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Abstract: After introducing the notion of hyperstructures about 80 years ago by F. Marty, a number of researches on
its theory, generalization, and it’s applications have been done. On the other hand, the theory of Neutrosophy, the study
of neutralities, was developed in 1995 by F. Smarandache as an extension of dialectics. This paper aims at finding
a connection between refined neutrosophy of sets and hypergroups. In this regard, we define refined neutrosophic
quadruple hypergroups, study their properties, and find their fundamental refined neutrosophic quadruple groups.
Moreover, some results related to refined neutrosophic quadruple po-hypergroups are obtained.
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1 Introduction
In 1934, Marty [19] introduced the concept of hypergroups by considering the quotient of a group by its

subgroup. And this was the birth of an interesting new branch of Mathematics known as “Algebraic hyperstruc-
tures” which is considered as a generalization of algebraic structures. In algebraic structure, the composition
of two elements is an element whereas in algebraic hyperstructure, the composition of two elements is a non-
empty set. Since then, many different kinds of hyperstructures (hyperrings, hypermodules, hypervector spaces,
...) were introduced. And many studies were done on the theory of algebraic hyperstructures as well on their
applications to various subjects of Sciences (see [12, 13, 30]). Later, in 1991, Vougioklis [28] generalized
hyperstuctures by introducing a larger class known as weak hyperstructures or Hv-structures. For more details
about Hv-structures, see [28, 29, 30, 31].

In 1965, Zadeh [32] extended the classical notion of sets by introducing the notion of Fuzzy sets whose
elements have degrees of membership. The theory of fuzzy sets is mainly concerned with the measurement
of the degree of membership and non-membership of a given abstract situation. Despite its wide range of real
life applications, fuzzy set theory can not be applied to models or problems that contain indeterminancy. This
is the reason that arose the importance of introducing a new logic known as neutrosophic logic that contains
the concept of indeterminancy. It was introduced by F. Smarandache in 1995, studied annd developed by him
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and by other authors. For more details about neutrosophic theory, we refer to [17, 22, 23, 25]. Recently,
many authors are working on the applications of this important concept. For example in [2], Abdel-Baset et
al. offered a novel approach for estimating the smart medical devices selection process in a group decision
making in a vague decision environment and used neutrosophics in their methodology. Moreover, in [7], R.
Alhabib et al. worked on some neutrosophic probability distribution. Other interesting applications of it are
found in [1, 3, 4, 15, 20].

In 2015, Smarandache [22] introduced the concept of neutrosophic quadruple numbers and presented some
basic operations on the set of neutrosophic quadruple numbers such as, addition, subtraction, multiplication,
and scalar multiplication. After that, a connection between neutrosophy and algebraic structures was estab-
lished where Agboola et al. [5] considered the set of neutrosophic quadruple numbers and used the defined
operations on it to discuss neutrosophic quadruple algebraic structures. More results about neutrosophic alge-
braic structures are found in [11, 26]. A generalization of the latter work was done in 2016 where Akinleye
et al. [6] considered the set of neutrosophic quadruple numbers and defined some hyperoperations on it and
discussed neutrosophic quadruple hyperstructures. More specifically, the latter papers introduced the notions
of neutrosophic groups, neutrosophic rings, neutrosophic hypergroups and neutrosophic hyperrings on a set of
real numbers and studied their basic properties.

The authors in [9] discussed neutrosophic quadruple Hv-groups and studied their properties. Then in [10],
they found the fundamental group of neutrosophic quadruple Hv-groups and proved that it is a neutrosphic
quadruple group. This paper is an extension to the above mentioned results. In Section 2, some definitions re-
lated to weak hyperstructures have been presented while section 3 involves the refined neutrosophic quadruple
hypergroup and the studying of it’s properties. As for section 4, an order on refined neutrosophic quadruple
hypergroups is defined and some examples on refined neutrosophic quadruple po-hypergroups are presented.
Finally, in section 5, the fundamental refined neutrosophic quadruple group of refined neutrosophic quadruple
hypergroups with some important theorems, corollaries and propositions have been submitted.

2 Preliminaries
In this section, some definitions and theorems related to both: hyperstructure theory and neutrosophic

theory are presented. (See [12, 13, 30].)

2.1 Basic notions of hypergroups

Definition 2.1. Let H be a non-empty set. Then, a mapping ◦ : H × H → P∗(H) is called a binary
hyperoperation on H , where P∗(H) is the family of all non-empty subsets of H . The couple (H, ◦) is called a
hypergroupoid.

In this definition, if A and B are two non-empty subsets of H and x ∈ H , then:

A ◦B =
⋃
a∈A
b∈B

a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.

Definition 2.2. A hypergroupoid (H, ◦) is called a:

1. semihypergroup if for every x, y, z ∈ H , we have x ◦ (y ◦ z) = (x ◦ y) ◦ z;
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2. quasi-hypergroup if for every x ∈ H , x◦H = H = H ◦x (The latter condition is called the reproduction
axiom);

3. hypergroup if it is a semihypergroup and a quasi-hypergroup.

Definition 2.3. [13] Let (H, ?) and (K, ?′) be two hypergroups. Then f : H → K is said to be hypergroup
homomorphism if f(x?y) = f(x)?′f(y) for all x, y ∈ H . (H, ?) and (K, ?′) are called isomorphicHv-groups,
and written as H ∼= K, if there exists a bijective function f : R→ S that is also a homomorphism. The set of
all isomorphism of (H, ?) is denoted as Aut(H).

T. Vougiouklis, the pioneer of Hv-structures, generalized the concept of algebraic hyperstructures to weak
algebraic hyperstructures [28]. The latter concept is known as “weak” since the equality sign in the definitions
of Hv-structures is more likely to be replaced by non-empty intersection. The concepts in Hv-structures are
mostly used in representation theory [29].
A hypergroupoid (H, ◦) is called an Hv-semigroup if (x ◦ (y ◦ z)) ∩ ((x ◦ y) ◦ z) 6= ∅ for all x, y, z ∈ H . An
element 0 ∈ H is called an identity if x ∈ (0 ◦ x ∩ x ◦ 0) for all x ∈ H and it is called a scalar identity if
x = 0 ◦ x = x ◦ 0 for all x ∈ H . If the scalar identity exists then it is unique. A hypergroupoid (H, ◦) is called
an Hv-group if it is a quasi-hypergroup and an Hv-semigroup. A non empty subset S of an Hv-group (H, ◦) is
called Hv-subgroup of H if (S, ◦) is an Hv-group.

Definition 2.4. [27] A hypergroup is called cyclic if there exist h ∈ H such that H = h ∪ h2 ∪ . . . ∪ hi ∪ . . .
with i ∈ N. If there exists s ∈ N such that H = h ∪ h2 ∪ . . . ∪ hs then H is a cyclic hypergroup with finite
period. Otherwise, H is called cyclic hypergroup with infinite period. Here, hs = h ? h ? . . . ? h︸ ︷︷ ︸

s times

.

Definition 2.5. [27] A hypergroup is called a single power cyclic hypergroup if there exist h ∈ H and s ∈ N
such that H = h∪ h2 ∪ . . .∪ hs ∪ . . . and h∪ h2 ∪ . . .∪ hm−1 ⊂ hm for every m ≥ 1. In this case, h is called
a generator of H .

2.2 Refined neutrosophic quadruple hypergroups
Let T , I , F , represent the neutrosophic components truth, indeterminacy, and falsehood respectively. Sym-

bolic (or Literal) Neutrosophic theory is referring to the use of these symbols in neutrosophics. In 2013, F.
Smarandache [24] introduced the refined neutrosophic components. Where the neutrosophic literal compo-
nents T, I, F can be split into respectively the following neutrosophic literal subcomponents:

T1, . . . , Tp; I, . . . , Ir;F1, . . . , Fs,

where p, r, s are positive integers with max{p, r, s} ≥ 2.

Definition 2.6. [25] Let X be a nonempty set and p, r, s ∈ N with (p, r, s) 6= (1, 1, 1). A refined neutrosophic
quadruple X-number is a number having the following form:

a+
p∑

i=1

biTi +
r∑

j=1

cjIj +
s∑

k=1

bkFk,

where a, bi, cj, dk ∈ X and T, I, F have their usual neutrosophic logic meanings, and Ti, Ij, Fk are refinements
of T, I, F respectively.
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The set of all refined neutrosophic quadruple X-numbers is denoted by RNQ(X), that is,

RNQ(X) = {a+
p∑

i=1

biTi +
r∑

j=1

cjIj +
s∑

k=1

dkFk : a, bi, cj, dk ∈ X}.

For simplicity, we write a+
p∑

i=1

biTi +
r∑

j=1

cjIj +
s∑

k=1

dkFk as

( a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk).

In what follows, Ti, Ij, Fk are refinements of T, I, F respectively with 1 ≤ i ≤ p, 1 ≤ j ≤ r and 1 ≤ k ≤ s.
Let (H,+) be a hypergroupoid with identity “0” and 0 + 0 = 0 and define “⊕” on RNQ(H) as follows:

(a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)⊕ (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk)

= {(x,
p∑

i=1

yiTi,
r∑

j=1

zjIj,
s∑

k=1

wkFk) : x ∈ a+ a′, yi ∈ bi + b′i, zj ∈ cj + c′j, wk ∈ dk + d′k}.

3 New properties of refined neutrosophic quadruple hypergroups
In this section, refined neutrosophic quadruple hypergroups are defined and their properties are studied.

Proposition 3.1. Let (H,+) be a hypergroupoid with 0 ∈ H and Ti, Ij, Fk are refinements of T, I, F respec-

tively. Then (RNQ(H),⊕) is a quasi-hypergroup with identity 0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) if and only if

(H,+) is a quasi-hypergroup with identity 0.

Proof. Let (H,+) be a quasi-hypergroup. We prove now that (RNQ(H),⊕) satisfies the reproduction axiom.

That is, x⊕RNQ(H) = RNQ(H)⊕ x = RNQ(H) for all x = (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk) ∈ RNQ(H).

We prove x ⊕ RNQ(H) = RNQ(H) and the proof of RNQ(H) ⊕ x = RNQ(H) is done in a similar

manner. Let y = (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk) ∈ RNQ(H), we have x⊕ y = (a+ a′,
p∑

i=1

(bi+ b
′
i)Ti,

r∑
j=1

(cj +

c′j)Ij,
s∑

k=1

(dk + d′k)Fk) ⊆ RNQ(H) as (a+ a′)∪ (bi+ b′i)∪ (cj + c′j)∪ (dk + d′k) ⊆ H . Thus x⊕RNQ(H) ⊆

RNQ(H). Let y = (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk) ∈ RNQ(H). Since (H,+) satisfies the reproduction

axiom and a′, b′i, c
′
j, d
′
k ∈ H , it follows that a′ ∈ a+H , b′i ∈ bi +H , c′j ∈ cj +H and d′k ∈ dk +H . The latter

implies that there exist a?, b?i , c
?
j , d

?
k ∈ H such that a′ ∈ a+ a?, b′i ∈ bi + b?i , c

′
j ∈ cj + c?j and d′k ∈ dk + d?k. It

is clear that y ∈ x⊕ z where z = (a?,
p∑

i=1

b?iTi,
r∑

j=1

c?jIj,
s∑

k=1

d?kFk) ∈ RNQ(H). Thus, (RNQ(H),⊕) satisfies

the reproduction axiom.
Conversely, let (RNQ(H),⊕) be a quasi-hypergroup and a ∈ H . Since 0 ∈ H , it follows that a =

(a,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) ∈ RNQ(H). Having (RNQ(H),⊕) a quasi-hypergroup implies that a⊕RNQ(H) =
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RNQ(H)⊕ a = RNQ(H). The latter implies that a+H = H + a = H .

Proposition 3.2. Let (H,+) be a hypergroupoid with 0 ∈ H . Then (RNQ(H),⊕) is a semi-hypergroup

with identity element 0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) if and only if (H,+) is a semi-hypergroup with identity

element 0.

Proof. Let (H,+) be a a semi-hypergroup and x, y, z ∈ RNQ(H) with

x = (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk), y = (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk) and

z = (a′′,
p∑

i=1

b′′i Ti,
r∑

j=1

c′′j Ij,
s∑

k=1

d′′kFk). Having a + (a′ + a′′) = (a + a′) + a′′, bi + (b′i + b′′i ) = (bi + b′i) + b′′i ,

cj + (c′j + c′′j ) = (cj + c′j) + c′′j and dk + (d′k + d′′k) = (dk + d′k) + d′′k implies that x⊕ (y ⊕ z) = (x⊕ y)⊕ z.

Let (RNQ(H),⊕) be a semi-hypergroup and a, b, c ∈ H . Then a, b, c ∈ RNQ(H) with a = (a,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk),

b = (b,
p ∑

i=1

0Ti,
r ∑

j=1

0Ij,
s ∑

k=1

0Fk) and

c = (c,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk). Having a⊕ (b⊕ c) = (a⊕ b)⊕ c implies that a+ (b+ c) = (a+ b) + c.

Proposition 3.3. Let (H,+) be a hypergroupoid with 0 ∈ H . Then (RNQ(H),⊕) is an Hv-semigroup with

identity element 0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) if and only if (H,+) is anHv-semigroup with identity element

0.

Proof. The proof is similar to that of Proposition 3.2 but instead of equality we have non-empty intersection.

Theorem 3.4. Let (H,+) be a hypergroupoid. Then (RNQ(H),⊕) is a hypergroup with identity element

0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) if and only if (H,+) is a hypergroup with identity element 0.

Proof. The proof is direct from Propositions 3.1 and 3.2.

Theorem 3.5. Let (H,+) be a hypergroupoid with 0 ∈ H . Then (RNQ(H),⊕) is an Hv-group with identity

element 0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) if and only if (H,+) is an Hv-group with an identity element 0.

Proof. The proof follows from Propositions 3.1 and 3.3.

Theorem 3.6. Let (H,+) be a hypergroupoid. Then (RNQ(H),⊕) is a commutative hypergroup (Hv-group)

with identity element 0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) if and only if (H,+) is a commutative hypergroup (Hv-

group) with an identity 0.

Proof. The proof is straightforward.

NOTATION 1. Let (H,+) be a hypergroup (Hv-group) with identity “0” satisfying 0+0 = 0. Then (RNQ(H),⊕)
is called a refined neutrosophic quadruple hypergroup (refined neutrosophic quadruple Hv-group).
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Corollary 3.7. Let (H,+) be a hypergroup (Hv-group) containing an identity element 0 with the property that
0 + 0 = 0. Then there are infinite number of refined neutrosophic quadruple hypergroups (Hv-groups).

Proof. Let (H,+) be a hypergroup (Hv-group). Theorem 3.4 and Theorem 3.5 implies that (RNQ(H),⊕) is
a neutrosophic quadruple hypergroup (Hv-group) with identity 0 and 0 ⊕ 0 = 0. Applying Theorem 3.4 and
Theorem 3.5 on (RNQ(H),⊕), we getRNQ(RNQ(H)) is a neutrosophic quadruple hypergroup (Hv-group).
Continuing on this pattern, we get RNQ(RNQ(. . . (RNQ(H)) . . .) is a neutrosophic quadruple hypergroup
(Hv-group).

Proposition 3.8. LetX be any set with a hyperoperation “+”. ThenRNQ(X) is a cyclic refined neutrosophic
quadruple hypergroup if and only if X is a cyclic hypergroup with an identity element “0 ∈ X” and 0+0 = 0.

Proof. Let X be a cyclic hypergroup with identity “0 ∈ X” and 0 + 0 = 0. Then there exist a ∈ X such that

a is a generator of X . It is clear that a is a generator of RNQ(X) where a = (a,
p∑

i=1

aTi,
r∑

j=1

aIj,
s∑

k=1

aFk) ∈

RNQ(X).
Let RNQ(X) be a cyclic quadruple hypergroup. Then there exist x ∈ RNQ(X) such that

x = (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk) is a generator of RNQ(X). It is clear that a is a generator of X .

Example 3.9. Let T1, T2 be refinements of T , I1, F1 be refinements of I, F respectively, H1 = {0, 1} and
define (H1,+1) as follows:

+1 0 1

0 0 1

1 1 H1

Since (H1,⊕) is a commutative hypergroup with an identity 0, it follows by Theorem 3.6 that (RNQ(H1),⊕)
is a commutative refined neutrosophic quadruple hypergroup with 32 elements and identity 0 = (0, 0T1 +
0T2, 0I1, 0F1). Moreover, having H1 = 1 +1 1 implies that 1 is a generator of (H1,+) and (H1,+) is a
single-power cyclic hypergroup of period 2. Theorem 3.8 asserts that (RNQ(H1),⊕) is a single power cyclic
hypergroup of period 2 and the generator element is (1, 1T1 + 1T2, 1I1, 1F1).
It is clear that (1, 0T1 + 0T2, 1I1, 1F1) ⊕ (1, 0T1 + 1T2, 0I1, 1F1) = {(1, 0T1 + 1T2, 1I1, 0F1), (1, 0T1 +
1T2, 1I1, 1F1)}.

Definition 3.10. Let (H,+) be a hypergroup (Hv-group). A subset X of RNQ(H) with the property that 0 =

(0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) ∈ X is called a refined neutrosophic subhypergroup (Hv-subgroup) of RNQ(H)

if there exists S ⊆ H such that X = RNQ(S) and (X,⊕) is a refined neutrosophic quadruple hypergroup
(Hv-group).

Proposition 3.11. Let (H,+) be a hypergroup (Hv-group) and S ⊆ H . A subset X = RNQ(S) ⊆ RNQ(H)
is a refined neutrosophic subhypergroup (Hv-subgroup) of RNQ(H) if the following conditions are satisfied:

1. 0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) ∈ X;

2. x⊕X = X ⊕ x = X for all x ∈ X .
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Proof. The proof is straightforward.

Theorem 3.12. Let (H,+) be a hypergroup (Hv-group) with identity “0”, S ⊆ H and 0 ∈ S. Then
(RNQ(S),⊕) is a refined neutrosophic quadruple subhypergroup (Hv-subgroup) of (RNQ(H),⊕) if and
only if (S,+) is a subhypergroup (Hv-subgroup) of (H,+).

Proof. The proof is straightforward by applying Proposition 3.11.

Example 3.13. Since (H1,+1) in Example 3.9 has only two subhypergroups ({0} and H1), it follows by
applying Theorem 3.12 that (RNQ(H1),⊕) has only two refined neutrosophic quadruple subhypergroups:
({0},⊕) = (RNQ({0}),⊕) and (RNQ(H1),⊕) .

Example 3.14. Let H2 = {0, 1, 2, 3} and define (H2,+2) as follows:

+2 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 {0, 2} 1

3 3 0 1 2

It is clear that (H2,+2) is a commutative Hv-group that has exactly three non-isomorphic Hv-subgroups
containing 0: {0}, {0, 2} and H2. We can deduce by Theorem 3.12 that (RNQ(H2),⊕) is a commutative
refined neutrosophic quadruple Hv-group and has three non-isomorphic refined neutrosophic quadruple Hv-
subgroups: RNQ({0}) = {0}, RNQ({0, 2}) and RNQ(H2).

Proposition 3.15. Let (H,+) be a hypergroup and (S,+) be a subhypergroup of (H,+) containing 0. Then
RNQ(S)⊕RNQ(S) = RNQ(S).

Proof. The proof is straightforward.

Definition 3.16. Let (RNQ(H),⊕1) and (RNQ(J),⊕2) be refined neutrosophic quadruple hypergroups with
0H ∈ H and 0J ∈ J . A function φ : RNQ(H) → RNQ(J) is called refined neutosophic homomorphism if
the following conditions are satisfied:

1. φ(0H ,
p∑

i=1

0HTi,
r∑

j=1

0HIj,
s∑

k=1

0HFk) = (0J ,
p∑

i=1

0JTi,
r∑

j=1

0JI,
s∑

k=1

0JFk);

2. φ(x⊕1 y) = φ(x)⊕2 φ(y) for all x, y ∈ RNQ(H).

If φ is a refined neutrosophic bijective homomorphism then it is called refined neutrosophic isomorphism and
we write RNQ(H) ∼= RNQ(J).

Example 3.17. Let (H,+) be a hypergroup. Then the function f : RNQ(H)→ RNQ(H) is an isomorphism,
where f(x) = x for all x ∈ RNQ(H).
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Example 3.18. Let (H,+) be a hypergroup and 0 ∈ H and f : RNQ(H)→ RNQ(H) be defined as follows:

f((a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)) = (a,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk).

Then f is a refined neutrosophic homomorphism.

Proposition 3.19. Let (H,+1) and (J,+2) be hypergroups with 0H ∈ H, 0J ∈ J . If there exist a ho-
momorphism f : H → J with f(0H) = 0J then there exist a refined neutrosophic homomorphism from
(RNQ(H),⊕1) to (RNQ(J),⊕2).

Proof. Let φ : RNQ(H)→ RNQ(J) be defined as follows:

φ((a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)) = (f(a),
p∑

i=1

f(bi)Ti,
r∑

j=1

f(cj)Ij,
s∑

k=1

f(dk)Fk).

It is clear that φ is a refined neutrosophic homomorphism.

Corollary 3.20. Let (H,+1) and (J,+2) be isomorphic hypergroups with 0H ∈ H, 0J ∈ J . Then (RNQ(H),⊕1)
and (RNQ(J),⊕2) are isomorphic refined neutrosophic quadruple hypergroups.

Proof. The proof is straightforward by using Proposition 3.19.

Definition 3.21. Let (H,+) be a commutative hypergroup with an identity element “0” and S ⊆ R be a
subhypergroup of H . Then (H/S,+′) is a hypergroup with: S as an identity element and S +′ S = S. Here
“+′” is defined as follows: For all x, y ∈ H ,

(x+ S) +′ (y + S) = (x+ y) + S.

Proposition 3.22. Let (S,+) be a subhypergroup of a commutative hypergroup (H,+). Then (RNQ(H/S),⊕)
is a hypergroup.

Proof. Since (H,+) is commutative, it follows that “+′” is well defined. The proof follows from having
(H/S,+′) a hypergroup with S as an identity, S +′ S = S and from Theorem 3.4.

Proposition 3.23. Let (S,+) be a subhypergroup of a commutative hypergroup (H,+). Then (RNQ(H/S),⊕) ∼=
(RNQ(H)/RNQ(S),⊕′).
Proof. Let g : RNQ(H)/RNQ(S)→ RNQ(H/S) be defined as follows:

g((a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)⊕RNQ(S))

= (a+ S,
p∑

i=1

(bi + S)Ti,
r∑

j=1

(cj + S)Ij,
s∑

k=1

(dk + S)Fk).

Then g is a hypergroup isomorphism. This can be proved easily by applying a similar proof to that of Propo-
sition 3.27 that was done by the authors in [9].

Example 3.24. Let H3 = {0, 1, 2, 3, 4} and define “+” on H3 as follows: x + y = {x, y} for all x, y ∈ H3.
It is clear that {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3} and H3 are the only non-isomorphic subhypergroups of H3.
By applying Proposition 3.23, we get RNQ(H3/{0, 1}) ∼= RNQ(H3)/RNQ({0, 1}), RNQ(H3/{0, 1, 2}) ∼=
RNQ(H3)/RNQ({0, 1, 2}) and RNQ(H3/{0, 1, 2, 3}) ∼= RNQ(H3)/RNQ({0, 1, 2, 3}).
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4 Ordered refined neutrosophic quadruple hypergroups
In this section, an order on refined neutrosophic quadruple hypergroups is defined and some examples and

results on refined neutrosophic quadruple partially ordered hypergroups (po-hypergroups) are presented.
A partial order relation on a set X (Poset) is a binary relation “≤” on X which satisfies conditions reflex-

ivity, antisymmetry and transitivity.
Let (H,≤) be a partial ordered set and define (RNQ(H),�) as follows:

(a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)� (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk)

if and only if a ≤ a′, bi ≤ b′i, cj ≤ c′j and dk ≤ d′k. It is clear that (RNQ(H),�) is a partial ordered set.

Definition 4.1. [16] An algebraic hyperstructure (H, ◦,≤) is called a partially ordered hypergroup or po-
hypergroup, if (H, ◦) is a hypergroup and ≤ is a partial order relation on H such that the monotone condition
holds as follows:

x ≤ y ⇒ a ◦ x ≤ a ◦ y for all a, x, y ∈ H.

Let A,B be non-empty subsets of (H,≤). The inequality A ≤ B means that for any a ∈ A, there exist
b ∈ B such that a ≤ b.

Theorem 4.2. Let (H,+) be a hypergroupoid. Then (RNQ(H),⊕,�) is a refined neutrosophic quadruple po-

hypergroup with identity element 0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) if and only if (H,+,≤) is a po-hypergroup

with identity element 0.

Proof. Let (H,+,≤) be a po-hypergroup, e = (e,
p∑

i=1

fiTi,
r∑

j=1

cjIj,
s∑

k=1

hkFk) ∈ RNQ(H) and

(a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)� (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk). We need to show that:

e⊕ (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)� e⊕ (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk).

Having a ≤ a′, bi ≤ b′i, cj ≤ c′j , dk ≤ d′k and (H,+,≤) a po-hypergroup implies that e + a ≤ e + a′,

fi + bi ≤ fi + b′i, gj + cj ≤ gj + c′j and hk + dk ≤ hk + d′k. Let a? = (a?,
p∑

i=1

b?iTi,
r∑

j=1

c?jIj,
s∑

k=1

d?kFk) ∈

e ⊕ (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk). Then a? ∈ e + a, b?i ∈ fi + bi, c?j ∈ gj + cj and d?k ∈ hk + dk. Having

e+ a ≤ e+ a′, fi + bi ≤ fi + b′i, gj + cj ≤ gj + c′j and hk + dk ≤ hk + d′k implies that there exist a?′ ∈ e+ a′,
b?′i ∈ fi + b′i, c

?′
j ∈ gj + c′j and d?′k ∈ hk + d′k such that a? ≤ a?′, b?i ≤ b?′i , c?j ≤ c?′j and d?k ≤ d?′k . We get now

that a? � a?′ where a?′ = (a?′,
p∑

i=1

b?′i Ti,
r∑

j=1

c?′j Ij,
s∑

k=1

d?′k Fk) and a?′ ∈ e⊕ (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk).

Let a, b, e ∈ H and a ≤ b. Having 0 ≤ 0 implies that

(a,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk)� (b,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk).

M. Al-Tahan and B. Davvaz, Refined Neutrosophic Quadruple (Po-)Hypergroups and their Fundamental
Group.

27, 2019



147 Neutrosophic Sets and Systems, Vol.

Since (RNQ(H),⊕,�) is a refined neutrosophic quadruple po-hypergroup, it follows that for

e = (e,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk),

e⊕ (a,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk)� e⊕ (b,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk).

It is clear that e+ a ≤ e+ b.

Corollary 4.3. Let (H,+,≤) be a po-hypergroup containing an identity element 0 with the property that
0 + 0 = 0. Then there is infinite number of refined neutrosophic quadruple po-hypergroups.

Proof. The proof is starightforward using Theorem 4.2.

Example 4.4. Let H1 = {0, 1} and define (H1,+1) as in Example 3.9. It is clear that (H1,+1,≤) is a po-
hypergroup. Here, the partial order relation “≤” is directed to the set {(0, 0), (1, 1)}. By using Theorem 4.2,
we get (RNQ(H1),⊕,�) is a refined neutrosophic quadruple po-hypergroup.

Example 4.5. Let (H,≤) be any poset and define (H,+) as the biset hypergroup, i.e. x + y = {x, y} for all
x, y ∈ H . Then (RNQ(H),⊕,�) is a refined neutrosophic quadruple po-hypergroup.

Theorem 4.6. [16] Let (H, ◦) be a hypergroup such that there exists an element 0 ∈ H and the following
conditions hold:

1. 0 ◦ 0 = 0;

2. {0, x} ⊆ 0 ◦ x for all x ∈ H;

3. If x ◦ 0 = y ◦ 0 then x = y for all x, y ∈ H .

Then there exist a relation “≤” on H such that (H, ◦,≤) is a po-hypergroup.

Heidari et al. [16], in their proof of Theorem 4.6, defined the binary relation “≤” on H as follows:
x ≤ y ⇐⇒ x ∈ y ◦ 0, for all x, y ∈ H .

Corollary 4.7. Let (H,+) be a hypergroup satisfying conditions of Theorem 4.6. Then there exist a relation
“�” on RNQ(H) such that (RNQ(H),⊕,�) is a refined neutrosophic quadruple po-hypergroup.

Proof. The proof follows from Theorems 4.2 and 4.6.

Example 4.8. Let H = {0, x, y} and define “+” by the following table:

+ 0 x y

0 0 {0, x} H

c {0, x} H H

y H H H

Then (RNQ(H),⊕,�) is a refined neutrosophic quadruple po-hypergroup. Here the partial order relation “≤”
is directed to the set {(0, 0), (x, x), (y, y), (x, y), (0, x), (0, y)} and � is defined in the usual way on RNQ(H).
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Definition 4.9. Let (RNQ(H),⊕1,�1) and (RNQ(J),⊕2,�2) be refined neutrosophic quadruple po-hypergroups.
A function φ : RNQ(H)→ RNQ(J) is called an ordered refined neutosophic homomorphism if the following
conditions hold:

1. φ(0H ,
p∑

i=1

0HTi,
r∑

j=1

p0HIj,
s∑

k=1

0HFk) = (0J ,
p∑

i=1

0JTi,
r∑

j=1

0JI,
s∑

k=1

0JFk);

2. φ(x⊕1 y) = φ(x)⊕2 φ(y) for all x, y ∈ RNQ(H);

3. if x�1 y then φ(x)�2 φ(y) for all x, y ∈ RNQ(H).

If φ is an ordered refined neutrosophic homomorphism and is bijective then it is called an ordered refined
neutrosophic isomorphism and we sayRNQ(H) andRNQ(J) are isomorphic refined neutrosophic quadruple
po-hypergroups.

Example 4.10. Let (H,+,≤) be a po-hypergroup. Then f : RNQ(H) → RNQ(H) is an ordered refined
neutrosophic isomorphism, where f(x) = x for all x ∈ RNQ(H).

Example 4.11. Let (H,+,≤) be a po-hypergroup, 0 ∈ H and f : RNQ(H) → RNQ(H) be defined as
follows:

f((a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkF )) = (a,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0F ).

Then f is an ordered refined neutrosophic homomorphism.

Example 4.12. Let (H,+1,≤1) and (J,+2,≤2) be po-hypergroups, 0H ∈ H, 0J ∈ J and g : H → J be an
ordered homomorphism. Then f : RNQ(H)→ RNQ(J) is an ordered refined neutrosophic homomorphism.
Here, f is defind as follows:

f((a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkF )) = (g(a),
p∑

i=1

0JTi,
r∑

j=1

0JIj,
s∑

k=1

0JFk).

Proposition 4.13. Let (H,+1,≤1) and (J,+2,≤2) be po-hypergroups with 0H ∈ H, 0J ∈ J . If there exist
an ordered homomorphism f : H → J with f(0H) = 0J then there exist an ordered refined neutrosophic
homomorphism from (RNQ(H),⊕1,�1) to (RNQ(J),⊕2,�2).

Proof. Let φ : RNQ(H)→ RNQ(J) be defined as follows:

φ((a,

p∑
i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)) = (f(a),

p∑
i=1

f(bi)Ti,
r∑

j=1

f(cj)Ij,
s∑

k=1

f(dk)Fk).

It is clear that φ is an ordered refined neutrosophic homomorphism.

Corollary 4.14. Let (H,+1,≤1) and (J,+2,≤2) be isomorphic po-hypergroup with 0H ∈ H, 0J ∈ J . Then
(RNQ(H),⊕1,�1) and (RNQ(J),⊕2,�2) are isomorphic refined neutrosophic quadruple po-hypergroups.

Proof. The proof is straightforward by using Proposition 4.13.
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5 Fundamental group of refined neutrosophic quadruple hypergroups
This section presents the study of fundamental relation on refined neutrosophic quadruple hypergroups and

finds their fundamental refined quadruple neutrosophic groups.

Theorem 5.1. Let (G,+) be a groupoid. Then (RNQ(G),⊕) is a group with identity element

0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) if and only if (G,+) is a group with identity element 0.

Proof. It is clear that 0 = (0,
p∑

i=1

0Ti,
r∑

j=1

0Ij,
s∑

k=1

0Fk) is the identity of (RNQ(G),⊕) if and only if 0 is the

identity of G. Let x = (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk) ∈ RNQ(G). Then the inverse

−x = (a,
p∑

i=1

(−bi)Ti,
r∑

j=1

(−cj)Ij,
s∑

k=1

(−dk)Fk) of x exists if and only if the inverse −y of y exists in G for all

y ∈ G. The proof of (RNQ(G),⊕) is binary closed if and only if (G,+) is binary closed is similar to that of
Proposition 3.1. And the proof of (RNQ(G),⊕) is associative if and only if (G,+) is associative is similar to
that of Proposition 3.2.

NOTATION 2. Let (G,+) be a group with identity element “0”. Then (RNQ(G),⊕) is called refined neutro-
sophic quadruple group.

Proposition 5.2. LetG,G′ be isomorphic groups. ThenRNQ(G) andRNQ(G′) are isomorphic neutrosophic
quadruple groups.

Definition 5.3. [14] For all n > 1, we define the relation βn on a semihypergroup (H, ◦) as follows:

xβny if there exist a1, . . . , an in H such that {x, y} ⊆
n∏

i=1

ai

Here,
n∏

i=1

ai = a1 ◦ a2 . . . ◦ an. And we set β =
⋃
n≥1

βn, where β1 = {(x, x) | x ∈ H} is the diagonal relation

on H .

Koskas [18] introduced this relation as an important tool to connect hypergroups with groups. And due to
it’s importance in connecting algebraic hyperstructures with algebraic structures, different researchers studied
it on various hypergroups and some extended this definition to cover other types of hyperstructures.
Clearly, the relation β is reflexive and symmetric. Denote by β∗ the transitive closure of β. Then β? is called
the fundamental equivalence relation on H and it is the smallest strongly regular relation on H . If H is a
hypergroup then β = β? and H/β∗ is called the fundamental group.

Throughout this section, β and β? are the relation on H and βN and β?
N are the relations on RNQ(H).

Theorem 5.4. Let (H,+) be a hypergroup with identity element element “0” and 0+0 = 0 and let a, a′, bi, b′i,
cj, c

′
j , dk, d

′
k ∈ H . Then

(a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)βN(a
′,

p∑
i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk) if and only if aβa′, biβb′i, cjβc
′
j and dkβd′k.
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Proof. Let (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)βN(a
′,

p∑
i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk). Then there exist

(at,
p∑

i=1

bitTi,
r∑

j=1

cjtIj,
s∑

k=1

dktFk) with t = 1, . . . , n such that

{(a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk), (a
′,

p∑
i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk)}

is a subset of

(a1,
p∑

i=1

bi1Ti,
r∑

j=1

cj1Ij,
s∑

k=1

dkFk)⊕ . . .⊕ (an,
p∑

i=1

binTi,
r∑

j=1

cjnIj,
s∑

k=1

dknFk).

The latter implies that a, a′ ∈ a1 + . . . + an, bi, b′i ∈ bi1 + . . . + bin, cj, c′j ∈ cj1 + . . . + cjnand dk, d′k ∈
dk1 + . . .+ dkn. Thus, aβa′, biβb′i, cjβc

′
j and dkβd′k.

Conversely, let aβa′, biβb′i, cjβc
′
j and dkβd′k. Then there exist t1, t2, t3, t4 ∈ N and x1, . . . , xt1 , yi1, . . . , yit2 ,

zj1, . . . , zjt3 , wk1, . . . , wkt4 ∈ H such that a, a′ ∈ x1+ . . .+xt1 , bi, b′i ∈ yi1+ . . .+yit2 , cj, c′j ∈ zj1+ . . .+ zjt3
and dk, d′k ∈ wk1 + . . . + wkt4 . By setting t = max{t1, t2, t3, t4} and xm = 0 for t1 < m ≤ t, yim = 0 for
t2 < m ≤ t, zjm = 0 for t3 < m ≤ t and wkm = 0 for t4 < m ≤ t and using the fact that e ∈ 0 + e ∩ e + 0
for all e ∈ H , we get a, a′ ∈ x1 + . . . + xt1 , bi, b′i ∈ yi1 + . . . + yit, cj, c′j ∈ zj1 + . . . + zjt and dk, d′k ∈

wk1 + . . . + wkt. The latter implies that {(a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk), (a
′,

p∑
i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk)} is a

subset of (x1,
p∑

i=1

yi1Ti,
r∑

j=1

zj1Ij,
s∑

k=1

wk1Fk)⊕ . . .⊕ (xt,
p∑

i=1

yitTi,
r∑

j=1

zjtIj,
s∑

k=1

wktFk). Thus,

(a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)βN(a
′,

p∑
i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk).

Theorem 5.5. Let (H,+) be a hypergroup with identity “0” and 0 + 0 = 0. Then RNQ(H)/βN ∼=
RNQ(H/β).

Proof. Let φ : RNQ(H)/βN → RNQ(H/β) be defined as

φ(βN((a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk))) = (β(a),
p∑

i=1

β(bi)Ti,
r∑

j=1

β(cj)Ij,
s∑

k=1

β(dk)Fk).

Theorem 5.4 asserts that φ is well-defined and one-to-one. Also, it is clear that φ is onto. We need to show that
φ is a group homomorphism. Let

a = (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk) and a′ = (a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk). Since βN(a) �′ βN(a′) = βN(x)

where x = (x,
p∑

i=1

yiTi,
r∑

j=1

zjIj,
s∑

k=1

wkFk) ∈ (a,
p∑

i=1

biTi,
r∑

j=1

cjIj,
s∑

k=1

dkFk)⊕(a′,
p∑

i=1

b′iTi,
r∑

j=1

c′jIj,
s∑

k=1

d′kFk) =
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(a+ a′,
p∑

i=1

(bi + b′i)Ti,
r∑

j=1

(cj + c′j)Ij,
s∑

k=1

(dk + d′k)Fk), it follows that

φ(βN(a)� βN(a′)) = φ(x) = (β(x),

p∑
i=1

β(yi)Ti,
r∑

j=1

β(zj)Ij,
s∑

k=1

β(wk)Fk).

Having β(x) = β(a)⊕β(a′), β(yi) = β(bi)⊕β(b′i), β(zj) = β(cj)⊕β(c′j) and β(wk) = β(dk)�β(d′k) imply
that φ(βN(a)�′ βN(a′)) = φ(βN(a))⊕′ φ(βNa′).

Corollary 5.6. Let (H,+) be a hypergroup with identity element “0” and 0 + 0 = 0. If G is the fundamental
group of H (up to isomorphism) then RNQ(G) is the fundamental group of RNQ(H) (up to isomorphism).

Proof. The proof follows from Proposition 5.2 and Theorem 5.5.

Corollary 5.7. Let (H,+) be a hypergroup with identity element “0” and 0 + 0 = 0. If H has a trivial
fundamental group then RNQ(H) has a trivial fundamental group.

Proof. The proof is straightforward by applying Corollary 5.6.

Theorem 5.8. [8] Every single power cyclic hypergroup has a trivial fundamental group.

Corollary 5.9. Let (H,+) be a single power cyclic hypergroup with 0 ∈ H and 0 + 0 = 0. Then RNQ(H)
has a trivial fundamental group.

Proof. The proof follows from Corollary 5.7 and Theorem 5.8.

6 Conclusion
This paper contributed to the study of neutrosophic hyperstructures by introducing refined neutrosophic

quadruple hypergroups (po-hypergroups) and determining their fundamental refined neutrosophic quadruple
groups. Several interesting results related to these new hypergroups were obtained. For future work, it will be
interesting to study new properties of other types of refined neutrosophic quadruple hyperstructures.
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