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Abstract. In this paper, we introduce for the first time 
the neutrosophic quadruple numbers (of the form 
𝒂 + 𝒃𝑻 + 𝒄𝑰 + 𝒅𝑭) and the refined neutrosophic quad-
ruple numbers. 
Then we define an absorbance law, based on a preva-

lence order, both of them in order to multiply the neutro-
sophic components 𝑻, 𝑰, 𝑭  or their sub-components 
𝑻𝒋, 𝑰𝒌, 𝑭𝒍 and thus to construct the multiplication of neu-
trosophic quadruple numbers. 
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1  Neutrosophic Quadruple Numbers

Let’s consider an entity (i.e. a number, an idea, an ob-
ject, etc.) which is represented by a known part (a) and an 
unknown part (𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹). 

Numbers of the form: 

𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹, (1) 

where a, b, c, d are real (or complex) numbers (or intervals 
or in general subsets), and  

T = truth / membership / probability, 
I = indeterminacy, 
F = false / membership / improbability, 

are called Neutrosophic Quadruple (Real respectively 
Complex) Numbers (or Intervals, or in general Subsets). 

“a” is called the known part of NQ, while “𝑏𝑇 + 𝑐𝐼 +
𝑑𝐹” is called the unknown part of NQ. 

2  Operations 

Let 

𝑁𝑄1 = 𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹, (2) 

𝑁𝑄2 = 𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹 (3) 

and 𝛼 ∈ ℝ (or 𝛼 ∈ ℂ) a real (or complex) scalar. 
Then: 

2.1 Addition 

𝑁𝑄1 + 𝑁𝑄2 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝑇 +

(𝑐1 + 𝑐2)𝐼 + (𝑑1 + 𝑑2)𝐹. (4) 

2.2 Substraction 

𝑁𝑄1 − 𝑁𝑄2 = (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2)𝑇 +

(𝑐1 − 𝑐2)𝐼 + (𝑑1 − 𝑑2)𝐹.   (5)

2.3 Scalar Multiplication 

𝛼 ∙ 𝑁𝑄 = 𝑁𝑄 ∙ 𝛼 = 𝛼𝑎 + 𝛼𝑏𝑇 + 𝛼𝑐𝐼 + 𝛼𝑑𝐹. (6)

One has: 
0 ∙ 𝑇 = 0 ∙ 𝐼 = 0 ∙ 𝐹 = 0, (7) 

and  𝑚𝑇 + 𝑛𝑇 = (𝑚 + 𝑛)𝑇, (8) 
𝑚𝐼 + 𝑛𝐼 = (𝑚 + 𝑛)𝐼, (9) 
𝑚𝐹 + 𝑛𝐹 = (𝑚 + 𝑛)𝐹. (10) 

3 Refined Neutrosophic Quadruple Numbers 

Let us consider that Refined Neutrosophic Quadruple 
Numbers are numbers of the form: 

𝑅𝑁𝑄 = 𝑎 + ∑ 𝑏𝑖 𝑇𝑖 +
𝑝
𝑖=1 ∑ 𝑐𝑗  𝐼𝑗 +𝑟

𝑗=1 ∑ 𝑑𝑘 𝐹𝑘
𝑠
𝑘=1 ,  (11) 

where a, all 𝑏𝑖 , all 𝑐𝑗 , and all 𝑑𝑘  are real (or complex)
numbers, intervals, or, in general, subsets, 
while 𝑇1, 𝑇2, … , 𝑇𝑝 are refinements of 𝑇;

𝐼1, 𝐼2, … , 𝐼𝑟 are refinements of 𝐼;
and   𝐹1, 𝐹2, … , 𝐹𝑠 are refinements of 𝐹.

There are cases when the known part (a) can be refined 
as well as a1, a2, … . 

The operations are defined similarly. 
Let 
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𝑅𝑁𝑄(𝑢) = 𝑎(𝑢) + ∑ 𝑏𝑖
(𝑢)

𝑇𝑖
𝑝
𝑖=1 + ∑ 𝑐𝑗

(𝑢)
𝐼𝑗

𝑟
𝑗=1 +

∑ 𝑑𝑘
(𝑢)

𝐹𝑘
𝑠
𝑘=1 , (12)

for 𝑢 = 1 or 2. 
Then: 

3.1 Addition 

𝑅𝑁𝑄(1) + 𝑅𝑁𝑄(2)

= [𝑎(1) + 𝑎(2)] + ∑[𝑏𝑖
(1)

+ 𝑏𝑖
(2)

]

𝑝

𝑖=1

𝑇𝑖

+ ∑[𝑐𝑗
(1)

+ 𝑐𝑗
(2)

]

𝑟

𝑗=1

𝐼𝑗

+ ∑[𝑑𝑘
(1)

+ 𝑑𝑘
(2)

]

𝑠

𝑘=1

𝐹𝑘. 

(13)

3.2 Substraction 

𝑅𝑁𝑄(1) − 𝑅𝑁𝑄(2)

= [𝑎(1) − 𝑎(2)] + ∑[𝑏𝑖
(1)

− 𝑏𝑖
(2)

]

𝑝

𝑖=1

𝑇𝑖

+ ∑[𝑐𝑗
(1)

− 𝑐𝑗
(2)

]

𝑟

𝑗=1

𝐼𝑗

+ ∑[𝑑𝑘
(1)

− 𝑑𝑘
(2)

]

𝑠

𝑘=1

𝐹𝑘. 

(14)

3.3 Scalar Multiplication 

For 𝛼 ∈ ℝ (or 𝛼 ∈ ℂ) one has: 

𝛼 ∙ 𝑅𝑁𝑄(1) = 𝛼 ∙ 𝑎(1) + 𝛼 ∙ ∑ 𝑏𝑖
(1)

𝑇𝑖

𝑝

𝑖=1

+ 𝛼 ∙ ∑ 𝑐𝑗
(1)

𝐼𝑗

𝑟

𝑗=1

+ 𝛼

∙ ∑ 𝑑𝑘
(1)

𝐹𝑘

𝑠

𝑘=1

.

(15) 

4 Absorbance Law 

Let 𝑆  be a set, endowed with a total order 𝑥 ≺ 𝑦 , 
named “x prevailed by y” or “x less stronger than y” or “x 
less preferred than y”. We consider 𝑥 ≼ 𝑦 as “x prevailed 
by or equal to y” “x less stronger than or equal to y”, or “x 
less preferred than or equal to y”. 

For any elements 𝑥, 𝑦 ∈ 𝑆 , with 𝑥 ≼ 𝑦 , one has the 
absorbance law: 

𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥 = absorb (𝑥, 𝑦) = max{𝑥, 𝑦} = 𝑦,

(16) 
which means that the bigger element absorbs the smaller 
element (the big fish eats the small fish!). 

Clearly, 
𝑥 ∙ 𝑥 = 𝑥2 = absorb (𝑥, 𝑥) = max{𝑥, 𝑥} = 𝑥,    (17) 

and 
𝑥1 ∙ 𝑥2 ∙ … ∙ 𝑥𝑛

= absorb(… absorb(absorb(𝑥1, 𝑥2), 𝑥3) … , 𝑥𝑛)
= max{… max{max{𝑥1, 𝑥2}, 𝑥3} … , 𝑥𝑛}
= max{𝑥1, 𝑥2, … , 𝑥𝑛}.

(18) 
Analougously, we say that “𝑥 ≻ 𝑦” and we read: “x 

prevails to y” or “x is stronger than y” or “x is preferred to 
y”.  

Also, 𝑥 ≽ 𝑦, and we read: “x prevails or is equal to y” 
“x is stronger than or equal to y”, or “x is preferred or equal 
to y”. 

5 Multiplication of Neutrosophic Quadruple Num-
bers  

It depends on the prevalence order defined on {𝑇, 𝐼, 𝐹}. 
Suppose in an optimistic way the neutrosophic expert 

considers the prevalence order 𝑇 ≻ 𝐼 ≻ 𝐹. Then: 

𝑁𝑄1 ∙ 𝑁𝑄2 = (𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹)
∙ (𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹)
= 𝑎1𝑎2

+ (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑏1𝑏2 + 𝑏1𝑐2 + 𝑐1𝑏2

+ 𝑏1𝑑2 + 𝑑1𝑏2)𝑇
+ (𝑎1𝑐2 + 𝑎2𝑐1 + 𝑐1𝑑2 + 𝑐2𝑑1)𝐼
+ (𝑎1𝑑2 + 𝑎2𝑑1 + 𝑑1𝑑2)𝐹,

(19) 
since 𝑇𝐼 = 𝐼𝑇 = 𝑇, 𝑇𝐹 = 𝐹𝑇 = 𝑇, 𝐼𝐹 = 𝐹𝐼 = 𝐼,
while 𝑇2 = 𝑇, 𝐼2 = 𝐼, 𝐹2 = 𝐹.  
Suppose in an pessimistic way the neutrosophic expert 

considers the prevalence order 𝐹 ≻ 𝐼 ≻ 𝑇. Then: 

𝑁𝑄1 ∙ 𝑁𝑄2 = (𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹)
∙ (𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹)
= 𝑎1𝑎2 + (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑏1𝑏2)𝑇
+ (𝑎1𝑐2 + 𝑎2𝑐1 + 𝑏1𝑐2 + 𝑏2𝑐1 + 𝑐1𝑐2)𝐼
+ (𝑎1𝑑2 + 𝑎2𝑑1 + 𝑏1𝑑2 + 𝑏2𝑑1 + 𝑐1𝑑2

+ 𝑐2𝑑1 + 𝑑1𝑑2)𝐹,
(20) 

since 
𝐹 ∙ 𝐼 = 𝐼 ∙ 𝐹 = 𝐹, 𝐹 ∙ 𝑇 = 𝑇 ∙ 𝐹 = 𝐹, 𝐼 ∙ 𝑇 = 𝑇 ∙ 𝐼 = 𝐼

while similarly 𝐹2 = 𝐹, 𝐼2 = 𝐼, 𝑇2 = 𝑇. 

5.1 Remark 

Other prevalence orders on {𝑇, 𝐼, 𝐹} can be proposed, 
depending on the application/problem to solve, and on 
other conditions. 
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6 Multiplication of Refined Neutrosophic Quadru-
ple Numbers 

Besides a neutrosophic prevalence order defined on 
{𝑇, 𝐼, 𝐹} , we also need a sub-prevalence order on 
{𝑇1, 𝑇2, … , 𝑇𝑝}, a sub-prevalence order on {𝐼1, 𝐼2, … , 𝐼𝑟}, and
another sub-prevalence order on {𝐹1, 𝐹2, … , 𝐹𝑠}.

We assume that, for example, if 𝑇 ≻ 𝐼 ≻ 𝐹 , then 
𝑇𝑗 ≻ 𝐼𝑘 ≻ 𝐹𝑙  for any 𝑗 ∈ {1, 2, … , 𝑝}, 𝑘 ∈ {1, 2, … , 𝑟}, and
𝑙 ∈ {1, 2, … , 𝑠} . Therefore, any prevalence order on 
{𝑇, 𝐼, 𝐹}  imposes a prevalence suborder on their 
corresponding refined components.  

Without loss of generality, we may assume that 
𝑇1 ≻ 𝑇2 ≻ ⋯ ≻ 𝑇𝑝

(if this was not the case, we re-number the subcomponents 
in a decreasing order). 

Similarly, we assume without loss of generality that: 
𝐼1 ≻ 𝐼2 ≻ ⋯ ≻ 𝐼𝑟 , and
𝐹1 ≻ 𝐹2 ≻ ⋯ ≻ 𝐹𝑠.

6.1 Exercise for the Reader 

Let’s have the neutrosophic refined space 
𝑁𝑆 = {𝑇1, 𝑇2, 𝑇3, 𝐼, 𝐹1, 𝐹2},

with the prevalence order 𝑇1 ≻ 𝑇2 ≻ 𝑇3 ≻ 𝐼 ≻ 𝐹1 ≻ 𝐹2.
Let’s consider the refined neutrosophic quadruples 

𝑁𝐴 = 2 − 3𝑇1 + 2𝑇2 + 𝑇3 − 𝐼 + 5𝐹1 − 3𝐹2, and
𝑁𝐵 = 0 + 𝑇1 − 𝑇2 + 0 ∙ 𝑇3 + 5𝐼 − 8𝐹1 + 5𝐹2.

By multiplication of sub-components, the bigger 
absorbs the smaller. For example:  

𝑇2 ∙ 𝑇3 = 𝑇2,
𝑇1 ∙ 𝐹1 = 𝑇1,
𝐼 ∙ 𝐹2 = 𝐼,
𝑇2 ∙ 𝐹1 = 𝑇2, etc.

Multiply NA with NB. 
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