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Abstract: In this paper, we first introduce single valued trapezoidal neutrosophic (SVTN) numbers with their proper-
ties. We then define some operations and distances of the SVTN-numbers. Based on these new operations, we also
define some aggregation operators, including SVTN-ordered weighted geometric operator, SVTN-hybrid geometric
operator, SVTN-ordered weighted arithmetic operator and SVTN-hybrid arithmetic operator. We then examine the
properties of these SVTN-information aggregation operators. By using the SVTN-weighted geometric operator and
SVTN-hybrid geometric operator, we also define a multi attribute group decision making method, called SVTN-group
decision making method. We finally give an illustrative example and comparative analysis to verify the developed
method and to demonstrate its practicality and effectiveness.
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1 Introduction
In real decision making, there usually are many multiple attribute group decision making (MAGDM) prob-
lems. Due to the ambiguity of people’s thinking and the complexity of objective things, the attribute val-
ues of the MAGDM problems cannot always be expressed by exact and crisp values and it may be easier 
to describe them by neutrosophic information. Zadeh [77] initiated fuzzy set theory. It is one of the most 
effective tools for processing fuzzy information which has only one membership, and is unable to express 
non-membership. Therefore, Atanassov [3] presented the intuitionistic fuzzy sets by adding a nonmembership 
function. Also, Atanassov and Gargov [4] proposed the interval-valued intuitionistic fuzzy set by extending 
the membership function and nonmembership function to the interval numbers. These sets can only han-
dle incomplete information, not the indeterminate information and inconsistent information. For this reason, 
Smarandache [53, 54, 55] introduced a new concept that is called neutrosophic set by adding an independent 
indeterminacy-membership on the basis of intuitionistic fuzzy sets from philosophical point of view, which 
is a generalization of the concepts of classical sets, probability sets, rough sets [43], fuzzy sets [77, 23], 
intuitionistic fuzzy sets [3], paraconsistent sets, dialetheist sets, paradoxist sets and tautological sets. In 
theory of neutrosophic sets, truth-membership, indeterminacy-membership and falsity-membership are rep-
resented independently. Also, Wang et al. [62] proposed the interval neutrosophic sets by extending the 
truth-membership, indeterminacy-membership, and falsity-membership functions to interval numbers. After
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Smarandache, Broumi et al. [5, 6, 7], Biswas et al.[8, 9, 10, 11, 12, 13, 14, 15], Kahraman and Otay [32], 
Mondal et al. [35, 36, 37, 38, 39, 40] and Pramanik et al. [44, 45, 46, 47] studied on some decision making 
problems based on neutrosophic information. Recently, fuzzy and neutrosophic models have been studied by 
many authors, such as [1, 2, 19, 20, 28, 29, 30, 48, 49, 50, 52, 57, 58, 62, 63, 80, 81, 82, 83].

Gani et al. [27] presented a method called weighted average rating method for solving group decision 
making problem by using an intuitionistic trapezoidal fuzzy hybrid aggregation operator. Wan et al. [65] in-
vestigated MAGDM problems, in which the ratings of alternatives are expressed with triangular intuitionistic 
fuzzy numbers. Wei [66, 67], introduced some new group decision making methods by developing aggre-
gation operators with intuitionistic fuzzy information. Xu and Yager [60], presented some new geometric 
aggregation operators, such as intuitionistic fuzzy weighted geometric operator, intuitionistic fuzzy ordered 
weighted geometric operator, and intuitionistic fuzzy hybrid geometric operator. Wu and Cao [68] developed 
some geometric aggregation operators with intuitionistic trapezoidal fuzzy numbers and examined their de-
sired properties. Power average operator of real numbers is extended to four kinds of power average operators 
of trapezoidal intuitionistic fuzzy numbers by Wan [64]. Farhadinia and Ban [25] initiated a novel method to 
extend a similarity measure of generalized trapezoidal fuzzy numbers to similarity measures of generalized 
trapezoidal intuitionistic fuzzy numbers and generalized interval-valued trapezoidal fuzzy numbers. Ye [71] 
proposed an extended technique for order preference by similarity to ideal solution method for group deci-
sion making with interval-valued intuitionistic fuzzy numbers to solve the partner selection problem under 
incomplete and uncertain information environment. Recently, some intuitionistic models with intuitionistic 
values have been studied by many authors. For example, on intuitionistic fuzzy sets [26, 59, 76], on interval-
valued intuitionistic fuzzy sets [16, 26], interval-valued intuitionistic trapezoidal fuzzy numbers [26, 69], on 
triangular intuitionistic fuzzy number [17, 24, 26, 33, 34, 61, 78], on trapezoidal intuitionistic fuzzy numbers 
[18, 26, 31, 34, 41, 42, 51, 72, 75, 79], on generalized trapezoidal fuzzy numbers, on generalized trapezoidal 
intuitionistic fuzzy numbers and generalized interval-valued trapezoidal fuzzy numbers [25].

A neutrosophic set can handle a incomplete, indeterminate and inconsistent information from philosophical 
point of view. Ye [74] and ¸Subas¸ [56] introduced single valued neutrosophic numbers, which is a 
generaliza-tion of fuzzy numbers and intuitionistic fuzzy numbers. The neutrosophic numbers are special 
single valued neutrosophic sets on the real number sets, which are useful to deal with ill-known quantities in 
decision data and decision making problems themselves. Then, Ye [73] and Deli and ¸Subas¸ [21, 22] 
developed new methods on single valued neutrosophic numbers based on multi-criteria decision making 
problem. But, multi-criteria group decision making problem has not yet been studied.

The paper is organized as follows. In the next section, we give some basic definitions and properties of
single valued trapezoidal neutrosophic (SVTN) numbers. In Section 3, some operations for SVTN-numbers
and distance between two SVTN-number are presented. In Section 4, we introduce some new geometric ag-
gregation operators, including SVTN-ordered weighted geometric operator, SVTN-hybrid geometric operator,
SVTN-ordered weighted arithmetic operator and SVTN-hybrid arithmetic operator. In Section 5, we develope
a group decision making method, so called SVTN-group decision making method to solve MAGDM problems
based on the SVTN-weighted geometric operator and the SVTN-hybrid geometric operators. We then present
an illustrative example to verify the developed method and to demonstrate its practicality. In Section 6 we give
a comparative analysis. In Section 7, we conclude the paper and give some remarks.
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2 Preliminary
In this section, some basic concepts and definitions on fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets,
single valued neutrosophic sets and single valued neutrosophic numbers are given.

Definition 2.1. [77] Let E be a universe. Then, a fuzzy set X over E is defined by

X = {(µX(x)/x) : x ∈ E}

where µX : E → [0.1] is called membership function of X . For each x ∈ E, the value µX(x) represents the
degree of x belonging to the fuzzy set X .

Definition 2.2. [3] Let E be a universe. Then, an intuitionistic fuzzy set K over E is defined by

K = {< x, µK(x), γK(x) >: x ∈ E}

where µK : E → [0, 1] and γK : E → [0, 1] such that 0 ≤ µK(x)+γK(x) ≤ 1 for any x ∈ E. For each x ∈ E,
the values µK(x) and γK(x) are the degree of membership and degree of non-membership of x, respectively.

Definition 2.3. [54] Let E be a universe. Then, a neutrosophic set A over E is defined by

A = {< x, (TA(x), IA(x), FA(x)) >: x ∈ E}.

where TA(x), IA(x) and FA(x) are called truth-membership function, indeterminacy-membership function and
falsity-membership function, respectively. They are respectively defined by TA : E →]−0, 1+[, IA : E →
]−0, 1+[, FA : E →]−0, 1+[ such that 0− ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2.4. [63] Let E be a universe. Then, a single valued neutrosophic set over E is a neutrosophic 
set over E, but the truth-membership function, indeterminacy-membership function and falsity-membership 
function are respectively defined by

TA : E → [0, 1], IA : E → [0, 1], FA : E → [0, 1]

such that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.5. [22, 56] A single valued trapezoidal neutrosophic number ã = 〈(a1, b1, c1, d1);wã, uã, yã〉 is a
special neutrosophic set on the real number set R, whose truth-membership, indeterminacy-membership, and
a falsity-membership are given as follows:

µã(x) =


(x− a1)wã/(b1 − a1), (a1 ≤ x < b1)
wã, (b1 ≤ x ≤ c1)
(d1 − x)wã/(d1 − c1), (c1 < x ≤ d1)
0, otherwise,

νã(x) =


(b1 − x+ uã(x− a1))/(b1 − a1), (a1 ≤ x < b1)
uã, (b1 ≤ x ≤ c1)
(x− c1 + uã(d1 − x))/(d1 − c1), (c1 < x ≤ d1)
1, otherwise
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and

λã(x) =


(b1 − x+ yã(x− a1))/(b1 − a1), (a1 ≤ x < b1)
yã, (b1 ≤ x ≤ c1)
(x− c1 + yã(d1 − x))/(d1 − c1), (c1 < x ≤ d1)
1, otherwise

respectively.
Sometimes, we use the ãi = 〈(ai, bi, ci, di);wi, ui, yi〉, instead of ãi = 〈(ai, bi, ci, ci);wãi , uãi , yãi〉.

Note that the single valued trapezoidal neutrosophic number is abbreviated as SVTN-number and the set
of all SVTN-numbers on R will be denoted by Ω.

3 Operations and Distances of SVTN-Numbers
In this section, we give operations and distances of SVTN-numbers and investigate their related properties.

Definition 3.1. [73] Let ã = 〈(a1, b1, c1, d1);wã, uã, yã〉, b̃ = 〈(a2, b2, c2, d2);wb̃, ub̃, yb̃〉 ∈ Ω and γ ≥ 0 be any
real number. Then,

1. ã⊕ b̃ = 〈(a1 + a2, b1 + b2, c1 + c2, d1 + d2);wã + wb̃ − wãwb̃, uãub̃, yãyb̃〉

2. ã⊗ b̃ = 〈(a1a2, b1b2, c1c2, d1d2);wãwb̃, uã + ub̃ − uãub̃, yã + yb̃ − yãyb̃〉

3. γã = 〈(γa1, γb1, γc1, γd1); 1− (1− wã)γ, uγã, y
γ
ã〉

4. ãγ = 〈(aγ1 , b
γ
1 , c

γ
1 , d

γ
1);wγã , 1− (1− uã)γ, 1− (1− yã)γ〉

Theorem 3.2. Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉, b̃ = 〈(a2, b2, c2, d1); w2, u2, y2〉 ∈ Ω. Then, ã⊕ b̃, ã⊗ b̃, γã
and ãγ are also SVTN-numbers.

Proof: It is easy from Definition 3.1.

Theorem 3.3. Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉, b̃ = 〈(a2, b2, c2, d2);w2, u2, y2〉, c̃ = 〈(a3, b3, c3, d3);w3, u3, y3〉 ∈
Ω and γ, γ1, γ2 be positif real numbers. Then, the followings are valid.

1. ã⊕ b̃=b̃⊕ ã

2. ã⊗ b̃=b̃⊗ ã

3. (ã⊗ b̃)⊗ c̃=ã⊗ (b̃⊗ c̃)

4. (ã⊕ b̃)⊕ c̃=ã⊕ (b̃⊕ c̃)

5. ã⊗ (b̃⊕ c̃)=(ã⊗ b̃)⊕ (ã⊗ c̃)

6. (ã⊗ b̃)γ=b̃γ ⊗ ãγ1

7. ãγ1 ⊗ ãγ2= ã(γ1+γ2) or b̃γ2 ⊗ b̃γ2= b̃(γ1+γ2)

Proof: It is easy from Definition 3.1.
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Definition 3.4. Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉, b̃ = 〈(a2, b2, c2, d2); w2, u2, y2〉 ∈ Ω. Then, the distance
between ã and b̃ is defined by

dh(ã, b̃) = 1
6

(
|(1 + w1 − u1 − y1)a1 − (1 + w2 − u2 − y2)a2|+

|(1 + w1 − u1 − y1)b1 − (1 + w2 − u2 − y2)b2|+
|(1 + w1 − u1 − y1)c1 − (1 + w2 − u2 − y2)c2|+
|(1 + w1 − u1 − y1)d1 − (1 + w2 − u2 − y2)d2|

)
Example 3.5. Assume that ã = 〈(1, 4, 5, 6); 0.3, 0.4, 0.7〉, b̃ = 〈(1, 2, 5, 7); 0.7, 0.5, 0.1〉 ∈ Ω. Then, the
distance of ã and b̃ is computed by

dh(ã, b̃) = 1
6

(
|(1 + 0.3− 0.4− 0.7)1− (1 + 0.7− 0.5− 0.1)1|+

|(1 + 0.3− 0.4− 0.7)4− (1 + 0.7− 0.5− 0.1)2|+
|(1 + 0.3− 0.4− 0.7)5− (1 + 0.7− 0.5− 0.1)5|+
|(1 + 0.3− 0.4− 0.7)6− (1 + 0.7− 0.5− 0.1)7|

)
∼= 7.78

Theorem 3.6. Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉, b̃ = 〈(a2, b2, c2, d2); w2, u2, y2〉 ∈ Ω. Then, dh(ã, b̃) meet
the nonnegative, symmetric and triangle inequality (or metric).

Proof: Clearly, the dh(ã, b̃) meet the nonnegative, symmetric properties. For ã = 〈(a1, b1, c1, d1);w1, u1, y1〉,
b̃ = 〈(a2, b2, c2, d2); w2, u2, y2〉, c̃ = 〈(a3, b3, c3, d3); w3, u3, y3〉 ∈ Ω, to prove the triangle inequality, since

|(1 + w1 − u1 − y1)a1 − (1 + w2 − u2 − y2)a2|+
|(1 + w2 − u2 − y2)a2 − (1 + w3 − u3 − y3)a3|
≥ |(1 + w1 − u1 − y1)a1 − (1 + w3 − u3 − y3)a3|

|(1 + w1 − u1 − y1)b1 − (1 + w2 − u2 − y2)b2|+
|(1 + w2 − u2 − y2)b2 − (1 + w3 − u3 − y3)b3|
≥ |(1 + w1 − u1 − y1)b1 − (1 + w3 − u3 − y3)b3|

|(1 + w1 − u1 − y1)c1 − (1 + w2 − u2 − y2)c2|+
|(1 + w2 − u2 − y2)c2 − (1 + w3 − u3 − y3)c3|
≥ |(1 + w1 − u1 − y1)c1 − (1 + w3 − u3 − y3)c3|

|(1 + w1 − u1 − y1)d1 − (1 + w2 − u2 − y2)d2|+
|(1 + w2 − u2 − y2)d2 − (1 + w3 − u3 − y3)d3|
≥ |(1 + w1 − u1 − y1)d1 − (1 + w3 − u3 − y3)d3|
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we have
|(1 + w1 − u1 − y1)a1 − (1 + w2 − u2 − y2)a2|+
|(1 + w2 − u2 − y2)a2 − (1 + w3 − u3 − y3)a3|
+|(1 + w1 − u1 − y1)b1 − (1 + w2 − u2 − y2)b2|+
|(1 + w2 − u2 − y2)b2 − (1 + w3 − u3 − y3)b3|
+|(1 + w1 − u1 − y1)c1 − (1 + w2 − u2 − y2)c2|+
|(1 + w2 − u2 − y2)c2 − (1 + w3 − u3 − y3)c3|
+|(1 + w1 − u1 − y1)d1 − (1 + w2 − u2 − y2)d2|+
|(1 + w2 − u2 − y2)d2 − (1 + w3 − u3 − y3)d3|
≥ |(1 + w1 − u1 − y1)a1 − (1 + w3 − u3 − y3)a3|+
|(1 + w1 − u1 − y1)b1 − (1 + w3 − u3 − y3)b3|
+|(1 + w1 − u1 − y1)c1 − (1 + w3 − u3 − y3)c3|+
|(1 + w1 − u1 − y1)d1 − (1 + w3 − u3 − y3)d3|

and then,
dh(ã, b̃) + dh(b̃, c̃) ≥ dh(ã, c̃)

Definition 3.7. [56] Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉 ∈ Ω. Then, a normalized SVTN-number of ã is
defined by

〈( a1
a1+b1+c1+d1

, b1
a1+b1+c1+d1

, c1
a1+b1+c1+d1

, d1
a1+b1+c1+d1

);w1, u1, y1〉

Example 3.8. Assume that ã = 〈(1, 4, 5, 10); 0.3, 0.4, 0.7〉 ∈ Ω. Then, a normalized SVTN-number of ã is
computed as

〈(0.05, 0.2, 0.25, 0.5); 0.3, 0.4, 0.7〉

Definition 3.9. The SVTN-numbers ã+ = 〈(1, 1, 1, 1); 1, 0, 0〉, ã+
s = 〈(1, 1, 1, 1); 1, 1, 0〉, ã− = 〈(0, 0, 0, 0); 0, 1, 1〉

and ã−s = 〈(0, 0, 0, 0); 0, 0, 1〉 are called SVTN-positive ideal solution, strongly SVTN-positive ideal solution,
SVTN-negative ideal solution and strongly SVTN-negative ideal solution, respectively.

Definition 3.10. Let ãi = 〈(ai, b1, ci, di);wi, ui, yi〉 ∈ Ω for all i = 1, 2 and ã+, ã+
s , ã− and ã−s be SVTN-

positive ideal solution, strongly SVTN-positive ideal solution, SVTN-negative ideal solution and strongly
SVTN-negative ideal solution, respectively. Then, the distance between ãi and ã+, ã+

s , ã−, ã−s are denoted as
dh(ãi, ã

+), dh(ãi, ã+
s ), dh(ãi, ã−), dh(ãi, ã−s ) for all i = 1, 2, respectively. Then,

1. If dh(ã1, ã
+) < dh(ã2, ã

+), then ã2 is smaller than ã1, denoted by ã1 > ã2

2. If dh(ã1, ã
+) = dh(ã2, ã

+);

(a) If dh(ã1, ã
+
s ) < dh(ã2, ã

+
s ), then ã2 is smaller than ã1, denoted by ã1 > ã2

(b) If dh(ã1, ã
+
s ) = dh(ã2, ã

+
s );

i. If dh(ã1, ã
−) < dh(ã2, ã

−), then ã1 is smaller than ã2, denoted by ã1 < ã2

ii. If dh(ã1, ã
−) = dh(ã2, ã

−);
A. If dh(ã1, ã

−
s ) < dh(ã2, ã

−
s ), then ã1 is smaller than ã2, denoted by ã1 < ã2

B. If dh(ã1, ã
−
s ) = dh(ã2, ã

−
s ); ã1 and ã2 are the same, denoted by ã1 = ã2
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Example 3.11. Assume that ã1 = 〈(2, 3, 5, 6); 0.3, 0.4, 0.7〉, ã2 = 〈(1, 3, 6, 7); 0.7, 0.5, 0.1〉,
ã+ = 〈(1, 1, 1, 1); 1, 0, 0〉 ∈ Ω. Then,

dh(ã1, ã
+) = 1

6

(
|(1 + 0.3− 0.4− 0.7)2− |(1 + 1− 0.0− 0.0)1|+

|(1 + 0.3− 0.4− 0.7)3− |(1 + 1− 0.0− 0.0)1|+
|(1 + 0.3− 0.4− 0.7)5− |(1 + 1− 0.0− 0.0)1|+
|(1 + 0.3− 0.4− 0.7)6− |(1 + 1− 0.0− 0.0)1|

)
= 7

60

and

dh(ã2, ã
+) = 1

6

(
|(1 + 0.7− 0.5− 0.1)1− |(1 + 1− 0.0− 0.0)1|+

|(1 + 0.7− 0.5− 0.1)3− |(1 + 1− 0.0− 0.0)1|+
|(1 + 0.7− 0.5− 0.1)6− |(1 + 1− 0.0− 0.0)1|+
|(1 + 0.7− 0.5− 0.1)7− |(1 + 1− 0.0− 0.0)1|

)
= 65

60

Since dh(ã1, ã
+) < dh(ã2, ã

+), ã2 is smaller than ã1 (or ã1 > ã2).

From now on we use In = {1, 2, ..., n} Im = {1, 2, ...,m} and It = {1, 2, ..., t} as an index set for n ∈ N ,
m ∈ N and t ∈ N , respectively.

4 SVTN-Weighted Operators
In this section, we present some arithmetic and geometric operators including SVTN-weighted geometric op-
erator, SVTN-ordered weighted geometric operator, SVTN-hybrid geometric operator, SVTN-weighted arith-
metic operator, SVTN-ordered weighted arithmetic operator and SVTN-hybrid arithmetic operator with their
properties.

4.1 SVTN-Weighted Geometric Operators
In this subsection, we introduce some SVTN-weighted geometric operators on the SVTN-numbers.

Definition 4.1. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for all j ∈ In. Then, SVTN-weighted 
geometric operator, denoted by Sgo, is defined by S go : Ω n → Ω,

Sgo(ã1, ã2, ..., ãn) = ãw1
1 ⊗ ãw2

2 ⊗ · · · ⊗ ãwnn

where w = (w1, w2, ..., wn)T is a weight vector of ãj for every j ∈ In such that wj ∈ [0, 1] and
∑n

j=1wj = 1.

Theorem 4.2. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for j ∈ In and Sgo be the SVTN-weighted 
geometric operator. Then, their aggregated value by using Sgo : Ωn → Ω, operator is also a SVTN-number
and

Sgo(ã1, ã2, ..., ãn) =
∏n

j=1 ã
wj
j

= 〈(
∏n

j=1 a
wj
j ,
∏n

j=1 b
wj
j ,
∏n

j=1 c
wj
j ,
∏n

j=1 d
wj
j );∏n

j=1w
wj
ãj
, 1−

∏n
j=1(1− uãj)wj , 1−

∏n
j=1(1− yãj)wj〉

where w = (w1, w2, ..., wn)T is a weight vector of ãj for all j ∈ In such that wj ∈ [0, 1] and
∑n

j=1wj = 1.
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Theorem 4.3. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for j ∈ In. Then,

1. If ãj = ã, for all j ∈ In, then Sgo(ã1, ã2, ..., ãn) = ã,

2. minj∈I{ãj} ≤ Sgo(ã1, ã2, ..., ãn) ≤ maxj∈I{ãj},

3. If ã∗j = 〈(a∗j , b∗j , c∗j , dj)∗;w∗ãj , u
∗
ãj
, y∗ãj〉 ∈ Ω and ãj ≤ ãj

∗ for all j ∈ In,
then Sgo(ã1, ã2, ..., ãn) ≤ Sgo(ã

∗
1, ã
∗
2, ..., ã

∗
n).

Definition 4.4. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for all j ∈ In. Then, an SVTN-ordered weighted
geometric operator, denoted by Sogo, is defined by Sogo : Ωn → Ω,

Sogo(ã1, ã2, ..., ãn) = ãw1

σ(1) ⊗ ã
w2

σ(2) ⊗ · · · ⊗ ã
wn
σ(n)

where w = (w1, w2, ..., wn)T is a weight vector of ãj for every j ∈ I such that wj ∈ [0, 1] and
∑n

j=1 wj = 1.
Here, (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that aσ(j−1) ≥ aσ(j) for all j ∈ In.

Theorem 4.5. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Sogo be an SVTN-ordered weighted
geometric operator. Then, their aggregated value by using Sogo operator is also a SVTN-number an

Sogo(ã1, ã2, ..., ãn) =
∏n

j=1 ã
wj
σ(j) = 〈(

∏n
j=1 a

wj
σ(j),

∏n
j=1 b

wj
σ(j),

∏n
j=1 c

wj
σ(j),

∏n
j=1 d

wj
σ(j));∏n

j=1w
wj
ãσ(j)

, 1−
∏n

j=1(1− uãσ(j))wj , 1−
∏n

j=1(1− yãσ(j))wj〉

where w = (w1, w2, ..., wn)T is a weight vector of ãj for all j ∈ In such that wj ∈ [0, 1] and
∑n

j=1wj = 1.

Theorem 4.6. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In. Then,

1. If ãj = ã, then Sogo(ã1, ã2, ..., ãn) = ã.

2. minj{ãj} ≤ Sogo(ã1, ã2, ..., ãn) ≤ maxj{ãj}

3. If ã∗j = 〈(a∗j , b∗j , c∗j , dj)∗;w∗ãj , u
∗
ãj
, y∗ãj〉 ∈ Ω and ãj≤ãj∗, then

Sogo(ã1, ã2, ..., ãn) ≤ Sogo(ã
∗
1, ã
∗
2, ..., ã

∗
n)

4. If ˜́aj ∈ Ω, then

Sogo(ã1, ã2, ..., ãn) = Sogo(˜́a1, ˜́a2, ..., ˜́an) where (˜́a1, ˜́a2, ..., ˜́an) is any permutation of (ã1, ã2, ..., ãn).

Theorem 4.7. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Sogo be the SVTN-geometric averag-
ing operator. Then, for all j ∈ In,

1. If w = (1, 0, ..., 0)T , then Sogo(ã1, ã2, ..., ãn) = maxj{ãj}.

2. If w = (0, 0, ..., 1)T , then Sogo(ã1, ã2, ..., ãn) = minj{ãj}.
Definition 4.8. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In. Then, an SVTN-hybrid geometric
operator, denoted by S s̃hgo, is defined by

S s̃hgo : Ωn → Ω, S s̃hgo(ã1, ã2, ..., ãn) = ˜̄as̃1σ(1) ⊗ ˜̄as̃2σ(2) ⊗ · · · ⊗ ˜̄as̃nσ(n)

where for j ∈ In, ˜̄aσ(j) is the jth largest of the weighted SVTN-numbers ˜̄aj , ˜̄aj = ã
nwj
j , w = (w1, w2, ..., wn)T

is a weight vector of ãj such that wj ∈ [0, 1] and
∑n

j=1 wj = 1, and s̃ = (s̃1, s̃2, ..., s̃n)T is a vector associated
with the S s̃hgo such that s̃j ∈ [0, 1] and

∑n
j=1 s̃j = 1.
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Theorem 4.9. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In and S s̃hgo be the SVTN-hybrid geometric
operator. Then, their aggregated value by using S s̃hgo operator is also a SVTN-number and

S s̃hgo(ã1, ã2, ..., ãn) =
∏n

j=1
˜̄a
s̃j
σ(j) = 〈(

∏n
j=1 ā

s̃j
σ(j),

∏n
j=1 b̄

s̃j
σ(j)

∏n
j=1 c̄

s̃j
σ(j),

∏n
j=1 d̄

s̃j
σ(j));∏n

j=1w
s̃j
˜̄aσ(j)

, 1−
∏n

j=1(1− u˜̄aσ(j)
)s̃j , 1−

∏n
j=1(1− y˜̄aσ(j)

)s̃j〉

where for j ∈ In, ˜̄aσ(j) is the jth largest of the weighted SVTN-numbers ˜̄aj , ˜̄aj = ã
nwj
j ,w = (w1, w2, ..., wn)T

is a weight vector of ãj such that wj ∈ [0, 1] and
∑n

j=1wj = 1, and s̃ = (s̃1, s̃2, ..., s̃n)T is a vector associated
with the S s̃hgo such that s̃j ∈ [0, 1] and

∑n
j=1 s̃j = 1.

Corollary 4.10. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In. Then, SVTN-weighted geometric
operator Sgo and SVTN-ordered weighted geometric operator Sogo operator is a special case of the SVTN-
hybrid geometric operator S s̃hgo.

4.2 SVTN-Weighted arithmetic Operators
In this subsection, we introduce some SVTN-weighted arithmetic operators on the SVTN-numbers.

Definition 4.11. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for all j ∈ In. Then, SVTN-weighted 
arithmetic operator, denoted by Sao : Ωn → Ω, is defined by

Sao(ã1, ã2, ..., ãn) = w1ã1 ⊕ w2ã2 ⊕ · · · ⊕ wnãn

where w = (w1, w2, ..., wn)T is a weight vector of ãj for every j ∈ In such that wj ∈ [0, 1] and
∑n

j=1wj = 1.

Theorem 4.12. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for j ∈ In and Sao be the SVTN-weighted 
arithmetic operator. Then, their aggregated value by using Sao operator is also a SVTN-number and

Sao(ã1, ã2, ..., ãn) =
∑n

j=1wj ãj = 〈(
∑n

j=1wjaj,
∑n

j=1wjbj,
∑n

j=1wjcj,
∑n

j=1wjdj);

= 1−
∏n

j=1(1− wãj)wj ,
∏n

j=1 u
wj
ãj
,
∏n

j=1 y
wj
ãj
〉 ∑n

j=1wj = 1.where w = (w1, w2, ..., wn)T is a weight vector of a˜j for all j ∈ In such that wj ∈ [0, 1] and 

Theorem 4.13. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for j ∈ In. Then,

1. If ãj = ã, for all j ∈ In, then Sao(ã1, ã2, ..., ãn) = ã,

2. minj{ãj} ≤ Sao(ã1, ã2, ..., ãn) ≤ maxj{ãj},

3. If ã∗j = 〈(a∗j , b∗j , c∗j , dj)∗;w∗ãj , u
∗
ãj
, y∗ãj〉 ∈ Ω and ãj ≤ ãj

∗ for all j ∈ In,
then Sao(ã1, ã2, ..., ãn) ≤ Sao(ã

∗
1, ã
∗
2, ..., ã

∗
n).

Definition 4.14. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for all j ∈ In. Then, an SVTN-ordered weighted
arithmetic operator, denoted by Soao : Ωn → Ω, is defined by

Soao(ã1, ã2, ..., ãn) = w1ãσ(1) ⊕ w2ãσ(2) ⊕ · · · ⊕ wnãσ(n)

where w = (w1, w2, ..., wn)T is a weight vector of ãj for every j ∈ I such that wj ∈ [0, 1] and
∑n

j=1wj = 1.
Here, (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that aσ(j−1) ≥ aσ(j) for all j ∈ In.
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Theorem 4.15. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Soao be an SVTN-ordered weighted
arithmetic operator. Then, their aggregated value by using Soao operator is also a SVTN-number and

Soao(ã1, ã2, ..., ãn) =
∑n

j=1 wj ãσ(j) = 〈(
∑n

j=1wjaσ(j),
∑n

j=1wjbσ(j),
∑n

j=1wjcσ(j),
∑n

j=1 wjdσ(j));

= 1−
∏n

j=1(1− wãσ(j))wj ,
∏n

j=1 u
wj
ãσ(j)

,
∏n

j=1 y
wj
ãσ(j)
〉

where w = (w1, w2, ..., wn)T is a weight vector of ãj for all j ∈ In such that wj ∈ [0, 1] and
∑n

j=1wj = 1.

Theorem 4.16. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Soao be the SVTN-arithmetic
averaging operator. Then, for all j ∈ In,

1. If ãj = ã, then Soao(ã1, ã2, ..., ãn) = ã.

2. minj{ãj} ≤ Soao(ã1, ã2, ..., ãn) ≤ maxj{ãj}

3. If ã∗j = 〈(a∗j , b∗j , c∗j , dj)∗;w∗ãj , u
∗
ãj
, y∗ãj〉 ∈ Ω and ãj≤ãj∗, then Soao(ã1, ã2, ..., ãn) ≤ Soao(ã

∗
1, ã
∗
2, ..., ã

∗
n)

4. If ˜́aj ∈ Ω, then Soao(ã1, ã2, ..., ãn) = Soao(˜́a1, ˜́a2, ..., ˜́an) where (˜́a1, ˜́a2, ..., ˜́an) is any permutation of
(ã1, ã2, ..., ãn).

Theorem 4.17. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Soao be the SVTN-arithmetic
averaging operator. Then, for all j ∈ In,

1. If w = (1, 0, ..., 0)T , then Soao(ã1, ã2, ..., ãn) = maxj{ãj}.

2. If w = (0, 0, ..., 1)T , then Soao(ã1, ã2, ..., ãn) = minj{ãj}.
Definition 4.18. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In. Then, an SVTN-hybrid arithmetic
operator, denoted by S s̃hao : Ωn → Ω,, is defined by

S s̃hao(ã1, ã2, ..., ãn) = s̃1˜̄aσ(1) ⊕ s̃2˜̄aσ(2) ⊕ · · · ⊕ s̃n˜̄aσ(n)

where for j ∈ In, ˜̄aσ(j) is the jth largest of the weighted SVTN-numbers ˜̄aj , ˜̄aj = ã
nwj
j , w = (w1, w2, ..., wn)T

is a weight vector of ãj such that wj ∈ [0, 1] and
∑n

j=1wj = 1, and s̃ = (s̃1, s̃2, ..., s̃n)T is a vector associated
with the S s̃hao such that s̃j ∈ [0, 1] and

∑n
j=1 s̃j = 1.

Theorem 4.19. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In and S s̃hao be the SVTN-hybrid arithmetic
operator. Then, their aggregated value by using S s̃hao operator is also a SVTN-number and

S s̃hao(ã1, ã2, ..., ãn) =
∑n

j=1
˜̄aσ(j)s̃j = 〈(

∑n
j=1 ā

s̃j
σ(j),

∑n
j=1 b̄

s̃j
σ(j)

∑n
j=1 c̄

s̃j
σ(j),

∑n
j=1 d̄

s̃j
σ(j));

= 1−
∏n

j=1(1− w˜̄aσ(j)
s̃j),

∏n
j=1 u˜̄aσ(j)

s̃j,
∏n

j=1 y˜̄aσ(j)
s̃j〉

where for j ∈ In, ˜̄aσ(j) is the jth largest of the weighted SVTN-numbers ˜̄aj , ˜̄aj = ã
nwj
j ,w = (w1, w2, ..., wn)T

is a weight vector of ãj such that wj ∈ [0, 1] and
∑n

j=1 wj = 1, and s̃ = (s̃1, s̃2, ..., s̃n)T is a vector associated
with the S s̃hao such that s̃j ∈ [0, 1] and

∑n
j=1 s̃j = 1.

Corollary 4.20. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In. Then, SVTN-weighted arithmetic
operator Sao and SVTN-weighted arithmetic operator Soao operator is a special case of the SVTN-hybrid
arithmetic operator S s̃hao.
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5 SVTN-Group Decision Making Method

In this section, by using the S s̃hgo and Sgo operators we define a multi attribute group decision making method
called SVTN-group decision making method.

Definition 5.1. Let B = {B1, B2, ..., Bm} be a set of alternatives, U = {u1, u2, ..., un} be a set of attributes,
D = {d1, d2, ..., dt} be a set of decision makers, s̃ = (s̃1, s̃2, ..., s̃n)T be a weighting vector of the attributes
where s̃j ∈ [0, 1] for j ∈ In and

∑n
j=1 s̃j = 1, and w = (w1, w2, ..., wt)

T be a weighting vector of the decision
makers such that wj ∈ [0, 1] for j ∈ In and

∑t
j=1wj = 1. If ãkij = 〈(akij, bkij, ckij, dkij);wkij, ukij, ykij〉 ∈ Ω, then

[ãkij]m×n =


u1 u2 · · · un

B1 ãk11 ãk12 · · · ãk1n
B2 ãk21 ãk22 · · · ãk2n
...

...
... . . . ...

Bm ãkm1 ãkm2 · · · ãkmn


is called an SVTN-group decision making matrix of the decision maker dk for each k ∈ It. The matrix is also
written shortly as

[ãkij]m×n = 〈(akij, bkij, ckij, dkij);wkij, ukij, ykij〉

Now, we can give an algorithm of the SVTN-group decision making method as follows;

Algorithm:
Step 1. Construct

[ãkij]m×n = 〈(akij, bkij, ckij, dkij);wkij, ukij, ykij〉 of dk for each k ∈ It.
Step 2. Compute ãki = Sgo(ã

k
i1, ã

k
i2, ..., ã

k
in) =

∏n
j=1(ãkij)

wj for each k ∈ It and i ∈ Im to derive the
individual overall preference SVTN-values ãki of the alternative Bi.

Step 3. Compute ãi = S s̃hgo(ã
1
i , ã

2
i , ..., ã

t
i) =< (ai, bi, ci);wãi , uãi , yãi > for each i ∈ Im to derive the

collective overall preference SVTN-values ãi of the alternative Bi.

Step 4. Compute dh(ãi, ã+) for each i ∈ Im.

Step 5. Rank all alternatives Bi according to the dh(ãi, ã+) for each i ∈ Im.

Example 5.2. (It’s adopted from [70]) Let us suppose there is a risk investment company, which wants to 
invest a sum of money in the best option. There is a panel with five possible alternatives (engineer construction 
projects) to invest the money. The risk investment company must take a decision according to four attributes: 
u1 = ”risk analysis”, u2 = ”growth analysis”, u3 = ”social-political impact analysis”, u4 = ”environmental 
impact analysis”. The five possible alternatives B i (i = 1, 2, ..., 5) are to be evaluated using the SVTN-numbers 
by the four decision makers (whose weighting vector w = (0.2, 0.4, 0.1, 0.3)T ) under the above four attributes 
(whose weighting vector s̃ = (0.25, 0.25, 0.25, 0.25)T ), and construct, respectively,

Step 1. For each k = 1, 2, 3, 4, the decision maker dk construct own decision matrices [ãkij]5x4 as Table 1:
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Step 2. For each k = 1, 2, 3, 4 and i = 1, 2, 3, 4, 5 compute ãki = Sgo(ã
k
i1, ã

k
i2, ..., ã

k
in) as follows:

ã1
1 =

(
(0.170, 0.411, 0.606, 0.814); 0.442, 0.749, 0.409

)
ã1

2 =
(
(0.194, 0.342, 0.517, 0.800); 0.534, 0.543, 0.302

)
ã1

3 =
(
(0.224, 0.259, 0.517, 0.628); 0.237, 0.513, 0.281

)
ã1

4 =
(
(0.214, 0.332, 0.464, 0.774); 0.460, 0.518, 0.407

)
ã1

5 =
(
(0.139, 0.209, 0.401, 0.580); 0.186, 0.587, 0.332

)
ã2

1 =
(
(0.226, 0.278, 0.459, 0.763); 0.540, 0.423, 0.500

)
ã2

2 =
(
(0.285, 0.388, 0.592, 0.728); 0.379, 0.686, 0.522

)
ã2

3 =
(
(0.476, 0.581, 0.700, 0.814); 0.394, 0.349, 0.300

)
ã2

4 =
(
(0.230, 0.332, 0.613, 0.738); 0.564, 0.714, 0.346

)
ã2

5 =
(
(0.132, 0.147, 0.355, 0.531); 0.293, 0.396, 0.635

)
ã3

1 =
(
(0.115, 0.155, 0.459, 0.599); 0.275, 0.806, 0.674

)
ã3

2 =
(
(0.298, 0.375, 0.592, 0.806); 0.309, 0.387, 0.679

)
ã3

3 =
(
(0.107, 0.112, 0.150, 0.513); 0.491, 0.537, 0.670

)
ã3

4 =
(
(0.200, 0.310, 0.565, 0.673); 0.500, 0.346, 0.693

)
ã3

5 =
(
(0.164, 0.176, 0.355, 0.650); 0.426, 0.527, 0.519

)
ã4

1 =
(
(0.182, 0.302, 0.537, 0.781); 0.275, 0.627, 0.527

)
ã4

2 =
(
(0.154, 0.305, 0.428, 0.693); 0.225, 0.568, 0.617

)
ã4

3 =
(
(0.000, 0.232, 0.504, 0.675); 0.354, 0.551, 0.513

)
ã4

4 =
(
(0.200, 0.300, 0.417, 0.660); 0.509, 0.481, 0.342

)
ã4

5 =
(
(0.000, 0.182, 0.374, 0.625); 0.282, 0.424, 0.270

)

ã1
1 =

(
(0.170, 0.411, 0.606, 0.814); 0.442, 0.749, 0.409

)
ã1

2 =
(
(0.194, 0.342, 0.517, 0.800); 0.534, 0.543, 0.302

)
ã1

3 =
(
(0.224, 0.259, 0.517, 0.628); 0.237, 0.513, 0.281

)
ã1

4 =
(
(0.214, 0.332, 0.464, 0.774); 0.460, 0.518, 0.407

)
ã1

5 =
(
(0.139, 0.209, 0.401, 0.580); 0.186, 0.587, 0.332

)
ã2

1 =
(
(0.226, 0.278, 0.459, 0.763); 0.540, 0.423, 0.500

)
ã2

2 =
(
(0.285, 0.388, 0.592, 0.728); 0.379, 0.686, 0.522

)
ã2

3 =
(
(0.476, 0.581, 0.700, 0.814); 0.394, 0.349, 0.300

)
ã2

4 =
(
(0.230, 0.332, 0.613, 0.738); 0.564, 0.714, 0.346

)
ã2

5 =
(
(0.132, 0.147, 0.355, 0.531); 0.293, 0.396, 0.635

)
ã3

1 =
(
(0.115, 0.155, 0.459, 0.599); 0.275, 0.806, 0.674

)
ã3

2 =
(
(0.298, 0.375, 0.592, 0.806); 0.309, 0.387, 0.679

)
ã3

3 =
(
(0.107, 0.112, 0.150, 0.513); 0.491, 0.537, 0.670

)
ã3

4 =
(
(0.200, 0.310, 0.565, 0.673); 0.500, 0.346, 0.693

)
ã3

5 =
(
(0.164, 0.176, 0.355, 0.650); 0.426, 0.527, 0.519

)
ã4

1 =
(
(0.182, 0.302, 0.537, 0.781); 0.275, 0.627, 0.527

)
ã4

2 =
(
(0.154, 0.305, 0.428, 0.693); 0.225, 0.568, 0.617

)
ã4

3 =
(
(0.000, 0.232, 0.504, 0.675); 0.354, 0.551, 0.513

)
ã4

4 =
(
(0.200, 0.300, 0.417, 0.660); 0.509, 0.481, 0.342

)
ã4

5 =
(
(0.000, 0.182, 0.374, 0.625); 0.282, 0.424, 0.270

)
Step 3. Assume that w = (0.2, 0.4, 0.1, 0.3)T and s̃ = (0.25, 0.25, 0.25)T . We can compute

ãi = S s̃hgo(ã
1
i , ã

2
i , ..., ã

t
i) =< (ai, bi, ci);wãi , uãi , yãi >
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for each i = 1, 2, 3, 4, 5 as follows:

ã1 =
(
(0.187, 0.291, 0.509, 0.760); 0.396, 0.569, 0.513

)
ã2 =

(
(0.219, 0.351, 0.523, 0.738); 0.340, 0.584, 0.536

)
ã3 =

(
(0.000, 0.298, 0.524, 0.698); 0.352, 0.451, 0.414

)
ã4 =

(
(0.214, 0.320, 0.512, 0.714); 0.519, 0.553, 0.404

)
ã5 =

(
(0.000, 0.171, 0.370, 0.579); 0.274, 0.450, 0.479

)
Step 4. Compute dh(ãi, ã+

i ) for each alternative Bi, i = 1, 2, 3, 4, 5, as follows:

dh(ã1, ã
+) = 1.242, dh(ã2, ã

+) = 1.266,
dh(ã3, ã

+) = 1.210, dh(ã4, ã
+) = 1.169,

dh(ã5, ã
+) = 1.269

Then we get the rank,

dh(ã5, ã
+) > dh(ã2, ã

+) > dh(ã1, ã
+) > dh(ã3, ã

+) > dh(ã4, ã
+)

Step 5. Therefore, we can rank all alternatives Bi according to the dh(ãi, ã+
i ) for each i = 1, 2, 3, 4, 5.

B5 < B2 < B1 < B3 < B4

and thus the most desirable alternative is B4.

6 Comparative Analysis and Discussion

In this section, a comparative study is presented to show the flexibility and feasibility of the introduced SVTN-
group decision making method. Different methods used to solve the same SVTN-group decision making 
problem with SVTN-information is given by Ye [73]. The ranking results obtained by different methods are 
summarized in Table 2.

From the results presented in Table 2, the best alternative in proposed method and Ye’s method [73] 
with geometric operator is B4, whilst the worst one is B5. In contrast, by using the methods in the proposed 
method and Ye’s method [73] with arithmetic operator, the best is B3, whilst the worst is B5. There are a 
number of reasons why differences exist between the final rankings of the methods. First, the author uses 
a score and accurate function in Ye’s method [73] with arithmetic operator and Ye’s method [73] with 
geometric opera-tor. Moreover, different aggregation operators, which is arithmetic and geometric 
operator, lead to different rankings because the operators emphasize the decision makers judgments 
differently. The proposed method is different in that it contains two major phrases. First, the proposed 
method uses both SVTN-weighted geo-metric operator and the SVTN-hybrid geometric operator to 
aggregate the SVTN-numbers. Second, based on distance measure, the method uses SVTN-positive ideal 
solution and SVTN-negative ideal solution to rank the SVTN-information. Finally, the ranking of the 
proposed method is similar to other methods. Therefore, the proposed method is flexible and feasible.

Irfan Deli, Operators on Single Valued Trapezoidal Neutrosophic Numbers and SVTN-Group Decision
Making.



144 Neutrosophic Sets and Systems, Vol. 22, 2018

7 Conclusion
Due to the ambiguity of people’s thinking and the complexity of objective things, the attribute values of the
MAGDM problems cannot always be expressed by exact and crisp values and it may be easier to escribe them
by neutrosophic information. This paper introduced an MAGDM in which the attribute values are expressed
with the SVTN-numbers, which are solved by developing a new decision method based on geometric ag-
gregation operators of SVTN-numbers. The proposed method with SVTN-numbers is more suitable for real
scientific and engineering applications, because the proposed decision-making method includes much more in-
formation and can deal with indeterminate and inconsistent decision-making problems. In the future, we shall
further develop more aggregation operators for SVTN-numbers and apply them to solve practical applications
in areas such as group decision making, expert system, information fusion system, fault diagnoses, medical
diagnoses and so on.
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[22] I. Deli, Y. Şubaş, A ranking method of single valued neutrosophic numbers and its applications to multiattribute decision
making problems, International Journal of Machine Learning and Cybernetics, DOI: 10.1007/s13042-016-0505-3.

[23] D. Dubois, F. H. Prade, Operations on fuzzy numbers, International Journal of Systems Sciences 9/6 (1978) 613-626.

[24] M. Esmailzadeh, M. Esmailzadeh, New distance between triangular intuitionistic fuzzy numbers, Advances in Computational
Mathematics and its Applications 2/3 (2013) 310–314.

[25] B. Farhadinia, Adrian I. Ban, Developing new similarity measures of generalized intuitionistic fuzzy numbers and gener-
alized interval-valued fuzzy numbers from similarity measures of generalized fuzzy numbers, Mathematical and Computer
Modelling 57 (2013) 812-825.

[26] D. F.Li, Decision and Game Theory in Management With Intuitionistic Fuzzy Sets Studies in Fuzziness and Soft Computing
Volume 308, springer, 2014.

[27] A. N. Gani, N. Sritharan C. Arun Kumar, Weighted Average Rating (WAR) Method for Solving Group Decision Making
Problem Using an Intuitionistic Trapezoidal Fuzzy Hybrid Aggregation Operator, International Journal of Pure and Applied
Sciences and Technology Int. J. Pure Appl. Sci. Technol., 6(1) (2011) 54–61.

[28] H. Garg, Nancy, Linguistic single valued neutrosophic prioritized aggregation operators and their applications to multi-
ple attribute group decision making, Journal of Ambient Intelligence and Humanized Computing, Springer, 2018, doi:
https://doi.org/10.1007/s12652-018-0723-5.

[29] H. Garg, Nancy, Non-linear programming method for multi-criteria decision making problems under interval neutrosophic set
environment, Applied Intelligence https://doi.org/10.1007/s10489-017-1070-5 .

[30] H. Garg, Nancy, Some New Biparametric Distance Measures on Single-Valued Neutrosophic Sets with Applications to Pattern
Recognition and Medical Diagnosis, Information, 2017, 8(4), 162; doi:10.3390/info8040162.

[31] W. Jianqiang, Z. Zhong, Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria
decision making problems, Journal of Systems Engineering and Electronics, 20/2 (2009) 321-326.

Irfan Deli, Operators on Single Valued Trapezoidal Neutrosophic Numbers and SVTN-Group Decision
Making.



146 Neutrosophic Sets and Systems, Vol. 22, 2018

[32] C. Kahraman and I. Otay (eds.),Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets, Studies in Fuzziness and Soft
Computing 369, Springer Nature Switzerland AG, (2019).

[33] D. F. Li, A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems, Computers
and Mathematics with Applications 60 (2010) 1557–1570

[34] G.S. Mahapatra, T.K. Roy, Intuitionistic Fuzzy Number and Its Arithmetic Operation with Application on System Failure,
Journal of Uncertain Systems 7/2 (2013) 92–107.

[35] K. Mondal, S. Pramanik, and B. C. Giri. Single valued neutrosophic hyperbolic sine similarity measure based MADM strategy.
Neutrosophic Sets and Systems, 20 (2018), 3-11. http://doi.org/10.5281/zenodo.1235383.

[36] K. Mondal, S. Pramanik, and B. C. Giri., Hybrid binary logarithm similarity measure for MAGDM problems under SVNS
assessments. Neutrosophic Sets and Systems, 20 (2018), 12-25. http://doi.org/10.5281/zenodo.1235365.

[37] K. Mondal, S. Pramanik, and B. C. Giri., Interval neutrosophic tangent similarity measure based MADM strategy and its
application to MADM problems. Neutrosophic Sets and Systems, 19 (2018), 47-56. http://doi.org/10.5281/zenodo.1235201

[38] K. Mondal, and S. Pramanik, Multi-criteria group decision making approach for teacher recruitment in higher education under
simplified Neutrosophic environment. Neutrosophic Sets and Systems, 6 (2014), 28-34.

[39] K. Mondal, and S. Pramanik, Neutrosophic decision making model of school choice. Neutrosophic Sets and Systems, 7 (2015),
62-68.

[40] K. Mondal, and S. Pramanik, Neutrosophic tangent similarity measure and its application to multiple attribute decision making,
Neutrosophic Sets and Systems, 9, (2015) 80-87.

[41] H. M. Nehi, A New Ranking Method for Intuitionistic Fuzzy Numbers, International Journal of Fuzzy Systems, 12/1 (2010)
80–86.

[42] M. Palanivelrajan and K. Kaliraju, A Study on Intuitionistic Fuzzy Number Group, International Journal of Fuzzy Mathematics
and Systems. 2/3 (2012) 269–277.

[43] Z. Pawlak, Rough sets, International Journal of Information and Computer Sciences, 11 (1982) 341-356.

[44] S. Pramanik, S. Dalapati, S. Alam, S. Smarandache, and T. K. Roy, NS-cross entropy based MAGDM under single valued
neutrosophic set environment, Information, (2018) doi:10.3390/info9020037.

[45] S. Pramanik, S. Dalapati, S. Alam, S. Smarandache, and T. K. Roy, IN-cross entropy based MAGDM strategy under interval
neutrosophic set environment, Neutrosophic Sets and Systems, 18, (2017) 43-57. http://doi.org/10.5281/zenodo.1175162.

[46] S. Pramanik, R. Mallick, and A. Dasgupta, Contributions of selected Indian researchers to multi-attribute decision making in
neutrosophic environment. Neutrosophic Sets and Systems, 20 (2018), 108-131. http://doi.org/10.5281/zenodo.1284870.

[47] S. Pramanik, P. Biswas, P., and B. C. Giri., Hybrid vector similarity measures and their applications to multi-attribute
decision making under neutrosophic environment. Neural Computing and Applications, 28 (5)(2017), 1163-1176. DOI
10.1007/s00521-015-2125-3.

[48] J.-j. Peng, J.-q. Wang, J. Wang, H.-y. Zhang, X.-h. Chen, Simplified neutrosophic sets and their applications in multi-criteria
group decision-making problems, International Journal of Systems Science, DOI:10.1080/00207721.2014.994050, 2015.

[49] J.-j. Peng, J.-Q. Wang, X.-H. Wu, J. Wang and X.-h. Chen, Multi-valued Neutrosophic Sets and Power Aggregation Oper-
ators with Their Applications in Multi-criteria Group Decision- making Problems, International Journal of Computational
Intelligence Systems, 8(4):345-363, 2015.

[50] J. Peng, J. Wang, H. Zhang, X. Chen. An outranking approach for multi-criteria decision-making problems with simplified
neutrosophic sets, Applied Soft Computing, 25, (2014) 336-346.

Irfan Deli, Operators on Single Valued Trapezoidal Neutrosophic Numbers and SVTN-Group Decision
Making.



Neutrosophic Sets and Systems, Vol. 22, 2018 147

[51] S. S. Roseline, E. C. Henry Amirtharaj, A New Method for Ranking of Intuitionistic Fuzzy Numbers, Indian Journal of
Applied Research, 3/6 (2013).

[52] A. A. Salama, S. A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, 3/4
(2012) 31–35.

[53] F. Smarandache , Neutrosophy and Neutrosophic Logic , First International Conference on Neutrosophy , Neutrosophic Logic
, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.

[54] F.Smarandache,”A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic”. Rehoboth: American
Research Press, 1998.

[55] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005) 287-297.
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Table 1. The decision matrices of decision maker dk.

[ã1
ij]5x4 =


(
(0.5, 0.7, 0.8, 0.9); 0.5, 0.6, 0.7

) (
(0.1, 0.3, 0.4, 0.7); 0.4, 0.9, 0.3

)(
(0.4, 0.5, 0.7, 0.8); 0.3, 0.2, 0.3

) (
(0.2, 0.3, 0.5, 0.8); 0.7, 0.4, 0.2

)(
(0.5, 0.6, 0.7, 0.8); 0.2, 0.7, 0.2

) (
(0.1, 0.1, 0.4, 0.5); 0.1, 0.4, 0.3

)(
(0.4, 0.5, 0.6, 0.7); 0.2, 0.5, 0.4

) (
(0.2, 0.3, 0.4, 0.9); 0.5, 0.5, 0.6

)(
(0.3, 0.5, 0.6, 0.7); 0.2, 0.5, 0.4

) (
(0.1, 0.2, 0.5, 0.8); 0.1, 0.8, 0.3

)(
(0.1, 0.1, 0.8, 0.9); 0.7, 0.5, 0.3

) (
(0.2, 0.7, 0.8, 0.9); 0.4, 0.5, 0.3

)(
(0.3, 0.4, 0.7, 0.8); 0.7, 0.4, 0.6

) (
(0.1, 0.3, 0.4, 0.8); 0.5, 0.8, 0.3

)(
(0.2, 0.3, 0.5, 0.7); 0.4, 0.7, 0.3

) (
(0.4, 0.5, 0.6, 0.7); 0.7, 0.4, 0.3

)(
(0.1, 0.3, 0.4, 0.7); 0.5, 0.8, 0.2

) (
(0.2, 0.3, 0.5, 0.7); 0.7, 0.4, 0.1

)(
(0.3, 0.4, 0.4, 0.8); 0.1, 0.5, 0.4

) (
(0.1, 0.1, 0.2, 0.3); 0.5, 0.1, 0.3

)



[ã2
ij]5x4 =


(
(0.1, 0.1, 0.2, 0.5); 0.8, 0.4, 0.7

) (
(0.2, 0.3, 0.4, 0.8); 0.8, 0.4, 0.3

)(
(0.3, 0.4, 0.7, 0.8); 0.2, 0.4, 0.8

) (
(0.3, 0.4, 0.7, 0.9); 0.7, 0.9, 0.3

)(
(0.6, 0.7, 0.8, 0.9); 0.5, 0.1, 0.3

) (
(0.6, 0.7, 0.8, 0.9); 0.3, 0.4, 0.3

)(
(0.4, 0.5, 0.6, 0.7); 0.6, 0.4, 0.5

) (
(0.2, 0.3, 0.7, 0.8); 0.7, 0.8, 0.3

)(
(0.1, 0.1, 0.4, 0.8); 0.3, 0.4, 0.2

) (
(0.2, 0.2, 0.5, 0.6); 0.2, 0.3, 0.1

)(
(0.1, 0.1, 0.8, 0.9); 0.3, 0.3, 0.3

) (
(0.6, 0.7, 0.8, 0.9); 0.3, 0.5, 0.6

)(
(0.6, 0.7, 0.7, 0.8); 0.8, 0.5, 0.7

) (
(0.2, 0.3, 0.4, 0.5); 0.2, 0.2, 0.4

)(
(0.2, 0.3, 0.5, 0.7); 0.7, 0.4, 0.3

) (
(0.4, 0.5, 0.6, 0.7); 0.4, 0.4, 0.3

)(
(0.2, 0.3, 0.4, 0.7); 0.3, 0.9, 0.3

) (
(0.2, 0.3, 0.6, 0.7); 0.5, 0.6, 0.3

)(
(0.10.3, 0.4, 0.8); 0.5, 0.4, 0.9

) (
(0.1, 0.1, 0.2, 0.3); 0.4, 0.5, 0.9

)



[ã3
ij]5x4 =


(
(0.1, 0.1, 0.2, 0.5); 0.5, 0.9, 0.9

) (
(0.1, 0.2, 0.4, 0.8); 0.1, 0.6, 0.3

)(
(0.3, 0.4, 0.7, 0.8); 0.5, 0.1, 0.3

) (
(0.4, 0.4, 0.7, 0.9); 0.5, 0.3, 0.9

)(
(0.1, 0.1, 0.1, 0.4); 0.4, 0.7, 0.8

) (
(0.1, 0.1, 0.1, 0.4); 0.8, 0.6, 0.8

)(
(0.4, 0.5, 0.8, 0.9); 0.5, 0.4, 0.3

) (
(0.2, 0.3, 0.7, 0.8); 0.5, 0.4, 0.9

)(
(0.3, 0.3, 0.4, 0.8); 0.5, 0.2, 0.3

) (
(0.2, 0.2, 0.5, 0.8); 0.5, 0.7, 0.3

)(
(0.4, 0.5, 0.8, 0.9); 0.8, 0.7, 0.3

) (
(0.1, 0.1, 0.8, 0.4); 0.5, 0.9, 0.8

)(
(0.3, 0.5, 0.7, 0.8); 0.5, 0.4, 0.3

) (
(0.2, 0.3, 0.4, 0.7); 0.1, 0.6, 0.3

)(
(0.2, 0.3, 0.7, 0.9); 0.1, 0.1, 0.3

) (
(0.1, 0.1, 0.2, 0.7); 0.5, 0.4, 0.3

)(
(0.4, 0.5, 0.8, 0.9); 0.5, 0.4, 0.3

) (
(0.1, 0.2, 0.3, 0.4); 0.5, 0.2, 0.4

)(
(0.1, 0.2, 0.4, 0.8); 0.1, 0.5, 0.3

) (
(0.1, 0.1, 0.2, 0.4); 0.5, 0.4, 0.8

)



[ã4
ij]5x4 =


(
(0.5, 0.7, 0.8, 0.9); 0.1, 0.9, 0.3

) (
(0.2, 0.3, 0.5, 0.8); 0.5, 0.6, 0.6

)(
(0.2, 0.4, 0.5, 0.6); 0.5, 0.4, 0.3

) (
(0.2, 0.3, 0.4, 0.8); 0.1, 0.4, 0.8

)(
(0.1, 0.2, 0.3, 0.4); 0.1, 0.2, 0.3

) (
(0.0, 0.1, 0.6, 0.7); 0.5, 0.7, 0.3

)(
(0.2, 0.3, 0.4, 0.7); 0.5, 0.6, 0.3

) (
(0.2, 0.3, 0.4, 0.5); 0.5, 0.2, 0.4

)(
(0.0, 0.1, 0.2, 0.8); 0.5, 0.4, 0.3

) (
(0.1, 0.3, 0.7, 0.9); 0.5, 0.4, 0.3

)(
(0.1, 0.2, 0.4, 0.5); 0.5, 0.4, 0.3

) (
(0.1, 0.2, 0.5, 0.8); 0.2, 0.3, 0.6

)(
(0.1, 0.2, 0.5, 0.8); 0.5, 0.4, 0.3

) (
(0.1, 0.3, 0.4, 0.6); 0.3, 0.8, 0.5

)(
(0.0, 0.1, 0.4, 0.7); 0.4, 0.7, 0.2

) (
(0.4, 0.5, 0.8, 0.9); 0.5, 0.4, 0.8

)(
(0.2, 0.3, 0.6, 0.7); 0.6, 0.9, 0.3

) (
(0.2, 0.3, 0.4, 0.9); 0.5, 0.4, 0.3

)(
(0.4, 0.5, 0.7, 0.8); 0.2, 0.6, 0.5

) (
(0.0, 0.1, 0.2, 0.3); 0.1, 0.4, 0.1

)


Irfan Deli, Operators on Single Valued Trapezoidal Neutrosophic Numbers and SVTN-Group Decision
Making.
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Table 2. The ranking results of different methods.
Methods Ranking results

B5 < B2 < B1 < B4 < B3

B5 < B2 < B1 < B3 < B4

B5 < B2 < B3 < B1 < B4

T he proposed method with arithmetic operator
T he proposed method with geometric operator
Y e′s method [73] with geometric operator
Y e′s method [73] with arithmetic operator B5 < B2 < B1 < B4 < B3

Irfan Deli, Operators on Single Valued Trapezoidal Neutrosophic Numbers and SVTN-Group Decision
Making.
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