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1. Introduction

In real world, we face so many uncertainties in all walks of life. However most of the existing
mathematical tools for formal modeling, reasoning and computing are crisp and precise in
character. There are theories viz,theory of probability, evidence, fuzzy set [31], intuitionistic
fuzzy set [3], neutrosophic set [26], vague set, interval mathematics, rough set for dealing with
uncertainties. These theories have their own difficulties as pointed out by Molodtsov [21].
In 1999, Molodtsov [2I] initiated a novel concept of soft set theory, which is completely a
new approach for modeling vagueness and uncertainties. Soft set theory has a rich potential
for application in solving practical problems in economics, social science, medical science etc..
Later on Maji et al. [22] have proposed the theory of fuzzy soft set. Maji et al. [I8|[19] extended
soft sets to intuitionistic fuzzy soft sets and neutrosophic soft sets.

Eigenvectors of a max-min matrix characterize stable state of the corresponding discrete-
events system. Investigation of the max-min eigenvectors of a given matrix is therefore of
a great practical importance. The eigenproblem in max-min algebra has been studied by
many authors. Interesting results were found in describing the structure of the eigenspace,
and algorithms for computing the maximal eigenvector of a given matrix were sugested, see

e.g. [0,16L23,24,31.32]. The structure of the eigenspace as a union of intervals of increasing
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eigenvectors is described in [7].

Fuzzy matrices defined first time by Thomason in 1977 [25] and he discussed about the
convergence of the powers of a fuzzy matrix. The theory of fuzzy matrices were developed by
Kim and Roush [I16] as an extension of Boolean matrices. Manoj Bora et al. [20] have applied
intuitionistic fuzzy soft matrices in the medical diagnosis problem. Arockiarani and Sumathi
[1,2] introduced Fuzzy Neutrosophic Soft Matrix (FNSM) and used them in decision making
problems. Broumi et al. [4] proposed the concept of generalized interval neutrosophic soft set
and studied their operations. Also, they presented an application of it in decision making
problem. First time Kavitha et al. [L0HI3,15] introduced the concept of unique solvability
of max-min operation through FNSM equation Az = b and explained strong regularity of
FNSMs over fuzzy neutrosophic soft algebra and computing the greatest X-eigenvector of fuzzy
neutrosophic soft matrix. They also introduced the power of FNSM and Periodicity of Interval
Fuzzy Neutrosophic Soft Matrices. Murugadas et al. proposed the ideas of the Monotone
interval fuzzy neutrosophic soft eigenproblem and Solveability of System of Netrosophic Soft
Linear Equations in [I7]. In [30], Uma et. al, introduced the concept of FNSMs of Type-1 and
Type-2.

By max-min FNSA we understand a triplet (N, &, ®), where A is a linearly ordered FNSS,
and @ = max, ® = min are binary operations on A. The notation N(n’n),/\/(n) denotes the
set of all Fuzzy Neutrosophic Soft Square Matrices( FNSSMs) (all FNSVs) of given dimension
n over N. Operations @, ® are extended to FNSMs and FNSVs in formal way.

The eigenproblem for a given FNSM A € /\/(n,n) in max-min FNSA consists of finding a
FNSV (27, 2!, 2¥') € N,y (FNSEv) such that the equation
A® @, 2! 2F) = (2T, 27, 2F) holds true. By the eigenspace of a given FNSM we mean the
set of all its FNSEvs.

In this paper the eigenspace structure for a special case of so-called CFNSMs is studied. The
paper presents a detailed description of all possible types of FNSEvs of any given CFNSM.

2. Preliminaries

In this section, some basic notions related to this topics are recalled.

Definition 2.1. [26] A neutrosophic set A on the universe of discourse X is defined as
A= {(z, Ta(z), 1a(x), Fa(z)),z € X}, where T, I, F : X — ]70,17[ and
0 < Ta(z) + La(z) + Fa(z) < 3T. (1))

From philosophical point of view the NS set takes the value from real standard or non-
standard subsets of |70, 17[. But in real life application especially in Scientific and Engineer-
ing problems it is difficult to use NS with value from real standard or non-standard subset

of | 70,17 . Hence we consider the NS which takes the value from the subset of [0, 1]. Therefore
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we can rewrite equation (1) as 0 < Ty(x) + I4(x) + Fa(z) < 3. In short an element @ in the

TIF>

NS A, can be written as @ = (a”,a’, a!"), where a” denotes degree of truth, a’ denotes degree

of indeterminacy, af” denotes degree of falsity such that 0 < a” + a! + o < 3.

Definition 2.2. [I] A NS A on the universe of discourse X is defined as A =
{z,(Ta(z),14(x), Fa(z)),x € X}, where T, [, F : X — [0,1] and 0 < Ty(x)+1a(z)+ Fa(z) <
3.

Definition 2.3. [2I] Let U be the initial universe set and E be a set of parameter. Consider
a non-empty set A, A C E. Let P(U) denotes the set of all NSs of U. The collection (F, A) is
termed to be the NSS over U, where F' is a mapping given by F': A — P(U). Here after we
simply consider A as NSS over U instead of (F, A).

Definition 2.4. [2] Let U = {c1, ¢, ..., ¢} be the universal set and E be the set of parame-
ters given by E = {ej1, €2, ...,em}. Let A C E. A pair (F, A) be a NSS over U. Then the subset
of U x E is defined by R4 = {(u,e); e € A, u € Fa(e)}

which is called a relation form of (Fjs, E). The membership function, indeterminacy member-
ship function and non membership function are written by

Tr, :UXxE — [0,1], I, : U x E — [0,1] and Fg, : U x E — [0,1] where T, (u,e) €
[0,1], Ir,(u,e) € [0,1] and Fgr,(u,e) € [0,1] are the membership value, indeterminacy value
and non membership value respectively of u € U for each e € E.

If [(Ej, Iij; Fz])] = [Tw(ul, ej), Iij(ui, ej) ,Fij(ui, €j)] we define a matrix

(Th1, i1, Fr1) - (Tin, Lin, Fin)

(To1, Io1, Fo1) -+ (Ton, Ion, Faop)
(T3 2 Iij, Fidlmscn = | . v

<Tm17 Iml; Fm1> <Tmna Imna an)_

Which is called an m x n FNSM of the NSS (Fy, E) over U.

Definition 2.5. [30] Let A = ((a;fg-, aifj, af})), B = ((b;fg-, bilj, bf;>) € Nimn), NSM of
order m x n) and /\/(n)—denotes a square NSM of order n. The component wise addition and
component wise multiplication is defined as

A®B= (sup{aiTj, biTj}, sup{afj, bfj}, inf{a

— (; T TV I3l
A® B = (inf{a; bij} an{aijv bij}a sup{a

19

F F
ijo bi;})
F F

i bi;})

Kavitha M and Murugadas P , Eigenspace of a Circulant Fuzzy Neutrosophic Soft Matrix



Neutrosophic Sets and Systems, Vol. 50, 2022 257}

Definition 2.6. Let A € Ny, ), B € N, ,, the composition of A and B is defined as

(Z(az,;/\ bii)s Y (af A biy) H aly v bl )

k=1 k=1

AoB

equivalently we can write the same as

:<\/ ak NOL) \/ N /\ ak, V b, )

k=1 k=1 k=1
The product Ao B is defined if and only if the number of columns of A is same as the number
of rows of B. Then A and B are said to be conformable for multiplication. We shall use AB
instead of A o B.

T T . .
Where }(a;; A by;) means max-min operation and
n
]'Cl_[l(af;C Y bfj) means min-max operation.

3. Eigenvectors of CFNSM

The characterization of the eigenspace structure for a CFNSM is discussed in this section.

Circulancy of FNSM is analogous to circulancy of classical matrix. Formally, FNSM A €
N,y is circulant if
T I F\_ T I _F C
(a;, aijs a;;) = <ai,j,,ai,j,,ai,j,) whenever i —i =j —j (mod n).
Hence, CEFNSM A is totally determined by its inputs

<T 1 F><T I F>

F
ap, g, g ), \07 ,07,07

dal (ral 1 af ) in the first row. (al’,al,al’) is the common in

all diagonal , and similarly each <al ,aZI , aF ) is common in a line parallel to the FNSM diago-
nal,
T I F T I F T I F —
A(<a0 » 45 Qg >7 <a1 » 1,07 >> st <an—17an—1’ an—l)) -
[ (ab af af) (af ai af) (a3 a3 a3) -+ (an_1an-1an1) |
(am—1 any an 1) (ag ag ag) (ai ai af) -+ (an—z an_2 ay_s)
T I F T I F T I F T I F
n— — - — — — — & — —
(n—2 Gn_2 An_2) (Gn_1 an_1 an_1) {ag ap ag) (An—3 An_3 an_3)
L (af af af) (af ataf) (a3 afaf) - (ag ag ag)

Set N = {1,2,...,n} and Ny = {0,1,...,n — 1}. Further for a given CFNSM A =
A(ad ab,al), (ot al,al), ... (al_|,al_,al” ), a strictly non increasing sequence M(A) =

(s1,82,...) of the length [(A) by repetition

max{(al,al,af’); i € No} forr=1
Sy =

max{(al,al,al’) < s,_1; i € No} forr>1

ARt ) ’L
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Here s, = (sl sl sI'). Henceforth s; > sy > ... and I(A) the length of the sequence

T it i
M (A) is the first [ satisfying {(al,al,al); i € No} = {s,;1 < r < [}. Use the notation

L(A) ={1,2,...,1(A)}. Denote P, as the set of all positions of the value s, in the first row of
the FNSM A, for any r € L(A) i.e.

P ={i € No; (al,al,al) =s,}

ARt it}

and we set the highest common factors(HCF) d,, e, as follows

d, = HOF(P, U {n}), e, = HOF(d1,ds, ...,d,) = HCF(e,_1,dy).

Remark 3.1. The indices of FNSM values (a!, a!,al’), and their placements, are numbers in

No =1{0,1,...,n — 1}, while the row and columns of the FNSM are indexed between 1 and n.
Thus, for all £k € N, the kth row of A will be like this

_ T I _F T I F T I F
Ak = (o (s s Q) s (Ot 1 Oy 1> Wt 1)s (O 20 Chiys Tyl o)
o . T I F _ . .
and for any position p € P, we have (ay,, Qs pr Qprp) = Sr (here the column index is

computed modulo k + p n).

The next two lemmas are vital in this work.

Lemma 3.2. Let CFNSM A = A((ao,ao,a0>,<a1T,al,a1) o {al_y al 1 af ) be given,
let (27, 2!, 2F)) = ((2F 2], 2y, (2F 2l 28y (2l 2L 2F)) be FNSEv of A, let k € N,r €
L(A) and p € P,(A). If (2T 2l 2"y < s,, then (2] 2l 2I") = <m£+p,a:£+p,xk+p>.

Proof. Assume that (z1, 2! 2F) < <x£+p,x£+p,xk+p> Then by Remark B.1]

(@, of 2 ) < 5 ® <x£+p’ x£+p7$£+p> = <a£k+p7a£k+p7a£k+p> ® <w£+p7x£+p7$£+p> <

A @ (2, 21, 2)),

ie ((z7,2!,2F)) cannot be eigenvector of A, a contradiction. Then (z], zf zf) >

(xf+p, Thyp xk+p> Repeating like this we get, due to the cyclicity of A,

<l‘£,l‘£,$£> = <x£+p7$£+p7xlf+p> > <$£+2p’$£+2p?x£+2p> > 2 <:L‘£,:I)£,x£)

hence, (x{,xé, xf) = <x;€+p, x£+p,x£+p> must be hold true.

Lemma 3.3. Let CFNSM A = A((al, al,al), (aT,al,al), ..., (aL_;,al_;,al |)) be given.
Let ((zT,2!,2%)) be FNSEv of A4, let k,l € N,r € L(A). If (xl 2l 2F) < s,, then the
following result hold

(i) if k =1 mod d, then (z],zl Iy = (T 2], 2T),

(ii)if &k = mod e, then (zl, 2l I = (aT 2! 2F).

Proof. (i) Clearly d, can be expressed as a linear combination of values in P, U {n} with
non-negative coefficients from number theory. By repeated use of Lemma (i) is obtained.

(ii) follows directly from the definition of e, and (i).
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Theorem 3.4. Let CFNSM A = A((al, dl,al), (a¥,al,al’), ..., (al | al 1 ,af |)) be given,
let (27,27, 2) be FNSEv of A. Then (z], 21 2I") < s1, holds true for every k € N.

Proof: By contradiction, that if(xk,mk,a;£> > s1 for some k € N. Then, the inequal-
ity (zl 2l 2y > (al af, al’) holds for every i € Ny, by definition of s;, which gives

T I F T T -
(x),, xp, 27 ) > <akj,akj,akj> for every j € N. Hence

<l‘£,l’£,$k> > @V(<ak]’a£]7a£;> ® <.’L‘f xf $] >) Ak ® (<I’ xl xF>)
e (al 2l by £ Ay @ (27,21, 2)) and, thus, ((zT, 27, 2")) is not a eigenvector of A.

Theorem 3.5. Let CFNSM A = A((al,a},al’), (aT,al,al’), ..., (al_;,al | al"})) be given,
such that the diagonal input (ao ,aé,%) is greater than all other inputs of the FNSM. If a
FNSV (2T, 2!, 2%)) € N(n) has inputs fulfilling the inequalities sy < (xF zl by < s for
every k € N, then ((zT,z!,2")) is FNSEv of A.

Proof: By definition of P,, the hypothesis of the theorem gives P; = {0} and thus

Ap @ (2T, 21, 2F)) = G?V“agj’aij’a?ﬂ ® <:L‘f,x§,:z;f>) _
j€

(<a£k’ aik’ a£k> ® <IEZ,ZE£,3}£>) D G?{ }((afj, aija G5J> ® <33va $]Ia 1{»
JEN\{k

Further, we have (a},,al, al) @ (z1, 2l 2F) = sy @ (2], 2l 28y = (2T 2l 2L,

D (g, apj 085 © (27, 77,27) < @ (s2@ (a2, 27)) = s,
JEN\{k} JEN\{k}
hence (i, o, 2)) = (ajy, gy, agy) © (o, 7, 25) < Ap ® (T, 2h,27) < (a2, 2) @ 52 =
(g ko )

for every k € N, ie. A® ((z7, 2!, 2")) = (2T, 27, 2F)).

Remark 3.6. Theorem is a special case of the sufficient part of Theorem 3.8 The asser-
tions of Lemma [3.3] are fulfilled, as in Theorem we have P, = {0} and d; = e; = n, hence,

the equivalence relation modulo n is the identity relation on Nj.

Remark 3.7. If the maximal input of the CFNSM is not unique, or if it is placed on other
position than the diagonal one, then 0 < e; < n and the equivalence modulo ey differs from
the identity relation on Ny. Hence, the inputs of any FNSEv cannot be arbitrary value in the

interval (s2,s1) but according to Lemma [B.3] some repetitions must occur, see Example

Theorem 3.8. Let CFNSM A = A((a},ab,al’), (aT,al,af’), ..., (al_|,al | ,al_})) be given.
A FNSV (27, 2!, 2%)) € Ny is FNSEv of A if and only if there is a partition 7, on N, such
that for every class t € T there exist ((z7(t),2!(t), 2" (t))) € N and r(t) € L(A), satisfying
the following conditions

() (al, 2l 2f) = (2T(t), 21 (t), 21 (t)) < s1 for every k € ¢,

(i)r(t) = max{r € S(A);z(t) < s},

Kavitha M and Murugadas P , Eigenspace of a Circulant Fuzzy Neutrosophic Soft Matrix




Neutrosophic Sets and Systems, Vol. 50, 2022 B9y

(iii) t is an equivalence class in N" modulo e, (¢).

Proof:(=) The conditions (i)-(iii) follow from Lemma B.3] and Theorem [3.4]

(<) Let (i)-(iii) be satisfied. If ((xT(¢), 2! (t), 2" (t))) = s1, then according to (ii), 7(t) is the
maximum of the (), which is the least element in S(A), i.e. (¢) = 1 in this case.

For arbitrary, but fixed k € N, there is t € T with k € t and P; # () by definition, hence there
is p € Py, and (a, II), al’) = s1. Therefore, k = k + p mod e,(;) and by conditions (i), (iii), we
have

T ..I F\ _ T I F — T I F — T I F
(xkaxkaxk> - <xk+p?xk+p7xk+p> = 51 ® <$k+p’xk+p7xk+p> - <akk+p7a'kk+p7a’kk+p> ®

(Thtp Tl Thoap) < @((afjvaij,ai}>®<$f,fc§,% ) = A @ (T, 2!, 2").
To prove the others1de consider any j € N. If j € ¢, then <x] ,xf,mf} = (zl 2l 2, by (i).
Thus,

%((afjﬂaﬁjyaﬁ ® (o], af,2])) = %((a%7a£j7a1§> ® (i, af, 2f)) < (o, of, 2f).-

If j ¢ t, then j, k 2 mode, ;). Therefore, p = j — k is not a multiple of the HCF e,(7, and so,
the difference p cannot be expressed as a linear combination with integer coefficients, of the
values in Py UPaU...U P, U{n}, from definition of e,). As a result we have (a ;?7 aé, a5> =5q
for some ¢ > r(t), which implies s, < (zT(¢),2!(¢),2F(t)), by assumption (ii). Therefore
(ai},aij,aiw = (afk+p,a£k+p,a£,€+p> = sq < (z},z],2f). Thus we have

® (<a%}aa£jva£;'> ® <xcjrvzjam] >) < ® (<ak]’akjva£;> < <1’£,:L‘£,:L’kF>
JEN\t JEN\t
Summarizing we get

<xk7xk7$k> < Ak ® (<(E xl xF>) = @i(<a%}7a£jvaij> ® <$?,$§,xf>) ©® ®\ ((ai}vaéj7a£j> ®
WS JEN\L

(af 2], 2f).

As k € N is arbitrary, we have
A ((a,2,2") = (7,2, 27)).

4. Examples of FNSEvs

Examples of FNSEvs of CFNSM are illustrated here.

Example 4.1. Let n =6 and let

A = A((1,1,0),(0.1,0.1,0.9), (0.3,0.2,0.7), (0.7, 0.6, 0.3), (0.3,0.2,0.7), (0,0,1)) be a CFNSM

generated by inputs on positions (0, 1,...,5) in the first row. Then M(A) = (s1,s2,...,85) =

((1,1,0),(0.7,0.6,0.3), (0.3,0.2,0.7), (0.1,0.1,0.9), (0,0, 1)). The maximal input s; = (1,1,0)

is on the diagonal, i.e. on position 0 and nowhere else, the second largest input has value
= (0.7,0.6,0.3). Hence, in view of Theorem B.5 any FNSV with arbitrary inputs from

interval [(0.7,0.6,0.3),(1,1,0)], e.g

(2T, 2", ")) = ((0.9,0.8,0.1), (0.8,0.7,0.2), (0.7,0.6,0.3), (0.8,0.7,0.2), (0.8,0.7,0.2),

(0.7,0.6,0.3))" is an FNSEv of A.
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i (1,1,0) (0.1,0.1,0.9)  (0.3,0.2,0.7) (0.7,0.6,0.3) (0.3,0.2,0.7) (0,0, 1)

(0,0, 1) (1,1,0) (0.1,0.1,0.9) (0.30.20.7) (0.7,0.6,0.3) (0.3,0.2,0.7)
(0.3,0.2,0.7) (0,0,1) (1,1,0) (0.1,0.1,0.9) (0.3,0.2,0.7) (0.7,0.6,0.3)
(0.7,0.6,0.3)  (0.3,0.2,0.7) (0,0, 1) (1,1,0) (0.1,0.1,0.9)  (0.3,0.2,0.7)
(0.3,0.2,0.7)  (0.7,0.6,0.3) (0.3,0.2,0.7) (0,0, 1) (1,1,0) (0.1,0.1,0.9)
(0.1,0.1,0.9)  (0.3,0.2,0.7) (0.7,0.6,0.3) (0.3,0.2,0.7) (0,0,1) (1,1,0)
[(0.9,0.8,0.1)]  [(0.9,0.8,0.1)]

(0.8,0.7,0.2) (0.8,0.7,0.2)

(0.7,0.6,0.3) (0.7,0.6,0.3)

(0.8,0.7,0.2) (0.8,0.7,0.2)

(0.8,0.7,0.2) (0.8,0.7,0.2)

1(0.7,0.6,0.3) | [(0.7,0.6,0.3)

Example 4.2. In this example we show further FNSEvs of the FNSM

A = A((1,1,0),(0.1,0.1,0.9), (0.3,0.2,0.7), (0.7,0.6,0.3), (0.3,0.2,0.7), (0,0, 1)) from the pre-
vious example. If an FNSEv should contain inputs not belonging to the interval (sq,s1) =
((0.7,0.6,0.3), (1,1,0)), then in view of Theorem B4 such inputs con not be large then
s1 = (1,1,0). Hence such inputs must be less than the value so = (0.7,0.6,0.3) and some
repetitions must occur, by Lemma 3.3l

The position sets for particular inputs are P, = {0} for s; = (1,1,0),P» = {3} for
s3 = (0.7,0.6,0.3), Py = {2,4} for s3 = (0.3,0.2,0.7), P, = {1} for s4 = (0.1,0.1,0.9), P; = {1}
for s5 = (0,0,1). By definition of the HCF d,, e, we get

dy = HCF(Py U {n}) = HCF(0,6) =6 ¢; = 6

dy = HCF(Py U {n}) = HCF(3,6) = 3 ey = HCF(dy, dy) = HCF(6,3) = 3
ds = HCF(P3 U {n}) = HCF(2,4,6) = 2 e3 = HCF(ey,d3) = HCF(3,2) = 1
dy = HCF(PyU{n}) = HCF(1,6) = 1 e, = HCF(e3,dy) = HCF(1,1) = 1

Further e5 = 1. By Lemma B3] any input

(zT zl 2l) < s, must be repeated in (27, 2!,z after e, positions. In particular, inputs
less than value so = (0.7,0.6,0.3) must be repeated after 3rd positions, inputs less than

s3 = (0.3,0.2,0.7) must be repeated on every second position. However, inputs which are not
less than sy = (0.7,0.6,0.3) can be arbitrary. The above conditions are satisfied e.g. by FNSV
(zT, 2!, 2F)) = ((0.4,0.3,0.6), (0.5,0.4, 0.6),

(0.6,0.5,0.4), (0.4,0.3,0.6), (0.5,0.4, 0.6), (0.6,0.5,0.4))* which is therefore an FNSEv of A, in
the view of Theorem [3.§
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We may note that if an FNSEv ((

', x

'A<1,1,0> (0.1,0.1,0.9) (0.3,0.2,0.7) (0.7,0.6,0.3) (0.3,0.2,0.7) (0,0,1)
(0,0,1) (1,1,0) (0.1,0.1,0.9) (0.3 0.20.7) (0.7,0.6,0.3) (0.3,0.2,0.7)
(0.3,0.2,0.7) (0,0,1) (1,1,0) (0.1,0.1,0.9)  (0.3,0.2,0.7) (0.7,0.6,0.3)
(0.7,0.6,0.3)  (0.3,0.2,0.7) (0,0,1) (1,1,0) (0.1,0.1,0.9)  (0.3,0.2,0.7) ©
(0.3,0.2,0.7)  (0.7,0.6,0.3) (0.3,0.2,0.7) (0,0,1) (1,1,0) (0.1,0.1,0.9)
(0.1,0.1,0.9)  (0.3,0.2,0.7)  (0.7,0.6,0.3) (0.3,0.2,0.7) (0,0,1) (1,1,0)
[(0.4,0.3,0.6)]  [(0.4,0.3,0.6)]

(0.5,0.4,0.6) (0.5,0.4,0.6)

(0.6,0.5,0.4)|  [(0.6,0.5,0.4)

(0.4,0.3,0.6)|  |(0.4,0.3,0.6)

(0.5,0.4,0.6) (0.5,0.4,0.6)

(0.6,0.5,0.4) | |(0.6,0.5,0.4)

I

£Y) of A should contain an input (z1, 2! ) <

s3 = (0.3,0.2,0.7), then such an input would be repeated after every es = 1 position, in other

words the FNSEv would have only that single input, i.e. it would be a constant FNSV.

Example 4.3. labelE3  This example illustrates Remark B.7] by analyzing FNSEvs of the
FNSM B = B((1,1,0),(0.1,0.1,0.9), (1,1, 0), (0.7,0.6,0.3), (0.3,0.2,0.7), (0, 0, 1)) which differs
from FNSM A in a single input, namely (b b4, bE)

= (1,1,0). Thus, the maximal input of
the FNSM B is placed on the diagonal position 0 and also on a non-diagonal position 3. We
have P, = {0,3} for s = (1,1,0) and e; = d; = HCF(0,2,6) = 2. Theorem B.5] can not be
applied, and the input values belonging to the interval (sq, s1) = ((0.7,0.6,0.3), (1,1,0)) must
be repeated after e; = 2 positions. In fact, the same is true for all input values in the interval

(s3,51), because it can be easily computed that e; = es = 2.

'B<1,1,o> (0.1,0.1,0.9) (1,1,0) (0.3.0.2,0.7)  (0.7,0.6,0.3) (0,0,1)
(0,0,1) (1,1,0) (0.1,0.1,0.9) (1,1,0) (0.30.20.7)  (0.7,0.6,0.3)
(0.7,0.6,0.3) (0,0,1) (1,1,0) (0.1,0.1,0.9) (1,1,0) (0.3,0.2,0.7)
(0.3,0.2,0.7)  (0.7,0.6,0.3) (0,0,1) (1,1,0) (0.1,0.1,0.9)  (1,1,0) ®
(1,1,0) (0.3,0.2,0.7) (0.7,0.6,0.3) (0,0,1) (1,1,0) (0.1,0.1,0.9)
(0.1,0.1,0.9) (1,1,0) (0.3,0.2,0.7)  (0.7,0.6,0.3) (0,0,1) (1,1,0)
[(0.3,0.2,0.7)]  [(0.3,0.2,0.7)]

(0.4,0.3,0.6) (0.4,0.3,0.6)

(0.3,0.2,0.7) | [(0.3,0.2,0.7)

(0.4,0.3,0.6)|  |(0.4,0.3,0.6)

(0.3,0.2,0.7) (0.3,0.2,0.7)

(0.4,0.3,0.6)|  |(0.4,0.3,0.6)
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5. Conclusion

We study the eigenspace of a circulant max-min matrix, and propose the characterization of
eigenspace structure for circulant fuzzy neutrosophic soft matrix. Further examples are given

for all possible types of fuzzy neutrosophic soft eigenvectors.
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