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Abstract: In this paper, we introduce and study a new class of neutrosophic closed set called neutrosophic αm-closed
set. In this respect, we introduce the concepts of neutrosophic αm-continuous, strongly neutrosophic αm continuous,
neutrosophic αm-irresolute and present their basic properties.
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1 Introduction

In 1965, Zadeh [21] studied the idea of fuzzy sets and its logic. Later, Chang [8] introduced the concept of fuzzy
topological spaces. Atanassov [1] discussed the concepts of intuitionistic fuzzy set[[2],[3],[4]]. The concepts
of strongly fuzzy continuous and fuzzy gc-irresolute are introduced by G. Balasubramanian and P. Sundaram
[6]. The idea of αm-closed in topological spaces was introduced by M. Mathew and R. Parimelazhagan[16]. He
also introduced and investigated, αm-continuous maps in topological spaces together with S. Jafari[17]. The
concept of fuzzy αm-continuous function was introduced by R. Dhavaseelan[13]. After the introduction of the
concept of neutrosophy and neutrosophic set by F. Smarandache [[19], [20]], the concepts of neutrosophic crisp
set and neutrosophic crisp topological space were introduced by A. A. Salama and S. A. Alblowi[18]. In this
paper, a new class of neutrosophic closed set called neutrosophic αm closed set is studied. Furthermore, the
concepts of neutrosophic αm-continuous, strongly neutrosophic αm-continuous, neutrosophic αm-irresolute
are introduced and obtain some interesting properties. Throughout this paper neutrosophic topological spaces
(briefly NTS) (S1, ξ1),(S2, ξ2) and (S3, ξ3) will be replaced by S1,S2 and S3, respectively.
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2 Preliminiaries
Definition 2.1. [19] Let T,I,F be real standard or non standard subsets of ]0−, 1+[, with supT = tsup, infT =
tinf
supI = isup, infI = iinf
supF = fsup, infF = finf
n− sup = tsup + isup + fsup
n− inf = tinf + iinf + finf . T, I, F are neutrosophic components.

Definition 2.2. [19] Let S1 be a non-empty fixed set. A neutrosophic set (briefly N -set) Λ is an object such
that Λ = {〈x, µ

Λ
(x), σ

Λ
(x), γ

Λ
(x)〉 : x ∈ S1} where µ

Λ
(x), σ

Λ
(x) and γ

Λ
(x) which represents the degree

of membership function (namely µ
Λ
(x)), the degree of indeterminacy (namely σ

Λ
(x)) and the degree of non-

membership (namely γ
Λ
(x)) respectively of each element x ∈ S1 to the set Λ.

Remark 2.3. [19]

(1) An N -set Λ = {〈x, µ
Λ
(x), σ

Λ
(x),Γ

Λ
(x)〉 : x ∈ S1} can be identified to an ordered triple 〈µ

Λ
, σ

Λ
,Γ

Λ
〉 in

]0−, 1+[ on S1.

(2) In this paper, we use the symbol Λ = 〈µ
Λ
, σ

Λ
,Γ

Λ
〉 for the N -set Λ = {〈x, µ

Λ
(x), σ

Λ
(x),Γ

Λ
(x)〉 : x ∈

S1}.

Definition 2.4. [18] Let S1 6= ∅ and the N -sets Λ and Γ be defined as
Λ = {〈x, µ

Λ
(x), σ

Λ
(x),Γ

Λ
(x)〉 : x ∈ S1}, Γ = {〈x, µ

Γ
(x), σ

Γ
(x),Γ

Γ
(x)〉 : x ∈ S1}. Then

(a) Λ ⊆ Γ iff µ
Λ
(x) ≤ µ

Γ
(x), σ

Λ
(x) ≤ σ

Γ
(x) and Γ

Λ
(x) ≥ Γ

Γ
(x) for all x ∈ S1;

(b) Λ = Γ iff Λ ⊆ Γ and Γ ⊆ Λ;

(c) Λ̄ = {〈x,Γ
Λ
(x), σ

Λ
(x), µ

Λ
(x)〉 : x ∈ S1}; [Complement of Λ]

(d) Λ ∩ Γ = {〈x, µ
Λ
(x) ∧ µ

Γ
(x), σ

Λ
(x) ∧ σ

Γ
(x),Γ

Λ
(x) ∨ Γ

Γ
(x)〉 : x ∈ S1};

(e) Λ ∪ Γ = {〈x, µ
Λ
(x) ∨ µ

Γ
(x), σ

Λ
(x) ∨ σ

Γ
(x),Γ

Λ
(x) ∧ γ

Γ
(x)〉 : x ∈ S1};

(f) [ ]Λ = {〈x, µ
Λ
(x), σ

Λ
(x), 1− µ

Λ
(x)〉 : x ∈ S1};

(g) 〈〉Λ = {〈x, 1− Γ
Λ
(x), σ

Λ
(x),Γ

Λ
(x)〉 : x ∈ S1}.

Definition 2.5. [10] Let {Λi : i ∈ J} be an arbitrary family of N -sets in S1. Then

(a)
⋂

Λi = {〈x,∧µ
Λi

(x),∧σ
Λi

(x),∨Γ
Λi

(x)〉 : x ∈ S1};

(b)
⋃

Λi = {〈x,∨µ
Λi

(x),∨σ
Λi

(x),∧Γ
Λi

(x)〉 : x ∈ S1}.

In order to develop NTS we need to introduce the N -sets 0
N

and 1
N

in S1 as follows:

Definition 2.6. [10] 0
N

= {〈x, 0, 0, 1〉 : x ∈ S1} and 1
N

= {〈x, 1, 1, 0〉 : x ∈ S1}.

Definition 2.7. [10] A neutrosophic topology (briefly N -topology) on S1 6= ∅ is a family ξ1 of N -sets in S1

satisfying the following axioms:
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(i) 0
N
, 1

N
∈ ξ1,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ ξ1,

(iii) ∪Gi ∈ ξ1 for arbitrary family {Gi | i ∈ Λ} ⊆ ξ1.

In this case the ordered pair (S1, ξ1) or simply S1 is called anNTS and eachN -set in ξ1 is called a neutrosophic
open set (briefly N -open set) . The complement Λ of an N -open set Λ in S1 is called a neutrosophic closed set
(briefly N -closed set) in S1.

Definition 2.8. [10] Let Λ be an N -set in an NTS S1. Then
Nint(Λ) =

⋃
{G | G is an N -open set in S1 and G ⊆ Λ} is called the neutrosophic interior (briefly

N -interior ) of Λ;
Ncl(Λ) =

⋂
{G | G is an N -closed set in S1 and G ⊇ Λ} is called the neutrosophic closure (briefly N -cl)

of Λ.

Definition 2.9. Let S1 6= ∅. If r, t, s be real standard or non standard subsets of ]0−, 1+[ then the N -set xr,t,s is
called a neutrosophic point(briefly NP )in S1 given by

xr,t,s(xp) =

{
(r, t, s), if x = xp

(0, 0, 1), if x 6= xp

for xp ∈ S1 is called the support of xr,t,s, where r denotes the degree of membership value, t denotes the degree
of indeterminacy and s is the degree of non-membership value of xr,t,s.

Now we shall define the image and preimage of N -sets. Let S1 6= ∅ and S2 6= ∅ and Ω : S1 → S2 be a
map.

Definition 2.10. [10]

(a) If Γ = {〈y, µ
Γ
(y), σ

Γ
(y),Γ

Γ
(y)〉 : y ∈ S2} is an N -set in S1, then the pre-image of Γ under Ω, denoted

by Ω−1(Γ), is the N -set in S1 defined by
Ω−1(Γ) = {〈x,Ω−1(µ

Γ
)(x),Ω−1(σ

Γ
)(x),Ω−1(Γ

Γ
)(x)〉 : x ∈ S1}.

(b) If Λ = {〈x, µ
Λ
(x), σ

Λ
(x),Γ

Λ
(x)〉 : x ∈ S1} is an N -set in S1, then the image of Λ under Ω, denoted by

Ω(Λ), is the N -set in S2 defined by
Ω(Λ) = {〈y,Ω(µ

Λ
)(y),Ω(σ

Λ
)(y), (1− Ω(1− Γ

Λ
))(y)〉 : y ∈ S2}. where

Ω(µ
Λ
)(y) =

{
supx∈Ω−1(y) µΛ

(x), if Ω−1(y) 6= ∅,
0, otherwise,

Ω(σ
Λ
)(y) =

{
supx∈Ω−1(y) σΛ

(x), if Ω−1(y) 6= ∅,
0, otherwise,

(1− Ω(1− Γ
Λ
))(y) =

{
infx∈Ω−1(y) Γ

Λ
(x), if Ω−1(y) 6= ∅,

1, otherwise,

In what follows, we use the symbol Ω−(Γ
Λ
) for 1− Ω(1− Γ

Λ
).
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Corollary 2.11. [10] Let Λ , Λi(i ∈ J) be N -sets in S1, Γ, Γi(i ∈ K) be N -sets in S1 and Ω : S1 → S2 a
function. Then

(a) Λ1 ⊆ Λ2⇒ Ω(Λ1) ⊆ Ω(Λ2),

(b) Γ1 ⊆ Γ2⇒ Ω−1(Γ1) ⊆ Ω−1(Γ2),

(c) Λ ⊆ Ω−1(Ω(Λ)) { If Ω is injective,then Λ = Ω−1(Ω(Λ)) } ,

(d) Ω(Ω−1(Γ)) ⊆ Γ { If Ω is surjective, then Ω(Ω−1(Γ)) = Γ },

(e) Ω−1(
⋃

Γj) =
⋃

Ω−1(Γj),

(f) Ω−1(
⋂

Γj) =
⋂

Ω−1(Γj),

(g) Ω(
⋃

Λi) =
⋃

Ω(Λi),

(h) Ω(
⋂

Λi) ⊆
⋂

Ω(Λi) { If Ω is injective,then Ω(
⋂

Λi) =
⋂

Ω(Λi)},

(i) Ω−1(1
N

) = 1
N

,

(j) Ω−1(0
N

) = 0
N

,

(k) Ω(1
N

) = 1
N

, if Ω is surjective

(l) Ω(0
N

) = 0
N

,

(m) Ω(Λ) ⊆ Ω(Λ), if Ω is surjective,

(n) Ω−1(Γ) = Ω−1(Γ).

Definition 2.12. [11] An N -set Λ in an NTS (S1, ξ1) is called

1) a neutrosophic semiopen set (briefly N -semiopen) if Λ ⊆ Ncl(Nint(Λ)).

2) a neutrosophic α open set (briefly Nα-open set) if Λ ⊆ Nint(Ncl(Nint(Λ))).

3) a neutrosophic preopen set ( briefly N -preopen set) if Λ ⊆ Nint(Ncl(Λ)).

4) a neutrosophic regular open set (briefly N -regular open set) if Λ = Nint(Ncl(Λ)).

5) a neutrosophic semipre open or β open set (briefly Nβ-open set) if Λ ⊆ Ncl(Nint(Ncl(Λ))).

An N -set Λ is called a neutrosophic semiclosed set, neutrosophic α closed set, neutrosophic preclosed set,
neutrosophic regular closed set and neutrosophic β closed set, respectively, if the complement of Λ is an
N -semiopen set, Nα-open set, N -preopen set, N -regular open set, and Nβ-open set, respectively.

Definition 2.13. [10] Let (S1, ξ1) be an NTS. An N -set Λ in (S1, ξ1) is said to be a generalized neutrosophic
closed set (briefly g-N -closed set) if Ncl (Λ) ⊆ G whenever Λ ⊆ G and G is an N -open set. The complement
of a generalized neutrosophic closed set is called a generalized neutrosophic open set (briefly g-N -open set).

Definition 2.14. [10] Let (S1, ξ1) be an NTS and Λ be an N -set in S1. Then the neutrosophic generalized
closure (briefly N -g-cl) and neutrosophic generalized interior (briefly N -g-Int) of Λ are defined by,
(i)NGcl(Λ) =

⋂
{G: G is a g-N -closed

set in S1 and Λ ⊆ G}.
(ii)NGint(Λ) =

⋃
{G: G is a g-N -open

set in S1 and Λ ⊇ G}.
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3 Neutrosophic αm continuous functions
Definition 3.1. An N -subset Λ of an NTS (S1, ξ1) is called neutrosophic αm-closed set (briefly Nαm-closed
set) if Nint(Ncl(Λ)) ⊆ U whenever Λ ⊂ U and U is Nα-open.

Definition 3.2. An N -subset λ of an NTS (S1, ξ1) is called a neutrosophic αg-closed set (briefly Nαg-closed
set) if αNcl(λ) ⊆ U whenever λ ⊆ U and U is an Nα-open set in S1.

Definition 3.3. An N -subset λ of an NTS (S1, ξ1) is called a neutrosophic gα-closed set (briefly Ngα-closed
set) if αNcl(Λ) ⊆ U whenever Λ ⊆ U and U is an N -open set in S1.

Remark 3.4. In an NTS (S1, ξ1), the following statements are true:

(i) Every N -closed set is an Ng-closed set.

(ii) Every N -closed set is an Nα-closed set.

Remark 3.5. In an NTS (S1, ξ1), the following statements are true:

(i) Every Ng-closed set is an Ngα-closed set.

(ii) Every Nα-closed set is an Nαg-closed set.

(iii) Every Nαg-closed set is an Ngα-closed set.

Remark 3.6. In an NTS (S1, ξ1), the following statements are true:

(i) Every N -closed set is an Nαm-closed set.

(ii) Every Nαm-closed set is an Nα-closed set.

(iii) Every Nαm-closed set is an Nαg-closed set.

(iv) Every Nαm-closed set is an Ngα-closed set.

Proof. (i) This follows directly from the definitions.
(ii) Let Λ be an Nαm-closed set in S1 and U a N -open set such that λ ⊆ U . Since every N -open set is an Nα-
open set and Λ is a Nαm-closed set, Nint(Ncl(Λ)) ⊆ (Nint(Ncl(Λ))) ∪ (Ncl(Nint(Λ))) ⊆ U . Therefore,
Λ is an Nα-closed set in S1.
(iii) It is a consequence of (ii) and remark 3.5 (ii).
(iv) It is a consequence of (iii) and remark 3.5 (iii).

Proposition 3.7. The intersection of an Nαm-closed set and an N -closed set is an Nαm-closed set.

Proof. Let Λ be anNαm-closed set and Ψ anN -closed set. Since Λ is anNαm-closed set,Nint(Ncl(Λ)) ⊆ U
whenever Λ ⊆ U , where U is an Nα-open set. To show that Λ∩Ψ is an Nαm-closed set, it is enough to show
that Nint(Ncl(Λ ∩ Ψ)) ⊆ U whenever Λ ∩ Ψ ⊆ U , where U is an Nα-open set. Let M = S1 − Ψ.
Then Λ ⊆ U ∪ M . Since M is an N -open set, U ∪ M is an Nα-open set and Λ is an Nαm-closed set,
Nint(Ncl(Λ)) ⊆ U ∪M . Now, Nint(Ncl(Λ ∩ Ψ)) ⊆ Nint(Ncl(Λ)) ∩Nint(Ncl(Ψ)) ⊆ Nint(Ncl(Λ)) ∩
Ψ ⊆ (U ∪M) ∩Ψ ⊆ (U ∩Ψ) ∪ (M ∩Ψ) ⊆ (U ∩Ψ) ∪ 0N ⊆ U . This implies that Λ ∩Ψ is an Nαm-closed
set.
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Figure 1: Implications of a neutrosophic αm-closed set

Proposition 3.8. If Λ and Γ are two Nαm-closed sets in an NTS (S1, ξ1), then Λ∩Γ is an Nαm-closed set in
S1.

Proof. Let Λ and Γ be two Nαm-closed sets in an NTS (S1, ξ1). Let U be a Nα-open set in S1 such that
Λ∩Γ ⊆ U . Now, Nint(Ncl(Λ∩Γ)) ⊆ Nint(Ncl(Λ))∩Nint(Ncl(Γ)) ⊆ U . Hence Λ∩Γ is an Nαm-closed
set.

Proposition 3.9. Every Nαm-closed set is Nα-closed set.

The converse of the above Proposition 3.9 need not be true.

Example 3.10. Let S1 = {a, b, c}. Define the N -subsets Λ and Γ as follows
Λ = {x, ( a

0.7
, b

0.6
, c

0.5
), ( a

0.7
, b

0.6
, c

0.5
), ( a

0.3
, b

0.4
, c

0.5
)}, Γ = {x, ( a

0.3
, b

0.3
, c

0.3
), ( a

0.3
, b

0.3
, c

0.3
), ( a

0.7
, b

0.7
, c

0.7
)}. Then

ξ1 = {0S1 , 1S1 ,Λ,Γ} is an N -topology on S1. Clearly (S1, ξ1) is an NTS. Observe that the N -subset Σ =
{x, ( a

0.3
, b

0.6
, c

0.5
), ( a

0.3
, b

0.6
, c

0.5
), ( a

0.7
, b

0.4
, c

0.5
)} is Nα-closed but it is not Nαm-closed set.

Definition 3.11. Let (S1, ξ1) be an NTS and Λ an N -subset of S1. Then the neutrosophic αm-interior (briefly
Nαm-I) and the neutrosophic Nαm-closure (briefly Nαm-cl) of Λ are defined by,
αmNint(Λ) = ∪{U |U is Nαm-open set in S1 and Λ ⊇ U}
αmNcl(Λ) = ∩{U |U is Nαm-closed set in S1 and Λ ⊆ U}.

Proposition 3.12. If Λ is an Nαm-c-set and Λ ⊆ Γ ⊆ Nint(Ncl(Λ)), then Γ is Nαm-c-set.

Proof. Let Λ be an Nαm-c-set such that Λ ⊆ Γ ⊆ Nint(Ncl(Λ)). Let U be an Nα-open set of S1 such
that Γ ⊆ U . Since Λ is Nαm-c-set, we have Nint(Ncl(Λ)) ⊆ U , whenever Λ ⊆ U . Since Λ ⊆ Γ and
Γ ⊆ Nint(Ncl(Λ)), then Nint(Ncl(Γ)) ⊆ Nint(Ncl(Nint(Ncl(Λ)))) ⊆ Nint(Ncl(λ)) ⊆ U . Therefore
Nint(Ncl(Γ)) ⊆ U . Hence Γ is an Nαm-c-set in S1.

Remark 3.13. The union of two Nαm-c-sets need not be an Nαm-c-set.

Remark 3.14. The following are the implications of an Nαm-c-set and the reverses are not true.
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Definition 3.15. Let (S1, ξ1) and (S2, ξ2) be any two NTS.

1) A map Ω : (S1, ξ1) → (S2, ξ2) is called neutrosophic αm-continuous (briefly Nαm-cont) if the inverse
image of every N -closed set in (S2, ξ2) is Nαm-c-set in (S1, ξ1).
Equivalently if the inverse image of every N -open set in (S2, ξ2) is Nαm-open set in (S1, ξ1).

2) A map Ω : (S1, ξ1)→ (S2, ξ2) is called neutrosophic αm-irresolute (briefly Nαm-I) if the inverse image
of every Nαm-c-set in (S2, ξ2) is Nαm-c-set in (S1, ξ1).
Equivalently if the inverse image of every Nαm-open set in (S2, ξ2) is Nαm-open set in (S1, ξ1).

3) A map Ω : (S1, ξ1) → (S2, ξ2) is called strongly neutrosophic αm-continuous (briefly SNαm-cont) if
the inverse image of every Nαm-c-set in (S2, ξ2) is N -closed set in (S1, ξ1).
Equivalently if the inverse image of every Nαm-open set in (S2, ξ2) is N -open set in (S1, ξ1).

Proposition 3.16. Let (S1, ξ1) and (S2, ξ2) be any two NTS. If Ω : (S1, ξ1) → (S2, ξ2) is NC, then it is
Nαm-cont.

Proof. Let Λ be any N -closed set in (S2, ξ2). Since f is NC, Ω−1(Λ) is N -closed in (S1, ξ1). Since every
N -closed set is Nαm-c-set, Ω−1(Λ) is Nαm-c-set in (S1, ξ1). Therefore Ω is Nαm-cont.

The converse of Proposition 3.16 need not be true as it is shown in the following example.

Example 3.17. Let S1 = {a, b, c} and S2 = {a, b, c}. Define N -subsets E,F,G and D as follows
E = {x, ( a

0.3
, b

0.5
, c

0.3
), ( a

0.3
, b

0.5
, c

0.3
), ( a

0.7
, b

0.5
, c

0.7
)}, F = {x, ( a

0.4
, b

0.5
, c

0.4
), ( a

0.4
, b

0.5
, c

0.4
), ( a

0.6
, b

0.5
, c

0.6
)}, G =

{x, ( a
0.4
, b

0.4
, c

0.5
), ( a

0.4
, b

0.4
, c

0.5
), ( a

0.6
, b

0.6
, c

0.5
)}, and D = {x, ( a

0.3
, b

0.3
, c

0.5
), ( a

0.3
, b

0.3
, c

0.5
), ( a

0.7
, b

0.7
, c

0.5
)}. Then the

family ξ1 = {0S1 , 1S1 , E, F} is an NT on S1 and ξ2 = {0S2 , 1S2 , G,D} is an NT on S2. Thus (S1, ξ1) and
(S2, ξ2) are NTS. Define Ω : (S1, ξ1) → (S2, ξ2) as Ω(a) = a,Ω(b) = c,Ω(c) = b. Clearly Ω is Nαm-cont
but Ω is not NC since Ω−1(D) 6∈ ξ1 for D ∈ ξ2.

Proposition 3.18. Let (S1, ξ1) and (S2, ξ2) be any two neutrosophic NTS. If Ω : (S1, ξ1) → (S2, ξ2) is
Nαm-I , then it is Nαm-cont.

Proof. Let Λ be an N -closed set in (S2, ξ2). Since every N -closed set is Nαm-c-set, Λ is Nαm-c-set in S2.
Since Ω is Nαm-I , Ω−1(Λ) is Nαm-c-set in (S1, ξ1). Therefore Ω is Nαm-cont.

The converse of Proposition 3.18 need not be true.

Example 3.19. Let S1 = {a, b, c}. Define the N -subsets E,F and G as follows
E = {x, ( a

0.4
, b

0.5
, c

0.4
), ( a

0.4
, b

0.5
, c

0.4
), ( a

0.6
, b

0.5
, c

0.6
)}, F = {x, ( a

0.6
, b

0.6
, c

0.5
), ( a

0.6
, b

0.6
, c

0.5
), ( a

0.4
, b

0.4
, c

0.5
)} and G =

{x, ( a
0.5
, b

0.4
, c

0.7
), ( a

0.5
, b

0.4
, c

0.7
), ( a

0.5
, b

0.6
, c

0.3
)}. Then ξ1 = {0S1 , 1S1 , E, F} and ξ2 = {0S1 , 1S1 , C} are N -

topologies on S1. Define Ω : (S1, ξ1) → (S1, ξ2) as follows Ω(a) = b,Ω(b) = a,Ω(c) = c. Observe that
Ω is Nαm-continuous. But Ω is not Nαm-I . Since D = {x, ( a

0.5
, b

0.4
, c

0.2
), ( a

0.5
, b

0.4
, c

0.2
), ( a

0.5
, b

0.6
, c

0.8
)} is Nαm-

c-set in (S1, ξ2), Ω−1(D) is not Nα-c-set in (S1, ξ1).

Proposition 3.20. Let (S1, ξ1) and (S2, ξ2) be any two NTS. If Ω : (S1, ξ1)→ (S2, ξ2) is SNαm-I , then it is
NC.

Proof. Let Λ be an N -closed set in (S2, ξ2). Since every N -closed set is Nαm-c-set. Since Ω is SNαm-cont,
Ω−1(Λ) is N -closed set in (S1, ξ1). Therefore Ω is NC.
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The converse of Proposition 3.20 need not be true.

Example 3.21. Let S1 = {a, b, c}. Define the N -subsets E,F and G as follows
E = {x, ( a

0.1
, b

0.1
, c

0.1
), ( a

0.1
, b

0.1
, c

0.1
), ( a

0.9
, b

0.9
, c

0.9
)}, F = {x, ( a

0.1
, b

0.1
, c

0
), ( a

0.1
, b

0.1
, c

0
), ( a

0.9
, b

0.9
, c

1
)} and G =

{x, ( a
0.1
, b

0
, c

0.1
), ( a

0.1
, b

0
, c

0.1
), ( a

0.9
, b

1
, c

0.9
)}. Then ξ1 = {0S1 , 1S1 , E, F} and ξ2 = {0S1 , 1S1 , G} are N -topologies

on S1. Define Ω(S1, ξ1)→ (S1, ξ2) as follows Ω(a) = Ω(b) = a,Ω(c) = c. Ω is NC but Ω is not SNαm-cont.
Since D = {x, ( a

0.05
, b

0
, c

0.1
), ( a

0.05
, b

0
, c

0.1
), ( a

0.95
, b

1
, c

0.9
)} is Nαm-c-set in (S1, ξ2), Ω−1(D) is not N -closed set

in (S1, ξ1).

Proposition 3.22. Let (S1, ξ1), (S2, ξ2) and (S3, ξ3) be any three NTS. Suppose Ω : (S1, ξ1) → (S2, ξ2),
Ξ : (S2, ξ2)→ (S3, ξ3) are maps. Assume Ω is Nαm-I and Ξ is Nαm-cont, then Ξ ◦ Ω is Nαm-cont.

Proof. Let Λ be an N -closed set in (S3, ξ3). Since Ξ is Nαm-cont, Ξ−1(Λ) is Nαm-c-set in (S2, ξ2). Since Ω
is Nαm-I ,Ω−1(Ξ−1(Λ)) is Nαm-closed in (S1, ξ1). Thus Ξ ◦ Ω is Nαm-cont.

Proposition 3.23. Let (S1, ξ1), (S2, ξ2) and (S3, ξ3) be any three NTS. Let Ω : (S1, ξ1) → (S2, ξ2) and
Ξ : (S2, ξ2)→ (S3, ξ3) be maps such that Ω is SNαm-cont and Ξ is Nαm-cont, then Ξ ◦ Ω is NC.

Proof. Let Λ be an N -c-set in (S3, ξ3). Since Ξ is Nαm-cont, Ξ−1(Λ) is Nαm-c-set in (S2, ξ2). Moreover,
since Ω is SNαm-cont, Ω−1(Ω−1(Λ)) is N -closed in (S1, ξ1). Thus Ξ ◦ Ω is NC.

Proposition 3.24. Let (S1, ξ1), (S2, ξ2) and (S3, ξ3) be any three NTS. Let Ω : (S1, ξ1) → (S2, ξ2) and
Ξ : (S2, ξ2)→ (S3, ξ3) be two maps. Assume Ω and Ξ are Nαm-I , then Ξ ◦ Ω is Nαm-I .

Proof. Let Λ be an Nαm-c-set in (S3, ξ3). Since Ξ is Nαm-I , Ξ−1(Λ) is Nαm-c-set in (S2, ξ2). Since Ω is
Nαm-I , ω−1(Ξ−1(Λ)) is an Nαm-c-set in (S1, ξ1). Thus Ξ ◦ Ω is Nαm-I .

4 Conclusions
In this paper, a new class of neutrosophic closed set called neutrosophic αm closed set is introduced and
studied. Furthermore, the basic properties of neutrosophic αm-continuity are presented with some examples.
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