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Abstract. Neutrosophic sets, which are the generalization of fuzzy, and intuitionistic fuzzy sets, have been

introduced to express uncertain, incomplete, and indeterminacy knowledge regarding a real-world problem. This

paper is intended for the first time to introduce a transshipment problem mathematically in a neutrosophic

environment. The neutrosophic transshipment problem is a special type of neutrosophic transportation problem

in which available commodities regularly travel from one origin to other origins/destinations before arriving at

their final destination. This article provides a technique for solving transshipment problems in a neutrosophic

environment. A fully neutrosophic transshipment problem is considered in this article and the parameters

(transshipment cost, supply and demand) are expressed in trapezoidal neutrosophic numbers. The possibility

mean ranking function is used in the proposed technique. The proposed technique gives a direct optimal

solution. The proposed technique is simple to implement and can be used to find the neutrosophic optimal

solution to real-world transshipment problems. A numerical example is provided to demonstrate the efficacy of

the proposed technique in the neutrosophic environment.

Keywords: Decision-Making Problem, Transshipment Problem, Neutrosophic Transshipment Problem, Single-

Valued Trapezoidal Neutrosophic Number

—————————————————————————————————————————-

When a particular product needs to be transported from source to sink in a network, trans-

portation is one of the most important engineering challenges. A common transportation

problem arises when a certain bulk of commodity needs to shipped from their origins to their

destinations through multiple intermediate points (transshipment points). This classic form of

transporters problem is called a transshipment problem. This problem was first proposed by
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Orden [1]. The concept of the transshipment problem can also be applied to determining the

shortest path between two nodes in a network. As an application of transshipment problem,

King and Logan [2] established a mathematical method for simultaneously identifying threads

in a network linking to product processor market points, while Rhody [3] suggested a method

based on a reduced matrix. Judges et al. [4] proposed a general linear model extension of

the transshipment problem to a multi-plant, multi-product, and multiregional problem. The

alternative formulations of transshipment problems under the transport model was discussed

by Hurt and Tramel [5] , which would allow for answers to common difficulties that King and

Logan articulated without the requirement for artificial variables to be subtracted. “The time-

minimizing transshipment problem” was investigated by Garg and Prakash [6]. Subsequently,

Herer and Tzur [7] examined the dynamic transshipment problem. Ozdemir et al. [8] then

looked on the problem of multilocation transshipment with capacitated manufacturing and

lost sales.

Transshipment problem formulation requires the understanding of parameters such as de-

mand, supply, associated cost, time, stock space, budget, etc. Traditional methods can be

used to solve the transshipment problem when the decision parameters are known. However,

in real-world scenarios, numerous types of uncertainty arise mathematically when designing

transshipment due to factors such as a lack of precise information, information that cannot

be obtained, rapid changes in the fuel rate or traffic jam, or whether conditions. Therefore,

the transshipment problem with impricise information cannot be solved by traditional math-

ematical techniques. Zadeh [9] introduced the idea of fuzzy sets to deal with uncertainties. In

order to handle unsure information, Zadeh effectively applied the theory of fuzzy set (FS) in

various fields. The applications of this theory are rapidly growing in the field of optimization

after the foremost work by Bellman and Zadeh [10]. Zimmermann [11] demonstrated that

the solutions generated by fuzzy linear programming are always optimal and efficient. Fuzzy

transshipment problem is the name given to the transshipment problem that is explored in

fuzzy theory, which has been discussed by many researchers ( [12]- [16]). Only the membership

degrees are insufficient to indicate the element’s marginal attainment in the fuzzy decision set,

as was shown later on in the research. The intuitionistic fuzzy set (IFS), which incorporates

both a membership and a non-membership function, was developed by Atanassov [17]. It is

recommended that the sum of an element’s membership and non-membership degrees does

not exceed 1 in an intuitionistic fuzzy set. The transportation problem discussed in IFS is

known as intuitionistic fuzzy transportation problem. Paramanik and Roy [18–20] discussed

transportation and goal programming in IFS. Later, the transshipment problem in IFS has

been discussed by many researchers ( [21], [22]).
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As a result of the presence of neutral ideas in the decision-making process, the extension

of FS and IFS were required. Smarandache [23] introduced the neutrosophic set (NS) as a

way to deal with the degree of indeterminacy and neutrality. Truth (degree of belonging-

ness), indeterminacy (degree of belongingness up to a certain extant), and falsity (degree of

non-belongingness) are three different membership functions for the element into a feasible

solution set that the NS evaluates. But NS is difficult to implement without explicit detail

in real-life problems. A single-valued neutrosophic set (SVNS) has been proposed for NS ex-

tension by Wang et al. [24]. By combining trapezoidal fuzzy numbers with a single-valued

neutrosophic set, Ye [25] introduced single-valued trapezoidal neutrosophic (SVTrN) numbers.

Many researchers such as Ahmad et al. [26], Garai et al. [27], Ahmad [28], Touqeer et al. [29],

have recently used the concept of NS in decision-making problems. The effects of ignoring

the values of propositions between the truth and falsity degrees are indeterminacy/neutral

thoughts. As a result, when dealing with transshipment problems, it is important to consider

the degree of indeterminacy.

Despite the fact that many researchers ( [30]- [33]) applied the concept of neutrosophic

theories to transportation problems. Neuosophic logic has not been applied to existing supply

chain theories of transshipment models, to the best of our knowledge. This article aims to

provide a simple yet effective method for solving neutrosophic transshipment problems in a

day-to-day situation. There are a number of advantages to using the technique:

• All parameters are represented as trapezoidal neutrosophic numbers in a fully neutro-

sophic transshipment problem.

• The proposed technique is based on the possiblility mean ranking function.

• The technique proposed produces an optimal solution directly.

• The proposed method is simple to comprehend and can be used to solve real-life trans-

shipment issues.

The following is how this article is organised. The neutrosophic set and neutrosophic numbers

are introduced in Section 2. In the Section 3 formulates the airthmetic operations on single

valued neutrosophic numbers, while the Section 4 presents the possilibity mean and ranking

function on SVTrN-numbers. The mathematical structure of the transshipment problem in a

neutrosophic environment was formulated in Section 5. The proposed technique’s steps were

addressed in Section 6. In Section 7, an example is given to show the effectiveness of the

proposed solution strategy. The paper comes to a close with the conclusion.

1. Mathematical Preliminaries

This section provides an overview of key conceptions and definitions related to neutrosophic

sets.
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Definition 1. [23] Let M be a universe and y in M . The neutrosophic set N over M is defined

by N = 〈y, TN (y), IN (y), FN (y) : y ∈ M〉, where the functions TN , IN , FN : P →]−0, 1+[ rep-

resent the truth-membership, indeterminate-membership, falsity-membership respectively such

that −0 ≤ TN (y) + IN (y) + FN (y) ≤ 3+

Definition 2. [23] Let M be a universe and y in M . Then a single valued neutrosophic set

N is characterized by truth-membership TN , indeterminacy-membership function IN , falsity-

membership function FN , where TN , IN , FN : M → [0, 1] are functions such that 0 ≤ TN (y) +

IN (y) + FN (y) ≤ 3.

Definition 3. [27] A single valued trapezoidal neutrosophic number is defined by m̃ =

〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉, where tm̃, im̃, fm̃ ∈ [0, 1] and m1,m2,m3,m4 in R with con-

dition that m1 ≤ m2 ≤ m3 ≤ m4. The truth-membership, indeterminacy-membership, and

falsity-membership functions of m̃ are given as follows:

µm̃(y) =



tm̃( y−m1

m2−m1
); m1 ≤ y ≤ m2

tm̃; m2 ≤ y ≤ m3

tm̃( m4−y
m4−m3

); m3 ≤ y ≤ m4

0; otherwise,

νm̃(y) =



m2−y+im̃(y−m1)
m2−m1

; m1 ≤ y ≤ m2

im̃; m2 ≤ y ≤ m3

y−m3+im̃(m4−y)
m4−m3

; m3 ≤ y ≤ m4

1; otherwise

λm̃ =



m2−y+fm̃(y−m1)
m2−m1

; m1 ≤ y ≤ m2

fm̃; m2 ≤ y ≤ m3

y−m3+fm̃(m4−y)
m4−m3

; m3 ≤ y ≤ m4

1; otherwise,

where tm̃, im̃ and fm̃ are represents the maximum truth-membership degree, minimum-

indeterminacy membership degree, minimum falsity-membership degree respectively. The geo-

metrical representation of SVTrNF-number is shown by Fig. 1.

Definition 4. [34] Let m̃ = 〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉 and ñ = 〈(n1, n2, n3, n4); tñ, iñ, fñ〉
be two single valued trapezoidal neutrosophic numbers and k 6= 0 be any number and ∧= min,

∨ = max, then the operations on them are defined as follows :

(1) m̃⊕ ñ = 〈(m1 + n1,m2 + n2,m3 + n3,m4 + n4); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ〉,
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Figure 1. SVTrN-number

(2) m̃	 ñ = 〈(m1 − n4,m2 − n3,m3 − n2,m4 − n1); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ〉,
(3)

m̃⊗ ñ =


〈(m1
n4
, m2
n3
, m3
n2
, m4
n1

); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ〉 if m4 > 0, n4 > 0

〈(m4
n4
, m3
n3
, m2
n2
, m1
n1

); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ〉 if m4 < 0, n4 > 0

〈(m4
n1
, m3
n2
, m2
n3
, m1
n4

); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃∨〉 if m4 < 0, n4 < 0

(4)

cm̃ =

〈(cm1, cm2, cm3, cm4); tm̃, im̃, fm̃〉 if c > 0

〈(cm4, cm3, cm2, cm1); tm̃, im̃, fm̃〉 if c < 0

(5) m̃−1 = 〈( 1
m4
, 1
m3
, 1
m2
, 1
m1

); tm̃, im̃, fm̃〉,where m̃ 6= 0.

2. The Possibility Mean and The Ranking Function for SVTrN-numbers

Sometimes, decision information supplied by a decision maker in difficult decision-making

situations is vague or inaccurate due to time restrictions, a lack of facts, or the restricted

attention and information processing capacity of the decision maker. As a result, incorporating

the possibility mean into the neutrosophic decision-making process in transshipment is critical

for scientific study and real-world application. Therefore, in this section the possibilty mean

and the ranking function based on the possiblity mean are defined.
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2.1. The Possibility Mean Functions for SVTrN-Number

Let m̃ = 〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉 be any SVTrN-number. Then the possibilty mean

functions are defined as follows: [27]

1. α-cut set of the SVTrN-number m̃ for truth-membership function is obtained as

m̃α = [ML,MR] = [m1 + α(m2−m1)
tm̃

,m3 − α(m3−m2)
tm̃

]

where α ∈ [0, tm̃]. The possibility mean of truth-membership function for SVTrN-number m̃

is given by

Pµ(m̃) =
m1 + 2m2 + 2m3 +m4

6
t2m̃

2. β-cut set of the SVTrN-number m̃ for indeterminacy membership function is obtained as

m̃β = [ML,MR] = [m1 + (1−β)(m2−m1)
1−im̃ ,m3 − (1−β)(m3−m1)

1−im̃ ]

where β ∈ [νm̃, 1]. The possibility mean of indeterminacy-membership function for SVTrN-

number m̃ is given by

Pν(m̃) =
m1 + 2m2 + 2m3 +m4

6
(1− im̃)2

3. γ-cut set of the SVTrN-number m̃ for falsity-membership function is obtained as

m̃γ = [ML,MR] = [m1 + (1−γ)(m2−m1)
1−im̃ ,m3 − (1−γ)(m3−m1)

1−im̃ ]

where γ ∈ [fm̃, 1]. The possibility mean of falsity-membership function for SVTrN-number m̃

is given by

Pλ(m̃) =
m1 + 2m2 + 2m3 +m4

6
(1− fm̃)2

2.2. The Ranking Function Based on The Possibility Mean Function

The ranking fuction based on possiblity mean values for a SVTrN-number m̃ =

〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉 is given by

Pθ(m̃) = θPµ(m̃) + (1− θ)Pν(m̃) + (1− θ)Pλ(m̃)

Theorem 1. Let m̃ = 〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉 and ñ = 〈(n1, n2, n3, n4); tñ, iñ, fñ〉 be

two SVTrN-numbers and θ ∈ [0, 1]. For the possibility mean values of the SVTrN-numbers m̃

and ñ, the following illustrantions hold true.

(1) If Pθ(m̃) > Pθ(ñ), than m̃ � ñ.
(2) If Pθ(m̃) < Pθ(ñ), than m̃ ≺ ñ.
(3) If Pθ(m̃) = Pθ(ñ), than m̃ ≈ ñ.

Proof. It is evident from the definition of ranking function.
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3. Mathematical Formulation of SVNTrP

We have mathematically formulated a transshipment problem in a neutrosophic environ-

ment in this section. The parameters of the problem under consideration are single-valued

trapezoidal neutrosophic numbers. i.e., the decision maker is unsure about the cost of trans-

shipment, supply and demand. The primary goal of the transshipment problem is to transport

any item/product from one origin or destination to another origin or destination while min-

imising total transshipment costs. In a neutrosophic environment, the mathematical structure

of the transshipment problem is as follows:

minz̃N =
m+n∑
i=1

m+n∑
j=1

C̃Nij ⊗ X̃N
ij

Subject to
m+n∑
j=1

X̃N
ij −

m+n∑
j=1

X̃N
ji = ãNi , i = 1, 2, ...,m.

m+n∑
i=1

X̃N
ij −

m+n∑
i=1

X̃N
ji = b̃Nj , j = m+ 1,m+ 2, ...,m+ n.

X̃N
ij ≥ 0, i, j = 1, 2, ...,m+ n; i 6= j.

The problem is said to be balanced if
∑m

i=1 ã
N
i ≈

∑n
j=1 b̃

N
j , otherwise it is know as unbalance

problem. Where,

• m and n denote total number of supply sources and total number of demand points,

respectively.

• aNi denotes available commodity at ith source.

• bNj denotes demand of the commodity at jth destination.

• C̃Nij = (cij,1, cij,2, cij,3, cij,4 ;wã, uã, yã) denotes the neutrosophic transshipment cost of

a unit commodity from ith source to jth destination.

• The number of units of the commodity to be carried from the ith source to the jth

destination is denoted by Xij .

4. Methodology

In this section, a noval transshipment problem technique is presented, that uses the pos-

sibility mean ranking function to obtain the optimal solution. The technique is explained in

detail below in a step-by-step manner.

Step 1 Construct a neutrosophic transshipment problem in Table form in which either all

parameters are taken as SVTrNF-numbers.

Step 2 Put zeros where demand and supply are unknown.
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Step 3 Assign zero values to each digonal cell and delete the rows/columns whose demand

has been met.

Step 4 The transshipment cost is then converted to a crisp number using the possibility mean

based ranking function that is discussed in Section 4.

Step 5 From the matrix obtained after Step 4, choose minimum element from each row then

subtract it from each element of corresponding row.

Step 6 From the matrix obtained after Step 5, choose minimum element from each column

then subtract it from each element of corresponding column.

Step 7 In this manner, each row and column will have at least one zero value. Then, for each

cell having a zero value, use the following formula to determine the zero average value Oij .

Oij = the average of the ith row’s and jth column’s minimum values.

Step 8 Select the maximum zero average value and assign it to the appropriate cell with the

minimum demand/supply, then delete the row/column whose supply/demand has reached its

limit.

Step 9 Pick an allocation that assigns the highest feasible demand in the same rank case.

Step 10 Follow steps 7 to 9 until the total demands are not fulfilled.

Step 11 Add the product of the assigned demand/supply and the cost value for each cell to

get the total transshipment cost. The neutrosophic optimal solution is provided by this total

transshipment cost.

5. Numerical Example

We provide an example of our proposed solution methodology in this section. A neutrosophic

transshipment problem with two origins (A,B) and two destinations (C,D) has been considered.

Table 1 shows the availability at the origins, the requirements at the destinations, and the

transshipment costs.

Table 1. SVTrN transshipment problem

Destination → A B C D Supply

Sources ↓

A (0, 0, 0, 0) (5, 7, 9, 11 ; 0.4, 0.8, 0.5) (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4) (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

B (7, 10, 12, 15 ; 0.1, 0.6, 0.8) (0, 0, 0, 0) (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6) (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

C (3, 7, 9, 13 ; 0.4, 0.7, 0.3) (5, 8, 12, 15 ; 0.2, 0.4, 0.7) (0, 0, 0, 0) (7, 12, 14, 19 ; 0.8, 0.3, 0.2) −

D (2, 6, 9, 13 ; 0.9, 0.7, 0.8) (6, 7, 8, 9 ; 0.3, 0.8, 0.6) (1, 5, 7, 11 ; 0.2, 0.9, 0.7) (0, 0, 0, 0) −

Demand − − (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)
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For each column or row, write zero value for unknown demand/supply.

Table 2. Balance tansshipment problem

Destination → A B C D Supply

Sources ↓

A (0, 0, 0, 0) (5, 7, 9, 11 ; 0.4, 0.8, 0.5) (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4) (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

B (7, 10, 12, 15 ; 0.1, 0.6, 0.8) (0, 0, 0, 0) (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6) (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

C (3, 7, 9, 13 ; 0.4, 0.7, 0.3) (5, 8, 12, 15 ; 0.2, 0.4, 0.7) (0, 0, 0, 0) (7, 12, 14, 19 ; 0.8, 0.3, 0.2) (0, 0, 0, 0)

D (2, 6, 9, 13 ; 0.9, 0.7, 0.8) (6, 7, 8, 9 ; 0.3, 0.8, 0.6) (1, 5, 7, 11 ; 0.2, 0.9, 0.7) (0, 0, 0, 0) (0, 0, 0, 0)

Demand (0, 0, 0, 0) (0, 0, 0, 0) (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)

The lowest cost value in each row is zero. We discover that zero is the smallest unit cost in

each row, so we place zero in the diagonal cell of the transshipment matrix. Table 2 illustrates

this.

Table 3. Reduced tansshipment problem

Destination → A B C D Supply

Sources ↓

A (0, 0, 0, 0) (5, 7, 9, 11 ; 0.4, 0.8, 0.5) (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4) (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

(0,0,0,0)

B (7, 10, 12, 15 ; 0.1, 0.6, 0.8) (0, 0, 0, 0) (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6) (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

(0,0,0,0)

C (3, 7, 9, 13 ; 0.4, 0.7, 0.3) (5, 8, 12, 15 ; 0.2, 0.4, 0.7) (0, 0, 0, 0) (7, 12, 14, 19 ; 0.8, 0.3, 0.2) (0, 0, 0, 0)

(0,0,0,0)

D (2, 6, 9, 13 ; 0.9, 0.7, 0.8) (6, 7, 8, 9 ; 0.3, 0.8, 0.6) (1, 5, 7, 11 ; 0.2, 0.9, 0.7) (0, 0, 0, 0) (0, 0, 0, 0)

(0,0,0,0)

Demand (0, 0, 0, 0) (0, 0, 0, 0) (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)

Delete the rows or columns whose demands have been met.

Table 4. New tansshipment problem

Destination → C D Supply

Sources ↓

A (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4) (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

B (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6) (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

Demand (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)
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Now, using the possibility mean-based ranking function discussed in the section 3, apply it to

the cost of transshipment.

Table 5. De-neutrosophic transshipment problem

Destination → C D Supply

Sources ↓

A 5.21 1.26 (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

B 5.81 5051 (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

Demand (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)

We obtained the final optimal table (Table 6) by completing the remaining steps of the pro-

posed technique .

Table 6. Final Optimal Table

Destination → A B C D

Sources ↓

A (0, 0, 0, 0) (5, 7, 9, 11 ; 0.4, 0.8, 0.5) (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4)

(0,0,0,0) (14,20,21,27 ; 0.2,0.7,0.9)

B (7, 10, 12, 15 ; 0.1, 0.6, 0.8) (0, 0, 0, 0) (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6)

(0,0,0,0) (12,18,20,26 ; 0.4,0.2,0.6) (−12,−1,4,15 ; 0.2,0.8,0.9)

C (3, 7, 9, 13 ; 0.4, 0.7, 0.3) (5, 8, 12, 15 ; 0.2, 0.4, 0.7) (0, 0, 0, 0) (7, 12, 14, 19 ; 0.8, 0.3, 0.2)

(0,0,0,0)

D (2, 6, 9, 13 ; 0.9, 0.7, 0.8) (6, 7, 8, 9 ; 0.3, 0.8, 0.6) (1, 5, 7, 11 ; 0.2, 0.9, 0.7) (0, 0, 0, 0)

(0,0,0,0)

The optimal solution of trapezoidal neutrosophic transshipment problem, given in Ta-

ble 1, is (1, 3, 8, 10; 0.3, 0.9, 0.4) ⊗ (14, 20, 21, 27; 0.2, 0.7, 0.9) ⊕ (2, 5, 9, 12; 0.6, 0.3, 0.1) ⊗
(12, 18, 20, 26; 0.4, 0.2, 0.6)⊕(6, 9, 12, 15; 0.5, 0.2, 0.6)⊗(−12,−1, 4, 15; 0.2, 0.8, 0.9) = (−34, 141

, 396, 807; 0.2, 0.9, 0.9).

6. Conclusion

Neutrosophic sets, a generalisation of intuitionistic fuzzy sets, can represent both indetermi-

nacy and uncertainty. Though many decision-making problems have been studied with various

forms of input data, this study looked at solutions to the transshipment problem in a neutro-

sophic environment. The proposed method has proven to be effective in solving transshipment

problems involving single-valued trapezoidal neutrosophic numbers. The proposed technique

has been based on the possibility mean ranking function. The technique is simple to implement
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in real-world transshipment problems. Further, the technique produces an optimal solution

directly. While the proposed technique analyses the solutions to neutrosophic transshipment

problem in concrete form, the prediction of qualitative and complex data solutions does have

certain limitations. Genetic algorithm approaches can overcome computational complexity in

the management of higher dimensional problems. The research can be further expanded to

address multiobjective transshipment problems in neutrosophic environment.
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