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Abstract: In this paper, the neutrosophic norm has been defined on a soft linear space which is hereafter called
neutrosophic soft normed linear space (NSNLS). Several characteristics of sequences defined in this space have been
investigated here. Moreover, the notion of convexity and the metric in NSNLS have been introduced and some of their
properties are established.
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1 Introduction

The concept of Neutrosophic Set (NS) was first introduced by Smarandache [4, 5] which is a generalisation
of classical sets, fuzzy set, intuitionistic fuzzy set etc. Zadeh’s [11] classical concept of fuzzy set is a strong
mathematical tool to deal with the complexity generally arising from uncertainty in the form of ambiguity in
real life scenario. For different specialized purposes, there are suggestions for nonclassical and higher order
fuzzy sets since from the initiation of fuzzy set theory. Among several higher order fuzzy sets, intuitionistic
fuzzy sets introduced by Atanassov [10] have been found to be very useful and applicable. But each of these
theories has it’s different difficulties as pointed out by Molodtsov [3]. The basic reason for these difficulties is
inadequacy of parametrization tool of the theories.

Molodtsov [3] presented soft set theory as a completely generic mathematical tool which is free from the
parametrization inadequacy syndrome of different theory dealing with uncertainty. Molodtsov successfully
applied several directions for the applications of soft set theory, such as smoothness of functions, game theory,
operation research, Riemann integration, Perron integration and probability etc. Now, soft set theory and it’s
applications are progressing rapidly in different fields. The concept of soft point was provided by so many
authors but more authentic definition was given in [19]. There is a progressive development of norm linear
spaces and inner product spaces over fuzzy set, intuitionistic fuzzy set and soft set by different researchers for
instance Dinda and Samanta [1], Felbin [2], Yazar et al. [12], Issac and Maya K. [13], Saadati and Vaezpour
[16], Cheng and Mordeson [17], Vijayablaji et al. [18], Das et al. [19-22], Samanta and Jebril [25], Bag and
Samanta [26-29], Beaula and Priyanga [30] and many others.

In 2013, Maji [14] has introduced a combined concept Neutrosophic soft set (N S;). Accordingly, several
mathematicians have produced their research works in different mathematical structures for instance Deli [6,
7], Deli and Broumi [8, 9], Maji [15], Broumi et al. [23, 24], Bera and Mahapatra [31-35]. Later, this concept
has been modified by Deli and Broumi [9].

In the present study, our aim is to define the neutrosophic norm on a soft linear space and investigate it’s
several characteristics. Section 2 gives some preliminary necessary definitions which will be used in rest of this
paper. The notion of neutrosophic norm over soft linear space and the sequence of soft points in an NSNLS
have been introduced in Section 3. Then, there is a study on Cauchy sequence in an NSNLS in Section 4. The
concept of convexity and the metric in NSNLS have been developed in Section 5 and Section 6, respectively.
Finally, the conclusion of the present work is briefly stated in Section 7.
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2 Preliminaries

We recall some basic definitions related to fuzzy set, soft set, neutrosophic soft set for the sake of completeness.

2.1 Definition [33]

A binary operation * : [0, 1] x [0, 1] — [0, 1] is continuous ¢ - norm if * satisfies the following conditions :

(i) = is commutative and associative.
(i1) = is continuous.
(i)a*1=1%a=a, Va € [0,1].
(iv) axb<cx*xdifa < ¢, b <dwitha,b,c,d € [0,1].
A few examples of continuous ¢-norm are a * b = ab, a * b = min{a, b},a * b = max{a +b—1,0}.

2.2 Definition [33]

A binary operation ¢ : [0,1] x [0,1] — [0, 1] is continuous ¢-conorm (s-norm) if ¢ satisfies the following
conditions :

(1) ©is commutative and associative.
(i1) ¢ is continuous.
(iil)ac0=00a=a, Va € [0,1].
(iv) aob<codifa <cb<dwitha,b,c,de[0,1].
A few examples of continuous s-norm are a b = a + b — ab,a © b = max{a, b},a ¢ b = min{a + b, 1}.

2.3 Definition [4]

Let X be a space of points (objects), with a generic element in X denoted by x. A NS B on X is characterized by
a truth-membership function 7'z, an indeterminacy-membership function /5 and a falsity-membership function
Fg where Tg(z), Ip(x) and Fg(x) are real standard or non-standard subsets of | =0, 17 [i.e., T, I, Fp : X —
]70, 17[. Thus the NS B over X is defined as: B = {< z, (Ts(x), Ip(z), Fp(x)) > |z € X }.

There is no restriction on the sum of Tz (), Ig(x), Fp(x) and so, ~0 < sup T(z)+sup Ig(z)+sup Fp(z) <
3%. Here 17 = 1+ ¢, where 1 is it’s standard part and € it’s non-standard part. Similarly 0 = 0 — ¢, where 0 is
it’s standard part and € it’s non-standard part.

From philosophical point of view, a NS takes the value from real standard or nonstandard subsets of |70, 17].
But to practice in real scientific and engineering areas, it is difficult to use NS with value from real standard or
nonstandard subset of |70, 17[. Hence we consider the NS which takes the value from the subset of [0,1].

2.4 Definition [3]

Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set of U. Then for
A C E, apair (F, A) is called a soft set over U, where F' : A — P(U) is a mapping.

2.5 Definition [14]

Let U be an initial universe set and F be a set of parameters. Let V.S(U) denote the power set of all NSs of U.
Then for A C FE, a pair (F, A) is called an NS, over U, where F': A — NS(U) is a mapping.

This concept has been redefined by Deli and Broumi [9] as given below.
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2.6 Definition [9]

Let U be an initial universe set and F be a set of parameters that describes the elements of U. Let N.S(U)
denote the power set of all NSs over U. Then, a N.S; N over U is a set defined by a set valued function fy
representing a mapping fy : £ — NS(U) where fy is called approximate function of N. In other words, the
NS, N is a parameterized family of some elements of the set N.S(U) and therefore it can be written as a set
of ordered pairs i.e., N = {(e, fx(e)) : e € E} where fy(e) = {< &, (Try(e) (@), L1y(e) (@), Fry(e)()) > |2 €
U}. Here Ty (e) (%), I1y(e)(2), Frye)(x) € [0,1] are respectively called the truth-membership, indeterminacy-
membership, falsity-membership function of fy(e). Since supremum of each T, I, F' is 1 so the inequality
0< TfN(e) (l‘) + IfN(e) (l‘) + FfN(e) (Z‘) < 3 is obvious.

2.6.1 Example

Let U = {hy, ha, h3} be a set of houses and E' = {e;(beautiful), eo(wooden), es(costly)} be a set of parameters
with respect to which the nature of houses are described. Let,

fn(er) = {< h1,(0.5,0.6,0.3) >, < hy,(0.4,0.7,0.6) >, < h3,(0.6,0.2,0.3) >};

Fales) = {< h1,(0.6,0.3,0.5) >, < hy, (0.7,0.4,0.3) >, < hs, (0.8,0.1,0.2) >};

fn(es) ={< hq,(0.7,0.4,0.3) >, < hs,(0.6,0.7,0.2) >, < hs, (0.7,0.2,0.5) >};

Then N = {ley, fn(e1)], [e2, [n(ea)], [es, fn(es)]} is a NSy over (U, E). The tabular representation of the N S
Nisas:

Table 1 : Tabular form of NS, N
fn(e1) fn(e2) fn(es)
hi | (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)
hs | (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)
hs | (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

2.6.2 Definition [9]

Let V; and N; be two N Sgs over the common universe (U, £). Then their union is denoted by N; U Ny = N3
and is defined as :

N3 ={(e, {< x7TfN3(€)(I)7 Ing(e)(I>7FfN3(e)(x) > |z € U})le € E}
where TfN3(€)<x) = Tle(e)(‘I) © Tng(e)(I)vlfN3(€)<x> = IfN1(6)<x> * IfNQ(e)(x>’ Fng(e)(I) = FfN1(€)<x) *
Fiy,(e)(2)-
Their intersection is denoted by N; N Ny = N, and is defined as :

Ny = {(67 {< x7TfN4(€)(’r)7 ]fN4(5)<x>7FfN4(€)(x) > |[E € U})le < E}
‘;hefe (sz)v4(e) (@) = Ty, 0)(2) * Thy, ) (), Lin,(0)(®) = Lty 0)(@) © Lpy,0)(T), Fry (@) = Fiy () ©

Iy ()WL)

2.7 Definition [25]

An intuitionistic fuzzy norm on a linear space V'(F') is an object of the form A = {< (x,t), u(z,t), v(x,t) >
|(z,t) € V x R*}, where u, v are fuzzy functions on V' x R*, i denotes the degree of membership and v
denotes the degree of non-membership (z,t) € V' x R* satisfying the following conditions :

() p(x,t) +v(x,t) <1, V(x,t) € V x RT.

(i) p(z,t) > 0.

(iii) p(z,t) = 1iff 2 = 6.
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() e, 1) = pla, ), Vel 0) € F
V) pu(w, s) * p(y, 1) < p(xr +y, s +1).

(vi) p(z,-) is non-decreasing function of R™ and limy_, ., p(z,t) = 1.
(vil) v(z,t) < 1.

(viii) v(z,t) = 0iff 2 = 6.

(ix) v(cx,t) = v(x, |C|) Ve(#0) € F.

x) v(z,s)ov(y,t) >v(r+y,s+t).

(xi) v(z,-) is non-increasing function of R™ and lim, ., v(x,t) = 0.

2.8 Definition [19]

A soft set (F, ) over X is said to be a soft point if there is exactly one e € FE, such that F'(e) = {z} and
F(e') = ¢,Ve' € E — {e}. Itis denoted by x.. Two soft points z., y. are said to be equal if e = ¢’ and = = y.

2.9 Definition [22]

Let V be a vector space over a field /& and let A be a parameter set. Let G be a soft set over V' so that G(\) is a
vector subspace of V, VA € A . Then G is called a soft vector space or soft linear space of V' over K.

2.10 Definition [12]

Let SV (X) be a soft vector space. Then a mapping || - || : SV(X) — RT(E) is said to be a soft norm on
SV(X),if || - || satisfies the following conditions :
(1) ||z € SV(X) and ||z.|| = 0 < z. = 6.
Q) ||Fz.|| = |7] ||z.||, V&, € SV(X) and for every soft scalar 7.
O [lze + yerl| < lel| + [lyerll, Ve, yer € SV (X).
@ [[ze-yer |l = el [lye|l, Ve, ye € SV(X).
The soft vector space SV (X) with a soft norm || - || on X is said to be a soft normed linear space and is
denoted by (X, ]| - ||).

2.11 Definition [32]

Let A be a NS over the universal set X. The («, 5,7) -cut of A is a crisp subset A, ) of the neutrosophic
set A and is defined as A, 3, = {x € X : Ta(x) > o, [4(x) < B, Fa(x) < v} where o, 3,7 € [0, 1] with
0 < a+ B+~ <3. This A, ) is called (o, 5, 7)-level set or (o, 3, 7)-cut set of the neutrosophic set A.

3 Neutrosophic soft norm

In this section, we have defined NSNLS with suitable examples, the convergence of sequence in NSNLS and
have studied some related basic properties.

Unless otherwise stated, V' (K) is a vector space over the field K and F is treated as the parametric set
through out this paper, e € E an arbitrary parameter.
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3.1 Definition

Let V be a soft linear space over the field K and R(F), Ay denote respectively, the set of all soft real numbers
and the set of all soft points on V. Then, a neutrosophic subset N over Ay x R(E) is called a neutrosophic soft
norm on V if for Te, Yer € Ay and ¢ € K (¢ being soft scalar), the following conditions hold.

(1)0 < TN(xea ~) IN(Ie; ) FN<xe; ) < 1 Vt < R( )

(i) 0 < T (e, 1) + In(ze, ) + Fn(we,t) < 3, VE € R(E).

(iii) Ty (ze,t) =0 with £ < 0.

(iv) Tn(xe,t) =1 with > 0iff z. = 6, the null soft vector.

(V) T (Exe, 1) = T (20, @) Ve(# 0), £ > 0.
(Vi) T (e, 3) % Ty (Yer, 1) < Tiv(ze ® yer, § D) V5,1 € R(E). )
(vii) T (2., -) is a continuous non-decreasing function for £ > 0 and lim;_, ., T (z.,7) = 1.

(viil) In(x.,f) =1 witht <0.
(ix) Iy(ze,t) =0 with £ > 0iff 2, = 0, the null soft vector.
(X) In(Exe,t) = In(2e, |c|) V(£ 0), £ > 0.
(xi) In(7c,8) o IN(yer, 1) > In(ze D yer, 5 DT), V5,1 € R(E).
(xii) In(w.,-) is a continuous non-increasing function for ¢ > 0 and lim;_, . Iy (z.,t) = 0.
(xiil) Fy(z.,t) =1 withf <0. .
(xiv) Fy(ze, t) =0 with ¢ > 0iff z, = 0, the null soft vector.
(xv) F(Gxe, t) = Fx(xe, 1), Vé(#0), £ > 0.
8) o Fy(yer, 1) > Fy(ze @ yor, 5 ©1), V3,1 € R(E). )
) is a continuous non-increasing function for > 0 and lim;_, _ Fiy(x.,) = 0.
K), N,x,¢)is a NSNLS.

(xvi) Fy(z.,
(xvii) FN(:ce,

Then (V/(
3.1.1 Example

Let (V, || - ||) be a soft normed linear space. Take @ * b = aband a o b = a + b — ab. Define,

. L if > ||z]| : el if s || . lzell if 7 > |||
Tn(xe,t) = @llzell o In(ze,t) =4 @l ‘" Fn(z.,t) = t €
w( ) { 0 otherwise . w{ ) 1 otherwise . v ) 1 otherwise .

Then (‘7([() N, x,¢) is an NSNLS.

Proof. All the conditions are well satisfied. We shall only verify the conditions (vi), (xi), (xvi) for s, > 0
because these are obvious for s,t < 0. Now,

Tn(ze ® Yer, S D t) — Tn (e, 5) * T (yer, t)

B st st
SOt [z ®yell (5@ [[ze]])(F S [[yel])
=L 5t

st |z @ llyel]  Gallzd) @ llyel)

= {Go)Eo||zl)E @ |lyel]) — 5HE DT D |lze|| @ [lyer|]) }/ B
where B = (5 © 1 @ ||z|| © [|ye ) (5 @ ||| ) (F & [Jyer|])

= {#llz|| @ 3|yl @ (5 @ D)||zerl||}/B > 0.
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Hence, T (2¢, 8) * T (yer, 1) < Tv(we ® yer, 5 1), V3,1 € R(E). Next,

IN(xea )OIN(ye7 ) IN(xe@ye’vs@t)

_ el lyell ||zeye || Nz oyl
$O|lzll “tellyell GellzlEellyl) lrcdyllesat
_ Nlzeyell @ Hlzell @ Sllyel]l — lze @ yell
Gallzl)Eelyell)  llzeOyell®sat

= {(lze @ yell @ 3@ 1) (| el| © 3llyer]| & llzeyer|l)
—lze ® ye (3@ ||zl )(E @ [lyer )}/ D

where D = (5@ 1@ ||lze @ ye|]) (3 ® ||zl ) (T @ [lye])

{(G & )(l|ae]| & 3llye || & [|weyell) — 5t||ze & yerll}/D

{G @ O)(Eael| ® 8llye|| ® [|zeye|]) — 5E(I|zell @ |lye]])}/D
{Bllzell @ &lye|| © (5 @ )lweye ||}/ D > 0.

AVAN

Hence, Iy (¢, 3) o In(yer, 1) > In(7e ® yor, 5 Dt), V5,1 € R(E). Finally,

FN(xea )OFN(yea ) FN(erByela‘SEBt)

_ ||ze|| o Hyf al _ ||xey~e al _ ||$e@y~e al
5 t st sdt

_ Hlzel| @ 8llyerl] = [lzeyerl]  [lze © ye]
st st

> A&yl @ |zl — (5 & Dlweye|[}/5H(5 @ 1)
= {8llyell(s = [lzel]) © el [t = [lye|) /565 © 1) > 0 (as 5 > ||ze]], £ > [[yer]).

Thus, Fy(x,3) o Ex(ye,t) > Fn(z. ©® yer, § D 1), V5, € R(E). This completes the proof.

3.2 Definition

Let {x] } be a sequence of soft points in a NSNLS (V(K ), N, *,9). Then the sequence converges to a soft
point x, € V iff for givenr € (0, 1), ¢t > 0 there exists ng € N (the set of natural numbers) such that

Tn(x? —xe,t) > 1 —r In(al —x,t) <1, Fy(a? —x.,1) <r,Vn>mn, Or
limy, oo T (2] — Te,t) = 1, lim, o0 In(x? — ., ) 0, limy o0 Fin (2] — e, t)=0ast — oo.

Then the sequence {x } is called a convergent sequence in the NSNLS (V(K ), N, x,0).

3.3 Theorem

If the sequence {z] } in a NSNLS (V(K), N, *,) is convergent, then the point of convergence is unique.

Proof. Let lim,, oo 2" = x,, and lim,, oo 27 = ye, for z., # y.,. Then for 5, > 0,

limy, o0 Tiv (27, — @e;, 5) = 1, limy oo IN(2], — 2, 8) = 0,limy, o0 Fy (2] — 2¢;,5) = 0as § — oo and
limy, oo T (2], — Yo, 1) = 1, 1im,, o0 In(x? = Yey ) =0, lim, s Fn(x? — Ye,, t)=0ast — oo.
Now, Tn(ve; = Ye,, 5 © t) = TN(Te; — T, DXL — Yer, 8 D t) > Tn(xy, — Te;, 5) * T (2], yek,t)

Taking limit as n — oo and for 3, — oo,
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TN(Te, = Ye, 5 D) > 11 =1 ie, Tn(ze, — Ye,, 5D t) =1 (D

Further, In(ve, — ¥Ye,,5 ® 1) = In(Te; — 2, DXL, — Yoy, s D) < In(27, — 2¢;,5) 0 IN(T], — Yoy, 1)

Taking limit as n — oo and for 3, — oo,
IN(Te; = Yo, SDE) <000 =0 ie, Iy(e, — e, , 5DT) =0 (2)

Similarly, Fy(2e; = ye,,5®1) =0 3)
Hence, z.; = y., and this completes the proof.

3.4 Theorem

Inan NSNLS (V(K), N, *,0), if lim,, e 27, = ¥, and limy, o0 Y7, = e, thenlim,, oo (27 YL, ) = Te; DYe,,-

Proof. Here, for 5,1 > 0,
limy, o0 T (22, — e, 5) = 1, limy o0 IN(27, — T, §) = 0,limy, o0 Fy (27 —2¢;,5) =0asé — oo and
imy, o0 TN (Y2, = Yero t) = LMy o0 IN(Y2, — Yers t) = 0,limy o0 EN (Y2, — Yeurt) = 0 as £ — co. Now,

lim Tiv[(z7, ®yr,) = (e, De,), 5 D] = lim Tn[(ar, — 2c,) © (42, — ve,), § D]
> lim Ty(2} — x.;,5) * lim Tn(y., — Ye,,t) [ by (vi) in Definition 3.1 ]
n—oo n—oo

=1%x1=1ass t— oo.

nlg{)lo ]N[(xzn S ?/sn) - (xej D yek)? 5@ ﬂ = nlglgo IN[(‘TZ,L - xej) D (ygn - y€k)7 5@ ﬂ
< lim In(2!, — w,;,5) ¢ lim In(y? — Ye,,t) [ by (xi) in Definition 3.1 ]

n—oo n—oo
=000=0ass,t— oo.

S0, limy, o0 In[(22 ® Y2 ) — (e, D Yey ),

5 0
Similarly, lim,, e Fy[(22, ® 42 ) — (ze, D ye,), D 1] = 0as §,¢ — oo and this ends the theorem.

3.5 Theorem
If lim,, o, 27 =z, and 0 # ¢ € K, then lim,, ., éz” = &z, in an NSNLS (V(K), N, ¥, 0).

Proof. Here,
lim,, o Tv(Czy, — €

) =1,as 5 — oc.

|~

n
en :L‘E’

I~ =
Y

. ~ ~ s . t
lim, o0 In(C27 — Cxe,t) = limy, o0 IN(2] — e, 1z) = 0,8 § — oo

™

|

d =T ~ _1; n _ t
lim, o Fiv(Col — Ce,t) = limy, oo Fy (2] — e, | ) = O,asm — 0.

o

Thus the theorem is proved.

4 Cauchy Sequence in NSNLS (Fundamental Sequence in NSNLS)

Here, we have defined the Cauchy sequence in NSNLS, Complete NSNLS and have investigated their several
structural characteristics.
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4.1 Definition

A sequence {x] } of soft points in an NSNLS (V(K), N, ,o) is said to be bounded for r € (0,1) and # > 0 if
the followings hold :

Tn(x? 1) > 1—r In(a? 1) <r Fy(z? ,t) <, Vn € N (the set of natural numbers).

4.2 Definition

1. A sequence {z } of soft points in an NSNLS (V(K), N, *,¢) is said to be a Cauchy sequence if given
re (0,1), ¢t > 0 there exists ng € N (the set of natural numbers) such that

Tn(xt —am 8) > 1—r In(a? —am™ 1) <r Fy(a® —a™ t) <r, Vm,n > ng. Or,

iy, o0 Tiv (@2 — 2™ 1) = 1, limy ynoyeo In (2 —a™ 1) = 0,1imy, oo Fy(z? —a™ 1) =0 as ¢ — oc.

2. Let {« } be a Cauchy sequence of soft points in a soft normed linear space (V,||-1]). Then limy, ;o0 | |y —
2 || = 0 hold.

4.2.1 Example

750 7y — & 7y — llzell 7y — lzell
Fort > 0,let Ty(ze,t) = Bl In(z,,t) = AT Fn(we,t) = 5.
Then (V(K), N, *,¢) is an NSNLS. Now,
i’ n o __ ,.m n o __ .m
. o el e —anl
n,m—oo t P ng’c}n — (L'QZHH n,m—oo t P Hx?ﬂ — xg:nH 7,1Mm—00 t
= lim Ty(z? —a? 1) =1, lim Iy(z! —z ,1)=0, lim Fy(z} —a ,t)=0ast — occ.
n,Mm—00 n,m—00 ,M—00

This shows that {z } is a Cauchy sequence in the NSNLS (V (K, N, x,0).

4.3 Theorem

Every convergent sequence of soft points in a NSNLS (V' (K), N, x, ¢) is a Cauchy sequence.

Proof. Let {z } be a convergent sequence of soft points in a NSNLS (V(K), N, *, ¢) so that lim,, ;o 27, = ..
Then for £ > 0,

lim Tn(z; — :L'Z;,f) = lim Tn(z —2. ®zc— xe,f) = lim Tn[(z] —x.) ® (vc — x’g;),ﬂ
n,m—)oo n,m—ﬂ)o n,m—>00

t t
> lim Ty (2} — xe,=)* lim Ty(z. — 22, =) [by (vi)in Definition 3.1 ]
n—00 m 2 m—o0 m’9

t t
= lim Tn(z] — ., 5) * lim Tn(x]' — e, ) [by (v)in Definition 3.1 ]

n—00 m—00 2

=1%x1=1 as t — oo.

So, limy, ;oo Tn (2] — 27, t) = 1. Again,

€n

n?l”rlzgloo In(zy, — ' t) = n}%gqoo In(zl —al' @ xe — e, t) = nylylzll}oo In[(z? —e) ® (xe — 270), 1]

t
> lim Iy(x; —xe,§)<> lim Iy(z. — 22, =) [by (xi)in Definition 3.1 ]

em?
n—00 m—o0 m’9
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t t
= lim Iy(z] — ., 2) o lim Iy(zl —:1:6,5) [ by (x) in Definition 3.1 ]

n—oo m— 00

=000=0 as t — oo.

S0, limy, jn—yo0 In (22 — 2 1) = 0 and similarly, lim,, ;0o Fiy (2 — 27 1) = 0.

€n

Hence, {2} } is a Cauchy sequence.

4.3.1 Example

The following example will clarify that the inverse of the Theorem 4.3 may not be true.
Let R, = {1|n € N} (N being the set of natural numbers) be a subset of real numbers and ||z|| = |z|. With
respect to the neutrosophic norm defined in [4.2.1], obviously (R;(R), N, , ¢) is an NSNLS. Now,

i | i e, =] N i
lim n m lim Tl 1] 17 lim = nn mm - Tl 1] 0’
nm%oot@“x — ] H n,m—)oot@‘;—% n,m%oot@”;[;eH—xemH n,m%wt@’ﬁ—g
O || B
and lim lim 2= =0.
n,m—00 n,m—+00 t

Thus {2 } is a Cauchy sequence of soft point in the NSNLS (Ri(R), N, ,¢) . But,
- 11
lim,, oo In(z — xkk, t) = lim, t~|"1—k1 # 0.
o e Bl —%l
This shows that the Cauchy sequence {x } is not convergent in that NSNLS.

4.4 Theorem

Every Cauchy sequence is bounded in an NSNLS (V (K), N, *,0) if a * b = min{a, b} and a o b = max{a, b}
for any two real numbers a, b € [0, 1].

Proof. Let {7 } be a Cauchy sequence. Then given a fixed ry € (0, 1) and # > 0, there exists a natural number
no such that Ty (z — 27" ) > 1 =19, Ym,n > ny.

Since limat_)<>o TN(Zl?e,t) 1, for each x_there exists ; > 0 such that T (a,f) > 1 —ro, VI > &, i =
1,2,3,--; Letty = t' + max{ty, to, - -, no} Then,

Tn (2l ,to) > Tn(al ;& ®ty,) [by (vii) in Definition (3.1) ( ie., the monotonicity property )]
= Tn(ay, —ap® @ ap® F ©tn,) > Tn(al, — 220 ) % Tn(al? ,t,,) [by (vi) in Definition (3.1)]
> (1-

e eng

o) * (1—7“0)—1—7’0, Vn > ng.

Thus T (27 ,1o) > 1 —ro, ¥n > ng and further T (z? ,to) > Ty (a? ,1,) > 1—rg, Yn=1,2,--+ ny.
Hence as a whole Tn(z2 o) > 1 — 7. )
Next, for ry € (0,1) and # > 0, there exists a natural number n; such that Iy (27 —a™ | ¥') < rg, Ym,n >

ny. Since hmt_,oo In(ze,t) = 0, for each 2! there exists £; > 0 such that Iy(z!, ,t) < 7o, VE> T i =
1,2,3,---; Let ) = ' + max{#}, t},--- 1) }. Then,

In(al &) < In(zl & @1, ) [by (xii) in Definition (3.1) ( i.e., the monotonicity property )|
= IN( Te, — Tor DL, ot ) <Iy(al — x’;’il,f') olIn(zg) t,) [by (xi) in Definition (3.1)]

<rgorg="r9, VYn > n;.
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Thus Iy (27, 1) < 1o, V> and further Iy (x] A0) < In(a? 2) <re¥n=1,2,--- ny.

e’n

Hence as a whole In(a2 &) < ro. )

Finally, for ry € (0,1) and ¢ > 0, there exists a natural number n, such that Fy (27 — 2™ . ¥') < ro, Ym,n >

ns. Since lim;_,, Fy(z.,t) = 0, for each z’ there exists #/ > 0 such that FN( t) <1, VE>T 0=
1,2,3,-; Let ) = & + max{f/, #,- -’ }. Then,

Fn(a? 1) < Fy(zl ;¢ @1, ) [by (xvii) in Definition (3.1) ( ie the monotonicity property )]
= FN( en ~ Ton D ZL‘Z?Q,t ®in ) < Fy(al — Lo s ') o Fy (22 .t ) [by (xvi) in Definition (3.1)]
<rgorg =19 Vn > ns

7n2

Thus Fy(x] t”) < 1o, ¥n > ny and further Fiy (27 1)) < Fy(a2 &) <rg, Vn=1,2,-- ,n

6771

Hence as a Whole Fn(x2, A0) < 7ro. (6)
This completes the theorem.

4.5 Theorem

In an NSNLS (V(K), N, *,), if {z” } {y2 } are Cauchy sequences of soft vectors and {\,} is a Cauchy
sequence of soft scalars in an NSNLS (V (K), N, *, ), then {27 @y? }and {\,y" } are also Cauchy sequences
in NSNLS (V(K), N, *,0).

Proof. For t > 0, we have,

hmn ,M—00 TN( en wana t~) = 17 hmn,m—)oo IN(:E
and

n m
— T
€n €m

n_ g™ f)=0ast— o0

€n €m

75) =0, hmn,m—>oo Fn (ZE

lin,ln,m—)oo TN(yZn - ygr:na tN) = 17 hmn,m—)oo [N<y?n - Z/?:n» tN) - Oa hmn,m—>o<3 FN (y?n - y:}na g) =0as g — Q.

JJm Ty, @ye,) = (20, ®ue;,) 8] = lim Tivl(ag, —22) @ (v, = ¥e,.), 1
t t -
> lim Tn(zy, —2. ,=)* lim Tnh(y, —yl,5)=1x1=1 as t = oo.
n,m—00 m’ 9 n,m—00 m’9

Hence, lim, 00 Tn[(z? @yl ) — (2 @y ), ] =1as { — oo.

lim In[(z! ®yl)— (' @y), = lim Iy[(a] —al" )yl —yl), 1

n,mMm—00 7,Mm—00
. ; )
< —_ — — ) = —
_n'}rlLILlooIN( x 2)0717171113 In(ye =y ,2) 0o0=0ast— oo
S0, limy, ;o0 In[(z2 @yt ) — (z Dy ),t] = 0ast — oo.

Similarly, lim,, ;0o Fn[(z2 @y ) — (z @y ), 1] = 0ast — oo.
This ends the first part. For the next part,

lim TN[(S\my;”m — S\Hygn),f] = lim TN[(S\myg‘n — S\ny’;n) D (S\my’;n — megn), ]

m,n—o0 m,n—o0
N S t t
= lim Tyl — 92 ) Dyl A — ), t] > lim T, — . — | *Tn(y, , ———
i Ty (u, = o) © oL, ( Bz i Tl = ve) gl Ivie, 5—=)

Since [ A — An| = 0 as m,n — 00, 50 [ Ay — An| # 0. Again {yZ.} being Cauchy sequence is bounded.
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Hence, lim,, ;0o TN[(meg}n — S\nygn), ] = last — oo. Further,

hm ]N[(/N\myg:n - /N\ny;ln)a f] = hm IN[(S‘myQZn - S‘nygn) D (/N\mygn - /N\mygn)v E]

m,n—00 m,n— 00
- - - t t
= lim Iny[An(v) =y )@yl (A — ), t] < lim In[(y) — vyl —| o In(y) , — -
I (e, = e,) @ Y, ( )l < lim Inl(ye, —ve,), 2Mm\] (e, 2’)‘m_)‘n|>
By similar argument, lim,, ;, o0 [ N[(S\mygjn — )\nyen) t] =0 as £ — oo and finally,

iy, oo FN[(:\myg’; — S\nyg‘n), t] =0 as t — oco. Hence, the 2nd part is completed.

4.6 Definition

Let (V(K), N, x,0) be a NSNLS and Ay be the collection of all soft points on V. Then (17([(), N, %, 0) is said
to be a complete NSNLS if every Cauchy sequence of soft points in Ay converges to a soft point of Ag.

4.7 Theorem

In an NSNLS (V(K), N, x,¢), if every Cauchy sequence has a convergent subsequence then (V (K), N, x,¢) is
a complete NSNLS.

Proof. Let {m?:k } be a convergent subsequence of a Cauchy sequence {7 } in an NSNLS (V(K), N, *,0) such
that {x?y’fk} — x. € V. Since {«? } be a Cauchy sequence in (V(K),N,*,0), givent > 0

limy, g0 Tn (2] — 22 g ;) L limy, poo In (2] — 22t g 2) = 0,limy, jyo0 Fn (2], — x?jk, %) =0ast — oo
Again since {x?:k} converges to ., then

limy,_ o0 TN(xQ:k — T, ;) 1, limy o0 In(z ”kk Te, —) 0, limy,_yo0 FN( ”kk Te, %) =0ast — oo.

Now, Tw(z! — z,1) =Ty (z — z™ D gk — Te, 1) > Ty (2 — o %)*TN( wek —xe,;)
It implies lim,, oo T (77, — Te, t) = 1.

Further, Iy(x} — ., t) = In(x? — :U”k @x"k —z.,1) < In(x? — x”’ﬂ %) o In(xy ”’f — T, %)
It implies lim,, o In (2] — 2, t) = 0. Slmllarly, limy, o0 Fiv (27 — e, t) = 0.

This shows that {xZJ} converges to x.; € V and thus the theorem is proved.

5 Convexity of NSNLS

Here, the notion of convex NSNLS has been introduced along with the development of some basic theorems.

5.1 Definition

Let (XN/(K ), N, *,¢) be a neutrosophic soft normed linear space and z.,,y., € Ay. Then the set of all soft
points of the form z., = ¢éx., ® (1 )ye such that é(e) € (0,1), Ve € E is called the line segment joining the
soft points w,, y.,. A soft set (¢ # W( ) C V(K)) is said to form a convex NSNLS with respect to the same
neutrosophic soft norm as defined on V if all the line segments joining any two soft points of W are contained
in W and satisfy all the neutrosophic soft norm axioms.
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5.2 Definition

A soft subset W of V in an NSNLS (V(K), N, %,0) is said to be bounded if for given r € (0,1) and { > 0, the
following inequalities hold.

Tn(xe,t) > 1—r In(xe,t) <71, FNn(Te,t) <7, VI, € w. (7

5.3 Definition

Let (V(K), N, ,¢) be a NSNLS and f € RT(E) (the set of all non-negative soft real numbers). Then an open
ball and a closed ball with centre at x. and radius r € (0, 1) are as follows :

OB(x,,1,1) = {yo € A‘7|TN($e—ye/,E) >1—71, IN(Te — Yor, 1) <7, En(Te — yer, 1) < 1} (8)

CBle,r,t]) = {yer € Ap|TN(Te = Yers t) > 1 =1, In(Te — Yo, t) <1y Fn(xe —yer, t) <1} 9)

5.4 Theorem

Every open ball (closed ball) in an NSNLS is convex and bounded if a * b = min{a, b} and a © b = max{a, b}
for any two real numbers a, b € [0, 1].

Proof. Let OB(x.,r,t) be an open ball with centre x, and radius 7 in an NSNLS (V(K), N, %,¢). Suppose
Ye, Ze, € OB(xc,r,t). Then,
TN('Te - ye]wg) >1- T ]N(xe - yej7t~> <7, FN<I€ - yej7£) <rand

TN(Te — 2eps t) > 1 =71, IN(Te — 2y, t) <7y Fn(Te — 2e,, 1) <.

€k

Now, for & € (0,1) (¢ being a soft scalar),

Tylze = (Cye, ® (1 = 0)2¢,), t] = In[(€ & L = E)ze — (Y, @ (1 — E)2,), 7]

= TN[é(xe - yej) S (1 - 6)(x€ - Zek)vﬂ > TN[6<me - yej)’

2
= Ty|(z. —yej),%l] * Tn[(ze — 2ey), 2|(1~—5)|] >(1—r)x(1—r)=1—r
Infze — (@ye, ® (1= 0)2), 1] = Iy[(@@ 1 — &)z — (Gye, @ (1 — &)2,,), 1]
= In[e(ze — ye,) ® (1 — &) (ze — 2¢,), ] < In[E(e ye]),g]OfN[(l—c)(xe Zek)é]
=l =) gl vl = 2. < ror =

This shows that [¢y., @ (1 — ¢)z,] € B(x.,r, 1) with respect to the neutrosophic soft norm N. Hence, the 1st
part is completed.

For the 2nd part, let y.; € B(a,, t) an arbitrary soft point. Then Ty (z—ye,,t) > 1—r, In(ze—ye,, t) <7,
Fn(ze = ye,,t) < 1. Now,

Similarly, Fy[z. — (éye, ® (1 — ¢)ze,), 1] <7
r

- - t t
TN(Ye;st) = Tn(Ye; — Te D Teyt) > T (Ye; — Te, 5) « Ty (e, 5) [ by (vi) in Definition 3.1 ]

t t

= Tn(Te — Ye,, 5) x T (e, 5) [ by (v) in Definition 3.1 ]
t

> (1 —7r)*Ty(x,, 5)
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Since limg_, o, T (2., ) = 1, 3o > 0so that Ty (2., ) > 1—r, Vi > fo. Thus, T (ye,, 1) > (1—r)x(1—7) =
(1 —7), Vt > to. Next,

- t t
IN(Ye;, ) = IN(Ye; — Te D e, ) < In(Ye, — e, 5) o In(we, 5) [ by (xi) in Definition 3.1 ]

t t
=)o In(x,, 5) [ by (x) in Definition 3.1 ]

= IN($€ _y€j7 2)

t
< TO[N<QZ'6, 5)

Since lim; . In(z.,t) = 0, 3; > 0 so that In(x.,t) < r, V£ > t;. Thus, IN(ye,,t) < ror=rVi> 1.
Similarly, Fiv(ye,, t) <1, Vt > 1.

Hence, Tx (e, , t)y>1-—r, In(ye,, t) <, Fn(Ye;» t) <, Vye, € OB(we,T, t) and V¢ > max{to, 1,15} and
this ends the 2nd part.

5.5 Theorem
The intersection of an arbitrary number of convex soft sets is also convex in an NSNLS.

Proof. Let {W;|i € T'} be a collection of convex soft sets in the NSNLS (V (K), N, x, o) such that each W; C V.
Then M;W; = W (say) is obviously convex. Let z, = [¢ye, @ (1 — ¢)z,] € W for y.,, 2., € W and ¢ € (0,1).
Since W C V, so (W(K), N, *,¢) is a convex NSNLS and this proves the theorem.

6 Metric in NSNLS

The metric of NSNLS is defined in this section. Some related theorems are developed also.

6.1 Definition

The set of all mappings Ty : Ay x Ay x R(E) — [0,1], Iy : Ay x Ay x R(E) — [0,1] and Fy :
Ay x Ay x R(E) — [0,1] together is said to form a neutrosophic soft metric on the soft linear space Vif
{Tn, In, Fx} satisfies the following axioms :

10 < TN(:vei,gej,f), IN(xei,yel, 1), FN(mel,yeJ, t) <1, Ve, Ye; € Ay and Vt € R(E).

(i) Tn (e, Ye, o 1) + In(Ters Yey 1) + F (e, Ye, o 1) < 3, Ve, ye, € Ay andtGR(E)

(i) Tn(Ze;, Ve, t) =0 with¢ <0.

(Av) Tn(ze;, e, 1) = 1 with £ > 0iff 2,, = = Ye,

V) Tn(Ze;, Yey s 1) = T (Yey s ey, 1) with £ > 0.

(Vi) TN (Te;, Yeys 8) * TN (Ye,» Zey s t) < Tn(e,, 26,5 ® 1), V3,1 > 0; Te; Yejs Zey € Ap.

(vii) T (Ze;, Ye;, ) : [0, 00) — [0, 1] is continuous, Vxel,yej € Ay.

(viil) limy_s o0 T (e, ye],t) =1, Vo, ¥, € Av,t >0

(ix) In(ze;,Ye; 1) =1 with £ < 0.

(X) In(2e;, Ye,, t) =0 with £ > 0iff z,, = Ye,

(xi) In(we;, Ye,, t) = ]N(ye},xel,f) with ¢ > 0.

(xii) In(@e,, Ye;s 8) O In (e Zeps 1) = IN(Teys 26y, S B E), VE, T > 0; Ty, Yoy, 2, € A

(xiii) In (e, ¥e;s ) 2 [0, oo) [0, 1] is continuous, V., ¥, € Ap.
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(xiv) limy o0 In (Te;, Ve, t) =0, V., ,Ye; € AV, >0

(xv) FN(xel,ye],t) =1 with¢ <0.

(xvi) Fy(ze;,Ye;,t) =0 with ¢ > 0iff z., = y.,

(xvii) Fi(Ze;, Yeyr 1) = Fn(Ye,s e, 1) with T > 0.

(xviiil) Fn(Ze;, Ye;, 5) oFN(yej,zek,f) > Fn(e;, 2,8 ® 1), V5,1 > 0; Teys Ye;» Ze, € Ay
(xix) Fy(%e;,¥e;, ") : [0,00) — [0, 1] is continuous, Vz.,, ¥, € Ap.

(xx) Himy o0 FN (T, Ye, s t) =0, Vz.,, Ye, € Av,t >0

Then (V(K),{Ty, In, Fx}, %, ) is a neutrosophic soft metric space (NSMS).

6.1.1 Example

Let ()z,d) be a soft metric space. Define a * b = ab, aob = a+ b — aband Vz.,,y., € X, t>0,

=N t N d(mel ye N d(zﬂi’ye').
TN(‘reﬂyej?t) - E@d(l‘ewyﬁj)’ IN(xe”yej7t) o t@d(fﬂe ye )7 FN(SEG” ye]7t> a ¢ J ’

Then (X, {Tx, Iy, Fx},*,©) is an NSMS.

Proof. We shall only verify the axioms (vi), (xii), (xviii). Others are straight forward.

T (e, 2y 5 B E) — Tn(Tey, Yeys 5) % T (e, s Zey - 1)
st st
ST d(re, ) (@ dwe,y.)) T dlye, 7))
= {BoD)E®d@e, ye,)) ([ ® d(ye,, 2e,)) — 515 ©T® d(we,, 2,)} /G
where G = (§ Dt ® d(ze;, 2,,)) (5 ® d(z.,, yej))(feB d(Ye,, 2ey,))
= {8t[d(xe,, ye,;) ® d(ye,, 26,)] © E(e,, ye;) © 3d(ye;, 2e,,)
o5 t)d(x,,, Ye, )d(Ye, > 2ey,) — §td(ze,, 2e,) } /G
> {Pd(ze,, Ye,;) © 5d(Ye,, 2e,) B (5D ) d(we,, Ve, )A(Ye, 2e,)} /G = 0

Hence, T (e, Ye,» 8) * Tn (e, Zepr 1) < Tiv (e, 2oy, 8 @ 1),

IN(xe”yeja )<>IN(yeJaZeka ) IN(l'e,Zek,S@t)

A ye) A(Ye;> zer) d(e;s Ye; )A(Yey, Zey ) L d(®e, %)
SO (e, Ye;) D A(Yesr2e) (B d(we;,ye,))E @ d(Yeyy 2e,)) (3O @ d(e,, 2e,)
d(xem yej)d(yej7 Zek) D Ed(ajeiv ye]') D Sd(y€j7 Zek) d(xem Zek)

(5@ d(we, ye,)) (@ dlye,, 2c,)) SOT®d(ze,, 2,)
= {(Bab)(td(z.,, Ye,;) @ 5d(Ye,, 2ep,) © A(Tey, Ye, )A(Yey s 2Zey,)) — 5td(2e;, 26, )}/ H
where H = (5 ©t ® d(z.,, 2, )) (5 ® d(z.,, ye].))(f@ d(Ye,, ze,,))
> {1 (Ed(e,ye,) ® 3d(Ye,, 2e,) D Aer, Yo, )A(Ye, s 2e,)) — F[d(Ter, Ye;) S dyey s 26|}/ H
= {Pd(we;, Ye;) © 57d(ye,, 2e,) © (50 O)d(ers Ye,)A(Yess 2, )}/ H > 0

Hence, In(%e;, Ye;» 5) © In(Ye,, Zey s t) > In(w.,, 2,8 ©1). Finally,

Fn(%e;,Ye,, 8) © FN(Yey s 2epr 1) — Fn (e, 2ey, 5 B 1)
d(xeiv yej) @ d<y€j7 Zek) d<xe¢7 yej>d<yej7 zek) d(l‘ei, Zek)

3 t St st
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7§d(xew yej) D gd(yej> Zek> — d(w,, yej)d<yej7 Zek> _ d(z.,, Zek)

st st
{8%d(Ye; 2e,) ® B, ye,) — (3B D)d(2es Yo, )d(Yeys 2,) /585 @ 1)
= {3d(ye,» 2e,) (3 = (e, Ye,) @ Ed(@e,, ye, (T — d(ye,, 2e,)) } /3 (3 @ 1) > 0
[as Fiy € [0,1] 50 § > d(we;, Ye,), T > d(Ye,, ze, )]

v

Thus, Fi (e, Ye;58) © FN(Ye;» Zey t) > Fy(we,, 2,,5 @ t). This completes the proof.

6.2 Theorem

Every NSNLS is a NSMS.

Proof. Define a neutrosophic soft metric {Tly, Iy, Fy} over an NSNLS (V (K), N, %, ¢) as follows.

TN(Ze;» Ye,r 1) = TN (Te, = Yejot), IN(Tey, Ye,r 1) = IN(Te; — Yoo 1), FN(Zeys Ye,r t) = Fn (e, — ye,, t) for each

of T, Ye, € Ag. We shall verify here the metric axioms (v), (vi) only. Rest axioms are satisfied in well manner.
t

(v) TN(-reia y€j7f) = TN(xei — Ye; E) = TN(yej — Te;s _—1|) = TN(:gej — Tey, E) = TN(y€j7 Te;s E)

(Vl) TN<I67;7 Zeys s D t) TN( — Zeps 5 S t) TN('rel yej @ yej Zeys s D 7’E)
> TN(me yeja ) *TN( — Reps ) TN(-Telayejv ) *TN(yejazekat)

The four metric axioms (xi), (xii), (xvii), (xviii) can be similarly verified.

6.3 Definition

A sequence {x] } of soft points in a NSMS (X, {Tw, In, Fx},*, ) is said to be a convergent sequence and
converges to . if

lim,, oo T (2], e, t) =1, lim, o0 In(2? e, t) =0, lim,_o0 Fy(x? ., t)=0ast — oo.

en’

6.4 Theorem
The limit of a convergent sequence {x] } in a NSMS (X, {Tw, Iy, Fy},*, o) is unique.

Proof. If possible lim,,_,o 27, = T, and lim,, o0 27, = ¥e, for z., # y.,. Then for 3, t>0,
limy, oo TN (27, Te;, 5) = 1, limy oo IN(27, Te,, 5) = 0, limy, o0 Fv (27, 2¢,;,5) =0as5 — oo and

hmn—)ooTN< enayekv ) 1 hmn—wo]N( en )y Yers ) O hmn—>ooFN( enayeka )—OﬂSt-)OO NOW,
TN(:L‘ej,yek,é@f) > Tn(Te;, v, 5) * T (2], Ve t) = Tn(wg e, 8) * T (x en,yek,f)

Taking limit as n — oo and for 5,7 — o0, TN(Te;, Yeyr S © H)>1x1=1.
It implies Ty (e, , Ye,, S B ) = 1. (10)

Next, [N(a:ej,yek,é’@f) < In(wey, w7, 8) 0 IN(, Yey )—]N( 1 Tejy 8 )OIN(ZL‘ZH,yek,f)

Taking limit as n — oo and for §,7 — 0o, In(%,,Ye,, §®1) <000 = 0.
This shows Iy (e, — Ye,, 5 ® 1) = 0. (11)
Similarly, Fy(z,, Ye,, $®1) =0 (12)
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Hence, z.; = y., and this completes the proof.

6.5 Definition
A sequence {z } of soft points in a NSMS (X, {Tw, In, Fx},*, o) is said to be a Cauchy sequence if

limy, 00 TN( noa™ ) =1, limy, e ]N(xgn,xgjn,f) =0, limy, m— oo Fn (2! mgjn,f) =0 as t — ooand

e ) em €n’

Vi am e X,

€n’) " em

6.6 Theorem
Every convergent sequence is a Cauchy sequence in a NSMS ()? ATN, Iy, Fn}, *,0).

Proof. Let {z] } be a convergent sequence in a NSMS ()? ATN, In, Fn}, *,0) with lim, o 2 = z.. Then
for ¢ > 0,

~ t
> i n m
nhm TN( l’e ,t) nhm TN(xen,x 2) * nhm TN<£L'€,£L'€ —2>

t t
= lim Tn(z , ., 5) * lim T (z" , x., 5) =1x1=1

n—oo n—oo
So, limy, o0 Ty (27, 2" ,t) = 1. Next,

. t
< 1 n e : m 7
Jim In(ze,, 2, t) < lm In(zg,, ze, 5) o im In(ze, 2, 5)

t t
= lim IN(xZn,me,§)<> lim IN(J:Z;,xe,i) =000=0

n—oo n—oo

So, limy, 00 In (22 , 2™ ) = 0 and similarly, lim,, oo Fy(z? , 2™ 1) = 0.

€n?em’

Hence, {«] } is a Cauchy sequence.

6.7 Definition

A NSMS ()ﬂ(/ , {TNL In, Fn}, *,0) is said to be complete if every Cauchy sequence of soft points in X converges
to a soft point of X.

6.8 Theorem

In a NSMS ()N( ATw, Iy, Fy}, *,©), if every Cauchy sequence has a convergent subsequence then the NSMS is
complete.

Proof. Let {x"k } be a subsequence of a Cauchy sequence {z } in a NSMS (X, {Tv, In, Fx},*,) such that
{x"k } — 2. € X. Since {«? } be a Cauchy sequence in (X, {Tn, Iy, Fx}, %), givent > 0,

%)—0 limy, oo Fiv (2, 2% %)—0 as t — o0o.

en’

limy, oo TN (2], 2% —) =1, limy, 400 In (2] x”k

67 €n ’2 6n7 €n

Since {xZ’C } converges ., then as £ — oo,

hmk—>ooTN( e,,lf 7're72) ]- hmk—>oo -[N( e: 7'T672) 0 hmk—>oo FN( 6: 7x67£> O
Now, Ty (22, xe,t) > Tn(a?  al L) w Ty(x Tk xe,§):>hmn_>ooTN( 1" e, t) = 1.

en’ €ny’ 2
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Next, In(zy , e, t) < In(am a:”k %) o[N(asgfk,xe, %) = limy, o0 In (2], 2e,t) = 0.

6 rYen en’

Similarly, lim,, o Fn (27, @, t) = 0.

This shows that {2 } converges to z. € X and thus the theorem is proved.

6.9 Remark

The using of 0, 1 instead of 0, 1 in some equalities is meaning that the left side of equality represents a set of
soft points, not a set of neutrosophic components.

6.10 Theorem

In a NSMS (V(K),{Ty, In, Fx}, %, ¢), define

[2e; = Ye,llo = Inf{HTw (e, 4o 1) = @, € (0,1)} 13
lwe, = ve,l[5 = sup {EIn (e, v, 1) < B, 8 € (0,1)} (14
[lwe, = ve, |15 = sup{#Fw (we,, ey, £) < 7,7 € (0,1)} (15

Then {|| - [|%, || - ||, [| - |3} are ascending family of norms on V if a % b = min{a, b} and a © b = max{a, b}
for any two real numbers a, b € [0, 1].

Proof. For || - ||}, we have
1) Tn(ze,, Ye;s ~) =0, Vi <0 [ by (ii1) in Definition 6.1 ]

= {t|Tn(2e;, Ye; 1) > a,a € (0,1)} =0
= inf{{|Ty(ze;, Ye,;, t) > 0,0 € (0,1)} =0
= [[Te = Ye,lla =0

(ii) Tn(Ze;, Ye,, ) = 1, VE > 0iff 2, = v,
= {ﬂTN(xei,yej,f) >a,ae (0,1)} =1
= inf{f|Tn(ze,, ¥, 1) > a,a € (0,1)} =1

4

s — i =1

(iif) e, = ye, I = WE{E| Ty (e, e, 1) > a0 € (0, 1)}
= nf{t|Tn(Ye;, e, ) >, € (0, 1)} = [|ye, — e, |]4

@) o = Yo lla+ [19e, = zerllar @ € (0,1)

inf{8|T (ze;, Ye,, 5) > a} +inf{t| Ty (ye,, ze,, 1) > a}

inf{s ® t~|TN(xel,yeJ, 5) >« TN(yej,zek,f) > a}

inf{5 @ HTn (e, Yo, 5) * T (Yey 2o, 1) > 0 )

< {3@t|Ty(we,, 2,,,5®1T) > a} [ by (vi) in Definition 6.1 ]
= eri - ZekHiv
Thus, || - ||} is an «— norm induced by the fuzzy soft metric Ty on V.
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Finally, for 0 < ay < o,
{ﬂTN(weiayejag) > 012} - {ﬂTN(xeiaye]-atN) > CYl}
= inf{£|TN<x6w y€j7£) > (1/1} < inf{£|TN(xei7y€j7 z?) > 042}
= Nze = Yellay < M1%e; = Yeyllag

Hence, || - ||1 is an ascending norm on V. Next, for || - |3, we have
(v) In(2e,,ye, 1) = 1, V& < 0 [ by (ix) in Definition 6.1 ]
= {ﬂIN(xei,yej,f) <B,Be(0,1)}=1

4

sup{t|In(Te;, Ye;, 1) < 8,8 € (0,1)} = 1

|2e, — e, |15 = 1

(vi) In(Te,, Ye, 1) =0, VI
{ﬂfN(zTe”yej,g) <5,

sup{Z|In (e, Ye;, 1) < B,8 € (0,1)} =0

4

U

= ||ze, — e, |[5 =0
(vii) 12, — Yo, [I5 = sup{t|In(ze,, e, ) < B, 6 € (0,1)}
= sup{t|In(ye,, 7e,, 1) < 6,5 € (0, 1)} = [lye, — 2c,|[3
(viii) e, = Ye, |13 + [1%e, — 2,13, B € (0,1)

= sup{3|In(ze,, Ye,, 5) < B} + sup{t|In(Ye,, 2z¢,, 1) < B}
= SUP{g@ﬂIN(xewyejag) < 5>IN(yejaZekag> < B}

= sup{3 @ t|In(2e,, Ye;» 5) © In(Ye,, Ze,, 1) < B o B}

> {5®HIn(ze,, 2,5 Dt) < B} [ by (xi) in Definition 6.1 ]

||xei — Zey, | |%3)

Thus, || - ||2ﬂ is a S— norm induced by the fuzzy soft metric /5 on V. Finally, for 0 < 81 < [,

{£|IN(x€i7y6j7g> < 62} 2 {E‘IN(xeiuyejvf) < Bl}
= Sup{t|[N(a:ei, y€j7t) § ﬁl} S Sup{t|[N<x8w y€j7t) S 62}
= ||x67‘, - yej“?ﬁ S ||x€i - y€j||%2

Hence, || - ||3 is an ascending norm on V.

In a similar manner, || - ||? is also an ascending norm on V" and this ends the theorem.

7 Conclusion

The motivation of the present paper is to define a neutrosophic norm on a soft linear space. The convergence
of sequence, characteristics of Cauchy sequence, the concept of convexity and the metric in NSNLS have been
introduced here. These are illustrated by suitable examples. Their several related properties and structural
characteristics have been investigated. We expect, this paper will promote the future study on neutrosophic soft
normed linear spaces and many other general frameworks.
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