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it Restricted SuperHyperGraphs (R-SHG). We then generalize the R-SHG to the neutrosophic graphs and 

then define the corresponding trees. In the following, we examine the Helly property for subtrees of 

SuperHyperGraphs. 
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1. Introduction 

          Hypergraph theory is one of the most widely used theories in modeling large and complex 

problems. In recent years, many efforts have been made to find different properties of these graphs [1-

5]. One of these features that is also very important is the property of Helly. To read more about this 

property, you can refer to [4, 5]. Here we first rewrite the definition of SuperHyperGraphs from [1], 

which has the advantage that we have reduced the empty set from the set of vertices because in practice 

the empty vertex is not much applicable, and we have also categorized the set of vertices and edges 

according to its type. Then the adjacency matrix. We define the incidence matrix and the Laplacian 

matrix. 

 Obviously, if a super hyper power graph contains a triangle, it will not have a highlight feature. We 

show here that some defined super hyper power graphs have subtrees that have Helly property.  

There are algorithms for detecting Helly property in subtrees that the reader can refer to [4] to view. 

In graph theory, a chordal graph is a graph in which each cycle is four or more lengths and contains 

at least one chord. In other words, each induction cycle in these graphs has a maximum of three vertices. 

Chord graphs have unique features and applications. To study an example of the applications of chordal 

graphs, you can refer to [7]. 

Definition 1 [4]. Let 𝐴 be a set. We say that 𝐴 has Helly property if and only if, for every non-empty set 𝑆 

such that 𝑆 ⊆ 𝐴 and for all sets 𝑥, 𝑦 such that 𝑥, 𝑦 ∈ 𝑆 holds 𝑥 meets 𝑦 holds ∩ 𝑆 ≠ ∅.  

Proposition 1 [4]. Let 𝑇 be a tree and 𝑋 be a finite set such that for every set 𝑥 such that 𝑥 ∈ 𝑋 there exists a 

subtree 𝑡 of 𝑇 such that 𝑥 is equal the vertices of 𝑡. Then 𝑋 has Helly property. 
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2. Neutrosophic Restricted SuperHyperGraphs 

In this section, we provide a modified definition of Restricted SuperHyperGraphs (RSHG), and then generalize this definition 

to neutrosophic graphs. 

Definition 2. SuperHyperGraph (𝑺𝑯G))[1] 

A Super Hyper Graph (𝑆𝐻𝐺) is an ordered pair 𝑆𝐻𝐺 = (𝑋 ⊆ 𝑃(𝑉)\∅, 𝐸 ⊆ 𝑃(𝑉) × 𝑃(𝑉)), where  

i. 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a finite set of 𝑛 ≥ 0 vertices, or an infinite set. 

ii. 𝑃(𝑉) is the power set of 𝑉 (all subset of 𝑉). therefore, an 𝑆𝐻𝐺-vertex may be a single (classical) vertex (𝑉𝑆𝑖), or a super-

vertex (𝑉𝑆𝑢) (a subset of many vertices) that represents a group (organization), or even an indeterminate-vertex (𝑉𝐼) 

(unclear, unknown vertex);  

iii. 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}, for 𝑚 ≥ 1, is a family of subsets of 𝑉 × 𝑉, and each 𝑒𝑖 is an 𝑆𝐻𝐺 −edge, 𝑒𝑖 ∈ 𝑃(𝑉) × 𝑃(𝑉). An 

𝑆𝐻𝐺 −edge may be a (classical) edge, or a super-edge (edge between super vertices) that represents connections 

between two groups (organizations), or hyper-super-edge that represents connections between three or more groups 

(organizations), or even an indeterminate-edge (unclear, unknown edge); ∅ represents the null-edge (edge that means 

there is no connection between the given vertices). 

Definition 2-1(2-Restricted SuperHyperGraphs) 

2-Restricted SuperHyperGraphs are a special case of SuperHyperGraphs, where we look at the system from the part to the whole. 

So, according to definition 2, we have 

1. Single Edges (𝐸𝑆𝑖), as in classical graphs. 

2. Hyper Edges (𝐸𝐻), edges connecting three or more single- vertices. 

3. Super Edges (𝐸𝑆𝑢), edges connecting only two 𝑆𝐻𝐺- vertices and at least one vertex is super Vertex. 

4. Hyper Super Edges (𝐸𝐻𝑆), edges connecting three or more single- vertices (and at least one vertex is super vertex. 

5. Indeterminate Edges (𝐸𝐼), either we do not know their value, or we do not know what vertices they might 

connect. 

 

Then, 𝐺 = (𝑋, 𝐸) where 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) × 𝑃(𝑉). 

Definition 3. (Neutrosophic  Restricted SuperHyperGraphs) Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph. If all vertices and 

edges of 𝐺 belong to the neutrosophic set, then the SHG is a Neutrosophic Restricted SuperHyperGraphs (NRSHG). If 𝑥 is a 

neutrosophic super vertex containing vertices  {𝑣1, 𝑣2, … , 𝑣𝑘}, where 𝑣𝑖 ∈ 𝑉 for 1 ≤ 𝑖 ≤ 𝑘, then  

 

𝑇𝑋(𝑥) = min{𝑇𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}, 
𝐼𝑋(𝑥) = min{𝐼𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}, 
𝐹𝑋(𝑥) = max{𝐹𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}. 

 

Definition 4. Let 𝐺 = (𝑋, 𝐸) be a 2-Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆

𝑃(𝑉) × 𝑃(𝑉). Then, the adjacency matrix 𝐴(𝐺) = (𝑎𝑖𝑗) of 𝐺 is defined as a square matrix which columns and rows its, is shown by the 

vertices of 𝐺 and for each 𝑣𝑖 , 𝑣𝑗  ∈ 𝑋,  

 

𝑎𝑖𝑗 =

{
 
 

 
 
0                 there should be no edge between vertices 𝑣𝑖  and 𝑣𝑗 ; 

1                        there is a single edge between vertices 𝑣𝑖  and 𝑣𝑗 ;

S                         there is a super edge between vertices 𝑣𝑖  and 𝑣𝑗 ; 

H                        there is a hyper edge between vertices 𝑣𝑖  and 𝑣𝑗 ;

SH          there is a super hyper edge between vertices 𝑣𝑖  and 𝑣𝑗 .

 

 

Note that in the adjacency matrix 𝐴, a value of one can be placed instead of non-numeric values (𝑆, 𝐻 and 𝑆𝐻)  if necessary for 

calculations. So that, since 𝐴 is a symmetric and values of 𝐴 is positive, eigenvalues of 𝐴 are real. 

 

Definition 5. Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) ×

𝑃(𝑉). If 𝐸 = (𝑒1, 𝑒2, … , 𝑒𝑚) then an incidence matrix 𝐵(𝐺) = (𝑏𝑖𝑗) define as 
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𝑏𝑖𝑗 = {
1              𝑖𝑓 𝑣𝑖 ∈ 𝑒𝑗 ,

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

Definition 6. Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) ×

𝑃(𝑉). If 𝐷 = 𝑑𝑖𝑎𝑔(𝐷(𝑣1), 𝐷(𝑣2),… , 𝐷(𝑣𝑛)) where 𝐷(𝑣𝑖) = ∑ 𝑎𝑣𝑖𝑣𝑗𝑣𝑗∈𝑋
, then, a laplacian matrix define as  

𝐿(𝐺) = 𝐷 − 𝐴(𝐺). 

Example 1. Consider 𝐺 = (𝑋, 𝐸) as shown in figure 1 (This figure is selected from reference [1]). Where 𝑋 =

{𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉8, 𝐼𝑉9, 𝑆𝑉4,5, 𝑆𝑉1,2,3} and 𝐸 = {𝑆𝑖𝐸5,6, 𝐼𝐸7,8, 𝑆𝐸123,45, 𝐻𝐸459,3, 𝐻𝑆𝐸123,7,8}. We now obtain the SuperHyperGraph – 

related matrices in figure 1 using the above definitions. 

 

 

Figure 1. a Restricted SuperHyperGraph𝐺 = (𝑋, 𝐸) 

 

 

a. Adjacency matrix 
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b. incidence matrix 

 

c. Laplacian matrix  

To calculate the Laplacian matrix, we first obtain the diameter matrix 𝐷, in which the vertices 

on the principal diameter, the degree of vertices, and the other vertices are 0. Then its Laplacian 

matrix is calculated as follows. 

3. Neutrosophic SuperHyperTree 

In this section, we first provide a definition of Neutrosophic SuperHyperTree. We then define the 

subtree for Neutrosophic SuperHyperGraphs. In the following, we will examine the Helly property in 

this type of power graphs. 

Definition 7. Let 𝐺 = (𝑋, 𝐸) be a Neutrosophic SuperHyperGraph. Then 𝐺 is called a Neutrosophic 

SuperHyperTree (NSHG) if 𝐺 be a connected Neutrosophic SuperHyperGraph  without a neutrosophic 

cycle. 

Definition 8. Let 𝐻 = (𝐴, 𝐵) be a Neutrosophic SuperHyperGraph. Then 𝐻 is called a subtree NSHG if 

there exists a tree 𝑇 with the same vertex set 𝑉 such that each hyperedge, superedge, or hypersuperedge 

𝑒 ∈ 𝐸 induces a subtree in 𝑇. 

Note. Here we consider the underlying graph 𝐻∗ to find the subtree of NSHG. 
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Example 2. Consider  𝐺 = (𝑋, 𝐸) a Restricted SuperHyperGraph as shown in figure 2.  

Figure 2. A Restricted SuperHyperGraph 

As you can see, since 𝐺 contains the cycle, so that 𝐺 is not a Restricted SuperHyperTree. An 

𝑅𝑆𝐻 −subgraph induced by the subset {𝑒7, 𝑒8, 𝑒9, 𝑒5} of 𝑋, is a RSHT. 

Example 3. Consider  𝐺 = (𝑋, 𝐸) a Neutrosophic Super Hyper Power Graph as shown in figure 3. 

Note that in this example all vertices and edges belong to the neutrosophic sets. As you can see, G is 

a Restricted SuperHyperTree. 
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Figure 3. A Neutrosophic Restricted SuperHyperTree 𝐺 

 

 Now we find a subtree according to definition 7 for 𝐺. 

 

Figure 4. A subtree for NRSHG 𝐺 

 

Now, let 𝑇 = (𝐴, 𝐶) be a tree, that is, 𝑇 is a connected neutrosophic graph without cycle. Then, 

we build a connected NRSHGraph 𝐻 in the following way: 
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1. The set of vertices of 𝐻 is the set of vertices of 𝑇; 

2. The set of edges (hyperedges, superedges or superhyperedges) are a family E of subset V such 

that induced subgraph 𝑇𝑖  is a subtree of T where 𝑇𝑖  is produced by vertices located on edge 𝑒𝑖 ∈ 𝐸. 

so that subgraph 𝑇𝑖  is a tree. 

 

Theorem 1. Let 𝑇 = (𝑉, 𝐸′) be a tree. Also, 𝐻 is a subtree Restricted SuperHyperGraph according to 𝑇. 

Then 𝐻 has the Helly property. 

 

Proof. Since for each tree there exist exactly one path between the two vertices 𝑣𝑖 , 𝑣𝑗 . The path between 

two vertices 𝑣𝑖 , 𝑣𝑗 denoted 𝑃[𝑣𝑖 , 𝑣𝑗].suppose that, 𝑣𝑖 , 𝑣𝑗  and 𝑣𝑘 are three vertices of 𝐻. The paths 𝑃[𝑣𝑖 , 𝑣𝑗], 

𝑃[𝑣𝑗 , 𝑣𝑘] and 𝑃[𝑣𝑘 , 𝑣𝑖] have one common vertex. Now, using theorem 1, for each family of edges 

(hyperedges, superedges and superhyperedges) where the edge contains at least two of the vertices 

𝑣𝑖 , 𝑣𝑗  and 𝑣𝑘 have a non-empty intersection. 

 

 

Theorem 2. Let 𝑇 = (𝑉, 𝐸′) be a tree. Also, 𝐻 is a subtree Restricted SuperHyperGraph according to 𝑇. 

Then 𝐿(𝐻) is a chordal graph. 

 

Proof. Consider 𝑇 = (𝑉, 𝐸′) is a tree. Suppose 𝐻 is a subtree Restricted SuperHyperGraph according 

to T. If |𝑉| = 1, then 𝐻 include exactly one vertex and one hyperdege, so that, the linegraph of H has 

only one vertex hence H is a clique.  It turns out that 𝐻 is a chordal graph. Next, assume that the 

assertion is true for each tree with |𝑉| = 𝑛 − 1, 𝑛 > 1. 

 Now we have to show that the problem assumption is valid for 𝑛 vertices as well. For that, 

suppose 𝑣 ∈ 𝑉 is a vertex leaf on 𝐻. remember that in a tree with at least two vertices there exist at 

least two leaves. If 𝑇1 = (𝑉 − {𝑣}, 𝐸1
′), where 𝑇1 is the subgraph on 𝑉 − {𝑣}, and 

 

𝐻1(𝑉 − {𝑣}) = (𝑉 − {𝑣}, 𝐸1),  |𝑉| > 1. 

 

The 𝑇1 = (𝑉 − {𝑣}, 𝐸1
′) is a tree moreover 𝐻1 = (𝑉 − {𝑣}, 𝐸1) is an induced subtree Restricted 

SuperHyperGraph associated with 𝑇1. Hence 𝐿(𝐻1) is chordal. 

Now, if the number of edges should be the same, that is, |𝐸′| = |𝐸1
′| then we have 𝐿(𝐻) ≈ 𝐿(𝐻1) 

so that 𝐿(𝐻) is a chordal graph.  

If |𝐸′| ≠ |𝐸1
′| then we have 

{𝑣} ∈ 𝐸′ 𝑎𝑛𝑑 |𝐸′| > |𝐸1
′|. 

 

It is easy to show that a neighborhood from {𝑣} in 𝐿(𝐻) is a clique. Hence any cycle passing 

through {v} is chordal in 𝐿(𝐻) and so 𝐿(𝐻) is chordal. 

 
 

Corollary 1. A  Restricted SuperHyperGraph 𝐺 is a subtr Restricted SuperHyperGraph if and only if 𝐺 

has the Helly property and its line graph is a chordal graph. 

4. Conclusions  

In this article, we have defined a SuperHyperTree and Neutrosophic SuperHyperTree, and 

examined the Helly property, which is one of the most important and practical properties in subtrees, 
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for the super hyper tree introduced in this article. There are also algorithms for detecting Helly 

property that we have omitted here. 
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