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Abstract. Neutrosophic set theory provides a new tool to handle the uncertainties in shortest path problem (SPP). This paper intro-
duces the SPP from a source node to a destination node on a neutrosophic graph in which a positive neutrosophic number is as-
signed to each edge as its edge cost. We define this problem as neutrosophic shortest path problem (NSSPP). A simple algorithm is 
also introduced to solve the NSSPP. The proposed algorithm finds the neutrosophic shortest path (NSSP) and its corresponding 
neutrosophic shortest path length (NSSPL) between source node and destination node.  Our proposed algorithm is also capable to 
find crisp shortest path length (CrSPL) of the corresponding neutrosophic shortest path length (NSSPL) which helps the decision 
maker to choose the shortest path easily. We also compare our proposed algorithm with some existing methods to show efficiency 
of our proposed algorithm. Finally, some numerical experiments are given to show the effectiveness and robustness of the new 
model. Numerical and graphical results demonstrate that the novel methods are superior to the existing method. 

Keywords: Trapezoidal neutrosophic fuzzy numbers; scoring, accuracy and certainty index, shortest path problem

1 Introduction 

Let G = (V, E) be a graph, where V is a set of all the nodes (or vertices) and E is a set of all the edges (or arcs). 
The aim of the shortest path problem (SPP) is to find a path between two nodes and optimizing the weight of the 
path. The SPP is known as one of  the well-studied fields in the area operations research and mathematical 
optimization and it is commonly encountered in wide array of practical applications including road network [1], 
flow shop scheduling [2], routing problems [3], transportation planning [4], geographical information 
system(GIS) field [5], optimal path[6-7]  and so on. 

There are several methods for solving traditional SPP such as Dijkstra [8] algorithm or the label-correcting 
Bellman [9] algorithm. Due to uncertain factors in real-world problems, such as efficiency, expense, and path 
capacity variation, we must consider SPP with imprecise information. Under some circumstances, an approx-
imate method applies fuzzy numbers to solve SPP, called Fuzzy-SPP (FSPP). Many researchers have focused on 
FSPP and intuitionistic FSPP (IFSPP) formulations and solution approaches. Dubois and Prade [10] first intro-
duced FSPP. Later, different approaches were presented by various researchers/scientists to evaluate the FSPP. 
Some of them are as follows; Keshavarz and Khorram [11] used the highest reliability, Deng et al. [12] sug-
gested extended Dijkstra Principle technique, Hassanzadeh et al. [13], and Syarif et al. [14] proposed a genetic 
algorithm model, Ebrahimnejad et al. [15] using the artificial bee colony model, Li et al.[16]; Zhong and Zhou 
[17] used neural networks for finding FSPP. Moreover, Motameni and Ebrahimnejad [18] considered constraint 
SPP, Mukherjee [19], Geetharamani and Jayagowri [20] and Biswas et al. [21] considered the IFSPP. In recent 
years, research on this subject has increased and that is of continuing interest such as Kristianto et al.[22], Zhang 
et al.[23], Mukherjee [24], Huang and Wang [25], Dey et al. [26], Niroomand et al. [27], Rashmanlou et al. [28], 
Mali and Gautam [29], Wang et al. [30], Yen and Cheng [31] and so on. 

Recently, neutrosophic set (NS) theory is proposed by Smarandache [32-33], and this is generalised from the 
fuzzy set [34] and intuitionistic fuzzy set [35]. NS deals with uncertain, indeterminate and incongruous data 
where the indeterminacy is quantified explicitly. Moreover, falsity, indeterminacy and truth membership are 
completely independent. It overcomes some limitations of the existing methods in depicting uncertain decision 
information. Some extensions of NSs, including interval NS [36-38] , bipolar NS[39], single-valued NS [40-44], 
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multi-valued NS [45-47], neutrosophic linguistic set [48-49], rough neutrosophic set [50-62], triangular fuzzy 
neutrosophic set [63], and neutrosophic trapezoidal set [64-67] have been proposed and applied to solve various 
problems. However, to the best of our knowledge, there are few methods which deal with NSSPP. Recently, 
Broumi et al.[68-71] proposed some models to solve SPP in the neutrosophic environment. Broumi et al. [68-
71], proposed a new method for the TrNSSPP and TNSSPP. However, the mentioned methods [68-71] have 
some shortcomings and are not valid. In this paper, for finding NSSPP, the shortcomings of the mentioned mod-
els are pointed out, and a new method is proposed for the same. 

2 Preliminaries 

Definition 2.1: [72]: Let 1 is a special NS on the real number set R, whose truth-MF ( ),a x  indeterminacy-MF 
( ),a x  and falsity-MF ( )a x  are given as follows: 
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The graphical representation of the TrNS number    , , , , , ,T I P S a a aa a a a a T I F        is shown in Fig. 1, where, the 
burgundy colour graph show truth-MF, the yellow colour graph shows indeterminacy-MF, and the red colour 
graph shows the falsity-MF. Blackline represent the truth value, the cyan line represents the indeterminacy value, 
and the blue line represents the falsity value ( here, we consider a a aT I F    ). 

Additionally, when 0,Ta     , , , , , ,T I P S a a aa a a a a T I F         is called a positive TrNS number. Similarly, 
when 0,Sa     , , , , , ,T I P S a a aa a a a a T I F         becomes a negative TrNS number. When 
0 1T I P Sa a a a         and , , [0,1],a a aT I F    a  is called a normalised TrNS number. When 

1 ,a a aI T F     the TrNS number is reduced to triangular intuitionistic fuzzy numbers (TrIFN). When 

   , , , , , , ,I P T I P S a a aa a a a a a a T I F           transforming into a TNS number. When 0, 0,a aI F   a TrNS number 
is reduced to generalised TrFN,  , , , , .T I P S aa a a a a T     

Definition 2.2: [40] : Let X be a space point or objects, with a genetic element in X denoted by x. A single-
valued NS, V in X is characterised by three independent parts, namely truth-MF ,VT indeterminacy-MF VI and 
falsity-MF ,VF such that : [0,1], : [0,1],   : [0,1].V V VT X I X and F X    
Now, V is denoted as   , ( ), ( ), ( )  | ,V V VV x T x I x F x x X     satisfying 0 ( ) ( ) ( ) 3.V V VT x I x F x     

Definition 2.3: [72]: Let    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , ,N
T I M E r r rr r r r r T I F  and    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , ,N

T I M E s s ss s s s s T I F be two arbitrary 
TrNSNs, and 0;  then arithmetic operation on TrNS are as follows: 
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Figure 1. The graphical representation of the membership functions of TrNS. 

Definition 2.4: [73]: (Comparison of any two random TrNS numbers): Let    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , ,N
T I M E r r rr r r r r T I F  be a 

TrNS number,and then the score and accuracy function is defined, as follow: 
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ˆ ˆ ˆ ˆ ˆ 2

12
N

T I M E r r rs r r r r r T I F       
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12
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Let    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , ,N
T I M E r r rr r r r r T I F  and    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , ,N

T I M E s s ss s s s s T I F be two TrNS numbers, the ranking of 
ˆNr and ˆNs by score function is described as follows: 

1.    ˆ ˆ ˆ ˆ   N N N Nif s r s s then r s 

2.    ˆ ˆ    N Nif s r s s and if

a.    ˆ ˆ ˆ ˆ   N N N Na r a s then r s 

b.    ˆ ˆ ˆ ˆ   N N N Na r a s then r s 

c.    ˆ ˆ ˆ ˆ   N N N Na r a s then r s 

Definition 2.5:[73]: (Comparison of any two random TNS numbers).Let    ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , ,NS
T I P r r rr r r r T I F be a TNS 

number, and then the score and accuracy functions are defined as follows: 

     ˆ ˆ ˆ
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12
NS

T I P r r rs r r r r T I F       

     ˆ ˆ ˆ

1
ˆ ˆ ˆ ˆ2 2

12
NS

T I P r r ra r r r r T I F       

Let    ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , ,NS
T I P r r rr r r r T I F and    ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , ,NS

T I P s s ss s s s T I F be two arbitrary TNSNs, the ranking
of ˆNSr and ˆNSs by score function is defined as follows: 

1.    ˆ ˆ ˆ ˆ   NS NS NS NSif s r s s then r s 

2.    ˆ ˆ    NS NSif s r s s and if

a.    ˆ ˆ ˆ ˆ   NS NS NS NSa r a s then r s 

b.    ˆ ˆ ˆ ˆ   NS NS NS NSa r a s then r s 

c.    ˆ ˆ ˆ ˆ   NS NS NS NSa r a s then r s 
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Definition 2.6: [72]: Let  ˆ ˆ ˆ ˆ ˆ, , ,T I M Er r r r r  be a TrFN, and ˆ ˆ ˆ ˆT I M Er r r r   then the centre of gravity (COG) of 
r̂  can be defined as 

ˆ ˆ ˆ ˆ ˆ,         

ˆ( ) ˆ ˆ ˆ ˆ1
ˆ ˆ ˆ ˆ ,      

ˆ ˆ ˆ ˆ3

T I M E

E M I T
T I M E

E M I T

r if r r r r

COG r r r r r
r r r r otherwise

r r r r

  
           

Definition 2.7:[72]: ( Comparison of any two random TrNS numbers).Let    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , ,NS
T I M E s s ss s s s s T I F be a 

TrNSNs,and then the score function, accuracy function, and certainty functions are defined as follows: 

 ˆ ˆ ˆ2
ˆ ˆ( ) ( ) ,

3
s s sN T I F

E s COG r
  

 

 ˆ ˆˆ ˆ( ) ( ) ,N
s sA s COG r T F    

 ˆˆ ˆ( ) ( )N
sC s COG r T 

Let    ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , ,NS
T I P r r rr r r r T I F and    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , ,NS

T I M E s s ss s s s s T I F be two arbitrary TrNSNs, the ranking of 
ˆNSr  and ˆNSs  by score function is defined as follows: 

1.    ˆ ˆ ˆ ˆ   NS NS NS NSif E r E s then r s 

2.        ˆ ˆ ˆ ˆ ˆ ˆ     NS NS NS NS NS NSif E r E s and if A r A s then r s  

3.        ˆ ˆ ˆ ˆ ˆ ˆ     NS NS NS NS NS NSif E r E s and if A r A s then r s  

4.            ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       NS NS NS NS NS NS NS NSif E r E s and if A r A s and C r C s then r s   

5.            ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       NS NS NS NS NS NS NS NSif E r E s and if A r A s and C r C s then r s   

6.            ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       NS NS NS NS NS NS NS NSif E r E s and if A r A s and C r C s then r s   

2.1 List of Abbreviation used throughout this paper. 

SPP stands for “shortest path problem.” 
NSSPP stands for “neutrosophic shortest path problem.” 
NSSP stands for “neutrosophic shortest path.”  
NSSPL stands for “neutrosophic shortest path length.” 
CrSPL stands for “crisp shortest path length.” 
FSPP stands for “fuzzy shortest path problem.” 
IFSPP stands for “intuitionistic fuzzy shortest path problem.” 
NS stands for “neutrosophic set.” 
TrNSSPP stands for “trapezoidal neutrosophic shortest path.” 
TNSSPP stands for “triangular neutrosophic shortest path.” 
TrNS stands for “trapezoidal neutrosophic set.” 
TNS stands for “triangular neutrosophic set.” 
MF stands for “membership function.” 
TFN stands for “triangular fuzzy number.” 
TrFN stands for “trapezoidal fuzzy number.” 

3 The Proposed model 

Before we start the main algorithm, we introduce a sub-section i.e., shortcoming and limitation of some of 
the existing models:

3.1 Discussion on shortcoming of some of the existing methods

At first, we discussed the shortcoming and limitation of the existing methods under two different type of 
NS environment. 

Broumi et al. [68-69] first proposed a method to find the shortest path under TrNS environment. It is a very 
well known and propular paper in the field of neutrosophic set and system. However, the authors used some 

Neutrosophic Sets and Systems, Vol. 23, 2018 8 

Ranjan Kumar, S A Edaltpanah, Sripati Jha, Said Broumi and Arindam Dey. Neutrosophic shortest path problem 



mathematical assumption to solve the problem which may be invalid in some cases. This has been discussed 
in detail in Example 3.1. and Example 3.2 

Example 3.1: Broumi et al.[69]:  Here authors have considered two arbitrary i.e., ,r s  be the following TrNS 
numbers: 

 1, 2,3, 4 ;  0.4,0.6, . ,0 7r 

 1,5,7,9 ;  0.7,0.6, .8 .0s 

We observe that the authors used an invalid mathematical assumption to solve the problem i.e.,  

( ) ( ) ( )S r s S r S s     

Our objective is to show that above considered assumption is not valid such as  

( ) ( ) ( ).S r s S r S s       

Solution : According to the method of Broumi et al. [69] [see; iteration 4, page no 420, ref. Broumi et al.[69]] 
,we have: 

   1,2,3,4 ;  0.4,0.6,0.7 1,5,7,9 ;  0.7,0 2, 7, 10, 13); 0.82.6,0 , 0.36, 0.56 ..8r s    

Therefore, we get, ( )S r s    5.06 . but ( ) ( )S r S s   =  3.3. 
Hence, It is clear that ( ) ( ) ( ).S r s S r S s       
Therefore, we can say that the method of Broumi et al. [68-71] is not valid. So we think there is a still a scope of 
improvement. So to remove this limitation we proposed our new method. 

3.2. Existing crisp model in SPP 
In this section, we study the notation and existing crisp SPP and proposed neutrosophic SPPs. 
Notations 
  : Starting node  
  : Final destination node 

mk : The shortest distance from an mth node to kth node.

1

s

mk
k

x

  : The total flow out of node s. 

1

s

mk
k

x

 : The total flow into node s. 

mkRK  : the objective cost in crisp environment 

According to Bazaraa et al. [74], The crisp SPP model is as follows : 

1 1

s s

mk mk
m k

Min RK x
 

 
Subject to:     (4) 

1 1

s s

mk km m
m k

x x 
 

   


for all mkx   and non-negative where , 1,2,.....,m k s  and: 

  1       ,

  0      1, 2,.......... , 1

1     .
m

if m

if m

if m


 

    
 

 




          (5) 

3.3. Transformation of crisp SPP model into nutrosophic SPP  
If we replaced the parameter mkRK into nutrosophic cost parameters, i.e. N

mkRK , then the model is as follows: 

1 1

. 
s s

N
mk mk

m k

Min RK x
 


Subject to:     (6) 
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1 1

s s

mk km m
m k

x x 
 

   


  , 1,2,....., .m k s  

mkx   And are non-negative. 

3.4. Algorithm: A novel approach for finding the SPP under TrNS and TNS environment 
We consider a directed acyclic graph whose arc lengths are represented by neutrosophic number. Our proposed 
algorithm finds the shortest path from the source node s to the destination d of the graph. The steps of the 
algorithm are as follows: 
Step 1:  Let m be the total number of paths from s to d. Compute the score function of each arc length under 
the given network using the Definition 2.6-2.7. 
Step 2:  Find all possible paths ,iA and also find the path length of corresponding ,iA where 1,2,3,.......,i m ,for 
m possible number of  paths. Now, each of m paths can be considered as an arc from s to d as shown in Fig. 2. 
Each of these arcs are represented by a neutrosophic number. 
Step 3:  Calculate the summation of the score function of each arc length corresponding to the path ,iA  and 
set that, ( )iE   where 1,2,3,.......,i m . 
Step 4: By ranking the score value obtained in Step 3 in ascending order, find the lowest rank which is the 
shortest route of the given network under neutrosophic environment. 

End 

Figure. 2.  m paths from source node s to destination node d are represented by m arcs 

4 Example of real life application: 

To justify our proposed algorithms, we consider a network shown in Fig. 3 [Broumi et al [68-71]] 

Distribution network problems: In Example 4.1, and Example 4.2, we have considered a real-life problem 
of a distribution network for a soft drink company. Here we have considered a soft drink company which is 
having 6 distribution areas. This configuration is shown in Fig. 3. The time of delivery of the goods between 
the distribution centers can vary day to day due to many uncertain reasons such as road conjunction, driver 
bad health, vehicle break down, natural calamities such as flood, tsunami, earthquake and so on. Therefore, 
companies want to determine the range of cost per day in between the two consecutive locations but the 
problem is that the time is uncertain so the shortest distance will also be uncertain.  This uncertainty can be 
avoided by predicting the shortest path using neutrosophic number and therefore we have considered TrNS 
and TNS numbers for our assumption where the neutrosophic cost between the two consecutive distribution 
centers is given in Table 1 and Table 3 respectively. The company wants to find the NSP on the basis of 
lowest cost of transportation for distribution between the geographical centers. 

Example 4.1: Consider a network (Fig. 3), with six nodes and eight edges, where node 1 is the source node 
and node 6 is the destination node. The TrNS cost is given in Table 1. 
Table 1. The conditions of Example 4.1. 

T H TrNS cost T H TrNS cost 
1 2 <(1,2,3,4); 0.4,0.6,0.7> 3 4 <(2,4,8,9); 0.5,0.3,0.1> 
1 3 <(2,5,7,8; 0.2,0.3,0.4> 3 5 <(3,4,5,10); 0.3,0.4,0.7> 
2 3 <(3,7,8,9); 0.1,0.4,0.6> 4 6 <(7,8,9,10); 0.3,0.2,0.6> 
2 5 <(1,5,7,9); 0.7,0.6,0.8> 5 6 <(2,4,5,7); 0.6,0.5,0.3> 

Solution: Applying steps 1-4 in proposed Algorithm, we get the NSP as 1 2 5 6     with the lowest 
cost is 5.96, and the NSPL is <(4,11,15,20); 0.928, 0.18, 0.168>.  It is clear that the range of NSPL is 4 to 20 
and we get an optimal solution which lies inside the region. The final result is shown in Table 2. 
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Figure 3.A network with six vertices and eight edges [ Broumi et al. [68-71]]

Table 2. Final step obtained by proposed algorithm is as follows 
Possible path ( )iE  Ranking 

1 :1 2 5 6A    5.96 1 

2 :1 3 5 6A     7.71 2 

3 :1 2 3 5 6A     8.33 3 

4 :1 3 4 6A    10.97 4 

5 :1 2 3 4 6A      11.59 5 

Example 4.2. Consider a network from Fig. 3, with six nodes and eight edges, where node 1 is the source 
node and node 6 is the destination node. The TNS cost is given in Table 3. 

Table 3. The conditions of Example 4.2. 
T H TNS cost T H TNS cost 
1 2 <(1,2,3); 0.4,0.6,0.7> 3 4 <(2,4,8); 0.5,0.3,0.1> 
1 3 <(2,5,7); 0.2,0.3,0.4> 3 5 <(3,4,5); 0.3,0.4,0.7> 
2 3 <(3,7,8); 0.1,0.4,0.6> 4 6 <(7,8,9); 0.3,0.2,0.6> 
2 5 <(1,5,7); 0.7,0.6,0.8> 5 6 <(2,4,5); 0.6,0.5,0.3> 

Solution: Applying steps 1-4 in proposed Algorithm, the NSP is 1 2 5 6     and the minimum cost is 
4.811; so the NSPL is < (4,11, 15); 0.93, 0.18, 0.17>. It is clear that the range of NSPL is 4 to 15 and our 
objective value is 4.811. So we conclude that the crisp minimum cost is 4.811. The result is shown in Table 
4 

Table 4. Final result of proposed Algorithm for Example 4.2 is as follows: 
Possible path ( )iE  Ranking 

1 :1 2 5 6A      4.811 1 

2 :1 3 5 6A      6.133 2 

3 :1 2 3 5 6A     6.733 3 

4 :1 3 4 6A    9.6 4 

5 :1 2 3 4 6A       10.2 5 

5. Result and Discussion
At first, we discussed the Example 4.1 and Example 4.2 which is considered by Broumi et al.[68-71]. We found 
that the proposed Algorithm gives the same shortest route as suggested by Broumi et al.[68-71]. However, our 
proposed methods predict the better crisp optimum cost value as compared with the mentioned existing methods.  
Table 5. Logical Comparison of predicted crisp optimum cost values with the existing methods. 
Example 4.1 Broumi et al. Method [68] our proposed method

Example 4.2 Broumi et al. Method [71] our proposed method

 In Fig. 4 and Fig. 5 (Graphical comparison with existing methods) when we have compared our proposed 
method with the other existing methods, we have found that the objective value of our proposed method is 
smaller than to the existing methods. The best part about our proposed algorithms is that it gives the crisp 
optimum cost values as compared with the present existing method. This is shown in Table 5 (Logical 
Comparison with existing methods) and Table 6 (Numerical Comparison with existing methods) respectively. 
Also, we can say that the objective value obtained by our proposed algorithm lies within the neutrosophic region.  
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Table 6.  Numerical Comparison of our proposed method with the existing methods. 
Ex The method’s name Proposed path SVNSPP 

4.1 

Method 1 [69] NA 
Method 2 [68] 1 2 5 6    Crisp optimum cost: 10.75

NSPL: < (4,11,15,20); 0.93, 0.18, 0.17>. 
Method 3 [70] - NA 
Method 4 [71] - NA 
Proposed Algorithm 1 2 5 6    Suggested crisp optimum cost: 5.96 

NSSPL: < (4,11,15,20); 0.93, 0.18, 0.17>.   

4.2 

Method 1 [69] NA 
Method 2 [68] NA 
Method 3 [70] NA 
Method 4 [71] 1 2 5 6     Crisp optimum cost: 8.815 

NSSPL: < (4,11,15); 0.93, 0.18, 0.17>.  
Proposed Algorithm 1 2 5 6    Suggested crisp optimum cost: 4.811 

NSSPL:  < (4,11,15); 0.93, 0.18, 0.17>.  . 
Because of these capabilities, we can say that our proposed algorithms are superior to the existing methods. 

Figure 4. Comparison of crisp optimum cost value for Example 4.1 
with different methods 

Figure 5. Comparison of crisp optimum cost values for Example 
4.2 with different methods 

Conclusion 
In this paper, we have introduced an algorithm for solving the NSSPP. In this NSSPP, firstly we find all possible 
paths from source node to destination node and compute their corresponding path lengths in terms of 
neutrosophic number. Considering each path as an arc (from source node to destination node), we find rank of 
the path based on score function. The path corresponding to the lowest rank is the shortest path. An example 
graph is considered to demonstrate our proposed algorithm. These algorithms are not only suggested the NSSP 
but also able to predict the NSSPL and CrSPL. Moreover, the shortcomings of the existing algorithms are 
pointed out and to show the advantages of the proposed algorithms. For this purpose, we  have considered 
NSSPP and compare with existing methods. The numerical results show that the new algorithms outperform the 
current methods. In the future, the proposed method can be applied to real-world problems in the field of 
minimum cost flow problem (MCFP), job scheduling, transportation, and so on. 
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