

Neutrosophic α^m -continuity

R. Dhavaseelan¹, R. Narmada Devi², S. Jafari³ and Qays Hatem Imran⁴

¹ Department of Mathematics, Sona College of Technology Salem-636005, Tamil Nadu, India.

E-mail: dhavaseelan.r@gmail.com

² Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai, India.

E-mail: narmadadevi23@gmail.com

³ Department of Mathematics, College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark.

E-mail: jafaripersia@gmail.com

⁴ Department of Mathematics, Al-Muthanna University, College of Education for Pure Science, Iraq.

E-mail:qays.imran@gmail.com

*Correspondence: Author (dhavaseelan.r@gmail.com)

Abstract: In this paper, we introduce and study a new class of neutrosophic closed set called neutrosophic α^m -closed set. In this respect, we introduce the concepts of neutrosophic α^m -continuous, strongly neutrosophic α^m continuous, neutrosophic α^m -irresolute and present their basic properties.

Keywords: Neutrosophic α^m -closed set, neutrosophic α^m -continuous, strongly neutrosophic α^m -continuous, neutrosophic α^m -irresolute.

1 Introduction

In 1965, Zadeh [21] studied the idea of fuzzy sets and its logic. Later, Chang [8] introduced the concept of fuzzy topological spaces. Atanassov [1] discussed the concepts of intuitionistic fuzzy set[[2],[3],[4]]. The concepts of strongly fuzzy continuous and fuzzy gc-irresolute are introduced by G. Balasubramanian and P. Sundaram [6]. The idea of α^m -closed in topological spaces was introduced by M. Mathew and R. Parimelazhagan[16]. He also introduced and investigated, α^m -continuous maps in topological spaces together with S. Jafari[17]. The concept of fuzzy α^m -continuous function was introduced by R. Dhavaseelan[13]. After the introduction of the concept of neutrosophy and neutrosophic set by F. Smarandache [[19], [20]], the concepts of neutrosophic crisp set and neutrosophic crisp topological space were introduced by A. A. Salama and S. A. Alblowi[18]. In this paper, a new class of neutrosophic closed set called neutrosophic α^m -continuous, neutrosophic α^m -irresolute are introduced and obtain some interesting properties. Throughout this paper neutrosophic topological spaces (briefly NTS) $(S_1, \xi_1), (S_2, \xi_2)$ and (S_3, ξ_3) will be replaced by S_1, S_2 and S_3 , respectively.

2 Preliminiaries

Definition 2.1. [19] Let T,I,F be real standard or non standard subsets of $]0^-, 1^+[$, with $sup_T = t_{sup}, inf_T = t_{inf}$

```
sup_I=i_{sup}, inf_I=i_{inf} sup_F=f_{sup}, inf_F=f_{inf} n-sup=t_{sup}+i_{sup}+f_{sup} n-inf=t_{inf}+i_{inf}+f_{inf} . T, I, F are neutrosophic components.
```

Definition 2.2. [19] Let S_1 be a non-empty fixed set. A neutrosophic set (briefly N-set) Λ is an object such that $\Lambda = \{\langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \gamma_{\Lambda}(x) \rangle : x \in S_1 \}$ where $\mu_{\Lambda}(x), \sigma_{\Lambda}(x)$ and $\gamma_{\Lambda}(x)$ which represents the degree of membership function (namely $\mu_{\Lambda}(x)$), the degree of indeterminacy (namely $\sigma_{\Lambda}(x)$) and the degree of non-membership (namely $\gamma_{\Lambda}(x)$) respectively of each element $x \in S_1$ to the set Λ .

Remark 2.3. [19]

- (1) An N-set $\Lambda = \{\langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \Gamma_{\Lambda}(x) \rangle : x \in S_1\}$ can be identified to an ordered triple $\langle \mu_{\Lambda}, \sigma_{\Lambda}, \Gamma_{\Lambda} \rangle$ in $]0^-, 1^+[$ on S_1 .
- (2) In this paper, we use the symbol $\Lambda = \langle \mu_{\Lambda}, \sigma_{\Lambda}, \Gamma_{\Lambda} \rangle$ for the N-set $\Lambda = \{\langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \Gamma_{\Lambda}(x) \rangle : x \in S_1\}$.

Definition 2.4. [18] Let $S_1 \neq \emptyset$ and the N-sets Λ and Γ be defined as $\Lambda = \{\langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \Gamma_{\Lambda}(x) \rangle : x \in S_1\}, \Gamma = \{\langle x, \mu_{\Gamma}(x), \sigma_{\Gamma}(x), \Gamma_{\Gamma}(x) \rangle : x \in S_1\}.$ Then

(a)
$$\Lambda \subseteq \Gamma$$
 iff $\mu_{\Lambda}(x) \leq \mu_{\Gamma}(x)$, $\sigma_{\Lambda}(x) \leq \sigma_{\Gamma}(x)$ and $\Gamma_{\Lambda}(x) \geq \Gamma_{\Gamma}(x)$ for all $x \in S_1$;

- (b) $\Lambda = \Gamma \text{ iff } \Lambda \subseteq \Gamma \text{ and } \Gamma \subseteq \Lambda;$
- (c) $\bar{\Lambda} = \{\langle x, \Gamma_{\Lambda}(x), \sigma_{\Lambda}(x), \mu_{\Lambda}(x) \rangle : x \in S_1\}$; [Complement of Λ]
- $(\mathbf{d}) \ \ \Lambda \cap \Gamma = \{ \langle x, \mu_{_{\Lambda}}(x) \wedge \mu_{_{\Gamma}}(x), \sigma_{_{\Lambda}}(x) \wedge \sigma_{_{\Gamma}}(x), \Gamma_{_{\Lambda}}(x) \vee \Gamma_{_{\Gamma}}(x) \rangle : x \in S_1 \};$
- (e) $\Lambda \cup \Gamma = \{ \langle x, \mu_{\Lambda}(x) \vee \mu_{\Gamma}(x), \sigma_{\Lambda}(x) \vee \sigma_{\Gamma}(x), \Gamma_{\Lambda}(x) \wedge \gamma_{\Gamma}(x) \rangle : x \in S_1 \};$
- (f) [] $\Lambda = \{\langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), 1 \mu_{\Lambda}(x) \rangle : x \in S_1\};$
- (g) $\langle \rangle \Lambda = \{ \langle x, 1 \Gamma_{\Lambda}(x), \sigma_{\Lambda}(x), \Gamma_{\Lambda}(x) \rangle : x \in S_1 \}.$

Definition 2.5. [10] Let $\{\Lambda_i : i \in J\}$ be an arbitrary family of N-sets in S_1 . Then

(a)
$$\bigcap \Lambda_i = \{ \langle x, \wedge \mu_{\Lambda_i}(x), \wedge \sigma_{\Lambda_i}(x), \vee \Gamma_{\Lambda_i}(x) \rangle : x \in S_1 \};$$

(b)
$$\bigcup \Lambda_i = \{ \langle x, \vee \mu_{\Lambda_i}(x), \vee \sigma_{\Lambda_i}(x), \wedge \Gamma_{\Lambda_i}(x) \rangle : x \in S_1 \}.$$

In order to develop NTS we need to introduce the N-sets 0_N and 1_N in S_1 as follows:

Definition 2.6. [10]
$$0_N = \{\langle x, 0, 0, 1 \rangle : x \in S_1\}$$
 and $1_N = \{\langle x, 1, 1, 0 \rangle : x \in S_1\}$.

Definition 2.7. [10] A neutrosophic topology (briefly N-topology) on $S_1 \neq \emptyset$ is a family ξ_1 of N-sets in S_1 satisfying the following axioms:

- (i) $0_N, 1_N \in \xi_1$,
- (ii) $G_1 \cap G_2 \in T$ for any $G_1, G_2 \in \xi_1$,
- (iii) $\cup G_i \in \xi_1$ for arbitrary family $\{G_i \mid i \in \Lambda\} \subseteq \xi_1$.

In this case the ordered pair (S_1, ξ_1) or simply S_1 is called an NTS and each N-set in ξ_1 is called a neutrosophic open set (briefly N-open set). The complement $\overline{\Lambda}$ of an N-open set Λ in S_1 is called a neutrosophic closed set (briefly N-closed set) in S_1 .

Definition 2.8. [10] Let Λ be an N-set in an NTS S_1 . Then

 $Nint(\Lambda) = \bigcup \{G \mid G \text{ is an } N\text{-open set in } S_1 \text{ and } G \subseteq \Lambda \}$ is called the neutrosophic interior (briefly N-interior) of Λ ;

 $Ncl(\Lambda) = \bigcap \{G \mid G \text{ is an } N\text{-closed set in } S_1 \text{ and } G \supseteq \Lambda \}$ is called the neutrosophic closure (briefly N-cl) of Λ .

Definition 2.9. Let $S_1 \neq \emptyset$. If r, t, s be real standard or non standard subsets of $]0^-, 1^+[$ then the N-set $x_{r,t,s}$ is called a neutrosophic point(briefly NP) in S_1 given by

$$x_{r,t,s}(x_p) = \begin{cases} (r,t,s), & \text{if } x = x_p \\ (0,0,1), & \text{if } x \neq x_p \end{cases}$$

for $x_p \in S_1$ is called the support of $x_{r,t,s}$, where r denotes the degree of membership value, t denotes the degree of indeterminacy and s is the degree of non-membership value of $x_{r,t,s}$.

Now we shall define the image and preimage of N-sets. Let $S_1 \neq \emptyset$ and $S_2 \neq \emptyset$ and $S_2 \neq \emptyset$ and $S_2 \neq \emptyset$ and $S_2 \neq \emptyset$ are sets.

Definition 2.10. [10]

- (a) If $\Gamma = \{\langle y, \mu_{\Gamma}(y), \sigma_{\Gamma}(y), \Gamma_{\Gamma}(y) \rangle : y \in S_2 \}$ is an N-set in S_1 , then the pre-image of Γ under Ω , denoted by $\Omega^{-1}(\Gamma)$, is the N-set in S_1 defined by $\Omega^{-1}(\Gamma) = \{\langle x, \Omega^{-1}(\mu_{\Gamma})(x), \Omega^{-1}(\sigma_{\Gamma})(x), \Omega^{-1}(\Gamma_{\Gamma})(x) \rangle : x \in S_1 \}.$
- (b) If $\Lambda = \{\langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \Gamma_{\Lambda}(x) \rangle : x \in S_1 \}$ is an N-set in S_1 , then the image of Λ under Ω , denoted by $\Omega(\Lambda)$, is the N-set in S_2 defined by $\Omega(\Lambda) = \{\langle y, \Omega(\mu_{\Lambda})(y), \Omega(\sigma_{\Lambda})(y), (1 \Omega(1 \Gamma_{\Lambda}))(y) \rangle : y \in S_2 \}$. where

$$\begin{split} \Omega(\mu_{\scriptscriptstyle{\Lambda}})(y) &= \begin{cases} \sup_{x \in \Omega^{-1}(y)} \mu_{\scriptscriptstyle{\Lambda}}(x), & \text{if } \Omega^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases} \\ \Omega(\sigma_{\scriptscriptstyle{\Lambda}})(y) &= \begin{cases} \sup_{x \in \Omega^{-1}(y)} \sigma_{\scriptscriptstyle{\Lambda}}(x), & \text{if } \Omega^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases} \\ (1 - \Omega(1 - \Gamma_{\scriptscriptstyle{\Lambda}}))(y) &= \begin{cases} \inf_{x \in \Omega^{-1}(y)} \Gamma_{\scriptscriptstyle{\Lambda}}(x), & \text{if } \Omega^{-1}(y) \neq \emptyset, \\ 1, & \text{otherwise,} \end{cases} \end{split}$$

In what follows, we use the symbol $\Omega_{-}(\Gamma_{\Lambda})$ for $1 - \Omega(1 - \Gamma_{\Lambda})$.

Corollary 2.11. [10] Let Λ , $\Lambda_i(i \in J)$ be N-sets in S_1 , Γ , $\Gamma_i(i \in K)$ be N-sets in S_1 and $\Omega: S_1 \to S_2$ a function. Then

- (a) $\Lambda_1 \subseteq \Lambda_2 \Rightarrow \Omega(\Lambda_1) \subseteq \Omega(\Lambda_2)$,
- (b) $\Gamma_1 \subseteq \Gamma_2 \Rightarrow \Omega^{-1}(\Gamma_1) \subseteq \Omega^{-1}(\Gamma_2)$,
- (c) $\Lambda \subseteq \Omega^{-1}(\Omega(\Lambda))$ { If Ω is injective,then $\Lambda = \Omega^{-1}(\Omega(\Lambda))$ },
- (d) $\Omega(\Omega^{-1}(\Gamma)) \subseteq \Gamma$ { If Ω is surjective, then $\Omega(\Omega^{-1}(\Gamma)) = \Gamma$ },
- (e) $\Omega^{-1}(\bigcup \Gamma_i) = \bigcup \Omega^{-1}(\Gamma_i),$
- (f) $\Omega^{-1}(\bigcap \Gamma_j) = \bigcap \Omega^{-1}(\Gamma_j)$,
- (g) $\Omega(\bigcup \Lambda_i) = \bigcup \Omega(\Lambda_i)$,
- (h) $\Omega(\bigcap \Lambda_i) \subseteq \bigcap \Omega(\Lambda_i)$ { If Ω is injective, then $\Omega(\bigcap \Lambda_i) = \bigcap \Omega(\Lambda_i)$ },
- (i) $\Omega^{-1}(1_N) = 1_N$,
- (j) $\Omega^{-1}(0_N) = 0_N$,
- (k) $\Omega(1_N) = 1_N$, if Ω is surjective
- (1) $\Omega(0_N) = 0_N$,
- (m) $\overline{\Omega(\Lambda)} \subseteq \Omega(\overline{\Lambda})$, if Ω is surjective,
- (n) $\Omega^{-1}(\overline{\Gamma}) = \overline{\Omega^{-1}(\Gamma)}$.

Definition 2.12. [11] An N-set Λ in an NTS (S_1, ξ_1) is called

- 1) a neutrosophic semiopen set (briefly N-semiopen) if $\Lambda \subseteq Ncl(Nint(\Lambda))$.
- 2) a neutrosophic α open set (briefly $N\alpha$ -open set) if $\Lambda \subseteq Nint(Ncl(Nint(\Lambda)))$.
- 3) a neutrosophic preopen set (briefly N-preopen set) if $\Lambda \subseteq Nint(Ncl(\Lambda))$.
- 4) a neutrosophic regular open set (briefly N-regular open set) if $\Lambda = Nint(Ncl(\Lambda))$.
- 5) a neutrosophic semipre open or β open set (briefly $N\beta$ -open set) if $\Lambda \subseteq Ncl(Nint(Ncl(\Lambda)))$.

An N-set Λ is called a neutrosophic semiclosed set, neutrosophic α closed set, neutrosophic preclosed set, neutrosophic regular closed set and neutrosophic β closed set, respectively, if the complement of Λ is an N-semiopen set, $N\alpha$ -open set, N-preopen set, N-regular open set, and $N\beta$ -open set, respectively.

Definition 2.13. [10] Let (S_1, ξ_1) be an NTS. An N-set Λ in (S_1, ξ_1) is said to be a generalized neutrosophic closed set (briefly g-N-closed set) if $Ncl(\Lambda) \subseteq G$ whenever $\Lambda \subseteq G$ and G is an N-open set. The complement of a generalized neutrosophic closed set is called a generalized neutrosophic open set (briefly g-N-open set).

Definition 2.14. [10] Let (S_1, ξ_1) be an NTS and Λ be an N-set in S_1 . Then the neutrosophic generalized closure (briefly N-g-cl) and neutrosophic generalized interior (briefly N-g-Int) of Λ are defined by,

- (i) $NGcl(\Lambda) = \bigcap \{G: G \text{ is a } g\text{-}N\text{-}closed \text{ set in } S_1 \text{ and } \Lambda \subseteq G\}.$
- (ii) $NGint(\Lambda) = \bigcup \{G: G \text{ is a } g\text{-}N\text{-open set in } S_1 \text{ and } \Lambda \supseteq G \}.$

3 Neutrosophic α^m continuous functions

Definition 3.1. An N-subset Λ of an NTS (S_1, ξ_1) is called neutrosophic α^m -closed set (briefly $N\alpha^m$ -closed set) if $Nint(Ncl(\Lambda)) \subseteq U$ whenever $\Lambda \subset U$ and U is $N\alpha$ -open.

Definition 3.2. An N-subset λ of an NTS (S_1, ξ_1) is called a neutrosophic αg -closed set (briefly $N\alpha g$ -closed set) if $\alpha Ncl(\lambda) \subseteq U$ whenever $\lambda \subseteq U$ and U is an $N\alpha$ -open set in S_1 .

Definition 3.3. An N-subset λ of an NTS (S_1, ξ_1) is called a neutrosophic $g\alpha$ -closed set (briefly $Ng\alpha$ -closed set) if $\alpha Ncl(\Lambda) \subseteq U$ whenever $\Lambda \subseteq U$ and U is an N-open set in S_1 .

Remark 3.4. In an $NTS(S_1, \xi_1)$, the following statements are true:

- (i) Every N-closed set is an Ng-closed set.
- (ii) Every N-closed set is an $N\alpha$ -closed set.

Remark 3.5. In an $NTS(S_1, \xi_1)$, the following statements are true:

- (i) Every Ng-closed set is an $Ng\alpha$ -closed set.
- (ii) Every $N\alpha$ -closed set is an $N\alpha$ g-closed set.
- (iii) Every $N\alpha g$ -closed set is an $Ng\alpha$ -closed set.

Remark 3.6. In an $NTS(S_1, \xi_1)$, the following statements are true:

- (i) Every N-closed set is an $N\alpha^m$ -closed set.
- (ii) Every $N\alpha^m$ -closed set is an $N\alpha$ -closed set.
- (iii) Every $N\alpha^m$ -closed set is an $N\alpha g$ -closed set.
- (iv) Every $N\alpha^m$ -closed set is an $Ng\alpha$ -closed set.

Proof. (i) This follows directly from the definitions.

- (ii) Let Λ be an $N\alpha^m$ -closed set in S_1 and U a N-open set such that $\lambda \subseteq U$. Since every N-open set is an $N\alpha$ -open set and Λ is a $N\alpha^m$ -closed set, $Nint(Ncl(\Lambda)) \subseteq (Nint(Ncl(\Lambda))) \cup (Ncl(Nint(\Lambda))) \subseteq U$. Therefore, Λ is an $N\alpha$ -closed set in S_1 .
- (iii) It is a consequence of (ii) and remark 3.5 (ii).
- (iv) It is a consequence of (iii) and remark 3.5 (iii).

Proposition 3.7. The intersection of an $N\alpha^m$ -closed set and an N-closed set is an $N\alpha^m$ -closed set.

Proof. Let Λ be an $N\alpha^m$ -closed set and Ψ an N-closed set. Since Λ is an $N\alpha^m$ -closed set, $Nint(Ncl(\Lambda)) \subseteq U$ whenever $\Lambda \subseteq U$, where U is an $N\alpha$ -open set. To show that $\Lambda \cap \Psi$ is an $N\alpha^m$ -closed set, it is enough to show that $Nint(Ncl(\Lambda \cap \Psi)) \subseteq U$ whenever $\Lambda \cap \Psi \subseteq U$, where U is an $N\alpha$ -open set. Let $M = S_1 - \Psi$. Then $\Lambda \subseteq U \cup M$. Since M is an N-open set, $U \cup M$ is an $N\alpha$ -open set and Λ is an $N\alpha^m$ -closed set, $Nint(Ncl(\Lambda)) \subseteq U \cup M$. Now, $Nint(Ncl(\Lambda \cap \Psi)) \subseteq Nint(Ncl(\Lambda)) \cap Nint(Ncl(\Psi)) \subseteq Nint(Ncl(\Lambda)) \cap \Psi \subseteq (U \cup M) \cap \Psi \subseteq (U \cap \Psi) \cup (M \cap \Psi) \subseteq (U \cap \Psi) \cup 0_N \subseteq U$. This implies that $\Lambda \cap \Psi$ is an $N\alpha^m$ -closed set.

Figure 1: Implications of a neutrosophic α^m -closed set

Proposition 3.8. If Λ and Γ are two $N\alpha^m$ -closed sets in an NTS (S_1, ξ_1) , then $\Lambda \cap \Gamma$ is an $N\alpha^m$ -closed set in S_1 .

Proof. Let Λ and Γ be two $N\alpha^m$ -closed sets in an NTS (S_1, ξ_1) . Let U be a $N\alpha$ -open set in S_1 such that $\Lambda \cap \Gamma \subseteq U$. Now, $Nint(Ncl(\Lambda \cap \Gamma)) \subseteq Nint(Ncl(\Lambda)) \cap Nint(Ncl(\Gamma)) \subseteq U$. Hence $\Lambda \cap \Gamma$ is an $N\alpha^m$ -closed set.

Proposition 3.9. Every $N\alpha^m$ -closed set is $N\alpha$ -closed set.

The converse of the above Proposition 3.9 need not be true.

Example 3.10. Let $S_1 = \{a, b, c\}$. Define the N-subsets Λ and Γ as follows

 $\Lambda = \{x, (\frac{a}{0.7}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.7}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.5})\}, \Gamma = \{x, (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}), (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}), (\frac{a}{0.7}, \frac{b}{0.7}, \frac{c}{0.7})\}. \text{ Then } \xi_1 = \{0_{S_1}, 1_{S_1}, \Lambda, \Gamma\} \text{ is an } N\text{-topology on } S_1. \text{ Clearly } (S_1, \xi_1) \text{ is an } NTS. \text{ Observe that the } N\text{-subset } \Sigma = \{0_{S_1}, 1_{S_1}, \frac{b}{0.7}, \frac{c}{0.7}, \frac{b}{0.7}, \frac{c}{0.7}, \frac{c}$ $\{x, (\frac{a}{0.3}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.3}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.7}, \frac{b}{0.4}, \frac{c}{0.5})\}$ is $N\alpha$ -closed but it is not $N\alpha^m$ -closed set.

Definition 3.11. Let (S_1, ξ_1) be an NTS and Λ an N-subset of S_1 . Then the neutrosophic α^m -interior (briefly $N\alpha^m$ -I) and the neutrosophic $N\alpha^m$ -closure (briefly $N\alpha^m$ -cl) of Λ are defined by, $\alpha^m Nint(\Lambda) = \bigcup \{U | U \text{is } N\alpha^m \text{-open set in } S_1 \text{ and } \Lambda \supseteq U\}$ $\alpha^m Ncl(\Lambda) = \bigcap \{U | U \text{ is } N\alpha^m \text{-closed set in } S_1 \text{ and } \Lambda \subseteq U \}.$

Proposition 3.12. If Λ is an $N\alpha^m$ -c-set and $\Lambda \subseteq \Gamma \subseteq Nint(Ncl(\Lambda))$, then Γ is $N\alpha^m$ -c-set.

Proof. Let Λ be an $N\alpha^m$ -c-set such that $\Lambda \subseteq \Gamma \subseteq Nint(Ncl(\Lambda))$. Let U be an $N\alpha$ -open set of S_1 such that $\Gamma \subseteq U$. Since Λ is $N\alpha^m$ -c-set, we have $Nint(Ncl(\Lambda)) \subseteq U$, whenever $\Lambda \subseteq U$. Since $\Lambda \subseteq \Gamma$ and $\Gamma \subseteq Nint(Ncl(\Lambda))$, then $Nint(Ncl(\Gamma)) \subseteq Nint(Ncl(Nint(Ncl(\Lambda)))) \subseteq Nint(Ncl(\lambda)) \subseteq U$. Therefore $Nint(Ncl(\Gamma)) \subseteq U$. Hence Γ is an $N\alpha^m$ -c-set in S_1 .

Remark 3.13. The union of two $N\alpha^m$ -c-sets need not be an $N\alpha^m$ -c-set.

Remark 3.14. The following are the implications of an $N\alpha^m$ -c-set and the reverses are not true.

Definition 3.15. Let (S_1, ξ_1) and (S_2, ξ_2) be any two NTS.

- 1) A map $\Omega: (S_1, \xi_1) \to (S_2, \xi_2)$ is called neutrosophic α^m -continuous (briefly $N\alpha^m$ -cont) if the inverse image of every N-closed set in (S_2, ξ_2) is $N\alpha^m$ -c-set in (S_1, ξ_1) . Equivalently if the inverse image of every N-open set in (S_2, ξ_2) is $N\alpha^m$ -open set in (S_1, ξ_1) .
- 2) A map $\Omega:(S_1,\xi_1)\to (S_2,\xi_2)$ is called neutrosophic α^m -irresolute (briefly $N\alpha^m$ -I) if the inverse image of every $N\alpha^m$ -c-set in (S_2,ξ_2) is $N\alpha^m$ -c-set in (S_1,ξ_1) . Equivalently if the inverse image of every $N\alpha^m$ -open set in (S_2,ξ_2) is $N\alpha^m$ -open set in (S_1,ξ_1) .
- 3) A map $\Omega: (S_1, \xi_1) \to (S_2, \xi_2)$ is called strongly neutrosophic α^m -continuous (briefly $SN\alpha^m$ -cont) if the inverse image of every $N\alpha^m$ -c-set in (S_2, ξ_2) is N-closed set in (S_1, ξ_1) . Equivalently if the inverse image of every $N\alpha^m$ -open set in (S_2, ξ_2) is N-open set in (S_1, ξ_1) .

Proposition 3.16. Let (S_1, ξ_1) and (S_2, ξ_2) be any two NTS. If $\Omega: (S_1, \xi_1) \to (S_2, \xi_2)$ is NC, then it is $N\alpha^m$ -cont.

Proof. Let Λ be any N-closed set in (S_2, ξ_2) . Since f is NC, $\Omega^{-1}(\Lambda)$ is N-closed in (S_1, ξ_1) . Since every N-closed set is $N\alpha^m$ -c-set, $\Omega^{-1}(\Lambda)$ is $N\alpha^m$ -c-set in (S_1, ξ_1) . Therefore Ω is $N\alpha^m$ -c-ont. \square

The converse of Proposition 3.16 need not be true as it is shown in the following example.

Example 3.17. Let $S_1 = \{a, b, c\}$ and $S_2 = \{a, b, c\}$. Define N-subsets E, F, G and D as follows $E = \{x, (\frac{a}{0.3}, \frac{b}{0.5}, \frac{c}{0.3}), (\frac{a}{0.3}, \frac{b}{0.5}, \frac{c}{0.3}), (\frac{a}{0.7}, \frac{b}{0.5}, \frac{c}{0.7})\}$, $F = \{x, (\frac{a}{0.4}, \frac{b}{0.5}, \frac{c}{0.4}), (\frac{a}{0.4}, \frac{b}{0.5}, \frac{c}{0.4}), (\frac{a}{0.6}, \frac{b}{0.5}, \frac{c}{0.6})\}$, $G = \{x, (\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.5}), (\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.5}), (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.5})\}$, and $D = \{x, (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.5}), (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.5}), (\frac{a}{0.7}, \frac{b}{0.7}, \frac{c}{0.5})\}$. Then the family $\xi_1 = \{0_{S_1}, 1_{S_1}, E, F\}$ is an NT on S_1 and $\xi_2 = \{0_{S_2}, 1_{S_2}, G, D\}$ is an NT on S_2 . Thus (S_1, ξ_1) and (S_2, ξ_2) are NTS. Define $\Omega : (S_1, \xi_1) \to (S_2, \xi_2)$ as $\Omega(a) = a, \Omega(b) = c, \Omega(c) = b$. Clearly Ω is $N\alpha^m$ -cont but Ω is not NC since $\Omega^{-1}(D) \not\in \xi_1$ for $D \in \xi_2$.

Proposition 3.18. Let (S_1, ξ_1) and (S_2, ξ_2) be any two neutrosophic NTS. If $\Omega: (S_1, \xi_1) \to (S_2, \xi_2)$ is $N\alpha^m$ -I, then it is $N\alpha^m$ -cont.

Proof. Let Λ be an N-closed set in (S_2, ξ_2) . Since every N-closed set is $N\alpha^m$ -c-set, Λ is $N\alpha^m$ -c-set in S_2 . Since Ω is $N\alpha^m$ -I, $\Omega^{-1}(\Lambda)$ is $N\alpha^m$ -c-set in (S_1, ξ_1) . Therefore Ω is $N\alpha^m$ -c-ont. \square

The converse of Proposition 3.18 need not be true.

Example 3.19. Let $S_1 = \{a, b, c\}$. Define the *N*-subsets E,F and G as follows $E = \{x, (\frac{a}{0.4}, \frac{b}{0.5}, \frac{c}{0.4}), (\frac{a}{0.4}, \frac{b}{0.5}, \frac{c}{0.4}), (\frac{a}{0.6}, \frac{b}{0.5}, \frac{c}{0.6})\}$, $F = \{x, (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.5})\}$ and $G = \{x, (\frac{a}{0.5}, \frac{b}{0.4}, \frac{c}{0.7}), (\frac{a}{0.5}, \frac{b}{0.4}, \frac{c}{0.7}), (\frac{a}{0.5}, \frac{b}{0.6}, \frac{c}{0.3})\}$. Then $\xi_1 = \{0_{S_1}, 1_{S_1}, E, F\}$ and $\xi_2 = \{0_{S_1}, 1_{S_1}, C\}$ are *N*-topologies on S_1 . Define $\Omega : (S_1, \xi_1) \to (S_1, \xi_2)$ as follows $\Omega(a) = b, \Omega(b) = a, \Omega(c) = c$. Observe that Ω is $N\alpha^m$ -continuous. But Ω is not $N\alpha^m$ -*I*. Since $D = \{x, (\frac{a}{0.5}, \frac{b}{0.4}, \frac{c}{0.2}), (\frac{a}{0.5}, \frac{b}{0.4}, \frac{c}{0.2}), (\frac{a}{0.5}, \frac{b}{0.6}, \frac{c}{0.8})\}$ is $N\alpha^m$ -c-set in $(S_1, \xi_2), \Omega^{-1}(D)$ is not $N\alpha$ -c-set in (S_1, ξ_1) .

Proposition 3.20. Let (S_1, ξ_1) and (S_2, ξ_2) be any two NTS. If $\Omega : (S_1, \xi_1) \to (S_2, \xi_2)$ is $SN\alpha^m$ -I, then it is NC.

Proof. Let Λ be an N-closed set in (S_2, ξ_2) . Since every N-closed set is $N\alpha^m$ -c-set. Since Ω is $SN\alpha^m$ -cont, $\Omega^{-1}(\Lambda)$ is N-closed set in (S_1, ξ_1) . Therefore Ω is NC.

The converse of Proposition 3.20 need not be true.

Example 3.21. Let $S_1 = \{a, b, c\}$. Define the N-subsets E,F and G as follows

 $E = \{x, (\frac{a}{0.1}, \frac{b}{0.1}, \frac{c}{0.1}), (\frac{a}{0.1}, \frac{b}{0.1}, \frac{c}{0.1}), (\frac{a}{0.9}, \frac{b}{0.9}, \frac{c}{0.9})\}, F = \{x, (\frac{a}{0.1}, \frac{b}{0.1}, \frac{c}{0}), (\frac{a}{0.1}, \frac{b}{0.1}, \frac{c}{0}), (\frac{a}{0.9}, \frac{b}{0.9}, \frac{c}{1})\} \text{ and } G = \{x, (\frac{a}{0.1}, \frac{b}{0}, \frac{c}{0.1}), (\frac{a}{0.1}, \frac{b}{0}, \frac{c}{0.1}), (\frac{a}{0.9}, \frac{b}{1}, \frac{c}{0.9})\}. \text{ Then } \xi_1 = \{0_{S_1}, 1_{S_1}, E, F\} \text{ and } \xi_2 = \{0_{S_1}, 1_{S_1}, G\} \text{ are N-topologies on S_1. Define } \Omega(S_1, \xi_1) \to (S_1, \xi_2) \text{ as follows } \Omega(a) = \Omega(b) = a, \Omega(c) = c. \ \Omega \text{ is NC but Ω is not $SN\alpha^m$-cont.}$ Since $D = \{x, (\frac{a}{0.05}, \frac{b}{0}, \frac{c}{0.1}), (\frac{a}{0.05}, \frac{b}{0}, \frac{c}{0.1}), (\frac{a}{0.95}, \frac{b}{1}, \frac{c}{0.9})\} \text{ is $N\alpha^m$-c-set in (S_1, ξ_2), $\Omega^{-1}(D)$ is not N-closed set in (S_1, ξ_1).}$

Proposition 3.22. Let $(S_1, \xi_1), (S_2, \xi_2)$ and (S_3, ξ_3) be any three NTS. Suppose $\Omega: (S_1, \xi_1) \to (S_2, \xi_2)$, $\Xi: (S_2, \xi_2) \to (S_3, \xi_3)$ are maps. Assume Ω is $N\alpha^m$ -I and Ξ is $N\alpha^m$ -I and I is I.

Proof. Let Λ be an N-closed set in (S_3, ξ_3) . Since Ξ is $N\alpha^m$ -cont, $\Xi^{-1}(\Lambda)$ is $N\alpha^m$ -c-set in (S_2, ξ_2) . Since Ω is $N\alpha^m$ - $I,\Omega^{-1}(\Xi^{-1}(\Lambda))$ is $N\alpha^m$ -closed in (S_1, ξ_1) . Thus $\Xi \circ \Omega$ is $N\alpha^m$ -cont.

Proposition 3.23. Let $(S_1, \xi_1), (S_2, \xi_2)$ and (S_3, ξ_3) be any three NTS. Let $\Omega: (S_1, \xi_1) \to (S_2, \xi_2)$ and $\Xi: (S_2, \xi_2) \to (S_3, \xi_3)$ be maps such that Ω is $SN\alpha^m$ -cont and Ξ is $N\alpha^m$ -cont, then $\Xi \circ \Omega$ is NC.

Proof. Let Λ be an N-c-set in (S_3, ξ_3) . Since Ξ is $N\alpha^m$ -c-ont, $\Xi^{-1}(\Lambda)$ is $N\alpha^m$ -c-set in (S_2, ξ_2) . Moreover, since Ω is $SN\alpha^m$ -c-ont, $\Omega^{-1}(\Omega^{-1}(\Lambda))$ is N-closed in (S_1, ξ_1) . Thus $\Xi \circ \Omega$ is NC.

Proposition 3.24. Let $(S_1, \xi_1), (S_2, \xi_2)$ and (S_3, ξ_3) be any three NTS. Let $\Omega: (S_1, \xi_1) \to (S_2, \xi_2)$ and $\Xi: (S_2, \xi_2) \to (S_3, \xi_3)$ be two maps. Assume Ω and Ξ are $N\alpha^m$ -I, then $\Xi \circ \Omega$ is $N\alpha^m$ -I.

Proof. Let Λ be an $N\alpha^m$ -c-set in (S_3, ξ_3) . Since Ξ is $N\alpha^m$ -I, $\Xi^{-1}(\Lambda)$ is $N\alpha^m$ -c-set in (S_2, ξ_2) . Since Ω is $N\alpha^m$ -I, $\omega^{-1}(\Xi^{-1}(\Lambda))$ is an $N\alpha^m$ -c-set in (S_1, ξ_1) . Thus $\Xi \circ \Omega$ is $N\alpha^m$ -I.

4 Conclusions

In this paper, a new class of neutrosophic closed set called neutrosophic α^m closed set is introduced and studied. Furthermore, the basic properties of neutrosophic α^m -continuity are presented with some examples.

References

- [1] K. Atanassov. Intuitionistic fuzzy sets, in: Sgurev, Ed., VII ITKR's Session, Sofia (June 1983 Central Sci. and Techn. Library, Bulg. Academy of Sciences., (1984).
- [2] K. Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Systems., 20 (1986),87–96.
- [3] K. Atanassov. Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88, Sofia., 1988.
- [4] K. Atanassov and S. Stoeva. Intuitionistic fuzzy sets, in: Polish Syrup. on Interval & Fuzzy Mathematics, Poznan., (August 1983),23–26.
- [5] K. K. Azad. On fuzzy semicontinuity, Fuzzy almost continuity and fuzzy weakly continuity, Journal of Mathematical Analysis and Applications, 82(1981), 14–32.
- [6] G. Balasubramanian, P.Sundaram. On Some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86(1997), 93–100.

- [7] A.S. Bin Shahna. On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44(1991), 303–308.
- [8] C. L. Chang. Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24(1968),182–190.
- [9] R. Dhavaseelan, E. Roja and M. K. Uma. Generalized intuitionistic fuzzy closed sets, Advances in Fuzzy Mathematics, 5(2010),152–172.
- [10] R. Dhavaseelan and S. Jafari. Generalized neutrosophic closed sets, In New Trends in Neutrosophic Theory and Application; F. Smarandache and S. Pramanik (Editors), Pons Editions, Brussels, Belgium., Vol. 2, 2018, pp. 261–274.
- [11] R. Dhavaseelan, M. Parimala, S. Jafari, F. Smarandache. On Neutrosophic semi-supra open set and neutrosophic semi-supra continuous functions, Neutrosophic Sets and Systems, 16(2017),39–43.
- [12] R. Dhavaseelan, E. Roja and M. K. Uma. Intuitionistic fuzzy exponential map via generalized open set, International Journal of Mathematical Archive, 3(2)(2012), 636–643.
- [13] R. Dhavaseelan. Fuzzy α^m continuity, Asian Journal of Mathematics and Computer Research, 15(1)(2017),18–22.
- [14] N. Levine. Decomposition of continuity in topological spaces, The American Mathematical Monthly, 60(1961), 44–46.
- [15] N. Levine. Semi-open sets and semi-continuity in topological spaces, The American Mathematical Monthly, 70(1963), 36–41.
- [16] M. Mathew and R. Parimelazhagan. α^m closed in topological spaces, International Journal of Mathematical Analysis, 8(47)(2014),2325–2329.
- [17] M. Mathew, R. Parimelazhagan, and S.Jafari. α^m continuous maps in topological spaces, arXiv:1601.03518.
- [18] A. A. Salama and S. A. Alblowi. Neutrosophic set and neutrosophic topological spaces, IOSR Journal of Mathematics, 3(4)(2012),31–35.
- [19] F. Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002), smarand@unm.edu
- [20] F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability., American Research Press, Rehoboth, NM,(1999).
- [21] L. A. Zadeh. Fuzzy sets, Information and Control, 8(1965), 338–353.