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Abstract: This paper is dedicated to study the properties of symbolic 5-plithogenic
integers and number theory, where we present many number theoretical concepts
such as symbolic 5-plithogenic Diophantine equations, symbolic 5-plithogenic
congruencies, and symbolic 5-plithogenic Euler's function. Also, we present many

examples to explain the validity and the scientific contribution of our work.
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Introduction

Symbolic n-plithogenic sets were defined for the first time by Smarandache in [4,
24-25], with many interesting algebraic properties.

In [1-3], the symbolic 2-plithogenic rings were defined as an extension of classical
rings. Many results were obtained with respect to their ideals and homomorphisms.
The symbolic 2-plithogenic rings and fields have many applications in generalizing
other algebraic structures such as symbolic 2-plithogenic vector spaces, symbolic
2-plithogenic modules, and symbolic 2-plithogenic equations [5-7].

Laterally, many authors defined and studied symbolic 3-plithogenic algebraic

structures, such as symbolic 3-plithogenic spaces and modules, see [8, 21-23].
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In the literature, the extended integer systems were used in number theory, for
example neutrosophic numbers have helped with neutrosophic number theory,
refined neutrosophic numbers generated refined number theory and split-complex
numbers generated split-complex number theory [9-20].

This has motivated many authors to study symbolic 2-plithogenic and symbolic
3-plithogenic number theoretical concepts such as congruencies, and Diophantine
equations [26-36]. The generalized versions of number theoretical concepts are very
applicable in other mathematical studies, especially in cryptography.

In this paper, we study the symbolic 5-plithogenic number theoretical concepts for
the first time, and we illustrated many examples to clarify the novel approach.
Main discussion

Definition:

The ring of symbolic 5-plithogenic integers is defined as follows:

5 —SP; ={xo + X1 x; P; x; € Z}, where P; X P; = Paxqijy, Pi° = P;.
Definition.

Let X =xo+ X 1% P,Y =vo+ X1y P, Z = 2y + Y=, 2; P; € 5 — SP;, we say that:
1). X\ Y if there exists Z € 5 — SP; suchthat X.Z =Y.

2). X=Y(mod Z) ifZ\X Y.

3). Z=gcd(X,Y) if Z\X,Z\Y andif T\ X, T\Y,then T\ Z.

4). X,Y are relatively prime if gcd(X,Y) = 1.

Theorem1.

Let X =xo+ Y01 % P,Y =yo+ Y1V P,Z =2y + Y;.,2 P, €5 — SP;, then:
1). Z = gcd(X,Y) if and only if:

zy = gcd(xg,Yo)
J J J
Zzizgcd in,Zyi ;1<j<5
i=0 i=o0 i=0

2). X =Y(mod Z) ifand only if ¥/_ox; = ¥/_y; (mod ¥)_,z), 0 <j <5.

3).If X\ Y then ¥/_ x;\¥/_,y:;;0<j <5.
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Theorem?2.

LetX =xo + X1 % P,Y =yo + X1 Vi P Z =20 + Xi 2 PLA=ag + X7, a; P, B =
bo+ Y:_1 b P;,C =co+ Yi,ci P, €5— SP;, then:

1).If Z\ X,Z\Y, then Z \ AX + BY.

2).If Z = gcd(X,Y), then there exists A,B € 5 — SP; such that AX + BY = Z.

3).If X =Y(mod Z), then:

X+C=Y+C(modZ) (I)
X—C=Y—-C(modZ) (I
X.C=Y.C(modZ) (III)

4). X is invertible modulo Z if and only if Z{: o, Xi is invertible moduloZ{= 0Zi; 0=
j <5, and:

X Y(mod Z) = xo " (mod zy) + P;[(xg + x1) " (mod zy + ;) — x," 1 (mod zy)] +
Py[(xg + x4 + x3) Y (mod zy + z; + z,) — (%o + x1) " (mod zy + z;)] + P3[(xg + x; +
Xy + x3) " Y(mod zy + zy + 2, + z3) — (xg + X1 + x3) " Y(mod zy + z, + 2,)] +
Pl(xg+x1 +x+x3+x4) Y(modzy + 2z, + 2, + 23 +24) — (xg +x1 + x5 +
x3)"t(mod zy + z; + 2, + z3)] + Ps[(xg + X1 + x5 + x3 + x4 + x5) " 1(mod zy + z; +
Zy+2Z3+ z4+25) — (Xg + X1 + X, + X3 + x4) T(mod 2y + 2, + 2, + 23 + 24)].
Theorem3.

Let AX + BY = C be symbolic 5-plithogenic Diophantine equation in two variables,
A,B,C,X,Y € 5 — SPz, hence it is solvable if and only if:

{=0 a; {=o x; + Z{ZO b; Z{zo yi = Z{zo ¢i;0<j<5 are solvable, ie.
Theorem4.

Let X =xo + Y7, X;p; €5 — SP,, then:
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Theoremb.

(X,Y,Z) is a symbolic 5-plithogenic Pythagoras triple i.e. it is a solution of the non
linear  Diophantine  equation X?4+Y?*=2Z* , if and only if
(Z{zo xi,Zgzoyi, {=0 7;);0 < j <5 is a Pythagoras triple in Z.

Theoremé.

(X,Y,Z,T) is a symbolic 5-plithogenic Pythagoras quadruple i.e. it is a solution of
the non linear Diophantine equation X? + Y% + Z? = T?, if and only if

(2{=0 X; ,Z{=0yi, {=0 Zi, {=0 t;);0 <j <5 is a Pythagoras quadruple in Z.

Proof of theorem1.

1). We put
5 1 1 1 2
Z=1zy+ ZZL' Py, zo = ng(xo»J’o),ZZi = ng( X yi>'zzi
i=1 i=1 i=1 i=1 i=1
2 2
i=1 i=1
3 3 3 4 4 4 5 5 5
> = ocd( Y Y)Y a=ged (Y Y)Y = et (YY)
i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1

So that Zg:o t; \Z{zozi;o <j<5hence T\Z and Z = gcd(X,Y).
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2). X =Y(mod Z) if and only if Z \ X — Y, which is equivalent to
{=0 Z; \ Z{=0(xi —v;);0 <j <5, hence Z{=O X; = Z{=0 Y (mod Z{=0 Zl-); 0<j<5.
3). Assume that X \ Y, hence:

( XoZg = Yo (1)
XoZy + X120 + X121, = y; (2)
XoZy + X125 + X0Zy + X329 + X221 =V, (3)
XoZ3 + X123 + X373 + X323 + X329 + X321 + X32, = V3 (4)
XoZa + X124 + XpZy + X3Z4 + X4Zy + X4Zg + X421 + X4Zy + X423 = V4 (5)
\XoZs + X125 + X3Z5 + X325 + X4Z5 + X525 + XsZy + X5Z1 + XsZy + X523 + X524, = Vs (6)

By adding (D)+2),(D+@+B),M+@+B)+@,(D+@)+@B)+#) +
G), M+ @)+ @3)+ @)+ (5) + (6), we get:

( XoZo = Yo

1 1 1
E Xi Zy = E Yi
i=1 i=1 i=1
2 2 2
xXi /) Zi = E Vi
i=1 i=1 i=1
3 3 3
X Zp = E Yi
i=1 i=1 i=1
4 4 4
X Zp = E Yi
i=1 i=1 i=1
5 5 5
X Zi = E Yi
LL=1 i=1 i=1

Which means that Zg:o X \Z{zo yi;0<j<5
Example on theorem]1.
Take X=3+2P1+2P2+P3—P4+4‘P5,Y=6+P1+P2—P3—P4+2P5
( ged(xg,y0) = ged(3,6) =3
ged(xg + x1,¥0 + y1) = ged(5,7) = 1
ged(xg +x; +x3,¥0 +y1 +y2) = ged(7,7) =7
ng(xO + X1 + Xo + X3,Yo + V1 + V2 + y3) = ng(8,7) =1
ged(xg+x; + %3+ X3+ %4,V + Y1 + Y2 +¥3 +ys) = gcd(7,6) = 1
\gcd(xg+x1 +x, + X3+ x4+ X5, Y0+ V1 + Y2 + V3 + Vs +ys) = gcd(11,8) =1
Thus

z9=3,21=1-3=-2,2,=7—-1=6,23=1-7=-6,2,=1—-1=0,z; =1 —

1 = 0, hence:
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For L =1+ P; — P, + 2P5, we can see:
L\ X —Y, that is because:
{1\—3

2\ -2

1\ -1, thus X =Y(mod L).

1\1

3\3

Proof of theorem 2.
1). Assume that Z \ X,Z \ 'Y, then we get:
0z \ X _ox,and X_ 2\ Y _ y;0<j<5.
So that Y/_,z; \ (X _ga; X _oxi + 2o b; Y, ¥;) for 0<j <5 and Z\ AX + BY.
2). Assume that Z = gcd(X,Y), then Z{=Ozi = gcd(2{=0 xi,2{=0 yi) forall 0 <j <
5.
According to Bezout's theorem, we can write:
There exists a;,b; € Z such that X)_ z; = a; ¥/_ x; + b; X1_, v,
by putting
A =ag+ (ay —ag)Py + (az —ay)P; + (a3 — az)Ps + (ay — az)Py + (as — ay)Ps,
B = by + (by — by)Py + (by — by)P, + (b3 — by)P3 + (by — b3)P, + (bs — by)Ps, we
get:
Z = AX + BY.
3). Assume that X = Y(mod Z), then:

—0Zi \Zl o(xi — ;) forall 0 <j <5, hence:

rJ

ZZL\Z(xl_Cl-l_Cl yl)
i=0

\ Jj
zzi\Z(xi'l'Ci_Ci‘l'yi)
\i=0 i=0

Hence X + C =Y + C(mod Z), also:

i= oZl\Zl o(xl Yi)Z{zoci ie. i= 021\21 Oxl l Ocl Zl Oyl l Ocl
Hence X.C =Y.C(mod Z).
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4). X is invertible modulo Z If and only if there exists ¥ =y, + Z{=1yi pi €5—
SP, such that X.Y = 1(mod Z).
This equivalent to:

{=0xl- .Z{=0yi = 1(mod Z) for 0 <j <5, hence:

I i j .
Yi—oXi isinvertible modulo };_,z; and:

X1 =x,"1(mod zy5) + P, (Zl: xl-)l (modzl:zi> — x0 " Y(mod z,)
+ P, <i xi>_1 (modizl) — (i xi> (modizi |
+P3- ixl> modei - in modzz:zi |

[ 4
+P4_ zxi

[/ 5
. p (Z

Example on theorem 2.

Take:

X=4+2P,—P,+5P; —P,+P;,Y=2+4+P, —P,+P;—P,+4P;,Z
=2—P, +P,—P;+P,+P,,A=1+P,,B=2—P, + 3P,

we have Z \ X, thatis because 2\ 4,1\ 6,2\ 4,1\9,2\8,3\09.

Z\Y,thatIbecause 2\ 2,1\3,2\2,1\3,2\23\6.

On the other hand,

AX+BY =(1+P)4+2P, — P, +5P; — P, + Ps)
+2—-P,+3P,)(2+P,—P,+P;—P,+4P;)
=4+ 4P, + 2P, + 2P, — 2P, — 2P, + 5P; + 5P, — P, — P, + Ps + Ps + 4
+ 2P, — 2P, + 2P, — 2P, + 8P — 2P, — P, + P, — P; + P, — 4P; + 6P,
+ 3P, — 3P, + 12P; =8 + 7P, + P, + 14P; — 6P, + 18P;

Z \ AX + BY, thatis because 2\ 8,1\ 15,2\ 16,1\ 30,2\ 24,3\ 42.
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For T =3 + 2P, — 2P, — P; — P,, we can see:

gcd(X,T) = gcd(4,3) + P;[gcd(5,6) — gcd(4,3)] + P,[gcd(3,4) — gcd(5,6)] +

P3[gcd(9,2) — gcd(3,4)] + P,[gcd(8,1) — gcd(9,2)] + Ps[gcd(8,1) — gcd(9,1)] ,

hence X is invertible modulo T.

47 1(mod 3) = 1,6 1 (mod 5) = 1,97 (mod 2) = 5,8 1 (mod 1) = 1,9 (mod 1)
=1,4"1(mod3) =1

X t(modT)=1+P[1—-1]+P,[1—1]+P;[5—1]+P,[1 —-5]+P[1—-1] =1+

AP, — 4P,

Proof of theorem3.

It is easy to check that AX + BY = C is equivalent to:

j j j

J J
zaini+ZbiZyi=2q;0 S]SS
i=0

i=0 =0 i=0 =0
The previous six Diophantine equations are solvable if and only if:

J

j
ged ai,Zbi \Zci;ogss

J
i=0 =0 i=0
Example on theorem3.
Consider the following 5-plithogenic linear Diophantine equation in two variables:
(1+P,—3P; +5P,+Ps)X+ (1 =P, +P,)Y =P, + P, —3P; + 6P, + 2Ps
The equivalent system is:

( XO+y0=O (1)
1

in=1 )

i=0

xi+ ) yi=2 (3)

~.
w”MN
o
-
w”MN
o

) x+ ) yi=-1(4)

_.
I
=}
-
I
=}

yi=5 (5

NN
NGB
Ra
+
NgE

~
o
~

o

o |l
o |l

5)xi+ ) yi=7 (6)

f
-

Il
=}
-

Il
=}
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Equation (1) has a solution x, =y, = 0.

Equation (2) has a solution x4 + x; = 1, hence x; = 1,y; = 0.

Equation (3) has a solution xy +x; +x, = 1,¥9 +y1 + ¥, = 1, hence x, =0,y, =
0.

Equation (4) has a solution xy+x; +x, +x3 =1,y +y; +y, +y3 =0, hence
x3=0,y3 =0.

Equation (5) has a solution xg +x; +x; + X3+ x4, = Lyo+y; +y, +ys +y, =1,
hence x, =0,y, = 1.

Equation (6) has a solution xo+x; +x; +x3+x,+x5 =1,y +y; +y, +ys +
Vs +ys =1, hence xg =0,y; = 1.

This means that X = P;,Y = P, + P5 is a solution.

proof on theorem4.

For n = 1, it holds directly.

We assume that it is true for k, we prove it for k+1.X*t = XXk = (x, +
P=0 Xi Di) [xok + P (izo x)* = x0") + Po(Ehoo x)* — Bizo x)) + Pa(Biox)* -

(520 20%) + Pa((Bo %) — (BLo 1)) + Ps (Bho 1) — (o x)¥)] = 1ok +
Py[x0* (Bizo %)™ = %™ + 210" + 20 (Bimo X% — x1%0*] + Pa[xo (X x:)* —

X0 (im0 X)* + 200 (Biog 2% — 21 (Bizo )% + x2%0" + 21 (Tizo )" — 222" +

2o (oo )" — 22 (Tizo X1 + Palxo (Bl x)* — 20 (B x:)* + 2, (Big )" —

x1 (im0 x)" + 22 (Ui x)* — 22 (T %)™ + x2x0" + x3(Biog X" — x3x0" +

x3 (B0 %) — 22 (Bizo x)* + x3(Biio x)* — 2 (Tioo x)*] + o = x™* ! +

+Py (B0 ¥ — xo* ] + P (B0 ) = Bizo ) 1] + -+

And the proof holds.

Proof of theoremb5.

X% +Y? =Z? implies that:
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( Xo? + yo? = 2p°
1 2 1 2 1 2
i=0 i=0 i=0
2 2 2 2 2 2
x| + Yi| = Z Zj
i=0 i=0 i=0
< 3 2 3 2 3 2
5o +(3) ~(35
i=0 i=0 i=0
4 2 4 2 4 2
S +(350) -3
i=0 i=0 i=0
5 2 5 2 5 2
Z x| + Yi| = Z
\\i=0 i=0 i=0
Which implies the proof.

Theorem 6 can be proved by the same argument.
Example on theoremb5.

Consider X =3+ P;,Y =4 — P;,Z =5, we have:

X% +Y? =72 hence (X,Y,Z) is a Pythagoras triple.

We can see clearly that:

( Xo=3,y%=4,2,=5
1 1
in = 3»2)’1’ =4
i=0 i=0
2 2
Z X; = 3»23’1 =4
i=0 i=0
3 3
< z X = 3'2% =4
i=0 i=0
4 4
Z X; = 3»23’1 =4
i=0 i=0
5 5 k
and in =3,Zyl- =4,Zzi =4;1<k<5
\ i=0 i=0 i=0
Definition.

Let X =xo + Yi ,x;P; €5—SP;, hence we say that X >0 if and only if x, >

0,¥F ox;>0;1<k<5
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For example: X =3 + P; — P, + 2P; — P, — P5 > 0, that is because:

3>04>03>05>04>03>0.

If Y =y,+X_0yiPi €5—SP;, we ay that X > Y if and only if x, > Vor 2 o x; =
Koyi;1<k<S5.

For X =2+P, 4+ 2P, +5P;+ P, +6P,Y =1+ P, + P, + Py + 3P, + Ps,X > Y, that

is because:

2>213>225>2310>411>7,17=>8

Definition.

Let X =xo + X2 oXP;,y = Vo + 2o Vi P; = 0, hence:

1 TizoVi 2 Tiovi 1 TizoVi
XY =xy70+ P, (Z xi> —xo¥° |+ P, (Z xl-) - (Z xl-)

=0 i=0 i=0
[ 3 Z?:oyi 2 Z?:oyi-
(S5
i=0 i=0
[ 4 o Vi 3 Yiovi]
+P4_ ( xl-) —< xl-)
i=0 i=0
[ 5 Ei5=oyi 4 ?:ow_
oS5
i=0 i=0

Example.

LetX=2+3P1_P2—P3—P4+P5,Y=1+P1—P2+P3—P4+P5,Wehave:

Mohamed Soueycatt, Barbara Charchekhandra, Rashel Abu Hakmeh, On The Foundations of Symbolic 5-Plithogenic
Number Theory



Neutrosophic Sets and Systems, Vol. 59, 2023

279

( x0=2,y0=1,x0y°=2

23P, — 21P, + 5P; — 7P, + 7Ps

Definition.

Let X = xo + Y7, x; P; > 0, then:

@ <Zl: xi) — ¢ (x0)

P(X) = p(xp) + P,

i=0

3

Example.

oS8
() ol

Where ¢ is Euler's function on Z.

2

Y

i=0

+ P,

)

LetX=3+2P1+P2+P3—P4+P5,then:

p(x0) =93 =2,¢ (Z xi> =¢(5) = 4,(

=0

=0

Y

+P,

=0

o]

) o

=0

4
@ ( Xi) -
i=0

%)

i=0

P

>=(6)=2.<p<

=0

=6,¢ (i xl-> = @(8) = 2#’(25:951’) =¢(7) =

6

(2

l

pX)=2+@-2)L+2—-4)P,+(6—-2)P;+(2—6)P,+ (6 —2)Ps
:2+2P1_2P2+4'P3_4P4+4P5

xi) = ¢(7)
i=0
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Theorem.

Let X =xo+ X7 0% Pi,Y =yo+ Yoy P, €5—SP;,gcd(X,Y) =1 and X,Y >0,
hence:

X?W) = 1(mod Y)

Proof.

gcd(xe,v0) = 1, hence x,??° = 1(mod y,).

ged(Tloxi, oy = 1, hence (B, x)?Ci=0¥) = 1(mod Y1, :)

By a similar argument, we get:

2 e(Xovi) 2 3 @(Zi=ovi) 3
(; xi> = (mod ; yl> (Z xl> =1 (mod ; yi>

4 o(Ziovi) 4 5 o(Z i) 5
(; xl-> = ( od ;yl> (; xl> = 1<m0d ;yl)
This implies

XN =14+40-DP,+1-1DP,+(1-1DP;+(1-1)P, + (1 —1)P; = 1(mod Y).
Example.
Consider X =5+ 2P, + 4P, + 2P; — 2P, + 2P;,Y = 7 + 4P, — 4P, + P; + P, + Px.
gcd(X,Y) = gcd(5,7) + +P;[gcd(7,11) — gcd(5,7)] + P,[gcd(11,7) — gcd(7,11)]

+ P3[gcd(13,9) — gcd(11,7)] + P,[gcd(11,9) — gcd(13,9)]

+ Pg[gcd(13,10) — gcd(11,9)] =1
Also, we have:

Xo = 5,50 = 7,0(yo) = 6,%,?0% = 5¢ = 1(mod 7)

1(mod 11)

=0 0
2 2 2
zxi = 11,2% = 7,(P<Z)’i> =6,11° = 1(mod 7)
i=0 i i
3 3 3
le. = 13,2% =81,¢ (Z yi> = 4,13* = 1(mod 8)

1(mod 9)

1~
=
Il
N
M-
=
Il
[E
l—‘
BS)
e
1~
=
N———
I
—_
(=}
s
(=)
Il

1=
Ral
I
Uy
=
]
<
I
O
=
S
N
1=
=
N——
Il
()}
-
—_
)}
1]
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v

5 5
xX; = 13,Zyi = 10,(p<z yi> = 4,13* = 1(mod 10)
i=0

=0 i=0

Hence X*™) = 1(mod Y)

Remark.

We call the previous result by symbolic 5-plithogenic Euler's theorem.

Conclusion

In this work, we have studied the properties of symbolic 5-plithogenic integers for

the first time, where concepts such as symbolic 5-plithogenic divisors,

congruencies, and linear Diophantine equations were handled by many theorems

and examples.

Also, we have presented the conditions of symbolic 5-plithogenic Pythagoras triples

and quadruples in the corresponding symbolic 5-plithogenic ring of integers.
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