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Abstract. In this paper, we defined the basic idea of the single-valued neutrosophic upper (αn)δ, single-valued neutro-

sophic lower (αn)δ and single-valued neutrosophic boundary sets (αn)B of a rough single-valued neutrosophic set αn

in a single-valued neutrosophic approximation space (F̃ , δ). Based on αn and δ, we introduced the single-valued neu-

trosophic ideal approximation interior operator intδαn
and the single-valued neutrosophic ideal approximation closure

operator Clδαn
. We joined the single-valued neutrosophic ideal notion with the single-valued neutrosophic approxi-

mation spaces and then introduced the single-valued neutrosophic ideal approximation closure and interior operators

associated with a rough single-valued neutrosophic set αn. single-valued neutrosophic ideal approximation connect-

edness and the single-valued neutrosophic ideal approximation continuity between single-valued neutrosophic ideal

approximation spaces are introduced. The concepts of single-valued neutrosophic groups and their approximations

have also been applied in the development of fuzzy systems, enhancing their ability to model and reason using uncertain

and imprecise information.

1. Introduction

Sometimes, it is not convenient to apply practical problems to real-life applications. Data

in medical sciences, economics, weather, climate changes, etc always involve various types of

uncertainties. Moreover, fuzzy systems have been extensively studied and applied in various

Received: Dec. 1, 2023.

2020 Mathematics Subject Classification. 94D05.
Key words and phrases. Single-valued neutrosophic rough set; single-valued neutrosophic ideal; single-valued neu-

trosophic ideal approximation space; single-valued neutrosophic ideal continuity; single-valued neutrosophic ideal

connectedness.

https://doi.org/10.28924/2291-8639-22-2024-26
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-26


Int. J. Anal. Appl. (2024), 22:26 27

domains due to their ability to handle uncertainty and imprecision. Fuzzy sets and fuzzy logic,

provide a flexible framework for modeling and reasoning with vague and uncertain information.

Fuzzy systems have found applications in areas such as control systems, decision support systems,

and pattern recognition. The integration of neutrosophic set theory with fuzzy systems offers an

intriguing avenue for further exploration. By incorporating the three membership functions of

truth, indeterminacy, and falsity, neutrosophic sets can provide an enhanced representation of

uncertainty. The combination of neutrosophic sets and fuzzy systems has the potential to improve

the modeling and decision-making capabilities by capturing and managing a wider range of

uncertainties that arise in real-world applications.

The notion of rough sets was given by Pawlak [1] referring to the uncertainty of intelligent

systems characterized by insufficient and incomplete information. Rough sets are defined de-

pending on some equivalence relation δ on a universal finite set F̃ . The pair (F̃ , δ) was called

an approximation space based on an equivalence relation imposed on F̃ . In any approximation

space, the notions of lower approximation, upper approximation, and boundary region operators

of some subset could be induced. Many types of generalizations of Pawlak’s rough set have been

obtained by replacing equivalence relation with an arbitrary binary relation. On the other hand,

the relationships between rough sets and topological spaces were studied in [2]. A lot of fuzzy

generalizations of rough approximation have been proposed in the literature [3–7]. Irfan in [8]

studied the connections between fuzzy set, rough set, and soft set ( [9]) notions. Many papers

studied the relationship between fuzzy rough set notions and fuzzy topologies [10, 11]. Recently,

many researchers have used topological approaches in the study of rough sets and their applica-

tions. In [12], it was used the notion of ideal in soft rough ordinary topological space, and in [13],

the authors introduced fuzzy soft connectedness in the sense of Chang [14].

To exceed the difficulties in using the traditional classical methods the word neutrosophy is un-

derstood to be a tool for handling problems involving incomplete, indeterminate and inconsistent

information and the theory was initiated by Smarandache [15] as a generalization of fuzzy sets and

intuitionistic fuzzy sets. He defined the neutrosophic sets to be characterized by three membership

functions independently: truth, indeterminacy and falsity. For this reason, the neutrosophic set

theory becomes an attractive field for scientists and researchers who like to develop their concerns

and match up their works in this scope, such as Wang et al [16] who formed the single-valued

neutrosophic sets, Yang et al., and Qiu at al., [17,18] who proposed the single-valued neutrosophic

relations and single-Valued neutrosophic rough sets, and also Saber et al. [19–30] who famil-

iarized the concepts of single-valued neutrosophic ideal open local function and single-valued

neutrosophic topological space.

The incentive of this paper is to present a new better single-valued neutrosophic lower and

single-valued neutrosophic upper sets through which we get a more consistent single-valued neu-

trosophic boundary region set off a single-valued neutrosophic set αn. From these single-valued

neutrosophic lower and single-valued neutrosophic upper sets, we introduced concepts of new
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single-valued neutrosophic interior and single-valued neutrosophic closure operators related to a

specific single-valued neutrosophic set αn ∈ ζF̃ . and that single-valued neutrosophic relation δ

on F̃ . In the single-valued neutrosophic approximation space (F̃ , δ), based on this single-valued

neutrosophic interior and single-valued neutrosophic closure operators, we defined fuzzy approxi-

mation connectedness. Defining a single-valued neutrosophic ideal on F̃ generates a single-valued

neutrosophic ideal approximation space in which a single-valued neutrosophic local function was

defined and many results are proved. Connectedness in single-valued neutrosophic ideal approx-

imation spaces (F̃ , δ, h̄) is defined and related with connectedness in single-valued neutrosophic

approximation spaces. Also, single-valued neutrosophic ideal approximation continuity among

two single-valued neutrosophic ideal approximation spaces were discussed.

In this study, F̃ denotes to an initial universe, ξF̃ is the collection of all single valued neutrosophic

sets (simply, SVNS) on F̃ (where, ξ = [0, 1], ξ0 = (0, 1] and ξ1 = [0, 1))

2. Preliminaries

Definition 2.1. Let F̃ be a finite set, with a generic element in F̃ indicated by υ. A SVNS [4] is defined
as:

αn = {〈υ, %̃αn(υ), σ̃σn(υ), ς̃αn(υ)〉 : υ ∈ F̃ }

where %̃αn : F̃ → ξ (%̃αn called membership function), σ̃αn : F̃ → ξ ( σ̃αn called nonmembership function)
and ς̃αn : F̃ → ξ ( ς̃αn called nonmembership function) of υ to αn with

0 ≤ %̃αn(υ) + σ̃αn(υ) + ς̃αn(υ) ≤ 3

All characterizations and concepts of SVNS originate in found [19] and [17].

Definition 2.2. For any ω ∈ F̃ , define a single valued neutrosophic coset (sample, SVN − coset) [ω] :

F̃ → [0, 1] as:

σ̃[ω](ν) = σ̃δ(ω, ν), ς̃[ω](ν) = ζ̃δ(ω, ν) %̃[ω](ν) = σ̃δ(ω, ν), ∀ν ∈ F̃ , (2.1)

All elements ν ∈ F̃ with SVNS value σ̃δ(ω, ν) ≤ 1, s̃δ(ω, ν) ≤ 1, %̃δ(ω, ν) > 0 are elements having
a membership value in the SVN − coset [ω], and any element ν ∈ F̃ with σ̃δ(ω,ω) = 0, ς̃δ(ω,ω) =

0, %̃δ(ω,ω) = 1 is not included in the SVN − coset [ω]. Any SVN − coset [ω] surely include the element
ω ∈ F̃ , and consequently

σ̃∧
µ∈F̃

([ω](µ)) = 0, ς̃∧
µ∈F̃

([ω](µ)) = 0, ∀ω ∈ F̃ , %̃∨
µ∈F̃

([ω](µ)) = 1.

σ̃∧
µ∈F̃

([ω](ν)) = 0, ς̃∧
µ∈F̃

([ω](ν)) = 0, ∀ν ∈ F̃ , %̃∨
µ∈F̃

([ω](ν)) = 1,

such that
∨
ν∈F̃ ([ν]) = 〈0, 1, 1〉.

Definition 2.3. Let us define the single-valued neutrosophic difference between two SVNSs as next:

%̃αn∧%̃εn(ω) =

 0, if %̃αn(ω) ≤ %̃εn(ω),

%̃αn ∧ %̃(εn)c(ω), otherwise.
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σ̃αn∨σ̃εn(ω) =

 1, if σ̃αn(ω) ≥ σ̃εn(ω),

σ̃αn ∨ σ̃(εn)c(ω), otherwise.
(2.2)

ς̃αn∨ς̃εn(ω) =

 1, if ς̃αn(ω) ≥ ς̃εn(ω),

ς̃αn ∨ ς̃(εn)c(ω), otherwise.

3. Single-Valued Neutrosophic Ideal Approximation Spaces

Definition 3.1. A nonempty collection of SVNSs h̄ of a set F̃ is called single valued neutrosophic ideal [8]
(briefly, SVNI) on F̃ if it satisfies the following:

1. 〈0, 1, 1〉 ∈ h̄,
2. If %̃αn(ω) ≤ %̃εn(v), σ̃αn(ω) ≥ σ̃εn(ω), ζ̃αn(ω) ≥ ς̃εn(ω) and αn ∈ h̄, then, εn ∈ h̄,∀ω ∈ F̃ and
αn, εn ∈ ζF̃

3. If αn, εn ∈ h̄, then 〈(%̃αn ∨ %̃εn)(ω), (σ̃αn ∧ σ̃εn)(ω)(ζ̃αn ∧ ς̃εn)(ω)〉 ∈ h̄, ∀ ω ∈ F̃ and αn, εn ∈ ζF̃ .

If h̄1 and h̄2 are SVNIs on F̃ , we obtain h̄1 is finer than h̄1 [h̄2 is coarser than h̄1] if h̄1 ⊇ h̄2. The triple
(F̃ , δ, h̄) is said to be a single-valued neutrosophic ideal approximation space (briefly, SVNIAS). Denote the
trivial SVNI h̄◦ as a SVNI including only 〈0, 1, 1〉.

Definition 3.2. Let (F̃ , δ, h̄) be a SVNIAS and αn ∈ ζF̃ . Then, the single valued neutrosophic local set
[εn]

?
αn
(δ, h̄) of a set εn ∈ ζF̃ is defined by:

[εn]?αn
(δ, h̄) =

∧
{πn ∈ ζ

F̃ : εn∧πn = 〈%̃εn∧%̃πn(ω), σ̃σn∨σ̃πn(ω),

ς̃εn∨ς̃πn(ω)〉 ∈ h̄, Clαn
δ
(πn) = πn}

Briefly, we will write [εn]
?
αn

or [εn]
?
αn
(h̄) instead of [εn]

?
αn
(δ, h̄).

Corollary 3.1. Let (F̃ , δ, h̄) be a SVNIAS and αn ∈ ζF̃ , where h̄� is the trivial single valued neutrosophic
ideal on F̃ . Then, for each εn ∈ ζF̃ , we have [εn]

?
αn

= Clαn
δ
(εn).

Proof. Since, h̄� = 〈0, 1, 1〉, we obtain

[εn]
?
αn
(δ, h̄) =

∧
{πn ∈ ζ

F̃ : εn∧πn = 〈%̃εn∧%̃πn(ω), σ̃σn∨σ̃πn(ω), ς̃εn∨ς̃πn(ω)〉 =
〈
0, 1, 1〉, Clαn

δ
(πn) = πn

}
this implies

[εn]
?
αn
(δ, h̄) =

∧
{πn ∈ ζ

F̃ : %̃εn(ω) ≤ %̃πn(ω), σ̃εn(ω) ≥ σ̃πn(ω)ζ̃εn(ω) ≥ ζ̃πn(ω), Clαn
δ
(πn) = πn

}
.

Since εn ≤ Clαn
δ
(εn) , Clαn

δ

(
Clαn
δ
(εn)

)
= Clαn

δ
(εn), then [εn]

?
αn
≤ Clαn

δ
(εn). Let Clαn

δ
(εn) � [εn]

?
αn

, then

there exists πn ∈ ζF̃ , %̃εn(ω) ≤ %̃πn(ω), σ̃εn(ω) ≥ σ̃πn(ω), ζ̃nn(ω) ≥ ς̃πn(ω), Clαn
δ
(πn) = πn, so that

Clαn
δ
(εn) > πn But %̃εn(ω) ≤ %̃πn(ω), σ̃εn(ω) ≥ σ̃πn(ω), ζ̃εn(ω) ≥ ζ̃πn(ω) implies that (εn)

δ
≤ (πn)

δ

and then

Clαn
δ
(εn) = [(αn)δ]

c
∨ [εn]

δ
≤ [(αn)δ]

c
∨ [πn]

δ = Clαn
δ
(πn) = πn.

Contradiction, and then [εn]
?
αn

= Clαn
δ
(εn). �
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δ ω1 ω2 ω3 ω4 ω5

ω1 (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
ω2 (0, 1, 1) (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1)
ω3 (0, 1, 1) (0, 1, 1) (1, 0, 0) (0, 1, 1) (0, 1, 1)
ω4 (0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0) (0.2, 0.2, 0.2)
ω5 (0, 1, 1) (0, 1, 1) (0, 1, 1) (0.2, 0.2, 0.2) (1, 0, 0)

Table 1. SVNRof δ

Example 3.1. This is an example that shows that [εn]
?
αn
≤ Clαn

δ
(εn).

Let δ be SVNR on a set F̃ = {ω1,ω2,ω3,ω4,ω5} as shown down.
Assume that αn = 〈(1, 0, 0), (1, 0, 0), (1, 0, 0), (0.1, 0.1, 0.1), (0.2, 0.2, 0.2)〉. Then,

%̃(αn)δ(ω1) = %̃αn(ω1)∧
∨

αn(µ)>0,µ,ω1

%̃[ω](µ) = 0,

σ̃(αn)δ(ω1) = σ̃αn(ω1)∨
∧

αn(µ)>0,µ,ω1

(σ̃[ω])(µ) = 1,

ς̃(αn)δ(ω1) = %̃αn(ω1)∨
∧

αn(µ)>0,µ,ω1

ς̃[ω](µ) = 1,

Hence, (αn)δ(ω1) = (0, 1, 1). Similarly, we can obtain (αn)δ(ω2) = (0, 1, 1) and (αn)δ(ω3) = (0, 1, 1).
Also,

%̃(αn)δ(ω4) = %̃αn(ω4)∧
∨

αn(µ)>0,µ,ω4

%̃[ω](µ) = 0.1,

σ̃(αn)δ(ω4) = σ̃αn(ω4)∨
∧

αn(µ)>0,µ,ω4

(σ̃[ω])(µ) = 0.2,

ς̃(αn)δ(ω4) = %̃αn(ω4)∨
∧

αn(µ)>0,µ,ω4

ς̃[ω](µ) = 0.2,

Hence, (αn)δ(ω4) = (0.1, 0.2, 0.2), and

%̃(αn)δ(ω5) = %̃αn(ω5)∧
∨

αn(µ)>0,µ,ω4

%̃[ω](µ) = 0.2,

σ̃(αn)δ(ω5) = σ̃αn(ω5)∨
∧

αn(µ)>0,µ,ω4

(σ̃[ω])(µ) = 0.2,

ς̃(αn)δ(ω5) = %̃αn(ω5)∨
∧

αn(µ)>0,µ,ω4

ς̃[ω](µ) = 0.2,

Thus (αn)δ(ω5) = (0.2, 0.2, 0.2) and than,

(αn)
δ = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.1, 0.2, 0.2), (0.2, 0.2, 0.2)〉,
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(αn)δ = 〈(1, 0, 0), (1, 0, 0), (1, 0, 0), (0.2, 0.1, 0.1), (0.2, 0.2, 0.2)〉,

[(αn)δ]
c = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.1, 0.9, 0.2), (0.2, 0.8, 0.2)〉.

Let, εn = 〈(0.3, 0.3, 0.3), (0, 1, 1), (0, 1, 1), (0, 0.8, 0.2), (0, 0.8, 0.2)
〉
, then

(εn)δ = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0, 0.8, 0.2), (0, 0.8, 0.2)〉 and thus

Clαn
δ
(εn) = [(αn)δ]

c
∨ (εn)

δ = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.1, 0.8, 0.2), (0.2, 0.8, 0.2)〉.

Assume that a SVNI is defined on F̃ as follows

h̄ = {πn ∈ ζ
F̃ : πn ≤ 〈(0.5, 0.3, 0.3), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)〉}

Note that every πn ∈ ζF̃ , we have Clαn
δ
(πn) ≥ 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.1, 0.9, 0.2), (0.2, 0.8, 0.2)〉,

and recall that if εn ∈ h̄, then [εn]
?
αn

= 〈0, 1, 1〉 [By equations 2.1., εn∧〈0, 1, 1〉 = εn ∈ h̄, Clαn
δ
(〈0, 1, 1〉) =

〈0, 1, 1〉] and if Clαn
δ
(εn) = εn and εn < h̄, then [εn]

?
αn

= εn.
Now, we get that ∀ πn =

〈
ρ, (0, 1, 1), (0, 1, 1), (0.1, 0.9, 0.2), (0.2, 0.8, 0.2)

〉
for all ρ ∈ I, we get

Clαn
δ
(πn) = πn,

Form equations 2.1, we have εn∧πn ∈ h̄, and thus

[εn]
?
αn

= 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.1, 0.9, 0.2), (0.2, 0.8, 0.2)〉 � Clαn
δ
(εn) .

Hence, [εn]
?
αn
≤ Clαn

δ
(εn).

Proposition 3.1. Let (F̃ , δ, h̄) be a SVNIAS and αn ∈ ζF̃ . Then,

1. εn ≤ υn implies [εn]
?
αn
≤ [υn]

?
αn

.
2. If h̄1, h̄2 are SVNIs ideals on F̃ and h̄1 ⊆ h̄2, then [εn]

?
αn
(h̄1) ≥ [εn]

?
αn
(h̄2).

3. intαn
δ

(
[εn]

?
αn

)
≤ [εn]

?
αn

= Clαn
δ

(
[εn]

?
αn

)
≤ Clαn

δ
(εn).

4. ([εn]
?
αn
)?αn
≤ Clαn

δ

(
[εn]

?
αn

)
.

5. [εn]
?
αn
∨ [υn]

?
αn
≤ [εn ∨ υn]?αn

and [εn]
?
αn
∧ [υn]

?
αn
≥ [εn ∧ υn]?αn

.

Proof. Suppose that [εn]
?
αn
� [υn]

?
αn

, then there exists ηn ∈ ζF̃ with Clαn
δ
(ηn) = ηn and υn∧ηn =〈

%̃υn∧%̃ηn(ω), σ̃υn∨σ̃ηn(ω), ς̃υn∨ς̃ηn(ω)
〉
∈ h̄ such that

%̃[εn]
?
αn
(ω) > %̃ηn(ω) ≥ %̃[υn]

?
αn
(ω),

σ̃[εn]
?
αn
(ω) < σ̃ηn(ω) ≤ σ̃[υn]

?
αn
(ω), (3.1)

ς̃[εn]
?
αn
(ω) < ς̃ηn(ω) ≤ ς̃[υn]

?
αn
(ω).

Since εn ≤ υn, then %̃εn∧%̃ηn(ω) ≤ %̃υn∧%̃ηn(ω), σ̃εn∨σ̃ηn(ω) ≥ σ̃υn∨σ̃ηn(ω), ς̃εn∨ς̃ηn(ω) ≥ ς̃υn∨ς̃ηn(ω)

and
〈
%̃εn∧%̃ηn(ω), σ̃εn∨σ̃ηn(ω), ς̃εn∨ς̃ηn(ω)

〉
∈ h̄ with Clαn

δ
(ηn) = ηn. Thus,

%̃[εn]
?
αn
(ω) ≤ %̃[ηn](ω), σ̃[εn]

?
αn
(ω) ≥ σ̃[ηn](ω), ς̃[εn]

?
αn
(ω) ≥ ς̃[ηn](ω),
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which is a contradiction for equation (3) and hence [εn]
?
αn
≤ [υn]

?
αn

.

(2): Suppose that [εn]
?
αn
(h̄1) � [εn]

?
αn
(h̄2), then there exists ηn ∈ ζF̃ with Clαn

δ
(ηn) = ηn and

υn∧ηn =
〈
%̃υn∧%̃ηn(ω), σ̃υn∨σ̃ηn(ω), ς̃υn∨ς̃ηn(ω)

〉
∈ h̄1 such that

%̃[εn]
?
αn (h̄1)

(ω) ≤ %̃ηn(ω) < %̃[εn]
?
αn (h̄2)

(ω),

σ̃[εn]
?
αn (h̄1)

(ω) ≥ σ̃ηn(ω) > σ̃[εn]
?
αn (h̄2)

(ω) (3.2)

ς̃[εn]
?
αn (h̄1)

(ω) ≥ ς̃ηn(ω) > ς̃[εn]
?
αn (h̄2)

(ω)

Since h̄1 ⊆ h̄2, then
〈
%̃εn∧%̃ηn(ω), σ̃εn∨σ̃ηn(ω), ς̃εn∨ς̃ηn(ω)

〉
∈ h̄2 and Clαn

δ
(ηn) = ηn. Thus,

%̃[εn]
?
αn (h̄2)

(ω) ≤ %̃[ηn](ω), σ̃[εn]
?
αn (h̄2)

(ω) ≥ σ̃[ηn](ω), ς̃[εn]
?
αn (h̄2)

(ω) ≥ ς̃[ηn](ω),

it is a contradiction for equation (4). Hence [εn]
?
αn
(h̄1) ≥ [εn]

?
αn
(h̄2).

(3): intαn
δ

(
[εn]

?
αn

)
≤ [εn]

?
αn
≤ Clαn

δ

(
[εn]

?
αn

)
direct. Since,

[εn]
?
αn
≤ Clαn

δ
(εn),

then Clαn
δ

(
[εn]

?
αn

)
≤ Clαn

δ
(εn).

(4): Since [εn]
?
αn
≤ Clαn

δ
(εn), then

[
[εn]

?
αn

]?
αn
≤ Clαn

δ
([εn]

?
αn
).

(5): From (1), we have εn ≤ υn =⇒ [εn]
?
αn
≤ [υn]

?
αn

, and so (5) is satisfied. �

Definition 3.3. Let (F̃ , δ, h̄) be a SVNIAS and αn ∈ ζF̃ . Then,

(Clαn
δ
)?αn

(εn) = Clαn
δ
(εn)∨ ((αn)

δ)?αn
∀ε ∈ ζF̃ . (3.3)

(intαn
δ
)?αn

(εn) = intαn
δ
(εn)∧ (((αn)

δ)?αn
)c
∀ε ∈ ζF̃ . (3.4)

(Clαn
δ
)?αn

and (intαn
δ
)?αn

are single valued neutrosophic operators from ζF̃ into ζF̃ based on a specific SVNS
αn and SVNI h̄ in the SVNAS (F̃ , δ).

Now, if h̄ = h̄�, then

(Clαn
δ
)?αn

(εn) = Clαn
δ
(εn ∨ αn) ≥ Clαn

δ
(εn) = Clαn

δ
((εn)

?
αn
) = (εn)

?
αn

and

(intαn
δ
)?αn

(εn) = intαn
δ
(εn ∨ (αn)

c) ≥ intαn
δ
(εn) = intαn

δ
((((εn)

c)?αn
)c) = (((εn)

c)?αn
)c.

Proposition 3.2. Let (F̃ , δ, h̄) be a SVNIAS with αn ∈ ζF̃ fixed. Then, for any εn, υ ∈ ζF̃ , we have:

1. (intαn
δ
)?αn

(εn) ≤ intαn
δ
(εn) ≤ εn ≤ Clαn

δ
(εn) ≤ (Clαn

δ
)?αn

(εn).

2. (Clαn
δ
)?αn

(
(εn)

c
)
=

(
(intαn

δ
)?αn

(εn)
)c

and (intαn
δ
)?αn

(
(εn)

c
)
=

(
(Clαn

δ
)?αn

(εn)
)c

.
3. (Clαn

δ
)?αn

(εn ∨πn) = (Clαn
δ
)?αn

(εn) ∨ (Clαn
δ
)?αn

(πn) and (intαn
δ
)?αn

(εn ∧πn) = (intαn
δ
)?αn

(εn) ∧

(intαn
δ
)?αn

(πn).
4. (Clαn

δ
)?αn

(εn ∧πn) = (Clαn
δ
)?αn

(εn) ∧ (Clαn
δ
)?αn

(πn) and (intαn
δ
)?αn

(εn ∨πn) = (intαn
δ
)?αn

(εn) ∨

(intαn
δ
)?αn

(πn).
5. (Clαn

δ
)?αn

((Clαn
δ
)?αn

(εn)) ≥ (Clαn
δ
)?αn

(εn) and (intαn
δ
)?αn

((intαn
δ
)?αn

(εn)) ≤ (intαn
δ
)?αn

(εn).
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6. If εn ≤ πn, then (Clαn
δ
)?αn

(εn) ≤ (Clαn
δ
)?αn

(πn) and (intαn
δ
)?αn

(εn) ≤ (intαn
δ
)?αn

(πn).

Proof. (1): From equations 3.3 and 3.4, we get the proof.

(2): From the Definition 3.3, we get that[(
intαn

δ

)?
αn
(εn)

]c
=

[(
intαn

δ

)
(εn)∧

((
(αn)

δ
)?
αn

)c]c

=
[
intαn

δ
(εn)

]c
∨

(
(αn)

δ
)?
αn

= Clαn
δ

(
(εn)

c
)
∨

(
(αn)

δ
)?
αn

=
(
Clαn
δ

)?
αn
((εn)

c).

By the same way, it can be shown that (intαn
δ
)?αn

(
(εn)

c
)
=

(
(Clαn

δ
)?αn

(εn)
)c

.

(3)-(5): from the Definition (intαn
δ
)?αn

and (Clαn
δ
)?αn

, we get the proof.

(6): From the Definition (intαn
δ
)?αn

and (Clαn
δ
)?αn

, we get εn ≤ πn ⇒ Clαn
δ
(εn) ≤ Clαn

δ
(πn) ,∀εn,πn ∈

ζF̃ , and then
(
Clαn
δ

)?
αn
(εn) ≤

(
Clαn
δ

)?
αn
(πn). Similarly,

(
intαn

δ

)?
αn
(εn) ≤

(
intαn

δ

)?
αn
(πn). �

4. Connectedness in Single Valued Neutrosophic Ideal Approximation Spaces

We begin this section by defining the notion of connectedness in single valued neutrosophic

ideal approximation spaces. Some of its characteristic properties are considered.

Definition 4.1. Let (F̃ , δ) be a SVNAS and αn ∈ ζF̃ . Then,

1. The SVNSs εn, υn ∈ ζF̃ are called single valued neutrosophic approximation separated (briefly,
SVNA-separated) if

Clαn
δ
(εn)∧ υn = εn ∧Clαn

δ
(υn) = 〈0, 1, 1〉 .

2. A SVNS πn ∈ ζF̃ is called single valued neutrosophic approximation disconnected set (briefly,
SVNA-disconnected) if there exist SVNA-separated sets εn, υn ∈ ζF̃ , such that εn ∨ υn = πn. A
SVNS πn is called single valued neutrosophic approximation connected (briefly, SVNA-connected)
if it is not SVNA-disconnected.

3. (F̃ , δ) is called single valued neutrosophic approximation disconnected space (briefly, SVNA-
disconnected space) if there exist SVNA-separated sets εn, υn ∈ ζF̃ , such that εn ∨ υn = 〈1, 0, 0〉.
A SVNAS (F̃ , δ) is called SVNA-connected if it is not SVNA-disconnected

Definition 4.2. Let (F̃ , δ, h̄) be a SVNIAS and αn ∈ ζF̃ . Then,

1. The SVNSs εn, υn ∈ ζF̃ are called single valued neutrosophic ideal approximation separated (briefly,
SVNIA-separated) if(

Clαn
δ

)?
αn
(εn)∧ υn = εn ∧

(
Clαn
δ

)?
αn
(υn) = 〈0, 1, 1〉 .

2. A SVNS πn ∈ ζF̃ is called single valued neutrosophic ideal approximation disconnected set
(briefly, SVNIA-disconnected) if there exist SVNIA-separated sets εn, υn ∈ ζF̃ , such that
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εn ∨ υn = πn. A SVNS πn is called single valued neutrosophic ideal approximation connected
(briefly, SVNIA-connected) if it is not SVNIA-disconnected.

3. (F̃ , δ, h̄) is called single valued neutrosophic ideal approximation disconnected space (briefly,
SVNIA-disconnected space) if there exist SVNIA-separated sets εn, υn ∈ ζF̃ , such that εn ∨ υn =

〈1, 0, 0〉. A SVNIAS (F̃ , δ, h̄) is called SVNIA-connected if it is not SVNIA-disconnected.

Remark 4.1. Any two SVNIA-separated sets εn, υn ∈ ζF̃ are SVNA-separated as well (from that
Clαn
δ
(πn) ≤

(
Clαn
δ

)?
αn
(εn) ∀ πn ∈ ζF̃ ). That is, neutrosophic ideal approximation disconnectedness implies

single-valued neutrosophic approximation disconnectedness and thus, single-valued neutrosophic approxi-
mation connectedness implies single-valued neutrosophic ideal approximation connectedness.

Example 4.1. This is an example that shows that [εn]
?
αn
≤ Clαn

δ
(εn).

Let δ be SVNR on a set F̃ = {ω1,ω2,ω3,ω4,ω5} as shown down.

δ ω1 ω2 ω3 ω4 ω5

ω1 (1, 0, 0) (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1)
ω2 (1, 0, 0) (1, 0, 0) (1, 0, 0) (0, 1, 1) (0, 1, 1)
ω3 (0, 1, 1) (1, 0, 0) (1, 0, 0) (0, 1, 1) (0, 1, 1)
ω4 (0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0) (1, 0, 0)
ω5 (0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0) (1, 0, 0)

Table 2. SVNRof δ

Assume that αn = 〈(0, 1, 1), (0, 1, 1), (0.2, 0.2, 0.2), (1, 0, 0), (1, 0, 0)〉. Then,

%̃(αn)δ(ω1) = %̃αn(ω1)∧
∨

αn(µ)>0,µ,ω1

%̃[ω](µ) = 0,

σ̃(αn)δ(ω1) = σ̃αn(ω1)∨
∧

αn(µ)>0,µ,ω1

(σ̃[ω])(µ) = 1,

ς̃(αn)δ(ω1) = %̃αn(ω1)∨
∧

αn(µ)>0,µ,ω1

ς̃[ω](µ) = 1,

Hence, (αn)δ(ω1) = (0, 1, 1). Similarly, we can obtain (αn)δ(ω2) = (0, 1, 1) and

%̃(αn)δ(ω3) = %̃αn(ω3)∧
∨

αn(µ)>0,µ,ω3

%̃[ω](µ) = 0.2,

σ̃(αn)δ(ω3) = σ̃αn(ω3)∨
∧

αn(µ)>0,µ,ω3

(σ̃[ω])(µ) = 0.2,

ς̃(αn)δ(ω3) = %̃αn(ω3)∨
∧

αn(µ)>0,µ,ω3

ς̃[ω](µ) = 0.2,
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Hence, (αn)δ(ω3) = (0.2, 0.2, 0.2) and

%̃(αn)δ(ω4) = %̃αn(ω4)∧
∨

αn(µ)>0,µ,ω4

%̃[ω](µ) = 1,

σ̃(αn)δ(ω4) = σ̃αn(ω4)∨
∧

αn(µ)>0,µ,ω4

(σ̃[ω])(µ) = 0,

ς̃(αn)δ(ω4) = %̃αn(ω4)∨
∧

αn(µ)>0,µ,ω4

ς̃[ω](µ) = 0,

Hence, (αn)δ(ω4) = (1, 0, 0). Similarly, (αn)δ(ω5) = (1, 0, 0). Thus, by equations (3) and (4) we get than

(αn)
δ = 〈(0, 1, 1), (0, 1, 1), (0.2, 0.2, 0.2), (1, 0, 0), (1, 0, 0)〉 = (αn)δ,

[(αn)δ]
c = 〈(1, 0, 0), (1, 0, 0), (0.2, 0.8, 0.2), (0, 1, 1), (0, 1, 1)〉.

Suppose that

εn = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.6, 0.6, 0.6), (0, 1, 1)〉,

υn = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0, 1, 1), (0.6, 06, 0.6)〉,

then

(εn)
δ = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.6, 0.6, 0.6), (0, 1, 1)〉,

(υn)
δ = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0, 1, 1), (0.6, 06, 0.6)〉,

and thus from Definitions Clαn
δ

, intαn
δ

in [14], we get than

Clαn
δ
(εn) = [(αn)δ]

c
∨ [εn]

δ = 〈(1, 0, 0), (1, 0, 0), (0.2, 08, 0.2), (0.6, 0.6, 0.6), (0, 1, 1)〉

, and also, Clαn
δ
(υn) = [(αn)δ]

c
∨ [υn]δ = 〈(1, 0, 0), (1, 0, 0), (0.2, 08, 0.2), (0, 1, 1), (0.6, 0.6, 0.6)〉, which

means that

Clαn
δ
(εn)∧ υn = εn ∧Clαn

δ
(υn) = 〈0, 1, 1〉 .

Thus, εn, υn are SVNA-separated sets, and moreover the SVNS

(εn ∨ υn) = 〈(1, 0, 0), (1, 0, 0), (0, 1, 1), (0.6, 0.6, 0.6), (0.6, 0.6, 0.6)〉

is SVNA-disconnected set.
Now, suppose

h̄ = {ηn ∈ ζ
F̃ : ηn ≤ 〈(0.7, 0.7, 0.7), (0.7, 0.7, 0.7), (0.7, 0.7, 0.7), (0.7, 0.7, 0.7), (0.7, 0.7, 0.7)〉}.

Then

((αn)
δ)?δ = 〈(1, 0, 0), (1, 0, 0), (0.2, 0.2, 0.2), (0.3, 0.3, 0.3), (0.3, 0.3, 0.3)〉.

Hence, (
Clαn
δ

)?
αn
(εn) = 〈(1, 0, 0), (1, 0, 0), (0.2, 0.2, 0.2), (0.6, 0.3, 0.3), (0.3, 0.3, 0.3)〉,
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which means that

(Clαn
δ
)?αn

(εn)∧ υn = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0, 1, 1), (0.3, 06, 0.6)〉 , 〈0, 1, 1〉.

Hence, not every SVNA-separated sets are SVNIA-separated sets, and moreover, the SVNS set (εn ∨ υn)

will be SVNIA-connected set whenever h̄ , ζF̃ and h̄ , 〈0, 1, 1〉, that is, whenever h̄ is a proper SVNI on
F̃ .

Theorem 4.1. Let (F̃ , δ, h̄) be a SVNIAS and αn ∈ ζF̃ . Then, the following are equivalent.

1. (F̃ , δ, h̄) is SVNIA-connected.
2. εn ∧ υn = 〈0, 1, 1〉,

(
intαn

δ

)?
αn
(εn) = εn,

(
intαn

δ

)?
αn
(υn) = υn and εn ∨ υn = 〈1, 0, 0〉 imply εn =

〈0, 1, 1〉 or υn = 〈0, 1, 1〉.
3. εn ∧ υn = 〈0, 1, 1〉,

(
Clαn
δ

)?
αn
(εn) = εn,

(
Clαn
δ

)?
αn
(υn) = υn and εn ∨ υn = 〈1, 0, 0〉 imply εn =

〈0, 1, 1〉 or υn = 〈0, 1, 1〉.

Proof. (1) ⇒ (2) : Let εn, υn ∈ ζF̃ with
(
intαn

δ

)?
αn
(εn) = εn,

(
intαn

δ

)?
αn
(υn) = υn such that εn ∧ υn =

〈0, 1, 1〉 and εn ∨ υn = 〈1, 0, 0〉. Then, from (2) in Proposition 3.2., we get that

(Clαn
δ
)?αn

(εn) = (Clαn
δ
)?αn

((υn)
c) = ((intαn

δ
)?αn

(υn))
c = (υn)

c = εn,

(Clαn
δ
)?αn

(υn) = (Clαn
δ
)?αn

((εn)
c) = ((intαn

δ
)?αn

(εn))
c = (εn)

c = υn,

Hence,
(
Clαn
δ

)?
αn
(εn) ∧ υn = εn ∧

(
Clαn
δ

)?
αn
(υn) = εn ∧ υn = 〈0, 1, 1〉. That is, εn, υn are

SVNIA-separated sets so that εn ∨ υn = 〈1, 0, 0〉. But (F̃ , δ, h̄) is SVNIA-connected implies that

εn = 〈0, 1, 1〉 or υn = 〈0, 1, 1〉.

(2)⇒ (3) :, (3)⇒ (1) : Clear. �

Theorem 4.2. Let (F̃ , δ, h̄) be a SVNIAS and αn ∈ ζF̃ . Then, the following are equivalent.

1. εn is SVNIA-connected set.
2. If υn,πn are SVNIA-separated sets with εn ≤ (υn ∨ πn), then εn ∧ υn = 〈0, 1, 1〉 or εn ∧ πn =

〈0, 1, 1〉.
3. If υn,πn are SVNIA-separated sets with εn ≤ (υn ∨πn), then εn ≤ υn or εn ≤ πn.

Proof. (1)⇒ (2) : Let υn,πn are SVNIA-separated sets with εn ≤ (υn ∨πn). That is,(
Clαn
δ

)?
αn
(υn)∧πn = υn ∧

(
Clαn
δ

)?
αn
(πn) = 〈0, 1, 1〉 .

So that εn ≤ (υn ∨πn). Since

(Clαn
δ
)?αn

(εn ∧ υn)∧ (εn ∧πn) = (Clαn
δ
)?αn

(εn)∧ (Clαn
δ
)?αn

(υn)∧ (εn ∧πn)

= (Clαn
δ
)?αn

(εn)∧ εn ∧ (Clαn
δ
)?αn

(υn)∧πn

= 〈0, 1, 1〉.
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(Clαn
δ
)?αn

(εn ∧πn)∧ (εn ∧ υn) = (Clαn
δ
)?αn

(εn)∧ (Clαn
δ
)?αn

(πn)∧ (εn ∧ υn)

= (Clαn
δ
)?αn

(εn)∧ εn ∧ (Clαn
δ
)?αn

(πn)∧ υn

= 〈0, 1, 1〉.

Then, (µ ∧ v) and (µ ∧ ρ) are SVNIA-separated sets with εn = (εn ∧ υn) ∨ (εn ∧ πn). But εn is

SVNIA-connectedmeans that εn ∧ υn = 〈0, 1, 1〉 or εn ∧πn = 〈0, 1, 1〉.

(2)⇒ (3) : If εn ∧ υn = 〈0, 1, 1〉, εn ≤ (υn ∨ πn) means that εn = εn ∧ (υn ∨ πn) = (εn ∧ υn) ∨ (εn ∧

πn) = (εn ∧πn) and thus (εn ≤ πn). Also, if εn ∧πn = 〈0, 1, 1〉, then εn ≤ υn.

(3) ⇒ (1): Let υn,πn be SVNIA-separated sets so that εn = υn ∨ πn. Then, from (3), εn ≤ υn or

εn ≤ πn. If εn ≤ υn, then

πn = (υn ∨πn)∧πn = εn ∧πn ≤ υn ∧πn ≤ (Clαn
δ
)?αn

(υn)∧πn = 〈0, 1, 1〉.

Also, if µ ≤ ρ, then

υn = (υn ∨πn)∧ υn = εn ∧ υn ≤ πn ∧ υn ≤ (Clαn
δ
)?αn

(πn)∧ υn = 〈0, 1, 1〉.

Hence, εn is SVNIA-connected set. �

Definition 4.3. Let (F̃ , δ), (G̃, δ?) be two SVNAS and αn ∈ ζF̃ , εn ∈ ζG̃ are SVNSs. Then, the
mapping f : (F̃ , δ) → (G̃, δ?) is called single valued neutrosophic approximation continuous (briefly,
SVNA-continuous) if f−1(intεn

δ?
(υn)) ≤ intαn

δ
( f−1(υn)) ∀ υn ∈ ζG̃.

Equivalently. f is called SVNA-continuous if f−1(Clεn
δ?
(υn)) ≥ Clαn

δ
( f−1(υn)) ∀ υn ∈ ζG̃.

Definition 4.4. A mapping f : (F̃ , δ, h̄)→ (G̃, δ?) is called single valued neutrosophic ideal approxima-
tion continuous (briefly, SVNIA-continuous) if f−1(intεn

δ?
(υn)) ≤ (intαn

δ
)?αn

(
f−1(υn)

)
∀υn ∈ ζG̃.

Equivalently. f is called SVNIA-continuous if f−1(Clεn
δ?
)(υn) ≥ (Clαn

δ
)?αn

( f−1(υn))∀υn ∈ ζG̃.

Every SVNIA-continuous mapping will be SVNA-continuous as well (from (1) in Proposition

3.2.) but not converse.

Remark 4.2. Since h̄ and h̄? are independent SVNIs on F̃ and G̃ respectively, then the mapping f :

(F̃ , δ, h̄)→ (G̃, δ?, h̄?) still not SVNIA-continuous in general even if we have taken f is a bijective map
with respect to αn ∈ ζF̃ and f (αn) ∈ ζG̃ and the SVNR δ an F̃ and δ? on G̃ wrere δ? = δ ◦

(
f−1
× f−1

)
=

( f × f )(δ). This special case itself could be as an example of a SVNA-continuous mapping but not
SVNIA-continuous in general

Theorem 4.3. Let (F̃ , δ, h̄), (G̃, δ?, h̄?), associated with αn ∈ ζF̃ , εn ∈ ζG̃ respectively, be SVNIAS and
f : (F̃ , δ, h̄) → (G̃, δ?, h̄?) is a SVNIA-continuous mapping. Then, f (ηn) ∈ ζG̃ is a SVNIA-connected
set if ηn is a SVNIA-connected set in F̃ .

Proof. Let υn,πn ∈ ζG̃ be SVNIA-separated sets with f (ηn) = υn ∨ πn. That is, (Clεn
δ?
)?εn

(υn) ∧ πn =

Clεn
δ?
)?εn

(πn) ∧ υn = 〈0, 1, 1〉. Then, ηn ≤
(

f−1(υn)∨ f−1(πn)
)
, and from f is SVNIA-continuous, we
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get that

(Clαn
δ
)?αn

( f−1(υn))∧ f−1(πn) ≤ f−1(Clεn
δ?
(υn))∧ f−1(πn)

= f−1(Clεn
δ?
(υn)∧πn) = f−1(〈0, 1, 1〉)

= 〈0, 1, 1〉.

and similarly, we have

(Clαn
δ
)?αn

( f−1(πn))∧ f−1(υn) ≤ f−1(Clεn
δ?
(πn))∧ f−1(υn)

= f−1(Clεn
δ?
(πn)∧ υn) = f−1(〈0, 1, 1〉)

= 〈0, 1, 1〉.

Hence, f−1(υn) and f−1(πn) are SVNIA-separated sets in F̃ so that ηn ≤ ( f−1(υn) ∨ f−1(πn)). But

by (3) in Theorem (4.2), we get that ηn ≤ f−1(υn) or ηn ≤ f−1(πn) which means that f (ηn) ≤ υn or

f (ηn) ≤ πn. Thus, from that ηn is SVNIA-connected set in F̃ , and again from (3) in Theorem (4.2),

we get that f (ηn) is SVNIA-connected in G̃. �

The implications in the following diagram are satisfied whenever f is SVNIA-continuous.

ηn is SVNA-connected −→ ηn is SVNIA-connected

↓ ↓

f (ηn) is SVNA-connected −→ f (ηn) is SVNIA-connected

↑ ↑

ηn is SVNIA-connected ηn is SVNA-connected

Only the implications in the following diagram are satisfied whenever f is SVNA-continuous.

ηn is SVNA-connected −→ ηn is SVNIA-connected

↓ ↓

f (ηn) is SVNA-connected −→ f (ηn) is SVNIA-connected

↑

ηn is SVNIA-connected

Example 4.2. Let F̃ = G̃ = {ω1,ω2,ω3,ω4} and f : F̃ → G̃ such that

f (ω1) = f (ω2) = ω1, f (ω3) = ω2, f (ω4) = ω4,

δ and δ∗ are SVNR on F̃ , G̃ respectively as follows:
Assume that

αn = 〈(1, 0, 0), (1, 0, 0), (1, 0, 0), (0.2, 0.2, 0.2)〉 ∈ ζF̃ ,

and

ηn = 〈(0, 1, 1), (0.3, 0.3, 0.3), (0.5, 0.5, 0.5), (0.2, 0.2, 0.2)〉 ∈ ζG̃
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δ ω1 ω2 ω3 ω4

ω1 (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1)
ω2 (0, 1, 1) (1, 0, 0) (0, 1, 1) (0, 1, 1)
ω3 (0, 1, 1) (0, 1, 1) (1, 0, 0) (0.3, 0.3, 0.3)
ω4 (0, 1, 1) (0, 1, 1) (0.3, 0.3, 0.3) (1, 0, 0)

Table 3. SVNRof δ

δ∗ ω1 ω2 ω3 ω4

ω1 (1, 0, 0) (0.5, 0.5, 0.5) (0.5, 0.5, 0.5) (0, 1, 1)
ω2 (0.5, 0.5, 0.5) (1, 0, 0) (0.5, 0.5, 0.5) (0, 1, 1)
ω3 (0.5, 0.5, 0.5) (0.5, 0.5, 0.5) (1, 0, 0) (0, 1, 1)
ω4 (0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0)

Table 4. SVNRof δ

Then,

%̃(αn)δ(ω1) = %̃αn(ω1)∧
∨

αn(µ)>0,µ,ω1

%̃[ω](µ) = 0,

σ̃(αn)δ(ω1) = σ̃αn(ω1)∨
∧

αn(µ)>0,µ,ω1

(σ̃[ω])(µ) = 1,

ς̃(αn)δ(ω1) = %̃αn(ω1)∨
∧

αn(µ)>0,µ,ω1

ς̃[ω](µ) = 1,

Hence, (αn)δ(ω1) = (αn)δ(ω2) = (αn)δ(ω3) = (0, 1, 1). Also,

%̃(αn)δ(ω4) = %̃αn(ω4)∧
∨

αn(µ)>0,µ,ω4

%̃[ω](µ) = 0.2,

σ̃(αn)δ(ω4) = σ̃αn(ω4)∨
∧

αn(µ)>0,µ,ω4

(σ̃[ω])(µ) = 0.3,

ς̃(αn)δ(ω4) = %̃αn(ω4)∨
∧

αn(µ)>0,µ,ω4

ς̃[ω](µ) = 0.3,

Thus, (αn)δ(ω4) = (0.2, 0.3, 0.3) and than,

(αn)
δ = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.2, 0.3, 03)〉,

(αn)δ = 〈(1, 0, 0), (1, 0, 0), (1, 0, 0), (0.3, 0.2, 0.2)〉,

[(αn)δ]
c = 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.2, 0.8, 0.3)〉.
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For βn = 〈(0, 1, 1), (0, 1, 1), , (0.2, 0.8, 0.2), (0, 1, 1)〉 ∈ ζG̃, we get that

f−1(βn) = 〈0, 1, 1〉

and then Clαn
δ
( f−1(βn)) = 〈0, 1, 1〉. Since

(ηn)δ∗ = 〈(0.5, 0.5, 0.5), (0.5, 0.3, 0.3), (0.5, 0.5, 0.5), (1, 0, 0〉,

(βn)
δ∗ = 〈(0, 1, 1), (0, 1, 1), (0.2, 0.8, 0.5), (0, 1, 1)〉,

[(ηn)δ∗ ]
c = 〈(0.5, 0.5, 0.5), (0.3, 0.7, 0.5), (0.5, 0.5, 0.5), (0, 1, 1)〉.

Then, Clηn
δ∗
(βn) = [(ηn)δ∗ ]

c
∨ (βn)δ

∗

= 〈(0.5, 0.5, 0.5), (0.3, 0.7, 0.5), (0.5, 0.5, 0.5), (0, 1, 1)〉. Thus,

f−1(Clηn
δ∗
(βn)) = 〈(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.3, 0.7, 0.5), (0, 1, 1)〉 ≥ 〈0, 1, 1〉 = Clαn

δ
( f−1(βn))

. Hence, there is a fuzzy set βn ∈ ζG̃ satisfying the condition of single valued neutrosophic approximation
continuity. Next, we will show that βn itself will not satisfy the condition of fuzzy ideal approximation
continuity.

Since, Clηn
δ
( f−1(βn)) = 〈0, 1, 1〉, then

(Clαn
δ
)?αn

(
f−1(βn)

)
= Clαn

δ

(
f−1(βn)

)
∨ ((αn)

δ)?αn
= ((αn)

δ)?αn
,

that is,

(Clαn
δ
)?αn

(
f−1(βn)

)
= {〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.2, 0.3, 03)〉}?αn

.

Now, define a single-valued neutrosophic ideal h̄ over F̃ as next

ϕ ∈ h̄⇔ ϕ ≤ {〈(1, 0, 0), (1, 0, 0), (0.2, 0.2, 0.2), (0.2, 0.2, 0.2)〉}

. Then, from being Clηn
δ
(µn) = (αn)c

δ ∨ (µn)δ ≥ 〈(0, 1, 1), (0, 1, 1), (0, 1, 1), (0.2, 0.8, 0.3)〉, we get that,

(Clαn
δ
)?αn

(
f−1(βn)

)
= {〈(0, 1, 1), (0, 1, 1), (0.2, 0.8, 0.2), (0.2, 0.8, 0.2)〉}.

according to the definition of h̄ and the definition of

[µn]
?
αn
(δ, h̄) =

∧
{νn ∈ ζ

F̃ : µn∧νn = 〈%̃µn∧%̃νn(ω), σ̃µn∨σ̃νn(ω), ς̃µn∨ς̃νn(ω)〉 ∈ h̄, Clαn
δ
(νn) = νn}

. Hence, we obtain

f−1(Clηn
δ∗
(βn)) = 〈(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.3, 0.7, 0.5), (0, 1, 1)〉 � (Clαn

δ
)?αn

(
f−1(βn)

)
= {〈(0, 1, 1), (0, 1, 1), (0.2, 0.8, 0.2), (0.2, 0.8, 0.2)〉}

Therefore, not any single-valued neutrosophic approximation continuous map must be a single-valued
neutrosophic ideal approximation continuous but the converse is a must.
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5. Conclusion

In this paper, we introduced the notion of single-valued neutrosophic approximation space.

Joining a single-valued neutrosophic ideal to the single-valued neutrosophic approximation space,

we got a single-valued neutrosophic ideal approximation space with other properties different from

those of single-valued neutrosophic approximation spaces. In future work, we will define single-

valued neutrosophic approximation rough groups and single-valued neutrosophic approximation

rough rings as applications of this paper.

Discussion for further works: The theories that were used in this article could be extended to

study some similar notions in the neutrosophic metric topological spaces.

Acknowledgments: The authors would like to thank Deanship of Scientific Research at Majmaah

University for supporting this work under Project Number No: R-2024-937.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] Z. Pawlak, Rough Sets, Int. J. Comput. Inform. Sci. 11 (1982), 341–356. https://doi.org/10.1007/bf01001956.

[2] Z. Pei, D. Pei, L. Zheng, Topology vs Generalized Rough Sets, Int. J. Approx. Reason. 52 (2011), 231–239. https:

//doi.org/10.1016/j.ijar.2010.07.010.

[3] X. Chen, Q. Li, Construction of Rough Approximations in Fuzzy Setting, Fuzzy Sets Syst. 158 (2007), 2641–2653.

https://doi.org/10.1016/j.fss.2007.05.016.

[4] D. Dubois, H. Prade, Rough Fuzzy Sets and Fuzzy Rough Sets, Int. J. Gen. Syst. 17 (1990), 191–209. https://doi.org/

10.1080/03081079008935107.

[5] Z. Li, T. Xie, Roughness of Fuzzy Soft Sets and Related Results, Int. J. Comput. Intell. Syst. 8 (2015), 278–296.

https://doi.org/10.1080/18756891.2015.1001951.

[6] G. Liu, Generalized Rough Sets Over Fuzzy Lattices, Inform. Sci. 178 (2008), 1651–1662. https://doi.org/10.1016/j.

ins.2007.11.010.

[7] W. Wu, Generalized Fuzzy Rough Sets, Inform. Sci. 151 (2003), 263–282. https://doi.org/10.1016/s0020-0255(02)

00379-1.

[8] M.I. Ali, A Note on Soft Sets, Rough Soft Sets and Fuzzy Soft Sets, Appl. Soft Comput. 11 (2011), 3329–3332.

https://doi.org/10.1016/j.asoc.2011.01.003.

[9] D. Molodtsov, Soft Set Theory–First Results, Comput. Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/

s0898-1221(99)00056-5.

[10] D. Boixader, J. Jacas, J. Recasens, Upper and Lower Approximations of Fuzzy Sets, Int. J. Gen. Syst. 29 (2000),

555–568. https://doi.org/10.1080/03081070008960961.

[11] W.Z. Wu, A Study on Relationship Between Fuzzy Rough Approximation Operators and Fuzzy Topological Spaces,

Springer-Verlag, Berlin, Heidelberg, (2005).

[12] A.M. Abd El-Latif, Generalized Soft Rough Sets and Generated Soft Ideal Rough Topological Spaces, J. Intell. Fuzzy

Syst. 34 (2018), 517–524. https://doi.org/10.3233/jifs-17610.

[13] J. Mahanta, P.K. Das, Fuzzy Soft Topological Spaces, J. Intell. Fuzzy Syst. 32 (2017), 443–450. https://doi.org/10.3233/

jifs-152165.

[14] C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182–190. https://doi.org/10.1016/0022-247x(68)

90057-7.

https://doi.org/10.1007/bf01001956
https://doi.org/10.1016/j.ijar.2010.07.010
https://doi.org/10.1016/j.ijar.2010.07.010
https://doi.org/10.1016/j.fss.2007.05.016
https://doi.org/10.1080/03081079008935107
https://doi.org/10.1080/03081079008935107
https://doi.org/10.1080/18756891.2015.1001951
https://doi.org/10.1016/j.ins.2007.11.010
https://doi.org/10.1016/j.ins.2007.11.010
https://doi.org/10.1016/s0020-0255(02)00379-1
https://doi.org/10.1016/s0020-0255(02)00379-1
https://doi.org/10.1016/j.asoc.2011.01.003
https://doi.org/10.1016/s0898-1221(99)00056-5
https://doi.org/10.1016/s0898-1221(99)00056-5
https://doi.org/10.1080/03081070008960961
https://doi.org/10.3233/jifs-17610
https://doi.org/10.3233/jifs-152165
https://doi.org/10.3233/jifs-152165
https://doi.org/10.1016/0022-247x(68)90057-7
https://doi.org/10.1016/0022-247x(68)90057-7


42 Int. J. Anal. Appl. (2024), 22:26

[15] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic

Probability and Statistics, 6th ed. InfoLearnQuest, Ann Arbor, MI, USA. (2007).

[16] H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Single Valued Neutrosophic Sets, Multispace Multistruct.

4 (2010), 410–413.

[17] H.L. Yang, Z.L. Guo, Y. She, X. Liao, On Single Valued Neutrosophic Relations, J. Intell. Fuzzy Syst. 30 (2016),

1045–1056. https://doi.org/10.3233/ifs-151827.

[18] Q. Jin, K. Hu, C. Bo, L. Li, A New Single-Valued Neutrosophic Rough Sets and Related Topology, J. Math. 2021

(2021), 5522021. https://doi.org/10.1155/2021/5522021.

[19] F. Alsharari, Y.M. Saber, GΘ
?τ j
τi

-Fuzzy Closure Operator, New Math. Nat. Comput. 16 (2020), 123–141. https:

//doi.org/10.1142/s1793005720500088.

[20] F. Alsharari, Y.M. Saber, F. Smarandache, Compactness on Single-Valued Neutrosophic Ideal Topological Spaces,

Neutrosophic Sets Syst. 41 (2021), 127–145.

[21] Y.M. Saber, M.A. Abdel-Sattar, Ideals on Fuzzy Topological Spaces, Appl. Math. Sci. 8 (2014), 1667–1691. https:

//doi.org/10.12988/ams.2014.33194.

[22] Y. Saber, F. Alsharari, F. Smarandache, An Introduction to Single-Valued Neutrosophic Soft Topological Structure,

Soft Comput. 26 (2022), 7107–7122. https://doi.org/10.1007/s00500-022-07150-4.

[23] Y.M. Saber, F. Alsharari, Generalized Fuzzy Ideal Closed Sets on Fuzzy Topological Spaces in Sostak Sense, Int. J.

Fuzzy Log. Intell. Syst. 18 (2018), 161–166. https://doi.org/10.5391/ijfis.2018.18.3.161.

[24] Y. Saber, F. Alsharari, F. Smarandache, On Single-Valued Neutrosophic Ideals in Sostak Sense, Symmetry. 12 (2020),

193. https://doi.org/10.3390/sym12020193.

[25] Y. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, Connectedness and Stratification of Single-Valued Neutro-

sophic Topological Spaces, Symmetry. 12 (2020), 1464. https://doi.org/10.3390/sym12091464.

[26] Y. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, On Single Valued Neutrosophic Regularity Spaces, Comput.

Model. Eng. Sci. 130 (2022), 1625–1648. https://doi.org/10.32604/cmes.2022.017782.

[27] Y. Saber, Connectedness in Single-Valued Neutrosophic Soft Grill Topological Spaces, Int. J. Anal. Appl. 21 (2023),

137. https://doi.org/10.28924/2291-8639-21-2023-137.

[28] Y. Saber, H. Alohali, T. Elmasry, F. Smarandache, On Single-Valued Neutrosophic Soft Uniform Spaces, AIMS Math.

9 (2024), 412–439. https://doi.org/10.3934/math.2024023.

[29] A.M. Zahran, S.A.A. El-Baki, Y.M. Saber, Decomposition of Fuzzy Ideal Continuity via Fuzzy Idealization, Int. J.

Fuzzy Log. Intell. Syst. 9 (2009), 83–93. https://doi.org/10.5391/ijfis.2009.9.2.083.

[30] A.M. Zahran, S.E. Abbas, S.A. Abd El-baki, Y.M. Saber, Decomposition of Fuzzy Continuity and Fuzzy Ideal

Continuity via Fuzzy Idealization, Chaos Solitons Fractals. 42 (2009), 3064–3077. https://doi.org/10.1016/j.chaos.

2009.04.010.

https://doi.org/10.3233/ifs-151827
https://doi.org/10.1155/2021/5522021
https://doi.org/10.1142/s1793005720500088
https://doi.org/10.1142/s1793005720500088
https://doi.org/10.12988/ams.2014.33194
https://doi.org/10.12988/ams.2014.33194
https://doi.org/10.1007/s00500-022-07150-4
https://doi.org/10.5391/ijfis.2018.18.3.161
https://doi.org/10.3390/sym12020193
https://doi.org/10.3390/sym12091464
https://doi.org/10.32604/cmes.2022.017782
https://doi.org/10.28924/2291-8639-21-2023-137
https://doi.org/10.3934/math.2024023
https://doi.org/10.5391/ijfis.2009.9.2.083
https://doi.org/10.1016/j.chaos.2009.04.010
https://doi.org/10.1016/j.chaos.2009.04.010

	1. Introduction
	2. Preliminaries
	3. Single-Valued Neutrosophic Ideal Approximation Spaces
	4. Connectedness in Single Valued Neutrosophic Ideal Approximation Spaces
	5. Conclusion
	References

