Neutrosophic Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers

Florentin Smarandache
University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Abstract

In this paper, we introduce for the first time the neutrosophic quadruple numbers (of the form $\boldsymbol{a}+\boldsymbol{b} \boldsymbol{T}+\boldsymbol{c I}+\boldsymbol{d F})$ and the refined neutrosophic quadruple numbers. Then we define an absorbance law, based on a preva-

lence order, both of them in order to multiply the neutrosophic components $\boldsymbol{T}, \boldsymbol{I}, \boldsymbol{F}$ or their sub-components $\boldsymbol{T}_{\boldsymbol{j}}, \boldsymbol{I}_{\boldsymbol{k}}, \boldsymbol{F}_{\boldsymbol{l}}$ and thus to construct the multiplication of neutrosophic quadruple numbers.

Keywords: neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, multiplication of neutrosophic quadruple numbers, multiplication of refined neutrosophic quadruple numbers.

1 Neutrosophic Quadruple Numbers

Let's consider an entity (i.e. a number, an idea, an object, etc.) which is represented by a known part (a) and an unknown part $(b T+c I+d F)$.

Numbers of the form:

$$
\begin{equation*}
N Q=a+b T+c I+d F \tag{1}
\end{equation*}
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real (or complex) numbers (or intervals or in general subsets), and
$\mathrm{T}=$ truth / membership / probability,
$\mathrm{I}=$ indeterminacy,
F = false / membership / improbability,
are called Neutrosophic Quadruple (Real respectively Complex) Numbers (or Intervals, or in general Subsets).
" a " is called the known part of $N Q$, while " $b T+c I+$ $d F$ " is called the unknown part of $N Q$.

2 Operations

Let

$$
\begin{align*}
& N Q_{1}=a_{1}+b_{1} T+c_{1} I+d_{1} F \tag{2}\\
& N Q_{2}=a_{2}+b_{2} T+c_{2} I+d_{2} F \tag{3}
\end{align*}
$$

and $\alpha \in \mathbb{R}$ (or $\alpha \in \mathbb{C}$) a real (or complex) scalar.
Then:

2.1 Addition

$$
\begin{align*}
& N Q_{1}+N Q_{2}=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) T+ \\
& \left(c_{1}+c_{2}\right) I+\left(d_{1}+d_{2}\right) F . \tag{4}
\end{align*}
$$

$$
\begin{align*}
& N Q_{1}-N Q_{2}=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) T+ \\
& \left(c_{1}-c_{2}\right) I+\left(d_{1}-d_{2}\right) F . \tag{5}
\end{align*}
$$

2.3 Scalar Multiplication

$$
\begin{equation*}
\alpha \cdot N Q=N Q \cdot \alpha=\alpha a+\alpha b T+\alpha c I+\alpha d F \tag{6}
\end{equation*}
$$

One has:

$$
\begin{gather*}
0 \cdot T=0 \cdot I=0 \cdot F=0 \tag{7}\\
m T+n T=(m+n) T \tag{8}\\
m I+n I=(m+n) I \tag{9}\\
m F+n F=(m+n) F \tag{10}
\end{gather*}
$$

and

3 Refined Neutrosophic Quadruple Numbers

Let us consider that Refined Neutrosophic Quadruple Numbers are numbers of the form:

$$
\begin{equation*}
R N Q=a+\sum_{i=1}^{p} b_{i} T_{i}+\sum_{j=1}^{r} c_{j} I_{j}+\sum_{k=1}^{S} d_{k} F_{k}, \tag{11}
\end{equation*}
$$

where a , all b_{i}, all c_{j}, and all d_{k} are real (or complex) numbers, intervals, or, in general, subsets,
while $\quad T_{1}, T_{2}, \ldots, T_{p}$ are refinements of T; $I_{1}, I_{2}, \ldots, I_{r}$ are refinements of I;
and $\quad F_{1}, F_{2}, \ldots, F_{s}$ are refinements of F.
There are cases when the known part (a) can be refined as well as a_{1}, a_{2}, \ldots.

The operations are defined similarly.
Let

2.2 Substraction

$$
\begin{align*}
& R N Q^{(u)}=a^{(u)}+\sum_{i=1}^{p} b_{i}^{(u)} T_{i}+\sum_{j=1}^{r} c_{j}^{(u)} I_{j}+ \\
& \sum_{k=1}^{s} d_{k}^{(u)} F_{k}, \tag{12}
\end{align*}
$$

for $u=1$ or 2 .
Then:

3.1 Addition

$$
\begin{align*}
R N Q^{(1)}+R N Q^{(2)} & \\
& =\left[a^{(1)}+a^{(2)}\right]+\sum_{i=1}^{p}\left[b_{i}^{(1)}+b_{i}^{(2)}\right] T_{i} \\
& +\sum_{j=1}^{r}\left[c_{j}^{(1)}+c_{j}^{(2)}\right] I_{j} \\
& +\sum_{k=1}^{s}\left[d_{k}^{(1)}+d_{k}^{(2)}\right] F_{k} . \tag{13}
\end{align*}
$$

3.2 Substraction

$$
\begin{align*}
R N Q^{(1)}-R N Q^{(2)} & \\
& =\left[a^{(1)}-a^{(2)}\right]+\sum_{i=1}^{p}\left[b_{i}^{(1)}-b_{i}^{(2)}\right] T_{i} \\
& +\sum_{j=1}^{r}\left[c_{j}^{(1)}-c_{j}^{(2)}\right] I_{j} \\
& +\sum_{k=1}^{s}\left[d_{k}^{(1)}-d_{k}^{(2)}\right] F_{k} \tag{14}
\end{align*}
$$

3.3 Scalar Multiplication

For $\alpha \in \mathbb{R}($ or $\alpha \in \mathbb{C})$ one has:

$$
\begin{gather*}
\alpha \cdot R N Q^{(1)}=\alpha \cdot a^{(1)}+\alpha \cdot \sum_{i=1}^{p} b_{i}^{(1)} T_{i}+\alpha \cdot \sum_{j=1}^{r} c_{j}^{(1)} I_{j}+\alpha \\
\cdot \sum_{k=1}^{s} d_{k}^{(1)} F_{k} . \tag{15}
\end{gather*}
$$

4 Absorbance Law

Let S be a set, endowed with a total order $x<y$, named " x prevailed by y " or " x less stronger than y " or " x less preferred than y ". We consider $x \leqslant y$ as " x prevailed by or equal to y " " x less stronger than or equal to y ", or " x less preferred than or equal to y ".

For any elements $x, y \in S$, with $x \preccurlyeq y$, one has the absorbance law:
$x \cdot y=y \cdot x=\operatorname{absorb}(x, y)=\max \{x, y\}=y$,
which means that the bigger element absorbs the smaller element (the big fish eats the small fish!).

Clearly,
$x \cdot x=x^{2}=\operatorname{absorb}(x, x)=\max \{x, x\}=x$,
and

$$
\begin{align*}
& x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n} \tag{17}\\
& =\operatorname{absorb}\left(\ldots \operatorname{absorb}\left(\operatorname{absorb}\left(x_{1}, x_{2}\right), x_{3}\right) \ldots, x_{n}\right) \\
& =\max \left\{\ldots \max \left\{\max \left\{x_{1}, x_{2}\right\}, x_{3}\right\} \ldots, x_{n}\right\} \\
& =\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} . \tag{18}
\end{align*}
$$

Analougously, we say that " $x>y$ " and we read: " x prevails to y " or " x is stronger than y " or " x is preferred to $y "$.

Also, $x \geqslant y$, and we read: " x prevails or is equal to y " " x is stronger than or equal to y ", or " x is preferred or equal to y ".

5 Multiplication of Neutrosophic Quadruple Numbers

It depends on the prevalence order defined on $\{T, I, F\}$.
Suppose in an optimistic way the neutrosophic expert considers the prevalence order $T \succ I \succ F$. Then:

$$
\begin{align*}
N Q_{1} \cdot N Q_{2}=\left(a_{1}\right. & \left.+b_{1} T+c_{1} I+d_{1} F\right) \\
& \cdot\left(a_{2}+b_{2} T+c_{2} I+d_{2} F\right) \\
& =a_{1} a_{2} \\
& +\left(a_{1} b_{2}+a_{2} b_{1}+b_{1} b_{2}+b_{1} c_{2}+c_{1} b_{2}\right. \\
& \left.+b_{1} d_{2}+d_{1} b_{2}\right) T \\
& +\left(a_{1} c_{2}+a_{2} c_{1}+c_{1} d_{2}+c_{2} d_{1}\right) I \\
& +\left(a_{1} d_{2}+a_{2} d_{1}+d_{1} d_{2}\right) F \tag{19}
\end{align*}
$$

since $T I=I T=T, T F=F T=T, I F=F I=I$,
while $T^{2}=T, I^{2}=I, F^{2}=F$.
Suppose in an pessimistic way the neutrosophic expert considers the prevalence order $F \succ I \succ T$. Then:

$$
\begin{align*}
N Q_{1} \cdot N Q_{2}=\left(a_{1}\right. & \left.+b_{1} T+c_{1} I+d_{1} F\right) \\
& \cdot\left(a_{2}+b_{2} T+c_{2} I+d_{2} F\right) \\
& =a_{1} a_{2}+\left(a_{1} b_{2}+a_{2} b_{1}+b_{1} b_{2}\right) T \\
& +\left(a_{1} c_{2}+a_{2} c_{1}+b_{1} c_{2}+b_{2} c_{1}+c_{1} c_{2}\right) I \\
& +\left(a_{1} d_{2}+a_{2} d_{1}+b_{1} d_{2}+b_{2} d_{1}+c_{1} d_{2}\right. \\
& \left.+c_{2} d_{1}+d_{1} d_{2}\right) F \tag{20}
\end{align*}
$$

since

$$
F \cdot I=I \cdot F=F, F \cdot T=T \cdot F=F, I \cdot T=T \cdot I=I
$$

while similarly $F^{2}=F, I^{2}=I, T^{2}=T$.

5.1 Remark

Other prevalence orders on $\{T, I, F\}$ can be proposed, depending on the application/problem to solve, and on other conditions.

6 Multiplication of Refined Neutrosophic Quadruple Numbers

Besides a neutrosophic prevalence order defined on $\{T, I, F\}$, we also need a sub-prevalence order on $\left\{T_{1}, T_{2}, \ldots, T_{p}\right\}$, a sub-prevalence order on $\left\{I_{1}, I_{2}, \ldots, I_{r}\right\}$, and another sub-prevalence order on $\left\{F_{1}, F_{2}, \ldots, F_{s}\right\}$.

We assume that, for example, if $T>I>F$, then $T_{j}>I_{k}>F_{l}$ for any $j \in\{1,2, \ldots, p\}, k \in\{1,2, \ldots, r\}$, and $l \in\{1,2, \ldots, s\}$. Therefore, any prevalence order on $\{T, I, F\}$ imposes a prevalence suborder on their corresponding refined components.

Without loss of generality, we may assume that $T_{1}>T_{2}>\cdots>T_{p}$
(if this was not the case, we re-number the subcomponents in a decreasing order).

Similarly, we assume without loss of generality that:

$$
I_{1}>I_{2}>\cdots>I_{r}, \text { and }
$$

$$
F_{1}>F_{2}>\cdots>F_{s} .
$$

6.1 Exercise for the Reader

Let's have the neutrosophic refined space

$$
N S=\left\{T_{1}, T_{2}, T_{3}, I, F_{1}, F_{2}\right\}
$$

with the prevalence order $T_{1} \succ T_{2} \succ T_{3} \succ I \succ F_{1} \succ F_{2}$.
Let's consider the refined neutrosophic quadruples

$$
N A=2-3 T_{1}+2 T_{2}+T_{3}-I+5 F_{1}-3 F_{2}, \text { and }
$$ $N B=0+T_{1}-T_{2}+0 \cdot T_{3}+5 I-8 F_{1}+5 F_{2}$.

By multiplication of sub-components, the bigger absorbs the smaller. For example:
$T_{2} \cdot T_{3}=T_{2}$,
$T_{1} \cdot F_{1}=T_{1}$,
$I \cdot F_{2}=I$,
$T_{2} \cdot F_{1}=T_{2}$, etc.
Multiply NA with NB.

References

[1] Florentin Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic, Amer. Res. Press, Rehoboth, USA, 105 p., 1998.
[2] W. B. Vasantha Kandasamy, Florentin Smarandache, Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps, Xiquan, Phoenix, 211 p., 2003.
[3] Florentin Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in Physics, 143-146, Vol. 4, 2013.
[4] Florentin Smarandache, (t,i,f)-Neutrosophic Structures and I-Neutrosophic Structures, Neutrosophic Sets and Systems, 3-10, Vol. 8, 2015.

Received: August 16, 2015. Accepted: September 30, 2015.

