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of restricted interval valued neutrosophic 
topology is also introduced together with 
restricted interval valued neutrosophic finer and 

restricted interval valued neutrosophic coarser 
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1 Introduction 

In 1999, Molodtsov [10] introduced the 
concept of soft set theory which is completely new 
approach for modeling uncertainty. In this paper 
[10] Molodtsov established the fundamental results 
of this new theory and successfully applied the soft 
set theory into several directions. Maji et al. [8] 
defined and studied several basic notions of soft set 
theory in 2003. Pie and Miao [14], Aktas and 
Cagman [1] and Ali et al. [2] improved the work of 
Maji et al. [9]. The intuitionistic fuzzy set is 
introduced by Atanaasov [4] as a generalization of 
fuzzy set [19] where he added degree of non-
membership with degree of membership. 
Neutrosophic set introduced by F. Smarandache in 
1995 [16]. Smarandache [17] introduced the 
concept of neutrosophic set which is a 
mathematical tool for handling problems involving 
imprecise, indeterminacy and inconsistant data. 
Maji [9] combined neutrosophic set and soft set 
and established some operations on these sets. 
Wang et al. [18] introduced interval neutrosophic 
sets. Deli [7] introduced the concept of interval-
valued neutrosophic soft sets. 

In this paper we introduce the concept of 
restricted interval valued neutrosophic sets (RIVNS 
in short). Some basic operations and properties of 
RIVNS are discussed. The concept of restricted 
interval valued neutrosophic topology is also 
introduced together with restricted interval valued 
neutrosophic finer and restricted interval valued 
neutrosophic coarser topology. We also define 
restricted interval valued neutrosophic interior and 
closer of a restricted interval valued neutrosophic 
set. Some theorems and examples are cited. 
Restricted interval valued neutrosophic subspace 
topology is also studied. We establish some 
properties of restricted interval valued neutrosophic 
soft topological space with supporting proofs and 
examples. 

2 Preliminaries 

Definition 2.1[17] A neutrosophic set A  on the 
universe of discourse U  is defined as 

      , , ,A A AA x x x x x U     , where 

, , 0,1A A A U        are functions such that 
the condition: 
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     , 0 3A A Ax U x x x         is 

satisfied. 

From philosophical point of view, the 
neutrosophic set takes the value from real standard 
or non-standard subsets of 0,1   . But in real life 
application in scientific and engineering problems 
it is difficult to use neutrosophic set with value 
from real standard or non-standard subset of

0,1   . Hence we consider the neutrosophic set 

which takes the value from the subset of  0,1 .

Definition 2.2 [6] An interval valued 
neutrosophicset A  on the universe of discourse U
is defined as 

      , , ,A A AA x x x x x U     , where 

, , 0,1A A A U Int         are functions such 

that the condition: ,x U 

     0 3A A Asup x sup x sup x        is 

satisfied. 
In real life applications it is difficult to use 

interval valued neutrosophic set with interval-value 
from real standard or non-standard subset of 

 0,1Int    . Hence we consider the interval-

valued neutrosophic set which takes the interval-

value from the subset of   0,1Int  (where

  0,1Int  denotes the set of all closed sub

intervals of  0,1 ).

Definition 2.3 [15] Let X be a non-empty fixed set. 
A generalized neutrosophic set (GNS in short) A is 
an object having the form

      , , , :A A AA x x x x x X     Where 

   ,A Ax x  and  A x  which represent the

degree of member ship function (namely  A x ), 

the degree of indeterminacy (namely  A x ), and 

the degree of non-member ship (namely  A x )

respectively of each element x X to the set 
Awhere the functions satisfy the condition 

      0.5A A Ax x x     . 

We call this generalizedneutrosophic 
set[15] as restricted neutrosophic set. 

Definition 2.4 [15] Let A and B be two RNSs on X 
defined by 

      , , , :A A AA x x x x x X    and

      , , , :B B BB x x x x x X    . Then 

union, intersection, subset and complement may be 
defined as 

(i) The union of A and B is denoted by 
A B and is defined as 

     

      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 

or

     

      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 
. 

(ii) The intersection of A and B is denoted 
by A B and is defined as 

     

      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 

or

     

      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 
. 

or

       

    

, . , . ,

. :

A B A B

A B

A B x x x x x

x x x X

   

 

 



(iii) A is called subset of B, denoted by 
A B  if and only if 

   A Bx x  ,    A Bx x  ,

   A Bx x   

or 
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   A Bx x  ,    A Bx x  , 

   A Bx x  .  

(iv) The complement of A is denoted by cA

and is defined as 

      , ,1 , :A A AA x x x x x X    

or 

      , , , :A A AA x x x x x X   

or

      ,1 , ,1 :A A AA x x x x x X     

Definition 2.5: [15] A restricted neutrosophic 
topology (RN-topology in short) on a non empty set 
X is a family of restricted neutrosophic subsets in X 
satisfying the following axioms 

(i) 0 ,1N N   

(ii)  , :i i
i

G G i J      

(iii) 1 2G G   for any 1 2,G G  . 

The pair  ,X   is called restricted

neutrosophic topological space (RN-topological 
space in short). The members of   are called 
restricted neutrosophic open sets. A RNS F is 
closed if and only if cF  is RN open set. 

3 Restricted Interval Valued Neutrosophic 

Set 

In this section we introduce the concept of 
restricted interval valued neutrosophic set along 
with some examples, operators and results. 

Definition 3.1 Let X be a non empty set. A 
restricted interval valued neutrosophic set (RIVNS 
in short) Ais an object having the form

      , , , :A A AA x x x x x X    , where 

     , , : 0,1A A Ax x x X Int        are 

functions such that the condition: x X  ,

      0.5A A Asup x sup x sup x     is 

satisfied. 

Here    ,A Ax x   and  A x represent

truth-membership interval, indeterminacy-
membership interval and falsity- membership 
interval respectively of the element x X . For the 
sake of simplicity, we shall use the symbol 

, , ,A A AA x    for the RIVNS

      , , , :A A AA x x x x x X    . 

Example 3.2Let  1 2 3, ,X x x x , then the RIVNS

      , , , :A A AA x x x x x X    can be 

represent by the following table 
X  A x  A x  A x    

 

A A

A

sup x sup x

sup x

 







x1  .2,.3  0,.1  .4,.5 .1 

x2  .3,.5  .1,.4  .5,.6 .4 

x3  .4,.7  .2,.4  .6,.8 .4 

The RIVNSs 0  and 1  are defined as 

      0 , 0,0 , 1,1 , 1,1 :x x X  and

      1 , 1,1 , 0,0 , 0,0 :x x X  .

Definition 3.3Let  1 1 1,J inf J sup J  and 

 2 2 2,J inf J sup J  be two intervals then 

(i) 1 2J J iff 1 2inf J inf J  and 

1 2sup J sup J . 

(ii)  1 2 1 2, ,J J max inf J inf J  

 1 2,max sup J sup J  .

(iii)  1 2 1 2, ,J J min inf J inf J  

 1 2,min sup J sup J  .

Definition 3.4 Let A and B be two RIVNSs on X 

defined by

      , , , :A A AA x x x x x X    and
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      , , , :B B BB x x x x x X    . Then 

we can define union, intersection, subset and 
complement in several ways.  

(i) The RIVNunion of A and B is denoted by 
A B and is defined as 

     

      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 

or 

     

      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 

We take first definition throughout the paper. 

(ii) TheRIVNintersection of A and B is 
denoted by A B and is defined as 

     

      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 

or 

     

      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 

We take first definition throughout the paper. 

(iii) A is called RIVN subset of B, denoted by 
A B  if and only if 

   A Bx x  ,    A Bx x  , 

   A Bx x   

or 

   A Bx x  ,    A Bx x  , 

   A Bx x  . 

 We take first definition throughout the paper. 
(iv) The RIVN complement of A is denoted by 

cA  and is defined as 

     
  

, , 1 ,1 ,

:

A A A

A

A x x sup x inf x

x x X

  



     



or 

      , , , :A A AA x x x x x X   

We take first definition throughout the paper. 

Definition 3.5 Let :iA i J be an arbitrary 

family of RIVNSs in X, then 
iA  and 

iA  can be 
respectively defined as 

      , , , :
i i i

i A A A
i J i J i J

A x x x x x X  
  

    

or

      , , , :
i i i

i A A A
i J i J i J

A x x x x x X  
  

    

      , , , :
i i i

i A A A
i J i J i J

A x x x x x X  
  

    

or

      , , , :
i i i

i A A A
i J i J i J

A x x x x x X  
  

    

. 

Theorem 3.6 LetA, B and Cbe three RIVNSs then 
(1) A A A   
(2) A A A   
(3) A B B A    
(4) A B B A    

(5)  
c c cA B A B  

(6)  
c c cA B A B  

(7)    A B C A B C    

(8)    A B C A B C    

(9)      A B C A B A C     

(10)      A B C A B A C     

Proof: Let      1 2 3 4 5 6, , , , , ,A x a a a a a a ,

     1 2 3 4 5 6, , , , , ,B x b b b b b b and

     1 2 3 4 5 6, , , , , ,C x c c c c c c

(1) - (4)Straight forward. 

(5)    1 1 2 2, , , , ,A B x max a b max a b    

   

    
3 3 4 4

5 5 6 6

, , , ,

, , ,

min a b min a b

min a b min a b

  

  

     

   

   

5 5 6 6

4 4 3 3

1 1 2 2

, , , , ,

1 , ,1 , ,

, , ,

c
A B x min a b min a b

min a b min a b

max a b max a b

    

    

  

Now 
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     5 6 4 3 1 2, , , 1 ,1 , ,cA x a a a a a a  

     5 6 4 3 1 2, , , 1 ,1 , ,cB x b b b b b b  

   

   

   

5 5 6 6

4 4 3 3

1 1 2 2

, , , , ,

1 ,1 , 1 ,1 ,

, , ,

c cA B x min a b min a b

max a b max a b

max a b max a b

    

      

  

   

   

   

5 5 6 6

4 4 3 3

1 1 2 2

, , , , ,

1 , ,1 , ,

, , ,

x min a b min a b

min a b min a b

max a b max a b

   

    

  

(6) Same as(5). 

(7)    1 1 2 2, , , , ,A B x max a b max a b    

   

   

3 3 4 4

5 5 6 6

, , , ,

, , ,

min a b min a b

min a b min a b

  

  

    

     

     

  

1 1 1

2 2 2 3 3 3

4 4 4 5 5 5

6 6 6

, , , ,

, , , , , ,

, , , , , ,

, ,

A B C x max max a b c

max max a b c min min a b c

min min a b c min min a b c

min min a b c

   

 
 

 
 




   

   

   

1 1 1 2 2 2

3 3 3 4 4 4

5 5 5 6 6 6

, , , , , , ,

, , , , , ,

, , , , ,

x max a b c max a b c

min a b c min a b c

min a b c min a b c

   

  

  

   

   

   

1 1 2 2

3 3 4 4

5 5 6 6

, , , , ,

, , , ,

, , ,

B C x max b c max b c

min b c min b c

min b c min b c

    

  

  

    

     

     

  

1 1 1

2 2 2 3 3 3

4 4 4 5 5 5

6 6 6

, , , ,

, , , , , ,

, , , , , ,

, ,

A B C x max a max b c

max a max b c min a min b c

min a min b c min a min b c

min a min b c

   

 
 

 
 




   

   

   

1 1 1 2 2 2

3 3 3 4 4 4

5 5 5 6 6 6

, , , , , , ,

, , , , , ,

, , , , ,

x max a b c max a b c

min a b c min a b c

min a b c min a b c

   

  

  

(8) Same as (7). 

(9)    1 1 2 2, , , , ,B C x min b c min b c    

   

   

3 3 4 4

5 5 6 6

, , , ,

, , ,

max b c max b c

max b c max b c

  

  

    

     

     

  

1 1 1

2 2 2 3 3 3

4 4 4 5 5 5

6 6 6

, , , ,

, , , , , ,

, , , , , ,

, ,

A B C x max a min b c

max a min b c min a max b c

min a max b c min a max b c

min a max b c

   

 
 

 
 




   

   

   

1 1 2 2

3 3 4 4

5 5 6 6

, , , , ,

, , , ,

, , ,

A B x max a b max a b

min a b min a b

min a b min a b

    

  

  

   

   

   

1 1 2 2

3 3 4 4

5 5 6 6

, , , , ,

, , , ,

, , ,

A C x max a c max a c

min a b min a c

min a c min a c

    

  

  

        

    

    

    

    

    

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

, , , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , ,

A B A C x min max a b max a c

min max a b max a c

max min a b min a c

max min a b min a c

max min a b min a c

max min a b min a c

    
















Now let us consider 1 1,a b  and 1c , six 
cases may arise as 

1 1 1a b c  , for this

  

    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c a





1 1 1a c b  , for this 

  

    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c a
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1 1 1b a c  , for this

  

    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c a





1 1 1b c a  , for this 

  

    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c c





1 1 1c a b  , for this 

  

    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c a





1 1 1c b a  , for this 

  

    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c b




. 

Similarly it can be shown that other results 
are true for 2 2 2, ,a b c ; 3 3 3, ,a b c ; 4 4 4, ,a b c ; 5 5 5, ,a b c

; 6 6 6, ,a b c . Hence 

     A B C A B A C       .

(10) Same as (9). 

4. Restricted Interval Valued neutrosophic

Topological Spaces 

In this section we give the definition of 
restricted interval valued Neutrosophic topological 
spaces with some examples and results. 

Definition 4.1A restricted interval valued 
neutrosophic topology (RIVN-topology in short) on 
a non empty set X is a family of restricted interval 
valued neutrosophic subsets in X satisfying the 
following axioms 

(iv) 0,1   

(v)  , :i i
i

G G i J      

(vi) 1 2G G   for any 1 2,G G  . 

The pair  ,X   is called restricted

interval valued neutrosophic topological space 
(RIVN-topological space in short). The members of 
  are called restricted interval valued neutrosophic 

open sets. A RIVNSF is closed if and only if cF  is 
RIVN open set. 

Example 4.2 LetX be a non-empty set. Let us 
consider the following RIVNSs 

      1 , .5,.8 , .2,.3 , .2,.5 :G x x X  , 

      2 , .6,.7 , .5,.6 , .3,.4 :G x x X  , 

      3 1 2 , .6,.8 , .2,.3 , .2,.4 :G G G x x X   

, 

      4 1 2 , .5,.7 , .5,.6 , .3,.5 :G G G x x X   

. 

The family  1 1 2 3 40,1, , , ,G G G G   is a 

RIVN-topology in X and  1,X   is called a RIVN-

topological space. But  2 1 20,1, ,G G   is not a 

RIVN-topology as 1 2 3 2G G G    . 

Definition 4.3 The two RIVN subsets 0,1
constitute a RIVN-topology on X, called indiscrete 
RIVN-topology. The family of all RIVN subsets of 
X constitutes a RIVN-topology onX, such topology 
is called discrete RIVN-topology. 

Theorem 4.4 Let :j j J   be a collection of 

RIVN-topologies onX. Then their intersection 

j
j J




 is also aRIVS-topology on X. 

Proof: (i) Since 0,1 j  for each j J . Hence 

0,1 j
j J




 . 

(ii) Let  :kG k K  be an arbitrary 

family RIVNSs where k j
j J

G 


  for each 

k K . Then for each j J , k jG   for 

k K  and since for each j J , j ia a RIVN-

topology, therefore k j
k K

G 


  for each j J . 

Hence 
k K

k j
j J

G 
 

 . 

(iii) Let 1 2, j
j J

G G 


 , then 1 2, jG G 

for each j J . Since for each j J , j  is an 

RIVN-topology, therefore 1 2, jG G   for each 

j J . Hence 1 2 j
j J

G G 


 . 
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Thus j
j J




 forms a RIVN-topology as it 

satisfies all the axioms of RIVN-topology. But 
union of RIVN-topologies need not be a RIVN-
topology.  

Let us show this with the following example. 

Example 4.5 In example 4.2, let us consider two 
RIVN- topologies 3  and 4  on X as  3 1, ,0 1 G 

and  4 2, ,0 1 G  . Here their union 3 4  

 1 2 2, ,0 1 ,G G   is not a RIVN-topology onX. 

Definition 4.6 Let  ,X   be an RIVN-topological
space over X . A RIVN subset G  of X  is called 
restricted intervalvalued neutrosophicclosed set (in 
short RIVN-closed set) if its complement cG  is a 
member of  . 

Definition 4.7 Let  1,X   and  2,X   be two 

RIVN-topological spaces over X . If each 2G 

implies 1G  , then 1  is called restrictedinterval 
valued neutrosophic finer topology than 2  and 2

is called restricted interval valued neutrosophic 
coarser topology than 1 . 

Example 4.8 In example 4.2 and 4.5, 1  is 
restricted interval valued neutrosophic finer 
topology than 3  and 3  is called restricted 
interval valued neutrosophic coarser topology than 

1 . 

Definition 4.9 Let   be a RIVN-topological space 
on X  and ß be a subfamily of  . If every element 
of   can be express as the arbitrary 
restrictedinterval valued neutrosophic union of 
some elements of ß, then ß is called restricted 
interval valued neutrosophic basis for the RIVN-
topology  . 

5 Some Properties of Restricted Interval 
Valued Neutrosophic Soft Topological 
Spaces 

In this section some properties of RIVN- 
topological spaces are introduced. Some results on 
RIVNInt and RIVNCl are also introduced.Restricted 
interval valued neutrosophic subspace topology is 
also studied. 

Definition 5.1 Let  ,X   be a RIVN-topological

space and A be a RIVNS in X. The restrictedinterval 
valued neutrosophic interior and restrictedinterval 
valued neutrosophiccloser ofA is denoted by 
RIVNInt(A) and RIVNCl(A) are defined as 

   : is an open set andRIVNInt A G G RIVN G A 

 and
   : is an closed set andRIVNCl A F F RIVN F A 

respectively. 

Theorem 5.2 Let  ,X   be a RIVN-topological
space and G and H be two RIVNSs then the 
following properties hold 

(1)  RIVNInt G G

(2)    RIVNInt RIVNIntG H G H  

(3)  RIVNInt G 

(4)  RIVNInt GG G  

(5)     RIVNInt RIVNInt G RIVNInt G

(6)    ,0 0 1 1RIVNInt RIVNInt 

Proof: 

(1) Straight forward. 

(2)Let G H , then all the RIVN-open sets 
Contained  in G  also contained in H .       

i.e.   * * * *: :G G G H H H       

i.e.    * * * *:: H H HG G G     

i.e.    RIVNInt G RIVNInt H

(3)    * *:RIVNInt G G G G  

Now clearly  * *:G G G     

  RIVNInt G  .

(4) Let G  , then by (1)  RIVNInt G G .
Now since G  and G G , therefore 

   * *:G G G RIVNInt GG    

i.e,  G RIVNInt G

Thus  RIVNInt G G

Conversely, let  RIVNInt G G

Since by (3)  RIVNInt G 

Therefore G   
(5)   By (3)  RIVNInt G 
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 By (4) 
    , ,

A A
RIVNInt RIVNInt f E RIVNInt f E

(6)  We know that 0,1   
 By (4) 

   0 , 10 1RIVNInt RIVNInt 

Theorem 5.3 Let  ,X   be a RIVN-topological
space and G and H are two RIVNSs then the 
following properties hold 

(1)  RIVNClG G

(2)    Cl ClRIVN RIVNG H G H  

(3)   
c

ClRIVN G   

(4)  c
RIVNCl GG G  

(5)     RIVNCl RIVNCl G RIVNCl G

(6)    0 0, 1 1RIVNCl IVNClR 

Proof: straight forward. 

Theorem 5.4 Let  ,X   be an RIVN-topological
space on X  and A  be a RIVNS ofXand let

 :A A U U    . Then A  forms a RIVN-
topology on A . 

Proof: 

 (i) Clearly 0 0
A

A   and 1 1
A

A    . 

(ii) Let ,
Aj j JG    , then j jG A U   where 

jU   for each j J . 

Now     A
j J j J j J

j j jA U UG A 
  

      (since 

j
j J

U 


  as each jU  ). 

(iii) Let ,
A

G H   then G A U   and 
H A V  where ,U V  . 
Now 

     
A

U VA U A VG H A        

(since U V   as ,U V  ). 

Definition 5.5 Let  ,X   be an RIVN-topological
space on X and A  be a RIVNS ofX. Then 

 :A A U U     is called restricted interval 
valued neutrosophic subspace topology and 
 ,

A
A   is called restricted interval valued

neutrosophic subspace of RIVN-topological space
 ,X  .

Conclusion: In this paper we introduce the concept 
of restricted interval valued neutrosophic set which 
is the generalization of restrictedneutrosophic set. 
We define some operators on RIVNS. We also 
introduce a topological structure based on this. 
RIVN interior and RIVN closer of a restricted 

 interval valued neutrosophic set are also defined. 
Restricted interval valued neutrosophic subspace 
topology is also studied. In future combining the 
ideas presented in this paper with concept of soft 
set one can define a new concept named restricted 
interval valued Neutrosophic soft set and can 
define a topological structure too. 
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