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Abstract: TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is a very common method for
Multiple Attribute Decision Making (MADM) problem in crisp as well as uncertain environment. The interval trape-
zoidal neutrosophic number can handle incomplete, indeterminate and inconsistent information which are generally
occurred in uncertain environment. In this paper, we propose TOPSIS method for MADM, where the rating values
of the attributes are interval trapezoidal neutrosophic numbers and the weight information of the attributes are known
or partially known or completely unknown. We develop optimization models to obtain weights of the attributes with
the help of maximum deviation strategy for partially known and completely unknown cases. Finally, we provide a
numerical example to illustrate the proposed approach and make a comparative analysis.

Keywords: Interval trapezoidal neutrosophic number, Multi-attribute decision making, TOPSIS, Unknown weight
information.

1 Introduction
Multi-attribute decision making (MADM) is a popular field of study in decision analysis. MADM refers

to making choice of the best alternative from a finite set of decision alternatives in terms of multiple, usu-
ally conflicting criteria. The decision maker uses the rating value of the attribute in terms of fuzzy sets [1],
intuitionistic fuzzy sets [2], hesitant fuzzy sets [3], and neutrosophic sets [4].

In classical MADM methods, the ratings and weights of the criteria are known precisely. TOPSIS [5] is
one of the classical methods among many MADM techniques like Preference Ranking Organization METHod
for Enrichment of Evaluations (PROMETHEE) [6], Vlse Kriterijuska OptimizacijaI Komoromisno Resenje
(VIKOR) [7], ELimination Et Choix Traduisant la REalit (ELECTRE) [8], Analytic Hierarchy Process (AHP)
[9], etc. MADM problem has also been studied in fuzzy environment [10–14] and intuitionistic fuzzy envi-
ronment [15–18]. Researchers have extended the TOPSIS method to deal with MADM problems in different
environment. Chen [19] extended the concept of TOPSIS method to develop a methodology for MADM prob-
lem in fuzzy environment. Boran et al. [20] extended the TOPSIS method for MADM in intutionistic fuzzy
sets. Zhao [21] proposed TOPSIS method under interval intutionistic fuzzy number. Liu [22] proposed TOP-
SIS method for MADM under trapezoidal intuitionistic fuzzy environment with partial and unknown attribute
weight information.

Compared to fuzzy set and intutionistic fuzzy set, neutrosophic set [4] has the potential to deal with
MADM problem because it can effectively handle indeterminate and incomplete information. Hybrids of
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neutrosophic set have been applied in MADM and multi-attribute group decision making (MAGDM) problems
[23–30]. Biswas et al. [31] developed TOPSIS strategy for MAGDM with single valued neutrosophic sets [32].
Chi and Liu [33] extended TOPSIS method for MADM problem based on interval neutrosophic set [4]. Zhang
and Wu [34] developed TOPSIS strategy in single valued neutrosophic set where weights of the attributes
are completely unknown. Biswas et al. [35] introduced Neutrosophic TOPSIS with group decision making.
Pramanik et al. [36] extended TOPSIS approach for MAGDM in refined neutrosophic environment. Dey et
al. [37] introduced TOPSIS for solving MADM problems under bi-polar neutrosophic environment. Mondal
et al. [38] developed Rough neutrosophic TOPSIS for MAGDM problem. Ye [39] proposed TOPSIS method
for MAGDM problem based on single valued neutrosophic linguistic number. Dey et al. [40] developed
generalized neutrosophic soft MADM based on TOPSIS. Pramanik et al. [41] extended TOPSIS method for
MADM based on soft expert set environment. Biswas et al. [42] developed TOPSIS strategy for MADM with
trapezoidal neutrosophic numbers.

Interval trapezoidal neutrosophic number (ITrNN) [43] is a generalization of single valued trapezoidal
neutrosophic number (SVTrNN). Ye [44] and Subhaş [45] introduced the SVTrNN where each element is
expressed by trapezoidal number that has truth, indeterminacy and falsity membership degrees which are
single valued. However, decision makers may face difficulties to express their opinions in terms of single
valued truth, indeterminacy and falsity membership degrees. In interval trapezoidal neutrosophic number
truth, indeterminacy and falsity membership degrees are interval valued. Therefore, decision makers can
express their opinion throughout this number in a flexible way to face such difficulties.

The above literature review reflects that the TOPSIS method has not been studied earlier based on interval
trapezoidal neutrosophic number, even though this number can play effective role with indeterminate and
uncertain information in MADM problem. To fill this research gap, our objectives in this paper are as follows:

• To propose TOPSIS method for MADM problem based on interval valued trapezoidal neutrosophic
number.

• To develop the model where the rating values of the attributes are ITrNN and weight information is
known, partially known and completely unknown.

We organise the paper as follows: Section 2 describes the preliminaries of fuzzy sets, trapezoidal fuzzy num-
ber, neutrosophic sets, SVTrNN, ITrNN, and Hamming distance between ITrNNs. Section 3 briefly presents
classical TOPSIS method. Section 4 presents TOPSIS method for MADM based on ITrNN. An application
example with comparative analysis is given in Section 5. Finally, Section 6 presents some conclusions and
future scopes of research.

2 Preliminaries
In this section, we briefly review the definition of fuzzy sets, single-valued neutrosophic sets, single-valued

trapezoidal neutrosophic number, and interval trapezoidal neutrosophic numbers.

Definition 1. [1] Let X be a universe of discourse. Then a fuzzy set A is defined by

A = {〈x, µA(x)〉| x ∈ X}, (1)

which is characterized by a membership function µA : X → [0, 1], where µA(x) is the degree of membership
of the element x to the set A.
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Definition 2. [46,47] A generalized trapezoidal fuzzy number A denoted by A = (a, b, c, d;w) is described as
a fuzzy subset of a real number R with membership function µA which is defined by

µA(x) =



(x− a)w

b− a
, a ≤ x < b

w, b ≤ x ≤ c
(d− x)w

d− c
, c < x ≤ d

0, otherwise.

where a, b, c, d ∈ R and w is a membership degree.

Definition 3. [32] Let X be universe of discourse. Then a single-valued neutrosophic set A is defined as
A = {< x, TA(x), FA(x), IA(x) >: x ∈ X} which is characterized by a truth-membership function TA(x) :
X → [0, 1], falsity membership function FA : X → [0, 1], and an indeterminacy membership function IA :
X → [0, 1] of the element x to the set A, and the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 ∀ x ∈ X .

Definition 4. [44,45] Let α be a single-valued neutrosophic trapezoidal number (SVNTrN). Then its member-
ship functions are given by

Tα(x) =



(x− a)tα
b− a

, a ≤ x < b

tα, b ≤ x ≤ c
(d− x)tα
d− c

, c < x ≤ d

0, otherwise.

Iα(x) =



b− x+ (x− a)iα
b− a

, a ≤ x < b

iα, b ≤ x ≤ c
x− c+ (d− x)iα

d− c
, c < x ≤ d

0, otherwise.

Fα(x) =



b− x+ (x− a)fα
b− a

, a ≤ x < b

fα, b ≤ x ≤ c
x− c+ (d− x)fα

d− c
, c < x ≤ d

0, otherwise.

where Tα is truth membership function, Iα is indeterminancy membership function and Fα is falsity member-
ship function, and they all lie between 0 and 1 and satisfy the condition 0 ≤ Tα(x) + Iα(x) +Fα(x) ≤ 3 where
a, b, c, d are real numbers. Then α = ([a, b, c, d]; tα, iα, fα) is called a neutrosophic trapezoidal number.
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Definition 5. [43] Let α̃ be trapezoidal neutrosophic number. Then its membership functions are given by

Tα̃(x) =



(x− a)tα̃
b− a

, a ≤ x < b

tα̃, b ≤ x ≤ c
(d− x)tα̃
d− c

, c < x ≤ d

0, otherwise.

Iα̃(x) =



b− x+ (x− a)iα̃
b− a

, a ≤ x < b

iα̃, b ≤ x ≤ c
x− c+ (d− x)iα̃

d− c
, c < x ≤ d

0, otherwise.

Fα̃(x) =



b− x+ (x− a)fα̃
b− a

, a ≤ x < b

fα̃, b ≤ x ≤ c
x− c+ (d− x)fα̃

d− c
, c < x ≤ d

0, otherwise.

where Tα̃ is truth membership function, Iα̃ is indeterminancy membership function and Fα̃ is falsity mem-
bership function and tα̃, iα̃, fα̃ are subsets of [0,1] and 0 ≤ sup(tα̃) + sup(iα̃) + sup(fα̃) ≤ 3. Then α is
called an interval trapezoidal neutrosophic number and it is denoted by α̃ = ([a, b, c, d]; tα̃, iα̃, fα̃). We take
tα̃ = [

¯
t, t̄], iα̃ = [i, i] and fα̃ = [

¯
f, f̄ ]

Definition 6. [43] An interval trapezoidal neutrosophic number (ITrNN) α̃ = ([a, b, c, d]; [t, t], [i, i], [f, f ]) is
said to be positive ITrNN if a ≥ 0 and one of the four values of a, b, c, d is not equal to zero.

Definition 7. Let α̃ = ([a1, b1, c1, d1]; [
¯
t1, t̄1], [

¯
i1, ī1], [

¯
f1, f̄1]) and β̃ = ([a2, b2, c2, d2]; [

¯
t2, t̄2], [

¯
i2, ī2], [

¯
f2, f̄2])

be two ITrNNs. Then the following operations are valid:

1. α̃
⊕

β̃ =

(
[a1 + a2, b1 + b2, c1 + c2, d1 + d2];

[
¯
t1 +

¯
t2 −

¯
t1t2, t̄1 + t̄2 − t̄1t̄2], [

¯
i1

¯
i2, ī1ī2], [

¯
f1

¯
f2, f̄1f̄2]

)
;

2. α̃
⊗

β̃ =

 ([a1a2, b1b2, c1c2, d1d2]; [
¯
t1

¯
t2, t̄1t̄2],

[
¯
i1 +

¯
i2 −

¯
i1

¯
i2, ī1 + ī2 − ī1ī2],

[
¯
f1 +

¯
f2 −

¯
f1

¯
f2, f̄1 + f̄2 − f̄1f̄2]

 ;

3. λα̃ =

( [
λa1, λb1, λc1, λd1

]
;
[
1− (1−

¯
t1)

λ, 1− (1− t̄1)λ
][

(
¯
i1)

λ, (̄i1)
λ
]
,
[
(
¯
f1)

λ, (f̄1)
λ
] )

, λ ≥ 0;

4. (α̃)λ =


[
(a1)

λ, (b1)
λ, (c1)

λ, (d1)
λ
]
;
[
(
¯
t1)

λ, (t̄1)
λ
]
,[

1− (1−
¯
i1)

λ, 1− (1− ī1)λ
]
,[

1− (1−
¯
f1)

λ, 1− (1− f̄1)λ
]

 , λ ≥ 0.
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Definition 8. [43] Let α̃ = ([a1, b1, c1, d1]; [t̄1,
¯
t1], [̄i1,

¯
i1], [f̄1,

¯
f1]) and β̃ = ([a2, b2, c2, d2]; [t̄2,

¯
t2], [̄i2,

¯
i2], [f̄2,

¯
f2])

be two ITrNNs. Then the distance between two numbers is defined as

d(α̃, β̃) =
1

24

(∣∣∣∣∣ a1(2 +
¯
t1 −

¯
i1 −

¯
f1) + a1(2 + t̄1 − ī1 − f̄1)

− a2(2 +
¯
t2 −

¯
i2 −

¯
f2)− a2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣ b1(2 +
¯
t1 −

¯
i1 −

¯
f1) + b1(2 + t̄1 − ī1 − f̄1)

− b2(2 +
¯
t2 −

¯
i2 −

¯
f2)− b2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣ c1(2 +
¯
t1 −

¯
i1 −

¯
f1) + c1(2 + t̄1 − ī1 − f̄1)

− c2(2 +
¯
t2 −

¯
i2 −

¯
f2)− c2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣ d1(2 +
¯
t1 −

¯
i1 −

¯
f1) + d1(2 + t̄1 − ī1 − f̄1)

− d2(2 +
¯
t2 −

¯
i2 −

¯
f2)− d2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
)

(2)

This distance is called normalized Hamming distance.

3 TOPSIS method for MADM

TOPSIS [5] method is based on the concept that the chosen alternative should have the shortest geometric
distance from the positive ideal solution and the longest geometric distance from the negative ideal solution.

Let A= {Ai|i = 1, 2, . . . ,m} be the set of alternatives, C= {Cj|j = 1, 2, . . . , n} be the set of criteria
and D= {dij|i = 1, 2, . . . ,m : j = 1, 2, . . . , n} be the performance ratings with the criteria weight vector W=
{wj|j = 1, 2, . . . , n}. The idea of classical TOPSIS method can be expressed in a series of following steps:

Step 1. Normalize the decision matrix.

The normalized value d̄ij is calculated as follows:

d̄ij =
dij√∑m
i=1(dij)

2
, i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 2. Calculate the weighted normalized decision matrix.

In the weighted normalized decision matrix, the modified ratings are calculated as given below:

vij = wj × d̄ij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (3)

where wj is the weight of the j-th attribute such that wj ≥ 0 for j = 1, 2, . . . , n and
∑n

j=1wj = 1.

Step 3. Determine the positive and the negative ideal solutions.
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The positive ideal solution (PIS) and the negative ideal solution (NIS) are determined as follows:

PIS = A+ =
{
v+1 , v

+
2 , . . . v

+
n ,
}

(4)

=

{(
max
j
vij|j ∈ J1

)
,

(
min
j
vij|j ∈ J2

)
|j = 1, 2, . . . , n

}
;

NIS = A− =
{
v−1 , v

−
2 , . . . v

−
n ,
}

=

{(
min
j
vij|j ∈ J1

)
,

(
max
j
vij|j ∈ J2

)
|j = 1, 2, . . . , n

}
,

where J1 and J2 are the benefit type and the cost type attributes, respectively.

Step 4. Calculate the separation measures for each alternative from the PIS and the NIS.

The separation values for the PIS can be measured using the n-dimensional Euclidean distance measure as
follows:

D+
i =

√√√√ n∑
j=1

(
vij − v+j

)2
i = 1, 2, . . .m. (5)

Similarly, separation values for the NIS can be measured as

D−
i =

√√√√ n∑
j=1

(
vij − v−j

)2
i = 1, 2, . . .m. (6)

Step 5. Calculate the relative closeness coefficient to the positive ideal solution.

The relative closeness coefficient for the alternative Ai with respect to A+ is calculated as

Ci =
D−
i

D+
i +D−

i

for i = 1, 2, . . .m. (7)

Step 6. Rank the alternatives.

According to relative closeness coefficient to the ideal alternative, the larger value of Ci reflects the better
alternative Ai.

4 TOPSIS for multi-attribute decision making based on ITrNN
In this section, we put forward a framework for determining the attribute weights and the ranking orders for all
the alternatives with incomplete weight information under neutrosophic environment.

For a multi-attribute decision making problem, let A = (A1, A2, ....., An) be a discrete set of alternatives
and C = (C1, C2, ...., Cn) be a discrete set of attributes. Suppose that D = [ãij] is the decision matrix, where
ãij = ([a1ij, a

2
ij, a

3
ij, a

4
ij]; t̃ij, ĩij, f̃ij) is ITrNN for alternative Ai with respect to attribute Cj and t̃ij, ĩij and f̃ij

are subsets of [0, 1] and 0 ≤ sup t̃ij + sup ĩij + sup f̃ij ≤ 3 for i = 1, 2, ...,m and j = 1, 2, ...., n. Here
t̃ij denotes interval truth membership function, ĩij denotes interval indeterminate membership function, f̃ij
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denotes interval falsity membership function. Then we have the following decision matrix:

D = (ãij)m×n =



C1 C2 . . . Cn

A1 ã11 ã12 . . . ã1n

A2 ã21 ã22 . . . ã2n
...

...
... . . . ...

Am ãm1 ãm2 . . . ãmn

 (8)

Now, we develop this method when attribute weights are completely known, partially known and completely
unknown. The steps of the ranking are as follows:

Step 1: Standardize the decision matrix.

This step transforms various attribute dimensions into non-dimensional attributes which allow comparison
across criteria because various criteria are usually measured in various units. In general, there are two types of
attribute. One is benefit type attribute and another one is cost type attribute. Let D = (aij)m×n be a decision
matrix where the ITrNN ãij = ([a1ij, a

2
ij, a

3
ij, a

4
ij]; t̃ij, ĩij, f̃ij) is the rating value of the alternativeAi with respect

to the attribute Cj .

In order to eliminate the influence of attribute type, we consider the following technique and obtain the
standardize matrix R = (r̃ij)m×n, where r̃ij = ([r1ij, r

2
ij, r

3
ij, r

4
ij]; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]) is ITrNN. Then we

have

r̃ij =
([a1ij
u+j
,
a2ij
u+j
,
a3ij
u+j
,
a4ij
u+j

]
; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]

)
, for benefit type attribute (9)

r̃ij =
([u−j
a4ij
,
u−j
a3ij
,
u−j
a2ij
,
u−j
a1ij

]
; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]

)
, for cost type attribute (10)

where u+j = max{a4ij : i = 1, 2, ....,m} and u−j = min{a1ij : i = 1, 2, ....,m} for j = 1, 2, ..., n.

Step 2: Calculate the attribute weight.

The attribute weights may be completely known, partially known or completely unknown. So we need to de-
termine the attribute weights by maximum deviation method which is proposed by Wang [48]. If the attributes
have larger deviation, smaller deviation and no deviation then we assign larger weight, smaller weight and zero
weight, respectively.

For MADM problem, the deviation values of alternative Ai to the other alternatives under the attribute Cj
can be defined as follows:

dij(w) =
m∑
k=1

d(ãij, ãkj)wj, i = 1, 2, ....,m; j = 1, 2, ....., n,where
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d(ãij, ãkj) =
1

24

(∣∣∣∣∣ a
1
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a1ij(2 + t̄ij − īij − f̄ij)

− a1kj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− a1kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣ a
2
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a2ij(2 + t̄ij − īij − f̄ij)

− a2kj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− a2kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣ a
3
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a3ij(2 + t̄ij − īij − f̄ij)

− a3kj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− a3kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣ a
4
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a4ij(2 + t̄ij − īij − f̄ij)

− a4kj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− a4kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

=
1

24

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

The deviation values of all the alternatives to other alternatives for the attributes Cj can be defined as

Dj(w) =
m∑
i=1

dij(w) =
m∑
i=1

m∑
k=1

d(ãij, ãkj)wj

=
m∑
i=1

m∑
k=1

( 1

24

4∑
p=1

∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣)wj
Therefore, the total deviation value D(w) =

∑n
j=1Dj(w).

In the following, we develop three cases:
Case 1. When the attribute weights are completely known.
In this case, the attribute weights w1, w2, ........, wn are known in advance and

∑n
j=1wj = 1, wj ≥ 0, for j =

1, 2, ...., n.
Case 2. When attributes weights are partially known.
In this case, we assume a non-linear programming model. This model maximizes all deviation values of the
attributes.

Model 1



max D(w)

=
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

subject to w ∈ ∆,
n∑
j=1

w = 1, wj ≥ 0, for j = 1, 2, ......, n.

Here, the incomplete attribute weight information ∆ is taken in the following form ([49, 50]):

1. A weak ranking:{wi ≥ wj}, i 6= j;

2. A strict ranking:{wi − wj ≥ εi(> 0)}, i 6= j;

3. A ranking of difference:{wi − wj ≥ wk − wp}, i 6= j 6= k 6= p;

4. A ranking with multiples:{wi ≥ αiwj}, 0 ≤ αi ≤ 1, i 6= j;
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5. An interval form:{βi ≤ wi ≤ βi + εi(> 0)}, 0 ≤ βi ≤ βi + εi ≤ 1.

Solving this model, we get the optimal solution which is to be used as the weight vector.
Case 3. When attribute weights are completely unknown:
In this case, we can establish the following programming model:

Model 2



max D(w)

=
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

subject to w ∈ ∆,
n∑
j=1

w2
j = 1, wj ≥ 0, for j = 1, 2, ......, n.

To solve this model, we construct the Lagrangian function:

L(w, ξ) =
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

+
ξ

48

( n∑
j=1

w2
j − 1

)
(11)

where ξ ∈ R is Lagrange multiplier.
Now, we calculate the partial derivatives of L with respect to wj(j = 1, 2, ....n) and ξ:

∂L

∂wj
=

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

+ ξwj = 0 (12)

∂L

∂ξ
=

n∑
j=1

w2
j − 1 = 0 (13)

From Eq. (12), we get

wj =

−
m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

ξ
, j = 1, 2, ....., n (14)

Putting this value in Eq.(13), we get

ξ2 =
n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

(15)

⇒ ξ = −

√√√√ n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

for ξ < 0

(16)
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From Eq. (14) and Eq. (16), we get the formula for determining attribute weights for Cj(j = 1, 2, ..., n) :

wj =

m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

√√√√ n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

(17)

Now, we can get the normalized attribute weight as

w̄j =
wj∑n
j=1wj

=

m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

n∑
j=1

m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) (18)

Therefore, we get the normalized weight vector w̄ = {w̄1, w̄2, . . . , w̄n}.
Step 3: Determine the positive and negative ideal solutions.
The normalized decision matrix R = (r̃ij)m×n in the interval trapezoidal neutroshopic number, the positive
and negative ideal solutions are defined as follows:
r̃+ = (r̃+1 , r̃

+
2 , . . . , r̃

+
n ) and r̃− = (r̃−1 , r̃

−
2 , . . . , r̃

−
n ) where,

r̃+j =([r1+j , r2+j , r3+j , r4+j ]; [
¯
t+j , t̄

+
j ], [

¯
i+j , ī

+
j ], [

¯
f+
j , f̄

+
j ])

=
(

[max
i

(r1ij),max
i

(r2ij),max
i

(r3ij),max
i

(r4ij)];

[max
i

(
¯
tij),max

i
(t̄ij)][min

i
(
¯
iij),min

i
(̄iij)], [min

i
(
¯
fij),min

i
(f̄ij)]

)
(19)

r̃−j =([r1−j , r2−j , r3−j , r4−j ]; [
¯
t−j , t̄

−
j ], [

¯
i−j , ī

−
j ], [

¯
f−
j , f̄

−
j ])

=
(

[min
i

(r1ij),min
i

(r2ij),min
i

(r3ij),min
i

(r4ij)];

[min
i

(
¯
tij),min

i
(t̄ij)][max

i
(
¯
iij),max

i
(̄iij)], [max

i
(
¯
fij),max

i
(f̄ij)]

)
(20)

The global positive and negative ideal solutions for ITrNN can be considered as r̃+j = ([1, 1, 1, 1]; [1, 1], [0, 0], [0, 0])
and r̃−j = ([0, 0, 0, 0]; [0, 0], [1, 1], [1, 1]).
Step 4: Calculate the separation measure from ideal solutions.
Now, using Eqs.(2), (19) and (20), we calculate separation measure d+i from positive ideal solution and d−i
from negative ideal solution as

d+i =
n∑
j=1

wjd(r̃ij, r̃
+
j )

=
1

24

n∑
j=1

wj

4∑
p=1

( ∣∣∣∣∣ r
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + rpij(2 + t̄ij − īij − f̄ij)

− rp+j (2 +
¯
t+j −¯

i+j −
¯
f+
j )− rp+j (2 + t̄+j − ī+j − f̄+

j )
∣∣∣
∣∣∣∣∣
)
, i = 1, 2, ....,m. (21)
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d−i =
n∑
j=1

wjd(r̃ij, r̃
−
j )

=
1

24

n∑
j=1

wj

4∑
p=1

( ∣∣∣∣∣ r
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + rpij(2 + t̄ij − īij − f̄ij)

− rp−j (2 +
¯
t−j −¯

i−j −
¯
f−
j )− rp−j (2 + t̄−j − ī−j − f̄−

j )
∣∣∣
∣∣∣∣∣
)
, i = 1, 2, ...,m. (22)

Step 5: Calculate the relative closeness co-efficient.
We calculate the relative closeness co-efficient of an alternative Ai with respect to the ideal alternative A+ as

RCC(Ai) =
d−i

d+i + d−i
, for i = 1, 2, ...., n, (23)

where 0 ≤ RCC(Ai) ≤ 1. We then rank the best alternative according to RCC.
Step 6: End.

5 An illustrative example

In order to demonstrate the proposed method, we consider the following MADM problem. Suppose that a
person wants to buy a laptop. Let there be four companies A1, A2, A3, A4 and laptop of each company has
three attributes such as cost, warranty, and quality. We consider C1 for cost, C2 for warranty and C3 for quality
type of attribute.
The person evaluates the rating values of the alternatives Ai (i = 1, 2, 3, 4) with respect to attributes Cj(j =
1, 2, 3). Then we get the neutrosophic decision matrix D = (ãij)4×3 =

C1

A1 ([50, 60, 70, 80]; [0.1, 0.2], [0.2, 0.3], [0.4, 0.5])
A2 ([30, 40, 50, 60]; [0.3, 0.4], [0.2, 0.3], [0.1, 0.2])
A3 ([70, 80, 90, 100]; [0.6, 0.7], [0.2, 0.3], [0.4, 0.5])
A4 ([40, 50, 60, 70]; [0.4, 0.5], [0.6, 0.7], [0.2, 0.3])

C2

A1 ([30, 40, 50, 60]; [0.2, 0.3], [0.4, 0.5], [0.6, 0.7])
A2 ([10, 20, 30, 40]; [0.1, .2], [0.3, 0.4], [0.6, 0.7])
A3 ([50, 60, 70, 80]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])
A4 ([70, 80, 90, 100]; [0.2, 0.3], [0.4, 0.5], [0.6, 0.8])

C3

A1 ([40, 50, 60, 70]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])
A2 ([20, 30, 40, 50]; [0.1, 0.2], [0.3, 0.4], [0.8, 0.9])
A3 ([70, 80, 90, 100]; [0.3, 0.5], [0.4, 0.6], [0.7, 0.8])
A4 ([30, 40, 50, 60]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])

Now, with the help of the proposed method, we find the best alternative following the steps given below:
Step 1: Standardize the decision matrix.
In the decision matrix, the first column represents the cost type attribute, and the second and the third columns
represent benefit type attribute. Then, using Eqs. (9) and (10), we get the following standardize decision
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matrix Rij =
C1

A1 ([0.38, 0.43, 0.50, 0.60]; [0.1, 0.2], [0.2, 0.3], [0.4, 0.5])
A2 ([0.50, 0.60, 0.75, 1.0]; [0.3, 0.4], [0.2, 0.3], [0.1, 0.2])
A3 ([0.30, 0.33, 0.38, 0.43]; [0.6, 0.7], [0.2, 0.3], [0.4, 0.5])
A4 ([0.43, 0.50, 0.60, 0.75]; [0.4, 0.5], [0.6, 0.7], [0.2, 0.3])

C2

A1 ([0.30, 0.40, 0.50, 0.60]; [0.2, .3], [0.4, 0.5], [0.6, 0.7])
A2 ([0.10, 0.20, 0.30, 0.40]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])
A3 ([0.50, 0.60, 0.70, 0.80]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])
A4 ([0.70, 0.80, 0.90, 1.0]; [0.2, 0.3], [0.4, .5], [0.6, 0.8])

C3

A1 ([0.40, 0.50, 0.60, 0.70]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])
A2 ([0.20, 0.30, 0.40, 0.50]; [0.1, 0.2], [0.3, 0.4], [0.8, 0.9])
A3 ([0.70, 0.80, 0.90, 1.0]; [0.3, 0.5], [0.4, 0.6], [0.7, 0.8])
A4 ([0.30, 0.40, 0.50, 0.60]; [0.4, .5], [0.6, 0.7], [0.7, 0.8])

Step 2: Calculate the attribute weight.

Here we assume three cases for the attribute weight.

Case 1 : When the attribute weights are completely known, let the weight vector be w̄ = (0.25, 0.55, 0.20).

Case 2 : When the attribute weights are partially known, we select the weight information as follows:

∆ =


0.35 ≤ w1 ≤ 0.75
0.25 ≤ w2 ≤ 0.60
0.30 ≤ w3 ≤ 0.45
and w1 + w2 + w3 = 1

Using Model 1, we develop the single objective programming problem as{
max(D) = 45.92w1 + 109.56w2 + 98.20w3

subject to w ∈ ∆ and
∑3

j=1wj = 1, wj > 0 for j = 1, 2, 3.

Solving this problem with optimization software LINGO 11, we get the optimal weight vector as

w̄ = (0.35, 0.35, 0.30).

Case 3 : When the attribute weights are completely unknown, we use Model 2 and Eqn. (18) and obtain the
following weight vector:

w̄ = (0.18, 0.43, 0.39).

Step 3: Determine the positive and negative ideal solutions.

Since the cost of the laptop is cost type attribute, and warranty and quality are benefit type attributes, therefore,
using Eqs.(19) and (20), we get the following neutrosophic positive and negative ideal solutions:

A+ =


(

[0.30,0.33,0.38,0.43];[0.10,0.20],[0.20,0.30],[0.20,0.30]
)(

[0.70,0.80,0.90,1.0];[0.20,0.30],[0.40,0.50],[0.60,0.70]
)(

[0.70,0.80,0.90,1.0];[0.40,0.50],[0.60,0.70],[0.80,0.90]
)
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A− =


(

[0.50,0.60,0.75,1.0];[0.60,0.70],[0.40,0.50],[0.40,0.50]
)(

[0.10,0.20,0.30,0.40];[0.10,0.20],[0.30,0.40],[0.60,0.70]
)(

[0.20,0.30,0.40,0.50];[0.10,0.20],[0.30,0.40],[0.70,0.80]
)


Step 4 : Calculate the separation measure from ideal solutions.

Case 1 : From Eq. (21), we get the separation measure d+i of each Ai from A+:
d+1 = d(A1, A

+) = 0.179, d+2 = d(A2, A
+) = 0.425, d+3 = d(A3, A

+) = 0.106, d+4 = d(A4, A
+) = 0.325

From Eq. (22), we get the separation measure d−i of each Ai from A−:
d−1 = d(A1, A

−) = 0.304, d−2 = d(A2, A
−) = 0.083, d−3 = d(A3, A

−) = 0.485, d−4 = d(A4, A
−) = 0.503

Case 2 : From Eq. (21), we get the separation measure d+i of each Ai from A+:
d+1 = d(A1, A

+) = 0.185, d+2 = d(A2, A
+) = 0.434, d+3 = d(A3, A

+) = 0.141, d+4 = d(A4, A
+) = 0.335

From Eq. (22), we get the separation measure d−i of each Ai from A−:
d−1 = d(A1, A

−) = 0.299, d−2 = d(A2, A
−) = 0.084, d−3 = d(A3, A

−) = 0.479, d−4 = d(A4, A
−) = 0.381

Case 3 : From Eq. (21), we get the separation measure d+i of each Ai from A+:
d+1 = d(A1, A

+) = 0.167, d+2 = d(A2, A
+) = 0.429, d+3 = d(A3, A

+) = 0.126, d+4 = d(A4, A
+) = 0.307

From Eq. (22), we get the separation measure d−i of each Ai from A−:
d−1 = d(A1, A

−) = 0.604, d−2 = d(A2, A
−) = 0.094, d−3 = d(A3, A

−) = 0.554, d−4 = d(A4, A
−) = 0.467

Step 5: Calculate the relative closeness co-efficient.

In this step, using Eq. (22), we calculate the relative closeness coefficient of the alternatives A1, A2, A3, A4

and obtain the following results (see Table 1):

Table 1: Relative closeness co-efficient

RCC(Ai) Case 1 Case 2 Case 3

RCC(A1) 0.629 0.618 0.783
RCC(A2) 0.163 0.162 0.180
RCC(A3) 0.819 0.773 0.814
RCC(A4) 0.607 0.532 0.603

From the above table, we see that RCC(A3) ≥ RCC(A1) ≥ RCC(A4) ≥ RCC(A2) in all cases. Therefore,
we conclude that

A3 � A1 � A4 � A2

where A3 is the best alternative.
Step 6: End.

5.1 Comparative analysis
The study made by Liu [22] presents TOPSIS method for MADM based on trapezoidal intuitionistic fuzzy
number and does not include indeterminate type information in the decision making process. The preference
value considered in our paper is interval trapezoidal neutrosophic number, which deals with indeterminate type
information effectively along with truth and falsity type information. The method presented by Ye [44] and
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Subaş [45] discusses some aggregation operators of trapezoidal neutrosophic number and the decision making
method proposed by Biswas et al. [42] presents trapezoidal neutrosophic number based TOPSIS method for
MADM with partially known, and completely unknown weight information. We know that interval trape-
zoidal neutrosophic number is a generalization of trapezoidal neutrosophic number. The approach provided
by Biswas et al. [43] discusses ITrNN based MADM with known weight information, whereas our proposed
model develops ITrNN based MADM model with known, partially known, and completely unknown weight
information. Furthermore, the methods suggested by Biswas et al. [42], Ye [44], and Subaş [45] are not suit-
able for the decision making problem in this paper. In Table 2, we compare our results with those obtained by
the method given by Biswas et al. [43].

Table 2: A comparison of the results

Method Type of weight information Ranking result

Biswas et al.’s method [43]
Partially known Not Applicable

Completely unknown Not Applicable

Proposed method
Partially known A3 � A1 � A4 � A2

Completely unknown A3 � A1 � A4 � A2

Therefore, our proposed method is more general than the existing methods because the existing methods cannot
deal with ITrNN based MADM with partially known, and completely unknown weight information.

6 Conclusions

TOPSIS method is a very popular method for MADM problem and this method has been extended under
different environments like fuzzy sets, intuitionistic fuzzy sets and neutrosophic sets. In this paper, we have
extended TOPSIS method based on ITrNN. First, we have developed an optimization model to calculate the
attribute weight with the help of maximum deviation strategy when the weight information is partially known.
We have also developed another model by using Lagrangian function to determine attributes’ weights for
unknown weight information case. With these weights we have solved MADM problem by TOPSIS method.
Finally we have provided a numerical example of MADM problem and compared with existing methods. The
proposed strategy can be extended to multi-attribute group decision making problem with ITrNN. This model
can be used in various selection problems like weaver selection problem [51, 52], data mining [53], teacher
selection problem [54], brick field selection problem [55], center location selection problem [56,57], etc. under
ITrNN environment.
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