On Neutrosophic Canonical Hypergroups and Neutrosophic Hyperrings

A.A.A. Agboola¹ and B. Davvaz²

¹ Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria. E-mail: aaaola2003@yahoo.com
² Department of Mathematics, Yazd University, Yazd, Iran. E-mail: davvaz@yazd.ac.ir

Abstract. A neutrosophic hyperstructure is an algebraic structure generated by a given hyperstructure \(H \) and an indeterminacy factor \(I \) under the hyperoperation(s) of \(H \). The objective of this paper is to study canonical hypergroups and hyperrings in which addition and multiplication are hyperoperations in a neutrosophic environment. Some basic properties of neutrosophic canonical hypergroups and neutrosophic hyperrings are presented. Quotient neutrosophic canonical hypergroups and neutrosophic hyperrings are presented.

Keywords: neutrosophic canonical hypergroup, neutrosophic subcanonical hypergroup, neutrosophic hyperring, neutrosophic subhyperring, neutrosophic hyperideal.

1 Introduction

Given any hyperstructure \(H \), a new hyperstructure \(H(I) \) may be generated by \(H \) and \(I \) under the hyperoperation(s) of \(H \). Such new hyperstructures \(H(I) \) are called neutrosophic hyperstructures where \(I \) is an indeterminate or a neutrosophic element. Generally speaking, \(H(I) \) is an extension of \(H \) but some properties of \(H \) may not hold in \(H(I) \). However, \(H(I) \) may share some properties with \(H \) and at times may possess certain algebraic properties not present in \(H \).

Neutrosophic theory was introduced by F. Smarandache in 1995 and some known algebraic structures in the literature include neutrosophic groups, neutrosophic semigroups, neutrosophic loops, neutrosophic rings, neutrosophic fields, neutrosophic vector spaces, neutrosophic modules etc. Further introduction to neutrosophy and neutrosophic algebraic structures can be found in [1,2,3,4,16,26,27].

In 1934, Marty [18] introduced the theory of hyperstructures at the 8th Congress of Scandinavian Mathematicians. In 1972, Mittas [21] introduced the theory of canonical hypergroups. A class of hyperrings (\(R, +, * \)), where + and * are hyperoperations are introduced by De Salvo [15]. This class of hyperrings has been further studied by Asokkumar and Velrajgan [5,22] and Davvaz and Leoranu-Fotea [14]. Further contributions to the theory of hyperstructures can be found in [7,8,9,10,14,22].

Agboola and Davvaaz introduced and studied neutrosophic hypergroups in [4]. The present paper is concerned with the study of canonical hypergroups and hyperrings in a neutrosophic environment. Basic properties of neutrosophic canonical hypergroups and neutrosophic hyperrings are presented. Quotient neutrosophic canonical hypergroups and neutrosophic hyperrings are also presented.

2 A Review of Well Known Definitions

In this section, we provide basic definitions, notations and results that will be used in the sequel.

Definition 2.1. Let \((G, \times) \) be any group and let \(I \subseteq G \). The couple \((G(I), \times) \) is called a neutrosophic group generated by \(G \) and \(I \) under the binary operation \(\times \). The indeterminacy factor \(I \) is such that \(I \times I = I \). If \(\times \) is ordinary multiplication, then \(I \times I = I \) and \(I \times I = I \) for all \(a, b \in G(I) \).

Theorem 2.2. [26] Let \(G(I) \) be a neutrosophic group.
(1) \(G(I) \) in general is not a group;
(2) \(G(I) \) always contain a group.

Definition 2.3. Let \(A(I) \) be a neutrosophic subgroup (pseudo neutrosophic subgroup) of a neutrosophic group \(G(I) \).
(1) \(A(I) \) is said to be normal in \(G(I) \) if there exist \(x, y \in G(I) \) such that \(xA(I) \times y = A(I) \).
(2) \(G(I) \) is said to be simple if it has no non-trivial...
neutrosophic normal subgroup.

Example 1. [3] Let $G(I) = \{ e, a, b, c, I, al, bl, cl \}$ be a set, where $a^2 = b^2 = c^2 = e, bc = cb = a, ac = ca = b, ab = ba = c$. Then $(G(I), \cdot)$ is a commutative neutrosophic group, and $H(I) = \{ e, al, bl, cl \}$ and $P(I) = \{ e, a, c, cl \}$ are neutrosophic subgroups of $G(I)$.

Theorem 2.5. [3] Let $H(I)$ be a non-empty proper subset of a neutrosophic group $(G(I), \cdot)$. Then, $H(I)$ is a neutrosophic subgroup of $G(I)$ if and only if the following conditions hold:

1. $a, b \in H(I)$ implies that $a \cdot b \in H(I)$;
2. There exists a proper subset A of $H(I)$ such that (A, \cdot) is a group.

Definition 2.6. Let $(G(I), \cdot)$ and $(G_2(I), \cdot)$ be two neutrosophic groups and let $\phi : G_1(I) \rightarrow G_2(I)$ be a mapping of $G_1(I)$ into $G_2(I)$. Then, ϕ is said to be a homomorphism if the following conditions hold:

1. ϕ is a group of homomorphism;
2. $\phi(I) \neq I$.

In addition, if ϕ is a bijection, then ϕ is called a neutrosophic group isomorphism and we write $G_1(I) \cong G_2(I)$.

Definition 2.7. Let $(R, +, \cdot)$ be any ring. A neutrosophic ring is a triple $(R(I), +, \cdot)$ generated by R and I, that is, $R(I) = \{ R \cup I \}$. Indeed, $R(I) = \{ x = a + bl : a, b \in R \}$, where if $x = a + bl$ and $y = c + dl$ are elements of R, then $x \oplus y = (a + bl) \oplus (c + dl) = (a + c) + (b + d)l$, $x \otimes y = (a + bl) \otimes (c + dl) = (ac + ad + bc + bd)l$.

Example 2. Let \mathbb{Z}_n be a ring of integers modulo n. Then, $\mathbb{Z}_n(I) = \{ x = a + bl : a, b \in \mathbb{Z}_n \}$ is a neutrosophic ring of integers modulo n.

Theorem 2.8. [27] Let $(R(I), +, \cdot)$ be a neutrosophic ring. Then, $(R(I), +, \cdot)$ is a ring.

Definition 2.9. Let $(R(I), +, \cdot)$ be a neutrosophic ring. A non-empty subset $S(I)$ of $R(I)$ is said to be a neutrosophic subring if $(S(I), +, \cdot)$ is a neutrosophic ring. It is essential that $S(I)$ must contain a proper subset which is a ring. Otherwise, $S(I)$ is called a pseudo neutrosophic subring of $R(I)$.

Example 3. Let $(\mathbb{Z}_{12}(I), +, \cdot)$ be a neutrosophic ring of integers modulo 12 and let $S(I)$ and $T(I)$ be subsets of $\mathbb{Z}_{12}(I)$ given by $S(I) = \{ 0, 6, I, 1, 2I, 3I, ..., 11I, 6+I, 6+2I, 6+3I, ..., 6+11I \}$ and $T(I) = \{ 0, 2I, 4I, 6I, 10I \}$. Then, $(S(I), +, \cdot)$ is a neutrosophic subring of $\mathbb{Z}_{12}(I)$ while $(T(I), +, \cdot)$ is a pseudo neutrosophic ring of $\mathbb{Z}_{12}(I)$.

Definition 2.10. Let $(R(I), +, \cdot)$ be a neutrosophic ring and let $S(I)$ be a neutrosophic subring (pseudo neutrosophic subring) of $R(I)$. Then, $S(I)$ is called a neutrosophic ideal (pseudo neutrosophic ideal) of $R(I)$ if for all $r \in R(I)$ and $s \in S(I)$, $r \cdot s, s \cdot r \in S(I)$.

Definition 2.11. Let $(R(I), +, \cdot)$ and $(R_2(I), +, \cdot)$ be two neutrosophic rings and let $\phi : R_1(I) \rightarrow R_2(I)$ be a mapping of $R_1(I)$ into $R_2(I)$. Then, ϕ is said to be a homomorphism if the following conditions hold:

1. ϕ is a group of homomorphism;
2. $\phi(I) = I$.

Moreover, if ϕ is a bijection, then ϕ is called a neutrosophic ring isomorphism and we write $R_1(I) \cong R_2(I)$. The kernel of ϕ denoted by $\text{Ker} \phi$ is the set $\{ x \in R_1(I) : \phi(x) = 0 \}$ and the image of ϕ denoted by $\text{Im} \phi$ is the set $\{ \phi(x) : x \in R_1(I) \}$.

It should be noted that $\text{Im} \phi$ is a neutrosophic subring of $R_2(I)$ and $\text{Ker} \phi$ is always a subring of R_1 and never a neutrosophic subring (ideal) of $R_1(I)$.

Definition 2.12. A map $\cdot : S \times S \rightarrow P^*(S)$ is called hyperoperation on the set S, where S is non-empty set and $P^*(S)$ denotes the set of all non-empty subsets of S.

A hyperstructure or hypergroupoid is the pair (S, \cdot), where \cdot is a hyperoperation on the set S.

Definition 2.13. A hyperstructure (S, \cdot) is called a semihypergroup if for all $x, y, z \in S, (x \cdot y) \cdot z = x \cdot (y \cdot z)$, which means that $\bigcup_{u \in x \cdot y} u \cdot z = \bigcup_{v \in y \cdot z} x \cdot v$.

Definition 2.14. A non-empty subset A of a semihypergroup (S, \cdot) is called a subsemihypergroup. In other words, a non-empty subset A of a semihypergroup (S, \cdot) is a subsemihypergroup if $A \cdot A \subseteq A$.

If $x \in S$ and A, B are non-empty subsets of S, then

\[A \cdot B = \bigcup_{a \in A} a \cdot B, A \cdot x = A \cdot \{ x \}, \text{ and} \]

\[x \cdot B = \{ x \} \cdot B. \]

Definition 2.15. A hypergroupoid (H, \cdot) is called a quasihypergroup if for all a of H we have $a \cdot H = H \cdot a = H$. This condition is also called the reproduction axiom.

Definition 2.16. A hypergroupoid (H, \cdot) which is both a semihypergroup and a quasihypergroup is called a hypergroup.

Definition 2.17. Let H be a non-empty set and let $+ \cdot$ be a hyperoperation on H. The couple $(H, + \cdot)$ is called canonical hypergroup if the following conditions hold:

A.A.A. Agboola & B. Davaaz, On Neutrosophic Canonical Hypergroups and Neutrosophic Hyperrings
(1) \(x+y=y+x \), for all \(x, y \in H \);
(2) \(x+(y+z)=(x+y)+z \), for all \(x, y, z \in H \);
(3) there exists a neutral element \(0 \in H \) such that \(x+0=\{x\}=0+x \), for all \(x \in H \);
(4) for every \(x \in H \), there exists a unique element \(-x \in H \) such that \(0 \in x+(-x) \cap (-x)+x \);
(5) \(z \in x+y \) implies \(y=-x+z \) and \(x \in z-y \), for all \(x, y, z \in H \).

A non-empty subset \(A \) of \(H \) is called a subcanonical hypergroup if \(A \) is canonical hypergroup under the same hyperaddition as that of \(H \) that is, for every \(a, b \in A \), \(a-b \in A \). In addition, if \(a+A-a \subseteq A \) for all \(a \in H \), \(A \) is said to be normal.

Definition 2.18. A hyperring is a triple \((R, +, \cdot) \) satisfying the following axioms:

1. \((R, +)\) is a canonical hypergroup;
2. \((R, \cdot)\) is a semihypergroup such that \(x \cdot 0 = 0 \cdot x = 0 \) (for all \(x \in R \), that is, \(0 \) is a bilateral absorbing element);
3. \(x \cdot (y+z) = x \cdot y + x \cdot z \) and \((x+y) \cdot z = x \cdot z + y \cdot z \) for all \(x, y, z \in R \).

Definition 2.19. Let \((R, +, \cdot) \) be a hyperring and \(A \) be a non-empty subset of \(R \). Then, \(A \) is said to be subhyperring of \(R \) if \((A, +, \cdot)\) is itself a hyperring.

Definition 2.20. Let \(A \) be a subhyperring of a hyperring \(R \).

1. \(A \) is called a left hyperideal of \(R \) if \(r \cdot a \subseteq A \) for all \(r \in R, a \in A \).
2. \(A \) is called a right hyperideal of \(R \) if \(a \cdot r \subseteq A \) for all \(r \in R, a \in A \).
3. \(A \) is called a hyperideal of \(R \) if \(A \) is both left and right hyperideal of \(R \).
4. A hyperideal \(A \) is said to be normal if \(r+a-r \subseteq A \) for all \(r \in R \).

Definition 2.21. Let \((H_1, +) \) and \((H_2, +) \) be two canonical hypergroups. A mapping \(\phi: H_1 \to H_2 \) is called

1. a homomorphism if (i) for all \(x, y \in H_1 \), \(\phi(x+y) \subseteq \phi(x)+\phi(y) \) and (ii) \(\phi(0) = 0 \);
2. a good or strong homomorphism if (i) for all \(x, y \in H_1 \), \(\phi(x+y) = \phi(x)+\phi(y) \) and (ii) \(\phi(0) = 0 \);
3. an isomorphism (strong isomorphism) if \(\phi \) is a bijective homomorphism (strong homomorphism).

Definition 2.22. [4] Let \((H, \cdot) \) be any hypergroup and let \(\langle H \cup I \rangle = \{(a, bI) : a, b \in H \} \). The couple \(H(I) = \langle H \cup I \rangle, \cdot \) is called a neutrosophic hypergroup generated by \(H \) and \(I \) under the hyperoperation \(\cdot \), where for all \((a, bI), (c, dI) \in H(I) \), the composition element of \(H(I) \) is defined by \((a, bI) \circ (c, dI) = \{(x, yI) : x \in a \circ c, y \in a \circ d \cup b \circ c \cup b \circ d \} \).

3 Development of Neutrosophic Canonical Hypergroups and Neutrosophic Hyperrings

In this section, we develop the concepts of neutrosophic canonical hypergroups and neutrosophic hyperrings. Necessary definitions are given and examples are provided.

Definition 3.1. Let \((H, +) \) be any canonical hypergroup and let \(I \) be an indeterminate. Let \(H(I) = \langle H \cup I \rangle = \{(a, bI) : a, b \in H \} \) be a set generated by \(H \) and \(I \). The hyperstructure \((H(I), +) \) is called a neutrosophic canonical hypergroup, where for all \((a, bI), (c, dI) \in H(I) \) with \(b \neq 0 \) or \(d \neq 0 \), we define \((a, bI) + (c, dI) = \{(x, yI) : x \in a + c, y \in a + d \cup b + c \cup b + d \} \) and \((x, 0) + (y, 0) = \{(u, 0) : u \in x + y \} \).

The element 1 is represented by \((0, I)\) in \(H(I) \) and any element \(x \in H \) is represented by \((x, 0)\) in \(H(I) \). For any non-empty subset \(A[I] \) of \(H[I] \), we define \(-A[I] = \{-(a, bI) : a, b \in H[I] \} \).

Lemma 3.2. Let \(H \neq \{0\} \) be a canonical hypergroup and let \(H[I] \) be the corresponding neutrosophic canonical hypergroup. Then, \((0, 0)\) the neutral element of \(H \) is not a neutral element of \(H[I] \).

Proof. Suppose that \((0, 0)\) is the neutral element of \(H[I] \) and suppose that \((a, bI) \in H(I) \) such that \(b \) is non-zero and \(a \neq b \).

Then

\[
(a, bI) + (0, 0) = \{(u, vI) : u \in a + 0, v \in a + 0 \cup b + 0 \cup b + 0 \} = \{(u, vI) : u \in \{a\}, v \in \{a, b\}\} \\
\neq (a, bI),
\]

a contradiction. Hence, \((0, 0)\) is not a neutral element of \(H[I] \).

Definition 3.3. Let \((H[I], +) \) be a neutrosophic canonical hypergroup.

1. A non-empty subset \(A[I] \) of \(H[I] \) is called a neutrosophic subcanonical hypergroup of \(H[I] \) if \((A[I], +)\) is itself a neutrosophic canonical hypergroup. It is essential that \(A[I] \) must contain a proper subset which is a subcanonical hypergroup of \(H[I] \). Then, \(A[I] \) is called a neutrosophic subcanonical hypergroup of \(H[I] \), then it is called a neutrosophic subcanonical hypergroup of \(H[I] \).

2. If \(A[I] \) is a neutrosophic subcanonical hypergroup (pseudo neutrosophic canonical hypergroup), then \(A[I] \) is said to be normal in \(H[I] \) if for all \((a, bI) \in H[I] \), \((a, bI) + A[I] - (a, bI) \subseteq A[I] \).

Lemma 3.4. Let \((H[I], +) \) be a neutrosophic canonical hypergroup and let \(A[I] \) be a non-empty proper subset of \(H[I] \).
Let \(H(I) \) be a neutrosophic subcanonical hypergroup if and only if the following conditions hold:

1. For all \((a, bI), (c, dI) \in A[I], (a, bI) - (c, dI) \subseteq A[I],\)
2. \(A[I] \) contains a proper subset which is a canonical hypergroup of \(H \).

Lemma 3.5. Let \((H(I), +)\) be a neutrosophic canonical hypergroup and let \(A[I] \) be a non-empty proper subset of \(H(I) \). Then, \(A[I] \) is a pseudo neutrosophic subcanonical hypergroup if and only if the following conditions hold:

1. For all \((a, bI), (c, dI) \in A[I], (a, bI) - (c, dI) \subseteq A[I],\)
2. \(A[I] \) does not contain a proper subset which is a canonical hypergroup of \(H \).

Definition 3.6. Let \(A[I] \) and \(B[I] \) be two neutrosophic subcanonical hypergroups of a neutrosophic canonical hypergroup \(H(I) \). The sum of \(A[I] \) and \(B[I] \) denoted by \(A[I] + B[I] \) is defined as the set:

\[
A[I] + B[I] = \bigcup_{(a, bI) \in A[I]} (a, bI) \in A[I] \cup (c, dI) \in B[I].
\]

Definition 3.7. Let \(H(I) \) be a neutrosophic canonical hypergroup and let \(A[I] \) be a neutrosophic subcanonical hypergroup of \(H(I) \). If \(K \) is a canonical hypergroup of \(H \), we define the set

\[
A[I] + K = \bigcup_{(a, bI) \in A[I]} (a, bI) \in A[I] \cup (k, 0).
\]

Definition 3.8. Let \((R, +, \cdot)\) be any hyerring and let \(I \) be an indeterminate. The hyperstructure \((R(I), \oplus, \sqcup)\) generated by \(R \) and \(I \), that is, \(R(I) = (R \cup I) \), is called a neutrosophic hyerring, where for all \((a, bI), (c, dI) \in R(I), (a, bI) \oplus (c, dI) = \{(x, yI): x \in a + c, y \in b + d\};\)
for all \((a, bI), (c, dI) \in R(I)\) with \(b \neq 0 \) or \(d \neq 0, (a, bI) \sqcup (c, dI) = \{(x, yI): x \in a \cdot c, y \in a \cdot d \cup b \cdot c \cup b \cdot d\}\)
and
\[
(x, 0I) \sqcup (y, 0I) = \{(u, 0I): u \in x \cdot y\}.
\]
We usually use + and \(\cdot \) instead of \(\oplus \) and \(\sqcup \).

Lemma 3.9. Let \(R(I) \) be a neutrosophic hyerring. Then, \((0, 0I) \in R(I)\) is a bilaterally absorbing element.

Proof. Suppose that \((a, bI) \in R(I)\). Then, \((a, bI). (0, 0I) = \{(u, vI): u \in a \cdot 0I, v \in a \cdot 0I \cup b \cdot 0I \cup b \cdot 0I\} = \{(u, vI): u \in 0I, v \in 0I\} = \{(0, 0I)\}.\)

Hence, \((0, 0I) \in R(I)\) is a bilaterally absorbing element.

Definition 3.10. Let \((R(I), +, \cdot)\) be a neutrosophic hyerring and let \(A[I] \) be a non-empty subset of \(R(I) \). Then, \(A[I] \) is called a neutrosophic subhyerring of \(R(I) \) if \((A[I], +, \cdot)\) is itself a neutrosophic hyerring. It is essential that \(A[I] \) must contain a proper subset which is a hyerring. Otherwise, \(A[I] \) is called a pseudo neutrosophic subhyerring of \(R(I) \).

Definition 3.11. Let \((R(I), +, \cdot)\) be a neutrosophic hyerring and let \(A[I] \) be a neutrosophic subhyerring of \(R(I) \).

1. \(A[I] \) is called a left neutrosophic hyperideal if for all \((r, sI) \in R(I), (a, bI) \in A[I], (r, sI) \cdot (a, bI) \subseteq A[I]\).
2. \(A[I] \) is called a right neutrosophic hyperideal if for all \((r, sI) \in R(I), (a, bI) \in A[I], (a, bI) \cdot (r, sI) \subseteq A[I]\).
3. \(A[I] \) is called a neutrosophic hyperideal if \(A[I] \) is both a left and right neutrosophic hyperideal.

Lemma 3.12. Let \((R(I), +, \cdot)\) be a neutrosophic hyerring and let \(A[I] \) be a non-empty subset of \(R(I) \). Then, \(A[I] \) is a neutrosophic hyperideal if and only if the following conditions hold:

1. For all \((a, bI), (c, dI) \in A[I], (a, bI) - (c, dI) \subseteq A[I];\)
2. For all \((r, sI) \in R(I), (a, bI) \in A[I], (a, bI) \cdot (r, sI) \subseteq A[I];\)
3. \(A[I] \) contains a proper subset which is a hyerring.

Lemma 3.13. Let \((R(I), +, \cdot)\) be a neutrosophic hyerring and let \(A[I] \) be a non-empty subset of \(R(I) \). Then, \(A[I] \) is a neutrosophic hyperideal if and only if the following conditions hold:

1. For all \((a, bI), (c, dI) \in A[I], (a, bI) - (c, dI) \subseteq A[I];\)
2. For all \((r, sI) \in R(I), (a, bI) \in A[I], (a, bI) \cdot (r, sI) \subseteq A[I];\)
3. \(A[I] \) does not contain a proper subset which is a hyerring.

Definition 3.14. Let \(A[I] \) and \(B[I] \) be any two neutrosophic hyperideals of a neutrosophic canonical hypergroup \(H(I) \). The sum of \(A[I] \) and \(B[I] \) denoted by \(A[I] + B[I] \) is defined as the set:

\[
A[I] + B[I] = \bigcup_{(a, bI) \in A[I]} (a, bI) \in A[I] \cup (c, dI) \in B[I].
\]

Definition 3.15. Let \(R(I) \) be a neutrosophic hyerring and let \(A[I] \) be a neutrosophic hyperideal of \(R(I) \). If \(K \) is a neutrosophic subhyperideal of \(R(I) \), then \(K \) is called a neutrosophic subhyperideal of \(R(I) \).

A.A.A. Agboola & B. Davaaz, On Neutrosophic Canonical Hypergroups and Neutrosophic Hyerrings
hyperideal (pseudo hyperideal) of \(R(I) \), the sum of \(A[I] \) and \(K \) denoted by \(A[I]+K \) is defined as the set
\[\{(x, yI) : (x, yI) \in (a, bl) + (k, 0), \quad \text{where} \quad (a, bl) \in A[I], (k, 0) \in K \}. \]

Example 4. Let \(R(I)=\{(0,0),(0,xI),(x,0),(x,xI)\} \) be a set and \(+ \) be hyperoperations on \(R(I) \) defined in the tables below.

<table>
<thead>
<tr>
<th>+</th>
<th>(0,0)</th>
<th>(0,xI)</th>
<th>(x,0)</th>
<th>(x,xI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
</tr>
<tr>
<td>(0,xI)</td>
<td>(0,0)</td>
<td>(0,xI)</td>
<td>(x,0)</td>
<td>(x,xI)</td>
</tr>
<tr>
<td>(x,0)</td>
<td>(0,0)</td>
<td>(x,0)</td>
<td>(0,0)</td>
<td>(0,xI)</td>
</tr>
<tr>
<td>(x,xI)</td>
<td>(0,xI)</td>
<td>(x,xI)</td>
<td>(x,0)</td>
<td>(x,0)</td>
</tr>
</tbody>
</table>

Table 1.

<table>
<thead>
<tr>
<th>-</th>
<th>(0,0)</th>
<th>(0,xI)</th>
<th>(x,0)</th>
<th>(x,xI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
</tr>
<tr>
<td>(0,xI)</td>
<td>(0,0)</td>
<td>(0,xI)</td>
<td>(x,0)</td>
<td>(x,xI)</td>
</tr>
<tr>
<td>(x,0)</td>
<td>(0,0)</td>
<td>(x,0)</td>
<td>(0,0)</td>
<td>(0,xI)</td>
</tr>
<tr>
<td>(x,xI)</td>
<td>(0,xI)</td>
<td>(x,xI)</td>
<td>(x,0)</td>
<td>(x,0)</td>
</tr>
</tbody>
</table>

Table 2.

It is clear from the tables that \((R(I),+^)\) is a neutrosophic canonical hypergroup and \((R(I),+,-)\) is a neutrosophic hypererring.

4 Properties of Neutrosophic Canonical Hypergroups

In this section, we present some basic properties of neutrosophic canonical hypergroups.

Proposition 4.1. Let \((H(I),+^)\) be a neutrosophic canonical hypergroup. Then,

1. \((H(I),+^)\) in general is not a canonical hypergroup.
2. \((H(I),+^)\) always contain a canonical hypergroup.

Lemma 4.2. Let \((H(I),+^)\) be a neutrosophic canonical hypergroup.

1. \(-(a, bl) = (a, bl) \) for all \((a, bl) \in H(I)\).
2. \(-(a, bl) + (c, dl) = (a, bl) - (c, dl) \) for all \((a, bl), (c, dl) \in H(I)\).

Proposition 4.3. Let \((H(I),+^)\) and \((G(I),+^)\) be any two neutrosophic canonical hypergroups. Then, \(H(I) \times G(I)\) is a neutrosophic canonical hypergroup, where
\[\{(a, bl), (c, dl) + ^\ast (e, fl), (g, hl)\} \]
\[= \{(p, qI), (x, yI) : (p, qI) \in (a, bl) + (e, fl), \]
\[(x, yI) \in (c, dl) + ^\ast (g, hl)\}, \]
for all \((a, bl), (c, dl), (e, fl), (g, hl) \in H(I) \times G(I)\).

Proposition 4.4. Let \((H(I),+^)\) be a neutrosophic canonical hypergroup and let \((K,+^)\) be a canonical hypergroup. Then, \(H(I) \times K\) is a neutrosophic canonical hypergroup, where
\[\{(a, bl), (m, 0) + ^\ast ((c, dl), (n, 0)) \}
\[= \{(x, yI), (k, 0) : (x, yI) \in (a, bl) + (c, dl), \]
\[(k, 0) \in (m, 0) + (n, 0)\}, \]
for all \((a, bl), (m, 0), (c, dl), (n, 0) \in H(I) \times K\).

Proposition 4.5. Let \(A[I]\) and \(B[I]\) be any two neutrosophic subcanonical hypergroups of a neutrosophic canonical hypergroup \(H(I)\). Then,

Proposition 4.6. Let \(H(I)\) be a neutrosophic canonical hypergroup and let \(A[I]\) and \(B[I]\) be any two neutrosophic subcanonical hypergroup and pseudo neutrosophic subcanonical hypergroup of \(H(I)\), respectively. Then,

Proposition 4.7. Let \(H(I)\) be a neutrosophic canonical hypergroup and let \(A[I]\) and \(B[I]\) be any two neutrosophic canonical hypergroup and pseudo neutrosophic subcanonical hypergroup respectively. If \(K\) is any subcanonical hypergroup of \(H\), then

Proposition 4.8. Let \((H(I),+^)\) be a neutrosophic canonical hypergroup and let \(A[I]\) be a subcanonical hypergroup of \(H\). If \(A\) is normal in \(H\), \(A[I]\) is not necessarily normal to \(H[I]\).

Proposition 4.9. Let \((H(I),+^)\) be a neutrosophic canonical hypergroup and let \(A[I]\) be a normal neutrosophic subcanonical hypergroup of \(H\). Then, \(a, ad) + A - (a, ad) \subseteq A[I]\) for all \((a, ad) \in H(I)\).

Proof. Suppose that \(A\) is normal in \(H\). Let \((h,0)\) be an arbitrary element of \(A\). Then, for all \((a, ad) \in H(I)\) with \(a \neq 0\), we have
\[(a, ad) + (h,0) - (a, ad) \]
\[= (a, ad) + \{(x, y) : x \in h - a, y \in h - a \cup 0 - a\} \]
\[= \{(u, v) : u \in a + x, v \in a + y \cup a + x, \]
\[x \in h - a, y \in h - a \cup - a\} \]
Definition 4.10. Let \((H(I),+)\) be a neutrosophic canonical hypergroup and let \(A[I]\) be a neutrosophic subcanonical hypergroup of \(H(I)\). We consider the quotient

\[
(H(I) : A[I]) = \{ (a,bl) + A[I] : (a,bl) \in H[I] \}
\]

and put \((a,bl) + A[I] = [(a,bl)]\). For all \([a,bl],[c,dl]\) \(\in (H(I) : A[I])\), we define the hyperoperation \(\oplus\) on \((H(I) : A[I])\) as

\[
[(a,bl)] \oplus [(c,dl)] = \{(e,fl) : (a,bl) + (e,fl) \in (a,bl) + (c,dl)\}.
\]

Then the couple \((H(I) : A[I]), \oplus\) is called the quotient neutrosophic canonical hypergroup. If \(A[I]\) is a pseudo neutrosophic canonical hypergroup, then we call \((H(I) : A[I]), \oplus\) a pseudo quotient neutrosophic canonical hypergroup.

Proposition 4.11. Let \(H(I)\) be a neutrosophic canonical hypergroup and \(A[I]\) be a neutrosophic subcanonical hypergroup (pseudo subcanonical subcanonical hypergroup) of \(H(I)\). Then, \((H(I) : A[I]), \oplus\) is generally not a canonical hypergroup.

Definition 4.12. Let \((H_1(I),+)\) and \((H_2(I),+)\) be two neutrosophic canonical hypergroups and let \(\phi : H_1(I) \to H_2(I)\) be a mapping from \(H_1(I)\) into \(H_2(I)\).

(1) \(\phi\) is called a homomorphism if

a. \(\phi\) is a canonical hypergroup homomorphism;

b. \(\phi(0, I) = (0, I)\).

(2) \(\phi\) is called a good or strong homomorphism if

a. \(\phi\) is a good or strong canonical hypergroup homomorphism;

b. \(\phi(0, I) = (0, I)\).

(3) \(\phi\) is called a isomorphism (strong isomorphism) if \(\phi\) is a bijective homomorphism (strong homomorphism).

Definition 4.13. Let \(\phi : H_1(I) \to H_2(I)\) be a homomorphism from a neutrosophic canonical hypergroup \(H_1(I)\) into a neutrosophic canonical hypergroup \(H_2(I)\).

(1) The kernel of \(\phi\) denoted by \(\text{Ker}\phi\) is the set \(\{(a,bl) \in H_1(I) : \phi((a,bl)) = (0, 0)\}\)

(2) The kernel of \(\phi\) denoted by \(\text{Im}\phi\) is the set \(\{\phi((a,bl)) : (a,bl) \in H_1(I)\}\).

5 Properties of Neutrosophic Hyperrings

In this section, we present some basic properties of neutrosophic hyperrings.

Proposition 5.1. Let \((R(I), +, \cdot)\) be a neutrosophic hyperring. Then,

1. \((R(I), +, \cdot)\) in general is not a hyperring.
2. \((R(I), +, \cdot)\) always contain a hyperring.

Proof. (1) It has been presented in part (1) of Proposition 4.1. that \((R(I), +, \cdot)\) is not a canonical hypergroup. Also, distributive laws are not valid in \((R(I), +, \cdot)\). Hence, \((R(I), +, \cdot)\) is not a hyperring. (2) Follows from the definition.

Proposition 5.2. Let \((R(I), +, \cdot)\) and \((S(I), +', \cdot')\) be any two neutrosophic hyperrings. Then, \((R(I) \times S(I))\) is a neutrosophic hyperring, where

\[
\{(p, ql) : (p, ql) \in (a, bl) + (e, fl), (x, yl) \in (c, dl) + (g, hl)\},
\]

and

\[
\{(p, ql) : (p, ql) \in (a, bl), (e, fl), (x, yl) \in (c, dl), (g, hl)\},
\]

for all \((a, bl), (c, dl), (e, fl), (g, hl) \in (R(I) \times S(I))\).

Proposition 5.3. Let \((R(I), +, \cdot)\) be a neutrosophic hyperring and \((K, +', \cdot')\) be a hypergroups. Then, \((R(I) \times K)\) is a neutrosophic hyperring, where

\[
\{(x, yl), (k, 0) : (x, yl) \in (a, bl) + (c, dl), (k, 0) \in (m, 0), \text{ and} (n, 0)\},
\]

and

\[
\{(x, yl), (k, 0) : (x, yl) \in (a, bl), (c, dl), (k, 0) \in (m, 0), (n, 0)\},
\]

for all \((a, bl), (c, dl), (m, 0), (n, 0) \in (R(I) \times K)\).

Lemma 5.4. Let \(A[I]\) be any neutrosophic hyperideal of a neutrosophic hyperring \(R(I)\). Then,

(2) \((a, bl) + A[I] = A[I]\) for all \((a, bl) \in A[I]\).

Proposition 5.5. Let \((R(I), +, \cdot)\) be a neutrosophic hyperring and let \(A[I]\) and \(B[I]\) be left (right) neutrosophic ideals of \(R(I)\). Then,

(1) \(A[I] \cap B[I]\) is a left (right) neutrosophic hyperideal of \(R(I)\).

(2) \(A[I] + B[I]\) is a left (right) neutrosophic hyperideal of \(R(I)\).

Proposition 5.6. Let \(R(I)\) be a neutrosophic hyperring and let \(A[I]\) and \(B[I]\) be any neutrosophic hyperideal and pseudo neutrosophic hyperideal of \(R(I)\) respectively. Then,

(1) \(A[I] + B[I]\) is a neutrosophic hyperideal of \(R(I)\).

(2) \(A[I] \cap B[I]\) is a pseudo neutrosophic hyperideal of \(R(I)\).

Proposition 5.7. Let \(R(I)\) be a neutrosophic hyperring
and let $A[I]$ and $B[I]$ be any neutrosophic hyperideal and pseudo neutrosophic hyperideal, respectively. If K is any subhyperideal of R, then

2. $B[I] + K$ is a neutrosophic hyperideal of $R(I)$.

Proposition 5.8. Let $(R(I),+,\cdot)$ be a neutrosophic hyperring and let A be a hyperideal of R. If A is normal in R, $A[I]$ is not necessarily normal in $R(I)$.

Proposition 5.9. Let $(R(I),+,\cdot)$ be a neutrosophic hyperring and let A be a normal hyperideal of R. Then, $(a,al) + A = (a,al) \subseteq A[I]$ for all $(a,al) \in R(I)$.

Definition 5.10. Let $(R(I),+,\cdot)$ be a neutrosophic hyperring and let $(A(I),+,\cdot)$ be a neutrosophic hyperideal of $R(I)$. We consider the quotient $(R(I): A[I]) = \{(a,al) + A[I]: (a,al) \in R(I)\}$ and put $(a,al)+A[I]=[(a,bl)]$.

For all $[(a,bl)], [(c,dl)] \in (R(I): A[I])$, we define the hyperoperation \boxplus as defined in the Definition 4.10 and we define the hyperoperation \boxtimes on $((R(I): A[I]) = [(a,bl)] \boxtimes [(c,dl)]) = [(e,fl)] = (e,fl) \in (a,bl).$

Then, the triple $((R(I): A[I]), \boxplus, \boxtimes)$ is called the quotient neutrosophic hyperring. If $A[I]$ is a pseudoneutrosophic hyperideal, then we call $((R(I): A[I]), \boxplus, \boxtimes)$ a pseudo neutrosophic hyperring.

Proposition 5.11. Let $R(I)$ be a neutrosophic hyperring and let $A[I]$ be a neutrosophic hyperideal (pseudo neutrosophic hyperideal) of $R(I)$. Then, $((R(I): A[I]), \boxplus, \boxtimes)$ is generally not a hyperring.

Definition 5.12. Let $(R_1(I),+)$ and $(R_2(I),+)$ be two neutrosophic hyperrings and let $\phi: R_1(I) \rightarrow R_2(I)$ be a mapping from $R_1(I)$ into $R_2(I)$.

1. ϕ is called a homomorphism if:
 a. ϕ is a hyperring homomorphism;
 b. $\phi((0,0)) = (0,0)$.
2. ϕ is called a good or strong homomorphism if:
 a. ϕ is a good or strong hyperring homomorphism;
 b. $\phi((0,0)) = (0,0)$.
3. ϕ is called an isomorphism or strong isomorphism if ϕ is a bijective homomorphism (strong homomorphism).

Definition 5.13. Let $\phi: R_1(I) \rightarrow R_2(I)$ be a homomorphism from a neutrosophic hyperring $R_1(I)$ into a neutrosophic hyperring $R_2(I)$.

1. The kernel of ϕ denoted by Kerϕ is the set $\{(a,bl) \in R_1(I): \phi((a,bl)) = (0,0)\}$.
2. The kernel of ϕ denoted by $\text{Im}\phi$ is the set $\{\phi((a,bl)) : (a,bl) \in R_1(I)\}$.

Proposition 5.14. Let $\phi: R_1(I) \rightarrow R_2(I)$ be a homomorphism from a neutrosophic hyperring $R_1(I)$ into a neutrosophic hyperring $R_2(I)$. Then,

1. Kerϕ is a subhyperideal of R_1 and never be a neutrosophic hyperring (neutrosophic hyperideal) of $R_2(I)$.
2. Imϕ is a neutrosophic subhyperideal of $R_2(I)$.

Question 1: Does there exist:

1. A neutrosophic canonical hypergroup with normal neutrosophic subcanonical hypergroups?
2. A neutrosophic hyperring with normal neutrosophic hyperideals?
3. A simple neutrosophic canonical hypergroup?
4. A simple neutrosophic hyperring?

6 Conclusion

In this paper, we have introduced and studied neutrosophic canonical hypergroups and neutrosophic hyperrings. We presented elementary properties of neutrosophic canonical hypergroups and neutrosophic hyperrings. Also, we studied quotient neutrosophic canonical hypergroups and quotient neutrosophic hyperrings.

References

On Neutrosophic Canonical Hypergroups and Neutrosophic Hyperrings

Received: February 3rd, 2014. Accepted: February 27th, 2014.