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Abstract: This research has broadened the definition of the neutrosophic regular in neutrosophic 

rings, similar to what is known in classical rings. We have studied the properties of neutrosophic 

regular elements and the most important properties that link them to the neutrosophic (zero divisor, 

idempotent, unit and nilpotent) elements in neutrosophic rings, and we reached several important 

results linking these elements to each other, as some of them are different from what is known in 

classical rings. The most important of which are:  

If 𝑅(I) is a neutrosophic right (left) strongly regular neutrosophic ring, then  𝑁𝑆𝑁𝑖𝑙𝑅(I) = {0}. In any 

neutrosophic field 𝑅(I) is achieved: 𝑅(I) = 𝑁𝑅𝑒𝑔𝑅(𝐼), although there are some elements that are not 

neutrosophic unit, 𝑁𝑈𝑅(𝐼) ∩ 𝑁𝑍𝑅(𝐼) = {𝑏𝐼 , 𝑏 ∈ 𝑈𝑅}, and 𝑁𝑈 𝑅(𝐼) ∩𝑁𝐼𝑑 𝑅(𝐼) = {1, 𝐼}. 

Keywords: Neutrosophic ring, Neutrosophic field, Neutrosophic regular, strongly regular, unit, 

simple nilpotent, zero divisor. 

 

1. Introduction 

The concept of the regular element in the rings appeared in the hands of researcher J.Von 

Neumann [1]. Regular rings and their properties have been extensively examined by many authors 

and researchers [2-3-4-5]. Neutosophy is a comprehensive perspective on intuitionistic fuzzy logic 

that represents a fresh expansion of fuzzy ideas. This method has an intriguing influence on applied 

science [6-7-8-9]. More neutrosophical applications in many areas may be found in [10-11-12-13-14]. 

Pure mathematics has various applications, including neutrosophic groups [15], metric spaces [16], 

and rings [17-18-19-20]. In 1980, Smarandache first introduced the neutrosophic theory. 

This idea has created a new notion in algebraic structures, known as neutrosophic structures. 
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Kandasamy and her colleague, Smarandache, introduced the idea of neutrosophic algebraic 

structures in [21]. Vasantha Kandasamy and Smarandache introduced the notion of neutrosophic 

zero divisors, idempotent, and unit elements in neutrosophic rings and fields [22]. 

Agboola, Akinola, and Oyebolain conducted further research on neutrosophic rings [23-24]. 

Chalapathi and Kiran examined the enumeration of neutrosophic units in neutrosophic rings and 

fields [25]. A novel multiplication operation based on neutrosophic theory has been developed to 

enhance the algebraic structures of classical rings and enable easier derivation of elementary 

structural theorems for indeterminate situations. Therefore, when a real-world problem involves 

indeterminacy, the use of neutrosophic algebraic theory is necessary. 

This paper explores the concepts of neutrosophic regularity in neutrosophic rings using 

relevant examples of key points. In addition, we analyzed the properties of specific elements of the 

neutrosophic rings to determine the properties that bind these elements together. 

2. Definitions and notations  

Given that researchers interested in the subject are well aware of classical rings and other 

fields, in this section, we provide various definitions and key findings of neutrosophic rings. For 

those interested in delving deeper into the topic of neutrosophic rings, we recommend referring to 

references. 

Definition.2.1 [22] Assume that we have a ring denoted by 𝑅. The set 〈R ∪ 𝐼〉 = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏 ∈

𝑅 and 𝐼2 = 𝐼} is called the neutrosophic ring. 〈R ∪ 𝐼〉 is referred to as a neutrosophic field when R is a 

field. 

Properties.2.2 [19-22] 

1. If 𝑅 is a unity ring, then 〈𝑅 ∪ 𝐼〉 is a unity neutrosophic ring with neutrosophic unity I. 

2. 𝐼𝑛 = 𝐼 for each 𝑛 ∈ ℤ+ 

3. 𝑎𝐼 = 𝐼𝑎 ∀𝑎 ∈ 𝑅. 

4. 0𝐼 = 0 ,  𝐼 + 𝐼 +⋯+ 𝐼 = 𝑛𝐼
         

 

Definition.2.3 [22] If 〈R ∪ 𝐼〉 is a neutrosophic ring, then 𝑥 ∈ 〈R ∪ 𝐼〉, where 𝑥 ≠ 0  is considered a 

neutrosophic zero divisor if found 𝑦 ≠ 0 of 〈R ∪ 𝐼〉, such that 𝑥𝑦 = 𝑦𝑥 = 0.  

Definition.2.4 [22-23-25] Assume that 〈R ∪ 𝐼〉 is a neutrosophic ring, then 

1. If 𝑒 ∈ 〈R ∪ 𝐼〉 satisfies 𝑒2 = 𝑒, it is considered to be a neutrosophic idempotent. 

2. Any element x ∈ 〈R ∪ 𝐼〉 is considered neutrosophic nilpotent if it satisfies the condition 

𝑥𝑛 = 0, where 𝑛 ∈ ℤ+.  

3. Any element x ∈ 〈R ∪ 𝐼〉 is considered a unit if there is y in 〈R ∪ 𝐼〉, where, 𝑥𝑦 = 𝑦𝑥 = 1. 

4. Any element x ∈ 〈R ∪ 𝐼〉 is considered a neutrosophic unit if there is y in 〈R ∪ 𝐼〉, where 𝑥𝑦 =

𝑦𝑥 =I. 

Theorem.2.5 [19] If 〈𝐾 ∪  𝐼〉 is a neutrosophic field, then each element in the form of 𝑎 + 𝑏𝐼 is unit ⟺

𝑎 ≠ 0  𝑎𝑛𝑑  𝑎 ≠ −𝑏. 

To represent the neutrosophic (field) ring, we use the symbol 𝑅(𝐼) instead of 〈𝑅 ∪  𝐼〉. 
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3. Results  

We present the idea of regularity and its effects on the components of neutrosophic rings in 

this section, and we explain the most important properties that link the elements of the 

neutrosophic ring to each other. 

In a neutrosophic ring 𝑅(𝐼), we indicate by 𝑁𝑍𝑅(𝐼) the collection of neutrosophic zero divisor 

elements, 𝑁𝐼𝑑𝑅(𝐼) the collection of neutrosophic idempotent elements, 𝑈𝑅(𝐼) = {𝑥 ∈ 𝑅(𝐼);  ∃𝑦 ∈

𝑅(𝐼); 𝑥𝑦 = 𝑦𝑥 = 1} the collection of unit elements, 𝑁𝑈𝑅(𝐼) = {𝑥 ∈ 𝑅(𝐼); ∃𝑦 ∈ 𝑅(𝐼); 𝑥𝑦 = 𝑦𝑥 = 𝐼} the 

collection of neutrosophic unit elements, 𝑁𝑁𝑖𝑙𝑅(𝐼) the collection of neutrosophic nilpotent elements, 

𝑁𝑅𝑒𝑔𝑅(𝐼) the collection of neutrosophic regular elements. In addition, in classical ring 𝑅 we are going 

indicate by  𝑍𝑅 the set of zero divisors, 𝐼𝑑𝑅 is the collection of idempotent, 𝑈𝑅 is the collection of unit, 

𝑁𝑖𝑙𝑅 is the collection of nilpotent, 𝑅𝑒𝑔𝑅 is the collection of regular. We will indicate by ℝ to the 

collection of real numbers, ℤ is the collection of integers. 

Definition.3.1 Assume that 𝑅(I) is a neutrosophic ring and let x be its element. We can say that in 

𝑅(I), if there is an element y where 𝑥 = 𝑥𝑦𝑥, then x is a neutrosophic regular element. We call 𝑅(I) a 

regular neutrosophic ring if 𝑁𝑅𝑒𝑔𝑅(I) = 𝑅(I). 

Example.3.2 The element 3 + 4𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ7(𝐼) because it achieves 3 + 4𝐼 = (3 + 4𝐼)(5 + 6𝐼)(3 + 4𝐼). 

Definition.3.3 Assume that 𝑅(I) is a neutrosophic ring. 𝑥 ∈ 𝑅(I) is a neutrosophic right (left) 

neutrosophic strongly regular if found 𝑦 in 𝑅(I) where 𝑥 = 𝑦𝑥𝑥 (𝑥 = 𝑥𝑥𝑦). If each element in R(I) is a 

right (left) neutrosophic regular element, we call 𝑅(I) a  right (left) neutrosophic strongly regular. If 

𝑅(I) is a right and left neutrosophic strongly regular, we call it a neutrosophic strongly regular. It is 

clear that 𝑅(I) is a neutrosophic strongly regular, when 𝑅(I) is a commutative neutrosophic regular. 

Definition.3.4 In 𝑅(I), we define the set of neutrosophic simple nilpotent elements, which we denote 

by 𝑁𝑆𝑁𝑖𝑙𝑅(I) as follows 𝑁𝑆𝑁𝑖𝑙𝑅(I) = {𝑥 ∈ 𝑅(I); 𝑥
2 = 0 }. clear that 𝑁𝑆𝑁𝑖𝑙𝑅(I) ⊆ 𝑁𝑁𝑖𝑙𝑅(I) 

Example.3.5 In ℤ4(I), we have (2 + 2𝐼)2 = 0 ⇒ 2+ 2𝐼 ∈ 𝑁𝑆𝑁𝑖𝑙ℤ4(I).  

Corollary.3.6 Assume that 𝑅(I) is a neutrosophic ring. 

1. If 𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(I), then there is 𝑧 of 𝑅(I) where 𝑥 = 𝑥𝑧𝑥 and there is 𝑦 = 𝑧𝑥𝑧 of 𝑅(I) where 𝑥 =

𝑥𝑦𝑥 𝑎𝑛𝑑 𝑦 = 𝑦𝑥𝑦. 

2. If 𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(I), then there is 𝑦 ∈ 𝑅(I) where 𝑥 = 𝑥𝑦𝑥. Now if we put 𝑓 = 𝑥𝑦 and 𝑔 = 𝑦𝑥, then 

𝑓 and 𝑔 are neutrosophic idempotent. (It can be easily verified that 𝑓2 = 𝑓 and 𝑔2 = 𝑔). 

Example.3.7 In ℤ11(I), we have 3 + 8𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ11(𝐼) ; 3 + 8𝐼 = (3 + 8𝐼)4(3 + 8𝐼). If we put   𝑓 =

(3 + 8𝐼)4 = 1 + 10𝐼 and 𝑔 = 4(3 + 8𝐼) = 1 + 10𝐼, then we note that 𝑓2 = 𝑔2 = (1 + 10𝐼)2 = 1 +

10𝐼 = 𝑓 = 𝑔. 

Example.3.8 In ℤ7(I), we have 5 + 6𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ7(𝐼) ; 5 + 6𝐼 = (5 + 6𝐼)(3 + 6𝐼)(5 + 6𝐼).  

If we put 𝑓 = (5 + 6𝐼)(3 + 6𝐼) = 1 and 𝑔 = (3 + 6𝐼)(5 + 6𝐼) = 1, we note that 𝑓2 = 𝑔2 = 1 = 𝑓 = 𝑔. 

Theorem.3.9 If 𝑅(I) is an infinite (finite) neutrosophic field, then every element of the form 𝑎𝐼 ;  𝑎 ≠

0  it has an infinite (finite) number of neutrosophic inverses of the shape 𝑏 + 𝑐𝐼 ∈ 𝑅(I) where 𝑏 ≠ −𝑐. 

Proof.  

We have  𝑎𝐼(𝑏 + 𝑐𝐼) = 𝐼 ⇒ (𝑎𝑏 + 𝑎𝑐)𝐼 = 𝐼 ⇒ 𝑎(𝑏 + 𝑐) = 1. Since 𝑎 ≠ 0 so 𝑏 + 𝑐 = 𝑎−1. Therefore ∀𝑏 ∈

𝑅 , 𝑐 = 𝑎−1 − 𝑏 ∈ 𝑅. 

Corollary.3.10 In any neutrosophic field is achieved. Every element of the form  𝑎 + 𝑏𝐼,where, 𝑎 ≠
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−𝑏 it has a neutrosophic inverse 𝑑𝐼 such that  𝑐 =
1

𝑎+𝑏
 . Since 𝑎 + 𝑏𝐼 ∈ 𝑈𝑅(𝐼) according to the 

theorem.2.5, therefore 𝑈𝑅(𝐼) ⊂ 𝑁𝑈𝑅(𝐼). 

Example.3.11 

1. In the neutrosophic field ℝ(𝐼), the neutrosophic inverse of 3 + 5𝐼 is 
1

8
𝐼. 

2. In the neutrosophic field ℝ(𝐼), the neutrosophic inverse of 𝑎𝐼 = 3𝐼 is 𝑏 + 𝑐𝐼 ;  ∀𝑏 ∈ ℝ ,  𝑐 = 𝑎−1 − 𝑏.  

Suppose that, 𝑏 = 3 ⇒ 𝑐 =
−8

3
    ;     3𝐼 (3 −

8

3
𝐼) = 𝐼 

Suppose that,     𝑏 = √2 ⇒ 𝑐 =
1

3
− √2 =

1 − 3√2

3
   ;    3𝐼 (√2 + (

1 − 3√2

3
)𝐼) = 𝐼 

3. In the neutrosophic field  ℤ3(𝐼), the element 2𝐼 has a finite number of neutrosophic inverses of the 

shape 𝑏 + 𝑐𝐼 ; ∀𝑏 ∈ ℤ3, 𝑐 = 2
−1 − 𝑏. 

If  𝑏 = 0 𝑡ℎ𝑒𝑛   𝑐 = 2−1 − 0 = 2, 𝑡ℎ𝑢𝑠 𝑏 + 𝑐𝐼 = 2𝐼 

If  𝑏 = 1 𝑡ℎ𝑒𝑛   𝑐 = 2−1 − 1 = 1, 𝑡ℎ𝑢𝑠 𝑏 + 𝑐𝐼 = 1 + 𝐼 

If  𝑏 = 2 𝑡ℎ𝑒𝑛   𝑐 = 2−1 − 2 = 2 + 1 = 0, 𝑡ℎ𝑢𝑠 𝑏 + 𝑐𝐼 = 2 

Theorem.3.12 Let 𝑅(I) be unity. If 𝑥 ≠ 0 has a right inverse (right neutrosophic inverse) and let it be 

y and has a left inverse (left neutrosophic inverse) and let it be z then we can distinguish the following 

cases: 

If      𝑥. 𝑦 = 1  𝑎𝑛𝑑  𝑧. 𝑥 = 1   𝑡ℎ𝑒𝑛   𝑦 = 𝑧 

If   𝑥. 𝑦 = 𝐼  𝑎𝑛𝑑  𝑧. 𝑥 = 1   𝑡ℎ𝑒𝑛   𝑦 = 𝑧𝐼  

If     𝑥. 𝑦 = 1 𝑎𝑛𝑑  𝑧. 𝑥 = 𝐼   𝑡ℎ𝑒𝑛    𝑧 = 𝑦𝐼 

If      𝑥. 𝑦 = 𝐼 𝑎𝑛𝑑  𝑧. 𝑥 = 𝐼  𝑡ℎ𝑒𝑛   𝑦𝐼 = 𝑧𝐼 

Proof. 

In the first case, it is clear.   

In the rest of the cases  

If   𝑥. 𝑦 = 𝐼  𝑎𝑛𝑑  𝑧. 𝑥 = 1, then we note   𝑦 = 1. 𝑦 = (𝑧𝑥). 𝑦 = 𝑧. (𝑥𝑦) = 𝑧𝐼  

If     𝑥. 𝑦 = 1 𝑎𝑛𝑑  𝑧. 𝑥 = 𝐼, then we note    𝑧 = 𝑧. 1 = 𝑧. (𝑥𝑦) = (𝑧𝑥). 𝑦 = 𝐼𝑦 = 𝑦𝐼 

If      𝑥. 𝑦 = 𝐼 𝑎𝑛𝑑  𝑧. 𝑥 = 𝐼, then we note   𝑧𝐼 = 𝑧. (𝑥𝑦) = (𝑧𝑥). 𝑦 = 𝐼𝑦 = 𝑦𝐼 

Example.3.13 

1. In ℤ8(I), the element 4 + 𝐼 is a neutrosophic unit and achieves (4 + 𝐼)(4 + 𝐼) = 𝐼 and 5𝐼(4 + 𝐼) = 𝐼.  

And we note (5𝐼)𝐼 = (4 + 𝐼)𝐼 = 5𝐼 

2. In the neutrosophic ring ℝ (𝐼) we have (3 + 5𝐼) (
1

3
−

5

24
𝐼) = 1 and also (3 + 5𝐼) (

1

8
𝐼) = 𝐼. And we 

note (
1

3
−

5

24
𝐼) 𝐼 =

1

8
𝐼. 

3. In the neutrosophic ring ℤ8(𝐼), the element 4 + 3𝐼 is a neutrosophic unit and achieves (4 + 3𝐼)7𝐼 =

𝐼 and also (4 + 3𝐼)(4 + 3𝐼) = 𝐼 And we note (4 + 3𝐼)𝐼 = (7𝐼)𝐼 = 7𝐼. 

Theorem.3.14 In any neutrosophic field 𝑅(I) is achieved  𝑁𝑈𝑅(𝐼) ∩ 𝑁𝑍𝑅(𝐼) = {𝑏𝐼 , 𝑏 ∈ 𝑈𝑅}. 

Proof. We have a first 𝑏 ∈ 𝑈𝑅 ⇒ 𝑏𝐼 ∈ 𝑁𝑈𝑅(𝐼)  

and also 𝑏𝐼(𝑏−1 − 𝑏−1𝐼) = (𝑏−1 − 𝑏−1)𝑏𝐼 = 0 ⇒ 𝑏𝐼 ∈ 𝑁𝑍𝑅(𝐼), therefore  𝑏𝐼 ∈ 𝑁𝑈𝑅(𝐼) ∩𝑁𝑍𝑅(𝐼) ≠ ∅. 
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On the other hand, ∀𝑥 = 𝑎 + 𝑏𝐼 ∈ 𝑁𝑈𝑅(𝐼) ∩ 𝑁𝑍𝑅(𝐼)  where 𝑎 ≠ 0 𝑜𝑟 𝑏 ≠ 0 thus 𝑎 + 𝑏𝐼 ∈ 𝑁𝑈𝑅(𝐼)    𝑎𝑛𝑑 𝑎 +

𝑏𝐼 ∈ 𝑁𝑍𝑅(𝐼). Since 𝑎 + 𝑏𝐼 ∈ 𝑁𝑈𝑅(𝐼)  so 𝑎 ≠ −𝑏 and since 𝑎 + 𝑏𝐼 ∈ 𝑁𝑍𝑅(𝐼), there is 𝑐 + 𝑑𝐼 ∈

𝑅(𝐼) where 𝑐 ≠ 0 𝑜𝑟 𝑑 ≠ 0 such that (𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) = 0. In fact 𝑎 = 0 𝑎𝑛𝑑 𝑏 ≠ 0 because if we 

suppose 𝑎 ≠ 0, then we distinguish two cases,  𝑖𝑓 𝑎 ≠ 0 and 𝑏 = 0 then 𝑎(𝑐+ 𝑑𝐼)= 0 thus 𝑎𝑐+

𝑎𝑑𝐼 = 0, since 𝑎 ≠ 0 hence 𝑐 = 𝑑 = 0 and  this is contradictory to that 𝑥 = 𝑎 + 𝑏𝐼 ∈ 𝑁𝑍𝑅(𝐼). 

Now  if 𝑎 ≠ 0 and 𝑏 ≠ 0 then (𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) = 0 ⇒ 𝑎𝑐 + (𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑)𝐼 = 0 ⇒ 𝑎𝑐 = 0 and  𝑎𝑑 +

𝑏𝑐 + 𝑏𝑑 = 0
𝑎≠0
⇒  𝑐 = 0  and (𝑎 + 𝑏)𝑑 = 0. Since 𝑎 ≠ −𝑏 so 𝑑 = 0. This is contradictory to that 𝑥 ∈

𝑁𝑍𝑅(𝐼).Therefore, 𝑥 = 𝑏𝐼 ; 𝑏 ≠ 0. 

Corollary.3.15 In general, it is not necessarily only that 𝑁𝑈𝑅(𝐼) ∩𝑁𝑍𝑅(𝐼) = {𝑏𝐼 , 𝑏 ∈ 𝑈𝑅}, when 𝑅(I) is 

a unity neutrosophic ring. 

Example.3.16 In ℤ8(I), the element (4 + 𝐼) ∈ 𝑁𝑈ℤ8(I) ∩𝑁𝑍ℤ8(I), where it achieves 5𝐼(4 + 𝐼) =

𝐼  𝑎𝑛𝑑 (4 + 𝐼)(4 + 4𝐼) = 0. 

Theorem.3.17 In any neutrosophic field 𝑅(I) is achieved NU 𝑅(𝐼) ∩NId 𝑅(𝐼) = {1, I}. 

Proof.  

We note 1, 𝐼 ∈ 𝑁𝑈 𝑅(𝐼)   and  1, 𝐼 ∈ 𝑁𝐼𝑑 𝑅(𝐼), thus 1, 𝐼 ∈ 𝑁𝑈 𝑅(𝐼) ∩ 𝑁𝐼𝑑 𝑅(𝐼). 

At other hand, ∀𝑥 = 𝑎 + 𝑏𝐼 ∈ 𝑁𝑈 𝑅(𝐼) ∩𝑁𝐼𝑑 𝑅(𝐼)  where (𝑎 ≠ 0   𝑜𝑟 𝑏 ≠ 0) and 𝑎 ≠ −𝑏. 

                 ⇒ (∃𝑥−1 ∈ 𝑅(𝐼); 𝑥−1x = x𝑥−1 = 1  or  I )  and  𝑥2 = x    

Now if       𝑥−1x = 1 and 𝑥2 = 𝑥, then 𝑥−1x = 𝑥−1𝑥2 = 1. Subsequently 𝑥 = 1. 

If     𝑥−1x = I, 𝑥2 = 𝑥, then  𝑥−1𝑥2 = 𝑥−1x ⇒ (𝑥−1x)x = I ⇒ 𝐼𝑥 = 𝐼 

Since 𝐼(𝑎 + 𝑏𝐼) = 𝐼, so 𝑎 + 𝑏 = 1  

We have 𝑥2 = x  ⇒ (𝑎 + 𝑏𝐼)2 = 𝑎 + 𝑏𝐼 ⇒ 𝑎2 + (2𝑎𝑏 + 𝑏2)𝐼 = 𝑎 + 𝑏𝐼 ⇒ 𝑎2 = 𝑎   and 2𝑎𝑏 + 𝑏2 = 𝑏. 

Now we have   𝑎2 = 𝑎 and  2𝑎𝑏 + 𝑏2 = 𝑏 and  𝑎 + 𝑏 = 1. 

If  𝑎 ≠ 0, we have  𝑎2 = 𝑎 so 𝑎(𝑎 − 1) = 0 𝑡ℎ𝑢𝑠 𝑎 − 1 = 0. Therefore, 𝑎 = 1. And since 𝑎 + 𝑏 = 1 𝑡ℎ𝑢𝑠 

𝑏 = 0. Therefore 𝑥 = 1. 

Now if  𝑏 ≠ 0, we have   2𝑎𝑏 + 𝑏2 = 𝑏 . Since  𝑎 = 1 − 𝑏 so 2(1 − 𝑏)𝑏 + 𝑏2 = 𝑏 

⇒ 2𝑏 − 2𝑏2 − 𝑏 = 0 ⇒ 𝑏(1 − 𝑏) = 0 ⇒ 1 − 𝑏 = 0 ⇒ 𝑏 = 1. Since 𝑎 + 𝑏 = 1, so 𝑎 = 0. Therefore, 

𝑥 = 𝐼. So NU 𝑅(𝐼) ∩ NId 𝑅(𝐼) = {1, I} 

Example.3.18 In the neutrosophic field ℤ3(𝐼), we have NIdℤ3(𝐼) = {0,1, 𝐼, 1 + 2𝐼}  , NUℤ3(𝐼) =

{1,2, 𝐼, 2𝐼, 1 + 𝐼}. Clear that NIdℤ3(𝐼) ∩NUℤ3(𝐼) = {1, I} 

Corollary.3.19 In general, it is not necessarily only that NU 𝑅(𝐼) ∩ NId 𝑅(𝐼) = {1, I}, when 𝑅(I) is unity. 

Example.3.20 In the neutrosophic ring ℤ6(I), the element (3 + 4𝐼) ∈ 𝑁𝑈ℤ6(I) ∩ 𝑁𝐼𝑑ℤ6(I), where 

𝐼(3 + 4𝐼) = 𝐼    and (3 + 4𝐼)2 = 3 + 4𝐼 

Theorem.3.21 Assume that 𝑅(I) is unity. Therefore, every unit element is a neutrosophic regular. 

Proof. ∀𝑥 ∈ 𝑈 𝑅(𝐼) ⇒ ∃𝑥
−1 ∈ 𝑅(𝐼);   𝑥𝑥−1 = 1 ⇒ 𝑥𝑥−1𝑥 = 𝑥 ∈ 𝑁𝑅𝑒𝑔 𝑅(𝐼). 

Theorem.3.22 Assume that 𝑅(I) is unity. Then, for every neutrosophic unit element of shape 𝑏𝐼 , 𝑏 ≠

0 is a neutrosophic regular. 

Proof.  

Since 𝑏𝐼 ∈ 𝑁𝑈 𝑅(𝐼) thus ∃𝑥 ∈  𝑅(𝐼) such that  (𝑏𝐼)𝑥 = 𝑥(𝑏𝐼) = 𝐼. So (𝑏𝐼)𝑥(𝑏𝐼) = 𝑏𝐼 ∈ 𝑁𝑅𝑒𝑔 𝑅(𝐼). 
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Theorem.3.23 In any neutrosophic field 𝑅(I), every neutrosophic unit element of the shape 𝑎 +

𝑏𝐼 ; 𝑎 ≠ 0 and 𝑎 ≠ −𝑏 is a neutrosophic regular. 

Proof. Using theorem.2.5.  We have 𝑎 + 𝑏𝐼  is a unit. Therefore, it is a neutrosophic regular according 

to the theorem.3.21. 

Corollary.3.24 In general, in a unity neutrosophic ring, every neutrosophic unit element of the shape 

𝑎 + 𝑏𝐼 ; 𝑎 ≠ 0 ≠ 𝑏 is not necessarily a neutrosophic regular. 

Example.3.25 In the neutrosophic ring ℤ8(I), the element 4 + 𝐼 is a neutrosophic unit and achieves 

(4 + 𝐼)(4 + 𝐼) = 𝐼. We note 4 + 𝐼 ∉ 𝑁𝑅𝑒𝑔 ℤ8(I).  

Theorem.3.26 Assume that 𝑅(I) is unity. If 𝑥 ∈ 𝑁𝑁𝑖𝑙𝑅(𝐼), then 1 − 𝑥 , 𝐼(1 − 𝑥) =  𝐼 − 𝐼𝑥, 1 + 𝑥,

𝐼(1 + 𝑥) = 𝐼 + 𝐼𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼). 

Proof. We have 𝑥 ∈ 𝑁𝑁𝑖𝑙𝑅(I) ⇒ ∃𝑛 ∈ ℤ
+;  𝑥𝑛 = 0. On the other hand, we note  

(𝐼 − 𝐼𝑥)(𝐼 + 𝑥 + 𝑥2+ . . . . +𝑥𝑛−1) = 𝐼 + 𝐼𝑥 + 𝐼𝑥2+ . . . . +𝐼𝑥𝑛−1 − 𝐼𝑥 − 𝐼𝑥2− . . . . −𝐼𝑥𝑛−1 − 𝐼𝑥𝑛 = 1−

𝐼𝑥𝑛 = 𝐼. Therefore, 𝐼 − 𝐼𝑥 = 𝐼(1 − 𝑥) ∈ 𝑁𝑈𝑅(I). Using theorem.3.22,  𝐼 − 𝐼𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼). 

Finally, (𝐼 + 𝐼𝑥)(𝐼 − 𝑥 + 𝑥2 − 𝑥3+. . . . +(−1)𝑛−1𝑥𝑛−1) = 𝐼 − 𝐼𝑥 + 𝐼𝑥2 − 𝐼 𝑥3+.… . . +𝐼(−1)𝑛−1𝑥𝑛−1 +

𝐼𝑥 − 𝐼𝑥2 + 𝐼𝑥3− . . . . +𝐼(−1)𝑛−2𝑥𝑛−1 + 𝐼(−1)𝑛−1𝑥𝑛 = 𝐼 + 𝐼(−1)𝑛−1𝑥𝑛 = 𝐼 ⇒ 𝐼 + 𝐼𝑥 = (1 + 𝑥)𝐼 ∈

𝑁𝑈R(I). Using theorem.3.22,   𝐼 + 𝐼𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼). 

Similarly, we prove that if 𝑥 ∈ 𝑁𝑁𝑖𝑙R(I), then 1 − 𝑥, 𝑥 − 1 , 𝑥 + 1, 𝐼𝑥 − 𝐼 ∈ 𝑁𝑅𝑒𝑔R(I). 

Example.3.27 In the neutrosophic ring ℤ9(I), the element (3 + 3𝐼) is a neutrosophic simple 

nilpotent,,and we have 1 − (3 + 3𝐼) = 1 + 6 + 6𝐼 = 7 + 6𝐼. We note 

(7 + 6𝐼)(4 + 3𝐼)(7 + 6𝐼) = 7 + 6𝐼. Therefore, 7 + 6𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ9(I). 

𝐼 − 𝐼(3 + 3𝐼) = 𝐼 + 3𝐼 = 4𝐼. We note (4𝐼)(7)(4𝐼) = 4𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ9(I). 

3 + 3𝐼 − 1 = 2 + 3I. We have (2 + 3I)(5 + 6I)(2 + 3I) = 2 + 3𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ9(I). 

𝐼(3 + 3𝐼) − 𝐼 = 5𝐼; (5𝐼)(2)(5𝐼) = 5𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ9(I). 

On the other hand, 3 + 3𝐼 + 1 = 4 + 3𝐼, where (4 + 3𝐼)(7 + 6𝐼)(4 + 3𝐼) = 4 + 3𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ9(I). 𝐼(3 +

3𝐼) + 𝐼 = 7𝐼; (7𝐼)4(7𝐼) = 7𝐼 ∈ 𝑁𝑅𝑒𝑔ℤ9(I). 

Corollary.3.28 Assume that 𝑅(I) is unity. Now if 𝑥 = 𝑏𝐼 ∈ 𝑁𝑁𝑖𝑙𝑅(𝐼), then  

 𝐼 − 𝑥 and 𝐼 + 𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼). 

Proof. We have 𝑥 = 𝑏𝐼 ∈ 𝑁𝑁𝑖𝑙𝑅(𝐼) ⇒ ∃𝑛 ∈ ℤ
+;  𝑥𝑛 = (𝑏𝐼)𝑛 = 𝑏𝑛𝐼𝑛 = 0

𝐼𝑛≠0
⇒  𝑏𝑛 = 0 ⇒  𝑏 ∈ 𝑁𝑖𝑙𝑅(𝐼). On 

the other hand, 𝐼 − 𝑥 = 𝐼 − 𝑏𝐼 = 𝐼(1 − 𝑏). Using theorem.3.26, we have 𝐼(1 − 𝑏) ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼).  

Similarly, we prove that 𝐼 + 𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼). 

Corollary.3.29 In general, if 𝑅(I) is a unity neutrosophic ring and 𝑥 = 𝑎 + 𝑏𝐼 ∈ 𝑁𝑁𝑖𝑙𝑅(𝐼), then it is 

not necessarily that 𝐼 − 𝑥 , 𝐼 + 𝑥 ∈  𝑁𝑅𝑒𝑔𝑅(𝐼). 

Example.3.30 In the neutrosophic ring ℤ8(I), the element (4 + 4𝐼) is a neutrosophic simple 

nilpotent, while  𝐼 − (4 + 4𝐼) = 𝐼 + 4 + 4𝐼 = 4 + 5𝐼 ∉ 𝑁𝑅𝑒𝑔ℤ8(I), because if 𝑎 + 𝑏𝐼 ∈ ℤ8(I) ; 𝑎 ≠

0 𝑜𝑟 𝑏 ≠ 0. We have (4 + 5𝐼)(𝑎 + 𝑏𝐼)(4 + 5𝐼) = (4 + 5𝐼)(4 + 5𝐼)(𝑎 + 𝑏𝐼) = 𝐼(𝑎 + 𝑏𝐼) = (𝑎 + 𝑏)𝐼 ≠

4 + 5𝐼   ∀𝑎, 𝑏 ∈ ℤ8. 

Corollary.3.31 Assume that 𝑅(I) is unity. Now, if 𝑥1 = 𝑎 + 𝑏𝐼 ∈ 𝑁𝑈𝑅(𝐼) 𝑎𝑛𝑑  𝑥2 = 𝑐 + 𝑑𝐼 ∈ 𝑁𝑁𝑖𝑙𝑅(𝐼), 

then it is not necessarily that  𝑥1 − 𝑥2 , 𝑥1 + 𝑥2 ∈  𝑁𝑅𝑒𝑔𝑅(𝐼). 

Example.3.32 In the neutrosophic ring ℤ9(I), the element (3 + 3𝐼) ∈ 𝑁𝑆𝑁𝑖𝑙ℤ9(I),and 8𝐼 ∈ 𝑁𝑈𝑅(𝐼), we 

have 8𝐼 − (3 + 3𝐼) = 8𝐼 + 6 + 6𝐼 = 6 + 5𝐼 ∉ 𝑁𝑅𝑒𝑔ℤ9(I), because if  𝑎 + 𝑏𝐼 ∈ ℤ9(I) ; 𝑎 ≠ 0 𝑜𝑟 𝑏 ≠ 0. We 
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have (6 + 5𝐼)(𝑎 + 𝑏𝐼)(6 + 5𝐼) = (6 + 5𝐼)(6 + 5𝐼)(𝑎 + 𝑏𝐼) = 4𝐼(𝑎 + 𝑏𝐼) = (4𝑎 + 4𝑏)𝐼 ≠ 6 +

5𝐼  ∀𝑎, 𝑏 ∈ ℤ9. 

Theorem.3.33 In any neutrosophic field, 𝑅(I) is achieved 𝑅(I) = 𝑁𝑅𝑒𝑔𝑅(𝐼). 

Proof.  

∀𝑥 = 𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼). If 𝑥 = 0, then 𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼), because ∀𝑦 ∈ 𝑅(𝐼) so 0 = 0. 𝑦. 0   

If 𝑥 ≠ 0, then 𝑎 ≠ 0 𝑜𝑟 𝑏 ≠ 0. 

Now if 𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 = 0 ⇒ 𝑥 = 𝑎 ∈ 𝑈𝑅(𝐼). Using theorem. 3.21, 𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼) 

If  𝑎 = 0 𝑎𝑛𝑑 𝑏 ≠ 0 ⇒ 𝑥 = 𝑏𝐼 ∈ 𝑁𝑈𝑅(𝐼) . Using theorem. 3.22,   𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼) 

If  𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 ≠ 0 𝑎𝑛𝑑 𝑎 ≠ −𝑏.Using theorem. 2.6, 𝑥 ∈ 𝑈𝑅(𝐼) .  Using theorem. 3.21, 𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼) 

If 𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 ≠ 0 𝑎𝑛𝑑 𝑎 = −𝑏 ⇒ 𝑥 = 𝑎 − 𝑎𝐼;   (𝑎 − 𝑎𝐼)𝑎−1(𝑎 − 𝑎𝐼) = (1 − 𝐼)(𝑎 − 𝑎𝐼) = 𝑎 − 𝑎𝐼 = 𝑥 

                                       ⇒ 𝑥 ∈ 𝑁𝑅𝑒𝑔𝑅(𝐼) 

Another way to prove (in case 𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 ≠ 0 ).  

If  𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 ≠ 0 ⇒ ∃ 𝑥 + 𝑦𝐼 ∈ 𝑅(I);   𝑥 ≠ 0 𝑜𝑟 𝑦 ≠ 0 𝑎𝑛𝑑  𝑥, 𝑦 ∈ 𝑅. 

And it is achieved 𝑎 + 𝑏𝐼 = (𝑎 + 𝑏𝐼)(𝑥 + 𝑦𝐼)(𝑎 + 𝑏𝐼) = [𝑎2 + (2𝑎𝑏 + 𝑏2)𝐼](𝑥 + 𝑦𝐼) 

Suppose that 𝑐 = 𝑎2   ,    𝑑 = 2𝑎𝑏 + 𝑏2 ⇒ 𝑎 + 𝑏𝐼 = (𝑐 + 𝑑𝐼)(𝑥 + 𝑦𝐼) 

It's clear 𝑐 ≠ 0  in 𝑅(I) and that 𝑑 = 0  𝑜𝑟 𝑑 ≠ 0. 

If  𝑑 = 0 then 𝑎 + 𝑏𝐼 = 𝑐(𝑥 + 𝑦𝐼) = 𝑐𝑥 + 𝑐𝑦𝐼 ⇒  𝑎 = 𝑐𝑥, 𝑏 = 𝑐𝑦 ⇒ 𝑥 = 𝑐−1𝑎 , 𝑦 = 𝑐−1𝑏 ∈ 𝑅(I)  

If  𝑑 ≠ 0 ⇒ 𝑎 + 𝑏𝐼 = (𝑐 + 𝑑𝐼)(𝑥 + 𝑦𝐼) = 𝑐𝑥 + (𝑐𝑦 + 𝑑𝑥 + 𝑑𝑦)𝐼 ⇒  𝑎 = 𝑐𝑥  , 𝑏 = 𝑐𝑦 + 𝑑𝑥 + 𝑑𝑦 

              ⇒ 𝑥 = 𝑐−1𝑎 ∈ 𝑅(I) ⇒ 𝑏 = 𝑐𝑦 + 𝑑𝑐−1𝑎 + 𝑑𝑦 ⇒ 𝑏 = (𝑐 + 𝑑)𝑦 + 𝑑𝑐−1𝑎  

If  𝑐 + 𝑑 = 0 ⇒ 𝑏 = 0𝑦 + 𝑑𝑐−1𝑎 , ∀𝑦 ∈ 𝑅(I), in this case we will consider 𝑦 = 0 for ease. 

If, 𝑐 + 𝑑 ≠ 0 ⇒ 𝑏 − 𝑑𝑐−1𝑎 = (𝑐 + 𝑑)𝑦 ⇒ 𝑦 = (𝑐 + 𝑑)−1(𝑏 − 𝑑𝑐−1𝑎) ∈ 𝑅(I). 

Corollary.3.34 Let 𝑅(I) be a neutrophilic field, then every element 𝑎 + 𝑏𝐼 ;  𝑎 ≠ 0, 𝑎 = −𝑏  is 

neutrosophic regular, so there is  𝑎−1 + 𝑐𝐼 ;  ∀𝑐 ∈ 𝑅(𝐼)  where (𝑎 + 𝑏𝐼)(𝑎−1 + 𝑐𝐼)(𝑎 + 𝑏𝐼) = 𝑎 + 𝑏𝐼.  

Proof. Since 𝑎 ≠ 0 𝑎𝑛𝑑 𝑎 = −𝑏 , so ∀𝑐 ∈ 𝑅(𝐼). We note that  

   (𝑎 − 𝑎𝐼)(𝑎−1 + 𝑐𝐼)(𝑎 − 𝑎𝐼) = (1 + 𝑎𝑐𝐼 − 𝐼 − 𝑎𝑐𝐼)(𝑎 − 𝑎𝐼) = (1 − 𝐼)(𝑎 − 𝑎𝐼) = 𝑎 − 𝑎𝐼.  

Example.3.35 In the neutrosophic field ℤ7(𝐼), the element 5 + 6𝐼 is a neutrosophic regular, where 

𝑎 = 5 , 𝑏 = 6. Using theorem.3.33, we can find the element 𝑥 + 𝑦𝐼 that achieves neutrosophic 

regularity, 𝑐 = 𝑎2̅̅ ̅ = 4   , 𝑑 = 2𝑎𝑏 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 60 + 36̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 5    ; 𝑐 + 𝑑 = 4 + 5 = 2  ⇒ 𝑥 = 𝑐−1𝑎 = 2(5) = 3  

             ⇒ 𝑦 = (𝑐 + 𝑑)−1(𝑏 − 𝑑𝑐−1𝑎) = (2)−1[6 − (5.2.5)] = 4[6 − (1)] = 4[6 + 6] = 4(5) = 6 

Now easily it can be verified that 5 + 6𝐼 = (5 + 6𝐼)(3 + 6𝐼)(5 + 6𝐼) 

Example.3.36 In the neutrosophic field ℤ7(𝐼), the element 3 + 4𝐼 is a neutrosophic regular element 

where 𝑎 = 3 , 𝑏 = 4. Using theorem.3.33, we can find the element 𝑥 + 𝑦𝐼 that achieves neutrosophic 

regularity 

𝑐 = 𝑎2̅̅ ̅ = 2   , 𝑑 = 2𝑎𝑏 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 24 + 16̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 5    ; 𝑐 + 𝑑 = 2 + 5 = 0 ⇒ 𝑦 ∈ ℤ7 

⇒ 𝑥 = 𝑐−1𝑎 = 4(3) = 5 

Now easily it can be verified that ∀𝑦 ∈ ℤ7;  3 + 4𝐼 = (3 + 4𝐼)(5 + 𝑦𝐼)(3 + 4𝐼) 

Example.3.37 In the neutrosophic field ℤ11(𝐼), the element 3 + 8𝐼 is a neutrosophic regular element 

where 𝑎 = 3 , 𝑏 = 8. Using theorem.3.33, we can find the element 𝑥 + 𝑦𝐼 that achieves neutrosophic 

regularity 

𝑐 = 𝑎2̅̅ ̅ = 9   , 𝑑 = 2𝑎𝑏 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 48 + 64̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 2    ; 𝑐 + 𝑑 = 9 + 2 = 0 ⇒ 𝑦 ∈ ℤ11 ⇒ 𝑥 = 𝑐
−1𝑎 = 5(3) = 4 

Now easily it can be verified that 
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3 + 8𝐼 = (3 + 8𝐼)(4 + 𝑦𝐼)(3 + 8𝐼)  ∀𝑦 ∈ ℤ11. Suppose that  𝑦 = 0 ⇒ 3 + 8𝐼 = (3 + 8𝐼)4(3 + 8𝐼) 

Corollary.3.38 Assume that 𝑅(I) is a unity and 𝑎 + 𝑏𝐼 ∈  𝑅(𝐼) where 𝑎, 𝑏 ∈  𝑅𝑒𝑔𝑅(𝐼) , then it is not 

necessarily that 𝑎 + 𝑏𝐼 ∈  𝑁𝑅𝑒𝑔 𝑅(𝐼), and also if 𝑎 + 𝑏𝐼 ∈  𝑁𝑅𝑒𝑔 𝑅(𝐼), then it is not necessarily 𝑎, 𝑏 ∈

 𝑅𝑒𝑔𝑅. 

Example.3.39 In the neutrosophic ring ℤ4(𝐼), the element 3 + 3𝐼 is neutrosophic irregular, although 

𝑎 = 𝑏 = 3 = 3.3.3 ∈  𝑅𝑒𝑔ℤ4 , because if we assume that 

 3 + 3𝐼 = (3 + 3𝐼)(𝑥 + 𝑦𝐼)(3 + 3𝐼) = (3 + 3𝐼)(3 + 3𝐼)(𝑥 + 𝑦𝐼) = (1 + 3𝐼)(𝑥 + 𝑦𝐼) 

= 𝑥 + 𝑦𝐼 + 3𝑥𝐼 + 3𝑦𝐼 = 𝑥 + 3𝑥𝐼 ; 𝑥, 𝑦 ∈ ℤ4 

⇒ 3+ 3𝐼 = 𝑥 + 3𝑥𝐼 ⇒ 𝑥 = 3  and  3𝑥 = 3  𝑡ℎ𝑢𝑠 𝑥 = 3 and 𝑥 = 1, but this is a contradiction. Therefore, 

3 + 3𝐼 is a neutrosophic irregular. 

Example.3.40 In the neutrosophic ring ℤ8(𝐼), the element 𝑥 = 3 + 2𝐼 is a neutrosophic regular 

although 2 ∉  𝑅𝑒𝑔ℤ8, where 𝑥 = 𝑥𝑥𝑥. 

Theorem.3.41 If 𝑅(𝐼) is a unity neutrosophic regular neutrosophic ring, then 𝑅(𝐼) = 𝑁𝑈𝑅(𝐼) ∪ 𝑁𝑍𝑅(𝐼). 

Proof. Always be an investigator 𝑁𝑈𝑅(𝐼) ∪ 𝑁𝑍𝑅(𝐼) ⊆ 𝑅(𝐼). 

On other hand,  ∀ 𝑥 ∈ 𝑅(𝐼) where 𝑥 ∉ 𝑁𝑍𝑅(𝐼). Now since 𝑥 ∈ 𝑅(𝐼) so there is 𝑦  belonging to 𝑅(𝐼) that 

achieves 

𝑥 = 𝑥𝑦𝑥 so 𝑥 − 𝑥𝑦𝑥 = 0 thus 𝑥(1 − 𝑦𝑥) = 0
𝑥∉𝑁𝑍𝑅(𝐼)
⇒      1 − 𝑦𝑥 = 0 thus  𝑦𝑥 = 1 

𝑥 = 𝑥𝑦𝑥⇒  𝑥 − 𝑥𝑦𝑥 = 0⇒  (1 − 𝑥𝑦)𝑥 = 0
𝑥∉𝑁𝑍𝑅(𝐼)
⇒      1 − 𝑥𝑦 = 0 thus 𝑥𝑦 = 1 

Since 𝑥 ∈ 𝑁𝑈𝑅(𝐼) so 𝑥 ∈ 𝑁𝑈𝑅(𝐼) ∪𝑁𝑍𝑅(𝐼). Therefore, 𝑅(𝐼) ⊆ 𝑁𝑈𝑅(𝐼) ∪ 𝑁𝑍𝑅(𝐼). 

Example.3.42 We have ℤ3(𝐼) is a neutrosophic regular, which 𝑁𝑍ℤ3(𝐼) = {0, 𝐼, 2𝐼, 1 + 2𝐼, 2 +

𝐼}, 𝑁𝑈ℤ3(𝐼) = {1,2, 𝐼, 2𝐼, 1 + 𝐼, 2 + 2𝐼}, and we note ℤ3(𝐼) = 𝑁𝑈 ℤ3(𝐼) ∪𝑁𝑍 ℤ3(𝐼). 

Note.3.43 The condition of neutrosophic regularity in the unity neutrosophic ring is necessary for it 

to satisfy 𝑅(𝐼) = 𝑁𝑈𝑅(𝐼) ∪ 𝑁𝑍𝑅(𝐼).  

Example.3.44 We have ℤ(I) is a unity neutrosophic irregular neutrosophic ring and is not achieved 

ℤ(I) = 𝑁𝑈ℤ(I) ∪𝑁𝑍 ℤ(I). 

Theorem.3.45 If 𝑅(I) is a neutrosophic right (left) strongly regular neutrosophic ring, then  

𝑁𝑆𝑁𝑖𝑙𝑅(I) = {0}. 

Proof. ∀ 𝑥 ∈ 𝑁𝑆𝑁𝑖𝑙𝑅(I) ⇒ 𝑥
2 = 𝑥𝑥 = 0. Since 𝑥 ∈ 𝑅(I), there is 𝑦  belongs to 𝑅(𝐼) that achieves 𝑥 =

𝑦𝑥𝑥, therefore 𝑥 = 𝑦𝑥𝑥 = 𝑦0 = 0⇒ 𝑁𝑆𝑁𝑅(I) = {0}. 

Similarly, we prove that 𝑁𝑆𝑁𝑖𝑙𝑅(I) = {0} in the case of 𝑅(I) is a neutrosophic left strongly regular. 

 

 

Table 1. key distinctions between the classical and neutrosophic rings. 

 

unity neutrosophic ring 

R(I) 

unity classical ring 

  R 

𝑁𝑈𝑅(𝐼) ∩ 𝑁𝑍𝑅(𝐼) ≠ ∅  𝑈𝑅 ∩ 𝑍𝑅 = ∅ 1 
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If 𝑅(I) be a neutrosophic field, then NU 𝑅(𝐼) ∩

NId 𝑅(𝐼) = {1, I} 
U 𝑅 ∩ Id 𝑅 = {1} 2 

If 𝑅(I) be an infinite (finite) neutrosophic 

field, then there are elements that have an 

infinite (finite) number of neutrosophic 

inverse.                                                                  

 

Suppose R is a field then then every 

element 𝑥 ≠ 0 has inverse. 
3 
 

Suppose 𝑅(I) is a field then there are 

elements that non unit. 

If    𝑥1 ∈ 𝑁𝑈𝑅(𝐼)  𝑎𝑛𝑑 𝑥2 ∈ 𝑁𝑁𝑖𝑙𝑅(𝐼) then it is 

not necessarily that 𝑥1 − 𝑥2, 𝑥1 + 𝑥2 ∈

 𝑁𝑅𝑒𝑔𝑅(𝐼) 

If 𝑢 ∈ 𝑈𝑅  𝑎𝑛𝑑 𝑎 ∈ 𝑁𝑖𝑙𝑅  , then 𝑢 − 𝑎, 𝑢 +
𝑎 ∈  𝑅𝑒𝑔𝑅 4 

Every neutrosophic unit element is not 

necessarily a neutrosophic regular. 
Every unit element is regular. 5 

 

4. Conclusion and Future Works  

This study broadened the idea of neutrosophic regularity in neutrosophic rings. We 

investigated the qualities of neutrosophic regular elements and the most significant properties that 

connect them to neutrosophic elements in neutrosophic rings. We discovered numerous key findings 

that connect these components, some of which differ from what is known about classic rings. 

Furthermore, various examples were constructed to demonstrate the reliability of the study.  

We intend to investigate the characteristics of ideals in regular neutrosophic rings in the future.   
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Abstract: Neutrosophic sets play a crucial role in handling uncertainty, ambiguity, and indeterminacy 

in numerous theories. They are a kind of extension of the two types of fuzzy sets and intuitionistic 

fuzzy sets. In the context of modeling drug diffusion within human connective tissues, a differential 

equation is employed within the neutrosophic framework, utilizing Hukuhara differentiability. We 

establish the initial conditions and parameters in the form of Type 2 triangular single-valued 

neutrosophic numbers. This study explores the stability and existence of equilibrium points, providing 

precise solutions. To conduct numerical simulations across various values of the (α, β, γ)-cut of the 

triangular neutrosophic number, we utilize MATLAB 2018a. 

Keywords: Drug diffusion human model, Single valued triangular neutrosophic number of type 2, 

Hukuhara differentiability, (α, β, γ)-cut, Neutrosophic differential equation, Stability Analysis, 

Numerical study. 

 

 

1. Introduction 

The importance of mathematical modeling in the context of drug delivery within human tissues is 

increasing due to substantial advancements in information technology. This field has now become a 

consistently explored area in both academic research and commercial applications. Much like other 
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scientific disciplines, the development of pharmaceutical technology involves the prediction of how the 

delivered substance flows and behaves kinematically. The design, distribution, dose, and delivery of 

numerous pharmaceuticals inside the human body can all be optimized using mathematical formulas. 

Within a neutrosophic framework, the dynamics of drug release and transport processes can be 

elucidated with significantly greater precision than in classical contexts. The neutrosophic environment 

is aptly utilized to represent dynamic systems that may have inherent uncertainty. The concept of a 

fuzzy set, where each element is associated with a membership degree, was first introduced by L. Zadeh 

[1]. Subsequently, K. T. Atanassov extended this idea to intuitionistic fuzzy sets (IFS) [3], and F. 

Smarandache further expanded it to neutrosophic sets (NS) [6, 8, 9]. Apart from membership degrees, 

Intuitionistic Fuzzy Sets (IFS) also incorporate degrees of non-membership. In recent years, there has 

been extensive research on fuzzy differential equations, which are characterized by imprecise 

parameters [4, 5, 7, 10, 11, 12, 13, 18]. Subsequently, these differential equations were explained in an 

intuitive context [14, 18, 38]. Neutrosophic differential equations (NDE) [17, 23, 24] were developed to 

accommodate the uncertainty associated with the parameters. In contrast to Kaleva [4], who first 

introduced the idea of differential equations inside a fuzzy framework, Hukuhara [16] adapted the idea 

of differences and differentiation in interval-valued functions in order to solve the problem of 

unsolvable boundary value problems. Dey et al. [33] described topological subspace and produced 

several significant findings based on single valued neutrosophic numbers. Karak et al. [37] has applied 

the theory of single valued neutrosophic numbers to transportation problems. Acharya et al. [38] 

explored a prey refuge harvesting model employing intuitionistic fuzzy sets. In a different study [30], 

it was found that multi-criteria group decision-making problems could be applied to assess pollution 

characteristics in megacities using a trapezoidal neutrosophic set. In the realm of mathematical 

research, neutrosophic integral calculus plays a pivotal role. Biswas et al. [29] have used the concept of 

neutrosophic Riemann integral at (α,β,γ)-levels.  Biswas et al. [31] have alsostudied the Gaussian 

quadrature methods to evaluate numerical integration of netrosophic valued function. Gahlot et al. [25] 

have developed several distinctive types of single-valued neutrosophic numbers and employed them 

in multi-criteria decision-making. Sumanth and his team [21] found that a first-order neutrosophic 

differential equation, incorporating neutrosophic numbers, can be applied in bacterial culture models. 

Subsequently, Sumathi et al. [22] discussed methods for solving a second-order neutrosophic 

differential equation with a boundary condition, utilizing a trapezoidal neutrosophic number. In the 

article [39], they have studied the fractional order derivative in neutrosophic number and discussed 

nonlinear ecological model with Allee effect. As an extension of the Z-number, Borah [40] introduced 

the quadric partitioned single neutrosophic Z-number and investigated the operator and score function 

in the context of three multi-criteria decision-making scenarios during the COVID-19 pandemic. In our 

research, we focused on modeling drug diffusion in a neutrosophic environment within human tissues. 

We considered single-valued triangular neutrosophic numbers of type 2 to represent both the initial 

conditions for the drug diffusion quantity in the bloodstream at time t (g(t)) and the drug concentration 

in the bloodstream (). Additionally, we conducted stability analyses for the equilibrium points of the 

Neutrosophic Differential Equations (NDE) and obtained precise solutions for them. To validate our 

findings, we employed Matlab numerical simulations (version 2018a). 

1.1. Arrangement of the article: 
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Section 2 presents essential prerequisites. In Section 3, we outline the model for drug transportation 

within neutrophilic human connective tissues. Section 4 delves into the precise solutions of the model 

and conducts a stability analysis. Section 5 focuses on numerical simulations for different (α, β, γ)-cut 

values of the type 2 single-valued triangular neutrosophic number. Finally, Section 6 provides a 

summary of the paper. 

1.2. Motivation and novelty: 

Several natural factors or those related to human activities may affect the parameters of a biological 

model and this may lead to certain vagueness, impreciseness or indeterminacy in the values of the 

parameters. Various approaches are considered to tackle such situations, including interval differential 

equations (IDE), fuzzy differential equations (FDE), intuitionistic fuzzy differential equations (IFDE), 

and more. In IDE, parameters are constrained to specific intervals. Conversely, in the FDE method, 

parameters are assigned precise membership values. IFDE takes into account both membership and 

non-membership values of the parameters. However, the neutrosophic differential equation (NDE) is 

essential for addressing the inherent uncertainty in parameter values. 

 

2. Preliminaries: 

Definition 2.1: “Single valued neutrosophic set [19]: 

A neutrosophic setX̃neon the universe U is defined as 

X̃ne = {x: (ξX̃ne(x), ηX̃ne(x), ϛX̃ne(x)) ; x ∈ U} 

where ξX̃ne(x): U → [0,1], ηX̃ne(x): U → [0,1] and  ϛX̃ne(x): U → [0,1] represent the truth membership 

function, indeterminacy membership function and falsity membership function respectively such that   

0 ≤ ξX̃ne(x) + ηX̃ne(x) + ϛX̃ne(x) ≤ 3.” 

 

Definition 2.2: “(α, β, γ-cut) neutrosophic set [21]: The (α, β, γ-cut) neutrosophic set X̃ne(α,β,γ)
is defined 

asX̃ne(α,β,γ)
= {(ξX̃ne(x), ηX̃ne(x), ϛX̃ne(x)) : x ∈ U,ξX̃ne(x) ≥ α, ηX̃ne(x) ≤ β, ϛX̃ne(x) ≤ γ} where α, β, γare 

fixed numbers in [0,1] such that α + β + γ ≤ 3.” 

 

Definition 2.3: Triangular single valued neutrosophic number of type 2 (TrSVNN type 2) [19]: 

Let us consider a TrSVNNof type 2 as X̃ne = 〈[n11, n12, n13;m11,m12,m13; ρ, σ]〉 whose truth, 

indeterminacy and falsity membership function are as follows 

ξX̃ne(x) =

{
 
 

 
 
x − n11
n12 − n11

 ;       n11 ≤ x < n12

1      ;              x = n12
n13 − x

n13 − n12
 ;     n12 < 𝑥 ≤ n13

0               otherwise

 

 

ηX̃ne(x) =

{
 
 

 
 
m12 − x + ρ(x −m11)

m12 −m11

 ;         m11 ≤ x < m12

ρ               ;           x = m12

x − m12 + ρ (m13 − x)

m13 −m12

 ;          m12 < 𝑥 ≤ m13

0                   ;          otherwise

 



Neutrosophic Sets and Systems, Vol. 61, 2023 
________________________________________________________________________________________________14_ 
 

 
 

Supriya Mukherjee, Ashish Acharya, Animesh Mahata, Subrata Paul, Said Broumi, and Banamali Roy, Analysis of drug 
diffusion in human connective tissue in neutrosophic environment 

ϛX̃ne(x) =

{
 
 

 
 
m12 − x + σ(x −m11)

m12 −m11

 ;         m11 ≤ x < m12

ρ               ;           x = m12

x −m12 + σ (m13 − x)

m13 −m12

 ;          m12 < 𝑥 ≤ m13

0                   ;          otherwise

 

where,  

0 ≤  ξX̃ne(x) + ηX̃ne(x) + ϛX̃ne(x) ≤ 2,   x ∈ X̃neu  ,   ρ, σ ∈ (0, 1] 

The parametric form of TrSVNN type 2 is  

(X̃ne)α,β,γ = [ξne1(α), ξne2(α); ηne1(β), ηne2(β); ϛne1(γ), ϛne2(γ)] 

where 

ξne1(α) = n11 + α(n12 − n11), 

ξne2(α) = n13 − α(n13 − n12), 

ηne1(β) =
m12−ρm11−β(m12−m11)

1−ρ
, 

ηne2(β) =
m12−ρm13+β(m13−m12)

1−ρ
, 

ϛne1(γ) =
m12−σm11−γ(m12−m11)

1−σ
, 

ϛne2(γ) =
m12−σm13+γ(m13−m12)

1−σ
. 

Example 1: Consider the TrSVNN of type 2,X̃ne = (20,25,28;24,26,32; 0.4,0.5). 

The parametric form of TrSVNN of type 2 is represented as, 

ξne1(α) = 20 + 5α,ξne2(α) = 28 − 3α,ηne1(β) =
8.2−β

0.3
,ηne2(β) =

13.2+6β

0.6
,ϛne1(γ) =

14−2β

0.5
,ϛne2(γ) =

10+6β

0.5
. 

Definition 2.4 Hukuhara derivative on neutrosophic function [15]: “Let gne: (a, b) → NF(R) be a 

neutrosophic valued function and l0, l0 + h ∈ (a,b). gis hukuhara differentiable at l0, if ∃ an element 

gne
′ (l0) ∈ NF(R) such that for all h > 0 ,  

lim
h→0

gne(l0+h)⊖gne(l0)

h
= lim

h→0

gne(l0)⊖gne(l0−h)

h
= gne

′ (l0)is satisfied.” 

Remark [24]: “Let gne: (a, b) → NF(R) be a neutrosophic valued function. Letgne(t, α, β, γ) =

〈[gne1(t, α), gne2(t, α)], [g
′
ne1
(t, β), g′

ne2
(t, β)], [g′′

ne1
(t, γ), g′′

ne2
(t, γ)]〉is  its α,β,γ-cut . Ifgneis hukuhara 

differentiable at l0 such that 

ġne (l0, α) = [min{ġneu 1(l0: α), ġneu 2(l0: α)} , max{ġneu 1(l0: α), {ġneu 2(l0: α)}] if 

ġneu 1(l0: α), ġneu 2(l0: α) exist. 

ġ′(l0: β) = [min{ġ′ne 1(l0: β), ġ′ne 2(l0: β)} ,max{ġ′ne1(l0: β), ġ′ne 2(l0: β)}],ifġ′ne 1(l0: β), ġ′ne 2(l0: β) exist. 

ġ′′(l0: γ) = [min{g
′′
ne1
(l0: γ), g

′′
ne2
(l0: γ)} , max{g

′′
ne1
(l0: γ), g

′′
ne2
(l0: γ)}],ifg

′′
ne1
(l0: γ), g

′′
ne2
(l0: γ) exist. 

Definition 2.5. Neutrosophic differential equation (NDE) [22]: “A first order initial value problem of 

the form 
df(t)

dx
= kf1(t), f(t0) = f10 is called a neutrosophic differential equation if any one or both of k  

and f0 are neutrosophic numbers. 

Let the solution of the above neutrosophic differential equation be f(x) and its (α,β,γ)- cut be 
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f1(t, α, β, γ) = 〈[f11(t, α), f12(t, α)], [f
′
11(t, β), f

′
12(t, β)], [f

′′
11(t, γ), f

′′
12(t, γ)]〉 

In general the solution is considered to be strong if 

i) 
df11(t,α)

dα
> 0,

df12(t,α)

dα
< 0, ∀ α ∈ [0,1],   f11(t, 1) ≤ f12(t, 1). 

ii) 
df′11(t,β)

dβ
< 0,

df′12(t,β)

dβ
> 0, ∀ β ∈ [0,1],   f′11(t, 0) ≤ f′12(t, 0). 

iii) 
df′′11(t,γ)

dγ
< 0,

df′′12(t,γ)

dγ
> 0, ∀ γ ∈ [0,1], f′′11(t, 0) ≤ f′′12(t, 0). 

Otherwise, the solution is a weak solution.” 

 

2.1 Properties on neutrosophic number [23]: 

Proposition 2.1.1 Let ũ and ũ be two neutrosophic numbers then, 

(i) (ũ ⊕ ṽ )(α,β,γ) = ũ(α,β,γ)⊕ ṽ(α,β,γ). 

(ii) (ũ ⊖ ṽ )(α,β,γ) = ũ(α,β,γ)⊖ ṽ(α,β,γ). 

(iii) (ũ ⊗ ṽ )(α,β,γ) = ũ(α,β,γ)⊗ ṽ(α,β,γ). 

(iv) (λũ )(α,β,γ) = λũ(α,β,γ), for λ≠ 0 ∈ ℝ. 

 

Example 2: If �̃�𝑛𝑒 = (14,18,22;17,21,25; 0.5,0.4) and �̃�𝑛𝑒 = (12,15,18;13,20,26; 0.5,0.4) are two TrSVNN 

of type 2, then following properties are given as, 

i) Addition: �̃�𝑛𝑒 + �̃�𝑛𝑒 = (26,33,40; 30,41,51; 0.5,0.4). 

ii) Substraction: �̃�𝑛𝑒 − �̃�𝑛𝑒 = (2,3,4; 4,1,1; 0.5,0.4). 

iii) Multiplication: :�̃�𝑛𝑒 × �̃�𝑛𝑒 = (168,270,396;221,420,650;0.5,0.4). 

iv) Multiplication by a constant: λ�̃�𝑛𝑒 = (42,54,66;51,63,75; 0.5,0.4),where λ=3. 

 

3. Mathematical formulation: 

In biological processes, the relation between the amount of drug intake and concentration of drug in 

human body at different sites through various compartments has substantial impact on the drug 

diffusion process.  Thus, owing to its necessity to study the dynamics of the quatmtity of drug diffusion 

within blood at time t along with its concentration we consider the following differential equation  

u
dg(t)

dt
= −λg(t),            g(t0) = g0,   t ∈ [t0,∞)                                        ……………………….(1) 

Where, g(t) is the amount of drug diffusion at time t, u is the body's blood volume and λ ( >  0) is the 

rate of concentration of drug.g0is the amount of drug diffusion at initial time t = t0. 

 

4. In neutrosophic environment the analysis of the drug diffusion human tissues model system: 

From (1), we have considered the following three cases: 

i) The amount of drug diffusion in blood at initial time t0i.e.g̃0 is TrSVNN Type 2.  

ii) The concentration of drug in the blood stream λ̃is neutrosophic number TrSVNN Type 2 

iii) Both g̃0 and λ̃ are TrSVNN Type 2.  

 

4.1 Case 1: Amount of drug diffusion in blood at initial time 𝐭𝟎i.e.  �̃�𝟎 is TrSVNN Type 2. 

 

The system of NDDE (1) can be written as 

u
dg1(t,α)

dt
= −λg2(t, α), 

u
dg2(t,α)

dt
= −λg1(t, α), 
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u
dg1
′ (t,β)

dt
= −λg′

2
(t, β), 

 u
dg2
′ (t,β)

dt
= −λg′

1
(t, β), 

u
dg′′1(t,γ)

dt
= −λg′′

2
(t, γ), 

u
dg′′2(t,γ)

dt
= −λg′′

1
(t, γ),                                                                              …………………..(2) 

where α,β,γ –cut of g(t)  is  〈[g1(t, α), g2(t,α)], [g
′
1
(t, β), g′

2
(t, β)], [g′′

1
(t, γ), g′′

2
(t, γ)]〉 and  the initial 

conditions g̃0are: gi(0, α) = g0i(α); gi
′(0, β) = g0i

′ (β);  g′′
i
(0, γ) = g′′

0i
(γ); i = 1, 2. 

The particular solution of (2), we have 

g1(t, α) =
1

2
(g01(α)+ g02(α))e

−
λt

u −
1

2
(g02(α) − g01(α))e

λt

u , 

g2(t, α) =
1

2
(g02(α) − g01(α))e

λt

u +
1

2
(g01(α) + g02(α)) e

−
λt

u , 

g′1(t, β) =
1

2
(g′01(β) + g′02(β))e

−
λt

u −
1

2
(g′02(β) − g′01(β))e

λt

u , 

g′2(t, β) =
1

2
(g′02(β) − g′01(β))e

λt

u +
1

2
(g′01(β) + g′02(β)) e

−
λt

u , 

g′′1(t, γ) =
1

2
(g′′01(γ) + g′′02(γ))e

−
λt

u −
1

2
(g′′02(γ) − g′′01(γ))e

λt

u , 

g′′2(t, γ) =
1

2
(g′′02(γ) − g′′01(γ))e

λt

u +
1

2
(g′′

01
(γ) + g′′

02
(γ)) e−

λt

u .                        ……………(3) 

 

Equilibrium point: We get one equilibrium point say E1
∗ = (0,0,0,0,0,0) for the model (2).  

Stability Analysis: 

Lemma 1: E1
∗ is unstable. 

 Proof: The variational matrix V11 at E1
∗ which is given by 

 

V11 =

(

 
 
 
 
 
 
 

   0 −
λ

u
0 0  0 0

−
λ

u
0 0 0 0   0

  0  0 0 −
λ

u
0 0

 0 0 −
λ

u
 0 0  0

0 0 0 0 0 −
λ

u

0 0 0 0 −
λ

u
0 )

 
 
 
 
 
 
 

. 

The characteristic equation becomes, 

y1
6 − 3

λ2

u2
y1
4 + 3

λ4

u4
y1
2 −

λ6

u6
= 0  wherey1is the eigenvalue ofV11. 

Obviously, the eigenvalues of the matrixV11 are
λ

u
, −

λ

u
,
λ

u
, −

λ

u
,
λ

u
, −

λ

u
, the equilibrium point E1

∗ is saddle 

node and the system is unstable at E1
∗. 

 

4.2 Case 2: The concentration of the drug in the bloodstream is represented as a Neutrosophic 

number of TrSVNN Type 2. 

Considering the NDDE (1) becomes the following system as 

u
dg1(t,α)

dt
= −λ2(α)g1(t, α), 

u
dg2(t,α)

dt
= −λ1(α)g2(t, α), 

u
dg1
′′(t,β)

dt
= −λ′2(β)g

′′
1
(t, β), 
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u
dg2
′′(t,β)

dt
= −λ′1(β)g

′
2
(t, β), 

u
dg′′1(t,γ)

dt
= −λ′′2(γ)g

′′
1
(t, γ), 

u
dg′′2(t,γ)

dt
= −λ′′1(γ)g

′′
2
(t, γ).                                                                                 ………………………..(4)  

  

With initial condition, 

gi(0, α) =  g
′
i
(0, β) = g′′

i
(0, γ) = g0, i = 1, 2. 

Solving the above differential equation (4), we get the exact solution as 

g1(t, α) = g0e
−
λ2(α)

u
t;g2(t, α) = g0e

−
λ1(α)

u
t, 

g′
1
(t, β) = g0e

−
λ′2(β)

u
t;    g2

′ (t, β) = g0e
−
λ′1(β)

u
t, 

g′′
1
(t, γ) = g0e

−
λ′′2(γ)

u
t  ;    g′′

2
(t, γ) = g0e

−
λ′′1(γ)

u
t.                                      ……………….(5) 

 

Equilibrium point: We get one equilibrium point say E2
∗ = (0,0,0,0,0,0) of the system (4). 

Stability Analysis: 

Lemma – 2: E2
∗ is LAS (Locally asymptotically stable).       

Proof: The variational matrixV12 at E2
∗ is given by, 

 

V12 =

(

 
 
 
 
 

−
λ2(α)

u
     0 0             0                 0                  0

0       −
λ1(α)

u
0           0               0                      0

0
0
0
0

   0
  0
  0
  0

    −
λ′2(β)

u

  0
0
0

 0

−
λ′1(β)

u

 0
 0

       0                 0
0                 0

   − 
λ"2(γ)

u

    0

         0

    − 
λ"1(γ)

u )

 
 
 
 
 

. 

The eigenvalue of the matrixV12 are −
λ2(α)

u
,−

λ1(α)

u
, −

λ′2(β)

u
, − 

λ′1(β)

u
, −

λ′′2(γ)

u
, −

λ′′1(γ)

u
. 

Obviously, the equilibrium point E2
∗is LAS.   

 

4.3 Case 3: Both �̃�𝟎 and �̃�  are TrSVNN Type 2.  

In this case the system (1) as follows, 

u
dg1(t,α)

dt
= −λ2(α)g1(t, α), 

u
dg2(t,α)

dt
= −λ1(α)g2(t, α), 

u
dg1
′ (t,β)

dt
= −λ′2(β)g

′
1
(t, β), 

u
dg2
′ (t,β)

dt
= −λ′1(β)g

′
2
(t, β), 

u
dg′′

1
(t, γ)

dt
= −λ′′2(γ)g

′′
1
(t, γ), 

u
dg′′2(t,γ)

dt
= −λ′′1(γ)g

′′
2
(t, γ).                                      ………………………….(6) 

Considering the initial situation,, 

gi(0, α) = g0i(α); gi
′(0, β) = g0i

′ (β);  g′′
i
(0, γ) = g′′

0i
(γ);   i = 1, 2. 

We obtain the precise respond to as by solving the differential equations of model system (6).  

g1(t, α) = g01(α)e
−
λ2(α)

u
t;g2(t, α) = g02(α)e

−
λ1(α)

u
t; 

g′
1
(t, β) = g′01(β)e

−
λ′2(β)

u
t;   g2

′ (t, β) = g′
02
(β)e−

λ′1(β)

u
t 
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g′′
1
(t, γ) = g′′

01
(γ)e−

λ′′2(γ)

u
t  ;    g′′

2
(t, γ) = g′′

02
(γ)e−

λ′′1(γ)

u
t.                                               …………………(7) 

 

Equilibrium point: We get one equilibrium point say E3
∗ = (0,0,0,0,0,0) for the model (6). 

Stability Analysis: 

Lemma – 3: E3
∗ is LAS. 

Proof: Proof similar to that in Lemma - 2. 

 

5. Numerical study: We have conducted extensive numerical simulations to substantiate and verify the 

outcomes of our analysis regarding the drug diffusion model NDDE. These simulations have been 

carried out using Matlab (version 2018a) and Matcont. 

 

Part A: Study of the nature of NDDE when initial conditions are TrSVNN-Type 2 

Let us assume the TrSVNN type 2initial condition g0̃ = (350,400,450; 50,60,40; 0.3,0.6)..The parametric 

representation of the triangular single valued Neutrosophic number of type2 can be formulated as 

follows: 

g01(α) = 350 + 50α , g02(α) = 400 − 50α;g′01(β) =
450−100β

7
,g′02(β) =

390+100β

7
 ;    

g′′01(γ) = 75 − 25γ;g′′02(γ) = 30 + 25γ;                                          …………….   (8) 

Applying the value provided in equation (8) with u = 1 we construct Figure 1(a), (b), (c), (d), forα =

0, β = 0.3, γ = 0.6, α = 0.3, β = 0.6, γ = 0.8, α = 0.6, β = 0.8 γ = 1, and α = 1, β = 1, γ = 1  respectively. 

 

(a)       (b) 
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                                      (c)                                                                           (d) 

 

Figure 1. Neutrosophic fuzzy solution: Figure 1(a) for α=0,β=0.3,γ=0.6; Figure 1(b) for α=0.3,β=0.6,γ=0.8; 

Figure 1(c) for α=0.6,β=0.8,γ=1; Figure 1(d) for α=1,β=1,γ=1 where t ∈ [0,3]. 

 

Here, in Figure 1(a) we see thatg1(t, α) ≤ g2(t, α); g
′
1
(t, β) = g′

2
(t, β); g′′

1
(t, γ) = g′′

2
(t, γ).   

In Figure 1(b), Figure 1(c), Figure 1(d) we observe that g1(t, α) ≤ g2(t,α); g′1(t, β) ≤ g′2(t, β); 

g′′1(t, γ) ≤ g′′2(t, γ)for t ∈ [0,3].Clearly, Figure1 shows the dynamical behaviour of 

g1(t, α), g2(t, α), g
′
1
(t, β), g′

2
(t, β); g′′

1
(t, γ), g′′

2
(t, γ) relative to time (t) for t ∈ [0,3] , forα = 0, β = 0.3, γ =

0.6, α = 0.3, β = 0.6, γ = 0.8, α = 0.6, β = 0.8 γ = 1, and α = 1, β = 1, γ = 1  

Now, setting 𝑢 = 1 and 𝑡 = 1 with the initial conditions specified in equation (8),we list the solution of 

(2) in Table 1 where α ∈ [0,1],β ∈ [0.3,1] and γ ∈ [0.6,1]. 

𝛼 𝑔1(𝑡, 𝛼) 𝑔2(𝑡, 𝛼) 𝛽 𝑔1
′(𝑡, 𝛽) 𝑔2

′ (𝑡, 𝛽) 𝛾 𝑔1
′′(𝑡, 𝛾) 𝑔2

′′(𝑡, 𝛾) 
0 16.9016   283.3473          

0.1 30.2239   270.0250          

0.2 43.5462   256.7027          

0.3 56.8685  243.3804     0.3 22.5187    22.5187       

0.4 70.1908  230.0581     0.4 18.7123    26.3250       

0.5 83.5130  216.7358    0.5 14.9059    30.1314        

0.6 96.8353   203.4136    0.6 11.0996    33.9378     0.6 22.5187    22.5187    

0.7 110.1576   190.0913 0.7 7.2932    37.7441    0.7 12.9961    32.9795 

0.8 123.4799   176.7690 0.8 3.4868    41.5505   0.8 3.4735    43.4404 

0.9 136.8022   163.4467 0.9 -0.3195    45.3569 0.9 -6.0491    53.9012 

1 150.1244   150.1244 1 -4.1259    49.1632 1 -15.5716    64.3621 

 

Table 1 displays Neutrosophic fuzzy solution for system (2) at time t=1. 

 

Table 1 reflects that g1(t, α) is increasing, g2(t, α) is decreasing; g′1(t, β) exhibits decreasing while 

g′2(t, β) displays an increasing; g′′1(t, γ) exhibits decreasing whereas g′′2(t, γ) demonstrate increasing 

for α ∈ [0,1], β ∈ [0.3,1]and  γ ∈ [0.6,1] at t=1.  

 

 
(a) (b) 
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                                  (c)                                                                     (d) 

 

Figure 2: (3D plot) 

Figure 2(a): Pictorial diagram of 3D plot of g1(t, α), g2(t, α) with respect to time(t) and α where t ∈ [0,3], 

α∈ [0,1];  

Figure 2(b): Pictorial diagram of 3D plot of g′1(t, β), g′2(t, β) with respect to time(t) and  β  where t ∈
[0,3],  β∈ [0.3,1]; 

Figure 2(c): Pictorial diagram of 3D plot of g′′1(t, γ), g′′2(t, γ) with respect to time(t) and  γ where t ∈
[0,3], γ∈ [0.6,1]; 

Figure 2(d): Pictorial diagram of 3D plot of g1(t, α), g2(t, α), g′1(t, β), g′2(t, β), g′′1(t, γ), g′′2(t, γ) with 
respect to time(t) and α,β,γ where α ∈ [0,1], β ∈ [0.3,1], γ ∈ [0.6,1]. 
 

Figure 1, Figure 2 and Table 1 clearly depicts that, for all values of α within the interval [0,1], g1(t, α) 

exhibits strictly increasing whereas g2(t, α) displays strictly decreasing  i. e.  g1(t, 1) ≤ g2(t, 1); for all 

values of β within the interval[0.3,1], g′1(t, β) demonstrate strictly decreasing whereas g′2(t, β) exhibits 

strictly increasing i. e  g′
1
(t, 0.3) ≤ g′

2
(t, 0.3); for all values of γ within the interval [0.6,1], g′′1(t, γ) display 

strictly decreasing whereas g′′2(t, γ) exhibits strictly increasing,g′′1(t, 0.6) ≤ g
′′
2
(t, 0.6). 

  

Part B: Study of the nature of NDDE when �̃� isTrSVNN-Type 2 

Let us assume the TrSVNN Type 2 values of λ̃ to be  λneu = (0.85,0.95,1.05; 0.5,0.6,0.7; 0.3,0.6) 

Its parametric form is given by, 

λ1(α) = 0.85 + 0.1α; λ2(α) = 1.05 − 0.1α;λ′1(β) =
4.5−β

7
; 

λ′2(β) =
3.9+β

7
;λ′′1(γ) =

3−γ

4
;  λ′′2(γ) =

1.8+γ

4
                                                                                     .………………(9) 

 

 
                                      (a)                                                                      (b) 
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                                        (c)                                                                     (d) 

 

Figure  3. Neutrosophic fuzzy solution:  Figure 3(a) for α=0,β=0.3,γ=0.6; Figure 3(b) for 
α=0.6,β=0.8,γ=1; Figure 3(c) for α=0.3,β=0.5,γ=0.8; Figure 3(d) for α=1,β=1,γ=1 where t ∈ [0,12]. 
 

In Figure 3(a), we see that g1(t, α) ≤ g2(t, α);  g′1(t, β) = g′2(t, β); g′′1(t, γ) = g′′2(t, γ). 
Figure 3(b), Figure 3(c) shows that g1(t, α) ≤ g2(t, α);  g′1(t, β) ≤ g′2(t, β); g′′1(t, γ) ≤ g

′′
2
(t, γ) and Figure 

3(d) shows thatg1(t, α) = g2(t, α), g′1(t, β) = g′2(t, β);g′′1(t, γ) = g′′2(t, γ); for t ∈ [0,12]. From Figure 3 
we observe  that the system (4) is LAS at E3

∗ . 
 

Taking u=1, t=6 with TrSVNN Type 2 values of λ̃ described in (9), the solutions for equation (4) are 

exhibited in Table 2 where α ∈ [0,1], β ∈ [0.3,1]  and γ ∈ [0.6,1]. 

 

𝛼 𝑔1(𝑡, 𝛼) 𝑔2(𝑡, 𝛼) 𝛽 𝑔1
′(𝑡, 𝛽) 𝑔2

′ (𝑡, 𝛽) 𝛾 𝑔1
′′(𝑡, 𝛾) 𝑔2

′′(𝑡, 𝛾) 
0 0.8634     2.8658          

0.1 0.9168     2.6989          

0.2 0.9735     2.5417          

0.3 1.0336     2.3937     0.3 12.8423    12.8423       

0.4 1.0975     2.2544     0.4 11.7874    13.9916       

0.5 1.1654     2.1231     0.5 10.8191    15.2437        

0.6 1.2374     1.9995     0.6 9.9304    16.6080     0.6 12.8423    12.8423    

0.7 1.3139     1.8831     0.7 9.1147    18.0943     0.7 11.0535    14.9206 

0.8 1.3951     1.7734     0.8 8.3660    19.7136 0.8 9.5139    17.3352 

0.9 1.4814     1.6702     0.9 7.6789    21.4778 0.9 8.1887    20.1406 

1 1.5729     1.5729 1 7.0481    23.4000 1 7.0481    23.4000 

 

Table 2 displays Neutrosophic fuzzy solution for the system described by (4) when t=6. 
 

Table 2 reflects that g1(t, α) exhibits increasing,g2(t,α) demonstrate decreasing; g′1(t, β) display 

decreasing whereas g′2(t, β) exhibits increasing;g′′1(t, γ) display decreasing and g′′2(t, γ) demonstrate 

increasing for α ∈ [0,1],β ∈ [0.3,1]andγ ∈ [0.6,1] and t=6.  
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          (a)                                                                 (b) 

 

 
                               (c)                                                              (d) 

 
Figure. 4: (3D plot) 

Figure 4(a): Pictorial diagram of 3D plot of g1(t, α), g2(t, α) with respect to time(t) and α where t ∈ [0,6], 

α∈ [0,1];  

Figure 4(b): Pictorial diagram of 3D plot of g′1(t, β), g′2(t, β) with respect to time(t) and  β  where t ∈
[0,6],  β∈ [0.3,1]; 

Figure 4(c): Pictorial diagram of 3D plot of g′′1(t, γ), g′′2(t, γ) with respect to time(t) and  γ where t ∈
[0,6], γ∈ [0.6,1]; 

Figure 4(d): Pictorial diagram of 3D plot of g1(t, α), g2(t, α), g′1(t, β), g′2(t, β), g′′1(t, γ), g′′2(t, γ) with 
respect to time(t) and α,β,γ where α ∈ [0,1], β ∈ [0.3,1], γ ∈ [0.6,1]. 
Figure 3, Figure 4  and Table 2 clearly depicts that  for all values of α within the interval [0,1], g1(t, α) 

exhibits strictly increasing whereas g2(t, α) displays strictly decreasing  i. e.  g1(t, 1) ≤ g2(t, 1); for all 

values of β within the interval[0.3,1],g′1(t, β) demonstrate strictly decreasing whereas g′2(t, β) exhibits 

strictly increasing i. e  g′
1
(t, 0.3) ≤ g′

2
(t, 0.3); for all values of γ∈ [0.6,1], g′′1(t, γ) display strictly decreasing 

whereas g′′2(t, γ) exhibits strictly increasing,g′′1(t, 0.6) ≤ g
′′
2
(t, 0.6).  

 

Part C: Study the nature of NDDE when initial condition and �̃� are TrSVNN-Type 2. 
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(a) (b) 

 
                                    (c)                                                                    (d) 

 

Figure 5: Neutrosophic fuzzy solution:  Figure 5(a) for α=0,β=0.3,γ=0.6; Figure 5(b) for 
α=0.3,β=0.6,γ=0.8; Figure 5(c)for α=0.6,β=0.8,γ=1;Figure5(d) for α=1,β=1,γ=1 where t ∈ [0,12] 

. 
In Figure 5(a) we see that   g1(t, α) ≤ g2(t, α);  g′1(t, β) = g′2(t, β);g′′1(t, γ) = g′′2(t, γ); Figure 5(b), Figure 
5(c) and Figure 5(d) shows that g1(t, α) ≤ g2(t,α); g′1(t, β) ≤ g′2(t, β);g′′1(t, γ) ≤ g′′2(t, γ) for t ∈ [0,12]. 
From Figure 5 we observe that E3

∗  is LAS. 
Considering u=1, t=8 with initial conditions stated in (8) as well as (9), the solutions for  equation (6) 
are shown in Table 3 where α ∈ [0,1],β ∈ [0.3,1]  and  γ ∈ [0.6,1]. 
 

α g1(t, α) g2(t, α) β g1
′ (t, β) g2

′ (t, β) γ g1
′′(t, γ) g2

′′(t, γ) 
0 0.0789     0.5015           
0.1 0.0867     0.4578           
0.2 0.0952     0.4179           
0.3 0.1046     0.3814     0.3 0.4938     0.4938        
0.4 0.1148     0.3481     0.4 0.4300     0.5668        
0.5 0.1261     0.3176     0.5 0.3742     0.6502        
0.6 0.1384     0.2898     0.6 0.3255     0.7454     0.6 0.4938     0.4938     
0.7 0.1519     0.2644     0.7 0.2829     0.8543     0.7 0.3875     0.6534 
0.8 0.1666     0.2411     0.8 0.2457     0.9785 0.8 0.3034     0.8594 
0.9 0.1828     0.2199     0.9 0.2132     1.1203 0.9 0.2372     1.1247 
1 0.2005     0.2005 1 0.1849     1.2821 1 0.1849     1.4653 

 

Table 3 displays Neutrosophic fuzzy solution for the system described by (6) when t=8. 



Neutrosophic Sets and Systems, Vol. 61, 2023 
________________________________________________________________________________________________24_ 
 

 
 

Supriya Mukherjee, Ashish Acharya, Animesh Mahata, Subrata Paul, Said Broumi, and Banamali Roy, Analysis of drug 
diffusion in human connective tissue in neutrosophic environment 

Table 3 reflects that g1(t, α) exhibits increasing,g2(t,α) demonstrate decreasing; g′1(t, β) display 

decreasing whereas g′2(t, β) exhibits increasing; g′′1(t, γ) display decreasing and g′′2(t, γ) demonstrate 

increasing for α ∈ [0,1],β ∈ [0.3,1]andγ ∈ [0.6,1] and t=8.  

 
                                 (a)                                                                         (b) 

 

 
(b) (d) 

 

Figure  6.  (3D plot). 

Figure 6(a): Pictorial diagram of 3D plot of g1(t, α), g2(t, α) with respect to time(t) and α where t ∈ [0,8], 

α∈ [0,1];  

Figure 6(b): Pictorial diagram of 3D plot of g′1(t, β), g′2(t, β) with respect to time(t) and  β  where t ∈
[0,8],  β∈ [0.3,1]; 

Figure 6(c): Pictorial diagram of 3D plot of g′′1(t, γ), g′′2(t, γ) with respect to time(t) and  γ where t ∈
[0,8], γ∈ [0.6,1]; 

Figure 6(d): Pictorial diagram of 3D plot of g1(t, α), g2(t, α), g′1(t, β), g′2(t, β), g′′1(t, γ), g′′2(t, γ) with 
respect to time(t) and α,β,γ where α ∈ [0,1], β ∈ [0.3,1], γ ∈ [0.6,1]. 
 

From Figure 5, Figure 6 and Table 3 clearly depicts, for all values of α within the interval [0,1], g1(t, α) 

exhibits strictly increasing whereas g2(t, α) displays strictly decreasing  i. e.  g1(t, 1) ≤ g2(t, 1); for all 

values of β within the interval[0.3,1],g′1(t, β) demonstrate strictly decreasing whereas g′2(t, β) exhibits 

strictly increasing i. e  g′
1
(t, 0.3) ≤ g′

2
(t, 0.3); for all values of γ∈ [0.6,1], g′′1(t, γ) display strictly decreasing 

whereas g′′2(t, γ) exhibits strictly increasing,g′′1(t, 0.6) ≤ g
′′
2
(t, 0.6). Hence by definition 2.6, the solution 

to equation (1), g̃(t, α, β, γ) qualifies as a robust Neutrosophic fuzzy solution. 

 

6. Comparison of the model in both environment: 

 

The suggested system on drug diffusion in connective tissue plays an important role in determination of 

the amount of drug in blood stream with passage of time. However, due to certain parameters like 
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environment factors, etc there arises an uncertainty in such biological models. To overcome such 

uncertainties, we adopt the concept of Neutrosophic environment and convert the given differential 

equations of the proposed biological model  toneutrosophic differential equations (NDE) by taking three 

cases: (i) the quantity of drug diffusion within blood at initial time t0i.e. g̃0 is TrSVNN Type 2, (ii) the 

concentration of drug within  bloodstream λ̃is neutrosophic number TrSVNN Type 2, (iii) both g̃0 and 

λ̃ are TrSVNN Type 2.We have generated the exact solution and stability criteria for each of the three 

cases. The results and theorems have been verified numerically and graphically. From Table 1, Figure 

1 and Figure 2 we observe that all the solutions are strong neutrosophic solutions of the converted 

system (2) when t=1. From Figure 3 as well as Figure 4 we see that all solutions are strong neutrosophic 

solutions of the converted system (3) when 𝑡 = 6 using Table 2. Similar conclusions are drawn are for 

converted system (4) from Table 3, Figure 5 and Figure 6 when t=8. 

 

7. Conclusion 

 

In a neutrosophic situation, we have effectively handled the differential equation relating to medication dispersion 

in human connective tissues. The initial condition and the parameter are represented by single-valued triangular 

neutrosophic numbers. Neutrosophic values are considered for the initial state, aiming to capture the nuances of 

truth and falsity in the dynamics of drug diffusion within human tissues. As an example, when α is set to 0.3, the 

membership degree or truth value of g̃(t,α, β, γ) needs to exceed 0.3. In other words, the drug diffusion level g(t) 

at time t, as defined in equation (7), should be true in more than 30 out of 1000 instances. To achieve this, the 

truth values of the initial condition, where g(t0) = g0, should be g01 = 345 within the range [350, 400) and g02 =

 385 within the range (400, 450]. Similarly, when β = 0.6 the value of g̃(t,α, β, γ)in case of indeterminacy must 

be less than 0.6 and when γ = 0.8 the falsity membership must be less than 0.8. Corresponding values of the initial 

conditions are evaluated from (8). Thus, in a neutrosophic environment, the values of the initial conditions are 

more appropriately applicable in all the three possibilities, i.e truth, indeterminacy and falsity. Analogous 

explanations hold for the TrSVNN Type 2 values of g0̃ = (350,400,450;50,60,40; 0.3,0.6) and λ̃ =

(0.85,0.95,1.05; 0.5,0.6,0.7;0.3,0.6). The above discussion enables us to determine whether a drug is potent 

enough to be used in regard to its therapeutic advantages. In a broader sense, this study enables us to understand 

the appropriateness of pharmaceutical intervention in various kinds of human and animal pathogenesis.In future 

more research works can be carried out on bio-mathematical modelling using several types of neutrosophic 

numbers. 
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Abstract: Language, as an abstract system and a creative act, possesses inherent complexity due to 

its contextual nature and the variability of its meaning. The context of language is shaped by an 

individual's empirical knowledge, derived from observation and experience. Decision-making 

challenges related to language encompass both quantitative and qualitative factors, which further 

contribute to the intricacy of the process. Decision-making challenges may involve both quantitative 

and qualitative aspects of further subdivided attributes. However, linguistic knowledge cannot be 

easily quantified by existing methods. Therefore, current methods are ineffective in handling 

linguistic knowledge. Using mathematical values, such as fuzzy, intuitionistic, and neutrosophic, in 

decision-making problems without following linguistic knowledge rules can result in vagueness and 

imprecision. To address these issues, this paper presents a comprehensive generic model. The model 

introduces the linguistic set structure of the hypersoft set (LHSS) as a solution for decision-making 

problems. The definition of fundamental operations, including AND, NOT, OR complement, and 

negation, is proposed alongside illustrative examples and their respective properties. Additionally, 

operational laws for the linguistic hypersoft set are introduced to effectively address decision-making 

challenges. By implementing the proposed aggregate operators and operational laws, linguistic 

quantifiers can be converted into numerical values, thereby enhancing the accuracy and precision of 

the hypersoft set structure in decision-making scenarios. 

 

Keywords: Linguistic quantifiers; linguistic set; hypersoft set; aggregate operators; multi-criteria 

decision-making (MCDM).    

1. Introduction 

These influential 1975 papers, (Zadeh, 1975, 1975a, 1975b) introduces the concept of a linguistic 

variable and explores its application in approximate reasoning, specifically focusing on their use in 

decision-making. These work expands on the understanding of linguistic variables' potential in 

practical scenarios. To implement these concepts in real life problems the scientists explored the areas, 

and now these concepts are widely used in decision-making process i.e. multi-criteria decision-
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making (Hwang & Yoon, 1981).  By considering multiple criteria, MCDM aims to enhance the 

decision-making process, improve transparency, and facilitate the selection of robust solutions that 

align with the desired goals and objectives. To address the challenges associated with decision-

making and linguistic preferences (Delgado, Verdegay, & Vila, 1992) presented a paper focuses on 

linguistic decision-making models. It presents different approaches and techniques for modeling 

decision making in linguistic contexts, contributing to the understanding of decision-making 

processes. The method based on linguistic aggregation operators for decision-making with linguistic 

preference relations was proposed by (Xu, 2004).  A semantic model for computing with flexible 

linguistic expressions was proposed by (Jiang et al., 2021), and (Wu et al., 2023) paper presents a 

multiple criteria decision-making method that incorporates heterogeneous linguistic expressions. it 

enhances the understanding of linguistic expressions and their use in decision-making processes. It 

was difficult to deal with the problems having doubt, uncertainty, vagueness, ambiguity, and 

indeterminacy. The concept of linguistic to mathematic was unclear, then to overcome the problem 

some set theories were proposed by the researchers. In next paragraph we present those theories with 

application to MCDM. 

The groundwork for the concept of fuzzy set (membership values) to deal with uncertainty and 

its use in information and control systems was presented by (Zadeh, 1965). Ambiguity was another 

problem faced by the decision-makers then (Attanasov, 1986) came up with the concept of 

intuitionistic set, in which each alternative is assigned a membership and non-membership degree 

with the condition that their sum is not greater than 1. To deal with the problem having 

indeterminacy (Smarandache, 1998, 2002, 2002a, 2003, 2005, 2006) came up with the concept of 

neutrosophic set theory, which has membership, non-membership, and indeterminacy values. Many 

researchers came up with the concept of extensions and by merging linguistic with fuzzy, 

intuitionistic, neutrosophic sets, and other hybrid structures. The application in multi-criteria 

decision-making under fuzzy linguistic sets was proposed by (Joyce, 1976), the study illustrates the 

use of fuzzy in linguistic environment. The application in multi-criteria decision-making under 

hesitant fuzzy linguistic term sets was proposed by (Dinesh et al., 2022) The group decision-making 

process under linguistic intuitionistic fuzzy sets using aggregation operators was presented by (Garg 

& Kumar, 2018). The application of linguistic sets to group decision making and a method to handle 

complex decision scenarios was presented by (Wang, Ju, & Liu, 2019) based on q-rung orthopair 

fuzzy linguistic sets. The novel method for multi-attribute decision-making using interval-valued 

Pythagorean fuzzy linguistic information was published by (Du et al., 2017). The research addresses 

the challenges of decision making when dealing with interval-valued linguistic data. The new 

methods for addressing MCDM problems using linguistic neutrosophic sets in which the 

interrelationships among individual data are considered was proposed by (Li, Zhang  & Wang, 

2017).  

In decision-making problems decision-makers deal with the alternatives having attributes, the 

mathematical notation given by (Molodtsov, 1999), the paper presents the foundational concepts of 

soft set theory. It establishes the groundwork for the study of soft sets and their applications in 

various domains, including decision-making and data analysis. (Maji & Roy, 2002) the paper applies 

soft sets to a decision-making problem. The research demonstrates the practical utility of soft sets in 

real-world decision-making scenarios, showcasing their effectiveness in capturing uncertainty. To 
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further enhance the capabilities in decision-making and data analysis (Ali et al., 2009) came up with 

some new operations in soft set theory. The concept of the soft set was later extended to fuzzy soft 

set (Maji, Biswas, & Roy, 2001), intuitionistic soft set (Deli &  Çağman, 2013), neutrosophic soft set 

(Amalini et al., 2020), and other hybrid structures. 

To incorporate uncertainty a comprehensive framework for group decision-making was 

proposed by (Tao et al., 2015). The paper introduces uncertain linguistic fuzzy soft sets and their 

applications in group decision-making. The research of (Aiwu & Hongjun, 2016) proposes fuzzy-

valued linguistic soft set theory and applies it to multi-attribute decision making. This work presents 

a novel approach to handle linguistic uncertainty and supports decision-making processes. The 

multi-attribute decision-making method using belief-based probabilistic linguistic term sets was 

proposed by (Liu, Fei, & Mi, 2023). For the selection of medical waste treatment stations based on 

linguistic q-rung orthopair fuzzy numbers (Ling, Li, & Lin, 2021) proposes a methodology.  To 

handle linguistic uncertainty in group decision-making processes (Vijayabalaji & Ramesh, 2018) 

proposed a method to solve these problems.  

Novel approaches have been demonstrated by recent studies that have advanced a variety of 

sectors (Saqlain, 2023). Decision-making utilizing Pythagorean fuzzy Hamacher aggregation 

operators has been extended by (Paul, Jana, & Pal, 2023), (Du, Wang, & Lu, 2023), maximized wireless 

power transmission with an improved approach, and (Haq & Saqlain, 2023) used machine learning 

for attendance tracking in a pandemic (Zulqarnain & Saqlain, 2023) using convolutional neural 

networks were used to evaluate text readability in higher education, while (Saqlain et al., 2023) 

presented a multi-polar interval-valued neutrosophic hypersoft set for uncertainty and decision-

making. These projects demonstrate (Stević et al., 2023) a dedication to creativity and cross-domain 

problem-solving (Tešić et al., 2023).  The strategic framework for leveraging artificial intelligence in 

future marketing decision-making has been explored by (Hicham, Nassera, & Karim, 2023). 

Furthermore, (Saqlain et al., 2023) introduced proportional distribution-based Pythagorean fuzzy 

fairly aggregation operators in multi-criteria decision-making .    

 

In MCDM, if attributes are further sub-divided, then existing set structures cannot be applied, 

thus (Smarandache , 2018) proposed the concept of a hypersoft set, which is the generalization of soft 

set theory. Hypersoft set (HSS) theory tends to consider further divided attributes or attributes 

bifurcation. The theory of HSS has been applied to solve both, MCDM and MADM problems [23]. 

Another beauty of HSS, it can be molded as per the DM requirements. The hypersoft set structure 

have been extended to a fuzzy hypersoft set (Yolcu & Öztürk, 2021; Jafar & Saeed, 2021; Debnath, 

2021) , intuitionistic hypersoft set (Yolcu, Smarandache & Öztürk, 2021) and neutrosophic hypersoft 

set (Smarandache, 2018) and (Saqlain et al., 2020). These papers represent a diverse range of research 

contributions in the field of linguistic variables, fuzzy sets, soft sets, hypersoft sets and their 

applications in decision-making and data analysis.  

1.1. Novelty 

Comprehending language as an abstract system and a creative process poses significant 

complexity due to its inherent reliance on context. This context is intricately influenced by an 

individual's empirical knowledge, which is acquired through keen observation and personal 

experience. When confronted with the need to make decisions involving further subdivided 
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attributes, a combination of quantitative and qualitative factors comes into play. Nevertheless, the 

absence of a standardized methodology for assigning numerical values to language hinders existing 

approaches from effectively managing linguistic knowledge operations. The practice of 

indiscriminately assigning mathematical values (such as fuzzy, intuitionistic, and neutrosophic) to 

decision-making problems, without taking linguistic rules into account, leads to ambiguity and 

inaccuracy. Consequently, the primary objective of this paper is to propose an inclusive model that 

directly addresses these issues. The paper introduces the concept of the linguistic set structure of the 

hypersoft set (LHSS) as a proficient approach to tackle the challenges encountered in decision-making 

processes. 

1.2. Contribution 

This paper makes significant contributions to the field of decision-making by addressing the 

limitations of existing approaches in dealing with linguistic knowledge. By introducing the LHSS 

model, this research offers a novel solution to the challenges posed by the abstract and context-

dependent nature of language. The definition of basic operations and the proposal of operational 

laws for the LHSS provide a systematic framework for converting linguistic quantifiers into 

numerical values. This framework increases the accuracy and precision of decision-making 

processes, enabling more reliable and effective outcomes. The implementation of the proposed 

aggregate operators and operational laws offers a practical tool for solving decision-making issues 

and improving the overall understanding and application of linguistic knowledge. This contribution 

has the potential to benefit various fields that rely on language-based decision-making, such as 

natural language processing, sentiment analysis, and artificial intelligence, among others. 

1.3. Scientific Validity 

The scientific validity of this paper's approach lies in its rigorous and systematic treatment of the 

challenges associated with language and decision-making. By acknowledging the abstract and 

context-dependent nature of language, the authors have developed a novel model, the linguistic set 

structure of the hypersoft set (LHSS), to address these complexities. The paper provides a clear 

definition of basic operations and operational laws for the LHSS, ensuring the consistency and 

reproducibility of the proposed framework. Additionally, the authors illustrate the application of the 

LHSS through examples and properties, further enhancing the scientific validity of their approach. 

The proposed model offers a systematic and mathematically grounded methodology to convert 

linguistic quantifiers into numerical values, thereby improving the accuracy and precision of 

decision-making processes. The scientific validity of this research is further supported by its potential 

applicability to various domains that rely on linguistic knowledge. Overall, the systematic approach, 

rigorous analysis, and practical examples presented in this paper contribute to its scientific validity 

and establish a foundation for further research in the field of decision-making with linguistic 

elements. operational laws and aggregate operators are indispensable in the development of 

Mechanics of advanced manufacturing and robotics. They provide the necessary tools and 

frameworks for decision-making, optimization, and performance evaluation. By leveraging these 

tools effectively, engineers and researchers can enhance the efficiency, effectiveness, and overall 

performance of advanced manufacturing processes and robotic systems, leading to advancements in 

these fields and enabling the realization of advanced technologies and automation. 
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The power of the proposed method explored in this research lies in its ability to effectively address 

the challenges posed by the abstract nature of language and its context-dependent meaning in 

decision-making processes. The method offers a systematic and mathematically grounded 

framework, the linguistic set structure of the hypersoft set (LHSS), which enables the conversion of 

linguistic quantifiers into numerical values.  One of the key strengths of this method is its ability to 

handle complicated decision-making scenarios. By incorporating weighted linguistic quantifiers or 

linguistic variables, the method allows for the consideration of multiple factors and attributes with 

varying degrees of importance. This extension enhances the versatility of the proposed framework 

and enables a more comprehensive evaluation of complex decision criteria. Furthermore, the 

proposed method enhances the accuracy and precision of decision-making processes by providing 

operational laws and aggregate operators that facilitate the conversion of linguistic knowledge into 

numerical values. This conversion allows for quantitative analysis and comparison, leading to more 

reliable and informed decision outcomes. 

Moreover, the generic nature of the proposed model makes it applicable to various domains that rely 

on language-based decision-making. From natural language processing to sentiment analysis and 

artificial intelligence, the method has the potential to contribute to a wide range of fields.  In 

advanced manufacturing and robotics, operational laws establish the logical rules and principles for 

manipulating and transforming data, whether it is linguistic or numerical in nature. These laws 

provide a foundation for modeling and analyzing various aspects of manufacturing processes and 

robotic systems. By applying operational laws, engineers and researchers can develop algorithms, 

control strategies, and optimization techniques that ensure the efficient and effective operation of 

advanced manufacturing systems and robotic devices. 

1.4. Layout of proposed research 

The following shows that, how the work has been organized: The fundamental ideas of linguistic 

hypersoft set (LHSS) are broken down in detail in section 2. In section 3, we present a definition, 

notions, and examples of LHSS with basic properties and operations. Operational laws on LHSS has 

been proposed in section 4. The aggregate operator Linguistic Hypersoft Ordered Weighted 

Geometric Averaging Operator (LHSOWGAO) and Linguistic Hypersoft Weighted Geometric 

Averaging Operator (LHSWGAO) has been presented in section 5.  In part 6, an MCDM framework 

is described for the “LHSS Algorithm to solve MCDM Problem” with a case study to demonstrate 

the benefits of the proposed algorithm. The findings of the study have been summarized, along with 

their significance, in section 7, and concluded with future directions. The layout of the paper also 

presented by Figure 1. 
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Figure 1. Layout of the paper 

 

2. Preliminary section 

In this section, we go through some basic definitions that support the construction of the framework 

of this paper: linguistic set, linguistic quantifiers, soft set, and hypersoft set (HSS). 

 

Definition 2.1. Linguistic Set 

Let Κ = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡} 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1 𝑎𝑛𝑑 𝑛 ∈ ℝ+,  be a finite strictly increasing 

set.  For example, if n = 1 then, 

 Κ = {𝜅1, 𝜅2, 𝜅3} = {𝑣𝑒𝑟𝑦 𝑏𝑎𝑑, 𝑓𝑎𝑖𝑟, 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑} 

For Linguistic set, which is under consideration, the relationship to its elements  𝜅𝑡  and the 

superscript 𝑡 will be strictly increasing. To define the continuity this set is extended to Κ =

{𝜅𝛽 ∶ 𝛽 ∈ ℝ} 𝑤ℎ𝑒𝑟𝑒 𝛽 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑠𝑡𝑟𝑖𝑐𝑙𝑦 𝑖𝑛𝑐𝑟𝑎𝑠𝑖𝑛𝑔. 

 

Definition 2.2. Linguistic Quantifiers 

The linguistic quantifiers were introduced by Zadeh [48-51] also known as absolute quantifiers and 

are represented below in Table 1. Let Κ = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡} 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1 𝑎𝑛𝑑 𝑛 ∈

ℝ+,  be a finite strictly increasing set.   

Table 1: linguistic quantifiers 

 Quantifiers  

Low Medium High 
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Definition 2.3. Soft Set 
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A pair ( ℱ, Å ) is known as soft set (over ℧)  𝑖𝑓𝑓  ℱ ∶  Å ⟶ 𝑃(℧) . It means, soft set is the 

parametrized subset of the universe ℧. 

 

Definition 2.4. Hypersoft Set 

Let, 𝒶1, 𝒶2, 𝒶3, … , 𝒶𝑡  for t ≥ 1  be t distinct parameters, whose corresponding parametric values 

are respectively the sets ℒ1, ℒ2, ℒ3, … , ℒ𝑡 with ℒ𝑖 ∩ ℒ 𝑗  = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , t}.  

Then the pair (ℱ, 𝕃) where𝕃 =  {ℒ1 × ℒ2 × ℒ3 × … × ℒ𝑡 : t is finite and real valued} is known as 

Hypersoft set over ℧ with mapping ℱ ∶  𝕃 = ℒ1 × ℒ2 × ℒ3 × … × ℒ𝑡  ⟶ 𝑃(℧). 

 

3. Linguistic Hypersoft Set (LHSS) 

 

In this section, we propose LHSS with its set structure properties. 

Definition 3.1: Linguistic Hypersoft Set (LHSS)  

 

Let, α1, α2, α3, … , α𝑡  for t ≥ 1  be t distinct parameters, whose corresponding parametric values 

are respectively the sets Υ1, Υ2, Υ3, … , Υ𝑡 with Υ𝑖 ∩ Υ𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, …, t}.  

Then the pair (Γ, Λ) whereΛ =  {Υ1 × Υ2 × Υ3 × … × Υ𝑡 : t is finite and real valued} is known as 

hypersoft set over Ω with mapping Γ ∶ Λ = Υ1 × Υ2 × Υ3 × … × Υ𝑡  ⟶ 𝑃(Ω).  

Then the linguistic hypersoft set will be, 

Γ({M(Ω)(𝒾)}) ∶ 𝑀 ⊆ Λ  &  𝒾 ∈ Κ = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡} 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1, 𝑛 ∈ ℝ+} 

  

Numerical Example 3.1.1: 

Let Ω = {ℴ1, ℴ2, ℴ3, ℴ4} and set 𝑀 = {ℴ2, ℴ3} ⊂  Ω. 

Consider the parameters be:  α1 = 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, α2 = gender, α3 = color, and their respective 

parametric values are: 

Nationality = Υ1 = {𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝐶ℎ𝑖𝑛𝑒𝑠𝑒, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛} 

Gender = Υ2 = {𝑀𝑎𝑙𝑒, 𝐹𝑒𝑚𝑎𝑙𝑒} 

Color = Υ3 = {𝑃𝑖𝑛𝑘, 𝐵𝑙𝑎𝑐𝑘, 𝑂𝑟𝑎𝑛𝑔𝑒} 

Then the function Γ ∶ Λ = Υ1 × Υ2 × Υ3  ⟶ 𝑃(Ω) and assume the hypersoft set, 

Γ({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒}) = {ℴ2, ℴ3} = 𝑀 

The linguistic hypersoft set (LHSS),  Γ({M(Ω)(𝒾)}) ∶ 𝑀 ⊆ Λ  &  𝒾 ∈ Κ = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡}   

𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1, 𝑛 ∈ ℝ+} Can be given as; 

Γ({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒}) = {ℴ2, ℴ3} = {ℴ2(𝐻𝑖𝑔ℎ), ℴ3(𝑁𝑜𝑛𝑒)} = 𝐿. 

Similarly, 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿1 

Γ2({𝐶ℎ𝑖𝑛𝑒𝑠𝑒, 𝐹𝑒𝑚𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ1(ℎ𝑖𝑔ℎ), ℴ4(𝑙𝑜𝑤)} = 𝐿2 

Γ3({𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ1(𝑚𝑒𝑑𝑖𝑢𝑚), ℴ3(𝑛𝑜𝑛𝑒)} = 𝐿3 

 

Definition 3.2: Let (Γ1, Λ1) = 𝐿1 be a LHSS, then the subset  𝐿𝑠 can be defined as; 

 Γ2 ∶ Λ𝑠 = Υ1 × Υ2 × Υ3 × … × Υ𝑓  ⟶ 𝑃(Ω) 𝑤𝑖𝑡ℎ 𝑠 ≤ 𝑛. 𝐴𝑙𝑠𝑜,  Γ2({𝐿𝑠(Ω)(𝒾)}) ∶ Λ𝑠 ⊆ Λ  &  𝒾 ∈ Κ =

{𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡}   

𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1, 𝑛 ∈ ℝ+} 
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1. 𝐿𝑠 ⊆ 𝐿1; 

2. ∀ℓ ∈ 𝐿𝑠 , Γ2(ℓ) ⊆  Γ1(ℓ). 

This holds only when linguistic variables 𝐾𝑖  satisfy the property i.e.  each 𝐾𝑖  of (Γ𝑠 , Λ𝑠) =

𝐾𝑖  of (Γ1, Λ1). 

 

Example 3.2.1: Recall Example 1. The function Γ2 ∶ Λ𝑠 = Υ1 × Υ2  ⟶ 𝑃(Ω) and assume the hypersoft 

set,  Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒}) = {ℴ2(ℎ𝑖𝑔ℎ)} = 𝐿𝑠. Where Λ𝑠 ⊆ Λ  and 𝐿𝑠 ⊆ 𝐿1.  

  

Definition 3.3: Empty linguistic hypersoft set (ELHSS) can be defined as; 

 Γ1 ∶ Λ𝐸 = Υ1 × Υ2 × Υ3 × … × Υ𝑛  ⟶ 𝑃(Ω)  

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒𝑎𝑐ℎ Υi (𝑖 ≤ 𝑛)𝑖𝑠 𝑒𝑚𝑝𝑡𝑦.  Γ1({𝐿𝐸(Ω)(𝒾)}) ∶ Λ𝐸 ⊆ Λ  &  𝒾 ∈ Κ =

{𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡}  𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1, 𝑛 ∈ ℝ+}. 

1. (Γ1, Λ𝐸)𝜙  = 𝐿𝐸  if ∀Γ1(ℓ)= 𝜙 : ∀ℓ ∈ Λ𝐸 . 

 

Example 3.3.1: Recall Example 1. The function Γ1 ∶ Λ𝐸 = Υ1 × Υ2  × Υ3 ⟶ 𝑃(Ω) and assume the 

Hypersoft set,  Γ1(∅) = ∅ = 𝐿𝐸 . Where Λ𝐸 ⊆ Λ .  

 

Definition 3.4: The AND operation on two (Γ1, Λ1) = 𝐿1 and (Γ2, Λ2) = 𝐿2 linguistic hypersoft set 

LHSS can be defined by; 

1. 𝐿1 ⋀  𝐿2 = (Γ3, Λ3) =  𝐿3 ; max of (𝐾𝑖) 

2. (ℓ𝑖 , ℓ𝑗) = ℓ𝑘 = 𝐿3 where ℓ𝑖 ∈ 𝐿1 𝑎𝑛𝑑 ℓ𝑗 ∈ 𝐿2  with 𝑖 ≠ 𝑗; 

3. Γ3(ℓ𝑖 , ℓ𝑗) = Γ1(ℓ𝑖) ∪ Γ2(ℓ𝑗) 

Definition 3.5: The OR operation on two (Γ1, Λ1) = 𝐿1 and (Γ2, Λ2) = 𝐿2 linguistic hypersoft set LHSS 

can be defined by. 

1. 𝐿1 ⋁  𝐿2 = (Γ3, Λ3) =  𝐿3; 

2. (ℓ𝑖 , ℓ𝑗) = ℓ𝑘 = 𝐿3 where ℓ𝑖 ∈ 𝐿1 𝑎𝑛𝑑 ℓ𝑗 ∈ 𝐿2  with 𝑖 ≠ 𝑗; 

3. Γ3(ℓ𝑖 , ℓ𝑗) = Γ1(ℓ𝑖) ∩ Γ2(ℓ𝑗) 

Definition 3.6: The NOT operation on (Γ, Λ) linguistic hypersoft set LHSS can be defined by; 

1. ∼ 𝐿 = ∼ (Γ, Λ) =∼ Υ1 ×∼ Υ2 ×∼ Υ3 × … ×∼ Υ𝑛 ; 

2. ∼ 𝐿 =∼ ∏ ℓ𝑖 : 𝑖 = 1,2,3, … , 𝑛 

3. |∼ 𝐿| = 𝑛 − 𝑇𝑢𝑝𝑙𝑒 

Definition 3.7: The Complement on (Γ, Λ) = 𝐿 linguistic hypersoft set LHSS can be defined by; 

1. (Γ, Λ)∼ = (Γ∼, ∼ 𝐿) ; Γ∼: ∼ 𝐿 ⟶ 𝑃(Ω).  

2.  Γ∼(∼ ℓ) = Ω\ Γ(ℓ); ∀ℓ ∈ 𝐿 

Proposition 3.8:  Let (Γ, Λ) = 𝐿, (Γ1, Λ1) = 𝐿1, (Γ2, Λ2) = 𝐿2 and (Γ3, Λ3) = 𝐿3 be linguistic hypersoft 

set LHSS then following holds; 

1. (Γ1, Λ1)  ⊆ (Γ1, Λ1) 

2. (Γ1, ΛE)ϕ ⊆  (Γ1, Λ1) 

3. ∼ (∼ 𝐿) = 𝐿 

4. ∼ (Γ1, ΛE)ϕ = Ω 

5. If (Γ1, Λ1) ⊆  (Γ2, Λ2)  𝑎𝑛𝑑 (Γ2, Λ2) ⊆  (Γ2, Λ2)  then (Γ1, Λ1) =  (Γ2, Λ2)  

𝐼𝑓𝑓 each 𝐾𝑖of (Γ1, Λ1) = 𝐾𝑖  of (Γ2, Λ2). 
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This property holds only when linguistic variables satisfy the property i.e.  each 𝐾𝑖of (Γ1, Λ1) =

𝐾𝑖of (Γ2, Λ2). 

6. If (Γ1, Λ1) ⊆  (Γ2, Λ2)  𝑎𝑛𝑑 (Γ2, Λ2) ⊆  (Γ3, Λ3)  then (Γ1, Λ1) ⊆  (Γ3, Λ3).  

This property holds only when linguistic variables satisfy the property i.e.  each 𝐾𝑖  of (Γ1, Λ1) =

𝐾𝑖  of (Γ2, Λ2) = 𝐾𝑖of (Γ3, Λ3). 

Proof: Recall 𝐿, 𝐿1, 𝐿2 𝑎𝑛𝑑 𝐿3 from example 3.3.1. 

1. Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ2, ℴ3} = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿1              ∵

ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡)  ∈  𝐿1 𝑎𝑙𝑠𝑜 ℴ3(𝑙𝑜𝑤) ∈  𝐿1  

⇒  ℴ2, ℴ3  ∈  𝐿1  

Thus (Γ1, Λ1) ⊆ 𝐿1 =  (Γ1, Λ1).  

2. Consider  𝐿1 =  (Γ1, Λ1) 

  ∵   𝜙 ∈  𝐿1    ⇒  (Γ1, ΛE)ϕ  ∈  𝐿1  

Thus (Γ1, ΛE)ϕ  ⊆ 𝐿1 =  (Γ1, Λ1) (Γ1, ΛE)ϕ ⊆  (Γ1, Λ1). 

3. Consider  𝐿 = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑁𝑜𝑛𝑒)},  apply definition 6, 𝑤𝑒 𝑔𝑒𝑡, (∼ 𝐿) =

 {ℴ1(𝑛𝑜𝑛𝑒), ℴ4(𝑝𝑒𝑟𝑓𝑒𝑐𝑡)} again apply definition 6, we get;  

∼ (∼ 𝐿) = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑁𝑜𝑛𝑒)} = 𝐿  

4. Consider  (Γ1, ΛE)ϕ =  ϕ ⇒  ϕ ∈  𝐿𝐸  taking complement, ∼ (𝐿𝐸) = Ω\ Γ1(ℓ) = ϕ;  

⇒ ∼ (𝐿𝐸) = Ω  

ℎ𝑒𝑛𝑐𝑒    ∼ (Γ1, ΛE)ϕ = Ω. 

5. Consider, (Γ1, Λ1) = {ℴ1(ℎ𝑖𝑔ℎ), ℴ3(𝑙𝑜𝑤)} 

(Γ2, Λ2) =  {ℴ1(ℎ𝑖𝑔ℎ), ℴ3(𝑙𝑜𝑤)} 

Each linguistic variable 𝐾𝑖  of (Γ1, Λ1) = linguistic variable 𝐾𝑖  of (Γ2, Λ2)  then this implies that 

(Γ1, Λ1) ⊆ (Γ2, Λ2) 𝑎𝑙𝑠𝑜 (Γ2, Λ2) ⊆ (Γ1, Λ1) 

thus (Γ2, Λ2) = (Γ1, Λ1). 

Counter Example: 

Consider, 

(Γ1, Λ1) =  {ℴ2(ℎ𝑖𝑔ℎ), ℴ3(𝑣𝑒𝑟𝑦 𝑙𝑜𝑤)}  

and 

(Γ2, Λ2) =  {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} 

Each linguistic variable 𝐾𝑖  of (Γ1, Λ1) < linguistic variable 𝐾𝑖  of (Γ2, Λ2)  then this implies that 

(Γ1, Λ1) ⊆ (Γ2, Λ2) 𝐵𝑢𝑡  (Γ2, Λ2) ⊈ (Γ1, Λ1) since linguistic variable of (Γ2, Λ2) > linguistic variable 

of (Γ1, Λ1). 

(Γ2, Λ2) ≠ (Γ1, Λ1) 

6. Same as 5. 

 

4. Operational Laws on LHSS 

In this section, we discuss the importance of operational laws and theorems and propose for LHSS. 

Let (Γ1, Λ1) = 𝐿1 and (Γ2, Λ2) = 𝐿2 be two LHSS and 𝜇 ≥ 0, where Λ1 =  {Υ1 × Υ2 × Υ3 × … × Υ𝑛: n 

is finite and real valued} over Ω with mapping Γ ∶ Λ1 = Υ1 × Υ2 × Υ3 × … × Υ𝑛  ⟶ 𝑃(Ω) and Λ2 =

 {Υ1 × Υ2 × Υ3 × … × Υ𝑚: m is finite and real valued} over Ω  with mapping Γ2 ∶ Λ2 = Υ1 × Υ2 ×
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Υ3 × … × Υ𝑚  ⟶ 𝑃(Ω).  Then the operational laws on LHSS can be defined with some necessary 

conditions;  

Definition 4.1 Union of LHSS 

 

Case 1:  𝐿1 ∪ 𝐿2 = {∏ α𝑖(𝐾𝑖) × ∏ α𝑗(𝐾𝑗) ∈ ∏ Υi𝑛
𝑖=1 × ∏ Υ𝑗𝑛

𝑗=1 } 

Where,  α𝑖(𝐾𝑖) ∈ ∏ Υi𝑛
𝑖=1 , 𝑎𝑛𝑑  α𝑗(𝐾𝑗) ∈ ∏ Υ𝑗𝑛

𝑗=1 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 with Υ𝑖  ∩  Υ𝑗  =  ∅, 

for i ≠  j, and i, j ∈  {1, 2, … , t}. 

Case 2:  𝐿1 ∪ 𝐿2 = {α𝑖(𝐾𝑖) ∈ ∏ Υi𝑛
𝑖=1 × ∏ Υ𝑗𝑛

𝑗=1 } 

𝑤𝑖𝑡ℎ 𝑖 = 𝑗 , 𝑎𝑛𝑑 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 variable 𝐾𝑖  𝑜𝑓 ℴ𝑖   

𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑠𝑎𝑚𝑒. 

Example: Consider,  

Case 1; 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿1 

   Γ2({𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛, 𝐹𝑒𝑚𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ1(ℎ𝑖𝑔ℎ), ℴ4(𝑙𝑜𝑤)} = 𝐿2 

∵  Υ𝑖  ∩  Υ𝑗  =  ∅ 

𝐿1 ∪ 𝐿2 = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤), ℴ1(ℎ𝑖𝑔ℎ), 

ℴ4(𝑙𝑜𝑤)}. 

Case 2; 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿1 

   Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑖𝑛𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿2 

∵  Υ𝑖  ∩  Υ𝑗  ≠  ∅ with i = j 

𝐿1 ∪ 𝐿2 = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)}. 

 

Case 3; (Counter example) \Restriction 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(ℎ𝑖𝑔ℎ), ℴ3(𝑣𝑒𝑟𝑦𝑙𝑜𝑤)} = 𝐿1 

   Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑖𝑛𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿2 

∵  Υ𝑖  ∩  Υ𝑗  ≠  ∅ with i = j 

Each linguistic variable 𝐾𝑖  of 𝐿1 < linguistic variable 𝐾𝑖  of 𝐿2 then this implies 𝐿1 ∪ 𝐿2 can be 

defined with some restriction i.e. consider highest linguistic value 𝐾𝑖  of each attribute. 

Example: 𝐿1 = {ℴ2(ℎ𝑖𝑔ℎ), ℴ3(𝑣𝑒𝑟𝑦𝑙𝑜𝑤)}                        

                                       𝐿2 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} 

As,                             ℴ2(ℎ𝑖𝑔ℎ) < ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), 𝑎𝑛𝑑 

                                    ℴ3(𝑣𝑒𝑟𝑦𝑙𝑜𝑤) < ℴ3(𝑙𝑜𝑤)  

Then 𝐿1 ∪ 𝐿2 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)}. 

 

Definition 4.2 Intersection of LHSS 

Let (Γ1, Λ1) = 𝐿1 and (Γ2, Λ2) = 𝐿2 be two LHSS and 𝜇 ≥ 0, then the intersection can be defined as; 

𝐿1 ∩ 𝐿2 = {∏ α𝑖(𝐾𝑖) × ∏ α𝑗(𝐾𝑗) ∈ ∏ Υi

𝑛

𝑖=1

× ∏ Υ𝑗

𝑛

𝑗=1

} = ∅  
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Where,  α𝑖(𝐾𝑖) ∈ ∏ Υi𝑛
𝑖=1 , 𝑎𝑛𝑑  α𝑗(𝐾𝑗) ∈ ∏ Υ𝑗𝑛

𝑗=1 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 with Υ𝑖  ∩  Υ𝑗  =  ∅, 

for i =  j, and i, j ∈  {1, 2, … , t}. 

Case 2:  𝐿1 ∩ 𝐿2 = {α𝑖(𝐾𝑖) ∈ ∏ Υi𝑛
𝑖=1 × ∏ Υ𝑗𝑛

𝑗=1 } 

𝑤𝑖𝑡ℎ 𝑖 = 𝑗 , 𝑎𝑛𝑑 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 variable 𝐾𝑖  𝑜𝑓 ℴ𝑖  Then 𝐿1 ∩ 𝐿2 =  𝐿1𝑜𝑟 𝐿2 

Example: Consider,  

Case 1; 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿1 

   Γ2({𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛, 𝐹𝑒𝑚𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ1(ℎ𝑖𝑔ℎ), ℴ4(𝑙𝑜𝑤)} = 𝐿2 

∵  Υ𝑖  ∩  Υ𝑗  =  ∅ 

𝐿1 ∩ 𝐿2 = {∅} 

Case 2; 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿1 

   Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑖𝑛𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿2 

∵  Υ𝑖  ∩  Υ𝑗  ≠  ∅ with i = j 

𝐿1 ∩ 𝐿2 = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)}. 

 

Case 3; (Counter example) \Restriction 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(ℎ𝑖𝑔ℎ), ℴ3(𝑣𝑒𝑟𝑦𝑙𝑜𝑤)} = 𝐿1 

   Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑖𝑛𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿2 

∵  Υ𝑖  ∩  Υ𝑗  ≠  ∅ with i = j 

Each linguistic variable 𝐾𝑖  of 𝐿1 < linguistic variable 𝐾𝑖  of 𝐿2 then this implies 𝐿1 ∪ 𝐿2 can be 

defined with some restriction i.e. consider highest linguistic value 𝐾𝑖  of each attribute. 

Example: 𝐿1 = {ℴ2(ℎ𝑖𝑔ℎ), ℴ3(𝑣𝑒𝑟𝑦𝑙𝑜𝑤)}                        

                                       𝐿2 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} 

As,                             ℴ2(ℎ𝑖𝑔ℎ) < ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡), 𝑎𝑛𝑑 

                                    ℴ3(𝑣𝑒𝑟𝑦𝑙𝑜𝑤) < ℴ3(𝑙𝑜𝑤)  

Then 𝐿1 ∩ 𝐿2 = ∅ . 

 

Theorem 4.3: If 𝐋𝟏, 𝐋𝟐 and 𝐋𝟑 be three LHSS then the following holds: 

 

i. 𝐿1 ∪ 𝐿1 = 𝐿1 

ii. 𝐿1 ∪  ∅ = 𝐿1 

iii. 𝐿1 ∩ 𝐿1 = 𝐿1 

iv. 𝐿1 ∩  ∅ = ∅ 

v. 𝐿1 ∪ 𝐿2 = 𝐿2 ∪ 𝐿1   

vi. 𝐿1 ∩ 𝐿2 = 𝐿2 ∩ 𝐿1   

vii. 𝐿1 ∪ (𝐿2 ∪ 𝐿3) = (𝐿1 ∪ 𝐿2) ∪ 𝐿3) 

viii. If 𝐿1 ⊂ 𝐿2 and 𝐿2 ⊂ 𝐿1the 𝐿1 = 𝐿2. 

ix. 𝜇(𝐿1) = 𝜇𝐿1 ;  𝜇 ≥ 0.   

x. 𝜇(𝐿1 ∪ 𝐿2) = 𝜇(𝐿2 ∪ 𝐿1)   
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The proofs are straight forward. ∎ 

Theorem 4.4 

If 𝐋𝟏, 𝐋𝟐 be two LHSS then the operations are given as follows: 

 

1. μ × L1  =  Lμ×1 ;  μ (linguistic variable); 

2. 𝐿1 ⊕ 𝐿2 = 𝐿1⊕2 ; 

3. 𝐿1 ⊗ 𝐿2 = 𝐿1⊗2 ; 

4. (𝐿1)μ =  𝐿1μ  . 

Proof: 

1. Consider,  Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑃𝑒𝑟𝑓𝑒𝑐𝑡), ℴ3(𝑙𝑜𝑤)} = 𝐿1 and μ = low, 

The proofs are straight forward. ∎ 

 

5. Some Aggregation Operators  

Aggregate operators play a crucial role in decision-making processes, and their importance 

cannot be overstated. These operators are responsible for combining and aggregating individual 

linguistic quantifiers or numerical values to derive a comprehensive assessment of various factors 

and attributes. By employing aggregate operators, decision-makers can effectively analyze and 

evaluate complex information, facilitating informed decision-making. One of the key benefits of 

aggregate operators is their ability to handle multiple criteria simultaneously. Decision-making often 

involves considering various factors, such as cost, quality, reliability, and customer satisfaction. 

Aggregate operators enable decision-makers to combine and weigh these criteria appropriately, 

considering their relative importance. This allows for a comprehensive evaluation and comparison 

of different options or alternatives. 

Aggregate operators also provide a means to summarize and condense large amounts of data 

into manageable and meaningful information. They enable decision-makers to reduce complex and 

diverse inputs into a single aggregated value or linguistic quantifier. This simplification aids in 

understanding and interpreting the information, making it easier to make decisions based on the 

aggregated results. Moreover, aggregate operators facilitate the integration of subjective or 

qualitative assessments into the decision-making process. They provide a mechanism to convert 

linguistic expressions, which often involve subjective opinions or judgments, into numerical values 

that can be analyzed and compared objectively. This enables decision-makers to incorporate both 

objective and subjective information, leading to more comprehensive and well-rounded decisions. 

Additionally, aggregate operators allow for flexibility and adaptability in decision-making. Different 

aggregate operators, such as weighted averages, minimum or maximum operations, and fuzzy logic 

operators, offer diverse ways to combine and aggregate data. This flexibility enables decision-makers 

to tailor the aggregation process to their specific needs and preferences, accommodating different 

decision contexts and requirements. In conclusion, aggregate operators are vital tools in decision-
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making processes, enabling the integration, evaluation, and comparison of diverse criteria and 

information. They enhance the ability to handle multiple factors, summarize complex data, 

incorporate subjective assessments, and provide flexibility in decision-making. By leveraging 

aggregate operators effectively, decision-makers can make more informed and well-founded 

decisions, leading to improved outcomes and increased overall effectiveness in various domains. 

Aggregate operators are required by decision-makers (DMs) to rank the given alternatives. The 

ordered weighted averaging operator (OWAO) proposed by Yager [25] is the most widely used 

methodology for aggregating decision information. Later, various new OWAO were introduced [26]. 

The OWAO has been employed in an amazingly wide range of applications [24, 27]. The majority of 

these operators, on the other hand, can only be employed when the input arguments are exact values, 

and only a few of them can be used to aggregate linguistic preference data. 

 

Decision-making, on the other hand, is influenced by personal psychological factors such as 

experience, learning, situation, mood, like-dislike, and so on. It is more appropriate to express their 

preferences using linguistic parameters rather than numerical variables. Thus, in this section the 

aggregation operators for hypersoft set have been proposed. 

 

Definition 5.1 LHSWGAO  

 

Consider, α1, α2, α3, … , α𝑡  for t ≥ 1  be t  distinct parameters, whose corresponding 

parametric values are respectively the sets Υ1, Υ2, Υ3, … , Υ𝑡 with Υ𝑖 ∩ Υ𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, 

…, t}. 

Let 𝕬: Λ = Υ1 × Υ2 × Υ3 × … × Υ𝑡  ⟶ 𝑃(Ω) = {M(Ω)(𝒾)} ⊆ ℝ+         (1) 

 

if 𝕬𝜔 (α1, α2, α3, … , α𝑡) = ∏ (α𝑡(𝑖))(𝜔𝑡)𝑛
𝑡=1  

Such that 

 𝕬𝜔 (α1, α2, α3, … , α𝑡) = 

α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ … ⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾   

 

Where 𝜔 = (𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑡)𝑇  is the exponential weighting vector of the α𝑡(𝑖) ∈ {M(Ω)(𝒾)} and 

𝜔𝑡 ∈ [0, 1] with∑ 𝜔𝑡 = 1𝑛
𝑡=1 , and  

 𝒾 ∈ Κ = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡}  Then 𝕬 is called Linguistic Hypersoft Weighted Geometric Averaging 

Operator (LHSWGAO).   

 

Example: Assume 𝜔 = (0.4, 0.3, 0.3)𝑇  then LHSWGAO {ℴ2(𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒), 

 ℴ3(𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒)}  

 

The linguistic set of definition 2, is labeled as  

 

Table 2. linguistic quantifiers  
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 Quantifiers  

Low Medium High 

N
o

n
e 

V
er

y
-L

o
w

 

L
o

w
 

M
ed

iu
m

 

H
ig

h
 

V
er

y
-H

ig
h

 

P
er

fe
ct

 

0 1 2 3 4 5 6 

 

= ℴ2 (
𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖(𝑙𝑜𝑤), 𝑀𝑎𝑙𝑒(𝑚𝑒𝑑𝑖𝑢𝑚),

 𝑂𝑟𝑎𝑛𝑔𝑒(ℎ𝑖𝑔ℎ)
) 

∵ 𝕬𝜔 (α1, α2, α3, … , α𝑡) = ∏(α𝑡(𝑖))(𝜔𝑡)

𝑛

𝑡=1

 

= α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ … ⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾  

= {Pakistani(𝑙𝑜𝑤)0.4, Male(𝑚𝑒𝑑𝑖𝑢𝑚)0.3, 

Orange(ℎ𝑖𝑔ℎ)0.3}  

= ℴ2{(2)0.4 + (3)0.3 + (4)0.3} 

= ℴ2(𝑖)4.22 

 

= ℴ2(𝑖)4.22 = ℴ2(𝐻𝑖𝑔ℎ) From Table 2, the linguistic value for 𝑖 = 4 𝑖𝑠 ℎ𝑖𝑔ℎ. 

 

Now,  

= ℴ3 (
𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖(𝑛𝑜𝑛𝑒), 𝑀𝑎𝑙𝑒(𝑛𝑜𝑛𝑒),

 𝑂𝑟𝑎𝑛𝑔𝑒(𝑛𝑜𝑛𝑒)
) 

∵ 𝕬𝜔 (α1, α2, α3, … , α𝑡) = ∏(α𝑡(𝑖))(𝜔𝑡)

𝑛

𝑡=1

 

= α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ … ⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾 

 

= {Pakistani(𝑛𝑜𝑛𝑒)0.4, Male(𝑛𝑜𝑛𝑒)0.3, 

Orange(𝑛𝑜𝑛𝑒)0.3}  

= ℴ2{(0)0.4 + (0)0.3 + (0)0.3} 

= ℴ2(0) 

= ℴ2(𝑛𝑜𝑛𝑒)  

 

From Table 2, the linguistic value for 𝑖 = 0 𝑖𝑠 𝑛𝑜𝑛𝑒. 

Definition 5.2 LHSOWGAO  
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Consider, α1, α2, α3, … , α𝑡  for t ≥ 1  be t distinct parameters, whose corresponding parametric 

values are respectively the sets Υ1, Υ2, Υ3, … , Υ𝑡 with Υ𝑖 ∩ Υ𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , t}. 

 

Let 𝕺: Λ = Υ1 × Υ2 × Υ3 × … × Υ𝑡  ⟶ 𝑃(Ω) = {M(Ω)(𝒾)} ⊆ ℝ+    (2) 

If 𝕺𝜔 (α1, α2, α3, … , α𝑡) = ∏ (α𝑡(𝑖))(𝜔𝑡)𝑛
𝑡=1  

 

Such that 𝕺𝜔 (α1, α2, α3, … , α𝑡) = 

α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ … ⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾 

Subject to the condition, the linguistic values of  α𝒾   should be in ascending order. Where 𝜔 =

(𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑡)𝑇  is the exponential weighting vector of the α𝑡(𝑖) ∈ {M(Ω)(𝒾)}  and 𝜔𝑡 ∈ [0, 1] 

with ∑ 𝜔𝑡 = 1𝑛
𝑡=1 , and  𝒾 ∈ Κ = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡}  then 𝕺 is called Linguistic Hypersoft Ordered 

Weighted Geometric Averaging Operator (LHSOWGAO).   

 

Example:  

Assume 𝜔 = (0.4, 0.3, 0.3)𝑇  then LHSOWGAO {ℴ2(𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒), 

 ℴ3(𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒)}  

 

The linguistic set of definition 2, is labeled as; 

 

= ℴ2 (
𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖(𝑙𝑜𝑤), 𝑀𝑎𝑙𝑒(𝑚𝑒𝑑𝑖𝑢𝑚),

 𝑂𝑟𝑎𝑛𝑔𝑒(ℎ𝑖𝑔ℎ)
) 

∵ 𝕺𝜔 (α1, α2, α3, … , α𝑡) = ∏(α𝑡(𝑖))(𝜔𝑡)

𝑛

𝑡=1

 

= α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ … ⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾  

= {Pakistani(ℎ𝑖𝑔ℎ)0.4, Male(𝑚𝑒𝑑𝑖𝑢𝑚)0.3, 

Orange(𝑙𝑜𝑤)0.3}  

 

= ℴ2{(4)0.4 + (3)0.3 + (2)0.3} 

= ℴ2(𝑖)4.36 

 

= ℴ2(𝑖)4.36 = ℴ2(𝐻𝑖𝑔ℎ) From Table 2, the linguistic value for 𝑖 = 4 𝑖𝑠 ℎ𝑖𝑔ℎ. 

 

Now,  

= ℴ3 (
𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖(𝑛𝑜𝑛𝑒), 𝑀𝑎𝑙𝑒(𝑛𝑜𝑛𝑒),

 𝑂𝑟𝑎𝑛𝑔𝑒(𝑛𝑜𝑛𝑒)
) 

∵ 𝕺𝜔 (α1, α2, α3, … , α𝑡) = ∏(α𝑡(𝑖))(𝜔𝑡)

𝑛

𝑡=1

 

= α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ … ⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾 
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= {Pakistani(𝑛𝑜𝑛𝑒)0.4, Male(𝑛𝑜𝑛𝑒)0.3, 

Orange(𝑛𝑜𝑛𝑒)0.3}  

= ℴ2{(0)0.4 + (0)0.3 + (0)0.3} 

= ℴ2(0) 

= ℴ2(𝑛𝑜𝑛𝑒)  

 

From Table 2, the linguistic value for 𝑖 = 0 𝑖𝑠 𝑛𝑜𝑛𝑒. 

 

Theorem 5.1:  

1. 𝐦𝐢𝐧
𝑖

(α𝑡(𝑖))  ≤ 𝕬𝜔 (α1, α2, . . , α𝑡) ≤  𝐦𝐚𝐱
𝑖

(α𝑡(𝑖)) 

2. 𝐦𝐢𝐧
𝑖

(α𝑡(𝑖))  ≤ 𝕺𝜔 (α1, α2, . . , α𝑡) ≤  𝐦𝐚𝐱
𝑖

(α𝑡(𝑖)) 

Proof: The proofs are straight forward. ∎ 

Theorem 5.2:  

1. 𝕺𝜔 (α𝑡(𝑖)) =  𝕺𝜔 (α𝑡(𝑖′))   

Where (α𝑡(𝑖′)) is any permutation of (α𝑡(𝑖)) 

2. If ∀(α𝑡(𝑖)) = (α(𝑖)) for all t, then 𝕺𝜔 (α𝑡(𝑖)) = 𝓸𝒾 

3. If (α𝑡(𝑖)) ≤  (α̂𝑡(𝑖)) for all t, then  

𝕺𝜔 (α𝑡(𝑖)) ≤ 𝕺𝜔 (α̂𝑡(𝑖)) 

Proof: The proofs are straight forward. ∎ 

 

 

6. Multi-Criteria Decision-Making Method (LHSS Algorithm to solve MCDM Problem) 

A decision-making technique based on linguistic hypersoft weighted geometric averaging 

operator (LHSWGAO) has been used to construct an algorithm known as linguistic hypersoft set 

based multi-criteria group decision-making method (LHSS algorithm to solve MCGDM problem). 

The graphical representation of the proposed LHSS algorithm is presented in Figure 2. 

Step1: Consider, 𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑡  𝑓𝑜𝑟 𝑡 ≥ 1  𝑏𝑒 𝑡  distinct parameters, whose corresponding 

parametric values are respectively the sets 𝛶1, 𝛶2, 𝛶3, … , 𝛶𝑡 with 𝛶𝑖 ∩ 𝛶𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, …, t}. 

Let 𝜔 = (𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑡)𝑇  be the exponential weighting vector. Where 𝜔𝑡 ≥ 0 , 𝑎𝑛𝑑 ∑ 𝜔𝑡 = 1𝑛
𝑡=1 . 

Let 𝕬: 𝛬 = 𝛶1 × 𝛶2 × 𝛶3 × … × 𝛶𝑡  ⟶ 𝑃(𝛺) = {𝑀(𝛺)(𝒾)} ⊆ ℝ+ 

The decision-makers 𝒟𝑚  compare the values with the linguistic quantifiers and assign linguistic variable to 

each alternative as 𝐻𝑖 = {(𝛼𝑡(𝑖) ∶  𝑖 = 1, 2, … , 𝑡}, and construct a linguistic preference table for (𝛼𝑡(𝑖))(𝜔𝑡). 

 

Step2: Construct a matrix [ℴ𝑖
𝑗
, 𝑠𝑖

𝑗
] 𝑖 ×𝑗  for each 𝒟𝑚   using linguistic hypersoft weighted geometric 

averaging operator (LHSWGAO),  

ℴi
t = α1

𝒾
ω1

⊗ α2
𝒾
ω2

⊗ α3
𝒾
ω3

⊗ … ⊗ αt
𝒾
ωt
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Construct a matrix individually for each 𝒟𝑚  using linguistic hypersoft ordered weighted geometric 

averaging operator (LHSOWGAO) 

𝕺ω (α1, α2, α3, … , αt) = ∏(αt(i))(ωt)

n

t=1

 

Such that 𝕺ω (α1, α2, α3, … , αt) = α1
𝒾
ω1

⊗ α2
𝒾
ω2

⊗ α3
𝒾
ω3

⊗ … ⊗ αt
𝒾
ωt

= s𝒾 

 

Step3: Construct a matrix using  [𝑚𝑖𝑛(ℴ𝑖
𝑗
, 𝑠𝑖

𝑗
)] 𝑖 ×𝑗 for each 𝒟𝑚 . 

Step4: List max value among all the decision-makers. 

max [𝒟1min(ℴi
j
, si

j
), 𝒟2min(ℴi

j
, si

j
), … , 𝒟mmin(ℴi

j
, si

j
)] i ×j 

Step5: Write value from linguistic table or reference table known as total score. 

Step6: Finally, list the alternatives with total scores 𝐻𝑖 𝑎𝑛𝑑 𝑟𝑎𝑛𝑘 highest value. 

 

Figure 2. Graphical representation of Proposed LHSS algorithm 

 

6.1 Illustrative example 

Problem: Inequitable access to healthcare in rural areas  

Rural areas often have limited access to healthcare services due to a shortage of healthcare providers 

and facilities. This can result in poorer health outcomes for rural residents compared to their urban 

counterparts. The current policy approach to addressing this problem includes initiatives such as the 

Sehat Card in Pakistan, which aims to increase access to healthcare services for all Pakistanis. 

However, the health service has faced challenges related to hospital affordability, accessibility, and 

political opposition. 

1.  Increase funding for rural healthcare services and providers: 
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This solution would involve providing more resources for rural healthcare services and providers, 

such as funding for healthcare facilities, equipment, and staff. It could potentially improve access to 

healthcare services in rural areas and address the issue of healthcare workforce shortages. However, 

it may be costly and could face political opposition. 

2.  Incentivize healthcare providers to work in rural areas: 

This solution could involve offering financial incentives or loan forgiveness to healthcare providers 

who work in rural areas. It could help address the issue of healthcare workforce shortages in these 

areas and improve access to healthcare services. However, it may be difficult to implement and could 

face resistance from healthcare providers who prefer to work in urban areas. 

3. Invest in infrastructure improvements to support healthcare delivery in rural areas: 

There is no fixed percentage or rule for how much focus should be given to each solution when 

addressing a public policy problem. The appropriate mix of solutions will depend on various factors, 

such as the context of the problem, the goals of the policy, the available resources, and the political 

environment. In general, when developing policy solutions, it is important to consider a range of 

options and evaluate their feasibility, effectiveness, and potential impacts on equity. This can involve 

conducting research, consulting with stakeholders, and considering multiple perspectives. The goal 

should be to identify a set of solutions that are likely to achieve the desired outcomes, while 

minimizing any unintended negative consequences. 

6.2 Demonstration of proposed example 

Consider 𝐻 = {𝐻1, 𝐻2, 𝐻3} 𝑏𝑒 three hospitals as alternatives in rural area, and we want to 

improve the health services. The services of the experts in this domain has been taken and known as 

decision-makers 𝒟 = {𝒟m  ; 𝑚 = 1,2,3}. The goal should be to identify a set of solutions that are 

likely to achieve the desired outcomes, while minimizing any unintended negative consequences. 

Consider the parameters be:  α1 = Increase in funding, α2 = Incentivize healthcare, α3 = Invest in 

infrastructure, and their respective parametric values are: 

Increase in funding = Υ1 = {𝑓𝑎𝑠𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡, 𝑠𝑡𝑎𝑓𝑓} 

Incentivize healthcare = Υ2 = {ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒, 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑎𝑐𝑐𝑒𝑠𝑠 } 

Invest in infrastructure = Υ3 = {𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛, 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒} 

Then the function Γ ∶ Λ = Υ1 × Υ2 × Υ3  ⟶ 𝑃(Ω) and assume the hypersoft set 𝑀 = {𝐻1, 𝐻2, 𝐻3} ⊂

 Ω where Ω = {𝐻1, 𝐻2, 𝐻3} be the universal set. 

Γ({𝑓𝑎𝑠𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠, ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒, 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒}) = {𝐻1, 𝐻2, 𝐻3} = 𝑀  The linguistic hypersoft 

set (LHSS),  Γ({M(Ω)(𝒾)}) ∶ 𝑀 ⊆ Λ  &  𝒾 ∈ Κ = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡}  𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1,

𝑛 ∈ ℝ+} can be given by three decision-makers 𝒟 = {𝒟m  ; 𝑚 = 1,2,3}.  

𝒟1  𝑑𝑒𝑓𝑖𝑛𝑒   Γ1({𝑓𝑎𝑠𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠, ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒, 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒})

= {𝐻1, 𝐻2, 𝐻3}                                                                                                                            

= {

𝐻1 < 𝑓𝑎𝑠𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑙𝑜𝑤), ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒 (ℎ𝑖𝑔ℎ), 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒(𝑚𝑒𝑑𝑖𝑢𝑚) >,

𝐻2 < 𝑓𝑎𝑠𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑣. ℎ𝑖𝑔ℎ), ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒 (𝑚𝑒𝑑𝑖𝑢𝑚), 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒(ℎ𝑖𝑔ℎ) >,

𝐻3 < 𝑓𝑎𝑠𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑚𝑒𝑑𝑖𝑢𝑚), ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒(ℎ𝑖𝑔ℎ), 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒(𝑙𝑜𝑤) >

} = 𝐿1 

𝒟2  𝑑𝑒𝑓𝑖𝑛𝑒   Γ2({𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡, 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑎𝑐𝑐𝑒𝑠𝑠, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛}) = {𝐻1, 𝐻2, 𝐻3} 

= {𝐻1 < 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡(ℎ𝑖𝑔ℎ), 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑣. ℎ𝑖𝑔ℎ), 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛(𝑙𝑜𝑤) >, 
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   𝐻2  < 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡(𝑙𝑜𝑤), 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑎𝑐𝑐𝑒𝑠𝑠(𝑣. ℎ𝑖𝑔ℎ), 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛(ℎ𝑖𝑔ℎ) >, 

  𝐻3 < 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡(𝑚𝑒𝑑𝑖𝑢𝑚), 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑎𝑐𝑐𝑒𝑠𝑠(ℎ𝑖𝑔ℎ), 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛(𝑚𝑒𝑑𝑖𝑢𝑚) >} 

             = 𝐿2  

𝒟3  𝑑𝑒𝑓𝑖𝑛𝑒   Γ3({𝑠𝑡𝑎𝑓𝑓, ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒, 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒}) 

 

= {𝐻1 < 𝑠𝑡𝑎𝑓𝑓(𝑚𝑒𝑑𝑖𝑢𝑚), ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒(ℎ𝑖𝑔ℎ), 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒(𝑣. 𝑙𝑜𝑤) >, 

   𝐻2  < 𝑠𝑡𝑎𝑓𝑓(𝑙𝑜𝑤), ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒(𝑙𝑜𝑤), 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒(ℎ𝑖𝑔ℎ) >, 

  𝐻3 < 𝑠𝑡𝑎𝑓𝑓(ℎ𝑖𝑔ℎ), ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑤𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒(ℎ𝑖𝑔ℎ), 𝑡𝑒𝑙𝑒𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒(𝑙𝑜𝑤) >} 

             = 𝐿3  

Step1: The decision matrix by decision-makers 𝒟 = {𝒟m  : 𝑚 = 1,2,3}, presented below. 

Refer Table 3. 

Step2: Construct a matrix using LHSWGAO, and LHSOWGAO. 
.

𝐻1

𝐻2

𝐻3

= [

𝒟1

ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚
𝒟2

𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ
𝒟3

ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚
𝑣. ℎ𝑖𝑔ℎ, 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚 ℎ𝑖𝑔ℎ, 𝑣. ℎ𝑖𝑔ℎ

ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚 ℎ𝑖𝑔ℎ, ℎ𝑖𝑔ℎ ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚

] 

Step3: Find the min of matrix values of step2. 
.

𝐻1

𝐻2

𝐻3

= [

𝒟1

𝑚𝑒𝑑𝑖𝑢𝑚
𝒟2

𝑚𝑒𝑑𝑖𝑢𝑚
𝒟3

𝑚𝑒𝑑𝑖𝑢𝑚
𝑣. ℎ𝑖𝑔ℎ 𝑚𝑒𝑑𝑖𝑢𝑚 ℎ𝑖𝑔ℎ

𝑚𝑒𝑑𝑖𝑢𝑚 ℎ𝑖𝑔ℎ 𝑚𝑒𝑑𝑖𝑢𝑚

] 

 

Step4: Write max value among all the decision-makers.  

𝑆 = {𝐻1 < 𝑚𝑒𝑑𝑖𝑢𝑚 >, 𝐻2 < 𝑣. ℎ𝑖𝑔ℎ >, 𝐻3 < ℎ𝑖𝑔ℎ >} 

 

Step5: Write value from linguistic table.  

𝑆 = {𝐻1 < 4 >, 𝐻2 < 5 >, 𝐻3 < 4 >} 

 

Step6: Finally, list the alternatives with total scores 𝒮𝑖  𝑎𝑛𝑑 𝑟𝑎𝑛𝑘 highest value. 

Alternative Score Value Rank 

𝑯𝟏 3 1 

𝑯𝟐 5 3 

𝑯𝟑 4 2 

 

This solution shows that 𝐻1 < 𝐻3 < 𝐻2  involve investing in infrastructure improvements, such as 

broadband internet access and transportation infrastructure, to support healthcare delivery in rural 

areas. It could improve access to telemedicine and other remote healthcare services, as well as address 

transportation barriers to accessing healthcare services.  The results are presented in Figure 3. 

 

6.3 Result discussion comparison and future directions 

The comparison analysis presented highlights the prioritization of infrastructure improvements for 

healthcare delivery in rural areas, with the order being 𝐻1 < 𝐻3 < 𝐻2  . The analysis suggests that 
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investing in infrastructure improvements, such as broadband internet access and transportation 

infrastructure, can have significant benefits for healthcare accessibility in rural communities. 

𝐻1 represents the highest priority, indicating that addressing healthcare infrastructure deficiencies 

in rural areas should be the primary focus. This may involve initiatives to improve broadband 

internet access, which can facilitate telemedicine and remote healthcare services. By enhancing 

connectivity, individuals in rural areas can access healthcare professionals and receive medical 

consultations without the need for in-person visits, thereby reducing barriers to healthcare access. 

 

Figure 3. Result and ranking of the alternatives. 

𝐻3   denotes a relatively lower priority compared to 𝐻1but higher than 𝐻2This suggests that while 

health care infrastructure improvements are crucial, other factors may also need attention. These 

factors could include policy reforms, financial support, or workforce development to complement 

the infrastructure enhancements. A comprehensive approach that combines infrastructure 

improvements with these additional measures can yield a more effective and sustainable healthcare 

system in rural areas. 

𝐻2  represents the lowest priority, indicating that while still important, addressing transportation 

barriers to healthcare access may be of lesser immediate significance compared to infrastructure 

enhancements. Transportation infrastructure improvements could include better roads, public 

transportation systems, or medical transport services to ensure that individuals can reach healthcare 

facilities conveniently and efficiently. 

The power of the proposed method lies in its ability to overcome the limitations of existing 

approaches by providing a systematic and effective framework for dealing with linguistic knowledge 

in decision-making. By offering a mathematically grounded solution, the method enhances the 

accuracy, precision, and applicability of decision-making processes, contributing to advancements in 

the field. 

To extend the proposed method for complicated cases, additional considerations and modifications 

can be made to the existing framework. This can be demonstrated through numerical examples that 
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illustrate the application of the extended method. Here is an explanation of how the proposed 

method can be extended along with numerical examples: 

1. Handling Complicated Cases: In complex decision-making scenarios, where multiple 

factors and attributes need to be considered, the proposed method can be expanded to 

accommodate these complexities. This can be achieved by incorporating weighted linguistic 

quantifiers or linguistic variables that represent the relative importance or degree of each 

factor. 

2. Numerical Examples: Let's consider a decision-making problem involving the selection of a 

new supplier for a company. The decision criteria include factors such as price, quality, 

delivery time, and customer service. Each factor can be represented by linguistic 

quantifiers, such as "low," "medium," or "high." To extend the method, weights can be 

assigned to these linguistic quantifiers based on their relative importance. 

For instance, let's assume the weight assigned to price is 0.4, quality is 0.3, delivery time is 0.2, and 

customer service is 0.1. The linguistic quantifiers for each factor can be mapped to numerical values 

using the proposed LHSS framework. Suppose "low" corresponds to 1, "medium" corresponds to 3, 

and "high" corresponds to 5. Now, let's assume we have three potential suppliers: Supplier A, 

Supplier B, and Supplier C. We can evaluate each supplier's performance on each factor and calculate 

an overall score based on the assigned weights. The scores can be computed by multiplying the 

numerical value of each linguistic quantifier by its weight and summing up the results. For example, 

Supplier A may have a price score of (1 * 0.4), a quality score of (3 * 0.3), a delivery time score of (3 * 

0.2), and a customer service score of (5 * 0.1). Summing up these scores, we obtain an overall score 

for Supplier A. Similarly, we can calculate the overall scores for Supplier B and Supplier C. Based on 

the calculated overall scores, the company can then make an informed decision on selecting the most 

suitable supplier. These numerical examples demonstrate the extension of the proposed method to 

handle complicated decision-making scenarios by incorporating weighted linguistic quantifiers. By 

assigning weights and mapping linguistic quantifiers to numerical values, the method allows for a 

more comprehensive and precise evaluation of complex decision criteria. 

7. Conclusion 

 

This paper acknowledges the complexity of the relationship between language and meaning, 

highlighting the challenges in assigning numerical values to linguistic variables. To address this 

issue, the concept of LHSS (Linguistic Hypersoft Set Structure) along with operational laws, 

aggregate operators, and MCGDM (Multi-Criteria Group Decision Making) techniques has been 

proposed. The application of these concepts has been demonstrated through a real-life case study, 

yielding promising results. The findings indicate that assigning numerical values to linguistic 

variables enhances accuracy in decision-making.  Future directions include extending the 

framework to complex decision-making scenarios, integrating it with machine learning and AI 

techniques, exploring hybrid set structures, conducting real-world case studies, focusing on human-

computer interaction, addressing ethical and social implications, and advancing user-centric 
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approaches. These future directions aim to enhance the applicability, effectiveness, and ethical use of 

linguistic set structures in decision-making across various domains. 
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Abstract: Digital watermarking is an essential tool for numerous applications, and the quality of 

watermarked images must be assessed using accurate criteria. Peak Signal-to-Noise Ratio (PSNR), 

a widely used image assessment metric, has limits when evaluating images containing noise, such 

as watermarks. To tackle such kind of issues this, this study investigates a different assessment 

metric, the Neutrosophic Similarity Measure, and assesses its performance in evaluating 

watermarked images when compared to PSNR. Similarities to ascertain whether the neutrosophic 

similarity Measure has a higher noise tolerance and offers a more accurate evaluation of 

watermarked images. The results show that Neutrosophic Similarity Measure overcomes PSNR in 

capturing the influence of additive watermarks and demonstrating superior noise tolerance through 

experimental evaluation on a dataset of watermarked images. These findings highlight the 

possibility of adopting new assessment metric, such as neutrosophic similarity measure, for 

assessing watermarked images, thereby enhancing the effectiveness of evaluating watermarked 

Images. 

Keywords: Digital Image Assessment; Watermark; Neutrosophic Similarity Measure, PSNR.  

 

 

1. Introduction 

Digital watermarking is a commonly used method for adding undetectable data—also referred 

to as watermarks—to digital assets including images, sounds, and video. In addition to copyright 

protection, these watermarks also verify data integrity and authenticate material. For determining 

the efficacy of watermarking algorithms and guaranteeing the preservation of imagine fidelity, the 

ability to reliably assess the quality of watermarked images is essential [1]. 

Peak Signal-to-Noise Ratio (PSNR) has been used extensively as a metric to assess the quality of 

watermarked images. By evaluating the ratio of peak signal strength to mean square error, PSNR 

evaluates the distinction between original and watermarked images. However, PSNR has certain 

limitations [2], it does not consider the perceptual impact of noise or distortion introduced by 

watermarks, and its effectiveness diminishes in scenarios involving additive noise. 

To overcome these limitations, an alternative assessment metric which is neutrosophic similarity 

measure [3]has utilized in this paper. The utilization of neutrosophic similarity measure (NSM) as an 

assessment metric offers several advantages. It enables a more comprehensive analysis of 

watermarked image quality by considering the perceptual aspects, indeterminacy, and ambiguity. 

By capturing the impact of additive watermarks more effectively, neutrosophic similarity Measure 

can provide a better assessment of the overall fidelity and visual quality of watermarked images. 
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Considering the importance of digital watermarking and the limitations in its evaluation using 

traditional metrics like PSNR, exploring alternative assessment metrics such as neutrosophic 

similarity measure becomes imperative. This paper aims to compare the performance of PSNR and 

neutrosophic similarity Measure in evaluating watermarked images and ascertain the advantages of 

adopting a more robust assessment metric for accurate and reliable quality assessment.  

 

2. Materials and Methods  

2.1 Theoretical Background  

In this section, a brief description of digital image processing and neutrosophic systems is 

presented. 

 

2.1.1 Description of Digital Images 

A digital image can be described as a two-dimensional function, 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 represent 

spatial coordinates, and the intensity or gray level of the image at any given (𝑥, 𝑦) coordinate is 

determined by the value of f [4]. When both 𝑥, 𝑦, and the intensity values of 𝑓 are discrete and finite, 

the image is referred to as a digital image. Digital image processing involves manipulating digital 

images using a computer. It's important to note that a digital image consists of a finite number of 

elements, each with a specific location and value. These elements are commonly referred to as picture 

elements, image elements, pels, or pixels. The term "pixel" is widely used to describe the elements of 

a digital image. 

In the early days of the newspaper industry, digital images found one of their initial uses in 

transmitting pictures between London and New York via submarine cables. The introduction of the 

Bartlane cable picture transmission system during the early 1920s significantly decreased the time 

needed to transport a picture across the Atlantic Ocean, reducing it from over a week to under three 

hours. This system involved specific printing equipment that encoded pictures for transmission 

through the cables and reconstructed them upon reaching the receiving destination.  

The image in Figure 1, created in 1921, was generated from a coded tape using a telegraph printer 

equipped with a unique typeface [5]. 

 

 

Figure 1. Telegrapher Printer Image in 1921 

 

2.1.2 Digital Image Representation 
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A digital image serves as a numerical representation of a real image that can be stored and processed 

by a digital computer. The process begins by dividing the image into small areas known as pixels or 

picture elements. Each pixel corresponds to a specific location within the image and is associated 

with a numerical value or a set of numbers that describe certain properties of the pixel, such as its 

brightness or color. These numerical values are organized in an array format, with rows and columns 

representing the vertical and horizontal positions of the pixels in the image. 

Digital images possess several fundamental characteristics. One important aspect is the image type, 

which can vary. For instance, a black and white image records only the intensity of light falling on 

the pixels. Color images, on the other hand, can consist of three colors (typically RGB - Red, Green, 

Blue) or four colors (CMYK - Cyan, Magenta, Yellow, black). RGB images are commonly used in 

computer monitors and scanners, while CMYK images are utilized in color printers. There are also 

non-optical images, like ultrasound or X-ray, where the intensity of sound or X-rays is recorded. In 

range images, the distance of each pixel from the observer is captured. 

Resolution is another key characteristic of digital images and is measured in pixels per inch (PPI). 

Higher resolution results in a more detailed image. Computer monitors generally have a resolution 

of around 100 PPI, while printers have resolutions ranging from 300 PPI to over 1440 PPI. 

Consequently, images tend to appear better in print due to the higher resolution compared to a 

monitor [6].  The color depth, applicable to color images, refers to the number of bits used to 

represent the brightness or color information. More bits allow for a greater range of shades of gray 

or colors. For example, an RGB image with 8 bits per color has a total of 24 bits per pixel, commonly 

referred to as "true color." Each bit can represent two possible colors, resulting in a total of 16,777,216 

possible colors. The grayscale image is represented by brightness using 8 bits value. The brightness 

of a pixel value of a grayscale image ranges from 0 (black) to 255 (white) [7]. Binary images typically 

have only one bit or two "colors," representing black and white (Figure 2). 

The format of an image provides additional details on how the numerical values are arranged within 

the image file, including information about compression techniques employed, if any. Various 

formats are available, with popular ones including BMP (is a format native to the Windows operating 

system, JPEG (recognized for lossy compressing and encoding high-resolution digital images), PNG 

(images with lossless compression), and GIF (animated images) [8]. 

 

 
Figure 2. Binary Image 

2.1.3 Digital Image Watermarking: 
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Image watermarking is the process of embedding a watermark signal (as a text or small binary image) 

into the cover image, which is the target that needs to be protected/tracked. Image watermarking can 

be considered as the basis for video watermarking as the video is a set of consecutive frames, where 

each frame can be considered as a separate image. A digital watermarking system consists of two 

main steps: embedding and extraction. In embedding, the watermark is embedded inside the host 

image, while in extraction, the watermark is retrieved from the host image. If the process of retrieving 

can be applied without the existing of the original image, then it is “blind Extraction”, and if the host 

image is required for extraction, then it is non-blind extraction. Figures 3 shows the process of 

watermark embedding [1], [9]:  

 Generally, the watermarking process consists of the following major components.  

 Host (Original) image: The target of the watermarking system that needs to be 

watermarked. 

 Watermark: Information to be embedded, which might be the company logo, metadata, 

etc. 

 Key: The encryption key that is used to encrypt the watermark before embedding to 

apply more security. The existence of the key is optional. 

 Watermarked Image: Image that implicitly contains the watermark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Watermark Embedding Process 

 

2.1.4 Neutrosophic Sets 

Neutrosophic sets, introduced by Smarandache [3], provide a novel approach for addressing 

uncertainty by incorporating truth-membership (T), indeterminacy-membership (I), and falsity-

membership (F) values within the range of 0 ≤ T + I + F ≤ 3. Compared to intuitionistic fuzzy sets, 

these values provide a more thorough and precise description of ambiguous information. The idea 

of neutrosophic sets has received a lot of attention from researchers and has been expanded into a 

number of different fields. These extensions have found use in decision-making, information 

measures, image processing, graph theory, and algebraic structures.  Neutrosophic sets rapidly 

became a tool for handling vagueness in a variety of real-life scenarios [10].  

Numerous studies highlight the neutrosophic sets' quick development and adaptability, which 

enable quantitative and qualitative analyses from a variety of angles[11] [12]. The field of image 

processing has benefited greatly from the use of neutrosophic theory, particularly in the areas of edge 

detection and image segmentation. Neutrosophic offsets have been used to segment images 

successfully, offering a solid framework to deal with the ambiguity and uncertainty that come with 

image analysis. Neutrosophic offsets (when some neutrosophic components are off the interval [0, 1], 

i.e., some neutrosophic component > 1 and some neutrosophic component < 0 [10]) enable a thorough 
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characterization of image regions and boundaries by considering truth-membership, indeterminacy-

membership, and falsity-membership values. Additionally, edge detection applications have been 

shown promise when using neutrosophic theory. The flexibility of these forms provides a method for 

capturing minute changes and transitions in edge information, improving the precision and 

dependability of edge detection algorithms [13].  

 

Neurotrophic Similarity Measure: The neutrosophic similarity measure is a metric used within the 

neutrosophic framework to quantify the similarity between two neutrosophic sets or objects. 

Neutrosophic similarity measures consider the truth-membership, indeterminacy-membership, and 

falsity-membership values associated with the objects being compared. Similarity measure is 

calculated to identify the degree to the ideal object under intensity condition. 

 

Neutrosophic similarity measure (NSM) calculation steps [14]: 

1. Normalize the images to the range [0,1]. 

2. Calculate the positive, neutral, and negative memberships. 

3. Calculate the numerator and denominator of the NSM. 

 

𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 =  𝑠𝑢𝑚 (𝑠𝑢𝑚 (𝑚𝑖𝑛 (𝑎1, 𝑎2)  +  𝑚𝑖𝑛 (𝑎𝑝1, 𝑎𝑝2)  +  𝑚𝑖𝑛 (𝑎𝑛1, 𝑎𝑛2)))              

(1) 

𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 =  𝑠𝑢𝑚 (𝑠𝑢𝑚 (𝑚𝑎𝑥 (𝑎1, 𝑎2) +  𝑚𝑎𝑥 (𝑎𝑝1, 𝑎𝑝2) +  𝑚𝑎𝑥 (𝑎𝑛1, 𝑎𝑛2)))          

(2) 

 

Where 𝑎1 is the host image, 𝑎2 is the watermarked image; 𝑎𝑝1 is the positive membership of 

𝑎1, 𝑎𝑝2, is the negative membership of 𝑎2. While 𝑎𝑛1, 𝑎𝑛2are the negative membership of 𝑎1 and 

𝑎2, respectively. 

 

4. Calculate the NSM between the two images. 

 

𝑁𝑆𝑀 =  𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 / 𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟               
(3) 

 

2.1.5 Image Quality Assessment:  

For assessing the quality of digital images, there are two available methods. The initial method uses 

judgment from humans and is known as subjective assessment. Human observations, however, can 

differ greatly between people due to perception differences. To get a range of opinions, this calls for 

involving multiple subjects. However, it can be inconvenient, time-consuming, and expensive to 

conduct subjective experiments. Hence, it is not usually employed. 

On the other hand, objective assessment offers an alternative strategy for computing-based image 

quality evaluation. In the literature, a variety of objective metrics have been placed out to evaluate 

the quality of images that have undergone compression, transformation, or other image processing 

operations. A single metric could not be able to adequately address all types of distortions, so it's 

important to note that different distortion types may call for the use of multiple metrics[15]. 

For watermarked images, Peak signal to noise ratio (𝑃𝑆𝑁𝑅) is a common metric that is used in 

literature studies for watermarked image assessment [16][17], and its equation is based on calculating 

the mean square error as shown in the following equations: 

 

PSNR = 20 log10 (
255

√MSE
) 

 

And 

(4) 



Neutrosophic Sets and Systems, Vol. 61, 2023     58 

 

 

Taha Basheer Taha, Huda E. Khalid, “Neutrosophic Similarity Measure for Assessing Digital Watermarked Images” 

 

MSE =
1

m × n
+ ∑  

m

i=1

∑‖ X(i, j) −  Y  (i, j) ‖ 2

n

j=1

 

Where 𝑋 and 𝑌 represent the original and altered images, respectively, with dimensions 𝑚 and 𝑛. 

The indices i and j are used to denote individual pixels within the images. 

However, the bias of Human Vision System (𝐻𝑉𝑆)  in observing the noise in different image 

structures is not considered by 𝑃𝑆𝑁𝑅 [18] .  

Hence, in this paper, neutrosophic similarity measure (𝑁𝑆𝑀) will be utilized to assess the quality of 

watermarked images and to be compared with 𝑃𝑆𝑁𝑅.  

 

2.2 Literature Studies 

Numerous studies and comparisons of various measures for assessing the quality of watermarked 

images have been conducted in literature. A comprehensive review of a number of quality metrics 

was carried out in study [15] to determine the best metric for assessing watermarked images. The 

performance of the metrics in evaluating the quality of watermarked images was examined and 

contrasted. The metrics "PSNR_wav2" and "Komparator" were discovered to be most relevant and 

useful for assessing the overall quality of watermarked images out of the many that were evaluated. 

In another notable research by Kutter et.al [19] focus was on addressing the challenges associated 

with fair benchmarking and the evaluation of digital watermarking methods. This study not only 

aimed to identify suitable evaluation metrics but also proposed a novel metric specifically designed 

for the evaluation of watermarked images. The proposed metric aimed to provide a more 

comprehensive and accurate assessment of the visual quality of watermarked images, considering 

factors such as robustness, perceptual transparency, and resistance to attacks. 

Additionally, in another experiment [20], in which an image quality metric based on singular value 

decomposition (𝑆𝑉𝐷) was used to improve the evaluation of watermarked image visual quality. 

Several watermarking methods' performance was evaluated using the 𝑆𝑉𝐷-based metric. In order to 

evaluate the visual quality of watermarked images, fidelity, distortion, and robustness against typical 

image processing operations were taken into account. 

These literature examples highlight the ongoing research efforts to improve the evaluation of 

watermarked images through the exploration, comparison, and refinement of various evaluation 

metrics. By identifying and utilizing suitable metrics, researchers aim to enhance the accuracy, 

reliability, and effectiveness of evaluating the quality and performance of watermarked images in 

different applications and scenarios. 

E. F-Navarro et al. [21] proposed a set of assessment metrics for visible watermarking algorithms. 

These metrics consist of four components: visibility assessment, global obtrusiveness assessment, 

local obtrusiveness assessment, and global quality assessment. They are based on the characteristics 

of the Human Visual System (𝐻𝑉𝑆) and utilize the concept of Just Noticeable Difference (𝐽𝑁𝐷) 

functions (𝐽𝑁𝐷 is the maximum sensory distortion that human eye does not percieve [22]) . The 

mentioned metrics require the input of the host image, watermark pattern, and visible watermarked 

image for evaluation, and the existing of watermarking pattern and the original watermark may not 

be possible in all cases. These image evalaution metrics were found to be particularly useful in 

(5) 
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evaluating the robustness of watermark removal and assessing the visibility and quality of attacked 

watermarked images.  

To the best of our knowledge, the utilization of the neutrosophic framework with its ambiguity and 

uncertainty in the creation of a metric for digital image evaluation, specifically for watermarked 

images, has not been explored in literature and its usage may lead to promising results for evaluating 

watermarked images and it also can participate in developing watermarking algorithms.  

2.3 Proposed Work 

The methodology employed in this paper involves two main stages: watermark embedding and the 

assessment of the watermarked images. In the first stage, the binary watermark, as illustrated in 

Figure 4, was incorporated into ten standard images of size 512 × 512  pixels. Host image 

thumbnails, shown in Figure 5, provide a visual representation of the chosen images. To ensure 

consistency across different image sizes, the watermark was embedded four times in each host image. 

The binary watermark consists of pixels with binary values of either zero or one, representing the 

black and white colors, respectively. To prevent issues arising from multiplication by zero during the 

embedding process, each zero value in the watermark was transformed to −1, which was then 

multiplied by the embedding power (𝑒𝑝). The selection of the 𝑒𝑝  value directly influences the 

watermark's strength, enabling the analysis of various distortion levels. By varying the ep value, a 

range of distortion scenarios can be examined, providing valuable insights into the watermark's 

robustness under different conditions. 

 

 

 

 

Figure 4: Binary Watermark 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Tested Host Images ( Numbered as I1-I10, starting from top left) 

The watermark was embedded into the images at five different intensities: 2, 4, 6, 8, and 10. This 

range of embedding intensities allowed for a comprehensive assessment of the watermark's 

performance under varying degrees of strength. For each embedded image, two evaluation metrics 

were used: the Peak Signal-to-Noise Ratio (𝑃𝑆𝑁𝑅) and the Neutrosophic Similarity Measure (𝑁𝑆𝑀). 

The 𝑃𝑆𝑁𝑅, a commonly used objective metric, quantifies the quality of the watermarked image by 

measuring the ratio of the peak signal power to the distortion caused by the watermark embedding 
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process. Higher 𝑃𝑆𝑁𝑅  values indicate better preservation of image quality, with less distortion 

introduced by the watermark. 

NSM was employed as a new  metric specifically designed for assessing the quality and similarity 

of watermarked images within the neutrosophic framework. The 𝑁𝑆𝑀 takes into account the truth-

membership, indeterminacy-membership, and falsity-membership values. Figure 6  shows the 

process of watermarked image evaluation. 
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Figure 6: Process of Watermarked Image Evaluation 

3. Results  

In this section the results of embedding will be depicted, in addition to the results of 𝑃𝑆𝑁𝑅 and 

𝑁𝑆𝑀 metrics. A comparison between the two metrics is presented at the end of the section. 

 

3.1. Watermark Embedding Results 

 Watermark had been embedded four times in each host image. Figure 7 shows the results after 

embedding in different intensities. 
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Figure 7: Watermarked Images with Different Embedding Intensities (Cont.) 
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Figure 7: Watermarked Images with Different Embedding Intensities 

 

Figure 7 makes clear that even at the same embedding intensities, the perceptibility of the 

watermark varies between the tested images. In Image I8, which has a lot of large smooth areas like 

the sky, it is important to note that even with an embedding intensity of 2 , the watermark is 

still visible. In contrast, the watermark is less noticeable at intensities 4 and 6 in images with more 

complex content, such 𝐼7  and 𝐼10 . This variation in watermark visibility can be related to the 

images' various characteristics and texture amount and distribution. Extensive smooth areas might 

make a watermark more noticeable, whereas complex textures and details can partially hide its 

appearance. These observations highlight the importance of considering image content and structure 

when assessing the perceptibility of watermarks at different intensities. However, there are other 
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factors are involved in visual quality, as high intensities and low intensities, and the textures are 

appeared more visible to human eye when it positioned in the edges [16]. 

3.2. 𝑷𝑺𝑵𝑹 and 𝑵𝑺𝑴 Values: 

Tables 1 − 5 present the results of the evaluation conducted on the tested images, providing 

the values of both Peak Signal-to-Noise Ratio (𝑃𝑆𝑁𝑅) and Neutrosophic Similarity Measure (𝑁𝑆𝑀) 

for various embedding intensities. Each table corresponds to a specific embedding intensity, namely 

2,  4, 6, 8,  and 10.  The 𝑃𝑆𝑁𝑅  values indicate the level of signal degradation caused by the 

watermark embedding process, with higher values indicating better image quality. On the other 

hand, the 𝑁𝑆𝑀  values reflect the similarity between the watermarked images and their 

corresponding original counterparts, with higher values indicating a stronger resemblance. By 

examining these tables, it is possible to analyze the impact of different embedding intensities on both 

the signal quality and the similarity measure, providing valuable insights into the performance of the 

watermarking algorithm under different 

settings 

 

 

 

 

 

 

 

 

 

Table 1. PSNR and NSM Values for Ep=2 

Image PSNR NSM 

I1 42.1129 0.98704 

I2 42.1126 0.98706 

I3 42.1102 0.98713 

I4 42.1342 0.98692 

I5 42.1102 0.98705 

I6 42.1271 0.98695 

I7 42.1102 0.98789 

I8 42.1193 0.9866 

I9 42.1102 0.98731 

I10 42.1109 0.98749 

 

Table 2. PSNR and NSM Values for Ep=4 

Image PSNR NSM 

I1 36.0934 0.97429 

I2 36.0968 0.97436 

I3 36.0899 0.97446 

I4 36.1181 0.97405 

I5 36.0896 0.9743 

I6 36.1065 0.97413 

I7 36.0896 0.97621 

I8 36.1000 0.97339 

I9 36.0896 0.97484 

I10 36.0906 0.97521 
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The analysis of the obtained results from Tables 1 − 5 reveals several key observations. Firstly, 

the 𝑃𝑆𝑁𝑅 values exhibit variations ranging from 42𝑑𝐵  to 28𝑑𝐵  across the different embedding 

power levels of 2 to 10. It is worth noting that the 𝑃𝑆𝑁𝑅 values remain relatively consistent among 

all the tested images, suggesting a consistent level of signal degradation caused by the watermark 

embedding process. On the other hand, the 𝑁𝑆𝑀 values exhibit a better behavior. Despite minor 

variations and a relatively limited range between 0.98  and 0.93 , the 𝑁𝑆𝑀  values demonstrate 

higher perceptual quality in all embedding intensities for images with higher texture, such as 𝐼7, 𝐼9, 

and 𝐼10 . Conversely, images like 𝐼8 , characterized by smoother features and lower texture, 

consistently yield lower NSM values compared to the other images. 

The values of NSM are normalized between 0 − 1, while 𝑃𝑆𝑁𝑅 values are results of logarithmic 

equations where changes can have more impact on the obtained results. Hence, the changes in 

embedding intensity have higher impact in 𝑃𝑆𝑁𝑅 than 𝑁𝑆𝑀. 

 However, the NSM values require scaling to accurately reflect the observed changes, they can 

serve as a valuable assessment measurement for evaluating the quality of watermarked images. 

These findings suggest that the NSM metric is sensitive to the perceptual characteristics of the images 

and can provide insights into the effectiveness of the watermarking algorithm in preserving image 

quality and similarity to the original content. 

Figure 8 shows the variation of changes in low textured image 𝐼1 and High textured image 𝐼7 

for 𝑃𝑆𝑁𝑅. And 𝑁𝑆𝑀 for the same images is shown in Figure 9. Similar results will be obtained by 

using 𝐼8 with 𝐼10.   

Table 3. PSNR and NSM Values for Ep=6 

Image PSNR NSM 

I1 32.5731 0.96174 

I2 32.5778 0.96189 

I3 32.5687 0.96199 

I4 32.5989 0.96139 

I5 32.5678 0.96177 

I6 32.5856 0.96152 

I7 32.5678 0.96486 

I8 32.5794 0.96037 

I9 32.5678 0.96257 

I10 32.5691 0.96317 

 

Table 4. PSNR and NSM Values for Ep=8 

Image PSNR NSM 

I1 30.0770 0.9494 

I2 30.0807 0.94961 

I3 30.0716 0.94972 

I4 30.1018 0.94893 

I5 30.0690 0.94943 

I6 30.0880 0.94909 

I7 30.0690 0.9538 

I8 30.0822 0.94753 

I9 30.0690 0.9505 

I10 30.0706 0.95134 

 
 

Table 5. PSNR and NSM Values for Ep=10 

Image PSNR NSM 

I1 28.1530 0.93733 

I2 28.1438 0.93754 

I3 28.1373 0.93765 

I4 28.1652 0.93666 

I5 28.1308 0.93729 

I6 28.1510 0.93687 

I7 28.1308 0.94295 

I8 28.1465 0.93487 

I9 28.1314 0.93864 

I10 28.1326 0.93972 
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Figure 8: 𝑃𝑆𝑁𝑅 values for low textured image 𝐼1 and high Textured Image 𝐼7 

 

 

 
Figure 9: NSM values for low textured image 𝐼1 and high Textured Image 𝐼7 

 

The comparative analysis between the 𝑃𝑆𝑁𝑅 and 𝑁𝑆𝑀 metrics reveals notable distinctions in 

their performance. It is observed that the 𝑃𝑆𝑁𝑅 curves for both images are nearly identical, with one 

curve being consistently displayed above the other on the graph. This implies that the 𝑃𝑆𝑁𝑅 metric 

assigns similar values to both images, irrespective of the texture or structure of the image. In contrast, 

the 𝑁𝑆𝑀  metric demonstrates a different behavior, where an increase in the amount of noise 

(embedding strength) leads to greater dissimilarity between the two images. Notably, the 𝑁𝑆𝑀 

metric exhibits a preference for high-textured images, as they are less affected by noise and 

consequently yield higher 𝑁𝑆𝑀  values. This highlights the superiority of the 𝑁𝑆𝑀  metric over 

𝑃𝑆𝑁𝑅 in simulating the sensitivity of the Human Visual System (𝐻𝑉𝑆) to noise. By capturing the 

perceptual aspects and incorporating image texture information, the 𝑁𝑆𝑀  metric offers a more 

comprehensive and accurate evaluation of image quality, surpassing the limitations of 𝑃𝑆𝑁𝑅. 

4. Applications 

These are some applications that highlight the practical implications of the study's findings in 

image processing field:  

 Image Quality Assessment: The 𝑁𝑆𝑀 metric can be utilized as a perceptual quality 

assessment tool for image processing algorithms, including watermarking techniques. 
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It can help determine the effectiveness of different watermark embedding strengths in 

preserving image quality. 

 Watermarking Algorithm Optimization: By analyzing the performance of different 

embedding intensities and their corresponding 𝑁𝑆𝑀  values, this study can aid in 

optimizing watermarking algorithms to achieve the best balance between robustness 

and perceptual quality. 

 Creating a new Just Noticeable Distortion (𝐽𝑁𝐷) model to simulate human vision system 

in perceiving noise. 

 Image Authentication and Forensics: The comparative analysis between 𝑃𝑆𝑁𝑅  and 

NSM metrics provides insights into the sensitivity of watermarking algorithms to noise 

and image texture. This information can be applied to image authentication and forensic 

investigations to assess the integrity and authenticity of watermarked images. 

 Content Protection and Copyright Verification: Watermarking is often used for 

copyright protection and content verification purposes. The findings of this study can 

contribute to the selection of appropriate watermark embedding strengths, ensuring 

optimal protection of intellectual property while maintaining acceptable visual quality. 

 NSM can be combined with other image evaluation metrics as structural Similarity 

Index (𝑆𝑆𝐼𝑀) [23] to achieve better evaluation results. 

5. Conclusion  

This study has explored the limitations of the widely used Peak Signal-to-Noise Ratio (𝑃𝑆𝑁𝑅) metric 

in evaluating watermarked images and has introduced the Neutrosophic Similarity Measure (𝑁𝑆𝑀) 

as an alternative assessment metric. The experimental evaluation conducted on a dataset of 

watermarked images has demonstrated that 𝑁𝑆𝑀 surpasses 𝑃𝑆𝑁𝑅 in capturing the influence of 

additive watermarks and exhibits superior noise tolerance. This was achieved because 𝑁𝑆𝑀 values 

exhibited a better behavior, with minor variations and higher perceptual quality for images with 

higher texture. the study's findings underscore the importance of utilizing accurate assessment 

criteria for watermarked images, and the Neutrosophic Similarity Measure has demonstrated its 

potential to address the limitations of traditional metrics like 𝑃𝑆𝑁𝑅, thereby advancing the field of 

digital watermarking. Future research can enhance watermarking algorithms by further exploring 

the impact of utilizing the 𝑁𝑆𝑀 to find the best watermark embedding intensities. 
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Abstract: The study presents the utilization of an innovative neutrosophic cross 

entropy-based technique for the discrimination of the antioxidant potential of 

Arisaema tortuosum leaf extract based on polyphenolic content. The effect of three 

extraction techniques, namely, Soxhlet extraction, ultrasound-assisted extraction, 

and maceration, have been analyzed on the percentage yield of the extract. The 

effect of solvents, namely, methanol, chloroform and hexane, on the percentage 

yield has also been explored. The leaf extract was found to exhibit significant 

antioxidant potential and polyphenolic content. Substantial discrimination was 

observed among antioxidant potential and polyphenolic contents with minimum 

neutrosophic cross entropy values designated to the extant higher amount of 

polyphenols in A. tortuosum leaf extract. The proposed neutrosophic cross 

entropy-based technique is beneficial for further mathematical treatments because 

of its symmetric nature in comparison with the existing methods, which may 

indicate vagueness in the evaluation information under certain situations and thus 

affects the prognosis analysis. 

Keywords: Cross entropy, Fuzzy Sets, Neutrosophic Sets, Arisaema tortuosum, 

TPC, antioxidant potential. 

 

 

1. Introduction 

The neutrosophic sets (NSs) proposed by Smarandache have played an 

intelligent role in dealing with real-world problems containing imprecise, 

inconsistent and indeterminate information [1]. One of the characteristics of NSs is 

that they include a non-standard unit interval that includes membership gradations 

such as "true," "indeterminate," and "false" [2]. Since the indeterminacy inherited in 

the NSs depend upon the "true" and "false" values, the neutrosophic cross entropy 

measures (NCEMs) can handle real-world problems with imprecise, inconsistent 
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and incomplete information [1]. Ishtiaq et al. (2021) initiated the ideas of orthogonal 

NMSs, investigated many fixed points results, and validated their findings by 

providing some non-trivial counterexamples [3]. Uddin et al. (2021) established the 

concepts of orthogonal controlled fuzzy metric-like spaces to establish some fixed 

point theorems and validated the main findings [4]. Also, the authors provided 

some counterexamples and an application to the fuzzy Fredholm IE of the second 

kind. Javed et al. (2021) idealized the ideas of fuzzy b-metric like spaces to prove 

some interesting fixed point theorems and validated their findings by applying the 

fuzzy Fredholm IE of the first kind [5]. Ishtiaq, Hussain, and Al Sulami (2022) 

introduced the concept of fuzzy rectangular metric-like spaces and proved some 

exciting results, combined with single and multi-valued mappings, of fixed point 

theory [6].  

Ali et al. (2022) provided several unique solutions to non-linear fractional 

differential equations for weekly compatible and contractive functions under the 

environment of neutrosophic metric spaces (NMSs) [7]. Hussain, Al Sulami, and 

Ishtiaq (2022) introduced the concept of intuitionistic fuzzy rectangle metric and 

b-metric spaces as well as neutrosophic rectangular metric and b-metric spaces to 

prove some important fixed point results along with an application to the Fredholm 

Integral equation (IE) of the second kind [8]. Hussain et al. (2022) also confirmed 

some Banach fixed point results by generalizing the concept of pentagonal 

controlled fuzzy and fuzzy extended hexagonal metric spaces [9]. The authors 

provided some counterexamples in support of their findings and also gave an 

application to dynamic marketing. Farheen et al. (2022) gave authentic proof of the 

Banach fixed point theorem under intuitionistic fuzzy double-controlled metric 

spaces. To support their findings, the authors provided an application to the fuzzy 

Fredholm IE of the second kind [10]. Saleem et al. (2022) idealized the ideas of 

graphical fuzzy metric-like spaces and proved the Banach fixed point theorem. To 

validate their outcomes, the authors solved a non-linear fractional differential 

equation in the context of graphical fuzzy metric spaces [11]. Unfortunately, the 

existing literature on NCEMs mainly covers asymmetrical aspects ignoring the 

symmetrical and undefined parameters [12]. To overcome these shortcomings and 

limitations and to handle complex real-life problems with ambiguity and 

vagueness, it is necessary to develop an efficient methodology that can accurately 

discriminate the desired parameters.  

Since ancient times, medicinal plants have been explored to heal various 

diseases because of the availability of vital volatile organic compounds or 

phytochemicals exhibiting medicinal properties [13]. The biomedical potential of 

any plant is explored based on phytochemical analysis of the extracts of its various 

parts, especially in terms of antioxidant potential [14]. Discrimination of antioxidant 

potentials and polyphenolic contents of bioactive plant extract with medicinal and 

therapeutic potential needs to be explored in scientific interest [15]. Castellano et al. 
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(2013) have determined the number of classes and classification levels for the 

flavonoids using information entropy [16]. However, there is no study available in 

the literature on the discrimination of the medicinal potential with the 

phytochemical constituents of medicinal plants based on fuzzy sets (FSs) theory. 

This observation reinforces the necessity to develop a superior and intelligent 

methodology that can optimize the phytochemical extraction of medicinal plants.  

Arisaema tortuosum is a medicinal herb with multiple therapeutic uses because 

of the availability of volatile organic compounds, including flavonoids, terpenoids, 

polyphenols etc. [17]. So far, no neutrosophic cross entropy base methodology has 

been established and applied for studying the phytochemical analysis of A. 

tortuosum. The conventional Information Theory approaches based upon the theory 

of fuzzy sets (FSs) and neutrosophic sets (NSs) can be used in discriminating 

antioxidant potentials and polyphenolic contents of the extract obtained from aerial 

parts of bioactive plants. In the current study, a classy trigonometric neutrosophic 

cross entropy measure (NCEM) hinging on the two single-valued neutrosophic 

sets (SVNSs) is proposed and applied to discriminate the polyphenolic contents 

and antioxidant potential in the extracts obtained from the aerial parts of A. 

tortuosum. The subsequent development of the proposed work has been arranged in 

Figure 1 and described ahead.  

Section 2 discusses the materials and methodology deployed for obtaining the 

extract and assessing the antioxidant potential and polyphenolic contents. The 

antioxidant potential has been analyzed in the following terms: 

1. 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay 

2. 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical 

scavenging assay 

3. Ferric reducing antioxidant power (FRAP) assay 

The polyphenolic content has been obtained in the following terms: 

1. Total polyphenolic content (TPC) 

2. Total flavonoid content (TFC) 

The section also provides information about establishing the proposed 

cross-entropy measures. Section 3 provides results for the experimental and 

numerical analysis to provide the discrimination among antioxidant potential and 

polyphenolic contents, with the findings summarized in section 4. 
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Figure 1. A detailed schematic flow chart of the underlying methodology 

2. Materials and Methods  

2.1. Materials 

The plant was collected from the Himalayan region of Dharamshala (Naddi), 

Himachal Pradesh. Young leaves of Arisaema tortuosum were selected and washed 

with regular and double distilled water to expel the residue and dust particles over 

their surface. After draining free water, the obtained material was dried in a shady 

region at room temperature for 30 days and ground to get the powdered form. The 

various chemicals utilized in the present work were procured from Merck Ltd. 

Mumbai and used as such. Double distilled water was used to prepare all the 

formulations.  

2.2. Leaf extract preparation 

Three solvents of different polarities, chloroform, methanol and hexane, were 

used to extract the sample in the powdered form. The plant material was extracted 

in triplicate for 30 minutes with 100 mL of solvent using Soxhlet extraction (SE) [18], 

Ultrasound aided extraction (UAEM) [19], and Maceration extraction (ME) [20]. 

Through a rotary vacuum evaporator at 45 oC, the obtained extract was evaporated 

to dryness and then preserved for further investigations at a low temperature.  

2.3. Determination of polyphenolic content 

The Folin-Ciocalteu technique was deployed to measure the TPC. 20 µL of leaf 

extract (5 mg/mL) in DMSO (25% v/v) was amalgamated to diluted Folin–Ciocalteu 

reagent (100 µL) with agitation for 1 minute. 75 µL of Na2CO3 solution (100 mg/mL) 

was added and again agitated for 1 minute. The mixture was left for 2 hours, and 

the absorbance of the coloured solution was monitored at 750 nm through a UV-Vis 

spectrophotometer (Agilent Cary-60) with gallic acid as a calibration standard. TPC 

was estimated as the mg equivalents of gallic acid / g of leaf extract (mg GAE/g).  
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The aluminum chloride technique was deployed to access the TFC of the 

extracts. 20 µL of leaf extract (5 mg/mL) in DMSO (25% v/v) was added to 10 µL of 

AlCl3 (10%) and 10 µL of CH3COOK (1 M). The mixture was diluted with double 

distilled water to achieve a final volume of 200 µL and left for 30 minutes. The 

absorbance of the solution was monitored at 415 nm using quercetin as the 

reference. TFC was estimated as mg quercetin equivalents/ g of leaf extract (mg QE / 

g). 

2.4. Determination of antioxidant potential 

Standard methods were used to investigate the antioxidant potential of the 

extracts quantitatively. 3 ml of the freshly available DPPH solution (0.1 mM) was 

well mixed with 0.2 ml of extract (10-100 μg/mL) and incubated for thirty minutes 

in the dark. The absorbance was monitored at 517 nm. The scavenging impact of the 

extracts against DPPH free radicals was determined by employing Ascorbic acid as 

a standard. 

3 mL of FRAP solution was mixed with leaf extract (10-100 μg/mL) and then 

incubated for 30 min. The absorbance of the obtained solution was measured at 593 

nm. The ferrous sulphate was utilized as standard, and FRAP was expressed as 

ferrous II equivalents in mg per g of the leaf extract (mg Fe (II) /g). 

180 μL of ABTS solution was added to 20 μL of leaf extract (10-100 μg/mL) and 

incubated for 30 min. The absorbance of the obtained solution was monitored at 734 

nm using ascorbic acid as standard. The ABTS scavenging potential was 

determined in terms of ABTS radical scavenging %. 

2.5. Neutrosophic cross entropy measure 

2.5.1. A symmetric fuzzy cross entropy measure 

The cross-entropy information measures in the reported literature face a major 

drawback because of their asymmetrical nature. They return undefined or 

meaningless when their membership functions conceive zero value in some 

mathematical treatments. The following Theorem 1 overcomes the shortcomings 

mentioned above and its limitations.  

Theorem 1 Set     1 1 .A i A il x x   Let   ,i A i iA x x x X    be any FS 

belonging to  1 2 3X , , ,.., nx x x x . Then 

μ

FS

1 1

3 3
(A) tan tan

2 2 2

n

i

H
l

   
          
  (1) 

is a reliable measure (Def. 1) where μ

FS (A)H indicates the mathematical 

fuzziness value of the FS .A  Moreover, its minimum value is zero and 

 μ

FS

3
Max. (A) tan tan 1 ,

2
H n

  
   

  
 where the cardinality of the FS A  is represented 

by n . 
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Proof (i) Clearly μ

FS(A) 0H A X    with equality if   0 or 1.A ix    

(ii) μ

FS (A)H  doesn't change even if  A ix  is replaced with  1 .A ix  

(iii) Concavity of μ

FS (A)H for each  A ix : 

 

  

 

2

μ
1FS

2

1 1

3
3 1 2 sec

2 2(A)

4 1

A i

A i

x
lH

x l l





 
  

   
 

 (2) 

 

 

   

  

 

3

1

2 2

1

1

2

1
2 μ

1FS

32
4

2
1 1

16 4 1

3
3sec 3 8

2 2

3
3 1 2 tan

2 2(A)
0

8 1

A i

A i A i

A i

A i

x l

x x l
l

x l
lH

x
l l



 





 
 

  
  

      
     
       




for each 

   0,1 .A ix   This justifies the concavity. 

(iv) There exists a maximum value of μ

FS (A)H  with respect to each  A ix  

owing to its concavity property. Using (2), this maximum value arises when 

 

μ

FS(A)
0

A i

H

x





which yields  

1
.

2
A ix   From (1) 

 
 μ μ

1FS FS

2

3
Max. (A) (A) tan tan 1 .

2A ix
H H n

 

  
    

  
 

 
(3) 

The concavity of μ

FS (A)H  is evident in Figure 2.  

 
Figure 2. Concavity of fuzzy entropy measure μ

FS (A)H  with respect to  A ix  
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Theorem 2 Set            2 4

2 2

3, , ,A i B i A i B i A i B ixl lx l x x x x          

then μ

FSL (A,B) represents a valid TSFCE measure that hinges on two FSs A  

and B  where  

     μ 2 2
FS 2 2

1 3 4

2 4
L (A,B) 6 tan 1 2 tan 4 tan

2 2 2 2

n

i

l l
l l

l l

     
         

       
  (4) 

Proof. It is easy to verify the symmetric nature of μ

FSL (A,B)  as 

 μ μ

FS FSL (A,B) L (B,A) ,A B S X   . Further, μ

FSL (A,B)  remains unchanged on replacing 

   ,A i B ix x   with    1 ,1A i B ix x    into equation (3). To establish 
μ

FSL (A,B) 0,  we shall first establish the following Lemma 1 .  

Lemma 1 Define    2 2

5 .A i B il x x   There exists the inequality 5
3

2

l
l  

with equality whenever      0,1 .A i B ix x     

Proof. In our notations,  

   
2

2

5 2 0
2 4 2

A i B ix xl l    
   

 
      5 2 , 0,1

2 2
A i B i

l l
x x      (5) 

with equality if     1,2,..., .A i B ix x i n      

Define 
   

2

0
2

A i B ix x
m

  
 
 
 

 and consider 

 

   
2

2
0 0

2 2

A i B ix xl
m

  
   
 
 

     2
0 , 0,1

2
A i B i

l
m x x        (6) 

with equality if     1,2,..., .A i B ix x i n      

Again 
   

2

0 3 0
2

A i B ix x
m l

  
   
 
 

 

     0 3 , 0,1A i B im l x x      (7) 

with equality if     1,2,..., .A i B ix x i n      

We can combine the resulting inequalities (5-7) to get the desired result.  

The outcomings of Lemma 1 can be re-designed as 

   
   

2 2

5
3

2 2

A i B i

A i B i

x xl
l x x

 
 


  

        
   

2

2

2

A i B i A i B i

A i B i

x x x x
x x

   
 

 
   

2 2

2 2 2 2
3 3 3 3 31 1

2 4 2 2

l l l l
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2

3

2
1

2 2

l

l


 


 (8) 

After taking tangent of the undergoing inequality (8) yields 

   2
2 2

3

2
2 tan 2 tan1

2 2

l
l l

l

 
   

  
 (9) 

 
(a) 

 
(b) 

Figure 3. (a) Convexity and (b) maximum/minimum values μ

FSL (A,B)  

On the similar pattern, the replacement of    ;A i B ix x   with 

   1 ;1A i B ix x    yields  
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   2
2 2

4

4
4 tan 4 tan1

2 2

l
l l

l

 
   

  
 (10) 

We can simply add (9) and (10) and then take summation over 1i   to n  for 

getting the desired result. That is, μ

FSL (A,B) 0  for each      , 0,1A i B ix x   with 

equality whenever     1,2,..., .A i B ix x i n      

It will be informative to know that μ

FSL (A,B)  discloses its minimum and 

maximum values as proved in Theorem 3. 

Theorem 3.   the inequality:  μ

FS

3
0 L (A,A ) 6 tan tan 1

2

c n
  

    
  

 where 

.n N   

Proof. In our notations, if we replace B  with its counterpart cA  into the 

resulting equation (4), then 
22 l changes to 3, 

3 1l l ,
2 4 14 3, .l l l    

With these restrictions, the resulting equation (4) be rescheduled as  

 μ

FS

1 1

3
L (A,A ) 6 tan 1 6 tan

2 2

n
c

i l

  
    

    
  

  
1 1

3 3 3
6tan 6tan 1 6 tan tan

2 2 2 2

n

i l

      
                   


μ μ

FS FS6 . (A) (A)Max H 6H    

μ μ μ

FS FS FS

1
(A) . (A) L (A,A )

6

cH Max H    (11) 

With the aid of non-negative condition μ

FS(A) 0H  , the expression (11) yields 

 μ

FS

3
0 L (A,A ) 6 tan tan 1

2

c n
  

    
  

 (12) 

The inequality expression (12) suggests μ

FSL (A,A )c  as finite since n is finite. 

Also, readers can easily establish that  μ

FS

3
0 L (A,B) 6 tan tan 1

2
n

  
    

  
 which 

suggests that  μ

FS

3
Max.L (A,B) = 6 tan tan 1

2
n

  
  

  
. Also, the plots displayed in 

Figure 3 (a-b) affirm that μ

FSMin.L (A,B) is zero.  

To predict the various antioxidant potentials and polyphenolic contents 

extracted from the aerial parts of A. tortuosum, it becomes essential for us to 

cultivate the following Theorem 4.  

2.5.2. A neutrosophic cross entropy measure 

Theorem 2 can be extended to establish another important cross entropy 

measure based on two SVNSs as follows.  

Def. 2 Set              2 43, 1 .1,A i B i A i B i A i B ii x i x r i x i x r ir x i x    Let 

             , , , ; , , ,A i A i A i i B i B i B i iA x x i x f x x X B x x i x f x x X        
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be any two SVNSs. The amount of fuzziness inherited by the truth membership 

degree of A  and B  is given by μ

FSL (A,B)  and represented by (3). Similarly, as per 

Theorem 2, the amount of fuzziness inherited by the degree of indeterminancy 

membership of A  and B  is 

     2 2
FS 2 2

1 3 4

2 4
L (A,B) 6 tan 1 2 tan 4 tan

2 2 2 2

n
i

i

r r
r r

r r

     
         

       
  (13) 

If we set  

             3 42 , , 1 1 ,A i B i A i B i A i B if x f x s f x f x s f x f xs      then the 

amount of fuzziness inherited by the falsity membership degree of A  and B  is 

     2 2
FS 2 2

1 3 4

2 4
L (A,B) 6 tan 1 2 tan 4 tan

2 2 2 2

n
f

i

s s
s s

s s

     
         

       
  (14) 

Hence, SVL (A,B) , the proclaimed trigonometric symmetric SVNCE measure, via 

two SVNSs, A  and B , can be obtained as per following expression:  
μ

SV FSL (A,B) L (A,B) FS+ L (A,B)i  FSL (A,B)f  (15) 

Theorem 4.   the inequality:  SV

3
0 L (A,A ) 18 tan tan 1

2

c n
  

    
  

 where, the 

cardinality of the SVNSs, A  and B  is represented by n N  

Proof. Set  

        

         
2

3

1

4

1 , ,

, 1 1 .

A i A i A i A i

A i A i A i A i

i x i x x f x

x f x x f x

  

   

  

   


 

In our notations, if we replace the SVNS B  with its counterpart cA  into the 

resulting equation (15), then  

     

 

2 2
SV 2 2

1 1 3 4

2 2

1 3

2

2 43
L (A,A ) 18tan 1 6 tan 2 2 tan 2 4 tan

2 2 2 2 2 2

2 23 3
3tan tan tan

2 32 2 2 23
18tan 18tan 1 6

2 4
ta

3

n
c

i

 
 

  

 

 





      
           

            

      
                  

   
   

 
 



1
2

4

SV SV

4
n

2 2

6 . (A) (A);

n

i

Max L 6L







  
  
  
  

   
         

 



 

2 2 2 2
SV

1 1 3 4

2 2 4 43 3
(A) 3tan tan tan tan

2 3 32 2 2 2 2 2

n

i

L
   

  

            
                              
  (16) 

The resulting expression (16) represents the desired SVNCE measure with 

following all the essential conditions: 
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1. SV (A)L  exhibits the concavity property for each SV (A)L  

2. SV (A) 0L   if either      0, 0, 1.A i A i A ix i x f x    or 

     1, 0, 0A i A i A ix i x f x     

3.  SV (A) 0L A W X    

4. 
SV SV(A ) (A)cL L   

 
Figure 4. Neutrosophic entropy measure 

The overall discussion in the outcoming theorems has brought us in a strong 

situation to apply the proposed measure (Figure 4) for discriminating the 

polyphenolic contents and antioxidant potentials of the A. tortuosum leaf extract. 

2.5.3. Neutrosophic cross entropy-based methodology  

Step 1. Normalization of Extracted Percentage Inhibitions of Various Assays  

We first assume that the number of parameters (influencing factors) is " ".n  

Also, " ".m  is the number of reaction sets. Let the maximum and minimum values 

of the percentage yields extracted using UAEM, SEM and MM as maxl  and minl  

respectively. To predict the highly efficient solvent needed for the extraction of 

polyphenolics, it is mandatory to normalize the percentage yields of each assay to 

be bounded in the interval [0, 1] which can be done by using the formula: 

* min

max min

l l
l

l l





 (17) 

Step 2. Extracting upper and lower bounds for various antioxidant potentials 

and polyphenolic contents 

Suppose the knowledge of percentage yield of the studied antioxidant 

potentials can be represented by the discrete set  1 2 3 4, , ,A A A A A . Also, the 
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w 

knowledge of various known polyphenolic contents-TFC and TPC-can also be 

represented by the set  
1 2
,T TF F F  

Let   * 1,2,3,4
KAU x K   and  *

KA x  be the upper and lower bounds of the thK  

assay. Define KA as  

            
1 1 2 2 4 4

* * * * * *, , , , , ,..., , ,K A A A A A AA x x U x x x U x x x U x                    

Define the set  1,2
jTF j   as  

        
1 1 2 2

* * * *, , , , ,
j T T T TT F F F FF x x U x x x U x        

   
 

 Step 3. Extending Percentage Yield Interval into the Form of SVNSs  

 Let    * *1
K KA Af x U x   and      * * *1

K K KA A Ai x f x U x    where  *

KAi x  is 

restricted to 0 01 if it assumes any value less than 0 001 .Then,  1,2,3,4KA K  can 

be further extended into the following form: 

             

      
1 1 1 2 2 2

4 4 4

* * * * * *

* * *

, , , , , , , ,...,

, , ,

A A A A A A

K

A A A

x x i x f x x x i x f x
A

x x i x f x

 



     
  

   

 

Similarly, the set 
jTF  can also take the form of SVNSs as  

              
1 1 1 2 2 2

* * * * * *, , , , , , ,
j T T T T T TT F F F F F FF x x i x f x x x i x f x       

Step 4. Computing cross entropy values. The trigonometric SVNCE measure 

values between
jTF  and KA  can be found by substituting 

           , , ; , ,A i A i A i B i B i B ix i x f x x i x f x  with 

           * * * * * *, , ; , ,
K K K T T Tj j j

A A A F F Fx i x f x x i x f x   into (15). Thus, 

 SV ( , ) 1,2,3,4; 1,2 18tan1
jK TL A F K j     

    
   

   
    

   

     

    
   

   
 

* * * *

* * * *

* * * *

* *

* * * *

* *

2 4
2 tan 4 tan

2 2 2 2

2
2 tan

1

2

1

4
2

K T K Tj j

K T K Tj j

K T K Tj j

K T j

K T K Tj j

K Tj

A F A F

A F A F

A i F i A i F i

A F

A F A F

A F

i x x i x x
i x x i x x

i x i x x x

f x x
f x x f x

f x f

i i
i i

i i

f
f f

x

             
        

 
    
 

 


 
 

 






   
   

     

* *

* *1 1

4
tan

2 2

K Tj

K Tj

A F

A F

f x x
x

x

f

f xf

  
  

  
  

 




 



 

Step 5. Identification of the Most Efficient Solvent Based Upon Cross Entropy 

Values 

Smaller value of 
CE ( , )

jK TL A F indicates that the antioxidant potential KA  is 

closer to the known polyphenolic content 
jTF .   

3. Results and Discussion 

3.1. Extract yield 
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The extract yield of different dry extracts was found in the range of 

35.21-61.62% for 100 g of the powdered dry matter. The highest yield was shown by 

methanol extract, then by chloroform and hexane extracts that was contributed to 

the polarity of the solvent. Thus, the essence of methanol promoted the 

solubilization of secondary metabolites [21]. Furthermore, the yield varied for the 

extraction techniques with the best results for SEM followed by UAEM and 

substantially lower for MM. Comparable findings have also been recorded 

previously, where the maximum yield was demonstrated by different polar extracts 

obtained by SEM [22]. The Higher yields by employing SEM can be obtained via 

exhaustive extraction of plant material followed by repeated washing with a hot 

solvent [13]. Whereas, acoustic vibrations provide better results as compared to 

MM by raising the solubility and diffusion coefficients of secondary metabolites as 

well as lowering the viscosity of the solvent [19].  

3.2. Antioxidant Assay 

The polyphenolic compounds present in medicinal plants are referred as 

antioxidant agents and used as radical scavengers or metal chelators [23]. The 

antioxidant effect of the plant depends on phytochemicals present as both major 

and minor constituents that play an effective role in radical scavenging. The FRAP 

assay is based on using antioxidants for reducing the 2,4,6-tripyridyl-s-triazine – 

Fe(III) complex [21]. The FRAP values of these extracts ranged from 146.18 to 439.95 

g DPE. The highest FRAP values were exhibited by all the extracts resulted by SEM 

while the lowest values were obtained for those obtained by MM. A comparable 

pattern has also been found in earlier studies for medicinal plant extracts [15]. 

Further, a maximum FRAP value was found for the methanol extract and a 

minimum for the hexane extracts. It is apparent from the current findings that the 

FRAP values are highly dependent on the type of solvent and the extraction 

methods used for the study.  

ABTS assay involves scavenging the pre-generated ABTS•+ radical cation by the 

antioxidant [23]. The results showed that extracts in various solvents had various 

method-dependent scavenging potentials for radicals. Therefore, based on their 

IC50 value, the methanol extract obtained by SEM has been found to be most active 

in comparison with the other extracts. The leaf extract of A. tortuosum was found to 

exhibit significant DPPH scavenging activity with IC50 value maximum for 

methanol extract followed by chloroform extract and hexane extract. Therefore, the 

high antioxidant potential of the A.tortuosum leaf extract observed in this study 

signifies its ethno-medicinal usage to treat oxidative stress-related diseases [24].  

3.3. Polyphenolic content 

TPC is the quantitative approach to determine the extent of polyphenols 

present in the plant. Phenols are one of the important plant constituents as the 

radical scavenging ability depends on the hydroxyl group [14]. The phenolic 

groups are present in the secondary metabolites with redox properties that allow 
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them to function as a radical scavenger in various biotic activities such as 

antioxidant, antibacterial and antifungal [21]. TPC of A. tortuosum was also found to 

depend upon the nature of the extraction method and the solvent used. The extracts 

obtained by Soxhlet extraction exhibited the maximum amount, while the least 

amount was received by maceration. The methanol extract was found to provide 

the best yield of polyphenols. 

Flavonoids, including flavanols and flavones, are secondary plant metabolites. 

These metabolites result in the colour of the plants as well as the antioxidant and 

antimicrobial activity depending upon the presence of -OH groups. Plant 

flavonoids exhibit antioxidant activity in both vivo and vitro studies [22]. The 

maximum yield of TFC for A. tortuosum leaf extract was obtained for the extracts 

obtained by Soxhlet extraction. Flavonoids exhibit more excellent solubility in polar 

solvents than non-polar solvents [21]. Hence, the methanol extract contained the 

highest TFC as compared to the other extracts [25]. Other researchers have also 

reported a significant amount of polyphenols in the tuber extract of A. tortuosum 

[17]. 

Table 1. Lower and upper bounds of each known antioxidant Potential, TPC 

and TFC of A. tortuosum leaf extract 

Sets 
SEM 

Methanol Chloroform Hexane 

DPPH [0.997,1.000] [0.995,1.000] [0.994,1.000] 

ABTS [0.589,0.593] [0.589,0.593] [0.590,0.603] 

FRAP [0.464,0.468] [0.461,0.465] [0463,0.468] 

TPC [0.000,0.006] [0.000,0.007] [0.000,0.007] 

TFC [0.107,0.111] [0.105,0.107] [0.105,0.110] 

 UAEM 

 Methanol Chloroform Hexane 

DPPH [0.998,1.000] [0.989,1.000] [0.986,1.000] 

ABTS [0.590,0.594] [0.590,0.601] [0.581,0.592] 

FRAP [0.462,0.469] [0.464,0.474] [0.447,0.465] 

TPC [0.000,0.003] [0.000,0.006] [0.000,0.012] 

TFC [0.110,0.114] [0.107,0.114] [0.106,0.114] 

 MM 

 Methanol Chloroform Hexane 

DPPH [0.994,1.000] [0.995,1.000] [0.984,1.000] 

ABTS [0.585,0.591] [0.592,0.605] [0.580,0.591] 

FRAP [0.461,0.465] [0.468,0.477] [0.448,0.456] 

TPC [0.000,0.006] [0.000,0.013] [0.000,0.012] 

TFC [0.107,0.111] [0.118,0.128] [0.000,0.012] 

3.4. Discrimination among antioxidant potential and polyphenolic content 
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The step-by-step procedure of the proclaimed methodology for the 

identification of the most effective solvent is already displayed in Figure 1. In the 

present case, we represent the various antioxidant potentials and polyphenolic 

contents extracted from the leaves and flowers of Arisaema tortuosum by the set 

 1 2 3 4, , ,A A A A A  where 1A  =DPPH radical scavenging 2A  = ABTS, 3A  = FRAP 

and the set  
1 2
,T T TF F F  where

1TF  TPC and 
2TF TFC, respectively.  

Step 1. The lower and upper bounds of each known antioxidant potentials 

( 1,2,3,4)KA K   and polyphenolic contents ( 1,2)
jTF j   can be extracted and 

represented in Table 1.  

Step 2. Extending the percentage yield interval ranges of each known 

antioxidant potentials ( 1,2,3,4)KA K  and known polyphenolic contents ( 1,2)
jTF j   

into the form of SVNSs and depicted in Table 2. 

 

Table 2. Representation of extract yield interval range as SVNSs 

Sets 
SEM 

Methanol Chloroform Hexane 

DPPH [0.997,0.003,0.000] [0.995,0.005,0.000] [0.994,0.006,0.000] 

ABTS [0.589,0.004,0.407] [0.587,0.006,0.407] [0.590,0.013,0.397] 

FRAP [0.464,0.004,0.532] [0.461,0.004,0.535] [0.463,0.003,0.534] 

TPC [0.000,0.006,0.994] [0.000,0.007,0.993] [0.000,0.007,0.993] 

TFC [0.107,0.004,0.889] [0.105,0.002,0.893] [0.105,0.005,0.890] 

 UAEM 

 Methanol Chloroform Hexane 

DPPH [0.998,0.002,0.000] [0.989,0.011,0.000] [0.986,0.014,0.000] 

ABTS [0.590,0.004,0.406] [0.590,0.011,0.399] [0.581,0.011,0.408] 

FRAP [0.462,0.007,0.531] [0.464,0.010,0.526] [0.447,0.018,0.535] 

TPC [0.000,0.003,0.997] [0.000,0.006,0.994] [0.000,0.012,0.988] 

TFC [110,0.004,0.886] [0.107,0.007,0.886] [0.106,0.008,0.886] 

 MM 

 Methanol Chloroform Hexane 

DPPH [0.994,0.006,0.000] [0.995,0.005,0.000] [0.984,0.016,0.000] 

ABTS [0.585,0.006,0.409] [0.592,0.013,0.395] [0.580,0.011,0.409] 

FRAP [0.461,0.004,0.535] [0.468,0.009,0.523] [0.448,0.008,0.544] 

TPC [0.000,0.006,0.994] [0.000,0.013,0.987] [0.000,0.012,0.988] 

TFC [0.107,0.004,0.889] [0.118,0.010,0.872] [0.000,0.012,0.988] 

Step 3. The minimum cross entropy measure 
1

( , )FS K TL A F  values between 

various antioxidant potentials and TPC, for SEM, UAEM and MM, amount as 10.19, 

9.99 and 10.04, respectively (Table 3). Similarly, The minimum cross entropy values 

2
( , )FS K TL A F  between various antioxidant potentials and TFC, for SEM, UAEM and 



Neutrosophic Sets and Systems, Vol. 61, 2023  84  

 

 

Rajni Garg, C.P. Gandhi and Nnabuk Okon Eddy, Neutrosophic Cross Entropy Based discrimination among antioxidant 

potential and polyphenolic contents of Arisaema tortuosum  

MM, amount as 1.96,1.88 and 4.45, respectively. These values indicate that the TFC 

followed by TPC are the most efficient solvents for extracting various antioxidant 

potentials viz FRAP, DPPH radical scavenging, TAC and NOS, respectively, 

extracted from the aerial parts of Arisaema tortuosum entropy measure based upon 

SVNSs. Furthermore, the minimum neutrosophic cross entropy measure 
1

( , )SV K TL A F  

values between various antioxidant potentials and TPC, for SEM, UAEM and MM, 

amount as 16.98, 16.94 and 16.25, respectively (Table 4). Also, the minimum NCEM 

12( , )SV KL A F  values between various antioxidant potentials and TFC, for SEM, UAEM 

and MM, amount as 3.91, 3.78 and 7.56, respectively. These values also confirm that 

TFC followed by TPC are the most efficient solvents for extracting various 

antioxidant potentials.  

Further, the best results were obtained for the Soxhlet extraction method 

followed by ultrasonication and maceration methods. The results reveal that the 

precision of the proposed methodology ranges from 86.60% to 173.21%/ , which 

justifies the accuracy of the proposed method. 
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Table 3. Fuzzy cross entropy value between each antioxidant potentials and TPC and TFC of A. Tortuosum leaf extract 

 

Table 4. Neutrosophic cross entropy value between each antioxidant potentials and TPC and TFC of A. Tortuosum leaf extract 

  

 

 

Cross 

Entropy 

Values 

SEM UAEM MM 

11( , )FS TL A F  149.57 140.85 138.49 

12( , )FS TL A F  16.74 16.63 16.55 

13( , )FS TL A F  10.19 9.99 10.04 

21( , )FS TL A F  35.21 31.56 62.99 

22( , )FS TL A F  3.50 3.43 7.62 

23( , )FS TL A F  1.96 1.88 4.45 

Neutrosophic 

Cross Entropy 

Values 

SEM UAEM MM 

11( , )SV TL A F  291.80 284.58 272.74 

12( , )SV TL A F  27.70 27.73 26.55 

13( , )SV TL A F  16.98 16.94 16.25 

21( , )SV TL A F  97.86 92.59 145.92 

22( , )SV TL A F  7.03 6.82 12.95 

23( , )SV TL A F  3.91 3.78 7.56 
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5. Conclusion 

The present study explores the use of a novel symmetric neutrosophic entropy 

measure for discrimination among antioxidant potential with TPC and TFC of A. 

tortuosum leaf extract obtained by using three different techniques viz UAE, SE and 

ME in presence of three solvents of different polarities (methanol, hexane and 

chloroform). The antioxidant potential was assessed through DPPH, ABTS and 

FRAP assay. The study revealed the impact of different solvents on the extraction of 

phytochemicals and antioxidant activity of A. tortuosum. The extracts possessed 

significant antioxidant activity due to high content of total polyphenols and 

flavonoids. However, the methanol extract was found to possess higher content of 

total polyphenols and flavonoids resulting in comparatively higher antioxidant 

activity. Similarly, SEM extraction was found to be more beneficial with best 

results. The quantitative analysis was carried out using neutrosophic cross-entropy 

based methodology. The studies confirmed a valid discrimination among TPC and 

TFC, DPPH, ABTS and FRAP parameters owing to high value of cross-entropy 

irrespective of the method of extraction used for the study. It shows that the 

antioxidant potential of the extract can be accredited to the rich TPC and TFC 

content. The study signifies that Soxhlet extraction method is the best method 

among the three methods for the phytochemical extraction from the medicinal 

plants.  
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Abstract:  In the real word, in most cases, everything (an attribute, event, proposition, theory, idea, 

person, object, action, etc.) is evaluated in general by many sources (called experts), not only one. The 

more sources evaluate a subject, the better accurate result (after fusioning all evaluations). That’s 

why, in this paper, we straightforwardly extend the Refined Neutrosophic Set to the 

MultiNeutrosophic Set, and we show that the last two are isomorphic. A MultiNeutrosophic Set is 

a Neutrosophic Set whose all elements’ degrees of truth/indeterminacy/falsehood are evaluated by 

many (Multi) sources. 

Afterwards, we introduce a total order on the set of n-plets of the form (p, r, s), we build the 

operators on the (p, r, s)-plets, and show several applications of the MultiNeutrosophic Sets. 

Several particular cases of the MultiNeutrosophic Sets are presented: such as MultiFuzzy Set, 

MultiIntuitionistic Fuzzy Set, MultiPicture Fuzzy Set, and other Multi(Fuzzy Extension) Set. 

1. General Definition of the Neutrosophic Set (or Subset Neutrosophic Set - SNS) 

Let 𝒰 be a universe of discourse and a subset N of it.  

Then:  
𝑁 = {𝑥, (𝑇, 𝐼, 𝐹), 𝑥 𝜖 𝑈} 

is called a Neutrosophic Set, where T, I, F are subsets of [0, 1], and they are called respectively degrees 

of Truth (T), Indeterminacy (I), and Falsehood (F) of the element x with respect to the set A. No other 

restrictions on T, I, and F. Of course, it implies that:  

0 ≤ inf𝑇 + inf 𝐼 + inf𝐹 ≤ sup𝑇 + sup 𝐼 + sup𝐹 ≤ 3.  

The most used (particular cases are): 

i) If T, I, F are all single-values (numbers) from [0, 1], then one has a Singe-Valued Neutrosophic 

Set (SVNS); 

ii) If T, I, F are intervals included in [0, 1], then one has an Interval-Valued Neutrosophic Set (IVNS). 

2. The MultiNeutrosophic Set  

In the real word, in most cases, everything: an attribute, event, proposition, theory, idea, person, 

object, action, etc., is evaluated in general by many sources (called experts), let’s denote them by S1, S2, 

…, Sn, where the number of sources 𝑛 ≥ 2 (to ensure the MultiSource). The more sources evaluate 

a subject, the better accurate result (after fusioning all evaluations). 

Therefore, let’s assume the degree of truth (or membership) of the generic element x with respect 

to the set N is evaluated by p sources of information, that give the following results,  

respectively 𝑇1, 𝑇2, … , 𝑇𝑝;  

and the degree of indeterminacy (neither truth/membership, nor falsehood/nonmembership) of 

the element x with respect to the set N is evaluated by r sources of information, that give the following 

results, respectively: 𝐼1, 𝐼2,… , 𝐼𝑟;  

while the degree of falsehood (or nonmembership) of the element x with respect to the set N is 

also evaluated by s sources of information that give the following results, respectively: 𝐹1, 𝐹2, … , 𝐹𝑠;  
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where all 𝑇1 , 𝑇2, … , 𝑇𝑝, 𝐼1, 𝐼2, … , 𝐼𝑟, 𝐹1, 𝐹2, … , 𝐹𝑠 are subsets of [0,1], with p, r, s integers ≥ 0, and 

at least one of p, r, s is ≥ 2 (in order to ensure the multiplicity of at least one of: truth, indeterminacy, 

or falsehood), with 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 2. 

All n sources may be either totally independent two by two, or partially independent and 

partially dependent, or totally dependent - according to the need of each specific application. 

In the situation where there is some dependence between sources, we understand that either 

they communicate with each other and share information (influencing each other), or the same source 

may evaluate two or three of the components: truth, indeterminacy, falsehood of the same element.  

3. General Definition of MultiNeutrosophic Set (or Subset MultiNeutrosophic Set - SMNS)  

Let 𝒰 be a universe of discourse and M a subset of it. Then, a MultiNeutrosophic Set is: 

𝑀 = {𝑥, 𝑥(𝑇1 , 𝑇2 , … , 𝑇𝑝; 𝐼1, 𝐼2,… , 𝐼𝑟; 𝐹1, 𝐹2, … , 𝐹𝑠), 𝑥 ∈ 𝒰, 

where 𝑝, 𝑟, 𝑠 are integers ≥ 0, 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 2, 

and at least one of p, r, s is ≥ 2, in order to ensure the existence of multiplicity of at least 

one neutrosophic component: truth/membership, indeterminacy, or falsehood/nonmembership; 

all subsets 𝑇1 , 𝑇2, … , 𝑇𝑝; 𝐼1, 𝐼2, … , 𝐼𝑟; 𝐹1, 𝐹2, … , 𝐹𝑠 ⊆ [0, 1]; 

0 ≤ ∑ 𝑖𝑛𝑓𝑇𝑗
𝑝
𝑗=1 + ∑ 𝑖𝑛𝑓𝐼𝑘

𝑟
𝑘=1 +∑ 𝑖𝑛𝑓𝐹𝑙

𝑠
𝑙=1 ≤ ∑ 𝑠𝑢𝑝𝑇𝑗

𝑝
𝑗=1 + ∑ 𝑠𝑢𝑝𝐼𝑘

𝑟
𝑘=1 + ∑ 𝑠𝑢𝑝𝐹𝑙

𝑠
𝑙=1 ≤ 𝑛}. 

No other restrictions apply on these neutrosophic multicomponents. 

𝑇1 , 𝑇2 , … , 𝑇𝑝 are multiplicities of the truth, each one provided by a different source of information 

(expert). 

Similarly, 𝐼1, 𝐼2,… , 𝐼𝑟 are multiplicities of the indeterminacy, each one provided by a different 

source. 

And 𝐹1, 𝐹2, … , 𝐹𝑠 are multiplicities of the falsehood, each one provided by a different source. 

The Degree of MultiTruth (MultiMembership), also called MultiDegree of Truth, of the element 

x with respect to the set M are 𝑇1, 𝑇2 , … , 𝑇𝑝;  

the Degree of MultiIndeterminacy (MultiNeutrality), also called MultiDegree of Indeterminacy, 

of the element x with respect to the set M are  𝐼1, 𝐼2,… , 𝐼𝑟;  

and the Degree of MultiFalsehood (MultiNonmembership), also called MultiDegree of Falsehood, 

of element x with respect to the set M are 𝐹1, 𝐹2, … , 𝐹𝑠.  

All these 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 2 are assigned by n sources (experts) that may be: 

— either totally independent; 

— or partially independent and partially dependent; 

— or totally dependent; 

according or as needed to each specific application. 

A generic element x with regard to the MultiNeutrosophic Set A has the form: 

𝑥(𝑇1 , 𝑇2, … , 𝑇𝑝⏟      ;         𝐼1, 𝐼2,… , 𝐼𝑟⏟      ;            𝐹1, 𝐹2, … , 𝐹𝑠⏟      ) 

 multi-truth    multi-indeterminacy      multi-falsehood 

In many particular cases 𝑝 = 𝑟 = 𝑠, and a source (expert) assigns all three degrees of truth, 

indetermincay, and falsehood (𝑇𝑗 , 𝐼𝑗 , 𝐹𝑗) for the same element. 

4. Particular Cases of MultiNeutrosophic Set (MNS)  

Upon the types of sets that the neutrosophic components are, one has: 

i. Single-Valued MultiNeutrosophic Set (SVMNS), 

when all neutrosophic components 

𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑇𝑗 , 𝐼𝑘 , 1 ≤ 𝑘 ≤ 𝑟, and 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠, 

are single-values (numbers), such that all 𝑇𝑗 , 𝐼𝑘 , 𝐹𝑙 ∈ [0, 1]. 

ii. Interval-Valued MultiNeutrosophic Set (IVMNS), 

when all neutrosophic components 
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𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑇𝑗 , 𝐼𝑘 , 1 ≤ 𝑘 ≤ 𝑟, and 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠, 

are interval-values, such that all 𝑇𝑗 , 𝐼𝑘 , 𝐹𝑙 ⊆ [0, 1]. 

5. Particular Cases of Single-Valued MultiNeutrosophic Set (SVMNS) 

a. MultiFuzzy Set, by setting 𝑝 ≥ 2, and 𝑟 = 𝑠 = 0, into the above SVMNS Definition. 

b. MultiIntuitionistic Set, by setting 𝑟 = 0, 𝑝 and s ≥ 1, with 𝑝 + 𝑠 ≥ 3, and 0 ≤ 𝑇𝑗 + 𝐹𝑙 ≤ 1, for 

all 𝑗 ∈ {1, 2, …𝑝}, 𝑙 ∈ {1, 2,… 𝑠}, into the SVMNS Definition. 

c. MultiPythagorean Fuzzy Set, by letting 𝑟 = 0, and 𝑝, 𝑠 ≥ 3, with 𝑝 + 𝑠 ≥ 3, and 0 ≤ 𝑇𝑗
2 + 𝐹𝑙

2 ≤

1, for 𝑗 ∈ {1, 2, … , 𝑝}, 𝑙 ∈ {1, 2,… , 𝑠}, into the SVMNS Definition. 

d. MultiFermatean Fuzzy Set, by letting 𝑟 = 0, and 𝑝, 𝑠 ≥ 1, with 𝑝 + 𝑠 ≥ 3, and 0 ≤ 𝑇𝑗
3 + 𝐹𝑙

3 ≤

1, for 𝑗 ∈ {1, 2, … , 𝑝}, 𝑙 ∈ {1, 2,… , 𝑠}, into SVMNS Definition. 

e. Multi q-Rung Orthopair Fuzzy Set, by letting 𝑟 = 0, and 𝑝, 𝑠 ≥ 1, with 𝑝 + 𝑠 ≥ 3, and 0 ≤ 𝑇𝑗
𝑞
+

𝐹𝑙
𝑞
≤ 1, with 𝑞 ≥ 1, for 𝑗 ∈ {1, 2,… , 𝑝}, 𝑙 ∈ {1, 2, … , 𝑠}, into SVMNS Definition. 

f. MultiPicture Fuzzy Set, by letting 𝑝, 𝑟, 𝑠 ≥ 1, with 𝑝 + 𝑟 + 𝑠 ≥ 4, and 0 ≤ 𝑇𝑗 + 𝑁𝑘 + 𝐹𝑒 ≤ 1, for 

𝑗 ∈ {1, 2,… , 𝑝}, 𝑘 ∈ {1, 2,… , 𝑟}, 𝑙 ∈ {1, 2, … , 𝑠}, where 𝑁𝑘 is considered neutral (as in neutrosophic set 

is ideterminacy) into SVMNS Definition. 

g. MultiSpherical Set, by setting 𝑝, 𝑟, 𝑠 ≥ 1, with 𝑝 + 𝑟 + 𝑠 ≥ 4, and 0 ≤ 𝑇𝑗
2 + 𝐼𝑘

2 + 𝐹𝑒
2 ≤ 1, and 

𝑅𝑗𝑘𝑙 = √1− 𝑇𝑗
2 − 𝐼𝑘

2 − 𝐹𝑒
2 , for all 𝑗 ∈ {1, 2,… , 𝑝} , 𝑘 ∈ {1, 2,… , 𝑟} , 𝑙 ∈ {1, 2, … , 𝑠} , into the SVMNS 

Definition. 

6. Particular Cases of Interval-Valued MultiNeutrosophic Set (IVMNS) 

In an identical way we get the Particular Cases of Interval-Valued MultiNeutrosophic Set, as being 

Interval-Valued (fuzzy and fuzzy-extension) sets, replacing the single-valued components by interval 

components and using the operations of intervals: 

For any [𝑎, 𝑏], [𝑐, 𝑑] ⊆ [0, 1], where 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑, one has: 

[𝑎, 𝑏] + [𝑐 + 𝑑] = [𝑚𝑖𝑛{𝑎 + 𝑐, 1}, 𝑚𝑖𝑛{𝑏 + 𝑑, 1}]  
[𝑎, 𝑏]𝑛 = [𝑚𝑖𝑛{𝑎𝑛 , 1},𝑚𝑖𝑛{𝑏𝑛 , 1}]  

1 − [𝑎, 𝑏] = [1 − 𝑏, 1 − 𝑎]  
[𝑎, 𝑏] − [𝑐, 𝑑] = [𝑚𝑎𝑥{𝑎 − 𝑑, 0},𝑚𝑎𝑥{𝑏 − 𝑐, 0}].  

7. Application of Single-Valued MultiNeutrosophic Set 

Let 𝑀 = {𝐴,𝐵, 𝐶,𝐷} be a group of students. 

Their performance in science is evaluated by several professors (= sources of information, 

experts). 

Let’s assume that three professors 𝑃1 , 𝑃2 , 𝑃3  evaluate the degrees of positive knowledge (truth) 

of the students, and: 

— Professor 𝑃1  assigns the value 𝑇1  respectively to all the students; 

— Professor 𝑃2  assigns the value 𝑇2  respectively to all the students; 

— Professor 𝑃3  assigns the value 𝑇3  respectively to all the students, as follows: 

A(𝑇1 = 0.8, 𝑇2 = 0.6, 𝑇3 = 0.7), 

B(𝑇1 = 0.6, 𝑇2 = 0.9, 𝑇3 = 0.5), 

C(𝑇1 = 0.4, 𝑇2 = 0.4, 𝑇3 = 0.6), 

D(𝑇1 = 0.7, 𝑇2 = 0.0, 𝑇3 = 0.4). 

But two professors 𝑄1  and 𝑄2  are not very sure of the students’ performances and assign 

indeterminate degrees (𝐼1 and 𝐼2 respectively) to the students: 

𝐴 (𝐼1  = 0.2, 𝐼2 = 0.3), 

𝐵 (𝐼1  = 0.5, 𝐼2 = 0.4), 

𝐶 (𝐼1  = 0.1, 𝐼2 = 0.0), 

𝐷 (𝐼1  = 0.3, 𝐼2 = 0.1). 
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Further on, four professor 𝑅1, 𝑅2, 𝑅3, and 𝑅4, dissatisfied with the students’ performance, assign 

negative evaluations (falsehood degrees), 𝐹1, 𝐹2, 𝐹3, and 𝐹4 respectively:  

𝐴 (𝐹1  = 0.7, 𝐹2 = 0.4, 𝐹3 = 0.5, 𝐹4 = 0.4),  

𝐵 (𝐹1  = 0.6, 𝐹2 = 0.3, 𝐹3 = 0.5, 𝐹4 = 0.1),   

𝐶 (𝐹1  = 0.2, 𝐹2 = 0.1, 𝐹3 = 0.2, 𝐹4 = 0.3),   

𝐷 (𝐹1  = 0.5, 𝐹2 = 0.2, 𝐹3 = 0.1, 𝐹4 = 0.2).   
The students have been evaluated by 3 + 2 + 4  sources of information. In the case that all 

sources were independent two by two, one has 9 sources. But, if there was some dependence (i.e. the 

same professor assigning, for example, not only the truth, but also the indeterminacy and/or the 

falsehood, the number of independent sources is < 9).  

The more sources evaluate a subject, the better accurate result.  

We got the following single-valued MultiNeutrosophic Set, where each element has the form: 

 𝑥({𝑇1 , 𝑇2, 𝑇3}, {𝐼1, 𝐼2}, {𝐹1, 𝐹2, 𝐹3, 𝐹4}). 

𝑀 = {𝐴({0.8, 0.6, 0.7}, {0.2, 0.3}, {0.7, 0.4, 0.5, 0.4}), 

    𝐵({0.6, 0.9, 0.3}, {0.5, 0.4}, {0.6, 0.3, 0.5, 0.1}), 

    𝐶({0.4, 0.4, 0.6}, {0.1, 0.0}, {0.2, 0.1, 0.2, 0.3}), 

    𝐷({0.7, 0.0, 0.4}, {0.3, 0.1}, {0.5, 0.2, 0.1, 0.2}). 

7.1. Remark on previous Application 

The Single-Valued MultiNeutrosophic Set (SVMNS) coincides in form with the particular case 

of the Subset Neutrosophic Set (SNS) by taking the neutrosophic components as discrete subsets of 

the form {𝑎1, 𝑎2, … , 𝑎𝑚} ⊂ [0,1],𝑚 ≥ 1. 

For example, considering the student A, his degree of truth (membership) is 𝑇(𝐴) =

{0. .8, 0.6, 0.7} , his degree of indeterminacy-membership is 𝐼(𝐴) = {0.2, 0.3},  and his degree of 

falsehood (nonmembership) is 𝐹(𝐴) = {0.7, 0.4, 0.5, 0.4} , from the point of view of Subset 

Neutrosophic Set. 

i. The first distinction is that in the case of Subset Neutrosophic Set, only one source (expert) 

provides information about let’s say the student degree 𝑇(𝐴) = {0.8, 0.6, 0.7}, while in 

the case of Single-Value Multi Neutrosophic Set, three sources provide information on  

T(𝐴), i.e. one source evaluates the student A degree of truth as 0.8, the second one as 0.6, 

and the third one as 0.7. The more experts evaluating, the better accuracy, whence the 

SVMNS better evaluates than the SNS. Similarly for the degree of indeterminacy 𝐼(𝐴), 

and the degree of falsehood F(𝐴). 

ii. The second distinction is in applying the neutrosophic operators, since in general the 

operators for the Subset Neutrosophic Sets are different from the operators for the 

Single-Valued MultiNeutrosophic Set (we’ll see it below on Section 13). 

8. Ranking of n-valued MultiNeutrosophic types of the same (p, r, s)-form 

(𝑇1, 𝑇2 , … , 𝑇𝑝;  𝐼1, 𝐼2,… , 𝐼𝑟; 𝐹1, 𝐹2, … , 𝐹𝑠),  

where p, r, s are integers ≥ 0, and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 2, and at least one of 𝑝, 𝑟, 𝑠 ≥ 2 to be sure 

that we have multiplicity for at least one neutrosophic component (either truth, or indeterminacy, or 

falsehood). 

The first research in n-ranking neutrosophic triplets was done in 2023 by V. Lakshmana 

Gomathi Nayagam, and Bharanidharan R. [3], using the dictionary ranking. 

 

We propose an easier n-ranking, but this is rather an approximation. Let’s compute the 

following. 

1. Average Positivity: 
∑ 𝑇𝑗
𝑝
𝑗=1 +∑ (1 − 𝐼𝑘) +

𝑟
𝑘=1 ∑ (1 − 𝐹𝑒)

𝑠
𝑒=1

𝑝 + 𝑟 + 𝑠
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2. Average (Truth-Falsehood): 
∑ 𝑇𝑗
𝑝
𝑗=1 − ∑ 𝐹𝑒

𝑠
𝑒=1

𝑝 + 𝑠
 

3. Average Truth 
∑ 𝑇𝑗
𝑝
𝑗=1

𝑝
 

Let’s compare (𝑇1 , 𝑇2, … , 𝑇𝑝; 𝐼1, 𝐼2, … , 𝐼𝑟; 𝐹1, 𝐹2, … , 𝐹𝑠) ≡ 𝑁 

    with (𝑇1
′, 𝑇2

′, … , 𝑇𝑝
′; 𝐼1

′ , 𝐼2
′ ,… , 𝐼𝑟

′ ; 𝐹1
′, 𝐹2

′, … , 𝐹𝑠
′) ≡ 𝑁′. 

 

If their Average Positivity is the same, one gets (1): 

∑𝑇𝑗

𝑝

𝑗=1

−∑𝐼𝑘

𝑟

𝑘=1

−∑𝐹𝑒

𝑠

𝑒=1

=∑𝑇𝑗
′

𝑝

𝑗=1

−∑𝐼𝑘
′

𝑟

𝑘=1

−∑𝐹𝑒
′

𝑠

𝑒=1

 

 

If their Average (Truth-Falsehood) is the same, one gets (2): 

∑𝑇𝑗

𝑝

𝑗=1

−∑𝐹𝑒

𝑠

𝑒=1

=∑𝑇𝑗
′

𝑝

𝑗=1

−∑𝐹𝑒
′

𝑠

𝑒=1

 

whence, by combining (1) and (2), one gets (3): 

∑𝐼𝑘

𝑟

𝑘=1

=∑𝐼𝑘
′

𝑟

𝑘=1

 

If their Average Truth is the same, one gets (4): 

∑𝑇𝑗

𝑝

𝑗=1

=∑𝑇𝑗
′

𝑝

𝑗=1

 

Then, from (2) and (4), one gets: 

∑𝐹𝑒

𝑠

𝑒=1

=∑𝐹𝑒
′

𝑠

𝑒=1

 

Therefore 𝑁 = 𝑁’  means that their corresponding averages of truths, indeterminacies, and 

falsehoods respectively are equal: 

{
 
 
 
 

 
 
 
 1

𝑝
∑𝑇𝑗

𝑝

𝑗=1

=
1

𝑝
∑𝑇𝑗

′

𝑝

𝑗=1

1

𝑟
∑ 𝐼𝑘

𝑟

𝑘=1

=
1

𝑟
∑𝐼𝑘

′

𝑟

𝑘=1

1

𝑠
∑𝐹𝑒

𝑠

𝑒=1

=
1

𝑠
∑𝐹𝑒

′

𝑠

𝑒=1

 

9. Ranking n-valued MultiNeutrosophic tuples of different (p, r, s)–forms   

Let’s consider two n-valued multi neutrosophic tuples of the forms (𝑝1, 𝑟1, 𝑠1) and respectively 

(𝑝2, 𝑟2, 𝑠2), where 𝑝1, 𝑟1 , 𝑠1, 𝑝2, 𝑟2, 𝑠2 are integers ≥ 0, and 𝑝1 + 𝑟1 + 𝑠1 = 𝑛1 ≥ 2, and at least one of 

𝑝1, 𝑟1 , 𝑠1 𝑖𝑠 ≥ 2 to be sure that we have multiplicity for at least one neutrusophic component (either 

truth, or indeterminacy, or falsehood); similarly 𝑝2 + 𝑟2 + 𝑠2 ≥ 2, and at least one of 𝑝2, 𝑟2 , 𝑠2 ≥ 2. 

Let’s take the following Single-Valued Multi Neutrosophic Tulpes (SVMNT): 

𝑆𝑉𝑀𝑁𝑇 = (𝑇1 , 𝑇2, … , 𝑇𝑝1; 𝐼1, 𝐼2, … , 𝐼𝑟1;  𝐹1, 𝐹2, … , 𝐹𝑠1) of (𝑝1, 𝑟1 , 𝑠1)-form, and 

𝑆𝑉𝑀𝑁𝑇′ = (𝑇1
′ , 𝑇2

′, … , 𝑇𝑝2
′ ; 𝐼1

′ , 𝐼2
′ , … , 𝐼𝑟2

′ ; 𝐹1
′, 𝐹2

′, … , 𝐹𝑠2
′  ) of (𝑝2, 𝑟2, 𝑠2)-form.  

We make the classical averages of truth (𝑇𝑎) , indeterminancies (𝐼𝑎)  and falsehood (𝐹𝑎) , 

respectively for: 

𝑆𝑉𝑀𝑁𝑇 = (𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎)  

and the averages of truths (𝑇𝑎
′), indeterminancies (𝐼𝑎

′ ), and falsehood (𝐹𝑎
′) respectively for: 
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𝑆𝑉𝑀𝑁𝑇′ = (𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′). 

And then we apply the Score (𝑆), Accuracy (𝐴), and Certainty (𝐶) Functions, as for the single 

valued neutrosophic set:  

1. Compute the Score Function (average of positiveness) 

𝑆(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) =
(𝑇𝑎 + (1 − 𝐼𝑎) + (1 − 𝐹𝑎)

3
 

𝑆(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′) =  

𝑇𝑎
′ + 1− 𝐼𝑎

′ + 𝐹𝑎
′) 

3
 

(i) if 𝑆(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) > 𝑆(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′), then 𝑆𝑉𝑀𝑁𝑇 > 𝑆𝑉𝑀𝑁𝑇′; 

(ii) if 𝑆(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) < 𝑆(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′), then 𝑆𝑉𝑀𝑁𝑇 < 𝑆𝑉𝑀𝑁𝑇′; 

(iii) and if 𝑆(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) = 𝑆(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′),  

then go to the second step. 

2. Compute the Accuracy Function (difference between the truth and falsehood) 

𝐴(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) = 𝑇𝑎 − 𝐹𝑎 

𝐴(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′) = 𝑇𝑎

′ − 𝐹𝑎
′ 

(i) if 𝐴(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) > 𝐴(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′), then 𝑆𝑉𝑀𝑁𝑇 > 𝑆𝑉𝑀𝑁𝑇′; 

(ii) if 𝐴(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) < 𝐴(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′), then 𝑆𝑉𝑀𝑁𝑇 < 𝑆𝑉𝑀𝑁𝑇′; 

(iii) and if 𝐴(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) = 𝐴(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′),  

then go to the third step. 

3. Compute the Certainty Function (truth) 

𝐶(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) = 𝑇𝑎 

𝐶(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′) = 𝑇𝑎

′ 

(i) if 𝐶(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) > 𝐶(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′), then 𝑆𝑉𝑀𝑁𝑇 > 𝑆𝑉𝑀𝑁𝑇′; 

(ii) if 𝐶(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) < 𝐶(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′), then 𝑆𝑉𝑀𝑁𝑇 < 𝑆𝑉𝑀𝑁𝑇′; 

(iii) if 𝐶(𝑇𝑎 , 𝐼𝑎 , 𝐹𝑎) = 𝐶(𝑇𝑎
′ , 𝐼𝑎

′ , 𝐹𝑎
′), then 𝑆𝑉𝑀𝑁𝑇 and 𝑆𝑉𝑀𝑁𝑇′ are multi-neutrosophically 

equal, i.e. 𝑇𝑎 = 𝑇𝑎
′ , 𝐼𝑎 = 𝐼𝑎

′  , 𝐹𝑎 = 𝐹𝑎
′ , or their corresponding truth, indeterminancy, 

and falsehood averages are equal. 

10. Example 1  

Example where all sources providing information have equal weights. 

Assume the student George is evaluated by several professors from his university with respect 

to his skills in science: 

George({0.8, 0.9, 0.3}, {0.2}, {0.6, 0.7}) 

While the student John is evaluated with respect to the same scientific skills by some of the 

previous professors and by other professors from the same university: 

John({0.7, 1.0, 0.6, 0.5}, {01. , 0.4}, {0.2, 0.8, 0.7}) 

Which student does better than the others? 

 

Let’s compute the averages. 

John(
0.7+1.0+0.6+0.5

4
,
0.1+0.4

2
,
0.2+0.8+0.7

3
) ≃ John(0.70, 0.25, 0.57). 

George(
0.8+0.9+0.3

3
,
0.2

1
,
0.6+0.7

2
) ≃ George(0.67, 0.20, 0.65). 
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The Score Function: 

S(George) = 
0.67+(1−0.20)_(1−0.65)

3
≃ 0.61. 

S(John) = 
0.70+(1−0.25)_(1−0.57)

3
≃ 0.63. 

John has better scientific skills than George, since S(John) ≃ 0.63 > 0.61 ≈S(George). 

This may be explained from the fact that if more or less sources evaluate the same element x of 

a given set, we make the average of evaluations. 

In cases some sources have a greater weight in evaluation than others, one uses the weighted 

averages, indexed as 𝑇𝑤𝑎 , 𝐼𝑢𝑎 , 𝐹𝑣𝑎 and 𝑇𝑤′𝑎
′ , 𝐼𝑢′𝑎

′ , 𝐹𝑣′𝑎
′ ,  respectively.  

Because the sources may be independent or partially independent, the sum of weights should 

not necessarily be equal to 1. As such, one has: 

𝑇𝑤𝑎 =
𝑤1𝑇1 + 𝑤2𝑇2 +⋯+𝑤𝑝1𝑇𝑝1

𝑤1 + 𝑤2 +⋯+𝑤𝑝1
 

where 𝑤1 , 𝑤2 , …, 𝑤𝑝1 ∈ [0, 1], while the sum 𝑤1 +𝑤2 +⋯+𝑤𝑝1  may be < 1, or = 1, or > 1; 

 

𝐼𝑢𝑎 =
𝑢1𝐼1 + 𝑢2𝐼2 +⋯+ 𝑢𝑟1𝐼𝑟1
𝑢1 + 𝑢2 +⋯+ 𝑢𝑟1

 

where 𝑢1, 𝑢2, …, 𝑢𝑟1 ∈ [0, 1], while the sum 𝑢1 + 𝑢2 +⋯+ 𝑢𝑟1 may be < 1, or = 1, or > 1; 

 

𝐹𝑣𝑎 =
𝑣1𝐹1 + 𝑣2𝐹2 +⋯+ 𝑣𝑠1𝐹𝑠1

𝑣1 + 𝑣2 +⋯+ 𝑣𝑠1
 

where 𝑣1, 𝑣2, …, 𝑣𝑠1 ∈ [0, 1], while the sum 𝑣1 + 𝑣2 +⋯+ 𝑣𝑠 may be < 1, or = 1, or > 1. 

 

Similarly, 

𝑇′𝑤′𝑎 =
𝑤′1𝑇′1 +𝑤′2𝑇′2 +⋯+𝑤′𝑝2𝑇′𝑝2

𝑤′1 +𝑤′2 +⋯+𝑤′𝑝2
 

where 𝑤′1, 𝑤′2, …, 𝑤′𝑝2 ∈ [0, 1], while the sum 𝑤′1 +𝑤′2 +⋯+𝑤′𝑝1 may be < 1, or = 1, or > 1; 

 

𝐼′𝑢′𝑎 =
𝑢′1𝐼′1 + 𝑢′2𝐼′2 +⋯+ 𝑢′𝑟2𝐼′𝑟2

𝑢1 + 𝑢2 +⋯+ 𝑢𝑟1
 

 

where 𝑢′1, 𝑢′2, …, 𝑢′𝑟2 ∈ [0, 1], while the sum 𝑢′1 + 𝑢′2 +⋯+ 𝑢′𝑟1 may be < 1, or = 1, or > 1; 

 

𝐹′𝑣′𝑎 =
𝑣′1𝐹′1 + 𝑣′2𝐹′2 +⋯+ 𝑣′𝑠2𝐹′𝑠2

𝑣′1 + 𝑣′2 +⋯+ 𝑣′𝑠2
 

where 𝑣′1, 𝑣′2, …, 𝑣′𝑠2 ∈ [0, 1], while the sum 𝑣′1 + 𝑣′2 +⋯+ 𝑣′𝑠 may be < 1, or = 1, or > 1. 

 

 

And, similarly, one applies the Score, Accuracy, and Certainty Functions on these weighted 

averages to rank them. 

 

𝑆(𝑇𝑤𝑎 , 𝐼𝑢𝑎 , 𝐹𝑣𝑎) =
𝑇𝑤𝑎+(1−𝐼𝑢𝑎)+(1−𝐹𝑣𝑎)

3
  

𝐴(𝑇𝑤𝑎 , 𝐼𝑢𝑎 , 𝐹𝑣𝑎) = 𝑇𝑤𝑎 − 𝐹𝑣𝑎  

𝐶(𝑇𝑤𝑎 , 𝐼𝑢𝑎 , 𝐹𝑣𝑎) = 𝑇𝑤𝑎  
 

𝑆(𝑇′𝑤′𝑎 , 𝐼′𝑢′𝑎 , 𝐹′𝑣′𝑎) =
𝑇′𝑤′𝑎+(1−𝐼′𝑢′𝑎)+(1−𝐹′𝑣′𝑎)

3
  

𝐴(𝑇′𝑤′𝑎 , 𝐼′𝑢′𝑎 , 𝐹′𝑣′𝑎) = 𝑇′𝑤′𝑎 − 𝐹′𝑣′𝑎  

𝐶(𝑇′𝑤′𝑎 , 𝐼′𝑢′𝑎 , 𝐹′𝑣′𝑎) = 𝑇′𝑤′𝑎  

11. Example 2  
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Let’s retake the Example 1: 

George({0.8, 0.9, 0.3}, {0.2}, {0.6, 0.7}), 

and John({0.7, 1.0, 0.6, 0.5}, {0.1, 0.4}, {0.2, 0.8, 0.7}), 

and assume the six evaluators of George have the following corresponding weights respectively: 

0.6, 0.7, 0.4;  0.3;  0.8, 0.7; 

while the nine evaluators of John have the following corresponding weights respectively: 

0.7, 0.2, 0.5, 0.1;  0.8, 0.3;  0.9, 0.4, 0.6. 

Let’s compute the weighted averages. 

For George: 

𝑇𝑤𝑎 =
0.8 ⋅ (0.6) + 0.9 ⋅ (0.7) + 0.3 ⋅ (0.4)

0.6 + 0.7 + 0.4
≃ 0.72 

 

𝐼𝑢𝑎 =
0.2 ⋅ (0.3)

0.3
= 0.20 

 

𝐹𝑣𝑎 =
0.6 ⋅ (0.8) + 0.7 ⋅ (0.7)

0.8 + 0.7
≃ 0.65. 

 

We got George (0.72, 0.20, 0.65). 

For John: 

𝑇′𝑤′𝑎 =
0.7 ⋅ (0.7) + 1.0 ⋅ (0.2) + 0.6 ⋅ (0.5) + 0.5 ⋅ (0.1)

0.7 + 0.2 + 0.5 + 0.1
≃ 0.69 

 

𝐼′𝑢′𝑎 =
0.1 ⋅ (0.8) + 0.4 ∙ (0.3)

0.8 + 0.3
≃ 0.18 

 

𝐹′𝑣′𝑎 =
0.2 ⋅ (0.9) + 0.8 ⋅ (0.4) + 0.7 ⋅ (0.6)

0.9 + 0.4 + 0.6
≃ 0.48 

 

We got John (0.69, 0.18, 0.48). 

Compute the score functions in order to rank them. 

S(George) = S(0.72, 0.20, 0.65) = 
0.72+(1−0.20)+(1−0.65

3
 ≃ 0.62. 

S(John) = S(0.69, 0.20, 0.65) = 
0.69+(1−0.20)+(1−0.65)

3
 ≃ 0.61. 

Therefore, now George is better, because S(George) = 0.62 > 0.61 = S(John). 

12. Isomorphism between Subset Refined Neutrosophic Set (SRNS) and Subset 

MultiNeutrosophic Set (SMNS)  

The Subset Refined Neutrosophic Set was first introduced by Smarandache [4} in 2013. 

12.1. Definition of Subset Refined Neutrosophic Set (SRNS) 

Let 𝒰 be a universe of discourse, and a set 𝑅 ⊂ 𝒰. 

Then a Subset Refined Neutrosophic R is defined as follows: 

𝑅 = {𝑥, 𝑥(𝑇, 𝐼, 𝐹), 𝑥 ∈ 𝒰}, 

where T is refined/split into p sub-truths, 

I is refined/split into r sub-indeterminacies, 

𝐼 = 〈𝐼1, 𝐼2, … , 𝐼𝑟〉, 𝐼𝑘 ⊆ [0, 1], 1 ≤ 𝑘 ≤ 𝑟, 

and F is refined/split into s sub-falsehoods, 

𝐹 = 〈𝐹1, 𝐹2, … , 𝐹𝑠〉, 𝐹𝑙 ⊆ [0, 1], 1 ≤ 𝑙 ≤ 𝑠, 

where 𝑝, 𝑟, 𝑠 ≥ 0 are integers, and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 2, and at least one of p, r, s is ≥ 2 in order to 

ensure the existence of refinement (splitting). 
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Similarly, in particular cases, 𝑝 = 𝑟 = 𝑠, meaning that each component T, I, F is refined/split into 

the same member of sub-components. 

The isomorphism is obvious: 

𝜑: 𝑆𝑀𝑁𝑆 → 𝑆𝑅𝑁𝑆 
𝜑(𝑇𝐽) = 𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝, 

𝜑(𝐼𝑘) = 𝐼𝑘 , 1 ≤ 𝑘 ≤ 𝑟, 

𝜑(𝐹𝑙) = 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠. 
But while 𝑇𝑗 ,  𝐼𝑘 , 𝐹𝑙  from SMNS are duplicates (or multi-truth, multi-indeterminacy, multi-

falsehood respectively), the corresponding 𝑇𝑗 ,  𝐼𝑘,  𝐹𝑙  from SRNS are parts (or sub-truth, sub-

indeterminacy, sub-falsehood respectively). 

13. Operators on Multi (and Refined) Neutrosophic Sets/Logic  

i. The case when the neutrosophic tuples have the same (p, r, s)-format. 

 

Let ∨𝑁 , ∧𝑁 , ¬𝑁 , →𝑁 , ↔𝑁  be the neutrosophic union, intersection, complement (negation), 

inclusion (implication), equality (equivalence) respectively. 

While ∨𝐹 , ∧𝐹, ¬𝐹, →𝐹 , ↔𝐹 the fuzzy operators respectively, where ∨𝐹 and ∧𝐹 are t-conorm 

and t-norm respectively, afterwards fuzzy negation, fuzzy implication, and fuzzy equivalence 

respectively. 

Also, by notation, one considers: 

(𝑇1 , 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟; 𝐹1, 𝐹2, … , 𝐹𝑠) ≡ (𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠 ).  

 

The operations will be a straightforward extension from the (1, 1, 1)-format (T, I, F)  

to the (p, r, s)-format. 

 

Multi/Refined Neutrosophic Union 

(𝑇1 , 𝑇2 , … , 𝑇𝑝1 ; 𝐼1, 𝐼2,… , 𝐼𝑟1; 𝐹1, 𝐹2, … , 𝐹𝑠) ∨𝑁 (𝑇1
′, 𝑇2

′, … , 𝑇𝑝
′; 𝐼1

′ , 𝐼2
′ ,… , 𝐼𝑟

′ ; 𝐹1
′, 𝐹2

′, … , 𝐹𝑠
′)

= (𝑇1 ∨𝐹 𝑇1
′ , 𝑇2 ∨𝐹 𝑇2

′ , … , 𝑇𝑝 ∨𝐹 𝑇𝑝
′;  𝐼1 ∧𝐹 𝐼2

′ ,… , 𝐼𝑟 ∧𝐹 𝐼𝑟
′ ; 𝐹1 ∧𝐹 𝐹1

′, 𝐹2 ∧𝐹 𝐹2
′, … , 𝐹𝑠 ∧𝐹 𝐹𝑠

′) 

Shortly, we may write: 
(𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠) ∨𝑁 (𝑇′𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼′𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝐹′𝑙 , 1 ≤ 𝑙 ≤ 𝑠)

= (𝑇𝑗 ∨𝐹 𝑇𝑗
′, 1 ≤ 𝑗 ≤ 𝑝; 𝐼𝑘 ∧𝐹 𝐼

′
𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 ∧𝐹 𝐹𝑙

′, 1 ≤ 𝑙 ≤ 𝑠) 

 

Multi/Refined Neutrosophic Intersection 

(𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠) ∧𝑁 (𝑇′𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼′𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝐹′𝑙 , 1 ≤ 𝑙 ≤ 𝑠)

= (𝑇𝑗 ∧𝐹 𝑇′𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼𝑘 ∨𝐹 𝐼
′
𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 ∨𝐹 𝐹

′
𝑙 , 1 ≤ 𝑙 ≤ 𝑠) 

 

Multi/Refined Neutrosophic Negation 

¬𝑁(𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠) = (𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠; 1 − 𝐼𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝) 

 

Multi/Refined Neutrosophic Implication and Equivalence 

Let 𝐴 = (𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠) 

and 𝐴′ = (𝑇′𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼′𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝐹′𝑙 , 1 ≤ 𝑙 ≤ 𝑠). 

Then 𝐴 →𝑁 𝐴′ means (¬𝑁𝐴) ∨𝑁 𝐴′ 

and 𝐴 ↔𝑁 𝐴′ means [[𝐴 →𝑁 𝐴′]and[𝐴′ →𝑁 𝐴]]. 

 

ii.  The case when the neutrosophic tuples have different (p, r, s)-formats. 

Let 𝐵1 = (𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑝1; 𝐼𝑘, 1 ≤ 𝑘 ≤ 𝑟1; 𝐹𝑙 , 1 ≤ 𝑙 ≤ 𝑠1) of (𝑝1, 𝑟1, 𝑠1)-format, 

and 𝐵2 = (𝑇′𝑗 , 1 ≤ 𝑗 ≤ 𝑝2; 𝐼′𝑘 , 1 ≤ 𝑘 ≤ 𝑟2;  𝐹′𝑙 , 1 ≤ 𝑙 ≤ 𝑠2) of (𝑝2, 𝑟2, 𝑠2)-format. 

We compute the weight average of each neutrosophic component of both tuples, and we get: 

𝐵1 = (𝑇𝑤𝑎 , 𝐼𝑢𝑎 , 𝐹𝑣𝑎), 

and 𝐵2 = (𝑇′𝑤′𝑎 , 𝐼′𝑢′𝑎 , 𝐹′𝑣′𝑎), 
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which have the (1, 1, 1)-form, let’s simplify their notation under the form: 

𝐵1 = (𝑇, 𝐼, 𝐹)  
and 𝐵2 = (𝑇′, 𝐼′, 𝐹′). 

and one applies the well-known and most used neutrosophic operators: 

(𝑇, 𝐼, 𝐹) ∨𝑁 (𝑇′, 𝐼′, 𝐹′) = (𝑇 ∨𝐹 𝑇′, 𝐼 ∧𝐹 𝐼′, 𝐹 ∧𝐹 𝐹′ ) 
(𝑇, 𝐼, 𝐹) ∧𝑁 (𝑇′, 𝐼′, 𝐹′) = ( 𝑇 ∧𝐹 𝑇

′, 𝐼 ∨𝐹 𝐼
′ , 𝐹 ∨𝐹 𝐹′) 

¬(𝑇, 𝐼, 𝐹) ∨𝑁 (𝐹, 1 − 𝐼, 𝑇) 
(𝑇, 𝐼, 𝐹) →𝑁 (𝑇′, 𝐼′, 𝐹′) is the same as (𝐹, 1 − 𝐼, 𝑇) ∨𝑁 (𝑇′, 𝐼′, 𝐹′), or (𝐹 ∨𝐹 𝑇′, (1 − 𝐼) ∧𝐹 𝐼

′ , 𝑇 ∧𝐹 𝐹′) 

(𝑇, 𝐼, 𝐹) ↔𝑁 (𝑇′, 𝐼′, 𝐹′) is the same as (𝑇, 𝐼, 𝐹) →𝑁 (𝑇′, 𝐼′, 𝐹′) and (𝑇′, 𝐼′, 𝐹′) →𝑁 (𝑇, 𝐼, 𝐹) 

or (𝐹 ∨𝐹 𝑇
′, (1 − 𝐼) ∧𝐹 𝐼

′, 𝑇 ∧𝐹 𝐹′) neutrosophic and (𝐹′ ∨𝐹 𝑇, (1 − 𝐼1
′) ∧𝐹 𝐼, 𝑇′ ∧𝐹 𝐹), 

or ([(𝐹 ∨𝐹 𝑇
′) ∧𝐹 (𝐹′ ∨𝐹 𝑇)], [(1 − 𝐼) ∧𝐹 𝐼′] ∨𝐹 [(1 − 𝐼1

′) ∧𝐹 𝐼], [(𝑇 ∧𝐹 𝐹′) ∧𝐹 (𝑇′ ∧𝐹 𝐹)] ). 

13.1. Weight Averaging and Neutrosophic Operators 

The (weight) averaging and the neutrosophic operators for (p, r, s)-tuples, in general, do not 

commute. 

13.2. Counter-Example 

Let’s consider the (2,3,2)-tuples: 

A = ({0.2, 0.3}, {0.1, 0.4, 0.5}, {0.6, 0.9}) 

and B = ({0.8, 0.4}, {0.6, 0.0, 0.3}, {0.5, 0.6}) 

 

i. Union, then Averaging Union: 

𝐴 ∨𝑁 𝐵 =   

= ({𝑚𝑎𝑥{0.2, 0.8},𝑚𝑎𝑥{0.3, 0.4}, {𝑚𝑖𝑛{0.1, 0.6}}, 𝑚𝑖𝑛{0.4, 0.0},𝑚𝑖𝑛{0.5, 0.3}, {𝑚𝑖𝑛{0.6, 0.5}},𝑚𝑖𝑛{0.9, 0.6}})

= ({0.8, 0.4}, {0.1, 0.0, 0.3}, {0.5, 0.6}) 
 

Averaging: 

𝐴 ∨𝑁 𝐵 = (
0.8 + 0.4

2
,
0.1 + 0.0 + 0.3

3
,
0.5 + 0.6

2
) ≃ (0.60, 0.13, 0.55) 

 

ii. Reversely: Averaging, then Union. 

Averaging: 

𝐴 = (
0.2 + 0.3

2
,
0.1 + 0.4 + 0.5

3
,
0.6 + 0.9

2
) ≃ (0.25, 0.33, 0.75) 

𝐵 = (
0.8 + 0.4

2
,
0.6 + 0.0 + 0.3

3
,
0.5 + 0.6

2
) ≃ (0.60, 0.30, 0.55) 

 

Union:  

𝐴 ∨𝑁 𝐵 = (𝑚𝑎𝑥{0.25, 0.60},𝑚𝑖𝑛{0.33, 0.30}, 𝑚𝑖𝑛{0.75, 0.53}) 

                                               = (0.60, 0.30, 0.55) ≠
(0.60, 0.13, 0.55). 

 

Conclusion: The MultiNeutrosophic Set was introduced now for the first time. It is a neutrosophic 

set whose elements’ degrees of truth / indeterminacy / falsehood are evaluated by many sources to 

get a better accurate result. The ranking of the n-tuples of the form (p, r, s) and their operators were 

also built on.  
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Abstract: The complex process of decision-making is addressed in this study, especially when dealing 

with diverse factors and input from several specialists. In the context of m-polar interval-valued 

neutrosophic hypersoft sets (m-PIVNHSSs), the paper proposes innovative adaptations of the 

correlation coefficient (CC) and weighted correlation coefficient (WCC), drawing on correlation 

analysis in statistics and engineering. The goal is to improve decision-making processes in scenarios 

with complicated features and input from several specialists. Through defined theorems and claims, 

the study offers a solid mathematical framework and presents methods based on CC and WCC to 

address decision-making complexity. These strategies show promise for enhancing decision accuracy 

in circumstances involving a wide range of features and expert inputs. AHP, TOPSIS, and other 

strategies that are now used might also be extended, according to the research. AHP, TOPSIS, and 

VIKOR are three possible methodologies that might be used to the m-PIVNHSSs environment, 

according to the research, opening opportunities for additional breakthroughs in the decision-

making sector. 

 

Keywords: Aggregate operators, Correlation Coefficient (CC), Neutrosophic Hypersoft Sets 

(NHSSs), Weighted Correlation Coefficients (WCC), Multi-Polar Neutrosophic Hypersoft Sets (m-

PNHSSs). 

 

1. Introduction 

The importance of hydrogen is due to its capacity to transport clean energy and serve as a flexible 

remedy for pressing global problems. Hydrogen is a clean fuel that enables emissions-free energy 

production in fuel cells, making it essential for moving away from fossil fuels and reducing global 

warming. Its capacity to store energy helps manage the oscillations of renewable energy, and its 

potential to decarbonize industrial sectors like steel and transportation demonstrates the breadth of 

its effects on emissions reduction. Hydrogen is also a major facilitator of a sustainable and low-carbon 

future since it drives technical innovation, encourages international cooperation, and spurs economic 

mailto:poom.kum@kmutt.ac.th
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growth. Numerous research studies have investigated the use of hydrogen in Multi-Criteria Decision 

Making (MCDM) and its relevance in ambiguous situations. The adaptability of hydrogen as an 

energy carrier is especially beneficial in ambiguous situations. By storing surplus energy and 

releasing it when needed, it can help with renewable energy supply variations and provide grid 

stability in ambiguous energy situations [1]. Energy security in areas susceptible to supply outages 

can be improved by hydrogen's capacity for decentralized generation and delivery [2]. 

Hydrogen technology evaluation for MCDM sometimes entails considering several factors, including 

price, effectiveness, environmental impact, and scalability. This was demonstrated in research by [3], 

where a fuzzy MCDM technique was used to evaluate several hydrogen generation technologies 

considering economic, environmental, and technological issues. Furthermore, Qie, X. et al. [4] used 

an MCDM framework to assess hydrogen storage systems while taking economic, efficient, and 

safety considerations into account. 

In MCDM applications, the flexibility of hydrogen to various situations is further 

demonstrated. Fayyazi et al.'s [5] analysis of its influence on transportation choices, for instance, 

considers the adoption of hydrogen fuel cell cars under ambiguous market conditions. Lu, Z., & Li, 

Y. applied fuzzy in MCDM approaches are used to evaluate various hydrogen generation processes 

while taking economic and environmental aspects into account.  

 

A new theory was urgently needed to address inconsistencies. To deal with uncertain and 

inconsistent environments, Smarandache developed a new idea in 1998 [9]. This theory is referred to 

neutrosophic set (NS) with the addition of indeterminacy value along with membership and non-

membership values (T, I, F) (all these values are independent of each other). Based on the numbers 

(T, I, and F) assigned by the decision-maker (DM) in the form of neutrosophic numbers, this concept 

of NS was further expanded. For instance, the single-valued neutrosophic set (SVNS) [10], the multi-

valued neutrosophic set (MVNS) [11], the interval-valued neutrosophic set (IVNS) [12], and the multi-

valued interval neutrosophic set (MVINS) [13]. The idea behind these statistics can be immediately 

applied to difficulties referred to as multi-criteria decision-making in real-world situations (MCDM). 

Numerous scholars have proposed various strategies to address MCDM issues using neutrosophic 

set based algorithms TOPSIS [14], MULTIMOORA [15], AHP [16], SWOT [17], and many more [18]. 

 

Numerous scholars have provided numerous uses for neutrosophic sets and their hybrids 

while taking into consideration MCDM approaches in daily life issues as an application [19-22]. Using 

mathematical methods, real-world issues such as human resource selection, gadget selection, shortest 

path selection, robot selection, security considerations, medical equipment selection, and 

environmental safety measures can be solved. To address ambiguities and get around the difficulties 

in the current set architectures, Maji suggested the idea of a soft set (SS) [23]. The SS theory was 

expanded by Cağman et al. [24] to include the features of the fuzzy soft set (FSS). Maji et al. [25] 

developed the idea of an intuitionistic fuzzy soft set (IFSS) and its attributes to address the issues 

with uncertainty. Like, Maji [26] extended the idea of neutrosophic sets by combining them to the 

soft set and presented the theory of neutrosophic soft sets (NSS) to overcome indeterminacy. Interval-
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Valued Neutrosophic Soft Set (IVNSS) was introduced by Deli [27] with several fundamental 

concepts, operations, and decision-making techniques. 

Hypersoft set (HSS) is a new set structure that Smarandache [28] proposed in 2018. In 

essence, this set is the mapping from the product of attributes (which are further divided) to the 

power set of the universal set and desire set of attributes. The concepts of fuzzy hypersoft sets, 

intuitionistic hypersoft sets, and neutrosophic hypersoft sets were also put out [28] to address 

truthiness, uncertainty, and indeterminacy. The definition of the neutrosophic hypersoft set (NHSSs) 

[29], aggregate operators, similarity measures, distance measures, and the concepts of single-valued 

neutrosophic hypersoft sets (SVNHSSs), multi-valued neutrosophic hypersoft sets (m-PNHSSs) [30], 

interval-valued neutrosophic hypersoft sets (IVNHSSs), and multi-valued interval neutrosophic 

hypersoft sets (m-PVINHSSs) were proposed by [31], along with matrix notations and using these 

definitions the applications, the algorithms with case studies has been presented by [32-33]. All these 

situations demonstrate how well hydrogen works in ambiguous situations and how well it works 

with MCDM [36] techniques for making decisions. Its adaptability and ability to consider a range of 

criteria and aspects highlight its value as a dynamic solution in both ambiguous situations and 

difficult decision-making processes. Novel approaches have been demonstrated by recent studies 

that have advanced a variety of sectors. Paul, Jana, and Pal [37] extended decision-making utilizing 

Pythagorean fuzzy Hamacher aggregation operators, Du, Wang, and Lu [38] maximized wireless 

power transmission with an improved approach, and Haq and Saqlain used machine learning for 

attendance tracking in a pandemic [39]. Convolutional neural networks were employed by 

Zulqarnain and Saqlain [40] to evaluate text readability in higher education, while Saqlain et al. [41] 

presented a multi-polar interval-valued neutrosophic hypersoft set for uncertainty and decision-

making. These projects demonstrate a dedication to creativity and cross-domain problem-solving [42-

46].“ 
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This paper makes significant contributions to the field of decision-making by addressing the 

limitations of existing approaches in dealing with m-PIVNHSs. By introducing the m-PIVNHSs 

model, this research offers a novel solution to the challenges posed by the abstract and context-

dependent nature of language. The implementation of the proposed aggregate operators, correlation 

coefficients (CC) of a practical tool for solving decision-making issues and improving the overall 

understanding and application of m-PIVNHSs knowledge. This contribution has the potential to 

benefit various fields that rely on language-based decision-making, such as natural language 

processing, sentiment analysis, and artificial intelligence, among others. The following shows that, 

how the work has been organized: The fundamental ideas of m-PIVNHSs are broken down in detail 

in section 2. In section 3, we present a definition, notions, and examples of m-PIVNHSs with basic 

properties and operations. The aggregate operators, and correlation coefficients (CC) of m-PIVNHSs 

have been presented in section 4. In part 5, an MCDM framework is described for the “m-PIVNHSs 

algorithm to solve MCDM problem” with a case study to demonstrate the benefits of the proposed 

algorithm. The findings of the study have been summarized, along with their significance, in section 

6, and concluded with future directions. The layout of the paper is also presented in figure 1. 

 

2. Preliminary section 

In this section, we go through some basic definitions that support the construction of the framework 

of this paper: hypersoft set (HSS), neutrosophic hypersoft set (NHSSs), m-polar neutrosophic 

hypersoft set (m-PNHSSs), and m-polar interval-valued neutrosophic hypersoft set (m-PIVNHSSs). 

“ 

Figure 1. Layout of the paper 
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Definition 2.1: Hypersoft Set [28]                     

Assume that universal and power set of universal set is given that 𝜇 𝑎𝑛𝑑 𝑃(𝜇) . 

Considering (ⅈ1, ⅈ2, ⅈ3,… , ⅈ𝑛 ) when 𝑛 ≥ 1 , and suppose 𝑛  be a well-defined attributives, whose 

corresponded attributive elements are sequentially, the set (£1, £2, £3, … , £𝑛) with £𝑖 ∩ £𝑗 = ∅, where 

ⅈ ≠  𝑗 and ⅈ, 𝑗𝜖{1,2,3…𝑛}, then (𝜉, £) is  called  a hypersoft set; 

𝜉: (£ = £1 × £2 × £3 ×…× £𝑛) → 𝑃(𝜇)   (1) 

Definition 2.2: Single-Valued Neutrosophic Hypersoft Set [29] 

In equation (1), if we assign the values to each attribute in the form of truthiness, indeterminacy, and 

falseness < t, i, f >  where t, i, f: μ → [0,1]  also 0 ≤ t(ξ(ϰ)) + i(ξ(ϰ)) + f(ξ(ϰ)) ≤ 3 . then the pair 

then (ξ, £) is called a single-valued neutrosophic hypersoft set. 

 

Definition 2.3: m-Polar Neutrosophic Hypersoft Set [30] 

In equation (1) if we assign the values to each attribute in the form of  

𝝃: ((£ = £𝟏 × £𝟐 × £𝟑 ×…× £𝒏) → 𝑷(𝝁)) = {
< 𝝒, . 𝑻𝒊(𝝃(𝝒)) + 𝑰𝒋(𝝃(𝝒)) + 𝑭𝒌(𝝃(𝝒)) >. 𝝒 ∈  𝝁,

𝒊, 𝒋, 𝒌.= 𝟏, 𝟐, 𝟑,… , 𝒏
} Also 

𝟎 ≤ ∑𝑻𝒊(𝝃(𝝒)) ≤ 𝟏, 𝟎 ≤

𝒂

𝒊=𝟏

∑𝑰𝒋(𝝃(𝝒)) ≤ 𝟏,   𝟎 ≤

𝒃

𝒋=𝟏

∑𝑭𝒌(𝝃(𝝒))

𝒄

𝒌=𝟏

≤ 𝟏 

Where  𝑻𝒊(𝝃(𝝒)), 𝑰𝒋(𝝃(𝝒)), 𝑭𝒌(𝝃(𝝒)) ⊆ [𝟎, 𝟏] are the fuzzy numbers and 

𝟎 ≤ ∑ 𝑻𝒊(𝝃(𝝒)) +𝒂
𝒊=𝟏 ∑ 𝑰𝒋(𝝃(𝝒)) +𝒃

𝒋=𝟏 ∑ 𝑭𝒌(𝝃(𝝒))𝒄
𝒌=𝟏 ≤ 𝟑  (2) 

then the pair then (ξ, £) is called a m-Polar neutrosophic hypersoft set (m-PNHSSs). 

 

Definition 2.4: m-Polar Interval-Valued Neutrosophic Hypersoft Set [31] 

In equation (2) if we assign the values to each attribute in the form of  

𝑇𝑖(𝜉(𝜘)) = [( 𝑇𝑖(𝜉(𝜘)))
−

, ( 𝑇𝑖(𝜉(𝜘)))
+

] ⊆ [0,1] 

𝐼𝑗(𝜉(𝜘)) = [(𝐼𝑗(𝜉(𝜘)))
−

, (𝐼𝑗(𝜉(𝜘))
+
] ⊆ [0,1]  

𝐹𝑘(𝜉(𝜘)) = [(𝐹𝑘(𝜉(𝜘)))
−

, (𝐹𝑘(𝜉(𝜘)))
+

] ⊆ [0,1] 

 Also 

0 ≤∑𝑆𝑢𝑝 {𝑇𝑖(𝜉(𝜘)) ≤ 1, 0 ≤

𝑎

𝑖=1

∑𝑆𝑢𝑝{𝐼𝑗(𝜉(𝜘))} ≤ 1,   0 ≤

𝑏

𝑗=1

∑{𝐹𝑘(𝜉(𝜘))}

𝑐

𝑘=1

≤ 1 

And, 

𝟎 ≤ ∑𝑻𝒊(𝝃(𝝒)) +

𝒂

𝒊=𝟏

∑𝑰𝒋(𝝃(𝝒)) +

𝒃

𝒋=𝟏

∑𝑭𝒌(𝝃(𝝒))

𝒄

𝒌=𝟏

≤ 𝟑    (𝟑) 
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then the pair then (ξ, £)  is called a m-polar interval-valued neutrosophic hypersoft set (m-

PIVNHSSs).” 

 

3. Calculations 

 

 In this section, we propose informational energy along with some necessary theorems and 

propositions. Informational energy and correlation coefficients are integral components of effective 

decision-making. Informational energy signifies the value and significance of available information, 

influencing decision quality, risk assessment, and resource allocation. Correlation coefficients 

facilitate the identification of relationships, predictive power, risk management, and decision 

optimization by quantifying the strength between variables. By leveraging high-energy information 

and understanding correlations, decision-makers can decide more precise and accurate. 

 

Definition 3.1 Informational Energy of m-PIVNHSSs  

Consider (𝜓, 𝛼) and ((𝜓, 𝛽)) be two m-polar IVNHSSs; (𝜓, 𝛼) = 

 {(𝑣𝑖 , [𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], ([𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖

∈ 𝑢}   𝑎𝑛𝑑 (𝜙, 𝛽)

=   {([𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], [𝑓‾𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓‾𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖

∈ 𝑢}  

Then, their informational energies can be defined as; 

𝑆𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠(𝜓, 𝛼)

= ∑𝑘=1
−  ∑𝑖=1

+  (∑𝑖=1
𝑝

  (𝑡𝜓(𝑑‾𝑘)𝑡
𝑖− (𝑣𝑖))

2

+∑𝑖=1
𝑝

  (𝑡𝜓(𝑑‾𝑘)𝑡
𝑖+ (𝑣𝑖))

2

+ ∑𝑗=1
𝑞

  (ⅈ𝑝(𝑎𝑘)𝑗
𝑗− (𝑣𝑖))

2

+ ∑𝑗=1
𝑞

  (ⅈ𝑝(𝑎𝑘)𝑗
𝑗+ (𝑣𝑖))

2

+∑𝑘=1
𝑟  ((𝑓𝜓

𝑘−(𝑑‾𝑘)𝑘(𝑣𝑖))
2

) + ∑𝑘=1
𝑟   ((𝑓𝜓

𝑘+(𝑑‾𝑘)𝑘(𝑣𝑖))
2

) 

𝑆𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠(𝜙, 𝛽)

= ∑𝑘=1
−  ∑𝑖=1

+  (∑𝑖=1
𝑝

 (𝑡𝜙(𝑑‾𝑘)𝑖
𝑖− (𝑣𝑖))

2

+ ∑𝑖=1
𝑝

  (𝑡𝜙(𝑑‾𝑘)𝑖
𝑖+ (𝑣𝑖))

2

+ ∑𝑗=1
𝑞

  (ⅈ𝜙(𝑑‾𝑘)𝑗
𝑗− (𝑣𝑖))

2

+∑𝑗=1
𝑞

  (ⅈ𝜙(𝑑‾𝑘)𝑗
𝑗+ (𝑣𝑖))

2

+ ∑𝑘=1
𝑟   (𝑓𝜙(𝑑‾𝑘)𝑘

𝑘− (𝑣𝑖))
2

+∑𝑘=1
𝑟   (𝑓𝜙(𝑑‾𝑘)𝑘

𝑘+ (𝑣𝑖))
2

) 

Definition 3.2 Correlation of two m-PIVNHSSs 

Consider (𝜓, 𝛼¨) and ((𝜓, 𝛽 )) be two m-PIVNHSSs; (𝜓, 𝛼¨) = 

 {(𝑣𝑖 , [𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], ([𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖

∈ 𝑢}   𝑎𝑛𝑑 (𝜙, 𝛽¨)

=   {([𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], [𝑓‾𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓‾𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖

∈ 𝑢}  

Then, their correlation can be defined as; 
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Ĉ𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼¨), (𝜓, 𝛽¨))

= ∑𝑘=1
−  ∑𝑖=1

+  (∑𝑖=1
𝑝

 (𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖− ∗ 𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)(𝑣𝑖)
𝑖−)

+ (∑𝑖=1
𝑝

 (𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖+ ∗ 𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑖+) + ∑𝑗=1
𝑞

 (ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗− ∗ ⅈ𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑗−)

+ ∑𝑗=1
𝑞

 (ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗+ ∗ ⅈ𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑗+) + ∑𝑘=1
𝑟  (𝑓𝜓(𝑑‾𝑘)

(𝑣𝑖)
𝑘− ∗ 𝑓‾𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑘−)

+ ∑𝑘=1
𝑟  (𝑓𝜓(𝑑‾𝑘)

(𝑣𝑖)
𝑘+ ∗ 𝑓‾𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑘+) 

And using equation (4) one can calculate the correlation coefficient. 

𝐶𝛽¨
𝛼¨ =

𝑐𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼¨), (𝜙, 𝛽¨))

√𝑆𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼¨) ∗ √𝑆𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜙, 𝛽¨)
    (4) 

 

Example 3.3 

𝜓𝛼¨ =

(

 
 
𝑒1 , {

(𝑢1 , ([0.4,0.9], [0.3,0.4], [0.3,0.3]), ([0.4,0.4], [0.4,0.3], [0.3,0.5]), ([0.5,0.6], [0.6,0.3], [0.7,2]))

 (𝑢2, ([0.4,0.5], [0.1,0.3], [0.7,0.4]), ([0.8,0.2], [0.3,0.5], [0.7,0.4]), ([0.7,2], [0.4,0.6], [0.5,0.3])) 
}

𝑒2 , {
(𝑢1, ([0.4,0.5], [0.3,0.7], [0.4,0.3]), ([0.1,0.3], [0.2,0.9], [0.2,04]), ([0.4,0.8], [0.2,0.6], [0.7,0.2])) 

(𝑢2 , ([0.3,0.6], [0.1,0.5], [0.6,0.5]), ([0.4,0.6], [0.2,0.7], [0.3,0.3]), ([0.5,0.8], [0.3,0.6], [0.3,0.4])) 
}
)

 
 

 

 

𝜓𝛽¨ =

(

 
 
𝑒1 , {

(𝑢1 , ([0.6,0.1], [0.4,0.9], [0.1,0.5]), ([0.5,0.6], [0.2,0.7], [0.3,0.1]), ([0.9,0.3], [0.5,0.4], [0.2,0.4])) 

(𝑢2, ([0.4,0.5], [0.3,0.8], [0.3,0.1]), ([0.5,0.7], [0.1,0.4], [0.3,0.6]), ([0.4,0.9], [0.2,0.4], [0.3,0.5])) 
}

𝑒2 , {
(𝑢1 , ([0.1,0.9], [0.5,0.4], [0.3,0.4]), ([0.2,0.7], [0.7,0.3], [0.5,0.1]), ([0.4,0.8], [0.3,0.5], [0.7,0.2])) 

(𝑢2 , ([0.3,0.4], [0.4,0.6], [0.3,0.8]), ([0.5,0.2], [0.4,0.5], [0.5,0.3]), ([0.6,0.9], [0.1,0.4], [0.3,0.5])) 
}
)

 
 
  

Proposition 3.4 Consider two m-PIVNHSSs; 

 (𝜓, 𝛼¨) = 

 {(𝑣𝑖 , [𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], ([𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘− , 𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖 ∈ 𝑢}   

 𝑎𝑛𝑑  

(𝜙, 𝛽¨) =

{([𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)(𝑣𝑖)
𝑖+], [ⅈ𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑗−, ⅈ𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑗+], [𝑓‾𝜙(𝑑‾𝑘)(𝑣𝑖)

𝑘−, 𝑓‾𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖 ∈

𝑢}   

and 𝐶𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠 ((𝜓,𝐴⃛ ), (𝜙, 𝛽 )) correlation between them.  

It satisfies the following properties: 

1. Ĉ𝑚−𝑝𝐼𝑉𝑁𝐻𝑆𝑆𝑠
(𝜓, 𝛼¨), (𝜓, 𝛼¨) = 𝛿𝑚− 𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠 (𝜓, 𝛼¨) 

2. 𝐶𝑚− 𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠 (𝜙, 𝛽¨), (𝜙, 𝛽¨) = 𝛿𝑚− 𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠 (𝜙, 𝛽¨)” 

Theorem 3.5 Let (𝜓, 𝛼) = 

 {(𝑣𝑖 , [𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖− , 𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], ([𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖 ∈

𝑢}   𝑎𝑛𝑑 (𝜙, 𝛽) =

  {([𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)(𝑣𝑖)
𝑖−, 𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑖+], [ⅈ𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑗−, ⅈ𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑗+], [𝑓‾𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑘−, 𝑓‾𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑘+]) ∣ 𝑣𝑖 ∈

𝑢}  be two m-PIVNHSSs, the following characteristics are satisfied by CC between them: 

1. 0 ≤ 𝛿𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼), (𝜙, 𝛽)) ≤ 1 

2. 𝛿𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼), (𝜙, 𝛽))=𝛿𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼), (𝜙, 𝛽)) iff ((𝜓, 𝛼) = (𝜙, 𝛽)) 
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3. 𝑇𝜓(𝑑𝑘)
(𝑣𝑖)

𝑖 = 𝑇𝜙(𝑑𝑘)
(𝑣𝑖)

𝑖 , 𝐼𝜓(𝑑𝑘)
(𝑣𝑖)

𝑗 = 𝐼𝜙(𝑑𝑘)(𝑣𝑖)
𝑗 and Ĉ𝜓(𝑑𝑘)

(𝑣𝑖)
𝑘 = Ĉ𝜙(𝑑𝑘)

(𝑣𝑖)
𝑘 

then 𝛿𝑚−𝑝𝐼𝑉𝑁𝐻𝑆𝑆𝑠
((𝜓, 𝛼), (𝜙, 𝛽)) = 1 

4. Notion of Weighted Correlation Coefficients (WCC) under m-PIVNHSSs 

When experts assign different weights to each option, the choice may be different. Therefore, it is 

essential to map the expert weights before putting together a conclusion. Assume that the experts' 

relative weights may be stated as 𝛺 = {𝛺1, 𝛺2, 𝛺3,… ,𝛺𝑚}
𝑇, where 𝛺𝑘 > 0,∑𝛺𝑘𝑘=1

𝑚
  = 1. Assume the 

weights for the sub-attributes to be as follows. = {𝛾1 , 𝛾2, 𝛾3 , … , 𝛾𝑛}
𝑇 , where 𝛾𝑖 > 0,∑ 𝛾𝑖𝑖=1

𝑛
  = 1 

Definition 4.1 Weighted correlation coefficient (WCC) 

Let,  

(𝜓, 𝛼¨) = {(𝑣𝑖 , [𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], ([𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘+])

∣ 𝑣𝑖 ∈ 𝑢}   𝑎𝑛𝑑  

(𝜙, 𝛽) = {([𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑗− , ⅈ𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], [𝑓‾𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓‾𝜙(𝑑‾𝑘)
(𝑣𝑖)

𝑘+])

∣ 𝑣𝑖 ∈ 𝑢}  

be two m-PIVNHSSs, then WCC can be presented as; 

𝜌𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼 ), (𝜙, 𝛽 )) =  
Ĉ𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓,𝛼 )),(𝜙,𝛽 )))

𝑚𝑎𝑥((𝑆𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠(𝜓,𝛼′′)),(𝑆𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠(𝜙,𝛽 ))))
   (5) 

Theorem 4.2 Let (𝜓, 𝛼¨) = 

 {(𝑣𝑖 , [𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖− , 𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], ([𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖 ∈

𝑢}   𝑎𝑛𝑑 (𝜙, 𝛽) =

  {([𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)(𝑣𝑖)
𝑖−, 𝑣𝑖 , 𝑡𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑖+], [ⅈ𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑗−, ⅈ𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑗+], [𝑓‾𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑘−, 𝑓‾𝜙(𝑑‾𝑘)

(𝑣𝑖)
𝑘+]) ∣ 𝑣𝑖 ∈

𝑢}  the WCC between them meets the following qualities: 

1. 0 ≤ 𝜌𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼¨)(𝜙, 𝛽¨)) ≤ 1 

2. 𝜌𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼¨)(𝜙, 𝛽¨)) = 𝜌𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜙, 𝛽¨), (𝜓, 𝛼¨)) iff (𝜓, 𝛼¨) = (𝜙, 𝛽¨) 

3. 𝑇𝜓(𝑑𝑘)
(𝑣𝑖)

𝑖 = 𝑇𝜙(𝑑𝑘)
(𝑣𝑖), 𝐼𝜓(𝑑𝑘)

(𝑣𝑖)
𝑗 = 𝐼𝜙(𝑑𝑘)

(𝑣𝑖)
𝑗 and Ĉ𝜓(𝑑𝑘)

(𝑣𝑖)
𝑘 = Ĉ𝜙(𝑑𝑘)

(𝑣𝑖)
𝑘 

then 𝜌𝑚−𝑃𝐼𝑉𝑁𝐻𝑆𝑆𝑠((𝜓, 𝛼¨), (𝜙, 𝛽¨)) = 1 

Definition 4.3 Properties of m-PIVNHSSs 

Let (𝜓, 𝛼¨) =

{(𝑣𝑖 , [𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖−, 𝑡𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑖+], [ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗−, ⅈ𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑗+], ([𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘−, 𝑓𝜓(𝑑‾𝑘)
(𝑣𝑖)

𝑘+]) ∣ 𝑣𝑖 ∈ 𝑢} 

Consider, Ĵ𝑑𝑘 = ⟨𝑇𝐹(𝑑𝑖𝑗)
𝑖 , 𝐼𝐹(𝑑𝑖𝑗) 

𝑗 , Ĉ𝐹(𝑑𝑖𝑗)  
𝑘⟩, Ĵ𝑑11 = ⟨𝑇𝐹(𝑑11)

𝑖 , 𝐼𝐹(𝑑11) 
𝑗 , Ĉ𝐹(𝑑11) 

𝑘⟩ and Ĵ𝑑12 = 

⟨𝑇𝐹(𝑑11)
𝑖 , 𝐼𝐹(𝑑12) 

𝑗 , Ĉ𝐹(𝑑12) 
𝑘⟩ be three m-PIVNHSSs and 𝑦 be the positive real number, by algebraic 

norms, then; 
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1. Ĵ𝑑11  
𝑖 ⊕ Ĵ𝑑12  

𝑖 = ⟨𝑇𝐹(𝑑11) 
𝑖 + 𝑇𝐹(𝑑12) 

𝑖 −

𝑇𝐹(𝑑11) 
𝑖𝑇𝐹(𝑑12) 

𝑖 , Ĵ𝐹(𝑑11) 
𝑗Ĵ𝐹(𝑑12) 

𝑗 , Ĉ𝐹(𝑑11) 
𝑘Ĉ𝐹(𝑑12) 

𝑘⟩ 

2. Ĵ𝑑11  
𝑖 ⊗ Ĵ𝑑12  

𝑖 = ⟨𝑇𝐹(𝑑11) 
𝑖𝑇𝐹(𝑑12) 

𝑖 , Ĵ𝐹(𝑑11) 
𝑗 + Ĵ𝐹(𝑑12) 

𝑗 − Ĵ𝐹(𝑑11) 
𝑗Ĵ𝐹(𝑑12) 

𝑗 , Ĉ𝐹(𝑑11) 
𝑘 +

Ĉ𝐹(𝑑12) 
𝑘 −    Ĉ𝐹(𝑑11) 

𝑘Ĉ𝐹(𝑑12) 
𝑘⟩ 

3. 𝑦Ĵ𝑑𝑘 = ⟨1 − (1 − 𝑇𝑑𝑘  
𝑖)

𝑦
, Ĵ𝑑𝑘  

𝑗𝑦 , Ĉ𝑑𝑘  
𝑘𝑦
⟩ 

4. Ĵ𝑑𝑘  
𝑖𝑦 = ⟨,1 − (1 − Ĵ𝑑𝑘  

𝑗)
𝑦
, 1 − (1 − Ĉ𝑑𝑘  

𝑘)
𝑦
⟩ 

 

5. MCDM Algorithm (MULTIMOORA).  

The Multi-Objective Optimization by Ratio Analysis (MOORA) method was initially developed by 

Brauers et al. [34]. In 2010, Brauers [35] further enhanced the MOORA technique by introducing the 

full multiplicative form, resulting in a more efficient and powerful method known as 

MULTIMOORA. The MULTIMOORA method consists of three stages: the ratio system approach 

(RSA), the reference point approach (RPA), and the full multiplicative form (FMF). These stages are 

utilized to rank the alternatives under consideration. The theory of dominance is then applied to 

determine the final ranking and decision. According to this theory, the alternative with the highest 

presence at the top position across all three ranking lists is selected as the best-ranked alternative.” 

Step 1: Construction of decision matrix.  

Step 2: RSA approach.  

In this approach, the general standing of the alternative ⅈ can be measured as follows: 

𝒴𝑖 = 𝒴𝑖
+ −𝒴𝑖

− 

Where, 

𝒴𝑖
+ = ∑ 𝜔𝑖𝑗∈Ω𝑚𝑎𝑥

𝑟𝑖𝑗  

 

𝒴𝑖
_ = ∑ 𝜔𝑖

𝑗∈Ω𝑚𝑖𝑛

𝑟𝑖𝑗  

 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗𝑖=1

 

 

where 𝒴𝑖 stands for ⅈ𝑡ℎ position of the alternative on the base of all criteria; 𝒴𝑖
+𝑎𝑛𝑑 𝒴𝑖

−denotes the 

position of the ⅈ𝑡ℎ alternative according to benefit and cost criteria respectively, 𝑟𝑖𝑗  represents the 

normalized ⅈ𝑡ℎ  alternative under  𝑗𝑡ℎ  criteria; 𝑥𝑖𝑗  denotes the ⅈ𝑡ℎ  alternative related to 𝑗𝑡ℎ 

criterion; the sets of benefit criteria are denoted by 𝑚𝑎𝑥 and 𝑚ⅈ𝑛 denotes the cost criteria where 

ⅈ =  1,2,3,…𝑚    𝑎𝑛𝑑    𝑗 =  1,2,3,… , 𝑛. The associated alternatives are positioned depending 

on 𝒴𝑖   in descending order so the alternative having the largest value of 𝒴𝑖  is the best in this 

approach. 

 

Step 3: RPA approach 

Using this approach best alternative selection could be done as below: 
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𝔡𝑖
𝑚𝑎𝑥 = max

𝑗
(𝜔𝑗 |𝑟𝑗

∗ − 𝑟𝑖𝑗|) 

Where 𝔡𝑖
𝑚𝑎𝑥  denotes the extreme distance of the alternative ⅈ with respect to the reference point and 

𝑟𝑗
∗ represents the coordinate 𝑗 of the reference point as follows. 

𝑟𝑗
∗ = {

max
𝑖

 𝑟𝑖𝑗   ,    𝑗 ∈ Ω𝑚𝑎𝑥

min
𝑖

 𝑟𝑖𝑗   ,    𝑗 ∈ Ω𝑚𝑖𝑛
 

The final ranking in this approach is done by using ascending order of 𝔡𝑖
𝑚𝑎𝑥  and accordingly the 

lowest 𝔡𝑖
𝑚𝑎𝑥  value is the best one. 

 

Step 4: FMF approach 

For this form the total efficacy of the alternative could be obtained as follows: 

𝑢𝑖 =
𝑎𝑖
𝑏𝑖

 

Where, 

 

𝑎𝑖 = ∏ 𝜔𝑖𝑟𝑖𝑗
𝑗∈Ω𝑚𝑎𝑥

 

 

𝑏𝑖 = ∏ 𝜔𝑖𝑟𝑖𝑗
𝑗∈Ω𝑚𝑖𝑛

 

 

Here: 𝑢𝑖  means the overall efficacy of the ⅈ𝑡ℎ alternative, a𝑎𝑖  and 𝑏𝑖 indicate the product of the 

weighted performance ratings of the benefit and cost criteria of the ⅈ𝑡ℎ alternative respectively. Like 

RSA, the associated alternatives are graded in descending order based on the value of 𝑢𝑖 and the 

best alternative is selected having maximum value of 𝑢𝑖 . 

 

Step 5: The final rank of alternatives established through the MULTIMOORA method. 

 

After the calculating using MULTIMOORA method, three ranking lists are obtained for the 

alternatives under consideration. According to Brauers [34], dominace theory is used and the 

alternative having the first positions in all ordered rankings is the best-ranked alternative. 
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Figure 2. MCDM Algorithm (MULTIMOORA) 

 

5.1 Illustrative Example 

To determine the most efficient and affordable technology for hydrogen production, we conducted a 

case study. The process involved several steps, including selecting various alternatives, establishing 

a criteria system, and gathering relevant data. Within this study, we evaluated eight different 

hydrogen production technologies, focusing on their abstract descriptions. Drawing upon prior 

research in this field, we identified seven criteria that encompassed both cost and benefit aspects. The 

data used in this analysis was collected from diverse hydrogen production technologies available in 

table 1 [34]. 

Table 1. Hydrogen production technologies statistics till 2013. 

Method  CO2  

E.E 

EE CC FOC VOC FDC EAC 

  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 

𝑨𝟏 SMR  0.080 77.5 172.35 06.48 135.70 128.00 156.02 

𝑨𝟐 CG 0.076 55.8 511.48 25.81 37.550 33.190 104.40 

𝑨𝟑 POX 0.136 67.5 326.60 30.99 191.97 65.320 249.17 

𝑨𝟒 BG 0.020 42.5 262.06 16.71 69.420 44.030 107.16 

𝑨𝟓 PV-EL 0.040 31.2 388.32 16.71 250.66 246.31 298.53 

𝑨𝟔 W-EL 0.005 33.8 388.32 16.71 117.59 112.60 165.46 

𝑨𝟕 H-EL 0.010 52.0 388.32 16.71 92.840 87.970 140.71 

𝑨𝟖 WS-CL 0.012 21.0 857.46 131.67 12.820 11.540 213.29 

The weights are calculated using the entropy method. 𝑤1 =  0.2544 𝑤2 =  0.0453;  

𝑤3 =  0.0620;  𝑤4 =  0.2874;  𝑤5 =  0.1415 𝑤6 =  0.1703 ;  𝑤7 =  0.0391 
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Solution: 

Step 1. Construction of decision matrix and it is same as table 1. 

Step 2. RSA approach.  

Applying the method we get,  

𝒴1  =  − 0.0027401 

𝒴2  =  + 0.0032370 

𝒴3 =  0.00719220 

𝒴4  =  −0.02882 

𝒴5 = −0.099813 

𝒴6 = −0.067408 

𝒴7 = −0.051607 

𝒴8  =  −0.16064 

𝒴3 > 𝒴2  > 𝒴1  > 𝒴4  > 𝒴5  > 𝒴6  > 𝒴7  > 𝒴8 

 

Step 3. RPA approach.  

Using this approach, the alternative orders are. 

𝔡1
𝑚𝑎𝑥 =  0:0376 

𝔡2
𝑚𝑎𝑥 =  0:0403 

𝔡3
𝑚𝑎𝑥 =  0:0279 

𝔡4
𝑚𝑎𝑥 =  0:0779 

𝔡5
𝑚𝑎𝑥 =  0:0645 

𝔡6
𝑚𝑎𝑥 =  0:0879 

𝔡7
𝑚𝑎𝑥 =  0:0846 

𝔡8
𝑚𝑎𝑥 =  0:1375 

𝔡3
𝑚𝑎𝑥 < 𝔡1

𝑚𝑎𝑥 < 𝔡2
𝑚𝑎𝑥 < 𝔡5

𝑚𝑎𝑥 < 𝔡4
𝑚𝑎𝑥 < 𝔡7

𝑚𝑎𝑥 < 𝔡6
𝑚𝑎𝑥 < 𝔡8

𝑚𝑎𝑥  

Step 4. FMF approach.  

Using this approach, the total efficacy of the all the alternatives are obtained. 

𝑢1  =  8015519.718 

𝑢2  =  9907856.161 

𝑢3  =  1132088.766 
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𝑢4  =  2362483.732 

𝑢5  =  40864.3973 

𝑢6  =  47005.1677 

𝑢7  =  273951.5255 

𝑢8  =  277721.2461 

𝑢2  >  𝑢𝑖  >  𝑢4  >  𝑢3  >  𝑢8  >  𝑢7  >  𝑢6  >  𝑢5 

Step 5. Selection of best alternative. 

The ranking of alternatives using all the approaches has been obtained.  

 

Table 2. Hydrogen production technologies ranking 

Method Alternative Scores ranking 

RSA 𝒴3 > 𝒴2  > 𝒴1  > 𝒴4  > 𝒴5  > 𝒴6  > 𝒴7  > 𝒴8 

RPA 𝔡3
𝑚𝑎𝑥 < 𝔡1

𝑚𝑎𝑥 < 𝔡2
𝑚𝑎𝑥 < 𝔡5

𝑚𝑎𝑥 < 𝔡4
𝑚𝑎𝑥 < 𝔡7

𝑚𝑎𝑥 < 𝔡6
𝑚𝑎𝑥 < 𝔡8

𝑚𝑎𝑥  

FMF 𝑢2  >  𝑢𝑖  >  𝑢4  >  𝑢3  >  𝑢8  >  𝑢7  >  𝑢6  >  𝑢5 

 

According to [34] dominance theory is used and the alternative having the first positions in all 

ordered rankings is the best-ranked alternative. Table 2 shows that 𝑨𝟑 is the best-ranked alternative. 

POX (Partial Oxidation) is recognized as another widely employed technique for hydrogen 

production from fossil fuels. This method involves the conversion of hydrocarbon-based fossil fuels, 

including natural gas, coal, and heavy oil, into hydrogen. Through the POX process, these fuels 

undergo partial oxidation, resulting in the production of hydrogen gas. POX is a well-established 

method utilized to harness the hydrogen potential inherent in fossil fuel resources. 

 

5.2 Result Discussion and Comparison 

 

We have been able to identify complicated linkages inside complex systems by using correlation 

coefficients. We have discovered possible connections that would have otherwise remained buried 

inside the complexity of the system by analyzing the interaction between several factors involved in 

hydrogen creation. This understanding is particularly useful since it provides a greater grasp of the 

fundamental mechanisms at work by illuminating how many elements interact and affect one 

another. Additionally, the MULTIMOORA a MCDM technique's inclusion of the multipolar analysis 

improves our capacity to negotiate this complexity.  

We successfully combined the novel idea of multipolar analysis with correlation coefficients 

using the MULTIMOORA a MCDM method. The evaluation of efficient methods for producing 

hydrogen was the focus of our work. Our thorough investigation and implementation of these 

approaches produced insightful findings about the complex dynamics of the hydrogen generating 

environment. The development of a solid decision-making framework was made possible in large 

part by the identification of probable links and dependencies among various characteristics using the 



Neutrosophic Sets and Systems, Vol. 61, 2023                                                              113                                                                     

 

 
 

Muhammad Saqlain, Poom Kumam, Wiyada Kumam, Multi-Polar Interval-Valued Neutrosophic Hypersoft Set with Multi-
criteria decision making of Cost-Effective Hydrogen Generation Technology Evaluation 

correlation coefficients. The multipolar method using MULTIMOORA was then used to provide a 

full evaluation of the many criteria associated with the hydrogen-generating systems. Using this 

method, we were able to weigh other important aspects in addition to cost efficiency. Consequently, 

we were able to rank and prioritize the various hydrogen generating processes efficiently, 

considering a wide range of factors. The effective use of correlation coefficients and the cutting-edge 

multipolar analysis using MULTIMOORA is an example of the power of this integrated strategy in 

tackling challenging real-world issues like the production of sustainable energy. Our findings 

indicate how this technique may be used in a variety of decision-making contexts, as well as 

providing contributions to the field of hydrogen generation. 

 

6. Conclusion 

The correlation coefficient (CC) and weighted correlation coefficient (WCC) for the m-polar 

interval-valued neutrosophic hypersoft set (m-PIVNHSSs) are presented in this paper, and their 

fundamental features are examined within the context of m-PIVNHSSs. This ground-breaking 

method has enormous promise for addressing difficult decision-making issues in a variety of fields, 

including education, healthcare, engineering, economics, and more. Additionally, the combination of 

the m-polar hypersoft set with other cutting-edge soft computing methods, such as bipolar fuzzy, 

Pythagorean set, and hybrid structures, holds the key to creating extraordinarily intelligent systems 

with improved machine intelligence (IQ). Such connections open new avenues for intelligent 

problem-solving and knowledge representation, offering interesting opportunities for applications 

in image processing, expert systems, and cognitive mapping. 

Our study provides a thorough comparison of the recently suggested cost-effective hydrogen 

generating approaches versus current technologies by integrating correlation coefficients using the 

MULTIMOORA methodology. The correlation coefficients make possible trade-offs and synergies 

between factors visible, allowing for a more thorough review. The multipolar analysis then considers 

several factors, offering a comprehensive evaluation of each technique's performance in terms of 

economic viability, environmental effect, and technical maturity. This integrated methodology 

enables decision-makers to choose the most appropriate hydrogen generation technique while 

considering both novel solutions and tried-and-true methods, eventually directing sustainable 

energy choices and guiding future research paths. 
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Abstract: With the development of intelligent technology, machine vision is gradually applied to 

classroom teaching. Considering the uncertainty of students' class status, the application of 

neutrosophic sets provides a novel way for classroom evaluation. In this context, this study 

proposes a novel classroom teaching evaluation method based on machine vision and neutrosophic 

sets to better evaluate students' learning effectiveness. The main innovation of this study is to 

construct a temporal neutrosophic evaluation model that considers students' concentration. 

Specifically, machine vision technology first is used to detect students' status so as to construct 

temporal neutrosophic evaluation matrices on students' class status. Thereafter, this study proposes 

a novel time weight function considering students' concentration based on the Pearson correlation 

coefficient. Then, this study introduces evaluation based on distance from average solution to 

address multi-criteria decision-making issues. Finally, the validity and feasibility of the proposed 

evaluation model are illustrated through a case study and comparative analyses. The results 

indicate that the ranking of the proposed method is 1 3 4 2 , which is consistent with 

comparative analyses. The aforementioned study further validates the practical value and provides 

valuable insights for teaching evaluation methods. 

Keywords: learning effectiveness evaluation; neutrosophic sets; machine vision; evaluation based 

on distance from average solution; multi-criteria decision-making 

 

 

1. Introduction 

With the continuous advancement of intelligent technology, colleges are progressively adopting 

intelligent classroom devices, incorporating cameras and sensors, for monitoring students' activities 

and emotional status in the classroom [1]. These intelligent devices not only capture some 

information such as students' facial expressions, movements, and postures, but also provide feedback 

on students' classroom engagement and emotional status [2]. In this context, machine vision 

technology has become crucial in enhancing education quality. Analyzing students' classroom 

behaviors, it accurately captures students' class learning status, concentration, participation, and even 

emotional states. It is obvious that machine vision provides educators with powerful tools to better 

comprehend students' needs, facilitating personalized adjustments in teaching methods. Despite 

remarkable progress in machine vision technology for classroom monitoring, challenges arise due to 
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the diverse nature of students' participation, understanding of subjects, and learning patterns. To 

tackle this complexity, neutrosophic sets (NSs), a method for handling uncertainty, typically provide 

decision-makers in educational work with tools to make education decisions more discerningly [3]. 

To address the aforementioned challenges, teaching evaluation plays a crucial role as a key 

component in achieving high-quality education. The Global Education Monitoring Report 

emphasizes the necessity of establishing effective student assessment and monitoring mechanisms to 

track students' learning efficiency, thereby enhancing teaching quality [4]. This further underscores 

the vital role of teaching evaluation in achieving high-quality education, particularly in assessing 

students' learning effectiveness. However, traditional evaluation processes are often subjective and 

limited, lacking widely accepted methods [5]. In practical scenarios, teaching evaluation requires 

careful consideration of multidimensional factors, including subject characteristics, student diversity, 

and the allocation of teaching resources. Consequently, assessing teaching is treated as a multi-

criteria decision-making (MCDM) problem, involving a comprehensive balance among diverse 

pivotal factors [6]. To ensure that the assessment of students' learning effectiveness is effective, 

equitable, and meaningful, it is essential to develop and adhere to a high-quality evaluation 

methodology, thereby promoting education quality. 

Aiming at the above issues, this study proposes a quantification classroom teaching evaluation 

method that combines machine vision with NSs to better evaluate students' learning effectiveness. 

Specifically, the following summarizes the main contributions of this study. 

 First, this study uses machine vision technology to identify and process the data on students' 

class status. According to the identified data, this study constructs temporal neutrosophic evaluation 

matrices on students' class status. 

 Second, a novel weight calculation method considering students' concentration is proposed 

based on the Pearson correlation coefficient. It not only reflects students' class status over time, but 

also measures the correlation between time and students' concentration. Moreover, the proposed 

weight function is objective, avoiding subjective influences. 

 Third, a classical single-valued neutrosophic Dombi weighted arithmetic average (SVNDWAA) 

operator is introduced. In addition, a similarity function is presented to implement the evaluation 

problems based on distance from average solution (EDAS), facilitating a comprehensive assessment 

on students' learning effect. 

The rest of this study is formed as follows. Section 2 introduces a series of literature on NSs, 

machine vision and MCDM. Section 3 introduces the related definitions of NSs, presents the process 

of machine vision recognition, and proposes a temporal neutrosophic evaluation model. Section 4 

provides an example and comparative analysis to verify the practical value of the proposed model. 

Section 5 generalizes the work and future prospects. The research framework is shown in Figure 1. 

2. Literature Review 

Scholars have spent much effort exploring and investigating NSs, machine vision and MCDM 

for achieving high-quality education. This section reviews relevant previous research on assessing 

education quality, providing an overview of existing deficiencies that require attention. 

To evaluate university courses, classroom learning effectiveness is usually an explicit indicator 

for assessing teaching quality. In this regard, some scholars have delved into the application of NSs 

in exploring the evaluation of classroom learning effectiveness [7]. For example, Tang et al. [8] 

established a compromise solution using single-valued neutrosophic measurement of alternatives for 

enhancing students' learning outcomes. Subsequently, Wu and Fang [9] constructed an innovation 

multilevel teaching quality evaluation framework in higher education, integrating the Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS) with single-valued neutrosophic sets 

(SvNSs). At the same time, Mamites et al. [10] presented an analysis method on a neutrosophic 

decision-making trial and evaluation laboratory to study causal relationships affecting teaching 

quality in universities. Later, Rao and Xiao [11] proposed a novel generalized 2-tuple linguistic 

neutrosophic power Heronian mean operator applied in the MCDM algorithm, thereby better 
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evaluating physical education quality. Then, Xie [12] presented a triangular fuzzy neutrosophic 

numbers grey relational analysis method, which expands the traditional classroom teaching mode 

and provides a novel insight for evaluating students' blended teaching effectiveness in colleges. 

 

Figure 1. Research framework 

According to evaluation on teaching quality in higher education, machine vision usually 

provides feedback on students' class learning behaviors. Currently, the application of machine vision 

technology in evaluating classroom teaching effectiveness has attracted widespread attention [13]. 

For example, Arashpour et al. [14] applied the YOLO algorithm in facial motion detection to predict 

students' engagement in the classroom, facilitating teachers in optimizing their instructional 

strategies. Subsequently, Shen et al. [15] delved into facial expression recognition to capture learners' 

emotional changes over time. On this basis, a domain-adaptive facial expression recognition method 

applied to the MOOC scenario was proposed to verify the effectiveness of students' learning 

engagement. Then, Pabba and Kumar [16] introduced a real-time system employing convolutional 

neural networks (CNN) for facial expression recognition related to students' status. At the same time, 

Liu [17] employed multi-task CNN and a quantitative evaluation method-class focus index to detect 

learners' facial features for determining students' status. Later, Gollapalli et al. [18] proposed a 

sustainable university field training framework and used machine vision technology to extract 

educational data to elucidate students' learning outcomes. 

Meanwhile, the application of MCDM in education is gaining increasing attention. In this 

context, scholars are dedicated to exploring the practical application of MCDM models in classroom 

teaching to address its uncertainties effectively [19]. For example, Martin et al. [20] developed an 

MCDM method on Plithogenic contradictions, presenting a novel optimal decision-making method. 

Then, Priyadharshini and Irudayam [21] investigated a unique MCDM method using Plithogenic 

single-valued fuzzy sets, emphasizing the proposed method's effectiveness and practical adaptability 

to societal needs. At the same time, Abdel-Basset et al. [22] proposed a multi-stage approach 

integrating the application of the analytical network process method and TOPSIS to address 

information uncertainty within a hybrid technique. Additionally, Gamal et al. [23] presented a novel 
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framework that integrated the 𝛼 -discounting MCDM and the VlseKriterijumska Optimizacija I 

Kompromisno Resenje method, which was applied to address uncertain and fuzzy conditions under 

a neutrosophic environment. Later, Gamal et al. [24] extended a reliable MCDM approach based on 

the elimination effects of criteria and the combined compromise solution utilizing type-2 

neutrosophic numbers for criteria assessment. 

Based on the aforementioned, the introduced research shows some issues need to be settled in 

the teaching evaluation field. Firstly, the traditional evaluation methods mainly rely on subjective 

evaluation, leading to inconsistent evaluation criteria and difficulty in quantifying evaluation results. 

Secondly, although machine vision has been used in students' status assessment in recent studies, it 

has not yet been integrated with teaching evaluation methods. Thirdly, although NSs provide new 

ideas on students' learning effectiveness, they have not yet established a unified framework to solve 

various complexities and challenges in classroom teaching evaluation. Regarding the above issues, 

this study proposes a novel evaluation method based on NSs with machine vision, so as to better 

evaluate students' learning effectiveness. 

3. Materials and Methods 

For convenience, this section is segmented into several parts. The first part briefly introduces 

essential definitions regarding this study. The second part introduces the process of machine vision 

recognizing students' in-class status. The third part proposes a weight calculation method 

considering students' concentration. The fourth part proposes a temporal neutrosophic evaluation 

model considering students' concentration. 

3.1. Preliminaries 

Definition 1. [25] Let X be a set, and the elements of X are represented by x. If �̃� = {<

𝑥,1(𝑥),2(𝑥),  3(𝑥) > |𝑥 ∈ 𝑋}, �̃� is denoted as an SvNS, where 1(𝑥): 𝑋 → [0,1], 2(𝑥): 𝑋 → [0,1], 

3(𝑥): 𝑋 → [0,1] depict the truth, indeterminacy and falsity membership degree, respectively. For 

simplicity, a single-valued neutrosophic number (SvNN) is expressed as the element <

   

    

  

𝑥,1(𝑥),2(𝑥), 3(𝑥) > in �̃�.

Definition 2. [26] Presume that there exist two SvNNs, namely 1 =< 11,21, 31 > and 2 =<

12,22, 32 >. Then, there are the following algorithms:

(1)               = , , ;1 2 11 12 11 12 21 22 31 32  

(2)                   = , , ;1 2 11 12 21 22 21 22 31 32 31 32  

(3) ,）, (）（（      w ww w w1 1 ) ,( ) 0.
1 11 21 31

 

Definition 3. [27] Let 𝑆(1) be the cosine similarity of an SvNN 𝑎1 =< 𝛼11, 𝛼21, 𝛼31 >. Then 𝑆(1) 

is denoted as 

      


  



S( ) .

2 2 2

11 21 31

1

11

      (1) 

Definition 4. [28] Suppose 𝐹:  𝕌𝑞 → 𝕌  is a function of q. Then, an ordered weighted averaging 

(OWA) operator is as follows 

( , , , ) ,qF a a a w b   

q

11 2
      

(2) 

where 𝑏𝜎 is the jth element of the descending sort in {𝑎1, 𝑎2, ⋯ , 𝑎𝑞}, and 𝑤 = {𝑤1, 𝑤2 , ⋯ ,  𝑤𝑞}
𝑇
 is the 

weighted vector associated with F, satisfying 𝑤𝑞 ∈ [0,1] and ∑ 𝑤𝜎
𝑞
𝜎=1 = 1. 

       

with 𝜂𝑛 ≥ 0 and ∑ 𝜂𝑘

Definition 5. [29] Let 𝛼1, 𝛼2, ⋯ , 𝛼𝑛 be SvNNs. Let 𝜂 = (𝜂1, 𝜂2, ⋯ , 𝜂𝑛) be the weight vector of 𝛼𝑛
𝑛
𝑘=1 = 1. Then, an SVNDWAA operator is obtained as 
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( , , , ) .
n

    


SVNDWAA
k

k k

n

1

1 2

     

(3) 

3.2. The process of machine vision recognition 

In this study, the Yolov5 object detection model is employed to identify and classify in-class 

status of students, so as to objectively evaluate students' learning effectively in different classes and 

periods [30]. In the introduced process, the data on the students' class learning status is derived from 

classroom teaching videos, which are divided into image sequences. Here, 2000 images are selected 

as the datasets. The Labelimg software is then employed to detect the status of different students, 

which are categorized into 6 types: listen, write, distraction, talk, sleep, and phone. The specific 

identification process of Yolov5 is shown in Figure 2. And the effect of Yolov5 detection is illustrated 

in Figure 3. 

 

Figure 2. The identification process of Yolov5 

For convenience, assume an SvNN exists, namely 1 =< 11,21,  31 >. Then, the calculation 

method of 11,21, and 31 are as follows: 

     

 
     

  

     

 
  

A B C A B C A B C

A B C

p p p q p qp p p q p q

p qp q
, , ,

1 1 1 1 1 1

3 2 3 2 3 211 21 31

1 1

3 2

 

where 11  represents the truth-membership degree of 'listen' in machine vision recognition; 2

(4)

1 

represents the indeterminacy-membership degree of 'distraction', 'write' and 'talk'; whereas 31 

represents the falsity-membership degree of 'sleep' and 'phone'. 𝐴 represents the count of students 

'listen' in class, and 𝐵𝑝(𝑝 = 1,2,3) represents the count of students 'distraction', 'write' and 'talk' in 

class. Whereas 𝐶𝑞(𝑞 = 1,2)  represents the count of students 'sleep' and 'phone' in class. 

Consequently, 1 is obtained. 
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Figure 3. The effect chart of Yolov5 recognition 

3.3. A calculation method of weight considering students' concentration 

In classroom learning, students' listening effectiveness exhibits a transition from concentration 

to distraction as the class time extends [31]. In this context, this study proposes a novel time weight 

function 𝜔(𝑡) that considers students' concentration based on the Pearson correlation coefficient. 

The proposed 𝜔(𝑡) is a combination of decay and correlation. The decay factor signifies a gradual 

decline in students' concentration over time, reflecting that fatigue and distractions arise during 

extended study sessions. Conversely, the correlation factor evaluates the relationship between class 

duration and students' concentration, assessing variations in attention levels during different periods. 

In this study, the duration of a class is taken as 𝑇 − minute, in which each 10-minute is divided into 

a period and each period is further subdivided into 2-minute as a time node. The following 𝜔(𝑡) is 

defined as 
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where 𝑥𝑖𝑗(𝑖, 𝑗 = 1,2, ⋯ , 𝑛) denotes the jth time node in the ith period, 𝑥𝑖 represents the average time 

in the ith period, 𝑦𝑖𝑗 is on behalf of the number of students paying attention at the jth time node in 

the ith period, 𝑦𝑖 means the average number of students listening attentively in the ith period, 𝑡 

denotes unit moments in a class divided into 10-minute periods, whereas 𝑡𝑚𝑎𝑥  represents the 

maximum unit moment in class divided into 10-minute periods. In this study, 𝑤𝑠 indicates the initial 

weight set to 1, while 𝑤𝑒  represents the final weight set to 0. 

Theorem 1: The 𝜔(𝑡) considering students' concentration satisfies the following properties. 

(E1) For 𝑡 ∈ [0, 𝑇], 𝜔(𝑡) is a monotonically decreasing function. 

(E2) When 𝑡 = 0, 𝜔(𝑡) has the maximum value. 

(E3) When 𝑡 = 𝑎, 𝜔(𝑡) has the minimum value. 

Proof: 

To prove the proposed properties, two fundamental functions are constructed as 
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where 𝑟(𝑟 > 0) represents the Pearson correlation coefficient.  

Calculations indicate that 𝑓′(𝑡)  is always less than 0. Then, it gets 𝑓(𝑡) is a monotonically 

decreasing function. Since Eq. (3) is a normalization of Eq. (2), 𝐹(𝑡) also monotonically decreases. 

Then, (E1) holds. 

When 𝑡 = 0, 𝑓(𝑡) takes the maximum value 𝑓𝑚𝑎𝑥(𝑡) = 𝑒𝑟. Then, (E2) holds. 

When 𝑡 = 𝑇, 𝑓(𝑡) takes the minimum value 𝑓𝑚𝑖𝑛(𝑡) = 1. Then, (E3) holds. 

3.4. A temporal neutrosophic evaluation model considering students' concentration 

To better evaluate students' learning effectiveness, this subsection proposes a novel temporal 

neutrosophic evaluation model that considers students' concentration. First, this study constructs 

four temporal neutrosophic evaluation matrices on students' class status over time and aggregates 

the proposed four matrices as one using a classical OWA operator. Second, a novel 𝜔(𝑡) considering 

students' concentration is proposed based on the Pearson correlation coefficient. Third, this study 

applies the EDAS method by introducing a classical SVNDWAA operator and a similarity function 

for comprehensive assessment and optimization of students' learning effectiveness. Specifically, the 

evaluation steps are as follows. 

Step 1: Construct temporal neutrosophic evaluation matrices. This study focuses on 𝜙 classes, 

with 𝑙 courses within a month as the research objects. By processing the data from students' class 

videos, a neutrosophic evaluation matrix 𝐾𝑙×𝜙𝑖  is established for 𝜙 classes in the 𝑖th period by 

using Eq. (4). Taking the evaluation matrix 𝐾𝑙1

𝜙𝑖
 of a course within a month as an example, the 

following 𝐾𝑙1

𝜙𝑖
 is defined as 

1

11 11 11 12 12 12 1 1 1

11 21 31 11 21 31 11 21 31

21 21 21 22 22 22 2 2 2

11 21 31 11 21 31 11 21 31

1 1 1 2 2 2

11 21 31 11 21 31 11 21 31

, , , , , ,

, , , , , ,
,

, , , , , ,

i i i

i i i

i

l

i i i

K

        

        

        

        

      
 
      
 
 
       

 

where 𝛼11
𝜙𝑖

, 𝛼21
𝜙𝑖

, 𝛼31
𝜙𝑖 represent the truth-membership degree, indeterminacy-membership degree, and 

falsity-membership degree of class 𝜙(𝜙 = 1,2, ⋯ , 𝜀)  in the 𝑖 th period of the 𝐾𝑙1

𝜙𝑖
, respectively, 

whereas 𝑖 = 1,2, ⋯ , 𝑛. 

Step 2: Determine an integrated neutrosophic evaluation matrix. Introducing a classical OWA 

operator to integrate one-month courses from different classes into a course is to obtain a 
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comprehensive evaluation matrix 𝐿𝑙×𝜙𝑖 , enhancing the depth and accuracy of students' performance 

assessment. Due to the same type of courses in each class, 𝑤𝜎 =
1

𝑙
(𝜎 = 1,2, ⋯ , 𝑙) is taken in this study. 

By using Eq. (2), the 𝐿𝑙×𝜙𝑖 is defined as 

11 11 11 12 12 12 1 1 1

12 22 32 12 22 32 12 22 32

21 21 21 22 22 22 2 2 2

12 22 32 12 22 32 12 22 32

1 1 1 2 2 2

12 22 32 12 22 32 12 22 32

, , , , , ,

, , , , , ,

, , , , , ,

i i

l l

i i i

i i i

i i i
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.







 

Step 3: Establish a time weight function considering students' concentration. The overall effect 

of students' class status is evaluated through the 𝜔(𝑡)  considering students' concentration 

constructed in Section 3.1. The proposed 𝜔(𝑡) not only reflects students' class status over time, but 

also measures the correlation between class time and students' concentration. Here, the 𝜔(𝑡) is 

shown in Eq. (5). 

Step 4: Construct a composite neutrosophic evaluation matrix. By combining the proposed 

𝜔(𝑡)  with the 𝐿𝑙×𝜙𝑖 , a composite neutrosophic evaluation matrix 𝐺𝑙×𝜙𝑖  is obtained. Integrating 

𝐿𝑙×𝜙𝑖  and 𝜔(𝑡), the 𝐺𝑙×𝜙𝑖 is defined as  

11 11 11 12 12 12 1 1 1

13 23 33 13 23 33 13 23 33

21 21 21 22 22 22 2 2 2

13 23 33 13 23 33 13 23 33

1 1 1 2 2 2

13 23 33 13 23 33 13 23 33
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Step 5: Calculate the value of the class average solution. To calculate the average solution for 

each class, a classical SVNDWAA operator is introduced. It is used to convert the ranking results of 

all classes into a standard scoring scale for comparison and evaluation, effectively reducing errors in 

the final evaluation results. By using Eq. (3), the class average solution is obtained as 

1 2

1

( , , , ) ,
n

n k k

k

AF SVNDWAA     


       (7) 

where 𝐴𝐹𝜙 represents the class 𝜙 average solution, and 𝜂𝑘 means the weight vector in 𝛼𝑘. 

Step 6: Calculate the positive and negative distances. To evaluate the learning outcomes of each 

class compared to other classes, a similarity function is introduced. According to Eqs. (1) and (7), the 

positive distances 𝑃𝐷𝐶𝜙𝑖 and negative distances 𝑁𝐷𝐶𝜙𝑖 of class 𝜙 in the 𝑖th period are denoted as 

3max(0, ( ) ( ))
,

( )

i

i

S S AF
PDC

S AF









 
       (8) 

3max(0, ( ) ( ))
,

( )

i

i

S AF S
NDC

S AF












      (9) 

where 𝑆(𝛼3
𝜙𝑖

) represents similarity calculation for each SvNN in 𝐺𝑙×𝜙𝑖 , whereas 𝑆(𝐴𝐹𝜙) represents the 
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similarity calculation of 𝐴𝐹𝜙. 

Step 7: Calculate the weighted positive and negative distances. According to definition 2, the 

weighted 𝑃𝐷𝐶𝜙𝑖 and 𝑁𝐷𝐶𝜙𝑖 of class 𝜙 in the 𝑖th period are denoted as 

1

,
n

i i

i

SP PDC 


         (10) 

1

,
n

i i

i

SN NDC 


         (11) 

where 𝑆𝑃𝜙  and 𝑆𝑁𝜙  indicate the weight sums of 𝑃𝐷𝐶𝜙𝑖  and 𝑁𝐷𝐶𝜙𝑖 , respectively, whereas 𝜆𝑖  is 

treated as the weighted of the 𝑖th period. 

Step 8: Calculate the comprehensive evaluation value. 𝐶𝑆𝜙 is defined as 

1 (1 ) .
2 max max

SP SN
CS

SP SN

 



 
   

 
      (12) 

Rank according to 𝐶𝑆𝜙 and the highest 𝐶𝑆𝜙 is the optimal one. 

4. Results and Discussion 

This section is mainly divided into three parts. 1) Give a practical example for the model used to 

illustrate the effectiveness. 2) Present a comparison of the proposed model with others to demonstrate 

the consistence. 3) Discuss the obtained results. 

4.1. Case study application 

In this subsection, the proposed model is applied in a case study. This study defines the duration 

of a class as 50 minutes, consisting of five periods, with each period further divided into 2-minute as 

time nodes. Besides, this study focuses on four Professional English courses in four classes over five 

periods within a month, where 𝑖(𝑖 = 1,2,3,4,5)  is considered the ith period. 𝑙1 , 𝑙2 , 𝑙3  and 𝑙4 

correspond to the four Professional English courses. Moreover, 𝜙(𝜙 = 1,2,3,4) represents Marine 

Engineering classes 221, 222, 223, and 224, respectively. For the above four classes, this study collects 

four videos of four Professional English courses from each class within a month, detects students' 

class status and processes the identification data. Based on the identified data, students' learning 

status in class is evaluated. The specific evaluation procedures are as follows. 

Step 1: This study establishes four evaluation matrices (𝐾𝑙1

𝜙𝑖
,𝐾𝑙2

𝜙𝑖
,𝐾𝑙3

𝜙𝑖
,𝐾𝑙4

𝜙𝑖
) for four Professional 

English courses in four classes over five time periods within a month. By using Eq. (4), 

𝐾𝑙1

𝜙𝑖
, 𝐾𝑙2

𝜙𝑖
, 𝐾𝑙3

𝜙𝑖
 𝑎𝑛𝑑 𝐾𝑙4

𝜙𝑖
 are given as 

1

(0.87,0.06,0.07) (0.85,0.07,0.08) 0.88,0.05,0.07 0.78,0.13,0.09 0.87,0.12,0.01

(0.94,0.06,0.00) (0.98,0.02,0.00) 0.98,0.02,0.00 0.94,0.06,0.00 0.94,0.06,0.00

(0.94,0.06,0.00) (0.93,0.07,0.00) 0

i

lK 

（ ）（ ）（ ）

（ ）（ ）（ ）

（
,

.84,0.08,0.08 0.83,0.10,0.07 0.85,0.08,0.07

(0.39,0.50,0.11) (0.47,0.37,0.16) 0.40,0.41,0.19 0.35,0.52,0.13 0.34,0.52,0.14

 
 
 
 
 
 

）（ ）（ ）

（ ）（ ）（ ）
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2

(0.80,0.19,0.01) (0.87,0.13,0.01) 0.87,0.13,0.01 0.80,0.18,0.01 0.71,0.28,0.01

(0.90,0.10,0.00) (0.91,0.09,0.00) 0.91,0.09,0.00 0.86,0.14,0.00 0.82,0.18,0.00

(0.89,0.06,0.05) (0.90,0.05,0.05) 0

i

lK 

（ ）（ ）（ ）

（ ）（ ）（ ）

（
,

.91,0.05,0.04 0.95,0.05,0.00 0.96,0.04,0.00

(0.37,0.48,0.15) (0.31,0.54,0.15) 0.29,0.47,0.24 0.29,0.56,0.15 0.29,0.56,0.15

 
 
 
 
 
 

）（ ）（ ）

（ ）（ ）（ ）

3

(0.63,0.34,0.03) (0.55,0.35,0.10) 0.72,0.25,0.03 0.72,0.28,0.10 0.67,0.28,0.05

(0.85,0.15,0.00) (0.78,0.22,0.00) 0.75,0.25,0.00 0.75,0.25,0.00 0.73,0.27,0.00

(0.97,0.03,0.00) (0.96,0.04,0.00) 0

i

lK 

（ ）（ ）（ ）

（ ）（ ）（ ）

（
,

.94,0.04,0.02 0.86,0.04,0.10 0.83,0.06,0.11

(0.32,0.54,0.14) (0.30,0.53,0.17) 0.23,0.53,0.24 0.25,0.57,0.18 0.29,0.52,0.19

 
 
 
 
 
 

）（ ）（ ）

（ ）（ ）（ ）

4

(0.62,0.32,0.06) (0.70,0.24,0.06) 0.68,0.22,0.10 0.60,0.20,0.20 0.51,0.27,0.22

(0.76,0.24,0.00) (0.79,0.21,0.00) 0.75,0.25,0.00 0.73,0.27,0.00 0.64,0.36,0.00

(0.84,0.05,0.11) (0.79,0.04,0.17) 0

i

lK 

（ ）（ ）（ ）

（ ）（ ）（ ）

（
.

.83,0.07,0.10 0.85,0.07,0.08 0.87,0.06,0.07

(0.26,0.55,0.19) (0.26,0.56,0.18) 0.25,0.56,0.19 0.25,0.53,0.22 0.29,0.44,0.27

 
 
 
 
 
 

）（ ）（ ）

（ ）（ ）（ ）

 

Step 2: A classical OWA operator is introduced to integrate four courses into a course within a 

month. Since the four courses are the same type, the same weight value 𝑤𝜎 =
1

4
(σ = 1,2,3,4) is taken 

throughout the study. By using Eq. (2), 𝐿𝑙×𝜙𝑖 is obtained as 

(0.75,0.24,0.04) (0.77,0.20,0.06) 0.81,0.17,0.05 0.74,0.20,0.10 0.72,0.24,0.08

(0.88,0.14,0.00) (0.90,0.14,0.00) 0.90,0.16,0.00 0.85,0.18,0.00 0.82,0.23,0.00

(0.92,0.05,0.04) (0.91,0.05,0.06) 0
l iL  

（ ）（ ）（ ）

（ ）（ ）（ ）

（
.

.89,0.06,0.06 0.88,0.07,0.06 0.89,0.06,0.06

(0.34,0.52,0.15) (0.34,0.51,0.17) 0.30,0.50,0.22 0.29,0.55,0.10 0.30,0.51,0.19

 
 
 
 
 
 

）（ ）（ ）

（ ）（ ）（ ）

 Step 3: By using Eq. (5), the proposed 𝜔(𝑡) considering students' concentration is calculated. 

Specifically, the weight calculation results are shown in Table 1. The correlation between students' 

concentration and time is presented in Figure 4. 

Table 1. Weight calculation results 

time 10min 20min 30min 40min 50min 

r 0.73 0.42 0.69 0.30 0.74 

( )t  0.25 0.22 0.19 0.18 0.16 

Step 4: Integrating 𝐿𝑙×𝜙𝑖  and 𝜔(𝑡), 𝐺𝑙×𝜙𝑖 is given as 

(0.29,0.70,0.45) (0.28,0.70,0.54) (0.27,0.71,0.57) (0.22,0.75,0.63) (0.18,0.80,0.67)

(0.41,0.61,0.00) (0.40,0.65,0.00) (0.35,0.71,0.00) (0.29,0.73.0.00) (0.24,0.79,0.00)

(0.47,0.47,0.45) (0.41,0.52,0.54) (0
l iG   .

.34,0.59,0.59) (0.32,0.62,0.60) (0.30,0.64,0.64)

(0.10,0.85,0.62) (0.09,0.86,0.68) (0.07,0.57,0.71) (0.06,0.90,0.74) (0.06,0.90,0.77)
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Figure 4. Correlation between students' concentration and time 

Step 5: By using Eq. (7), 𝐴𝐹1, 𝐴𝐹2, 𝐴𝐹3 and 𝐴𝐹4 are obtained as 

11 12 13 14 15

1 3 3 3 3 3

1 1 1 1 1
0.25,0.73,0.57 ,

5 5 5 5 5
AF          

 

21 22 23 24 25

2 3 3 3 3 3

1 1 1 1 1
0.34,0.70,0.00 ,

5 5 5 5 5
AF          

 

31 32 33 34 35

3 3 3 3 3 3

1 1 1 1 1
0.37,0.57,0.56 ,

5 5 5 5 5
AF          

41 42 43 44 45

4 3 3 3 3 3

1 1 1 1 1
0.08,0.82,0.70 .

5 5 5 5 5
AF          

 

Step 6: By using Eqs. (8) and (9), PDCϕi and NDCϕi are obtained in Table 2 and Table 3. 

Step 7: By using Eqs. (10) and (11), 𝑆𝑃𝜙 and 𝑆𝑁𝜙 are calculated. It gets 

10.01 SP , 2 0.09SP  , 3 0.11SP  , 4 0.11SP  , 

1 0.05SN  , 2 0.11SN  , 3 0.09SN  , 4 0.12SN  . 

Step 8: By using Eq. (12), 𝐶𝑆𝜙 is obtained. It gets 

1 0.75CS  , 2 0.45CS  , 3 0.63CS  , 4 0.50CS  . 

Based on the above sorting results, the priority order of four classes is 1 3 4 2 , indicating 

that class 221 performs the best overall, while class 222 shows the worst performance. Specifically, 

the detailed analysis shown in Figure 5 presents the truth-membership degree for each class over 

time. 
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Table 2. Positive distances 

𝝓 𝑷𝑫𝑪𝝓𝟏 𝑷𝑫𝑪𝝓𝟐 𝑷𝑫𝑪𝝓𝟑 𝑷𝑫𝑪𝝓𝟒 𝑷𝑫𝑪𝝓𝟓 

1 0.27 0.15 0.08 0.00 0.00 

2 0.27 0.18 0.00 0.00 0.00 

3 0.40 0.14 0.00 0.00 0.00 

4 0.29 0.14 0.14 0.00 0.00 

Table 3. Negative distances 

𝝓 𝑵𝑫𝑪𝝓𝟏 𝑵𝑫𝑪𝝓𝟐 𝑵𝑫𝑪𝝓𝟑 𝑵𝑫𝑪𝝓𝟒 𝑵𝑫𝑪𝝓𝟓 

1 0.00 0.00 0.00 0.15 0.12 

2 0.00 0.00 0.00 0.19 0.34 

3 0.00 0.00 0.10 0.17 0.26 

4 0.00 0.00 0.00 0.29 0.29 

 

Figure 5. The truth-membership degree of the four classes over time 

4.2. Comparative analysis 

To further affirm the viability and practicability of the proposed method in assessing students' 

learning effectiveness, this study conducts comparative analysis with the traditional EDAS method, 

as well as the approaches introduced by Han et al. [32] and Biswas et al. [33]. Among them, the 
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ranking results are presented in Table 4, which are consistent with those of existing methods. They 

all agree that class 221 is the optimal scheme. Based on this consistency, the proposed method is 

effective and reliable. 

Table 4. Comparative analysis results 

Method Sorting results Optimal scheme 

The proposed method 1 3 4 2  1 

Traditional EDAS method 1 3 4 2  1 

Han et al.' method 1 3 4 2  1 

Biswas et al.' method 1 3 4 2  1 

4.3. Discussion 

For convenience, a concise description of the experimental results is provided in this study. The 

details are as follows. 

(1) This study utilizes machine vision technology to detect and analyze the videos on students' 

class state. Considering its uncertainty and diversity, this study proposes an SvNN calculation 

method to handle the obtained data. Compared to previous relevant research, the application of 

machine vision technology presents a more accurate and objective data analysis. 

(2) This study proposes a novel classroom teaching evaluation method that combines machine 

vision technology with NSs. It is found that the ranking results are consistent with comparative 

analysis, indicating that the proposed method provides a novel idea and is suitable for solving the 

MCDM problem. 

(3) This study proposes an objective weight function that considers students' concentration. 

Compared with other weight calculation methods (such as Analytic Hierarchy Process), the weight 

calculation method proposed in this study has reduced subjective challenges and a higher correlation 

performance on students' concentration. 

As a result of the above, the proposed method presents a distinctive solution to address the 

subjectivity and inconsistency issues identified in previous research. This further expands the 

research depth in this field, providing a novel method for realizing high-quality education.  

5. Conclusions and Prospects 

To better evaluate students' learning effectiveness, this study proposes a novel classroom 

teaching evaluation method that combines NSs with machine vision technology, providing a 

reference for teaching quality evaluation. Specifically, the main contributions are summarized as 

follows. 

First, this study identifies and classifies data on students' class status using Yolov5 detection 

mode, providing a novel idea to accurately and comprehensively evaluate students' class status. 

According to the obtained data, an SvNN calculation method is proposed, laying the foundation for 

constructing temporal neutrosophic evaluation matrices.  
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Second, this study proposes a novel time weight function on the basis of the Pearson correlation 

coefficient. The proposed weight function is a combination of decay and correlation that considers 

students' concentration. Moreover, the proposed weight function remains unaffected by subjective 

factors, enhancing the objectivity of the evaluation results. 

Third, this study introduces a classical SVNDWAA operator to calculate class average solutions 

and utilizes a similarity function to implement the EDAS method. Besides, comparative analysis is 

given to verify the superiority of the model proposed, ensuring the accuracy and reliability of MCDM. 

It is noteworthy that there is a relationship problem between samples and objects in the current 

accuracy of machine vision recognition. In some situations, the class status on the first three rows of 

students in the classroom is collected by the camera in this study, which fails to cover the learning 

status of the entire class. Therefore, future research should involve expanding the sample size to  

capture students' status more comprehensively, thus reducing potential sampling errors. 

Additionally, intuitionistic fuzzy sets can also be applied in this study. However, considering the 

specific context and requirements of this study, SvNSs are more suitable for effectively handling the 

uncertainties and fuzziness involved in the evaluation process, leading to more accurate assessment 

results. 
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Abstract: The article reveals the investigation of properties of multiplication operation of 

neutrosophic fuzzy matrices. We study commutative property, associative property, distributive 

property of them. We show with suitable example that neutrosophic fuzzy matrices do not obey 

commutative property with respect to multiplication operation. We prove that neutrosophic fuzzy 

matrices hold associative property property with respect to multiplication operation. We also prove 

that neutrosophic fuzzy matrices hold distributive property with respect to multiplication operation 

over addition. These results are further justified by providing suitable numerical examples. The 

important aspects of the article is that the investigation of commutative, associative and distributive 

properties of neutrosophic fuzzy matrices with respect to multiplication operation will fill up the 

gaps in the existing literature.  

Keywords: Neutrosophic Set; Fuzzy Matrix; Neutrosophic fuzzy Matrix; Properties of Neutrosophic Fuzzy 

Matrices. 

 

1. Introduction:  

Classical methods often fail to deal real - life problems due to uncertainty. Thereafter, Zadeh [1] 

invented fuzzy set associating with membership value to resolve uncertainty. Sometimes, non - 

membership value is necessary to resolve uncertainty properly. In order to deal with such a 

situation, in 1986, Atanassov initiated the notion of intuitionistic fuzzy sets by associating truth and 

falsity-membership values.  However, it fails to resolve indeterminate situation. Smarandache [2] 

talked about neutrosophic set after associating membership, non-membership and indeterminacy 

functions independently. It turned out to take decision for solving real life problem in complex 

situation. Pal et al. [3, 4] introduced minimal structures and continuity in neutrosophic topological 

spaces. Das and Das [5] investigated on neutrosophic separation axioms. Dhar [6] studied 

compactness and neutrosophic topological space via grills. Recently, Broumi et al. [7, 8] and 

Abdel-Basset et al. [9, 10, 11, 12] and some other authors [13, 14, 15, 16, 17, 18, 19, 20] have 

successfully applied neutrosophic sets to solve different problems. 

Matrices have significant contribution in the field of science and technology. It is often seen that 

usual matrix theory cann’t address all uncertainty. Thomas [21] invented fuzzy matrices. 

mailto:1deeprajd43@gmail.com
mailto:2runu.dhar@gmail.com
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Kandasamy and Smarandache [22, 23] referred neutrosophic relational maps and the classical 

algebraic structures converted to neutrosophic algebra after inserting the indeterminacy element I to 

it. The importance of matrices can be found in the theory of vector spaces. This concept has been 

generalized to neutrosophic matrices by Khaled et al. [24]. Addition and multiplication operations of 

square neutrosophic fuzzy matrices have been defined and investigated by Dhar et al. [25].  

Gap in the literature: 

Das et al. [26] studied on the subtraction operation and investigated algebraic properties of 

neutrosophic fuzzy matrices. However, they did not investigate on commutative, associative and 

distributive properties of them with respect to multiplication operation. In this article, we study 

commutative, associative and distributive properties of neutrosophic fuzzy matrices with respect to 

multiplication operation.  

The innovative values of the article:  

 We have invented notion of multiplication operation of neutrosophic fuzzy matrices which is 

quite different from usual multiplication operation of other matrices of real or complex entries. We 

have discussed commutative property, associative property and distributive property of them with 

multiplication operation. We have also discussed suitable examples to justify the introduction of the 

notion.  

We frame the paper in different sections. The next section procures few known definitions and 

results.  We investigate few properties in section 3. Then conclusion appears. 

2. Preliminaries and Definitions:  

Necessary concepts and results have been procured in this section. 

Definition 2.1. [2] The neutrosophic set η is the form η = {<x:Tη(x), Iη(x), Fη(x)>, x∈U}, where U is an 

universe set and the independent functions T, I, F : U→ ]−0, 1+[ referrer respectively degree of 

membership, indeterminacy and non-membership of x∈U and −0 ≤ Tη(x) + Iη(x) + Fη(x) ≤ 3+. 

It will be difficult to apply the interval ]−0, 1+[ in the applications of  scientific and engineering 

problems. So we need to take [0, 1] in place of ]−0, 1+[. 

Definition 2.2. [25] The neutrosophic matrix is defined as 𝑀𝑚×𝑛= {(mij) : mij ∈ K(I)}. Here K(I) 

denotes a neutrosophic field.  

Definition 2.3. (One may refer to [26]) 𝐴4×3=(

5 0 2.1𝐼
3.5𝐼 3 5

7 4𝐼 0
  8    − 5𝐼       𝐼    

) 

denotes a neutrosophic matrix involving the elements (entries) from the real and indeterminacy. 

Definition 2.4. [22] Take P = [0, 1]∪I. The p×q matrices 𝐶𝑝×𝑞 = {(cij) : cij∈ [0, 1]∪I} is said to be fuzzy 

integral neutrosophic matrices. Evidently collection of fuzzy integral neutrosophic matrices contain 

collection of p×q matrices.  

The fuzzy neutrosophic row and column matrices are the row vector 1×q and column vector p×1 

respectively. 
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Definition 2.5. (One may refer [26]) Let𝑀4×3 = (

0.5 0 0.1𝐼
𝐼 0.3 0.5

0.7 0.4𝐼 0
0.8    0.5𝐼       𝐼

)be a 4×3 integral fuzzy 

neutrosophic matrix. 

Definition 2.6. [22] We denote Ns as fuzzy neutrosophic set where Ns = [0, 1]∪{bI :b∈ [0, 1]}. 

Then 𝑀𝑚×𝑛 = {(cij):cij∈ Ns, i = 1 to m and j = 1 to n} is defined as fuzzy neutrosophic matrices.  

Example 2.7. (One may refer to [26]) Take Ns = [0, 1]∪{dI : d∈[0, 1]}as fuzzy neutrosophic set and  

   𝑃 =  (

0.5 0 0.1𝐼
𝐼 0.3 0.5
0 𝐼 0.01

) 

is a fuzzy neutrosophic matrix of order 3× 3. 

Definition 2.8. [21] A matrix with entries from unit fuzzy interval [0, 1] is said to be a fuzzy matrix 

and if the number of rows and column of that matrix are equal, then it is referred as fuzzy square 

matrix. An example is given below: 

M = (
𝑢 𝑣
𝑡 𝑤

) 

Here u, v, t, w belong to [0, 1].  

Definition 2.9. [22] The entries of a neutrosophic fuzzy matrix (in short, NFM) M are form x + Iy 

(neutrosophic number). Here x, y are taken from [0, 1], I is an indeterminate where In= I, (n∈ ℕ). As 

for example 

M= (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) 

is a neutrosophic fuzzy matrix. 

Definition 2.10. [26] Let us take two matrices as below: 

A = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) and B = (

𝑚1 + 𝐼𝑛1 𝑚2 + 𝐼𝑛2

𝑚3 + 𝐼𝑛3 𝑚4 + 𝐼𝑛4
) 

The product of them as multiplication operation is as below 

AB = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) (

𝑚1 + 𝐼𝑛1 𝑚2 + 𝐼𝑛2

𝑚3 + 𝐼𝑛3 𝑚4 + 𝐼𝑛4
) 

   = (
𝐷11 𝐷12

𝐷21 𝐷22
) as defined in Definition 2.8 of [26].  

 

3. Main Results:  

Here we investigate some properties of neutrosophic fuzzy matrices.  

3.1. Proposition. Multiplication operation is not commutative in case of neutrosophic fuzzy 

matrices. 

Proof. We consider A = (
0.1 + 𝐼0.2 0.2 + 𝐼0.4
0.3 + 𝐼0.5 0.4 + 𝐼0.6

), B = (
0.3 + 𝐼0.7 0.4 + 𝐼0.5
0.2 + 𝐼0.4 0.2 + 𝐼0.8

) 

AB = (
𝐶11 𝐶12

𝐶21 𝐶22
) 
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where, 𝐶11 = Max{Min(0.1, 0.3) , Min(0.2, 0.2)} + 𝐼Max{Min(0.2, 0.7) , Min(0.4, 0.4)} = Max{0.1, 0.2} +

 𝐼Max {0.2, 0.4} = 0.2 + 𝐼0.4. 

Similarly, one can show that 

𝐶12 = 0.2 + 𝐼0.4, 𝐶21 = 0.3 + 𝐼0.5, 𝐶22 = 0.3 + 𝐼0.6. 

     Thus, AB= (
0.2 + 𝐼0.4 0.2 + 𝐼0.4
0.3 + 𝐼0.5 0.3 + 𝐼0.6

)…………….(1) 

Now,   

BA = (0.3 + 𝐼0.7 0.4 + 𝐼0.5
0.2 + 𝐼0.4 0.2 + 𝐼0.8

) (
0.1 + 𝐼0.2 0.2 + 𝐼0.4
0.3 + 𝐼0.5 0.4 + 𝐼0.6

) 

        = (
𝐷11 𝐷12

𝐷21 𝐷22
) and 

𝐷11 = Max{Min(0.3, 0.1) , Min(0.4, 0.3)} + 𝐼Max {Min(0.7, 0.2) , Min(0.5, 0.5)} 

= Max{0.1, 0.3} +  𝐼Max {0.2, 0.5} = 0.3 + 𝐼0.5 

Similarly, one can show that 

𝐷12 = 0.2 + 𝐼0.5, 𝐷21 = 0.2 + 𝐼0.5, 𝐷22 = 0.2 + 𝐼0.6. 

Thus, BA = (0.3 + 𝐼0.5 0.2 + 𝐼0.5
0.2 + 𝐼0.5 0.2 + 𝐼0.6

)………………(2) 

From (1) and (2), it follows that AB≠BA. 

 

3.2. Proposition.  Multiplication operation is associative in case of neutrosophic fuzzy matrices. 

Proof. We consider A = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
), B = (

𝑐1 + 𝐼𝑑1 𝑐2 + 𝐼𝑑2

𝑐3 + 𝐼𝑑3 𝑐4 + 𝐼𝑑4
) 

C = (
𝑚1 + 𝐼𝑛1 𝑚2 + 𝐼𝑛2

𝑚3 + 𝐼𝑛3 𝑚4 + 𝐼𝑛4
) 

Now, 

AB = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) (

𝑐1 + 𝐼𝑑1 𝑐2 + 𝐼𝑑2

𝑐3 + 𝐼𝑑3 𝑐4 + 𝐼𝑑4
) 

                                  = (
𝑀11 𝑀12

𝑀21 𝑀22
), 

where, 𝑀11 = Max{Min(𝑥1, 𝑐1) , Min(𝑥2, 𝑐3)} + 𝐼 Max{Min(𝑦1, 𝑑1) , Min(𝑦2, 𝑑3)}. 

𝑀12 = Max{Min(𝑥1, 𝑐2) , Min(𝑥2, 𝑐4)} + 𝐼 Max{Min(𝑦1, 𝑑2) , Min(𝑦2, 𝑑4)}. 

𝑀21 = Max{Min(x3, c1) , Min(x4, c3)} + 𝐼 Max{Min(𝑦3, 𝑑1) , Min(𝑦4, 𝑑3)}. 

𝑀22 = Max{Min(x3, c2) , Min(𝑥4, 𝑐4)} + 𝐼 Max{Min(𝑦3, 𝑑2) , Min(𝑦4, 𝑑4)}. 

∴ 𝐴𝐵 = (
𝑋1 + 𝐼𝑌1 𝑋2 + 𝐼𝑌2

𝑋3 + 𝐼𝑌3 𝑋4 + 𝐼𝑌4
), 

where, 𝑋1 = Max{Min(𝑥1, 𝑐1) , Min(𝑥2, 𝑐3)}. 

𝑋2 = Max{Min(𝑥1, 𝑐2) , Min(𝑥2, 𝑐4)}. 

𝑋3 = Max{Min(x3, c1) , Min(x4, c3)}. 

𝑋4 = Max{Min(x3, c2) , Min(x4, c4)}. 
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𝑌1 = Max{Min(𝑦1, 𝑑1) , Min(𝑦2, 𝑑3)}. 

𝑌2 = Max{Min(𝑦1, 𝑑2) , Min(𝑦2, 𝑑4)}. 

𝑌3 = Max{Min(𝑦3, 𝑑1) , Min(𝑦4, 𝑑3)}. 

                                                                𝑌4 =

Max {Min(𝑦3, 𝑑2) , Min(𝑦4, 𝑑4)}. 

∴ (𝐴𝐵)𝐶 = (
𝑋1 + 𝐼𝑌1 𝑋2 + 𝐼𝑌2

𝑋3 + 𝐼𝑌3 𝑋4 + 𝐼𝑌4
) (

𝑚1 + 𝐼𝑛1 𝑚2 + 𝐼𝑛2

𝑚3 + 𝐼𝑛3 𝑚4 + 𝐼𝑛4
) 

       = (
𝑁11 𝑁12

𝑁21 𝑁22
), 

where, 𝑁11 = Max{Min(X1, m1) , Min(X2, m3)} + 𝐼 Max{Min(𝑌1, 𝑛1) , Min(𝑌2, 𝑛3)}. 

𝑁12 = Max{Min(𝑋1, 𝑚2) , Min(X2, m4)} + 𝐼 Max{Min(𝑌1, 𝑛2) , Min(𝑌2, 𝑛4)}. 

𝑁21 = Max{Min(X3, m1) , Min(X4, m3)} + 𝐼 Max{Min(𝑌3, 𝑛1) , Min(𝑌4, 𝑛3)}. 

𝑁22 = Max{Min(X3, m2) , Min(X4, m4)} + 𝐼Max {Min(𝑌3, 𝑛2) , Min(𝑌4, 𝑛4)}. 

Again,    BC = (
𝑐1 + 𝐼𝑑1 𝑐2 + 𝐼𝑑2

𝑐3 + 𝐼𝑑3 𝑐4 + 𝐼𝑑4
) (

𝑚1 + 𝐼𝑛1 𝑚2 + 𝐼𝑛2

𝑚3 + 𝐼𝑛3 𝑚4 + 𝐼𝑛4
) 

                            = (
𝑄11 𝑄12

𝑄21 𝑄22
), where 

   𝑄11 = Max{Min(𝑐1, 𝑚1) , Min(𝑐2, 𝑚3)} + 𝐼 Max{Min(𝑑1, 𝑛1) , Min(𝑑2, 𝑛3)}, 

𝑄12 = Max{Min(𝑐1, 𝑚2) , Min(𝑐2, 𝑚4)} + 𝐼 Max{Min(𝑑1, 𝑛2) , Min(𝑑2, 𝑛4)}, 

𝑄21 = Max{Min(𝑐3, 𝑚1) , Min(𝑐4, 𝑚3)} + 𝐼Max {Min(𝑑3, 𝑛1) , Min(𝑑4, 𝑛3)}, 

𝑄22 = Max{Min(𝑐3, 𝑚2) , Min(𝑐4, 𝑚4)} + 𝐼 Max{Min(𝑑3, 𝑛2) , Min(𝑑4, 𝑛4)}. 

∴ 𝐵𝐶 = (
𝐺1 + 𝐼𝐻1 𝐺2 + 𝐼𝐻2

𝐺3 + 𝐼𝐻3 𝐺4 + 𝐼𝐻4
), where 

             𝐺1 = Max{Min(c1, m1) , Min(c2, m3)}. 

𝐺2 = Max{Min(c1, m2) , Min(c2, m4)}. 

𝐺3 = Max{Min(c3, m1) , Min(c4, m3)}. 

                                                                𝐺4 =

Max{𝑀𝑖𝑛(𝑐3, 𝑚2) , 𝑀𝑖𝑛(𝑐4, 𝑚4)}. 

𝐻1 = Ma x{Min(d1, n1) , Min(d2, n3)}.     

𝐻2 = Max{Min(𝑑1, 𝑛2) , Min(𝑑2, 𝑛4)}. 

𝐻3 = Max{Min(𝑑3, 𝑛1) , Min(𝑑4, 𝑛3)}. 

𝐻4 = Max{Min(𝑑3, 𝑛2) , Min(𝑑4, 𝑛4)}. 

∴ 𝐴(𝐵𝐶) = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) (

𝐺1 + 𝐼𝐻1 𝐺2 + 𝐼𝐻2

𝐺3 + 𝐼𝐻3 𝐺4 + 𝐼𝐻4
) 

                                                              =

(
𝑅11 𝑅12

𝑅21 𝑅22
), where 

𝑅11 = Max{Min(𝑥1, 𝐺1) , Min(𝑥2, 𝐺3)} + 𝐼 Max{Min(𝑦1, 𝐻1) , Min(𝑦2, 𝐻3)}. 
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𝑅12 = Max{Min(𝑥1, 𝐺2) , Min(𝑥2, 𝐺4)} + 𝐼 Max{Min(𝑦1, 𝐻2) , Min(𝑦2, 𝐻4)}. 

𝑅21 = Max{Min(𝑥3, 𝐺1) , Min(𝑥4, 𝐺3)} + 𝐼 Max{Min(𝑦3, 𝐻1) , Min(𝑦4, 𝐻3)}. 

𝑅22 = Max{Min(x3, G2) , Min(x4, G4)} + 𝐼 Max{Min(𝑦3, 𝐻2) , Min(𝑦4, 𝐻4)}. 

In order to show(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶), we have to show 𝑁11= 𝑅11, 𝑁12 = 𝑅12, 𝑁21 = 𝑅21 and 𝑁22 = 𝑅22. 

In order to calculate 𝑁11, we have to find 𝑋1, 𝑋2, 𝑌1 and 𝑌2. 

Now, 𝑋1 = Max{Min(𝑥1, 𝑐1) , Min(𝑥2, 𝑐3)} 

 = Max{𝑥1, 𝑥2} (say) 

 = 𝑥1 (say). 

𝑋2 = Max{Min(𝑥1, 𝑐2) , Min(𝑥2, 𝑐4)} = Max{𝑥1, 𝑥2} (say) 

= 𝑥1. 

𝑌1 = Max{𝑀𝑖𝑛(𝑦1, 𝑑1) , Min(𝑦2, 𝑑3)} = Max{𝑦1, 𝑦2} [(say) 

= 𝑦1 (say). 

𝑌2 = Max{𝑀𝑖𝑛(𝑦1, 𝑑2) , 𝑀𝑖𝑛(𝑦2, 𝑑4)} = Max{𝑦1, 𝑦2} (say)  

∴ 𝑁11 = Max{Min(X1, m1) , Min(X2, m3)} + 𝐼Max {Min(𝑌1, 𝑛1) , Min(𝑌2, 𝑛3)} 

  = Max{Min(𝑥1, 𝑚1), Min(𝑥1, 𝑚3)} + IMax{Min(𝑦1, 𝑛1), Min(𝑦1, 𝑛3)} 

 = Max{𝑥1, 𝑥1} + IMax{𝑦1, 𝑦1} [Assuming Min(𝑥1, 𝑚1) = 𝑥1, Min(𝑥1,  𝑚3) = 𝑥1, 

Min(𝑦1, 𝑛1) = 𝑦1, Min(𝑦1, 𝑛3) = 𝑦1] 

 = 𝑥1 + I𝑦1 

In order to calculate 𝑅11, we have to find 𝐺1, 𝐺3, 𝐻1 and 𝐻3. 

Now, 𝐺1 = Max{Min(c1, m1) , Min(c2, m3)} 

= Max{𝑚1, 𝑚3} (say) 

     = 𝑚1 (say). 

𝐺3 = Max{Min(c3, m1) , Min(c4, m3)} 

= Max{𝑚1, 𝑚3} (say).  

𝐻1 = Max{Min( d1, n1) , Min( d2, n3)} = Max{d1, 𝑑2} (say) = 𝑑1 (say). 

𝐻3 = Max{𝑀𝑖𝑛( 𝑑3, 𝑛1) , 𝑀𝑖𝑛( 𝑑4, 𝑛3)} = Max{𝑑3, 𝑑4} (say). 

 = 𝑑3 (say). 

∴ 𝑅11 = Max{Min(𝑥1, 𝐺1) , Min(𝑥2, 𝐺3)} + 𝐼Max {Min(𝑦1, 𝐻1) , Min(𝑦2, 𝐻3)} 

 = Max{Min(𝑥1, 𝑚1) , Min(𝑥2, 𝑚1)}+𝐼Max {Min( 𝑦1, 𝑑1) , Min( 𝑦2, 𝑑3)} 

= Max{𝑥1, 𝑥2} +𝐼Max {𝑦1, 𝑦2}(say)  

    = 𝑥1 + 𝐼𝑦1. 

∴ 𝑁11 = 𝑅11. Assuming in all other cases, we can show that 𝑁11 = 𝑅11.  

Similarly we can show that 𝑁12= 𝑅12, 𝑁21 = 𝑅21 and 𝑁22 = 𝑅22. 

Thus (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶). 

This property is supported with a numerical example as shown below. 

3.3. Numerical Example. 

Let us consider 
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𝐴 = (0.3 + 𝐼0.2 0.4 + 𝐼0.5
0.4 + 𝐼0.1 0.5 + 𝐼0.6

) 

𝐵 = (
0.2 + 𝐼0.6 0.3 + 𝐼0.2
0.4 + 𝐼0.7 0.5 + 𝐼0.2

) 

𝐶 = (
0.8 + 𝐼0.3 0.3 + 𝐼0.2
0.5 + 𝐼0.6 0.4 + 𝐼0.7

) 

AB = (
0.3 + 𝐼0.2 0.4 + 𝐼0.5
0.4 + 𝐼0.1 0.5 + 𝐼0.6

) (
0.2 + 𝐼0.6 0.3 + 𝐼0.2
0.4 + 𝐼0.7 0.5 + 𝐼0.2

) = (
𝐶11 𝐶12

𝐶21 𝐶22
) (say) and 

𝐶11 = Max{Min(0.3, 0.2), Min(0.4, 0.4)} + IMax{Min(0.2, 0.6), Min(0.5, 0.7)} 

 = Max{0.2, 0.4} + IMax{0.2, 0.5} 

 = 0.4 + I0.5. 

Similarly, one can show that 

𝐶12 = 0.4 + 𝐼0.2, 𝐶21 = 0.4 + 𝐼0.6, 𝐶22 = 0.5 + 𝐼0.2. 

∴ AB = (
0.4 + 𝐼0.5 0.4 + 𝐼0.2
0.4 + 𝐼0.6 0.5 + 𝐼0.2

) 

∴ (AB)𝐶 = (0.4 + 𝐼0.5 0.4 + 𝐼0.2
0.4 + 𝐼0.6 0.5 + 𝐼0.2

) (
0.8 + 𝐼0.3 0.3 + 𝐼0.2
0.5 + 𝐼0.6 0.4 + 𝐼0.7

)= (
𝐷11 𝐷12

𝐷21 𝐷22
) (say) and 

𝐷11 = Max{Min(0.4, 0.8), Min(0.4, 0.5)} + IMax{Min(0.5, 0.3), Min(0.2, 0.6)} 

 = Max{0.4, 0.4} + IMax{0.3, 0.2} 

 = 0.4 + I0.3. 

Similarly, one can show that 

𝐷12 = 0.4 + 𝐼0.2, 𝐷21 = 0.5 + 𝐼0.3, 𝐷22 = 0.4 + 𝐼0.2. 

∴ (AB)C = (
0.4 + 𝐼0.3 0.4 + 𝐼0.2
0.5 + 𝐼0.3 0.4 + 𝐼0.2

)………………….(3) 

BC = (
0.2 + 𝐼0.6 0.3 + 𝐼0.2
0.4 + 𝐼0.7 0.5 + 𝐼0.2

) (
0.8 + 𝐼0.3 0.3 + 𝐼0.2
0.5 + 𝐼0.6 0.4 + 𝐼0.7

) = (
𝐸11 𝐸12

𝐸21 𝐸22
) (say) and 

 𝐸11 = Max{Min(0.2, 0.8), Min(0.3, 0.5)} + IMax{Min(0.6, 0.3), Min(0.2, 0.6)} 

 = Max{0.2, 0.3} + IMax{0.3, 0.2} 

 = 0.3 + I0.3. 

Similarly, one can show that 

𝐸12 = 0.3 + 𝐼0.2, 𝐸21 = 0.5 + 𝐼0.3, 𝐸22 = 0.4 + 𝐼0.2. 

∴ BC = (
0.3 + 𝐼0.3 0.3 + 𝐼0.2
0.5 + 𝐼0.3 0.4 + 𝐼0.2

) 

∴  𝐴(BC) = (0.3 + 𝐼0.2 0.4 + 𝐼0.5
0.4 + 𝐼0.1 0.5 + 𝐼0.6

) (
0.3 + 𝐼0.3 0.3 + 𝐼0.2
0.5 + 𝐼0.3 0.4 + 𝐼0.2

)= (
𝐹11 𝐹12

𝐹21 𝐹22
) (say) and 

 𝐹11 = Max{Min(0.3, 0.3), Min(0.4, 0.5)} + IMax{Min(0.2, 0.3), Min(0.5, 0.3)} 

     = Max{0.3, 0.4} + IMax{0.2, 0.3} 

     = 0.4 + I0.3. 

Similarly, one can show that 
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𝐹12 = 0.4 + 𝐼0.2, 𝐹21 = 0.5 + 𝐼0.3, 𝐹22 = 0.4 + 𝐼0.2. 

∴  𝐴(BC) = (
0.4 + 𝐼0.3 0.4 + 𝐼0.2
0.5 + 𝐼0.3 0.4 + 𝐼0.2

)…………(4) 

From (3) and (4), it follows that (AB)C = A(BC). 

3.4. Proposition.  Distributive property with respect to multiplication over addition holds in case of 

neutrosophic fuzzy matrices. 

We consider     A = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
),B = (

𝑐1 + 𝐼𝑑1 𝑐2 + 𝐼𝑑2

𝑐3 + 𝐼𝑑3 𝑐4 + 𝐼𝑑4
) 

C = (
𝑚1 + 𝐼𝑛1 𝑚2 + 𝐼𝑛2

𝑚3 + 𝐼𝑛3 𝑚4 + 𝐼𝑛4
) 

∴ 𝐷 = 𝐵 + 𝐶 

          = (
𝑐1 + 𝐼𝑑1 𝑐2 + 𝐼𝑑2

𝑐3 + 𝐼𝑑3 𝑐4 + 𝐼𝑑4
) + (

𝑚1 + 𝐼𝑛1 𝑚2 + 𝐼𝑛2

𝑚3 + 𝐼𝑛3 𝑚4 + 𝐼𝑛4
) 

where 

𝐷11 = Max{𝑐1, 𝑚1} + IMax{𝑑1, 𝑛1} = 𝑥11 + I𝑦11(say), 

𝐷12 = Max{𝑐2, 𝑚2} + IMax{𝑑2, 𝑛2} = 𝑥12 + I𝑦12(say), 

𝐷21 = Max{𝑐3, 𝑚3} + IMax{𝑑3, 𝑛3} = 𝑥21 + I𝑦21(say), 

𝐷22 = Max{𝑐4, 𝑚4} + IMax{𝑑4, 𝑛4} = 𝑥22 + I𝑦22(say). 

∴D = (
𝑥11 + 𝐼𝑦11 𝑥12 + 𝐼𝑦12

𝑥21 + 𝐼𝑦21 𝑥22 + 𝐼𝑦22
) 

∴ 𝐴𝐷 = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) (

𝑥11 + 𝐼𝑦11 𝑥12 + 𝐼𝑦12

𝑥21 + 𝐼𝑦21 𝑥22 + 𝐼𝑦22
) = (

𝐸11 𝐸12

𝐸21 𝐸22
), 

where 

𝐸11 = Max{Min(𝑥1, 𝑥11), Min(𝑥2,  𝑥21)} + IMax{Min(𝑦1, 𝑦11), Min(𝑦2,   𝑦21)}, 

𝐸12 = Max{Min(𝑥1, 𝑥12), Min(𝑥2,  𝑥22)} + IMax{Min(𝑦1, 𝑦12), Min(𝑦2,   𝑦22)}, 

𝐸21 = Max{Min(𝑥3, 𝑥11), Min(𝑥4,  𝑥21)} + IMax{Min(𝑦3, 𝑦11), Min(𝑦4,   𝑦21)}, 

𝐸22 = Max{Min(𝑥3, 𝑥12), Min(𝑥4,  𝑥22)} + IMax{Min(𝑦3, 𝑦12), Min(𝑦4,   𝑦22)}. 

In order to calculate 𝐸11, we have to calculate 𝑥11, 𝑥21, 𝑦11 and 𝑦21. 

𝑥11 = Max{𝑐1, 𝑚1} = 𝑐1 (say). 

𝑦11 = Max{𝑑1, 𝑛1} = 𝑑1 (say). 

𝑥21 = Max{𝑐3, 𝑚3} = 𝑐3 (say). 

𝑦21 = Max{𝑑3, 𝑛3}= 𝑐3 (say). 

∴ 𝐸11 = Max{Min(𝑥1, 𝑥11), Min(𝑥2,  𝑥21)} + IMax{Min(𝑦1, 𝑦11), Min(𝑦2,   𝑦21)} 

 = Max{Min(𝑥1, 𝑐1), Min(𝑥2, 𝑐3)} + IMax{Min(𝑦1, 𝑑1), Min(𝑦2,   𝑑3)} 

= Max{𝑐1, 𝑐3} + IMax{𝑑1, 𝑑3} [Assuming Min(𝑥1, 𝑐1} = 𝑐1, Min(𝑥2, 𝑐3)  =  𝑐3 

Min(𝑦1, 𝑑1) = 𝑑1, Min(𝑦2,   𝑑3) = 𝑑3] 

= 𝑐1 + I𝑑1 (say). 

Now AB = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) (

𝑐1 + 𝐼𝑑1 𝑐2 + 𝐼𝑑2

𝑐3 + 𝐼𝑑3 𝑐4 + 𝐼𝑑4
) = F (say), 
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where, 

𝐹11 = Max{Min(𝑥1, 𝑐1), Min(𝑥2,  𝑐3)} + IMax{Min(𝑦1, 𝑑1), Min(𝑦2,   𝑑3)}, 

𝐹12 = Max{Min(𝑥1, 𝑐2), Min(𝑥2,  𝑐4)} + IMax{Min(𝑦1, 𝑑2), Min(𝑦2,   𝑑4)}, 

𝐹21 = Max{Min(𝑥3, 𝑐1), Min(𝑥4,  𝑐3)} + IMax{Min(𝑦3, 𝑑1), Min(𝑦4,   𝑑3)}, 

𝐹22 = Max{Min(𝑥3, 𝑐2), Min(𝑥4,  𝑐4)} + IMax{Min(𝑦3, 𝑑2), Min(𝑦4,   𝑑4)}. 

Now 𝐹11 = Max{Min(𝑥1, 𝑐1), Min(𝑥2,  𝑐3)} + IMax{Min(𝑦1, 𝑑1), Min(𝑦2,   𝑑3)} 

 = Max{𝑐1, 𝑐3} + IMax{𝑑1, 𝑑3} 

 = 𝑐1 + I𝑑1 (say).  

Now AC = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) (

𝑚1 + 𝐼𝑛1 𝑚2 + 𝐼𝑛2

𝑚3 + 𝐼𝑛3 𝑚4 + 𝐼𝑛4
) = G, 

where, 

𝐺11  = Max{Min(𝑥1, 𝑚1), Min(𝑥2,  𝑚3)} + IMax{Min(𝑦1, 𝑛1), Min(𝑦2,   𝑛3)}, 

𝐺12  = Max{Min(𝑥1, 𝑚2), Min(𝑥2,  𝑚4)} + IMax{Min(𝑦1, 𝑛2), Min(𝑦2,   𝑛4)}, 

𝐺21  = Max{Min(𝑥3, 𝑚1), Min(𝑥4,  𝑚3)} + IMax{Min(𝑦3, 𝑛1), Min(𝑦3,   𝑛3)}, 

𝐺22  = Max{Min(𝑥3, 𝑚2), Min(𝑥4,  𝑚4)} + IMax{Min(𝑦3, 𝑛2), Min(𝑦4,   𝑛4)}. 

Now Max{𝑐1, 𝑚1} = 𝑐1 & Min(𝑥1, 𝑐1} =  𝑐1imply Min(𝑥1, 𝑚1) = 𝑚1. 

Max{𝑐3, 𝑚3} = 𝑐3 & 𝑀in(𝑥2, 𝑐3)  =  𝑥2 imply Min(𝑥2,  𝑚3) = 𝑚3. 

Max{𝑑1, 𝑛1} = 𝑑1& Min(𝑦1, 𝑑1) = 𝑦1 imply Min(𝑦1, 𝑛1) = 𝑛1. 

Max{𝑑3, 𝑛3} = 𝑑3& Min(𝑦2, 𝑑3) = 𝑑3 imply Min(𝑦2, 𝑛3) = 𝑛3. 

So 𝐺11  = Max{Min(𝑥1, 𝑚1), Min(𝑥2,  𝑚3)} + IMax{Min(𝑦1, 𝑛1), Min(𝑦2,   𝑛3)} 

= Max{𝑚1, 𝑚3} + IMax{𝑛1, 𝑛3} 

= 𝑚1 + I𝑛1 (say).  

∴ 𝐹11 + 𝐺11  = Max{𝑐1, 𝑚1} + IMax{𝑑1, 𝑛1}  

            = 𝑐1 + I𝑑1[Since Max{𝑐1, 𝑚1} = 𝑐1 and Max{𝑑1, 𝑛1} = 𝑑1] 

, ∴ 𝐸11 = 𝐹11 + 𝐺11 . 

Similarly we can show that 𝐸12 = 𝐹12+ 𝐺12 , 𝐸21 = 𝐹21 + 𝐺21  and 𝐸22 = 𝐹22 + 𝐺22 . 

∴ 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶. 

We can also show that 𝐴(𝐵 − 𝐶) = 𝐴𝐵 − 𝐴𝐶. 

Thus 𝐴(𝐵 ± 𝐶) = 𝐴𝐵 ± 𝐴𝐶. 

This property is supported by numerical examples as given below. 

3.5. Numerical Example. We consider the matrices 

𝐴 = (
0.2 + 𝐼0.1 0.3 + 𝐼0.5
0.4 + 𝐼0.3 0.5 + 𝐼0.7

) 

𝐵 = (
0.4 + 𝐼0.5 0.1 + 𝐼0.2
0.3 + 𝐼0.6 0.7 + 𝐼0.3

) 

𝐶 = (
0.7 + 𝐼0.2 0.2 + 𝐼0.3
0.6 + 𝐼0.5 0.4 + 𝐼0.8

) 

∴ 𝐷 = 𝐵 + 𝐶 
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= (0.4 + 𝐼0.5 0.1 + 𝐼0.2
0.3 + 𝐼0.6 0.7 + 𝐼0.3

) + (
0.7 + 𝐼0.2 0.2 + 𝐼0.3
0.6 + 𝐼0.5 0.4 + 𝐼0.8

) 

= (
0.7 + 𝐼0.5 0.2 + 𝐼0.3
0.6 + 𝐼0.6 0.7 + 𝐼0.8

) 

𝐸 = 𝐴𝐷 = 𝐴(𝐵 + 𝐶) 

= (0.2 + 𝐼0.1 0.3 + 𝐼0.5
0.4 + 𝐼0.3 0.5 + 𝐼0.7

) (0.7 + 𝐼0.5 0.2 + 𝐼0.3
0.6 + 𝐼0.6 0.7 + 𝐼0.8

) 

= (
𝐸11 𝐸12

𝐸21 𝐸22
) 

where, 𝐸11 = Max{Min(0.2, 0.3) , Min(0.3, 0.6)} + 𝐼Max {Min(0.1, 0.5) , Min(0.5, 0.6)} 

                      = Max{0.2, 0.3} +  𝐼Max {0.1, 0.5} = 0.3 + 𝐼0.5. 

Similarly, one can show that 

𝐸12 = 0.3 + 𝐼0.5, 𝐸21 = 0.5 + 𝐼0.6, 𝐸22 = 0.5 + 𝐼0.7. 

∴ 𝐸 = (
0.3 + 𝐼0.5 0.3 + 𝐼0.5
0.5 + 𝐼0.6 0.5 + 𝐼0.7

)       ………………………(5) 

𝐴𝐵 = (0.2 + 𝐼0.1 0.3 + 𝐼0.5
0.4 + 𝐼0.3 0.5 + 𝐼0.7

) (0.4 + 𝐼0.5 0.1 + 𝐼0.2
0.3 + 𝐼0.6 0.7 + 𝐼0.3

) 

    = (
𝐹11 𝐹12

𝐹21 𝐹22
), 

where, 𝐹11 = Max{Min(0.2, 0.4) , Min(0.3, 0.3)} + 𝐼Max {Min(0.1, 0.5) , Min(0.5, 0.6)} 

= Max{0.2, 0.3} +  𝐼Max {0.1, 0.5} = 0.3 + 𝐼0.5 

Similarly, one can show that 

𝐹12 = 0.3 + 𝐼0.3, 𝐹21 = 0.4 + 𝐼0.6, 𝐹22 = 0.5 + 𝐼0.3. 

 

∴ 𝐴𝐵 = (
0.3 + 𝐼0.5 0.3 + 𝐼0.3
0.4 + 𝐼0.6 0.5 + 𝐼0.3

) 

Now,    𝐴𝐶 = (0.2 + 𝐼0.1 0.3 + 𝐼0.5
0.4 + 𝐼0.3 0.5 + 𝐼0.7

) (
0.7 + 𝐼0.2 0.2 + 𝐼0.3
0.6 + 𝐼0.5 0.4 + 𝐼0.8

) = (
𝐺11 𝐺12

𝐺21 𝐺22
), 

where, 𝐺11 = Max{Min(0.2, 0.7) , Min(0.3, 0.6)} + 𝐼Max {Min(0.1, 0.2) , Min(0.5, 0.5)} 

= Max{0.2, 0.3} +  𝐼Max {0.1, 0.5} = 0.3 + 𝐼0.5. 

Similarly, one can show that 

𝐺12 = 0.3 + 𝐼0.5, 𝐺21 = 0.5 + 𝐼0.5, 𝐺22 = 0.4 + 𝐼0.7. 

∴ 𝐴𝐶 = (
0.3 + 𝐼0.5 0.3 + 𝐼0.5
0.5 + 𝐼0.5 0.4 + 𝐼0.7

) 

∴ 𝐴𝐵 + 𝐴𝐶 = (
0.3 + 𝐼0.5 0.3 + 𝐼0.3
0.4 + 𝐼0.6 0.5 + 𝐼0.3

) + (
0.3 + 𝐼0.5 0.3 + 𝐼0.5
0.5 + 𝐼0.5 0.4 + 𝐼0.7

) 

                                                       =

(0.3 + 𝐼0.5 0.3 + 𝐼0.5
0.5 + 𝐼0.6 0.5 + 𝐼0.7

)           …………………..(6) 
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From (5) and (6) it follows that 

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 

3.6. Numerical Example. Let us take  𝐴 = (
0.7 + 𝐼0.3 0.2 + 𝐼0.4
0.5 + 𝐼0.6 0.4 + 𝐼0.3

) 

𝐵 = (
0.1 + 𝐼0.2 0.5 + 𝐼0.3
0.3 + 𝐼0.4 0.7 + 𝐼0.5

) 

𝐶 = (
0.5 + 𝐼0.4 0.2 + 𝐼0.1
0.2 + 𝐼0.3 0.3 + 𝐼0.7

) 

𝐵 − 𝐶 = (0.1 + 𝐼0.2 0.5 + 𝐼0.3
0.3 + 𝐼0.4 0.7 + 𝐼0.5

) − (0.5 + 𝐼0.4 0.2 + 𝐼0.1
0.2 + 𝐼0.3 0.3 + 𝐼0.7

) 

= (
0.1 + 𝐼0.2 0.2 + 𝐼0.1
0.2 + 𝐼0.3 0.3 + 𝐼0.5

) 

𝐴(𝐵 − 𝐶) = (
0.7 + 𝐼0.3 0.2 + 𝐼0.4
0.5 + 𝐼0.6 0.4 + 𝐼0.3

) (
0.1 + 𝐼0.2 0.2 + 𝐼0.1
0.2 + 𝐼0.3 0.3 + 𝐼0.5

) 

= (
𝐷11 𝐷12

𝐷21 𝐷22
), 

where, 𝐷11 = Max{Min(0.7, 0.1) , Min(0.2, 0.2)} + 𝐼Max {Min(0.3, 0.2) , Min(0.4, 0.3)} 

= Max{0.1, 0.2} +  𝐼Max {0.2, 0.3} = 0.2 + 𝐼0.3. 

Similarly, one can show that 

𝐷12 = 0.2 + 𝐼0.4, 𝐷21 = 0.2 + 𝐼0.3, 𝐷22 = 0.3 + 𝐼0.3.  

∴ 𝐴(𝐵 − 𝐶) = (
0.2 + 𝐼0.3 0.2 + 𝐼0.4
0.2 + 𝐼0.3 0.3 + 𝐼0.3

).            …………………………(7) 

Now,  

𝐴𝐵 = (
0.7 + 𝐼0.3 0.2 + 𝐼0.4
0.5 + 𝐼0.6 0.4 + 𝐼0.3

) (0.1 + 𝐼0.2 0.5 + 𝐼0.3
0.3 + 𝐼0.4 0.7 + 𝐼0.5

) = (
𝐸11 𝐸12

𝐸21 𝐸22
), 

where,     𝐸11 = Max{Min(0.7, 0.1) , Min(0.2, 0.3)} + 𝐼Max {Min(0.3, 0.2) , Min(0.4, 0.4)} 

                              = Max{0.1, 0.2} +  𝐼Max {0.2, 0.4} = 0.2 + 𝐼0.4. 

Similarly, one can show that 

𝐸12 = 0.5 + 𝐼0.4, 𝐸21 = 0.3 + 𝐼0.3, 𝐸22 = 0.5 + 𝐼0.3. 

∴ 𝐴𝐵 = (0.2 + 𝐼0.4 0.5 + 𝐼0.4
0.3 + 𝐼0.3 0.5 + 𝐼0.3

) 

 

∴ 𝐴𝐶 = (
0.7 + 𝐼0.3 0.2 + 𝐼0.4
0.5 + 𝐼0.6 0.4 + 𝐼0.3

) (0.5 + 𝐼0.4 0.2 + 𝐼0.1
0.2 + 𝐼0.3 0.3 + 𝐼0.7

) 

= (
𝐹11 𝐹12

𝐹21 𝐹22
), 

where,     𝐹11 = Max{Min(0.7, 0.5) , Min(0.2, 0.2)} + 𝐼Max {Min(0.3, 0.4) , Min(0.4, 0.3)} 

= Max{0.5, 0.2} +  𝐼Max {0.3, 0.3} = 0.5 + 𝐼0.3. 

Similarly, one can show that 
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𝐹12 = 0.2 + 𝐼0.4, 𝐹21 = 0.5 + 𝐼0.4, 𝐹22 = 0.3 + 𝐼0.3. 

∴ 𝐴𝐶 = (0.5 + 𝐼0.3 0.2 + 𝐼0.4
0.5 + 𝐼0.4 0.3 + 𝐼0.3

) 

∴ 𝐴𝐵 − 𝐴𝐶 = (0.2 + 𝐼0.4 0.5 + 𝐼0.4
0.3 + 𝐼0.3 0.5 + 𝐼0.3

) − (0.5 + 𝐼0.3 0.2 + 𝐼0.4
0.5 + 𝐼0.4 0.3 + 𝐼0.3

) 

                                                      =

(
0.2 + 𝐼0.3 0.2 + 𝐼0.4
0.3 + 𝐼0.3 0.3 + 𝐼0.3

) ……….(8) 

From (7) and (8) it follows that A(B –  𝐶) = 𝐴𝐵 − 𝐴𝐶. 

3.7. Identity element for multiplication.  

We consider A = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) , 𝐼𝑁 = (

1 + 𝐼1 0 + 𝐼0
0 + 𝐼0 1 + 𝐼1

). 

Now A𝐼𝑁 = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) (

1 + 𝐼1 0 + 𝐼0
0 + 𝐼0 1 + 𝐼1

) = B (say), 

where, 𝐵11  = Max{Min(𝑥1, 1), Min(𝑥2, 0)} + IMax{Min(𝑦1, 1), Min(𝑦2, 0)} 

       = Max{𝑥1, 0} + IMax{𝑦1, 0} = 𝑥1 + 𝐼𝑦1. 

Similarly, one can show 

𝐵12 = Max{Min(𝑥1, 0), Min(𝑥2, 1)} + IMax{Min(𝑦1, 0), Min(𝑦2, 1)} 

       = 𝑥2 + I𝑦2. 

𝐵21 = Max{Min(𝑥3, 1), Min(𝑥4, 0)} + IMax{Min(𝑦3, 1), Min(𝑦4, 0)} 

       = 𝑥3 + 𝐼𝑦3. 

𝐵22 = Max{Min(𝑥3, 0), Min(𝑥4, 1)} + IMax{Min(𝑦3, 0), Min(𝑦4, 1)} 

       = 𝑥4 + I𝑦4. 

∴A𝐼𝑁 = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) = A …………..(9) 

Again 𝐼𝑁A = (
1 + 𝐼1 0 + 𝐼0
0 + 𝐼0 1 + 𝐼1

) (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) = C (say), 

where, 𝐶11 = Max{Min(1, 𝑥1), Min(0, 𝑥3)} + IMax{Min(1, 𝑦1), Min(0, 𝑦3)} 

       = Max{𝑥1, 0} + IMax{𝑦1, 0} = 𝑥1 + 𝐼𝑦1. 

𝐶12 = Max{Min(1, 𝑥2), Min(0, 𝑥4)} + IMax{Min(1, 𝑦2), Min(0, 𝑦4)} 

       = 𝑥2 + 𝐼𝑦2. 

𝐶21 = Max{Min(0, 𝑥1), Min(1, 𝑥3)} + IMax{Min(0, 𝑦1), Min(1, 𝑦3)} 

       = 𝑥3 + 𝐼𝑦3. 

𝐶22 = Max{Min(0, 𝑥2), Min(1, 𝑥4)} + IMax{min(0, 𝑦2), Min(1, 𝑦4)} 

       = 𝑥4 + 𝐼𝑦4. 

∴  𝐼𝑁A = (
𝑥1 + 𝐼𝑦1 𝑥2 + 𝐼𝑦2

𝑥3 + 𝐼𝑦3 𝑥4 + 𝐼𝑦4
) = A …………..(10) 

From (9) and (10) it follows that  
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𝐴𝐼𝑁 = 𝐼𝑁A = A 

Thus 𝐼𝑁= (
1 + 𝐼1 0 + 𝐼0
0 + 𝐼0 1 + 𝐼1

) is the identity multiplication for neutrosophic fuzzy matrices. 

4. Conclusion:   

This paper has provided the properties of multiplication operation of neutrosophic fuzzy 

matrices. We have shown that commutative property is not satisfied here. However, we have proved 

that associative property is satisfied. We have also proved that distributive property with respect to 

multiplication operation over addition of neutrosophic fuzzy matrices is satisfied.  The results have 

further been examined with suitable numerical examples. In future, the authors will investigate on 

determinant, adjont, inverse and other relevant topics of neutrosophic fuzzy matrices. 
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Abstract:  Fractional transportation problem that includes source  and destination may have fractional objective 

functions in real- world applications to maximize the profitability ratio like profit/ cost or profit/ time. We refere 

to such transportation problems as fractional transportation problem.The paper considers the interval- valued 

neutrosophic numbers and its aritemematic operations. This paper deals with fractional transportation problem 

having discounting cost in neutrosophic environment, where the supply, demand and transportation costs are 

uncertain. The problem is considered by introducing all the parameters as neutrosophic numbers. Using the benefits 

of the score function definition, the problem is transformed into the corresponding deterministic form which  can 

be illustrated by any method. and hence by applying of least cost method with the help of Kuhn- Tucker' optimality 

conditions, the optimal solution is resulted. Our strategy is to assess the issue and can rank different sort of 

neutrosophic numbers. To claify the proposed technique, a numerical example is given to show the adequacy of 

the new model. 

Keywords: Optmization, Optimization problems; Fractional programming, Transportation problem, Non-linear 

programming,  Discounting cost, Pentagonal fuzzy neutrosophic numbers, Score function, Vogel's approximation 

method, Kuhn- Tucker optimality conditions,  Optimal neutrosophic solution,Decision making 

 

1. Introduction  

        Transportation problem is one of the oldest applications of linear programming problems. The basic 

transportation problem was originally developed by Hitchcock [1]. In a transportation problem, products have to 

be transported from a number of sources to a number of destinations. Decisions have to be taken according to the 

amount of products transported between each two locations to minimize total transportation cost [2]. Typically, 

only a variable cost proportional to the number of products transported is afforded. However, in many real-world 

problems, a fixed/setup cost is also afforded when the transportation amount is positive [3]. The transportation 

problem can be modeled as a standard linear programming problem, that can be solved by the simplex method. 

We can get an initial basic feasible solution for the transportation problem by using the North-West corner rule, 
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Row Minima, Column Minima, Matrix Minima or the Vogel’s Approximation Method. To get an optimal solution 

for the transportation problem, we use the MODI method (Modified Distribution Method). Transportation problem 

(TP) is a special type of linear programming (LP) problem; where the objective is to minimize the cost of 

distributing product from 𝑚  sources or origins to 𝑛 distributions and their capacities are 𝑎1, 𝑎2, … , 𝑎𝑚  and 

𝑏1, 𝑏2, … , 𝑏𝑚 , respectively. In other hand, there is a penalty 𝑐𝑖𝑗  connected with transportation a unit of product 

from source 𝑖 to destination 𝑗. This penalty, perhaps cost or delivery time of safety of delivery, etc. A variable 𝑥𝑖𝑗 

represents the unidentified quantity to be shipped from source 𝑖 to destination 𝑗. Oheigeartaigh [4] developed an 

algorithm for fuzzy transportation problem (FTP) Chanas et al. [5] developed a parametric approach to solve single 

objective FTP. Thamaraiselvi and Santhi [6] studied FTP with hexagonal fuzzy numbers. 

 In Fractional problem (FP), decision problem arises to optimize the ratio subject to constraints. In real life decision 

conditions decision maker (DM) sometimes may face to evaluate ratio between inventory and sales, real cost and 

standard cost, output etc., with both denominator and numerator are linear. If only one ratio is considered as an 

objective function then under linear constraints, the problem is said to be linear fractional programming (LFP) 

problem. The Fractional programming problem, i. e., the maximization of a fraction of two functions subject to 

given conditions, arises in various decision making situations; for instance , fractional programming is used in the 

fields of traffic  planning (Dantzig et al. [6]), network flows (Arisawa and Elmaghraby, [7]), and game theory 

(Isbell and Marlow, [8]). A review of various applications is given by Schaible, [9-11]. Tantawy [12-13] introduced 

two approaches to solve the LFP problem namely; a feasible direction approach and a duality approach. Odior[14]  

introduced an algebraic approach based on the duality concept and the partial fractions to solve the LFP problem. 

Gupta and Chakraborty [15]  solved the LFP problem depending on the sign of the numerator under the assumption 

that the denominator is non -vanishing in the feasible region using the fuzzy programming approach. Stanojevic 

and Stancu- Minasian [16] proposed a method for solving fully fuzzified LFP problem. Buckley and Feuring 

(2000) studied fully fuzzified linear programming involving coefficients and decision variables as fuzzy quantities. 

Li and Chen [17]  introduced a fuzzy LFP problem with fuzzy coefficients and present the concept of a fuzzy 

optimal solution. Pop and Stancu [18]  studied LFP problem with all parameters and decision variables are 

triangular fuzzy numbers.  Gomathi and Jayalakshmi [19] proposed an approach for solving linear fractional 

transportation problem. A nermous researchers studied fractional transportation (Veeramani et al. [20 ], Haque [21- 

24], Bas et al., [25], Akram et al., [26], El Sayed and Bakry [27], Khalifa et al., [28] ). 

  In this paper, fractional transportation problem having discounting cost in neutrosophic environment is 

introduced. With the help of least cost method and the Kuhn- Tucker's optimality conditions, the optimal solution 

of the problem is resulted. The following are the study's main contributions and novelties: 

1. Introducing suitable terminologies and measures that consider the properties of a possible optimal solution. 

2. Presenting a parametric study by solving a parametric problem and determining the stability set of the first 

kind for collecting the most possible information about the possible optimal solutions in an uncertain situation 

3. Interacting the analyst with the DM to assign a set of selected alternatives  

4. Doing a multicriteria analysis by interacting with the DM for selecting one of the possible optimal as the 

satisfied optimal solution . 

 

The rest of the paper is outlined as follows:  
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The following is how the paper is structured: Section 2 Presents some preliminaries and notation needed.  Section 

3, Formulates a neutrosophic fractional transportation problem with non- linear discounting cost. Section 4, 

proposes an algorithm combining with the least cost method and the Kuhn- Tucker's optimality conditions for 

solving the problem. Section 5, Introduces a numerical example for illustration. Section 6, Introduces discussion 

about the results. Section 7, introduces comparitive study  with some existing relevant literature. Finally, some 

concluding remarks are reported. 

2.Preliminaries 

      In This section, some of basic concepts and results related to neutrosophic set, single- valued trapezoidal 

neutrosophic numbers, and their arithmetic operations and its score function are recalled. 

Definition1. (Atanason, [31]). A fuzzy set B̃ is said to be an intuitionistic fuzzy set B̃INof a non empty set X if   

B̃IN = {〈x, μB̃IN , ρB̃IN〉: x ∈ X} , where μB̃IN  , and ρB̃IN  are non-membership and membership functions such that  

μB̃IN , ρB̃IN: X → [0, 1] and 0 ≤ μB̃IN + ρB̃IN ≤ 1, for all x ∈ X. 

Definition 2.  (Atanason, [32]). An intuitionistic fuzzy set B̃INof a ℝ  is named an Intuitionistic fuzzy number if 

the following conditions hold: 

1. There exists c ∈ ℝ: μB̃IN(c) = 1, and ρB̃IN(c) = 0, 

2. μB̃IN: ℝ → [0, 1] is continuous function such that 

              0 ≤ μB̃IN + ρB̃IN ≤ 1, for all x ∈ X, 

3. The membership and nonmembership functions of B̃IN are  

       μB̃IN(x) =

{
 
 

 
 

 0,              − ∞ <  x < r,
h(x),                   r ≤ x ≤ s,
1,                             x = s,

   l(x),             s ≤ x ≤ t,           
0,                       t ≤ x < ∞,

         

          ρB̃IN(x) =

{
 
 

 
 

 0,              − ∞ <  x < a,
f(x),                   a ≤ x ≤ s,
1,                             x = s,

   g(x),             s ≤ x ≤ b,        
0,                       b ≤ x < ∞.

 

 

Where f, g, h, l: ℝ → [0, 1] , h   and g  are completely increasing functions, l  and f  are completely decreasing 

functions with the constraints 0 ≤ f(x) + h(x) ≤ 1, and 0 ≤ l(x) + g(x) ≤ 1. 

Definition 3.  (Jianqiang and Zhong, [33]). A trapezoidal intuitionistic fuzzy number is denoted by B̃IN =

(r, s, t, u), (p, s, t, q), where p ≤ r ≤ s ≤ t ≤ u ≤ q with non-membership and membership functions are defined 

as 

A trapezoidal intuitionistic fuzzy number is denoted by B̃IN = (r, s, t, u), (p, s, t, q), where p ≤ r ≤ s ≤ t ≤ u ≤ q 

with membership and nonmembership functions are defined as: 
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        μB̃INT(x) =

{
 
 

 
 

x−r

s−r
,        r ≤ x < s,

1,          s ≤ x ≤ t,
u−x

u−t
,      t ≤ x ≤ u,        

0,                   otherwise,

                            ρB̃INT(x) =

{
 
 

 
 

s−x

s−p
,        p ≤ x < s,

0,          s ≤ x ≤ t,
x−t

q−t
,      t ≤ x ≤ q,        

1,                   otherwise

 

 Definition 4. (Smarandache, [34]). A neutrosophic set B̅N of  non empty set X is defined as  

B̅N = {〈x, IB̅N(x), JB̅N(x), VB̅N(x)〉: x ∈ X, IB̅N(x), JB̅N(x), VB̅N(x) ∈ ]0−, 1
+[} , where IB̅N(x), JB̅N(x),  and VB̅N(x) 

are an indeterminacy- membership function, truth membership function, and a falsity- membership function and 

there is no limit on the sum of IB̅N(x), JB̅N(x),  and VB̅N(x)  , so 0− ≤ IB̅N(x) + JB̅N(x) +  VB̅N(x) ≤ 3
+ , and 

]0−, 1
+[  is a nonstandard unit interval.  

Definition 5. (Wang et al., [35]). A Single- valued neutrosophic set B̅SVNof a non empty set X is defined as 

   B̅SVN = {〈x, IB̅N(x), JB̅N(x), VB̅N(x)〉: x ∈ X} , where IB̅N(x), JB̅N(x),  and VB̅N(x) ∈ [0, 1]  for each x ∈ X  and 0 ≤

IB̅N(x) + JB̅N(x) + VB̅N(x) ≤ 3. 

Definition 6. (Thamariselvi and Santhi, [36]). Let τq̃, φq̃,ωq̃ ∈ [0, 1] and r, s, t, u ∈ ℝ such that r ≤ s ≤ t ≤  u. 

Then a single valued trapezoidal neutrosophic number, b̃N = 〈(r, s, t, u): τq̃, φq̃, ωq̃ 〉 is a special neutrosophic set 

on ℝ, whose  truth-membership, indeterminacy- membership, and falsity- membership functions are 

       μq̃
N(x) =

{
 
 

 
 τq̃N (

x−r

s−r
) ,        r ≤ x < s,

τb̃,          s ≤ x ≤ t,

τq̃N (
u−x

u−t
) ,      t ≤ x ≤ u,        

0,                   otherwise,

 

 

       σq̃
N(x) =

{
 
 

 
 

s−x+ω
q̃N
(x−r)

s−r
,        r ≤ x < s,

ωq̃N ,          s ≤ x ≤ t,
x−t+ω

q̃N
(u−x)

u−t
,      t ≤ x ≤ u,      

1,                   otherwise.

 

Where τq̃, φq̃, and ωq̃ indicate the maximum truth, minimum- indeterminacy, and minimum falsity membership 

degrees, respectively. A single- valued trapezoidal neutrosophic number q̃N = 〈(r, s, t, u): τq̃N , φq̃N , ωq̃N  〉 might 

express in ill- defined amount about q, which is roughly equal to [s, t]. 

Definition 7. (Thamariselvi and Santhi, [36]). Let q̃N = 〈(r, s, t, u): τq̃N , φq̃N , ωq̃N  〉 , and d̃N =

〈(r′, s′, t′, u′): τd̃N , φd̃N , ωd̃N  〉   be two single- valued trapezoidal neutrosophic numbers and v ≠ 0 . The 

arithematic operations on q̃N, and d̃Nare 

1. q̃N⊕ d̃N = 〈(r + r′, s + s′ , t + t′, u + u′);  τq̃N ∧ τd̃N , φq̃N ∨  φd̃N , ωq̃N ∨ ωd̃N  〉 , 

2. q̃N⊖ d̃N = 〈(r − u′, s − t′, t − s′ , u′ − r); τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N〉, 

3. q̃N⊗ d̃N =

{
 
 

 
 

〈(rr′, ss′ , tt′, uu′);  τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N  〉, u, u
′ > 0

〈(ru′, st′, st′, ru′); τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ωd̃N  〉, u < 0, u
′ > 0

〈(uu′, ss′ , tt′, rr′);  τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N  〉, u < 0, u
′ < 0,

 

4. q̃N⊘ d̃N =

{
 
 

 
 

〈(r/u′, s/t′, t/s′, u/r′); τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N〉, u, u
′ > 0

〈(u/u′, t/t′, s/s′, r/r′);  τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N  〉, u < 0, u
′ > 0

〈(u/r′, t/s′, s/t′, r/u′); τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ωd̃N  〉, u < 0, u
′ < 0,
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5. kd̃N = f(x) = {
〈(kr, ks, kt, k); ττ

d̃N
, φτ

d̃N
, ωτ

d̃N
 〉 , k > 0,

〈(ku, kt, ks, k r); ττ
d̃N
, φτ

d̃N
, ωτ

d̃N
 〉 , k < 0,

 

6. d̃N
−1
= 〈(1/u′, 1/t′, 1/s′, 1/r′); ττ

d̃N
, φτ

d̃N
, ωτ

d̃N
 〉 , d̃N ≠ 0. 

Definition 8. (Thamariselvi and Santhi, [37]). A two single- valued trapezoidal neutrosophic numbersb̃, and d̃ can 

be compared based on the score and accuracy functions as 

1. Accuracy function AC(q̃N) = (
1

16
) [r + s + t + u] ∗ [μq̃N + (1 − ρq̃N(x) + (1 + σq̃N(x)], 

2. Score function SC(q̃N) = (
1

16
) [r + s + t + u] ∗ [μq̃N + (1 − ρq̃N(x) + (1 − σq̃N(x)]. 

 Definition 9. (Thamariselvi and Santhi, [37]). The order relations between b̃N and  d̃N based on SC(q̃N)  and 

AC(q̃N) are defined as 

1. If SC(q̃N) < SC(d̃N), then q̃N < d̃N 

2. If SC(q̃N) = SC(d̃N), then q̃N = d̃N, 

3. If AC(q̃N) < 𝐴𝐶(d̃N), then q̃N < d̃N, 

4. If AC(q̃N) > 𝐴𝐶(d̃N), then q̃N < d̃N, 

5. If AC(q̃N) = AC(d̃N), then q̃N = d̃N. 

3. Problem statement and solution concepts 

      Consider the following general neutrosophic fractional transportation problem 

(NFTP)   max F̃N(x) =
P̃N(x)

Q̃N(x)
=

∑ ∑ p̃ij
Nxij

n
j=1

m
i=1

∑ ∑ q̃ij
Nxij

n
j=1

m
i=1

 

               Subject to 

                               ∑ xij = ãi
N, i = 1,m,n

j=1  

                               ∑ xij = b̃j
N, j = 1, n,m

i=1  

                               xij ≥ 0; ∀i, j. 

Where, p̃ij
N, q̃ij

N, ãi
N, and b̃j

N,  are neutrosophic numbers.  Based on the score function introduced in Definition 8, the 

NFTP is converted into the following FTP as 

 (FTP)   maxF(x) =
P(x)

Q(x)
=

∑ ∑ pijxij
n
j=1

m
i=1

∑ ∑ qijxij
n
j=1

m
i=1

 

              Subject to 

                               ∑ xij ≤ ai, i = 1,m,
n
j=1  

                               ∑ xij ≥ bj, j = 1, n,
m
i=1  

                               xij ≥ 0; ∀i, j. 

It is supposed that Q(x) > 0; ∀𝑥 = (xij) ∈ G  , where G  is the feasible domain and ai > 0, bj > 0 . Also, it is 

assumed that  ∑ ai ≥ ∑ bj
n
j=1

m
i=1 . 

Definition 10. (Bajalinov. [38]). A point 𝑥 = {𝑥𝑖𝑗 : i = 1,m;1, n } is said to be feasible solution to FTP if 𝑥 satisfies 

the constraints in it. 

Definition 11. A feasible point 𝑥 = {𝑥𝑖𝑗 : i = 1,m; 1, n } is called an optimal solution to  FTP if F(x) ≥ F(x);  ∀x. 

The Lagrange function for the FTP can be formulated as 

  L(x, ζ) =
P(x)

Q(x)
− ζi(∑ xij − ai 

n
j=1 ) − ζj(bj −∑ xij 

m
i=1 ) − ξijxij = 0. 

Where, ζ iand   ζ j are Lagrange multipliers. 
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The optimal point 𝑥 satisfies the Kuhn- Tucker's optimality conditions: 

    
𝜕𝐹

𝜕𝑥𝑖𝑗
=

𝜕𝐹(𝑥)

𝜕𝑥𝑖𝑗
− (ζi + ζj) − ξij = 0, 

   ζi(∑ xij − ai 
n
j=1 ) = 0, 

   ζj(bj − ∑ xij 
m
i=1 ) = 0, 

   ∑ xij ≤ ai, i = 1,m,
n
j=1  

    ∑ xij ≥ bj, j = 1, n,
m
i=1  

     ξ x̂ij = 0, 

    ζ i ≥ 0 and  ζ j ≥ 0 . 

4. Solution Algorithm 

 In This section, a solution approach for solving NFTP is illustrated in the following steps: 

 Step1:  Convert the NFTP into the corresponding crisp FTP based on the score function.  

Step2:  Consider the FTP (
pij

qij
). 

Step3: Search for the initial basic feasible solution of FTP using the least cost method. 

Step4: Estimate the objective function value at x    (i.e.,    
P(x)

Q(x)
 ). Add 𝑠𝑖 and 𝑡𝑗   to the R.H.S and the bottom of the 

TP Table 1 

Step5: Add 𝑠𝑖 and 𝑡𝑗   to the R.H.S and the bottom of the TP tableau, respectively as 

Table 1. Fractional transportation representation  

𝛛𝐅(𝐱)

𝛛𝐱𝐢𝐣
 … … 𝛛𝐅(𝐱)

𝛛𝐱𝟏𝐦
 𝐚𝟏 𝐬𝟏 

… … … … … … 

… ∂F(x)

∂xij
 … … ai si 

𝛛𝐅(𝐱)

𝛛𝐱𝐧𝟏
 … … ∂F(x)

∂xnm
 an sn 

𝐛𝟏 … … bm   

𝐭𝟏 … … tm   

   Step 6:  Calculate the values of 𝑠𝑖 and 𝑡𝑗   from the relation 
𝜕𝐹

𝜕𝑥𝐵𝑖𝑗
= 𝑠𝑖 + 𝑡𝑗  

     
𝜕𝐹

𝜕𝑥𝐵𝑖𝑗
= 𝑠𝑖 + 𝑡𝑗                                                                                                         (1) 

   Step 7: If 𝑀𝑖𝑗 =
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
− 𝑠𝑖 − 𝑡𝑗 ≥ 0; ∀𝑥𝑖𝑗                                                              (2) 

 (non- basic variables), then x is Kuhn- Tucker point. Otherwise, go to step8 as 𝑥𝑖𝑗 (non- basic variables). 

  Step 8: Termination conditions: 

  (i).  If all 
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
> 0 ⇒ the optimality and the uniqueness of the solution. 

  (ii).  If all 
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
≥ 0  with at least one 

𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
= 0 ⇒   the optimality  of the solution and the alternative solution 
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exists. 

  (iii). If at least one 
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
< 0 ⇒ the solution is not optimal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   N                                                                         N 

 

 

 

 

                                                        Y 

 

 

 

 

 

 

 

START 

Convert the NFTP into the corresponding crisp FTP 

 based on the score function. Consider the FTP (
pij

qij
). 

Search for the initial basic feasible solution of FTP  

using the least cost method. 

 

Estimate the objective function value at x    (i.e.,    

P(x)

Q(x)
 ). Add 𝑠𝑖 and 𝑡𝑗  to the R.H.S and the bottom of 

the TP Table 1 

Calculate the values of 𝑠𝑖  and 𝑡𝑗    from the relation 

𝜕𝐹

𝜕𝑥𝐵𝑖𝑗
= 𝑠𝑖 + 𝑡𝑗  

 

𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
> 0 

optimality and the uniqueness of the solution. 

STOP 

𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗

≥ 0 with at least one 
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
= 0 

 

The optimality  of the 

solution and the 

alternative solution 

exists. 

 

𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
< 0 

No optimal 

solution exists 
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Fig. 1 The flow chart of the proposed solution procedure 

 

5.Numerical example  

             Consider the following NFTP in which the objective function is the maximization of ratio of total profit 

given the total cost. 

The following table illustrated the transportation company profit gained 

Table 2.  Input data of neutrosophic profit associated with shipment (in $) 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 

𝑶𝟏 〈(14,17,21,28); 0.7,0.1,0.2〉 〈(28,30,35,44); 0.9,0.2,0.6〉 〈(10,16,18,20); 0.8,0.1,0.2〉 〈(17,25,30,35); 0.7,0.2,0.4〉 

𝑶𝟐 〈(18,20,22,25); 0.8,0.2,0.7〉 〈(14,17,21,28); 0.7,0.1,0.2〉 〈(31,35,40,45); 0.6,0.4,0.5〉 〈(16,18,20,26); 0.8,0.2,0.6〉 

𝑶𝟑 〈(18,21,23,26); 0.8,0.2,0.6〉 〈(14,18,20,24); 0.6,0.4,0.5〉 〈(25,30,35,40); 0.6,0.2,0.3〉 〈(18,21,23,26); 0.8,0.2,0.6〉 

The cost of the shipping unit of the commodity from the supply to the demand is shown in the following table 

Table 3.  Input data of neutrosophic cost associated of shipment (in $) 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 

𝑶𝟏 〈(25,30,35,40); 0.6,0.2,0.3〉 〈(17,25,30,35); 0.7,0.2,0.4〉 〈(28,30,35,44); 0.9,0.2,0.6〉 〈(18,20,22,25); 0.8,0.2,0.7〉 

𝑶𝟐 〈(18,20,22,25); 0.8,0.2,0.7〉 〈(14,18,20,24); 0.6,0.4,0.5〉 〈(23,27,30,35); 0.7,0.2,0.4〉 〈(17,25,30,35); 0.7,0.2,0.4〉 

𝑶𝟑 〈(23,28,30,34); 0.7,0.2,0.4〉 〈(25,30,35,40); 0.6,0.2,0.3〉 〈(14,17,21,28); 0.7,0.1,0.2〉 〈(14,17,21,28); 0.7,0.1,0.2〉 

Supplies: ã1
N = 〈(190,250,260,300); 0.7,0.2,0.1〉, , ã2

N = 〈(340,380,447,500); 0.7,0.2,0.1〉, ã3
N =

〈(283,300,350,400); 0.7,0.2,0.1〉  

Demands: b̃1
N = 〈(157,163,169,178); 0.7,0.1,0.2〉, b̃2

N = 〈(340,380,446,500); 0.7,0.1,0.2〉, b̃3
N =

〈(157,163,169,178); 0.7,0.1,0.2〉, b̃4
N = 〈(190,250,260,300); 0.7,0.2,0.1〉.  

The discounting cost related to the commodity unit of purchased, transported and the discounted (%) resulted from 

some shipping policy is given in the following table 

 Table 4.  Discount cost associated of shipment (%) 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 

𝑶𝟏 0.02 0.03 0.05 0.02 

𝑶𝟐 0.03 0.01 0.005 0.02 

𝑶𝟑 0.014 0.04 0.013 0.04 

In Table 2, 3: the profit and cost Based on the score function of the neutrosophic number are converted into:   

Table 5.  Input data of profit associated with shipment (in $) 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 Supply 

𝑶𝟏 12 18 10 14 150 
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𝑶𝟐 10 14 16 10 250 

𝑶𝟑 11 8 17 11 200 

Demand 100 250 100 150  

 

Table 6.  Input data of cost associated of shipment (in $) 

 𝐃𝟏 𝐃𝟐 𝐃𝟑 𝐃𝟒 Supply 

𝑶𝟏 17 14 18 10 150 

𝑶𝟐 12 8 15 14 250 

𝑶𝟑 15 17 14 12 200 

Demand 100 250 100 150  

 

From Table 5 and Table 6, the fractional transportation problem can be formulated as follows 

       max𝐹(𝑥) =

(
12𝑥11+18𝑥12+10𝑥13+14𝑥14
+10𝑥21+14𝑥22+16𝑥23+10𝑥24
+11𝑥31+8𝑥32+17𝑥33+11𝑥34

)

(
17𝑥11+14𝑥12+18𝑥13+10𝑥14
+12𝑥21+8𝑥22+15𝑥23+14𝑥24
+15𝑥31+17𝑥32+14𝑥33+12𝑥34

)

 

        Subject to 

                  𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 = 150,   

                 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 250, 

                 𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 = 200, 

                 𝑥11 + 𝑥21 + 𝑥31 = 100, 

                 𝑥12 + 𝑥22 + 𝑥32 = 250, 

                 𝑥13 + 𝑥23 + 𝑥33 = 100, 

                 𝑥14 + 𝑥24 + 𝑥34 = 150, 

                 𝑥𝑖𝑗 ≥ 0, 𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3, 4. 

Then, the cost function terms are: 

𝑝11
𝑞11

𝑥11 =
12

17
𝑥11 − 𝑑11𝑥11

2 ⇒
𝑝11
𝑞11

𝑥11 = 0.706𝑥11 − 0.02𝑥11
2 , 

𝑝12
𝑞12

𝑥12 =
18

14
𝑥12 − 𝑑12𝑥12

2 ⇒
𝑝12
𝑞12

𝑥12 = 1.286𝑥12 − 0.03𝑥12
2 , 

𝑝13
𝑞13

𝑥13 =
10

18
𝑥13 − 𝑑13𝑥13

2 ⇒
𝑝13
𝑞13

𝑥13 = 0.556𝑥13 − 0.05𝑥13
2 , 

𝑝14
𝑞14

𝑥14 =
18

14
𝑥14 − 𝑑14𝑥14

2 ⇒
𝑝14
𝑞14

𝑥14 = 1.4𝑥14 − 0.02𝑥14
2 , 

𝑝21
𝑞21

𝑥21 =
10

12
𝑥21 − 𝑑21𝑥21

2 ⇒
𝑝21
𝑞21

𝑥21 = 0.833𝑥21 − 0.03𝑥21
2 , 

𝑝22
𝑞22

𝑥22 =
14

8
𝑥22 − 𝑑22𝑥22

2 ⇒
𝑝22
𝑞22

𝑥22 = 1.75𝑥22 − 0.01𝑥22
2 , 
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𝑝23
𝑞23

𝑥23 =
16

15
𝑥23 − 𝑑23𝑥23

2 ⇒
𝑝23
𝑞23

𝑥23 = 1.067𝑥23 − 0.005𝑥23
2 , 

𝑝24
𝑞24

𝑥24 =
10

14
𝑥24 − 𝑑24𝑥24

2 ⇒
𝑝24
𝑞24

𝑥24 = 0.714𝑥24 − 0.02𝑥24
2 , 

𝑝31
𝑞31

𝑥31 =
11

15
𝑥31 − 𝑑31𝑥31

2 ⇒
𝑝31
𝑞31

𝑥31 = 0.733𝑥31 − 0.014𝑥31
2 , 

𝑝32
𝑞32

𝑥32 =
8

17
𝑥32 − 𝑑32𝑥32

2 ⇒
𝑝32
𝑞32

𝑥32 = 0.4706𝑥32 − 0.04𝑥32
2 , 

𝑝33
𝑞33

𝑥33 =
17

14
𝑥33 − 𝑑33𝑥33

2 ⇒
𝑝33
𝑞33

𝑥33 = 1.2143𝑥33 − 0.013𝑥33
2 , 

𝑝34
𝑞34

𝑥34 =
11

12
𝑥34 − 𝑑34𝑥34

2 ⇒
𝑝34
𝑞34

𝑥34 = 0.917𝑥34 − 0.04𝑥34
2 , 

Now, let us apply the Vogel's approximation method to determine the initial basic feasible solution for the 

transportation as 

Table 7. Initial basic feasible solution tableau 

 𝑫𝟏 𝑫𝟏 𝑫𝟏 𝑫𝟏 Supply Raw penalty 

𝑶𝟏 12                𝟓𝟎 

17 

18 

14 

10             𝟏𝟎𝟎 

18 

14   

10 

 

150 4 

𝑶𝟐 10               𝟓𝟎 

12 

14                  𝟓𝟎               

8 

16 

15 

10                      𝟏𝟓𝟎 

14 

250 4 

𝑶𝟑 11  

15 

8                    𝟐𝟎𝟎 

17 

17      

14 

11 

12 

200 2 

Demand 100 250 100 150   

Column 

penalty 

3 6 1 2   

 Then, the initial basic feasible solution is 

𝑥 = (𝑥11, 𝑥13, 𝑥21, 𝑥22, 𝑥24, 𝑥32 ) = (50, 100, 50, 50, 150, 200), and F =
P(x)

Q(x)
= 0.6448 

To improve the solution, let us apply the Kuhn- Tucker's optimality conditions as 

Fx11 = −1.294      , Fx12 = 1.286     , Fx13 = −9.444, Fx14 = 1.4     , 

Fx21 = −2.167     , Fx22 =  0.75    , Fx23 = 1.067        , Fx24 = −5.286   , 

Fx31 =  0.733     , Fx32 = −15.5294    , Fx33 = 1.2143        , Fx34 =  0.917   . 

To determine the cost equation, let us use the equation (1) 

     
𝜕𝐹

𝜕𝑥𝐵𝑖𝑗
= 𝑠𝑖 + 𝑡𝑗  

Since, 
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Fx11 = 𝑠1 + 𝑡1 ⇒ 𝑠1 + 𝑡1 = −1.294 , Fx12 = 𝑠1 + 𝑡2 ⇒ 𝑠1 + 𝑡2 = 1.286,      

  Fx13 = 𝑠1 + 𝑡3 ⇒ 𝑠1 + 𝑡3 = −9.444       , Fx14 = 𝑠1 + 𝑡4 ⇒ 𝑠1 + 𝑡4 = 1.4,      

Fx21 = 𝑠2 + 𝑡1 ⇒ 𝑠2 + 𝑡1 = −2.167, Fx22 = 𝑠2 + 𝑡2 ⇒ 𝑠2 + 𝑡2 =  0.75,     

 Fx23 = 𝑠2 + 𝑡3 ⇒ 𝑠2 + 𝑡3 = 1.067,   Fx24 = 𝑠2 + 𝑡4 ⇒ 𝑠2 + 𝑡4 = −5.286,  

Fx31 = 𝑠3 + 𝑡1 ⇒ 𝑠3 + 𝑡1 =  0.733,   Fx32 = 𝑠3 + 𝑡2 ⇒ 𝑠3 + 𝑡2 = −15.5294,     

 Fx33 = 𝑠3 + 𝑡3 ⇒ 𝑠3 + 𝑡3 = 1.2143   , Fx34 = 𝑠3 + 𝑡4 ⇒ 𝑠3 + 𝑡4 =  0.917.  

Put 𝑠1 = 0, we have 

𝑡1 = −1.294, 𝑡2 = 1.286, 𝑡3 = −9.444 , 𝑡4 = 1.4, 𝑠2 = −0.873, 𝑡3 = 1.94, 𝑡4 = −4.413, 

𝑠3 = 2.027,          

Let us estimate the reduced cost from the equation (2) as 

M12 =
∂F

∂xNB12
− s1 − t2 = −35, 

M14 =
∂F

∂xNB14
− s1 − t4 = 5.81, 

M23 =
∂F

∂xNB23
− s2 − t3 = 11.43, 

M31 =
∂F

∂xNB14
− s1 − t4 = 19.18, 

M33 =
∂F

∂xNB14
− s1 − t4 = 28.33, 

M34 =
∂F

∂xNB14
− s1 − t4 = 22.99. 

It is clear that   M12 = −35 , so 𝑥12 should be entered as basic variables. Then the next iteration resulted in the 

initial basic feasible solution  

𝑥 = (𝑥12, 𝑥13, 𝑥21, 𝑥24, 𝑥32 ) = (50, 100, 100, 100, 200), and F =
P(x)

Q(x)
= 0.5294 

By repeating the previous procedure, we obtain 

Fx11 = 0.706      , Fx12 = −1.714     , Fx13 = −9.444, Fx14 = 1.4     , 

Fx21 = −5.176     , Fx22 =  1.75    , Fx23 = 1.067,         Fx24 = −3.286   , 

Fx31 =  0.733     , Fx32 = −15.5294    , Fx33 = 1.2143        , Fx34 =  0.917   . 

Let us use the equation (1), to determine the cost equation as 

Fx11 = 𝑠1 + 𝑡1 ⇒ 𝑠1 + 𝑡1 = 0.706       , Fx12 = 𝑠1 + 𝑡2 ⇒ 𝑠1 + 𝑡2 = −1.714,      

  Fx13 = 𝑠1 + 𝑡3 ⇒ 𝑠1 + 𝑡3 = −9.444     , Fx14 = 𝑠1 + 𝑡4 ⇒ 𝑠1 + 𝑡4 = 1.4,      

Fx21 = 𝑠2 + 𝑡1 ⇒ 𝑠2 + 𝑡1 = −5.176 , Fx22 = 𝑠2 + 𝑡2 ⇒ 𝑠2 + 𝑡2 = 1.75,     

 Fx23 = 𝑠2 + 𝑡3 ⇒ 𝑠2 + 𝑡3 = 1.067,   Fx24 = 𝑠2 + 𝑡4 ⇒ 𝑠2 + 𝑡4 = −3.286,  

Fx31 = 𝑠3 + 𝑡1 ⇒ 𝑠3 + 𝑡1 =  0.733 ,   Fx32 = 𝑠3 + 𝑡2 ⇒ 𝑠3 + 𝑡2 = −− 15.5294,     

 Fx33 = 𝑠3 + 𝑡3 ⇒ 𝑠3 + 𝑡3 = 1.2143   , Fx34 = 𝑠3 + 𝑡4 ⇒ 𝑠3 + 𝑡4 =  0.917 .  

Set 𝑠1 = 0, we get 

𝑡1 = 0.706, 𝑡2 = −1.714, 𝑡3 = −9.444, 𝑡4 = 1.4, 𝑠2 = −5.882, 𝑠3 = 0.027.           

By applying the equation (2), let us estimate the reduced cost from as 

M11 =
∂F

∂xNB12
− s1 − t1 = 23.2, 

M14 =
∂F

∂xNB14
− s1 − t4 = 10.15, 
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M22 =
∂F

∂xNB23
− s2 − t2 = 4.0522, 

M23 =
∂F

∂xNB14
− s2 − t3 = 7.1, 

M31 =
∂F

∂xNB14
− s3 − t1 = 23.2, 

M33 =
∂F

∂xNB14
− s3 − t3 = 24.5, 

M34 =
∂F

∂xNB14
− s3 − t4 = 23.5. 

Since al of 
∂F

∂xNBij
> 0 at 𝑥 = (𝑥12, 𝑥13, 𝑥21, 𝑥24, 𝑥32 ) = (50, 100, 100, 100, 200) this leads to the optimal solution 

with the optimum value equal to 𝐹 = 0.5294, and in neutrosophic is 

�̃�𝑁 =
〈(8600, 10500, 11550, 14100); 0.6, 0.4, 0.7〉

〈(9850, 14750, 17200, 20150); 0.6, 0.4, 0.7〉
= 〈(0.4268, 0.61045,0.78305, 1.4315); 0.6, 0.4, 0.7〉 

6. Results and Discussions 

It is clear that the neutrosophic optimum value is: 

 F̃N = 〈(0.4268, 0.61045,0.78305, 1.4315); 0.6, 0.4, 0.7〉 is better than the primary basic feasible solution, where 

it lies between 0.4268 𝑎𝑛𝑑 1.4315. Also, as the optimum value lies between 0.61045 𝑎𝑛𝑑 0.78305 , the overall 

acceptance level is60%. Also, the degrees of truthfulness  and indeterminacy, respectively are given by: 

 

      μ(x) =

{
 
 

 
 0.6 (

x−0.4268

 0.61045−0.4268
) ,        0.4268 ≤ x < 0.61045,

0.6,          0.61045 ≤ x ≤ 0.78305,

0.6 (
1.4315−x

1.4315−0.78305
) ,      0.78305 ≤ x ≤ 1.4315,        

0,                   otherwise,

 

 

   ρ(x) =

{
 
 

 
 

0.61045−x+0.4(x−0.4268)

0.61045−0.4268
,        0.4268 ≤ x < 0.61045,

0.4,          0.61045 ≤ x ≤ 0.78305,
x−0.78305+0.4(1.4315−x)

1.4315−0.78305
,     0.78305 ≤ x ≤ 1.4315,      

1,                   otherwise,

 

  σ(x) =

{
 
 

 
 

0.61045−x+0.7(x−0.4268)

0.61045−0.4268
,        0.4268 ≤ x < 0.61045,

0.7,               0.61045 ≤ x ≤ 0.78305,
x−0.78305+0.7(1.4315−x)

1.4315−0.78305
,     0.78305 ≤ x ≤ 1.4315,      

1,                   otherwise,

 

Hence, the decision maker concludes that the optimum value range in between0.4268 and 1.4315. On the other 

hand, the unit profit maximum is achieved with the supply 50 units from 𝑂1 to 𝐷2 with discount 3%,   100 units 

from 𝑂1  to 𝐷3  with discount 5% , 100  units from 𝑂2   to 𝐷1  with discount 3% , 100  units from 𝑂2   to 𝐷4  with 

discount 2%, and 200 units from 𝑂3  to 𝐷2 with discount 4%.  

 

6.1 Advantages/Limitations of the proposed algorithm 

The proposed algorithm's principal advantage is a novel combination of a parametric study, a multicriteria 

analysis, and the DM's vision. This combination uses the benefit of a parametric study that is used to scan the 
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searching space smartly, the benefit of the multicriteria analysis that is used to rank the alternative solutions by 

employing the vision of the DM, and the benefit of involving the vision of the DM. Applying the proposed 

algorithm to real-life problems may encounter some limitations such as: 

1- It does not take into account the complete parametric space, which has an endless number of possible 

scenarios. But, no other techniques can handle such situations where there are infinite scenarios.  

2- It is impossible to assign a unified technique for assigning the interesting scenarios for the DM i.e. the 

approach does not involve a unified method; where the DM's vision and weights differ from one to another. 

3- Many factors must be considered such as; (i) the possibility of formulating the problem as a FTP problem, 

(ii) the possibility of formulating the KKT conditions and solving it, and (iii) the capability of solving the 

PFTP problem's selected scenarios and finding their exact optimal solutions. 

 

7. Comparitive Study 

   In this section, the proposed study is compared with some existing relevant literature to carve out the 

advantageous aspect of the proposed study. The Table 8 presents this comparison under certain parameters. 

It’s obvious that the result obtained by the proposed approach is less than the result by Gomathi and 

Jayalakshmi [ 19 ]   

Table 8. Comparisons of different researcher's contributions 

 

Author's 

name 

Vogel's 

approximation 

method 

Kuhn- Tucker 

optimality 

conditions 

Optimal 

neutrosophic 

solution 

Environment 

Gomathi and 

Jayalakshmi 

[ 19 ]   

√ √ × crisp 

Bas et al., 

[25], 

× × √ Crisp 

Akram et 

al., [26] 

× × √ Fuzzy  

Our 

proposed 

approach 

√ √ √ Neutrosophic 
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    8. Conclusions and future works 

In this paper, the maximization fractional transportation problem has solved efficiently in neutrosophic 

environment. The method which has applied is can be used in all of road tax, discount cost and others. In addition, 

the analysis process in the proposed approach depends upon some proposed characteristics that consider the 

uncertainty in determining the optimal solution. Fundamental definitions for NINP problems, such as optimistic-

optimal solutions, pessimistic-optimal solutions, satisfactory-optimal solutions, and feasibility-risk factors, were 

also introduced. Furthermore, the proposed approach involves the vision of the DM in the process of finding the 

optimal solution, and a utility function is used to rank the different alternatives so that the satisfactory optimal 

solution can be easily identified. Finally, an example is introduced to clarify the efficiency of the proposed 

approach. Finally, an example is introduced to clarify the efficiency of the proposed approach and compare the 

results obtained by one of the most prominent evolutionary algorithms, the genetic algorithm (GA), to validate the 

accuracy and reliability of simulation results.  Future work may include the further extension of this study to other 

fuzzy- like structure (i. e., interval- valued fuzzy set, Neutrosophic set, Pythagorean fuzzy set, Spherical fuzzy set 

etc. with more discussion and suggestive comments.  
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Abstract: E-commerce has become a common method of making online purchases. Doorstep delivery, 

multiple options and variety of products to be bought, discounts and rewards are some of the 

advantages of online shopping. However, selection of the right shopping website is a challenge for 

online buyers across all markets. The multiple tangible and intangible factors involved in the 

e-commerce domain has made it a problem of MCDM. This paper proposes a new MCDM approach 

to develop a model for the necessary assessment of e-commerce websites. The notion of similarity 

measures for the single valued neutrosophic hypersoft sets is applied to get the best website on the 

bases of given criteria. Shopping websites are evaluated at three levels-below average, average and 

good. The attributes used to evaluate the websites are offers and deals made by the e-commerce sites 

to present and potential customers, qualitative assessment of the offered products and services, 

delivery timelines, payment safety and security concerns. Safety of personal data is the attribute 

which is judged as the most important factor in evaluation of shopping websites. 

Keywords: E-commerce, Similarity measure, Evaluation of shopping website, MCDM. 

  

1. Introduction 

The e-commerce sector has gone under a remarkable evolutionary phase which gives significant 

impacts on entrepreneurs, bluechip/small-scaled manufacturing industries and ultimately the 

end-users/consumers. Adoption of internet and e-commerce has increased exponentially over the last 

few years. In 2022, sales from the e-commerce sector exceeded USD 5.7 trillion. The figure is projected 

for further increase in coming years. Global online retail sales is projected to exceed USD 7 Trillion by 

2025 [1], [2]. Asia has the largest consumer base for the e-commerce market.India has the third largest 

position in terms of online shoppers base with 150 million in the year 2021. The E-commerce market in 

India is projected to achieve a growth of 350 billion USD in 2030 as compared to 46.2 billion USD in 

2020 [3]. From fashion to groceries, household goods, electronic goods, and bill payments, 

e-commerce is taking over the traditional retail sector. Number of internet users in India is expected to 

increase to 320 million by the year 2025 [4]. Despite the robust growth, complete potential is not 

achieved by the sector. Different challenges like shopping cart abandonment, shifting to other 

shopping platforms, privacy, security concerns are deterring the growth [5]. Inconsistent, asymmetric 

and indeterminate information comprise the main limitations of e-commerce. The risks are prevalent 

not only in B2C but C2C or peer to peer market [6].With information inputs from multiple sources - 

social media, retail websites, advertisements, it becomes challenging for the consumer to select the 
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best shopping website. Bindia and Daroch [7] outlined the factors affecting online shopping behavior. 

These include security, lack of trust,privacy policy, website, shopping experience,  retailer brand, 

product information and financial risk. Consumers are skeptical about using online platforms because 

of cyber frauds, financial risks, hidden costs, long forms [8]. Further, assessment work has been done 

electric vehicle charge stations in order to enhance the green energy for smart cities [9]. In addition to 

this, an effective analysis has been done for photovoltaic power plants for the issues of green 

environment [10]. 

On the basis of different level survey data defined through a set of questions, various mathematical 

models have been formulated for obtaining the suitable assessment of the online shopping agencies 

under the framework of e-commerce services. Such assessments involve several criteria, e.g., “quality 

of product, cost, shipping services, safety of payments, etc.”[11]. Therefore , different researchers have 

given due considerations on these criteria which are directly connected to access the qualitative 

aspects of e-commerce online shopping agencies.Since the customer’s perceptions and experiences 

while using the features of e-commerce sectors comprise of precise and imprecise/incomplete both 

kind of values, therefore any possible judgement must incorporate the content of uncertainty in a 

considerable amount. For the sake of dealing such scenario, the concept of multi-criteria decision 

making problem under a certain fuzzified approach would be more useful and considerably better as 

the decision of buying/not buying is somehow dependent on customer’s intuitions, common sense 

and past-experiences rather than on the crisp, precise and accurate information [12]. This paper 

presents a Multi Criteria Decision-making (MCDM) approach to select the shopping website which 

has the attributes required by the consumer. 

Selection of online shopping platforms is affected by different criteria. Prior studies have identified 

several factors which affect consumer choice of a particular purchase platform. E-service quality is an 

important determinant of e-commerce. Different factors which categorized e-service quality are 

efficiency, fulfillment.compensation.privacy, in store experience contact, system availability, 

reliability, trust and quality of communication.[13], [14], [15] .Customer satisfaction results in repeat 

business and positive online reviews which are instrumental in increasing the brand 

equity [16] Website quality, content, conditions of product return, payment process, rapid response, 

transaction security issues are some other factors affecting satisfaction level of e commerce 

consumers [17]. Anushka et al. [18]. have identified ten factors with the help of a five-point fuzzy 

scale. The factors include fashion deals,product quality, fast shipping, prompt and regular customer 

care service, return policy, keeping track  of the shipped products, refining search options, detailed 

product description, safe and secure payment options. The criteria are used to rank eight shopping 

websites Amazon, Flipkart, Myntra, BigBasket, Jabong, Ebay, Snapdeal and Paytm Mall. Safe 

payments and quality products are given maximum weightage according to the weight criteria 

matrix. Fuzzy TOPSIS and PROMETHEE are used to rank the websites based on the selected criteria. 

Amazon gets the highest rank as the most selected shopping website. Ilias O. Pappas[19] studies the 

impact of perceived trust, privacy and past experience on evaluation of online shopping sites. Fuzzy 

set analysis. The paper studies the impact of perceived trust, privacy, and past experience on 

customer purchase intention. The variables are related through a proposed research model, which is 
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validated through fuzzy logic techniques. Ambiguity and uncertainty are the inherent characteristics 

of online shopping. Trust is an important factor for increased adoption and success of e-commerce 

sites. Also various extensions of fuzzy sets in terms of hypersoft sets have been done in the literature 

with applications in the renewable energy, robotic agrifarming [20], [21], [22], [23], [24]. Different 

factors have been identified in the prior studies to increase customer trust. These factors are existence, 

fulfillment, affiliation and company policy. Trust is an important factor for successful online 

transactions. Presence of trust enables the consumers to share their personal information with others. 

Presence of trust provides better experience even in the case of negative emotions [25]. Customer 

needs and security issues have gained attention in lieu of the exponential increase in the number of 

online customers in the last five years. Affective and cognitive factors such as trust and privacy affect 

consumer evaluation of online consumer sites [26]. The study highlights the importance of trust, user 

experience and privacy in defining the behavioral intention of online consumers. Another study 

by Aydın, Serhat & Kahraman, Cengiz [27] has identified ten criteria for assessing the shopping 

website. These include ease of use , product quality detail, security, privacy, customer relationship, 

accurate delivery, billing and safe payment gateways.  A holistic approach is required to study the 

impact of these factors on online buyers’ behavior. Researchers like Liang, R., Wang, J., & Zhang, H 

[28] have used MCDM techniques  such as SVTN-DEMATEL module to show the relationship 

between different criteria, highlighting different priority areas.Prior studies on the topic use 

symmetric analysis tools based on regression like sequential equation modeling (SEM) or multiple 

regression analysis (MRA). Also, decision-making in neutrosophic topologies have been done along 

with the most influential sector of Industry 5.0 [29], [30], [31]. However, symmetric tests can be 

misleading in certain cases. Same technological factors may affect consumers differently. Thus a 

combination of factors needs to be studied to explain the complex consumer behavior. To address this 

gap fuzzy networks have been applied to provide a more comprehensive and exhaustive analysis.The 

paper attempts to propose a method for evaluation and selection of the shopping website that 

matches the attributes selected by the consumers. Multiple Criteria Decision-making 

(MCDM) approach employing similarity measures of  is applied as the main method for data 

analysis. Fuzzy logic is a qualitative method to analyze complex system behaviors and patterns. It 

uses multi valued logic to develop effective reasoning and better decision making models [12]. The 

study uses fuzzy logic analysis to identify the configuration of perceived trust, privacy and user 

experience in influencing the levels of consumer perception in online buying. The tools are useful in 

explaining the complex relation among different research variables.Shopping websites are analyzed 

at three levels- below average, average and good. The attributes used to evaluate the websites are 

offers and deals offered by the ecommerce sites to their customers, qualitative assessment of the 

offered products and services, delivery timelines, payment safety and security concerns. Safety of 

personal data is the attribute which is judged as the most important factor in evaluation of shopping 

websites. 

Novelty and Contribution of the present study 

A novel type of similarity measure for single-valued neutrosophic sets has been prosposed for 

handling the formulated MCDM problem. The proposed notional description of similarity measures 
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for the neutrosophic sets have been utilized in the evaluation of e-commerce sectors and are being 

integrated in decision-making methodology under a neutrosophic hypersoft setup.  

In the present study, the prime focus of the work is to go for the assessment of e-commerce sites by 

utilizing the similarity measures for neutrosophic hypersoft sets: 

        Introducing a new parametrized similarity for neutrosophic hypersoft sets. 

        First, the proposed similarity measure has been proved mathematically on certain axioms 

for validation. 

        Further, the proposed similarity measures have been successfully implemented in the 

evaluation for the e-commerce sites. 

The paper’s structure is: Section 2 presents fundamental definitions in connection with the proposed 

measure. Section 3 involves some binary operations and novel similarity measures of SVNHSS along 

with its proof of validation. Section 4 discusses the research methodology of the MCDM problem. 

Section 5 provides details of data analysis using the proposed similarity measure of SVNHSS in the 

E-commerce sector. Section 6 discusses the findings in the form of major conclusions, limitations and 

future scope. 

2. Preliminaries 

Definition 1. [32]“Let 𝑋 be the universal set and 𝑃(𝑋) be the power set of 𝑋. Consider 𝑘1, 𝑘2, … , 𝑘𝑛 for n ≥

1 be n well-defined attributes whose corresponding attribute values are respectively the sets 𝐾1, 𝐾2, … , 𝐾𝑛 with 

𝐾𝑖 ∩ 𝐾𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1,2, . . , 𝑛}, then the pair (𝔑, 𝐾1 ×  𝐾2 × … ×  𝐾𝑛) is said to be Hypersoft 

set over the set 𝑋, where 𝔑 ∶ 𝐾1 ×  𝐾2 × … × 𝐾𝑛 → 𝑃(𝑋).” 

Definition 2. [32]“Let 𝑋 = {𝑥1,  𝑥2, … , 𝑥𝑛} be the universal set and 𝑃(𝑋) be the power set of 𝑋. Consider 

𝐾1, 𝐾2, … , 𝐾𝑚 for m ≥ 1 be m well-defined attributes whose corresponding attribute values are respectively the 

sets 𝐾1
𝑎 , 𝐾2

𝑏 , … , 𝐾𝑚
𝑧  with the relation 𝐾1

𝑎 × 𝐾2
𝑏 × … × 𝐾𝑚

𝑧 =  Γ, where a, b, c, …, z = 1,2,..,n.  Then the pair 

(𝔑, Γ) is said to be Neutrosophic Hypersoft set (NHSS) over 𝑋 , where,𝔑 ∶ 𝐾1
𝑎 × 𝐾2

𝑏 × … × 𝐾𝑚
𝑧 → 𝑃(𝑋) 

and𝔑(𝐾1
𝑎 × 𝐾2

𝑏 × … × 𝐾𝑚
𝑧 ) =  {⟨𝑥, 𝑇𝔑(ξ)(𝑥), 𝐼𝔑(ξ)(𝑥), 𝐹𝔑(ξ)(𝑥))⟩, 𝑥 𝜖 𝑋, ξ 𝜖 Γ} ; where T is the degree 

of truthness, I is the degree of indeterminacy and F is the degree of falsity such that T, I, F : V → (0−, 1+)  and 

satisfies the constraint 0− ≤ 𝑇𝔑(ξ)(𝑥) +  𝐼𝔑(ξ)(𝑥) + 𝐹𝔑(ξ)(𝑥)) ≤ 3+. 

While dealing with applications of science and engineering, it becomes very difficult to handle situations under a 

neutrosophic environment.  In order to deal with such situations notion of Single-Valued Neutrosophic  

HyperSoft sets (𝑆𝑉𝑁𝐻𝑆𝑆) is very useful and applicable.” 

 

Definition 3. [33]“Let 𝑋 = {𝑥1,  𝑥2, … , 𝑥𝑛}be the universal set and 𝑃(𝑋)be the power set of 𝑋. Consider 

𝐾1, 𝐾2, … , 𝐾𝑚 for m ≥ 1 be m well-defined attributes whose corresponding attribute values are respectively the 

sets 𝐾1
𝑎 , 𝐾2

𝑏 , … , 𝐾𝑚
𝑧  with the relation 𝐾1

𝑎 × 𝐾2
𝑏 × … × 𝐾𝑚

𝑧 =  Γ, where a, b, c, …, z = 1,2,..,n.  Then the pair 

(𝔑, Γ) is said to be a Single-Valued  Neutrosophic Hypersoft set (𝑆𝑉𝑁𝐻𝑆𝑆)over 𝑋, where, 𝔑 ∶ 𝐾1
𝑎 × 𝐾2

𝑏 ×

… ×  𝐾𝑚
𝑧 → 𝑃(𝑋)  and 𝔑(𝐾1

𝑎 × 𝐾2
𝑏 × … ×  𝐾𝑚

𝑧 ) =  {⟨𝑥, 𝑇𝔑(ξ)(𝑥), 𝐼𝔑(ξ)(𝑥), 𝐹𝔑(ξ)(𝑥))⟩, 𝑥 𝜖 𝑋, ξ 𝜖 Γ}  ; 

where T is the degree of truthness, I is the degree of indeterminacy and F is the degree of falsity such that T, I, F : 

V → [0, 1]  and satisfies the constraint 0 ≤ 𝑇𝔑(ξ)(𝑥) +  𝐼𝔑(ξ)(𝑥) + 𝐹𝔑(ξ)(𝑥)) ≤ 3.” 
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Definition 4.[30]“Consider 𝐴 and 𝐵 be two single-valued neutrosophic sets, then the axiomatic definition of 

similarity measure are as follows: 

i. 0 ≤ 𝕊(𝐴, 𝐵) ≤ 1; 

ii. 𝕊(𝐴, 𝐴) = 1. 

iii. 𝕊(𝐴, 𝐵) =  𝕊(𝐵, 𝐴) ∀ 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑋). 

iv. If 𝐴 ⊆ 𝐵 ⊆ 𝐶, ∀ 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑋), 𝕊(𝐴, 𝐶) ≤ 𝕊(𝐴, 𝐵) 𝑎𝑛𝑑 𝕊(𝐴, 𝐶) ≤ 𝕊(𝐵, 𝐶).” 

3. Binary Operations and Similarity Measure of Neutrosophic Hypersoft Sets 

Some binary algebraic operations on 𝑆𝑉𝑁𝐻𝑆𝑆𝑠 have been presented where 𝑆𝑉𝑁𝐻𝑆𝑆(𝑋) represents a 

collection of SVNHSSs over X. For 𝐴, 𝐵 ∈ 𝑆𝑉𝑁𝐻𝑆𝑆(𝑋), we present the operations as below:  

• “Union of 𝐴 and𝐵”:𝐴 ∪ 𝐵 = {𝑥, 𝑇𝐴∪𝐵(𝔑(Γ)), 𝐼𝐴∪𝐵(𝔑(Γ)), 𝐹𝐴∪𝐵(𝔑(Γ))| 𝑥 ∈ 𝑋 } 

where, 

𝑇𝐴∪𝐵(𝔑(Γ))(𝑥) = 𝑚𝑎𝑥{𝑇𝐴(𝔑(Γ))(𝑥), 𝑇𝐵(𝔑(Γ))(𝑥)} , 𝐼𝐴∪𝐵(𝔑(Γ))(𝑥)

= 𝑚𝑖𝑛{𝐼𝐴(𝔑(Γ))(𝑥), 𝐼𝐵(𝔑(Γ))(𝑥)} 

 

 and 𝐹𝐴∪𝐵(𝔑(Γ))(𝑥) = 𝑚𝑖𝑛{𝐹𝐴(𝔑(Γ))(𝑥), 𝐹𝐵(𝔑(Γ))(𝑥)}∀ 𝑥 ∈ 𝑋. 

 

• “Intersection of𝐴 and𝐵”:𝐴 ∩ 𝐵 = {𝑥, 𝑇𝐴∩𝐵(𝔑(Γ)), 𝐼𝐴∩𝐵(𝔑(Γ)), 𝐹𝐴∩𝐵(𝔑(Γ))| 𝑥 ∈ 𝑋 } 

where, 

𝑇𝐴∩𝐵(𝔑(Γ))(𝑥) = 𝑚𝑖𝑛{𝑇𝐴(𝔑(Γ))(𝑥), 𝑇𝐵 (𝔑(Γ))(𝑥)} , 𝐼𝐴∩𝐵(𝔑(Γ))(𝑥)

= 𝑚𝑎𝑥{𝐼𝐴(𝔑(Γ))(𝑥), 𝐼𝐵(𝔑(Γ))(𝑥)} 

 

 and 𝐹𝐴∩𝐵(𝔑(Γ))(𝑥) = 𝑚𝑎𝑥{𝐹𝐴(𝔑(Γ))(𝑥), 𝐹𝐵(𝔑(Γ))(𝑥)}∀ 𝑥 ∈ 𝑋. 

•Containment:𝐴 ⊆ 𝐵 if and only if  

      𝑇𝐴(𝔑(Γ))(𝑥) ≤ 𝑇𝐵 (𝔑(Γ))(𝑥),  𝐼𝐴(𝔑(Γ))(𝑥) ≥ 𝐼𝐵(𝔑(Γ))(𝑥),  𝐹𝐴(𝔑(Γ))(𝑥) ≥ 𝐹𝐵(𝔑(Γ))(𝑥)∀ 𝑥 

∈ 𝑋. 

• “Complement:  

 

𝑇�̅�(𝔑(Γ))(𝑥) = 1 − 𝑇𝐴(𝔑(Γ))(𝑥), 𝐼�̅�(𝔑(Γ))(𝑥) = 1 −  𝐼𝐴(𝔑(Γ))(𝑥), 𝐹�̅�(𝔑(Γ))(𝑥) = 1 −

 𝐹𝐴(𝔑(Γ))(𝑥)“. 

 

Further, we propose a new similarity measure for two 𝑆𝑉𝑁𝐻𝑆𝑆A and B, 

 𝕊(𝐴, 𝐵) =

1

𝑛𝑚
∑ ∑

1−
1

2
[(min{|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖)−𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|,|𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖)−𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|}+|𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖)−𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|)]

1+
1

2
[(max{|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖)−𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|,|𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖)−𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|}+|𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖)−𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|)]

𝑚
𝑗=1

𝑛
𝑖=1               (1) 

where, 𝑗 = 1,2, … , 𝑚; 𝑖 = 1,2, … , 𝑛; 𝑠 = 𝑎, 𝑏, … , 𝑧; 𝑧 = 1,2, … , 𝑛 and 𝜉𝑗
𝑠 ∈  𝐾1

𝑎 × 𝐾2
𝑏 × … ×  𝐾𝑚

𝑧 . 

 

Theorem 1.The above-proposed similarity measure 𝕊(𝐴, 𝐵) given in (1) is a valid similarity measure of 

𝑆𝑉𝑁𝐻𝑆𝑆𝑠.  
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Proof: Refer Section 2, we establish the axioms provided for checking the validity.  

The axioms  (i) and (ii) immidiately follows from the definition of the proposed measure. 

(iii) Here, we assume that A = B. 

Then, 𝑇
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) = 𝑇

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖), 𝐼
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) = 𝐼

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖),  𝐹
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) = 𝐹

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖). 

⟹  𝕊(𝐴, 𝐵) = 1.  

Conversely, let 𝕊(𝐴, 𝐵) = 1. 

⟹
1 −

1

2
[(min {|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|)]

1 +
1

2
[(max {|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|)]

= 1, 

 

⟹ 1 −
1

2
[(min {|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|)] = 1 +

1

2
[(max {|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|)], 

 

⟹
1

2
[(min {|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|)] +

1

2
[(max {|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|)]=0, 

 

⟹ |𝑇
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝑇

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖)| = 0, |𝐼
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝐼

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖)| = 0, and |𝐹
𝐴(𝜉𝑗

𝑠
)
(𝑥𝑖) − 𝐹

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)| = 0, 

⟹   𝐴 = 𝐵. 

(iv) Let 𝐴 ⊆ 𝐵 ⊆ 𝐶, 

⟹ |𝑇
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝑇

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖)| ≤ |𝑇
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝑇

𝐶(𝜉𝑗
𝑠)

(𝑥𝑖)| , |𝐼
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝐼

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖)| ≤ |𝐼
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝐼

𝐶(𝜉𝑗
𝑠)

(𝑥𝑖)|  

and |𝐹
𝐴(𝜉𝑗

𝑠
)
(𝑥𝑖) − 𝐹

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)| ≤ |𝐹

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐹

𝐶(𝜉𝑗
𝑠

)
(𝑥𝑖)| , 

⟹ min {|𝑇
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝑇

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖)| , |𝐼
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝐼

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖)|} + |𝐹
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝐹

𝐵(𝜉𝑗
𝑠)

(𝑥𝑖)|

≤ min {|𝑇
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝑇

𝐶(𝜉𝑗
𝑠)

(𝑥𝑖)| , |𝐼
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝐼

𝐶(𝜉𝑗
𝑠)

(𝑥𝑖)|} + |𝐹
𝐴(𝜉𝑗

𝑠)
(𝑥𝑖) − 𝐹

𝐶(𝜉𝑗
𝑠)

(𝑥𝑖)| 

and max {|𝑇
𝐴(𝜉𝑗

𝑠
)
(𝑥𝑖) − 𝑇

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐼

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐹

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)| ≤ max {|𝑇

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) −

𝑇
𝐶(𝜉𝑗

𝑠
)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐼

𝐶(𝜉𝑗
𝑠

)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐹

𝐶(𝜉𝑗
𝑠

)
(𝑥𝑖)| , 
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⟹ 1 −
1

2
[min {|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝑇
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐼
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐹
𝐵(𝜉𝑗

𝑠)
(𝑥𝑖)|]

≥ 1

−
1

2
[min {|𝑇

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝑇
𝐶(𝜉𝑗

𝑠)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐼
𝐶(𝜉𝑗

𝑠)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠)

(𝑥𝑖) − 𝐹
𝐶(𝜉𝑗

𝑠)
(𝑥𝑖)|] 

and 1 +
1

2
[max {|𝑇

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝑇

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐼

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐹

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)|] ≤ 1 +

1

2
[max {|𝑇

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝑇

𝐶(𝜉𝑗
𝑠

)
(𝑥𝑖)| , |𝐼

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐼

𝐶(𝜉𝑗
𝑠

)
(𝑥𝑖)|} + |𝐹

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐹

𝐶(𝜉𝑗
𝑠

)
(𝑥𝑖)|] 

⟹ 𝕊(𝐴, 𝐶) ≤ 𝕊(𝐴, 𝐵). On the similar lines, we can prove 𝕊(𝐴, 𝐶) ≤ 𝕊(𝐵, 𝐶). 

Remark: Also, a tangent similar measure between the two 𝑆𝑉𝑁𝐻𝑆𝑆A and Bis given by, 

𝕋(𝐴, 𝐵) = 

1

𝑛𝑚
∑ ∑ [1 − 𝑡𝑎𝑛

𝜋

12
(|𝑇

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝑇

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)| + |𝐼

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐼

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)| + |𝐹

𝐴(𝜉𝑗
𝑠

)
(𝑥𝑖) − 𝐹

𝐵(𝜉𝑗
𝑠

)
(𝑥𝑖)|)]

𝑚

𝑗=1

𝑛

𝑖=1

 

where, 𝑗 = 1,2, … , 𝑚; 𝑖 = 1,2, … , 𝑛; 𝑠 = 𝑎, 𝑏, … , 𝑧; 𝑧 = 1,2, … , 𝑛 and 𝜉𝑗
𝑠 ∈  𝐾1

𝑎 × 𝐾2
𝑏 × … × 𝐾𝑚

𝑧 . 

The validity of this trigonometric similarity measure can be done as above. 

 

4. Implementation of the Proposed Similarity Measure in the MCDM Problem 

The procedural phase wise computation involved in the proposed methodology has been elaborated 

through Figure 1. Let us assume that there are 𝑚 alternatives {𝑌1, 𝑌2, … , 𝑌𝑚}   and 𝑛  attributes 

𝐾1, 𝐾2, … , 𝐾𝑛 and “whose corresponding attribute values are respectively the sets 𝐾1
𝑎 , 𝐾2

𝑏 , … , 𝐾𝑚
𝑧  with 

the relation 𝐾1
𝑎 × 𝐾2

𝑏 × … × 𝐾𝑚
𝑧 =  𝛤, where a, b, c, …, z = 1,2,..,n.”The set of all possible 𝑆𝑉𝑁𝐻𝑆𝑆𝑠 

are given by (𝔑, Γ), where Γ = 𝐾1
𝑎 × 𝐾2

𝑏 × … × 𝐾𝑚
𝑧 . The objective of a decision-maker is to select the 

most appropriate choice among the available alternatives from the set of available ones satisfying the 

given attribute values. The decisions in the form of an information from all the decision-makers are 

tabulated in a matrix format, say, 𝐻 = [ℎ𝑖𝑗]
𝑚×𝑛

 called single-valued neutrosophic hypersoft matrix 

where hij = (𝑇𝔑(ξ)(𝑥)𝑖𝑗 , 𝐼𝔑(ξ)(𝑥)𝑖𝑗 , 𝐹𝔑(ξ)(𝑥)𝑖𝑗). The procedure of the proposed methodology has been 

presented in Figure 1 below:  

 

Figure 1: Methodology of MCDM 

Step 1: Construction of a decision matrix on the basis of prescribed information in the form of 

SVNHSS. 

Step 2: Further, we eliminate the heterogeneity present in the attributes & transform it in its 

homogenous form for the attribute. Next, the decision matrix 𝐻 = [ℎ𝑖𝑗]
𝑚×𝑛

 has been changed to a 

revised decision matrix 𝐻′ = [ℎ′
𝑖𝑗]

𝑚×𝑛
 such that ℎ′

𝑖𝑗  is given by  
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ℎ′
𝑖𝑗 = (𝑇𝔑(ξ)(𝑥)𝑖𝑗 , 𝐼𝔑(ξ)(𝑥)𝑖𝑗 , 𝐹𝔑(ξ)(𝑥)𝑖𝑗) = {

hij ;  for benefit criteria

hij
c ;  for cost criteria.

 

Step 3: We evaluate the score from the proposed measure for the 𝑌𝑖
′𝑠  respectively with the 

sub-attributes on one to one basis.  

Step 4: Finally, the necessary ranking of alternatives may be worked out on the basis of the score 

values obtained from the similarity measure. 

 

5. Use of Proposed Similarity Measures in E-commerce sector. 

On the basis of the methodology discussed above, we move on for the assessment of the best possible 

e-shopping agencies based on the similarity measure for 𝑆𝑉𝑁𝐻𝑆𝑆𝑠. Let there are four e-shopping 

agencies {𝑌1, 𝑌2, 𝑌3, 𝑌4}. Suppose there are three stages of selectionfor assessing the shoping agencies 

as 𝑏𝑒𝑙𝑜𝑤 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑥1), 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑥2)  and 𝑔𝑜𝑜𝑑(𝑥3) . The universal set 𝑋 = {𝑥1, 𝑥2, 𝑥3}.  Let 𝐾 =

{𝐾1 = 𝑐𝑎𝑝𝑡𝑖𝑣𝑎𝑡𝑖𝑛𝑔 𝑜𝑓𝑓𝑒𝑟𝑠 𝑜𝑟 𝑑𝑒𝑎𝑙𝑠,  𝐾2 = 𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠, 𝐾3 =

𝑜𝑛 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦, 𝐾4 = 𝑝𝑎𝑦𝑖𝑛𝑔 𝑠𝑎𝑓𝑒𝑡𝑦 & 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦  }  be a group of criterions which are 

categorized with sub-attributes: 

 𝐾1 = “𝑐𝑎𝑝𝑡𝑖𝑣𝑎𝑡𝑖𝑛𝑔 𝑜𝑓𝑓𝑒𝑟𝑠 𝑜𝑟 𝑑𝑒𝑎𝑙𝑠 = {𝑡𝑟𝑒𝑛𝑑𝑦, 𝑒𝑙𝑒𝑔𝑎𝑛𝑡}” 

 𝐾2 = “𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠

= {𝑡𝑒𝑠𝑡 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑓𝑒𝑐𝑡 𝑟𝑎𝑡𝑒, 𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑔𝑟𝑒𝑒𝑛}” 

 𝐾3 = “𝑜𝑛 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦” 

 𝐾4 = “𝑝𝑎𝑦𝑖𝑛𝑔 𝑠𝑎𝑓𝑒𝑡𝑦 & 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦

= {𝑜𝑛𝑙𝑖𝑛𝑒 𝑝𝑎𝑦𝑚𝑒𝑛𝑡, 𝑝𝑎𝑦 𝑜𝑛 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑜𝑝𝑡𝑖𝑜𝑛,

𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑦 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 }” 

Now, let us define a relation 𝔑 ∶ 𝐾1
𝑎 × 𝐾2

𝑏 × … × 𝐾𝑚
𝑧 → 𝑃(𝑋) defined as, 

𝔑 (𝐾1
𝑎 × 𝐾2

𝑏 × … × 𝐾𝑚
𝑧 ) = {𝜉 = 𝑒𝑙𝑒𝑔𝑎𝑛𝑡, 𝜁 = 𝑡𝑒𝑠𝑡 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛, 𝜚 = 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦, 𝜍 =

𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑦 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠}  is the most prominent choice of the 

sub-attributes for the assessment of online shopping agencies. 

Step1: Let (𝔑, Γ) be a 𝑆𝑉𝑁𝐻𝑆𝑆(𝑋) for best possible online shopping agency prepared with the help 

of experts in the field of e-commerce sector as given in Table 1. 

Table 1. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for best possible online shopping agency 

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.4,0.2,0.3) 𝜁(0.3,0.4,0.3) 𝜚(0.7,0.1,0.2) 𝜍(0.4,0.2,0.3) 

𝑥2 𝜉(0.5,0.1,0.3) 𝜁(0.1,0.8,0.1) 𝜚(0.4,0.3,0.2) 𝜍(0.5,0.2,0.3) 

𝑥3 𝜉(0.3,0.5,0.1) 𝜁(0.1,0.2,0.7) 𝜚(0.1,0.6,0.2) 𝜍(0.5,0.4,0.1) 

 

The 𝑆𝑉𝑁𝐻𝑆𝑆𝑠 for the patients/subjects under observation are tabulated in Table 2-Table 5. 

Table 2. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for the shopping agency 𝑌1 

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.5,0.2,0.3) 𝜁(0.8,0.1,0.0) 𝜚(0.2,0.7,0.1) 𝜍(0.9,0.1,0.0) 

𝑥2 𝜉(0.3,0.1,0.5) 𝜁(0.2,0.8,0.0) 𝜚(0.5,0.2,0.2) 𝜍(0.6,0.1,0.2) 

𝑥3 𝜉(0.4,0.5,0.1) 𝜁(0.7,0.2,0.0) 𝜚(0.3,0.6,0.1) 𝜍(0.4,0.5,0.1) 

Table 3. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for the shopping agency 𝑌2 
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(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.2,0.6,0.2) 𝜁(0.2,0.5,0.3) 𝜚(0.6,0.1,0.2) 𝜍(0.7,0.2,0.1) 

𝑥2 𝜉(0.3,0.4,0.3) 𝜁(0.2,0.6,0.2) 𝜚(0.4,0.3,0.2) 𝜍(0.5,0.2,0.3) 

𝑥3 𝜉(0.8,0.1,0.1) 𝜁(0.1,0.2,0.7) 𝜚(0.1,0.6,0.2) 𝜍(0.8,0.1,0.1) 

Table 4. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for the shopping agency 𝑌3 

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.3,0.4,0.3) 𝜁(0.2,0.6,0.1) 𝜚(0.3,0.6,0.0) 𝜍(0.4,0.2,0.3) 

𝑥2 𝜉(0.5,0.1,0.3) 𝜁(0.1,0.8,0.1) 𝜚(0.4,0.3,0.2) 𝜍(0.5,0.2,0.3) 

𝑥3 𝜉(0.5,0.5,0.0) 𝜁(0.2,0.0,0.8) 𝜚(0.4,0.5,0.1) 𝜍(0.4,0.4,0.1) 

Table 5. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for the shopping agency 𝑌4 

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.9,0.0,0.1) 𝜁(0.2,0.6,0.1) 𝜚(0.6,0.1,0.2) 𝜍(0.5,0.2,0.2) 

𝑥2 𝜉(0.3,0.5,0.2) 𝜁(0.4,0.0,0.6) 𝜚(0.2,0.3,0.5) 𝜍(0.7,0.2,0.1) 

𝑥3 𝜉(0.4,0.3,0.3) 𝜁(0.4,0.2,0.4) 𝜚(0.3,0.6,0.1) 𝜍(0.0,0.1,0.9) 

 

Step 2: There is no requirement of excercising the normalization process as the given attributes are 

benefit type. 

Step 3:  Next, the proposed similarity measure has been utilized for computing the values of the 

similarity for various shopping agencies. In view of the proposed similarity measure (1), it is 

calculated that 𝕊(𝔑, 𝑌1) = 0.3457 for theshopping agency 𝑌1 , 𝕀𝛾(𝔑, 𝑌2) = 0.6243 for theshopping 

agency 𝑌2 , 𝕀𝛾(𝔑, 𝑌3) = 0.4892 for theshopping agency 𝑌3  and 𝕀𝛾(𝔑, 𝑌4) = 0.8657 for theshopping 

agency 𝑌4. 

Step 4: The maximum similarity measure is 0.8657 which is in reference with the shopping agency 

𝑌1. Therefore, among all the four shopping agencies, 𝑌1 is the best possible shopping agency on the 

basis of the given criterions. 

The following Table 6 breifly makes the indication in terms of benefits of utilizing the proposed 

notion and its analogous methodology in contrast with the available ones: 

Table 6: Characteristic Comparitive Observations 

Authors Information 

Measures 

Truthiness Indeterminacy Falsity Sub-Attributes 

Ohlan et al. [34] “Fuzzy Sets” Yes No No No 

Kadian et al. [35] “Intuitionistic Fuzzy 

Sets” 

Yes No Yes No 

Montes et al.[36] “Picture Fuzzy Sets” Yes No Yes No 

Proposed “Single-valued 

Neutrosophic 

Hypersoft Sets” 

Yes Yes Yes Yes 
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6. Conclusion & Scope for Future Work 

Evaluation method for selecting the best shopping website based on the needs of the customers is 

highly required in e-commerce sector. The characteristics defining a website quality can be both 

tangible and intangible. Making the evaluation process a multi-criteria decision making (MCDM) 

problem. The paper has employed fuzzy logic method of similarity measures of 𝑆𝑉𝑁𝐻𝑆𝑆𝑠 to assist 

the consumer in selection of the shopping website which is bets suited to their needs.The paper has 

added to the existing research on the topic by employing innovative data analysis method like fuzzy 

set analysis, which can be a better alternative to conventional methods based on variance [18]. The 

method can be used by the e –commerce vendors and consumers to evaluate the shopping platforms 

in the light of required attributes. E-comerce service providers can identify the main impact factors 

useful for framing customer centric strategies. However,selection of limited attributes is the major 

limitation in the present study. Including more attributes representing diverse areas and concerns of 

e-commerce can be undertaken in the future studies.  

Source of Funding: The present work has not received any source of funding. 

Conflict of interest: The authors have no conflict of interest. 
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Abstract. The characterization of interval valued (IV) secondary k- range symmetric (RS) Neutrosophic 

fuzzy matrices have been examined in this study with an example. It is discussed how IV s-k RS, s- RS, IV 

k- RS, and IV RS matrices relate to one another. We establish the necessary and sufficient criteria for IV 

s-k RS Neutrosophic fuzzy matrices. The existence of several generalized inverses of a matrix in IV 

Neutrosophic fuzzy matrices. It is also established what are the equivalent criteria for various g-inverses 

of an IV s   RS fuzzy matrix to be an IV s   RS. The generalized inverses of an IV s   RS P 

corresponding to the sets P1, 2, P1, 2, 3 and P1, 2, 4 are characterized. 

Keywords: IV Neutrosophic Fuzzy matrix, IV RS Neutrosophic fuzzy matrix, s-k- RS IV Neutrosophic 

fuzzy matrix. 

 

 

1. Introduction 

Matrices are crucial in many fields of research in science and engineering. The traditional matrix 

theory is unable to address problems involving numerous kinds of uncertainties. Zadeh [1] first 

introduced fuzzy sets (FSs) in 1965. These are traditionally defined by their membership value or grade of 

membership. Assigning membership values to a fuzzy set can sometimes be challenging. Atanassov [2] 

introduced intuitionistic FSs to solve the problem of assigning non-membership values. Smarandache [3] 

introduced the concept of neutrosophic sets (NSs) to handle indeterminate information and deal with 

problems that involve imprecision, uncertainty, and inconsistency.  

Fuzzy matrices are used to solve certain kinds of issues. Many researchers have since completed 

numerous works. Only membership values are addressed by fuzzy matrices. These matrices cannot 

mailto:anandhkumarmm@mail.com
mailto:punithavarman78@gmail.com
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handle values that are not membership. Khan, Shyamal, and Pal [4] have studied intuitionistic fuzzy 

matrices (IFMs) for the first time. Atanassov [5,6 ] has discussed IFS and Operations over IV IFS. 

Hashimoto [7] has studied Canonical form of a transitive matrix. Kim and Roush [8] have studied 

generalized fuzzy matrices. Lee [9] has studied Secondary Skew Symmetric, Secondary Orthogonal 

Matrices.  Hill and Waters [10] have analyzed On k-Real and k-Hermitian matrices. Meenakshi [11] has 

focussed Fuzzy Matrix: Theory and Applications. Meenakshi and Jaya Shree [12] have studied On 

k-kernel symmetric matrices. Meenakshi and Krishanmoorthy [13] have characterized On Secondary 

k-Hermitian matrices. Meenakshi and Jaya Shree [14] have studied On   K -range symmetric matrices. 

Jaya shree [15] has studied Secondary κ-Kernel Symmetric Fuzzy Matrices. Shyamal and Pal [16] Interval 

valued Fuzzy matrices. Meenakshi and Kalliraja [17] have studied  Regular Interval valued Fuzzy 

matrices. But, practically it is difficult to measure the membership or non-membership value as a point. 

Anandhkumar [18,19] has studied Pseudo Similarity of NFM and On various Inverse of NFM. 

Anandhkumar,et.al [20] have studied Generalized Symmetric Neutrosophic Fuzzy Matrices. 

Anandhkumar,et.al [21] have discussed Reverse Sharp and Left-T Right-T Partial Ordering on 

Neutrosophic Fuzzy Matrices. Pal and Susanta Kha [22] have studied IV Intuitionistic Fuzzy Matrices. 

Vidhya and Irene Hepzibah [23] have discussed on Interval Valued Neutrosophic Fuzzy Matrices.  

1.1 Research Gap 

Jayashri [24] presented the concept of range and kernel-symmetry principles to fuzzy matrix. We 

have applied the range and  principles to NFM in this context. We have examined some of the results 

and extended concepts to NFMs. We first present equivalent characterizations for a RS matrix. We then 

derive the equivalent conditions that NFMs must meet to show range symmetry. We also find equivalent 

conditions that allow various generalized inverses to have range symmetric. 

 Notations: 

IVNFM = Interval valued Neutrosophic Fuzzy Matrix,  

IV =Interval valued,  

RS = Range Symmetric 

[P ,P ,P ] T

v L  = Transpose of the IVNFM [P ,P ,P ]v L  ,  

[P ,P ,P ] T

v U  = Transpose of the IVNFM [P ,P ,P ]v U  , 

[P ,P ,P ]v L 


 = Moore-Penrose inverse of IVNFM [P ,P ,P ]v L  ,  

[P ,P ,P ]v U 


  = Moore-Penrose inverse of IVNFM [P ,P ,P ]v U  , 

R  [P ,P ,P ]v L  = Row space of [P ,P ,P ]v L   

https://www.scopus.com/authid/detail.uri?authorId=58220200200
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R  [P ,P ,P ]v U  = Row space of[P ,P ,P ]v U  ,  

C  [P ,P ,P ]v L  = Column space of [P ,P ,P ]v L  ,  

C  [P ,P ,P ]v U  = Column space of [P ,P ,P ]v U   

2. Preliminaries and Definitions 

2.1 Preliminary 

If κ(y)=(yk[1], yk[2], yk[3],…, yk[n])∈ Fn×1 for y = y1, y2,..,yn  ∈F[1×n], where K is involuntary, The corresponding 

Permutation matrix is satisfied using the conditions 

(P.2.1) KK T = K T K = In,  K = K T , K 2 = I 

            By the definition of V, and R(x) = Kx 

(P.2.2) V =V T, VV T =V TV = In and V2 = I 

(P.2.3) R  [P ,P ,P ]v L  = R  [P ,P ,P ]v L  V , R  [P ,P ,P ]v L   =  

            R  [P ,P ,P ]v L  K 

       R  [P ,P ,P ]v U   = R  [P ,P ,P ]v U  V, R [P ,P ,P ]v U   = 

          R  [P ,P ,P ]v U  K 

   (P.2.4) R  [P ,P ,P ] V
T

v L  = R  V[P ,P ,P ] T

v L   , R V[P ,P ,P ]
T

v L   =   

      R  [P ,P ,P ] T

v L V   

      R  [P ,P ,P ] V
T

v U  = R  V[P ,P ,P ] T

v U  , R  V[P ,P ,P ]
T

v U   =   

           R  [P ,P ,P ] T

v U V   

Definition:2.1 IV Neutrosophic fuzzy matrix (IVNFM): An IV Neutrosophic fuzzy matrix P of order 

m×n is defined as P = [xij,< pijµ, pij pijν >]m×n where pijµ, pij and  pijν   are  the subsets of [0,1] which are 

denoted by pijµ = [pijµL, pijµU], pij = [pijL, pijU]  and pijν = [pijνL, pijνU] which maintaining the condition 0≤pijµU 

+ pijU+ pijνU ≤ 3, 0≤pijµL + pijL+ pijνL ≤ 3 , 0 ≤ pµL ≤ pµU ≤ 1, 0 ≤ pL ≤ pU ≤ 1, 0 ≤ pνL ≤ pνU ≤ 1. 

Example2.1 Consider an IV Neutrosophic Fuzzy Matrix 

[0,0],[1,1],[1,1] [0.1,0.3],[0.2,0.4],[0.2,0.5]

[0.1,0.3],[0.2,0.4],[0.2,0.5] [0,0],[1,1],[1,1]
P
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Lower Limit NFM,
0,1,1 0.1,0.2,0,2

[P ,P ,P ]
0.1,0.2,0.2 0,1,1

v L 

    
  

    
 

Upper Limit NFM, 
0,1,1 0.3,0.4,0.5

[P ,P ,P ]
0.3,0.4,0.5 0,1,1

v U 

    
  

    
 

[0,0],[1,1],[1,1] [0.2,0.4],[0.3,0.5],[0.1,0.5]
and

[0.2,0.4],[0.3,0.5],[0.1,0.5] [0,0],[1,1],[1,1]
Q

    
  

    

[0,0],[1,1],[1,1] [0.2,0.4],[0.2,0.4],[0.1,0.5]
Then,

[0.2,0.4],[0.2,0.4],[0.1,0.5] [0,0],[1,1],[1,1]
P Q

    
   

    

[0,0],[1,1],[1,1] [0.1,0.3],[0.3,0.5],[0.2,0.5]

[0.1,0.3],[0.3,0.5],[0.2,0.5] [0,0],[1,1],[1,1]
Q

    
  

    

[0,0],[1,1],[1,1] [0,0],[1,1],[1,1] [0.1,0.3],[0.2,0.4],[0.2,0.5] [0.1,0.3],[0.2,0.4],[0.2,0.5]P       

[0,0],[1,1],[1,1] [0.1,0.3],[0.2,0.4],[0.2,0.5] [0.1,0.3],[0.2,0.4],[0.2,0.5]P        

Definition 2.2. For IV Neutrosophic fuzzy matrix P is RS fuzzy matrix iff R [P ,P ,P ]v L  =  

R  [P ,P ,P ] T

v L   and R  [P ,P ,P ]v U   = R  [P ,P ,P ] T

v U  . 

Lemma 2.1.For a matrix  A belongs to  Fn    and a permutation  fuzzy matrix  P, R(A) = R(B)  iff  

R (PAQT ) = R(PAQT ) .  

Lemma2.2. For interval valued fuzzy matrix  P=KPTK iff  KP=( KP)(KP)T(KP),  IV fuzzy matrix 

 PK=( PK)(PK)T(PK) IV fuzzy matrix. 

3. Interval valued Secondary k-KS Neutrosophic fuzzy matrix 

Definition 3.1.For a Neutrosophic fuzzy matrix [P ,P ,P ] ,[P ,P ,P ] IVNFMv L v U nnP        

is an IV s - symmetric fuzzy matrix iff  [P ,P ,P ] [P ,P ,P ] T

v L v LV V     and [P ,P ,P ]v U    

 [P ,P ,P ] .T

v UV V   

Definition 3.2 For a Neutrosophic fuzzy matrix P  is an IV s- RS fuzzy matrix iff 
 

 [P ,P ,P ]v LR     [P ,P ,P ] ,T

v LR V V    [P ,P ,P ]v UR      [P ,P ,P ] .T

v UR V V   

Definition 3.3. “For a NFM [P ,P ,P ] ,v LA   [P ,P ,P ]v U    is an IV s-k- RS fuzzy matrix iff 
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 [P ,P ,P ]v LR     [P ,P ,P ] ,T

v LR KV VK   [P ,P ,P ]v UR     [P ,P ,P ] .T

v UR KV VK   

Lemma 3.1. For a Neutrosophic fuzzy matrix P is an IV s- RS Neutrosophic fuzzy matrix   

VA [P ,P ,P ] ,v LV    V[P ,P ,P ]v U  
 
IV RS Neutrosophic fuzzy matrix 

 AV [P ,P ,P ] Vv L  ,[P ,P ,P ] Vv U    is an IV RS Neutrosophic fuzzy matrix. 

Proof. Let Neutrosophic fuzzy matrix P  is s-RS fuzzy matrix  

    [P ,P ,P ] [P ,P ,P ] T

v L v LR R V V                            [Definition 3.2] 

    [P ,P ,P ] V [P ,P ,P ]
T

v L v LR R V     

 [P ,P ,P ] Vv L   is RS.                            [By P.2.2] 

    V[P ,P ,P ] VV [P ,P ,P ]T T

v L v LR R VV V     

    V[P ,P ,P ] V[P ,P ,P ]
T

v L v LR R     

 V[P ,P ,P ]v L   is RS. 

Similar manner 

    [P ,P ,P ] [P ,P ,P ] T

v U v UR R V V     

    [P ,P ,P ] V [P ,P ,P ]
T

v U v UR R V   
 

 [P ,P ,P ] Vv U   is RS. 

    V[P ,P ,P ] VV [P ,P ,P ]T T

v U v UR R VV V     

    V[P ,P ,P ] V[P ,P ,P ]
T

v U v UR R     

 V[P ,P ,P ]v U   is RS. 

Therefore, VP [P ,P ,P ] ,V[P ,P ,P ]v L v UV      is an IV symmetric. 

Example 3.1 Let us consider IV NFM 

[0,0],[1,1],[1,1] [0.1,0.3],[0.2,0.4],[0.2,0.5]

[0.1,0.3],[0.2,0.4],[0.2,0.5] [0,0],[1,1],[1,1]
P
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Lower Limit NFM, 
0,1,1 0.1,0.2,0,2

[P ,P ,P ] ,
0.1,0.2,0.2 0,1,1

v L 

    
  

    
 

Upper Limit NFM, 
0,1,1 0.3,0.4,0.5

[P ,P ,P ]
0.3,0.4,0.5 0,1,1

v U 

    
  

    
 

V
0,0,0 1,1,0

,
1,1,0 0,0,0

    
  

    
 K

1,1,0 0,0,0
,

0,0,0 1,1,0

    
  

    
 

1,1,0 0,0,0 0,0,0 1,1,0 0,1,1 0.1,0.2,0,2

0,0,0 1,1,0 1,1,0 0,0,0 0.1,0.2,0.2 0,1,1

0,0,0 1,1,0 1,1,0 0,0,0

1,1,0 0,0,0 0,0,0 1,1,0

T

LKVP VK
                

      
                

          
   
          

 

0,1,0.2 0,0.2,0.2

0.1,0.2,0.2 0,1,0.2

T

LKVP VK
    

  
    

 
T

L LKVP VK P
 

Similarly,
,

T

U UKVP VK P
 

L LP KP K
 

1,1,0 0,0,0 0,1,1 0.1,0.2,0,2 1,1,0 0,0,0

0,0,0 1,1,0 0.1,0.2,0.2 0,1,1 0,0,0 1,1,0
LKP K

                
      

                

0,1,0.2 0.1,0.2,0.2

0.1,0.2,0.2 0.1,1,0.2
L LKP K P

    
  

    
 

Similarly,
 U UP KP K

 

N (PL) = ( ) 0,0,0T

LN KVP VK    

Therefore P is symmetric NFM, range symmetric NFM, kernel symmetric, but not both κ 

–symmetric and s- κ - symmetric NFM. 

Example 2.2. Let us consider IV NFM, 
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[0.7,0.2],[0.3,0.4],[0.4,0.6] [0.5,0.4],[0.3,0.3],[0.4,0.2]

[0.5,0.4],[0.3,0.3],[0.4,0.2] [0.7,0.2],[0.3,0.4],[0.4,0.6]
P

    
  

    
V

0,0,0 1,1,0
,

1,1,0 0,0,0

    
  

    

1,1,0 0,0,0
,

0,0,0 1,1,0
K

    
  

      

 Lower Limit NFM, 
0.7,0.3,0.4 0.5,0.3,0.4

,
0.5,0.3,0.4 0.7,0.3,0.4

LP
    

  
    

  

Upper Limit NFM, 
0.2,0.4,0.6 0.4,0.3,0.2

P
0.4,0.3,0.2 0.2,0.4,0.6

U

    
  

    
 

1,1,0 0,0,0 0,0,0 1,1,0 0.7,0.3,0.4 0.5,0.3,0.4

0,0,0 1,1,0 1,1,0 0,0,0 0.5,0.3,0.4 0.7,0.3,0.4

0,0,0 1,1,0 1,1,0 0,0,0

1,1,0 0,0,0 0,0,0 1,1,0

T

LKVP VK
                

      
                

          
  
         




  
0.7,0.3,0.4 0.5,0.3,0.4

0.5,0.3,0.4 0.7,0.3,0.4

T

L LKVP VK P
    

  
    

 

P is symmetric, RS, s-κ-symmetric and hence s- k- kernel symmetric.

 Example 2.3. Let us consider IV NFM 

Lower limit NFM, 

0,0,0 0,0,0 1,1,0

[P ,P ,P ] 0.5,0.3,0.4 1,1,0 0,0,0

0.4,0.2,0.6 0.5,0.3,0.4 0,0,0

v L 

      
 

      
 
       

 

0,0,0 1,1,0 0,0,0 0,0,0 0,0,0 1,1,0

1,1,0 0,0,0 0,0,0 , 0,0,0 1,1,0 0,0,0

0,0,0 0,0,0 1,1,0 1,1,0 0,0,0 0,0,0

K V

              
   

             
   
                 

 

0,0,0 1,1,0 0,0,0 0,0,0 0,0,0 1,1,0

1,1,0 0,0,0 0,0,0 0,0,0 1,1,0 0,0,0

0,0,0 0,0,0 1,1,0 1,1,0 0,0,0 0,0,0

KV

              
   

            
   
                 

 

   

0,1,0 0,1,0 0,1,0

0,1,0 0,1,0 1,1,0

1,1,0 0,1,0 0,1,0

KV
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0,0,0 0,0,0 1,1,0 0,0,0 1,1,0 0,0,0

0,0,0 1,1,0 0,0,0 1,1,0 0,0,0 0,0,0

1,1,0 0,0,0 0,0,0 0,0,0 0,0,0 1,1,0

VK

              
   

            
   
                 

 

  

0,1,0 0,1,0 1,1,0

1,1,0 0,1,0 0,1,0

0,1,0 1,1,0 0,1,0

VK

      
 

      
 
         

T

LP VK 

0.5,0.8,0.4 0.4,0.8,0.6 0,0,0.4

0,0.7,0 0.5,0.7,0 0,0.7,0

0,0,0 0,0,0 1,0,0

      
 

     
 
         

0,1,0 0,1,0 0,1,0 0.5,0.8,0.4 0.4,0.8,0.6 0,0,0.4

0,1,0 0,1,0 1,1,0 0,0.7,0 0.5,0.7,0 0,0.7,0

1,1,0 0,1,0 0,1,0 0,0,0 0,0,0 1,0,0

T

LKVP VK

              
   

            
   
                 

0,0,0 0,0.2,0 0,0,0

0,0,0 0,0,0 1,0,0

0.5,0,0 0.4,0,0 0,0,0

T

L LKVP VK P

      
 

       
 
         

T

L LP KVP VK

 Hence P is not s- k-symmetric and not RS. But s- k- kernel symmetric. 

 i.e) N ( PL) = N (KVPLTVK ) = <0,0,0> 

Theorem 3.1. The following conditions are equivalent for IVNFMnP
 

(i) [P ,P ,P ] ,[P ,P ,P ] IVNFMv L v U nnP     
 
is an IV s   RS. 

(ii) KVP [P ,P ,P ] ,KV[P ,P ,P ]v L v UKV       is an IV RS. 

(iii) PKV [P ,P ,P ] ,[P ,P ,P ]v L v UKV KV      is an IV RS. 

(iv) VP [P ,P ,P ] ,V[P ,P ,P ]v L v UV       is an IV k- RS. 

(v) PK [P ,P ,P ] K,[P ,P ,P ] Kv L v U      is an IV s- RS. 

(vi) PT is an IV s-k RS. 

(vii)  R([P ,P ,P ] ) R[P ,P ,P ] VK ,R([P ,P ,P ] )T

v L v L v U       R[P ,P ,P ] VKT

v U   

(viii)  R([P ,P ,P ] ) R[P ,P ,P ] VK ,R([P ,P ,P ] )T T

v L v L v U       R[P ,P ,P ] VKv U   
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(ix)  C(KV[P ,P ,P ] ) KV[P ,P ,P ] ,C(KV[P ,P ,P ] )
T

T

v L v L v UC     

 KV[P ,P ,P ]
T

T

v UC    

(x) 
1[P ,P ,P ] VK[P ,P ,P ] VKH ,T

v L v L    [P ,P ,P ]v U   

1 1VK[P ,P ,P ] VKH for HT

v U IVNFM    

(xi) 
1[P ,P ,P ] H KV[P ,P ,P ] KV,T

v L v L    [P ,P ,P ]v U   

1 1H KV[P ,P ,P ] VKfor HT

v U IVNFM    

(xii) 
1[P ,P ,P ] KV[P ,P ,P ] VKH ,T

v L v L    [P ,P ,P ] T

v U   

1 1KV[P ,P ,P ] VKH for Hv U IVNFM    

(xiii) 
1[P ,P ,P ] H KV[P ,P ,P ] KV,T

v L v L    [P ,P ,P ]v U   

1 1H KV[P ,P ,P ] VKfor Hv U IVNFM    

Proof: (i) iff (ii) iff (iv) 

Let P
 
is an IV s   RS 

Let [P ,P ,P ]v L  is a s   RS. 

([P ,P ,P ] ) ( [P ,P ,P ] ),R([P ,P ,P ] ) ( [P ,P ,P ] ),T T

v L v L v U v UR R KV VK R KV VK             

               (By Definition 3.3) 

( [P ,P ,P ] ) ( [P ,P ,P ] ) ,R([P ,P ,P ] ) ( [P ,P ,P ] )T T

v L v L v U v UR KV R KV R KV                         

                  By (P.2.3) 

 KVP [P ,P ,P ] ,KV[P ,P ,P ]v L v UKV       is an IV RS 

VP [P ,P ,P ] ,V[P ,P ,P ]v L v UV      
  

is an IV - RS 

As a conclusion (i) iff (ii) iff (iv) is true 

 (i) iff (ii) iff (v)  

Let P is an IV s   RS 
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( [P ,P ,P ] ) ( [P ,P ,P ] ) ,R( [P ,P ,P ] ) ( [P ,P ,P ] ) ,T T

v L v L v U v UR KV R KV KV R KV         

( ( [P ,P ,P ] )) (( )[P ,P ,P ] ( ) )T T

v L v LR VK KV R VK VK VK     , 

R( ( [P ,P ,P ] )) (( )[P ,P ,P ] ( ) )T T

v U v UVK KV R VK VK VK     

[P ,P ,P ] ,[P ,P ,P ]v L v UAKV KV KV   
     is an IV RS 

[P ,P ,P ] ,[P ,P ,P ]v L v UAK K K   
     is an IV s- RS 

 As a conclusion (i) (iii)  (v) is true. (ii)  (ix) 

[P ,P ,P ] , [P ,P ,P ]v L v UKVA KV KV   
     is an IV RS 

      [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ]
T

v L v L v UR KV R KV KV      

  [P ,P ,P ]
T

v UR KV     

(ii)   (ix) is true. (ii)   (vii) 

is an IV RS. 

      [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ]
T

v L v L v UR KV R KV KV      

  [P ,P ,P ]
T

v UR KV  

       [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]T T

v L v L v U v UR R VK R VK         

 As a conclusion (ii)   (vii) is true. (iii)   (viii)  

[P ,P ,P ] ,[P ,P ,P ]v L v UPVK VK VK   
     

      [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ]
T

v L v L v UR VK R VK VK      

  [P ,P ,P ]
T

v UR VK 
 

       [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]
T T

v L v L v U v UR VK R VK R         

As a conclusion (iii)   (viii) is true. (i)   (vi)  
 

Let [P ,P ,P ] ,[P ,P ,P ] IVNFMv L v U nnA       is an IV s   RS 

([P ,P ,P ] ) ( [P ,P ,P ] ),R([P ,P ,P ] ) ( [P ,P ,P ] ),T T

v L v L v U v UR R KV VK R KV VK                 

                     (By Definition 3.3) 

[P ,P ,P ] , [P ,P ,P ]v L v UKVP KV KV   
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  ( ) ( [P ,P ,P ] , [P ,P ,P ] )T T

v L v UKVA KV KV     is an IV RS 

  ([P ,P ,P ] ,[P ,P ,P ] )T

v L v UA VK VK VK     is an IV RS  

   [P ,P ,P ] ,[P ,P ,P ]T T T

v L v UP      is an IV s   RS 

As a conclusion (i)   (vi) is true 

(i)   (xii)  (xi) 

Let P  is an IV s   RS 

Consider [P ,P ,P ]v L   is a s   RS 

([P ,P ,P ] ) (KV[P ,P ,P ] ),C([P ,P ,P ] ) (KV[P ,P ,P ] )T T

v L v L v U v UC C VK C VK                    

                By (P.2.3) 

1 1[P ,P ,P ] KV[P ,P ,P ] ,[P ,P ,P ] KV[P ,P ,P ]T T

v L v L v U v UH VK H VK           

for 1H .IVNFM As a result (i)   (xii)  (xi) true. 

(ii)   (xiii)  (x) 

[P ,P ,P ] ,[P ,P ,P ]v L v UAVK VK VK   
      is an IV RS 

[P ,P ,P ] ,[P ,P ,P ]v L v UAV V V   
       

is an IV - RS 

 (V[P ,P ,P ] ) (K V[P ,P ,P ] ),
T

v L v LR R K      

 R(V[P ,P ,P ] ) ( [P ,P ,P ] ),
T

v U v UR K V K   
     

[By Definition 3.3] 

 ([P ,P ,P ] ) [P ,P ,P ] ),
T

v L v LR R VK      R([P ,P ,P ] ) [P ,P ,P ] ),
T

v U v UR VK     

 ([P ,P ,P ] ) KV[P ,P ,P ] ),
T

T

v L v LR R K      ([P ,P ,P ] ) [P ,P ,P ]T

v U v UR R KV     

1 1[P ,P ,P ] [P ,P ,P ] VK ,[P ,P ,P ] [P ,P ,P ] VKT

v L v L v U v UVK H VK for H IVNFM           

As a conclusion   (ii)   (xiii)   (x) is true 

The above statement can be reduced to the equivalent requirement that a matrix be an IV s- RS for K = I in 

particular.  

Corollary:3.1 The following statements are equivalent for IVNFMnnP
 

(i) [P ,P ,P ] ,[P ,P ,P ] IVNFMv L v U nnP     
 
is an IV s-RS. 
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(ii) [P ,P ,P ] ,V[P ,P ,P ]v L v UVP V     
 
is an IV RS. 

(iii) [P ,P ,P ] V,[P ,P ,P ] Vv L v UPV     
 
is an IV RS. 

(iv) [P ,P ,P ] ,[P ,P ,P ]T T T

v L v UP       is an IV  s  RS. 

(v)        [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]T T

v L v L v U v UR R V R V          

(vi)        [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ] VT T

v L v L v U v UR R V R          

(vii)        KV[P ,P ,P ] V[P ,P ,P ] ,C KV[P ,P ,P ] V[P ,P ,P ]
T T

v L v L v U v UC C C          

(viii) 
1[P ,P ,P ] V[P ,P ,P ] VH ,T

v L v L    [P ,P ,P ]v U 

1 1V[P ,P ,P ] VH for HT

v U IVNFM    

(ix) 
1[P ,P ,P ] H V[P ,P ,P ] V,T

v L v L    [P ,P ,P ]v U   

1 1H V[P ,P ,P ] Vfor HT

v U IVNFM    

(x) 
1[P ,P ,P ] V[P ,P ,P ] VH ,T

v L v L    [P ,P ,P ] T

v U   

1 1V[P ,P ,P ] VH for Hv U IVNFM    

(xi) 
1[P ,P ,P ] H V[P ,P ,P ] V,T

v L v L    [P ,P ,P ]v U   

1 1H V[P ,P ,P ] Vfor Hv U IVNFM    

Theorem 3.2. For [P ,P ,P ] ,[P ,P ,P ] IVNFMv L v U nnP     
 
then any two of the conditions below imply 

the other 

(i) 
 
P is an IV - RS. 

(ii) 
  

P is an IV s-- RS. 

(iii)      [P ,P ,P ] VK[P ,P ,P ] ,R [P ,P ,P ]
T T T

v L v L v UR R       VK[P ,P ,P ] T

v UR    

Proof: (i) and (ii) implies (iii) 

      Let P is an IV s   RS 
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       [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]T T

v L v L v U v UR R VK R VK         
                    

                  [By Theorem 3.1]    

     [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ]T

v L v L v UR K K R K K K K      
      

  By Lemm[P ,P ,P ] [  . ]a 2 2T

v UR K K 
                                                                       

       [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]
T T T

T

v L v L v U v UR R VK R VK         
 

 (i) & (ii) implies (iii) is true
 

 (i)& (iii) implies (ii) 

 
P is an IV - RS 

         [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]
T T

v L v L v U v UR K K R K K R         

Therefore, (i) & (iii) 

       [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]T T

v L v L v U v UR R VK R VK         

         [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]
T T

v L v L v U v UR R KV R KV         

 is an IV s-k-RS            By Theorem 3.1P
 

  (ii) is true
 

(ii) & (iii) implies (i)
 

 
P is an IV s- - RS 

       [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]T T

v L v L v U v UR K K R K K K K R K K          There

fore,(ii) and  iii) 

       [P ,P ,P ] [P ,P ,P ] ,R [P ,P ,P ] [P ,P ,P ]T T

v L v L v U v UR R K K R K K         

[P ,P ,P ],[P ,P ,P ] IVNFML L vL v U nnP     
 
is an IV - RS”. 

Therefore, (i) is true, Hence the theorem. 

4. IV s    RS regular Neutrosophic fuzzy matrices 

In this section, it was discovered that there are various generalized inverses of matrices in IVNFM. 

The comparable standards for different g-inverses of an IV s-k RS Neutrosophic fuzzy matrix to be 

IV s-k RS are also established. The generalized inverses of an IV s   RS P corresponding to the 

sets P1, 2, P1, 2, 3 and P1, 2, 4 are characterized. 

Theorem 4.1: Let IVNFMnnP , Z belongs to P{1,2} and PW, ZW are an IV  s- κ- RS. Then P is an IV s- κ - 

RS iff [ , , ] ,[ , , ]v L v UW W W W W W W      is an IV s- κ – RS.  
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Proof:Let [P ,P ,P ] ,[P ,P ,P ] IVNFMv L v U nnP     

     [P ,P ,P ] [P ,P ,P ] [P ,P ,P ] [  P ,P ,P ]v L v L L L vL v LR WKV R K R WV        
 

     [P ,P ,P ] [P ,P ,P ] [P ,P ,P ]v L v L v LRRR WVV WVKKV KV        

   PH [P ,P , ] [P ,P ,n Pe  R ]ce, v L v LWKV R     

       R        WP is IV s- κ-RS[P ,P ,P ]v L

T

KV W VK   

 [P ,P ,P ] [ , , R ]T T

v L v L VKW W W     

 , R [ , ]v L

T VKW W W    , R [ , ]
T

v LW W WKV    

 
    [P ,P ,P ] [P ,P ,P ]v L

T
T

v LR KV R VK     

   [P ,P ,P ] [ , , ] S   R          VP is s- κ – IV Rv L v LKV WW W     

 , R [ , ]v LV WK W W   

Similarly, 

      S[ , , ] [H P ,ence, R KVW iP ]  s an IV R,P
T

v U v UKV W W W R KV   

    [P ,P ,P ] ,[P ,P ,P ]
T

v L L L vLR KV R KV         [P ,P ,P ] [P ,P ,P ]
T

v U v UKV R KR V   
 

    [ ,[ , , ] , , ]
T

v L v LR KV RW KVW W W W W    
 

    [ , , ] [ , , ]
T

v U v UKV RR KW VW W W W W     

] ,[ , , [ , , ]v L v UKV W W WX W WKV KV W   
        is an IV RS 

[ , , ] ,[ , , ]v L v UW W W W W W W      is an IV RS. 

Theorem 4.2:, Let IVNFMnnP
 

[ , , ] ,[ , , ]v L v UW W W W W W W    ∈P{1,2,3}, R(KV[P ,P ,P ] )v L    

 KV[X ,X ,X ]
T

L L vLR   ,R(KV[P ,P ,P ] )v U    KV[Z ,Z ,Z ]
T

U U vUR   .Then

[P ,P ,P ] ,[P ,P ,P ] IVNFMv L v U nnP       is IV s-κ- RS  [ , , ] ,[ , , ]v L v UW W W W W W W    
 
is 

IV s- κ – RS. 

Proof: Given P{1,2,3}, Hence , 
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,[P ,P ,P ] [ , , ] [P ,P ,P ] [P ,P ,P ]v L v L v L v LW W W       

 [ , , ] [P ,P ,P ][ , , ] [ , , ] ,v L L L vL v L v LW W W W W W W W W       

 [P ,P ,P ] [ , , ] [P ,P ,P ] [ , , ]v L v L v L v L

T

W W W W W W       
 

     Consider, R   R   By us  [P ,P ,P , ing P  P] [ , , ] [P P ,P ] W
T

T

v L v L v L

TKV VK PW W W      

  [P ,P ,P [ , , R ] ] 
T

v L v LW W WKV      

    2.3 R     [P ,P  ,P ]               [ ,         , .]v L v L

T

BW PW yW     

    R   [P ,P ,P ] [ , , ]v L v LW W W   
 

  R   [ , , ]v LW W W 
 

[ , , ] [ , , ]By using [P ,P ,P ] [ , , ]v L v L v L v LW W W W W W W W W           

   2.3 R                          , ]  [ , v L yWV W BWK P 
 

     [P ,P ,S P ]imilarly, we can consider, R   R [ , , ] [P ,P ,P ]v U

T

v U v U

T
TV W W WK VK     

  [P ,P ,P , , ]R [ ]
T

v U v UWKV W W     

    2.3 R     [P ,P  ,P ]               [ ,         , .]v U v U

T

BW PW yW     

    R                            [P ,P ,P ] [ , W, P]
T

v U v UW W W PW   
 
 

   

      R                               By using  [ , , ] W  Wv U WW W W P    

   2.3   R                           B, ]  , y[ v UK W W WV P   

If KVA is an IV RS 

      R[P ,P ,P ] [ ,P ,P , ]  P
T

v L v LR KV KV    
 

      R[P ,P ,P ] [P ,P , ]   P
T

v U v UKV KR V   
 

      R  ,[ , , ] [ , , ]
T

v L v LVWR KV KW W W W W    

[ , ,[ , ] ] [ , , ]v L v UKVX K WV KVW W W W W     is an IV RS. 
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[ , , ] ,[ , , ]v L v UW W W W W W W      is an IV s-k RS. 

Theorem 4.3: Let IVNFMnnP  , Z ∈ A {1, 2, 4}, R(KV[P ,P ,P ] )T

v L   KV[ , , ] ,v LR W W W   

 R(KV[P ,P ,P ] ) KV[ , , ]T

v U v UR W W W    . Then KVP is an IV s- κ-Ks iff 

[ , , ]v LW WW W  ,[ , , ]v UW W W    is an IV s- κ- RS. 

Proof: Given, P {1, 2, 4}, Hence ,[P ,P ,P ] [ , , ] [P ,P ,P ] [P ,P ,P ]v L v L v L v LW W W         

,[ , , ] [P ,P ,P ] [ , , ] [ , , ]v L v L v L v LW W W W W W W W W         

 [ , , ] [P ,P ,P ] [ , , ] [P ,P ,P ]v L v L v L v L

T

W W W W W W         

      ]Consider, R   R[P ,P ,P ] [ , ,       By using  [P ,P , PP ]  PWv L v L

T
T T

v L PW WKV VKW      

  [P ,P ,P ] [ , , ]
T

v L v LR KV W W W   

    2.3[P ,P ,P ] [ , , ]v L

T

v LR W W W By P   
 

  [P ,P ,P ] [ , , ]v L v LR W W W     [ , , ]v LR W W W   

    2.3KV[ , , ]v LR W W W By P   

      [P ,P ,P ] [ , , B  R       y u] s] [P i, PP ng P  W,P  v U v U v U

T
T TR PWKV VKW W      

  [P ,P ,P ] [ , , ]   v U U

T

vR KV W W W     

    2.3[P ,P ,P ] [ , , ]v U

T

v UR W W W By P     

 [P ,P ,P ] [ , , ] (P )T

v U v UR W W W W PW   
     

 [X ,X ,X ]U U vUN      2.3KV[ , , ]v UR W W W By P   

If KVP is an IV RS  

      R[P ,P ,P ] [ ,P ,P , ]  P
T

v L v LR KV KV    

      R[P ,P ,P ] [P ,P ,  P ]  
T

U U vU U U vUKV KR V   
 

      R  ,[ , , ] [ , , ]
T

v L v LVWR KV KW W W W W    
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[ , ,[ , ] ] [ , , ]v L v UKVX K WV KVW W W W W     is an IV RS. 

[ , , ] ,[ , , ]v L v UW W W W W W W      is an IV s-k RS. 

The aforementioned Theorems reduce to comparable criteria, in particular for K = I, for different 

g-inverses of interval valued s- RS to be IV secondary RS.  

Corollary 4.1: For IVNFMnnP , Z  P {1, 2} and [P ,P ,P ] [ , , ]v L v LP WW W W     

,[P ,P ,P ] [ , , ] ,v U v UW W W     [ , , ] [P ,P ,P ] ,[ , , ] [P ,P ,P ] ,v L v L v U v UW W W W W W WP           are 

is an IV s- RS. Then P is an IV s- RS iff [ , , ] ,[ , , ]v L v UW W W W W W W      is an IV s- RS.  

Corollary 4.2: For IVNFM ,nnP
 
W  P {1, 2, 3}, R(KV[P ,P ,P ] )v L   V[ , , ]

T

v LR W W W   

,R(KV[P ,P ,P ])U U vU   V[ , , ] .
T

v UR W W W  Then P is an IV s- RS iff [ , , ]v LW WW W   

,[ , , ]v UW W W    is an IV  s- RS.
 

Corollary 4.3:For IVNFMnnP , WP, R(V[P ,P ,P ] )T

v L   V[ , , ] ,R(V[P ,P ,P ] )
T

T

v L v UR W W W    , 

,  V[ , , ] .v UR W W W  Then P is an IV  s- RS  iff  W  is an IV s-RS. 

5. Conclusion:  

We present equivalent characterizations of an IV k- RS, IV RS, IV s- RS, IV s-k RS NFM. Also, we give the 

example of s-k-symmetric fuzzy matrix is s-k- RS Neutrosophic fuzzy matrix the opposite isn't always 

true. We discuss various g-inverse associated with a  regular matrices and obtain characterization of set 

of all inverses. Equivalent conditions for various g-inverses of an Interval Valued s-k-range Symmetric 

and s-range Symmetric NFMs are determined. In future, we shall prove some related properties of 

Interval Valued Secondary k-range Symmetric Neutrosophic Fuzzy Matrices. 
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Abstract 

 Neutrosophic ranking studies are an important part of medicine that determines the ranks of 

tests, risk factors, attributes, and medical suppliers. Neutrosophic clustering in healthcare can split 

data into groups (called clusters) to determine usage patterns for purposes, in which objects within 

the same cluster have similar properties and objects of different clusters have different properties. 

Like neutrosophic clustering, neutrosophic classification studies are also a data mining technique. 

Neutrosophic pattern recognition is a machine learning process to decipher the underlying patterns 

in the concerned subjects. Neutrosophic time series analysis tries to find patterns and rules depending 

on time, neutrosophic recognition of medical images belongs to this type of study. This article comes 

as an attempt to review and shed light on almost all studies and subjects that used neutrosophic 

studies and algorithms related to medicine and healthcare for dozens of articles and authors.  

 

Keywords: Neutrosophic logic, medical diagnosis, healthcare, neutrosophic sets, neutrosophic soft 

sets and lung disease diagnosis. 
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1. Introduction 

Indeterminacy stems from real-world problems. It is well known that between the two colours white 

and black, there are unlimited grey colour gradients. It is the same as the infinite decimal numbers 

between zero and one. Also, between absolute truthiness and absolute falseness, there are many 

situations and logistic phrases can hold a percentage of truth with a percentage of false, as well as, 

when the concepts get mixed up, we will see the situation that should be true may be regarded as 

absolutely false and vice versa. The solver won’t be able to meet all the requirements unless the 

solving tools are flexible and soft and cover the incompleteness, inconsistency, and indeterminate 

data to analyze them fairly without neglecting any part of the data. 

In medicine, it is not applicable to describe medical concepts and relationships precisely. Consider 

the phrase (If the back pain is severe and the patient is old, then apply acupuncture to a certain point 

for a long time), aiming to program the above statement, we need to reformulate it as an If-Then loop 

regarded as a model in a computer system, so we need a mathematical interpretation for the 

following linguistic terms: 

‘’ serve’’, ‘’old’’, ‘’certain point’’, and ‘’long-time’’, are all linguistic words that are vague and 

contain indeterminate boundaries. This is why the information on healthcare should be 

interpreted by neutrosophic methodologies. 

Imperfect knowledge is unavoidable in medicine and the nature of medical data causes many 

uncertainties in medical decision‑making, arising from a number of areas. 

such as an incomplete understanding of biological mechanisms, imprecise test 

measurements, uncertainty about normal ranges for test results, the simultaneous presence 

of more than one condition, and missing information occurring in a large percentage of cases. 

The Romanian scholar Florentin Smarandache set up the neutrosophic sets, neutrosophic 

numbers, neutrosophic theory, neutrosophic logic, and neutrosophic probability in 1995 [1], 

he also presented hundreds of new unfathomable concepts, and theorems in neutrosophic 

calculus, neutrosophic probability and statistics, neutrosophic number theory, neutrosophic 

graph theory, neutrosophic geometry and so on, especially, in decision- making. 
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Maria et al. [2] used the concepts of single-valued neutrosophic sets (𝑆𝑉𝑆) with a score 

function S of a single-valued neutrosophic function based on the truth-membership degree, 

indeterminacy-membership degree, and falsity membership degree, with neutrosophic 

statistic tool (i.e. neutrosophic frequency distribution) to development the assertive 

communication competencies that allow nursing professionals to keep a good relationship 

with their therapeutic team and the patient and avoid professional burnout. 

Medicine is one of the fastest-growing fields when compared to other computer-aided 

technology. This fast growth, together with the vague nature the medicine, brings the need 

for different strategies and creative technologies such as neutrosophic logic or its 

combination with other artificial intelligence techniques. 

All of us suffered from COVID-19, its propagation and virulence, which has constituted the 

second global pandemic of the 𝑋𝑋𝐼 century, reasons why have generated social distancing as 

a preventive measure, Marylin et al [3] point out the uncertainties in discursive analysis using 

a qualitative research approach in line with the Smarandache proposal. Datamining tool 

orange was adapted to the neutrosophic environment, improves the social and emotional 

facilitated by parents strengthens the development of adaptive behaviour skills, and 

generates active and coherent of the special educational needs of students, strengthening 

their inclusive education. 

Because of its ability to extend the classical Boolean logic (two-valued logic) of the computer 

applications, healthcare computer-aided applications employ neutrosophic logic to handle 

the semantics of the related domain. It compares, constraints, extends, and particularizes 

concepts as humans do in reasoning; it connects symbols and concepts. 

This article is arranged as follows: the upcoming section (section two) has been dedicated to 

demonstrating neutrosophic logic, while section three is regarded as the main part entitled ‘’ 

Neutrosophic Logic in Medical Domain’’ covering the common neutrosophic applications 

and techniques in medicine. As well as the uncertainty of medicine will be explained in detail 

in this section. The ending section will be the conclusion section. 
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2. Preliminaries of Neutrosophic Theory 

As previously mentioned, the neutrosophic set has been presented in its current seemliness 

by Florentin Smarandache in 1995 [1], Huda et al [4] gave the differences between fuzzy logic 

and neutrosophic logic in the application of linear programming as follows: 

In Fuzzy Linear Programming Problems (𝐹𝐿𝑃), the optimal solution depends on a limited 

number of constraints, therefore, much of the information that should be collected and have 

a good impact on the solution is absent, this is exactly what Neutrosophic Linear 

Programming (𝑁𝐿𝑃) provides. 

Given the power of 𝐿𝑃, one could have expected even more applications. This might be 

because 𝐿𝑃 requires many well-defined and precise data which involves high information 

costs. In real-world applications certainty, reliability, and precision of data are often illusory.  

Being able to deal with vague and imprecise data may greatly contribute to the diffusion and 

application of 𝐿𝑃 . Neutrosophic Linear Programming problems can reformulate the soft 

linear programming problems through three membership functions which are truth 

membership function, indeterminacy membership function, and falsity membership 

functions, while fuzzy linear programming deals with just one membership function. 

We won't be unfair if we say that neutrosophic logic can be defined as the efforts of 

simulation of the human thinking model, which uses linguistic variables and concepts, into 

computer applications. In this way, digital computers can easily be able to handle linguistic 

variables and their degrees of membership, non-membership, and indeterminate 

membership rather than fuzzy or crisp systems.  

2.1 Neutrosophic Sets 

The neutrosophic set has a meaning that differs from the fuzzy set or intuitionistic fuzzy set, 

where the fuzzy set has members belonging to it partially, while the intuitionistic set has 

members partially belonging to it side by side with partially un-belonging to it. wherein any 

member can find a well belonging definition to any set in the perspective of neutrosophic 

theory, since any element either belongs partially to its truth membership function or belongs 
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partially to its falsity membership function, there is another chance to belonging to an 

indeterminate membership function, the following examples can clearly determine the global 

comprehensive vision of neutrosophic thought: 

Ex.1 [5] 

Suppose 5 professors conduct PhD dissertations in neutrosophic statistics. Each professor has 

a number of graduate students, but some students are undecided about whether to pursue 

their dissertations in classical or neutrosophic statistics. The professors represent the clusters. 

One randomly selects 2 professors to interview their students about research in neutrosophic 

statistics. But, because some students are undecided (indeterminate) with respect to their 

research topic, we have a neutrosophic cluster sampling.  

Ex.2 [5] 

For example: tossing a coin on an irregular surface which has cracks, the coin can fall inside 

a crack on its edge, and thus one gets neither head, nor tail, but indeterminacy.  

Ex. 3 [6] 

A cloud is a neutrosophic set, because its borders are ambiguous, and each element (water 

drop) belongs with a neutrosophic probability to the set. (e.g. there are a kind of separated 

water drops, around a compact mass of water drops, that we don't know how to consider 

them: in or out of the cloud). 

2.2 Why the Neutrosophic Set is an Essential Tool in Medical Diagnosis? 

 Neutrosophic sets suit the requirements of medical data representation. It is very rare that 

a doctor tends to diagnose/ judge the disease in definite environments. Imprecision could be 

due to the lack of confidence on the part of patients in reporting symptoms, or imperfection 

leads to doubt about the value of a variable, a decision to be taken or a conclusion to be drawn 

for the actual symptom. Multiple factors could lead to uncertainty like incomplete 

knowledge (ignorance of the patient, limited view of a system because of its complexity), 

stochasticity (the case of intrinsic imperfection where a typical and single value does not 

exist), or acquisition errors (intrinsically imperfect lab observations, the quantitative errors 
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in measures). So, the neutrosophic technique would have indeterminate features and 

behaviors associated, and there would always be unanticipated happening conditions which 

are uncontrollable - we mean the indeterminacy plays a role as well [7]. 

 

2.3. Mathematical Representation of Neutrosophic Set 

Definition2.3.1 [8]  

Let 𝑋 be a space of points (objects), with a generic element in 𝑋 denoted by 𝑥. A neutrosophic 

set 𝐴 in 𝑋  is characterized by a truth-membership function 𝑇𝐴 , an indeterminacy-

membership function 𝐼𝐴 and a falsity-membership function 𝐹𝐴. 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) are real 

standard or non-standard subsets of ]0 − ,1 +  [. That is: 

𝑇𝐴: 𝑋 →] 0− , 1+[       

𝐼𝐴: 𝑋 →] 0− , 1+[ 

𝐹𝐴: 𝑋 →] 0− , 1+[ 

Definition 2.3.2[8] 

(Single Valued Neutrosophic Set). Let 𝑋 be a space of points (objects), with a generic element 

in 𝑋 denoted by 𝑥. A single valued neutrosophic set (𝑆𝑉𝑁𝑆) 𝐴 in 𝑋 is characterized by truth-

membership function 𝑇𝐴 , indeterminacy-membership function 𝐼𝐴 and falsity-membership 

function 𝐹𝐴. For each point 𝑥 in 𝑋, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈  [0,1].   

 

2.4 Neutrosophic’s Analytical Comparison to Other Logics [9] 

Neutrosophic logic is a far better representation of real-world data/executions because of the 

following reasons:  

a. Fuzzy logic though ensures multiple belongingness of a particular element to multiple 

classes with a varied degree but capturing of neutralities due to indeterminacy is missing, it 

is further limited by the fact that membership and non-membership value of an element to a 

particular class should sum up to 1.  
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b. Similarly other allied logics like Lukasiewicz logic considered three values (1, 1/2, 0), Post 

considered m values, etc., but all are handicapped with the constraint that values can vary 

between 0 and 1 only.  

c. Intuitionistic fuzzy logic though deals with indeterminacy parameter related to a particular 

element, but this fact is still constrained with the condition that, for any element  x , 

indeterminacy value (x) = 1 – [membership value(x) +  non − membership value(x)].  There 

is no provision of distinguishing between relative and absolute truth/indeterminacy/falsity. 

d. In a rough set, an element 𝑥 on the boundary line cannot be classified as a member of a 

particular class nor of its complement with certainty; but can be very well described by 

neutrosophic logic, such that x (T, I, F) where T, I, F are standard or non-standard subsets of 

the nonstandard interval ] 0− , 1+[. 

3. Neutrosophic Logic in Medical Domain 

As shown below figure 1 displays the conceptual membership functions of blood 

sugar=normal, the neutrosophic logic would help in explicitly listing out three important 

components of the input values captured: truthiness, indeterminacy, and falsity.   
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Again, Figure 1 shows the conceptual membership functions of blood sugar level=normal; designed 

for capturing the truthiness, indeterminacy and falsity of the input record. The designing of these 

three membership functions would vary considerably for different parameters. Here in this figure, 

the captured input ( 𝐼 )  is mapped onto the three membership functions, it is assumed that 

indeterminacy related to deciding whether the blood sugar is normal is high on the tapering ends of 

the truth membership functions designed and falsity membership function corresponds to the lab 

equipment error or degradation of equipment noticed which can give erroneous results. So as per 

Figure 1, the three-component values generated after neutrosophication of captured input 𝐼  is 

𝐼(𝑡1, 𝑖1 = 0, 𝑓1) . Figure 2  discusses the neutrosophication process applied to multiple parameters 

simultaneously. As it is very common in the medical domain to infer D, analysis of multiple 

parameters is required. Here in this figure, it is assumed that analysis of 4 input parameters is 

required to infer D. As clearly shown input parameter (𝐼1) lies in the indeterminacy zone (which 

could be possible due to lack of information or early onset of the disease during which input 𝐼1 cannot 

be captured); input parameters (𝐼2  and 𝐼3 ) lies in the truth zone indicating favor for D and the 

corresponding mapping shows 𝐼3  favors strongly for D in comparison to 𝐼2  as 𝑡1 >  𝑡2  ; input 

parameter 𝐼4 contradicts the possibility of 𝐷 by 𝑓1 value. 

 

Fuzzy logic designs only the truth membership functions that give a description of the degree of 

membership value to a particular class. Contrary to fuzzy logic in which there is no provision of 
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capturing indeterminacy corresponding to non-availability of information, or falsity functions to 

record the imprecision or degradation of the equipment with which input is captured, neutrosophic 

logic is a better representation of the medical data as it gives the clear insight of the truthiness, 

indeterminacy and falsity associated with the input captured. This should indeed be of considerable 

interest to the medical artificial intelligence community, because, as indicated above, medicine is 

essentially a continuous domain where the captured inputs could have uncertainty, indeterminacy 

and sometimes falsity associated [9]. 

The incorporation of neutrosophic logic in the medical models would retain the continuous behavior 

as displayed by the fuzzy logic. The medical domain is the field where there is indeterminacy, 

unknown, hidden parameters, imprecision, the high conflict between sources of information, and 

non-exhaustive or non-exclusive elements of the frame of discernment so neutrosophic could be 

applied. Similar to fuzzy systems, depending on the design of the rule base of the neutrosophic 

medical model, the output of such a system can be a continuous function (Sugeno model [10]) or it 

can be a single value output (Mamdani and Tsukamoto model [11], [12]). Generally, the continuous 

output function would be a better estimation of the modelled medical relationship than its underlying 

discrete specification. As suggested neutrosophic medical systems can be utilized for neutrosophic 

scores; continuous truth/indeterminate/falsity versions of conventional score schemes. The approach 

of incorporation of neutrosophic sets in the medical domain would lead to tabular or rule-based 

mapping from input to output variables effectively implementing a continuous control law. 

Neutrosophic qualitative simulation and, more generally, neutrosophic model-based diagnosis are 

promising candidates for future research. The proposed neutrosophic logic theory is not a substitute 

for existing fuzzy medical models, but an extension and enhancement of the classical AI approach. 

Due to the inherent advantages of neutrosophic sets, such systems would address medical problems 

more adequately as discussed in previous sections. What makes the inclusion of neutrosophic logic 

in the medical domain a powerful tool is its desirable properties of allowing continuity, gradation of 

reality, capturing of truthiness, indeterminacy, and falsity. 
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3.1 Miscellaneous Neutrosophic Works in Medicine 

 If we focused on the work of G. Shahzadi et al. [13] in medical diagnosis, we would find that 

they adapted and normalized the Hamming distance and Euclidean distance to be appropriate for 

medical diagnosis via distances between neutrosophic sets. They aimed to find an accurate diagnosis 

for three patients and gave the relation between neutrosophic sets for all symptoms of the 𝑖 − 𝑡ℎ 

patient from the 𝑘 − 𝑡ℎ diagnosis. the symptoms of the three patients were Temperature, Insulin, 

Blood pressure, Blood plates, Cough and finally, they were diagnosed with Diabetes, Dengue, and 

Tuberculosis. The readers can return to their article to see two algorithms with two different 

techniques, those two algorithms with fourteen tables of data enable the authors to identify that the 

first patient suffers from Dengue, the second patient suffers from Diabetes, and the last patient suffers 

from Tuberculosis. There are many other fields of the application area of neutrosophic logic in 

medicine, but not limited to, are as follows: 

1. Managing malaria disease. 

2. HIV infection cell determination. 

3. Anaesthesia monitoring. 

4. Image segmentation for tumours. 

5. Lymph disease. 

6. Monitoring and control in intensive care units. 

7. Lung disease diagnosis. 

8. Cancer risk prognosis. 

The computer-based tools for medical decision-making help medical staff diagnose disease. One of 

these computer-based tools that ease medical decision-making is the neutrosophic expert system 

which has proven to be useful in the quantitative analysis and qualitative evaluation of medical data, 

by achieving the correctness of results. 

The following Algorithm was used in the upcoming case study as an example published by M.N. 

Jafar et al [14], 
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Algorithm: 

In the forthcoming steps, the authors describe a process used for medical diagnosis by neutrosophic 

soft sets (NSS), at the hypothesis that 𝑃° is a set of patients, �̆� is the set of symptoms, 𝐷~ is the set of 

diseases. 

The set of diseases related to their symptoms is obtained from the symptom-disease relation 𝑅1. 

The patient symptoms set has obtained the relation of the symptoms 𝑄1. 

Evaluate their corresponding complement matrices 𝑅2
̂

 and 𝑄2. 

The relation between the patient symptoms and the disease matrices is 𝑇1. 

Compute relation 𝑇2  called patient non-symptoms non-disease matrices. 

Evaluate �̆�𝑇1
 and �̆�𝑇2

 neutrosophic soft sets by using the definition of (evaluation of neutrosophic soft 

sets). 

Compute �̆�𝑘, i.e. the higher value of the possibility of the patient suffering from that disease. 

Using the above algorithm in the following case study: 

Assume that the three patients 𝑃1 , 𝑃2 , 𝑃3  in the hospital with symptoms of headache, temperature and 

severe pain are represented by 𝑐1, 𝑐2, 𝑐3. Now consider 𝑃° = {𝑃1, 𝑃2 , 𝑃3 } represents the patients and 

�̆� = {𝑐1, 𝑐2, 𝑐3. } Shows the symptoms and 𝐷~ = {𝑑1
~, 𝑑2

~, 𝑑3
~} shows the diseases: fever, typhoid, and 

malaria.  

Solving the above case study using the mentioned algorithm, the authors conclude that there are the 

following possibilities for the patients suffering from the disease: 

The patient 𝑃1  has 0.85 possible suffering from fever, 0.9 suffering from typhoid, and 0.5 suffering 

from malaria. The patient 𝑃2  has 0.9  possible suffering from fever, 0.8  possible suffering from 

typhoid, and 1 possible suffering from malaria which means the patient 𝑃2  guaranteed suffering from 

malaria. The patient 𝑃3  has 0.8 possible suffering from fever, 0.3 suffering from typhoid, and 0.7 

suffering from malaria. 

4. Conclusion 

 This article reviews the applications of the uncertainty mathematical tools/ neutrosophic logic in 

the medical domain. Dozens of papers and authors are interested in medical diagnosis, decision-
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making, pattern recognition studies, and performance comparison studies. The neutrosophic nature 

enables the computer programs' algorithms in medicine fields and healthcare to be flexible by taking 

into consideration all possible values including the indeterminate ones, and by making the process 

more robust when compared to traditional techniques with the feature of taking indeterminate data 

into consideration, and by efficiency by using more available data. 
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Abstract: Pooling the opinions of the decision makers about premier alternative from a list of given 

choices is the most crucial phenomenon theory of decision making. The MSM operator is an 

effective approach and can identify the collective connection among various input viewpoints. So, 

tacking the fully benefit of MSM operator, this paper presents a new novel in depth investigation of 

MSM in context of Neutrosophic fuzzy variables. Initially we developed the structure of 

One-dimension uncertain linguistic interval valued neutrosophic fuzzy variables, deliberate their 

fundamental properties along with meaningful laws. Moreover, we encompass the MSM operator 

to the extent of one dimensional uncertain-linguistic Neutrosophic fuzzy variables and introduced 

some novel aggregations operators including one-dimensional uncertain linguistic interval-valued 

Neutrosophic fuzzy, weighted fuzzy and ordered weighted fuzzy McLaurin symmetric mean 

operator. The practical utilization of the proposed aggregation operators in business analytic are 

also included in the paper. In last comparison is made between current vs old studies which 

proved solidity and reliability of the new operator’s vs existing operators in the literature. 

Keywords: Linguistic numbers; Fuzzy variables; MSM; Aggregation operators; MCDM; Business 

analytic; Interval Valued fuzzy Data 
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1. Introduction 

There exist imprecise, uncertain, and vague situations in real life, like in engineering, 

economics, trade, life, and social sciences. The techniques of classical mathematics are not 

fruitful to meet this problem. Therefore, a number of models, mainly including the theory 

of probability, fuzzy set [1] and its interval-valued extension [2], soft set (SS) [3], 

intuitionistic-fuzzy set [4], Pythagorean fuzzy-Set [5], linguistic term sets [6] and 

neutrosophic sets [7] with some of its modifications and extensions [8, 9,10] etc. have been 

presented to take in hand such situations. 

In decision making strategies, indeterminacy is a substantial factor existent in theory of 

decision. In review forms, consider three assortments for sexual category: (1) Male (2) 

Female (3) Other. Therefore, the imprecision and uncertainty with indeterminacy cannot be 

described merely with the assistance intuitionistic and/or soft sets. Thus, Smarandache [7] 

coined the perception of neutrosophic sets (NSs). Beyond, NS comprises truth, false and 

indeterminacy membership functions. Currently, the research on the theory of NSs has 

been established vibrantly [11]. Later, NSs were hybridized with SSs to initiate 

neutrosophic soft set (NSS) [12]. Subsequently, several researchers have worked on this 

idea [12-16]. Wang et al. [17] commenced the conception of an IVN set and later Zhang et al. 

[18] applied this notion in theory of multiple attributes. Unlike IFS, centralized calculations 

are more adaptable as they have fewer limitations. Utilizing a neutrosophic set ensemble 

can effectively analyze uncertainty in datasets, particularly those of a significant scale. In 

addition, the concept behind this collection has developed and united with SSs to generate 
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a new kind of set known as interval-valued neutrosophic set. Here are [19-25] also some 

significant characteristics of these sets when subjected to various algebraic operations. 

For the sake of tracking down the finest alternative while solving MCDM issues and 

other related complications, one of the critical phases is aggregation whereby the views of 

the decision experts are required to be aggregated by using suitable technique of 

aggregation.  

A straightforward way to understand this task is to see it as a MCDM issue, where the 

selection of suitable aggregation operators is crucial.  The role of aggregation operators is 

like an appliance to pool the estimations of several decision makers into a collective one. In 

the decision-making area, there are many aggregation operators e.g., the arithmetic and 

geometric weighted average [26, 27]. Various strategies can be used in literature to combine 

numbers using different methodologies (Aggregation operators) in research areas. A 

method called intuitionistic fuzzy soft aggregation operator, developed by Garg and Arora 

[26], was created to combine information for decision making. Ye [27] introduced two 

innovative methods for combining data using trapezoidal intuitionistic fuzzy numbers. 

Awang et al. [28] and his colleagues proposed using the SVNWA operator as a method for 

combining information. Later, the notion of INWA is more explored and expanded by 

Huang et al. [29]. Zhang et al. [30] discussed the (INNWA) and Geometric-averaging 

operators.  The primary emphasis of this paper is on resolving MCDM problems with 

heterogeneous priority levels for criteria, and it suggests employing neutrosophic uncertain 
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linguistic factors to simplify the computation. The two eye catching operators included 

IVNWAA and IVNWGA was developed by Hussain et al. [31]. Aiwu et al., [32] put 

forward the IVNSGWA, a generalized weighted aggregation operator for neutrosophic 

aggregates incorporating interval values. Peng and Wang [33] introduced multiple 

aggregation operators for combining multi-valued neutral environments. Recently, Hamid 

et al. [34] presented multistage decision analysis in the framework of q-rung m-polar fuzzy 

setting. In [35], Naeem et al. employed generalized aggregation operators for medical 

diagnosis in Pythagorean fuzzy soft environment. Riaz et al. [36] made use of weighted 

aggregation operators for investment strategy using multipolar Pythagorean numbers. Ye 

[37] originated the idea of a (TNNWAA) and (TNNWGA) operator in the framework of 

trapezoidal Neutrosophic-number. Furthermore, a modified “TOPSIS” approach is 

introduced for handling trapezoidal opacification neutrosophic data. Jana and Pal [38] 

studied (SVNSWA) and (SVNSWGA) using single-valued neutrosophic soft environment. 

Neutrosophic Frameworks with Applications can be explained in simpler terms as the use 

of a specific approach to analyze and solve problems. This approach considers three 

different perspectives - true, false, and indeterminate - and considers their interplay to 

come up with practical solutions. These frameworks can be applied in various fields and 

have practical uses in problem-solving and decision-making processes. Abdel et al. [39] 

discussed a strategy for managing rural water administration using a Coordinates 

Neutrosophic Territorial Administration Positioning Strategy. Hafeez et al. [40]. Developed 

the Neutrosophic MCDM Model to rank and evaluate different ways of managing 
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healthcare waste to achieve better effectiveness and sustainability. Karak et al. [41] created 

a plan on how to solve transportation problems in a unique situation.  

The MSM operator has gained the attention of the researchers working on decision 

making techniques from the past few years. Wang et al. [42] suggested single-Valued 

neutrosophic linguistic MSM aggregation operator by making use of operational laws of 

the underlying set. Wu et al. [43] presented some practical utilities of single valued 

neutrosophic linguistic set (SVNLS). In current, some generalized aggregation-operators 

have been efficaciously explored by many researchers and scholar across the globe. Some 

prominent operators are studied in [44-47]. Even though, the aggregation operators 

presented so far have far-flung applications in decision making, but sometimes there exist 

complex fuzzy information where these operators fail to work. According to the best 

knowledge of authors, no worth mentioning work has been done on the utility of 

one-dimensional uncertain linguistic interval-valued neutrosophic fuzzy variables. 

To fill the gaps followings study is conducted and for smooth understanding of the 

notions presented: The basic ideas in Section-2 can be viewed as an introductory overview. 

In the very next section, operational laws, modified operational laws, expectancy, and some 

basic attributes of ODULIVNF variables are studied. Along with some novel operators 

meant for aggregation in this section have also been presented there. These operators 

include un-weighted, weighted, and ordered weighted one-dimensional uncertain 

linguistic interval-valued neutrosophic fuzzy MSM operator. An MCDM via proposed 

scheme as well as an algorithm is added in the section four. The same section also presents 

an MCDM model based upon one-dimension uncertain linguistic interval-valued 

neutrosophic fuzzy variables i.e., practical utility of the proposed aggregation operators in 
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business analytics. Comparison study is of the current technique with some existing 

methodologies is also made part of the same section. Results and discussion are presented 

therein too. Finally, Section-5 concludes the article. 

Motivation: 

The MSM operator has gained attention of the researchers working on decision making 

techniques from last decade because of its valuable performance. In recent years, there have 

been new methods developed for integrating data that have proven to be effective. 

Amongst all, MSM operator is a prominent because this operator is empowered with the 

attribute of catching the conjoint association amongst the multiple input opinions. Even 

though, the aggregation operators based on MSM have far-flung applications in 

decision-making, but sometimes there exist complex fuzzy information where these 

operators fail to work. According to the best knowledge of authors, no worth mentioning 

work has been done on the utility of one-dimensional uncertain linguistic interval-valued 

neutrosophic fuzzy variables. To reduce such issues in the way of fuzzy theory and to fill 

this gap the following research is conducted. 

Novelty: 

The primary aim of this article is to meet this end by initiating the notion of 

one-dimensional uncertain linguistic interval-valued neutrosophic fuzzy variables. 

Accompanied by their various necessary characteristics. This model is equipped with the 

ability to take in hand uncertain statistics and moderate the complexity prevailing in the 

data. Operational laws modified operational laws, expectancy, and some basic attributes of 

these variables leaded us towards some novel MSM operators for aggregation. These 

operators include un-weighted, weighted, and ordered weighted one-dimensional 
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uncertain linguistic interval-valued neutrosophic fuzzy MSM operators. The practical 

utility of the current aggregation operators is an influential in business analytics and other 

trade Markets. 

2. Basic and Fundamental Concepts  

From now onward, X will represent a non-void universe, unless stated otherwise. 

Definition 2.1 [1] A collection of the form    , : 
T

T s s s X with the map 

 : 0,1
T

T declared the degree of belongness of elements to the set is called fuzzy set. 

Example: Consider the reference set of students Y = {g1, g2, g3, g4}. Choose B = {(g1, 0.9) 

(g2, O.4) (g3, 0.8) (g4, 1)}. The set B indicates the degree of smartness. i.e., g1 is 0.9 and so 

on. 

Definition 2.2 [4] By an IFS, we mean an assemblage of the 

form      , :,
M M

M x x x x X   . The maps  : 0,1,
M M

M   with sum equal to 1 and 

acknowledged belongness and non-belongness to a set.  

Example: Consider B to be an IFS with 𝜈B(y) = 0.2 and 𝜇B(y) = 0.5 then, 𝜇B(𝑥) = 0.3, 𝜋B(𝑥) = 

0.7, and 𝜕B(y) = 0.18. 𝜇B(y) = 0.5 and 𝜈B(y) = 0.2 show the belongness and not belongness of 

object to IFS respectively. 

Definition 2.3 [7] A family of the form        , :, ,
M M M

M x x x x x X    is called a 

neutrosophic set. The maps , : 0 ,1,
M M M

T  
 

    along with the constraint that their sum 

lies in 0 ,3    , and acknowledged value of truth, indeterminacy, and value of falsity in a 

set. 



Neutrosophic Sets and Systems, Vol. 61, 2023     217  

 

 

Adil Darvesh et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-Dimensional Uncertain 

Linguistic Interval-Valued Neutrosophic Fuzzy Data 

Example: Consider the triplet (0.3,0.1,0.2) ∈M, the degree of an in A is 0.3, 0.1, and 0.2 

denotes the membership, indeterminacy, and non-membership respectively. Similarly, the 

element b (0.4,0.5,0.1) ∈M and the element C (0.1,0.2,0.7) ∈M with components sum equal 

to 1. 

Definition 2.4 [17] An object of the form 

                      , , , , , , :
L U L U L U

M M M M M M MM M
M x x x x s x x x x x x X             

is acknowledged as an interval-valued neutrosophic set. The maps 

, : 0 ,1,
M M M

M  
 

   along with the restriction known as “value of truth, indeterminacy 

and value of falsity, respectively”. 

Example: Consider M be an IVNS. The element m ((0.50-0.51), (0.10−0.15) ∪ [0.20−0.30], 

{0.20, 0.24, and 0.28}) ∈M. The membership is between 0.50-0.51 indeterminacy of m to M is 

between 0.10-0.15 or between 0.20-0.30 and non-membership is 0.20 or 0.24 or 0.28. limits 

don’t exclude while actual approximation are not considered because of numerous sources.  

Definition 2.5 [6] Assume that  0,h
S is a continuous linguistic-Term set (CLTs). A LIF set is 

defined as        ˆ ˆˆ ˆ 0,

ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ, , : ; ,
r

a S a S a a M S S S
   

  where  ˆˆ 0, r   .  and  ˆ ˆS S
 

 are 

“Linguistic membership” and “non-membership values”. The quantity 
 ˆˆ

ˆ
r

S
   

 is 

acknowledged as degree of indeterminacy. The doublet  ˆˆ
ˆ ˆ,S S
 

 is reckoned as linguistic 

intuitionistic fuzzy number (LIFN). 
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Example: Consider finite discrete ordered LT values by  0 1
ˆ ˆ ˆ ˆ, ,...,

r
S s s s , where r is the even. 

E.g., for r=4, then the chosen linguistic term S with following corresponding semantics is 

expressed as follows: “

0

1

2

3

ˆ ,

ˆ
ˆ

ˆ

ˆ

,

,

s

s
S

s

s



 
 
 
 
 
  

0

1

2

3

ˆ ( ),

ˆ ( ),

ˆ ( ),

ˆ ( )

s Low

s Slightly low

s Medium

s Slightly high

 
 

 
  
 
  

 

3. One-dimension uncertain linguistic Interval-valued neutrosophic fuzzy variables, 

operational laws, and their basic properties  

Definition 3.1 

 

 

, ,

, , ;

[ , ]

l m

n o

p q

s s

S s s

s s

 S is said to be one-dimension uncertain linguistic 

neutrosophic fuzzy variable with following condition. , , , , ,l m n o p qs s s s s s S  while 

 ;  and l m n o p q    whereas , ,l n ps s s and , ,m o qs s s  are the lower and upper 

limits.  

 

Definition 3.2 If 

1 1 2 2

1 1 2 2

1 1 2 2

1 2
 and ;

, , , ,

, , , ,

, ,

l m l m

n o n o

p q p q

S S

s s s s

s s s s

s s s s

 

   
   

   
   

   
   

Then operational rules for them 

are defined as fallows. 

 

1: 
   

 
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2
, , , , , , , , , ,

            = , , , , ,

l m n o p q l m n o p q

l l m m n n o o p p q q

S S s s s s s s s s s s s s

s s s s s s
     

                        

          

   (1) 

2: 
   

 
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2
, , , , , , , , , ,

            = , , , , ,

l m n o p q l m n o p q

l l m m n n o o p p q q

S S s s s s s s s s s s s s

s s s s s s
     

                        

          

   (2) 
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3: 

 
 

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

1

2

, , , , ,
= , , , ,

, , , , ,

  

,
l m n o p q

l m n o p q

l m n o p q

l m n o p q

s s s s s sS
s s s s

S s s s s s s
s s

                
     
                       

   (3) 

4:  
1 1 1 1 1 1 1 1 1 1 1 11 1 , , , , , = , , , , , ;   k 0
l m n o p q kl km kn ko kp kq

k S kS s s s s s s s s s s s s                            (4) 

5:    
1 1 1 1 1 1 1 1 1 1 1 1

1 , , , , , = , , , , , ;   k 0k k k k k kl m n o p q l m n o p q

k
k

S s s s s s s s s s s s s                      
  (5) 

Definition 3.3 Consider 

 

 

, ,

, , ;

,

l m

n o

p q

s s

S s s

s s



  

expectation of S is stated as by eq#6. 

 1
6( 1) 6( 1) 6( 1)

l m n o p q
E S

  

  
  

  
       (6) 

Definition 3.4 Consider  

1 1 2 2

1 1 2 2

1 1 2 2

1 2
 and ;

, , , ,

, , , ,

, ,

l m l m

n o n o

p q p q

S S

s s s s

s s s s

s s s s

 

   
   

   
   

   
   

 

as any two ODULNFVs. Then    1 2
E Es s indicates expectancy of first number is lesser than 

expectancy of second number that is 1 2
ss  or vice versa. 

Definition 3.5 Let 

1 1 2 2

1 1 2 2

1 1 2 2

21  and s

, , , ,

, , , ,

, ,

l m l m

n o n o

p q p q

s

s s s s

s s s s

s s s s

 

   
   

   
   

   
   

be any two ONDLNFVs. Then, for 

three scalars , 0and    the following results hold: noted that is just a notation. 

1) p q q p
s s s s                  (7) 

2) p q q p
s s s s                 (8) 

3)  p q q p
s s s s                 (9) 

4)  p p p
s s s                    (10) 
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5)      p p p ps s s s
  
                (11) 

6) p p ps s s
   
                  (12) 

3.1 One-dimension uncertain linguistic interval-valued neutrosophic fuzzy 

Maclaurin symmetric mean operators.  

The MSM was originally developed by Maclaurin. MSM supports decision making by 

merging and evaluating information about various alternatives and their associations. 

MSM helps make decisions by combining information and thus widely used as a most 

beneficial trick to capture the “interrelationship among the multi-input values”. By taking 

the fully command over MSM operator with utilizing the concept of ODULNFVs with its 

meaningful properties, now in this section we built up some new novel aggregation 

operators i.e., ODULIVNFMSM, ODULIVNWFMSM and ODULIVNOWFMSM. 

Definition 3.1.1 consider  such that r [1:1: ] ;

, ,

, ,

,

i i

i i

i i

r

a b

c d

e f

S n

s s

s s

s s

 

 
 

 
 

 
 

be a non-empty collection of 

ODULNF variable. The w be a vector of                                      

1

; r [1:1: ] with [0,1], 1, 2,..., ;  and 1.
n

r t t

t

S n w t n w


     Then the defining relation below  

   
  

1

1

1 ... 1

1 2 3
ODULIVNWFMSM , , , ..., ;

    
  


 
 
 

k r r

k
k

t t n r t tk

n k

n

W S
S S S S

C
     (13) 

Is called to be a WODULNFMSM operator. Where k tuples combination of {1…, n} of t is 

 1 2 3, , ...,,
k

t t t t and 
k

nC  denotes the binomial coefficient. 
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Theorem 3.1.2. Consider  , , , , ,  r [1:1: ]  ; ;
r r rr r r

r a c eb d f
S s s s s s s n           

be a non-void 

assemblage of ODULNF variables. “w” is representing the weights of ; r [1:1: ]
r

S n with 

[0,1],
t

w   
1

1, 2,..., ;  and 1
n

t

t

t n w


  . Then the aggregated value is also a ODULNF variable and 

can be obtained as follow. 

   1 2 3
ODULIVNFMSM , , ,..., 

k

n
S S S S  
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1 1
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1 ... 1 21 11 2
1

1

1
1 1

1 1

S S
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w n

r t r
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t t t n
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                    (14) 

Proof: 

In accordance with the operational rules of ODULIVNF variable 
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1

1 1

1 1

1 1

1 1

1 1

,

,

,

,

1 1

1 1

,

1 1

1 1

r

k

r t

n n
r t r tr r

n n
r t r tr r

n n
r t t tr r

a b

c d

k k

d e

k k

S

S S

S S

S S

 

 



 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
    
    
         
 
 
 
 
 
    
    
      

    

 

   

 

 

 

 

 

 

 

 

1

1 1

1 1

1 1

1 1

1 1

,

,

,

,

1 1

1 1

,

1 1

1 1

r r

k

r t t

n n
r t t r t tr r r r

n n
r t t r t tr r r r

n n
r t t r t tr r r r

w a w b

w c w d

k k

w d w e

k k

w S

S S

S S

S S

 

 



 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

    
    
         





    
    
      

    
















 

And  
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Then we obtain 
 

 
1 2

1
1 ...

1
r r

n

k

r t tk
t t tn

w S
C


   

 
  

 
 =

 
 

1

1

1 21 ...
r r

k
k

r t t

k

n

nt t t

w S

C



   

 
 
 
 
 


; Therefore  

   1 2 3ODULIVNFMSM , , ,..., 
k

nS S S S
 

 
1

1

1 21 ...
r r

k
k

r t t

k

n

kt t t n

w S

C



   

 
 
 
 
 


= 
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Theorem 3.1.3. Idempotency  

Consider  such that r 1, 2,3,...,  ;

, ,

, ,

,

r r

r r

r r

r
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e f

S n

s s

s s

s s

 

 
 

 
 

 
 

be a collection of ODULIVNF variable 

then    , , ,...,
k

ODULIVNFMSM s s s s S .     

Proof: 

Since must write 
   , , ,...,
k

ODULIVNFMSM s s s s S  

 

   

     

1 1
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Which is required proof. 

 

Theorem 3.1.4:  Commutativity  

Let us consider  
1 2
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Theorem 3.1.5:  Monotonicity  
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Using # 3.3, we have 
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 (18) 

And 
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 (19) 

And then by definition 3.4 we can write    r rE s E s . So, finally we have  

       
1 2 3 1 2
, , , ..., , , ...,ˆ ˆ ˆk k

n n
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Which is the required result. 

 

Theorem 3.1.6: Boundedness 
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Proof: 

Suppose
 

 

1 2

1 2

min , ,...,  

max , ,...,

n

n

s s s s

s s s s

   

   

 
 
 
 

. According to the above theorem, we have 
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according to theorem 3.1.3 we have, 

Thus, 
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Which is required result. 

3.2 Some special k-based feature of ODULNFMSM operator  

(1): By taking k=1, the ODULIVNFMSM operator took the form of ODULIVNF arithmetic operator. 
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    (20) 

(2): By taking k=2, the ODULNFMSM operator took the form of ODULIVNFB operator. 
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   2

1 2 3
=ODULIVNFMSM , , , ...,

n
s s s s . 

(3): By taking k=n, the ODULNFMSM operator took the form of ODULNFM operator (p=1, q=1). 
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3.3 One-dimension uncertain linguistic interval valued neutrosophic weighted fuzzy MSM 

aggregation operator (ODULIVNWFMSM) 

Def: 3.3.1. Consider  such that r [1 :1 : ] ;
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      (22) 

Then ODULIVNFMSM is said to be ODULIVNWFMSM operator. Where k tuples combination of 

1,…,n of t is  1 2 3, , ...,,
k

t t t t and 
k

nC  denotes the binomial coefficient. 

 

Theorem 3.3.2. Consider  such that r [1 :1 : ] ;
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   Then ODULIVNFN can be obtained as fallows. 
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  (23) 

Proof: 

From the point of view of operational rules of ODULIVNF Variables, we must write 
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The other desirable properties may be easily proved on same lines as stated above. 

 

4. MCDM via OULIVNWFMSM operator 

For tactful evaluation, consider a finite set A of alternatives D be a set of decision makers values 

and  represent a weight vector made by DMs. D

obtained by  0,1 =1,2,...,p;for


  while 

weight sum is equal to 1 that is 
1

1.

p








 The attributes set is C with  1, 2
,....,

T

p
    . The  

 
1

0,1 1 1,2,..., .
n

j j

j

and with j n 


    Thus ; 1, 2,...,


  
 ji

m n
S s p

 
  

; 1, 2,...,


  
 ji

m n
S s p

 
  is a decision matrix and looks , , , , ,

      
            j

i i i i i ij j j j j j

i a b c d e f
S s s s s s s     

  

gives the evaluation value alternatives because of attributes values. The process can be 

shortly demonstrated by algorithm with flow chart. 

4.1 ALGORITHM 

The following are the necessary and sufficient steps for evaluating numerical data. 

Step-1: Initially we calculate the ODULIVN fuzzy decision-matrix”. 

Step-2: The Normalization of attributes will be sort out if required e.g., if they are different 

types i.e., benefit or cost . 

Step-3: We aggregate the fuzzy informative data of each decision maker by proposed 

operator.  

Step-4: In third step we calculate the expectancy of each ODULIVNF variable 

using  
1

6( 1) 6( 1) 6( 1)

  
  

  

 
 
 

l m n o p q
E S

  
 

Step-5: In last step we rank the chosen alternatives by adopting the expectancy criteria 

stated in definition 3.4.  
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Figure-1: Flow chart of proposed mechanism  

 

4.2 Practical utility of the proposed aggregation operators in business analytics 

Business analytics (BA) is an area that drives concrete, data-driven modifications in a 

business. Indeed, it is a tool a business group requires to take accurate decisions that are 

probable to influence the whole organization for they assist in improving lucrativeness. BA 

is a real-world utility of arithmetical analysis that emphasizes on providing practicable 

commendations. BA specialists engage in how to use the perceptions they derive from the 

data. Their objective is to draw concrete conclusions pertaining to a business by finding 

answers to specific queries about why things happened (past analysis of the happening), 

what will happen (forecasting) and what should be done (recommending necessary 

measures to be taken essentially). The experts of BA pool the fields of administration and 

business accompanied by the techniques of information technology that are successfully 

employed in this field. The business feature involves a preeminent knowledge of the 

business in addition to the practical inhibitions that subsist. The analytical part comprises a 

clear and flawless perception of the data handling using information technology techniques 

whose combination certainly bridges the gap amongst administration and technology. 



Neutrosophic Sets and Systems, Vol. 61, 2023     244  

 

 

Adil Darvesh et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-Dimensional Uncertain 

Linguistic Interval-Valued Neutrosophic Fuzzy Data 

Exploring the existing data, the business analytics give valuable suggestions to tackle 

hindrances and improve businesses. Many take-away restaurants and fast-food companies 

around the globe have been successfully implementing BA to enhance their business that 

leads to reasonable increase in profits and expansion of their business. By keeping an eye 

on how engaged the drive-thru is, these businesses can boost their effectualness in the 

course of prime times of their business. When the que becomes over-crowded, the digital 

order boards change. They start highlighting those products which can be readied and 

offered expeditiously. When there is less traffic, employees can suggest items that are more 

expensive (having higher margins) and take more time in preparation.  Other sorts of BA 

applications perform more than merely responding to the prevailing situation. These 

methodologies give a helping hand to businesses anticipate which customers are least 

probable to come again. In such a case, they can then focus on promotions and 

advertisement to such customers to lift the rate of retention. 

4.3 Example: 

Assume that a fast-food restaurant wants to expand its business by increasing its 

customers. The restaurant works from 2:00 PM to 2:00 AM. The restaurant hires the services 

of BA to flourish its business and make it more lucrative. For this purpose, the restaurant 

assigns the task of deciding at which time slots the restaurant should offer which package 

of fast food to gain and retain maximum customers. The time slots available are in table-1 

and available packages are shown in table-2. noted that slots will represent the alternatives 

and packages will show attributes values in numerical computation. 
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Slots 

 

Time distribution 

startup end up 

S-1 2-PM 4-PM 

S-2 4-PM 6-PM 

S-3 6- PM 6-PM 

S-4 6-PM 8-PM 

S-5 8-PM 10-PM 

S-6 10-PM 12-PM 

Table-1 

Suppose that there are six packages available.  

 

 

 

P1 

 

Package-1  

P2 

 

Package-2 

P3 

 

Package-1 

P4 

 

Package-1 

P5 

 

Package-5 

P6 

 

Package-6  

Table-2 

The evaluation steps by the proposed method 
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Alternatives /Attributes 
1C  2C  3C  4C  5C  6C  

1A  
 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,2 4

, 41

,2 3

s s

s s

s s

 
 
 
 
 

 

 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,2 3

,1 5

, 32

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1 2

4, 5

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,4 6

,2 5

1, 6

s s

s s

s s

 
 
 
 
 

 

2A  
 

 

 

,1 2

4, 5

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,4 6

,2 5

1, 6

s s

s s

s s

 
 
 
 
 

 

 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,2 4

, 41

,2 3

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 

3A  
 

 

 

,4 6

,2 5

1, 6

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1 2

4, 5

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,2 4

, 41

,2 3

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 
 

 

 

,4 6

,2 5

1, 6

s s

s s

s s

 
 
 
 
 

 

4A  
 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 
 

 

 

,4 6

,2 5

1, 6

s s

s s

s s

 
 
 
 
 

 

 

 

 

,4 6

,2 5

1, 6

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 
 

 

 

,1 2

4, 5

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

5A  
 

 

 

,1 2

4, 5

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 
 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,4 6

,2 5

1, 6

s s

s s

s s

 
 
 
 
 

 

 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 

6A  
 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 
 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

 

 

 

,2 4

, 41

,2 3

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1 3

,3 5

,2 4

s s

s s

s s

 
 
 
 
 

 
 

 

 

,4 6

,2 5

1, 6

s s

s s

s s

 
 
 
 
 

 

 

 

 

,5 6

,1 2

,3 4

s s

s s

s s

 
 
 
 
 

 

Table-3 

 

 

 

 

,0.3210 0.4203

,0.3213 1.4312

,0.2642 1.0204

s s

s s

s s

 
 
 
 
 

 
 

 

 

,1.0231 1.4323

,0.2393 1.1125

,0.3542 1.5304

s s

s s

s s

 
 
 
 
 

 
 

 

 

,1.2791 1.9433

,0.9823 1.3625

,0.3352 0.7634

s s

s s

s s

 
 
 
 
 

 
 

 

 

,0.1013 0.4002

,0.4913 1.0391

,1.2622 1.9214

s s

s s

s s

 
 
 
 
 

 

 

 

 

,0.0231 0.1322

,0.2991 0.6021

,0.8572 1.5201

s s

s s

s s

 
 
 
  
 

 

 

 

 

,0.2701 0.3433

,1.3121 1.5625

,0.6752 0.8694

s s

s s

s s

 
 
 
  
 

 

 

 

 

,1.9210 1.9243

,0.9243 0.9742

,1.2132 1.5204

s s

s s

s s

 
 
 
 
 

 
 

 

 

,0.0311 0.5353

,0.0333 0.1721

,0.2507 0.6314

s s

s s

s s

 
 
 
 
 

 
 

 

 

,1.0071 1.0233

,0.7403 1.3155

,0.2132 0.6534

s s

s s

s s

 
 
 
 
 

 
 

 

 

,1.0248 1.9463

,0.2213 1.2071

,0.2034 1.1264

s s

s s

s s

 
 
 
 
 

 

 

 

 

,0.0301 0.5823

,0.5631 0.6741

,0.5436 1.0014

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1.4829 1.8213

,0.7403 1.3895

,0.2082 1.6545

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1.5213 1.6243

,0.3219 0.4710

,0.0142 0.1294

s s

s s

s s

 
 
 
 
 

 
 

 

 

,0.0235 1.0393

,1.0303 1.1985

,0.5102 0.5397

s s

s s

s s

 
 
 
 
 

 
 

 

 

,0.6531 1.3106

,0.6433 0.9891

,0.2317 0.7994

s s

s s

s s

 
 
 
 
 

 
 

 

 

,0.0413 1.0244

,0.3419 0.7360

,0.0102 0.5936

s s

s s

s s

 
 
 
 
 

 
 

 

 

,0.5615 0.7390

,0.3751 0.5721

,1.5462 1.5017

s s

s s

s s

 
 
 
 
 

 
 

 

 

,0.5329 1.0986

,0.2671 1.3891

,1.4317 1.0207

s s

s s

s s

 
 
 
 
 

 

Table-2 

Table -4 

 

iA ; 1,2,...,6i   2A  2A  3A  4A  5A  6A  

 

 

 

,0.3241 0.5378

,0.1090 1.4218

,0.2902 1.3284

s s

s s

s s

 
 
 
 
 

 

 

 

 

,0.0192 1.3109

,1.1343 1.9340

,0.2132 1.5004

s s

s s

s s

 
 
 
  
 

 
 

 

 

,0.3081 0.6597

,0.3219 1.8710

,0.0142 0.1004

s s

s s

s s

 
 
 
 
 

 

 

 

 

,0.5219 1.8243

,0.3219 0.8719

,0.4173 1.6494

s s

s s

s s

 
 
 
 
 

 

 

 

 

,1.0815 1.4203

,0.2381 0.4710

,1.0102 1.1291

s s

s s

s s

 
 
 
 
 

 

 

 

 

,0.8213 1.3462

,0.1210 0.6745

,1.4523 1.5274

s s

s s

s s
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Expected value  
0.1161 0.1149 0.1151 0.1156 0.1152 0.1159 

Table-5 

Ranking based on proposed scheme 

 

1 6 4 5 3 2
A A A A A A  

Table-6 

4.4 Comparative study based on proposed-model vs. existing-models.  

 

A comparative study is presented for validation, feasibility, and effectiveness of the 

propound operator. 

 

M
o

d
el

in
g

 

to
o

l 

2DULWBOWA 

Operator 

W2DULMSM Operator FLIOWA Operator 

A
lt

er
n

at
iv

es
 

w
it

h
 

ex
p

ec
te

d
 v

al
u

es
 A₁ 0.8231 

A₂ 0.9001 

A₃ 0.3443 

A₄ 0.2367 

A₅ 0.7002 

A₆ 0.7691 

A₁ 0.6199 

A₂ 0.3183 

A₃ 0.7115 

A₄ 0.5146 

A₅ 0.9201 

A₆ 0.2117 

A₁ 0.5359 

A₂ 0.7738 

A₃ 0.4932 

A₄ 0.8823 

A₅ 0.7032 

A₆ 0.6786 

R
an

k
in

g
  A₂>A₁>A₆>A₅>A₃>A₄ A₅>A₃>A₁>A₄>A₂>A₆> A₄>A₂>A₅>A₆>A₁>A₃ 

Table-7 
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Figure 2: MCDM based on 2DULWBOWA operator. 
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Figure-3: MCDM based on W2DULMSM operator.  
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Figure-4: MCDM based on FLIOWA operator.  
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Figure-5: MCDM based on proposed scheme. 
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Figure-6: Comparatively Study based on proposed model vs. existing models. 

 

4.5 Result and Discussion 

No doubt, there exist hundreds of aggregations tools which play a vital role and to be 

considered very useful in theory of multiple decision. The proposed operator would be 

very beneficial and fruitful in the same area of interest because of its extra features and 

capabilities. In numerically analysis we examined that the results obtained by proposed 

MAGDM scheme are more flexible, reliable, and valuable as compared to all the MCDM 

strategies and tools which are already designed for the same set of modeling and plotting 

the data. To evaluate the new method's effectiveness, we experimented with it in 

comparison to three previously developed methods on a specific example. These methods 

are the 2DULWBOWAO method by Liu and Shi [50], the W2DULMSMO method by Chu 

and Liu [51], and the FLIOWAO method by Liu et al. [52]. To make things easy, we 

assigned values to certain variables: k is set as 1 or 2, while p and q are both set as 1. Using 
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these values, we determined the final rankings for the options. The outcomes of these 

methods are displayed in Figure-6 together with Table-7. From Table-7, we can tell that the 

options we chose have a significant difference in ranking. They are spread out and 

separated by large margins, and not very correct and seem unsuitable. However, the values 

obtained by the proposed method are very close and more correct and suitable. So, these 

values are like human thinking as well. The method advocated in this research proves to be 

productive. Which notify that proposed model has the high level of accuracy and validity. 

To comprehend the advantages of the proposed technique, these points will provide 

further explanation. 

1. These two methods share the same operational guidelines as suggested by Liu and 

Shi [50], although they exhibit enhanced accuracy. While the new method considers 

the relationships between various elements, the old method overlooks such 

connections. The suggested method implies that the value of k can reflect an 

individual's willingness to take risks. 

2. In comparison to the W2DULMSMO method proposed by Liu et al. [52], these two 

methods could incorporate the relationship between input data/chosen values. 

However, the suggested approach can think about how all the input arguments are 

connected to each other, whereas the approach suggested by Chu and Liu [51] can 

only think about how two input arguments are connected to each other. 

Furthermore, our suggested method uses the latest operational rules with precise 

actions, whereas Chu and Liu's method [51] only use the old-fashioned 
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operational-rule. Clearly, the suggested technique is more adaptable and inclusive 

in solving the multi-input data problems compared to the method proposed by Chu 

and Liu [51]. 

3. These two approaches share the same rules as the FLIOWAO method introduced by 

Liu et al. [52], and they both account for the correlation between input arguments. 

Nevertheless, the recently developed technique enables an analysis of the 

relationships among multiple arguments. The method proposed by Liu et al. [52] is 

designed to specifically address the relationship between two arguments, which 

serves as a specific case within the overall application of the innovative approach. 

 

Figure-7: Numerical Data for Proposed model vs. existing schemes 

5. Conclusions 

The complexities of considering multiple criteria make decision-making an interesting and crucial 

component of modern group dynamics. Descriptive terms (linguistic variables) make it easier for 
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decision makers to display assessment values. Decision makers utilize linguistic variables 

to incorporate their personal judgments regarding the probabilities of specific outcomes. 

Well-formulated and clearly defined linguistic variables can eliminate any potential gaps 

in information and enhance the accuracy of the process. In current research paper, we 

stated the idea of one-dimensional-uncertain-linguistic-neutrosophic-fuzzy variable. We 

extracted their modified operational laws, basic properties and stated the expectation of 

these variables. Moreover, For the sake of tracking down the finest alternative while 

solving multi-input data values (MCDM) problems and other utilities, one of the critical 

phases is aggregation whereby the suggestion of the decision expert is required to be 

calculated by using suitable multi-input techniques/operators. We developed some new 

novel aggregation operators to overcome the power of rapidly growing of convolution, 

complication, and the vagueness of the socioeconomic environment time to time. 

Moreover, one dimensional uncertain linguistic interval valued neutrosophic fuzzy 

information was successfully aggregated by proposed aggregation-operators. 

Furthermore, the use of a particular numerical example illustrates the strength and 

validity of the exhibit approach in facilitating group decision-making. Graphically 

representation for evaluated data based on proposed scheme is also added for easy 

understanding. Conclusively, comparative study based on proposed model vs. 

existing-models was managed by the help of decision-experts. 

Future work 



Neutrosophic Sets and Systems, Vol. 61, 2023     254  

 

 

Adil Darvesh et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-Dimensional Uncertain 

Linguistic Interval-Valued Neutrosophic Fuzzy Data 

In the future, using our identified ideas, the research work is expected to be significantly 

expanded, some beneficial methodological extensions and other useful applications. The 

current tool can be considered very effective and powerful in a broad field of 

decision-making methods, such as Average probability, data information and moving data. 

Implementing the suggested method in combination with other decision-making methods 

can enhance the functionality of various financial models. 

Conflicts of Interest 

The authors announce that no conflicts of interest exist. 

Author Contributions 

Each author participated equally to the writing and editing of the paper. The paper was 

examined by each author. 

Funding : No funding is received for the presented work. 

Data availability 

This article has all the data that were created or evaluated during this investigation. 

References: 

1. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. 

2. Gorzałczany, M. B. (1987). A method of inference in approximate reasoning based on interval- valued 

fuzzy sets. Fuzzy Sets and Systems, 21(1), 1-17. https://doi.org/10.1016/0165-0114(87)90148-5 

3. Molodstov, D. (1999). Soft set theory-first results. Computers & Mathematics with applications, 37, 19-31. 

4. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1), 87-96. 

5. Peng, X., & Yang, Y. (2015). Some results for Pythagorean fuzzy sets. International Journal of Intelligent 

Systems, 30(11), 1133-1160. https://doi.org/10.1002/int.21738 

https://doi.org/10.1016/0165-0114(87)90148-5
https://doi.org/10.1002/int.21738


Neutrosophic Sets and Systems, Vol. 61, 2023     255  

 

 

Adil Darvesh et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-Dimensional Uncertain 

Linguistic Interval-Valued Neutrosophic Fuzzy Data 

6. Gou, X., & Xu, Z. (2016). Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term 

sets and probabilistic linguistic term sets. Information Sciences, 372, 407-427. 

https://doi.org/10.1016/j.ins.2016.08.034 

7. Smarandache, F. (1995). Neutrosophic set: A generalization of the Intuitionistic Fuzzy Set, Neutrosophic 

Prob Set, Logic Amer. 

8. Alkhazaleh, S., & Hazaymeh, A. A. (2017). n-valued refined neutrosophic soft sets and their applications in 

decision making problems and medical diagnosis. Journal of Artificial Intelligence and Soft Computing 

Research, 8(1), 79-86. DOI: https://doi.org/10.1515/jaiscr-2018-0005 

9. Broumi, S., Deli, I., & Smarandache, F. (2015). N-valued interval neutrosophic sets and their application in 

medical diagnosis. Critical Review, Center for Mathematics of Uncertainty, Creighton University, Omaha, 

NE, USA, 10, 45-69. https://digitalrepository.unm.edu/math_fsp 

10. Broumi, S., Deli, I., & Smarandache, F. (2014). Interval valued neutrosophic parameterized soft set theory 

and its decision making. Journal of New Results in Science, 3(7), 58-71. 

11. Jiang, W., Zhong, Y., & Deng, X. (2018). A neutrosophic set based fault diagnosis method based on 

multi-stage fault template data. Symmetry, 10(8), 346. https://doi.org/10.3390/sym10080346 

12. Maji, P. K. (2013). Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics, 5(1), 157-168. 

13. Mukherjee, A., & Sarkar, S. (2014). Several similarity measures of neutrosophic soft sets and its application 

in real life problems. Annals of Pure and Applied Mathematics, 7(1), 1-6. 

14. Naeem, K., Riaz, M., and Afzal, D. (2020). Fuzzy neutrosophic soft σ-algebra and fuzzy neutrosophic soft 

measure with applications, Journal of Intelligent and Fuzzy Systems, 39(1), 277-287. 

DOI: 10.3233/JIFS-191062 

15. Şahin, R., & Küçük, A. (2014). On similarity and entropy of neutrosophic soft sets. Journal of intelligent & 

fuzzy systems, 27(5), 2417-2430. DOI: 10.3233/IFS-141211 

16. Sumathi, I. R., & Arockiarani, I. (2016). Cosine similarity measures of neutrosophic soft set. Annals of 

Fuzzy Mathematics and Informatics, 12(5), 669-678. 

17. Wang, H., Smarandache, F., Sunderraman, R., & Zhang, Y. Q. (2005). Interval neutrosophic sets and logic: 

theory and applications in computing: Theory and applications in computing (Vol. 5). Infinite Study. 

https://doi.org/10.1016/j.ins.2016.08.034
https://doi.org/10.1515/jaiscr-2018-0005
https://doi.org/10.3390/sym10080346
http://dx.doi.org/10.5281/zenodo.6041514


Neutrosophic Sets and Systems, Vol. 61, 2023     256  

 

 

Adil Darvesh et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-Dimensional Uncertain 

Linguistic Interval-Valued Neutrosophic Fuzzy Data 

18. Zhang, H., Wang, J., & Chen, X. (2016). An outranking approach for multi-criteria decision-making 

problems with interval-valued neutrosophic sets. Neural Computing and Applications, 27(3), 615-627. 

https://doi.org/10.1007/s00521-015-1882-3 

19. Broumi, S., & Smarandache, F. (2013). Correlation coefficient of interval neutrosophic set. In Applied 

mechanics and materials (Vol. 436, pp. 511-517). Trans Tech Publications Ltd. 

20. Broumi, S., & Smarandache, F. (2014). Cosine similarity measure of interval valued neutrosophic sets. 

Infinite Study. DOI: 10.6084/M9.FIGSHARE.1502645 

21. Broumi, S., & Smarandache, F. (2015). New operations on interval neutrosophic sets. Journal of new 

theory, (1), 24-37. 

22. Deli, I., Broumi, S., & Smarandache, F. (2014). Neutrosophic soft multi-set theory and its decision making. 

Neutrosophic Sets and Systems, 5, 65-76. 

23. Naeem, K., and Davvaz, B. (2022) Information measures for MADM under m-polar neutrosophic 

environment. Granular Computing, 8(3), 597-616. DOI: 10.1007/s41066-022-00340-3 

24. Siraj, A., Fatima, T., Afzal, D., Naeem, K., and Karaaslan, F. (2022). Pythagorean m-polar fuzzy 

neutrosophic topology with applications, Neutrosophic Sets and Systems, 48, 251-290. 

DOI: 10.5281/zenodo.6041514 

25. Majumdar, P., & Samanta, S. K. (2014). On similarity and entropy of neutrosophic sets. Journal of 

Intelligent & Fuzzy Systems, 26(3), 1245-1252. DOI: 10.3233/IFS-130810 

26. Garg, H., & Arora, R. (2018). Bonferroni mean aggregation operators under intuitionistic fuzzy soft set 

environment and their applications to decision-making. Journal of the Operational Research Society, 

69(11), 1711-1724. https://doi.org/10.1080/01605682.2017.1409159 

27. Ye, J. (2014). Prioritized aggregation operators of trapezoidal intuitionistic fuzzy sets and their application 

to multicriteria decision-making. Neural Computing and Applications, 25(6), 1447-1454. 

https://doi.org/10.1007/s00521-014-1635-8 

28. Awang, A., Aizam, N. A. H., & Abdullah, L. (2019). An integrated decision-making method based on 

neutrosophic numbers for investigating factors of coastal erosion. Symmetry, 11(3), 328. 

https://doi.org/10.3390/sym11030328 

http://dx.doi.org/10.6084/M9.FIGSHARE.1502645
http://dx.doi.org/10.1007/s41066-022-00340-3
http://dx.doi.org/10.5281/zenodo.6041514
https://doi.org/10.3390/sym11030328


Neutrosophic Sets and Systems, Vol. 61, 2023     257  

 

 

Adil Darvesh et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-Dimensional Uncertain 

Linguistic Interval-Valued Neutrosophic Fuzzy Data 

29. Huang, Y. H., Wei, G. W., & Wei, C. (2017). VIKOR method for interval neutrosophic multiple attribute 

group decision-making. Information, 8(4), 144. https://doi.org/10.3390/info8040144 

30. Zhang, H. Y., Wang, J. Q., & Chen, X. H. (2014). Interval neutrosophic sets and their application in 

multicriteria decision making problems. The Scientific World Journal, 2014. 

https://doi.org/10.1155/2014/645953 

31. Hussain, S. A. I., Mondal, S. P., & Mandal, U. K. (2019). VIKOR method for decision making problems in 

interval valued neutrosophic environment. In Fuzzy Multi-criteria Decision-Making Using Neutrosophic 

Sets (pp. 587-602). Springer, Cham. 

32. Aiwu, Z., Jianguo, D., & Hongjun, G. (2015). Interval valued neutrosophic sets and multi-attribute 

decision-making based on generalized weighted aggregation operator. Journal of Intelligent & Fuzzy 

Systems, 29(6), 2697-2706. DOI: 10.3233/IFS-151973 

33. Peng, J. J., & Wang, J. Q. (2015). Multi-valued neutrosophic sets and its application in multi-criteria 

decision-making problems. Neutrosophic Sets and Systems, 10(1). 

34. Hamid, T., Riaz, M., & Naeem, K. (2022). A study on weighted aggregation operators for q-rung orthopair 

m-polar fuzzy set with utility to multistage decision analysis. International Journal of Intelligent Systems, 

37(9), 6354-6387. DOI: 10.1002/int.22847 

35. Naeem, K., Riaz, M., and Karaaslan, F. (2021). A mathematical approach to medical diagnosis via 

Pythagorean fuzzy soft TOPSIS, VIKOR and generalized aggregation operators, Complex and Intelligent 

Systems, 7(5), 2783-2795. DOI: 10.1007/s40747-021-00458-y 

36. Riaz, M., Naeem, K., Chinram, R., & Iampan, C. (2021). Pythagorean m-polar fuzzy weighted aggregation 

operators and algorithm for the investment strategic decision making. Journal of Mathematics, Article ID 

6644994. DOI: 10.1155/2021/6644994 

37. Ye, J. (2015). Trapezoidal neutrosophic set and its application to multiple attribute decision-making. 

Neural Computing and Applications, 26(5), 1157-1166. https://doi.org/10.1007/s00521-014-1787-6 

38. Jana, C., & Pal, M. (2019). A robust single-valued neutrosophic soft aggregation operators in multi-criteria 

decision making. Symmetry, 11(1), 110. https://doi.org/10.3390/sym11010110 

https://doi.org/10.3390/info8040144
https://doi.org/10.1155/2014/645953
http://dx.doi.org/10.1002/int.22847
http://dx.doi.org/10.5281/zenodo.6041514
http://dx.doi.org/10.1155/2021/6644994
https://doi.org/10.3390/sym11010110


Neutrosophic Sets and Systems, Vol. 61, 2023     258  

 

 

Adil Darvesh et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-Dimensional Uncertain 

Linguistic Interval-Valued Neutrosophic Fuzzy Data 

39. Abdel-Monem, A., Nabeeh, N. A., & Abouhawwash, M. (2023). An Integrated Neutrosophic Regional 

Management Ranking Method for Agricultural Water Management. Neutrosophic Systems with 

Applications, 1, 22-28. 

40. Abdelhafeez, A., Mohamed, H. K., & Khalil, N. A. (2023). Rank and Analysis Several Solutions of 

Healthcare Waste to Achieve Cost Effectiveness and Sustainability Using Neutrosophic MCDM 

Model. Neutrosophic Systems with Applications, 2, 25-37. 

41. Karak, M., Mahata, A., Rong, M., Mukherjee, S., Mondal, S. P., Broumi, S., & Roy, B. (2023). A Solution 

Technique of Transportation Problem in Neutrosophic Environment. Neutrosophic Systems with 

Applications, 3, 17-34. 

42. Wang, J. Q., Yang, Y., & Li, L. (2018). Multi-criteria decision-making method based on single-valued 

neutrosophic linguistic Maclaurin symmetric mean operators. Neural Computing and Applications, 30(5), 

1529-1547. https://doi.org/10.1007/s00521-016-2747-0 

43. Wu, Q., Wu, P., Zhou, L., Chen, H., & Guan, X. (2018). Some new Hamacher aggregation operators under 

single-valued neutrosophic 2-tuple linguistic environment and their applications to multi-attribute group 

decision making. Computers & Industrial Engineering, 116, 144-162. 

https://doi.org/10.1016/j.cie.2017.12.024 

44. Garg, H., & Arora, R. (2021). Generalized Maclaurin symmetric mean aggregation operators based on 

Archimedean t-norm of the intuitionistic fuzzy soft set information. Artificial Intelligence Review, 54(4), 

3173-3213. 

45. Ju, Y., Liu, X., & Ju, D. (2016). Some new intuitionistic linguistic aggregation operators based on Maclaurin 

symmetric mean and their applications to multiple attribute group decision making. Soft Computing, 

20(11), 4521-4548. https://doi.org/10.1007/s00500-015-1761-y 

46. Liu, P., Li, Y., & Zhang, M. (2019). Some Maclaurin symmetric mean aggregation operators based on 

two-dimensional uncertain linguistic information and their application to decision making. Neural 

Computing and Applications, 31(8), 4305-4318. https://doi.org/10.1007/s00521-018-3350-3 

47. Teng, F., Liu, Z., & Liu, P. (2018). Some power Maclaurin symmetric mean aggregation operators based on 

Pythagorean fuzzy linguistic numbers and their application to group decision making. International 

Journal of Intelligent Systems, 33(9), 1949-1985. https://doi.org/10.1002/int.22005 

https://doi.org/10.1016/j.cie.2017.12.024
https://doi.org/10.1007/s00500-015-1761-y
https://doi.org/10.1002/int.22005


Neutrosophic Sets and Systems, Vol. 61, 2023     259  

 

 

Adil Darvesh et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-Dimensional Uncertain 

Linguistic Interval-Valued Neutrosophic Fuzzy Data 

48. Wang, H., Smarandache, F., Sunderraman, R., & Zhang, Y. Q. (2005). Interval neutrosophic sets and logic: 

theory and applications in computing: Theory and applications in computing (Vol. 5). Infinite Study. 

49. Zhang, H. (2014). Linguistic intuitionistic fuzzy sets and application in MAGDM. Journal of Applied 

Mathematics, 2014. https://doi.org/10.1155/2014/432092 

50. Liu, P., & Shi, L. (2017). Some neutrosophic uncertain linguistic number Heronian mean operators and 

their application to multi-attribute group decision making. Neural Computing and Applications, 28, 

1079-1093. 

51. Chu, Y., & Liu, P. (2015). Some two-dimensional uncertain linguistic Heronian mean operators and their 

application in multiple-attribute decision making. Neural Computing and Applications, 26, 1461-1480. 

52. Liu, P., Liu, J., & Chen, S. M. (2018). Some intuitionistic fuzzy Dombi Bonferroni mean operators and their 

application to multi-attribute group decision making. Journal of the Operational Research Society, 69(1), 1-24. 

 

Received: Aug 9, 2023.  Accepted: Dec. 19, 2023 

https://doi.org/10.1155/2014/432092


                                    Neutrosophic Sets and Systems, Vol. 61, 2023 
 

 

 

Novel Neutrosophic Objects Within Neutrosophic Topology (𝑵(𝑿), 𝝉) 

 

  Huda E. Khalid1*, Ramiz Sabbagh2, Ahmed A. Salma3, Thanoon Y. Thanoon4, H. A. Elagamy5       

1 Telafer University, The Administration Assistant for the President of the Telafer University, 

Telafer, Iraq; https://orcid.org/0000-0002-0968-5611, dr.huda-ismael@uotelafer.edu.iq 

2 Telafer University, Department of the Scientific Affairs, Telafer, Iraq. ramiz.sabbagh@uotelafer.edu.iq 

3 Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said, Egypt; 

drsalama44@gmail.com 

4 Northern Technical University, The Administration Assistant for the President of the Northern Technical 

University, Mosul, Iraq, thnoon.younis@ntu.edu.iq  

5 Department of Mathematics and Basic Sciences, Ministry of Higher Education Higher Future Institute of 

Engineering and Technology in Mansour, Egyp: hatemelagamy@yahoo.com  

*Correspondence: dr.huda-ismael@uotelafer.edu.iq 

 

Abstract    

This essay intends to introduce and study many new neutrosophic objects within neutrosophic 

topologies (𝑁(𝑋), 𝜏) , such as the neutrosophic point, the neutrosophic quasi-concomitant, the 

neutrosophic quasi neighborhood, the neutrosophic ideals, the neutrosophic local function, the 

neutrosophic closure operator, the generated neutrosophic topology, and quite a few of theorems, 

corollaries, examples related the above- mentioned concepts.  

   

Keywords: Neutrosophic Topology (𝑁(𝑋), 𝜋);  Neutrosophic Point; Neutrosophic Quasi-

Concomitant; Neutrosophic Quasi Neighborhood; Neutrosophic Ideals; Neutrosophic Local 

Function. 

  

1. Introduction 

The reformulations of all scientific fields in the perspective of the existence of indeterminacy were 

by the paradigm shift man F. Smarandache [1-3]. As of 1995 so far, he redefined almost all branches 
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of knowledge, setting up the neutrosophic theory through the implication of the indeterminacy part 

into all components, elements, operations, thoughts, opinions,etc. [10-13].  

The topological space took its share of that evolution, the eminent scientist who led changing the 

topological spaces into the frame of neutrosophic theory was A.A. Salama [4-6], with the 

collaboration of F. Smarandache, later dozens of mathematicians who were interested in the 

topological field joined them [7-9]. This paper comes as a point in the sea of this scientific 

promotion, it is not the first nor the last in the field of neutrosophic topological spaces. This article 

is organized by dedicating section two to new neutrosophic notions which are presented in this 

paper for the first time, Section three goes for demonstrates the neutrosophic ideal, neutrosophic 

local function, and generated neutrosophic topology, while section four encloses the basic structure 

of generated neutrosophic topology, eventually section five contains the conclusions and 

recommendations. 

2. New Notions in Neutrosophic Topological Spaces (𝑵(𝑿), 𝝉) 

2.1 Definition (Neutrosophic point): 

Suppose (𝑁(𝑋), 𝜏)  to be neutrosophic topological space, a neutrosophic point 𝑥 ∈ 𝑁(𝑋)  is 

denoted by 𝑥〈𝜆1,𝜆2,𝜆3〉, where 0− ≤ 𝜆1, 𝜆2, 𝜆3 ≤ 1
+. A neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉  is belonging to a 

neutrosophic set 𝐴 ⊆ 𝑁(𝑋)  𝑖𝑓𝑓 𝜆1 ≤ 𝐴(𝑥𝜆1), 𝜆2 ≤ 𝐴(𝑥𝜆2) , 𝜆3 ≤ 𝐴(𝑥𝜆3)  and symbolized by 

𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁  𝐴. 

 

2.2 Definition (Neutrosophic Quasi-concomitant): 

A neutrosophic set 𝐴 ∈ 𝑁(𝑋)  is said to be neutrosophic quasi-concomitant to another 

neutrosophic set 𝐵 if there exists a neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝑁(𝑋) such that the following 

conditions are hold together: 

1- 𝐴(𝑥𝜆1) + 𝐵(𝑥𝜆1) > 1𝑥𝜆1
+ , 

2- 𝐴(𝑥𝜆2) + 𝐵(𝑥𝜆2) > 1𝑥𝜆2
+ , 

3- 𝐴(𝑥𝜆3) + 𝐵(𝑥𝜆3) > 1𝑥𝜆3
+ , 

And it is symbolized by 𝐴 𝑞𝑐 𝐵, for any two neutrosophic sets 𝐴& 𝐵,  𝐴 𝑞𝑐 𝐵 ⟺  𝐵 𝑞𝑐 𝐴. 

2.3 Definition (Neutrosophic quasi neighborhood): 
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A neutrosophic set 𝐴 in a neutrosophic topological space (𝑁(𝑋), 𝜏) is called a neutrosophic 

quasi neighborhood of a neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉 iff there exist a neutrosophic open set 𝜇 ⊆

𝐴  such that 𝑥〈𝜆1,𝜆2,𝜆3〉 𝑞𝑛 𝜇 . The set of all neutrosophic quasi neighborhood of 

𝑥〈𝜆1,𝜆2,𝜆3〉 𝑖𝑛 (𝑁(𝑋), 𝜏) is symbolized by 𝑁𝑄𝑁(𝑥〈𝜆1,𝜆2,𝜆3〉). 

 

2.4 Definition (Accumulation neutrosophic point): 

A neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉 is called an accumulation neutrosophic point of a neutrosophic 

set 𝐴 in the neutrosophic topological space (𝑁(𝑋), 𝜏) iff the following condition holds: 

1- Any neutrosophic quasi neighborhood of 𝑥〈𝜆1,𝜆2,𝜆3〉 is neutrosophic quasi concomitant, 

2- If 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁  𝐴, any quasi neighborhood of 𝑥〈𝜆1,𝜆2,𝜆3〉 and 𝐴 are quasi concomitant at some 

neutrosophic point 𝑦〈𝑡1,𝑡2,𝑡3〉 such that 𝑥〈𝜆1,𝜆2,𝜆3〉 ≠ 𝑦〈𝑡1,𝑡2,𝑡3〉. 

Note * 

In the above definition of accumulation neutrosophic point, if only the condition 1 holds, 

then 𝑥〈𝜆1,𝜆2,𝜆3〉 is called an adherence neutrosophic point of 𝐴. 

Note **  

It is obvious that any neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉  is belonging to the closure of a 

neutrosophic set 𝐴 (i.e. 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁  𝑁𝑐𝑙(𝐴)) iff for every quasi neighborhood 𝐵 of 𝑥〈𝜆1,𝜆2,𝜆3〉, 

𝐵 𝑞𝑐 𝐴. 

 

3. Neutrosophic Ideal, Neutrosophic Local Function and Generated 

Neutrosophic Topology 

 

3.1 Definition (Neutrosophic Ideal): 

Suppose that 𝜋, 𝑣 ∈ 𝑁(𝑋), A nonempty collection of neutrosophic sets 𝐼 of 𝑁(𝑋) is called 

ideal on 𝑁(𝑋) if and only if  

1- 𝜋 ∈𝑁 𝐼 and 𝑣 ⊆ 𝜋 ⟹ 𝑣 ∈ 𝐼 [heredity], 

2- 𝜋 ∈𝑁 𝐼 and 𝑣 ∈𝑁 𝐼 ⟹  𝜋 ∪ 𝑣 ∈𝑁 𝐼 [finite additivity]. 
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3.2 Definition (Neutrosophic Local Function): 

Let (𝑁(𝑋), 𝜏) be a neutrosophic topological space and 𝐼 be neutrosophic ideal on 

𝑁(𝑋). Let 𝐴 be any neutrosophic set of 𝑁(𝑋). Then the neutrosophic local function 𝐴∗(𝐼, 𝜏) 

of 𝐴 is the union of all neutrosophic points 𝑥〈𝜆1,𝜆2,𝜆3〉, such that if 𝜇 ∈𝑁 𝑁𝑄𝑁(𝑥〈𝜆1,𝜆2,𝜆3〉) and 

𝐼1 ∈ 𝐼 then there is at least one 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋) for which 𝜇(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ > 𝐼1(𝑦𝑡1) , 

𝜇(𝑦𝑡2) + 𝐴(𝑦𝑡2) − 1𝑦𝑡2
+ > 𝐼1(𝑦𝑡2)  , 𝜇(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3

+ > 𝐼1(𝑦𝑡3)  . therefore, any 

𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁  𝐴
∗(𝐼, 𝜏) [ i.e. implies to 𝑥〈𝜆1,𝜆2,𝜆3〉 is not contained in the neutrosophic set 𝐴, i.e. 

𝜆1 > 𝐴(𝑥𝜆1), 𝜆2 > 𝐴(𝑥𝜆2),   𝜆3 > 𝐴(𝑥𝜆3) ] implies there is at least one 𝜇 ∈𝑁 𝑁𝑄𝑁(𝑥〈𝜆1,𝜆2,𝜆3〉) 

such that for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋) , 𝜇(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ ≤ 𝐼1(𝑦𝑡1)  , 𝜇(𝑦𝑡2) + 𝐴(𝑦𝑡2) −

1𝑦𝑡2
+ ≤ 𝐼1(𝑦𝑡2) , 𝜇(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3

+ ≤ 𝐼1(𝑦𝑡3) for some 𝐼1 ∈ 𝐼. The symbols 𝐴∗ 𝑜𝑟 𝐴∗(𝐼) will 

be written as abbreviate instead of 𝐴∗(𝐼, 𝜏). 

 

3.3 Note:  

The neutrosophic empty set and the neutrosophic universal set on 𝑁(𝑋) is denoted by 0𝑥〈𝜆1,𝜆2,𝜆3〉
 and 

1𝑥〈𝜆1,𝜆2,𝜆3〉
, respectively. 

 

3.4 Example 

The simplest neutrosophic ideals on 𝑁(𝑋) are {0𝑥〈𝜆1,𝜆2,𝜆3〉
} and 𝐻(𝑁(𝑋)), the set of all neutrosophic 

sets of 𝑁(𝑋)  (hereafter, if necessary, 𝐻(𝑁(𝑋))  will carry the same meaning). Obviously, 𝐼 =

{0𝑥〈𝜆1,𝜆2,𝜆3〉
} ⟺ 𝐴∗(𝐼, 𝜏) = 𝑐𝑙(𝐴), for any neutrosophic set 𝐴  of 𝑁(𝑋)  and 𝐼 = 𝐻(𝑁(𝑋)) ⟺ 𝐴∗(𝐼, 𝜏) =

0𝑥〈𝜆1,𝜆2,𝜆3〉
. 

 

3.5 Theorem  

Let (𝑁(𝑋), 𝜏) be a neutrosophic topological space and 𝐼1, 𝐼2 are two neutrosophic ideals on 𝑁(𝑋). 

Then for any neutrosophic sets 𝐴,𝐵 𝑜𝑓 𝑁(𝑋), the following mathematical phrases are true: 

1- 𝐴 ⊆ 𝐵 ⟹ 𝐴∗(𝐼1, 𝜏) ⊆ 𝐵
∗(𝐼1, 𝜏). 

2- 𝐼1 ⊆ 𝐼2 ⟹ 𝐴∗(𝐼2, 𝜏) ⊆ 𝐴
∗(𝐼1, 𝜏).  

3- 𝐴∗ = 𝑐𝑙(𝐴∗) ⊆ 𝑐𝑙(𝐴). 
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4- (𝐴∗)∗ ⊆ 𝐴∗. 

5- (𝐴 ∪ 𝐵)∗ = 𝐴∗ ∪ 𝐵∗. 

6- 𝐼1 ∈ 𝐼 ⟹ (𝐴 ∪ 𝐼1)
∗ = 𝐴∗. 

Proof. 

1- Since 𝐴 ⊆ 𝐵  this implies that 𝐴𝑥〈𝜆1,𝜆2,𝜆3〉
≤ 𝐵𝑥〈𝜆1,𝜆2,𝜆3〉

 for every 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝑁(𝑋) , therefore 

and by Definition 3.2, 𝑥〈𝜆1 ,𝜆2,𝜆3〉 ∈𝑁 𝐴
∗implies that 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐵

∗, which complete the proof 

of (1). 

2- Suppose 𝐼1 ⊆ 𝐼2 ⟹𝐴∗(𝐼2) ⊆ 𝐴
∗(𝐼1),as there may be other neutrosophic sets which belong to 

𝐼2  so that for a neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉 , 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
∗(𝐼1) but 𝑥〈𝜆1,𝜆2,𝜆3〉  may not be 

contained in 𝐴∗(𝐼2). 

3- Since the empty neutrosophic set {0𝑥〈𝜆1,𝜆2,𝜆3〉
}  is contained in any neutrosophic ideal 

𝐼1 𝑜𝑛 𝑁(𝑋)  (i.e. {0𝑥〈𝜆1,𝜆2,𝜆3〉
} ⊆ 𝐼1 ),[ therefore by (2) and because of the reality that the 

simplest neutrosophic ideal on 𝑁(𝑋) is {0𝑥〈𝜆1,𝜆2,𝜆3〉
}. Obviously, 𝐴∗ ({0𝑥〈𝜆1,𝜆2,𝜆3〉

} ) = 𝑐𝑙(𝐴), for 

any neutrosophic set 𝐴 of 𝑁(𝑋)], 𝐴∗(𝐼1) ⊆ 𝐴
∗ ({0𝑥〈𝜆1,𝜆2,𝜆3〉

}) = 𝑐𝑙(𝐴), for any neutrosophic set 

𝐴 of 𝑁(𝑋). Suppose, 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁  𝑐𝑙(𝐴
∗).So there is at least one 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋) such that 

𝜇(𝑦𝑡1) + 𝐴
∗(𝑦𝑡1) > 1𝑦𝑡1

+ , 𝜇(𝑦𝑡2) + 𝐴
∗(𝑦𝑡2) > 1𝑦𝑡2

+  , 𝜇(𝑦𝑡3) + 𝐴
∗(𝑦𝑡3) > 1𝑦3

+  for each 

neutrosophic quasi neighborhood 𝜇  of 𝑥〈𝜆1,𝜆2,𝜆3〉  . Hence 𝐴∗(𝑦〈𝑡1,𝑡2,𝑡3〉) ≠ 0𝑦〈𝑡1,𝑡2,𝑡3〉
. Let 

𝑓〈𝑓1,𝑓2 ,𝑓3〉 = 𝐴
∗(𝑦〈𝑡1,𝑡2,𝑡3〉) . Clearly, 𝑦𝑓 ∈𝑁 𝐴

∗  and 𝑓𝑓1 + 𝜇(𝑦𝑡1) > 1𝑦𝑡1
+ , 𝑓𝑓2 + 𝜇(𝑦𝑡2) > 1𝑦𝑡2

+ , 𝑓𝑓3 +

𝜇(𝑦𝑡3) > 1𝑦3
+ , so that 𝜇 is also neutrosophic quasi neighborhood of 𝑦𝑓. 

Now 𝑦𝑓 ∈𝑁 𝐴
∗  implies there is at least one 𝑥

〈𝜆1
′,𝜆2

′,𝜆3
′〉

′ ∈𝑁 𝑁(𝑋)  such that 𝑣 (𝑥′𝜆1′) +

𝐴 (𝑥′𝜆1′) − 1𝑥′𝜆1′
+ > 𝐼1(𝑥

′
𝜆1
′) , 𝑣 (𝑥′𝜆2′) + 𝐴(𝑥

′
𝜆2
′) − 1𝑥′

𝜆2
′

+ > 𝐼1(𝑥
′
𝜆2
′) , 𝑣 (𝑥′𝜆3′) + 𝐴 (𝑥

′
𝜆3
′) −

1𝑥′
𝜆3
′

+ > 𝐼1(𝑥
′
𝜆3
′), for each 𝑣 ∈ 𝑁𝑄𝑁(𝑥

〈𝜆1
′,𝜆2

′,𝜆3
′〉

′ ) and 𝐼1 ∈ 𝐼. This is also true for 𝜇. 

So there is at least one 𝑥
〈𝜆1

′′,𝜆2
′′,𝜆3

′′〉
′′ ∈𝑁 𝑁(𝑋)  such that 𝜇 (𝑥′′𝜆1′′) + 𝐴 (𝑥

′′
𝜆1
′′) − 1𝑥′′

𝜆1
′′

+ >

𝐼1(𝑥
′′
𝜆1
′′) , 𝜇 (𝑥′′𝜆2′′) + 𝐴(𝑥

′′
𝜆2
′′) − 1𝑥′′

𝜆2
′′

+ > 𝐼1(𝑥
′′
𝜆2
′′)  , 𝑣 (𝑥′′𝜆3′′) + 𝐴 (𝑥

′′
𝜆3
′′) − 1𝑥′′

𝜆3
′′

+ >
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𝐼1(𝑥
′′
𝜆3
′′), for each 𝐼1 ∈ 𝐼, and. Since 𝜇 is an arbitrary neutrosophic quasi neighborhood of  

𝑥〈𝜆1,𝜆2,𝜆3〉, therefore 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
∗. Hence, 𝐴∗ ⊆ 𝑐𝑙(𝐴∗) ⊆ 𝑐𝑙(𝐴). 

4- By (3), we have 𝐴∗∗ = 𝑐𝑙((𝐴∗)∗) ⊆ 𝑐𝑙(𝐴∗) = 𝐴∗. 

5- Suppose, 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
∗⋃𝐵∗ , i.e. 𝜆1 > (𝐴

∗ ∪ 𝐵∗)(𝑥𝜆1) = 𝑚𝑎𝑥{𝐴
∗(𝑥𝜆1), 𝐵

∗(𝑥𝜆1)} , 𝜆2 >

(𝐴∗ ∪ 𝐵∗)(𝑥𝜆2) = 𝑚𝑎𝑥{𝐴
∗(𝑥𝜆2),𝐵

∗(𝑥𝜆2)} , 𝜆3 > (𝐴
∗ ∪ 𝐵∗)(𝑥𝜆3) = 𝑚𝑎𝑥{𝐴

∗(𝑥𝜆3), 𝐵
∗(𝑥𝜆3)} . So 

𝑥〈𝜆1,𝜆2,𝜆3〉 is not contained in both 𝐴∗ and 𝐵∗. This implies there is at least one neutrosophic 

quasi neighborhood 𝜇1 of  𝑥〈𝜆1,𝜆2,𝜆3〉 such that for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋), 𝜇1(𝑦𝑡1) + 𝐴(𝑦𝑡1) −

1𝑦𝑡1
+ > 𝐼2(𝑦𝑡1)  , 𝜇1(𝑦𝑡2) + 𝐴(𝑦𝑡2) − 1𝑦𝑡2

+ > 𝐼2(𝑦𝑡2)  , 𝜇1(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦𝑡3
+ > 𝐼2(𝑦𝑡3) , for 

some 𝐼2 ∈ 𝐼  and similarly there is at least one neutrosophic quasi neighborhood 𝜇2  of 

𝑥〈𝜆1,𝜆2,𝜆3〉 such that for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋), 𝜇2(𝑦𝑡1) + 𝐵(𝑦𝑡1) − 1𝑦𝑡1
+ > 𝐼3(𝑦𝑡1) , 𝜇2(𝑦𝑡2) +

𝐵(𝑦𝑡2) − 1𝑦𝑡2
+ > 𝐼3(𝑦𝑡2) , 𝜇2(𝑦𝑡3) + 𝐵(𝑦𝑡3) − 1𝑦𝑡3

+ > 𝐼3(𝑦𝑡3), for some 𝐼3 ∈ 𝐼. Let 𝜇 = 𝜇1 ∩ 𝜇2 . 

So 𝜇  is also a neutrosophic quasi neighborhood of 𝑥〈𝜆1,𝜆2,𝜆3〉  and 𝜇(𝑦𝑡1) + (𝐴 ∪ 𝐵)(𝑦𝑡1) −

1𝑦𝑡1
+ ≤ (𝐼2 ∪ 𝐼3)(𝑦𝑡1)  , 𝜇(𝑦𝑡2) + (𝐴 ∪ 𝐵)(𝑦𝑡2) − 1𝑦𝑡2

+ ≤ (𝐼2 ∪ 𝐼3)(𝑦𝑡2)  , 𝜇(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3
+ ≤

 𝐼1(𝑦𝑡3), for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋). Therefore, by finite additivity of neutrosophic ideal, as 

𝐼2 ∪ 𝐼3 ∈ 𝐼 , 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 (𝐴 ∪ 𝐵)
∗ . Hence (𝐴 ∪ 𝐵)∗ ⊆ 𝐴∗⋃𝐵∗ . Clearly, both 𝐴  and 𝐵 ⊆ 𝐴⋃𝐵 

implies 𝐴∗ ∪ 𝐵∗ ⊆ (𝐴 ∪ 𝐵)∗ and this complete the prove of (5). 

6- It is obvious that 𝐼1 ∈ 𝐼 implies 𝐼∗ = 0𝑥 so that (𝐴 ∪ 𝐼)∗ = 𝐴∗ ∪ 𝐼∗ = 𝐴∗. 

 

3.6 Definition  

A neutrosophic closure operator 𝜓:𝐻(𝑁(𝑋)) ⟶ 𝐻(𝑁(𝑋)) is defined by 

1-  𝜓(0𝑥〈𝜆1,𝜆2,𝜆3〉
) = 0𝑥〈𝜆1,𝜆2,𝜆3〉

. 

2- 𝐴 ∈ 𝐻(𝑁(𝑋)) ⟹ 𝐴 ⊆ 𝜓(𝐴). 

3- 𝐴,𝐵 ∈ 𝐻(𝑁(𝑋)) ⟹ 𝜓(𝐴 ∪ 𝐵) = 𝜓(𝐴) ∪ 𝜓(𝐵). 

4- 𝐴 ∈ 𝐻(𝑁(𝑋)) ⟹ 𝜓(𝜓(𝐴)) = 𝜓(𝐴). 

Obviously, {𝐴: 𝜓(𝐴) = 𝐴}  constitutes as a collection of neutrosophic closed sets for a 

neutrosophic topology on 𝑁(𝑋). 
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3.7 Theorem  

Let 𝐷:𝐻(𝑁(𝑋)) ⟶ 𝐻(𝑁(𝑋)) be a function such that: 

1- 𝐷 (0𝑥〈𝜆1,𝜆2,𝜆3〉
) = 0𝑥〈𝜆1,𝜆2,𝜆3〉

. 

2- 𝐷(𝐴 ∪ 𝐵) = 𝐷(𝐴) ∪ 𝐷(𝐵). 

3- 𝐷(𝐷(𝐴)) ⊆ 𝐷(𝐴) 

Where 𝐴,𝐵  are any neutrosophic sets of 𝑁(𝑋). Then 𝜓:𝐻(𝑁(𝑋)) ⟶ 𝐻(𝑁(𝑋)) defined by 

𝜓(𝐴) = 𝐴 ∪𝐷(𝐴)  is a neutrosophic closure operator. Clearly, 𝐷  does not necessarily 

coincide with neutrosophic derived set operator in the generated neutrosophic operator. 

3.8 Theorem  

 ∗:𝐻(𝑁(𝑋)) ⟶ 𝐻(𝑁(𝑋)) satisfies all the required condition for D. 

Proof. 

Since 0𝑥〈𝜆1,𝜆2,𝜆3〉
∗ = 0𝑥〈𝜆1,𝜆2,𝜆3〉

, (𝐴 ∪ 𝐵)∗ = 𝐴∗ ∪𝐵∗ and (𝐴∗)∗ ⊆ 𝐴∗, the proof is complete. 

Let (𝑁(𝑋), 𝜏) be a neutrosophic topological space and 𝐼 be a neutrosophic ideal on 𝑁(𝑋). Let 

us define 𝑐𝑙∗(𝐴) = 𝐴 ∪ 𝐴∗ for any neutrosophic set 𝐴 of 𝑁(𝑋). Clearly, 𝑐𝑙∗is a neutrosophic 

closure operator. Let 𝜏∗(𝐼)  be the neutrosophic topology generated by 𝑐𝑙∗ , i.e., 𝜏∗(𝐼) =

{𝐴: 𝑐𝑙∗(𝐴𝑐) = 𝐴𝑐}, 𝐴𝑐 will denote the complement of 𝐴. 

Now, let 𝐼 = {0𝑥〈𝜆1,𝜆2,𝜆3〉
} ⟹ 𝑐𝑙∗(𝐴) = 𝐴 ∪ 𝐴∗ = 𝐴 ∪ 𝑐𝑙(𝐴) = 𝑐𝑙(𝐴), for every 𝐴 ∈ 𝐻(𝑁(𝑋)). So, 

𝜏∗ ({0𝑥〈𝜆1,𝜆2,𝜆3〉
}) = 𝜏 . Again, let 𝐼 = 𝐻(𝑁(𝑋)) ⟹ 𝑐𝑙∗(𝐴) = 𝐴 , because 𝐴∗ = 0𝑥〈𝜆1,𝜆2,𝜆3〉

, for 

every 𝐴 ∈ 𝐻(𝑁(𝑋)). So, 𝜏∗(𝐻(𝑁(𝑋)) is the neutrosophic discrete topology on 𝑁(𝑋). Since 

{0𝑥〈𝜆1,𝜆2,𝜆3〉
} and 𝐻(𝑁(𝑋)) are two extreme neutrosophic ideals on 𝑁(𝑋), therefore for any 

neutrosophic ideal 𝐼 on 𝑁(𝑋) we have {0𝑥〈𝜆1,𝜆2,𝜆3〉
} ⊆ 𝐼 ⊆ 𝐻(𝑁(𝑋)). So we can conclude by 

theorem 3.5 (2),  𝜏∗ ({0𝑥〈𝜆1,𝜆2,𝜆3〉
}) ⊆ 𝜏∗(𝐻(𝑁(𝑋)) , i.e. 𝜏 ⊆ 𝜏∗(𝐼) ⊆  neutrosophic discrete 

topology, for any neutrosophic ideal 𝐼  on 𝑋 . In particular, we have, for any two 

neutrosophic ideals 𝐼1 and 𝐼2 on 𝑁(𝑋), 𝐼1 ⊆ 𝐼2 ⟹ 𝜏∗(𝐼1) ⊆ 𝜏
∗(𝐼2). 

 

3.9 Theorem  
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Let 𝜏1, 𝜏2 be two neutrosophic topologies on 𝑁(𝑋). Then for any neutrosophic ideal 𝐼 on 

𝑁(𝑋), 𝜏1 ⊆ 𝜏2 implies that: 

1- 𝐴∗(𝜏2, 𝐼) ⊆ 𝐴
∗(𝜏1, 𝐼), for every 𝐴 ∈ 𝐻(𝑁(𝑋)). 

2- 𝜏1
∗ ⊆ 𝜏2

∗. 

Proof. 

Since every 𝜏1 neutrosophic quasi neighborhood of any neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉 is also 

a 𝜏2  neutrosophic quasi neighborhood of 𝑥〈𝜆1,𝜆2,𝜆3〉. Therefore, 𝐴∗(𝜏2, 𝐼) ⊆ 𝐴
∗(𝜏1, 𝐼) as there 

may be other 𝜏2  neutrosophic quasi neighborhood of 𝑥〈𝜆1 ,𝜆2,𝜆3〉  where the condition for 

𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
∗(𝜏2, 𝐼)  may not hold true, although 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴

∗(𝜏1, 𝐼) . Clearly, 𝜏1
∗(𝐼) ⊆

𝜏2
∗(𝐼) as 𝐴∗(𝜏2, 𝐼) ⊆ 𝐴

∗(𝜏1, 𝐼). 

 

3.10 Theorem  

Suppose 𝐴𝐷
∗
is the neutrosophic derived set of 𝐴 in 𝜏∗neutrosophic topology, then, 𝐴𝐷

∗
⊆ 𝐴𝐷 

and  𝐴𝐷
∗
⊆ 𝐴∗for all neutrosophic set 𝐴 of 𝑁(𝑋). 

 

Proof. 

Since 𝜏 ⊆ 𝜏∗ . Therefore, 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
𝐷∗  implies that every neutrosophic quasi 

neighborhood of 𝑥〈𝜆1,𝜆2,𝜆3〉 in neutrosophic topology 𝜏∗ is neutrosophic quasi concomitant 

with 𝐴 ⟹ 𝑥〈𝜆1 ,𝜆2,𝜆3〉 ∈𝑁 𝐴
𝐷  , so that 𝐴𝐷

∗
⊆ 𝐴∗. 

Again, for any neutrosophic point  𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
𝐷∗ implies 𝑥〈𝜆1,𝜆2 ,𝜆3〉 ∈𝑁 𝑐𝑙

∗(𝐴) = 𝐴 ∪ 𝐴∗, i.e. 

𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴 or 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
∗ or both. Now, if 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴, then for any neutrosophic 

quasi neighborhood 𝜇  of 𝑥〈𝜆1,𝜆2,𝜆3〉  in neutrosophic topology 𝜏∗ , there exists 

𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋)  such that 𝑥〈𝜆1,𝜆2,𝜆3〉 ≠ 𝑦〈𝑡1,𝑡2,𝑡3〉  and 𝐴(𝑦𝑡1) + 𝜇(𝑦𝑡1) > 1𝑦𝑡1
+ , 𝐴(𝑦𝑡2) +

𝜇(𝑦𝑡2) > 1𝑦𝑡2
+  , 𝐴(𝑦𝑡3) + 𝜇(𝑦𝑡3) > 1𝑦3

+ , this implies 𝑥〈𝜆1,𝜆2,𝜆3〉  is accumulation neutrosophic 

point of the neutrosophic set 𝐴′ such that 

𝐴′(𝑦〈𝑡1,𝑡2,𝑡3〉) =

{
 
 

 
 𝐴(𝑦〈𝑡1,𝑡2,𝑡3〉)    𝑖𝑓    𝑦𝑡1 ≠ 𝑥𝜆1 , 𝑦𝑡2 ≠ 𝑥𝜆2 , 𝑦𝑡3 ≠ 𝑥𝜆3   

𝑡1                  𝑖𝑓               𝑦𝑡1 = 𝑥𝜆1  𝑎𝑛𝑑  𝑡1 < 𝜆1 

𝑡2                 𝑖𝑓               𝑦𝑡2 = 𝑥𝜆2   𝑎𝑛𝑑  𝑡2 < 𝜆2
𝑡3                 𝑖𝑓                𝑦𝑡3 = 𝑥𝜆3   𝑎𝑛𝑑 𝑡3 < 𝜆3
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Obviously, 𝐴′ ⊆ 𝐴, so that (𝐴′)∗ ⊆ 𝐴∗ also 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
′. Hence, 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 (𝐴

′)∗, because 

𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁  𝑐𝑙
∗(𝐴′) = 𝐴′ ∪ (𝐴′)∗ . So, 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴

∗ , therefore, 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
𝐷∗⟹

𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
∗ ⟹𝐴𝐷

∗
⊆ 𝐴∗. 

 

3.11 Definition  

A neutrosophic set 𝜇 of 𝑁(𝑋) is called neutrosophic closed and discrete if and only if 𝜇𝐷 =

0𝑥〈𝜆1,𝜆2,𝜆3〉
. 

 

3.12 Theorem  

Let (𝑁(𝑋), 𝜏) be a neutrosophic topology space with 𝐼 a fuzzy ideal on 𝑁(𝑋). Then, 

1- 𝐼1 ∈ 𝐼 is closed and discrete in (𝑁(𝑋),  𝜏∗). 

2- 𝐴∗ = 𝑐𝑙(𝐴 − 𝐼1) for every 𝐼1 ∈ 𝐼 and for any neutrosophic set 𝐴 of 𝑁(𝑋), where 𝐴 − 𝐼1 is 

the neutrosophic set defined by (𝐴 − 𝐼1)(𝑥〈𝜆1,𝜆2,𝜆3〉) = 𝑚𝑎𝑥 {𝐴(𝑥𝜆1) − 𝐼1(𝑥𝜆1),𝐴(𝑥𝜆2) −

 𝐼1(𝑥𝜆2), 𝐴(𝑥𝜆3) − 𝐼1(𝑥𝜆3), 0𝑥〈𝜆1,𝜆2,𝜆3〉
}, for every 𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝑁(𝑋). 

Proof. 

1) 𝐼1 ∈ 𝐼 ⟹ 𝐼1
∗ = 0𝑥〈𝜆1,𝜆2,𝜆3〉

, therefore by theorem 3.10, 𝐼1
𝐷∗ = 0𝑥〈𝜆1,𝜆2,𝜆3〉

. 

2) The proof is clear from the definition of neutrosophic local function and the closure of a 

neutrosophic set. 

The above theorem characterizes a useful fact about the construction of different 

neutrosophic ideals in relation with the original neutrosophic topology and the generated 

neutrosophic topology. The following examples show some cases where the two 

neutrosophic topologies 𝜏 and 𝜏∗ on 𝑁(𝑋) are equal. 

 

3.12 Example: 

1- If 𝐼1 be a neutrosophic ideal on 𝑁(𝑋) such that 𝐴𝐷 ⊆ 𝑐𝑙(𝐴 − 𝐼1) for every 𝐼1 ∈ 𝐼 and for 

any neutrosophic set 𝐴  of 𝑁(𝑋), then it is clear that 𝐴𝐷 ⊆ 𝐴∗  so that 𝑐𝑙(𝐴) = 𝑐𝑙∗(𝐴) . 

Therefore, 𝜏 = 𝜏∗. 
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2- Again, if 𝐼1 be such that 𝐴𝐷 = (𝐴 − 𝐼1)
𝐷 for every 𝐼1 ∈ 𝐼, then it is obvious that 𝜏 = 𝜏∗. 

3- Also, 𝐴𝐷 = 𝐴∗, for a neutrosophic ideal 𝐼 on 𝑁(𝑋) implies 𝜏 = 𝜏∗. 

4. Basic Structure of Generated Neutrosophic Topology 

Let (𝑁(𝑋), 𝜏) be a neutrosophic topological space and 𝐼 is a neutrosophic ideal on 𝑁(𝑋). Let 𝐴 

be a neutrosophic quasi neighborhood of a neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉  in the neutrosophic 

topology 𝜏∗ . Therefore, there exists 𝜇 ∈ 𝜏∗  such that, 𝜆1 + 𝜇(𝑥𝜆1) > 1𝑥𝜆1
+ , 𝜆2 + 𝜇(𝑥𝜆2) > 1𝑥𝜆2

+ , 𝜆3 +

𝜇(𝑥𝜆3) > 1𝑥𝜆3
+ . And 𝜇 ⊆ 𝐴 . Now, 𝜇 ∈ 𝜏∗ ⇔ 𝜇𝑐  is closed in 𝜏∗ ⟺ 𝑐𝑙∗(𝜇𝑐) = 𝜇𝑐 ⟺ (𝜇𝑐)∗ ⊆ 𝜇𝑐 ⟺ 𝜇 ⊆

{(𝜇𝑐)∗}𝑐. Therefore, 𝜆1 + 𝜇(𝑥𝜆1) > 1𝑥𝜆1
+ , 𝜆2 + 𝜇(𝑥𝜆2) > 1𝑥𝜆2

+ , 𝜆3 + 𝜇(𝑥𝜆3) > 1𝑥𝜆3
+ ⟹𝜆1 + {(𝜇

𝑐)∗}𝑐(𝑥𝜆1) >

1𝑥𝜆1
+ , 𝜆2 + {(𝜇

𝑐)∗}𝑐(𝑥𝜆2) > 1𝑥𝜆2
+ , 𝜆3 + {(𝜇

𝑐)∗}𝑐(𝑥𝜆3) > 1𝑥𝜆3
+ ⟹ 𝜆1 > (𝜇

𝑐)∗(𝑥𝜆1) , 𝜆2 > (𝜇
𝑐)∗(𝑥𝜆2) , 𝜆3 >

(𝜇𝑐)∗(𝑥𝜆3) ⟹ 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 (𝜇
𝑐)∗  . this implies there exists at least one neutrosophic quasi 

neighborhood 𝑣1  of 𝑥〈𝜆1,𝜆2,𝜆3〉  in 𝜏  such that for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋), 𝑣1(𝑦𝑡1) + 𝜇
𝑐(𝑦𝑡1) − 1𝑦𝑡1

+ >

𝐼1(𝑦𝑡1) , 𝑣1(𝑦𝑡2)+ 𝜇
𝑐(𝑦𝑡2) − 1𝑦𝑡2

+ > 𝐼1(𝑦𝑡2) , 𝑣1(𝑦𝑡3) + 𝜇
𝑐(𝑦𝑡3) − 1𝑦3

+ > 𝐼1(𝑦𝑡3) , for some 𝐼1 ∈ 𝐼 , i.e. 

𝑣1(𝑦𝑡1) − 𝐼1(𝑦𝑡1) ≤ 𝜇(𝑦𝑡1) , 𝑣1(𝑦𝑡2) − 𝐼1(𝑦𝑡2) ≤ 𝜇(𝑦𝑡2) , 𝑣1(𝑦𝑡3) − 𝐼1(𝑦𝑡3) ≤ 𝜇(𝑦𝑡3) , for every 

𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁  𝑁(𝑋). Therefore, as 𝑣1 is a neutrosophic quasi neighborhood of 𝑥〈𝜆1,𝜆2,𝜆3〉 in 𝜏, there is 

𝑣 ∈ 𝜏 such that 𝑥〈𝜆1,𝜆2,𝜆3〉 is a neutrosophic quasi concomitant to 𝑣 ⊆ 𝑣1, and by heredity property of 

neutrosophic ideal we have 𝐼2 ∈ 𝐼 for which 𝑥〈𝜆1,𝜆2,𝜆3〉 𝑞𝑐 (𝑣 − 𝐼2) ⊆ 𝜇, we have (𝑣 − 𝐼2)(𝑦〈𝑡1,𝑡2,𝑡3〉) =

𝑚𝑎𝑥 {𝑣(𝑦〈𝑡1,𝑡2,𝑡3〉) − 𝐼2(𝑦〈𝑡1,𝑡2,𝑡3〉), 0𝑥〈𝜆1,𝜆2,𝜆3〉
}, for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋). Here for 𝜇 ∈ 𝜏∗, we have 𝑣 ∈

𝜏 and 𝐼2 ∈ 𝐼 such that, (𝑣 − 𝐼2) ⊆ 𝜇. Let us denote 𝛽(𝐼, 𝜏) = {𝑣 − 𝐼2: 𝑣 ∈𝑁 𝜏, 𝐼2 ∈ 𝐼}. 

 

4.1 Theorem  

𝛽 forms a basis for the generated neutrosophic topology 𝜏∗ of the neutrosophic ideal 𝐼 on 𝑁(𝑋). 

Proof. Straight forward. 

The following example is very important for the further results that justifies the above construction. 

 

4.2 Example: 

Let 𝑊 be the neutrosophic indiscrete topology on 𝑁(𝑋), i.e. 𝑊 = {0𝑥〈𝜆1,𝜆2,𝜆3〉
, 1𝑥〈𝜆1,𝜆2,𝜆3〉

}. So 1𝑥〈𝜆1,𝜆2,𝜆3〉
 

is the only neutrosophic quasi neighborhood of every neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉 . Now, let 
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𝑥〈𝜆1,𝜆2,𝜆3〉 ∈𝑁 𝐴
∗for a neutrosophic set 𝐴 ⟺ for each 𝐼1 ∈ 𝐼, there is at least one 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋) such 

that 1𝑦𝑡1
+ +𝐴(𝑦𝑡1) − 1𝑦𝑡1

+ > 𝐼1 (1𝑦𝑡1
+ ) , 1𝑦𝑡2

+ +𝐴(𝑦𝑡2)− 1𝑦2
+ > 𝐼1 (1𝑦𝑡2

+ ) , 1𝑦𝑡3
+ + 𝐴(𝑦𝑡3) − 1𝑦𝑡3

+ > 𝐼1(1𝑦𝑡3
+ ) , 

this implies for each 𝐼1 ∈ 𝐼, 𝐴(𝑦〈𝑡1,𝑡2,𝑡3〉) > 𝐼1(𝑦〈𝑡1,𝑡2,𝑡3〉) for at least one 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋). So 𝐴 ∉ 𝐼 . 

Therefore, 𝐴∗ = 1𝑥〈𝜆1,𝜆2,𝜆3〉
 if 𝐴 ∉ 𝐼 and 𝐴∗ = 0𝑥〈𝜆1,𝜆2,𝜆3〉

 if 𝐴 ∈ 𝐼. This implies that we have, 𝑐𝑙∗(𝐴) = 𝐴 ∪

𝐴∗ = 1𝑥〈𝜆1,𝜆2,𝜆3〉
, if 𝐴 ∉ 𝐼  and 𝑐𝑙∗(𝐴) = 𝐴, if 𝐴 ∈ 𝐼, for any neutrosophic set 𝐴 of 𝑁(𝑋). Hence 𝑊∗ =

{𝜇: 𝜇𝑐 ∈ 𝐼}. Let 𝜏⋁𝑊∗(𝐼) be the supremum neutrosophic topology of 𝜏 and 𝑊∗(𝐼), i.e. the smallest 

neutrosophic topology generated by 𝜏 ∪𝑊∗(𝐼). Then we have the following theorem:  

 

4.3 Theorem  

𝜏∗(𝐼) = 𝜏⋁𝑊∗(𝐼) 

Proof. 

Follows from the fact that 𝛽 forms a basis for 𝜏∗. 

 

4.4 Corollary  

For any two neutrosophic ideals 𝐼1  and 𝐼2  on 𝑁(𝑋), 𝐼1 ∨ 𝐼2 = {𝐼1 ∪ 𝐼2: 𝐽1 ∈ 𝐼1, 𝐽2 ∈ 𝐼2 } and 𝐼1 ∩ 𝐼2  are 

neutrosophic ideals on 𝑁(𝑋). 

Proof. 

It is clear and straight forward. 

 

4.5 Theorem  

Let (𝑁(𝑋), 𝜏) be a neutrosophic topological space and 𝐼1, 𝐼2 be two neutrosophic ideals on 𝑁(𝑋). 

Then, for any neutrosophic set 𝐴 of 𝑁(𝑋), 

1- 𝐴∗(𝐼1 ∩ 𝐼2) =  𝐴
∗(𝐼1) ∪ 𝐴

∗(𝐼2) 

2- 𝐴∗(𝐼1 ∨ 𝐼2, 𝜏) = 𝐴
∗(𝐼1, 𝜏

∗(𝐼2)) ∩ 𝐴
∗(𝐼2, 𝜏

∗(𝐼1)) 

Proof. 

1- Let 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
∗(𝐼1) ∪ 𝐴

∗(𝐼2) . Then, 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁  both 𝐴∗(𝐼1)  and 𝐴∗(𝐼2) . Now 

𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
∗(𝐼1) implies there is at least one quasi neighborhood 𝜇 of 𝑥〈𝜆1,𝜆2,𝜆3〉 (in 𝜏) such 
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that for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋), we have 𝜇(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ ≤ 𝐼(𝑦𝑡1), 𝜇(𝑦𝑡2) + 𝐴(𝑦𝑡2) −

1𝑦𝑡2
+ > 𝐼(𝑦𝑡2), 𝜇(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3

+ > 𝐼(𝑦𝑡3), for some 𝐼 ∈ 𝐼1. 

Again, 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
∗(𝐼2) implies there is at least one quasi neighborhood 𝑣 of 𝑥〈𝜆1,𝜆2,𝜆3〉 (in 

𝜏) such that for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋), we have 𝑣(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ ≤ 𝐽(𝑦𝑡1), 𝑣(𝑦𝑡2)+

𝐴(𝑦𝑡2) − 1𝑦𝑡2
+ > 𝐽(𝑦𝑡2) , 𝑣(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3

+ > 𝐽(𝑦𝑡3) , for some 𝐽 ∈ 𝐼2 .therefore, we have 

(𝜇 ∩ 𝑣)(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ ≤ (𝐼 ∩ 𝐽)(𝑦𝑡1) , (𝜇 ∩ 𝑣)(𝑦𝑡2) + 𝐴(𝑦𝑡2) − 1𝑦𝑡2

+ > (𝐼 ∩ 𝐽)(𝑦𝑡2) , (𝜇 ∩

𝑣)(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3
+ > (𝐼 ∩ 𝐽)(𝑦𝑡3) , for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋) . Since (𝜇 ∩ 𝑣)  is also a 

quasi-neighborhood of  𝑥〈𝜆1,𝜆2,𝜆3〉 (in 𝜏) and 𝐼 ∩ 𝐽 ∈ 𝐼1 ∩ 𝐼2, therefore 𝑥〈𝜆1,𝜆2 ,𝜆3〉 ∉𝑁 𝐴
∗(𝐼1 ∩ 𝐼2), 

so that 𝐴∗(𝐼1 ∩ 𝐼2) ⊆ 𝐴
∗(𝐼1) ∩ 𝐴

∗(𝐼2). Also, 𝐼1 ∩ 𝐼2 is included in both 𝐼1 and 𝐼2, so by theorem 

(3.4/2), reverse inclusion is obvious, which completes the proof of (1). 

2- Since 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
∗(𝐼1⋁𝐼2, 𝜏)  implies there is at least one quasi-neighborhood 𝜇  of 

𝑥〈𝜆1,𝜆2,𝜆3〉 (𝑖𝑛 𝜏)  such that, for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋) , 𝜇(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ ≤ 𝐼′(𝑦𝑡1) , 

𝜇(𝑦𝑡2) + 𝐴(𝑦𝑡2) − 1𝑦𝑡2
+ > 𝐼′(𝑦𝑡2) , 𝜇(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3

+ > 𝐼′(𝑦𝑡3) , for some 𝐼′ ∈ 𝐼1⋁𝐼2 . 

Therefore, by heredity of neutrosophic ideals and considering the structure of neutrosophic 

open sets in generated neutrosophic topology, we can find 𝑣 or 𝑣′, the quasi-neighborhood 

of the neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉  in 𝜏∗(𝐼1)  or 𝜏∗(𝐼2)  respectively, such that for every 

𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋) , 𝑣(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ ≤ 𝐽(𝑦𝑡1) , 𝑣(𝑦𝑡2) + 𝐴(𝑦𝑡2) − 1𝑦𝑡2

+ > 𝐽(𝑦𝑡2) , 𝑣(𝑦𝑡3) +

𝐴(𝑦𝑡3) − 1𝑦3
+ > 𝐽(𝑦𝑡3) , OR 𝑣′(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1

+ ≤ 𝐼(𝑦𝑡1) , 𝑣′(𝑦𝑡2) + 𝐴(𝑦𝑡2) − 1𝑦𝑡2
+ > 𝐼(𝑦𝑡2) , 

𝑣′(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3
+ > 𝐼(𝑦𝑡3),  for some 𝐼 ∈ 𝐼1  or 𝐽 ∈ 𝐼2 . This implies 

𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
∗(𝐼2, 𝜏

∗(𝐼1))  or 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
∗(𝐼1, 𝜏

∗(𝐼2)) , thus we have, 𝐴∗(𝐼2, 𝜏
∗(𝐼1)) ∩

𝐴∗(𝐼1, 𝜏
∗(𝐼2)) ⊆ 𝐴

∗(𝐼1⋁𝐼2, 𝜏). Conversely, let 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴
∗(𝐼1, 𝜏

∗(𝐼2)). This implies there is at 

least one quasi-neighborhood 𝜇 in 𝜏∗(𝐼2) of 𝑥〈𝜆1,𝜆2,𝜆3〉  such that for every 𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋), 

𝜇(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ ≤ 𝐼3(𝑦𝑡1) , 𝜇(𝑦𝑡2) + 𝐴(𝑦𝑡2) − 1𝑦𝑡2

+ > 𝐼3(𝑦𝑡2) , 𝜇(𝑦𝑡3)+ 𝐴(𝑦𝑡3) − 1𝑦3
+ >

𝐼3(𝑦𝑡3), for some 𝐼3 ∈ 𝐼1.Since 𝜇 is a 𝜏∗(𝐼2) quasi-neighborhood of 𝑥〈𝜆1,𝜆2,𝜆3〉, by heredity of 

neutrosophic ideals we have a quasi-neighborhood 𝑣 of 𝑥〈𝜆1,𝜆2,𝜆3〉 (𝑖𝑛 𝜏) such that for every 

𝑦〈𝑡1,𝑡2,𝑡3〉 ∈𝑁 𝑁(𝑋), 𝑣(𝑦𝑡1) + 𝐴(𝑦𝑡1) − 1𝑦𝑡1
+ ≤ (𝐼 ∪ 𝐽)(𝑦𝑡1), 𝑣(𝑦𝑡2) + 𝐴(𝑦𝑡2) − 1𝑦𝑡2

+ > (𝐼 ∪ 𝐽)(𝑦𝑡2), 

𝑣(𝑦𝑡3) + 𝐴(𝑦𝑡3) − 1𝑦3
+ > (𝐼 ∪ 𝐽)(𝑦𝑡3), for some 𝐼 ∈ 𝐼1  and 𝐽 ∈ 𝐼2 , i.e. 𝑥〈𝜆1,𝜆2,𝜆3〉 ∉𝑁 𝐴

∗(𝐼1⋁𝐼2, 𝜏). 
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Thus, 𝐴∗(𝐼1⋁𝐼2, 𝜏) ⊆ 𝐴
∗(𝐼1, 𝜏

∗(𝐼2)). Similarly, 𝐴∗(𝐼1⋁𝐼2, 𝜏) ⊆ 𝐴
∗(𝐼2, 𝜏

∗(𝐼1)) and this completes 

the proof. 

An important result follows from the above theorem that 𝜏∗(𝐼1) and [𝜏∗(𝐼1)]
∗ [in short 𝜏∗∗] are 

equal for any neutrosophic ideal on 𝑁(𝑋). 

 

4.6 Corollary  

Let (𝑁(𝑋), 𝜏) be a neutrosophic topological space and 𝐼1 be a neutrosophic ideal on 𝑁(𝑋). Then, 

𝐴∗(𝐼1, 𝜏) = 𝐴
∗(𝐼1,  𝜏

∗) and 𝜏∗(𝐼1) = [𝜏
∗(𝐼1)]

∗(𝐼1). 

Proof. 

By putting 𝐼1 = 𝐼2 in theorem (4.5/2) we have the required result. 

 

4.7 Corollary  

Let (𝑁(𝑋), 𝜏) be a neutrosophic topological space and 𝐼1, 𝐼2 be two neutrosophic ideals on 𝑁(𝑋). 

Then, 

i) 𝜏∗(𝐼1⋁𝐼2) = [𝜏
∗(𝐼2)]

∗(𝐼1) = [𝜏
∗(𝐼1)]

∗(𝐼2), 

ii) 𝜏∗(𝐼1⋁𝐼2) = 𝜏
∗(𝐼1)⋁𝜏

∗(𝐼2), 

iii) 𝜏∗(𝐼1 ∩ 𝐼2) = 𝜏
∗(𝐼1) ∩ 𝜏

∗(𝐼2). 

Proof. 

(i) By theorem (4.5/2) the result follows. 

(ii) By (i), we have, 𝜏∗(𝐼1⋁𝐼2) = [𝜏
∗(𝐼2)]

∗(𝐼1) = [𝜏
∗(𝐼1)]

∗(𝐼2) [ by theorem 4.5/2). Since, 𝜏 ⊆ 𝜏∗ 

for any neutrosophic ideal on 𝑁(𝑋) . Therefore, 𝜏∗(𝐼1⋁𝐼2) = (𝜏⋁𝜏
∗)(𝐼2)⋁𝜏

∗(𝐼1) =

𝜏∗(𝐼1)⋁𝜏
∗(𝐼2). 

(iii) Since 𝐼1 ∩ 𝐼2 is included in both 𝐼1 and 𝐼2, 𝜏
∗(𝐼1 ∩ 𝐼2) is included in both 𝜏∗(𝐼1) and 𝜏∗(𝐼2). 

Now 𝜇 is a neutrosophic open set in 𝜏∗(𝐼1) ∩ 𝜏
∗(𝐼2), implies 𝜇𝑐 is neutrosophic closed set 

in both 𝜏∗(𝐼1) and 𝜏∗(𝐼2). That means (𝜇𝑐)∗(𝐼1) ⊆ 𝜇
𝑐  and (𝜇𝑐)∗(𝐼2) ⊆ 𝜇

𝑐 . So, (𝜇𝑐)∗(𝐼1) ∪

(𝜇𝑐)∗(𝐼2) ⊆ 𝜇
𝑐 . Therefore, by theorem (4.5/1), (𝜇𝑐)∗(𝐼1⋂𝐼2) ⊆ 𝜇

𝑐 . Hence, 𝜇 ∈ 𝜏∗(𝐼1⋂𝐼2). 

This completes the proof. 

5. Conclusion:  
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     This work contains new insight into defining many mathematical notions from corners that have 

not been addressed before, such as neutrosophic topological space, neutrosophic ideal, 

neutrosophic quasi neighborhood, and neutrosophic point 𝑥〈𝜆1,𝜆2,𝜆3〉 in the neutrosophic topology 

𝜏∗. As well as, many theorems and corollaries, some examples that have support the theoretical 

concepts. 
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Abstract. In this current paper, our objective is to establish neutrosophic n−normed linear space(briefly called

N − n−NLS) and introduce the convergence structure within these spaces. We also define Cauchy sequences,

completeness in N − n−NLS and obtained the relations between these notions.

Keywords: Neutrosophic normed linear spaces, n−normed space, convergence and Cauchy sequences.

—————————————————————————————————————————-

1. Introduction

Nearly about 60 years ago, Zadeh [42] introduced fuzzy sets as a generalization of crisp set to

address those problems which can’t be modeled in the framework of crisp sets. These sets have

vast applicability in many areas of science and engineering especially, in control engineering,

decision making theory [40], fuzzy physics [28], artificial intelligence and robotics [41]. Katsaras

[24] first observed that there are some situations in which the precise value of the norm of a

vector can’t be determined and therefore the concept of a fuzzy norm seems more appropriate

as compared to the crisp norm. In view of this, he introduced the concept of fuzzy normed

linear spaces and proved that any two fuzzy norms are equivalent. For further developments

on these spaces, we recommend to the reader [24], [27-28],[30], [32], etc. Sadati and Park [34]

generalized fuzzy normed linear space, called intutionistic fuzzy normed space while studying

fuzzy topological spaces. Later, Karakus et al. [20] studied generalized convergence called

statistical convergence in intutionistic fuzzy normed space. However, Srinivasan Vijayabalaji

et al. [40] defined the intutionistic fuzzy n-normed linear space (IF-n-NLS) and introduced the

notions of convergence and Cauchy sequence. Subsequently, these spaces have been developed

in [4, 15, 18, 20] etc.

Vijay Kumar, Archana Sharma and Sajid Murtaza, On neutrosophic n−normed linear spaces

Neutrosophic Sets and Systems, Vol. 61, 2023



Recently, Kirişci and Şimşek [22] introduce a more generalized form of fuzzy normed space

called neutrosophic normed linear space and studied statistical convergence in these spaces.

After their pioneer work, many papers have been appeared on NNLS and linked with summa-

bility theory. For an extensive view, we refer [21,23, 29-32, 37, 38] etc. In present work, we are

motivated by the works of [40] and [22] to define a N−n−NLS and develop some fundamental

notions of convergence and Cauchy sequences in these spaces.

2. Preliminaries and background

This section starts with some basic definitions, results and terminology on neutrosophic

normed linear spaces and n−norm [22].

Definition 2.1 “A binary operation ◦ : ℑ × ℑ → ℑ, where ℑ = [0, 1] is continuous t−norm,

for each τ1, τ2, τ3 and τ4 ∈ [0, 1] if the below conditions are satisfied:

(i) ◦ is continuous, commutative and associative;

(ii) τ1 ◦ 1 = τ1

(iii) τ1 ◦ τ2 ≤ τ3 ◦ τ4 whenever τ1 ≤ τ3 and τ2 ≤ τ4.”

Definition 2.2 “A binary operation ⋄ : ℑ×ℑ → ℑ, where ℑ = [0, 1] is continuous t−conorm,

for each τ1, τ2, τ3 and τ4 ∈ [0, 1] if the below conditions are satisfied:

(i) ⋄ is continuous, commutative and associative;

(ii) τ1 ⋄ 0 = τ1

(iii) τ1 ⋄ τ2 ≤ τ3 ⋄ τ4 whenever τ1 ≤ τ3 and τ2 ≤ τ4.

Kirişci and Şimşek [22] used Definition 2.1 and Definition 2.2 to define neutrosophic normed

linear space as follows.”

Definition 2.3 [22]“Let U be a linear space over F and ◦, ⋄ respectively denotes t-norm and t-

conorm, let G,B, Y are function from (ϱ, λ1) ∈ U×(0,∞) to [0, 1]. A six tuple (U,G,B, Y, ◦, ⋄)
is called a neutrosophic normed linear space, if the below properties are satisfied:

For every ϱ, v ∈ U , λ1, λ2 > 0 and scaler α ̸= 0, we have

(i) 0 ≤ G (ϱ, λ1) ≤ 1, 0 ≤ B (ϱ, λ1) ≤ 1, 0 ≤ Y (ϱ, λ1) ≤ 1;

(ii) G (ϱ, λ1) + B (ϱ, λ1) + Y (ϱ, λ1) ≤ 3 ;

(iii) G (ϱ, λ1) = 1, B (ϱ, λ1) = 0 and Y (ϱ, λ1) = 0 if and only if ϱ = 0;

(iv) G (αϱ, λ1) = G
(
ϱ, λ1

|α|

)
, B (αϱ, λ1) = B

(
ϱ, λ1

|α|

)
and Y (αϱ, λ1) = Y

(
ϱ, λ1

|α|

)
;

(v) G (ϱ, λ1) ◦ G (v, λ2) ≤ G (ϱ+ v, λ1 + λ2), B (ϱ, λ1) ⋄ B (v, λ2) ≥ B (ϱ+ v, λ1 + λ2)

and Y (ϱ, λ1) ⋄ Y (v, λ2) ≥ Y (ϱ+ v, λ1 + λ2) ;

(vi) G (ϱ, .) is a non-decreasing continuous function;
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(vii) B (ϱ, .) and Y (ϱ, .) are non-increasing continuous function;

(viii) limλ1→∞G (ϱ, λ1) = 1 , limλ1→∞B (ϱ, λ1) = 0 and limλ1→∞ Y (ϱ, λ1) = 0;

(ix) If λ1 ≤ 0, then G (ϱ, λ1) = 0, B (ϱ, λ1) = 1 and Y (ϱ, λ1) = 1.

We call N (G,B, Y ) as the neutrosophic norm and (U,G,B, Y, ◦, ⋄) the neutrosophic normed

linear space. For some examples on these spaces, we refer [22].”

Finally we recall the concept of n−norm as given in [16].

Definition 2.4 [16] “Let U be a real space of dimension m ≥ n (m is finite or infinite, n ∈ n)

the real valued function ||.||n on U × U × ...× U = Un is called n−norm on U if and only if it

satisfying the below axioms:

(i): ||ϱ1, ϱ2, . . . , ϱn||n = 0 iff ϱ1, ϱ2, . . . , ϱn ∈ U are linearly dependent;

(ii): ||ϱ1, ϱ2, . . . , ϱn||n remains invariant for 1 ≤ i ≤ n;

(iii): ||ϱ1, ϱ2, . . . , αϱn||n = |α|||ϱ1, ϱ2, . . . , ϱn||n for any α ∈ R;
(iv): ||ϱ1, ϱ2, . . . , ϱn−1, v + w||n ≤ ||ϱ1, ϱ2, . . . , ϱn−1, v||n + ||ϱ1, ϱ2, . . . , ϱn−1, w||n.
The pair (U, ||.||n) is known as n−normed linear space.”

3. N-n-NLS

We, now turn towards our main results. We start with the following definition of neutro-

sophic −n− normed space.

Definition 3.1 Let U be a linear space over F and ◦, ⋄ respectively denotes t-norm and

t-conorm, let G0, B0, Y0 are function from Un× (0,∞) to [0, 1]. A six tuple (U,G0, B0, Y0, ◦, ⋄)
is called a neutrosophic n−normed linear space, (ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) ∈ Un×(0,∞) → [0, 1],

if the below properties are satisfied:

(i)G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) +B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) + Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) ≤ 3;

(ii) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) > 0;

(iii) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 1, iff ϱi are dependent for 1 ≤ i ≤ n;

(iv) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) remains invariant, ϱi for 1 ≤ i ≤ n;

(v) G0(ϱ1, ϱ2, . . . , ϱn−1, αϱn, λ1) = G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn,
λ1
|α|) for α ̸= 0, α ∈ F ;

(vi) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) ◦G0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ2)

≥ G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n, λ1 + λ2);

(vii) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) is non-decreasing continuous in λ1

(viii) lim
λ1→∞

G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 1 and lim
λ1→0

G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 0;

(ix) B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) > 0;

(x) B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 1 iff ϱi are dependent for 1 ≤ i ≤ n

(xi) B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) remains invariant, ϱi for 1 ≤ i ≤ n;

(xii) B0(ϱ1, ϱ2, . . . , ϱn−1, αϱn, λ1) = B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn,
λ1
|α|) for α ̸= 0, α ∈ F ;
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(xiii) B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) ⋄B0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ2)

≥ B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n, λ1 + λ2);

(xiv) B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) is non-increasing continuous in λ1;

(xv) lim
λ1→∞

B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 0 and lim
λ1→0

B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 1;

(xvi) Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) > 0;

(xvii) Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 1 iff ϱi are dependent for 1 ≤ i ≤ n

(xviii) Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) remains invariant, ϱi for 1 ≤ i ≤ n;

(xix) Y0(ϱ1, ϱ2, . . . , ϱn−1, αϱn, λ1) = Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn,
λ1
|α|) for α ̸= 0, α ∈ F ;

(xx) Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) ⋄ Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ2)

≥ Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n, λ1 + λ2);

(xxi) Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) is non-increasing continuous in λ1;

(xxii) lim
λ1→∞

Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 0 and lim
λ1→0

Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 1.

For simplicity, we shall denote the neutrosophic n−norm by Nn(G0, B0, Y0).

Example 3.1 Let (U, ∥.∥n) be an n−normed space. For τ1, τ2 ∈ [0, 1], define, t−norm,

t−conorm by τ1 ◦ τ2 = min{τ1, τ2} and τ1 ⋄ τ2 = max{τ1, τ2} and fuzzy sets G0, B0, Y0 on

Un × (0,∞) by

G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) =
λ1

λ1 + ∥ϱ1, ϱ2, . . . , ϱn−1, ϱn∥n
and

B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) =
∥ϱ1, ϱ2, . . . , ϱn−1, ϱn∥n

λ1 + ∥ϱ1, ϱ2, . . . , ϱn−1, ϱn∥n
,

Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) =
∥ϱ1, ϱ2, . . . , ϱn−1, ϱn∥n

λ1
,

then (U,G0, B0, Y0, ◦, ⋄) is a N − n−NLS.

Proof (i) and (ii) directly follows from definition of G0, B0, Y0, i.e.,

(i) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) +B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) + Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) ≤ 3;

(ii) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) > 0;

(iii) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 1 ⇔ λ1

λ1 + ∥ϱ1, ϱ2, . . . , ϱn−1, ϱn∥n
= 1

⇔ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n = 0

⇔ ϱi are linearly dependent for 1 ≤ i ≤ n.

(iv) G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) =
λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
=

λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

=
λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn, ϱn−1||n
= · · ·
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(v) G0

(
ϱ1, ϱ2, . . . , ϱn−1, ϱn,

λ1

|α|

)
=

λ1
|α|

λ1
|α| + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

=
λ1

λ1 + |α|||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

=
λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, αϱn||n
= G0(ϱ1, ϱ2, . . . , ϱn−1, αϱn, λ1).

(vi) In general, let’s suppose that,

G0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1) ≤ G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2)

⇒ λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

≤ λ2

λ2 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
⇒ λ1(λ2 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n) ≤ λ2(λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n)

⇒ λ1||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n ≤ λ2||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n ≤
(
λ2

λ1

)
||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n.

∴ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

≤
(
λ2

λ1

)
||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

≤
(
λ2

λ1
+ 1

)
||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n =

(
λ2 + λ1

λ1

)
||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n.

Now,

||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n||n ≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

≤
(
λ2 + λ1

λ1

)
||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n||n

λ2 + λ1
≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

λ1

⇒ 1 +
||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ

′
n||n

λ2 + λ1
≤ 1 +

||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ1

⇒ λ2 + λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n||n

λ2 + λ1
≤ λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

λ1

⇒ λ2 + λ1

λ2 + λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ′
n||n

≥ λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

⇒ G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n, λ2 + λ1)

≥ min{G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2), G0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1)}

= G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2) ◦G0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1).
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(vii) Clearly G0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) is non-decreasing continuous in λ1.

(viii) B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) > 0.

(ix) B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 0 ⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

= 0

⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n = 0

⇒ ϱi are linearly dependent for 1 ≤ i ≤ n.

(x) B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) =
||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
=

||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

= · · ·

(xi) B0(ϱ1, ϱ2, . . . , ϱn−1, αϱn, λ1) =
||ϱ1, ϱ2, . . . , ϱn−1, αϱn||n

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, αϱn||n
=

|α|||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
λ1 + |α|||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

=
||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

λ1
|α| + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

= B0

(
ϱ1, ϱ2, . . . , ϱn−1, ϱn,

λ1

|α|

)
.

(xii) In general, let’s suppose that,

B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2) ≤ B0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1)

⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
λ2 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n(λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n)

≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n(λ2 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n)

⇒ λ1||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n ≤ λ2||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n.

⇒ λ1||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n − λ2||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n ≤ 0.

Now,

||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n||n

λ2 + λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ′
n||n

− ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ2 + λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

− ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

=
λ1||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n − λ2||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

(λ2 + λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n)(λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n)

≤ 0.

This implies that,
||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ

′
n||n

λ2 + λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ′
n||n

≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

.

Similarly,
||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ

′
n||n

λ2 + λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ′
n||n

≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ2 + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

.

This implies that,

B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n, λ2 + λ1)

≤ max{B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2), B0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1)}.

B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2) ⋄B0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1).
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(xiii) Clearly B0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) is non-increasing continuous in λ1.

(xiv) Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) > 0.

(xv) Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) = 0 ⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
λ1

= 0

⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n = 0

⇒ ϱi are linearly dependent for 1 ≤ i ≤ n.

(xvi) Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) =
||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

λ1
=

||ϱ1, ϱ2, . . . , ϱn, ϱn−1||n
λ1

= Y0(ϱ1, ϱ2, . . . , ϱn, ϱn−1, λ1) = · · · .

(xvii) Y0(ϱ1, ϱ2, . . . , ϱn−1, αϱn, λ1) =
||ϱ1, ϱ2, . . . , ϱn−1, αϱn||n

λ1
=

|α|||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
λ1

=
||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

λ1
|α|

= Y0

(
ϱ1, ϱ2, . . . , ϱn−1, ϱn,

λ1

|α|

)
.

(xviii)In general, let’s suppose that,

Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2) ≤ Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1)

⇒ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n
λ2

≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ1

⇒ λ1||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n ≤ λ2||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

⇒ λ1||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n − λ2||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n ≤ 0.

Now,

||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n||n

λ2 + λ1
− ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

λ1

≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n + ||ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n||n

λ2 + λ1
− ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

λ1

=
λ1||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n − λ2||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

λ1(λ2 + λ1)
≤ 0.

This implies that,
||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ

′
n||n

λ2 + λ1
≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱ

′
n||n

λ1
.

Similarly,
||ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ

′
n||n

λ2 + λ1
≤ ||ϱ1, ϱ2, . . . , ϱn−1, ϱn||n

λ2

Therefore, Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn + ϱ
′
n, λ2 + λ1)

≤ max{Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2), Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1)}.

Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ2) ⋄ Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱ
′
n, λ1).

(xix) Clearly Y0(ϱ1, ϱ2, . . . , ϱn−1, ϱn, λ1) is non-increasing continuous in λ1.

Thus, Nn(G0, B0, Y0) satisfy all conditions of a neutrosophic n−norm and the space

(U,G0, B0, Y0, ◦, ⋄) is a N − n−NLS becomes a neutrosophic n−normed linear space □
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Definition 3.2 A sequence v = (vk) in a N − n − NLS (U,G0, B0, Y0, ◦, ⋄) is said to be

convergent to v0 w.r.t. the norm Nn(G0, B0, Y0) if for ϵ > 0, λ1 > 0 and ϱ1, ϱ2, . . . , ϱn−1 ∈ U ,

∃ n0 ∈ N s.t. G0(ϱ1, ϱ2, . . . , ϱn−1,vk − v0, λ1) > 1 − ϵ and B0(ϱ1, ϱ2, . . . , ϱn−1,vk − v0, λ1) < ϵ,

Y0(ϱ1, ϱ2, . . . , ϱn−1,vk−v0, λ1) < ϵ, ∀ k ≥ n0. In this case, we write Nn(G0, B0, Y0)−limk→∞ vk.

□

Example 3.2 Consider the neutrosophic n−normed linear space as given in example 3.1.

Define a sequence v = (vk) by vk = 1
k , then for each ϵ > 0, λ1 > 0 and ϱ1, ϱ2, . . . , ϱn−1 ∈ U we

have

G0(ϱ1, ϱ2, . . . , ϱn−1, vk, λ1) = G0(ϱ1, ϱ2, . . . , ϱn−1,
1

k
, λ1)

=
λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1,
1
k ||n

→ 1 as k → ∞ and

B0(ϱ1, ϱ2, . . . , ϱn−1, vk, λ1) = B0(ϱ1, ϱ2, . . . , ϱn−1,
1

k
, λ1)

=
||ϱ1, ϱ2, . . . , ϱn−1,

1
k ||n

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1,
1
k ||n

→ 0 as k → ∞,

Y0(ϱ1, ϱ2, . . . , ϱn−1, vk, λ1) = Y0(ϱ1, ϱ2, . . . , ϱn−1,
1

k
, λ1)

=
||ϱ1, ϱ2, . . . , ϱn−1,

1
k ||n

λ1
→ 0 as k → ∞,

this shows that the sequence vk = ( 1k ) is convergent to θ where θ denotes the zero element in

U w.r.t. Nn(G0, B0, Y0).

Theorem 3.1 For any sequence v = (vk), in a N − n − NLS (U,G0, B0, Y0, ◦, ⋄) with

Nn(G,B, Y )− limk vk = v0, v0 is unique.

Proof Let, if possible Nn(G0, B0, Y0) − limk vk = v0 and Nn(G0, B0, Y0) − limk vk = w0. Let

ϵ > 0 and λ1 > 0 be given. Choose ϵ1 > 0 s.t.

(1− ϵ1) ◦ (1− ϵ1) > 1− ϵ and ϵ1 ⋄ ϵ1 < ϵ. (1)

Since Nn(G0, B0, Y0)− limk vk = v0 so there exists n1 ∈ N s.t.∀ k ≥ n1

G

(
vk − v0,

λ1

2

)
> 1− ϵ1 and B

(
vk − v0,

λ1

2

)
< ϵ1, Y

(
vk − v0,

λ1

2

)
< ϵ1.

Further, Nn(G0, B0, Y0)− limk vk = w0, will give another n2 ∈ N s.t. ∀k ≥ n2

G

(
vk − w0,

λ1

2

)
> 1− ϵ1 and B

(
vk − w0,

λ1

2

)
< ϵ1, Y

(
vk − w0,

λ1

2

)
< ϵ1.
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Let, n0 = max{n1, n2}, then for all k ≥ n0

G(v0 − w0, λ1) = G

(
v0 − vk + vk − w0,

λ1

2
+

λ1

2

)
≥ G

(
vk − v0,

λ1

2

)
◦G

(
vk − w0,

λ1

2

)
> (1− ϵ1) ◦ (1− ϵ1) > 1− ϵ.

Since ϵ > 0 is arbitrary so G(v0 − w0, λ1) = 1 and therefore v0 − w0 = 0 i.e., v0 = w0.

Now,

B(v0 − w0, λ1) = B

(
v0 − vk + vk − w0,

λ1

2
+

λ1

2

)
≤ B

(
vk − v0,

λ1

2

)
⋄B

(
vk − w0,

λ1

2

)
< ϵ1 ⋄ ϵ1 < ϵ,

Y (v0 − w0, λ1) = Y

(
v0 − vk + vk − w0,

λ1

2
+

λ1

2

)
≤ Y

(
vk − v0,

λ1

2

)
⋄ Y

(
vk − w0,

λ1

2

)
< ϵ1 ⋄ ϵ1 < ϵ.

Since ϵ > 0 is arbitrary so we have B(v0−w0, λ1) = Y (v0−w0, λ1) = 0 which gives v0−w0 = 0

i.e., v0 = w0. Hence, in all cases v0 is uniquely determined.□

Theorem 3.2 If v = (vk) and w = (wk) be any two sequences in a N − n − NLS

(U,G0, B0, Y0, ◦, ⋄) s.t. lim vk = v0 and limwk = w0 then,

(i) limk αvk = αv0, α ̸= 0 for any scalar.

(ii) limk(vk + wk) = v0 + w0.

Proof. The proof of the theorem follow parallel lines of the proof of theorem 3.1, so omitted.

□

Theorem 3.3 A sequence v = (vk) in a N − n − NLS (U,G0, B0, Y0, ◦, ⋄) is conver-

gent to v0 w.r.t. Nn(G0, B0, Y0), if and only if, G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 1 and

B(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 0, Y (ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 0 as n → ∞, where

λ1 > 0.

Proof Let v = (vk) converges to v0 w.r.t. Nn(G0, B0, Y0). So, for 0 < ϵ < 1 and

λ1 > 0, ∃ n0 ∈ N s.t. G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) > 1 − ϵ and B(ϱ1, ϱ2, . . . , ϱn−1, vk −
v0, λ1) < ϵ, Y (ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ, ∀ k ≥ n0. This implies, for ∀ k ≥
n0. 1 − G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ and B(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ,

Y (ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ, which shows G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 1 and

B(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 0, Y (ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 0 as k → ∞.

Conversely, suppose that for λ1 > 0, G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 1 and

B(ϱ1, ϱ2, . . . , ϱn−1, vk− v0, λ1) → 0, Y (ϱ1, ϱ2, . . . , ϱn−1, vk− v0, λ1) → 0 as k → ∞. For 0 < ϵ <
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1, ∃ n0 ∈ N s.t. 1−G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ and B(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ,

Y (ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ, which gives G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) > 1 − ϵ and

B(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ, Y (ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ. Hence, (vk) converges

to v0 w.r.t. Nn(G,B, Y ). □

Definition 3.3 A sequence v = (vk) in a N−n−NLS (U,G0, B0, Y0, ◦, ⋄) is said to be Cauchy

w.r.t. Nn(G0, B0, Y0) if for ϵ > 0 and λ1 > 0, ∃ n0 ∈ N s.t. G(ϱ1, ϱ2, . . . , ϱn−1, vk−vp, λ1) > 1−ϵ

and B(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) < ϵ, Y (ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) < ϵ, ∀ k, p ≥ n0. □

Example 3.3 Let us consider the space U = (0, 1]. If we define G0, B0 and

Y0 by G0(ϱ1, ϱ2, . . . , ϱn−1, vk;λ1) = λ1
λ1+||ϱ1,ϱ2,...,ϱn−1,vk||n , B0(ϱ1, ϱ2, . . . , ϱn−1, vk;λ1) =

||ϱ1,ϱ2,...,ϱn−1,vk||n
λ1+||ϱ1,ϱ2,...,ϱn−1,vk||n , Y0(ϱ1, ϱ2, . . . , ϱn−1, vk;λ1) =

||ϱ1,ϱ2,...,ϱn−1,vk||n
λ1

and the t−norm, t−conorm

respectively as ◦ = min and ⋄ = max, then (U,G0, B0, Y0, ◦, ⋄) becomes a N − n−NLS.

Defined a sequence v = (vk) where vk = 1
k as in example 3.2 then for ϵ > 0, λ1 >

0 and ϱ1, ϱ2, . . . , ϱn−1 ∈ U we have

G0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) = G0(ϱ1, ϱ2, . . . , ϱn−1,
1
k − 1

p , λ1) =
λ1

λ1+||ϱ1,ϱ2,...,ϱn−1,
1
k
− 1

p
||n

→ 1

as k, p → ∞,

B0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) = B0(ϱ1, ϱ2, . . . , ϱn−1,
1
k − 1

p , λ1) =
||ϱ1,ϱ2,...,ϱn−1,

1
k
− 1

p
||n

λ1+||ϱ1,ϱ2,...,ϱn−1,
1
k
− 1

p
||n

→ 0,

Y0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) = Y0(ϱ1, ϱ2, . . . , ϱn−1,
1
k − 1

p , λ1) =
||ϱ1,ϱ2,...,ϱn−1,

1
k
− 1

p
||n

λ1
→ 0, as

k, p → ∞.

This shows that the sequence v = (vk) is Cauchy w.r.t. the neutrosophic n−norm

Nn(G0, B0, Y0).

Theorem 3.4 Every convergent sequence in a N − n−NLS (U,G0, B0, Y0, ◦, ⋄) is a Cauchy

w.r.t. Nn(G0, B0, Y0).

Proof Let v = (vk) converges to v0 w.r.t. Nn(G0, B0, Y0). For 0 < ϵ < 1 and λ > 0,

choose ϵ1 ∈ (0, 1) such that (1) is satisfied. Since vk → v0 w.r.t. Nn(G0, B0, Y0), so ∃
n0 ∈ N s.t. G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0,

λ1
2 ) > 1 − ϵ and B(ϱ1, ϱ2, . . . , ϱn−1, vk − v0,

λ1
2 ) < ϵ,

Y (ϱ1, ϱ2, . . . , ϱn−1, vk − v0,
λ1
2 ) < ϵ, ∀ k, p ≥ n0.

Now,

G(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) = G

(
ϱ1, ϱ2, . . . , ϱn−1, vk − v0 + v0 − vp,

λ1
2 + λ1

2

)
≥ G

(
ϱ1, ϱ2, . . . , ϱn−1, vk − v0,

λ1
2

)
◦G

(
ϱ1, ϱ2, . . . , ϱn−1, vp − v0,

λ1
2

)
> (1− ϵ1) ◦ (1− ϵ1)
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> 1− ϵ and

B(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) = B

(
ϱ1, ϱ2, . . . , ϱn−1, vk − v0 + v0 − vp,

λ1

2
+

λ1

2

)
≤ B

(
ϱ1, ϱ2, . . . , ϱn−1, vk − v0,

λ1

2

)
⋄B

(
ϱ1, ϱ2, . . . , ϱn−1, vp − v0,

λ1

2

)
< ϵ1 ⋄ ϵ1

< ϵ,

Y (ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) = Y

(
ϱ1, ϱ2, . . . , ϱn−1, vk − v0 + v0 − vp,

λ1

2
+

λ1

2

)
≤ Y

(
ϱ1, ϱ2, . . . , ϱn−1, vk − v0,

λ1

2

)
⋄ Y

(
ϱ1, ϱ2, . . . , ϱn−1, vp − v0,

λ1

2

)
< ϵ1 ⋄ ϵ1

< ϵ.

This shows that (vk) is a Cauchy sequence w.r.t. Nn(G0, B0, Y0). □

Theorem 3.5 Consider the neutrosophic n−norm linear space as defined in Example 3.1.

Let v = (vk) be any sequence in U , then

(i) (vk) is Cauchy in (U, ||.||n) iff (vn) is Cauchy in (U,G0, B0, Y0, ◦, ⋄).
(ii) (vk) is a convergent in (U, ||.||n) iff (vk) is convergent in (U,G0, B0, Y0, ◦, ⋄).

Proof (i) Let v = (vk) be a Cauchy in (U, ||.||n), then
lim

k,p→∞
||ϱ1, ϱ2, . . . , ϱn−1, vk − vp||n = 0.

Now, for λ1 > 0

lim
k,p→∞

G0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1)

= lim
k,p→∞

λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, vk − vp||n
= 1 and;

lim
k,p→∞

B0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1)

= lim
k,p→∞

||ϱ1, ϱ2, . . . , ϱn−1, vk − vp||n
λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, vk − vp||n

= 0,

lim
k,p→∞

Y0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1)

= lim
k,p→∞

||ϱ1, ϱ2, . . . , ϱn−1, vk − vp||n
λ1

= 0.

This shows that, G0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) → 1, B0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) → 0

and Y0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) → 0, as k, p → ∞. So for 0 < ϵ < 1 and λ1 > 0, ∃
n0 ∈ N s.t. G0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) > 1 − ϵ and B0(ϱ1, ϱ2, . . . , ϱn−1, vk − vp, λ1) < ϵ,

Y0(ϱ1, ϱ2, . . . , ϱn−1, vk−vp, λ1) < ϵ, and therefore (vk) is Cauchy sequence in (U,G0, B0, Y0, ◦, ⋄).
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Conversely, if (vk) is Cauchy in (U,G0, B0, Y0, ◦, ⋄) then it is clearly (vk) is Cauchy in

(U, ||.||n).
(ii) Let, v = (vk) be a convergent in (U, ||.||n) and converges to v0. Then

lim
k→∞

||ϱ1, ϱ2, . . . , ϱn−1, vk − v0|| = 0.

Now,

lim
k→∞

G0(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) = lim
k→∞

λ1

λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, vk − v0||n
= 1 and;

lim
k→∞

B0(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) = lim
k→∞

||ϱ1, ϱ2, . . . , ϱn−1, vk − v0||n
λ1 + ||ϱ1, ϱ2, . . . , ϱn−1, vk − v0||n

= 0,

lim
k→∞

Y0(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) = lim
k→∞

||ϱ1, ϱ2, . . . , ϱn−1, vk − v0||n
λ1

= 0.

This shows that, G0(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 1, B0(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 0

and Y0(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) → 0, as k → ∞. So for ϵ > 0 and λ1 > 0,

∃ n0 ∈ N s.t. G0(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) > 1 − ϵ and B0(ϱ1, ϱ2, . . . , ϱn−1, vk −
v0, λ1) < ϵ, Y0(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) < ϵ, and therefore (vk) is convergent sequence

in (U,G0, B0, Y0, ◦, ⋄).
Converse part of the theorem can be obtained similarly and therefore omitted. □

Definition 3.4 A N − n−NLS (U,G0, B0, Y0, ◦, ⋄) is said to be complete, iff, every Cauchy

sequence is convergent in (U,G0, B0, Y0, ◦, ⋄).
Example 3.5 The sequence v = (vk) = 1

k as in Example 3.4 is a Cauchy sequence that

converges to 0 w.r.t Nn(G0, B0, Y0). But, 0 /∈ (0, 1] = U and therefore the N − n − NLS

(U,G0, B0, Y0, ◦, ⋄) where U = (0, 1] is not complete.

Theorem 3.6 If every Cauchy sequence in a N−n−NLS (U,G0, B0, Y0, ◦, ⋄) has a convergent

subsequence, then it is complete.

Proof Let v = (vk) be a Cauchy in a N −n−NLS U and (vkp) be a subsequence of (vk) that

converges to v0. We shell show that (vk) converges to v0. Let λ1 > 0 and ϵ ∈ (0, 1). Choose

ϵ1 ∈ (0, 1) s.t. (1) is satisfied.

Since (vk) is a Cauchy sequence, so ∃ n0 ∈ N s.t. ∀ k, p ≥ n0

G

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vp,

λ1
2

)
> 1− ϵ1 and

B

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vp,

λ1
2

)
< ϵ1, Y

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vp,

λ1
2

)
< ϵ1.

Since (vkp) converges to v0, so ∃ ip ∈ n with ip > n0 s.t.

G

(
ϱ1, ϱ2, . . . , ϱn−1, vip − v0,

λ1
2

)
> 1− ϵ1 and

B

(
ϱ1, ϱ2, . . . , ϱn−1, vip − v0,

λ1
2

)
< ϵ1, Y

(
ϱ1, ϱ2, . . . , ϱn−1, vip − v0,

λ1
2

)
< ϵ1.

Now,
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G(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) = G

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vip + vip − v0,

λ1
2 + λ1

2

)
≥ G

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vip ,

λ1
2

)
◦G

(
ϱ1, ϱ2, . . . , ϱn−1, vi0 − vp,

λ1
2

)
> (1− ϵ1) ◦ (1− ϵ1) > 1− ϵ and;

B(ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) = B

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vip + vip − v0,

λ1
2 + λ1

2

)
≤ B

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vip ,

λ1
2

)
⋄B

(
ϱ1, ϱ2, . . . , ϱn−1, vip − v0,

λ1
2

)
< ϵ1 ⋄ ϵ1 < ϵ;

Y (ϱ1, ϱ2, . . . , ϱn−1, vk − v0, λ1) = Y

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vip + vip − v0,

λ1
2 + λ1

2

)
≤ Y

(
ϱ1, ϱ2, . . . , ϱn−1, vk − vip ,

λ1
2

)
⋄ Y

(
ϱ1, ϱ2, . . . , ϱn−1, vip − v0,

λ1
2

)
< ϵ1 ⋄ ϵ1 < ϵ.

This shows that vk → v0 in U w.r.t. Nn(G0, B0, Y0) and therefore U is complete. □
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Abstract. This paper addresses the research gap in neutrosophic game theory, specifically the resolution

of zero-sum two-person matrix games characterized by single-valued neutrosophic triangular numbers. We

introduce a novel de-neutrosophication method leveraging Mellin’s transform to obtain crisp value indices,

thereby translating neutrosophic linear programming problems into their crisp counterparts. The effectiveness

and precision of our approach are demonstrated through a real-world telecom sector case study, showcasing its

potential for yielding more accurate and dependable solutions.

Keywords: Neutrosophic Triangular Numbers, Neutrosophic Triangular Matrix Games, Neutrosophic Linear

Programming Problem, Mellin’s transform.

—————————————————————————————————————————-

1. Introduction

Taking the right decision in today’s competitive and conflicting world is an arduous affair.

Game theory has played a pivotal role in decision making to take right decision and achieve

desired goals. In today’s real world conflicting scenario, where it is challenging to collect the

accurate data for players, game theory provides a strategic mathematical procedure that help

players to take the precise and perfect decision even with half-baked, imprecise and vague data.

This is the reason why researchers all over the globe are attracted to develop new techniques

and horizons in the theory of games.

The notion of theory of games was first introduced by Neumann and Morgenstern [1] by

their work that published in 1944. During the classical game theory, the data available used to

be accurate and crisp, so the classical set theory served the purpose, where the membership is
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binary {0, 1}. But classical game theory no longer serves the purpose when the data available

is inadequate, imprecise, and vague. To overcome this problem of handling the imprecise, in-

adequate, and vague data, Prof. Zadeh [2] in 1965, pioneered the trailblazing concept of Fuzzy

sets. Since then, numerous extensions and horizons like fuzzy triangular numbers (TFNs),

fuzzy trapezoidal numbers (TrFNs), fuzzy pentagonal numbers (PFNs) and many more has

been added to the fuzzy set theory by various researchers from all over the world. Li [26–28],

Seikh et al. [29] have studied TFNs for their work in developing the theory of games. Jana

et al. [30] , Chandra et al. [31], Kumar et al. [32], Bandhopadhyay et al. [33], and Dutta et

al. [34] have explored TrFNs for their study of matrix games. Chakraborty et al. [35], Nasir et

al. [36], Gajalakshmi et al. [42], and Umamageshwari et al. [43] investigated various properties

of PFNs and applied it to various competitive game scenarios and achieved wonderful results

of economic and social use.

Pawlak Z. [45, 46] in 1982 presented a novel mathematical instrument called ‘Rough set

theory’ to deal with vague and uncertain information. He, in rough set theory, made use of

two sets –lower and upper approximation intervals denoted as LAI and UAI respectively to

handle vague and uncertain data. Later various researchers like Jangid et al. [47], Brikaa et

al. [48], and Seikh et al. [49] dig deep to combine fuzziness and roughness to get fuzzy rough

sets and used it in many types of MGs.

Atanasov [3,4] introduced Intuitionistic fuzzy sets (IFS) by adding non-membership function

to the already existing fuzzy sets, to handle the uncertainty present in the available data, in a

better way. The concept of the IFS has been used by various researchers [5–14] to investigate

uncertainty in game theory using LPP approach.

Fuzzy sets and its generalisations have served well to handle imprecise and incomplete in-

formation in game theory, however, they are no longer suitable to handle inconsistent and

indeterminate information that exists quiet often in real life situations. To get over this issue,

Smarandache [15] invented a very prudent comprehensive framework of neutral logics called

‘Neutrosophy’, now recognised as a new arm of mathematics. The core theme of Neutrosophy

states that beside some degree of truth, each concept possesses some degree of indeterminacy

and falsity. Smarandache [16] defined neutrosophic set as a generalisation of IFSs. Smaran-

dache explained indeterminacy in logic of Neutrosophy and clarified that truth, indeterminacy

and falsity membership functions are independent of each other. Fuzzy sets and neutrosophic

sets are clearly different in their application domain. Fuzzy sets deal with uncertain infor-

mation i.e., incomplete and imprecise, whereas neutrosophic sets deal with inconsistent and

indeterminate information. Neutrosophic sets are viewed from the vision of philosophy and

one may find it difficult to apply it in mathematical and scientific problems. To get over this
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problem Wang et al. [17] defined single-valued neutrosophic sets and gave its various mathe-

matical properties. At the moment, applying neutrosophic sets in game theory is a new thing

and is in its initial stage. Now a days it is a very attractive research area for researchers

all over the globe. Not much work is available at the moment in this field. However, some

researchers like Das et al. [18], Hussain et al. [19], Tamilarasi et al. [20], Das S. K. [21], Seikh

et al. [50], Das et al. [51], Bhaumik et al. [52], and Chakraborty et al. [44], have investigated

neutrosophic sets in LPP models, integer programming models and MGs.

De-neutrosophication and ranking technique is utmost important while investigating and

solving NLPP models. Jangid et al. [22] used a ranking technique by evaluating ambiguity and

value of truth, indeterminacy, and falsity membership degree functions using (α, β, γ)-cut of

SVNTNs involved in pay-off matrix of a NMG. Mahapatra et al. [23] used de-neutrosophication

technique to convert NLPP to crisp LPP using the centroid method. Abdel et al. [24] sug-

gested a novel ranking map to solve fully NLPP with trapezoidal neutrosophic numbers. A new

ranking methodology was introduced by Das & Dash [18] to solve NLPP model with mixed

parametric constraints. Darehmiraki [25] introduced a parametric de-neutrosophication func-

tion for ranking and then solving NLPPs. We in this paper have used a novel ranking technique

for SVNTNs using Mellin’s transform. [37] introduced a graphical method for solving Neutro-

sophical nonlinear programming with linear constraints, applicable to various model complex-

ities. [38] reformulated the general model for the optimal distribution of agricultural lands

using the concepts of neutrosophic science. In the book [39] discussed industrial engineering

and computational intelligence foster intelligent machines for multi-criteria decision-making in

smart environments. [40] evaluated the sustainable flue gas treatments in Egypt’s steel sector

using a new hybrid spherical fuzzy multicriteria decision-making approach. [41] developed a

multi-criteria tool to evaluate sustainable battery recycling plant locations, prioritizing envi-

ronmental factors in Egypt.

This research bridges the gap in neutrosophic game theory by converting neutrosophic matrix

games to crisp linear programming, enhancing solution accuracy and reliability. The proposed

methodology not only streamlines the process but also enhances the accuracy and reliability

of the game’s outcomes for both players. We demonstrate the impact of our approach through

a real-world case study in the telecommunications sector, showing its potential to yield prac-

tical strategies in industry-specific scenarios. However, we must also note that the transition

from neutrosophic to crisp values may involve certain trade-offs in terms of capturing the full

spectrum of uncertainty inherent in real-world situations. Despite this, the practical benefits

of our approach in terms of actionable insights and decision support in complex scenarios hold

significant promise.
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The structure of the paper has been developed as shown by the following figure -1:

section-1
• Introduction

section-2
•Mathematical Preliminaries

section-3
•Matrix Games Models

section-4
•Value Index of SVNTN using Mellin's Transform

section-5
•Proposed Solution Methodology

section-6
•Numerical Models

section-7
•Conclusion

Figure 1. Structure of the Paper

2. Mathematical Preliminaries

In the present section, we give some fundamental definitions and symbols that are requisite

and will be used throughout this article.

Definition 2.1. (Hussain et al. [19]) Let X = {ω1, ω2, ...ωn} be a universe of discourse.

A Neutrosophic Set ã in X is defined as ã={⟨ωi, tã(ωi), iã(ωi), fã(ωi)⟩ : ωi ∈ X} where

tã(ωi), iã(ωi), fã(ωi) are truth membership, indeterminacy membership and falsify membership

degree mappings respectively with domain X and co-domain [0, 1].

Definition 2.2. (Tamilarasi et al. [20]) A single valued neutrosophic triangular number

(SVNTN) on ℜ (set of reals) is a neutrosophic set, denoted by ãSV NTN = {(ζ, η, θ); ρ, σ, τ},
whose truth, indeterminacy and falsify functions are respectively written as follows:

tãSV NTN (ω) =



(
ω−ζ
η−ζ

)
ρ if ζ ≤ ω ≤ η

ρ if ω = η(
θ−ω
θ−η

)
ρ if η ≤ ω ≤ θ

0 otherwise

(1)

iãSV NTN (ω) =



(η−ω)+σ(ω−ζ)
η−ζ if ζ ≤ ω ≤ η

ρ if ω = η

(ω−η)+σ(θ−ω)
θ−η if η ≤ ω ≤ θ

0 otherwise

(2)
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fãSV NTN (ω) =



(η−ω)+τ(ω−ζ)
η−ζ if ζ ≤ ω ≤ η

τ if ω = η

(ω−η)+τ(θ−ω)
θ−η if η ≤ ω ≤ θ

0 otherwise

(3)

Where 0 ≤ ρ ≤ 1, 0 ≤ σ ≤ 1, 0 ≤ τ ≤ 1 such that 0 ≤ ρ+ σ+ τ ≤ 3. Here σ, ρ, τ respectively

represents maximum truth membership degree, minimum indeterminacy membership degree,

minimum falsify membership degree.

Definition 2.3. (Hussain et al. [19]): Let ã1SV NTN = {(ζ1, η1, θ1); ρ1, σ1, τ1} and ã2SV NTN =

{(ζ2, η2, θ2); ρ2, σ2, τ2} be two single valued neutrosophic triangular numbers and λ ∈ ℜ then

some algebraic operations are as follows:

(1) Addition:

ã1SV NTN ⊕ ã2SV NTN = {(ζ1 + ζ2, η1 + η2, θ1 + θ2);min(ρ1, ρ2),max(σ1, σ2),max(τ1, τ2)}

(2) Negative Image:

−ã1SV NTN = {(−θ1,−η1,−ζ1); ρ1, σ1, τ1}
(3) Subtraction:

ã1SV NTN ⊖ ã2SV NTN = {(ζ1 − θ2, η1 − η2, θ1 − ζ2);min(ρ1, ρ2),max(σ1, σ2),max(τ1, τ2)}

(4) Scalar Product:

λ ã1SV NTN =

{(λζ1, λη1, λθ1); ρ1, σ1, τ1} for λ > 0

{(λθ1, λη1, λζ1); ρ1, σ1, τ1} for λ < 0

3. Matrix Games Models

3.1. Crisp Matrix Game (CMG)

A crisp zero-sum two person matrix game denoted by triplet (A,S1, S2), whereA = {ajk}mxn

is a real payoff matrix and S1 = {1, 2, ...,m}, S2 = {1, 2, ..., n} are pure strategies of player-1

and player-2 respectively. Player-1 is called the maximising player as he plays his pure strategy

to maximise his minimum gain and player-2 is called the minimising player as he plays his

pure strategy to minimise his maximum loss. This is known as maxmin and minmax principle

of matrix game. If the saddle point of the game exist at (rs)th position in the payoff matrix,

then ars, 1 ≤ r ≤ m; 1 ≤ s ≤ n, is the payoff value for player-1 and its negative is the payoff

value for player-2 if they choose to play rth and sth pure strategy respectively. If matrix game

(A,S1, S2) has no saddle point i.e. maxj∈S1

{
mink∈S2{ajk}

}
̸= mink∈S2

{
maxj∈S1{ajk}

}
,

G. Sharma and G. Kumar, Solving Neutrosophic Zero-Sum Two-Person Matrix Game using Mellin’s Transform

Neutrosophic Sets and Systems, Vol. 61, 2023                                                                              293



then mixed strategy sets

S1 =

{
P = (p1, p2, ..., pm) ∈ Rm, pj ≥ 0 ∀ j = 1, 2, ...,m, and

m∑
j=1

pj = 1

}
and

S2 =

{
Q = (q1, q2, ..., qn) ∈ Rn, qj ≥ 0 ∀ k = 1, 2, ..., n, and

n∑
k=1

qk = 1

}

are adopted for player-1 and player-2 respectively.

Here if

max
P∈S1

{
min
Q∈S2

{
m∑
j=1

(
n∑

k=1

pja
jkpk

)}}
= min

Q∈S2

{
max
P∈S1

{
n∑

k=1

(
m∑
j=1

pja
jkpk

)}}
= v∗(say)

then v∗ is called the value of the game, and P = (p1, p2, ..., pm) ∈ S1, Q = (q1, q2, ..., qn) ∈ S2

are optimal mixed strategies for player-1 and player-2 respectively.

3.2. Neutrosophic Matrix Games (NMG)

If the payoff matrix Ã = {ãjkSV NTN}mxn is equiped with single valued neutrosophic trian-

gular numbers ãjkSV NTN , j = 1, 2, ...,m; k = 1, 2, ..., n, then the game (Ã, S1, S2) is called

Neutrosophic Triangular matrix game (NTMG). Thus employing the maxmin and minmax

principle for NTMG, we get the following mathematical modals for two players respectively

For player-1:
maxpj∈S1

{
min

{∑m
j=1 ã

j1
SV NTN pj ,

∑m
j=1 ã

j2
SV NTN pj , ...,

∑m
j=1 ã

jn
SV NTN pj

}}
s.t.,

∑m
j=1 pj = 1

and pj ≥ 0,∀ j = 1, 2, ...,m.

(4)

For player-2:
minqk∈S2

{
max

{∑n
k=1 ã

1k
SV NTN qk,

∑n
k=1 ã

2k
SV NTN qk, ...,

∑n
k=1 ã

mk
SV NTN qk

}}
s.t.,

∑n
k=1 qk = 1

and qk ≥ 0,∀ k = 1, 2, ..., n.

(5)

Now, let min

{∑m
j=1 ã

j1
SV NTN pj ,

∑m
j=1 ã

j2
SV NTN pj , ...,

∑m
j=1 ã

jn
SV NTN pj

}
= ũSV NTN (say)

is the minimum expected gain for player-1 and

max

{∑n
k=1 ã

1k
SV NTN qk,

∑n
k=1 ã

2k
SV NTN qk, ...,

∑n
k=1 ã

mk
SV NTN qk

}
= ṽSV NTN (say)

is the maximum expected loss for player-2, we get the following two neutrosophic linear pro-

gramming problem (NLPP) models for the two players:
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For player-1: (NLPP)I



Maximise ũSV NTN

subject to
∑m

j=1 ã
j1
SV NTN pj ⪰ ũSV NTN∑m

j=1 ã
j2
SV NTN pj ⪰ ũSV NTN

.................................

.................................∑m
j=1 ã

jn
SV NTN pj ⪰ ũSV NTN∑m

j=1 pj = 1,

and pj ≥ 0, ∀ j = 1, 2, ...,m.

(6)

For player-2: (NLPP)II



Minimise ṽSV NTN

subject to
∑n

k=1 ã
1k
SV NTN qk ⪯ ṽSV NTN∑n

k=1 ã
2k
SV NTN qk ⪯ ṽSV NTN

................................

................................∑n
k=1 ã

mk
SV NTN qk ⪯ ṽSV NTN∑n

k=1 qk = 1,

and qk ≥ 0, ∀ k = 1, 2, ..., n.

(7)

Here ũSV NTN and ṽSV NTN are SVNTNs representing expected minimum gain and expected

maximum loss for player-1 and palyer-2 respectively. The symbols ⪰ and ⪯ represents the

neutrosophic adaptations of order relation ≥ and ≤ respectively. The above NLPP models for

the two players can be restructured as follows-

For player-1: (NLPP)I



Maximise ũSV NTN

s.t.,
∑m

j=1 ã
jk
SV NTN pj ⪰ ũSV NTN ∀ k = 1, 2, ..., n.∑m

j=1 pj = 1,

and pj ≥ 0, ∀ j = 1, 2, ...,m.

(8)
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For player-2: (NLPP)II

Minimise ṽSV NTN

s.t.,
∑n

k=1 ã
jk
SV NTN qk ⪯ ṽSV NTN ∀ j = 1, 2, ...,m.∑n

k=1 qk = 1,

and qk ≥ 0, ∀ k = 1, 2, ..., n.

(9)

4. Value Index of SVNTN using Mellin’s Transform

Let ãSV NTN = {(ζ, η, θ); ρ, σ, τ} be any SVNTN and tãSV NTN (ω), iãSV NTN (ω), fãSV NTN (ω)

are associated truth, indeterminacy and falsify membership function respectively. Now we first

define probability density function (p.d.f) from truth, indeterminacy and falsify membership

function respectively as follows

ϕ1(ω) = k1tãSV NTN (ω), ϕ2(ω) = k2iãSV NTN (ω) and ϕ3(ω) = k3fãSV NTN (ω)

where k1, k2 and k3 are constants to be obtained using the property of probability density

function i.e.,∫∞
−∞ ϕ1(ω)dω = 1,

∫∞
−∞ ϕ2(ω)dω = 1,

∫∞
−∞ ϕ3(ω)dω = 1 respectively.

We get

k1 =
2

(θ − ζ)ρ
, k2 =

2

(θ − ζ)(1 + σ)
, k3 =

2

(θ − ζ)(1 + τ)
. (10)

Using k1, k2, k3 in ϕ1(ω), ϕ2(ω), ϕ3(ω) respectively, we now define ϕ(ω) as the p.d.f corre-

sponding to SVNTN ãSV NTN as follows

ϕ(ω) = λϕ1(ω) + (1− λ)ϕ2(ω) + (1− λ)ϕ3(ω), (0 ≤ λ ≤ 1) (11)

where λ ∈ [0, 1] represents the player’s preference information. If λ ∈
[
0, 12

]
, it means that

the player is pessimist i.e. he incurs negative feeling and prefer uncertainity. If λ ∈
]
1
2 , 1
[
it

means that the player is optimist i.e. he incurs positive feeling and prefer certainity. If λ = 1
2

the player is indifferent of positive or negative feeling, he is moderate.

Now, the Mellin’s Transform M [ϕ(ω), s] of a p.d.f ϕ(ω) is defined as M [ϕ(ω), s] =∫∞
0 ωs−1ϕ(ω)dω, provided the integral exists. Using the function ϕ(ω) (equation 11) we get

M [ϕ(ω), s] =

∫ ∞

0
ωs−1[λϕ1(ω) + (1− λ)ϕ2(ω) + (1− λ)ϕ3(ω)]dω (12)

Now by taking s = 2, Mellin’s transform is converted into expected value of associated ran-

dom variable. Hence we get the de-neutrosophicated value or the expected value of SVNTN

ãSV NTN = {(ζ, η, θ); ρ, σ, τ}.
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We obtain for s = 2,

M [ϕ(ω), 2] = λ

{
ζ + η + θ

3

}
+ (1− λ)

{
σ(ζ + η + θ) + 2(ζ + θ)− η

3(1 + σ)

}
+

(1− λ)

{
τ(ζ + η + θ) + 2(ζ + θ)− η

3(1 + τ)

}
(13)

Where, λ ∈ [0, 1] express the degree of optimism of the player. λ ∈
[
0, 12

[
express the pessimist

behaviour, λ ∈
]
1
2 , 1
[
express the optimist behaviour and λ = 1

2 express that the player is

moderate.

Since M [ϕ(ω), 2] depends on λ, let us denote it by V (ãSV NTN , λ) and is called the ’Value

Index’ of single valued neutrosophic triangular number ãSV NTN = {(ζ, η, θ); ρ, σ, τ}. We write

V (ãSV NTN , λ) = M [ϕ(ω), 2] = λ

{
ζ + η + θ

3

}
+ (1− λ)

{
σ(ζ + η + θ) + 2(ζ + θ)− η

3(1 + σ)

}

+ (1− λ)

{
τ(ζ + η + θ) + 2(ζ + θ)− η

3(1 + τ)

}
(14)

Proposition-1: For a given λ ∈ [0, 1] and a given ãSV NTN = {(ζ, η, θ); ρ, σ, τ}, V (ãSV NTN , λ)

is a unique real number.

4.1. De-neutrosophication and Ranking of SVNTN:

Let ñeu(ℜ) be the set of all SVNTNs, and λ ∈ [0, 1] be a given number. We define a mapping

hλ : ñeu(ℜ) → ℜ such that hλ(ãSV NTN ) = V (ãSV NTN , λ) ∀ ãSV NTN ∈ ñeu(ℜ); ℜ being

the set of real numbers. The mapping hλ is well-defined and associates each ãSV NTN ∈ ñeu(ℜ)
to a unique real number (proposition-1) where the order relations exist naturally. hλ is called

a de-neutrosophication function and used to rank SVNTNs as detailed out in proposition-2

below.

Proposition-2: Let ãSV NTN = {(ζ1, η1, θ1); ρ1, σ1, τ1} and b̃SV NTN = {(ζ2, η2, θ2); ρ2, σ2, τ2}
be SVNTNs and λ ∈ [0, 1], then the ranking order relation between the two SVNTNs are

defined as follows

(1) ãSV NTN ⪯ b̃SV NTN ⇔ hλ(ãSV NTN , λ) ≤ hλ(b̃SV NTN , λ)

(2) ãSV NTN ⪰ b̃SV NTN ⇔ hλ(ãSV NTN , λ) ≥ hλ(b̃SV NTN , λ)

(3) ãSV NTN ≈ b̃SV NTN ⇔ hλ(ãSV NTN , λ) = hλ(b̃SV NTN , λ)

Where the symbols ⪯, ⪰ and ≈ represents the neutrosophic adaptations of order relation ≤,

≥ and = respectively.
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5. Proposed Solution Methodology

In this section, we detail out a step-wise solution methodology we propose to solve any

NTMG. The steps of our proposed solution methodology are as follows:

Step-1: Write the respective neutrosophic linear programming problem (NLPP), i.e. equa-

tions (8) and (9), for the two players respectively.

Step-2: Write the de-neutrosophic version of NLPPs obtained in step-1 by using the value

index of all SVNTNs involved. We get the following respective crisp linear programming prob-

lems (CLPPs) for the two players.

For player-1:(CLPP)I



Maximise V (ũSV NTN , λ)

s.t.,
∑m

j=1 V (ãjkSV NTN , λ)pj ≥ V (ũSV NTN , λ) ∀ k = 1, 2, ..., n.∑m
j=1 pj = 1,

and pj ≥ 0, ∀ j = 1, 2, ...,m.

(15)

For player-2: (CLPP)II



Minimise V (ṽSV NTN , λ)

s.t.,
∑n

k=1 V (ãjkSV NTN , λ)qk ≤ V (ṽSV NTN , λ) ∀ j = 1, 2, ...,m.∑n
k=1 qk = 1,

and qk ≥ 0, ∀ k = 1, 2, ..., n.

(16)

Step-3: Use the formula for value index, i.e. equation-(14), and write the CLPPs for various

values of λ ∈ [0, 1] for both players.

Step-4: Solve these CLPPs by simplex method to get optimal mixed strategies and the

optimal value of the game for both players.

5.1. Flowchart

For an easy understanding, a visual representation of the proposed solution methodology

has been depicted by the flow-chart in Figure-2 below.
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Step-1

Step-2

Step-3

Step-4

Neutrosophic Matrix Game with pay-off matrix filled with SVNTNs

Write NLPP for player-1 Write NLPP for player-2 

Write de-neutrosophic version of 

the NLPP using Value index for 

player-1

Write de-neutrosophic version of 

the NLPP using Value index for 

player-2

Using the formula of value index 

write crisp LPP for player-1

Using the formula of value index 

write crisp LPP for player-2

Solve the crisp LPPs obtained in step-3 using Simplex method to get optimal value of the 
Matrix game and the optimal strategies for both the players

Figure 2. Flow Chart of the Proposed Solution Methodology

6. Numerical Models

In this section of our work, we show the validity and applicability of our solution methodol-

ogy by giving the solution procedure of two NTMG examples. In example-1 we took a simple

case of 2x2 pay-off matrix of a NTMG from the work of Jangid et al. [22]. We solve it by

our method and then discuss, analyse, and compare their results with the our results using

Tables-(1, 2) and a histogram (Figure-3).

In example-2 we consider a real-world case study from telecom sector by taking a 3x3 pay-

off matrix of strategies adopted by the companies to capture the market share in the target

area. Strategies floated by the companies are represented by SVNTNs. Results obtained are

discussed and analysed by means of a graph in Figure-4 and Tables-(3, 4, 5).

6.1. Example-1:(Jangid et al. [22])

Let NTMG (Ã, S1, S2) =

[
ã11SV NTN ã12SV NTN

ã21SV NTN ã22SV NTN

]
, where SVNTNs ãjkSV NTN are as follows-

ã11SV NTN = 1̂80 = {(175, 180, 190); 0.6, 0.4, 0.2},
ã12SV NTN = 1̂56 = {(150, 156, 158); 0.6, 0.35, 0.1},
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ã21SV NTN = 9̂0 = {(80, 90, 100); 0.9, 0.5, 0.1},
ã22SV NTN = 1̂80 = {(175, 180, 190); 0.6, 0.4, 0.2}
Solution Procedure: Let (p1, p2) and (q1, q2) are the optimal strategies and ũSV NTN ,

ṽSV NTN are optimal SVNTN values of the game for player-1 and player-2 respectively, then

NLPPs for the two players are written as follows-

For player-1 (NLPP)I :



Max ũSV NTN

s.t., 1̂80 p1 + 9̂0 p2 ⪰ ũSV NTN

1̂56 p1 + 1̂80 p2 ⪰ ũSV NTN

p1 + p2 = 1,

and p1, p2 ≥ 0.

(17)

For player-2 (NLPP)II :



Min ṽSV NTN

s.t., 1̂80 q1 + 1̂56 q2 ⪯ ṽSV NTN

9̂0 q1 + 1̂80 q2 ⪯ ũSV NTN

q1 + q2 = 1,

and q1, q2 ≥ 0.

(18)

For de-neutrosophication of above NLPP models, we apply the value index of all the SVNTNs,

we get the following CLPPs for both the players

For player-1 (CLPP)I:

Max V (ũSV NTN , λ)

s.t., V (1̂80, λ)p1 + V (9̂0, λ)p2 ≥ V (ũSV NTN , λ)

V (1̂56, λ)p1 + V (1̂80, λ)p2 ≥ V (ũSV NTN , λ)

p1 + p2 = 1,

and p1, p2 ≥ 0.

(19)

For player-2 (CLPP)II:

Min V (ṽSV NTN , λ)

s.t., V (1̂80, λ)q1 + V (1̂56, λ)q2 ≤ V (ṽSV NTN , λ)

V (9̂0, λ)q1 + V (1̂80, λ)q2 ≤ V (ṽSV NTN , λ)

q1 + q2 = 1,

and q1, q2 ≥ 0.

(20)

The value index of all the different SVNTNs involved are calculated using the formulla

(equation-14) explained in section-4. They are given as follows:

V (1̂80, λ) = (365.9126− 184.246λ),
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V (1̂56, λ) = (307.1335− 152.4669λ), and

V (9̂0, λ) = (180− 90λ)

Using these value indexes we get the following crisp LPPs for the two players

For player-1 (CLPP)I:

Max V (ũSV NTN , λ) = u(say)

s.t., (365.9126− 184.246λ)p1 + (180− 90λ)p2 ≥ u

(307.1335− 152.4669λ)p1 + (365.9126− 184.246λ)p2 ≥ u

p1 + p2 = 1,

and p1, p2 ≥ 0.

(21)

For player-2 (CLPP)II:

Min V (ṽSV NTN , λ) = v(say)

s.t., (365.9126− 184.246λ)q1 + (307.1335− 152.4669λ)q2 ≤ v

(180− 90λ)q1 + (365.9126− 184.246λ)q2 ≤ v

q1 + q2 = 1,

and q1, q2 ≥ 0.

(22)

For various values of optimism degree λ, the value index of SVNTNs are calculated using the

formula explained in section-4 (equation 14), and are given in Table-1 below.

Table 1. Value index of SVNTNs for different values of optimism degree λ

λ V (1̂80, λ) V (1̂56, λ) V (9̂0, λ)

0.0 365.9126 307.1335 180

0.1 347.4880 291.8868 171

0.2 329.0634 276.6401 162

0.3 310.6388 261.3934 153

0.4 292.2142 246.1467 144

0.5 273.7896 230.9000 135

0.6 255.3650 215.6533 126

0.7 236.9404 200.4066 117

0.8 218.5158 185.1599 108

0.9 200.0912 169.9132 99

1.0 181.6666 154.6666 90

Using the values given in Table 1, optimal solutions for various degree of optimism λ are

obtained by solving CLPPs for player-1 and player-2 equations 21 and 22 and are given in

Table-2 below.
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Table 2. Optimal Solution for Player-1 at different values of optimism degree λ

λ p1 p2 q1 q1 Max(u)

0.0 0.7598 0.2402 0.2402 0.7598 305.2071

0.2 0.7612 0.2388 0.2388 0.7612 289.1611

0.3 0.7620 0.2380 0.2380 0.7620 273.1155

0.4 0.7629 0.2371 0.2371 0.7629 257.0701

0.5 0.7639 0.2361 0.2361 0.7639 241.0251

0.6 0.7651 0.2349 0.2349 0.7651 224.9805

0.7 0.7665 0.2335 0.2335 0.7665 208.9366

0.8 0.7682 0.2318 0.2318 0.7682 192.8933

0.9 0.7701 0.2299 0.2299 0.7701 176.8509

1.0 0.7725 0.2296 0.2296 0.7725 160.8099

6.1.1. Discussion and Comparison of Results of Example-1

Our solution results for various values of degree of optimism are given in Table-2 above.

Results show that value of the game decreases from 321.2532 to 160.8099 as the degree of

optimism increases from 0.0 to 1.0, it means the value of the game is inversely proportional to

the degree of optimism of the incumbent player. It righty suggests that it is not wise to take

decisions with high level of optimism. It is better to be more realistic than too much optimistic.

For a better understanding and analysis, the graphical representation of obtained optimal

values ‘u’ against different values of the degree of optimism ‘λ’ for player-1 is given in Figure-4.

Figure 3. Comparison of Works
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Jangid et al. [22] with their solution

methodology have solved only for λ = 1
2

in their work. They have got SVNTN

⟨(152.22, 158.1312, 160.8416); 0.6, 0.4, 0.2⟩ as the

value of the game for player-1, its value index can

be calculated as 234.7706 using formula explained

in section-4. Whereas our approach gives 241.0251

as the optimal value of the game for λ = 1
2 (refer

Table-2). So, our methodology yields better re-

sults for given optimism level, comparison of our

result with Jangid et al. [22] can be seen in the

histogram (Figure-3). Also, their method is diffi-

cult on calculations so they have calculated it only

for λ = 1
2 , whereas our is an easy procedure, we have done it for various values of λ varying

from 0 to 1.
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6.2. Example-2:(A telecom sector case-study)

Nowadays it is impossible to think a life without a high-speed internet connection in your

mobile handset or a high speed wi-fi internet connection at your home and at your workplace.

In this regard the launch of fifth generation (5G) network recently has brought a revolution

in India. Presently the number of mobile network subscribers in India is around 449 million

and this number is surely going to increase with launch of 5G network. The two major

telecom operators in India, Airtel (C1) and Vodafone (C2) (say), want to take advantage of

this situation and each of them aim to increase the number of subscribers than the other. The

two companies have fixed number of costumers and each of them want to add new costumers

by porting to one from the other or by adding new subscribers. They make the following

strategies to lure more costumers –

Strategy-I : ‘Reducing the tariff of their data plans per GB’

Strategy-II : ‘Giving free soaps like hotstar, amazon prime etc with their data plan’

Strategy-III : ‘Advertising through print, electronic and social media’

The market research wing (MRW) experts of the two companies cannot precisely predict the

increase in the number of costumers because of the uncertainty and indeterminacy that is

always present in the large telecom market. They can only provide some estimated data with

some amount of uncertainty and indeterminacy involved in it. This competitive situation

between the two companies can be presented by means of a matrix game (MG) with payoff

matrix equipped with SVNTNs. Supposing that the MRW experts of the two companies after

analysing the collected data through some survey and their expertise, presented the following

pay-off matrix on the number of costumers. (All numbers are supposed to be multiplied by

1000).

Ẽ =

I II III
I ⟨(176, 180, 183); .6, .5, .2⟩ ⟨(83, 90, 96); .8, .4, .2⟩ ⟨(110, 120, 133); .9, .5, .1⟩

II ⟨(87, 89, 92); .6, .4, .2⟩ ⟨(176, 180, 183); .6, .5, .2⟩ ⟨(118, 125, 130); .7, .5, .3⟩
III ⟨(118, 125, 130); .7, .5, .3⟩ ⟨(145, 150, 153); .8, .4, .1⟩ ⟨(83, 90, 96); .8, .4, .2⟩

=

I II III
I ⟨1̂80⟩ ⟨9̂0⟩ ⟨1̂20⟩

II ⟨8̂9⟩ ⟨1̂80⟩ ⟨1̂25⟩
III ⟨1̂25⟩ ⟨1̂50⟩ ⟨9̂0⟩

=

[
ãjkSV NTN

]
(say) j = 1, 2, 3; k = 1, 2, 3.

Where, ã12SV NTN = ⟨9̂0⟩ = ⟨(83, 90, 96); .8, .4, .2⟩ means that the company C1 (Player-1) will

get an increase of 90 units in its customer base if C1 sticks to apply strategy-I (i.e., ‘Reducing

the tariff of their data plans per GB’) and if company C2 sticks to apply strategy-II (i.e.,
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‘Giving free soaps like hotstar, amazon prime etc with their data’). MRW experts are 80%

positive about it, 20% they are not positive and they remain indeterminate by 40% about the

increase.

All other SVNTNs can be explained similarly.

Solution Procedure: let (p1, p2, p3) and (q1, q2, q3) are the optimal strategies and ũSV NTN ,

ṽSV NTN are optimal SVNTN values of the game for company C1 and company C2 respectively,

then NLPPs for the two players ( C1 & C2) are written as follows-

For player-1 (NLPP)I:



Max ũSV NTN

s.t., ã11SV NTN p1 + ã21SV NTN p2 + ã31SV NTN p3 ⪰ ũSV NTN

ã12SV NTN p1 + ã22SV NTN p2 + ã32SV NTN p3 ⪰ ũSV NTN

ã13SV NTN p1 + ã23SV NTN p2 + ã33SV NTN p3 ⪰ ũSV NTN

p1 + p2 + p3 = 1,

and p1, p2, p3 ≥ 0.

(23)

For player-2 (NLPP)II:



Min ṽSV NTN

s.t., ã11SV NTN q1 + ã12SV NTN q2 + ã13SV NTN q3 ⪯ ṽSV NTN

ã21SV NTN q1 + ã22SV NTN q2 + ã23SV NTN q3 ⪯ ṽSV NTN

ã31SV NTN q1 + ã32SV NTN q2 + ã33SV NTN q3 ⪯ ṽSV NTN

q1 + q2 + q3 = 1,

and q1, q2, q3 ≥ 0.

(24)

For de-neutrosophication of above NLPP models, we apply the value index of all the SVNTNs.

we get the following CLPPs for the two players

For player-1 (CLPP)I:



Max V (ũSV NTN , λ) = u(say)

s.t., V (1̂80, λ) p1 + V (8̂9, λ) p2 + V (1̂25, λ) p3 ≥ u

V (9̂0, λ) p1 + V (1̂80, λ) p2 + V (1̂50, λ) p3 ≥ u

V (1̂20, λ) p1 + V (1̂25, λ) p2 + V (9̂0, λ) p3 ≥ u

p1 + p2 + p3 = 1,

and p1, p2, p3 ≥ 0.

(25)
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For player-2 (CLPP)II:

Min V (ṽSV NTN , λ) = v(say)

s.t., V (1̂80, λ) q1 + V (9̂0, λ) q2 + V (1̂20, λ) q3 ≤ v

V (8̂9, λ) q1 + V (1̂80, λ) q2 + V (1̂25, λ) q3 ≤ v

V (1̂25, λ) q1 + V (1̂50, λ) q2 + V (9̂0, λ) q3 ≤ v

q1 + q2 + q3 = 1,

and q1, q2, q3 ≥ 0.

(26)

The value index of all the distinct SVNTNs involved are calculated as

V (ã11SV NTN , λ) = V (1̂80, λ) = (378.8332–199.1666λ) = V (ã22SV NTN , λ);

V (ã12SV NTN , λ) = V (9̂0, λ) = (178.8173–89.1507λ) = V (ã33SV NTN , λ);

V (ã13SV NTN , λ) = V (1̂20, λ) = (243.5756–122.5756λ);

V (ã21SV NTN , λ) = V (8̂9, λ) = (179.1825–89.8492λ);

V (ã23SV NTN , λ) = V (1̂25, λ) = (247.7093–123.3760λ) = V (ã31SV NTN , λ);

V (ã32SV NTN , λ) = V (1̂50, λ) = (297.5843–148.2510λ);

Using these value indexes, we get the following CLPPs for the two players

For player-1 (CLPP)I:

Max V (ũSV NTN , λ) = u(say)

s.t., (378.8332–199.1666λ) p1 + (179.1825–89.8492λ) p2 + (247.7093–123.3760λ) p3 ≥ u

(178.8173–89.1507λ) p1 + (378.8332–199.1666λ) p2 + (297.5843–148.2510λ) p3 ≥ u

(243.5756–122.5756λ) p1 + (247.7093–123.3760λ) p2 + (178.8173–89.1507λ) p3 ≥ u

p1 + p2 + p3 = 1,

and p1, p2, p3 ≥ 0.

(27)

For player-2 (CLPP)II:

Min V (ṽSV NTN , λ) = v(say)

s.t., (378.8332–199.1666λ) q1 + (178.8173–89.1507λ) q2 + (243.5756–122.5756λ) q3 ≤ v

(179.1825–89.8492λ) q1 + (378.8332–199.1666λ) q2 + (247.7093–123.3760λ) q3 ≤ v

(247.7093–123.3760λ) q1 + (297.5843–148.2510λ) q2 + (178.8173–89.1507λ) q3 ≤ v

q1 + q2 + q3 = 1,

and q1, q2, q3 ≥ 0.

(28)

The value index of distinct SVNTNs are calculated using the proposed method for various

degree of optimism λ, and are given in table-3 below.
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Table 3. Value index of SVNTNs for different values of optimism degree λ

λ V (1̂80, λ) V (9̂0, λ) V (1̂20, λ) V (8̂9, λ) V (1̂25, λ) V (1̂50, λ)

0.0 378.8332 178.8173 243.5756 179.1825 247.7093 297.5843

0.1 358.9165 169.9022 231.3180 170.1975 235.3717 282.7592

0.2 338.9998 160.9871 219.0604 161.2126 223.0341 267.9341

0.3 319.0832 152.0720 206.8029 152.2277 210.6965 253.1090

0.4 299.1665 143.1570 194.5453 143.2428 198.3589 238.2839

0.5 279.2499 134.2419 182.2878 134.2579 186.0213 223.4588

0.6 259.3332 125.3268 170.0302 125.2729 173.6837 208.6337

0.7 239.4165 116.4118 157.7726 116.2880 161.3461 193.8086

0.8 219.4999 107.4967 145.5151 107.3031 149.0085 178.9835

0.9 199.5832 98.5816 133.2575 98.3182 136.6709 164.1584

1.0 179.6666 89.6666 121.0000 89.3333 124.3333 149.3333

Using the values given in Table-3, optimal solutions for various degree of optimism λ are

obtained by solving CLPP for Player-1 (equation-27) and are given in table-4 below.

Table 4. Optimal Solution For Player-1 for Different Values of Optimism Degree λ

λ p1 p2 p3 Max(u)

0.0 0.3363 0.6637 0.0000 246.3193

0.1 0.3381 0.6619 0.0000 234.0012

0.2 0.3401 0.6599 0.0000 221.6825

0.3 0.3424 0.6576 0.0000 209.3632

0.4 0.3450 0.6550 0.0000 197.0430

0.5 0.3480 0.6520 0.0000 184.7219

0.6 0.3515 0.6485 0.0000 172.3994

0.7 0.3556 0.6444 0.0000 160.0753

0.8 0.3605 0.6395 0.0000 147.7492

0.9 0.3664 0.6336 0.0000 135.4203

1.0 0.3737 0.6263 0.0000 123.0878

Using the values given in Table-3, optimal solutions for various degree of optimism λ are

obtained by solving CLPP for Player-2 (equation-28) and are given in table-5 below.
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Table 5. Optimal Solution For Player-2 for Different Values of Optimism Degree λ

λ q1 q2 q3 Max(v)

0.0 0.0203 0.0000 0.9797 246.3199

0.1 0.0210 0.0000 0.9790 234.0012

0.2 0.0219 0.0000 0.9781 221.6825

0.3 0.0228 0.0000 0.9772 209.3632

0.4 0.0239 0.0000 0.9761 197.0430

0.5 0.0251 0.0000 0.9749 184.7219

0.6 0.0265 0.0000 0.9735 172.3994

0.7 0.0282 0.0000 0.9718 160.0753

0.8 0.0302 0.0000 0.9698 147.7492

0.9 0.0326 0.0000 0.9674 135.4203

1.0 0.0356 0.0000 0.9644 123.0878

6.2.1. Conclusive Words on the Results of Example-2:

The solution results for various values of degree of optimism for the incumbent player i.e.,

company C1 (Airtel), are given in Table-4 above. Results show that value of the game decreases

from 246.3193 to 123.0878 as the degree of optimism increases from 0.0 to 1.0, it means the

value of the game is inversely proportional to the degree of optimism of the incumbent player.

The results of example-2 almost follow the same pattern as of example-1. This can be observed

from the graphical representation in Figure-4 of obtained optimal values ‘u’ for incumbent

player-1 against different values of the degree of optimism ‘λ′ for both example-1 & 2.
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Figure 4. Value of the Game Against Degree of Optimism λ

7. Discussion:

In the zero sum NMG, the optimal expected loss of player-2 is equal to the optimal expected

gain of player-1, it can be observed from Table-2 in Example-1 and Table-4 & 5 in Example-2.

A graphical representation of optimal values against different values of degree of optimism λ

is given in Figure-4 for both Example-1 and Example-2. As all the results obtained by our

solution methodology are crisp, they are more reliable and trustworthy. Analysing the results

of our work it can be summarised that the optimum value of game for player-1 decreases as

degree of optimism ‘λ’ increases in interval [0, 1]. So we can say that optimal value obtained

for player-1 is inversely proportional to his degree of optimism, i.e., the more optimistic you

are, and the more you may lose. So, we can conclude that it good to be moderate rather than

over optimistic.

8. Conclusion:

This study introduces an efficient de-neutrosophication method that leverages Mellin’s trans-

form to derive precise values from Single-Valued Neutrosophic Triangular Numbers (SVNTNs),

significantly enhancing decision-making processes in Neutrosophic Matrix-Game strategies

(NTMGs). We have demonstrated the efficacy of this technique through detailed numeri-

cal examples. By transforming Neutrosophic Linear Programming Problems (NLPPs) into

Crisp Linear Programming Problems (CLPPs), and adjusting for varying degrees of optimism,
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we have utilized the TORA-2.0 software to achieve optimal solutions that promise to aid

competitive players in the industrial sector in making more informed and economically bene-

ficial decisions. We aim to broaden the scope of our research to encompass a wider array of

neutrosophic numbers, including but not limited to trapezoidal, pentagonal, interval-valued,

bi-polar, and spherical neutrosophic numbers. This expansion is anticipated to address more

complex and diverse decision-making scenarios, offering a comprehensive toolkit for both the-

oretical exploration and practical application in the field of neutrosophic decision-making and

optimization.
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ABSTRACT. In this article, we have proposed an ordering technique for Neutrosophic numbers with non-linear functions.

Consequently, the non-linear functions overcome the limitations of linear function approaches by giving an enhanced frame-

work for handling and modeling uncertainty. Hence, this study presents the Generalized Parabolic Single Valued Neu-

trosophic Number (GPSVNN) to address the uncertainties in Multi-Criteria Decision-Making (MCDM) circumstances.

GPSVNN can handle uncertainty and perform arithmetic operations to deal with MCDM through the (α, β, γ)-cut tech-

nique. The computation of the (α, β, γ)-cut of the neutrosophic number is reduced by defining the ”value” and ”ambiguity.”

As a result, it becomes more systematic when the complicated computations using the (α, β, γ)-cut approach are carried

out. A novel ordering approach has been developed in this study by incorporating the ”value” and ”ambiguity” of GPSVNN.

Finally, we have given an example using GPSVNN in a life satisfaction survey to show its applicability.

Keywords: Generalized Parabolic Single Valued Neutrosophic Number(GPSVNN); Arithmetic Operators of GPSVNN; Val-

ues and Ambiguities of GPSVNN & Mutli-criteria Decision making problem.

—————————————————————————————————————————-

1. Introduction

Handling data that contain uncertainty and dealing with nonlinearity has become vital in numer-

ous applications such as facial pattern recognition, transmission systems, knowledge-based models

for risk assessment, stock trading, etc. Information derived from computational perception and cog-

nition, which is unclear, imprecise, ambiguous, partially true, or lacking specific limits, can be dealt

with the help of fuzzy logic. Lotfi A. Zadeh [1] initially proposed the concept of fuzzy sets in 1965.

In [2, 3] fuzzy logic in multi-criteria decision-making using the concept of fuzzy numbers have been

applied. The arithmetic operations for generalized parabolic fuzzy numbers and its applications were

explored in [4]. In [5], the authors address the mF Dombi weighted averaging and geometric operators

to solve multi-criteria decision-making problems that utilize mF information under M-polar fuzzy sets.
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Chakraborty et al. [6] demonstrated the hexagonal fuzzy number and its characteristic representation,

ranking, defuzzification method, and application in the manufacturing inventory management prob-

lem. By expanding the concept of evidence theory, Krishankumar [7] has suggested a unique ranking

mechanism under the probabilistic hesitant fuzzy set.The fuzzy set gives one index to represent both

membership and non-membership degrees.

The fuzzy set cannot express its independence. Atanassov [8] proposed the idea of intuitionis-

tic fuzzy sets to solve this problem. Employing intuitionistic fuzzy logic enables the resolution of

challenging decision-making problems. Many researchers [9–13] have applied various intuitionistic

fuzzy numbers to multi-criteria decision-making problems. The study of modelling uncertainty is

evolving rapidly. Researchers have previously conducted different significant and progressive inves-

tigations, and there are numerous approaches, including fuzzy and intuitionistic fuzzy sets, to handle

these uncertainties in modelling. These problems, which apply to real-world problems, cannot deal

with all forms of uncertainty, such as ambiguous and inconsistent information. Smarandache [14, 15]

initiated neutrosophic theory, which further generalizes fuzzy and intuitionistic fuzzy sets. In [16],

the authors defined a particular case of a neutrosophic set called a single-valued neutrosophic set

and set-theoretic operators. Chen and Jiqian [17] introduced the Dombi operations of t-norm and

t-conorm, and they benefit from being very flexible concerning the operational parameters. and to

solve multi-criteria decision-making problems, in [18] a new tool have been developed, that considers

the bipolar trapezoidal neutrosophic and the Dombi operators. In [19–21], investigated trapezoidal

neutrosophic numbers and its applicability. Chakraborty [22–24] developed the de-neutrosophication

approach using the elimination area method as a manifestation of the linear pentagonal neutrosophic

number. In [25], a decision-making strategy is described by applying similarity measures based on

distance measures. Paulraj S. [26] presented an expansion of single-valued trapezoidal neutrosophic

ordered weighted harmonic averaging. Researchers widely use a proactive green supply chain manage-

ment strategy in [27]. Janani [28] and Ramya [29] presented a perceptive investigation that expands

on Bipolar Pythagorean refined set and Pythagorean Neutrosophic Hypersoft Sets, emphasizing the

essential features. Many researchers [30–40] have used different neutrosophic numbers to deal with

various multi-criteria decision-making problems.

The increasing complexity and unpredictability of decision-making situations in several fields need

innovative mathematical frameworks which could effectively handle these challenges. However, there

may be some restrictions due to insufficient or lacking quality of the currently available data. Some-

times, using linear functions is inadequate for the consideration of uncertainty. Therefore, the non-

linear functions provide an improved framework for managing and modeling uncertainty. Hence, the

non-linearity in the Neutrosophic numbers enhances its applicability range. In this study, we explore

the Generalized Parabolic Single Valued Neutrosophic Number (GPSVNN), a novel form of non-linear

Sumathi IR, Augus Kurian & Parvathy K , An Enhanced Generalized Neutrosophic Number & its role
In MCDM-Challenges

Neutrosophic Sets and Systems, Vol. 61, 2023                                                                               313



neutrosophic number.

Contributions:

• We have introduced a new type of non-linear neutrosophic number called Generalized Para-

bolic Single Valued Neutrosophic Number.

• This study develops a novel ordering method by incorporating the ”value” and ”ambiguity” of

these Neutrosophic numbers.

• By defining the ”value” and ”ambiguity” of these Neutrosophic numbers, significantly reduces

the requirement to compute the (α, β, γ) -cut of the neutrosophic number. Consequently, it

becomes more systematic when the tedious calculations employing the (α, β, γ)-cut approach

are performed.

• Instead of computing over the complete integration range, the value and ambiguity are com-

puted at (α, β, γ)- levels. These levels are referred to as flexibility parameters because they

enable decision-makers to act at different stages of the decision-making process.

The paper is structured as follows. A detailed literature study and introduction are discussed in the

first section, and essential preliminary remarks are presented in the second section. The definition of

Generalized Parabolic Single-Valued Neutrosophic Numbers (GPSVNN), along with their arithmetic

operators, values, and ambiguities, are provided in the following part. In [41], the study addressed

the ranking of inhabitants’ satisfaction levels with municipal services. Twenty municipal services

from the Life Satisfaction Survey (LSS), conducted annually by the Turkish Statistical Institution, are

considered possibilities for this purpose. Additionally, the 2014–2019 period was used as a set of

criteria when evaluating the inhabitants’ contentment, in addition to the previous year. The researchers

transformed the participant responses in the dataset into Picture Fuzzy Numbers (PFNs) with four

parameters to analyze the impact of all opinions on the decision-making process. (positive, neutral,

negative, and refusal). Finally, they used PFNs arithmetic operators and evaluated the results using

the VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) technique. In this scenario,

we offered the choice within the neutrosophic environment for the same problem, indicating that the

opinion type is expressed in GPSVNN. Using its values and ambiguity, we have ranked the alternative

from 2014 to 2017.

2. Preliminaries

Definition 2.1. [14] A neutrosophic set A on a universal set X is defined as A =

{⟨TA(x), IA(x), FA(x)⟩ : x ∈ X}, where TA, IA ,FA : X →]0−, 1[+, represents the degree of

membership, degree of indeterministic, and degree of non-membership respectively of the element

x ∈ X , such that 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.
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Definition 2.2. [16] A single valued neutrosophic set A on a universal set X is defined as A =

{⟨TA(x), IA(x), FA(x)⟩ : x ∈ X}, where TA, IA ,FA : X → [0, 1], represents the degree of mem-

bership, degree of indeterministic, and degree of non-membership respectively of the element x ∈ X ,

such that 0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3.

Definition 2.3. [24] A Single Valued Neutrosophic Number (SVNN) ã = ⟨Tã, Iã, Fã⟩ , in the set

of real numbers R with truth-membership function Tã , indeterminacy-membership function Iã and

falsity-membership function Fã , is defined as

Tã(x) =



fã(x) , if a1 ≤ x < b1

1 , if b1 ≤ x < c1

gã(x) , if c1 ≤ x < d1

0 , otherwise

, Iã(x) =



lã(x) , if a2 ≤ x < b2

0 , if b2 ≤ x < c2

mx̃(x) , if c2 ≤ x < d2

1 , otherwise

and

Fã(x) =



hã(x) , if a3 ≤ x < b3

0 , if b3 ≤ x < c3

kx̃(x) , if c3 ≤ x < d3

1 , otherwise

respectively, where 0 ≤ Tã + Iã + Fã ≤ 3 and ai, bi, ci, di ∈ R,

ai ≤ bi ≤ ci ≤ di where i = 1, 2, 3 and the functions fã, gã, lã,mã, hã, kã:R → [0, 1] .

The functions, fã,mã, kã are non-decreasing continuous function and gã, lã, hã are non-increasing

continuous function. SVNN is also denoted by ã = ⟨(a1, b1, c1, d1), (a2, b2, c2, d2), (a3, b3, c3, d3)⟩

Definition 2.4. A Single Valued Neutrosophic Number defined on the set of real numbers R is said

to be Generalized Single Valued Neutrosophic Number (GSVNN) Gã = ⟨TGã, IGã, FGã;ω, ρ, δ⟩ ,

with truth-membership function TGã(x) , indeterminacy-membership function IGã(x) and falsity-

membership function FGã(x) has the following characteristics.

(1) TGã, IGã, FGã R → [0, 1].

(2) TGã = 0, IGã = 1, FGã = 1for all x ∈ (−∞, ai] ∪ [di,∞) .

(3) TGã(x) is strictly increasing on [a1, b1] and TGã(x) is strictly decreasing on [c1, d1].

IGã(x) is strictly decreasing on [a2, b2] and IGã(x) is strictly increasing on [c2, d2].

FGã(x) is strictly decreasing on [a3, b3] and FGã(x) is strictly increasing on [c3, d3].

(4) TGã(x) = ω for all x ∈ [b1, c1] where 0 < ω ≤ 1. IGã(x) = ρ for all x ∈ [b2, c2] where

0 ≤ ρ < 1. FGã(x) = δ for all x ∈ [b2, c2] where 0 ≤ δ < 1.

3. A Generalized Parabolic Single Valued Neutrosophic Number(GPSVNN)

Definition 3.1. A Generalized Parabolic Single Valued Neutrosophic Number (GPSVNN) ,

Ã = ⟨(TÃ;ω), (IÃ; ρ), (FÃ; δ)⟩, is a Neutrosophic set on real number R with truth-membership func-

tion TÃ, indeterminacy-membership function IÃ and falsity-membership function FÃ, is defined as
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TÃ(x) =



ω( x−a1
b1−a1

)2 ;x ∈ [a1, b1)

ω ;x ∈ [b1, c1)

ω( d1−x
d1−c1

)2 ;x ∈ [c1, d1)

0 ; otherwise

, IÃ(x) =



1− ( x−a2
b2−a2

)2(1− ρ) ;x ∈ [a2, b2)

ρ ;x ∈ [b2, c2)

1− ( d2−x
d2−c2

)2(1− ρ) ;x ∈ [c2, d2)

1 ; otherwise

and

FÃ(x) =



1− ( x−a3
b3−a3

2
)(1− δ) ;x ∈ [a3, b3)

δ ;x ∈ [b3, c3)

1− ( d3−x
d3−c3

)2(1− δ) ;x ∈ [c3, d3)

1 ; otherwise

where 0 ≤ TÃ + IÃ + FÃ ≤ 3 , 0 < ω ≤ 1 , 0 ≤ ρ < 1 , 0 ≤ δ < 1 and ai, bi, ci, di ∈ R ,

ai ≤ bi ≤ ci ≤ di where i = 1, 2, 3.

Note:1 GPSVNN is also denoted by

(1) Ã = ⟨(a1, b1, c1, d1;ω), (a2, b2, c2, d2; ρ), (a3, b3, c3, d3; δ)⟩
(2) Ã = ⟨(a, b, c, d) ;ω, ρ, δ⟩(If we consider the same values for the truth,falsity and indetermi-

nacy membership).

Definition 3.2. The (α, β, γ) - cut of GPSVNN defined as Ã(α,β,γ) = {x|TÃ(x) ≥ α, IÃ(x) ≤
β, FÃ(x) ≤ γ}, where α ∈ [0, ω], β ∈ [ρ, 1], γ ∈ [δ, 1] such that α + β + γ ≤ 3, ie., Ãα,β,γ =

⟨Ãα, Ãβ, Ãγ⟩, where Ãα = [ a1 + (b1 − a1)
√
α/ω, d1 − (d1 − c1)

√
α/ω ] = [Lα, Uα]

Ãβ = [ a2 + (b2 − a2)
√
(1− β)/(1− ρ), d2 − (d2 − c2)

√
(1− β)/(1− ρ) ] = [L

′α, U
′α]

Ãγ = [ a3 + (b3 − a3)
√
(1− γ)/(1− δ), d3 − (d3 − c3)

√
(1− β)/(1− δ) ] = [L

′′α, U
′′α]

Definition 3.3. A Parabolic Single Valued Neutrosophic Number (PSVNN) , Ã = ⟨TÃ), IÃ, FÃ⟩, is

a Neutrosophic set on real number R with truth-membership function TÃ, indeterminacy-membership

function IÃ and falsity-membership function FÃ, is defined as,

TÃ(x) =



( x−a1
b1−a1

)2 ;x ∈ [a1, b1)

1 ;x ∈ [b1, c1)

( d1−x
d1−c1

)2 ;x ∈ [c1, d1)

0 ; otherwise

, IÃ(x) =



1− ( x−a2
b2−a2

)2 ;x ∈ [a2, b2)

0 ;x ∈ [b2, c2)

1− ( d2−x
d2−c2

)2 ;x ∈ [c2, d2)

1 ; otherwise

and

FÃ(x) =



1− ( x−a3
b3−a3

2
) ;x ∈ [a3, b3)

0 ;x ∈ [b3, c3)

1− ( d3−x
d3−c3

)2 ;x ∈ [c3, d3)

1 ; otherwise

where 0 ≤ TÃ + IÃ + FÃ ≤ 3 , ai, bi, ci, di ∈ R , ai ≤ bi ≤ ci ≤ di where i = 1, 2, 3.

Arithmetic Operators of GPSVNN
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Definition 3.4. Let Ã and B̃ are the two GPSVNN , then we define the arithmetic operators for

Ã = ⟨(a1, b1, c1, d1;ω1), (a2, b2, c2, d2; ρ1), (a3, b3, c3, d3; δ1)⟩ and

B̃ = ⟨(a′1, b′1, c′1, d′1;ω2), (a
′
2, b

′
2, c

′
2, d

′
2; ρ2), (a

′
3, b

′
3, c

′
3, d

′
3; δ2)⟩ as follows.

where, ω = min{ω1, ω2}, ρ = max{ρ1, ρ2} and δ = max{δ1, δ2}
(We denote ∧ for min and ∨ for max.)

1. The addition of GPSVNN’s Ã+ B̃ = C̃ is

TC̃(x) =



ω

(
x−(a1+a′1)

(b1+b′1)−(a1+a′1)

)2

;x ∈ [a1 + a′1, b1 + b′1)

ω ;x ∈ [b1 + b′1, c1 + c′1)

ω

(
(d1+d′1)−x

(d1+d′1)−(c1+c′1)

)2

;x ∈ [c1 + c′1, d1 + d′1)

0 ; otherwise

,

IC̃(x) =



1−
(

x−(a2+a′2)
(b2+b′2)−(a2+a′2)

)2

(1− ρ) ;x ∈ [a2 + a′2, b2 + b′2)

ρ ;x ∈ [b2 + b′2, c2 + c′2)

1−
(

(d2+d′2)−x
(d2+d′2)−(c2+c′2)

)2

(1− ρ) ;x ∈ [c2 + c′2, d2 + d′2)

1 ; otherwise

and FC̃(x) =



1−
(

x−(a3+a′2)
(b3+b′3)−(a3+a′3)

)2

(1− δ) ;x ∈ [a3 + a′3, b3 + b′3)

δ ;x ∈ [b3 + b′3, c3 + c′3)

1−
(

(d3+d′3)−x
(d3+d′3)−(c3+c′3)

)2

(1− δ) ;x ∈ [c3 + c′3, d3 + d′3)

1 ; otherwise

2.The subtraction of GPSVNN’s Ã− B̃ = C̃ is

TC̃(x) =



ω

(
x−(a1−d′1)

(b1−c′1)−(a1−d′1

)2

;x ∈ [a1 − d′1, b1 − c′1)

ω ;x ∈ [b1 − c′1, c1 − b′1)

ω

(
(d1−a′1)−x

(d1−a′1)−(c1−b′1)

)2

;x ∈ [c1 − b′1, d1 − a′1)

0 ; otherwise

,

IC̃(x) =



1−
(

x−(a2−d′2)
(b2−c′2)−(a2−d′2)

)2

(1− ρ) ;x ∈ [a2 − d′2, b2 − c′2)

ρ ;x ∈ [b2 − c′2, c2 − b′2)

1−
(

(d2−a′2)−x
(d2−a′2)−(c2−b′2)

)2

(1− ρ) ;x ∈ [c2 − b′2, d2 − a′2)

1 ; otherwise
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FC̃(x) =



1−
(

x−(a3−d′3)
(b3−c′3)−(a3−d′3)

)2

(1− δ) ;x ∈ [a3 − d′3, b3 − c′3)

δ ;x ∈ [b3 − c′3, c3 − b′3)

1−
(

(d3−a′3)−x
(d3−a′3)−(c3−b′3)

)2

(1− δ) ;x ∈ [c3 − b′3, d3 − a′3)

1 ; otherwise

3. The multiplication of GPSVNN’s Ã ∗ B̃ = C̃ is

TC̃(x) =



ω( x−p1
p2−p1

)2 ;x ∈ [p1, p2)

ω ;x ∈ [p2, p3)

ω( p4−x
p4−p3

)2 ;x ∈ [p3, p4)

0 ; otherwise

, IC̃(x) =



1− ( x−q1
q2−q1

)2(1− ρ) ;x ∈ [q1, q2)

ρ ;x ∈ [q2, q3)

1− ( q4−x
q4−q3

)2(1− ρ) ;x ∈ [q3, q4)

1 ; otherwise

and FC̃(x) =



1− ( x−r1
r2−r1

)2(1− δ) ;x ∈ [r1, r2)

δ ;x ∈ [r2, r3)

1− ( r4−x
r4−r3

)2(1− δ) ;x ∈ [r3, r4)

1 ; otherwise

where p1 = min{a1 ∗ a′1, a1 ∗ d′1, d1 ∗ a′1, d1 ∗ d′1}, p2 = min{b1 ∗ b′1, b1 ∗ c′1, c1 ∗ b′1, c1 ∗ c′1}
p3 = max{b1 ∗ b′1, b1 ∗ c′1, c1 ∗ b′1, c1 ∗ c′1}, p4 = max{a1 ∗ a′1, a1 ∗ d′1, d1 ∗ a′1, d1 ∗ d′1}
q1 = min{a2 ∗ a′2, a2 ∗ d′2, d2 ∗ a′2, d2 ∗ d′2}, q2 = min{b2 ∗ b′2, b2 ∗ c′2, c2 ∗ b′2, c2 ∗ c′2}
q3 = max{b2 ∗ b′2, b2 ∗ c′2, c2 ∗ b′2, c2 ∗ c′2}, q4 = max{a2 ∗ a′2, a2 ∗ d′2, d2 ∗ a′2, d2 ∗ d′2}
r1 = min{a3 ∗ a′3, a3 ∗ d′3, d3 ∗ a′3, d3 ∗ d′3}, r2 = min{b3 ∗ b′3, b3 ∗ c′3, c3 ∗ b′3, c3 ∗ c′3}
r3 = max{b3 ∗ b′3, b3 ∗ c′3, c3 ∗ b′3, c3 ∗ c′3}, r4 = max{a3 ∗ a′3, a3 ∗ d′3, d3 ∗ a′3, d3 ∗ d′3}.

4. Inverse of GPSVNN

Consider the GPSVN-number, B̃ = ⟨(a′1, b′1, c′1, d′1;ω), (a′2, b′2, c′2, d′2; ρ), (a′3, b′3, c′3, d′3; δ)⟩.
The inverse of this GPSVN-number is,
1
B̃

= ⟨( 1
d′1
, 1
c′1
, 1
b′1
, 1
a′1
;ω), ( 1

d′2
, 1
c′2
, 1
b′2
, 1
a′2
; ρ), ( 1

d′3
, 1
c′3
, 1
b′3
, 1
a′3
; δ)⟩, 0 /∈ [a′i, d

′
i] , where i = 1,2,3.

5. Division of GPSVNN The division of Ã/B̃ can be defined as the multiplication of two GPSVNN

Ã ∗ 1
B̃

= C̃ ,

TC̃(x) =



ω( x−p1
p2−p1

)2 ;x ∈ [p1, p2)

ω ;x ∈ [p2, p3)

ω( p4−x
p4−p3

)2 ;x ∈ [p3, p4)

0 ; otherwise

,
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IC̃(x) =



1− ( x−q1
q2−q1

)2(1− ρ) ;x ∈ [q1, q2)

ρ ;x ∈ [q2, q3)

1− ( q4−x
q4−q3

)2(1− ρ) ;x ∈ [q3, q4)

1 ; otherwise

and FC̃(x) =



1− ( x−r1
r2−r1

)2(1− δ) ;x ∈ [r1, r2)

δ ;x ∈ [r2, r3)

1− ( r4−x
r4−r3

)2(1− δ) ;x ∈ [r3, r4)

1 ; otherwise

where p1 = min{a1
d′1
, a1
a′1
, d1
d′1
, d1
a′1
}, p2 = min{ b1

c′1
, b1
b′1
, c1
c′1
, c1
b′1
}, p3 = max{ b1

c′1
, b1
b′1
, c1
c′1
, c1
b′1
},

p4 = max{a1
d′1
, a1
a′1
, d1
d′1
, d1
a′1
}, q1 = min{a2

d′2
, a2
a′2
, d2
d′2
, d2
a′2
}, q2 = min{ b2

c′2
, b2
b′2
, c2
c′2
, c2
b′2
},

q3 = max{ b2
c′2
, b2
b′2
, c2
c′2
, c2
b′2
}, q4 = max{a2

d′2
, a2
a′2
, d2
d′2
, d2
a′2
}, r1 = min{a3

d′3
, a3
a′3
, d3
d′3
, d3
a′3
},

r2 = min{ b3
c′3
, b3
b′3
, c3
c′3
, c3
b′3
}, r3 = max{ b3

c′3
, b3
b′3
, c3
c′3
, c3
b′3
}, r4 = max{a3

d′3
, a3
a′3
, d3
d′3
, d3
a′3
}.

Example 3.5. Ã = ⟨(3, 5, 8, 12); 0.2, 0.3, 0.5⟩ and B̃ = ⟨(−7,−5, 6, 7); 0.2, 0.3, 0.5⟩ then

(1) Ã+ B̃ is

TÃ(x) =



0.2(x+4
4 )2 ;x ∈ [−4, 0)

0.2 ;x ∈ [0, 14)

0.2(19−x
5 )2 ;x ∈ [14, 19)

0 ; otherwise

, IÃ(x) =



1− (x+4
4 )2(0.7) ;x ∈ [−4, 0)

0.3 ;x ∈ [0, 14)

1− (19−x
5 )2(0.7) ;x ∈ [14, 19)

1 ; otherwise

and FÃ(x) =



1− (x+4
4 )2(0.5) ;x ∈ [−4, 0)

0.5 ;x ∈ [0, 14)

1− (19−x
5 )2(0.5) ;x ∈ [14, 19)

1 ; otherwise

Example 3.6. Ã = ⟨(3, 5, 8, 12); 0.2, 0.3, 0.5⟩ and B̃ = ⟨(1, 2, 3, 4); 0.2, 0.3, 0.5⟩ then Ã/B̃ is

TÃ(x) =



0.2(x−0.75
0.92 )2 ;x ∈ [0.75, 1.67)

0.2 ;x ∈ [1.67, 4)

0.2(12−x
8 )2 ;x ∈ [4, 12)

0 ; otherwise

, IÃ(x) =



1− (x−0.75
0.92 )2(0.7) ;x ∈ [0.75, 1.67)

0.3 ;x ∈ [1.67, 4)

1− (12−x
8 )2(0.7) ;x ∈ [4, 12)

1 ; otherwise

and FÃ(x) =



1− (x−0.75
0.92 )2(0.5) ;x ∈ [0.75, 1.67)

0.5 ;x ∈ [1.67, 4)

1− (12−x
8 )2(0.5) ;x ∈ [4, 12)

1 ; otherwise

The graphical interpretation of Example 3.5 and 3.6 are given below.
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(A) Addition (B) Division

3.1. Value and Ambiguity

Definition 3.7. Let Ã = ⟨(a1, b1, c1, d1;ω), (a2, b2, c2, d2; ρ), (a3, b3, c3, d3; δ)⟩ be a GPSVNN . Then

(α, β, γ)-cut set of the GPSVNN are Ãα = [Lα, Uα] , Ãβ = [L
′α, U

′α] and Ãγ = [L
′′α, U

′′α] respec-

tively. Then the Values of GPSVNN are defined as,

V(Ãα) =
∫ ω
0 (Lα + Uα)f(α) dα where, f(α) ∈ [0, 1](α ∈ [0, ω]), f(0) = 0 and f(α) is monotonic

and non-decreasing of α ∈ [0, ω].

V(Ãβ) =
∫ 1
ρ (L

′α + U
′α)g(β) dβ where , g(β) ∈ [0, 1](β ∈ [ρ, 1]), g(1) = 0 and g(β) is monotonic

and non-increasing of β ∈ [ρ, 1].

V(Ãγ) =
∫ 1
δ (L

′′α + U
′′α)h(γ) dγ where , h(γ) ∈ [0, 1](γ ∈ [δ, 1]), h(1) = 0 and h(γ) is monotonic

and non-increasing of γ ∈ [δ, 1].

Definition 3.8. Let Ã = ⟨(a1, b1, c1, d1;ω), (a2, b2, c2, d2; ρ), (a3, b3, c3, d3; δ)⟩ be a GPSVNN . Then

(α, β, γ)-cut set of the GPSVNN Ãα = [Lα, Uα] , Ãβ = [L
′α, U

′α] and Ãγ = [L
′′α, U

′′α] are respec-

tively. Then the Ambiguties of GPSVNN are defined as,

A(Ãα) =
∫ ω
0 (Uα − Lα)f(α) dα where , f(α) ∈ [0, 1](α ∈ [0, ω]), f(0) = 0 and f(α) is monotonic

and non-decreasing of α ∈ [0, ω]

A(Ãβ) =
∫ 1
ρ (U

′α − L
′α)g(β) dβ where , g(β) ∈ [0, 1](β ∈ [ρ, 1]), g(1) = 0 and g(β) is monotonic

and non-increasing of β ∈ [ρ, 1]

A(ãγ) =
∫ 1
δ (U

′′α − L
′′α)h(γ) dγ where , h(γ) ∈ [0, 1](γ ∈ [δ, 1]), h(1) = 0 and h(γ) is monotonic

and non-increasing of γ ∈ [δ, 1]

Result 3.9. Let Ã = ⟨(a1, b1, c1, d1;ω), (a2, b2, c2, d2; ρ), (a3, b3, c3, d3; δ)⟩ be a GPSVNN . Then

(α, β, γ)-cut set of the GPSVNN Ãα = [Lα, Uα] , Ãβ = [L
′α, U

′α] and Ãγ = [L
′′α, U

′′α] are respec-

tively. Then, for the truth membership,

Ãα = [Lα, Uα] = [a1 + (b1 − a1)
√
α/ω, d1 − (d1 − c1)

√
α/ω] where α ∈ [0, ω].
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If f(α) = α ,we obtain value and ambiguity as,

V(Ãα) =

∫ ω

0

[
a1 + (b1 − a1)

√
α/ω + d1 − (d1 − c1)

√
α/ω

]
αdα

=

[
ω2

2
(a1 + d1) +

2ω2

5
(b1 − a1 − d1 + c1)

]
=

ω2

10
(a1 + d1 + 4b1 + 4c1).

A(Ãα) =

∫ ω

0

[
d1 − (d1 − c1)

√
α/ω − a1 − (b1 − a1)

√
α/ω

]
αdα

=

[
ω2

2
(d1 − a1)−

2ω2

5
(d1 − c1 + b1 − a1)

]
=

ω2

10
(d1 − a1 − 4b1 + 4c1).

For the indeterminancy membership ,

Ãβ = [L
′α, U

′α] = [a2 + (b2 − a2)
√
(1− β)/(1− ρ), d2 − (d2 − c)2

√
(1− β)/(1− ρ)] where

β ∈ [ρ, 1]. If g(ρ) = (1− ρ), we obtain value and ambiguity as,

V(Ãβ) = [

∫ 1

ρ

[
a2 + (b2 − a2)

√
(1− β)/(1− ρ) + d2 − (d2 − c2)

√
(1− β)/(1− ρ)

]
(1− β)dβ

= [

[
(1− ρ)2

2
(a2 + d2) +

2(1− ρ)2

5
(b2 − a2 − d2 + c2)

]
=

(1− ρ)2

10
(a2 + d2 + 4b2 + 4c2).

A(Ãβ) = [

∫ 1

ρ

[
d2 − (d2 − c2)

√
(1− β)/(1− ρ)− a2 − (b2 − a2)

√
(1− β)/(1− ρ)

]
(1− β)dβ

= [

[
(1− ρ)2

2
(d2 − a2)−

2ω2

5
(d2 − c2 + b2 − a2)

]
=

(1− ρ)2

10
(d2 − a2 − 4b2 + 4c2).

For the falsity membership ,

Ãγ = [L
′′α, U

′′α] = [a3 + (b3 − a3)
√

(1− γ)/(1− δ), d3 − (d3 − c3)
√

(1− γ)/(1− δ)

]
where

γ ∈ [δ, 1]. If h(δ) = (1− δ),we obtain value and ambiguity as,

V(Ãγ) = [

∫ 1

δ

[
a3 + (b3 − a3)

√
(1− γ)/(1− δ) + d3 − (d3 − c3)

√
(1− γ)/(1− δ)

]
(1− γ)dγ

= [

[
(1− δ)2

2
(a3 + d3) +

2(1− δ)2

5
(b3 − a3 − d3 + c3)

]
=

(1− δ)2

10
(a3 + d3 + 4b3 + 4c3).

A(Ãγ) = [

∫ 1

δ

[
d3 − (d3 − c3)

√
(1− γ)/(1− δ)− a3 − (b3 − a3)

√
(1− γ)/(1− δ)

]
(1− γ)dγ

= [

[
(1− δ)2

2
(d3 − a3)−

2ω2

5
(d3 − c3 + b3 − a3)

]
=

(1− δ)2

10
(d3 − a3 − 4b3 + 4c3).

Definition 3.10. Let Ã = ⟨(a1, b1, c1, d1;ω), (a2, b2, c2, d2; ρ), (a3, b3, c3, d3; δ)⟩ be a GPSVNN. The

weighted value and ambiguity for λ ∈ [0, 1] are,
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Vλ(Ã) = λV(Ãα) + (1− λ)V(Ãβ) + (1− λ)V(Ãγ).

Aλ(Ã) = λA(Ãα) + (1− λ)A(Ãβ) + (1− λ)A(Ãγ).

Note: When λ = 0, it marks the preference for uncertainty, On the other hand,when λ = 1 it is

considered with strongly preferred certainty.

Definition 3.11. (Ranking Order) Let Ã and B̃ be two GPSVNN and λ ∈ [0, 1] . For weighted values

and ambiguities of the GPSVNN Ã and B̃. The ranking order of Ã and B̃ is defined as,

(1) If Vλ(Ã) > Vλ(B̃) , then Ã > B̃.

(2) If Vλ(Ã) < Vλ(B̃) , then Ã < B̃

(3) If Vλ(Ã) = Vλ(B̃), then

• If Aλ(Ã) = Aλ(B̃) , then Ã = B̃.

• If Aλ(Ã) > Aλ(B̃) , then Ã > B̃.

• If Aλ(Ã) < Aλ(B̃) , then Ã < B̃.

Example : Ã = ⟨(3, 5, 8, 12); 0.2, 0.3, 0.4⟩ and B̃ = ⟨(−7,−5, 6, 7); 0.5, 0.4, 0.3⟩. Then the rank-

ing for between these two numbers are .

Vλ(Ã) =
3 + 12 + 20 + 32

10
[λ(0.22) + (1− λ)(1− 0.3)2 + (1− λ)(1− 0.4)2]

= 6.7[0.85− 0.81λ] = 5.70− 5.43λ.

Vλ(B̃) =
−7 + 7− 20 + 24

10
[λ(0.52) + (1− λ)(1− 0.4)2 + (1− λ)(1− 0.3)2]

= 0.4[0.85− 0.60λ] = 0.34− 0.24λ.

When λ = 0,Vλ(Ã) = 5.70 and Vλ(B̃) = 0.34

When λ = 1,Vλ(Ã) = 0.27 and Vλ(B̃) = 0.10.

Also for all values of λ between 0 and 1 Vλ(Ã) > Vλ(B̃). then the ranking order of the numbers Ã

and B̃ is Ã > B̃.

Theorem 3.12. Let Ã = ⟨(a1, b1, c1, d1;ω), (a2, b2, c2, d2; ρ), (a3, b3, c3, d3; δ)⟩ and

B̃ = ⟨(a′1, b′1, c′1, d′1;ω2), (a
′
2, b

′
2, c

′
2, d

′
2; ρ), (a

′
3, b

′
3, c

′
3, d

′
3; δ2)⟩ be the two GPSVNN , λ ∈ [0, 1] and

k ∈ R then (i) Vλ(Ã+ B̃) = Vλ(Ã) + Vλ(B̃) (ii)Vλ(kÃ) = kVλ(Ã).

Proof:

(i)Vλ(Ã+ B̃) = λV(Ãα + B̃α) + (1− λ)V(Ãβ + B̃β) + (1− λ)V(Ãγ + B̃γ)

= λV(Ãα) + λV(B̃α) + (1− λ)V(Ãβ) + (1− λ)V(B̃β) + (1− λ)V(Ãγ) + (1− λ)V(B̃γ)

= Vλ(Ã) + Vλ(B̃).
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(ii)Vλ(kÃ) = λV(kÃα) + (1− λ)V(kÃβ) + (1− λ)V(kÃγ) = k[λV(Ãα) + (1− λ)V(Ãβ) + (1− λ)V(Ãγ)]

= kVλ(Ã).

Theorem 3.13. Let Ã = ⟨(a1, b1, c1, d1;ω), (a2, b2, c2, d2; ρ), (a3, b3, c3, d3; δ)⟩ and

B̃ = ⟨(a′1, b′1, c′1, d′1;ω2), (a
′
2, b

′
2, c

′
2, d

′
2; ρ), (a

′
3, b

′
3, c

′
3, d

′
3; δ2)⟩ be the two GPSVNN , λ ∈ [0, 1] and

k ∈ R then (i)Aλ(Ã+ B̃) = Aλ(B̃) +Aλ(B̃) (ii) Aλ(kÃ) = kAλ(Ã).

Proof:

(i)Aλ(Ã+ B̃) = λA(Ãα + B̃α) + (1− λ)A(Ãβ + B̃β) + (1− λ)A(Ãγ + B̃γ)

= λA(Ãα) + λA(B̃α) + (1− λ)A(Ãβ) + (1− λ)A(B̃β) + (1− λ)A(Ãγ) + (1− λ)A(B̃γ)

= Aλ(Ã) +Aλ(B̃).

(ii)Aλ(kÃ) = λA(kÃα) + (1− λ)A(kÃβ) + (1− λ)A(kÃγ) = k[λA(Ãα) + (1− λ)A(Ãβ) + (1− λ)A(Ãγ)]

= kAλ(Ã).

Theorem 3.14. Suppose Ã, B̃ and C̃ are any GPSVNN , where ω1 = ω2 , ρ1 = ρ2 and δ1 = δ2 . If

Ã > B̃, then (Ã+ C̃) > (B̃ + C̃).

Proof:

V(Ãα + C̃α) =

∫ ω1∧ω3

0
[Lα

Ã
+ Uα

Ã
+ Lα

C̃
+ Uα

C̃
]f(α)dα

=

∫ ω1∧ω3

0
[Lα

Ã
+ Uα

Ã
]f(α)dα+

∫ ω1∧ω3

0
[Lα

C̃
+ Uα

C̃
]f(α)dα

V(B̃α + C̃α) =

∫ ω2∧ω3

0
[Lα

B̃
+ Uα

B̃
+ Lα

C̃
+ Uα

C̃
]f(α)dα

=

∫ ω2∧ω3

0
[Lα

B̃
+ Uα

B̃
]f(α)dα+

∫ ω2∧ω3

0
[Lα

C̃
+ Uα

C̃
]f(α)dα

From the conditions , Ã > B̃ and ω1 = ω2, we have,∫ ω1∧ω3

0 [Lα
Ã
+ Uα

Ã
]f(α)dα >

∫ ω2∧ω3

0 [Lα
B̃
+ Uα

B̃
]f(α)dα

=⇒ V(Ãα + C̃α) > V(B̃α + C̃α) (1)

V(Ãβ + C̃β) =

∫ 1

ρ1∨ρ3
[L

′β

Ã
+ U

′β

Ã
+ L

′β

C̃
+ U

′β

C̃
]g

′βdβ

=

∫ 1

ρ1∨ρ3
[L

′β

Ã
+ U

′β

Ã
]g

′βdβ +

∫ 1

ρ1∨ρ3
[L

′β

C̃
+ U

′β

C̃
]g

′βdβ

V(B̃β + C̃β) =

∫ 1

ρ2∨ρ3
[L

′β

B̃
+ U

′β

B̃
+ L

′β

C̃
+ U

′β

C̃
]g

′βdβ

=

∫ 1

ρ2∨ρ3
[L

′β

B̃
+ U

′β

B̃
]g

′βdβ +

∫ 1

ρ2∨ρ3
[L

′β

C̃
+ U

′β

C̃
]g

′βdβ
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From the conditions , Ã > B̃ and ρ1 = ρ2, we have,∫ 1
ρ1∨ρ3 [L

′β

Ã
+ U

′β

Ã
]g

′βdβ >
∫ 1
ρ2∨ρ3 [L

′β

B̃
+ U

′β
˜ ]g

′βdβ

=⇒ V(Ãβ + C̃β) > V(B̃β + C̃β) (2)

V(Ãγ + C̃γ) =

∫ 1

δ1∨δ3
[L

′′γ

Ã
+ U

′′γ

Ã
+ L

′′γ

C̃
+ U

′′γ

C̃
]h(γ)dγ

=

∫ 1

δ1∨δ3
[L

′′γ

Ã
+ U

′′γ

Ã
]h(γ)dγ +

∫ 1

δ1∨δ3
[L

′′γ

C̃
+ U

′′γ

C̃
]h(γ)dγ

V(B̃γ + C̃γ) =

∫ 1

δ2∨δ3
[L

′′γ

B̃
+ U

′′γ

B̃
+ L

′′γ

C̃
+ U

′′γ

C̃
]h(γ)dγ

=

∫ 1

δ2∨δ3
[L

′′γ

B̃
+ U

′′γ

B̃
]h(γ)dγ +

∫ 1

δ2∨δ3
[L

′′γ

C̃
+ U

′′γ

C̃
]h(γ)dγ

From the conditions , Ã > B̃ and γ1 = γ2, we have,∫ 1
γ1∨γ3 [L

′′γ

Ã
+ U

′′γ

Ã
]h(γ)dγ >

∫ 1
γ2∨γ3 [L

′′γ

B̃
+ U

′′γ

B̃
]h(γ)dγ

=⇒ V(Ãγ + C̃γ) > V(B̃γ + C̃γ) (3)

by the combining equation (1), (2) and (3) the following inequality is always valid for any

λ ∈ [0, 1],

λV(Ãα + C̃α) + (1− λ)V(Ãβ + C̃β) + (1− λ)V(Ãγ + C̃γ) >

λV(B̃α + C̃α) + (1− λ)V(B̃β + C̃β) + (1− λ)V(B̃γ + C̃γ).

Therefore Vλ(Ã+ C̃) > Vλ(B̃ + C̃), and from the definition, (Ã+ C̃) > (B̃ + C̃)

Theorem 3.15. Suppose that Ã = ⟨(a1, b1, c1, d1;ω), (a2, b2, c2, d2; ρ), (a3, b3, c3, d3; δ)⟩ and

B̃ = ⟨(a′1, b′1, c′1, d′1;ω2), (a
′
2, b

′
2, c

′
2, d

′
2; ρ), (a

′
3, b

′
3, c

′
3, d

′
3; δ2)⟩ be the two GPSVNN with ω1 = ω2,

ρ1 = ρ2 and δ1 = δ2. If ai > d′i, where i=1,2,3, then Ã > B̃.

Proof: As we have , ω1 = ω2 and a1 > d′1 ,

V(Ãα) =

∫ ω1

0
[Lα + Uα]f(α)dα ≥ 2a1

∫ ω1

0
f(α)dα

V(B̃α) =

∫ ω2

0
[Lα + Uα]f(α)dα ≤ 2d1

∫ ω2

0
f(α)dα∫ ω1

0 f(α)dα =
∫ ω2

0 f(α)dα, we have, a1 > d′1

V(Ãα) ≥ 2a1 ≥ 2d′1 ≥ V(B̃α). (4)

As we have , ρ1 = ρ2 and a2 > d′2 ,

V(Ãβ) =

∫ 1

ρ1

[L
′α + U

′α]gdβ ≥ 2a2

∫ 1

ρ2

g(β)dβ
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V(B̃β) =

∫ 1

ρ2

[L
′α + U

′α]g(β)dβ ≤ 2d′2

∫ 1

ρ2

g(β)dβ

∫ 1
ρ1
g(β)dβ =

∫ 1
ρ2
g(β)dβ, we have, a2 > d′2.

V(Ãβ) ≥ 2a2 ≥ 2d′2 ≥ V(B̃β). (5)

As we have , δ1 = δ2 and a3 > d′3 ,

V(Ãγ) = [

∫ 1

δ1

[L
′′α + U

′′α]h(γ)dγ ≥ 2a3[

∫ 1

δ2

h(γ)dγ

V(B̃γ) =

∫ 1

δ2

[L
′′α + U

′′α]h(γ)dγ ≤ 2d′3

∫ 1

δ2

h(γ)dγ

∫ 1
δ1
h(γ)dγ =

∫ 1
δ2
h(γ)dγ we have , a3 > d′3

V(Ãγ) ≥ 2a3 ≥ 2d′3 ≥ V(B̃γ) (6)

According to the definition, from the equations (4), (5) and (6), we have ,

λV(Ãα) + (1− λ)V(Ãβ) + (1− λ)V(Ãγ) > λV(B̃α) + (1− λ)V(B̃β) + (1− λ)V(B̃γ).

Therefore, from the definition, Ã > B̃.

4. Application of GPSVNN

An algorithm for the GPSVN-numbers multi-criteria decision-making method as follows; Let

Si = {S1, S2, ...Sm} be the set of alternatives , Tj = {T1, T2, ...Tn} be the set of criteria and

{[Ãij ] = ⟨(a1ij , b1ij , c1ij , d1ij ;ωij), (a2ij , b2ij , c2ij , d2ij ; ρij), (a3ij , b3ij , c3ij , d3ij ; δij)⟩ be the

GPSVN-numbers.

Step 1: Construct the decision-making matrix, G=[Ãij ]m∗n using GPSVNN.

Step 2: Compute the normalised decision-making matrix, N = [ñij ]m∗n of G, for

[ñij ]m∗n =
〈(a1ij

d1
+ ,

b1ij
d1

+ ,
c1ij
d1

+ ,
d1ij
d1

+ ;ωij

)
,
(a2ij
d2

+ ,
b2ij
d2

+ ,
c2ij
d2

+ ,
d2ij
d2

+ ; ρij
)
,
(a3ij
d3

+ ,
b3ij
d3

+ ,
c3ij
d3

+ ,
d3ij
d3

+ ; δij
)〉

,

where d+ = max{dij}.

Step 3: Compute the T = [tij ]m∗n of N,where [tij ]m∗n = wi ∗ r̃ij ,(should satisfy the normalized condi-

tion , wi = [0, 1],
∑∞

i=1wi = 1).

Step 4: Compute the comprehensive values C̃i as, C̃i =
∑∞

j=1[tij ].

Step 5: Determine the increasing order of C̃i.

Step 6: Rank the alternatives si according to the Ci and select the best and worst alternatives.
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Application of GPSVNN in Multi-Criteria Decision Making:

Since 2003, the Life Satisfaction Survey (LSS) has been performed by the Turkish Statistics Insti-

tute (TUIK). LSS is essential to gauge how happy people feel in general, how they regard other people,

how satisfied they are with their primary living conditions, and how comfortable they are with public

services. Evaluation of the surveys using statistical techniques has been the primary focus of studies

to ascertain the quality of municipal service in Turkey. They used the image fuzzy vikor approach to

evaluate it in that regard. In this case, GPSVNN was employed. Additionally, the twenty choices’

weight vector may be expressed as follows:

w = (0.03, 0.08, 0.04, 0.02, 0.06, 0.05, 0.01, 0.07, 0.09, 0.04, 0.06, 0.07, 0.05, 0.04, 0.01, 0.02, 0.03, 0.1, 0.08, 0.05)T

The below numbers are choosed randomly in between the interval [0,10], which are GPSVN-

numbers for the twenty municipal service alternatives (S1, S2, ..., S20) with the four criteria as

(T1, T2, T3, T4) . To find the best and worst alternatives in those municipal services, to improve the

society and to award which have given it’s best service.

TABLE 1. Alternative Sets.

Si Service Alternative Si Service Alternative

S1 Garbage and environmental cleanliness S2 Drainage
S3 Drinking water S4 Public transport
S5 Municipal police S6 Road and pavement construction
S7 Parks and gardens S8 Minimization of noise and air pollution
S9 Health, fitness center facilities S10 Zoning and city planning
S11 Arrangements for the disabled S12 Social aids
S13 Cultural activities S14 Public education centers
S15 Street and road lighting S16 Cleanliness
S17 Fire-fighting S18 Graveyard
S19 Address information systems S20 Control of food producing facilities
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TABLE 2. Decision-Matrix using GPSVNN

G 2014 2015 2016 2017
S1 <(1.8,3.0, 4.2,7.1;0.4), <(1.5,3.6,4.2,7.3;0.5), <(3.5,4.3,6.0,7.4;0.8), <(0.1,0.9,1.7,7.3;0.5),

(2.6,2.9,5.2,6.7;0.7), (1.4,3.1,4.4,5.6;0.8), (0.1,0.9,3.3,5.1;0.6), (0.6,2.5,3.9,4.3;0.2),
(4.6,5.5,6.9,7.2;0.2)> (0.7,3.2,4.7,8.9;0.3)> (1.8,3.0,4.2,5.7;0.3)> (5.4,6.9,8.5,9.7;0.7)>

S2 <(1.8,2.5,2.9,6.6;0.6), <(4.5,6.7,8.3,9.1;0.7), <(1.5,3.6,5.8,8.1;0.5), <(5.1,6.6,8.4,9.0;0.5),
(1.0,1.9,2.6,3.1;0.2), (0.9,1,1.5,2.7;0.5), (6.2,7.7, 9.1,10;0.2), (1.7,2.9,4.7,6.6;0.8),

(1.9,3.3,5.0,8.1;0.6)> (0.6,1.2,1.8,3.1;0.4)> (0.2,0.4,1.1,1.8;0.7)> (1.1,1.2,2.3,5.5;0.3)>
S3 <(2.0,3.9,7.0,8.8;0.3), <(2.3,2.7,3.4,5.1;0.8), <(3.7, 5.0,6.2,7.5;0.4), <(3.0,4.5,6.9,7.5;0.2),

(0.7,3.6,4.3,9.0;0.5), (1.0,3.6,6.2,7.2;0.6), (0.2,1.7,3.0,3.1;0.7), (3.1,6.3,7.3,9.5;0.7),
(5.5,6.6,7.7,8.8;0.2)> (2.0,3.9,4.4,5.7;0.3)> (0.9,1.5,3.4,4.7;0.5)> (0.1,0.3,1.1,7.5;0.6)>

S4 <(0.9,1.2,2.1,5.9;0.7), <(0.1,0.7,1.1,1.4;0.3), <(6.3,7.5,8.0,9.9;0.3), <(6.2,6.9,7.5,9.9;0.7),
(1.8,3.0,4.2,7.1;0.2), (5.3,7.3,8.7,10;0.1), (0.2,0.3,0.4,0.5;0.7), (1.8,3.0,4.2,5.1;0.4),

(0.6,2.5,2.9,5.9;0.3)> (4.4,4.5,4.7,4.9;0.3)> (0.1,0.2,0.3,0.4;0.5)> (0.2,0.7,8.1 10;0.3)>
S5 <(1.1,1.9,2.6,5.4;0.6), <(0.5,1.8,3.9,5.5;0.7), <(0.8,1.1,2.2,2.6;0.6), <(2.9,3.7,5.9,8.1;0.3),

(5.4,5.9,6.6,7.1;0.2), (1.1,2.9,5.2,7.7;0.2), (5.4,6.2,7.9,8.3;0.9), (0.3,1.1,3.4,6.9;0.4),
(3.1,6.7,7.1,7.9;0.2)> (5.1,6.7,7.1,7.9;0.3)> (4.6,5.5,6.9,7.2;0.8)> (1.1,2.0,2.8,3.0;0.2)>

S6 <(0.5,1.0,2.9,5.6;0.4), <(0.7,1.2,2.7,5.6;0.4), <(0.3,1.5,4.3,7.3;0.4), <(0.4,1.2,3.0,5.4;0.6),
(0.2,0.5,0.7,2.3;0.1), (2.3,2.7,3.4,5.1;0.3), (4.7,6.9,7.3,8.9;0.1), (0.4,1.8,4.7,5.7;0.4),

(1.2,4.3,5.0,6.7;0.3)> (3.4,5.2,6.2,8.7;0.5)> (3.4,5.2,6.6,7.7;0.3)> (2.3,5.6,8.5,9.8;0.3)>
S7 <(0.9,1.0,2.7,5.4;0.5), <(4.7,6.9,7.3,8.5;0.7), <(2.4,3.5,5.8,6.3;0.3), <(0.9,1.2,2.1,3.9;0.5),

(2.0,3.9,7.0,8.8;0.2), (0.6,2.5,2.9,3.3;0.8), (4.4,5.2,6.7,7.8;0.6), (2.7,5.7,6.2,6.9;0.2),
(1.8,3.0,4.2,7.1;0.4)> (0.2,,0.4,1.8,2.6;0.9)> (1.5,3.6,4.8,6.1;0.5)> (0.6,1.2,2.8,5.4;0.7)>

S8 <(0.6,2.2,2.6,4.2;0.6), <(1.2,3.0,4.6,5.9;0.5), <(5.7,6.3,7.1,9.5;0.2), <(4.1,7.3,8.8,9.5;0.3),
(0.2,1.2,2.0,5.4;0.3), (2.7,5.2,6.7,7.9;0.3), (0.6,1.4,1.8,2.3;0.4), (0.5,1.1,2.6,3.5;0.5),

(0.4,1.7,3.3,9.0;0.5)> (0.7,3.9,4.3,6.2;0.2)> (2.6,3.9,4.5,5.6;0.5)> (5.5,7.7,8.3,9.9;0.2)>
S9 <(1.7,2.8,4.5,8.5;0.5), <(1.1,1.6,2.7,4.6;0.6), <(1.0,1.5,2.4,3.1;0.2), <(7.4,8.5,9.6,9.9;0.6),

(0.4,1.2,3.0,5.4;0.2), (3.4,6.9,7.3,9.3;0.9), (4.5,6.7,8.3,9.4;0.6), (0.9,1.0,1.5,2.7;0.2),
(1.4,3.1,4.4,7.6;0.7)> (4.1,6.1,7.3,8.1;0.8)> (1.4,3.1,4.4,5.9;0.2)> (0.1,0.5,0.7,2.3;0.3)>

S10 <(1.1,3.6,3.9,8.0;0.7), <(7.6,8.1,9.0,9.7;0.2), <(2.4,3.5,4.3,6.0;0.5), <(0.2,3.1,7.1,9.2;0.8),
(1.8,3.9,5.7,9.0;0.4), (0.9,1.5,3.4,4.3;0.4), (3.4,5.5,7.8,9.0;0.2), (1.5,3.7,3.8,4.2;0.6),

(4.4,6.9,8.5,9.7;0.6)> (0.2,0.5,0.7,0.8;0.4)> (1.2,1.8,2.2,2.3;0.7)> (1.0,1.9,2.6,3.1;0.3)>
S11 <(2.0,2.7,5.4,9.4;0.8), <(6.2,6.9,7.8,9.1;0.4), <(5.1,6.6,8.3,9.3;0.1), <(1.2,3.0,4.6,5.9;0.4),

(1.1,1.9,2.6,5.4;0.5), (2.8,3.0,4.2,5.3;0.7), (1.5,1.5,3.5,6.3;0.3), (0.8,4.4,6.2,8.1;0.5),
(0.7,3.9,4.3,9.0;0.4)> (0.4,0.9,1.7,4.4;0.3)> (2.0,3.9,4.4,5.7;0.6)> (1.3,3.9,7.4,8.9;0.4)>

S12 <(0.5,1.6,2.6,8.5;0.8), <(2.3,4.4,5.6,6.7;0.5), <(0.9,1.3,2.2,5.6;0.4), <(1.1,1.3,2.2,5.4;0.2),
(1.8,2.5,2.9,6.6;0.1), (2.0,3.4,5.7,8.4;0.2), (3.1,6.3,7.3,9.5;0.1), (2.6,3.9,4.5,5.6;0.4),

(0.9,5.5,7.7,8.1;0.2)> (0.2,0.4,1.1,1.8;0.7)> (1.4,5.2,6.2,6.9;0.3)> (5.9,6.7,7.7,8.8;0.5)>
S13 <(1.0,4.2,5.7,10;0.7), <(3.0,4.1,5.5,8.3;0.3), <(0.1,0.2,2.2,5.3;0.8), <(0.8,1.1,2.2,2.6;0.9),

(5.3,7.3,8.7,9.1;0.2), (1.8,3.0,4.2,5.1;0.5), (5.9,6.7,7.9,8.8;0.5), (2.8,3.1,5.3,5.6;0.1),
(1.1,3.6,3.9,8.0;0.6)> (2.3,2.7,3.4,5.1;0.2)> (0.6,1.1,2.3,2.7;0.4)> (3.4,5.5,7.8,9.0;0.2)>

S14 <(2.7,2.9,3.3,5.1;0.6), <(0.8,1.8,3.2,4.5;0.8), <(0.8,1.8,2.7,3.5;0.1), <(0.9,1.8,2.8,5.5;0.5),
(1.2,4.3,5.0,7.1;0.2), (5.4,5.9,6.6,7.1;0.5), (2.3,7.8,8.3,8.9;0.2), (0.8,1.0,2.7,5.4;0.2),

(4.4,6.9,8.5,9.7;0.6)> (5.3,7.3,8.7,9.1;0.4)> (3.1,3.6,5.0,6.2;0.2)> (0.9,1.0,2.8,5.3;0.2)>
S15 <(3.6,5.0,6.7,7.1;0.7), <(1.4,3.7,5.6,7.3;0.7), <(3.0,4.3,4.9,5.7;0.7), <(1.4,3.3,4.7,8.2;0.3),

(0.5,1.6,2.6,3.5;0.2), (0.9,1.0,2.7,5.4;0.3), (0.3,1.1,3.4,6.9;0.2), (5.3,6.2,7.7,9.9;0.3),
(0.9,1.2,2.1,3.9;0.8)> (1.8,2.5,4.3,5.1;0.6)> (2.8,3.0,4.2,5.3;0.6)> (3.1,3.6,5.0,6.2;0.4)>

S16 <(2.8,4.8,5.9,9.4;0.3), <(0.3,1.2,1.5,2.7;0.5), <(1.4,2.9,4.3,4.8;0.6), <(4.6,5.7,9.5,9.7;0.8),
(1.9,2.7,3.9,5.6;0.4), (4.4,6.9,8.5,9.0;0.3), (0.3,1 1.4,7.4;0.2), (1.2,1.8,2.2,2.3;0.5),

(0.4,1.2,3.0,5.4;0.5)> (3.6,3.9,5.5,6.9;0.2)> (5.3,7.3,8.5,9.9;0.5)> (0.3,2.0,3.1,3.3;0.5)>
S17 <(3.7,4.6,7.3,9.4;0.2), <(0.4,1.2,2.9,3.3;0.8), <(0.5,0.6,1.8,7.1;0.7), <(0.5,0.6,1.7,7.0;0.5),

(0.5,1.0,2.9,3.6;0.7), (2.0,3.4,5.5,7.1;0.5), (1.3,1.6,2.3,4.8;0.4), (0.4,0.7,2.0,6.9;0.1),
(0.7,2.2,3.6,4.3;0.8)> (7.6,8.1,9.0,9.7;0.4)> (5.6,5.9,6.1,7.7;0.5)> (0.5,0.7,1.8,7.0;0.4)>

S18 <(0.6,1.4,1.8,3.7;0.5), <(0.6,2.7,4.5,7.4;0.1), <(5.6,5.9,6.0,6.1;0.5), <(2.4,3.5,4.8,5.0;0.4),
(5.4,5.9,6.6,7.1;0.3), (1.2,4.3,5.0,6.7;0.2), (0.3,1.4,5.0,7.8;0.2), (0.6,1.4,1.8,2.3;0.3),

(1.0,1.9,2.6,3.1;0.3)> (1.7,2.8,4.5,7.3;0.2)> (3.1,4.9,5.7,7.3;0.7)> (3.1,3.6,5.0,6.2;0.1)>
S19 <(1.2,3.7,7.3,8.0;0.4), <(1.0,3.9,4.2,5.3;0.7), <(0.2,1.3,1.7,3.6;0.6), <(2.3,7.8,8.3,8.9;0.5),

(0.2,0.4,1.1,1.8;0.2), (2.7,4.6,7.8,9.0;0.4), (0.2,0.5,0.7,2.3;0.5), (0.8,1.8,7.3,8.5;0.1),
(1.2,3.1,5.5,5.9;0.7)> (3.4,4.2,5.7,7.3;0.8)> (1.2,3.6,5.5,6.9;0.7)> (0.6,1.1,2.3,2.7;0.9)>

S20 <(2.9,3.5,3.9,4.7;0.8), <(4.2,5.3,6.7,7.1;0.8), <(1.5,3.5,4.2,8.0;0.6), <(1.0,1.5,3.6,3.9;0.1),
(1.9,3.0,5.4,9.2;0.6), (1.8,3.9,4.7,5.0;0.1), (1.5,2.3,3.1,5.9;0.8), (1.1,1.8,3.5,3.6;0.3),

(3.5,4.3,6.1,7.7;0.7)> (0.2,0.7,1.8,2.0;0.4)> (6.3,9.0,9.4,9.5;0.3)> (1.0,1.7,3.5,3.8;0.8)>
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TABLE 3. Normalized-Matrix

N 2014 2015 2016 2017
S1 <(0.18,0.30,0.42,0.71;0.4), <(0.15,0.36,0.42,0.73;0.5), <(0.35,0.43,0.60,0.74;0.8), <(0.01,0.09,0.17,0.73;0.5),

(0.26,0.29,0.52,0.67;0.7), (0.14,0.31,0.44,0.56;0.8), (0.01,0.09,0.33,0.51;0.6), (0.06,0.25,0.39,0.43;0.2),
(0.46,0.55,0.69,0.72;0.2)> (0.07,0.32,0.47,0.89;0.3)> (0.18,0.30,0.42,0.57;0.3)> (0.54,0.69,0.85,0.97;0.7)>

S2 <(0.18,0.25,0.29,0.66;0.6), <(0.45,0.67,0.83,0.91;0.7), <(0.15,0.36,0.58,0.81;0.5), <(0.51,0.66,0.84,0.90;0.5),
(0.10,0.19,0.26,0.31;0.2), (0.09,0.10,0.15,0.27;0.5), (0.62,0.77,0.91,1.00;0.2), (0.17,0.29,0.47,0.66;0.8),

(0.19,0.33,0.50,0.81;0.6)> (0.06,0.12,0.18,0.31;0.4)> (0.02,0.04,0.11,0.18;0.7)> (0.11,0.12,0.23,0.55;0.3)>
S3 <(0.20,,0.39,0.70,0.88;0.3), <(0.23,0.27,0.34,0.51;0.8), <(0.37,0.50,0.62,0.75;0.4), <(0.30,0.45,0.69,0.75;0.2),

(0.07,0.36,0.43,0.90;0.5), (0.10,0.36,0.62,0.72;0.6), (0.02,0.17,0.30,0.31;0.7), (0.31,0.63,0.73,0.95;0.7),
(0.55,,0.66,0.77,0.88;0.2)> (0.20,0.39,0.44,0.57;0.3)> (0.09,0.15,0.34,0.47;0.5)> (0.01,0.03,0.11,0.75;0.6)>

S4 <(0.09,0.12,0.21,0.59;0.7), <(0.01,0.07,0.11,0.14;0.3), <(0.63,0.75,0.80,0.99;0.3), <(0.62,0.69,0.75,0.99;0.7),
(0.18,0.30,0.42,0.71;0.2), (0.53,0.73,0.87,1.00;0.1), (0.02,0.03,0.04,0.05;0.7), (0.18,0.30,0.42,0.51;0.4),

(0.06,0.25,0.29,0.59;0.3)> (0.44,0.45,0.47,0.49;0.3)> (0.01,0.02,0.03,0.04;0.5)> (0.02,0.07,0.81,1.00;0.3)>
S5 <(0.11,0.19,0.26,0.54;0.6), <(0.05,0.18,0.39,0.55;0.7), <(0.08,0.11,0.22,0.26;0.6), <(0.29,0.37,0.59,0.81;0.3),

(0.54,0.59,0.66,0.71;0.2), (0.11,0.29,0.52,0.77;0.2), (0.54,0.62,0.79,0.83;0.9), (0.03,0.11,0.34,0.69;0.4),
(0.31,0.67,0.71,0.79;0.2)> (0.51,0.67,0.71,0.79;0.3)> (0.46,0.55,0.69,0.72;0.8)> (0.11,0.20,0.28,0.30;0.2)>

S6 <(0.05,0.10,0.29,0.56;0.4), <(0.07,0.12,0.27,0.56;0.4), <(0.03,0.15,0.43,0.73;0.4), <(0.04,0.12,0.30,0.54;0.6),
(0.02,0.05,0.07,0.23;0.1), (0.23,0.27,0.34,0.51;0.3), (0.47,0.69,0.73,0.89;0.1), (0.04,0.18,0.47,0.57;0.4),

(0.12,0.43,0.50,0.67;0.3)> (0.34,0.52,0.62,0.87;0.5)> (0.34,0.52,0.66,0.77;0.3)> (0.23,0.56,0.85,0.98;0.3)>
S7 <(0.09,0.10,0.27,0.54;0.5), <(0.47,0.69,0.73,0.85;0.7), <(0.24,0.35,0.58,0.63;0.3), <(0.09,0.12,0.21,0.39;0.5),

(0.20,0.39,0.70,0.88;0.2), (0.06,0.25,0.29,0.33;0.8), (0.44,0.52,0.67,0.78;0.6), (0.27,0.57,0.62,0.69;0.2),
(0.18,0.30,0.42,0.71;0.4)> (0.02,0.04,0.18,0.26;0.9)> (0.15,0.36,0.48,0.61;0.5)> (0.06,0.12,0.28,0.54;0.7)>

S8 <(0.06,0.22,0.26,0.42;0.6), <(0.12,0.30,0.46,0.59;0.5), <(0.57,0.63,0.71,0.95;0.2), <(0.41,0.73,0.88,0.95;0.3),
(0.02,0.12,0.20,0.54;0.3), (0.27,0.52,0.67,0.79;0.3), (0.06,0.14,0.18,0.23;0.4), (0.05,0.11,0.26,0.35;0.5),

(0.04,0.17,0.33,0.90;0.5)> (0.07,0.39,0.43,0.62;0.2)> (0.26,0.39,0.45,0.56;0.5)> (0.55,0.77,0.83,0.99;0.2)>
S9 <(0.17,0.28,0.45,0.85;0.5), <(0.11,0.16,0.27,0.46;0.6), <(0.10,0.15,0.24,0.31;0.2), <(0.74,0.85,0.96,0.99;0.6),

(0.04,0.12,0.30,0.54;0.2), (0.34,0.69,0.73,0.93;0.9), (0.45,0.67,0.83,0.94;0.6), (0.09,0.10,0.15,0.27;0.2),
(0.14,0.31,0.44,0.76;0.7)> (0.41,0.61,0.73,0.81;0.8)> (0.14,0.31,0.44,0.59;0.2)> (0.01,0.05,0.07,0.23;0.3)>

S10 <(0.11,0.36,0.39,0.80;0.7), <(0.76,0.81,0.90,0.97;0.2), <(0.24,0.35,0.43,0.60;0.5), <(0.02,0.31,0.71,0.92;0.8),
(0.18,0.39,0.57,0.90;0.4), (0.09,0.15,0.34,0.43;0.4), (0.34,0.55,0.78,0.90;0.2), (0.15,0.37,0.38,0.42;0.6),

(0.44,0.69,0.85,0.97;0.6)> (0.02,0.05,0.07,0.08;0.4)> (0.12,0.18,0.22,0.23;0.7)> (0.10,0.19,0.26,0.31;0.3)>
S11 <(0.20,0.27,0.54,0.94;0.8), <(0.62,0.69,0.78,0.91;0.4), <(0.51,0.66,0.83,0.93;0.1), <(0.12,0.30,0.46,0.59;0.4),

(0.11,0.19,0.26,0.54;0.5), (0.28,0.30,0.42,0.53;0.7), (0.15,0.15,0.35,0.63;0.3), (0.08,0.44,0.62,0.81;0.5),
(0.07,0.39,0.43,0.90;0.4)> (0.04,0.09,0.17,0.44;0.3)> (0.20,0.39,0.44,0.57;0.6)> (0.13,0.39,0.74,0.89;0.4)>

S12 <(0.05,0.16,0.26,0.85;0.8), <(0.23,0.44,0.56,0.67;0.5), <(0.09,0.13,0.22,0.56;0.4), <(0.11,0.13,0.22,0.54;0.2),
(0.18,0.25,0.29,0.66;0.1), (0.20,0.34,0.57,0.84;0.2), (0.31,0.63,0.73,0.95;0.1), (0.26,0.39,0.45,0.56;0.4),

(0.09,0.55,0.77,0.81;0.2)> (0.02,0.04,0.11,0.18;0.7)> (0.14,0.52,0.62,0.69;0.3)> (0.59,0.67,0.77,0.88;0.5)>
S13 <(0.10,0.42,0.57,1.00;0.7), <(0.30,0.41,0.55,0.83;0.3), <(0.01,0.02,0.22,0.53;0.8), <(0.08,0.11,0.22,0.26;0.9),

(0.53,0.73,0.87,0.91;0.2), (0.18,0.30,0.42,0.51;0.5), (0.59,0.67,0.79,0.88;0.5), (0.28,0.31,0.53,0.56;0.1),
(0.11,0.36,0.39,0.80;0.6)> (0.23,0.27,0.34,0.51;0.2)> (0.06,0.11,0.23,0.27;0.4)> (0.34,0.55,0.78,0.90;0.2)>

S14 <(0.27,0.29,0.33,0.51;0.6), <(0.08,0.18,0.32,0.45;0.8), <(0.08,0.18,0.27,0.35;0.1), <(0.09,0.18,0.28,0.55;0.5),
(0.12,0.43,0.50,0.71;0.2), (0.54,0.59,0.66,0.71;0.5), (0.23,0.78,0.83,0.89;0.2), (0.08,0.10,0.27,0.54;0.2),

(0.44,0.69,0.85,0.97;0.6)> (0.53,0.73,0.87,0.91;0.4)> (0.31,0.36,0.50 0.62;0.2)> (0.09,0.10,0.28,0.53;0.2)>
S15 <(0.36,0.50,0.67,0.71;0.7), <(0.14,0.37,0.56,0.73;0.7), <(0.30,0.43,0.49,0.57;0.7), <(0.14,0.33,0.47,0.82;0.3),

(0.05,0.16,0.26,0.35;0.2), (0.09,0.10,0.27,0.54;0.3), (0.03,0.11,0.34,0.69;0.2), (0.53,0.62,0.77,0.99;0.3),
(0.09,0.12,0.21,0.39;0.8)> (0.18,0.25,0.43,0.51;0.6)> (0.28,0.30,0.42,0.53;0.6)> (0.31,0.36,0.50,0.62;0.4)>

S16 <(0.28,0.48,0.59,0.94;0.3), <(0.03,0.12,0.15,0.27;0.5), <(0.14,0.29,0.43,0.48;0.6), <(0.46,0.57,0.95,0.97;0.8),
(0.19,0.27,0.39,0.56;0.4), (0.44,0.69,0.85,0.90;0.3), (0.03,0.10,0.14,0.74;0.2), (0.12,0.18,0.22,0.23;0.5),

(0.04,0.12,0.30,0.54;0.5)> (0.36,0.39,0.55,0.69;0.2)> (0.53,0.73,0.85,0.99;0.5)> (0.03,0.20,0.31,0.33;0.5)>
S17 <(0.37,0.46,0.73,0.94;0.2), <(0.04,0.12,0.29,0.33;0.8), <(0.05,0.06,0.18,0.71;0.7), <(0.05,0.06,0.17,0.70;0.5),

(0.05,0.10,0.29,0.36;0.7), (0.20,0.34,0.55,0.71;0.5), (0.13,0.16,0.23,0.48;0.4), (0.04,0.07,0.20,0.69;0.1),
(0.07,0.22,0.36,0.43;0.8)> (0.76,0.81,0.90,0.97;0.4)> (0.56,0.59,0.61,0.77;0.5)> (0.05,0.07,0.18,0.70;0.4)>

S18 <(0.06,0.14,0.18,0.37;0.5), <(0.06,0.27,0.45,0.74;0.1), <(0.56,0.59,0.60,0.61;0.5), <(0.24,0.35,0.48,0.50;0.4),
(0.54,0.59,0.66,0.71;0.3), (0.12,0.43,0.50,0.67;0.2), (0.03,0.14,0.50,0.78;0.2), (0.06,0.14,0.18,0.23;0.3),

(0.10,0.19,0.26,0.31;0.3)> (0.17,0.28,0.45,0.73;0.2)> (0.31,0.49,0.57,0.73;0.7)> (0.31,0.36,0.50,0.62;0.1)>
S19 <(0.12,0.37,0.73,0.80;0.4), <(0.10,0.39,0.42,0.53;0.7), <(0.02,0.13,0.17,0.36;0.6), <(0.23,0.78,0.83,0.89;0.5),

(0.02,0.04,0.11,0.18;0.2), (0.27,0.46,0.78,0.90;0.4), (0.02,0.05,0.07,0.23;0.5), (0.08,0.18,0.73,0.85;0.1),
(0.12,0.31,0.55,0.59;0.7)> (0.34,0.42,0.57,0.73;0.8)> (0.12,0.36,0.55,0.69;0.7)> (0.06,0.11,0.23,0.27;0.9)>

S20 <(0.29,0.35,0.39,0.47;0.8), <(0.42,0.53,0.67,0.71;0.8), <(0.15,0.35,0.42,0.80;0.6), <(0.10,0.15,0.36,0.39;0.1),
(0.19,0.30,0.54,0.92;0.6), (0.18,0.39,0.47,0.50;0.1), (0.15,0.23,0.31,0.59;0.8), (0.11,0.18,0.35,0.36;0.3),

(0.35,0.43,0.61,0.77;0.7)> (0.02,0.07,0.18,0.20;0.4)> (0.63,0.90,0.94,0.95;0.3)> (0.10,0.17,0.35,0.38;0.8)>
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TABLE 4. T = wi ∗ rij

T 2014 2015 2016 2017
S1 <(0.0054,0.0090,0.0126,0.0213;0.4), <(0.0045,0.0108,0.0126,0.0219;0.5), <(0.0105,0.0129,0.0180,0.0222;0.8), <(0.0003,0.0027,0.0051,0.0219;0.5),

(0.0078,0.0087,0.0156,0.0201;0.7), (0.0042,0.0093,0.0132,0.0168;0.8), (0.0003,0.0027,0.0099,0.0153;0.6), (0.0018,0.0075,0.0117,0.0129;0.2),
(0.0138,0.0165,0.0207,0.0216;0.2)> (0.0021,0.0096,0.0141,0.0267;0.3)> (0.0054,0.0090,0.0126,0.0171;0.3)> (0.0162,0.0207,0.0255,0.0291;0.7)>

S2 <(0.0144,0.0200,0.0232, 0.0528;0.6), <(0.0360,0.0536,0.0664,0.0728;0.7), <(0.0120,0.0288,0.0464,0.0648;0.5), <(0.0408,0.0528,0.0672,0.0720;0.5),
(0.0080,0.0152,0.0208,0.0248;0.2), (0.0072,0.0080,0.0120,0.0216;0.5), (0.0496,0.0616,0.0728,0.0800;0.2), (0.0136,0.0232,0.0376,0.0528;0.8),

(0.0152,0.0264,0.0400,0.0648;0.6)> (0.0048,0.0096,0.0144,0.0248;0.4)> (0.0016,0.0032,0.0088,0.0144;0.7)> (0.0088,0.0096,0.0184,0.0440;0.3)>
S3 <(0.0080,0.0156,0.0280,0.0352;0.3), <(0.0092,0.0108,0.0136,0.0204;0.8), <(0.0148,0.0200,0.0248,0.0300;0.4), <(0.0120,0.0180,0.0276,0.0300;0.2),

(0.0028,0.0144,0.0172,0.0360;0.5), (0.0040,0.0144,0.0248,0.0288;0.6), (0.0008,0.0068,0.0120,0.0124;0.7), (0.0124,0.0252,0.0292,0.0380;0.7),
(0.0220,0.0264,0.0308,0.0352;0.2)> (0.0080,0.0156,0.0176,0.0228;0.3)> (0.0036,0.0060,0.0136,0.0188;0.5)> (0.0004,0.0012,0.0044,0.0300;0.6)>

S4 <(0.0018,0.0024,0.0042,0.0118;0.7), <(0.0002,0.0014,0.0022,0.0028;0.3), <(0.0126,0.0150,0.0160,0.0198;0.3), <(0.0124,0.0138,0.0150,0.0198;0.7),
(0.0036,0.0060,0.0084,0.0142;0.2), (0.0106,0.0146,0.0174,0.0200;0.1), (0.0004,0.0006,0.0008,0.001;0.7), (0.0036,0.0060,0.0084,0.0102;0.4),

(0.0012,0.0050,0.0058,0.0118;0.3)> (0.0088,0.0090,0.0094,0.0098;0.3)> (0.0002, 0.0004, 0.0006, 0.0008;0.5)> (0.0004,0.0014,0.0162,0.0200;0.3)>
S5 <(0.0066,0.0114,0.0156,0.0324;0.6), <(0.0030,0.0108,0.0234,0.0330;0.7), <(0.0048,0.0066,0.0132,0.0156;0.6), <(0.0174,0.0222,0.0354,0.0486;0.3),

(0.0324,0.0354,0.0396,0.0426;0.2), (0.0066,0.0174,0.0312,0.0462;0.2), (0.0324,0.0372,0.0474,0.0498;0.9), (0.0018,0.0066,0.0204,0.0414;0.4),
(0.0186,0.0402,0.0426,0.0474;0.2)> (0.0306,0.0402,0.0426,0.0474;0.3)> (0.0276,0.0330,0.0414,0.0432;0.8)> (0.0066,0.0120,0.0168,0.0180;0.2)>

S6 <(0.0025,0.0050,0.0145,0.0280;0.4), <(0.0035,0.0060,0.0135,0.0280;0.4), <(0.0015,0.0075,0.0215,0.0365;0.4), <(0.0020,0.0060,0.0150,0.0270;0.6),
(0.0010,0.0025,0.0035,0.0115;0.1), (0.0115,0.0135,0.0170,0.0255;0.3), (0.0235,0.0345,0.0365,0.0445;0.1), (0.0020,0.0090,0.0235,0.0285;0.4),

(0.0060,0.0215,0.0250,0.0335;0.3)> (0.0170,0.0260,0.0310,0.0435;0.5)> (0.0170,0.0260,0.0330,0.0385;0.3)> (0.0115,0.0280,0.0425,0.0490;0.3)>
S7 <(0.0009,0.0010,0.0027,0.0054;0.5), <(0.0047,0.0069,0.0073,0.0085;0.7), <(0.0024,0.0035,0.0058,0.0063;0.3), <(0.0009,0.0012,0.0021,0.0039;0.5),

(0.0020,0.0039,0.0070,0.0088;0.2), (0.0006,0.0025,0.0029,0.0033;0.8), (0.0044,0.0052,0.0067,0.0078;0.6), (0.0027,0.0057,0.0062,0.0069;0.2),
(0.0018,0.0030,0.0042,0.0071;0.4)> (0.0002,0.0004,0.0018,0.0026;0.9)> (0.0015,0.0036,0.0048,0.0061;0.5)> (0.0006,0.0012,0.0028,0.0054;0.7)>

S8 <(0.0042,0.0154,0.0182,0.0294;0.6), <(0.0084,0.0210,0.0322,0.0413;0.5), <(0.0399,0.0441,0.0497,0.0665;0.2), <(0.0287,0.0511,0.0616,0.0665;0.3),
(0.0014,0.0084,0.0140,0.0378;0.3), (0.0189,0.0364,0.0469,0.0553;0.3), (0.0042,0.0098,0.0126,0.0161;0.4), (0.0035,0.0077,0.0182,0.0245;0.5),

(0.0028,0.0119,0.0231,0.0630;0.5)> (0.0049,0.0273,0.0301,0.0434;0.2)> (0.0182,0.0273,0.0315,0.0392;0.5)> (0.0385,0.0539,0.0581,0.0693;0.2)>
S9 <(0.0153,0.0252,0.0405,0.0765;0.5), <(0.0099,0.0144,0.0243,0.0414;0.6), <(0.0090,0.0135,0.0216,0.0279;0.2), <(0.0666,0.0765,0.0864,0.0891;0.6),

(0.0036,0.0108,0.0270,0.0486;0.2), (0.0306,0.0621,0.0657,0.0837;0.9), (0.0405,0.0603,0.0747,0.0846;0.6), (0.0081,0.0090,0.0135,0.0243;0.2),
(0.0126,0.0279,0.0396,0.0684;0.7)> (0.0369,0.0549,0.0657,0.0729;0.8)> (0.0126,0.0279,0.0396,0.0531;0.2)> (0.0009,0.0045,0.0063,0.0207;0.3)>

S10 <(0.0044,0.0144,0.0156,0.0320;0.7), <(0.0304,0.0324,0.0360,0.0388;0.2), <(0.0096,0.0140,0.0172,0.0240;0.5), <(0.0008,0.0124,0.0284,0.0368;0.8),
(0.0072,0.0156,0.0228,0.0360;0.4), (0.0036,0.0060,0.0136,0.0172;0.4), (0.0136,0.0220,0.0312,0.0360;0.2), (0.0060,0.0148,0.0152,0.0168;0.6),

(0.0176,0.0276,0.0340,0.0388;0.6)> (0.0008,0.0020,0.0028,0.0032;0.4)> (0.0048,0.0072,0.0088,0.0092;0.7)> (0.0040,0.0076,0.0104,0.0124;0.3)>
S11 <(0.0120,0.0162,0.0324,0.0564;0.8), <(0.0372,0.0414,0.0468,0.0546;0.4), <(0.0306,0.0396,0.0498,0.0558;0.1), <(0.0072,0.0180,0.0276,0.0354;0.4),

(0.0066,0.0114,0.0156,0.0324;0.5), (0.0168,0.0180,0.0252,0.0318;0.7), (0.0090,0.0090,0.0210,0.0378;0.3), (0.0048,0.0264,0.0372,0.0486;0.5),
(0.0042,0.0234,0.0258,0.0540;0.4)> (0.0024,0.0054,0.0102,0.0264;0.3)> (0.0120,0.0234,0.0264,0.0342;0.6)> (0.0078,0.0234,0.0444,0.0534;0.4)>

S12 <(0.0035,0.0112,0.0182,0.0595;0.8), <(0.0161,0.0308,0.0392,0.0469;0.5), <(0.0063,0.0091,0.0154,0.0392;0.4), <(0.0077,0.0091,0.0154,0.0378;0.2),
(0.0126,0.0175,0.0203,0.0462;0.1), (0.0140,0.0238,0.0399,0.0588;0.2), (0.0217,0.0441,0.0511,0.0665;0.1), (0.0182,0.0273,0.0315,0.0392;0.4),

(0.0063,0.0385,0.0539,0.0567;0.2)> (0.0014,0.0028,0.0077,0.0126;0.7)> (0.0098,0.0364,0.0434,0.0483;0.3)> (0.0413,0.0469,0.0539,0.0616;0.5)>
S13 <(0.0050,0.0210,0.0285,0.0500;0.7), <(0.0150,0.0205,0.0275,0.0415;0.3), <(0.0005,0.0010,0.0110,0.0265;0.8), <(0.0040,0.0055,0.0110,0.0130;0.9),

(0.0265,0.0365,0.0435,0.0455;0.2), (0.0090,0.0150,0.0210,0.0255;0.5), (0.0295,0.0335,0.0395,0.0440;0.5), (0.0140,0.0155,0.0265,0.0280;0.1),
(0.0055,0.0180,0.0195,0.0400;0.6)> (0.0115,0.0135,0.0170,0.0255;0.2)> (0.0030,0.0055,0.0115,0.0135;0.4)> (0.0170,0.0275,0.0390,0.0450;0.2)>

S14 <(0.0108,0.0116,0.0132,0.0204;0.6), <(0.0032,0.0072,0.0128,0.0180;0.8), <(0.0032,0.0072,0.0108,0.0140;0.1), <(0.0036,0.0072,0.0112,0.0220;0.5),
(0.0048,0.0172,0.0200,0.0284;0.2), (0.0216,0.0236,0.0264,0.0284;0.5), (0.0092,0.0312,0.0332,0.0356;0.2), (0.0032,0.0040,0.0108,0.0216;0.2),

(0.0176,0.0276,0.0340,0.0388;0.6)> (0.0212,0.0292,0.0348,0.0364;0.4)> (0.0124,0.0144,0.0200,0.0248;0.2)> (0.0036,0.0040,0.0112,0.0212;0.2)>
S15 <(0.0036,0.0050,0.0067,0.0071;0.7), <(0.0014,0.0037,0.0056,0.0073;0.7), <(0.0030,0.0043,0.0049,0.0057;0.7), <(0.0014,0.0033,0.0047,0.0082;0.3),

(0.0005,0.0016,0.0026,0.0035;0.2), (0.0009,0.0010,0.0027,0.0054;0.3), (0.0003,0.0011,0.0034,0.0069;0.2), (0.0053,0.0062,0.0077,0.0099;0.3),
(0.0009,0.0012,0.0021,0.0039;0.8)> (0.0018,0.0025,0.0043,0.0051;0.6)> (0.0028,0.0030,0.0042,0.0053;0.6)> (0.0031,0.0036,0.0050,0.0062;0.4)>

S16 <(0.0056,0.0096,0.0118,0.0188;0.3), <(0.0006,0.0024,0.0030,0.0054;0.5), <(0.0028,0.0058,0.0086,0.0096;0.6), <(0.0092,0.0114,0.0190,0.0194;0.8),
(0.0038,0.0054,0.0078,0.0112;0.4), (0.0088,0.0138,0.0170,0.0180;0.3), (0.0006,0.0020,0.0028,0.0148;0.2), (0.0024,0.0036,0.0044,0.0046;0.5),

(0.0008,0.0024,0.0060,0.0108;0.5)> (0.0072,0.0078,0.0110,0.0138;0.2)> (0.0106,0.0146,0.0170,0.0198;0.5)> (0.0006,0.0040,0.0062,0.0066;0.5)>
S17 <(0.0111,0.0138,0.0219,0.0282;0.2), <(0.0012,0.0036,0.0087,0.0099;0.8), <(0.0015,0.0018,0.0054,0.0213;0.7), <(0.0015,0.0018,0.0051,0.0210;0.5),

(0.0015,0.0030,0.0087,0.0108;0.7), (0.0060,0.0102,0.0165,0.0213;0.5), (0.0039,0.0048,0.0069,0.0144;0.4), (0.0012,0.0021,0.0060,0.0207;0.1),
(0.0021,0.0066,0.0108,0.0129;0.8)> (0.0228,0.0243,0.0270,0.0291;0.4)> (0.0168,0.0177,0.0183,0.0231;0.5)> (0.0015,0.0021,0.0054,0.0210;0.4)>

S18 <(0.0060,0.0140,0.0180,0.0370;0.5), <(0.0060,0.0270,0.0450,0.0740;0.1), <(0.0560,0.0590,0.0600,0.0610;0.5), <(0.0240,0.0350,0.0480,0.0500;0.4),
(0.0540,0.0590,0.0660,0.0710;0.3), (0.0120,0.0430,0.0500,0.0670;0.2), (0.0030,0.0140,0.0500,0.0780;0.2), (0.0060,0.0140,0.0180,0.0230;0.3),

(0.0100,0.0190,0.0260,0.0310;0.3)> (0.0170,0.0280,0.0450,0.07300.2)> (0.0310,0.0490,0.0570,0.0730;0.7)> (0.0310,0.0360,0.0500,0.0620;0.1)>
S19 <(0.0096,0.0296,0.0584,0.0640;0.4), <(0.0080,0.0312,0.0336,0.0424;0.7), <(0.0016,0.0104,0.0136,0.0288;0.6), <(0.0184,0.0624,0.0664,0.0712;0.5),

(0.0016,0.0032,0.0088,0.0144;0.2), (0.0216,0.0368,0.0624,0.0720;0.4), (0.0016,0.0040,0.0056,0.0184;0.5), (0.0064,0.0144,0.0584,0.0680;0.1),
(0.0096,0.0248,0.0440,0.0472;0.7)> (0.0272,0.0336,0.0456,0.0584;0.8)> (0.0096,0.0288,0.0440,0.0552;0.7)> (0.0048,0.0088,0.0184,0.0216;0.9)>

S20 <(0.0145,0.0175,0.0195,0.0235;0.8), <(0.0210,0.0265,0.0335,0.0355;0.8), <(0.0075,0.0175,0.0210,0.0400;0.6), <(0.0050,0.0075,0.0180,0.0195;0.1),
(0.0095,0.0150,0.0270,0.0460;0.6), (0.0090,0.0195,0.0235,0.0250;0.1), (0.0075,0.0115,0.0155,0.0295;0.8), (0.0055,0.0090,0.0175,0.0180;0.3),

(0.0175,0.0215,0.0305,0.0385;0.7)> (0.0010,0.0035,0.0090,0.0100;0.4)> (0.0315,0.0450,0.0470,0.0475;0.3)> (0.0050,0.0085,0.0175,0.0190;0.8)>
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TABLE 5. Comprehensive Values

C Comprehensive Values
C1 <(0.0207,0.0354,0.0483,0.0873;0.4),(0.0141,0.0282,0.0504,0.0651;0.8),(0.0375,0.0558,0.0729,0.0945;0.7)>
C2 <(0.1032,0.1552,0.2032,0.2624;0.5),(0.0784,0.1080,0.1432,0.1792;0.8),(0.0304,0.0488,0.0816,0.1480;0.7)>
C3 <(0.0440,0.0644,0.0940,0.1156;0.2),(0.0200,0.0608,0.0832,0.1152;0.7),(0.0340,0.0492,0.0664,0.1068;0.6)>
C4 <(0.0270,0.0326,0.0374,0.0542;0.3),(0.0182,0.0272,0.0350,0.0454;0.7),(0.0106,0.0158,0.0320,0.0424;0.5)>
C5 <(0.0318,0.0510,0.0876,0.1296;0.3),(0.0732,0.0966,0.1386,0.1800;0.9),(0.0834,0.1254,0.1434,0.1560;0.8)>
C6 <(0.0095,0.0245,0.0645,0.1195;0.4),(0.0380,0.0595,0.0805,0.1100;0.4),(0.0515,0.1015,0.1315,0.1645;0.5)>
C7 <(0.0089,0.0126,0.0179,0.0241;0.3),(0.0097,0.0173,0.0228,0.0268;0.8),(0.0041,0.0082,0.0136,0.0212;0.9)>
C8 <(0.0812, 0.1316,0.1617,0.2037;0.2),(0.0280,0.0623,0.0917,0.1337;0.5),(0.0644,0.1204,0.1428,0.2149;0.4)>
C9 <(0.1008,0.1296,0.1728,0.2349;0.2),(0.0828,0.1422,0.1809,0.2412;0.9),(0.0630,0.1152,0.1512,0.2151;0.8)>
C10 <(0.0452,0.0732,0.0972,0.1316;0.2),(0.0304,0.0584,0.0828,0.1060;0.6),(0.0272,0.0444,0.0560,0.0636;0.7)>
C11 <(0.0870,0.1152,0.1566,0.2022;0.1),(0.0372,0.0648,0.0990,0.1506;0.7),(0.0264,0.0756,0.1068,0.1680;0.6)>
C12 <(0.0336,0.0602,0.0882,0.1834;0.2),(0.0665,0.1127,0.1428,0.2107;0.4),(0.0588,0.1246,0.1589,0.1792;0.7)>
C13 <(0.0245,0.0480,0.0780,0.1310;0.3),(0.0790,0.1005,0.1305,0.1430;0.5),(0.0370,0.0645,0.0870,0.1240;0.6)>
C14 <(0.0208,0.0332,0.0480,0.0744;0.1),(0.0388,0.0760,0.0904,0.1140;0.5),(0.0548,0.0752,0.1000,0.1212;0.6)>
C15 <(0.0094,0.0163,0.0219,0.0283;0.3),(0.0070,0.0099,0.0164,0.0257;0.3),(0.0086,0.0103,0.0156,0.0205;0.8)>
C16 <(0.0182,0.0292,0.0424,0.0532;0.3),(0.0156,0.0248,0.0320,0.0486;0.5),(0.0192,0.0288,0.0402,0.0510;0.5)>
C17 <(0.0153,0.0210,0.0411,0.0804;0.2),(0.0126,0.0201,0.0381,0.0672;0.7),(0.0432,0.0507,0.0615,0.0861;0.8)>
C19 <(0.0376,0.1336,0.1720,0.2064;0.4),(0.0312,0.0584,0.1352,0.1728;0.5),(0.0512,0.0960,0.1520,0.1824;0.9)>
C20 <(0.0480,0.0690,0.0920,0.1185;0.1),(0.0315,0.0550,0.0835,0.1185;0.8),(0.0550,0.0785,0.1040,0.1150;0.8)>

TABLE 6. Values and Ambiguities of the alternatives

Values Ambiguities
V1 = 0.0074− 0.0003λ A1 = 0.0017 + .0002λ
V2 = 0.0113 + 0.0337λ A2 = 0.0032 + 0.0056λ
V3 = 0.0161− 0.0129λ A3 = 0.004− 0.0032λ
V4 = 0.0089− 0.0056λ A4 = 0.0029− 0.0025λ
V5 = 0.0065− 0.0001λ A5 = 0.0009 + 0.0013λ
V6 = 0.0542− 0.0464λ A6 = 0.0114− 0.0071λ
V7 = 0.0009 + 0.0005λ A7 = 0.0002 + 0.0001λ
V8 = 0.0674− 0.0616λ A8 = 0.0142− 0.0132λ
V9 = 0.007− 0.0008λ A9 = 0.0015− 0.0003λ
V10 = 0.0156− 0.0122λ A10 = 0.0035− 0.0028λ
V11 = 0.0224− 0.0210λ A11 = 0.0066− 0.0063λ
V12 = 0.0591− 0.0559λ A12 = 0.0118− 0.0108λ
V13 = 0.0410− 0.0351λ A13 = 0.0074− 0.0054λ
V14 = 0.0345− 0.0341λ A14 = 0.0059− 0.0058λ
V15 = 0.0073− 0.0056λ A15 = 0.0023− 0.00196λ
V16 = 0.0160− 0.0128λ A16 = 0.0034− 0.0026λ
V17 = 0.0051− 0.0037λ A17 = 0.0014− 0.00086λ
V18 = 0.0910− 0.0895λ A18 = 0.0216− 0.0213λ
V19 = 0.0257− 0.0022λ A19 = 0.0116− 0.0064λ
V20 = 0.0064− 0.0056λ A20 = 0.0015− 0.0013λ
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FIGURE 2. Value

FIGURE 3. Value-
λ ∈ (0, 0.0625)

FIGURE 4. Value-
λ ∈ (0, 0.0625)

FIGURE 5. Value-
λ ∈ (0, 0.0625)

FIGURE 6. Value-
λ ∈ (0, 0.0625)

The graphical representation of the values is shown in the figure 2 . The intersection of lines denotes

that the values of GPSVNN are same at the value λ. First we compare the values for λ ∈ [0, 0.0625],
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we split the graph by comparing values of the alternatives. Finally, we calculate the ambuiguity at the

point of intersection for λ = 0.0625. The ranking of values are given in the graphs 3 ,4, 5 and 6 . At

λ = 0.0625 we calculate the ambiguity A9 = 0.001494 and A15 = 0.002210 in which V9 and V15 are

intersecting. Hence the ranking of the alternatives for λ ∈ [0, 0.0625] are S18 > S8 > S12 > S6 >

S13 > S14 > S19 > S11 > S3 > S16 > S10 > S2 > S4 > S1 > S15 > S9 > S5 > S20 > S17 > S7.

If λ ∈ [0.6220, 0.6300], at λ = 0.6220 V12 and V19 are intersecting. Hence we calculate the ambiguity

at 0.6220 for the alternatives. ie A19 = 0.007602 and A12 = 0.0050824. Then the order of the

alternatives are S18 > S2 > S8 > S6 > S19 > S12 > S13 > S14 > S11 > S3 > S16 > S10 >

S1 > S9 > S5 > S4 > S15 > S20 > S17 > S7. If λ ∈ [0.9976, 0.9980] at λ = 0.9976 V15 and V18

and at λ = 0.9980 V4 and V12 are intersecting. Hence we calculate the ambiguity at λ=0.9976 for the

alternatives, ie A15 = 0.00037640568 and A18 = 0.0003251824 and at λ=0.9980 for the alternatives,

ie A4 = 0.000422616 and A12 = 0.0010216. Then the ranking is S2 > S19 > S6 > S1 > S5 > S9 >

S13 > S8 > S10 > S12 > S4 > S3 > S16 > S15 > S18 > S11 > S17 > S7 > S20 > S14. At

λ ∈ (0.9980, 1) the ranking is S2 > S19 > S6 > S1 > S5 > S9 > S13 > S8 > S10 > S4 > S12 >

S3 > S16 > S15 > S18 > S11 > S17 > S7 > S20 > S14. At λ = 1 we calculate the ambiguties

for the intersecting values and the ranking order is S2 > S19 > S6 > S1 > S5 > S9 > S13 > S8 >

S10 > S4 > S12 > S16 > S3 > S15 > S18 > S11 > S7 > S17 > S20 > S14. The ranking order is

related to the weight λ ∈ [0, 1].

5. Conclusion

In this research article, the concept of Generalized Parabolic Single-Valued Neutroposophic Number

(GPSVNN) has been developed. We have defined the (α, β, γ)-cut of GPSVNN. Also, the arithmetic

operators of these numbers are discussed and illustrated using graphical representation. A demonstra-

tion of the De-Neutrosophication method utilising values and ambiguities has been introduced here

for the conversion of a GPSVNN into a real number. Further, this result is applied in the ranking of

the satisfaction levels of citizens in municipal services. For this purpose, 20 municipal services in-

cluded in the Life Satisfaction Survey (LSS) that the Turkish Statistical Institution regularly applies

every year are considered as alternatives. In addition, the satisfaction of citizens was evaluated for the

period of 2014–2017. To analyse the effect of all opinion types on the decision process, the participant

responses constituting the dataset of GPSVNN and these years were considered as a set of criteria. We

have utilised the values and ambiguities to evaluate the citizens’ satisfaction levels with the municipal-

ity’s services. Finally, the best and worst alternatives were chosen by ranking the alternatives.

In the future, researchers can develop algorithms using GPSVNN in various fields like image pro-

cessing problems, pattern recognition problems, cloud computing problems, and other mathematical

modelling problems involving uncertainty and nonlinearity.
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Appendix A

In this section, we have given the MATLAB code for calculating the Normalized values, Compre-

hensive values, Values and Ambiguities for the alternatives. The matrix A1 to A4 denotes the Truth-

membership, A5-A8 represents the Indeterminacy membership and A9-A12 for Falsity membership

for the four alternatives, respectively. W1 represents the weight of each criterion of the alternatives.

OMEGA = min(ωij), RHO = max(ρij) DELTA = max(δij).

A1= i n p u t ( ’ Ma t r i x A1 ’ ) ;

A2= i n p u t ( ’ Ma t r i x A2 ’ ) ;

A3= i n p u t ( ’ Ma t r i x A3 ’ ) ;

A4= i n p u t ( ’ Ma t r i x A4 ’ ) ;

A5= i n p u t ( ’ Ma t r i x A5 ’ ) ;

A6= i n p u t ( ’ Ma t r i x A6 ’ ) ;

A7= i n p u t ( ’ Ma t r i x A7 ’ ) ;

A8= i n p u t ( ’ Ma t r i x A8 ’ ) ;

A9= i n p u t ( ’ Ma t r i x A9 ’ ) ;

A10= i n p u t ( ’ Ma t r i x A10 ’ ) ;

A11= i n p u t ( ’ Ma t r i x A11 ’ ) ;

A12= i n p u t ( ’ Ma t r i x A12 ’ ) ;

W1= i n p u t ( ’ E n t e r W1’ ) ;

OMEGA= i n p u t ( ’ E n t e r OMEGA’ ) ;

RHO= i n p u t ( ’ E n t e r RHO’ ) ;

DELTA= i n p u t ( ’ E n t e r DELTA ’ ) ;

N1=A1/ 1 0

N2=A2/ 1 0

N3=A3/ 1 0

N4=A4/ 1 0

N5=A5/ 1 0

N6=A6/ 1 0

N7=A7/ 1 0

N8=A8/ 1 0

N9=A9/ 1 0

N10=A10 / 1 0

N11=A11 / 1 0

N12=A12 / 1 0

C1=N1*W1

C2=N2*W1
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C3=N3*W1

C4=N4*W1

C5=N5*W1

C6=N6*W1

C7=N7*W1

C8=N8*W1

C9=N9*W1

C10=N10*W1

C11=N11*W1

C12=N12*W1

D1=C1+C2+C3+C4

D2=C5+C6+C7+C8

D3=C9+C10+C11+C12

VALUES1=OMEGAˆ 2 / 1 0 * ( D1(1 )+4*D1(2 )+4*D1 ( 3 ) + D1 ( 4 ) )

VALUES2=(1 −RHO) ˆ 2 / 1 0 * ( D2(1 )+4*D2(2 )+4*D2 ( 3 ) + D2 ( 4 ) )

VALUES3=(1 −DELTA) ˆ 2 / 1 0 * ( D3(1 )+4*D3(2 )+4*D3 ( 3 ) + D3 ( 4 ) )

AM1=OMEGAˆ 2 / 1 0 * ( −D1(1) −4*D1(2 )+4*D1 ( 3 ) + D1 ( 4 ) )

AM2=(1 −RHO) ˆ 2 / 1 0 * ( − D2(1) −4*D2(2 )+4*D2 ( 3 ) + D2 ( 4 ) )

AM3=(1 −DELTA) ˆ 2 / 1 0 * ( − D3(1) −4*D3(2 )+4*D3 ( 3 ) + D3 ( 4 ) )
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Abstract. Due to the rise in the operation of platforms on social media, there is more opportunity for users to

post content online, out of which some tend to be hate speech. Hate speech is found in almost all domains like

sports, politics, religion, government affairs, and personal matters. Its detection and removal from platforms

like Twitter, Facebook, etc. are tedious. Over the years, a lot of methods have evolved in this area most

of which are more time-consuming machine learning methods. Our objective is to find a better method that

considers indeterminacy at the word level and sentence level for the detection and removal of hate speech using

fuzzy logic applied to Neutrosophic hypergraphs. A neutrosophic hypergraph is a kind of hypergraph where

each node and hyperedge has three associated membership functions namely Indeterminacy, Truth and Falsity.

Our work has successfully modeled Text documents into neutrosophic hypergraphs and morphological operators

like dilation, erosion etc. are applied to it. Using these operations further operators like thinning, thickening,

hit-or-miss, and skeletoning are applied. Finally hate speech is identified and removed. This a novel method in

this area. The system is tested with Twitter tweets and the results are promising with an accuracy of 88%.

Keywords: neutrosophic; hypergraph; morphology ; hate speech

—————————————————————————————————————————-

1. Introduction

Since lakhs of contents are posted every day on social media platforms, there is more chance

for it to be against the rules of a government, religion, and mostly the society. Filtering the

contents and making it suitable for everyone to read it is a tremendous job. In most cases,

contents are manually detected after mass protest and are removed or deactivated. Since

the readability and reachability of the social media content are higher when compared to the

printing media or visual media, there should be good and efficient methods for identifying and

removing hate speech. Our system has made efforts in this area by applying the concepts of
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neutrosophic hypergraphs and their morphological operators.

Many real-life problems were solved by modeling hypergraphs with neutrosophic sets and

logic. Neutrosophic sets are used to deal with uncertainties in such problems. Neutrosophic sets

are to deal with this indeterminacy. Morphological operators like dilation, erosion, thickening,

thinning, and skeletoning are useful for various text analysis operations which are discussed

in this paper with the main focus on hate speech detection and removal.

1.1. Related works

The proposed work in this paper has applied neutrosophic hypergraph operations for hate

speech detection. There has been a lot of research work on detecting hate speech that is

mostly seen in social media. In order to classify hate speech, a novel method namely H-CovBi-

Caps [1] was implemented that is a deep learning model based on coventional, BiGRU and

Capsule model. Evaluation of this model was done using balanced and unbalanced Twitter

data sets. This method gave a recall of 0.80 and f-score of 0.84. Another method used natural

language processing strategies and data analysis to make providers of social media responsive

to hate speech content [2]. The authors claim that they can surpass the state-of-the-art ap-

proach in terms of precision, recall, and F1 scores by approximately 10%. There have been

works that focus on the lack of transparency and bias experienced by various hate speech

detection and mitigation systems [3]. Using SAS Enterprise Miner’s Text Analytics [4], the

authors demonstrated how to consider the information in the tweets to classify them as hos-

tile. The tweets were subjected to preprocessing and models were applied and analyzed. The

authors claim adequate accuracy. Different approaches to hate speech detection are discussed

and compared in a survey [5], where the authors have considered various data sets, features,

and machine learning models for comparison.

In all these methods even though the authors claim good accuracy, the works lag a proper

mathematical modeling and representation. They have the disadvantage of being costly in

terms of time and resources. Since our work is concentrating on finding a solution for this

with the help of neutrosophic hypergraphs, let us see some works already done on hypergraphs.

The perspective of a single-valued neutrosophic set, its complement, union, difference, prop-

erties of set-theoretic operators etc. was introduced in [6]. The structure of a system can be

studied by using hypergraph [7] which is the generalization of a graph. A detailed study of

fuzzy graphs and fuzzy hypergraphs [8] and related extensions [9], discusses mathematical

models of hypergraphs like intuitionistic, complex, m-polar fuzzy, bi-polar, Pythagorean and
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q-rung ortho-pair hypergraphs, and also neutrosophic hypergraphs like single-valued, bi-polar

and complex. Graph morphology [10] extracted the structural information from graphs us-

ing structuring graphs. Lattice structure on hypergraphs are developed and morphological

operators [11], [12] are defined by using vertex-hyperedge correspondence. Also, the classical

notion of a dilation/erosion of a subset of vertices is extended to sub-hypergraphs. Several

opening, closing and alternate sequential filters are also proposed. Morphology applied on

Intuitionistic fuzzy hypergraphs are discussed in [13], [14], [15]. Text summarization using

morphological filter [16] is done on intuitionistic fuzzy hypergraphs. Crime Analysis [17] done

with the application of graph morphology has successfully tracked the crime rate in various

areas. More than 200 neutrosophic graphs [18] are discussed, particularly the bipartite neutro-

sophic graphs, neutrosophic tree and directed neutrosophic graphs applied in cognitive maps,

relational maps and relational equations. The perception of neutrosophic incidence graphs

that are single-valued, their cut vertex, blocks and bridges are discussed in [19]. The paper

has discussed the neutrosophic incidence graphs and their vertex, edge and pair connectivity.

Neutrosophic logic and connectors [20] based on set operations are also defined. The idea

of constant single-valued neutrosophic graph (CSVNG) [21], which is the modified form of a

single-valued neutrosophic graph has also evolved. The authors applied it to Wi-Fi systems

and also discussed the consequences. A methodology of decision-making with multiple cri-

teria [22] applied with a neutrosophic set was developed to handle uncertain data, and the

authors have used it in the Logistics Service Sector. A novel adaptable method [23] was used

with eleven criteria and ten solar panels in PV which used a neutrosophic set to deal with

vague data. Another work in IoT [24] intended to introduce a weight product method based

on the neutrosophic framework for the assessment of IoT-based cities that are sustainable and

smart. The notion of Fermatean neutrosophic dombi fuzzy graph [25] was initiated which

constructed the cartesian, direct, composition of such graphs. A neutrosophic method using

type-2 neutrosophic numbers [26] was used in the field of study of risks in power plants. A

hybrid approach to decision-making using many criteria under a spherical fuzzy environment

was introduced in [27].

Most of the hate speech detection methods developed failed to address the ambiguity aspect

of it, our method has included an indeterminacy parameter with every word and every sentence.

Even though there are many applications with hypergraphs in the area of image processing,

networks, text data etc., the proposed method is the first work that has done hate speech

detection and removal of it using a neutrosophic text hypergraph. The preliminaries of the

neutrosophic hypergraph and the morphological operations are given in sections 1.2 to 1.4.

The section 2 focuses on how a document is converted to a neutrosophic hypergraph and how
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Figure 1. Neutrosophic graph with membership degree

operations like hit-or-miss, skeletoning etc. are applied to it. Section 3 deals with operations

like thinning and thickening. Section 4 shows how hate speech detection is done using the

operations discussed in sections 3 and 4. Finally, section 5 gives a detailed result analysis.

1.2. Preliminaries

Let a neutrosophic hypergraph be defined as H = (Hn, He) and is shown in Figure 1,

where Hn is the collection of nodes and He is the collection of hyperedges. For every n in

Hn; F (A) ∈ [0, 1], IA(n) ∈ [0, 1], TA(n) ∈ [0, 1], and IA(n) + TA(n) + FA(n) <= 3, where

IA(n), TA(n) and FA(n) are the indeterminacy, truth and falsity value respectively. Set A

which is a neutrosophic set in Hn = {(n, IA(n), TA(n), FA(n));n ∈ Hn}. Likewise for every e

in He, TA(e) ∈ [0, 1] , IA(e) ∈ [0, 1] ,FA(e) ∈ [0, 1] and IA(e) + TA(e) + FA(e) <= 3, where

IA(e) is the indeterminacy value, TA(e) is the truth value, and FA(e) is the falsity value. A

neutrosophic set B in He = {(e, IA(e), TA(e), FA(e)); e ∈ He}. The edge membership degree,

(IA(e), TA(e), FA(e)) is defined as the maximum of respective membership degrees of the nodes

and is given by

TA(e) = ∨TA(n);∀n ∈ e (1)

IA(e) = ∨IA(n);∀n ∈ e (2)

FA(e) = ∨FA(n);∀n ∈ e (3)

1.3. Special cases of membership values

• case 1: [1, 1, 0] In weather prediction during the rainy season, the truth value of rain

and the indeterminacy is 1. Non-occurrence of rain tends to 0.
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• case 2: [0, 1, 1] In the case of the Nipah virus attack, based on previous experiences in

past years, the possibility of a patient being alive is 0. But there is an indeterminacy

due to the nature of the virus and the falsity of death is 1. Since indeterminacy is 1,

the converse may also happen violating the history and we may get [1,1,0].

• case 3: [1, 0, 1] At a particular point of time of hartal or strike, there is a chance of

crime or not. Hence at instance t, the truth value is 1 also falsity can be 1.

• case 4: [0, 0, 0] In the case of cancer patients, the region not affected by cancer need

not be considered for treatment. For this region the indeterminacy is 0, the Truth

value is 0 and there is no doubt in the falsity of the disease.

• case 5: [1, 1, 1] This is a chaotic situation where all the values are 1. In the case of

a Tornado, since the system is chaotic, the occurrence of Tornado, the indeterminacy

and the falsity is 1.

1.4. Applying morphological operators

Let {HNF , H
n, He, (µn, γn, κn), (µe, γe, κe)} be a neutrosophic hypergraph, where γn is the

non-membership degree, µn is the membership degree, and κn is the indeterminacy degree

defined on a collection of nodes. Let membership degree µe, non-membership degree γe and

indeterminacy degree κe be defined on a collection of hyperedges of the neutrosophic hyper-

graph. Here the sum of (µn, γn, κn) <= 3. Also µe is the supremum of µn, γe is the supremum

of γn and κe is the supremum of κn.

1.4.1. (α, β, ω) cut of a neutrosophic fuzzy hypergraph

The (α, β, ω) cut of a neutrosophic hypergraph HNF is the crisp set of nodes given by

XNF = Hα,β,ω/α >= m,β >= n, ω >= k which retrieves a sub hypergraph of HNF . Once we

have HNF , the parent graph and XNF as its sub-graph, we can define many morphological

operators adjunction, erosion, dilation, closing, and opening filters on it. Figure 2(a) shows a

parent neutrosophic hypergraph and Figure 2(b) shows a sub-graph obtained by (α, β, ω) cut.

All the following morphological operations are defined for this parent and sub-hypergraph.

1.4.2. Dilation of XNF

The dilation operation can be done to concerning nodes or concerning edges. Dilation

concerning nodes can be written as follows:-

δn(XNF ) = {n/n ∈ XNF } (4)
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As per e.q(4), it is the collection of nodes present in the sub-hypergraph XNF . The dilation

concerning edges can be written as follows:-

δe(Xn
NF ) = {e/e ∈ HNF /n ∈ Xe} (5)

As per e.q(5), it includes all edges in HNF such that it contains at least one node in Xe. Both

the dilations are shown in Figure 2(c) and Figure 2(d).

1.4.3. Erosion of XNF

The erosion operator can be applied in two ways. It can be either concerning nodes or

concerning hyperedges. Erosion concerning nodes is written as the following:-

εn(Xe
NF ) = {n ∈ XNF /n /∈ Xe′

NF ;X
e′
NF = He

NF −Xe
NF } (6)

According to e.q(6), erosion concerning nodes is defined as the collection of nodes in XNF

which are not present in its complement graph. This is shown in Figure. 2(e). Erosion

concerning hyperedges is the collection of edges consisting of nodes of XNF only. It can be

written as the following:-

εe(Xn
NF ) = {e ∈ XNF /∀n∈en /∈ Xe′

NF } (7)

This is shown in Figure 2(f).

1.4.4. Adjunction of XNF

We can say that (εe, δn) are adjunctions iff

Xe
NF ⊆ εe(Y n

NF ) (8)

δn(Xe
NF ) ⊆ Y n

NF ;XNF ⊆ YNF (9)

1.4.5. Morphological Opening and Closing

The morphological opening is of two types:-

• Opening w.r.to edge(γe)

This Morphological opening

γe = δe(en(Xe
NF )) (10)

is a composition of the form δ ◦ε which gives edges in XNF by applying e.q(6) followed

by e.q(5).
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• Opening w.r.to node(γn)

This Morphological opening of XNF is

γn = δn(εe(Xn
NF )) (11)

which is a composition of δ ◦ ε obtained by applying e.q(7) followed by e.q(4).

• Closing w.r.to edge

This Morphological closing is the set of edges in XNF

ϕe = εe(δn(Xe
NF )) (12)

which is a composition of ε ◦ δ obtained by applying e.q(4) followed by e.q(7).

• Closing w.r.to node

This Morphological closing

ϕn = εn(δe(Xn
NF )) (13)

is the set of nodes in XNF which is a composition of ε ◦ δ obtained by applying e.q(5)

followed by e.q(6)

Repeated application of opening as well as closing operations as mentioned in e.q(10) to e.q(13)

results in the same hypergraph. Such operators are called filters. They are shown in Figures

2(g) to 2(j).

2. Materials and Methods

2.1. Skeleton operation with dilation w.r.to edge

Dilation related to edge is defined as the collection of all edges retrieved from the parent

graph H, which contains all nodes in sub-hypergraph X. It can be written as δe(Xn). The

skeleton operation on a graph H, can be defined as

S(H) = H − (δe(Xn))k (14)

Let H be the hypergraph related to text pertaining to the sports domain. Some of the words

related to specific sports domains are given in Table 1. Let X1 be the sub-hypergraph of H,

which is obtained by taking the words related to cricket. By applying dilation w.r.to edge,

δe(Xn
1 ), we get all the text related to cricket. On applying S(H1) = H − (δe(Xn

1 )), we get a

minimal skeleton of sports devoid of cricket. Now take X2 = set of words related to football.

On applying δe(Xn
2 ), we get all the text related to football. Thus S(H2) = S(H1)− (δe(Xn

1 ))

will give us the text devoid of football. On repeating this K times we get the skeleton of sports
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Figure 2. Result of morphological operations on a neutrosophic hypergraph

which is devoid of specific sports areas. As a byproduct of this, we get many sub-hypergraphs

of H.

2.1.1. Illustration

Consider the text given in Figure 3 with words numbered. A hypergraph can be drawn by

considering unique words as nodes and sentences as hyperedges. It can be made neutrosophic

by giving three degrees to each word based on a criteria. Some of the words in the sports field

and the criteria are shown in Table 2. If there are common words across sentences, then edges

will overlap as shown in Figure 4. We consider words related to cricket first and then apply

dilation δe(Xn
1 ). Let X1 be a sub-hypergraph that consists of words in the cricket domain.

This dilation is a conditional dilation, which selects the statements in the original text which

consists of words in the cricket domain. It is subtracted from the hypergraph to get the

skeleton S(H1). The first skeleton obtained is shown in Figure 5. Now select sub-hypergraph

X2 which is the set of words in the football domain. Apply dilation and select the sentences

in the original text related to the football domain. On subtracting this we get the next level

skeleton which is shown in Figure 6 and Algorithm 1.
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Table 1. Words related to specific sports

cricket football

cricket striker

ICC Manchester

Table 2. Criteria for giving degrees TA(n), IA(n), FA(n) to the words

Words TA(n) IA(n) FA(n) Criteria

Cricket 0.9 0.1 0.3 Cricket is a sports game only in a few countries in the world.

Even though it is a sports game, it is not seen in the Olympics.

So FA(n) = 0.3 and IA(n) = 0.1. Indeterminacy is less since

it is related to sports

ICC -do-

Tournament -do-

Football 1.0 0 0 Indeterminacy is 0, falsity is 0. since it is a sports event and

seen in Olympics

Manchester -do-

Olympics -do-

Badminton -do-

Game -do-

Sachin 0.8 0.3 0.3 Depends on person to person and also value varies from person

to person. When compared to very popular persons in Football,

there is a bit more level of indeterminacy for Sachin for being

identified as a sports person.

Stages 0.5 0.5 0.5 This is a word have medium value for all the degrees

Season -do-

Performance -do-
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Figure 3. Sample text for skeletoning

2.1.2. Algorithm: Skeletoning

Algorithm 1: Skeleton creation of a text hypergraph

Data: Hypergraph

Result: Skeleton

Create a text hypergraph Hτ ;

i = 1;

repeat

Create sub-hypergraph Xi of Hτ ;

Apply the dilation δe(Xn
i );

Find the skeleton S(Hi) = Hτ − δe(Xn
i );

Hτ = S(Hi);

i = i+ 1;

until Xi = ϕ or i = k;
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Figure 4. Hypergraph formed from text in Figure 3

2.2. Skeleton operation with dilation related to node

Dilation related to node which is written as δn(Xe) is defined as the set of nodes in Xe of

H. On applying H − (δn(Xe)) we get the skeleton of H w.r.to nodes. We can further apply

skeleton operation by varying X.

2.2.1. Illustration

Let us take the same example given in Figure 4. Let X1 = e1, e3 as shown in Figure 4. Now

when k = 1, the skeleton operation S(H1) = H − (δn(X1)
e)) results in Figure 5. Now let X2=

set of sentences related to football. On applying skeleton operation S(H2) = S(H1)−δn(X2)
e),

we get the graph shown in Figure 6. When k = 1, we get the maximal skeleton. When k

increases the thinning nature of the skeleton increases and we get the minimal skeleton as

shown in Figure 7 and Figure 8.
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Figure 5. Skeleton of H w.r.to edge when k=1

Similarly, skeleton operation can be done with erosion w.r.to edge which can be defined as

S(H) = H − (εe(Xn)) (15)

where εe(Xn) is defined as the collection of hyperedges containing only nodes in Xn.

Skeleton operation using erosion related to node is defined as

S(H) = H − (εn(Xe)) (16)

where εn(Xe) is defined as the collection of nodes in Xn, which are only seen in X and not in

the complement of X.
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Figure 6. Skeleton of H w.r.to edge when k=2

Figure 7. Skeleton of H w.r.to node when k=1
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Figure 8. Skeleton of H w.r.to node when k=2

2.3. Hit-or-miss algorithm w.r.to dilation

Consider the text related to Sachin Tendulkar. He is there in the field of cricket, football

and politics. Let us take the set of words related to sachin and cricket as nsc, the set of

words related to sachin and football as nsf and the words related to sachin and politics as

nsp. Here the word with highest priority is MP (Member of Parliament) which comes with

in nsp. Now set A = nsc ∪ nsf ∪ nsp. Now let us a take a window W of nsp which is the

neighbourhood of nsp obtained as δe(nsp). This can be defined as the set of social service and

charity activities done by sachin while he is an MP . The hypergraph for the above can be

shown in the Figure 9.

Here A = nsc∪nsf ∪nsp. which is shown in Figure 9. Let X = Text related to sachin while

he is an MP. Here MP is the node with the highest priority. Let it be named as phigh. Now

X = nsp. Let W , be the window of X as shown in Figure 9. The hit-or-miss operation of the

hypergraph is defined as

HM(H) = (AεX) ∩ (A′ε(W −X)) (17)

and the same is shown in Figure 10 and the method is shown in Algorithm 2.
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Figure 9. Parent Hypergraph H of text, which contains text related to sachin

Figure 10. Text hypergraph A = nsc ∪ nsf ∪ nsp related to sachin
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Figure 11. Result of hit-or-miss operation on text hypergraph

2.3.1. Hit-miss-algorithm using dilation and erosion

Algorithm 2: Hit-or-miss algorithm to find the required information node

Data: Text τ

Result: Hit node Hτ tn

Create a text hypergraph Hτ as given in Figure 4.;

i = 1;

Create sub-hypergraphs ni, such that node p is common;

Let A = ∪m
i=1ni;

Let phigh be the node which is the origin of the sub-hypergraph where the node priority

> 0.9;

repeat

Find A ε ni;

Calculate the neighbourhood window Wi = δe(ni);

Obtain Wi − ni;

Compute A′ ε (Wi − ni);

Derive hit node Hτ tn = (A ε ni) ∩ (A′ε (Wi − ni));

until i = m or Hτ tn = phigh;
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3. Thinning and Thickening

3.1. Thinning using hypergraph operations

Thinning operation can be applied to a hypergraphHτ by taking sub-hypergraph A and tak-

ing a hit node Hτ tn. As per Figure 9, hypergraph Hτ is the hypergraph related to sports, and

sub-hypergraphA is the text related to Sachin. Dilation with respect to the edge is done for the

hit node as δe(Hτ tn). All those edges obtained as part of this dilation are removed from the hy-

pergraph A. The algorithm for the same is shown in Algorithm 3. The result of the thinning op-

eration with respect to hit nodeMP is given in Figure 12. Hit nodes can be varied and thinning

can be repeatedly done. Thinning with respect to the hit node Sachin is given in Figure 13.

Algorithm 3: Thinning algorithm on a text hypergraph

Data: Text τ and hit nodes Hτ tk; where k = 1 to q

Result: Sub-hypergraph T k(Hτ ) after thinning

Create a text hypergraph Hτ with the text τ as given in Figure 4.;

i = 1;

Create sub-hypergraphs ni, such that node p is common;

Let A = ∪m
i=1ni;

Let phigh be the node which is the origin of the sub-hypergraph where the node priority

> 0.9;

repeat

Find A(ni) = A ε ni;

Calculate the neighbourhood window Wi = δe(ni);

Obtain Bi = Wi − ni;

Compute A(Bi) = A′ ε (Wi − ni);

until i = m;

k = 1;

T 1(Hτ ) = Hτ ;

repeat

i = 1;

repeat

Derive hit node Hτ tk = A(ni) ∩A(Bi);

i = i+ 1;

until i = m or Hτ tk = phigh;

Derive sub-hypergraph T k(Hτ ) = T k−1(Hτ )− δe(Hτ tk);

k = k + 1 ;

until k = q or T k(Hτ ) = T k−1(Hτ );

;
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Figure 12. Result of Thinning operation on text hypergraph, when hit node

= MP

Figure 13. Result of Thinning operation on text hypergraph, when hit node

= Sachin

3.2. Thickening operation of text hypergraph using dilation

Given the parent neutrosophic hypergraph H, find A which is the sub-hypergraph of more

truth value. Thickening is done by taking the complement of A and applying its thinning.

After thinning A′, take its complement to get a thickening of A. The result of thinning of A’,
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Figure 14. Complement of A with respect to Figure. 9.

Figure 15. Thinning of A’

when hit node = MP is given in Figure 15. The result of thickening of A, by thinning A′

and eliminating disconnected components is given in Figure 16. The algorithm for the same

is shown in Algorithm 4.
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Figure 16. Thickening of A

3.3. Algebra of morphological operators

Proposition 1: Let H1 and H2 be the neutrosophic sub-hypergraphs, then

S(H1 ∪H2) = S(H1) ∪ S(H2) (18)

Proof: Let e ∈ S(H1∪H2), i.e., e ∈ (H1∪H2)−(δe(Xn))k i.e., e ∈ (H1∪H2) and e /∈ (δe(Xn))k

i.e., e ∈ H1 and e /∈ (δe(Xn))k or e ∈ H2 and e /∈ (δe(Xn))k i.e.,e ∈ (H1 − (δe(Xn))k or

e ∈ (H2 − (δe(Xn))k i.e., e ∈ S(H1) ∪ S(H2). Therefore S(H1 ∪H2) = S(H1) ∪ S(H2).

Proposition 2: Let H1 and H2 be the neutrosophic sub hypergraphs, then

S(H1 ∩H2) = S(H1) ∩ S(H2) (19)

Proof: Let e ∈ S(H1∩H2), i.e., e ∈ (H1∩H2)−(δe(Xn))k i.e., e ∈ (H1∩H2) and e /∈ (δe(Xn))k

i.e., e ∈ H1 and e /∈ (δe(Xn))k also e ∈ H2 and e /∈ (δe(Xn))k i.e.,e ∈ (H1 − (δe(Xn))k also

e ∈ (H2 − (δe(Xn))k i.e., e ∈ S(H1) ∩ S(H2). Therefore S(H1 ∩H2) = S(H1) ∩ S(H2).

Definition: Let neutrosophic hypergraph be H ,sub hypergraph of H be X, S(H) be the

skeleton of H obtained as per e.q.(14), then a dilated skeleton δe(S(H)) is defined as

δe(S(H)) = {e/e ∈ N(S(H));n/n ∈ e} (20)

where N(S(H)) is the neighbourhood of S(H).

Proposition 3: Let S(H1) be the skeleton of H1, S(H2) be the skeleton of H2, where H1 and

H2 be the sub hypergraphs of H, then

δe(S(H1) ∪ S(H2)) = δe(S(H1)) ∪ δe(S(H2)) (21)
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Algorithm 4: Thickening algorithm on a text hypergraph

Data: Text τ and hit nodes Hτ tk; where k = 1 to q

Result: Sub-hypergraph Thk(Hτ ) after thickening

Create a text hypergraph Hτ as given in Figure 4.;

i = 1;

Create sub-hypergraphs ni, such that node p is common;

Let A = ∪m
i=1ni;

Let plow be the node which is the origin of the A′ where the node priority < 0.2;

Create sub-hypergraphs xi in A′ where plow is present.

repeat

Find A′(xi) = A′ ε xi;

Calculate the neighbourhood window Wi = δe(xi);

Obtain Bi = Wi − xi;

Compute A′(Bi) = A ε (Wi − xi);

until i = m;

k = 1;

T 1(Hτ ) = Hτ ;

repeat

i = 1;

repeat

Derive hit node Hτ tk = A′(xi) ∩A′(Bi);

i = i+ 1;

until i = m or Hτ tk = plow;

Derive sub-hypergraph T k(Hτ ) = T k−1(Hτ )− δe(Hτ tk);

k = k + 1 ;

until k = q or T k(Hτ ) = T k−1(Hτ );

;

Find Thk(Hτ ) = Hτ − T k(Hτ )

Proof: According to the definition of dilated skeleton, δe(S(H1) ∪ S(H2)) can be written as

{e/e ∈ N(S(H1));n/n ∈ e} or {e/e ∈ N(S(H2));n/n ∈ e}
= δe(S(H1)) ∪ δe(S(H2))

similarly we can write δe(S(H1) ∩ S(H2)) = δe(S(H1)) ∩ δe(S(H2))

Proposition 4: Let S(H1) be the skeleton of H1 which is the sub hypergraph H, S(H2)

be the skeleton of H2 which is sub hypergraph of H, then De morgan’s law

(S(H1) ∪ S(H2))
c = (S(H1))

c ∩ (S(H2))
c (22)
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holds here

Proof: Let e ∈ (S(H1)∪S(H2))
c. i.e., e /∈ (S(H1)∪S(H2)). i.e., e /∈ (H1−(δe(Xn))k)∪(H2−

(δe(Xn))k). i.e., e /∈ (H1 − (δe(Xn))k) or e /∈ (H2 − (δe(Xn))k) i.e., e ∈ (H1 − (δe(Xn))k)c or

e ∈ (H2 − (δe(Xn))k)c. i.e., e ∈ (S(H1))
c and e ∈ (S(H2))

c

Theorem 5: Let a neutrosophic hypergraph be represented using H, S(H) be the skeleton

of H, H1,H2 be two sub hypergraphs of the neutrosophic hypergraph H then

S(S(H)) = S(H) (23)

S(H1) ∪ S(H2) = S(H2) ∪ S(H1) (24)

S(H1) ∪ (S(H2) ∩ S(H3)) = (S(H1) ∪ S(H2)) ∩ (S(H1) ∪ S(H2)) (25)

E.q(18) to E.q(25) give a clear picture of the algebra of skeleton operation.

4. Applications

There are many applications in the field of text analysis using the various operations

discussed so far namely thinning, thickening, skeltoning, hit-or-miss operation etc. In this

paper, we have applied it in identifying the hate speech in a text and removing it. The

system architecture is shown in Figure 17, where the input text is subjected to preprocess-

ing like splitting into sentences and sentences further into words. Stop words are removed

from the set of words as they do not contribute to the meaning of the sentence. A neutro-

sophic hypergraph is constructed out of this by modeling sentences as edges and words as

nodes. Lukasiewicz’s fuzzy implication is applied as given in Figure 18 and Algorithm 5.

Figure 17. System architecture

Dhanya P.M, Ramkumar P.B, Text Analysis Using Morphological operations on a
Neutrosophic Text hypergraph

Neutrosophic Sets and Systems, Vol. 61, 2023                                                                          358



Figure 18. Lukasiewicz implication for hatred

Algorithm 5: Algorithm 5: Hate speech detection

Data: Hate Speech Detection Method using fuzzy neutrosophic hypergraph

Result: Tweets devoid of hate speech

1. Nodes and edges of the hypergraph represent the words and sentences of the

document. Weights are assigned as given in section 1.2. TA(n) denotes hatred measure

of a word, IA(n) denotes the uncertainty and FA(n) shows the perfectness measure;

2. Now Lukasiewicz’s implication is applied to these measures as shown in Figure 17.

• Case 1: [0,0,1] – Not a hate word. The Lukasiewicz implication would be

f =⇒ (FA(n), IA(n)) = min{1, 1− FA(n), IA(n)} = min{1, 1− 1 + 0} = 0

f =⇒ (TA(n), IA(n)) = min{1, 1− TA(n), IA(n)} = min{1, 1− 0 + 0} = 1

f =⇒ (FA(n), TA(n), IA(n)) =

min{1, 1− f =⇒ (TA(n), IA(n)) + f =⇒ (FA(n), IA(n))} = min{1, 1− 1 + 0} = 0

• Case 2: [1,0,0] – Definitely, it is a hate word. The Lukasiewicz implication for this

case would be f =⇒ (FA(n), IA(n)) = min{1, 1− FA(n), IA(n)} =

min{1, 1− 0 + 0} = 1

f =⇒ (TA(n), IA(n)) = min{1, 1− TA(n), IA(n)} = min{1, 1− 1 + 0} = 0

f =⇒ (FA(n), TA(n), IA(n)) = min{1, 1− 0 + 1} = 1

• Case 3: [ 1, 0.5,0] – Depends on circumstances even though a Hate word.

f =⇒ (FA(n), IA(n)) = min{1, 1− FA(n), IA(n)} = min{1, 1− 0 + 1} = 1

f =⇒ (TA(n), IA(n)) = min{1, 1− TA(n), IA(n)} = min{1, 1− 0.5 + 1} = 1

f =⇒ (FA(n), TA(n), IA(n)) = min{1, 1− 1 + 1} = 1

• Case 4: [ 0.5, 1, 0] – High indeterminacy, can be a hate word.

f =⇒ (FA(n), IA(n)) = min{1, 1− FA(n), IA(n)} = min{1, 1− 0 + 0.5} = 1

f =⇒ (TA(n), IA(n)) = min{1, 1− TA(n), IA(n)} = min{1, 1− 1 + 0.5} = 0.5

f =⇒ (FA(n), TA(n), IA(n)) = min{1, 1− 0.5 + 1} = 1

• Case 5: [0, 0.5, 1] – Depends on circumstances even though a non-hate word.

f =⇒ (FA(n), IA(n)) = min{1, 1− FA(n), IA(n)} = min{1, 1− 1 + 0.5} = 0.5

f =⇒ (TA(n), IA(n)) = min{1, 1− TA(n), IA(n)} = min{1, 1− 0 + 0.5} = 1

f =⇒ (FA(n), TA(n), IA(n)) = min{1, 1− 1 + 0.5} = 0.5

Dhanya P.M, Ramkumar P.B, Text Analysis Using Morphological operations on a
Neutrosophic Text hypergraph

Neutrosophic Sets and Systems, Vol. 61, 2023                                                                          359



Algorithm 6: Hate speech detection .....continuation of Algorithm 5

3. Assign for each edge e in He, TA(e)[0, 1], IA(e)[0, 1], FA(e)[0, 1] and

TA(e) + IA(e) + FA(e) <= 3.;

4. TA(e) is as per e.q(1) and IA(e), FA(e) is given by

IA(e) = avg(IA(n)); ∀n ∈ e (26)

FA(e) = avg(FA(n));∀n ∈ e (27)

5. Create sub-hypergraph X by applying (α, β, γ) cut such that TA(e) >= 0.5,

IA(e) >= 0.3 and FA(e) >= 0;

6. Create a sub-hypergraph A by applying higher level (α, β, γ) cut such that

TA(e) >= 0.8, IA(e) >= 0.3, FA(e) >= 0;

7. Apply the morphological operations on H with X

• δe(Xn) – dilation of X, pertaining edges.This takes all words in X and fetches all

sentences that contain minimum of one such word.

• δn(Xe) – dilation of X pertaining to nodes. This operation takes all sentences in X

and retrieves all words in those sentences.

• εe(Xn) – is an erosion of X pertaining to edges. This operation takes all words in X

and retrieves all sentences that contain Xn only.

• εn(Xe) – is erosion of X pertaining to nodes. This retrieves all words in X and not in

X ′.

8. Hate speech can be removed in two ways as follows:-

• Apply skeleton operation S(H) = H–(δe(Xn))k. Here hate speech is eliminated from

the tweets.

• Implement Thinning

– Obtain Hit− or −Miss(H,A) = AεX ∩A′ε(W–X) where X is dilated to get

W . This operation generates intense hate words.

– Obtain H − δe(Hit− or −Miss(H,A))

9. The sentences obtained after step 8 give tweets without hate speech.

A variation of this method without Lukasiewicz implication is seen in [28]. As per the

system architecture shown in Figure 17, Twitter tweets are collected using Twitter APIs,

text cleaning is done to remove irrelevant information such as URLs, emojis, hashtags, and

punctuation marks. After preprocessing, tokenization is applied to split into words and stop

word removal is done. Once the words are separated and stop words are removed, as mentioned

in the above algorithm, words are given three membership values namely indeterminacy, truth

and falsity. Sentences are also assigned with these three membership values. The truth value

of a sentence will be the maximum truth value of the words in it. The indeterminacy value

of the sentence will be the average of the indeterminacy values of all the words in it. The
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falsity value of the sentence will be the average of the falsity values of all the words in it. Once

a neutrosophic hypergraph(H) is created with these three values for the edges and nodes an

alpha, beta, and gamma cut is applied to it to create a sub-hypergraph(X) which retrieves the

sentences which are more likely to have hate speech. Morphological operations namely erosion

and dilation are applied with this X on H which gives various query results as mentioned in

the algorithm. Applying dilation k times with X and subtracting it from H will result in a

skeleton of tweets devoid of hate speech. Hit-or-miss operation is also applied which results

in retrieval of most hate words. Applying dilation of these words and subtracting it from H

gives thinning.

5. Result Analysis

The system is implemented using Python. The data set used in this system is Twitter

data(tweets) from which the hate tweets are identified and removed. Results are analyzed

using various measures namely:-

• tp = true positives = Number of tweets which actually consist of hatred words and are

classified as hate tweets.

• tn = true negatives = Number of tweets that do not consist of hatred words and are

classified as non-hate tweets.

• fp = false positives = Number of tweets which are actually non-hate tweets but clas-

sified as hate tweets.

• fn = false negatives = Number of tweets which are actually hate tweets but classified

as non-hate tweets.

Further, using the above values we calculate the measures like recall, miss rate, false positive

rate, true negative rate, false omission rate, positive predictive value, negative likelihood ratio,

negative predictive value, positive likelihood ratio, false discovery rate, accuracy etc. According

to our proposed system, recall or sensitivity is the ratio of hate sentences identified by the

system to the total hate sentences in the input data set. Our system has shown a better value

of 0.87. Precision or specificity is the ratio of non-hate sentences identified by the system

to the total number of non-hate sentences in the data set, where our system reported 89%

results. The false positive ratio is the ratio between the number of non-hate sentences wrongly

identified as hate sentences and the count of non-hate sentences. The system showed a pretty

less false positive rate of 0.11. Positive Predictive Value (92%) shows how many are hate

out of hate sentences identified by the system. Similarly, other values are also calculated and

tabulated in Table 3. Data set 1 is of size 500, Data set 2 is of size 1000 and Data set 3 is of

size 5000.
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Table 3. Result Analysis of the proposed system

Parameter Data set 1 Data set 2 Data set 3

tp 0.83 0.95 0.87

tn 0.88 0.75 0.92

fp 0.13 0.09 0.03

fn 0.15 0.11 0.42

Recall 0.85 0.89 0.87

Precision 0.87 0.89 0.92

Miss rate(FNR) 0.153 0.103 0.132

False Positive Rate 0.129 0.107 0.083

True Negative Rate 0.871 0.893 0.92

Positive Predictive Value 0.865 0.913 0.97

False Omission Rate 0.145 0.128 0.313

LR+ 6.59 8.09 10.8

LR- 0.024 0.124 0.054

Accuracy 0.86 0.898 0.88

False Discovery Rate 0.135 0.098 0.029

Negative Predictive Value 0.854 0.87 0.69

6. Conclusions

In this work, we have done a detailed study of various neutrosophic morphological operators

like hit-or-miss, thickening, thinning, skeleton etc. This a novel method of representing text

as a neutrosophic hypergraph and Illustration of these operators on it. Also, their algorithms

are implemented with text as input. As an application of the proposed work, we have applied

it to hate speech detection in Twitter tweets and got an accuracy of 88%. It is observed

that various compositions of neutrosophic morphological operators may give various results of

text analysis. Such a study is very useful for categorizing text with respect to key information

provided to the system. This is a novel method for extracting relevant information from text or

a document. It is possible to extend the work by analyzing various properties of neutrosophic

hypergraphs. Neutrosophic logic has a very important part in the construction of inference

systems where connectors like Sheffors and Pierce’s connectors may be useful. Since optimality

is a major concern in every problem, constructing operators that satisfy various optimality

conditions is a future work. Such new operators can be used for the comparison of various data

sets and multi-classification of extracted information. This work can be extended to the area

of proper fertilizer applications in the area of agriculture, team selection in sports, educational

admission systems, and pandemic spread detection and isolation of people.
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Abstract: Fuzzy logic is an important mathematical tool that deals with uncertainty and imprecision 

in decision-making processes. The prevalent frameworks, known as neutrosophic sets, study the 

connection of neutralities with various ideational spectra in addition to generalizing concept of 

fuzzy sets. Using a penta-partitioned neutrosophic fuzzy environment, a novel optimization 

technique is proposed in this study. Proposed optimization technique is an expansion of fuzzy 

optimization, intuitionistic fuzzy optimization (IFO), single-valued neutrosophic optimization 

(NSO) and four valued neutrosophic optimization (FVNO). Here, the neutrosophic set's 

indeterminacy term is broken down into three components: contradiction (C), unknown (U), 

ignorance (I). To demonstrate the applicability and effectiveness of the suggested approach a 

numerical example is solved and the outcomes are contrasted with those of other methods already 

in use by cumulative percentage gap and sum of optimal values. Finally, a multi objective reliability 

optimization model of LCD display unit is solved by this method. 

Keywords: Reliability; Neutrosophic set; Neutrosophic optimization; Pentapartitioned 

neutrosophic optimization. 

 

1.Introduction 

 

Recent years have seen a rise in interest in the topic of reliability optimization, which aims to 

enhance the performance and dependability of complex systems. Reliability optimization involves 

making decisions regarding system design, maintenance, and resource allocation to improve the 

system's ability to function effectively and consistently in various operating conditions. However, 

traditional reliability optimization approaches often encounter challenges when dealing with 

multiple conflicting objectives, such as maximizing system performance while minimizing costs or 

minimizing failure rates while maximizing system availability. In literature reliability optimization 

models are solved using various exact, heuristic and metaheuristic methods. For example, Misra [1] 

described usage of the integer programming technique before introducing [2] the use of the 

maximum principle and lagrange multipliers to solve reliability optimization problems. Sakawa [3] 

has presented multi-objective reliability allocation problem utilizing surrogate worth trading 

strategies to minimize system cost while maximize system reliability. A method using parametric 

programming was presented by Chern and Jan [4]. W.kuo, V.R.Prsad [5] solved system reliability 

optimization problem using some heuristic and metaheuristic algorithms Kuo et. al [6] presented 

some fundamental method and its application by solving reliability optimization model. 
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Uncertainty and ambiguity are very practical issue in real life mathematical problems. To 

address these challenges, researchers have explored the application of advanced mathematical tools 

and techniques, including fuzzy sets and optimization methods, to multi-objective reliability 

optimization problems. In 1965, Zadeh [7] invented the fuzzy set (FS). Fuzzy sets deals with one 

membership value in [0,1] ,but sometimes uncertainty is not properly expressed by single 

membership value. So, considering the membership as an interval in [0,1] the interval-valued fuzzy 

set (IVFS) [8] was invented. In some situations, only membership is insufficient to fully convey the 

uncertainty, so non-membership value also required to clarify the vagueness. That is outside the 

purview of FS and IVFS. Atanassov [9] first suggested intuitionistic fuzzy sets (IFS) in 1986, expands 

beyond the scope of IVFS and FS. IFS introduce the notion of considering the total of membership 

and non-membership values, ensuring that the sum (≤)1. 

 

In 1998, Smarandache [10] introduced neutrosophic sets (NSs) extending from FS, IFS, hesitant 

fuzzy sets, and IVFS, to handle uncertain information encountered in real-world situations. 

Neutrosophic sets serve as a valuable mathematical tool for addressing ambiguous and conflicting 

information. They consist of three independent components: truth, falsity, and indeterminacy 

membership. However, applying neutrosophic fuzzy sets in practical scenarios presents challenges 

due to the presence of both standard and non-standard intervals of membership values. To address 

these challenges, Wang et al. [11, 12] invented single-valued NSs and interval-valued NSs, enabling 

the application of NSs to real-world problems. In an effort to generalize neutrosophic sets further, F. 

Smarandache [13] introduced n-Valued neutrosophic logic through categorizing truth, 

indeterminacy, and falsity into n types. Subsequently, Freen et al. [14] defined four-valued 

neutrosophic set (FVNS) by refining the indeterminacy term into unknown and contradiction. 

Expanding on this concept, Mallik and Pramanik [15] introduced the penta-partitioned neutrosophic 

set, which splits the indeterminacy term into contradiction, unknown, and ignorance. 

In a wide range of areas, optimization methods are crucial for addressing a variety of practical 

problems and decision-making problems. In last few decades fuzzy optimization [16] is very efficient 

tool as it deals with the ambiguity and uncertainty of real-life problems. Bellman and Zadeh [17] first 

introduced decisions, goals and constraints in fuzzy. As an extension of this work Zimmerman [18] 

introduced fuzzy programming method. To deal with the non-membership of an information 

Angelov [19] invented intuitionistic fuzzy optimization method. It's interesting to observe that there 

are several optimization problems that require a collection of membership grades rather than a single 

grade of membership since experts' estimates of the optimization's parameters vary significantly. 

Considering this a multi objective optimization problem (MOOP) is solved by Bharati [20] in hesitant 

fuzzy environment. To solve a MOOP, Sarkar et al. [21] applied the multi-objective neutrosophic 

optimization algorithm. Abdel-Basset et al. [22] introduced neutrosophic goal programming 

approach. The integer programming problem was proposed by Mohamed, Mai et al. [23] 

in triangular neutrosophic environment. Group decision-making problem was solved by Abdel-

Basset et al. [24] utilizing triangular neutrosophic weighted aggregation operator. In an IVNSs 

framework, Garg [25] has presented a nonlinear programming method to solve MCDM problems. 
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This method provides a systematic approach for tackling decision-making challenges in uncertain 

and ambiguous environments. Recently, Freen et al. [14] proposed FVRNO method to solve MOOP 

and applied it to car-side impact and riser design problems. Recently, in various field the concept of 

Penta partitioned neutrosophic graph (PNG) is used to find the optimal path using Penta partitioned 

neutrosophic set. Quek, Shio Gai, et al. [26] used the concept of PNG to find the safest path of travel 

and stay to reduce the spread of COVID-19. Broumi, Said, et al [27] used PNG to solve MCDM 

problem. Das, Suman, et al [28,29] introduced single valued bipolar PNS and its application by 

solving MADM problem, and author also presented single valued PNG and solution strategy to 

MCDM problem. 

In formation of a system design, reliability optimization is one of the crucial jobs. Finding the 

most effective way to raise system reliability in limited resource has always been the reliability 

engineer's main objective. There are several parameters in the MOOP that are constantly vague and 

ambiguous in nature for ambiguity in decision makers judgments. Fuzzy technique is used to analyze 

this in MOOP to manage such kind of nature. Fuzzy non-linear programming was utilized by Park 

[30] for the reliability apportionment problem of series system. Fuzzy global optimization reliability 

model was utilized by Ravi et al. [31]. To address the reliability optimization problem, Huang [32] 

suggested a multi-objective fuzzy optimization approach. Later, the intuitionistic fuzzy optimization 

approach [19] is used in a variety of study areas in reliability optimization problem. Mahapatra et al. 

[33] used IFO methods to solve reliability optimization model. To address the problem of multi-

objective reliability optimization IFO method was applied in interval environments by Garg et al [34]. 

Islam and Kundu [35] applied NSO technique to solve the reliability optimization of LCD display 

unit. As far as known to us, there isn't a research paper in the literature that addresses how to solve 

a MOOP in a pentapartitioned neutrosophic environment.  

In this article, a penta-partitioned neutrosophic fuzzy environment is used to suggest a multi-

objective optimization technique. To show that the suggested strategy is effective a nonlinear MOOP 

is solved and the outcomes are compared against those of other techniques already in use. Also, this 

method is applied to solve the reliability optimization model of LCD display unit and the result is 

compared with four valued refined optimization method. Remaining part is arranged as: the 

definition of fuzzy set, its extension and properties are discussed in section 2. The Proposed penta-

partitioned neutrosophic fuzzy optimization technique and computational algorithm is explained in 

section 3. In section 4 a numerical example is solved by developed method. Reliability model of LCD 

display unit is shown in section 5. In Section 6, results and discussion are presented. Finally, in section 

7. conclusion and future works are discussed. 

 

2. Preliminaries 

 

Definition 1. Fuzzy set (FS) [7] 

𝐸 be the universal set, then the FS  �̃�  on the set 𝐸 is defined as �̃� = {(𝑒, 𝜇𝐹(𝑒))| 𝑒 ∈ 𝐸}, where 

𝜇𝐹: 𝐸 → [0,1] is membership function on 𝐸. 

Example: Consider set of number 𝐸 = {1,2,3,4,5,6}, fuzzy set �̃� is number closed to 4. Then we can 

define �̃� = {(1,0), (2, .2), (3, .6), (4,1), (5, .5), (6, .3)}.  
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Definition 2. Intuitionistic Fuzzy Set (IFS) [9] 

𝐸 is the universal set, the IFS 𝐼 on 𝐸 is the collection of order triplets 𝐼 = {(𝑒, 𝜇𝐼(𝑒), 𝜗𝐼(𝑒))| 𝑒 ∈ 𝐸}, 

where 𝜇𝐼 , 𝜗𝐼: 𝐸 → [0,1] represent membership, non-membership function on 𝐸, 0 ≤ 𝜇𝐼(𝑒) + 𝜗𝐼(𝑒) ≤

1 for all 𝑒 ∈ 𝐸. 

 Here the function  𝜋𝐼(𝑒) = (1 − 𝜇𝐼(𝑒) − 𝜗𝐼(𝑒)) is the hesitancy degree for each 𝑒 ∈ 𝐸. 

Example: 

If a company produce three products 𝐸 = {𝑝1, 𝑝2, 𝑝3}, there be three opinions on these products, 

“good (membership)”, “bad(non-membership)”, “no idea (hesitancy)”. Then the intuitionistic fuzzy 

set 𝐼 = {(𝑝1, .6, .3), (𝑝2, .7, .25), (𝑝3, .8, .16)}. Here 𝜋𝐼(𝑝1) = .1, 𝜋𝐼(𝑝2) = .05, 𝜋𝐼(𝑝1) = .04. 

Definition 3. Neutrosophic fuzzy set (NSs) [10] 

𝐸 is the universal set. NSs on 𝐸 is 𝑁 = {(𝑒, 𝑇𝑁(𝑒), 𝐼𝑁(𝑒), 𝐹�̃�(𝑒))| 𝑒 ∈ 𝐸}, here 𝑇𝑁(𝑒), 𝐼�̃�(𝑒),𝐹𝑁(𝑒) are 

subsets of ]0−, 1+[  which represent truth, indeterminacy and falsity membership on 𝐸 and  0− ≤

𝑆𝑢𝑝𝑇�̃�(𝑒) + 𝑆𝑢𝑝𝐼𝑁(𝑒) + 𝑆𝑢𝑝𝐹�̃�(𝑒) ≤ 3
+ for all 𝑒 ∈ 𝐸. In real life, the application of NS is difficult 

because the membership values are subsets of ]0−, 1+[  . 

Definition 4. Single valued neutrosophic set (SVNSs) [11] 

In SVNSs, for all 𝑒 ∈ 𝐸 (universal set) the set 𝑆�̃� is characterized by 𝑇𝑆�̃�(𝑒), 𝐼𝑆�̃�(𝑒), 𝐹𝑆�̃�(𝑒) , each 

takes single value in  [0,1], 0 ≤ 𝑇𝑆�̃�(𝑒) + 𝐼𝑆�̃�(𝑒) + 𝐹𝑆�̃�(𝑒) ≤ 3.Where,  

𝑆�̃� = {(𝑒, 𝑇𝑆�̃�(𝑒), 𝐼𝑆�̃�(𝑒), 𝐹𝑆�̃�(𝑒)): 𝑒 ∈ 𝐸}. 

Example: Suppose a phone company launch a phone, customers may review the phone on the basis 

of 𝐸 = {𝑒1 = 𝑝𝑟𝑖𝑐𝑒, 𝑒2 = 𝑟𝑎𝑚 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑒3 = 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑒4 = 𝑐𝑎𝑚𝑒𝑟𝑎} . The customers 

opinion on each criterion be positive (truth degree), Indeterminate, negative (falsity degree). Then 

the set 𝑆�̃� on 𝐸 as : 𝑆�̃� = {(𝑒1, .7, .5, .4), (𝑒2, .5, .6, .3), (𝑒3, .3, .4, .8), (𝑒4, .8, .3, .4)}. 

Definition 5. Four-valued neutrosophic set (FVNS) [14] 

By splitting indeterminacy in two ways, there are two types of FVNS. For one of such FVNS, 

indeterminacy is split into unknown (𝑈) and contradiction (𝐶), where 𝐶 = 𝑇 ∧ 𝐹 . The values of 

𝑇,𝑈, 𝐶  and 𝐹  are the function from 𝐸  to  [0,1] and 0 ≤ 𝑇𝐹�̃�(𝑒) + 𝑈𝐹�̃�(𝑒) + 𝐶𝐹�̃�(𝑒) + 𝐹𝐹�̃�(𝑒) ≤ 4. 

Thus, this type of FVNS is  

𝐹�̃� = {(𝑒, 𝑇𝐹�̃�(𝑒), 𝐼𝐹�̃�(𝑒), 𝐶𝐹�̃�(𝑒)𝐹𝐹�̃�(𝑒)): 𝑒 ∈ 𝐸}. 

For another type of FVNS, here the indeterminacy split into two parts, Ignorance ( 𝐺 ) and 

contradiction (𝐶), where 𝐶 = 𝑇 ∧ 𝐹 and  𝐺 = 𝑇 ∨ 𝐹. The values of 𝑇,𝐺, 𝐶 and 𝐹 are the function 

from 𝐸 to  [0,1] and 0 ≤ 𝑇𝐹�̃�(𝑒) + 𝐶𝐹�̃�(𝑒) + 𝐺𝐹�̃�(𝑒) + 𝐹𝐹�̃�(𝑒) ≤ 4. Thus, this type of FVNS is 

𝐹�̃� = {(𝑒, 𝑇𝐹�̃�(𝑒), 𝐶𝐹�̃�(𝑒), 𝐺𝐹�̃�(𝑒)𝐹𝐹�̃�(𝑒)): 𝑒 ∈ 𝐸}. 

Example of FVNS:  

Consider a criterion set 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. There be four types of opinion for each criterion, such as 

“truth, contradiction, unknown, falsity” or “truth, ignorance, contradiction, falsity”, where each 

degree in [0,1]. Then we can construct FVNS as  

𝑋 =
⟨0.6,0.3,0.5,0.4⟩

𝑒1
+
⟨0.5,0.3,0.7,0.4⟩

𝑒2
+
⟨0.7,0.3,0.4,0.2⟩

𝑒3
+
⟨0.8,0.3,0.2,0.1⟩

𝑒4
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Definition 6: Penta-partitioned neutrosophic set (PNS) [15] 

PNS was defined by Rama Mallick and Surapati Pramanik using the concepts of n-valued 

neutrosophic set. Here indeterminacy divided into ignorance, contradiction, and unknown (U, G, C). 

This is how PNS is defined: 

𝐸 be a universal set. PNS, 𝑃�̃� over 𝐸 is the combination of Truth( 𝑇𝑃�̃�), unknown(𝑈𝑃�̃�),ignorance 

(𝐺𝑃�̃�), contradiction( 𝐶𝑃�̃�), falsity(𝐹𝑃�̃�) memberships which are in [0,1]for all 𝑒 ∈ 𝐸 and 

 0 ≤ 𝑇𝑃�̃�(𝑒) + 𝐶𝑃�̃�(𝑒) + 𝐺𝑃�̃�(𝑒) + 𝑈𝑃�̃�(𝑒) + 𝐹𝑃�̃�(𝑒) ≤ 5.  

2.1 Basic properties  

Definition 7. [15] 𝑃1  and 𝑃2  be two PNSs over 𝐸  then  𝑃1 ⊆ 𝑃2  iff  𝑇𝑃1(𝑒) ≤ 𝑇𝑃2(𝑒), 𝐶𝑃1(𝑒) ≤

𝐶𝑃2(𝑒), 𝐺𝑃1(𝑒) ≥ 𝐺𝑃2(𝑒), 𝑈𝑃1(𝑒) ≥ 𝑈𝑃2(𝑒) and 𝐹𝑃1(𝑒) ≥ 𝐹𝑃2(𝑒) for all 𝑒 ∈ 𝐸. 

Definition 8. [15] The complement of PNS 𝑃 is denoted by 𝑃𝑐 and is defined by: 

                                          𝑃 =

{(𝑇𝑃(𝑒), 𝐶𝑃(𝑒), 𝐺𝑃(𝑒), 𝑈𝑃(𝑒), 𝐹𝑃(𝑒))|𝑒 ∈ 𝐸}, then  

𝑃c = {(𝐹𝑃(𝑒), 𝑈𝑃(𝑒),1 − 𝐺𝑃(𝑒), 𝐶𝑃(𝑒), 𝑇𝑃(𝑒)) ∣ 𝑒 ∈ 𝐸}  

i.e,  𝑇𝑃𝑐(𝑒) = 𝐹𝑃(𝑒), 𝐶𝑃𝑐(𝑒) = 𝑈𝑃(𝑒), 𝐺𝑃𝑐(𝑒) = 1 − 𝐺𝑃(𝑒), 𝑈𝑃𝑐(𝑒) = 𝐶𝑃(𝑒),𝐹𝑃𝑐(𝑒) = 𝑇𝑃(𝑒) for all 𝑒 ∈ 𝐸 

Definition 9. [15] 𝑃1 and 𝑃2  be two PNSs. Then  𝑃1 ∪ 𝑃2  and 𝑃1 ∩ 𝑃2 is defined by: 

𝑃1 ∪ 𝑃2 = {(
max(𝑇𝑃1(𝑒), 𝑇𝑃2(𝑒)) ,max(𝐶𝑃1(𝑒),𝐶𝑃2(𝑒)) ,min (𝐺𝑃1(𝑒), 𝐺𝑃2(𝑒)) ,

min (𝑈𝑃1(𝑒),𝑈𝑃2(𝑒)) ,min (𝐹𝑃1(𝑒), 𝐹𝑃2(𝑒))
) |𝑒 ∈ 𝐸}

𝑃1 ∩ 𝑃2 = {(
min(𝑇𝑃1(𝑒), 𝑇𝑃2(𝑒)) , min(𝐶𝑃1(𝑒), 𝐶𝑃2(𝑒)) ,max(𝐺𝑃1(𝑒), 𝐺𝑃2(𝑒)) ,

max(𝑈𝑃1(𝑒), 𝑈𝑃2(𝑒)) ,max (𝐹𝑃1(𝑒), 𝐹𝑃2(𝑒))
) |𝑒 ∈ 𝐸}

 

 

2.2. Example of PNS: 

Suppose a company have manufactured a car. The quality of the car is determined by some domain 

experts over the set of criterions 𝐸 = {𝑒1, 𝑒2, 𝑒3}, where 𝑒1=reliability, 𝑒2= fuel consumption,  𝑒3= 

cost. The question to the domain experts is “is the car is good?”. There may be the five types of degrees 

of opinions in [0,1]  under each category, which are “good”, “contradictory”, “Ignorance”, 

“Unknown”, “Bad”. 𝑃 and 𝑄  two PNSs, which are opinion of two experts on W, are defined by: 

𝑃 =
⟨0.6,0.3,0.3,0.5,0.4⟩

𝑒1
+
⟨0.5,0.3,0.7,0.4,0.2⟩

𝑒2
+
⟨0.7,0.3,0.4,0.2,0.2⟩

𝑒3

𝑄 =
⟨0.4,0.7,0.3,0.5,0.6⟩

𝑒1
+
⟨0.2,0.8,0.3,0.5,0.7⟩

𝑒2
+
⟨0.3,0.6,0.8,0.5,0.6⟩

𝑒3
.

 

Then we have, 

𝑃𝐶 = ⟨0.4,0.5,0.7,0.3,0.6⟩/𝑒1+ ⟨0.2,0.4,0.3,0.3,0.5⟩/𝑒2 + ⟨0.2,0.2,0.6,0.3,0.7⟩/𝑒3
𝑃 ∪ 𝑄 = ⟨0.6,0.7,0.3,0.5,0.4⟩/𝑒1 + ⟨0.5,0.8,0.3,0.4,0.2⟩/𝑒2 + ⟨0.7,0.6,0.4,0.2,0.2⟩/𝑒3
𝑃 ∩ 𝑄 = ⟨0.4,0.3,0.3,0.5,0.6⟩/𝑒1 + ⟨0.2,0.3,0.7,0.5,0.7⟩/𝑒2 + ⟨0.3,0.3,0.8,0.5,0.6⟩/𝑒3
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3. Proposed penta-partitioned neutrosophic fuzzy optimization technique 

If we take a look at a multi-objective optimization problem (MOOP), 

 Minimize {𝑍𝑖(𝑤)}       𝑖 = 1, … ,𝑚. 

Subject to 

                                                            𝑓𝑗(𝑤)

≤ 𝑏𝑗                  𝑗

= 1, … , 𝑛.                                                        (1) 

𝑤 ≥ 0                                           

where  𝑍𝑖(𝑤) are 𝑚 objectives, 𝑓𝑗(𝑤) are the 𝑛 constraints, 𝑤 are decision variables, and 𝑚 and 

𝑛 presents number of objectives and constraints respectively. �̃� is the decision set, which combines 

penta-partitioned neurotrophic goals (�̃�𝑖) and constraints (�̃�𝑗), is defined by: 

�̃� = (∩𝑖=1
𝑚 �̃�𝑖) ∩ (∩𝑗=1

𝑛 �̃�𝑗) = {𝑤, 𝑇�̃�(𝑤), 𝐶�̃�(𝑤), 𝐺�̃�(𝑤), 𝑈�̃�(𝑤), 𝐹�̃�(𝑤))} 

Where 𝑤 ∈ 𝑊. 

𝑇�̃�(𝑤)  = min{𝑇�̃�1(𝑤), 𝑇�̃�2(𝑤), … , 𝑇�̃�𝑚(𝑤); 𝑇�̃�1(𝑤), 𝑇�̃�2(𝑤),… , 𝑇�̃�𝑛(𝑤)} = 𝐴 

𝐶�̃�(𝑤)  = min{𝐶�̃�1(𝑤), 𝐶�̃�2(𝑤), … , 𝐶�̃�𝑚(𝑤); 𝐶�̃�1(𝑤), 𝐶�̃�2(𝑤), … , 𝐶�̃�𝑛(𝑤)} = 𝐵 

𝐺�̃�(𝑤) = max{𝐺�̃�1(𝑤), 𝐺�̃�2(𝑤),… , 𝐺�̃�𝑚(𝑤); 𝐺�̃�1(𝑤), 𝐺�̃�2(𝑤), … , 𝐺�̃�𝑛(𝑤)} = 𝐶 

𝑈�̃�(𝑤) = max{𝑈�̃�1(𝑤),𝑈�̃�2(𝑤),… ,𝑈�̃�𝑚(𝑤); 𝑈�̃�1(𝑤), 𝑈�̃�2(𝑤),… ,𝑈�̃�𝑛(𝑤)} = 𝐷 

 𝐹�̃�(𝑤) = max{𝐹�̃�1(𝑤), 𝐹�̃�2(𝑤),… , 𝐹�̃�𝑚(𝑤); 𝐹�̃�1(𝑤), 𝐹�̃�2(𝑤),… , 𝐹�̃�𝑛(𝑤)} = 𝐸 

Where 𝑇�̃� , 𝐶�̃� , 𝐺�̃� , 𝑈�̃�and 𝐹�̃�  presents the truth, contradiction, ignorance, unknown and falsity 

degree of membership of penta-partitioned neutrosophic decision set, respectively. Now using PNO, 

the above problem (1) is reformulated into a MOOP as: 

𝑀𝑎𝑥 𝐴,   𝑀𝑎𝑥 𝐵,   𝑀𝑖𝑛 𝐶,   𝑀𝑖𝑛 𝐷,   𝑀𝑖𝑛 𝐸. 

Subject to, 

𝑇�̃�𝑖(𝑤) ≥ 𝐴,  𝑇�̃�𝑗(𝑤) ≥ 𝐴 

𝐶�̃�𝑖(𝑤) ≥ 𝐵,  𝐶�̃�𝑗(𝑤) ≥ 𝐵 

𝐺�̃�𝑖(𝑤) ≤ 𝐶,  𝐺�̃�𝑗(𝑤) ≤ 𝐶 

𝑈�̃�𝑖(𝑤) ≤ 𝐷,  𝑈�̃�𝑗(𝑤) ≤ 𝐷 

𝐹�̃�𝑖(𝑤) ≤ 𝐸,  𝐹�̃�𝑗(𝑤) ≤ 𝐸 

𝐴 ≥ 𝐵,𝐴 ≥ 𝐶, 𝐴 ≥ 𝐷,𝐴 ≥ 𝐸 

0 ≤ 𝐴 + 𝐵 + 𝐶 +𝐷 + 𝐸 ≤ 5 

𝐴,𝐵, 𝐶,𝐷, 𝐸 ∈ [0,1], 𝑖 = 1, … ,𝑚 

                                                           𝑓𝑗(𝑤) ≤ 𝑏𝑗 ,  𝑤 ≥

0,  𝑗 = 1, … , 𝑛.                                    (2) 

 

Computational method: 

Step 1: Each objective function is solved individually ignoring the others subject to the constraints. 
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Step 2: Determine the value of other objective functions at the point where the best value of the 

individual objective function occurs. 

Step 3: Using above two steps, construct pay-off matrix: 

[

𝑍1
∗(𝑤1) 𝑍2(𝑤1) ⋯ 𝑍𝑚(𝑤1)

𝑍1(𝑤2) 𝑍2
∗(𝑤2) ⋯ 𝑍m(𝑤2)

⋮ ⋮ ⋱ ⋮
𝑍1(𝑤𝑚) 𝑍2(𝑤𝑚) ⋯ 𝑍𝑚

∗ (𝑤𝑚)

]. 

Step 4: Find lower bound L𝑚
𝑇 , upper bound U𝑚

𝑇  of truth membership of each 𝑍𝑚(𝑤) by, 

                                                    U𝑚
𝑇 =

𝑚𝑎𝑥{𝑍𝑚(𝑤𝑖)}  and  L𝑚
𝑇 = 𝑚𝑖𝑛{𝑍𝑚(𝑤𝑖)}, 𝑖 = 1,2, … ,𝑚. 

Lower bound  L𝑚
𝐶  and upper bound  U𝑚

𝐶  for contradiction membership of objective functions 

𝑍𝑚(𝑤) are, 

L𝑚
𝐶 = L𝑚

𝑇   and  U𝑚
𝐶 = L𝑚

𝑇 + 𝑞𝑚(U𝑚
𝑇 − L𝑚

𝑇 ), 

lower bound L𝑚
𝐺  , Upper bound  U𝑚

𝐺  for Ignorance membership of objectives 𝑍𝑚(𝑤) are  

                              U𝑚
𝐺 = U𝑚

𝑇   and  L𝑚
𝐺 = L𝑚

𝑇 + 𝑟𝑚(U𝑚
𝑇 − L𝑚

𝑇 ),                              

The upper bounds U𝑚
𝑈  and lower bounds  L𝑚

𝑈  for unknown membership function of objectives are, 

U𝑚
𝑈 = U𝑚

𝑇   and  L𝑚
𝑈 = L𝑚

𝑇 + 𝑠𝑚(𝑈𝑚
𝑇 − L𝑚

𝑇 ), 

The upper bounds U𝑚
𝐹  and lower bounds  L𝑚

𝐹  of falsity membership function of objectives are, 

U𝑚
𝐹 = U𝑚

𝑇   and  L𝑚
𝐹 = L𝑚

𝑇 + 𝑡𝑚(𝑈𝑚
𝑇 − L𝑚

𝑇 ), 

 

where 𝑞𝑚 , 𝑟𝑚 , 𝑠𝑚 , 𝑡𝑚 ∈ (0,1).       

 

                           Figure1. membership functions of the objective functions    

 

Step 5: In this step, truth, contradiction, ignorance, unknown, falsity membership functions are: 

𝑇𝑖(𝑍𝑖) 𝐹𝑖(𝑍𝑖) 

𝐿𝐶

= 𝐿𝑇 

𝐿𝐹 𝐿𝐺 𝐿𝑈 𝑈𝐶  𝑈𝑇 = 𝑈𝐹 = 𝑈𝐺 = 𝑈𝑈 
0 

1 
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𝑇𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 1 𝑍𝑚(𝑤) ≤ L𝑚

𝑇

U𝑚
𝑇 − 𝑍𝑚(𝑤)

U𝑚
𝑇 − L𝑚

𝑇
L𝑚
𝑇 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝑇

0 𝑍𝑚(𝑤) ≥ U𝑚
𝑇

 

𝐶𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 1  𝑍𝑚(𝑤) ≤ L𝑚

𝐶

U𝑚
𝐶 − 𝑍𝑚(𝑤)

U𝑚
𝑈 − L𝑚

𝐶
L𝑚
𝐶 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝐶

0 𝑍𝑚(𝑤) ≥ U𝑚
𝑈

𝐺𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 0 𝑍𝑚(𝑤) ≤ L𝑚

𝐺

𝑍𝑚(𝑤) − L𝑚
𝐺

U𝑚
𝐺 − L𝑚

𝐺
L𝑚
𝐺 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝐺

1 𝑍𝑚(𝑤) ≥ U𝑚
𝐺

 

       𝑈𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 0 𝑍𝑚(𝑤) ≤ L𝑚

𝑈

𝑍𝑚(𝑤) − L𝑚
𝑈

U𝑚
𝑈 − L𝑚

𝑈
L𝑚
𝑈 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝑈

1 𝑍𝑚(𝑤) ≥ U𝑚
𝑈

 

    𝐹𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 0 𝑍𝑚(𝑤) ≤ L𝑚

𝐹

𝑍𝑚(𝑤) − L𝑚
𝐹

U𝑚
𝐹 − L𝑚

𝐹
L𝑚
𝐹 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝐹

1 𝑍𝑚(𝑤) ≥ U𝑚
𝐹

 

 

Step 6: Now PNO method for MOOP is presented by max-min method as: 

 Max ( 𝐴 + 𝐵 − 𝐶 − 𝐷 − 𝐸), 

 Subject to                                    𝑇𝑚(𝑍𝑚(𝑤))   ≥ 𝐴 

  𝐶𝑚(𝑍𝑚(𝑤))   ≥ 𝐵 

𝐺𝑚(𝑍𝑚(𝑤))  ≤ 𝐶 

𝑈𝑚(𝑍𝑚(𝑤))  ≤ 𝐷 

𝐹𝑚(𝑍𝑚(𝑤))   ≤ 𝐸 

                                                                 𝑓𝑗(𝑤) ≤ 𝑏𝑗 ,  𝑤 ≥

0,  𝑗 = 1, … , 𝑛 

                                 with,  0 ≤ 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 ≤ 5, 

                          𝐴 ≥ 𝐵, 𝐴 ≥ 𝐶,𝐴 ≥ 𝐷, 𝐴 ≥ 𝐸 ,     𝐴, 𝐵, 𝐶, 𝐷, 𝐸 ∈ [0,1]                         

(3)                                                                                     

This equivalent to:    

                       Max ( 𝐴 + 𝐵 − 𝐶 −𝐷 − 𝐸) 

Subject to 
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𝑍𝑚(𝑤) + (U𝑚
𝑇 − L𝑚

𝑇 ) ⋅ 𝐴 ≤ U𝑚
𝑇

𝑍𝑚(𝑤) + (U𝑚
𝐶 − L𝑚

𝐶 ) ⋅ 𝐵 ≤ U𝑚
𝐶

𝑍𝑚(𝑤) − (U𝑚
𝐺 − L𝑚

𝐺 ) ⋅ 𝐶 ≤ L𝑚
𝐺

𝑍𝑚(𝑤) − (U𝑚
𝑈 − L𝑚

𝑈 ) ⋅ 𝐷 ≤ L𝑚
𝑈

 

𝑍𝑚(𝑤) − (U𝑚
𝐹 − L𝑚

𝐹 ) ⋅ 𝐸 ≤ L𝑚
𝐹  

𝑓𝑗(𝑤) ≤ 𝑏𝑗 ,  𝑤 ≥ 0,  𝑗 = 1,… , 𝑛 

For all 𝑚 objectives 

0 ≤ 𝐴 + 𝐵 + 𝐶 +𝐷 + 𝐸 ≤ 5,      𝐴 ≥ 𝐵, 𝐴 ≥ 𝐶, 𝐴 ≥ 𝐷, 𝐴 ≥ 𝐸         𝐴, 𝐵, 𝐶, 𝐷, 𝐸 ∈ [0,1]              

(4)                                                                                          

4. Numerical example [14]  

Consider the following MOOP: 

Min 𝑍1(𝑥1, 𝑥2) = 𝑥1
−1𝑥2

−2,

Min 𝑍2(𝑥1, 𝑥2) = 2𝑥1
−2𝑥2

−3,
 

 Subject to                             𝑥1 + 𝑥2 ≤ 1.          

                                         𝑥1, 𝑥2 ≥ 0                                          (5) 

 

 

 

 

 

 

 

Step 1: Solving the above objective functions individually ignoring other objective subject to the 

constraint, we get the optimal values 𝑍1
∗(𝑋1) = 6.75 at the point 𝑋1 = (.33, .67) and 𝑍2

∗(𝑋2) = 57.87 

at the point 𝑋2 = (. 4, .6). 

Step 2: At the point of optimal the values of other objectives have calculated. Here 𝑍1(𝑋
2) = 6.94 and 

𝑍2(𝑋
1) = 60.78. 

 Step 3: The pay-off matrix is:  

 

 

 

 

 

 

 

 

Step 4: Calculate upper and lower bound of membership functions corresponding to each objective 

function:                                  L1
𝑇 = 6.75, U1

𝑇 = 6.94 

 𝑍1 𝑍2 

𝑋1 6.75 60.78 

𝑋2 6.94 57.87 
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 L1
𝐶 = 6.75,   U1

𝐶 = 6.75 + 0.19 × 𝑞1 = 6.902 

  L1
𝐺 = 6.75 + 0.19 × 𝑟1 = 6.7975,   U1

𝐺 = 6.94 

 L1
𝑈 = 6.75 + 0.19 × 𝑠1 = 6.807,   U1

𝑈 = 6.94 

L1
𝐹 = 6.75 + 0.19 × 𝑡1 = 6.788,   U1

𝐹 = 6.94 

 

                                             L2
𝑇 = 57.87, U2

𝑇 = 60.78 

                                             L2
𝐶 = 57.87,   U2

𝐶 = 57.87 + 2.91 × 𝑞2 = 60.489 

       L2
𝐺 = 57.87 + 2.91 × 𝑟2 = 58.3065,   U2

𝐺 = 60.78 

     L2
𝑈 = 57.87 + 2.91 × 𝑠2 = 58.452,   U2

𝑈 = 60.78 

    L2
𝐹 = 57.87 + 2.91 × 𝑡2 = 58.161,   U2

𝐹 = 60.78 

 

where  𝑞1 = 0.800 , 𝑟1 = 0.250 , 𝑠1 = 0.300 , 𝑡1 = 0.200 , 𝑞2 = 0.900 , 𝑟2 = 0.150 , 𝑠2 = 0.200 , 𝑡2 =

0.100. 

 

Step 5: Now, membership functions of  𝑇, 𝐶, 𝑈, 𝐺, 𝑎𝑛𝑑 𝐹 can be defined as: 

𝑇1(𝑥1 
−1𝑥2

−2) =

{
 

 
1 𝑥1

−1𝑥2
−2 ≤ 6.75

6.94 − 𝑥1
−1𝑥2

−2

6.94 − 6.75
6.75 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.94

0 𝑥1
−1𝑥2

−2 ≥ 6.94

 

            𝑇2(2𝑥1
−2𝑥2

−3) =

{
 

 
1 2𝑥1

−2𝑥2
−3 ≤ 57.87

60.78 − 2𝑥1
−2𝑥2

−3

60.78 − 57.87
57.87 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.78

0 𝑥1
−1𝑥2 

−2 ≥ 60.78

 

   𝐶1(𝑥1 
−1𝑥2

−2) =

{
 

 
1 𝑥1

−1𝑥2
−2 ≤ 6.75

6.902 − 𝑥1
−1𝑥2

−2

6.94 − 6.75
6.75 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.902

0 𝑥1
−1𝑥2

−2 ≥ 6.902

 

                𝐶2(2𝑥1
−2𝑥2

−3) =

{
 

 
1 2𝑥1

−2𝑥2
−3 ≤ 57.87

60.489 − 2𝑥1
−2𝑥2

−3

60.489 − 57.87
57.87 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.489

0 𝑥1
−1𝑥2 

−2 ≥ 60.78

 

           𝐺1(𝑥1
−1𝑥2

−2) =

{
 

 
0 𝑥1

−1𝑥2
−2 ≤ 6.7975

𝑥1
−1𝑥2

−2 − 6.7975

6.94 − 6.7975
6.7975 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.94

1 𝑥1
−1𝑥2

−2 ≥ 6.94

 

                𝐺2(2𝑥1
−2𝑥2

−3) =

{
 

 
0 2𝑥1

−2𝑥2
−3 ≤ 58.3065

2𝑥1
−2𝑥2

−3 − 58.3065

60.78 − 58.3065
58.3065 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.78

1 21
−2𝑥2

−3 ≥ 60.78
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𝑈1(𝑥1
−1𝑥2

−2) =

{
 

 
0 𝑥1

−1𝑥2
−2 ≤ 6.807

𝑥1
−1𝑥2

−2 − 6.807

6.94 − 6.807
6.807 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.94

1 𝑥1
−1𝑥2

−2 ≥ 6.94

 

          𝑈2(2𝑥1
−2𝑥2

−3) =

{
 

 
0 2𝑥1

−2𝑥2
−3 ≤ 58.452

2𝑥1
−2𝑥2

−3 − 58.452

60.78 − 58.452
58.452 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.78

1 21
−2𝑥2

−3 ≥ 60.78

 

𝐹1(𝑥1
−1𝑥2

−2) =

{
 

 
0 𝑥1

−1𝑥2
−2 ≤ 6.788

𝑥1
−1𝑥2

−2 − 6.788

6.94 − 6.788
6.788 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.94

1 𝑥1
−1𝑥2

−2 ≥ 6.94

 

         𝐹2(2𝑥1
−2𝑥2

−3) =

{
 

 
0 2𝑥1

−2𝑥2
−3 ≤ 58.161

2𝑥1
−2𝑥2

−3 − 58.161

60.78 − 58.161
58.161 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.78

1 21
−2𝑥2

−3 ≥ 60.78

 

Step 6: The above problem in PNS is now 

 Max (𝐴 + 𝐵 − 𝐶 −𝐷 − 𝐸) 

Subject to 

𝑥1
−1𝑥2

−2 + (0.19)𝐴 ≤ 6.94 

    2𝑥1
−2𝑥2

−3 + (2.19)𝐴 ≤ 60.78 

    𝑥1
−1𝑥2

−2 + (0.152)𝐵 ≤ 6.902 

        2𝑥1
−2𝑥2

−3 + (2.619)𝐵 ≤ 60.489 

        𝑥1
−1𝑥2

−2 − (0.1425)𝐶 ≤ 6.7975 

            2𝑥1
−2𝑥2

−3 − (2.4735)𝐶 ≤ 58.3065 

   𝑥1
−1𝑥2

−2 − (0.133)𝐷 ≤ 6.807 

       2𝑥1
−2𝑥2

−3 − (2.328)𝐷 ≤ 58.452 

  𝑥1
−1𝑥2

−2 − (0.152)𝐸 ≤ 6.788 

       2𝑥1
−2𝑥2

−3 − (2.619)𝐸 ≤ 58.161 

𝑥1 + 𝑥2 ≤ 1 

                                                0 ≤ 𝐴,𝐵, 𝐶,𝐷, 𝐸 ≤ 1 𝑎𝑛𝑑 𝐴 ≥

𝐵, 𝐶,𝐷, 𝐸.    

                                                    𝑥1, 𝑥2 ≥ 0                                                   

(6)                                                                                        

The outcomes of the suggested approach and comparison with alternative approaches, IFO, NSO and 

FVRNO using LINGO software are shown by table 1 and table 2 in results and discussion section. 

5. Application of proposed method on multi-objective reliability optimization model [35]  
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Figure2. LCD display unit 

The multi-objective reliability optimization model of the LCD display unit is as follows: 

Max𝑅(r) = r1(𝑟2
10 + 10𝑟2

9(1 − 𝑟2))(1 − (1 − 𝑟3)
2) (𝑟4 + 𝑟4 ln (

1

𝑟4
)) r5 

         
              Min𝐶(r) =

∑  5
𝑗=1   𝑐𝑗 [tan (

𝜋

2
𝑟𝑗)]

𝑎𝑗
                                                                            

 

Subject to, 𝑉(𝑟) =∑ 

5

𝑗=1

 𝑣𝑗𝑟𝑗
𝑏𝑗 ≤ 𝑉𝑚𝑎𝑥 

                                                  0.5 ≤ 𝑟𝑗 ≤ 1            𝑗

= 1,2,… ,5                                                      (7) 

This problem (7) is equivalent to: 

 

          Min 𝑅′(𝑟) = 1 − 𝑅(𝑟) and Min 𝐶(𝑟), subject to same constraints as above.     (8) 

 

 

6. Results and discussion 

 

Table1. results for problem (1) by sum of optimal objective values. 

 

Optimization 

Methods 

Optimal decision variables 
(𝑥1

∗, 𝑥2
∗) 

Optimal value of 

objectives (𝑍1
∗, 𝑍2

∗) 

Sum of the optimal 

objective values 
𝑍 = (𝑍1

∗ + 𝑍2
∗) 

 

IFO 𝑥1
∗ = .3659009,  𝑥2

∗ = .6356811 𝑍1
∗ = 6.797078 
𝑍2
∗ = 58.79110 

𝑍 = 65.588178 

NSO 𝑥1
∗ = .3635224,  𝑥2

∗ = .6364776 𝑍1
∗ = 6.790513 
𝑍2
∗ = 58.68732 

𝑍 = 65.477833 

FVRNO 𝑥1
∗ = .365902,  𝑥2

∗ = .634098 𝑍1
∗ = 6.797081071 
𝑍2
∗ = 58.59104971 

𝑍 = 65.3881308 

PNO 

(proposed 

method) 

𝑥1
∗ = .3688571,  𝑥2

∗ = .6311429 𝑍1
∗ = 6.8059139 

𝑍2
∗ = 58.4696639 

𝑍 = 65.2755778 

 

In Table (1), we have shown that sum of the optimal objective values by IFO is 65.588178, by NSO is 

65.477833, by FVRNO is 65.3881308. Here by the proposed method, the same is 65.2755778. since the 

both objectives of problem (5) are minimization type, we can conclude the proposed method is better. 
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Percentage gap= |
𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝐵𝑒𝑠𝑡 𝑉𝑎𝑙𝑢𝑒

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 
| × 100% 

 

Table 2. results for problem (1) by percentage gap. 

 

Optimization 

Methods 

Percentage gap of 𝑍1
∗ Percentage gap of 𝑍2

∗ Total percentage gap 

IFO 0. 0965856 0.546742789 0.643328389 

NSO 0 0.370874151 0.370874151 

FVRNO 0.0966308 0.207174663 0.303805463 

PNO 0.2262870 0 0.2262870 

 

From Table 2, we have shown that the total percentage gap by IFO, NSO, FVRNO and PNO are 

0.643328389, 0.370874151, 0.303805463, 0.2262870 respectively. So, the developed method is better in 

the view of percentage gap. Graphical presentation of the results of problem (5) by total optimal 

values of objectives and total percentage gap are presented in Figure 3 and Figure 4. 

 

Figure 3. Comparison of the developed method with other by total optimal values 

 

Figure 4. Comparison of the developed method with other by total percentage gap 
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Table 3. Data used for the reliability optimization model. 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑎𝑗(∀𝑗) 𝑏𝑗(∀𝑗) 𝑉max  

28 30 32 35 29 6 4.5 3.75 3.5 7 0.4 1 24 

 

 Pay-off matrix is: 

 𝑅′ 𝐶 

R1 0.01478132 5196.368 

R2 0.9982949 154 

 

 

Table 4. Optimal solutions by FVRNO and PNO methods  

Methods 𝑟1  𝑟2  𝑟3  𝑟4 𝑟5 𝑅∗ 𝐶∗ 

FVRNO 0.9762522 0.9809396 0.9096640 0.8776727 0.9756593 0.923499 470.4295 

PNO 0.9725617 0.9791286 0.9015574 0.8669358 0.9718783 0.91108 449.5225 

 

Table 5. Efficiency of the proposed method by total percentage gap 

Methods percentage gap of 𝑅∗ percentage gap of 𝐶∗ Total percentage 

gap 

FVRNO 0 4.4442366 4.442366 

PNO 1.36310752 0 1.36310752 

 

In Table 4the outcomes of the suggested approach (PNO) and FVRNO solving the problem (7) are 

shown. The comparison of the result is presented by percentage gap in table 5. From table 5, we can 

conclude that the result obtained by PNO method is better than FVRNO. The graphical presentation 

of the result of percentage gap is presented by Figure 5. 
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Figure 5. Comparison of the proposed method with other by total percentage gap 

7. Conclusion and future directions 

Using a penta-partitioned neutrosophic fuzzy environment, we have suggested a new computational 

approach in this article. A well-known example is solved to show the efficiency of developed method 

and the results are compared with other existing methods such as IFO, NFO, FVRNO by sum of 

optimal values and total percentage gap in table 1 and table 2. We have also applied this method to 

solve multi objective reliability optimization model (LCD display unit) by maximizing the system 

reliability and minimizing system cost and the results are compared with FVRNO by total percentage 

gap in table 5. We could deduce from the results that the suggested approach is effective and more 

flexible than those already in use. 

In future, we can apply this method to inventory model, transportation problem, portfolio selection 

model etc. considering various fuzzy parameters.  
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Abstract: In practical scenarios, it is common to encounter fuzzy data that contains numerous 

imprecise observations. The uncertainty associated with this type of data often leads to the use of 

interval statistical measures and the proposal of neutrosophic versions of probability distributions 

to better handle such data. We present a unique methodology that is based on the maximum 

likelihood approach and neutrosophic approach for estimating parameter of the proposed 

neutrosophic geometric distribution (NGD). The proposed methodology is supported by key 

likelihood inference results. The proposed distribution is specifically designed to handle variables 

with imprecise observation, hence effectively addressing a wide range of situations often 

encountered in the analysis of uncertain data. To evaluate the efficacy of the proposed neutrosophic 

model, we have carried out a comprehensive simulation experiment that rigorously examined the 

performance of the proposed model. The practical utility of NGD in the analysis of incomplete data 

is further exemplified through real-world applications. 

Keywords: Neutrosophic logic, uncertain analysis, probability model, estimation, simulation 

1. Introduction 

Statistical distributions are a powerful tool for describing and predicting real-world events. The 

geometric distribution is possibly the most common distribution in statistical applications [1] . The 

geometric distribution is widely employed in various domains such as finance, investment, scientific 

research, and engineering, making it the most frequently utilized distribution [2]. The geometric 

distribution is a discrete probability distribution that is commonly employed to model the probability 

of attaining success in a sequence of independent trials with two possible outcomes [3]. Through the 

use of geometric distribution, it becomes possible to ascertain the likelihood of attaining success 

subsequent to a designated quantity of attempts [4]. The geometric distribution exhibits a multitude 

of uses in practical, real-world situations. As an illustration, it can be employed to simulate the 

quantity of endeavors required to achieve win in a game of probability or the quantity of unsuccessful 

tries prior to attaining success in a manufacturing procedure [5].  

The geometric distribution is also used in banking to figure out how likely it is that a loan will 

not be paid back or how many trades are needed to make a profit [6], [7]. In the field of epidemiology, 
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geometric distribution can also be used to model how many contacts a person with a disease has 

before they spread it to other people [8]. Additionally, it can be used in telecommunications to 

determine how many tries are needed to make a call in a busy network [9]. 

The geometric distribution is an important part of probability theory and has been studied a lot 

for its uses in many different areas [10]. Figuring out the chance of getting the first victory after a 

certain number of tries is what the geometric probability mass function is based on [11]. Well-known 

scientists like Feller [2] and Ross [3] have spent a great deal of time studying and exploring this idea. 

They have come up with detailed explanations and studies of its properties. In queuing theory, the 

geometric distribution is a key tool for finding out how long people will have to wait. Kleinrock's 

efforts [4] have shown that this can be used. 

Barlow and Proschan [2] employ this probability distribution within the domain of reliability 

engineering to examine the duration required for the initial failure occurrence in systems. 

Furthermore, researchers in the field of epidemiology, such as Thelwell et al. [12], employ this tool as 

a means to get valuable understanding regarding the intricacies of disease transmission. The research 

conducted by Mandelbrot emphasises the importance of the Geometric distribution in the assessment 

of financial risk [13]. Furthermore, Preston's research delves into the use of this concept in the field 

of environmental science, namely in the modelling of species abundance [14]. The geometric 

distribution is widely employed in many disciplines, including information theory[15] , machine 

learning for pattern identification [10], game theory for strategic interactions [16], and educational 

research for comprehending learning patterns [17]–[20]. 

Fuzzy sets serve as the fundamental construct underlying the notion of fuzzy set theory. The 

notion of fuzzy sets is a crucial aspect within the framework of fuzzy set theory [21]. Fuzzy sets are 

mathematical constructs that enable the incorporation of partial membership or degrees of truth 

inside their representations [22]. The aforementioned frameworks offer a versatile structure for 

addressing ambiguity and imprecision across many domains, including but not limited to artificial 

intelligence, decision-making, and pattern recognition [23]. The integration of fuzzy sets within the 

framework of fuzzy set theory enables a more sophisticated and authentic methodology for 

modelling intricate systems and representing imprecise data [23]–[26].  The use of fuzzy set theory 

enables a more detailed modelling of complex systems, allowing for effective capture of imprecise 

information. Fuzzy control has been effectively employed in the automobile sector to regulate diverse 

systems, including automatic gearbox, suspension, engine, temperature control, and antilock brakes 

[27]. Furthermore, washing machines employ fuzzy control algorithms to adapt their washing 

approach according on several criteria, including the detected degree of filth, kind of cloth, size of 

the load, and water level [28]. The neutrosophy idea, initially proposed by Smarandache, is 

increasingly being recognised and used due to its capacity to offer a more adaptable and all-

encompassing approach in addressing uncertainty and imprecision within the context of data 

analysis [29]. Neutrosophic statistics provide an expanded range of options for the representation 

and analysis of data, hence enabling to achievement of enhanced precision and dependability in the 

obtained outcomes [30], [31]. This strategy demonstrates significant use in scenarios when 

conventional statistical methods prove inadequate, consequently gaining greater popularity within 

the discipline of uncertain data analysis [32]–[35]. The proposal of NGD in this work is driven by the 

recognition of the significant role geometric distribution plays in statistical applications. Its wide 

applicability and the prevalence of uncertainty in real data make NGD an important consideration. 

The proposed distribution and its key characteristics are described in Section 2. The estimation 

procedure for unknown parameters under the neutrosophic logic is presented in Section 3. In Section 

4, the quantile function of the proposed model is formulated and the procedure for simulating data 

is explained. The significance of theoretical findings is concisely explained by analyzing a real-world 

examples in Section 5. Finally, Section 6 provides the final remarks of the study. 
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2. Proposed Model 

This section presents a summary statistic of the proposed model and describes some of its 

important functions. The summary statistics of the proposed model provide a concise overview of its 

key characteristics. Additionally, the description of important functions commonly used in applied 

probability distribution theory helps to understand how the model can be utilized in practical 

applications. The geometric distribution holds significant importance in the field of statistics, being 

one of the fundamental distributions. 

The formula provided below represents the neutrosophic probability density function (𝐷𝐹𝑛). 

ℊ𝑛(𝒳) =  𝒫𝑛(1 − 𝒫𝑛)𝒳  ;  𝒳 ≥ 0        (1) 

where 0 < 𝒫𝑛 = [𝒫𝑙 , 𝒫𝑢] < 1 is the neutrosophic parameter of the NGD. To calculate the probability 

of waiting exactly r trials before the first successful event, we need to know the probability of success 

in a single trial (𝒫𝑛). The probability of failure (𝑞𝑛) can be calculated as 1 minus 𝒫𝑛. This scenario is 

known as a special case of the negative binomial distribution. It should be noted that the suggested 

model differs from the existing framework of the geometric model, where the parameter is precisely 

determined. The suggested model becomes equal to the classical model, when the indeterminate 

portion of the suggested model is zero, i.e., 𝒫𝑙 = 𝒫𝑢 = 𝒫 . The neutrosophic probability density 

function, often denoted as 𝐷𝐹𝑛 , is a mathematical function that describes the likelihood of a 

neutrosophic random variable taking on a particular interval value due to imprecision in 𝒫𝑛 . It 

provides valuable information about the distribution of the neutrosophic variable and can be used to 

calculate probabilities of different outcomes. Based on (1), the NGD is depicted in Figure1.  

 

Figure 1: Density plots of the proposed NGD with different vague values of parameter 

 

Figure 1 illustrates that there is a distinct interval probability for every value of the random variable 

𝒳.As illustrated in Figure 1(a), for instance, 𝒫𝑛 = [0.1, 0.2] approximation for 𝒳 = 1, and the same is 

true for other values. The graph of 𝐷𝐹𝑛 shows that the likelihood of different outcomes occurring 

within a given range. It provides a visual representation of the probability of each possible outcome. 

By examining the shape and characteristics of the 𝐷𝐹𝑛, one can gain insights into the likelihood and 
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spread of values within the distribution. The neutrosophic probability mass function (𝑃𝑀𝐹𝑛) of any 

density is another fascinating feature of probability theory applications. To describe the distribution 

of a discrete random variable, we can use the 𝑃𝑀𝐹𝑛 . This function assigns probabilities to each 

possible value that the random variable can take. The 𝑃𝑀𝐹𝑛is a cooperatively linked variant of the 

𝐷𝐹𝑛 and may be calculated as: 

𝒢𝑛(𝒳) = 1 − (1 − 𝒫𝑛)𝒳          (2) 

It should be noted that the 𝑃𝑀𝐹𝑛  can be applied to any real number in the set R. However, if an 

argument does not belong to the possible values that the variable can take (i.e., the support of the 

sample space), then the 𝑃𝑀𝐹𝑛 will have a value of zero. Conversely, if an argument does belong to 

the support of the sample space, then the 𝑃𝑀𝐹𝑛 will have a positive value. This means that the 𝑃𝑀𝐹𝑛 

assigns probabilities to specific values within the sample space. It is important to note that the sum 

of all the probabilities assigned by the 𝑃𝑀𝐹𝑛 must equal 1. The graph of 𝑃𝑀𝐹𝑛 with imprecise values 

of NGD with different interval values of 𝒫𝑛 is shown in Figure 2. 

 

 

Figure 2: The graph of 𝑃𝑀𝐹𝑛 of the proposed model 

 

The 𝑃𝑀𝐹𝑛 graph provides a visual representation of the probabilities linked to neutrosophic random 

variable. This graph illustrates discrete outcomes on the horizontal axis and their corresponding 

neutrosophic probability on the vertical axis. Each data point on the graph represents the probability 

of a certain result, with taller hight indicating more likely events. Importantly, the total of all 

probabilities shown on the graph equals one. The peaks spots on the graph depict the most probable 

occurrences, providing a distinct comparative examination of the likelihood of various events. The 

graph's discrete form, characterized by distinct double points, sets it apart from the classical plot of 

the geometric distribution. The 𝑃𝑀𝐹𝑛 graph is a useful tool for comprehending and forecasting the 

unpredictability linked to discrete events in statistical research. 

The suggested model's survival function can be described as follows in the neutrosophic 

framework: In the given statistical approach, the survival function plays a significant role in 
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determining the probability of an individual's life surviving for a specific duration. Referred to as the 

survival rate, this function can be defined within the neutrosophic framework according to suggested 

model as: 

𝒮𝑛(𝒳) = (1 − 𝒫𝑛)𝒳          (3) 

The graph of the survival function which is also known as reliability function is depicted in Figure 3. 

 

 

Figure 3: The survival function of the suggested NGD 

 

The neutrosophic hazard function (𝐻𝐹𝑛), often known as the impending failure rate, is another 

important function in reliability analysis. For the given model, it is the ratio of the survival and 

density functions, which may be computed as follows: 

𝒽𝑛(𝒳) =
ℊ𝑛(𝓍)

𝒮𝑛(𝓍)
= 𝒫𝑛          (4) 

The function 𝒽𝑛(𝓍) calculates an individual or item failure probability over a short period of time. 

The 𝐻𝐹𝑛 may increase, decrease, stay constant, or reflect a more complex process. In this way the 

suggested model is memoryless in the family of discrete probability distribution like the exponential 

distribution in the class of continuous distributions. 

Several theorems can be used to establish statistical properties of the proposed distribution. Some of 

these theorems include the derivations of important statistical measures in neutrosophic framework 

that can help to understand the behavior of the distribution for analyzing the vague dataset. These 

theorems provide a solid foundation for making reliable inferences and drawing meaningful 

conclusions. 

Theorem 1 If 𝓍 follows the NGD then 𝐸(𝒳) =
1−𝒫𝑛

𝒫𝑛
 

Proof: By definition, the mean of the NGD is given by: 

𝐸(𝒳) = ∑ (1 − 𝒫𝑛)𝒳𝒫𝑛𝒳∞
𝒳=0   

           = (1 − 𝒫𝑛)𝒫𝑛 ∑ (1 − 𝒫𝑛)𝒳−1∞
𝒳=0 𝒳  

           = [(1 − 𝒫𝑙)𝒫𝑙 ∑ (1 − 𝒫𝑙)
𝒳−1∞

𝒳=0 𝒳, (1 − 𝒫𝑢.)𝒫𝑢 ∑ (1 − 𝒫𝑢)𝒳−1∞
𝒳=0 𝒳]   (5) 

Equation (5) further yielded: 

 (1 − 𝒫𝑙)𝒫𝑙 ∑ (1 − 𝒫𝑙)
𝒳−1∞

𝒳=0 𝒳 =
1−𝒫𝑙

𝒫𝑙
 

and 

(1 − 𝒫𝑢.)𝒫𝑢 ∑ (1 − 𝒫𝑢)𝒳−1∞
𝒳=0 𝒳 =

1−𝒫𝑢

𝒫𝑢
  

So, 

[
1−𝒫𝑙

𝒫𝑙
,

1−𝒫𝑢

𝒫𝑢
] =

1−𝒫𝑛

𝒫𝑛
 , hence proved. 
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Theorem 2 If 𝓍 follows the NGD, then �̃�𝑛(𝒳) =
1−𝒫𝑛

𝒫𝑛
2  is the variance of the proposed model. 

Proof: The variance of the NGD is given by:  

�̃�𝑛(𝓍) = 𝐸(𝒳2) − [𝐸(𝒳)]2        (6) 

Now 

𝐸(𝒳2) = ∑ (1 − 𝒫𝑛)𝒳𝒫𝑛𝒳2∞
𝒳=0   

           = [(1 − 𝒫𝑢.)
2𝒫𝑙 ∑ (1 − 𝒫𝑙)

𝒳−1𝒳2∞
𝒳=0 , (1 − 𝒫𝑢.)

2𝒫𝑢 ∑ (1 − 𝒫𝑢)𝒳−1∞
𝒳=0 𝒳2]  (7) 

Simplification of (7) provided: 

[
2−3𝒫𝑙+𝒫𝑙

2

𝒫𝑙
2 ,

2−3𝒫𝑢+𝒫𝑢
2

𝒫𝑢
2 ] =

2−3𝒫𝑛+𝒫𝑛
2

𝒫𝑛
2   

Thus (6) becomes: 

�̃�𝑛(𝓍) = [
1−𝒫𝑙

𝒫𝑙
2 ,

1−𝒫𝑢

𝒫𝑢
2 ] =

1−𝒫𝑛

𝒫𝑛
2   

Theorem 3 Show that  𝑘𝑡ℎ moment of the NGD is 
𝒫𝑛

1−(1−𝒫𝑛)𝑒𝑘 

Proof: By definition the 𝑘𝑡ℎ moment of the NGD is given by: 

𝜇𝑘𝑛 = ∑ 𝑒𝑘𝒳(1 − 𝒫𝑛)𝒳𝒫𝑛
∞
𝒳=0   

       = 𝒫𝑛 ∑ [𝑒𝑘(1 − 𝒫𝑛)]𝒳∞
𝒳=0   

       = [𝒫𝑙 ∑ [𝑒𝑘(1 − 𝒫𝑙)]𝒳∞
𝒳=0 , 𝒫𝑢 ∑ [𝑒𝑘(1 − 𝒫𝑢)]𝒳∞

𝒳=0 ]      (8) 

From (8), we can write; 

𝒫𝑙 ∑ [𝑒𝑘(1 − 𝒫𝑙)]𝒳∞
𝒳=0 =

𝒫𝑙

1−(1−𝒫𝑙)𝑒𝑘  

and 

𝒫𝑢 ∑ [𝑒𝑘(1 − 𝒫𝑢)]𝒳∞
𝒳=0 =

𝒫𝑢

1−(1−𝒫𝑢)𝑒𝑘  

Hence  

𝜇𝑘𝑛 = [
𝒫𝑙

1−(1−𝒫𝑙)𝑒𝑘 ,
𝒫𝑢

1−(1−𝒫𝑢)𝑒𝑘
] =

𝒫𝑛

1−(1−𝒫𝑛)𝑒𝑘  is required result. 

𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,3, … is a general expression for the 𝑘𝑡ℎ row moment about the origin of the NGD. By 

using the following relations, moments about the mean for NGD can be derived as: 

𝜇1𝑛
′ = 𝜇1𝑛 =

1−𝒫𝑛

𝒫𝑛
  

𝜇2𝑛
′ = 𝜇2𝑛 − (𝜇1𝑛)2 =

1−𝒫𝑛

𝒫𝑛
2   

𝜇3𝑛
′ = 𝜇3𝑛 − 3𝜇2𝑛𝜇1𝑛 + 2(𝜇1𝑛)3 = (1 − 𝒫𝑛)(1 + (1 − 𝒫𝑛))𝒫𝑛  

𝜇4𝑛
′ = 𝜇4𝑁 − 4𝜇3𝑛𝜇1𝑛 + 6𝜇2𝑛𝜇1𝑛

2 − 3𝜇1𝑛
4 = (

9(1−𝒫𝑛
2)

𝒫𝑛
4 ) + (

1−𝒫𝑛

𝒫𝑛
2 )  

 

Theorem 4 The coefficient of skewness of the NGD is 
(1+(1−𝒫𝑛))

(1−𝒫𝑛)
1

2⁄  
 

Proof: By definition, the coefficient of skewness for NGD is given by: 

𝛼3 =
𝜇3𝑛

′

(𝜇2𝑛
′ )

3
2⁄
           (9) 

Where 𝜇3𝑛
′ = (1 − 𝒫𝑛)(1 + (1 − 𝒫𝑛))𝒫𝑛 and 𝜇2𝑛

′ =
1−𝒫𝑛

𝒫𝑛
2  

Substituting in (9) yielded; 

𝛼3 =
(1+(1−𝒫𝑛))

(1−𝒫𝑛)
1

2⁄  
  

where 𝛼3 ∈ [𝛼𝑙 , 𝛼𝑢]. 

 

Theorem 5 Show that the coefficient of kurtosis for NGD is (9 +
𝒫𝑛

2

1 − 𝒫𝑛
⁄ ) 

Proof: By definition, the coefficient of kurtosis is given by: 

𝛼4 =
𝜇4𝑛

′

𝜇2𝑛
′ 2           (10) 

Where 𝜇4𝑛
′ = (

9(1−𝒫𝑛
2)

𝒫𝑛
4 ) + (

1−𝒫𝑛

𝒫𝑛
2 ) and 𝜇2𝑛

′ =
1−𝒫𝑛

𝒫𝑛
2  
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Substituting in (10) yielded: 

𝛼4 = (9 +
𝒫𝑛

2

1 − 𝒫𝑛
⁄ )  

where 𝛼4 = [𝛼𝑙 , 𝛼𝑢]. 

In the same way, other important distributional properties can also be explored through the 

neutrosophic framework. These properties offer a comprehensive approach to analyzing 

uncertainties and vagueness. 

 

3. Estimation Procedure 

The maximum likelihood estimate (MLE) is a widely used method in many real-world 

applications. It aims to determine the parameter value(s) that provide the highest probability of the 

observed data occurring. In uncertain environments, MLE differs from the classical approach as it 

provides interval estimates of neutrosophic parameters instead of a single point estimate. This allows 

for a more comprehensive representation of uncertainty and variability in the data. By providing 

interval estimates, MLE under the neutrosophic structure accounts for the inherent ambiguity and 

imprecision present in uncertain environments, making it a valuable tool in decision-making 

processes. In this part, a well-known MLE technique is used to determine the neutrosophic parameter 

of the proposed NGD. The ML technique is defined by considering the parameters unknown and 

calculating the joint density of all observations is a dataset that are assumed to be identical and 

dispersed independently. Once the likelihood of the NGD is established, maxima of the function are 

determined. These ML estimators are essential in the statistical viewpoint because of minimal 

variance and asymptotic unbiasedness properties. Let 𝑦1, 𝑦2, … , 𝑦𝑘 are identical and independently 

observations from the k subjects which follow the parametric model given in (1) then the joint density 

is given by: 

ℒ(𝒫𝑛| 𝒳) = ∏ ℊ𝑛(𝒳|𝒫𝑛)𝑘
𝑖=1           

                   = ∏ 𝒫𝑛(1 − 𝒫𝑛)𝒳𝑖𝑘
𝑖=1   

                   = 𝒫𝑛 ∏ (1 − 𝒫𝑛)𝒳𝑖𝑘
𝑖=1          (11) 

Taking the logarithm of (11) and symbolizing it by 𝜔𝑛(𝒯𝑖|𝒫𝑛), 

𝜔𝑛(𝒯𝑖|𝒫𝑛) = 𝑙𝑜𝑔[𝒫𝑛 ∏ (1 − 𝒫𝑛)𝒳𝑖𝑘
𝑖=1  ]        (12) 

Simplification of (12) yielded; 

𝜔𝑛(𝒯𝑖|𝒫𝑛) = 𝑘𝑙𝑜𝑔(𝒫𝑛) + (∑ 𝒳𝑖 − 𝑘𝑘
1 ) log(1 − 𝒫𝑛)       (13) 

Partially differentiating (13) by unknown values and equating to zero implies: 

[
𝛿𝜔𝑛(𝒳𝑖,𝒫𝑛)

𝛿𝒫𝑛
] = 0           (14) 

Further solution of (14) provides the following estimates for unknown parameter of the NGD 

�̂�𝑛 =
𝑘

(∑ 𝒳𝑖
𝑘
1 ) 

           (15) 

Note that �̂�𝑛 will be interval forms because of imprecise sample data.  

This aligns with intuition because when observing a geometric random variable across 𝑘 trials, the 

total number of successes observed is represented by the sum of individual trial outcomes ∑ 𝒳𝑖
𝑘
1 . By 

calculating the ratio of the number of successes to the total number of trials, we can estimate the 

probability 𝒫𝑛. It is crucial to note that the maximum likelihood estimator (MLE) can be considered 

as a random variable since it is based on random data. Consequently, the MLE inherits the 

randomness of the underlying dataset from which it is derived. Let us take an example where we see 

that how the MLE estimation can be performed. We consider a situation where we assume that a 

manufacturing process that produce some specific items. We want to model the number of attempts 

needed to produce a defect produced by a manufacturing machine. In a sample of 10 attempts, we 

can record the number of attempts it took to produce a defective item for each attempt. For example, 

in this case, the recorded attempts are: 
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2, 5, [1,2], 3, [4,5] 2, 1, [6,7] 2, [5, 6] 

Here some values such as [1,2], [4,5], [6,7] and [5,6] are imprecise. Here the value for instance [4,5] 

means that position of the defective item is not clearly defined. The same holds for other imprecise 

items. Now this data the unknown neutrosophic parameter can be estimated as: 

The above data can further be written as: 

[2, 2], [5, 5], [1, 2], [3, 3], [4, 5], [2, 2], [1, 1], [6, 7], [2, 2], [5, 6] 

By using (15) the 𝒫𝑛 can be estimated as: 

�̂�𝑛 =
10

[∑ 𝒳𝑖𝑙
𝑘
1 , ∑ 𝒳𝑖𝑢

𝑘
1 ] 

 

where ∑ 𝒳𝑖𝑙
𝑘
1  and ∑ 𝒳𝑖𝑢

𝑘
1  are lower and upper values of the neutrosophic data. 

Thus, 

�̂�𝑛 =
10

[31,35] 
≅ [0.28, 0.32]  

Hence the estimated imprecise value lies between 0.28 and 0.32. 

 

4. Random Data Generation  

We may require information on the number of trials needed to achieve a 25%, 50% or 75% 

probability of success occurrence. For example in a production line where there is a 5% defective rate, 

we aim to determine the minimum number of inspections, denoted as 𝑎 , required to ensure that the 

probability of observing at least one defective item reaches or exceeds 50%. 

To find 𝑎 such that  

𝑝(𝒳 ≤ 𝑎) ≥ 0.50 
where 𝑎 is known as the 50% quantile of geometric distribution. 

Generally, 𝑘 percentile provides the minimum interval value of 𝑎 such that 

 𝑝(𝒳 ≤ 𝑎) ≥ 𝑘/100         (16) 

Equation (16) can be expressed as: 

1 − (1 − 𝒫𝑛)𝑎 ≥
𝑘

100
          (17) 

Further simplification of (17) yields: 

𝑎 ≤
ln (1−

𝑘

100
)

ln ((1−𝒫𝑛))
           (18) 

Solution of (8) provides the minimum interval value of 𝑎. For example the 50% quantile for defective 

rate 𝒫𝑛 = [0.1, 0.15] can be found utilizing (8) as: 

𝑎 ≤
ln(1 − 0.5)

ln(1 − [0.1, 0.15])
≅ [4, 6] 

This means that there is at least 50% chance to get the first success in the trial interval [4, 6]. In general 

the inverse distribution can be used to produce random neutrosophic variable from the model as: 

𝒢𝑛(𝒳)−1 =
𝑙𝑛(1−𝑢)

𝑙𝑛(1−𝒫𝑛)
;     0 < 𝑢 < 1.         (19) 

The (19) based on inverse transformation method and can used to generate random data from the 

proposed NGD. 

By taking the value 𝒫𝑛 = [0.2,0.4], exact mean and variance from Theorem 1 and Theorem 2 can be 

calculated as follows: 

𝐸(𝒳) =
1 − 𝒫𝑛

𝒫𝑛

 

             =
1 − [0.2,0.4]

[0.2,0.4]
 

  𝐸(𝒳) = [1.5, 4]  

𝑉(𝒳)  =
1 − 𝒫𝑛

𝒫𝑛
2  
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           =
1−[0.2,0.4]

[0.2,0.4]2  

𝑉(𝒳) = [3.75, 20] 
Thus exact mean and variance of the proposed distribution by considering 𝒫𝑛 = [0.2,0.4] are [1.5, 4] 

and [3.75, 20]  respectively. Now we will see that our simulation results are also in close 

approximation to exact values. 

The study uses a larger sequence of random numbers generated from 10,000 Monte Carlo simulations 

to estimate the parameter of a proposed model. The parameter range considered in the study is 

between 0.2 and 0.4. To obtain simulated results, a program written in R is utilized. Additionally, the 

program utilizes the "moments" package to analyze moment-based characteristics of the proposed 

distribution. The larger sequence of random numbers generated from 10,000 Monte Carlo simulations 

allows for a more accurate estimation of the parameter in the proposed model. By considering a 

parameter range between 0.2 and 0.4, the study ensures a comprehensive analysis of the distribution's 

characteristics. Table 1 displays the estimation results of the NGD parameter using the generated 

simulated data. 

 

Table 1: Summary statistics of the NGD based on simulated data. 

Properties Estimated values 

MLE Estimate [0.20, 0.40] 

Mean [2.49, 4.98] 

Variance [3.73, 19.93] 

Skewness [2.05, 2.00] 

Quartile 1 [1, 2] 

Quartile 2 [2, 4] 

Quartile 3 [3, 7] 

 

The results in Table 1 show that due to uncertainty in the parameter of NGD, the characteristics of 

the distribution are interval based and imprecise. Furthermore, the simulated results closely 

approximate the true characteristics of the distribution. 

 

5. Real Data Applications 

In this section, some numerical examples have been considered to illustrate the application of 

the concepts discussed in this work. These examples serve to provide a practical understanding of 

how the concepts can be applied in real-life scenarios. By showcasing numerical calculations and 

their corresponding interpretations, readers can better grasp the significance and implications of the 

discussed concepts.  

Example1: Assume that a production machine has a faulty rate ranging from 5% to 8%. Considering 

the unknown defective rate of the machine's products, which ranges from𝒫𝑛 = [0.05, 0.08], what is 

the probability range for the occurrence of the first defective item in the third inspection? 

Given the defective rate 𝒫𝑛 = [0.05, 0.08] 

Let 𝒳 be the neutrosophic random variable which denotes the number of defective items produced 

by the machine. 

Neutrosophically, the defective rate is in the range 𝒫𝑛 = [0.05, 0.08], signifying the uncertainty or 

imprecision in the defective rate of the machine's products. 

The probability of the first defective occurring in the third item can be calculated under this interval 

probability as: 
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𝑝(𝒳 = 3)                  = [0.05, 0.08][1 − [0.05, 0.08]]
2
 

                                    = [0.05, 0.08][0.8464, 0.9025] 

                                    = [0.042,0.072] 
By evaluating these expressions we found the probability range of [0.042,0.072] for the occurrence of 

the first defective item in the third position. This range takes into consideration the imprecision or 

uncertainty in the defective rate, which falls between 5% and 8%. 

Example 2: There is an estimated possibility of [0.4, 0.6] in a specific Malaysian city that a randomly 

selected individual owns a motorcycle. What is the likelihood that the first motorbike owner to be 

encountered among the first four people interviewed in this city will be the fourth person 

interviewed? 

We must take into account this interval in the neutrosophic context, where the estimated likelihood 

of owning a motorcycle is between 0.4 and 0.6 (i.e., 𝒫𝑛 = [0.4, 0.6]  ), to determine the range of 

probabilities for the occurrence. 

Let 𝒳 be the random variable that denotes the number of people having motorbike. 

𝑝(𝒳 = 4) = [0.4, 0.6][1 − [0.4, 0.6]]
3
 

                    = [0.4, 0.6][0.064, 0.216] 

                    = [0.0256, 0.1296] 
Thus, assessing these expressions according to neutrosophic arithmetic rules will yield a range of 

probability [0.0256, 0.1296], taking into consideration the imprecision or uncertainty in the estimated 

likelihood of motorcycle ownership between 0.4 and 0.6, in the event that the fourth interviewee is 

the first to have a motorcycle.  

Example 3: Calculate the probability of a student pilot passing the written test for a private pilot's 

license on their third attempt, assuming that the probability of passing the test is between 0.2 and 0.3. 

Let 𝒳 be the neutrosophic random variable that denotes the number of attempts a student makes to 

pass this test. 

Now the required probability can be obtained as: 

𝑝(𝒳 = 4) = [0.2, 0.3][1 − [0.2, 0.3]]
2
 

                    = [0.2, 0.3][0.49, 0.64] 

                    = [0.098, 0.192] 
Example 4: What is the neutrosophic probability of encountering the first defective product within 

the initial six inspections, given a defective rate ranging from 0.03 to 0.05? 

To solve this problem, we need to find involve the neutrosophic distribution function as described 

in (3). 

𝑝(𝒳 ≤ 6) = 1 − [1 − 𝒫𝑛]6 
where 𝒫𝑛 = [0.03, 0.05] 

Now 

𝑝(𝒳 ≤ 6) = 1 − [1 − [0.03, 0.05]]
6
 

                   = 1−[0.95, 0.97]6 

                   = [0.167, 0.265] 

Based on the provided imprecise defective rate (0.03 to 0.05), the neutrosophic probability of first 

defective item out of six inspected items fall between 0.0167 and 0.265. This range indicates that there 

is a relatively low probability of encountering the first defective item, but it is not entirely unlikely. 

 

6. Concluding Remarks 

The neutrosophic geometric distribution (NGD) is a revolutionary framework that has been 

introduced in this research. It is derived from the classical geometric distribution and aims to handle 
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imprecise data analysis. By doing so, it offers a reliable and generalized method for conducting 

modern statistical investigations for another class of data. We have extensively examined the basic 

characteristics of the NGD in a neutrosophic setting and clarified its essential reliability functions. To 

make it more useful in real-life situations, we have devised most method of the ML estimation. The 

effectiveness of this technique in determining the NGD parameters has been demonstrated through 

several numerical instances, proving its applicability in real-world situations. Furthermore, we have 

focused on developing the NGD's quantile function by the inverse cumulative function method. This 

function enabled us to generate simulation data, serving as a valuable tool for estimating parameter 

and providing insightful summary statistics on the behavior of the proposed model. We have 

considered real-life situations to demonstrate the application of NGD and enhance the 

comprehension of its theoretical concepts.  

Furthermore, our research acts as a connection between classical structures and the innovative 

neutrosophic framework, enabling future developments in extending geometric distribution to 

neutrosophic domain and exploring its diverse applications. 
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Abstract. Motivated by the theory of hybrid structures, our aim in this paper is to introduce the notion of

hybrid matrices and bring out an application. Some operations on hybrid matrices are discussed. The notion

of hybrid matrices is then generalized by introducing the novel idea of neutrosophic hybrid matrices. Some

interesting operations and results on neutrosophic hybrid matrices are presented. As an application a multi-

criteria decision making (MCDM) problem is presented together with an algorithm and example. The new

method is compared with the existing one to exibit its efficiency.
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—————————————————————————————————————————-

1. Introduction

An innovative idea of soft set theory has been efficiently developed by Molodtsov [15]. This

tool has wide scope of applications in several fields such as engineering, medicine, sciences

and mathematical modelling. He identified that the classical and recent theories play vital

role in the study of uncertainty. However with the rapidly growing quantity and type of

uncertainties, these ideas have their own hurdles and drawbacks as given in Molodtsov [15].

Recent applications of soft sets, introduction to soft matrices and their developments can be

viewed in the articles Çağman et al., Maji et al., Mondal et al., Vijayabalaji et al. ( [5], [14],

[16], [20]).
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Neutrosophic set is a modern tool in mathematics extensively used for problems containing

imprecise, indeterminant and inconsistent data. This novel idea was initiated by Smarandache

[19]. This is a generalized concept of fuzzy set theory by Zadeh [23] and intuitionistic fuzzy

set by Atanassov [3]. It is established that neutrosophic sets produce more accurate results

than those obtained by using intuitionistic fuzzy sets or fuzzy sets.

Maji [12] has further generalized the new concept of neutrosophic set to neutrosophic soft

set. The notion of neutrosophic soft matrix was developed by Deli et a.l [7]. The novelty of

neutrosophic set is that it comprises of three various membership functions namely a truth,

an indeterminacy and a falsity membership functions. Jun [10] applied soft set theory to

BCK/BCI algebra. A remarkable theory of hybrid structure was by introduced Jun et al. [11].

The novelty of this structure is that it combines soft set with its grade. An algorithm to

exhibit the application of neutrosophic hybrid matrix is also provided.

So far no systematic development has been made in the theory of hybrid matrix using hybrid

structure. Our main motivation is to present the notion of hybrid matrices and study their

properties. We then intend to generalize the idea of hybrid matrices to neutrosophic hybrid

matrices using neutrosphic structure as a tool.

In this paper, some preliminaries about soft set, soft matrix, hybrid structure and some

operations between two hybrid structures are provided in section 2. Also we define complement

of a hybrid structure, cartesian product and hybrid relation between two hybrid structures

and introduce the concept of the hybrid matrices and various types of hybrid matrices with

suitable examples in section 3. We introduce various operations on hybrid matrices and some

properties of hybrid matrices are also studied in section 4. In section 5 we define neutrosophic

hybrid structure and its operations using inception of neutrosophic concepts like neutrosophic

set, neutrosophic soft set and neutrosophic soft matrices. Section 6 defines the notion of

neutrosophic hybrid matrices involving several operations and we study their properties with

suitable examples. A MCDM problem based on neutrosophic hybrid matrix and a comparative

analysis of our work with Maji’s [13] work is also carried out in section 7.

2. Preliminaries

The basic ideas are presented below. For convenient let us represent U to be an universe

set, H being a set of parameters and P(U) representing power set of U with A ⊆ H.

Definition 2.1. [15] A pair (X ,A) is called soft set over U ,X : A −→ P(U).

Definition 2.2. [16] A representation of soft set in matrix form is called as soft matrix.

Definition 2.3. [11] Xλ = (X , λ) : H −→ P(U)× I, ϱ −→ (X (ϱ), λ(ϱ)) is called as hybrid

structure where X : H −→ P(U), λ : H −→ I are mappings and I is the unit interval [0, 1].
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Example 2.4. [11] Let U = {υ1, υ2, υ3, . . . , υ10} be the universe set and H =

{ϱ1, ϱ2, ϱ3, ϱ4, ϱ5, ϱ6} be the set of parameters.

Table 1. Representation of the hybrid structure Xλ

H X λ

ϱ1 x1 = {υ1, υ2} 0.2

ϱ2 x2 = {υ2, υ3, υ4, υ6} 0.4

ϱ3 x3 = {υ3, υ5, υ7} 0.1

ϱ4 x4 = {υ1, υ2, υ6, υ9} 0.9

ϱ5 x5 = {υ6, υ7} 0.6

ϱ6 x6 = {υ1, υ2, υ4} 0.8

Definition 2.5. [11] Let Xλ and Yγ be hybrid structures in H. Then

Xλ ⊓ Yγ : H −→ P(U)× I, ϱ −→ ((Xλ ⊓ Yγ)(ϱ), (λ ∨ γ)(ϱ)) for all ϱ ∈ H, is called as the hy-

brid intersection where

Xλ ⊓ Yγ : H −→ P(U), ϱ −→ X (ϱ) ⊓ Y(ϱ)

∨γ : H −→ I, ϱ −→ g{λ(ϱ), γ(ϱ)}.

Definition 2.6. [11] Let Xλ and Yγ be hybrid structures in H. Then

Xλ ⊔ Yγ : H −→ P(U)× I, ϱ −→ ((Xλ ⊔ Yγ)(ϱ), (λ ∧ γ)(ϱ)) for all ϱ ∈ H, is called as the hy-

brid union where

Xλ ⊔ Yγ : H −→ P(U), ϱ → X (ϱ) ⊔ Y(ϱ)

∧γ : H −→ I, ϱ −→ f{λ(ϱ), γ(ϱ)}.

Definition 2.7. [7] A mapping XN : A −→ N (U) ia called as neutrosophic soft set over U ,
N (U) being the set of all neutrosophic sets in U .

Definition 2.8. [7] Matrix representation of the neutrosophic soft set is called as the neu-

trosophic soft matrix.

3. Hybrid matrix and its types

Inspired by the theory of soft matrices, we introduce the concept of hybrid matrix and its

types. Before entering into the notion hybrid matrix we define the complement, cartesian

product and relation on hybrid structure as follows.

Definition 3.1. X c
λ = (X c, λc) : Hc → P(U)× I, ϱ → (X c(ϱ), λc(ϱ)) is called the complement

of a hybrid structure where X c(ϱ) = U − X (ϱ) and λc(ϱ) = 1− λ(ϱ) for all ϱ ∈ ¬H.

Punniyamoorthy, Vijayabalaji, Raghavendra Rao and Belide Shashidhar. Neutrosophic
hybrid structures and neutrosophic hybrid matrices

Neutrosophic Sets and Systems, Vol. 61, 2023                                                                            397



Definition 3.2. Let Xλ and Yγ be hybrid structures in H. The cartesian product of Xλ and

Yγ is:

Xλ × Yγ = {{(θ, η) : θ ∈ X (ϱ), η ∈ Y(ϱ)},min{λ(ϱ), γ(ϱ)}}, for all ϱ ∈ H.

Definition 3.3. Given two hybrid structures Xλ and Yγ in H, then the hybrid relation between

Xλ and Yγ is:

R = {{(θ, η) : θ ∈ X (ϱ), η ∈ Y(ϱ)},min{λ(ϱ), γ(ϱ)}} ⊂ Xλ × Yγ , for all ϱ ∈ H.

Definition 3.4. The hybrid matrix over (Xλ,H)

is defined by [MH] = [M(Xλ,H)] = M [(X (ϱ), λ(ϱ))] = (mij)m×n, for some ϱ ∈ H. That is,

a hybrid matrix is a matrix whose elements are the elements of the hybrid structure (Xλ,H).

That is, [MH] = [M(Xλ,H)] =


(x1, 0.2) (x3, 0.1) (x4, 0.9)

(x2, 0.4) (x6, 0.8) (x1, 0.2)

(x3, 0.1) (x1, 0.2) (x5, 0.6)

(x6, 0.8) (x2, 0.4) (x3, 0.1)

 .

Definition 3.5. Let [MH] = [M(Xλ,H)] = M [(X (ϱ), λ(ϱ))] be a hybrid matrix over a hybrid

structure (Xλ,H). Then the zero hybrid matrix is [MH] = [0] if X (ϱ) = ϕ, λ(ϱ) = 0, for all

ϱ ∈ H. That is [MH] = (mij)m×n = M[(ϕ, 0)]∀ i and j.

Definition 3.6. Let [MH] = [M(Xλ,H)] = M [(X (ϱ), λ(ϱ))] be a hybrid matrix over a hybrid

structure (Xλ,H). Then the universe hybrid matrix is [MH] = [U ] if X (α) = U , λ(ϱ) = 1, for

all ϱ ∈ H. That is [MH] = (mij)m×n = M[(U , 1)]∀ i and j.

Definition 3.7. A hybrid row matrix is a matrix with single row.

Example 3.8. An example of hybrid row matrix is [MH] =
[
(x1, 0.2) (x3, 0.1) (x4, 0.9)

]
.

Definition 3.9. A hybrid column matrix is a matrix with single column.

Example 3.10. An example of hybrid column matrix is [MH] =


(x1, 0.2)

(x2, 0.4)

(x3, 0.1)

(x6, 0.8)

 .

Definition 3.11. A hybrid matrix with equal number of rows and columns is called hybrid

square matrix.

Example 3.12. An example of hybrid square matrix is [MH] = (x1, 0.2) (x3, 0.1) (x4, 0.9)

(x2, 0.4) (x6, 0.8) (x1, 0.2)

(x3, 0.1) (x1, 0.2) (x5, 0.6)

 .
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4. Operations on hybrid matrices

Some interesting operations on hybrid matrices are presented in this section.

Definition 4.1. Let [MH] = [M(Pη,H)] = (mij)m×n and [NH] = [N(Qγ ,H)] = (nij)m×n be

two hybrid matrices of same order over the hybrid structure (Xλ,H).

Then the AND operation of two hybrid matrices is given below.

[MH]AND[NH] = [M(Pη,H)]f [N(Qγ ,H)] = [LH],

where [LH] = (lij)m×n = [L(Rν ,H)] = [L (R(ϱ), ν(ϱ))]

= [L (R(ϱ) = P(ϱ)fQ(ϱ), ν(ϱ) = max{η(ϱ), γ(ϱ)})], for some ϱ ∈ H.

Example 4.2. Let U = {υ1, υ2, υ3, υ4, υ5} be the universe set and H = {ϱ1, ϱ2, ϱ3, ϱ4, ϱ5} be

the set of parameters.

Let [MH] =

[
({υ1, υ2}, 0.2) ({υ3, υ4, υ5}, 0.1)

({upsilon1, υ4, υ5}, 0.4) ({υ2, υ3}, 0.8)

]

and [NH] =

[
({υ3, υ5}, 0.1) ({υ1, υ3}, 0.6)

({υ1, υ2, υ3}, 0.9) ({υ2, υ3, υ4}, 0.4)

]
.

Then [MH]AND[NH] =

[
(ϕ, 0.2) ({υ3}, 0.6)

({υ1}, 0.9) ({υ2, υ3}, 0.8)

]
.

Definition 4.3. Let [MH] = [M(Pη,H)] = (mij)m×n and [NH] = [N(Qγ ,H)] = (nij)m×n be

two hybrid matrices of same order over the hybrid structure (Xλ,H).

Then the OR operation of two hybrid matrices is given below.

[MH]OR[NH] = [M(Pη,H)]g [N(Qγ ,H)] = [LH],

where [LH] = (lij)m×n = [L(Rν ,H)] = [L ((R(ϱ), ν(ϱ))]

= [L (R(ϱ) = P(ϱ)gQ(ϱ), ν(ϱ) = min{η(ϱ), γ(ϱ)})], for some ϱ ∈ H.

Example 4.4. Let U = {υ1, υ2, υ3, υ4, υ5} be the universe set and H = {ϱ1, ϱ2, ϱ3, ϱ4, ϱ5} be

the set of parameters.

Let [MH] =

[
({υ1, υ2}, 0.2) ({υ3, υ4, υ5}, 0.1)

({υ1, υ4, υ5}, 0.4) ({υ2, υ3}, 0.8)

]

and [NH] =

[
({υ3, υ5}, 0.1) ({υ1, υ3}, 0.6)

({υ1, υ2, υ3}, 0.9) ({υ2, υ3, υ4}, 0.4)

]
.

Then [MH]OR[NH] =

[
({υ1, υ2, υ3, υ5}, 0.1) ({υ1, υ3, υ4, υ5}, 0.1)

(U , 0.4) ({υ2, υ3, υ4}, 0.4)

]
.

Definition 4.5. Let [MH] = [M(Pη,H)] = (mij)m×n be a hybrid matrix over the hybrid

structure (Xλ,H). Then [MH]
c =

(
Mc

ij

)
m×n

= [M (U − P(ϱ), 1− η(ϱ))],for some ϱ ∈ H, is

called the complement of a hybrid matrix.
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Example 4.6. Let U = {υ1, υ2, υ3, υ4, υ5} be the universe set and H = {ϱ1, ϱ2, ϱ3, ϱ4, ϱ5} be

the set of parameters.

Let [MH] =

[
({υ1, υ2}, 0.2) ({υ3, υ4, υ5}, 0.1)

({υ1, υ4, υ5}, 0.4) ({υ2, υ3}, 0.8)

]

and [MH]
c =

[
({υ3, υ4, υ5}, 0.8) ({υ1, υ2}, 0.9)
({υ2, υ3}, 0.6) ({υ1, υ4, υ5}, 0.2)

]
.

Definition 4.7. Let [MH] = [M(Pη,H)] = (mij)m×n and [NH] = [N(Qγ ,H)] = (nij)m×n be

two hybrid matrices over the hybrid structure (Xλ,H).

Then the union operation of two hybrid matrices is given below.

[MH] ⊔ [NH] = [M(Pη,H)] ⊔ [N(Qγ ,H)] = [LH] = (lij).

Remark 4.8. lij = ⊔ϱRν(ϱ) = ⊔ϱ (R(ϱ), ν(ϱ)), where ϱ being the parameter which is common

of the ith row of [MH] and jth column of [NH] and ν(ϱ) = min {η(ϱ), γ(ϱ)}.

Example 4.9. Let U = {υ1, υ2, υ3, υ4, υ5} be the universe set and H = {ϱ1, ϱ2, ϱ3, ϱ4, ϱ5} be

the set of parameters.

Let [MH] =

 ({υ2, υ3}, 0.8) ({υ4, υ5}, 0.1) ({υ2, υ3, υ4}, 0.6)
({υ1, υ3, υ4}, 0.4) ({υ2, υ3}, 0.8) ({υ1, υ2, υ3}, 0.1)
({υ2, υ3, υ4}, 0.6) ({υ1}, 0.7) ({υ1, υ2}, 0.2)



and [NH] =

 ({υ3, υ5}, 0.1) ({υ1, υ3}, 0.6) ({υ2}, 0.5)
({υ2, υ3, υ4}, 0.6) ({υ, υ2, υ3}, 0.1) ({υ2, υ3}, 0.8)
({υ4, υ5}, 0.1) ({υ2, υ3}, 0.8) ({υ1}, 0.7)

.
The union of [MH] and [NH] is given by,

[MH] ⊔ [NH] =

 ({υ2, υ3, υ4, υ5}, 0.1) ({υ2, υ3}, 0.8) ({υ2, υ3}, 0.8)
ϕ ({υ1, υ2, υ3}, 0.1) ({υ2, υ3}, 0.8)

({υ2, υ3, υ4}, 0.6) ϕ ({υ1}, 0.7)

.
Definition 4.10. Let [MH] = [M(Pη,H)] = (mij)m×n and [NH] = [N(Qγ ,H)] = (nij)m×n be

two hybrid matrices over the hybrid structure (Xλ,H).

Then the intersection operation of two hybrid matrices is given below.

[MH] ⊓ [NH] = [M(Pη,H)] ⊓ [N(Qγ ,H)] = [LH] = (lij).

Remark 4.11. lij = ⊓ϱRν(ϱ) = ⊓ϱ (R(ϱ), ν(ϱ)), where ϱ being the parameter which is com-

mon to the ith row of [MH] and jth column of [NH] and ν(ϱ) = max {η(ϱ), γ(ϱ)}.

Example 4.12. Let U = {υ1, υ2, υ3, υ4, υ5} be the universe set and H = {α1, α2, α3, α4, α5}
be the set of parameters.
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Let [MH] =

 ({υ2, υ3}, 0.8) ({υ4, υ5}, 0.1) ({υ2, υ3, υ4}, 0.6)
({υ1, υ3, υ4}, 0.4) ({υ2, υ3}, 0.8) ({υ1, υ2, υ3}, 0.1)
({υ2, υ3, υ4}, 0.6) ({υ1}, 0.7) ({υ1, υ2}, 0.2)



and [NH] =

 ({υ3, υ5}, 0.1) ({υ1, υ3}, 0.6) ({υ2}, 0.5)
({υ2, υ3, υ4}, 0.6) ({υ1, υ2, υ3}, 0.1) ({υ2, υ3}, 0.8)
({υ4, υ5}, 0.1) ({υ2, υ3}, 0.8) ({υ1}, 0.7)

.
The intersection of [MH] and [NH] is given by,

[MH] ⊓ [NH] =

 ϕ ϕ ϕ

ϕ ({υ3}, 0.8) ϕ

ϕ ϕ ϕ

.
Theorem 4.13. Let [MH] and [NH] be two hybrid matrices of same order over the hybrid

structure (Xλ,H). Then the following results related to the operations hold.

(1) [MH]g [NH] = [NH]g [MH]

(2) [MH]f [NH] = [NH]f [MH]

(3) ([MH]
c)c = [MH]

(4) ([MH]g [NH])
c = [MH]

c f [NH]
c

(5) ([MH]f [NH])
c = [MH]

c g [NH]
c.

Proof. Let [MH] = [M(Pη,H)] = (mij)m×n and [NH] = [N(Qγ ,H)] = (nij)m×n

(1) [MH]g [NH] = [NH]g [MH]

[MH]g [NH] = [M(Pη,H)]g [N(Qγ ,H)]

= [M (P(ϱ), η(ϱ))]g [N (Q(ϱ), γ(ϱ))]

= [L (P(ϱ)gQ(ϱ),min{η(ϱ), γ(ϱ)})]

= [L (Q(ϱ)g P(ϱ),min{η(ϱ), γ(ϱ)})]

= [N (Q(ϱ), γ(ϱ))]g [M (P(ϱ), η(ϱ))]

= [NH]g [MH].

(2) [MH]f [NH] = [NH]f [MH]

Proof is similar to (1).

(3) ([MH]
c)c = [MH]

Since, [MH]
c =

(
mc

ij

)
= [M (U − P(ϱ), 1− η(ϱ))]

([MH]
c)c = [M (U − {U − P(ϱ)}, 1− {1− η(ϱ)})]

= [M (P(ϱ), η(ϱ))]

= [M(Pη,H)]

= [MH].
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(4) ([MH]g [NH])
c = [MH]

c f [NH]
c

Since, [MH]
c =

(
mc

ij

)
= [M (U − P(ϱ), 1− η(ϱ))]

and [NH]
c =

(
ncij

)
= [N (U −Q(ϱ), 1− γ(ϱ))]

([MH]g [NH])
c = ([L (P(ϱ)gQ(ϱ),min{η(ϱ), γ(ϱ)})])c

= [L (U − {P(ϱ)gQ(ϱ)},max{1− η(ϱ), 1− γ(ϱ)})]

= [L ({U − P(ϱ)}f {U −Q(ϱ)},max{1− η(ϱ), 1− γ(ϱ)})]

= [M (U − P(ϱ), 1− η(ϱ))]f [N (U −Q(ϱ), 1− γ(ϱ))]

= [MH]
c f [NH]

c.

(5) ([MH]f [NH])
c = [MH]

c g [NH]
c

Proof is similar to (4).

Theorem 4.14. Let [LH], [MH] and [NH] be three hybrid matrices of same order over the

hybrid structure (Xλ,H). Then the following results related to the operations hold.

(1) ([LH]g [MH])g [NH] = [LH]g ([MH]g [NH])

(2) ([LH]f [MH])f [NH] = [LH]f ([MH]f [NH])

(3) [LH]g ([MH]f [NH]) = ([LH]g [MH])f ([LH]g [NH])

(4) [LH]f ([MH]g [NH]) = ([LH]f [MH])g ([LH]f [NH]).

Proof. Let [LH] = [M(Pν ,H)] = (lij)m×n, [MH] = [M(Qη,H)] = (mij)m×n and

[NH] = [N(Rγ ,H)] = (nij)m×n

(1) ([LH]g [MH])g [NH] = [LH]g ([MH]g [NH])

([LH]g [MH])g [NH] = ([L (P(ϱ), ν(ϱ))]g [M (Q(ϱ), η(ϱ))])g [N (R(ϱ), γ(ϱ))]

= ([S (P(ϱ)gQ(ϱ),min{ν(ϱ), η(ϱ)})])g [N (R(ϱ), γ(ϱ))]

= [T ({P(ϱ)gQ(ϱ)}gR(ϱ),min{ν(ϱ), η(ϱ), γ(ϱ)})]

= [T (P(ϱ)g {Q(ϱ)gRϱ)},min{ν(ϱ), η(ϱ), γ(ϱ)})]

= [L (P(ϱ), ν(ϱ))]g ([S (Q(ϱ)gR(ϱ),min{η(ϱ), γ(ϱ)})])

= [LH]g ([MH]g [NH]).

(2) ([LH]f [MH])f [NH] = [LH]f ([MH]f [NH])

Proof is similar to (1).
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(3) [LH]g ([MH]f [NH]) = ([LH]g [MH])f ([LH]g [NH])

LHS = [LH]g ([MH]f [NH])

= [L (P(ϱ), ν(ϱ))]g ([M (Q(ϱ), η(ϱ))]f [N (R(ϱ), γ(ϱ))])

= [L (P(ϱ), ν(ϱ))]g [S (Q(ϱ)fR(ϱ),max{η(ϱ), γ(ϱ)})]

= [T (P(ϱ)g {Q(ϱ)fR(ϱ)},min{ν(ϱ),max{η(ϱ), γ(ϱ)}})]

= [T ((P(ϱ)gQ(ϱ))f (P(ϱ)gR(ϱ)) ,max{min{ν(ϱ), η(ϱ)},min{η(ϱ), γ(ϱ)}})]

= [S ((P(ϱ)gQ(ϱ)) ,min{ν(ϱ), η(ϱ)})]f [W ((P(ϱ)gR(ϱ)) ,min{η(ϱ), γ(ϱ)})]

= ([LH]g [MH])f ([LH]g [NH]).

(4) [LH]f ([MH]g [NH]) = ([LH]f [MH])g ([LH]f [NH])

Proof is similar to (3).

Theorem 4.15. Let [LH], [MH] and [NH] be three hybrid matrices over the hybrid structure

(Xλ,H). Then the following results related to the operations hold.

(1) ([LH] ⊔ [MH]) ⊔ [NH] = [LH] ⊔ ([MH] ⊔ [NH])

(2) ([LH] ⊓ [MH]) ⊓ [NH] = [LH] ⊓ ([MH] ⊓ [NH]).

Proof. Let [LH] = [M(Pν ,H)] = (lij), [MH] = [M(Qη,H)] = (mij) and [NH] = [N(Rγ ,H)] =

(nij)

(1) ([LH] ⊔ [MH]) ⊔ [NH] = [LH] ⊔ ([MH] ⊔ [NH])

Let [LH] ⊔ [MH] = (rij), then

rij = ⊔ϱSτ (ϱ) = ⊔ϱ (S(ϱ), τ(ϱ))

where ϱ being the parameter which is common of the ith row of [LH] and jth column

of [MH] and τ(ϱ) = min?{ν(ϱ), η(ϱ)}.

Also, let ([LH] ⊔ [MH])⊔[NH] = (tij)

tij = ⊔ϱTθ(ϱ) = ⊔ϱ (T (ϱ), θ(ϱ))

where ϱ being the parameter which is common of the ith row of [LH] ⊔ [MH] and jth

column of [NH] and θ(ϱ) = min?{τ(ϱ), γ(ϱ)}.

Clearly, the common parameters of ith row of [LH] ⊔ [MH] are the parameters of ith

row of [LH].

tij = ⊔ϱTθ(ϱ) = ⊔ϱ (T (ϱ), θ(ϱ))

where ϱ being the parameter which is common of the ith row of [LH] and jth column

of [NH] and θ(ϱ) = min{ν(ϱ), η(ϱ), γ(ϱ)}.
Again let [MH] ⊔ [NH] = (wij), then
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wij = ⊔βSτ (β) = ⊔β (S(β), τ(β))

where β being the parameter which is common of the ith row of [MH] and jth column

of [NH] and τ(β) = min{η(β), γ(β)}.
Also, let [LH] ⊔ ([MH] ⊔ [NH]) = (uij), then

uij = ⊔βTθ(β) = ⊔β (T (β), θ(β))

where β being the parameter which is common of the ith row of [LH] and jth column

of [MH] ⊔ [NH] and θ(β) = min{ν(β), τ(β)}.
Since the common parameters of jth column of [MH] ⊔ [NH] are the parameters of jth

column of [NH].

uij = ⊔βSθ(β) = ⊔β (S(β), θ(β))

where β being the parameter which is common of the ith row of [LH] and jth column

of [NH] and θ(β) = min{ν(β), η(β), γ(β)}.
Thus, sij = uij .

That is, ([LH] ⊔ [MH]) ⊔ [NH] = [LH] ⊔ ([MH] ⊔ [NH]).

(2) ([LH] ⊓ [MH]) ⊓ [NH] = [LH] ⊓ ([MH] ⊓ [NH])

Proof is similar to (1).

5. Neutrosophic hybrid structure and its operations

We define the neutrosophic hybrid structure as a generalization of hybrid structure in this

section . We study several operations on neutrosophic hybrid structure with necessary exam-

ples.

Definition 5.1. XN̂λ
= (XN̂ , λ) : H −→ N (U)× I,

ϱ −→ (< ϱ, (TH(ϱ), IH(ϱ),FH(ϱ)) >,λ(ϱ)) is called as the neutrosophic hybrid structure where

XN̂ : H −→ N (U), λ : H −→ I are mappings and I is the unit interval [0, 1].

Example 5.2. Let U = {υ1, υ2, υ3} be the universe set and H = {ϱ1, ϱ2, ϱ3} be the set of

parameters. Then

XN̂ (ϱ1) = {(< υ1, (0.2, 0.6, 0.5) >, 0.4), (< υ2, (0.3, 0.5, 0.8) >, 0.2), (< υ3, (0.8, 0.3, 0.6) >, 0.7)}

XN̂ (ϱ2) = {(< υ1, (0.2, 0.6, 0.3) >, 0.1), (< υ2, (0.2, 0.5, 0.1) >, 0.6), (< υ3, (0.9, 0.8, 0.4) >, 0.3)}

XN̂ (ϱ3) = {(< υ1, (0.3, 0.4, 0.5) >, 0.9), (< υ2, (0.3, 0.7, 0.1) >, 0.3), (< υ3, (0.5, 0.4, 0.2) >, 0.4)}

Definition 5.3. Let XN̂λ
and YN̂γ

be two neutrosophic hybrid structures in H. Then their

neutrosophic hybrid intersection is XN̂λ
⊓ YN̂γ

= KN̂ν
where

KN̂ν
(ϱ) =

(
< ϱ,

(
TKN̂

(ϱ), IKN̂
(ϱ),FKN̂

(ϱ)
)
>, ν(ϱ) = g{λ(ϱ), γ(ϱ)}

)
,
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TKN̂
(ϱ) = f{TXN̂

(ϱ), TYN̂
(ϱ)}, IKN̂

(ϱ) = g{IXN̂
(ϱ), IYN̂

(ϱ)} and

FKN̂
(ϱ) = g{FXN̂

(ϱ),FYN̂
(ϱ)} for all ϱ ∈ H.

Definition 5.4. Let XN̂λ
and YN̂γ

be two neutrosophic hybrid structures in H. Then their

neutrosophic hybrid union is XN̂λ
⊔ YN̂γ

= KN̂ν
where

KN̂ν
(ϱ) =

(
< ϱ,

(
TKN̂

(ϱ), IKN̂
(ϱ),FKN̂

(ϱ)
)
>, ν(ϱ) = ⌋⊓∇↕†⊒⌉⌈}⌉{λ(ϱ), γ(ϱ)}

)
,

TKN̂
(ϱ) = g{TXN̂

(ϱ), TYN̂
(ϱ)}, IKN̂

(ϱ) = f{IXN̂
(ϱ), IYN̂

(ϱ)} and

FKN̂
(ϱ) = f{FXN̂

(ϱ),FYN̂
(ϱ)} for all ϱ ∈ H.

Definition 5.5. XN̂λ

c(ϱ) =
(
< ϱ,

(
FXN̂

(ϱ), IXN̂
(ϱ), TXN̂

(ϱ)
)
>, 1− λ(ϱ)

)
, for all ϱ ∈ ¬H is

called the complement of a neutrosophic hybrid structure.

Definition 5.6. Let XN̂λ
and YN̂γ

be two neutrosophic hybrid structures in H. The cartesian

product of XN̂λ
and YN̂γ

is:

XN̂λ
× YN̂γ

=
{
{(θ, η) : θ ∈ XN̂ (ϱ), η ∈ YN̂ (ϱ)},min{λ(ϱ), γ(ϱ)}

}
, for all ϱ ∈ H.

Definition 5.7. Let XN̂λ
and YN̂γ

be two neutrosophic hybrid structures in H over N (U).
Then the neutrosophic hybrid relation of XN̂λ

and YN̂γ
is:

R =
{
{(θ, η) : θ ∈ XN̂ (ϱ), η ∈ YN̂ (ϱ)},min{λ(ϱ), γ(ϱ)}

}
⊂ XN̂λ

× YN̂γ
, for all ϱ ∈ H.

6. Neutrosophic hybrid matrix and its properties

In this section we define the neutrosophic hybrid matrix as a generalization of hybrid matrix.

We also provide various types of neutrosophic hybrid matrices. Some interesting operations

on neutrosophic hybrid matrices are also given. For convenience the following notations are

used in this section,

max{TAN̂
(ϱ), TBN̂

(ϱ)} = T∨(A,B)(ϱ);min{TAN̂
(ϱ), TBN̂

(ϱ)} = T∧(A,B)(ϱ);

max{IAN̂
(ϱ), IBN̂

(ϱ)} = I∨(A,B)(ϱ);min{IAN̂
(ϱ), IBN̂

(ϱ)} = I∧(A,B)(ϱ);

max{FAN̂
(ϱ),FBN̂

(ϱ)} = F∨(A,B)(ϱ);min{FAN̂
(ϱ),FBN̂

(ϱ)} = F∧(A,B)(ϱ).

Definition 6.1. Let
(
XN̂λ

,H
)

be neutrosophic hybrid structure defined over N (U). Then

the neutrosophic hybrid matrix over (XN̂λ
,H) is defined by

[MN̂H
] = [M(XN̂λ

,H)] = M
[(
XN̂ (ϱ), λ(ϱ)

)]
= (mij)m×n, for some ϱ ∈ H. In other words a

neutrosophic hybrid matrix is a matrix whose elements are the elements of the neutrosophic

hybrid structure
(
XN̂λ

,H
)
. That is,

[MN̂H
] = [M(XN̂λ

,H)] =

 ((0.2, 0.6, 0.5), 0.4) ((0.3, 0.5, 0.8), 0.2) ((0.8, 0.3, 0.6), 0.7)

((0.2, 0.6, 0.3), 0.1) ((0.2, 0.5, 0.1), 0.6) ((0.9, 0.8, 0.4), 0.3)

((0.3, 0.4, 0.5), 0.9) ((0.3, 0.7, 0.1), 0.3) ((0.5, 0.4, 0.2), 0.4)

 .

Definition 6.2. Let [MN̂H
] = [M(XN̂λ

,H)] = M
[(
XN̂ (ϱ), λ(ϱ)

)]
be a neutrosophic hybrid ma-

trix over a neutrosophic hybrid structure
(
XN̂λ

,H
)
. Then the zero neutrosophic hybrid matrix
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is [MN̂H
] = (mij)m×n = M[((0, 1, 1), 0)] for all i and j.

That is, [MN̂H
] =

[
((0, 1, 1), 0) ((0, 1, 1), 0)

((0, 1, 1), 0) ((0, 1, 1), 0)

]
.

Definition 6.3. Let [MN̂H
] = [M(XN̂λ

,H)] = M
[(
XN̂ (ϱ), λ(ϱ)

)]
be a neutrosophic hybrid ma-

trix over a neutrosophic hybrid structure
(
XN̂λ

,H
)
. Then the universe neutrosophic hybrid

matrix is [MN̂H
] = (mij)m×n = M[((1, 0, 0), 1)] for all i and j.

That is, [MN̂H
] =

[
((1, 0, 0), 1) ((1, 0, 0), 1)

((1, 0, 0), 1) ((1, 0, 0), 1)

]
.

Definition 6.4. Let [MN̂H
] = [M(XN̂λ

,H)] = (mij)m×n be a neutrosophic hybrid matrix over

a hybrid neutrosophic structure
(
XN̂λ

,H
)
with respect to a universe N (U). The complement

of a neutrosophic hybrid matrix is

[MN̂H
]c = (mc

ij)m×n =
[
M

((
FXN̂

(ϱ), IXN̂
(ϱ), TXN̂

(ϱ)
)
, 1− λ(ϱ)

)]
, for all ϱ ∈ ¬H.

Example 6.5. Let [MN̂H
] =

[
((0.3, 0.5, 0.9), 0.2) ((0.6, 0.7, 0.2), 0.7)

((0.8, 0.3, 0.1), 0.8) ((0.1, 0.5, 0.8), 0.1)

]
be a neutrosophic

hybrid matrix. Then the complement of a neutrosophic hybrid matrix is

[MN̂H
]c =

[
((0.9, 0.5, 0.3), 0.8) ((0.2, 0.7, 0.6), 0.3)

((0.1, 0.3, 0.8), 0.2) ((0.8, 0.5, 0.1), 0.9)

]
.

Definition 6.6. Let [MN̂H
] = [M(PN̂η

,H)] = (mij)m×n and [NN̂H
] = [N(QN̂γ

,H)] = (nij)m×n

be two neutrosophic hybrid matrices of same order over the neutrosophic hybrid structure(
XN̂λ

,H
)
.

Then the union operation of two neutrosophic hybrid matrices is:

[MN̂H
] ⊔ [NN̂H

] =
[
L
((

TLN̂
(ϱ), ILN̂

(ϱ),FLN̂
(ϱ)

)
,min{η(ϱ), γ(ϱ)}

)]
where TLN̂

(ϱ) = T∨(P,Q)(ϱ), ILN̂
(ϱ) = I∧(P,Q)(ϱ) and FLN̂

(ϱ) = F∧(P,Q)(ϱ).

Example 6.7. Let [MN̂H
] =

[
((0.3, 0.5, 0.9), 0.2) ((0.6, 0.7, 0.2), 0.7)

((0.8, 0.3, 0.1), 0.8) ((0.1, 0.5, 0.8), 0.1)

]
and

[NN̂H
] =

[
((0.6, 0.2, 0.5), 0.4) ((0.3, 0.2, 0.5), 0.2)

((0.3, 0.7, 0.2), 0.3) ((0.5, 0.8, 0.9), 0.8)

]
be two neutrosophic hybrid matrices.

Then, [MN̂H
] ⊔ [NN̂H

] =

[
((0.6, 0.2, 0.5), 0.2) ((0.6, 0.2, 0.2), 0.2)

((0.8, 0.3, 0.1), 0.3) ((0.5, 0.5, 0.8), 0.1)

]
.

Definition 6.8. Let [MN̂H
] = [M(PN̂η

,H)] = (mij)m×n and [NN̂H
] = [N(QN̂γ

,H)] = (nij)m×n

be two neutrosophic hybrid matrices of same order over the neutrosophic hybrid structure(
XN̂λ

,H
)
.

Then the intersection operation of two neutrosophic hybrid matrices is:

[MN̂H
] ⊓ [NN̂H

] =
[
L
((

TLN̂
(ϱ), ILN̂

(ϱ),FLN̂
(ϱ)

)
,max{η(ϱ), γ(ϱ)}

)]
where TLN̂

(ϱ) = T∧(P,Q)(ϱ), ILN̂
(ϱ) = I∨(P,Q)(ϱ) and FLN̂

(ϱ) = F∨(P,Q)(ϱ).
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Example 6.9. Let [MN̂H
] =

[
((0.3, 0.5, 0.9), 0.2) ((0.6, 0.7, 0.2), 0.7)

((0.8, 0.3, 0.1), 0.8) ((0.1, 0.5, 0.8), 0.1)

]
and

[NN̂H
] =

[
((0.6, 0.2, 0.5), 0.4) ((0.3, 0.2, 0.5), 0.2)

((0.3, 0.7, 0.2), 0.3) ((0.5, 0.8, 0.9), 0.8)

]
be two neutrosophic hybrid matrices.

Then, [MN̂H
] ⊓ [NN̂H

] =

[
((0.3, 0.5, 0.9), 0.4) ((0.3, 0.7, 0.5), 0.7)

((0.3, 0.7, 0.2), 0.8) ((0.1, 0.8, 0.9), 0.8)

]
.

Theorem 6.10. Let [MN̂H
] and [NN̂H

] be two neutrosophic hybrid matrices of same order over

the hybrid structure
(
XN̂λ

,H
)
. Then the following results related to the operations hold.

(1) [MN̂H
] ⊔ [NN̂H

] = [NN̂H
] ⊔ [MN̂H

]

(2) [MN̂H
] ⊓ [NN̂H

] = [NN̂H
] ⊓ [MN̂H

]

(3)
(
[MN̂H

]c
)c

= [MN̂H
]

(4)
(
[MN̂H

] ⊔ [NN̂H
]
)c

= [MN̂H
]c ⊓ [NN̂H

]c

(5)
(
[MN̂H

] ⊓ [NN̂H
]
)c

= [MN̂H
]c ⊔ [NN̂H

]c.

Proof. Let [MN̂H
] = [M(PN̂η

,H)] = (mij)m×n and [NN̂H
] = [N(QN̂γ

,H)] = (nij)m×n

(1) [MN̂H
] ⊔ [NN̂H

] = [NN̂H
] ⊔ [MN̂H

]

[MN̂H
] ⊔ [NN̂H

] =
[
M

((
TPN̂

(ϱ), IPN̂
(ϱ),FPN̂

(ϱ)
)
, η(ϱ)

)]
⊔
[
N
((

TQN̂
(ϱ), IQN̂

(ϱ),FQN̂
(ϱ)

)
, γ(ϱ)

)]
=

[
L
((
T∨(P,Q)(ϱ), I∧(P,Q)(ϱ),F∧(P,Q)(ϱ)

)
,min{η(ϱ), γ(ϱ)}

)]
=

[
L
((
T∨(Q,P)(ϱ), I∧(Q,P)(ϱ),F∧(Q,P)(ϱ)

)
,min{η(ϱ), γ(ϱ)}

)]
=

[
N
((

TQN̂
(ϱ), IQN̂

(ϱ),FQN̂
(α)

)
, γ(ϱ)

)]
⊔
[
M

((
TPN̂

(ϱ), IPN̂
(ϱ),FPN̂

(ϱ)
)
, η(α)

)]
= [NN̂H

] ⊔ [MN̂H
].

(2) [MN̂H
] ⊓ [NN̂H

] = [NN̂H
] ⊓ [MN̂H

]

Proof is similar to (1).

(3)
(
[MN̂H

]c
)c

= [MN̂H
]

Since [MN̂H
]c = (mc

ij)m×n =
[
M

((
FPN̂

(ϱ), IPN̂
(ϱ), TPN̂

(ϱ)
)
, 1− η(ϱ)

)]
(
[MN̂H

]c
)c

=
[
M

((
FPN̂

(ϱ), IPN̂
(ϱ), TPN̂

(ϱ)
)
, 1− η(ϱ)

)]c
=

[
M

((
TPN̂

(ϱ), IPN̂
(ϱ),FPN̂

(ϱ)
)
, 1− {1− η(ϱ)}

)]
=

[
M

((
TPN̂

(ϱ), IPN̂
(ϱ),FPN̂

(ϱ)
)
, η(ϱ)

)]
= [MN̂H

].
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(4)
(
[MN̂H

] ⊔NN̂H
]
)c

= [MN̂H
]c ⊓ [NN̂H

]c

Since [MN̂H
]c = (mc

ij)m×n =
[
M

((
FPN̂

(ϱ), IPN̂
(ϱ), TPN̂

(ϱ)
)
, 1− η(ϱ)

)]
and [NN̂H

]c = (ncij)m×n =
[
N
((

FQN̂
(ϱ), IQN̂

(ϱ), TQN̂
(ϱ)

)
, 1− γ(ϱ)

)]
(
[MN̂H

] ⊔ [NN̂H
]
)c

=
[
L
((
T∨(P,Q)(ϱ), I∧(P,Q)(ϱ),F∧(P,Q)(ϱ)

)
,min{η(ϱ), γ(ϱ)}

)]c
=

[
L
((
F∧(P,Q)(ϱ), I∨(P,Q)(ϱ), T∨(P,Q)(ϱ)

)
,max{1− η(ϱ), 1− γ(ϱ)}

)]
=

[
M

((
FPN̂

(ϱ), IPN̂
(ϱ), TPN̂

(ϱ)
)
, 1− η(ϱ)

)]
⊓
[
N
((

FQN̂
(ϱ), IQN̂

(ϱ), TQN̂
(ϱ)

)
, 1− γ(ϱ)

)]
= [MN̂H

]c ⊓ [NN̂H
]c.

(5)
(
[MN̂H

] ⊓ [NN̂H
]
)c

= [MN̂H
]c ⊔ [NN̂H

]c

Proof is similar to (4).

Theorem 6.11. Let [LN̂H
], [MN̂H

] and [NN̂H
] be three hybrid matrices of same order over the

hybrid structure
(
XN̂λ

,H
)
. Then the following results related to the operations hold.

(1)
(
[LN̂H

] ⊔ [MN̂H
]
)
⊔ [NN̂H

] = [LN̂H
] ⊔

(
[MN̂H

] ⊔ [NN̂H
]
)

(2)
(
[LN̂H

] ⊓ [MN̂H
]
)
⊓ [NN̂H

] = [LN̂H
] ⊓

(
[MN̂H

] ⊓ [NN̂H
]
)

(3) [L N̂H] ⊔
(
[MN̂H

] ⊓ [NN̂H
]
)
=

(
[LN̂H

] ⊔ [MN̂H
]
)
⊓
(
[LN̂H

] ⊔ [NN̂H
]
)

(4) [LN̂H
] ⊓

(
[MN̂H

] ⊔ [NN̂H
]
)
=

(
[LN̂H

] ⊓ [MN̂H
]
)(

[LN̂H
] ⊓ [NN̂H

]
)
.

Proof. Let [LN̂H
] = [L(PN̂ν

,H)] = (lij)m×n , [MN̂H
] = [M(QN̂η

,H)] = (mij)m×n and

[NN̂H
] = [N(RN̂γ

,H)] = (nij)m×n

(1)
(
[LN̂H

] ⊔ [MN̂H
]
)
⊔ [NN̂H

] = [LN̂H
] ⊔

(
[MN̂H

] ⊔ [NN̂H
]
)

LHS =
(
[LN̂H

] ⊔ [MN̂H
]
)
⊔ [NN̂H

]

=
[
S
((

T∨(P,Q)(ϱ), Ï∧(P,Q)(ϱ),F∧(P,Q)(ϱ)
)
,min{ν(ϱ), η(ϱ)}

)]
⊔
[
N
((

TRN̂
(ϱ), IRN̂

(ϱ),FRN̂
(ϱ)

)
, γ(ϱ)

)]
=

[
V
((
T∨(P,Q,R)(ϱ), I∧(P,Q,R)(ϱ),F∧(P,Q,R)(ϱ)

)
,min{ν(ϱ), η(ϱ), γ(ϱ)}

)]
=

[
M

((
TPN̂

(ϱ), IPN̂
(ϱ),FPN̂

(ϱ)
)
, ν(ϱ)

)]
⊔
[
S
((
T∨(Q,R)(ϱ), I∧(Q,R)(ϱ),F∧(Q,R)(ϱ)

)
,min{η(ϱ), γ(ϱ)}

)]
= [LN̂H

] ⊔
(
[MN̂H

] ⊔ [NN̂H
]
)
.

(2)
(
[LN̂H

] ⊓ [MN̂H
]
)
⊓ [NN̂H

] = [LN̂H
] ⊓

(
[MN̂H

] ⊓ [NN̂H
]
)

Proof is similar to (1).
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(3) [LN̂H
] ⊔

(
[MN̂H

] ⊓ [NN̂H
]
)
=

(
[LN̂H

] ⊔ [MN̂H
]
)
⊓
(
[L N̂H] ⊔ [NN̂H

]
)

[LN̂H
] ⊔

(
[MN̂H

] ⊓ [NN̂H
]
)

=
[
M

((
TPN̂

(ϱ), IPN̂
(ϱ),FPN̂

(ϱ)
)
, ν(ϱ)

)]
⊔
[
S
((
T∧(Q,R)(ϱ), I∨(Q,R)(ϱ),F∨(Q,R)(ϱ)

)
,max{η(ϱ), γ(ϱ)}

)]
=

[
Z
((
T∨{P,∧(Q,R)}, I∧{P,∨(Q,R)},F∧{P,∨(Q,R)}

)
,min{ν(ϱ),max{η(ϱ), γ(ϱ)}}

)]
=

[
V
((
T∨(P,Q)(ϱ), I∧(P,Q)(ϱ),F∧(P,Q)(ϱ)

)
,min{ν(ϱ), η(ϱ)}

)]
[
W

((
T∨(P,R)(ϱ), I∧(P,R)(ϱ),F∧(P,R)(ϱ)

)
,min{ν(ϱ), η(ϱ)}

)]
=

(
[LN̂H

] ⊔ [MN̂H
]
)
⊓
(
[LN̂H

] ⊔ [NN̂H
]
)
.

(4) [LN̂H
] ⊓

(
[MN̂H

] ⊔ [NN̂H
]
)
=

(
[LN̂H

] ⊓ [MN̂H
]
)
⊔
(
[LN̂H

] ⊓ [NN̂H
]
)

Proof is similar to (3).

7. MCDM based on neutrosophic hybrid matrix

This section starts with an algorithm for solving a multi-criteria decision making

problem based on neutrosophic hybrid matrices using the notion of comparison matri-

ces. The algorithm is described by a suitable example.

Definition 7.1. Comparison matrix is a matrix whose rows are the different groups

g1, g2, . . . , gn and the columns are the parameters ϱ1, ϱ2, . . . , ϱn.

The elements of the matrix are calculated by cij = (sij = a+ b− c, wij = d), where

a, b, c and d are integers calculated as how many times Thi
(ej) exceeds or equal to

Thk
(ej), Ihi

(ej) exceeds or equal to Ihk
(ej), Fhi

(ej) exceeds or equal to Fhk
(ej)and

whi
(ej) exceeds or equal to whk

(ej) for hj ̸= hk, ∀hk ∈ U , respectively.

Definition 7.2. The score of an object gi is Si =
∑

j sij . The weightage of an object

gi is Wi =
∑

j wij .

Development in technology is aimed at betterment of life style of people worldwide.

Especially technological developments have mixed effects on the study habits and at-

titudes of student, both good and adverse, that is support and distraction result as a

consequence of technological development. We try to analyze the impact of technology

on students life using the following algorithm as an MCDM based on neutrosophic

hybrid matrices.
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7.1. Algorithm

The steps of the algorithm for decision making using the construction of a compar-

ison matrix are given below.

Step 1: Identify the possible subsets of the parameter set and neutrosophic hybrid

set.

Step 2: Find the neutrosophic hybrid matrix.

Step 3: Compute the comparison matrix of the neutrosophic hybrid matrix.

Step 4: Compute the score Si? and weightage Wi of gi.

Also find Sk = max?Si and Wk = max?Wi.

Step 5: Determine the result, if the scores are equal we consider the weightage.

Example 7.3. We analyze the study habits and attitudes of the student groups from

the particular city using the above algorithm.

Step 1: Let U = {g1, g2, g3, g4, g5} be the set of group of students. Consider the

parameters as changes in student study habits and attitudes like maximum, average

and minimum change. That is the parameter set is given by

H = {ϱ1 = maximum change, ϱ2 = average change, ϱ3 = minimum change}.

Step 2: Consider the neutrosophic hybrid matrix whose rows are the different group

of students {g1, g2, g3, g4, g5} and the columns are the parameters ϱ1, ϱ2, ϱ3.

[MN̂H
] =



((0.2, 0.6, 0.5), 0.4) ((0.3, 0.9, 0.2), 0.1) ((0.3, 0.4, 0.5), 0.6)

((0.8, 0.3, 0.9), 0.1) ((0.9, 0.8, 0.4), 0.3) ((0.1, 0.4, 0.2), 0.4)

((0.2, 0.1, 0.5), 0.5) ((0.7, 0.6, 0.9), 0.2) ((0.3, 0.7, 0.1), 0.3)

((0.7, 0.4, 0.3), 1) ((0.3, 0.5, 0.8), 0.2) ((0.3, 0.4, 0.6), 0.5)

((0.5, 0.4, 0.2), 0.4) ((0.2, 0.5, 0.5), 0) ((0.4, 0.6, 0.8), 0.7)


.

Step 3: The comparison matrix of the above neutrosophic hybrid matrix is

[cij ] =



(2, 3) (6, 1) (1, 3)

(1, 1) (6, 4) (1, 1)

(−2, 4) (1, 3) (5, 0)

(4, 1) (0, 3) (0, 2)

(4, 3) (−1, 0) (3, 4)


.

Step 4:

Now we compute the score and weightage for each group gi,
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Table 2. Representation of the score and weightage for each group

H Score (Si) Weightage (Wi)

g1 9 7

g2 8 6

g3 4 7

g4 4 6

g5 6 7

The graphical representation of the score and weightage for each group gi,

Step 5: The maximum score is secured by group 1. That is the group 1 of the

students almost adopt the usage of technology. So this group of students have max-

imum changes in study habit and attitude. Group 3 and group 4 secured minimum

score. But weightage of group 4 is less than group 3. So the students of group 4 have

minimum changes in study habit and attitude. Rest of the groups are average changes

in study habit and attitude.

We compare our result with that of Maji [13]. Both methods give the same scores

for each group. In Maji’s [13] method the decision becomes random where more than

one group have equal scores. This difficulty is overcome in our method using weights

in neutrosophic hybrid matrices. This facilitates for choice of better group among the

ones with identical score.

8. Conclusion

The new notions of hybrid matrices and neutrosophic hybrid matrices are intro-

duced and some of their theoretical properties are studied. We have also developed an

algorithm for solving a MCDM problem using neutrosophic hybrid matrices. As future
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research direction we contemplate to provide more methods for solving multiple cri-

teria decision making (MCDM) problems based on hybrid matrices and neutrosophic

hybrid matrices.
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Abstract: In this paper, the weaker forms of open sets in Bipolar Neutrosophic Nano* (BNN*) topology are studied. This 

topology is defined on a space of bipolar neutrosophic sets with respect to the lower,   upper, boundary approximations 

and the union and intersection of lower and boundary approximations with maximum of 7 elements. The sets 
QBNN - 

Preopen, 
QBNN - Semi open, 


QBNN - Regular open, *BNNQ - - open and *BNNQ - - open sets are introduced and 

their properties are investigated in the corresponding topology in detail and the relationships between them are shown 

diagrammatically. We proved that, in a BNN - topological space   Qτ,U
BNN

R 
, the *BNNQ - open sets of U and for bipolar 

neutrosophic sets  QBNE



 

with    *BNNQ 1Q*BNclBNN   are the only *BNNQ -α - open sets in U and also the 

intersection of any two *BNNQ -α - open
 
sets is *BNNQ -α - open set in   Qτ,U

BNN
R 

. Moreover it is shown that, in U the 


QBNN - open sets ,1,0 *BNNBNN    Q*BN,Q*B 1BN  

and  Q*BN  
with      C2Q Q*BNQ*BNclBNN   are the only 

QBNN

- Regular open sets in U. 

Keywords: Nano topology; Neutrosophic set; Bipolar Neutrosophic set; Bipolar Neutrosophic nano topology; Bipolar 

Neutrosophic nano* topology. 

__________________________________________________________________________________________ ________ 

1. Introduction 

The concept of fuzzy sets was introduced by Zedeh L. in 1965, which has a single membership grade value attached 

with each element. Further the generalization of the fuzzy set was made by Atanassov [3] in 1986, known as intuitionistic 

fuzzy sets. In this set, instead of one membership grade, there is also a non- membership grade attached with each element 

with a restriction that the sum of these two grades is less than or equal to unity. This concept is useful in the situation of 

insufficient information. This set is extended to interval valued intuitionistic fuzzy set in 1989 by Atanassov and Gargov [4]. 

The concept of neutrosophic set is initiated by Smarandache [25] in 1998 which is a generalization of fuzzy sets and 

intuitionistic fuzzy sets and this set becomes a powerful tool to deal the real life problems with incomplete, indeterminate 

and inconsistent information. It is characterized by Truth, Indeterminacy and False membership functions and these 

functions are independent. Salama A.A. and Albowli S.A. [23] introduced Neutrosophic topological spaces. Lee [14] gave an 

extension of fuzzy sets whose range of membership degree is extended from [0,1] to [-1,1], which is named as bipolar fuzzy 

set. After that, Deli et. al. [9] defined the concept of bipolar neutrosophic set in 2015.  

Many researches have been done in neutrosophic set recently such as in application “Toward Sustainable Emerging 

Economics based on Industry 5.0: Leveraging Neutrosophic Theory in Appraisal Decision Framework” by Mona Mohamed 

and Abduallah Gamal, “An Integrated Neutrosophic Regional Management Ranking Method for Agricultural Water 

Management” by A.Abdel-Monem , A.Nabeeh and M.Abouhawwash, “Towards a Responsive Resilient Supply Chain based 

on Industry 5.0: A Case Study in Healthcare Systems” by Abduallah Gamal, Amal F.Abd El-Gawad and Mohamed 

Abouhawwash, “Applications of graph complete degree with bipolar fuzzy information” by soumitra Poulik and Ganesh 

Ghorai, “Bipolar Neutrosophic Sets and Their Application Based on Multi-Criteria Decision Making Problems” by Irfan Deli, 

Mumtaz Ali and Florentin Smarandache etc. and in theory “Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic 

Topology” by Vunnam Venkatewra Rao, “Bipolar neutrosophic soft generalized pre-closed sets and pre-open sets in 

topological space” by Arulpandy P and Trinita Pricilla M, “Bipolar topological pre-closed neutrosophic sets” by G. Upender 

Reddy, T. Siva Nageswara Rao, N. Srinivasa Rao and V. Venkateswara Rao. “Bipolar neutrosophic soft generalized pre-

continuous mappings” by Arulpandy P and Trinita Pricilla M etc. 

Neutrosophic sets were widely used in many topological concepts; in particular, general topology. Most of the general 

topology concepts were combined with neutrosophic sets and some new topologies were proposed.  Lellis Thivagar M. [15] 

proposed the concept of Nano topology which was defined in terms of approximations and boundary region of a subset of a 

universe using an equivalence relation on it. In 2022, we defined a topology bipolar neutrosophic nano topology as a 

combination of nano topology and bipolar neutrosophic set. But in this case, we only get topologies for equivalence relations 

with independent singleton sets of elements of the universe. We decided to construct a definition to find topologies for each 

bipolar set irrespective of equivalence relation. Thus, we introduced a topology called Bipolar Neutrosophic nano * topology 

[10] which consist of maximum 7 elements. In this paper, we introduced and studied some weaker forms of Bipolar 

neutrosophic nano* open sets  O*BNNQ , namely, *BNNQ -Preopen sets, *BNNQ -Regular open sets, *BNNQ -Semi open 

mailto:wadeimoon1@hotmail.com
mailto:janakicsekar@gmail.com
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sets, *BNNQ - α open sets and *BNNQ -β open sets. We found the limitations of these open sets with respect to a particular 

bipolar neutrosophic set and also investigated the properties of them and the relationships between them in detail. 

This manuscript is organized as follows: Section 2 contains some basic definitions related to this manuscript. Section 3 

consists of weaker forms of bipolar neutrosophic nano* open sets. Sub section 3.1 consists of the properties and results based 

on bipolar neutrosophic nano* preopen sets. Sub section 3.2 consists of the properties and results based on bipolar 

neutrosophic nano* semi open sets. Sub section 3.3 consists of the properties and results based on bipolar neutrosophic nano* 

 open sets. In particular, we proved that, in a BNN - topological space   Qτ,U
BNN

R 
, the *BNNQ open sets of U and for 

bipolar neutrosophic sets  QBNE



 
with    *BNNQ 1Q*BNclBNN   are the only *BNNQ -α open sets in U and also the 

intersection of any two *BNNQ -α open
 
sets is *BNNQ -α open set in   Qτ,U

BNN
R 

. Sub section 3.4 consists of the properties 

and results based on bipolar neutrosophic nano* regular open sets. In this section, it is shown that, in U the *BNNQ - open 

sets ,1,0 *BNNBNN    Q*BN,Q*B 1BN  
and  Q*BN  

with      C2Q Q*BNQ*BNclBNN   are the only *BNNQ - Regular open 

sets in U. Sub section 3.5 consists of the properties and results based on bipolar neutrosophic nano* β  open sets. The 

properties and relationship between the sets are clearly explained with several examples. 

2. Preliminaries 

Definition: 2.19 [10] Let U  be a nonempty set and R  be an equivalence relation on U  which is indiscernible. Then U can be 

divided into disjoint equivalence classes. Let Q be a bipolar neutrosophic set (BNS) in U  with the positive degree of true 

membership 
Qη  , indeterminacy 

Qψ  
and the false membership function 

Qξ  
and the negative degree of true membership 


Qη , indeterminacy 

Qψ  
and the false membership function 

Qξ , where  1,0U:ξ,ψ,η QQQ  ,  0,1U:ξ,ψ,η QQQ  . Then 

the lower, upper and boundary approximations are respectively given as follows: 

(i)                              Uq,qz:qξ,qψ,qη,qξ,qψ,qη,qQBN
RQRQRQRQRQRQR   .  

(ii)  
 

 
 

 
 

 
 

 
 

 
 

     Uq,qz:qξ,qψ,qη,qξ,qψ,qη,qQBN
RQRQRQRQRQRQR

  .  

(iii)      QBNQBNQB BN  .  where,   

   
 

 zηqη Q
qz

Q*R
*R





  ,    
 

 zψqψ Q
qz

Q*R
*R





  ,    
 

 zξqξ Q
qz

Q*R
*R





  ,  

   
 

 zηqη Q
qz

Q*R
*R





  ,    
 

 zψqψ Q
qz

Q*R
*R





  ,    
 

 zξqξ Q
qz

Q*R
*R





  ,  

 
 

 
 zηqη Q

qzQ*R
*R





  , 
 

 
 

 zψqψ Q
qzQ*R

*R





  ,
 

 
 

 zξqξ Q
qzQ*R

*R





  ,  

 
 

 
 zηqη Q

qzQ*R
*R





  , 
 

 
 

 zψqψ Q
qzQ*R

*R





  ,
 

 
 

 zξqξ Q
qzQ*R

*R





   .  

Definition: 2.2 [10] Let U  be a nonempty set, R be an equivalence relation on U and let Q be a BNS. The collection 

        QB,QBN,QBN,1,0Qτ BNBNNBNNRBNN
  is called the bipolar neutrosophic nano topology ( QBNN - topology), if it forms 

a topology. Then the space   Qτ,U
BNNR  is called the bipolar neutrosophic nano topological space. The elements of  Qτ

BNNR

are called bipolar neutrosophic nano open sets ( OBNNQ ). 

Remark: 2.3 [10]  For every bipolar neutrosophic set, we cannot find a corresponding bipolar neutrosophic nano topology in

U . So we defined a topology called Bipolar neutrosophic nano * topology which corresponds to any bipolar neutrosophic 

set in U  with respect to its boundary and approximations.
 

Definition: 2.4 [10] Let U  be a nonempty set and *R  be a relation on U , which is indiscernible. Then U  can be divided into 

disjoint equivalence classes. Let Q be a BNS in U with the positive degree of true membership 
Qη , indeterminacy 

Qψ  
and 

the false membership function 
Qξ  

and the negative degree of true membership 
Qη , indeterminacy 

Qψ and the false 

membership function 
Qξ , where,  1,0U:ξ,ψ,η QQQ  ,   0,1U:ξ,ψ,η QQQ  . Then  

(i)                              Uq,qz:qξ,qψ,qη,qξ,qψ,qη,qQ*BN
*RQ*RQ*RQ*RQ*RQ*RQ*R    is the lower approximation of Q in respect of 

*R . 

(ii)  
 

 
 

 
 

 
 

 
 

 
 

     Uq,qz:qξ,qψ,qη,qξ,qψ,qη,qQ*BN
*RQ*RQ*RQ*RQ*RQ*RQ*R

   is the upper approximation of 

Q in respect of *R . 

(iii)      Q*BNQ*BNQ*B BN 
 
is the boundary of Q in respect of *R .

  
(iv)      Q*BQ*BNQ*BN BN1  .

  
(v)      Q*BQ*BNQ*BN BN2  . where, 

   
 

 zηqη Q
qz

Q*R
*R





  ,    
 

 zψqψ Q
qz

Q*R
*R





  ,    
 

 zξqξ Q
qz

Q*R
*R





  ,  

   
 

 zηqη Q
qz

Q*R
*R





  ,    
 

 zψqψ Q
qz

Q*R
*R





  ,    
 

 zξqξ Q
qz

Q*R
*R





  ,  

 
 

 
 zηqη Q

qzQ*R
*R





  , 
 

 
 

 zψqψ Q
qzQ*R

*R





  ,
 

 
 

 zξqξ Q
qzQ*R

*R





  ,  

 
 

 
 zηqη Q

qzQ*R
*R





  , 
 

 
 

 zψqψ Q
qzQ*R

*R





  ,
 

 
 

 zξqξ Q
qzQ*R

*R





   .  
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Then the collection             Q*BN,Q*BN,Q*B,Q*BN,Q*BN,1,0Q*τ 21BNBNNBNNR BNN
  is a topology which is called a 

bipolar neutrosophic nano   topology ( *BNNQ - topology). The space   Qτ,U
*BNNR  is called a bipolar neutrosophic nano  

topological space. The elements of  Q*τ
BNN  

are bipolar neutrosophic nano   open sets ( O*BNNQ ). The complements of 

these elements are called bipolar neutrosophic nano   closed sets  ( C*BNNQ ). 

Definition: 2.5[10] Let U  be a nonempty universe and K and H be the BNS’s, where

             Uq:qξ,qψ,qη,qξ,qψ,qη,qK KKKKKK    

        and              Uq:qξ,qψ,qη,qξ,qψ,qη,qH HHHHHH   .  Then, 

(i)  the null bipolar neutrosophic nano set is given by   Uq:1,0,0,1,0,0,q0 BNN  .
 
 

(ii)  the absolute bipolar neutrosophic nano set is given by   Uq:0,1,1,0,1,1,q1BNN  .  

(iii)  HK    iff      qηqη HK
  ,    qψqψ HK

  ,    qξqξ HK
   ,  

                                 
   qηqη HK

  ,    qψqψ HK
  ,    qξqξ HK

  .  

(iv)  HK  iff HK  and KH  . 

(v)               Uq:qη,qψ1,qξ,qη,qψ1,qξ,qK KKKKKK
C   . 

(vi) 
           

            





































Uq:
qξqξ,qψqψ,qηqη

,qξqξ,qψqψ,qηqη
,qHK

HKHKHK

HKHKHK . 

(vii)  
           

            





































Uq:
qξqξ,qψqψ,qηqη

,qξqξ,qψqψ,qηqη
,qHK

HKHKHK

HKHKHK . 

(viii)   
           

            





































Uq:
}qη,qξmin{,qψ1,qψmax{,qξ,qηmax{

},qη,qξmax{},qψ1,qψmin{},qξ,qηmin{
,qHK

HKHKHK

HKHKHK . 

Remark: 2.6 [10]   In a TSBNN   Qτ,U
BNN

R 
, by definition  

    Q*BNQ*BNint*BNN 2

C

Q 




  or *BNN0 , 

     Q*BQ*BNint*BNN BN
C

Q  , 

     Q*BNQ*Bint*BNN 1
C

BNQ  , 

     Q*BQ*BNint*BNN BN
C

1Q  , 

     Q*BNQ*BNint*BNN 1
C

2Q  . 

 And 

     C2Q Q*BNQ*BNcl*BNN   or *BNN1 , 

     CBNQ Q*BQ*BNcl*BNN  , 

     C1BNQ Q*BNQ*Bcl*BNN  , 

     CBN1Q Q*BQ*BNcl*BNN  , 

     C12Q Q*BNQ*BNcl*BNN  . 

3. Weaker forms of Bipolar Neutrosophic Nano * Topology 

In this section, we are going to introduce some of the weaker forms of open sets in Bipolar Neutrosophic Nano* 

Topology. 

3.1 Bipolar Neutrosophic Nano * Pre-Open Sets 

Definition: 3.1.1  Let E be a bipolar neutrosophic set in a BNN -topological space ( TSBNN )   Qτ,U
BNN

R 
. Then E is said to 

be 
QBNN - pre-open set ( POBNNQ

  set) of U if   EclBNNintBNNE QQ
 . The complement of POBNNQ



 
set is called 


QBNN - pre-closed set  

( PCBNNQ
  set) of U. 

Theorem: 3.1.2  Arbitrary union of POBNNQ


 
sets in   Qτ,U

BNN
R 

 is POBNNQ


 
set in U. 

Proof. Let   ΩααE
  

is a collection of POBNNQ


 
sets in   Qτ,U

BNN
R 

. For each Ωα ,   αQQα EclBNNintBNNE  .  

      .........EclBNNintBNNEclBNNintBNN......EE 2QQ1QQ21    

                        .....EclBNNEclBNNintBNN 2Q1QQ    

                       ....EEclBNNintBNN 21QQ    

Hence 
Ωα

αE


is POBNNQ


 
set in U. 
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Remark: 3.1.3 The intersection of any two POBNNQ


 
sets need not be a POBNNQ



 
set in U. This is shown in the following 

example. 

Example: 3.1.4  Let       2121 p,pR/U,p,pU  , 
 

  


















6.0,4.0,2.0,3.0,5.0,7.0,p

1.0,2.0,5.0,6.0,8.0,4.0,p
Q

2

1
. 

 
 

 

 

  


















































 6.0,4.0,2.0,7.0,5.0,3.0,p

5.0,2.0,1.0,6.0,2.0,4.0,p
,

6.0,4.0,2.0,3.0,5.0,7.0,p

1.0,2.0,5.0,6.0,8.0,4.0,p
,1,0Qτ

2

1

2

1

*BN*BNR
BNN

. 

    

 

 

  


















































 2.0,6.0,6.0,3.0,5.0,7.0,p

1.0,8.0,5.0,4.0,8.0,6.0,p
,

2.0,6.0,6.0,7.0,5.0,3.0,p

5.0,8.0,1.0,4.0,2.0,6.0,p
,1,0Qτ

2

1

2

1

*BN*BN
C

R
BNN

. 

 

  


















6.0,6.0,4.0,6.0,6.0,4.0,p

4.0,7.0,3.0,3.0,8.0,6.0,p
E

2

1

1 , 
 

  


















3.0,5.0,6.0,5.0,3.0,4.0,p

3.0,6.0,7.0,6.0,4.0,3.0,p
E

2

1

2 are POBNNQ
 sets. 

 

  


















6.0,5.0,4.0,6.0,3.0,4.0,p

4.0,6.0,3.0,6.0,4.0,3.0,p
EE

2

1

21

 

and   
 

  


















6.0,4.0,2.0,3.0,5.0,7.0,p

1.0,2.0,5.0,6.0,8.0,4.0,p
EEclBNNintBNN

2

1

21QQ .

 
Clearly   21QQ21 EEclBNNintBNNEE   . Hence 21 EE  is not POBNNQ

 set. 

Theorem: 3.1.5  Every OBNNQ


 
set in   Qτ,U

BNN
R 

 is POBNNQ


 
set in U. 

Proof. Let E be OBNNQ


 
set in   Qτ,U

BNN
R 

. Then  EintBNNE Q
 . Also  EclBNNE Q

 .

    EclBNNintBNNEintBNN QQQ
   .   EclBNNintBNNE QQ

 . E is POBNNQ


 
set in U. 

Remark: 3.1.6  The following example shows that the converse of the above theorem is not true. 

Example: 3.1.7  From example 3.1.4, 
 

  


















6.0,6.0,4.0,6.0,6.0,4.0,p

4.0,7.0,3.0,3.0,8.0,6.0,p
E

2

1

1

 

is POBNNQ


 
set but not OBNNQ



 
set. 

Theorem: 3.1.8  If   ΩααE
  

is a collection of PCBNNQ


 
sets in   Qτ,U

BNN
R 

, then 
Ωα

αE


is PCBNNQ


 
set in U. 

Proof.    Ωα
C

αE
  

is a collection of POBNNQ


 
sets in   Qτ,U

BNN
R 

. By theorem 3.1.2 and De-Morgan’s law 
Ωα

αE


is PCBNNQ


 

set in U. 

Remark: 3.1.9  By remark 3.1.3, the union of any two PCBNNQ


 
sets need not be a PCBNNQ



 
set in U. 

Theorem: 3.1.10    Every CBNNQ


 
set in   Qτ,U

BNN
R 

 is PCBNNQ


 
set in U. 

Proof. Let E be a CBNNQ


 
set in   Qτ,U

BNN
R 

. Then  EclBNNE Q
 . Also   EEintBNNQ  .

    EclBNNEintBNNclBNN QQQ
   .    EEintBNNclBNN QQ  . Hence E is PCBNNQ

 set in U. 

3.2 Bipolar Neutrosophic Nano * Semi Open Sets 

Definition: 3.2.1  Let E be a neutrosophic set in a TSBNN    Qτ,U
BNN

R 
. Then E is said to be 

QBNN - semi-open set (

SOBNNQ
  set) of U if   EintBNNclBNNE QQ

 . The complement of SOBNNQ


 
set is called 

QBNN - semi-closed set (

SCBNNQ
  set) of U. 

Theorem: 3.2.2  Arbitrary union of SOBNNQ


 
is SOBNNQ



 
set in U. 

Proof. If   ΩααE
  

is a collection of SOBNNQ


 
sets in   Qτ,U

BNN
R 

. For each Ωα ,   αQQα EintBNNclBNNE  . 

      .........EintBNNclBNNEintBNNclBNN......EE 2QQ1QQ21    

                                .....EintBNNEintBNNclBNN 2Q1QQ    

                               ....EEintBNNclBNN 21QQ    

Hence 
Ωα

αE


is SOBNNQ


 
set in U. 

Theorem: 3.2.3  Every OBNNQ


 
set in   Qτ,U

BNN
R 

 is SOBNNQ


 
set in U. 

Proof. Let E be OBNNQ


 
set in   Qτ,U

BNN
R 

. Then  EintBNNE Q
 .     EintBNNclBNNEclBNN QQQ

  .  Also 

 EclBNNE Q
 . Then   EintBNNclBNNE QQ

 . E is SOBNNQ
 set in U. 

Remark: 3.2.4  The following example shows that the converse of the above theorem is not true. 

Example: 3.2.5  Let 
 

  


















5.0,4.0,4.0,7.0,5.0,3.0,p

5.0,3.0,4.0,6.0,2.0,4.0,p
E

2

1
.  

From example 3.1.4,      C1QQ Q*BNEintBNNclBNN  . Also   C1 Q*BNE  .  

E is SOBNNQ


 
set but not OBNNQ



 
set. 

Theorem: 3.2.6  Arbitrary intersection of SCBNNQ
 set is SCBNNQ



 
set in U. 
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Proof.  Let   ΩααE
  

is a collection of SCBNNQ


 
sets in   Qτ,U

BNN
R 

. Then   Ωα
C

αE


is a collection of SOBNNQ


 
sets in 

  Qτ,U
BNN

R 
. By theorem 3.2.2 and by De-Morgan’s law, 

Ωα
αE



is SCBNNQ


 
set in U. 

Theorem: 3.2.7  Every CBNNQ


 
set in   Qτ,U

BNN
R 

 is SCBNNQ


 
set in U.

 
 

Proof. Let E be a CBNNQ


 
set in   Qτ,U

BNN
R 

. Then  EclBNNE Q
 . Also.     EintBNNEclBNNintBNN QQQ

   . 

   EEclBNNintBNN QQ  . Hence E is SCBNNQ
 set in U. 

3.3 Bipolar Neutrosophic Nano * α  Open Sets 

Definition: 3.3.1  Let E be a neutrosophic set in a TSBNN    Qτ,U
BNN

R 
. Then E is said to be 

QBNN -α -open set ( OαBNNQ
  

set) of U if    EintBNNclBNNintBNNE QQQ
 . The complement of OαBNNQ



 
set is called 

QBNN -α -closed set (

CαBNNQ
  set) of U. 

Theorem: 3.3.2  Arbitrary union of OαBNNQ


 
is OαBNNQ



 
set in U. 

Proof.  Let   ΩααE
  

is a collection of OαBNNQ


 
sets in   Qτ,U

BNN
R 

. For each Ωα , 

   αQQQα EintBNNclBNNintBNNE  .  

        .........EintBNNclBNNintBNNEintBNNclBNNintBNN......EE 2QQQ1QQQ21    

                          .....EintBNNclBNNEintBNNclBNNintBNN 2QQ1QQQ    

                          .....EintBNNEintBNNclBNNintBNN 2Q1QQQ    

               ....EEintBNNclBNNintBNN 21QQQ    

Hence 


E is OαBNNQ


 
set in U. 

Theorem: 3.3.3  In a TSBNN    Qτ,U
BNN

R 
, the 

QBNN - open sets of U and for sets  QBNE



 

with 

   *BNNQ 1Q*BNclBNN   are the only OαBNNQ
  sets in U. 

Proof. Since OBNNQ
 sets are OαBNNQ

 , then BNN
0 ,        ,QBN,QB,QBN,QBN,1 1BNBNN



  QBN2
  are OαBNNQ

  in 

U. If *BNN0E   and  Q*BNE , then   *BNNQ 0Eint*BNN  , since *BNN0  
is the only OBNNQ



 
subset of E. Therefore 

    *BNNQQQ 0EintBNNclBNNintBNN  and hence E is not OαBNNQ
 . If  Q*BE BN , then   *BNN0Eint*BNN   and 

hence E is not OαBNNQ
 .  If  Q*BNE , then  Q*BE BN  and  Q*BNE , hence E is not OαBNNQ

 . If  QBNE


 , 

then    Q*BNEintBBNQ   and hence    EintBNNclBNNintBNN QQQ
    Q*BNclBNNintBNN QQ



  *BNN*BNNQ 11intBNN   .  Therefore    EintBNNclBNNintBNNE QQQ
 . E is OαBNNQ

 . This will exist only in the 

case if    *BNNQ 1Q*BNclBNN  . If  Q*BNE  and  Q*BE BN , by definition  Q*BNE 1  
and  Q*BNE 2 , then in 

both the cases E is not OαBNNQ
 . 

Remark: 3.3.4  The following example shows that the case  QBNE



 

in the above theorem in which 

   *BNNQ 1Q*BNclBNN   is not OαBNNQ
 . 

Example: 3.3.5  Let       231321 p,p,pR/U,p,p,pU  , 

 

 

  

























4.0,6.0,5.0,8.0,3.0,2.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

7.0,4.0,3.0,2.0,5.0,6.0,p

Q

3

2

1

.  

 

 

  

























4.0,6.0,5.0,2.0,5.0,6.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

4.0,6.0,5.0,2.0,5.0,6.0,p

)Q(*BN

3

2

1

,

 

 

  

























7.0,4.0,3.0,8.0,3.0,2.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

7.0,4.0,3.0,8.0,3.0,2.0,p

)Q(*BN

3

2

1

, 

 

 

  

























4.0,6.0,5.0,2.0,5.0,6.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

4.0,6.0,5.0,2.0,5.0,6.0,p

)Q(*B

3

2

1

BN ,

 

 

  

























4.0,6.0,5.0,2.0,5.0,6.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

4.0,6.0,5.0,2.0,5.0,6.0,p

)Q(*BN

3

2

1

1  , 

 

 

  

























7.0,4.0,3.0,8.0,3.0,2.0,p

5.0,5.0,4.0,5.0,4.0,4.0,p

7.0,4.0,3.0,8.0,3.0,2.0,p

)Q(*BN

3

2

1

2 .  

            *BNN21BN*BNNQ*R 1,Q*BN,Q*BN,Q*B,Q*BN,Q*BN,0τ
BNN

 . 
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Let 

 

 

 

 Q*BN

3.0,7.0,7.0,1.0,6.0,8.0,p

4.0,5.0,5.0,3.0,7.0,6.0,p

3.0,7.0,6.0,1.0,6.0,7.0,p

E

3

2

1



























 , then    Q*BNEint*BNNQ  . 

      )Q*BN(cl*BNNEint*BNNcl*BNN QQQ   C2 Q*BN . 

        Q*BN)Q*BNint(*BNNEint*BNNcl*BNNint*BNN C
2QQQQ  .  Q*BNE , since it contains  Q*BN . Hence E 

is not OαBNNQ
 .  

Theorem: 3.3.6  The intersection of any two OαBNNQ


 
sets is OαBNNQ

 set in   Qτ,U
BNN

R 
.  

Proof. From the above theorem, the 
QBNN - open sets of U and for sets  QBNE




 
where    *BNNQ 1Q*BNclBNN 

 
are 

the only OαBNNQ
 sets in U. Finite intersection of 

QBNN - open sets is 
QBNN - open and hence OαBNNQ

 . If 

 QBNE,E 21


  such that    Q*BNEintBNN 1Q  ,     Q*BNEintBNN 2Q   and

  
   *BNNQ 1Q*BNclBNN  , then 

       Q*BNEintBNNEintBNNEEintBNN 2Q1Q21Q   . 

      *BNNQ21QQ 1Q*BNclBNNEEintBNNclBNN   .  

   21QQQ EEintBNNclBNNintBNN   *BNNQ 1intBNN  *BNN1 .  

Hence the intersection of any two OαBNNQ


 
sets is OαBNNQ

 set in U.  

Theorem: 3.3.7  Every OBNNQ


 
set in   Qτ,U

BNN
R 

 is OαBNNQ


 
set in U. 

Proof. Let E be OBNNQ


 
set in   Qτ,U

BNN
R 

. Then  EintBNNE Q
 .     EintBNNclBNNEclBNN QQQ

  . Also 

 EclBNNE Q
 . Then   EintBNNclBNNE QQ

 .  

Now      EintBNNclBNNintBNNEintBNN QQQQ
  .  

Thus    EintBNNclBNNintBNNE QQQ
 . Hence E is OαBNNQ

 set in U. 

Example: 3.3.8  The converse of the above theorem need not be true. For example, let 

      321321 p,p,pR/U,p,p,pU  , 

 

 

  

























4.0,5.0,5.0,8.0,3.0,2.0,p

3.0,4.0,6.0,6.0,4.0,3.0,p

2.0,5.0,7.0,6.0,5.0,2.0,p

Q

3

2

1

.  

 

 

  

























4.0,5.0,5.0,5.0,5.0,4.0,p

2.0,5.0,7.0,6.0,5.0,3.0,p

2.0,5.0,7.0,6.0,5.0,3.0,p

)Q(*BN

3

2

1

,

 

 

  

























4.0,5.0,5.0,5.0,5.0,4.0,p

3.0,4.0,6.0,6.0,4.0,2.0,p

3.0,4.0,6.0,6.0,4.0,2.0,p

)Q(*BN

3

2

1

, 

 

 

  

























5.0,5.0,4.0,5.0,5.0,4.0,p

6.0,5.0,3.0,6.0,5.0,3.0,p

6.0,5.0,3.0,6.0,5.0,3.0,p

)Q(*B

3

2

1

BN ,

 

 

  

























4.0,5.0,5.0,5.0,5.0,4.0,p

3.0,5.0,6.0,6.0,5.0,3.0,p

3.0,5.0,6.0,6.0,5.0,3.0,p

)Q(*BN

3

2

1

1  , 

 

 

  

























5.0,5.0,4.0,5.0,5.0,4.0,p

6.0,4.0,3.0,6.0,4.0,2.0,p

6.0,4.0,3.0,6.0,4.0,2.0,p

)Q(*BN

3

2

1

2 .  

            *BNN21BN*BNNQ*R 1,Q*BN,Q*BN,Q*B,Q*BN,Q*BN,0τ
BNN

 . 

Let 

 

 

  

























2.0,5.0,6.0,3.0,5.0,5.0,p

2.0,6.0,7.0,5.0,5.0,4.0,p

2.0,6.0,7.0,5.0,5.0,4.0,p

E

3

2

1

, then     *BNNQQQ 1Eint*BNNcl*BNNint*BNN  . 

E is OαBNNQ


 
but not OBNNQ



 
set. 

Theorem: 3.3.9   Arbitrary intersection of CαBNNQ


 
sets is CαBNNQ



 
set in   Qτ,U

BNN
R 

 . 

Proof.  Let   ΩααE
  

is a collection of CαBNNQ


 
sets in   Qτ,U

BNN
R 

. Then   Ωα
C

αE
  

is a collection of OαBNNQ


 
sets in 

  Qτ,U
BNN

R 
. By theorem 3.3.2 and De-Morgan’s law 

Ωα
αE



is CαBNNQ


 
set in U. 

Remark: 3.3.10  By theorem: 3.3.6, union of two CαBNNQ


 
sets is a CαBNNQ



 
set in U. 

Theorem: 3.3.11   Every CBNNQ


 
set in   Qτ,U

BNN
R 

 is CαBNNQ


 
set in U. 

Proof. Let E be a CBNNQ


 
set in   Qτ,U

BNN
R 

. Then   EEclBNNQ  . Also   EEintBNNQ  .

     EEintBNNEclBNNintBNN QQQ   .      EclBNNEclBNNintBNNclBNN QQQQ
  . 

    EEclBNNintBNNclBNN QQQ  . Hence E is CαBNNQ
 set in U. 
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Remark: 3.3.12   The set of all 
QBNN - open sets,

 


QBNN - pre open sets, 
QBNN - semi open sets and 

QBNN -α

open sets of   Qτ,U
BNN

R 

 
are denoted by  UOBNNQ

 ,  UPOBNNQ
 ,

 
 USOBNNQ

  and  UOαBNNQ


 
respectively. The set 

of all 
QBNN - closed sets,

 


QBNN - pre closed sets, 
QBNN - semi closed sets and 

QBNN -α closed sets of   Qτ,U
BNN

R 

 
are 

denoted by  UCBNNQ
 ,  UPCBNNQ

 ,
 

 USCBNNQ
  and  UCαBNNQ



 
respectively. 

Theorem: 3.3.13     USOBNNUOαBNN QQ
 

 
in a TSBNN    Qτ,U

BNN
R 

. 

Proof. If  UOαBNNE Q
 .       EintBNNclBNNEintBNNclBNNintBNNE QQQQQ

  .  

Then  USOBNNE Q
 . Hence    USOBNNUOαBNN QQ

 
 
in U. 

Remark: 3.3.14  The converse of the above theorem need not be true. This is shown in the following example. 

Example: 3.3.15   Let 
 

  


















5.0,4.0,4.0,7.0,5.0,3.0,p

5.0,3.0,1.0,6.0,2.0,4.0,p
E

2

1
. From example: 3.1.4, E is SOBNNQ



 
but not OαBNNQ

 . 

Theorem: 3.3.16      UPOBNNUOαBNN QQ
 

 
in a TSBNN    Qτ,U

BNN
R 

. 

Proof.  If  UOαBNNE Q
 .    EintBNNclBNNintBNNE QQQ

 .  

Since   EEintBNNQ  ,       EclBNNintBNNEintBNNclBNNintBNNE QQQQQ
  .  

Then  UPOBNNE Q
 . Hence    UPOBNNUOαBNN QQ

 
 
in U. 

Remark: 3.3.17  The converse of the above theorem need not be true. This is shown in the following example. 

Example: 3.3.18   Let 
 

  


















6.0,6.0,4.0,6.0,6.0,4.0,p

4.0,7.0,3.0,3.0,8.0,6.0,p
E

2

1
. From example: 3.1.4, E is POBNNQ



 
but not OαBNNQ

 . 

Theorem: 3.3.19        USOBNNUPOBNNUOαBNN QQQ
 

 
in a TSBNN    Qτ,U

BNN
R 

. 

Proof. If  UOαBNNE Q
 , then  USOBNNE Q


 
and  UPOBNNE Q

  by theorem 3.3.13 and 3.3.16. This follows that, 

   USOBNNUPOBNNE QQ
  . Hence      USOBNNUPOBNNUOαBNN QQQ

  .  

Conversely, if    USOBNNUPOBNNE QQ
  , then   UintBNNclBNNE QQ

  and   UclBNNintBNNE QQ
 . 

Consider   UintBNNclBNNE QQ
 ,  

   intBNNEclBNNintBNN QQQ
      UintBNNclBNNclBNN QQQ

    UintBNNclBNNintBNN QQQ
 .  

Then    UintBNNclBNNintBNNE QQQ
  UOαBNNE Q

 .  

This gives      USOBNNUPOBNNUOαBNN QQQ
  .  

Hence      USOBNNUPOBNNUOαBNN QQQ
  .  

Remark: 3.3.20   The following example shows that the POBNNQ


 
and SOBNNQ



 
sets are independent of each 

other. 

Example: 3.3.21   From example 3.1.4, 
 

  


















6.0,6.0,4.0,6.0,6.0,4.0,p

4.0,7.0,3.0,3.0,8.0,6.0,p
E

2

1

 

is POBNNQ


 
but not SOBNNQ

 . And 

 

  


















5.0,4.0,4.0,7.0,5.0,3.0,p

5.0,3.0,1.0,6.0,2.0,4.0,p
E

2

1

 

is SOBNNQ


 
but not POBNNQ

 . 

Theorem: 3.3.22    The union of OBNNQ
 sets and OαBNNQ



 
sets of   Qτ,U

BNN
R 

 is POBNNQ
 . 

Proof. Let E be a OBNNQ


 
set and F be a OαBNNQ



 
set in U. Then   EEintBNNQ   and 

   FintBNNclBNNintBNNF QQQ
 . Now  

     FintBNNclBNNintBNNEintBNNFE QQQQ
   

            FintBNNclBNNEintBNN QQQ
   

              FintBNNclBNNEclBNNintBNN QQQQ
   

             FclBNNEclBNNintBNN QQQ
   

         
  FEclBNNintBNN QQ   .  

Hence FE  is POBNNQ
 . 

Theorem: 3.3.23    The union of POBNNQ


 
sets and OαBNNQ



 
sets of   Qτ,U

BNN
R 

 is POBNNQ
 . 

Proof. Let E be a POBNNQ


 
set and F be a OαBNNQ



 
set in U. Then   EclBNNintBNNE QQ

  and 

   FintBNNclBNNintBNNF QQQ
 . Now  

      FintBNNclBNNintBNNEclBNNintBNNFE QQQQQ
   

              FintBNNclBNNEclBNNintBNN QQQQ
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             FclBNNEclBNNintBNN QQQ
   

         
  FEclBNNintBNN QQ   . Hence FE  is POBNNQ

 . 

Theorem: 3.3.24    If E is OBNNQ


 
and POBNNQ



 
in   Qτ,U

BNN
R 

, then E is OαBNNQ
 . 

Proof. If E is OBNNQ


 
and POBNNQ



 
in U, then   EEintBNNQ   and   EclBNNintBNNE QQ

 . 

Consider  EintBNNE Q
      EintBNNclBNNEclBNN QQQ

    EclBNNintBNN QQ
 intBNNQ

  

   EintBNNclBNN QQ
 . This implies    EintBNNclBNNintBNNE QQQ

 . Hence E is OαBNNQ
 . 

Theorem: 3.3.25    Let E be a BN set in a TSBNN    Qτ,U
BNN

R 
. If F is a SOBNNQ



 
set such that 

  Fcl*BNNint*BNNEF QQ , then E is a OαBNNQ
 set. 

Proof. Since F is a SOBNNQ


 
set, we have   Fint*BNNcl*BNNF QQ .  

We have        Fint*BNNcl*BNNcl*BNNint*BNNFcl*BNNint*BNNE QQQQQQ 
 

   Fint*BNNcl*BNNint*BNN QQQ    Eint*BNNcl*BNNint*BNN QQQ . Hence E is a OαBNNQ
 set. 

3.4 Bipolar Neutrosophic Nano * Regular Open Sets 

Definition: 3.4.1  Let E be a neutrosophic set in TSBNN    Qτ,U
BNN

R 
. Then E is said to be 

QBNN - regular-open set (

ROBNNQ
  set) of U if   EclBNNintBNNE QQ

 . The complement of ROBNNQ


 
set is called 

QBNN - regular closed set (

RCBNNQ
  set) of U. 

Theorem: 3.4.2   Every ROBNNQ


 
set is OBNNQ



 
set in   Qτ,U

BNN
R 

. 

Proof. If E is ROBNNQ
  in   Qτ,U

BNN
R 

, then   EclBNNintBNNE QQ
 . Now 

       EEclBNNintBNNEclBNNintBNNintBNN)Eint(BNN QQQQQQ   . Hence E is OBNNQ
 in U. 

Remark: 3.4.3   The converse of the above theorem need not be true. A OBNNQ


 
set need not be ROBNNQ



 
in 

  Qτ,U
BNN

R 
.  

Example: 3.4.4  Let       231321 p,p,pR/U,p,p,pU  , 

 

 

  

























4.0,6.0,5.0,8.0,3.0,2.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

7.0,4.0,3.0,2.0,5.0,6.0,p

Q

3

2

1

.  

 

 

  

























4.0,6.0,5.0,2.0,5.0,6.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

4.0,6.0,5.0,2.0,5.0,6.0,p

)Q(*BN

3

2

1

,

 

 

  

























7.0,4.0,3.0,8.0,3.0,2.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

7.0,4.0,3.0,8.0,3.0,2.0,p

)Q(*BN

3

2

1

, 

 

 

  

























4.0,6.0,5.0,2.0,5.0,6.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

4.0,6.0,5.0,2.0,5.0,6.0,p

)Q(*B

3

2

1

BN ,

 

 

  

























4.0,6.0,5.0,2.0,5.0,6.0,p

5.0,5.0,4.0,4.0,6.0,5.0,p

4.0,6.0,5.0,2.0,5.0,6.0,p

)Q(*BN

3

2

1

1  , 

 

 

  

























7.0,4.0,3.0,8.0,3.0,2.0,p

5.0,5.0,4.0,5.0,4.0,4.0,p

7.0,4.0,3.0,8.0,3.0,2.0,p

)Q(*BN

3

2

1

2 .             *BNN21BN*BNNQ*R 1,Q*BN,Q*BN,Q*B,Q*BN,Q*BN,0τ
BNN

 . 

      *1,Q*BN,Q*B,Q*BN,0 BNN1BN*BNN are ROBNNQ
 sets in U. 

Theorem: 3.4.5  ROBNNQ


 
sets are POBNNQ



 
sets.  

Proof. The proof follows from the definitions of ROBNNQ
 and POBNNQ

 sets. 

Remark: 3.4.6  The converse of the above theorem is not true. This is shown in the following example. 

Example: 3.4.7  Let

 

 

  

























6.0,4.0,4.0,9.0,2.0,1.0,p

6.0,3.0,3.0,6.0,5.0,4.0,p

8.0,3.0,2.0,5.0,4.0,4.0,p

E

3

2

1

.  

From example: 3.4.4,     QBNEclBNNintBNN QQ

  . Also  QBNE


 .  

E is POBNNQ
 , but not ROBNNQ



 
set. 

Theorem: 3.4.8  ROBNNQ


 
sets are OαBNNQ



 
sets.  

Proof. Since ROBNNQ
 sets are OBNNQ



 
and OBNNQ

 sets are OαBNNQ
 sets, the result follows. 

Example: 3.4.9   This example shows that the converse of the above theorem is not true. 

From example: 3.3.6, E is OαBNNQ
  but not ROBNNQ

 . 

Theorem: 3.4.10   ROBNNQ


 
sets are SOBNNQ



 
sets.  
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Proof. Since ROBNNQ
 sets are OBNNQ



 
and OBNNQ

 sets are SOBNNQ
 sets, the result follows. 

Example: 3.4.11   This example shows that the converse of the above theorem is not true. 

From example: 3.2.5, E is SOBNNQ
  but not ROBNNQ

 . 

Theorem: 3.4.12    The arbitrary union of ROBNNQ


 
sets is ROBNNQ

  in U. 

Proof. Let   ΩααE
  

is a collection of ROBNNQ


 
sets in   Qτ,U

BNN
R 

. Then for each Ωα ,   αQQα EclBNNintBNNE  .  

      .........EclBNNintBNNEclBNNintBNN......EE 2QQ1QQ21    

                         .....EclBNNEclBNNintBNN 2Q1QQ    

                       ....EEclBNNintBNN 21QQ    

Hence 
Ωα

αE


is ROBNNQ


 
set in U.   

Theorem: 3.4.13   In a TSBNN    Qτ,U
BNN

R 
, the 

QBNN - open sets ,1,0 *BNNBNN    Q*BN,Q*B 1BN and  Q*BN  
with 

     C2Q Q*BNQ*BNclBNN   are the only ROBNNQ
  sets in U. 

Proof.                Table 1.
 


QBNN - interior closure of each OBNNQ

 sets 
  

OBNNQ


 
Set (E)  EclBNNQ

    EclBNNintBNN QQ
  

 Q*BN    C2 Q*BN   Q*BN  

 Q*BN    CBN Q*B   Q*BN1  

 Q*BBN    C1 Q*BN   Q*BBN  

 Q*BN1    CBN Q*B   Q*BN1  

 Q*BN2    C1 Q*BN   Q*BBN  

Since ROBNNQ


 
sets are OBNNQ

 , then BNN
0 ,    ,QBN,QB,1 1BNBNN


  Q*BN  

with      C2Q Q*BNQ*BNclBNN   are 

the only ROBNNQ
  sets in U. 

Theorem: 3.4.14   Finite Intersection of ROBNNQ
 sets is ROBNNQ

 . 

Proof. From theorem 3.4.13, we have BNN
0 ,    ,QBN,QB,1 1BNBNN


  Q*BN  

with      C2Q Q*BNQ*BNclBNN   are 

the only ROBNNQ
  sets in U. If E is any one of the above OBNNQ

 sets, then  
BNNBNN

0E0  and  EE1
BNN



 
are 

ROBNNQ


 
sets.

 
     QBQBNQB BN1BN

  ,
 

     QBQBNQB BNBN
  ,      QBNQBNQBN 11

  . Thus finite 

intersection of ROBNNQ


 
sets is ROBNNQ

 . 

Remark: 3.4.15   The intersection and union of any two RCBNNQ
 sets are RCBNNQ

 . 

Theorem: 3.4.16   RCBNNQ
 sets are CBNNQ

 sets.  

Proof. If E is RCBNNQ
  in   Qτ,U

BNN
R 

, then   EintBNNclBNNE QQ
 . Now 

       EEintBNNclBNNEintBNNclBNNclBNN)E(clBNN QQQQQQ   . Hence E is CBNNQ
 in U. 

Theorem: 3.4.17   RCBNNQ
 sets are PCBNNQ

 sets.  

Proof. The proof follows from the definitions of RCBNNQ
 and PCBNNQ

 sets. 

3.5 Bipolar Neutrosophic Nano * β  Open Sets 

Definition: 3.5.1   Let E be a BN set in a TSBNN    Qτ,U
BNN

R 
. Then E is said to be 

QBNN - β -open set ( OβBNNQ
  set) of U 

if    EclBNNintBNNclBNNE QQQ
 . The complement of OβBNNQ



 
set is called 

QBNN - β - closed set ( CβBNNQ
  set) 

of U. 

Theorem: 3.5.2  OBNNQ
 sets are OβBNNQ

 sets.  

Proof. Let E be a OBNNQ
  in   Qτ,U

BNN
R 

. Then   EEintBNNQ  . We have  EclBNNE Q
 .

 
      EclBNNintBNNclBNNEintBNNclBNNE QQQQQ

  . Hence E is OβBNNQ
 in U. 

Theorem: 3.5.3  SOBNNQ
 sets are OβBNNQ

 sets.  

Proof. Let E be a SOBNNQ
  in   Qτ,U

BNN
R 

. Then   EintBNNclBNNE QQ
 . We have  EclBNNE Q

 .
 

      EclBNNintBNNclBNNEintBNNclBNNE QQQQQ
  . Hence E is OβBNNQ

 in U. 

Theorem: 3.5.4  ROBNNQ


 
sets are OβBNNQ



 
sets.  

Proof. Let E be a ROBNNQ
  in   Qτ,U

BNN
R 

. Then   EclBNNintBNNE QQ
 .

  
      EclBNNintBNNclBNNEclBNNintBNNE QQQQQ

  . Hence E is OβBNNQ
 in U. 

Theorem: 3.5.5  OαBNNQ
 sets are OβBNNQ

 sets.  
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Proof. Let E be a OαBNNQ
  in   Qτ,U

BNN
R 

.  

Then    EintBNNclBNNintBNNE QQQ
 .

  
          EclBNNintBNNclBNNEclBNNintBNNEintBNNclBNNintBNNE QQQQQQQQ

  .  

Hence E is OβBNNQ


 
in U. 

Theorem: 3.5.6  POBNNQ


 
sets are OβBNNQ

 sets. 

Proof. Let E be a POBNNQ
  in   Qτ,U

BNN
R 

. Then   EclBNNintBNNE QQ
 .

 
      EclBNNintBNNclBNNEclBNNintBNNE QQQQQ

  . Hence E is OβBNNQ
 in U. 

Remark: 3.5.7  The following example shows that the converses of the theorems 3.5.2, 3.5.3, 3.5.4 and 3.5.5 are not 

true. 

Example: 3.5.8  Let

 

 

  

























6.0,4.0,4.0,9.0,2.0,1.0,p

6.0,3.0,3.0,6.0,5.0,4.0,p

8.0,3.0,2.0,5.0,4.0,4.0,p

E

3

2

1

 .  

From example 3.4.4,       C2QQQ QBNEclBNNintBNNclBNN   . Also   C2 Q*BNE  . E is OβBNNQ
  

And  

(i)   EEintBNNQ  , E is not OBNNQ


 
set. 

(ii)    *BNNQQ 0EintBNNclBNN 

 
and *BNN0E  . So E is not SOBNNQ



 
set. 

(iii)      EQBNEclBNNintBNN QQ 
 . So E is not ROBNNQ



 
set. 

(iv)     *BNNQQQ 0EintBNNclBNNintBNN 

 
and *BNN0E  . So E is not OαBNNQ



 
set. 

Example: 3.5.9  This example shows that the converse of theorem 3.5.6 is not true. 

Let 

 

 

  

























6.0,4.0,3.0,7.0,2.0,2.0,p

6.0,3.0,3.0,5.0,3.0,2.0,p

7.0,3.0,3.0,8.0,2.0,2.0,p

E

3

2

1

. 

    Q*BNEclBNNintBNN 2QQ  ,  Q*BNE 2 .
 
 

     
C

QQQ QBNEclBNNintBNNclBNN 






 ,   CQ*BNE  . 

Hence E is OβBNNQ


 
but not POBNNQ

 . 

Theorem: 3.5.10    Arbitrary union of OβBNNQ
 sets is OβBNNQ

 set. 

Proof. If   ΩααE
  

is a collection of OβBNNQ


 
sets in   Qτ,U

BNN
R 

, then for each Ωα , 

   αQQQα EclBNNintBNNclBNNE  .  

        .........EclBNNintBNNclBNNEclBNNintBNNclBNN......EE 2QQQ1QQQ21    

                          ...EclBNNintBNNEclBNNintBNNclBNN 2QQ1QQQ  

 

        
     .....EclBNNEclBNNintBNNclBNN 2Q1QQQ    

                       ....EEclBNNintBNNclBNN 21QQQ    

Hence 
Ωα

αE


is OβBNNQ


 
set in U.   

Theorem: 3.5.11        Q,UOβBNNQ,UPOBNNQ,USOBNN QQQ
  . 

Proof. The proof follows from theorems 3.5.3 and 3.5.4. 

Theorem: 3.5.12    If F is BN subset of U and E is POBNNQ


 
in U such that   EintBNNclBNNFE QQ

 , then F is

OβBNNQ
 . 

Proof. Since E is POBNNQ


 
in U,   EclBNNintBNNE QQ

 .  

Now        EclBNNintBNNintBNNclBNNEintBNNclBNNF QQQQQQ
   

       FclBNNintBNNclBNNEclBNNintBNNclBNN QQQQQQ
  . 

Hence    FclBNNintBNNclBNNF QQQ
 . Then F is OβBNNQ

 . 

Theorem: 3.5.13    Each OβBNNQ
 set which is SCBNNQ

  is SOBNNQ
 . 

Proof. Let E be OβBNNQ


 
set which is SCBNNQ

 . Then    EclBNNintBNNclBNNE QQQ
  and 

   EEclBNNintBNN QQ  . Hence       EclBNNintBNNclBNNEEclBNNintBNN QQQQQ
  . Since 

   GEclBNNintBNN QQ   is a OBNNQ


 
set in U, that there exists a OBNNQ

  set such that  GclBNNEG Q
 . Therefore 

E is SOBNNQ


 
set. 
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Example: 3.5.14    The statement of the above theorem is shown in this example. 

Let       42314321 p,p,p,pR/U,p,p,p,pU  , 

 

 

 

  



































5.0,5.0,5.0,7.0,4.0,2.0,p

3.0,6.0,6.0,7.0,3.0,3.0,p

3.0,5.0,6.0,6.0,4.0,4.0,p

4.0,6.0,5.0,6.0,3.0,2.0,p

Q

4

3

2

1

.  

 

 

 

  



































3.0,5.0,6.0,6.0,4.0,4.0,p

3.0,6.0,6.0,6.0,3.0,3.0,p

3.0,5.0,6.0,6.0,4.0,4.0,p

3.0,6.0,6.0,6.0,3.0,3.0,p

)Q(*BN

4

3

2

1

,

 

 

 

  



































5.0,5.0,5.0,7.0,4.0,2.0,p

4.0,6.0,5.0,7.0,3.0,2.0,p

5.0,5.0,5.0,7.0,4.0,2.0,p

4.0,6.0,5.0,7.0,3.0,2.0,p

)Q(*BN

4

3

2

1

, 

 

 

 

  



































5.0,5.0,5.0,6.0,4.0,4.0,p

5.0,4.0,4.0,6.0,3.0,3.0,p

5.0,5.0,5.0,6.0,4.0,4.0,p

5.0,4.0,4.0,6.0,3.0,3.0,p

)Q(*B

4

3

2

1

BN ,

 

 

 

  



































5.0,5.0,5.0,6.0,4.0,4.0,p

4.0,6.0,5.0,6.0,3.0,3.0,p

5.0,5.0,5.0,6.0,4.0,4.0,p

4.0,6.0,5.0,6.0,3.0,3.0,p

)Q(*BN

4

3

2

1

1  , 

 

 

 

  



































5.0,5.0,5.0,6.0,4.0,2.0,p

5.0,4.0,4.0,7.0,3.0,2.0,p

5.0,5.0,5.0,6.0,4.0,2.0,p

5.0,4.0,4.0,7.0,3.0,2.0,p

)Q(*BN

4

3

2

1

2 .  

            *BNN21BN*BNNQ*R 1,Q*BN,Q*BN,Q*B,Q*BN,Q*BN,0τ
BNN

 . 

Let 

 

 

 

  



































5.0,5.0,5.0,6.0,5.0,6.0,p

5.0,4.0,4.0,5.0,6.0,5.0,p

5.0,5.0,5.0,6.0,5.0,6.0,p

5.0,4.0,4.0,5.0,6.0,5.0,p

E

4

3

2

1

,       C1QQQ QBNEclBNNintBNNclBNNE    and  

     EQ*BEclBNNintBNN BNQQ  . Therefore E is both OβBNNQ


 
and SCBNNQ

 . Also 

     C1QQ QBNEintBNNclBNNE   . Hence E is SOBNNQ
 . 

Theorem: 3.5.15   Each OβBNNQ
 set which is CαBNNQ

 is CBNNQ
 . 

Proof. Let E be OβBNNQ


 
set which is CαBNNQ

 . Then    EclBNNintBNNclBNNE QQQ
  and 

    EEclBNNintBNNclBNN QQQ  .  

Hence     clBNNEEclBNNintBNNclBNN QQQQ
     EclBNNintBNN QQ

 .  

This implies      EclBNNEEclBNNintBNNclBNNE QQQQ
  . Hence E is CBNNQ



 
set. 

Theorem: 3.5.16  Arbitrary intersection of CβBNNQ
 sets is CβBNNQ

 set. 

Proof. If   ΩααE
  

is a collection of CβBNNQ


 
sets in   Qτ,U

BNN
R 

, then for each Ωα , 

    ααQQQ EEintBNNclBNNintBNN  .  

        .........EintBNNclBNNintBNNEintBNNclBNNintBNN......EE 2QQQ1QQQ21    

                          ...EintBNNclBNNEintBNNclBNNintBNN 2QQ1QQQ  

 

                     
     .....EintBNNEintBNNclBNNintBNN 2Q1QQQ    

                       ....EEintBNNclBNNintBNN 21QQQ    

Hence 
Ωα

αE


is CβBNNQ


 
set in U.   

Remark: 3.5.17   Figure-1 shows the relationships among OBNNQ
 , POBNNQ

 , OαBNNQ
 , ROBNNQ

 , OβBNNQ


and SOBNNQ
  in a TSBNN    Qτ,U

BNN
R 

. 
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Figure 1.  Relationship between the weaker forms of open sets in TSBNNQ
  

4. Conclusion 

Bipolar neutrosophic set is the base for many topological spaces. In topology, the topological structures such as 

closedness and openness are the important concepts. It helps to determine the continuity of a mapping between the 

topologies. Many researchers have proposed various types of topologies with bipolar neutrosophic set. In this paper, we 

introduced new family of sets namely, bipolar neutrosophic nano* preopen, semi open, α open , regular open and  open 

sets in a new topology Bipolar Neutrosophic Nano* topology . Further, some important results based on the corresponding 

sets are derived and discussed through several examples. As we know neutrosophic sets and nano topology are the roots for 

many real life applications, we expect that the proposed sets will serve contributions to some future works to the new 

researchers in real life problems as well as in algebra, geometry and analysis of other sub-branches of mathematics. Our 

future work will consist of applications of the proposed sets and topology in decision making problems. There are numerous 

Neutrosophy based decision making algorithms available. In future, we will explore decision making scenarios and try to 

define novel algorithms by applying proposed concepts. Also, image processing is one of the field which uses neutrosophic 

logic. We will try to develop image processing algorithms based on proposed neutrosophic topology. 
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ABSTRACT  

In this paper, we introduce and study the NeutroAlgebra structure and many of operations and 

properties of the mathematical morphology. This is a generalization of the operations of fuzzy and 

classical mathematical morphology. An explanation of the new given operations is provided through 

several examples and experimental results.    Since mathematical morphology deals with forms and 

is used in image processing, we consider in this research the Indeterminate Image (i.e. image with 

missing, unclear, or overlapping pixels), whose basic morphological operator’s dilation, erosion, 

opening and closing transform an indeterminate image into another indeterminate image. Therefore, 

in fact, we deal with neutro-dilation, neutro-erosion, neutro-opening and neutro-closing. For a 

determinate image (i.e. image with no indeterminacy), the classical morphological operators 

transform it also into a determinate image, while the neutro-morphological operators into an 

indeterminate image. All work from below is available for both the indeterminate and determinate 

image. 
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Keywords: Neutrosophic Fuzzy Set, Neutrosophic Crisp Sets, Mathematical Morphology, 

Neutrosophic Fuzzy Mathematical Morphology, Neutrosophic Crisp Mathematical Morphology, 

Neutro-Morphological Operators. 

 

1. Introduction 

  In classical algebraic structures for mathematical morphology, all axioms are 100% , and all 

operations are 100% well defined, but in real life, in many cases these restrictions are too harsh, since 

in our world we have things that only partially verify some laws or some operations.     

Neutrosophy introduces a new concept, which represent indeterminacy with respect to some event, 

which can solve certain problems that cannot be solved by fuzzy logic and crisp logic. .In 1995, 

Smarandache initiated the theory of NFS as a new mathematical tool for handling problems involving 

imprecise indeterminacy, and inconsistent data. Several researchers dealing with the concept of NFS 

such as Bhowmik and Pal in [14] and Salama et al. introduced many applications in [6-13].  In [6] 

Salama introduced the concept of neutrosophic crisp sets, to represent any event by a triple crisp 

structure. A crisp structure is a structure whose all elements are characterized by the same given 

Relationships and Attributes. A NeutroStructure is a structure that has at least one NeutroRelation 

or one NeutroAttribute, and neither AntiRelation nor AntiAttribute. In 2019 and 2020, Smarandache 

[1, 2, 3, 4] generalized the classical Algebraic Structures to NeutroAlgebraic Structures. Neutrosophic 

mathematical morphology is most commonly applied to digital images, but it can be employed as 

well on graphs, surface meshes, solids, and many other spatial structures. Established in 1964, 

mathematical morphology was firstly introduced by Georges Matheron and Jean Serra, as a branch 

of image processing [29]. As morphology is the study of shape, mathematical morphology mostly 

deals with the mathematical theory of describing shapes using set theory. In image processing, the 

basic morphological operator’s dilation, erosion, opening and closing form the fundamentals of this 

theory [29]. A morphological operator transforms an image into another image, using some 

structuring element, which can be chosen by the user. Mathematical morphology stands somewhat 

apart from traditional linear image processing, since the basic operations of morphology are non-

https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Polygon_mesh
https://en.wikipedia.org/wiki/Solid_geometry
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linear in nature, and thus make use of a totally different type of algebra than the linear algebra. At 

first, the theory was purely based on set theory and operators, which defined for binary cases only. 

Later on the theory was extended to grayscale images also, where the theory of lattices was 

introduced by Petros Maragos, who also gave a representation theory for image processing as a 

scientific branch, Mathematical Morphology expanded worldwide during the 1990s. It is also during 

that period, different models based on fuzzy set theory were introduced [16, 1717]. Today, 

mathematical morphology remains a challenging research field, e.g. [14 - 44].  

 

2. Terminologies 

We recall some relevant basic preliminaries, and in particular, the work of Smarandache in [1-5], 

Salama et al. [6-13], and some references in [14-53]. 

2.1 Abbreviations 

1. Crisp Mathematical Morphology (CMM) 

2. Fuzzy Mathematical Morphology (FMM).  

3. Neutrosophic Fuzzy Set (NFS) 

4. Neutrosophic Crisp Set (NCS) 

5. Neutrosophic Fuzzy Morphological (NFM)  

6. Neutrosophic Fuzzy Dilation (NFD) 

7. Neutrosophic Fuzzy Erosion (NFE)  

8. Neutrosophic Fuzzy Opening (NFO) 

9. Neutrosophic Fuzzy Closing (NFC) 

10. Neutrosophic Fuzzy Filters (NFF). 

11. Neutrosophic Fuzzy Gradient Boundary (NFGB)  

12. Neutrosophic Fuzzy External Boundary (NFEB) 

13. Neutrosophic Fuzzy Internal Boundary (NFIB) 

14. Neutrosophic Fuzzy Outline Boundary (NFOB) 

15. Neutrosophic Fuzzy Mathematical Relation (NFMR) 
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16. Neutrosophic Crisp Mathematical Morphology (NCMM) 

17. Neutrosophic Crisp Dilation (NCD).  

18. Neutrosophic Crisp Erosion (NCE). 

19. Neutrosophic Crisp Opening (NCO) 

20. Neutrosophic Crisp Closing (NCC). 

21. Neutrosophic Crisp External Boundary (NCEB). 

 

2.2 Neutrosophic Intensity Image: 

To transform the Image from its Spatial (Cartesian) Domain into Neutrosophic Domain, we should 

investigate the necessary mathematical tools as follow: 

The image as a mathematical object (Spatial  Domain) is an image mathematically represented by 

an 𝑚 ×  𝑛 matrix 𝐼 = [𝑔𝑖𝑗]
𝑚×𝑛

, with entities 𝑔 (𝑖, 𝑗) corresponding to the intensity to the given 

pixel located at the node (𝑖, 𝑗) The image in the Neutrosophic Domain (ND) where each pixel of 

the image is represented by 𝑃𝑖𝑗  having three components 𝑃𝑖𝑗 = (𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗); Where, 

T (i, j) =
�̅�(𝑖,𝑗)−�̅�𝑚𝑖𝑛

�̅�𝑚𝑎𝑥  −�̅�𝑚𝑖𝑛
 , I (i, j) = 

𝛿(𝑖,𝑗)−𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛
 , F (i, j) =1 − T (i, j) =  

�̅�max−�̅�(i,j)

�̅̅�max −�̅�min
 

�̅�(𝑖, 𝑗) is the mean intensity in some neighborhood 𝑤 of the pixel given by: 

�̅�(𝑖, 𝑗) =
1

𝑤2
∑ ∑ 𝑔(𝑘, 𝑙)

𝑛=𝑗+
𝑤

2

𝑙=𝑗−
𝑤

2

𝑚=𝑖+
𝑤

2

𝑘=𝑖−
𝑤

2

. Also, �̅�𝑚𝑎𝑥 =  𝑚𝑎𝑥 �̅�(𝑖, 𝑗), �̅�𝑚𝑖𝑛 = 𝑚𝑖𝑛 �̅�(𝑖, 𝑗),  

𝛿(𝑖, 𝑗) = 𝑎𝑏𝑠(𝑔(𝑖, 𝑗) − �̅�(𝑖, 𝑗)), 𝛿𝑚𝑎𝑥 = max 𝛿(𝑖, 𝑗), 𝛿𝑚𝑖𝑛 = min 𝛿(𝑖, 𝑗). Hence, the image in the 

neutrosophic domain becomes a 3D matrix 𝐼𝑁𝐷 = [𝑇𝑖𝑗     𝐼𝑖𝑗     𝐹𝑖𝑗], of (𝑚 × 𝑛 × 3) dimension. 

2.3 Implementation and Experimental Results: 

In this section, the following suggested algorithm has been used to transform the 

cartesian image domain into the neutrosophic image domain. 

Step 1: Read the grayscale image. 

Step 2: Compute the local mean intensity for each pixel in the image. 
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Step 3: Compute the maximum and minimum values of the local mean 

intensities. 

Step 4: Compute the divergence between the intensity of each pixel and its 

local mean intensity. 

Step 5: Compute the maximum and the minimum values of the divergence 

induced in the previous step. 

Step 6: Construct the truth, indeterminacy, and falseness matrices 𝑇, 𝐼, 𝐹 for 

each pixel. 

Most neutrosophic morphological operations can be obtained by combining theoretical 

operations of the neutrosophic set with two traditional and basic image operations, dilation and 

erosion, the following section has been dedicated to this issue. 

3. NFM Operations: 

In this section, we introduce and study the neutrosophic algebraic structures and many 

operations and properties of mathematical neutrosophic morphology. This is a generalization of the 

classical mathematical morphological operations. An explanation of the new given operations is 

provided through several examples with giving experimental results. "Lena" image has been used to 

investigate the effect of each of the given operators on the image. Basic definitions for neutrosophic 

morphological operations are extracted and a study of its algebraic properties is presented. In our 

work, we demonstrate that neutrosophic morphological operations inherit properties and restrictions 

of fuzzy mathematical morphology. The operations of NFD, NFE, NFO, and NFC of the neutrosophic 

image by neutrosophic structuring element, are defined in terms of their membership, indeterminacy, 

and non-membership functions; which are defined for the first time as far as we know.  

 

3.1.  NFD and NFE: 

     The two basic operations for the construction of neutrosophic fuzzy morphological 

operators, namely, NFD and NFE. are based on the two Minkowski set operations, the Minkowski 

addition and subtraction of two NFS; respectively. We may define them as follows: 
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   The process of structuring element B on image A and moving it across the image in a way like 

convolution is defined as a dilation operation. The two main inputs for the dilation operator [21] are 

the image, which is to be dilated, and a set of coordinate points known as a structuring element, 

which is can be defined also as a kernel. The exact effect of the dilation on the input image is 

determined by this structuring element [20]. Its dilation is defined as a set operation. A is dilated by 

B, written as A⨁B. 

 

3.1.1 Definition 

NFD of Type I: 

Let A and B be two NFSs; then the NFD of type I is given as 

(𝐴 ⊕̃ 𝐵) = ⟨𝑇𝐴⊕̃𝐵 , 𝐼𝐴⊕̃𝐵 , 𝐹𝐴⊕̃𝐵⟩; where for each 𝑢, 𝑣 ∈ 𝑍2 

𝑇𝐴⊕̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝑇𝐴(𝑣 + 𝑢), 𝑇𝐵(𝑢)), 𝐼𝐴⊕̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝐼𝐴(𝑣 + 𝑢), 𝐼𝐵(𝑢)),𝐹𝐴⊕̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥(1 −

𝐹𝐴(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)). 

 

 

 

 

 

(a)                    (b) 𝑇𝐴⊕̃𝐵           (b) 𝐼𝐴⊕̃𝐵           (b) 𝐹𝐴⊕̃𝐵 

Fig 3.1.1 (I): Applying the NFD operator: (a) Original image , (b) Neutrosophic Fuzzy components 

of the dilated image in type I ⟨𝑇𝐴⊕̃𝐵 , 𝐼𝐴⊕̃𝐵  , 𝐹𝐴⊕̃𝐵⟩ respectively. 

NFD of Type II:  

𝑇𝐴⊕̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝑇𝐴(𝑣 + 𝑢), 𝑇𝐵(𝑢)), 𝐼𝐴⊕̃𝐵 = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥(𝐼𝐴(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)), 𝐹𝐴⊕̃𝐵 =

𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥(𝐹𝐴(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)) 
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(a)                 (b) 𝑇𝐴⊕̃𝐵               (b) 𝐼𝐴⊕̃𝐵           (b) 𝐹𝐴⊕̃𝐵 

Fig.3.1.1 (II): Applying the neutrosophic dilation operator: a) Original image b) Neutrosophic Fuzzy 

components of the dilated image in type II ⟨𝑇𝐴⊕̃𝐵 , 𝐼𝐴⊕̃𝐵, 𝐹𝐴⊕̃𝐵⟩ respectively. 

 

3.2  NFE Operation:  

The erosion process is as same as dilation, but the pixels are converted to 'white', not 'black'. The 

two main inputs for the erosion operator are the image that is to be eroded and a set of coordinate 

points known as a structuring element, which is defined also as a kernel. The exact effect of the 

erosion on the input image is determined by this structuring element. The followings are the 

mathematical definitions of erosion type I and erosion type II for grey-scale images. 

 

3.2.1 Definition (NFE of Type I, II): 

Let A and B be two neutrosophic sets, The neutrosophic fuzzy erosion of a neutrosophic set B 

from a neutrosophic set A is defined as (𝐴 ⊖̃ 𝐵)  =  ⟨𝑇𝐴⊖̃𝐵 , 𝐼𝐴⊖̃𝐵 , 𝐹𝐴⊖̃𝐵⟩; where for each 𝑢, 𝑣 ∈ 𝑍2. 

The three components, 𝑇𝐴⊖̃𝐵 , 𝐼𝐴⊖̃𝐵 , 𝐹𝐴⊖̃𝐵  are to be defined in different types as follows:  

 NFE of Type I: 

Let A and B be two NFS, then the NFE is given by 

(A ⊖̃ B) = ⟨TA⊖̃B, IA⊖̃B, FA⊖̃B⟩;  where for each 𝑢, 𝑣 ∈ 𝑍2, TA⊖̃B(v) = inf
u∈Z2

max(TA(v + u), 1 − TB(u)), 

IA⊖̃B(v) = inf
u∈Z2

max(IA(v + u), 1 − IB(u)), FA⊖̃B(v) = sup
u∈Z2

min(1 − FA(v + u), FB(u)). 
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(a)                  (b) TA⊖̃B              (b) IA⊖̃B          (b) FA⊖̃B 

Fig. 3.2.1 (I): Applying the NFE operator: (a) original image (b) neutrosophic components of the 

eroded in type I ⟨TA⊖ ̃B, IA⊖̃B, F𝐴⊖ ̃𝐵⟩ respectively. 

 

NFE of Type II: 

𝑇𝐴⊖̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥(𝑇𝐴(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)) , 𝐼𝐴⊖̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝐼𝐴(𝑣 + 𝑢), 𝐼𝐵(𝑢)) , 𝐹𝐴⊖̃𝐵(𝑣) =

𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝐹𝐴(𝑣 + 𝑢), 𝐹𝐵(𝑢)). 

(a)                     (b) TA⊖̃B            (b) IA⊖̃B              (b) FA⊖̃B 

Fig. 3.2.1 (II): Applying the neutrosophic erosion operator: (a) original image (b) neutrosophic  

components of the eroded in type II ⟨TA⊖̃B(v), IA⊖̃B(v), FA⊖̃B⟩ respectively. 

 

3.3  NFO and NFC Operations: 

   The combination of the two main neutrosophic fuzzy operations, dilation and erosion, can 

produce more complex sequences. Opening and closing are the most useful of these for 

morphological filtering. An opening operation is defined as an erosion followed by dilation using the 

same structuring element for both operations. The basic two inputs for the opening operator are an 
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image to be opened and a structuring element. The grey-level opening consists simply of grey-level 

erosion followed by grey-level dilation. The morphological opening ∘ and closing • are defined by: 

A ∘ B = (A ⊖̃ B) ⊕̃ B,    A •  B = (A ⊕̃ B) ⊖̃ B. 

From a granularity perspective, opening and closing provide coarser descriptions of the neutrosophic 

fuzzy set A. The opening describes A as closely as possible without using the individual pixels but 

by fitting (possibly overlapping) copies of E within A. The closing describes the complement of A by 

fitting copies of E* outside A. The actual set is always contained within these two extremes: A ∘B⊆

A ⊆ A • B and the informal notion of fitting copies of E, or of E*, within a set is made precisely in 

these equations: 

The operator 𝑃(𝐸) → 𝑃(𝐸): 𝐴 → 𝐴 ∘ 𝐵 is called the opening by 𝐵; it is the composition of the erosion 

⊖, followed by the dilation ⊕. On the other hand, the operator 𝑃(𝐸) → 𝑃(𝐸): 𝐴 → 𝐴 • 𝐵 is called the 

closing. To understand what a closing operation does: imagine the closing applied to a set; the 

dilation will expand object boundaries, which will be partly undone by the following erosion. Small, 

(i.e., smaller than the structuring element) holes and thin tube-like structures in the interior or at the 

boundaries of objects will be filled up by the dilation, and not reconstructed by the erosion, in as 

much as these structures no longer have a boundary for the erosion to act upon. In this sense, the 

term ’closing’ is a well-chosen one, as the operation removes holes and thin cavities. In the same 

sense, the opening opens up holes that are near (with respect to the size of the structuring element) a 

boundary and removes small object protuberances. 

 

Definition 3.3.1 (NFO of Type I, II): 

Two types of neutrosophic fuzzy opening operations NFO may defined as 𝑁𝑂𝐹: (A ∘̃ B) =

⟨TA∘̃B , IA∘̃B , FA∘̃B⟩ where 𝑢, 𝑣, 𝑤 ∈ 𝑍2. 
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NFO of Type I 

𝑇𝐴∘̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐵(𝑤)), 𝐵(𝑢)], 

𝐼𝐴∘̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐵(𝑤)), 𝐵(𝑢)], 

𝐹𝐴∘̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑎𝑥 [𝑠𝑢𝑝
𝑧∈𝑅𝑛

𝑚𝑖𝑛(1 − 𝐴(𝑣 − 𝑢 + 𝑤), 𝐵(𝑤)), 1 − 𝐵(𝑢)]. 

(a)                     (b) 𝑇𝐴∘̃𝐵           (b) 𝐼𝐴∘̃𝐵                (b) 𝐹𝐴∘̃𝐵 

Fig.3.3.1 (I): Applying the neutrosophic fuzzy opening operator: (a) Original image. 

 (b) Neutrosophic fuzzy opening components in type I ⟨𝑇𝐴∘̃𝐵, 𝐼𝐴∘̃𝐵, 𝐹𝐴∘̃𝐵⟩ respectively. 

NFO of Type II: 

𝑇𝐴∘̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑖𝑛 [(inf max(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵 (𝑤)) , 𝑇𝐵(𝑢)] , 

𝐼𝐴∘̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓 max(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 − 𝐼𝐵(𝑢)], 

𝐹𝐴∘̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑎𝑥 [ 𝑠𝑢𝑝 min(𝐹𝐴(𝑣 − 𝑢 + 𝑤), 𝐹𝐵(𝑤)) , 1 − 𝐹𝐵(𝑢)]. 

(a)                     (b) 𝑇𝐴∘̃𝐵(𝑣)            (b) 𝐼𝐴∘̃𝐵(𝑣)            (b) 𝐹𝐴∘̃𝐵(𝑣) 

Fig.3.3.1 (II): Applying the neutrosophic opening operator: (a) Original image (b) Neutrosophic 

opening components in type II ⟨𝑇𝐴∘̃𝐵(𝑣), 𝐼𝐴∘̃𝐵(𝑣), 𝐹𝐴∘̃𝐵(𝑣)⟩ respectively. 

 

 Definition 3.3.2 (NFC of Type I, II) 
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 Let A and B be two types as the following may define two neutrosophic sets: (A •̃ B) =

⟨TA•̃B , IA•̃B , FA•̃B⟩ where 

Type I 

𝑇𝐴•̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑎𝑥[𝑠𝑢𝑝 𝑚𝑖𝑛(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 1 − 𝑇𝐵(𝑢)], 

𝐼𝐴•̃𝐵(𝑣) =  𝑖𝑛𝑓
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑎𝑥[𝑠𝑢𝑝 𝑚𝑖𝑛(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)), 1 − 𝐼𝐵(𝑢)], 

𝐹𝐴•̃𝐵(𝑣) =  𝑠𝑢𝑝
𝑤,𝑣,𝑢∈𝑍2

𝑚𝑖𝑛[𝑖𝑛𝑓 𝑚𝑎𝑥(1 − 𝐹𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 𝐹𝐵(𝑢)] 

(a)               (b) 𝑇𝐴•̃ 𝐵              (b) 𝐼𝐴•̃ 𝐵             (b) 𝐹𝐴•̃ 𝐵  

    Fig. 3.3.2 (I): Applying the neutrosophic closing operator: (a) Original image (b) Neutrosophic 

closing components in type I ⟨𝑇𝐴•̃ 𝐵, 𝐼𝐴•̃ 𝐵, 𝐹𝐴•̃ 𝐵⟩ respectively. 

Neutrosophic Closing Type II: 

𝑇𝐴•̃𝐵(𝑣) =  𝑖𝑛𝑓
𝑤,𝑣,𝑢∈𝑍2

 𝑚𝑎𝑥 [sup 𝑚𝑖𝑛 (𝑇𝐴(𝑣 − 𝑢 + 𝑤), 𝑇𝐵 (𝑤)), 1 − 𝑇𝐵(𝑢)] , 

𝐼𝐴•̃𝐵(𝑣) =  𝑠𝑢𝑝
𝑤,𝑣,𝑢∈𝑍2

 𝑚𝑖𝑛 [inf 𝑚𝑎𝑥 (𝐼𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)), 𝐼𝐵(𝑢)], 

𝐹𝐴•̃𝐵(𝑣) =  𝑠𝑢𝑝
𝑤,𝑣,𝑢∈𝑍2

 𝑚𝑖𝑛 [inf 𝑚𝑎𝑥 (𝐹𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 𝐹𝐵(𝑢)]. 

 

(a)                     (b) 𝑇𝐴•̃𝐵(𝑣)          (b) 𝐼𝐴•̃𝐵(𝑣)           (b) 𝐹𝐴•̃𝐵(𝑣) 

Fig.3.3.2 (II): Applying the neutrosophic closing operator: a) Original image b) Neutrosophic closing 
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components in type II ⟨𝑇𝐴•̃𝐵(𝑣), 𝐼𝐴•̃𝐵(𝑣), 𝐹𝐴•̃𝐵(𝑣)⟩ respectively. 

 

3.4  Algebraic Properties of Neutrosophic Fuzzy Morphological Operations:  

This part has been dedicated to investigate some of the algebraic properties of the neutrosophic 

fuzzy morphological operations; i.e.  NFD, NFE, NFO and neutrosophic fuzzy closing. The algebraic 

properties for neutrosophic fuzzy mathematical morphology erosion and dilation, as well as for NFO 

and closing operations are now considered.  

3.4.1 Duality Theorem of NFD: 

   Let A and B be two NFSs. Then the NFE and the NFD both are dual operations, i.e. (Ac ⊕̃ B)c =

 ⟨T(Ac⊕̃B)c  , I(Ac⊕̃B)c  , F(AcA⊕̃B)c⟩; where for each 𝑢 & 𝑣 ∈ 𝑍2 we have: 

 

T(Ac⊕̃B)c(v)  = 1 − T(Ac⊕̃B)(v) = 1 − 𝑠𝑢𝑝
𝑣,𝑢∈𝑍2

 min (𝑇𝐴𝑐 (𝑣 + 𝑢), 𝑇𝐵(𝑢)) = inf
v,u∈Z2

[1 − min(TAc(v +

u), TB(u))] = inf
v,u∈Z2

[max(1 − TAc(v + u), 1 −  TB(u))] = inf
v,u∈Z2

[max(TA(v + u), 1 −  TB(u))] =

𝑇A⊖B(𝑣)   

I(Ac⊕̃B)c(v)  = 1 − I(Ac⊕̃B)(v) = 1 − 𝑠𝑢𝑝
𝑣,𝑢∈𝑍2

 min (𝐼𝐴𝑐(𝑣 + 𝑢), 𝐼𝐵(𝑢)) = inf
v,u∈Z2

[1 − min(IAc(v +

u), IB(u))] = inf
v,u∈Z2

[max(1 − IAc(v + u), 1 −  IB(u))] = inf
v,u∈Z2

[max(IA(v + u), 1 −  IB(u))] = 𝐼A⊖B(𝑣)   

F(Ac⊕̃B)c(v)  = 1 − F(Ac⊕̃B)(v)

= 1 − inf
v,u∈Z2

max(1 − FAc(v + u), 1 − FB(u)) = sup
v,u∈Z2

[1

− max(1 − FAc(v + u), 1 − FB(u))] = sup
v,u∈Z2

[min(1 − FA(v + u), FB(u))]  = FA⊖B(v) 

 

     Suppose the set A is the image under processing and the set B is the structuring element, the 

NFO and the NFC are defined respectively, as define the neutrosophic fuzzy binary operation  ∘

 and • by setting for any A and B 𝒩(E).  
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3.4.2. Duality Theorem of NFC: 

Let A and B are two NFSs, then the NFO and the NFC are also dual operation i.e:𝑇(Ac •̃ B)c =

 ⟨T(Ac•̃B)c  , I(Ac•̃B)c  , F(Ac•̃B)c⟩ , where  for all v, u∈ 𝑍2 

T(Ac•̃B)c(v) = 1 − T(Ac•̃B)(v) = 1 −  inf
v,u,w∈Z2

max [ sup
v,u,w∈Z2

min(TAc(v − u + w), TB(w)), 1 − 𝑇𝐵 (u)]

= sup
v,u,w∈Z2

min [1 − sup
v,u,w∈Z2

min(TAc(v − u + w), TB(w)), 1

− (1 − 𝑇𝐵(u))] = sup
v,u,w∈Z2

min [ inf
v,u,w∈Z2

max(1 − TAc(v − u + w), 1 − TB(w)), 𝑇𝐵(u)]

= sup
v,u,w∈Z2

min [ inf
v,u,w∈Z2

max(TAc(v − u + w), 1 − TB(w)), 𝑇𝐵 (u)] = TA∘B 

I(Ac•̃B)c(v) = 1 − I(Ac•̃B)(v) = 1 − inf
v,u,w∈Z2

max [ sup
v,u,w∈Z2

min(IAc(v − u + w), IB(w)), 1 − 𝐼𝐵(u)]

= sup
v,u,w∈Z2

min [1 − sup
v,u,w∈Z2

min(IAc(v − u + w), IB(w)), 1

− (1 − 𝐼𝐵(u))] = sup
v,u,w∈Z2

min [ inf
v,u,w∈Z2

max(1 − IAc(v − u + w), 1 − IB(w)), 𝐼𝐵(u)]

= sup
v,u,w∈Z2

min [ inf
v,u,w∈Z2

max(IAc(v − u + w), 1 − IB(w)), 𝐼𝐵(u)] = IA∘B 

F(Ac•̃B)c(v) = 1 − F(Ac•̃B)(v) = 1 −  sup
v,u,w∈Z2

min [ inf
v,u,w∈Z2

max(1 − FA(v − u + w), 1 − FB(w)), 𝐹𝐵(u)]

= inf
v,u,w∈Z2

max [1 − inf
v,u,w∈Z2

max(1 − FA(v − u + w), 1 − FB(w)),

𝐹𝐵(u)] = inf
v,u,w∈Z2

max [ sup
v,u,w∈Z2

min(1 − FA(v − u + w), FB(w)), 1 − 𝐹𝐵(u)] = FA∘B 

 

3.5. Neutrosophic Fuzzy Mathematical Relation 

3.5.1. Definition: Let A is a NFS and R be a neutrosophic relation on nonempty crisp set X then A ⊕

R my be defined by two types: 

𝐀 ⊕̃ 𝐑 = ⟨𝐓𝐀⊕̃𝐑 , 𝐈𝐀⊕̃𝐑 , 𝐅𝐀⊕̃𝐑⟩ 

TA⊕̃R(v) = sup
v,u∈Z2

min(TA(v + u), FR(u)), IA⊕R(v)  = sup
v,u∈Z2

min(IA(v + u), FR(u)) ,  

FA⊕R(y) = inf
u∈Z2

max(1 − FA(v + u), 1 − FR(u)). 
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Given two relations on 𝑋, say 𝑅 and 𝑆, the places you can get to following an arrow in R and then 

following an arrow in S are exactly the places you can get to by following an arrow in R; S. Formally, 

we have the right monoid action: 

Lemma 3.5.1:  The operation just defined, ⊕, provides a right action for the monoid of relations on 

the non-empty crisp set X on the power set. Specifically, for all 𝐴 ∈  𝑃𝑋 and for all 𝑅&𝑆 ∈  𝑅𝑋, 

𝐀 ⊕̃ 𝟏 = ⟨𝐓𝐀⊕𝟏, 𝐈𝐀⊕𝟏 , 𝐅𝐀⊕𝟏⟩ 

TA⊕1(v) = sup
v,u∈Z2

min(TA(v + u), 1) = sup
v,u∈Z2

(TA(u + v)) = TA 

IA⊕1(v)  = sup
v,u∈Z2

min(IA(v + u), 1) = sup
v,u∈Z2

(IA(u + v)) = IA 

FA⊕1(v) = inf
v,u∈Z2

max(1 − FA(v + u), 1 − 1) = inf
v,u∈Z2

(1 − FA(v + u)) = FAc  

 

Lemma 3.5. 2 : Let Ai  are indexed set neutrosophic fuzzy subsets on the non-empty crisp set X, then 

 ⋁
i

Ai ⨁̃R = ⟨T⋁
i

Ai⨁R  , I⋁
i

Ai⨁R , F
(⋁

i
Ai⨁R)

c⟩ , where T⋁
i

Ai⨁R = T⋁(
i

Ai⨁R) , I⋁
i

Ai⨁R = I⋁(
i

Ai⨁R) , F
(⋁

i
Ai⨁R)

c =

F⋀(
i

Ai⨁R)c  . 

3.6. Basic Properties of the Neutrosophic Fuzzy Morphological Operations: 

 

3.6.1 Properties of the NFD Operation:  

3.6.1.1 Proposition  

The neutrosophic Minkowski-addition satisfies the following properties 

i. Commutativity:(∀A, B ∈ 𝒩(Z2))(〈TA⊕̃B , IA⊕̃B , FA⊕̃B〉 = 〈TB⊕̃A, IB⊕̃A, FB⊕̃A〉); 

ii. Associativity: (∀A, B, C ∈ 𝒩(Z2)) 

(〈T(A⊕̃B)⊕̃C, I(A⊕̃B)⊕̃C , F(A⊕̃B)⊕̃C〉 = 〈TA⊕̃(B⊕̃C)  , IA⊕̃(B⊕̃C) , FA⊕̃(B⊕̃C)〉) 

Proof Straight forward 

Notice that the property〈T−(A⊕̃B), I−(A⊕̃B) , F−(A⊕̃B)〉 =  〈T(−A)⊕̃(−B) , I(−A)⊕̃(−B) , F(−A)⊕̃(−B)〉 

3.6.1.2. Proposition  

The neutrosophic dilation satisfies the following properties 
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i. Neutrosophic Monotonicity (increasing in both arguments): 

(∀A, B, C ∈ 𝒩(Z2))(A ⊆ B ⟹ 〈TA⊕̃C , IA⊕̃C , FA⊕̃C〉 ⊆ 〈TB⊕̃C , IB⊕̃C , FB⊕̃C〉), here we have 

TA⊕̃C ⊆ TB⊕̃C   ,    IA⊕̃C ⊆ IB⊕̃C   , FA⊕̃C ⊇ FB⊕̃C 

(∀A, B, C ∈ 𝒩(Z2))(A ⊆ B ⟹ 〈TC⊕̃A , IC⊕̃A , FC⊕̃A〉 ⊆ 〈TC⊕̃B , IC⊕̃B , FC⊕̃B〉), here we have 

TC⊕̃A ⊆ TC⊕̃B   ,   IC⊕̃A ⊆ IC⊕̃B   ,     FC⊕̃A ⊇ FC⊕̃B 

ii. Interaction with Zadeh’s intersection;  

For any family (Ai|i ∈ I) in 𝒩(Z2)and B ∈ 𝒩(Z2), we have: 

〈T∩
i∈I

Ai⊕̃B, I ∩
i∈I

Ai⊕̃B , F ∩
i∈I

Ai⊕̃B〉 ⊆ 〈T ∩
i∈I

(Ai⊕̃B), I ∩
i∈I

(Ai⊕̃B) , F ∩
i∈I

(Ai⊕̃B)〉, where 

T∩
i∈I

Ai⊕̃B ⊆ T∩
i∈I

(Ai⊕̃B)  ,  I ∩
i∈I

Ai⊕̃B ⊆ I ∩
i∈I

(Ai⊕̃B), F ∩
i∈I

Ai⊕̃B ⊆ F ∩
i∈I

(Ai⊕̃B). 

Also we have, 〈TB⊕̃ ∩
i∈I

Ai
 , IB⊕̃ ∩

i∈I
Ai

FB⊕̃ ∩
i∈I

Ai
〉 ⊆ 〈T ∩

i∈I
(B⊕̃Ai), IT ∩

i∈I
(B⊕̃Ai)

, FT ∩
i∈I

(B⊕̃Ai)
〉, where 

TB⊕̃ ∩
i∈I

Ai
⊆ T∩

i∈I
(B⊕̃Ai) , IB⊕̃ ∩

i∈I
Ai

⊆ I ∩
i∈I

(B⊕̃Ai), FB⊕̃ ∩
i∈I

Ai
⊆ F ∩

i∈I
(B⊕̃Ai). 

 

iii. Interaction with Zadeh’s union:  

For any family(Ai|i ∈ I) in 𝒩(Z2) and B ∈ 𝒩(Z2), we have 

〈T∪
i∈I

Ai⊕̃B, I ∪
i∈I

Ai⊕̃B , F ∪
i∈I

Ai⊕̃B〉 ⊇ 〈T ∪
i∈I

(Ai⊕̃B), I ∪
i∈I

(Ai⊕̃B) , F ∪
i∈I

(Ai⊕̃B)〉, where 

T∪
i∈I

Ai⊕̃B ⊇ T∪
i∈I

(Ai⊕̃B) ,  I ∪
i∈I

Ai⊕̃B ⊇ I ∪
i∈I

(Ai⊕̃B) , F ∪
i∈I

Ai⊕̃B ⊇  F ∪
i∈I

(Ai⊕̃B). 

Also we have, 〈TB⊕̃ ∪
i∈I

Ai
, IB⊕̃ ∪

i∈I
Ai

 , FB⊕̃ ∪
i∈I

Ai
〉 ⊇ 〈T∪

i∈I
(B⊕̃Ai) , I ∪

i∈I
(B⊕̃Ai) , F ∪

i∈I
(B⊕̃Ai)〉, where 

TB⊕̃ ∪
i∈I

Ai
⊇ T∪

i∈I
(B⊕̃Ai) , IB⊕̃ ∪

i∈I
Ai

⊇ I ∪
i∈I

(B⊕̃Ai)  , FB⊕̃ ∪
i∈I

Ai
⊇ F ∪

i∈I
(B⊕̃Ai). 

Proof. 

The proof of the first property is straightforward. 

i. 〈TA⊕̃C, IA⊕̃C , FA⊕̃C〉 ⊆ 〈TB⊕̃C, IB⊕̃C , FB⊕̃C〉. 

ii. 〈T∩
i∈I

Ai⊕̃B, I ∩
i∈I

Ai⊕̃B , F ∩
i∈I

Ai⊕̃B〉 ⊆ 〈T∩
i∈I

(Ai⊕̃B), I ∩
i∈I

(Ai⊕̃B) , F ∩
i∈I

(Ai⊕̃B)〉, 
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T∩
i∈I

Ai⊕̃B(v) = sup
u∈Zn

min (T∩
i∈I

Ai⊕̃B(v + u), TB(u)) = sup
v,u∈Z2

min (min
i∈I

T𝐀𝐢⊕̃𝐁(v

+ u), TB(u)) = sup
v,u∈Z2

min
i∈I

(minT𝐀𝐢⊕̃𝐁(v + u), TB(u)) ≤∩
𝐢∈𝐈

sup
v,u∈Z2

(minT𝐀𝐢⊕̃𝐁(v

+ u), TB(u)) ≤ ∩
i∈I

T(Ai⊕̃B)(v + u) ≤ T∩
i∈I

(Ai⊕̃B) 

I ∩
i∈I

Ai⊕̃B(v) = sup
v,u∈Z2

min (I ∩
i∈I

Ai⊕̃B(v + u), IB(u)) = sup
v,u∈Z2

min (min
i∈I

 I𝐀𝐢⊕̃𝐁(v

+ u), IB(u)) = sup
v,u∈Z2

min
i∈I

(min I𝐀𝐢⊕̃𝐁(v + u), IB(u)) ≤∩
𝐢∈𝐈

sup
u∈Z2

(min I𝐀𝐢⊕̃𝐁(v

+ u), IB(u)) ≤ ∩
i∈I

I(Ai⊕̃B)(v + u) ≤ I ∩
i∈I

(Ai⊕̃B) 

F ∩
i∈I

Ai⊕̃B(v) = inf
v,u∈Zn

max (1 − F ∩
i∈I

Ai⊕̃B(v + u), 1 − FB(u)) = inf
v,u∈Zn

max (min
i∈I

 IAi
c⊕̃B(v + u), 1 − FB(u))

≤ inf
v,u∈Zn

min
i∈I

(max F𝐀𝐢
𝐜⊕̃𝐁(v + u), 1 − FB(u))

≤ min
i∈I

inf
v,u∈Zn

(max F𝐀𝐢
𝐜⊕̃𝐁(v + u), 1 − FB(u))

≤ ∩
i∈I

inf
v,u∈Zn

(max F𝐀𝐢
𝐜⊕̃𝐁(v + u), 1 − FB(u)) ≤ F ∩

i∈I
(Ai⊕̃B) 

iii. 〈T∪
i∈I

Ai⊕̃B, I ∪
i∈I

Ai⊕̃B , F ∪
i∈I

Ai⊕̃B〉 ⊇ 〈T∪
i∈I

(Ai⊕̃B), I ∪
i∈I

(Ai⊕̃B) , F ∪
i∈I

(Ai⊕̃B)〉 

T∪
i∈I

Ai⊕̃B(v) = sup
v,u∈Z2

min (T∪
i∈I

Ai⊕̃B(v + u), TB(u)) = sup
v,u∈Z2

min (max
i∈I

TAi⊕̃B(v

+ u), TB(u)) ≥ sup
v,u∈Z2

max
i∈I

(minTAi⊕̃B(v + u), TB(u)) ≥∪
i∈I

sup
v,u∈Z2

(minTAi⊕̃B(v

+ u), TB(u)) ≥∪
i∈I

T(Ai⊕̃B)(v + u) ≥ T∪
i∈I

(Ai⊕̃B) 

I ∪
i∈I

Ai⊕̃B(v) = sup
v,u∈Z2

min (I ∪
i∈I

Ai⊕̃B(v + u), IB(u)) = sup
v,u∈Z2

min (max
i∈I

 IAi⊕̃B(v

+ u), IB(u)) ≥ sup
v,u∈Z2

max
i∈I

(min I𝐀𝐢⊕̃𝐁(v + u), IB(u)) ≥∪
𝐢∈𝐈

sup
v,u∈Z2

(minI𝐀𝐢⊕̃𝐁(v

+ u), IB(u)) ≥ ∪
i∈I

I(Ai⊕̃B)(v + u) ≥ I ∪
i∈I

(Ai⊕̃B) 
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F ∪
i∈I

Ai⊕̃B(v) = inf
v,u∈Zn

max (1 − F ∪
i∈I

Ai⊕̃B(v + u), 1 − FB(u)) = inf
v,u∈Zn

max (max
i∈I

 I𝐀𝐢
𝐜⊕̃𝐁(v + u), 1 − FB(u))

= inf
v,u∈Zn

max
i∈I

(max F𝐀𝐢
𝐜⊕̃𝐁(v + u), 1 − FB(u))

≥ max
i∈I

inf
v,u∈Zn

(max F𝐀𝐢
𝐜⊕̃𝐁(v + u), 1 − FB(u))

≥ ∪
i∈I

inf
v,u∈Zn

(max F𝐀𝐢
𝐜⊕̃𝐁(v + u), 1 − FB(u)) 

3.6.2 Properties of the NFE Operation:  

3.6.2.1 Proposition  

The NFE satisfies the following properties: 

i. Monotonicity (increasing in the first argument and decreasing in the second argument): 

(∀A, B, C ∈ 𝒩(Z2))(A ⊆ B ⟹ 〈TA⊖̃C , IA⊖̃C , FA⊖̃C〉 ⊆ 〈TB⊖̃C , IB⊖̃C , FB⊖̃C〉), where 

TA⊖̃C ⊆ TB⊖̃C , IA⊖̃C ⊆ IB⊖̃C , FA⊖̃C ⊇ FB⊖̃C . 

(∀A, B, C ∈ 𝒩(Z2))(A ⊆ B ⟹ 〈TC⊖̃A , IC⊖̃A , FC⊖̃A〉 ⊇ 〈TC⊖̃B , IC⊖̃B , FC⊖̃B〉), where 

TC⊖̃A ⊆ TC⊖̃B , IC⊖̃A ⊆ IC⊖̃B ,  FC⊖̃A ⊆ FC⊖̃B . 

ii. Interaction with Zadeh’s intersection: 

For any family (Ai|i ∈ I) in 𝒩(Z2)and B ∈ 𝒩(Z2), we have 

〈T∩
i∈I

Ai⊖̃B, I ∩
i∈I

Ai⊖̃B , F ∩
i∈I

Ai⊖̃B〉 ⊆ 〈T ∩
i∈I

(Ai⊖̃B), I ∩
i∈I

(Ai⊖̃B) , F ∩
i∈I

(Ai⊖̃B)〉, where 

T∩
i∈I

Ai⊖̃B ⊆ T∩
i∈I

(Ai⊖̃B)  ,  I ∩
i∈I

Ai⊖̃B ⊆ I ∩
i∈I

(Ai⊖̃B), F ∩
i∈I

Ai⊖̃B ⊆ F ∩
i∈I

(Ai⊖̃B). 

〈TB⊖̃ ∩
i∈I

Ai
 , IB⊖̃ ∩

i∈I
Ai

FB⊖̃ ∩
i∈I

Ai
〉 ⊇ 〈T∩

i∈I
(B⊖̃Ai), I ∩

i∈I
(B⊖̃Ai), F ∩

i∈I
(B⊖̃Ai)〉, where 

TB⊖̃ ∩
i∈I

Ai
⊇ T∩

i∈I
(B⊖̃Ai) , IB⊖̃ ∩

i∈I
Ai

⊇ I ∩
i∈I

(B⊖̃Ai), FB⊖̃ ∩
i∈I

Ai
⊇ F ∩

i∈I
(B⊖̃Ai). 

 

iii. Interaction with Zadeh’s union.  

For any family(Ai|i ∈ I) in 𝒩(Z2) and B ∈ 𝒩(Z2), we have 

〈T∪
i∈I

Ai⊖̃B, I ∪
i∈I

Ai⊖̃B , F ∪
i∈I

Ai⊖̃B〉 ⊇ 〈T ∪
i∈I

(Ai⊖̃B), I ∪
i∈I

(Ai⊖̃B) , F ∪
i∈I

(Ai⊖̃B)〉, where 

T∪
i∈I

Ai⊖̃B ⊇ T∪
i∈I

(Ai⊖̃B) ,  I ∪
i∈I

Ai⊖̃B ⊇ I ∪
i∈I

(Ai⊖̃B) , F ∪
i∈I

Ai⊖̃B ⊇  F ∪
i∈I

(Ai⊖̃B). 

〈TB⊖̃ ∪
i∈I

Ai
, IB⊖̃ ∪

i∈I
Ai

 , FB⊖̃ ∪
i∈I

Ai
〉 ⊆ 〈TB⊖̃ ∪

i∈I
Ai

 , IB⊖̃ ∪
i∈I

Ai
 , FB⊖̃ ∪

i∈I
Ai

〉, where 
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TB⊖̃ ∪
i∈I

Ai
⊆ TB⊖̃ ∪

i∈I
Ai

 , IB⊖̃ ∪
i∈I

Ai
⊆ IB⊖̃ ∪

i∈I
Ai

  , FB⊖̃ ∪
i∈I

Ai
⊇ FB⊖̃ ∪

i∈I
Ai

. 

Proof.   

The proof of the first property is straightforward. 

i. 〈TA⊖̃C, IA⊖̃C , FA⊖̃C〉 ⊆ 〈TB⊖̃C, IB⊖̃C , FB⊖̃C〉. 

 

ii. 〈T∩
i∈I

Ai⊖̃B, I ∩
i∈I

Ai⊖̃B , F ∩
i∈I

Ai⊖̃B〉 ⊆ 〈T ∩
i∈I

(Ai⊖̃B), I ∩
i∈I

(Ai⊖̃B) , F ∩
i∈I

(Ai⊖̃B)〉 

T∩
i∈I

Ai⊖̃B(v) = inf
v,u∈Z2

max (T∩
i∈I

Ai⊖̃B(v + u), TB(u)) = inf
v,u∈Z2

max (min
i∈I

 T𝐀𝐢⊖̃𝐁(v +

u), TB(u)) ≤ inf
v,u∈Z2

min
i∈I

(max T 𝐀𝐢⊖̃𝐁(v + u), TB(u)) ≤∩
𝐢∈𝐈

inf
v,u∈Z2

(max TAi⊖̃B(v +

u), TB(u)) ≤ ∩
i∈I

T(Ai⊖̃B)(v + u) ≤ T∩
i∈I

(Ai⊖̃B). 

I ∩
i∈I

Ai⊖̃B(v) = inf
v,u∈Z2

max (I ∩
i∈I

Ai⊖̃B(v + u), IB(u)) = inf
v,u∈Z2

max (min
i∈I

 I𝐀𝐢⊖̃𝐁(v +

u), IB(u)) ≤ inf
v,u∈Z2

min
i∈I

(max I 𝐀𝐢⊖̃𝐁(v + u), IB(u)) ≤∩
𝐢∈𝐈

inf
v,u∈Z2

(max I𝐀𝐢⊖̃𝐁(v +

u), IB(u)) ≤∩
i∈I

I(Ai⊖̃B)(v + u) ≤ I ∩
i∈I

(Ai⊖̃B). 

F ∩
i∈I

Ai⊖̃B(v) = sup
v,u∈Z2

min (1 − F ∩
i∈I

Ai⊖̃B(v + u), 1 − FB(u)) = sup
v,u∈Z2

min (min
i∈I

 IAi
c⊖̃B(v + u), 1 − FB(u)) =

sup
v,u∈Z2

min
i∈I

(min FAi
c⊖̃B(v + u), 1 − FB(u)) ≤ min

i∈I
sup
u∈Z2

(min FAi
c⊖̃B(v + u), 1 − FB(u)) ≤

∩
i∈I

sup
v,u∈Z2

(min FAi
c⊖̃B(v + u), 1 − FB(u)) ≤ F ∩

i∈I
(Ai⊖̃B). 

iii. 〈T∪
i∈I

Ai⊖̃B, I ∪
i∈I

Ai⊖̃B , F ∪
i∈I

Ai⊖̃B〉 ⊇ 〈T ∪
i∈I

(Ai⊖̃B), I ∪
i∈I

(Ai⊖̃B) , F ∪
i∈I

(Ai⊖̃B)〉 

T∪
i∈I

Ai⊖̃B(v) = inf
v,u∈Z2

max (T∪
i∈I

Ai⊖̃B(v + u), TB(u)) = inf
v,u∈Z2

max (max
i∈I

TAi⊖̃B(v +

u), TB(u)) = inf
v,u∈Z2

max
i∈I

(maxTAi⊖̃B(v + u), TB(u)) ≥∪
i∈I

inf
v,u∈Z2

(maxTAi⊖̃B(v + u), TB(u)) ≥∪
i∈I

T(Ai⊖̃B)(v +

u) ≥ T∪
i∈I

(Ai⊖̃B). 
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I ∪
i∈I

Ai⊖̃B(v) = inf
v,u∈Z2

max (I ∪
i∈I

Ai⊖̃B(v + u), IB(u)) = inf
v,u∈Z2

max (max
i∈I

 I𝐀𝐢⊖̃𝐁(v +

u), IB(u)) = inf
v,u∈Z2

max
i∈I

(max I𝐀𝐢⊖̃𝐁(v + u), IB(u)) ≥ ∪
𝐢∈𝐈

inf
v,u∈Zn

(max I 𝐀𝐢⊖̃𝐁(v +

u), IB(u)) ≥∪
i∈I

I(Ai⊖̃B)(v + u) ≥ I ∪
i∈I

(Ai⊖̃B). 

F ∪
i∈I

Ai⊖̃B(v) = sup
v,u∈Z2

min (1 − F ∪
i∈I

Ai⊖̃B(v + u), 1 − FB(u)) = sup
v,u∈Z2

min (max
i∈I

 IAi
c⊖̃B(v + u), 1 −

FB(u)) = sup
v,u∈Z2

max
i∈I

(min FAi
c⊖̃B(v + u), 1 − FB(u)) ≥ max

i∈I
sup

v,u∈Z2
(min FAi

c⊕̃B(v + u), 1 − FB(u)) ≥

∪
i∈I

sup
v,u∈Z2

(min FAi
c⊖̃B(v + u), 1 − FB(u)). 

3.6.3 Properties of the NFC Operation:  

3.6.3.1 Proposition  

The NFC satisfies the following properties 

i. Monotonicity (Increasing in the first argument): 

(∀A, B, C ∈ 𝒩(Z2))(A ⊆ B ⟹ 〈TA•̃C , IA•̃C , FA•̃C〉 ⊆ 〈TB•̃C , IB•̃C , FB•̃C〉) , where TA•̃C ⊆ TB•̃C , IA•̃C ⊆

IB•̃C , FA•̃C ⊆ FB•̃C . 

ii. Interaction with Zadeh’s intersection: 

For any family (Ai|i ∈ I) in 𝒩(Z2)and B ∈ 𝒩(Z2), we have 

〈T∩
i∈I

Ai •̃B, I ∩
i∈I

Ai•̃B , F ∩
i∈I

Ai•̃B〉 ⊆ 〈T∩
i∈I

(Ai•̃B), I ∩
i∈I

(Ai•̃B) , F ∩
i∈I

(Ai•̃B)〉, where T∩
i∈I

Ai •̃B ⊆ T ∩
i∈I

(Ai•̃B) , I ∩
i∈I

Ai •̃B ⊆

I ∩
i∈I

(Ai•̃B), F ∩
i∈I

Ai•̃B ⊆ F ∩
i∈I

(Ai•̃B) . 

iii. Interaction with Zadeh’s union: 

For any family(Ai|i ∈ I) in 𝒩(Z2) and B ∈ 𝒩(Z2), we have 

〈T∪
i∈I

Ai •̃B, I ∪
i∈I

Ai•̃B , F ∪
i∈I

Ai•̃B〉 ⊇ 〈T∪
i∈I

(Ai•̃B), I ∪
i∈I

(Ai•̃B) , F ∪
i∈I

(Ai•̃B)〉, where 

T∪
i∈I

Ai •̃B ⊇ T∪
i∈I

(Ai•̃B) ,  I ∪
i∈I

Ai •̃B ⊇ I ∪
i∈I

(Ai•̃B) , F ∪
i∈I

Ai •̃B ⊇  F ∪
i∈I

(Ai•̃B). 

Proof (i) The first property  (i.e. the monotonicity properties of the neutrosophic dilation and 

neutrosophic erosion have been satisfied from the fact that A ⊆ B , it follows that 

〈TC⊕̃A , IC⊕̃A , FC⊕̃A〉 ⊆ 〈TC⊕̃B , IC⊕̃B , FC⊕̃B〉 . 
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The proof of (ii) & (iii) can be inherited from the property that (Ai|i ∈ I) (min
i∈I

Ai  ⊆ Ai ⊆ max
i∈I

Ai). 

3.6.4 Properties of the NFO Operation:  

3.6.4.1 Proposition  

The neutrosophic opening satisfies the following properties 

i. Monotonicity (increasing in the first argument): 

(∀A, B, C ∈ 𝒩(Z2))(A ⊆ B ⟹ 〈TA ο̃ C , IA ο ̃ C , FA ο̃ C〉 ⊆ 〈TB ο̃ C , IB ο̃ C , FB ο̃ C〉), where 

TA∘̃ C ⊆ TB∘̃ C ,  IA ∘̃ C ⊆ IB ∘ ̃ C , FA∘̃  C ⊆ FB ∘ ̃ C. 

ii. Interaction with Zadeh’s intersection: 

For any family  (Ai|i ∈ I) in 𝒩(Z2)and B ∈ 𝒩(Z2), we have 

〈T∩
i∈I

Aiο̃B, I ∩
i∈I

Ai ο̃ B , F ∩
i∈I

Ai ο̃ B〉 ⊆ 〈T∩
i∈I

(Ai ο̃B), I ∩
i∈I

(Aiο̃ B) , F ∩
i∈I

(Ai ο̃B)〉, where 

T∩
i∈I

Aiο̃B ⊆ T∩
i∈I

(Ai ο̃ B)  ,  I ∩
i∈I

Aiο̃B ⊆ I ∩
i∈I

(Aiο̃B), F ∩
i∈I

Aiο̃B ⊆ F ∩
i∈I

(Aiο̃ B ). 

iii. Interaction with Zadeh’s union: 

For any family(Ai|i ∈ I) in 𝒩(Z2) and B ∈ 𝒩(Z2), we have 

〈T∪
i∈I

Ai ο̃ B, I ∪
i∈I

Ai ο̃B , F ∪
i∈I

Aiο̃ B〉 ⊇ 〈T∪
i∈I

(Aiο̃ B), I ∪
i∈I

(Aiο̃B ) , F ∪
i∈I

(Aiο̃B)〉, where 

T∪
i∈I

Ai ο̃ B ⊇ T∪
i∈I

(Aiο̃B) ,  I ∪
i∈I

Aiο̃B ⊇ I ∪
i∈I

(Aiο̃B) , F ∪
i∈I

Aiο̃ B ⊇  F ∪
i∈I

(Aiο̃B ). 

The proofs are Similar to the proofs of the foregoing proposition. 

 

3.7 Neutrosophic Fuzzy Mathematical Morphological Filters:  

      This section is considering the differences between two or more of the basic neutrosophic fuzzy 

morphological operators. 

3.7.1 Some Types of Boundary Extraction Filters Using NFD and NFE:  

As the neutrosophic dilation thickens the regions in the true level of the image, and the 

neutrosophic erosion shrinks them, the neutrosophic differences between the image and its 

neutrosophic dilation or its neutrosophic erosion may emphasize the boundaries between regions 

included in the image. Therefore, several boundary filters may be obtained as follows: 
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3.7.1.1 Neutrosophic Fuzzy Gradient Boundary:  

To commence, we will investigate the neutrosophic fuzzy gradient filter, which is the mean value of 

the three components of the neutrosophic difference between the neutrosophic dilation of some 

images and its neutrosophic erosion. We get the neutrosophic gradient of the image by applying the 

mean of these boundaries. If the structure element is relatively small, the homogeneous areas will not 

be affected by NFD and NFE, and then the subtraction tends to eliminate them. The effect of 

neutrosophic morphological gradient operation is shown in Fig. 3.7.1.1, Type I, II, and to be defined 

in two different types as follows:  

 

Type I:  

𝜕𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = (1/3) [𝑚𝑖𝑛(𝑇𝐴 ⊕̃ 𝐵(𝑣),1 − 𝑇𝐴 ⊖̃ 𝐵(𝑣)), 𝑚𝑖𝑛(𝐼𝐴 ⊕̃ 𝐵(𝑣),1 −

𝐼𝐴 ⊖̃ 𝐵(𝑣)), 𝑚𝑎𝑥(𝐹𝐴 ⊕̃ 𝐵(𝑣),1 − 𝐹𝐴 ⊖̃ 𝐵(𝑣))]. 

In the following figure (fig.3.7.1.1 (I)), we present the results obtained when applying neutrosophic 

gradient boundary filter on some grayscale image.  

 

 

 

 

(a) (b)  

Fig. 3.7.1.1 (I): Applying the Neutrosophic Gradient Boundary: (a) Original Image (b) Neutrosophic 

Gradient Boundary Filtered. 

Type II:  

𝜕𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = (1/3)[𝑚𝑖𝑛(𝑇𝐴 ⊕̃ 𝐵(𝑣),1 − 𝑇𝐴 ⊖̃ 𝐵(𝑣)), 𝑚𝑎𝑥(𝐼𝐴 ⊕̃ 𝐵(𝑣),1 − 𝑇𝐴 ⊖̃ 𝐵(𝑣)),

𝑚𝑎𝑥(𝐹𝐴 ⊕̃ 𝐵(𝑣), 1 − 𝑇𝐴 ⊖̃ 𝐵(𝑣))]. 

In the following figure (fig.3.7.1.1 (II)), we present the results obtained when applying neutrosophic 

gradient boundary filter on some grayscale images. 
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     (a)               (b)  

Fig.3.7.1.1 (II): Applying the Neutrosophic Gradient Boundary: (a) Original Image (b) Neutrosophic 

Gradient Boundary Filtered. 

3.7.1.2 Neutrosophic Fuzzy External Boundary:  

In this filter, a neutrosophic dilation is firstly applied to the neutrosophic image (a) by some 

neutrosophic structure elements (b); hence, the output filtered image will be the neutrosophic 

difference between neutrosophic dilated image and the neutrosophic image (a). That is, the 

neutrosophic external boundary of (a) is to be defined in two different types as follows:  

Type I: 𝜕𝑒𝑥𝑡 = (1/3) [𝑚𝑖𝑛 (𝑇𝐴 ⊕̃ 𝐵(𝑣), 1 −  𝑇𝐴(𝑣)), 𝑚𝑖𝑛 (𝐼𝐴 ⊕̃ 𝐵(𝑣), 1 − 𝐼𝐴(𝑣)),

𝑚𝑎𝑥 (𝐹𝐴 ⊕̃ 𝐵(𝑣)) , 1 −  𝐹𝐴(𝑣) ].  

In the following figure (fig.3.7.1.2 (I)), we present the results obtained when applying neutrosophic 

external boundary filter on some grayscale images. 

 

 

 

 

     (a)                   (b)     

Fig. 3.7.1.2 (I): Applying the Neutrosophic Fuzzy External Boundary: a) Original Image 

a) Neutrosophic Fuzzy External Boundary Filtered Image 

Type II:  

𝜕𝑒𝑥𝑡 = (
1

3
) [𝑚𝑖𝑛(𝑇𝐴 ⊕̃ 𝐵(𝑣), 1 − 𝑇𝐴(𝑣)) , 𝑚𝑎𝑥 (𝐼𝐴 ⊕̃ 𝐵(𝑣), 1 −

 𝐼𝐴(𝑣)) , 𝑚𝑎𝑥 (𝐹𝐴 ⊕̃ 𝐵(𝑣)) , 1 −  𝐹𝐴(𝑣) ] . 
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In the following figure (fig 3.7.1.2 (II)), we present the results obtained when applying the 

Neutrosophic Fuzzy External Boundary Filter on Some Grayscale Images.  

 

 

 

 

 

(a)                (b) 

Fig.3.7.1.2 (II): Applying the Neutrosophic Fuzzy Eternal Boundary: a) Original Image  

b) Neutrosophic External Boundary Filtered Image 

3.7.1.3 Neutrosophic Fuzzy Internal Boundary: 

    The main step of the neutrosophic internal boundary filter, is to get the neutrosophic erosion of 

the neutrosophic image, hence, the output filtered image will be the neutrosophic difference between 

the original image in the neutrosophic domain and the neutrosophic eroded image that is the 

neutrosophic internal boundary of the neutrosophic image (a) is to be defined in two different types 

as follows: 

Type I: 

In the following figure (fig.3.7.1.3 (I)), we present the results obtained when applying 

neutrosophic internal boundary filter on some grayscale images. 

  

a) b) 

Fig. 3.7.1.3 (I): Applying the Neutrosophic Internal Boundary: a) Original Image 

b) Neutrosophic Internal Boundary Filtered Image 
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Type II: 

𝜕𝑖𝑛𝑡 = (1/3)[𝑚𝑖𝑛 (𝑇(𝑣), 1 −  (𝑇𝐴 ⊖̃ 𝐵(𝑣))) , 𝑚𝑖𝑛 (𝐼𝐴(𝑣), 1 −  𝐼𝐴 ⊖̃ 𝐵(𝑣)) , 𝑚𝑎𝑥 (𝐹𝐴(𝑣), 1 

−  𝐹𝐴 ⊖̃ 𝐵(𝑣)) ]. 

 

 

 

                     

(a)                    (b) 

Fig.3.7.1.3 (II): Applying the Neutrosophic Internal Boundary: a) Original Image 

b) Neutrosophic Internal Boundary Filtered Image 

3.7.2. Neutrosophic Fuzzy Outline Boundary:  

The main step of the neutrosophic outline boundary filter, is to get the complement of the 

neutrosophic erosion of the neutrosophic image, hence, the output filtered image will be the 

neutrosophic difference between the original image in neutrosophic domain and the neutrosophic 

eroded image that is the neutrosophic outline boundary of the neutrosophic image 𝐴 is to be defined 

as follows: 𝜕𝑜𝑢𝑡𝑙𝑖𝑛𝑒 (𝐴)  =  (𝜕1𝐴1 ∪  𝜕3𝐴3)  ∩  𝐴2 , where; 𝜕1(𝐴1)  =  𝑐𝑜(𝐴1 ⊖  𝐵1) ∩

 𝐴1, 𝜕3(𝐴3)  =  𝑐𝑜(𝐴3 ⊕  𝐵3) ∪  𝐴3. In the following figure (fig.3.7.2), we present the results 

obtained when applying the neutrosophic outline boundary filter on some grayscale images. 

 

 

 

 

 

 

a)  b) c) 

Fig. 3.7.2: Neutrosophic Outline Boundary: a) Original Image, b) Neutrosophic Outline Boundary 

Filtered Image, c) Neutrosophic Outline Boundary Filtered Image  
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3.7.2.1 Some Combinations of the Neutrosophic Fuzzy External and Internal Boundary Filters 

In the following figure (fig.3.7.2.1), we present the results obtained when applying the 

neutrosophic fuzzy sup. boundary filter on some grayscale images. 

   

a) b) c)  

Fig.3.7.2.1 Neutrosophic fuzzy sup. boundary: a) Original Image, b) Neutrosophic fuzzy sup. 

boundary filtered image, c) Neutrosophic fuzzy sup. boundary filtered image  

 

4.1. Neutrosophic Crisp Mathematical Morphology: 

As a generalization of the classical mathematical morphology, we present in this section the basic 

operations for the neutrosophic crisp mathematical morphology. To commence, we need to define 

the translation of a neutrosophic crisp set. 

4.1.1.  Definition: 

Consider the space 𝑋 = 𝑅𝑛  𝑜𝑟 𝑋 = 𝑍𝑛 , with origin 0 = (0, . . . ,0), given that the reflection of  

the structuring element 𝐵 mirrored in its origin is defined as:  

−𝐵 = 〈−𝐵1, −𝐵2, −𝐵3〉  

 

4.1.2.  Definition: 

For every 𝑝 ∈ 𝐴, the translation by p is the map 𝑝: 𝑋 → 𝑋, 𝑎 → 𝑎 + 𝑝; it transforms any subset 𝐴 of 

𝑋 into its translate by 𝐴 = 〈𝐴𝑝
1 , 𝐴𝑝

2 , 𝐴𝑝
3 〉. Where 𝐴𝑝

1 = {𝑢 + 𝑝: 𝑢 ∈ 𝐴1, 𝑝 ∈ 𝐵1}, 𝐴𝑝
2 = {𝑢 + 𝑝: 𝑢 ∈

𝐴2, 𝑝 ∈ 𝐵2}, 𝐴𝑝
3 = {𝑢 + 𝑝: 𝑢 ∈ 𝐴3, 𝑝 ∈ 𝐵3}. 

 

4.2.  Neutrosophic Crisp Mathematical Morphological Operations: 

4.2.1.  Neutrosophic Crisp Dilation Operator: 

,2Zp
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Let 𝐴, 𝐵 𝒩𝐶(𝑋), and then we define two types of the neutrosophic crisp dilation as follows: 

Type I:  

𝐴 ⊕̃ 𝐵 = 〈𝐴1⨁𝐵1, 𝐴2⨁𝐵2, 𝐴3Θ𝐵3〉, where for each 𝑢, 𝑣 ∈ 𝑍2, we have 𝐴1⨁𝐵1 = ⋃ 𝐴𝑏
1

𝑏∈𝐵1 , 𝐴2⨁𝐵2 =

⋃ 𝐴𝑏
2

𝑏∈𝐵2 , 𝐴3Θ𝐵3 = ⋂ 𝐴−𝑏
3

−𝑏∈𝐵3 . 

 

            

       

 

 

Fig. 4.2.1. (I): Neutrosophic Crisp Dilation Components in type I for 〈𝐴1, 𝐴2, 𝐴3〉respectively. 

Type II:  

𝐴 ⊕̃ 𝐵 = 〈𝐴1⨁𝐵1, 𝐴2Θ𝐵2, 𝐴3Θ𝐵3〉, where for each 𝑢, 𝑣 ∈ 𝑍2, we have 𝐴1⨁𝐵1 = ⋃ 𝐴𝑏
1

𝑏∈𝐵1 , 

𝐴2Θ𝐵2 = ⋂ 𝐴−𝑏
2

−𝑏∈𝐵2 , 𝐴3Θ𝐵3 = ⋂ 𝐴−𝑏
3

−𝑏∈𝐵3  .  

      

       

 

 

 

Fig. 4.2.1. (II): Neutrosophic Crisp Dilation Components in type II for 〈𝐴1, 𝐴2, 𝐴3〉 respectively. 

 

4.2.2. Neutrosophic Crisp Erosion Operation: 

Let 𝐴, 𝐵 ∈ 𝒩𝐶(𝑋); then the neutrosophic erosion is given as two types: 

Type I:  

𝐴Θ̃𝐵 = 〈𝐴1Θ𝐵1, 𝐴2Θ𝐵2, 𝐴3⨁𝐵3〉, where for each 𝑢, 𝑣 ∈ 𝑍2, we have 𝐴1Θ𝐵1 = ⋂ 𝐴−𝑏
1

−𝑏∈𝐵1 , 

𝐴2Θ𝐵2 = ⋂ 𝐴−𝑏
2

−𝑏∈𝐵2 , 𝐴3⨁𝐵3 = ⋃ 𝐴𝑏
3

𝑏∈𝐵3  . 

  

       

 

 

 

Fig. 4.2.2. (I): Neutrosophic Crisp Erosion Components in type I for 〈𝐴1, 𝐴2, 𝐴3〉 respectively. 
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Type II: 

𝐴Θ̃𝐵 = 〈𝐴1Θ𝐵1, 𝐴2⨁𝐵2, 𝐴3⨁𝐵3〉, where for each 𝑢, 𝑣 ∈ 𝑍2, we have 𝐴1Θ𝐵1 = ⋂ 𝐴−𝑏
1

−𝑏∈𝐵1 , 

𝐴2⨁𝐵2 = ⋃ 𝐴𝑏
2

𝑏∈𝐵2 , 𝐴3⨁𝐵3 = ⋃ 𝐴𝑏
3

𝑏∈𝐵3  . 

   

         

 

 

Fig.4.2.2. (II): Neutrosophic Crisp Erosion Components in type II 〈𝐴1, 𝐴2, 𝐴3〉 respectively. 

4.2.3  Neutrosophic Crisp Opening Operation: 

Let A, B 𝒩C(X); then we define two types of the neutrosophic crisp opening operator as follows: 

Type I:        

A ∘̃ B = 〈A1 ∘ B1, A2 ∘ B2, A3 • B3〉 , 𝐴1 ∘ 𝐵1 = (𝐴1Θ𝐵1)⨁𝐵1 , 𝐴2 ∘ 𝐵2 = (𝐴2Θ𝐵2)⨁𝐵2 , 𝐴3 • 𝐵3 =

(𝐴3⨁𝐵3)Θ𝐵3. 

  

     

Fig. 4.2.3. (I): Neutrosophic Crisp Opening Components in Type I 〈𝐴1, 𝐴2, 𝐴3〉 respectively. 

Type II:  

A ∘̃ B = 〈A1 ∘ B1, A2 • B2, A3 • B3〉,  𝐴1 ∘ 𝐵1 = (𝐴1Θ𝐵1)⨁𝐵1 , 𝐴2 • 𝐵2 = (𝐴2⨁𝐵2)Θ𝐵2 , 𝐴3 • 𝐵3 =

(𝐴3⨁𝐵3)Θ𝐵3. 

 

          

Fig. 4.2.3. (II): Neutrosophic Crisp Opening Components in type II 〈𝐴1, 𝐴2, 𝐴3〉 respectively. 

 

4.2.4. Neutrosophic Crisp Closing Operation: 

  Let A and B  𝒩C(X); then the neutrosophic closing is given as two types: 
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Type I: 

A •̃ B = 〈A1 • B1, A2 • B2, A3 ∘ B3〉,   A1 • B1 = (𝐴1⨁𝐵1)Θ𝐵1 , A2 • B2 = (𝐴2⨁𝐵2)Θ𝐵2 , A3 ∘ B3 =

(𝐴3Θ𝐵3)⨁𝐵3. 

       

Fig.4.2.4 (I): Neutrosophic Crisp Closing Components in type I for 〈𝐴1, 𝐴2, 𝐴3〉 respectively. 

Type II:     

𝐴 •̃ 𝐵 = 〈𝐴1 • 𝐵1, 𝐴2 ∘ 𝐵2, 𝐴3 ∘ 𝐵3〉 , A1 • B1 = (𝐴1⨁𝐵1)Θ𝐵1 , A2 ∘ B2 = (𝐴2Θ𝐵2)⨁𝐵2 , A3 ∘ B3 =

(𝐴3Θ𝐵3)⨁𝐵3.               

         

Fig.4.2.4. (II): Neutrosophic Crisp Closing Components in type II for  〈𝐴1, 𝐴2, 𝐴3〉 respectively. 

 

5. Algebraic Properties in Neutrosophic Crisp: 

In this section, we investigate some of the algebraic properties of the neutrosophic crisp erosion and 

dilation, as well as the neutrosophic crisp opening and closing operator [15]. 

5. 1 Properties of the Neutrosophic Crisp Erosion Operator: 

5.1.1 Proposition:  

The Neutrosophic erosion satisfies the monotonicity for all A, B  𝒩𝐶(𝑍2). 

Type I: 

a) 𝐴 ⊆ 𝐵 ⟹ 〈𝐴1Θ𝐶1, 𝐴2Θ𝐶2, 𝐴3Θ𝐶3〉 ⊆ 〈𝐵1Θ𝐶1, 𝐵2Θ𝐶2, 𝐵3Θ𝐶3〉: 

𝐴1Θ𝐶1 ⊆ 𝐵1Θ𝐶1, 𝐴2Θ𝐶2 ⊆ 𝐵2Θ𝐶2, 𝐴3Θ𝐶3 ⊇ 𝐵3Θ𝐶3. 

b) 𝐴 ⊆ 𝐵 ⟹ 〈𝐶1Θ𝐴1, 𝐶2Θ𝐴2, 𝐶3Θ𝐴3〉 ⊆ 〈𝐶1Θ𝐵1, 𝐶2Θ𝐵2, 𝐶3Θ𝐵3〉: 

𝐶1Θ𝐴1 ⊆ 𝐶1Θ𝐵1, 𝐶2Θ𝐴2 ⊆ 𝐶2Θ𝐵2, 𝐶3Θ𝐴3 ⊇ 𝐶3Θ𝐵3. 

Type II: 

a) 𝐴 ⊆ 𝐵 ⟹ 〈𝐴1Θ𝐶1, 𝐴2Θ𝐶2, 𝐴3Θ𝐶3〉 ⊆ 〈𝐵1Θ𝐶1, 𝐵2Θ𝐶2, 𝐵3Θ𝐶3〉: 

𝐴1Θ𝐶1 ⊆ 𝐵1Θ𝐶1, 𝐴2Θ𝐶2 ⊇ 𝐵2Θ𝐶2, 𝐴3Θ𝐶3 ⊇ 𝐵3Θ𝐶3. 
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b) 𝐴 ⊆ 𝐵 ⟹ 〈𝐶1Θ𝐴1, 𝐶2Θ𝐴2, 𝐶3Θ𝐴3〉 ⊆ 〈𝐶1Θ𝐵1, 𝐶2Θ𝐵2, 𝐶3Θ𝐵3〉: 

𝐶1Θ𝐴1 ⊆ 𝐶1Θ𝐵1, 𝐶2Θ𝐴2 ⊇ 𝐶2Θ𝐵2, 𝐶3Θ𝐴3 ⊇ 𝐶3Θ𝐵3. 

 

Note that: Dislike the Neutrosophic crisp dilation operator, the Neutrosophic crisp erosion does not 

satisfy commutativity and the associativity properties. 

5.1.2 Proposition:  for any family 𝐴𝑖 ∈ 𝒩𝐶(𝑍2), 𝑖 ∈ 𝐼, and 𝐵 ∈ 𝒩𝐶(𝑍2). 

Type I:  

a) ∩
𝑖∈𝐼

𝐴𝑖 ⊖̃ 𝐵 = ∩
𝑖∈𝐼

(𝐴𝑖 ⊖̃ 𝐵) = 〈⋂ 𝐴𝑖
1Θ𝐵1 , ⋂ 𝐴𝑖

2Θ𝐵2 , ⋂ 𝐴𝑖
3 ⊕ 𝐵3〉 = 〈⋂(𝐴𝑖

1Θ𝐵1) , ⋂(𝐴𝑖
2Θ𝐵2) , ⋂(𝐴𝑖

3 ⊕ 𝐵3)〉, 

b) 𝐵 ⊖̃ ∩
𝑖∈𝐼

𝐴𝑖 = ∩
𝑖∈𝐼

(𝐵 ⊖̃ 𝐴𝑖) = 〈𝐵1Θ ⋂ 𝐴𝑖
1 , 𝐵2Θ ⋂ 𝐴𝑖

2 , 𝐵3 ⊕ ⋂ 𝐴𝑖
3〉 = 〈⋂(𝐵1Θ𝐴𝑖

1) , ⋂(𝐵2Θ𝐴𝑖
2) , ⋂(𝐵3 ⊕ 𝐴𝑖

3)〉. 

Type II:  

a) ∩
𝑖∈𝐼

𝐴𝑖 ⊖̃ 𝐵 = ∩
𝑖∈𝐼

(𝐴𝑖 ⊖̃ 𝐵) ⟹ 

〈⋂ 𝐴𝑖
1Θ𝐵1

𝑖∈𝐼 , ⋂ 𝐴𝑖
2 ⊕ 𝐵2

𝑖∈𝐼 , ⋂ 𝐴𝑖
3 ⊕ 𝐵3

𝑖∈𝐼 〉 = 〈⋂(𝐴𝑖
1Θ𝐵1) , ⋂(𝐴𝑖

2⨁𝐵2) , ⋂(𝐴𝑖
3 ⊕ 𝐵3)〉, 

b) 𝐵 ⊖̃ ∩
𝑖∈𝐼

𝐴𝑖 = ∩
𝑖∈𝐼

(𝐵 ⊖̃ 𝐴𝑖) ⟹ 

〈𝐵1Θ ⋂ 𝐴𝑖
1 , 𝐵2⨁ ⋂ 𝐴𝑖

2 , 𝐵3 ⊕ ⋂ 𝐴𝑖
3〉 = 〈⋂(𝐵1Θ𝐴𝑖

1) , ⋂(𝐵2 ⊕ 𝐴𝑖
2) , ⋂(𝐵3 ⊕ 𝐴𝑖

3)〉.  

Proof:  a) In two types:   

Type I: 

∩
𝑖∈𝐼

𝐴𝑖 ⊖̃ 𝐵 = 〈⋂ (⋂ 𝐴𝑖𝑏
1

𝑏∈𝐵 )𝑖∈𝐼 , ⋃ (⋂ 𝐴𝑖𝑏
2

𝑏∈𝐵 )𝑖∈𝐼 , ⋃ (⋂ 𝐴𝑖(−𝑏)
3

𝑏∈𝐵 )𝑖∈𝐼 〉 =

〈⋂ (⋂ 𝐴𝑖(−𝑏)
1

𝑏∈𝐵 )𝑖∈𝐼 , ⋂ (⋃ 𝐴𝑖(−𝑏)
2

𝑏∈𝐵𝑖∈𝐼 ), ⋂ (⋃ 𝐴𝑖𝑏
3

𝑏∈𝐵𝑖∈𝐼 )〉 = ∩
𝑖∈𝐼

(𝐴𝑖 ⊖̃ 𝐵)  

Type II:  

Similarity, we can show that it is true in type 2, 

b) The proof is similar to the (a). 

5.1.3 Proposition:  for any family 𝐴𝑖 ∈ 𝒩𝐶(𝑍2), 𝑖 ∈ 𝐼, and 𝐵 ∈ 𝒩𝐶(𝑍2)    

Type I: 

a) ⋃ 𝐴𝑖 ⊖̃𝑖∈𝐼 𝐵 = ⋃ (𝐴𝑖 ⊖̃𝑖∈𝐼 𝐵) ⟹ 

〈⋃ 𝐴𝑖
1Θ𝐵1

𝑖∈𝐼 , ⋃ 𝐴𝑖
2Θ𝐵2

𝑖∈𝐼 , ⋃ 𝐴𝑖
3 ⊕ 𝐵3

𝑖∈𝐼 〉 = 〈⋃ (𝐴𝑖
1Θ𝐵1)𝑖∈𝐼 , ⋃ (𝐴𝑖

2Θ𝐵2)𝑖∈𝐼 , ⋃ (𝐴𝑖
3 ⊕ 𝐵3)𝑖∈𝐼 〉     , 

b) 𝐵 ⊖̃ ⋃ 𝐴𝑖𝑖∈𝐼 = ⋃ (𝐵 ⊖̃ 𝐴𝑖𝑖∈𝐼 ) ⟹ 

〈𝐵1Θ ⋃ 𝐴𝑖
1

𝑖∈𝐼 , 𝐵2Θ ⋃ 𝐴𝑖
2

𝑖∈𝐼 , 𝐵3 ⊕ ⋃ 𝐴𝑖
3

𝑖∈𝐼 〉 = 〈⋃ (𝐵1Θ𝐴𝑖
1)𝑖∈𝐼 , ⋃ (𝐵2Θ𝐴𝑖

2)𝑖∈𝐼 , ⋃ (𝐵3 ⊕ 𝐴𝑖
3)𝑖∈𝐼 〉. 

Type II: 

a) ⋃ 𝐴𝑖 ⊖̃𝑖∈𝐼 𝐵 = ⋃ (𝐴𝑖 ⊖̃𝑖∈𝐼 𝐵) ⟹ 

〈⋃ 𝐴𝑖
1Θ𝐵1

𝑖∈𝐼 , ⋃ 𝐴𝑖
2⨁𝐵2

𝑖∈𝐼 , ⋃ 𝐴𝑖
3 ⊕ 𝐵3

𝑖∈𝐼 〉 = 〈⋃ (𝐴𝑖
1Θ𝐵1)𝑖∈𝐼 , ⋃ (𝐴𝑖

2⨁𝐵2)𝑖∈𝐼 , ⋃ (𝐴𝑖
3 ⊕ 𝐵3)𝑖∈𝐼 〉     , 

b) 𝐵 ⊖̃ ⋃ 𝐴𝑖𝑖∈𝐼 = ⋃ (𝐵 ⊖̃ 𝐴𝑖𝑖∈𝐼 ) ⟹ 

〈𝐵1Θ ⋃ 𝐴𝑖
1

𝑖∈𝐼 , 𝐵2⨁ ⋃ 𝐴𝑖
2

𝑖∈𝐼 , 𝐵3 ⊕ ⋃ 𝐴𝑖
3

𝑖∈𝐼 〉 = 〈⋃ (𝐵1Θ𝐴𝑖
1)𝑖∈𝐼 , ⋃ (𝐵2⨁𝐴𝑖

2)𝑖∈𝐼 , ⋃ (𝐵3 ⊕ 𝐴𝑖
3)𝑖∈𝐼 〉. 
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Proof: a) for both two types 

Type I:⋃ 𝐴𝑖 ⊖̃𝑖∈𝐼 𝐵 = 〈⋂ (⋃ 𝐴𝑖(−𝑏)
1

𝑖∈𝐼 )𝑏∈𝐵 , ⋂ (⋃ 𝐴𝑖(−𝑏)
2

𝑖∈𝐼 )𝑏∈𝐵 , ⋃ (⋃ 𝐴𝑖𝑏
3

𝑖∈𝐼 )𝑏∈𝐵 〉 

= 〈⋃ (⋂ 𝐴𝑖(−𝑏)
1 )𝑏∈𝐵𝑖∈𝐼 , ⋃ (⋂ 𝐴𝑖(−𝑏)

2 )𝑏∈𝐵𝑖∈𝐼 , ⋃ (⋃ 𝐴𝑖𝑏
3

𝑏∈𝐵 )𝑖∈𝐼 〉 = ∩
𝑖∈𝐼

(𝐴𝑖 ⊖̃ 𝐵). 

Type II: can be verified in a similar way as in type 1. 

b) The proof is similar to the (a). 

5.2 Properties of the Neutrosophic Crisp Dilation Operator): 

5.2.1 Proposition:  

The neutrosophic dilation satisfies the following properties: ∀𝐴, 𝐵 ∈ 𝒩𝐶(𝑍2)    

i) Commutativity: 𝐴 ⊕̃ 𝐵 = 𝐵 ⊕̃ 𝐴.              

ii) Associativity: (𝐴 ⊕̃ 𝐵) ⊕̃ 𝐶 = 𝐴 ⊕̃ (𝐵 ⊕̃ 𝐶).                

iii) Monotonicity: (increasing in both arguments): 

Type I: 

a) 𝐴 ⊆ 𝐵 ⟹ 〈𝐴1⨁𝐶1, 𝐴2⨁𝐶2, 𝐴3⨁𝐶3〉 ⊆ 〈𝐵1⨁𝐶1, 𝐵2⨁𝐶2, 𝐵3⨁𝐶3〉: 

𝐴1⨁𝐶1 ⊆ 𝐵1⨁𝐶1, 𝐴2⨁𝐶2 ⊆ 𝐵2⨁𝐶2, 𝐴3⨁𝐶3 ⊇ 𝐵3⨁𝐶3. 

b) 𝐴 ⊆ 𝐵 ⟹ 〈𝐶1⨁𝐴1, 𝐶2⨁𝐴2, 𝐶3⨁𝐴3〉 ⊆ 〈𝐶1⨁𝐵1, 𝐶2⨁𝐵2, 𝐶3⨁𝐵3〉: 

𝐶1⨁𝐴1 ⊆ 𝐶1⨁𝐵1, 𝐶2⨁𝐴2 ⊆ 𝐶2⨁𝐵2, 𝐶3⨁𝐴3 ⊇ 𝐶3⨁𝐵3. 

Type II: 

a) 𝐴 ⊆ 𝐵 ⟹ 〈𝐴1⨁𝐶1, 𝐴2⨁𝐶2, 𝐴3⨁𝐶3〉 ⊆ 〈𝐵1⨁𝐶1, 𝐵2⨁𝐶2, 𝐵3⨁𝐶3〉: 

𝐴1⨁𝐶1 ⊆ 𝐵1⨁𝐶1, 𝐴2⨁𝐶2 ⊇ 𝐵2⨁𝐶2, 𝐴3⨁𝐶3 ⊇ 𝐵3⨁𝐶3. 

b) 𝐴 ⊆ 𝐵 ⟹ 〈𝐶1⨁𝐴1, 𝐶2⨁𝐴2, 𝐶3⨁𝐴3〉 ⊆ 〈𝐶1⨁𝐵1, 𝐶2⨁𝐵2, 𝐶3⨁𝐵3〉: 

𝐶1⨁𝐴1 ⊆ 𝐶1⨁𝐵1, 𝐶2⨁𝐴2 ⊇ 𝐶2⨁𝐵2, 𝐶3⨁𝐴3 ⊇ 𝐶3⨁𝐵3. 

Proof:  i), ii), iii) are obvious in two types I and II. 

 

5.2.2 Proposition: for any family(𝐴𝑖|𝑖 ∈ 𝐼) in 𝒩𝐶(𝑍2) and 𝐵 ∈ 𝒩𝐶(𝑍2) 

Type I:    𝑎)   ∩
𝑖∈𝐼

Ai ⊕̃ B = ∩
i∈I

(Ai ⊕̃ B) ⟹  

〈⋂ 𝐴𝑖
1 ⊕ 𝐵1, ⋂ 𝐴𝑖

2 ⊕ 𝐵2
𝑖∈𝐼 , ⋂ 𝐴𝑖

3Θ𝐵3
𝑖∈𝐼𝑖∈𝐼 〉 = 〈⋂ (𝐴𝑖

1 ⊕ 𝐵1), ⋂ (𝐴𝑖
2 ⊕ 𝐵2)𝑖∈𝐼 , ⋂ (𝐴𝑖

3Θ𝐵3)𝑖∈𝐼𝑖∈𝐼 〉. 

            

     b)   B ⊕̃ ∩
i∈I

Ai = ∩
i∈I

(B ⊕̃ Ai) ⟹  

〈𝐵1 ⊕ ⋂ 𝐴𝑖
1, 𝐵2 ⊕ ⋂ 𝐴𝑖

2
𝑖∈𝐼 , 𝐵3Θ ⋂ 𝐴𝑖

3
𝑖∈𝐼𝑖∈𝐼 〉 = 〈⋂ (𝐵1 ⊕ 𝐴𝑖

1), ⋂ (𝐵2 ⊕ 𝐴𝑖
2)𝑖∈𝐼 , ⋂ (𝐵3Θ𝐴𝑖

3)𝑖∈𝐼𝑖∈𝐼 〉. 

 

 Type II:    a)   ∩
i∈I

Ai ⊕̃ B = ∩
i∈I

(Ai ⊕̃ B) ⟹  

〈⋂ 𝐴𝑖
1 ⊕ 𝐵1, ⋂ 𝐴𝑖

2Θ𝐵2
𝑖∈𝐼 , ⋂ 𝐴𝑖

3Θ𝐵3
𝑖∈𝐼𝑖∈𝐼 〉 = 〈⋂ (𝐴𝑖

1 ⊕ 𝐵1), ⋂ (𝐴𝑖
2Θ𝐵2)𝑖∈𝐼 , ⋂ (𝐴𝑖

3Θ𝐵3)𝑖∈𝐼𝑖∈𝐼 〉. 
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        b) B ⊕̃ ∩
i∈I

Ai = ∩
i∈I

(B ⊕̃ Ai) ⟹   

〈𝐵1 ⊕ ⋂ 𝐴𝑖
1, 𝐵2Θ ⋂ 𝐴𝑖

2
𝑖∈𝐼 , 𝐵3Θ ⋂ 𝐴𝑖

3
𝑖∈𝐼𝑖∈𝐼 〉 = 〈⋂ (𝐵1 ⊕ 𝐴𝑖

1), ⋂ (𝐵2Θ𝐴𝑖
2)𝑖∈𝐼 , ⋂ (𝐵3Θ𝐴𝑖

3)𝑖∈𝐼𝑖∈𝐼 〉. 

Proof:  we will prove this property for the two types of the neutrosophic crisp intersection operator:    

Type I: a) ⋂ 𝐴𝑖 ⊕̃ 𝐵𝑖∈𝐼 = ∩
i∈I

(Ai ⊕̃ B) ⟹   

〈⋃ (⋂ 𝐴𝑖𝑏
1

𝑖∈𝐼 )𝑏∈𝐵 , ⋃ (⋂ 𝐴𝑖𝑏
2

𝑖∈𝐼 )𝑏∈𝐵 , ⋂ (⋂ 𝐴𝑖(−𝑏)
3

𝑖∈𝐼 )𝑏∈𝐵 〉 =

〈⋂ (⋃ 𝐴𝑖𝑏
1

𝑏∈𝐵 ), ⋂ (⋃ 𝐴𝑖𝑏
2

𝑏∈𝐵 )𝑖∈𝐼 , ⋂ (⋂ 𝐴𝑖(−𝑏)
3

𝑏∈𝐵 )𝑖∈𝐼𝑖∈𝐼 〉.              

Type II: a) ∩
i∈I

Ai ⊕̃ B = ∩
i∈I

(Ai ⊕̃ B) ⟹  

                〈⋃ (⋂ 𝐴𝑖𝑏
1

𝑖∈𝐼 )𝑏∈𝐵 , ⋂ (⋂ 𝐴𝑖𝑏
2

𝑖∈𝐼 )𝑏∈𝐵 , ⋂ (⋂ 𝐴𝑖(−𝑏)
3

𝑖∈𝐼 )𝑏∈𝐵 〉 =

        〈⋂ (⋃ 𝐴𝑖𝑏
1

𝑏∈𝐵 ), ⋂ (⋂ 𝐴𝑖𝑏
2

𝑏∈𝐵 )𝑖∈𝐼 , ⋂ (⋂ 𝐴𝑖(−𝑏)
3

𝑏∈𝐵 )𝑖∈𝐼𝑖∈𝐼 〉.              

The proof of (b) is similar to (a).   

5.2.3 Proposition: for any family of (Ai|i ∈ I) in 𝒩C(Z2), and 𝐵 ∈ 𝒩C(Z2) 

Type I: 

a) ⋃ 𝐴𝑖 ⊕̃𝑖∈𝐼 𝐵 = ⋃ (𝐴𝑖 ⊕̃ 𝐵)𝑖∈𝐼 ⟹ 

〈⋃ 𝐴𝑖
1

𝑖∈𝐼 ⊕ 𝐵1, ⋃ 𝐴𝑖
2

𝑖∈𝐼 ⊕ 𝐵2, ⋃ 𝐴𝑖
3

𝑖∈𝐼 Θ𝐵3〉 = 〈⋃ (𝐴𝑖
1

𝑖∈𝐼 ⊕ 𝐵1), ⋃ (𝐴𝑖
2

𝑖∈𝐼 ⊕ 𝐵2), ⋃ (𝐴𝑖
3

𝑖∈𝐼 Θ𝐵3)〉. 

b) 𝐵 ⊕̃ ⋃ 𝐴𝑖𝑖∈𝐼 = ⋃ (𝐵 ⊕̃ 𝐴𝑖)𝑖∈𝐼 ⟹ 

〈𝐵1 ⊕ ⋃ 𝐴𝑖
1

𝑖∈𝐼 , 𝐵2 ⊕ ⋃ 𝐴𝑖
2

𝑖∈𝐼 , 𝐵3Θ ⋃ 𝐴𝑖
3

𝑖∈𝐼 〉 = 〈⋃ (𝐵1 ⊕ 𝐴𝑖
1

𝑖∈𝐼 ), ⋃ (𝐵2 ⊕ 𝐴𝑖
2

𝑖∈𝐼 ), ⋃ (𝐵3Θ𝐴𝑖
3

𝑖∈𝐼 )〉. 

Type II:    

a) ⋃ 𝐴𝑖 ⊕̃𝑖∈𝐼 𝐵 = ⋃ (𝐴𝑖 ⊕̃ 𝐵)𝑖∈𝐼 ⟹ 

〈⋃ 𝐴𝑖
1

𝑖∈𝐼 ⊕ 𝐵1, ⋃ 𝐴𝑖
2

𝑖∈𝐼 Θ𝐵2, ⋃ 𝐴𝑖
3

𝑖∈𝐼 Θ𝐵3〉 = 〈⋃ (𝐴𝑖
1

𝑖∈𝐼 ⊕ 𝐵1), ⋃ (𝐴𝑖
2

𝑖∈𝐼 Θ𝐵2), ⋃ (𝐴𝑖
3

𝑖∈𝐼 Θ𝐵3)〉. 

Proof:  a) we will prove this property for the two types of the neutrosophic crisp union operator:  

Type I: 

 ⋃ 𝐴𝑖 ⊕̃𝑖∈𝐼 𝐵 = 〈⋃ (⋃ 𝐴𝑖𝑏
1

𝑖∈𝐼 ), ⋃ (⋃ 𝐴𝑖𝑏
2

𝑖∈𝐼 )𝑏∈𝐵 , ⋂ (⋃ 𝐴𝑖(−𝑏)
3

𝑖∈𝐼 )𝑏∈𝐵𝑏∈𝐵 〉 = 

⋃ (𝐴𝑖 ⊕̃ 𝐵)𝑖∈𝐼 = 〈⋃ (⋃ 𝐴𝑖𝑏
1

𝑏∈𝐵 ), ⋃ (⋃ 𝐴𝑖𝑏
2

𝑏∈𝐵 )𝑖∈𝐼 , ⋃ (⋂ 𝐴𝑖(−𝑏)
3

𝑏∈𝐵𝑖∈𝐼𝑖∈𝐼 )〉   

Type II: 

⋃ 𝐴𝑖 ⊕̃𝑖∈𝐼 𝐵 = 〈⋃ (⋃ 𝐴𝑖𝑏
1

𝑖∈𝐼 ), ⋂ (⋃ 𝐴𝑖(−𝑏)
2

𝑖∈𝐼 )𝑏∈𝐵 , ⋂ (⋃ 𝐴𝑖(−𝑏)
3

𝑖∈𝐼 )𝑏∈𝐵𝑏∈𝐵 〉 =   

⋃ (𝐴𝑖 ⊕̃ 𝐵)𝑖∈𝐼 = 〈⋃ (⋃ 𝐴𝑖𝑏
1

𝑏∈𝐵 ), ⋃ (⋂ 𝐴𝑖(−𝑏)
2

𝑏∈𝐵𝑖∈𝐼 , ⋃ (⋂ 𝐴𝑖(−𝑏)
3

𝑏∈𝐵𝑖∈𝐼𝑖∈𝐼 )〉.

 
The proof of (b) is similar to (a)   

5.2.4 Proposition (Duality Theorem of Neutrosophic Crisp Dilation):  

Let 𝐴, 𝐵 ∈ 𝒩C(Z2) Neutrosophic Crisp Erosion and Dilation are Dual Operations i.e. 

Type I:  

𝑐𝑜(𝑐𝑜 𝐴 ⊕̃ 𝐵) = 〈𝑐𝑜(𝑐𝑜𝐴1 ⊕ 𝐵1), 𝑐𝑜(𝑐𝑜𝐴2 ⊕ 𝐵2), 𝑐𝑜(𝑐𝑜𝐴3Θ𝐵3)〉 = 〈𝐴1Θ𝐵1, 𝐴2Θ𝐵2, 𝐴3 ⊕ 𝐵3〉 = 𝐴Θ̃𝐵. 

Type II: 

𝑐𝑜(𝑐𝑜 𝐴 ⊕̃ 𝐵) = 〈𝑐𝑜(𝑐𝑜𝐴1 ⊕ 𝐵1), 𝑐𝑜(𝑐𝑜𝐴2Θ𝐵2), 𝑐𝑜(𝑐𝑜𝐴3Θ𝐵3)〉 = 〈𝐴1Θ𝐵1, 𝐴2 ⊕ 𝐵2, 𝐴3 ⊕ 𝐵3〉 = 𝐴Θ̃𝐵. 
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5.3 Properties of the Neutrosophic Crisp Opening Operator: 

5.3.1 Proposition:  

The neutrosophic crisp opening satisfies the monotonicity   

∀ A, B ∈ 𝒩C(Z2) 

Type I: 

𝐴 ⊆ 𝐵 ⟹ 〈𝐴1 ∘ 𝐶1, 𝐴2 ∘ 𝐶2, 𝐴3 ∘ 𝐶3〉 ⊆ 〈𝐵1 ∘ 𝐶1, 𝐵2 ∘ 𝐶2, 𝐵3 ∘ 𝐶3〉             ,   

𝐴1 ∘ 𝐶1 ⊆ 𝐵1 ∘ 𝐶1, 𝐴2 ∘ 𝐶2 ⊆ 𝐵2 ∘ 𝐶2, 𝐴3 ∘ 𝐶3 ⊇ 𝐵3 ∘ 𝐶3.                      

Type II: 

𝐴 ⊆ 𝐵 ⟹ 〈𝐴1 ∘ 𝐶1, 𝐴2 ∘ 𝐶2, 𝐴3 ∘ 𝐶3〉 ⊆ 〈𝐵1 ∘ 𝐶1, 𝐵2 ∘ 𝐶2, 𝐵3 ∘ 𝐶3〉             ,   

𝐴1 ∘ 𝐶1 ⊆ 𝐵1 ∘ 𝐶1, 𝐴2 ∘ 𝐶2 ⊇ 𝐵2 ∘ 𝐶2, 𝐴3 ∘ 𝐶3 ⊇ 𝐵3 ∘ 𝐶3 

5.3.2 Proposition: for any family (Ai|i ∈ I) in 𝒩C(Z2), and 𝐵 ∈ 𝒩C(Z2) 

Type I:  

⋂ 𝐴𝑖 ∘̃ 𝐵𝑖∈𝐼 = ⋂ (𝐴𝑖 ∘̃ 𝐵)𝑖∈𝐼 ⟹  

〈⋂ 𝐴𝑖
1 ∘ 𝐵1

𝑖∈𝐼 , ⋂ 𝐴𝑖
2 ∘ 𝐵2

𝑖∈𝐼 , ⋂ 𝐴𝑖
3 • 𝐵3

𝑖∈𝐼 〉 = 〈⋂ (𝐴𝑖
1 ∘ 𝐵1)𝑖∈𝐼 , ⋂ (𝐴𝑖

2 ∘ 𝐵2)𝑖∈𝐼 , ⋂ (𝐴𝑖
3 • 𝐵3)𝑖∈𝐼 〉 

          

Type II:  

⋂ 𝐴𝑖 ∘̃ 𝐵𝑖∈𝐼 = ⋂ (𝐴𝑖 ∘̃ 𝐵)𝑖∈𝐼 ⟹  

〈⋂ 𝐴𝑖
1 ∘ 𝐵1

𝑖∈𝐼 , ⋂ 𝐴𝑖
2 • 𝐵2

𝑖∈𝐼 , ⋂ 𝐴𝑖
3 • 𝐵3

𝑖∈𝐼 〉 = 〈⋂ (𝐴𝑖
1 ∘ 𝐵1)𝑖∈𝐼 , ⋂ (𝐴𝑖

2 • 𝐵2)𝑖∈𝐼 , ⋂ (𝐴𝑖
3 • 𝐵3)𝑖∈𝐼 〉 

      

 5.3.3 Proposition: for any family (Ai|i ∈ I) in 𝒩C(Z2) and 𝐵 ∈ 𝒩C(Z2) 

Type I: 

⋃ 𝐴𝑖 ∘̃ 𝐵𝑖∈𝐼 = ⋃ (𝐴𝑖 ∘̃ 𝐵)𝑖∈𝐼 ⟹    

〈⋃ 𝐴𝑖
1

𝑖∈𝐼 ∘ 𝐵1, ⋃ 𝐴𝑖
2

𝑖∈𝐼 ∘ 𝐵2, ⋃ 𝐴𝑖
3 •𝑖∈𝐼 𝐵3〉 = 〈⋃ (𝐴𝑖

1
𝑖∈𝐼 ∘ 𝐵1), ⋃ (𝐴𝑖

2
𝑖∈𝐼 ∘ 𝐵2), ⋃ (𝐴𝑖

3 •𝑖∈𝐼 𝐵3)〉. 

     

Type II:  

  ⋃ 𝐴𝑖 ∘̃ 𝐵𝑖∈𝐼 = ⋃ (𝐴𝑖 ∘̃ 𝐵)𝑖∈𝐼 ⟹    

〈⋃ 𝐴𝑖
1

𝑖∈𝐼 ∘ 𝐵1, ⋃ 𝐴𝑖
2

𝑖∈𝐼 • 𝐵2, ⋃ 𝐴𝑖
3 •𝑖∈𝐼 𝐵3〉 = 〈⋃ (𝐴𝑖

1
𝑖∈𝐼 ∘ 𝐵1), ⋃ (𝐴𝑖

2
𝑖∈𝐼 • 𝐵2), ⋃ (𝐴𝑖

3 •𝑖∈𝐼 𝐵3)〉. 

Proof: Is like the procedure used to prove the propositions given previously. 

 

5.4 Properties of the Neutrosophic Crisp Closing  

5.4.1 Proposition:  

The neutrosophic closing satisfies the monotonicity   

𝒩C(Z2)  BA,
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Type I:  

a) 𝐴 ⊆ 𝐵 ⟹ 〈𝐴1 • 𝐶1, 𝐴2 • 𝐶2, 𝐴3 • 𝐶3〉 ⊆ 〈𝐵1 • 𝐶1, 𝐵2 • 𝐶2, 𝐵3 • 𝐶3〉  

𝐴1 • 𝐶1 ⊆ 𝐵1 • 𝐶1, 𝐴2 • 𝐶2 ⊆ 𝐵2 • 𝐶2, 𝐴3 • 𝐶3 ⊇ 𝐵3 • 𝐶3                      

Type II: 

a) 𝐴 ⊆ 𝐵 ⟹ 〈𝐴1 • 𝐶1, 𝐴2 • 𝐶2, 𝐴3 • 𝐶3〉 ⊆ 〈𝐵1 • 𝐶1, 𝐵2 • 𝐶2, 𝐵3 • 𝐶3〉  

𝐴1 • 𝐶1 ⊆ 𝐵1 • 𝐶1, 𝐴2 • 𝐶2 ⊇ 𝐵2 • 𝐶2, 𝐴3 • 𝐶3 ⊇ 𝐵3 • 𝐶3                      

   

5.4.2 Proposition: for any family (Ai|i ∈ I), in 𝒩C(Z2), and 𝐵 ∈ 𝒩C(Z2) 

Type I: 

⋂ 𝐴𝑖 •̃𝑖∈𝐼 𝐵 = ⋂ (𝐴𝑖 •̃𝑖∈𝐼 𝐵) ⟹    

〈⋂ 𝐴𝑖
1

𝑖∈𝐼 • 𝐵1, ⋂ 𝐴𝑖
2

𝑖∈𝐼 • 𝐵2, ⋂ 𝐴𝑖
3

𝑖∈𝐼 • 𝐵3〉 = 〈⋂ (𝐴𝑖
1

𝑖∈𝐼 • 𝐵1), ⋂ (𝐴𝑖
2

𝑖∈𝐼 • 𝐵2), ⋂ (𝐴𝑖
3

𝑖∈𝐼 • 𝐵3)〉 

 

Type II:    

      ⋂ 𝐴𝑖 •̃𝑖∈𝐼 𝐵 = ⋂ (𝐴𝑖 •̃𝑖∈𝐼 𝐵) ⟹    

〈⋂ 𝐴𝑖
1

𝑖∈𝐼 • 𝐵1, ⋂ 𝐴𝑖
2

𝑖∈𝐼 ∘ 𝐵2, ⋂ 𝐴𝑖
3

𝑖∈𝐼 ∘ 𝐵3〉 = 〈⋂ (𝐴𝑖
1

𝑖∈𝐼 • 𝐵1), ⋂ (𝐴𝑖
2

𝑖∈𝐼 ∘ 𝐵2), ⋂ (𝐴𝑖
3

𝑖∈𝐼 ∘ 𝐵3)〉. 

5.4.3 Proposition: for any family(Ai|i ∈ I), in 𝒩C(Z2), and 𝐵 ∈ 𝒩C(Z2) 

Type I: 

⋃ 𝐴𝑖 •̃ 𝐵 =𝑖∈𝐼 ⋃ (𝐴𝑖 •̃ 𝐵)𝑖∈𝐼 ⟹   

〈⋃ 𝐴𝑖
1 • 𝐵1

𝑖∈𝐼 , ⋃ 𝐴𝑖
2 • 𝐵2

𝑖∈𝐼 , ⋃ 𝐴𝑖
3 ∘ 𝐵3

𝑖∈𝐼 〉 = 〈⋃ (𝐴𝑖
1 • 𝐵1)𝑖∈𝐼 , ⋃ (𝐴𝑖

2 • 𝐵2)𝑖∈𝐼 , ⋃ (𝐴𝑖
3 ∘ 𝐵3)𝑖∈𝐼 〉. 

Type II: 

⋃ 𝐴𝑖 •̃ 𝐵 =𝑖∈𝐼 ⋃ (𝐴𝑖 •̃ 𝐵)𝑖∈𝐼 ⟹   

〈⋃ 𝐴𝑖
1 • 𝐵1

𝑖∈𝐼 , ⋃ 𝐴𝑖
2 ∘ 𝐵2

𝑖∈𝐼 , ⋃ 𝐴𝑖
3 ∘ 𝐵3

𝑖∈𝐼 〉 = 〈⋃ (𝐴𝑖
1 • 𝐵1)𝑖∈𝐼 , ⋃ (𝐴𝑖

2 ∘ 𝐵2)𝑖∈𝐼 , ⋃ (𝐴𝑖
3 ∘ 𝐵3)𝑖∈𝐼 〉.  

Proof: Is similar to the procedure used to prove the propositions given previously. 

5.4.4 Proposition (Duality theorem of Neutrosophic Crisp Closing):  

Let A, B𝐴, 𝐵 ∈ 𝒩C(Z2);   Neutrosophic crisp erosion and dilation are dual operations i.e. 

Type I:   

𝑐𝑜(𝑐𝑜 𝐴 •̃ 𝐵) = 〈𝑐𝑜(𝑐𝑜 𝐴1 • 𝐵1), 𝑐𝑜(𝑐𝑜 𝐴2 • 𝐵2), 𝑐𝑜(𝑐𝑜 𝐴3 ∘ 𝐵3)〉 = 〈𝐴1 ∘ 𝐵1, 𝐴2 ∘ 𝐵2, 𝐴3 • 𝐵3〉 = 𝐴 ∘̃ 𝐵.                          

Type II:  

𝑐𝑜(𝑐𝑜 𝐴 •̃ 𝐵) = 〈𝑐𝑜(𝑐𝑜 𝐴1 • 𝐵1), 𝑐𝑜(𝑐𝑜 𝐴2 ∘ 𝐵2), 𝑐𝑜(𝑐𝑜 𝐴3 ∘ 𝐵3)〉 = 〈𝐴1 ∘ 𝐵1, 𝐴2 • 𝐵2, 𝐴3 • 𝐵3〉 = 𝐴 ∘̃ 𝐵. 

 

6. Neutrosophic Crisp Mathematical Morphological Filters: 

 6.1 Neutrosophic Crisp External Boundary:  
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Where 𝐴1 is the set of all pixels that belong to the foreground of the picture, 𝐴3 contains the pixels 

that belong to the background while   contains those pixel which do not belong to neither 𝐴2 nor 

𝐴1  .   

Let A, B ∈ 𝒩C(Z2), such that 𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉, and 𝐵  is some structure element of the form 𝐵 =

〈𝐵1, 𝐵2, 𝐵3〉; then the 𝑁𝐶 boundary extraction filter is defined to be:  

𝜕1𝐴1 = 𝐴1 − (𝐴1Θ𝐵1), 

𝜕3𝐴3 = (𝐴3Θ𝐵3) − 𝐴3, 

𝜕(𝐴) = 𝐴2 − (𝜕1𝐴1 ∪ 𝜕3𝐴3), 

𝜕∗(𝐴) = 𝐴2 − [(𝐴3 ⊕ 𝐵3) − (𝐴1Θ𝐵1)], 

𝑏(𝐴) = 𝜕∗(𝐴) ∩ 𝜕(𝐴). 

 

       

a)                      b) 

Fig. 6.1: Applying the Neutrosophic Crisp External Boundary: a) the Original Image b) 

Neutrosophic Crisp Boundary. 

6.2 Neutrosophic Crisp Top-Hat Filter: 

𝐵1(𝐴1) = 𝐴1 − (𝐴1 ∘ 𝐵1), 

𝐵3(𝐴3) = (𝐴3 • 𝐵3) − 𝐴1, 

𝐵(𝐴) = 𝐴2 − (𝐵1(𝐴1) ∪ 𝐵3(𝐴3)), 

𝐵∗(𝐴) = 𝐴2 − [(𝐴1 ∘ 𝐵1) − (𝐴3 • 𝐵3)], 

𝑇�̃�𝑝ℎ𝑎𝑡(𝐴) = 𝐵(𝐴) ∩ 𝐵∗(𝐴). 

 

      

a)                   b)        
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Fig. 6.2.: Applying the Neutrosophic Crisp Top-Hat Filter: a) Original Image b) Neutrosophic Crisp 

Components 〈𝐴1, 𝐴2, 𝐴3〉 Respectively. 

 

6.3 Bottom-Hat Filter: 

𝐵1(𝐴1) = (𝐴1 • 𝐵1) − 𝐴1, 

𝐵3(𝐴3) = 𝐴3 − (𝐴3 ∘ 𝐵3), 

𝐵(𝐴) = 𝐴2 − (𝐵1(𝐴1) ∪ 𝐵3(𝐴3)), 

𝐵∗(𝐴) = 𝐴2 − [(𝐴1 • 𝐵1) − (𝐴3 ∘ 𝐵3)], 

𝐵𝑜𝑡�̃�𝑜𝑚𝑝ℎ𝑎𝑡(𝐴) = 𝐵(𝐴) ∩ 𝐵∗(𝐴). 

 

             

         a)                      b)        

Fig. 6.3.:  Applying the Neutrosophic Crisp Bottom-Hat Filter: Neutrosophic Crisp Components  

〈𝐴1, 𝐴2, 𝐴3〉 Respectively. 

     The following diagram represents the relationship between all types of mathematical 

morphology 

 

Crisp Mathematical Morphology   ⟶    Neutrosophic Crisp Mathematical Morphology  

 

 

Fuzzy Mathematical Morphology  ⟶     Neutrosophic Fuzzy Mathematical Morphology 

 

7. Conclusion: 

In our work, we have proposed a new technique for analyzing and processing images; either 

grayscale or binary. The technique is a generalization for the fuzzy and crisp mathematical 

morphology; it handles the image in the neutrosophic domain.in such domain the image is analyzed 

into three different layers; the first layer describes how much each pixel belongs to the white set, and 
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the third layer describes how much each pixel belongs to the non-white (black) set. In contrast, the 

second layer describes how much the pixel is neither white nor black. The properties of each layer 

were used to define the basic operations for what we called "Neutrosophic Mathematical 

Morphology". mainly, we introduced four basic operations; namely, the neutrosophic dilation, the 

neutrosophic erosion, the neutrosophic closing and the neutrosophic opening. The algebraic 

properties of the proposed operation were discussed. Furthermore, we introduced some advanced 

and generalized concepts of classical and fuzzy mathematical morphology. For this purpose, we 

developed serval neutrosophic crisp and fuzzy morphological operators; namely, the neutrosophic 

fuzzy and crisp dilation, the neutrosophic fuzzy and crisp erosion, the neutrosophic crisp opening 

and the neutrosophic crisp closing operators. These operators were presented in two different types, 

each type is determined according to the behaviour of the second component of the triple structure 

of the operator. Furthermore, we developed three neutrosophic crisp morphological filters; namely, 

the neutrosophic fuzzy and crisp boundary extraction. Some promising experimental results were 

presented to visualise the effect of the newly introduced operators and filters on the image in the 

neutrosophic fuzzy and crisp domain instead of the spatial domain. 
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BNHSS have been initiated. In addition, some properties are displayed paired together, and some numerical
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efficiency and applicability of the proposed model, we established two novel algorithms based on mathematical

techniques (aggregation operator and score function) applied to our model (BNHSS). The aforementioned meth-
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discussions and comparisons between the given techniques are also presented to demonstrate their effectiveness

and applicability.
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1. General Introduction

In the course of our daily routines, we frequently meet a multitude of circumstances that

present dual perspectives or facets of information: the first is positive and the second is

negative, and here the human mind tends towards two patterns of thinking: positive thinking

and negative thinking in judging such situations. Where the positive character indicates

that the information to be evaluated is satisfactory or desirable, while the negative character

indicates rejection or negativity of the choice.

On the other hand, multi-attribute group decision-making (MAGDM) methods seek anal-

ysis and evaluation of real-life issues that face the human mind and contain full uncertainty

nature, including a positive and negative nature, in order to help the decision maker (user) in

selecting the best object. In order to handle MCDM issues that contain imprecise and two sides

of information (positive and negative information), Zhang introduced a new mathematical ap-

proach named bipolar fuzzy sets (BFSs) as an extension of the range of fuzzy set memberships

from positive degrees to positive and negative degrees. This concept is characterized by the

bifurcation of the fuzzy memberships into two poles, positive membership µ+ : A → [1, 0]

correspond with positive preferences and desires and negative membership µ− : A → [0,−1]

corresponds to a lack of preference and a rejection rate.

2. Literature Review

To handle the complicated MAGDM issues that contain uncertainty, indeterminacy, and

consistency, Smarandache [1] proposed a new mathematical notion known as neutrosophic

set (NS) by developing the ordinary fuzzy set [2] (FS) and the ordinary intuitionistic fuzzy

set [3] (IFS). A neutrosophic set (NS) [4] structure is made up of three functions: truth-

ness, indeterminacy, and falsity functions. Each element in the universal set corresponds to

three membership functions, all of which lie in the closed interval [0, 1]. For decades, this

novel notion has been used successfully to model uncertainty in several fields such as reason-

ing, control, pattern recognition, decision making, and computer vision. The NS has been

extended and studied by many researchers in various fields, for example. Khalifa and Ku-

mar [5, 6] presented novel approaches regarding trapezoidal neutrosophic numbers and linear

fractional programming, respectively, under an interval-value neutrosophic environment. Sal-

lam and Mohamed [7] utilized N-MCDM Methodology for the examination of onshore wind

for electricity generation. Nishtar and Afzal [8] work on an analysis of a system for multiple

combining schemes. Rodrigo and Maheswari [9] introduced properties and characterizations

of a new idea of Ne-mapping namely Neu-open maps and Ne-closed maps in Ne-topological

spaces. Researchers did not stop developing this concept at the real level, but rather creative
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works continued to the complex level, taking into account the importance and characteristics

of the complex level.

Ali and Smarandache [10] have further extended the NS to the complex field by developing

the notion of complex neutrosophic set (CNS), which is progressed rapidly to complex single-

valued neutrosophic set (CSVNS) [11] and Q-complex neutrosophic set (Q-CNS) [12]. In

addition to other studies dealing with supply chain (SC) networks [13], facing challenges for a

sustainable future, and using logistic systems [14].

In 1999, Molodtsov [15] put forth the notion of a soft set (SS) as a new parametric form

when he noticed a gap in the previous concepts, that is their inability to deal with real-world

data in the parametric environment. The fertile hybrid environment provided by the SS pro-

voked the attention of researchers and prompted them to create a great deal of contributions

by merging the previous concepts with the properties of the SS. Maji [16] introduced and stud-

ied the basic definitions and operations of neutrosophic soft set (NSS). Deli and Broumi [17]

introduced a preference relationships technique on NSSs that allows to amalgamate two NSSs.

Deli [18]again developed a forecasting approach based interval-NSS. Ozturk et al. [19] intro-

duced and studied some definitions and theorems on NS in topological spaces. Saeed et al. [20]

applied similarity and distance measures on multi-polar neutrosophic soft set (mpNSS) and ex-

perimented it to handle some medical diagnosis and DM-problems. Broumi et al. [21] smelted

both SS and NS to produce the idea of complex neutrosophic soft sets (CNSSs). Following

them Al-Sharqi et al. [22]- [32] made a great effort to represent the idea of Bromi et al. in an

interval manner. Abdel-Basset et al [33] developed a novel risk assessment framework, called

RAF-CPWS, which works perfectly to estimate the risks of water and wastewater technologies.

In addition, there are contributions in several fields see [34]- [43]. In some practical scenarios,

traits that provide further elaboration of the choices should be separated into trait values to

provide more clarity. In light of this intent , recently, Smarandache [44, 45] has suggested the

HSS as an upgraded structure of the SS. Also, he clarified the mechanism of performance of

this idea with FS and its extension. According to this idea, Samarandache opened the doors

to develop previous models that built on SS by rehashing it into multi-trait function. At

present, scholars have released several studies on HSSs. Saeed et al. [46, 47] developed funda-

mental HSS operations. Yolcu and Ozturk [48] prepared critical decision-making applications

for fuzzy hypersoft (FHSS). Saeed et al. [49] conceptualized the notion of FHSS under interval

form when they established the notion of interval-FHSS. More results were shown on IFHSS

by Yolcu et. al. [50]. Some mathematical measures on neutrosophic hypersoft set (NHSS)

were demonstrated by Saqlain et al. [51].
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On the opposite side, the principle of bipolarity craeted to handel practical challenges en-

countered in everyday life, which are given by two distinct aspects. namily positive aspect and

negative aspect, such as black and white, return and progress, profit and loss and et. Then,

Zhang [52,53] is the first initiaed the idea of bipolar fuzzy set (BFS) when he extension of the

range of fuzzy set memberships from positive degrees to positive and negative degrees. This

concept is characterized by the bifurcation of the fuzzy memberships into two poles, positive

membership µ+ : A → [1, 0] correspond with positive preferences and desires and negative

membership µ− : A → [0,−1] corresponds to a lack of preference and a rejection rate. Naz

and Shabir [54] built some algebraic structure on fuzzy bipolar soft set (BFSS).

The idea of bipolar soft set (BSS) has been redefined by Karaaslan and Karatas [55]. Mah-

mood [56] improved the previous definitions of BSS by establishing the notion of T-bipolar

soft sets which is more close to the concept of bipolarity as compared to the previous ones.

Jana and Pal [57] applied the bipolarity information on IFSS. Deli et al. [58] elaborated on

the notion of bipolar-NS (BNS). Ali et al. [59] presented bipolar-NSS (BNSS) and trailed it

to decipher decision-making problems. In complex space, Mahmood and Rehman [60] first

proposed an approach to bipolar complex fuzzy sets (BCFSs), which is closer to bipolarity

When comparing this model with other models. Then, Aczel-Alsina aggregation operators

applied by Mahmood et al. [61] on bipolar complex fuzzy information to handle MCGDM

issues. Following in this direction, Al-Quran et al. [62] established the concept of complex

bipolar- valued NSS as a hybrid model of BNSS and complex fuzzy set (CFS).

Recently, the concept of BSS was expanded to the bipolar hypersoft set (BHSS) by Musa

and Asaad [63], and they presented some basec algebraic properties. Following this direction,

Al-Quran et al. [64] extended the notion of BHSS to BFHSSs. However, BFHSSs can only

handle uncertain data but not be able todeal with ambiguous, contradictory, and indeterminate

information which usually results in real-life problems. To adapt to such situations, we propose

a new hybrid approach, namely BNHSS, By combining the qualities that distinguish BNS and

HSS from each other. BNHSS is superior to BFHSS with its three independent membership

functions, which play a role in increasing the accuracy of the end decision. Therefore, the

advantages and benefits of the suggested method are shown as follows. Firstly, BNHSS exhibits

a high level of applicability in real-life scenarios when decision-makers seek to address dualistic

or dichotomous judgemental thinking, encompassing both positive and negative perspectives.

Secondly, the purpose of this study is to include the concept of bipolarity into decision-making

processes through the utilization of the HSS, the HSS is equipped with a parameterization

tool that enables the portrayal of sub-divided features in a more comprehensive and thorough

manner. Thirdly, another advantage is the inclusion of the neutrosophic set, which possesses

the capacity to simultaneously analyze and handle truth, indeterminate, and false information
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in order to facilitate decision-making. Finally, the suggested model incorporates all of the

aforementioned components into a single framework, rendering it more suitable for addressing

decision-making challenges that are not amenable to other existing decision-making models.

This article is split into the following parts: Figure 1:

Figure 1. show how we organize our manuscript in a brief way.

3. Preliminaries

This part revised some ideas connected to the suggested work. We review SS, HSS, BNS,

BNSS and NHSS.

Molodtsov [8] defined the idea of SS as a set-valued map that helps the user describe objects

by utilizing many parameters.

Definition 3.1. [8] A SS
(
Ĝ,A

)
on Ĉ non-empty universal set is represented as a mapping

as follows:

Ĝ : A →
_

P
(
Ĉ
)

where
_
P
(
Ĉ
)

is the power set of Ĉ and here both Ĉ and A ⊆ M refer to the non-empty

universal set and the parameter family respectively.
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Smarandache [44] expanded the idea of SS to HSS by modifying the function to incorporate

many attributes.

Definition 3.2. [44] A HSS structures
(
Ĝ,W =W1 ×W2 ×W3 × ...×Wn

)
on the non-

empty universal set Ĉ portrayed as follows:

{(ν, Ĝ(ν)) : Ĝ(ν) ⊆ Ĉ,∀ν ∈ W = W1 ×W2 ×W3 × ... ×Wn ⊆ A = A1 × A2 × A3 × ... × An},
where Ai : i = 1, 2, ..., n are separate sets of parameters terms and Wi ⊆ Ai,∀i = 1, 2, ..., n.

Definition 3.3. [1] A NS structures

Ŝ = {< κ̂; TS(κ̂), IS(κ̂),FS(κ̂) >: κ̂ ∈ X},

on non-empty universal set X called neutrosophic set (NS),

where TS ; IS ; FS : X →]−0; 1+[ denoted to the TM,IM and FM of any object κ̂ ∈ X ,

respectively with −0 ≤ TS+ IS + FS ≤ 3+.

Deli et al. [59] generalized BFS by defining BNS as follows.

Definition 3.4. [59] The BNS A on the universe C is signified as follows.

A = {
〈
c; T +

A (κ̂), T −A (κ̂), I+
A (κ̂), I−A (κ̂),F+

A (κ̂),F−A (κ̂)
〉

: κ̂ ∈ C}, where, T +, I+,F+ : C →
[0, 1] denote, respectively the positive-TM, positive-IM and positive-FM degrees of an element

κ̂ ∈ C to the property in line with a BNS A , and T −, I−,F− : C→ [−1, 0] denote, respectively

the negative-TM, negative-IM and negative-FM degrees of an object κ̂ ∈ C.

Ali et al. [59] defined BNSS and its fundamental operations as in the following two defini-

tions.

Definition 3.5. [59] A structures (F,A) is called a BNSS over the universe C, where F
is a transformation given by F : A −→ BN(C) and BN(C) refers to the set of all bipolar

neutrosophic subsets of C.

Definition 3.6. [59] Suppose (F,A) and (G,B) are two BNSSs over the non-empty universal

set C, then (F,A) is given as:

F(a) =
{
〈κ̂, {T +

F(a)(κ̂), T −F(a)(κ̂), I+
F(a)(κ̂), I−F(a)(κ̂),F+

F(a)(κ̂),

F−F(a)(κ̂)}〉 : ∀κ̂ ∈ C, a ∈ A
}

and the second BNSS (G,B) is given as G(b) ={
〈κ̂, {T +

G(b)(κ̂), T −G(b)(κ̂), I+
G(b)(κ̂), I−G(b)(κ̂),F+

G(b)(κ̂),F−G(b)(κ̂)}〉 : ∀κ̂ ∈ C, b ∈ B
}
. Then,

(1.) Fc(a) =
{
〈 ˆ̂κ, {F+

F(a)(
ˆ̂κ),F−F(a)(

ˆ̂κ), 1− I+
F(a)(

ˆ̂κ),−1− I−F(a)(
ˆ̂κ),

T +
F(a)(

ˆ̂κ), T −F(a)(
ˆ̂κ)}〉 : ∀κ̂ ∈ C, a ∈ A

}
,
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(2.) F(a) ⊆ G(b) iff:

T +
F(a)(

ˆ̂κ) ≤ T +
G(b)(

ˆ̂κ), T −F(a)(
ˆ̂κ) ≥ T −G(b)(

ˆ̂κ), I+
F(a)(

ˆ̂κ) ≥ I+
G(b)(

ˆ̂κ),

I−F(a)(
ˆ̂κ) ≤ I−G(b)(

ˆ̂κ), F+
F(a)(

ˆ̂κ) ≥ F+
G(b)(

ˆ̂κ),F−F(a)(
ˆ̂κ) ≤ F−G(b)(

ˆ̂κ),

(3.) F(a) ∪G(b) =
{〈

ˆ̂κ, T +
F(ε)(

ˆ̂κ) ∨ T +
G(ε)(

ˆ̂κ), T −F(ε)(
ˆ̂κ) ∧ T −G(ε)(

ˆ̂κ),

I+
F(ε)(

ˆ̂κ) ∧ I+
G(ε)(

ˆ̂κ), I−F(ε)(
ˆ̂κ) ∨ I−G(ε)(

ˆ̂κ), F+
F(ε)(

ˆ̂κ) ∧ F+
G(ε)(

ˆ̂κ),

F−F(ε)(
ˆ̂κ) ∨ F−G(ε)(

ˆ̂κ)
〉

: ∀ ˆ̂κ ∈ C, ε ∈ A ∩ B
}
,

(4.) F(a) ∩G(b) =
{〈

ˆ̂κ, T +
F(ε)(

ˆ̂κ) ∧ T +
G(ε)(

ˆ̂κ), T −F(ε)(
ˆ̂κ) ∨ T −G(ε)(

ˆ̂κ),

I+
F(ε)(

ˆ̂κ) ∨ I+
G(ε)(

ˆ̂κ), I−F(ε)(
ˆ̂κ) ∧ I−G(ε)(

ˆ̂κ), F+
F(ε)(

ˆ̂κ) ∨ F+
G(ε)(

ˆ̂κ),

F−F(ε)(
ˆ̂κ) ∧ F−G(ε)(

ˆ̂κ)
〉

: ∀ ˆ̂κ ∈ C, ε ∈ A ∩ B
}
,

where max = ∨ and min = ∧.

NHSS is defined for the first time by Smarandache [50] in the following manner.

Definition 3.7. [50] A NHSS structures
(
Ĥ,W =W1 ×W2 ×W3 × ...×Wn

)
on the non-

empty universal set Ĉ portrayed as a mapping as follows:

Ĥ :W −→ NH(Ĉ)

where the component NH(Ĉ) refer to a family of all NSs over non-empty universal set Ĉ such

that Ĥ(ν) = {(κ̂,TĤ(ν)(κ̂), IĤ(ν)(κ̂),FĤ(ν)(κ̂)) : κ̂ ∈ C, ν ∈W = W1 ×W2 ×W3 × ...×Wn ⊆
A = A1 × A2 × A3 × ...× An},
such that TĤ(ν)(κ̂), IĤ(ν)(κ̂) and FĤ(ν)(κ̂) are the TM, IM and FM, respectively and Ai : i =

1, 2, ..., n are pairwise disjoint sets of attribute values.

Recently, Al-Quran et al. [64] have extended the notions of HSS and BFSS by introducing

the notion of BFHSS as in the following definition.

Definition 3.8. [64] A BFHSS structures (Φ,Λ) on the non-empty universal set Ĉ portrayed

as a mapping as follows:

Φ : Λ→ P
(
Ĉ
)

and written as: (Φ,Λ) = {〈α, {(m̂, T +
Φ(α)(m̂), T −Φ(α)(m̂)) : ∀m̂ ∈ Ĉ}〉 : α ∈ Λ ⊆ ∆}.

where Λ = Jν1 ×Jν1 × ...×Jνn , ∆ = Hν1 ×Hν1 × ...×Hνn ,and P
(
Ĉ
)

indicated to power of

non-empty universal set Ĉ.

4. Bipolar Neutrosophic Hypersoft Set

This section of our work consists of presenting the primary definition of BNHSS along

with some illustrations and hypothetical examples, basic set theory operations, and some

rudimentary properties.
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Definition 4.1. Let χ̂ be a universal set and
_
p (χ̂) denotes to the powerful set of χ̂. Let

µk : k = 1, 2, ...,m are m-well-defined qualities that are in line with characteristics and facets

values respectively , the pairwise disjoint sets Cµk : k = 1, 2, ...,m. Let Dµk be the nonempty

subset of Cµk ∀k = 1, 2, ...,m.

A BNHS (Ψ,Γ) is identified by the following mapping Ψ : Γ →
_
p (χ̂) whose functional value

is the BNS

Ψ(ν) =
{
〈κ̂, {T +

Ψ(ν)(κ̂), T −Ψ(ν)(κ̂), I+
Ψ(ν)(κ̂), I−Ψ(ν)(κ̂),F+

Ψ(ν)(κ̂),F−Ψ(ν)(κ̂)}〉 : ∀κ̂ ∈ χ̂, ν ∈ Γ ⊆

Ω
}

,

where Γ = Dµ1×Dµ2× ...×Dµm and Ω = Cµ1×Cµ2× ...×Cµm such that T +, I+,F+ : χ→ [0, 1]

denote, respectively the positive-TM, positive-IM and positive-FM degrees of the attribute ν∗

with regard to component κ̂∗ for the property in line with a BNHS (Ψ,Γ), while T −, I−,F− :

χ → [−1, 0] denote, respectively the negative-TM, negative-IM and negative-FM degrees of

some implicit counter-property of the attribute ν∗ with regard to component κ̂∗ line with a a

BNHS (Ψ,Γ).

We can view the BNHS (Ψ,Γ) as follows:

(Ψ,Γ) =
{〈
ν,
{(

κ̂, T +
Ψ(ν)(κ̂), T −Ψ(ν)(κ̂), I+

Ψ(ν)(κ̂), I−Ψ(ν)(κ̂),

F+
Ψ(ν)(κ̂),F−Ψ(ν)(κ̂)

)
: ∀κ̂ ∈ χ̂

}〉
: ν ∈ Γ ⊆ Ω

}
.

The following numerical example makes above definition clear.

Example 4.2. Suppose the alternatives set encompasses three mobile phones of the same

brand χ̂ = {κ̂1, κ̂2, κ̂3} and the attributes are µ1 = Price, µ2 = Camera resolution, µ3 =

RAM size.Suppose the attribute’s values are

Cµ1 = {α1 = 1200, α2 = 1500, α3 = 2000}, Cµ2 = {α4 = 8MP,α5 = 12MP,α6 = 16MP},
Cµ3 = {α7 = 6GB,α8 = 8GB,α9 = 12GB}. If we take the subset Dµk of Cµk ∀k = 1, 2, 3 as

follows.

Dµ1 = {α2 = 1500, α3 = 2000},
Dµ2 = {α5 = 12MP}, Dµ3 = {α7 = 6GB,α8 = 8GB}. Then, we obtain the following BNHS

(Ψ,Γ)

(Ψ,Γ) ={〈(
(α2, α5, α7), {(κ̂1, .6,−.1, .5,−.9, .8,−.1), (κ̂2,

.7,−.4, .1,−.2, .7,−.5), (κ̂3, .6,−.4, .6,−.4, .5,
− .7)}

)
,
(
(α2, α5, α8), {(κ̂1, .5,−.2, .2,−.4, .5,−.6),

(κ̂2, .2,−.4, .1,−.5, .3,−.6), (κ̂3, .6,−.2, .1,−.3,
.9,−.8)}

)
,
(
(α3, α5, α7), {(κ̂1, 0,−.4, .8,−.3, .4,−.5

), (κ̂2, .6,−1, .2,−.3, .4,−.5), (κ̂3, .8,−.9, .4,−.8,
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.2,−.5)}
)
,
(
(α3, α5, α8), {(κ̂1, .8,−.5, .3,−.4, .6,

− .3), (κ̂2, .7,−.1, .7,−.3, .8,−.9), (κ̂3, 1,−.9, .2,
− .5, .7,−.3)}

)〉}
.

Definition 4.3. Let χ̂ be a non-empty universe. A BNHS denoted by (Ψ,Γ)0, is called empty

BNHS and defined as:

(Ψ,Γ)0 =
{〈
ν,
{

ˆ̂κ, 0, 0, 1,−1, 1,−1
}〉

: ∀κ̂ ∈ χ̂, ∀ν ∈ Γ ⊆ Ω
}

, where T +
Ψ(ν)(

ˆ̂κ) = T −Ψ(ν)(κ̂) =

0, I+
Ψ(ν)(

ˆ̂κ) = F+
Ψ(ν)(

ˆ̂κ) = 1, I−Ψ(ν)(κ̂) = F−Ψ(ν)(
ˆ̂κ) = −1, ∀ ˆ̂κ ∈ χ̂, ∀ν ∈ Γ ⊆ Ω.

Definition 4.4. Let χ̂ be a non-empty universe. A BNHS denoted by (Ψ,Γ)χ, is called

absolute BNHS and defined as:

(Ψ,Γ)χ =
{〈
ν,
{

ˆ̂κ, 1,−1, 0, 0, 0, 0
}〉

: ∀κ̂ ∈ χ̂, ∀ν ∈ Γ ⊆ Ω
}

, where T +
Ψ(ν)(

ˆ̂κ) = 1, T −Ψ(ν)(
ˆ̂κ) =

−1 and I+
Ψ(ν)(

ˆ̂κ) = F+
Ψ(ν)(

ˆ̂κ) = I−Ψ(ν)(
ˆ̂κ) = F−Ψ(ν)(

ˆ̂κ) = 0, ∀ ˆ̂κ ∈ χ̂, ∀ν ∈ Γ ⊆ Ω.

The complement operator of the BNHS is defined in this part.

Definition 4.5. Let (Ψ,Γ) ={〈
ν,
{(

κ̂, T +
Ψ(ν)(κ̂), T −Ψ(ν)(κ̂), I+

Ψ(ν)(κ̂), I−Ψ(ν)(κ̂),F+
Ψ(ν)(κ̂),

F−Ψ(ν)(κ̂)
)

: ∀κ̂ ∈ χ̂
}〉

: ν ∈ Γ ⊆ Ω
}

be a BNHS. Then the complement of (Ψ,Γ) is denoted by

(Ψ,Γ)c and is defined as:

(Ψ,Γ)c = (Ψc,Γ) ={〈
ν,
{(

ˆ̂κ,F+
Ψ(ν)(

ˆ̂κ),F−Ψ(ν)(
ˆ̂κ), 1− I+

Ψ(ν)(
ˆ̂κ),−1− I−Ψ(ν)(

ˆ̂κ),

T +
Ψ(ν)(

ˆ̂κ), T −Ψ(ν)(κ̂)
)

: ∀ ˆ̂κ ∈ χ̂
}〉

: ν ∈ Γ ⊆ Ω
}

Now, we display the use of the complement operator through an example as follows:

Example 4.6. With reference to Example 3.2. The complement of the BNHS (Ψ,Γ) is

(Ψ,Γ)c = (Ψc,Γ) ={〈(
(α2, α5, α7), {(κ̂1, .8,−.1, .5,−.1, .6,−.1), (κ̂2,

.7,−.5, .9,−.8, .7,−.4), (κ̂3, .5,−.7, .4,−.6, .6,
− .4)}

)
,
(
(α2, α5, α8), {(κ̂1, .5,−.6, .8,−.6, .5,−.2),

(κ̂2, .3,−.6, .9,−.5, .2,−.4), (κ̂3, .9,−.8, .9,−.7,
.6,−.2)}

)
,
(
(α3, α5, α7), {(κ̂1, .4,−.5, .2,−.7, 0,−.4

), (κ̂2, .4,−.5, .8,−.7, .6,−1), (κ̂3, .2,−.5, .6,−.2,
.8,−.9)}

)
,
(
(α3, α5, α8), {(κ̂1, .6,−.3, .7,−.6, .8,

− .5), (κ̂2, .8,−.9, .3,−.7, .7,−.1), (κ̂3, .7,−.3, .8,
− .5, 1,−.9)}

)〉}
.

Proposition 4.7. The complement of the complement of a BNHS (Ψ,Γ) is simply the BNHS

(Ψ,Γ) itself. In symbols, ((Ψ,Γ)c)c = (Ψ,Γ).
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Proof: Suppose the BNHS (Ψ,Γ) =
{〈
ν,
{(

ˆ̂κ, T +
Ψ(ν)(

ˆ̂κ), T −Ψ(ν)

( ˆ̂κ), I+
Ψ(ν)(

ˆ̂κ), I−Ψ(ν)(κ̂),F+
Ψ(ν)(

ˆ̂κ),F−Ψ(ν)(
ˆ̂κ)
)

: ∀ ˆ̂κ ∈ χ̂
}〉

: ν ∈ Γ ⊆ Ω
}

. By Definition 3.5,

(Ψ,Γ)c = (Ψc,Γ) ={〈
ν,
{(

ˆ̂κ,F+
Ψ(ν)(

ˆ̂κ),F−Ψ(ν)(
ˆ̂κ), 1− I+

Ψ(ν)(
ˆ̂κ),−1− I−Ψ(ν)(

ˆ̂κ),

T +
Ψ(ν)(

ˆ̂κ), T −Ψ(ν)(κ̂)
)

: ∀κ̂ ∈ χ̂
}〉

: ν ∈ Γ ⊆ Ω
}

. Using Definition 3.5 again, we obtain.

((Ψ,Γ)c)c ={〈
ν,
{(

ˆ̂κ, T +
Ψ(ν)(

ˆ̂κ), T −Ψ(ν)(
ˆ̂κ), 1 − (1 − I+

Ψ(ν)(
ˆ̂κ)),−1 − (−1 − I−Ψ(ν)(

ˆ̂κ)),F+
Ψ(ν)(

ˆ̂κ),F−Ψ(ν)(
ˆ̂κ)
)

:

∀ ˆ̂κ ∈ χ̂
}〉

: ν ∈ Γ ⊆ Ω
}

,

=
{〈
ν,
{(

ˆ̂κ, T +
Ψ(ν)(

ˆ̂κ), T −Ψ(ν)(
ˆ̂κ), I+

Ψ(ν)(
ˆ̂κ), I−Ψ(ν)(

ˆ̂κ),F+
Ψ(ν)

( ˆ̂κ),F−Ψ(ν)(
ˆ̂κ)
)

: ∀ ˆ̂κ ∈ χ̂
}〉

: ν ∈ Γ ⊆ Ω
}

,

= (Ψ,Γ).

Proposition 4.8. Assume, (Ψ,Γ) is a BNHS over χ̂. Then,

1. ((Ψ,Γ)0)c = (Ψ,Γ)χ,

2. ((Ψ,Γ)χ)c = (Ψ,Γ)0.

1. Suppose (Ψ,Γ)0 =
{〈
ν,
{
κ̂, 0, 0, 1,−1, 1,−1

}〉
: ∀κ̂ ∈ χ̂, ∀ν ∈ Γ ⊆ Ω

}
is an empty BNHS. Based on Definition 11, ((Ψ,Γ)0)c ={〈

ν,
{
κ̂, 1,−1, 1− 1,−1− (−1), 0, 0

}〉
: ∀κ̂ ∈ χ̂, ∀ν ∈ Γ ⊆ Ω

}
,

=
{〈
ν,
{
κ̂, 1,−1, 0, 0, 0, 0

}〉
: ∀κ̂ ∈ χ̂, ∀ν ∈ Γ ⊆ Ω

}
= (Ψ,Γ)χ.

2. Proof of this item is similar to that of (1).

Now, we define subset-hood operator on two BNHSs.

Definition 4.9. Suppose (Ψ,Γ) and (Φ,Λ) are two BNHSs over χ̂. Where (Ψ,Γ) ={〈
ν,
{(

ˆ̂κ, T +
Ψ(ν)(

ˆ̂κ), T −Ψ(ν)(
ˆ̂κ), I+

Ψ(ν)(
ˆ̂κ),

I−Ψ(ν)(
ˆ̂κ),F+

Ψ(ν)(
ˆ̂κ),F−Ψ(ν)(

ˆ̂κ)
)

: ∀ ˆ̂κ ∈ χ̂
}〉

: ν ∈ Γ ⊆ Ω
}

and (Φ,Λ) ={〈
ν,
{(

ˆ̂κ, T +
Φ(ν)(

ˆ̂κ), T −Φ(ν)(κ̂), I+
Φ(ν)(

ˆ̂κ), I−Φ(ν)

( ˆ̂κ),F+
Φ(ν)(

ˆ̂κ),F−Φ(ν)(κ̂)
)

: ∀ ˆ̂κ ∈ χ̂
}〉

: ν ∈ Λ ⊆ Ω
}

. We said that (Ψ,Γ) is a subset of (Φ,Λ),

denoted as (Ψ,Γ) ⊆ (Φ,Λ), if:

1. Γ ⊆ Λ,

2. ∀ν ∈ Γ, ∀ ˆ̂κ ∈ χ̂, T +
Ψ(ν)(

ˆ̂κ) ≤ T +
Φ(ν)(

ˆ̂κ), T −Ψ(ν)(κ̂) ≥ T −Φ(ν)(
ˆ̂κ), I+

Ψ(ν)(
ˆ̂κ) ≥ I+

Φ(ν)(
ˆ̂κ),

I−Ψ(ν)(
ˆ̂κ) ≤ I−Φ(ν)(

ˆ̂κ), F+
Ψ(ν)(

ˆ̂κ) ≥ F+
Φ(ν)(

ˆ̂κ), F−Ψ(ν)(
ˆ̂κ) ≤ F−Φ(ν)(

ˆ̂κ).

Remark 4.10. From Definition 3.9, it is clear that ((Ψ,Γ)0) ⊆ (Ψ,Γ)χ.

The equality between two BNHSs (Ψ,Γ) and (Φ,Λ) can be defined as follows.

Definition 4.11. We said that (Ψ,Γ) is equal to (Φ,Λ), denoted as (Ψ,Γ) = (Φ,Λ), if:
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1. Γ = Λ,

2. ∀ν ∈ Γ, ∀ ˆ̂κ ∈ χ̂, T +
Ψ(ν)(

ˆ̂κ) = T +
Φ(ν)(

ˆ̂κ), T −Ψ(ν)(
ˆ̂κ) = T −Φ(ν)(κ̂), I+

Ψ(ν)(
ˆ̂κ) = I+

Φ(ν)(κ̂),

I−Ψ(ν)(
ˆ̂κ) = I−Φ(ν)(

ˆ̂κ), F+
Ψ(ν)(

ˆ̂κ) = F+
Φ(ν)(

ˆ̂κ), F−Ψ(ν)(
ˆ̂κ) = F−Φ(ν)(

ˆ̂κ).

The following, is a numerical example clarifies Definition 3.9.

Example 4.12. Consider Example 1 and suppose that Eµ1 = {α3 = 2000}, Eµ2 = {α5 =

12MP}, Eµ3 = {α7 = 6GB,α8 = 8GB}, be another subsets of Cµk ∀k = 1, 2, 3 and Λ =

Eµ1 × Eµ2 × Eµ3 . Then, we can obtain the following BNHS (Φ,Λ), where, (Φ,Λ) ={〈(
(α3, α5, α7), {(κ̂1, 0,−0.2, 0.9,−0.5, 0.6,−0.7), (κ̂2, 0.3,

− 0.8, 0.3,−0.4, 0.7,−0.7), (κ̂3, 0.6,−0.5, 0.5,−0.9, 0.6,−0.7)}
)
,(

(α3, α5, α8), {(κ̂1, 0.6,−0.3, 0.5,−0.6, 0.7,−0.4), (κ̂2, 0.6, 0,

0.8,−0.4, 0.9,−0.9), (κ̂3, 1,−0.7, 0.3,−0.6, 0.8,−0.4)}
)〉}

. Based on Definition 4.9, it is clear

that (Φ,Λ) ⊆ (Ψ,Γ), where (Ψ,Γ) ={〈(
(α2, α5, α7), {( ˆ̂κ1, .6,−.1, .5,−.9, .8,−.1), (κ̂2,

.7,−.4, .1,−.2, .7,−.5), ( ˆ̂κ3, .6,−.4, .6,−.4, .5,
− .7)}

)
,
(
(α2, α5, α8), {(κ̂1, .5,−.2, .2,−.4, .5,−.6),

(κ̂2, .2,−.4, .1,−.5, .3,−.6), (κ̂3, .6,−.2, .1,−.3,
.9,−.8)}

)
,
(
(α3, α5, α7), {( ˆ̂κ1, 0,−.4, .8,−.3, .4,−.5

), ( ˆ̂κ2, .6,−1, .2,−.3, .4,−.5), ( ˆ̂κ3, .8,−.9, .4,−.8,
.2,−.5)}

)
,
(
(α3, α5, α8), {( ˆ̂κ1, .8,−.5, .3,−.4, .6,

− .3), ( ˆ̂κ2, .7,−.1, .7,−.3, .8,−.9), (κ̂3, 1,−.9, .2,
− .5, .7,−.3)}

)〉}
.

To combine two BNHSs into a single BNHS, we will define the following fundamental oper-

ations on BNHSs.

Definition 4.13. The restricted union of two BNHSs (Ψ,Γ) and (Φ,Λ) over the universe χ̂

is signified by (Ψ,Γ) dR (Φ,Λ) and stated as: (ΠR,Υ) = (Ψ,Γ) dR (Φ,Λ), where Υ = Γ ∩ Λ

and (ΠR,Υ) is characterized as:

(ΠR,Υ) =
{〈
ε,
{(

ˆ̂κ, T +
Ψ(ε)

(
ˆ̂κ
)
∨ T +

Φ(ε)

(
ˆ̂κ
)
, T −Ψ(ε)

(
ˆ̂κ
)
∧ T −Φ(ε)(

ˆ̂κ
)
, I+

Ψ(ε)

(
ˆ̂κ
)
∧ I+

Φ(ε)

(
ˆ̂κ
)
, I−Ψ(ε)

(
ˆ̂κ
)
∨ I−Φ(ε)

(
ˆ̂κ
)
,F+

Ψ(ε)

(
ˆ̂κ
)
∧ F+

Φ(ε)

(
ˆ̂κ
)
,F−Ψ(ε)

(
ˆ̂κ
)
∨

F−Φ(ε)

(
ˆ̂κ
)

: ∀ ˆ̂κ ∈ χ̂
}〉

: ε ∈ Γ ∩ Λ
}

.

Where max = ∨ and min = ∧.

To clarify Definition 3.13, we provide the following example.

Faisal Al-Sharqi, Ashraf Al-Quran and Zahari Md. Rodzi, Multi-Attribute Group
Decision-Making Based on Aggregation Operator and Score Function of Bipolar
Neutrosophic Hypersoft Environment

Neutrosophic Sets and Systems, Vol. 61, 2023                                                                           475



Example 4.14. Consider the BNHS (Ψ,Γ) in Example 3.2, where (Ψ,Γ) ={〈(
(α2, α5, α7), {( ˆ̂κ1, .6,−.1, .5,−.9, .8,−.1), ( ˆ̂κ2,

.7,−.4, .1,−.2, .7,−.5), ( ˆ̂κ3, .6,−.4, .6,−.4, .5,
− .7)}

)
,
(
(α2, α5, α8), {( ˆ̂κ1, .5,−.2, .2,−.4, .5,−.6),

( ˆ̂κ2, .2,−.4, .1,−.5, .3,−.6), ( ˆ̂κ3, .6,−.2, .1,−.3,
.9,−.8)}

)
,
(
(α3, α5, α7), {( ˆ̂κ1, 0,−.4, .8,−.3, .4,−.5

), ( ˆ̂κ2, .6,−1, .2,−.3, .4,−.5), (κ̂3, .8,−.9, .4,−.8,
.2,−.5)}

)
,
(
(α3, α5, α8), {( ˆ̂κ1, .8,−.5, .3,−.4, .6,

− .3), ( ˆ̂κ2, .7,−.1, .7,−.3, .8,−.9), ( ˆ̂κ3, 1,−.9, .2,
− .5, .7,−.3)}

)〉}
.

Suppose that Hµ1 = {α1 = 1200, α2 = 1500}, Hµ2 = {α5 = 12MP,α6 = 16MP}, Hµ3 =

{α7 = 6GB}, be another subsets of Cµk ∀k = 1, 2, 3 and λ = Hµ1 × Hµ2 × Hµ3 . Then, we

obtain the following BNHS (Θ, λ), where, (Θ, λ) ={〈(
(α1, α5, α7), {( ˆ̂κ1, .1,−.8, .3,−.2, .9,−.1), ( ˆ̂κ2,

.5,−.1, .1,−.6, .3,−.2), ( ˆ̂κ3, .8,−.7, .9,−.2, .9,
− .8)}

)
,
(
(α1, α6, α7), {(κ̂1, .6,−.4, .7,−.3, .2,−.7),

( ˆ̂κ2, .3,−.5, .1,−.6, .4,−.7), ( ˆ̂κ3, .8,−.4, .1,−.3,
.8,−.1)}

)
,
(
(α2, α5, α7), {( ˆ̂κ1, 0,−1, .5,−.1, .2,−.7

), ( ˆ̂κ2, 0,−1, .8,−.5, 1,−.5), ( ˆ̂κ3, .2,−1, .5,−.7,
.1,−.2)}

)
,
(
(α2, α6, α7), {( ˆ̂κ1, 1,−.5, .2,−.8, .5,

− .2), ( ˆ̂κ2, 0,−.1, 1,−.3, .2,−.9), ( ˆ̂κ3, 1,−.7, .5,
− .3, .2,−.4)}

)〉}
.

The restricted union of (Ψ,Γ) and (Θ, λ) can be calculated as follows.

(Ψ,Γ) dR (Θ, λ) =

{〈(
(α2, α5, α7), {( ˆ̂κ1, .6,−1, .5,−.1, .2,−.1), ( ˆ̂κ2,

.7,−1, .1,−.2, .7, .5), ( ˆ̂κ3, .6,−1, .5,−.4, .1,
− .2)}

)〉}
.

The following properties hold under the BNHS union.

Proposition 4.15. Let (Ψ,Γ), (Φ,Λ) and (Θ, λ) be three BNHSs over χ̂. Then,

1. (Ψ,Γ) dR (Ψ,Γ)0 = (Ψ,Γ),

2. (Ψ,Γ) dR (Ψ,Γ)χ̂ = (Ψ,Γ)χ̂,

3. (Ψ,Γ) dR (Φ,Λ) = (Φ,Λ) dR (Ψ,Γ),

4.
(
(Ψ,Γ) dR (Φ,Λ)

)
dR (Θ, λ) = (Ψ,Γ) dR

(
(Φ,Λ) dR (Θ, λ)

)
.
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Definition 4.16. The extended union of two BNHSs (Ψ,Γ) and (Φ,Λ) over the universe χ̂ is

signified by (Ψ,Γ) dE (Φ,Λ) and stated as: (ΠE ,Υ) = (Ψ,Γ) dE (Φ,Λ), where Υ = Γ ∪Λ and

∀ε ∈ Υ, ∀ ˆ̂κ ∈ χ̂,

T +
ΠE(ε)

(
ˆ̂κ
)

=


T +

Ψ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ− Λ

T +
Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Λ− Γ

T +
Ψ(ε)

(
ˆ̂κ
)
∨ T +

Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ ∩ Λ

T −ΠE(ε) (κ̂) =


T −Ψ(ε) (κ̂) , ifε ∈ Γ− Λ

T −Φ(ε) (κ̂) , ifε ∈ Λ− Γ

T −Ψ(ε) (κ̂) ∧ T −Φ(ε) (κ̂) , ifε ∈ Γ ∩ Λ

I+
ΠE(ε) (κ̂) =


I+

Ψ(ε) (κ̂) , ifε ∈ Γ− Λ

I+
Φ(ε) (κ̂) , ifε ∈ Λ− Γ

I+
Ψ(ε) (κ̂) ∧ I+

Φ(ε) (κ̂) , ifε ∈ Γ ∩ Λ

I−ΠE(ε) (κ̂) =


I−Ψ(ε) (κ̂) , ifε ∈ Γ− Λ

I−Φ(ε) (κ̂) , ifε ∈ Λ− Γ

I−Ψ(ε) (κ̂) ∨ I−Φ(ε) (κ̂) , ifε ∈ Γ ∩ Λ

F+
ΠE(ε) (κ̂) =


F+

Ψ(ε) (κ̂) , ifε ∈ Γ− Λ

F+
Φ(ε) (κ̂) , ifε ∈ Λ− Γ

F+
Ψ(ε) (κ̂) ∧ F+

Φ(ε) (κ̂) , ifε ∈ Γ ∩ Λ

F−ΠE(ε) (κ̂) =


F−Ψ(ε) (κ̂) , ifε ∈ Γ− Λ

F−Φ(ε) (κ̂) , ifε ∈ Λ− Γ

F−Ψ(ε) (κ̂) ∨ F−Φ(ε) (κ̂) , ifε ∈ Γ ∩ Λ

Where max = ∨ and min = ∧.

To clarify Definition 3.16, we provide the following hypothetical example.

Example 4.17. Consider Example 3.14. The extended union of (Ψ,Γ) and (Θ, λ) can be

calculated as follows.

(Ψ,Γ) dE (Θ, λ) =

{〈(
(α2, α5, α7), {( ˆ̂κ1, .6,−1, .5,−.1, .2,−.1), ( ˆ̂κ2,

.7,−1, .1,−.2, .7, .5), ( ˆ̂κ3, .6,−1, .5,−.4, .1,
− .2)}

)
,
(
(α2, α5, α8), {( ˆ̂κ1, .5,−.2, .2,−.4, .5,−.6),

( ˆ̂κ2, .2,−.4, .1,−.5, .3,−.6), ( ˆ̂κ3, .6,−.2, .1,−.3,
.9,−.8)}

)
,
(
(α3, α5, α7), {( ˆ̂κ1, 0,−.4, .8,−.3, .4,−.5
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), ( ˆ̂κ2, .6,−1, .2,−.3, .4,−.5), ( ˆ̂κ3, .8,−.9, .4,−.8,
.2,−.5)}

)
,
(
(α3, α5, α8), {( ˆ̂κ1, .8,−.5, .3,−.4, .6,

− .3), (κ̂2, .7,−.1, .7,−.3, .8,−.9), ( ˆ̂κ3, 1,−.9, .2,
− .5, .7,−.3)}

)
,
(
(α1, α5, α7), {( ˆ̂κ1, .1,−.8, .3,−.2,

.9,−.1), ( ˆ̂κ2, .5,−.1, .1,−.6, .3,−.2), ( ˆ̂κ3, .8,−.7,

.9,−.2, .9,−.8)}
)
,
(
(α1, α6, α7), {( ˆ̂κ1, .6,−.4, .7,

− .3, .2,−.7), ( ˆ̂κ2, .3,−.5, .1,−.6, .4,−.7), ( ˆ̂κ3, .8,

− .4, .1,−.3, .8,−.1)}
)
,
(
(α2, α6, α7), {( ˆ̂κ1, 1,−.5, .2,

− .8, .5,−.2), ( ˆ̂κ2, 0,−.1, 1,−.3, .2,−.9), ( ˆ̂κ3, 1,−.7,
.5,−.3, .2,−.4)}

)〉}
.

Definition 4.18. The restricted intersection of two BNHSs (Ψ,Γ) and (Φ,Λ) over the non-

empty universe χ̂ is signified by (Ψ,Γ) eR (Φ,Λ) and stated as: (ΞR,Υ) = (Ψ,Γ) eR (Φ,Λ),

where Υ = Γ ∩ Λ and (ΞR,Υ) is characterized as:

(ΞR,Υ) =
{〈
ε,
{(

κ̂, T +
Ψ(ε)

(
ˆ̂κ
)
∧ T +

Φ(ε)

(
ˆ̂κ
)
, T −Ψ(ε)

(
ˆ̂κ
)
∨ T −Φ(ε)(

ˆ̂κ
)
, I+

Ψ(ε)

(
ˆ̂κ
)
∨ I+

Φ(ε)

(
ˆ̂κ
)
, I−Ψ(ε)

(
ˆ̂κ
)
∧ I−Φ(ε)

(
ˆ̂κ
)
,F+

Ψ(ε)

(
ˆ̂κ
)
∨ F+

Φ(ε)

(
ˆ̂κ
)
,F−Ψ(ε)

(
ˆ̂κ
)
∧

F−Φ(ε)

(
ˆ̂κ
)

: ∀κ̂ ∈ χ̂
}〉

: ε ∈ Γ ∩ Λ
}

.

Where max = ∨ and min = ∧.

To clarify Definition 4.18, we provide the following hypothetical example.

Example 4.19. Consider Example 3.14. The restricted intersection of (Ψ,Γ) and (Θ, λ) can

be calculated as follows.

(Ψ,Γ) eR (Θ, λ) =

{〈(
(α2, α5, α7), {(κ̂1, 0,−.1, .5,−.9, .8,−.7), ( ˆ̂κ2,

0,−.4, .8,−.5, 1,−.5), ( ˆ̂κ3, .2,−.4, .6,−.7, .5,
− .7)}

)〉}
.

The following properties hold under the BNHS intersection.

Proposition 4.20. Let (Ψ,Γ), (Φ,Λ) and (Θ, λ) be three BNHSs over χ̂. Then,

1. (Ψ,Γ) eR (Ψ,Γ)0 = (Ψ,Γ)0,

2. (Ψ,Γ) eR (Ψ,Γ)χ̂ = (Ψ,Γ),

3. (Ψ,Γ) eR (Φ,Λ) = (Φ,Λ) eR (Ψ,Γ),

4.
(
(Ψ,Γ) eR (Φ,Λ)

)
eR (Θ, λ) = (Ψ,Γ) eR

(
(Φ,Λ) eR (Θ, λ)

)
.
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Definition 4.21. The extended intersection of two BNHSs (Ψ,Γ) and (Φ,Λ) over the universe

χ̂ is signified by (Ψ,Γ) eE (Φ,Λ) and stated as: (∆E ,Υ) = (Ψ,Γ) eE (Φ,Λ), where Υ = Γ∪Λ

and ∀ε ∈ Υ, ∀κ̂ ∈ χ̂,

T +
∆E(ε) (κ̂) =


T +

Ψ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ− Λ

T +
Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Λ− Γ

T +
Ψ(ε) (κ̂) ∧ T +

Φ(ε) (κ̂) , ifε ∈ Γ ∩ Λ

T −∆E(ε)

(
ˆ̂κ
)

=


T −Ψ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ− Λ

T −Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Λ− Γ

T −Ψ(ε)

(
ˆ̂κ
)
∨ T −Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ ∩ Λ

I+
∆E(ε)

(
ˆ̂κ
)

=


I+

Ψ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ− Λ

I+
Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Λ− Γ

I+
Ψ(ε)

(
ˆ̂κ
)
∨ I+

Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ ∩ Λ

I−∆E(ε)

(
ˆ̂κ
)

=


I−Ψ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ− Λ

I−Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Λ− Γ

I−Ψ(ε)

(
ˆ̂κ
)
∧ I−Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ ∩ Λ

F+
∆E(ε)

(
ˆ̂κ
)

=


F+

Ψ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ− Λ

F+
Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Λ− Γ

F+
Ψ(ε)

(
ˆ̂κ
)
∨ F+

Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ ∩ Λ

F−∆E(ε)

(
ˆ̂κ
)

=


F−Ψ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ− Λ

F−Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Λ− Γ

F−Ψ(ε)

(
ˆ̂κ
)
∧ F−Φ(ε)

(
ˆ̂κ
)

, ifε ∈ Γ ∩ Λ

Where max = ∨ and min = ∧.

To clarify Definition 3.21, we provide the following hypothetical example.

Example 4.22. Take Example 3.14. The extended intersection of (Ψ,Γ) and (Θ, λ) can be

calculated as follows.

(Ψ,Γ) eE (Θ, λ) ={〈(
(α2, α5, α7), {(κ̂1, 0,−.1, .5,−.9, .8,−.7), ( ˆ̂κ2,

0,−.4, .8,−.5, 1,−.5), ( ˆ̂κ3, .2,−.4, .6,−.7, .5,
− .7)}

)
,
(
(α2, α5, α8), {( ˆ̂κ1, .5,−.2, .2,−.4, .5,−.6),

( ˆ̂κ2, .2,−.4, .1,−.5, .3,−.6), ( ˆ̂κ3, .6,−.2, .1,−.3,
.9,−.8)}

)
,
(
(α3, α5, α7), {( ˆ̂κ1, 0,−.4, .8,−.3, .4,−.5
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), (κ̂2, .6,−1, .2,−.3, .4,−.5), ( ˆ̂κ3, .8,−.9, .4,−.8,
.2,−.5)}

)
,
(
(α3, α5, α8), {( ˆ̂κ1, .8,−.5, .3,−.4, .6,

− .3), ( ˆ̂κ2, .7,−.1, .7,−.3, .8,−.9), ( ˆ̂κ3, 1,−.9, .2,
− .5, .7,−.3)}

)
,
(
(α1, α5, α7), {( ˆ̂κ1, .1,−.8, .3,−.2,

.9,−.1), ( ˆ̂κ2, .5,−.1, .1,−.6, .3,−.2), ( ˆ̂κ3, .8,−.7,

.9,−.2, .9,−.8)}
)
,
(
(α1, α6, α7), {( ˆ̂κ1, .6,−.4, .7,

− .3, .2,−.7), ( ˆ̂κ2, .3,−.5, .1,−.6, .4,−.7), ( ˆ̂κ3, .8,

− .4, .1,−.3, .8,−.1)}
)
,
(
(α2, α6, α7), {( ˆ̂κ1, 1,−.5, .2,

− .8, .5,−.2), ( ˆ̂κ2, 0,−.1, 1,−.3, .2,−.9), ( ˆ̂κ3, 1,−.7,
.5,−.3, .2,−.4)}

)〉}
.

In the following, we define AND and OR operations on BNHSs.

Definition 4.23. Let (Ψ,Γ) and (Φ,Λ) be two BNHSs over the universe χ̂. Then, AND

operation is a BNHS over χ̂ and signified by

(Ψ,Γ)5 (Φ,Λ) = (<,Γ× Λ), where, <(νi, ηj) = Ψ(νi)∩̄Φ(ηj),

∀(νi, ηj) ∈ Γ× Λ, where ∩̄ is a BN-intersection.

The following is an example on AND operation.

Example 4.24. Consider Example 4, where ν1 = (α2, α5, α7),

ν2 = (α2, α5, α8) are the hypersoft parameters(attributes) for the BNHS (Ψ,Γ) and η1 =

(α1, α5, α7), η2 = (α1, α6, α7) are the hypersoft parameters(attributes) for the BNHS (Θ, λ).

Then Γ× λ = {(ν1, η1), (ν1, η2), (ν2, η1), (ν2, η2)}. The values of (Ψ,Γ)5 (Θ, λ) = (<,Γ× λ) is

as follows.

{〈((ν1 × η1), {( ˆ̂κ1, .1,−.8, .5,−.2, .9,−.1), ( ˆ̂κ2, .5,−.4, .1,−.2, .7,−.2),

( ˆ̂κ3, .6,−.7, .9,−.2, .9,−.7)}), ((ν1 × η2), {( ˆ̂κ1, .6,−.4, .7,−.3, .8,−.1),

( ˆ̂κ2, .2,−.5, .1,−.2, .7,−.5), ( ˆ̂κ3, .6,−.4, .6,−.3, .8,−.1)}),
((ν2 × η1), {( ˆ̂κ1, .1,−.8, .3,−.2, .9,−.1), ( ˆ̂κ2, .2,−.5, .1,−.5, .3,−.2),

( ˆ̂κ3, .6,−.7, .1,−.3, .9,−.8)}), ((ν2 × η2), {( ˆ̂κ1, .5,−.4, .7,−.3, .5,−.6),

( ˆ̂κ2, .3,−.1, .2,−.3, .4,−.5), ( ˆ̂κ3, .8,−.9, .4,−.3, .8,−.1)})〉}

Here, we provide the definition of OR operation.

Definition 4.25. Let (Ψ,Γ) and (Φ,Λ) be two BNHSs over the universe χ̂. Then, OR op-

eration is a BNHS over χ̂ and signified by (Ψ,Γ)4 (Φ,Λ) = (Σ,Γ × Λ), where, Σ(νi, ηj) =

Ψ(νi)∪̄Φ(ηj),∀(νi, ηj) ∈ Γ× Λ, where ∪̄ is a BN-union.
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Example 4.26. Consider Example 3.24. Then, (Ψ,Γ)4 (Φ,Λ) = (Σ,Γ× Λ) is calculated as

follows.

= {〈((ν1 × η1) ,
{(

ˆ̂κ1, .6,−.1, .3,−.9, .8,−.1
)
,(

ˆ̂κ2, .7,−.1, .1,−.6, .3,−.5
)
,(

ˆ̂κ3, .8,−.4, .6,−.4, .5,−.8
)})

,

((ν1 × η2) ,
{(

ˆ̂κ1, .6,−.1, .5,−.9, .2,−.7
)
,(

ˆ̂κ2, .7,−.4, .1,−.6, .4,−.7
)
,(

ˆ̂κ3, .8,−.4, .1,−.4, .5,−.7
)})

,

((ν2 × η1) ,
{(

ˆ̂κ1, .5,−.2, .2,−.4, .5,−.6
)
,(

ˆ̂κ2, .5,−.1, .1,−.6, .3,−.6
)
,(

ˆ̂κ3, .8,−.2, .1,−.3, .9,−.8
)})

,

((ν2 × η2) ,
{(

ˆ̂κ1, .6,−.2, .2,−.4, .2,−.7
)
,(

ˆ̂κ2, .3,−.4, .1,−.6, .3,−.7
)
,(

ˆ̂κ3, .8,−.4, .1,−.8, .2,−.5
)})〉}

5. Applicability of BNHSSs in MAGDM based on mathematical tools

In this part, we will demonstrate the mechanism for applying our proposed approach to

dealing with real-life problems that include uncertainty data with two sides (positive and

negative) by proposing two algorithms based on some mathematical tools that can be adapted

to our approach, such as the score function (SF) of BNHSS and the aggregation operator (AO)

of BNHS. Therefore, we will first begin by presenting the mathematical definitions for each

SF of BNHSS and AO of BNHS.

Definition 5.1. For BNHSN Ψ =
(
T +

Ψ , T −Ψ , I+
Ψ , I

−
Ψ ,F

+
Ψ ,F

−
Ψ

)
then the SF value defined as

S (Ψ) =
(T +

Ψ +1−I+
Ψ+1−F+

Ψ +1+T −
Ψ −I

−
Ψ−F

−
Ψ )

6 .

Definition 5.2. Assume that (Ψ,Γ) be a BNHS over χ̂. Where (Ψ,Γ) ={〈
ν,
{(

ˆ̂κ, T +
Ψ(ν)(

ˆ̂κ), T −Ψ(ν)(κ̂), I+
Ψ(ν)(

ˆ̂κ), I−Ψ(ν)(κ̂),F+
Ψ(ν)(

ˆ̂κ),F−Ψ(ν)(
ˆ̂κ)
)

: ∀ ˆ̂κ ∈ χ̂
}〉

: ν ∈ Γ ⊆ Ω
}

. Then AO of BNHS, denoted by
_

Bagg and defined as the following:
_

Bagg =
{

Ξ_
B

(
ˆ̂κ
)

: ˆ̂κ ∈ χ̂
}

Such that:

Ξ_
B

(κ̂) =
1

2 |Ω× χ̂|
∑

υ∈Γ⊆Ω

(∣∣∣1− I+
Ψ(κ̂)

(
T +

Ψ(κ̂) −F
+
Ψ(κ̂)

)
+ 1− I−Ψ(κ̂)

(
T −Ψ(κ̂) −F

−
Ψ(κ̂)

)∣∣∣)
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For the purpose of solving this problem, we will organize above two algorithms based on

definitions 4.1 and 4.2, as shown in Figures 1 and 2.

5.1. Numerical Example

Choosing a professor to work at a private university: Private universities are always

looking to improve their academic reputation, so they work to select teaching staff according

to strict standards. Therefore, this selection process is classified as a multi-criteria selection

problem. Here, in this partial section, we assume that a private university wants to choose a

professor to teach genetics in the Department of Biological Sciences in the College of Science

among a number of applicants according to multiple criteria, including academic qualification,

scientific degree, and scientific experience. Also, these standards have sub-criteria that are

compatible with HSSs. Accordingly, two committees were selected from the college deanship

to undertake the task of interviewing each candidate individually in accordance with the cri-

teria mentioned above. Based on this interview, the two committees formulate their opinions

in accordance with our proposed model.

Assumptions:

(1) Let χ̂ = {κ̂1, κ̂2, κ̂3} be the set of candidates to fill the job advertised.

(2) Let µ be a set of attributes include µ1 = Academic Qualification, µ2 = Scientific

Degree,µ3 =Scientific Experience : the criteria upon which selection is made.

(3) The attributes mentioned in (2) are categorized into the following:

µ1 = α1 =Phd ,α2 = Post Doctorate

µ2 = α3 =Assistant Professor ,α4 = Associate Professor

µ3 = α5 =3 years , α6 = 5 years , α7 = 10 years

Now, we can apply the two proposed algorithms 1 and 2 to help the committee

choose suitable candidates as follows:

Algorithm 1. Using score function (SF) values S (Ψ) to choose suitable candidate

Step 1. Put up BNHSSs (Ψ,Γ)G1
, (Ψ,Γ)G2

respectively, based on expert opinions

(two committees).

Step 2. Calculating the union value (Ψ,Γ)G1∪G2
between two BNHSSs which given

in step 1.

Step 3. Compute the value SF value of (Ψ,Γ)G1∪G2
based on definition 4.1.
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Step 4. Find the value Mi =
3∑
i=1

S(Ψ)i for the candidate Xi,i = 1, 2, 3.

Step 5. Decision: Choose the highest value of Mi.

Step 6. End algorithm 1.

In addition Figure 2 bellow representation of algorithm 1.

Figure 2. Algorithm 1. depends on score function (SF) values S (Ψ)

Step1. The jury members put their valuable opinions of each candidate in the form

of two BNHSSs separately, as follows:

(Ψ,Γ)G1
=

{(α1, α3, α5) , [κ̂1, 0.2,−0.1, 0.5,−0.9, 0.8,−0.7] , [κ̂2, 0.2,−0.1, 0.5,−0.9, 0.8,−0.7] ,

[κ̂3, 0.2,−0.1, 0.5,−0.9, 0.8,−0.7] ,

(α1, α4, α5) , [κ̂1, 0.4,−0.3, 0.1,−0.4, 0.3,−0.6] , [κ̂2, 0.3,−0.4, 0.2,−0.6, 0.8,−0.5] ,

[κ̂, 0.4,−0.3, 0.7,−0.4, 0.9,−0.2] ,

(α1, α4, α7) , [κ̂1, 0.3,−0.2, 0.6,−0.4, 0.2,−0.9] , [κ̂2, 0.2,−0.6, 0.8,−0.2, 0.9,−0.1] ,

[κ̂3, 0.4,−0.2, 0.9,−0.3, 0.8,−0.8] ,

(α1, α3, α6) , [κ̂1, 0.3,−0.6, 0.3,−0.5, 0.8,−0.3] , [κ̂2, 0.6,−0.8, 0.3,−0.6, 0.3,−0.9] ,

[κ̂3, 0.3,−0.5, 0.7,−0.7, 0.9,−0.1] ,

(α2, α3, α5) , [κ̂1, 0.3,−0.8, 0.2,−0.4, 0.3,−0.9] , [κ̂2, 0.3,−0.1, 0.2,−0.4, 0.8,−0.3] ,
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[κ̂3, 0.1,−0.4, 0.3,−0.8, 0.4,−0.7] ,

(α2, α4, α5) , [κ̂1, 0.2,−0.1, 0.5,−0.9, 0.8,−0.7] , [κ̂2, 0.6,−0.8, 0.3,−0.6, 0.3,−0.9] ,

[κ̂3, 0.2,−0.1, 0.5,−0.9, 0.8,−0.7] ,

(α2, α4, α7) , [κ̂1, 0.2,−0.2, 0.4,−0.2, 0.7,−0.3] , [κ̂2, 0.5,−0.3, 0.9,−0.4, 0.3,−0.5] ,

[κ̂3, 0.4,−0.5, 0.8,−0.7, 0.4,−0.3] ,

(α2, α3, α6) , [κ̂1, 0.5,−0.4, 0.8,−0.3, 0.8,−0.2] , [κ̂2, 0.3,−0.6, 0.3,−0.5, 0.8,−0.3] ,

[κ̂3, 0.3,−0.5, 0.7,−0.7, 0.9,−0.1]}

(Ψ,Γ)G2
=

{(α1, α3, α5) , [x1, 0.5,−0.8, 0.1,−0.5, 0.4,−0.3] , [x2, 0.5,−0.3, 0.2,−0.5, 0.3,−0.9] ,

[x3, 0.3,−0.5, 0.2,−0.9, 0.4,−0.2] ,

(α1, α4, α5) , [x1, 0.3,−0.6, 0.3,−0.5, 0.8,−0.3] , [x2, 0.6,−0.8, 0.3,−0.6, 0.3,−0.9] ,

[x3, 0.3,−0.5, 0.7,−0.7, 0.9,−0.1] ,

(α1, α4, α7) , [x1, 0.2,−0.1, 0.5,−0.9, 0.8,−0.7] , [x2, 0.6,−0.8, 0.3,−0.6, 0.3,−0.9] ,

[x3, 0.2,−0.1, 0.5,−0.9, 0.8,−0.7] ,

(α1, α3, α6) , [x1, 0.6,−0.6, 0.2,−0.8, 0.5,−0.4] , [x2, 0.3,−0.9, 0.2,−0.9, 0.2,−0.7] ,

[x3, 0.7,−0.8, 0.9,−0.2, 0.8,−0.3] ,

(α2, α3, α5) , [x1, 0.1,−0.8, 0.2,−0.7, 0.3,−0.4] , [x2, 0.3,−0.1, 0.8,−0.4, 0.5,−0.3] ,

[x3, 0.2,−0.5, 0.3,−0.6, 0.3,−0.7] ,

(α2, α4, α5) , [x1, 0.8,−0.6, 0.3,−0.6, 0.4,−0.8] , [x2, 0.5,−0.9, 0.4,−0.8, 0.7,−0.9] ,

[x3, 0.9,−0.1, 0.5,−0.5, 0.8,−0.7] ,

(α2, α4, α7) , [x1, 0.2,−0.2, 0.4,−0.2, 0.7,−0.3] , [x2, 0.5,−0.3, 0.9,−0.4, 0.3,−0.5] ,

[x3, 0.4,−0.5, 0.8,−0.7, 0.4,−0.3] ,

(α2, α3, α6) , [x1, 0.7,−0.2, 0.8,−0.9, 0.8,−0.2] , [x2, 0.8,−0.6, 0.8,−0.6, 0.8,−0.8] ,

[x3, 0.4,−0.5, 0.7,−0.7, 0.4,−0.1]}

Step 2. We follow the implementation of the two algorithms, precisely the second

step , by calculating the union value between two BNHSSs. (Ψ,Γ)G1∪G2
as follows .

(Ψ,Γ)G1∪G2
=

{(α1, α3, α5) , [x1, 0.5,−0.8, 0.1,−0.5, 0.4,−0.3] , [x2, 0.5,−0.3, 0.2,−0.5, 0.3,−0.9] ,

[x3, 0.3,−0.5, 0.2,−0.9, 0.8,−0.2] ,

(α1, α4, α5) , [x1, 0.3,−0.6, 0.1,−0.4, 0.3,−0.3] , [x2, 0.6,−0.8, 0.3,−0.6, 0.3,−0.5] ,

[x3, 0.4,−0.5, 0.7,−0.4, 0.9,−0.1] ,

(α1, α4, α7) , [x1, 0.3,−0.1, 0.5,−0.4, 0.2,−0.7] , [x2, 0.6,−0.8, 0.8,−0.2, 0.3,−0.1] ,

[x3, 0.4,−0.2, 0.5,−0.3, 0.8,−0.7] ,
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(α1, α3, α6) , [x1, 0.6,−0.6, 0.2,−0.8, 0.5,−0.3] , [x2, 0.6,−0.8, 0.2,−0.6, 0.2,−0.9] ,

[x3, 0.7,−0.5, 0.7,−0.2, 0.8,−0.1] ,

(α2, α3, α5) , [x1, 0.3,−0.8, 0.2,−0.4, 0.3,−0.4] , [x2, 0.3,−0.1, 0.2,−0.4, 0.5,−0.3] ,

[x3, 0.7,−0.5, 0.7,−0.2, 0.8,−0.1] ,

(α2, α4, α5) , [x1, 0.8,−0.1, 0.3,−0.9, 0.4,−0.7] , [x2, 0.6,−0.8, 0.3,−0.8, 0.3,−0.9] ,

[x3, 0.9,−0.1, 0.5,−0.5, 0.8,−0.7] ,

(α2, α4, α7) , [x1, 0.8,−0.6, 0.4,−0.2, 0.7,−0.3] , [x2, 0.5,−0.9, 0.4,−0.4, 0.3,−0.5] ,

[x3, 0.9,−0.5, 0.5,−0.5, 0.4,−0.3] ,

(α2, α3, α6) , [x1, 0.7,−0.2, 0.8,−0.3, 0.8,−0.2] , [x2, 0.8,−0.3, 0.3,−0.5, 0.3,−0.3] ,

[x3, 0.4,−0.5, 0.7,−0.7, 0.4,−0.1]}

Table 1. SF values of κ̂i for candidates

Kπ SF for value κ̂1 SF value for κ̂2 SF value for κ̂3

(α1, α3, α5) 0.50 0.65 0.48

(α1, α4, α5) 0.50 0.55 0.30

(α1, α4, α7) 0.60 0.33 0.48

(α1, α3, α6) 0.47 0.65 0.33

(α2, α3, α5) 0.47 0.63 0.56

(α2, α4, α5) 0.43 0.50 0.55

(α2, α4, α7) 0.50 0.61 0.43

(α2, α3, α6) 0.76 0.65 0.62

Total Values of Mi M1= 2.756 M2= 2.527 M3= 2.936

Final Decision M1= × M2=× M3=
√

Step 3 .Table 1 collects the rest of the steps (3,4 and 5) mentioned in Algorithm 1,

and the choice falls on the candidate κ̂3.

Algorithm 2. Using the aggregation value
_

Bagg for candidates κ̂i
Step 1. Put up BNHSSs (Ψ,Γ)G1

, (Ψ,Γ)G2
respectively, based on expert opinions

(two committees).

Step 2. Calculating the union value (Ψ,Γ)G1∪G2
between two BNHSSs which given

in step 1.

Step 3. Find the aggregation value
_

Bagg for Union BNHSS (Ψ,Γ)G1∪G2
based on

definition 4.2.

Step 4. Decision: Choose the highest value for the candidate Xi,i = 1, 2, 3. to choose

a suitable candidate.

Step 5. End algorithm 2.
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In addition Figure 3 bellow representation of algorithm 2.

Figure 3. Algorithm 2. depends on aggregation values
_

Bagg

Step 1 and Step 2 : These steps are the same as in steps 1 and 2 of algorithm 1.

Step 3 .Table 2 collects the rest of the steps (3 and 4) mentioned in Algorithm 2, and

the choice falls on the candidate κ̂3.

Table 2. Aggregation value
_

Bagg of κ̂i for candidates

Ξ_
B

(κ̂)i Aggregation value
_

Bagg

Ξ_
B

(κ̂)1 0.870

Ξ_
B

(κ̂)2 0.838

Ξ_
B

(κ̂)3 0.896

Final Decision M1=Ξ_
B

(κ̂)1= ×
M2=Ξ_

B
(κ̂)2=×

M3=Ξ_
B

(κ̂)3 =
√

5.2. Comparison analysis

In this section, we prepared Table 3 and Figure 1 to compare the two algorithms presented

in this part of the work. Both algorithms (algorithm 1 based on score function (SF) and

algorithm 2 based on aggregation value) rely mainly on analyzing the data of the problem to

be solved using our concept presented in this work.

In another instance of similar comparison, Table 4 provides another method of comparison

with some of the previous works mentioned in the previous study in the first part of this
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Table 3. Comparison between the values obtained from the two algorithms

Methods κ̂1 κ̂2 κ̂3 Ranking

SF for value κ̂i 2.756 2.527 2.936 W3�W1�W2

Aggregation value
_

Bagg 0.870 0.838 0.896 W3�W1�W2

Figure 4. A statistical chart showing the vivid comparison between the nu-

merical outputs of the two proposed algorithms

work. Our proposed concept is compared with some existing extensions of the fuzzy soft set

under bipolarity, such as: bipolar fuzzy soft set(BFSS), bipolar intuitionistic fuzzy soft set

(BIFSS), bipolar neutrosophic soft set (BNSS), and bipolar fuzzy hypersoft set(BFHSS) based

on their structural composition, where TMD, IMD, FMD, SS, and HSS indicate to three NS

memberships degree, soft set, and hypersoft set, respectively.

From Table 4, we notice that our concept is different from the previous concepts mentioned

in the literature, and therefore it can be said that our proposed concept is more comprehensive

than the previous concepts in covering ambiguous data of a positive and negative nature at

the same time.
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Table 4. The vivid comparison between the proposed structure and the ex-

isting structure.

Methods Authors TMD IMD FMD SS HSS

BFS Zhang [52]
√

× × × ×
BFSS Naz and Shabir [54]

√
× ×

√
×

BIFSS Jana and Pal [57]
√

×
√ √

×
BNSS Ali et al. [59]

√ √ √ √
×

BFHSS Al-Quran et al. [64]
√

× ×
√ √

BNHSS Propose model
√ √ √ √ √

6. Conclusions

In this work, the novel idea of a new hybrid model of BNHSS by merging both neutrosophic

sets (NSs) and HSSs under the bipolarity property of real numbers is provided. Furthermore,

we studied its properties and necessary operations, such as complements, subset, unions, and

intersections. Subsequently, we describe some operations, like ”AND” and ”OR,” as well as

their properties and some numerical examples. Two algorithms are discussed that rely on

some mathematical methods (aggregation operator and score function) to deal with MAGDM

in the BNHSS environment. In this study we attempt to develop more sophisticated model

which has the advantages of all the previous models, however,there are still certain challenges

with the work that is being suggested. . In BNHSS, we have only taken into consideration the

evaluation information given in one dimension, where the time dimension does not enter into

determining its fate. For the purpose of dealing with such data, we recommend that future

studies combine the tools presented in this work with complex numbers. Also, the proposed

model could be investigated more by proposing some aggregation operators such as Heronian

mean, power mean, Hamacher, Bonferroni mean and Dombis aggregation operators to solve

the existing decision making problems.
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Abstract. Municipal solid waste management (MSWM) has emerged as a major issue in India due to the

massive amounts of waste generated on a daily basis. Governments are focusing on establishing a proper waste

management system, including a timeline for the installation of waste processing and disposal facilities to reduce

waste. For this problem, waste to energy (WtE) technologies have been identified because of their ability to

convert waste into green energy while minimizing associated issues. This research investigates the different kinds

of WtE treatments based on various factors, namely eco-friendly, budget friendly, technical, and social aspects.

The findings of this study revealed which WtE treatments are best suited for waste management systems that

convert green energy. In this paper, we propose the best WtE treatment for India using the interval-valued

pythagorean neutrosophic fuzzy set (PNFS). We employ the WASPAS-CRITIC method in the interval-valued

pythagorean neutrosophic fuzzy environment for this WtE treatment problem. Finally, a numerical example

and a comparison are provided to illustrate the reliability and efficiency of the proposed technique.

Keywords: Neutrosophic Fuzzy Set, Pythagorean Neutrosophic Fuzzy Set, Interval-Valued Pythagorean Neu-

trosophic Fuzzy Set, WASPAS, CRITIC, WtE Treatments.

—————————————————————————————————————————-

1. Introduction

Municipal solid waste (MSW), hazardous wastes, industrial wastes, agricultural wastes,

and bio-medical wastes are some of the most common types of solid waste. Growing waste gen-

eration and unscientific waste disposal methods are leading to the release of GHG (methane,

CO2, etc.) into the environment. MSW is a complex mix of food waste, metals, glass, yard

trimmings, woody waste, non-recyclable paper and plastic, construction and demolition waste,

Neutrosophic Sets and Systems, Vol. 61, 2023



rags, and wastewater treatment sludge. When used as a raw material for power production,

MSW presents several challenges: it has a low power content, high moisture, a diverse compo-

sition, and is copious. Managing waste safely is critical for the environment and the long-term

goals for both the public and private sectors. Harvest trash, livestock wastes, slaughter waste,

forest wastes, and other agricultural recycle waste materials are examples. WtE routes helps

to converted waste into useful power forms such as bio-hydrogen, biogas, bio-alcohols, and so

on, allowing for the sustainable global development. Sum of solid waste is produced annually

across country as a form of by-product of industrial, municipal, agricultural, mining, and other

processes [1].

MSW management has originally involved in discharging waste in open dumps and burning

it to decrease waste volumes. Dangerous Industrial waste was frequently disposed of alongside

municipal garbage and refuse in open dumps or landfills. Contaminated Groundwater, toxic

fume and greenhouse gas emissions, land contamination, and large pest and disease vector pop-

ulations, such as rats, flies, and mosquitoes, all of them have been tied into these old landfills

in the past. To reduce these environmental impacts when we dispose of MSW, the treatment

of waste into energy is now done within the framework of waste management regulations [23].

Most countries are focusing on WtE projects for municipal solid waste.

In this study, we propose an appropriate WtE treatment for India using a fuzzy approach

MCDM model. Reducing waste and finding new environmentally friendly forms of energy will

help countries solve energy demand problems and develop a hygienic society in the near future.

WtE treatments would be the best way to get renewable energy. These innovative technologies

can generate huge amounts of heat and energy from waste, reducing the serious environmental

problems associated with MSW and reducing the use of junk fuels that emit gas. Green houses

cause climate change and global water consumption. These WtE treatments can also be useful

to society due to their economic and environmental benefits.

In 1965, Zadeh introduced fuzzy logic concepts [2] to address the problems of human

decision-making under unreliability. Fuzzy sets (FS) have some limitations when non mem-

bership concepts are involved. To tackle this issue, Atanassov [3] transformed a FS into an

intuitionistic fuzzy set (IFS) by including a non-membership function. Yager [4–6] developed

the Pythagorean fuzzy set (PFS), which has a larger solution space in ambiguous and impre-

cise environments. In addition, when compared to FS and IFS, the Pythagorean treatment for

India Using CRITIC-WASPAS Method under IVPNFS fuzzy number provided a more com-

prehensive computational model. Smarandache [7] introduced the concepts of neutrosophic set

and neutrosophic probability and their logic, which contains of three logics: truth, indetermi-

nacy, and falsity-membership degree. Interval-valued fuzzy sets were introduced by Zadeh [2].
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An interval-valued membership function defines an interval-valued fuzzy set (IVFS). IVFs are

a subset of L-fuzzy sets [8] and type-2 fuzzy sets [9].

The interval-valued Pythagorean fuzzy set (IVPFS) is a PFS extension [10]. Due to a lack

of easily available information, experts may find it difficult to explain their ideas accurately

with a specific number for many real-world decision-related difficulties, but they can do so

by using an interval number between [0, 1]. This entails the idea of IVPFS, which permits

both the degrees of a set’s membership and absence to have an interval value. It should be

emphasized that IVPFS turns into PFS when the interval values’ upper and lower limits are

identical, proving that the latter is a special case of the former [11, 12]. In order to provide

a more dependable solution to the WtE treatment problem, we apply the suggested model in

this research to combine two sets, such as Pythagorean and Neutrosophic fuzzy sets, in interval

form, namely as an interval-valued Pythagorean Neutrosophic fuzzy set.

Some new operations and properties for IVPFS are proposed by Peng and Yang [12]. Garg

[13] discussed an accuracy function for IVPFS to solve the MCDM problem. Liang et al. [14]

introduced the interval-valued Pythagorean fuzzy weighted aggregating operators. Garg [15]

demonstrated an improved score function for a Pythagorean fuzzy set-based TOPSIS method

with interval values. Chen [16] examined the IVPF outranking algorithm for the MCDM

problem. Rahman et al. [17] proposed IVPF geometric aggregation operators for the MCGDM

problem. Stephy Stephen and Helen [18] discussed the IVPN set and their application using

TOPSIS. Narmada devi and Sowmiya [19, 20] introduced the Octagonal neutrosophic fuzzy

number in game and sequencing problem. Jansi et al. [21] examined the basic operations

and correlation measure of PNS set. Abdel-Basset et al. [22] used a hybrid MCDM approach

in a neutrosophic environment. Khan et al. [23] explored the effects of renewable electricity

generation from waste. Van Thanh et al. [24] proposed a fuzzy MCDM model to evaluate

and select a location for a solid WtE plant in Vietnam. Kurbatova and Abu-Qdais [25]

used AHP to evaluate the various waste-to-energy options and chose the best technology for

Moscow. Hezam et al. [26] examined the optimal selection of recycling plant site. Sleem et

al. [27] investigated te product’s target demographic using CRITIC model under neutrosophic

set. Gamal and Mohamed [28] proposed the industrial robots selection using hybrid MCDM

approach. Narmada Devi et al. [29] proposed the suitable waste to energy technology for India

using MULTIMOORA method. The majority of WtE options were identified under different

MCDMs using various fuzzy sets in the studies reviewed above. In this study, we identify the

appropriate WtE treatment for India based on the WASPAS model under an interval-valued

Pythagorean Neutrosophic fuzzy set. The pictorial representation of the algorithm is shown

in figure 1.
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Figure 1. Procedures of integrated fuzzy MCDM approach

2. Preliminaries

Definition 2.1. [4–6] Consider Ω to be a non-empty set. Then a Pythagorean fuzzy set P

over Ω, which is defined as follows:

P = {(f, α(f), β(f))|f ∈ Ω}

where αP (f) : Ω→ [0, 1] and βP (f) : Ω→ [0, 1] define the membership and non-membership,

of the element f ∈ Ω to P .

0 ≤ (αP (f))2 + (βP (f))2 ≤ 1

Suppose (αP (f))2+(βP (f))2 ≤ 1 then there is a degree of indeterminacy of f ∈ Ω to P defined

by αP (f) :
√

1− [(αP (f))2 + (βP (f))2] and αP (f) ∈ [0, 1]. In follows, (αP (f))2+(βP (f))2 = 1.

Otherwise, αP (f) = 0 whenever (αP (f))2 + (βP (f))2 = 1.

Definition 2.2. [7]

A Neutrosophic fuzzy set N on Ω is an object of the form:

N = {(f, αN (f), γN (f), βN (f)) : f ∈ Ω}

where αN (f), γN (f), βN (f) ∈ [0, 1], 0 ≤ αN (f) + γN (f) + βN (f) ≤ 3 for all f ∈ Ω, αN (f),

γN (f), βN (f) are degrees of membership, indeterminacy and non-membership, respectively.
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Table 1. Interval-Valued Pythagorean Neutrosophic fuzzy linguistic scale

Linguistic term membership values indeterminacy values non-membership values

Extremely elevated (EE) [0.1, 0.2] [0.5, 0.6] [0.8, 0.9]

Average elevated (AE) [0.2, 0.4] [0.4, 0.5] [0.6, 0.8]

Average (A) [0.4, 0.6] [0.3, 0.4] [0.4, 0.6]

Average dropped (AD) [0.6, 0.8] [0.2, 0.3] [0.2, 0.4]

Extremely dropped (ED) [0.8, 0.9] [0.1, 0.2] [0.1, 0.2]

Definition 2.3. [10] A Pythagorean Neutrosophic fuzzy set (PNFS) with T and F are

dependent Neutrosophic components D on Ω is in the form

D = {(f, αD(f), γD(f), βD(f)) : f ∈ Ω}

where αD(f), γD(f), βD(f) ∈ [0, 1], 0 ≤ (αD(f))2 + (γD(f))2 + (βD(f))2 ≤ 2, for all f ∈
Ω, αD(f), γD(f) and βD(f) are degrees of membership, indeterminacy, non-membership,

respectively.

Definition 2.4. [12,13] A Interval-Valued Pythagorean Neutrosophic fuzzy set (PNFS) with

T and F are dependent Neutrosophic components C on Ω is in the form

C = {(f, [αLC(f), αUC(f)], [γLC(f), γUC (f)], [βLC(f), βUC (f)] : f ∈ Ω}

where [αLC(f), αUC(f)], [γLC(f), γUC (f)], [βLC(f), βUC (z)] ∈ [0, 1],

0 ≤ [
αLC(f) + αUC(f)

2
]2, [

γLC(f) + γUC (f)

2
]2, [

βLC(f) + βUC (f)

2
]2 ≤ 2

, for all f ∈ Ω, [αLC(f), αUC(f)] is the degree of membership, [γLC(f), γUC (f)] is the degree of

indeterminacy and [βLC(f), βUC (f)] is the degree of non-membership.

Definition 2.5. [13] The score function of the Pythagorean Neutrosophic fuzzy sets with

dependent Pythogorean Neutrospohic components I and F are defined as:

SC(x) = [TLC + (1− IUC ) + (1− FUC ), TUC + (1− ILC) + (1− FLC )]

with the condition 0 ≤ [
αL
C(x)+αU

C(x)
2 ]2, [

γLC(x)+γUC (x)
2 ]2, [

βL
C(x)+βU

C (x)
2 ]2 ≤ 2.

Note:

The linguistic variables with Interval-Valued Pythgorean Neutrosophic fuzzy number to evalu-

ate the WtE treatment based on selected criteria and the linguistic scale is presented in Table

1.
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3. Mathematical methods

3.1. The CRITIC method

The CRITIC approach is one of the objective weighing methods suggested by Diakoulaki

et al. [34]. It employs a decision matrix explicitly to compute criterion weights objectively.

There is no requirement for decision-makers opinions or pairwise comparisons, as in other

weighing procedures. Based on an analysis of the evaluation matrix, it collects all of the

preference information contained in the evaluation criteria. Further, the objective weight

is determined by quantifying the inherent information of each criterion. The procedure for

obtaining objective weight includes not only the standard deviation of the criteria but also the

correlation between the other criteria.

The steps of the CRITIC method are presented below [35].

Here, the problem has m alternatives Ki(i = 1, 2, ...,m) and n criteria Vj(j = 1, 2, ..., n).

Step 1: Here is the DM K as it is formed. It compares the performance of various alternatives

based on selected criteria.

K =


[kL11, k

U
11] [kL12, k

U
12] . . . [kL1n, k

U
1n]

[kL21, k
U
21] [kL22, k

U
22] . . . [kL2n, k

U
2n]

. . . . . . . . . . . .

[kLm1, k
U
m1] [kLm2, k

U
m2] . . . [kLmn, k

U
mn]

 (1)

Step 2: The DM is normalized by applying the below equation:

k∗ij =
kij −min(kij)

max(kij)−min(kij)
, i = 1, 2, ...,m, j = 1, 2, ..., n (2)

kij is the normalized value of ith alternative on jth criterion.

Step 3: Both the criterion’s standard deviation (SD) and its correlation with other criteria

are considered when determining the criteria’s weights. The weight of the jth criterion (wj) is

calculated as follows:

wj =
Hj∑n
j=1Hj

(3)

where Hj is the quantity of information which obtained as:

Hj = Γj

n∑
j=1

(1− tjj′) (4)

where j is SD of the jth criterion and tjj′ is the correlation coefficient between the two criteria.

It is possible to conclude that this method gives more weight to the criterion with a high SD

and a low correlation with other criteria [36]. A significantly higher value of Hj indicates that

more detail is obtained from criterion, implying that the criterion’s relative importance for the

decision making problem is greater.
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3.2. The WASPAS method

The WASPAS method was created by Chakraborty and Zavadskas [30]. The WSM method

computes an alternative’s entirety as a weighted sum of the criteria standards, whereas the

WPM technique calculates an alternative’s score as a product of the scaled grading of every

criteria to a power equal to the weight of the specified criterion [31]. Furthermore to these

approaches, WASPAS efforts to achieve the highest precision for estimation by optimising

weighted aggregated functions [30]. The combined optimality on criteria values computed

based on the results of these two models for rank the alternatives. The model is actually

proposed as the best MCDM method in terms of accuracy or verification of accuracy when

those two methods are used together.

The algorithm of the WASPAS model are as follows [32,33]:

Step 1: Create the initial decision matrix (DM).

K =


[kL11, k

U
11] [kL12, k

U
12] . . . [kL1n, k

U
1n]

[kL21, k
U
21] [kL22, k

U
22] . . . [kL2n, k

U
2n]

. . . . . . . . . . . .

[kLm1, k
U
m1] [kLm2, k

U
m2] . . . [kLmn, k

U
mn]

 (5)

where m represents the alternatives, n represents the criteria and kij is the performance value

of ith alternative with respect to jth criteria.

Step 2: Calculate the linear normalized decision matrix using the following equations:

For benefit criteria:

k̄ij =
kij

maxjkij
(6)

For non-benefit criteria:

k̄ij =
minjkij
kij

(7)

Where k̄ij is the normalized value of kij .

Step 3: Compute the measures of WSM (L1
j ) and WPM (L2

j ) for each alternative by applying

the below equation:

L1
j =

m∑
i=1

wik̄ij (8)

L2
j =

m∏
i=1

(k̄ij)
wi (9)
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Step 4: To obtain the aggregate measure of the WASPAS model for every alternative using

the below expression:

Lj = δL1
j + (1− δ)L2

j (10)

Where δ is the parameter of the model. It can take values in [0−1]. When δ = 1, the WASPAS

model is transformed to WSM, and δ = 0 into WPM model.

Step 5: Finally, according to decreasing values of Li, rank the alternatives.

4. Application

A considerable quantity of waste is produced in developing countries. The primary expla-

nations for propelling waste generation and creating distinguished social and environmental

concerns are accelerating urbanisation, economic expansion, population increase, and mod-

ern technology. Waste management is increasingly focused on sophisticated waste reduction

strategies, but they are still looking for the optimum response to that issue with no adverse

environmental or social impact. As a result, we have to figure out the optimal WtE treatment

to create green energy from MSW wastes, thus contributing to environmental sustainability.

In this work, we presented the WASPAS approach using an IVPNFS to discover the optimal

WtE therapy for India. Based on the parameters we identified, we picked four types of WtE

procedures.

5. Numerical example

In this section, we discuss the WtE treatment under the interval-valued pythagorean

neutrosophic fuzzy set using the CRITIC-WASPAS method. Here, the experts evaluate this

problem based on four criteria. The WtE treatment are: K1− photo-biological process; K2−
dark fermentation; K3− microbiological fuel cells; and K4− microbial electrolysis cells. In this

paper, experts evaluate the WtE treatment using the WASPAS method under IVPNFS. The

linguistic scale is used to form a decision matrix. We are now analyzing the problem under

proposed method.

5.1. CRITIC method

Step 1: Here is the decision matrix K as it is formed which is shown in Table 2. Using the

IVPNFSs score function to create the DM shown in Table 3.

Step 2: The DM is normalized by applying the equation (8) and the normalized matrix is

given in Table 4.

Step 3: Finally, the weight values of the criteria are computed by using the equation (9) and

(10). The weight values of the criteria are 0.2772, 0.3938, 0.2735, 0.0555.
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Table 2. Initial decision matrix

V1 V2 V3 V4

K1 ([0.2,0.4], [0.3, 0.4], [0.4, 0.6]) ([0.1, 0.2], [0.3, 0.4], [0.2, 0.4]) ([0.4, 0.6], [0.1, 0.2], [0.2, 0.4]) ([0.1, 0.2], [0.4, 0.5], [0.2, 0.4])

K2 ([0.6, 0.8], [0.3, 0.4], [0.1, 0.2]) ([0.4, 0.6], [0.1, 0.2], [0.1, 0.2]) ([0.2, 0.4], [0.3, 0.4], [0.2, 0.4]) ([0.1, 0.2], [0.2, 0.3], [0.6, 0.8])

K3 ([0.6, 0.8], [0.4, 0.5], [0.4, 0.6]) ([0.6, 0.8], [0.4, 0.5], [0.1, 0.2]) ([0.6, 0.8], [0.1, 0.2], [0.2, 0.4]) ([0.1, 0.2], [0.4, 0.5], [0.6, 0.8])

K4 ([0.1, 0.2], [0.4, 0.5], [0.4, 0.6]) ([0.1, 0.2], [0.2, 0.3], [0.4, 0.6]) ([0.1, 0.2], [0.5 0.6], [0.2, 0.4]) ([0.2, 0.4], [0.3, 0.4], [0.1, 0.2])

Table 3. Decision matrix

V1 V2 V3 V4

K1 -0.4752 -0.3676 1.0154 -0.5015

K2 0.4513 0.3781 -0.2236 -0.8551

K3 0.5820 0.7627 0.5820 -0.1076

K4 -0.7354 -0.5307 -0.6562 -0.1219

Table 4. Normalized decision matrix

V1 V2 V3 V4

K1 1.0000 1.0000 0.6700 -0.0384

K2 0.9952 1.0000 0.6255 0.0442

K3 0.6700 0.6255 1.0000 -0.7090

K4 -0.0384 0.0442 -0.7090 1.0000

5.2. WASPAS method:

The WtE treatment and the criteria are given below:

K1 − Photo - biological processes

K2 −Dark fermentation

K3 −Microbiological fuel cells

K4 −Microbial electrolysis cells

V1 − Ecosystem

V2 − Cost

V3 − Technical aspects

V4 − Social aspects

(11)

Step 1: The decision matrices are shown in Table 2 and 3.

Step 2: Calculate the linear normalized decision matrix using the equations (2) and (3).

Step 3: Calculated the measures of WSM (L1
j ) and WPM (L2

j ) for each alternative by using
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Table 5. WSM and WPM values

WtE treatment WSM (L1
j ) WPM (L2

j )

K1 0.0482 0.0039

K2 -0.1468 0.0110

K3 0.9630 0.0012

K4 -0.8402 -0.0014

Table 6. The final ranking results for proposed method

WtE Lj Rank

K1 0.0299 2

K2 -0.0569 4

K3 0.4833 1

K4 -0.4221 3

the equations (4) and (5). The WSM and WPM values are presented in Table 5.

Step 4: Finally, rank the alternatives according to decreasing values of Lj . The final ranking

results is shown in Table 6.

From this Table 6, K3− Microbiological fuel cells in WtE treatment is the most suitable and

eco-friendly treatment, which make more green energy to keep environment clean and provide

great employment to our society.

6. Comparison and sensitivity analysis

6.1. Comparison Analysis

To show the suggested approach’s efficacy in comparison to other approaches from the litera-

ture, this section compares it against an assortment of those methods. The proposed approach

was compared to two MCDM techniques: TOPSIS [33] and VIKOR [37]. These MCDM ap-

proaches employ the same weights. The results of the ranking order comparison are shown

in table 7. The suggested ranking yields different outcomes from the compared models. As a

result, when compared to existing MCDM approaches, the suggested methodology generates

more dependable findings.

6.2. Sensitivity analysis

This model’s sensitivity analysis compares the outcomes of four cases. Case 1 is the study’s

outcome, and Cases 2, 3, and 4 are the other outcomes discovered by varying the weights of

the criteria, which are given in Table 8. Sensitivity analysis reveals that changing the weights
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Table 7. Comparison analysis results

WtE VIKOR Rank TOPSIS Rank Proposed method Rank

K1 0 1 0.6980 1 0.0299 2

K2 0.4616 2 0.4419 3 -0.0569 4

K3 1 4 0.3186 4 0.4833 1

K4 0.4835 3 0.5196 2 -0.4221 3

Table 8. Weights in sensitivity analysis

WtE Case 1 Case 2 Case 3 Case 4

V1 0.2772 0.0555 0.2735 0.3938

V2 0.3938 0.2772 0.0555 0.2735

V3 0.2735 0.3938 0.2772 0.0555

V4 0.0555 0.2735 0.3938 0.2772

Table 9. Sensitivity analysis results

WtE Case 1 Rank Case 2 Rank Case 3 Rank Case 4 Rank

K1 0.247 3 0.286 2 0.178 4 0.289 1

K2 0.286 2 0.178 4 0.289 1 0.247 3

K3 0.178 4 0.289 1 0.247 3 0.286 2

K4 0.289 1 0.247 3 0.286 2 0.178 4

of the criteria affects the ranking order. Those results of sensitivity analysis are presented in

Table 9.

7. Conclusion

The normative waste disposal practices used in India, such as mass burning and dumps,

have had detrimental effects on the environment and the general population. The nation,

nonetheless, has identified the unexpected implications and harms of such approaches and has

recommended ecologically friendly and cost-effective waste management options. Notwith-

standing rising oil and other fossil fuel costs and the depletion of fossil fuels, demand for

energy is increasing. If India prioritises economic and logistical planning, failures may be

avoided. Furthermore, the entire country should seek to strengthen the regulatory framework,

which may result in people, industry stakeholders, and shareholders fighting the process.We

presented suggestions for the most effective and feasible treatment of WtE for waste manage-

ment and energy generation in India, which eliminates huge quantities of greenhouse gases
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and carbon from the atmosphere and leads to global warming along with alterations in the

climate, according to the research findings.

As a result, this research was conducted in order to present a broad, systematic framework

that might aid policymakers in determining the most effective WtE treatment for constructing

waste management systems in India. The IVPNFS score function and the IVPNF-WASPAS

technique based on it are provided in this work. IVPNFNs are used to represent the character-

istics of each WtE therapy. New trends in WtE have been recognised as the cleanest and most

advantageous WtE technology in the present environment based on the suggested approach for

determining the most suitable solution for the aforementioned issue. The suggested approach

stated that the energy provided by microbiological fuel cells (K3) is superior to other strate-

gies in terms of releasing enough energy to partially cover the costs. This method contributes

to waste reduction while also producing energy, which will help with future energy demand

issues.

However, advancements in technical tools and techniques for updating WtE technologies

are on the horizon. In addition, integrated outranking technologies with improved theoretical

underpinnings will be pursued in the future.
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Abstract. In this paper, we define the notion of a generalized summability, called Cesàro summability in

neutrosophic normed spaces (briefly NNS). We obtain conditions under which ordinary summability follows

from Cesàro summability. Later, we define a concept of slowly oscillating sequences in NNS and establish
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1. Introduction

In Analysis, we usually face many situations where the analytic solutions to some problems

seem difficult due to the divergence of an infinite series or a power series. Consequently, we

look forward to a modified method of convergence that can sum up the divergence series in

some sense and call it a method of summability. A well-known method is due to Cesàro for

number sequences known as Cesàro summability and is defined as follows:

“A sequence x = (xn) of numbers is said to be Cesàro summable [or (C, 1)− summable to x0

if

lim
n→∞

(
x1 + x2 + . . . xn

n

)
= x0.”

If limn→∞(xn) = x0, then (xn) is (C, 1)−summable to x0 however, the reverse way implication

may not be true. But by adding some additional conditions on sequence called ”Tauberian

conditions”, we obtained the result in the reverse way too. These results obtained by impos-

ing Tauberian conditions are known as Tauberian Theorems. In past years, many interesting
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works have been carried out in this direction and various kinds of Tauberian theorems have

been proved. For some historical view on Cesàro summability and Tauberian Theorems, we

refer to the reader [1], [13]-[15] and [24 ]-[26].

On the other side, Zadeh [28] observed first time that many real-life situations cannot be set

in the framework of classical sets. Therefore, to deal with such situations, in 1965, he pro-

posed the idea of fuzzy sets via introducing the membership function. Later, a revolutionary

development on fuzzy sets has been started. Many existing ideas have been developed again

by applying fuzzy logic. During this developmental phase, several intriguing generalizations

of fuzzy sets have emerged in the literature. For example: intuitionistic fuzzy sets (IFS) [2],

vague fuzzy sets [5], neutrosophic sets (NS) [12], interval-valued fuzzy sets [27], etc. Analogous

to the classical set theory, these sets have also been employed to introduce novel spaces, in-

cluding fuzzy normed spaces ([6], [11]), intuitionistic fuzzy normed spaces ([7], [8], [19], [21]),

and neutrosophic normed spaces ([3], [4], [9], [10], [17], [18], [20], [22], [23]). To develop these

spaces mathematically and topologically, we need to define the concept of limit as one of the

fundamental concepts. Some interesting works in this direction can be found in [7] - [11],

etc. Recently, Talo and Yavuz [25] studied Cesàro summability and proved some Tauberian

theorems in an intuitionistic fuzzy normed space. As neutrosophic normed spaces are gener-

alizations of intuitionistic fuzzy normed spaces so it is natural to extend Cesàro summability

and related concepts in these spaces. In present paper, we define Cesàro summability, slowly

oscillating sequences and prove some Tauberian theorems in neutrosophic normed spaces. We

organize the paper as follows, the first and second sections are introductory and provide basic

information needed in the sequel. In third section we define ∆m-Cesàro summability in NNS

and obtained certain results. Finally in last section we define Slowly oscillating sequences in

NNS and establish related Tauberian Theorems in neutrosophic normed spaces.

2. Background and Preliminaries

This section begin with a short review on some definitions and results.

Throughout this work, I will denote the closed interval [0, 1], and N and R+ denotes the set

of positive integers and positive reals, respectively.

Definition 2.1 [8] “A map from ◦ : I × I to I is said to be a continuous t−norm if, ∀
f, g, h, i ∈ I we have:

(i) f ◦ g = g ◦ f ;
(ii)f ◦ (g ◦ h) = (f ◦ g) ◦ h;
(iii) ◦ is continuous;

(iv) f ◦ 1 = f and

(v) f ◦ g ≤ h ◦ i whenever f ≤ h and g ≤ i.”
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Definition 2.2 [8] “A map from ⋄ : I × I to I is said to be a continuous triangular conorm or

t−conorm if for all f, g, h, i ∈ I we have:

(i) f ⋄ g = g ⋄ f ;
(ii)f ⋄ (g ⋄ h) = (f ⋄ g) ◦ h;
(iii) ⋄ is continuous;

(iv) f ⋄ 0 = f for every f ∈ [0, 1]

(v) f ⋄ g ≤ h ⋄ i whenever f ≤ h and g ≤ i.”

Definition 2.3 [10] “A four tuple V = (F,N, ◦, ⋄, ) where F be a vector space, N =

{⟨ϑ,H(ϑ), I(ϑ),J (ϑ)⟩ : ϑ ∈ F} be a normed space with N : F × R+ → I and ◦, ⋄ re-

spectively are continuous t−norm and continuous t−conorm, is called a neutrosophic normed

spaces (NNS) if the following conditions hold: For every u, v ∈ F and y1, y2 > 0 and for every

α ̸= 0 we have (i) 0 ≤ H (u, y1) ≤ 1, 0 ≤ I (u, y1) ≤ 1, 0 ≤ J (u, y1) ≤ 1 for every y1∈ R+ ;

(ii) H (u, y1) + I (u, y1) + J (u, y1) ≤ 3 for y1∈ R+ ;

(iii) H (u, y1) = 1 (for y1 > 0) if and only if u = θ;

(iv) H (αu, y1) = H
(
u, y1

|α|

)
; (v) H (u, y1) ◦ H (v, y2) ≤ H (u+ v, y1 + y2) ;

(vi) H (u, .) is continuous non-decreasing function;

(vii) limy1→∞H (u, y1) = 1;

(viii) I (u, y1) = 0 (for y1 > 0) if and only if u = θ;

(ix) I (αu, y1) = I
(
u, y1

|α|

)
;

(x) I (u, y1) ⋄ I (v, y2) ≥ I (u+ v, y1 + y2) ;

(xi) I (u, .) is continuous non-decreasing function;

(xii) limy1→∞ I (u, y1) = 0;

(xiii) J (u, y1) = 0 (for y1 > 0) if and only if u = θ;

(xiv) J (αu, y1) = J
(
u, y1

|α|

)
;

(xv) J (u, y1) ⋄ J (v, y2) ≥ J (u+ v, y1 + y2) ;

(xvi) J (u, .) is continuous non-decreasing function;

(xvii) limy1→∞ J (u, y1) = 0;

(xviii) If y1 ≤ 0, then H (u, y1) = 0, I (u, y1) = 1 and J (u, y1) = 1.

We call N = (H, I,J ), the neutrosophic norm and V = (F,H, I,J , ◦, ⋄), the neutrosophic

normed space.”

For some examples on these spaces we refer [10].

“A sequence (un) in a neutrosophic normed spaces V is said to convergent if for each

ε > 0 and y > 0, there exists a positive integer m and u0 ∈ F such that H (un − u0, y) >

1− ε, I (un − u0, y) < ε and J (un − u0, y) < ε for all n ≥ m. This is equivalent to say that
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limn→∞H (un − u0, y) = 1, limn→∞ I (un − u0, y) = 0 and limn→∞ J (un − u0, y) = 0 and we

write N − limn→∞ un = u0.”

“A sequence (un) is said to be Cauchy if for each ε > 0 and y > 0, there exists a posi-

tive integer p such that H (uk − un, y) > 1 − ε, I (uk − un, y) < ε and J (uk − un, y) <

ε for all k, n ≥ p.”

“Let w denotes the set of all sequences in the neutrosophic normed space V =

(F,H, I,J , ◦, ⋄). Define ∆m : w → w by

∆0 ak = ak;

∆1 ak = ak − ak+1;

∆m ak = ∆m−1(ak − ak+1)m ≥ 2 and ∀ k ∈ N.

We now demonstrate two important Lemmas of [24].

For µ > 0 and n ∈ N, let µn = ⌊µn⌋ i.e, the sequence of integral parts of the product µn.”

If we define ⟨µ⟩ = µ− ⌊µ⌋, then we have the following Lemmas.

Lemma 2.1 [24] “(i) If µ > 1, then µn > n, ∀ n ∈ N− {0} along with n > ⟨µ⟩−1.

(ii) If 0 < µ < 1, then µn < n, ∀ n ∈ N− {0}.”

Lemma 2.2[24] “(i) If µ > 1, then ∀ n ∈ N− {0} along with n ≥ 3µ−1
µ(µ−1) , we have

µ

(µ− 1)
<

µn + 1

µn − n
<

2µ

µ− 1
.

(ii) If 0 < µ < 1, then ∀ n ∈ N− {0} along with n = µ−1 we have

0 <
µn + 1

n− µn
<

2µ

1− µ
.

We now turn towards our main section. Throughout the work, V denotes a neutrosophic

normed space with neutrosophic norm N unless otherwise stated and θ, the 0−th element in

V .”

3. ∆m-Cesàro summability in NNS

Definition 3.1 A sequence u = (un) in V is called ∆m-Cesàro summable [or

(C,∆m, 1)−summable w.r.t. N ] to u0 if N − limn→∞ σn = u0 where the sequence (σn) is

precisely defined by

σn =
v1 + v2 + . . . vn

n
=

∑n
k=1 vk
n

. (n ∈ N) and

vn = ∆mun =

m∑
p=0

(−1)p
(
m

p

)
un+p.
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This is similar to say, for ϵ > 0 and y > 0 there exist n0 ∈ N satisfying

H(σn − u0, y) > 1− ϵ and I(σn − u0, y) < ϵ,J (σn − u0, y) < ϵ.

In this case, we abbreviate it as N(C,∆m, 1)− limn→∞ un = u0.

Next Theorem gives the relationship between N−convergence and N(C,∆m, 1)−summability.

Theorem 3.1 For any sequence u = (un) in V , if N − limn→∞∆mun = u0, then

N(C,∆m, 1)− limn→∞ un = u0.

Proof. Assume that N − limn→∞∆mun = u0. We wish to prove that N(C,∆m, 1) −
limn→∞ un = u0. Let ϵ > 0 be given and take y > 0. As N − limn→∞∆mun = u0 so ∃
n1 ∈ N satisfying, for all n ≥ n1

H
(
∆mun − u0,

y

2

)
> 1− ϵ and I

(
∆mun − u0,

y

2

)
< ϵ,J

(
∆mun − u0,

y

2

)
< ϵ;

Moreover,

lim
n→∞

H
( n1∑

k=1

∆muk − u0,
ny

2

)
= 1 and lim

n→∞
I
( n1∑

k=1

∆muk − u0,
ny

2

)
= 0,

lim
n→∞

J
( n1∑

k=1

∆muk − u0,
ny

2

)
= 0;

gives another n2 ∈ N with n ≥ n2 such that

H
( n1∑

k=1

∆muk − u0,
ny

2

)
> 1− ϵ and I

( n1∑
k=1

∆muk − u0,
ny

2

)
< ϵ,

J
( n1∑

k=1

∆muk − u0,
ny

2

)
< ϵ.

Now, for n > max{n1, n2} we have

H
(
1

n

n∑
k=1

∆muk − u0, y

)
= H

(
1

n

n∑
k=1

(∆muk − u0), y

)
= H

( n∑
k=1

(∆muk − u0), ny

)

≥ min

{
H
( n1∑

k=1

(∆muk − u0), n
y

2

)
,H
( n∑

k=n1+1

(∆muk − u0), n
y

2

)}

≥ min

{
H
( n1∑

k=1

(∆muk − u0), n
y

2

)
,H
( n∑

k=n1+1

(∆muk − u0), (n− n1).
y

2

)}

≥ min

{
H
( n1∑

k=1

(∆muk − u0), n
y

2

)
,H
(
(∆mun1+1 − u0),

y

2

)
,H
(
(∆mun1+2 − u0),

y

2

)
, · · ·

H
(
(∆mun − u0),

y

2

)}
> (1− ϵ) and
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I
(
1

n

n∑
k=1

∆muk − u0, y

)
= I

(
1

n

n∑
k=1

(∆muk − u0), y

)
= I

( n∑
k=1

(∆muk − u0), ny

)

< max

{
I
( n1∑

k=1

(∆muk − u0), n
y

2

)
, I
( n∑

k=n1+1

(∆muk − u0), n
y

2

)}

< max

{
I
( n1∑

k=1

(∆muk − u0), n
y

2

)
, I
( n∑

k=n1+1

(∆muk − u0), (n− n1)
y

2

)}

< max

{
I
( n1∑

k=1

(∆muk − u0), n
y

2

)
,

I
(
(∆mun1+1 − u0),

y

2

)
, I
(
(∆mun1+2 − u0),

y

2

)
, · · · I

(
(∆mun − u0),

y

2

)}
< ϵ.

Similarly one can show

J
(
1

n

n∑
k=1

∆muk − u0, y

)
< ϵ.

This implies that N(C,∆m, 1)− limn→∞ un = u0, which completes the proof of the Theorem.□

Example 3.1 Let (R, |.|) denote the space of reals with the usual norm. For a, b ∈ [0, 1], let

the t− norm and t−conorm are defined by

a ◦ b = ab and a ⋄ b = a+ b− ab

Let, u ∈ R and y > 0 with y > |u|. Define H, I and J as follows:

H(u, y) =
y

y+ |u|
, I(u, y) = |u|

y+ |u|
and J (u, y) =

|u|
y
,

then N(H, I,J ) is a neutrosophic norm and (R, ◦, ⋄,H, I,J ) is a NNS.

Define a sequence (un) by un = (−1)n, then for m = 1, ∆1un = 2(−1)n and therefore the

sequence σn is given by

σn =
2(−1)1 + 2(−1)2 + · · ·+ 2(−1)n

n
= 0 or

−2

n
,

according as n is even or odd respectively.

Case-I: If n is even, then σn = 0, and therefore we have

lim
n→∞

H(0, y) = 1 and lim
n→∞

I(0, y) = lim
n→∞

J (0, y) = 0.

(by Definition NNS)
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Case-II: If n is odd, then

H(σn − 0, y) = H(σn, y) =
y

y+ |σn|
=

y

y+ |−2
n |

so, lim
n→∞

H(σn − 0, y) = lim
n→∞

y

y+ |−2
n |

= 1;

and

I(σn − 0, y) = I(σn, y) =
|σn|

y+ |σn|
=

|−2
n |

y+ |−2
n |

gives

lim
n→∞

I(σn − 0, y) = lim
n→∞

|−2
n |

y+ |−2
n |

= 0;

J (σn − 0, y) = J (σn, y) =
∥σn∥
y

=
|−2
n |
y

will imply

lim
n→∞

J (σn − θ, y) = lim
n→∞

|−2
n |
y

= 0.

Hence, in both cases,

lim
n→∞

H(σn − 0, y) = 1, lim
n→∞

I(σn − 0, y) = lim
n→∞

J (σn − 0, y) = 0,

and therefore, N − limn→∞ σn = 0 i.e., N(C,∆, 1)− limn→∞ un = 0.

But clearly the sequence (un) = 2(−1)n is not N−convergent as

H(un − u0, y) =
y

y+ ∥un − u0∥
=

y

y+ |2(−1)n − u0|
=


y

y+|−2−u0| if n is odd;

( y
y+|2−u0|) if n is even.

Thus, if we choose u0 = −2 when n is odd and u0 = 2 when n is even, then we have

lim
n→∞

H(un − u0, y) =

1 if n is odd;

1 if n is even.

Similarly one can show

lim
n→∞

I(un − u0, y) = lim
n→∞

J (un − u0, y)

0 if n is odd;

0 if n is even.

In this way we obtain two subsequences of the sequence un = (−1)n corresponding to sets

of even and odd integers and which are N−convergent to different limits. This shows that

(un) = (−1)n is not N−convergent. □

The following Theorem gives the reverse way of Theorem 3.1 via applying some additional

conditions.
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Theorem 3.2 For any sequence u = (un) in V , if N(C,∆m, 1) − limn→∞ un = u0, then

N − limn→∞∆mun = u0 if and only if

(i) sup
µ>1

[
lim inf
n→∞

H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 1;

(ii) inf
µ>1

[
lim sup
n→∞

I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 0;

(iii) inf
µ>1

[
lim sup
n→∞

J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 0.

(Here for µ > 0, µn = ⌊µn⌋i.e., the integral part of µn)

Proof. Necessity: Let, u = (un) be any sequence in V with N(C,∆m, 1) − limn→∞ un = u0.

We first assume that N − limn→∞∆mun = u0 and obtain conditions (i), (ii) and (iii). Let

y > 0 and take µ > 1. Then, by Lemma 2.1, for each n ∈ N−{0} we have µn > n and n ≥ 1
⟨µ⟩

where ⟨µ⟩ = µ−⌊µ⌋ . Moreover, by Lemma 2.1, we can write the difference of (∆mun−∆mσn)

as

∆mun − σn =
µn + 1

µn − n
[σµn − σn]−

1

µn − n

µn∑
k=n+1

(∆muk −∆mun) ;

and therefore by Lemma 2.2, we have for n ≥ 3µ−1
µ(µ−1) ,

H
(
µn + 1

µn − n
[σµn − σn] , y

)
= H

(
[σµn − σn] ,

y
µn+1
µn−n

)

≥ H

(
[σµn − σn] ,

y
2µ
µ−1

)

so we have, lim
n→∞

H
(
µn + 1

µn − n
[σµn − σn] , y

)
= H

(
0,

y
2µ
µ−1

)
= 1.

as (σn) is a Cauchy sequence.
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Now,

I
(
µn + 1

µn − n
[σµn − σn] , y

)
= I

(
[σµn − σn] ,

y
µn+1
µn−n

)

≤ I

(
[σµn − σn] ,

y
2µ
µ−1

)

so we have, lim
n→∞

I
(
µn + 1

µn − n
[σµn − σn] , y

)
= I

(
0,

y
2µ
µ−1

)
= 0;

similarly,

J
(
µn + 1

µn − n
[σµn − σn] , y

)
= J

(
[σµn − σn] ,

y
µn+1
µn−n

)

≤ J

(
[σµn − σn] ,

y
2µ
µ−1

)

and therefore, lim
n→∞

J
(
µn + 1

µn − n
[σµn − σn] , y

)
= J

(
0,

y
2µ
µ−1

)
= 0.

Hence, we obtain

lim
n→∞

H
(
µn + 1

µn − n
[σµn − σn] , y

)
= 1, lim

n→∞
I
(
µn + 1

µn − n
[σµn − σn] , y

)
= lim

n→∞
I
(
µn + 1

µn − n
[σµn − σn] , y

)
= 0,

which immediately imply (i), (ii) and (iii).

Sufficiency: Suppose (i), (ii) and (iii) holds. We shall show that N − limn→∞∆mun = u0.

For this, let ϵ > 0 be given and take y > 0. By hypothesis, there exists a µ > 1 and a m1 ∈ N
such that for n > m1, we have

H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun),
y

3

)
> 1− ϵ and I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun),
y

3

)
< ϵ,

J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun),
y

3

)
< ϵ;

Since, N(C,∆m, 1) − limn→∞ un = u0, so we have another m2 ∈ N such that for all n > m2

we have

H
(
σn − u0,

y

3

)
> 1− ϵ and I

(
σn − u0,

y

3

)
< ϵ,J

(
σn − u0,

y

3

)
< ϵ.
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Moreover, as N − limn→∞
µn+1
µn−n [σµn − σn] = 0, so there is m3 ∈ N such that for all n > m3

we have

H
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
> 1− ϵ and I

(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
< ϵ,

J
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
< ϵ.

Now,

H(∆mun − u0, y) = H(∆mun − σn + σn − u0, y)

= H

(
µn + 1

µn − n
[σµn − σn]−

1

µn − n

µn∑
k=n+1

(∆muk −∆mun) + σn − u0, y

)

≥ min

{
H
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
,H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun) ,
y

3

)
,H
(
σn − u0,

y

3

)}
;

and

I(∆mun − u0, y) = I(∆mun − σn + σn − u0, y)

= I

(
µn + 1

µn − n
[σµn − σn]−

1

µn − n

µn∑
k=n+1

(∆muk −∆mun) + σn − u0, y

)

≤ max

{
I
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
, I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun) ,
y

3

)
, I
(
σn − u0,

y

3

)}
,

J (∆mun − u0, y) = J (∆mun − σn + σn − u0, y)

= J

(
µn + 1

µn − n
[σµn − σn]−

1

µn − n

µn∑
k=n+1

(∆muk −∆mun) + σn − u0, y

)

≤ max

{
J
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
,J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun) ,
y

3

)
,J
(
σn − u0,

y

3

)}
,

Thus, if we select m = max{m1,m2,m3}, then we have H(∆mun−u0, y) > 1−ϵ and I(∆mun−
u0, y) < ϵ, J (∆mun − u0, y) < ϵ and therefore N − limn→∞∆mun = u0. □

The case for 0 < µ < 1 follows similarly by using the expression

∆mun − σn =
µn + 1

n− µn
[σn − σµn ]−

1

n− µn

µn∑
k=n+1

(∆mun −∆muk) .

Another similar result related to Cesàro summability and N−convergence is as follows.

Theorem 3.3 For any sequence u = (un) in V , if N(C, 1) − limn→∞ un = u0, then N −
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limn→∞ un = u0 if and only if

(i) sup
0<µ<1

lim inf
n→∞

H

 1

n− µn

n∑
k=µn+1

(∆mun −∆muk), y

 = 1;

(ii) inf
0<µ<1

lim sup
n→∞

I

 1

n− µn

n∑
k=µn+1

(∆mun −∆muk), y

 = 0;

(iii) inf
0<µ<1

lim sup
n→∞

J

 1

n− µn

n∑
k=µn+1

(∆mun −∆muk), y

 = 0.□

4. Slowly oscillating sequences in NNS

For µn, the sequence of integer part of µn, the concept of ∆m-slowly oscillating sequences

in neutrosophic normed spaces is defined as follow.

Definition 4.1 A sequence u = (un) in V is called slowly oscillating if for all y > 0

(i) sup
µ>1

[
lim inf
n→∞

{
min

n<k≤ µn

H(∆muk −∆mun, y)

}]
= 1 and

(ii) inf
µ>1

[
lim sup
n→∞

{
max

n<k≤µn

I(∆muk −∆mun, y)

}]
= 0,

(iii) inf
µ>1

[
lim sup
n→∞

{
max

n<k≤µn

J (∆muk −∆mun, y)

}]
= 0.

Above definition immediately gives the following remarks.

Remark 4.1 In Definition 3.2, supµ>1 and infµ>1 is equivalent to say limµ→1+ .

Remark 4.2 A sequence u = (un) in V is ∆m-slowly oscillating, if and only if, for all 0 < ϵ < 1

and y > 0 there exists µ > 1 and n0(ϵ, y) ∈ N such that

H(∆muk −∆mun, y) > 1− ϵ and I(∆muk −∆mun, y) < ϵ,J (∆muk −∆mun, y) < ϵ.

holds for every n0 ≤ n < k ≤ µn.

Example 4.1 Let (R, |·|) be a normed space. Let a◦b = ab and a⋄b = a+b−ab ∀ a, b ∈ [0, 1].

For all u ∈ R and every y > 0, we consider H(u, y) = y
y+|u| , I(u, y) =

|u|
y+|u| ,J (u, y) = |u|

y , then

(R, ◦, ⋄,H, I,J ) is a NNS. Define a sequence (un) as follows:

u1 = 1,

u2 = u3 = 1 + 1
2 ,

u4 = u5 = u6 = u7 = 1 + 1
2 + 1

3 ,

. . .
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u2n = u2n+1 = . . . = u2n+1−1 =
n+1∑
j=1

1
j .

Given ϵ > 0, let δ = 1 and m = 0. Choose n0 ∈ N s.t 1
n0

< ϵ. Then if n > n0 and n ≤ k ≤ 2n,

we have

H(uk−un, y) =
y

y+|uk−un| > 1−ϵ and I(uk−un, y) =
|uk−un|

y+|uk−un| < ϵ, J (uk−un, y) =
|uk−un|

y < ϵ.

This shows that (un) is slowly oscillating sequence in (R, ◦, ⋄,H, I,J )

Theorem 4.1 Let u = (un) in V be a ∆m-slowly oscillating sequence. Then for every y > 0,

the conditions (i), (ii) and (iii) in Definition 4.1 are respectively equivalent to

(i) sup
0<µ<1

[
lim inf
n→∞

{
min

µn<k≤ n
H(∆muk −∆mun, y)

}]
= 1 and

(ii) inf
0<µ<1

[
lim sup
n→∞

{
max

µn<k≤n
I(∆muk −∆mun, y)

}]
= 0,

(iii) inf
0<µ<1

[
lim sup
n→∞

{
max

µn<k≤n
J (∆muk −∆mun, y)

}]
= 0.

Proof. We first prove that the following conditions are equivalent:

sup
µ>1

[
lim inf
n→∞

{
min

n<k≤ µn

H(∆muk −∆mun, y)

}]
= 1,

sup
0<µ<1

[
lim inf
n→∞

{
min

µn<k≤ n
H(∆muk −∆mun, y)

}]
= 1.

Let y > 0 be given and for µ > 1, we define

f1(µ) = lim inf
n→∞

{
min

n<k≤⌊µn⌋
H(∆muk −∆mun, y)

}
and

f2

(
1

µ

)
= lim inf

k→∞

{
min

⌊ k
µ
⌋<n≤k

H(∆muk −∆mun, y)

}

By definition of lim inf in f1, we have a subsequence (nr) with

f1(µ) = lim
r→∞

{
min

nr<k≤⌊µnr⌋
H(∆muk −∆munr , y)

}
.

This gives rise another subsequence (kr) satisfying nr < kr ≤ ⌊µnr⌋ with

min
nr<k≤⌊µnr⌋

H(∆muk −∆munr , y) = H(∆mukr −∆munr , y).
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Since, nr < kr ≤ ⌊µnr⌋, so by Remark 3 [16], nr ∈
(
⌊(krµ ⌋, kr

)
, and therefore we have

f2

(
1

µ

)
= lim inf

k→∞

{
min

⌊ k
µ
⌋<n≤k

H(∆muk −∆mun, y)

}
≤ lim

r→∞

{
min

⌊ kr
µ
⌋<n≤kr

H(∆mukr −∆mun, y)

}
≤ lim

r→∞
H(∆mukr −∆munr , y)

= lim
r→∞

{
min

nr<k≤⌊µnr⌋
H(∆muk −∆munr , y)

}
= f1

(
1

µ

)
.

Similarly, we can have f2

(
1
µ

)
≥ f1

(
1
µ

)
by changing their roles and therefore we have f1

(
1
µ

)
=

f2

(
1
µ

)
. This shows that both expressions

sup
µ>1

[
lim inf
n→∞

{
min

n<k≤ µn

H(∆muk −∆mun, y)

}]
= 1,

sup
0<µ<1

[
lim inf
n→∞

{
min

µn<k≤ n
H(∆muk −∆mun, y)

}]
= 1.

are equivalent.

Following the same line of proof, one can easily obtain the equivalence of other pairs of

expressions. □

Example 4.2 Consider the neutrosophic normed space ((R, ◦, ⋄,H, I,J ) as defined in Exam-

ple 3.1.

Define a sequence (un) by un =
∑n

i=1

(
1
i

)
and take y > 0.

Let 0 < ϵ < 1 be given and select µ = yϵ
1−ϵ + 1.

Now, for all n satisfying 1 < n < k < µn, we have

∥uk − un∥ =

∥∥∥∥∥
k∑

i=1

(
1

i

)
−

n∑
i=1

(
1

i

)∥∥∥∥∥
=

∥∥∥∥∥
k∑

i=n+1

(
1

i

)∥∥∥∥∥ ≤
k∑

i=n+1

(
1

i

)
<

1

n
+

1

n
+ · · ·+ 1

n

=
k − n

n
=

k

n
− 1 < µ− 1 =

yϵ

1− ϵ
(by selection of n, k and µ);
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and therefore

H (uk − un, y) =
y

y+ ∥uk − un∥
>

y

y+ yϵ
1−ϵ

= 1− ϵ and

I (uk − un, y) =
∥uk − un∥

y+ ∥uk − un∥
<

(
yϵ
1−ϵ

)
y+

(
yϵ
1−ϵ

) = ϵ.

Similarly, one can have J (uk − un, y) < ϵ.

This shows that (un) is slowly oscillating in (R, ◦, ⋄,H, I,J ). □

Theorem 4.2 Let V be a normed space with norm ∥.∥ and (R, ◦, ⋄,H, I,J ) be the neutro-

sophic normed space as in Example 3.1. Then, a sequence u = (un) is ∆m-slowly oscillating

in V if and only if it is so in (R, ◦, ⋄,H, I,J ).

Proof. We first assume that u = (un) is ∆
m-slowly oscillating in V . Let, y > 0 and 0 < ϵ < 1.

Select ϵ′ = yϵ
1−ϵ , then by Remark 4.2 there exists µ > 1 and n0(ϵ, y) ∈ N such that

H(∆muk −∆mun, y) > 1− ϵ and I(∆muk −∆mun, y) < ϵ,J (∆muk −∆mun, y) < ϵ.

holds for every n0 ≤ n < k ≤ µn.

This proves that u = (un) is ∆
m-slowly oscillating in (R, ◦, ⋄,H, I,J ).

Conversely, assume that u = (un) is ∆m-slowly oscillating in (R, ◦, ⋄,H, I,J ). Then for

0 < ϵ < 1
2 and y = 1 > 0, then there exists µ > 1 and n0(ϵ, 1) ∈ N such that

H(∆muk −∆mun, 1) > 1− ϵ and I(∆muk −∆mun, 1) < ϵ,J (∆muk −∆mun, 1) < ϵ.

holds for every n0 ≤ n < k ≤ µn.

Now, for n0 ≤ n < k ≤ µn, H(∆muk −∆mun, 1) > 1− ϵ will immediately gives

1− ϵ <
1

1 + ∥∆muk −∆mun∥
or ∥∆muk −∆mun∥ <

ϵ

1 + ϵ
< 2ϵ = ϵ′,

and therefore u = (un) is ∆
m-slowly oscillating in V . □

Theorem 4.3 If u = (un) is any ∆m-slowly oscillating sequence in V , then

(i) sup
µ>1

[
lim inf
n→∞

H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 1;

(ii) inf
µ>1

[
lim sup
n→∞

I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 0;

(iii) inf
µ>1

[
lim sup
n→∞

J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 0.
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Proof. Suppose that u = (un) is any ∆m-slowly oscillating sequence in V . Then for y > 0

and 0 < ϵ < 1 there exists µ > 1 and n0(ϵ, y) ∈ N such that

H(∆muk −∆mun, y) > 1− ϵ and I(∆muk −∆mxn, y) < ϵ,J (∆muk −∆mun, y) < ϵ.

holds for every n0 ≤ n < k ≤ µn. Now,

H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)
= H

(
µn∑

k=n+1

(∆muk −∆mun), (µn − n)y

)
≥ min{H(∆mun+1 −∆mun),H(∆mun+2 −∆mun), · · ·H(∆muµn −∆mun)}

> 1− ϵ

and

I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)
= I

(
µn∑

k=n+1

(∆muk −∆mun), (µn − n)y

)
≤ max{I(∆mun+1 −∆mun), I(∆mun+2 −∆mun), · · · I(∆muµn −∆mun)}

< ϵ,

J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)
= J

(
µn∑

k=n+1

(∆muk −∆mun), (µn − n)y

)
≤ max{J (∆mun+1 −∆mun), Y (∆mun+2 −∆mun), · · · J (∆muµn −∆mun)}

< ϵ.

This proves the Theorem. □

Theorem 4.4 If u = (un) is any ∆m-slowly oscillating sequence in V which is

N(C,∆m, 1)−summable with N(C,∆m, 1)− limn→∞ un = u0, then N − limn→∞∆mun = u0.

Proof. The proof is omitted as it can be obtain with the help of Theorem 3.2 and Theorem

4.3. □.
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Abstract. Transportation problems offer a structured approach to optimize the allocation of resources, mini-

mize transportation costs, and improve overall efficiency in supply chain and logistics management, leading to

several advantages for businesses and organizations. Fuzzy transportation problems are particularly relevant

in supply chain and logistics management when dealing with uncertain demand, fluctuating costs, or imprecise

data and the intuitionistic fuzzy transportation problem is a more advanced modeling technique that takes into

account the nuanced handling of uncertainty and imprecision using intuitionistic fuzzy sets(IFS). It provides a

more realistic approach to decision-making in situations where classical or fuzzy models may not capture the

subtleties of uncertainty in data. In this article, we demonstrate a novel approach to resolving transportation

problems in a neutrosophic atmosphere. Neutrosophic set is an extension of fuzzy and IFS and it is classified by

three independent membership grades: truth, indeterminacy, and falsity membership grade. These sets are bet-

ter suited to handle imprecise parameters. Transportation cost and demand are taken as neutrosophic numbers.

Vogel’s approximation method is used to get the optimum solution of this neutrosophic transportation problem.

Also, we performed a numerical instance to figure out the successful outcome of our suggested technique.

Keywords: Neutrosophic Sets; Neutrosophic Triangle Fuzzy Numbers; Ordering of Triangle Fuzzy Numbers;

Neutrosophic Minimum Total Cost; Vogel’s Approximation Method.
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1. Introduction

In the current landscape of intense market competition, several firms are actively seek-

ing more effective strategies to enhance their ability to generate and provide value to their

consumers, therefore fortifying their overall position. The task of efficiently and securely deliv-

ering items to clients while minimizing costs has grown more complex. In order to address this

formidable task, transportation models provide a robust foundation. The optimization issue

discussed is well recognized within the field of operational research and was first formulated by

Hitchcock in 1941.The primary objective of the transportation problem is to ascertain the op-

timal shipment schedule that reduces the overall shipping cost, while simultaneously meeting

the constraints of supply limitations and demand needs. The classical transportation problem

pertains to a distinct category of linear programming problems.

In [1-8], many authors developed the concept of transportation in fuzzy, intuitionistic fuzzy

and neutrosophic environments. According to these findings, in this paper, alternative sim-

ple methods are proposed for solving neutrosophic fuzzy transportation promblems and for

solving neutrosophic fully fuzzy transportation problems. Vogel’s approximation method is

used to find initial basic feasible solution for neutrosophic fuzzy and neutrosophic fully fuzzy

transportation problems.

The transportation problem, while the cost for shipping a single unit of a good from a

particular source to a target is quantified by neutrosophic numbers, however the availability

and demand can be illustrated with real numbers, is usually referred to as the neutrosophic

transportation problem.

The transportation problem, when the characteristics such as the cost of transmitting a unit

amount of a product from a particular source to a specific destination, the availability, and

the demand, are presented as neutrosophic numbers, is commonly known as the neutrosophic

fully fuzzy transportation problem. Problem pertaining to the distribution of goods and

services, wherein the cost involved in transporting a singular unit of a particular item from

a designated origin to a specified destination is quantified using neutrosophic fuzzy numbers,

while the accessibility and requirement is indicated using real numbers, is referred to as the

neutrosophic transportation problem.

The only difference between the classical methods and the neutrosophic fuzzy methods

is that in the neutrosophic fuzzy numbers, the arithmetic operations of neutrosophic fuzzy

numbers are used instead of arithmetic operations of real numbers.

2. Preliminaries

Definition:1 [9]

Let x be any element belongs to the universal set X. A neutrosophic set A in X is demonstrated
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by truth TA, indeterminacy IA and falsity-membership function FA. Here, TA(x), IA(x) and

FA(x) are nothing but the real standard or non-standard elements of [0,1]. i.e.,

TA : X → [0, 1]

IA : X → [0, 1]

FA : X → [0, 1]

and no restriction on the sum of TA(X),IA(X) and FA(X), and also

0 ≤ supTA(X) + supIA(X) + supFA(X) ≤ 3.

Definition:2 [9]

A single valued triangular neutrosophic number ⟨(a, b, c);wã, uã, yã⟩, is a unique neutrosophic

set on the real number R, of which the truth, indeterminacy and falsity-membership functions

are given as follows:

µã(x) =


(x−a)wã

(b−a) , (a ≤ x < b)
(c−x)wã

(c−b) , (b ≤ x ≤ c)

0, otherwise

νã(x) =


(b−x+uã(x−a))

(b−a) , (a ≤ x < b)
(x−b+uã(c−x))

(c−b) , (b ≤ x ≤ c)

0, otherwise

λã(x) =


(b−x+yã(x−a))

(b−a) , (a ≤ x < b)
(x−b+yã(c−x))

(c−b) , (b ≤ x ≤ c)

0, otherwise

Definition:3 [9]

Let wã, uã, yã ∈ [0, 1] and a1, a2, a3, a4 ∈ R such that a1 ≤ a2 ≤ a3 ≤ a4. Then a single valued

trapezoidal neutrosophic number, ã = ⟨(a1, a2, a3, a4);wã, uã, yã⟩ is a unique neutrosophic set

on the real line R, of which the truth, indeterminacy, and falsity-membership functions are

given as follows:

µã(x) =


wã(

x−a1
a2−a1

), for a1 ≤ x ≤ a2

wã, for a2 ≤ x ≤ a3

wã(
a4−x
a4−a3

), for a3 ≤ x ≤ a4

0, otherwise,
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νã(x) =


a2−x+uã(x−a1)

a2−a1
, for a1 ≤ x ≤ a2

uã, for a2 ≤ x ≤ a3
x−a3+uã(a4−x)

a4−a3
, for a3 ≤ x ≤ a4

1, otherwise,

λã(x) =


a2−x+yã(x−a1)

a2−a1
, for a1 ≤ x ≤ a2

yã, for a2 ≤ x ≤ a3
x−a3+yã(a4−x)

a4−a3
, for a3 ≤ x ≤ a4

1, otherwise,

where wã, uã, and yã implies the maximum truth, minimum indeterminacy and minimum

falsity membership degree, respectively. A single valued trapezoidal neutrosophic number

ã = ⟨(a1, a2, a3, a4);wã, uã, yã⟩ may approximately identical to [a2, a3] and it is denoted to be

an ill-defined quantity about a.

2.1. Arithmetic Operations on Triangular Neutrosophic Fuzzy Numbers

Let ÃN = (a1, a2, a3; a
′
1, a2, a

′
3; a

′′
1, a2, a

′′
3) and B̃N = (b1, b2, b3; b

′
1, b2, b

′
3; b

′′
1, b2, b

′′
3) be two

triangular neutrosophic fuzzy numbers.Then

i) ÃN ⊕ B̃N =

(a1 + b1, a2 + b2, a3 + b3; a
′
1 + b′1, a2 + b2, a

′
3 + b′3; a

′′
1 + b′′1, a2 + b2, a

′′
3 + b′′3)

ii)ÃN ⊖ B̃N =

(a1 − b3, a2 − b2, a3 − b1; a
′
1 − b′3, a2 − b2, a

′
3 − b′1; a

′′
1 − b′′3, a2 − b2, a

′′
3 − b′′1)

iii)ÃN ⊗ B̃N = (m1,m2,m3;m
′
1,m2,m

′
3;m

′′
1,m2,,m

′′
3), where

m1 = min{a1b1, a1b3, a3b1, a3b3}, m2(= m′
2 = m′′

2) = a2b2,

m3 = max{a1b1, a1b3, a3b1, a3b3}, m′
1 = min{a′1b′1, a′1b′3, a′3b′1, a′3b′3},

m′
3 = max{a′1b′1, a′1b′3, a′3b′1, a′3b′3}, m′′

1 = min{a′′1b′′1, a′′1b′′3, a′′3b′′1, a′′3b′′3},
m′′

3 = max{a′′1b′′1, a′′1b′′3, a′′3b′′1, a′′3b′′3},

iv)λÃN =

(λa1, λa2, λa3;λa
′
1, λa2, λa

′
3;λa

′′
1, λa2, λa

′′
3);λ ≥ 0,

(λa3, λa2, λa1;λa
′
3, λa2, λa

′
1;λa

′′
3, λa2, λa

′′
1);λ < 0,

2.2. Ordering of Triangular Neutrosophic Fuzzy Numbers

Let ÃN = (a1, a2, a3; a
′
1, a2, a

′
3; a

′′
1, a2, a

′′
3) and B̃N = (b1, b2, b3; b

′
1, b2, b

′
3; b

′′
1, b2, b

′′
3) be two

triangular neutrosophic fuzzy numbers.Then

i)ÃN ⪰ B̃N ifR(ÃN ) ≥ R(B̃N )

ii)ÃN ≈ B̃N ifR(ÃN ) = R(B̃N )

where R(ÃN ) =
[a1+2a2+a3+a′1+2a2+a′3+a′′1+2a2+a′′3 ]

12

and R(B̃N ) =
[b1+2b2+b3+b′1+2b2+b′3+b′′1+2b2+b′′3 ]

12
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2.3. Arithmetic Operations on Trapezoidal Neutrosophic Fuzzy Numbers

Let ÃN = (a1, a2, a3, a4; a
′
1, a

′
2, a

′
3, a

′
4; a

′′
1, a

′′
2, a

′′
3, a

′′
4) and

B̃N = (b1, b2, b3, b4; b
′
1, b

′
2, b

′
3, b

′
4; b

′′
1, b

′′
2, b

′′
3, b

′′
4) be two triangular neutrosophic fuzzy num-

bers.Then

i) ÃN ⊕ B̃N = (a1 + b1, a2 + b2, a3 + b3, a4 + b4; a
′
1 + b′1, a

′
2 + b′2, a

′
3 + b′3, a

′
4 + b′4;

a′′1 + b′′1, a
′′
2 + b′′2, a

′′
3 + b′′3, a

′′
4 + b′′4)

ii)ÃN ⊖ B̃N = (a1 − b4, a2 − b2, a3 − b2, a4 − b1; a
′
1 − b′4, a

′
2 − b′2, a

′
3 − b′2, a

′
4 − b′1;

a′′1 − b′′4, a
′′
2 − b′′2, a

′′
3 − b′′2, a

′′
4 − b′′1)

iii)ÃN ⊗ B̃N = (m1,m2,m3,m4;m
′
1,m

′
2,m

′
3,m

′
4;m

′′
1,m

′′
2,,m

′′
3,m

′′
4), where

m1 = min{a1b1, a1b4, a4b1, a4b4}, m2 = min{a2b2, a2b3, a3b2, a3b3}
m3 = max{a2b2, a2b3, a3b2, a3b3}, m4 = max{a1b1, a1b4, a4b1, a4b4},
m′

1 = min{a′1b′1, a′1b′4, a′4b′1, a′4b′4}, m′
2 = min{a′2b′2, a′2b′3, a′3b′2, a′3b′3},

m′
3 = max{a′2b′2, a′2b′3, a′3b′2, a′3b′3}, m′

4 = max{a′1b′1, a′1b′4, a′4b′1, a′4b′4},
m′′

1 = min{a′′1b′′1, a′′1b′′4, a′′4b′′1, a′4b′4}, m′′
2 = min{a′′2b′′2, a′′2b′′3, a′′3b′′2, a′′3b′′3},

m′′
3 = max{a′′2b′′2, a′′2b′′3, a′′3b′′2, a′′3b′′3}, m′′

4 = max{a′′1b′′1, a′′1b′′4, a′′4b′′1, a′′4b′′4},

iv)λÃN =

(λa1, λa2, λa3, λa4;λa
′
1, λa

′
2, λa

′
3, λa

′
4;λa

′′
1, λa

′′
2, λa

′′
3, λa

′′
4);λ ≥ 0,

(λa4λa3, λa2, λa1;λa
′
4λa

′
3, λa

′
2, λa

′
1;λa

′′
4λa

′′
3, λa2, λa

′′
1);λ < 0,

2.4. Ordering of Trapezoidal Neutrosophic Fuzzy Numbers

Let ÃN = (a1, a2, a3, a4; a
′
1, a

′
2, a

′
3, a

′
4; a

′′
1, a

′′
2, a

′′
3, a

′′
4) and

B̃N = (b1, b2, b3, b4; b
′
1, b

′
2, b

′
3, b

′
4; b

′′
1, b

′′
2, b

′′
3, b

′′
4) be two triangular neutrosophic fuzzy num-

bers.Then

i)ÃN ⪰ B̃(N)ifR(Ã(N)) ≥ R(B̃(N))

ii)ÃN ≈ B̃(N)ifR(Ã(N)) = R(B̃(N))

where R(ÃN ) =
[a1+a2+a3+a4+a′1+a′2+a′3+a′4+a′′1+a′′2+a′′3+a′′4 ]

12

and R(B̃N ) =
[b1+b2+b3+b4+b′1+b′2+b′3+b′4+b′′1+b′′2+b′′3+b′′4 ]

12

3. A New Method For Solving Neutrosophic Fuzzy Transportation Problem Of

Type-II

3.1. Notations:

cij=Unit neutrosophic transportation cost;

ai=Neutrosophic availability:

dj=Neutrosophic demand:

xij=Neutrosophic quantity.
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3.2. Algorithm for proposed method

The stepwise procedure of proposed method is carried out as follows.

Step (1): Construct a neutrosophic fuzzy balanced transportation problem as in below table.

Sources Destination D1 Destination D2 ... Destination Dn Availabilities

S1 a11, b11, c11; a
′
11, b11, c

′
11; a

′′
11, b11, c

′′
11 a12, b12, c12; a

′
12, b12, c

′
12; a

′′
12, b12, c

′′
12 ... a1n, b1n, c1n; a

′
1n, b1n, c

′
1n; a

′′
1n, b1n, c

′′
1n a

S2 a21, b21, c21; a
′
21, b21, c

′
21; a

′′
21, b21, c

′′
21 a22, b22, c22; a

′
22, b22, c

′
22; a

′′
22, b22, c

′′
22 ... a2n, b2n, c2n; a

′
2n, b2n, c

′
2n; a

′′
2n, b2n, c

′′
2n b

. . . . . .

. . . . . .

. . . . . .

Sn an1, bn1, cn1; a
′
n1, bn1; c

′
n1; a

′′
n1, bn1; c

′′
n1 an2, bn2, cn2; a

′
n2, bn2, c

′
n2; a

′′
n2, bn2, c

′′
n2 ... ann, bnn, cnn; a

′
nn, bnn, c

′
nn; a

′′
nn, bnn, c

′′
nn z

Demand A B ..... Z

Step (2): In general, The above table may be expressed as follows:

Minimize

R[

m∑
i=1

n∑
j=1

(cij1, cij2, cij3; c
′
ij1, cij2, c

′
ij3; c

′′
ij1, cij2, c

′′
ij3)xij ]

subject to the constraints

n∑
j=1

xij = ai; i = 1, 2, .....,m,

m∑
i=1

xij = bj ; j = 1, 2, .....,

xij ≥ 0; i = 1, 2, .....,m; j = 1, 2, ......, n. (1)

Step (3): Using the relation,

R[
m∑
i=1

n∑
j=1

(aij , bij , cij ; a
′
ij , bij , c

′
ij ; a

′′
ij , bij , c

′′
ij)] =

m∑
i=1

n∑
j=1

R(aij , bij , cij ; a
′
ij , bij , c

′
ij ; a

′′
ij , bij , c

′′
ij)

,the above problem can be stated as

Minimize

m∑
i=1

n∑
j=1

R[(cij1, cij2, cij3; c
′
ij1, cij2, c

′
ij3; c

′′
ij1, cij2, c

′′
ij3)xij)]

subject to the constraints

n∑
j=1

xij = ai; i = 1, 2, .....,m,

m∑
i=1

xij = bj ; j = 1, 2, ....., n,

xij ≥ 0; i = 1, 2, .....,m; j = 1, 2, ......, n. (2)

Step (4): The expression

R(λ×(a, b, c; a′, b, c′; a′′, b, c′′)) = λ×R(a, b, c; a′, b, c′; a′′, b, c′′) can be used to rewrite the above
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problem as

Minimize
m∑
i=1

n∑
j=1

R(cij1, cij2, cij3; c
′
ij1, cij2, c

′
ij3; c

′′
ij1, cij2, c

′′
ij3)× xij)

subject to the constraints
n∑

j=1

xij = ai; i = 1, 2, .....,m,

m∑
i=1

xij = bj ; j = 1, 2, ....., n,

xij ≥ 0; i = 1, 2, .....,m; j = 1, 2, ......, n. (3)

Step(5) : With the help of R(a, b, c; a′, b, c′; a′′, b, c′′) = a+2b+c+a′+2b+c′+a′′+b+c′′

12 , rewrite the

above problem

Minimize
m∑
i=1

n∑
j=1

[cij1 + 2cij2 + cij3 + c′ij1 + 2cij2 + c′ij3 + c′′ij1 + 2cij2 + c′′ij3]

12
× xij

subject to the constraints
n∑

j=1

xij = ai; i = 1, 2, .....,m,

m∑
i=1

xij = bj ; j = 1, 2, ....., n,

xij ≥ 0; i = 1, 2, .....,m; j = 1, 2, ......, n. (4)

Step(6) : Find the optimal solution by using Vogel’s approximation method.

Step(7) :The minimum neutrosophic fuzzy transportation cost is

m∑
i=1

n∑
j=1

(cij1, cij2, cij3; c
′
ij1, cij2, c

′
ij3; c

′′
ij1, cij2, c

′′
ij3)× xij

3.3. Numerical example

Step (1): The existing neutrosophic fuzzy balanced transportation problem can be given

below.
Sources Destination D1 Destination D2 Destination D3 Destination D4 Availabilities

S 1 2,4,5;1,4,6;0.1,4,6.1 2,5,7;1,5,8;0.1,5,8.1 4,6,8;3,6,9;2.1,6,9.1 4,7,8;3,7,9;2.1,7,9.1 11

S 2 4,6,8;3,6,9;2.1,6,9.2 3,7,12;2,7,13;1.2,7,13.2 10,15,20;8,15,22;7.2,15,22.1 11,12,13;10,12,14;9.2,12,14.2 11

S 3 3,4,6;1,4,8;0.2,4,8.5 8,10,13;5,10,16;4.1,10,16.2 2,3,5;1,3,6;0.2,3,6.2 6,10,14;5,10,15;4.2,10,15.1 11

S 4 2,4,6;1,4,7;0.1,4,7.2 3,9,10;2,9,12;0.2,9,12.1 3,6,10;2,6,12;0.1,6,12.3 3,4,5;2,4,8;0.1,4,8.2 12

Demand 16 10 8 11

Step(2): The above problem can be transformed into the neutrosophic fuzzy linear program-

ming problem.

Minimize

[(2, 4, 5; 1, 4, 6; 0.1, 4, 6.1)x11 ⊕ (2, 5, 7; 1, 5, 8; 0.1, 5, 8.1)x12 ⊕
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(4, 6, 8; 3, 6, 9; 2.1, 6, 9.1)x13 ⊕ (4, 7, 8; 3, 7, 9; 2.1, 7, 9.1)x14 ⊕
(4, 6, 8; 3, 6, 9; 2.1, 6, 9.2)x21 ⊕ (3, 7, 12; 2, 7, 13; 1.2, 7, 13.2)x22 ⊕
(10, 15, 20; 8, 15, 22; 7.2, 15, 22.1)x23 ⊕ (11, 12, 13; 10, 12, 14; 9.2, 12, 14.2)x24 ⊕
(3, 4, 6; 1, 4, 8; 0.2, 4, 8.5)x31 ⊕ (8, 10, 13; 5, 10, 16; 4.1, 10, 16.2)x32 ⊕
(2, 3, 5; 1, 3, 6; 0.2, 3, 6.2)x33 ⊕ (6, 10, 14; 5, 10, 15; 4.2, 10, 15.1)x34 ⊕
(2, 4, 6; 1, 4, 7; 0.1, 4, 7.2)x41 ⊕ (3, 9, 10; 2, 9, 12; 0.2, 9, 12.1)x42 ⊕
(3, 6, 10; 2, 6, 12; 0.1, 6, 12.3)x43 ⊕ (3, 4, 5; 2, 4, 8; 0.1, 4, 8.2)x44]

subject to the constraints

x11 + x12 + x13 + x14 = 11,

x21 + x22 + x23 + x24 = 11,

x31 + x32 + x33 + x34 = 11,

x41 + x42 + x43 + x44 = 12,

x11 + x21 + x31 + x41 = 16,

x12 + x22 + x32 + x42 = 10,

x13 + x23 + x33 + x43 = 8,

x14 + x24 + x34 + x44 = 11,

xij ≥ 0; i = 1, 2, 3, 4; j = 1, 2, 3, 4.

Step(3): By step (3) in the algorithm, we have

Minimize

R [(2, 4, 5; 1, 4, 6; 0.1, 4, 6.1)x11 ⊕ (2, 5, 7; 1, 5, 8; 0.1, 5, 8.1)x12 ⊕
(4, 6, 8; 3, 6, 9; 2.1, 6, 9.1)x13 ⊕ (4, 7, 8; 3, 7, 9; 2.1, 7, 9.1)x14 ⊕
(4, 6, 8; 3, 6, 9; 2.1, 6, 9.2)x21 ⊕ (3, 7, 12; 2, 7, 13; 1.2, 7, 13.2)x22 ⊕
(10, 15, 20; 8, 15, 22; 7.2, 15, 22.1)x23 ⊕ (11, 12, 13; 10, 12, 14; 9.2, 12, 14.2)x24 ⊕
(3, 4, 6; 1, 4, 8; 0.2, 4, 8.5)x31 ⊕ (8, 10, 13; 5, 10, 16; 4.1, 10, 16.2)x32 ⊕
(2, 3, 5; 1, 3, 6; 0.2, 3, 6.2)x33 ⊕ (6, 10, 14; 5, 10, 15; 4.2, 10, 15.1)x34 ⊕
(2, 4, 6; 1, 4, 7; 0.1, 4, 7.2)x41 ⊕ (3, 9, 10; 2, 9, 12; 0.2, 9, 12.1)x42 ⊕
(3, 6, 10; 2, 6, 12; 0.1, 6, 12.3)x43 ⊕ (3, 4, 5; 2, 4, 8; 0.1, 4, 8.2)x44]

subject to the constraints

x11 + x12 + x13 + x14 = 11,

x21 + x22 + x23 + x24 = 11,

x31 + x32 + x33 + x34 = 11,

x41 + x42 + x43 + x44 = 12,

x11 + x21 + x31 + x41 = 16,

x12 + x22 + x32 + x42 = 10,

x13 + x23 + x33 + x43 = 8,

x14 + x24 + x34 + x44 = 11,

xij ≥ 0; i = 1, 2, 3, 4; j = 1, 2, 3, 4.

Step(4): Using step(4), the above problem becomes

Minimize
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[R([(2, 4, 5; 1, 4, 6; 0.1, 4, 6.1)x11)⊕R((2, 5, 7; 1, 5, 8; 0.1, 5, 8.1)x12)⊕
R((4, 6, 8; 3, 6, 9; 2.1, 6, 9.1)x13)⊕R((4, 7, 8; 3, 7, 9; 2.1, 7, 9.1)x14)⊕
R((4, 6, 8; 3, 6, 9; 2.1, 6, 9.2)x21)⊕R((3, 7, 12; 2, 7, 13; 1.2, 7, 13.2)x22)⊕
R((10, 15, 20; 8, 15, 22; 7.2, 15, 22.1)x23) ⊕ R((11, 12, 13; 10, 12, 14; 9.2, 12, 14.2)x24) ⊕
R((3, 4, 6; 1, 4, 8; 0.2, 4, 8.5)x31)⊕R((8, 10, 13; 5, 10, 16; 4.1, 10, 16.2)x32)⊕
R((2, 3, 5; 1, 3, 6; 0.2, 3, 6.2)x33)⊕R((6, 10, 14; 5, 10, 15; 4.2, 10, 15.1)x34)⊕
R((2, 4, 6; 1, 4, 7; 0.1, 4, 7.2)x41)⊕R((3, 9, 10; 2, 9, 12; 0.2, 9, 12.1)x42)⊕
R(3, 6, 10; 2, 6, 12; 0.1, 6, 12.3)x43 ⊕R((3, 4, 5; 2, 4, 8; 0.1, 4, 8.2)x44)]

subject to the constraints

x11 + x12 + x13 + x14 = 11,

x21 + x22 + x23 + x24 = 11,

x31 + x32 + x33 + x34 = 11,

x41 + x42 + x43 + x44 = 12,

x11 + x21 + x31 + x41 = 16,

x12 + x22 + x32 + x42 = 10,

x13 + x23 + x33 + x43 = 8,

x14 + x24 + x34 + x44 = 11,

xij ≥ 0; i = 1, 2, 3, 4; j = 1, 2, 3, 4.

Step(5): The relation in step(5) connect the later problem into below one

Minimize

[R((2, 4, 5; 1, 4, 6; 0.1, 4, 6.1)x11 ⊕R(2, 5, 7; 1, 5, 8; 0.1, 5, 8.1)x12 ⊕
R(4, 6, 8; 3, 6, 9; 2.1, 6, 9.1)x13 ⊕R(4, 7, 8; 3, 7, 9; 2.1, 7, 9.1)x14 ⊕
R(4, 6, 8; 3, 6, 9; 2.1, 6, 9.2)x21 ⊕R(3, 7, 12; 2, 7, 13; 1.2, 7, 13.2)x22 ⊕
R(10, 15, 20; 8, 15, 22; 7.2, 15, 22.1)x23 ⊕ R(11, 12, 13; 10, 12, 14; 9.2, 12, 14.2)x24 ⊕
R(3, 4, 6; 1, 4, 8; 0.2, 4, 8.5)x31 ⊕R(8, 10, 13; 5, 10, 16; 4.1, 10, 16.2)x32 ⊕
R(2, 3, 5; 1, 3, 6; 0.2, 3, 6.2)x33 ⊕R(6, 10, 14; 5, 10, 15; 4.2, 10, 15.1)x34 ⊕
R(2, 4, 6; 1, 4, 7; 0.1, 4, 7.2)x41 ⊕R(3, 9, 10; 2, 9, 12; 0.2, 9, 12.1)x42 ⊕
R(3, 6, 10; 2, 6, 12; 0.1, 6, 12.3)x43 ⊕R(3, 4, 5; 2, 4, 8; 0.1, 4, 8.2)x44]

subject to the constraints

x11 + x12 + x13 + x14 = 11,

x21 + x22 + x23 + x24 = 11,

x31 + x32 + x33 + x34 = 11,

x41 + x42 + x43 + x44 = 12,

x11 + x21 + x31 + x41 = 16,

x12 + x22 + x32 + x42 = 10,

x13 + x23 + x33 + x43 = 8,

x14 + x24 + x34 + x44 = 11,

xij ≥ 0; i = 1, 2, 3, 4; j = 1, 2, 3, 4.

Step(6): Using the expression R(a, b, c; a′, b, c′; a′′, b, c′′) = a+2b+c+a′+2b+c′+a′′+b+c′′

12 , rewrite the
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above problem as

Minimize

(3.68x11 + 4.68x12 + 5.93x13 + 6.43x14 + 5.94x21 + 7.2x22 + 14.9x23 + 11.95x24 + 4.22x31 +

10.19x32 + 3.2x33 + 9.94x34 + 3.94x41 + 7.775x42 + 6.28x43 + 4.19x44)

subject to the constraints

x11 + x12 + x13 + x14 = 11,

x21 + x22 + x23 + x24 = 11,

x31 + x32 + x33 + x34 = 11,

x41 + x42 + x43 + x44 = 12,

x11 + x21 + x31 + x41 = 16,

x12 + x22 + x32 + x42 = 10,

x13 + x23 + x33 + x43 = 8,

x14 + x24 + x34 + x44 = 11,

xij ≥ 0; i = 1, 2, 3, 4; j = 1, 2, 3, 4.

Step(7): Solving the crisp linear programming problem by Vogel’s approximation method, the

obtained optimal solution is

x11 = 1, x12 = 10, x13 = 0, x14 = 0, x21 = 11, x22 = 0, x23 = 0, x24 = 0,

x31 = 3, x32 = 0, x33 = 8, x41 = 1, x42 = 0, x43 = 0, x44 = 11.

Step(8): Using the optimal solution, the minimum neutrosophic fuzzy transportation cost is

(2, 4, 5; 1, 4, 6; 0.1, 4, 6.1)× 1⊕ (2, 5, 7; 1, 5, 8; 0.1, 5, 8.1)× 10⊕
(4, 6, 8; 3, 6, 9; 2.1, 6, 9.2)× 11⊕ (3, 4, 6; 1, 4, 8; 0.2, 4, 8.5)× 3⊕
(2, 3, 5; 1, 3, 6; 0.2, 3, 6.2)× 8⊕ (2, 4, 6; 1, 4, 7; 0.1, 4, 7.2)× 1⊕
(3, 4, 5; 2, 4, 8; 0.1, 4, 8.2)× 11 = (126, 204, 282; 78, 204, 352; 26.5, 204, 359.7)

Conclusion:

In the proposed method, the new algorithm for finding optimal solution for the transporta-

tion problem under neutrosophic environment by Vogel’s approximation method is established.

The final results of the stated approach are investigated through a numerical example. Using

this concept, the comparision between existing methods and proposed method and various

applications in neutrosophic transportaion problems will be carried out in future.
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Abstract. Point estimates in survey sampling only provide a single value for the parameter being studied

and are consequently vulnerable to changes caused by sampling error. In order to cope with ambiguity, inde-

terminacy, and uncertainty in data, Florentin Smarandache’s neutrosophic technique, which generates interval

estimates with high probability, offers a helpful solution. To estimate the neutrosophic population mean of the

studied variable, this research provides new neutrosophic factor type exponential estimators using well-known

neutrosophic auxiliary parameters. For the first-degree of approximation, the study derives the bias and Mean

Squared Error (MSE) of the proposed estimators. Characterising constants have neutrosophic optimal values,

and for these optimum values, the least value of the neutrosophic MSE is obtained. Notably, the proposed neu-

trosophic estimators outperform the corresponding adapted classical estimators since their estimated interval

falls under the minimal MSE and lies within the estimated interval of the proposed neutrosophic estimators.

The theoretical results are supported by empirical data from real data sets acquired by the “Ministry of Earth

Sciences” and the “India Meteorological Department (IMD), Pune, India,” as well as simulated data sets pro-

duced via Neutrosophic Normal Distribution. The estimator with the lowest MSE is suggested for practical

applications across many domains, providing greater accuracy and reliability in parameter estimation when

utilising the neutrosophic methodology.

Keywords: Neutrosophic Statistics, Bias, Mean Square Error, Auxiliary information, Exponential Estimator,

Factor-type Estimator, Two-Phase Sampling, Relative Efficiency (%).

—————————————————————————————————————————-

1. Introduction

Sampling becomes a crucial method in scientific study when dealing with big populations

and having time and resource constraints. In these situations, we use statistical techniques

and estimators to estimate the relevant parameters of interest. The sample mean (ȳ), which

approximates the population mean (Ȳ ) of the study variable Y, is one of the most often used

estimators. The sample mean is a fair estimator of the population mean, but because of the

sample mean’s potential for significant estimation variability, the sampling distribution may
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not be highly representative of the real population mean Ȳ . Therefore, even if adding a little

amount of bias, researchers look for ways to increase the precision and accuracy of estimators.

Incorporating data from auxiliary variables (X) that show significant positive or negative

relationships with the study variable Y is one efficient method to do this. We may improve the

effectiveness of the estimators by taking use of the correlation between the study variable and

these auxiliary variables. The ratio as well as product methods of estimate are two common

approaches for using the auxiliary variable information. The ratio between the study variable

and the auxiliary variable is calculated in the ratio method to determine estimators. Estimators

are created using the product consider by multiplying the study variable by the auxiliary

variable. These methods work especially well when the line of regression crosses the origin.

The regression technique of estimation, however, is better suited when the regression line does

not cross the origin. It entails fitting a regression line to the study variable and any auxiliary

variables, then estimating the population parameter using the regression equation. Due to

its adaptability and extensive applicability, the ratio approach is frequently used in practical

applications. It is used in a variety of sectors including agriculture to estimate crop yields,

economics to evaluate revenue and investment, and healthcare to examine hospital facilities

and health indicators. As scientific investigation advances, one current area of emphasis is the

estimate of population parameters utilising known auxiliary variables with positive relations.

With more precise and trustworthy insights into the underlying population features, this study

intends to expand and improve estimating approaches.

In classical sampling theory, estimating methods for the population parameter Y employ a

variety of methodologies, including ratio, product, and regression type estimators, when the

data consists of precise numerical values. Several researchers in the discipline of classical sta-

tistics are devoting their efforts to developing and refining various estimators for Y, especially

when information on the auxiliary variable X is available. The conventional ratio estimator,

which makes use of a positively correlated auxiliary variable called X, was one of the ground-

breaking developments in classical sampling theory introduced by Cochran [1]. As an auxiliary

parameter, we are using the known population mean (X̄) of X. Based on this, later scholars

investigated how to improve the estimation of Y by incorporating widely used auxiliary factors

including the coefficient of variation (CV), coefficient of skewness, coefficient of kurtosis, stan-

dard deviation, quartiles, and others. As an illustration, Sisodia and Dwivedi [2] developed a

modified ratio estimator for Ȳ based on the known CV of X, and Bahl and Tuteja [3] offered

an exponential ratio estimator using the known CV of X to achieve enhanced estimate of Ȳ .

Upadhyaya and Singh [4] provided two ratio estimators that both sought to more accurately

estimate Ȳ using the given coefficient of kurtosis and CV of X. Similar to Upadhyaya and

Singh [4], Singh and Tailor [5] concentrated on using the established population correlation
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coefficient between Y and X to enhance Ȳ estimations, demonstrating superior outcomes to

other estimators. The ratio estimator has to be changed in order to progress the estimation

of Ȳ . To boost the estimate of Ȳ , Singh et al. [6] provided modifications based on the well-

known kurtosis coefficient of X, and Kadilar and Cingi [7] proposed a number of modified

ratio estimators depending on well-known data regarding well-known auxiliary parameters.

Using the given skewness and kurtosis of X, Yan and Tian [8] proposed two ratio type esti-

mators for Ȳ , which outperformed competing estimators. A method for improved estimate of

the population mean Ȳ employing auxiliary parameters associated with the characteristic was

provided in Singh and Solanki [9]. Yadav and kadilar [10] worked on improving a family of

ratio and product estimations for Y with known parameters of X, While Grover and Kaur [11]

concentrated on a general family of estimators for Ȳ using transformed X. Vishwakarma and

Kumar [12] proposed a generalised family of known auxiliary parameters-based dual to ratio-

cum-product estimators for Ȳ . Cekim and Cingi [13] used the lowest and maximum values of

linear adjustments of X to create a unique ratio estimate for Ȳ . Both Subzar et al. [14] and

Yadav et al. [15] offered new families of Ȳ estimators in accordance with the known population

median of the study variable, demonstrating receives over competing estimators. Subzar et

al. [14] produced numerous effective estimators for Ȳ using auxiliary parameters. The next

step forward came from Zaman and Dunder [16], who suggested an entirely novel modified

ratio type estimator built on the exponential parameter of an auxiliary variable. To increase

the effectiveness of the estimators, Yadav et al. [17] proposed an improved family of Ȳ es-

timators employing known Y and X parameters. In their estimation technique, Yadav and

Zaman [18] used well-known traditional as well as non-traditional auxiliary variables. These

efforts are only a fraction of the numerous attempts made by numerous authors to improve

Ȳ estimate within the framework of classical sampling theory utilising known data regarding

both traditional along with non-traditional, robust and non-robust auxiliary variables. The

hunt for more precise and effective estimators is still an active and developing subject of study

in this discipline.

1.1. Research Gap

The standard presumption of classical sampling theory is that the data are deterministic

and that there is no uncertainty in the measurements of the observable features. However, in

actual settings, we frequently come across data for the properties that are being investigated

that are not properly specified. This happens across a number of industries, namely infor-

mation technology, systems for decision-making, financial data analysis, much more. Fuzzy

logic, developed by Prof. Lofti A. Zadeh [19] in 1965, gives a method for addressing situ-

ations when precise measurements are not available. Dealing with such indeterminate data
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demands alternative ways. Fuzzy logic can handle confusing, murky, or inaccurate data, but

it does not completely take into account measures that are not known in advance. Contrarily,

neurosophic logic expands fuzzy logic to take into consideration both the determinate along

with indeterminate aspects of observations, which is especially useful when working with un-

certain or ambiguous data. Fuzzy and neutrosophic logic have been created and extensively

used in numerous applications for decision-making and other operations. When there is any

degree of indeterminacy in the data, neutrosophic statistics, a derivative of classical statis-

tics, takes into action. It is used when observations made about the population or sample

are hazy, ambiguous, or imprecise. In systems with uncertainty, neutrosophic statistics are

especially helpful because they enable the interpretation of neutrosophic data in situations

where the sample size might not be ideal. Numerous applications of neutrosophic statistics

have been used by researchers. It has been applied to analyse impacts, make group decisions,

analyse medical data, estimate variables, track traffic accidents, create goodness-of-fit tests,

research wind speed distributions, and make judgements in challenging situations with un-

knowns. Ultimately, fuzzy and neutrosophic logic along with statistics provide useful tools

for handling ambiguous and imprecise data in real-world situations, enabling researchers and

decision-makers to conduct more thorough and accurate studies and make better choices in

challenging situations. In comparison to the fuzzy set, the neutrosophic set has performed

better when handling uncertainty in practical settings. Neutosophic parameterized hypersoft

set theory has been studied for its potential as a useful tool for applications involving decision-

making. They have created cutting-edge decision-making techniques that can successfully

manage uncertainty in complicated situations by introducing and examining the neutrosophic

parameterized hypersoft set along with its basic properties and functions. Traditional ap-

proaches in statistical analysis may be inadequate when working with interval-valued data

and uncertain situations. Modified Sign tests that take into account both the real form of

the observations and the ambiguous nature of the data have been presented as a solution to

this problem. These enhancements’ appropriateness for nonparametric decision-making with

interval-valued data has been tested using real-world data sets. Particular difficulties have

been encountered in the diagnostic and decision-making processes in the medical area. Re-

searchers have developed methods based on the generalisation of multipolar neutrosophic soft

sets to overcome these challenges. These methods include informational measurements like

distance, similarities, and correlation coefficient to offer a thorough framework for making de-

cisions in the face of ambiguity. Single-valued brittle estimates may produce inaccurate and

skewed results in conventional survey sample studies when data is presumed to be certain

and clear. Since neutrosophic data frequently appears in real-world circumstances, Neutro-

sophic statistics becomes a useful alternative to conventional methods. It is a useful option
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in a range of scenarios where standard approaches would not be enough due to its capacity

to manage indeterminacy and uncertainty. Neutosophic data, where data from experiments

or populations may be expressed as interval-valued neutrosophic numbers, is characterised by

ambiguous and contradictory values, non-clear contentions, and inaccurate interval values. In

real-world situations, ambiguous data predominates over definite data. As a result, statistical

methods that can properly handle neutrosophic data are becoming more and more important.

1.2. Scope of the Neutrosophic Study

The act of acquiring data for various variables in research can be expensive, especially when

working with unclear or confusing data. Traditional techniques can be costly and danger-

ous when attempting to estimate genuine parameter values in the context of uncertain data.

However, neutrosophic statistical computation provides a way to investigate data that is uncer-

tain or for which there is inadequate information, taking into account competing viewpoints.

Traditional statistics are unable to do an accurate analysis of the data due to the problem

of indeterminacy, where some observations fall within a range of uncertain values. Neuto-

sophic statistics, which are adaptable and all-encompassing, replace traditional statistics in

such unsettling situations. While several research have been conducted in sample surveys to

investigate neutrosophy, the particular use of ratio estimation with neutrosophic data is pretty

new and requires substantial attention to meet the issues given by uncertain data systems.

Numerous situations in the actual world find use for neutrosophic estimators. Neutosophic

statistics may be superior to conventional techniques, for instance, in analysing machine prod-

uct measurements with small errors or evaluating health parameters through various testing

processes. When observations of the research variable are not deterministic but rather non-

deterministic, reflecting the intrinsic uncertainties present, the use of neutrosophic estimators

enables improved estimate of population means.

Although fuzzy statistics solves the issues raised by ambiguous, confusing, or imprecise data,

indeterminate measures are not taken into account. Neutosophic logic, on the other hand,

extends fuzzy logic more broadly by include both the determinate and indeterminate parts of

observations. Analysis of situations involving ambiguous or inaccurate observations makes use

of neutrosophic logic Aslam ( [20] & [21]). Bellman and Zadeh [22] employed this strategy to

improve decision-making precision. Different approaches based on fuzzy logic then started to

appear, and they now play a big part in decision-making across many different areas. Similar

to Liu and Mahmood [23], who proposed the idea of advanced fuzzy sets and showed how they

might be expanded to create complicated neutrosophic sets. Interval-valued neutrosophic sets

were used in a framework described by Li et al. [24] that displayed fuzzy sets together with

their generalisations and aided decision-making. Aslam [25] included neutrosophic statistics
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in the investigation of skewness and kurtosis estimators for wind speed distributions under

uncertainty. Chinnadurai and Bharathivelan [26] developed a paradigm for making decisions

that favours badly damaged machines when assessing damages in a neutrosophic environment.

Mohanta and Pal [27] proposed a number of single-valued neutrosophic graph (SVNG)-related

ideas while emphasising the significance of fuzzy and neutrosophic sets in reducing uncertainty

in real-world contexts. Zulqarnain et al. [28] concentrated on algorithms for generalised multi-

polar neutrosophic soft sets with information measures to address issues in medical diagnosis

and decision-making. They developed the idea of multipolar neutrosophic soft sets by in-

troducing several informational metrics for hypothetical decision-making situations. Tahir et

al. [29] emphasised the drawbacks of conventional survey sample studies that rely on precise

and definite data, and it promoted the use of neutrosophic statistics in situations where the

data exhibits such features. Neutrosophic data includes ambiguous and uncertain variable

values, unclear statements, and erratic interval values. Data of this kind can be represented as

interval-valued neutrosophic numbers, where initially uncertain observed values are assumed

to fall within predetermined ranges. Neutosophic statistical methods must be developed and

used since uncertain data are common in real-world situations. It can be expensive to collect

data for various study variables, especially when dealing with unclear data. Therefore, using

conventional techniques to determine unknown actual parameter values from uncertain data

can be expensive and risky.

These factors were taken into account when Tahir et al. [29] first developed a neutrosophic

ratio-type estimate technique. For analysing data with uncertainty, limited information, and

opposing beliefs, neutral statistical analysis is useful. When observations fall inside an un-

defined value range, traditional statistics have trouble. In such circumstances, neutrosophic

statistics act as a versatile and all-encompassing replacement for classical statistics. The ratio

estimate approach is still relatively new in the field of sample surveys under Neutrosophy and

needs additional consideration when dealing with unreliable data systems. For instance, neu-

trosophic statistics may be preferable to conventional methods for measurements of machine

goods with small faults or health metrics acquired from various testing techniques. When deal-

ing with nondeterministic observations of study variables, Neutrosophic estimators frequently

outperform classical estimators.

1.3. Flow Chart of the Proposed Study

The provided flowchart (Figure - 1) presents demonstrations of the suggested factor type

exponential estimators that fall within the aforementioned group of estimators. Divergent neu-

trosophic exponential estimators are obtained depending on the different values of d. With the
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use of neutrosophic statistics and by expanding on the concepts offered by Yadav and Smaran-

dache [30], this study develops a unique method for factor type exponential estimators. We

may modify the estimators to fit certain circumstances and gain greater performance in a

number of applications by carefully selecting the values of d. As a result of the study’s use of

neutrosophic statistics, the estimate procedure gains a distinctive component that enhances its

adaptability to ambiguous or indeterminate data. A similar strategy may have a big influence

on a number of fields, including economics, engineering, and social sciences. To evaluate these

neutrosophic estimators’ performance to more established techniques, empirical assessments

are essential. Under specified circumstances, the suggested factor type neutrosophic exponen-

tial estimators demonstrate promise in terms of providing accurate and dependable estimates,

making a significant addition to the area of statistics. It is necessary to do further study in this

field to fully explore the possibilities of factor type exponential estimators and neutrosophic

statistics, opening the way for improvements in statistical estimation and analysis.
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Figure 1. Flow Chart of the Proposed Study In Neutrosophic Framework.

1.4. Observations and Terminology in Neutrosophic Statistics

One of the main observations inside the neutrosophic environment is the use of quantita-

tive neutrosophic data, where a number may live within an unknown interval [NΦL, NΦU ].

Interval values of neutrosophic numbers can be stated in numerous ways. Neutosophic inter-

val values are specifically specified in Yadav and Smarandache [30] as Z(NΦ) = Z(NΦL) +

Z(NΦU )I(NΦ), where I(NΦ) ∈ [I(NΦL), I(NΦU )]. For the considered neutrosophic data, we

use the same notations as Yadav and Smarandache [30], which take the interval form as

Z(NΦ) ∈ [Z(NΦL), Z(NΦU )], where Z(NΦL) and Z(NΦU ) indicate the respective Lower and

Upper values of the neutrosophic variable Z(NΦL,NΦU ). We use the simple random sam-

pling without replacement (SRSWOR) approach to extract a neutrosophic random sample

of size n(NΦ) ∈ [n(NΦL), n(NΦU )] from the aforementioned population under the assumption
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that the neutrosophic population consists of N(NΦ) ∈ [N(NΦL), N(NΦU )] unique units. For

the neutrosophic data under discussion, each observation on the ith unit of the sample for

the study variable is designated as Y(NΦ) ∈ [Y(NΦL), Y(NΦU )], and the secondary variable

X(NΦ) ∈ [X(NΦL), X(NΦU )]. we define Ȳ(NΦ) =
1
N

∑N(NΦ)

i=1 Yi(NΦ)
and X̄(NΦ) =

1
N

∑N(NΦ)

i=1 Xi(NΦ)

as the population means for the neutrosophic variables Y(NΦ) and X(NΦ), respectively, act-

ing as the overall averages of the neutrosophic data set. The neutrosophic study variable

Y(NΦ) has a sample mean of ȳ(NΦ) = 1
n

∑n(NΦ)

i=1 yi(NΦ)
and X(NΦ), has a sample mean of

x̄(NΦ) = 1
N

∑n(NΦ)

i=1 xi(NΦ)
. Additionally, The neutrosophic coefficients of variation for Y(NΦ)

and X(NΦ) are given as Cy(NΦ)
and Cx(NΦ)

, respectively. Additionally, the correlation co-

efficient between the neutrosophic variables Y(NΦ) and X(NΦ) denoted as ρy(NΦ)x(NΦ)
. The

neutrosophic coefficients of skewness and kurtosis for the neutrosophic variable X(NΦ) are

calculated as β1(x(NΦ)) and β2(x(NΦ)) , respectively.

When the value of X̄(NΦ) is unavailable or unknown, the technique of a two-phase sampling

is used in neutrosophic framework to estimate the population mean, denoted as y(NΦ). To

choose the required sample in the neutrosophic double sampling technique, the following steps

are taken:

Case I: A large sample, designated as S', is drawn over the population employing SRSWOR,

having a size of n'(NΦ), (n'(NΦ) being less than N '(NΦ)). This sample is used to collect

observations that are entirely connected to the auxiliary variable x(NΦ), with the goal of

estimating the population mean X̄(NΦ) associated with this auxiliary variable.

Case II: A sample with the symbol S and a size of n(NΦ) is chosen, where (n(NΦ) < N(NΦ)).

This sample is taken directly from the population, which has the size N(NΦ), or from the set

of S' characters. This sample’s goal is to collect data on both the primary neutrosophic study

variable and the secondary neutrosophic auxiliary variable.

Employing the neutrosophic framework, we are adopting this approach to research. The

corresponding sample mean, particularly is provided by, is the best estimate for the population

mean.

t0(NΦ)
= ȳ(NΦ) (1)

We are introducing the subsequent expression within the framework of neutrosophic statistics.

The variance of t0(NΦ)
is obtained as follows:

V (t0(NΦ)
) = γ(NΦ)Ȳ

2
(NΦ)C

2
y(NΦ)

(2)

where,

γ(NΦ) =
1

n(NΦ)
− 1

N(NΦ)
, Cy(NΦ)

=
Sy(NΦ)

Ȳ(NΦ)
and S2

y(NΦ)
= 1

N(NΦ)−1

∑N(NΦ)

i=1 (yi(NΦ)
− Ȳ(NΦ))

2.

We are incorporating the following idea into the framework of neutrosophic statistics. In

the setting of simple random sampling, Cochran [2] proposed a conventional estimate of the
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population mean using auxiliary data. To improve our understanding, this strategy is being

included into the design of neutrosophic statistics.

tR(NΦ)
= ȳ(NΦ)

(
X̄(NΦ)

x̄(NΦ)

)
(3)

In this study, a new neutrosophic factor type exponential estimator is introduced for improving

the estimate of the parameter YNϕ utilising known XNϕ parameter values. In the first degree

of approximation, the sample characteristics of the suggested estimator are investigated.

• This article introduces Florentin Smarandache’s neutrosophic technique in Two Phase

survey sampling.

• Addresses ambiguity, indeterminacy, and uncertainty in data.

• Proposes new estimators for neutrosophic population mean.

• Utilizes well-known neutrosophic auxiliary parameters.

• Derives bias and MSE for proposed estimators in the first-degree of approximation.

• Identifies optimal values for characterizing constants.

• Validates theoretical findings with real datasets from Earth Sciences and Meteorological

Departments.

• Includes simulated data sets from Neutrosophic Normal Distribution.

Advantages:

• Handles ambiguity and uncertainty in data.

• Optimizes Mean Squared Error for reliability.

• Supported by empirical data from real and simulated sets.

Disadvantages:

• May introduce complexity and pose interpretability challenges.

• Computational burden not discussed.

• Generalizability to various domains requires further investigation.

While previous studies (Including more study for the reference Uma & Nandhitha [31], Jdid &

Smarandache [32], Abdel-Basset et al. [33], Gamal et al. [34,35]) have made strides in neutro-

sophic systems, our study uniquely focuses on two phase survey sampling using Neutrosophic

statistics—an area largely unexplored in survey sampling.

The full paper is divided into sections that include the introduction, some existing adapted es-

timators, proposed estimators, numerical study, simulation study, conclusssion and references.

By adding to the ongoing study of neutrosophic statistical methods and their applications, the

article is divided into these components.

Vinay Kumar Yadav, Shakti Prasad, Neutrosophic Estimators in Two-Phase Survey
Sampling

Neutrosophic Sets and Systems, Vol. 61, 2023                                                                          543



2. Some Existing Estimators

As far as we are aware, this study is a fresh and ground-breaking use of Neutroshopic sta-

tistics that incorporates two-phase sample estimators. To the best of our knowledge, this

is the first thorough investigation of the use of these estimators within the framework of

two phase neutroshopic sampling. The use of two-phase sample approaches in the context of

neutroshopic statistics, a relatively new and specialised discipline, gives up intriguing opportu-

nities for investigation and evaluation. This work presents a cutting-edge strategy to dealing

with complicated data gathering scenarios by integrating the distinctive elements of Neu-

troshopic statistics with the complexities of two-phase sampling. The use of these estimators

in Neutroshopic statistics indicates a forward-thinking and innovative approach to statistical

analysis, paving the way for future advances and discoveries in this rapidly growing subject.

We hope that this new study will benefit the larger scientific community by fostering a better

knowledge of statistical approaches in the context of Neutroshopic sampling. We are using

previously suggested estimators that have been adjusted for neutrosophic two-phase sampling

in this part. This novel method bridges the gap between traditional two-phase sampling and

Neutrosophic statistics, improving population mean estimate in the presence of uncertainties

and missing data.

2.1. Adapted Kumar and Bahl Estimators

We are integrating the conventional ratio estimator for two-phase sampling suggested by

Kumar and Bahl [36] into the Neutroshopic statistical framework. This modification attempts

to boost the accuracy of statistical analysis in this specialised sector by improving population

mean estimate under uncertainty.

tdR(NΦ)
= ȳ(NΦ)

(
x̄1(NΦ)

X̄(NΦ)

)
(4)

where

x̄1(NΦ)
= 1

n(NΦ)'

∑n'(NΦ)

i=1 xi(NΦ)
.

MSE of tdR(NΦ)
, for Case-I and Case-II are given as,

MSE(tdR(NΦ)
)I = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ γ∗∗(NΦ)C
2
x(NΦ)

(1− 2C(NΦ))
]

(5)

MSE(tdR(NΦ)
)II = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ γ∗∗∗(NΦ)C
2
x(NΦ)

− 2γ(NΦ)C(NΦ)C
2
x(NΦ)

]
(6)

where,

γ∗(NΦ) =
(

1
n'(NΦ)

− 1
N(NΦ)

)
, γ∗∗(NΦ) =

(
1

n(NΦ)
− 1

n'(NΦ)

)
, γ∗∗∗(NΦ) =

(
γ(NΦ) + γ∗(NΦ)

)
, Cx(NΦ)

=
Sx(NΦ)

X̄(NΦ)
, C(NΦ) = ρy(NΦ)x(NΦ)

(Cy(NΦ)

Cx(NΦ)

)
,

S2
x(NΦ)

= 1
N(NΦ)−1

∑N(NΦ)

i=1 (xi(NΦ)
− X̄(NΦ))

2, and
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ρy(NΦ)x(NΦ)
= 1

N(NΦ)

∑N(NΦ)

i=1 (yi(NΦ)
− Ȳ(NΦ))(xi(NΦ)

− X̄(NΦ))

2.2. Adapted Singh and Choudhury Estimator

In the context of Neutroshopic statistics, we are using the dual to product estimator of pop-

ulation mean suggested by Singh and Choudhury [37] for two-phase sampling. This specialised

estimator improves population mean estimate in Neutroshopic data and is designed to manage

uncertainties, making statistical studies more trustworthy.

tdP(NΦ)
= ȳ(NΦ)

(
x̄(NΦ)

x̄1(NΦ)

)
(7)

MSE for Case-I and Case-II are given as,

MSE(tdP(NΦ)
)I = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ γ∗∗(NΦ)C
2
x(NΦ)

(1 + 2C(NΦ))
]

(8)

MSE(tdP(NΦ)
)II = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ γ∗∗∗(NΦ)C
2
x(NΦ)

+ 2γ(NΦ)C(NΦ)C
2
x(NΦ)

]
(9)

2.3. Adapted Singh and Vishwakarma Estimators

In the setting of Neutroshopic statistics, we are adopting Singh and Vishwakarma’s [38] sug-

gested exponential type ratio and product estimators. In two-phase sampling circumstances,

these estimators are tailored to manage uncertainties and enhance population mean estimation,

increasing the precision and efficacy of statistical studies in the Neutroshopic setting.

tdRe(NΦ)
= ȳ(NΦ)exp

(
x̄1(NΦ)

− x̄(NΦ)

x̄1(NΦ)
+ x̄(NΦ)

)
(10)

tdPe(NΦ)
= ȳ(NΦ)exp

(
x̄(NΦ) − x̄1(NΦ)

x̄(NΦ) + x̄1(NΦ)

)
(11)

MSE of both the estimators for Case-I and Case-II are given as,

MSE(tdRe(NΦ)
)I = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ γ∗∗(NΦ)C
2
x(NΦ)

(
1

4
− C(NΦ))

]
(12)

MSE(tdRe(NΦ)
)II = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+
1

4
γ∗∗∗(NΦ)C

2
x(NΦ)

− γ(NΦ)C
2
x(NΦ)

C(NΦ)

]
(13)

MSE(tdPe(NΦ)
)I = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ γ∗∗(NΦ)C
2
x(NΦ)

(
1

4
+ C(NΦ))

]
(14)

MSE(tdPe(NΦ)
)II = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+
1

4
γ∗∗∗(NΦ)C

2
x(NΦ)

+ γ(NΦ)C
2
x(NΦ)

C(NΦ)

]
(15)
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2.4. Adapted Kumar and Bahl Estimator

We are using Kumar and Bahl’s [36] dual to ratio estimator for the population mean in

two-phase sampling in the context of Neutroshopic statistics. By addressing uncertainties in

Neutroshopic data, this specialised estimator improves the precision of population mean esti-

mate and makes it possible to make well-informed decisions in challenging sampling situations.

t∗dR(NΦ)
= ȳ(NΦ)

(
x̄∗d(NΦ)

x̄1(NΦ)

)
(16)

MSE for Case-I and Case-II are given as,

MSE(t∗dR(NΦ)
)I = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ g(NΦ)γ
∗∗
(NΦ)C

2
x(NΦ)

(g(NΦ) − 2C(NΦ))
]

(17)

MSE(t∗dR(NΦ)
)II = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ g(NΦ)C
2
x(NΦ)

(g(NΦ)γ
∗∗∗
(NΦ) − 2γ(NΦ)C(NΦ))

]
(18)

where, g(NΦ) =
n(NΦ)

n1(NΦ)
−n(NΦ)

2.5. Adapted Singh and Choudhury Estimator

For two-phase sampling in Neutroshopic statistics, we use Singh and Choudhury’s [37] dual

to product estimator. This estimator is intended to deal with uncertainties in Neutroshopic

data, boosting population mean estimation accuracy and allowing for successful statistical

analysis in complicated sampling settings.

t∗dP(NΦ)
= ȳ(NΦ)

(
x̄1(NΦ)

x̄∗d(NΦ)

)
(19)

MSE for Case-I and Case-II are given as,

MSE(t∗dP(NΦ)
)I = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ g(NΦ)γ
∗∗
(NΦ)C

2
x(NΦ)

(g(NΦ) + 2C(NΦ))
]

(20)

MSE(t∗dP(NΦ)
)II = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ g(NΦ)C
2
x(NΦ)

(g(NΦ)γ
∗∗∗
(NΦ) + 2γ(NΦ)C(NΦ))

]
(21)

2.6. Adapted Kalita and Singh Estimators

In Neutroshopic statistics, we are employing Kalita and Singh’s exponential dual to ratio and

exponential dual to product estimators [39] in two-phase sampling. These estimators manage

uncertainty in Neutroshopic data, improving accuracy and efficacy in challenging sampling

circumstances.

t∗dRe(NΦ)
= ȳ(NΦ)exp

(
x̄∗d(NΦ) − x̄1(NΦ)

x̄∗d(NΦ) + x̄1(NΦ)

)
(22)

t∗dPe(NΦ)
= ȳ(NΦ)exp

(
x̄1(NΦ)

− x̄∗d(NΦ)

x̄1(NΦ)
+ x̄∗d(NΦ)

)
(23)
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MSE of both the estimators for Case-I and Case-II are given as,

MSE(t∗dRe(NΦ)
)I = Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ g(NΦ)γ
∗∗
(NΦ)C

2
x(NΦ)

(
1

4
g(NΦ) − C(NΦ))

]
(24)

MSE(t∗dRe(NΦ)
)II =Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+
1

4
g2(NΦ)γ

∗∗∗
(NΦ)C

2
x(NΦ)

(25)

− γ(NΦ)g(NΦ)C
2
x(NΦ)

C(NΦ)

]
MSE(t∗dPe(NΦ)

)I = Ȳ 2
(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ g(NΦ)γ
∗∗
(NΦ)C

2
x(NΦ)

(
1

4
g(NΦ) + C(NΦ))

]
(26)

MSE(t∗dPe(NΦ)
)II =Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+
1

4
g2(NΦ)γ

∗∗∗
(NΦ)C

2
x(NΦ)

(27)

+ γ(NΦ)g(NΦ)C
2
x(NΦ)

C(NΦ)

]
2.7. Adapted Subhash et al. Estimators

In Neutroshopic statistics, we use Subhash et al. [40] modified ratio and product estimators,

which are based on Kalita and Singh’s work [39]. These estimators deal with uncertainty,

improving population mean estimate in two-phase sampling and so leading to more robust

statistical studies.

ȷ∗dRe(NΦ)
= αȳ(NΦ) + (1− α)t∗dRe(NΦ)

(28)

ȷ∗dPe(NΦ)
= δȳ(NΦ) + (1− δ)t∗dPe(NΦ)

(29)

where, α and δ are the scalars constant.

MSE of both the estimators for Case-I and Case-II are given as,

MSE(ȷ∗dRe(NΦ)
)I =Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ g(NΦ)γ
∗∗
(NΦ)C

2
x(NΦ)

(1
4
g(NΦ) − C(NΦ)

)
(30)

− γ∗∗(NΦ)

A2
(NΦ)

4B(NΦ)

]

MSE(ȷ∗dRe(NΦ)
)II =Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+
g2(NΦ)

4
γ∗∗∗(NΦ)C

2
x(NΦ)

(31)

− g(NΦ)γ(NΦ)C
2
x(NΦ)

C(NΦ) −
A∗2

(NΦ)

4B∗
(NΦ)

]

MSE(ȷ∗dPe(NΦ)
)I =Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+ g(NΦ)γ
∗∗
(NΦ)C

2
x(NΦ)

(
g(NΦ)

4
(32)

+ C(NΦ))− γ∗∗(NΦ)

D2
(NΦ)

4B(NΦ)

]
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MSE(ȷ∗dPe(NΦ)
)II =Ȳ 2

(NΦ)

[
γ(NΦ)C

2
y(NΦ)

+
g2(NΦ)

4
γ∗∗∗(NΦ)C

2
x(NΦ)

(33)

+ g(NΦ)γ(NΦ)C
2
x(NΦ)

C(NΦ) −
D∗2

(NΦ)

4B∗
(NΦ)

]
Where

A(NΦ) = C2
x(NΦ)

(g(NΦ) − 2C(NΦ)), B(NΦ) = C2
x(NΦ)

, D(NΦ) = C2
x(NΦ)

(g(NΦ) + 2C(NΦ)),

A∗
(NΦ) = g(NΦ)γ

∗∗∗
(NΦ)C

2
x(NΦ)

− 2γ(NΦ)C
2
x(NΦ)

C(NΦ), B
∗
(NΦ) = γ∗∗∗(NΦ)C

2
x(NΦ)

,

D∗
(NΦ) = g(NΦ)γ

∗∗∗
(NΦ)C

2
x(NΦ)

+ 2γ(NΦ)C
2
x(NΦ)

C(NΦ) and g(NΦ) =
n(NΦ)

n1(NΦ)
−n(NΦ)

3. Proposed Estimators

We have presented a generalised class of factor-type estimators for two-phase sampling in

the setting of Neutroshopic statistics, building on previous work and driven by the generic

character of exponential and factor type estimators. This new family of estimators is designed

particularly to deal with the uncertainties and difficulties inherent with Neutroshopic. We

want to improve the accuracy and reliability of population mean estimate and progress statis-

tical studies in the field of Neutroshopic statistics by introducing this novel technique. This

suggestion contributes significantly to the knowledge and use of statistical approaches in the

field of Neutroshopic two-phase sampling.

ℑyp
ft(NΦ)

= ȳ(NΦ)

[
(A+ c)x̄1(NΦ)

+ f(NΦ)Bx̄(NΦ)

(A+ f(NΦ)B)x̄1(NΦ)
+ Cx̄(NΦ)

]α
exp

{
a(x̄1(NΦ)

− x̄(NΦ))

a(x̄1(NΦ)
+ x̄(NΦ)) + 2b

}
(34)

where, A = (d − 1)(d − 2); B = (d − 1)(d − 4); C = (d − 2)(d − 3)(d − 4), α and d are the

characterizing scalars, (a ̸=0, b) are real constants or functions of populations parameters of

the known auxiliary variable. For the fixed value of α, we get some generalized exponential

estimators for different values of d, which is dicuss later on in this Section as a particular cases.

Members of this class of proposed neutrosophic estimators are given in Table 5.

Note:

(i) For α = 0, in eqaution (34) our proposed estimator ℑyp
ft(NΦ)

reduces to modified exponential

estimators for suitable values of (a ̸=0, b) members of this class of neutrosophic estimators are

given in Tables [9 & 14].

ℑyp
exp(NΦ)

= ȳ(NΦ)exp

{
a(x̄1(NΦ)

− x̄(NΦ))

a(x̄1(NΦ)
+ x̄(NΦ)) + 2b

}
(35)

(ii) For α = 1, in equation (34) our proposed estimator ℑyp
ft(NΦ)

reduces to genralized factor

type ratio exponential estimators for suitable values of (a ̸=0, b) members of this class of

neutrosophic estimators are given in Tables [10].

ℑyp
vk(NΦ)

= ȳ(NΦ)

[
(A+ c)x̄1(NΦ)

+ f(NΦ)Bx̄(NΦ)

(A+ f(NΦ)B)x̄1(NΦ)
+ Cx̄(NΦ)

]
exp

{
a(x̄1(NΦ)

− x̄(NΦ))

a(x̄1(NΦ)
+ x̄(NΦ)) + 2b

}
(36)
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Members of this class of proposed neutrosophic estimators are given in Table 10. Particular

Cases of Proposed Estimator:

(1) When d = 1 in the values of A, B and C in equation (34) estimator ℑyp
ft(NΦ)

takes the form

as

ℑRe
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
a(x̄1(NΦ)

−x̄(NΦ))

a(x̄1(NΦ)
+x̄(NΦ))+2b

}
which is generalised ratio type exponetial estimators in two phase sampling. For suitable

values of (a ̸=0, b), members of proposed neutrosophic estimators ℑRe
ft(NΦ)

are given in Table

[6].

(2) When d = 2 in the values of A, B and C in equation (34) estimator ℑyp
ft(NΦ)

takes the form

as

ℑPe
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
a(x̄1(NΦ)

−x̄(NΦ))

a(x̄1(NΦ)
+x̄(NΦ))+2b

}
which is generalised product type exponetial estimators in two phase sampling. For suitable

values of (a ̸=0, b), members of proposed neutrosophic estimators ℑPe
ft(NΦ)

are given in Table

[7].

(3) When d = 3 in the values of A, B and C in equation (34) estimator ℑyp
ft(NΦ)

takes the form

as

ℑDR
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−fx̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
a(x̄1(NΦ)

−x̄(NΦ))

a(x̄1(NΦ)
+x̄(NΦ))+2b

}
which is generalised dual to ratio type exponetial estimators in two phase sampling. For

suitable values of (a̸=0, b), members of proposed neutrosophic estimators ℑDR
ft(NΦ)

are given in

Table [8].

(4) When d = 4 in the values of A, B and C in equation (34) estimator ℑyp
ft(NΦ)

takes the form

as

ℑexp
ft(NΦ)

= ȳ(NΦ)exp

{
a(x̄1(NΦ)

−x̄(NΦ))

a(x̄1(NΦ)
+x̄(NΦ))+2b

}
which is generalised ratio type exponetial estimators in two phase sampling. For suitable

values of (a ̸=0, b), members of proposed neutrosophic estimators ℑexp
ft(NΦ)

are given in Table

[9].

Similarly, Particular Cases of Proposed Estimator when α = 1:

(1) When d = 1 in the values of A, B and C in equation (36) estimator ℑyp
ft(NΦ)

takes the form

as

ℑRe
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
a(x̄1(NΦ)

−x̄(NΦ))

a(x̄1(NΦ)
+x̄(NΦ))+2b

}
which is generalised ratio type exponetial estimators in two phase sampling. For suitable

values of (a ̸=0, b), members of proposed neutrosophic estimators ℑRe
ft(NΦ)

are given in Table

[11].

(2) When d = 2 in the values of A, B and C in equation (36) estimator ℑyp
ft(NΦ)

takes the form

as

ℑPe
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
a(x̄1(NΦ)

−x̄(NΦ))

a(x̄1(NΦ)
+x̄(NΦ))+2b

}
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which is generalised product type exponetial estimators in two phase sampling. For suitable

values of (a ̸=0, b), members of proposed neutrosophic estimators ℑPe
ft(NΦ)

are given in Table

[12].

(3) When d = 3 in the values of A, B and C in equation (36) estimator ℑyp
ft(NΦ)

takes the form

as

ℑDR
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−fx̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
a(x̄1(NΦ)

−x̄(NΦ))

a(x̄1(NΦ)
+x̄(NΦ))+2b

}
which is generalised dual to ratio type exponetial estimators in two phase sampling. For

suitable values of (a̸=0, b), members of proposed neutrosophic estimators ℑDR
ft(NΦ)

are given in

Table [13].

(4) When d = 4 in the values of A, B and C in equation (36) estimator ℑyp
ft(NΦ)

takes the form

as

ℑexp
vk(NΦ)

= ȳ(NΦ)exp

{
a(x̄1(NΦ)

−x̄(NΦ))

a(x̄1(NΦ)
+x̄(NΦ))+2b

}
which is generalised ratio type exponetial ratio estimators in two phase sampling. For suitable

values of (a ̸=0, b), members of proposed neutrosophic estimators ℑexp
ft(NΦ)

are given in Table

[14].

4. Bias and MSE

To derive the expressions of Bias and MSE we have following two cases for the proposed

class of estimators.

Case I: A large sample, designated as S', is drawn over the population employing SRSWOR,

having a size of n'(NΦ), (n'(NΦ) being less than N '(NΦ)). This sample is used to collect

observations that are entirely connected to the auxiliary variable x(NΦ), with the goal of

estimating the population mean X̄(NΦ) associated with this auxiliary variable.

Case II: A sample with the symbol S and a size of n(NΦ) is chosen, where (n(NΦ) < N(NΦ)).

This sample is taken directly from the population, which has the size N(NΦ), or from the set

of S' characters. This sample’s goal is to collect data on both the primary neutrosophic study

variable and the secondary neutrosophic auxiliary variable.

4.1. Case I

To derive the expression for Bias and MSE for Case I, consider the following transformations

as follows

ȳ(NΦ) = Ȳ(NΦ)(1 + e0(NΦ)
), x̄(NΦ) = X̄(NΦ)(1 + e1(NΦ)

), and x̄1(NΦ)
= X̄(NΦ)(1 + e2(NΦ)

)

such that E(e0(NΦ)
) = E(e1(NΦ)

) = E(e2(NΦ)
) = 0 and E(e20(NΦ)

) = γ(NΦ)C
2
y(NΦ)

,

E(e21(NΦ)
) = γ(NΦ)C

2
x(NΦ)

, E(e22(NΦ)
) = γ∗(NΦ)C

2
x(NΦ)

, E(e0(NΦ)
e1(NΦ)

) = γ(NΦ)C(NΦ)C
2
x(NΦ)

,

E(e0(NΦ)
e2(NΦ)

) = γ∗(NΦ)C(NΦ)C
2
x(NΦ)

, E(e1(NΦ)
e2(NΦ)

) = γ∗(NΦ)C
2
x(NΦ)

,
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γ(NΦ) =
(

1
n(NΦ)

− 1
N(NΦ)

)
, γ∗(NΦ) =

(
1

n1(NΦ)
− 1

N(NΦ)

)
, γ∗∗(NΦ) = γ(NΦ) − γ∗(NΦ) =(

1
n(NΦ)

− 1
n1(NΦ)

)
, C(NΦ) = ρy(NΦ)x(NΦ)

Cy(NΦ)

Cx(NΦ)
and g(NΦ) =

n(NΦ)

n1(NΦ)
−n(NΦ)

under the above transformations and from equation (34) expressing estimators in terms of e’s,

we get

ℑyp
ft(NΦ)

=Ȳ(NΦ)(1 + e0(NΦ)
)

[
(A+ c)X̄(NΦ)(1 + e2(NΦ)

) + f(NΦ)BX̄(NΦ)(1 + e1(NΦ)
)

(A+ f(NΦ)B)X̄(NΦ)(1 + e2(NΦ)
) + CX̄(NΦ)(1 + e1(NΦ)

)

]α
(37)

exp

{
a(X̄(NΦ)(1 + e2(NΦ)

)− X̄(NΦ)(1 + e1(NΦ)
))

a(X̄(NΦ)(1 + e2(NΦ)
) + X̄(NΦ)(1 + e1(NΦ)

)) + 2b

}

on simplyfying we get

ℑyp
ft(NΦ)

− Ȳ(NΦ) =Ȳ(NΦ)

[
e0(NΦ)

+ e1(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
− e2(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
(38)

+ e21(NΦ)

(
− αξ(NΦ)ϕ2(NΦ)

+
α(α− 1)

2
ξ2(NΦ) −

αξ(NΦ)k(NΦ)

2
+

3

8
k2(NΦ)

)
+ e22(NΦ)

(
αξ(NΦ)ϕ4(NΦ)

+
α(α− 1)

2
ξ2(NΦ) −

αξ(NΦ)k(NΦ)

2
−

k2(NΦ)

8

)
+ e0(NΦ)

e1(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
− e0(NΦ)

e2(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
+ e1(NΦ)

e2(NΦ)

(
αξ(NΦ)ϕ4(NΦ)

− αξ(NΦ)ϕ4(NΦ)
− α(α− 1)ξ2(NΦ)

+ αξ(NΦ)k(NΦ) −
k2(NΦ)

4

)]

where ϕ1(NΦ)
=

f(NΦ)B

A+f(NΦ)B+c , ϕ2(NΦ)
= C

A+f(NΦ)B+c , ϕ3(NΦ)
= A+C

A+f(NΦ)B+c , ϕ4(NΦ)
=

A+f(NΦ)B

A+f(NΦ)B+c ,

ξ(NΦ) = ϕ1(NΦ)
− ϕ2(NΦ)

= ϕ4(NΦ)
− ϕ3(NΦ)

and k(NΦ) =
(

aX̄(NΦ)

aX̄(NΦ)+b

)
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To obtain Bias of the estimators we will take expectation of equation (38) and then by sub-

stituting the value of the considered transformations, we get

Bias[ℑyp
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(
− αξ(NΦ)ϕ2(NΦ)

− α(α− 1)

2
ξ2(NΦ) (39)

−
αξ(NΦ)k(NΦ)

2
+

3

8
k2(NΦ)

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
αξ(NΦ)ϕ4(NΦ)

+
α(α− 1)

2
ξ2(NΦ) −

αξ(NΦ)k(NΦ)

2
−

k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρCy(NΦ)

Cx(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρCy(NΦ)

Cx(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
− α(α− 1)ξ2(NΦ) + αξ(NΦ)k(NΦ)

−
k2(NΦ)

4

)]

Squaring both sides of the equation (38) and then taking expectation on both sides, the MSE

will take the structure as

MSE[ℑyp
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
αξ(NΦ) −

k(NΦ)

2

)2( 1

n(NΦ)

− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
αξ(NΦ) −

k(NΦ)

2

)( 1

n(NΦ)

− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(40)

Now , we can obtain the optimal value of α by differentiating equation (40) with respect to α

and equating its to zero we will get

α =
1

ξ(NΦ)

{
k(NΦ)

2
− ρ(NΦ)

Cy(NΦ)

Cx(NΦ)

}
(41)

we can get the minimum MSE of ℑyp
ft(NΦ)

by substituting the value of α in equation (40)

MSE[ℑyp
ft ]min(NΦ)

= Ȳ 2
(NΦ)

[
C2
y(NΦ)

(γ(NΦ) − γ∗∗(NΦ)ρ
2
(NΦ))

]
(42)
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4.1.1. Properties of the particular cases of the proposed estimators

(i) When d = 1 in the values of A, B and C, ℑyp
ft(NΦ)

becomes ℑRe
ft(NΦ)

Bias of the estimator ℑRe
ft(NΦ)

:

Bias[ℑRe
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(
α− α(α− 1)

2
+

αk(NΦ)

2
+

3

8
k2(NΦ)

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(α(α− 1)

2
+

αk(NΦ)

2
−

k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
− α−

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
− α−

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
− α(α− 1)− αk(NΦ) −

k2(NΦ)

4

)]
(43)

MSE of the estimator ℑRe
ft(NΦ)

:

MSE[ℑRe
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
− α−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
− α−

k(NΦ)

2

)( 1

n(NΦ)
− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(44)

Optimal values of α

α = −

{
k(NΦ)

2
− ρ(NΦ)

Cy(NΦ)

Cx(NΦ)

}
(45)

Minimum MSE of the estimator ℑRe
ft(NΦ)

:

MSE[ℑRe
ft ]min(NΦ)

= Ȳ 2
(NΦ)

[
C2
y(NΦ)

(γ(NΦ) − γ∗∗(NΦ)ρ
2
(NΦ))

]
(46)

(ii) When d = 2 in the values of A, B and C, ℑyp
ft(NΦ)

becomes ℑPe
ft(NΦ)

Bias of the estimator ℑPe
ft(NΦ)

:

Bias[ℑPe
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(
− α(α− 1)

2
−

αk(NΦ)

2
+

3

8
k2(NΦ)

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
α+

α(α− 1)

2
− αk

2
−

k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
α−

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
α−

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
− α(α− 1) + αk(NΦ) −

k2(NΦ)

4

)]
(47)
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MSE of the estimator ℑPe
ft(NΦ)

:

MSE[ℑPe
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
α−

k(NΦ)

2

)2( 1

n(NΦ)

− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
α−

k(NΦ)

2

)( 1

n(NΦ)
− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(48)

Optimal values of α

α =

{
k(NΦ)

2
− ρ(NΦ)

Cy(NΦ)

Cx(NΦ)

}
(49)

Minimum MSE of the estimator ℑPe
ft(NΦ)

:

MSE[ℑPe
ft ]min(NΦ)

= Ȳ 2
(NΦ)

[
C2
y(NΦ)

(γ(NΦ) − γ∗∗(NΦ)ρ
2
(NΦ))

]
(50)

(iii) When d = 3 in the values of A, B and C, ℑyp
ft(NΦ)

becomes ℑDR
ft(NΦ)

Bias of the estimator ℑDR
ft(NΦ)

:

Bias[ℑDR
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(
− α(α− 1)

2
ℵ2 −

αℵk(NΦ)

2
+

3

8
k2(NΦ)

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
αℵ+

α(α− 1)

2
ℵ2 −

αℵk(NΦ)

2
−

k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
αℵ −

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
αℵ −

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
− α(α− 1)ℵ2 + αℵk −

k2(NΦ)

4

)]
(51)

Where ℵ =
−n(NΦ)

n1(NΦ)
−n(NΦ)

.

MSE of the estimator ℑDR
ft(NΦ)

:

MSE[ℑDR
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
αℵ −

k(NΦ)

2

)2( 1

n(NΦ)

− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
αℵ −

k(NΦ)

2

)( 1

n(NΦ)
− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(52)

Optimal values of α

α =
1

ℵ

{
k(NΦ)

2
− ρ(NΦ)

Cy(NΦ)

Cx(NΦ)

}
(53)

Minimum MSE of the estimator ℑDR
ft(NΦ)

:

MSE[ℑDR
ft ]min(NΦ)

= Ȳ 2
(NΦ)

[
C2
y(NΦ)

(γ(NΦ) − γ∗∗(NΦ)ρ
2
(NΦ))

]
(54)
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(iv) When d = 4 in the values of A, B and C, ℑyp
ft(NΦ)

becomes ℑexp
ft(NΦ)

Bias of the estimator ℑexp
ft(NΦ)

:

Bias[ℑexp
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(3
8
k2(NΦ)

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
(55)

−
k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
−

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
−

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
−

k2(NΦ)

4

)]
MSE of the estimator ℑexp

ft(NΦ)
:

MSE[ℑyp
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
−

k(NΦ)

2

)( 1

n(NΦ)
− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(56)

Remarks: Similarly, For the proposed Estimator when α = 1

(i) When d = 1 in the values of A, B and C, ℑyp
vk(NΦ)

becomes ℑRe
vk(NΦ)

Bias of the estimator ℑRe
vk(NΦ)

:

Bias[ℑRe
vk(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(
1 +

k(NΦ)

2
+

3

8
k2(NΦ)

)
(57)

+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(k(NΦ)

2
−

k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
− 1−

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
− 1−

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
− k(NΦ) −

k2(NΦ)

4

)]
MSE of the estimator ℑRe

vk(NΦ)
:

MSE[ℑRe
vk(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
− 1−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
− 1−

k(NΦ)

2

)( 1

n(NΦ)
− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(58)
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(ii) When d = 2 in the values of A, B and C, ℑyp
vk(NΦ)

becomes ℑPe
vk(NΦ)

Bias of the estimator ℑPe
vk(NΦ)

:

Bias[ℑPe
vk(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(
−

k(NΦ)

2
+

3

8
k2(NΦ)

)
(59)

+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
1−

k(NΦ)

2
−

k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
1−

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
1−

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
k(NΦ) −

k2(NΦ)

4

)]
MSE of the estimator ℑPe

vk(NΦ)
:

MSE[ℑPe
vk(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
1−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
1−

k(NΦ)

2

)( 1

n(NΦ)
− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(60)

(iii) When d = 3 in the values of A, B and C, ℑyp
vk(NΦ)

becomes ℑDR
vk(NΦ)

Bias of the estimator ℑDR
vk(NΦ)

:

Bias[ℑDR
vk(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(
−

ℵk(NΦ)

2
+

3

8
k2(NΦ)

)
(61)

+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
ℵ −

ℵk(NΦ)

2
−

k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
ℵ −

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
ℵ −

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
ℵk(NΦ) −

k2(NΦ)

4

)]
Where ℵ =

−n(NΦ)

n1(NΦ)
−n(NΦ)

.

MSE of the estimator ℑDR
vk(NΦ)

:

MSE[ℑDR
vk(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
ℵ −

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
ℵ −

k(NΦ)

2

)( 1

n(NΦ)
− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(62)
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(iv) When d = 4 in the values of A, B and C, ℑyp
vk(NΦ)

becomes ℑexp
vk(NΦ)

Bias of the estimator ℑexp
vk(NΦ)

:

Bias[ℑexp
vk(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
x(NΦ)

(3
8
k2(NΦ)

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
(63)

−
k2(NΦ)

8

)
+
( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
−

k(NΦ)

2

)
−
( 1

n1(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

(
−

k(NΦ)

2

)
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
−

k2(NΦ)

4

)]
MSE of the estimator ℑexp

vk(NΦ)
:

MSE[ℑyp
vk(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
−

k(NΦ)

2

)( 1

n(NΦ)
− 1

n1(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(64)

4.2. Case II

To derive the expression for Bias and MSE for Case I, consider the following transformations

as follows

ȳ(NΦ) = Ȳ(NΦ)(1 + e0(NΦ)
), x̄(NΦ) = X̄(NΦ)(1 + e1(NΦ)

), and x̄1(NΦ)
= X̄(NΦ)(1 + e2(NΦ)

)

such that E(e0(NΦ)
) = E(e1(NΦ)

) = E(e2(NΦ)
) = 0 and E(e20(NΦ)

) = γ(NΦ)C
2
y(NΦ)

,

E(e21(NΦ)
) = γ(NΦ)C

2
x(NΦ)

, E(e22(NΦ)
) = γ∗(NΦ)C

2
x(NΦ)

,

E(e0(NΦ)
e1(NΦ)

) = γ(NΦ)C(NΦ)C
2
x(NΦ)

, E(e0(NΦ)
e2(NΦ)

) = 0,

E(e1(NΦ)
e2(NΦ)

) = 0, γ(NΦ) =
(

1
n(NΦ)

− 1
N(NΦ)

)
, γ∗(NΦ) =

(
1

n1(NΦ)
− 1

N(NΦ)

)
,

γ∗∗(NΦ) = γ(NΦ) − γ∗(NΦ) =

(
1

n(NΦ)
− 1

n1(NΦ)

)
,

γ∗∗∗(NΦ) = γ(NΦ) + γ∗(NΦ), C(NΦ) = ρy(NΦ)x(NΦ)

Cy(NΦ)

Cx(NΦ)
and g(NΦ) =

n(NΦ)

n1(NΦ)
−n(NΦ)

under the above transformations and from equation (34) expressing estimators in terms of e’s,

we get

ℑyp
ft(NΦ)

=Ȳ(NΦ)(1 + e0(NΦ)
)

[
(A+ c)X̄(1 + e2(NΦ)

) + f(NΦ)BX̄(NΦ)(1 + e1(NΦ)
)

(A+ f(NΦ)B)X̄(NΦ)(1 + e2(NΦ)
) + CX̄(NΦ)(1 + e1)

]α
(65)

exp

{
a(X̄(NΦ)(1 + e2(NΦ)

)− X̄(NΦ)(1 + e1(NΦ)
))

a(X̄(NΦ)(1 + e2(NΦ)
) + X̄(NΦ)(1 + e1(NΦ)

)) + 2b

}
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on simplyfying we get

ℑyp
ft(NΦ)

− Ȳ(NΦ) =Ȳ(NΦ)

[
e0(NΦ)

+ e1(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
− e2(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
+ e21(NΦ)

(
− αξ(NΦ)ϕ2(NΦ)

+
α(α− 1)

2
ξ2(NΦ) −

αξ(NΦ)k(NΦ)

2
+

3

8
k2(NΦ)

)
+ e22(NΦ)

(
αξ(NΦ)ϕ4(NΦ)

+
α(α− 1)

2
ξ2(NΦ) −

αξ(NΦ)k(NΦ)

2
−

k2(NΦ)

8

)
+ e0(NΦ)

e1(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
− e0(NΦ)

e2(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)
+ e1(NΦ)

e2(NΦ)

(
αξ(NΦ)ϕ4(NΦ)

− αξ(NΦ)ϕ4(NΦ)
− α(α− 1)ξ2(NΦ)

+ αξ(NΦ)k(NΦ) −
k2(NΦ)

4

)]
(66)

To obtain Bias of the estimators we will take expectation of equation (66) and then by sub-

stituting the value of the considered transformations, we get

Bias[ℑyp
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(
− αξ(NΦ)ϕ2(NΦ)

+
α(α− 1)

2
ξ2(NΦ)

−
αξ(NΦ)k(NΦ)

2
+

3

8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
αξ(NΦ) −

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
αξ(NΦ)ϕ4(NΦ)

+
α(α− 1)

2
ξ2(NΦ) −

αξ(NΦ)k(NΦ)

2

−
k2(NΦ)

8

)]
(67)

Squaring both sides of the equation (66) and then taking expectation on both sides, the MSE

will take the structure as

MSE[ℑyp
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
αξ(NΦ) −

k(NΦ)

2

)2( 1

n(NΦ)

− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
αξ(NΦ) −

k(NΦ)

2

)( 1

n(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(68)

Now , we can obtain the optimal value of α by differentiating equation (68) with respect to α

and equating its to zero we will get

α =
1

ξ(NΦ)

{
k(NΦ)

2
− ρ(NΦ)

Cy(NΦ)

Cx(NΦ)

}
(69)

we can get the minimum MSE of ℑyp
ft(NΦ)

by substituting the value of α in equation (68)

MSE[ℑyp
ft(NΦ)

]min = Ȳ 2
(NΦ)C

2
y(NΦ)

γ(NΦ)

[
1−

γ(NΦ)ρ
2

γ∗∗(NΦ)

]
(70)
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4.2.1. Properties of the particular cases of the proposed estimators

(i) When d = 1 in the values of A, B and C, ℑyp
ft(NΦ)

becomes ℑRe
ft(NΦ)

Bias of the estimator ℑRe
ft(NΦ)

:

Bias[ℑyp
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(
α+

α(α− 1)

2
+

αk(NΦ)

2
+

3

8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
− α−

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
+

α(α− 1)

2
+

αk(NΦ)

2
−

k2(NΦ)

8

)]
(71)

MSE of the estimator ℑRe
ft :

MSE[ℑRe
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
− α−

k(NΦ)

2

)2( 1

n(NΦ)

− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
− α−

k(NΦ)

2

)( 1

n(NΦ)

− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(72)

Optimal values of α

α = −

{
k(NΦ)

2
− ρ(NΦ)

Cy(NΦ)

Cx(NΦ)

}
(73)

Minimum MSE of the estimator ℑRe
ft(NΦ)

:

MSE[ℑRe
ft ]min(NΦ)

= Ȳ 2
(NΦ)C

2
y(NΦ)

γ(NΦ)

[
1−

γ(NΦ)ρ
2

γ∗∗(NΦ)

]
(74)

(ii) When d = 2 in the values of A, B and C, ℑyp
ft(NΦ)

becomes ℑPe
ft(NΦ)

Bias of the estimator ℑPe
ft(NΦ)

:

Bias[ℑPe
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(α(α− 1)

2
−

αk(NΦ)

2
+

3

8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
α−

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
α+

α(α− 1)

2

−
αk(NΦ)

2
−

k2(NΦ)

8

)]
(75)

MSE of the estimator ℑPe
ft(NΦ)

:

MSE[ℑPe
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
α−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
α−

k(NΦ)

2

)( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(76)
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Optimal values of α

α =

{
k(NΦ)

2
− ρ(NΦ)

Cy(NΦ)

Cx(NΦ)

}
(77)

Minimum MSE of the estimator ℑPe
ft(NΦ)

:

MSE[ℑPe
ft ]min(NΦ)

= Ȳ 2
(NΦ)C

2
y(NΦ)

γ(NΦ)

[
1−

γ(NΦ)ρ
2

γ∗∗(NΦ)

]
(78)

(iii) When d = 3 in the values of A, B and C, ℑyp
ft(NΦ)

becomes ℑDR
ft(NΦ)

Bias of the estimator ℑDR
ft(NΦ)

:

Bias[ℑDR
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(α(α− 1)

2
ℵ2 −

αℵk(NΦ)

2

+
3

8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
αℵ −

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
αℵ+

α(α− 1)

2
ℵ2 −

αℵk(NΦ)

2
−

k2(NΦ)

8

)]
(79)

Where ℵ =
−n(NΦ)

n1(NΦ)
−n(NΦ)

.

MSE of the estimator ℑDR
ft(NΦ)

:

MSE[ℑDR
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
αℵ −

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
αℵ −

k(NΦ)

2

)( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(80)

Optimal values of α

α =
1

ℵ

{
k(NΦ)

2
− ρ(NΦ)

Cy(NΦ)

Cx(NΦ)

}
(81)

Minimum MSE of the estimator ℑDR
ft(NΦ)

:

MSE[ℑyp
ft ]min(NΦ)

= Ȳ 2
(NΦ)C

2
y(NΦ)

γ(NΦ)

[
1−

γ(NΦ)ρ
2

γ∗∗(NΦ)

]
(82)

(iv) When d = 4 in the values of A, B and C, ℑyp
ft(NΦ)

becomes ℑexp
ft(NΦ)

Bias of the estimator ℑexp
ft(NΦ)

:

Bias[ℑexp
ft(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(3
8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
−

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
−

k2(NΦ)

8

)]
(83)
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MSE of the estimator ℑexp
ft(NΦ)

:

MSE[ℑexp
ft(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
−

k(NΦ)

2

)( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(84)

Remarks: Similarly, For the proposed Estimator when α = 1

(i) When d = 1 in the values of A, B and C, ℑyp
vk(NΦ)

becomes ℑRe
vk(NΦ)

Bias of the estimator ℑRe
vk(NΦ)

:

Bias[ℑRe
vk(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(
1 +

k(NΦ)

2
+

3

8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
− 1−

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
k(NΦ)

2
−

k2(NΦ)

8

)]
(85)

MSE of the estimator ℑRe
vk(NΦ)

:

MSE[ℑRe
vk(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
− 1−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
− 1−

k(NΦ)

2

)( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(86)

(ii) When d = 2 in the values of A, B and C, ℑyp
vk(NΦ)

becomes ℑPe
vk(NΦ)

Bias of the estimator ℑPe
vk(NΦ)

:

Bias[ℑPe
vk(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(
−

k(NΦ)

2
+

3

8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
1−

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
1 +

k(NΦ)

2

−
k2(NΦ)

8

)]
(87)

MSE of the estimator ℑPe
vk(NΦ)

:

MSE[ℑPe
vk(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
1−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
1−

k(NΦ)

2

)( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(88)
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(iii) When d = 3 in the values of A, B and C, ℑyp
vk(NΦ)

becomes ℑDR
vk(NΦ)

Bias of the estimator ℑDR
vk(NΦ)

:

Bias[ℑDR
vk(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(
−

ℵk(NΦ)

2
+

3

8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
ℵ −

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
ℵ

+
ℵk(NΦ)

2
−

k2(NΦ)

8

)]
(89)

Where ℵ =
−n(NΦ)

n1(NΦ)
−n(NΦ)

.

MSE of the estimator ℑDR
vk(NΦ)

:

MSE[ℑDR
vk(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
ℵ −

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
ℵ −

k(NΦ)

2

)( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(90)

(iv) When d = 4 in the values of A, B and C, ℑyp
vk(NΦ)

becomes ℑexp
vk(NΦ)

Bias of the estimator ℑexp
vk(NΦ)

:

Bias[ℑexp
vk(NΦ)

] =Ȳ(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
Cx(NΦ)

{
Cx(NΦ)

(3
8
k2(NΦ)

)
+ ρ(NΦ)Cy(NΦ)

(
−

k(NΦ)

2

)}
+
( 1

n1(NΦ)

− 1

N(NΦ)

)
C2
x(NΦ)

(
−

k2(NΦ)

8

)]
(91)

MSE of the estimator ℑexp
vk(NΦ)

:

MSE[ℑexp
vk(NΦ)

] =Ȳ 2
(NΦ)

[( 1

n(NΦ)
− 1

N(NΦ)

)
C2
y(NΦ)

+
(
−

k(NΦ)

2

)2( 1

n(NΦ)
− 1

n1(NΦ)

)
C2
x(NΦ)

+ 2
(
−

k(NΦ)

2

)( 1

n(NΦ)
− 1

N(NΦ)

)
ρ(NΦ)Cy(NΦ)

Cx(NΦ)

]
(92)

5. Numerical Study

The study goal of this in-depth investigation study is to investigate and compare several Neu-

trosophic estimators for estimating the population mean within the context of Neutrosophic

two-phase sampling. To accomplish this goal, we chose real-world data from the open public

website “https://data.gov.in/resource/seasonal-and-annual-minimum-maximum-temperature-

series-1901-2019.” The dataset includes complete data on All India Seasonal and Annual Tem-

perature the series of circuits including minimum, maximum, and mean temperatures over a

long period of time.

The information was made available under the National Data Sharing and Accessibility

Policy (NDSAP) by prestigious organisations such as the Ministry of Earth Sciences and the
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India Meteorological Department (IMD), Pune. The diversity of temperature data enables us

to obtain significant insights into temperature variations and patterns throughout seasons and

years.

Our major goal is to compare the performance of the proposed Neutrosophic estimators to

those existing estimators in the unique situation of two-phase sampling. We aim to test the

efficiency, accuracy, and robustness of these estimators in calculating population means by

doing this research using real data from India.

The consequences of our research go beyond the specific dataset, since the findings may have

broader applicability in a variety of domains that use two-phase sampling and Neutrosophic

statistics. We think that by adding to the knowledge base in this field, we will improve

understanding and practical use of Neutrosophic estimators in real-world settings, allowing for

better informed decision-making and developing statistical approaches.

Discriptions of Datasets are given in Table [1]. The auxiliary variable X(NΦ) for Population

A reflects the minimum and highest temperatures reported in January and February. The

study variable Y(NΦ), on the other hand, reflects the lowest and highest temperatures reported

from March to May.

The auxiliary variable X(NΦ) represents the minimum and maximum temperatures mea-

sured from June to September for Population B, whereas the study variable Y(NΦ) reflects the

minimum and maximum temperatures reported from October to December.

6. Simulation Study

The fundamental goal of this advanced scientific research was to validate and assess the

effectiveness of proposed Neutrosophic esitimators and up against adapted Neutrosophic es-

timators for the study variable Y(NΦ). To achieve this purpose, the researchers employed

Neutrosophic data with known auxiliary parameters and the Neutrosophic normal distribu-

tion in a rigorous simulation workouts. Neutrosophic normal distributions were used to create

the study Neutrosophic variable, designated as Y(NΦ) as neutrosophic study variable, and the

auxiliary variable, labelled as X(NΦ).

The parameters for Y(NΦ) ∼ NN(µy(NΦ)
, σ2

y(NΦ)
), where µy(NΦ)

stood for the mean, and σy(NΦ)

for the standard deviation. Similar to this, the parameters for X(NΦ)∼ NN(µx(NΦ)
, σ2

x(NΦ)
),

where µx(NΦ)
stood for mean, and σx(NΦ)

for standard deviation. Specific parameter values for

Y(NΦ) and X(NΦ) were chosen in order to aid numerical demonstration, creating a simulated

dataset with 100 normally distributed observations for each variable. The parameters were set

for Y(NΦ) ∼ NN([76.0, 54.9], [(12.9)2, (17.2)2]), and for X(NΦ)∼ NN([17.2, 18.4], [(5.8)2, (6.7)2]).

For the simulated Neutrosophic data, the researchers produced descriptive statistics, giving a

thorough breakdown of the dataset’s features. The researchers intended to carefully assess the
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efficiency of the suggested Neutrosophic estimators and compare them to other estimators,

so they carried out this complex simulation study. The paper offers important new under-

standings on the use of Neutrosophic statistics to handle uncertainties and indeterminacies in

challenging real-world data analysis. In scenarios involving neutrosophic data and two-phase

sampling, the results of this study have the potential to expand statistical approaches and

improve knowledge of population parameter estimate.

7. Conclusions

We introduced a novel family of neutrosophic factor-type exponential estimators in two

phase sampling for estimating neutrosophic population mean (Ȳ(NΦ)) using known neutro-

sophic auxiliary parameters in this thorough study. We thoroughly explored the neutrosophic

sampling characteristics, specifically the bias and mean squared error (MSE), with an empha-

sis on degree one approximation.

We determined the neutrosophic lowest MSE by doing thorough investigations to determine

the characterising scalars’ neutrosophic optimal values for the proposed estimator. Several

adapted neutrosophic competing estimators, such as t0(NΦ)
tdR(NΦ)

, tdP(NΦ)
, tdRe(NΦ)

, tdPe(NΦ)
,

t∗dR(NΦ)
, t∗dP(NΦ)

, t∗dRe(NΦ)
, t∗dPe(NΦ)

, ȷ∗dRe(NΦ)
, ȷ∗dPe(NΦ)

estimators were used to compare the perfor-

mance of our proposed estimators, ℑyp
ft(NΦ)

.

Our investigations indisputably showed that our suggested estimators ℑyp
ft(NΦ)

, as shown by

their reduced bias and MSE values, exhibited superior efficiency than the current estimators.

Tables [5, 6, 7, 8, 9, 10, 11, 12, 13, and 14] provide specific examples of our suggested esti-

mators for various values of (a, b). Further evidence that our proposed estimator performed

better than any other neutrosophic competing estimators for Neutosophic proposed estimators

can be seen in Tables [2, 3, 4].

We strongly advise their use for the estimate of neutrosophic population mean Ȳ(NΦ) in nu-

merous domains of application based on the excellent performance and efficiency proven by

our introduced class of estimators. It is significant to highlight that neutrosophic estimators

offer better population mean estimate in situations when study variable data are nondetermin-

istic. It is recognised that neutrosophic estimators may still be better to classical estimators

in circumstances when study variable data are indeterministic.
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Table 1. Descriptive statistics of the Population - 1, Population - 2 and Sim-

ulated Data

Population-1 Population-2 Simulated Data

Parameter Neutrosophic Value Neutrosophic Value Neutrosophic Value

N(NΦ) [119, 119] [119, 119] [100, 100]

n(NΦ) [24, 24] [24, 24] [24, 24]

n1(NΦ)
[44, 44] [44, 44] [44, 44]

Ȳ(NΦ) [20.6937, 3055933] [16.58437, 27.23613] [20.6937, 31.55933]

X̄(NΦ) [13.90807, 24.6737] [23.30966, 31.21807] [13.90807, 24.6737]

Cy(NΦ)
[0.02657039, 0.02539073] [0.03440212, 0.02580739] [0.02657039, 0.02539073]

Cx(NΦ)
[0.04133301, 0.03918572] [0.01435458, 0.01423702] [0.04133301, 0.03918572]

ρy(NΦ)x(NΦ)
[0.6273783, 0.7201808] [0.6737446, 0.7504361] [0.01838219, -0.05842247]

Table 2. Mean Square Error of the Neutrosophic Estimators based on Popu-

lation - 1.

Case-I Case-II

Estimators MSE MSE

t0(NΦ)
[0.01005628, 0.02135852] [0.01005628, 0.02135852]

tdR(NΦ)
[0.01273596, 0.02677414] [0.02524190, 0.05277647]

tdP(NΦ)
[0.03508849, 0.07387339] [0.0644997, 0.1354970]

tdRe(NΦ)
[0.007932134, 0.016825020] [0.008945461, 0.018872943]

tdPe(NΦ)
[0.01910840, 0.04037465] [0.02857436, 0.06023321]

t∗dR(NΦ)
[0.01659733, 0.03480892] [0.03663452, 0.07652684]

t∗dP(NΦ)
[0.04342036, 0.09132803] [0.08374387, 0.17579148]

t∗dRe(NΦ)
[0.008338662, 0.017656234] [0.01081217, 0.02274252]

t∗dPe(NΦ)
[0.02175018, 0.04591579] [ 0.03436685, 0.07237484]

ȷ∗dRe(NΦ)
[0.007802574, 0.016571881] [0.007289519, 0.015482204]

ȷ∗dPe(NΦ)
[0.007802574, 0.016571881] [0.007289519, 0.015482204]

ℑyp
ft(NΦ)

[0.007802574, 0.015051057] [0.003104505, 0.001902523]
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Table 3. Mean Square Error of the Neutrosophic Estimators based on Popu-

lation - 2.

Case-I Case-II

Estimators MSE MSE

t0(NΦ)
[0.01082764, 0.01643405] [0.01082764, 0.01643405]

tdR(NΦ)
[0.008434704, 0.012325983] [0.007436709, 0.011372767]

tdP(NΦ)
[0.01536729, 0.02623753] [ 0.01961242, 0.03580566]

tdRe(NΦ)
[0.009362831, 0.013668091] [0.00845794, 0.01211462]

tdPe(NΦ)
[0.01282912, 0.02062387] [0.01454580, 0.02433106]

t∗dR(NΦ)
[0.008213724, 0.012187818] [0.007405786, 0.012077748]

t∗dP(NΦ)
[0.01653282, 0.02888168] [0.02201664, 0.04139722]

t∗dRe(NΦ)
[0.009134271, 0.013285761] [0.008145817, 0.011680043]

t∗dPe(NΦ)
[0.01329382, 0.02163269] [0.01545124, 0.02633978]

ȷ∗dRe(NΦ)
[0.008029139, 0.012186527] [0.007392062, 0.011219580]

ȷ∗dPe(NΦ)
[0.008029139, 0.012186527] [ 0.007392062, 0.011219580]

ℑyp
ft(NΦ)

[0.008029139, 0.011164511] [0.0021953943, 0.0001796326]

Table 4. Mean Square Error of the Neutrosophic Estimators based on Simu-

lated Data.

Case-I Case-II

Estimators MSE MSE

t0(NΦ)
[5.636972, 9.212937] [5.636972, 9.212937]

tdR(NΦ)
[14.86116, 16.35115] [27.39777, 26.10238]

tdP(NΦ)
[15.27578, 16.81980] [28.09102, 26.88596]

tdRe(NΦ)
[7.89119, 10.93891] [10.99052, 13.33735]

tdPe(NΦ)
[8.098501, 11.173233] [11.33714, 13.72914]

t∗dR(NΦ)
[18.96955, 19.54820] [37.05571, 33.62776]

t∗dP(NΦ)
[19.46710, 20.11058] [37.88761, 34.56805]

t∗dRe(NΦ)
[8.907923, 11.726456] [13.38767, 15.19911]

t∗dPe(NΦ)
[9.156696, 12.007645] [5.635613, 9.210716]

ȷ∗dRe(NΦ)
[5.635832, 9.211075] [5.635613, 9.210716]

ȷ∗dPe(NΦ)
[5.635832, 9.211075] [5.635613, 9.210716]

ℑyp
ft(NΦ)

[5.635832, 9.194130] [5.633787, 9.160360]
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Appendix A

Table 5. Members of the Neutrosophic Proposed Class of Estimators ℑyp
ft(NΦ)

.

S.No. a b Estimator

1. 1 0 ℑyp(1)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑyp(2)

ft(NΦ)
= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑyp(3)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑyp(4)

ft(NΦ)
= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑyp(5)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑyp(6)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑyp(7)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑyp(8)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑyp(9)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑyp(10)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑyp(11)

ft(NΦ)
= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑyp(12)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x(NΦ)) Cx(NΦ)

ℑyp(13)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑyp(14)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑyp(15)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑyp(16)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑyp(17)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑyp(18)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑyp(19)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑyp(20)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑyp(21)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑyp(22)
ft(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 6. Members of the Neutrosophic Proposed Class of Estimators ℑyp
ft(NΦ)

for d = 1.

S.No. a b Estimator

1. 1 0 ℑRe(1)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑRe(2)

ft(NΦ)
= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑRe(3)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑRe(4)

ft(NΦ)
= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑRe(5)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑRe(6)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑRe(7)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑRe(8)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x)(NΦ)

}
9. Sx(NΦ)

Cx(NΦ)
ℑRe(9)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑRe(10)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑRe(11)

ft(NΦ)
= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑRe(12)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x(NΦ)) Cx(NΦ)

ℑRe(13)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑRe(14)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑRe(15)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑRe(16)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑRe(17)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑRe(18)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑRe(19)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑRe(20)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑRe(21)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx ℑRe(22)
ft(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 7. Members of the Neutrosophic Proposed Class of Estimators ℑyp
ft(NΦ)

for d = 2.

S.No. a b Estimator

1. 1 0 ℑPe(1)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑPe(2)

ft(NΦ)
= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑPe(3)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑPe(4)

ft(NΦ)
= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑPe(5)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑPe(6)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑPe(7)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑPe(8)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄)+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑPe(9)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑPe(10)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑPe(11)

ft(NΦ)
= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑPe(12)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x(NΦ)) Cx(NΦ)

ℑPe(13)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑPe(14)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑPe(15)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑPe(16)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄)

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑPe(17)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑPe(18)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑPe(19)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑPe(20)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑPe(21)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑPe(22)
ft(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 8. Members of the Neutrosophic Proposed Class of Estimators ℑyp
ft(NΦ)

for d = 3.

S.No. a b Estimator

1. 1 0 ℑDR(1)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑDR(2)

ft(NΦ)
= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑDR(3)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑDR(4)

ft(NΦ)
= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑDR(5)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑDR(6)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑDR(7)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑDR(8)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑDR(9)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑDR(10)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑDR(11)

ft(NΦ)
= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑDR(12)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x(NΦ)) Cx(NΦ)

ℑDR(13)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑDR(14)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑDR(15)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑDR(16)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄)

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑDR(17)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑDR(18)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑDR(19)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑDR(20)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑDR(21)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑDR(22)
ft(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]α
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 9. Members of the Neutrosophic Proposed Class of Estimators ℑyp
ft(NΦ)

for d = 4.

S.No. a b Estimator

1. 1 0 ℑexp(1)
ft(NΦ)

= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑexp(2)

ft(NΦ)
= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑexp(3)
ft(NΦ)

= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑexp(4)

ft(NΦ)
= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑexp(5)
ft(NΦ)

= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑexp(6)
ft(NΦ)

= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑexp(7)
ft(NΦ)

= ȳ(NΦ)exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑexp(8)
ft(NΦ)

= ȳ(NΦ)exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑexp(9)
ft(NΦ)

= ȳ(NΦ)exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄)

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑexp(10)
ft(NΦ)

= ȳ(NΦ)exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑexp(11)

ft(NΦ)
= ȳ(NΦ)exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑexp(12)
ft(NΦ)

= ȳ(NΦ)exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x)(NΦ)

Cx(NΦ)
ℑexp(13)
ft(NΦ)

= ȳ(NΦ)exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑexp(14)
ft(NΦ)

= ȳ(NΦ)exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑexp(15)
ft(NΦ)

= ȳ(NΦ)exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑexp(16)
ft(NΦ)

= ȳ(NΦ)exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑexp(17)
ft(NΦ)

= ȳ(NΦ)exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑexp(18)
ft(NΦ)

= ȳ(NΦ)exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑexp(19)
ft(NΦ)

= ȳ(NΦ)exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑexp(20)
ft(NΦ)

= ȳ(NΦ)exp

{
ρyx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑexp(21)
ft(NΦ)

= ȳ(NΦ)exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑexp(22)
ft(NΦ)

= ȳ(NΦ)exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 10. Members of the Neutrosophic Proposed Class of Estimators ℑyp
vk(NΦ)

for α = 1.

S.No. a b Estimator

1. 1 0 ℑyp(1)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑyp(2)

vk(NΦ)
= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑyp(3)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑyp(4)

vk(NΦ)
= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑyp(5)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑyp(6)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑyp(7)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑyp(8)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑyp(9)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑyp(10)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑyp(11)

vk(NΦ)
= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑyp(12)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x(NΦ)) Cx(NΦ)

ℑyp(13)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑyp(14)
vk = ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑyp(15)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑyp(16)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑyp(17)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑyp(18)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑyp(19)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑyp(20)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄)

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x) ℑyp(21)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑyp(22)
vk(NΦ)

= ȳ(NΦ)

[
(A+c)x̄1(NΦ)

+f(NΦ)Bx̄(NΦ)

(A+f(NΦ)B)x̄1(NΦ)
+Cx̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 11. Members of the Neutrosophic Proposed Class of Estimators ℑyp
vk(NΦ)

for α = 1 and d = 1.

S.No. a b Estimator

1. 1 0 ℑRe(1)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑRe(2)

vk(NΦ)
= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑRe(3)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄)+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑRe(4)

vk(NΦ)
= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑRe(5)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑRe(6)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑRe(7)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑRe(8)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄)

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑRe(9)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑRe(10)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑRe(11)

vk(NΦ)
= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑRe(12)
vk = ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x(NΦ)) Cx(NΦ)

ℑRe(13)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑRe(14)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑRe(15)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑRe(16)
vk = ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑRe(17)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑRe(18)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑRe(19)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑRe(20)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑRe(21)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑRe(22)
vk(NΦ)

= ȳ(NΦ)

[ x̄1(NΦ)

x̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 12. Members of the Neutrosophic Proposed Class of Estimators ℑyp
vk(NΦ)

for α = 1 and d = 2.

S.No. a b Estimator

1. 1 0 ℑPe(1)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑPe(2)

vk(NΦ)
= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑPe(3)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑPe(4)

vk(NΦ)
= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑPe(5)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑPe(6)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑPe(7)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑPe(8)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄)

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑPe(9)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑPe(10)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑPe(11)

vk(NΦ)
= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑPe(12)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x(NΦ)) Cx(NΦ)

ℑPe(13)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑPe(14)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑPe(15)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑPe(16)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑPe(17)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑPe(18)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑPe(19)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx ℑPe(20)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑPe(21)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑPe(22)
vk(NΦ)

= ȳ(NΦ)

[
x̄(NΦ)

x̄1(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 13. Members of the Neutrosophic Proposed Class of Estimators ℑyp
vk(NΦ)

for α = 1 and d = 3.

S.No. a b Estimator

1. 1 0 ℑDR(1)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑDR(2)

vk(NΦ)
= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑDR(3)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑDR(4)

vk(NΦ)
= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑDR(5)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄)+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑDR(6)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑDR(7)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑDR(8)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑDR(9)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑDR(10)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑDR(11)

vk(NΦ)
= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑDR(12)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x(NΦ)) Cx(NΦ)

ℑDR(13)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑDR(14)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑDR(15)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑDR(16)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑDR(17)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄)

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑDR(18)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+ ¯x(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑDR(19)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑDR(20)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑDR(21)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑDR(22)
vk(NΦ)

= ȳ(NΦ)

[
x̄1(NΦ)

−f(NΦ)x̄(NΦ)

x̄1(NΦ)
−x̄(NΦ)

]
exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Table 14. Members of the Neutrosophic Proposed Class of Estimators ℑyp
vk(NΦ)

for α = 1 and d = 4.

S.No. a b Estimator

1. 1 0 ℑexp(1)
vk(NΦ)

= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))

}
2. 1 1 ℑexp(2)

vk(NΦ)
= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2

}
3. 1 Sx(NΦ)

ℑexp(3)
vk(NΦ)

= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Sx(NΦ)

}
4. 1 β2(x(NΦ)) ℑexp(4)

vk(NΦ)
= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2β2(x(NΦ))

}
5. 1 Cx(NΦ)

ℑexp(5)
vk(NΦ)

= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2Cx(NΦ)

}
6. 1 ρy(NΦ)x(NΦ)

ℑexp(6)
vk(NΦ)

= ȳ(NΦ)exp

{
(x̄1(NΦ)

−x̄(NΦ))

(x̄1(NΦ)
+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
7. Sx(NΦ)

1 ℑexp(7)
vk(NΦ)

= ȳ(NΦ)exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
8. Sx(NΦ)

β2(x(NΦ)) ℑexp(8)
vk(NΦ)

= ȳ(NΦ)exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
9. Sx(NΦ)

Cx(NΦ)
ℑexp(9)
vk(NΦ)

= ȳ(NΦ)exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄)

Sx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
10. Sx(NΦ)

ρy(NΦ)x(NΦ)
ℑexp(10)
vk(NΦ)

= ȳ(NΦ)exp

{
Sx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Sx(NΦ)
(x̄1+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
11. β2(x(NΦ)) 1 ℑexp(11)

vk(NΦ)
= ȳ(NΦ)exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2

}
12. β2(x(NΦ)) Sx(NΦ)

ℑexp(12)
vk(NΦ)

= ȳ(NΦ)exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
13. β2(x)(NΦ)

Cx(NΦ)
ℑexp(13)
vk(NΦ)

= ȳ(NΦ)exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
14. β2(x(NΦ)) ρy(NΦ)x(NΦ)

ℑexp(14)
vk(NΦ)

= ȳ(NΦ)exp

{
β2(x(NΦ))

(x̄1(NΦ)
−x̄(NΦ))

β2(x(NΦ))
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
15. Cx(NΦ)

1 ℑexp(15)
vk(NΦ)

= ȳ(NΦ)exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
16. Cx(NΦ)

Sx(NΦ)
ℑexp(16)
vk(NΦ)

= ȳ(NΦ)exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
17. Cx(NΦ)

β2(x(NΦ)) ℑexp(17)
vk(NΦ)

= ȳ(NΦ)exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
18. Cx(NΦ)

ρy(NΦ)x(NΦ)
ℑexp(18)
vk(NΦ)

= ȳ(NΦ)exp

{
Cx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

Cx(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2ρy(NΦ)x(NΦ)

}
19. ρy(NΦ)x(NΦ)

1 ℑexp(19)
vk(NΦ)

= ȳ(NΦ)exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2

}
20. ρy(NΦ)x(NΦ)

Sx(NΦ)
ℑexp(20)
vk(NΦ)

= ȳ(NΦ)exp

{
ρyx(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Sx(NΦ)

}
21. ρy(NΦ)x(NΦ)

β2(x(NΦ)) ℑexp(21)
vk(NΦ)

= ȳ(NΦ)exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2β2(x(NΦ))

}
22. ρy(NΦ)x(NΦ)

Cx(NΦ)
ℑexp(22)
vk(NΦ)

= ȳ(NΦ)exp

{
ρy(NΦ)x(NΦ)

(x̄1(NΦ)
−x̄(NΦ))

ρy(NΦ)x(NΦ)
(x̄1(NΦ)

+x̄(NΦ))+2Cx(NΦ)

}
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Abstract 

 A crucial aspect of bioinformatics is sequence comparison, which entails matching recently discovered 

biological sequences with previously identified sequences kept in databases. To find similarities between 

two or more nucleotide or amino acid sequences, sequence alignment organizes the sequences. 

Understanding the functional, structural, and evolutionary links between the sequences is made easier by 

looking at these areas of commonality. This study highlighted types of alignment. Also, proposed an 

effective methodology for deciding which algorithm can be utilized and satisfying the objective. Hence, 

Multi-Criteria Decision-Making (MCDM) techniques have been harnessed with Neutrosophic theory as a 

supporter in uncertain situations. Herein Single Value Neutrosophic Sets (SVNSs) as a type of uncertainty 

theory-Neutrosophic. This process requires a set of criteria leveraged in judgment. Also, Tree Soft Sets 

(TrSS) are applied for the first time to model the required criteria to facilitate the decision process. The 

hybrid techniques are applied to support stakeholders in making optimal decisions for optimal alignment 

algorithms among various algorithms such as pairwise and sequence algorithms. The results of the 

implementation of this decision technique indicated that multiple sequence alignment is the best compared 

with pairwise algorithms. Thus, we implemented multiple sequences in our study and employed logic 

programming to perform sequence matching. To ensure optimal alignment, the approach is tested on 

different sets of 16S rRNA gene of Actinobacteria (Streptomyces) sequences taken from NCBI. Then, the 

results are compared with MEGA. 

Keywords:  Bioinformatics; Multiple sequence alignment; Logic Programming; Multi-Criteria Decision-

Making (MCDM); Single Value Neutrosophic Sets (SVNSs); Tree Soft Sets (TrSS) 

1. Introduction 

All living organism cells are composed of genetic codes that are passed from one generation to another. 

This is the reason for some living organisms are biologically similar and some are distinct. The genetic 

code can be represented as a sequence of alphabets, such as four base pairs of DNA and RNA, or twenty 

amino acids of protein [1]. These sequences are called biological sequences and over time a lot of changes 

called mutations occur in these sequences.  
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The field of Bioinformatics aims to align many biological sequences to derive their evolutionary 

relationships through comparative sequence analysis.  

Bioinformatics applies computations to biological sequences to analyze and manipulate them. Sequence 

alignment (SA) is the most basic and essential module of computational bioinformatics and has varied 

applications in sequence assembly, sequence annotation, structural and functional prediction, and 

evolutionary or phylogeny relationship analysis.  

SA is a field of research that focuses on the development of tools for comparing and finding similar 

sequences of (RNA, DNA, or amino acids) base pairs with the help of computers. The degree of similarity 

is used to measure gene and protein homology, classify genes and proteins, predict biological function, 

secondary and tertiary protein structure, detect point mutations, construct evolutionary trees, etc. 

This study works into two phases. The first one is analyzing and examining existing alignment algorithms 

for deciding and utilizing optimal ones. In this phase, we are volunteering a combination of effective 

techniques to achieve the phase’s objective. These techniques are utilized for preferencing and prioritizing 

SA alternatives based on a set of criteria. Hence, MCDM techniques are one of the utilized techniques in 

our study. Due to the ability of MCDM to treat this circumstance. TrSS model is volunteered for modeling 

the determined criteria and clarifying the relationship between these criteria. MCDM has been boosted by 

SVNSs in opacity circumstances Second phase: the results of phase one received by phase two to apply as 

optimal alternative for alignment. According to the results of the first phase, multiple sequences are the 

optimal alternative which applies for alignment. 

Accordingly, we developed an algorithm that applied a logic program to align multiple biological 

sequences. SWI-Prolog (http://www.swi-prolog.org) is used to implement our proposed algorithm. 

Furthermore, we apply our implemented algorithm on eight different sets of 16S rRNA gene of 

Actinobacteria (Streptomyces) sequences: Seq1, Seq2, Seq3, Seq4, Seq5, Seq6, Seq7, and Seq8, were 

collected from GenBank at National Center for Biotechnology Information (NCBI). Also, we will use 

MEGA (Molecular Evolutionary Genetic Analysis Software for microcomputer), available at (http://www. 

megasoftware.net) to align the selected eight sequences. Each sequence set will be aligned using both 

methods fifty times and the execution times for all the fifty runs will be averaged.  

  Based on the average execution time, we compare the two methods to see which method reduces the 

execution time, speeds the performance, and decreases the memory location used to make the sequence 

alignment. 

The objective of this study is summarized into several points: 

1. Conducting surveys for prior studies and perspectives related to our scope. 

2. Next, the results of the previous step entailed determining the effective and popular algorithms for 

alignment and we treated them as alternatives (Alts). 

http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&ved=0CDEQFjAA&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F&ei=gdDDUqP9O9GQhQe0iYCwCQ&usg=AFQjCNEtxijk1bbk_J3zghYe8TRBijQ4rw
http://www.megasoftware/
http://www.megasoftware/
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3. Leveraging decision techniques such as MCDM, SVNSs, and TrSS model to analyze the 

alternatives based on determined aspects and recommend the optimal. 

4. We employ the recommended alternative to implement in our study. 

5. We are observing the results of implementing the recommended algorithm and discussing it in the 

results and discussion section. 

The outline of this study is as follows: Section 2 reviews the literature related to sequence alignment. The 

methodology used for sequence alignment of two methods is discussed in Section 3. Experimental results 

and their discussions are presented in Section 4. Finally, Section 5 discusses the obtained results. Finally, 

our conclusion of the study is represented in Section 6. 

2. Prior Perspectives: Theoretical background related to our scope. 

In this section, we conducted surveys for prior studies that embraced our notion. Firstly, we 

exhibited the principles for the concept alignment by showcasing its types and branches. Secondly, 

we collected the previous perspectives and studies from other scholars.  

2.1 Comprehensive Visions for Sequence Alignment 

A biological sequence is a sequence of characters from an alphabet. For DNA sequence, the 

character alphabet is {A, C, G, T}, for RNA sequence, the alphabet is {A, C, G, U}, and for RNA 

sequence is composed of A, C, G, U. For protein sequence, character set is {A, R, N, D, C, Q, E, 

G, H, I, L, K, M, F, P, S, T, W, Y, V}. Sequence alignment is the process of identifying one-to-

one correspondence among subunits of sequences to measure the similarities among them. These 

similar regions provide functional, structural, and evolutionary information about the sequences 

under study. Aligned sequences are generally represented as rows within a matrix. Gaps (‘-‘) are 

inserted between the characters so that identical or similar characters are aligned in successive 

columns. Gaps represent the insertion of a character in or a deletion of a character from a biological 

sequence. Sequence alignment of two biological sequences is called pair-wise sequence alignment, 

and in case more than two biological sequences are involved, it is called multiple sequence 

alignment  [2]. The sequence alignment is divided into:  

2.1.1 Global Alignment 

Closely related sequences which are of the same length are very much appropriate for global 

alignment. Here, the alignment is carried out from the beginning till the end of the sequence to 

find out the best possible alignment as in Figure 1 
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Fig. 1: Global Alignment of two biological sequences 

2.1.2 Local Alignment 

Sequences that are suspected to have similar or even dissimilar sequences can be compared with 

the local alignment method. It finds local regions with a high level of similarity as in Figure 2. 

Pairwise Sequence Alignment is used to identify regions of similarity that may indicate functional, 

structural, and/or evolutionary relationships between two biological sequences (protein or nucleic 

acid). This type of alignment is based on numbers. Multiple sequence alignment (MSA) is the 

alignment of three or more biological sequences of similar length and therefore it is included in 

the alignment based on numbers. From the output of MSA applications, homology can be inferred 

and the evolutionary relationship between the sequences can be studied. 

 

 

 

 

 

Fig. 2: Local Alignment of two biological sequences 

2.2 Comprehensive Related Studies  

Biological sequences databases are growing exponentially resulting in extensive demands on the 

implementation of new fast and efficient sequence alignment algorithms. Most of the work in the 

sequence alignment field has been primarily intended to provide new fast and efficient alignment 

methods.  

The Needleman-Wunsch algorithm [3] employs a global alignment on two query sequences and is 

used widely in bioinformatics to align protein or nucleotide sequences. It uses a dynamic 

programming method to ensure the alignment is optimum by exploring all possible alignments and 

choosing the best. 

While, the Smith–Waterman algorithm is a well-known algorithm for performing local sequence 

alignment that is for determining similar regions between two nucleotide or protein sequences 
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[4],[5]. Instead of looking at the total sequence, the  Smith–Waterman algorithm compares 

segments of all possible lengths and optimizes the similarity measure. 

In all the algorithms that had been proposed, the main objective of the researchers had been to 

apply different techniques to provide efficient alignment algorithms in terms of time and memory 

requirements. 

Logic programming has been applied to develop logical databases to retrieve information about 

metabolic pathways, to identify and model genome structure [6] and to model protein interaction 

networks [7], [8] 

3. Methodology: TrSS for Modelling Sequence Alignment Algorithms and Selection 

Procedures  

Herein, we are leveraging the soft set notion represented in TrSS which was introduced by Smarandache. 

[9]. In TrSS we are clarifying and modeling various algorithms of sequence alignment (SA) into nodes at 

some levels. The purpose of modelling the determined algorithms into TrSS for make optimal decisions 

for selecting optimal and appropriate algorithms in our study. Hence, we are taking advantage of MCDM 

techniques and utilizing these techniques in the constructed tree to bolster us in making optimal decisions 

as clarified in the following steps: 

Step 1: Construct a Tree and determine its nodes. 

✓ At level 1: this level includes main aspects of sequence alignment {Matching Efficiency Node 1(N1), 

Producing Phylogenetic Trees =Node2 (N2), Prediction Efficiently= Node3 (N3)}. 

✓ At level 2: this level is divided into various branches based on previous branches of N1, N2 , and N3 . 

Thereby, {Identify unknown sequence =N1.1 ,  Accuracy=N1.2 } are considering sub -node of N1. Also, 

{Finding out the relationship between the matched sequences = N2.1 , Easy of analyzing= N2.2}are 

considering sub-node of N2 . Finally, {Predicting protein efficiently= N3.1  , Predicting gene locations 

efficiently= N3.2 } are considering sub-node of N3.  

Step 2: Determining Influential Aspects. 

✓ in this step, the crucial factor in decision-making is determining the influential factors which impact 

the decision process. In this study, the decision process is conducted on three main aspects and six sub-

aspects. 

✓ The role of MCDM techniques is starting to work. Herein, we are employing entropy as a technique of 

MCDM to analyze determined sequence alignment’s aspects.  For boosting entropy, we are merging 

Neutrosophic theory for bolstering entropy in ambiguous situations. This theory is proposed by 

Smarandache [10]. Due to the ability of neutrosophic to apply in indeterminacy situations as mentioned 

https://microbenotes.com/local-global-multiple-sequence-alignment/#a-exhaustive-algorithms
https://microbenotes.com/local-global-multiple-sequence-alignment/#b-heuristic-algorithm
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in [11] through measuring possible degrees of membership as truth, false, also indeterminancy a. Hence, 

we are implementing SVNSs as in [12] as a type of Neutrosophic theory. The aspects’ weights are 

derived from entropy analysis and these weights have been obtained through the following several 

steps. 

Step 2.1: We had an encounter with three specialists  in this field to prioritize the determined alternative 

algorithms through determined aspects in Figure 3. 

Step 2.2: Resulted from  the  encounter with three Neutrosophic decision matrices for three specialists. 

These matrices formed as in Eq. (1) 

 

          Xn =  (
Asp11

n Asp12
n     ⋯ Asp1n

n

⋮ ⋱ ⋮
Aspm1

n Aspm2
n  ⋯ Aspmn

n
)                                                                                            (1) 

Where: 

 Xn indicated to prioritize each specialist − based decision matrix. 

Step 2.3: Eq. (2) is employed for transforming neutrosophic matrices into crisp matrices. 

        𝐬(Qij) =
(2 + Tr − Fl − In)

3
                                                                                                                 (2) 

Where: 

 Tr, Fl, In refer to truth, false, and indeterminacy respectively. 

Step 2.4: Crisp matrices are amalgamated based on Eq.(3) into a single matrix so-called an aggregated 

decision matrix. 

         𝜕ij =  
(∑ 𝑄𝑖𝑗)

N
j=1  

𝑆
                                                                                                                                   (3) 

       Where: 

        𝑄𝑖𝑗  refers to the value of the criterion in the matrix, and S refers to the number of specialists. 

Step 2.5: Eq. (4) is normalizing an aggregated matrix. 

          Nor
ij=

 𝜕ij

∑  𝜕ij
n
j=1

                                                                                                                           (4)  

Where: 

∑  𝜕ij
n
j=1  represents the sum of each aspect in an aggregated matrix per column. 

Step 2.6: Entropy of the normalized matrix is computed through Eq. (5). 
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        Enj=−h ∑ Norij 
n
i=1

ln Norij                                                                                                              (5)  

      Where: 

      h =
1

ln (Alts)
                                                                                                                                                   (6)      

Step 3: Reaching the optimal Decision for sequence alignment algorithm. 

✓ This is the final step in the decision-making process, selecting the optimal algorithm between two SA 

algorithms. Alternative 1(Alt1) = Pairwise alignment; Alternative 2(Alt 2) = Multiple SA algorithms.   

✓ COPRAS is employed in this study as a technique of MCDM with hybridization of SVNs for ranking 

and prioritizing two Alts based on aspects and sub-aspects of SA. This process facilitates decision-

making for optimal Alt. The hybridization process is implemented as follows: 

Step 3.1: Leveraging normalized matrix produced from previous step two and aspects’ weights 

generated from entropy based on SVNSs to produce a weighted decision matrix through following 

Eq. (7). 

 ℬij = wi ∗ Norij                                                                                                                                  (7) 

Step 3.2: Eqs (8) and (9) are employed for computing the Sum of the weighted decision matrix. 

S+i = ∑ ℬ+ij
n
j=1 , for beneficial criteria                                                                                       (8) 

S−i = ∑ ℬ−ij
n
j=1 , for nonbeneficial criteria                                                                           (9) 

Step 3.3: the relative importance of alternatives is calculated based on Eq. (10).  

       Qi = s+i +
s−min  ∑ s−i

m
i=1

s−i  ∑ (s−m/s−i)
m
i=1

 (10) 

where I = 1, 2,…,m, and 𝑠−𝑚= 𝑠−𝑖 all aspects and sub-aspects are beneficial. 

Step 3.4: quantity utility Ui for each Alt is based on Eq. (11) to rank Alts. 

 Ui = [
Qi

Qmax

] × 100%                                                                                                                          (11) 

4. Comprehensive Analysis  

Herein, this section is divided into two sub-sections, each one responsible for exhibiting results  and 

Consequent to each other. The first sub-section involving the results of the application of the methodology 

has been exhibited. The second sub-section is prepared based on the results of the first sub-section. 
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4.1 Analysis of Implementing Proposed Methodology 

Herein, we discuss the results of implementing entropy-COPRAS under SVNSs based on TrSS. The 

resulting Alt as optimal SA is applied in this study. 

4.1.1 Encounter with specialists: three specialists contributed to rating and prioritizing two Alts based 

on aspects and sub-aspects of SA which were modelled in the TrSS model. 

4.1.2 Analyzing and obtaining weights for aspects and sub-aspects: this step involves two dimensions. 

First dimension, we obtain the main aspects’ weights. The second dimension is obtaining sub-

aspects’ weights. 

➢ First dimension: Extracting the main aspects’ weights Procedures. 

1. Three constructed neutrosophic decision matrices based on the SVNS scale which applied in 

[13] are transformed into crisp matrices based on Eq.(2). 

2. These crisp matrices are amalgamated into the aggregated matrix by Eq. (3) as in Table 1. 

3. Table 2 represents a normalized matrix based on Eq. (4). 

4. Entropy for normalized matrix is calculated by Eq. (5) as in Table 3. 

5. Final Aspects’ weights are exhibited in Figure 3 through Eq. (6). This Figure indicates that main 

Aspect 1 outperforms main Aspect 2 and main Aspect 2. 

6.  

Table 1. An aggregated matrix of Aspects at level 1 for N1-N2 

 

Table 2. Normalized matrix of Aspects at level 1 for N1-N2 
 ASP1 ASP2 ASP3 

Alt1 0.314329738 0.622817229 0.540958269 

Alt 2 0.685670262 0.377182771 0.459041731 

 

Table 3. Entropy of Normalized matrix of Aspects at level 1 for N1-N2 
 ASP1 ASP2 ASP3 

Alt1 -0.363777805 -0.29490531 -0.3323719 

Alt 2 -0.258743457 -0.36776278 -0.3574164 

∑ 𝐗𝐢𝐣 

𝐦

𝐢=𝟏

 
-0.622521262 -0.662668097 -0.689788258 

−𝒉 ∑ 𝐗𝐢𝐣 

𝐦

𝐢=𝟏

𝐥𝐧 𝑿𝐢𝐣    
0.568592766 0.540771009 0.521976737 

 

 

 

 

 

 ASP1 ASP2 ASP3 

Alt1 0.226666667 0.594444444 0.777777778 

Alt 2 0.494444444 0.36 0.66 
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Fig 3. Weights of Main Aspects in Level 1 for N1-N2 

➢ Second dimension: Extracting Sub- aspects’ weights Procedures. 

1. Three Neutrosophic decision matrices are constructed for {Sub-Asp 1.1, Sub-Asp 1.2 }; { Sub-Asp 2.1, 

Sub-Asp 2.2 }; { Sub-Asp 3,1, Sub-Asp 3.2  } and transformed into crisp matrices based on Eq.(2).   

2. Eq.(3) is exploited for aggregating each pair of sub_Aspects into an aggregated matrix belonging to 

the main node  (Aspect) at level 1. 

3. Figure 4 indicates that sub_Aspect 1.1 outperforms sub_Aspect 1.2. 

4. Figure 5 indicates that sub_Aspect 2.1 outperforms sub_Aspect 2.2. 

5. Figure 6 indicates that sub_Aspect 3.1 outperforms sub_Aspect 3.2. 

 

4.1.3 Ranking and prioritizing SA algorithms 

1. Eq. (7) plays a critical role in the normalized matrix to generate a weighted decision matrix as in 

Table 4. 

2. Eq. (8) is applied to obtain a sum weighted where  all Aspects are beneficial 

3. through Eq. (11), Quantity utility Ui for each alternative is calculated to rank the alternatives and 

results illustrated in Figure 7. Alt 2 (Multiple Alignment algorithm) is an optimal algorithm. 

 

Table 4. Weighted decision matrix  

 ASP1 ASP2 ASP3 

Alt1 0.109557517 0.206456898 0.173089327 

Alt 2 0.238985759 0.125031841 0.146878658 

 

Asp1
35%

Asp2
33%

Asp3
32%
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Fig. 7. Ranking two sequence algorithms 

4.2 Analysis of Implementing Multiple Sequence Algorithm 

Based on the results of the implementation of MCDM techniques under SVNS based on TrSS, the multiple 

sequence algorithm outperforms another algorithm. Hence, we used multiple sequences for aligning to 

Fig.4. Final Weights of Sub Aspects 1.1 to 1.2 in Level 2 Fig.5. Final Weights of Sub Aspects 2.1 to 2.2 in Level 2 

 

 

 

 

 

 

 

 

 

 

Fig.6. Final Weights of Sub Aspects 3.1 to 3.2 in Level 2 
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determine the similarity between the sequences, and then based on their degree of similarity the sequences 

were aligned. 

In this study, we applied the developed algorithm given in  [14]. The algorithm described an application for 

the logic programming paradigm for large-scale comparison of complete microbial genomes. We used 

SWI-Prolog language to implement our proposed algorithm. Where Prolog is a general-purpose logic 

programming language associated with artificial intelligence and computational linguistics.  

4.2.1 Implementing the Algorithm  

We have divided the implementation of the algorithm into three stages, the First stage, extracting genome 

information from GenBank, the Second stage, identifying homologous genes using BLAST [15], and the 

Third stage, alignment of homologous gene pairs using the Smith-Waterman software. The Smith-

Waterman algorithm[16],[17] is a matrix-based dynamic programming technique to align two sequences. 

Smith–Waterman algorithm is a local sequence alignment; that is, for determining similar regions between 

two strings or nucleotide or protein sequences. Instead of looking at all the sequences, the Smith–Waterman 

algorithm only compares segments of all possible lengths and then optimizes the similarity measure. 

4.2.2 Obtained Sequences from Genbank 

Eight different sets of 16S rRNA gene of Actinobacteria (Streptomyces) sequences: Seq1, Seq2, Seq3, 

Seq4, Seq5, Seq6, Seq7, and Seq8, were collected from Genbank at NCBI (see Appendix). Identification 

of bacteria by using the molecular method (16S rDNA sequence) is more accurate than the traditional 

biochemical methods. The use of 16S rRNA gene sequences to study bacterial phylogeny and taxonomy 

has been by far the most common housekeeping genetic marker used for some reasons. These reasons 

include:  

(i) It is present in almost all bacteria, often existing as a multigene family or operons. 

(ii) The function of the 16S rRNA gene over time has not changed, suggesting that random sequence 

changes are a more accurate measure of time (evolution); and 

(iii) The 16S rRNA gene (1,500 bp) is large enough for informatics purposes [18]. 

 Details of the obtained sequence sets are listed in Table 5. 

 

 

 

 

http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Computational_linguistics
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Table 5: Identification of Streptomyces. 

Sequences Streptomyces isolates GenBank number Base pair (bp) 

Seq1 S. albidofuscus 

 

Later name is S. pyridomyceticus 

BankIt1507621 JQ625331 

900 

Seq2 S. ambofaciens BankIt1507642 JQ625332 703 

Seq3 S. canarius BankIt1507650 JQ625337 849 

Seq4 S. chibaensis 

 

Later name is S. corchorusii 

BankIt1507649 JQ625336 

851 

Seq5 S. coelicolor BankIt1507648 JQ625335 944 

Seq6 S. corchorusii BankIt1507647 JQ625334 834 

Seq7 S. nigrifaciens 

 

Later name is S. flavovirens 

BankIt1507149 JQ625330 

716  

Seq8 S. parvullus BankIt1507645 JQ625333 787 

 

In this study, we will use MEGA to align the selected sequences. MEGA software is an integrated suite of 

tools for statistics-based comparative analysis of molecular sequence data based on evolutionary principles 

[19], [20]. MEGA is being used by biologists in a large number of laboratories for reconstructing the 

evolutionary histories of species and inferring the extent and nature of selective forces shaping the evolution 

of genes and species. Additionally, MEGA is used in many classrooms as a tool for teaching the methods 

used in evolutionary bioinformatics. 

4.2.3 Results of Multiple Sequence  

We have been extracting an algorithm that employs logic programming to measure the similarity of 

sequences. To guarantee the optimal alignment of the sequences we are using prolog language.  

The algorithm is tested on various sets of real genome sequences taken from NCBI, and the processing time 

for the alignment process on these data sets has been computed.  

To evaluate the performance of this approach, eight sets (Seq1, Seq2, Seq3, Seq4, Seq5, Seq6, Seq7, and 

Seq8) of 16S rRNA gene of Actinobacteria (Streptomyces) sequences have been used.   

Data sets are used to find out the effect of varying the number of sequences being aligned on the processing 

time. The alignment of eight sequences by using MEGA is shown in Fig. 8. 
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Fig. 8: Alignment of Eight Sequences. 

To compare the amount of time needed to process the two methods of alignment being discussed, the 

processing time has been calculated. Each sequence set has been aligned using both methods fifty times 

and the execution times for all the fifty runs have been averaged. This average execution time has been 

used for the comparison. The average processing time for eight sets (Seq1, Seq2, Seq3, Seq4, Seq5, Seq6, 

Seq7 and Seq8) of 16S rRNA gene of Actinobacteria (Streptomyces) sequences are tabulated in Table 6 

and Table 7 respectively.  

Table 6: Average processing time (in seconds) for sequences Seq1, Seq2, Seq3, and Seq4. 

Number of 

Sequences 

Seq1 (Length:900 bp) Seq2 (Length: 703 bp) Seq3 (Length: 849 bp) Seq4 (Length: 851 bp) 

Logic 

Programming 

Method 

MEGA 

Method  

Logic 

Programming 

Method 

MEGA 

Method  

Logic 

Programming 

Method 

MEGA 

Method 

Logic 

Programming 

Method 

MEGA 

Method  

10 20.25 15.64 3.98 4.30 15.12 13.95 16.86 14.98 

20 35.36 29.40 6.95 7.59 28.26 27.12 29.52 28.10 

50 50.21 45.43 26.62 27.98 43.20 41.56 45.34 43.87 

70 66.52 58.23 37.80 39.13 60.53 59.96 62.20 59.93 

100 109.32 96.30 69.76 71.05 89.82 87.16 91.25 89.75 

120 123.31 116.54 85.34 86.98 115.34 112.19 117.52 111.63 

150 226.62 207.14 130.65 132.12 207.20 199.92 209.89 197.23 
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 Table 7: The average processing time (in seconds) for sequences Seq5, Seq6, Seq7, and Seq8. 

Number of 

Sequences 

Seq5 (Length:944 bp) Seq6(Length: 834 bp) Seq7 (Length: 716 bp) Seq8 (Length: 787 bp) 

Logic 

Programming 

Method 

MEGA 

Method  

Logic 

Programming 

Method 

MEGA 

Method  

Logic 

Programming 

Method 

MEGA 

Method 

Logic 

Programming 

Method 

MEGA 

Method  

10 24.36 19.15 12.38 10.23 4.65 5.75 8.5 7.15 

20 39.65 32.76 26.50 23.45 7.38 8.93 19.23 17.33 

50 56.37 51.78 41.82 36.89 28.65 29.95 35.82 33.56 

70 71.44 66.16 57.15 51.14 40.10 41.87 49.5 47.12 

100 125.82 119.24 87.28 80.55 71.28 72.89 79.83 77.15 

120 130.12 124.92 112.23 108.89 87.51 88.98 95.89 93.25 

150 236.22 229.19 205.81 198.46 132.72 134.12 143.29 141.65 
 

In the following, we give the line graph for the average processing time over fifty runs of both the methods 

on the eight sequences of (Seq1, Seq2, Seq3, Seq4, Seq5, Seq6, Seq7 and Seq8) of 16S rRNA gene of 

Actinobacteria (Streptomyces) in Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15 and Fig. 16 

respectively. 

 

Fig. 9: Average processing time's line graph for  Logic 

Programming and MEGA methods on Seq1. 

 

 

 

Fig. 10: Average processing time's line graph for Logic 

Programming and MEGA methods on Seq2. 
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Fig. 11: Average processing time's line graph for Logic 

Programming and MEGA methods on Seq3 

 

Fig. 12: Average processing time's line graph for Logic 

Programming and MEGA methods on Seq4 

Fig. 13: Average processing time's line graph for Logic 

Programming and MEGA methods on Seq 5. 

 

Fig. 14: Average processing time's line graph for Logic 

Programming and MEGA methods on Seq6 

Fig. 15: Average processing time's line graph for Logic 

Programming and MEGA methods on Seq7. 
Fig. 16: Average processing time's line graph for Logic 

Programming and MEGA methods on Seq8. 
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5. Discussion 

In this study, we leveraged the ability of MCDM techniques (i.e. entropy -COPRAS) under the authority of 

SVNSs for supporting MCDM in indeterminacy situations the objective of implementing these techniques 

is to recommend the optimal algorithm that we can utilize in our problem. The recommendation occurs 

based on a prioritizing process for a set of criteria/aspects and sub-aspects. Hence, we are modeling the 

decision-making process by using TrSS to express relationships between main aspects and sub-aspects. The 

results from the implementation of these techniques in the decision process indicated that multiple sequence 

algorithms in contrast to pairwise algorithms. Thus, we are implementing multiple sequences in our study. 

The experiments of applying multiple sequences for data sets in Table 2 and Table 3 show the effect of 

variation in the number of sequences on the processing time of the two alignment methods. From the 

processing times of sequences Seq2 and Seq7 in Table 5 and Table 6, we obtain that the processing time of 

the Logic Programming method takes less time as compared to the MEGA method for the sequences of 

length in the range 703-716 bp. 

From the processing times of sequences Seq1, Seq3, Seq4, Seq5, Seq6, and Seq8 in Table 2 and Table 3, 

we obtain that the processing time of the Logic Programming method is higher than the MEGA method of 

sequences of length 787 – 944 bp. 

From the obtained experimental results, we conclude that if the number and length of involved sequences 

are large, the Logic Programming method is very inefficient. Furthermore, we have that the Logic 

Programming method outperforms the MEGA method if the length of involved sequences is in the range 

703-716 bp.  

6. Conclusion 

One of the most important steps in comparing biological sequences is thought to be sequence alignment. 

To find similarities between two or more nucleotide or amino acid sequences, sequence alignment organizes 

the sequences. Understanding the functional, structural, and evolutionary links between the sequences is 

made easier by looking at these areas of commonality. 

Hence, utilizing suitable SA is critical. Herein, we discussed the methodology for selecting an optimal 

algorithm to perform the task of alignment. We utilized TrSS for the first time for modeling the aspects 

which contributed to the selection process. Also, MCDM worked with SVNSs to serve our objective. These 

techniques recommended multiple alignments for the alignment process. 
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Appendix 

The Eight sets sequences Seq1, Seq2, Seq3, Seq4, Seq5, Seq6, Seq7 and Seq8, are given as 

follows: 

Seq 1 

GTTGGTGGGGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGG 

GACTGAACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGA 

TGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAAGCGAAA 

GGGACGGTACCTGCAGAAGAAGCCTTCTTGAATAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGCG 

CAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCACGTCGGATGTGAAAGCCC 

GGGGCTTAACCCCGGGTCTGCATTCGATACGGGCTAGCTAGAGTGTGGTAGGGGAGATCGGAATTCCTG 

GTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCATTACT 

GACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGTT 

GGGAAACTAGGTGTTGGCGACATTCCACGTCGTCGGTGCCGCAGCTAACGCATTAAGTTCCCCGCCTGG 

GGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGC 

TTAATTCGACGCAACGCGAAGAACCT 

Seq 2 

CGCATGGGGGTTGGTGTAAAGCTCCGGCGGTGCAGGATGAGCCCGCGGCCTATCAGCTTGTTGGTGGGG 

TAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACA 

CGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGAC 

GCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAAGCGCAAGTGACGGTA 

CCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCC 

GGAATTATTGGGCGTAAAGAGCTCGTAGGCGGCCTGTCGCGTCGGATGTGAAAGCCCGGGGCTTAACCC 

CGGGTCTGCATTCGATACGGGCAGGCTAGAGTGTGGTAGGGGAGATCGGAATTCCTGGTGTAGCGGTGA 

AATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCATTACTGACGCTGAGGAG 

CGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGTTGGGAACTAGGTG 

TTGGCGACATTCCACGTCGTCGGTGCCGCAGCTAACGCATTAAGTTCCCCGCCTGGGGAGTACGGCCGC 

AAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGCTTAATTCGACAGA 

CCAACGCGAAGAACCTTACCAAGGCTTGACATATACCGGAAACGGCTAGAGATAGTCGCCCCCTTGTGG 

TCGGTATACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA 

GCG 

Seq 3 

GCTCCTCAGCGTCAGTATCGGCCCAGAGATCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGCGCAT 

TTCACCGCTACACCAGGAATTCCGATCTCCCCTACCGAACTCTAGCCTGCCCGTATCGACTGCAGACCC 

GGGGTTAAGCCCCGGGCTTTCACAACCGACGCGACAAGCCGCCTACGAGCTCTTTACGCCCAATAATTC 

CGGACAACGCTCGCGCCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGCGCTTCTTCTGCAG 

GTACCGTCACTTGCGCTTCTTCCCTGCTGAAAGAGGTTTACAACCCGAAGGCCGTCATCCCTCACGCGG 

CGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGGCC 

GTGTCTCAGTCCCAGTGTGGCCGGTCGCCCTCTCAGGCCGGCTACCCGTCGTCGCCTTGGTGAGCCGTT 

ACCTCACCAACAAGCTGATAGGCCGCGGGCTCATCCTGCACCGCCGGAGCTTTCGAACCGCCTGGATGC 

CCAAGCGGATCAGTATCCGGTATTAGACCCCGTTTCCAGGGCTTGTCCCAGAGTGCAGGGCAGATTGCC 

CACGTGTTACTCACCCGTTCGCCACTAATCCCCACCGAAGTGGTTCATCGTTCGACTTGCATGTGTTAA 

GCACGCCGCCAGC 

Seq 4 

ACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGATGAACCACTTCGGTGGGGATTAGTGGCG 

AACGGGTGAGTAACACGTGGGCAATCTGCCCTGCACTCTGGGACAAGCCCTGGAAACGGGGTCTAATAC 

CGGATACTGACCTTCACGGGCATCTGTGAAGGTCGAAAGCTCCGGCGGTGCAGGATGAGCCCGCGGCCT 

ATCAGCTTGTTGGTGAGGTAATGGCTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGC 

CACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCG 

AAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGAA 

GAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCACCGCGGTAATACGTA 

GGGCGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCACGTCGGTTGTGAA 

AGCCCGGGGCTTAACCCCGGGTCTGCAGTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGATCGGAAT 

TCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCG 

ATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA 

ACGGTGGGCACTAGGTGTGGGCAACTTC 

Seq 5 

AGTGGCGGACGGGTGAGGAATACATCGGAATCTACCTTGTCGTGGGGGATAACGTCTGGAAACGGGGTC 

TAATACCGGATACCACTCTCGCAGGCATCTGTGAGGGTTGAAAGCTCCGGCGGTGAAGGATGAGCCCGC 

GGCCTATCAGCTTGTTGGTGAGGTAATGGCTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGA 
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CCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAAT 

GGGCGAAAGCCTGATGCACGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAG 

GGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAAT 

ACGTAGGGCGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCACGTCGGGT 

GTGAAAGCCCGGGGCTTAACCCCGGGTCTGCATTCGATACGGGCTAGCTAGAGTGTGGTAGGGGAGATC 

GGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTG 

GGCCATTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGC 

CGTAAACGGTGGGAACTAGGTGTTGGCGACATTCCACGTCGTCGGTGCCGCAGCTAACGCATTAAGTTC 

CCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGA 

GCATGT 

Seq 6 

TATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCAGCGTCGGTTGTGAAAGCCCGGGGCTTAACCCCGGG 

TCTGCAGTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGATCGGAATTCCTGGTGTAGCGGTGAAATG 

CGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCGATACTGACGCTGAGGAGCGAA 

AGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGGTGGGCACTAGGTGTGGG 

CAACATTCCACGTTGTCCGTGCCGCAGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGG 

CTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGTGGCTTAATTCGACGCAACGC 

GAAGAACCTTACCAAGGCTTGACATACACCGGAAACGTCTGGAGACAGGCGCCCCCTTGTGGTCGGTGT 

ACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC 

CCTTGTCCCGTGTTGCCAGCAAGCCCTTCGGGGTGTTGGGGACTCACGGGAGACCGCCGGGGTCAACTC 

GGAGGAAGGTGGGGACGACGTCAAGTCATCATGCCCCTTATGTCTTGGGCTGCACACGTGCTACAATGG 

CCGGTACAATGAGCTGCGATACCGCGAGGTGGAGCGAATCTCAAAAAGCCGGTCTCAGTTCGGATTGGG 

GTCTGCAACTCGACCCCATGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCATTGCTGCGGTGAATACG 

TTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCGGTAACACCCGAAGCCGGTGGCCCAAC 

CCCTTGTGGGAGGGAGCTGTCGAAGTGGGACTGGCGATGGACGAGTC 

Seq 7:  

GGATGAGCCCGCGGCCTATCAGCTTGTTGGTGAGGTAACGGCTCACCAAGGCGACGACGGGTAGCCGGC 

CTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGA 

ATATTGCACAATGGGCGNAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAA 

CCTCTTTCAGCAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAG 

CAGCCGCGGTAATACGTAGGGCGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGCT 

TGTCACGTCGGGTGTGAAAGCCCGGGGCTTAACCCCGGGTCTGCATTCGATACGGGCTAGCTAGAGTGT 

GGTAGGGGAGATCGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGA 

AGGCGGATCTCTGGGCCATTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCC 

TGGTAGTCCACGCCGTAAACGGTGGGAACTAGGTGTTGGCGACATTCCACGTCGTCGGTGCCGCAGCTA 

ACGCATTAAGTTCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCG 

CACAAGCAGCGGAGCATGTGGCTTAATTCGACGCAACGCGAAGAACCTTACCAAGGCTTGACATACACC 

GGAAAACCCTGGAGACAGGGTCCCCCTTGTGGTCGGTGTACAGGTGGTGCATGGCTGTCGTCAGCTCGT 

GTCGTGAGATGTTGGGTTAAGTC 

Seq 8: 

AGCTTGTTGGTGAGGTAACGGCTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCAC 

ACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAA 

GCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAA 

GCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG 

GCGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGCTTTCACGTCGGGTGTGAAAGC 

CCGGGGCTTAACCCCGGGTCTGCATTCGATACGGGCTAGCTAGAGTGTGGTAGGGGAGATCGGAATTCC 

TGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCATTA 

CTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACG 

GTGGGAACTAGGTGTTGGCGACATTCCACGTCGTCGGTGCCGCAGCTAACGCATTAAGTTCCCCGCCTG 

GGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGG 

CTTAATTCGACGCAACGCGAAGAACCTTACCAAGGCTTGACATACACCGGAAAACCCTGGAGACAGGGT 

CCCCCTTGTGGTCGGTGTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAG 

TCCCGCAACGAGCGCAACCCT 
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Abstract: The goal of this short note is to expand the concepts of ‘pluralism’, ‘neutrosophy’, ‘refined 

neutrosophy’, ‘refined neutrosophic set’, ‘multineutrosophic set’, and ‘plithogeny’ (Smarandache 

2002, 2013, 2017, 2019, 2021, 2023a, 2023b, 2023c), into a larger category that I will refer to as 

MultiAlism (or MultiPolar). As a straightforward generalization, I propose the conceptualization 

of a MultiPolar System (different from a PluriPolar System), which is formed not only by multiple 

elements that might be random, or contradictory, or adjuvant, but also by accepting features from 

more than one basic system (UniPolar, BiPolar, TriPolar, or PluriPolar systems). PluriAlism is a 

closed dynamic system without neutralities nor indeterminacies, while MultiAlism is an open 

dynamic system with neutralities and indeterminacies. PluriAlism is a uni-system (formed by 

elements from a single system), while MultiAlism is a MultiSystem (formed by elements from many 

systems). 

Keywords: Monism; Dualism; Trialism; Pluralism; Neutrosophy; Refined Neutrosophy; 

MultiNeutrosophy; Refined Neutrosophic Set, MultiNeutrosophic Set; Plithogeny; Multialism; 

Zoroastrianism; Neutral Monism; neo-Vedanta. 

 

 

1. Introduction 

Many casual interactions with non-Western peers from academics have opened my eyes during 

the past two decades to themes that – except for a few committed and non-biased specialists – are 

still approached superficially in what we still call The Occident. In our Western World, some Eastern 

ideas, principles, and actions remain misunderstood or wrongly judged, because we still have an 

obstinacy to fit them without nuances into our unique methods of thoughts. The frequent visits I 

made to the Non-Western World, to international conferences and scientific seminars, or post-

doctoral in applied mathematical and technological research, provided me with an unmediated 

contact with these diverse cultures, allowing me to improve the understanding of their systems of 

thinking, and resulting in many traveling memories I wrote about their custom, religion, philosophy, 

history, geography, and life.   

In this regard, Zoroastrianism serves as an illustration. Its somehow paradoxical aspects bedazzle 

most Western observers, making them confused when they try to categorize the religion among 

monotheistic, dualist, or pluralist systems. However, imposing concepts whose meanings have been 

referenced to other doctrines will not succeed in an attempt to fully define this religion, and rather 

than pointing out monotheistic or polytheistic features, or even prompt neutrosophic features – as I 

did myself in one of my scilogs (Smarandache, 2023, 84 et ss.) – would it not be more beneficial for 

thinking to broaden the current categories? 

Alternatively, we may look in the Western philosophy at the neutral monism, which – to put it 

simplistically – holds that the mind and body are not two distinct entities, but are rather composed of 

mailto:smarand@unm.edu
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the same neutral “stuff”, or as a fluid (indeterminate) margin between non-physical and physical 

(Smarandache 2023c). In this respect, David Hume proposed “impressions” or “perceptions” as 

primary realities of experience, while William James thought that the neutral core material is a 

“booming, buzzing confusion” called “pure experience”, and Bertrand Russell, more towards our 

times, referred to the neutral entities as “sensibilia”. Neutral monism is actually pluralist1 in that it 

recognizes the existence of multiple such elements (as opposed to metaphysical monism), but it is 

monist in that it holds that the fundamental components of the universe are all of the same kind 

(against mind-body dualism). Since we do not fall strictly into the category of monism anymore, by 

accepting neutralities or indeterminacies – would it not be more beneficial for thinking to broaden 

the current categories? 

In what follow, I will provide a few more examples of this kind; however, I have no doubt the 

readers can add their own examples to complete the picture. The examples are not limited, but the 

question persists: would it not be more beneficial for thinking to broaden the current categories? 

It happened that I was reading a very recent study by Ethan Brauer once the sketch of an answer 

to the above question has settled on its own on the paper. Brauer’s extensive paper addresses a 

completely different and narrow topic, but which can be expanded from its limited sphere – modal 

analysis of potential infinity. Brauer extended a theory of classical second-order arithmetic to include 

intrinsically well-motivated axioms for lawless sequences.2 Free choice sequences are central to the 

intuitionistic theory of the continuum, but since intuitionistic analysis theorems defy the classical 

analysis, many mathematicians reject the concept. (Brauer 2023)  

Mutatis mutandis, our quest is similar. 

2. UniPolar, BiPolar, TriPolar, PluriPolar, and more general MultiPoar Systems. Definitions and 

examples 

In this section, I will scrutinize definitions and meanings of the basic Western systems (of 

organization) of thoughts, and exemplify them, including scenarios from Eastern doctrines.  

2.1. Monism: all is one 

Monism is a philosophy and metaphysical doctrine that postulates a single, ultimate, cohesive 

reality. The universe is composed of a single, overarching ‘idea’ or ‘substance’, or only one ultimate 

deity, <A>. Everything else is just a manifestation of this one reality/substance/deity. This is a 

UniPolar System,  

i.e. <A> = ∞, where <A> is an ‘idea’, a ‘substance’, et caetera, and ∞ is ‘world’, ‘reality’, ‘all’. 

The monist schools of philosophy claim that either everything is material (materialism) or 

everything is mental (idealism), and abolish the distinction between the body and the mind in favor 

of explaining all phenomena as expressions of a single unifying principle.3 

Christian Wolff coined the term ‘monism’ in the eighteenth century in his work “Rational 

Thoughts” [German Logic] (1728): “we must admit of one necessary, self-existent Being” (Wolff, 

1770). Wolff delves further into the systems of mind-body connection in the “Psychologia Rationalis” 

(1734). He believes in the validity of Leibnizian monadology, but only applied to ideas, refuting the 

monistic panpsychism that is central to Leibniz's metaphysics.4 

 
1 Griffin, N. (1998). ‘Neutral monism’. In The Routledge Encyclopedia of Philosophy. Taylor and Francis. Retrieved 23 Dec. 

2023, from https://www.rep.routledge.com/articles/thematic/neutral-monism/v-1. 

2 Which leaded Brauer to a theory that is called MCLS.  

3 O’Conaill, D.(2019). ‘Monism.’ In The Routledge Encyclopedia of Philosophy. Taylor and Francis. Retrieved 21 Dec. 

2023, from https://www.rep.routledge.com/articles/thematic/monism/v-2.  

4 Hettche, Matt and Corey Dyck, "Christian Wolff", The Stanford Encyclopedia of Philosophy (2019), Edward N. Zalta (ed.). 

Retrieved 17 Dec. 2023, from https://plato.stanford.edu/archives/win2019/entries/wolff-christian.  

https://www.rep.routledge.com/articles/thematic/neutral-monism/v-1
https://www.rep.routledge.com/articles/thematic/monism/v-2
https://plato.stanford.edu/archives/win2019/entries/wolff-christian
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Looking back in time and towards the East, monism has been widely discussed in connection 

with the Indian philosophy, particularly in "Uttara Mīmāṃsā" (also known as “Vedānta”). Many 

schools of thought have emerged out there, all basing their doctrines on the authority of the same 

corpus known as “Prasthānatrayī”.  

In Hinduism, the idea of Brahman — the ultimate reality or supreme cosmic power — is 

frequently connected to monism. Most Hindus follow monastic principles and hold that Brahman is 

everything and everything is Brahman.5 The philosophy of Advaita Vedānta, which is frequently 

referred to as a type of absolute nondualism, also reflects this viewpoint.  

In one accessible simplification, one can reduce the monism to two types: a substantive monism, 

in religions like Buddhism and Hinduism in the East, or philosophers like Spinoza in the West, and 

attributive monism, with sub-tyes as idealism, physicalism, or neutral monism. The first reduces the 

reality to a single substance, or states that the world is only varied because this one substance exists 

in plural forms, while the second asserts that there is a one category of being that encompasses a wide 

plurality of distinct objects or substances. 
Despite being essentially monistic, attributive monism appears to be rather pluralistic, but 

substantival monism is strongly hostile to pluralism. 

In that it reduces the physical cosmos to a single principle, pantheism is similar to monism: 

“Pantheists are monists” (Owen, 1971, 65), even though the pantheist deity is imperfect, expanding 

and continuously creating, or also extending beyond space and time in panentheism — a conceptions 

of God present as well in some Christian confessions — therefore surpassing the simplification of 

monistic attribution. 

2.2. Dualism: all is two 

Dualism explains the world (or reality) by two fundamental, diametrically opposed, and 

irreducible principles. In religion, it generally refers to the conviction that the universe was created 

by two ultimate antagonistic forces, gods, or groups of angelic or demonic creatures. Since dualism 

is a system formed by two contrasted parts, this is a BiPolar System:  

i.e. <A> + <antiA> = ∞. 

where <A> is an ‘idea’, a ‘substance’, et caetera, <antiA> is its opposite or negation, and ∞ is 

‘world’, ‘reality’, ‘all’. 

I would probably not be wrong if I affirmed that this system is for ages a dominant worldview 

in Western way of thinking, with Descartes and Hegel being the first two figures that spring to mind, 

completed by Kant’s cognitive dualism, which distinguished between the faculties of sensibility and 

understanding, . Examples of epistemological dualism include being and thought, subject and object; 

and, on the other hand, examples of metaphysical dualism being matter and spirit, body and mind, 

good and evil. 

Glancing eastward, we observe that most historians of religion use the ancient Iranian religion 

Zoroastrianism as a clear case of eschatological dualism, advocating that it is based on two conflicting 

principles: Ahura Mazda, the deity of light and truth, and Angra Mainyu, the destroying enemy. 

An ongoing conflict exists between the good, spiritual realm of light and the bad, material realm 

of darkness, according to the ancient Iranian religion of Manichaeism. 
Furthermore, as its name says by ityself, dvaita — the Sanskrit word dvaita actually means 

‘dualism’ (Flood, 1996, 245) — is a dualist school of Vedanta, asserting that there is an everlasting 

separation between the particular self and the ultimate, in opposition to the advaita (non-dualist) 

philosophy. Although dvaita was dualist in that sense, it proposed an autonomous God named 

Vishnu as the ruler of the independent and separate entities of matter and soul. More specifically, 

dvaita recognized three absolute and eternally existing entities: God, souls (atman), and primordial 

substance (prakriti).  

 
5 Leeming, D.A. (2014). ‘Brahman.’ In: Leeming, D.A. (eds) Encyclopedia of Psychology and Religion. Springer, Boston, 

MA. https://doi.org/10.1007/978-1-4614-6086-2_9052.  

https://doi.org/10.1007/978-1-4614-6086-2_9052
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2.3. Trialism: all is three 

Trialism was introduced in philosophy by John Cottingham as “a grouping of three notions” 

(Cottingham, 1985, 219), an alternative viewpoint to Descartes' dualism, with the addition of 

sensation next to mind and body: “It turns out that there are features that belong to the mind alone, 

features that belong to the body alone, and what may be called hybrid features - features that belong 

to man qua embodied being” (Ibidem; see also Cottingham, 2021). 

Trialism is thus a system formed by three contrasted or entirely different parts, and similarly, 

trichotomy is a division of three opposites (or entirely different) two by two things.  

A three-poles system was also proposed by neutrosophy (Smarandache 1995, 2013), which 

operates with three independent opposites, found in equilibrium: <A>, <neutA>, and <antiA>, called 

Neutrosophic Triad. All ‘ideas’ <A> are considered in conjunction with their opposites or negations 

<antiA> and the range of neutralities <neutA> between them, while <nonA> is the collective term for 

the ideas <antiA> and <neutA>. In neutrosophy, the three poles may be fluid two by two. 

The balance between <A> and <antiA> rests on <neutA>. In other words, <neutA> is imagined 

as a buffer zone between <A> and <antiA>: 

 
Moving <neutA> to the left, or to the right, i.e. if the neutral/indeterminacy part is pushed 

towards <A>, or <antiA> (the indeterminacy degree increases), then one of them gets stronger (having 

less indeterminacy), and the balance gets in disequilibrium: 

 

 
Based on neutrosophy, the associated TriPolar System can be described as:  

<A> + <neutA> + <antiA> = ∞, 

where <A> is an ‘idea’, a ‘substance’, et caetera, <antiA> is its opposite or negation, <neutA> is the 

range of neutralities between them, and ∞ is ‘world’, ‘reality’, ‘all’. 

I point out here no more than that the neutrosophy is an extension of both the ancient Chinese 

Yin-Yang philosophy and dialectics (Smarandache 2013), and also remind the reader that the trialism 

was associated with Christianity as well, e.g. for holding that human beings are composed of three 

separate essences: a body, a soul, and a spirit.6  

2.4. Pluralism: all is plurality 

Pluralism is a wordview of plurality, used in philosophy to contrast with monism (the idea that 

everything is one), with dualism (the idea that everything is two), and arguably with trialism (the 

idea that everything is three). Pluralism can be defined as a system in which more than two (arguably 

three) groups, principles, states, ideas, et caterea, coexist. This is a PluriPolar System:  

<pluriA> = ∞,  

where <pluriA> means more than two (arguably three) ‘ideas’, et caetera, and ∞ is ‘world’, 

‘reality’, ‘all’. 

In metaphysics, pluralism is the idea that reality is actually made up of a variety of substances 

found in nature, while in ontology the concept describes various forms, kinds, or modes of existence. 

 
6 This understanding stems from taking 1 Thessalonians 5:231 literally: “And the very God of peace sanctify you wholly; 

and I pray God your whole spirit and soul and body be preserved blameless unto the coming of our Lord Jesus Christ.”  
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Buddhism is given as an example of a pluralistic religion. Many Buddhist traditions do not 

declare a single ultimate truth and recognize the validity of multiple paths to enlightenment, 

advocating conversation and understanding with people of other faiths. 

Another example might be the Bahá' Faith, which holds that all major faiths have the same 

spiritual basis, are descended from the same divine source (God), and differ only in their social 

teachings in accordance with the necessities of the eras in which they were revealed. 

3. MultiAlism: all is open 

We observed in the short, quick and without going into depth evaluation of the basic systems 

that we previously discussed that it is challenging to strictly include some non-Western doctrines (or 

even Western!) in one group or another. Certain doctrines/ideologies/ideas acknowledge several 

components from various systems. Some beliefs are classified as monistic, yet they clearly contain 

components of pluralism as well; others, on the other hand, are classified as nondualistic but cannot 

be classified as either strictly UniPolar, or PluriPolar systems. Nor the concept of nonduality, a 

common thread in Taoism, Mahayana Buddhism, or Advaita Vedanta (Loy, 1998), does suffice, being 

a rather fuzzy concept, which might finally include anything that does not fall into a BiPolar System 

of thought, regardless of distinctions, or mutations.  

Numerous schools of thought have extensively examined the dynamics between the opposites <A> 

and <antiA>. These concepts are known by various names, including dialectics, Yin-Yang, 

Manichaeism, dualism, Dharma-Adharma, and many others. However, the neutral (or indeterminacy) 

part (<neutA>) between these opposites has rather either been ignored or retracted. The neutral or 

indeterminate, as I emphasized in my studies on neutrosophic theory (Smarandache 2002, 2013), 

usually intervenes in the dynamics (or conflicts) from one side or the other, tipping the balance in one 

direction or the other. The boundaries between the opposites can be either fluid (when there is some 

overlapping or indeterminate/neutral part between the opposites) or rigid (when <A> and <antiA> are 

clearly separated). 

In Occasionalism, for example, the God is a neutral (<neutA1>) between mind (<A1>) and body 

(<antiA1>), as a particular case, i.e. where one has only one dynamic, between <A1> and <antiA1> (one 

neutrosophic triad). In MultiAlism, one has dynamics between many neutrosophic triads: 

(<A1>, <neutA1>, <antiA1>), (<A2>, <neutA2>, <antiA2>), ... . 

And so forth. 

By convention let’s use the prefix “pluri” when talking about the elements of a single system, 

and “multi” when talking about the elements of many systems. 

Therefore, the PluriPolar System accepts and deals with the dynamicity of opposites, but not 

with the neutralities or indeterminacies between them:  

<(pluri)A> + <(pluri)antiA> = ∞. 

This simple observation instigated the idea of a generalizing and integrative construct into 

which to accommodate theories that mix parts from many systems. I unpretentiously call this 

construct multialism, and clearly differentiate it from pluralism, and consequently call the related 

system the multialist system, conceiving it as a MultiPolar System that accepts and is open to 

combinations of opposites and neutrals (indeterminacies), e.g.: 

<(multi)A> + <(multi)neutA> + <(multi)antiA> = ∞. 

The MultiPolar System accepts and deals with neutralities and indeterminacies between the 

opposites, but it is not necessarily to contain them. As such, the MultiPolar System is an extension of 

the PluriPolar System. 

Let us test out two examples from religion before returning with more in-depth studies in later 

papers. 

3.1. Zoroastrianism  
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Zoroastrianism offers a perplexing picture of a religion (about the state and prospects of the 

study of this religion, a must read is  Stausberg, 2008) whose followers worship several sacred 

beings, called yazatas, in addition to a single deity, Ahura Mazda (or Ohrmazd in Middle Persian).7 

These yazatas8 —somehow remembering us the Roman tutelary deities Lares9— include natural 

objects or phenomena (earth, water, wind, sun, moon, etc.). Other individual deities manifest their 

presence, among which Anahita (fertility), Armaiti (right-mindedness), Ai (reward), or Rasnu 

('justice'). Furthermore, Ahura Mazda’s faces strong opposition from the personification of evil, 

Ahreman in Middle Persian (or Angra Mainyu in Avestan). Its only goal is to ruin Ohrmazd’s good 

world.  

This makes the Zoroastrianism to Hintze to be both dualistic, polytheistic, and monotheistic (a 

“mixture of seemingly monotheistic, polytheistic, and dualistic features”, Hintze, 2014, 225 et ss.), in 

an attempt to put an end to the debates in literature which went from defining Zoroastrianism as a 

“dualistic monotheism” (Gnoli, 1994, 480) to a “monotheistic dualism” (Schwartz, 2002, 64). Added 

to this are the interpretations of existence of a Divine Triad, or a dialogical triad in Zoroastrianism: “The 

Deity is also not a monadic one, but a dialogical triad (and there may be other aspects) who exists in 

relationship” (Louchakova-Schwartz, 2018, 481). 

Furthermore, I observe the obvious neutrosophic features of yazatas: the balance between good 

and evil tilts according to their (neutrosophic) actions (vedi supra, 2.3). 

In our approach, these characteristics makes the Zoroastrianism a multialist religion, including 

elements from all basic systems:  

<A> [Ohrmazd] + <(multi)A> [deities] + <neutA> [actions of yazatas] + <antiA> [Ahreman] = ∞. 

3.2. Vedanta and neo-Vedanta schools 

Other instances of multialism are generated by the different interpretations of Vedanta. 

Independently, the Vedanta schools may appear utterly distinct due to significant discrepancies in 

ontology, soteriology, and epistemology.  

Let us remind the main schools of Vedanta, and their interpretations: Advaita (non-dualism), 

Dvaitadvaita (difference and non-difference), Vishishtadvaita (qualified non-dualism), Dvaita 

(dualism), Suddhadvaita (pure non-dualism), Achintya-Bheda-Abheda (inconceivable difference and 

non-difference) (Isaeva, 1992; Clooney, 1993). 

Coming closer to our days, modern developments (so-called neo-Vedanta) propagated the idea 

that the divine, the absolute, exists within all human beings. Acceptance of many kinds of worship is 

a key component of Swami Vivekananda's philosophy, an exponent of neo-Vedanta, emphasizing 

the idea of acceptance rather than tolerance. This neo-Vedanta school holds that no other types of 

worship are incorrect. Life is a quest trip from one truth to another, from a lesser truth to a greater 

one. The truth is not anyone's property, and the nature of all souls is truth. Actually, Vivekananda 

“reconciles Dvaita or dualism and Advaita or non-dualism” (Sooklal, 1993, 48). 

According to Vivekananda, the perfect man possesses all the components of philosophy, 

mysticism, passion, action in right measure to create a harmoniously balanced whole (Ibidem, 42). To 

my understanding, the components are supposed to exist in a balanced (and hence neutrosophic) 

manner rather than just in their plurality, and yet being monistical manifestations of one,  

i.e. <A> + <(multi)A> + <neutA>,  

which makes me consider it a multialist doctrine. 

 
7  Duchesne-Guillemin, Jacques. "Zoroastrianism". Encyclopedia Britannica, 8 Nov. 2023, 

https://www.britannica.com/topic/Zoroastrianism. Accessed 11 December 2023.  

8  Britannica, The Editors of Encyclopaedia. "yazata". Encyclopedia Britannica, 3 Apr. 2014, 

https://www.britannica.com/topic/yazata. Accessed 11 December 2023.  

9  Britannica, The Editors of Encyclopaedia. "Lar". Encyclopedia Britannica, 14 Feb. 2018, 

https://www.britannica.com/topic/Lar-Roman-deities. Accessed 11 December 2023.  
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Conclusions  

As an extension of the concepts of ‘pluralism’, ‘neutrosophy’, ‘refined neutrosophy’, ‘refined 

neutrosophic set’, ‘multineutrosophic set’, and ‘plithogeny’ (Smarandache 2002, 2013, 2017, 2019, 

2021, 2023a, 2023b, 2023c), I introduced in this short note the concept of MultiAlism, to which 

corresponds a MultiPolar system of thought. A possible advantage of this system could free from 

ambiguities the other systems, especially the PluriPolar system, where plural elements – more or less 

equal – coexist or are tolerated to exist and contains their opposites, but not their neutralities or 

indeterminacies between them; while the MultiPolar system is open to accept in various 

combinations and mutations, the opposites and their neutralities or indeterminacies between them, 

from  more than one system. In other words, the UniPolar, BiPolar, TriPolar, and PluriPolar systems 

are uni-valent systems (one excludes the other), whilst the MultiPolar System is a multi-valent system 

(it includes more than one system) and accepts neutralities and indeterminacies between opposites. 
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