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PREFACE  
 

The plithogenic set is a generalization of crisp, fuzzy, 

intuitionistic fuzzy, and Neutrosophic sets, it is a set whose 

elements are characterized by many attributes' values. This book 

gives some possible applications of plithogenic sets defined by 

Florentin Smarandache (2018). The authors have defined a new 

class of special type of graphs which can be applied for 

plithogenic models. The main motivation for such new classes 

of special types of graphs comes from the fuzzy intuitionistic 

graphs (2017) and single valued Neutrosophic graphs (2018).  

In case of fuzzy intuitionistic graphs the vertex sets are 

labelled as 1  2 row matrices, the values of the matrix is from 

the closed unit interval [0, 1], the first entry of the matrix being 

the fuzzy membership and the other entry being the fuzzy non-

membership. The edges of the adjacent vertices are also fuzzy  

1    2 matrices following certain rules. 

In the case of Single Valued Neutrosophic graphs the vertex 

sets are labelled with 1  3 fuzzy row matrices, the values are 

the truth membership, the indeterminacy membership and the 

false membership, the values of this row matrices are also from 

the fuzzy unit interval [0, 1]. The edges of adjacent vertices are 

defined depending on the vertex row matrices which is again a 

fuzzy row matrix. 

Authors in this book define plithogenic graphs for which 

vertex values are taken as a 1  n matrices and the entries can be 
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real or complex or Neutrosophic or dual numbers or from the 

fuzzy interval; the relevant edges are not labelled with row 

matrices. However, the plithogenic graphs takes its edge and 

vertex values only from the 1   n row matrices, the entries can 

be real or complex or so on. That is for Plithogenic Crisp Graph, 

we have the row matrix as 0's and 1's; for Plithogenic Fuzzy 

Graph, when we will have the row matrix of numbers between 0 

and 1. Similarly, for Plithogenic Intuitionistic Fuzzy Graph, we 

will have the row matrix of duplets of numbers between 0 and 

1. In case of Plithogenic Neutrosophic Graph, we have the row 

matrix of triplets of numbers between 0 and 1 and in case of 

Plithogenic Real Number Graph, we will have the row matrix 

formed by real numbers. For Plithogenic Complex Number 

Graph, we will have the row matrix formed by complex 

numbers and in case of Plithogenic Neutrosophic Number 

Graph, we will have the row matrix formed by neutrosophic 

numbers.   These graphs are modelled and their application to 

real world problems are provided. Certainly, in general these 

newly built plithogenic models can give a sensitive solution 

depending on the problem in hand. 

 We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

W.B.VASANTHA KANDASAMY 
ILANTHENRAL K 

FLORENTIN SMARANDACHE 



 

Chapter One  

 

 
INTRODUCTION  

 

 In this chapter we recall some basic definitions and 

properties essential to make this book a self-contained one. We 

have defined and developed several types of graphs whose 

vertex values are subsets of a set. We have also described 

multigraphs and subset vertex multigraphs. An interesting 

feature about these subset vertex graphs, and subset vertex 

multigraphs is they get only unique set of edges once the vertex 

subsets are given.   

 This has several advantages, the main among them is the 

Freeman index can be avoided when these subset vertex graphs 

are used in the study of social networks. 

 In this book we define Plithogenic graph G with vertex 

set v1, …, vn and its edges are weighted with a 1  m row 

matrix. The entries of the 1  m row matrix can be real or 

complex or neutrosophic or from the interval [0, 1]. The 

inspiration for such type of graphs comes from the intuitionistic 

fuzzy graphs whose edge weights as well as vertex sets are 

labeled as 1  2 row matrices. We use the definition from [3, 6]. 
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  However, we have defined 6 types of Plithogenic 

intuitionistic fuzzy graphs. On similar lines we can define 3 

types of Plithogenic fuzzy graphs. We see the Plithogenic 

intuitionistic fuzzy graph can be generalized using any 1  m 

row matrices for vertex sets as well as edge weights. Given any 

set of vertices we can have only 6 types of edge weights. 

However, we can have only six such complete row weighted 

graphs, but there can be many in each type which is solely 

dependent on the problem in hand. 

 Chapter two deals with a Plithogenic graphs. Several 

interesting properties about them are derived. 

 In chapter three we introduce the notion of vertex row 

matrix labeled and edge row matrix labeled special graphs, 

which we choose to call as Plithogenic graphs. These types of 

graphs with 1  2 rows and 1  3 rows are defined and applied 

to problems and are known as Plithogenic intuitionistic fuzzy 

graphs and Plithogenic single valued neutrosophic graphs 

respectively. We study these Plithogenic graphs with 1  m row 

matrices, they are used in the plithogenic models. 

 The final chapter gives the applications of these 

Plithogenic graphs to model real world problems.  



 

Chapter Two 

 

 
PLITHOGENIC GRAPHS 

 

 In this chapter we for the first time define a new type of 

row matrix weighted graphs called Plithogenic graphs. We 

enumerate several of its properties and their related results. 

First, we describe them with a few examples. 

Example 2.1. Let G be a graph given by the following figure: 

 

 G =  

 

Figure 2.1 

 We call this Plithogenic graph, to be more precise as 1  

4 Plithogenic triad. When the weights are only from the set {0, 

1} we call it as Plithogenic crisp fuzzy graphs. So G is called as 

Plithogenic crisp triad. 

Example 2.2: Let H be a graph given by the following figure. 

v1 v2 

v3 

(1 0 1 1) 

(0 1 1 1) (1 0 1 0) 
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H =  

 

 

 

 

Figure 2.2 

 We call H as the Plithogenic crisp tree. 

Example 2.3: Let K be the Plithogenic crisp star graph given by 

the following figure. 

 

K =  

 

 

 

Figure 2.3 

 We see if the edge weight is the same the two concepts / 

nodes enjoy the same status with the ego centric node v1. K is 

only a Plithogenic crisp graph. We now provide an example of a 

Plithogenic crisp complete graph by the following figure. 

v1 

v2 

(11001) 

(11000) 

v3 

(00010) 
(00001) 

v4 

v10 

(I I I 01) 

v9 v8 

(11011)

(11001)

v8 v6 v7 

(11111) 

(00001) 

v1 

v7 

v4 

v5 v9 

v8 v6 

v1 

v2 

(111000) 

(111011) 

(110000) 

(111111) 

(000111) 

(001111) 

(110110) (110000) 
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Example 2.4. Let G be a Plithogenic crisp complete graph given 

by the following figure. 

 

     G =  

 

 

 

Figure 2.4 

 S is a Plithogenic crisp complete graph. We now illustrate 

a Plithogenic crisp line graph by the following example. 

Example 2.5. Let G be a Plithogenic crisp line graph given by 

the following figure. 

 

 

 

               G    =  

 

 

 

 

Figure 2.5 

v1 

(1101) 

v2 

(1111) 

v3 

(1100) 

v4 

(0101) 

v5 

(0110) 

v6 

v1 

v3 

v5 

v4 

v2 

v6 
(111) 

(001) 
(001) 

(001) 

(001) 

(111) 

(110) 

(101) 

(110) (100) 
(010)

(011)

(100)
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 Now we proceed onto define this concept abstractly. 

Definition 2.1. Let v1, …, vm be m distinct vertices. Let G be a 

graph using these set of m vertices.  

 Let the weights of the edges be taken from the set E = 

{(a1, …, an) / ai  {0, 1}; 1  i  n}. We call G as the 

Plithogenic crisp graph as the edge weights are row matrices 

and the values of the row matrices are taken only from the set 

{0, 1}. 

 We have given several examples of them. 

 Now unlike in the case of usual graphs number of graphs 

that are Plithogenic crisp graphs depends on the order of the row 

matrix. 

 We will illustrate this situation by some examples. 

Example 2.6: Let G be a Plithogenic crisp dyad given by the 

following figure, 

 

Figure 2.6 

 If crisp weights are from a 1  5 row matrix with values 

from {0, 1} we can have 25 – 1 of them as (00000) weight 

between v1 and v2 means no edge exists between v1 and v2. They 

are given in the following. 

 

 

v1 v2 
(11100) 
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Figure 2.7 

 There will be 25 – 1 number of crisp dyad of 1  5 row 

matrix. However in case of crisp dyads of order 1  n we can 

give, the number as 2n – 1. 

 But find the number in case of crisp triads happen to be a 

challenging one for any n; n a large number. 

 Consider a 1  3 Plithogenic crisp graphs which are 

complete triads. Some of them are given in the following. 

 

 

 

 

v2 v3 
(100) 

v1 

(100) (100) 

v2 v3 
(010) 

v1 

(110) (010) 

v1 v2 
(10111) 

v1 v2 
(11111) 

v1 v2 
(11011) 

v1 v2 
(11101) 

v1 v2 
(01111) 

v1 v2 
(11110) 

v1 v2 
(00001) 

v1 v2 
(11000) 

v1 v2 
(01000) 

v1 v2 
(00010) 

v1 v2 
(10000) 

v1 v2 
(00100) 



14  Plithogenic Graphs 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 

 There are 7 such crisp triad with equal 1  3 row weights. 

 We now supply a few more of them. 

 

 

 

 

 

v2 v3 
(001) 

v1 

(001) (001) 

v2 v3 
(110) 

v1 

(110) (010) 

v2 v3 
(011) 

v1 

(011) (011) 

v2 v3 
(101) 

v1 

(101) (101) 

v2 v3 
(111) 

v1 

(111) (111) 

v2 v3 
(100) 

v1 

(111) (111) 

v2 v3 
(010) 

v1 

(111) (111) 
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Figure 2.9 

 We can have 7  6 number of 1  3 Plithogenic crisp 

triads which has equal weights for two edges and a one edge 

with different weight.  The other Plithogenic triads with 

different weights are enlisted in the following.  

v2 v3 
(001) 

v1 

(111) (111) 

v2 v3 
(110) 

v1 

(111) (111) 

v2 v3 
(101) 

v1 

(111) (111) 

v2 v3 
(011) 

v1 

(111) (111) 

v2 v3 
(111) 

v1 

(100) (001) 

v2 v3 
(111) 

v1 

(010) (001) 

v2 v3 
(010) 

v1 

(110) (001) 

v2 v3 
(111) 

v1 

(001) (110) 
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Figure 2.10 

and so on. Finding the total number of 1  3 Plithogenic crisp 

triads happens to be a challenging one. Finding total number of 

1  3 Plithogenic crisp graphs happens to be more challenging 

than this or we can have the following only a few are supplied.  

 

 

 

 

 

 

 

 

 

 

 

v1 
(111) 

v2 v3 

v1 

(111) 
v2 v3 

v1 

(100) 
v2 v3 

(110) (110) 

v1 

(001) 
v2 v3 

(110) 

v1 

(001) 
v2 v3 

v1 

v2 v3 

(111) 

v2 v3 
(011) 

v1 

(010) (111) 

v2 v3 
(011) 

v1 

(111) (010) 
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Figure 2.11 

and so on. 

 So, working with 1  3 Plithogenic crisp triads itself is 

challenging, more so if we make rows from 1  3 to 1  n for n 

a large number and the number of vertices from n to an 

arbitrarily large value say m. 

 We will provide a few more examples of them. 

Example 2.7: Let G be a 1  4 Plithogenic crisp graph given by 

the following figure. 

 

 

 

 

(00) 

v1 

(101) 
v2 v3 

v1 

v2 v3 
(001) 

(111) 

v1 

v2 v3 

(111) 

v1 

v2 v3 

(111) 

(111) 
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      G =  

 

 

 

 

 

 

Figure 2.12 

 We can find the subgraphs of these Plithogenic crisp 

graph. It is pertinent to keep on record that subgraphs of 

Plithogenic crisp graphs will be Plithogenic crisp graphs only. 

 We provide a few examples of the Plithogenic crisp 

subgraph of the G in example 2.12. 

 

 

 

v1 

v4 

v2 
(1100) 

(0010) 

(0001) 

(1110) 

v3 

v5 

(0011) 

(1001) 

v7 

v9 v8 

(1111) 

(1100) 

(0011) 

(1000) 
(0110) 

v6 

(0100) 

(0010) 

(1101) 
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 Let H1 be the Plithogenic crisp subgraph of G given by 

the following figure. 

 

             H1 =  

 

Figure 2.13 

 Clearly H1 is a Plithogenic complete triad which is a 

Plithogenic crisp subgraph. 

 Let H2 be a Plithogenic crisp subgraph of G given by the 

following figure. 

 

 

          H2 = 

 

 

Figure 2.14 

 Clearly H2 gives two adjacent Plithogenic crisp triads 

which is a Plithogenic crisp subgraphs of G. Let H3 be the 

Plithogenic crisp subgraph of G given by the following figure. 

  

v7 

v8 v9 

(0011) 

(1100) 

(1111) 

v6 (0110) 

(0100) 

v8 

v7 

(1100) 

(1111) 

v9 

(0011) 
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 H3  = 

 

 

Figure 2.15 

H3 is an empty Plithogenic crisp subgraph of G. 

 Thus in some cases the Plithogenic crisp subgraph of G 

can also be an empty subgraph. 

Definition 2.2. Let G be a 1  m Plithogenic crisp graph. H is a  

subgraph of G if and only if H is also a 1  m Plithogenic crisp 

graph with vertex set being a subset of the vertex set of G the 

relevant edges remaining the same. 

 Next, we proceed onto give examples of Plithogenic 

fuzzy graphs before we provide the abstract definition of it. 

Example 2.8:  Let G be a graph given by the following figure; 

 

 

     G = 

 

 

Figure 2.16 

v1 

v2 

v4 

v6 

v3 

v5 

(0,0.3,1) 

(0.6, 0.7, 0.8) 

(0.3, 0, 1)
(0.4, 0.1, 0) 

(0.4, 0.1, 0) 

(0.1, 0, 0) 

v1 

v6 
v7 

v3 
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 We see the weights of the edges are 1  3 row matrices 

with entries from the fuzzy interval [0, 1]. As the rows are fuzzy 

row vectors we call these graphs as Plithogenic fuzzy graphs. 

 Clearly G in the figure is a Plithogenic fuzzy circle 

graphs. 

 We provide another example of Plithogenic fuzzy graph. 

Example 2.9: Let G1 be a Plithogenic fuzzy graph given by the 

following figure. 

 

     G1 =   

 

 

 

Figure 2.17 

 G1 is a complete Plithogenic fuzzy graph of order 5. 

 We see all subgraphs of G1 will be complete and also 

Plithogenic fuzzy graphs. 

 We now provide a Plithogenic fuzzy tree by the following 

example. 

Example 2.10:  Let G be a Plithogenic fuzzy tree given by the 

following figure. 

v1 
(0, 0, 0.1, 0) 

(0.3, 1, 0, 0) 

(0.011, 0, 1, 1) 

(0, 0.11, 0.33, 1) 

v2 

v4 
v3 

v5 
(0, 0, 1, 0) 

(0, 0, 0.331, 0) 

(0, 0, 0.5,0.92) 

(0, 1, 0, 0.02) 
(1, 0.2, 0.5, 0) 

(0, 0, 0, 0.01) 
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G =  

 

 

 

Figure 2.18 

 Clearly all the subgraphs of G will either be a Plithogenic 

fuzzy tree or a Plithogenic fuzzy line graph or empty and they 

will continue to be fuzzy row weighted. 

 

 

                H1 =  

 

 

Figure 2.19 

 H1 in the above figure is a Plithogenic fuzzy line 

subgraph of G. 

v2 

v6 v7 

v11 

(0,0.11,0,0) 

(1,1,0,0.1) 

(0.1,1,0,0) 

(0,0,0,0.001) 

v3 

v8 

(1,1,0.02,0) 
(0,0,0.03,1) 

(0.1,0,1,0) 

v12 v13

 

(0.01,0,1,0) 

v4 
v5 

v9 

(0,0,0.001,1) 

(0,0.1,0.2,0.1)

v14 

v10 

(1,1,0.1) 

v1 (0.0003,1,0,0.002) 

(0,0,1,0) 

v1 

v4 

v9 

v14 

(0, 0.1, 0.2, 0.1) 

(0, 0, 0.001, 1) 

(0, 0, 1, 0) 
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 Let H2 be a Plithogenic fuzzy subgraph of G given by the 

following figure. 

 

       H2 =   

 

 

 

 

Figure 2.20 

 Clearly H2 is a empty Plithogenic fuzzy subgraph of G. 

 Let H3 be the Plithogenic fuzzy subgraph of G given  by 

the following figure. 

 

 

                         H3 =  

 

 

 

Figure 2.21 

v1 

v6 v7 v8 v10 

v14 

v1 

v3 

v8 

(0,0,0,0.001) 

(0,0,0.03,1) 

(0.01, 0, 1, 0) (0.1, 0, 1, 0) 

v12 v13 
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 Let H4 be the Plithogenic fuzzy subgraph of G given by 

the following figure. 

 

      H4 =  

 

 

 

 

Figure 2.22 

 Clearly H4 is a disconnected Plithogenic fuzzy subgraph 

of G and H4 has two components one is a tree and other just a 

dyad. H4 is in fact a Plithogenic fuzzy subgraph of G. 

 Let H5 be the Plithogenic fuzzy graph of G given by the 

following figure. 

 

  

H5  = 

 

 

Figure 2.23 

v1 

(0,0,0,0.001) 

v3 v4 

(0,0,1,0) 

v8 

(0,0,0.03,1) 

v6 

v11 

(0,0.11,0,0) 

v3 

(0, 0, 0.03, 1) 

v8 
(0.1,0,1,0) 

v12 v12 

(0.01,0,1,0) 

v5 

(1, 1, 0, 1) 

v10 v9 

v11 
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 Clearly H5 is a Plithogenic fuzzy subgraph of G which is 

disconnected and has four components one is a fuzzy row 

weighted. 

 One component is tree, one is Plithogenic fuzzy dyad 

other two are just vertices of G. 

 Now we make the abstract definition of the Plithogenic 

fuzzy graph in the following. 

Definition 2.3. Let G be a graph with n vertices say v1,v2, …,vn. 

If the relevant edges are weighted with fuzzy row matrices 

(fuzzy row matrices if the entries of the row matrix is from       

[0, 1]).  We call G as a Plithogenic fuzzy graph. 

 We have provided examples of them also we have given 

the subgraphs of them. 

 It is pertinent to keep on record that these Plithogenic 

fuzzy graphs are distinctly different from fuzzy graphs. 

 We find the number of Plithogenic fuzzy dyads for a 

fixed row say a 1  5 row.  

 We see the number of 1  3 Plithogenic fuzzy graphs are 

infinite in number for if G is a 1  3 Plithogenic fuzzy dyad 

given by the following figure. 

  

                    G =  

Figure 2.24 

here v1 and v2 are the vertices of G and (a1, a2, a3) is a fuzzy row 

matrix of order 1  3 where ai  [0, 1]; 1  i  3.  

v1 v2 
(a1, a2, a3) 
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 We see number of 1  3 row matrices with varying values 

in [0, 1] are infinite in number hence the number of 1  3 

Plithogenic fuzzy dyads are also infinite in number. 

 In fact the number of Plithogenic fuzzy graphs for any 

graph G with fixed number of vertices and a fixed number of 

edges is infinite as the number of fuzzy weights that can be 

given to any fuzzy row weighted graphs are infinite in number.  

 Just now we proved the result in case of dyads and as 

dyads are the fundamental units of any graph (that is network) 

any Plithogenic fuzzy graph for a given configuration is in fact 

infinite in number. 

 So, we see in case of Plithogenic fuzzy graphs even the 

dyads are infinite in number. 

 But the number of Plithogenic fuzzy subgraphs of a given 

Plithogenic fuzzy graph is finite in number so is the edge 

Plithogenic fuzzy subgraphs. 

 Next we proceed onto describe Plithogenic real graphs by 

some examples. 

Example 2.11: Let G be a Plithogenic graph whose row weights 

are from the field of reals given by the following figure. 
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  G =  

 

 

 

Figure 2.25 

 We see this Plithogenic real graph takes its row entries 

from the reals. 

 We make the abstract definition of the Plithogenic real 

graph in the following. 

Definition 2.4. Let G be a graph with n vertices. If the edges are 

weighted with 1  m row matrices with entries from the real 

field R we call this graph G as real 1  m Plithogenic real 

graph. 

 The following observations are mandatory. 

i) Every Plithogenic crisp graph is a Plithogenic 

real graph, however the converse is not true. 

ii) Every Plithogenic fuzzy graph is a Plithogenic 

real graph, but the converse is not true 

(1, 0, 2) 
v2 

v3 

v1 

(-5,1,3) 

v4 

v6 

(1, 2, 3) 

(7, 8, 10) 

(-10,-15,0) 
(1,0,-4) 

v8 

(1,0.5,4) 

(3,4,-7) 

(-8,1,4) v5 

(4,4,0) 

v7 

(11,1, -15) 

(0, 0, -7) 

(7,8,9) 

(0, 0, 1) 
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 For both the cases the Plithogenic real graph given in 

figure is not crisp or not fuzzy, hence the above statements are 

valid. 

 It is important to record that the subgraphs of the 

Plithogenic real graph is again a Plithogenic real graph. 

 We provide an example or two to this effect. 

Example 2.12: Let G be a Plithogenic real graph given by the 

following figure. 

 

 

 

   G =  

 

 

 

 
Figure 2.26 

 We give some of the subgraphs of G in the following. 

 Let H1 be a subgraph of G given by the following figure. 

 

v1 

v4 

v2 

(1, 1, -1) 

(0, 0, -5) 

v7 

(3, 1, -3) 

v3 

(1, 10, -1) 

v5 

(2, -1, 0) v6 

v8 
(3, 4, 0) 

(1, 1, 1) 

v9 

(2, 4, 10) 

(-7,3,-6) 
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H1 =  

 

 

Figure 2.27 

 Clearly H1 is a disconnected Plithogenic real subgraph 

with four components, one is just a dyad and other three are 

vertex sets. 

Let H2 be the subgraph of G given by the following figure. 

 

     H2 =  

 

Figure 2.28 

 Clearly H2 is a Plithogenic real empty subgraph of G. 

 Consider H3 the subgraph of G given by the following 

figure. 

  

v1 

v5 

v3 

v9 

v7 

(2, -1, 0) 

v1 

v6 

v3 

v8 
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                H3 =  

 

 

Figure 2.29 

 Clearly H3 is a Plithogenic disconnected subgraph of G 

which has three components and all of them are dyads. 

 It is interesting to note that G has no clique only dyads of 

order two. 

 Now we proceed onto give examples of Plithogenic 

complex graphs. 

Example 2.13: Let G be a graph given by the following figure. 

 

 

 

G =  

 

 

 

Figure 2.30 

v1 
(1, 1, -1) 

v2 

v7 
(-7, 3, -6) 

v6 

v8 
(3, 4, 0) 

v9 

v1 
(2i+4, -5i – 1, 0) 

v3 

v2 

(4i+3, -i, -4) 

v4 
(2i, 3i+1, -1) 

v6 

(1, -i, -i + 1) 

v5 (-i, 0, 1) 

v3 
(3+i, 0, -1) 
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 G is a Plithogenic complex graph. Clearly G is a 

Plithogenic complex bigraph. 

Example 2.14: Let G be a Plithogenic complex star graph given 

by the following figure. 

 

 

 

        G = 

 

  

 

Figure 2.31 

 G is a egocentric Plithogenic complex star graph. 

 We see some of the persons are related with imaginary 

row weight. So, when studying egocentric graph if we use 

complex (imaginary) values one can understand some characters 

who are related are admiration or attractive is more imaginary 

than realistic. 

 Next, we provide one more example of some complex 

row weighted graph in the following. 

Example 2.15: Let G be a Plithogenic complex graph given by 

the following figure. We also give a few of its subgraphs. 
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Figure 2.32 

 We see all subgraphs of G are complete as basically G is 

a Plithogenic complete graph of order 7. 

 We see there are several Plithogenic complete subgraphs 

in fact there are 7C2 + 7C3 + … + 7C6 such Plithogenic 

complete subgraphs in G. 

 Like usual graphs we can find the number of edge 

Plithogenic subgraphs of G. 

 We now give the abstract definition of Plithogenic 

complex graph in the following. 

Definition 2.5. Let G be a graph with n-vertices if the relevant 

edges are weighted by 1  m row complex valued matrices then 

we define G as the Plithogenic complex graph. 

 We have provided examples of them. 
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 Now we proceed onto describe Plithogenic Neutrosophic 

graphs by some examples. 

Example 2.16: Let G be a Plithogenic Neutrosophic graph 

given by the following figure. 
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Figure 2.33 

 We find some of the subgraphs of G. 
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Figure 2.33a 
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H1 is a Plithogenic neutrosophic subgraph of G which is a tree. 

 We see this G has no clique. In fact G has no nontrivial 

Plithogenic neutrosophic \subgraph which is complete. Even G 

has no triads, that is complete graph of order three. H1 is a tree. 

 We give yet another example of a Plithogenic 

neutrosophic graph. 

Example 2.17: Let G be a Plithogenic neutrosophic graph 

which is given by the following figure. 

 

 

G = 

 

 

 

 

 

 

Figure 2.34 

 

 We can find subgraphs of this Plithogenic neutrosophic 

graph G. This task is left for the reader. 

v1 
(1, I, 0, 0) 

v2 

v3 

v7 

v4 v6 

(I, I, 0, 0) 
(I, - I, 0, 1) 

(I, I, I, 0) 
(1, 1, I, 0) 

 (0,0,0,I) 

(0, 1, -I, 0) 

(1,1,0,0) 

(I,0,0,0) 

(I, I, I, 0) 
(0,0,0,1) 

(1,1,0,0) 
v8 

(1,1,I,0) v5 

(0,0,0,I) (1,0,1,0) v10 

(1,I,0,I) 
(I,0,0,0) 

(I,0,0,0) 

v9 

(I,0,0,1) 

v12 v11 
(I,0,0,0) 

(I,I,0,0) 

(1,1,1,1) 

(I,0,0,0) 

(1,0,0,0) 

(1,I,0-1) 

(1,0,0,0) 



Plithogenic Graphs  35 
 
 
 Now we can likewise define the notion of Plithogenic 

dual numbers graphs, Plithogenic complex neutrosophic 

numbers graphs, Plithogenic special quasi dual number graphs 

and so on. 

 We see all these Plithogenic graphs are infinite in 

number.  

 These situations will be represented by some examples. 

Example 2.18: Let G be a Plithogenic dual number graph with 

row weights from R  g  = {a + bg | a, b  R and g2 = 0} 

given by the following figure. 
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Figure 2.35 

Clearly G is a dual number row weighted graph of order 7. 

 We can have subgraphs of G which are also dual number 

row weighted subgraphs of G.  
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 Next we give one example of the Plithogenic special 

quasi dual number graph. 

Example 2.19: Let G be a Plithogenic graph with row weights 

from the set R  h = {a + bh / a, b  R, h2 = – h}. G will be 

known as the 1  4 Plithogenic special quasi dual number graph 

with m vertices. 

 Here we take n = 5 and m = 7, so G is a 1  5 Plithogenic 

special quasi dual number  graph given by the following figure. 
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Figure 2.36 

 G is a Plithogenic 1  4 special quasi dual graph with 10 

vertices. 
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 This has several subgraphs all of which are 1  4 

Plithogenic special quasi dual graphs. 

 It is important to revoke all these Plithogenic graphs are 

infinite in number for a given set of vertex sets. 

 We can have finite such collection if we use the finite 

complex modulo integers, mod integers, dual mod integers 

neutrosophic mod integers and so on. We will illustrate this 

situation by some examples. 

Example 2.20: Let G be a Plithogenic graph given by the 

following figure. 
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Figure 2.37 

 The row entries are from Z9. 

 The number of 1  3 row elements is finite. 
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 If the row weights are taken from Z9 we see for a given 

set of n vertices the number of graphs with a fixed number of 

row order say 1  m we have only a finite collection of 

Plithogenic special modulo integer graphs. 

 We will give a few more examples. 

Example 2.21: Let G be the Plithogenic modulo integer special 

graph given by the following figure. 

 

 

Figure 2.38 

where (3, 2, 0)  Z4  Z4  Z4 

 We can have 63 such graphs for the edges weights and all 

the 63 of them are different. To be more precise we can say that 

there are 63 dyads with row weights from Z4  Z4  Z4. 

 Thus we can say if the row weights are taken from Zn  

Zn  Zn we can have (n3 – 1) number of distinct dyads. 

 Consider G1 to be a triad given by the following figure. 

 

G1 =  

 

 

Figure 2.39 
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where G1 is a Plithogenic triad and the row edge weights (1, 1, 

1) and (3, 0, 1)  Z4  Z4  Z4 = S. 

 There are 63  63  63 number of triads with row weights 

taken from S. 

 Suppose we replace Z4 by Z2 we will have 7  7  7 

number of distinct triads with row weights from Z2  Z2  Z2. 

 We provide yet another example. 

Example 2.22: Suppose Gi’s are Plithogenic triads with row 

weights from Z2  Z2; how many such triads exist 
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G7 =  G8 = 

 

 

 

 

G9 =  G10 = 

 

 

 

G11 =  G12 = 

 

 

 

G13 =  G14 = 

 

 

 

G15 =  G16 = 

  

v2 
(0, 1) 

v3 

v1 

   (1, 0) (1, 1) 

v2 
(1, 0) 

v3 

v1 

    (1, 0) (1, 1) 

v2 
(1, 0) 

v3 

v1 

   (0, 1) (1, 1) 

v2 
(1, 1) 

v3 

v1 

    (1, 1) (1, 0) 

v2 
(1, 1) 

v3 

v1 

   (1, 0) (1, 0) 

v2 
(1, 1) 

v3 

v1 

    (0, 1) (1, 0) 

v2 
(1, 0) 

v3 

v1 

(1, 0) (1, 0) 

v2 
(1, 0) 

v3 

v1 

(0, 1) (1, 0) 

v2 
(0, 1) 

v3 

v1 

    (1, 1) (1, 0) 

v2 
(1, 0) 

v3 

v1 

    (1, 1) (1, 0) 



Plithogenic Graphs  41 
 
 
 

 

G17 =  G18 = 

 

 

 

G19 =  G20 = 

 

 

 

G21 =  G22 = 
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              G27 =   

 

 

Figure 2.40 

 It is left as an exercise for the reader to find using the Z2  

 Z2 as edge weights. Study of finding the number of distinct 

Plithogenic triads for any n-row vector with entries from Zm  

Zm   …  Zm is an interesting as an exercise and left for the 

reader.  

 Thus row weighted modulo integer special matrices yield 

a very different large number of Plithogenic graphs but a finite 

order as we have taken the row vectors from Zm’s 2  m <  the 

ring / field of modulo integers. 

 We can derive many interesting results in this direction. 

 We will provide some more examples of them. 

Example 2.23: Let G be a Plithogenic modulo integer special 

graph where the 1  3 row values are from Z5  Z5  Z5 given 

by the following figure. 
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Figure 2.41 

 For the given 5 vertices there can be several 1  3 

Plithogenic modulo integer special ring graphs. Finding the total 

number of them even in case of Z5 happens to be a challenging 

problem. 

Example 2.24: Let G be a 1  2 Plithogenic modulo integer 

special complete graph of order six with row vectors from Z9  

Z9 given by the following figure. 
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Figure 2.42 
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 Finding the total number of 1  2 Plithogenic modulo 

integer special complete graphs of order six with edge weights 

from Z9  Z9 happens to be a challenging one. 

Example 2.25: Let G be a Plithogenic modulo integer special 

star graph of order 9 given by the following figure. 

 

 

G =  

 

 

 

Figure 2.43 

 The row vectors are from S = Z18  Z18 Z18.  

 We see finding the total number of 1  3 Plithogenic 

special star graphs with row weights from S happens to be a 

challenging problem. 

 In view of all these we propose the following problems. 

Problem 2.1. Let G be a 1  n Plithogenic modulo integer 

special complete graph with s vertices. The row vectors are 

from (Zm)n. 2  n, s, m < . 

 Find the number of such 1  n Plithogenic special 

complete graphs (for s  2 or 3). 
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Problem 2.2. Let H be a Plithogenic modulo integer special (1  

n row vectors) star graph with s vertices. The row weights are 

from 

m m m

n times

Z Z ... Z


  
 .

 

Find the total number of such special star graphs. 

 Prove the number of such Plithogenic star graphs are less 

than the number of Plithogenic complete graphs with same 

number of vertices for both problems. 

Problem 2.3. Let K be a 1  s Plithogenic modulo integer 

special ring graph with n vertices. 

The 1  s row vectors are taken from (Zm)s , 2  n, m, s < . 

a) Find the number of such ring graphs for the fixed 

number of vertices. 

b) Compare for the fixed number of vertices as n and 1 

 s row vectors from (Zm)s with complete graphs and 

star graphs and prove complete graphs are more in 

number than star graphs and ring graphs and star 

graphs happens to be of least number. 

 Now on similar lines we can define and develop 

Plithogenic modulo integer finite complex graphs using C(Zm), 

m a finite positive number.  

 We will illustrate this situation by some examples. 
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Example 2.26: Let G be a finite 1  3 Plithogenic complex 

special graph given by the following figure. The row vectors are 

from C(Z9)  C(Z9)  C(Z9). 

 

 

 

G =  

 

 

Figure 2.44 

 We see G is a 1  3 Plithogenic finite complex modulo 

integer graph with 7 vertices. 

 It is interesting to note that G can have subgraphs which 

are real. 

 For instance, this G has only  

 

 

Figure 2.45 

one dyad which is real modulo integer valued one. 

Example 2.27: Let G be a finite 1  4 Plithogenic complex 

special graph with 5 vertices with row entries from C(Z6)  

C(Z6)  C(Z6)  C(Z6) given by the following figure. 
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G =  

 

 

Figure 2.46 

 We see all subgraphs of G are finite Plithogenic complex 

special graphs. Next we proceed onto describe Plithogenic 

neutrosophic modulo integer special graphs by examples. 

Example 2.28: Let G be a Plithogenic neutrosophic modulo 

integer graph given by the following figure. The row elements 

are taken from Z7  I  Z7  I  Z7  I  Z7  I = S 

where Z7  I = {a + bI/a, b  Z7, I2 = I}. 

 

 

G =  

 

 

 
Figure 2.47 
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 G has several Plithogenic neutrosophic modulo integer 

row valued subgraphs. 

 We give a few subgraphs of G. Let H1 be a subgraph 

given by the following figure. 

 

              H1 = 

 

 

Figure 2.48 

 Clearly H1 is Plithogenic real subgraph of G. 

 Let H2 be a subgraph given by the following figure. 

 

         H2  =    

Figure 2.49 

 Let H3 be the subgraph of G given by the following 

figure. 
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Figure 2.50 
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 We see H3 is also a real subgraph of G but H3 is also real.  

 We will be defining the notion of real hyper subgraphs of 

these types of Plithogenic special modulo integer graphs. 

 Let H4 be a Plithogenic special subgraph of G given b y 

the following figure. 
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Figure 2.51 

 We see H4 is a Plithogenic neutrosophic special subgraph 

of G which has no real subgraph.  

 This type of subgraph will also be distinctly defined in 

the following sections. 

 Consider H5 is subgraph of G given by the following 

figure. 
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Figure 2.52 
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 Clearly H5 is a Plithogenic neutrosophic modulo integer 

special subgraph of G different from H1, H2, H3 and H4. Further 

H5 is ring subgraph. 

 We see using these properties we define special 

substructures of these subgraphs. 

 We can define on similar lines the notion of Plithogenic 

complex neutrosophic modulo integer graphs. (C(Zn  I) = {a 

+ bI + CiF + dIiF / a, b, c, d  Zn, I2 = I, 2
Fi  = (n – 1), (IiF)2 = (n – 

1) I; 2  n < } where the row values are taken from C(Zn  

I). 

 We will first illustrate this situation by some examples. 

Example 2.29: Let G be a 1  3 Plithogenic complex 

neutrosophic modulo integer graph given by the following 

figure. 
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Figure 2.53 
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 The row vectors are from C(Z9  I)  C (Z9  I)  

C(Z9  I). Consider the following subgraphs of G. 

 

 

                K1 = 

 

 

Figure 2.54 

 Clearly K1 is just a Plithogenic modulo integer subgraph 

of G as none of the edges of K1 has neutrosophic and (or) 

complex valued row valued matrix. 

 Let K2 be the subgraph of G given by the following 

figure. 
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Figure 2.55 

 When we try to take all vertices of G which has real row 

valued edges then K2 has also an edge in this case which is 
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neutrosophic. So K2 is not real modulo integer edges however 

K1 is a subgraph which is a real modulo integer edge but it does 

not take into account all edges but if all edges are to be taken 

into account it fails to be real. 

 However we have subgraphs of G which has all edges to 

be neutrosophic. Consider K3 the subgraph of G given by the 

following figure. 

  

 

               K3 =  

 

 

Figure 2.56 

 K3 is a Plithogenic neutrosophic modulo integer special 

subgraph of G. 

 All the 3 edges are neutrosophic.  

 We list out some of the special features associated with 

subgraphs of Plithogenic neutrosophic modulo integer special 

graphs. 

1. We can have subgraphs whose edges are only mod 

real valued row matrices. 

2. We can have subgraphs all of whose edges are mod 

neutrosophic row valued matrices. 
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3. We can have subgraphs which has both real and mod 

neutrosophic row valued matrices. 

 Now how to specify the existence of largest ones in case 

of (1) and (2). 

 In case we get a Plithogenic subgraph which includes all 

real modulo row valued edges and no neutrosophic valued edge 

then we call such Plithogenic subgraphs as Plithogenic hyper 

pseudo neutrosophic real subgraphs.  

 Given a Plithogenic neutrosophic modulo integer graph in 

general we cannot always say a hyper pseudo neutrosophic real 

subgraphs exist or not. The reality is it may exist or it may not 

exist.  

 In the example we are discussing about such Plithogenic 

hyper pseudo neutrosophic real subgraph does not exist. 

 Similarly, we call the subgraph of a neutrosophic graph to 

be a Plithogenic hyper neutrosophic subgraph if all the row 

matrix edges take neutrosophic values and all those 

neutrosophic edges of G are also present in the subgraph. Such 

situations may occur or may not occur. It is pertinent to keep on 

record that hyper subgraphs if they exist are unique unlike hyper 

planes of a plane in vector spaces. 

 Further it is important to record that these notions of 

hyper subgraphs used in this book is very different from the 

classical hyper subgraphs that are defined. 

 We see in the above-mentioned example we do not have 

either Plithogenic hyper neutrosophic subgraphs or Plithogenic 
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hyper pseudo neutrosophic real subgraphs. So these are 

Plithogenic neutrosophic graph which has no hyper subgraphs 

of both the types mentioned.  

 Finally, we wish to add on that if the Plithogenic 

neutrosophic graph has no real edges then it cannot contain 

Plithogenic hyper pseudo neutrosophic subgraphs. In this case 

we also do not talk about Plithogenic hyper neutrosophic 

subgraphs. 

Example 2.30: Let G be a Plithogenic neutrosophic graph given 

by the following figure. 

 

 

      G = 

 

Figure 2.57 

G has no hyper subgraph of both types. We call such 

Plithogenic neutrosophic graphs as simple. 

Definition 2.6. G be a Plithogenic neutrosophic graph. We say 

G is simple if G has no Plithogenic neutrosophic hyper 

subgraph and no Plithogenic pseudo neutrosophic real 

subgraph. 

 We have already given example of them. We will give 

some more examples before we proceed on to get some special 

properties about these simple neutrosophic graphs. 
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Example 2.31: Let G be a Plithogenic neutrosophic graph given 

by the following figure. 

 

 

      G =  

 

 

 

Figure 2.58 

 We can get only dyads to be either Plithogenic 

neutrosophic subgraphs or Plithogenic real pseudo neutrosophic 

graphs. 

 We provide some of them. 

 

 

  

 

 

 

 

Figure 2.59 
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 Likewise, we can have some forbidden triads which are 

Plithogenic neutrosophic subgraphs given by the following 

figures. 

 

           H1 =  

 

 

Figure 2.60 

 

                H2 = 

 

 

Figure 2.61 

 

            H3 = 

 

 

Figure 2.62 

and so on. 
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 We see this G is simple as it has no Plithogenic hyper 

neutrosophic subgraph or Plithogenic hyper pseudo 

neutrosophic real subgraph. 

 We provide yet another example. 

Example 2.32: Let G be a Plithogenic neutrosophic graph given 

by the following figure. 

 

 

G = 

 

 

 

Figure 2.63 

 We see G is not simple for the Plithogenic hyper 

neutrosophic subgraph H1 of G is as follows. 

 

            H1 =  

 

 

Figure 2.64 

 H2 be the Plithogenic pseudo hyper real neutrosophic 

subgraph H2 of G given by the following figure. 
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             H2 =  

 

 

 

Figure 2.65 

 Thus, we can have both types of Plithogenic neutrosophic 

graphs which are simple or otherwise. 

 Of course, G has subgraphs which are not hyper.  

 We supply a few subgraphs in the following. 

 K1 is a subgraph of G given by the following figure. 

 

     K1 =  

 

 

 

Figure 2.66 

 In fact this Plithogenic neutrosophic graph has no cliques. 

It has only the basic units of graphs viz dyads. 

 We now give some more examples of them. 
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Example 2.33: Let G be Plithogenic neutrosophic graph given 

by the following figure. 

 

 

G =  

 

 

 

 

 

 

Figure 2.67 

 G is a simple Plithogenic neutrosophic graph. It has 

subgraphs some of which we describe in the following.  

 Let H1 be a Plithogenic neutrosophic subgraph of G given 

by the following figure. 
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H1 = 

 

 

 

Figure 2.68 

 Clearly H1 is a tree which has all its edges to be real. H1 is 

also a tree. Consider H2 a subgraph given by the following 

figure. 

 

 

 

            H2 =  

 

 

 

Figure 2.69 
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 H2 is a subgraph in which the edges are neutrosophic row 

vectors. 

 Let H3 be the subgraph given by the following figure. 

 

 

H3 = 

 

 

 

 

 

Figure 2.70 

 H3 is a Plithogenic neutrosophic subgraph of G has edges 

to be both real row matrix vectors as well as neutrosophic row 

matrix vectors. 

 So we have simple Plithogenic neutrosophic trees. 

 Next, we describe a complete Plithogenic neutrosophic 

graph G given by the following figure. 
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G = 

 

 

Figure 2.71 

 This is not simple for it has a Plithogenic pseudo hyper 

neutrosophic real subgraph P1, given by the following figure. 

 

         P1 = 

 

 

 

Figure 2.72 

 However, this G has no Plithogenic hyper special 
neutrosophic subgraph. It has only Plithogenic neutrosophic 
dyads. 

 We call such type of Plithogenic neutrosophic graphs as 

semi simple Plithogenic neutrosophic pseudo graphs. 

 Consider the following example. 
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Example 2.34: Let G be a complete Plithogenic neutrosophic 

graph given by the following figure. 

 

 

G = 

 

 

 

 

 

Figure 2.73 

 Consider the subgraph B given by the following figure. 

 

 

 

B = 

 

 

 

Figure 2.74 
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 B is a complete Plithogenic neutrosophic subgraph of G 

in which all the edges are neutrosophic. In fact, B is the largest 

such subgraph which is a Plithogenic hyper neutrosophic 

subgraph of G which is also unique. However, G has no 

Plithogenic hyper neutrosophic real pseudo subgraph. 

 G has only 5 real dyads. We define such graphs which 

has only Plithogenic hyper neutrosophic subgraphs as semi 

simple Plithogenic neutrosophic special graphs. 

 Only when a Plithogenic neutrosophic graph does not 

contain both real and neutrosophic hyper subgraphs we call 

them simple otherwise only semi simple. 

 We give yet another example. 

Example 2.35: Let G be a Plithogenic neutrosophic graph given 

by the following figure. 

 

 

    G = 

 

 

 

 

 

Figure 2.75 
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 We see G is only semi-simple as it has a Plithogenic 

neutrosophic hyper subgraph S given by the following figure. 

 

 

      S =  

 

 

 

Figure 2.76 

 S is a Plithogenic hyper neutrosophic subgraph of G 

which has all 15 edges to be neutrosophic row matrix vectors. 

 In fact all the neutrosophic edges of S is the same as that 

of G. However we have no Plithogenic neutrosophic hyper real 

subgraph of G as there is no subgraph which can have all real 

row matrix (vector) edges. Hence only we claim G is semi 

simple. 

 Here we give a few of the Plithogenic neutrosophic 

special real subgraphs of G in the following figures. 

 

             H1 =   

 

Figure 2.77 
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H2 = 

 

 

Figure 2.78 

 However, using all the four vertices v1, v2, v3 and v4 we 

get K to be the related subgraph given by the following figure. 

 

K = 

 

 

Figure 2.79 

 Clearly K is a Plithogenic neutrosophic subgraph. It is 

evident we cannot get a subgraph of G with all the real edges so 

only G is semi simple as there is no Plithogenic pseudo 

neutrosophic real subgraph of G. 

 We give yet another example a Plithogenic neutrosophic 

graph which is not simple or semi simple or pseudo semi simple 

by the following example. 

Example 2.36: Let G be a Plithogenic neutrosophic graph given 

by the following figure. 
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G = 

 

 

 

 

 

 

Figure 2.80 

 G is not simple or semi-simple or pseudo-semi-simple. 

 Let K1 be the Plithogenic neutrosophic subgraph of G 

given by the following figure. 
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K1 =  

 

 

 

 

Figure 2.81 

 K1 is a Plithogenic hyper neutrosophic subgraph of G. K1 

is the unique hyper subgraph of G. Further all neutrosophic row 

matrix valued edges of G are in K1. 

 Consider K2 the Plithogenic neutrosophic subgraph of G 

given by the following figure. 

 

K2 = 

 

 

 

Figure 2.82 
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 Clearly K2 is the Plithogenic pseudo hyper real 

neutrosophic subgraph of G. All the real row matrix valued 

edges of G are present in K2 and no other edges which are 

neutrosophic row matrix valued. Thus, G is not simple, semi 

simple or pseudo semi simple. 

 It is in fact a difficult problem to characterize simple or 

semi simple or Plithogenic pseudo semi simple neutrosophic 

graphs. 

 We next proceed onto describe few other types of 

Plithogenic graphs by some examples. 

Example 2.37: Let G be a Plithogenic dual number graph given 

by the following figure. The row vectors are dual numbers from 

Z  g = {a + bg / a, b  Z, g2 = 0}. 

 

 

G =  

 

 

 

Figure 2.83 

 We define this G as Plithogenic dual number graph. 

Consider H1 the subgraph of G given by the following figure. 
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   H1  =  

 

 

Figure 2.84 

 Clearly H1
 is a Plithogenic dual number subgraph of G. 

Only one edge is a dual number row vector. All other edges are 

real row vectors. In fact all real row valued vector edges of G 

are also present in H1. 

 However, H1 is not a Plithogenic pseudo real hyper dual 

number subgraph of G. Also G has no Plithogenic pseudo real 

hyper dual number subgraph. 

 Consider the subgraph H2 of G given by the following 

figure. 

 

       H2 = 

 

 

 

 

Figure 2.85 

 H2 is a Plithogenic dual number subgraph of G. All the 

edges of H2 are dual number row vectors but all dual number 
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row vectors of G are not present in H2. Hence H2 is not a 

Plithogenic hyper dual number subgraph of G. 

 Thus G is simple for it has no Plithogenic hyper 

subgraphs of both the types. 

 The notion of simple graph in case of Plithogenic dual 

number graphs are defined in a similar way as in case of 

Plithogenic neutrosophic graph. 

 We provide a few more examples before we proceed to 

describe Plithogenic complex graphs. 

Example 2.38: Let G be a Plithogenic dual number graph given 

by the following figure. 

 

G = 

 

 

 

 

 

Figure 2.86 

 G is a Plithogenic dual number tree. 

 Consider the subgraph H1 of is G given in the following 
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H1 = 

 

 

 
 

Figure 2.87 

 We see H2 is a Plithogenic dual number hyper subgraph 
G. All dual number row vectors which are edges of G are also 
present as edges in H1. In fact all edges of H1 are dual number 

row vectors. H1
 is unique and it is the Plithogenic dual number 

subgraph of G. 

 Now consider H2
 is a Plithogenic dual number subgraph 

of G given by the following figure. 

 

 

                 H2 = 

 

 

Figure 2.88 
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 H2 is also a Plithogenic dual number subgraph of G all of 

its edge row vectors are dual numbers, how ever H2 is not hyper 

as H2 does not contain all the dual number row vectors of G. 

 Let H3 be the Plithogenic dual number subgraph of G 

given by the following figure. 

 

H3 = 

 

 

 

 

 

Figure 2.89 

 We see H3 has all its edges which are row vectors are real 

and in fact H3 has all the real row vectors of G. 

 Thus H3 is a Plithogenic pseudo dual number real hyper 

subgraph of G. 

 We see all the 3 subgraphs are trees and in fact G is not 

simple or semi simple or pseudo semi simple. 

 Now we describe a Plithogenic complex graphs whose 

row weights are from C = {a + bi / a, b  R and   i2 = –1} by an 

example. 
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Example 2.39: Let G be a Plithogenic complex graph given by 

the following figure. 

 

 

 

G =  

 

 
 

 

 

Figure 2.90 

 G has no Plithogenic pseudo hyper complex subgraph. So 

G is pseudo semi-simple. G has no Plithogenic hyper complex 

subgraph. Hence G is simple. 

 Thus, a Plithogenic complex graph G can be simple or 

otherwise. 

 We can also define Plithogenic neutrosophic complex 

graphs whose edges have row weights from the set C  I = {a 

+ bi + cI + diI/a, b, c, d  R (reals), i2 = – 1, I2 = I and (iI)2 = – 

I}. 

 In this case we can define 4 types of Plithogenic hyper 

subgraphs. 
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i) All the edges of G which are real should be 

present as the only edges of the subgraph H1 of 

G. We call this H1 a Plithogenic pseudo complex 

neutrosophic real subgraph of G. 

ii) All the edges of G which are complex and 

neutrosophic valued must be the only edges of a 

subgraph H2 of G we call H2 the Plithogenic 

complex neutrosophic hyper subgraph of G. 

iii) The subgraph H3 of G which has all complex row 

valued edges of G to be edges of H3 then H3 is 

defined as Plithogenic complex neutrosophic 

pseudo complex hyper subgraph of G. 

iv) Similarly we define Plithogenic complex 

neutrosophic pseudo neutrosophic hyper 

subgraph of G. 

 A Plithogenic complex neutrosophic graph of G which 

has none of the four types of hyper subgraphs is defined as the 

simple Plithogenic complex neutrosophic graph. 

 Otherwise if it contains only one or two or three types it 

is said to be pseudo simple or semi simple.  

 We will first provide examples to this effect. 

 

Example 2.40: Let G be a Plithogenic complex neutrosophic 

graph given by the following figure. 
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   G = 

 

 

 

 

 

 

Figure 2.91 

 We see G has all the four types of hyper subgraphs. 

 Let H1 be the Plithogenic complex neutrosophic subgraph 

of G given by the following figure. 
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H1 =  

 

 

 

 

Figure 2.92 

 H1 is only a Plithogenic neutrosophic complex subgraph 

of G. 

 Let H2 be a subgraph of G given by the figure. 

 

H2 =  

 

 

Figure 2.93 

 H2 is a Plithogenic complex neutrosophic hyper subgraph 

of G. 

 Let H3 be the Plithogenic pseudo hyper complex 

neutrosophic real subgraph of G given by the following figure. 
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 H3  = 

 

 

 

 

Figure 2.94 

 Clearly H3 contains all the real row vectors of G, hence 

H3 is a Plithogenic pseudo hyper complex neutrosophic real 

subgraph of G and it is unique. 

 H2 also contains all complex and neutrosophic valued row 

vectors of G hence H2 is the unique Plithogenic hyper 

neutrosophic complex subgraph of G. G is only a pseudo semi 

simple graph. 

 Next we give another example of a Plithogenic complex 

neutrosophic graph G. 

Example 2.41: Let G be a Plithogenic neutrosophic complex 

graph given by the following figure. 
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G = 

 

 

 

 

Figure 2.95 

 Clearly G is a  Plithogenic complex neutrosophic graph 

with row vector from C  I C  I = {(a1 + a2I + a3i + a4Ii, 

b1 + b2I + b3i + b4iI) / ai, bi  R 1  i  4} given by the above 

figure. 

 We just give a few subgraphs of G. 

 Let H1 be a subgraph of G given by the following figure. 

 

 

             H1 =  

 

Figure 2.96 
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 H1 contains all the neutrosophic row vector values edges 

of G and no other edge. Hence H1 is a Plithogenic pseudo hyper 

neutrosophic complex subgraph of G. 

 Let H2 be a subgraph of G given by the following figure. 

 

H2 =  

 

 

Figure 2.97 

 The subgraph H2 of G contains all the complex 

neutrosophic row vector valued edges of G and nothing more. 

Hence H2 is a Plithogenic hyper complex neutrosophic subgraph 

of G and it is unique. 

 Consider H3 the subgraph of G given by the following 

figure. 

 

H3 =  

 

Figure 2.98 

 H3 is a Plithogenic pseudo hyper complex neutrosophic 

real  subgraph of G. In fact all real edges present in G and 

present in H3 and nothing more. 
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 We see all the three hyper subgraphs H1, H2 and H3 are 

triads. 

 Now consider the subgraph H4 of G given by the 

following figure. 

 

 

         H4 = 

 

Figure 2.99 

 All the complex valued row vector edges of G are present 
in H4 and nothing more; hence H4 is a Plithogenic pseudo hyper 
complex neutrosophic subgraph of G. 

 Thus G is not a simple or semi simple Plithogenic 

complex neutrosophic graph. It has all four Plithogenic hyper 
and Plithogenic pseudo hyper subgraphs of G. Consider the 
subgraph K1 of G given by the following figure. 

 

K1 = 

 

 

 
Figure 2.100 
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 Clearly K1 is not a hyper subgraph or a pseudo hyper 

subgraph just a Plithogenic neutrosophic complex subgraph of 

G. Thus we can have Plithogenic graphs which are not simple or 

pseudo simple. Characterization of simple or pseudo simple 

graphs in case of appropriate Plithogenic graphs happens to be a 

difficult problem. 

 Also the condition for Plithogenic subgraphs of G to be 

structure preserving also happens to be a difficult problem. 

 However, we can as in case of usual graphs define and 

develop cliques. This task is left as an exercise to the reader. 

 We provide a few examples of them. 

Example 2.42: Let G be a Plithogenic graph given by the 

following figure. 

 

 

 

G = 

 

 

 

 

 

Figure 2.101 
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 With row weights from P = {(x, y, z) / x, y, z  C  g = 

a1 + a2g + a3i + a4ig where ai  R, i2 = – 1, g2 = 0, (ig)2 = 0; 1  i 

 4} where di  P; 1  i  14. This has a clique B of order four 

given by 

  

 B =  

 

 

Figure 2.102 

 It has two different triads apart from this clique. So as in 

case of usual graphs we can in case of Plithogenic graphs also 

have the concept of clique the largest complete subgraph of G. 

In this case G has only one clique. 

 Further as in case of usual graphs in case of Plithogenic 

ring graph, Plithogenic tree (graph) and Plithogenic wheel graph 

we do not have the concept of clique. Clique may not be present 

in other types of special row vector valued graphs which is 

difficult to characterize. 

 We prove an example before we proceed to develop the 

concept of edge Plithogenic subgraph of a Plithogenic graph G. 

 

Example 2.43: Let G be a Plithogenic graph given by the 

following figure. 
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G =  

 

 

 

 

Figure 2.103 

 G has no clique. This Plithogenic subgraph does not 

contain even a triad. Here aj  {C   C  I  C  I  C 

 I} = {(x, y, z, ) / x, y, z,   C  I = {a + bI + ci + dIi; a, 

b, c, d  R} 1  j  8. Hence we see as in case of usual graphs 

Plithogenic graphs may not always contain a clique. 

 What is interesting is when we remove the edges and 

edges are not only real complex or neutrosophic or dual 

numbers we find edge subgraphs behave differently. 

 In this chapter we further study the edge Plithogenic 

subgraphs of G by some examples then discuss the specialty 

about them in case of Plithogenic neutrosophic graphs, 

Plithogenic complex graphs, Plithogenic neutrosophic complex 

graphs, Plithogenic dual number graphs and so on. 

 

Example 2.44: Let G be a Plithogenic graph given by the 

following figure. 
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G =  

 

 

 

 

Figure 2.104 

 Suppose the edge (3, 0, 1) is removed from G then let H1 

= G \ {(3, 0, 1)} we get a Plithogenic subgraph and no special 

property is enjoyed by these Plithogenic graphs. So the study in 

this direction is similar to that of usual graphs. 

 The  only  warning  is  instead  of  writing H1 = G \        

{(3, 0, 1)} we should write as only G \ {v1v2} or G \ {v1 v5} to 

avoid this problem it is appropriate we mention only the edges 

and not the row vector.  

 As far as Plithogenic graphs with entries from real row 

vectors are concerned there is no difference between usual 

graphs and these graphs. Only in case when the row vectors are 

not real or modulo integers we see it has a strong way in 

predicting the hyper and pseudo hyper appropriate subgraphs. 

 Hence we will proceed onto describe a few properties and 

more onto Plithogenic graphs whose vector row vector values 

are not real. 
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Example 2.45: Let G be a Plithogenic ring graph given by the 

following figure. 

 

 

G = 

 

  

 

 

Figure 2.105 

 Any subgraph got as G \ {vivj}; i  j is not a ring graph. 

Example 2.46: Let G be a Plithogenic star graph given by the 

following figure. 
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Figure 2.106 
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 Removal of any edge results in a subgraph which is again 

a star subgraph of G. This is the marked difference between the 

circle graph and a star graph. 

 The structure is preserved in case of subgraphs of star 

graphs whereas structure is not preserved by subgraphs in case 

of ring graphs. 

 Consider the following example of a wheel. 

Example 2.47: Let G be a Plithogenic wheel graph given by the 

following figure. 

 

 

G =  

 

 

 

 

 

Figure 2.107 

 Removal of any edge destroys the structure of the wheel. 

Thus edge subgraphs of wheel is not a wheel.  

 Finally we give the following theorem. 
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Theorem 2.1.  Let G be a Plithogenic star graph every 

subgraph of G is again a Plithogenic star graph. Thus, structure 

is preserved. 

 Proof is direct and hence left as an exercise to the reader. 

Theorem 2.2. Let G be Plithogenic ring graph. None of the 

subgraphs of G is a ring graph. So, structure is not preserved. 

 Proof is direct and is left as an exercise to the reader. 

Theorem 2.3. Let G be a Plithogenic wheel graph. None of the 

subgraphs of G is a wheel. 

 Proof is left as an exercise to the reader. 

 Next when we study the case of tree or line of Plithogenic 

graphs then subgraphs can be trees or lines respectively in some 

cases. 

 The study in this direction is also a routine as in case of 

usual graph so left as an exercise to the reader. 

 Now in case of complete Plithogenic graphs we may or 

may not have the subgraph to be complete always it may be 

complete depending on the edges which are removed. 

 We may in case of certain Plithogenic graphs which are 

connected may become disconnected by removal of some edges 

and so on. All this study is like usual graphs in case the row 

vector valued vectors which forms the edge weights are taken to 

be real. 
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 Now if they are neutrosophic we discuss the subgraph 

properties by some examples. For our motivation is to relate it 

to simple Plithogenic graphs or Plithogenic hyper subgraphs. 

Example 2.48: Let G be a Plithogenic neutrosophic graph given 

by the following figure. 

 

 

 

G =  

 

 

 

Figure 2.108 

 Now this has no Plithogenic hyper neutrosophic subgraph 

or a Plithogenic pseudo hyper neutrosophic subgraph. Thus, it is 

simple. 

 However, if we try to find the Plithogenic hyper 

neutrosophic edge subgraphs is it simple? Can G have both 

Plithogenic hyper neutrosophic edge subgraph as well as 

Plithogenic pseudo hyper neutrosophic edge subgraph, we try to 

describe this by the following figures. 

 Consider H = G \ {v1v2, v1v3, v3v6, v5v7, v5v6, v3v4, v4v5, 

v7v5}. 
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 H is described in the following. 

 

 

       H = 

 

 

 

Figure 2.109 

 H is the Plithogenic pseudo hyper subgraph of G which 

contains all real edges of G; in fact has only all edges to be real 

and no other edges. 

 Consider K = G \ {v2v3, v3v7, v3v5, v7v6}, in which is the 

edge subgraph of G got by removing all the real edges from G 

and is given by the following figure. 
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Figure 2.110 
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 Clearly K is a Plithogenic hyper neutrosophic edge 

subgraph of G. Thus G is not simple or pseudo simple as edge 

hyper subgraphs but G is simple as realized as usual subgraph. 

 Thus it is advantageous to use edge subgraphs to get 

hyper subgraphs. For we see K contains all the neutrosophic 

row vector valued vector edges of G and nothing more. 

 Thus K is the unique Plithogenic hyper edge subgraph of 

G. So G is not edge simple. In fact we can say none of the 

Plithogenic graphs are edge simple or edge pseudo simple. 

 We proceed to describe more examples of the same. 

Example 2.49: Let G be a Plithogenic dual number graph given 

by the following figure. 
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Figure 2.111 

 If the edge v1v2 is removed from G we get the dual 
number special row vector valued subgraphs K with two 
components one Plithogenic pseudo hyper dual number 
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subgraph of G and other is just a Plithogenic dual number 
subgraph of G given by the figure K in the following. 

 

 

 

 

 

 

 

Figure 2.112 

 However if we find the edge subgraph H = G \ {v2v4, 
v2v5, v5v7, v7v11 and v7v12}; we get a Plithogenic hyper dual 
number subgraph H given by the following figure. 

 

H = 

 

 

 

 

 

Figure 2.113 
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 Consider the subgraph K = G \ {v1v2, v1v3, v3v8, v3v6, 
v8v9, v6v10} got by removing the edges mentioned above. 

 The Plithogenic pseudo hyper subgraph of G is given by 
the following figure. 

 

 

             K = 

 

 
Figure 2.114 

 Thus G is not simple. It has also other subgraphs got by 

removing some edges. Edge removing always entail in hyper 

subgraphs when done appropriately. 

 However usual vertex subgraphs cannot satisfy this. 

 In view of this we have the following theorem. 

Theorem 2.4. Let G be a Plithogenic neutrosophic graph. There 

exist an Plithogenic edge hyper subgraph and Plithogenic 

pseudo edge hyper real subgraph. 

Proof. Let G be the given Plithogenic neutrosophic graph. 

Obtain H a edge subgraph of G by removing all real edges from 

G that is H = G \ {real edges of G}. Then H is the Plithogenic 

unique pseudo neutrosophic hyper subgraphs of G. 
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 Let K = G \ {all neutrosophic edges of G}; that is K is got 

by removing all neutrosophic edges of G. Then K is the 

Plithogenic pseudo hyper real subgraph of G. 

 Hence the claim. 

 So we have the following corollary. 

Corollary 2.1: All Plithogenic neutrosophic graph are not edge 

simple or edge pseudo simple. 

Proof. Obvious from the above theorem. 

 Thus when we discuss about Plithogenic neutrosophic 

hyper graphs we have simple and edge simple together with 

pseudo simple and pseudo edge simple. An interesting study is 

to find those Plithogenic neutrosophic graphs which are both 

not simple and edge simple. Can we characterize such 

Plithogenic neutrosophic graphs? 

 Here it is pertinent to keep on record that the notion of 

Plithogenic neutrosophic graphs can be replaced by Plithogenic 

neutrosophic complex graphs or Plithogenic dual complex 

graphs and so on and so forth. Study and research in this 

direction is both interesting and innovative. 

 Next we proceed onto study edge-vertex subgraphs of 

Plithogenic subgraphs. Before we make such a study we first 

describe edge vertex subgraph of usual graphs and define and 

describe them in case of classical graphs. 

Example 2.50: Let G be a graph given by the following figure. 



Plithogenic Graphs  95 
 
 
 

 

 

G = 

 

 

 

 

 

Figure 2.115 

 Let H be an edge-vertex subgraph got by removing the 

edges v6v8 and v7v8 and the vertices v1 and v2. 

 

 

 

H =  

 

 
Figure 2.116 
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 We see the vertex subgraph H1 of G got by removing the 

vertices is 

 

H1 = 

 

 

 

 

Figure 2.117 

 The vertex subgraph H1
 of G. 

 Let H2 be the edge subgraph got by removing the edges 

v7v8 and v6v8. 
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Figure 2.118 
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 We see H2 is connected but H1 is disconnected. However,  
H is also a disconnected subgraph. 

 We provide a few more examples of them. 

Example 2.51: Let G be a Plithogenic star graph given by the 
following figure. 

 

 

 

G = 

 

 

 

Figure 2.119 

 Suppose H1 is an edge subgraph of G got by removing 
edges v1v9 and v1v2. H1 = G \ {v1v9, v1v2} is given by the figure. 
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Figure 2.120 
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 Let H2 be the vertex subgraph by taking away the vertex 

sets v2 and v9. H2 the vertex subgraph of G is given by the 

following figure. 

 

H2 = 

 

 

 

 

 

Figure 2.121 

 Let H3
 be the edge-vertex subgraph of G got by removing 

the edges v1v2 and v1v9 and the vertices v2 and v9. 

 H3 is given by the following figure. 

 

 

 

 

 

 

Figure 2.122 
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 We observe that all the three subgraphs H1, H2 and H3 are 

identical. Thus we see in this case the edge subgraph, vertex 

subgraph and the edge-vertex subgraph are identical. 

Let K1 be the edge vertex subgraph of G given by the 

following figure with vertex set v1, v3, v5, v7, v9 and edges v1v2, 

v1v4, v1v6 are removed from G. 

 

K1 = 

 

 

 

Figure 2.123 

 Now the vertex subgraph K2 of G with vertex sets v1, v3, 

v5, v7, and v9 is given by the following figure. 
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Figure 2.124 
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 Let K3 be the edge subgraph of G where K3 = G \ {v1v2, 

v1v4, v1v6, v1v8} given by the following figure. 

 

 

 

        K3 = 

 

 

Figure 2.125 

 We see in this case also all the three subgraphs given in 

figures K1, K2 and K3 are identical. 

 From these examples it is clear we can have edge-vertex  

subgraphs which are identical with edge subgraph and vertex 

subgraph. That is all the 3 subgraphs are identical.  

 So, it is left for the reader to find conditions for all the 

three subgraphs to different. 

Example 2.52: Let G be a Plithogenic edge graph given by the 

following figure. 
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G =  

 

 

 

Figure 2.126 

 Let H1 be a edge subgraph of G given by the following 

figure where H1 = G – {v1v5, v1v9, v1v3} 

 

 

H1 = 

 

 

 

Figure 2.127 

 Let H2 be the vertex subgraph of G using the vertices v1, 

v2, v4, v6, v8, v10 and v11 which is given by the following figure. 
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H2 = 

 

 

 

Figure 2.128 

 Clearly H1 and H2 are distinct. Now we find the edge 

vertex subgraph H3 got by removing the edges v1v5, v1v9 and 

v1v3 and the 
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Figure 2.129 

 We see H3 and H1 are identical, however H2 is different 

from H1 and H3. 

 But it is interesting to observe that H2 is a subgraph of H1 

(as well as H3 as  H1 = H3). 
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 Such situations are interesting, and one needs to study 

them. 

 Consequent of the above example we propose the 

following problem. 

Problem 2.4. Let G be a special row weighted graph. Suppose 

H1, H2 and H3 are the vertex subgraph, edge subgraph and edge-

vertex subgraph respectively of G. 

i) Find conditions under which all the three 

subgraphs H1, H2 and H3 are distinct. 

ii) Find conditions under which H1 = H2 = H3 that is 

all the three subgraphs are identical. 

iii) Find conditions under which one pair is identical 

and other is a subgraph of them. 

 The study in this direction is interesting and innovative. 

Author suggest that this can be done in case of special graph 

like star graph, ring graph, complete graph, tree etc. 

Example 2.53: Let G be a special row weighted graph given by 

the following figure. 
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G =  

 

 

Figure 2.130 

 Let H1 be the vertex subgraph of G using the vertex sets 

v1,v2,v3 and v5 given by the following figure. 

 

 

       H1 = 

 

Figure 2.131 

 Let H2 be the edge subgraph of G given by G \ {v1v2, 

v3v4, v5v1, v3v5} given by the following figure. 
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    H2 = 

 

 

 

Figure 2.132 

 We see H1 and H2 are entirely different. Let H3 be the 

edge vertex subgraph of G given by the following figure. H3 has 

vertex set v1, v2, v3 and v5 and edges v1v2, v3v4, v5v1 and v3v5 are 

removed. 

 

H3 = 

 

 

Figure 2.133 

 Clearly H3 is distinct from H1 and H2; all the three 

subgraphs H1, H2 and H3 of G are distinct. So we can have 

situations under which all the 3 subgraphs, viz; edge - special 

row matrix weighted subgraph, vertex special row vector 

weighted subgraph and edge vertex special row vector weighted 

v1 

(I, 0, 1) 

v3 

v2 

v5 

(1, 0, 1) (1, 1, 0) 

v1 
(2,3,2) 

v4 

v2 

v3 

v5 

(0,1,1) 

(1,1,0)

(9,0,0) 

(2,0,0) 

(1,0,1) 
(I,0,1) 
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subgraph are distinct, situations in which two of them identical 

and situations in which all the 3 subgraphs are identical. 

 Study in this direction is interesting and it is difficult to 

characterize the 3 situations mentioned above. 

 We can define path walk etc and give the value of them 

as sum of the row vectors. We just illustrate this situation by an 

example or two. 

Example 2.54: Let G be special row weighted graph given by 

the following figure. 

 

 

G =  

 

Figure 2.134 

 We see for this G, v1 v2 v5 v2 v3 is a walk. 

 Suppose we want to find the total weight or total cost or 

the sum of weight of row vectors associated with G we get it as 

 (3, 1, 0) + (1, 1, –1) + (1, 1, –1) + (1, –2, 0) 

                      = (6, +1, –2)    (w) 

For the same G the path is v1v2v5v4. 

 Now the same row weight of the path v1v2v5v4 is ;  

v1 
(3, 1, 0) 

v2 v3 
(1, -2, 0) 

v4 v5 (-1, 2, 0) 

(1, 1,-1) (2, 2,4) 
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 (3, 1, 0) + (1, 1, –1) + (–1 , 2, 0) 

                        = (3,4, –1)    (p) 

We see w and p are distinct row weights. 

 Next we proceed onto find the trail of this G. v1v2v5v4v2v3 

is a trail and this is not a path. 

 The row weight vector associated with this trail is  

 (3, 1, 0) + (1, 1, –1) + (–1, 2, 0) + (2, 2, 4) + (1, –2, 0) 

                         =  (6, 4, 3)    (t) 

Clearly the values s, t, w and p are different. 

 The cycle of G is given by v2v4v5v2 and the row weight 

vector associated with G is given by 

 (2, 2, 4) + (–1, 2, 0) + (1, 1, 1) 

                 = (2, 5, 3)    (c) 

 Clearly the row weights of c, t, p and w are distinct. 

 Finding the cost or time or distance weights in a 

Plithogenic graphs give vector as answer for the value of path or 

trail or so on. 

 Clearly the G we have used is not a directed graph 

certainly in case of directed Plithogenic graphs they will vary in 

a very different way.  
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 Study in this direction is interesting. Just for the sake of 

completeness we just recall the definition of path, walk etc in 

case of directed graph G. 

 A directed walk in a directed graph G is an alternating 

sequence of points and arcs, v0, x1, v1, …, xn, vn. The length of 

this directed walk is n, the number of occurrences of arcs in it. 

 A closed walk has the same first and last points and the 

spanning walk contains all points.  

 A path is a walk in which all points are distinct and a 

cycle is a nontrivial closed walk with all points distinct (except 

the first and last). 

 A semi walk is again an alternating sequence v0,x1,v1, … 

xn, vn of points. 

 Study in this direction is interesting as to find uniform 

cost or cost we may use these notions. 

 Further the study of directed Plithogenic graphs for these 

properties may give innovative results. 

 Finally, one can call these graphs when used in networks 

as Plithogenic networks. 

 The main aim of defining and developing the concept of 

Plithogenic graphs are to use this in single valued neutrosophic 

graphs, neutrosophic quadruples, neutrosophic refined sets and 

finally in the study of graphs for plithogenic sets recently 

developed by Smarandache [44]. 
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 We develop in the next chapter the line graph of 

Plithogenic graphs and analyse them. 

 Single valued neutrosophic graphs have been studied by 

[5, 6]. They are nothing but these Plithogenic graphs where 

edge weights are (a1, a2, a3) with ai  [0, 1]; 1  i  3. 

 On similar lines we can define Plithogenic quadruple 

neutrosophic graphs whose edge weights (a, b, c, d)  R4 or [0, 

1]4. 

 Study in this direction is still open interested researcher 

can pursue it.  

 We now suggest some problems to the reader. 

 

Problems 

1. Give an example of a integer 1  5 Plithogenic graph 

with 4 vertices. 

2. How many integer 1  3 Plithogenic graphs with 3 

vertices can be drawn? (Justify your claim). 

3. Show the number of real 1  3 Plithogenic graphs with 

3 vertices is greater than the number of integer 

Plithogenic graphs with 3 vertices (Prove your claim). 

4. Give an example of a real 1  7 Plithogenic star graph 

with 18 vertices. 

5. Give an example of a 1  5 Plithogenic binary tree with 

5 layers. 
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6. Give an example of a circle 1  3 Plithogenic graph 

with 9 vertices. 

7. Give an example of a 1  6 Plithogenic wheel G with 9 

vertices and find all subgraphs of G. 

8. Let G be a 1  2 Plithogenic graph given by the 

following figure. 

 

  

G =  

 

 

 

 

 

Figure 2.135 

i) Find all Plithogenic subtrees of G.  

ii) How many of the Plithogenic subgraphs are 

disconnected? 

iii) How many Plithogenic edge subgraphs of G are 

disconnected? 

iv) Find a walk from v9 to v8. 

v) Find a path from v6 to v6. 

v1 
(0,3) (1,1) 

v2 

v5 

(2,4) 

(9,0) 

v9 v9 

(0,9) 

v6 

v7 

(9,9) 

v4 

v3 
(9,3) 

(1,9) 
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vi) Find a trail from v1 to v8. 

vii) Can G have a clique? 

9. Let G be a complete 1  3 Plithogenic graph of order 7. 

 i) Can we say all Plithogenic subgraphs of G are 

also complete? (Justify your claim). 

 ii) Find all edge Plithogenic subgraphs of G. 

 iii) How many in (ii) are complete? 

 iv) Find all disconnected Plithogenic subgraphs of 

G. 

10. Let G be a Plithogenic graph given by the following 

figure. 

 

 

 

 

 

 G = 

 

 

 

Figure 2.136 

v1 
(5, 0, 0, 1) 

v2 

v3 

v4 v6 

(7, 1, 0, 0) 

(3, 5, 6, 7) 

(2, 0, 0, 0) 

(7, 7, 0, 6) 

v5 

(6,0,0,6) 

(1,1,1,1) 

v8 

(1,2,0,0) 
(1,1,0,0) 

v7 

(3,0,3,0) 

(8,0,0,1) 

(1,1,0,0) 

(7,7,7,0) 

(0,0,1,2) 

(3,0,1,0) 
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i) Answer all the questions (i) to (vii) of     

problem 8. 

ii) Find the largest clique of G. 

iii) How many Plithogenic triads are in G? 

iv) Find all adjacent triads in G. 

 

11. Let G be a Plithogenic neutrosophic graph given by the 

following figure. 

 

 

 

 

 

 

 

 

Figure 2.137 

 

i) Study all questions (i) to (vii) of problem 8. 

v1 
(1,1) 

v2 

v5 

v4 

v6 

v10 
v11 

v3 

v9 

v7 

v8 

 (3I+1,0) 

(1,5) 

(4,2) 

(I,2I) 

(I,1) 

(3,I) (0,I) 

(1,1) 

(3,0) 
(2,I) 

(0,7) 

(2I,1+I) 

(1+I,0) 

(0,7) 
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ii) Find all Plithogenic neutrosophic subgraphs of G 

which have only neutrosophic row vectors. 

iii) Find all Plithogenic subgraphs of G which has 

only real row vector weights. 

iv) Find the clique of G? 

v) What is the order of the clique? 

 

13. Give some real-world problem applications of these 

Plithogenic graphs. 

14. Find for the G in problem (11) the adjacency matrix. 

15. What will be the form of the distance matrix in case of 

Plithogenic graphs? 

16. For the graph G given in problem (11) can one get the 

largest Plithogenic neutrosophic subgraphs? 

 (Is it possible as subset Plithogenic subgraph or only as 

Plithogenic edge subgraph?) 

17. For G in problem (11) find a walk, path and trail from the 

vertex v1 to v2. 

18. Find for a Plithogenic neutrosophic tree with 5 layers and 

20 nodes which has no Plithogenic subset neutrosophic 

subgraphs. 
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19. Can these Plithogenic graphs find applications in social 

network problems? 

20.  How are Plithogenic graphs different from single valued 

neutrosophic graphs? 

 

 

 

 



 

Chapter Three  

 

 
PLITHOGENIC VERTEX GRAPHS  

 

 In this chapter we define the new notion of Plithogenic 

vertex graphs where the vertices are labelled with row matrix. 

Study of these graphs are very essential for the case of single 

valued neutrosophic graphs and Plithogenic vertex graphs. 

Example 3.1. Let G be Plithogenic vertex graph given by the 

following figure. The row matrix for vertex and edge labels are 

of the same order. 

 

 

G =  

 

 

Figure 3.1 

v1 =  
(3, 1, 2) 

v2 =  
(1, 0, 1) 

v3 =  
(5, 7, 8) 

v5 =  
(2, 5, 0) 

v4 =  
(1, 1, 5) 

e4 
(4,1, –1) 

e3 
(3,0,0) 

e5 
(0,1,2) 

e6 
(2,2,2) 

e2 
(3,3,0) 

e1 
(1,2,0) 
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Example 3.2. Let G be a Plithogenic vertex graph given by the 

following figure. 

 

 

G =  

 

 

 

 

Figure 3.2 

 We see G is a Plithogenic vertex graph with labels of 

same order, we call it as same Plithogenic vertex graph. 

Example 3.3.  Let G be a special graph,   

 

G =  

 

 

 

 

Figure 3.3 

(1, 2) 

v5 = 
(1, 7) 

v6 = 
(2, 1) 

v3 = 
(0, 5) 

v1 = 
(1,2) 

v4 = 
(1, 1) 

v2 = 
(0, 1) 

(1, 2) 

(1, 1) 
(3, 1) 

(3, 0) 

(2, 2) 

(0, 1) 
(0, 9) 

(9, 0) 
(1, 9) 

(1, 7) 

(7, 0) 

(3, 1) 

(0, 4) 

(5, 2) 

(5, 0) 

v9 =  
(9, 1, 9) 

v1 =  
(1, 1, 0) 

v2 =  
(1, 1, 6) 

v7 =  
(0, 9, 9) 

v6 =  
(9, 0, 0) 

v5 =  
(9, 9, 9) 

v4 =  
(1, 0, 0) 

v3 =  
(1, 0, 0) 

v8 =  
(0, 0, 9) 

(1, 1, 1) 

(1, 0, 0) 

(0, 1, 2) 

(0, 1, 1) 

(1, 0, 1) 
(1, 1, 0) 

(0, 1, 0) 

(0, 0, 1) 
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  Clearly G is a same Plithogenic vertex star graph. 

Example 3.4. Let G be a same Plithogenic vertex ring or circle 

graph given by the following figure. 

 

 

 

G =  

 

 

 

 

 

Figure 3.4 

 Similarly, we can have the same Plithogenic vertex line 

graph which is given by the following figure. 

Example 3.5. Let L be the same Plithogenic vertex graph given 

by the following figure. 

  

v1 =  
(1, 1, 1, 0) 

v8 =  
(1, 1, 1, 1) 

v7 =  
(1, 0, 1, 0) 

v6 =  
(1, 1, 0, 0) 

v5 =  
(1, 0, 0, 0) 

v4 =  
(0, 0, 1, 0) 

v3 =  
(0, 1, 0, 0) 

v2 =  
(0, 0, 0, 1) 

(1, 0, 1, 1) 

(1, 1, 1, 1) 

(0, 1, 0, 0) 

(0, 1, 1, 1) 
(0, 0, 1, 1) 

(0, 0, 0, 1) 

(0, 0, 1, 0) 

(1, 0, 0, 0) 
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            L = 

 

 

 

 

 

Figure 3.5 

 Now we make the formal definition of the same. 

Definition 3.1. Let G be the graph where vertex sets v1, v2, …, vn 

are labeled values form the collection of 1  m row vectors                        

where M = {(a1, …, am)| ai  R or C or Z or R  I or Zn or 

C(Zn) or Zn  I}. The edges are also labeled from the elements 

of M. We call such graph G as Plithogenic vertex graph. 

 Researchers / readers may wonder about the use of such 

graphs. Basically they are graphs related with intuitionistic 

fuzzy  graphs and single valued neutrosophic  graphs. 

v1 =  
(5, 0, 0, 1) 

v2 =  
(0, 1, 1, 0) 

v3 =  
(1, 0, 0, 0) 

v4 =  
(0, 0, 1, 1) 

(2, 3, 0, 1) 

(4, 1, 2, 3) 

(1, 1, 0, 0) 
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  We will be elaborately discussing in the final chapter of 

this book the applications of these Plithogenic vertex graphs in 

several models.  

 First we define various types of Plithogenic vertex 

graphs. In Definition 3.1 we have defined the new notion of 

Plithogenic vertex graphs.  We have also given examples of 

them. The edges are given values with no fixed way it is left at 

the choice of the researchers. 

 Sometimes they may represent a social network. We have 

still not given the directed same Plithogenic vertex graph. 

 We now proceed onto supply some examples of special 

subgraphs of these graphs. 

Example 3.6. Let G be a same Plithogenic vertex graph given 

by the following figure. 

 

G = 

 

 

 

 

Figure 3.6 

 The subgraphs of G are 

v1 =  
(2, 1, 0) 

v2 =  
(1, 1, 9) 

v5 =  
(4, 1, 0) 

v3 =  
(1, 1, 0) 

v4 =  
(1, 9, 1) 

(1, 2, 3) 

 (3,0,0) 

(2, 1, 0) 

(4, 8, 0) (1, 2,4) 

(0, 0, 9) 
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H1  = 

 

 

Figure 3.7 

 The subgraph H1 is again a same Plithogenic vertex 

graph.  

 H2 be a subgraph of G given by the following figure. 

 

 

H2 = 

 

 

 

Figure 3.8 

 Clearly H2 is an empty same Plithogenic vertex subgraph 

of G. 

 Let H3 be the special subgraph of G given by the 

following figure. 

v1 =  
(2, 1, 0) 

v3 =  
(1, 1, 0) 

v5 =  
(4, 1, 0) 

(3, 0, 0) 

(4, 8, 0) 

v1 =  
(2, 1, 0) 

v4 =  
(1, 9, 1) 

v5 =  
(4, 1, 0) 
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H3 = 

 

 

 

Figure 3.9 

 H3 is a same Plithogenic vertex subgraph of G. G two 

such rings but G has no cliques. 

 The only maximal subgraphs of G just dyads and no 

proper complete subgraphs. 

Example 3.7. Let G be a same Plithogenic vertex graph given 

by the following figure. 

 

 

G =  

 

 

 

 

Figure 3.10 

v1 =  
(2, 1, 0) v3 =  

(1, 1, 0) 

v2 =  
(1, 1, 9) 

v5 =  
(4, 1, 0) 

(3, 0, 0) 

(0, 0, 9) 

(1, 2, 4) 

(2, 1, 0) 

v1 =  
(1, 4) 

(1,0) 

v7 =  
(0, 9) 

v5 =  
(9, 9) 

v6 =  
(7, 9) 

v4 =  
(1, 5) 

v3 =  
(0, 1) 

v2 =  
(1, 0) 

(1,9) (9,0) 

(9,9) 

(1,9) 

(1,5) (2,3) 

(0,4) 

(9,5) 

(1,1) 
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 G is a same Plithogenic vertex graph. 

 This has a clique of order four.  

 We define a clique as a maximal complete subgraph of G. 

It need not necessarily be a maximal subgraph. 

 For the maximal subgraphs of G are given by the vertex 

sets {v1, v2, v3, v4, v5, v6}, {v1, v2, v3, v4, v5, v7}, {v1, v2, v3, v4, 

v6, v7}, {v1, v2, v3, v5, v6, v7}, {v1, v5, v3, v4, v6, v7}, {v1, v2, v4, 

v5, v6, v7} and {v2, v3, v4, v5, v6, v7}. 

 However none of them can contribute for a complete 

subgraph of G and G has only one subgraph of order four which 

is complete given by 

  

 

            =  H 

 

 

Figure 3.11 

 H is a clique of order four however it is not a maximal 

subgraph of G. 

 We see some graphs can have more than one clique of 

same order.  

We give an example of the same. 

v1  
(1,1) 

v2  

v3  v4  

  (9,9) 
(1,9)

(1,9) 

(1,5) 

(9,0) 
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 Example 3.8. Let G be a graph given by the following figure. 

 

 

G =  

 

 

 

 

 

 

Figure 3.12 

 Clearly G is a Plithogenic vertex graph. 

 This two subgraphs H1 and H2 of G of order four which 
are complete. They are as follows. 

 

 

H1  =  

 
Figure 3.13 

v1 =  
(1, 1, 9) 

(0, 9, 0) 

v3 =  
(0, 0, 9) 

(0, 0, 1) 
v2 =  

(1, 0, 0) 

v4 =  
(0, 9, 0) 

(0, 0, 9) 

(1, 9, 0) (1, 2, 9) 

(9, 9, 9) 

v5 =  
(9, 1, 9) 

v6 =  
(9, 9, 0) 

(1, 2, 8) 

(9, 2, 0) 

(7, 2, 9) 

(0, 9, 9) (9, 0, 0) 

v1  v2  

v3  v4  
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H2 = 

 

 

Figure 3.14 

 Let H3 be the subgraph of G with 5 vertices given by the 

following figure. 

 

 

H3 = 

 

 

 

 

Figure 3.15 

 We see this has 5 vertices however it is not a clique but 

has a clique of order four. 

 Let H4 be the subgraph of G given by the following 

figure. 

 

v3  v4  

v5  v6  

v1  v2  

v1  v2  

v5  
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                     H4 = 

 

 

Figure 3.16 

 H4 is a disconnected subgraph of G. 

 Now we proceed onto describe the edge removed 
Plithogenic vertex graphs of G by some examples. 

Example 3.9.  Let G be a same Plithogenic vertex graph given 
by the following figure. 

 

 

 

G = 

 

 

 

 

 

 

Figure 3.17 

v1 v2 

v6 v5 

(1,1,0,0) 

v1 =  
(1, 2, 0, 1) 

(3, 0, 0, 0) v2 =  
(1, 1, 0, 1) 

v3=  
(1, 1, 1, 4) 

v4 =  
(9, 0, 0, 0) 

(9, 0, 0, 1) 

(1, 1, 1, 1) 

(9, 0, 0, 1) 

v5=  
(0, 0, 0, 9) 

(1, 0, 0, 9) 
v6=  

(0, 9, 0, 0) 

(9, 0, 0, 9) 
(9, 9, 0, 0) 

(1, 0, 0, 9) 

v7 =  
(0, 0, 1, 9) 

v8 =  
(1, 4, 0, 9) 

(1, 2, 0, 0) (2, 0, 0, 4) 
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 Suppose the edge v1v2 with associated row matrix (3, 0, 0, 

0) and the edge v2v4 with row matrix (9, 0, 0, 1) is removed. The 

resultant edge same Plithogenic vertex subgraph H1 is as 

follows. 

 

H1 =  

 

 

 

 

 

 

 

 

Figure 3.18 

 H1 looses a vertex v2. 

 So this is the same as vertex same Plithogenic vertex 

subgraph for which the vertex v2 is removed. 

 Let H2  be a Plithogenic vertex subgraph got by removing 

the edges (2, 0, 0, 4) (i.e. v5v8) and (9, 0, 0, 9) (i.e. v6v4). 

 

v1 =  
(1, 2, 0, 1) 

v3 =  
(1, 1, 1, 4) 

v4 =  
(9, 0, 0, 0) 

v6 =  
(9, 0, 0, 0) 

v7 =  
(0, 0, 1, 9) 

v8 =  
(1, 4, 0, 9) 

(1, 2, 0, 0) 

(9, 9, 0, 0)(9, 0, 0, 9) 

(1, 1, 1, 1) 

(1, 0, 9, 9) (9, 0, 9, 1) 

v5 =  
(0, 9, 0, 9) 

(2, 0, 0, 4) 

(9, 0, 0, 1) 

(1, 1, 0, 0) 
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H2 = 

 

 

 

 

 

 

Figure 3.19 

 Clearly H2 cannot be got as Plithogenic vertex subgraph 

of G. Thus, H2 the edges subgraph is different from the vertex 

subgraph. 

 These edge-subgraphs play at times a vital role when the 

network can afford to lose some edges but not vertices. 

 Study in this direction is a matter of routine so left as an 

exercise to the reader. In a way we can say they are same as 

working with usual graphs. 

 So, we do not discuss the other properties. We can see the 

only difference being in the study of length of the walk or trail 

and so on where if we associated a final value to it. 

v1 =  
(1, 2, 0, 1) 

v2 =  
(1, 1, 0, 1) 

(3, 0, 0, 0) 

(9, 0, 0, 1) 

v6 =  
(0, 9, 0, 0) 

v4 =  
(9, 0, 0, 0) 

(9, 0, 0, 1) (1, 0, 0, 9) 

(1, 1, 1, 1)

v3 =  
(1, 1, 1, 4) 

v5 =  
(0, 0, 0, 9) v8 =  

(1, 4, 0, 9) 

(1, 0, 0, 9)
(1, 1, 0, 0) 

(1, 2, 0, 0) v7 =  
(0, 0, 1, 9) 

(9, 9, 0, 0)
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 That value will be again a row matrix. 

 Next, we find the adjacency matrix of a same Plithogenic 

vertex graph G. 

 We will first illustrate this situation by some examples. 

Example 3.10. Let G be a same Plithogenic vertex graph given 

by the following figure. 

 

 

G = 

 

 

 

 

Figure 3.20 

 Let M be the adjacency matrix associated with G. 

M = 

1 2 3 4 5 6

1

2

3

4

5

v v v v v v

v (0,0,0) (1,1,2) (0,0,0) (9,0,9) (1,9,3) (0,0,0)

v (1,1,2) (0,0,0) (0,0,9) (0,0,0) (9,9,9) (0,0,0)

v (0,0,0) (0,0,9) (0,0,0) (0,0,0) (9,0,0) (0,1,9)

v (9,0,9) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

v (1,9,3) (9,

6

9,9) (9,0,0) (0,0,0) (0,0,0) (2,9,0)

v (0,0,0) (0,0,0) (0,0,9) (0,0,0) (2,9,0) (0,0,0)

 

v1 =  
(1, 1, 0) 

v4 =  
(9, 0, 0) 

(1, 1, 2) 

(9, 0, 9) 

v2 =  
(2, 0, 1) 

(0, 0, 9)

(1, 9, 3) 

(9, 9, 9) 

v5 =  
(0, 9, 0) 

v3 =  
(1, 0, 9) 

(9, 0, 0) 

(0, 1, 9) 

v6 =  
(0, 0, 9) 

(2, 9, 0) 
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 We make the following observations: 

1. The entries of the adjacency matrix M has its entries 

from the collection of 1  3 row matrices. 

2. The diagonal entries are zero 1  3 matrices. 

3. The matrix is symmetric. 
 

 So it is a matter of routine to find the adjacency matrix of 

any same Plithogenic vertex graph G. 

 However, if the vertices alone are row matrix labeled then 

we get the adjacency matrix as the usual matrix. We will 

illustrate this situation also by an example or two. 

Example 3.11. Let G be a same 1  5 Plithogenic vertex graph 

given by the following figure. 

 

 

G = 

 

 

 

 

 

Figure 3.21 

v1 =  
(1, 1, 1, 0, 0) 

v2 =  
(0, 0, 0, 0, 9) 

v4 =  
(1, 0, 0, 9, 9) 

v5 =  
(1, 2, 3, 4, 0) 

v3 =  
(1, 0, 0, 0, 9) 

v6 =  
(1, 2, 3, 4, 0) v7 =  

(9, 9, 9, 9, 9) 
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 The adjacency matrix M associated with G is as follows. 

M =   

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v

v 0 1 1 1 0 1 0

v 1 0 1 1 0 0 0

v 1 1 0 0 1 0 1

v 1 1 0 0 1 0 0

v 0 0 1 1 0 1 1

v 1 0 0 0 1 0 1

v 0 0 1 0 1 1 0

. 

 M is like any adjacency matrix. Clearly M is also 

symmetric. In case of Plithogenic vertex graph we do not get a 

different adjacency matrix. It happens to be identical like that of 

the usual graphs. 

 So, study of only vertex labeled with row matrices may 

find applications when we study them as multigraphs in some 

modeling. 

 However, we give applications of them in the final 

chapter of this book.  We see all the graphs which are vertex 

labeled by row matrices (Plithogenic vertex) behave in a similar 

way as that of the usual simple vertex labeled graphs. But if we 

construct a special type of multigraphs with vertex labeled as 

row matrices the results and the outcome would be entirely 

different. 

 We will just illustrate by an example this situation. 

Example 3.12. Let G be a row matrix vertex labeled graph 

given by the following figure. 



Plithogenic Vertex Graphs  131 
 
 
  

 

 

 

 

 

 

 

Figure 3.22 

 The mapping or edges are fixed depending on the 

elements of the row matrix to be identical we can have edges 

marked as zero also. So the above example is one such the 

resultant is a multigraph. 

 Clearly the maximum number of edges between any two 

vertices is only three. They are akin to subset vertex multigraphs 

but they are some what different for we can say the number of 

edges is P(S) where P(S) is the powerset of S. Now these type 

are a special type of multigraphs where the vertex sets are 

labeled as row matrices. In this situation it is not possible to get 

a complete uniform multigraph.  

 We can have only pseudo complete non uniform 

multigraph. 

v1 =  
(1, 0, 2, 4) 

v3 =  
(1, 2, 0, 5) 

5 v2 =  
(3, 1, 2, 5) 

v4 =  
(1, 1, 0, 5) 

1 

5 

2 1 

1 

5 
1 

0 
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 We will illustrate this situation by an example. 

Example 3.13.  Let G be a Plithogenic multigraph given by the 

following figure. 

 

G = 

 

 

 

 

Figure 3.23 

 We see G is a pseudo nonuniform complete special 

multigraph of order four. All these multigraphs are different 

from subset vertex multigraphs or for the fixing (or for existing 

of an) edge is possible only if the entries of elements are the 

same in the row vector at the ith component 1  i  n; (n = 4 

here) the 1  n row matrix otherwise no edge exist. If some 

three components say i, j, k in two vertex sets (row matrices) are 

the same we will have 3 edges connecting them.  

 In view of all these we put forth the following theorem. 

Theorem 3.1. Let G be a 1  n Plithogenic multigraph of order 

M. 

1) G can never be a complete uniform multigraph of 

order m. 

2) G has no clique of any order which has n edges. 

v1 =  
(1, 1, 2, 0, 1) 

v3 =  
(1, 0, 0, 0, 1) 

v2 =  
(0, 0, 2, 0, 1) 

v4 =  
(1, 1, 0, 0, 1) 

0 

2 

0 
1 

1 1 
1 1 

0 

1 
1 

1 
0 

1 

1 0 0 

1 

0 

0 
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 3) G has no dyad which has n edges. 

Proof: Given G is a 1  n Plithogenic multigraph of order M. 

 Proof of ( 1) to prove G has no uniform complete graph 

with n edges. 

 We know for any two vertices vi and vj we can have a 

maximum of only (n – 1) edges for n edges are common if and 

only if vi = vj that is both of the vertices have the same label in 1 

 n row matrices. We see there is a lot of difference between 

subset vertex multigraphs and Plithogenic multigraphs. 

 Here in the row matrix the element 0 or zero entry 

component if two row vectors have the edge is marked 0. 

However if we have to be more specific we to have to say it is a 

label and an edge is connected with label zero. We see the graph 

given in this example cannot be transformed into a subset vertex 

multigraph. 

 For the set v1 = {0, 2, 1, 1, 1}, v2 = {0, 0, 2, 0, 1}, v3 = {0, 

0, 0, 1, 1} and v4 = {1, 1, 1, 0, 0} so none of these sets are 

subsets they are multisets as 1repeats in v1 3 times and so on. 

 Thus we have to define only the new notion of multiset 

vertex multigraphs to transform the row matrix vertex labeled 

into subset vertex graphs. 

 So the concept of Plithogenic graphs are distinctly 

different from other vertex labeled graphs like subset vertex 

graphs, subset vertex multigraphs and so on. 

 In this case of Plithogenic multigraphs the edges are fixed 

once the vertex sets are fixed. 

 We will provide one more example of the same. 
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Example 3.14. Let G be a Plithogenic star multistar graph given 

by the following figure. 

 

 

G =  

 

 

Figure 3.24 

 Clearly G is not a multistar graph. 

Example 3.15. Let G be a Plithogenic multistar graph given by 

the following figure. 

 

 

 

 

 

 

 

 

Figure 3.25 

v2 =  
(3, 0, 0) 

v1 =  
(3, 1, 5) 

v3 =  
(1, 1, 7) 

v4 =  
(0, 0, 5) 

5 

3 

1 

v6 =  
(7, 7, 7, 7, 7, 
7, 3, 3, 9, 1) 

9 

1
2

v2 =  
(1, 2, 0, 0, 0, 

11, 11, 11, 11, 
11) 

v3 =  
(0,0,3,4,19,3
9, 8, 1, 6,2) 

3

4

v4 =  
(4,4,4,1,5,6,
1,4,8,10,0) 

65
8

v1 =  
(1, 2, 3, 4, 5, 
6, 7, 8, 9, 10) 

v5 =  
(2,1,2,2,1,1,

7,1,0,10) 

10
7 
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  We can have several vertices associated with star graph 

only if the row matrix which labels the vertices is large. 

 We can also have the concept of Plithogenic multiring 

graph. 

Example 3.16. Let G be a Plithogenic multiring graph given by 

the following figure. 

 

 

 

G = 

 

 

 

 

 

Figure 3.26 

 We can also have Plithogenic multitrees. 

  

(6, 6, 1, 
1) 

(6, 6, 7, 
8) 

(1, 2, 1, 
1) 

(1, 2, 4, 
6) 

4 

1 
2 

6 

1 
1 6 

6 

8 
7 

1 

(4, 1, 7, 
8) 

(4, 1, 4, 
6) 

4 
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Figure 3.27 

We can also have Plithogenic line multigraph given by the 

following example. 

Example 3.17. Let G be the Plithogenic line multigraph given 

by the following figure. 

  

(1, 1, 4, 6, 3) 

1 

1 

(2, 2, 1, 6, 
3) 

(4,4,4,0,9) 

(4,4,2,7,9) 

4 3 
6 

9 4 4 

2 

(3,2,1,8,0) 

(1,1,3,5,8) 

(8,9,5,5,8) 

8 
5 

(6,8,2,7,1) (3,0,8,1,7) 

(5,5,6,8,0) 

1 

8 

0 

(10,10,10, 
10,1) 

(6,7,7,9,2) 

1 6 

2 
7 

(0,6,3,6,5) 

(9,6,3,7,5) 

3 5 6 

3 
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G = 

 

 

 

 

 

 

 

Figure 3.28 

 We cannot transform this into a subset vertex graph as the 

set associated with (4, 4, 4, 7, 8, 9) is {4, 4, 4, 7, 8, 9} which is a 

multiset.  Similarly, the set associated with the row matrix (9, 9, 

9, 2, 1, 8) is {9, 9, 9, 2, 1, 8} again a multiset. 

 Next, we proceed onto describe a few Plithogenic 

multisubgraphs of a Plithogenic multigraph G by some 

examples. 

 

Example 3.18.  Let G be a Plithogenic multigraph given by the 

following figure. 

4 4 4 

(1, 3, 5, 
7, 8, 9) 

9 7 8 

(4,4,4,7,
8,9) 

(4,4,4,2,
1,3) 

(9,9,9,2,
1,8) 

1 2 
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Figure 3.29 

 The way edge removed Plithogenic graph are formed is 

described in the following. 

 They are not formed as in case of edge subset vertex 

multigraphs where the edges are removed and correspondingly 

the elements are removed. Here if the edges are removed then 

the corresponding value of the component in the row matrix of 

that particular vertex is put as ‘–’  which implies the value is 

undefined that is it does not exist or unknown. 

 We just define this notion. 

Definition 3.2. Let x = (a1, a2, .., an) be a 1  n matrix ai  R or 

C or Z or Zn (1  i   n). If some ai are not found just a blank is 

present indicated by a ‘–’ then we call the 1  n row matrix as a 

row matrix with undefined components. 

 We  will first illustrate this situation by some examples. 

Example 3.19. Let G be a Plithogenic multigraph given by the 

following figure. 

  

v1 =  
(3, 7, 8, 1) 

v4 =  
(1, 4, 4, 1) 

v2 =  
(3, 6, 5, 1) 

v3 =  
(1, 6, 5, 2) 

3 
1 

1 
6 

5 

1 

1 
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G = 

 

 

 

 

 

 

Figure 3.30 

 Suppose the edge v1v5 with weight 1 is removed from G. 

Let H be the (edge v1v5 with weight 1 removed) multisubgraph 

of G given by the following figure. 

 

H = 

 

 

 

 

 

Figure 3.31 

v1 =  
(1, 4, 2, 

5, 7) 

v3 =  
(7, 4, 2, 

1, 5) 

v2 =  
(1, 7, 4, 

5, 2) 

v4 =  
(5, 2, 4, 

1, 7) 

v5 =  
(1, 2, 4, 

5, 7) 

5 

2 

4 7 

1 5 7 
7 

1 

5 
4 

1 

4 
2 

4 
1 

v1 = (-, 4, 
2, 5, 7) 

v3 = (7, 4, 
2, 1,5) 

v4 = (5, 2, 
4, 1,7) 

v5 = (-, 2, 
4, 5, 7) 

7 5 7 4 
2 

5 

4 

1 

2 
4 

7 
5 

4 

v2 = (1, 7, 
4, 5, 2) 
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 H is a multisubgraph which has two vertex sets which are 

labeled with row matrix having undefined components. We call 

the vertex sets v1 and v5 as 1  5 row matrices with undefined 

components. 

 Thus in view of this we proceed onto define a new notion. 

 Let us consider a multisubgraph K in which we remove 3 

edges from G given by the following figure. 

 G \ {v1v4 with weight 7, v2v5 with weight 5 and v4v5 with 

weight 7} = K. 

 The multigraph K is as follows. 

 

 

K = 

 

 

 

 

 

Figure 3.32 

 K is an edge Plithogenic subgraph of G. This has lost at 

least 3 edges. 

v3 = (7, 
4, 2, 1, 5) 

1 

2 

4 

v5 = (1, 
2, 4, - , -) 

v2 = (1, 
7, 4, - , 2) 

v4 = (5, 
2, 4, 1 , -) 

1 

2 

4 

1 

1 
4 

v1 = (1, 
4, 2, 5, -) 

1 
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  Study in this direction is interesting and important in case 

of social multinetworks and in the study of node connectivity 

and edge connectivity in case of row matrix vertex labeled 

multigraphs when any of the attribute in that community or 

society becomes undefined. 

 It is pertinent to keep in mind that in these multigraphs 

the edges get labeled automatically getting its value as the same 

component in these two vertices. 

 To make this information or property clear we give this 

concept in case of a multi dyad whose vertex sets are row 

matrices by the following example. 

Example 3.20. Let G be a Plithogenic multigraph given by the 

following figure. 

 

G = 

 

Figure 3.33 

 Clearly this is a multi-dyad where the 2nd component of 

v1 and v2 are the same so as the edge v1v2 marked by 2. The 3rd 

component of v1 and v2 are the same edge marked by 3 and the 

fourth components of v1 and v2 and is marked by 5. 

 Thus G is a multidyad with 3 edges. 

 If we find the edge Plithogenic multisubgraph H1 of the 

dyad then we see if edge 2 is removed we get 

v1 = (1, 2, 3, 
5, 7, 8, 9) 

v2 = (9, 2, 3, 
5, 8, 7, 6) 

2 
3 
5 
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H1   = 

 

Figure 3.34 

 If edge labeled 3 is removed, we get the multisubgraph 

H2 is follows. 

 

H2 = 

 

Figure 3.35 

 H3 be the multidyad in which edges with labeled 5 and 2 

are removed; H3 is as follows. 

 

H3 = 

 

Figure 3.36 

 If all the 3 edges labeled 2, 3, and 5 are removed we see 

this G becomes a null multidyad given by the H4 given in the 

following. 

 

H4 = 

 

Figure 3.37 

v1 = (1, 2, 
-, 5, 7, 8, 

9) 

v2 = (9, 2, -, 
5, 8, 7, 6) 

2 
  

5 

v1 = (1, -3, 
3, -, 7, 8, 

9) 

v2 = (9, -, 3, 
-, 8, 7, 6) 

  
3 
  

v1 = (1, -,  
-, 7, 8, 9) 

v2 = (9, -, -,  
-, 8, 7, 6) 

2 
3 
5 

v1 = (1, -, 
3, 5, 7, 8, 

9) 

v2 = (9, -, 3, 
5, 8, 7, 6) 

3 
5 



Plithogenic Vertex Graphs  143 
 
 
  H4 is a null dyad so 3 edges must be removed or 3 
relevant components of the row matrices of the vertex sets v1 
and v2 must removed to become a disconnected.  

 So in case of Plithogenic multigraph the study is 
interesting for it shows how many vertex sets becomes 
undefined row matrices and gives both the number of 
components of the pair of row matrices that must be removed so 

that none of the edges between the pair of vertices exist. 

 The Plithogenic multigraphs have the row matrices to be 
well defined. If the row matrices are not well defined then we 
call them deficient Plithogenic multigraphs. So when we define 
edge Plithogenic multisubgraphs of the graph G they are always 
deficient.  

 We provide some examples of them. A word of caution if 
all the entries of a row matrix happens to be undefined then the 
deficient multisubgraph will ignore that vertex. 

Example 3.21. Let G be a 1  5 Plithogenic multigraph with six 

vertices given by the following figure. 

 

 

G = 

 

 

 

 

Figure 3.38 

1 

v4 =  (5, 6, 
3, 9, 1) 

3 9 
1 

2 
9 

v3 =  (1, 2, 
9, 4, 4) 

1 
2 

4 1 
4 

4 

1 6 

2 

v5 = (1, 6, 
2, 2, 4) 

6 

6 
1 

1 

v2 =  (1, 2, 
9, 2, 7) 

2 
1 

v1 =  (1, 
2, 3, 9, 6) 

v6 = (1, 6, 
2, 4, 4) 

1 

2 

4 



144  Plithogenic Graphs 
 

 Suppose we are interested in an edge Plithogenic 

multisubgraph H1 of G with removal of all edges with label 9 

being removed. H1 is as follows. 

 

 

 

 

 

 

 

 

Figure 3.39 

 In this course of study, we see 4 vertices v1, v2, v4 and v3 

become undefined row matrices. 

 We call H1 only as a deficient Plithogenic multisubgraph 

of G. 

 We now get a deficient edge Plithogenic multisubgraph 

H2 of G be removing all edges labeled 2 and 1. H2 is given by 

the following figure. 

 

 

1 v2 =  (1, 2, 
–, 2, 7) 2 

v4 =  (5, 
6, 3, –, 1) 

v5 =  (1, 
6, 2, 2, 4) 

6 

3 

1 

2 
1 

v6 =  (1, 
6, 2, 4, 4) 

v3 =  (1, 
 2, –, 4, 4) 

v1 =  (1, 
2, 3, –, 6) 

1 
6 

2 

1 4 
4 

4 

1 

2 1 
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H2 =  

 

 

 

 

Figure 3.40 

 We see still the edge multisubgraph of G is connected. 

 Let H3 be the deficient edge Plithogenic multisubgraph of 

G got by removing the edges labeled 1, 2, 4 and 6. H3 is given 

in the following. 

 

 

H3 = 

 

 

 

 

Figure 3.41 

v3 = (-,  
-, 9, 4, 4) 

4 
4 

v1 = (–,  
–, 3, 9, 6) 

  
3 

v4 = (5, 6, 
3, 9, 1) 

6 

v5 = (-, 6, 
2, -, 4) v6 = (-, 6, 

-, 4, 4) 

6 

4 

v2 = (–,–, 
9, –, 7) 

9 

6 

9 3 

v4 = (5, 6, 
3, 9, 1) 

v1 = (-, -, 
3, 9, 6) 

v5 = (-, -, 
2, -, -) 

v6 = (-, -, 
-, -, -) 

v3 = (-, -, 
9, -, -) 

9 

v2 = (-, -, 
9, -, 7) 
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 This becomes a multisubgraph only with 5 vertices which 

is disconnected as the vertex v6 becomes fully undefined, so the 

vertex does not exist. 

 We have seen earlier Plithogenic graphs with row matrix 

labeled edges and Plithogenic multigraphs in which the multi 

edges are labeled automatically.  

 In the following we define the new graph called 

permutation Plithogenic multigraphs on the set (1, 2, …, n). 

Here these are not classical permutation graphs. Also the edges 

get automatically labeled. Further they are also different from 

groups represented as graphs [72-78]. 

 We will treat each permutation as a row matrix for in case 

of permutation of (1, 2, 3) all possible row matrices are (1, 2, 3), 

(1, 3, 2), (3, 2, 1), (2, 1, 3), (2, 3, 1) and (3, 1, 2). So by default 

of notation we call them as permutation Plithogenic 

multigraphs.  

 In fact these will be a subcollection of Plithogenic 

multigraphs. 

 We will illustrate this situation by some examples. 

Example 3.22.  Let G be a Plithogenic multigraph with row 

matrix vertex sets (1, 2) and (2, 1). The permutation group on S2 

= {(1, 2), (2, 1)}. 

 Now the Plithogenic multigraph is the empty graph given 

by two vertex sets. 
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Figure 3.42 

Example 3.23.  Let G be the Plithogenic multigraph with row 

matrices {(1, 2, 3), (1, 3, 2), (3, 2, 1), (2, 1, 3), (2, 3, 1), (3, 1, 

2)} which is the group elements of S3, given by the following 

figure. 

 

 

G = 

 

 

 

 

Figure 3.43 

 We see this is a special type of 3-regular graph on six 

vertices. 

 The subgraphs of G taking subgroups of S3 is given in the 

following. 

  

v1 =  
(1, 2) 

v2 =  
(2, 1) 

v1 =  
(1, 2, 3) 

v2 =  
(1, 3, 2) 

1 

v4 =  
(2, 1, 3) 

v6 =  
(2, 3, 1) 

v3 =  
(3, 2, 1) 

v5 =  
(3, 1, 2) 
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H1 = 

 

H2 = 

 

H3 = 

 

H4 = 

 

 

Figure 3.44 

 H4 is a empty subgraph though it is the largest subgraph 

of S3. Clearly S3 taken as 1  3 matrices do not contribute to 

any Plithogenic multigraph. 

 We next analysis S4 that is 24, 1  4 row matrices as 

vertex sets. 

 Let G be the 1  4 permutation Plithogenic multigraph 

associated with S4. 

 

 

v1 =  
(1, 2, 3) 

v2 =  
(1, 3, 2) 

1 
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(1, 2, 3) 

v3 =  
(3, 2, 1) 

1 

v1 =  
(1, 2, 3) 
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Figure 3.45 
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 We leave the task of completing the missing edges. The 
following observations are mandatory; 

1) In case of S3 the permutation Plithogenic graph has 
only one edge so it is a simple graph not a 
multigraph. 

2) However S4 contributes to a multigraph but the 
maximum number of multi edges of any relevant pair 
of vertices is 2 and in case only one and in some 
cases no edge exists. 

3) We see none of the cyclic groups of order 3 in S3 or 
order 4 in S4 are connected.  

They are empty subgraphs. 

 We will describe the multigraph associated with A4 in the 
following example. 

Example 3.24.  The permutation Plithogenic multigraph of A4 is 
given by the following figure. 

 

 

 

 

 

 

 

 

Figure 3.46 
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  The main observation is that these permutation 

Plithogenic multigraphs are connected. However, all 

multisubgraphs of these graphs may be connected or may not be 

connected. 

 Consider the permutation Plithogenic multisubgraph H1 

of G associated with S4 be given by the following figure. 

 

 

H1  = 

 

 

Figure 3.47 

 Clearly H1 is a empty multigraph. 

 Let H2 be a permutation Plithogenic subgraph of G given 

by the following figure. 

 

H2  = 

 

 

Figure 3.48 
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 H2 is a multisubgraph which is uniform as all edges are of 

two. H2 is not a complete subgraph of G. It is a ring. The group 

associated with H2 is not a cyclic group but a Klein group of 

order four. 

 In view of all these we have the following theorem. 

Theorem 3.2. Let G be a permutation Plithogenic multigraph 

with entries from Sn, (Sn the symmetric group on permutation of 

(1, 2, …, n); 2  n < ). 

1) The maximum number of edges between any possible 

adjacent vertices is only (n – 2). 

2) Minimum possible edges that can exist between 

adjacent vertices is 1. 

3) There can be no edge or the vertex sets may not be 

adjacent. 

Proof is direct using the fact the permutation of (1, 2, …, n) can 

produce a pair in which maximum only (n – 2) entries of (1, 2, 

…,  n) can be fixed and two entries are permuted. 

 Similarly the other extreme situation between adjacent 

vertices is one entry is fixed and all the other (n – 1) entries of 

(1, 2, …, n) are permuted. 

 There can be vertices like (2, 3, …, n – 1, n, 1) and (3, 4, 

5, .., n – 1, n, 1, 2) which are never adjacent vertices. 

 Hence the claim. 

 Next we proceed onto show. 
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 Theorem 3.3:Let Sn be the symmetric group of degree n; 3  n < 

. 

 Let G be the permutation Plithogenic multigraph 

associated with Sn. 

1) The cyclic subgroup of Sn of order n results in an 

empty multigraph. 

2) Every cyclic subgroup of order p < n results in a 

multisubgraph which has only (n – p) multiedges for 

every p; 2  p < n. 

 Proof of (1) Now any cyclic subgroup P of order n of Sn 

will be of the form P = {(1, 2, …, n), (2, 3, …, n, 1), (3, 4, 5, …, 

n, 1, 2), …, (n – 1, n, 1, 2, .., n – 2), …, (n, 1, 2, 3, …, n – 1)}  

Sn. 

 Clearly we cannot find any pair of elements \ vertices in P 

which can be adjacent. Hence P yields a empty multisubgraph 

of the multigraph G associated with Sn. Hence (1) of the 

theorem is true. 

 Proof of (2): Suppose there is a cyclic subgroup of Sn 

order p, 2  p < n then we see in e = (1, 2, …, n), n – p of the 

elements in e are fixed and rest of the p elements in e are 

permuted; to form a cyclic group. The Plithogenic 

multisubgraph is such that it is a uniform complete 

multisubgraph with (n – p) multiedges. 

 We will illustrate both the situations by some examples. 

Example 3.25. Let G be the permutation Plithogenic multigraph 

associated with S9. Let H be the Plithogenic multisubgraph of G 
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associated with the cyclic subgroup P of order 6. S9 is given by 

the following elements. 

p = {(1, 2, 3, 4, 5, 6, 7, 8, 9) = e, p1 = (2, 3, 4, 5,6 1, 7, 8, 9) 

p2 = (3, 4, 5, 6, 1, 2, 7, 8, 9), p3 = (4, 5, 6, 1, 2, 3, 7, 8, 9),  

p4 = (5, 6, 1, 2, 3, 4, 7, 8, 9), p5 = (6, 1, 2, 3, 4, 5, 7, 8, 9)}  S9. 

The multisubgraph H associated with P is as follows. 

 

 

H =  

 

 

 

Figure 3.49 

 Clearly H is a Plithogenic multisubgraph which is a 

strong uniform complete multisubgraph all the multiedges are 

labeled with the same label as 7, 8 and 9. 

 That is why we use the term strong uniform 

multisubgraph. 

 Next we give a multisubgraph, L associated with the 

subgraph K of G where K is a cyclic subgroup of G of order 3 

where K = {e = (1, 2, …, 9), (2, 3, 4, 5, …, 9) = k1, k2 = (3, 1, 2, 

4, 5, …,9)}. 

e = v1 

v6 = p5

v4 = p3 v4 = p3 

v2 = p1

e = v1 

9 
8 7 

7 8 9 

7 
8 9 

9 
8 

7 

9 
9 8 7 

7 8 
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  The multisubgraph L of G is as follows. 

 

L = 

 

 

 

Figure 3.50 

 We see L is a strong uniform multisubgraph with 6 

multiedges. 

 We see larger the order of the cyclic subgroup of Sn we 

have lesser number of multiedges. The multisubgraph reduces to 

a simple subgraph if in Sn we take the cyclic subgroup of order 

(n – 1). 

 We will illustrate this situation by an example. 

Example 3.26. Let S12 be the symmetric group of degree 12. Let 

H be the cyclic group of order 11. 

 H = {(1, 2, …, 12) = h, (1, 3, 4, …, 12, 2) = h1 

 h2 = (1, 4, 5, 6, …, 12, 2, 3), h3 = (1, 5, 6, 7, .., 12, 2, 3, 

4), h4 = (1, 6, 7, ..., 12, 2, 3, 4, 5), h5 = (1, 7, 8, …, 12, 2, 3, 4, 5, 

6), h6 = (1, 8, 9, …, 12, 2, 3, 4, …., 7), h7 = (1, 9, 10, 1, 12, 2, 

…, 8), h8 = (1, 10, 11, 12, 2, …, 9), h9 = (1, 11, 12, 2, …, 10), 

h10 = (1, 12, 2, …, 11)} 

v3 = k2 

e = v1  

v2 = k1 

9 
8 

7 6 
5 4 

4 5 6 7 8 9 
9 

8 
7 

6 5 
4 
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 Let W be the Plithogenic multisubgraph associated with 

H given by the following figure. 

 

 

 

 

 

 

 

 

 

 

Figure 3.51 

 W is a simple complete graph K11. Clearly W is not a 

multisubgraph of the symmetric group degree 12 graph G. 

 In view of all these we have the following theorem. 

Theorem 3.4.  Let G be the permutation Plithogenic multigraph 

associated with Sn. 

i) There are n-number of Kn–1 simple complete 

subgraphs associated with the cyclic groups {(1, 

2, .., n), (1, 3, 4, …, n, 2), … (1, n, n – 1, …, 2)}, 

v1 = h1 

v4 = h4 

v5 = h5 

v2 = h2 

v11=h11 

v10=h10 

v9 = h9 

v8 = h8 

v3 = h3 

v7 = h7 v6 = h6 
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 {(1, 2, …, n), (3, 2, 4, …, n), … (n2, n – 1, …, 1)}, 

… so on {(1, 2, …, n), (2, 3, …, 1, n), (3, 4, …, 1, 

2, n), …, (n – 1, 1, 2, …, n – 1, n)} which are 

simple Plithogenic subgraphs. 

ii) There are nC2 number of uniform complete 

multisubgraphs Kn – 2 of G associated with cyclic 

subgroups of Sn of order n – 2. 

iii) There are nCr. 2  r < n – 2 number of uniform 

complete multisubgraphs of G associated with 

cyclic subgroups of Sn of order n – r. 

 Proof is direct and hence left as an exercise to the reader. 

 To this effect we provide an example. 

Example 3.27. Let S9 be the symmetric group of degree 9. 

 Let G be the Plithogenic multigraph associated with S9 

where row matrices are the permutation of (1, 2, …, 9) which 

form the vertex labels of G. 

 Consider H1 = {r1 = (1, 2, …, 9), r2 = (1, 3, 4,…, 9, 2), …, 

r8 = (1, 9, 2, …, 8)} be the cyclic subgroup of S9 of order 8. 

 The associated subgraph P1 of G with H1 is as follows. 
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P1 =  

 

 

 

 

Figure 3.52 

 Let H2 = {(1, 2, …, 9) = u1, u2 = (3, 2, 4, …, 9, 1), …, u8 

= (9, 2, 1, …, 8)} be the cyclic subgroup of S9 got by fixing 2 

and permuting all the elements cyclically. Let P2 be the 

subgraph of G associated with H2 given by the following figure. 

 

 

 

P2 =  

 

 

 

Figure 3.53 

v1 

v3 

v2 

v5 

v6 

v8 v7 

v4 

u1 

u4 

u5 

u7 

u2 

u6 

u3 

u8 
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  P2 is a simple complete subgraph of G isomorphic with 

K8. 

 Let H9 be the cyclic subgroup of S9 given in the following 

figure got by fixing 9 and permuting the rest of the numbers H9 

= {(1, 2, …, 9) = a1, (2, 3, 4, …, 8, 1, 9) = a2, a3 = (3, 4, 5, …, 8, 

1, 3), a4 = (4, 5, …, 8, 1, 2, 3, 9)…, a8 = (8, 1, 2, …, 7, 9)}  S9. 

 Now the simple subgraph P9 of G associated with the 

cyclic subgroup H9 is as follows. 

 

 

 

 

P9 =  

 

 

 

Figure 3.54 

 P9 is a complete subgraph of G isomorphic with K8. 

 Let B1 be the cyclic subgroup of S9 of order 7. 

 B1 = {(1, 2, …, 9) = b1, b2 = (1, 2, 4, 5, 6, 7, 8, 9, 3), …, 

b7 = (1, 2, 9, 3, 4, 5, 6, 7, 8)}. Let L1 be the multisubgraph of G 

associated with B1 given by the following figure. 

a3 

a4 

a7 

a1 a2 

a6 

a5 

a8 
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L1 =  

 

 

Figure 3.55 

 Clearly L1 is isomorphic with K7. 

 Let B2 = {(1, 2, 3, …,9) = t1, t2 = (1, 4, 3, …, 9, 2), t3 = (1, 

5, 3, …, 9, 2, 4), …, t7 = (1, 9, 3, 2, …, 8)}  S9 be the cyclic 

subgroup of S9 of order 7. Let L2 be the multisubgraph of G 

associated with B2 given by the following figure. 

 

 

 

L2 =  

 

 

Figure 3.56 

 L2 is isomorphic with the uniform complete 

multisubgraph of order 7. 

b4 

b3 

b1 b2 

b7 

b5 b6 

t4 

t3 

t1 t2 

t7 

t5 t6 
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  Let B3 = {(1, 2, …, 9) = d1, d2 = (1, 3, 4, …, 8, 2, 9), d3 = 

(1, 4, 5, 6, 7, 8, 2, 3, 9), …, d7 = (1, 8, 2, 3, 4, 5, 6, 7, 9)}  S9 

be the cyclic subgroup of S9 of order 7. Let L36 be the 

multisubgraph of G associated with B36 given by the following 

figure. 

 

 

L36 = 

 

 

 

Figure 3.57 

 We can call these uniform complete multisubgraphs as 2-

uniform complete multisubgraph. 

 Now we give some more complete multisubgraphs of G 

using which we make some important observation. 

 Let D1 = {(1, 2, …, 9) = p1 (1, 2, 3, 5, 6, 7, 8, 9, 4) = p2, 

p3 = (1, 2, 3, 6, 7, 8, 9, 4, 5), …, p6 = (1, 2, 3, 9, 4, 5, 6, 7, 8)}  

S9 be the cyclic subgroup of S9 of order 6 got by fixing the 

elements 1, 2 and 3 and permuting the rest of the six elements 

cyclically.  

 Let M1 be the multisubgraph of given by the following 

figure. 

d4 

d3 

d1 d2 

d7 

d5 d6 
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M1 =  

 

 

 

 

Figure 3.58 

 M1 is a 3-uniform complete multisubgraph of G. 

 Let T1 = {(1, 2, 3, 4, 6, 7, 8, 9, 5) = t1, t2 = (1,2,3,4, …, 9), 

t3 = (1, 2, 3, 4, 7, 8, 9, 5, 6), t4 = (1, 2, 3, 4, 8, 9, 5, 6, 7), t5 = (1, 

2, 3, 4, 9, 5, 6, 7, 8)}  S9 be the cyclic subgroup of S9 order 

five got by fixing 4 elements and permuting cyclically the rest. 

Let A1 be the multisubgraph of G associated with T1 given by 

the following figure. 

 

A1 = 

 

 

 

 

Figure 3.59 

p4 p3 

p5 

p2 p1 

p6 

t4 

t3 

t5 

t2 
t1 



Plithogenic Vertex Graphs  163 
 
 
  A1 is a 4-uniform complete multisubgraph of G which is 

of order 5. 

 Consider the cyclic subgroup W1 of order four in S9 got 

by fixing five elements and permuting the rest cyclically. 

 w1 = {(1, 2, …,9) = w1, w2 = (1, 2, 3, 4, 5, 7, 8, 9, 6), w3 = 

(1, 2, 3, 4, 5, 8, 9, 6, 5), w4 = (1, 2, 3, 4, 5, 9, 6, 5, 8)}  S9 is a 

cyclic subgroup of S9 of order 4. Let V1 be the multisubgraph of 

G associated with W1 given by the following figure. 

 

 

V1 =  

 

Figure 3.60 

 V1 is a5 uniform complete multisubgraph of G of order 4. 

Let X1 = {(1, 2, 3, 4, …,9) = x1, x2 = (1, 2, 3, 4, 5, 6, 8, 9, 7), x3 

= (1, 2, 3, 4, 5, 6, 9, 7, 8)}  S9 be the cyclic subgroup of G of 

order 3 given by the following figure. 

 Let Y1 be the multisubgraph of G associated with the 

subgroup X1. 

 

Y1   = 

 

x1
 

x2
 x3

 

w4 

w1 

w3 

w2 

Figure 3.61 
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 All cyclic subgroups of order 2 of S9 got by fixing 7 

elements and permuting only two elements results in a 

symmetric multidyad. 

 For instance let 

 N1 = {(1, 2, 3, 4, 5, 6, 7, 8, 9) = s1 

 s2 = (1, 2, 3, 4, 5, 6, 7, 9, 8)}  S9 is a cyclic subgroup of 

order 2. 

 The multisubgraph N1 of G associated with S1 is as 

follows. 

     N1 =  

Figure 3.62 

 Thus, we see these specially formed permutation of a row 

matrices as vertex labels can yield many t-uniform complete 

multigraphs, 1  t < n where order of the permuted row matrix 

is 1  n. 

 We see as the value of t increases the number of vertices 

decreases. 

 We can visualize this for S9 from the following table. 

 As the components of the vertices which are fixed 

increases the number of vertices decreases but number of 

multiedges increases. Clearly seen from the table. 

 We by default of notation. Cyclic subgroup table for the 

special row matrix (a1, …, a9) = (1, …, 9) permuted as the group 

S9 which are labeled as vertices. 

s1 s2 
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 S. 
No. 

Cyclic 
subgroups of 
various order 

No. of Cyclic 
subgroups 

No.of 
vertices 

Number of 
multiedges 

between nodes 
1. 8 9 8 1 
2. 7 9C2 7 2 
3. 6 9C3 6 3 
4. 5 9C4 5 4 
5. 4 9C3 4 5 
6. 3 9C6 3 6 
7. 2 9C7 2 7 

 

 A similar table in case of Sn when the vertex are labeled 

by the elements of Sn which by default of notation are taken as 

(1, 2, …, n) as row matrix. 

 Cyclic subgroup table for the special row matrix (1, 2, 

…,n) of Sn which are labeled as vertices. 

S. No. Cyclic subgroups 
of various order 

in Sn 

No. of Cyclic 
subgroups in 

Sn 

No.of 
vertices 

Number of 
multiedges 

between nodes 
1. (n – 1) n (n – 1) Nil (simple 

complete sub 
graph (Kn – 1) 

2. n – 2 nC2 (n – 2) 2 
3. n – 3 nC3 (n – 3) 3 
4. n – 4 nC4 (n – 4) 4 
. 
. 
. 

    

r n – r  nCr (n – r) R 
. 
. 
. 

    

(n – 2) 2 nC(n – 2) 2 (n – 2) 
multidyads 
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 Thus, if one wants to study a social information 

multinetwork with many complete multisubgraphs and n-cliques 

can use these graphs. A study of these complete multisubgraphs 

can also throw some light on the communities in these social 

information multinetworks. 

 Next we proceed onto work with row matrices from the 

symmetric semigroup S(n); where S(n) = {all mappings of (1, 2, 

3, …, n) to itself}. 

 We first illustrate this situation by some examples. 

Example 3.28. Let S(2) = {(1,2), (1, 1), (2, 2), (2, 1)} be the 

symmetric semigroup of order two. 

 The special row matrix vertex labeled multigraph 

associated with S(2) is as follows. 

 

 

             G =  

 

 

Figure 3.63 

Example 3.29.  Let S(3) be the symmetric semigroup of      

order 3. 

 Let G be the special symmetric semigroup vertices as row 

matrix vertex labeled multigraph associated with S(3). 

 The multigraph of G is as follows. 

(1, 2) 

(2, 1) (1, 1) 

(2, 2) 
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Figure 3.64 

(1, 1, 1) (1, 1, 3) 

(1, 3, 1)

(1, 2, 3) 

(1, 1, 2) (3, 1, 1) 

(1, 2, 1)

(2,3,2) 
(2, 1, 1) 

(2,1,2) 

(2, 2, 1) 

(2, 2, 2) 

(3,3,1) 

(1,2, 2) 

(3,3,2) 

(3,2,2) 

(2, 2, 3)

(1,3,3) 

(2,1,3) 

(2,3,3) 
(1,3,2) 

(3,1,2) 

(2,3,1) 
(3,2,1) 

(3,3,3) 

(3,1,3) 

(3,1,3) 
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 We have not given all the edges and multiedges of the 

graph G. It is not complete for several edges we have not 

connected. We make the following observations. The 

multigraph associates with the symmetric semigroup S(3) 

contains the multigraph H associated with S3 (S3  S(3)) viz 

given by the following figure. 

 

 

 

H =  

 

 

Figure 3.65 

 We see the multigraph associated with S(3) has 

multisubgraphs which are complete given by the following 

figure; 

 

B1 =  

 

 

 

Figure 3.66 

2 1 

(1,3,2) 

(1,2,3) 

(3,2,1) 

(3,1,2) 
(2,1,3) 

(2,1,3) 
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3 
3 

2 

1 2 

1 

1 
1 

1 

(1,1,1) 

1 
1 

1 
1 

1 

1 
1 

1 1 

1 
1 
1 1 

1 

1 

(1,1,2) 

(2,1,1) 

(3,1,1) 

(1,3,1) (1,2,1) 

(1,1,3) 
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  Clearly B1 is a non uniform complete multisubgraph of G 

of order 7. 

 Let B2 be another non uniform multisubgraph of G given 

by the following figure. 

 

 

B2 =  

 

 

 

 

 

 

Figure 3.67 

 Clearly B1 and B2 are multigraphs but the edges and 

vertices are labeled differently. 

 Let B2 be the nonuniform complete multisubgraph of G 

given by the following figure. 

  

2 
(2, 2, 3) 

(2, 2, 3) 

(2, 1, 2) 

(2, 2, 2) 

(2, 3, 2) 

(3, 2, 2) 

(1, 2, 2) 
2 

2 

2 
2 

2 
2 

2 
2 

2 

2 

2 

2 
2 

2 

2 2 

2 

2 
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B3 =  

 

 

 

 

Figure 3.68 

B3 is also non uniform complete multisubgraph of order 7. 

 All the three multisubgraphs B1, B2 and B3 are 

structurally identical except for the edge and vertex labels. 

  

Z1 = 

 

 

 

 

 

 

Figure 3.69 

(3, 3, 3) 

(3, 2, 3) 

(3, 3, 1) 

(3, 3, 2) 
(2, 3, 3) 

(1, 3, 3) 

(3, 1, 3) 

3 

3 

3 

3 
3 

3 

(1,3,1) (3,1,1) 
(1,3,2) 

(1,1,1) 

(1,2,1) (1,1,2) 

(2,1,1) 

(3,1,2) 

(2,3,1) 

(1,2,3) 

(3,2,1) 

(1,1,3) 

(2,1,3) 
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 Now we have given the multisubgraph Z1 with vertex sets of B1 

and S3 in the Figure 3.69. 

 We see all the vertices associated with S3 are densely 

related with B1 as seen from the multisubgraph Z1 of G. 

 Similar multisubgraphs Z2 and Z3 can be got using B2 and 

B3 with the vertex set {(1, 2, 3), (1, 3, 2), (3, 2, 1), (2, 1, 3), (2, 

3, 1), (3, 1, 2)} respectively. 

 However, these multigraphs using S(n), the symmetric 

semigroups as vertex labels happens to be have many 

multiedges and has several complete multisubgraphs which may 

not in general be uniform. 

 We illustrate these situations in case of S(4) and S(5). 

Example 3.30.  Let G be the Plithogenic multigraph associated 

with the symmetric semigroup S(4). 

 We give a few of the multisubgraphs of G in the 

following. 

 Let H1 be the multisubgraph with vertex sets from S(4) 

given by the following figure. 
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H1= 

 

 

 

 

Figure 3.70 

 We have not completed this multigraph H1. In fact it is a 

non-uniform complete multigraph with a maximum of 3 

multiedges and a minimum of 2 multiedges. Order of H1 is 13 

and however the pattern we get is beautiful. 

 One can imagine the same situation in case of S(5) and 

generalize for S(n). These multisubgraphs are structurally very 

powerful and can be used as multinets when the connections of 

same type is needed. 

 Even in case of computer networks where several 

computers share the same type of information. 

(4,1,1,1) 

(1,1,1,3) 

(1,1,1,4) 

(1,4,1,1) 

(1,3,1,1) 

(1,1,1,1) 

(1,1,2,1) 

(3,1,1,1) 

(1,1,1,2) 
(2,1,1,1) 

(1,1,3,1) 

(1,2,1,1) 
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  In case of S(4) we see if we are trying to use two 

elements 1 and 2 and form the multisubgraph B of G, we get the 

following structure. 

 

 

B = 

 

 

 

 

 

 

 

Figure 3.71 

 B is not even a nonuniform complete multisubgraph of G. 

 However we have said earlier the multigraph associated 

with S4 will be a multisubgraph of G where G is the multigraph 

associated with the symmetric semigroup S(4) of degree 4. 

 This multigraph G has several complete uniform 

multisubgraphs contributed by cyclic subgroups of S4  and some 

non uniform complete multisubgraphs contributed by elements 

(1, 2, 
2, 1) 

(2, 2, 
1, 2) 

(1, 2, 
1, 2) 

(2, 1, 
2, 1) 

(1, 1, 
2, 1) 

(2, 1, 
2, 2) (2, 2, 

2, 1) 

(1, 2, 
2, 2) 

(1, 2, 
1, 1) 

(2, 1, 
1, 2) 

(1, 1, 
1, 2) 

(1, 1, 
2, 2) 

(1, 1, 
1, 1) 

(2, 2, 
1, 1) 
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of the form P = {(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 1, 4), 

(2, 1, 1, 1), …., (1, 4, 1, 1), (4, 1, 1, 1)}  S(4), where |P| = 13. 

 We see in case of S(3) we have P = {(1, 1, 1), (1, 1, 2), 

(1, 2, 1), (2, 1, 1), (3, 1, 1), (1, 3, 1), (1, 1, 3)} and |P| = 7. 

 In case of S(5) we have, 

 P = {(1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1,1 , 2, 1), (1, 1, 2, 1, 

1), (1, 2, 1, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 3), (1, 1, 1, 3, 1), (1, 

1, 3, 1, 1), (1, 3, 1, 1, 1), (3, 1, 1, 1, 1), (1, 1, 1, 1, 4), (1, 1, 1, 4, 

1), (1, 1, 4, 1, 1), (1, 4, 1, 1, 1), (4, 1, 1, 1, 1), (1, 1, 1, 1, 5), (1, 

1, 1, 5, 1), (1, 1, 5, 1, 1), (1, 5, 1, 1, 1), (5, 1, 1, 1, 1)}  S(5), |P| 

= 21.  We get a non uniform complete multisubgraph of order 

21 = 5  4 + 1 with maximum of 4 multiedges and a minimum 

of 3 multiedges. 

 In view of all these we have the following result. 

Theorem 3.5. Let S(n) be the symmetric semigroup of degree n. 

G be the Plithogenic multigraph associated with S(n). 

i) G has non uniform complete multisubgraphs of G 

of order n (n – 1) + 1 and the maximum number 

of edges is (n – 1) and minimum number of edges 

is (n – 2). 

ii) There are n such multisubgraphs of G of order 

n(n – 1) + 1. 

 Proof follows from the fact that if P = {(1, 1, …, 1), (1, 1, 

…, 2), …, (2, 1, 1, …, 1), (1, 1, …, 3), …, (3, 1, 1, …, 1), …, 

(1, 1, 1…, 1, n), …, (n, 1, …, 1)}  S(n) is a subset of S(n) and 

|P| = n(n – 1) + 1. 



Plithogenic Vertex Graphs  175 
 
 
  Now it is easily verified we can have maximum (n – 1) 

edges and a minimum of (n – 3) edges, hence the claim. 

 Proof of (ii). Instead of (1, …, 1), we can with any (r, r, .., 

r); 1  r  n; so there are n such non uniform multisubgraphs of 

order n (n – 1) + 1. 

 The number of uniform complete multisubgraphs are got 

from the cyclic subgroups of Sn  S(n). 

 Now we in case of S(5) make changes in two variables 

and the rest of the 3 remains the same. 

Example 3.31. Let S(5) be the symmetric semigroup of degree 

5. Let G be the associated Plithogenic multigraph. 

 Consider M = {(11111), (22111), (21112), (11122), 

(12121), (21211), (12211), (11221), (21121), (12112), (11212), 

(31111), (13311), (11331), (11133), (31311), (31131), (31113), 

(13131), (13113), (11313), (11144), (11441), (14411), (44111), 

(41114), (14114), (14141), (11414), (41141), (41411), (11155), 

(11551), (15511), (55111), (51115), (51511), (15151), (11515), 

(51151), (15115)} |M| = 41 = (4  5C2 + 1).  

 We see the multisubgraph associated with M is a non 

uniform complete multisubgraph with maximum of 3 multi 

edges and a minimum of 1 edge. 

 Now with the same multisubgraph we work using S(6). 

 Let N {(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 2, 2), (1, 1, 1, 2, 2, 1), 

(1, 1, 2, 2, 1, 1), (1, 2, 2, 1, 1, 1), (2, 2, 1, 1, 1, 1), (2, 1, 2, 1, 1, 

1), (2, 1, 1, 2, 1, 1), (2, 1, 1, 1, 2, 1), (1, 2, 1, 2, 1, 1), (1, 2, 1, 1, 
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2, 1), (1, 2, 1, 1, 1, 2), (1, 1, 2, 1, 1, 2), (1, 1, 2, 1, 2, 1), (1, 1, 1, 

2, 1, 2), (2, 1, 1, 1, 1, 2), (1, 1, 1, 1, 3, 3), …, (3, 1, 1, 1, 1, 3), 

(1, 1, 1, 1, 4, 4), …, (4, 1, 1, 1, 1, 4), (5, 1, 1, 1, 1, 5), …, (1, 1, 

1, 1, 5, 5), (6, 1, 1, 1, 1, 6), .., (1, 1, 1, 1, 6, 6)} |N| = 76 = 5  

6C2 + 1 number of vertices.  

 We see the associated multisubgraph with N is a non 

uniform complete multisubgraph with a maximum multiedge of 

four and a minimum multiedges are two. 

 In view of all these we can obtain some conditions for the 

non-uniform multisubgraphs to be complete that are of bigger 

order in G. 

Theorem 3.6. Let S(n) be the symmetric semigroup of degree n. 

Let G be the permutation Plithogenic multigraph associated 

with S(n). 

 There is a non-uniform complete multisubgraph of order 

(n – 1)  nC2 + 1. 

Proof: Let G be the given Plithogenic multigraph associated 

with S(n). To prove there exist one such multisubgraph. We 

take P = {(1, 1, …, 1), (1, 1, 1, 1, …, 1, 2,2), (1, 1, 1, 1, 1, …, 1, 

2, 1, 2), …, (n – 1, n – 1, 1, 1, 1, …, 1)}  S(n).  Clearly |P| = (n 

– 1) nC2 + 1 and it has a maximum of (n – 2) multiedges and 

minimum of (n – 4) multiedges. 

 In fact there are n number of such non uniform complete 

multisubgraphs in G. 

 The following observations are mandatory. 
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  In case of S(6) if we take elements of the form {(1, 1, 1, 

2, 2, 2), (2, 1, 2, 1, 2, 1), (1, 1, 1, 1, 1, 1), (2, 2, 2, 1, 1, 1) and so 

on}  = B. The multisubgraph associated with B will not be non 

uniform complete multisubgraph as there is no edges between 

(1, 1, 1, 2, 2, 2) and (2, 2, 2, 1, 1, 1). 

 Next we consider S(7) and its permutation Plithogenic 

multigraph in the following. 

Example 3.32. Let S(7) be the symmetric semigroup of degree 

7. Let H = {(1111111), (1111222), (1112221), (1122211), 

(1222111), (2221111), (1112212), (1112122), (1121122), 

(1121212), (1122121), (1122112), (1221112), (1221121), 

(1221211), (2212111), (2211112), (2211121), (2211211), 

(211,1122), (2111212), (2112211), …, (1212121), …, 

(6661111), …, (6161616), (7771111), ..., (1717171)}. 

 We see the associated multisubgraph of G is a non 

uniform complete multisubgraph of order 211 = 6  7C3 + 1. 

There are 7 such non uniform complete multisubgraphs in G. 

 In view of this we have the following theorem. 

Theorem 3.7. Let G be the permutation Plithogenic multigraph 

associated with S(n); n  7. 

 There exists n multisubgraphs of G which are non 

uniform complete multisubgraphs of order (n – 1) nC3 + 1 with 

maximum  of (n – 3) multiedges and minimum of (n – 6) edges. 

 Proof is as in case of other theorems so left as an exercise 

to the reader. 

 In view of all these we put forth the following results. 
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Theorem 3.8. Let G be the permutation Plithogenic multigraph 

associated with the symmetric semigroup S(n). 

i) The maximum number of multiedges multisubgraphs of G 

which are non uniform are given by those (n – 1) (nCr) + 1 

vertices where 
1

2
1

2

n
if niseven

r
n

if nisodd

 
 


. 

 Proof is left as an exercise to the reader. 

 However, if one wishes to work with non-uniform 

complete multinetworks the researcher can label the vertices as 

per the theorem and get these complete non uniform 

multigraphs of desired order depending upon the need. 

 The condition on r given in the theorem is mandatory for 

the non-uniform complete multigraphs to exist. For otherwise 

these multigraphs will not be non-uniform complete 

multisubgraphs of G. 

 We further see this Plithogenic multigraphs G associated 

with the symmetric semigroup S(n) has complete 

multisubgraphs of G generated by cyclic subgroups of Sn  S(n) 

of order (n – 1), (n – 2) and so on.  

 Thus if any researcher needs multinetworks which are 
complete or non uniform complete one can seek the Plithogenic 
multisubgraphs of the Plithogenic multigraphs associated with 
S(n) the symmetric semigroup of S(n). 

 There are several other properties associated with these 
symmetric semigroup graphs [24] we do not deal with them in 
this book.  
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  We aspire to work through the applications of these to 
multinetworks of plithogenic models which is a generalization 
of SVNS model. 

 Study in this direction is innovative and interesting. This 
analysis is carried out in the last chapter of this book. 

 We just give examples Plithogenic fuzzy graphs. 

Example 3.33. Let G be a Plithogenic fuzzy graph given by the 
following figure. 

 

 

G = 

  

 

 

 

 

Figure 3.72 

 The edges are given row matrix label for vi vj we denote 

the label by min (vi, vj); for instance min (v1, v2) = (0.2, 0.4, 0, 

0, 0.4). 

 We call this graph G as a min Plithogenic graph. 

 The same graph H which is max but has the same 

structure as that of G is given below. 

v1 = (0.3, 
0.4, 0.2, 0, 

0.7) 

v5 = (0.1, 
0.2, 0.3, 0.4, 

1) 

v4 = (0, 0.3, 
0.1, 0.7, 0.8) 

v3 = (0.1, 0, 
0.3, 0.8, 0.7) 

v2 = (0.2, 1, 
0, 0.7, 0.4) 

(0, 0, 0, 1, 0.7, 
0.7) 

(0, 0.3, 0, 0.7,0.4) 

(0.2, 0.4, 0, 0, 
0.4) 

(0.1, 0.2, 0.2, 0, 
0.7) 

(0.1, 0.2,  
0, 0.4, 0.4) 

 (0.1, 0, 0.3,  
  0.4, 0.7) 

(0, 0.2, 0.1, 0.4, 
0.8) 
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H =  

 

 

 

 

 

 

Figure 3.73 

 Both the Plithogenic fuzzy graphs are structurally the 

same with the difference that the edge labels are different. 

 The number of edges in these graphs are in the hands of 

the researcher more so is the operation which they use to define 

the edge label max or min. 

 This sort of single valued neutrosophic graphs have been 

defined and applied in medical science [87]. The only difference 

is that in case of SVNS they use only 1  3 row matrices but 

when we try to apply for plithogenic models the row matrices 

can be 1  n where n need not in general be three. 

 We also by default of notation call these as row matrix 

vertex and edges labeled graph for these are the membership 

values taken from the interval [0, 1]. 

v1 = (0.3, 
0.4, 0.2, 0, 

0.7) 

v5 = (0.1, 
0.2, 0.3, 0.4, 

1) 

v4 = (0, 0.3, 
0.1, 0.7, 0.8) 

v3 = (0.1, 0, 
0.3, 0.8, 0.7) 

v2 = (0.2, 1, 
0, 0.7, 0.4) 

(0.1, 0.3, 0.3, 
0.8, 0.8) 

(0.2, 1, 0.1,  
0.7, 0.8) 

(0.3, 1, 0.2, 0.7, 
0.7, 0.7) 

(0.3, 0.4, 0.3, 
0.4, 1) 

(0.2, 1, 0.3,  
0.7, 1) 

  (0.1, 0.2,   
0.3,0.8, 1) 

(0.1, 0.3, 0.3, 
0.7, 1) 
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  However, it is pertinent to keep on record that these 

values of 1  n row matrices can be real or complex or fuzzy or 

neutrosophic. Study in this direction will be dealt in the 

following chapter. 

 Finally, we give one example of a min Plithogenic 

neutrosophic graph. 

Example 3.34. Let G be the neutrosophic graph given by the 

following figure. 

 

 

 

G = 

 

 

  

 

 

 

 

Figure 3.74 

 The following observations are important. 

v1 = (0.3I, 
0.2, I, 0.3, 

0.8) 

v3 = (0.4I, I, 
1, 0.2, 0.1) 

v2 = (0.5, 
0.4I, 0, I, 1) 

(0, I, 0.1, 0.2I, 
0) 

(0.3I, 0.2, 0, 
0.3, 0.2) 

(0.4I, 0.4I, 0, 
0.2, 0.1) 

(0.4I, I, 1,  
0.2, 0.1) 

(0, I, 0.1, 0.2I, 
0.1) 

v5 = (0, I, 
0.1, 0.2I, 

0.7) 

v7 = (1, I, 1, 
1, 0) 

v6 = (0.3, 1, 
I, 0.7I, I) 

(0, I or 1, 0.1, 
0.2I, 0.7) 

(0.7, I, 1, 0.5I, 0) 

v4 = (0.7, I, 
1, 0.5I, 0.2) 

(0.3 or 0.3I, 0.2, 
I, 0.3, 0.8) 
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i) min (aI, a) is a or aI according to the wishes of 

the expert whether he/she want to emphasize on 

neutrosophic value or real value (a  R). 

ii) min (aI, bI),  =   aI     if a < b  

 =   bI    if b < a. 

iii) min (aI, b)  =   aI    if a < b  

      b      if b < a 

iv) min (a, bI)  =   a      if a < b  

      bI     if b < a. 

 Next we proceed onto describe a few Plithogenic bipartite 

multigraphs in the following by some examples. 

Example 3.35. Let M be a Plithogenic multibigraph using the 

vertex labels from S(4). 

 

M = 

 

 

 

 

 

Figure 3.75 

 Clearly B is a Plithogenic bipartite multigraph. It is 

important to note that the multiedges are labeled automatically 

v1 =  
(1 2 3 4) 

v3 =  
(4 1 2 3) 

u3= 
4 3 2 1 

u1 =  
(1 2 4 3) 

v2 =  
(2 3 4 1) 

u2 =  
(2 1 3 4) 

1 

3 

4 
2 

3 

1 

2 
3 

4 

4 
2 
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 so it is mandatory to maintain none of the domain space of the 

multigraph has edges that automatically fixes. Similarly, none 

of the range space of the multigraph has common edges. 

 That is we see in this case the vertices v1, v2 and v3 have 

no edges in common. Similarly, the vertex set {u1, u2, u3} have 

no edges in common. 

 We give yet another example of bipartite multigraph 

associated with S6 in the following. 

Example 3.36. Let N be Plithogenic multibipartite graph given 

by the following figure. 

 

 

 

 

 

 

 

 

 

Figure 3.76 

 This is a multibipartite graph. Clearly, we see the vertex 

set {v1, v2, v3, v4, v5} are not adjacent taken in pairs.  

v1 = (1 2 3 4 5 6) 
5 

(1 2 5 6 4 3) = u2 

6 
4 

2 
(2 1 4 3 5 6) = u1 

2 

1 

6 

3 
v2 = (2 3 4 5 6 1) 

u4 = (3 4 6 5 1 2) 

v3 = (3 4 5 6 1 2) 

v4 = (4 5 6 1 2 3) 

3 

4 

5 

2 

(4 3 1 2 6 5) = u3 

1 

6 

v5 = (5 6 1 2 3 4) 

3 4 
1 

2 
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 Similarly the vertex set {u1, u2, u3, u4} are such that none 

of them are adjacent taken in pairs. Hence N is a bipartite 

multigraph. 

 It is interesting to note every row matrix vertex labeled 

multigraph associated with the symmetric group Sn has a 

multisubgraph which is a bipartite multisubgraph. 

Theorem 3.8. Let G be a Plithogenic multigraph associated 

with the symmetric group Sn. 

 G has a multisubgraph which is a multibipartite 

subgraph. 

 Proof is direct can be given by the examples. 

 However we proceed onto suggest a open conjecture. 

Conjecture 3.1. Let G be the Plithogenic multigraph associated 

with the symmetric group Sn. 

i) What is the largest order of the Plithogenic 

multibipartite subgraph of G? 

ii) What is the biggest size of the Plithogenic 

multibipartite subgraph of G? (2  n < ). 

 Next we study by examples the bipartite multisubgraphs 

of G, where G is the multigraph associated with the symmetric 

semigroup S(n). 2  n < . 

Example 3.37. Let S(4) be the symmetric semigroup of degree 

4. Let G be Plithogenic multigraph of S(4). Let H be a 

multipartite subgraph of G given by the following figure. 
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H = 

 

 

 

 

Figure 3.77 

 H is a bipartite multisubgraph of G. 

 We can have several such multisubgraphs which are 

bipartite multisubgraphs. 

 The main problem which we encounter here is finding the 

biggest or largest order of such multibipartite subgraph of G and 

the largest size of such multibipartite subgraph of G for any 

S(n); 2  n < . 

 To this effect we propose the following open conjectures. 

Conjecture 3.2. Let S(n) be the symmetric semigroup of degree 

n. 

 Let G be the permutation Plithogenic multigraph 

associated with the symmetric semigroup S(n); 2  n < . 

i) What is the order of the largest multibipartite 

subgraph of G? 

v1 = (1 1 1 1) 

v2 = (2 2 2 2) 

v3 = (4 4 4 4) 

v4 = (3 3 3 3) 

u2 = (2 1 2 1) 

u3 = (3 4 4 3) 

u4 = (4 3 3 4) 

u1 = (1 2 1 2) 

3 
3 

3 
3 4 

4 
4 4 4 

4 

2 
2 

2 2 
1 

1 

1 

1 
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ii) What is the size of the largest multibipartite 

subgraph of G? 

iii) Are these largest multibipartite subgraphs 

unique? 

 Next we proceed onto describe the notion of min or max 

Plithogenic graphs by examples. 

Example 3.38. Let G be a min edge fuzzy bipartite graph given 

by the following figure. 

 

 

 

G = 

 

 

 

 

 

 

 

Figure 3.78 

0, 0, 0.2,  
0, 0.2) 

(0.3, 0, 0, 
0.1, 0) 

v2 = (0.1, 0.8,  
1, 1, 0) 

v3 = (0.4, 1, 0, 
0, 0.4) 

v4 = (0, 0, 0.5, 
0.1, 1) 

v5 = (1, 0.3, 0.1, 
0.4, 0.2) 

u2 = (0.9, 0.9, 
0.9, 0.9, 0.9) 

u3 = (0.4, 0.4, 
0.4, 0.4, 0.4) 

u4 = (0.5, 0.5, 
0.5, 0.5, 0.5) 

u5 = (0.2, 0.2, 
0.2, 0.2, 0.2) 

u6 = (0.6, 0.6, 
0.6, 0.6, 0.6) 

u1 = (1, 0, 0, 
0.1, 0.2) 

v1 = (0.3, 0.9, 
0.2, 0.9, 0.6)   

(0.1,0,0.9,0.9,0) 

(0.1, 0, 0.4, 
0.4, 0) 

(0.4, 0.5,  
0, 0, 0.5) 

 

(0, 0, 0.2, 0.1, 
0.2) 

 (0.6, 0.3,  
0.1, 0.4, 0.2) 
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  The concerned has taken v1, v2, …, v5 as the nodes of the 

domain space and (u1, u2, …, u6) as the nodes of the range space 

so we do not have any edges defined between the vertices v1, v2, 

…, v5 similarly there are no edges between u1, u2, …, u6. 

 However there are edges defined as minimum of (vi, uj) 

for appropriate i and j; 1  i  5 and 1  j  6. We see if we 

defines edges between every pair (vi, vj) then the resulting 

bipartite graph will be complete otherwise it will be not be a 

complete bipartite graph. 

 We give an example of a minimum edge complete 

bipartite graph. 

Example 3.39. Let G be a min edge complete bipartite graph 

given by the following figure. 

 

 

 

G = 

 

 

 

 

 

Figure 3.79 

u1 =  
(0, 0, 0.1) 

(0, 0, 0.1) 

v2 =  
(0.2, 0, 1) 

(0, 0, 0.1) 

u2 =  
(1, 0, 0.9) (0.2, 0, 0.9) 

(0, 0, 0.1) 

v3 =  
(0.1, 0.9, 0) 

(0.1, 0, 0) 

(0.1, 0, 0) 

v4 = (0.5, 
0.6, 0.2) (0.1, 0.2, 0.2) 

(0.5, 0, 0.1) 

(0,0.2, 0.3) 

u3 =  
(0.1, 0.2, 1) 

v1 =  
(0, 1, 0.3) 

(0, 0, 0.1) 
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 G is a complete min edge bipartite graph. 

 We give one illustration of each max edge complete 

bipartite Plithogenic graph and one not a complete max edge 

bipartite Plithogenic graph by examples. 

Example 3.40. Let G be a complete max edge Plithogenic graph 

given by the following figure. 

 

 

G = 

 

 

 

 

 

 

Figure 3.80 

 Clearly G is a max edge complete bipartite graph. We 

have not labeled the graph, the reader is expected to label edges 

using max operator. 

 Now an example of not a complete bipartite graph is 

provided. 

(1, 1, 0.7, 0.5) 

(0.1, 1, 0.2, 0.9) 

u1 = (1, 0.6, 
0.7, 0.5) 

u3 = (0.4, 
0.1, 1, 0) 

(0, 0.1, 0.8, 1) 

(1, 0.6, 0.8, 0.5) 

v1 =  
(0, 1, 0.1, 0) 

v3 = (0, 0, 
0.8, 0.2) 

v2 = (0.1, 0, 
1, 0.9) 

(0.1, 0.1, 1, 1) 

u4 = (0, 0.1, 
0.2, 1) 

u2 = (0.1, 0, 
0.2, 0.9) 

(1, 0.6, 1, 0.9) 

(0.4, 1, 1, 0) 

(0, 1, 0.2, 1) 
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 Example 3.41. Let G be a not complete max edge bipartite 

graph given by the following figure. 

 

 

 

G = 

 

 

 

 

 

 

 

 

Figure 3.81 

 Clearly G is a max non complete bipartite graph with row 

matrix labeled as edges and vertices. 

 We now provide one example of each max and min 

tripartite graph of this type. 

Example 3.42. Let G be the min tripartite graph given by the 

following figure. 

(0.3, 1, 0.3) 

u1 = (0.3, 1, 0) 
v1 = (0, 1, 0.3) 

(0.8, 1, 0.8) 

u2 = (0.5, 0.6, 
1) 

(0.8, 0.8, 1) 

u3 = (0.4, 0.2, 
0.7) 

v2 = (0.8, 0.8, 
0.8) 

v3 = (0.1, 0.2, 
0) 

(0.4, 0.2, 0) 

(1, 1, 1) 

u4 = (0.9, 0.9, 
0.9) 

v4 = (0.3, 0.4, 
0.5) 

u5 = (0.7, 0.7, 
0.8) 

v5 = (0.6, 0.6, 
0.6) 

v6 = (0.5, 0.5, 
0.5) 
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G = 

 

 

 

 

 

Figure 3.82 

 G is a min Plithogenic tripartite graph. It has applications 

in the field of medicine, social networks, psychology and so on. 

 Next we provide an example of a max row matrix vertex 

and edge labeled tripartite graph. 

Example 3.43. Let G be a max Plithogenic tripartite graph given 

by the following figure. 

 It is pertinent to mention that the edge labels are 

automatically fixed once the vertex labels are provided. 

u1 = (1, 
1, 0) 

(0.2, 0, 0) 
v1=(0.2, 
0.6, 0) 

w1=(1,1 
0.9) 

(0.2, 0, 0) 

(0.2, 0, 0) 

w2=(0.9, 
0.9, 1) 

v2=(0.3, 
0.6, 1) 

v3=(1, 1, 
0.1) 

(0.9,0.9, 
0.1) 

(0.9, 0, 0.1) 

(0.3, 0, 0) 

u2 = (0.9 
(0.9,0.9) 

(0.1, 1, 0.1) 

u3 = (0.4, 
0.4, 0.4) 

w3=(0,0, 
0.8) 

v4=(0, 
0.4, 0.3) 

(0, 0, 0.1) 

(0, 0, 0.3) 

v5=(0.9,
0.9,0.9) 

(0, 0, 0.9) 

u4 = (0.5, 
0.5, 0.5) 

(0, 0, 0.3) 

(0, 0, 0.3) 

(0.5,0.5,0.5) 
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G = 

 

 

 

 

 

 

 

 

 

 

Figure 3.83 

 Clearly G is a max edge bipartite Plithogenic graph. 

 Next we proceed onto give as exercise to the reader 

finding complete n partite graphs for n  4. 

(0, 1, 0.2, 0.7) 

v1 =  
(0, 1, 0.2, 

0.5) 

u1 =  
(0, 1, 0.2, 

0.7) 

u2 =  
(0.1, 0.9, 

0.3, 1) 

w1 =  
(0, 0, 1, 

0.6) 

(0, 1, 0.3, 1) 

(0.1 1, 1, 1) 

w2 = (0.2, 
0.1, 0.1, 1) 

(0.2 1, 0.2, 1) 

(0.2,1,0.3,1) (0.4,1,1,1) 

v2 = (0.4, 
0.3,1,0.7) 

u3 = (0.3, 
1, 1, 0) (0.4,1,1,1) 

v3 = (0.1, 
0.2, 0.1, 

0.3) 

u3 = (0.1, 
0.2, 0.3, 

0.4) 

(0.1,0.2,0.3,0.4) 

(0.4,0.3,1,0.7) 

w2 = (1, 
0.4, 0.3, 

0.8) 

(1,1,1,1) 

(0.2,0.2, 
0.3,1) 
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 Also find those m-partite multisubgraphs of G associated 

with Sn and S(n). Characterize them in these special cases. 

 Next we proceed onto give some problems some of which 

are at research level and some simple problems in the following. 

Problems 

1. Give an example of a same 1  5 Plithogenic vertex graph 

with 6 vertices. 

 a) A complete graph 

 b) A star graph 

 c) A ring / circle graph 

 d)  A line graph. 

2. How are these same Plithogenic vertex different from 

other graphs? 

3. Let G be a Plithogenic multigraph associated with the 

symmetric group S7. 

i) Find all complete Plithogenic multisubgraphs of G. (Find 

the associated subset in S7). 

ii) Does G contain Plithogenic non uniform multisubgraphs? 

(Justify your claim). 

iii) What is the largest mutlibipartite subgraph in G? 

iv) Can G have complete multi bipartite subgraphs? (Justify 

your claim). 

v) How many empty multisubgraphs of G exist? (Find its 

vertex subset in S7). 
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 4. Let S(6) be the symmetric semigroup of degree 6. Let G 

be the Plithogenic multigraph. 

i) Prove the edge labels are fixed once vertex labels are 

given. 

ii) Find the highest number of multiedges that can exist 

between any two relevant vertex sets. 

iii) Can G have uniform complete special multisubgraphs? 

(What is the vertex sets of such multisubgraphs?) 

iv) Does the vertex sets mentioned in problem (iii) enjoy any 

special properties as subsets? 

v) Find all non-uniform complete special multisubgraphs of 

G. (Find the vertex sets associated with them, do they 

enjoy any special features associated with S(6)) the 

largest uniform complete multisubgraph of G. 

vi) Find the largest non uniform complete multisubgraph of 

G. 

vii) Find all uniform complete bipartite multisubgraphs of G. 

viii) Find all nonuniform complete bipartite multisubgraphs of 

G. 

ix) What are the probable applications of these in social 

information multinetworks? 

5. Give any innovative application of Plithogenic 

multigraph. 

6. Let G be a Plithogenic multigraph given by the following 

figure. 
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G = 

 

 

 

 

 

Figure 3.84 

i) Find all multisubgraphs of G. 

ii) What is the size of the multiclique? 

iii) Does G contain K-clique? (what is the value of that K if 

one such exist) 

iv) Can G contain a bipartite multigraph? 

v) What is the size of the largest uniform complete 

multisubgraph of G? 

vi) Does G contain nonuniform complete multisubgraphs? 

vii) What are the special features associated with this 

multigraph? 

7. Let S(9) be the symmetric semigroup of degree 9. G be 

the Plithogenic multigraph associated with S(9). 

i) Find the maximum number of multiedges between any 

two nodes. 

2 

1 

2 
9 

v4 =  
(9, 2, 2, 9) 

9 
2 

9 

9 9 9 

v3 =  
(9, 2, 2, 9) 

v5 =  
(9, 9, 9, 9) 

9 9 

v8 =  
(1, 1, 9, 9) 

v7 =  
(2, 2, 9, 9) 

9 

9 

9 
9 

9 
1 

1 

v1 =  
(1, 2, 1, 9) 

v6 =  
(1, 1, 1, 1) 

v2 =  
(1, 2, 9, 1) 
9 

1 
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 ii) Find the multisubgraph H of G associated with S9. 

iii) What is the largest order of a nonuniform complete 

multisubgraph of G? 

iv) Does G contain a uniform complete multisubgraph? 

v) What is the structure enjoyed by the multisubgraph in 

(iv)? 

vi) What is the order of the largest complete simple subgraph 

of G? 

vii) Find all bipartite multisubgraphs of G. 

viii) What is the highest order of the multibipartite subgraph 

of G? 

ix) What can be the biggest size of the non-uniform complete 

multisubgraph of G? 

x) Find the largest size of a non-uniform complete bipartite 

multisubgraph of G. 

8. Find some applications of these Plithogenic graphs in 

plithogenic models. 

9. For the vertex sets V = {(0, 0.7, 1, 0.3, 0.5, 0), (0, 0, 0, 1, 

1, 1), (0.5, 0.6, 0.7, 0, 1, 0), (0.7, 0.9, 0. 1, 0.9, 0.9), (1, 1, 

0.1, 0.3, 0.4, 0.6)} draw a min edge complete Plithogenic 

graph. 

i) How many complete graphs can be drawn using subsets 

of the V? 

ii) Find the total number of min edge Plithogenic graphs that 

can be drawn using all the 6 vertices of the vertex set V. 

iii) Is the number in (ii) same in case of max edge 

Plithogenic graphs also? Justify your claim. 
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iv) How many bipartite complete row matrix with min 

operator to label edges can be drawn using the 6 vertices? 

v) Obtain any other special features associated with min (or 

max) edge Plithogenic graphs. 

10. Draw G the Plithogenic multigraph using the vertex set V 

= {(1, 1, 6, 6, 5, 2, 4), (6, 1, 6, 1, 5, 4, 2), (3, 3, 4, 5, 6, 2, 

1), (6, 6, 6, 6, 5, 5, 5), (4, 4, 4, 6, 6, 6, 1), (3, 3, 6, 6, 2, 2, 

4), (6, 6, 5, 5, 4, 4), (1, 1, 6, 6, 4, 5, 5), (1, 1, 1, 6, 6, 6, 2), 

(1, 2, 3, 6, 4, 6)}. 

i)  Find the maximum number of multiedges in G. 

ii) Does G contain a uniform complete multisubgraph? 

iii) Can G have non uniform complete multisubgraphs? 

iv) Define for these multigraphs the notion of 

k – clique 

k – clan 

k – plex 

k – cone and 

k – club 

 

v) What can be the maximum k and minimum k so problem 

(iv) exists? 

vi) Can G contain complete uniform multibipartite 

subgraphs? 

vii) Can G have bipartite multisubgraphs? 

viii) What is the biggest size of the bipartite multisubgraph of 

G? 

ix) What is the largest order of the complete bipartite 

multisubgraph of G? 

x)  Can G have a multitripartite subgraph? 



 

Chapter Four  

 

 
APPLICATIONS OF PLITHOGENIC GRAPHS  

 

 In this chapter we first give some applications of these 

newly built Plithogenic graphs to models using fuzzy graphs, 

single valued neutrosophic graphs. We just for the sake of 

completeness describe the above-mentioned concepts together 

with some applications. 

 In this section we proceed onto describe how Plithogenic 

graphs are applied to fuzzy graphs. To this end we define the 

notion of fuzzy graphs. 

Definition 4.1. Let s be a fuzzy subset of a nonempty set W and 

µ is a fuzzy relation which is symmetric on s that is 

 s : W  [0, 1] and µ: W  W  [0, 1] 

such that µ(w, t)   s(w)  s(t) for all w, t  W and wt denotes 

the edge between w and t and s(t)  s(w) denotes the minimum 

of s(t) and s(w). s is called the fuzzy vertex set of W and µ the 

fuzzy edge set of E. 

 We will illustrate this situation by an example.  
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Example 4.1. Let v1, v2, v3, v4, v5 and v6 be the four vertices of 

the fuzzy graphs G = G(s, µ) where s, W, µ are as given in 

definition. 

 

G = 

 

 

 

 

 

Figure 4.1  Fuzzy graph 

 We call this fuzzy graph as min valued fuzzy graph or in 

short min fuzzy graph. 

 Researchers can also define the notion of max fuzzy 

graphs and product fuzzy graphs. 

 Here in the definition of min fuzzy graph if a researcher 

or any expert replaces min by max function then fuzzy graph 

will be defined as the max fuzzy graph. If in the definition of 

min fuzzy graph if we replace the min by product we will define 

the resultant fuzzy graph as the product fuzzy graph. We will 

provide the examples only by using the min fuzzy graph given 

in example 4.1. 

(0.3) 

v4 (0.7) 

(0.3) 

v3 (0.4) 

v5 (0.2) 

(0.4) 

(0.2) 

(0.2) 

v2 (0.3) v1 (0.6) 

(0.3) 

(0.1) 

(0.1) 

v6 (0.1) (0.1) 

(0.1) 



Application of Plithogenic Graphs 199 
 
 
 Example 4.2. The max fuzzy graph using the vertex sets {v1 

(0.6), v2(0.3), v3(0.4), v4(0.7), v5(0.2) and v6(0.1)}. Let H = max 

H(s, µ) given by the following figure. 

 

 H = 

 

 

 

 

Figure 4.2 

 We see the edge labels of H and G are distinct. 

 Next we provide an example of product fuzzy graphs 

using the same vertex set given in example 4.1. 

Example 4.3. Given V = {v1(0.6), v2(0.3), v3(0.4), v4(0.7), 

v5(0.2), v6(0.1)} as the set of vertices. The product fuzzy graph 

is as follows. 

  

(0.6) 
v2 (0.3) v1 (0.6) 

v5 (0.2) 

v4 (0.7) v3 (0.4) 

v6 (0.1) 

(0.7) 

(0.7) 

(0.6) (0.6) 

(0.4) 

(0.4) 

(0.2) 

(0.4) 

(0.6) 
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K =  

 

 

 

Figure 4.3 

 We see the edge weights of K is different from that of the 

edge weights of G and H. 

 Next we define yet another type of fuzzy graph called 

mean or average fuzzy graph where the min operator is replaced 

by mean of the vertex set values. 

 We will for the same set of vertex set provide the mean 

fuzzy graph M the following example. 

Example 4.4.  Let B be the mean fuzzy graph given by the same 

set of vertex sets V = {v1 (0.6), v2(0.3), v3(0.4), v4(0.7), v5(0.2), 

v6(0.1)} as that the one vertex sets used in example 4. 

 The figure of B is given by the following figure. 

 

(0.18) 
v2 (0.3) 

v3 (0.4) 

(0.24) (0.12) 

v4 (0.7) 

(0.21) 

v6 (0.1) 

(0.07) 
(0.08) 

(0.04) 

(0.02) 
v5 (0.2) 

(0.12) 

v1 (0.6) 

(0.06) 
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    B = 

 

 

 

Figure 4.4 

 We see this mean fuzzy graph is different from all the 

three fuzzy graphs G, H and K. 

 Now we provide an example in which the fuzzy graphs of 

all the four types are provided and comparison of them is done. 

Example 4.5. Let C = {C1, C2, C3, C4, C5, C6, C7} be the six 

concepts which shows the marks of a student of 10th standard 

given in the form of membership. 

C1= v1(0.9) membership of marks in mathematics 

C2 = v2(0.8) membership of marks in physics 

C3 = v3(0.5) membership of marks in chemistry 

C4 = v4(0.4) membership of marks in languages 

C5 = v5(0.6) membership of marks in English 

C6 = v6(0.65) membership of marks in computer science 

(0.45) 
v1 (0.6) v2 (0.3) 

(0.25) 

v4 (0.7) 

v5 (0.2) 

(0.4) 

(0.5) (0.4) 

v6 (0.1) 

(0.35) 

(0.15) 

(0.3) 

(0.5) 

v3 (0.4) 

(0.35) 
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C7 = v7(0.7) membership of marks in logic 

 Using an expert the product fuzzy graphs G was drawn. 

 

 

 

G =  

 

 

 

 

 

Figure 4.5 

 Suppose one ventures to get a complete product fuzzy 

graph for the same set of 7 vertices related with C1, C2, … C7 

we have the following figure. 

  

(0.72) 
v1 (0.9) 

(0.36) (0.45) 

v6 (0.65) 

(0.48) 

(0.63) 

(0.35) 

v3 (0.5) 

v7 (0.7) 

v5 (0.6) 

v4 (0.4) 

(0.2) 

(0.605) 

(0.28) 

(0.26) 
(0.56) 

v2 (0.8) 
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Figure 4.6 

 It is pertinent to record at this juncture that edge weights 

are so assigned to measure the weight or strength or weakness 

of the relation between the two nodes or vertices. 

 So in this case we see if a persons scores good marks in 

mathematics v1(0.9) and poor marks in languages v4(0.4). The 

edge weight adjoining v1 to v4 is 0.36 under product fuzzy graph 

model. Suppose we use min fuzzy graph model the related edge 

weight is 0.4 if on the other hand mean or average fuzzy graph 

model is used the edge weighted is 0.65. 

 However we cannot use max fuzzy graph model for the 

value would be 0.9 which is misleading for one cannot weight 

so which means if one is good is mathematics then his/her 

language expertise in languages need not in general be good in 

(0.72) 
v2 (0.8) 

v3 (0.5) 

v6 (0.65) 

(0.455) 

(0.32) 

(0.28) 

(0.26) 

(0.42) 

(0.325) 

v5 (0.6) 

(0.54) 

(0.63) 

(0.45) 

(0.325) 

(0.585) 

v7 (0.7) 

(0.35) 

(0.24) 

v1 (0.9) 

(0.36) 

(0.56) 
(0.4) 

(0.48) 

v4 (0.4) 
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languages also for in this case we see his language marks are in 

fact poor just 0.4. 

 Hence it is mandatory that the expert uses his discretion 

in a rationalistic way and avoids using max fuzzy graph model. 

 Using min fuzzy graph model or product fuzzy graph 

model or mean fuzzy graph model does not that much affect the 

result. 

 Further we wish to state that the best model using fuzzy 

graphs is the product fuzzy graph model and other models are 

not that best suited. 

 Secondly if one really access this product the next better 

would be min fuzzy graph model and final and not even a better 

model is mean fuzzy graph model and max fuzzy graph model 

cannot be used for this problem. 

 Another factor is we can get two product fuzzy graph 

models (i) uses the complete fuzzy graph as the network or a 

dynamical system. 

 Other one functions on the expert’s opinion, both are 

different. 

 The strengths of the edges can be get in both cases from 

the adjacency matrices of the product fuzzy graph which are 

described for the problem of marks of the student and his over 

all assessment. 

 Further in most cases it is meaningless to use complete 

fuzzy graph for in general for every case the results happen to 
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 be true, however there can be something known as laws of 

exception cases. 

 Sometimes there can be cases a person good in all 

subjects. 

 Finally, the marks scored is also many a times relative or 

system of exams measures only wrote memory and so on and so 

forth. 

 The adjacency matrix G1 relative to the product fuzzy 

graph model and that of the adjacency matrix G2 of the product 

complete fuzzy graph are given in the following: 

G1 =  

1 2 3 4

1

2

3

4

5

6

7

v (0.9) v (0.8) v (0.5) v (0.4)

v (0.9) 0 0.72 0.45 0.36

v (0.8) 0.72 0 0 0

v (0.5) 0.45 0 0 0.2

v (0.4) 0.36 0 0.2 0

v (0.6) 0 0.48 0 0

v (0.65) 0.585 0 0 0.26

v (0.7) 0.63 0.56 0.35 0.28

 

5 6 7v (0.6) v (0.65) v (0.7)

0 0.585 0.63

0.48 0 0.56

0 0 0.35

0 0.26 0.28

0 0 0

0 0 0

0 0 0
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G2 = 

1 2 3 4

1

2

3

4

5

6

7

v (0.9) v (0.8) v (0.5) v (0.4)

v (0.9) 0 0.72 0.45 0.36

v (0.8) 0.72 0 0.4 0.32

v (0.5) 0.45 0.4 0 0.2

v (0.4) 0.36 0.32 0.2 0

v (0.6) 0.54 0.48 0.3 0.24

v (0.65) 0.585 0.52 0.325 0.26

v (0.7) 0.63 0.56 0.35 0.28

 

5 6 7v (0.6) v (0.65) v (0.7)

0.54 0.585 0.63

0.48 0.52 0.56

0.3 0.325 0.35

0.24 0.26 0.28

0 0.39 0.42

0.39 0 0.455

0.42 0.455 0

 

 When we compare the two matrices using product gives a 

more feasible solution. 

 One can interpret that a person in general strong in 

mathematics, happens to be good in physics, logic and computer 

science. Likewise, one can interpret the results from the 

adjacency matrices. 

 Next we proceed onto describe how this fuzzy graph 

theory model functions in medical diagnostics. 

Example 4.6. A patient comes with the following symptoms 

and the product fuzzy graph model is used by the doctor after 
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 assigning the following membership values to the symptoms 

which he says he is suffering  

 Fever high  s1 (0.9) 

 Shivering   s2 (0.7) 

 Cold and cough  s3 (0.4) 

 Headache   s4 (0.5) 

 Malaria   s5 (0.7) 

 Tuberculosis  s6 (0.4) 

 Vomiting and Nausia s7 (0.1) 

 Food poisoning   s8 (0.2) 

Now he gives the product complete fuzzy graph using  these 8 

nodes. 

 

 

 

 

 

 

 

 

Figure 4.7 

(0.72) 

s1 (0.9) s2 (0.7) 

(0.28) 

s3 (0.4) 
s7 (0.1) 

s6 (0.4) 
s4 (0.5) 

s8 (0.2) 

s7 (0.1) 

(0.14) 

(0.18) 

(0.8) 

(0.36) 
(0.08) 

(0.28) 
(0.35) 

(0.2) 

(0.2) 

(0.07) 

(0.07) 

(0.28) 

(0.36) 
(0.45) 

(0.05) 
(0.16) 

(0.16) 

(0.1) 

(0.49) 

(0.04) 

(0.09) 
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 We only study the strong edges whose values are  0.5 

and obtain a product fuzzy graph H which will serve as a 

product fuzzy graph model for the study. 

 

 

 

H =  

 

 

Figure 4.8 

We clearly make a conclusion that the patient has 

malaria fever is high and he has shivering. 

This product fuzzy graphs. Next we proceed onto 

describe intuitionistic fuzzy graph and prove some applications 

of them. 

An intuitionistic fuzzy graph G(V,E) with V = {v1, …, 

vn} such that 1 : V  [0, 1] and 1 : V  [0, 1] denote the 

degree of non membership or membership of an element vi  V 

(or fuzzy membership) respectively 1  i  n with 0  1 (vi) + 

1 (vi)  1. 

Here E  V  V where 2: V  V  [0, 1] and 2: V  

V  [0, 1] are such that  

2(vi, vj)  min [1 (vi), 1(vj)] 

0.63 
s1 (0.9) s2 (0.7) 

s5 (0.7) 

s7 (0.1) 
s3 (0.4) 

s8 (0.2) 

s6 (0.4) s4 (0.5) 

0.49 
0.63 
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 2 (vi, vj)  max [1(vi), 1(vj)] 

0  2 (vi, vj) + 2 (vi, vj)  1 

for every (vi, vj)  E; 1  i, j  n. 

 We give one example of the intuitionistic fuzzy graph in 

the following. 

Example 4.7. Let V = {v1, v2, v3, v4, v5} of the intuitionistic 

fuzzy graph G(V, E) with 1 : V  [0, 1] and 1: V  [0, 1] 

denote the fuzzy memberships of the element vi  V; 1  i  5 

respectively. 

 The graph G(V, E) is as follows: 

 

 

 

 

 

 

 

 

 

Figure 4.9 

v1 (0.3, 
0.1) 

(0.3, 0.3) 

v3 (0.2, 
0.7) 

(0.2, 
0.7) 

v2 (0.5, 
0.3) 

v4 (0.5, 
0.4) 

v5 (0.4, 
0.6) 

(0.4, 0.6) 

(0.4, 0.6) 

(0.3, 0.4) 

(0.2, 0.7) 

(0.2, 0.7) 
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 It is pertinent to record we call in this book such 

intuitionistic fuzzy graphs as type I intuitionistic fuzzy graphs 

and denote it by G1(V, E). 

 We now proceed onto define type II to type VI 

intuitionistic fuzzy graphs in the following. 

Definition 4.2 :  Let G2(V, E) be a intuitionistic fuzzy graph with 

V = {v1, v2, …, vn} where 1: V  [0, 1] and 1: V  [0, 1] are 

fuzzy memberships which satisfies the additional condition as  

0  1(vi) + 1(vi)  1 

and 2 : V  V  [0, 1] and 

 2: V  V  [0, 1] such that 

 2(vi, vj)  min [1(vi), 1(vj)] and 

 2(vi, vj)  product [1(vi), 2(vj)] such that 

 0  2(vi, vj) + 2 (vi, j)  1, (vi vj)  E; 1   i, j   n. 

 We define this G2(V,E) as intuitionistic fuzzy graph of 

type II. 

 Clearly type I and type II are different only in their edge 

weights the structures remain the same. 

 We prove the graph with same vertex set given in 

Example 4.1 for this type II intuitionistic fuzzy graph in the 

following. 
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 G2 (V, E) = 

 

 

 

 

 

 

 

 

Figure 4.10 

 It is easily observed that G(V, E) = G1 (V, E) and G2(V, 

E) are structurally the same however only the edge weights of 

G1(V, E) and G2(V, E) are different. This will be helpful to the 

researchers when they do not want to boost the values using 

max to boost the values using max function. 

 Now we proceed onto define type III intuitionistic fuzzy 

graph in the following. 

Definition 4.3 Let G3(V, E) be the intuitionistic fuzzy graph of 

type III with V ={v1, …, vn} the vertex set 1 : V  [0, 1] and 

1: V  [0, 1] special type of fuzzy membership functions such 

that 

 0  1(vi) + 1(vi)  1;     1    i  n and 

v1 (0.3, 
0.1) 

(0.3, 0.3) 

v3 (0.2, 
0.7) 

(0.2, 0.7) 

v2 (0.5, 
0.3) 

v4 (0.5, 
0.4) 

v5 (0.4, 
0.6) 

(0.4, 0.24) 

(0.4, 0.18) 

(0.3, 0.4) 

(0.2, 0.28) 

(0.2, 0.42) 
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2: V  V  [0, 1] and 

2: V  V  [0, 1] such that  

2 (vi, vj)  product [1 (vi), 1(vj)] 

and 2(vi, vj ) min (1(vi), 1(vj)] 

 0  2 (vi, vj)+ 2(vi, vj)  1 (vi, vj)  E, 1  i, j  n. 

 We define the G3(V, E) to be the intuitionistic fuzzy 

graph of type III. 

 When a researcher wishes work with minimum 

occurrence of an event or attribute we can use the notion of 

intuitionistic fuzzy graph of type III. 

 We will illustrate this situation by the same example is 

given in 4.1. 

G3 (V, E) = 

 

 

 

 

 

 

 

Figure 4.11 

v1 (0.3, 
0.1) 

(0.15, 0.1) 

     (0.06, 0.1) 

v2 (0.5, 
0.3) 

v4 (0.5, 
0.4) 

v5 (0.4, 
0.6) 

(0.2, 0.4) 

(0.2, 0.3) 

(0.15, 0.1) 

(0.10, 0.4) 

(0.08, 0.6) 

v3 (0.2, 
0.7) 
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  We see the intuitionistic fuzzy graph G3(V, E) is 

structurally the same as that of G2(V, E) and G1(V, E) but is 

different only in the edge weights. 

 Next we proceed onto define and describe type IV fuzzy 

intuitionistic graphs. 

Definition 4.4 Let G4(V, E) be as in definition 

 1: V  [0, 1] and 1: V  V [0, 1] such that 

 0  1(vi) + (vi)  1; 1  i  n.  

Let 2: V  V  [0, 1] and 2: V  V  [0, 1] be defined as 

follows:  

2 (vi, vj) max {1(vi), 1(vj)} and  

2(vi, vj)  min {1(vi), 1(vj)} 

0  2 (vi, vj) + 2(vi, vj)  1.  1  i,j  n. 

We define this graph as type IV fuzzy intuitionistic 

graph. 

We will illustrate this situation by the following 

example for the same set of vertex set {v1, v2, …, v5} given in 

example 4.1. 

Example 4.8 Let V = {v1(0.3, 0.1), v2(0.5, 0.3), v3(0.2, 0.7), 

v4(0.5, 0.4), v5(0.4, 0.6)} be the set of vertices of the 

intuitionistic fuzzy graph G4(V, E). We have the following 

figure. 

‘ 
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G4(V, E) = 

 

 

 

 

 

 

 

 

Figure 4.12 

We see G4(V, E) is the intuitionistic fuzzy graph of type IV. 

 Next we proceed onto define type V fuzzy intuitionistic 

graph. 

Definition 4.5 Let G5(V, E) be as in Definition 4.2. We have 1: 

V  [0, 1], 1: V  [0, 1] such that 0  1(vi) + 1(vi)  1 for 

all vi  V. Let 2: V  V  [0, 1] and 2: V  V  [0, 1] such 

that 2(vi, vj)  max {1(vi), and 2(vi, vj)  1 (vi) vj(vi, vj) 

 V  V with the additional condition 0  2(vi, vj) + 2(vi, vj). 

 We define G(V, E)  1. G5(V, E) as the intuitionistic 

fuzzy graph of type V. 

 We provide an example of the same. 

v1 (0.3, 
0.1) 

(0.5, 0.1) 

v3 (0.2, 
0.7) 

(0.3, 0.1) 

v2 (0.5, 
0.3) 

v4 (0.5, 
0.4) 

v5 (0.4, 
0.6) 

(0.5, 0.4) 

(0.5, 0.3) 
(0.5, 0.1) 

(0.5, 0.4) 

(0.4, 0.6) 
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 Example 4.9 Let the vertex set V = {v1(0.3, 0.1), v2 (0.5, 0.3), 

v3(0.2, 0.7), v4(0.5, 0.4), v5(0.4, 0.6)}. I and I defined as in the 

above definition. 

 We get the following figure. 

 

 

 

                  = G5(V, E) 

 

 

 

 

 

Figure 4.13 

We see clearly G5(V, E) is structurally the same as that 
of G1(V, E), G2(V, E), G3(V, E) and G4(V, E) but however the 
edge weights of G5(V, E) is entirely different from that of the 
other fuzzy intuitionistic graphs. 

Finally, we proceed onto define the notion of fuzzy 
intuitionistic graph of type VI. 

Definition 4.6 Let G6(G, E) be the fuzzy intuitionistic graph of 

type VI. We as in case of the intuitionistic graph of type I or the 

v5 (0.4, 
0.6) 

(0.5, 0.21) v1 (0.3, 
0.7) 

v2 (0.5, 
0.3) 

(0.5, 0.18) 
(0.5, 0.07) 

v3 (0.2, 
0.7) 

(0.2, 0.49) 

(0.5, 0.07) v4 (0.5, 
0.4) 

(0.5, 0.24) 
(0.4, 0.42) 
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classical one give in definition 4.1 take V and take 1 : V  [0, 

1] and 1: V  [0, 1] satisfying the additional condition. 

 0  1 (vi) + 1(vi)  1 for 1  i  n. 

 2: V  V  [0, 1] and 2: V  V  [0, 1] 

are defined as 2(vi, vj)  max {1(vi), 1(vj)} and 2(vi, vj)  min 

{1(vi), 1(vj)} satisfying the additional condition 1  2 (vi, vj) + 

2(vi, vj)  1 for all (vi, vj)  V  V. 

 We define the resulting fuzzy intuitionistic graph as the 

type VI intuitionistic fuzzy graph. 

 We will illustrate this situation by the following 

example for the same vertex set given in Example 4.1. 

Example 4.10 Let V = v1(0.3, 0.7), v2 (0.5, 0.3), v3(0.2, 0.7), 

v4(0.5, 0.1), v5(0.4, 0.6)} be the vertex set and G6(V, E) be the 

fuzzy intuitionistic graph given by the following figure. 

 

 

 

G6(V, E) = 

 

 

 

 

Figure 4.14  

v5 (0.4, 
0.6) 

(0.5, 0.3) v1 (0.3, 
0.7) 

v2 (0.5, 
0.3) 

(0.5, 0.3) 
  

v3 (0.2, 
0.7) 

(0.3, 0.7) 

(0.5, 0.1) v4 (0.5, 
0.1) 

(0.5, 0.1) 
(0.4, 0.6) 
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 Clearly G6(V, E) is the intuitionistic fuzzy graph of type 

VI and structurally it is the same as that of Gi(V, E); 1  i  5 

but however the edge weights of G6(V, E) are different from 

that of Gi(V, E) 1  i  5. 

Thus instead of having a fixed choice of  min and  

max as the condition we can choose any one of the six 

conditions as per the need of the researcher or expert and the 

nature of the problem in hand. 

We will illustrate the applications of intuitionistic fuzzy 

graph in case of medical diagnosis by the following example. 

Example 4.11 Now after discussing with the patient about the 

symptoms he suffers, the doctor wishes to confirm the disease 

he suffers. The doctor uses the intuitionistic fuzzy graph model. 

 From the doctor the following vertices are provided 

Recall any pair say vi (xi, xj) where 0  xi, yi  1 represents the 

membership and non membership; here xi denotes the 

membership that this person suffers from malaria and yi denotes 

the non-membership that is the patient may not be suffering 

from malaria. 

 Thus v1 intermittent fever then the doctor gives the 

value 0.8 for possible chances the patient suffers from malaria 

and 0.1 that he is not suffering from malaria. So for the 

intuitionistic graph we have v1(0.8, 0.1). 

 Likewise for chill before fever v2 the doctor gives 

v2(0.7, 0.2) for one can suffer chills before fever even in case of 

food poisoning so says 0.2. 
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 For the same for vomiting symptom v3 he gives v3 (0.3, 

0.6) the diagnoses is for the malaria disease can the presence of 

cold and cough indicate the malaria disease. The doctor gives 

the membership as 0.2 and non membership as 0.5 so (0.2, 0.5). 

So according to him cold and cough cannot be a strong 

indication of malaria. 

 Suppose one has fever in the evening v5 then the doctor 

says evening fever can indicate lung disease or TB so he gives 

the membership and non membership as (0.5, 0.2). Finally, can 

stomach upset v6 cannot be an indication of malaria the 

membership value is given by (0.2, 0.6).   

 Now we give the intuitionistic fuzzy graph using the 

vertex set v1, v2, …, v6, in the following. 

 We can have the following complete intuitionistic  

fuzzy graph with (min, max) edge weights. 

 

 

 

 

  

Figure 4.15 

v1 (0.8, 0.1) 

 

 

 

(0.7, 0.1) 

(0.2, 0.5) 

v2 (0.7, 0.2) 

(0.3, 0.6) 

(0.2, 0.6) 

v3(0.3, 0.6)

(0.1, 0.6) 
 

 

(0.1, 0.6) 

(0.3, 0.6) 

(0.2, 0.5) 

 

 v4(0.2, 0.5) 

 v6(0.1, 0.6) 
 v5(0.6, 0.2) 

(0.6, 0.2) (0.2, 0.5) 
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 Now we collect the edge weights which has larger or 

bigger membership for malaria. We say the nodes are related for 

the malarial disease symptoms if the membership values are 

high. If the non membership values are high then the two nodes 

are unrelated for the symptoms of the malaria. 

We tabulate the edges and edge with membership to 

malaria in the following table. Table of edge weight 

membership and non membership for malaria. 

Table of Membership for malaria 

S. No. Edges with 
weights 

Membership 
with malaria 

Non-
membership for 

malaria 

1. v1v2 (0.7, 1) 0.7 0.1 

2. v1v3 (0.3, 0.6) 0.3 0.6 

3. v1v4 (0.2, 0.5) 0.2 0.5 

4. v1v5 (0.3, 0.6) 0.3 0.6 

5. v1v6 (0.1, 0.6) 0.1 0.6 

6. v2v3 (0.3, 0.6) 0.3 0.6 

7. v2v4 (0.2, 0.5) 0.2 0.5 

8. v2 v5 (0.6, 0.2) 0.6 0.2 

9. v2 v6 (0.1, 0.6) 0.1 0.6 

10. v3 v4 (0.2, 0.6) 0.2 0.6 

11. v3v5 (0.3, 0.6) 0.3 0.6 

12. v3v6 (0.1, 0.6) 0.1 0.6 

13. v4v5 (0.2, 0.5) 0.2 0.5 

14. v4v6  0.1 0.6 

15. v5v6 0.1 0.6 
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Now we make the clusters in the following way. The 

edges associated with the edges that has maximum membership 

(say a membership greater than or equal to 0.5) will form a 

cluster I and those whose non membership is greater 0.4 will 

form another cluster II.  

It is probable and possible in general c have a third 

cluster III which does not full in the membership side or a non 

membership side. 

We take only the edges for if nodes are to be taken we 

will find the clusters to be an overlapping one. 

Thus cluster I is given by these set of edges. 

Cluster I = {v1v2, v2v5} 

Cluster II = {v1v3, v1v4, v1v5, v2v3, v1v6, v2v4, v2v6, v4v6, 

v3v4, v3v5, v4v5} 

Cluster III = {} 

Here in this case cluster III happens to be empty. 

It is pertinent to note we have taken some symptoms 

suffered by a patient in general and have tried to find which of 

the symptoms are related with malaria using the fuzzy 

intuitionistic graph / network. The doctor has taken 6 symptoms 

v1, v2, …, v6 some of them are related and some unrelated and 

has formed the graph and also the membership table is formed 

using the edge strengths. These edge strengths are used to form 

the table from which clusters are evolved. 
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 Thus from the clusters one can get those symptoms 

which predict the chances of malaria these will corresponds to 

the memberships and the non membership cluster will 

correspond to the symptoms which do not relate to malaria. 

In fact it is pertinent to keep on record that there may be 

symptoms in a patient where the expert may not be in a position 

to say the symptom is malarial or the symptom is non malarial 

in such cases this fuzzy intuitionistic fuzzy graph cannot make 

any conclusions. So only to make our model and study more 

sensitive we try to model the same problem using Single Valued 

Neutrosophic (SVNs) graphs model. 

Let G* = (V, E) denote the crisp graph and vertex set V 

and edge set E. 

We denote the single valued neutrosophic graph by G = 

(A, B) where the notational convention is described in the 

following: A is defined as the single valued neutrosophic vertex 

set of V and B is the symmetric single valued neutrosophic 

relation on A [5-6]. 

The functions TA, IA and FA are defined in the following 

which denote the degree of truth membership, degree of 

indeterminacy membership and falsity membership of an 

element vi  V respectively satisfying the condition 0  TA(vi) + 

IA(vi) + FA (vi)  3 for all vi  V; (i = 1, 2, …, n). The functions 

are defined in the following will form the edge set E of the 

single valued neutrosophic graph G = (A, B). 

The 3 functions TB, IB and FB from E  V  V  [0, 1] 

defined by 
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TB ({vi, vj}  min [TA(vi), TA(vj)] 

IB({vi, vj})  max [IA(vi), IA(vj)] and  I 

FB({vi, vj)}  max [FA(vi), FA(vj)] 

where TB: E  V  V  [0, 1], 

 IB: E  V  V  [0, 1] 

and FB: E  V  V  [0, 1]. 

Denotes the degree of truth-membership, IB the indeterminacy 

membership and FB the false membership respectively. 

 One can as in case of fuzzy intuitionistic graphs and 

models explained earlier in this case also apply them and obtain 

all types of them. 

 However, it is important to mention [87] have used 

SVNS graphs to construct SVNS models in medical diagnostics. 

Thus any researcher can use other operation on the SVNS 

triplets and arrive at a best solution. 

 Now we proceed onto recall the definition plithogenic 

set [44]. For more about other features and properties please 

refer [1, 2, 44]. 

 A Plithogenic fuzzy set is defined as a set whose each 

element is characterized by many attribute values. That is if (a1, 

a2, ..., an) are n attributes then if x1, x2, …, xt then x1’s fuzzy 

degree of these attributes is x1 (m11, ,m12, …, m1n) where m1i  

[0, 1]; 1  i  n. 
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  Similarly the x2’s fuzzy degree of these attributes is x2 

(m21, m22, …, m2n) where m2i  [0, 1]; 1  i  n. Similar fuzzy 

degree values for any xk: 1  k  t. 

 This is plithogenic fuzzy set. Suppose we assign a 

neutrosophic degree then for the above stated attributes. 

 x1 (( 1 2 3
11 11 11n ,n ,n ) ( 1 2 3

12 12 12n ,n ,n ), …, ( 1 2 3
1n 1n 1nn ,n ,n ) is the 

neutrosophic degree of x1, where j
1in   [0, 1]; 1  i  n, 1  j  

3. On similar lines the neutrosophic degree for x2 is 

 x2 (( 1 2 3
21 21 21n ,n ,n ), ( 1 2 3

22 22 22n ,n ,n ), …, ( 1 2 3
2n 2n 2nn ,n ,n )) 

where j
2in  [0, 1]; 1  j  3, 1  i  n. 

 This is the way we define for any xk; so technically we 

say a plithogenic fuzzy set is represented with n attributes, any 

expert as a fuzzy row matrix and that of a plithogenic 

neutrosophic set is a super fuzzy row matrix with each element 

of it is a 1  3  fuzzy matrix. 

 In this book we use only two types of plithogenic sets 

for constructing graphs and models. 

 We provide examples of them in the following. 

Example 4.12 Suppose we want to study the symptom disease 

model in general using Plithogenic fuzzy sets. The symptoms 

are taken as the attributes and are listed in the following: 

1. Vomiting   - a1 

2. Fever  - a2 
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3. Very high fever - a3 

4. Cold  - a4 

5. Cold and cough - a5 

6. Chills before fever - a6 

7. Indigestion  - a7 

8. Headache  - a8 

9. Dysentery  - a9 

10. Stomach pain - a10 

The diseases under investigation is  

x1 - Malaria 

x2 - Flu 

x3 - Typhoid 

x4 - Jaundice 

x5 - Food poisoning 

 The experts gives the following Plithogenic fuzzy 

values for the disease malaria x1 is 

 x1 (0.1, 0.4, 0.6, 0.2, 0.2, 0.8, 0.1, 0.5, 0, 0.1) is the 

fuzzy degree of the systems associated with malaria. 

 For flu x2 the fuzzy degree of the Plithogenic fuzzy set 

is as follows. 

 x2 (0.1, 0.6, 0.7, 0.8, 0.6, 0.4, 0.2, 0.6, 0.2, 0.1) 
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  Next we give the Plithogenic fuzzy values for the 

disease typhoid (x3) is given in the following. 

 x3 (0.7, 0.6, 0.7, 0.1, 0.1, 0.2, 0.5, 0.7, 0.3) 

The Plithogenic fuzzy value for the disease Jaundice x4 

is as follows. 

x4 (0.7, 0.6, 0.5, 0.1, 0.1, 0.2, 0.7, 0.6, 0.1, 0.4) 

Now we give the Plithogenic fuzzy set associated with 

the disease food poisoning. 

x5 (0.7, 0.6, 0.5, 0.1, 0.1, 0.7, 0.6, 0.8, 0.7, 0.8) 

Now for the same set of attributes and experts we give 

the fuzzy neutrosophic plithogenic set values in the following. 

x1{((0.2, 0.1, 0.6), (0.6, 0.3, 0.1), (0.5, 0.4, 0.2), (0.1, 

0.8, 0.7), (0.1, 0.6, 0.6), (0.7, 0.3, 0.2), (0.2, 0.6, 0.5), (0.5, 0.6, 

0.5), (0.1, 0.6, 0.7), (0.1, 0.5, 0.6))} is the fuzzy super matrix 

associated with the fuzzy neutrosophic plithogenic set for the 

value x1. 

The fuzzy neutrosophic plithogenic set values for flu x2 

is as follows. 

x2{((0.1, 0.5, 0.7), (0.8, 0.2, 0.1), (0.7, 0.3, 0.2), (0.7, 

0.3, 0.1), (0.7, 0.1, 0.1), (0.4, 0.7, 0.5), (0.1, 0.3, 0.6), (0.6, 0.4, 

0.5), (0.1, 0.7, 0.6), (0.1, 0.6, 0.2))}. 

Next the fuzzy neutrosophic plithogenic set value for 

typhoid x3 is as follows. 
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x3 {((0.6, 0.4, 0.1), (0.7, 0.2, 0.4), (0.6, 0.3, 0.3), (0.1, 

0.6, 0.4), (0.1, 0.6, 0.4), (0.1, 0.5, 0.6), (0.6, 0.4, 0.2), (0.6, 0.2, 

0.3), (0.1, 0.6, 0.6), (0.2, 0.6, 0.4))} is the super fuzzy row 

matrix associated with it. 

Next we give the fuzzy neutrosophic plithogenic set 

associated with the disease jaundice (x4) for the symptoms listed 

x4 {(0.7, 0.4, 0.1), (0.5, 0.6, 0.5), (0.4, 0.6, 0.6), (0.1, 

0.3, 0.7), (0.1, 0.4, 0.3), (0.7, 0.1, 0.2), (0.6, 0.4, 0.4), (0.2, 0.6, 

0.6), (0.5, 0.5, 0.5))} is the super fuzzy row matrix of the fuzzy 

neutrosophic plithogenic set associated with the disease 

jaundice. 

We give the fuzzy neutrosophic set associated with food 

poisoning x5 for the given symptoms 

x5 {((0.8, 0.3, 0.1), (0.5, 0.6, 0.5), (0.6, 0.6, 0.5), (0.1, 

0.2, 0.7), (0.1, 0.3, 0.8), (0.6, 0.4, 0.4), (0.8, 0.2, 0.2), (0.7, 0.2, 

0.1), (0.7, 0.2, 0.3), (0.7, 0.1, 0.1))}. 

Next we proceed onto define intuitionistic Plithogenic 

fuzzy set for the symptom disease problem discussed in 

example. 

We see the fuzzy intuitionistic plithogenic set 

associated with malaria x1 for the given set of 10 symptoms is 

as follows. 

x1 {((0.2, 0.6), (0.6, 0.3), (0.7, 0.2), (0.2, 0.8), (0.8, 0.1), 

(0.4, 0.6), (0.5, 0.6), (0.1, 0.7), (0.2, 0.9))} which is a fuzzy 

super row matrix of order 1  10. 
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 Similarly for the disease flu x2 the fuzzy intuitionistic 

plithogenic super fuzzy 1  10 row matrix is as follows. 

x2{((0.1, 0.8), (0.8, 0.2), (0.8, 0.1), (0.7, 0.2), (0.7,l 0.1), 

(0.5, 0.5), (0.2, 0.7), (0.6, 0.3), (0.1, 0.6), (0.1, 0.7))}. 

Now the expert gives the fuzzy intuitionistic plithogenic 

set super fuzzy matrix for the disease typhoid using the 10 

symptoms in the problem. 

x3 {((0.7, 0.2), (0.6, 0.3), (0.7, 0.2), (0.1, 0.8), (0.1, 0.7), 

(0.1, 0.5), (0.8, 0.1), (0.7, 0.1), (0.5, 0.6), (0.6, 0.6))}. 

Next we give the super fuzzy 1  10 row matrix of the 

fuzzy intuitionistic plithogenic set associated with the disease 

Jaundice using the 10 symptoms listed in the problem. 

x4{((0.7, 0.2), (0.6, 0.5), (0.4, 0.5), (0.1, 0.8), (0.1, 0.7), 

(0.2, 0.6), (0.8, 0.2), (0.6, 0.2), (0.3, 0.6), (0.6, 0.3))}. 

Finally we give the fuzzy intuitionistic plithogenic set 

associated with the disease food poisoning x5 using the 10 

symptoms listed in the problem. 

x5 {((0.8, 0.1), (0.4, 0.5), (0.2, 0.7), (0.1, 0.8), (0.2, 0.8), 

(0.7, 0.5), (0.8, 0.2), (0.7, 0.3), (0.7, 0.2), (0.7, 0.2))}. 

Now we define and illustrate for the 3 types of 

plithogenic sets which we have discussed in the following a 

medical diagnostic model. 

Suppose we have for patients P1, P2, P3 and P4 who have 

been diagnosed for all the 5 diseases using the 10 symptoms. 
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The Plithogenic fuzzy sets associated with the patient 

P1, P2, P3 and P4 is as follows:  

P1((0.1, 0.5, 0.7, 0.8, 0.5, 0.3, 0.2, 0.5, 0.1, 0.2) 

P2((0.1, 0.3, 0.7, 0.1, 0.2, 0.8, 0.1, 0.5, 0.1, 0) 

P3((0.7, 0.7, 0.7, 0.2, 0.2, 0.2, 0.2, 0.5, 0.7, 0.3) and 

P4 (0.7, 0.7, 0.6, 0.1, 0.1, 0.1, 0.6, 0.8, 0.2). 

Now we use the formula for the normalized Hamming 

distance between two, Plithogenic fuzzy sets defined by  

H
FPd (A, B) = 

n
FP FP
M j N j

j 1

1
(x ) (x )

n 

    (I) 

The normalized Euclidean distance between any plithogenic set 

A and B is defined by 

E
FPd (A, B) = 

½
n

FP FP 2
M j N j

j 1

1
( (z ) (z ))

n 


  

 
  

We now proceed onto build special graphs which of two 

types which we call as Hamming distance-based edge graphs 

with row matrix labeled and Euclidean distance based edge  

Plithogenic graphs. 

First we provide examples of them. 

Example 4.13 Let V = {v1, v2, v3, v4, v5} be the vertex set where 

vi’s are 1  4 matrices fuzzy or real valued.  
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  Let us define or weight the edges with Euclidean 

distance value which is as follows. 

 

 

 

G = 

 

 

 

 

Figure 4.16 

 The edge weight between v1 and v5 is  

 = 21
1 1 2 1

5
    

 = 
7 7

1.4
55

   

G is a special Plithogenic graph with Euclidean distance edge 

weights. The edge vivj if it exists (that is vi is adjacent with vj, i 

 j) then the weight of this edge vivj is E
FPd (vi, vj) where E is the 

Euclidean distance satisfying the formula II. 

v1 = (1, 
0, 2, 1) 

1.4  

v2 = (2, 
0, 2, 1) 

v3 = (1, 
1, 0, 1) 

v4 = (0, 
1, 1, 1) 

v5 = (0, 
1, 0, 2) 

1.4  

0.4

0.4
0.4

6

5

1 
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For the same vertex set we give the Plithogenic vertex 

graph with Hamming distance. 

The edge weight of two adjacent vertices vi and vj are 

given by formula denoted by H
FPd (vi, vj).  

This special graph is given by the following figure H. 

 

 

H =  

 

 

 

 

 

Figure 4.17 

 Both special graphs G and H though enjoy the same set 

of vertices and their adjacency is the same but the weights of the 

edges are different in both the cases. 

 Now we give examples of special Plithogenic complete 

bipartite graph with row matrix vertices but Hamming weight 

weights / Euclidean weight as edges in the following. 

Example 4.14 Let V = {v1, v2, v3, v4, v5, u1, u2, u3} where ui and 

vj are 1  5 row matrices.  

v1 = (1, 
0, 2, 1) 

1.4 

v2 = (2, 
1, 1, 0) 

v3 = (1, 
1, 0, 1) 

v4 = (10, 
1, 1, 1) 

v5 = (0, 
1, 0, 2) 

1.4 

0.4

0.4
0.4

1.2

1 
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 Let G be the special Plithogenic complete bipartite 

graph which Euclidean distance as edge weights given by the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 

 G is a bipartite complete special Plithogenic graph with 

edge weights as Euclidean weights as Euclidean weight between 

the two vertices. 

 Next we give the graph which is a special Plithogenic 

bipartite complete graph H with vertices as above but edge 

weights are the Hamming distance which is as follows. 

v1 = (0, 1, 
1, 2, 3) 

v3 = (1, 0, 
1, 0, 1) 

v4 = (2, 1, 
0, 1, 1) 

u3 = (1, 1, 
1, 1, 1) 

u2 = (0, 1, 
1, 1, 1) 

u1 = (0, 1, 
0, 1, 2) 

v2 = (1, 1, 
3, 2, 0) 

v5 = (0, 1, 
1, 0, 2) 0.6  

0.4  0.4  

0.4  

1 1 

0.4  

0.6  
1 

1 

1.4  

3  

0.6  
1 

1.2
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Figure 4.19 

 The two bipartite complete Plithogenic graphs with edge 

weights as Hamming distance / Euclidean distance are distinct 

though they share the same vertex set and edges; for the edge 

weights are distinctly different. 

 Now for the first time we apply these concepts in the case 

of Plithogenic fuzzy problem.  

 To obtain that we first define certain concepts analogous 

to fuzzy intuitionistic graph, fuzzy single valued neutrosophic 

graph the notion of Plithogenic fuzzy graphs and the 

applications to real world problems. 

v1 = (0, 1, 
1, 2, 3) 

v3 = (1, 0, 
1, 0, 1) 

v4 = (2, 1, 
0, 1, 1) 

u3 = (1, 1, 
1, 1, 1) 

u2 = (0, 1, 
1, 1, 1) 

u1 = (0, 1, 
0, 1, 2) 

v2 = (1, 1, 
3, 2, 0) 

v5 = (0, 1, 
1, 0, 2)    3 

2 

2 

2 

3 3 

2 

3 
6 

4 

5 

7 

3 

3 
4
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 To that end we know given some n attributes about a 

problem we can give the membership functions related to them 

from the interval [0, 1]. 

 So if U is the universal set of discourse and a1, …, an are 

the n attributes and if x1, x2, …, x  U then we have the 

Plithogenic fuzzy set is given by 

 x1 (b11, b12, …, b1n), 

 x2 (b21, b22,…, b2n), and 

 xm (bm1, bm2, …, bmn) where 

bij  [0, 1]; 1  i  m and 1  j  n. 

 Thus we can have a graph with vertex set  vi = xi(b21, bi21, 

…, bin); 1  i  m. Depending on the problem and the experts 

opinion the vertices in V = {v1, v2, …, vm} can be adjacent or 

not. 

 We call these graphs as Plithogenic fuzzy graphs. There 

are 5 such types of graphs. We will be describing them by 

examples so that it is clear for the reader to get the plithogenic 

graphs of all the 5 types. 

 

Example 4. 15 Let V = {v1 = (0.5, 0.3, 0.4, 0.1, 0), v2 = (0.1, 0, 

0, 0.3, 0.4), v3 = (0.4, 0.6, 0, 0, 0.4), v4 = (0, 0.2, 0.3, 0.4, 0), v5 

= (0.1, 0.1, 0.3, 0.3, 0) and v6 = (0, 0, 1, 0.2, 0.5)} be the vertex 

set of the graph G1 given by the following figure. 
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Figure 4.20 

 We have denoted the edge label as the min{vi, vj} for 

relevant i and j; 1  i, j  b. This Plithogenic fuzzy graph G1 is 

defined as the Plithogenic fuzzy graph of type I. 

 This graph can be used to model a plithogenic set for if 

we want to find from the collection of Plithogenic fuzzy sets 

(xi(bi1, bi2, …, bin); 1  i  m and bij  [0, 1], 1  j  n and if one 

of the values say xt (bt1, bt2, …, btn)  which is the target or goal 

solution then using this graph we can calculate the weight of 

each edge weight and make. 

v1 = x1 (0.5, 
0.3, 0.4, 
0.1, 0) 

v2 = x2 (0.1, 
0, 0, 0.3, 

0.4) 

(0.1, 0, 
0, 0.3, 0) 

(0.1, 0.1, 
0.3 0.1, 

0) 

(0, 0.2, 0.3, 
0.1, 0) (0.2, 0, 

0, 0, 
0.4) 

v3 = x3 
(0.2, 0.6, 
0, 0, 0.4) 

(0.1, 0, 
0, 0.3, 0) v4 = x4 (0, 

0.2, 0.3, 
0.4, 0) 

(0, 0, 0, 
0.3, 0) 

(0, 0.2, 
0,3, 0.1, 

0) 
v5 = x5 

(0.1, 0.1, 
0.3, 0.3, 0) 

(0, 0, 
0.3, 

0.2, 0) 

v6 = x6 (0, 
0, 0.2, 0.5) 

(0, 0, 
0.3, 

0.2, 0) (0, 0, 0, 0, 0.4) 
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  Suppose in this problem v4 = x4 (0, 0.2, 0.3, 0.4, 0) is the 

targeted value and the value which we choose from  x1, x2, x3, x5 

and x6 by finding the weights of the edges v1v4, v2v4, v3v4, v5v4 

and v6v4 and picking up the least weight, in this case  

v1v4 = | 0 | + | 0.2 | + | 0.3 | + | 0.1 | + | 0 | = 0.6, 

v2v4 = | 0 | + | 0 | + | 0 | + | 0.3 | + 0 = 0.3, 

v4v3 = | 0 | + | 0.2 | + | 0 | + | 0 | + | 0 | = 0.2, 

v4v5 = | 0 | + | 0.1 | + | 0.2 | + | 0.3 | + | 0 | = 0.6 and 

v4v6 = | 0 | + | 0 | + | 0.3 | + | 0.2 | + | 0 | = 0.5 

So v3 that is x3 (0.2, 0.6, 0, 0, 0.4) the first preferred value for it 

is close to x4 (0, 0.2, 0.3, 0.4, 0). 

 v1 = x1 (0.5, 0.3, 0.4, 0.1, 0) and v5 = (0, 0.1, 0.2, 0.5) are 

the values which will never be considered, as the value is very 

large 0.6. 

 The next value which is close to v4 is v2 = x2 (0.1, 0, 0, 

0.3, 0.4) is the next preferred value. 

 From this the following observations are mandatory. One 

cannot say if two values are preferred as first or second; they 

need not be close to each other. This example gives the answer 

for the same. 

 But under general conditions such results may not be 

possible, so we make it clear that this type of deviation makes 

the solution not only suitable but also paves way to study 

relatively and make different type of conclusions. 

 Suppose for the same problem we use type II Plithogenic 

fuzzy graphs but we are interested in taking the maximum value 

from the expected least value for the same problem. Now we 
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assume v4 = x4 (0, 0.2, 0.3, 0.4, 0) is the least excepted value we 

want to find a vi = xi(bi1, bi2, bi3, bi4, bi5) 1  i  6 i  4 by 

defining viv4 = max {vi, v4}; 1  i  6; i  4 and find the 

Hamming weight and take the largest value. 

 Let G2 be the associated Plithogenic fuzzy graph of type 

II with same set of vertices and edges and only the edge values 

are max {vi, vj} i  j; 1  i, j  6 for relevant i and j is as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 

 Using Hamming weight as the weights of the edges v4v1, 

v4v2, v4v3, v4v5 and v4v6 are determined as follows. 

v1 = x1 (0.5, 
0.3, 0.4, 
0.1, 0) 

v2 = x2 (0.1, 
0, 0, 0.3, 

0.4) 

(0.5, 0.3 0.4, 
0.3, 0.4) 

(0.5, 0.3, 
0.4, 0.3, 

0) 

(0.5, 0.3, 
0.4, 0.4, 0) 

v3 = x3 
(0.2, 0.6, 
0, 0, 0.4) 

(0.2, 0.6, 
0.3, 0.4, 

0.4) v4 = x4 (0, 
0.2, 0.3, 
0.4, 0) 

(0.1, 0.2, 0.3, 
0.4, 0.4) 

(0.1, 0.2, 
0.3, 0.4, 

0) 
v5 = x5 

(0.1, 0.1, 
0.3, 0.3, 0) 

(0.1, 0.1, 1, 
0.3, 0.5) 

v6 = x6 (0, 
0, 1, 0.2, 

0.5) 

(0, 0.2, 
1, 0.4, 

0.5 (0.2, 0.6, 1, 
0.2, 0.5) 
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  wH (v4v1) = (0.5 + 0.3 + 0.4 + 0.4) = 1.6, 

 wH (v4v2) = (0.1 + 0.2 + 0.3 + 0.4 + 0.4) = 1.4; 

 wH (v4v3) = (0.2 + 0.6 + 0.3 + 0.4 + 0.4) = 1.9, 

 wH (v5v4) = (0.1  + 0.2 + 0.3 + 0.4 + 0 = 1 and 

 wH(v6v4) = 0 + 0.2 + 1 + 0.2 + 0.5 = 2.1 

 Now we are forced to choose only 

 v6 = x6 (0, 0, 1, 0.2, 0.5).  

This choice will yield the best result. 

 Now we proceed onto describe the type III Plithogenic 

fuzzy graph for the same problem with 6 vertex sets and the 

same set of edges in the following. 
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Figure 4.22 

 The edge weights of G3 are got as the usual product of the 

fuzzy row matrices. Now we find the Hamming weights of v4v1, 

v4v2, v4v3, v4v5 and v4v6 in the following. 

 wH(v4v2) = 0 + 0 + 0 + 0.12 + 0 = 0.12, 

 wH(v4v1) = 0 + 0.06 + 0.12 + 0.04 + 0 = 0.22, 

 wH(v4v3) = 0 + 0.12 + 0 + 0 + 0 = 0.12 

 wH(v5v4) = 0 + 0.02 + 0.09 + 0.12 + 0 = 0.23 and 

 wH(v5v6) = 0 + 0 + 0.03 + 0.08 + 0 = 0.11. 

v2= x2 (0.1, 
0, 0, 0.3, 

0.4) 

v4 = x4 (0, 
0.2, 0.3, 
0.4, 0) 

v1 = x1 
(0.5,0.3, 

0.4, 0.1, 0) 

v1 = x1 
(0.5,0.3, 

0.4, 0.1, 0) 

v6 = x6 (0, 
0.1, 0.2, 

0.5) 
(0, 0, 0.3, 0.06, 0) 

v5 = x5 
(0.1,0.1, 

0.3, 0.3, 0) 

(0, 0.02, 0.09, 
0.12, 0) 

(0, 0, 0.3, 
0.08, 0) 

(0, 0, 0,  
0, 0.2) 

(0, 0, 0,  
0, 0.2) 

(0.02, 0, 0, 0, 
0.16) 

(0.05, 0, 0, 
0.03, 0) 

(0, 0.06, 0.12, 
0.04, 0) 

(0.06, 0.03, 
0.12, 0.03, 0) 
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  If the problem or expert opinion is pertaining to the 

greatest value, then it is the one associated with vertex v5 which 

gives the greatest value as 0.23 and if one prefers the least value 

it is given by v6 which is 0.11. 

 Now we proceed onto describe the type IV graphs. 

 This example of Plithogenic fuzzy graph of type IV takes 

the same set of vertices as v1, v2, v3, v4, v5 and v6 and the edges 

as in other cases. The edges are not labeled as row matrices, but 

they are the Hamming distance of vivj for i  j; 1  i, j  6 for 

relevant i and j’s of this graph. 

 This Plithogenic fuzzy graph G4 is type IV graph which is 

as follows. 

 

 

 

 

 

 

 

Figure 4.23 

1.7 

0.9 

v1= x1 (0.5, 0.3, 
0.4, 0.1, 0) 

v2= x2 (0.1, 0, 
0, 0.3, 0.4) 

v5= x5 (0.1, 0.1, 
0.3, 0.3, 0) 1 

1.1 

v4= x4 (0, 0.2, 
0.3, 0.4, 0) 

v6= x6 (0, 0, 1, 
0.2,0.5) 

v3= x3 (0.2, 
0.6, 0, 0, 0.4) 

0.4 

1.5 

1.6 

2.1 

1.9 

1 
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where the distances are Hamming weight. If the expert wishes 

to have a maximum value from v4 he would prefer v3 which 

corresponding to 1.9. If on the other hand prefers the least value 

from v4 he would prefer v5. 

 Now we finally describe the type V Plithogenic fuzzy 

graph for the same set of vertices v1, v2, …, v6 and the same set 

of edges but here the edge values are taken as the Euclidean 

distance from vivj i  j; 1  i, j  6 for  relevant i and j. 

 Let G5 be the Plithogenic fuzzy graph given by the 

following figure.  

 

G5 =  

 

 

 

 

 

 

Figure 4.24 

0.61  v1 = x1 (0.5, 
0.3, 0.4, 0.1, 0) 

v2 = x2 (0.1, 0, 
0, 0.3, 0.4) 

v5 = x5 (0.1, 
0.1, 0.3, 0.3, 0) 

v4 = x4 (0, 0.2, 
0.3, 0.4, 0) 

0.5 
0.6 

0.31

0.46

v3 = x3 (0, 0.2, 
0.6, 0, 0.4) 

v6 = x6 (0, 0, 1, 
0.2, 0.5) 

0.77

0.82

1.45
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  The maximum edges weight from v4 in case of this 

Plithogenic fuzzy graph G5 is 0.82  is v4v6 and the least value 

of the edges from v4 is 0.03  and the edges v5v4. 

 All the 5 types of Plithogenic fuzzy graphs are distinct 

and in fact one can find max and min from the vertex v4. 

 We will tabulate this information in the form of tables so 

that comparison is easy. One table pertains to greatest value 

from v4 to other 5 nodes and the other table gives the least value 

from v4 to v1, v2, v3, v5 and v6 edges from v4. 

S. 
No. 

G Graph 
G1 

Graph 
G2 

Graph 
G3 

Graph 
G4 

Graph 
G5 

1. Edge v1v4 0.6 1.6 0.12 1 0.6 

2. Edge v2v4 0.3 1.4 0.22 1.1 0.31  

3. Edge v3v4 0.2 1.9 0.12 1.9 0.61  

4. Edge v5v4 0.6 1 0.23 0.4 0.03  

5. Edge v6v4 0.5 2.1 0.11 1.6 0.82  
 

Graph G5 G1 G2 Max G3 G4 G5 

0.6 0.6 v4v1 - - - - 

0.31    - - - - 

0.61    - - 1.9 v3v4 - 

0.03  0.6 v4v5 - 0.23 v1v5 - - 

0.82    2.1 v4v6 - - 0.82  
v4v6 
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G1 
Min 

G4 G5 
G2 G3 

- - - - - 

- - - - - 

v4v3 0.2 - - - - 

- 1 v4v5 - 0.4 v4v5 0.03  
v4v5 

- - v4v6 0.11 - - 

 

 The flexibility of the choice of any of the 5 types of 

graphs makes the expert to deal better in solving the problem. 

Further he can use these Plithogenic fuzzy graphs to model 

problems which could yield a better solution using plithogenic 

concept. 

 Next, we proceed onto describe the notion of Plithogenic 

fuzzy complete bipartite graphs, using all the five types of 

operations. 

 First, we provide some examples then we give a real 

world illustration of the model in medical diagnostic. 

Example 4.16 Let V = {v1, v2, v3, v4, u1, u2, u3} be a set of 

vertices which are 1  6 fuzzy row matrices. Let G1 be the 

Plithogenic fuzzy graph of type I which is a complete bipartite 

graph given by the following figure which we call as the 

Plithogenic fuzzy complete bipartite graph. We also give the 
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 applications in the medical diagnostic in later work. The 

operation of finding edges is min operator. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.25 

 We see G1 is a Plithogenic fuzzy bipartite complete graph 

with edge weights is the min{vi, uj}; 1  i  4 and 1  j  3. 

 Now if the expert wants to determine which of the values 

of ui is best suited for a vj; 1  i  3, 1  j  4. Then we find the 

Hamming weight of {ui, vj}. 

v1 = x1 (0.3, 
0.1, 0.1, 0, 0.5) (0.1, 0.1, 0, 1, 0, 0.5) 

u1 = y1 (0.1, 0.2, 
0.3, 1, 0.4, 0.5) 

u2 = y2 (0.1, 0.2, 
0.3, 0.4, 0.5, 

0.6) 

(0.1, 0.1, 0, 0.4, 
0, 0.5) 

v2 = x2 (0.2, 
0.1, 1, 0, 0.7, 

0.5) 

(0.1, 0.1, 0.3, 0, 
0.3, 0.5) 

v3 = x3 (0, 1, 
0.3, 0.4, 0.5, 

0.6) 

(0, 0.2, 0.3, 0.4, 
0.5, 0.6) 

(0, 0.2, 0.3, 0.4, 
0.4, 0.5) 

(0.1, 0.1, 0.3, 0, 
0.5, 0.5) 

(0.1, 0.1, 0.3, 0, 
0.5, 0.5) 

u3 = y3 (0.4, 0, 1, 
0.2, 0.3, 0.5) 

(0.2, 0,1, 0.2, 
0.3, 0.5) 

v4 = x4 (0.1, 0, 
0.3, 0.2, 0, 1) (0.1, 0, 0.3, 0.2, 

0, 0.5) 

(0.1, 0, 0.3, 0.2, 
0, 0.5) (0.1, 0, 0.3, 0.2, 

0, 0.6) 

(0, 0, 0.3, 0.2, 
0.3, 0.5) 
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 For instance, to study the best suited ui for the vertex v1 

we find the Hamming weights of v1u1, v1u2 and v1u3 and take 

the least value. 

 In this case wH(v1u1) = 0.1 + 0.1 + 0 + 1 + 0 + 0.5 = 1.7 

 wH (v1u2) = 0.1 + 0.1 + 0 + 0.4 + 0 + 0.5 = 1.1 

 wH(v1u3) = (0.3 + 0 + 0 + 0.2 + 0 + 0.5) = 1. 

 So the best result for v1 is u3 as the Hamming weight is 

least in this case. 

 Next for v2 we find the Hamming weights of v2u1, v2u2, 

v2u3. 

 wH(v2u1) = 0.1 + 0.1 + 0.3 + 0 + 0.3 + 0.5 = 1.3 

 wH(v2u2) = 0.1 + 0.1 + 0.3 + 0 + 0.5 + 0.5 = 1.5 

 wH(v2u3) = 0.2 + 0 + 1 + 0.2 + 0.3 + 0.5 = 2.2 

 For v2 the best choice with least Hamming weight is u1. 

Consider for the Hamming weights v3u1, v3u2 and v3u3 as 

follows. 

 wH (v3u1) = 0 + 0.2 + 0.3 + 0.4 + 0.4 + 0.5 = 1.8 

 wH(v3u2) = 0 + 0.2 + 0.3 + 0.4 + 0.5 + 0.6 = 2 

 wH(v3u3) = 0 + 0 + 0.3 + 0.2 + 0.3 + 0.5 = 1.3 

 The least Hamming weight being 1.3. That is the closest 

value for v3 is u3. 

 Now we consider the edges v4u1, v4u2 and v4u3 and find 

their Hamming weights 
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  wH(v4u1) = 0.1 + 0 + 0.3 + 0.2 + 0 + 0.5 = 1.0 

 wH(v4u2) = 0.1 + 0 + 0.3 + 0.2 + 0 + 0.6 = 1.2 

 wH(v4u3) = 0.1 + 0 + 0.3 + 0.2 + 0 + 0.5 = 1.1 

We see u1 are the values which are close to v4. 

 It is pertinent to keep on record that these are just 

examples and not any real-world problems. 

 Now we consider type II Plithogenic fuzzy complete 

bipartite graph G2 by labeling the edges with max operator that 

is max (viuj); 1  i  4 and 1  j  3. The figure of G2 is as 

follows. 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 

v1 = x1 (0.3, 0.1, 
0, 1, 0, 0.5) 

(0.3, 0.2, 0.3, 1, 0.4, (0.5) 

u1 = y1 (0.1, 0.2, 
0.3, 1, 0.4, 0.5) 

v2 = x2 (0.2, 0.1, 
1, 0, 0.7, 0.5) 

(0.2, 0.2, 1, 1, 0.7, 0.5) 

v3 = x3 (0, 1, 0.3, 
0.4, 0.5, 0.6) (0.1, 1, 0.3, 0.4, 0.5, 0.6) 

(0.1, 1, 0.3, 0.4, 1, 0.5, 
0.6) 

 (0.2,0.2,1,0.4,0.7,0.6) 

(0.3, 0.2, 0.3, 1, 0.5, 0.6) 

u3 = y3 (0.4, 0, 1, 
0.2, 0.3, 0.5) 

(0.4, 0.1, 1, 0.2, 0.7, 0.5) 

(0.4, 0.1, 1, 1, 0.3, 0.5) 

(0.4, 1, 1, 0.4, 0.5, 0.6) 

(0.4, 0, 1, 0.2, 0.3, 1) 

u2 = y2 (0.1, 0.2, 
0.3, 0.4, 0.5, 0.6) 

v4 = x4 (0.1,0, 
0.3, 0.2, 0, 1) 

(0.1, 0.2, 0.3 
0.4, 0.5, 1) 

(0.1, 0.2, 0.3, 1, 
0.4, 1) 
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 We now give the Hamming weights of v1u1, v1u2 and 

v1u3; 

 wH(v1u1) = 0.3 + 0.2 + 0.3 + 1 + 0.4 + 0.5 = 2.7 

 wH(v1u2) = 0.3 + 0.2 + 0.3 + 0.5 + 0.6  = 2.9 

 wH(v1u3) = 0.4 + 0.1 + 1 + 1 + 0.3 + 0.5 = 3.3. 

 We see the greatest value is u3 for v1 so we prefer it. 

 Now we see in this model by using max or min function 

we see for the vertex v1 or attribute set v1, u3 is the most 

preferred. 

 Now we find the Hamming weights of v2u1, v2u2 and v2u3 

in the following. 

 wH(v2,u1) = 0.2 + 0.2 + 1 + 1 + 0.7 + 0.5 = 3.6 

 wH(v2,u2) = 0.2 + 0.2 + 1 + 0.4 + 0.7 + 0.6 = 3.1 

 wH(v2, u3) = 0.4 + 0.1 + 1 + 0.2 + 0.7 + 0.5 = 2.9. 

 So the maximum weight is u1 so u1 is preferred for this 

attributes v2. 

 We see it is the same as min operator. 

 Next we find the Hamming weights v3u1, v3u2 and v3v3 in 

the following 

 wH(v3,u1) = 0.1 + 1 + 0.3 + 0.4 + 1 + 0.5 + 0.6 = 3.9 

 wH(v3,u2) = 0.1 + 1 + 0.3 + 0.4 + 0.5 + 0.6 = 2.6 
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  wH(v3,u3) = 0.4 + 1 + 1 + 0.4 + 0.5 + 0.6 = 3.9. 

 The largest Hamming weight corresponds to wH(v3, u3) so 

u3 is the preferred one. 

 Next we find the Hamming weights associated with the 

attribute v4, v4u1, v4u2 and v4u3. 

 wH(v4, u1) = 0.1 + 0.2 + 0.3 + 1 + 0.4 + 1 = 3 

 wH(v4, u2) = 0.1 + 0.2 + 0.3 + 0.4 + 0.5 + 1 = 2.5 

 wH(v4,u3) = 0.4 + 1 + 0.3 + 0.2 + 1 = 2.9 

 Here we get the two attributes viz u1 for then value is 3. 

 Now we keep on record if we use min value as the edge 

values we take the min of the Hamming weight as a solution 

whereas if we use max value as the edge values then we take the 

max of Hamming weight as a solution.  

 The solution in both cases will be the same. So one can 

always choose to use only one of them. 

 Next proceed onto give the Plithogenic fuzzy graph G3 

where we use the natural product of the two adjacent vertices as 

the row label for the same Plithogenic fuzzy complete bigraph. 
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G3 = 

  

 

  

 

 

 

 

 

 

Figure 4.27 

 Now we find the Hamming weights wH of the edges v1u1, 

v1u2 and v1u3. 

 wH(v1u1) = 0.03 + 0.02 + 0 + 1 + 0 + 0.25 = 1.3 

 wH(v1u2) = 0.03 + 0.02 + 0 + 0.4 + 0 + 0.3 = 0.75 

 wH(v1u3) = 0.12 + 0 + 0 + 0.3 + 0 + 0.25 = 0.4. 

 We see u3 is value of choice for v1. 

v1 = x1 (0.3, 0.1, 
0, 1, 0, 0.5) 

(0.03, 0.02, 0, 1, 0, 0.25) 

u1 = y1 (0.1, 0.2, 
0.3, 1, 0.4, 0.5) 

v2 = x2 (0.2, 0.1, 
1, 0, 0.7, 0.5) 

(0.12, 0, 0, 0.3, 0, 0.25) 

v3 = x3 (0, 1, 0.3, 
0.4, 0.5, 0.6) (0.01, 0, 0.09, 0.08, 0.06) 

(0.08, 0, 1, 0, 0.21, 0.25) 
 (0.2,0.2,1,0.4,0.7,0.6) 

(0.02, 0.02, 0.3, 0, 0.28, 0.25) 

u3 = y3 (0.4, 0, 1, 
0.2, 0.3, 0.5) 

(0.12, 0, 0, 0.2, 0, 0.25) 

(0.03, 0.02, 0,  
0.4, 0, 0.3) 

(0, 0, 0.3, 0.08, 0.15, 0.3) 

(0.04, 0, 0.3, 0.04, 0, 0.5) 

v4 = x4 (0.1, 0, 
0.3, 0.2, 0, 1) 

(0, 0, 0.3,  
0.08, 0.15,  

0.3) 

(0.01, 0, 0.09, 
0.2, 0, 0.5) 

u2 = y2 (0.1, 0.2, 
0.3, 0.4, 0.5, 0.6) (0, 0.2, 0.9, 0.4, 0.2, 0.3) 
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  Now we find the Hamming weights wH of the edges v2u1, 

v2u2 and v2u3. 

 wH(v2u1) = 0.02 + 0.02 + 0.3 + 0 + 0.28 + 0.25 = 0.87 

 wH(v2u2) = 0.02 + 0.02 + 0.3 + 0 + 0.35 + 0.3 = 0.99 

 wH(v2u3) = 0.08 + 0 + 1 + 0 + 0.21 + 0.25 = 1.54. 

u1 happens to be closest value for v2. Consider the Hamming 

weights of v3u1, v3u2 and v3u3; 

 wH(v3u1) = 0 + 0.2 + 0.09 + 0.4 + 0.2 + 0.3 = 1.19 

 wH(v3u2) = 0 + 0.2 + 0.09 + 0.16 + 0.25 + 0.36 = 1.06 

 wH(v3u3) = 0 + 0 + 0.3 + 0.08 + 0.15 + 0.3 = 0.83. 

 We see u3 is the nearest to v3. 

 We find the Hamming weights of v4u1, v4u2 and v4u3 in 

the following. 

 wH(v4u1) = 0 .01 + 0 + 0.09 + 0.02 + 0 + 0.5 = 0.7 

 wH(v4u2) = 0.01 + 0 + 0.09 + 0.08 + 0 + 0.6 = 0.78 

 wH(v4u3) = 0.04 + 0 + 0.3 + 0.04 + 0 + 0.5 = 0.88. 

 The value which is with least weight is v4u1 so u1 is the 

one close to v4. We see the answer for all the 3 Plithogenic 

fuzzy graphs G1, G2 and G3 yield the same solution so one can 

choose any one graph for the solution is identical. Now for the 

same set of vertices we for the Plithogenic fuzzy complete 

bipartite graph give the edge values as the Hamming distance 
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from viuj; 1  i  4 and 1  j  3 in the following figure using 

the formula I. 

 Further we denote this Plithogenic fuzzy bipartite 

complete graph by G4 with the above said edge labels. 

 

 

G4 = 

 

 

 

 

 

 

 

 

 

 

Figure 4.28 

 Taking for every vertex attribute vi = xi (….), 1  i  4 the 

greatest weight is taken and this result gives the analogously the 

same values as in G1, G2 and G3. 

0.17 

v2 = x2 (0.2, 0.1, 
1, 0, 0.7, 0.5) 

0.37 

0.27 

0.3 

v4 = x3 (0.1, 0, 
0.3, 0.2, 0, 1) 

0.3 

u2 = y2 (0.1, 0.2, 
0.3, 0.4, 0.5, 0.6) 

0.22 
0.32 

v3 = x3 (0, 1, 0.3, 
0.4, 0.5, 0.6) 

0.43 

0.3 
0.15 

0.02 

u1 = y1 (0.1, 0.2, 
0.3, 1, 0.4, 0.5) 

v1 = x1 (0.3, 
0.1, 0, 1, 0, 0.5)

0.38 

u3 = y3 (0.4, 0, 1, 
0.2, 0.3, 0.5) 
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  Finally, we introduce the notion of Euclidean distance 

weighted Plithogenic fuzzy complete bigraph with the same set 

of vertex sets and edges in example. 

 We use formula II for the calculation of the Euclidean 

distance. Let G5 be the Plithogenic fuzzy bipartite complete 

graph given by the following figure.  

 

 

G5 = 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 

 

0.3  

v2 = x2 (0.2, 0.1, 
1, 0, 0.7, 0.5) 

1.6

0.72  

0.76

v4 = x3 (0.1, 0, 
0.3, 0.2, 0, 1) 0.92

u2 = y2 (0.1, 0.2, 
0.3, 0.4, 0.5, 0.6) 

  
  

v3 = x3 (0, 1, 0.3, 
0.4, 0.5, 0.6) 

1.67

0.70.65  

0.5 

u1 = y1 (0.1, 0.2, 
0.3, 1, 0.4, 0.5) 

v1 = x1 (0.3, 
0.1, 0, 1, 0, 0.5)

1.6 

u3 = y3 (0.4, 0, 1, 
0.2, 0.3, 0.5) 

1.03 1.09
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We see the height weight for the attribute v1 is u3 and so on that 

of v4 is 0.7. 

 Here it is important to note any of the Plithogenic fuzzy 

graphs by using min or max or product or Hamming distance or 

Euclidean distance the result happens to be the same in general. 

 Now we proceed onto give one example of this 

Plithogenic fuzzy graph when applied to medical diagnostics. 

Example 4.17 Let us consider the problem of medical 

diagnostic of four patients for 5 types of diseases. 

 The 5 diseases for which they are diagnosed for are 

1. Malaria   - D1 

2. Typhoid  - D2 

3. Flu   - D3 

4. Food poisoning - D4 

5. Jaundice  - D5 

 The symptoms associated in the general are given as 

attributes  

1. Fever    - a1 

2. High fever   - a2 

3. Cold    - a3 

4. Cold and cough  - a4 

5. Chills before and after fever - a5 

6. Stomach pain   - a6 

7. Vomiting   - a7 
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 8. Headache  - a8 

9. Dysentery  - a9 

 Now problem of malaria as given by an expert doctor is 

given as  

 D1 = d1 (0.7, 0.5, 0.1, 0.2, 0.8, 0.2, 0.3, 0.7, 0.1). 

 D2 = d2 (0.6, 0.7, 0.1, 0.1, 0.2, 0.6, 0.7, 0.8, 0.3) is the 

attributes associated by the expert / doctor. 

 The expert for the disease flu D3 gives the following 

values. 

 D3 = d3(0.8, 0.8, 0.7, 0.7, 0.5, 0.1, 0.1, 0.6, 0.2). 

The attribute vector given by the expert doctor for the problems 

of food poisoning D4 is as follows:  

 D4 = d4 (0.5, 0.6, 0.1, 0.1, 0.7, 0.6, 0.8, 0.8, 0.8). 

 Finally, the attribute vector of symptoms given b y the 

expert doctor for jaundice D5 is as follows. 

 D5 = d5 (0.6, 0.5, 0.1, 0.1, 0.1, 0.6, 0.7, 0.7, 0.3). 

 Now the doctor maps the symptoms of the four patients 

P1, P2, P3 and P4 in the following: 

P1 = x1 (0.6, 0.6, 0.1, 0.2, 0.7, 0.5, 0.7, 0.8, 0.9) 

P2 = x2 (0.8, 0.7, 0.7, 0.8, 0.5, 0.1, 0.1, 0.5, 0.2) 

 P3 = x3 (0.8, 0.5, 0.1, 0.2, 0.8, 0.1, 0.2, 0.7, 0.1) 

and  P4 = x3 (0.7, 0.6, 0.2, 0.2, 0.7, 0.2, 0.3, 0.7, 0.2). 
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 Now for this model we use the Plithogenic fuzzy bipartite 
complete graph using Hamming distance between the vertices. 

 Then we will find the Hamming weight of these edge row 
matrices and the least weight will correspond to the disease 
which they suffer from. It may be recalled these type of 
Plithogenic fuzzy graphs are widely discussed in chapters II and 
III of this book. 

 The graph G of this is given in the following. 

  

 

 

 

G = 

 

 

 

 

 

Figure 4.30 

 The Hamming distance dH(P1D1) = (0.1, 0.1, 0, 0, 0.1, 0.3, 

0.4, 0.1, 0.8) = a11 

a11 = 1.9 

a22 = 3.3 D2 

a21 = 2.4 a12 = 1.4 

D3 

P4 

D1 

P1 

a13 = 3.6 

a14 = 0.5 

a35 = 2.2 
a45 = 1.9 

a44 = 2 

a43 = 1.9 
a42 = 1.9 

a41 = 0.4 

a33 = 2 

a34 = 2.2 

a31 = 0.4 

D4 

P2 

D5 

P3 

a15 = 1.6 

a24 = 4 
a23 = 0.4 a32 = 3.6 

a25 = 3.6 
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  wH(a11) = 0.1 + 0.1 + 0 + 0 + 0.1 + 0.3 + 0.4 + 0.1 + 0.8 = 

1.9 and so on 

 We see the first patient suffers from food poisoning as the 

least weight between P1D4 is 0.5 = a14. 

 For the patient P2 the least Hamming weight corresponds 

to a23 = 0.4 that is D3 so the second patient suffers from flu. 

 Consider the 3rd patient P3 the least weight is given by the 

edge a31 so the P3 suffers from Malaria. 

 Consider the fourth patient the least weight is associated 

with the edge P5D1 that is the Hamming weight is a41 is 0.4. 

 Thus we can use Plithogenic fuzzy graphs to model the 

medical diagnostic. This will not as in case of SVNS or fuzzy 

intuitionistic graphs gives membership or non-membership in 

fact considers the overall or consolidated situation of the 

scenario. 

 Thus without any doubt one can certainly claim that when 

this problem uses the method of Plithogenic fuzzy graphs which 

we can also analogously call as Plithogenic fuzzy model will 

yield a better and a sensitive result by taking into account all the 

systems associated with the disease. 

 Next we proceed onto describe fuzzy intuitionistic 

plithogenic set from [1-3, 44]. However, we for the first time 

give the plithogenic fuzzy intuitionistic graph. 

Definition 4.7 Suppose we have some n attributes in the 

universal set and some m experts work with it using the fuzzy 

intuitionistic neutrosophic values. Then the plithogenic fuzzy 
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intuitionistic neutrosophic graph G will have the vertex set 

labeled by row super matrices of the form. 

 v1 = x1((m11 n11), (m12 n12), …, (m1n, n1n) 

 v2 = x2((m21, n21), (m22, n22), …, (m2n, n2n)) and so on. 

 vm = xm((mm,1, nm1), (mm2, nm2), …, (mmn, nmn)) 

where mij, nij  [0, 1]; 1  i  m and 1  j  n with mij the 

degree of membership and nij the non-membership degree 

respectively. 

 Clearly each vertex set vi is a super row matrix. 

 Now the edge weights can be any value using min or max 

or product or Hamming distance or Euclidean distance or a 

combination of any of them. The edge weight for these 

plithogenic fuzzy intuitionistic neutrosophic graphs are in the 

hands of the expert or the researcher which ultimately depends 

on the problem. 

 G = {V = {v1v2, …, vm}, min or max or product or 

Hamming distance or Euclidean distance or any combination of 

min or max or product is taken as the edge labels of G. 

 We will illustrate this situation by an example. 

Example 4.18 Let V = {v1, v2, v3, v4, v5} be the set of vertices 

given by  

v1 = x1 {((0.1, 0.6), (0.7, 0.2), (0.5, 0.4), (0.9, 0.2))} 

v2 = x2{((0.6, 0.4), (0.2, 0.8), (0.6, 0.2), (0.6, 0.3))} 
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 v3 = x3{((0.1, 0.7), (0.6, 0.3), (0.1, 0.7), (0.1, 0.7))} 

v4 = x4 {((0.7, 0.2), (0.1, 0.7), (0.2, 0.6), (0.3, 0.8))} and 

v5 = x5{((0.8, 0.1), (0.2, 0.6), (0.8, 0.1), (0.2, 0.7)}. 

The edges are labeled {min (mij, mkt), max {(nij, nkt)} for 

suitable values of i, j, k, t. 

 We give the plithogenic fuzzy intuitionistic graph in the 

following. 

 

 

 

G1 =  

 

 

 

 

Figure 4.31 

We give the values of the edges 

e12 = {((0.1, 0.6), (0.2, 0.8), (0.5, 0.4), (0.6, 0.3))} 

e13 = {((0.1, 0.7), (0.6, 0.3), (0.1, 0.7), (0.1, 0.7))} 

e15 = {((0.1, 0.6), (0.2, 0.6), (0.5, 0.4), (0.2, 0.7))}, 

e12 
v2 v1 

v3 

e13 

v4 
e34 

e24 

v5 

e45 
e35 
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e24 = {{(0.6, 0.4), (0.1, 0.8), (0.2, 0.6), (0.6, (0.3))}, 

e34 = {((0.1, 0.7), (0.1, 0.7), (0.1, 0.7), (0.1, 0.8))}, 

e35 = {((0.1, 0.7), (0.2, 0.6), (0.1, 0.7), (0.1, 0.8))} and 

e45 = {((0.7, 0.2), (0.1, 0.7), (0.2, 0.6), (0.2, 0.7))} 

 We can on similar lines use {max min} operator or 

{product max} operator or so on. These concepts have been 

elaborately discussed in the earlier part of this chapter. We can 

also obtain the edge label as Hamming distance or Euclidean 

distance. 

 We will give the same graph G6 for the same set of 

vertices but the edges being labeled with Hamming distance by 

the following figure. 

 

 

 

G6 = 

 

 

 

 

 

Figure 4.32 

e12 
v2 v1 

v3 

e13 

v4 
e34 

e24 

v5 

e45 
e35 

e15 
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 The values of eij for G6 is calculated in the following 1  i, j  5. 

e12 = {((0.5, 0.2), (0.5, 0.6), (0.1, 0.2), (0.3, 0.1))} 

e13 = {((0, 0.1), (0.1, 0.1), (0.4, 0.3), (0.8, 0.5))} 

e15
 = {((0.7, 0.5), (0.5, 0.4), (0.3, 0.3), (0.7, 0.5))} 

e24 = {((0.1, 0.2), (0.1, 0.1), (0.4, 0.4), (0.3, 0.5))} 

e25 = {((0.2, 0.3), (0, 0.2), (0.2, 0.1), (0.4, 0.4))} 

e34 = {((0.6, 0.6), (0.4, 0.3), (0.7, 0.6), (0.1, 0.3))} 

e35 = {((0.7, 0.6), (0.4, 0.3), (0.7, 0.6), (0.1, 0.3))} and 

e45 = {((0.1, 0.1), (0.1, 0.1), (0.6, 0.5), (0.1, 0.1))} 

 We will illustrate this situation by an example. 

Example 4.19 Let us study children studying in 5th standard in a 

private school. 

 We will study them for five qualities / problems, very 

poor performance, P1, average performance P2, very good or 

good performance P3 and P4 and slow learner P5 A slow learner 

cannot be categorized as very poor performance or average 

performance or a very good or good performer. 

 The expert gives the following Plithogenic fuzzy 

intuitionistic sets associated with these five attributes. P1, P2, …, 

P5 denotes the Plithogenic fuzzy intuitionistic values of Pi; 1  i 

 5. 

 He takes to work with the following attributes 
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 C1 – Regular to class 

 C2 – Does homework regularly 

 C3 – Gets good marks 

 C4 – Interested in the classroom interacts with teacher 

 C5 – Cannot cope up or is indifferent in this class 

 C6 – Maintain the notebooks and books well and comes to 

class regularly. 

 In fact as per the expert wishes one can add several such 

attributes for the study.  

 As this is only an illustrate example and not based on real 

world data we have restricted to the minimum number of vital 

attributes associated with the problem of performance of school 

in the class room. 

 We take the following values for performance of students 

P1 = p{((0.2, 0.6), (0.1, 0.7), (0.1, 0.6),  (0.1, 0.8), (0.1, 0.8), 

(0.2, 0.7))} 

P2 = p2 {((0.6, 0.4), (0.5, 0.4), (0.6, 0.4), (0.6, 0.3), (0.5, 0.5), 

(0.5, 0.4))} 

P3 = p3{((0.8, 0.1), (0.9, 0), (0.9, 0.1), (0.8, 0.1), (0.1, 0.8), (0.8, 

0.1))} 

P4 = p4 = {((0.7, 0.3), (0.6, 0.4), (0.7, 0.2), (0.7, 0.2), (0.4, 0.4) 

(0.6, 0.2))} and 
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 P5 = p5{((0.5, 0.5), (0.4, 0.5), (0.3, 0.6), (0.3, 0.6), (0.7, 0.2), 

(0.5 0.2))} 

 Now we have the following feedback for the six students 

S1, S2, S3, S4, S5 and S6 which is as follows. 

 S1 = s1{((0.5, 0.4), (0.5, 0.4), (0.3, 0.7), (0.3, 0.5), (0.7, 

0.3), (0.5, 0.3))} 

 S2 = s2{((0.4, 0.5), (0.4, 0.5), (0.4, 0.6), (0.4, 0.6), (0.7, 

0.1), (0.5, 0.2))} 

 S3 = s3{((0.9, 0.1), (0.9, 0.1), (0.9, 0), (0.9, 0.1), (0.1, 

0.8), (0.9, 0.1))} 

 S4 = s4{((0.9, 0), (0.8, 0.1), (0.9, 0.1), (0.9, 0), (0, 0.9), 

(0.9, 0))} 

 S5 = s5{((0.1, 0.6), (0.1, 0.6), (0.1, 0.7), (0.1, 0.8), (0.1, 

0.7), (0.2, 0.7))} 

 S6 = s6{(0.1, 0.7), (0.1, 0.6), (0.1, 0.6), (0.1, 0.8), (0.1, 

0.8), (0.3, 0.6))} 

 Using these vertex set {P1, …, P5, S1, S2, …, S6} we give 

the Plithogenic fuzzy intuitionistic complete bipartite graph G in 

the following figure. 
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Figure 4.33 

 We give the Hamming distance dij and using this dij we 

find the Hamming weight wH (dij) aij : 1  i  6 and 1  j  5 in 

the following. 
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 d11 = {(0.3, 0.2), (0.4, 0.3), (0.2, 0.1), (0.2, 0.3), (0.6, 0.5), (0.2, 

0.4))} 

wH(d11) = (0.3 + 0.4 + 0.2 + 0.2 + 0.6 + 0.2 + 0.3, 0.1 + 0.3 + 

0.5 + 0.4) = (1.9, 1.8) = a11 

d12 = {((0.1, 0), (0, 0), (0.3, 0.3), (0.3, 0.2), (0.2, 0.2), (0, 0.1))} 

wH(d12) = (0.9, 0.8) = a12 

d13 = {((0.3, 0.3), (0.4, 0.4), (0.6, 0.6), (0.5, 0.4), (0.6, 0.5), (0.3, 

0.2))} 

wH (d13) = (2.7, 2.4) = a13 

d14 = {((0.2, 0.1), (0.1, 0), (0.4, 0.5), (0.4, 0.3), (0.3, 0.1), (0.1, 

0.1))} 

wH(d14) = (1.5, 1.1) = a14 

d15 = ((0, 0.1), (0.1, 0.1), (0, 0.1), (0, 0.1), (0, 0.1), (0, 0.1)) 

wH(d15) = (0.1, 0.6) = a15 

We see the first student S1 is very close to the fuzzy 

intuitionistic set P5 so student S1 is a slow learner. 

 Next we find the Hamming distances the Hamming 

distances d2j, and a21, a22, …, a25 the Hamming weights (1  j  

5) in the following. 

d21 = ((0.2, 0.1), (0.3, 0.2), (0.3, 0), (0.3, 0.2), (0.6, 0.7), (0.2, 

0.5)) 

wH(d21) = (1.9, 1.7) = a21 
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d22 = ((0.2, 0.1), (0.1, 0.1), (0.2, 0.2), (0.2, 0.3), (0.2, 0.4), (0.3, 

0.2)) 

wH(d22) = (1.2, 1.2) = a22 

d23 = ((0.1, 0), (0, 0.1), (0, 0.1), (0.1, 0), (0, 0), (0.1, 0)) 

wH (d23) = (0.3, 0.2) = a23 

d24 = ((0.3, 0.2), (0.2, 0.1), (0.3, 0.4), (0.3, 0.4), (0.3, 0.3), (0.1, 

0)) 

wH(d24) = (1.5, 1.4) = a24 

d25 = ((0.1, 0), (0, 0), (0, 0.2), (0.1, 0), (0, 0.1), (0, 0)) 

wH (d25) = (0.2, 0.3) = a25. 

 We see in the case of student S2 also he is a slow learner 

so the minimum weight of the Plithogenic fuzzy intuitionistic 

set with that of slow learner P5 is the least (0.2, 0.3) = a25. 

 Hence S2 is a slow learners. 

 Next we find the Hamming distance of S3 from P1, P2, P3, 

P4 and P5 in the following using which we find the Hamming 

weight of them. 

d31 = ((0.7, 0.5), (0.8, 0.6), (0.8, 0.6), (0.8, 0.7), (0, 0), (0.6, 

0.6)) 

wH (d31) = (3.7, 3) = a31 

d32 = ((0.3, 0.3), (0.4, 0.3), (0.3, 0.4), (0.3, 0.2), (0.4, 0.3), (0.4, 

0.3)) 



Application of Plithogenic Graphs 265 
 
 
 wH(d32) = (2.1, 1.8) = a32 

d33 = ((0.1, 0), (0, 0.1), (0, 0.1), (0.1, 0), (0, 0), (0.1, 0)) 

wH(d33) = (0.3, 0.2) = a33 

d34 = ((0.2, 0.2), (0, 0.1), (0, 0.1), (0.1, 0), (0, 0), (0.8, 0)) 

wH(d34) = (1.1, 0.4) = a34 

d35 = ((0.4, 0.4), (0.5, 0.4), (0.6, 0.6), (0.6, 0.5), (0.6, 0.6), (0.4, 

0.1)) 

wH(d35) = (3.1, 2.6) = a35. 

 From the values of a3j; 1  j  4 we see the student S3 is 

very good performer. 

 Next we find the values of d41, d42, …, d45 and the 

corresponding Hamming weights a41, a42, …, a45 of them 

respectively. 

d41 = {((0.7, 0.6), (0.7, 0.6), (0.8, 0.5), (0.8, 0.8), (0.1, 0.1), (0.6, 

0.7))} 

wH(d41) = (3.7, 3.3) = a41 

d42 = {((0.3, 0.4, (0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.5, 0.4), (0.5, 

0.4))} 

wH(d41) = (2.2, 2.1) = a42 

d43 = {((0.1, 0.1), (0.1, (0.1), (0, 0), (0.1, 0.1), (0.1, 0.1), (0.1, 

0.1))} 

wH(d42) = (0.5, 0.5) = a43 
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d44 = {((0.2, 0.3), (0.2, 0.3), (0.2, 0.1), (0.2, 0.2), (0.4, 0.5), (0.3, 

0.2))} 

wH(d44) = (1.5, 1.6) = a44 

d45 = {((0.4, 0.5), (0.4, 0.4), (0.6, 0.5), (0.6, 0.6), (0.7, 0.7), (0.4, 

0.2))} 

wH(d45) = (3.1, 2.9) = a45. 

The student S4 is somewhat close to the good student. 

 However, the value is (0.5, 0.5) but is less than all the 

other four values. 

 Now we work for the student S5 by finding the values d51, 

d52, d55, d54 and d55 using then we will find the Hamming weight 

of them a51, a52, a53, a54 and a55 respectively. 

d51 = {((0.1, 0), (0, 0.1), (0, 0.1), (0, 0), (0, 0.1), (0, 0))} 

wH(d51) = (0.1, 0.3) = a51 

d52 = {((0.5, 0.2), (0.4, 0.2), (0.5, 0.3), (0.5, 0.5), (0.4, 0.2), (0.3, 

0.3))} 

wH(d52) = (2.6, 1.7) = a52 

d53 = {((0.7, 0.5), (0.8, 0.6), (0.6, 0.5), (0.7, 0.7), (0, 0.1), (0.6, 

0.5))} 

wH(d53) = (3.4, 2.9) = a53 

d54 = {((0.6, 0.3), (0.5, 0.2), (0.6, 0.5), (0.6, 0.6), (0.3, 0.3), (0.4, 

0.5))} 
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 wH(d54) = (3, 2.4) = a54 

d55 = {((0.4, 0.1), (0.3, 0.1), (0.2, 0.1), (0.2, 0.2), (0.6, 0.5), (0.3, 

0.5))} 

wH(d55) = (2, 1.5) = a55 

S5 is very close to the performer P1 which means the student is a 

very poorly performed child. 

 Now for the student S6 we find the Hamming distance 

from P1, P2, …, P5 viz d61, d62, …, d65 and find the weights a61, 

a62, …, a65 respectively. 

d61 = {((0.1, 0.1), (0, 0.1), (0, 0), (0, 0), (0, 0), (0, 0.1))} 

wH(d61) = (0.1, 0.3) = a61 

d62 = {((0.5, 0.3), (0.4, 0.2), (0.5, 0.2), (0.5, 0.5), (0.4, 0.3), (0.2, 

0.4))} 

wH(d62) = (2.5, 1.9) = a62 

d63 = {((0.7, 0.6), (0.8, 0.6), (0.8, 0.5), (0.7, 0.7), (0, 0), (0.5, 

0.5))} 

wH(d63) = (3.5, 2.9) = a63 

d64 = {((0.6, 0.3), (0.5, 0.2), (0.6, 0.4), (0.6, 0.6), (0.3, 0.4), (0.3, 

0.4))} 

wH(d64) = (2.9, 2.3) = a64 

d65 = {((0.4, 0.2), (0.3, 0.1), (0.2, 0), (0.2, 0.2), (0.6, 0.6), (0.2, 

0.4))} 
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wH(d65) = (1.9, 1.5) = a65. 

 We see the least Hamming weight is given by d61. Hence 

this student S6 is again a student who is very poor in studies. 

 Thus, this fuzzy intuitionistic the model can be used in 

medical diagnostic, employee, employer problem, student 

performance and so on. 

 Next, we proceed onto describe the Plithogenic single 

valued neutrosophic graph and the plithogenic model associated 

with it. 

 We know any Plithogenic single valued neutrosophic set 

is of the form 

xi((a11 a12 a13), (a21 a22 a23), …, (am1 am2 am3)) where aji are the 

truth membership values aj2 are the indeterminate membership 

values and aj3 are the false membership values 1  j  m. We see 

1  i  t are the t values. 

 The are special super row matrices. 

 We give examples of Plithogenic single valued 

neutrosophic graph. 

Example 4.20 Let V = {V1, V2, V3, V4, V5} be the vertex set 

which are Plithogenic Single Valued Neutrosophic Sets 

(SVNS). The edges can be got as min or max or product or a 

combination of all. 

 The values of v1, v2, …, v5 are given, 
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 v1 = x1 {((0.7, 0.5, 0.3), (0.2, 0.6, 0.7), (0.9, 0.1, 0.2), (0.4, 0.8, 

0.8))}, 

v2 = x2 {((0.6, 0.4, 0.4), (0.8, 0.2, 0.4), (0.8, 0.2, 0.3), (0.1, 

0.6,0.7))} 

v3 = x3 {((0.5, 0.7, 0.2), (0.8, 0.3, 0.5), (0.7, 0.4, 0.2), (0.2, 0.7, 

0.9))} 

v4 = x4{((0.2, 0.5, 0.8), (0.8, 0.7, 0.1), (0.1, 0.8, 0.4), (0.6, 0.6, 

0.2))} and 

v5 = x5{((0.3, 0.7, 0.2), (0.8, 0.1, 0.6), (0.4, 0.5, 0.8), (0.7, 0.8, 

0.3))} 

 

 

 

G =   

 

 

 

 

 

Figure 4.34 
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 Let G be Plithogenic single valued neutrosophic graph 

with edges eij if vi and vj are adjacent vertices. 

 The values of eij are again super fuzzy row matrices given 

in the following using the min and max operator; {min true 

values, min of indeterminate values, max false values}. 

e12 = {((0.6, 0.4, 0.4), (0.2, 0.2, 0.7), (0.8, 0.1, 0.3), (0.1, 0.6, 

0.8))}, 

e13 = {((0.5, 0.5, 0.3), (0.2, 0.3, 0.7), (0.7, 0.1, 0.2), (0.2, 0.7, 

0.9))} 

e14 = {((0.2, 0.5, 0.8), (0.2, 0.6, 0.7), (0.1, 0.1, 0.4), (0.4, 0.6, 

0.8))} 

e25 = {((0.3, 0.4, 0.4), (0.8, 0.1, 0.6), (0.4, 0.2, 0.8), (0.1, 0.6, 

0.7))} 

e34 = {((0.2, 0.5, 0.8), (0.8, 0.3, 0.5), (0.1, 0.4, 0.4), (0.2, 0.6, 

0.9))} 

e35 = {(0.3, 0.7, 0.2), (0.8, 0.1, 0.6), (0.4, 0.4, 0.8), (0.2, 0.7, 

0.9))} and 

e45 = {((0.2, 0.5, 0.8), (0.8, 0.1, 0.6), (0.1, 0.5, 0.8), (0.6, 0.6, 

0.3))}. 

 We can label the edges with min or max or min and max 

or product or product and min or max and product or by 

Euclidean distance or Hamming distance. 

 We will now give an example of Plithogenic single 

valued neutrosophic graph whose edge values correspond to 
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 Hamming distance for any two adjacent vertices. This graph can 

give the distance between any two attributes which have to 

compared. If the Hamming weight of this distance is very small 

then we can conclude that the values which we calculate is 

approximately the same as the expected or the targeted values. 

So, this labeling will be a boon in modeling real world problems 

using Plithogenic SVNS. 

Example 4.21 Let us assume we want to study the Example 

4.19, in which we used plithogenic fuzzy intuitionistic graph 

about primary school now we use Plithogenic Single Value 

Neutrosophic graph, so in this case we replace the pair 

(membership, non-membership) by value of true membership, 

value of indeterminate membership, value of false membership 

that is by using SVNS.  

 We for the same set of students Si and the performance in 

general P1, P2, …, P5; 1  i  6 we give the plithogenic SVNS 

vertices for {Si and  Pj | 1  i  6 and 1  j  6} in the following 

S1 = {((0.6, 0.2, 0.3), (0.6, 0.1, 0.2), (0.2, 0.4, 0.6), (0.2, 0.6, 

0.4), (0.7, 0.2, 0.1), (0.6, 0.3, 0.1))}, 

S2 = {((0.6, 0.3, 0.2), (0.7, 0.2, 0.1), (0.3, 0.3, 0.5), (0.2, 0.5, 

0.3), (0.6, 0.3, 0.2), (0.5, 0.2, 0.2)}, 

S3 = {((0.8, 0, 0.1), (0.9, 0.1, 0), (0.9, 0.1, 0.1), (0.9, 0.1, 0.1), 

(0.1, 0.2, 0.9), (0.8, 0.1, 0.2))}, 

S4 = {((0.6, 0.2, 0.2), (0.6, 0.3, 0.2), (0.7, 0.2, 0.1), (0.7, 0.3, 

0.1), (0.3, 0.5, 0.2), (0.6, 0.3, 0.1))} 
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S5 = {((0.2, 0.2, 0.6), (0.1, 0.2, 0.6), (0.2, 0.2, 0.7), (0.1, 0.2, 

0.8), (0.1, 0.3, 0.7), (0.2, 0.3, 0.6))} and 

S6 = {((0.1, 0.3, 0.6), (0.1, 0.2, 0.7), (0.1, 0.1, 0.8), (0.1, 0.2, 

0.8), (0.1, 0.2, 0.8), (0.2, 0.3, 0.7))} 

 Now we proceed onto give the plithogenic SVNS set for 

P1, P2, …, P5 in the following. 

P1 = {((0.1, 0.2, 0.6), (0.1, 0.1, 0.7), (0.1, 0.1, 0.7), (0.1, 0.2, 

0.8), (0.2, 0.2, 0.8), (0.2, 0.3, 0.6))} 

P2 = {((0.8, 0.1, 0.1), (0.9, 0.2, 0.1), (0.9, 0.2, 0.2), (0.8, 0.1, 

0.1), (0.1, 0.3, 0.8), (0.7, 0.2, 0.3))} 

P3 = {((0.8, 0.1, 0.1), (0.9, 0.1, 0.1), (0.9, 0.1, 0.1), (0.9, 0.2, 

0.1), (0.1, 0.1, 0.9), (0.8, 0.1, 0.2))} 

P4 = {((0.7, 0.2, 0.2), (0.6, 0.3, 0.2), (0.7, 0.2, 0.2), (0.7, 0.3, 

0.2), (0.3, 0.4, 0.2), (0.6, 0.2, 0.1))} 

P5 = {((0.6, 0.2, 0.2), (0.6, 0.2, 0.2), (0.2, 0.5, 0.6), (0.1, 0.6, 

0.4), (0.7, 0.2, 0.1), (0.6, 0.3, 0.2))} 

 Now we give the plithogenic SVNS complete bipartite 

graph using the vertex sets as  

{{S1, S2, …, S6}, {P1, P2,…, P5}} where Si are taken as the 

vertex set of the domain space and Pj are taken as the vertex set 

of the range space of the complete bipartite graph G; 1  i  6 

and 1  j  5. 
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Figure 4.35 

 The plithogenic SVNS set values of Si and Pj; 1  i  6 

and 1  j  5 are given earlier. 
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 Now we find the Hamming distance dij; 1  j  5 between 

S1Pj. 

dH(S1P1) = d11 = {((0.5, 0, 0.3), (0.5, 0, 0.5) (0.1, 0.3, 0.1), (0.1, 

0.4, 0.4), (0.5, 0, 0.7), (0.4, 0, 0.5))} wH (d11) = (3.1, 0.7, 1.8), = 

a11 

dH(S1P2) = {((0.3, 0.1, 0.1), (0.3, 0.1, 0.1), (0.7, 0.2, 0.4), (0.6, 

0.5, 0.3), (0.6, 0.1, 0.7), (0.1, 0.1, 0.1))} = d12 

wH(d12) = (2.5, 1.1, 1.7) = a12 

dh(S1P3) = {((0.2, 0.1, 0.1), (0.3, 0, 0.1), (0.7, 0.3, 0.5), (0.7, 0.4 

0.3), (0.6, 0.1, 0.8), (0.2 0.2, 0.1) = d13 

wH(d13) = (2.7, 1.1, 1.9) = a13 

dH(S1P4) = {((0.1, 0,0.1), (0, 0.2, 0), (0.5, 0.2, 0.4), (0.1, 0.3, 

0.2), (0.4, 0.2,0.1), (0, 0.1, 0))} = d14 

wH(d14) = (1.1, 1, 0.8) = a14 

dH(S1P5) = {((0, 0, 0.1), (0, 0, 0), (0, 0.1, 0), (0, 0, 0;1), (0, 0.1, 

0), (0.1, 0, 0))} = d15 

wH(d15) = (0.1, 0.2, 0.2). 

 Thus we see the least Hamming weight is associated with 

the edge S1P5 that is S1 is very close to P5 which in turn implies 

the student S1 enjoys the attribute P5 (or is very close to the 

plithogenic SVNS set P5). 

 Hence S1 is a slow learner. 

 Thus the student is a slow learner. 
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  Next we calculate the edges d21, d22, …, d25

 and their 

respective Hamming weights wH(d21), wH(d22), wH(d23), wH(d24) 

and wH(d25) respectively. 

dH(S2P1) = {((0.7, 0.2, 0.5), (0.8, 0, 0.7), (0.8, 0, 0.6), (0.8, 0.1, 

0.7), (0.1, 0, 0.1), (0.6, 0.2, 0.4))} = d21 

wH(d21) = (3.8, 0.5, 3.0) = a21 

dH(S2P2) = {((0.2, 0.2, 0.1), (0.2, 0, 0), (0.6, 0.1, 0), (0.6, 0.4, 

0.2), (0.5, 0, 0.6), (0.2, 0, 0))} d22 

wH(d22) = (2.3, 0.9, 0.9) = a22 

dH(S2P3) = {((0.6, 0.2, 0.1), (0.2, 0.1, 0), (0.6, 0.2, 0.4), (0.7, 0.3, 

0.2), (0.5, 0.2, 0.7), (0.3, 0.1, 0))} = d23 

wH(d23) = (2.9, 1, 1.4) = a23 

dH(S2P4) = {((0.1, 0.1, 0), (0.4, 0.2, 0.1), (0.4, 0.1, 0.3), (0.5, 0.2, 

0.1), (0.3, 0.1, 0), (0.1, 0, 0.1))} = d24 

wH(d24) = (1.8, 0.7, 0.6) = a24 

dH(S2P5) = {((0, 0.1, 0), (0.1, 0, 0.1), (0.1, 0.2, 0.1), (0.1, 0.1, 

0.1), (0.1, 0.1, 0.1), (0.1, 0.1, 0))} = d25 

wH(d25) = (0.5, 0.6, 0.4) = a25 

We see a25 is somewhat the least value of the Hamming weight 

of the edges between d21, d22, d23, d24 and d25. Thus the second 

student S2 is again a slow learner. 

 Next we find the Hamming distances S3Pi; 1  i  5 in the 

following. 
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dH(S3P1) = {((0.7, 0.2, 0.5), (0.8, 0, 0.7), (0.8, 0, 0.6), (0.8, 0.1, 

0.7), (0.1, 0, 0.1), (0.6, 0.2, 0.4))} = d31 

wH(d31) = (3.8, 0.5, 3) = a31 

dH(S3P2) = {((0, 0.1, 0), (0, 0.1, 0.1), (0, 0.1, 0.1), (0.1, 0, 0), (0, 

0.1, 0.1), (0.6, 0.2, 0.4))} = d32 

wH(d32) = (0.7, 0.6, 0.7) = a32 

dH(S3P3) = {((0, 0.1, 0), (0, 0, 0.1), (0, 0, 0), (0, 0.1, 0), (0, 0.1, 

0), (0, 0, 0))} = d33 

wH(d33) = (0, 0.3, 0.1) = a33 

dH(S3P4) = {((0.1, 0.2, 0.1), (0.3, 0.2, 0.2), (0.2, 0.1, 0.1), (0.2, 

0.2, 0.1), (0.2, 0.2, 0.7), (0.2, 0.1, 0.1))} = d34 

wH(d34) = (1.2, 1, 1.3) = a34 

dH(S3P5) = {((0.2, 0.2, 0.1), (0.3, 0.1, 0.2) (0.7, 0.4, 0.5), (0.8, 

0.5, 0.3), (0.6, 0, 0.8), (0.2, 0.2, 0))} = d35 

wH(d35) = (2.8, 1.4, 1.9) = a35. 

 We see the least value is given by a33, which clearly show 

that the student S3 is very close to the performance of P3. P3 is 

the very good student so S3 is a very good student.  

 Next we try to find the edge weights of d41, d42, d43, d44 

and d45 in the following : 

d(S4P1) = {((0.5, 0, 0.4), (0.5, 0.2, 0.5), (0.6, 0.1, 0.6), (0.6, 0.1, 

0.7), (0.1, 0.3, 0.6), (0.4, 0, 0.5))} = d41 



Application of Plithogenic Graphs 277 
 
 
 wH(d41) = (2.7, 0.7, 3.3) = a41 

d(S4P2) = {((0.2, 0.1, 0.1), (0.3, 0.1, 0.1), (0.2, 0, 0.1), (0.1, 0.2, 

0), (0.2, 0.2, 0.6), (0.1, 0.1, 0.1))} = d42 

wH(d42) = (1.1, 0.7, 1) = a42 

d(S4P3) = {((0.2, 0.1, 0.1), (0.3, 0.2, 0.1), (0.2, 0.1, 0), (0.2, 0.2, 

0), (0.2, 0.4, 0.7), (0.2, 0.2, 0.1))} = d43 

wH(d43) = (1.3, 1.2, 1) = a43 

d(S4P4) = {((0.1, 0, 0), (0, 0, 0), (0, 0, 0.1), (0, 0, 0.1), (0, 0.1, 

0), (0, 0.1, 0))} = d44 

wH(d44) = (0.1, 0.2, 0.2) = a44 

d(S4P5) = {((0, 0, 0), (0, 0.1, 0), (0.5, 0.3, 0.5), (0.6, 0.3, 0.3), 

(0.4, 0.3, 0.2), (0, 0, 0.1))} = d45 

wH(d45) = (1.5, 1, 1.1) = a45. 

 The student S4 is very close to P4 as the value a44 is (0.1, 

0.2, 0.2). So the student S4 is a good student. 

 Now we proceed onto work for the edges and Hamming 

weights of the edges d5j; 1  j  5, in the following. 

dH(S5P1) = {((0.1, 0, 0), (0, 0.1, 0.1), (0.2, 0, 0.1), (0.1, 0.2, 0), 

(0.2, 0.2, 0.6), (0.1, 0.1, 0.1))} = d51 

wH(d51) = (0.7, 0.6, 0.9) = a51 

dH(S5P2) = {((0.6, 0.1, 0.5), (0.8, 0, 0.5), (0.7, 0, 0.5), (0.7, 0.1, 

0.7), (0, 0, 0.1), (0.5, 0.1, 0.4))} = d52 
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wH(d52) = (3.3, 0.3, 2.7) = a52 

dH(S5P3) = {((0.6, 0.1, 0.5), (0.8, 0.1, 0.5), (0.7, 0.1, 0.6), (0.8, 0, 

0.7), (0, 0.2, 0.2), (0.6, 0.2, 0.4))} = d53 

wH(d53) = (3.5, 0.7, 2.9) = a53 

dH(S5P4) = {((0.5, 0, 0.4), (0.5, 0.1, 0.4), (0.5, 0, 0.5), (0.6, 0.1, 

0.6), (0.2, 0.1, 0.5), (0.4, 0.1, 0.5))} = d54 

wH(d54) = (2.7, 0.4, 2.9) = a54 

dH(S5P5) = {((0.4, 0, 0.4), (0.5, 0, 0.4), (0.1, 0.1, 0), (0, 0, 0), 

(0.6, 0.1, 0.6), (0.4, 0, 0.4))} = d55 

wH(d55) = (2, 0.2, 1.8) = a55 

 Clearly the least weight is given by a51 which implies the 

student S5 is a slow learner. 

 Next, we the Hamming distances d61, d62, d63, d64 and d65 

and their respective Hamming weights for the student S6. 

dH(S6P1) = {((0, 0.1, 0), (0, 0.1, 0), (0, 0, 0.1), (0, 0, 0), (0.1, 0, 

0), (0, 0, 0.1))} = d61 

wH(d61) = (0.1, 0.2, 0.2) = a61 

dH (S6P2) = {((0.7, 0.2, 0.5), (0.8, 0, 0.6), (0.8, 0.1, 0.6), (0.7, 

0.1, 0.7), (0.1, 0, 0), (0, 0, 0.1))} = d62 

wH(d62) = (3.1, 0.4, 2.5) = a62 

dH(S6P3) = {((0.7, 0.2, 0.5), (0.8, 0, 0.6), (0.8, 0.1, 0.6), (0, 0, 0), 

(0.1, 0, 0), (0, 0, 0.1))} = d63 
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 wH(d63) = (2, 3, 1.8) = a63 

dH(S6P4) = {((0.6, 0.1, 0.4), (0.5, 0.1, 0.5), (0.6, 0.1, 0.6), (0.6, 

0.1, 0.6), (0.2, 0.3, 0.6), (0.4, 0.1, 0.5))} = d64 

wH(d64) = (2.9, 0.8, 3.2) = a64 

dH(S6P5) = {((0.5, 0.1, 0.4), (0.5, 0, 0.5), (0.1, 0.4, 0.6), (0, 0.4, 

0.4), (0, 0.4, 0.4), (0.6, 0, 0.7), (0.4, 0, 0.5))} 

wH(d65) = (2.1, 1.3, 3.5) = a65 

 We see the least weight in this case is a61 that is the 

student S6 performance is close to P1 which implies the student 

S6 is a slow learner. This is the way we construct plithogenic 

models. So, the models exploit only the structure of the graph 

and the operations we perform on the edges in all the 3 types of 

plithogenic sets. 

 Now we proceed on to pose some problems. 

Problems 

1. Find all special features associated with Plithogenic fuzzy sets. 

2. Give an example of a Plithogenic fuzzy graph which is 

complete. 

3. Construct using the appropriate Plithogenic fuzzy graph in the 

study of a real-world problem. 

4. Show that the Plithogenic fuzzy graph mentioned in problem 3 

can be used to model the problem. 

5. Describe the special features associated with Plithogenic 

fuzzy models. 
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6. What are Plithogenic fuzzy intuitionistic sets? How are they 

different from the usual Plithogenic fuzzy sets? 

7. Give an example of a Plithogenic bipartite fuzzy 

intuitionistic graph. 

8. Prove by using Plithogenic fuzzy intuitionistic models in the 

place of Plithogenic fuzzy models one can obtain a better 

solution! 

 a) Justify your claim by giving a real-world problem. 

 b) Compare the results got by using Plithogenic fuzzy 

model with the Plithogenic fuzzy intuitionistic model. 

9. Enumerate all the special features associated with 

Plithogenic single valued neutrosophic sets. 

10. Give an example of a complete bipartite Plithogenic SVNS 

graph. 

11. Distinguish between the plithogenic SVNS models and 

plithogenic fuzzy intuitionistic models. 

12. Distinguish the Plithogenic fuzzy models from the 

plithogenic SVNS models. 

13. For a real-world problem use 

 i) Plithogenic fuzzy model. 

 ii) Plithogenic Fuzzy intuitionistic model. 

 iii) Plithogenic SVNS model and compare the results. 

 Which model in your opinion is best suited for the problem 

you have investigated. 
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