Bni(p)), then [ϕp] is an s(p) × ns(p) matrix. A combinatorial

metric is defined by

ds2 = g(µν)(κλ)dx
µνdxκλ, (3− 3)

where g(µν)(κλ) is the Riemannian metric in the combinatorially Riemannian manifold (M̃, g, D̃).

Generally, we choose a orthogonal basis

{e11, · · · , e1n1 , · · · , es(p)ns(p)}

for ϕp[U ], p ∈ M̃(t), i.e., 〈eµν , eκλ〉 = δ
(κλ)
(µν) . Then the formula (3− 3) turns to

ds2 = g(µν)(µν)(dx
µν)2

=

s(p)∑

µ=1

ŝ(p)∑

ν=1

g(µν)(µν)(dx
µν)2 +

s(p)∑

µ=1

ŝ(p)+1∑

ν=1

g(µν)(µν)(dx
µν)2

=
1

s2(p)

ŝ(p)∑

ν=1

(

s(p)∑

µ=1

g(µν)(µν))dx
ν +

s(p)∑

µ=1

ŝ(p)+1∑

ν=1

g(µν)(µν)(dx
µν)2.

We therefore find an important relation of combinatorial metric with that of its projections

following.

Theorem 3.1 Let µds
2 be the metric in a manifold φ−1

p (Bnµ(p)) for integers 1 ≤ µ ≤ s(p).

Then

ds2 = 1ds
2 + 2ds

2 + · · ·+ s(p)ds
2.

Proof Applying the projective principle, we immediately know that

µds
2 = ds2|φ−1

p (Bnµ(p)), 1 ≤ µ ≤ s(p).
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Whence, we find that

ds2 = g(µν)(µν)(dx
µν)2 =

s(p)∑

µ=1

ni(p)∑

ν=1

g(µν)(µν)(dx
µν)2

=

s(p)∑

µ=1

ds2|φ−1
p (Bnµ(p)) =

s(p)∑

µ=1

µds
2. 2

This relation enables us to find the line element of combinatorial gravitational field (CG|t)
by applying that of gravitational fields.

3.3 Combinatorial Schwarzschild Metric

Let (CG|t) be a gravitational field. We know its Schwarzschild metric, i.e., a spherically sym-

metric solution of Einstein’s gravitational equations in vacuum is

ds2 =
(
1− rs

r

)
dt2 − dr2

1− rs
r

− r2dθ2 − r2 sin2 θdφ2 (3− 4)

where rs = 2Gm/c2. Now we generalize it to combinatorial gravitational fields to find the

solutions of equations

R(µν)(στ) −
1

2
g(µν)(στ)R = −8πGE(µν)(στ)

in vacuum, i.e., E(µν)(στ) = 0. Notice that the underlying graph of combinatorial field consisting

of m gravitational fields is a complete graph Km. For such a objective, we only consider the

homogenous combinatorial Euclidean spaces M̃ =
⋃m
i=1 Rni , i.e., for any point p ∈ M̃ ,

[ϕp] =




x11 · · · x1n1 · · · 0

x21 · · · x2n2 · · · 0

· · · · · · · · · · · · · · ·
xm1 · · · · · · · · · xmnm




with m̂ = dim(
m⋂
i=1

Rni) a constant for ∀p ∈
m⋂
i=1

Rni and xil = xl

m for 1 ≤ i ≤ m, 1 ≤ l ≤ m̂.

Let (CG|t) be a combinatorial field of gravitational fields M1, · · · ,Mm with masses m1,

· · · ,mm respectively. For usually undergoing, we consider the case of nµ = 4 for 1 ≤ µ ≤ m

since line elements have been found concretely in classical gravitational field in these cases.

Now establish m spherical coordinate subframe (tµ; rµ, θµ, φµ) with its originality at the center

of such a mass space. Then we have known its a spherically symmetric solution by (3− 4) to

be

ds2µ = (1− rµs
rµ

)dt2µ − (1− rµs
rµ

)−1dr2µ − r2µ(dθ2µ + sin2 θµdφ
2
µ)

for 1 ≤ µ ≤ m with rµs = 2Gmµ/c
2. By Theorem 3.1, we know that
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ds2 = 1ds
2 + 2ds

2 + · · ·+ mds
2,

where µds
2 = ds2µ by the projective principle on combinatorial fields. Notice that 1 ≤ m̂ ≤ 4.

We therefore get the geometrical of (CG|t) dependent on m̂ following.

Case 1. m̂ = 1, i.e., tµ = t for 1 ≤ µ ≤ m.

In this case, the combinatorial metric ds is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2rµ

)
dt2 −

m∑

µ=1

(1− 2Gmµ

c2rµ
)−1dr2µ −

m∑

µ=1

r2µ(dθ
2
µ + sin2 θµdφ

2
µ).

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ, or tµ = t and φµ = φ for

1 ≤ µ ≤ m.

We consider the following subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −−(

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

)dr2 −
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2
µ),

which can only happens if these m fields are at a same point O in a space. Particularly, if

mµ = M for 1 ≤ µ ≤ m, the masses of

M1,M2, · · · ,Mm

are the same, then rµg = 2GM is a constant, which enables us knowing that

ds2 =

(
1− 2GM

c2r

)
mdt2 −

(
1− 2GM

c2r

)−1

mdr2 −
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2
µ).

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2rµ

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2rµ

)−1

dr2µ −
m∑

µ=1

r2µ(dθ
2 + sin2 θdφ2

µ).

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− 2Gmµ

c2rµ

)
dt2 − (

m∑

µ=1

(
1− 2Gmµ

c2rµ

)−1

)dr2µ −
m∑

µ=1

r2µ(dθ
2
µ + sin2 θµdφ

2).

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r and φµ = φ, or or tµ = t,
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θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2dθ2 − r2 sin2 θ
m∑

µ=1

dφ2
µ.

Subcase 3.2. tµ = t, rµ = r and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 − r2
m∑

µ=1

(dθ2µ + sin2 θµdφ
2).

There subcases 3.1 and 3.2 can be only happen if the centers of these m fields are at a

same point O in a space.

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− 2Gmµ

c2rµ

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2rµ

)−1

dr2µ −
m∑

µ=1

rµ(dθ
2 + sin2 θdφ2).

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).

Particularly, if mµ = M for 1 ≤ µ ≤ m, we get that

ds2 =

(
1− 2GM

c2r

)
mdt2 −

(
1− 2GM

c2r

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2).

Define a coordinate transformation

(t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√
m, r
√
m, θ, φ).

Then the previous formula turns to

ds2 =

(
1− 2GM

c2r

)
dst

2 − dsr
2

1− 2GM
c2r

− sr
2(dsθ

2 + sin2
sθdsφ

2)

in this new coordinate system ( st, sr, sθ, sφ), whose geometrical behavior likes that of the
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gravitational field.

3.4 Combinatorial Reissner-Nordström Metric

The Schwarzschild metric is a spherically symmetric solution of the Einstein’s gravitational

equations in conditions E(µν)(στ) = 0. In some special cases, we can also find their solutions for

the case E(µν)(στ) 6= 0. The Reissner-Nordström metric is such a case with

E(µν)(στ) =
1

4π

(
1

4
gµνFαβF

αβ − FµαFαν
)

in the Maxwell field with total mass m and total charge e, where Fαβ and Fαβ are given in

Subsection 7.3.4. Its metrics takes the following form:

gµν =




x11 0 0 0

0 x22 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ



,

where rs = 2Gm/c2, r2e = 4Gπe2/c4, x11 = 1− rs
r

+
r2e
r2

and x22 = −
(

1− rs
r

+
r2e
r2

)−1

. In this

case, its line element ds is given by

ds2 =

(
1− rs

r
+
r2e
r2

)
dt2 −

(
1− rs

r
+
r2e
r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (3 − 5)

Obviously, if e = 0, i.e., there are no charges in the gravitational field, then the equations

(3− 5) turns to that of the Schwarzschild metric (3− 4).

Now let (CG|t) be a combinatorial field of charged gravitational fields M1,M2, · · · , Mm

with masses m1,m2, · · · ,mm and charges e1, e2, · · · , em, respectively. Similar to the case of

Schwarzschild metric, we consider the case of nµ = 4 for 1 ≤ µ ≤ m. We establish m spherical

coordinate subframe (tµ; rµ, θµ, φµ) with its originality at the center of such a mass space. Then

we know its a spherically symmetric solution by (3− 5) to be

ds2µ =

(
1− rµs

rµ
+
r2µe
r2µ

)
dt2µ −

(
1− rµs

rµ
+
r2µe
r2µ

)−1

dr2µ − r2µ(dθ2µ + sin2 θµdφ
2
µ).

Likewise the case of Schwarzschild metric, we consider combinatorial fields of charged

gravitational fields dependent on the intersection dimension m̂ following.

Case 1. m̂ = 1, i.e., tµ = t for 1 ≤ µ ≤ m.

In this case, by applying Theorem 3.1 we get the combinatorial metric

ds2 =

m∑

µ=1

(
1− rµs

rµ
+
r2µe
r2µ

)
dt2 −

m∑

µ=1

(
1− rµs

rµ
+
r2µe
r2µ

)−1

dr2µ −
m∑

µ=1

r2µ(dθ
2
µ + sin2 θµdφ

2
µ).
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Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ, or tµ = t and φµ = φ for

1 ≤ µ ≤ m.

Consider the following three subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)
dt2 −

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)−1

dr2 −
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2
µ),

which can only happens if these m fields are at a same point O in a space. Particularly, if

mµ = M and eµ = e for 1 ≤ µ ≤ m, we find that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

1− 2GM
c2r + 4πGe4

c4r2

−
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2
µ).

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, by applying Theorem 3.1 we know that the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

rµ
+
r2µe
r2µ

)
dt2 −

m∑

µ=1

(
1− rµs

rµ
+
r2µe
r2µ

)−1

dr2µ −
m∑

µ=1

r2µ(dθ
2 + sin2 θdφ2

µ).

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, we know that the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

rµ
+
r2µe
r2µ

)
dt2 −

m∑

µ=1

(
1− rµs

rµ
+
r2µe
r2µ

)−1

dr2µ −
m∑

µ=1

r2µ(dθ
2
µ + sin2 θµdφ

2).

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r and φµ = φ, or or tµ = t,

θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, by applying Theorem 3.1 we obtain that the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)
dt2 −

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)−1

dr2 −
m∑

µ=1

r2(dθ2 + sin2 θdφ2
µ).

Particularly, if mµ = M and eµ = e for 1 ≤ µ ≤ m, then we get that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

1− 2GM
c2r + 4πGe4

c4r2

−
m∑

µ=1

r2(dθ2 + sin2 θdφ2
µ).
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Subcase 3.2. tµ = t, rµ = r and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)
dt2 −

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)−1

dr2 −
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2).

Particularly, if mµ = M and eµ = e for 1 ≤ µ ≤ m, then we get that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

1− 2GM
c2r + 4πGe4

c4r2

−
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2).

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

rµ
+
r2µe
r2µ

)
dt2 −

m∑

µ=1

(
1− rµs

rµ
+
r2µe
r2µ

)−1

dr2µ −
m∑

µ=1

r2µ(dθ
2 + sin2 θdφ2).

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)
dt2 −

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).

Furthermore, if mµ = M and eµ = e for 1 ≤ µ ≤ m, we obtain that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

1− 2GM
c2r + 4πGe4

c4r2

−mr2(dθ2 + sin2 θdφ2).

Similarly, we define the coordinate transformation

(t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√
m, r
√
m, θ, φ).

Then the previous formula turns to

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
dst

2 − dsr
2

1− 2GM
c2r + 4πGe4

c4r2

− sr
2(dsθ

2 + sin2
sθdsφ

2)

in this new coordinate system ( st, sr, sθ, sφ), whose geometrical behavior likes a charged

gravitational field.

§4. Multi-Time System

A multi-time system is such a combinatorial field (CG|t) consisting of fields M1,M2, · · · ,Mm
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on reference frames

(t1, r1, θ1, φ1), · · · , (tm, rm, θm, φm),

and there are always exist two integers κ, λ, 1 ≤ κ 6= λ ≤ m such that tκ 6= tλ. Notice that

these combinatorial fields discussed in Section 3 are all with tµ = t for 1 ≤ µ ≤ m, i.e., we can

establish a time variable t for all fields in this combinatorial field. But if we can not determine

all the behavior of living things in the Universe implied in the weak anthropic principle, we can

not find such a time variable t for all fields. If so, we need a multi-time system for describing

the Universe.

Among these multi-time systems, an interesting case appears in m̂ = 3, rµ = r, θµ =

θ, φµ = φ, i.e., beings live in the same dimensional 3 space, but with different notions on the

time. Applying Theorem 3.1, we discuss the Schwarzschild and Reissner-Nordström metrics

following.

4.1 Schwarzschild Multi-Time System

In this case, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2µ −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).

Applying the projective principle to this equation, we get metrics on gravitational fields M1,

M2, · · · ,Mm following:

ds21 =

(
1− 2Gm1

c2r

)
dt21 −

(
1− 2Gm1

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

ds22 =

(
1− 2Gm2

c2r

)
dt22 −

(
1− 2Gm2

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

ds2m =

(
1− 2Gmm

c2r

)
dt2m −

(
1− 2Gmm

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

Particularly, if mµ = M for 1 ≤ µ ≤ m, we then get that

ds2 =

(
1− 2GM

c2r

) m∑

µ=1

dt2µ −
(

1− 2GM

c2r

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2).

Its projection on the gravitational field Mµ is

ds2µ =

(
1− 2GM

c2r

)
dt2µ −

(
1− 2GM

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2),
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i.e., the Schwarzschild metric on Mµ, 1 ≤ µ ≤ m.

4.2 Reissner-Nordström Multi-Time System

In this case, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r
+

4πGe4µ
c4r2

)
dt2µ −

m∑

µ=1

(
1− 2Gmµ

c2r
+

4πGe4µ
c4r2

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).

Similarly, by the projective principle we obtain the metrics on charged gravitational fields

M1,M2, · · · ,Mm following.

ds21 =

(
1− 2Gm1

c2r
+

4πGe41
c4r2

)
dt21 −−

(
1− 2Gm1

c2r
+

4πGe41
c4r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

ds22 =

(
1− 2Gm2

c2r
+

4πGe42
c4r2

)
dt22 −

(
1− 2Gm2

c2r
+

4πGe42
c4r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

ds2m =

(
1− 2Gmm

c2r
+

4πGe4m
c4r2

)
dt2m −

(
1− 2Gmm

c2r
+

4πGe4m
c4r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

Furthermore, if mµ = M and eµ = e for 1 ≤ µ ≤ m, we obtain that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

) m∑

µ=1

dt2 −
(

1− 2GM

c2r
+

4πGe4

c4r2

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2).

Its projection on the charged gravitational field Mµ is

ds2µ =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
dt2µ

(
1− 2GM

c2r
+

4πGe4

c4r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

i.e., the Reissner-Nordström metric on Mµ, 1 ≤ µ ≤ m.

As a by-product, these calculations and formulas mean that these beings with time notion

different from that of human beings will recognize differently the structure of our universe if

these beings are intellectual enough to do so.

§5. Discussions

5.1 Geometrical Structure

A simple calculation shows that the dimension of the combinatorial gravitational field (C |t) in
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Section 3 is

dim(C |t) = 4m+ (1 −m)m̂. (5− 1)

For example, dim(C |t) = 7, 10, 13, 16 if m̂ = 1 and 6, 8, 10 if m̂ = 1 for m = 2, 3, 4. In this

subsection, we analyze these geometrical structures with metrics appeared in Section 3.

As we have said in Section 1, the visible geometry is the spherical geometry of dimensional

3. That is why the sky looks like a spherical surface. In this geometry, we can only see the

images of bodies with dim ≥ 3 on our spherical surface( see [1]-[2] and [4] in details). But the

situation is a little difference from that of the transferring information, which is transferred in all

possible routes. In other words, a geometry of dimensional≥ 1. Therefore, not all information

transferring can be seen by our eyes. But some of them can be felt by our six organs with the help

of apparatus if needed. For example, the magnetism or electromagnetism can be only detected

by apparatus. These notions enable us to explain the geometrical structures in combinatorial

gravitational fields, for example, the Schwarzschild or Reissner-Nordström metrics.

Case 1. m̂ = 4.

In this case, by the formula (5− 1) we get dim(C |t) = 4, i.e., all fields M1,M2, · · · ,Mm are in

R4, which is the most enjoyed case by human beings. We have gotten the Schwarzschild metric

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2)

or the Reissner-Nordström metric

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)
dt2 − dr2

m∑
µ=1

(
1− rµs

r +
r2µe
r2

) −

−mr2(dθ2 + sin2 θdφ2)

for non-charged or charged combinatorial gravitational fields in vacuum in Sections 3. If it is

so, the behavior of Universe can be realized finally by human beings. This also means that the

discover of science will be ended, i.e., we can established the Theory of Everything finally for

the Universe.

Case 2. m̂ ≤ 3.

If the Universe is so, then dim(C |t) ≥ 5. In this case, we know the combinatorial Schwarzschild

metrics and combinatorial Reissner-Nordström metrics in Section 3, for example, if tµ = t,

rµ = r and φµ = φ, the combinatorial Schwarzschild metric is

ds2 =

m∑

µ=1

(
1− rµs

r

)
dt2 −

m∑

µ=1

dr2(
1− rµs

r

) −
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2)
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and the combinatorial Reissner-Nordström metric is

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2µe
r2

)
dt2 −

m∑

µ=1

dr2(
1− rµs

r +
r2µe
r2

) −
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2).

Particularly, if mµ = M and eµ = e for 1 ≤ µ ≤ m, then we get that

ds2 =

(
1− 2GM

c2r

)
mdt2 − mdr2(

1− 2GM
c2r

) −
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2)

for combinatorial gravitational field and

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2(

1− 2GM
c2r + 4πGe4

c4r2

) −
m∑

µ=1

r2(dθ2µ + sin2 θµdφ
2)

for charged combinatorial gravitational field in vacuum. In this case, the observed interval in

the field MO where human beings live is

dsO = a(t, r, θ, φ)dt2 − b(t, r, θ, φ)dr2 − c(t, r, θ, φ)dθ2 − d(t, r, θ, φ)dφ2 .

Then how to we explain the differences ds−dsO in physics? Notice that we can only observe the

line element dsO, a projection of ds on MO. Whence, all contributions in ds− dsO come from

the spatial direction not observable by human beings. In this case, we are difficult to determine

the exact behavior. Furthermore, if m̂ ≤ 3 holds, because there are infinite combinations (CG|t)
of existent fields underlying a connected graph G, we can not find an ultimate theory for the

Universe, i.e., there are no a Theory of Everything for the Universe and the science established

by ours is approximate, holds on conditions and the discover of science will be endless forever.

5.2 Physical Formation

A generally accepted notion on the formation of Universe is the Big Bang theory ([24]), i.e.,

the origin of Universe is from an exploded at a singular point on its beginning. Notice that the

geometry in the Big Bang theory is just a Euclidean R3 geometry, i.e., a visible geometry by

human beings. Then how is it came into being for a combinatorial spacetime? Weather it is

contradicts to the experimental data? We will explain these questions following.

Realization 5.1 Any combinatorial spacetime was formed by |G| times Big Bang in an early

space.

Certainly, if there is just one time Big Bang, then there exists one spacetime observed by

us, not a multiple or combinatorial spacetime. But there are no arguments for this claim. It is

only an assumption on the origin of Universe. If it is not exploded in one time, but in m ≥ 2

times in different spatial directions, what will happens for the structure of spacetime?

The process of Big Bang model can be applied for explaining the formation of combinatorial

spacetimes. Assume the dimension of original space is bigger enough and there arem explosions
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for the origin of Universe. Then likewise the standard process of Big Bang, each time of Big

Bang brought a spacetime. After the m Big Bangs, we finally get a multi-spacetime underlying

a combinatorial structure, i.e., a combinatorial spacetime (CG|t) with |G| = m, such as those

shown in Fig.3 for G = C4 or K3.

E1

E4 E2

E3

(a) (b)

E1

E2 E3

Fig.3

where Ei denotes ith time explosion for 1 ≤ i ≤ 4. In the process of m Big Bangs, we do not

assume that each explosion Ei, 1 ≤ i ≤ m was happened in a Euclidean space R3, but in Rn

for n ≥ 3. Whence, the intersection Ei ∩Ej means the same spatial directions in explosions Ei

and Ej for 1 ≤ i, j ≤ m. Whence, information in Ei or Ej appeared along directions in Ei ∩Ej
will both be reflected in Ej or Ei. As we have said in Subsection 5.1, if dimEi ∩ Ej ≤ 2, then

such information can not be seen by us but only can be detected by apparatus, such as those

of the magnetism or electromagnetism.

Realization 5.2 The spacetime lived by us is an intersection of other spacetimes.

This fact is an immediately conclusion of Realization 5.1.

Realization 5.3 Each experimental data on Universe obtained by human beings is synthesized,

not be in one of its spacetimes.

Today, we have known a few datum on the Universe by COBE or WMAP. In these data,

the one well-known is the 2.7oK cosmic microwave background radiation. Generally, this data

is thought to be an evidence of Big Bang theory. If the Universe is a combinatorial one, how to

we explain it? First, the 2.7oK is not contributed by one Big Bang in R3, but by many times

before 137 light years, i.e., it is a synthesized data. Second, the 2.7oK is surveyed by WMAP,

an explorer satellite in R3. By the projective principle in Section 3, it is only a projection of

the cosmic microwave background radiation in the Universe on the space R3 lived by us. In

fact, all datum on the Universe surveyed by human beings can be explained in such a way. So

there are no contradiction between combinatorial model and datum on the Universe already

known by us, but it reflects a combinatorial behavior of the Universe.
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Biological n-System with Global Stability

Abstract: A food web on n living things x1, x2, · · · , xn, i.e., a biological n-system can be math-

ematically characterized by action flow
−→
GL of order n with surplus flows of growth rates ẋi of

population on vertices vi, vector flow (xi, xj), end-operators xifij , xjf ′
ji on edge (vi, vj), where

fij , f ′
ji are 2 variable functions for integers 1 ≤ i, j ≤ n holding with a system of conservation

equations

ẋi = xi


 ∑

vk∈N−(vi)

f ′
ki(xk, xi) −

∑

vl∈N+(vi)

fil(xi, xl)


 , 1 ≤ i ≤ n,

which is a system of n differential equations. Certainly, 0 ∈ Rn is one of its equilibrium points. But

the system ∑

vk∈N−(vi)

f ′
ki(xk, xi) =

∑

vl∈N+(vi)

fil(xi, xl), 1 ≤ i ≤ n

of equations may be solvable or not. However, even if it is non-solvable, it characterizes biological

systems also if it can be classified into solvable subsystems. The main purpose of this paper is

to characterize the biological behavior of such systems with global stability by a combinatorial

approach, i.e., establish the relationship between solvable subsystems of a biological n-system with

Eulerian subgraphs of labeling bi-digraph of
−→
GL, characterize n-system with linear growth rate and

the global stability on subgraphs, and interpret also the biological behavior of GL-solutions of non-

solvable equations, which opened a way for characterizing biological system with species more than

3, i.e., mathematical combinatorics. As we know, nearly all papers discussed biological system with

species less or equal to 3 in the past decades.

Key Words: Food web, biological n-system, action flow, Klomogorov model, non-solvable

system, Eulerian graph, bi-digraph, Smarandache multispace, mathematical combinatorics.

AMS(2010): 05C10, 05C21, 34D43, 92B05.

§1. Introduction

There is a well-known biological law for living things in the natural world, i.e., the survival of the

fittest in the natural selection because of the limited resources of foods. Thus, foods naturally

result in connection with living things, i.e., food chain, a linear network starting from producer

organisms and ending at apex predator species or decomposer species. And biologically, a food

web is a natural interconnection of food chains, a resultant by a simple ruler ([28]), and generally

a graphical representation of what-eats-what in the ecological community such as those shown

in Fig.1 for 4 food chains: grass→ladybug→frog→snake→eagle, grass→ladybug→frog→egret,

grass→rabbit→ snake→eagle and grass→rabbit→eagle.

1An invited report at the International Conference on Applications of Mathematics in Topological Dynamics,

Physical, Biological and Chemical Systems, December 9-11, 2016, India.
2Bull. Cal. Math. Soc., 108, (6) 403–443 (2016)
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Fig.1

Actually, a food web is an interaction system in physics ([15]-[16], [25]) which can be

mathematically characterized by the strength of what action on what. For a biological 2-

system, let x, y be the two species with the action strength F ′(x → y), F (y → x) of x to y

and y to x on their growth rate, respectively ([21]). Then, such a system can be quantitatively

characterized by differential equations





ẋ = F (y → x)

ẏ = F ′(x→ y)

on the populations of species x and y.

Usually, we denote 2 competing things by a directed edge (u, v) labeling with vector flow

(x, y) and end-operators F, F ′ respectively on its center and both ends, where F, F ′ are action

operators with F (x → 0) = F ′(0 → y) = 0 if y = 0 or x = 0 and the growth rates ẋ, ẏ of

populations on vertices, such as those shown in Fig.2. Particularly, F = xf, F ′ = yf ′ in the

Kolmogorov model, where f , f ′ are 2 variable functions, and f = λ − by, f ′ = µ + cx in the

Lotka-Volterra model ([2], [20]). -(x, y)
ẋ ẏ

u v

F ′F

Fig.2

Then, a food web is nothing else but a topological digraph
−→
G , a 2-tuple

(
V (
−→
G ), E(

−→
G)
)

with

E(
−→
G) ⊂ V (

−→
G ) × V (

−→
G) and a labeling L :

−→
G → R

⋃
S on

−→
G with L : V (

−→
G ) → R and

E(
−→
G) → S, where R and S are predetermined sets ([19]). Particularly, if R = {ẋ, ẏ}, the

growth rates of populations and S = {(F, (x, y), F ′)}, a 3-tuple with action operator F on

the initial, F ′ on the end and vector (x, y) on the middle of edge (u, v), we get the biological

2-system shown in Fig.2.

However, the law of conservation of matter concludes that matter is neither created nor
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destroyed in chemical reactions. In other words, the mass of any one element at the beginning

of a reaction will equal to that of element at the end, i.e., the in and out-action must be

conservative with the surplus on each vertex of
−→
GL. Thus, a food web is an action flow ([18])

further, i.e., a topological digraph
−→
GL labeled with surplus flows of growth rates ẋi of population

on vertices vi, vector flow (xi, xj), initial and end operators Fij , F
′
ij on edge (vi, vj) for integers

1 ≤ i, j ≤ n, where n ≥ 2 holding with a system of conservation equations

ẋi =
∑

vk∈N−(vi)

F ′ki(xk → xi)−
∑

vl∈N+(vi)

Fil(xi → xl), 1 ≤ i ≤ n

and particularly,

ẋi = xi


 ∑

vk∈N−(vi)

f ′ki(xk, xi)−
∑

vl∈N+(vi)

fil(xi, xl)


 , 1 ≤ i ≤ n (1.1)

in the Kolmogorov model. For example, a biological 4-system shown in Fig.3 is a system of 4

ordinary differential equations





ẋ1 = x1 ((b52 − a11 − a12)x1 − a12x2 − a22x3 + b51x4)

ẋ2 = x2 (b11x1 + (b12 + b62 − a31)x2 − a32x3 + b61x4)

ẋ3 = x3 (b21x1 + b31x2 + (b22 + b32 − a41)x3 − a42x4)

ẋ4 = x4 (b41x3 − a52x1 − a62x2 + (b42 − a51 − a61)x4)

(1.2)- ?�6 s3
ẋ1

x1f1

x1f
′
5

ẋ2

ẋ3ẋ4

(x1, x2)

(x1, x3)
(x4, x1)

(x4, x2)

(x2, x3)

(x3, x4)

x2f
′
1

x2f3

x4f5 x3f
′
3

x4f
′
4 x3f4

x1f2

x3f
′
2

x2f
′
6

x4f6

Fig.3

where,

f1(x1, x2) = a11x1 + a12x2, f ′1(x1, x2) = b11x1 + b12x2,

f2(x1, x3) = a21x1 + a22x3, f ′2(x1, x3) = b21x1 + b22x3,

f3(x2, x3) = a31x2 + a32x3, f ′3(x2, x3) = b31x2 + b32x3,

f4(x3, x4) = a41x3 + a42x4, f ′4(x3, x4) = b41x3 + b42x4,

f5(x4, x1) = a51x4 + a52x1, f ′5(x4, x1) = b51x4 + b52x1,

f6(x4, x2) = a61x4 + a62x2, f ′6(x4, x2) = b61x4 + b62x2.

.
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Definition 1.1 Let
−→
GL be a labeling topological digraph. A subgraph

−→
H of

−→
G is said to be a

labeling subgraph of
−→
GL if its vertices and edges are labeled by L|H , denoted by

−→
HL ≺ −→GL and

furthermore, if
−→
HL =

−→
GL
∣∣∣
V (H)

, such a labeling subgraph is said to be an induced subgraph of

−→
GL, denoted by

〈
V (
−→
H )
〉
G
.

For example, the 2 labeling graphs
−→
GL

1 ,
−→
GL

2 in Fig.4 are all labeling subgraphs but only−→
GL

1 is an induced subgraph of the graph shown in Fig.3.

�6 ~ ?-s3ẋ1

ẋ3ẋ4

ẋ1 ẋ2

ẋ3ẋ4
(x3, x4)
−→
GL

1

(x4, x1)
(x1, x3)

x1f2

x3f
′
2

x3f4x4f
′
4

x4f5

x1f
′
5

(x1, x2)

(x2, x3)

(x1, x3)

(x4, x2)

−→
GL

2

x1f1 x2f
′
1

x2f3

x3f
′
2

x1f2

x3f
′
2

x4f6

x2f
′
6

Fig.4

Clearly, a labeling subgraph of
−→
GL is also consisting of food chains but it maybe not a

food web if it is not an action flow again. Even it is, the sizes of species are not the same as

they in
−→
GL because the conservative laws are completely changed. For example, the system of

conservation equations for the labeling subgraph
−→
GL

1 is





ẋ1 = x1 ((b51 − a21)x1 − a22x3 + b51x4)

ẋ3 = x3 (b21x1 + (b22 − a41)x3 − a42x4)

ẋ4 = x4 (b41x3 − a52x1 + (b42 − a51)x4)

(1.3)

a very different system from that of (1.2).

The following terminologies are useful for characterizing food webs.

Definition 1.2 Let
−→
G be a digraph with

←−
G a digraph reversing direction on every edge in

−→
G . A bi-digraph of

−→
G is defined by

−→
G
⋃←−
G and a labeling bi-digraph

(−→
G
⋃←−
G
)L̂

of a labeling

digraph
−→
GL is a labeling graph on

−→
G
⋃←−
G with a labeling L̂ : V (

−→
G
⋃←−
G) → L

(
V (
−→
G)
)
, L̂ :

E
(−→
G
⋃←−
G
)
→ L

(
E
(−→
G
⋃←−
G
))

by L̂ : (u, v) → {0, (x, y), yf ′}, (v, u) → {xf, (x, y), 0} if

L : (u, v)→ {xf, (x, y), yf ′} for ∀(u, v) ∈ E(
−→
G), such as those shown in Fig.5.
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ẋ ẏ ẏ- �ẋ

-
u v

xf (x, y) yf ′
0

(x, y)

yf ′

xf

(x, y)

0

u v

Fig.5

Definition 1.3 A circuit in a digraph
−→
G is a nontrivial closed trail with different edges in

−→
G

and an Eulerian circuit in digraph
−→
G is a circuit of

−→
G containing every edge of

−→
G .

A digraph
−→
G is Eulerian if it contains an Eulerian circuit.

Clearly, a bi-digraph of a digraph is an Eulerian graph. The main purpose of this paper is

to characterize the biological behavior of biological n-systems with global stability by a com-

binatorial approach, i.e., establish the relationship between solvable subsystems of a biological

n-system with that of labeling Eulerian subgraphs of labeling bi-digraph
(−→
G
⋃←−
G
)L̂

of
−→
GL,

characterize conditions of an n-system with linear growth rate become distinct and global stabil-

ity, and interpret also the biological behavior of GL-solutions of non-solvable equations, which

opened a way for characterizing biological system with species more than 3, i.e., mathematical

combinatorics, or differential equations over graphs.

For terminologies and notations not mentioned here, we follow references [1] for mechanics,

[25] for interaction particles, [2] and [20] for biological mathematics, [3] for differential equations

with stability, [6]-[7] for topological graphs, digraphs and combinatorial geometry, [7] and [26]

for Smarandache multispaces.

§2. Geometry Over Equilibrium Points

2.1 Equilibrium Sets

We consider the generalized Kolmogorov model on biological n-system ([2], [20]), i.e., the system

(1.1) of differential equations





ẋ1 = x1

(
∑

vk∈N−(v1)

f ′k1(xk, x1)−
∑

vl∈N+(v1)

f1l(x1, xl)

)

ẋ2 = x2

(
∑

vk∈N−(v2)

f ′k2(xk, x2)−
∑

vl∈N+(v2)

f2l(x2, xl)

)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ẋn = xn

(
∑

vk∈N−(vn)

f ′kn(xk, xn)− ∑
vl∈N+(vn)

fnl(xn, xl)

)

satisfying conditions following:

(1) fij , f
′
ij ∈ C1 for integers 1 ≤ i, j ≤ n;
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(2) For any integer i, 1 ≤ i ≤ n, there is (x0
1, x

0
2, · · · , x0

n) ∈ Rn hold with

∑

vk∈N−(vi)

f ′ki(x
0
k, x

0
i ) =

∑

vl∈N+(vi)

fil(x
0
i , x

0
1)

but ∑

vk∈N−(vi)

∂f ′ki
∂xi

∣∣∣∣
(x0
k
,x0
i )

6=
∑

vl∈N+(vi)

∂fil
∂xi

∣∣∣∣
(x0
i ,x

0
1)

.

For any integer i, 1 ≤ i ≤ n, define

Fi =
∑

vk∈N−(vi)

f ′ki(xk, xi)−
∑

vl∈N+(vi)

fil(xi, xl).

Then it concludes that

(1) Fi ∈ C1 for integers 1 ≤ i ≤ n;

(2) Fi|(x0
1,x

0
2,··· ,x

0
n) = 0 but

∂Fi
∂xi

∣∣∣∣
(x0

1,x
0
2,··· ,x

0
n)

=
∑

vk∈N−(vi)

∂f ′ki
∂xi

∣∣∣∣
(x0

1,x
0
2,··· ,x

0
n)

−
∑

vl∈N+(vi)

∂fil
∂xi

∣∣∣∣
(x0

1,x
0
2,··· ,x

0
n)

6= 0.

Applying the implicity function theorem, each equation

Fi(x1, x2, · · · , xn) = 0

is solvable, i.e., there is a solution manifold SFi in Rn for any integer 1 ≤ i ≤ n, and in this

case furthermore, there is a unique solution on the Cauchy problem of system (1.1) prescribed

with an initial condition (x1(t0), x2(t0), · · · , xn(t0)) =
(
x0

1, x
0
2, · · · , x0

n

)
.

An equilibrium set of system (1.1) are all points (x0
1, x

0
2, · · · , x0

n) ∈ R
n holding with





x0
1

(
∑

vk∈N−(v1)

f ′k1(x
0
k, x

0
1)−

∑
vl∈N+(v1)

f1l(x
0
1, x

0
l )

)
= 0

x0
2

(
∑

vk∈N−(v2)

f ′k2(x
0
k, x

0
2)−

∑
vl∈N+(v2)

f2l(x
0
2, x

0
l )

)
= 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x0
n

(
∑

vk∈N−(vn)

f ′kn(x
0
k, x

0
n)−

∑
vl∈N+(vn)

fnl(x
0
n, x

0
l )

)
= 0

(2.1)

Clearly, only those solutions x0
i ≥ 0, 1 ≤ i ≤ n of system (2.1) have the biological meaning,

and (0, 0, · · · , 0) ∈ Rn is an obvious equilibrium point. We classify all equilibrium points of

system (2.1) into 3 categories following:
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(C1) Only (0, 0, · · · , 0) ∈ Rn hold with system (2.1), i.e., the system





∑
vk∈N−(v1)

f ′k1(x
0
k, x

0
1) =

∑
vl∈N+(v1)

f1l(x
0
1, x

0
l )

∑
vk∈N−(v2)

f ′k2(x
0
k, x

0
2) =

∑
vl∈N+(v2)

f2l(x
0
2, x

0
l )

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∑

vk∈N−(vn)

f ′kn(x0
k, x

0
n) =

∑
vl∈N+(vn)

fnl(x
0
n, x

0
l )

(2.2)

is non-solvable in Rn.

(C2) Only (0, · · · , 0,K1, 0, · · · , 0,K2, 0, · · · , 0,Ks, 0, · · · , 0) ∈ Rn hold system (2.1) with

numbers K1,K2, · · · ,Ks > 0 on columns i1, i2, · · · , is respectively, i.e., for any integer j 6∈
{i1, i2, · · · , is}, the system





∑
vk∈N−(vi1)

f ′ki1 (x
0
k, x

0
i1

) =
∑

vl∈N+(vi1 )

fi1l(x
0
i1
, x0
l )

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∑

vk∈N−(vis )

f ′kis(x
0
k, x

0
is) =

∑
vl∈N+(vis )

fisl(x
0
is , x

0
l )

∑
vk∈N−(vj)

f ′kj(x
0
k, x

0
j) =

∑
vl∈N+(vj)

fjl(x
0
j , x

0
l )

(2.3)

is non-solvable in Rn.

(C3) There are (K1,K2, · · · ,Kn) ∈ R
n hold system (2.1) with Ki > 0 for integers 1 ≤ i ≤

n.

2.2 Geometry Over Equations

Usually, one applies differential equations to characterize the reality of things by their solutions.

But can this notion describes the all behavior of things? Certainly not ([8]-[19]), particularly in

biology follows by the discussion following.

For an integer n ≥ 1, let u : Rn → Rn be differentiable mapping. Its n-dimensional graph

Γ[u] is defined by the ordered pairs

Γ[u] = {((x1, · · · , xn) , u (x1, · · · , xn))) |(x1, · · · , xn)}

in Rn+1. Clearly, the assumption on fij , f
′
ij , 1 ≤ i, j ≤ n concludes that the solution manifold

SFi is nothing else but a graph Γ[Fi] in Rn.

Geometrically, the system





F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

Fn(x1, x2, · · · , xn) = 0

(2.4)
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is solvable or not dependent on
n⋂
i=1

SFi 6= ∅ or not, and conversely, if
n⋂
i=1

SFi 6= ∅ or not, we

can or can not choose point (x1, x2, · · · , xn) in
n⋂
i=1

SFi , a solution of (2.4). We therefore get a

simple but meaningful conclusion following.

Theorem 2.1 A system of equations





F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . .

Fn(x1, x2, · · · , xn) = 0

under previous assumption is non-solvable or not if and only if
n⋂

i=1

SFi = ∅ or 6= ∅.

If the intersection
n⋂
i=1

SFi 6= ∅, it is said to be a ∧-solution of equations (2.4).

Usually, one characterizes a system S of things T1, T2, · · · , Tn by equations (2.4) with their

solutions to hold on the dynamical behavior of these things. Is it always right? The answer is

negative at least in the non-solvable case of equations (2.4), and even if they are solvable, it

can be used only to characterize those of coherent behaviors of things in S, not the individual

such as those of discussions on multiverse of particles in [15] and [16]. Then, what is its basis in

philosophy? It results deeply in an assumption on things, i.e., the behavior of things discussed is

always consistent, i.e., the system (2.4) is solvable. If it holds, the behavior of these things then

can be completely characterized by the intersection
n⋂
i=1

SFi , i.e., the solution of system (2.4).

However, this is a wrong understanding on things because all things are in contradiction in the

nature even for human ourselves, and further on different species. This fact also concludes that

characterizing things by solvable system (2.4) of equations is only part, not the global, and with

no conclusion if it is non-solvable in classical meaning.

Philosophically, things T1, T2, · · · , Tn consist of a group, or a union set
n⋃
i=1

Ti, and if Ti

is characterized by the ith equation in (2.4), they are geometrically equivalent to the union
n⋃
i=1

SFi , i.e., a Smarandache multispace, not the intersection
n⋂
i=1

SFi .

For example, if things T1, T2, T3, T4 and T ′1, T
′
2, T

′
3, T

′
4 are respectively characterized by

systems of equations following

(LESN4 )





x+ y = 1

x+ y = −1

x− y = −1

x− y = 1

(LESS4 )





x = y

x+ y = 2

x = 1

y = 1

then it is clear that (LESN4 ) is non-solvable because x+ y = −1 is contradictious to x+ y = 1,
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and so that for equations x − y = −1 and x − y = 1, i.e., there are no solutions x0, y0 hold

with this system. But (LESS4 ) is solvable with x = 1 and y = 1. Can we conclude that

things T ′1, T
′
2, T

′
3, T

′
4 are x = 1, y = 1 and T1, T2, T3, T4 are nothing? Certainly not because

(x, y) = (1, 1) is the intersection of straight line behavior of things T ′1, T
′
2, T

′
3, T

′
4 and there are

no intersection of T1, T2, T3, T4 in plane R
2. However, they are indeed exist in R

2 such as those

shown in Fig.6.

-6
O

x

y

x+ y = 1

x+ y = −1x− y = 1

x− y = −1

A

B

C

D -
6

x

y

x = yx = 1

y = 1
P

x+ y = 2

O

(LESN4 ) (LESS4 )

Fig.6

Denoted by the point set

La,b,c = {(x, y)|ax+ by = c, ab 6= 0}

in R2. Then, we are easily know the straight line behaviors of T1, T2, T3, T4 and T ′1, T
′
2, T

′
3, T

′
4 are

nothings else but the unions L1,−1,0

⋃
L1,1,2

⋃
L1,0,1

⋃
L0,1,1 and L1,1,1

⋃
L1,1,−1

⋃
L1,−1,−1

⋃
L1,−1,1,

respectively.

Definition 2.2 A ∨-solution, also called G-solution of system (2.4) is a labeling graph GL

defined by

V (G) = {SFi , 1 ≤ i ≤ n};

E(G) =
{
(SFi , SFj ) if SFi

⋂
SFj 6= ∅ for integers 1 ≤ i, j ≤ n

}
with a labeling

L : SFi → SFi , (SFi , SFj )→ SFi
⋂
SFj .

Example 2.3 The ∨-solutions of (LESN4 ) and (LESS4 ) are respectively labeling graphs CL4
and KL

4 shown in Fig.7 following.
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P P
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Fig.7

Theorem 2.4 A system (2.4) of equations is ∨-solvable if Fi ∈ C1 and Fi|(x0
1,x

0
2,··· ,x

0
n) = 0 but

∂Fi
∂xi

∣∣∣∣
(x0

1,x
0
2,··· ,x

0
n)

6= 0 for any integer i, 1 ≤ i ≤ n.

Proof Applying the implicity function theorem, the proof is completed by definition. 2
Theorem 2.5 A system (1.1) of differential equations on food web

−→
GL is uniquely ∨-solvable

if fij , f
′
ij ∈ C

1 for integers 1 ≤ i, j ≤ n and (x1(0), x2(0), · · · , xn(0)) = (x0
1, x

0
2, · · · , x0

n) ∈ R
n.

Proof Applying the existence and uniqueness theorem on the Cauchy problem of differential

equations,

ẋi = xi


 ∑

vk∈N−(vi)

f ′k1(xk, xi)−
∑

vl∈N+(vi)

f1l(xi, xl)




with (x1(0), x2(0), · · · , xn(0)) = (x0
1, x

0
2, · · · , x0

n) ∈ R
n, it is uniquely solvable for any integer

1 ≤ i ≤ n. Consequently, the system (1.1) is uniquely ∨-solvable in Rn by definition. 2
2.3 Equilibrium Sets of Linear Equations

Certainly, the Lotka-Volterra model on biological 2-system is a system of linear growth rates.

Generally, if all fij , f
′
ij are linear for integers 1 ≤ i, j ≤ n, then it is a generalization of Lotka-

Volterra model on biological n-system. We can further characterize the equilibrium sets of

linear system (2.4) by linear algebra.

Definition 2.6 For any positive integers i, j, i 6= j, the linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

are called parallel if there exists a constant c such that

c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain 6= bj/bi.
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The following criterion is known in [8].

Theorem 2.7([8]) For any integers i, j, i 6= j, the linear equation system





ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

is non-solvable if and only if they are parallel.

By Theorem 2.7, we divide all linear equations Li, 1 ≤ i ≤ n in (2.4) into parallel families

C1,C2, · · · ,Cs

by the property that all equations in a family Ci are parallel and there are no other equations

parallel to equations in Ci for integers 1 ≤ i ≤ s. Denoted by |Ci| = ni, 1 ≤ i ≤ s. Then we

can characterize equilibrium sets of linear system (2.1) by Theorem 2.6 in [8] following.

Theorem 2.8([8]) The equilibrium sets of system (2.1) with linear growth rates fij , f
′
ij , 1 ≤

i, j ≤ n can be classified into 3 classes following:

(LC1) there is only point (0, 0, · · · , 0) ∈ Rn holding with linear system (2.1), i.e., its

∨-solution

GL ≃ KL
n1,n2,··· ,ns

with n1+n+2+ · · ·+ns = n, where ni = |Ci| and Ci is the parallel family for integers 1 ≤ i ≤ s,
s ≥ 2.

(LC2) there is only point (0, · · · , 0, c1, 0, · · · , 0, c2, 0, · · · , 0, cn−l, 0, · · · , 0) ∈ Rn holding

system (2.1) with numbers c1, c2, · · · , cn−l > 0 respectively on columns i1, i2, · · · , in−l for 1 ≤
l < n, i.e., its ∨-solution

GL ≃ KL
n1,n2,··· ,nt

with n1 +n+2+ · · ·+nt = l, where ni = |Ci| and Ci is the parallel family for integers 1 ≤ i ≤ t,
s ≥ 2.

(LC3) there is an unique point (c1, c2, · · · , cn) ∈ Rn holding linear system (2.1) with

constant ci > 0 for integers 1 ≤ i ≤ n.

§3. Biology over Equations

Classically, a solvable system (1.1) of differential equations characterizes dynamical behaviors

of a food web in area. However, the solvable systems are individual but non-solvable systems

are universal. Then what about biology over those of non-solvable systems (1.1)? Are there no

biological significance? The answer is negative.

Firstly, let us think about a food web how to run. Certainly, a food chain only follows a

direct, linear pathway of one animal at a time, and different thing T has his own food chain

for living, even for the same kind of things. For example, the eagle can lives respectively on
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the rabbit, on the snake or on the both via its food chains snake→eagle or rabbit→eagle with

interactions in Fig.1, i.e., although the eagle preys on the snake and the rabbit but it is also

dependent on the 2 populations such as those shown in Fig.8, and its living web should be con-

sisted of circuits eagle→snake→eagle, eagle→rabbit→eagle or eagle→snake and rabbit→eagle,

Eulerian subgraphs.

Eagle

Snake Rabbit

* � jY
Fig.8

Generally, a predator P preys on a living thing T , i.e., P action on T and there are also T

reacts on P at the same time, which implies the interaction between living things, the in and

out action exist together. We therefore know a biological fact following.

Fact 3.1 A living thing must live in an Eulerian subgraph of bi-digraph of a food web
−→
GL.

The following result characterizes action flows on Eulerian subgraphs with that of solvable

subsystems of equations (1.1).

Theorem 3.2 Let
−→
GL be a food web with solvable or non-solvable conservative equations (1.1)

on initial value (x1(0), x2(0), · · · , xn(0)) = (x0
1, x

0
2, · · · , x0

n) and
−→
HL ≺

(−→
GL

⋃←−
G
)L̂

, a food web

containing species T with solvable conservation equations

ẋi0 = xi0


 ∑

vk∈N−(vi0)

f ′ki0 (xk, xi0 )−
∑

vl∈N+(vi0 )

fi0l(xi0 , xl)


 , 1 ≤ i0 ≤ |H | (3.2)

in
−→
HL where L(vi0) = ẋi0 . Then

−→
H is an Eulerian digraph and HL is an action flow.

Proof If
−→
HL is a food web, by Fact 3.1

−→
H must be an Eulerian digraph.

Now let xi0 = f(x1, x2, · · · , xn), 1 ≤ i ≤ |H | be the solution of (2.5). Notice that in

solution xi0 , xi can be any chosen constant c, particularly, xi = 0 if i 6∈ {i0, 1 ≤ i ≤ |H |} in

(3.2), i.e.,

xi0 = f(0, · · · , 0, x10 , 0, · · · , 0, x20 , 0, · · · , 0, xn, 0 · · · , 0), 1 ≤ i ≤ |H |

is also the solution of (2.5) with fik(xi, xk) = 0, f ′ki(xk, xi) = 0, which implies that
−→
HL is an

action flow with conservation laws at each vertex. 2
Let
−→
H 1,
−→
H 2, · · · ,

−→
H s be subgraphs of digraph

−→
G with

−→
H i 6=

−→
H j
−→
H i

⋂−→
H j = ∅ or 6= ∅

for integers 1 ≤6= j ≤ s. If
−→
G =

s⋃
i=1

−→
H i, they are called a subgraph multi-decomposition of
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−→
G . Furthermore, if each

−→
H i is Eulearian, such a decomposition is called an Eulerian multi-

decomposition, denoted by
−→
G =

s⊕
i=1

−→
H i. For example, an Eulerian multi-decomposition of the

graph on the left is shown on the right in Fig.9.

?Y3I: s�v1

v2

v3

v4 v5
?3k ?3Y ?3}v1

v2

v1

v2

v1

v2

v3 v4 v5
⊕ ⊕

Fig.9

Particularly, if E
(−→
H i

)⋂
E
(−→
H j

)
= ∅ for integers 1 ≤ i 6= j ≤ s, such a decomposition on

−→
G

is called an Eulearian decomposition of
−→
G .

The next result characterizes food webs by Eulerian multi-decomposition.

Theorem 3.3 If there are Eulerian subgraphs
−→
HL
i , 1 ≤ i ≤ s with solvable conservative

equations, i.e., food webs such that
−→
G L̂ =

s⊕
i=1

−→
HL
i with

L̂ : v →
l∑

i=1

ẋvi , ∀v ∈ V (
−→
G)

if v ∈
l⋂

i0=1

V (
−→
H i0) with L(v) = ẋvi in

−→
HL
i0

and

L̂ : (u, v)→
(

s∑

l=1

F ′il(u→ v), (x, y),

s∑

l=1

Fil(v → u)

)
, ∀(u, v) ∈ E(

−→
GL)

if (u, v) ∈
s⋂

j0=1

E(
−→
H j0), then

−→
G L̂ is also a food web, i.e., an action flow.

Proof Clearly,
−→
G L̂ is a labeling graph holding with conservative law on each vertex v ∈

V (
−→
GL), i.e., an action flow. 2

§4. Global Stability and Extinction

In biology, the generation is the necessary condition for the continuation of species in a food

web constraint on the interaction, i.e., the stability in dynamics with small perturbations on

initial values. Usually, the dynamical behavior is characterized by differential equations, which

maybe solvable or not and can not immediately apply to the stability of food web
−→
GL for n ≥ 3

by Theorems 3.2 and 3.3. Generalizing the classical stability enables one to define the stability

of food web following.
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Definition 4.1 A food web
−→
GL with initial value

−→
GL0 , where L(v) = ẋv, L0(v) = ẋ0

v for

v ∈ V (
−→
GL) is globally stable or asymptotically stable for any initial value

−→
GL′

0 , where L′0(v) = ẏ0
v

for v ∈ V (
−→
GL) and a number εv > 0, there is always a number δv > 0 such that if |y0

v−x0
v| < δv

exists for all t ≥ 0, then

|yv(t)− xv(t)| < εv, ∀v ∈ V (
−→
GL),

or furthermore,

lim
t→0
|yv(t)− xv(t)| = 0, ∀v ∈ V (

−→
GL).

Certainly, we need new criterions on the classic for discussing the stability of species in

biology.

Theorem 4.2 A food web
−→
GL with initial value

−→
GL0 is globally stable or asymptotically stable

if and only if there is an Eulerian multi-decomposition

(−→
G
⋃←−

G
)L̂

=

s⊕

i=1

−→
HL
i

with solvable stable or asymptotically stable conservative equations on labeling Eulerian sub-

graphs
−→
HL
i for integers 1 ≤ i ≤ s.

Proof The necessary is obvious because if
−→
GL with initial value

−→
GL0 is globally stable or

asymptotically stable, then
(−→
G
⋃←−
G
)L̂

is Eulerian itself by Fact 3.1.

Now if there is an Eulerian multi-decomposition

(−→
G
⋃←−

G
)L̂

=

s⊕

i=1

−→
HL
i

on labeling bi-digraph
(−→
G
⋃←−
G
)L̂

with stable or asymptotically stable conservative equations

on labeling Eulerian subgraphs
−→
HL
i , i.e., for any number εv > 0, there is a number δv > 0 such

that if |y0
v − x0

v| < δv exists for all t ≥ 0, then

|yv(t)− xv(t)| < εv, ∀v ∈ V (
−→
HL
i ),

or furthermore,

lim
t→0
|yv(t)− xv(t)| = 0, ∀v ∈ V (

−→
HL
i )

for integers 1 ≤ i ≤ s, let λv be the multiple of vertex v ∈ V (
−→
GL) appeared in subgraphs−→

HL
i , 1 ≤ i ≤ s, we then know that

|yv(t)− xv(t)| < εiv

for v ∈ V (
−→
HL
i ) if |y0

v − x0
v| < δiv for integers 1 ≤ i ≤ λv.
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Define

δv = min{δiv, 1 ≤ i ≤ λv} and εv = max{εiv, 1 ≤ i ≤ λv}.

We therefore know that

|yv(t)− xv(t)| < εv,

i.e., the species on vertex v is stable if the conservative equations of
−→
HL
i are stable for integers

1 ≤ i ≤ λv and
−→
GL is globally stable.

Now if furthermore, xv is asymptotically stable, i.e.,

lim
t→0
|yv(t)− xv(t)| = 0

in food web
−→
HL
i , 1 ≤ i ≤ λv, it is clear that

lim
t→0
|yv(t)− xv(t)| = 0

in
−→
GL also, i.e.,

−→
GL is globally asymptotically stable. This completes the proof. 2

Corollary 4.3 A food web
−→
GL with initial value

−→
GL0 is globally stable or asymptotically stable

if there is an Eulerian decomposition

(−→
G
⋃←−

G
)L̂

=

s⊕

i=1

−→
HL
i

with solvable stable or asymptotically stable conservative equations on labeling Eulerian sub-

graphs
−→
HL
i for integers 1 ≤ i ≤ s.

Clearly, the bi-digraph
−→
G
⋃←−
G has an Eulerian decomposition, called parallel decomposition

−→
G
⋃←−

G =
⊕

(u,v)∈E(
−→
G)

(
(u, v)

⋃
(v, u)

)
.

We get the next conclusion.

Corollary 4.4 A food web
−→
GL with initial value

−→
GL0 is globally stable or asymptotically

stable if it is parallel stable or asymptotically stable, i.e., ((u, v)
⋃

(v, u))L̂ is an action flow for

∀(u, v) ∈ E(
−→
GL).

For an equilibrium point
−→
GL0 of (2.1), we can also linearize F (v, u), F ′(v, u) at (x0, y0)

for ∀(v, u) ∈ E(
−→
GL) and know the stable behavior of

−→
GL in neighborhood of

−→
GL0 by applying

the following well-known result.

Theorem 4.5([3]) If an n-dimensional system Ẋ = F (X) has an equilibrium point X0 that is

hyperbolic, i.e., all of the eigenvalues of DFX0 have nonzero real parts, then the nonlinear flow

is conjugate to the flow of the linearized system in a neighborhood of X0.
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The next result on the stability of food webs is an immediate application of Theorem 4.5.

Theorem 4.6 A food web
−→
GL with initial value

−→
GL0 is globally asymptotically stable if there

is an Eulerian multi-decomposition

(−→
G
⋃←−

G
)L̂

=

s⊕

k=1

−→
HL
k

with solvable conservative equations such that Reλi < 0 for characteristic roots λi of Av in the

linearization AvXv = 0hv×hv of conservative equations at an equilibrium point
−→
HL0

k in
−→
HL
k for

integers 1 ≤ i ≤ hv and v ∈ V (
−→
HL
k ), where V (

−→
HL
k ) = {v1, v2, · · · , vhv},

Av =




av11 av12 · · · av1hv

av21 av22 · · · av2hv

avh1 avh2 · · · avhhv




a constant matrix and Xk = (xv1 , xv2 , · · · , xvhv )T for integers 1 ≤ k ≤ l.

Proof Applying the theory of linear ordinary differential equations, we are easily know the

species

xv(t) =

hv∑

i=1

ciβi(t)e
λit,

where, ci is a constant, βi(t) is an hv-dimensional vector consisting of polynomials in t deter-

mined as follows

β1(t) =




t11

t21

· · ·
thv1



, β2(t) =




t11t+ t12

t21t+ t22

· · · · · · · · ·
tn1t+ thv2



,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

βk1(t) =




t11
(k1−1)! t

k1−1 + t12
(k1−2)! t

k1−2 + · · ·+ t1k1
t21

(k1−1)! t
k1−1 + t22

(k1−2)! t
k1−2 + · · ·+ t2k1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
thv1

(k1−1)! t
k1−1 +

thv2

(k1−2)! t
k1−2 + · · ·+ thvk1



,

βk1+1(t) =




t1(k1+1)

t2(k1+1)

· · · · · ·
thv(k1+1)



, βk1+2(t) =




t11t+ t12

t21t+ t22

· · · · · · · · ·
tn1t+ thv2



,
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

βhv(t) =




t1(hv−ks+1)

(ks−1)! tks−1 +
t1(hv−ks+2)

(ks−2)! tks−2 + · · ·+ t1hv
t2(hv−ks+1)

(ks−1)! tks−1 +
t2(hv−ks+2)

(ks−2)! tks−2 + · · ·+ t2hv

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
thv(hv−ks+1)

(ks−1)! tks−1 +
thv (hv−ks+2)

(ks−2)! tks−2 + · · ·+ thvhv




with each tij a real number for 1 ≤ i, j ≤ hv such that det([tij ]hv×hv ) 6= 0,

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;
λs, if k1 + k2 + · · ·+ ks−1 + 1 ≤ i ≤ hv.

If Reλi < 0 for integers 1 ≤ i ≤ hv, it is clear that

lim
t→∞

xv(t) = 0

for vertex v ∈ E(
−→
HL
k ), i.e., each linearized conservative equation AvXv = 0hv×hv is stable

for 1 ≤ k ≤ s. Applying Theorems 4.2 and 4.5, we therefore know that
−→
GL is globally

asymptotically stable. 2
Comparatively, we also get the next conclusion on the unstable of a species by Theorem

4.2 following.

Corollary 4.7 A species T is unstable in a food web
−→
GL with initial value

−→
GL0 if and only if

the subgraph containing T in all Eulerian multi-decompositions

(−→
G
⋃←−

G
)L̂

=

s⊕

i=1

−→
HL
i

of
−→
GL is unstable.

A unstable behavior of species T will causes the redistribution of flows and makes for a

stable situation on the food web
−→
GL. If it established, the food web works in order again.

Otherwise, a few species will evolve finally to extinction, i.e., ceases to exist in that area. If all

species in a food web
−→
GL vanished on that area, there must be a series of species x1, x2, · · · , xs

successively died out on the time, the stability of the web is repeatedly broken, established and

broken, and finally, all species become extinct. In this case there must be vertices v1, v2, · · · , vs ∈
V (
−→
GL) and a series of action flows

−→
GL → −→GL − v1 →

(−→
GL − v1

)
− v2 → · · · →

−→
GL − {v1, v2, · · · , vs}

such that there are no flows in
−→
GL − {v1, v2, · · · , vs}, i.e.,

−→
GL − {v1, v2, · · · , vs} ≃ K l, where
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l = |−→G | − s.
Notice that if species x is extinct, there must be lim

t→+∞
x(t) = 0. Let f(t) be a differentiable

function on populations of a species x. If f(t) = O(t−α), α > 1, i.e., there are constants A > 0

such that |f(t)| ≤ At−α holds with t ∈ (0,+∞), then f is said to be α-declined and x a species

extinct in rate α. Furthermore, if f(t) = O(e−βt) for β > 0, because

eβt = 1 + βt+
β2

2!
t2 + · · ·+ βn

n!
tn + · · · ,

we are easily know that there is a constant A > 0 such that |f(t)| ≤ Atn for any integer n ≥ 1.

In this case, f is said to be ∞-declined and x a species extinct in rate ∞.

The results following characterize the extinct behavior of species in a food web.

Theorem 4.8 Let
−→
GL be a food web hold with labeling L : vi → ẋi on vertices vi, L : (vi, vj)→

{Fij , (xi, xj), F ′ij} on edges for integers 1 ≤ i, j ≤ n, V ⊂ V (
−→
GL). If

V (t) =
∑

v∈V


 ∑

v′∈N−(v)

F ′v′v(v
′ → v)−

∑

v′∈N+(v)

Fvv′ (v → v′)




is α-decline, then all species X =
∑
v∈V

xv in V is extinct in at least rates α− 1 and particularly,

if V = {v}, the species xv is extinct in at least rates α− 1 on t.

Proof Notice that the conservative equation at vertex v ∈ V is

ẋv =
∑

v′∈N−(v)

F ′v′v(xv′ → xv)−
∑

v′∈N+(v)

Fvv′ (xv → xv′ )

and

Ẋ =

d

( ∑
v∈V

xv

)

dt
=

∑

v∈V

ẋv

=
∑

v∈V


 ∑

v′∈N−(v)

F ′v′v(v
′ → v)−

∑

v′∈N+(v)

Fvv′(v → v′)


 .

Now, if V (t) is α-declined, there must be constant A > 0 such that

−A
tα
≤ Ẋ =

∑

v∈V


 ∑

v′∈N−(v)

F ′v′v(v
′ → v)−

∑

v′∈N+(v)

Fvv′ (v → v′)


 = V (t) ≤ A

tα
.

Consequently,

|X | ≤
+∞∫

0

A

tα
dt = A

+∞∫

0

1

tα
dt =

A

(α− 1)tα−1
= O(t−α+1).
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Therefore, all species X in V is extinct in at least rates α − 1 on t, and particularly, it

holds with the case of V = {v}. 2
Theorem 4.9 Let

−→
GL be a food web hold with labeling L : vi → ẋi on vertices vi, L : (vi, vj)→

{Fij , (xi, xj), F ′ij} on edges for integers 1 ≤ i, j ≤ n, and V ⊂ V (
−→
GL) a cut set with components

C1, C2, · · · , Cl in
−→
GL \ V , where l ≥ 2. If

fv(t) =
∑

v′∈N−(v)

F ′v′v(v
′ → v)−

∑

v′∈N+(v)

Fvv′ (v → v′)

is αv-declined for ∀v ∈ V with α = min
v∈V

αv, then

(1)
−→
GL turns to l food webs

−→
C L

1 ,
−→
C L

2 , · · · ,
−→
C L
l finally;

(2) the species XV =
∑
v∈V

xv, particularly, xv is extinct in at least rates α − 1 on t for

∀v ∈ V .

Proof Applying Theorem 4.8, all species X in V is extinct in at least rates α− 1 on t, and

finally, extinction if t → ∞. In this case, there are only left components C1, C2, · · · , Cl, and

each of them is a food web because if xv = 0, there must be F (v → u) = 0 and F ′(u→ v) = 0

for ∀v ∈ V and u ∈ V (
−→
GL) \ V . Therefore, the conservative laws

ẋu =
∑

v∈N−(u)

F ′vu(xu → xv)−
∑

v∈N+(u)

Fuv(xu → xv)

in
−→
GL turns to

ẋu =
∑

v∈N−(u)
⋂
V (Ci)

F ′vu(xv → xu)−
∑

v∈N+(u)
⋂
V (Ci)

Fuv(xu → xv),

i.e., it holds also with vertex u in
−→
C L
i for integers 1 ≤ i ≤ l, the assertion (1).

For (2), by the proof of Theorem 4.8 there is a number A > 0 such that

−
+∞∫

0

κ(
−→
GL)

A

tα
dt ≤ XV (t) =

∑

v∈V

xv(t) ≤
+∞∫

0

κ(
−→
GL)

A

tα
dt

by definition, where κ(
−→
GL) is the connectivity of

−→
GL. Whence, XV (t) = O(t−α+1), and

particularly, xv(t) = O(t−α+1) for v ∈ V . 2
Finally, there are indeed the case of extinction of species in rate∞. For example, the proof

of Theorem 4.6 implies the case of extinction in rate ∞ on t following.

Theorem 4.10 Let
−→
GL be food web with an Eulerian multi-decomposition

(−→
G
⋃←−

G
)L̂

=
s⊕

k=1

−→
HL
k



480 Mathematical Reality

and all conservative equations on
−→
HL
k are solvable for integers 1 ≤ k ≤ l. For a vertex v ∈

V (
−→
GL) including repeatedly in

−→
HL
i1
,
−→
HL
i2
, · · · ,−→HL

il
, if Reλi < 0 for characteristic roots λi of Ak

in the linearization

AkXk = 0hk×hk

of conservative equation at an equilibrium point
−→
HL0

k , v ∈ V (
−→
HL
k ) for integers 1 ≤ i ≤ hk, then

the species xv is simultaneously extinct in rate ∞ on time t and asymptotically stable, where

V (
−→
HL
k ) = {v1, v2, · · · , vhk}, Ak and Xk are as the same in Theorem 4.6 for integers 1 ≤ k ≤ l.

Proof By the proof of Theorem 4.6, we know that xv(t) is asymptotically stable with

xv(t) =

hk∑

i=1

ciβi(t)e
λit.

Define β = min
1≤i≤hk

λi. If λi < 0 for integers 1 ≤ i ≤ hk, then xv(t) is clearly an∞-declined

function and species xv is extinct in rate ∞ on time t. 2
§5. Algorithm

Let G = {C1,C2, · · · ,Cm} be solvable Eulerian multi-decompositions of bi-digraph (
−→
G
⋃←−
G)L̂

of a food web
−→
GL with conservation equations (1.1) solvable or not, where C1 and Cm are

respectively a parallel decomposition,
−→
GL itself of

−→
GL. Theorems 4.2 and 4.6 conclude the

following algorithm on the global stability of
−→
GL.

Algorithm 5.1 The stability of a food web
−→
GL can be determined by programming following:

STEP 1. Input Xi = Ci and i = 1, 2, · · · ,m;

STEP 2. Determine Eulerian circuits in Xi is globally stable or not;

STEP 3. If Xi is globally stable, go to STEP 6; Otherwise, go to STEP 4;

STEP 4. Replace Xi by Xi+1, return to STEP 2;

STEP 5. If Xi+1 is globally stable, go to STEP 6; Otherwise, go to STEP 4 if i < m, or

go to STEP 7 if i = m;

STEP 6.
−→
GL is globally stable, the algorithm is terminated;

STEP 7.
−→
GL is globally non-stable, the algorithm is terminated.

This algorithm certainly enables one to determine the stability of a food web
−→
GL regardless

of whether its conservation equations solvable or not, and get stability of food webs with more

species than 3 by conclusions on 2 or 3 species.

Example 5.2 Determine the stability of a biological 5-system
−→
GL shown in Fig.10,
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where, fij and f ′ij , 1 ≤ i, j ≤ 5 are defined by

f21(x2, x1) = 1− x2 − λ1x1, f ′21(x2, x1) = 1− x1 − λ2x2,

f31(x3, x1) = 1− x3 − λ1x1, f ′31(x3, x1) = 1− x1 − λ3x3,

f41(x4, x1) = 1− x4 − λ1x1, f ′41(x4, x1) = 1− x1 − λ4x4,

f51(x5, x1) = 1− x5 − λ1x1, f ′51(x5, x1) = 1− x1 − λ5x5

with conservative equations





ẋ1 = x1 (4− 4x1 − λ2x2 − λ3x3 − λ4x4 − λ5x5)

ẋ2 = −x2 (1− x2 − λ1x1)

ẋ3 = −x3 (1− x3 − λ1x1)

ẋ4 = −x4 (1− x4 − λ1x1)

ẋ5 = −x5 (1− x5 − λ1x1)

(5.1)

Let (x0
1, x

0
2, x

0
3, x

0
4, x

0
5) be an equilibrium point of (5.1). Calculation shows the linearization

of (5.1) is 



ẋ1 = Ax1 − λ2x
0
1x2 − λ3x

0
1x3 − λ4x

0
1x4 − λ5x

0
1x5

ẋ2 = λ1x
0
2x1 +

(
−1 + 2x0

2 + λ1x
0
1

)
x2

ẋ3 = λ1x
0
3x1 +

(
−1 + 2x0

3 + λ1x
0
1

)
x3

ẋ4 = λ1x
0
4x1 +

(
−1 + 2x0

4 + λ1x
0
1

)
x4

ẋ5 = λ1x
0
5x1 +

(
−1 + 2x0

5 + λ1x
0
1

)
x5

, (5.2)

where A = 4− 8x0
1 − λ2x

0
2 − λ3x

0
3 − λ4x

0
4 − λ5x

0
5.
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As usual, we can hold on the stability of system (5.2) of linear equations and then, the

stability of (5.1) by Theorem 4.6 on equilibrium points with tedious calculation. However, we

apply Algorithm 5.1 for the objective.

Notice that bi-digraph (
−→
G
⋃←−
G)L̂ of

−→
GL in Fig.11 has a parallel decomposition such as

those shown in Fig.12,

? 6 ? 6 ? 6 ? 6ẋ1 ẋ1 ẋ1 ẋ1

ẋ2 ẋ3
ẋ4 ẋ5

(x2, x1)

(x2, x1)

(x3, x1)

(x3, x1)

(x4, x1)

(x4, x1)

(x5, x1)

(x5, x1)

0

0

0

0

0

0

0

0x2f21

x1f ′
21

x3f31

x1f ′
31

x4f41

x1f ′
41

x5f51

x1f ′
51

⊕ ⊕ ⊕

Fig.12

and the conservation equations on these parallel edges are respectively





ẋ1 = x1(1− x1 − λ2x2)

ẋ2 = x2(1− x2 − λ1x1)
(5.3)





ẋ1 = x1(1− x1 − λ3x3)

ẋ3 = x3(1− x3 − λ1x1)
(5.4)





ẋ1 = x1(1− x1 − λ4x4)

ẋ4 = x4(1− x4 − λ1x1)
(5.5)
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ẋ1 = x1(1− x1 − λ5x5)

ẋ5 = x5(1− x5 − λ1x1)
(5.6)

We have known the stability of equations (5.3)-(5.6) by their linearizations following ([20]):

(1) the equilibrium point (x1, xi) = (0, 0) is unstable for equations (5.3)-(5.6), where i =

2, 3, 4, 5;

(2) the equilibrium point (x1, xi) = (1, 0) is stable if λ1 > 1 for i = 2, 3, 4, 5;

(3) the equilibrium point (x1, xi) = (0, 1) is stable if λi > 1 for equations (5.3)-(5.6), where

i = 2, 3, 4, 5;

(4) the equilibrium point

(
λi − 1

λ1λi − 1
,
λ1 − 1

λ1λi − 1

)
is asymptotically stable if λ1 > 1 and

λi > 1 for equations (5.3)-(5.6), where i = 2, 3, 4, 5.

Therefore, we know this biological 5-system is unstable on the equilibrium point (0, 0, 0, 0, 0)

but stable on the equilibrium points (0, 1, 1, 1, 1) and (1, 0, 0, 0, 0), and asymptotically stable on

the equilibrium point

(
λ− 1

λ1λ− 1
,
λ1 − 1

λ1λ− 1
,
λ1 − 1

λ1λ− 1
,
λ1 − 1

λ1λ− 1
,
λ1 − 1

λ1λ− 1

)

of system (5.1) if λ > 1 and λ1 > 1 by Theorem 4.2, where λ = λ2 = λ3 = λ4 = λ5.

§6. Conclusion

Today, we have many mathematical theories but we are still helpless on opening the mystery of

the nature as Einstein’s complaint, i.e., as far as the laws of mathematics refer to reality, they

are not certain; and as far as they are certain, they do not refer to reality because the multiple

nature, or contradiction is universal on things, particularly, living things different from rigid

bodies. Usually, we establish differential equations for characterizing things T and holds on

their behavior by solutions, which is only hold on those of coherent behaviors of things, not the

individual. Thus, we encounter non-solvable cases in biology, and even if it is solvable, finding

the exact solution is nearly impossible in most cases. In fact, the solvable equation is individual

but the non-solvable is universal for knowing the nature. This fact implies that we should also

research those of non-solvable equations for revealing reality of things in mathematics, which

finally brings about the mathematics over topological graphs, i.e., action flows, or mathematical

combinatorics, and only which is the practicable way for understanding things, particularly,

living things in the world.
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A Topological Model for Ecologically Industrial Systems

Abstract: An ecologically industrial system is such an industrial system in harmony with

its environment, especially the natural environment. The main purpose of this paper is to

show how to establish a mathematical model for such systems by combinatorics, and find

its topological characteristics, which are useful in industrial ecology and the environment

protection.

Key Words: Industrial system, ecology, Smarandache multisystem, combinatorial model,

input-output analysis, circulating economy.

AMS(2010): 91B60

§1. Introduction

Usually, the entirely life cycle of a product consists of mining, smelting, production, storage,

transporting, use and then finally go to the waste, · · · , etc.. In this process, a lot of waste gas,

water or solid waste are produced. Such as those shown in Fig.1 for a producing cell following.

produce- products-?materials

wastes

6
Fig.1

In old times, these wastes produced in industry are directly discarded to the nature without

disposal, which brings about an serious problem to human beings, i.e., environment pollution

and harmful to our survival. For minimizing the effects of these waste to our survival, the growth

of industry should be in coordinated with the nature and the 3R rule: reduces its amounts, reuses

it and furthermore, into recycling, i.e., use these waste into produce again after disposal, or let

them be the materials of other products and then reduce the total amounts of waste to our life

environment. An ecologically industrial system is such a system consisting of industrial cells in

accordance with the 3R rule by setting up one or more waste disposal centers. Such a system

is opened. Certainly, it can be transferred to a closed one by letting the environment as an

additional cell. For example, series produces such as those shown in Fig.2 following.

1International J.Math. Combin., Vol.1(2014), 109-117.
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produce1-
waste

materials produce2 produce3-?
disposal- 6-product1 product2?

.........................
..
..
..
..
..
..
..
.6 - product3

Fig.2

Generally, we can assume that there are P1, P2, · · · , Pm products (including by-products)

and W1,W2, · · · ,Ws wastes after a produce process. Some of them will be used, and some

will be the materials of another produce process. In view of cyclic economy, such an ecologi-

cally industrial system is nothing else but a Smarandachely multisystem. Furthermore, it is a

combinatorial system defined following.

Definition 1.1([1],[2] and [9]) A rule in a mathematical system (Σ;R) is said to be Smaran-

dachely denied if it behaves in at least two different ways within the same set Σ, i.e., validated

and invalided, or only invalided but in multiple distinct ways.

A Smarandachely system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Definition 1.2([1],[2] and [9]) For an integer m ≥ 2, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be

m mathematical systems different two by two. A Smarandache multispace is a pair (Σ̃; R̃) with

Σ̃ =

m⋃

i=1

Σi, and R̃ =

m⋃

i=1

Ri.

Definition 1.3([1],[2] and [9]) A combinatorial system CG is a union of mathematical systems

(Σ1;R1),(Σ2;R2), · · · , (Σm;Rm) for an integer m, i.e.,

CG = (

m⋃

i=1

Σi;

m⋃

i=1

Ri)

with an underlying connected graph structure G, where

V (G) = {Σ1,Σ2, · · · ,Σm},
E(G) = { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.

The main purpose of this paper is to show how to establish a mathematical model for

such systems by combinatorics, and find its topological characteristics with label equations. In

fact, such a system of equations is non-solvable. As we discussed in references [3]-[8], such a

non-solvable system of equations has significance also for things in our world and its global

behavior can be handed by its G-solutions, where G is a topological graph inherited by this

non-solvable system.
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§2. A Generalization of Input-Output Analysis

The 3R rule on an ecologically industrial system implies that such a system is optimal both in

its economical and environmental results.

2.1 An Input-Output Model

The input-output model is a linear model in macro-economic analysis, established by a economist

Leontief as follows, who won the Nobel economic prize in 1973.

Assume these are n departments D1, D2, · · · , Dn in a macro-economic system L satisfy

conditions following:

(1) The total output value of department Di is xi. Among them, there are xij output

values for the department Dj and di for the social demand, such as those shown in Fig.1.

(2) A unit output value of department Dj consumes tij input values coming from depart-

ment Di. Such numbers tij , 1 ≤ i, j ≤ n are called consuming coefficients.

Di

D1>*
-

D2

Dn

xi1

xi2

xin

Social
Demand6
di

Fig.3

Therefore, such an overall balance macro-economic system L satisfies n linear equations

xi =
n∑

j=1

xij + di (1)

for integers 1 ≤ i ≤ n. Furthermore, substitute tij = xij/xj into equation (10-1), we get that

xi =

n∑

j=1

tijxj + di (2)

for any integer i. Let T = [tij ]n×n, A = In×n − T . Then

Ax = d, (3)

from (2), where x = (x1, x2, · · · , xn)T , d = (d1, d2, · · · , dn)T are the output vector or demand
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vectors, respectively.

For example, let L consists of 3 departments D1, D2, D3, where D1=agriculture, D2=

manufacture industry, D3=service with an input-output data in Table 1.

Department D1 D2 D3 Social demand Total value

D1 15 20 30 35 100

D2 30 10 45 115 200

D3 20 60 / 70 150

Table 1

This table can be turned to a consuming coefficient table by tij = xij/xj following.

Department D1 D2 D3

D1 0.15 0.10 0.20

D2 0.30 0.05 0.30

D3 0.20 0.30 0.00

Table 2

Thus

T =




0.15 0.10 0.20

0.30 0.05 0.30

0.20 0.30 0.00


 , A = I3×3 −T =




0.85 −0.10 −0.20

−0.30 0.95 −0.30

−0.20 −0.30 1.00




and the input-output equation system is





0.85x1 − 0.10x2 − 0.20x3 = d1

−0.30x1 + 0.95x2 − 0.30x3 = d2

−0.20x1 − 0.30x2 + x− 3 = d3

Solving this linear system of equations enables one to find the input and output data for

economy management.

2.2 A Generalized Input-Output Model

Notice that our WORLD is not linear in general, i.e., the assumption tij = xij/xj does not hold

in general. A non-linear input-output model is shown in Fig.3, where x = (x1i, x2i, · · · , xni),
D1, D2, · · · , Dn are n departments, SD=social demand. Usually, the function F (x) is called

the producing function.



490 Mathematical Reality

Fi(x)

D1

D2

Dn

6?-x1i

x2i

xni

D1

D2

Dn

--
-

xi1

xi2

xin

SD6
di

Fig.3

In this case, an overall balance input-output model is characterized by equations

Fi(x) =

n∑

j=1

xij + di (4)

for integers 1 ≤ i ≤ n, where Fi(x) may be linear or non-linear and determined by a system of

equations such as those of ordinary differential equations

1 ≤ i ≤ n





F
(n)
i + a1F

(n−1)
i + · · ·+ an−1Fi + an = 0

Fi|t=0 = ϕ0, F
(1)
i

∣∣∣
t=0

= ϕ1, · · · , F (n−1)
i

∣∣∣
t=0

= ϕn−1

(OESn)

or

1 ≤ i ≤ n





∂Fi
∂t

= H1(t, x1, · · · , xn−1, p1, · · · , pn−1)

Fi|t=t0 = ϕ0(x1, x2, · · · , xn−1)
, (PES1)

which can be solved by classical mathematics. However, the input-output model with its gener-

alized only consider the consuming and producing, neglected the waste and its affection to our

environment. So it can be not immediately applied to ecologically industrial systems. However,

we can generalize such a system for this objective by introducing environment factors, which

are discussed in the next section.

$3. A Topological Model for Ecologically Industrial Systems

The essence of input-output model is in the output is equal to the input, i.e., a simple case of the

law of conservation of mass: a matter can be changed from one form into another, mixtures

can be separated or made, and pure substances can be decomposed, but the total amount of
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mass remains constant. Applying this law, it needs the environment as an additional cell for

ecologically industrial systems and replaces the departments Di, 1 ≤ i ≤ n by input materials

Mi, 1 ≤ i ≤ n or products Pk, 1 ≤ k ≤ m, and SD by Wi, 1 ≤ i ≤ s = wastes, such as those

shown in Fig.4 following.

Fi(x)

M1

M2

Mn

6?-x1i

x2i

xni

P1

P2

Pm

--
-

xi1

xi2

xin

W1 W2 Ws

? ? ?
Fig.4

In this case, the balance input-output model is characterized by equations

Fi(x) =

n∑

j=1

xij −
s∑

i=1

Wi (5)

for integers 1 ≤ i ≤ n. We construct a topological graphs following.

Construction 3.1 Let J (t) be an ecologically industrial system consisting of cells C1(t), C2(t),

· · · , Cl(t), R the environment of J . Define a topological graph G[J ] of J following:

V (G[J ]) = {C1(t), C2(t), · · · , Cl(t), R};
E(G[J ]) = {(Ci(t), Cj(t)) if there is an input from Ci(t) to Cj(t), 1 ≤ i, j ≤ l}

⋃
{(Ci(t), R) if there are wastes from Ci(t) to R, 1 ≤ i ≤ l}.

Clearly, G[J ] is an inherited graph for an ecologically industrial system J . By the

3R rule, any producing process Xi1 of an ecologically industrial system is on a directed cycle−→
C = (Xi1 , Xi2 , · · · , Xik), where Xij ∈ {Ci, 1 ≤ j ≤ l;R}, such as those shown in Fig.5.
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-/ oXi1(t)

Xi2(t) Xik(t)

Fig.5

Such structure of cycles naturally determined the topological structure of an ecologically indus-

trial system following.

Theorem 3.2 Let J (t) be an ecologically industrial system consisting of producing cells

C1(t), C2(t), · · · , Cl(t) underlying a graph G [J (t)]. Then there is a cycle-decomposition

G [J (t)] =

t⋃

i=1

−→
C ki

for the directed graph G [J (t)] such that each producing process Ci(t), 1 ≤ i ≤ l is on a directed

circuit
−→
C ki for an integer 1 ≤ i ≤ t. Particularly, G [J (t)] is 2-edge connectness.

Proof By definition, each producing process Ci(t) is on a directed cycle, which enables us

to get a cycle-decomposition

GG [J (t)] =
t⋃

i=1

−→
C ki . 2

Thus, any ecologically industrial system underlying a topological 2-edge connect graph

with vertices consisting of these producing process. Whence, we can always call G-system for

an ecologically industrial system. Clearly, the global effects of G1-system and G2-system are

different if G1 6≃ G2 by definition. Certainly, we can also characterize these G-systems with

graphs by equations (5) following.

Theorem 3.3 Let a G-system consist of producing cells C1(t), C2(t), · · · , Cl(t) underlying a

graph G [J (t)]. Then

Fv(xuv, u ∈ N−G[J (t)](v)) =
∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)xvw

with δ(v, w) = 1 if xvw=product, and −1 if xvw=waste, where N−G[J (t)], N
+
G[J (t)] are the in or

our-neighborhoods of vertex v in G [J (t)].

Notice that the system of equations in Theorem 3.3 is non-solvable in R∆+1 with ∆ the

maximum valency of vertices in G [J (t)]. However, we can also find its G [J (t)]-solution in



5.5 A Topological Model for Ecologically Industrial Systems 493

R∆+1 (See [4]-[6] for details), which can be also applied for holding the global behavior of such

G-systems. Such a G [J (t)]-solution is not constant for ∀e ∈ E(G [J (t)]). For example, let a

G-system with G=circuit be shown in Fig.4.> - ~6=�} xv1

xv2

xv3

xv4

xv5

xv6

C6

v1 v2

v3

v4v5

v6

Fig.5

Then there are no wastes to environment with equations

Fv(xvi) = xvi+1 , 1 ≤ i ≤ 6, where i mod6, i.e.,

FviFvi+1 · · ·Fvi+6 = 1 for any integer 1 ≤ i ≤ 6.

If Fvi is given, then solutions xvi , 1 ≤ i ≤ 6 dependent on an initial value, for example,

xv1 |t=0, i.e., one needs the choice criterions for determining the initial values xvi |t=0. Notice

that an industrial system should harmonizes with its environment. The only criterion for its

choice must be

Optimal in economy with minimum affection to the environment, or approximately, maxi-

mum output with minimum input.

According to this criterion, there are 2 types of G-systems approximating to an ecologically

industrial system:

(1) Optimal in economy with all inputs (wastes) Wr1 ,Wr2 , · · · ,Wrs licenced to R;

(2) Minimal wastes to the environment, i.e., minimal used materials but supporting the

survival of human beings.

For a G-system, let

c−v =
∑

uıN−
G[J (t)]

(v)

c(xuv) and c+v =
∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)c(xvw)

be respectively the producing costs and product income at vertex v ∈ V (G). Then the optimal

function is
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Λ(G) =
∑

v∈V (G)

(
c+v − c−v

)

=
∑

v∈V (G)




∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)c(xvw)−
∑

uıN−
G[J (t)]

(v)

c(xuv)


 .

Then, a G-system of Types 1 is a mathematical programming

max
∑

v∈V (G)

Λ(G) but
∑

v∈V (G)

Wri ≤WU
ri ,

where WU
ri is the permitted value for waste Wri to the nature for integers 1 ≤ i ≤ s. Similarly,

a G-system of Types 2 is a mathematical programming

min
∑

v∈V (G)

Wri but all prodcuts P ≥ PL,

where PL is the minimum needs of product P in an area or a country. Particularly, if WU
ri = 0,

i.e., an ecologically industrial system, such a system can be also characterized by a non-solvable

system of equations

Fv(xuv, u ∈ N−G[J (t)](v)) =
∑

w∈N+
G[J (t)]

(v)

xvw for ∀v ∈ V (G).
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conservative family 305

continuity flow 9, 340

complex flow 10

combinatorially homeomorphic 41

combinatorially isometric 42−→
G -flow 10

differential operators 67

inner product 81

integral operators 67

norm product 81

continuous operator 82, 317, 341

contradiction 231

contractor 316, 342

curvature form 416

curvature tensor 445

D

d-dimensional connected 403

d-dimensional graph 404

differentiable combinatorial manifold 405, 442

differentiable non-manifold 132

differentiable principal fiber bundle 413
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differentially contradictory 201, 242, 293

differential flow 25

differential operator on
−→
G -flow 319

Dirac equation 76

E

ecologically industrial system 248, 337, 486

energy-index 222

Einstein’s gravitational equations 139, 247,

264, 391

equation’s combinatorics 127, 290

equilibrium point 216

equilibrium set 466

Everett’s multiverse 26

Euclidean space labeling 372

Eulerian circuit 465

Eulerian multi-decomposition 72

exact labeling 371

F

Finsler manifold 263

field’s combinatorics 296

food chain 461

G

Gauss mapping 257

Gauss-Bonnet theorem 257

Gaussian curvature 257

generalized fundamental theorem in algebra 331

generalized input-output model 489

generalized principle of covariance 297

G-energy 220

geometrical combinatorics 279
−→
G -flow solutions of equation 322
−→
G -flow spaces 79, 307

geometrical G-system 135

global stability of linear equations 173

global stability of G-solution 214, 388

global stability of non-linear equations 178

graph phase 265

G-solution of system 8, 62, 121, 170, 213, 469

−→
G -synchronized 17

gauge field 416

gauge invariant principle 417

H

Hilbert flow space 12, 347

homology group 404

I

in-observation 99

input-output system 336

input-output model 488

instable engineering structure 192

integral labeled graph 171, 244, 292

integral operator on
−→
G -flow 319

K

Kolmogorov model 463

L

labeled graph 60

Lagrange function 34

L’Hospital’s rule on continuity flow 356

Liapunov sum-function 182

Liapunov prod-function 182

lifting of voltage graph 411

linear
−→
G -flow 312

linear operator 81, 317, 341

linear space labeling 371

Lotka-Volterra model 462

M

map geometry without boundary 261

map geometry with boundary 261

mathematical non-system 111

mathematics over graph 63

metric pseudo-space 262

multi-algebra system 258

multigroup 258

multifiled 259
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multi-metric space 260

multiring 259

multi-time system 454

multi-vector space 259

multiverses on equation 68

N

n-dimensional graph 281

non-algebraic system 112

non-group 113

non-manifold 130

non-ring 116

non-solvable partial differential equation 197

non-space 129

norm-stable 43

O

ordinary
−→
G -flow 312

out-observation 95

ω-stable 43

P

parallel decomposition 475

parallel differential equations 166

parallel linear equations 146, 283, 470

parallel observing 59

partial differential
−→
G -flow 312

principal fiber bundle 410

prod-stable 176, 178, 215, 294

production function 336

projective principle 140, 436, 447

Q

quarks model 57

R

Reissner-Nordström multi-time system 456

Riemannian non-geometry 133

Riemannian non-manifold 133

S

Schrödinger’s cat 3, 54

Schrödinger’s equation 54, 76

Schwarzschild multi-time system 455

semi-arc 303

SIR model 137

Smarandache edge m-mean labeling 369

Smarandachely denied 145, 162, 233, 260, 288

Smarandache geometry 145, 162, 233, 260

Smarandache multispace 145, 162

Smarandache multisystem 76, 110, 232, 273

Smarandache quotient cordial labeling 369

Smarandache system 145, 162, 233, 370

solvable
−→
G -flow space 312

spacial graph 59

structural equation 427

sum-stable 43, 174, 178, 215, 294

T

tensor field 408, 444

Taylor formula on continuity flow 13, 352

tensor product of action flow 381

V

∨-solution of equation system 144, 164

vector labeling 304

v-energy 220

voltage graph 411

W

∧-solution of equation system 144, 164
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