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Abstract 

Background: 

The notion of single valued pentapartitioned neutrosophic set is the extension of  single valued 

neutrosophic set and quadripartitioned single valued neutrosophic set.  The single valued 

pentapartitioned neutrosophic set  is a powerful mathematical tool  that comprehensively deals 

with indeterminacy by splitting it into three independent components, namely,  unknown,  

contradiction,  ignorance.  We apply the concept of single valued pentapartitioned neutrosophic 

set to graph theory. 

Findings: 

We develop the notions of Single-Valued Pentapartitioned Neutrosophic graph (SVPN-graph) as 

an extension of single valued neutrosophic graph theory. Besides, we introduce the notions of 

degree, size and order of an SVPN-graph. Further, we furnish a few suitable examples on 

SVPN-graph. Single valued pentapartitioned neutrosophic set. 

Limitations:  

Pentapartitioned neutrosophic graph is proposed in this model which is based on 

pentapartitioned neutrosophic sets. A few studies on pentapartitioned neutrosophic sets are 

reported in the literature. 

Future directions:  

In future, the single valued pentapartitioned neutrosophic graph can be extended to regular 

and irregular  single valued pentapartitioned neutrosophic graph, single-valued 

pentapartitioned neutrosophic intersection graphs,  single-valued pentapartitioned 

neutrosophic hypergraphs, and so on. The single-valued pentapartitioned neutrosophic graph 

can be employed in modeling the computer networks, expert systems,  image processing, 

social network , and telecommunication. 

 

Keywords: Neutrosophic Set; Pentapartitioned NS; Neutrosophic Graph; SVPN-Graph. 

________________________________________________________________________________________ 

1. Introduction:  
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Graph theory [1] is generally used as a tool to deal with the combinatorial problems in number 

theory, geometry, topology, algebra, etc. Euler presented the concept of graph theory [2] in 1736. 

When there exists uncertainty in the description of a graph, traditional graph theory fails to deal 

with the problem. To deal with such situation, Rosenfeld [3] developed the Fuzzy Graph (FG) by 

considering fuzzy relation [4] on Fuzzy Set (FS) [5]. Sunitha and Mathew [6] presented a survey of 

fuzzy graph in 2013. Shannon and Atanassov [7] developed intuitionistic FG based on Intuitionistic 

FS (IFS) [8]. Intuitionistic FGs have been further studied in [ 9-15].  

To deal with inconsistency and indeterminacy, Smarandache [16] developed the Neutrosophic 

Set (NS) in 1998. The Neutrosophic Graphs (NGs) using the NSs were developed by several 

authors[17-19]. Akram [20] presented the Single Valued Neutrosophic (SVN) planar graph. NGs 

have been further studied in [21-24]. Broumi et al. [25] presented interval NGs, which have been 

further studied in [26-27]. NGs have been further studied in different hybrid environment such as 

neutrosophic soft graph [28], bipolar SVN graphs [29], rough neutrosophic diagraph [30], 

neutrosophic soft rough graph [31], etc. Recent trends in graph theory have been depicted in [32] in 

different environments.  

Recently, Mallick and Pramanik [33] defined Pentapartitioned Neutrosophic Set (PNS) using the 

n-valued logic [34]. PNS is a powerful mathematical tool, which is capable of dealing with 

uncertainty and indeterminacy comprehensively as indeterminacy is divided into three independent 

components, namely, unknown,  contradiction, and ignorance.       

  In this study, we procure the Single Valued Pentapartitioned Neutrosophic (SVPN) graph and 

establish some basic its properties. 

Research Gap: No investigation on SVPN-graph has been reported in the literature. 

Motivation: To fill the research gap, we present the concept of SVPN-graph. 

 

The rest of the article has been organized into four sections: 

In section 2, we recall some relevant definitions on PNS those are relevant to the main results of 

this article. In section 3, we procure the notion of SVPN-graph, and investigate some properties of 

different types of degree, size and order of an SVPN-graph. Section  4  presents results and 

discussion section. Section 5 concludes the paper with stating the future scope of research. 

 

2. Some Relevant Definitions: 

In this section, we present some existing definitions those are relevant to the main results of this 

article. 

Definition 2.1.[33] Suppose that  be a fixed set. Then, a Single Valued Pentapartitioned 

Neutrosophic Set (SVPN-set) P over  is defined by: 

P={(, TP(), CP(), RP(), UP(), FP()) : }. 

Here, TP, CP, RP, UP and FP are the truth, contradiction, ignorance, unknown and falsity membership 

functions respectively from  to [0, 1]. So, 0  TP() + CP() + RP() + UP() + FP()  5, for all . 

Definition 2.2.[33] Suppose that X={(, TX(), CX(), RX(), UX(), FX()) : } and Y={(, TY(), CY(), 

RY(), UY(), FY()) : } be two SVPN-sets over . Then, an SVPN-set X is said to be a subset of a 

SVPN-set Y (i.e., XY) if and only if TX()  TY(), CX()  CY(), RX()  RY(), UX()  UY(), FX()  

FY(), . 
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Definition 2.3.[33] Suppose that X={(, TX(), CX(), RX(), UX(), FX()) : } and Y={(, TY(), CY(), 

RY(), UY(), FY()) : } be two SVPN-sets over . Then, union of X and Y is defined by XY={(, 

max{TX(), TY()}, max{CX(), CY()}, min{RX(), RX()}, min{UX(), UX()}, min{FX(), FX()}) : }. 

Definition 2.4.[33] Suppose that X={(, TX(), CX(), RX(), UX(), FX()) : } and Y={(, TY(), CY(), 

RY(), UY(), FY()) : } be any two SVPN-sets over . Then, the complement of X is defined by 

Xc={(, FX(), UX(), 1-RX(), CX(), TX()) : }. 

Definition 2.5.[33] Suppose that X={(, TX(), CX(), RX(), UX(), FX()) : } and Y={(, TY(), CY(), 

RY(), UY(), FY()) : } be two SVPN-sets over . Then, intersection of X and Y is defined by 

XY={(, min{TX(), TY()}, min{CX(), CY()}, max{RX(), RX()}, max{UX(), UX()}, max{FX(), FX()}) 

: }. 

Definition 2.6.[18] Suppose that V be a fixed set of n vertex. Assume that E be the set of edges 

between the vertices. Then, Ĝ=(P, Q) is called a single valued neutrosophic graph (in short 

SVN-graph), where (i) TP, IP, FP : V[0, 1] denotes the truth, indeterminacy and false membership 

functions of a vertex iV respectively, such that 0  TP(ki) + IP(ki) + FP(ki)  3 (kiV, i=1, 2, …., n). 

(ii) TQ, IQ, FQ : EVV[0, 1] defined by TQ(ki, kj)  min{TP(ki), TP(kj)}, IQ(ki, kj)  max{IP(ki), IP(kj)}, 

FQ(ki, kj)  max{FP(ki), FP(kj)} denotes the truth, indeterminac y and false membership functions of the 

edge (ki, kj)E respectively, such that 0  TQ(ki, kj) + IQ(ki, kj) + FQ(ki, kj)  3 ((ki, kj)E, i=1, 2, …., n). 

Here, P is said to be the SVN vertex set of V and Q is said to be the SVN edge set of E, 

respectively. 

 

3. Single-Valued Pentapartitioned Neutrosophic-Graph 

Here, we introduce the notions of degree, size, and order of SVPN-graph and present few 

illustrative examples. 

Definition 3.1. Suppose that V={ki: i=1, 2, …, n} be a fixed set of vertices and E={(ki, kj): i, j=1, 2, …, n} 

be the set of edges between the vertices of V. An SVPN-graph of Ĝ*=(V, E) is defined by Ĝ=(P, Q), 

where (i) TP : V[0, 1], CP : V[0, 1], RP : V[0, 1], UP : V[0, 1] and FP : V[0, 1] denotes the truth, 

contradiction, ignorance, unknown and false membership functions of the vertices kiV 

respectively, such that 0 ≤ TP(ki) + CP(ki) + RP(ki) + UP(ki) + FP(ki) ≤ 5, ki V (i=1, 2, …, n); 

(ii) TQ : EVV[0, 1], CQ : EVV[0, 1], RQ : EVV[0, 1], UQ : EVV[0, 1] and FQ : 

EVV[0, 1] defined by TQ(ki, kj) ≤ min{TP(ki), TP(kj)}, CQ(ki, kj) ≤ min{CP(ki), CP(kj)}, RQ(ki, kj)  

max{RP(ki), RP(kj)}, UQ(ki, kj)  max{UP(ki), UP(kj)}, and FQ (ki, kj)  max{FP(ki), FP(kj)}, indicates the 

truth, contradiction, ignorance, unknown and false-membership functions from EVV to [0, 1], 

respectively, such that 0 ≤ TP(ki) + CP(ki) + RP(ki) + UP(ki) + FP(ki) ≤ 5, (ki, kj)E (i, j = 1, 2, …., n). 

 

Here, P is the SVN vertex set of V and Q is the SVN edge set of E respectively. Therefore, Ĝ=(P, Q) 

is an SVPN-graph of Ĝ*=(V, E) if and only if TQ(ki, kj) ≤ min{TP(ki), TP(kj)}; CQ(ki, kj) ≤ min{CP(ki), 

CP(kj)}; RQ(ki, kj)  max{RP(ki), RP(kj)}; UQ(ki, kj)  max{UP(ki), UP(kj)}; and FQ (ki, kj)  max{FP(ki), FP(kj)}. 

Clearly, both P and Q are the SVPN-set over V and E respectively. 

Example 3.1. Assume that Ĝ=(V, E) is a graph, where V={k1, k2, k3, k4} and E={(k1, k2), (k2, k3), (k3, k4), 

(k4, k1)}. Suppose that P is an SVPN vertex set of V and Q is an SVPN edge set of E defined by the 

Table 1 and Table 2.:   
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Table 1. Tabular representation of Example 3.1    Table 2. Tabular representation of Example 3.1 

         

The graph of Example 3.1 is presented in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1: SPVN graph for Example 3.1 

 

Therefore, Ĝ= (P, Q) is an SVPN-graph of Ĝ=(V, E). 

Remark 3.1. Assume that Ĝ=(P, Q) is an SVPN-graph. Then, the edge (ki, kj) is said to be incident at ki 

and kj. 

Definition 3.2. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, 

(i) (ki, TP(ki), CP(ki), RP(ki), UP(ki), FP(ki)) is called a Single Valued Pentapartitioned Neutrosophic 

(SVPN) vertex (in short SVPN-vertex). 

(ii) ((ki, kj), TQ((ki, kj)), CQ((ki, kj)), RQ((ki, kj)), UQ((ki, kj)), FQ((ki, kj))) is called an SVPN edge (in short 

SVPN-edge).  

Definition 3.3. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, H=(P, Q) is called an SVPN 

sub-graph (SVPN-sub-graph) of Ĝ=(P, Q) if H=(P, Q) is also an SVPN-graph such that: 

(i) PP i.e. TPi ≤ TPi, CPi ≤ CPi, RPi ≥ RPi, UPi ≥ UPi , and FPi ≥ FPi, kiV; 

(ii) QQ i.e. TQi ≤ TQi, CQi ≤ CQi, RQi ≥ RQi, UQi ≥ UQi, and FQi ≥ FQi, (ki, kj)E. 

Example 3.2. Assume that Ĝ=(P, Q) be an SVPN-graph as shown in Example 3.1. Then, H=(P, Q), 

where V={k1, k2, k5}, E={(k1, k2), (k1, k5)} defined by the Table 3 and Table 4: 

  Table 3. Tabular representation of Example 3.2    Table 4. Tabular representation of Example 3.2  

                                    

                    

 

 

 

 

 

 k1 k2 k3 k4 k5 

TP 0.4 0.3 0.4 0.5 0.2 

CP 0.5 0.5 0.5 0.5 0.5 

RP 0.3 0.4 0.5 0.3 0.4 

UP 0.4 0.3 0.6 0.6 0.3 

FP 0.4 0.5 0.5 0.4 0.5 

 (k1, k2) (k2, k3) (k3, k4) (k4, k5) (k5, k1) 

TP 0.3 0.2 0.2 0.1 0.2 

CP 0.4 0.4 0.3 0.5 0.2 

RP 0.5 0.7 0.8 0.6 0.5 

UP 0.4 0.8 0.9 0.7 0.5 

FP 0.6 0.6 0.9 0.8 0.8 

 (k1, k2) (k1, k5) 

TP 0.1 0.1 

CP 0.3 0.2 

RP 0.8 0.6 

UP 0.6 0.8 

FP 0.8 0.9 

 k1 k2 k5 

TP 0.3 0.2 0.2 

CP 0.3 0.4 0.2 

RP 0.5 0.6 0.5 

UP 0.6 0.4 0.4 

FP 0.6 0.6 0.8 
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Then, the graph H=(P, Q) is represented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Graph of Example 3.2 

Here, H=(P, Q) is an SVPN-sub-graph of Ĝ=(P, Q). 

Definition 3.4. Suppose that Ĝ=(P, Q) be an SVPN-graph of Ĝ*=(V, E). Then, the complement of 

Ĝ=(P, Q) is an SVPN-graph Ĝ̅ of Ĝ*=(V, E), where 

(ii) T̅P(ki)= TP(ki), C̅P(ki)=CP(ki), R̅P(ki)=RP(ki), U̅P(ki)=UP(ki), F̅P(ki)=FP(ki), kiV; 

(iii) T̅Q(ki, kj) = min{TP(ki), TP(kj)} - TQ(ki, kj), C̅Q(ki, kj) = min{CP(ki), CP(kj)} - CQ(ki, kj), R̅Q(ki, kj) = 

max{RP(ki), RP(kj)} - RQ(ki, kj), U̅Q(ki, kj) = max{UP(ki), UP(kj)} - UQ(ki, kj) and F̅Q(ki, kj) = max{FP(ki), 

FP(kj)} - FQ(ki, kj), (ki, kj)E. 

Definition 3.5. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, the vertices ki and kj are called 

adjacent in Ĝ=(P, Q) if and only if TQ(ki, kj) = min{TP(ki), TP(kj)}, CQ(ki, kj) = min{CP(ki), CP(kj)}, RQ(ki, kj) 

= max{RP(ki), RP(kj)}, UQ(ki, kj) = max{UP(ki), UP(kj)} and FQ(ki, kj) = max{FP(ki), FP(kj)}. 

Example 3.3. Assume that Ĝ=(P, Q) be an SVPN-graph, which is defined in Table 5 and Table 6. 

 Table 5. Tabular representation of Example 3.3   Table 6. Tabular representation of Example 3.3 

                                         

 

 

 

 

 

 

The representation of the graph of Example 3 is shown in Figure-3. 

 

 

 

 

 

 

 

 

 

                                   Figure 3: Graph of Example 3.3 

 k1 k2 k3 

TP 0.3 0.2 0.3 

CP 0.3 0.8 0.4 

RP 0.5 0.6 0.6 

UP 0.6 0.5 0.7 

FP 0.6 0.5 0.8 

 (k1, k2) (k2, k3) (k3, k1) 

TP 0.2 0.1 0.3 

CP 0.3 0.4 0.3 

RP 0.6 0.8 0.6 

UP 0.6 0.7 0.7 

FP 0.6 0.9 0.8 
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Here, the vertices k1 and k2 are adjacent in the SVPN-graph Ĝ=(P, Q). Similarly, the vertices k3 

and k1 are adjacent in the SVPN-graph Ĝ=(P, Q). But, the vertices k2 and k3 are not adjacent in the 

SVPN-graph Ĝ=(P, Q). 

Definition 3.6. In an SVPN-graph Ĝ=(P, Q), a vertex kjV is called an isolated vertex if there exists 

no edge incident at kj. 

Example 3.4. Suppose that Ĝ=(P, Q) be an SVPN-graph, which is defined in Table 7 and Table 8. 

    

Table 7. Tabular representation of Example 3.4      Table 8. Tabular representation of Example 3.4 

 

 

 

 

 

 

 

The graph of Example 3.4 is represented in Figure 4. 

 

 

 

 

Figure 4: Graph of Example 3.4 

 

In the above SVPN-graph Ĝ=(P, Q), the vertex k3 is an isolated vertex. 

Definition 3.7. Suppose that Ĝ=(P, Q) is an SVPN-graph. Assume that k0 and kn be two vertices in 

Ĝ=(P, Q). Then, an SVPN path P(k0, kn) in an SVPN-graph Ĝ=(P, Q) is a sequence of distinct vertices 

k0, k1, k2, k3, …., kn such that TQ(ki-1, ki) > 0, CQ(ki-1, ki) > 0, RQ(ki-1, ki) > 0, UQ(ki-1, ki) > 0 and FQ(ki-1, ki) > 

0, where 0 ≤ i ≤ n. Here, n (≥ 1) is called the length of the path P(k0, kn). The consecutive pairs (ki-1, ki) 

(0 ≤ i ≤ n) are called the edges of the path P(k0, kn). The path P(k0, kn) is called a cycle if k0 = kn, where 

n≥3. 

Definition 3.8. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, Ĝ=(P, Q) is said to be an SVPN 

Connected graph (in short SVPN-C-graph) if there exists at least one SVPN-path between two 

vertices. 

 k1 k2 k3 k4 

TP 0.3 0.2 0.5 0.3 

CP 0.3 0.8 0.6 0.4 

RP 0.5 0.6 1.0 0.6 

UP 0.6 0.5 0.8 0.7 

FP 0.6 0.5 0.8 0.8 

 (k1, k2) (k2, k4) (k4, k1) 

TP 0.3 0.1 0.3 

CP 0.3 0.4 0.3 

RP 0.6 0.7 0.6 

UP 0.7 0.8 0.7 

FP 0.8 0.8 0.8 
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Remark 3.2. If an SVPN-graph Ĝ=(P, Q) is not an SVPN-C-graph, then it is called an SVPN 

Dis-Connected graph (in short SVPN-DC-graph). 

Definition 3.9. Assume that Ĝ=(P, Q) be an SVPN-graph. Then, a vertex having exactly one edge 

incident on it is called a pendent vertex. If a vertex is not a pendent vertex, then it is called a 

non-pendent vertex. 

Remark 3.3. (i) If an edge is incident with a pendent vertex, then the edge is said to be a pendent 

edge. Otherwise, it is called a non-pendent edge. 

(ii) If a vertex is adjacent to a pendent vertex, then the vertex is said to be a support of that pendent 

edge. 

Example 3.5. Let Ĝ=(P, Q) be an SVPN-graph, which is defined by Table 9 and Table 10. 

 

Table 9. Tabular representation of Example 3.5  Table 10. Tabular representation of Example 3.5 

 

 

 

 

 

 

 

The representation of the graph for Example 3.5 is presented in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure 5: Graph for Example 3.5 

 

In the above SVPN-graph Ĝ=(P, Q), the vertices k1 and k4 are the pendent vertices. But the 

vertices k2 and k3 are the non-pendent vertices. Similarly, the edges (k1, k2) and (k3, k4) are the 

pendent edges. But the edge (k2, k3) is a non-pendent edge. The vertex k3 is support of the pendent 

edge (k3, k4). But k2 is not the support of the pendent edge (k1, k2). 

Definition 3.10. A SVPN-graph Ĝ=(P, Q) of Ĝ*=(V, E) is said to be a complete SVPN-graph if 

TQ(ki, kj)= min{TP(ki), TP(kj)}; 

CQ(ki, kj)= min{CP(ki), CP(kj)}; 

RQ(ki, kj)= max{RP(ki), RP(kj)}; 

UQ(ki, kj)= max{UP(ki), UP(kj)}; 

and FQ(ki, kj)= max{FP(ki), FP(kj)}, ki, kjV. 

 k1 k2 k3 k4 

TP 0.3 0.2 0.5 0.3 

CP 0.3 0.8 0.6 0.4 

RP 0.5 0.6 1.0 0.6 

UP 0.6 0.5 0.8 0.7 

FP 0.6 0.5 0.8 0.8 

 (k1, k2) (k2, k3) (k3, k4) 

TP 0.1 0.2 0.3 

CP 0.2 0.5 0.4 

RP 0.7 1.0 1.0 

UP 0.7 0.9 0.8 

FP 0.7 0.8 0.8 
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Example 3.6. Assume that Ĝ*=(V, E) is a graph, where V = {k1, k2, k3} and E = {(k1, k2), (k2, k3), (k3, k1)}. 

Suppose that Ĝ=(P, Q) is an SVPN-graph defined by Table 11 and Table 12. 

Table 11. Tabular representation of Example 3.6    Table 12. Tabular representation of Example 3.6                            

                     

 

 

 

 

 

 

The representation of the graph for Example 3.6 is presented in Figure 6. 

 

 

                    

 

 

 

 

 

Figure 6: Graph of Example 3.6. 

 

Here, the above SVPN-graph is a complete SVPN-graph. 

Definition 3.11. An SVPN-graph Ĝ=(P, Q) of Ĝ*=(V, E) is called a bipartite SVPN-graph if the graph 

Ĝ*=(V, E) is a bipartite graph. 

Example 3.7. Assume that Ĝ*=(V, E) be a graph, where V= {k1, k2, k3, k4, k5, k6} and E={(k1, k2), (k2, k3), 

(k3, k1)}. Suppose that Ĝ=(P, Q) be an SVPN-graph defined by  Table 13 and Table 14. 

Table 13. Tabular representation of Example 3.7  Table 14. Tabular representation of Example 3.7 

 

 

 

 

 

 

 

 

 

 

 

 

The representation of the graph of Example 3.7 is presented in Figure 7. 

 

 (k1, k2) (k2, k3) (k3, k1) 

TP 0.3 0.3 0.4 

CP 0.5 0.5 0.5 

RP 0.4 0.5 0.5 

UP 0.4 0.6 0.6 

FP 0.5 0.5 0.5 

 k1 k2 k3 

TP 0.4 0.3 0.4 

CP 0.5 0.5 0.5 

RP 0.3 0.4 0.5 

UP 0.4 0.3 0.6 

FP 0.4 0.5 0.5 

 k1 k2 k3 k4 k5 k6 

TP 0.4 0.3 0.4 0.6 0.9 0.8 

CP 0.5 0.5 0.5 0.3 0.8 0.4 

RP 0.3 0.4 0.5 0.5 0.5 0.3 

UP 0.4 0.3 0.6 0.8 0.7 0.6 

FP 0.4 0.5 0.5 0.4 0.8 0.5 
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Figure 7: Graph of Example 3.7 

 

Here, the crisp graph Ĝ*=(V, E) is a bipartite graph and Ĝ=(P, Q) is a SVPN-graph of Ĝ*=(V, E). Hence 

Ĝ=(P, Q) is a bipartite SVPN-graph. 

Definition 3.12. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, the degree of the vertex k is 

defined by d(k)=(dT(k), dC(k), dR(k), dU(k), dF(k)),  

where, dT(k) = degree of the truth-membership vertex = sum of the truth-membership of all edges 

those are incident on the vertex k = ∑ 𝐮≠𝐤 TQ(u, k);  

dC(k) = degree of the contradiction-membership vertex = sum of the contradiction-membership of all 

edges those are incident on the vertex k = ∑ 𝐮≠𝐤 CQ(u, k); 

dR(k) = degree of the ignorance-membership vertex = sum of the ignorance-membership of all edges 

those are incident on the vertex k = ∑ 𝐮≠𝐤 RQ(u, k); 

dU(k) = degree of the unknown-membership vertex = sum of the unknown-membership of all edges 

those are incident on the vertex k = ∑ 𝐮≠𝐤 UQ(u, k); 

dF(k) = degree of the falsity-membership vertex = sum of the false-membership of all edges those are 

incident on the vertex k = ∑ 𝐮≠𝐤 FQ(u, k). 

Example 3.8. Assume that Ĝ=(P, Q) be an SVPN-graph of Ĝ*=(V, E) defined by Table 15, Table 16. 

 

Table 15. Tabular representation of example 3.8   Table 16. Tabular representation of example 3.8 

 

                    

 

 

 

 

 

 

 

 k1 k2 k3 k4 

TP 0.3 0.2 0.5 0.3 

CP 0.3 0.8 0.6 0.4 

RP 0.5 0.6 1.0 0.6 

UP 0.6 0.5 0.8 0.7 

FP 0.6 0.5 0.8 0.8 

 

(k
1,

 k
2)

 

(k
2,

 k
3)

 

(k
3,

 k
4)

 

(k
4,

 k
1)

 

(k
2,

 k
3)

 

(k
2,

 k
4)

 

TP 0.1 0.2 0.3 0.2 0.1 0.1 

CP 0.2 0.5 0.4 0.3 0.4 0.3 

RP 0.7 1.0 1.0 0.8 1.0 0.7 

UP 0.7 0.9 0.8 0.8 0.9 0.9 

FP 0.7 0.8 0.8 0.9 0.8 0.9 
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The representation of the graph of example 3.8 is shown in Figure 8. 

Figure 8: Graph of Example 3.8 

 

Then, d(k1) = (0.3, 0.5, 1.5, 1.5, 1.6), d(k2) = (0.5, 1.4, 3.4, 3.4, 3.2), d(k3)= (0.6, 1.3, 3.0, 2.6, 2.4), and d(k4)= 

(0.6, 1.0, 2.5, 2.5, 2.6). 

Definition 3.13. Suppose that Ĝ=(P, Q) is an SVPN-graph of Ĝ*=(V, E). Then, Ĝ=(P, Q) is called a 

constant SVPN-graph if degree of each vertex is same i.e., d(k) = (y1, y2, y3, y4, y5), kV. 

Example 3.9. Assume that Ĝ=(P, Q) be an SVPN-graph, which is defined by Table 17 and Table 18. 

 

Table 17. Tabular representation of example 3.9  Table 18. Tabular representation of example 3.9 

   

 

  

 

 

 

 

The representation of the graph for Example 3.9 is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Graph of Example 3.9 

 

 k1 k2 k3 k4 

TP 0.4 0.2 0.4 0.3 

CP 0.3 0.4 0.6 0.5 

RP 0.6 0.6 0.7 0.6 

UP 0.7 0.6 0.7 0.7 

FP 0.7 0.4 0.8 0.7 

 (k1, k2) (k2, k3) (k3, k4) (k4, k1) 

TP 0.2 0.1 0.2 0.1 

CP 0.2 0.3 0.2 0.3 

RP 0.7 0.9 0.7 0.9 

UP 0.8 0.8 0.8 0.8 

FP 0.9 0.9 0.9 0.9 
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In the above SVPN-graph Ĝ= (P, Q), the degree of the vertices k1, k2, k3, and k4 are d(k1) = (0.3, 0.5, 

1.6, 1.6, 1.8), d(k2) = (0.3, 0.5, 1.6, 1.6, 1.8), d(k3) = (0.3, 0.5, 1.6, 1.6, 1.8) and d(k4) = (0.3, 0.5, 1.6, 1.6, 1.8). 

Hence, Ĝ= (P, Q) is a constant SVPN-graph. 

Definition 3.14. Assume that Ĝ= (P, Q) be a SVPN-graph. Then, the order of Ĝ= (P, Q), denoted by 

O(Ĝ) is defined by O(Ĝ)= (OT(Ĝ), OC(Ĝ), OR(Ĝ), OU(Ĝ), OF(Ĝ)), where  

OT(Ĝ)= ∑ TPk∈V  denotes the T-order of Ĝ= (P, Q); 

OC(Ĝ)= ∑ CPk∈V  denotes the C-order of Ĝ= (P, Q) 

OR(Ĝ)= ∑   k∈V RP denotes the R-order of Ĝ= (P, Q); 

OU(Ĝ)= ∑ UPk∈V  denotes the U-order of Ĝ= (P, Q); 

OF(Ĝ)=  ∑ FPk∈V  denotes the F-order of Ĝ= (P, Q). 

Example 3.10. Assume that Ĝ= (P, Q) is an SVPN-graph of Ĝ*= (V, E) as shown in Example 3.6. Then, 

order of the SVPN-graph Ĝ= (P, Q) is O(Ĝ)= (1.3, 2.1, 2.7, 2.6, 2.7).  

Definition 3.15. Suppose that Ĝ= (P, Q) is an SVPN-graph. Then, the size of Ĝ= (P, Q), denoted by 

S(Ĝ) is defined by S(Ĝ)= (ST(Ĝ), SC(Ĝ), SR(Ĝ), SU(Ĝ), SF(Ĝ)), where 

ST(Ĝ)=∑   u≠k TQ(u, k) denotes the T-size of Ĝ= (P, Q); 

SC(Ĝ)=∑   u≠k CQ(u, k)  denotes the C-size of Ĝ= (P, Q); 

SR(Ĝ)=∑   u≠k RQ(u, k) denotes the R-size of Ĝ= (P, Q); 

SU(Ĝ)=∑   u≠k UQ(u, k) denotes the U-size of Ĝ= (P, Q); 

SF(Ĝ)= ∑   u≠k FQ(u, k) denotes the F-size of Ĝ= (P, Q). 

Example 3.11. Assume that Ĝ= (P, Q) is an SVPN-graph of Ĝ*= (V, E) as shown in Example 3.6. Then, 

size of the SVPN-graph Ĝ= (P, Q) is S(Ĝ) = (1.0, 2.1, 5.2, 5, 4.9). 

 

 

 

 

4. Result and discussion  

Graph theory is utilized to deal with many real- problems in operations research. In real-life 

situation, however, indeterminacy and uncertainty may exist in almost every graph theoretic 

problem. SVPN-graph is a useful graph theory to model uncertainty and indeterminacy in 

convincing way based on pentapartitioned neutrosophic set which is an extension of neutrosophic 

set.   So, there is a possibility that SVPN-graph will be more successful  in dealing with graph 

theoretic problems having  indeterminacy in the form of three independent components, namely,  

unknown,  contradiction, and ignorance.       

 

 

 

 

5. Conclusions  

In this article, we have presented the notions of SVPN-graph. Also, we have defined the degree, 

order, size of a SVPN-graph and investigated some properties of them. By defining degree, order, 

size of SVPN-graphs, we formulate some results on SVPN-graphs. Further, we give few examples to 

justify the definitions and results. We hope that the approach presented in this paper will open up 
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new avenues of research on SVPN-graph for its application in real life problems in the current 

neutrosophic area. 

In future study, the single valued pentapartitioned neutrosophic graph can be extended to 

regular and irregular  single valued pentapartitioned neutrosophic graph.  The proposed single 

valued pentapartitioned graph can be extended to single-valued pentapartitioned neutrosophic 

intersection graphs,  single-valued pentapartitioned neutrosophic hypergraphs, and so on. The 

single-valued pentapartitioned neutrosophic graph can be employed to model the computer 

networks, expert systems,  image processing, social network , and telecommunication. 
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