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1 Introduction

Uncertainty is something that we cannot be sure about. It is a common phenomenon of our daily existence, because our world is full of uncertainties. There ar
many situations and complex physical processes, where we encounter uncertainties of different types and often face many problems due to it. Therefore it is natu
for us to understand and try to model these uncertain situations prevailing in those physical processes. From centuries, the Science, whether Physics or Biolog
or in Philosophy, i.e. every domain of knowledge has strived to understand the manifestations and features of uncertainty. Perhaps that is the main reason behi
the development of Probability theory and Stochastic techniques which started in early eighteenth century, which has the ability to model uncertainties arising du
to randomness. But the traditional view of Science, especially Mathematics was to worship certainty and to avoid uncertainty by all possible means. Therefor
the classical mathematics failed to model many complex physical phenomena such as complex chemical processes or biological systems where uncertainty v
unavoidable. Again probabilistic techniques cannot also model all kinds of uncertain situations. Natural language processing is an example of such problem whel
the above method fails. Thus the need for a fundamentally different approach to study such problems, where uncertainty plays a key role, was felt and that stimulate
new developments in Mathematics.

Recently a new theory has been introduced and which is known as neutrosophic logic and sets. The term neutro-sophy means knowledge of neutral thoug
and this neutral represents the main distinction between fuzzy and intuitionistic fuzzy logic and set. Neutrosophic logic was introduced by Florentin Smarandache i
1995. Itis a logic in which each proposition is estimated to have a degree of truth (T), a degree of indeterminacy (I) and a degree of falsity (F). A Neutrosophic set i
a set where each element of the universe has a degree of truth, indeterminacy and falsity respectively and which lies between, the non-standard unit interval. Unli
in intuitionistic fuzzy sets, where the incorporated uncertainty is dependent of the degree of belongingness and degree of non belongingness, here the uncertair
present, i.e. indeterminacy factor, is independent of truth and falsity values. In 2005, Wang et. Al. introduced an instance of neutrosophic set known as singls
valued neutrosophic sets which were motivated from the practical point of view and that can be used in real scientific and engineering applications. The single value
neutrosophic set is a generalization of classical set, fuzzy set, intuitionistic fuzzy set and paraconsistent sets etc.

The recently proposed notion of neutrosophic sets is a general formal framework for studying uncertainties arising due to indeterminacy factors. From the
philosophical point of view, it has been shown that a neutrosophic set generalizes a classical set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set etc. Als
single valued neutrosophic (SVN) set can be used in modeling real scientific and engineering problems. The SVN set is a generalization of classical fuzzy set [54
intuitionstic fuzzy set [7] etc. Therefore the study of neutrosophic sets and its properties have a considerable significance in the the sense of applications as well as
understanding the fundamentals of uncertainty [See [2, 3, 4, 5, 8, 10, 15, 16, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 55]]. This new topic is very sophisticated and onl
a handful of papers have been published till date but it has immense possibilities which are to be explored.

Graphs and Digraphs play an important role to solve many pratical problems in algebra, analysis, geometry etc. A couple of researchers are continuously engag
in research on fuzzy graph theory, fuzzy digraph theory, intuitionstic fuzzy graphs, soft digraphs [17, 22, 23, 24, 49]. However Neutrosophic graphs, SVN graphs
concept have been defined by Samarandache and Broumi et al. in their papers [12, 45]. We have defined the SVN digraphs in our previous paper [50]

In this paper we have developed the notion of SVN digraphs. Some preliminaries regarding SVN sets, graph theory etc. are discussed in Section 2. In section
we have defined the some terminologies regarding SVN digraph with examples. We have discussed SVN signed digraphs for the first time in Section 4. In section !
we have solved a real life networking problem by using SVN signed digraph. Section 6 concludes the paper.

2 Preliminaries

Neutrosophic sets play an important role in decision making under uncertain environment of Mathematics. Most of the preliminary ideas regarding Neutrosophic set
and its possible applications can be easily found in any standard reference say [30, 43, 45, 46]. However we will discuss some definitions and terminologies regardir
neutrosophic sets which will be used in the rest of the paper. Also we have added some new definitions and results on SVN digraphs in this section.

Definition 1 [30] Let X be a universal set. A neutrosophic séon X is characterized by a truth membership functign, an indeterminacy functions and a
falsity functionf 4, wheret 4,i4, fa : X — [0, 1], are functions ant/ =z € X,z = z(ta(x),ia(z), fa(z)) € Ais a single valued neutrosophic elementAf
A single valued neutrosophic set (SVNSyver a finite universe&X’ = {x1, z2, ...,z } is represented as below:

T

< (ta(@i), ia(@i), falzi))

A=

k3
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Definition 2 [1] Let A = {(z;ta(x);i4(x); fa(x)); x € X} be asingle-valued neutrosophic set of the set X .d&@ [0, 1], thea-cut of A is the crisp setd,
Ao ={z € X : eithe(ts(z);ia(z)) > aor fa(z) <1—al.
LetB = {{(z,y); te(z,y);i(z,y); fB(z,y))} be a neutrosophic setafl C X x X . Fora € [0, 1], thea-cut is the crisp seB., defined by,

Ba = {(z,y) € E : either(tp(x,y);ip(z,y) > a) Or
fB(z,y) <1-—a}.

Definition 3 [30] SupposeN (X ) be the collection of all SVN sets dfiand A, B € N(X). A similarity measure between two SVN sétand B is a function
S : N(X) x N(X) — [0, 1] which satisfies the following condition:
() 0<S(A,B) <1,
(i) S(A,B)=1ifandonlyifA = B.
(i) S(A,B) =S5(B,A)
(iv) fAC BCC,thenS(A,C) < S(A,B)andS(A,C) < S(B,C)forall A,B,C € N(X).

Note that here (i)-(iii) are essential for any similarity measure and (iv) is a desirable property although not mandatory.

Definition 4 The entropy of SVNS is defined as a functio® : N(X) — [0, 1] which satisfies the following axioms:
(i) E(A)=0if Aisacrisp set.
@iy E(A)=1if (ta(z),ia(z), fa(z)) =(0.5,0.5,0.5) Vz € X.
(i) E(A) > E(B) if Ais more uncertain thaB i.e. t4(z) + fa(z) <tp(z) + fe(z)and|ia(z) — iac(z)| < |ip(x) —ipe(x)|Vz € X A,Be€ X.
(v) E(A) = E(A°) YA € N(X), whereN(X) is the collection of all SVNS ovex.

Example 5 An entropy measure of an elemant of a SVNSA can be calculated as follows:

Ei(z1) =1~ (ta(z1) + fa(z1)) x ia(z1) —iac(z1)].

Graph theory are widely used in different areas of neutrosophic theory. Many authors have used different types of graphs in neutrosophic theory. Consider a SVN se
Vp = {(vi, (tv, (vi),ivp, (vi), fvp (vi))), 4 = 1,...,n} over afinite universal seX.

Definition 6 [50] A SVN digraphD is of the formD = (Vp, Ap) where,
() Vp = {v1,v2,v3,...,vs} and the functionsy,, : Vp — [0,1], iy, : Vb — [0,1], fy, : Vp — [0, 1] denote the truth-membership function, a
indeterminacy-membership function and falsity-membership function of the elejrentp respectively such tha < tv, (vi) +ivy, (vi) + fyv, (vi) < 3,
Yv; € Vp,i=1,2,...,n.
(i) Ap = {(vs,v5); (vs,v;) € Vp x Vp} provided0 < E(v;) — E(v;) < 0.5 and the functiong 4, : Ap — [0,1],i4,, : Ap — [0,1], fa, : Ap —
[0, 1] are defined by
tap({vi,v;}) < minftyy, (vi), tvy, (v5)],
iap ({vi,v5}) > mazlivy, (vi), vy, (v5)],
fap ({vi,vi}) > maz(fv, (vi), fvp, (v5)]
wheret 5, ,i4,,, fa,, denotes the truth-membership function, a indeterminacy-membership function and falsity-membership function ¢fthe; are
Ap respectively wheré < t 4, (vi,v5) +iap (vi,v5) + fap, (vi,v5) < 3,V(vs,v5) € Ap, 4,5 € {1,2,...n}.
We callVp as the vertex set dD, Ap as the arc set oD whereE(v) is the entropy of the vertex Please note that i/ (v;) = E(v;), then{(v;, v;), (vj,v;)} €

Ap. Since for a vertex € Vp of a SVN digraphD we haveE (v) = E(v), thus every vertex of a SVN digraphcontains a loof(v, v) atv. On the other hand, if
E(v;) — E(vj) > 0.5, we define that there exists no arc between the verticesidv;.

Example 7 Consider the SVN digrapho = (Vp,, Ap, ) in Figure 1 with vertex se¥Vp, = {v1,v2,v3} and arc setdp, = {(vz2,v1), (v1,v3), (v2, v3)} With
one loop at each vertex as follows:
vy v2 V3
ty, 04 04 05
vp 01 03 02 |,
fr, 02 01 05
E 0.52 0.8 04

(v2,v1)  (v2,v3) (v1,v3)

ta, 0.3 0.2 0.4
iap 0.4 0.3 0.3
fa, 0.2 0.6 0.4

Itis clear that theDg is a SVN digraph.

Definition 8 Suppose) = (Vp, Ap) andH = (Vy, Ag) be two SVN digraphs with/p | = |V | corresponding to the SVN&> and Vi over an universal set
X. Then the cartesian product of two SVN digraghsind H is defined as a SVN digrapghi = (V, A¢) in which the following holds:

() Vo =Vp x Vg,
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vy

Figure 1: The SVN Digraptb,

(i) tve (v1,v2) < min(tVD (v1), tvy (v2)); iVC (v1,v2) < min(iVD (v1), 1V (v2));
Fve (v1,v2) > maz(fvy, (v1), fug (v2));V (vi,v2) € Vp NV and,,

@iy Ac = {((vi,v5), (vk,m)); (vi,v5), (vk,v1)) € Vo x Vo'} provided0 < E(vi,v;) — E(vg,v) < 0.5.
Definition 9 The degree and the total degree of a vertexf a SVN digraphD = (V, A) are denoted by
dp(vi) = (di(vi), di(vi), dy(vi))

= ( Z ta(vi,vj), Z ia(vi,vj), Z fA(Ui,Uj)),

Jyi#£] Jyi#£] Jyi#£]
Tdp(vi) = (D ta(wi,v;) +ty(vi), D ia(vi,v;)+
Jyi#d Jyi#d
iv(vi), > fa(i,vy) + fv(vi)).
Jyi#7

Example 10 The degree and total degree of the vente>of the digraphDg in Example 7 arelp (v2) = (0.5,0.7,0.8) andT'dp (v2) = (0.9,1,0.9).
Definition 11 A SVN digraphD = (Vp, Ap) is called a k-regular SVN digraph ifp (v;) = (k, k, k) Yv; € Vp.
Definition 12 A SVN digraphD = (Vp, Ap) is called a totally regular SVN digraph of degrék: , k2, k3) if Tdp (vi) = (k1, k2, k3) Yv; € Vp.

It is quite clear that the concept of a regular SVN digraph and totally regular SVN digraph are completely different. We have seen that thg anc/3éorms a
SVN set [50]. Now we consider the concept of degree and total degree of an arc of a SVN digraph in the next definition.

Definition 13 The degree and the total degree of an &g v) of a SVN digraph are denoted b (u,v) = (dt(u,v), ds(u,v), ds(u,v)) andTdp (u,v) =
(Tdt(u,v), Td;(u,v), Tdy(u,v)), respectively and are defined as follows:
1 .
dp(u,v) =dp(u) +dp(v) — 5(1&,4(u7 v),%4(u,v), fa(u,v)),
Tdp (u7 ’U) =dp (u7 ’U) + (tA(u7 U)7 iA(U, U)7 fA (u7 ’l}))
Example 14 Consider the SVN digrapPy in Figure 1. Here the degree and total degree of the vertiags v2, v3} of Dy as follows:
dp(v1) = (0.4,0.3,0.4), Tdp (v1) = (0.8,0.4,0.6),
dp(ve) = (0.5,0.7,0.8), Tdp(v2) = (0.9,1,0.9),
dp(v3) = (0,0,0), Tdp(v3) = (0.5,0.2,0.5).
Now we calculate the degree and total degree of each artgf of Dy as follows:
dD(v27 Ul) = (0857 0.8, 11)7 TdD(v27 Ul) = (067 0.6, 01)7
dp(v2,v3) = (0.4,0.55,0.5), Tdp (v2, v3) = (0.3,0.4,0.2),
dp(v1,vs) = (0.2,0.15,0.2), Tdp (v, vs3) = (0,0,0).

Definition 15 The maximum degree of a SVN digraph= (Vp, Ap) is defined as\ (D) = (A+(D), A;(D), Af(D)) where

A¢(D) = mazx{di(v) : v € Vp},
A;(D) = maz{d;(v) : v € Vp},
A¢(D) = maz{ds(v) : v € Vp},

Definition 16 The minimum degree of a SVN digraph= (Vp, Ap) is defined ag(D) = (§:(D), d;(D), §s(D)) where
6+(D) = min{d¢(v) : v € Vp},
8;(D) = min{d;(v) : v € Vp},
07(D) = min{ds(v) : v € Vp},
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Example 17 For the SVN digrapiDy in Figure 1, we have\ (D) = (0.5,0.7,0.8) andd(D) = (0, 0,0, ).

Definition 18 SupposeD = (Vp, Ap) be a SVN digraph corresponding to a SVNBgt. ThenD is said to be
(i) arc regular SVN digraph if every arc iy has the same degréé , k2, k3).
(ii) equally arc regular SVN digraph #; = ko = k3.
(iii) totally arc regular SVN digraph if every arc i has the same total degré& , k2, k3).

It is also quite clear that the above three concepts are completely different to each other.

3 SVN Signed Digraph

In this paper, we will define the SVN signed digraph for the first time.

Definition 19 SupposeD = (Vp, Ap) be a SVN digraph over a single valued neutrosophid/4et A signing of a SVN digrapl is an assignment of a sight
or —) to each arc of the digraph; the sign of afe, w) is denotedsgn (v, w). The result of a signing ab is called a SVN signed digraph.

However to assign the sign of the arcs, we will follow some rules. For this, we will considerléwel subdigraphD; of a SVN digraphD. Then we will assign
+ sign only to those arcs dD which are also the arcs aD; . For the rest of arcs oD, we will assign— sign.

Example 20 Consider the SVN digraph; = (Vp, , Ap, ) in Figure 2 with vertex se¥Vp, = {v1,v2,v3,v4} and arc setdp, = {(vz2,v1), (v1,v3), (v2,v3),
(v2,v4), (v3,v4), (va,v1)} with one loop at each vertex as follows:
v1 v2 U3 4
tvp, 04 04 05 02
ivp, 01 03 02 05 |,
fVD1 02 01 05 0.3
E 0.52 0.8 04 1

(v2,v1)  (v2,v3) (v4,v1) (vi,v3) (v4,v2)

tap, 0.3 0.2 0.1 0.4 0.2
1Ap, 0.4 0.3 0.5 0.3 0.5
fAD1 0.2 0.6 0.3 0.4 0.4

We takear = 0.5. In this case, the verticefvi, v2,v4} of D1 are a-level vertices and the arcv2, v1), (v4, v1), (va,v2)} are thea-level arcs. Thus we will
assign the sign as follows to the arcsiof

sgn(vz, v1) = sgn(va,v1) = sgn(va, v2) = +
sgn(vi, v1) = sgn(vz, v2) = sgn(vs, v4) = +,

sgn(va,v3) = sgn(vi,v3) = sgn(vs,v3) = —

01(04,0.1,02)  1(0.4,0.3,0.1)

04(0.2,0.5,0.3)  v3(0.5,0.2,0.5)

Figure 2: The SVN Digraplb,

Remark 21 Throughout this paper, we have taken the value & 0.5. However, for different values of we will get different signed SVN digraphs. Also,/&y;,
we denote the complete SVN digrapmefertices.

Definition 22 The sets of positive and negative arcs of a SVN signed digiaple respectively denoted iyt and D~. ThusD = Dt U D—.

Definition 23 A SVN signed digraph is said to be homogeneous if all of its arcs have either positive sign or negative sign, otherwise heterogeneous.

Definition 24 The sign of a SVN signed digraph is defined as the product of signs of its arcs.A SVN signed digraph is said to be positive (negative) if its sign is
positive (negative) i.e., it contains an even (odd) number of negative arcs. A signed digraph is said to be all-positive (respectively, all negative) if all its arcs are

positive (negative).
Example 25 ltis clear that the sign of the SVN digragh; in Example 20 is negative. It is clear that the SVN digrdphis neither all positive nor all negative.

Definition 26 A SVN signed digraph is said to be cycle balanced if each of its cycles is positive, otherwise non cycle balanced.
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Definition 27 A SVN signed digraph is symmetric(f, v) € DT (orD~) then(v,u) € D (orD~) whereu,v € Vp.

Definition 28 The adjacency matrix of a SVN signed digraphis the square matriX/ = (a;;) whose(s, j) entrya;; is +1 if arc (v, v;) in D has a+ sign,—1
if arc (vi, v;) in D has a— sign, and0 if arc (v, v;) is notin D.

Example 29 The adjacency matrid/ of the SVN signed digrapbP; in Figure 2 is as following:

1 0 -1 0
1 1 -1 0
M= 0 0 -1 0
1 1 0 1

Definition 30 The characteristic polynomiai(t) = |¢/ — M| of the adjacency matri?/ of a SVN signed digrapl is called the characteristic polynomial @
and it is denoted by(t). The eigenvalues d¥/ are called the spectral of the digraph.

Example 31 The characteristic polynomial(t) of the SVN signed digrapP; in Figure 2 isé(t) = (¢t — 1)3(¢ + 1) and spectral values arg, 1,1, —1.

Definition 32 SupposeD = (Vp, Ap) be a SVN signed digraph over a single valued neutrosophi¥’set {vi,v2,...,vn}. Consider the complement SVN
digraph D€ corresponding to the complement SVN\s’éf. The digraphVDc with a signing of arcs is called the signed complement of the SVN signed digfaph

Here we choose the same valuecos of D and also consider the-arcs andx-vertices. According to the-arcs anch-vertices we assign signs to the arcS4.

Example 33 Consider the SVN complement digrapli of the SVN digraptD; in Figure 2.

sgn(vz,v1) = sgn(va,v1) = sgn(va,v2) = —,

sgn(vi,v1) = sgn(vz,v2) = sgn(va,va) = +,

sgn(vz,v3) = sgn(vi,v3) = sgn(v3,v3) = +.
01(0.4,0.1,0.2) v2(0.4,0.3,0.1)

04(0.2,0.5,0.3)  v3(0.5,0.2,0.5)

Figure 3: The SVN Digraptb®

4 Some important results of a SVN Signed Digraph

In this section we will discuss some results regarding SVN signed Neutrosophic digraphs. Like wise a SVN Bignaptiefine the terminologies of a SVN signed
digraph. However, therder of a SVN signed digrapl®, denoted by D|, is the number of vertices dp. Thesizeof a SVN signed digrapl®, is the number of arcs
of Die.|Ap]|.

Theorem 34 A SVN (signed) digrapb # K, of order> 3 is always acyclic.

Proof 35 Suppose there exist a cyclic SVN (signed) digréapk= (Vp, Ap) has vertex se¥Vp = {v1,v2,vs,...,vs}. Without loss of generality, leb has a
cycle of lengthk, wherek > 3 say(vi,v2,...,vg). Thenwe havé(vi) > E(v2) > ..., E(vg) > E(v1)- which is impossible. HencP does not have a cycle
of lengthk.

Corollary 36 Any asymmetric SVN signed digraph of ordes is not balanced.

Theorem 37 Any asymmetric SVN (signed) digraphof order> 3 is not strongly connected.

Proof 38 Since there does not exists any SVN (signed) digraph with a cycle of lengjthence the results follows.

Theorem 39 In any complete symmetric SVN digraph= (Vp, Ap), whereVp = {v1,v2,...,vn},
> dp (i) = (di(v:), di(vi), dy (v:))
= (D talwi,vg), D ia(ivy), Y falvi,vg)),

3,1#£5 3,1#£5 3,1#£5

Yv; € Vp.
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Proof 40 For any symmetric complete SVN digraph= (Vp, Ap), whereVp = {v1,v2,...,vn}, we havey  dp(vi) = (O de(vs), > di(vi), 2 dg(vi))

= (de(v1),di(v1),dy(v1)) + ... + (de(vn), di(vn), df(vn))

= (s ta(1,05), 205 125 14(01,05), 205 125 fa(v,v)) + ...+

(Zj,n;éj tA(vmvj)v Zj,n;ﬁj ia(vn, Uj)y Zj,n¢j fa(vn, Uj))

= 2(23‘,#]' ta(vi,vj), Zj,i;ﬁj ia(vi,vj), Zj,i;éj Ja(vs, vj))-

However the converse of the Theorem 39 is not true for a asymmetric and incomplete SVN digraph which can be followed from the Example 10. The SVN digraph
Dy is asymmetric as well as incomplete. Clearly the Theorem 39 does not hold.

Theorem 41 SupposeD = (Vp, Ap) be a SVN symmetric digraph which has a cy€len p-vertices, sayfv1, va,...,vp}. Then,

2-dp(vi)
= ZdD(vi,Uj) + g( Z tA(vz'yvj)v Z iA(U’ivvj)v Z fA(U’ivvj))

3,15 3] Jyi#]
where(v;,vj) € C,i # j.
Proof 42 We havez dD(Ui,vj) = dD(Ul,vz) + ...+ dD(vp,vl)
=dp(v1) +dp(v2) — 3(ta(v1,v2),ia(v1,v2), fa(v1,v2)) + ...+
dp(vp) +dp(v1) = 5(ta(vp,v1),ia(vp, v1), fa(vp,v1)),
= 2Z/ui€CdD(vi)_
S iy ta (i 07), 305 i ia(03,05), 305 s Fa(visvg) }
=3, ec dp(vi)+,
2{ Zj,i#j ta(vi,vj), Zj,i#j ia(vi,v;), Zj,i;éj fA(Ui,Uj)}
_% ( Zj,iyéj ta(vi,vj), Zj,i;éj ia(vi,vj), Zj,i;éj fa(vi, Uj))v
= > dp(vi,vj)+,
% ( Zj,i#j ta(vi,vy), Zj,i;éj ia(vi,v5), Zj,i#j fa (vi,vj))-
Theorem 43 The maximum value of the degree of any vertex in a complete SVN difrapth » vertices isin — 1,n — 1,n — 1).
Proof 44 SupposeD = (Vp, Ap) be a complete SVN digraph. Then the maximum truth-membership value given to an arc is 1 and the number of arcs incident on

a vertex can be at most — 1. Hence the maximum truth-membership degree of any vertex in a complete SVN-digraphveritices isn. — 1. Similar argument
can be done for indeterminacy-membership degree and falsity-membership degree of any vertex. Hence the result follows.

The following remarks are quite natural for a SVN signed digraph:
Remark 45 (i) A single valued neutrosophic signed digraph is a single valued neutrosophic positive signed digraph if every even length cycles having all
negative signed arcs.
(ii) Odd length cycle having all negative signed arcs is always a negative signed digraph.
(i) An odd length single valued signed neutrosophic cycle is balanced if and only if it contains at least one positive arcs or odd number of positive arcs.

5 Applications of a SVN Signed digraph

The applications of SVN sets in solving real life problems under uncertainty has been shown by many authors. In this section we have shown the application of our
SVN signed digraphs in solving two problems namely a classification problem and a decision making problem.

5.1 Classification problem

Consider the SVN set’ (D) = {v1,v2,v3.v4} in Example 20 and the corresponding SVN signed digrBpk= (Vp, Ap) in Figure 2. To draw SVN signed
digraph, we have takem = 0.5. Based on thisy, we find that the vertice$v1, v2, v4 } of D1 asa-level vertices and the ardgvz, v1), (va, v1), (va,v2)} as the
a-level arcs. Then we assign the signs to the ardd afs follows:

sgn(vz,v1) = sgn(va, v1) = sgn(va, v2) = +,
sgn(vi,v1) = sgn(vz, v2) = sgn(va,va) = +,
sgn(ve,v3) = sgn(vi,v3) = sgn(vs,vz) = —.

Hence, we can form a partition of two sets namelyQ, whereP = {vq,v2,v4} and@ = {v3} from the elements of a SVN s&t(D). The partition is done on
the basis of signing of tha-level vertices. Thus by drawing SVN signed digraph of a SVN set, we can get a 2-point classification of a SVN set.

5.2 Algorithm for 2-point classification of a SVN set

One can attempt for 2-point classification of a SVN set by using the following algorithm:
(i) Consider a SVN seV' (D).
(i) Draw a SVN digraphD = (V (D), A(D)), whereV (D), A(D) are the vertex set and arc setldfrespectively.
(iii) Choose the value ofv and find outo level vertices ofD. The choice of the value of the is completely depend on the programmer.
(iv) Assign the positive sign with the level vertices, arcs and negative sign to rest of the vertices, atos bf that caseD turns into a SVN signed digraph.

(v) Finally consider two set#, @ s.t P consists the positive vertices adlcontains the negative vertices. Hence a partition of the SVN18éf3) is done
consisting of two set$ andQ respectively.
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5.3 A Decision Making Problem

SupposeA, B, C' be three nations willing to explore the possibility trade between them. Considering various situations in there countries like, political stability, case
of doing business, human resource, trade laws etc. Each country was assigned grades of positive factors, indeterminacy and negative factors as follows:

A(0.4,0.3,0.2), B(0.4,0.1,0.2), C(0.5,0.2, 0.4).

In these way, we can characterize the three coustn, C respectively. We must to find the possibility of trade between them. For this, we corsiderC' as the
three verticesi;, vz, v3 respectively as a vertex séb, of a proposed SVN digrapp, = (Vp,, Ap,). Now we draw the SVN digrapip, as follows:

04 o1 0% (v1,02)  (v1,v3)  (v2,v3)
Vb : : : ta 0.3 0.2 0.4
iv, 03 01 02 |,| Ap o1 03 0.3
fv, 02 02 04 "Ap : : :
E 076 052 0.46 fap 0.2 0.6 0.4

Here, we have seen thdtp, = {(v1,v2), (v1,v3), (v2,v3)}. Sowe can say that, there is a good transport communication between the cour(td, gajs (A, C), (B, C)

vy

Figure 4: The SVN Digraplb,

respectively. Now consider = 0.3. Here, the vertice§v1, v2 } of D4 area-level vertices and the ardgv1, v2)} is the onlya-level arcs. Thus we will assign the
sign as follows to the arcs db4

sgn(vi,v2) = sgn(vi,v1) = sgn(ve,v2) = +,
sgn(va,v3) = sgn(vi,vs) = sgn(vs,v3) = —

From this SVN signed digrapv, we can conclude that botA and B have a common enemy. Hence although there is a good communication between two
country (A, C) and (B, C), it is not possible to do business between them due to their political situation. Hence a cyclic triple SVN signed Bigraipin one
positive arcs can evaluate the real networks.

6 Conclusion

F. Smarandache introduced the neutrosophic set theory in his paper [43] as a generalization of fuzzy intuitionistic set theory. After that many researchers hay
developed the neutrosophic set theory, SVN theory, neutrosophic graph theory etc. and have applied those theories in solving many practical problems ([1, 6, 10, 1
13, 14, 19, 20, 21, 26, 31, 41, 42, 48, 50, 51, 52, 53] etc.). We have developed earlier SVN digraph theory corresponding to a SVN set in our paper [50]. In this
paper we have further developed the SVN digraph theory and introduced the notion of SVN signed digraphs and studied some of its important properties and applie
it in a decision making problem. In future, one may study the decision making problems using SVN signed digraphs. The study of deeper properties of SVN signec
digraphs and solution of more real life problems will be done in our subsequent papers.
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