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Abstract: In this paper, we extend, for the first time, the Law of Included Multiple-Middles to the 

Law of Infinitely-Many-Middles. And we present several practical applications. Also, we discuss 

Aristotle's Syllogism, Principle of Identity, and Principle of NonContradiction. 

Keywords: Excluded Middle; Included Middle; Included Multiple-Middles; Included Infinitely-

Many-Middles; Syllogism; Many-Valued Syllogism; Identity; NonIdentity; NonContradiction, Anti-

NonContradiction. 

 

 

A. Short History 

 

We present below the evolution from the Law of Excluded Middle to the Law of Included 

Infinitely-Many-Multiples. 

1. Law of Excluded Middle 

The Law of Excluded Middle was enounced by the Ancient Greek philosopher Aristotle (384 - 

322 BC) on his opus on logic and reasoning [1, 2] that was based on analysis and dichotomy: 

"There cannot be an indeterminate between contraries, but of one subject we must either 

affirm or deny anyone predicate".  

Therefore, a proportion is either 100% true or 100% false, as in Boolean logic. Or, an element 

either belong 100% to a set, or does not belong 100% to the set (as in the classical set theory). 

2. Law of Included Middle 

The Law of Included Middle is the denial of previous, and it supports the idea that between 

contraries there may be a middle. It is based on trichotomy. Several philosophers and logicians 

developed it, such as Stephane Lupasco's logic of contradiction, using the non-standard logic, 

followed by Basarab Nicolescu's levels of reality, and J.-J. Wunenburger. Gonseth pleads for a low 

necessity in using the logic of contradiction. [5] 

With the introduction of modern sets and logics, such as fuzzy set/logic (Zadeh, 1965), 

intuitionistic fuzzy set/logic (Atanassov, 1983), neutrosophic set/logic/probability (Smarandache, 

1995), the Law of Included Middle became evident and useful in our everyday life where we deal 

with approximate partial membership/non-membership/truth/falsehood while in neutrosophic 

probability besides the chance of occurrence of an event, there has been added the middle term: 

indeterminate-chance of occurrence or not. 

Neutrosophic set and logic explicitly presented the middle term I (indeterminacy or neutrality) in 

between the opposite terms (membership/truth), and F (non-membership/falsehood). 
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3. Law of Included Multiple-Middles 

The Law of Included Multiple-Middles is an extension of the previous, and it was enounced 

by Smarandache [4] in 2014. 

Neutrosophy [6] is a branch of philosophy that studies the dynamics of the opposites <A> and 

<antiA> together with their neutrality <neutA>, where <A> is an item (idea, proposition, theory, etc.), 

<antiA> is its opposite, while <neutA> is the neutrality in between them (i.e. neither <A> nor <antiA>).  

Of course, we are referring to the neutrosophic triads <A>, <neutA>, <antiA> that make sense in 

our real world. 

Neutrosophy, together with Neutrosophic Set/logic/probability, have been refined [7] in 2013, 

by refining splitting/multiplicating <A>, <neutA>, <antiA> as follows: 

<A> as <A1>, <A2>, ..., <Ap>; 

<neutA> as <neutA1>, <neutA2>, ..., <neutAr>; 

and  <antiA> as <antiA1>, <antiA2>, ..., <antiAs>; 

where p, r, s ≥ 0 are integers,  

and at least one of p, r, s is ≥ in order to ensure that at least one neutrosophic component amongst 

<A>, <neutA>, <antiA> is refined/split/multiplicated. 

This definition also permits the refinement of fuzzy set/logic (for p ≥ 2 and r = s = 0), and of 

intuitionistic fuzzy set/logic (for p ≥ 1, r = 0, s ≥ 1 and at least one of p or s is ≥ 2). 

By taking p = 1, r ≥ 2, and s = 1, we defined the Law of Included Multiple-Middles: 

Between the opposites <A> and <antiA> there are included multiple-middles: <neutA1>, 

<neutA2>, ..., <neutAr>. 

It is of course based on a multichotomical analysis.  

i) Between the opposite colors White and Black there are many colors such as: yellow, rose, red, 

blue, etc. 

ii) Pentagonal Neutrosophic logic, where each proposition is characterized by five degrees of 

truth, such as (T, C, V, U, F) 

where the opposites are: 

T=degree of truth and F=degree of falsehood, 

and the three included-middles are: 

C=degree of contradiction 

V=degree of vagueness 

U=degree of unknowingness 

For example, the logical proposition: 

P=Artificial intelligence will take over the world, evaluated by experts, this proposition may be 

40% true (T), 20% contradictory (C), 30% vague (V), 60% unknown (U) and 50% false (F). 

P (0.4, 0.2, 0.3, 0.6, 0.5). 

4. Law of Included Infinitely-Many-Middles 

In between the opposites <A> and <antiA> there are infinitely many middles, denoted by   

<neutAi>, i =1, 2, ..., ∞. 

(i) Practical Example 

Between the White and Black colors there are infinitely-many nuances of colors. 

(ii) Between 100% True and 100% False, there are included infinitely many middles, which are 

truth-values of the form:  d% True and (1-d)% False, thus a logical proposition may be, for example: 

1% True and 99% False, 2% True and 98% False, etc. 

(iii) Similarly, between 100% membership and 100% non-membership, there are included 

infinitely many middles of the form:  d% membership and (1-d%) non-membership. 

5. Syllogism 

Aristotle studied it:  
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if "A→B" and "B→C" are totally true, then "A→C" is also totally true.  

This is in classical logic.  

 

6. Many-Valued Syllogism 

In many-valued logics, where "A→B" and "B→C" are partially true, then "A→C" is partially true 

as well. 

7. Principle of NonContradiction 

It was enounced by Aristotle [1, 2], that <A> and <antiA> cannot be true at the same time: 

"the same attribute cannot at the same time belong and not belong to the same subject 

and in the same respect", 

and  

"it is impossible for anyone to believe the same thing to be and not to be, as something 

Heraclitus says". 

 

8. Principle of Anti NonContradiction 

 

 We name this principle as “Anti Contradiction” that occur in the many-valued logics in order to 

distinguish it from the Principle of NonContradiction (also called Contradiction). 

The above principle, related to the Law of Excluded Middle, does not work any longer in the 

modern theories. Again, with the introduction of modern set theories, it is possible to have both, 

degree of belonging and degree of not-belonging simultaneously of an element to a set, for example 

John (0.6, 0.4), meaning that John belongs (works) only 60% for his company and 40% does not. And 

similarly with respect to the modern logics, where a logical proposition may be partially true and 

partially false. 

In fuzzy and fuzzy extension theories (except neutrosophic theories), <A> and <antiA> may be 

partially (not totally) true at the same time. 

In fuzzy logic, if a proposition P is 50% true, then its negation ⌐P is also 100%-50% = 50% true. 

In neutrosophic logic, if a proposition has the truth-value P is (a, 0.5, a), where 0 ≤ a ≤ 1, then its 

negation ⌐P is also (a, 1 - 0.5, a) = (a, 0.5, a).    

In neutrosophic theories, <A> and <antiA> may be partially or totally true at the same time. For 

example, a paradox is proposition that is 100% true and 100% false at the same time, therefore <A> 

and <antiA> are totally true at the same time. 

9. Principle of Identity 

As enounced by Aristotle: 

A=A (an item is equal to itself). 

This is true if one considers the item <A> under the same parameters that characterize it, and 

having the same corresponding values: 

A(P1 = v1, P2 = v2, ..., Pn = vn)  =  A(P1 = v1, P2 = v2, ..., Pn = vn). 

10. Principle of NonIdentity 

The Principle of Identity, by Aristotle, that A = A, works when the entity A is compared to itself 

with respect to the same parameters that characterize A, with each parameter measured at the same 

scale and on the same time. 

But, if the parameters that characterize A are different, or their corresponding values are 

different, then one has non-equality. 

For example, if A=Andrew, then Andrew(at age 5) ≠  Andrew(at age 70) physically, 

intellectually, and psychically.  
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As such, one may also define a Principle of NonIdentity, when A is different from A in at least 

one circumstance. And, in general, an item (person, animal, object, etc.) is not equal to itself at 

different times: 

item (at time t1) ≠ item (at time t2). 

B. Conclusion  

We have presented the Law of Excluded Middle by Aristotle, then the Law of Included Middle, 

Law of Included Multiple-Middles, and we introduced for the first time the Law of Included 

Infinitely-Many-Middles. 

Afterwards, several comments we made on Aristotle's Syllogism, Principle of 

NonContradiction, and Principle of Identity, that, in the many-valued logics, may have degrees of 

partial truth and partial falsehood even partial indeterminacy - depending on each application. 
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Abstract: A new concept of neutrosophic overlap function is given, furthermore a neutrosophic 
residual implication derived from it is also introduced. Firstly, we give new concept of 
neutrosophic overlap function and some classical examples which are introduced on the lattice. 
Secondly, the concept of representable neutrosophic overlap function and its pertinent examples 
are given, meanwhile the general method of constructing representable neutrosophic overlap 
function by using intuitionistic overlap function is given. Finally, neutrosophic residual implication 
induced by neutrosophic overlap function and its basic properties are studied. 

Keywords: neutrosophic overlap function; lattice; representable neutrosophic overlap function; 
neutrosophic residual implication 

 
 

1. Introduction  

In 1998, smarandache added an independent membership degree of uncertainty to intuitionistic 
fuzzy set (IFS) [1], thus putting forward the neutrosophic set (NS) initially. NS is such a robust 
formal frame extending those concepts of typical set, fuzzy set, IFS and interval-valued IFS from 
philosophical viewpoint. Because IFS and interval-valued IFS that can solely address incomplete 
information, but can't address uncertainty and the lack of consistent information which exists in 
reality. Hence, NS is introduced. Its uncertainty can be explicitly quantified, and its true affiliation, 
uncertain affiliation and false affiliation are expressed independent. However, its application is hard 
to solve the actual problems, some scholars have brought forward that notion of single-valued NS 
[2], as one specific case of NS. And those relevant contents of using single-valued NS to address 
decision-making issues are as follows [3-8]. 

Since the triangular norm has a broad range of applications in solving pragmatic issues, it is 
also important to study the wide range of forms of the triangular norm in applications. The overlap 
function is a generalization of triangular norm that fulfils continuity [9]. Bustince et al. gave accurate 
definition of overlap(grouping) function in [10,11]. Over the past period of time, overlap function 
and grouping function evolved rapidly in theory and practice. See the following literature [12-16] for 
the rich achievements in the field of theoretical research about overlap function and grouping 
function. In decision problems, image processing and other fields of wide application see the 
following literature [17-20]. In an effort to better handle inconclusive information, some scholars 
extend the overlap function [12, 21] into the IFS, while introducing the method at [22]. 
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Fuzzy implication and fuzzy residual implication play an integral part in traditional fuzzy 
logic. Fuzzy implication [23] generalizes classical implication into fuzzy logic via the consideration 
of truth values varying in [0, 1] as opposed to {0, 1}. Fuzzy implication is one of the important 
components of fuzzy logic and acts as a very crucial part in some fields, such as image processing, 
fuzzy control, data mining sees the following literature [24-26], etc. Based on the wide application of 
fuzzy implication, it is necessary to research it from the theoretical viewpoint [19]. There are a few 
various models of fuzzy implication for example the R-implication induced by triangular norm [27], 
(S-N)-implication induced by triangular conorm and fuzzy negation [28], etc. Because overlap 
function is closely related to triangular norm, in view of the research of neutrosophic triangular 
norm on neutrosophic fuzzy residual implication, and referring to the research of neutrosophic 
triangular norm derived residual implication in Hu and Zhang [18], it is natural to consider the 
neutrosophic residual implication (NRI) induced by neutrosophic overlap function. 

The second section mainly introduces the basic knowledge that needs to be used, such as 
overlap function, grouping function and NS etc. And in the third section, the new concept and 
related examples of neutrosophic overlap function are given. In addition, the notions and relevant 
examples of representable neutrosophic overlap function and non-representable neutrosophic 
overlap function are presented, respectively. Furthermore, the new concept of neutrosophic 
negation and De Morgan neutrosophic triple which can express the dual relationship between 
neutrosophic overlap function and neutrosophic grouping function is introduced. The general 
method of constructing representable neutrosophic overlap functions by intuitionistic overlap 
functions is given. The fourth section focuses on NRI induced by neutrosophic overlap function, 
and concludes that every NRI induced by neutrosophic overlap function must be a neutrosophic 
implication. The final section summarizes the research content. 

2. Preliminaries 

Definition 2.1 ([29]) O is referred to as an overlap function, if the binary map O: [0, 1]  [0, 1]→[0, 1] 
fulfils prerequisites below, s, t, v [0, 1]: 

(a) O fulfils exchangeability; 
(b) O(s, t) = 0 when and only when st= 0; 
(c) O(s, t) = 1 when and only when st= 1; 
(d) O(s, t) 1 O(s, v) if t 1 v; 
(e) O fulfils continuity. 

Example 2.1 The bivariate functions below are overlap functions, s, t [0, 1]: 

(a) ( ) ( ) ( )O s t s t s t2 2
mM , min , max , ; 

(b) ( )  p p
pO s t s t, , for   0 and 1p p ; 

(c) 
2

( )
.

  
 



 

st s t
O s t s t

s t
DB

, if +  0,
, +

0 , if +  0
; 

(d) ( ) { }O s t s tmin , min , . 

Definition 2.2 ([30]) The bivariate function G: [0, 1]  [0, 1]→[0, 1] is referred to as the grouping 
function, when it fulfils prerequisites below,  s, t, v [0, 1]: 
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(a) G fulfils exchangeability; 
(b) G(s, t) = 0 when and only when s= 0 and t= 0; 
(c) G(s, t) = 1 when and only when s= 1 or t= 1; 
(d) G(s, t) 1 G(s, v) if t 1 v; 
(e) G fulfils continuity. 

Example 2.2 The bivariate functions below are grouping functions, s, t [0, 1]: 

(a) ( ) ( ) (( ) ( ) )     G s t s t s t2 2
mM , 1 min 1 ,1 max 1 , 1 ; 

(b) ( ) ( ) ( )   p p
pG s t s t, 1 1 1 , for   0 and 1p p ; 

(c) ( )
.

   
 





s t st s t
G s t s t

s t
DB

+ 2 , if + 2,
, 2

1, if + 2
; 

(d) ( ) { }   G s t s tmin , 1 min 1 , 1 . 

Definition 2.3 ([31]) An affiliation function μE(s) and a non-affiliation function νE(s) portray an IFS E 
in S. S is a set that is not empty. And the IFS E be denoted as 

{( | }E   E Es s s s S, ( ), ( )) . 
In which μE(s), νE(s) [0, 1] and satisfies the term of 0≤ μE(s)+ νE(s)≤ 1. 

Definition 2.4 ([2]) Truth-affiliation function TE(s), uncertainty-affiliation function UE(s) and falsity 
-affiliation function FE(s) portray the single-valued NS E in S. S is a set that is not empty. And the 
single-valued NS E is defined as 

{ ( ) ( ) | } E E EE s T s U s F s s S, ( ), , . 
In which TE(s), UE(s), FE(s) [0, 1] and satisfies the term of 0 ≤ TE(s)+UE(s)+FE(s) ≤ 3. 

Definition 2.5 ([32]) The overlap function is a map O: L2→L on (L; L) which fulfils monotonicity, 
commutative and continuity, while it fulfils O(s, 0L)= 0L, O(0L, t)= 0L and O(1L, 1L)= 1L, s, t L; the 
grouping function is a map G: L2→L on (L; L) which fulfils monotonicity, commutative and 
continuity, while it fulfils G(s, 1L)= 1L, G(1L, t)= 1L and G(0L, 0L)= 0L, s, t L. 

Definition 2.6 ([18]) Define the set D in the following way, 
* { ( ) | [ ]}.  D s s s s s s s1 2 3 1 2 3, , , , 0,1  

If s D, as above, then s has three components s1, s2 and s3. 
s, t D, where s= (s1, s2, s3), t is analogous to s. 1 on D is defined as the order relation below, 

s 1 t iff s1  t1, s2  t2, s3  t3. 
And the definition of the first type inclusion relation 1 is analogous to the definition of 1. 

Proposition 2.1 ([18]) (D; 1) is a complete lattice. 

Definition 2.7 ([18]) The supplement of s is written as below, s D, 
sc= (s3, 1-s2, s1). 

In particular, 1D*= (1, 0, 0) and 0D*= (0, 1, 1) represent the maximum and minimum in (D; 1), 
respectively. 
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Proposition 2.2 ([18]) s1 t is defined as maximum lower bound of s, t, and expressed as inf(s, t); s1 t 
is defined as minimum upper bound of s, t, and expressed as sup(s, t), s, tD*.  

3. Neutrosophic overlap function  

This section proposes new concept of neutrosophic overlap function and provides relevant 
examples, giving the concept and examples of representable and non-representable neutrosophic 
overlap function. Finally, a new method for constructing representable neutrosophic overlap 
function through intuitionistic fuzzy overlap function (IFO) is proposed. 

Definition 3.1 A neutrosophic overlap function is a map O: D D→D which fulfils prerequisites 
below, s, t, v D: 

(NO1) O fulfils exchangeability; 
(NO2) O(s, t) 1 O(s, v) if t 1 v; 
(NO3) O(0D*, t) =0D* or O(s, 0D*) = 0D*; 
(NO4) O(1D*, 1D*) = 1D*; 
(NO5) O fulfils continuity. 

Definition 3.2 A neutrosophic grouping function is a map G: D D→D which fulfils prerequisites 
below, s, t, v D: 

(NG1) G fulfils exchangeability; 
(NG2) G(s, t) 1 G(s, v) if t 1 v; 
(NG3) G(1D*, t) = 1D* or G(s, 1D*) = 1D*; 
(NG4) G(0D*, 0D*) = 0D*; 
(NG5) G fulfils continuity. 

Example 3.1 The following binary functions are neutrosophic overlap functions, s, t D, 

(1) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,O  

( ( ) ( ) ( ) (( ) ( ) ) ( ) (( ) ( ) ))          s t s t s t s t s t s t2 2 2 2 2 2
1 1 1 1 2 2 2 2 3 3 3 3min , max , ,1 min 1 ,1 max 1 , 1 ,1 min 1 ,1 max 1 , 1 ; 

(2) ( ) ( ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) )       p p p p p p
p p p ps t O s t G s t G s t s t s t s t1 1 2 2 3 3 1 1 2 2 3 3, , , , , , ,1 1 1 ,1 1 1O , for p > 0 and p 1; 

(3) ( ) ( ( ) ( ) ( )) ( )


 
   

s + t s ts t s t s ts t O s t G s t G s t
s t s t s t

3 3 3 31 1 2 2 2 2
DB DB 1 1 DB 2 2 DB 3 3

1 1 2 2 3 3

22 + 2, , , , , , , ,
+ 2 2

O , for  s t1 1 0 ,  

   s t2 2 1  and  s t3 3 1 ; 

(4) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tmin min 1 1 min 2 2 min 3 3, , , , , ,O  

( { } { } { })      s t s t s t1 1 2 2 3 3min , ,1 min 1 , 1 ,1 min 1 , 1 . 

Example 3.2 The following binary functions are neutrosophic grouping functions, s, t D, 

(1) ( ) ( ( ) ( ) ( ))s t G s t O s t O s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,G  

( ( ) (( ) ( ) ( ) ( ) ( ) ( ))     s t s t s t s t s t s t2 2 2 2 2 2
1 1 1 1 2 2 2 2 3 3 3 31 min 1 ,1 max 1 , 1 ,min , max , ,min , max , ; 
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(2) ( ) ( ( ) ( ) ( )) ( ( ) ( ) )    p p p p p p
p p p ps t G s t O s t O s t s t s t s t1 1 2 2 3 3 1 1 2 2 3 3, , , , , , 1 1 1 , ,G , for p > 0 and p 1; 

(3) ( ) ( ( ) ( ) ( )) ( )


 
 

s ts t s t s ts t G s t O s t O s t
s t s t s + t

3 31 1 1 1 2 2
DB DB 1 1 DB 2 2 DB 3 3

1 1 2 2 3 3

2+ 2 2, , , , , , , ,
2 +

G , for  s t1 1 1 , 

   s t2 2 0  and  s t3 3 0 ; 

(4) ( ) ( ( ) ( ) ( ))s t G s t O s t O s tmin min 1 1 min 2 2 min 3 3, , , , , ,G  

( { } { } { })   s t s t s t1 1 2 2 3 31 min 1 , 1 ,min , ,min , .
 

Theorem 3.1 Let O is a bivariate operation on D, s, t D, 
( ) ( ( ) ( ) ( ))s t O s t G s t G s t1 1 1 2 2 2 3 3, , , , , ,O . 

Then O is a neutrosophic overlap function, where O is the overlap function, G1 and G2 are grouping 
functions on [0, 1]. 
Proof. s, t, v D in which s= (s1, s2, s3), t and v are analogous to s.  

(NO1) Since G1 and G2 are grouping functions, O is the overlap function, then O(s1, t1) = O(t1, s1), 
G1(t2, s2) = G1(s2, t2) and G2(t3, s3) = G2(s3, t3), thus O fulfils exchangeability. 

(NO2) Let t 1 v, then O(s1, t1)  O(s1, v1), G1(s2, t2)  G1(s2, v2), G2(s3, t3)  G2(s3, v3). Therefore, O(s, 
t) 1 O(s, v). 

(NO3) O(0D*, t)= (O(0, t1), G1(1, t2), G2(1, t3))=(0, 1, 1)= 0D
, and O(s, 0D*)= (O(s1, 0), G1(s2, 1), G2(s3, 

1))=(0, 1, 1)= 0D*. 
(NO4)O(1D*, 1D*)= (O(1, 1), G1(0, 0), G2(0, 0))= (1, 0, 0)= 1D*. 

(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because the overlap function and the grouping function are continuous, so O(s1, ˅iIti)= 
˅iIO(s1, ti), G2(s3, ˅iIti)= ˅iIG2(s3, ti) and G1(s2, ˅iIti)= ˅iIG1(s2, ti) is valid. 

So we can get  
( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



    

   

 

O

O

i i i i i i i i

i i i i i i

i i

s t O s t G s t G s t
O s t G s t G s t

s t

I 1 I 1 2 I 2 3 I

I 1 I 1 2 I 2 3

I

, , , , , ,
, , , , ,

,
 

In this way, show that O is left continuous. 
Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be a neutrosophic overlap function. 

Theorem 3.2 G is a bivariate operation on D, s, t D, 
( ) ( ( ) ( ) ( ))s t G s t O s t O s t1 1 1 2 2 2 3 3, , , , , ,G . 

Then G can be called the neutrosophic grouping function, where G is the grouping function, O1 and 
O2 are overlap functions on [0, 1]. 
Proof. The procedure for proving analogy Theorem 3.1. 

Above Theorem 3.1 supplies the measure for constructing neutrosophic overlap function using 
overlap function O and grouping functions G1, G2 which are defined on [0, 1]. But it requires a 
condition that O= (O, G1, G2) holds. According to this condition, we bring in the concept of 
representable neutrosophic overlap function.  
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Definition 3.3 A neutrosophic overlap function O is referred to as representable, when and only 
when, there exists O which is an overlap function on [0, 1] and G1, G2 which are grouping functions 
on [0, 1] satisfying, s, t D, 

( ) ( ( ) ( ) ( ))s t O s t G s t G s t1 1 1 2 2 2 3 3, , , , , ,O . 

Example 3.3 The representable neutrosophic overlap function is shown below, s, t D, 
( ) ( ( ) ( ) ( )) ps t O s t G s t G s tDB 1 1 2 2 mM 3 3, , , , , ,O . 

Proof. The first step verifies that O is a neutrosophic overlap function holds. s, t, v D in which s= 
(s1, s2, s3), t and v are analogous to s. 

(NO1) Let G1= Gp, G2= GmM (p=2) are grouping functions, O= ODB is an overlap function on [0, 1]. 
Since ODB(s1, t1)= ODB(t1, s1), Gp(s2, t2)= Gp(t2, s2), GmM(s3, t3)= GmM(s3, t3), thus O fulfils exchangeability. 

(NO2) Let t 1 v, then ODB(s1, t1)  ODB(s1, v1), Gp(s2, t2)  Gp(s2, v2), GmM(s3, t3)  GmM(s3, v3). 
Therefore,O(s, t) 1 O(s, v). 

(NO3) O(0D*, t)= (ODB(0, t1), Gp(1, t2), GmM(1, t3))= (0, 1, 1)= 0D*, and O(s, 0D*)= (ODB(s1, 0), Gp(s2, 1), 
GmM(s3, 1))= (0, 1, 1)= 0D*. 

(NO4)O(1D*, 1D*)= (ODB(1, 1), Gp(0, 0), GmM(0, 0))= (1, 0, 0)= 1D*. 
(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because of an overlap function ODB and grouping functions Gp and GmM are continuous, so 
ODB(s1, ˅iIti)= ˅iIODB(s1, ti), GmM(s3, ˅iIti)= ˅iIGmM(s3, ti) and Gp(s2, ˅iIti)= ˅iIGp(s2, ti) is valid. 

So we can get 
 

( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



    

   

 

O

O

i i DB i i p i i i i

i DB i i p i i i

i i

s t O s t G s t G s t
O s t G s t G s t

s t

I 1 I 2 I mM 3 I

I 1 I 2 I mM 3

I

, , , , , ,
, , , , ,

,

 

In this way, show that O is left continuous. 
Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be the neutrosophic overlap function. 
Finally, it is simple to show that fulfils O(s, t)= (ODB(s1, t1), Gp(s2, t2), GmM(s3, t3)), so it must be the 

representable neutrosophic overlap function. 

Definition 3.4 The neutrosophic overlap function O is known as standard representable, when and 
only when, there exists G which is a grouping function on [0, 1] and O which is an overlap function 
on [0, 1] satisfying, s, t D, 

( ) ( ( ) ( ) ( ))s t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Example 3.4 The standard representable neutrosophic overlap function is as follows, s, t D, 
DB( ) ( ( ) ( ) ( ))p ps t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Proof. This procedure for proving analogy Example 3.3. 

Definition 3.5 The N-dual representable neutrosophic overlap function O by the following being 
defined by, s, t D, 

( ) ( ( ) ( ) ( ))s t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 
O and G has dual relation as follows, 

( ) ( )   O s t G s t1 1 1 1, 1 1 ,1 . 

Example 3.5 The N-dual representable neutrosophic overlap function is as follows, s, t D, 
( ) ( ( ) ( ) ( )) p p ps t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Proof. This procedure for proving analogy Example 3.3. 
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Definition 3.6 G is referred to as representable neutrosophic grouping function, when and only 
when, there obtains the grouping function G and the overlap functions O1, O2 on [0, 1] satisfying, s, 
t D, 

1 2( ) ( ( ) ( ) ( ))s t G s t O s t O s t1 1 2 2 3 3, , , , , ,G . 

Other concepts can be derived from the analogy of the neutrosophic overlap function.  

In recent years, there have been many extensions of overlap functions. However, due to the 
limitations of existing definitions in addressing practical issues by using intuitionistic fuzzy 
information, scholars have proposed IFO. In the preceding paragraphs, the representable 
neutrosophic overlap function is proposed and further the below propositions propose a method to 
construct new representable neutrosophic overlap function (grouping function) with IFO 
(intuitionistic fuzzy grouping function). 

Proposition 3.1 Where m= (m1, m3), n= (n1, n3), m, n L. O is an IFO while satisfying O(m, n)= (O(m1, 
n1), G2(m3, n3)), with O being an overlap function on [0, 1], G2 being a grouping function on [0, 1]. 
Suppose G1 is a grouping function on [0, 1] satisfying 

( ) ( ) ( )   O s t G s t G s t1 1 1 2 2 2 3 30 , , , 3 . 
Then O(s, t)= (O(s1, t1), G1(s2, t2), G2(s3, t3)) is called the representable neutrosophic overlap function, 
s, t D. 
Proof. First, we can get O(m, n)= (O(m1, n1), G2(m3, n3)) which is an IFO, and then we add another 
grouping function G1, satisfying 0  O(s1, t1)+ G1(s2, t2)+ G2(s3, t3)  3.  

s, t, v D in which s= (s1, s2, s3), t and v are analogous to s. 
(NO1) Since O(s1, t1)= O(t1, s1), G2(s3, t3)= G2(t3, s3), G1(s2, t2)= G1(s2, t2), then O(s, t)= O(t, s), thus it 

shown that O fulfils exchangeability. 
(NO2) Let t 1 v, then O(s1, t1) O(s1, v1), G2(s3, t3) G2(s3, v3), G1(s2, t2) G1(s2, v2). Therefore,O(s, t) 

1 O(s, v). 
(NO3) O(0D*, t)= (O(0, t1), G1(1, t2), G2(1, t3))= (0, 1, 1)= 0D*, and O(s, 0D*)= (O(s1, 0), G1(s2, 1), G2(s3, 

1))=(0, 1, 1)= 0D*. 
(NO4) O(1D*, 1D*)= (O(1, 1), G1(0, 0), G2(0, 0))= (1, 0, 0)= 1D*. 
(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because the overlap function O and the grouping functions G2, G1 are continuous, O(s1, 
˅iIti)= ˅iIO(s1, ti), G2(s3, ˅iIti)= ˅iIG2(s3, ti) and G1(s2, ˅iIti)= ˅iIG1(s2, ti) is holding. 

So we can get  
( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



    

   

 

O

O

i i i i i i i i

i i i i i i

i i

s t O s t G s t G s t
O s t G s t G s t

s t

I 1 I 1 2 I 2 3 I

I 1 I 1 2 I 2 3

I

, , , , , ,
, , , , ,

,
 

In this way, show that O is left continuous. 
Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be the neutrosophic overlap function. 
It is simple to show that satisfies O(s, t)= (O(s1, t1), G1(s2, t2), G2(s3, t3)), so O is a representable 

neutrosophic overlap function. 

Proposition 3.2 Where m= (m1, m3), n= (n1, n3), m, n L. G is an intuitionistic fuzzy grouping 
function, while satisfying the fact that G(m, n)= (G(m1, n1), O2(m3, n3)), with G being a grouping 
function on [0, 1], O2 being an overlap function on [0, 1]. Suppose O1 is an overlap function on [0, 1] 
satisfying,  

1 2( ) ( ) ( )   G s t O s t O s t1 1 2 2 3 30 , , , 3 . 
Then G(s, t)= (G(s1, t1), O1(s2, t2), O2(s3, t3)) is a representable neutrosophic grouping function, s, t 

D. 
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Proof. This procedure for proving analogy Proposition 3.1. 

The dual relation between triangular norm and triangular conorm in relation to fuzzy negation 
can be characterized by De Morgan triple, which is a proper expression for the relationship between 
triangular norm, triangular conorm and fuzzy negation [18]. There are also corresponding studies 
on NS. Based on the close connection between triangular norm and overlap function, one can 
naturally consider De Morgan neutrosophic triple about neutrosophic overlap function, 
neutrosophic grouping function and neutrosophic negation. First, neutrosophic negation as an 
extension of fuzzy negation can be denoted by the method below. 

Definition 3.7 ([18]) A neutrosophic negaton is a map N: D→D that fulfils prerequisites below: 
(a) N(t) 1 N(s), s, t D such as t 1 s; 

(b) N(0D*)= 1D*; 
(c) N(1D*)= 0D*. 

N is referred to as the involutive neutrosophic negaton when and only when that fulfils 
N(N(s))= s, s D. 

An involutive neutrosophic negaton Ng: D→D satisfies the following, where s= (s1, s2, s3), s 

D, 
Ng(s1, s2, s3)= (s3, 1-s2, s1). 

Further, we define such Ng as the standard neutrosophic negaton. 

Definition 3.8 O, G and N are a neutrosophic overlap function, a neutrosophic grouping function, 
and a neutrosophic negation, respectively. 

For this triple (O, N, G) if the conditions below holding true, s, t D, 
N(O(s, t))= G(N(s), N(t)); 
N(G(s, t))=O(N(s), N(t)). 

Then such the triple is referred to as De Morgan neutrosophic triple. In addition, O and G have a 
dual relationship in relation to N. 

Theorem 3.3 Suppose neutrosophic negaton N is involutory, that it fulfils N(N(s))= s, s D.  
(a) Assume G is the neutrosophic grouping function, O is expressed in the following form, s, t 
D, 

O(s, t)=N(G(N(s), N(t))). 
Then O is the neutrosophic overlap function. Moreover, (O, N, G) is De Morgan neutrosophic triple. 
(b) Assume O is the neutrosophic overlap function, G is expressed in the following form, s, t D, 

G(s, t)=N(O(N(s), N(t))). 
Then G is the neutrosophic grouping function. Moreover, (O, N, G) is De Morgan neutrosophic 
triple. 
Proof. (a) Suppose N, G are the involutory neutrosophic negaton and the neutrosophic grouping 
function, respectively. s, t, v D in which s= (s1, s2, s3), t and v are analogous to s. 

(NO1) It is pretty simple to justify that O(s, t)=N(G(N(s), N(t))) =N(G(N(t), N(s)))= O(t, s), O 
fulfils exchangeability. 

(NO2) Let t 1 v, O(s, t)=N(G(N(s), N(t))), O(s, v)=N(G(N(s), N(v))), because N is non-increasing, 
then N(t) 1 N(v). Moreover G(s, t) 1 G(s, v) and when t 1 v, then G(N(s), N(t)) 1 G(N(s), N(v)). 
Hence N(G(N(s), N(t))) 1 N(G(N(s), N(v))), then O(s, t) 1 O(s, v). 

(NO3) O(0D*, t)= N(G(N(0D*), N(t)))=N(G(1D*, N(t)))=N(1D*)= 0D*, similarly O(s, 0D*)= N(G(N(s), 
N(0D*)))= 0D*. 

(NO4) O(1D*, 1D*)=N(G(N(1D*), N(1D*)))= N(G(0D*, 0D*))= N(0D*)= 1D*. 
(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. As a result of O(s, ˅iIti)= N(G(N(s), N(˅iIti)))= N(G(N(s), ˄iIN(ti)))= N(˄iIG(N(s), N(ti))) = 
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˅iIN(G(N(s), N(ti))) = ˅iIO(s, ti). Then we could get O(s, ˅iIti)= ˅iIO(s, ti). In this way, show that 
O is left continuous. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 
sum up, O(s, t) is shown to be the neutrosophic overlap function. 

Moreover, (O, N, G) is the De Morgan neutrosophic triple. 
(b) Likewise, suppose O is the neutrosophic overlap function and that G can be shown to be the 

neutrosophic grouping function, (O, N, G) would be the De Morgan neutrosophic triple. 

Example 3.6 The following functions are the neutrosophic overlap(grouping) functions, which are 
dual in relation to Ng, s, t D, 
(1) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))s t G s t O s t O s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,G ; 
In fact, OmM(N(s), N(t))= OmM((s3, 1-s2, s1), (t3, 1-t2, t1))= (OmM(s3, t3), GmM(1-s2, 1-t2), GmM(s1, t1)), then 
N(OmM(N(s), N(t)))= N(OmM(s3, t3), GmM(1-s2, 1-t2), GmM(s1, t1))= (GmM(s1, t1), 1-GmM(1-s2, 1-t2), OmM(s3, 
t3))= (GmM(s1, t1), OmM(s2, t2), OmM(s3, t3))= GmM(s, t). Thus, OmM and GmM are dual with respect to Ng. 
(2) ( ) ( ( ) ( ) ( ))p p p ps t O s t G s t G s t1 1 2 2 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))p p p ps t G s t O s t O s t1 1 2 2 3 3, , , , , ,G ;

 (3) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tDB DB 1 1 DB 2 2 DB 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))s t G s t O s t O s tDB DB 1 1 DB 2 2 DB 3 3, , , , , ,G ; 
(4) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tmin min 1 1 min 2 2 min 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))s t G s t O s t O s tmin min 1 1 min 2 2 min 3 3, , , , , ,G ; 
(5) ( ) ( ( ) ( ) ( )) p ps t O s t G s t G s tDB 1 1 2 2 3 3, , , , , ,O and ( ) ( ( ) ( ) ( )) p ps t G s t O s t O s t1 1 2 2 DB 3 3, , , , , ,G . 

We give the following theorem for non-representable neutrosophic overlap function. 

Theorem 3.4 Let O be a map on D below, s, t D, 

* * *

* *( )

( ) .

s  


  






D D D

D D

t
s t s t

s t s t s t1 1 3 3 3 3

0 , if 0 or 0 ,
, 1 , if 1 ,

, , , otherwise
O

 

Then O is a non-representable neutrosophic overlap function. 
Proof. The first step is to verify that O is the neutrosophic overlap function. s, t, v, u D in which 
s= (s1, s2, s3), t, u and v are analogous to s. 

(NO1) The proof that O fulfils exchangeability is very straightforward. 
(NO2) Let t 1 v. The obvious one is O(s, t) 1 O(s, v). 
(NO3) O(0D*, t)= O(s, 0D*)= (0, 1, 1)= 0D*. 
(NO4) O(1D*, 1D*)= (1, 0, 0)= 1D*. 
(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. As a result of O(s, ˅iIti)= (s1*max(ti), s3*max(ti), s3*max(ti)); ˅iIO(s, ti)= (s1*t1, s3*t1, s3*t1)˅ (s1*t2, 
s3*t3, s3*t3)˅ (s1*t3, s3*t3, s3*t3)= (s1*max(ti), s3*max(ti), s3*max(ti)). We can get O(s, ˅iIti)= ˅iIO(s, ti). 
Therefore, it is show that O fulfils left continuity. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 
sum up, O(s, t) is shown to be the neutrosophic overlap function. 

And then, verify that for the representable neutrosophic overlap function O whether there has 
the overlap function O and grouping functions G1, G2 on [0, 1] fulfilling the form O= (O, G1, G2). 

Have s= (0.3, 0.5, 0.6), u= (0.3, 0.5, 0.2) and t= (0.4, 0.5, 0.8) respectively. From O(s, t)= (0.12, 0.48, 
0.48) and O(u, t)= (0.12, 0.16, 0.16). We get G1(s2, t2)= 0.48 and G1(u2, t2)= 0.16, so G1(u2, t2)≠ G1(s2, t2). 
Thus, G1 is not independent from s3, which suggests that O is non-representable. 

In addition, the neutrosophic grouping function G is the dual of O in relation to the standard 
neutrosophic negaton Ng, defined as below, s, t D, 
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* *

* * *( )

( ( )( )( )( )) .

 


  
         


 

D D

D D D

s t
s t s t

s t s t s t1 1 3 3 3 3

0 , if 0 ,
, 1 , if 1 or 1 ,

1 1 1 ),1 (1 1 ),1 (1 1 , otherwise
G  

Then G is a non-representable neutrosophic grouping function. 

4. NRI derived from neutrosophic overlap function  

This section would bring in the concept of NRI on D and research fundamental properties of 
NRI. First, the notion of neutrosophic implication is introduced on D. 

Definition 4.1 ([18]) The map I: (D)2→D is known as the neutrosophic implication when it fulfils 
the prerequisites below, s, u, t, v  D: 
(a) I is non-increasing for the first variable component (in relation to the order relation 1), which 
means that when s 1 u, there is I(s, t) 1 I(u, t); 
(b) I is non-decreasing for the second variable component (in relation to the order relation 1), 
which means that when t 1 v, there is I(s, t) 1 I(s, v); 
(c) I(0D*, 0D*)= 1D*; 
(d) I(1D*, 1D*)= 1D*; 
(e) I(1D*, 0D*)= 0D*. 

Definition 4.2 Suppose I: (D)2→D is a binary map. A neutrosophic overlap function O exists which 
enables the following condition to hold, s, t, h D, 

*
1( ) { | ( ) }  s t h h D s h t, sup , ,I O . 

Thus such I: (D)2→D is referred to as the NRI. 
When I is a NRI derived from a neutrosophic overlap function O, it is written as IO. 
Additionally, a neutrosophic overlap function O fulfils the residual principle, s, t, h D: 

h 1 IO(s, t) iff O(s, h) 1 t. 

Example 4.1 The functions below are NRIs derived from neutrosophic overlap functions in Example 
3.1, s, t D, 

(1) 

( )

( { } { })
( ) ( )

( { })
( )

( {

( )

  

  
      

   

 
    

 



 

 

 

s t s t s t

t tt t s t s t s t
s s s s

t t s t s t s t
s s

s t
mM

1 1 2 2 3 3

3 32 2
1 1 2 2 3 32 2

2 2 3 3

3 3
1 1 2 2 3 32

3 3

1,0,0 , if ,  and ,

1 11 11,max 1 ,1 ,max 1 ,1 , if ,  and ,
1 1 1 1

1 11,0,max 1 ,1 , if ,  and
1 1

1,max 1

,OI

} })
( )

( { } { } { })
( ) ( )

( { } )

 
    

 

  
      

   

  

 





t t s t s t s t
s s

t tt t t t s t s t s t
s s s s s s

t t s t s t s
s s

2 2
1 1 2 2 3 32

2 2

3 31 1 2 2
1 1 2 2 3 32 2 2

1 1 2 2 3 3

1 1
1 1 2 2 32

1 1

1 1,1 ,0 , if ,  and ,
1 1

1 11 1min , ,max 1 ,1 ,max 1 ,1 , if ,  and ,
1 1 1 1

min , ,0,0 , if , and 

( { } { } )
( )

( { } { }) .
( )





















        

  

    
 





t

t t t t s t s t s t
s s s s

t tt t s t s t s t
s s s s

3

1 1 2 2
1 1 2 2 3 32 2

1 1 2 2

3 31 1
1 1 2 2 3 32 2

1 1 3 3

,

1 1min , ,max 1 ,1 ,0 , if ,  and ,
1 1

1 1min , ,0,max 1 ,1 , if ,  and 
1 1
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(2) 

( )

( 0 0) 1 1

( 0) 1 1

( 0 )
( )




        

 

      


       




 










OI
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s t s t s t
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s t s t s t
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1
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1 1

, , , if , 1 1  and ,

1
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1

1
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1,

( )

( 0 0) 1 1

( 0 )

( 0)

     


        

 

      


       




 











t s t
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s t s t s t

s s

s t s t s t

t
s t s t s t
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t
s t s
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1 1 2 2 3 3

3
1 1 2 2 3 3

3

2
1 1

2
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11
1,1 ,1 , if , 1 1  and 1 1 ,

1 1

1, , , if , 1 1  and ,

1
1, ,1 , if , 1 1  and 1 1 ,

1

1
1,1 , , if ,

1
1 1 .
























      


t s t2 2 3 31 1  and 
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Theorem 4.1 Suppose O is the neutrosophic overlap function on D, s, t, h D: 
*

1( ) { | ( ) }  s t h h D s h t, sup , ,OI O . 
Thus, IO is a neutrosophic implication. 
Proof. s, u, t, h, v D with s= (s1, s2, s3), t, h, u and v are analogous to s.  

(a) Let s1 u and since O is non-decreasing, {h|h D, O(s, h) 1 t} 1 {h|h D, O(u, h) 1 t} then 
sup{h|h D, h 1 IO(s, t)}1 sup{h|h D, h 1 IO(u, t)}. Thus IO(s, t) 1 IO(u, t). In other words, the first 
variable of IO regarding 1 is non-increasing. 

(b) Let t1 v and since O is non-decreasing, {h|h D, O(s, h)1 t} 1 {h|h D, O(s, h) 1 v } then 
sup{h|h D, h 1 IO(s, t)} 1 sup{h|h D, h1 IO(s, v)}. Thus IO(s, t) 1 IO(s, v). In other words, the 
second variable of IO regarding 1 is non-decreasing. 

(c) IO(0D*, 0D*)= sup{h|h D,O(0D*, h) 1 0D*} = 1D*; 
(d) IO(1D*, 1D*)= sup{h|h D,O(1D*, h) 1 1D*}= sup{h|h D, h 1 1D*} = 1D*;  
(e) IO(1D*, 0D*)= sup{h|h D, O(1D*, h) 1 0D*}= sup{h|h D, h 1 0D*} = 0D*. 

The NRI has the following important properties. 

Theorem 4.2 Assume that IO is NRI, O is neutrosophic overlap function on D. s, t, h D, the 
follows properties are valid, 
(1) IO(0D*, t)= 1D* ; 
(2) IO(s, 1D*)= 1D*; 
(3) IO(s, s)= 1D*; 
(4) IO(1D*, t)= t; 
(5) IO(s, t) 1 t; 
(6) IO(s, t) = 1D* iff s 1 t; 
(7) s 1 IO(t, h) iff t 1 IO(s, h); 
(8) s 1 IO(t, IO(s, t)). 
Proof. s, t, h D in which s= (s1, s2, s3), t and h are analogous to s. 

(1) IO(0D*, t)= 1D* is the same thing as IO(0D*, t)= sup{h|h D,O(0D*, h)1 t}= 1D*, then h= 1D* for 
O(0D*, h) 1 t. Then this formula is proved. 

The proofs of (2)–(4) is similar to that of (1). 
(5) I is non-increasing for the first variable component (in relation to the order relation 1), 

thenIO(s, t) 1 IO(1D*, t) = t. 
(6) IO(s, t)= 1D* iff s 1 t. Let s 1 t, O(1D*, s) 1 t, then IO(s, t)= 1D*. In contrast, let IO(s, t)= 1D*,thus 

O(1D*, s) 1 t, hence s 1 t. 
(7) s 1 IO(t, h) iff t1 IO(s, h). Since s 1 IO(t, h),O(t, s) 1 h. Thus, t 1 IO(s, h). Likewise, s 1 IO(t, h) 

can be proved from t 1 IO(s, h). 
(8) s 1 IO(t, IO(s, t)). Since O(t, s) 1 O(s, t), then s 1 IO(t, IO(s, t)). 

Example 4.2 These concrete cases about NRI deduced from neutrosophic overlap function as shown 
in Example 4.1 are given. And it is readily proved that NRI deduced from neutrosophic overlap 
functions satisfy the properties characterised by Theorem 4.2. 

Furthermore, for the non-representable neutrosophic overlap function, using the neutrosophic 
overlap function got from Theorem 3.4 as an example, s, t D, 

* *

( ) ( [0 ] max{ })

( [0 ] max{ })


    
 






   





D D D D
s t s t

t ts t s t
s s

t tt s t
s s s

* *

3 3
1 1

2 3
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1 1

1 2 3
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Then it follows that IO(s, t) is a neutrosophic implication, while the properties from Theorem 
4.2 is satisfied. 

5. Conclusions  

As an important part of NS theory, neutrosophic logic plays a significant part in it. 
Neutrosophic overlap function, neutrosophic grouping function and neutrosophic implication 
which are crucial neutrosophic logic operators. For the first kind of inclusion relationship, the 
definitions of neutrosophic overlap function (neutrosophic grouping function) on (D; 1) are 
defined and related examples are given. At the same time, new definitions of representable and 
non-representable neutrosophic overlap function are proposed. In the next place, based on the close 
relationship between overlap function and triangular norm, a new description of neutrosophic 
negation is offered through analogy research, then the dual relationship between neutrosophic 
overlap function and neutrosophic grouping function on neutrosophic negation is described. 
Moreover, we show that definition of neutrosophic implication is given based on (D; 1) and the 
basic properties of NRI are studied. Finally, the result that NRI induced by neutrosophic overlap 
function must be neutrosophic implication is proved. Based on these results and some new results 
[33-44], we consider applying them to generalized neutrosophic overlap function and neutrosophic 
inference systems of the future. 
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Abstract: Complex numbers have been studied in previous papers, but the papers did not deal with 

the conversion from algebraic form  of a neutrosophic complex number form to exponential or 

trigonometric form and vice versa, and this prompted us to search for a method that facilitates this 

conversion process, as this paper dealt with how to move from algebraic form of a neutrosophic 

complex number to exponential or trigonometric form and vice versa, also, we discussed the roots 

from order 𝑛  of a neutrosophic complex number, whether this number is given in algebraic or 

trigonometric form.  

 

Keywords: neutrosophic complex numbers, algebraic form, roots of a neutrosophic complex 

number, exponential form. 

 

 

1. Introduction 

           As Smarandache proposed the Neutrosophic Logic as an alternative to the existing logics 

to represent a mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, 

unknown, incompleteness, inconsistency, redundancy, and contradiction. Smarandache introduced 

the concept of neutrosophy as a new school of philosophy [4][8]. He presented the definition of the 

standard form of neutrosophic real number and conditions for the division of two neutrosophic real 

numbers to exist [3][5], studying the concept of the Neutrosophic probability [4][6], the Neutrosophic 

statistics [5][7], and professor Smarandache entered the concept of preliminary calculus of the 

differential and integral calculus, where he introduced for the first time the notions of neutrosophic 

mereo-limit, mereo-continuity, mereoderivative, and mereo-integral [1][8]. Y.Alhasan presented the 

definition of the concept of neutrosophic complex numbers and its properties including the conjugate 

of neutrosophic complex number, division of neutrosophic complex numbers, the inverted 

neutrosophic complex number and the absolute value of a neutrosophic complex number and 

Theories related to the conjugate of neutrosophic complex numbers, the product of a neutrosophic 

complex number by its conjugate equals the absolute value of number and he studied the general 

mailto:S.almleh@psau.edu.sa
mailto:y.alhasan@psau.edu.sa
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exponential form of a neutrosophic complex number [2-11]. Madeleine Al- Taha presented results on 

single valued neutrosophic (weak) polygroups [10]. An algebraic approach to neutrosophic euclidean 

geometry is presented [12].  

            Complex numbers play a significant role in daily life because they make it much easier 

to perform mathematical operations and give us a way to solve equations for which there are no real-

number-group solutions. The electrical engineering field makes extensive use of complex numbers 

to calculate electric voltage and measure alternating current. 

           Paper is divided into four pieces. provides an introduction in the first portion, which 

includes a review of neutrosophic science. A few definitions and hypotheses of a neutrosophic 

complex number are covered in the second section. The third section describes the transformation of 

a neutrosophic complex number from its exponential or trigonometric form to its algebraic form, and 

vice versa. The paper's conclusion is provided in the fourth section. 

2. Preliminaries 

2.1. The general exponential form of a neutrosophic complex number [11] 

Theorem 1 

The general exponential form of the neutrosophic complex number is given by the formula: 

𝑧 = |𝑧|𝑒𝑖(𝜃+𝜗𝐼) = 𝑟𝑒𝑖(𝜃+𝜗𝐼) 
Whereas   𝑟 = |𝑧| is the absolute value of a neutrosophic complex number. 

2.2 The general Trigonometric form of a neutrosophic complex number [11] 

Definition 1 

The following formula:      

𝑧 = r (cos(𝜃 + 𝜗𝐼) + 𝑠𝑖𝑛 (𝜃 + 𝜗𝐼) 𝑖) 

    is called the general trigonometric form of a neutrosophic complex number 

 

Definition 2 [12] 

 

Let 𝑓: 𝑅(𝐼)  →  𝑅(𝐼);  𝑓 = 𝑓(𝑋)  and 𝑋 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼)  the f is called a neutrosophic real 

function with one neutrosophic variable. a neutrosophic real function 𝑓(𝑋) written as follows:  

 

𝑓(𝑋) = 𝑓(𝑥 + 𝑦𝐼) = 𝑓(𝑥) + 𝐼[𝑓(𝑥 + 𝑦) − 𝑓(𝑥)] 

3. Conversion from exponential or trigonometric form of a neutrosophic complex number to 

algebraic form  

𝑧 = �́�𝑒𝑖(�́�+�́�𝐼) 

 

= �́�( 𝑐𝑜𝑠(�́� + �́�𝐼) + 𝑖 𝑠𝑖𝑛 (�́� + �́�𝐼)) 

 

= �́�( 𝑐𝑜𝑠(�́�) + 𝐼[𝑐𝑜𝑠(�́� + �́�) −  𝑐𝑜𝑠 (�́�)] + 𝑖 𝑠𝑖𝑛(�́�) + 𝑖 𝐼[𝑠𝑖𝑛(�́� + �́�) −  𝑠𝑖𝑛(�́�)]) 

 

 

Whereas (�́� + �́�𝐼) is the indeterminate angle between two indeterminate parts of the coordinate 

axes (𝑥 − 𝑎𝑥𝑖𝑠 𝑎𝑛𝑑 𝑦 − 𝑎𝑥𝑖𝑠). 
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Example 1 

𝑧 = 4𝑒𝑖(
𝜋
6

+
𝜋
3

𝐼)
 

= 4 (𝑐𝑜𝑠 (
𝜋

6
+

𝜋

3
𝐼) + 𝑖 𝑠𝑖𝑛 (

𝜋

6
+

𝜋

3
𝐼)) 

 

= 4 (𝑐𝑜𝑠
𝜋

6
+ 𝐼 [𝑐𝑜𝑠 (

𝜋

6
+

𝜋

3
) − 𝑐𝑜𝑠

𝜋

6
] + 𝑖 𝑠𝑖𝑛

𝜋

6
+ 𝑖 𝐼 [𝑠𝑖𝑛 (

𝜋

6
+

𝜋

3
) − 𝑠𝑖𝑛

𝜋

6
]) 

 

= 4 (
√3

2
+ 𝐼 [0 −

√3

2
] + 𝑖

1

2
+ 𝑖 𝐼 [1 −

1

2
]) 

 

= 2√3 − 2√3 𝐼 + (2 + 2 𝐼)𝑖 

Example 2 

𝑧 =
1

6
𝑒𝑖(𝜋−2𝜋𝐼) 

=
1

6
(𝑐𝑜𝑠(𝜋 − 2𝜋𝐼) + 𝑖 𝑠𝑖𝑛(𝜋 − 2𝜋𝐼)) 

=
1

6
(𝑐𝑜𝑠𝜋 + 𝐼[𝑐𝑜𝑠(𝜋 − 2𝜋) − 𝑐𝑜𝑠 𝜋] + 𝑖 𝑠𝑖𝑛 𝜋 + 𝑖 𝐼[𝑠𝑖𝑛(𝜋 − 2𝜋) − 𝑠𝑖𝑛𝜋]) 

=
1

6
(−1 + 𝐼[−1 + 1] + 𝑖(0) + 𝑖 𝐼[0 − 0]) = −

1

6
 

 

3.1 Conversion from algebraic form of a neutrosophic complex number to exponential or 

trigonometric form  

Let  𝑧 = �̈� + �̈�𝐼 + �̈�𝑖 + �̈�𝑖𝐼 , then: 

�́� = √(�̈� + �̈�𝐼)2 + (�̈� + �̈�𝐼)
2
 

 

𝑐𝑜𝑠(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
 

 

𝑠𝑖𝑛(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
 

 

We can find angle whereas:   �́� + �́�𝐼 = ℑ́ + �́�𝐼 + 2𝜋𝑘 ; 𝑘 ∈ 𝑍 

hence:  

 

z = �́�𝑒𝑖(ℑ́+�́�𝐼) 

 

Example 3 

 

𝑧 = (
−1

√2
+

2

√2
𝐼) + (

1

√2
) 𝑖 

�́� = √(�̈� + �̈�𝐼)2 + (�̈� + �̈�𝐼)
2
 

 

  = √(
−1

√2
+

2

√2
𝐼)

2

+ (
1

√2
)

2

 

 

 = √(
1

2
− 2

1

√2

2

√2
𝐼 + 2𝐼) +

1

2
= 1 
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then:  

𝑐𝑜𝑠(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

−1

√2
+

2

√2
𝐼 

 

𝑠𝑖𝑛(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

1

√2
 

 

⟹    �́� + �́�𝐼 =
3𝜋

4
+

3𝜋

2
𝐼 

 

hence:  

𝑧 = 𝑒
𝑖(

3𝜋
4

+
3𝜋
2

𝐼)
 

 
 

to check the solution:  if we take some values of 𝐼, we get on the following 

 

 

# 
𝒛 = 𝒆𝒊(

𝟑𝝅
𝟒

+
𝟑𝝅
𝟐

𝑰)
 

 
𝒄𝒐𝒔 (

𝟑𝝅

𝟒
+

𝟑𝝅

𝟐
𝑰) =

−𝟏

√𝟐

+
𝟐

√𝟐
𝑰 

 

𝒔𝒊𝒏 (
𝟑𝝅

𝟒
+

𝟑𝝅

𝟐
𝑰) =

𝟏

√𝟐
 

 

 

Result 

𝑰 = 𝟎 𝑧 = 𝑒𝑖(
3𝜋
4

)
 

 
𝑐𝑜𝑠 (

3𝜋

4
) =

−1

√2
 

 

𝑠𝑖𝑛 (
3𝜋

4
) =

1

√2
 

 

 

  

𝑰 = 𝟏 𝑧 = 𝑒𝑖(
9𝜋
4

)
 

 
𝑐𝑜𝑠 (

9𝜋

4
) =

1

√2
 

 

𝑠𝑖𝑛 (
9𝜋

4
) =

1

√2
 

 

 

  

and so on… 

 

Example 4 

Let:   

𝑧1 =
√3 − √3 𝐼

2
+

1 + 𝐼

2
𝑖    𝑎𝑛𝑑   𝑧2 = (

√6 + √2 

4
+

√2 − √6

4
𝐼) + (

√6 − √2

4
+

3√2 − √6

4
𝐼)  𝑖  

Write of each 𝑧1, 𝑧2  by exponential form. 

 

Solution: 

 

𝑧1 =
√3 − √3 𝐼

2
+

1 + 𝐼

2
𝑖     

�́�1 = √(�̈� + �̈�𝐼)2 + (�̈� + �̈�𝐼)
2
 

 

  = √(
√3 − √3 𝐼

2
)

2

+ (
1 + 𝐼

2
)

2

 

 

 = √(
3 − 6𝐼 + 3𝐼

4
) +

1 + 2𝐼 + 𝐼

4
= 1 

then:  

𝑐𝑜𝑠(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

√3 − √3 𝐼

2
=

√3

2
−

√3 

2
𝐼 
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𝑠𝑖𝑛(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

1 + 𝐼

2
=

1

2
+

1

2
𝐼 

 

⟹    �́� + �́�𝐼 =
𝜋

6
+

𝜋

3
𝐼 

hence:  

𝑧1 = 𝑒𝑖(
𝜋
6

+
𝜋
3

𝐼)
 

 

to check the solution:  if we take some values of 𝐼, we get on the following 

 

 

# 
𝒛 = 𝒆𝒊(

𝝅
𝟔

+
𝝅
𝟑

𝑰)
 

 
𝒄𝒐𝒔 (

𝝅

𝟔
+

𝝅

𝟑
𝑰) =

√𝟑

𝟐

−
√𝟑 

𝟐
𝑰 

 

𝒔𝒊𝒏 (
𝝅

𝟔
+

𝝅

𝟑
𝑰) =

𝟏

𝟐

+
𝟏

𝟐
𝑰 

 

 

Result 

𝑰 = 𝟎 𝑧 = 𝑒𝑖(
𝜋
6

)
 

 
𝑐𝑜𝑠 (

𝜋

6
) =

√3

2
 

 

𝑠𝑖𝑛 (
𝜋

6
) =

1

2
 

 

 

  

𝑰 = 𝟏 𝑧 = 𝑒
𝑖(

𝜋
2

)
 

 

𝑐𝑜𝑠 (
𝜋

2
) = 0 

 

𝑠𝑖𝑛 (
𝜋

2
) = 1 

 

 

  

and so on… 

 

now: 

 

  𝑧2 = (
√6 + √2 

4
+

√2 − √6

4
𝐼) + (

√6 − √2

4
+

3√2 − √6

4
𝐼)  𝑖 

 

�́�2 = √(�̈� + �̈�𝐼)2 + (�̈� + �̈�𝐼)
2
 

 

  = √(
√6 + √2 

4
+

√2 − √6

4
𝐼)

2

+ (
√6 − √2

4
+

3√2 − √6

4
𝐼)

2

 

 

 

= √(
6 + 4√3 + 2 + 2𝐼 − 4√3 𝐼 + 6𝐼

16
−

8𝐼

16
) + (

6 − 4√3 + 2 + 18𝐼 − 12√3 𝐼 + 6𝐼

16
+

16√3 𝐼 − 24𝐼

16
)

= 1 
then:  

𝑐𝑜𝑠(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

√6 + √2 

4
+

√2 − √6

4
𝐼 

 

𝑠𝑖𝑛(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

√6 − √2

4
+

3√2 − √6

4
𝐼 

 

⟹    �́� + �́�𝐼 =
𝜋

12
+

𝜋

6
𝐼 

 

hence:  

 

𝑧2 = 𝑒
𝑖(

𝜋
12

+
𝜋
6

𝐼)
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to check the solution:  if we take some values of 𝐼, we get on the following 

 

 

# 
𝒛 = 𝒆𝒊(

𝝅
𝟏𝟐

+
𝝅
𝟔

𝑰)
 

 
𝒄𝒐𝒔 (

𝝅

𝟏𝟐
+

𝝅

𝟔
𝑰) =

√𝟔 + √𝟐 

𝟒

+
√𝟐 − √𝟔

𝟒
𝑰 

 

𝒔𝒊𝒏 (
𝝅

𝟏𝟐
+

𝝅

𝟔
𝑰) =

√𝟔 − √𝟐

𝟒

+
𝟑√𝟐 − √𝟔

𝟒
𝑰 

 

Result 

𝑰 = 𝟎 𝑧 = 𝑒
𝑖(

𝜋
12

)
 

 
𝑐𝑜𝑠 (

𝜋

12
) =

√6 + √2 

4
 

 

𝑠𝑖𝑛 (
𝜋

12
) =

√6 − √2

4
 

 

  

𝑰 = 𝟏 𝑧 = 𝑒
𝑖(

𝜋
4

)
 

 
𝑐𝑜𝑠 (

𝜋

4
) =

√2 

2
 

 

𝑠𝑖𝑛 (
𝜋

4
) =

√2 

2
 

 

  

and so on… 

 

Example 5 

Let:   

𝑧1 =
√3

2
+

1 + √3

2
𝐼 + (

−1

2
+

1 − √3

2
𝐼) 𝑖    𝑎𝑛𝑑   𝑧2 = (

√2 

2
+

√2 

2
𝐼) + (

−√2 

2
+

−2 + √2

2
𝐼) 𝑖 

 

a) Write of each 𝑧1, 𝑧2,
𝑧1

𝑧2
  by exponential and trigonometric form. 

b) Write 
𝑧1

𝑧2
 by algebraic form. 

c) conclude that: 

𝑐𝑜𝑠 (
𝜋

12
+

𝜋

12
𝐼) =

√6 + √2 

4
+

2√3 − √2 − √6

4
𝐼  

 

 𝑠𝑖𝑛 (
𝜋

12
+

𝜋

12
𝐼) =

√6 − √2

4
+

2 + √2 − √6

4
𝐼 

Solution: 

 

a)  

 

𝑧1 =
√3

2
+

1 + √3

2
𝐼 + (

−1

2
+

1 − √3

2
𝐼) 𝑖 

�́�1 = √(�̈� + �̈�𝐼)2 + (�̈� + �̈�𝐼)
2
 

 

  = √(
√3

2
+

1 + √3

2
𝐼)

2

+ (
−1

2
+

1 − √3

2
𝐼)

2

= 1 

then:  

𝑐𝑜𝑠(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

√3

2
+

1 + √3

2
𝐼 

 

𝑠𝑖𝑛(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

−1

2
+

1 − √3

2
𝐼 

 

⟹    �́� + �́�𝐼 = −
𝜋

6
−

𝜋

6
𝐼 

hence:  

𝑧1 = 𝑒−𝑖(
𝜋
6

+
𝜋
6

𝐼)
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now: 

 

  𝑧2 = (
√2 

2
+

√2 

2
𝐼) + (

−√2 

2
+

−2 + √2

2
𝐼) 𝑖 

�́�2 = √(�̈� + �̈�𝐼)2 + (�̈� + �̈�𝐼)
2
 

 

  = √(
√2 

2
+

√2 

2
𝐼)

2

+ (
−√2 

2
+

−2 + √2

2
𝐼)

2

= 1 

 then:  

𝑐𝑜𝑠(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

√2 

2
+

√2 

2
𝐼 

 

𝑠𝑖𝑛(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

−√2 

2
+

−2 + √2

2
𝐼 

 

⟹    �́� + �́�𝐼 = −
𝜋

4
−

𝜋

4
𝐼 

hence:  

𝑧2 = 𝑒−𝑖(
𝜋
4

+
𝜋
4

𝐼) 
 

 ⟹                           
𝑧1

𝑧2

=
𝑒−𝑖(

𝜋
6

+
𝜋
3

𝐼)

𝑒−𝑖(
𝜋
4

+
𝜋
4

𝐼)
= 𝑒−𝑖(

𝜋
6

+
𝜋
3

𝐼)+𝑖(
𝜋

12
+

𝜋
6

𝐼)
= 𝑒𝑖(

𝜋
12

+
𝜋

12
𝐼)

 

 

b)  

𝑧1

𝑧2

=

√3
2 +

1 + √3
2 𝐼 + (

−1
2 +

1 − √3
2 𝐼) 𝑖   

(
√2 

2
+

√2 
2

𝐼) + (
−√2 

2
+

−2 + √2
2

𝐼) 𝑖

 

 

=

(
√3
2

+
1 + √3

2
𝐼 + (

−1
2

+
1 − √3

2
𝐼) 𝑖   ) ((

√2 
2

+
√2 

2
𝐼) + (

√2 
2

+
2 − √2

2
𝐼) 𝑖)

((
√2 

2 +
√2 

2 𝐼) + (
−√2 

2 +
−2 + √2

2 𝐼) 𝑖) ((
√2 

2 +
√2 

2 𝐼) + (
√2 

2 +
2 − √2

2 𝐼) 𝑖)

 

 

𝑧1

𝑧2

= (
√6 + √2 

4
+

2√3 − √2 − √6 

4
𝐼) + (

√6 − √2 

4
+

√2 + 2 − √6 

4
𝐼) 𝑖           (∗) 

 

c)  
𝑧1

𝑧2

= 𝑒𝑖(
𝜋

12
+

𝜋
12

𝐼)
= 𝑐𝑜𝑠 (

𝜋

12
+

𝜋

12
𝐼) + 𝑖 𝑠𝑖𝑛 (

𝜋

12
+

𝜋

12
𝐼) 

 

compared with (∗), we find: 
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𝑐𝑜𝑠 (
𝜋

12
+

𝜋

12
𝐼) + 𝑖 𝑠𝑖𝑛 (

𝜋

12
+

𝜋

12
𝐼)

= (
√6 + √2 

4
+

2√3 − √2 − √6 

4
𝐼) + (

√6 − √2 

4
+

√2 + 2 − √6 

4
𝐼) 𝑖 

 

hence: 

𝑐𝑜𝑠 (
𝜋

12
+

𝜋

12
𝐼) =

√6 + √2 

4
+

2√3 − √2 − √6 

4
𝐼 

 

𝑠𝑖𝑛 (
𝜋

12
+

𝜋

12
𝐼) =

√6 − √2 

4
+

√2 + 2 − √6 

4
𝐼  

 

3.2 The roots from order 𝒏 of a neutrosophic complex number 

The roots from order 𝑛 of a complex number y are the set of complex numbers that satisfy: 

𝑧𝑛 = 𝑧0 

let 𝑧 be one of these roots whear: 

𝑧 = �́�𝑒𝑖(�́�+�́�𝐼) 

then: 

�́�𝑛𝑒𝑖𝑛(�́�+�́�𝐼) = �́�0𝑒𝑖(�́�0+�́�0𝐼) 
 

     �́�𝑛 = �́�0           ⟹     �́� = √�́�0
𝑛  

there is 𝑘 ∈ ℤ, where: 

𝑛(�́� + �́�𝐼) = �́�0 + �́�0𝐼 + 2𝜋𝑘 

 

�́� + �́�𝐼 =
�́�0

𝑛
+

�́�0𝐼

𝑛
+

2𝜋𝑘

𝑛
 

 

so the general formula for the roots is: 

 

𝑧𝑘 = √�́�0
𝑛  𝑒

𝑖(
�́�0
𝑛

+
�́�0𝐼

𝑛
+

2𝜋𝑘
𝑛

)
      ; 𝑘 = 0 , 1 , 2 , … , 𝑛 − 1 

 

Example 6 

 

Find the cube roots of: 

𝑧 =
1

√2
−

2

√2
𝐼 +

1

√2
𝑖 

Solution: 

�́� = √(�̈� + �̈�𝐼)2 + (�̈� + �̈�𝐼)
2
 

 

  = √(
1

√2
−

2

√2
𝐼)

2

+ (
1

√2
)

2

 

 

 = √(
1

2
− 2

1

√2

2

√2
𝐼 + 2𝐼) +

1

2
= 1 

then:  

𝑐𝑜𝑠(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

1

√2
−

2

√2
𝐼 
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𝑠𝑖𝑛(�́� + �́�𝐼) =
�̈� + �̈�𝐼

�́�
=

1

√2
 

 

⟹    �́� + �́�𝐼 =
𝜋

4
+

𝜋

2
𝐼 

hence:  

𝑧 = 𝑒
𝑖(

𝜋
4

+
𝜋
2

𝐼)
 

 
 

𝑧𝑘 = √�́�0
𝑛  𝑒

𝑖(
�́�0
𝑛

+
�́�0𝐼

𝑛
+

2𝜋𝑘
𝑛

)
      ; 𝑘 = 0 , 1 , 2 , … , 𝑛 − 1 

 

𝑧𝑘 = √1
3

 𝑒𝑖(
𝜋

12
+

𝜋
6

𝐼+
2𝜋𝑘

3
)
  ;  𝑘 = 0 , 1 , 2 

 

 

𝑘 = 0    ⟹    𝑧0 =  𝑒𝑖(
𝜋

12
+

𝜋
6

𝐼)
= 𝑐𝑜𝑠 (

𝜋

12
+

𝜋

6
𝐼) + 𝑖 𝑠𝑖𝑛 (

𝜋

12
+

𝜋

6
𝐼) 

 

 

                                      𝑧0

=
√6 + √2 

4
+

√2 − √6

4
𝐼 + (

√6 − √2

4
+

3√2 − √6

4
𝐼) 𝑖 

 

 

𝑘 = 1    ⟹    𝑧1 =  𝑒𝑖(
3𝜋
4

+
𝜋
6

𝐼)
= 𝑐𝑜𝑠 (

3𝜋

4
+

𝜋

6
𝐼) + 𝑖 𝑠𝑖𝑛 (

3𝜋

4
+

𝜋

6
𝐼) 

 

 

= 𝑐𝑜𝑠
3𝜋

4
+ 𝐼 [cos (

3𝜋

4
+

𝜋

6
) − 𝑐𝑜𝑠

3𝜋

4
] + 𝑖 (𝑠𝑖𝑛

3𝜋

4
+ 𝐼 [𝑠𝑖𝑛 (

3𝜋

4
+

𝜋

6
) − 𝑠𝑖𝑛

3𝜋

4
]) 

 

 

= 𝑐𝑜𝑠
3𝜋

4
+ 𝐼 [cos

11𝜋

12
− 𝑐𝑜𝑠

3𝜋

4
] + 𝑖 (𝑠𝑖𝑛

3𝜋

4
+ 𝐼 [𝑠𝑖𝑛

11𝜋

12
− 𝑠𝑖𝑛

3𝜋

4
]) 

 

 

                                  

=
−√2 

2
+ 𝐼 [

−√6 − √2 

4
+

√2 

2
] + (

√2 

2
+ 𝐼 [

√6 − √2

4
−

√2 

2
]) 𝑖 

 

 

   𝑧1 =
−√2 

2
+

−√6 + √2 

4
𝐼 + (

√2 

2
+

√6 − 3√2

4
𝐼) 𝑖 

 

 

𝑘 = 2    ⟹    𝑧2 =  𝑒𝑖(
17𝜋
12

+
𝜋
6

𝐼)
= 𝑐𝑜𝑠 (

17𝜋

12
+

𝜋

6
𝐼) + 𝑖 𝑠𝑖𝑛 (

17𝜋

12
+

𝜋

6
𝐼) 

 

 

= 𝑐𝑜𝑠
17𝜋

12
+ 𝐼 [cos (

17𝜋

12
+

𝜋

6
) − 𝑐𝑜𝑠

17𝜋

12
] + 𝑖 (𝑠𝑖𝑛

17𝜋

12
+ 𝐼 [𝑠𝑖𝑛 (

17𝜋

12
+

𝜋

6
) − 𝑠𝑖𝑛

17𝜋

12
]) 
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= 𝑐𝑜𝑠
17𝜋

12
+ 𝐼 [cos

19𝜋

12
− 𝑐𝑜𝑠

17𝜋

12
] + 𝑖 (𝑠𝑖𝑛

17𝜋

12
+ 𝐼 [𝑠𝑖𝑛

19𝜋

12
− 𝑠𝑖𝑛

17𝜋

12
]) 

 

 

             

=
−√6 + √2

4
+ 𝐼 [

√6 − √2

4
− (

−√6 + √2

4
)]

+ (
−√6 − √2

4
+ 𝐼 [

−√6 − √2

4
− (

−√6 − √2

4
)]) 𝑖 

 

 

   𝑧2 =
−√6 + √2

4
+

√6 − √2

2
𝐼 +

−√6 − √2

4
𝑖 

 

4. Conclusions   

The importance of this paper comes from the fact that it presented a scientific method for 

converting from the algebraic form of a neutrosophic complex number to the exponential or 

trigonometric form and vice versa. Where this method was harnessed to find the roots from order 𝑛 

of a neutrosophic complex number and write its by algebraic form of a neutrosophic complex 

number. This article is regarded as one of the key studies on neutrosophic complex numbers. 
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Abstract  

Alzheimer's disease is the primary cause of dementia. Due to the sluggish rate of progression of 

Alzheimer's disease, individuals have the opportunity to start receiving therapy early through 

routine testing. procedures since they are pricy and difficult to find. For many slowly advancing 

disorders, such as Alzheimer's disease (AD), the capacity to recognise changes in disease 

progression is essential. Machine learning methods with a high degree of modularity were used 

throughout the pipeline. We propose the use of Neutrosophic hidden Markov models (NHMMs) 

to simulate disease progression in a more thorough manner than the clinical phases of the disease. 

Due to the complexity and ambiguity of reality, decision-makers find it challenging to draw 

conclusions from precise data. Since they cannot be computed directly, the variables are encoded 

using a single interval Neutrosophic set. We showed that the trained HMM can imitate sickness 

development more accurately than the commonly acknowledged clinical phases. 

Keywords: Alzheimer disease, Neutrosophic, hidden Markov model, Decision making ,Brain 

disorders. 

 

1. Introduction  

The retina, on the other hand, offers a simple window for obtaining possible biomarkers of 

Alzheimer's disease. Only the retina may be directly viewed in vivo as a part of the nervous 

mailto:m.tom@cqu.edu.au
mailto:mufti.mahmud@ntu.ac.uk
mailto:broumisaid78@gmail.com
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system. One of these retinal indications that is usually linked to Alzheimer's disease is 

retinal vasculature. It is possible that Alzheimer's disease patients' aberrant narrowing of 

the retinal venous blood column diameter and decreased blood flow accounts for the 

subjects with mild cognitive impairment's observed reduced retinal oxygen metabolism 

rate. A fundus vascular network that is sparse and has reduced fractal dimensions is highly 

linked to dementia. It is also found that Alzheimer's patients have deteriorated retinal 

neurovascular coupling when compared to healthy ageing. Based on recently published 

studies, Yet, two prevalent issues have hindered earlier retinal imaging investigations. 

Recent investigations show that abnormal characteristics associated with the early stages 

of neurodegenerative disorders are visible in retinal fundus pictures. More than 5% of 

people over 65 have Alzheimer's disease (AD), a long-term neurological disease that is the 

most common cause of dementia. An important and early step in the pathogenic cascade 

of Alzheimer's disease is the build up of multimers of the misfolded beta amyloid (Aß) 

peptide (4kDa peptides). The crucial function of the Aß peptide in the genesis of AD has 

been further reinforced by genetic discoveries during the past ten years. According to 

statistics, between 60 and 70 percent of dementia cases are caused by Alzheimer's disease 

(AD). It is still a neurodegenerative phenotype that is progressing[1]. People who are 

affected show a considerable deterioration in cognitive function, which has a negative 

impact on their quality of life and general health[2] .Contrary to other neurological 

disorders, managing AD has also shown to be associated with a significant financial burden 

in Asia, North America6, and even globally.  Additionally, it has been reported that by the 

year 2030, the estimated global total cost of dementia-related expenses will be close to 

USD 2.0 trillion[3]. For many slowly progressing conditions, including Alzheimer's 

disease, a disease progression model that can be used to swiftly assess disease progression 

or lack thereof can help in the development of prospective treatments. This implies the 

model should be able to detect more specific disease phases as opposed to illness stages 

that match to clinical diagnoses. Modeling and prediction of disease progression has been 

the focus of several research projects [4-6]. whereas in [5], the authors put out a non-linear 

model based on the progression of the scores on the Alzheimer's disease Assessment Scale, 

however, has been underlined by recent study[8]. According to one study, 31% of patients 

with MCI return to a cognitively normal state within two years[9]. The proper targeting of 
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treatment drugs can be aided by an understanding of the characteristics of MCI patients 

who are more likely to develop AD and those who are more likely to return to normal 

cognition. Since it is believed that disease-modifying therapies may work better in people 

who have not yet developed AD and have not yet seen neuronal loss, it is especially crucial 

to identify risk factors for conversion to MCI. The objective in this case is to estimate the 

link between patient-level characteristics and the rate of conversion from MCI to AD and 

reversion from MCI to normal cognition. Machine learning offers a technique for automatic 

classification by identifying complex and nuanced patterns from highly dimensional data. 

In AD research, such algorithms are frequently developed to do automatic diagnosis and 

predict a person's future clinical status based on biomarkers. These algorithms aim to 

enhance medical decision-making by providing a possibly more objective diagnosis than 

that offered by common clinical criteria[10]. There is a wealth of information on the 

classification of AD and its prodromal stage, moderate cognitive impairment 

(MCI)[11,12]. Indicating strong performance for the classification of AD patients and 

control individuals, the area under the receiver operating characteristic curve (AUC) for 

classification approaches varies from 85 to 98 percent.  

Following the trends and advancements in medical image analysis and machine learning, 

convolutional neural networks (CNN) in particular have seen increased application as neural 

network classifiers over the past few years[13]. In studies on AD, many researchers have 

discovered shrinking of grey matter in the brain's temporal lobe and hippocampal areas. The easiest 

way to define Random Forest (RF), an ensemble machine learning technique, is as "a collection of 

tree predictors such that each tree depends on the values of a random vector generated 

independently and with the same distribution for all trees in the forest"[14]. Regarding the handling 

of extremely non-linear biological data, tolerance to noise, tuning simplicity (relative to other 

ensemble learning algorithms), and the potential for efficient parallel processing, this algorithm 

offers a considerable edge over other approaches. In many applications, it also yields one of the 

finest accuracies to date [15]. Due of the numerous redundant features in high-dimensional 

situations, RF is a perfect contender for managing these issues. Although RF is an efficient feature 

selection technique in and of itself, other methods for feature set reduction both inside and outside 

of RF have been presented to further enhance its performance[16]. Researchers are particularly 

interested in finding risk factors for changing disease stages in multistate disease processes like 

Alzheimer's disease (AD). In this case, three kinds of cognitive function can be distinguished: 

normal cognition, moderate cognitive impairment (MCI), and Alzheimer's disease (AD). In AD 

clinical trials, MCI has been identified as a significant transitory illness. Markov process models 

are ideal for application in research on AD because they evaluate the rate of transition between 
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distinct disease states while taking into account the potential reversibility of some stages, such 

MCI, and the competing danger of mortality. The competing risk of death has been largely 

disregarded when determining the rate of progression to MCI and AD, and earlier research have 

demonstrated how biassed this is [17]. The observational aspect of AD studies, where cognitive 

status is frequently tested at regular clinic visits, making interval censored data, makes Markov 

process models the most suitable choice. Additionally, if patients switch between different illness 

states in between clinic appointments, the full disease history won't be provided. The failure to see 

the entire course of the disease as well as interval censoring can both be easily accommodated by 

discrete time Markov process models. In studies of disease, it is frequently observed that the rate 

of transition between states rises with age. Markov models, which are characterised by time-

varying transition rates, can be used to estimate disease processes[18]. Hidden Markov models 

(HMMs) are well adapted for the task of describing longitudinal data as a set of hidden states. The 

impact of state-specific factors on responses are examined using a conditional regression model.  

A transition model to depict the dynamic change of hidden states makes up the second part of 

HMMs. Due to their ability to simultaneously display the longitudinal association structure and 

dynamic variability of the observed process, HMMs and its variants have attracted significant 

interest from the medical, behavioural, and academic fields[19–21]. As a result, neutrosophic 

techniques prove to be superior in the medical industry. Neutral hidden Markov models are a new 

field of innovation for uncertainty. The uncertainty information cannot be taken into account by 

the hidden Markov models now in use [22]. [23] discussed on Plithogenic sets in decision 

making.[24] ,this paper to introduced a new measure on nutrosophic centroid .[25]in this paper 

explained a  Review on  biomedicine .[26] explained an Markov chain in forecasting for stock trend. 

The structure of this paper is organized as follows.  

We suggest modelling illness progression in a more detailed manner than the clinical stages of the 

disease using Neutrosophic hidden Markov models (NHMMs). Due to the complexity and 

ambiguity of reality, decision-makers find it challenging to draw conclusions from precise data. 

Since they cannot be computed directly, the variables are encoded using a single interval 

Neutrosophic set. In an actual circumstance, Neutrosophic sets are used to deal with 

indeterminacy. We train our NHMM in an unsupervised manner, in contrast to many existing uses 

of Neutrosophic Hidden Markov Models, and then assess the model's efficiency in revealing 

underlying statistical trends in disease development by referring to NHMM states as disease stages. 

In this study, we concentrate on AD and demonstrate that our model can identify more detailed 

disease phases than the three officially recognised clinical stages of "Normal," "MCI" (Mild 

Cognitive Impairment), and "AD" when tested on the cross validation data. 

Consider the space X, which is composed of universal components that exhibit x. The structure of 

the neutrosophic set is 

http://fs.unm.edu/NSS/PlithogenicSetsAndTheirApplication30.pdf
http://fs.unm.edu/NSS/PlithogenicSetsAndTheirApplication30.pdf
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𝑁 = {(𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥) | 𝑥 ∈ 𝑋}, where the 3 grades of memberships are from  𝑋 to of 

the element 𝑥 ∈ 𝑋 to the set 𝑋, with the criterion: 

2. −0 ≤ 𝑇𝑁(𝑥) + 𝐼𝑁(𝑥) + 𝐹𝑁(𝑥) ≤ 3+. 

The functionsTN(x), IN(x) and FN(x)  are the truth, indeterminate and falsity grades lie in 

real standard/non-standard subsets of ]−0,1+[. 
3. Operations on Interval-Valued Neutrosophic Numbers [5, 33] 

Let 𝑁1 = ⟨[𝑇1
𝐿, 𝑇1

𝑈], [𝐼1
𝐿, 𝐼1

𝑈], [𝐹1
𝐿, 𝐹1

𝑈]⟩ and 𝑁2 = ⟨[𝑇2
𝐿, 𝑇2

𝑈], [𝐼2
𝐿, 𝐼2

𝑈], [𝐹2
𝐿, 𝐹2

𝑈]⟩ be two 

interval neutrosophic numbers then 

Addition: 
 𝑁1 ⊕ 𝑁2 = ⟨[𝑇1

𝐿 + 𝑇2
𝐿 − 𝑇1

𝐿𝑇2
𝐿, 𝑇1

𝑈 + 𝑇2
𝑈 − 𝑇1

𝑈𝑇2
𝑈], [𝐼1

𝐿𝐼2
𝐿, 𝐼1

𝑈𝐼2
𝑈], [𝐹1

𝐿𝐹2
𝐿, 𝐹1

𝑈𝐹2
𝑈]⟩ 

Multiplication: 

𝑁1 ⊗ 𝑁2 = ⟨[𝑇1
𝐿𝑇2

𝐿, 𝑇1
𝑈𝑇2

𝑈], [𝐼1
𝐿 + 𝐼2

𝐿 − 𝐼1
𝐿𝐼2

𝐿, 𝐼1
𝑈 + 𝐼2

𝑈 − 𝐼1
𝑈𝐼2

𝑈], [𝐹1
𝐿 + 𝐹2

𝐿 − 𝐹1
𝐿𝐹2

𝐿, 𝐹1
𝑈 + 𝐹2

𝑈

− 𝐹1
𝑈𝐹2

𝑈]⟩ 

 

Multiplication Neutrosophic probability: 
(𝑥1, 𝑦1, 𝑧1). (𝑥2, 𝑦2, 𝑧2) = (𝑥1𝑥2,, 𝑀𝑖𝑛{𝑦1𝑦2}, 𝑀𝑎𝑥{𝑧1𝑧2})                                        
Addition Neutrosophic probability: 

(𝑥1, 𝑦1, 𝑧1). (𝑥2, 𝑦2, 𝑧2) = (𝑥1 + 𝑥2,𝑀𝑖𝑛{𝑦1𝑦2}, 𝑀𝑖𝑛{𝑧1𝑧2})   

2.8 Interval Neutrosophic Markov Chain [25] 

An interval neutrosophic stochastic process {𝑋(𝑛): 𝑛 ∈ Ν} is said to be an interval 

neutrosophic Markov chain if it satisfies the Markov property:  

𝛽(𝑋𝑛+1 = 𝑗 |𝑋𝑛−1 = 𝑖, 𝑋𝑛 = 𝑘, … , 𝑋0 = 𝑚) = 𝛽(𝑋𝑛+1 = 𝑗 | 𝑋𝑛−1 = 𝑖) 

where 𝑖, 𝑗, 𝑘 establish the state space 𝑆 of the process.  

Here �̃�𝑖𝑗 = 𝛽(𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖) are called the interval-valued neutrosophic probabilities 

of moving from state 𝑖 to state 𝑗 in one step. Hence �̃�𝑖𝑗 =

([𝑇�̃�𝑖𝑗

𝐿 , 𝑇�̃�𝑖𝑗

𝑈 ] , [𝐼�̃�𝑖𝑗

𝐿 , 𝐼�̃�𝑖𝑗

𝑈 ] , [𝐹�̃�𝑖𝑗

𝐿 , 𝐹�̃�𝑖𝑗

𝑈 ]), where 𝑇�̃�𝑖𝑗

𝐿 , 𝑇�̃�𝑖𝑗

𝑈  are the lower and upper truth 

membership of the transition from state 𝑖 to state 𝑗, respectively, 𝐼�̃�𝑖𝑗

𝐿 , 𝐼�̃�𝑖𝑗

𝑈  are the lower and 

upper indeterminate membership of the transition from state 𝑖 to state 𝑗 respectively and 

𝐹�̃�𝑖𝑗

𝐿 , 𝐹�̃�𝑖𝑗

𝑈  are the lower and upper falsity membership of the transition from state 𝑖 to state 

𝑗. The matrix 𝑃 = (�̃�𝑖𝑗) is called the interval-valued neutrosophic transition probability 

matrix.  

The connections between the states in a hidden markov model are controlled by a set of 

transitional probabilities. Since a Markov Chain's states could be observed, a Hidden 

Markov Model's states are statistical and have associated probability distributions known 

as observation probability density functions. This makes it possible to distinguish a Hidden 

Markov Model from a Markov Model or a Markov Chain. The multidimensional vector that 

encodes the observation is typically created using the HMM feature vector, which is a collection 

of characteristics. Continuous and discrete observation density functions are the two different types.  
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In this study, we take a slightly different strategy to training and testing the HMM. Since 

our objective is to identify and model illness stages, the HMM training is conducted in an 

unsupervised manner using the time signals from all participants, regardless of their clinical 

diagnosis at any given time. 

The goal is to use the HMM's training strategy to take advantage of patterns in the 

biomarker feature vector that are present both temporally and across individual biomarker 

features in order to group subjects with similar conditions into one state and those with 

dissimilar conditions into different states. 

A1:Memory loss and forgetfulness: Alzheimer's disease, a type of dementia, affects one's 

behaviour, thinking, and memory. Alzheimer's disease is characterised by memory loss, 

particularly of recent memories, which gets worse over time. Along with this, other 

cognitive symptoms are commonly noticeable, such as difficulties with language, problem-

solving, and visual-spatial abilities. 

A2: Challenges with language and communication: Alzheimer's disease is a type of 

dementia that affects thinking, behaviour, and memory. Alzheimer's disease is 

characterised by memory loss, particularly of recent memories, which gets worse over time. 

Along with this, other cognitive symptoms are commonly noticeable, such as difficulties 

with language, problem-solving, and visual-spatial abilities. When trying to communicate, 

a person with Alzheimer's may have problems finding the right words. Following a 

discussion may be challenging for someone with Alzheimer's disease, particularly if the 

conversation is complex or fast-paced. They keep doing it: A person suffering from 

Alzheimer's disease may repeat themselves or ask the same question. Alzheimer's disease 

can impact a person's ability to modulate their tone and inflection, which could cause them 

to speak in a different way. A person with Alzheimer's may have trouble communicating 

their needs and wants because they find it difficult to articulate their thoughts and ideas in 

a straightforward manner. 

A3: problems with decision-making and problem-solving due to disorientation and 

confusion   disorientation, and difficulties with problem-solving and decision-making are 

common symptoms of Alzheimer's disease. The ability to think, reason, and make 

decisions may be compromised as the condition worsens. Some typical issues associated 

with Alzheimer's disease include the following: Confusion and disorientation: These signs 

and symptoms might appear in someone with Alzheimer's disease, especially in unfamiliar 

or unexpected settings. Problem-solving challenges: Alzheimer's disease can impair a 

person's ability to think critically and solve problems. They could struggle to find solutions 

to simple or complex problems. 

 

𝜋 = [< [0.05 0.1  0.05] >, < [0.3 0.2 0.1] >] 

It demonstrates that Alzhimer is [0.3 0.2 0.1] and that the initial single value neutrosophic 

of Normal is [0.05 0.1 0.05]. It demonstrates that the value of obesity is greater than the 
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single-valued neutrosophic value of overweight. The state's probability transition diagram. 

The state N is normal and A is Alzheimer diseases.  

Single-valued Neutrosophic transition probability value is  

 

𝑁
𝐴

[
𝑁

⟨[0.6,0.1,0.1]⟩
⟨[0.2,0.05,0.1]⟩

𝐴
⟨[0.4,0.05,0.05]⟩

⟨[0.6,0.1 ,0]⟩
] 

The observer's state is represented by 1, which stands for memory loss and forgetfulness, , 

which stands for difficulties with language and communication, and 3, which stands for 

difficulties with decision-making and problem-solving. The state's emission likelihood is 

𝑁
𝐴

[
1

⟨[0.2,0.1 ,0]⟩

⟨[0.7,0.2 ,0.1]⟩

2
⟨[0.3,0.1,0.05]⟩

⟨[0.6,0.05,0]⟩

3
⟨[0.1,0.05 ,0.1]⟩

⟨[0.8,0.05 ,0]⟩
] 

There are two concealed states, and there are three observations. Choose a sequence 132 

with the probability value as follows: The majority of participants depend on 1, which 

stands for memory loss and forgetfulness, 3, which represents for issues with decision-

making and problem-solving, and 2, which stands for difficulties with language and 

communication. 

𝑃(𝑂, 𝑄)) = ∏ 𝑃 (
𝑂

𝑄
) 𝑃(𝑄) 

4. Single-valued Neutrosophic Hidden Markov Model 

 

𝑃(132, 𝑁𝑁𝑁) = 𝑃(1/𝑁)𝑃(3/𝑁)𝑃(2/𝑁)𝑃(𝑁)𝑃(𝑁/𝑁)𝑃(𝑁/𝑁) = [⟨0.000216,0.05,0.5⟩] 

𝑃(132, 𝑁𝑁𝐴) = 𝑃(1/𝑁)𝑃(3/𝑁)𝑃(2/𝐴)𝑃(𝑁)𝑃(𝑁/𝑁)𝑃(𝐴/𝑁) = [⟨0.00144,0.05,0.1⟩] 

𝑃(132, NAN) = 𝑃(1/𝑁)𝑃(3/𝐴)𝑃(2/𝑁)𝑃(𝑁)𝑃(𝐴/𝑁)𝑃(𝑁/𝐴) = [⟨0.0023,0.05,0.1⟩] 

𝑃(132, ANN) = 𝑃(1/𝐴)𝑃(3/𝑁)𝑃(2/𝑁)𝑃(𝐴)𝑃(𝑁/𝐴)𝑃(𝑁/𝑁) = [⟨0.00075,0.05,0.1⟩] 

𝑃(132, AAA) = 𝑃(1/A)𝑃(3/𝐴)𝑃(2/𝐴)𝑃(𝐴)𝑃 (
𝐴

𝐴
) 𝑃 (

𝐴

𝐴
) = [⟨0.03628,0.05,0.1⟩] 

𝑃(132, AAN) = 𝑃(1/𝐴)𝑃(3/𝐴)𝑃(2/𝑁)𝑃(𝐴)𝑃(𝐴/𝑁)𝑃(𝑁/𝐴) = [⟨0.0040.05,0.1⟩] 

𝑃(132, NAN) = 𝑃(1/𝐴)𝑃(3/𝑁)𝑃(2/𝐴)𝑃(𝐴)𝑃(𝑁/𝐴)𝑃 (
𝐴

𝑁
) = [⟨0.000504,0.05,0.1⟩] 

𝑃(132, 𝑁𝐴𝐴) = 𝑃(1/N)𝑃(3/𝐴)𝑃(2/𝐴)𝑃(𝑁)𝑃(𝐴/𝑁)𝑃(𝐴/𝐴) = [⟨0.01151,0.05,0.05⟩] 

The greatest likelihood of the above values is [0.036288, 0.05, 0.1] for the probability value 

of the sequence 132, and the maximum probability of the combination is P(132,AAA). 
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Find the likelihood of any interval combination in a similar manner. Viterbi algorithm 

verification of this probability of sequence 132. 

5. Calculation for Single-valued Neutrosophic Hidden Markov Model 
  

𝑃(1, 𝑁) = 𝑃(1/𝑁)𝑃(𝑁) = [⟨0.1,0.1,0.05⟩] 

𝑃(1, 𝐴) = 𝑃(1/𝐴)𝑃(𝐴) = [⟨0.21,0.2,0.1⟩] 

𝑃 (3,
𝑁

𝑁
) = 𝑃(3/𝑁)𝑃 (

𝑁

𝑁
) = [⟨0.06,0.05,0.1⟩] 

𝑃 (3,
𝑁

𝐶
) = 𝑃(3/𝑁)𝑃 (

𝑁

𝐴
) = [⟨0.02,0.05,0.1⟩] 

𝑃 (3,
𝐴

𝑁
) = 𝑃(3/𝐴)𝑃 (

𝐴

𝑁
) = [⟨0.48,0.05,0.05⟩] 

𝑃 (3,
𝐴

𝐴
) = 𝑃(3/𝐴)𝑃 (

𝐴

𝐴
) = [⟨0.48,0.05,0⟩] 

𝑃 (2,
𝑁

𝑁
) = 𝑃(2/𝑁)𝑃 (

𝑁

𝑁
) = [⟨0.18,0.1,0.1⟩] 

𝑃 (2,
𝐴

𝑁
) = 𝑃(2/𝐴)𝑃 (

𝐴

𝑁
) = [⟨0.24,0.05,0.05⟩] 

𝑃 (2,
𝑁

𝐴
) = 𝑃(2/N)𝑃 (

𝑁

𝐴
) = [⟨0.06,0.05,0.1⟩] 

𝑃 (2,
𝐴

𝐴
) = 𝑃(2/𝐴)𝑃 (

𝐴

𝐴
) = [⟨0.36,0.05,0⟩] 

𝑉2 = [⟨0.0042,0.1008⟩] 

𝑉3 = [⟨0.0064,0.0217⟩] 
 
The Viterbi algorithm is used to validate the probability. It demonstrates that sequence 132 

has a 0.21 probability. The combination has a P(132,AAA) maximum probability, and the 

path is A_A_A. It demonstrates that the Alzheimer disease's disease sequence path. 

 

 

6. Conclusion 

Uncertainty, ambiguity, and indeterminacy are common factors in real-world decision-

making issues, and Neutrosophic devotes a lot of effort to fixing them. The neutrosophic 

Hidden Markov model (NHMM) has been used as a key mathematical mode for ambiguity, 

redundancy, and uncertainty. Indeterminacy is formally quantified by NHMM. Truth, 

ambiguity, and falsity exist independently. These characteristics are important for the 

biological diagnosis of the condition. In the medical industry, the decision is built using 

NHMM. Three components serve as the original representation of NHMM probability in 

the proposed framework, and three memberships carry out the transformation, which was 

developed to address the issue of Alzhemer. On the foundation of a Hidden Markov Model 

framework, we provided a model for illness progression. We trained an HMM in an 

unsupervised manner for Alzheimer's disease in an effort to identify more precise stages in 
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disease development. We demonstrated that the trained HMM can more precisely simulate 

illness development than the conventionally recognised clinical phases. 
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Abstract: The principal objective of this article is to develop the perception of neutrosophic 

totally continuous and neutrosophic totally-semi-continuous functions in neutrosophic 

topological space using neutrosophic semi-open and neutrosophic semi-closed sets. 

Neutrosophic strongly semi-continuous and slightly semi-continuous functions have been 

presented and investigated. Some important properties of these functions are also given in 

neutrosophic topological spaces. Relations between these newly defined functions and other 

classes of neutrosophic functions are established.  

Keywords: Neutrosophic semi-open set, Neutrosophic semi-closed set, Neutrosophic clopen, 

Neutrosophic semi-clopen 

 

1. Introduction 

The contribution of mathematics to present-day Technology in researching fast trends must be 

addressed. The theories presented differently from classical methods in studies by Zadeh[19]; a 

fuzzy set was investigated as a mathematical tool for handling uncertainties, with each element 

having a degree of membership, truth(t), an intuitionistic fuzzy introduced by Atanassov [2] 

utilizing falsehood (f), the degree of non-membership, Neutrosophic Set in which Smarandache 

[14,15,16] presented Neutrality (i), the degree of indeterminacy, as an independent concept  have 

great importance in this contribution of mathematics in recent years.  

    The neutrosophic set is concerned with the origin, nature, and scope of neutrality. Research on 

the neutrosophic set is crucial since it provides access to a variety of scientific and technical 

applications. The universe is full of uncertainty, therefore the neutrosophic set can locate a suitable 

location for investigation. The neutrosophic set on the real line is distinguished by single-valued 

neutrosophic numbers (SVN) and single-valued bipolar neutrosophic numbers (SVbN). When a 

human decision is based on positive and negative ideas, the SVbN number is crucial in 

decision-making problems. All SVbN number membership functions (truth, indeterminacy, and 
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falsity) are contained in the positive and negative sections between -1 and 0 and 0 and 1, 

respectively. Using these concepts, the authors of [6, 7, 8, 9, 10] have created applications in the 

health field, such as multi-criteria decision-making in COVID-19 vaccines and the possibility of 

multiattribute decision-making on water resource management challenges, in recent years. The 

neutrosophic crisp set was converted by Salama et al. [12, 13] into neutrosophic topological spaces. 

In [13], Salama et al. presented continuous functions and neutrosophic closed sets. Generalized 

neutrosophic closed sets were provided in [4]. [1] Presents a set of neutrosophic semi-open, 

pre-open, and semipre-open sets. The authors explored the concept of neutrosophic almost 

-contra-continuous functions in [5].. With its potential application in practical settings, neutrosophic 

topology has now become a fertile field for study. 

     The review of the literature reveals that there is still work to be done on the qualities of 

neutrosophic totally and totally semi-continuous functions. By observing these, we are directed to 

work in continuous and semi-continuous functions based on the neutrosophic set. In addition, 

neutrosophic strongly semi-continuous and slightly semi-continuous functions are introduced, and 

these continuous functions are characterized.  

For the sake of presentation clarity, abbreviations are used throughout this article. 

 Abbreviations are listed here. 

Array of Words Shortenings 

Neutrosophic Topology NT 

Neutrosophic Topological Space NTS 

Neutrosophic Set NS 

Neutrosophic Sets NSs 

Neutrosophic Open Set NOS 

Neutrosophic Closed Set NCS 

Neutrosophic Point NP 

Neutrosophic Semi-Open Set NSOS 

Neutrosophic Semi-Closed Set NSCS 

Neutrosophic Semi-Open Sets NSOSs 

2. Methodologies 

Definition: 2.1[14,15]: A  NS Ψ over a finite non-empty set  𝑆1 has the form  Ψ = {𝑡,  𝑇Ψ(𝑡),

𝐼Ψ (𝑡),  𝐹Ψ(𝑡): 𝑡𝜖𝑆1}, wherein 𝑇, 𝐼, 𝐹:  𝑆1 ⟶]0−, 1+[ are the truth, indeterminacy, besides false 

membership functions, in that order. 
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Definition: 2.2[14,15]: Let 𝑆1 ≠ ∅ and the 𝑁Ss Ψ and Ω be defined as  

Ψ = {〈𝑑, 𝜇Ψ(d), 𝜎Ψ(d), ΩΨ(𝑑)〉: d ∈ 𝑆1}, Ω = {〈𝑑, 𝜇Ω(d), 𝜎Ω(d), ΩΩ(d)〉: 𝑥 ∈ 𝑆1}. Then   

I. 𝛹 ⊆ 𝛺 iff 𝜇𝛹(𝑑) ≤ 𝜇𝛺(𝑑), 𝜎𝛹(𝑑) ≤ 𝜎𝛺(𝑑) and 𝛺𝛹(𝑑) ≥ 𝛺𝛺(𝑑) for all d ∈ 𝑆1;  

II. 𝛹 = 𝛤 iff  𝛹 ⊆ 𝛺 and 𝛺 ⊆ 𝛹;  

III. �̅� = {〈𝑥, 𝛤𝛹(𝑑), 𝜎𝛹(𝑑), 𝜇𝛹(𝑑)〉: 𝑑 ∈ 𝑆1}; [Complement of 𝛹]  

IV. 𝛹 ∩ 𝛺 = {〈𝑑, 𝜇𝛹(𝑑) ∧ 𝜇𝛤(𝑑), 𝜎𝛹(𝑑) ∧ 𝜎𝛺(𝑑), 𝛤𝛹(𝑑) ∨ 𝛺𝛺(𝑑)〉: 𝑑 ∈ 𝑆1};  

V. 𝛹 ∪ 𝛺 = {〈𝑑, 𝜇𝛹(𝑑) ∨ 𝜇𝛺(𝑑), 𝜎𝛹(𝑑) ∨ 𝜎𝛺(𝑑), 𝛤𝛹(𝑑) ∧ 𝛾𝛺(𝑑)〉: 𝑑 ∈ 𝑆1};  

VI. [ ] 𝛹 = {〈𝑑, 𝜇𝛹(𝑑), 𝜎𝛹(𝑑),1 − 𝜇𝛹(𝑑)〉: 𝑑 ∈ 𝑆1};  

VII. 〈〉 𝛹 = {〈𝑑, 1 − 𝛤𝛹(𝑑), 𝜎𝛹(𝑑), 𝛤𝛹(𝑑)〉: 𝑑 ∈ 𝑆1}.  

The primary goal is to create the resources for NTS development, so we make the NSs 0ℵ along with 

1ℵ in  𝑆1 as follows:  

Definition: 2.3[15,16]: 0ℵ = {〈𝜔, 0,0,1〉: 𝜔 ∈ 𝑆1} along with 1ℵ = {〈𝜔, 1,1,0〉: 𝜔 ∈ 𝑆1}.  

Definition: 2.4[12]: A  NT  𝑆1 ≠ ∅ is a family 𝜉1 of  𝑁Ss in 𝑆1  observing the rules listed below: 

I. 0ℵ, 1ℵ ∈ 𝜉1,  

II. 𝑊1 ∩ 𝑊2 ∈ 𝑇 being 𝑊1, 𝑊2 ∈ 𝜉1,  

III. ∪ 𝑊𝑖 ∈ 𝜉1  for random  family {𝑊𝑖|𝑖 ∈ 𝛹} ⊆ 𝜉1. 

Here (𝑆1, 𝜉1) or just 𝑆1 is labeled as 𝑁𝑇𝑆, with each NS in 𝜉1 being noted as NOS. The 

complement Ω of a NOS  Ω in 𝑆1 is noted as NCS in 𝑆1. 

Definition: 2.5[12, 13]:  Consider an NS  Ω  in  𝑁𝑇𝑆  𝑆1. Accordingly, 

ℵ𝑖𝑛𝑡( Ω ) =∪ {E|E is  NOS in 𝑆1 with 𝐸 ⊆  Ω } is titled as neutrosophic interior ( ℵ𝑖𝑛𝑡 in short) 

of Ω; 

ℵ𝑐𝑙( Ω ) =∩ {𝔅|𝔅 is a NCS in 𝑆1 with 𝔅 ⊇  Ω } is entitled as neutrosophic closure (in short ℵ𝑐𝑙) 

of Ω.  

Definition: 2.6[1]: For r, t, s the real standard else non-standard members of ]0−, 1+[.  A NS ℧𝑟,𝑡,𝑠 is 

termed a neutrosophic point (NP) over   𝑆1 defined by   ℧𝑟,𝑡,𝑠 (q) = {
(𝑟, 𝑡, 𝑠)
(0,0,1)

,  𝑖𝑓   ℧ = q

 𝑖𝑓   ℧ ≠ q
  

for q ∈   𝑆1, where r, t, s are the truth, indeterminacy, and falsity membership values of  ℧. 

Definition 2.7[1]: Consider a ℵ S Ψ  in an NTS (𝑆1, Γ) , neutrosophic semi-open set (NSOS) 

whenever Ψ ⊆ ℵ𝑐𝑙(ℵ𝑖𝑛𝑡(Ψ)). The complement of NSOS is known as NSCS. 

Definition 2.8[11]: A space 𝑆1  is mentioned as neutrosophic semi-connected if 𝑆1  cannot be 

expressed as the union of two non-empty disjoint NSOSs. 
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Definition 2.9[3]: Conder a mapping  𝜂: 𝑆1 → 𝑆2  is neutrosophic semi-continuous whenever 

𝜂−1(Ω) is NSOS of 𝑆1 for each Ω 𝜖 𝑆2 

 

3. Results and Discussion. 

  This section introduces neutrosophic totally continuous, neutrosophic totally semi-continuous, 

and neutrosophic strongly semi-continuous functions, and their characterizations and 

interrelationships are discussed. 

Definition 3.1: A neutrosophic function  𝜂: 𝑆1 → 𝑆2 is termed neutrosophic totally continuous (in 

short (Nt-c.) (resp. neutrosophic totally-semi-continuous in short (Nts-c.) whenever the inverse 

image of every NOS (resp. NSOS) of 𝑆2  is a neutrosophic clopen (NOS and NCS) (resp. 

neutrosophic semi-clopen) subset of  𝑆1 

Remark 3.2: Every Nt-c function is also a Nts-c. But the opposite doesn't have to be true.  

Example 3.3: Let 𝑆1 = 𝑆2 = {𝑎, 𝑏} we define a mapping  𝜂: (𝑆1, 𝜏) → (𝑆2, 𝜎) by 𝜂−1(𝐶) = 𝐶, 𝜂−1(𝐷) =

𝐷, 𝜂−1(𝐸) = 𝐸, 𝜂−1(0ℵ) = 0ℵ, 𝜂−1(1ℵ) = 1ℵ  where 𝜏 = {𝐴, 𝐵, 𝐶, 𝐷, 0ℵ, 1ℵ}  and  𝜎 = {𝐶, 𝐷, 𝐸, 0ℵ, 1ℵ} . 

Here 𝐴 = {〈0.7,0.3,0.8〉〈0.5,0.8,0.9〉}, 𝐵 = {〈0.8,0.7,0.7〉〈0.9,0.2,0.5〉}, 𝐶 = {〈0.8,0.3,0.7〉〈0.9,0.2,0.5〉},

𝐷 = {〈0.7,0.3,0.8〉〈0.5,0.2,0.9〉}, 𝐸 = {〈0.7,0.7,0.8〉〈0.5,0.8,0.9〉} . Here 𝐶, 𝐷, 𝑎𝑛𝑑 𝐸  are neutrosophic 

semi-clopen in 𝑆2, whereas 𝐸 is not neutrosophic semi-clopen in 𝑆1. Hence each Nts-c need not be 

Nt-c. 

Definition 3.4: A neutrosophic function  𝜂: 𝑆1 → 𝑆2  is known as the neutrosophic strongly 

semi-continuous (in brief, Nss-c) iff inverse image of each neutrosophic subset of 𝑆2  is a 

neutrosophic semi-clopen subset of 𝑆1 

Remark 3.5: Neutrosophic strongly semi-continuity →  Neutrosophic totally-semi-continuity → 

Neutrosophic semi-continuity 

Example 3.6: The example that follows is not Nss-c, but rather Nts-c functoin. 

Let 𝑆1 = 𝑆2 = {𝑎, 𝑏}  define a map 𝜂: (𝑆1, 𝜏) → (𝑆2, 𝜎)  by 𝜂−1(𝐶) = 𝐶,  𝜂−1(𝐷) = 𝐷,  𝜂−1(0ℵ) =

0ℵ,  𝜂−1(1ℵ) = 1ℵ  where 𝜏 = {𝐴, 𝐵, 𝐶, 𝐷, 0ℵ , 1ℵ}  and 𝜎 = {𝐶, 𝐷, 0ℵ, 1ℵ} , where 𝐴 =

{〈0.4,0.6,0.8〉〈0.3,0.5,0.7〉}, 𝐵 = {〈0.8,0.4,0.4〉〈0.7,0.5,0.3〉}, 𝐶 = {〈0.4,0.6,0.8〉〈0.3,0.5,0.8〉}, 

𝐷 = {〈0.7,0.3,0.8〉〈0.5,0.8,0.9〉}  and  𝐸 = {〈0.6,0.5,0.4〉〈0.7,0.5,0.4〉}. Here 𝐶, 𝐷, 𝑎𝑛𝑑 𝐸  are 

neutrosophic clopen in 𝑆1, but E is not neutrosophic semi-clopen in 𝑆2. Hence every Nss-c function 

need not be Nss-c .  

Proposition 3.7: Each and every Nss-c function into 𝑁𝑇1-space is a Nts-c function. 
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Prof: In an 𝑁𝑇1-space, singletons are neutrosophic closed sets. Henceforth 𝜂−1(𝐷1) is neutrosophic 

semi-clopen in 𝑆1 for every subset 𝐷1 of 𝑆2. 

Remark 3.8: It is very evident that the classes of Nts-c functions along with Nss-c functions coincide 

when a range is 𝑁𝑇1-space. 

Definition 3.9: A neutrosophic function  𝜂: 𝑆1 → 𝑆2  is termed as neutrosophic slightly 

semi-continuous(in short Nsls-c) if for each 𝑝 ∈ 𝑆1 and every neutrosophic clopen subset Q of 𝑆2 

containing 𝜂(𝑄), there exists an NSOS,  R of 𝑆1 such that 𝜂(𝑅) ⊆ 𝑄. 

Proposition 3.10: Every Nsls-c function that enters a discrete space is considered to be a Nss-c 

function. 

Proof: Let 𝜂: 𝑆1 → 𝑆2 be a Nsls-c function from a space 𝑆1 into a discrete space 𝑆2. Consider 𝐷1 be 

any neutrosophic subset of  𝑆2. Then 𝐷1 is a neutrosophic-clopen subset of 𝑆2. Hence 𝜂−1(𝐷1) is 

the neutrosophic semi-clopen of 𝑆1. Thus, 𝜂 is Nss-c. 

Proposition 3.11: If 𝜂 is a Nts-c function from a neutrosophic semi-connected space 𝑆1 onto any 

space 𝑆2, then  𝑆2 is an indiscrete space. 

Proof: If possible, suppose that 𝑆2 is not indiscrete. Let 𝐷1 be a proper non-empty neutrosophic 

open subset of 𝑆2. Then 𝜂−1(𝐷1) is a proper non-empty neutrosophic semi-clopen subset of  𝑆1, 

which is a discrepancy to the fact that 𝑆1 is neutrosophic semi-connected. 

Proposition 3.12: If 𝜂: 𝑆1 → 𝑆2  be a Nsls-c and  𝜇: 𝑆2 → 𝑆3 is Nt-c, then (𝜇 𝑜 𝜂) is Nts-c function. 

Proof:  Let 𝐷1  be a NOS of  𝑆3 . Then 𝜇−1(𝐷1) is an NSCS of 𝑆2 . Since 𝜂  Nsls-c, therefore 

𝜂−1(𝜇−1(𝐷1)) = (𝜂𝑜𝜇)−1(𝐷1) is a neutrosophic semi-clopen subset of 𝑆1. Hence (𝜇 𝑜 𝜂) is Nts-c 

function. 

Definition 3.13: A NTS 𝑆1 is said to be neutrosophic semi-𝑇2 if, for any pair of distinct points 𝑞1, 𝑞2 

of  𝑆1, there exist disjoint NSOSs 𝑄1 and 𝑄2 such that 𝑞1 ∈ 𝑄1 and 𝑞2 ∈ 𝑄2. 

Remark 3.14: A NTS 𝑆1 is neutrosophic semi-𝑇2  if and only if for any pair of different points 𝑞1, 𝑞2 

of  𝑆1 such that 𝑞1 ∈ 𝑄1, 𝑞2 ∈ 𝑄2, and 𝑁𝑠𝑐𝑙(𝑄1) ∩ 𝑁𝑠𝑐𝑙(𝑄2) = ∅. 

Proposition 3.15: Let 𝜂: 𝑆1 → 𝑆2 be a Nts-c injection. If 𝑆2 is 𝑁𝑇0, then 𝑆1 is neutrosophic semi-𝑇2 . 

Proof: Consider 𝑞1 and 𝑞2 to be any pair of different points of 𝑆1. Then 𝜂(𝑞1) ≠ 𝜂(𝑞2) . As 𝑆2 is 

𝑁𝑇0 , there exists a NOS, Q containing, say, 𝜂(𝑞1) but not 𝜂(𝑞2). Then 𝑞1 ∈  𝜂−1(𝑄)  and 𝑞2 ∉

 𝜂−1(𝑄). Since 𝜂 is Nts-c, 𝜂−1(𝑄) is a neutrosophic semi-clopen subset of 𝑆1. Also, 𝑞1 ∈  𝜂−1(𝑄) 

and 𝑞2 ∈ 𝑆1 − 𝜂−1(𝑄). By Remark 3.14, it follows that 𝑆1 is neutrosophic semi-𝑇2 . 
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4. Comparison Analysis 

 

     To highlight the primary contributions of the current study, comparisons with pertinent earlier 

studies are shown and discussed in this section. Currently, a NS is being created to express 

incomplete, inconsistent, partial, and ambiguous facts. A NS is expressed to deal with uncertainty 

using the membership function of Truth, Indeterminacy, and Falsehood. In many practical 

difficulties, the neutrosophic set leads to more logical conclusions. The neutrosophic set reveals 

data inconsistencies and can address practical issues. Real or complex continuous functions fail to 

deal with data containing uncertainty, but Neutrosophic totally semi-continuous functions deal with 

this. Continuous and neutrosophic continuous functions cannot be compared as both sets are 

different in these concepts. One is a crisp set, and another is a NS. Even Fuzzy totally continuous 

functions cannot handle uncertainty. The idea of neutrosophic totally a semi-continuity function is 

crucial to both functional analysis as well as fixed-point theory. It has numerous applications in 

information sciences, artificial intelligence, economic theory, decision theory, etc. The key difference 

is that if h is real, it can only approach zero from the left and right direction in a real line. If h is 

complex, it can approach zero from infinite directions and any spiral path, etc., in a complex plane. If 

h is neutrosophic, it can approach zero not only from an endless number of directions in a 

neutrosophic plane. 

 

5. Conclusion  

        The Neutrosophic method makes use of all three membership functions (truth, 

indeterminacy, and falsity). Prepared to face adversity. The perception of the classic set, fuzzy set, 

and intuitionistic fuzzy set are all generalized by the neutrosophic set. Neutrosophic totally 

continuous and semi-continuous functions are defined and characterized using neutrosophic 

semi-open and semi-closed sets. Its properties are analyzed, and some implications are given. 

Counterexamples also show that the converse statements of these implications are only sometimes 

true. In addition, neutrosophic strongly semi-continuous along with neutrosophic slightly 

semi-continuous functions are presented. In the future, we would like to use the neutrosophic semi 

and nearly continuous mapping to investigate various characteristics in the neutrosophic semi and 

almost topological group. These ideas will open up new avenues for future research and 

development of neutrosophic soft topological spaces. 
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Abstract: The notion of neutrosophic soft generalized sets is introduced as a general 

mathematical tool that incorporates useful properties of both neutrosophic generalized sets 

and soft sets. In this study, we acquaint the notion of neutrosophic soft generalized b-closed 

(open) (gb, in short) sets in neutrosophic soft topological spaces. In addition, the relations 

of this set with other neutrosophic soft closed and open sets and various properties are 

examined. Furthermore, the properties of the gb-closure and gb-interior operator in 

neutrosophic soft sets and gb-neighborhood in neutrosophic soft topological spaces are 

investigated. 

Keywords: Neutrosophic soft sets; Neutrosophic soft topology; Neutrosophic soft 

generalized sets; Neutrosophic soft generalized b-closed (open) sets; Neutrosophic soft 

generalized b-closure (interior); Neutrosophic soft point; Neutrosophic soft generalized b-

neighborhood 

 

 

1. Introduction 

Model uncertainties in the solution of problems in many different fields such as science, 

social science, engineering, and medicine, to cope with the structural difficulties of the 

classical sets, to evaluate the problems in terms of uncertain situations, to model set structures 

that bring a new approach different from the classical set structure have been defined. One 

of these set structures is the fuzzy set theory defined by Zadeh [1]. Later, the fuzzy set is 

generalized as the concept of the intuitionistic fuzzy set by Atanassov [2] in 1986. The fuzzy 

set is defined by the membership function. However, since it is not practical to create a 

membership function for each state, Molodotsov [3] defined soft set theory in 1999. This 

theory is more functional than compared to other structures in practice for decision-making 

and solving problems involving uncertainties. In the fuzzy set and intuitionistic fuzzy set 

theories, the values of an element such as being a member and not being a member are 

emphasized, while the uncertain values are not emphasized. To meet this need, Smarandache 
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[4] defined the neutrosophic set theory for solving problems involving imprecise, ambiguous, 

and inconsistent data. Later, many researchers have done successful studies on different 

combinations of theories such as soft sets, intuitionistic sets, fuzzy sets, and neutrosophic sets 

[5-12]. One of these combinations is the neutrosophic soft set theory, first described by Maji 

[13] and later edited by Deli and Broumi [14]. On the other hand, Salama and Alblowi [15] 

used the concept of a generalized set [16] in neutrosophic sets and described the generalized 

neutrosophic set and neutrosophic topological space. Broumi [17] defined the generalized 

neutrosophic soft set by combining the notion of the generalized neutrosophic set proposed 

by Salama and Alblowi in [15], and the notion of the soft set proposed by Molodtsov in [3]. 

Applications of the topology of neutrosophic depend on the neutrosophic internal and 

closing properties of the neutrosophic open and closed sets. For this reason, topologists have 

identified new set structures in neutrosophic soft sets [18,19] and generalized sets [20-23] 

using the properties of neutrosophic open and closed sets. In recent years, studies on the 

properties of these set structures and the properties of their different combinations, which are 

defined in neutrosophic soft and various topographical spaces, have diversified, and become 

important research [24-32] topic. In addition, some research [33-40] has been done on how 

to use neutrosophic and other topological spaces and different sets in fields such as image 

processing, medical diagnosis, decision-making, information systems, data analysis, 

industry, graphic structures, applied mathematics, and computer coding. 

The b-sets identified by Dimitrije [41] in 1996 are one of these defined structures and 

have a stronger relationship with other set structures. Akdag and Ozkan [42] defined and 

studied the concept of the soft b-closed set in 2014. In addition, Ebenanjar [18] et al. studied 

the notion of the neutrosophic soft b-open set. Das and Pramanik [43] studied generalized 

neutrosophic b-open sets. In recent years, many studies on b-sets in neutrosophic spaces have 

been carried out by many researchers. Soft b-separation axioms were studied by Khattak et 

al. [44], generalized b-closed sets in fuzzy neutrosophic bitopological spaces were studied by 

Mohammed and Raheem [30], neutrosophic b-generalized sets and their continuity were 

studied by Maheswari and Chandrasekar [31], and neutrosophic soft ∗b open sets studied by 

Mehmood [45]. Later, studies using b-sets diversified [46-51]. 

For modern topology, which is heavily dependent on set theory ideas, in this work, we 

present a set, so-called "neutrosophic soft generalized b-closed (open)", and its basic 

properties. We then present the basics of the properties of the gb-closure and gb-interior 

operator in neutrosophic soft sets and gb-neighborhood in neutrosophic soft topological 

spaces. This set can be applied in different neutrosophic topological spaces and different set 

types in the future, and be considered as the starting point for the expansion of concepts such 

as continuity, compactness, connectedness, and separation axioms through these sets. 
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2. Preliminaries 

In this section, some descriptions and properties that will be used in the article will be 

given. 

Definition 2.1 [3]. Let's assume that 𝒰  and 𝐸  are the initial universe and the set of 

parameters, respectively. Let the symbol 𝑃(𝒰) denote the power set of 𝒰. In this case, the 

pair (𝐹, 𝐴) defined over 𝒰, where 𝐴 is a subset of 𝐸 parameters, is called a soft set. Where 

𝐹: 𝐴 → 𝑃(𝒰) is a mapping. 

Definition 2.2 [4]. A neutrosophic set (NS, in short) 𝐴 on the universe of discourse 𝒰 is 

defined as 𝐴 = {< 𝓊, 𝑇𝐴(𝓊), 𝐼𝐴(𝓊), 𝐹𝐴(𝓊) >: 𝓊 ∈ 𝒰}, where 𝑇𝐴, 𝐼𝐴, 𝐹𝐴: 𝒰 →]−0,1[+ and 

0− ≤ 𝑇𝐴(𝓊) + 𝐼𝐴(𝓊) + 𝐹𝐴(𝓊) ≤ 3+ . 

Where 𝑇𝐴(𝓊), 𝐼𝐴(𝓊), and 𝐹𝐴(𝓊) which represent the degree of membership function (or 

Truth), the degree of indeterminacy, and the degree of non-membership (or Falsehood) 

respectively of each element 𝓊 ∈ 𝒰 to the set 𝐴. 

We take the neutrosophic set in the subset of [0,1] since it is not feasible to use a 

neutrosophic set with values from ]−0,1[+ in real-life applications such as scientific and 

engineering calculations. 

Definition 2.3 [14]. Let's assume that 𝒰  and 𝐸  are the initial universe and the set of 

parameters, respectively. Let the symbol 𝑃(𝒰) denote the set of all neutrosophic sets of 𝒰. 

Then (�̃�, 𝐸) is called a neutrosophic soft set (NSS, in short) over 𝒰, where �̃�: 𝐸 → 𝑃(𝒰) 

is a mapping. 

It can be defined as a parametrized family of some elements of the set 𝑃(𝒰) and written 

as a set of ordered pairs, 

(�̃�, 𝐸) = {(𝑒 < 𝓊, 𝑇�̃�(𝑒)(𝓊), 𝐼�̃�(𝑒)(𝓊), 𝐹�̃�(𝑒)(𝓊) >: 𝓊 ∈ 𝒰): 𝑒 ∈ 𝐸} 

where 𝑇�̃�(𝑒)(𝓊), 𝐼�̃�(𝑒)(𝓊), 𝐹�̃�(𝑒)(𝓊) ∈ [0,1],  respectively called the truth-membership, 

indeterminacy-membership, and the falsity-membership function of (�̃�, 𝐸). The inequality  

0 ≤ 𝑇�̃�(𝑒)(𝓊) + 𝐼�̃�(𝑒)(𝓊) + 𝐹�̃�(𝑒)(𝓊) ≤ 3  

is satisfied. 

Throughout this paper, the symbol 𝑁𝑆𝑆(𝒰𝐸) will indicate the class of all neutrosophic 

soft sets on 𝒰, and �̃�𝐸 will be replaced instead of (�̃�, 𝐸). 

Definition 2.4 [52]. Let �̃�𝐸, �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then 

(i) �̃�𝐸 is said to be a null set if 𝑇�̃�(𝑒)(𝓊) = 0, 𝐼�̃�(𝑒)(𝓊) = 0, 𝐹�̃�(𝑒)(𝓊) = 1; for all 

𝑒 ∈ 𝐸, for all 𝓊 ∈ 𝒰.  

It is denoted by ∅𝐸. Obviously (∅𝐸)c=1E. 

(ii) �̃�𝐸 is said to be an absolute set if 𝑇�̃�(𝑒)(𝓊) = 1, 𝐼�̃�(𝑒)(𝓊) = 1, 𝐹�̃�(𝑒)(𝓊) = 0; 

for all 𝑒 ∈ 𝐸, for all 𝓊 ∈ 𝒰.  

It is denoted by 1E. Obviously (1E)c=∅𝐸. 
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(iii) the neutrosophic soft union of �̃�𝐸 and �̃�𝐸, denoted �̃�𝐸 ∪ �̃�𝐸 = �̃�𝐸, is defined as 

�̃�𝐸 = {(𝑒 < 𝓊, 𝑇�̃�(𝑒)(𝓊), 𝐼�̃�(𝑒)(𝓊), 𝐹�̃�(𝑒)(𝓊) >: 𝓊 ∈ 𝒰): 𝑒 ∈ 𝐸} where,  

𝑇�̃�(𝑒)(𝓊) = 𝑚𝑎𝑥{𝑇�̃�(𝑒)(𝓊), 𝑇�̃�(𝑒)(𝓊)}, 

𝐼�̃�(𝑒)(𝓊) = 𝑚𝑎𝑥{𝐼�̃�(𝑒)(𝓊), 𝐼�̃�(𝑒)(𝓊)}, 

𝐹�̃�(𝑒)(𝓊) = 𝑚𝑖𝑛 {𝐹�̃�(𝑒)(𝓊), 𝐹�̃�(𝑒)(𝓊)}. 

(iv) the neutrosophic soft intersection of �̃�𝐸  and �̃�𝐸 , denoted �̃�𝐸 ∩ �̃�𝐸 = �̃�𝐸 , is 

defined as �̃�𝐸 = {(𝑒 < 𝓊, 𝑇�̃�(𝑒)(𝓊), 𝐼�̃�(𝑒)(𝑛), 𝐹�̃�(𝑒)(𝓊) >: 𝓊 ∈ 𝒰): 𝑒 ∈ 𝐸} 

where, 

𝑇�̃�(𝑒)(𝓊) = 𝑚𝑖𝑛{𝑇�̃�(𝑒)(𝓊), 𝑇�̃�(𝑒)(𝓊)}, 

𝐼�̃�(𝑒)(𝓊) = 𝑚𝑖𝑛{𝐼�̃�(𝑒)(𝓊), 𝐼�̃�(𝑒)(𝓊)}, 

𝐹�̃�(𝑒)(𝓊) = 𝑚𝑎𝑥{𝐹�̃�(𝑒)(𝓊), 𝐹�̃�(𝑒)(𝓊)}. 

(v) �̃�𝐸 is a subset of �̃�𝐸, denoted by �̃�𝐸 ⊆ �̃�𝐸. If for all 𝑒 ∈ 𝐸, for all 𝓊 ∈ 𝒰; 

𝑇�̃�(𝑒)(𝓊) ≤ 𝑇�̃�(𝑒)(𝓊), 𝐼�̃�(𝑒)(𝓊) ≤ 𝐼�̃�(𝑒)(𝓊), 𝐹�̃�(𝑒)(𝓊) ≥ 𝐹�̃�(𝑒)(𝓊). 

(vi) the neutrosophic soft complement of F̃E, denoted (F̃E)𝑐, is defined as 

(F̃E)𝑐 = {(𝑒 < 𝓊, 𝐹�̃�(𝑒)(𝓊), 1 − 𝐼�̃�(𝑒)(𝓊), 𝑇�̃�(𝑒)(𝓊) >: 𝓊 ∈ 𝒰): 𝑒 ∈ 𝐸} 

Obvious that ((�̃�𝐸)𝑐)
𝑐

= F̃E. 

(vii) the neutrosophic soft difference of �̃�𝐸 and �̃�𝐸, denoted �̃�𝐸 ∖ �̃�𝐸 = �̃�𝐸, is defined 

as �̃�𝐸 = {(𝑒 < 𝓊, 𝑇�̃�(𝑒)(𝓊), 𝐼�̃�(𝑒)(𝓊), 𝐹�̃�(𝑒)(𝓊) >: 𝓊 ∈ 𝒰): 𝑒 ∈ 𝐸} where,  

𝑇�̃�(𝑒)(𝓊) = 𝑚𝑖𝑛{𝑇�̃�(𝑒)(𝓊), 𝑇�̃�(𝑒)(𝓊)}, 

𝐼�̃�(𝑒)(𝓊) = 𝑚𝑖𝑛{𝐼�̃�(𝑒)(𝓊), 1 − 𝐼�̃�(𝑒)(𝓊)}, 

𝐹�̃�(𝑒)(𝓊) = 𝑚𝑎𝑥{𝐹�̃�(𝑒)(𝓊), 𝐹�̃�(𝑒)(𝓊)}. 

Definition 2.5 [52, 53]. Let �̃�𝑁𝑆𝑆 ⊂ 𝑁𝑆𝑆(𝒰𝐸). Then �̃�𝑁𝑆𝑆  is said to be a neutrosophic soft 

topology (NST, in short) on 𝒰 if 

(i) ∅𝐸 and 1E belong to �̃�𝑁𝑆𝑆 , 

(ii) ∪𝑖∈𝐼 (�̃�𝐸)𝑖 ∈ �̃�𝑁𝑆𝑆  for each (�̃�𝐸)𝑖 ∈ �̃�𝑁𝑆𝑆 , 

(iii) �̃�𝐸 ∩ �̃�𝐸 ∈ �̃�𝑁𝑆𝑆  for any �̃�𝐸, �̃�𝐸 ∈ �̃�𝑁𝑆𝑆 . 

In this case, the triplet (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is called a neutrosophic soft topological space (NSTS, 

in short) over 𝒰. The members of �̃�𝑁𝑆𝑆  are said to be a neutrosophic soft open set (NSOS, 

in short) and their complements are said to be a neutrosophic soft closed set (NSCS, in short). 

Definition 2.6 [53]. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then, 

(i) the interior of �̃�𝐸, denoted 𝑖𝑛𝑡(�̃�𝐸), is described as  

𝑖𝑛𝑡(�̃�𝐸) =∪ {�̃�𝐸: �̃�𝐸 is an NSOS in 𝒰 and �̃�𝐸 ⊆ �̃�𝐸}. 

(ii) the closure of �̃�𝐸, denoted 𝑐𝑙(�̃�𝐸), is defined as  
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𝑐𝑙(�̃�𝐸) =∩ {𝐾𝐸: 𝐾𝐸 is an NSCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸}. 

Definition 2.7 [54]. The NSS 𝓊(𝛼,𝛽,𝛾)
𝑒  is said to be a neutrosophic soft point, for every 𝓊 ∈

𝒰, 0 < 𝛼, 𝛽, 𝛾 ≤ 1, 𝑒 ∈ 𝐸, and is described as 

𝓊(𝛼,𝛽,𝛾)
𝑒 (𝑒′ )(𝑦) = {

(𝛼, 𝛽, 𝛾) 𝑖𝑓 𝑒′ = 𝑒 𝑎𝑛𝑑 𝑦 = 𝓊
(0,0,1) 𝑖𝑓 𝑒′ ≠ 𝑒 𝑜𝑟  𝑦 ≠ 𝓊.

 

Definition 2.8 [54]. Let �̃�𝐸 be an NSS over 𝒰. We say that 𝓊(𝛼,𝛽,𝛾)
𝑒 ∈ �̃�𝐸 read as belonging 

to the NSS �̃�𝐸 whenever  

𝛼 ≤ 𝑇�̃�(𝑒)(𝓊), 𝛽 ≤ 𝐼�̃�(𝑒)(𝓊) and 𝛾 ≥ 𝐹�̃�(𝑒)(𝓊). 

Definition 2.9 [54]. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸)  be an NSTS over 𝒰  and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸).  If there 

exists an NSOS �̃�𝐸 such that 𝓊(𝛼,𝛽,𝛾)
𝑒 ∈ �̃�𝐸 ⊂ �̃�𝐸 , then �̃�𝐸  is called a neutrosophic soft 

neighborhood of the neutrosophic soft point 𝓊(𝛼,𝛽,𝛾)
𝑒 ∈ �̃�𝐸.  

3. Neutrosophic Soft b-Closed Sets  

In this section, we introduce the elementary descriptions and outcomes of the netrosophic 

soft closed and netrosophic soft-b-closed set theories that will be required in the future 

chapter. 

Definition 3.1 [18, 19]. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then  

(i) �̃�𝐸 is called a neutrosophic soft regular closed (open) set (NS-rCS (NS-rOS), in 

short) if �̃�𝐸 = 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)) (�̃�𝐸 = 𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸))). 

(ii) �̃�𝐸 is called a neutrosophic soft pre-closed (open) set (NS-pCS (NS-pOS), in short) 

if 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)) ⊆ �̃�𝐸  (�̃�𝐸 ⊆ 𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸))). 

(iii) �̃�𝐸 is called a neutrosophic soft semi-closed (open) set (NS-sCS (NS-sOS), in short) 

if 𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸)) ⊆ �̃�𝐸  (�̃�𝐸 ⊆ 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸))). 

(iv) �̃�𝐸 is called a neutrosophic soft 𝛼-closed (open) set (NS-𝛼CS (NS-𝛼OS), in short) 

if 𝑐𝑙 (𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸))) ⊆ �̃�𝐸 (�̃�𝐸 ⊆ 𝑖𝑛𝑡 (𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)))). 

Definition 3.2. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then,  

(i) the regular closure of �̃�𝐸, denoted 𝑐𝑙𝑟(�̃�𝐸), is defined as  

𝑐𝑙𝑟(�̃�𝐸) =∩ {𝐾𝐸: 𝐾𝐸 is an NS-rCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸}. 

(ii) the regular interior of F̃E, denoted 𝑖𝑛𝑡𝑟(�̃�𝐸), is defined as  

𝑖𝑛𝑡𝑟(�̃�𝐸) =∪ {�̃�𝐸: �̃�𝐸 is an NS-rOS in 𝒰 and G̃E ⊆ F̃E}. 

(iii) the pre-closure of �̃�𝐸, denoted 𝑐𝑙𝑝(�̃�𝐸), is defined as  

𝑐𝑙𝑝(�̃�𝐸) =∩ {𝐾𝐸: 𝐾𝐸 is an NS-pCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸}. 

(iv) the pre-interior of �̃�𝐸, denoted 𝑖𝑛𝑡𝑝(�̃�𝐸), is defined as  

𝑖𝑛𝑡𝑝(�̃�𝐸) =∪ {�̃�𝐸: �̃�𝐸 is an NS-pOS in 𝒰 and �̃�𝐸 ⊆ �̃�𝐸}. 
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(v) the semi-closure of �̃�𝐸, denoted 𝑐𝑙𝑠(�̃�𝐸), is defined as  

𝑐𝑙𝑠(�̃�𝐸) =∩ {𝐾𝐸: 𝐾𝐸 is an NS-sCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸}.  

 

(vi) the semi-interior of �̃�𝐸, denoted 𝑖𝑛𝑡𝑠(�̃�𝐸), is defined as  

𝑖𝑛𝑡𝑠(�̃�𝐸) =∪ {�̃�𝐸: �̃�𝐸 is an NS-sOS in 𝒰 and �̃�𝐸 ⊆ �̃�𝐸}. 

(vii) the 𝛼-interior of �̃�𝐸, denoted 𝑖𝑛𝑡𝛼(�̃�𝐸), is defined as  

𝑖𝑛𝑡𝛼(�̃�𝐸) =∪ {�̃�𝐸: �̃�𝐸 is an NS-𝛼OS in 𝒰 and �̃�𝐸 ⊆ �̃�𝐸}. 

(viii) the 𝛼-closure of �̃�𝐸, denoted 𝑐𝑙𝛼(�̃�𝐸), is defined as  

𝑐𝑙𝛼(�̃�𝐸) =∩ {𝐾𝐸: 𝐾𝐸 is an NS-𝛼CS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸}.  

Theorem 3.1. [18] Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then, 

(i) 𝑐𝑙𝑝(�̃�𝐸) = �̃�𝐸 ∪ 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)), 𝑖𝑛𝑡𝑝(�̃�𝐸) = �̃�𝐸 ∩ 𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸)), 

(ii) 𝑐𝑙𝑠(�̃�𝐸) = �̃�𝐸 ∪ 𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸)), 𝑖𝑛𝑡𝑠(�̃�𝐸) = �̃�𝐸 ∩ 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)), 

(iii) 𝑐𝑙𝛼(�̃�𝐸) = �̃�𝐸 ∪ 𝑐𝑙 (𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸))), 𝑖𝑛𝑡𝛼(�̃�𝐸) = �̃�𝐸 ∩ 𝑖𝑛𝑡 (𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸))). 

Definition 3.3 [18]. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be a NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then  

(i) �̃�𝐸 is called a neutrosophic soft b-closed set (NS-bCS, in short) if 𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸)) ∩

𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)) ⊆ �̃�𝐸. 

(ii) �̃�𝐸  is called a neutrosophic soft b-open set (NS-bOS, in short) if �̃�𝐸 ⊆

𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸)) ∪ 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)). 

Example 3.1. Let 𝒰 = {𝓊1, 𝓊2}, E = {e1, e2} and τNSS = {∅E, 1E, (F̃E)1} where (F̃E)1 is 

an NSS over 𝒰, defined as  

 (�̃�𝐸)1 = {
𝑒1 = {< 𝓊1, 0.6,0.4,0.7 >, < 𝓊2, 0.2,0.5,0.5 >}

𝑒2 = {< 𝓊1, 0.6,0.5,0.8 >, < 𝓊2, 0.4,0.3,0.5 >}
}. 

Then τNSS defines an NST on 𝒰, and so (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. An NSS �̃�E in 

(𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

�̃�𝐸 = {
𝑒1 = {< 𝓊1, 0.7,0.8,0.9 >, < 𝓊2, 0.8,0.2,0.1 >}

𝑒2 = {< 𝓊1, 0.3,0.3,0.3 >, < 𝓊2, 0.7,0.1,0.1 >}
}. 

Then, �̃�𝐸  is an NS-bCS in 𝒰  since 𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸)) ∩ 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)) = 𝑖𝑛𝑡(1E) ∩ 𝑐𝑙(∅E) =

∅E ⊆ �̃�𝐸. Also, an NSS 𝐾E in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

𝐾𝐸 = {
𝑒1 = {< 𝓊1, 0.3,0.2,0.7 >, < 𝓊2, 0.1,0.4,0.5 >}

𝑒2 = {< 𝓊1, 0.2,0.3,0.9 >, < 𝓊2, 0.2,0.2,0.8 >}
}. 

Then, 𝐾𝐸  is an NS-bOS in 𝒰  because 𝐾𝐸 ⊆ 𝑖𝑛𝑡 (𝑐𝑙(𝐾𝐸)) ∪ 𝑐𝑙 (𝑖𝑛𝑡(𝐾𝐸)) =

𝑖𝑛𝑡((�̃�𝐸)1
𝑐
) ∪ 𝑐𝑙(∅E) = (�̃�𝐸)1. 

Definition 3.4 [18]. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then,  
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(i) the b-interior of �̃�𝐸, denoted 𝑖𝑛𝑡𝑏(�̃�𝐸), is defined as  

𝑖𝑛𝑡𝑏(�̃�𝐸) =∪ {�̃�𝐸: �̃�𝐸 is an NS-bOS in 𝒰 and �̃�𝐸 ⊆ �̃�𝐸}. 

(ii) the b-closure of �̃�𝐸, denoted 𝑐𝑙𝑏(�̃�𝐸), is defined as  

𝑐𝑙𝑏(�̃�𝐸) =∩ {𝐾𝐸: 𝐾𝐸 is an NS-bCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸}. 

Example 3.2. Let 𝒰 = {𝓊1, 𝓊2},  E = {e1, e2}  and τNSS = {∅E, 1E, (F̃E)1, (F̃E)2}  where 

(F̃E)1 and (F̃E)2 are NSSs over 𝒰, defined as  

(F̃E)1 = {
e1 = {< 𝓊1, 0.7,0.7,0.5 >, < 𝓊2, 0.7,0.5,0.5 >}

e2 = {< 𝓊1, 0.5,0.6,0.4 >, < 𝓊2, 0.6,0.4,0.6 >}
}, 

(F̃E)2 = {
e1 = {< 𝓊1, 0.4,0.2,0.8 >, < 𝓊2, 0.3,0.5,0.8 >}

e2 = {< 𝓊1, 0.4,0.3,0.6 >, < 𝓊2, 0.6,0.3,0.6 >}
}. 

Then τNSS defines an NST on 𝒰, and thus (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. An NSS F̃E in 

(𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

F̃E = {
e1 = {< 𝓊1, 0.2,0.1,0.8 >, < 𝓊2, 0.2,0.3,0.7 >}

e2 = {< 𝓊1, 0.1,0.2,0.9 >, < 𝓊2, 0.2,0.4,0.6 >}
}. 

By Definition 3.3 (i), ∅E, 1E, (F̃E)1, (F̃E)2,and F̃E are NS-bCSs in 𝒰 and by Definition 

3.4 (ii) (F̃E)1 ⊇ �̃�𝐸, 1E ⊇ �̃�𝐸, and F̃E ⊇ �̃�𝐸. Hence, 𝑐𝑙𝑏(�̃�𝐸) = (F̃E)1 ∩ 1E ∩ F̃E = F̃E. 

Example 3.3. Let 𝒰 = {𝓊1, 𝓊2, 𝓊3} , E = {e1, e2}  and τNSS = {∅E , 1E, (F̃E)1}  where 

(F̃E)1 is NSS over 𝒰, defined as  

(F̃E)1 = {
e1 = {< 𝓊1, 0.5,0.6,0.3 >, < 𝓊2, 0.6,0.5,0.2 >, < 𝓊3, 0.5,0.3,0.4 >}

e2 = {< 𝓊1, 0.7,0.8,0.2 >, < 𝓊2, 0.7,0.4,0.3 >, < 𝓊3, 0.2,0.4,0.1 >}
}. 

Then τNSS defines an NST on 𝒰, and hence (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. An NSS F̃E 

in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

F̃E = {
e1 = {< 𝓊1, 0.3,0.4,0.6 >, < 𝓊2, 0.1,0.5,0.7 >, < 𝓊3, 0.4,0.6,0.5 >}

e2 = {< 𝓊1, 0.3,0.1,0.8 >, < 𝓊2, 0.2,0.5,0.7 >, < 𝓊3, 0.1,0.2,0.3 >}
}. 

By Definition 3.3 (ii), ∅E , 1E, (F̃E)1, and F̃E are NS-bOSs in 𝒰 and by Definition 3.4 (i) 

∅E ⊆ �̃�𝐸, F̃E ⊆ �̃�𝐸. Thus, 𝑖𝑛𝑡𝑏(�̃�𝐸) = ∅E ∪ F̃E = F̃E. 

Theorem 3.2 [18]. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then 

(i) �̃�𝐸 is a neutrosophic soft b-closed set iff �̃�𝐸 = 𝑐𝑙𝑏(�̃�𝐸), 

(ii) �̃�𝐸 is a neutrosophic soft b-open set iff �̃�𝐸 = 𝑖𝑛𝑡𝑏(�̃�𝐸), 

(iii) 𝑐𝑙𝑏(∅𝐸) = ∅𝐸 , 𝑐𝑙𝑏(1𝐸) = 1𝐸, 

(iv) 𝑖𝑛𝑡𝑏(∅𝐸) = ∅𝐸 , 𝑖𝑛𝑡𝑏(1𝐸) = 1𝐸 , 

(v) �̃�𝐸 is a neutrosophic soft b-closed set iff 𝑐𝑙𝑏 (𝑐𝑙𝑏(�̃�𝐸)) = 𝑐𝑙𝑏(�̃�𝐸), 

(vi) (𝑖𝑛𝑡𝑏(�̃�𝐸))
𝑐

= 𝑐𝑙𝑏(�̃�𝐸)
𝑐
, 

(vii) (𝑐𝑙𝑏(�̃�𝐸))
𝑐

= 𝑖𝑛𝑡𝑏(�̃�𝐸)
𝑐
. 

Example 3.4. Let us take into account the topology, NS-bCS, and NS-bOS that are given in 

Example 3.1. By Definition 3.3 (i), ∅𝐸 , 1𝐸 , (�̃�𝐸)1 , and �̃�𝐸  are NS-bCSs in 𝒰 and by 

Definition 3.4 (ii) 1𝐸 ⊇ �̃�𝐸  and �̃�𝐸 ⊇ �̃�𝐸 . Then, 𝑐𝑙𝑏(�̃�𝐸) = 1𝐸 ∩ �̃�𝐸 = �̃�𝐸 . Hence, 

𝑐𝑙𝑏(�̃�𝐸) = �̃�𝐸. 
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By Definition 3.3 (ii), ∅𝐸, 1𝐸 , (�̃�𝐸)1, and �̃�𝐸 are NS-bOSs in 𝒰 and by Definition 3.4 (i), 

∅𝐸 ⊆ �̃�𝐸, �̃�𝐸 ⊆ �̃�𝐸. Then, 𝑖𝑛𝑡𝑏(�̃�𝐸) = ∅𝐸 ∪ �̃�𝐸 = �̃�𝐸. Thus, 𝑖𝑛𝑡𝑏(�̃�𝐸) = �̃�𝐸 . 

By Definition 3.4 (ii), 1𝐸 ⊇ 1𝐸 , 𝑐𝑙𝑏(1𝐸) = 1𝐸 . Also, By Definition 3.3 (i), ∅𝐸 , 1𝐸 , and 

(�̃�𝐸)1 are NS-bCSs in 𝒰 and by Definition 3.4 (ii), ∅𝐸 ⊇ ∅𝐸 , 1𝐸 ⊇ ∅𝐸, and (�̃�𝐸)1 ⊇ ∅E. 

Then, 𝑐𝑙𝑏(∅𝐸) = 1𝐸 ∩ ∅𝐸 ∩ (�̃�𝐸)1 = ∅𝐸. Similarly, by taking the complement, Theorem 3.2 

(iv) also provides. By Theorem 3.2 (i), 𝑐𝑙𝑏(�̃�𝐸) = �̃�𝐸 . So, 𝑐𝑙𝑏 (𝑐𝑙𝑏(�̃�𝐸)) = 𝑐𝑙𝑏(�̃�𝐸)  is 

obtained. By Theorem 3.2 (ii), 𝑖𝑛𝑡𝑏(�̃�𝐸) = �̃�𝐸 . Therefore, (𝑖𝑛𝑡𝑏(�̃�𝐸))
𝑐

= (�̃�𝐸)
𝑐

 is 

obtained. Also, By Definition 3.3 (i), ∅𝐸 , 1𝐸 , (�̃�𝐸)1, (�̃�𝐸)
𝑐
 are NS-bCSs in 𝒰 and by 

Definition 3.4 (ii) 1𝐸 ⊇ (�̃�𝐸)
𝑐
 and (�̃�𝐸)

𝑐
⊇ (�̃�𝐸)

𝑐
. Thus, 𝑐𝑙𝑏((�̃�𝐸)

𝑐
) = 1𝐸 ∩ (�̃�𝐸)

𝑐
=

(�̃�𝐸)
𝑐
. Hence, 𝑐𝑙𝑏((�̃�𝐸)

𝑐
) = (�̃�𝐸)

𝑐
. Therefore, (𝑖𝑛𝑡𝑏(�̃�𝐸))

𝑐

= 𝑐𝑙𝑏((�̃�𝐸)
𝑐
) is obtained. 

Similarly, by taking the complement, Theorem 3.2 (vii) also provides. 

  

Theorem 3.3 [18]. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸, 𝐾𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then, 

(i) 𝑖𝑛𝑡𝑏(�̃�𝐸) ⊆ 𝑖𝑛𝑡𝑏(𝐾𝐸) if �̃�𝐸 ⊆ 𝐾𝐸,  

(ii) 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙𝑏(𝐾𝐸) if �̃�𝐸 ⊆ 𝐾𝐸, 

(iii) 𝑐𝑙𝑏(�̃�𝐸 ∪ 𝐾𝐸) ⊇ 𝑐𝑙𝑏(�̃�𝐸) ∪ 𝑐𝑙𝑏(𝐾𝐸). 

(iv) 𝑐𝑙𝑏(�̃�𝐸 ∩ 𝐾𝐸) ⊆ 𝑐𝑙𝑏(�̃�𝐸) ∩ 𝑐𝑙𝑏(𝐾𝐸). 

(v) 𝑖𝑛𝑡𝑏(�̃�𝐸 ∪ 𝐾𝐸) ⊇ 𝑖𝑛𝑡𝑏(�̃�𝐸) ∪ 𝑖𝑛𝑡𝑏(𝐾𝐸). 

(vi) 𝑖𝑛𝑡𝑏(�̃�𝐸 ∩ 𝐾𝐸) ⊆ 𝑖𝑛𝑡𝑏(�̃�𝐸) ∩ 𝑖𝑛𝑡𝑏(𝐾𝐸). 

Theorem 3.4 [18]. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then, 

(i) 𝑐𝑙𝑏(�̃�𝐸) = �̃�𝐸 ∪ [𝑖𝑛𝑡(𝑐𝑙(�̃�𝐸)) ∩ 𝑐𝑙(𝑖𝑛𝑡(�̃�𝐸))], 

(ii) 𝑖𝑛𝑡𝑏(�̃�𝐸) = �̃�𝐸 ∩ [𝑖𝑛𝑡(𝑐𝑙(�̃�𝐸)) ∪ 𝑐𝑙(𝑖𝑛𝑡(�̃�𝐸))]. 

4. Neutrosophic Soft Generalized b-Closed Sets 

In this section, we present and examine the description of the neutrosophic soft generalized 

b-closed set in neutrosophic soft topological spaces and its related properties. In addition, we 

give generalized definitions of the neutrosophic soft regular, pre, semi, and 𝛼 sets and their 

relations with the neutrosophic soft generalized b-closed set. 

Definition 4.1. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then  

(i) �̃�𝐸  is called a neutrosophic soft generalized closed set (NS-gCS, in short) if 

𝑐𝑙(�̃�𝐸) ⊆ �̃�𝐸 whenever �̃�𝐸 ⊆ �̃�𝐸 and �̃�𝐸 is an NSOS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). 

(ii) �̃�𝐸 is called a neutrosophic soft generalized b-closed set (NS-gbCS, in short) if 

𝑐𝑙𝑏(�̃�𝐸) ⊆ �̃�𝐸 whenever �̃�𝐸 ⊆ �̃�𝐸 and �̃�𝐸 is an NSOS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). 

Theorem 4.1. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Every NS-gCS is 

an NS-gbCS. 
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Proof: Let �̃�𝐸 ⊆ �̃�𝐸 and �̃�𝐸 be an NSOS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). Then, since �̃�𝐸 is an NS-gCS, 

𝑐𝑙(�̃�𝐸) ⊆ �̃�𝐸. Therefore, 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙(�̃�𝐸) and 𝑐𝑙(�̃�𝐸) ⊆ �̃�𝐸. Thus, �̃�𝐸 is an NS-gbCS in 

𝒰. 

Remark 4.1. Example 4.1 shows that every NS-gCS is an NS-gbCS but the converse is not 

always true. Moreover, nor can we say that every non-NS-gbCS must be an NS-gCS.  

Example 4.1. Let 𝒰 = {𝓊1, 𝓊2} , E = {e1, e2}  and τNSS = {∅E, 1E, (ÑE)1, (ÑE)2}  where 

(ÑE)1 and (ÑE)2 are NSSs over 𝒰, defined as  

(ÑE)1 = {
e1 = {< 𝓊1, 0.8,0.8,0.3 >, < 𝓊2, 0.6,0.5,0.4 >}

e2 = {< 𝓊1, 0.7,0.9,0.2 >, < 𝓊2, 0.7,0.5,0.6 >}
}, 

(ÑE)2 = {
e1 = {< 𝓊1, 0.7,0.7,0.4 >, < 𝓊2, 0.6,0.4,0.5 >}

e2 = {< 𝓊1, 0.5,0.6,0.3 >, < 𝓊2, 0.7,0.3,0.8 >}
}. 

Then τNSS defines an NST on 𝒰, and therefore (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. An NSS 

F̃E in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

�̃�𝐸 = {
e1 = {< 𝓊1, 0.1,0.1,0.9 >, < 𝓊2, 0.3,0.2,0.7 >}

e2 = {< 𝓊1, 0.1,0.1,0.8 >, < 𝓊2, 0.2,0.4,0.6 >}
}. 

Then, for the NSOS (ÑE)1 , we have �̃�𝐸 ⊆ (ÑE)1 . By Theorem 3.4. (i) 𝑐𝑙𝑏(�̃�𝐸) = �̃�𝐸 ∪

[𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸)) ∩ 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸))] = �̃�𝐸 ∪ [𝑖𝑛𝑡(1E) ∩ 𝑐𝑙(∅E)] = �̃�𝐸 ⊆ (ÑE)1 . 𝑐𝑙(�̃�𝐸) = 1E ⊈

(ÑE)1 is obtained according to Definition 4.1 (i). So, �̃�𝐸 is an NS-gbCS in 𝒰 but not NS-

gCS. Intercalarily, an NSS K̃E in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

K̃E = {
e1 = {< 𝓊1, 0.7,0.8,0.4 >, < 𝓊2, 0.6,0.5,0.5 >}

e2 = {< 𝓊1, ,0.5,0.7,0.2 >, < 𝓊2, 0.7,0.4,0.7 >}
}. 

Now, we have 𝐾𝐸 ⊆ (�̃�E)1 . Because 𝑐𝑙𝑏(K̃E) = 𝐾𝐸 ∪ [𝑖𝑛𝑡 (𝑐𝑙(𝐾𝐸)) ∩ 𝑐𝑙 (𝑖𝑛𝑡(𝐾𝐸))] =

𝐾𝐸 ∪ [𝑖𝑛𝑡(1E) ∩ 𝑐𝑙((ÑE)2)] = 1E , we have 𝑐𝑙𝑏(K̃E) ⊈ (ÑE)1 . Hence, 𝐾𝐸  is not an NS-

gbCS in 𝒰. Then since 𝑐𝑙(𝐾𝐸) = 1E, we have 𝑐𝑙(𝐾𝐸) ⊈ (ÑE)1. Thus, 𝐾𝐸 is not an NS-gCS 

in 𝒰. 

Definition 4.2. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Let �̃�𝐸  be an 

NSOS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). Then  

(i) �̃�𝐸 is called a neutrosophic soft generalized regular closed set (NS-grCS, in 

short) if 𝑐𝑙𝑟(�̃�𝐸) ⊆ �̃�𝐸 whenever �̃�𝐸 ⊆ �̃�𝐸.  

(ii) �̃�𝐸 is called a neutrosophic soft generalized pre-closed set (NS-gpCS, in short) if 

𝑐𝑙𝑝(�̃�𝐸) ⊆ �̃�𝐸 whenever �̃�𝐸 ⊆ �̃�𝐸 .  

(iii) �̃�𝐸 is called a neutrosophic soft generalized semi-closed set (NS-gsCS, in short) 

if 𝑐𝑙𝑠(�̃�𝐸) ⊆ �̃�𝐸 whenever �̃�𝐸 ⊆ �̃�𝐸. 

(iv) �̃�𝐸 is called a neutrosophic soft 𝛼-generalized closed set (NS-𝛼gCS, in short) if 

𝑐𝑙𝛼(�̃�𝐸) ⊆ �̃�𝐸 whenever �̃�𝐸 ⊆ �̃�𝐸. 

Theorem 4.2. In a NSTS (𝒰, �̃�𝑁𝑆𝑆 , 𝐸)  

(i) Every NS-CS is an NS-gbCS. 

(ii) Every NS-rCS is an NS-gbCS. 
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(iii) Every NS-𝛼CS is an NS-gbCS. 

(iv) Every NS-𝛼gCS is an NS-gbCS. 

(v) Every NS-pCS is an NS-gbCS. 

(vi) Every NS-gpCS is an NS-gbCS. 

(vii) Every NS-bCS is an NS-gbCS. 

(viii) Every NS-sCS is an NS-gbCS. 

(ix) Every NS-gsCS is an NS-gbCS. 

Proof: Let �̃�𝐸 ⊆ �̃�𝐸 and �̃�𝐸 be an NSOS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). Then, 

(i) since �̃�𝐸 is an NS-CS and 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙(�̃�𝐸), 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙(�̃�𝐸) = �̃�𝐸 ⊆ �̃�𝐸. Thus, �̃�𝐸 

is an NS-gbCS in 𝒰. 

(ii) since �̃�𝐸  is an NS-rCS, 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)) = �̃�𝐸  which implies  𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)) = 𝑐𝑙(�̃�𝐸) . 

Therefore, 𝑐𝑙(�̃�𝐸) = �̃�𝐸. Hence, �̃�𝐸 is an NS-CS in 𝒰. By Theorem 4.2 (i), �̃�𝐸  is an NS-

gbCS in 𝒰. 

(iii) since �̃�𝐸 is an NS-𝛼CS, 𝑐𝑙𝛼(�̃�𝐸) = �̃�𝐸. So, 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙𝛼(�̃�𝐸) = �̃�𝐸 ⊆ �̃�𝐸. Thus, �̃�𝐸 

is an NS-gbCS in 𝒰. 

(iv) since �̃�𝐸  is an NS-𝛼gCS, 𝑐𝑙𝛼(�̃�𝐸) ⊆ �̃�𝐸 . Therefore, 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙𝛼(�̃�𝐸),  𝑐𝑙𝑏(�̃�𝐸) ⊆

�̃�𝐸. Thus, �̃�𝐸 is an NS-gbCS in 𝒰. 

(v) since �̃�𝐸 is an NS-pCS, by Definition 3.1 (ii) 𝑐𝑙(𝑖𝑛𝑡(�̃�𝐸)) ⊆ �̃�𝐸  which implies 

𝑖𝑛𝑡 (𝑐𝑙(�̃�𝐸)) ∩ 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸))  ⊆ 𝑐𝑙(�̃�𝐸) ∩ 𝑐𝑙 (𝑖𝑛𝑡(�̃�𝐸)) ⊆ �̃�𝐸 . Therefore, 𝑐𝑙𝑏(�̃�𝐸) ⊆ �̃�𝐸. 

Hence, �̃�𝐸 is an NS-gbCS in 𝒰. 

(vi) since �̃�𝐸 is an NS-gpCS, 𝑐𝑙𝑝(�̃�𝐸) ⊆ �̃�𝐸. Thus, 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙𝑝(�̃�𝐸), 𝑐𝑙𝑏(�̃�𝐸) ⊆ �̃�𝐸. So, 

�̃�𝐸 is an NS-gbCS in 𝒰. 

(vii) since �̃�𝐸  is an NS-bCS, by Definition 3.3 (i) 𝑖𝑛𝑡(𝑐𝑙(�̃�𝐸)) ∩ 𝑐𝑙(𝑖𝑛𝑡(�̃�𝐸)) ⊆ �̃�𝐸. 

Therefore, 𝑐𝑙𝑏(�̃�𝐸) = �̃�𝐸 ∪ (𝑖𝑛𝑡(𝑐𝑙(�̃�𝐸)) ∩ 𝑐𝑙(𝑖𝑛𝑡(�̃�𝐸))) ⊆ �̃�𝐸 . So, 𝑐𝑙𝑏(�̃�𝐸) ⊆ �̃�𝐸 . Thus, 

�̃�𝐸 is an NS-gbCS in 𝒰. 

(viii) since �̃�𝐸  is an NS-sCS, Definition 3.1 (iii) 𝑖𝑛𝑡(𝑐𝑙(�̃�𝐸)) ⊆ �̃�𝐸  which implies 

𝑖𝑛𝑡(𝑐𝑙(�̃�𝐸)) ∩ 𝑐𝑙(𝑖𝑛𝑡(�̃�𝐸)) ⊆ �̃�𝐸. Therefore, �̃�𝐸 is an NS-bCS in 𝒰. By Theorem 4.2 (vii), 

�̃�𝐸 is an NS-gbCS in 𝒰. 

(ix) since �̃�𝐸  is an NS-gsCS, 𝑐𝑙𝑠(�̃�𝐸) ⊆ �̃�𝐸 . Hence, 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙𝑠(�̃�𝐸),  𝑐𝑙𝑏(�̃�𝐸) ⊆ �̃�𝐸. 

Thus, �̃�𝐸 is an NS-gbCS in 𝒰. 

Remark 4.2. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸)  be a NSTS over 𝒰  and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸).  Then, every 

neutrosophic soft regular, closed, α, pre, semi, g, 𝛼g, gs, gp, and the b-closed set is NS-

gbCS.  
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 We can also see the relationships between NS-gbCS and NS-CS sets with the help of 

the below diagram. 

 

  

 

 

 

 

 

 

Remark 4.3. Example 4.2 and 4.3 show that the inverse of the applications in the diagram 

above is not always true. 

Example 4.2. Let 𝒰 = {𝓊1, 𝓊2, 𝓊3} , E = {e1, e2}  and τNSS = {∅E , 1E, (ÑE)1, (�̃�E)2} 

where (ÑE)1 and  (ÑE)2 are NSSs over 𝒰, defined as  

(�̃�𝐸)1 = {
𝑒1 = {< 𝓊1, 0.5,0.4,0.4 >, < 𝓊2, 0.3,0.6,0.4 >, < 𝓊3, 0.2,0.4,0.4 >}

𝑒2 = {< 𝓊1, 0.7,0.6,0.2 >, < 𝓊2, 0.2,0.3,0.6 >, < 𝓊3, 0.2,0.5,0.2 >}
}, 

(�̃�𝐸)2 = {
𝑒1 = {< 𝓊1, 0.2,0.1,0.8 >, < 𝓊2, 0.3,0.3,0.5 >, < 𝓊3, 0.2,0.3,0.5 >}

𝑒2 = {< 𝓊1, 0.2,0.2,0.9 >, < 𝓊2, 0.1,0.2,0.7 >, < 𝓊3, 0.1,0.5,0.4 >}
}. 

Then τNSS defines an NST on 𝒰, and therefore (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. An NSS 

K̃E in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

𝐾𝐸 = {
𝑒1 = {< 𝓊1, 0.9,0.8,0.2 >, < 𝓊2, 0.4,0.6,0.3 >, < 𝓊3, 0.7,0.8,0.1 >}

𝑒2 = {< 𝓊1, 0.7,0.6,0.1 >, < 𝓊2, 0.5,0.7,0.2 >, < 𝓊3, 0.3,0.6,0.2 >}
}. 

Then, K̃E  is an NS-gbCS in 𝒰  but not an NS-bCS in 𝒰  since  𝑖𝑛𝑡(𝑐𝑙(𝐾𝐸)) ∩

𝑐𝑙 (𝑖𝑛𝑡(𝐾𝐸)) = ((�̃�𝐸)2)
𝑐

⊈ 𝐾𝐸. Also, by Definition 3.1 𝐾𝐸 is not an NS-sCS, NS-pCS, NS-

𝛼CS, respectively. 

Example 4.3. Let 𝒰 = {𝓊1, 𝓊2} , E = {e1, e2}  and τNSS =

{∅E , 1E, (ÑE)1, (�̃�E)2, (�̃�E)3, (ÑE)4, (ÑE)5}  where (�̃�E)1, (�̃�E)2, (ÑE)3, (�̃�E)4 , and (ÑE)5 

are NSSs over 𝒰, defined as  

(�̃�𝐸)1 = {
𝑒1 = {< 𝓊1, 0.3,0.2,0.6 >, < 𝓊2, 0.2,0.1,0.4 >}

𝑒2 = {< 𝓊1, 0.1,0.2,0.7 >, < 𝓊2, 0.4,0.2,0.6 >}
}, 

(�̃�𝐸)2 = {
𝑒1 = {< 𝓊1, 0.4,0.2,0.5 >, < 𝓊2, 0.6,0.4,0.3 >}

𝑒2 = {< 𝓊1, 0.1,0.3,0.6 >, < 𝓊2, 0.4,0.2,0.5 >}
}, 

(�̃�𝐸)3 = {
𝑒1 = {< 𝓊1, 0.5,0.6,0.2 >, < 𝓊2, 0.7,0.5,0.3 >}

𝑒2 = {< 𝓊1, 0.4,0.5,0.3 >, < 𝓊2, 0.5,0.5,0.5 >}
}, 

(�̃�𝐸)4 = {
𝑒1 = {< 𝓊1, 0.5,0.8,0.2 >, < 𝓊2, 0.7,0.6,0.3 >}

𝑒2 = {< 𝓊1, 0.4,0.7,0.3 >, < 𝓊2, 0.6,0.7,0.2 >}
}, 

(�̃�𝐸)5 = {
𝑒1 = {< 𝓊1, 0.5,0.3,0.5 >, < 𝓊2, 0.6,0.4,0.3 >}

𝑒2 = {< 𝓊1, 0.2,0.4,0.6 >, < 𝓊2, 0.5,0.3,0.5 >}
}. 

Then τNSS defines an NST on 𝒰, and therefore (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. Then, for 

the NSOS (ÑE)1 , we have (ÑE)1 ⊆ (ÑE)1 . By Theorem 3.4. (i) 𝑐𝑙𝑏((�̃�𝐸)1) = (�̃�𝐸)1 ∪

NS-CS NS-pCS 

NS-sCS 

NS-bCS 

NS-gpCS 

NS-gsCS 

NS-gbCS 
NS−𝛼CS 

NS-𝛼gCS 
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[𝑖𝑛𝑡 (𝑐𝑙((�̃�𝐸)1)) ∩ 𝑐𝑙 (𝑖𝑛𝑡((�̃�𝐸)1))] = (�̃�𝐸)1 ∪ [𝑖𝑛𝑡((�̃�𝐸)1
𝑐
) ∩ 𝑐𝑙((�̃�𝐸)1)] = (�̃�𝐸)1 ⊆

(ÑE)1 . Thus, by Definition 4.1 (ii) (�̃�𝐸)1  is an NS-gbCS in 𝒰 . But since 

𝑐𝑙 (𝑖𝑛𝑡(𝑐𝑙(�̃�𝐸)1)) = (�̃�𝐸)1
𝑐

⊈ (�̃�𝐸)1, hence (�̃�𝐸)1 is not an NS-𝛼CS in 𝒰. Intercalarily, 

by Definition 3.1. and Definition 4.2, (�̃�𝐸)1 is not an NS-pCS, NS-rCS, NS-gpCS, NS-

𝛼gCS, respectively. 

Remark 4.4. Example 4.4 shows that the union and intersection of any two NS-gbCSs need 

not be NS-gbCS. 

Example 4.4. Let 𝒰 = {𝓊1, 𝓊2}, E = {e1, e2} and τNSS = {∅E, 1E, (F̃E)1} where (F̃E)1 is 

NSS over 𝒰, defined as  

(F̃E)1 = {
e1 = {< 𝓊1, 0.8,0.8,0.1 >, < 𝓊2, 0.6,0.5,0.4 >}

e2 = {< 𝓊1, 0.7,0.9,0.2 >, < 𝓊2, 0.4,0.5,0.4 >}
}. 

Then τNSS defines an NST on 𝒰, and so (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. Two NSSs G̃E 

and K̃E in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) are defined as  

G̃E = {
e1 = {< 𝓊1, 0.1,0.2,0.9 >, < 𝓊2, 0.2,0.3,0.8 >}

e2 = {< 𝓊1, 0.1,0.3,0.7 >, < 𝓊2, 0.4,0.3,0.5 >}
}, 

𝐾E = {
e1 = {< 𝓊1, 0.8,0.8,0.1 >, < 𝓊2, 0.6,0.5,0.4 >}

e2 = {< 𝓊1, 0.7,0.9,0.2 >, < 𝓊2, 0.3,0.5,0.4 >}
}. 

By Definition 4.1 (ii), NSSs G̃E and K̃E are NS-gbCSs in 𝒰, but since G̃E ∪ 𝐾E ⊆ (F̃E)1 

and 𝑐𝑙𝑏(G̃E ∪ 𝐾E) = 1E ⊈ (F̃E)1, and thus G̃E ∪ 𝐾E is not an NS-gbCS in 𝒰.  

Now, two NSSs M̃E and ÑE in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) are defined as  

M̃E = {
e1 = {< 𝓊1, 0.9,0.9,0.1 >, < 𝓊2, 0.6,0.7,0.3 >}

e2 = {< 𝓊1, 0.7,1.0,0.1 >, < 𝓊2, 0.5,0.5,0.4 >}
}, 

�̃�E = {
e1 = {< 𝓊1, 0.8,0.8,0.1 >, < 𝓊2, 0.7,0.5,0.4 >}

e2 = {< 𝓊1, 0.8,0.9,0.2 >, < 𝓊2, 0.4,0.6,0.4 >}
}. 

By Definition 4.1 (ii), NSSs �̃�E and �̃�E are NS-gbCSs in 𝒰, but since �̃�E ∩ �̃�E ⊆ (F̃E)1 

and 𝑐𝑙𝑏(�̃�E ∩ �̃�E) = 1E ⊈ (F̃E)1, and hence �̃�E ∩ �̃�E is not an NS-gbCS in 𝒰.  

Theorem 4.3. Let �̃�𝐸 be an NS-gbCS in an NSTS (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). If �̃�𝐸 ⊆ �̃�𝐸 ⊆ 𝑐𝑙𝑏(�̃�𝐸), then 

�̃�𝐸 is also an NS-gbCS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). 

Proof. Let �̃�𝐸 be an NSOS in 𝒰 such that �̃�𝐸⊆�̃�𝐸, then �̃�𝐸⊆�̃�𝐸. Since �̃�𝐸 is an NS-gbCS 

set in 𝒰, it follows 𝑐𝑙𝑏(�̃�𝐸) ⊆ �̃�𝐸 . Now, �̃�𝐸⊆𝑐𝑙𝑏(�̃�𝐸) implies 𝑐𝑙𝑏(�̃�𝐸) ⊆ 𝑐𝑙𝑏(𝑐𝑙𝑏(�̃�𝐸)) =

𝑐𝑙𝑏(�̃�𝐸). Thus, 𝑐𝑙𝑏(�̃�𝐸) ⊆ �̃�𝐸 . Hence, �̃�𝐸 is an NS-gbCS in 𝒰. 

Definition 4.3. An NSS �̃�𝐸 of an NSTS (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is called a neutrosophic soft gb-open 

set (NS-gbOS, in short) if (�̃�𝐸)𝑐 is an NS-gbCS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). 

Theorem 4.4. An NSS �̃�𝐸 of an NSTS (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NS-gbOS if and only if �̃�𝐸 ⊆

𝑖𝑛𝑡𝑏(�̃�𝐸) whenever �̃�𝐸 ⊆ �̃�𝐸 and �̃�𝐸 is a neutrosophic soft closed set in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). 

Proof. Suppose �̃�𝐸 is an NS-gbOS in 𝒰. Then (�̃�𝐸)𝑐 is an NS-gbCS in 𝒰. Let �̃�𝐸 be a 

neutrosophic soft b-closed set in 𝒰 such that �̃�𝐸 ⊆ �̃�𝐸. Then (�̃�𝐸)𝑐 ⊆ (�̃�𝐸)𝑐, (�̃�𝐸)𝑐 is a 

neutrosophic soft b-open set in 𝒰. Since (�̃�𝐸)c is an NS-gbCS, 𝑐𝑙𝑏(�̃�𝐸)𝑐 ⊆ (�̃�𝐸)𝑐, which 

implies (𝑖𝑛𝑡𝑏(�̃�𝐸))𝑐 ⊆ (�̃�𝐸)𝑐 . Thus, �̃�𝐸 ⊆ 𝑖𝑛𝑡𝑏(�̃�𝐸). 
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Conversely, assume that �̃�𝐸 ⊆ 𝑖𝑛𝑡𝑏(�̃�𝐸), whenever �̃�𝐸 ⊆ �̃�𝐸 and �̃�𝐸  be a neutrosophic 

soft b-closed set in 𝒰. Then (𝑖𝑛𝑡𝑏(�̃�𝐸))𝑐 ⊆ (�̃�𝐸)𝑐 ⊆ �̃�𝐸 , where �̃�𝐸  is a neutrosophic soft 

b-open set in 𝒰. Hence, 𝑐𝑙𝑏(�̃�𝐸)𝑐 ⊆ �̃�𝐸, which implies (�̃�𝐸)𝑐 is an NS-gbCS. Therefore, 

�̃�𝐸 is an NS-gbOS. 

Remark 4.5. An NSS �̃�𝐸 is called NS-gCS, NS-grCS NS-gpCS, NS-gsCS, NS-𝛼gCS if the 

complement of (�̃�𝐸)𝑐  is a neutrosophic soft generalized open set, neutrosophic soft 

generalized regular open set, neutrosophic soft generalized pre-open set, neutrosophic soft 

generalized semi-open set and neutrosophic soft 𝛼-generalized open set (NS-gOS, NS-grOS, 

NS-gpOS, NS-gsOS, NS-𝛼gOS, in short resp.), respectively. 

 

 

 

 

 In the diagram, we have shown the relationship between NS-gbOS and NS-OSs. 

 

 

 

 

  

 

 

 

Remark 4.6. Example 4.5 and 4.6 show that the inverse of the applications in the diagram 

above is not always true. 

Example 4.5. Let 𝒰 = {𝓊1, 𝓊2}, E = {e1, e2} and τNSS = {∅E, 1E, (F̃E)1} where (F̃E)1 is 

NSS over 𝒰, defined as  

(�̃�𝐸)1 = {
𝑒1 = {< 𝓊1, 0.4,0.5,0.6 >, < 𝓊2, 0.5,0.4,0.7 >}

𝑒2 = {< 𝓊1, 0.1,0.2,0.6 >, < 𝓊2, 0.5,0.5,0.6 >}
}. 

Then τNSS defines an NST on 𝒰, and hence (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. An NSS K̃E 

in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

𝐾E = {
𝑒1 = {< 𝓊1, 0.3,0.4,0.4 >, < 𝓊2, 0.7,0.4,0.5 >}

𝑒2 = {< 𝓊1, 0.3,0.8,0.1 >, < 𝓊2, 0.4,0.4,0.6 >
}. 

By Theorem 3.4 (ii) and Theorem 4.4, �̃�𝐸 = ∅E ⊆ 𝑖𝑛𝑡𝑏(𝐾E) and �̃�𝐸 = ∅E ⊆ 𝐾E, so 𝐾E is 

an NS-gbOS in 𝒰 , but not NS-bOS in 𝒰  since 𝐾E ⊈ 𝑖𝑛𝑡 (𝑐𝑙(𝐾E)) ∪ 𝑐𝑙 (𝑖𝑛𝑡(𝐾E)) =

(�̃�𝐸)1. Although NSS 𝐾E is an NS-gbOS in 𝒰, it is not NS-𝛼OS, NS-OS, respectively. 

Example 4.6. Let 𝒰 = {𝓊1, 𝓊2}, E = {e1, e2} and τNSS = {∅E, 1E, (F̃E)1} where (F̃E)1 is 

NSS over 𝒰, defined as  

(�̃�𝐸)1 = {
𝑒1 = {< 𝓊1, 0.5,0.5,0.6 >, < 𝓊2, 0.4,0.4,0.7 >}

𝑒2 = {< 𝓊1, 0.1,0.3,0.4 >, < 𝓊2, 0.6,0.5,0.6 >}
}. 

NS-𝛼gOS 

NS-OS NS-pOS 

NS-sOS 

NS-bOS 

NS-gpOS 

NS-gsOS 

NS-gbOS 

NS−𝛼OS 
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Then τNSS defines an NST on 𝒰, and hence (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. An NSS K̃E 

in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

𝐾E = {
𝑒1 = {< 𝓊1, 0.6,0.6,0.3 >, < 𝓊2, 0.8,0.7,0.1 >}

𝑒2 = {< 𝓊1, 0.6,0.9,0.1 >, < 𝓊2, 0.7,0.5,0.4 >
}. 

By Theorem 4.4 and Definition 4.2, (�̃�𝐸)1
𝑐

⊆ 𝐾E and (�̃�𝐸)1
𝑐

⊆ 𝑖𝑛𝑡𝑏(𝐾E) = 𝐾E ∩

[𝑖𝑛𝑡 (𝑐𝑙(𝐾E)) ∪ 𝑐𝑙 (𝑖𝑛𝑡(𝐾E))] = 𝐾E ∩ [𝑖𝑛𝑡(1E) ∪ 𝑐𝑙((F̃E)1)] = 𝐾E , thus 𝐾E  is an NS-

gbOS in 𝒰, but not NS-𝛼gOS in 𝒰 since (�̃�𝐸)1
𝑐

⊆ 𝐾E  and (�̃�𝐸)1
𝑐

⊈ 𝑖𝑛𝑡𝛼(𝐾E) = 𝐾E ∩

[𝑖𝑛𝑡 (𝑐𝑙 (𝑖𝑛𝑡(𝐾E)))] = (F̃E)1. Further, although NSS 𝐾E is an NS-gbOS in 𝒰, it is not NS-

𝑠OS in 𝒰. 

Theorem 4.5. Let �̃�𝐸 be an NS-gbOS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). If 𝑖𝑛𝑡𝑏(�̃�𝐸) ⊆ �̃�𝐸 ⊆ �̃�𝐸, then �̃�𝐸 

is an NS-gbOS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). 

Proof. Let �̃�𝐸  be NS-gbOS and �̃�𝐸  be any NSS in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) such that 𝑖𝑛𝑡𝑏(�̃�𝐸) ⊆

�̃�𝐸 ⊆ �̃�𝐸. Thus, (�̃�𝐸)𝑐 is an NS-gbCS, and (�̃�𝐸)𝑐 ⊆ (�̃�𝐸)𝑐 ⊆ 𝑐𝑙𝑏(�̃�𝐸)𝑐 . So, (�̃�𝐸)𝑐 is an 

NS-gbCS. Hence, �̃�𝐸 is an NS-gbOS of (𝒰, �̃�𝑁𝑆𝑆 , 𝐸). 

Remark 4.7. Example 4.7 shows that the union and intersection of any two NS-gbOSs need 

not be NS-gbOSs. 

Example 4.7. Let 𝒰 = {𝓊1, 𝓊2}, E = {e1, e2} and τNSS = {∅E, 1E, (F̃E)1} where (F̃E)1 is 

NSS over 𝒰, defined as follows 

(F̃E)1 = {
e1 = {< 𝓊1, 0.7,0.8,0.2 >, < 𝓊2, 0.6,0.7,0.5 >}

e2 = {< 𝓊1, 0.8,0.6,0.2 >, < 𝓊2, 0.4,0.5,0.4 >}
}. 

Then τNSS defines an NST on 𝒰, and hence (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. Two NSS G̃E 

and K̃E in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) are defined as 

G̃E = {
e1 = {< 𝓊1, 0.1,0.2,0.8 >, < 𝓊2, 0.4,0.3,0.7 >}

e2 = {< 𝓊1, 0.1,0.3,0.8 >, < 𝓊2, 0.4,0.5,0.4 >}
}, 

𝐾E = {
e1 = {< 𝓊1, 0.2,0.2,0.7 >, < 𝓊2, 0.5,0.1,0.6 >}

e2 = {< 𝓊1, 0.2,0.4,1.0 >, < 𝓊2, 0.3,0.4,0.7 >}
}. 

It can be easily seen that both G̃E and K̃E are NS-gbOSs in 𝒰, but G̃E ∪ K̃E is not NS-gbOS 

in 𝒰 because (F̃E)1
𝑐

⊈ 𝑖𝑛𝑡𝑏(G̃E ∪ K̃E) = ∅E. 

Now, two NSSs M̃E and ÑE in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) are defined as  

M̃E = {
e1 = {< 𝓊1, 0.8,0.8,0.1 >, < 𝓊2, 0.7,0.7,0.3 >}

e2 = {< 𝓊1, 0.9,0.7,0.5 >, < 𝓊2, 0.4,0.6,0.4 >}
}, 

�̃�E = {
e1 = {< 𝓊1, 0.2,0.2,0.7 >, < 𝓊2, 0.5,0.3,0.6 >}

e2 = {< 𝓊1, 0.2,0.4,0.8 >, < 𝓊2, 0.5,0.5,0.3 >}
}. 

It can be easily seen that both M̃E and ÑE are NS-gbOSs in 𝒰, but M̃E ∩ ÑE is not NS-

gbOS in 𝒰 since (F̃E)1
𝑐

⊈ 𝑖𝑛𝑡𝑏(M̃E ∩ ÑE) = ∅E. 

Definition 4.4. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then, 
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(i) the neutrosophic soft generalized b- interior of �̃�𝐸, denoted 𝑖𝑛𝑡𝑔𝑏(�̃�𝐸), is defined 

as 𝑖𝑛𝑡𝑔𝑏(�̃�𝐸) =∪ {�̃�𝐸: �̃�𝐸 is an NS-gbCS in 𝒰 and �̃�𝐸 ⊆ �̃�𝐸}. 

(ii) the neutrosophic soft generalized b-closure of �̃�𝐸, denoted 𝑐𝑙𝑔𝑏(�̃�𝐸), is defined as 

𝑐𝑙𝑔𝑏(�̃�𝐸) =∩ {𝐾𝐸: 𝐾𝐸 is an NS-gbCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸}. 

Theorem 4.6. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 ∈ 𝑁𝑆𝑆(𝒰𝐸). Then, 

(i) �̃�𝐸 is an NS-gbCS iff �̃�𝐸 = 𝑐𝑙𝑔𝑏(�̃�𝐸), 

(ii) �̃�𝐸 is an NS-gbOS iff �̃�𝐸 = 𝑖𝑛𝑡𝑔𝑏(�̃�𝐸), 

(iii) 𝑖𝑛𝑡𝑔𝑏(∅𝐸) = ∅𝐸 , 𝑖𝑛𝑡𝑔𝑏(1E) = 1E, 

(iv) 𝑐𝑙𝑔𝑏(∅𝐸) = ∅𝐸 , 𝑐𝑙𝑔𝑏(1E) = 1E, 

(v) (𝑖𝑛𝑡𝑔𝑏(�̃�𝐸))
𝑐

= 𝑐𝑙𝑔𝑏((�̃�𝐸)𝑐), 

(vi) (𝑐𝑙𝑔𝑏(�̃�𝐸))
𝑐

= 𝑖𝑛𝑡𝑔𝑏((�̃�𝐸)𝑐), 

(vii) (𝑖𝑛𝑡𝑔𝑏(�̃�𝐸)𝑐)
𝑐

= 𝑐𝑙𝑔𝑏(𝑁𝐸), 

(viii) (𝑐𝑙𝑔𝑏(�̃�𝐸)𝑐)
𝑐

= 𝑖𝑛𝑡𝑔𝑏(�̃�𝐸). 

Proof.  

(i) Suppose �̃�𝐸 = 𝑐𝑙𝑔𝑏(�̃�𝐸) =∩ {𝐾𝐸: 𝐾𝐸 is an NS-gbCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸} then �̃�𝐸 ∈∩

{𝐾𝐸: 𝐾𝐸 is an NS-gbCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸} which implies �̃�𝐸 is an NS-gbCS. 

Conversely, suppose �̃�𝐸 is an NS-gbCS in 𝒰. We take �̃�𝐸 ⊆ �̃�𝐸 and �̃�𝐸 is an NS-gbCS. 

�̃�𝐸 ∈∩ {𝐾𝐸: 𝐾𝐸  is an NS-gbCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸}. �̃�𝐸 ⊆ 𝐾𝐸  implies 𝑁𝐸 ⊆∩ {𝐾𝐸: 𝐾𝐸  is 

an NS-gbCS in 𝒰 and 𝐾𝐸 ⊇ �̃�𝐸} = 𝑐𝑙𝑔𝑏(�̃�𝐸). This proves (i). 

(ii) Proved by taking complement in (i). 

(iii) Since the sets 1E and ∅𝐸  are NS-gbOSs, the largest NS-gbOS neutrosophic subset of 

𝒰  is the set 𝑖𝑛𝑡𝑔𝑏(1E) , and the largest NS-gbOS neutrosophic subset of ∅𝐸  is the set 

𝑖𝑛𝑡𝑔𝑏(∅𝐸). Thus, 𝑖𝑛𝑡𝑔𝑏(∅𝐸) = ∅𝐸  and 𝑖𝑛𝑡𝑔𝑏(1E) = 1E. 

(iv) As 𝑐𝑙𝑔𝑏(∅𝐸)  is the smallest NS-gbCS on 𝒰  containing ∅̃𝐸  and 𝑐𝑙𝑔𝑏(1E)  is the 

smallest NS-gbCS on 𝒰 containing 1E, we have 𝑐𝑙𝑔𝑏(∅𝐸) = ∅𝐸 , 𝑐𝑙𝑔𝑏(1E) = 1E. 

(v) Since  𝑖𝑛𝑡𝑔𝑏(�̃�𝐸) =∪ {�̃�𝐸 : �̃�𝐸  is an NS-gbOS in 𝒰  and �̃�𝐸 ⊆ �̃�𝐸}  then 

(𝑖𝑛𝑡𝑔𝑏(�̃�𝐸))
𝑐

=∩ {(�̃�𝐸)
𝑐

:(�̃�𝐸)
𝑐

 is an NS-gbCS in 𝒰  and (�̃�𝐸)
𝑐

⊇ (�̃�𝐸)
𝑐
}.  Replacing 

(�̃�𝐸)
𝑐
 by 𝐾𝐸 , we get (𝑖𝑛𝑡𝑔𝑏(�̃�𝐸))

𝑐

=∩ {𝐾𝐸 :𝐾𝐸  is an NS-gbCS in 𝒰 and 𝐾𝐸 ⊇ (�̃�𝐸)
𝑐
}. 

Therefore,  (𝑖𝑛𝑡𝑔𝑏(�̃�𝐸))
𝑐

= 𝑐𝑙𝑔𝑏((�̃�𝐸)𝑐). This proves (v). 

(vi) Proof is similar to the above part (v). 
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(vii) Since  𝑖𝑛𝑡𝑔𝑏(�̃�𝐸) =∪ {�̃�𝐸 : �̃�𝐸  is an NS-gbOS in 𝒰  and �̃�𝐸 ⊆ �̃�𝐸}  then 

(𝑖𝑛𝑡𝑔𝑏(�̃�𝐸))
𝑐

= ∩ {(�̃�𝐸)
𝑐

: (�̃�𝐸)
𝑐

 is an NS-gbCS in 𝒰  and (�̃�𝐸)
𝑐

⊆ (�̃�𝐸)
𝑐
} =

𝑐𝑙𝑔𝑏((�̃�𝐸)𝑐). Then replacing �̃�𝐸 by (�̃�𝐸)
𝑐
, we get (𝑖𝑛𝑡𝑔𝑏(�̃�𝐸)

𝑐
)

𝑐
=∩ {(�̃�𝐸)

𝑐
:(�̃�𝐸)

𝑐
 is an 

NS-gbCS in 𝒰 and ((�̃�𝐸)
𝑐
)

𝑐
⊆ (�̃�𝐸)

𝑐
} = 𝑐𝑙𝑔𝑏(((�̃�𝐸)𝑐)𝑐) = 𝑐𝑙𝑔𝑏(�̃�𝐸). 

(viii) Proof is similar to the above part (vii).  

Example 4.8. Let 𝒰 = {𝓊1, 𝓊2} , E = {e1, e2}  and τNSS = {∅E, 1E, (F̃E)1, (F̃E)2}  where 

(F̃E)1 and (F̃E)2 are NSSs over 𝒰, defined as  

(F̃E)1 = {
e1 = {< 𝓊1, 0.4,0.6,0.6 >, < 𝓊2, 0.5,0.6,0.4 >}

e2 = {< 𝓊1, 0.2,0.5,0.3 >, < 𝓊2, 0.3,0.6,0.5 >}
}, 

(F̃E)2 = {
e1 = {< 𝓊1, 0.4,0.5,0.7 >, < 𝓊2, 0.3,0.4,0.5 >}

e2 = {< 𝓊1, 0.1,0.4,0.5 >, < 𝓊2, 0.2,0.4,0.6 >}
}. 

Then τNSS defines an NST on 𝒰, and hence (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. An NSS �̃�E 

in (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is defined as  

ÑE = {
e1 = {< 𝓊1, 0.5,0.5,0.7 >, < 𝓊2, 0.6,0.6,0.2 >}

e2 = {< 𝓊1, 0.6,0.4,0.2 >, < 𝓊2, 0.4,0.5,0.4 >}
}. 

By Definition 4.1 (ii), ∅E, 1E, (F̃E)1, (F̃E)2, and ÑE are NS-gbCSs in 𝒰 and 1E ⊇ �̃�𝐸 , 

ÑE ⊇ �̃�𝐸. So, 𝑐𝑙𝑔𝑏(�̃�𝐸) = 1E ∩ ÑE = ÑE. Hence, 𝑐𝑙𝑔𝑏(�̃�𝐸) = �̃�𝐸. Similarly, by taking the 

complement, Theorem 4.6 (ii) also provides. 

By Theorem 4.4, ∅E, 1E, (F̃E)1, (F̃E)2, and (�̃�𝐸)
𝑐
 are NS-gbOSs in 𝒰 and ∅E, (�̃�𝐸)

𝑐
⊆

(�̃�𝐸)
𝑐

. So, 𝑖𝑛𝑡𝑔𝑏((�̃�𝐸)𝑐) = ∅E ∪  (�̃�𝐸)
𝑐

= (�̃�𝐸)
𝑐
.  Also, by Theorem 4.6 (i), 

(𝑐𝑙𝑔𝑏(�̃�𝐸))
𝑐

= (�̃�𝐸)
𝑐
. Hence, (𝑐𝑙𝑔𝑏(�̃�𝐸))

𝑐
= 𝑖𝑛𝑡𝑔𝑏((�̃�𝐸)𝑐) is obtained. Similarly, using 

the complement, Theorem 4.6 (v) is obtained. In addition, the conditions of Theorem 4.6 (vii) 

and Theorem 4.6 (viii) are satisfied by replacing �̃�𝐸 with (�̃�𝐸)
𝑐
. 

Definition 4.5. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰. An NSS �̃�𝐸 over 𝒰 is said to be a 

neutrosophic soft gb-neighborhood of the neutrosophic soft point eF̃ ∈ �̃�𝐸 if there exits an 

NS-gbOS �̃�𝐸 such that eF̃ ∈ �̃�𝐸 ⊆ �̃�𝐸. 

All neutrosophic soft gb-neighborhoods of neutrosophic soft point eF̃  are called its 

neutrosophic soft gb-neighborhood system and are denoted by 𝑔𝑏 − 𝑁𝜏(𝑒�̃�). 

Definition 4.6. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸)  be an NSTS over 𝒰 . An NSS �̃�𝐸  over 𝒰  is called 

neutrosophic soft gb-neighborhood of an NSS �̃�𝐸 if there exists an NS-gbOS �̃�𝐸 such that 

�̃�𝐸 ⊆ �̃�𝐸 ⊆ �̃�𝐸. 

Example 4.9. Let 𝒰 = {𝓊1, 𝓊2} , E = {e1, e2, e3}  and τNSS =

{∅E , 1E, (ÑE)1, (ÑE)2, (ÑE)3} where (�̃�E)1, (ÑE)2, and  (ÑE)3 are NSSs over 𝒰, defined 

as  
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(ÑE)1 = {
e1 = {< 𝓊1, 0.8,0.8,0.1 >, < 𝓊2, 0.6,0.5,0.4 >}

e2 = {< 𝓊1, 0.7,0.9,0.2 >, < 𝓊2, 0.4,0.5,0.4 >}
}, 

(ÑE)2 = {
e1 = {< 𝓊1, 0.1,0.1,0.9 >, < 𝓊2, 0.4,0.3,0.7 >}

e2 = {< 𝓊1, 0.1,0.3,0.7 >, < 𝓊2, 0.3,0.5,0.6 >}
}, 

(ÑE)3 = {
e1 = {< 𝓊1, 0.1,0.1,0.9 >, < 𝓊2, 0.3,0.2,0.8 >}

e2 = {< 𝓊1, 0.1,0.1,0.8 >, < 𝓊2, 0.2,0.4,0.6 >}
}. 

Then τNSS  defines an NST on 𝒰 , and hence (𝒰, �̃�𝑁𝑆𝑆 , 𝐸)  is an NSTS over 𝒰 . Since 

(�̃�E)3 ⊆ (�̃�E)2 ⊆ (ÑE)1, thus (�̃�E)1 is a neutrosophic soft gb-neighborhood of (�̃�E)3. 

Theorem 4.7. If (𝒰, �̃�𝑁𝑆𝑆 , 𝐸)  be an NSTS over 𝒰 . �̃�𝐸  is an NS-gbOS. Then �̃�𝐸  is a 

neutrosophic soft gb-neighborhood of each of its neutrosophic soft points. 

Proof. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and �̃�𝐸 be an NS-gbOS over 𝒰. Suppose that 

�̃�𝐸 is an NS-gbOS. Then for every neutrosophic soft gb-point eF̃ ∈ �̃�𝐸 , we have eF̃ ∈ �̃�𝐸 ⊆

�̃�𝐸 , and so �̃�𝐸  is a neighborhood of eF̃ . Thus, 𝑁𝐸  is a neighborhood of each of its 

neutrosophic soft points. 

Next, suppose that �̃�𝐸 is a neutrosophic soft gb-neighborhood of its neutrosophic soft points. 

If �̃�𝐸 = ∅̃𝐸 then �̃�𝐸 is a neutrosophic soft open as ∅̃𝐸 ∈ �̃�𝑁𝑆𝑆 . But if �̃�𝐸 ≠ ∅̃ then for each 

eF̃ ∈ �̃�𝐸  there exists a neutrosophic soft point �̃�𝐸  such that eF̃ ∈ (�̃�𝐸)eF̃
⊆ �̃�𝐸 . �̃�𝐸 =∪

(�̃�𝐸)eF̃
 and so �̃�𝐸 is an NS-gbOS in 𝒰, being of the union of NS-gbOSs in 𝒰. Hence, it’s 

proved. 

Theorem 4.8. Every neutrosophic soft neighborhood of a neutrosophic soft point eF̃ of an 

NSTS (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) over 𝒰 is a neutrosophic soft gb-neighborhood of eF̃.  

Proof. Let �̃�𝐸  be a neutrosophic soft gb-neighborhood of eF̃ ∈ �̃�𝐸. Then there exists an 

NSOS �̃�𝐸 such that eF̃ ∈ �̃�𝐸 ⊆ �̃�𝐸. Since we know that every NSOS set is a neutrosophic 

soft gb-open set, �̃�𝐸 is an NS-gbOS and hence �̃�𝐸 is a neutrosophic soft gb-neighborhood 

of eF̃. Thus, it’s proved. 

Remark 4.8. Example 4.10 shows that the converse of Theorem 4.8 is not always true. 

Example 4.10. Let 𝒰 = {𝓊1, 𝓊2 } , E = {e1, e2}  and τNSS =

{∅E , 1E, (ÑE)1, (ÑE)2, (ÑE)3,(ÑE)4, (ÑE)5}  where (ÑE)1 , (ÑE)2 , (ÑE)3 , (𝑁E)4 , and 

(ÑE)5 are NSSs over 𝒰, defined as  

(ÑE)1 = {
e1 = {< 𝓊1, 0.1,0.2,0.7 >, < 𝓊2, 0.1,0.2,0.5 >}

e2 = {< 𝓊1, 0.3,0.3,0.6 >, < 𝓊2, 0.4,0.5,0.6 >}
}, 

(ÑE)2 = {
e1 = {< 𝓊1, 0.7,0.4,0.5 >, < 𝓊2, 0.6,0.5,0.3 >}

e2 = {< 𝓊1, 0.5,0.5,0.3 >, < 𝓊2, 0.5,0.5,0.5 >}
}, 

(ÑE)3 = {
e1 = {< 𝓊1, 0.8,0.5,0.3 >, < 𝓊2, 0.7,0.6,0.3 >}

e2 = {< 𝓊1, 0.6,0.6,0.3 >, < 𝓊2, 0.5,0.5,0.5 >}
}, 

(ÑE)4 = {
e1 = {< 𝓊1, 0.8, 0.9,0.1 >, < 𝓊2, 0.8,0.7,0.3 >}

e2 = {< 𝓊1, 0.6,0.6,0.3 >, < 𝓊2, 0.6,0.7,0.2 >}
}, 

(ÑE)5 = {
e1 = {< 𝓊1, 0.6,0.4,0.5 >, < 𝓊2, 0.6,0.2,0.3 >}

e2 = {< 𝓊1, 0.4,0.5,0.6 >, < 𝓊2, 0.5,0.5,0.5 >}
}. 



Neutrosophic Sets and Systems, Vol. 56, 2023    65  

 

 

Alkan Özkan, Şeyda Yazgan and Sandeep Kaur, Neutrosophic Soft Generalized b-Closed Sets in Neutrosophic Soft 
Topological Spaces 

Then τNSS defines an NST on 𝒰, and hence (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) is an NSTS over 𝒰. Here 𝑒2𝐹
=

{< 𝓊1, 0.7,0.5,0.4 >, < 𝓊2, 0.4,0.5,0.4 >}  is a neutrosophic soft point over 𝒰 . 

Obviouslyerse 𝑒2𝐹
∈ �̃�E, where 

�̃�E = {
e1 = {< 𝓊1, 0.7, 0.8,0.2 >, < 𝓊2, 0.3,0.3,0.4 >}

e2 = {< 𝓊1, 0.6,0.7,0.3 >, < 𝓊2, 0.5,0.5,0.5 >}
} 

is a neutrosophic soft gb-neighborhood of 𝑒2𝐹
,  since 𝑒2𝐹

∈ 𝐾E ⊆ �̃�E, where  

𝐾E = {
e1 = {< 𝓊1, 0.7,0.6,0.3 >, < 𝓊2, 0.2,0.3,0.2 >}

e2 = {< 𝓊1, 0.6,0.7,0.3 >, < 𝓊2, 0.6,0.5,0.4 >}
} 

is an NS-gbOS. But �̃�E is not a neutrosophic soft neighborhood of 𝑒2𝐹
. 

Theorem 4.9. Let (𝒰, �̃�𝑁𝑆𝑆 , 𝐸) be an NSTS over 𝒰 and 𝑒�̃� be a neutrosophic soft point. 

Then, 𝑔𝑏 − 𝑁𝜏(𝑒�̃�) has the following properties. 

(i) If �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�), then eF̃ ∈ �̃�𝐸, 

(ii) If �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�), �̃�𝐸 ⊆ �̃�𝐸 , then �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�), 

(iii) If �̃�𝐸,�̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�), then �̃�𝐸 ∪ �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�), 

(iv) If �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�) then there exists �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�), such that �̃�𝐸 ⊆ �̃�𝐸 

and �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�) for every eG̃ ∈ �̃�𝐸. 

Proof. (i) Let �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�) then �̃�𝐸 is a neutrosophic soft gb-neighborhood of eF̃ 

which implies eF̃ ∈ �̃�𝐸. 

(ii) Assume �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�)  then �̃�𝐸 is a neutrosophic soft gb-neighborhood of 

𝑒�̃� which implies there exists an NS-gbOS 𝐾𝐸 , such that eF̃ ∈ 𝐾𝐸 ⊆ �̃�𝐸 ⊆ �̃�𝐸. Hence, �̃�𝐸 

is a neutrosophic soft gb-neighborhood of eF̃ and so, �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�). 

(iii) If �̃�𝐸 ,�̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�), then there exists an NS-gbOSs �̃�𝐸  and 𝐾𝐸  such that eF̃ ∈

�̃�𝐸 ⊆ �̃�𝐸  and eF̃ ∈ 𝐾𝐸 ⊆ �̃�𝐸 . Obviously, �̃�𝐸  and 𝐾𝐸  are contained in �̃�𝐸 ∪ �̃�𝐸  which 

implies �̃�𝐸 ∪ �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�). 

(iv) If �̃�𝐸 ∈ 𝑔𝑏 − 𝑁𝜏(𝑒�̃�),  then there exists an NS-gbOS �̃�𝐸  such that eF̃ ∈ �̃�𝐸 ⊆ �̃�𝐸 . 

Since �̃�𝐸  is an NS-gbOS and eF̃ ∈ �̃�𝐸 ⊆ �̃�𝐸 ,  then �̃�𝐸 ∈ 𝑁𝜏(𝑒�̃�).  Thus, �̃�𝐸 ∈ 𝑔𝑏 −

𝑁𝜏(𝑒�̃�) and �̃�𝐸 ⊆ �̃�𝐸.Again since �̃�𝐸 is an NS-gbOS, so �̃�𝐸 is a neighborhood of each of 

its neutrosophic soft points. Therefore, �̃�𝐸 ∈ 𝑁𝜏(𝑒�̃�) for all eF̃ ∈ �̃�𝐸. Hence, its proved 

(iv). 

 

5. Conclusion 

In this study, we have introduced the concepts of neutrosophic soft generalized b-closed 

(open) sets and neutrosophic soft generalized b-interior, neutrosophic soft generalized b-

closure, neutrosophic soft generalized b-neighborhood, and explored some of their 

properties. We have also proved some theorems about neutrosophic soft generalized b-closed 

sets in neutrosophic soft topological space and analyzed them with appropriate examples. 

This study is based on theoretical operations of neutrosophic soft generalized b-sets. These 

sets may be the starting point for new theoretical and applied studies. Therefore, we believe 

that many new studies can be done in neutrosophic soft generalized b-sets and neutrosophic 

topological spaces. In addition, this study can be extended to analyze neutrosophic properties 

such as continuity, compactness, connectedness, and separation axioms by using 

neutrosophic soft generalized b-sets and other neutrosophic soft generalized sets. 
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Abstract: Secure dominance is a significant proportion of dominance which plays vital role in 

communication networks. In this article, we present and analyze an idea of the secured 

neutrosophic dominance and totally neutrosophic dominance number of neutrosophic graphs 

primarily based on strong arcs and the properties of both notions are studied. The terms 2- 

neutrosophic dominance number, 2- secured neutrosophic dominance variety, 2- totally 

neutrosophic dominance, and 2- secured neutrosophic dominance number also are defined. Some 

of their theoretical properties are investigated. 

 

Keywords: Dominance set, total dominance neutrosophic number, Secure dominance 

neutrosophic number, neutrosophic total secure dominance number. 

 

 

1. Introduction  

In 1965, L.A. Zadeh [28] gave a definition of the word "fuzzy" that deals with uncertainty and fuzzy 

relatives. Rosenfeld [22] then observed Zadeh's fuzzy functions on fuzzy batchs and developed the 

idea of fuzzy networks with membership value in [0,1]. K. T. Atanassov [2] expanded the concept of 

fuzzy networks to intuitionistic fuzzy networks and presented intuitionistic fuzzy relationships with 

an additional level of indeterminancy. Bipolar fuzzy network is defined by Akram [1] and subjected 

to a number of procedures. As an extension of the fuzzy network and the intuitionistic fuzzy network, 

Florentin Smarandache et al. [24, 26, 27] introduced neutrosophic network and single valued 

neutrosophic network or graphs (SVNG) as a new version of graph notion. Said Broumi et al [5, 6] 

created the concept of SVNG and studied its additives. 

Dominance is the concept that identifies the key nodes in networks that control the entire 

communication in the networks. Dominance is broadly studied and implemented in graph idea and 

its extensions. Secure connectivity is crucial in communication networks because it protects against 

node failure, which could affect the network’s stability. Secure dominance is a subset of dominance 

in which a node's failure is guarded by its adjacent node, securing the network's entire 

communication. Ore [21] and Berge [4] pioneered the analysis of dominance batchs in graphs. 

Merouane and Chellali [19] proposed the secured dominance batch and the two- dominance batch. 

A.Somasundaram and S.Somasundaram [25] produced an idea of dominance in fuzzy networks and 
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acquired numerous bounds for the dominance number. M.G. Karunambigai et al [13] introduced 

secure dominance in fuzzy networks. We focused on introducing secured neutrosophic dominance 

and totally secured neutrosophic dominance in neutrosophic networks, prompted via the idea of 

dominance number and its applicability [3, 9, 10, 11, 13, 17, 18,23]. Secured dominance is extremely 

important in many fields, including e-commerce, banking, information transfer, telecommunications, 

and medical diagnosis. 

This paper is structured as follows. Section 2 contains preliminary information, and Section 3 

defines a secured neutrosophic dominance number, a totally secure neutrosophic dominance 

number, and a 2-secured neutrosophic dominance number of a fuzzy network, and their bounds 

has been formulated. The section 4 concludes the paper. 

2. Preliminaries  

“Definition 2.1 [12]“ A pair G=(A,B) is known as a single valued neutrosophic graph (SVN-graph) 

with the underlying set V. 

 1. The functions 𝑇𝐴: 𝑉 →  [0, 1],  𝐼𝐴: 𝑉 →  [0, 1],  and 𝐹𝐴: 𝑉 →  [0, 1],  denote the degree of truth-

membership, degree of indeterminacy-membership and falsity-membership of the element 𝑣𝑖 ∈ 𝑉, 

respectively, and 0 ≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) + 𝐹𝐴(𝑣𝑖) ≤ 3 for all 𝑣𝑖 ∈ 𝑉. 

 2. The functions 𝑇𝐵 : E ⊆  V x V → [0, 1], 𝐼𝐵: E ⊆  V x V → [0, 1], and 𝐹𝐵 : E ⊆  V x V →

[0, 1]  are defined by 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤  𝑇𝐴(𝑣𝑖) ⋀ 𝑇𝐴(𝑣𝑗),  𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥  𝐼𝐴(𝑣𝑖) ∨  𝐼𝐴(𝑣𝑗)  and 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥  𝐹𝐴(𝑣𝑖) ∨  F(𝑣𝑗) denotes the degree of truth-membership, indeterminacy-membership 

and falsity-membership of the edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸  respectively, where 0 ≤ 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) + 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) +

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≤ 3 for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸   (i, j =  1, 2, … , n).  We call A the single valued neutrosophic 

vertex set of V, B the single valued neutrosophic edge set of E, respectively.” 

 

“Definition 2.2 [6] “A partial SVN-subgraph of SVN-graph 𝐺 = (𝐴, 𝐵)  is a SVN-graph 𝐻 =

(𝑉′ , 𝐸′) such that  𝑉′ ⊆  V, where 𝑇′𝐴(𝑣𝑖) ≤  𝑇𝐴(𝑣𝑖), 𝐼′𝐴(𝑣𝑖) ≥  𝐼𝐴(𝑣𝑖), and 𝐹′𝐴(𝑣𝑖) ≥  𝐹𝐴(𝑣𝑖) for 

all 𝑣𝑖 ∈ 𝑉  and 𝐸′ ⊆  E , where   𝑇′𝐵(𝑣𝑖 , 𝑣𝑗) ≤ 𝑇𝐵(𝑣𝑖 , 𝑣𝑗),  𝐼′𝐵(𝑣𝑖 , 𝑣𝑗) ≥ 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) , 𝐹′𝐵(𝑣𝑖 , 𝑣𝑗) ≥

𝐹𝐵(𝑣𝑖 , 𝑣𝑗)  for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.”” 

 

“Definition 2.3 [6] “Let 𝐺 = (𝐴, 𝐵)  be a SVNG. G is said to be a strong SVNG if 

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨  𝐼𝐴(𝑣) and 

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨ 𝐹𝐴(𝑣)  for every (𝑢, 𝑣) ∈  𝐸.” 

 

“Definition 2.4 [8] “Let 𝐺 = (𝐴, 𝐵)  be a SVNG. G is said to be a complete SVNG if 

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨  𝐼𝐴(𝑣) and 

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨ 𝐹𝐴(𝑣)  for every 𝑢, 𝑣 ∈  𝑉.”” 

 

“Definition 2.5 [8] “Let 𝐺 = (𝐴, 𝐵) be a SVNG. �̅� = (�̅�, �̅�) is the complement of an SVNG if 

�̅� = 𝐴  𝑎𝑛𝑑 �̅�  is computed as below. 

𝑇𝐵 (𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),             
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𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨  𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)        

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.   

Here, 𝑇𝐵 (𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denote the true, intermediate, and false membership degree 

for edge (𝑢, 𝑣) of �̅�.”” 

 

“Definition 2.6 [16] “Let 𝐺 = (𝐴, 𝐵) be a SVNG on V, then the neutrosophic vertex cardinality of G 

is defined by” 

|𝑉| = ∑
1 + 𝑇𝐴(𝑢, 𝑣) + 𝐼𝐴(𝑢, 𝑣) − 𝐹𝐴(𝑢, 𝑣)

2
     

(𝑢,𝑣)∈𝑉

 

 

 

“Definition 2.7 [16] “Let 𝐺 = (𝐴, 𝐵) be a SVNG on V, then the neutrosophic edge cardinality of G 

is defined by” 

|𝐸| = ∑
1+𝑇𝐵(𝑢,𝑣)+𝐼𝐵(𝑢,𝑣)−𝐹𝐵(𝑢,𝑣)

2
     (𝑢,𝑣)∈𝐸  ” 

 

“Definition 2.8 [20] “An arc (𝑢, 𝑣) of a SVNG G is called strong arc if  

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨  𝐼𝐴(𝑣) and 

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨ 𝐹𝐴(𝑣)” 

 

“Definition 2.9[16]“ Let 𝐺 = (𝐴, 𝐵) be a SVNG on V. Let (𝑢, 𝑣) ∈ 𝑉, we say that 𝑢 dominates 𝑣 in 

G, if there exist a strong arc between them.” 

 

“Definition 2.10 [16] “Given 𝑆 ⊂ 𝑉 is called a dominating set in 𝐺 if for every vertex 𝑣 ∈ 𝑉 − 𝑆 

there exists a vertex 𝑢 ∈ 𝑆 such that 𝑢 dominates 𝑣. for all 𝑒 ∈ 𝐴, 𝑢, 𝑣 ∈ 𝑉.”” 

 

“Definition 2.11[16] “A dominance set 𝑆 of an Neutrosophic soft graph is said to be minimal 

dominance set if no proper subset of 𝑆 is a dominance set. for all 𝑒 ∈ 𝐴, 𝑢, 𝑣 ∈ 𝑉.” ” 

 

“Definition 2.13 [14] “Let 𝐺 = (𝑉, 𝐸)  be a fuzzy graph. Let 𝑢, 𝑣 ∈  𝑉  and we say that  𝑢 

dominates 𝑣 in 𝐺 if 𝜇(𝑢, 𝑣) = 𝜎(𝑢) ∨ 𝜎(𝑣). .A subset 𝑆 of 𝑉 is called dominance set in 𝐺 if for 

every 𝑣 ∈  𝑉 − 𝑆, there exists 𝑢 ∈  𝑆 such that 𝑢 dominates 𝑣. The minimum fuzzy cardinality 

of a dominating set in 𝐺 is called the dominance number of 𝐺 and is denoted by 𝛾(𝐺).” 

 

“Definition 2.14 [15] “Let 𝐺 = (𝑉, 𝐸)   be a fuzzy graph. A dominance set 𝑆  of 𝑉  is a secure 

dominance set if for each vertex 𝑢 ∈  𝑉 − 𝑆 is adjacent to a vertex 𝑣 ∈  𝑆 such that ( 𝑆 − {𝑣}) ∪

{𝑢}  is dominating set. The secure dominance number of 𝐺 is minimum fuzzy cardinality taken over 

all secure dominance sets of 𝐺 and is denoted by 𝛾𝑠(𝐺).”” 
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“Definition 2.15 [13] “A subset 𝑆 of 𝑉 is a 2- dominance set in 𝐺 if every vertex of  𝑉 − 𝑆 has 

atleast two neighbour in 𝑆.The 2- dominance number of 𝐺 is minimum fuzzy cardinality taken over 

all 2- dominance sets of 𝐺 and is denoted by 𝛾2(𝐺).” 

 

“Theorem 2.16 [13] “Every arc in a complete fuzzy graph is a strong arc.”” 

 

Table 1: Some basic notations  

Notation  Meaning 

𝐺∗ = (𝑉, 𝐸) Fuzzy Network or Graph 

𝐺 = (𝐴, 𝐵)   Neutrosophic Network or Graph  

V Vertex batch 

E Edge batch 

𝑇𝐴(𝑣) , 𝐼𝐴(𝑣), 𝐹𝐴(𝑣) True, indeterminacy, and falsity membership 

value of the node 𝑣 of 𝐺.  

𝑇𝐵 (𝑢, 𝑣), 𝐼𝐵(𝑢, 𝑣), 𝐹𝐵(𝑢, 𝑣) True, indeterminacy, and falsity membership 

value of the link (𝑢, 𝑣) of 𝐺. ” 

𝛾𝑛𝑑(𝐺) Neutrosophic dominance number 

𝛾𝑠𝑛𝑑 (𝐺) Secured neutrosophic dominance number  

𝛾𝑡𝑛𝑑 (𝐺) Totally neutrosophic dominance number 

𝛾𝑡𝑠𝑛𝑑 (𝐺) 

𝛾2𝑛𝑑 (𝐺) 

𝛾2𝑠𝑛𝑑 (𝐺) 

𝛾2𝑡𝑛𝑑 (𝐺) 

𝛾2𝑡𝑠𝑛𝑑 (𝐺) 

 

Totally secure neutrosophic dominance number  

2- neutrosophic dominance number 

2- secured neutrosophic dominance number 

2-totally neutrosophic dominance number 

2-totally secured neutrosophic dominance number 

2. Secured Dominance in Neutrosophic Graphs 

Definition 3.1 [16] 

Let 𝐺 = (𝐴, 𝐵) of 𝐺∗ = (𝑉, 𝐸) be a unique value neutrosophic network. consider a subset S of V such 

that 𝑢 𝜖 𝑆  dominating v for every 𝑣 𝜖 𝑉 − 𝑆 , then that subset is known to be a neutrosophic 

dominance batch in G. The neutrosophic dominance number of G is given by 𝛾𝑛𝑑(𝐺). It is the minimal 

cardinality across all the dominance sets of G. 
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Fig.1 Dominance in a SVNG  

 

Here {a,b},{b,c},{b,e} ,{a,b,c},{a,b,e} are few dominance batchs of G and 𝛾𝑛𝑑(𝐺) = 1.4. 

 

Definition 3.2  

Let 𝐺 = (𝐴, 𝐵) of 𝐺∗ be a SVNG. Consider a node 𝑢 𝜖 𝑉 − 𝑆 is contiguous to any node 𝑣 𝜖 𝑆 

such that ( 𝑆 − {𝑣}) ∪ {𝑢} is a batch which is again a dominance batch, then the neutrosophic batch 

S of vertex V is said to be a secured neutrosophic dominance batch. Secured neutrosophic dominance 

number of G is the number with the lowest vertex cardinality in all secured neutrosophic dominance 

batchs of G, and it is represented by the symbol 𝛾𝑠𝑛𝑑(𝐺). 

From figure 1, {b,e},{a,b,c},{a,b,e} are secure neutrosophic dominance batchs of G and 𝛾𝑠𝑛𝑑(𝐺) =

1.45. 

 

Definition 3.3  

Let 𝐺 = (𝐴, 𝐵) of 𝐺∗ be a connected SVNG.  

Consider a subgraph < S > induced by a batch S of V is also connected, then the neutrosophic 

dominance set S is known to be a totally neutrosophic dominance batch. Totally neutrosophic 

dominance number of G is the number with the lowest vertex cardinality among all total 

neutrosophic dominance batchs of G, and it is represented by the symbol 𝛾𝑡𝑛𝑑(𝐺). 
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Fig.2 Total neutrosophic dominance in a SVNG 

 

Here {a,b,e},{b,e,d},{a,b,f},{a,b,e,d},{a,b,f,d},{a,d,e,f} are total neutrosophic dominance batchs and 

𝛾𝑡𝑛𝑑 (𝐺) = 2.05. 

  

Definition 3.4  

Consider the connected SVNG 𝐺 = (𝐴, 𝐵) of 𝐺∗ = (𝑉, 𝐸). If the subgraph < S > induced by the 

neutrosophic set S of V is also connected, then the neutrosophic batch S of V is known to be a totally 

secured neutrosophic dominance batch. The term totally secure neutrosophic dominance number of 

G, which is abbreviated as 𝛾𝑡𝑠𝑛𝑑(𝐺), refers to the totally secure neutrosophic dominance batch of G 

with the least vertex cardinality. 

  

From Figure 2, {a,b,c,e,f},{a,b,c,e,d},{b,c,e,d,f},{a,b,c,d,f} are total secure neutrosophic dominance 

batchs of G and 𝛾𝑡𝑠𝑛𝑑(𝐺) = 3.45. 

  

Definition 3.5  

Let SVNG be 𝐺 = (𝐴, 𝐵) of 𝐺∗ = (𝑉, 𝐸). If every node of 𝑉 − 𝑆 has at least two neighbours in S, then 

the subset S of V is a 2-neutrophic dominance batch in G. The 2- neutrosophic dominance number of 

G, which is shown by the symbol 𝛾2𝑛𝑑(𝐺) is the set of 2- neutrosophic dominance batchs with the 

least vertex cardinality.  
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Fig.3 2- neutrosophic dominance in a SVNG 

 

Here {a,b,d},{a,e,d},{a,c,d},{a,b,c,d} are 2- neutrosophic dominance batchs of G and 𝛾2𝑛𝑑(𝐺) =

2.05. 

 

 

Definition 3.6  

Let SVNG be 𝐺 = (𝐴, 𝐵) of 𝐺∗ = (𝑉, 𝐸). Consider a node 𝑢 𝜖 𝑉 − 𝑆 is neighbouring to other 

node 𝑣 𝜖 𝑆 such that ( 𝑆 − {𝑣}) ∪ {𝑢} is a batch which is again a 2-dominance batch, then the 

2-neutrosophic batch S of V is known to be a 2-secured neutrosophic dominance batch. The 2-secured 

neutrosophic dominance number of G, which is represented by the symbol 𝛾2𝑠𝑛𝑑(𝐺), is the batch 

of 2-secure neutrosophic dominance batchs of G with the least vertex cardinality. 

  

From Figure 3, {a,b,c,d} are 2- secure neutrosophic dominance batchs of G and 𝛾2𝑠𝑛𝑑(𝐺) = 3.45. 

 

 

Definition 3.7  

Consider the connected SVNG 𝐺 = (𝐴, 𝐵) of 𝐺∗ = (𝑉, 𝐸). 

Consider a subgraph < S >  induced by a subset S is connected, then the subset S is a 2-total 

neutrosophic dominance batch. The 2-totally neutrosophic dominance number of G, which is shown 

by the symbol 𝛾2𝑡𝑛𝑑(𝐺), is the batch of 2-totally neutrosophic dominance batchs of G with the least 

vertex cardinality. 
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Fig.4 2-Total dominance in a SVNG 

 

Here {a,b,c} and {a,b} are 2- totally neutrosophic dominance batchs and 𝛾2𝑡𝑛𝑑 (𝐺) = 1.2. 

 

Definition 3.8  

Consider the connected SVNG 𝐺 = (𝐴, 𝐵) of 𝐺∗ = (𝑉, 𝐸). If the subgraph < S > produced by a 

neutrosophic set S of V is also connected, then the batch S is a 2-secured dominance and is referred 

to as a 2-totally secured neutrosophic dominance batch. The 2-totally secured neutrosophic 

dominance number of G is represented by the symbol 𝛾2𝑡𝑠𝑛𝑑 (𝐺) and is the set of 2-totally secured 

neutrosophic dominance batchs of 𝐺 with the least vertex cardinality. 

  

From Figure 4, {a,b,c} are 2-secured total neutrosophic dominance batchs of G and 𝛾2𝑡𝑠𝑛𝑑 (𝐺) =

1.95. 

” 

Theorem 3.9 In a complete SVNG G, each neutrosophic dominance batch is a secure neutrosophic 

dominance batch. 

Proof: 

If 𝐺 = (𝐴, 𝐵) is a complete neutrosophic network, then for every 𝑢, 𝑣 ∈  𝑉 we obtain 𝑇B(𝑢, 𝑣) =

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨  𝐼𝐴(𝑣) and 𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨ 𝐹𝐴(𝑣). 

Here, SVNG 𝐺 = (𝐴, 𝐵) has only strong arcs. 

Any neutrosophic dominance batch defined in 𝐺 = (𝐴, 𝐵) is given by S. Currently, any vertex 

𝑣 𝜖 𝑉 − 𝑆 is next to every vertex of 𝑆, and ( 𝑆 − {𝑣}) ∪ {𝑢} is a neutrosophic dominance batch 

for all 𝑢 𝜖 𝑆. Hence, 𝑆 is a secured neutrosophic dominance batch of G. 
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Theorem 3.10 

For a neutrosophic netwok G = (A, B), any 2-secured neutrosophic dominance batch of G is a secure 

neutrosophic dominance batch of G.  

Proof: 

If G = (A, B) is a neutrosophic netwok, then let S be a 2-secured neutrosophic dominance batch of that 

network. Every node 𝑢 𝜖 𝑉 − 𝑆 is then next to a node 𝑣 𝜖 𝑆 resulting in ( 𝑆 − {𝑣}) ∪ {𝑢} 

being a 2-neutosophic dominance batch. Since G is a 2-secured neutrosophic dominance batch, G is a 

2- neutrosophic dominance batch, and every 2- neutrosophic dominance batch is a dominance batch. 

As a result, ( 𝑆 − {𝑣}) ∪ {𝑢} is a neutrosophic dominance batch since every node 𝑢 𝜖 𝑉 − 𝑆 is 

close to a node 𝑣 𝜖 𝑆. As a result, S is a secured neutrosophic dominance batch of G. 

 

Theorem 3.11 

In a SVNG G, the complement of a neutrosophic dominance batch of G is a neutrosophic dominance 

batch. 

Proof: 

Let G represent a neutrosophic network. 

Any subset S of V is considered a neutrosophic dominance batch in G, according to the notion of 

dominance, if for every 𝑣 𝜖 𝑉 − 𝑆, there is an 𝑢 𝜖 𝑆 such that 𝑢 dominating 𝑣. If �̅� is the 

complement of S's neutrosophic dominance batch, then 𝑣 𝜖 �̅�   and 𝑢 𝜖 𝑉 − �̅�  such that 𝑣 

dominating 𝑢. i.e., for every 𝑣 𝜖 �̅�  and 𝑢 𝜖 𝑉 − �̅� such that 𝑣 dominating 𝑢 in �̅�. Therefore, 

�̅� is a neutrosophic dominance batch of G. 

  

Theorem 3.12 

In a SVNG G, the complement of any 2- neutrosophic dominance batch is a 2- neutrosophic 

dominance batch of G. 

Proof: 

Let G represent a neutrosophic network. 

According to Theorem 3.11, if �̅�  is the complement of S's neutrosophic dominance batch, then �̅�  is 

also one of G's neutrosophic dominance batchs. Every 2-neutrosophic dominance batch of G is a 

neutrosophic dominance batch of G. Therefore, any 2-neutosophic dominance batch in a SVNG has 

a complement that is a neutrosophic dominance batch of G. 

  

Theorem 3.13 

For any SVNG G, 𝛾𝑛𝑑(𝐺) ≤ 𝛾𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑠𝑛𝑑 (𝐺) ≤ 𝛾2𝑛𝑑(𝐺). 

Proof: 

Consider S is a least neutrosophic dominance batch of neutrosophic network G and 𝛾𝑛𝑑 (𝐺) = 𝑘. 

If S is also a least secure neutrosophic dominance batch of neutrosophic graph G then 𝛾𝑠𝑛𝑑(𝐺) =

𝑘.  𝑖. 𝑒. , 𝛾𝑛𝑑(𝐺) ≤ 𝛾𝑠𝑛𝑑(𝐺). Suppose S is not a least secured neutrosophic dominance batch and 

if 𝑆′is a least secured neutrosophic dominance batch then 𝛾𝑠𝑛𝑑(𝐺) > 𝑘.  

Thus, 𝛾𝑛𝑑(𝐺) ≤ 𝛾𝑠𝑛𝑑(𝐺).                    (1) 

Let 𝐷 be a least 2- neutrosophic dominance batch of neutrosophic graph G and 𝛾2𝑛𝑑(𝐺) = 𝑙. If D 

is also a least secure 2- neutrosophic dominance batch of neutrosophic graph G then 𝛾2𝑠𝑛𝑑(𝐺) =
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𝑙.  𝑖. 𝑒. , 𝛾2𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑛𝑑(𝐺). Suppose 𝐷 is not a least 2-secured neutrosophic dominance batch 

and if 𝐷′is a least secured 2- neutrosophic dominance batch then 𝛾2𝑠𝑛𝑑(𝐺) > 𝑙.  

Thus, 𝛾2𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑛𝑑(𝐺).                                       (2) 

Let 𝑄 be a least secured neutrosophic dominance batch of neutrosophic graph G and 𝛾𝑠𝑛𝑑(𝐺) = 𝑛. 

Every 2-secured neutrosophic dominance batch is a secured neutrosophic dominance batch of G. If 

𝑄  is also a least secured 2- dominance batch of neutrosophic graph G then 𝛾2𝑠𝑛𝑑(𝐺) =

𝑛.  𝑖. 𝑒. , 𝛾𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑠𝑛𝑑(𝐺). Suppose 𝑄 is not a least 2-secured neutrosophic dominance batch 

and if 𝑄′is a least secured 2- neutrosophic dominance batch then 𝛾2𝑠𝑛𝑑(𝐺) > 𝑛. Thus, 𝛾𝑠𝑛𝑑(𝐺) ≤

𝛾2𝑠𝑛𝑑 (𝐺).      (3) 

      

From (1), (2), (3) we get, 𝛾𝑛𝑑(𝐺) ≤ 𝛾𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑛𝑑(𝐺).” 

 

Theorem 3.14 

For any SVNG G, 𝛾𝑡𝑛𝑑(𝐺) ≤ 𝛾𝑡𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑡𝑠𝑛𝑑 (𝐺) ≤ 𝛾2𝑡𝑛𝑑 (𝐺). 

 

Proof: 

Consider S  is a least totally neutrosophic dominance batch of neutrosophic network G and 

𝛾𝑡𝑛𝑑 (𝐺) = 𝑘. If S is also a least totally secured neutrosophic dominance batch of neutrosophic 

graph G then 𝛾𝑡𝑠𝑛𝑑 (𝐺) = 𝑘.  𝑖. 𝑒. , 𝛾𝑡𝑛𝑑(𝐺) ≤ 𝛾𝑡𝑠𝑛𝑑(𝐺). Suppose S fails to be a least secured 

totally neutrosophic dominance batch and consider 𝑆′ is a least totally secured neutrosophic 

dominance batch then 𝛾𝑡𝑠𝑛𝑑(𝐺) > 𝑘.  

Thus, 𝛾𝑡𝑛𝑑(𝐺) ≤ 𝛾𝑡𝑠𝑛𝑑(𝐺).                   (1) 

Consider 𝐷  is a least 2-totally neutrosophic dominance batch of neutrosophic graph G and 

𝛾2𝑡𝑛𝑑 (𝐺) = 𝑙. If D is also a least 2- totally secured neutrosophic dominance batch of neutrosophic 

graph G then 𝛾2𝑡𝑠𝑛𝑑 (𝐺) = 𝑙.  𝑖. 𝑒. , 𝛾2𝑡𝑠𝑛𝑑 (𝐺) ≤ 𝛾2𝑡𝑛𝑑 (𝐺). Suppose 𝐷 is not a least 2-totally 

secured neutrosophic dominance batch and if 𝐷′is a least 2- totally secured neutrosophic dominance 

batch then 𝛾2𝑡𝑠𝑛𝑑 (𝐺) > 𝑙. 

Thus, 𝛾2𝑡𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑡𝑛𝑑(𝐺).                  (2) 

Let 𝑄  be a least totally secured neutrosophic dominance batch of neutrosophic graph G and 

𝛾𝑡𝑠𝑛𝑑 (𝐺) = 𝑛.  Every 2- totally secured neutrosophic dominance batch is a totally secure 

neutrosophic dominance batch of G. If 𝑄 is also a least 2- totally secure neutrosophic dominance 

batch of neutrosophic graph G then 𝛾2𝑡𝑠𝑛𝑑(𝐺) = 𝑛.  𝑖. 𝑒. , 𝛾𝑡𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑡𝑠𝑛𝑑(𝐺). Suppose 𝑄 

is not a least 2-totally secured neutrosophic dominance batch and if 𝑄′ is a least 2-total secured 

neutrosophic dominance batch then 𝛾2𝑡𝑠𝑛𝑑(𝐺) > 𝑛. 

Thus, 𝛾𝑡𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑡𝑠𝑛𝑑 (𝐺).                 (3) 

 

From (1), (2), (3) we get, 𝛾𝑡𝑛𝑑(𝐺) ≤ 𝛾𝑡𝑠𝑛𝑑(𝐺) ≤ 𝛾2𝑡𝑠𝑛𝑑 (𝐺) ≤ 𝛾2𝑡𝑛𝑑(𝐺). 

 

 

4. Conclusion 

Neurosophic network theory is being extensively used in a wide range of scientific and technological 

domains, including cognitive field, genetic methodss, optimisation techniques, clustering, medical 
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treatments, and decision trees. A neutrosophic network is initiated by Florentin Smarandache from 

neutrosophic groups. When compared to other generic and fuzzy analogs, neurosophic analogs give 

the system greater accuracy, adaptable, and capable. However, the independence of indeterminacy-

membership occasionally allows real data to be unbounded. The idea of secure neutrosophic network 

dominance is developed in this work, and we intend to keep developing the application that would 

secure social network connectivity in the neutrosophic environment. 
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Abstract: This manuscript aims to provide a platform that merges different aggregation 

operators into a concise and computationally trackable single aggregation operator. This 

generalization can produce numerous aggregation operators while the complex framework 

can be streamlined and analyzed more efficiently. Generalized aggregation operators have 

become increasingly important in decision-making (DM) theory due to the growing 

complexity and diversity of DM problems.  

These unified aggregation operators are furnished upon numerical examples from 

MEMADM and MADM problems as applications. Finally, a comparative analysis with some 

existing methods is conducted to examine the properties and behavior of the proposed 

aggregation operator.  

Keywords: Neutrosophic Cubic Set (NCS); Decision Making (DM); Multi Attribute 

Decision making (MADM); Multi Expert Multi Attribute Decision making (MEMADM). 
 

1. Introduction 

Complex phenomena such as uncertainty occur in daily life problems. Due to the vagueness that is inevitably 

involved in many areas of life problems, the common notions of sets still need to deal with the situation. Many 

successful attempts have been made to handle uncertainty in the system description. Zadeh initiated his idea of 

a Fuzzy set (FS) [22]. In recent years, FS attracted researchers, and it has been applied in the many fields like 

medical sciences, social sciences and engineering. Over time, it is further extended onto the interval-valued 

fuzzy set (IVFS)[23], intuitionistic fuzzy set(IFS)[2], interval-valued intuitionistic fuzzy set(IVIFS)[3], and 

cubic set(CS)[7]. Smrandache proposed a neutrosophic set (NS) [15], which is a generalization of IFS[16]. NS 

is characterized by three independent constituents, the truth, indeterminacy, and falsehood. NS was classified 

into the single-valued neutrosophic set (SVNS)[20]. Later the neutrosophic interval set (INS) [19] was 

proposed. Jun characterized the NS and INS to form a neutrosophic cubic set (NCS)[8]. NCS is a generalization 

of NS, and INS [9], enables us to express more information. This makes NCS a persuasive tool to deal with 

uncertain and imprecise data more efficiently. 

The role of aggregation operators in DM is essential. The DM is a challenging job in an inconsistent and vague 

environment. NCS can minimize the uncertain situation. NCS provides a platform to handle a complex frame 

of the environment to its structure of both interval and crisp value simultaneously. This complexion of NCS 

attracted many researchers to apply it in different fields of DM. Khan et al., [9] proposed Einstein geometric 

operators in NCS. Zhan et al., [24] used NCS on MCDM. Banerjee et al. [4] worked on the grey rational 
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analysis (GRA) method in NCS. Lu and Ye [12] proposed a cosine measure of NCS. Pramanik et al. [13] 

defined similarity measures on NCS. Shi and Ji [14] suggested Dombi aggregation operators on NCS.  

Khan et al. generalized some aggregation operators on NCS in their work as generalized aggregation 

operators[11]. In addition, khan et al. generalized Shapley and Choquet integral aggregation operators in 

NCS[10]. These two generalizations are a precious platform for deducing aggregation operators.  

The aggregation operators have a vast scope in data analysis, machine learning, artificial intelligence, and 

decision-making theory. The aggregation operators enable one to arrive at a single decision, considering various 

degrees of uncertainty and imprecision in complex work frames. The development of a new generalized 

aggregation operator with improved performance and flexibility in the active research area can further expand 

their scope of application. 

1.1 Motivation  

The Choquet integral can handle overall interaction, and shapley takes the interaction among the criteria and 

can measure the weights [17]. Motivated by this ([10,11]) work, the author(s) attempted to further generalization 

of these generalizations so that a single platform is provided to choose an appropriate aggregation operator. 

This will allow one to not only measure the weight but also choose an aggregation operator of choice according 

to the situation.   

1.2 Contribution  

The aggregation operators play a vital role in DM theory to allow a MADM to make a single decision. The 

choice of an aggregation operator significantly impacts the final decision. Overall aggregation operators are 

crucial to handling imprecise and complex DM problems. To address such challenges, generalized aggregation 

operators are needed so that these challenges can be dealt with under one platform. Recently, the author(s) have 

generalized some aggregation operators like neutrosophic cubic generalized aggregation operators, induced 

generalized Shapley Choquet integral operator. 

The methodologies to measure the unified aggregation in NCS. 

-         The generalization-induced generalized neutrosophic cubic unified aggregation operator is provided.  

-         Shapley measures are used to determine the interactive and overall weights. 

-         These aggregation operators are applied and compared with existing methods to test their validity. 

Organization The remaining paper is patterned as follows. The preliminaries are given in section 2. Section 3 

deals with the IGNCUSCI aggregation operator proposed, and other generalizations are deduced. In section 4, 

a numerical example is furnished upon proposed aggregation operators as an application. The data is both 

tabulated and graphically interpreted. Finally, a comparative analysis is conducted to validate the results 

obtained by the current study. 

Table1.1: Table of abbreviation and notations 

Abbreviation/notation Description 

DM Decision Making 



Neutrosophic Sets and Systems, Vol. 56, 2023     84  

 

 
 

Majid Khan, Muhammad Gulistan, Unification of some generalized aggregation operators in neutrosophic cubic 
environment and its applications in multi expert decision making analysis 

 MADM Multi Attribute Decision Making 

MEMADM Multi Expert Multi Attribute Decision making 

FS Fuzzy set 

IVFS Interval value fuzzy set 

IFS Intuitionistic fuzzy set 

IVIFS Interval valued Intuitionistic fuzzy set 

CS Cubic set 

NS Neutrosophic set 

INS Interval Neutrosophic set 

NCS Neutrosophic cubic set 

NCWA Neutrosophic cubic weighted arithmetic 

NCWG Neutrosophic cubic weighted geometric 

IGNCSCIA Induced generalized neutrosophic cubic Shapley 

choquet integral arithmetic 

IGNCSCIG Induced generalized neutrosophic cubic Shapley 

choquet integral geometric 

GNCU Generalized neutrosophic cubic unified 

IGNCUSCI induced generalized neutrosophic cubic unified 

Shapley choquet integral  

Scr Score 

Acu accuracy 

2. Preliminaries 

In this section some preliminaries are considered. 

Definition 2.1[22] A set   , ( ) |   , where the mapping  : 0,1   called a FS and   is 

called a membership degree. 

Definition 2.2[2] A pair       , , |   of mappings where  : 0,1   and 

 : 0,1  is called an IFS. Where  and   are a membership and non-membership function, simply 

denoted by  ,  . 
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Definition 2.3[15] A set    = , ( ), ( ), ( ) |T I F      is called an NS. Where 

: 0 ,1 ,T

      : 0 ,1 ,I

      : 0 ,1F

     
 such that 

0 ( ) ( ) ( ) 3T I F

      and , ,T I F    are called truth, indeterminacy, and falsity. 

Definition 2.4[8] A set      , ( ), ( ), ( ) , ( ), ( ), ( ) |
T I F T I F

         is NCS. Where 

 , ,T I F    is  an INS and  , ,T I F    is a NS such that 0 ( ) ( ) ( ) 3T I F     and 

0 ( ) ( ) ( ) 3T I F    . Denoted by    = , , , , , , , , , , , , , .
T I F T I F T T I I F F T I F

                               
 

Definition 2.5[9] The sum, product, scalar multiplication and th   power on two NCS 

 , , , , , , , ,
T T I I F F T I F

                        
 and  , , , , , , , ,

T T I I F F T I F
N N N N N N N N N N                  is 

defined by 

, , , ,
=

, , , ,

T T T T T T T T I I I I I I I I

F F F F T T I I F F F F

N N N N N N N N
N

N N N N N N

               

   

                   
          

 

, , , , , ,
=

, ,

T T T T I I I I F F F F F F F F

T T T T I I I I F F

N N N N N N N N
N

N N N N N

                                    
        

 

         

1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) ,

=
, , , ,1 1

T T I I

F F T I F

   

    

   

 

               


           

 

   

     

( ) , ( ) , ( ) , ( ) , 1 1 ,1 1 ,
=

1 1 ,1 1 ,

T T I I F F

T I F

 
   



  

                         
     
 

 

where   is scalar. 

Definition 2.8[11] The GNCU aggregation operator is generalization of some aggregation operators 

defined by,  

1/
1/

1 2
1 1

, ,...,
j

j

q
q

m n
j

n j i i
j i

GNCU C w




 

                 

    

jC  is relevance of sub-aggregation operator with 0 1jC   and 1jC  , 
q

pw  is the 𝑝th weight 

of qth weight vector with 0 1q

pw   and 
1

1
m

j

i
i

w


 , j R   is a parameter  and A i  is NCS. The 

parameter q ranges,  0,q  . Usually, 
j  remain unchanged however in complex types of 

aggregations one can assigned different values to 
j . 

Definition 2.9 [5,17] The Shapley index is defined as 
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Where 𝑢,  and 𝑣 respectively denotes the cardinalities of 𝑁 𝐾 and 𝐿.  denotes fuzzy function of 

fuzzy measure   on 𝑁.  

Definition 2.10[5,17] Meng proposed generalized Shapley index by   fuzzy measure   on N by  
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where   fuzzy measure expressed as  
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    measure of 𝜆. Furthermore, if  𝑆 = {𝑘}, then  
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Arithmetic 𝜆 −Shapley Choquet integral operator as  

        
 

 
 

 
 

   
 

 
1

( ) ( ),
1

, ,

Sh
S

n

TN
ъ

Sh Sh

T T T

C k m k m

where N N

 

  

  

    



   

 



 
   

 

   
     

   


 

for ( )   as  (1),..., ( )    present the permutation of  1,...,  such that 

(1) ( )( ) ... ( )k m k m   and  1,...,T m m  with ( 1)T   .  

Geometric 𝜆 −Shapley Choquet integral operator as 

            

 
 

 
 

   
 

 
1

( ),
1

, ,

T

Sh
S N

Sh Sh

T T T

C k m k m

where N N





  

  

    



   

 
    

 
 

 



   
     

   


 

for ( )   as  (1),..., ( )    present the permutations of  1,...,  such that 

(1) ( )( ) ... ( )k m k m   and  1,...,T m m  with ( 1)T   . 
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Definition 2.11[10] Let                   = , , , , , , , , ,
T I F

L U L U L U

T T I I F F                         
     
     

where  

( = 1,..., )  be the collection of NCS, and   be a fuzzy measure on  1,...,T    such that ( ) u    , 

then the IGNCSCIA operator is defined as 

     
 

1/

1 1
1

, ,..., ,

q
q

T
IGNCSCIA u u k

 



 

  
           

, where (0, )q  and ( )   as 

 (1),..., ( ),..., ( )    being the permutation of  1,.., ,..,  such that, (1) ( )( ) ... ( )k k     and 

 1,...,T     with ( 1)T   . 

Definition 2.12 [10]Let                   = , , , , , , , , ,
T I F

L U L U L U

T T I I F F                         
     
     

where  

( = 1,..., )  be a collection of NC values, and   be a fuzzy measure on  1,...,T    such that 

( ) u    , then the IGNCSCIG, operator is defined as operator is defined as 

          

1 1
1

1
, ,..., ,

T

IGNCSCIG u u q k
q




 



 
   
 


 

 
     
 
 

, where (0, )q  and ( )   as 

 (1),..., ( ),..., ( )    extant the permutation of  1,.., ,..,  such that, (1) ( )( ) ... ( )k k     and 

 1,...,T     with ( 1)T   . 

Definition 2.13 [9] For an NCS  , , , , , , , ,
T T I I F F T I F

                        
, the score is defined as 

   =
T F T F T F

Scr              

Definition 2.14 [9] For an NCS  , , , , , , , ,
T T I I F F T I F

                        
, the accuracy is defined as 

  
1

( ) =
9 T I F T I F T I F

Acu                . 

Definition 2.15 [9] Let 1 , 2  be two NCS. Then  

1).    1 2 1 2> >Scr Scr     

2). If    1 2Scr Scr    

i).    1 2 1 2>Acu Acu      

ii).    1 2 1 2=Acu Acu      
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3 Induced Generalized Neutrosophic Cubic Unified Shapley Choquet Integral Aggregation Operator 

A complex frame of work in decision-making is a scenario that typically requires consideration of multiple and 

conflicting objectives, uncertainty, and ambiguity. The goal is to find a solution that balances these factors and 

satisfies the decision-maker's preferences as much as possible. To handle such complexity, the generalization 

provides a better platform. Hence, aggregation operators are a crucial part of DM theory. Many aggregation 

operators like arithmetic, geometric, hybrid, Shapley Choquet integral operators, and many more are defined so 

for. The central theme of this section is to unify the generalized aggregation operator [11] and induced 

generalized Shapley-Choquet (arithmetic and geometric) aggregation operator [10] to a single aggregation 

operator that balances inconsistent and uncertain information in the data and satisfies the decision maker's 

preferences as much as possible. This generalization is named an induced generalized neutrosophic cubic 

unified Shapley Choquet integral (IGNCUSCI) aggregation operator. 

The IGNCUSCI operator is defined as; 

   
 

  

1/
1/

1 1
1 1

, ,..., ,

j

j

i

q
q

j
m n

n n j iT
j i

IGNCUSCI u u C k






 
 

                          

(3.1) 

jC  is relevance of sub-aggregation operator with 0 1jC   and 
1

1
m

j
j

C


 , 
j

iw  is the ith weight of jth 

weighing vector with  0,1j

iw   and 
1

1
m

j

i
i

w


 , j R   is a parameter  and A i  is NCS. The parameter q

ranges,  0,q  . The parameter q ranges,  0,q  . Usually, 
j  remains same but different values will 

be assigned in complex types of aggregations. 

3.1 The Generalized Neutrosophic Cubic Unified Aggregation Operator 

For i i iu     for all 𝑖, shapley measures and choquet integral are considered, the equation (3) 

reduces into GNCU aggregation operator. The GNCU aggregation operator is generalization of some 

aggregation operators defined by, 

  

1/
1/

1 2
1 1

, ,...,
j

j

q
q

m n
j

n j i i
j i

GNCU C w




 

                 

       

 (3.1..1) 

jC  is relevance of sub-aggregation operator with 0 1jC   and 1jC  , 
q

pw  is the 𝑝th weight 

of qth vector with 0 1q

pw   and 1q

p

p

w  , j R   is a parameter  and A i  is NCS. The parameter 

q ranges,  0,q  . Usually, 
j  remain unchanged however in complex types of aggregations 

different values can be assigned. 

Considering the types of problem under discussion different families of aggregation operators are 

analyzed by values are assign to 
j  and q . Some aggregation operators are deduced by assigning 

the values. 

 If 1q   and 𝐶1 = 1, 𝐶2 = 𝐶3 = ⋯ = 𝐶𝑛 = 0 , the GNCU aggregation operator reduces to 

neutrosophic cubic weighted arithmetic NCWA operator. 

 1 2
1

, ,...,
n

n i i
i

NCWA w
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 If 1q   and 𝐶2 = 1, 𝐶1 = 𝐶3 = ⋯ = 𝐶𝑛 = 0 , the GNCU aggregation operator reduces to 

neutrosophic cubic weighted arithmetic NCOWA operator. 

 1 2 ( )
1

, ,...,
n

n i i
i

NCWA w


      , where ( )i  represents ordering position. 

 If 1, 1q    and 𝐶1 = 1, 𝐶2 = 𝐶3 = ⋯ = 𝐶𝑛 = 0, the GNCU aggregation operator reduces to 

neutrosophic cubic weighted arithmetic NCWA operator. 

   1 2

1

, ,...,
iwn

n i

i

NCWG


     . 

 If 1, 1q    and 𝐶2 = 1, 𝐶1 = 𝐶3 = ⋯ = 𝐶𝑛 = 0, the GNCU aggregation operator reduces to 

neutrosophic cubic weighted arithmetic NCWA operator. 

   
( )

1 2

1

, ,...,
iwn

n i

i

NCWG




     , where ( )i  represents ordering position. 

 If 2, 1q    and 𝐶1 = 1, 𝐶2 = 𝐶3 = ⋯ = 𝐶𝑛 = 0, the GNCU aggregation operator reduces into 

NCQA. 

 
1/2

2

1 2
1

, ,...,
n

j

n i i
i

NCQA w


 
      

 
 

Assigning different values to 
j  and ,  some other family of aggregation operators can be reduced. 

These values depend on the type of problem under discussion. 

The averaging aggregation operators have a most practical operator among their competitors, but in some 

situations, other operators like geometric, quadratic, cubic operators are in a much better position to evaluate 

the values. 

 If 1    and for all j, the aggregation operator is deduced to NCUA. 

 1 2
1 1

, ,...,
m n

j

n j i i
j i

NCUA C w
 

         

 If 1, 1    and for all j, the aggregation operator is deduced to NCUG. 

 1 2
1 1

, ,..., j

m n
w

n j i
j i

NCUG C
 

        

 If 2, 1    and for all j, the aggregation operator is deduced to NCUQA. 

 
1/2

2

1 2
1 1

, ,...,
m n

j

n j i i
j i

NCUQA C w
 

 
       

 
  

 If 0, 0   and for all j, the aggregation operator is deduced to NCGUG. 

 1 2
1 1

, ,..., j

m n
w

n j i
j i

NCGUG C
 

       

 If 2, 2    and for all j, the aggregation operator is deduced to NCQUQA. 

 

1/2
1/2

2 2

1 2
1 1

, ,...,
m n

j

n j i i
j i

NCQUQA C w
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Note that the complex and simple aggregation operators can be studied by assigning different 

values not only to   and  but to the weight as well. 

 

 

3.2 Induced generalized neutrosophic cubic unified choquet integral aggregation operator.  

In this section some complex aggregation operators are obtained from IGNCUSCI. Observe that different 

scenario may be constructed by assigning different values to   and . The families of aggregation operators 

can be deduced by assigning different values to  and q  in IGNCUSCI and 𝐶1 = 1, 𝐶𝑗 = 0 for 𝑗 > 1 .the 

following family of aggregations operators can be obtained. 

3.2.1 Induced generalized neutrosophic cubic Shapley choquet arithmetic aggregation operators. 

In this subsection the family of IGNCSCA operator is reduced from IGNCUSCI. 

 If 1  ,  the IGNCUSCI (3.1.1)is reduced to IGNCSCIA operator. 

     
 

1/

1 1
1

, ,..., ,
i

q
q

n n i Ti
IGNCSCIA u u k

 





  
           

      (3.2.1) 

 If 1q   , IGNCSCIA(3.2.1) reduced into INCSCIA. 

     
 

1 1
1

, ,..., ,
i

n n i Ti
INCSCIA u u k

 





  
        

  
 

 If
i iu    for each i, IGNCSCIA(3.2.1) reduced into GNCSCIA. 

     
 

1/

1
1

,...,
i

q
q

n i Ti
IGNCSCIA A A k

 





  
         

 

 If 
i iu    and 1q   for each i, IGNCSCIA (3.2.1) reduced into NCSCIA. 

     
 

1
1

,...,
i

n i Ti
INCSCIA A A k

 





  
      

  
 

3.2.1 Induced generalized neutrosophic cubic Shapley choquet geometric aggregation operators. 

In this subsection the family of IGNCSCG operator is reduced from IGNCUSCI. 

 If 1  , the IGNCUSCI reduced into IGNCSCIG. 

          

1 1
1

1
, ,..., ,

T
i

i
i

IGNCSCIG u u q k
q




 

 
    
 

 


 
     
 
 

      (3.2.2) 

 1q   , IGNCSCIG (3.1.2) reduce into INCSCIG. 

         

1 1
1

, ,..., ,
T

i

i
i

IGNCSCIG u u k




 

 
    

 
 



 
     
 
 

 

 
i iu    for each i, IGNCSCIG (3.1.2) reduce into GNCSCIG. 

          

1
1

1
,...,

T
i

n i
i

IGNCSCIG A A q k
q




 

 
    
 



 
   
 
 

 

 
i iu    and 1q   for each i, IGNCSCIG (3.1.2) reduce into NCSCIG. 

         

1
1

,...,
T

i

n i
i

IGNCSCIG A A k




 

 
    

 



 
   
 
 

 

4 Application 1 
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In this section a numerical example is furnished upon proposed IGNCUSCI aggregation operator as an 

application. A company is interested in expanding its foreign investment. There is a list of five possible 

alternatives (countries) 𝑁 = {₪1,₪2,₪3,₪4,₪5}, and to choose the best country(alternative) from given list. 

The attribute set is listed as  1 2 3 4, , ,      and attributes are resources, policies, economy, and 

infrastructure. Khan et al., applied different techniques. The proposed operators are applied to the data. The 

comparative analysis is performed at the end for validation of results.  

First the data is transformed into NC form the NC values are. 

      

      

      

      

11

12

1 13

14

15

= 0.70, 0.80 , 0.50, 0.70 , 0.10, 0.20 , 0.90, 0.70, 0.20

= 0.60, 0.80 , 0.40, 0.60 , 0.40, 0.60 , 0.20, 0.30, 0.70

= 0.40, 0.50 , 0.50, 0.60 , 0.40, 0.60 , 0.30, 0.30, 0.30

= 0.60, 0.80 , 0.50, 0.60 , 0.40, 0.50 , 0.50, 0.40, 0.50

= 0.

b

b

b

b

b



      60, 0.70 , 0.40, 0.50 , 0.40, 0.50 , 0.50, 0.40, 0.50

  
  
  
  
  
  
  
   

  

 

      

      

      

      

21

22

2 23

24

25

= 0.60, 0.80 , 0.40, 0.50 , 0.30, 0.30 , 0.90, 0.80, 0.20

= 0.50, 0.70 , 0.40, 0.60 , 0.10, 0.30 , 0.60, 0.40, 0.20

= 0.60, 0.70 , 0.40, 0.60 , 0.30, 0.40 , 0.80, 0.70, 0.50

= 0.5, 0.60 , 0.30, 0.40 , 0.40, 0.50 , 0.40, 0.40, 0.30

= 0.8

b

b

b

b

b



      0, 0.90 , 0.30, 0.40 , 0.10, 0.20 , 0.70, 0.40, 0.30

  
  
  
  
  
  
  
   

  

 

      

      

      

      

31

32

3 33

34

35

= 0.80, 0.80 , 0.40, 0.60 , 0.10, 0.20 , 0.80, 0.90, 0.10

= 0.60, 0.60 , 0.20, 0.30 , 0.40, 0.50 , 0.50, 0.10, 0.30

= 0.70, 0.80 , 0.60, 0.70 , 0.10, 0.20 , 0.50, 0.40, 0.40

= 0.60, 0.80 , 0.50, 0.60 , 0.10, 0.20 , 0.50, 0.70, 0.30

= 0.

b

b

b

b

b



      70, 0.80 , 0.50, 0.60 , 0.10, 0.20 , 0.50, 0.30, 0.40

  
  
  
  
  
  
  
   

  

 

      

      

      

      

41

42

4 43

44

45

= 0.70, 0.70 , 0.30, 0.40 , 0.20, 0.20 , 0.80, 0.60, 0.20

= 0.60, 0.80 , 0.40, 0.40 , 0.20, 0.40 , 0.70, 0.30, 0.50

= 0.50, 0.60 , 0.50, 0.60 , 0.20, 0.30 , 0.60, 0.60, 0.40

= 0.80, 0.90 , 0.30, 0.40 , 0.10, 0.20 , 0.70, 0.50, 0.40

= 0.

b

b

b

b

b



      50, 0.70 , 0.50, 0.50 , 0.20, 0.30 , 0.60, 0.50, 0.30

  
  
  
  
  
  
  
   

  

 

The Shapley measure is used to evaluate the interactive dependence between attribute, so their weight are 

measured by Shapley measure presented in the table.    

Table 4.1: The Criteria along with Fuzzy Shapley Measures 

Λ 𝜇𝜆(Λ) Λ 𝜇𝜆(Λ) 
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𝜙 0 {
1

} 0.664 

{
2

} 0.077 {
3

} 0.593 

{
4

} 0.260 {
1

,  } 0.144 

{
1

, 
3

} 0.659 {
1

, 
4

} 0.327 

{
2

, 
3

} 0.671 {
2

, 
4

} 0.3384 

{
3

, 
4

} 0.858 {
1

, 
2

, 
3

} 0.739 

{
1

,  , 
4

} 0.405 { , 
3

,  } 0.922 

{
2

, 
3

, 
4

} 0.993 Λ 1 

 

These interactive weights are used to measure the weight for the attributes (2.10). 

1 2 3 40.099, 0.010, 0.599, 0.292Sh Sh Sh Sh       .  

In order to apply IGNCUSCI to this numerical problem first 1  , this reduce IGNCUSCI(3.1) into 

IGNCSCIA(3.2.1) operator. Since INCSCIA has different values for q so different values are assigned to q and 

the aggregated values is obtained. Here the values obtained for ꭉ = 1 are written and other values obtained 

from different values of q just tabulated in table so that unnecessary length is being avoided.  

Then the aggregated values of IGNCUSCI calculated for 1,  ꭉ = 1. 

 

      

      

      

   

1

2

3

4

= 0.735, 0.862 , 0.412, 0.557 , 0.158, 0.204 , 0.172, 0.267, 0.191

= 0.594, 0.746 , 0.383, 0.468 , 0.137, 0.329 , 0.531, 0.207, 0.375

= 0.648, 0.750 , 0.528, 0.670 , 0.165, 0.270 , 0.588, 0.516, 0.480

= 0.662, 0.801 , 0.406, 0.511 ,

u

u

u

u



  

      5

0.156, 0.267 , 0.444, 0.449, 0.358

= 0.761, 0.872 , 0.451, 0.528 , 0.093, 0.188 , 0.573, 0.348, 0.369u

 
 
 
 
 
 
 
 
 

  

The alternatives are ranked in IGNCUSCI  1   for different values of ꭉ and rankings are tabulated in Table 

4.2. 

Table 4.2: The Ranking for different values of ꭉ  

Tabulated view of IGNCUSCI  1   for different values of ꭉ 

ꭉ Ranks 

ꭉ = 0.1 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

ꭉ = 0.5 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

ꭉ = 1 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

ꭉ = 2 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

ꭉ = 3 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

ꭉ = 5 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

 

The graphical presentation is given below for IGNCUSCI  1   and different values of ꭉ operators. 
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Figure 4.1 The Graphical Presentation of IGNCSCIA 

To apply IGNCUSCI to this numerical problem first 1   this reduce IGNCUSCI operator into IGNCSCIG 

operator. 

Then the aggregated values of IGNCUSCI  1   calculated. (ꭉ = 1) 

      

      

      

 

31

32

33

34

= 0.644, 0.803 , 0.339, 0.468 , 0.251, 0.271 , 0.888, 0.843, 0.869

= 0.518, 0.663 , 0.286, 0.372 , 0.268, 0.421 , 0.634, 0.343, 0.757

= 0.560, 0.664 , 0.436, 0.597 , 0.261, 0.370 , 0.731, 0.646, 0.598

= 0.540, 0.664 , 0.311, 0.

u

u

u

u



    

      35

414 , 0.317, 0.415 , 0.560, 0.573, 0.714

= 0.645, 0.786 , 0.350, 0.436 , 0.158, 0.260 , 0.665, 0.432, 0.708u

 
 
 
 
 
 
 
 
 

 

The alternatives are ranked in IGNCUSCI  1   for different values of ꭉ and rankings are tabulated in 

Table 4.3. 

Table 4.3: The Ranking Based on values of ꭉ  

Tabulated view of IGNCUSCI  1   for different values of ꭉ 

ꭉ Ranks 

ꭉ = 0.1 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

ꭉ = 0.5 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

ꭉ = 1 ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

ꭉ = 2 ₪1 > ₪3 > ₪4 > ₪5 > ₪2 

ꭉ = 3 ₪3 > ₪1 > ₪5 > ₪4 > ₪2 

ꭉ = 5 ₪3 > ₪1 > ₪5 > ₪4 > ₪2 

₪The graphical presentation is given below for IGNCUSCI  1   and different values of ꭉ. 

0.000 0.100 0.200 0.300 0.400 0.500 0.600

ꭉ=0.1

ꭉ=0.5

ꭉ=1

ꭉ=2

ꭉ=3

ꭉ=5

Aggregation for different values of ꭉ
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Figure 4.2: The Graphical Presentation of IGNCUSCI  1    

Sensitivity Analysis 

The table and figure show that by IGNCSCIG, the aggregated values have different rankings for an alternative. 

Which makes it a sensitive choice to use it for different values of q. Assigning different values to q and 

comparing them with other MADM methods, it is observed that the values near 0 in the aggregation operators 

give results that better match existing methods. This can be overcome by applying a distance-based method like 

the NCCODAS (see [10]). Otherwise, IGNCSCIA has a ranking that agrees with most existing methods. 

Comparative Analysis 

To determine the validity of results obtained by current study different existing techniques are applied on above 

problem. It is worth mentioning that the weight used in these methods were considered from fuzzy Shapley 

measures. The rankings are tabulated in a table. 

Table 4.4: Comparative Analysis with Existence Methods 

Method Ranking 

NC Einstein geometric aggregation operator in MCDM  ₪1 > ₪3 > ₪2 > ₪5 > ₪4 

NC averaging aggregation operators with application MADM  ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

GRA MADM in NCS [14] ₪1 > ₪5 > ₪3 > ₪2 > ₪4 

Cosine measure of NCS for MCDM [15] ₪1 > ₪2 > ₪5 > ₪3 > ₪4 

NCCODAS [10] ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

Proposed IGNCSCIA ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

Proposed IGNCSCIG (𝑞 → 0) ₪1 > ₪3 > ₪5 > ₪4 > ₪2 

Proposed IGNCSCIG (𝑞 > 2) ₪3 > ₪1 > ₪5 > ₪4 > ₪2 

From the table it can be observed that the ranking of proposed aggregation operators matches with MADM 

methods in table with best alternative. Whereas in case of worse alternative at agree with NCCODAS and NC 

averaging. The second-best alternative is also agreed to NC averaging, NC geometric and NCCODAD method. 

It is also observed that IGNCSCIG agree to IGNCSCIA for value (𝑞 ≤ 2) and for (𝑞 > 2) the IGNCSCIG 

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
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ꭉ=0.5
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ranks different than other method in table. By applying IGNCSCIG one must be aware of sensitive due to 

different values of q.  

Application 2 

Cellular companies play a important role in country’s stock market. The capital marcket is affected by the 

performance of these celluar compnies. A company is interested to invest his capital levy in listed companies 

 1 2 3 4, , ,A A A A . Two types of experts are aquired. Attorney 
aD  look legal matters and market maker mD  

expertise in market. Data are collected on the basis of stock market analysis and growth in different areas. The 

three alternatives are 1  trends of stock market,  2  policy directions and  3  annual performance. 

The two experts proposed their DM matrices consist of NCS.  

The equation 3.1.1 for 1, 1q    is applied throughout this application. 

Step 1. We construct the decision maker matrices. 

DM matrix for the aD  is 

   
 

   
 

   
 

   
 

1 2 3

1

2

0.20,0.60 , 0.40,0.60 , 0.10,0.40 , 0.50,0.80 , 0.40,0.60 , 0.20,0.70 ,

0.50,0.80 ,0.70,0.40,0.30 0.40,0.80 ,0.60,0.70,0.50 0.50,0.90 ,0.40,0.50,0.30

0.30,0.50 , 0.60,0.90 ,

0.30,0.60 ,0.30,0.60,

  

     
     
     

A

A
   

 
   

 

   
 

   
 3

0.50,0.90 , 0.10,0.30 , 0.20,0.70 , 0.10,0.60 ,

0.70 0.40,0.80 ,0.80,0.30,0.60 0.40,0.70 ,0.50,0.40,0.70

0.60,0.90 , 0.20,0.70 , 0.20,0.60 , 0.30,0.70 ,

0.40,0.90 ,0.50,0.50,0.60 0.30,0.80 ,0.40,0.6

     
     
     

 
 
 

A
   

 

   
 

   
 

   
 4

0.50,0.90 , 0.70,0.90 ,

0,0.50 0.10,0.50 ,0.50,0.60,0.40

0.40,0.80 , 0.50,0.90 , 0.20,0.70 , 0.40,0.90 , 0.30,0.50 , 0.50,0.90 ,

0.30,0.80 ,0.50,0.80,0.50 0.50,0.70 ,0.60,0.40,0.50 0.30,0.70 ,0.30,0

   
   
   

   
   
   

A
.30,0.80

 
 
 
 
 
 
 
 
 
 
 
 
  
   

    

DM matrix for mD  is 

   
 

   
 

   
 

   
 

1 2 3

1

2

0.30,0.60 , 0.20,0.60 , 0.30,0.80 , 0.40,0.80 , 0.20,0.70 , 0.20,0.60 ,

0.20,0.60 ,0.80,0.70,0.20 0.30,0.80 ,0.60,0.70,0.40 0.30,0.80 ,0.50,0.30,0.50

0.20,0.50 , 0.60,0.90 ,

0.30,0.70 ,0.40,0.80,

  

     
     
     

A

A
   

 
   

 

   
 

   
 3

0.40,0.90 , 0.10,0.40 , 0.40,0.90 , 0.10,0.40 ,

0.70 0.50,0.80 ,0.60,0.50,0.70 0.50,0.80 ,0.60,0.50,0.70

0.50,0.90 , 0.20,0.60 , 0.20,0.50 , 0.20,0.70 ,

0.30,0.80 ,0.70,0.70,0.80 0.50,0.80 ,0.60,0.7

     
     
     

 
 
 

A
   

 

   
 

   
 

   
 4

0.30,0.50 , 0.30,0.90 ,

0,0.20 0.20,0.50 ,0.60,0.50,0.40

0.30,0.50 , 0.30,0.90 , 0.40,0.70 , 0.20,0.80 , 0.20,0.60 , 0.50,0.90 ,

0.20,0.50 ,0.60,0.50,0.40 0.30,0.70 ,0.60,0.70,0.70 0.20,0.80 ,0.40,0

   
   
   

   
   
   

A
.40,0.80

 
 
 
 
 
 
 
 
 
 
 
 
  
   

  

 

Step2. Let  = 0.4,0.6 ,
T

W  then the single matrix corresponding to weight W is. 
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1 2 3

1

0.255,0.600 , 0.193,0.606 , 0.269,0.658 ,

0.288,0.673 , 0.443,0.800 , 0.120,0.638 ,

0.337,0.699 , 0.349,0.868 , 0.388,0.848 ,

0.765,0.604,0.235 0.600,0.700,0.477 0.462, 0.388,0.222

  

     
     
    
    
    
     

A

 
 
 

 
 
 

 
 
 

2

0.235,0.558 , 0.235,0.558 , 0.525,0.867 ,

0.600,0.900 , 0.600,0.900 , 0.152,0.600 ,

0.300,0.663 , 0.300,0.663 , 0.462,0.845 ,

0.362,0.736,0.700 0.362,0.736,0.700 0.337, 0.462,0.330





     
     
     
     
     
     

A

 
 
 

 
 
 

 
 
 

3

4

0.538,0.900 , 0.200,0.538 , 0.368,0.632 ,

0.356,0.838 , 0.235,0.700 , 0.421,0.900 ,

0.342,0.848 , 0.428,0.800 , 0.161,0.500 ,

0.632,0.632,0.713 0.530,0.663,0.288 0.563, 0.543,0.400

0

     
     
     
     
     
     

A

A

 
 
 

 
 
 

 
 
 

.510,0.800 , 0.303,0.700 , 0.235,0.558 ,

0.346,0.632 , 0.264,0.838 , 0.500,0.900 ,

0.242,0.745 , 0.388,0.700 , 0.242,0.765 ,

0.500,0.613,0.381 0.600,0.604,0.612 0.362, 0.362,0.800







     
     
     
     
     
     







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Step3. Let the weights of attributes are  = 0.350,0.300,0.350 ,W  the aggregated value is. 

 
 
 

 
 
 

 
 
 

1

2

3

0.238,0.620 ,

0.288,0.792 ,

0.357,0.815 ,

0.632,0.576,0.285

0.443,0.766 ,

0.216,0.592 ,

0.538,0.780 ,

0.483,0.573,0.528

0.350,0.662 ,

0.334,0.814 ,

0.313,0.750 ,

0.579,0.613,0.444

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 

A

A

A

 
 
 

4

0.333,0.677 ,

0.363,0.779 ,

0.289,0.740 ,

0.491,0.536,0.569

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  

A
 

Step4. The alternatives are ranked by score function. 

     1 2 3= 0.032, = 0.055, = 0.084S S SA A A  and  4 = 0.097S A , 

3 2 1 4> > >A A A A . The desirable alternative is 3A . 

Conclusion 

The generalization of aggregation operators plays a critical role in DM and make DM theory more 

manageable. In this work a unified generalized aggregation operator IGNCUSCI is proposed to counter such 

situation. The IGNCUSCI can generate a bunch of aggregation operators by assigning value to constraints. 

Application 1 is evaluated by (3.2.1, 3.2.2) and tested with existing method so that their validity and 

applicability be tested. It is found that in the case of (3.2.2) a sensitivity arises which needs to be kept in mind. 
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Application 2 is evaluated using MEMADM applied on (3.1.1). Both applications provide plate form to apply 

aggregation operators on MADM and MEMADM. 

Remark 

This idea can be extend to some other aggregation operators like Bonferroni Shapley choquet integral 

aggregation operators. 

Compliance with ethical standards 

Conflicts of Interest: The authors declare no conflict of interest. 
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Abstract: With the goal of profit maximization and overage control, a mathematical model in a 

single valued triangular neutrosophic fuzzy environment has been designed to fulfil the demands 

of the industrial sectors during pandemic situations. This research presents that overage is a crucial 

factor because even in well-arranged businesses, some proportion of the items might be in overage 

during a prescribed time interval. Well-planned inventory is important to the successful operation 

of healthiest businesses. The costs of occurrence of overage factors are converted to fuzzy model, 

and the overall profit is calculated using the signed distance technique and compared using a 

numerical example. To determine how the overage will influence the overall system, a sensitivity 

analysis is undertaken. The ideal amount that provides the maximum value of the projected profit 

per unit of time is found in both crisp and fuzzy models. The suggested maximizing model will 

undoubtedly aid decision-makers in dealing with overage circumstances induced by pandemic 

social distance. The new method of this research is to model the merger of profit maximization and 

overage concept in the framework of COVID-19 to benefit the inventory management and supply 

chain sectors. 

Keywords: EOQ model; Neutrosophic fuzzy; Profit maximization; COVID-19; Signed distance 

method 

 

 

1. Introduction 

COVID-19 (Coronavirus disease 2019) is a disease which has become a global pandemic and is 

rapidly spreading [1]. The disease had spread to almost all countries, territories and areas by 8 

October 2020. Despite the installation of new production technology, production sectors require 

human resources to run and oversee the manufacturing process, as well as supervise and exercise 

inventory management to minimise shortages. Guo et al. [2] describes the status update on 

COVID-19 origin and transmission. When lockdown is imposed, however, the manufacturing 
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process is slowed and inventory levels are left uncontrolled. Every manufacturing company has 

many layers of inventory, such as raw items [3]. Economic decline occurs because delivery of these 

types of items is extremely unlikely. These new comers collect the bare minimum of goods. The issue 

now is that if the situation is resolved, the inventory replenishment plan would be disrupted. The 

stock on hand accumulates, when the same system of inventory up gradation is continued, or the 

inventory police planner, can alter the system after calculating the required inventory level to be 

purchased while taking into consideration the current extra stock on hand. There is a stumbling 

block in managerial decision-making process; it is the issue of inventory quality. The manufacturing 

atmosphere is shattered by a mix of inventories with varying degrees of quality. Following the 

regular inventory renewal cycle is the best way to avoid such quality impediment situations. 

However, the next pressing concern is what to do with the surplus [4]. Inventory management 

strategies of a Mexican industrial goods firm during the COVID 19 epidemic to retain liquidity and 

improve customer service levels are discussed in [5]. In reference [6], the inventory management at 

functioning in Polish collective buying organisations during the COVID-19 epidemic were studied.  

Relph [7] used the phrase "overage" to characterize it. He highlighted the elements that contribute to 

overage inventory in his study work on the subject, and said that overage inventory has some 

beneficial effects on effective supervision. Ritha and Jayanthi [8] expanded the concept to a fuzzy 

model since it was so compatible. These models focused on single-item inventory, but when 

multi-item inventory is considered, the single-item overage inventory model becomes an overage 

inventory management model for multi-item inventory. This study offers an inventory approach to 

address inventory management errors induced by COVID-19 social distance. Harris [9] was the first 

to establish an economic order quantity model, and Taft [10] was the first to develop a production 

inventory model. These two models serve as the foundation for inventory models. Models of 

inventory with shortfall costs, Backlogs, price breaks, trade discounts, deteriorating products, and 

environmental sustainability were all formulated to tackle the issues individually or concurrently. 

There are several shortage inventory models, and they have been coupled with other inventory 

management issues. Many studies have been published in the previous two decades in which 

demand is price dependent. Fuzzy EOQ model was developed by many researcher, for instance, 

[11], [12]. 

Pakhira et al. [13] during a shortage, applied the effect of memory to an inventory problem 

describing the demand function varying with price. Under fuzzy choice factors, Garai [14] presented 

an inventory problem involving time-varying holding cost. Indrajitsingha et al. [15] discussed a two- 

warehouse problem in partial- backlogging and fuzzy Environment. Many articles have been 

written about price-dependent demand in [16], [17] and [18]. Indrajitsingha et al. [19] has developed 

an EOQ model for perishable products during the COVID-19 pandemic. Dey et al. [20] developed a 

model assuming the discrete setup cost, varying safety factor, and the demand as a function of price. 

In the midst of a pandemic, a method for managing disruptions in supply chain was developed in 
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[21]. Afterwards, Deshmukh and Haleem [22] designed a mathematical model for manufacturing in 

the after-COVID-19 period.  

A customer's daily need may vary from day to day in reality. Because of a lack of historical data or 

an abundance of information, evaluating a demand distribution is useful. Demand and different 

inventory model elements have lately been viewed as separate forms of fuzzy numbers by certain 

scholars. The neutrosophic set is concerned with its relationships with other aspects of the 

conceptual spectrum. A new strategy for resolving completely neutrosophic linear programming 

problem has been developed Abdel-Basset [23]. The neutrosophic set is a versatile and widely used 

formal framework for analysing data sets that contain uncertainty. Mondal et al. [24] presented 

optimal policy for stock problem with restricted storage capacity using Neutrosophic sets. Mullai 

and Surya [25] formulated a problem with price break using neutrosophic sets, Mullai et al. [26] and 

Mullai et. al. [27] used a single valued neutrosophic set to construct multiple inventory models. 

Surya and Mullai [28] originated on the premise of quick return for faulty items in their 

neutrosophic lot-size model. Pal and Chakraborty [29-30] developed a triangular neutrosophic-based 

EOQ model for non-instantaneously decaying items under scarcity conditions. Authors in [32-35] developed 

many optimization model in neutosophic environment. In a neutrosophic paradigm, the work could 

readily manage any company's inventory system. When uncertain and unexpected circumstances 

arise in the inventory system, this approach offers more accurate results than prior methodologies. 

To demonstrate the model's outputs, a sensitivity analysis for crisp and neutrosophic sets is 

provided, and the findings are briefly reviewed. However, overage models are not well-defined, 

thus this study sheds light on the state of overage inventory of several goods, with a particular focus 

on the pandemic epidemic. Overage management, trash disposal, and product dispersion are all part 

of this profit maximization inventory model. 

This paper answers key questions as follows:   

(1) Why does this paper apply COVID-19 inventory crisis combating model in neutrosophic 

environment instead of any other models?  

COVID-19's spread has sparked one of the most devastating pandemics in contemporary 

human past times. Humanity is still now in the early stages of learning about this terrible 

sickness, and dealing properly with such a big public disaster is a critical issue. Although 

there are differences in human natural semantics, the lack of knowledge makes it worse. The 

Neutrosophic set approaches are a useful tool for representing the ambiguity of genuine 

human semantic expression, as well as the analysis of partial and uncertain data. For 

example, a person providing their opinion on a product's quality, with 0.7 indicating 

"possibility that the quality is good," 0.2 indicating "possibility that he or she is unsure about 

quality," and 0.5 indicating "possibility that the quality is not good." Then this set is 

represented by a single neutrosophic number (0.7, 0.2, 0.5), where. 0 0.7 0.2 0.5 3    . 

So the benefit of the SVNS is that any indeterminacy updating in your day-to-day life if a 
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few people work on decisions that aren't certain, that set corresponds to the neutrosophic 

set. Other fuzzy models do not take into account this uncertain fact. Because it parallels 

human thinking and decision-making, it gives a remarkably efficient solution to difficult 

issues in all areas of life. 

(2) What is the practical implication of this model? 

The suggested maximizing model will undoubtedly aid decision-makers in dealing with 

overage circumstances induced by pandemic social distance. 

The present paper is arranged below: Basic definitions involving Neutrosophic sets are provided in 

section 2.  In section 3, we present some assumptions & notations. In section 4, the proposed model 

as well as methodology is demonstrated. Numerical experimentation is executed in section 5. In 

sections 6 and 7, graphical representation and sensitivity analysis have been given, respectively. In 

Section 8, some result and discussion are done based on the numerical study and in section 9 

concluding remarks of the whole model and future scope have been discussed. 

2. Preliminaries 

In this section, the required preliminaries are explained here, and they are particularly relevant for 

the suggested model.  

Definition 2.1. [31] Neutrosophic set  

A neutrosophic set A  in the universal set U defined by a truth-membership function
A

T , an 

indeterminacy-membership function
A

I , and a falsity-membership function
A

F    ,
A A

T x I x  

and  
A

F x  are real members of [0,1]. Then, 

              , , , : , , , 0 ,1
A A A A A A

A x T x I x F x x U T x I x F x       . No restriction is 

applied on the sum of    ,
A A

T x I x  
A

F x and, so      0 3
A A A

T x I x F x     . 

Definition 2.2. [29] Triangular single valued neutrosophic numbers of Type 1.  

A triangular single valued Neutrosophic number of Type 1 is referred as 

 1 2 3 1 2 3 1 2 3, , ; , , ; , ,NeuA a a a b b b c c c  whose truth membership, indeterminacy, and falsity 

membership is defined as follows:  
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Here, 0 ( ) ( ) ( ) 3,
Neu Neu Neu

Neu
A A A

T x I x F x x A       

Definition 2.3. [29] Alpha cut  

The parametric form of the triangular single-valued neutrosophic number NeuA  is presented as: 

             
, ,

, ; , ; ,Neu L R L R L RA A A A A A A
  

        
. 

Here,    1 2 1LA a a a    ,    3 3 2RA a a a       2 2 1LA b b b   

   2 3 2RA b b b       2 2 1LA c c c       2 3 2RA c c c     is the alpha cut of 

the NeuA . Also,      0,1 , 0,1 0,1and     .     

2. Assumptions and Notations 

2.1 Assumption  

(a) The greatest stock level is exceeded on account of any of the following factors: insufficient 

transportation services, climatic barriers, natural disasters and lockdown during 

COVID-19 pandemics. 

(b) It is assumed that demand changes as and when the selling price of the product changes. 

Mathematically, ( )D S a bS   . Here, a is a positive constant and varies with selling 
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price (S), and 0
a

b
S

  . Further, a and b  are assumed as triangular single valued 

neutrosophic fuzzy numbers.  

(c) The expense of obtaining a new customer is referred to as the acquisition cost. 

(d) The products are of the partly degraded kind. 

(e) There is no end to the planned horizon. 

3.2  Notations 

 Q   : Order Quantity 

 P   : The proportion of Q occurrences that cause overage in coming cycle.  

 f P   : Density functions of probability for P. 

K    : Placing an order has a set price.  

H    : The greatest stock, per unit of time. 

SIH  : Keeping a unique inventory of cost per unit of time. 

S   : Items in maximum supply are sold at a unit selling price. 

V   : Selling price per unit of overage products, v < s.  

R    : Re-novating an overage item's cost per unit. 

dcW   : The expense of removing the goods from the landfill. 

dP    : The percentage of overage times which is discarded. 

( )df P  : The density function. 

pcP   : Cost of product dissemination. 

A    : Cost of acquiring a new consumer. 

N    : Total number of new clients gained. 

T    : Duration of the cycle. 

4. Model Development 

 4.1. Crisp Model 

The proposed model is a progression of the client acquisition and overage management paradigms. 

In order to restore the overage to the maximum stock level, this model takes into account the 

inventory levels of different items. Overage occurs when inventory surpluses and deficits exceed the 

maximum stock level. Consider the current situation: before to the spread of COVID 19, the 

manufacturing sectors were operating with their inventory levels. When a firm closes at time t, it has 

three inventory levels, item 1, item 2, and item 3. If the scenario is restarted at time 1t , the company's 

normal operations begin, which include ordering, manufacturing, and marketing. Assume these 
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three things are the raw ingredients or partially finished goods that will be used to create the final 

product. The time period 1t t  influences the quality of three things. If 
1t t t  , then an overage 

situation can be avoided by using a various inventory ordering procedure. ( t  , the given time for 

quality verification of the products, assuming that the physical properties of the inputs are uniform) 

If 
1t t t  , the inventory replenishment pattern remains unchanged, and overage occurs.  

The models are created based on the above premise. The components in this suggested model are 

somewhat decaying in nature, which is one of the underlying assumptions. We have the following 

equations:  

  1    V ) P(TRU DDQ PS                                                               (1) 

   
2

2 2

pcdc d
TC SI

DPW PP DKD NAD HQ QP
U Q RPD H H

Q Q Q Q
                        (2) 

The total profit per unit time as: 
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 1    V 
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Q Q
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D
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D
P

Q

 
 
   
 
 


  



  


              (3) 

Since dP  is a random variate, therefore, the expectation of (1),  ETPU Q  is presented as:  
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  (4)        

The Optimal order quantity 

                                       
 

 2

2 ( ) ( )

( )

dc d pc

SI

D K NA W E P E P P
Q

H E P H H

  


 
           (5)                      

4.2 Fuzzy Model 

It is uncommon t to specify each and every parameter exactly due to the ambiguity in the environment. To account 

for more realistic situations, it is possible to assume that a few of the parameters, such as 

, , , , Sa b D H H and R alters under certain bounds. Let , , , , ,SIa b D H H and R  be fuzzy neutrosophic 

numbers. Then, we obtain 

     ' ' ' " '' "

1 2 3 1 2 3 1 2 3, , , , , , , ,a a a a a a a a a a  
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     ' ' ' " '' "

1 2 3 1 2 3 1 2 3, , , , , , , ,b b b b b b a b b b  

     ' ' ' " '' "

1 2 3 1 2 3 1 2 3, , , , , , , ,D D D D D D D D D D  

     ' ' ' " '' "

1 2 3 1 2 3 1 2 3, , , , , , , ,H H H H H H H H H H  

     ' ' ' " '' "

1 2 3 1 2 3 1 2 3, , , , , , , ,SI SI SI SI SI SI SI SI SI SIH H H H H H H H H H  

     ' '' ' " '' "

1 2 3 1 2 3 1 2 3, , , , , , , ,R R R R R R R R R R  

We defuzzify using the signed distance method.  

The signed distance of     ' ' ' " '' "

1 2 3 1 2 3 1 2 3, , , , , , ,B B B B B B B B B B  is presented as 

 
' ' ' " " "

1 2 3 1 2 3 1 2 32 2 2
,0

12

B B B B B B B B B
d B

       
  

The neutrosophic total cost is given by 
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The defuzzified neutrosophic total cost using above signed distance method is given by 
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                                                                                                              (7) 

To find the optimal solution by taking the derivative of   ,0TPd U Q  relative to Q and then equating it to zero, 

we get 
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5. Numerical Example  

Case study: To demonstrate the situation, suppose the demand of a product fall due to insufficient 

transportation services, climatic barriers, natural disasters and lockdown during COVID-19 

pandemics etc. In this situation, business model encounters the fall in the forecast requirement for 

the item 1, item 2 and item3. And the inventories goes up maximum into overage. A numerical 

example using the following inputs, as in Table 1, is used to validate the proposed model.  

Table 1. Input data 

Parameter Item 1 Item 2 Item 3 

a  50,000 unit / year 50,000 unit / year 50,000 unit / year 

b  50 50 50 

K  200 / cycle 220 / cycle 230 / cycle 

H  5 / unit / year 4 / unit / year 6 / unit / year 

SIH  
6 / unit / year 7 / unit / yea 8 / unit / yea 

S  50 / unit 60 / unit 55 / unit 

V  35 / unit 40 / unit 35 / unit 

R  5 / item 6 / item 5 / item 

A  30 / customers 35 / customers 40 / customers 

N  2 3 4 

dcW  
3 / unit 4 / unit 5 / unit 

pcP  
300 / cycle 320 / cycle 330 / cycle 

 

It is assumed that dP and P  follows uniform distribution with the below density function:  

              
4, 0 0.25

( )
0,

P
f P

Otherwise

 
 


   and  
20, 0 0.05

( )
0,

d

d

P
f P

Otherwise

 
 


 

               
2( ) 0.125, ( ) 0.021 ( ) 0.1dE P E P and E P   .  

The following Table 2 demonstrates the optimal results.  
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Table 2. Optimal results for both models 

Types of Models 

 

Items Optimal order 

Quantity 

Expected 

Maximum profit 

Crisp Item 1 3255 2239905.732 

Item 2 3863 2651554.179 

Item 3 3355 2430817.326 

Fuzzy Item 1 3262 1913343.196 

Item 2 3893 2263803.700 

Item 3 3367 2105973.452 

 

6. Graphical representation   

Figures 1 and 2 demonstrate the cost function behavior for both models. The concavity of Figure 

demonstrates that it maximizes overall profit. Figure 3 depicts a comparison of both crisp and fuzzy 

models. Figures 4 and 5 show how different cost functions, such as acquisition and fixed costs, vary.  
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7.  Sensitivity Analysis 

We were able to observe some changes in the final cost by gently changing the parameters in this 

section. By changing each of the parameters by -15 %, -10 %, -5 %, 0 %, +5 %, +10 %, and +15 % this 

study does a sensitivity analysis. We may do a sensitivity analysis for the given situation. We 

changed one of the parameters' percent while leaving the rest alone. We've also looked into the 

whole cost's influence. The findings are summarized in Table 3.  

Table 3:  Percentage change in parameter 

Variation of 

Parameters 

-15 -10 -5 0 5 10 15 

a  1885001 2003289 2121591 2239905 2358231 2476567 2594912 

b  2257653 2251737 2245821 2239905 2233989 2228073 2222157 

K  2240349 2240200 2240052 2239905 2239760 2239616 2239473 

H  2241148 2240722 2240309 2239905 2239512 2239127 2238751 

SIH  
2239936 2239926 2239915 2239905 2239895 2239885 2239874 

S  1943474 2042831 2141642 2239905 2337622 2434792 2531415 

V  2208733 2219124 2229515 2239905 2250296 2260686 2271077 

R  2244358 2242874 2241390 2239905 2238421 2236936 2235452 

A  2240037 2239993 2239949 2239905 2239862 2239818 2239774 

dcW  
2239905 2239905 2239905 2239905 2239905 2239905 2239905 

pcP  
2240576 2240349 2240126 2239905 2239688 2239473 2239261 

 

The below mentioned observations are found with the support of Table 3. 

(i) An increase in the total cost is caused by a percentage change (PC) in demand parameters a, 

selling price in maximum stock, and selling price in overage.  

(ii) Percentage change (PC) in demand parameter b, K , H , SIH , R , A and 
pcP lead a decrease in 

the total cost. 

(iii) Percentage change (PC) in Waste disposal cost of the items not effect of the total cost. 

 Furthermore, we have illustrated below in Figure 6. 
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8.  Results and Discussion  

The difference between collective earnings and costs each cycle is the projected aggregate profit per 

unit of time. Table 2 shows the optimum order quantity for items 1, 2, and 3 to maximize the 

corresponding projected aggregate profit per unit of time. The optimum order quantity Q for each 

item is determined, as well as the predicted maximum profit per unit of time. In the above table 2 we 

also observed that the order quantity of crisp and fuzzy model partially equal but the profit 

decreases in fuzzy model. The total expenses include the costs of upgrading the overage goods, as 

well as disposal and product propagation charges. The entire expenses and income related with 

overage management are represented in this model. The building of inventory is a crucial challenge 

for the manufacturing industries. The proposed model is not specific to any type of manufacturing 

company since it includes all of the basic cost characteristics associated with handling excess 

inventory. The inclusion of environmental costs represents the model's societal relevance in 

encouraging environmental sustainability; moreover, including environmental costs will make the 

model compatible with environmental accounting procedures.  

9. Conclusions 

COVID-19 is a novel experience around the globe. The great nations are running out of endurance in 

their fight against this terrible health disaster, and the only weapon they have left is an absurd 

medicine called "Social Distancing." The introduction of quarantine has wreaked havoc on the 

manufacturing sector. The abrupt curfew interruption disrupted product manufacturing, and the 
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pandemic effect on output resulted in overproduction. In this research, a more generic overage 

model is formulated to address problems of overage during pandemic outbreaks. This model is for 

restoring overstock of several goods to maximum stock levels. The suggested maximizing model 

will undoubtedly aid decision-makers in dealing with overage circumstances induced by pandemic 

social distance. The goal of this work was to look at price dependent linear demand inventory 

models in a fuzzy setting. Because the demand and quality of the overage times is not always 

consistent, it possesses an impact on the overall system. And, in the middle of current variations, our 

fuzzy model aids in estimating the best projected total profit each cycle. The model is also compared 

in two different environments, crisp and neutrosophic fuzzy, in the study. This hazy model stresses 

that customers are more valuable than money and also provides overage control measures. In 

addition, in the middle of current volatility, our fuzzy model aids in estimating the ideal predicted 

total profit each cycle. In this study, we did a sensitivity analysis in a crisp setting to show our case. 

The proposed model may be used to help companies establish production plans in response to 

pandemics and other unanticipated disasters that interrupt the manufacturing process.  

The future scope of this research comprises the investigation of various planning models which 

allows inclusive planning of overage with different environments such as sustainable and fuzzy. The 

proposed model reveals a number of ways to extend the model in other dimensions such as demand 

inversely related to the selling price of the product [37], parabolic holding cost [38], etc. In addition, 

the developed model can be in multi criteria decision and supply chain problems. 
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Abstract: One of the most important concepts in graph theory for dealing with unpredictable 

phenomena is the concept of domination and it has gained attention from many scholars. Recently, 

dominating energy of graph plays a vital role in the field of graph energies. If the fuzzy graph (FG) 

fails to give outstanding results, the neutrosophic set (NS) and neutrosophic graphs (NG) can 

handle the uncertainty correlated with indeterminate and inconsistent information in any 

real-world scenario. Recent studies related to domination energy in fuzzy environment only deal 

with the single membership function. It is more flexible and applicable to use bipolar neutrosophic 

models because they include both positive and negative influencers. Therefore, this paper is based 

on some developments of neutrosophic graph theory to deal with situations where imprecision is 

characterized by positive and negative types of membership functions. A novel concept of the 

dominating energy graph is proposed based on recently introduced concept of bipolar 

single-valued neutrosophic graphs (BSVNG). Moreover, this study analyses the concepts of 

dominating energy graph in BSVNG environment. More precisely, the adjacency matrix of a 

dominating BSVNG as well as the spectrum of the adjacency matrix and their related theory is 

developed with the help of illustrative examples. Further, the domination energy of BSVNG is 

computed. Aside from it, various operations relating to this dominating have been depicted. The 

complement, union, and join of dominating energy in BSVNG have been investigated by using 

appropriate examples and some properties of the dominating energy in BSVNG are established. 

Keywords: Dominating energy; neutrosophic graph; bipolar single-valued neutrosophic graph 

 

 

1. Introduction 

The energy of a graph is defined as the sum of the absolute values of its eigenvalues. This 

concept was proposed by Gutman, motivated by chemical applications. In chemistry, the energy of a 

given molecular graph is interesting because of its relation to the total  -electron energy of the 

molecule represented by that graph. A graph with all isolated vertices c

n
K  has zero energy, while 

the complete graph 
n

K  with n  vertices have energy ( )2 1n − . 

The domination concept in graphs may be utilised to a myriad of issues, including facility 

location, social network analysis, matching theory, coding theory, communication networks, 
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security systems, clutters, and block cutters. For example, to address challenges in facility location 

problems in which the number of facilities such as police stations, fire stations, hospitals, and 

supermarkets is fixed, and one wants to shorten the route that persons must travel to reach the 

closest facility. Provided that the maximum distance to a facility is defined and efforts are made to 

lower the number of facilities required to accommodate everyone, a similar situation develops. 

Furthermore, the domination concept comes up in situations such as monitoring communication or 

electrical networks, finding sets of representatives, and surveying land. 

When considering real life conditions, things are not often precise, and they cannot be described 

by crisp or deterministic models. Thus, the capacity of making precise statements is quite 

challenging. In order to handle these vague and imprecise events, Zadeh [1] introduced fuzzy sets 

together with degrees of membership of elements to these sets . Since that time, ordinary fuzzy sets 

have been extended to intuitionistic, hesitant, orthopair fuzzy sets, and neutrosophic sets.  

Despite all these extensions, fuzzy sets could not handle all types of uncertainties such as 

indeterminate and inconsistent information. In order to tackle this inadequacy, Smarandache [2] 

introduced neutrosophic logic and neutrosophic sets . A neutrosophic set is composed of three 

subsets which are degree of truthiness (T), degree of indeterminacy (I), and degree of falsity (F). 

These subsets are between ]−0, 1+[ non-standard unit interval. Thus, a membership function of a 

neutrosophic number is represented by truth sub-set; non-membership function is represented by 

falsity sub-set; and hesitancy is represented by indeterminacy sub-set. These features constitute the 

superiority of neutrosophic sets over the other extensions of fuzzy sets. We utilize neutrosophic sets 

since their main advantage is the capability in distinguishing relativity and absoluteness of decision 

makers’ preferences. 

Bipolarity refers to the tendency of the human mind to analyze and take responsibility based on 

positive and negative outcomes. The positive analysis is all about reasonable, permitted, 

appropriate, or considered acceptable, while impossible, rejected or forbidden represents negative 

analyses. Furthermore, positive thoughts correspond to the preferences as they interpret which 

objects are preferable to others without rejecting those that do not meet the preferences. Still, 

negative thoughts correspond to the constraints as they interpret which values or objects must be 

declined. Based on these consequences, Deli et al. [3] proposed bipolar fuzzy sets and neutrosophic 

sets to bipolar neutrosophic sets in which positive membership degree, negative membership 

degree, and operations were studied. Bipolar fuzzy sets have a great value in dealing with 

uncertainty in real-life problems and useful in dealing with the positive and the negative 

membership values. 

 

2. Literature review 

In 1978, I. Gutman proposed the idea of "graph energy," which is defined as the sum of the 

absolute values of the eigenvalues of the graph's adjacency matrix. By linking the edge of a graph to 

the electron energy of a type of molecule, the energy of a graph is employed in quantum theory and 

many other applications in the context of energy. Later, Gutman and Zhou [4] defined the Laplacian 

energy of a graph as the sum of the absolute values of the differences of average vertex degree of G 

to the Laplacian eigenvalues of G. Details on the properties of graph energy and Laplacian energy 

can be found in [5]–[11]. 

Meanwhile, after the expansion of fuzzy sets by Zadeh [12], the concept of fuzzy graph was 

initially proposed by Kauffman [13] and Rosenfeld [14] to deal with the fuzziness in graphs. Fuzzy 

graphs are effective for representing the structures of object relationship, where the presence of a 

real object and the link between two objects is ambiguous or uncertain. Some application related to 

fuzzy graph can be found in [15]-[19]. Apart from that, Anjali and Mathew [20] first proposed the 

energy of a graph within the fuzzy set environment. In [21], Praba et al. extend the concept of energy 

in fuzzy graph to the energy of intuitionistic fuzzy graph. Later on, Naz et al. [22]  proposed the 
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novel concept of energy graph considering bipolar fuzzy environment and examined some of their 

properties. Akram and Naz [23] studied on energy of Pythagorean fuzzy graphs and fuzzy digraphs. 

Akram et al. [24] proposed the concept of energy in bipolar fuzzy graph and demonstrate 

multi-criteria decision-making approaches in commercial partnerships and smooth communication 

challenges based on the energy of bipolar fuzzy graphs. Recently, Patra et al. [25] proposed novel 

techniques of graph energy in interval-valued fuzzy graphs and computed eigenvalues using 

max–min operators. 

The concept of domination is one of the most significant problems in graph theory. In 1998, the 

novel concepts of domination in fuzzy graphs was first introduced by Somasundaram and 

Somasundaram [26]. After that, Somasundaram [27] studied the domination in products of fuzzy 

graphs and discussed various operations on fuzzy graphs such as join, union, composition, 

Cartesian product and domination parameters. Ghobadi et al. [28] presented an idea of inverse 

dominating set in fuzzy graph whereas Natarajan and Ayyaswamy [29] initiated the concept of 

strong (weak) domination in fuzzy graphs. Afterwards, the concepts of cardinality, dominating set, 

independent set, total dominating number and independent dominating number of bipolar fuzzy 

graphs was investigated by Karunambigai et al. [30]. Umamageswari et al. [31] introduced the 

concept of multiple dominating set in bipolar fuzzy graph where the k-dominating set and its 

domination number in bipolar fuzzy graph were defined.  

Later on, Muthuraj et al. [32] defined the non-split total strong (weak) domination in bipolar 

fuzzy graph and its various parameters. Muneera et al. [33] studied the domination in regular and 

irregular bipolar fuzzy graphs whereas Akram et al. [34] discussed the different concepts of 

dominating, total dominating, equitable dominating, total equitable dominating, and independent 

and equitable independent sets in bipolar fuzzy graphs. Equitable domination in bipolar fuzzy 

graph, equitable total domination in bipolar fuzzy graph and its various classifications was 

proposed by Muthuraj and Kanimozhi [35]. Recently, Gong et al. [36] presented the concept of 

domination in the fuzzy graph to the bipolar frameworks and determined the related expanded 

concepts of a variety of bipolar fuzzy graphs. 

The study of domination has gained attention and it has now been extended to the neutrosophic 

environment. Hussain et al. [37] introduced the domination number of neutrosophic soft graphs and 

elaborate them with suitable examples by using strength of path and strength of connectedness. 

Later on, Banitalebi and Borzooei [38] extend the study of dominating set in the concepts of 

neutrosophic special dominating set, and define the neutrosophic special domination numbers, 

neutrosophic special cobondage set and neutrosophic special cobondage numbers in neutrosophic 

graphs. Ramya et al. [39] presented the concept of complementary domination in single valued 

neutrosophic graphs (SVNG) and studied the bounds and characteristic of an inverse domination 

number (IDN) in various SVNG. 

Apart from that, the concept of minimum dominating energy was extended to fuzzy graph by 

Kartheek and Basha [40]. This study defined the properties including various upper and lower 

bounds for this energy on fuzzy graphs. Praba et al. [41] analyzed the spreading rate of virus on 

energy of dominating intuitionistic fuzzy graph whereas Kalimulla et al. [42] studied the concept 

energy of an IFG to dominating energy in operations on IFG. This research employed the various 

operations such as complement, union, join, Cartesian product and composition to obtain the value 

of dominating energy. Vijayaragavan et al. [43] obtained the value of dominating Laplacian energy 

in two products such as Cartesian product and tensor product hence studied the relation between 

the dominating Laplacian energy in the products in two IFG. Moreover, Sarwar et al. [44] put 

forward some new concepts of dominating and double dominating energy of m-Polar fuzzy graphs 

and demonstrate a decision model based on m-polar fuzzy preference relations to solve 

multi-criteria decision-making problems. Additionally, Akram et al. [45] proposed novel concepts of 

energy of dominating bipolar fuzzy graph and the energy of double dominating bipolar fuzzy 

graph.  
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Since the emergence of the neutrosophic set, many scholars are intended to integrate the study 

of energy graph, dominating set as well as neutrosophic set. Recently, study from Mullai and 

Broumi [46] proposed the dominating energy in single-valued neutrosophic graph (SVNG). This 

study employed the dominating energy in numerous operations such as complement, union and 

join of neutrosophic graph and provide some theorems related to dominating energy in 

neutrosophic. Table 1 illustrates the contributions related to domination and energy in fuzzy and 

neutrosophic graph. Additionally, Figure 1 shows the development of energy graph, domination 

concept as well as fuzzy and neutrosophic graphs.  

Motivated by [45] and [46], we extend this idea and introduce the novel concepts of dominating 

energy of bipolar single valued neutrosophic graph (BSVNG). Using the notion of eigenvalues of 

bipolar relations, we study interesting properties and bounds for dominating energy. Before looking 

deeply into these ideas, the dominating energy of a BSVNG and the dominating energy of different 

operations on a BSVNG are defined with examples, and certain theorems in dominating energy of 

BSVNG are developed, as well as other conclusions.  

The following is a breakdown of the study’s structure: The initial part introduces the historical 

backgrounds of domination and energy graphs, as well as the concepts of the fuzzy and 

neutrosophic set. In Part 2, some review of the literature regarding the domination and energy graph 

in the fuzzy and neutrosophic environment. Part 3 offers a brief introduction to graphs and the 

neutrosophic set, which will be employed shortly. In Part 4, we establish the dominating energy 

concept in BSVNG and delve into its aspects. Part 5 demonstrates the dominating energy in various 

operations in BSVNG and presented new theorems. Finally, Part 6 concludes with a summary of the 

research’s findings as well as its restrictions and a suggestion for further research.  

 

 

 

Figure 1: Development of energy, domination, and neutrosophic graphs 

 

Table 1: Contributions related to domination and energy in fuzzy and neutrosophic graphs. 
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Studied by Findings  Gaps 

 

Somasundaram & 

Somasundaram (1998) 

[26] 

Proposed domination concept in FG Concentrate only uncertainty and 

ambiguity problem 

Somasundaram (2005) 

[27] 

Studied various operation of domination in 

FG 

Concentrate only a few operations 

Ghobadi et al., (2008) 

[28] 

Proposed inverse dominating in FG Did not consider the bipolarity 

concepts 

Natarajan & 

Ayyaswamy (2010) [29] 

Proposed strong (weak) domination in FG Concentrate only uncertainty and 

ambiguity problem 

Karunambigai et al., 

(2013) [30] 

Studied dominating set in BFG Did not consider the energy concepts 

Umamageswari et al., 

(2017) [31] 

Proposed multiple dominating set of BFG Did not consider the energy concepts 

Muthuraj & Kanimozhi 

(2019) [32] 

Proposed split total strong domination of 

BFG 

Did not investigate the various 

operation 

Muneera et al., (2020) 

[33] 

Studied domination concept in regular and 

irregular of BFG 

Cannot capture the indeterminacy and 

inconsistent information 

Akram et al., (2021) 

[34] 

Proposed various concept of domination in 

BFG 

Did not consider the energy concepts 

Muthuraj & Kanimozhi 

(2020) [35] 

Proposed equitable domination in BFG Did not investigate the various 

operation 

Gong et al., (2021) [36] 

 

Studied domination FG to BFG Did not consider the energy concepts 

Hussain et al., (2019) 

[37] 

Proposed domination number in 

neutrosophic soft graphs 

Did not consider the bipolarity 

concepts 

Banitalebi & Borzooei 

(2021) [38] 

Proposed neutrosophic special domination 

number 

Did not consider the bipolarity 

concepts 

Ramya et al., (2021) [39] Proposed complementary domination in 

SVNG 

Did not consider the energy concepts 

Kartheek & Basha 

(2017) [40] 

Proposed minimum dominating energy in 

FG 

Did not consider the indeterminacy 

and inconsistent information 

Praba et al., (2017) [41] Proposed dominating energy in IFG 

 

Did not consider the bipolarity 

concepts 

Kalimulla et al., (2018) 

[42] 

Proposed dominating energy of IFG in 

various operation 

Concentrate only a few operations 

Vijayaragavan et al., 

(2019) [43] 

Proposed dominating Laplacian energy in 

product of two IFG 

Did not consider the indeterminacy 

and inconsistent information 

Sarwar et al., (2020) 

[44] 

Proposed dominating and double 

dominating energy of m-polar FG 

Did not consider the bipolarity 

concepts 

Akram et al., (2019) 

[45] 

Proposed energy of dominating BFG and 

doble dominating BFG 

Did not consider the indeterminacy 

and inconsistent information 

Mullai & Broumi (2020) 

[46] 

Proposed the dominating energy in SVNG Did not consider the bipolarity 

concepts 
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3. Preliminaries 

This section recalls some fundamental definitions with respect to bipolar fuzzy graph (BFG), 

bipolar single-valued neutrosophic graph (BSVNG) and domination that are necessary for this 

study.  

 

Definition 3.1 [47] 

A bipolar fuzzy graph with a finite set X as the underlying set is a pair of ( ),G V E= , where 

( ),
V V

V  + −=  is a bipolar fuzzy set on X and ( ),
E E

E  + −=  is a bipolar fuzzy relation on X such 

that ( ) ( ) ( )E m n V m V n
v v v v  + + +   and ( ) ( ) ( )E m n V m V n

v v v v  − + +   where 
m n

v v E . We call 

( ),
V V

V  + −=  the bipolar fuzzy vertex set of X and ( ),
E E

E  + −=  the bipolar fuzzy edge set of X.  

 

Definition 3.2 [3] 

A bipolar neutrosophic set A on a non-empty set X is an object of the form  

( ) ( ) ( ) ( ) ( ) ( ) , , , , , , :
A A A A A A

A x T x I x F x T x I x F x x X+ + + − − −=  , 

where , , : 0,1
A A A

T I F X+ + + →     and , , : 1,0
A A A

T I F X− − − → −   . The positive values ( ) ( ) ( ), ,
A A A

T x I x F x+ + +  

denote the truth, indeterminacy and false-memberships degrees of an element x X , respectively, 

whereas, ( ) ( ) ( ), ,
A A A

T x I x F x− − −  denote the implicit counter property of the truth, indeterminacy and 

false-memberships degrees of the element x X , respectively, corresponding to the bipolar 

neutrosophic set A. 

 

Definition 3.3 [48] 

Let ( ), , , , ,
A A A A A A

A T I F T I F+ + + − − −=  and ( ), , , , ,
B B B B B B

B T I F T I F+ + + − − −=  be bipolar neutrosophic graph on a set 

X. If ( ), , , , ,
B B B B B B

B T I F T I F+ + + − − −=  is a bipolar neutrosophic relation on ( ), , , , ,
A A A A A A

A T I F T I F+ + + − − −= , then 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

min , , max , , max , ,

max , , min , , min , ,

, .

B A A B A A B A A

B A A B A A B A A

T xy T x T y I xy I x I y F xy F x F y

T xy T x T y I xy I x I y F xy F x F y

x y X

+ + + + + + + + +

− − − − − − − − −

  

  

 

 

 

Definition 3.4 [49] 

Let ( ),G V E=  be a bipolar single-valued neutrosophic graph (BSVNG) and ,x y V in G , then we 

say that x dominates y if  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ,

, , .

E V V E V V E V V

E V V E V V E V V

T xy T x T y I xy I x I y F xy F x F y

T xy T x T y I xy I x I y F xy F x F y

+ + + + + + + + +

− − − − − − − − −

=  =  = 

=  =  = 
 

4 Dominating energy in bipolar single-valued neutrosophic graphs 

In this section, we consider a BSVNG ( ), , , , , , ,G V E      + + + − − −= , then we define 

( ) ( )1 1 1 1 1 1
, , : 0,1 , , , : 1,0V V     + + + − − −→  → −      and prove that ( )1 1 1 1 1 1

, , , , ,     + + + − − −  is a bipolar 

single-valued neutrosophic set (BSVNS). 
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Definition 4.1 

Let ( )1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  be a dominating BSVNG where 

1
: 0,1 ,V + →    denotes a positive degree of membership, 1

: 0,1 ,V + →    denotes a positive degree 

of indeterminacy, 1
: 0,1 ,V + →     denotes a positive degree of non-membership, 1

: 1,0 ,V − → −    

denotes a negative degree of membership, 
1

: 1,0 ,V − → −    denotes a negative degree of 

indeterminacy and 1
: 1,0V − → −   , denotes a negative degree of non-membership defined such as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

min , , max , , max , ,

max , , min , , min , .

n n n

n nn

m m n m m n m m nv v v

m m n m m n m m nv vv

v v v v v v v v v

v v v v v v v v v

     

     

+ + + + + +

− − − − − +

     = = =     

     = = =     

 

 

Definition 4.2 

Let G  be a dominating BSVNG. Let ,x y V , we state that x  dominates y  in G  if there exists 

strong arc from x  to y . A subset ND V  is called dominating set in G  if for each Ny V D − , 

there exists x  in ND  such that x  dominates y  . 

 

Definition 4.3 

A dominating set ND  of BSVNG is said to be minimal dominating set if for any  , \N Nx D D x  is 

not a dominating set. 

 

Definition 4.4 

The minimum cardinality among all minimal dominating sets is called a domination number of G 

and denoted by ( )N G . 

 

Definition 4.5 

Let ( )1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  be a dominating BSVNG. The adjacency 

matrix of a dominating BSVNG G  is defined as, ( )N jkD
A G d =

 
 where 

( )
, ,

              ,
, ,

1,1,1,
        

1, 1, 1

0,0,0,
                           

0,0,0

jk jk jk

j k

jk jk jk

N

jk j

if v v E

d if j k and v D

otherwise

  

  

+ + +

− − −

 
  
  

 

= =  
− − − 

 
 
 


 

This dominating bipolar single-valued neutrosophic adjacency matrix, ( )ND
A G  can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,N N N N N N ND D D D D D D
A G G G G G G G     + + + − − −=  where 

 

( )
( )                 ,

1            

0                         

N

jk j k

N

jD

if v v E

G if i j and v D

otherwise





+

+

 


= = 



,   ( )
( )                 ,

1            

0                         

N

jk j k

N

jD

if v v E

G if i j and v D

otherwise





+

+

 


= = 



, 
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( )
( )                 ,

1            

0                         

N

jk j k

N

jD

if v v E

G if i j and v D

otherwise





+

+

 


= = 



,   ( )
( )                 ,

1            

0                         

N

jk j k

N

jD

if v v E

G if i j and v D

otherwise





−

−

 


= − = 



, 

( )
( )                 ,

1            

0                         

N

jk j k

N

jD

if v v E

G if i j and v D

otherwise





−

−

 


= − = 



,   ( )
( )                 ,

1            

0                         

N

jk j k

N

jD

if v v E

G if i j and v D

otherwise





−

−

 


= − = 



. 

 

Definition 4.6 

The spectrum of adjacency matrix of a dominating BSVNG G  is defined as 

( ), , , , ,N N N N N ND D D D D D
S S S S S S     + + + − − −

, where , , , , ,N N N N N ND D D D D D
S S S S S S     + + + − − −

 are the sets of eigenvalues of 

( ) ( ) ( ) ( ), , , ,N N N ND D D D
G G G G   + + + −  ( ) ,ND

G − and ( )ND
G − , respectively. 

 

Definition 4.7 

The energy of a dominating BSVNG ( )1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  is defined 

as 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

1 1 1 1 1 1

, , , , ,

, , , , ,

N N N N N N ND D D D D D D

n n n n n n

p p p p p p
p p p p p p

E G E G E G E G E G E G E G     

     

+ + + − − −

= = = = = =

=

 
=   
 
     

 

where          
1 1 1 1 1

, , , ,N N N N N

n n n n n

p p p p pD D D D Dp p p p p
S S S S S        

+ + + − −

= = = = =
= = = = =  and  

1
N

n

pD p
S 

−

=
= . 

 

Example 4.8 

Consider the BSVNG ( ),G V E=  where  1 2 3 4 5
, , , ,V v v v v v= ,  1 2 1 5 2 3 2 5 3 4 4 5

, , , , ,E v v v v v v v v v v v v=  

as shown in Figure 2. Then, the above dominating BSVNG can be written as 

( )1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  

where 
1 1 1 1 1 1

, , , , ,     + + + − − −  are given by 1
: 0,1 ,V + →    1

: 0,1 ,V + →     1
: 0,1 ,V + →     

1
: 1,0 ,V − → −   1

: 1,0 ,V − → −    and 1
: 1,0V − → −    such that 

 

( ) ( ) ( )1 1 1 2 1 5
min , , , min 0.1,0.5 0.1v v v v v  + + + = =   =    

( ) ( ) ( ) ( )1 2 2 1 2 3 2 5
min , , , , , min 0.1,0.2,0.4 0.1v v v v v v v   + + + + = =   =    

( ) ( ) ( )1 3 3 2 3 4
min , , , min 0.2,0.3 0.2v v v v v  + + + = =   =    

( ) ( ) ( )1 4 4 3 4 5
min , , , min 0.3,0.2 0.2v v v v v  + + + = =   =    

( ) ( ) ( ) ( )1 5 5 1 5 2 5 4
min , , , , , min 0.5,0.4,0.2 0.2v v v v v v v   + + + + = =   =    

( ) ( ) ( )1 1 1 2 1 5
max , , , max 0.3,0.2 0.3v v v v v  + + + = =   =    

( ) ( ) ( ) ( )1 2 2 1 2 3 2 5
max , , , , , max 0.3,0.6,0.5 0.6v v v v v v v   + + + + = =   =    

( ) ( ) ( )1 3 3 2 3 4
max , , , max 0.4,0.1 0.4v v v v v  + + + = =   =    

( ) ( ) ( )1 4 4 3 4 5
max , , , max 0.1,0.2 0.2v v v v v  + + + = =   =    

( ) ( ) ( ) ( )1 5 5 1 5 2 5 4
max , , , , , max 0.2,0.5,0.3 0.5v v v v v v v   + + + + = =   =    
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( ) ( ) ( )1 1 1 2 1 5
max , , , max 0.2,0.5 0.5v v v v v  + + + = =   =    

( ) ( ) ( ) ( )1 2 2 1 2 3 2 5
max , , , , , max 0.5,0.2,0.1 0.5v v v v v v v   + + + + = =   =    

( ) ( ) ( )1 3 3 2 3 4
max , , , max 0.2,0.5 0.5v v v v v  + + + = =   =    

( ) ( ) ( )1 4 4 3 4 5
max , , , max 0.5,0.3 0.5v v v v v  + + + = =   =    

( ) ( ) ( ) ( )1 5 5 1 5 2 5 4
max , , , , , max 0.3,0.1,0.3 0.3v v v v v v v   + + + + = =   =    

( ) ( ) ( )1 1 1 2 1 5
max , , , max 0.2, 0.3 0.2v v v v v  − − − = = − −  = −    

( ) ( ) ( ) ( )1 2 2 1 2 3 2 5
max , , , , , max 0.2, 0.3, 0.2 0.2v v v v v v v   − − − − = = − − −  = −    

( ) ( ) ( )1 3 3 2 3 4
max , , , max 0.3, 0.4 0.3v v v v v  − − − = = − −  = −    

( ) ( ) ( )1 4 4 3 4 5
max , , , max 0.4, 0.2 0.2v v v v v  − − − = = − −  = −    

( ) ( ) ( ) ( )1 5 5 1 5 2 5 4
max , , , , , max 0.3, 0.2, 0.2 0.2v v v v v v v   − − − − = = − − −  = −    

( ) ( ) ( )1 1 1 2 1 5
min , , , min 0.5, 0.3 0.5v v v v v  − − − = = − −  = −    

( ) ( ) ( ) ( )1 2 2 1 2 3 2 5
min , , , , , min 0.5, 0.4, 0.4 0.5v v v v v v v   − − − − = = − − −  = −    

( ) ( ) ( )1 3 3 2 3 4
min , , , min 0.4, 0.1 0.4v v v v v  − − − = = − −  = −    

( ) ( ) ( )1 4 4 3 4 5
min , , , min 0.1, 0.2 0.2v v v v v  − − − = = − −  = −    

( ) ( ) ( ) ( )1 5 5 1 5 2 5 4
min , , , , , min 0.3, 0.4, 0.2 0.4v v v v v v v   − − − − = = − − −  = −    

( ) ( ) ( )1 1 1 2 1 5
min , , , min 0.6, 0.2 0.6v v v v v  − − − = = − −  = −    

( ) ( ) ( ) ( )1 2 2 1 2 3 2 5
min , , , , , min 0.6, 0.2, 0.6 0.6v v v v v v v   − − − − = = − − −  = −    

( ) ( ) ( )1 3 3 2 3 4
min , , , min 0.2, 0.7 0.7v v v v v  − − − = = − −  = −    

( ) ( ) ( )1 4 4 3 4 5
min , , , min 0.7, 0.1 0.7v v v v v  − − − = = − −  = −    

( ) ( ) ( ) ( )1 5 5 1 5 2 5 4
min , , , , , min 0.2, 0.6, 0.1 0.6v v v v v v v   − − − − = = − − −  = −    

 

Here, 
1

v dominates 
2

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.1 0.1 0.1

0.3 0.3 0.6

0.5 0.5 0.5

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.2 0.2 0.2

0.5 0.5 0.5

0.6 0.6 0.6

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

Also, 
4

v dominates 
5

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

4 5 1 4 1 5

4 5 1 4 1 5

4 5 1 4 1 5

0.2 0.2 0.2

0.2 0.2 0.5

0.3 0.5 0.3

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

4 5 1 4 1 5

4 5 1 4 1 5

4 5 1 4 1 5

0.4 0.4 0.2

0.4 0.2 0.4

0.7 0.7 0.6

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −
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Figure 2. Dominating BSVNG 

 

 

Thus,  1 4
,ND v v=  is a dominating set because every vertex in  2 3 5

, ,NV D v v v− = , is dominated 

by at least one vertex in ND  and 2ND =  is sum of dominating elements. The adjacency matrix of 

dominating BSVNG is given below  

 

( )

1,1,1 0.1,0.3,0.5 0,0,0 0,0,0 0.5,0.2,0.3

1, 1, 1 0.2, 0.5, 0.6 0,0,0 0,0,0 0.3, 0.3, 0.2

0.1,0.3,0.5 0,0,0 0.2,0.6,0.2 0,0,

0.2, 0.5, 0.6 0,0,0 0.3, 0.4, 0.2

ND
A G

         
         
− − − − − − − − −         

     
     
− − − − − −     

=

0 0.4,0.5,0.1

0,0,0 0.2, 0.4, 0.6

0,0,0 0.2,0.6,0.2 0,0,0 0.3,0.1,0.5 0,0,0

0,0,0 0.3, 0.4, 0.2 0,0,0 0.4, 0.1, 0.7 0,0,0

0,0,0 0,0,0 0.3,0.1,0.5

0,0,0 0,0,0 0.4

   
   

− − −   

         
         

− − − − − −         

   
   

−   

1,1,1 0.2,0.2,0.3

, 0.1, 0.7 1, 1, 1 0.2, 0.2, 0.1

0.5,0.2,0.3 0.4,0.5,0.1 0,0,0 0.2,0.2,0.3 0, 0,0

0.3, 0.3, 0.2 0.2, 0.4, 0.6 0,0,0 0.2, 0.2, 0.1 0, 0,0










     
     

− − − − − − − −     

         
         
− − − − − − − − −         










 
 
 
 
 
 
 
 

 

 

 

This can be written in six different matrices as: 

( )( )

1 0.1 0 0 0.5

0.1 0 0.2 0 0.4

0 0.2 0 0.3 0

0 0 0.3 1 0.2

0.5 0.4 0 0.2 0

ND
A G +

 
 
 
 =
 
 
 
 

 

 

( )( )

1 0.2 0 0 0.3

0.2 0 0.3 0 0.2

0 0.3 0 0.4 0

0 0 0.4 1 0.2

0.3 0.2 0 0.2 0

ND
A G −

 − − −
 
− − − 
 = − −
 

− − − 
 − − − 
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( )( )

1 0.3 0 0 0.2

0.3 0 0.6 0 0.5

0 0.6 0 0.1 0

0 0 0.1 1 0.2

0.2 0.5 0 0.2 0

ND
A G +

 
 
 
 =
 
 
 
 

 

 

( )( )

1 0.5 0 0 0.3

0.5 0 0.4 0 0.4

0 0.4 0 0.1 0

0 0 0.1 1 0.2

0.3 0.4 0 0.2 0

ND
A G −

 − − −
 
− − − 
 = − −
 

− − − 
 − − − 

 

( )( )

1 0.5 0 0 0.3

0.5 0 0.2 0 0.1

0 0.2 0 0.5 0

0 0 0.5 1 0.3

0.3 0.1 0 0.3 0

ND
A G +

 
 
 
 =
 
 
 
 

 

 

( )( )

1 0.6 0 0 0.2

0.6 0 0.2 0 0.6

0 0.2 0 0.7 0

0 0 0.7 1 0.1

0.2 0.6 0 0.1 0

ND
A G −

 − − −
 
− − − 
 = − −
 

− − − 
 − − − 

 

Since, 

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )

0.530, 0.080,0.239,1.069,1.301

0.801, 0.035,0.557,1.019,1.261

0.398, 0.192,0.042,1.181,1.367

1.233, 1.081, 0.190,0.068,0.436

1.385, 1.025, 0.272

N

N

N

N

N

D

D

D

D

D

Spec A G

Spec A G

Spec A G

Spec A G

Spec A G











+

+

+

−

−

= − −

= − −

= − −

= − − −

= − − − 

( )( )( )  

,0.073,0.609

1.477, 1.322, 0.225,0.295,0.730ND
Spec A G − = − − −

 

 

 Therefore, 

( )( )

( )

( )

( )

( )

0.530, 0.801, 0.398, 1.233, 1.385, 1.477 ,

0.080, 0.035, 0.192, 1.081, 1.025, 1.322 ,

0.239,0.557,0.042, 0.190, 0.272, 0.225 ,

1.069,1.019,1.181,0.068,0.073,0.295 ,

1.301,1.261,1.367,0.436,0.609,0.

ND
Spec A G

− − − − − −

− − − − − −

= − − −

( )730

 
 
 
 
 
 
 
 
 

 

The energy of BSVNG is 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

( )
1 1 1 1 1 1

, , , , ,

, , , , ,

3.219,3.673,3.180,3.008,3.364,4.049

N N N N N N ND D D D D D D

n n n n n n

p p p p p p
p p p p p p

E G E G E G E G E G E G E G     

     

+ + + − − −

= = = = = =

=

 
=   
 

=
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5. Dominating energy in various operation of BSVNG 

5.1 Dominating energy in complement of bipolar single-valued neutrosophic graphs 

Definition 5.1 

The complement of BSVNG ( ),G V E=  is a BSVNG ( ),G V E=  where 

1 1 1 1 1 1
, , ,

i i i i i i
     + + + + + += = =  

1 1 1 1 1 1
, , , 1,2, ,

i i i i i i
i n     − − − − − −= = =  =  

2 1 1 2 2 1 1 2 2 1 1 2
, , ,

ij i j ij ij i j ij ij i j ij
           + + + + + + + + + + + += − = − = −

2 1 1 2 2 1 1 2 2 1 1 2
, , , , 1,2, ,

ij i j ij ij i j ij ij i j ij
i j n           − − − − − − − − − − − −= − = − = −  = . 

 

Example 5.2 

First, we find the dominating energy of BSVNG ( ),G V E=  as shown in Figure 3. Consider a 

dominating BSVNG ( )1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  where  1 2 3 4

, , ,V v v v v= , 

and 1 1 1 1 1 1
: 0,1 , : 0,1 , : 0,1 , : 1,0 , : 1,0 , : 1,0V V V V V V     + + + − − −→   →   →   → −  → −  → −              

such that 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

min ,

min 0.1,0.1 0.1

min ,

min 0.1,0.3 0.1

min ,

min 0.3,0.1 0.1

min ,

min 0.1,0.1 0.1

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

+ + +

+ + +

+ + +

+ + +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

max ,

max 0.2, 0.3 0.2

max ,

max 0.2, 0.2 0.2

max ,

max 0.2, 0.2 0.2

max ,

max 0.3, 0.2 0.2

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

− − −

− − −

− − −

− − −

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

max ,

max 0.5,0.5 0.5

max ,

max 0.5,0.4 0.5

max ,

max 0.4,0.4 0.4

max ,

max 0.5,0.4 0.5

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

+ + +

+ + +

+ + +

+ + +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

min ,

min 0.6, 0.6 0.6

min ,

min 0.6, 0.6 0.6

min ,

min 0.6, 0.6 0.6

min ,

min 0.6, 0.6 0.6

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

− − −

− − −

− − −

− − −

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

max ,

max 0.6,0.6 0.6

max ,

max 0.6,0.7 0.7

max ,

max 0.7,0.6 0.7

max ,

max 0.6,0.6 0.6

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

+ + +

+ + +

+ + +

+ + +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

min ,

min 0.7, 0.7 0.7

min ,

min 0.7, 0.7 0.7

min ,

min 0.7, 0.5 0.7

min ,

min 0.7, 0.5 0.7

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

− − −

− − −

− − −

− − −

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 
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Figure 3: ( ),G V E=  

 

 
Figure 4: ( ),G V E=  

 

Here, 
2

v  dominates 
1

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 1 1 2 1 1

2 1 1 2 1 1

2 1 1 2 1 1

0.1 0.1 0.1

0.5 0.5 0.5

0.6 0.7 0.6

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 1 1 2 1 1

2 1 1 2 1 1

2 1 1 2 1 1

0.3 0.2 0.2

0.6 0.6 0.6

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

  

Also, 
1

v  dominates 
4

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 1 1 1 4

1 4 1 1 1 4

1 4 1 1 1 4

0.1 0.1 0.1

0.5 0.5 0.5

0.6 0.6 0.6

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 1 1 1 4

1 4 1 1 1 4

1 4 1 1 1 4

0.3 0.2 0.2

0.6 0.6 0.6

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

Thus,  1 2
,ND v v=  is a dominating set because every vertex in  3 4

,NV D v v− = , is dominated by 

at least one vertex in ND  and 2ND =  is sum of dominating elements. The adjacency matrix of 

dominating BSVNG is given below;  

 

( )

1,1,1 0.1,0.5,0.6 0,0,0 0.1,0.5,0.6

1, 1, 1 0.2, 0.6, 0.7 0,0,0 0.3, 0.6, 0.7

0.1,0.5,0.6 1,1,1 0.3,0.4,0.7 0,0,0

0.2, 0.6, 0.7 1, 1, 1 0.2, 0.6, 0.7 0,0,0

0
ND

A G

       
       
− − − − − − − − −       

       
       
− − − − − − − − −       

=
,0,0 0.3,0.4,0.7 0,0,0 0.1,0.4,0.6

0,0,0 0.2, 0.6, 0.7 0,0,0 0.2, 0.6, 0.5

0.1,0.5,0.6 0,0,0 0.1,0.4,0.6 0,0,0

0.3, 0.6, 0.7 0,0,0 0.2, 0.6, 0.5 0,0,0









       
        − − − − − −       

       
       
− − − − − −       
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This can be written in six different matrices as: 

( )( )

1 0.1 0 0.1

0.1 1 0.3 0

0 0.3 0 0.1

0.1 0 0.1 0

ND
A G +

 
 
 =
 
 
  

 ( )( )

1 0.2 0 0.3

0.2 1 0.2 0

0 0.2 0 0.2

0.3 0 0.2 0

ND
A G −

 − − − 
 
− − − =
 − −
 
− −  

 

( )( )

1 0.5 0 0.5

0.5 1 0.4 0

0 0.4 0 0.4

0.5 0 0.4 0

ND
A G +

 
 
 =
 
 
  

 ( )( )

1 0.6 0 0.6

0.6 1 0.6 0

0 0.6 0 0.6

0.6 0 0.6 0

ND
A G −

 − − − 
 
− − − =
 − −
 
− −  

 

( )( )

1 0.6 0 0.6

0.6 1 0.7 0

0 0.7 0 0.6

0.6 0 0.6 0

ND
A G +

 
 
 =
 
 
  

 ( )( )

1 0.7 0 0.7

0.7 1 0.7 0

0 0.7 0 0.5

0.7 0 0.5 0

ND
A G −

 − − − 
 
− − − =
 − −
 
− −  

 

 

Since, 

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )

0.942,0.058,1.152, 0.152 ,

0.588,0.238,0.688,1.662 ,

0.721,0.279,1.922, 0.922 ,

0.139, 0.861,0.262, 1.262 ,

0.319, 0.681,0.881, 1.881 ,

0.70

N

N

N

N

N

N

D

D

D

D

D

D

Spec A G

Spec A G

Spec A G

Spec A G

Spec A G

Spec A G













+

+

+

−

−

−

= −

= −

= −

= − − −

= − − −

= − 6,0.906, 2.022, 0.178 .− −

 

Therefore, the dominating energy of BSVNG is 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

( )
1 1 1 1 1 1

, , , , ,

, , , , ,

2.304,3.176,3.844,2.524,3.762,3.812 .

N N N N N N ND D D D D D D

n n n n n n

p p p p p p
p p p p p p

E G E G E G E G E G E G E G     

     

+ + + − − −

= = = = = =

=

 
=   
 

=

       

 

Now, we find the dominating energy of complement of BSVNG ( ),G V E= as shown in Figure 4; 

Consider a dominating BSVNG ( )1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  where 

 1 2 3 4
, , ,V v v v v=  and given, 1

: 0,1 ,V + →    1 1 1 1
: 0,1 , : 0,1 , : 1,0 , :V V V   + + − −→   →   → −        

1
1,0 , : 1,0V V −→ −  → −      where 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 3

1 2 2 4

1 3 3 1

1 4 4 2

min min 0.2 0.2

min min 0.1 0.1

min min 0.2 0.2

min min 0.1 0.1

v v v

v v v

v v v

v v v

 

 

 

 

+ +

+ +

+ +

+ +

 = =   =  

 = =   =  

 = =   =  

 = =   =  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 3

1 2 2 4

1 3 3 1

1 4 4 2

max max 0.2 0.2

max max 0.2 0.2

max max 0.2 0.2

max max 0.2 0.2

v v v

v v v

v v v

v v v

 

 

 

 

− −

− −

− −

− −

 = = −  = −  

 = = −  = −  

 = = −  = −  

 = = −  = −  
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 3

1 2 2 4

1 3 3 1

1 4 4 2

max max 0.5 0.5

max max 0.4 0.4

max max 0.5 0.5

max max 0.4 0.4

v v v

v v v

v v v

v v v

 

 

 

 

+ +

+ +

+ +

+ +

 = =   =  

 = =   =  

 = =   =  

 = =   =  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 3

1 2 2 4

1 3 3 1

1 4 4 2

min min 0.6 0.6

min min 0.6 0.6

min min 0.6 0.6

min min 0.6 0.6

v v v

v v v

v v v

v v v

 

 

 

 

− −

− −

− −

− −

 = = −  = −  

 = = −  = −  

 = = −  = −  

 = = −  = −  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 3

1 2 2 4

1 3 3 1

1 4 4 2

max max 0.7 0.7

max max 0.6 0.6

max max 0.7 0.7

max max 0.6 0.6

v v v

v v v

v v v

v v v

 

 

 

 

+ +

+ +

+ +

+ +

 = =   =  

 = =   =  

 = =   =  

 = =   =  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 3

1 2 2 4

1 3 3 1

1 4 4 2

min min 0.7 0.7

min min 0.7 0.7

min min 0.7 0.7

min min 0.7 0.7

v v v

v v v

v v v

v v v

 

 

 

 

− −

− −

− −

− −

 = = −  = −  

 = = −  = −  

 = = −  = −  

 = = −  = −  

 

 

Here, 
1

v  dominates 
3

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 3 1 1 1 3

1 3 1 1 1 3

1 3 1 1 1 3

0.2 0.2 0.2

0.5 0.5 0.5

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 3 1 1 1 3

1 3 1 1 1 3

1 3 1 1 1 3

0.2 0.2 0.2

0.6 0.6 0.6

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

Also, 
2

v  dominates 
4

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 4 1 2 1 4

2 4 1 2 1 4

2 4 1 2 1 4

0.1 0.1 0.1

0.4 0.4 0.4

0.6 0.6 0.6

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 1 1 1 4

1 4 1 1 1 4

1 4 1 1 1 4

0.2 0.2 0.2

0.6 0.6 0.6

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

Thus,  1 2
,ND v v=  is a dominating set because every vertex in  3 4

,NV D v v− = , is dominated by 

at least one vertex in ND  and 2ND =  is sum of dominating elements. The adjacency matrix of 

dominating of complement BSVNG is given below; 

  

( )

1,1,1 0,0,0 0.2,0.5,0.7 0,0,0

1, 1, 1 0,0,0 0.2, 0.6, 0.7 0,0,0

0,0,0 1,1,1 0,0,0 0.1,0.4,0.6

0,0,0 1, 1, 1 0,0,0 0.2, 0.6, 0.7

0.2,0.5,0.7

0.2, 0.6, 0.7

ND
A G

       
       
− − − − − −       

       
       

− − − − − −       
=

 
 
− − − 

0,0,0 0,0,0 0,0,0

0,0,0 0,0,0 0,0,0

0,0,0 0.1,0.4,0.6 0,0,0 0,0,0

0,0,0 0.2, 0.6, 0.7 0,0,0 0,0,0

 
 
 
 
 
 
 

      
      
      

        
        

− − −         
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This can be written in six different matrices as: 

 

( )( )

1 0 0.2 0

0 1 0 0.1

0.2 0 0 0

0 0.1 0 0

ND
A G +

 
 
 =
 
 
  

 ( )( )

1 0 0.2 0

0 1 0 0.2

0.2 0 0 0

0 0.2 0 0

ND
A G −

 − − 
 

− − =
 −
 

−  

 

( )( )

1 0 0.5 0

0 1 0 0.4

0.5 0 0 0

0 0.4 0 0

ND
A G +

 
 
 =
 
 
  

 ( )( )

1 0 0.6 0

0 1 0 0.6

0.6 0 0 0

0 0.6 0 0

ND
A G −

 − − 
 

− − =
 −
 

−  

 

( )( )

1 0 0.7 0

0 1 0 0.6

0.7 0 0 0

0 0.6 0 0

ND
A G +

 
 
 =
 
 
  

 ( )( )

1 0 0.7 0

0 1 0 0.7

0.7 0 0 0

0 0.7 0 0

ND
A G −

 − − 
 

− − =
 −
 

−  

 

Since, 

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )

0.0099, 0.0385,1.0099,1.0385 ,

0.1403, 0.2071,1.1403,1.2071 ,

0.2810, 0.3602,1.2810,1.3602 ,

0.0385,0.0385, 1.0385, 1.0385 ,

0.2810,0.2810, 1.2810, 1.

N

N

N

N

N

D

D

D

D

D

Spec A G

Spec A G

Spec A G

Spec A G

Spec A G











+

+

+

−

−

= − −

= − −

= − −

= − −

= − − 

( )( )( )  

2810 ,

0.3602,0.3602, 1.3602, 1.3602 .ND
Spec A G − = − −

 

 

Therefore, the dominating energy of complement of BSVNG is; 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

( )
1 1 1 1 1 1

, , , , ,

, , , , ,

2.0968,2.6948,3.2824,2.1540,3.1240,3.4408 .

N N N N N N ND D D D D D D

n n n n n n

p p p p p p
p p p p p p

E G E G E G E G E G E G E G     

     

+ + + − − −

= = = = = =

=

 
=   
 

=

       

5.2 Dominating energy in union of bipolar single-valued neutrosophic graphs 

Definition 5.3 

Let ( )1 1 1
,G V E=  and ( )2 2 2

,G V E=  be two BSVNG with 
1 2

V V =  and 

1 2
G G G=  = ( )1 2 1 2

,V V E E   be the union of 
1

G  and 
2

G . Then, the union of BSVNG 
1

G  and 

2
G  is defined by 

( ) ( )
( )
( )

1 1 2'

1 1 '

1 2 1

 if 

 if 

v v V V
v

v v V V


 



+

+ +

+

  −
 = 

 −

, ( ) ( )
( )
( )

1 1 2'

1 1 '

1 2 1

 if 

 if 

v v V V
v

v v V V


 



−

− −

−

  −
 = 

 −

, 

( ) ( )
( )
( )

1 1 2'

1 1 '

1 2 1

 if 

 if 

v v V V
v

v v V V


 



+

+ +

+

  −
 = 

 −

, ( ) ( )
( )
( )

1 1 2'

1 1 '

1 2 1

 if 

 if 

v v V V
v

v v V V


 



−

− −

−

  −
 = 

 −

, 

( ) ( )
( )
( )

1 1 2'

1 1 '

1 2 1

 if 

 if 

v v V V
v

v v V V


 



+

+ +

+

  −
 = 

 −

, ( ) ( )
( )
( )

1 1 2'

1 1 '

1 2 1

 if 

 if 

v v V V
v

v v V V


 



−

− −

−

  −
 = 

 −

, 



Neutrosophic Sets and Systems, Vol. 56, 2023     135  

 

 

Siti Nurul Fitriah Mohamad, Roslan Hasni and Binyamin Yusoff, On Dominating Energy in Bipolar Single-Valued 

Neutrosophic Graph 

where ( )1 1 1
, ,  + + +  and ( )' ' '

1 1 1
, ,  + + +  denote the vertex of truth-membership, 

indeterminacy-membership and falsity-membership of 
1

G  and 
2

G , respectively. Moreover, the 

membership values of edges are given as follows; 

 

( ) ( )
( )
( )

2 1 2'

2 2 '

2 2 1

 if e

 if e

ij ij

i j

ij ij

e E E
v v

e E E


 



+

+ +

+

  −
 = 

 −

, ( ) ( )
( )
( )

2 1 2'

2 2 '

2 2 1

 if e

 if e

i j ij

i j

i j ij

v v E E
v v

v v E E


 



−

− −

−

  −
 = 

 −

, 

( ) ( )
( )
( )

2 1 2'

2 2 '

2 2 1

 if e

 if e

ij ij

i j

ij ij

e E E
v v

e E E


 



+

+ +

+

  −
 = 

 −

, ( ) ( )
( )
( )

2 1 2'

2 2 '

2 2 1

 if e

 if e

i j ij

i j

i j ij

e E E
v v

e E E


 



−

− −

−

  −
 = 

 −

, 

( ) ( )
( )
( )

2 1 2'

2 2 '

2 2 1

 if e

 if e

ij ij

i j

ij ij

e E E
v v

e E E


 



+

+ +

+

  −
 = 

 −

, ( ) ( )
( )
( )

2 1 2'

2 2 '

2 2 1

 if e

 if e

ij ij

i j

ij ij

e E E
v v

e E E


 



−

− −

−

  −
 = 

 −

, 

 

where ( )2 2 2
, ,  + + +  and ( )' ' '

2 2 2
, ,  + + +  denote the edge of truth-membership, 

indeterminacy-membership and falsity-membership of 
1

G  and 
2

G , respectively. 

 

Example 5.4 

First, we find the dominating energy of BSVNG ( )1 1 1
,G V E=  as shown in Figure 5. Consider a 

dominating BSVNG ( )1 1 1 1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −= where  1 1 2 3 4

, , ,V v v v v= , 

1 1 1 1 1 1 1 1 1 1 1 1
: 0,1 , : 0,1 , : 0,1 , : 1,0 , : 1,0 , : 1,0V V V V V V     + + + − − −→   →   →   → −  → −  → −              

such that 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

min ,

min 0.2,0.2 0.2

min ,

min 0.2,0.4 0.2

min ,

min 0.4,0.2 0.2

min ,

min 0.2,0.2 0.2

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

+ + +

+ + +

+ + +

+ + +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

max ,

max 0.2, 0.3 0.2

max ,

max 0.2, 0.2 0.2

max ,

max 0.2, 0.3 0.2

max ,

max 0.3, 0.3 0.3

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

− − −

− − −

− − −

− − −

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

max ,

max 0.7,0.6 0.7

max ,

max 0.7,0.5 0.7

max ,

max 0.5,0.6 0.6

max ,

max 0.6,0.6 0.6

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

+ + +

+ + +

+ + +

+ + +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

min ,

min 0.6, 0.6 0.6

min ,

min 0.6, 0.5 0.6

min ,

min 0.5, 0.6 0.6

min ,

min 0.6, 0.6 0.6

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

− − −

− − −

− − −

− − −

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

max ,

max 0.8,0.4 0.8

max ,

max 0.8,0.8 0.8

max ,

max 0.8,0.7 0.8

max ,

max 0.4,0.7 0.7

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

+ + +

+ + +

+ + +

+ + +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

min ,

min 0.7, 0.7 0.7

min ,

min 0.7, 0.7 0.7

min ,

min 0.7, 0.8 0.8

min ,

min 0.7, 0.8 0.8

v v v v v

v v v v v

v v v v v

v v v v v

  

  

  

  

− − −

− − −

− − −

− − −

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 

 Here, 
1

v  dominates 
2

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.2 0.2 0.2

0.7 0.7 0.7

0.8 0.8 0.8

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.2 0.2 0.2

0.6 0.6 0.6

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

Also, 
3

v  dominates 
4

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 4 1 3 1 4

3 4 1 3 1 4

3 4 1 3 1 4

0.2 0.2 0.2

0.6 0.6 0.6

0.7 0.8 0.7

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 1 1 1 4

1 4 1 1 1 4

1 4 1 1 1 4

0.2 0.2 0.2

0.6 0.6 0.6

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

 

 
Figure 5. ( )1 1 1

,G V E=  

 

 
Figure 6. ( )2 2 2

,G V E=  
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Thus,  1 3
,ND v v=  is a dominating set because every vertex in  2 4

,NV D v v− = , is dominated by 

at least one vertex in ND  and 2ND =  is sum of dominating elements. The adjacency matrix of 

dominating BSVNG ( )1 1 1
,G V E= is given below; 

( )1

1,1,1 0.2,0.7,0.8 0,0,0 0.2,0.6,0.4

1, 1, 1 0.2, 0.6, 0.7 0,0,0 0.3, 0.6, 0.7

0.2,0.7,0.8 0,0,0 0.4,0.5,0.8 0,0,0

0.2, 0.6, 0.7 0,0,0 0.2, 0.5, 0.7 0,0,0

0,0
ND

A G

       
       
− − − − − − − − −       

       
       
− − − − − −       

=
,0 0.4,0.5,0.8 1,1,1 0.2,0.6,0.7

0,0,0 0.2, 0.5, 0.7 1, 1, 1 0.3, 0.6, 0.8

0.2,0.6,0.4 0,0,0 0.2,0.6,0.7 0,0,0

0.3, 0.6, 0.7 0,0,0 0.3, 0.6, 0.8 0,0,0









       
        − − − − − − − − −       

       
       
− − − − − −       













 
 

 

This can be written in six different matrices as: 

( )( )1

1 0.2 0 0.2

0.2 0 0.4 0

0 0.4 1 0.2

0.2 0 0.2 0

ND
A G +

 
 
 =
 
 
  

 ( )( )1

1 0.2 0 0.3

0.2 0 0.2 0

0 0.2 1 0.3

0.3 0 0.3 0

ND
A G −

 − − − 
 
− − =
 − − −
 
− −  

 

( )( )1

1 0.7 0 0.6

0.7 0 0.5 0

0 0.5 1 0.6

0.6 0 0.6 0

ND
A G +

 
 
 =
 
 
  

 ( )( )1

1 0.6 0 0.6

0.6 0 0.5 0

0 0.5 1 0.6

0.6 0 0.6 0

ND
A G −

 − − − 
 
− − =
 − − −
 
− −  

 

( )( )1

1 0.8 0 0.4

0.8 0 0.8 0

0 0.8 1 0.7

0.4 0 0.7 0

ND
A G +

 
 
 =
 
 
  

 ( )( )1

1 0.7 0 0.7

0.7 0 0.7 0

0 0.7 1 0.8

0.7 0.7 0.8 0

ND
A G −

 − − − 
 
− − =
 − − −
 
− − −  

 

 

Since, 

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )

1

1

1

1

1

1.2240,1.0058, 0.2240, 0.0058 ,

1.8039,1.0098, 0.8039, 0.0098 ,

1.9869,1.0377, 0.9869, 0.0377 ,

1.2141, 1.0000,0.2141,0.0000 ,

1.7559, 1.0027,0.75

N

N

N

N

N

D

D

D

D

D

Spec A G

Spec A G

Spec A G

Spec A G

Spec A G











+

+

+

−

−

= − −

= − −

= − −

= − −

= − − 

( )( )( )  1

59,0.0027 ,

2.3055,1.0355, 1.0023,0.0023 .ND
Spec A G − = − −

 

 

Therefore, the dominating energy of BSVNG ( )1 1 1
,G V E=  is; 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

( )

1 1 1 1 1 1 1

1 1 1 1 1 1

, , , , ,

, , , , ,

2.4596,3.6274,4.0492,2.4282,3.5172,4.3456 .

N N N N N N ND D D D D D D

n n n n n n

p p p p p p
p p p p p p

E G E G E G E G E G E G E G     

     

+ + + − − −

= = = = = =

=

 
=   
 

=
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Also, we find the dominating energy of BSVNG ( )2 2 2
,G V E=  as shown in Figure 6. Consider a 

dominating BSVNG ( )2 2 2 1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  where  2 1 2

,V v v= , 

1 2 1 2 1 2 1 2 1 2 1 2
: 0,1 , : 0,1 , : 0,1 , : 1,0 , : 1,0 , : 1,0V V V V V V     + + + − − −→   →   →   → −  → −  → −              

such that 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 2

1 2 2 1

1 1 1 2

1 2 2 1

1 1 1 2

1 2 2 1

min min 0.3 0.3

min min 0.3 0.3

max max 0.6 0.6

max max 0.6 0.6

max max 0.8 0.8

max max 0.8

v v v

v v v

v v v

v v v

v v v

v v v

 

 

 

 

 

 

+ +

+ +

+ +

+ +

+ +

+ +

 = =   =  

 = =   =  

 = =   =  

 = =   =  

 = =   =  

 = =     0.8=

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 2

1 2 2 1

1 1 1 2

1 2 2 1

1 1 1 2

1 2 2 1

max max 0.2 0.2

max max 0.2 0.2

min min 0.7 0.7

min min 0.7 0.7

min min 0.6 0.6

min

v v v

v v v

v v v

v v v

v v v

v v v

 

 

 

 

 

 

− −

− −

− −

− −

− −

− −

 = = −  = −  

 = = −  = −  

 = = −  = −  

 = = −  = −  

 = = −  = −  

 = =  min 0.6 0.6−  = − 

 

 

Here, 
1

v  dominates 
2

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.3 0.3 0.3

0.6 0.6 0.6

0.8 0.8 0.8

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.2 0.2 0.2

0.7 0.7 0.7

0.6 0.6 0.6

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

     2 1 2 1 2 2
, ; ; ; 1N N NV v v D v V D v D= = − = =  is sum of dominating element. Then, we have the 

adjacency matrix of dominating BSVNG ( )2 2 2
,G V E= is given below; 

( )2

1,1,1 0.3,0.6,0.8

1, 1, 1 0.2, 0.7, 0.6

0.3,0.6,0.8 0,0,0

0.2, 0.7, 0.6 0,0,0

ND
A G

    
    

− − − − − −    
=
    
    
− − −     

 

where 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

2 2 2

2 2 2

1 0.3 1 0.6 1 0.8
, , ,

0.3 0 0.6 0 0.8 0

1 0.2 1 0.7 1 0.6
, , .

0.2 0 0.7 0 0.6 0

N N N

N N N

D D D

D D D

A G A G A G

A G A G A G

  

  

+ + +

− − −

     
= = =     
     

 − −   − −   − − 
= = =     

− − −     

 

Since, 

( )( )( )   ( )( )( )  

( )( )( )   ( )( )( )  

( )( )( )   ( )( )( )  

2 2

2 2

2 2

1.0831, 0.0831 , 1.2810, 0.2810 ,

1.4434, 0.4434 , 1.0385,0.0385 ,

1.3602,0.3602 , 1.2810,0.2810 .

N N

N N

N N

D D

D D

D D

Spec A G Spec A G

Spec A G Spec A G

Spec A G Spec A G

 

 

 

+ +

+ −

− −

= − = −

= − = −

= − = −

 

 

Therefore, the dominating energy of BSVNG ( )2 2 2
,G V E=  is; 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

( )

2 2 2 2 2 2 2

1 1 1 1 1 1

, , , , ,

, , , , ,

1.1662,1.5620,1.8868,1.077,1.7204,1.5620 .

N N N N N N ND D D D D D D

n n n n n n

p p p p p p
p p p p p p

E G E G E G E G E G E G E G     

     

+ + + − − −

= = = = = =

=

 
=   
 

=
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Now, we find the dominating energy of union of two BSVNG 
1 2

G G  as shown in Figure 7. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

1 1 1 2

min ,

min 0.2,0.2 0.2

min ,

min 0.2,0.4 0.2

min ,

min 0.4,0.2 0.2

min ,

min 0.2,0.2 0.2

min

v v v v v

v v v v v

v v v v v

v v v v v

u u u

  

  

  

  

 

+ + +

+ + +

+ + +

+ + +

+ +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 = = 

( ) ( )1 2 2 1

min 0.3 0.3

min min 0.3 0.3u u u + +

  = 

 = =   =  

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

1 1

max ,

max 0.2, 0.3 0.2

max ,

max 0.2, 0.2 0.2

max ,

max 0.2, 0.3 0.2

max ,

max 0.3, 0.3 0.3

ma

v v v v v

v v v v v

v v v v v

v v v v v

u

  

  

  

  



− − −

− − −

− − −

− − −

−

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

= ( )

( ) ( )

1 2

1 2 2 1

x max 0.2 0.2

max max 0.2 0.2

u u

u u u



 

−

− −

  = −  = −  

 = = −  = −  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

1 1 1 2

max ,

max 0.7,0.6 0.7

max ,

max 0.7,0.5 0.7

max ,

max 0.5,0.6 0.6

max ,

max 0.6,0.6 0.6

max

v v v v v

v v v v v

v v v v v

v v v v v

u u u

  

  

  

  

 

+ + +

+ + +

+ + +

+ + +

+ +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 = = 

( ) ( )1 2 2 1

max 0.6 0.6

max max 0.6 0.6u u u + +

  = 

 = =   =  

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

1 1

min ,

min 0.6, 0.6 0.6

min ,

min 0.6, 0.5 0.6

min ,

min 0.5, 0.6 0.6

min ,

min 0.6, 0.6 0.6

mi

v v v v v

v v v v v

v v v v v

v v v v v

u

  

  

  

  



− − −

− − −

− − −

− − −

−

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

= ( )

( ) ( )

1 2

1 2 2 1

n min 0.7 0.7

min min 0.7 0.7

u u

u u u



 

−

− −

  = −  = −  

 = = −  = −  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

1 1 1 2

max ,

max 0.8,0.4 0.8

max ,

max 0.8,0.8 0.8

max ,

max 0.8,0.7 0.8

max ,

max 0.4,0.7 0.7

max

v v v v v

v v v v v

v v v v v

v v v v v

u u u

  

  

  

  

 

+ + +

+ + +

+ + +

+ + +

+ +

 =  

=   = 

 =  

=   = 

 =  

=   = 

 =  

=   = 

 = = 

( ) ( )1 2 2 1

max 0.8 0.8

max max 0.8 0.8u u u + +

  = 

 = =   =  

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1 2 1 4

1 2 2 1 2 3

1 3 3 2 3 4

1 4 4 1 4 3

1 1

min ,

min 0.7, 0.7 0.7

min ,

min 0.7, 0.7 0.7

min ,

min 0.7, 0.8 0.8

min ,

min 0.7, 0.8 0.8

mi

v v v v v

v v v v v

v v v v v

v v v v v

u

  

  

  

  



− − −

− − −

− − −

− − −

−

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

 =  

= − −  = − 

= ( )

( ) ( )

1 2

1 2 2 1

n min 0.6 0.6

min min 0.6 0.6

u u

u u u



 

−

− −

  = −  = −  

 = = −  = −  
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Figure 7. 

1 2
G G  

Here, 
1

v  dominates 
2

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.2 0.2 0.2

0.7 0.7 0.7

0.8 0.8 0.8

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.2 0.2 0.2

0.6 0.6 0.6

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

Also, 
3

v  dominates 
4

v  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 4 1 3 1 4

3 4 1 3 1 4

3 4 1 3 1 4

0.2 0.2 0.2

0.6 0.6 0.6

0.7 0.8 0.7

v v v v

v v v v

v v v v

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 1 1 1 4

1 4 1 1 1 4

1 4 1 1 1 4

0.2 0.2 0.2

0.6 0.6 0.6

0.7 0.7 0.7

v v v v

v v v v

v v v v

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

Also, 
1

u  dominates 
2

u  because 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.3 0.3 0.3

0.6 0.6 0.6

0.8 0.8 0.8

u u u u

u u u u

u u u u

  

  

  

+ + +

+ + +

+ + +

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

0.2 0.2 0.2

0.7 0.7 0.7

0.6 0.6 0.6

u u u u

u u u u

u u u u

  

  

  

− − −

− − −

− − −

 

−  −  −

 

−  −  −

 

−  −  −

 

 

     1 2 3 4 1 2 1 3 1 2 4 2
, , , , , ; , , ; , , ; 3N N NV v v v v u u D v v u V D v v u D= = − = =  is sum of dominating 

element. Then, we have the adjacency matrix of dominating BSVNG 
1 2

G G is given below; 
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( )1 2

1,1,1 0.2,0.7,0.8 0,0,0 0.2,0.6,0.4 0,0,0 0,0,0

1, 1, 1 0.2, 0.6, 0.7 0,0,0 0.3, 0.6, 0.7 0,0,0 0,0,0

0.2,0.7,0.8 0,0,0 0.4,0.5,0.8

0.2, 0.6, 0.7 0,0,0 0.2

ND
A G G =

           
           
− − − − − − − − −           

   
   
− − − −   

0,0,0 0,0,0 0,0,0

, 0.5, 0.7 0,0,0 0,0,0 0,0,0

0,0,0 0.4,0.5,0.8 1,1,1 0.2,0.6,0.7 0,0,0 0,0,0

0,0,0 0.2, 0.5, 0.7 1, 1, 1 0.3, 0.6, 0.8 0,0,0 0,0,0

0.2,0.6

       
       

− −       

           
           

− − − − − − − − −           

,0.4 0,0,0 0.2,0.6,0.7 0,0,0 0,0,0 0,0,0

0.3, 0.6, 0.7 0,0,0 0.3, 0.6, 0.8 0,0,0 0,0,0 0,0 ,0

0,0,0 0,0,0 0,0,0 0,0,0 1,1,1

0,0,0 0,0,0 0,0,0 0,0,0 1, 1, 1

           
           
− − − − − −           

         
        

− − −        

0.3,0.6,0.8

0.2, 0.7, 0.6

0,0,0 0,0,0 0,0,0 0,0,0 0.3,0.6,0.8 0,0,0

0,0,0 0,0,0 0,0,0 0,0,0 0.2, 0.7, 0.6 0,0,0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 − − −  
 

            
            − − −            

 

 

where 

 

( )( )1 2

1 0.2 0 0.2 0 0

0.2 0 0.4 0 0 0

0 0.4 1 0.2 0 0

0.2 0 0.2 0 0 0

0 0 0 0 1 0.3

0 0 0 0 0.3 0

ND
A G G +

 
 
 
 

 =  
 
 
 
  

 ( )( )1 2

1 0.2 0 0.3 0 0

0.2 0 0.2 0 0 0

0 0.2 1 0.3 0 0

0.3 0 0.3 0 0 0

0 0 0 0 1 0.2

0 0 0 0 0.2 0

ND
A G G −

 − − −
 
− − 
 − − −

 =  
− − 
 − −
 

−  

 

( )( )1 2

1 0.7 0 0.6 0 0

0.7 0 0.5 0 0 0

0 0.5 1 0.6 0 0

0.6 0 0.6 0 0 0

0 0 0 0 1 0.6

0 0 0 0 0.6 0

ND
A G G +

 
 
 
 

 =  
 
 
 
  

 ( )( )1 2

1 0.6 0 0.6 0 0

0.6 0 0.5 0 0 0

0 0.5 1 0.6 0 0

0.6 0 0.6 0 0 0

0 0 0 0 1 0.7

0 0 0 0 0.7 0

ND
A G G −

 − − −
 
− − 
 − − −

 =  
− − 
 − −
 

−  

 

( )( )1 2

1 0.8 0 0.4 0 0

0.8 0 0.8 0 0 0

0 0.8 1 0.7 0 0

0.4 0 0.7 0 0 0

0 0 0 0 1 0.8

0 0 0 0 0.8 0

ND
A G G +

 
 
 
 

 =  
 
 
 
  

 ( )( )1 2

1 0.7 0 0.7 0 0

0.7 0 0.7 0 0 0

0 0.7 1 0.8 0 0

0.7 0 0.8 0 0 0

0 0 0 0 1 0.6

0 0 0 0 0.6 0

ND
A G G −

 − − −
 
− − 
 − − −

 =  
− − 
 − −
 

−  

 

 

Since, 

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )

1 2

1 2

1 2

1 2

1.2239,1.0831,1.0058, 0.2239, 0.0831, 0.0058 ,

1.8039,1.2810,1.0098, 0.8039, 0.2810, 0.0098 ,

1.9662,1.4434,1.0295, 0.9662, 0.4434, 0.0295 ,

1.21

N

N

N

N

D

D

D

D

Spec A G G

Spec A G G

Spec A G G

Spec A G G









+

+

+

−

 = − − −

 = − − −

 = − − −

 = − 

( )( )( )  

( )( )( )  

1 2

1 2

41, 1.0385, 1.0000,0.2141,0.0385,0.0000 ,

1.7559, 1.3602, 1.0027,0.7559,0.3602,0.0027 ,

2.0355, 1.2810,1.0355, 1.0023,0.2810,0.0023 .

N

N

D

D

Spec A G G

Spec A G G





−

−

− −

 = − − −

 = − − −
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Therefore, the dominating energy of union BSVNG 
1 2

G G  is; 

( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )

1 2 1 2 1 2 1 2

1 2

1 2 1 2

1 1 1 1 1 1

, , , ,

,

, , , , ,

3.6256,5.1894,5.8782,3.5052,5.2376,5.6376 .

N N N N

N

N N

D D D D

D

D D

n n n n n n

p p p p p p
p p p p p p

E G G E G G E G G E G G
E G G

E G G E G G

   

 

     

+ + + −

− −

= = = = = =

    
  =
  
 

 
=   
 

=

       

5.3 Dominating energy in join of bipolar single-valued neutrosophic graphs 

Definition 5.5 

Let ( )1 1 1
,G V E=  and ( )2 2 2

,G V E=  be two BSVNG. The join of two BSVNG ( ) 1 2
ˆ ˆ ˆ,G V E G G= = +  

such that 
1 2 1 2

ˆ ,V V V V V= + =   defined by 

 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

' '

1 1 1 1 1 2

' '

1 1 1 1 1 2

' '

1 1 1 1 1 2

 if ;

 if ;

 if ;

v v v V V

v v v V V

v v v V V

   

   

   

+ + + +

+ + + +

+ + + +

+ =   

+ =   

+ =   

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( ) ( ) ( )

' '

1 1 1 1 1 2

' '

1 1 1 1 1 2

' '

1 1 1 1 1 2

 if ;

 if ;

 if .

v v v V V

v v v V V

v v v V V

   

   

   

− − − −

− − − −

− − − −

+ =   

+ =   

+ =   

 

 

and 
1 2 1 2

Ê E E E E= + =   be the set of all edges joining the vertices of 
1

G  and 
2

G . 

 

Example 5.6 

Let ( )1 1 1
,G V E=  and ( )2 2 2

,G V E=  be two BSVNG as shown in Figure 8 and 9, respectively. Now, 

we find the dominating energy of join BSVNG ( ) 1 2
ˆ ˆ ˆ,G V E G G= + , as shown in Figure 10. Consider a 

dominating BSVNG ( )1 1 1 1 1 1
ˆ ˆ ˆ, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  where 

1 2 3 4
ˆ ( , , , ,V v v v v=  

1 2
, )u u and 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ: 0,1 , : 0,1 , : 0,1 , : 1,0 , : 1,0 ,V V V V V    + + + − −→   →   →   → −  → −          

1
ˆ: 1,0V − → −    such that 

 

 
 

 
 

Figure 8. ( )1 1 1
,G V E=  Figure 9. ( )2 2 2

,G V E=  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1 1 2 1 4 1 1 1 2

1 2 2 1 2 3 2 1 2 2

1 3 3 2 3 4 3 1 3 2

1 4

min , , , min 0.5,0.5,0.4,0.5 0.4

min , , , min 0.5,0.5,0.4,0.5 0.4

min , , , min 0.5,0.5,0.4,0.5 0.4

min

v v v v v v u v u

v v v v v v u v u

v v v v v v u v u

v

    

    

    

 

+ + + + +

+ + + + +

+ + + + +

+ +

 = = = 

 = = = 

 = = = 

= ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

4 1 4 3 4 1 4 2

1 1 1 1 1 2 1 3 1 4 1 2

1 2 2 1 2 2 2 3 2 4 2 1

, , , min 0.4,0.5,0.4,0.5 0.4

min , , , , min 0.4,0.4,0.4,0.4,0.5 0.4

min , , , , min 0.5,0.5,0.5,0.5,0.5 0.5

v v v v v u v u

u u v u v u v u v u u

u u v u v u v u v u u

  

     

     

+ + +

+ + + + + +

+ + + + + +

  = = 

 = = = 

 = = = 

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1 1 2 1 4 1 1 1 2

1 2 2 1 2 3 2 1 2 2

1 3 3 2 3 4 3 1 3 2

1 4

max , , , max 0.3,0.2,0.5,0.2 0.5

max , , , max 0.3,0.4,0.5,0.2 0.5

max , , , max 0.4,0.4,0.5,0.2 0.5

max

v v v v v v u v u

v v v v v v u v u

v v v v v v u v u

v

    

    

    

 

+ + + + +

+ + + + +

+ + + + +

+ +

 = = = 

 = = = 

 = = = 

= ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

4 1 4 3 4 1 4 2

1 1 1 1 1 2 1 3 1 4 1 2

1 2 2 1 2 2 2 3 2 4 2 1

, , , max 0.2,0.4,0.5,0.1 0.5

max , , , , max 0.5,0.5,0.5,0.5,0.2 0.5

max , , , , max 0.2,0.2,0.2,0.1,0.2 0.2

v v v v v u v u

u u v u v u v u v u u

u u v u v u v u v u u

  

     

     

+ + +

+ + + + + +

+ + + + + +

  = = 

 = = = 

 = = = 

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1 1 2 1 4 1 1 1 2

1 2 2 1 2 3 2 1 2 2

1 3 3 2 3 4 3 1 3 2

1 4

max , , , max 0.3,0.3,0.3,0.7 0.7

max , , , max 0.3,0.2,0.2,0.7 0.7

max , , , max 0.2,0.3,0.2,0.7 0.7

max

v v v v v v u v u

v v v v v v u v u

v v v v v v u v u

v

    

    

    

 

+ + + + +

+ + + + +

+ + + + +

+ +

 = = = 

 = = = 

 = = = 

= ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

4 1 4 3 4 1 4 2

1 1 1 1 1 2 1 3 1 4 1 2

1 2 2 1 2 2 2 3 2 4 2 1

, , , max 0.3,0.3,0.2,0.7 0.7

max , , , , max 0.3,0.2,0.2,0.2,0.3 0.3

max , , , , max 0.7,0.7,0.7,0.7,0.3 0.7

v v v v v u v u

u u v u v u v u v u u

u u v u v u v u v u u

  

     

     

+ + +

+ + + + + +

+ + + + + +

  = = 

 = = = 

 = = = 

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1 4 1 1 1 2

1 2 2 1 2 3 2 1 2 2

1 3 3 2 3 4 3 1 3 2

max , , , max 0.2, 0.2, 0.2, 0.3 0.2

max , , , max 0.2, 0.2, 0.2, 0.2 0.2

max , , , max 0.2, 0.2, 0.2, 0.3

v v v v v v u v u

v v v v v v u v u

v v v v v v u v u

    

    

    

− − − − −

− − − − −

− − − − −

 = = − − − − = − 

 = = − − − − = − 

 = = − − − − = 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 4 4 1 4 3 4 1 4 2

1 1 1 1 1 2 1 3 1 4 1 2

1 2 2 1 2 2 2 3 2 4 2 1

0.2

max , , , max 0.2, 0.2, 0.2, 0.2 0.2

max , , , , max 0.2, 0.2, 0.2, 0.2, 0.2 0.2

max , , , ,

v v v v v v u v u

u u v u v u v u v u u

u u v u v u v u v u u

    

     

     

− − − − −

− − − − − −

− − − − − −

−

 = = − − − − = − 

 = = − − − − − = − 

 = =  ( )max 0.3, 0.2, 0.3, 0.2, 0.2 0.2− − − − − = −

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1 4 1 1 1 2

1 2 2 1 2 3 2 1 2 2

1 3 3 2 3 4 3 1 3 2

min , , , min 0.3, 0.3, 0.6, 0.4 0.6

min , , , min 0.3, 0.3, 0.6, 0.4 0.6

min , , , min 0.3, 0.4, 0.6, 0.4

v v v v v v u v u

v v v v v v u v u

v v v v v v u v u

    

    

    

− − − − −

− − − − −

− − − − −

 = = − − − − = − 

 = = − − − − = − 

 = = − − − − = 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 4 4 1 4 3 4 1 4 2

1 1 1 1 1 2 1 3 1 4 1 2

1 2 2 1 2 2 2 3 2 4 2 1

0.6

min , , , min 0.3, 0.4, 0.6, 0.4 0.6

min , , , , min 0.6, 0.6, 0.6, 0.6, 0.7 0.7

min , , , ,

v v v v v v u v u

u u v u v u v u v u u

u u v u v u v u v u u

    

     

     

− − − − −

− − − − − −

− − − − − −

−

 = = − − − − = − 

 = = − − − − − = − 

 = =  ( )min 0.4, 0.4, 0.4, 0.4, 0.7 0.7− − − − − = −
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1 4 1 1 1 2

1 2 2 1 2 3 2 1 2 2

1 3 3 2 3 4 3 1 3 2

min , , , min 0.7, 0.5, 0.5, 0.5 0.7

min , , , min 0.7, 0.7, 0.7, 0.7 0.7

min , , , min 0.7, 0.5, 0.4, 0.5

v v v v v v u v u

v v v v v v u v u

v v v v v v u v u

    

    

    

− − − − −

− − − − −

− − − − −

 = = − − − − = − 

 = = − − − − = − 

 = = − − − − = 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 4 4 1 4 3 4 1 4 2

1 1 1 1 1 2 1 3 1 4 1 2

1 2 2 1 2 2 2 3 2 4 2 1

0.7

min , , , min 0.5, 0.5, 0.5, 0.5 0.5

min , , , , min 0.5, 0.7, 0.4, 0.5, 0.6 0.7

min , , , ,

v v v v v v u v u

u u v u v u v u v u u

u u v u v u v u v u u

    

     

     

− − − − −

− − − − − −

− − − − − −

−

 = = − − − − = − 

 = = − − − − − = − 

 = =  ( )min 0.5, 0.7, 0.5, 0.5, 0.6 0.7− − − − − = −

 

 

 
Figure 10. 

1 2
G G+  

 

     1 2 3 4 1 2 1 2 3 4 1 2
, , , , , ; , , , , ; ; 5N N NV v v v v u u D v v v v u V D u D= = − = =  is sum of dominating 

element. Then, we have the adjacency matrix of dominating BSVNG 
1 2

G G+ is given below; 

 

( )1 2

1,1,1 0.5,0.3,0.3 0,0,0 0.5,0.2,0.3 0.4,0.5,0.3 0.5,0.2,0.7

1, 1, 1 0.2, 0.3, 0.7 0,0,0 0.2, 0.3, 0.5 0.2, 0.6, 0.5 0.3, 0.4, 0.5

0.5,0.3,0.3 1

0.2, 0.3, 0.7

ND
A G G+ =

           
           
− − − − − − − − − − − − − − −           

 
 
− − − 

,1,1 0.5,0.4,0.2 0,0,0 0.4,0.5,0.2 0.5,0.2,0.7

1, 1, 1 0.2, 0.3, 0.7 0,0,0 0.2, 0.6, 0.7 0.2, 0.4, 0.7

0,0,0 0.5,0.4,0.2 1,1,1 0.5,0.4

0,0,0 0.2, 0.3, 0.7 1, 1, 1

         
         
− − − − − − − − − − − −         

     
     

− − − − − −     

,0.3 0.4,0.5,0.2 0.5,0.2,0.7

0.2, 0.4, 0.5 0.2, 0.6, 0.4 0.3, 0.4, 0.5

0.5,0.2,0.3 0,0,0 0.5,0.4,0.3 1,1,1 0.4,0.5,0.2

0.2, 0.3, 0.5 0,0,0 0.2, 0.4, 0.5 1, 1, 1 0.2,

     
     
− − − − − − − − −     

       
       
− − − − − − − − − − −       

0.5,0.1,0.7

0.6, 0.5 0.2, 0.4, 0.5

0.4,0.5,0.3 0.4,0.5,0.2 0.4,0.5,0.2 0.4,0.5,0.2 1,1,1 0.5,0.2,0.3

0.2, 0.6, 0.5 0.2, 0.6, 0.7 0.2, 0.6, 0.4 0.2, 0.6, 0.5 1, 1, 1

   
   

− − − −   

         
         
− − − − − − − − − − − − − − − −          0.2, 0.3, 0.5

0.5,0.2,0.7 0.5,0.2,0.7 0.5,0.2,0.7 0.5,0.1,0.7 0.5,0.2,0.3 0,0,0

0.3, 0.4, 0.5 0.2, 0.4, 0.7 0.3, 0.4, 0.5 0.2, 0.4, 0.5 0.2, 0.3, 0.5 0,0,0











 
 

− − 

           
           
− − − − − − − − − − − − − − −           











 
 
 
 
 
 
 
 
 
 



 

 

where 
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( )( )1 2

1 0.5 0 0.5 0.4 0.5

0.5 1 0.5 0 0.4 0.5

0 0.5 1 0.5 0.4 0.5

0.5 0 0.5 1 0.4 0.5

0.4 0.4 0.4 0.4 1 0.5

0.5 0.5 0.5 0.5 0.5 0

ND
A G G + + =

 
 
 
 
 
 
 
 
  

 

 

( )( )1 2

1 0.2 0 0.2 0.2 0.3

0.2 1 0.2 0 0.2 0.2

0 0.2 1 0.2 0.2 0.3

0.2 0 0.4 1 0.2 0.2

0.2 0.2 0.2 0.2 1 0.2

0.3 0.2 0.3 0.2 0.2 0

ND
A G G − + =

 − − − − − 
 
− − − − − 
 − − − − −
 
− − − − − 
 − − − − − −
 
− − − − −  

 

( )( )1 2

1 0.3 0 0.2 0.5 0.2

0.3 1 0.4 0 0.5 0.2

0 0.4 1 0.4 0.5 0.2

0.2 0 0.4 1 0.5 0.1

0.5 0.5 0.5 0.5 1 0.2

0.2 0.2 0.2 0.1 0.2 0

ND
A G G + + =

 
 
 
 
 
 
 
 
  

 

 

( )( )1 2

1 0.3 0 0.3 0.6 0.4

0.3 1 0.3 0 0.6 0.4

0 0.3 1 0.4 0.6 0.4

0.3 0 0.4 1 0.6 0.4

0.6 0.6 0.6 0.6 1 0.3

0.4 0.4 0.4 0.4 0.3 0

ND
A G G − + =

 − − − − − 
 
− − − − − 
 − − − − −
 
− − − − − 
 − − − − − −
 
− − − − −  

 

( )( )1 2

1 0.3 0 0.3 0.3 0.7

0.3 1 0.2 0 0.2 0.7

0 0.2 1 0.3 0.2 0.7

0.3 0 0.3 1 0.2 0.7

0.3 0.2 0.2 0.2 1 0.3

0.7 0.7 0.7 0.7 0.3 0

ND
A G G + + =

 
 
 
 
 
 
 
 
  

 

( )( )1 2

1 0.7 0 0.5 0.5 0.5

0.7 1 0.7 0 0.7 0.7

0 0.7 1 0.5 0.4 0.5

0.5 0 0.5 1 0.5 0.5

0.5 0.7 0.4 0.5 1 0.5

0.5 0.7 0.5 0.5 0.5 0

ND
A G G − + =

 − − − − − 
 
− − − − − 
 − − − − −
 
− − − − − 
 − − − − − −
 
− − − − −  

 

Since, 

( )( )( )  

( )( )( )  

( )( )( )  

( )( )( )  

1 2

1 2

1 2

1 2

1

0,1, 0.436,0.558,2.877 ,

0.080,0.270,0.339,0.955,1.068,2.448 ,

0.826,0.439,0.806,0.955,1.062,2.564 ,

1, 1.838, 0.770, 0.565,0.173 ,

N

N

N

N

N

D

D

D

D

D

Spec A G G

Spec A G G

Spec A G G

Spec A G G

Spec A G G











+

+

+

−

−

+ = −

+ = −

+ = −

+ = − − − −

+( )( )( )  

( )( )( )  

2

1 2

0.954, 0.346, 2.809, 1.050, 0.207,0.366 ,

1, 3.280, 1.006, 0.421,0.213,0.495 .ND
Spec A G G −

= − − − − −

+ = − − − −

 

 

Therefore, the dominating energy of union BSVNG 
1 2

G G+  is; 

( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )

1 2 1 2 1 2 1 2

1 2

1 2 1 2

1 1 1 1 1 1

, , , ,

,

, , , , ,

4.871,5.160,6.652,4.346,5.732,6.415 .

N N N N

N

N N

D D D D

D

D D

n n n n n n

p p p p p p
p p p p p p

E G G E G G E G G E G G
E G G

E G G E G G

   

 

     

+ + + −

− −

= = = = = =

 + + + +
 + =
 + +
 

 
=   
 

=
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Theorem 5.7  Let ( )1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  be a dominating BSVNG 

with n vertices. Let  1 2
, , ,N

k
D z z z=  be a dominating set. If 

1 2 1 2 1 2 1 2 1 2 1 2
, , , , , , , , , , , , , , , , , , , ,

n n n n n n
                   

are the eigen values of adjacency matrix 

( )( ) ( )( ) ( )( ) ( )( ), , , ,N N N ND D D D
A G A G A G A G   + + + − ( )( ) ( )( ),N ND D

A G A G − −  respectively, then 

1. 
1 1 1 1 1 1

, , , , ,
n n n n n n

N N N N N N

p p p p p p
p p p p p p

D D D D D D     
= = = = = =

= = = = − = − = −       

 

2. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

1 1 1 1 1 1

2 2 2 2

1 1 1 1 1 1

2 2 2

1 1 1 1

2 , 2 ,

2 , 2 ,

2 ,

n n n n

p pp pq qn p pp pq qn
p p p q n p p p q n

n n n n

p pp pq qn p pp pq qn
p p p q n p p p q n

n n n

p pp pq qn p
p p p q n p

       

       

     

+ + + + + +

= =    = =   

+ + + − − −

= =    = =   

− − −

= =    =

= + = +

= + = +

= + =

     

     

    ( )
2

1 1

2 .
n

pp pq qn
p p q n

 − − −

=   

+ 

 

 

Proof. 

1. By the trace property of matrices, where the sum of eigen values is equal to its trace, we have 

1

n
N

p pp
p

D +

=

= =  . 

Analogously, we can show that 

1 1 1 1 1

, , , ,
n n n n n

N N N N N

p p p p p
p p p p p

D D D D D    
= = = = =

= = = − = − = −     . 

2. Equivalently, the sum of square of eigenvalues of ( )( )ND
G +  is equal to the trace of ( )( )

2

ND
G+  

( )( )( ) ( )

( )

22

1

11 11 12 21 1 1 21 12 22 22 2 2

1 1 2 2

2

1 1

2

N

n

pD
p

n n n n

n n n n nn nn

n

pp pq qn
p p q n

tr A G 

           

     

  

+

=

+ + + + + + + + + + + +

+ + + + + +

+ + +

=   

=

= + + + + + + +

+ + + + +

= +



 

 

Analogously, we can show that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2

1 1 1 1 1 1

2 2 2 2

1 1 1 1 1 1

2 2

1 1 1

2 , 2 ,

2 , 2 ,

2 .

n n n n

p pp pq qn p pp pq qn
p p p q n p p p q n

n n n n

p pp pq qn p pp pq qn
p p p q n p p p q n

n n

p pp pq qn
p p p q n

       

       

   

+ + + + + +

= =    = =   

− − − − − −

= =    = =   

− − −

= =   

= + = +

= + = +

= +

     

     

  

 

 

This completes the proof.  
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We now give upper and lower bounds of dominating energy of a BSVNG in terms of the 

number of vertices and the sum of squares of positive truth-membership, positive 

indeterminacy-membership, positive falsity-membership, negative truth-membership values, 

negative indeterminacy-membership values, and negative falsity-membership values of the edges. 

 

Theorem 5.8  Let ( )1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −=  be a dominating BSVNG 

with n vertices. If   1 2
, , ,N

k
D z z z=  is the dominating set, then 

1. ( ) ( ) ( )( ) ( )
22 2

1 1 1 1

2 1 2N

n n

n
pp pq qn pp pq qnD

p p q n p p q n

n n A E G n      + + + + + + +

=    =   

 
+ + −   +  

 
     

where A  is the determinant of ( )ND
G + .   

2. ( ) ( ) ( )( ) ( )
22 2

1 1 1 1

2 1 2N

n n

n
pp pq qn pp pq qnD

p p q n p p q n

n n B E G n      + + + + + + +

=    =   

 
+ + −   +  

 
     

where B  is the determinant of ( )ND
G + .   

3. ( ) ( ) ( )( ) ( )
22 2

1 1 1 1

2 1 2N

n n

n
pp pq qn pp pq qnD

p p q n p p q n

n n C E G n      + + + + + + +

=    =   

 
+ + −   +  

 
     

where C  is the determinant of ( )ND
G + .   

4. ( ) ( ) ( )( ) ( )
22 2

1 1 1 1

2 1 2N

n n

n
pp pq qn pp pq qnD

p p q n p p q n

n n D E G n      − − − − − − −

=    =   

 
+ + −   +  

 
     

where D  is the determinant of ( )ND
G − .   

5. ( ) ( ) ( )( ) ( )
22 2

1 1 1 1

2 1 2N

n n

n
pp pq qn pp pq qnD

p p q n p p q n

n n F E G n      − − − − − − −

=    =   

 
+ + −   +  

 
     

where F  is the determinant of ( )ND
G − .   

6. ( ) ( ) ( )( ) ( )
22 2

1 1 1 1

2 1 2N

n n

n
pp pq qn pp pq qnD

p p q n p p q n

n n H E G n      − − − − − − −

=    =   

 
+ + −   +  

 
     

where H  is the determinant of ( )ND
G − .   

 

Proof.  

By Cauchy Schwarz inequality, 

2

2 2

1 1 1

n n n

p p p p
p p p

a b a b
= = =

    
        

    
   . Therefore, 

Upper bound  

If 1
p

a =  and 
p p

b = , then 

2

2

1 1 1

1
n n n

p p
p p p

 
= = =

    
        

    
   . Thus, 

( )( )( ) ( )

( )( )( ) ( )

2 2
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Lower bound 

( )( )( )

( )
( )

 

2
2

1

2

1 1

2

1
1 1

2

2 1
2 .

2

N

n

pD
p

n

pp pq qn
p p q n

n

pp pq qn p qp q n
p p q n

E G

n n
AM

 

  

    

+

=

+ + +

=   

+ + +

  
=   

 
=   
 

 
= +  
 

− 
= + +  
 



 

 

 

Since    
1 1p q p qp q n p q n
AM GM   
     

 , hence 

( )( )( ) ( ) ( )  
2

1
1 1

2 1N

n

pp pq qn p qD p q n
p p q n

E G n n GM     + + + +

  
=   

 + + −   

where 

 
2

( 1)

1
1

2

( 1)1

1

2

1

2

.

n n

p q p qp q n
p q n

n nn

p
p

n

p
p

n

GM

A

   





−

  
  

−−

=

=

 
=   
 

 
=   
 

 
=   
 

=







 

Therefore, 

( )( )( ) ( ) ( )
22

1 1

2 1N

n

n
pp pq qnD

p p q n
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=   

 + + −  . 

Combining these bounds, we have 

1. ( ) ( ) ( )( ) ( )
22 2

1 1 1 1

2 1 2N

n n

n
pp pq qn pp pq qnD

p p q n p p q n
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Analogously, we can show that 

2. ( ) ( ) ( )( ) ( )
22 2
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n
pp pq qn pp pq qnD

p p q n p p q n
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3. ( ) ( ) ( )( ) ( )
22 2
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5. ( ) ( ) ( )( ) ( )
22 2
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6. ( ) ( ) ( )( ) ( )
22 2
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n
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This completes the proof.  
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Theorem 5.9  Let ( ), , , , , , ,G V E      + + + − − −=  be a BSVNG and  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,A G G G G G G G     + + + − − −=  

be the adjacency matrix of G . Let ( )1 1 1 1 1 1 1
, , , , , , , , , , , , ,G V E            + + + − − − + + + − − −= be a 

dominating BSVNG of G  and ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,N N N N N N ND D D D D D D
A G G G G G G G     + + + − − −=  be 

the adjacency matrix of a dominating BSVNG 
1

G . Then 

1. ( )( ) ( ) ( )( )
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3. ( )( ) ( ) ( )( )
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ppD
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 , 

4. ( )( ) ( ) ( )( )
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ppD
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 , 

5. ( )( ) ( ) ( )( )
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6. ( )( ) ( ) ( )( )
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Proof. 
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Analogously, we can show that 

2. ( )( ) ( ) ( )( )
22 2

1

N

n

ppD
p

E G n E G  + + +

=

 
 +  

 
 , 3. ( )( ) ( ) ( )( )

22 2

1

N

n

ppD
p

E G n E G  + + +

=

 
 +  

 
 , 
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 , 5. ( )( ) ( ) ( )( )
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6. ( )( ) ( ) ( )( )
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E G n E G  − − −

=
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This completes the proof.  
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6. Conclusion 

As part of this study, we explored a few graph-theoretic concepts and integrated a hypothesis 

of dominating energy with the idea of BSVNG. Specifically, in this study, we developed a new 

concept of adjacency matrix, as well as the spectrum of the adjacency matrix of the dominating in 

BSVNG. Hence, we computed the energy of dominating BSVNG. Apart from that, various 

operations regarding this domination have been illustrated. With appropriate instances, the 

complement, union and join of dominating energy in BSVNG have been examined. Finally, certain 

theorems regarding the dominating energy in BSVNG are established. In view of Akram et al. [49], 

the terms and notions discussed in this study can be extended in the framework of double 

domination energy in BSVNG. 
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Abstract: Simulation has become a modern-day tool that helps us study many systems that its results could 

not have been studied or predicted through the work of these systems over time. The simulation process 

depends on generating a series of random numbers that are subject to a uniform probability distribution on the 

field [0,1], and then converting these random numbers to random variables that follow the probability 

distribution in which the system to be simulated, there are several methods that can be used to carry out the 

conversion.  

In previous research, the inverse transformation method has been studied according to the Neutrosophic logic 

and we have reached Neutrosophic random variables, by using them we get a more accurate simulation of any 

system we want to simulate. It should be noted that the inverse transformation can be used if the cumulative 

distribution function has an inverse function, but if the system we want to simulate works according to a 

probability distribution, and the inverse function of the cumulative distribution function cannot be found, then 

we use other methods. 

In this research, we are examining a study that enables us to generate Neutrosophical random variables that 

follow probability distributions based on Neutrosophical random numbers that follow for the uniform 

distribution, using the rejection and acceptance method, which depends on the largest value taken by the 

probability density function of the distribution in which the system to be simulated operates on its definition. 

Keywords: Neutrosophic, Neutrosophical random variables, Neutrosophic logic 
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In the light of the great development in today's world, the complexity of systems and the significant material 

and non-material losses that can result from the operation of any system without prior study, there has to be a 

scientific method that enables us to know the results that we can get when operating systems and helps us to 

minimize these losses. The simulation process was the modern instrument through which we can predict what 

results we can get through the functioning of these systems over time. Since the simulation process depends on 

generating random numbers that follow regular distribution on the field [0, 1] and then converting these numbers 

into random variables that follow the probable distribution of the system to be simulated In classical logic, many 

methods were presented by which we were able to obtain the random variables needed for the simulation 

process, To keep pace with scientific development, the most important of these methods had to be reformulated 

using the revolutionary logic of the Neutrosophic logic established by the American philosopher and athlete  

Florentine Smarandache  in 1995. So in previous research we prepared a study to generate random 

Neutrosophic numbers on the field [a, b) Based on the Neutrosophic researchers' findings in the definition of 

regular distribution and definition of integration according to Neutrosophic logic, and in other research, we 

converted these Neutrosophic random numbers into Neutrosophic random variables tracking the exponential 

distribution using the opposite conversion method [1-14]. 

In this research we will generate Neutrosophic random variables based on previous studies and use the method 

of rejection and acceptance to convert Neutrosophic random numbers into random variables that follow the 

probable distribution of the system to be emulated. 

Discussion: 

During the simulation process, we encounter many systems that operate on probability distributions. The reverse 

function of the cumulative distribution function cannot be found. Therefore, we cannot use the opposite 

conversion method that we have formulated according to the Neutrosophic logic. So in this research we will 

present a study to convert the Neutrosophic random numbers that follow the Neutrosophic regular probability 

distribution into Neutrosophic random variables. 

Method of rejection and acceptance according to classical logic: [15] 

We take the distribution of a probability )(xf  defined on the field  ba,  with the following relationship: 

 
 



 


otherwise

bxaxf
xf

0

;
 



Neutrosophic Sets and Systems, Vol. 56, 2023                                                                                                                                                      155   

 

__________________________________________________________________________________________________ 
Maissam Jdid, Said Broumi, Neutrosophical Rejection and Acceptance Method for the Generation of Random Variables 

We assume that the greatest value )(xf  takes on your area of definition is M the same as Mode, then the 

following inequality is achieved: 

bxaMxf  ;)(0  

Thus: 

bxa
M

xf
Mxf  ;1

)(
0)(0  

This means that the composition 
M

xf )(
is valid for comparison with random numbers that follow a uniform 

distribution on the field [0, 1], because it achieves the following relationship: 

M

xf

M

xf
RP

)()(









  

We benefit from the above by applying the following algorithm: 

1- We generate two random numbers 21 , RR  that follow the uniform distribution on the field  

[0, 1]. 

We use the mean squared method to generate the two random numbers defined as follows: 

To generate random numbers, we apply the following relationship: 

  )1(,3,2,1,0;2

1  iRMidR ii 

random number consisting of four R and any fractional
2

iR stands for the middle four places ofMid  Where

places (called the seed) and not containing zero in any of its four places is chosen, to generate two random 

. 1,0from the field 21 , RRnumbers 

2- We take one of the two numbers, let it be 1R  and from it a variable suitable for the uniform 

distribution on the field [a, b], by performing the following conversion: 

aRabx  11 )( 

3- we check whether if 2R  achieves the inequality: 

 
M

xf
R

)(
2 
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4- if the inequality (*) is achieved We accept that 1x  is subject to the operated distribution in the 

system which is being simulated. 

If the inequality   is not achieved, we reject the two numbers 21 , RR and return to the first step, to 

generate two random numbers again. 

    Thus, we continue to work and compare as much as we want or as required by the simulation process. 

Practical example: 

We want to simulate a system that operates according to the probability distribution whose 

probability density function is given by the following relationship: 

 











therwise

xx
xf

0;0

62;
16

1

 

:and is equal to )(xfwhich is the largest value of MWe calculate 

8

3
6

16

1
M 

To perform the simulation, it is necessary to generate random variables that follow this distribution. 

We will use the rejection and acceptance method to achieve the desired: 

1- We use the mean squared method given by the following relationship: 

 

  )1(,3,2,1,0;2

1  iRMidR ii 

random number consisting of four R and any fractional
2

iR Where Mid stands for the middle four places of

places (called the seed) and not containing zero in any of its four places is chosen, to generate two random 

it we get and from3176,0R we take the seed 1,0 from the field21 , RR numbers 

0869.0,7551.0 12  RR 

2- We take one of the two numbers, let it be 0869,01 R  and form it a variable suitable for uniform 

distribution over the field    6,2, ba  by performing the following transformation: 
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  3476.220869.026

)(

1

11





x

aRabx
 

: 1xfWe calculate 

  1467.03476.2
16

1
1 xf 

3- We test inequality   : 

3912.0
375.0

1467.0
7551.0

)( 1
2




M

xf
R

 

 

4- We note that the inequality is not achieved and therefore the random variable 1x does not follow the 

probability distribution )(xf and therefore we reject the two random numbers 21 , RR  and return to (1). 

 

We start again: 

1- We generate two random numbers by taking the seed 1234,0R we get: 

5227.0,3215.0 12  RR 

2- We take one of the numbers, let it be 5227,01 R  and form from it a variable suitable for the 

uniform distribution on the field    6,2, ba  by doing the following conversion: 

  0908.425227.026

)(

1

11





x

aRabx
 

: 1xf We calculate 

  2557.00908.4
16

1
1 xf 

3- We check the inequality (*): 

6819.0
375.0

2557.0
3215.0

)( 1
2




M

xf
R
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4- We see that the inequality is achieved, therefor the random variable 1x  follows the probability 

distribution )(xf , we continue to work and compare as much as we want or as required by the 

simulation process. 

In this research, we formulated the rejection and acceptance method according to the Neutrosophic 

logic, so the previous algorithm became as follows 

1- We generate two random numbers 21 , RR  that follow the uniform distribution on the field   

              [0,1]. 

2- We convert the two numbers 21 , RR  into two Neutrosophic random numbers on the field   

                1,0  

According to the following formula: 

 

     mRRNFRRNP iii ,0;   

Where  m,0  is the indefinite, and 10  m  let's denote them by 12 , NRNR  

We find the cumulative distribution function for the uniform distribution, which is given by the following 

relationship: 

When the indeterminacy is in the upper and lower bounds of the field that means: 

     baba NN ,,  where  n,0 and bna   then: 


















NNNN ab

n
ii

ab

ax
xNF ,0;)(  

In (1) and (2) we used a study that is mentioned in reference (16). 

Then we use the inverse transformation method to find the random variables that follow the uniform 

     baba NN ,, distribution on the field 

We substitute the following relationship: 

)()( 1 RFxxFR   
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We find: 

aabiNRNx

axabiNRiNR
ab

ax

i
ab

ax
NRNRxNF

NN

NN

NN

NN














))((

))((

)(

 













NN ab

n
i   ,0

 

Accordingly, to generate random variables that follow the Neutrosophic uniform distribution in the case of 

indeterminacy related to the lower and upper bounds 

We use the following relationship: 

4,3,2,1,0;))((  jaabiNRNx NNjj  

Where 











NN ab

n
i   ,0  and  is the indefinite where   [0, n] and bna   

We note that the variables have become neutrosophical values, and therefore the probability density function

)(xf   becomes a neutrosophical function that we denote by the symbol )(xf N  and it is defined on the field

     baba NN ,, . 

We suppose that the largest value that this function takes in its domain is NM , then the following inequality 

is achieved: 

  bxaMxf NNN ;)(0  

Then the following inequality is achieved: 

This means that the composition 

N

N

M

xf )(
  is valid for comparison with the Neutrosophical random numbers 

that follow the Neutrosophic uniform distribution on the field    1,0  because it achieves the 

following relationship: 
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N
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N

N

M

xf

M

xf
NRNP

)()(











  

3- We test whether 2NR achieves inequality: 

 
N

N

M

Nxf
NR

)( 1
2  

If the inequality (**) is true, then we accept that 1Nx is subject to the distribution )(xf N  in which the system 

to be simulated operates. 

4- If 2NR does not achieve the inequality    , then we reject the two numbers 21 , RR and return 

to the first step of generating the two random numbers again. 

Thus, we continue to work and compare as much as we want or as required by the simulation process. 

Note 1: In step (2) we took the indeterminacy on the two terms of the field and used the appropriate 

relations for that in the process of converting random numbers into Neutrosophical random numbers. 

Reference [16]. 

Note 2: When generating the Neutrosophic random variable that follows the uniform distribution on the 

field, we also took the indeterminacy on the two terms of the field and then applied the inverse 

transformation method to find the random variable. It should be noted that we follow the same method if the 

indeterminacy is related to one of the field terms. 

Practical example: 

We want to simulate a system that operates according to the probability distribution whose probability 

density function is given by the following relationship: 

 











therwise

xx
xf

0;0

62;
16

1

 

1-  We use the mean squared method given by the following relationship: 

 

  )1(,3,2,1,0;2

1  iRMidR ii 
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0869.0,7551.0 12  RR and from it we form3176,0R We take the seed 

2- We transform the two numbers 21 , RR  into two Neutrosophic random numbers on the field  

        1,0 using the following relationship: 

  ii RNR  

And in this example we take  03.0,0   

 
 0869.0,0569.0

03.0,00869.0

1&

1

11







NR

RNR

iRNR ii





 

 
 7551.0,7251.0

03.0,07551.0

2&

2

22







NR

RNR

iRNR ii





 

and from it we form a   0869.0,0569.01 NR We take one of the two numbers, let it be

 variable suitable for the Neutrosophic uniform distribution over the field

           9,6,5,23,06,3,02, NN ba  3,0Here we have taken. 

By performing the following conversion: 

 ,3,2,1;))(( jaabiNRNx NNjj 













NN ab

n
i   ,0  

  :iFirst we calculate   

 

   
 75.0,0

4

3
,0

5,29,6

3
,0

3
  ,0 
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 Make up: 
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 3476.5,2276.2

2475.0,00869.0,0569.0

))((

1

1

11







Nx

Nx

aabiNRNx NN

 

: 1Nxf NWe calculate 

   

   3342.0,1392.03476.5,2276.2
16

1
)( 1

1





Nxf

Nxfxf

N

NN

 

We calculate NM which is the largest value of )(xf N and is equal to: 

   5625.0,375.09,6
16

1
NM 

3- We test the inequality   : 

 

 
 
 

 

   5941.0,3712.07551.0,7251.0

5941.0,3712.0
5625.0,375.0

3342.0,1392.0
7551.0,7251.0

)( 1
2




N

N

M

Nxf
NR

 

4- We note that the inequality is not satisfied and therefore we reject the two random numbers   

        12 , RR  and return to step (1) 

We start again 

1- We use the mean squared method given by the following relationship: 

  )1(,3,2,1,0;2

1  iRMidR ii  

We take the seed 1234,0R and from it we form 5227.0,3215.0 12  RR  

2- We transform the two numbers 21 , RR  into two Neutrosophic random numbers on the field 

   1,0  using the following relationship: 

 ii RNR 

 03.0,0We take it in this example 
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We take one of the two numbers, let it be  4927.0,5227.01 NR , and from it form a variable suitable for 

the Neutrosophic uniform distribution over the field

           9,6,5,23,06,3,02, NN ba . Here we have taken  3,0  

By performing the following conversion: 

 ,3,2,1;))(( jaabiNRNx NNjj 
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:we find i First, we calculate 

   
 75.0,0

4

3
,0

5,29,6

3
,0

3
  ,0 
































NN ab
i 

Make up: 

     

 4927.5,0908.4

2475.0,04927.0,5227.0

))((

1

1

11







Nx

Nx

aabiNRNx NN

 

: 1Nxf NWe calculate 

   

   3106.0,2557.09708.6,0908.4
16

1
)( 1

1





Nxf

Nxfxf

N

NN

 

3- We calculate NM which is the largest value of )(xf N and is equal to: 

   5625.0,375.09,6
16

1
NM 

4- We test the inequality   : 
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   6819.0,5522.03215.0,2915.0

6819.0,5522.0
5625.0,375.0
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)( 1
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We note that the inequality is achieved, and therefore we accept 1Nx a Neutrosophical variable that follows 

the Neutrosophical probability distribution defined as follows: 

 











therwise

xx
xf

N

N

0;0

62;
16

1


 

Where  3,0 . 

We continue in the same way until we obtain the required number of Neutrosophic random variables 

needed for the simulation process. 

Conclusion and Results: 

From the previous study we note that we do not need the reverse function of the cumulative distribution function 

of the probable distribution of the system imposed when using the Neutrosophic rejection and acceptance 

method and therefore it is a suitable method to generate the Neutrosophic random variables needed for the 

simulation process when obtaining the inverse function of the cumulative distribution function is difficult or 

not possible and using Neutrosophic variables we get more accurate and appropriate simulation results for 

changes that can occur during the work of the system to be simulated. 

We look forward in the near future to preparing studies in which we use the method of refusal of acceptance to 

generate random variables following popular and widely used potential distributions in applied fields such as 

beta distribution and other distributions. 
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Abstract: The decision making theory is playing a vital role in various engineering problems 

recently. A contemporary strategy of object identification from a vague collection of multi observer 

data has been processed here. The strategy we used here involves neutrosophic fuzzy soft set in a 

parametric sense for managing to identify the best signal transceiver for the distribution. This may 

use to pick the better signal transceiver for effective communication and to avoid the loss in signal 

transmission. Reaching Height Transceiver proposed here for better result in communications 

techniques. 

Keywords: Soft set, Neutrosophic fuzzy Soft set, Signal Transceiver, Reaching Height Transceiver 

 

 

1. Introduction 

Many intricate problems in engineering, medical sciences and many other fields involve 

uncertain data. All the issues cannot be worked out by using general mathematics. Here we need 

some applied mathematical techniques based on uncertainty to identify the optimum solution for 

these problems. Recently many theories have risen for dealing with such a problems based on 

uncertainty and vagueness. Molotov [1999] started off the new concept of soft set theory. This is 

used to discuss about uncertainty in different view. Smarandache [2005] initiated the concept of 

neutrosophic set (NS).  Florentin Smarandache [2018] defined the extension of soft set to hypersoft 

set and discussed some of its properties. Maji PK and Biswas R [2001] introduced the concepts of 

fuzzy soft sets. Roy AR and Maji PK [2007] applied fuzzy soft sets in decision making problems.    
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M. Zulqarnain et al [2017, 2018, 2020 and 2021] discussed many decision making problems 

in various fields like medical, engineering etc., to find better solutions. In their continuous research 

work, They introduced TOPSIS method for decision making problems in numerous fields. From 

their discussion technique for order preference by similarity to ideal solution is used for 

Multi – criteria decision making problems and it provides expected results for the problem 

respectively.  

Here we took a structure of Neutrosophic soft fuzzy set and its related properties. Also we 

tried to apply Neutrosophic Fuzzy soft set in identifying suitable transceiver for an effective 

communication among the multiple transceivers which involved multi parameters. To identify the 

best object using the property of Neutrosophic Fuzzy Soft Set (NFSS) is our proposed technique in 

this paper.  

 

 

2. A Problem in Effective Communication – Solution by Neutrosophic soft fuzzy sets 

Most of our real problems are vague, and we cannot identify the solution by using classical 

approach of mathematics. Especially some engineering problems with uncertainty conditions can be 

solved using fuzzy applied techniques. Here we tried to find out the solution for a communication 

problem using NFSS. 

 

2.1 PRELIMINARIES - SOFT SET THEORY 

In this section, we present the basic definitions and results of soft set theory in this section.  

Also we applied important properties of soft set theory which would be very useful for further 

development of this paper. 

1. Definition  

 Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set of U 

and G ⊂ E. 

A pair (F,G) is called a soft set over U, where F is a function given by F : G → P(U). 

On the other hand, a soft set over U is a parameterized family of subsets of the universe U.             

For ε ∈ G, F(ε) may be considered as the set of ε -approximate elements of the soft set (F,G). 

2. Definition  

 Let (F1,G1) and (F2,G2) be any two soft sets over a common universe U,  if 

(i) G1 ⊂ G2, and 

(ii) ∀ ε ∈ G1, F1(ε) and F2(ε) are identical approximations. 

then we say that (F1,G1) is a soft subset of (F2,G2). We write (F1,G1)  (F2,G2). (F2,G2) is said to be a soft 

super set of (F1,G1). 

3. Definition  

 If (F1,G1) and (F2,G2) be two soft sets then “(F1,G1) AND (F2,G2)”  is defined and denoted by 

(F1,G1) ∧ (F2,G2) = (H, G1 × G2), where H(α, β) = F1(α) F2(β), ∀(α, β) ∈ G1 × G2. 

4. Definition 
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If (F1,G1) and (F2,G2) be two soft sets then “(F1,G1) OR (F2,G2)”  is defined and denoted by     

(F1,G1) ˅ (F2,G2) = (H, G1 × G2), where H(α, β) = F1(α) F2(β), ∀(α, β) ∈ G1 × G2. 

2.2 Preliminaries – Neutrosophic fuzzy sets 

 

5. Definition    

A Neutrosophic set 𝐴 on the universe set X is defined and denoted as 𝐴={<𝑥,𝑇(𝑥),𝐼(𝑥),𝐹(𝑥)>:𝑥∈𝑋} 

wℎ𝑒𝑟𝑒 𝑇, 𝐼, 𝐹: 𝑋→[0,1] and 0≤𝑇(𝑥)+𝐼(𝑥)+𝐹(𝑥)≤3 

 

3. Neutrosophic fuzzy soft sets in Communication Engineering Problem 

Basic definitions of Neutrosophic fuzzy sets and some of its related properties are discussed in 

this segment. 

Let U ={x1, x2, . . . , xn} be a set of n objects, which may be signalized by a set of factors {A1,A2, . . . , 

Ai }. The parameter space C may be written as C ⊇ {A1 ∪ A2 ∪· · ·∪Ai }. Let each parameter set Ai  

represent the ith class of factors and the elements of Ai represents a specific property set called as 

fuzzy sets. Hence, we now define a fuzzy soft set (Fi,Ai) which specifies a set of items having the 

parameter set  Ai . 

6. Definition  

Let P (U) denotes the set of all fuzzy sets of U. Let Ai ⊂ E. A pair (Fi,Ai ) is called a fuzzy-soft-set 

over U, where Fi is a mapping given by Fi : Ai → P  (U). 

7. Definition 

Let ₦(U) denotes the set of all neutrosophic fuzzy sets of U. Let Ai ⊂ E. A pair (₦i, Gi) is called a 

fuzzy-soft-set over U, where ₦i is a mapping given by ₦i : Gi → ₦ (U). 

In view of the above we may now define a NFSS  (₦i,Gi) which identifies a group of items 

having the parameter set Gi . 

8. Definition  

For two NFSSs (₦1,G1) and (₦2,G2) over a common universe U,  if 

(i) G1 ⊂ G2, and 

(ii) ∀ε ∈ G1, ₦1(ε) is a fuzzy subset of ₦2(ε). 

Then (₦1, G1) is a fuzzy-soft-subset of (₦2, G2). We write (₦1, G1) (₦2, G2). 

(₦2, G2) is said to be a fuzzy soft super set of (₦1, G1).  

 

Problem: 

The common problems that occur in communication system could find its solution in pure 

Mathematics using the very powerful concept based on the power sets. The problem generated in 

signal communicating system is rectified with the help of many modern techniques. In 

communication system, the failure of any of the transceiver in sending (or receiving ) the signal to    

( or from ) any one of the secondary receivers can be rectified by the powerful concept of 

Neutrosophic Fuzzy Soft Set applications. There are many parameters involved in finding good 

transceivers. For example  

1. Output power. 

2. Receiving sensitivity 

3. Bias current 



Neutrosophic Sets and Systems, Vol. 56, 2023     169  

 

 

Manikandan KH, Muthuraman MS, Sridharan M, Sabarinathan G and Muthuraj R, Identification of RHT (Reaching Height 
Transceiver) for effective communication using Neutrosophic Fuzzy Soft Sets in Communication Engineering Problems 

4. Extinction ratio 

5. Saturated optical power 

6. Working temperature  and so on. 

 

From these we have chosen some parameters, like SNR value of the transceiver, Transmitting 

capacity etc. So, for each parameter we have considered T, I, F values. T represents truth 

performance value of a particular parameter of the transceiver. T equal to output value divided by 

input value. Similarly,  we have chosen F, the false value of the parameter ( may be considered as 

performance of failure value of the same parameter), and I is considered as indeterminacy  value.  

In this research paper, we have discussed the method to identify the best signal transceiver  

among a group of transceivers with the help of Neutrosophic Fuzzy Soft Sets for better 

communication. Through this method we are able to locate the Reaching Height Transceiver to 

receive the signals in a better quality comparing to the other transceivers in the encircled area. RHT 

(Reaching Height Transceiver) is a better transceiver among the group of transceivers, which will be 

good in receiving signals from Main Transceiver and transmitting quality signals to the other 

nearing transceivers.  For discussion we can consider many parameters, especially SNR (Signal to 

Noise Ratio) for communication process. 

 In general, SNR is the proportion between signal and noise powers. This proportion provides a 

significant and convenient indication of the grade to which the signal has been contaminated with 

additive noise. 

 The (SNR)C gives  “ the ratio of the average power of the modulated signal s(t) to the average power of 

noise in the message bandwidth, both measured as received input filtered noise n(t)”  and could be 

calculated using,  

2 2

( )
2 ( )

C
c

o

C A P Avearage power of the channel
SNR

WN Average power of the noise n t
  ,       where 

  C2  -   System dependent scaling factor (a constant);

 
       

2 CA   -   Carrier wave constant; 

         P  -   Average power of the original message signal m(t); & 

         WN0  -  The average noise power in the message bandwidth W in the receiver. 

 The (SNR)O gives “the ratio of the average power of the demodulated message signal to the average power 

of noise, both measured at the receiver output” and could be calculated using 

 
O 

2 2 2 2 '

0 0

/ 4
 SNR    ,

/ 2 2 ( )

C CC A P C A P Average power of the component

WN WN Average power of the noise n t
  

 

where  

  C2   -  System dependent scaling factor ( a constant ); 

       
2 CA

  
-  Carrier wave constant; 

         
'P     -  Average power of the output message signal mo(t); & 

         WN0  -  The average noise power in the message bandwidth W in the transmitter. 

Then we can obtain the figure of merit value through 
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 O

C

SNR The output signal to noise ratio for a receiver using coherent detection

SNR The channel signal to noise ratio of a coherent receiver


 
 

   
 

 

Example: 

Let X be the set of transceivers for communicating the signals and C is the set of factors. Each  

factor is  a  neutrosophic  term  or  a sentence.  Consider    C={c1, c2, c3, c4, c5, c6, c7, c8, c9, c10} 

(Example, Receiving capacity,  distance from Main transceiver,  cost,  Delivering Capacity, 

SNR…..etc).    This problem,  we  define  a  NFSS  means  to  point  out  c1, c2, c3…… and so 

on. Suppose there are  twelve  transceivers  in  the  universe  set X given  as, U1 = {TR1, TR2, 

TR3, TR4, TR5, TR6} and  U2 = {TR7, TR8, TR9, TR10, TR11, TR12}. Let  A = {c1, c2, c3, c4}   where         

c1   refers the factor ‘Receiving Capacity’,   c2 refers   for   the factor   ‘Delivering Capacity’,   

c3   stands   for   the   factor   ‘Signal to Noise Ratio (β)’   and   the   factor  c4  stands for 

‘Cost’.  

 

Suppose that NFSS defined on U1 and the parameter e1 is given in Table.1 as f(U1,c1) follows. 

 

 𝑇 𝐼 𝐹 

TR1 .7 .5 .4 

TR2 .6 .4 .5 

TR3 .85 .6 .2 

TR4 .7 .6 .4 

TR5 .75 .9 .5 

 TR6 .5 .7 .7 

 Table:1- NFSS (f(U1,c1)) 

 

NFSS defined on U1 and the parameter e2 is given in Table.2 as f(U1,c2) 

 

 𝑇 𝐼 𝐹 

TR1 .8 .4 .3 

TR2 .7 .5 .2 

TR3 .7 .6 .3 

TR4 .9 .2 .5 

TR5 1.0 .6 .5 

TR6 .8 .3 .4 

Table:2- NFSS (f(U1,c2)) 

 

NFSS defined on U1 and the parameter e3 is given in Table.3 as f(U1,c3) 

 

 𝑇 𝐼 𝐹 

TR1 .4 .2 .3 

TR2 .6 .6 .1 

TR3 .8 .3 .4 

TR4 .8 .5 .5 

TR5 .3 .4 .7 
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TR6 .5 .3 .5 

Table:3- NFSS (f(U1,c3))  

 

 

 

NFSS defined on U1 and the parameter e4 is given in Table.3 as f(U1,c4) 

 

 𝑇 𝐼 𝐹 

TR1 .8 .3 .3 

TR2 .5 .5 .4 

TR3 .4 .5 .6 

TR4 .7 .2 .5 

TR5 .1 .4 .7 

TR6 .8 .4 .2 

Table:4- NFSS (f(U1,c4))  

 

Note: The fuzzy values (T) used here are randomly collected from lab and the remaining values are 

selected according to the condition. We used moderate to high values, which may provide the better 

solution for the system. The study also based upon these values. In this proposed topic we used 

random values, but the original output of neutrosophic fuzzy values will be used in our future 

research work.    

 

Figure 1 is the graphical representation of Table 1 and so on. 

 

 

Figure.1 – Graphical representation of f(U1,c1) 

 

 

Figure.2 – Graphical representation of f(U1,c2) 
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Figure.3 – Graphical representation of f(U1,c3) 

 

 

Figure.4 – Graphical representation of f(U1,c4) 

 

Similarly we can define the NFSS for other group of transceivers U2, U3… and so on. 

Also, the attributes TR  (𝑗 = 1,2,3,4,5,6) have the weight vector is w =  

Then the Neutrosophic Fuzzy Weighted Average values of the Transceivers under the considered 

criteria are 

1, 2, 3, 4 are 

 

And the Score Function  is defined as  

 

For example, we can calculate  values are obtained using Table 1 to Table 4 as follows. 
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If we proceed, then we can receive the following values which are tabulated below 

 

 𝑇 𝐼 𝐹 

 

.6990 .3857 .3464 

 

.6112 .4627 .2899 

 

.7946 .5209 .2699 

 

.7887 .4113 .4472 

 

1.0000 .6640 .5438 

 

.5905 .4666 .5283 

Table: 5-NFSS Weighted average values  

   

Figure.5 – Graphical representation of Table.5. 
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Hence Score function values are tabulated here 

 

.4945 

 

.4764 

 

.5006 

 

.4884 

 

.4653 

 

.4326 

Table: 6-Score function values  

Comparing   values, we get the following result 

 

 

Figure.6 – Graphical representation of Table.6 

So, the system can automatically choose TR3 in the group U1, and the main transceiver can 

start to deliver the data to TR3 to distribute the signals to other transceivers in that group. It will be 

useful for better communication without interruption and to minimize the interference. 

 

Conclusion: 

 Usually SNR values are considered to choose the best transceiver for uninterrupted 

communication. But in the discussed method SNR value is also considered as a parameter of the 

element.  Hence, through the discussed method the better transceiver  can be identified using 

Neutrosophic fuzzy soft sets. This RHT transceiver can be used for fine-tuned communication 

process and it may reduce loss of signals. It is very useful to increase the efficiency of the particular 

communication system.   

 

Merits: 
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1. Proposed method used to identify the better transceiver for effective communication 

without loss of efficiency. 

2. Neutrosophic fuzzy sets used here to identify the better transceiver using multiple 

parameters including SNR. 

3. Score function values are used here to analyze the efficiency of the transceiver. This is better, 

compare with the analytic studies based upon fuzzy values on communication engineering. 

 

Algorithm: 

1. Input neutrosophic  fuzzy soft  sets:  

2. Input the Weightage set “w” by the observer 

3. Calculate the neutrosophic fuzzy weighted average   

4. Calculate the neutrosophic fuzzy score functions ,  ,  ….for a group 

 respectively 

5. Compare  with   i, j k 

6.  Consider maximum  for all i, Then TRi be the suitable Reaching Height transceiver for the  

     group Ui. 

 

Future Study: 

1. Sudan Jha etal., (2019) discussed a new method to reduce the loss in signal transmission 

using neutrosophic philosophy in their paper entitled as “Neutrosophic approach for 

enhancing quality of signals”.  We would like to develop the new techniques to reduce the 

loss in signal transmission using NFSS and proposed calculative method. The output of this 

research will propose significant approach to minimize the loss of efficiency in signal 

transmitting methods. 

2. M. Zulqarnain et al [2017, 2018, 2020 and 2021] discussed many decision making problems 

in various fields  and they used TOPSIS technique to find the better results for Multi – 

criteria decision making problems. We would like to use TOPSIS technique for 

finding the suitable solution in our proposed topic. 
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Abstract: Decision making under an uncertain environment is a critical task. In this article, we 

develop a Multi Attribute Decision Making (MADM) model using BWM and Neutrosophic-TOPSIS 

under Single Valued Neutrosophic Set (SVNS) environment. In developed model, BWM is utilized  

to find the weights of the attributes those are selected by a group of experts, and the 

Neutrosophic-TOPSIS is utilized to rank the alternatives. 

Keywords: Decision Making; BWM; Neutrosophic-TOPSIS; Uncertainty; SVNS. 

 

1. Introduction: 

In Multi- Attribute Decision Making ( MADM) decision-maker determines the best choice form a 

set of possible alternatives subject to multiple conflicting criteria. A strategic approach requires to be 

performed to deal with MADM involving uncertainty. In the MADM algorithm, a decision matrix is 

formed by the decision-maker to find a ranking of the alternatives. 

Fuzzy set theory, proposed by Zadeh [1], has been very useful in dealing with MADM 

problems involving uncertainty. Decision making is a successful field of study in the fields of 

Medical Science, Operations Research, Data Mining, Management Science, etc. In the present era 

there are various popular methods like AHP [2], TODIM [3, 4], VIKOR [5, 6, 7], TOPSIS [8, 9, 10], 

MULTIMOORA [11], GRA [12], Cross entropy measure [13], DEMATEL [14], Subsethood measure 

[15], aggregation operators [16], etc. to solve the MADM under uncertain environment. 

Among those techniques, TOPSIS received a lot of attention in the past decade and many 

mathematicians studied the method for solving many MADM problems in various situations. In 

2011, Pramanik and Mukhopadhyay [17] presented the Multi Attribute Group Decision Making 

(MAGDM approach to select the teachers based on the Grey Relational Analysis (GRA) under 

Intuitionistic Fuzzy Set (IFS) environment. 

mailto:%20sura_pati@yahoo.co.in
mailto:2sumandas18842@gmail.com
mailto:3rakhaldas95@gmail.com
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Chen [18] introduced the TOPSIS method in the fuzzy environment and considered the rating 

value of the alternative and attribute weight in terms of a triangular fuzzy number. In 2009, Boran 

et al. [19] extended the TOPSIS method for MAGDM under IFS environment to solve the supplier 

selection problem. In 2010, Ye [20] extended the TOPSIS method with an interval-valued IFS 

environment. In 2015, Rezaei [21] introduced the Best-Worst Method (BWM). In comparison with 

the current MADM methods, BWM needs more consistent comparisons, fewer comparison data 

with more good results. In 2020, Mohammad Javad et al. [22] presented a model of green supplier 

selection for the steel industry using BWM and fuzzy TOPSIS. 

Till now fuzzy MADM and intuitionistic fuzzy MADM problems are studied by many 

researchers. Presently multiple researchers use uncertainty in the model formulation of different 

MADM problems. Uncertainty acts as a vital role in MADM difficulties. So neutrosophic sets 

should be applied in the complex environment involving uncertainty, indeterminacy and 

inconsistency the MADM method. Since fuzzy and intuitionistic fuzzy MADM difficulties are 

extensively investigated, but indeterminacy should be included in the MADM difficulties. 

Smarandache [23] grounded the neutrosophic set to represent the mathematical model of 

uncertainty, imprecision, and inconsistency. In 2010, Wang et al. [24] presented the notion of single 

valued neutrosophic set (SVNS). Later on, Biswas et al. [25] studied the entropy based GRA 

approach for MADM under SVNS environment. 

In an MADM algorithm, weights of the attributes play an essential role in ranking the 

alternatives. In the proposed MADM algorithm, we apply BWM to find the weights of the criteria 

and the Neutrosophic-TOPSIS method to rank the alternatives. 

The remaining paper has been split into several sections. Section 2 is on the preliminaries and 

the definitions. Section 3 is on neutrosophic BWM-TOPSIS by using hybrid score-accuracy values 

under SVNS environment. Section 4 deals with the validation of our proposed model. In this 

section, we consider an example to verify our proposed MADM model. Section 5 presents 

concluding remarks of the work and future scope research. 

 

2. Preliminaries and Definitions: 

The notion of Neutrosophic Set was grounded by Smarandache [23] in 1998. Afterwards, Wang et al. 

[24] introduced the concept of Single Valued Neutrosophic Set (SVNS) to deal with the events 

having indeterminate, incomplete information. 

 

An SVNS W over a fixed set  is defined as follows: 

W = {(q, TW(q), IW(q), FW(q)) : q}, 

where TW, IW, FW are functions from  to [0, 1] and so 0 ≤ TW(q) + IW(q) + FW(q) ≤ 3. For any SVNS W 

over a fixed set , the triplet (TW(q), IW(q), FW(q)) is called a Single Valued Neutrosophic Number 

(SVNN). 

 

Assume that W = {(q, TW(q), IW(q), FW(q)) : q∈} and M = {(q, TM(q), IM(q), FM(q)) : q∈} be two SVNSs 

[24] over . Then, 

(i) WC = {(q, 1-TA(q), 1-IA(q), 1-FW(q)): q∈} is called the complement of W; 
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(ii) W ⊆ M if and only if TW(q) ≤ TM(x), IW(q) ≥ IM(q), and FW(q) ≥ FM(q), for all q ∈; 

(iii) W = M if and only if W ⊆ M and M ⊇ W; 

(iv) W  M = {(q, TW(q)⋁TM(q), IW(q)⋀IM(q), FW(q)⋀FM(q)) : q}; 

(v) W  M = {(q, TW(q)⋀TM(q), IW(q)⋁IM(q), FW(q)⋁FM(q)) : q}. 

Score Function: 

In 2018, Mondal and Basu [26] proposed a new score function to solve MADM problems under 

the SVNS environment as follows: 

The score function is defined by the following steps:  

Step 1: Suppose that O is the origin and  N= (tn, in, fn), an SVNN, represents a point in 

three-dimensional space. Take a translation of that point N to M = (tm, im, fm), where  tm = tn+r,  im, = 

in+r,  fm= fn+r, where r > 0, a real number such fm never becomes 1 and unique throughout a particular 

problem. Consider another point M’ = (tm,- im, -fm), which is the image of (tm, im, fm), with respect to 

the x axis as a mirror. 

Step 2: Find the score function S1(M) =Cos (a), where a is the angle between OM and OM’, O is  

the origin.  

Step 3: If the score values S1(N1) and S1(N2) are same, for two different SVNNs N1
1 1 1n n , n(t , i f ) and 

N2= 
2 2 2n n , n(t , i f ) , determine 

1 1 1

**

1 n n , nN (t , i f )    and 
2 2 2

**

2 n n , nN (t , i f )    respectively for the 

corresponding translated points * * *
1 1 1

*

1 n n , n
N (t ,i f )  an * * *

1 1 1

*

2 n n n
N (t ,i f ) ,, where 

* * *
1 1 11 1 1

n n nn n n
t t r, f f r, i i r       and * * *

2 2 22 2 2
n n nn n n

t t r, f f r,i i r      .  

Step 4: Find Cos (b) and Cos (c), where b is the angle between *

1ON  and **

1ON  and c is the angle 

between *

2ON and **

2ON , O is the origin. 

Step 5: The score function S2(N1) = Cos(b) and S2(N2) = Cos(c). 

 

Example 2.1. Suppose that K1=(0.4, 0.3, 0.2) be an SVNN. Then, score value of K1 is s(K1) = 0.090496 , 

for r= 0.01. 

 

3. Method 

In this section, we describe the BWM and Neutrosophic-TOPSIS strategy. In our MADM 

algorithm BWM is mainly used to find the weights of the selected attributes and TOPSIS is used for 

ranking the set of alternatives. 

 

3.1. BWM 

In an MADM algorithm, attributes selection by the expert, and calculate the weights of those 

attributes is the most important and critical task. The Best-Worst Method [21] is the best suitable 

method to determine the values of the weights for the selected attributes. 

The BWM method is stated as follows: 
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i. Selection of a family of m decision-makers. 

ii. Selection of a family of n attributes. 

iii. Selection of the best attribute and the worst attribute. 

iv. Give preference of the best attribute over all the other attributes based on a scale of 1 to 9. 

The best-to-others vector shows the preference of the best attribute over all other attributes 

that can be written as: Ab=(ab1, ab2, ……., abn), where abi =the preference of the best attribute b 

over the attribute i and abb=1. 

v. Assign preference of all the other attributes over the worst attribute based on a scale of 1 to 

9. The others-to-worst vector shows the preference of all other attributes over the worst 

attribute that can be written as: Aw=(a1w, a2w, ……., anw)T, where aiw =the preference of the 

attribute i over the worst attribute w and aww=1. 

vi. Determine the optimal weights of all the attributes (𝑤1
 , 𝑤2

 , ……, 𝑤𝑛
 ). 

The objective is to find the optimal weights so that the maximum absolute differences for all i are 

minimized of the {|wb-abiwi|, |wi-aiwww|}. 

The following model is resulted considering the weights non-negativity and summation of weights 

constraints. 

min max {|wb-abiwi|, |wi-aiwww|} 

Such that 

∑ 𝑖 wi =1                                                                                    (1) 

wi ≥0, for all i. 

Now, we can be transferred the model (1) to the following linear model: 

min CR 

Such that 

|wb-abiwi|≤ CR, for all i 

|wi-aiwww|≤ CR, for all i                                                                         (2) 

∑ 𝑖 wi =1 

wi≥0, for all i. 

After solving eq. (2), we get the weights (w1, w2, ……, wn) and value of CR. The value of CR closer to 

zero indicates desired consistency. 

 

3.2. TOPSIS 

Till now many MADM strategies were developed. Among them TOPSIS is one of the most popular  

MADM strategy to rank the set of alternatives. Also, the rank of the set of alternatives is the most 

necessary part of an MADM problem. In this section we describe the TOPSIS method for ranking the 

alternatives. 

First we need to consider a set of alternatives A={W1, W2, W3, …., Wm} with m≥1 and a set of attributes 

C={A1, A2, A3, ……,An} with n ≥ 2 and choose the weights w1, w2, …..,wn for each attributes Ai, (i=1, 2, 

3,.., n} respectively. 

Decision-makers provides rating of the alternatives Wj, (j=1, 2, 3,…, m) based on the attributes Ai, 

(i=1, 2, 3,.., n}, which is represented  in term of an SVNN. Assume that rating of j-th attribute with 

respect to i-th alternative is presented as follows: 
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𝑊𝑗
∗ = (𝐴𝑖 , 𝑇𝑊𝑗

(𝐴𝑖), 𝐼𝑊𝑗
(𝐴𝑖), 𝐹𝑊𝑗

(𝐴𝑖)), j = 1, 2, ..….., m, where 0 ≤ 𝑇𝑊𝑗
(𝐴𝑖) +  𝐼𝑊𝑗

(𝐴𝑖) + 𝐹𝑊𝑗
(𝐴𝑖) ≤ 3. 

Here (Tji, Iji, Fji) is denoted as an SVNN. 𝑊𝑗
∗ , (i = 1, 2, 3,..., n, and j = 1, 2, 3, …, m, where i = no of 

attributes and j= no of alternatives. Based on rating Therefore, we get the decision matrix: 

D*=(𝑊𝑗𝑖
∗)𝑚×𝑛 

Now, TOPSIS method is summarized as follows: 

 

i. The score-matrix D=(𝑊𝑗𝑖
 )

𝑚×𝑛
 (j=1,2,…,m; i=1,2,….,n) is obtained from the decision matrix 

D*=(𝑊𝑗𝑖
∗)𝑚×𝑛 by using the following described in preliminary section: 

i.e., 𝑊𝑗𝑖
  = s1(𝑊𝑗𝑖

∗). 

 

ii. Determination of normalized decision matrix N=(𝑁𝑗𝑖
 )𝑚×𝑛 

where 𝑁𝑗𝑖
 =

𝑊𝑗𝑖


√∑ 𝑊𝑗𝑖
2𝑚

𝑗=1

 , j=1, 2, 3, …, m; i=1, 2, 3, …, n. 

 

iii. Determine the weighted normalized decision matrix V=(𝑉𝑗𝑖
 )𝑚×𝑛 

where Vji = wi*𝑁𝑗𝑖
 , j=1, 2, 3, …, m; i=1, 2, 3, …, n. 

 

iv. Determine the Neutrosophic Positive Ideal Solution (NPIS) and Neutrosophic Negative 

Ideal Solution (NNIS). 

NPIS 𝐼+ = {𝑣1
+, 𝑣2

+ , 𝑣3
+, ….𝑣𝑛

+}, where 𝑣𝑖
+ = 𝑚𝑎𝑥 𝑉𝑗𝑖, i=1, 2, 3, …, n; 

NNIS 𝐼− = {𝑣1
− , 𝑣2

−, 𝑣3
−, ….𝑣𝑛

−}, where 𝑣𝑖
− = 𝑚𝑖𝑛 𝑉𝑗𝑖 , i=1, 2, 3, …, n. 

v. Determine the distance of each alternative from NPIS and NNIS using the following 

formula, 

𝑆𝑗
+ = √∑ (𝑉𝑗𝑖 − 𝑉𝑖

+)2𝑛
𝑖=1 , j = 1, 2, …. , m 

𝑆𝑗
− = √∑ (𝑉𝑗𝑖 − 𝑉𝑖

−)2𝑛
𝑖=1 , j = 1, 2, …. , m 

 

vi. Calculate the performance score of each alternative by using the formula 

Pj =
𝑆𝑗

−

𝑆𝑗
−+ 𝑆𝑗

+ 

vii. Put the performance score in ascending order and rank the alternatives. 

 

4. Validation of the Proposed BMW-TOPSIS Strategy 

In this section we present a numerical example to validate the developed MADM model. 

 

Example 4.1. “Selection of Suitable Flat for a Customer”. 

Suppose a customer wants to buy a Flat from a set of available alternatives/Flats. The quality of 

the flat is very important for the customer and it is dependent on the price that is why it is a variable 

quantity. Which floor is ok on the basis of customer investment and the geographical position of 

land, ownership of land, cost of land, communication of builders, etc. To buy a flat, customers have 
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to concentrate in some criteria and to decide the priority on the criteria. After the initial screening, 

customers select four possible alternatives / Flats namely W1, W2, W3, W4 for further evaluation. A 

decision maker selects seven attributes namely Q1, Q2, Q3, Q4, Q5, Q6, Q7 that help the customer to 

select the best one. 

 Fire safety (Q1): 

When clients purchase an apartment on a higher floor, fire safety is the most critical 

consideration. To do so, the consumer must be aware that the fitness for occupancy of any apartment 

can be determined by whether it has received an Occupancy Certificate (OC) from the local 

authorities. Customers can use OC to determine whether or not a structure was built in accordance 

with the permitted designs. When purchasing an apartment, buyers should seek the copy of the OC. 

When the fire department issues clearances, the builder can seek the occupancy certificate. As a 

result, when clients buy a flat with OC, they know it passes the fire department's safety 

requirements. 

 Floor deviations (Q2): 

When a customer is looking at buying a flat, floor deviation is a vital factor to consider. On 

occasion, unauthorized deviations from construction plans occur on the building's top floor. If 

clients are purchasing a flat on the top level, make sure there are no deviations from the norm. It is a 

good idea to inspect the floor and make sure that the property has all of the essential approvals. 

Another thing to keep in mind is that the lowest floors are the most pest-prone, with rats, snakes, 

and other animals freely entering the lower units. Higher severe road noise can sometimes be heard 

from all sides and only subsides beyond 12/13-th floor. So, based on the floor deviations, the 

customer must select which one is the best for him. 

 Vantage point (Q3): 

Consider a higher floor if the view from your clients' apartment is vital to you, as they often 

provide the best available vantage points. The view is a major consideration for apartments 

nearby sea or in a scenic area. Floor rise charges will apply in an under-construction flat, making 

living on upper floors slightly more expensive. The benefits of living on a higher floor are numerous. 

When compared to those on the ground and lower floors, you receive better views of your 

neighbourhood, better light and ventilation, and are less affected by street-level noises. Mosquitoes 

and rodents are usually not a problem on higher floors (mainly rats). 

 Mobile network and power consumption (Q4): 

Whole world is going to be digitalized, so that online communication is going to very first. In 

numerous metro towns, the construction of high-rise apartments with as much as 40 floors has 

become commonplace. In Mumbai, for example, high-rise buildings can reach 40 floors, while 

skyscrapers in Delhi-NCR average 25 floors. If you choose a higher floor, ensure sure the flat has 

appropriate network coverage. Lower floors are often cooler and use less energy than higher floors. 

This is a significant consideration in cities with long, hot summers. 

 Connection, service-related factors (Q5): 

This is yet another significant factor for clients to consider. Before purchasing a property, be certain 

that the floor is equipped with CCTV Camera. Also, when you buy an apartment on any floor, 

verify the corridor area, which is the sole open place outside your flat. As a direct consequence, you 
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should double-check that you have adequate space outside of your flat, as corridor sizes differ 

between apartment complexes. Aside from that, keep in mind that several service providers do not 

even offer on upper floors, for example, broadband. 

 Choose the right builder (Q6): 

Before buying, choosing the right builder is very important because in some cases builder is unable 

to provide the customer satisfaction. They create many problems and making many false statements. 

So, the feedback and certificate of the builder is too important when it comes to deciding on the right 

project and floor to buy a flat on, make sure you to choose trusted builder with a solid track record. It 

is your right and responsibility as a house buyer to verify with the Real Estate Regulatory Authority 

to see if the builder has registered the project (RERA). 

 Local infrastructure around the society and well connectivity (Q7): 

In determining a domestic property's current and future worth, the infrastructure in and 

around it is critical. Roads linking to the community and in-roads within the population, for 

example, should be well-built and preserved. Ascertain that the project is convenient from 

significant areas of the city and that governmental and non - governmental transit are well 

connected. Calculate routes from the city's prominent landmarks. You can do some investigation on 

the area and see what public transportation choices are available, such as rail, buses, and cabs. Also 

keep an eye out for future infrastructure plans in the area, such as a projected metro line or freeway, 

as well as adjacent entertainment alternatives. 

 

The comparison of criteria by the rating from 1 to 9, are given in the following table. 

 

Table-1: (Comparison of Criteria) 

Criteria     Q1      Q2     Q3      Q4      Q5      Q6       Q7 

             7       9      4        3        6       2        1          Best Criteria: Q7 

Q1                                             2 

Q2                                              1 

Q3                                             5 

Q4                                             6 

Q5                                              4 

Q6                                             8 

Q7                                             9 

Worst Criteria: Q2 

 

By using eq. (1) and eq. (2), we obtain the weights of the attributes. The weights are given in the 

following table. 

 

Table-2: (Calculation of weights using BWM) 

Criteria                                                                            Weights (=wi) 

Fire safety (Q1) 0.05284016 
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Floor deviations (Q2) 0.04109790 

Vantage point (Q3) 0.09247028 

Mobile network and power consumption (Q4) 0.1232937 

Connection, service-related factors (Q5) 0.06164685 

Choose the right builder (Q6) 0.2587700 

Local infrastructure around the society and well connectivity (Q7) 0.3698811 

Consistency Rate (CR)                                        0.6301189 

 

Suppose the decision maker provides his/her evaluation information for the alternatives with 

respect to the attributes by using SVNNs, then the decision matrix is constructed. 

 

Decision Matrix (D): 

D Q1 Q2 Q3 Q4 Q5 Q6 Q7 

W1 (0.7,0.3,0.2) (0.7,0.1,0.2) (0.9,0.3,0.1) (0.8,0.1,0.3) (0.8,0.2,0.1) (0.9,0.2,0.2) (0.7,0.2,0.2) 

W2 (0.8,0.2,0.4) (0.6,0.0,0.2) (0.8,0.1,0.1) (0.9,0.2,0.2) (0.9,0.1,0.2) (0.8,0.2,0.1) (0.8,0.1,0.2) 

W3 (0.8,0.3,0.1) (0.8,0.2,0.2) (1.0,0.2,0.1) (0.7,0.2,0.1) (0.8,0.3,0.2) (0.7,0.2,0.1) (1.0,0.3,0.2) 

W4 (0.6,0.2,0.1) (0.9,0.2,0.3) (0.8,0.1,0.2) (0.9,0.4,0.2) (0.7,0.2,0.2) (0.7,0.1,0.2) (0.8,0.1,0.3) 

 

Score Matrix (D*): 

D* Q1 Q2 Q3 Q4 Q5 Q6 Q7 

W1 0.564799 0.799393 0.768877 0.716865 0.842201 0.807487 0.702178 

W2 0.511229 0.787653 0.928855 0.807487 0.872894 0.842201 0.842201 

W3 0.716865 0.762999 0.895568 0.799393 0.647871 0.799393 0.758338 

W4 0.737567 0.710420 0.842201 0.592041 0.702178 0.799393 0.716865 

[In the above table, we find all the score values by taking r= 0.01] 

 

Normalized Decision Matrix (N): 

N Q1 Q2 Q3 Q4 Q5 Q6 Q7 

W1 0.441269 0.361863 0.446502 0.488277 0.545455 0.497031 0.463878 

W2 0.399416 0.356548 0.539404 0.550002 0.565334 0.518398 0.556381 

W3 0.560075 0.345388 0.520074 0.544489 0.419597 0.492049 0.500978 

W4 0.576250 0.321587 0.489083 0.403256 0.454769 0.492049 0.473580 

 

Weighted Normalized Decision Matrix (V): 

V Q1 Q2 Q3 Q4 Q5 Q6 Q7 

W1 0.023317 0.014872 0.041288 0.060201 0.033626 0.183842 0.171580 

W2 0.021105 0.014653 0.049879 0.067812 0.034851 0.191746 0.205795 

W3 0.029594 0.014195 0.048091 0.067132 0.025867 0.182000 0.185302 

W4 0.030449 0.013216 0.045226 0.049719 0.028035 0.182000 0.175168 
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Neutrosophic Positive Ideal Solution (𝑰+) and Neutrosophic Negative Ideal Solution (𝑰−): 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 

W1 0.023317 0.014872 0.041288 0.060201 0.033626 0.183842 0.171580 

W2 0.021105 0.014653 0.049879 0.067812 0.034851 0.191746 0.205795 

W3 0.029594 0.014195 0.048091 0.067132 0.025867 0.182000 0.185302 

W4 0.030449 0.013216 0.045226 0.049719 0.028035 0.182000 0.175168 

𝐼+ 0.030449 0.014872 0.049879 0.067812 0.034851 0.191746 0.205795 

𝐼− 0.021105 0.013216 0.041288 0.049719 0.025867 0.182000 0.171580 

 

Distance of Each Alternative from NPIS and NNIS: 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 𝑆𝑗
+ 𝑆𝑗

− 

W1 0.023317 0.014872 0.041288 0.060201 0.033626 0.183842 0.171580 0.037646223 0.013457438 

W2 0.021105 0.014653 0.049879 0.067812 0.034851 0.191746 0.205795 0.041828099 0.296781428 

W3 0.029594 0.014195 0.048091 0.067132 0.025867 0.182000 0.185302 0.27572937 0.27572937 

W4 0.030449 0.013216 0.045226 0.049719 0.028035 0.182000 0.175168 0.264977289 0.264977289 

 

Performance Score: 

 𝑆𝑗
+ 𝑆𝑗

− 
Pj =

𝑆𝑗
−

𝑆𝑗
−+ 𝑆𝑗

+ 

W1 0.037646223 0.013457438 0.263336092 

W2 0.041828099 0.296781428 0.876470991 

W3 0.27572937 0.27572937 0.5 

W4 0.264977289 0.264977289 0.5 

 

The ascending order of performance score associated with each alternative is P1 < P4 = P3 < P2. Hence, 

W2 is the most suitable flat for the customer. 

 

5. Conclusion 

In this paper, we used some suitable attributes for decision making to a better choice of a flat 

among the available flats. Also, we used two important methods BWM and TOPSIS to select the 

appropriate flat among the available flats under the SVNS environment, where the BWM is mainly 

used for determining the weights of the attributes, and TOPSIS is used for ranking the possible 

alternatives/flats. 

The data used in this paper has not taken from any source. We have just considered these 

numbers for the verification of our algorithm. However, this algorithm can apply for any real source 

data. 

The developed BWM-TOPSIS can be utilized in different neutrosophic environments such as 

refined neutrosophic set [27], rough neutrosophic set [28], interval neutrosophic set [29], 

neutrosophic soft set [30], neutrosophic soft expert set [31], bipolar neutrosophic set [32], 

pentapartitioned neutrosophic set [33, 34],  etc. 
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Abstract: Microemulsion fuels, also known as surfactant-free fuels, are fuels made from a combination of 

two immiscible liquids, hydrocarbon fuel, and water, with a trace quantity of a co-solvent. Surfactants are 

often used in conventional microemulsion fuels, however surfactant-free microemulsion fuels instead 

depend on the thermodynamic features of the combination to generate a stable emulsion. In this paper, the 

multi-criteria decision-making (MCDM) model for choosing microemulsion fuel with surfactant-free. 

Various helpful and harmful criteria were evaluated for ten fuels at varying motor loads, according to 

performance and emission characteristics. This paper integrated the neutrosophic set with the TOPSIS 

method. The neutrosophic set is used to deal with uncertain data. The TOPSIS method is used to rank the 

different fuels. 

 

Keywords: Neutrosophic Set, TOPSIS Method, Microemulsions, Renewable Energy, Diesel. 

 

1. Introduction 

More fossil fuels are being used to meet the ever-increasing energy needs of a growing global population 

and rising quality of life. Acid rain, global warming, carbon dioxide, and other health dangers are only 

some of the ecological problems that may be traced back to our reliance on fossil fuels. The Paris Agreement 

of 2015 stipulates that countries will work together to keep global warming below 2°C. Interest in cleaner 

and more sustainable substitutes for power has increased in response to more stringent environmental 
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regulations and worries about power and financial security. Most of the world's energy needs are met by 

fossil fuels, despite the extensive study of renewable alternatives. As its economy has grown rapidly, Asia 

has become one of the world's largest consumers of energy. Fossil fuel emissions are increasing the artificial 

aging of the atmosphere, according to studies. Renewable power has an opportunity to reduce 

ecological pollution, but only if it is affordable, readily accessible, and consistently used. Biodiesel and 

hydrogen, two examples of alternative fuels, are either costlier than traditional fuels like petrol and diesel 

or need a separate fuel system[1], [2]. 

Microemulsions are a special kind of colloidal system that has been the subject of substantial research 

because of its potential use in several industries, such as the pharmaceutical, cosmetic, oil recovery, and 

food processing sectors. Microemulsions have excellent solubilization capability for hydrophilic and 

hydrophobic substances, are thermodynamically stable, and are transparent. Due to these characteristics, 

microemulsion formulations are very desirable for several uses[3], [4]. 

To keep their stability, microemulsions often include a third party, such as a surfactant or co-surfactant, in 

addition to two immiscible liquids incompatible. The interfacial tension is decreased, and the emulsion is 

stabilized by the layer of surfactant molecules that is positioned at the interface between the two liquids. 

The co-surfactant is included to further decrease the interfacial tension and increase the solubilization 

capability. The resultant microemulsion has a large surface area and a tiny droplet size range (usually 10 

to 100 nanometers)[4], [5]. 

Microemulsions' special qualities make them useful in many contexts. Due to their excellent solubility and 

bioavailability, microemulsions are employed in the pharmaceutical sector for medication delivery. 

Microemulsions have dual purposes in cosmetics, both hydrating the skin and transporting other 

substances. Microemulsions are used in the food business to increase the stability and longevity of various 

goods. Microemulsions are employed in improved oil recovery to lower interfacial tension and increase oil 

recovery from reservoirs[6], [7]. 

Several obstacles must be overcome before microemulsions may realize their full potential. The complexity 

of microemulsion formulation and processing contributes to its prohibitively high production cost. The 

surfactants employed to stabilize microemulsions may also be toxic, limiting their usefulness in certain 

situations. Furthermore, temperature, pH, and the presence of pollutants all have a significant role in 

deciding a microemulsion's stability, which might restrict its usage in certain situations. 

Because of variations in efficiency and pollution output, deciding the best fuel choice often needs the use 

of a multi-criteria decision-making (MCDM) methodology. The TOPSIS approach was used to determine 

the best crop for making biodiesel[8], [9]. The choice of the best crop for making biodiesel in Egypt is based 

on various characteristics and performance emissions.  

The term "neuropathy" was coined by Smarandache. Neutrality studies examine how various ideational 

spectra interact with one another and how they came to be. Classic sets, fuzzy sets, interval-valued fuzzy 

sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, paraconsistent sets, dialetheist sets, 

paradoxist sets, and tautological sets are all generalized by the strong and broad formal framework known 

as the neutrosophic set[10], [11]. 

The neutrosophic set is a philosophical generalization of the sets. From a scientific or technical perspective, 

it is necessary to specify the neutrosophic set and set-theoretic operators. Alternatively, implementing it in 
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the actual world would be challenging. That's why Wang et al. suggested a single-valued neutrosophic set 

(SVNS) and laid out its set-theoretic operators and other features[12], [13]. 

Here is how the rest of the paper is laid out. In Section 2, we supply information about performance and 

emission characteristics. Section 3 supplies the alternatives to diesel. Section 4 introduces the neutrosophic 

TOPSIS method. Section 5 introduces the results and discussion. Concluding Section 6 presented the 

conclusions. 

2. Performance and Emission Characteristics 

Recent interest in alternative fuels has been spurred by the scarcity of supplies and the unavoidable 

emission rates from fossil fuels. Diesel is one widely used fossil fuel because of the great thermal 

effectiveness it provides to the engine. The atomization and vaporization of vegetable oils prevent them 

from being employed in motors as diesel substitutes. Other alternative oxygenating fuels that aid reduce 

CO and smoke emissions include alcohol. Nevertheless, they often split and diminish the fuel's warming 

potential[2], [3].  

To avoid splitting of phases and ease emulsification, alcohol in diesel requires the use of surfactants. 

Nevertheless, emulsions are only robust kinetically, and their huge droplet dimensions lead to phase 

splitting if they are not disturbed. Vegetable oils and alcohols each have their own set of drawbacks, but 

there have been several suggested solutions, like mixing, transesterification, and micro emulsification, for 

working around them. 

Because they need no chemical reactions during manufacture, microemulsions are among the most 

practical options. They also contribute to biodiesel's enhanced pour point and ignition latency. 

Microemulsions, in contrast to emulsions, have droplet dimensions of fewer than 200 nm and are thermally 

inert. Microemulsions of Colza oil, diesel, and water were shown to remain stable for more than nine 

months. Because the vapor depth and liquid duration of the gasoline in the vehicle are identical to those of 

petro-diesel, microemulsions do not need any adjustments to the motor. Even at a high insertion pressure 

of 1500 bar, droplet dimension distribution was found to be unaffected. Droplet dimensions in 

microemulsions dropped as the mixing rate rose to 1000 rpm, but thereafter rose, maybe because the 

continuous stage was more evenly distributed throughout the dispersed phase[14], [15]. 

When combined with alcohol, microemulsions have also been employed to alter the consistency of 

vegetable oils. For instance, increasing the proportion of ethanol in microemulsions causes the viscosity of 

soybean oil, coconut oil, and algal oil microemulsions to decrease. Blends of biodiesel and diesel have also 

made use of alcohols to enhance their low-temperature fluidity and stiffness. In addition, they aid in 

reducing PM's dimensions, amount, and bulk, typically by 50%, 60%, and 30%, correspondingly. Reduced 

NOx and soot production is another benefit of using lower alcohols. The smoke emissions from diesel, 

palm-biodiesel, and alcohol mixes were all much lower than those from pure diesel. Ethanol's greater latent 

heat compared well to other lesser alcohols in reducing NOx emissions. However, the greater wait for 

ignition and lower evaporation speed of ethanol resulted in higher HC emissions. 

Microemulsions of alcohol and diesel aid lower exhaust gas particulate matter, nitrogen oxide, carbon 

monoxide, and hydrocarbon emissions. Employing ethanol as a sustainable oxygenated ingredient, Mehta 

et al. developed diesel microemulsions that were stabilized by Span-80. Similar characteristics to diesel 

were seen in the microemulsions. Nevertheless, the calorific value, cetane index, and flash point all 
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dropped when ethanol was added. The microemulsions enhanced thermal efficiency and had energy 

consumption comparable to diesel. The amount of ethanol in these microemulsions has been linked to 

cooler exhaust gas, which likely contributes to decreased NOx emissions[16], [17]. 

 

3. Alternatives to diesel 

There are five alternatives are options of diesel-like: 

Renewable biofuels are produced from various plant and animal byproducts. They are compatible with 

diesel engines and may result in lower emissions of greenhouse gases than conventional diesel fuel. 

Electric automobiles: Unlike conventional vehicles, which rely on fuels like diesel, electric vehicles may run 

only on electricity. As battery technology advances, they are gaining in popularity. 

Fuel cells that run on hydrogen and oxygen create energy with just water as a byproduct of the process. 

They may replace dirty diesel with something eco-friendlier. 

Natural gas: Natural gas is a fossil fuel that, with certain adaptations to engines, may be used in place of 

diesel. There are fewer emissions compared to diesel. 

Some kinds of engines may be converted to run-on propane since it burns cleaner than diesel. It's readily 

accessible, and in some places, it's even cheaper than diesel[18], [19]. 

 

Figure 1. The framework for choice SFME fuels. 
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4. Neutrosophic TOPSIS Method 

The broadest formal framework that generalizes the sets from a philosophical vantage point is the 

neutrosophic set, which is a part of neutrosophy (the study of the genesis, nature, and extent of neutralities 

and their interactions with diverse ideational spectra). This paper used the single-valued neutrosophic set 

with the TOPSIS method to rank the alternatives[20]–[22]. The steps of the proposed method are shown in 

Figure 1. The following steps discuss the neutrosophic TOPSIS method: 

1) Build the decision matrix between criteria and alternatives  

2) Normalize the decision matrix  

The below equation is used to normalize the decision matrix.  

𝑧𝑖𝑗 =
𝑎𝑖𝑗−𝑎𝑗

−

𝑎𝑗
+−𝑎𝑗

−                                                                                                                                                                               (1) 

Where 𝑧𝑖𝑗  refers to the normalization value, 𝑎𝑖𝑗  refers to the value in the decision matrix, 𝑎𝑗
− refers to the 

minimum value in the decision matrix and 𝑎𝑗
+ refers to the maximum value in the decision matrix. 

 3) Compute the weighted normalized matrix  

𝑂𝑖𝑗 = 𝑤𝑗 ∗ 𝑧𝑖𝑗                                                                                                                                                                         (2) 

Where 𝑤𝑗 refers to the weights of the criteria. The weights of the criteria are computed by the average 

method. 

4) Compute the positive and negative ideal solution  

The positive and negative ideal solutions are computed by using a weighted normalized decision matrix. 

The positive and negative ideal solutions are computed for the positive and negative criteria. 

𝑑𝑗
𝑝

=  max
𝑖

(𝑂𝑖𝑗)                                                                                                                                                                 (3) 

𝑑𝑗
𝑛 =  min

𝑖
(𝑂𝑖𝑗)                                                                                                                                                                         (4) 

5) The distance between 𝑑𝑗
𝑝

 𝑎𝑛𝑑 𝑑𝑗
𝑝

 for all criteria to be computed  

𝑇𝑖
𝑝

= √∑ (𝑂𝑖𝑗 − 𝑑𝑗
𝑝)

2
𝑛
𝑗=1                                                                                                                                                        (5) 

𝑇𝑖
𝑛 = √∑ (𝑂𝑖𝑗 − 𝑑𝑗

𝑛)
2𝑛

𝑗=1                                                                                                                                                        (6) 

6) Compute the closeness value 

By using the distance values, the closeness value is computed.  

𝑆𝑖 =
𝑇𝑖

𝑛

𝑇𝑖
𝑛+𝑇

𝑖
𝑝                                                                                                                                                                               (7) 
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7) Rank the alternatives  

 

5. Results and Discussion 

Despite the promising future of microemulsions, there are still certain obstacles to overcome in their 

research and use. Microemulsions may be challenging to make and regulate due to their complicated 

composition. The surfactants employed to stabilize microemulsions may also be toxic, limiting their 

usefulness in certain situations. Another potential barrier is the costly nature of manufacturing 

microemulsions. 

This section introduces the results of the single-valued neutrosophic set with the TOPSIS method to select 

the best SFME fuels. This paper used eight criteria and 10 SFME fuels. 

 

Table 1. The matrix of normalization decision. 

 DISC1 DISC2 DISC3 DISC4 DISC5 DISC6 DISC7 DISC8 

DISA1 0.452768 0.186445 0.253596 0.273422 0.090987 0.154616 0.37225 0.140193 

DISA2 0.536614 0.36025 0.113781 0.157829 0.272962 0.138913 0.365188 0.076192 

DISA3 0.14134 0.291518 0.113781 0.175539 0.389101 0.142537 0.238078 0.566866 

DISA4 0.220994 0.442412 0.465247 0.189691 0.174578 0.339431 0.258255 0.158479 

DISA5 0.14134 0.181705 0.314343 0.416432 0.189372 0.581623 0.241105 0.546142 

DISA6 0.326999 0.291518 0.060747 0.192655 0.267784 0.574979 0.530632 0.224918 

DISA7 0.137747 0.35709 0.362699 0.19636 0.192331 0.235548 0.37225 0.154821 

DISA8 0.313224 0.428192 0.412695 0.416432 0.189372 0.157032 0.232026 0.074973 

DISA9 0.382697 0.291518 0.270952 0.093364 0.467513 0.154616 0.238078 0.478484 

DISA10 0.218598 0.202246 0.464282 0.634281 0.579952 0.219845 0.126101 0.14385 

 

The criteria are collected based on diesel criteria and emission criteria. The criteria collected from earlier 

studies are: 

Diesel fuel's high energy density implies it can supply more power per liter than most other fuels can. 

Diesel fuel has a high combustion efficiency, meaning it burns cleanly and with fewer pollutants compared 

to other fuels. 

Diesel fuel is readily accessible in many regions, making it a practical choice for a variety of uses. 

Diesel fuel is more affordable than other fuel options, making it a desirable choice for many consumers. 

Because diesel engines were developed to run on diesel fuel, diesel fuel must be compatible with diesel 

engines. 

Cars, lorries, and other vehicles are restricted in the quantity of pollution they may release into the 

atmosphere by emissions rules. 

Limits on pollutant emissions from fossil fuel-burning power plants are set up by emissions regulations. 
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The regulations for emissions from industrial operations set up maximum allowable concentrations of 

pollutants released by such activities. 

We start with single-value neutrosophic numbers. Then build the decision matrix between criteria and 

alternatives. Then compute the weights of the criteria using the average method. Then normalize the 

decision matrix by using an equation. (1) as shown in Table 1. Then multiply the weights of the criteria by 

the normalization matrix by equation. (2), as shown in Table 2. Then compute the positive and negative 

ideal solutions by using Equations. (3–4). Then compute the distance between positive and negative ideal 

solutions by using Equations. (5–6). Then compute the closeness value by using the equation. (7) as shown 

in Figure 2. Alternative one is the best and alternative three is the worst. 

Table 2. Weighted normalized decision matrix.  

 DISC1 DISC2 DISC3 DISC4 DISC5 DISC6 DISC7 DISC8 

DISA1 0.119474 0.015358 0.046559 0.035216 0.003906 0.013816 0.047944 0.011255 

DISA2 0.141599 0.029675 0.02089 0.020328 0.011719 0.012412 0.047035 0.006117 

DISA3 0.037296 0.024013 0.02089 0.022609 0.016705 0.012736 0.030664 0.045508 

DISA4 0.058315 0.036443 0.085417 0.024431 0.007495 0.03033 0.033262 0.012723 

DISA5 0.037296 0.014968 0.057712 0.053635 0.00813 0.051971 0.031053 0.043844 

DISA6 0.086287 0.024013 0.011153 0.024813 0.011496 0.051377 0.068343 0.018056 

DISA7 0.036348 0.029415 0.06659 0.02529 0.008257 0.021047 0.047944 0.012429 

DISA8 0.082652 0.035272 0.075769 0.053635 0.00813 0.014031 0.029884 0.006019 

DISA9 0.100984 0.024013 0.049745 0.012025 0.020071 0.013816 0.030664 0.038412 

DISA10 0.057682 0.01666 0.08524 0.081693 0.024898 0.019644 0.016241 0.011548 

 

 

Figure 2. The closeness value by the TOPSIS method. 
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Surfactant-free microemulsion fuels have certain drawbacks, such as: 

Surfactant-free microemulsion fuels are not as stable as their conventional counterparts and may degrade 

over time or under certain circumstances. 

Some engine types and fuel systems may not be compatible with surfactant-free microemulsion fuels. 

Some advantages of microemulsion fuels that do not need surfactants are: 

Increased efficiency due to more thorough combustion because of the emulsion's tiny droplet size and 

enhanced atomization of the fuel. 

Lower emissions of undesirable pollutants including nitrogen oxides (NOx) and particulate matter are a 

direct result of the higher combustion efficiency of surfactant-free microemulsion fuels. 

Surfactant-free microemulsion fuels are safer than regular hydrocarbon fuels because they produce fewer 

explosive vapors. 

 

6. Conclusions  

Microemulsions are an interesting and potentially useful class of colloidal mixtures. The creation and usage 

of microemulsions present several problems, such as their complicated composition and toxicity, despite 

the numerous advantages they provide. This paper used the neutrosophic set with the TOPSIS method to 

rank the fuels of SFME. The single valued neutrosophic set is used to deal with uncertain data. Then the 

TOPIS method is used to compute the weights of criteria and rank the alternatives. This paper used eight 

criteria and ten alternatives. 

The suggested MCDM framework's findings support alternative one as a long-term replacement for diesel 

over a wide range of engine loads and alternative three is the worst. 
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Abstract: Slope instability is a common and typical problem of geological hazards, often 

accompanied by significant losses. So, it is necessary to provide some simple and effective methods 

to avoid the potential geological hazards of slope instability. It is obvious that the clustering and 

assessment of slope stability are very crucial. However, the existing clustering and assessment 

methods in the scenario of single-valued neutrosophic sets (SVNSs) imply some difficulties in 

engineering applications, such as a lot of collective sampling work, the complex training process, 

and the selection issue of different types of membership functions. Regarding these problems, this 

paper proposes an inverse hyperbolic sine similarity measure (IHSSM) of SVNSs and its netting 

clustering and assessment models for slope stability clustering analysis and evaluation based on the 

fuzzification process of the true, false, and uncertain Gaussian membership functions for slope 

sample data. Finally, the proposed clustering and assessment models are applied to the clustering 

analysis and assessment of 20 slope samples as the case study, and then comparing the results of 

clustering analysis and stability evaluation of the proposed models with those of the existing 

relative methods by the 20 slope samples, we verify the validity, consistency, and rationality of the 

proposed netting clustering and evaluation models. 

Keywords: single-valued neutrosophic set; netting clustering method; Gaussian membership 

function; similarity measure; slope stability clustering analysis; slope stability evaluation 

 

 

1. Introduction 

Slope instability is a common phenomenon in geological hazards. Then, the occurrence of such 

hazards is often accompanied by significant losses. Therefore, it is crucial to establish effective 

methods to eliminate the potential risk of slope instability. Slope stability evaluation methods can be 

divided into two main categories: deterministic and uncertain methods. The traditional limit 

equilibrium method or analytical calculations using numerical methods are still commonly used in 

modern engineering [1]. The Sweden slice method [2] is the theoretical basis of the limit equilibrium 

method. After the refinement and improvement of the method by Janbu [3], Bishop [4], and 

Morgenstern & Price [5], the calculation results of the limit equilibrium method are more reasonable 

and accurate. The limit equilibrium method usually assumes that the mechanical properties of the 

slope rock mass are rigid bodies and the potential slip surface is flat or curved. However, due to the 
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complex geological conditions of most slopes, the use of this method to assess slopes requires 

technicians or researchers with extensive experience in slope engineering. The finite element method 

[6], the strength discounting method [7], the discrete element method [8] and so on are all relatively 

common methods in numerical analysis. 

Since the affecting factors of slope stability contain both the internal features of slopes and the 

external conditions of slopes, there is the uncertain, inconsistent, and incomplete information of the 

affecting factors. However, they cannot be well described by traditional analogical approaches. 

Therefore, to avoid this deficiency of the traditional methods, some researchers proposed uncertainty 

methods for the analysis and assessment of slope stability. For example, a FAHP (fuzzy analytic 

hierarchy process) efficiency coefficient approach was used for the stability classification of rock slope 

[9], the artificial neural network (ANN) and fuzzy clustering methods were applied to the estimation 

of rainfall-induced landslides [10]. Then, clustering methods using the adaptive neuro-fuzzy 

inference system (ANFIS) and k-means and fuzzy c-means were applied to the clustering analysis of 

slope stability [11, 12]. Recently, the similarity measures of interval-valued fuzzy credibility sets were 

presented and applied to the slope stability assessment [13]. Since a neutrosophic number (NN) y = v 

+ qI for I  [inf I, sup I] [14, 15, 16], which is composed of the certain part ν and the uncertain part qI 

with uncertainty I, can better describe the uncertainty of a real thing, Li et al. [17] introduced a 

probabilistic method based on NNs for the assessment of rock slope stability. Subsequently, Zhou et 

al. [18] and Li et al. [19] proposed some similarity measures of NNs to assess the slope stability of 

open-pit mines. However, these clustering analysis/assessment methods only contain 

fuzzy/uncertain information, but do not take into account the true, false, and uncertain information 

about the factors that affect slope stability. 

In view of an extension of the fuzzy set (FS) [20] and (interval-valued) intuitionistic FS [21, 22], 

a neutrosophic set (NS) concept was proposed by Smarandache [14] and described by the true, false, 

and uncertain membership functions. To better apply NSs in practical engineering, Wang et al. [23, 

24] proposed single-valued NSs (SVNSs) and interval NSs (IVNSs) as the subclasses of NSs. Recently, 

Qin et al. [25] first applied SVNS and ANFIS to open-pit mine slope stability evaluation and proposed 

a SVNS-ANFIS evaluation approach for assessing slope stability. Moreover, Qin et al. [26] introduced 

a SVNS-GPR (gaussian process regression) approach for the aassessment of open-pit mine slope 

stability in terms of the potential relationships between the affecting factors and the slope stability. 

Ding and Ye [27] presented the clustering analysis and evaluation models of slope stability based on 

the hyperbolic sine similarity measure (HSSM) of SVNSs and its netting clustering and assessment 

approaches, then applied them to the stability clustering analysis and assessment of slope sample 

data. 

Based on the previous studies, the SVNN-ANFIS and SVNS-GPR methods [25, 26] need a lot of 

slope sample data to train them, and their modeling algorithms imply complexity, which presents 

the difficult problems of extensive sampling work and a complex training process in engineering 

applications. Then in existing slope stability clustering analysis and evaluation models [27], it is 

difficult to select many different types of true, false, and uncertain membership functions in the 

fuzzified process of ample slope data, which will greatly increase difficulty in practical engineering 

applications. To solve these problems, the objective of this paper is to propose an inverse hyperbolic 

sine similarity measure (IHSSM) of SVNSs and its clustering analysis and evaluation models of slope 

stability by a unique type of Gaussian membership functions for fuzzifying slope sample data into 

SVNSs, including the true, false, and uncertain membership values. 

In our study, we first propose the IHSSM of SVNSs and its netting clustering and evaluation 

models of slope stability based on the true, false, and uncertain Gaussian membership functions for 

fuzzifying slope sample data into SVNSs. Through 20 slope samples collected in the Zhejiang 

Province, China, the proposed models are used for the clustering analysis and evaluation of their 

stability. By comparing with existing relevant approaches, we verify the accuracy and rationality of 

the proposed models in the clustering and evaluation applications of the 20 slope samples. 
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The rest of this paper consists of the following sections. In Section 2, some preliminaries of 

SVNSs are introduced. Section 3 proposes the IHSSM of SVNSs and its netting clustering model for 

slope stability clustering analysis. In Section 4, an assessment model based on the IHSSM of SVNSs 

and the clustered results is proposed for the stability assessment of slopes. Section 5 applies the 

proposed clustering and assessment models to the stability clustering analysis and assessment of the 

20 slope samples as the case study to verify the consistency and accuracy of the clustered and 

evaluated results by comparing the 20 slope samples with the existing approaches. Section 6 

concludes the paper and provides further research directions in the future. 

2. Some preliminaries of SVNSs  

Wang et al. [24] introduced SVNS as a subclass of NS.  

Definition 1 [24]. Let Ψ be a universal set. The SVNS Φ in Ψ can be represented as Φ = {<ψ, XΦ(ψ), 

YΦ(ψ), ZΦ(ψ)>｜ψ  Ψ}, where XΦ(ψ), YΦ(ψ), ZΦ(ψ)  [0, 1] for ψ  Ψ are the true, uncertain, and false 

membership functions. Then, each element φ = <ψ, XΦ(ψ), YΦ(ψ), ZΦ(ψ)> in the SVNS Φ is represented 

as the single-valued neutrosophic number (SVNN) φ = <X, Y, Z>. 

Definition 2 [24]. If there are two SVNSs φ1 = <X1, Y1, Z1> and φ2 = <X2, Y2, Z2>, then they include the 

following relations:  

(1) Mutual inclusion: 
1 2

φ φ  if and only if   
1 2 1 2 1 2

, ,X X Y Y Z Z ; 

(2) Mutual equality: 
1 2
= φ φ  if and only if 

1 2
φ φ  and 

2 1
φ φ ; 

(3) The complement of φ1:  
1 1 1 1

,1 ,cφ Z Y X ; 

(4) Union:    
1 2 1 2 1 2 1 2

, ,φ φ X X Y Y Z Z ; 

(5) Intersection:    
1 2 1 2 1 2 1 2

, ,φ φ X X Y Y Z Z ; 

Definition 3 [28]. Assume that Φ1 = {φ11, φ12, …, φ1n} and Φ2 = {φ21, φ22, …, φ2n} are two SVNSs, where 

φ1i = <X1i, Y1i, Z1i> and φ2i = <X2i, Y2i, Z2i> (i = 1, 2, …, n) are two SVNNs. Then, ρi  [0, 1] with 


 1

1
n

i i
ρ  is the weight of φ1i and φ2i. The weighted generalized distance between Φ1 and Φ2 is 

defined as follows: 



            


1/

1 2 1 2 1 2 1 21

1
( , )  for 1

3

δ
δ δ δn

δ i i i i i i ii
V Φ Φ ρ X X Y Y Z Z δ .     (1) 

The distance of Eq. (1) satisfies the following features: 

(1)  
1 2

0 ( , ) 1
δ

V Φ Φ ; 

(2) 
1 2

( , ) 0
δ

V Φ Φ  if and only if Φ1 = Φ2; 

(3) 
1 2 2 1

( , ) ( , )
δ δ

V Φ Φ V Φ Φ ; 

(4)  
1 2 3

If Φ Φ Φ  for any SVNS Φ3, then 
1 3 1 2

( , ) ( , )
δ δ

V Φ Φ V Φ Φ  and 


1 3 2 3

( , ) ( , )
δ δ

V Φ Φ V Φ Φ . 

Since the similarity measure and the distance are complementary, the similarity measure using 

the weighted generalized distance of SVNSs is presented as follows [28]: 



              


1/

1 2 1 2 1 2 1 2 1 21

1
( , ) 1 ( , ) 1

3

δ
δ δ δn

δ δ i i i i i i ii
W Φ Φ V Φ Φ ρ X X Y Y Z Z .      (2) 

Thus, Eq. (2) also satisfies the following features [28]: 

(1)  
1 2

0 ( , ) 1
δ

W Φ Φ ; 

(2) 
1 2

( , ) 1
δ

W Φ Φ  if and only if Φ1 = Φ2; 

(3) 
1 2 2 1

( , ) ( , )
δ δ

W Φ Φ W Φ Φ ; 
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(4)  
1 2 3

If Φ Φ Φ  for any SVNS Φ3, then 
1 2 1 3

( , ) ( , )
δ δ

W Φ Φ W Φ Φ  and 


2 3 1 3

( , ) ( , )
δ δ

W Φ Φ W Φ Φ . 

Recently, Ding and Ye [27] further presented the HSSM between the SVNSs Φ1 and Φ2: 

 



 

                  


1 2 1 2

1/

1 2 1 2 1 21

( , ) 1 sinh (ln(1+ 2) ( , )

1
 1 sinh ln(1 2)

3

δ δ

δ
δ δ δn

i i i i i i ii

N Φ Φ V Φ Φ

ρ X X Y Y Z Z
.     (3) 

Similarly, Eq. (3) also has the following features: 

(1)  
1 2

0 ( , ) 1
δ

N Φ Φ ; 

(2) 
1 2

( , ) 1
δ

N Φ Φ  if and only if Φ1 = Φ2; 

(3) 
1 2 2 1

( , ) ( , )
δ δ

N Φ Φ N Φ Φ ; 

(4)  
1 2 3

If Φ Φ Φ  for any SVNS Φ3, then 
1 2 1 3

( , ) ( , )
δ δ

N Φ Φ N Φ Φ  and 


2 3 1 3

( , ) ( , )
δ δ

N Φ Φ N Φ Φ . 

3. IHSSM between SVNSs and Its Netting Clustering Model of Slope Stability  

Based on the weighted generalized distances of SVNSs, this section proposes the IHSSM of 

SVNSs and its netting clustering model of slope stability.  

First, IHSSM for SVNSs is defined below.  

Definition 4. Suppose that Φ1 = {φ11, φ12, …, φ1n} and Φ2 = {φ21, φ22, …, φ2n} are two SVNSs, where φ1i 

= <X1i, Y1i, Z1i> and φ2i = <X2i, Y2i, Z2i> (i = 1, 2, …, n) are two SVNNs. Then, ρi  [0, 1] with 


 1
1

n

i i
ρ  

is the weight of φ1i and φ2i. Thus, the weighted IHSSM between Φ1 and Φ2 is defined as follows: 

 





 


             


1

1 2 1 2

1/

1

1 2 1 2 1 21

1
( , ) 1 sinh ( , )

ln(1 2)

1 1
 1 sinh

3ln(1 2)

δ δ

δ
δ δ δn

i i i i i i ii

M Φ Φ V Φ Φ

ρ X X Y Y Z Z

.     (4) 

Then, the features of Eq. (4) are indicated as follows: 

(1)  
1 2

0 ( , ) 1
δ

M Φ Φ ; 

(2) 
1 2

( , ) 1
δ

M Φ Φ  if and only if Φ1 = Φ2; 

(3) 
1 2 2 1

( , ) ( , )
δ δ

M Φ Φ M Φ Φ ; 

(4)  
1 2 3

If Φ Φ Φ  for any SVNS Φ3, then 
1 2 1 3

( , ) ( , )
δ δ

M Φ Φ M Φ Φ  and 


2 3 1 3

( , ) ( , )
δ δ

M Φ Φ M Φ Φ . 

Proof: Since the features (1)(3) are clearly valid, we only verify the feature (4). 

According to the features of the distance Vδ(Φ1, Φ2), if  
1 2 3

Φ Φ Φ , then Vδ(Φ1, Φ3) ≥ Vδ(Φ1, 

Φ2) and Vδ(Φ2, Φ3) ≥ Vδ(Φ1, Φ3) exist. Since sinh1(α) for α  [0, 1] is monotonically increasing, the 

inequalities Mδ(Φ1, Φ2) ≥ Mδ(Φ1, Φ3) and Mδ(Φ2, Φ3) ≥ Mδ(Φ1, Φ3) exist based on the complementary 

relationship between the distance and the similarity measure [28]. Hence, we verify that the feature 

(4) is correct. 

In terms of the proposed weighted IHSSM of SVNSs, a netting clustering model is presented 

below to cluster slope sample data. 

In the clustering analysis of slope sample data, Ω = {Ω1, Ω2, …, Ωm} is a sample set of m slopes 

and λ = {λ1, λ2, …, λn} is a set of n indices/factors that impact slope stability. Then, each affecting factor 

λi needs to consider its weight ρi subject to ρi  [0, 1] and 


 1
1

n

i i
ρ . 
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In order to better express the uncertain and inconsistent information of the slop sample data, we 

use Gaussian membership functions (e.g. Figure 1) to fuzzify the true, uncertain, and false 

information of the sample data. In view of the true, false, and uncertain Gaussian membership 

functions, the affecting factors of slope stability are fuzzified into the SVNSs Φj = {φj1, φj2, …, φjn}, 

where φji = <Xji, Yji, Zji> are SVNNs for Xji, Yji, Zji  [0, 1] (j = 1, 2, …, m; i = 1, 2, …, n). 

Then, the netting clustering model based on the IHSSM of SVNSs is used for the clustering 

analysis of the slope sample data and presented by the following clustering procedures. 

Step 1: Obtain the IHSSM matrix Β = (βjs)m×m (j, s = 1, 2, …, m) by Eq. (4) (usually taking δ = 1), 

where βjs = Mδ(Φj, Φs) with βjs = βsj and βjj = 1. 

Step 2: Replace all the diagonal elements in the IHSSM matrix Β by the slope samples Ωj. 

Step 3: In terms of different confidence levels of ζ, the corresponding ζ-cutting matrices 

Βζ=(βjsζ)m×m are gained by the equation: 

 
 

 


0,
( , 1,2,..., ).

1,

jsζ

js

js

β ζ
β j s m

β ζ
 (5) 

In the adjusted process for ζ, all '0' are funded in the ζ-cutting matrixes and deleted, then all '1' 

are replaced by '*' except for the diagonal elements. Then, '*' is connected to the corresponding 

diagonal elements by horizontal and vertical lines. The slope samples connected by '*' are formed as 

a classification according to the corresponding confidence level ζ. Next, the confidence level of ζ is 

adjusted from large to small until the expected clustering result for the slope sample data is achieved. 

4. Slope Stability Assessment Using the IHSSM of SVNSs 

Because the above clustered results cannot indicate their corresponding stability risk levels of 

slope samples, it is necessary to evaluate the stability risk levels of the slope samples so that we can 

decide which risk levels the slope samples belong to. In this section, we give an assessment model of 

slope stability based on the IHSSM of SVNSs. 

In terms of the existing knowledge and the above clustered results of slope stability, we can 

classify the risk states of slope stability into the corresponding risk levels (risk patterns), which can 

be represented as the SVNSs Θk = {θk1, θk2, …, θkn} including the SVNNs θki = <Xki, Yki, Zki> for Xki, Yki, 

Zki  [0, 1] (k = 1, 2, …, r; i = 1, 2, …, n). 

Assume that Ω = {Ω1, Ω2, …, Ωm} is a sample set of m slopes and a set of n affecting factors λ = 

{λ1, λ2, …, λn} affects slope stability. Based on the true, false and uncertain Gaussian membership 

functions, the slope sample data can be fuzzified into the SVNSs Φj = {φj1, φj2, …, φjn} (j = 1, 2, …, m), 

which contains the SVNNs φji = <Xji, Yji, Zji> for Xji, Yji, Zji  [0, 1] (i = 1, 2, …, n). 

Considering the weight of each affecting factor in the slope stability assessment, we assign the 

weight of each affecting factor by ρi  [0,1] with 


 1
1

n

i i
ρ . Thus, the weighted IHSSM between 

each SVNS Φj (j = 1, 2, …, n) for each slope sample Ωj and each slope stability risk level Θk (k = 1, 2, 

…, r) is presented by the following equation: 

 





 


             


1

1/

1

1

1
( , ) 1 sinh ( , )

ln(1 2)

1 1
                   1 sinh

3ln(1 2)

δ j k δ j k

δ
δ δ δn

i ji ki ji ki ji kii

M Φ Θ V Φ Θ

ρ X X Y Y Z Z

.     (6) 

Applying Eq. (6), we can obtain the IHSSM results, and then use  
 


* 1

( , ) max ( , )
δ j k δ j kk r

M Φ Θ M Φ Θ  

to judge that Ωj should belong to Θk*. 

5. Netting Clustering and Assessment applications of Practical Cases  

5.1. Netting Clustering Analysis of Practical Cases 
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The mountainous terrain of Zhejiang Province in China, with its subtropical monsoon climate, 

accounts for 74.6%, making slope instability a very common geological hazard. Therefore, the 

clustering analysis and assessment of slope stability show their importance and necessity. In terms of 

rock and topographic features in Zhejiang Province, we take into account the lithological association 

(λ1), slope structure (λ2), weathering degree of rock (λ3), slope height (λ4), slope angle (λ5), and 

vegetation coverage (λ6) as the main factors affecting slope stability. According to the important 

degrees of these affecting factors, their weight vector is assigned as ρ = (0.25, 0.21, 0.19, 0.13, 0.11, 0.11) 

by experts/decision makers. Then, we collected 20 slope samples as actual cases in Zhejiang Province. 

According to the results of engineering investigation and measurement, we also provide the actual 

data of 20 slope samples Ωj (j = 1, 2, …, 20) for the clustering analysis. We can score from 0 to 10 

depending on the current situation of slope stability. Thus, λ1, λ2, λ3, and λ6 are assigned by the score 

values, and then λ4, and λ5 are given by the actual measured values, which are shown in Table 1. 

 

Table 1. Actual data of 20 slope samples 

Ωj λ1 λ2 λ3 λ4 (m) λ5 () λ6 

Ω1 2.0 5.0 4.0 15.0 84.0 3.0 

Ω2 4.0 3.0 4.0 8.0 84.0 3.0 

Ω3 8.0 7.0 6.0 15.0 55.0 4.0 

Ω4 3.0 4.0 5.0 9.0 76.0 4.0 

Ω5 2.0 4.0 4.0 8.0 84.0 5.0 

Ω6 10.0 8.0 10.0 36.0 63.0 5.0 

Ω7 7.0 7.0 6.0 23.0 76.0 5.0 

Ω8 8.0 8.0 7.2 32.0 63.0 3.0 

Ω9 5.0 9.0 4.0 15.0 63.0 5.0 

Ω10 3.0 3.0 6.0 11.0 76.0 4.0 

Ω11 3.0 6.0 5.0 21.0 71.0 5.0 

Ω12 7.0 10.0 7.0 26.8 76.0 5.0 

Ω13 9.0 10.0 10.0 28.0 76.0 5.0 

Ω14 5.0 10.0 3.0 19.0 73.0 3.0 

Ω15 4.0 2.0 3.0 18.0 74.0 3.0 

Ω16 2.0 6.0 3.0 24.0 45.0 4.0 

Ω17 7.0 9.0 6.0 60.0 70.0 4.0 

Ω18 7.0 8.0 8.0 32.0 72.0 4.0 

Ω19 4.0 4.0 4.0 19.0 39.0 4.0 

Ω20 3.0 4.0 3.0 17.0 83.0 5.0 

 

Table 2. Gaussian membership functions of the 6 affecting factors 

Affecting factor 
Gaussian membership function 

X Y Z 

(λ1) gaussmf[3 1] gaussmf[2 5] gaussmf[5 10] 

(λ2) gaussmf[4 1] gaussmf[3 6] gaussmf[4 10] 

(λ3) gaussmf[4 0] gaussmf[3 5] gaussmf[1 8] 

(λ4) gaussmf[30 5] gaussmf[15 40] gaussmf[30 65] 

(λ5) gaussmf[15 30] gaussmf[25 50] gaussmf[30 45] 

(λ6) gaussmf[4 0] gaussmf[3 5.5] gaussmf[2 10] 

 

In terms of the data of the 6 affecting factors, we use Gaussian membership functions in Table 2 

to fuzzify them into the form of SVNNs. In Table 2, the true, uncertain, and false Gaussian 

membership functions of the six affecting factors are provided to fuzzify the slope sample data, and 
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then the Gaussian membership degree curves of truth (X), uncertainty (Y), and falsity (Z) are shown 

in Figure 1. Thus, the 6 affecting factors of the 20 slope samples Ωj (j = 1, 2, …, 20) are fuzzified into 

the corresponding SVNSs Φj, which are shown in Table 3. 

 

Table 3. SVNSs of 20 slope samples 

Φj λ1 λ2 λ3 λ4 λ5 λ6 

Φ1 (0.946, 0.325, 0.278) (0.607, 0.946, 0.458) (0.607, 0.946, 0.000) (0.946, 0.249, 0.249) (0.002, 0.397, 0.430) (0.755, 0.707, 0.002) 

Φ2 (0.607, 0.882, 0.487) (0.882, 0.607, 0.216) (0.607, 0.946, 0.000) (0.995, 0.103, 0.164) (0.002, 0.397, 0.430) (0.755, 0.707, 0.002) 

Φ3 (0.066, 0.325, 0.923) (0.325, 0.946, 0.755) (0.325, 0.946, 0.135) (0.946, 0.249, 0.249) (0.249, 0.980, 0.946) (0.607, 0.882, 0.011) 

Φ4 (0.801, 0.607, 0.375) (0.755, 0.801, 0.325) (0.458, 1.000, 0.011) (0.991, 0.118, 0.175) (0.009, 0.582, 0.586) (0.607, 0.882, 0.011) 

Φ5 (0.946, 0.325, 0.278) (0.755, 0.801, 0.325) (0.607, 0.946, 0.000) (0.995, 0.103, 0.164) (0.002, 0.397, 0.430) (0.458, 0.986, 0.044) 

Φ6 (0.011, 0.044, 1.000) (0.216, 0.801, 0.882) (0.044, 0.249, 0.135) (0.586, 0.965, 0.627) (0.089, 0.874, 0.835) (0.458, 0.986, 0.044) 

Φ7 (0.135, 0.607, 0.835) (0.325, 0.946, 0.755) (0.325, 0.946, 0.135) (0.835, 0.526, 0.375) (0.009, 0.582, 0.586) (0.458, 0.986, 0.044) 

Φ8 (0.066, 0.325, 0.923) (0.216, 0.801, 0.882) (0.216, 0.801, 0.607) (0.667, 0.867, 0.546) (0.089, 0.874, 0.835) (0.755, 0.707, 0.002) 

Φ9 (0.411, 1.000, 0.607) (0.135, 0.607, 0.969) (0.607, 0.946, 0.000) (0.946, 0.249, 0.249) (0.089, 0.874, 0.835) (0.458, 0.986, 0.044) 

Φ10 (0.801, 0.607, 0.375) (0.882, 0.607, 0.216) (0.325, 0.946, 0.135) (0.980, 0.154, 0.198) (0.009, 0.582, 0.586) (0.607, 0.882, 0.011) 

Φ11 (0.801, 0.607, 0.375) (0.458, 1.000, 0.607) (0.458, 1.000, 0.011) (0.867, 0.448, 0.341) (0.024, 0.703, 0.687) (0.458, 0.986, 0.044) 

Φ12 (0.135, 0.607, 0.835) (0.080, 0.411, 1.000) (0.216, 0.801, 0.607) (0.768, 0.679, 0.445) (0.009, 0.582, 0.586) (0.458, 0.986, 0.044) 

Φ13 (0.029, 0.135, 0.980) (0.080, 0.411, 1.000) (0.044, 0.249, 0.135) (0.745, 0.726, 0.467) (0.009, 0.582, 0.586) (0.458, 0.986, 0.044) 

Φ14 (0.411, 1.000, 0.607) (0.080, 0.411, 1.000) (0.755, 0.801, 0.000) (0.897, 0.375, 0.309) (0.016, 0.655, 0.647) (0.755, 0.707, 0.002) 

Φ15 (0.607, 0.882, 0.487) (0.969, 0.411, 0.135) (0.755, 0.801, 0.000) (0.910, 0.341, 0.293) (0.014, 0.631, 0.627) (0.755, 0.707, 0.002) 

Φ16 (0.946, 0.325, 0.278) (0.458, 1.000, 0.607) (0.755, 0.801, 0.000) (0.818, 0.566, 0.393) (0.607, 0.980, 1.000) (0.607, 0.882, 0.011) 

Φ17 (0.135, 0.607, 0.835) (0.135, 0.607, 0.969) (0.325, 0.946, 0.135) (0.186, 0.411, 0.986) (0.029, 0.726, 0.707) (0.607, 0.882, 0.011) 

Φ18 (0.135, 0.607, 0.835) (0.216, 0.801, 0.882) (0.135, 0.607, 1.000) (0.667, 0.867, 0.546) (0.020, 0.679, 0.667) (0.607, 0.882, 0.011) 

Φ19 (0.607, 0.882, 0.487) (0.755, 0.801, 0.325) (0.607, 0.946, 0.000) (0.897, 0.375, 0.309) (0.835, 0.908, 0.980) (0.607, 0.882, 0.011) 

Φ20 (0.801, 0.607, 0.375) (0.755, 0.801, 0.325) (0.755, 0.801, 0.000) (0.923, 0.309, 0.278) (0.002, 0.418, 0.448) (0.458, 0.986, 0.044) 
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Figure 1. The Gaussian membership degree curves of the 6 affecting factors 

 

Thus, we can calculate the IHSSM values between SVNSs of the slope samples by Eq. (4) for δ = 

1, and then establish the IHSSM matrix Β: 

 



1.0000  0.8144  0.7130  0.8608  0.9266  0.5175  0.7059  0.6064  0.6874  0.8159  0.8395  0.5655  0.5306  0.6784  0.7525  0.8356  0.5959  0.5543  0.7591  0.8629

0.8144  1.0000  0.6336  0.8659  0.8361  

Β

0.4634  0.6775  0.5506  0.7618  0.8819  0.7536  0.5884  0.5042  0.7527  0.9095  0.6540  0.6190  0.5484  0.8483  0.8435

0.7130  0.6336  1.0000  0.6995  0.6689  0.7632  0.8801  0.8300  0.7588  0.6914  0.7435  0.7345  0.7268  0.6841  0.6088  0.7345  0.7894  0.7380  0.7079  0.6548

0.8608  0.8659  0.6995  1.0000  0.9073  0.5259  0.7441  0.5889  0.7256  0.9400  0.8862  0.6242  0.5390  0.6898  0.8080  0.7542  0.6551  0.6127  0.8420  0.9211

0.9266  0.8361  0.6689  0.9073  1.0000  0.5186  0.6847  0.5593  0.6885  0.8554  0.8177  0.5666  0.5316  0.6303  0.7470  0.7905  0.5747  0.5334  0.7808  0.9085

0.5175  0.4634  0.7632  0.5259  0.5186  1.0000  0.7491  0.8373  0.6403  0.5182  0.6025  0.7274  0.8837  0.5867  0.4738  0.5818  0.7326  0.7839  0.5318  0.5342

0.7059  0.6775  0.8801  0.7441  0.6847  0.7491  1.0000  0.7923  0.7765  0.7360  0.8283  0.8527  0.7630  0.7396  0.6611  0.6958  0.8501  0.8172  0.7002  0.7325

0.6064  0.5506  0.8300  0.5889  0.5593  0.8373  0.7923  1.0000  0.6825  0.5811  0.6443  0.8371  0.7716  0.6774  0.5613  0.6459  0.7834  0.8788  0.5949  0.5751

0.6874  0.7618  0.7588  0.7256  0.6885  0.6403  0.7765  0.6825  1.0000  0.7116  0.7705  0.7475  0.6595  0.8994  0.7363  0.6784  0.7791  0.6723  0.7827  0.7257

0.8159  0.8819  0.6914  0.9400  0.8554  0.5182  0.7360  0.5811  0.7116  1.0000  0.8335  0.6455  0.5598  0.6758  0.8307  0.7101  0.6766  0.6049  0.7973  0.8759

0.8395  0.7536  0.7435  0.8862  0.8177  0.6025  0.8283  0.6443  0.7705  0.8335  1.0000  0.6840  0.5974  0.7259  0.7445  0.8430  0.7079  0.6647  0.7960  0.8667

0.5655  0.5884  0.7345  0.6242  0.5666  0.7274  0.8527  0.8371  0.7475  0.6455  0.6840  1.0000  0.8417  0.7748  0.6212  0.5821  0.8340  0.8622  0.5816  0.6327

0.5306  0.5042  0.7268  0.5390  0.5316  0.8837  0.7630  0.7716  0.6595  0.5598  0.5974  0.8417  1.0000  0.6863  0.5361  0.5470  0.7489  0.7537  0.4976  0.5473

0.6784  0.7527  0.6841  0.6898  0.6303  0.5867  0.7396  0.6774  0.8994  0.6758  0.7259  0.7748  0.6863  1.0000  0.8155  0.6672  0.7538  0.6751  0.7300  0.7183

0.7525  0.9095  0.6088  0.8080  0.7470  0.4738  0.6611  0.5613  0.7363  0.8307  0.7445  0.6212  0.5361  0.8155  1.0000  0.6856  0.6102  0.5591  0.8390  0.8371

0.8356  0.6540  0.7345  0.7542  0.7905  0.5818  0.6958  0.6459  0.6784  0.7101  0.8430  0.5821  0.5470  0.6672  0.6856  1.0000  0.6009  0.5855  0.7831  0.7831

0.5959  0.6190  0.7894  0.6551  0.5747  0.7326  0.8501  0.7834  0.7791  0.6766  0.7079  0.8340  0.7489  0.7538  0.6102  0.6009  1.0000  0.8005  0.6345  0.6212

0.5543  0.5484  0.7380  0.6127  0.5334  0.7839  0.8172  0.8788  0.6723  0.6049  0.6647  0.8622  0.7537  0.6751  0.5591  0.5855  0.8005  1.0000  0.5849  0.5988

0.7591  0.8483  0.7079  0.8420  0.7808  0.5318  0.7002  0.5949  0.7827  0.7973  0.7960  0.5816  0.4976  0.7300  0.8390  0.7831  0.6345  0.5849  1.0000  0.
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Figure 2. Clustering results based on the proposed clustering model 
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Using Eq. (5), we can perform the netting clustering analysis and indicate the clustering results 

in Figure 2, where when the confidence level takes 0.8430  ζ  1, the 20 slope samples are divided 

into four risk levels. In Figure 2, it is seen that {Ω1, Ω2, Ω4, Ω5, Ω10, Ω11, Ω15, Ω16, Ω19, Ω20}, {Ω3, Ω7, 

Ω8, Ω12, Ω17, Ω18}, {Ω6, Ω13}, and {Ω9, Ω14} belong to four different risk classifications, respectively. 

5.2. Slope Stability Assessment of Practical Cases 

According to the Chinese standard for the engineering classification of rock mass (GB/T 50218 – 

2014) and the historical experience of slope stability, we provide six affecting factors and four risk 

levels of slope stability. Furthermore, according to the actual situation of slope engineering, we can 

assess the four affecting factors λ1, λ2, λ3, and λ6 in the four risk levels from 0 to 10 slope stability 

scores: the stable score is 03; the basic stable score is 36; the relatively unstable score is 68; the 

unstable score is 810. Then, the two affecting factors λ4 and λ5 are the actual measured values. 

Subsequently, all the obtained results are shown in Table 4. 

 
Table 4. Affecting factors and risk levels of slope stability 

Affecting factor Stable state Basic stable state 
Relatively 

unstable state 
Unstable state 

Lithological 

association 

Hard rock 

(03) 

Sub-hard rock 

(36) 

Sub-soft rock 

(68) 

Soft rock 

(810) 

Slope structure 

Homogeneous 

structure 

(03) 

Blocky structure 

(36) 

Stratified 

structure 

(68) 

Loose 

structure 

(810) 

Weathering 

degree of rock 

Weak weathering 

(03) 

Moderate 

weathering 

(36) 

Intense 

weathering 

(68) 

Complete 

weathering 

(810) 

Slope height (m) 020 2040 4060 6080 

Slope angle (°) 010 1030 3060 6090 

Vegetation 

coverage 

Very high 

(03) 

High 

(36) 

Low 

(68) 

Very low 

(810) 

 

From the above classified results of slope stability, we can classify the risk states of slope stability 

into four categories/levels: the unstable state (Θ1), the relatively stable state (Θ2), the basically stable 

state (Θ3), and the stable state (Θ4), where the unstable state implies that the slope is damaged or prone 

to damage, the basically stable and relatively unstable states reflect that the slope is between safety 

and damaged, then the stable state means that the slope is safe. 

Based on the knowledge and experience of slope stability, the 6 affecting factors of the 4 risk levels 

are fuzzified into SVNNs in Table 5, then their SVNSs are represented as follows: 

Θ1 = {s11, s12, s13, s14, s15, s16} = {<0.02, 0.90, 0.99>, <0.15, 0.61, 0.94>, <0.04, 0.25, 0.14>, <0.67, 0.85, 0.55>, 

<0.05, 0.73, 0.71>, <0.46, 0.99, 0.04>}; 

Θ2 = {s21, s22, s23, s24, s25, s26} = {<0.11, 0.51, 0.86>, <0.22, 0.73, 0.86>, <0.26, 0.84, 0.44>, <0.68, 0.60, 0.52>, 

<0.07, 0.74, 0.72>, <0.58, 0.89, 0.02>}; 

Θ3 = {s31, s32, s33, s34, s35, s36} = {<0.41, 1.00, 0.61>, <0.11, 0.51, 0.98>, <0.39, 0.97, 0.07>, <0.92, 0.31, 0.28>, 

<0.05, 0.76, 0.74>, <0.68, 0.79, 0.01>}; 

Θ4 = {s41, s42, s43, s44, s45, s46} = {<0.79, 0.61, 0.38>, <0.73, 0.78, 0.35>, <0.59, 0.91, 0.02>, <0.93, 0.28, 0.26>, 

<0.15, 0.60, 0.62>, <0.61, 0.86, 0.02>}. 
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Table 1. SVNNs of the 4 risk levels for slope stability 

θki 
Θ1 Θ2 Θ3 Θ4 

Xk1 Yk1 Zk1 Xk2 Yk2 Zk2 Xk3 Yk3 Zk3 Xk4 Yk4 Zk4 

θk1 0.02 0.90 0.99 0.11 0.51 0.86 0.41 1.00 0.61 0.79 0.61 0.38 

θk2 0.15 0.61 0.94 0.22 0.73 0.86 0.11 0.51 0.98 0.73 0.78 0.35 

θk3 0.04 0.25 0.14 0.26 0.84 0.44 0.39 0.97 0.07 0.59 0.91 0.02 

θk4 0.67 0.85 0.55 0.68 0.60 0.52 0.92 0.31 0.28 0.93 0.28 0.26 

θk5 0.05 0.73 0.71 0.07 0.74 0.72 0.05 0.76 0.74 0.15 0.60 0.62 

θk6 0.46 0.99 0.04 0.58 0.89 0.02 0.68 0.79 0.01 0.61 0.86 0.02 

 

Table 2. Assessed results of the risk levels for 20 slope samples 

Ωj Mδ(j, Θ1) Mδ(j, Θ2) Mδ(j, Θ3) Mδ(j, Θ4) Risk level 

Ω1 0.494570  0.623006  0.677886  0.873638  Θ4 

Ω2 0.564537  0.610318  0.752149  0.853195  Θ4 

Ω3 0.713772  0.832699  0.756454  0.711081  Θ2 

Ω4 0.551858  0.665090  0.728133  0.951406  Θ4 

Ω5 0.495114  0.605004  0.642938  0.886262  Θ4 

Ω6 0.865189  0.797835  0.626400  0.542880  Θ1 

Ω7 0.776073  0.875305  0.782408  0.746375  Θ2 

Ω8 0.785857  0.904950  0.704720  0.607567  Θ2 

Ω9 0.743878  0.749130  0.931893  0.754172  Θ3 

Ω10 0.572259  0.667849  0.728380  0.910704  Θ4 

Ω11 0.628578  0.725045  0.761082  0.882138  Θ4 

Ω12 0.803960  0.884157  0.773955  0.634420  Θ2 

Ω13 0.872155  0.782644  0.685452  0.548984  Θ1 

Ω14 0.714061  0.729656  0.922054  0.724081  Θ3 

Ω15 0.575320  0.615914  0.752868  0.834918  Θ4 

Ω16 0.534628  0.662498  0.646964  0.791051  Θ4 

Ω17 0.793529  0.865970  0.808385  0.665402  Θ2 

Ω18 0.810222  0.888952  0.700942  0.624027  Θ2 

Ω19 0.582546  0.649881  0.750508  0.869809  Θ4 

Ω20 0.559702  0.648989  0.690287  0.935418  Θ4 

 

Calculating the IHSSM values between Θk (k=1, 2, 3, 4) and Φj (j=1, 2, …, 20) by Eq. (6) for δ = 1, 

we can gain all the IHSSM values, as shown in Table 6. Therefore, we can use the maximum measure 

value between j and Θk to decide the risk levels of these slope samples. The assessed results in Table 

6 show that the 20 slope samples are clustered into the following four types of risk levels: 

(1) {Ω1, Ω2, Ω4, Ω5, Ω10, Ω11, Ω15, Ω16, Ω19, Ω20} belongs to the risk level Θ4; 

(2) {Ω3, Ω7, Ω8, Ω12, Ω17, Ω18} belongs to the risk level Θ2; 

(3) {Ω6, Ω13} belongs to the risk level Θ1; 

(4) {Ω9, Ω14} belongs to the risk level Θ3. 

Clearly, the assessed results and the netting clustering results of the 20 slope samples are 

identical. Therefore, the slope stability evaluation model based on the netting clustering analysis 

verifies its rationality and accuracy. 

5.3. Relative Comparison 

In our comparative analysis, we apply the weighted similarity measures of Eqs. (2) and (3) [27, 

28] to the risk level assessment of the 20 slope samples to verify the validity and accuracy of our new 

slope stability evaluation model. 
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Regarding the 20 slope samples, we calculate the weighted generalized distance-based similarity 

measure values between Θk (k = 1, 2, 3, 4) and j (j = 1, 2, …, 20) by Eq. (2) for δ = 1 [28], and then the 

assessed results are shown in Table 7. It can be clearly seen that there is consistency between the 

assessed results of Eq. (2) and the assessed results of the proposed IHSSM of SVNSs for the 20 slope 

samples Ωj. 

Table 7. Assessed results using Eq. (2) 

Ωj Wδ(j, Θ1) Wδ(j, Θ2) Wδ(j, Θ3) Wδ(j, Θ4) Risk level 

Ω1 0.539646  0.661580  0.712268  0.888397  Θ4 

Ω2 0.606702  0.649753  0.779809  0.870249  Θ4 

Ω3 0.745041  0.852010  0.783693  0.742593  Θ2 

Ω4 0.594669  0.700514  0.758084  0.957157  Θ4 

Ω5 0.540175  0.644786  0.680074  0.899586  Θ4 

Ω6 0.880902  0.820873  0.664736  0.586118  Θ1 

Ω7 0.801353  0.889876  0.807043  0.774595  Θ2 

Ω8 0.810137  0.916128  0.736800  0.647182  Θ2 

Ω9 0.772339  0.777083  0.939936  0.781635  Θ3 

Ω10 0.614006  0.703051  0.758308  0.921215  Θ4 

Ω11 0.666760  0.755283  0.787864  0.895933  Θ4 

Ω12 0.826355  0.897722  0.799449  0.672183  Θ2 

Ω13 0.887082  0.807254  0.719201  0.591934  Θ1 

Ω14 0.745305  0.759465  0.931247  0.754408  Θ3 

Ω15 0.616897  0.654974  0.780458  0.853987  Θ4 

Ω16 0.578235  0.698128  0.683798  0.814795  Θ4 

Ω17 0.817016  0.881594  0.830311  0.700801  Θ2 

Ω18 0.831953  0.901969  0.733355  0.662529  Θ2 

Ω19 0.623709  0.686493  0.778328  0.885001  Θ4 

Ω20 0.602119  0.685669  0.723624  0.943048  Θ4 

 

Table 8. Assessed results using Eq. (3) 

Ωj Nδ(j, Θ1) Nδ(j, Θ2) Nδ(j, Θ3) Nδ(j, Θ4) Risk level 

Ω1 0.581600  0.697253  0.742503  0.901390  Θ4 

Ω2 0.646720  0.688072  0.805233  0.886962  Θ4 

Ω3 0.774547  0.871636  0.807972  0.769010  Θ2 

Ω4 0.635925  0.735100  0.786431  0.962682  Θ4 

Ω5 0.583890  0.683484  0.714810  0.912949  Θ4 

Ω6 0.896410  0.838217  0.701436  0.627532  Θ1 

Ω7 0.822104  0.902188  0.830551  0.800261  Θ2 

Ω8 0.824908  0.926346  0.767125  0.684412  Θ2 

Ω9 0.796648  0.802231  0.945901  0.806259  Θ3 

Ω10 0.655512  0.738880  0.786225  0.929453  Θ4 

Ω11 0.699053  0.781021  0.812508  0.908627  Θ4 

Ω12 0.841484  0.909690  0.821160  0.705050  Θ2 

Ω13 0.901922  0.824129  0.747833  0.629507  Θ1 

Ω14 0.770840  0.784476  0.936499  0.781144  Θ3 

Ω15 0.653407  0.689608  0.801997  0.869884  Θ4 

Ω16 0.614510  0.726679  0.716873  0.837449  Θ4 

Ω17 0.840246  0.899429  0.858115  0.740423  Θ2 

Ω18 0.843693  0.909883  0.759968  0.694463  Θ2 

Ω19 0.659384  0.718694  0.802222  0.899089  Θ4 

Ω20 0.639969  0.718193  0.750376  0.948368  Θ4 
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Regarding the 20 slope samples, we also calculate the weighted HSSM values between Θk (k = 1, 

2, 3, 4) and j (j = 1, 2, …, 20) by Eq. (3) for δ = 1 [27], and then all the assessed results are shown in 

Table 8. It is obvious that the assessed risk results using Eq. (3) in Table 8 are the same risk results as 

using the proposed IHSSM, which proves the validity, rationality, and accuracy of our new 

assessment model in the scenario of SVNSs. 

6. Conclusions  

This article first presented the IHSSM of SVNSs, and then proposed its netting clustering and 

slope stability evaluation models to realize the risk level clustering analysis and assessment of slope 

stability in the scenario of SVNSs. Next, the proposed netting clustering and slope stability evaluation 

models are applied in the case study of the 20 slope samples. The assessment and comparison results 

verified the validity, rationality, and accuracy of the proposed new models in the scenario of SVNSs. 

However, the proposed new models can avoid the defects of the existing ANN, ANFIS, and SVNN-

ANFIS evaluation methods [10, 11, 25] because they need a lot of training samples and the complex 

modeling process. Therefore, the new models proposed in this paper are not only simpler and more 

convenient in the evaluation process, but also more suitable for practical applications, which is the 

main advantage. 

In future research, we will further investigate the slope stability clustering and evaluation 

problems with big sample data and verify the reasonableness and validity of the netting clustering 

results and the evaluation results. In addition, we shall also research on clustering and assessment 

methods with multi-layer affecting factors in neutrosophic scenarios and verify their accuracy and 

validity under the environment of big sample data. 
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Abstract. The softmax function is a well-known generalization of the logistic function. It has been extensively

applied in various probabilistic classification methods such as softmax regression, linear discriminant analysis,

naive Bayes classifiers, and artificial neural networks. Inspired by the advantages of the softmax function, we

have developed the softmax function-based single-valued neutrosophic aggregation operators. Then we have es-

tablished some essential properties of aggregation operators based on the softmax function with the neutrosophic

set. Additionally, we have defined a multi-attribute decision-making method based on the proposed aggregation

operators. Using the proposed MCDM method, we have developed a novel algorithm. This algorithm helps

to examine FD-risk assessment problems. Also, the proposed algorithm process is a reasonable strategy for

the decision-making problem. It is easy to recognize when choosing a neutrosophic set of information for a

practical decision problem. We used this proposed MADM method to exercise a realistic MADM problem

with neutrosophic information. Finally, we have considered one numerical illustration to show the validity and

reliability of the proposed methods.

Keywords: Softmax function; Single valued neutrosophic set, Aggregation operator, Multi attribute decision

making strategy

—————————————————————————————————————————-

1. Introduction

An intuitionistic fuzzy set (Atanassov 1986) is an effectual generalization of the fuzzy set

(Zadeh 1965). But single-valued neutrosophic (SVN) set (Wang 2010) is a successful gener-

alization of the fuzzy set (Zadeh 1965). SVN set each element is expressed by a triplet of

membership degrees which are membership, indeterminacy, and falsity degrees. The Sum of

Garai et al., Softmax function based neutrosophic aggregation operators and application in multi-attribute
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the membership degrees value lies between 0 and 3. Day by day, SVNS has received more intent

from the researchers due to its structure formation. In the decision of some modern science,

real problems depend on multi-attribute decision making (MADM). Because MADM provide

the best choice option to select the alternatives with respect to the attributes. Expressing the

attribute’s value in the decision-making problem is a significantly important factor. Sometimes

in the decision-making problem, so many uncertainties and complexity occur. In this case, the

SVN set has a significant role in expressing this information. The possiblistic mean-variance

of the SVN set was developed by Garai et al. (2020a). Recently many researchers proposed

various strategies for their work considered by the SVN set, such as Jun (2013), Garai & Garg

(2022a), Sod (2018), Wei (2018), Ren (2017), Biswas (2016), Pramanik (2017), Garai & Garg

(2022b) and so on.

In an uncertain environment, some decision-making (DM) problems handle by the aggre-

gation operator. Using the different aggregation operators, many researchers recently have

on the DM problem under the SVN environment. For instance, Garg and Nancy (2018) de-

veloped some new hybrid aggregation operators using arithmetic and geometric aggregation

operators. They also solved one MADM problem in the SVN environment. Ji et al. (2016)

proposed the SVNS-Frank normalized Bonferroni mean (SVNFNPBM) operator to aggregate

all values. This SVNFNPBM operator applied to choose the third-party logistics example.

Some arithmetic operations of SVN numbers use frank norm operators as defined by Nancy

and Garg (2016). Also, it applied to MADM problems. Sodenkamp et al. (2018) present

an aggregation strategy for multi-attribute group decision making (MAGDM) problems under

an SVN environment. Liu et al. (2014) defined some aggregation operators by combining

Hamacher operations and generalized aggregation operators in the SVN environment. Re-

cently, Chen and Ye (2017) considered two operators: Dombi weighted geometric average and

Dombi weighted arithmetic average operators under an SVN environment.

Liu et al. (2019) developed a new single-valued neutrosophic Schweizer-sklar prioritized

weighted averaging (SVNSSPRWA) operator. After that, he studied some basic properties of

the proposed aggregation operators. It also gave the two decision-making models for showing

the effectiveness of these novel operators. Further, Lui et al. (2020) developed the novel

weighted single-valued neutrosophic power dual muirhead mean (WSVNPDMM) operator and

single-valued neutrosophic power dual muirhead mean (SVNPDMM) operator. Further, they

proposed a new technique for the MAGDM problem based on these aggregation operators.

Tan and Zang (2020) defined a new distance measure, similarity measure, and neutrosophic

entropy for straight SVN sets. Rong et al. (2020) defined several new operational laws of SVN

number depending on Archimedean copula and co-copula (ACC) and discussed their related

properties. They proposed some novel power aggregation operators (AOs) to merge SVN
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information, i.e., SVN copula power geometric (SVNCPG), weighted SVNCPA (WSVNCPA)

operator, etc. Also, he has proposed MADM problems with SVN information using these

operators.

Nowadays, many researchers are developing some operators in the SVN environment. Based

on the dombi t-norm and t-conorm, Chen and Ye (2017) developed the SVNDWGAA operator

to deal with the aggregation of SVN numbers in the MADM process. Li et al. (2016) improved

a generalized weighted geometric heronian mean (IGWGHM) operator. Also, Li et al. (2016)

proposed the improved weighted heronian mean (NNIGWHM) operator and improved gener-

alized weighted geometric heronian mean (NNIGWGHM) operator for neutrosophic numbers.

And these operators applied to MADM problems. Garai et al. (2020b) proposed the new

ranking of SVN-number and used it for the MADM problem. Recently, Wei and Wei (2018)

presented some SVN-dombi prioritized average (SVNDPA) operators and SVN-Dombi priori-

tized geometric (SVNDPG) operators. They utilized these operators to solve MADM problems

in SVNS environment.

The paper is structured as follows: In Section 2, some basic concepts and definitions related

to NS, and SVNS are discussed, and also presented score function and accuracy function

of SVNNs. In Section 3, SVNWA, SVNWG, GSSVNWA, and GSSVNWG are defined and

introduced as some basic properties and examples. Section 4 presented a MADM strategy

based on the proposed aggregation operators. In section 5, we solved a numerical model to

check the validity and applicability of the proposed method. Finally, this study’s conclusions

and future research direction are presented in Section 6.

1.1. Motivation

So, the above discussion says that many aggregation operators are extended with the differ-

ent single-valued neutrosophic information. Then some researchers are successfully applied to

many MADM problems and multi-attribute group decision making (MAGDM) problems un-

der SVNS environments. But in this weighted aggregation, operators have certain restrictions

because most of the aggregations are not applicable without SVNNs. Hence some operators

cannot be relevant in some real-life problems. The softmax function handles these types of

restrictions.

Previously, many researchers worked on MADM under a fuzzy environment using different

usual aggregation operators. Torres et al. (2014) applied the softmax function in decision-

making problems under an uncertain fuzzy set environment. He proposes a series of aggregation

operators based on the softmax function. Later, Yu (2016) extended the softmax function-

based aggregation operator in an intuitionistic fuzzy set environment. He developed the series

of aggregation operators and applied these to a MADM problem. When we ranked the different
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alternatives to real MADM problems under the SVN environment, some had difficulties raised

that time. We cannot organize the alternatives to the MADM problem using standard ranking

methods like a fuzzy number. Now, how can we rank the alternatives with single-valued

neutrosophic information? Also, how can we apply the softmax function-based aggregation

operator in MADM?What is the usefulness of the softmax function-based aggregation operator

in the MADM problem? When we studied some articles related to this research, a few questions

arose in our minds. Therefore from that place, we try to establish a best ranking method with

the help of a softmax function-based aggregation operator.

This paper has developed the softmax function-based single-valued neutrosophic aggrega-

tion operators. This aggregation operator is an extension of IF aggregation operators. We

have proposed a softmax SVN weighted average (SVNWA) operator; Softmax SVN weighted

geometric (SVNWG). In addition, we also developed some aggregation operators: generalized

softmax single-valued neutrosophic weighted average (GSSVNWA) operator and generalized

softmax SVN weighted geometric (GSSVNIFWG) operator. Some fundamental properties of

softmax-based aggregation operators are developed here. We have introduced a novel MADM

method using the proposed softmax-based aggregation operators. Finally, To check the im-

portance of the proposed MADM method numerically.

1.2. Novelty

This paper extends the softmax function-based intuitionistic fuzzy (IF) aggregation op-

erators to softmax function-based SVN aggregation operators. Additionally, some softmax

function-based aggregation operators are developed here, which are the softmax SVN weighted

average (SVNWA) operator, Softmax SVN weighted geometric (SVNWG) operator, and gener-

alized softmax single-valued neutrosophic weighted average (GSSVNWA) operator and gener-

alized softmax SVN weighted geometric (GSSVNIFWG) operator. Then, we proposed the es-

sential properties of the proposed softmax-based aggregation operators. Further, this decision-

making technique is applied to real MADM problems.

The main contributions of the paper is that:

• We extend the SIFWA operator to SSVNWA operator.

• We extend the SIFWG operator to SSVNWG operator.

• We extend the GSIFWA operator to GSSVNWA operator.

• We extend the GSIFWG operator to GSSVNWG operator.

• We develop a MADM strategy based on the proposed operators.

• To check the validity of MADM strategy we solved one real MADM problem.
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2. Basic Preliminaries

Let X be a universe set. A nutrosophic (Smarandache 1998) sates Ẽ over X is defined

by Ẽ = {⟨x, (TẼ(x), IẼ(x), FẼ(x))⟩ : x ∈ X}, where TẼ(x), IẼ(x) and FẼ(x) are called truth

membership function, indeterminacy-membership function and falsity membership functions

respectively. They are defined as

TẼ : X →]−0, 1+[, IẼ : X →]−0, 1+[, FẼ : X →]−0, 1+[

such that 0− ≤ TẼ(x)+IẼ(x)+FẼ(x) ≤ 3+ Let X be a universe set (Wang 2010). A SVN-set

Ẽ over X is a neutroophic set, but the truth-membership function, indeterminacy-membership

function and falsity-membership function are respectively defined by

TẼ : X → [0, 1], IẼ : X → [0, 1], FẼ : X → [0, 1]

such that 0 ≤ TẼ(x) + IẼ(x) + FẼ(x) ≤ 3. For convenience, a SVNN can be expressed to

be Ẽ = (TẼ , IẼ , FẼ), TẼ ∈ [0, 1], IẼ ∈ [0, 1], FẼ ∈ [0, 1] and 0 ≤ TẼ + IẼ + FẼ ≤ 3. Let

C̃ = {⟨x, (TC̃(x), IC̃(x), FC̃(x))⟩ : x ∈ X} and Ẽ = {⟨x, (TẼ(x), IẼ(x), FẼ(x))⟩ : x ∈ X} be

two SVN-sets in X, then operations between them defined (Wang 2010) as follows:

(i) C̃ ⊆ Ẽ iff TC̃(x) ≤ TẼ(x), IC̃(x) ≥ IẼ(x), TC̃(x) ≥ TẼ(x) for all x ∈ X.

(ii) C̃ = Ẽ iff C̃ ⊆ Ẽ and Ẽ ⊆ C̃ for all x ∈ X.

(iii) Ẽc = {⟨x, (FẼ(x), 1− IẼ(x), TẼ(x))⟩ : x ∈ X} for all x ∈ X.

(iv) C̃ ∪ Ẽ = {⟨x,max(TC̃(x), TẼ(x)),min(IC̃(x), IẼ(x)),min(FC̃(x), FẼ(x))⟩ : x ∈ X} for

all x ∈ X.

(v) C̃ ∩ Ẽ = {⟨x,min(TC̃(x), TẼ(x)),max(IC̃(x), IẼ(x)),max(FC̃(x), FẼ(x))⟩ : x ∈ X} for

all x ∈ X.

Let Ẽ, Ẽ1, Ẽ2 be three SVN-sets in X. Then, the arithmetic (Wang 10) operations are

defined as follows:

(i) Ẽ1+Ẽ2 = {⟨x, TẼ1
(x)+TẼ2

(x)−TẼ1
(x).TẼ2

(x), IẼ1
(x).IẼ2

(x), FẼ1
(x).FẼ2

(x)⟩ : x ∈ X}
for all x ∈ X.

(ii) Ẽ1.Ẽ2 = {⟨x, TẼ1
(x).TẼ2

(x), IẼ1
(x) + IẼ2

(x) − IẼ1
(x).IẼ2

(x), FẼ1
(x) + FẼ2

(x) −
FẼ1

(x).FẼ2
(x)⟩ : x ∈ X} for all x ∈ X.

(iii) λ.Ẽ = {⟨x, (1− (1− TẼ(x))
λ, (IẼ(x))

λ, (FẼ(x))
λ⟩ : x ∈ X} for all x ∈ X.

(iv) Ẽλ = {⟨x, (TẼ(x))
λ, 1− (1− IẼ(x))

λ, 1− (1− FẼ(x))
λ⟩ : x ∈ X} for all x ∈ X, Where

λ > 0 is a parameter.

For any SVN set, the ranking method is very significant and many research results have been

received (Zhang et al. 2014, Wang et al. 2010). Zhang et al. 2014 given a method based on

score function and accuracy function. For any SVN-set A = (TA, IA, FA), the accuracy and
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score function defined as:

The score function of Ẽ is

S(Ẽ) =
2 + TẼ − IẼ − FẼ

3
, S(Ẽ) ∈ [0, 1] (1)

and the accuracy function of Ẽ is

H(Ẽ) = TẼ − FẼ , H(Ẽ) ∈ [−1, 1] (2)

Zhang et al. 2014 gave an order relation between two SVN numbers, which is defined as follows:

Let C̃ = (TC̃ , IC̃ , FC̃) and Ẽ = (TẼ , IẼ , FẼ) be two SVNNs.

Now, if S(A) > S(B), then C̃ ≻ Ẽ. Again if S(C̃) = S(Ẽ), then

(i) If H(C̃) = H(C̃), then C̃ ≈ Ẽ.

(ii) If H(C̃) > H(Ẽ), then C̃ ≻ Ẽ.

3. Softmax function based aggregation operators

This section has discussed the softmax function and its essential properties. Here we estab-

lished some rigorous methods related to the softmax function-based aggregation operator.

3.1. Softmax function

A softmax function is a generalization form of the logistic process in the area of mathematics.

It has been progressively applied to many research fields, for instance, machine learning (Jacobs

1991, Torres 2003) and decision making (Torres 14, Yu 16). The mathematical form of the

softmax function is represented as follows:

ϕk(j, ϑ1, ϑ2, ..., ϑn) = ϕjk =
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

, k > 0. (3)

For the SVN-sets αj(j = 1, 2, 3, ..., n), Sj is the score value of SVN-number αj . Every ϑj is

formulated by given the equation

ϑj =

{ ∏j−1
i=1 Si, j = 2, 3, ..., n

1 j = 1
(4)

where k is the modulation parameter. Some properties of softmax function (Yu 2016) are

defined as follows:

(i) 0 ≤ ϕjk ≤ 1 .

(ii)
∑n

j=1 ϕ
j
k = 1.

Softmax function Torres 2014 has the non linear characteristic, monotonous and boundedness

properties.
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3.2. SVN-sets aggregation operators based on softmax function

In this section, we have extended the softmax function based on IF aggregation opera-

tors, such as softmax IF weighted average operator (SIFWA), softmax IF weighted geometric

(SIFWG) operator, generalized softmax IF weighted average (GSIFWA) operator, and gener-

alized softmax IF weighted geometric (GSIFWG) operator to softmax SVN weighted average

(SVNWA) operator; softmax SVN weighted geometric (SVNWG) operator, generalized soft-

max SVN weighted average (GSSVNWA) operator, and generalized softmax SVN weighted

geometric (GSSVNIFWG) operator, respectively. Let αj(j = 1, 2, ..., n) be a collection of

SVNNs. Then softmax single valued neutrosophic weighted average (SSVNWA) operator is a

function from αn → α such that

SSV NWA(α1, α2, ..., αn) = ⊕n
j=1(ϕ

j
kαj) = (ϕ1kα1)⊕ (ϕ2kα2)⊕ ...⊕ (ϕnkαn)

where, ϕjk =
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

, ϑj =

{ ∏j−1
i=1 Si, j = 2, 3, ..., n

1 j = 1
, Si is the score function of the

SVN-number αi.

Theorem 3.1. Let αj(j = 1, 2, ..., n) be a collection of SVN-numbers, then aggregated value

of SVN-numbers using the SSVNWA operation is also a SVN-number. The SSVNWA operator

can be generated as:

SSV NWA (α1, α2, ..., αn) =

1−
n∏

j=1

(1− Tj)

exp(ϑj/k)∑n
j=1

exp(ϑj/k) ,

n∏
j=1

(Ij)

exp(ϑj/k)∑n
j=1

exp(ϑj/k) ,

n∏
j=1

(Fj)

exp(ϑj/k)∑n
j=1

exp(ϑj/k)


(5)

Proof. : We proof the above theorem 1 by using mathematical induction. For n = 1, we have:

SSV NWA(α1, α2, ..., αn) =

1−
1∏

j=1

(1− Tj),

1∏
j=1

(Ij),

1∏
j=1

(Fj)

 = (T1, I1, F1) .

Since for n = 1,
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

= 1. Thus Eq.(5) holds for n = 1. Assume that the Eq. (5)

holds for n = m,

SSV NWA(α1, α2, ..., αm) =

1−
m∏
j=1

(1− Tj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) ,

m∏
j=1

(Ij)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) ,

m∏
j=1

(Fj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k)
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Now we prove that the Eq. (5) holds for n = m+ 1.

SSV NWA(α1, α2, ..., αm, αm+1) = (ϕ1kα1)⊕ (ϕ2kα2)...⊕ (ϕmk αm)⊕ (ϕm+1
k αm+1)

=

(1−
m∏
j=1

(1− Tj)
exp(ϑj/k)∑m

j=1
exp(ϑj/k)

+

(
1− (1− Tm+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k)

)

−

1−
m∏
j=1

(1− Tj)
exp(ϑj/k)∑m

j=1
exp(ϑj/k)

×

(
1− (1− Tm+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k)

) ,

m+1∏
j=1

(Ij)

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k) ,

m+1∏
j=1

(Fj)

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k)

)

=

1−
m+1∏
j=1

(1− Tj)

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k) ,

m+1∏
j=1

(Ij)

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k) ,

m+1∏
j=1

(Fj)

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k)


Therefore, Eq. (5) holds for n = m+1, hence the Eq. (5) holds for all positive integer by

principle of mathematical induction. Hence, the proof of the theorem is completed.

Example 3.2. Letα1 = (0.6, 0.4, 0.5), α2 = (0.7, 0.3, 0.5), α3 = (0.8, 0.3, 0.4) and α4 =

(0.7, 0.4, 0.5) be the four SVN-numbers. Rank the four SVN-numbers using SSVNWA op-

erator.

Solution: Here we have used the SSVNWA operator to aggregate the four SVN-numbers.

At first, we calculated the score values of four SVN-numbers using Eq. (1).

S(α1) = 0.567, S(α2) = 0.633, S(α3) = 0.700, S(α4) = 0.600

ϑ1 = 1, ϑ2 = 0.567, ϑ3 = 0.359, ϑ4 = 0.251.

To calculate exp(ϑj/k) we take k =1, then exp(ϑ1/k) = 2.718, exp(ϑ2/k) = 1.763, exp(ϑ3/k) =

1.432, exp(ϑ4/k) = 1.285

and exp(ϑ1/k)∑4
j=1 exp(ϑj/k)

= 0.378, exp(ϑ2/k)∑4
j=1 exp(ϑj/k)

= 0.245, exp(ϑ3/k)∑4
j=1 exp(ϑj/k)

= 0.199, exp(ϑ4/k)∑4
j=1 exp(ϑj/k)

= 0.178

SSV NWA(α1, α2, α3, α4) =

((
1− (1− 0.6)0.378 × (1− 0.7)0.245 × (1− 0.8)0.199 × (1− 0.7)0.178

)
,(

(0.4)0.378 × (0.3)0.245 × (0.3)0.199 × (0.4)0.178
)
,(

(0.5)0.378 × (0.5)0.245 × (0.4)0.199 × (0.5)0.178
))

= (0.691, 0.352, 0.478)

3.2.1. Properties of SSV NWA operator

Property 1: Idem-potency

If α1 = α2 = ... = αn = α(say), then SSV NWA(α1, α2, ..., αn) = α

Proof. : Let αj = ⟨Tj , Ij , Fj⟩, (j = 1, 2, 3..., n) and α = ⟨T, I, F ⟩.
Since all αj are equal based on Theorem (1), we get
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SSV NWA(α, α, ..., α) =
(
1− (1− T )

∑n
j=1 ϕ

j
k , (I)

∑n
j=1 ϕ

j
k , (F )

∑n
j=1 ϕ

j
k

)
= ⟨T, I, F ⟩ = α.

Since, ϕjk =
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

, k > 0 and
∑n

j=1 ϕ
j
k = 1.

Property 2: Monotonicity

Let αj(j = 1, 2, ..., n) and βj(j = 1, 2, ..., n) be any two sets of SVN-numbers. If αj ≤ βj for

any j,

then SSV NWA(α1, α2, ..., αn) ≤ SSV NWA(β1, β2, ..., βn).

Proof. Based on the Theorem (1), we get

SSV NWA (α1, α2, ..., αn) =

(
1−

∏n
j=1(1− Tαj

)

exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k) ,
∏n

j=1(Iαj
)

exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k) ,

n∏
j=1

(Fαj
)

exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k)


and

SSV NWA(β1, β2, ..., βn) =

(
1−

∏n
j=1(1− Tβj )

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)
,
∏n

j=1(Iβj )

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)
,

n∏
j=1

(Fβj )

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)


Since all αj ≤ βj(j = 1, 2, ..., n). Therefore,

Tαj ≤ Tβj
⇒ (1− Tαj ) ≥ (1− Tβj

)

⇒ (1− Tαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≥ (1− Tβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒
n∏

j=1

(1− Tαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≥
n∏

j=1

(1− Tβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒

1−
n∏

j=1

(1− Tαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 ≤

1−
n∏

j=1

(1− Tβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)


Further,

Iαj ≥ Iβj
⇒ (Iαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≥ (Iβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒
n∏

j=1

(Iαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≥
n∏

j=1

(Iβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

Similarly, we have also

n∏
j=1

(Fαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≥ (Fβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

Hence the proof is complete.

Property 3: Boundedness

Let αj(j = 1, 2, ..., n) be any set of SVN-number. If α− = min {αj} and α+ = max {αj}, then
α− ≤ SSV NWA(α1, α2, ..., αn) ≤ α+.
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Proof. : Let α+ = max{α1, α2, ..., αn} and α− = min{α1, α2, ..., αn}. According to properties

1 and 2, we have

SSV NWA(α1, α2, ..., αn) ≥ SSV NWA(α−, α−, ..., α−) = α− and

SSV NWA(α1, α2, ..., αn) ≤ SSV NWA(α+, α+, ..., α+) = α+

So, we have α− ≤ SSV NWA(α1, α2, ..., αn) ≤ α+.

Hence the proof is complete.

Let αj(j = 1, 2, ..., n) be a collection of SVN-numbers. Then softmax single valued neutro-

sophic weighted geometric (SSVNWG) operator is a function from αn → α such that

SSV NWG(α1, α2, ..., αn) = ⊕n
j=1(ϕ

j
kαj) = ⊗n

j=1 (αj)
ϕj
k = (α1)

ϕ1
k ⊗ (α2)

ϕ2
k ⊗ ...⊗ (αn)

ϕn
k (6)

where ϕjk =
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

, ϑj =

{ ∏j−1
i=1 Si, j = 2, 3, ..., n

1 j = 1
and Si is the score function of the

SVN-number αi.

Theorem 3.3. Let αj(j = 1, 2, ..., n), be a collection of SVNNs, then aggregated value of

SVN-numbers using the SSVNWG operation is also a SVN-number and

SSV NWG (α1, α2, ..., αn) =

 n∏
j=1

(Tj)

exp(ϑj/k)∑n
j=1

exp(ϑj/k) ,

1−
n∏

j=1

(1− Ij)

exp(ϑj/k)∑n
j=1

exp(ϑj/k) , 1−
n∏

j=1

(1− Fj)

exp(ϑj/k)∑n
j=1

exp(ϑj/k)

(7)
Proof. : We proof the above Theorem 2 by using mathematical induction.

For n = 1, from the Eq. (7) we have

SSV NWG(α1, α2, ..., αn) =

 1∏
j=1

(Tj)

exp(ϑj/k)∑n
j=1

exp(ϑj/k) ,

1−
1∏

j=1

(1− Ij)

exp(ϑj/k)∑n
j=1

exp(ϑj/k) , 1−
1∏

j=1

(1− Fj)

exp(ϑj/k)∑n
j=1

exp(ϑj/k)

 = ⟨T1, I1, F1⟩

Since, for n = 1,
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

= 1. Thus Eq.(7) holds for n = 1. Assume that the Eq. (7)

holds for n = m,

SSV NWG(α1, α2, ..., αm) =

 m∏
j=1

(Tj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) ,

1−
m∏
j=1

(1− Ij)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) , 1−
m∏
j=1

(1− Fj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k)
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Now we have prove that the Eq. (7) hold for n = m+ 1. Then

SSV NWG(α1, α2, ..., αm, αm+1) = (α1)
ϕ1
k ⊗ (α2)

ϕ2
k ⊗ ...⊗ (αm)ϕ

m
k ⊗ (αm+1)

ϕm+1
k

=

 m∏
j=1

(Tj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) , 1−
m∏
j=1

(1− Ij)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) ,

1−
m∏
j=1

(1− Fj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k)


=

( m∏
j=1

(Tj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) × (Tm+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k) ,

m∏
j=1

(Ij)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) + (Im+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k) −
m∏
j=1

(Ij)

exp(ϑj/k)∑m
j=1

exp(ϑj/k)

×(Im+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k) ,
m∏
j=1

(Fj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) + (Fm+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k)

−
m∏
j=1

(Fj)

exp(ϑj/k)∑m
j=1

exp(ϑj/k) × (Fm+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k)

)

=

m+1∏
j=1

(Tj)

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k) , 1−
m+1∏
j=1

(1− Ij)

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k) ,

1−
m+1∏
j=1

(1− Fj)

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k)


Therefore, Eq. (7) holds for n = m+1, hence the Eq. (7) holds for all positive integer by

principle of mathematical induction. Hence, the proof of the theorem is completed.

Example 3.4. Let α1 = (0.6, 0.4, 0.5), α2 = (0.7, 0.3, 0.5), α3 = (0.8, 0.3, 0.4) and α4 =

(0.7, 0.4, 0.5) be the four SVN-numbers. Rank the four SVN-numbers using SSV NWG oper-

ator.

Solution: In the following, we use the SSV NWG operator to aggregate these SVN-numbers.

At first we have calculated the score values of four SVNNs using Eq. (1)

S(α1) = 0.567, S(α2) = 0.633, S(α3) = 0.700, S(α4) = 0.600

then ϑ1 = 1, ϑ2 = 0.567, ϑ3 = 0.359, ϑ4 = 0.251.

To calculate the exp(ϑj/k) we take k = 1, then

exp(ϑ1/k) = 2.718, exp(ϑ2/k) = 1.763, exp(ϑ3/k) = 1.432,
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exp(ϑ4/k) = 1.285 and

exp(ϑ1/k)∑4
j=1 exp(ϑj/k)

= 0.378, exp(ϑ2/k)∑4
j=1 exp(ϑj/k)

= 0.245,

exp(ϑ3/k)∑4
j=1 exp(ϑj/k)

= 0.199, exp(ϑ4/k)∑4
j=1 exp(ϑj/k)

= 0.178,

SSV NWG(α1, α2, α3, α4) =

(
(0.6)0.378 × (0.7)0.245 × (0.8)0.199 × (0.7)0.178 ,

1− (1− 0.4)0.378 × (1− 0.3)0.245 × (1− 0.3)0.199 × (1− 0.4)0.178 ,

1− (1− 0.5)0.378 × (1− 0.5)0.245 × (1− 0.4)0.199 × (1− 0.5)0.178
)

= (0.678, 0.357, 0.482) .

3.2.2. Properties of SSV NWG operator

Property 1: Idem-potency

If α1 = α2 = ... = αn = α(say), then

theSSV NWG(α1, α2, ..., αn) = α

Proof. : Let αj = ⟨Tj , Ij , Fj⟩, (j = 1, 2, 3..., n) and α = ⟨T, I, F ⟩.
Since all αj are equal, based on Theorem (2), we get

SSV NWG(α, α, ..., α)

=
(
(T )

∑n
j=1 ϕ

j
k , 1− (1− I)

∑n
j=1 ϕ

j
k , 1− (1− F )

∑n
j=1 ϕ

j
k

)
= ⟨T, I, F ⟩ = α.

Since, ϕjk =
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

, k > 0 and
∑n

j=1 ϕ
j
k = 1. Hence the proof is completed.

Property 2: Monotonicity

Let αj(j = 1, 2, ..., n) and βj(j = 1, 2, ..., n) be any two sets of SVN-numbers. If αj ≤ βj for

any j, then SSV NWG(α1, α2, ..., αn) ≤ SSV NWG(β1, β2, ..., βn).

Proof. : Based on the Theorem (2), we get

SSV NWG(α1, α2, ..., αn) =

( n∏
j=1

(Tαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ,

(1−
n∏

j=1

(1− Iαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ), (1−
n∏

j=1

(1− Tαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) )

)
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and

SSV NWA(β1, β2, ..., βn) =

( n∏
j=1

(Tβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)
),

(1−
n∏

j=1

(1− Iβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)
, (1−

n∏
j=1

(1− Fβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)
)

)
Since all αj ≤ βj(j = 1, 2, ..., n). Therefore,

Tαj ≤ Tβj
⇒ (Tαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≤ (Tβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒
n∏

j=1

(Tαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≤
n∏

j=1

(Tβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

Further,

Iαj ≥ Iβj
⇒ (1− Iαj ) ≤ (1− Iβj

)

⇒ (1− Iαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≤ (1− Iβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒
n∏

j=1

(1− Iαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≤
n∏

j=1

(1− Iβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒

1−
n∏

j=1

(1− Iαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 ≥

1−
n∏

j=1

(1− Iβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)


Similarly, we have also

⇒

1−
n∏

j=1

(1− Fαj )

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 ≥

1−
n∏

j=1

(1− Fβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)


.

Hence the proof is completed.

Property 3: Boundedness

Let αj(j = 1, 2, ..., n) be any set of SVN-number. If α− = min {αj} and α+ = max {αj}, then
α− ≤ SSV NWG(α1, α2, ..., αn) ≤ α+.

Proof. : Let α+ = max{α1, α2, ..., αn} and α− = min{α1, α2, ..., αn}.
According to properties 1 and 2, we have

SSV NWG(α1, α2, ..., αn) ≥ SSV NWG(α−, α−, ..., α−) = α− and

SSV NWG(α1, α2, ..., αn) ≤ SSV NWG(α+, α+, ..., α+) = α+

So we have α− ≤ SSV NWG(α1, α2, ..., αn) ≤ α+.

Hence the proof is completed.
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Let αj(j = 1, 2, ..., n) be a collection of SVN-numbers. Then generalized softmax single

valued neutrosophic weighted average (GSSVNWA) operator is a function αn → α such that

GSSV NWA(α1, α2, ..., αn) =
(
⊕n

j=1ϕ
j
kα

λ
j

) 1
λ
=
(
ϕ1kα

λ
1 ⊕ ϕ2kα

λ
2 ⊕ ...⊕ ϕnkα

λ
n

) 1
λ

(8)

Let αj(j = 1, 2, ..., n) be a collection of SVN-numbers. Then generalized softmax single

valued neutrosophic weighted geometric (GSSVNWG) operator is a function αn → α such that

GSSV NWG(α1, α2, ..., αn) =
1

λ

(
⊗n

j=1 (λϕj)
ϕj
k

)
=

1

λ

(
(λα1)

ϕ1
k ⊗ (λα2)

ϕ2
k ⊗ ...⊗ (λαn)

ϕn
k

)
(9)

Theorem 3.5. Let αj(j = 1, 2, ..., n), be a collection of SVN-numbers, then aggregated value

of SVN-numbers using the GSSVNWA operation is also a SVNN, and

GSSV NWA(α1, α2, ..., αn) =

〈1−
n∏

j=1

(1− Tλ
j )

exp(ϑj/k)∑n
j=1

exp(ϑj/k)

 1
λ

, 1−

1−
n∏

j=1

(
1− (1− Ij)

λ
) exp(ϑj/k)∑n

j=1
exp(ϑj/k)

 1
λ

,

1−

1−
n∏

j=1

(
1− (1− Fj)

λ
) exp(ϑj/k)∑n

j=1
exp(ϑj/k)

 1
λ 〉

(10)

Proof. : We proof the above theorem 3 by using mathematical induction.

For n = 1, we have:

GSSV NWA(α1, α2, ..., αn) =

〈1−
1∏

j=1

(1− Tλ
j )

exp(ϑj/k)∑1
j=1

exp(ϑj/k)

 1
λ

, 1−

1−
1∏

j=1

(
1− (1− Ij)

λ
) exp(ϑj/k)∑1

j=1
exp(ϑj/k)

 1
λ

,

1−

1−
1∏

j=1

(
1− (1− Fj)

λ
) exp(ϑj/k)∑1

j=1
exp(ϑj/k)

 1
λ 〉

= ⟨T1, I1, F1⟩

Since, for n = 1,
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

= 1.

Thus Eq.(10) holds for n = 1, we assume that the Eq. (10) holds for n = m,

GSSV NWA(α1, α2, ..., αm) =

〈1−
m∏
j=1

(1− Tλ
j )

exp(ϑj/k)∑m
j=1

exp(ϑj/k)

 1
λ

, 1−

1−
m∏
j=1

(
1− (1− Ij)

λ
) exp(ϑj/k)∑m

j=1
exp(ϑj/k)

 1
λ

,

1−

1−
m∏
j=1

(
1− (1− Fj)

λ
) exp(ϑj/k)∑m

j=1
exp(ϑj/k)

 1
λ 〉
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Now, we prove that the Eq. (10) holds for n = m+ 1.

GSSV NWA(α1, α2, ..., αm, αm+1) =
(
(ϕ1kα

λ
1 ⊕ ϕ2kα

λ
2 ⊕ ...⊕ ϕmk α

λ
m)⊕ ϕm+1

k αλ
m+1

) 1
λ

=

〈1−
m∏
j=1

(1− Tλ
j )

exp(ϑj/k)∑m
j=1

exp(ϑj/k)

 1
λ

+

(
1− (1− Tλ

m+1)

exp(ϑm+1/k)∑m=+1
j=1

exp(ϑj/k)

) 1
λ

−

1−
m∏
j=1

(1− Tλ
j )

exp(ϑj/k)∑m
j=1

exp(ϑj/k)

 1
λ

×

(
1− (1− Tλ

m+1)

exp(ϑm+1/k)∑m=+1
j=1

exp(ϑj/k)

) 1
λ

,

1−

1−
m∏
j=1

(
1− (1− Ij)

λ
) exp(ϑj/k)∑m

j=1
exp(ϑj/k)

 1
λ

×

1−

(
1−

(
1− (1− Im+1)

λ
) exp(ϑm+1/k)∑m+1

j=1
exp(ϑj/k)

) 1
λ

 ,

1−

1−
m∏
j=1

(
1− (1− Fj)

λ
) exp(ϑj/k)∑m

j=1
exp(ϑj/k)

 1
λ

×

1−

(
1−

(
1− (1− Fm+1)

λ
) exp(ϑm+1/k)∑m+1

j=1
exp(ϑj/k)

) 1
λ

〉

=

〈1−
m+1∏
j=1

(1− Tλ
j )

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k)

 1
λ

,

1−

1−
m+1∏
j=1

(
1− (1− Ij)

λ
) exp(ϑj/k)∑m+1

j=1
exp(ϑj/k)

 1
λ

,

1−

1−
m+1∏
j=1

(
1− (1− Fj)

λ
) exp(ϑj/k)∑m+1

j=1
exp(ϑj/k)

 1
λ 〉

Therefore, Eq. (10) holds for n = m+1, hence the Eq. (10) holds for all positive integer by

principle of mathematical induction. Hence the proof of the theorem is completed.

Example 3.6. Let α1 = (0.6, 0.4, 0.5), α2 = (0.7, 0.3, 0.5), α3 = (0.8, 0.3, 0.4) and α4 =

(0.7, 0.4, 0.5) be the four SVN-numbers. Rank the four SVN-numbers using the GSSVNWA

operator.

Solution: In the following, we use the GSSVNWA operator to aggregate these SVN-

numbers. At first we calculate the score values of four SVN-numbers using Eq. (1).

S(α1) = 0.567, S(α2) = 0.633, S(α3) = 0.700, S(α4) = 0.600 then ϑ1 = 1, ϑ2 = 0.567, ϑ3 =

0.359, ϑ4 = 0.251. To calculate exp(ϑj/k) we take k = 1, then

exp(ϑ1/k) = 2.718, exp(ϑ2/k) = 1.763, exp(ϑ3/k) = 1.432, exp(ϑ4/k) = 1.285
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and

exp(ϑ1/k)∑4
j=1 exp(ϑj/k)

= 0.378,
exp(ϑ2/k)∑4
j=1 exp(ϑj/k)

= 0.245,

exp(ϑ3/k)∑4
j=1 exp(ϑj/k)

= 0.199,
exp(ϑ4/k)∑4
j=1 exp(ϑj/k)

= 0.178

Takingλ = 1 GSSVNWA reduces to SSVNWA and we get

GSSV NWA(α1, α2, α3, α4) = (0.691, 0.352, 0.478) .

Taking λ = 2 we obtain

GSSV NWA(α1, α2, α3, α4) =

((
1−

(
1− (0.6)2

)0.378 × (1− (0.7)2
)0.245 × (

1− (0.8)2
)0.199 × (1− (0.7)2

)0.178) 1
2

,

1−
(
1−

(
1− (1− 0.6)2

)0.378 × (1− (1− 0.3)2
)0.245 ×(

1− (1− 0.3)2
)0.199 × (1− (1− 0.4)2

)0.178) 1
2

,

1−
(
1−

(
1− (1− 0.5)2

)0.378 × (1− (1− 0.5)2
)0.245 ×(

1− (1− 0.4)2
)0.199 × (1− (1− 0.5)2

)0.178) 1
2

)
= (0.694, 0.401, 0.477)

Taking λ = 3, we obtain

GSSV NWA(α1, α2, α3, α4) =

((
1−

(
1− (0.6)3

)0.378 × (1− (0.7)3
)0.245 × (

1− (0.8)3
)0.199 × (1− (0.7)3

)0.178) 1
3

,

1−
(
1−

(
1− (1− 0.6)3

)0.378 × (1− (1− 0.3)3
)0.245 ×(

1− (1− 0.3)3
)0.199 × (1− (1− 0.4)3

)0.178) 1
3

,

1−
(
1−

(
1− (1− 0.5)3

)0.378 × (1− (1− 0.5)3
)0.245 ×(

1− (1− 0.4)3
)0.199 × (1− (1− 0.5)3

)0.178) 1
3

)
= (0.697, 0.392, 0.476)

Similarly we can also checked for λ = 4, 5, .... and so on

3.2.3. Properties of GSSV NWA operator

Property 1: Idem-potency If α1 = α2 = ... = αn = α (say), then the

GSSV NWAO(α1, α2, ..., αn) = α

Proof. Let αj = ⟨Tj , Ij , Fj⟩, (j = 1, 2, 3..., n) and α = ⟨T, I, F ⟩.
Since all αj are equal, based on Theorem (3), we get
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SSV NWG(α, α, ..., α) =

〈(
1− (1− T λ)

∑n
j=1 ϕ

j
k

) 1
λ
, 1−

(
1−

(
1− (1− I)λ

)∑n
j=1 ϕ

j
k

) 1
λ

,

1−
(
1−

(
1− (1− F )λ

)∑n
j=1 ϕ

j
k

) 1
λ
〉

= ⟨T, I, F ⟩ = α

Since, ϕjk =
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

, k > 0 and
∑n

j=1 ϕ
j
k = 1.

Hence the proof is completed.

Property 2: Monotonicity

Let αj(j = 1, 2, ..., n) and βj(j = 1, 2, ..., n) be any two SVN-numbers. If αj ≤ βj for any j,

then

GSSV NWA(α1, α2, ..., αn) ≤ GSSV NWA(β1, β2, ..., βn).

Proof. : Based on the Theorem (3), we get

GSSV NWA(α1, α2, ..., αn) =

〈1−
n∏

j=1

(1− T λ
αj
)

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ

,

1−

1−
n∏

j=1

(
1−

(
1− Iαj

)λ) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ

,

1−

1−
n∏

j=1

(
1−

(
1− Fαj

)λ) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ

and

GSSV NWA(β1, β2, ..., βn) =

〈1−
n∏

j=1

(1− T λ
βj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

,

1−

1−
n∏

j=1

(
1−

(
1− Iβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

,

1−

1−
n∏

j=1

(
1−

(
1− Fβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ 〉
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Since all αj ≤ βj(j = 1, 2, ..., n).

Therefore for Tαj ≤ Tβj
we have

Tλ
αj

≤ Tλ
βj

⇒ (1− Tλ
αj
) ≥ (1− Tλ

βj
)

⇒ (1− Tλ
αj
)

exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k) ≥ (1− Tλ
βj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒
n∏

j=1

(1− Tλ
αj
)

exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k) ≥
n∏

j=1

(1− Tλ
βj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒

1−
n∏

j=1

(1− Tλ
αj
)

exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k)

 ≤

1−
n∏

j=1

(1− Tλ
βj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)


⇒

1−
n∏

j=1

(1− Tλ
αj
)

exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k)

 1
λ

≤

1−
n∏

j=1

(1− Tλ
βj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

Further for

Iαj
≥ Iβj

⇒
(
1− Iαj

)
≤
(
1− Iβj

)
⇒

(
1− Iαj

)λ ≤
(
1− Iβj

)λ
⇒

(
1−

(
1− Iαj

)λ) ≥
(
1−

(
1− Iβj

)λ)
⇒

(
1−

(
1− Iαj

)λ) exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k) ≥
(
1−

(
1− Iβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒
n∏

j=1

(
1−

(
1− Iαj

)λ) exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k) ≥
n∏

j=1

(
1−

(
1− Iβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒

1−
n∏

j=1

(
1−

(
1− Iαj

)λ) exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k)

 1
λ

≤

1−
n∏

j=1

(
1−

(
1− Iβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

⇒ 1−

1−
n∏

j=1

(
1−

(
1− Iαj

)λ) exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k)

 1
λ

≥ 1−

1−
n∏

j=1

(
1−

(
1− Iβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

Similarly, we can also show that

⇒ 1−

1−
n∏

j=1

(
1−

(
1− Fαj

)λ) exp(ϑαj
/k)∑n

j=1
exp(ϑαj

/k)

 1
λ

≥ 1−

1−
n∏

j=1

(
1−

(
1− Fβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

.

Hence the proof is completed.

Property 3: Boundedness

Let αj(j = 1, 2, ..., n) be any set of SVNN. If α− = min {αj} and α+ = max {αj},
then α− ≤ GSSV NWA(α1, α2, ..., αn) ≤ α+.

Proof. : Let α+ = max{α1, α2, ..., αn} and α− = min{α1, α2, ..., αn}. According to properties

1 and 2, we have

GSSV NWA(α1, α2, ..., αn) ≥ GSSV NWA(α−, α−, ..., α−) = α− and
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GSSV NWA(α1, α2, ..., αn) ≤ GSSV NWA(α+, α+, ..., α+) = α+

So, we have α− ≤ GSSV NWA(α1, α2, ..., αn) ≤ α+.

Hence the proof is completed.

Theorem 3.7. Let αj(j = 1, 2, ..., n), be a collection of SVN-numbers. The aggregated value

of SVN-numbers using the GSSVNWG operator is also a SVN-number and

GSSV NWG(α1, α2, ..., αn) =

〈
1−

1−
n∏

j=1

(
1− (1− Tj)

λ
) exp(ϑj/k)∑n

j=1
exp(ϑj/k)

 1
λ

,

1−
n∏

j=1

(1− Iλj )
exp(ϑj/k)∑n

j=1
exp(ϑj/k)

 1
λ

,

1−
n∏

j=1

(1− Fλ
j )

exp(ϑj/k)∑n
j=1

exp(ϑj/k)

 1
λ 〉

(11)

Proof. : We proof the above Theorem 4 by using mathematical induction.

For n = 1, we have:

GSSV NWG(α1, α2, ..., αn) =

〈
1−

1−
1∏

j=1

(
1− (1− Tj)

λ
) exp(ϑj/k)∑1

j=1
exp(ϑj/k)

 1
λ

,

1−
1∏

j=1

(1− Iλj )

exp(ϑj/k)∑1
j=1

exp(ϑj/k)

 1
λ

,

1−
1∏

j=1

(1− Fλ
j )

exp(ϑj/k)∑1
j=1

exp(ϑj/k)

 1
λ 〉

= ⟨T1, I1, F1⟩

Since, for n = 1,
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

= 1.

Thus Eq.(11) holds for n = 1. Assume that the Eq. (11) holds for n = m,

GSSV NWG(α1, α2, ..., αm) =

〈
1−

1−
m∏
j=1

(
1− (1− Tj)

λ
) exp(ϑj/k)∑m

j=1
exp(ϑj/k)

 1
λ

,

1−
m∏
j=1

(1− Iλj )

exp(ϑj/k)∑m
j=1

exp(ϑj/k)

 1
λ

,

1−
m∏
j=1

(1− F λ
j )

exp(ϑj/k)∑m
j=1

exp(ϑj/k)

 1
λ 〉

.
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Now, we prove that the Eq. (12) holds for n = m + 1.

GSSV NWG(α1, α2, ..., αm, αm+1) =
1

λ

(
(λα1)

ϕ1
k ⊗ (λα2)

ϕ2
k ⊗ ...⊗ (λαm)

ϕm
k ⊗ (λαm+1)

ϕm+1
k

)

=

〈(
1−

1−
m∏
j=1

(
1− (1− Tj)

λ
) exp(ϑj/k)∑m

j=1
exp(ϑj/k)

 1
λ )

×
(
1−

(
1−

(
1− (1− Tm+1)

λ
) exp(ϑm+1/k)∑m+1

j=1
exp(ϑj/k)

) 1
λ )

,

1−
m∏
j=1

(1− Iλj )
exp(ϑj/k)∑m

j=1
exp(ϑj/k)

 1
λ

+

(
1− (1− Iλm+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k)

) 1
λ

−

1−
m∏
j=1

(1− Iλj )
exp(ϑj/k)∑m

j=1
exp(ϑj/k)

 1
λ

×

(
1− (1− Iλm+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k)

) 1
λ

,

1−
m∏
j=1

(1− Fλ
j )

exp(ϑj/k)∑m
j=1

exp(ϑj/k)

 1
λ

+

(
1− (1− Fλ

m+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k)

) 1
λ

−

1−
m∏
j=1

(1− Fλ
j )

exp(ϑj/k)∑m
j=1

exp(ϑj/k)

 1
λ

×

(
1− (1− Fλ

m+1)

exp(ϑm+1/k)∑m+1
j=1

exp(ϑj/k)

) 1
λ
〉

=

〈
1−

1−
m+1∏
j=1

(
1− (1− Tj)

λ
) exp(ϑj/k)∑m+1

j=1
exp(ϑj/k)

 1
λ

,

1−
m+1∏
j=1

(1− Iλj )

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k)

 1
λ

,

1−
m+1∏
j=1

(1− Fλ
j )

exp(ϑj/k)∑m+1
j=1

exp(ϑj/k)

 1
λ 〉

Therefore, Eq. (11) holds for n = m+1, hence the Eq. (11) holds for all positive integer by

principle of mathematical induction. Hence the proof of the theorem is completed.

Example 3.8. Let α1 = (0.6, 0.4, 0.5), α2 = (0.7, 0.3, 0.5), α3 = (0.8, 0.3, 0.4) and α4 =

(0.7, 0.4, 0.5) be the four SVN-numbers. Rank the four SVN-numbers using GSSVNWG oper-

ator.

Solution : In the following, we use the GSSVNWG operator to aggregate these SVN-numbers.

At first, we calculate the score values of four SVN-numbers using Eq. (1).

S(α1) = 0.567, S(α2) = 0.633, S(α3) = 0.700, S(α4) = 0.600, then

ϑ1 = 1, ϑ2 = 0.567, ϑ3 = 0.359, ϑ4 = 0.251.

To calculate exp(ϑj/k) we take k =1, then
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exp(ϑ1/k) = 2.718, exp(ϑ2/k) = 1.763, exp(ϑ3/k) = 1.432, exp(ϑ4/k) = 1.285

and

exp(ϑ1/k)∑4
j=1 exp(ϑj/k)

= 0.378,
exp(ϑ2/k)∑4
j=1 exp(ϑj/k)

= 0.245

,

exp(ϑ3/k)∑4
j=1 exp(ϑj/k)

= 0.199,
exp(ϑ4/k)∑4
j=1 exp(ϑj/k)

= 0.178,

Taking λ = 1, GSSVNWG reduces to SSVNWG and we get GSSV NWG(α1, α2, α3, α4) =

(0.678, 0.357, 0.482) .

Again for λ = 2, we obtain

GSSV NWG(α1, α2, α3, α4) =

(
1−

(
1−

(
1− (1− 0.6)2

)0.378 × (1− (1− 0.7)2
)0.245

×
(
1− (1− 0.8)2

)0.199 × (1− (1− 0.7)2
)0.178) 1

2

,(
1−

(
1− (0.6)2

)0.378 × (1− (0.3)2
)0.245 × (

1− (0.3)2
)0.199 × (1− (0.4)2

)0.178) 1
2

,(
1−

(
1− (0.5)2

)0.378 × (1− (0.5)2
)0.245 × (

1− (0.4)2
)0.199 × (1− (0.5)2

)0.178) 1
2

)
= (0.671, 0.464, 0.482) .

Taking λ = 3, we obtain

GSSV NWG(α1, α2, α3, α4) =

(
1−

(
1−

(
1− (1− 0.6)3

)0.378 × (1− (1− 0.7)3
)0.245

×
(
1− (1− 0.8)3

)0.199 × (1− (1− 0.7)3
)0.178) 1

3

,(
1−

(
1− (0.6)3

)0.378 × (1− (0.3)3
)0.245 ×

(
1− (0.3)3

)0.199 × (1− (0.4)3
)0.178) 1

3

,(
1−

(
1− (0.5)3

)0.378 × (1− (0.5)3
)0.245 ×

(
1− (0.4)3

)0.199 × (1− (0.5)3
)0.178) 1

3

)
= (0.662, 0.480, 0.484) .

Similarly, we can also show that for λ = 4, 5, ... and so on.

3.2.4. Properties of GSSV NWG operator

Property 1: Idem-potency

If α1 = α2 = ... = αn = α(say), then GSSV NWG(α1, α2, ..., αn) = α.

Proof. Let αj = ⟨Tj , Ij , Fj⟩, (j = 1, 2, 3..., n) and α = ⟨T, I, F ⟩.
Since all αj are equal, based on Theorem (4), we get
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GSSV NWG(α, α, ..., α) =

〈
1−

(
1−

(
1− (1− T )λ

)∑n
j=1 ϕ

j
k

) 1
λ

,
(
1− (1− Iλ)

∑n
j=1 ϕ

j
k

) 1
λ
,(

1− (1− F λ)
∑n

j=1 ϕ
j
k

) 1
λ

〉
= ⟨T, I, F ⟩ = α

Since, ϕjk =
exp(ϑj/k)∑n
j=1 exp(ϑj/k)

, k > 0 and
∑n

j=1 ϕ
j
k = 1. Hence the proof is completed.

2. Monotonicity:

Let αj(j = 1, 2, ..., n) and βj(j = 1, 2, ..., n) be any two sets of SVN-numbers. If αj ≤ βj for

any j, then GSSV NWG(α1, α2, ..., αn) ≤ GSSV NWG(β1, β2, ..., βn).

Proof. : Based on the Theorem (4), we get

GSSV NWG(α1, α2, ..., αn) =

(
1−

1−
n∏

j=1

(
1−

(
1− Tαj

)λ) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ

,

1−
n∏

j=1

(1− Iλαj
)

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ

,

1−
n∏

j=1

(1− F λ
αj
)

exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ )

and

GSSV NWG(β1, β2, ..., βn) =

(
1−

1−
n∏

j=1

(
1−

(
1− Tβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

,

1−
n∏

j=1

(1− Iλβj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

,

1−
n∏

j=1

(1− F λ
βj
)

exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ )
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Since all αj ≤ βj(j = 1, 2, ..., n). Therefore,

Tαj ≤ Tβj
⇒

(
1− Tαj

)
≥
(
1− Tβj

)
,

⇒
(
1− Tαj

)λ ≥
(
1− Tβj

)λ
,

⇒
(
1−

(
1− Tαj

)λ) ≤
(
1−

(
1− Tβj

)λ)
⇒

(
1−

(
1− Tαj

)λ) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≤
(
1−

(
1− Tβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒
n∏

j=1

(
1−

(
1− Tαj

)λ) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≤
n∏

j=1

(
1−

(
1− Tβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒ 1−

1−
n∏

j=1

(
1−

(
1− Tαj

)λ) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ

≤ 1−

1−
n∏

j=1

(
1−

(
1− Tβj

)λ) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

Further,

Iαj ≥ Iβj
⇒ Iλαj

≥ Iλβj
⇒
(
1− Iλαj

)
≤
(
1− Iλβj

)
⇒

(
1− Iλαj

) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≤
(
1− Iλβj

) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒
n∏

j=1

(
1− Iλαj

) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k) ≤
n∏

j=1

(
1− Iλβj

) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

⇒

1−
n∏

j=1

(
1− Iλαj

) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 ≥

1−
n∏

j=1

(
1− Iλβj

) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)


⇒

1−
n∏

j=1

(
1− Iλαj

) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ

≥

1−
n∏

j=1

(
1− Iλβj

) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

Similarly, we can also show that

⇒

1−
n∏

j=1

(
1− F λ

αj

) exp(ϑαj /k)∑n
j=1

exp(ϑαj /k)

 1
λ

≥

1−
n∏

j=1

(
1− F λ

βj

) exp(ϑβj
/k)∑n

j=1
exp(ϑβj

/k)

 1
λ

Hence the proof is completed.

Property 3: Boundedness

Let αj(j = 1, 2, ..., n) be any set of SVN-numbers. If α− = min {αj} and α+ = max {αj},
then α− ≤ GSSV NWG(α1, α2, ..., αn) ≤ α+.
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Proof. : Let α+ = max{α1, α2, ..., αn} and α− = min{α1, α2, ..., αn}.
According to the Property 1 and 2, we have

GSSV NWG(α1, α2, ..., αn) ≥ GSSV NWG(α−, α−, ..., α−) = α−

and GSSV NWG(α1, α2, ..., αn) ≤ GSSV NWG(α+, α+, ..., α+) = α+

So, we have α− ≤ GSSV NWG(α1, α2, ..., αn) ≤ α+.

Hence the proof is completed.

4. MADM under SVN environment based on proposed operators

The main goal of a MADM strategy is to find the one or more alternative which satisfies the

objective of decision maker from a set of possible alternatives w.r.t significant attributes. Using

the proposed aggregation operators a MADM strategy under SVN environment is considered.

A MADM strategy is presented here ton show the application of proposed approach.

4.1. Decision making approach based on proposed operators

Let Ψ = {ψ1, ψ2, ..., ψm}and C = {C1, C2, ..., Cn} be the possible set of alternatives and

attributes respectively. Let W = {w1, w2, ..., wn} be the weight vector of attributes Cj (j = 1,

2, 3, . . . , n), where wj ≥ 0 and
∑n

j=1wj = 1. Now, we have described the steps of proposed

MADM strategy by following algorithm.

Algorithm:

Step 1: Formulate the decision matrix

For MADM with SVN–number information, the rating values of the alternative ψi(i =

1, 2, ...,m) on the basis of attribute Cj(j = 1, 2, ..., n)can be expressed in SVN–number as

aij where (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n).

The decision matrix is represented as follows:

[ Aij ]m×n =



C1 C2 · · · Cn

ψ1 a11 a12 · · · a1n

ψ2 a21 a22 · · · a2n
...

...
...

. . .
...

ψm am1 am2 · · · amn

 (12)

is called an decision making matrix.

Step 2: Compute the score matrix and ϑij value matrix

Using Eq. (1) and Eq. (2), We calculate the score value of each alternative for different at-

tribute and represent as matrix form as:
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[ Sij ]m×n =



C1 C2 · · · Cn

ψ1 s11 s12 · · · s1n

ψ2 s21 s22 · · · s2n
...

...
...

. . .
...

ψm sm1 sm2 · · · smn

 (13)

and calculate ϑij value using Eq. (3), represent as follows:

[ϑij ]m×n =



C1 C2 · · · Cn

ψ1 ϑ11 ϑ12 · · · ϑ1n

ψ2 ϑ21 ϑ22 · · · ϑ2n
...

...
...

. . .
...

ψm ϑm1 ϑm2 · · · ϑmn

 (14)

Step 3: Compute weighted matrix

We calculate weight of each alterntive for each attribute by the Eq. (3) and represent in matrix

form as:

[ϕijk ]m×n =



C1 C2 · · · Cn

ψ1 ϕ11k ϕ12k · · · ϕ1nk

ψ2 ϕ21k ϕ22k · · · ϕ2nk
...

...
...

. . .
...

ψm ϕm1
k ϕm2

k · · · ϕmn
k

 (15)

Where, ϕijk =
exp(ϑij/k)∑n
j=1 exp(ϑij/k)

, ϑij =

{ ∏j−1
i=1 Si, j = 2, 3, ..., n

1 j = 1
, Si is the score function of the

SVNN αi.

Step 4: Aggregate the all attributes

Using aggregation operators we aggragate the all attribute values for respective alternative

and results are shown in table form as:

Table 1. The aggregated SVNNs and score values of aggregated SVNNs

Alternatives Aggregated SVNNs Score values

ψ1 ã1 S̃1

ψ2 ã2 S̃2

· · ·
· · ·
ψm ãm S̃m
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Step 5: Ranking the alternatives

Based on the score value (From Table 1) of alternative, we arranged the ranking odrer of

alternatives using Eq. (1) and Eq. (2).

Step 6: End the algorithm.

5. Numerical illustration

Every year worldwide, many peoples are affected by various natural disasters. These disas-

ters are Hurricanes and Tropical Storms, Drought, Wildfires, Floods, Earthquakes, Tornadoes,

severe storms, etc. The most common thoughtful nature disaster is the Flood disaster. Flood

disaster problems can handle by MADM strategy according to the given information Yu (2016).

In Flood disaster control and mitigation, risk decision and evaluation are significant steps. Ac-

cording to our knowledge (Ya 2012), we have composed four essential attributes to evaluate

the risk of Flood disaster, which are:

i) Disaster-inducing factors (C1),

ii) Hazard-formative environment (C2),

iii) Characters of hazard affected body (C3), and

iv) Social disaster bearing capacity (C4).

Apparently, these evaluation attribute are complicated and difficult to characterize quantita-

tively. We can handle this type of difficulties considering the attributes information by SVN

set.

Let us assume that ψ1, ψ2, ψ3, and ψ4 are the four maritime cities in India. Our aim is to find

the best city according to the four attributes. We expressed the appraisement informations

of four cities according to the four attributes in terms of SVN-set. Now, we will solved this

decision making problem using the proposed operators.

Step 1: Formulate the decision matrix

The appraisement informations of four cities consider by SVN-number according to the four

attributes. Re-presentation of the decision matrix shown in Eq. (16) as given by:

[ A]4×4 =



C1 C2 C3 C4

ψ1 ⟨0.6, 0.4, 0.3⟩ ⟨0.7, 0.3, 0.4⟩ ⟨0.8, 0.4, 0.6⟩ ⟨0.6, 0.2, 0.4⟩
ψ2 ⟨0.3, 0.1, 0.4⟩ ⟨0.5, 0.2, 0.2⟩ ⟨0.8, 0.3, 0.4⟩ ⟨0.6, 0.3, 0.5⟩
ψ3 ⟨0.6, 0.3, 0.5⟩ ⟨0.7, 0.3, 0.5⟩ ⟨0.8, 0.3, 0.5⟩ ⟨0.4, 0.3, 0.2⟩
ψ4 ⟨0.7, 0.3, 0.3⟩ ⟨0.3, 0.4, 0.3⟩ ⟨0.7, 0.4, 0.5⟩ ⟨0.8, 0.3, 0.4⟩

 (16)

Step 2: Compute the score matrix and ϑij value matrix

Using Eq. (1), We calculate the score value of each alternative for different attribute and

represent as matrix form as:
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[ S]4×4 =



C1 C2 C3 C4

ψ1 0.63 0.67 0.60 0.67

ψ2 0.60 0.70 0.70 0.60

ψ3 0.60 0.63 0.67 0.63

ψ4 0.70 0.53 0.60 0.70

 (17)

and calculate ϑij value using Eq. (4), represent as follows:

[ϑ]4×4 =



C1 C2 C3 C4

ψ1 1 0.63 0.42 0.28

ψ2 1 0.60 0.42 0.29

ψ3 1 0.60 0.38 0.25

ψ4 1 0.70 0.37 0.22

 (18)

Step 3: Compute ϕijk matrix (Let parameter k = 1)

We calculate the values of ϕijk for each alternative with respects to each attributes by the Eq.

(3) and represent in matrix form as:

[ϕ]4×4 =



C1 C2 C3 C4

ψ1 0.36 0.25 0.20 0.18

ψ2 0.34 0.24 0.21 0.18

ψ3 0.37 0.25 0.20 0.18

ψ4 0.37 0.27 0.20 0.17

 (19)

Step 4: Aggregate the all attribute values of alternatives

Based on the SSV NWA operator, the aggregated SVN-numbers and score values of Eq. (17)

are shown in Table 2 (Parameter k = 1 fixed).

From Table 2, we find the riskiest city is ψ2.

Based on the SSV NWG operator, the aggregated SVN-numbers and corresponding score val-

ues of Eq. (16) are shown in Table 3(Parameter k = 1 fixed),

From Table 3, we find the riskiest city is ψ2.

Based on the GSSV NWA operator, the aggregated SVN-numbers and corresponding score

values of Eq. (16) are shown in Table 4(Parameter λ = 2, 5, 10 and Parameter k = 1 fixed).

From Table 4, we find the riskiest city is ψ4 for λ = 2 and ψ2 for λ = 5, 10.

Based on the GSSV NWG operator, the aggregated SVN-numbers and corresponding score

values of Eq. (16) are shown in Table 5(Parameter λ = 2, 5, 10 and Parameter k = 1 fixed).

From Table 5, we find the riskiest city is ψ1 for λ = 2, 5, 10.

Step 5: Ranking order of alternatives
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Table 2. The aggregated SVN-numbers and score values based on SSVNWA

operator

Alternatives Aggregated SVNNs Score values

ψ1 ⟨0.622, 0.332, 0.398⟩ 0.631

ψ2 ⟨0.546, 0.194, 0.362⟩ 0.663

ψ3 ⟨0.651, 0.300, 0.424⟩ 0.642

ψ4 ⟨0.652, 0.339, 0.345⟩ 0.656

Table 3. The aggregated SVNNs and score values based on SSVNWG oper-

ator

Alternatives Aggregated SVNNs Score values

ψ1 ⟨0.633, 0.340, 0.414⟩ 0.636

ψ2 ⟨0.489, 0.204, 0.368⟩ 0.669

ψ3 ⟨0.614, 0.300, 0.456⟩ 0.619

ψ4 ⟨0.568, 0.351, 0.365⟩ 0.617

Table 4. The aggregated SVNNs and score values based on GSSVNWA op-

erator

value of λ Alternatives Aggregated SVNNs Score values

ψ1 ⟨0.679, 0.327, 0.388⟩ 0.655

ψ2 ⟨0.572, 0.189, 0.353⟩ 0.677

λ = 2 ψ3 ⟨0.659, 0.300, 0.414⟩ 0.648

ψ4 ⟨0.665, 0.245, 0.343⟩ 0.692

ψ1 ⟨0.689, 0.316, 0.372⟩ 0.667

ψ2 ⟨0.632, 0.178, 0.330⟩ 0.708

λ = 5 ψ3 ⟨0.680, 0.300, 0.378⟩ 0.643

ψ4 ⟨0.692, 0.337, 0.336⟩ 0.673

ψ1 ⟨0.710, 0.294, 0.353⟩ 0.688

ψ2 ⟨0.691, 0.163, 0.295⟩ 0.744

λ = 10 ψ3 ⟨0.708, 0.300, 0.320⟩ 0.696

ψ4 ⟨0.715, 0.330, 0.326⟩ 0.686
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Table 5. The aggregated SVNNs and score values based on GSSVNWG op-

erator

value of λ Alternatives Aggregated SVNNs Score values

ψ1 ⟨0.656, 0.347, 0.424⟩ 0.628

ψ2 ⟨0.464, 0.221, 0.382⟩ 0.620

λ = 2 ψ3 ⟨0.598, 0.300, 0.465⟩ 0.611

ψ4 ⟨0.536, 0.353, 0.370⟩ 0.604

ψ1 ⟨0.638, 0.364, 0.463⟩ 0.603

ψ2 ⟨0.413, 0.253, 0.408⟩ 0.584

λ = 5 ψ3 ⟨0.548, 0.300, 0.481⟩ 0.589

ψ4 ⟨0.451, 0.361, 0.395⟩ 0.565

ψ1 ⟨0.623, 0.378, 0.513⟩ 0.577

ψ2 ⟨0.369, 0.273, 0.433⟩ 0.554

λ = 10 ψ3 ⟨0.492, 0.300, 0.490⟩ 0.567

ψ4 ⟨0.385, 0.373, 0.430⟩ 0.527

According to the decreasing score value of alternatives ψi(i = 1, 2, 3, 4) and based on the Table

2, Table 3, Table 4 and Table 5, the ranking order of alternatives is presented in Table 6.

Table 6. Ranking order of alternatives and riskiest city for various operators

Proposed operators Ranking order of alternatives riskiest city

SSV NWA ψ2 ≻ ψ4 ≻ ψ3 ≻ ψ1 ψ2

SSV NWG ψ2 ≻ ψ1 ≻ ψ3 ≻ ψ4 ψ2

GSSV NWA, λ = 2 ψ4 ≻ ψ2 ≻ ψ1 ≻ ψ3 ψ4

λ = 5 ψ2 ≻ ψ4 ≻ ψ1 ≻ ψ3 ψ2

λ = 10 ψ2 ≻ ψ3 ≻ ψ1 ≻ ψ4 ψ2

GSSV NWG, λ = 2 ψ1 ≻ ψ2 ≻ ψ3 ≻ ψ4 ψ1

λ = 5 ψ1 ≻ ψ3 ≻ ψ2 ≻ ψ4 ψ1

λ = 10 ψ1 ≻ ψ3 ≻ ψ2 ≻ ψ4 ψ1

Step 6: The procedure of proposed algorithm end here.

In the the numerical example we analysed FD-risk assessment problem. It easy to recognize
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that the neutrosophic set of information is expressed by SVN-number. Here we have been ex-

amined in details for the FD-risk assessment problem. Also the process of proposed strategies

are reasonable for this problem. From the numerical example, we can say that it is comfortable

to use the strategy to cope with the other risk assessment problems. Therefore the proposed

decision making strategy has a deep practical value.

6. Comparative Analysis

A comparative study was constructed with other existing methods to show the validity of

the proposed ranking method. The proposed method is compared to the other techniques such

as Wei and Wei (2018), Nancy and Garg (2016), and Rong et al. (2020) SVN environments.

In Table-7, we have presented a comparative analysis. By Wei and Wei (2018) method, the

best alternative is ψ2 and the worst one is ψ1. According to the Nancy and Garg (2016)

method, the best alternative is ψ3, and the worst one is ψ2. Again by the Rong et al. (2020)

method, the best alternative is ψ4, and the worst one is ψ3. By our proposed method, the best

alternative is ψ2 and the worst one is ψ1. From Table-7, it is clear that our proposed method

gives better results than the other existing method.

Table 7. Comparative studies with other existence method

Proposed operators Ranking order of alternatives Best Alternatives

Wei and Wei (2018) ψ2 ≻ ψ4 ≻ ψ3 ≻ ψ1 ψ2

Nancy and Garg (2016) ψ3 ≻ ψ1 ≻ ψ4 ≻ ψ2 ψ3

Rong et al. (2020) ψ4 ≻ ψ1 ≻ ψ2 ≻ ψ3 ψ4

Our Method ψ2 ≻ ψ4 ≻ ψ1 ≻ ψ3 ψ2

7. Conclusions

In recent years, aggregation operators have become a popular research topic in decision-

making problems. This paper presents some new aggregation operators for solving a real

MADM problem under an SVN environment. Additionally, some different aggregation oper-

ators are developed, which are the softmax SVN weighted average (SVNWA) operator, soft-

max SVN weighted geometric (SVNWG) operator, generalized softmax SVN weighted average

(GSSVNWA) operator, and generalized softmax SVN weighted geometric (GSSVNIFWG) op-

erator. Then, we have presented some essential properties of these operators. Moreover, using

the proposed operators, we have been built a MADM strategy under an SVN environment.

Finally, we have illustrated one numerical example to express the usefulness and effectiveness

of the proposed MADM technique. Also, we have presented a comparative analysis with other
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existing methods.

In the future, we will extend the proposed operators in interval neutrosophic set Wang 2005,

neutrosophic cubic set (Ali 2016), and refined neutrosophic set (Smarandache 2013) environ-

ments. Also, we will try to apply the proposed operators to different realistic decision-making

problems.
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—————————————————————————————————————

1. Introduction

The concepts of Plithogeny, Plithogenic logic/set, Plithogenic probability and

Plithogenic statistics were introduced by Smarandache in [26]. Plithogenic set/logic is

an extension of the classical logic/set, fuzzy logic/set of Zadeh [37], intuitionistic fuzzy

logic/set of Atanassov [11], neutrosophic logic/set of Smarandache [30] and quadru-

ple neutrosophic logic/set of Smarandache [29]. Smarandache in [23], [25] and [28]

introduced and studied symbolic Plithogenic algebraic structures and hyper struc-

tures. In [22], Merkepsi and Abobala studied symbolic 2-Plithogenic rings, in [10],

Al-Basheer et al. studied symbolic 3-Plithogenic rings and in [17], Gayen et al. stud-

ied Plithogenic Hypersoft Subgroup. Also in [32], Taffach and Hatip studied Symbolic
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2-Plithogenic Number Theory And Algebraic Equations, in [33], Taffach and Othman

studied Symbolic 2-Plithogenic Modules over Symbolic 2-Plithogenic Rings and in [34],

Taffach studied Symbolic 2-Plithogenic Vector Spaces. In [18], [24] and [27], applica-

tions of Plithogenic set/logic were presented. In the present paper, we study symbolic

Plithogenic algebraic structures and hyper structures. In particular, we study sym-

bolic Plithogenic group, symbolic Plithogenic ring, symbolic Plithogenic hypergroup

and symbolic Plithogenic canonical hypergroup and present their basic properties.

2. Symbolic Plithogenic Set

A symbolic Plithogenic set SPX is defined by

SPX = {(a, a1P1, a2P2, a3P3, · · · , anPn) : a, ai ∈ R or C or any AlgebraicStructure} (1)

where P ′
i s are the Plithogenic parameters/variables. a is called the non-Plithogenic part

of SPX, aiPi is called the Plithogenic part of SPX and a′is are called the coefficients

of Pis where i = 1, 2, 3, · · · , n. For a positive integer k, Pi has the following properties :

P k
i = Pi, ∀i and k ≥ 2, (2)

kPi = Pi + Pi + Pi + · · ·+ Pi [k summand] ∀i, (3)

0Pi = 0 ∀i, (4)

P−1
i =

1

Pi

does not exist ∀i. (5)

when n = 1, equation (1) reduces to

SPX = {(a, a1P1) : a, a1 ∈ R or C or any AlgebraicStructure} (6)

and SPX becomes the usual Neutrosophic set with P1 = I.

When n = 3, equation (1) reduces to

SPX = {(a, a1P1, a2P2, a3P3) : a, xi ∈ R or C or any AlgebraicStructure} (7)

and SPX becomes the usual Neutrosophic Quadruple set with P1 = T , P2 = I and

P3 = F .

When n = 2, equation (1) reduces to

SPX = {(a, a1P1, a2P2) : a, ai ∈ R or C or any AlgebraicStructure} (8)

which is called symbolic 2-Plithogenic set.
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3. Symbolic Plithogenic Algebraic Structure

All the symbolic Plithogenic sets to be considered in this section and the section after

will be symbolic 2-Plithogenic sets of the form given by equation (8) and we are going

to assume throughout the prevalence order P1 > P2 so that

P1P1 = Pmin{1,1} = P1, (9)

P2P2 = Pmin{2,2} = P2, (10)

P1P2 = P2P1 = Pmin{1,2} = P1. (11)

Definition 3.1. Let +, − and . be the usual arithmetic operations of addition, sub-

traction and multiplication of numbers respectively and let k be a nonzero scalar.

If x = (a, a1P1, a2P2) and y = (b, b1P1, b2P2) are arbitrary elements of the symbolic

Plithogenic set SPX where a, b, ai, bi ∈ R or C, then:

x± y = (a± b, (a1 ± b1)P1, (a2 ± b2)P2), (12)

kx = (ka, ka1P1, ka2P2), (13)

x.y = (ab, (ab1 + a1b+ a1b1 + a1b2 + a2b1)P1, (ab2 + a2b+ a2b2)P2). (14)

When k = 0, then we have

0x = (0a, 0a1P1, 0a2P2) = (0, 0P1, 0P2) = (0, 0, 0). (15)

Notation 3.2. In what follows next, we will use the symbols SPN, SPZ, SPQ, SPR
and SPC to denote the Plithogenic sets of natural, integer, rational, real and complex

numbers respectively.

Example 3.3. (SPQ, .), (SPR, .) and (SPC, .) are symbolic Plithogenic groups.

Definition 3.4. Let (X, ∗) be any algebraic structure and let SPX be the corresponding

symbolic Plithogenic set. The couple (SPX, ∗) is called a symbolic Plithogenic algebraic

structure. SPX will be named according to the name of the underlying algebraic struc-

ture X. For instance if X is a group, SPX will be called a symbolic Plithogenic group,

if X is a ring, SPX will be called a symbolic Plithogenic ring, if X is a hypergroup,

SPX will be called a symbolic Plithogenic hypergroup and so on .

Theorem 3.5. Let (G, ∗) be a group and let SPG be the corresponding symbolic

Plithogenic group. Then:

(i) G ⊂ SPG.

(ii) (SPG, ∗) is a semigroup.

(iii) (SPG, ∗) is not a group.
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Proof. (i) This follows from the definition of SPG.

(ii) Let x = (a, a1P1, a2P2), y = (b, b1P1, b2P2) and z = (c, c1P1, c2P2) be arbitrary

elements of SPG. Then:

x ∗ y = (ab, (ab1 + a1b+ a1b1 + a1b2 + a2b1)P1, (ab2 + a2b+ a2b2)P2) ∈ SPG. Now,

(x ∗ y) ∗ z = (abc, (abc1 + ab1c+ a1bc+ a1b1c+ a1b2c+ a2b1c+ ab1c1 + a1bc1 + a1b1c1

+a1b2c1 + a2b1c1 + ab1c2 + a1bc2 + a1b1c2 + a1b2c2 + a2b1c2 + ab2c1

+a2bc1 + a2b2c1)P1, (abc2 + ab2c+ a2bc+ a2b2c+ ab2c2 + a2bc2 + a2b2c2)P2)

x ∗ (y ∗ z) = (abc, (abc1 + ab1c+ ab1c1 + ab1c2 + ab2c1 + a1bc+ a1bc1 + a1b1c+ a1b1c1

+a1b1c2 + a1b2c1 + a1bc2 + a1b2c+ a1b2c2 + a2bc1 + a2b1c+ a2b1c1

+a2b1c2 + a2b2c1)P1, (abc2 + ab2c+ a2bc+ a2b2c+ ab2c2 + a2bc2 + a2b2c2)P2)

= x ∗ (y ∗ z).

This shows that (SPG, ∗) is a semigroup.

(iii) Since P−1
1 and P−1

2 do not exist, it follows that we cannot find x−1, ∀x ∈ SPG.

Hence, (SPG, ∗) is not a group.

Remark 3.6. If (G,+) is a group, then the symbolic Plithogenic group (SPG,+) is a

group.

Example 3.7. (SPZ,+), (SPQ,+), (SPR,+) and (SPC,+) are abelian groups.

Theorem 3.8. Every symbolic Plithogenic group (SPG, .) has at least 2 nontrivial idem-

potent elements.

Proof. Since P1P1 = P1, P2P2 = P2 in SPG, the required result follows.

Theorem 3.9. Let (G, ∗) be a finite group of order n. Then (SPG, ∗) is a finite symbolic

Plithogenic group of order n3.

Example 3.10. Let Z2 be the group of integers modulo 2. Then

SPZ2 = {(0, 0, 0), (1, 0, 0), (0, P1, 0, ), (0, 0, P2), (0, P1, P2), (1, P1, 0), (1, 0, P2), (1, P1, P2)}

is a symbolic Plithogenic group of integers modulo 2. The elements (0, P1, 0, ), (0, 0, P2)

and (1, P1, P2) of SPZ2 are nontrivial idempotent elements.

Definition 3.11. Let ϕ : SPG → SPH be a mapping from the symbolic Plithogenic

group (SPG, ∗) to the symbolic Plithogenic group (SPH, ⋆). ϕ is called a symbolic

Plithogenic group homomorphism if the following conditions hold:
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(i) ϕ(x ∗ y) = ϕ(x) ⋆ ϕ(y), ∀x, y ∈ SPG,

(ii) ϕ(Pi) = Pi, i = 1, 2.

The kernel of ϕ denoted by Kerϕ is defined by

Kerϕ = {x ∈ SPG : ϕ(x) = identity element of SPH}.

Example 3.12. Let (G,+) be a group and let ϕ : SPG× SPG→ SPG be a mapping

defined by

ϕ(a, b) = a ∀(a, b) ∈ SPG× SPG.

Then ϕ is a symbolic Plithogenic group homomorphism.

If G = Z2, then

Kerϕ = {((0, 0, 0), (0, 0, 0)), ((0, 0, 0), (1, 0, 0)), ((0, 0, 0), (0, P1, 0, )), ((0, 0, 0), (0, 0, P2)),

((0, 0, 0), (0, P1, P2)), ((0, 0, 0), (1, P1, 0), ((0, 0, 0), (1, 0, P2)), ((0, 0, 0), (1, P1, P2))}

which is a subgroup of SPZ2 × SPZ2.

Example 3.13. Let G = Z, let SPG be the corresponding symbolic Plithogenic group

of integers and let G(I) be the neutrosophic group of integers. If ϕ : SPG → G(I) is a

mapping defined by

ϕ(x) = (a, (b+ c)I),∀x = (a, bP1, cP2) ∈ SPG,

then ϕ is a group homomorphism and Kerϕ = {(0, kP1,−kP2) : k ∈ Z} which is a

subgroup of SPG.

Definition 3.14. Let (R,+, .) be any ring. The triple (SPR,+, .) is called a symbolic

Plithogenic ring. If R is commutative with unity, so also is SPR.

Theorem 3.15. Let (R,+, .) be any ring. Then (SPR,+, .) is a ring.

Proof. Using Definition 3.1, it can easily be shown that (SPR,+) is an abelian group

and (SPR, .) is a semigroup. Also, for arbitrary x, y, z ∈ SPR, it can be shown that

x(y + z) = xy + xz and (y + z)x = yx+ zx. Hence, (SPR,+, .) is a ring.

Theorem 3.16. Every symbolic Plithogenic ring (SPR,+, .) has at least 2 nontrivial

idempotent elements.

Theorem 3.17. Let (R,+, .) be a finite ring of order n. Then (SPR,+, .) is a finite

symbolic Plithogenic ring of order n3.
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Example 3.18. Let Z2 be the ring of integers modulo 2. Then

SPZ2 = {(0, 0, 0), (1, 0, 0), (0, P1, 0, ), (0, 0, P2), (0, P1, P2), (1, P1, 0), (1, 0, P2), (1, P1, P2)}

is a symbolic Plithogenic ring of integers modulo 2.

Lemma 3.19. Let (SPR,+, .) be a symbolic Plithogenic ring and let x = (a, a1P1, a2P2)

and y = (b, b1P1, b2P2) be any two nonzero elements of SPR.

(a) x is idempotent if and only if all the following hold:

(i) a is idempotent,

(ii) a+ a2 is idempotent and

(iii) a+ a1 + a2 is idempotent.

(b) x and y are zero divisors if and only if all the following hold:

(i) a and b are zero divisors,

(ii) a+ a2 and b+ b2 are zero divisors and

(iii) a+ a1 + a2 and b+ b1 + b2 are zero divisors.

Example 3.20. Let SPZ6 be the symbolic Plithogenic ring of integers modulo 6. Then

(i) (1, 3P1, 3P2), (1, 5P1, 3P2), (3, 5P1, P2) and (4, P1, 5P2) are idempotent elements.

(ii) (2, P1, P2) and (3, 5P1, P2) are zero divisors.

Definition 3.21. Let ϕ : SPR → SPS be a mapping from the symbolic Plithogenic

ring (SPR,+, .) to the symbolic Plithogenic ring (SPS,+, .). ϕ is called a symbolic

Plithogenic ring homomorphism if the following conditions hold:

(i) ϕ(x+ y) = ϕ(x) + ϕ(y), ∀x, y ∈ SPR,

(ii) ϕ(xy) = ϕ(x)ϕ(y), ∀x, y ∈ SPR,

(iii) ϕ(Pi) = Pi, i = 1, 2.

The kernel of ϕ denoted by Kerϕ is defined by

Kerϕ = {x ∈ SPR : ϕ(x) = identity element of SPS}.

Example 3.22. Let (R,+, .) be a ring and let ϕ : SPR× SPR → SPR be a mapping

defined by

ϕ(a, b) = b ∀(a, b) ∈ SPR× SPR.

Then ϕ is a symbolic Plithogenic ring homomorphism.

If R = Z2, then

Kerϕ = {((0, 0, 0), (0, 0, 0)), ((1, 0, 0), (0, 0, 0)), ((0, P1, 0, ), (0, 0, 0)), ((0, 0, P2), (0, 0, 0)),

((0, P1, P2), (0, 0, 0)), ((1, P1, 0), (0, 0, 0)), ((1, 0, P2), (0, 0, 0)), ((1, P1, P2), (0, 0, 0))}

which is a subring of SPZ2 × SPZ2.
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Theorem 3.23. Let ψ : R → S be a ring homomorphism and let ϕ : SPR → SPS be

a mapping from a symbolic Plithogenic ring SPR into a symbolic Plithogenic ring SPS

defined by

ϕ(x) = (ψ(a), ψ(b)P1, ψ(c)P2), ∀ x = (a, bP1, cP2) ∈ SPR.

Then ϕ is a ring homomorphism.

Proof. Let x = (a, bP1, cP2) and y = (d, eP1, fP2) be two arbitrary elements in SPR.

Then

x+ y = (a+ d, (b+ e)P1, (c+ f)P2),

xy = (ad, (ae+ bd+ be+ bf + ce)P1, (af + cd+ cf)P2),

ϕ(x) = (ψ(a), ψ(b)P1, ψ(c)P2),

ϕ(y) = (ψ(d), ψ(e)P1, ψ(f)P2),

∴ ϕ(x+ y) = (ψ(a+ d), ψ(b+ e)P1, ψ(c+ f)P2),

= (ψ(a) + ψ(d), ψ(b)P1 + ψ(e)P1, ψ(c)P2 + ψ(f)P2)

= (ψ(a), ψ(b)P1, ψ(c)P2) + (ψ(d), ψ(e)P1, ψ(f)P2),

= ϕ(x) + ϕ(y),

ϕ(xy) = (ψ(ad), ψ(ae+ bd+ be+ bf + ce)P1, ψ(af + cd+ cf)P2),

= (ψ(a)ψ(d), (ψ(a)ψ(e) + ψ(b)ψ(d) + ψ(b)ψ(e) + ψ(b)ψ(f) + ψ(c)ψ(e))P1,

(ψ(a)ψ(f) + ψ(c)ψ(d) + ψ(c)ψ(f))P2),

= [(ψ(a), ψ(b)P1, ψ(c)P2)][(ψ(d), ψ(e)P1, ψ(f)P2)],

= ϕ(x)ϕ(y).

Accordingly, ϕ is a ring homomorphism.

Example 3.24. Let R = Z6, S = Z2 and let ψ : Z6 → Z2 be a ring homomorphism

defined by ψ(x̄6) = x̄2. Let ϕ : SPZ6 → SPZ2 be a symbolic Plithogenic ring homo-

morphism defined by

ϕ((a, bP1, cP2)) = (ψ(a), ψ(b)P1, ψ(c)P2),∀(a, bP1, cP2) ∈ SPZ6.

Then, Kerψ = {0, 2, 4} and Kerϕ = {(i, jP1, kP2) : i, j, k = 0, 2, 4}.
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4. Symbolic Plithogenic Algebraic Hyper Structure

Definition 4.1. Let H be a nonempty set and ∗ : H×H → P⋆(H) be a hyperoperation.

The couple (H, ∗) is called a hypergroupoid.

For any two nonempty subsets A and B of H and x ∈ H, we define

A ∗B =
⋃

a∈A,b∈B

a ∗ b,

A ∗ x = A ∗ {x} and

x ∗B = {x} ∗B.

A hypergroupoid (H, ∗) is called a semihypergroup if ∀ a, b, c ∈ H we have (a ∗ b) ∗ c =
a ∗ (b ∗ c), which means that ⋃

u∈a∗b

u ∗ c =
⋃

v∈b∗c

a ∗ v.

A hypergroupoid (H, ∗) is called a quasihypergroup if ∀a ∈ H we have a∗H = H∗a = H.

This condition is also called the reproduction axiom.

If a hypergroupoid (H, ∗) is both a semihypergroup and a quasihypergroup, then it

is called a hypergroup.

Example 4.2. (i) Let H be a nonempty set and let x ∗ y = H, ∀x, y ∈ H. Then

(H, ∗) is a hypergroup called a total hypergroup.

(ii) Let (H, .) be a group and let P be a nonempty subset of H. If x ∗ y = xPy,

∀ x, y ∈ H, then, (H, ∗) is a hypergroup called a P -hypergroup.

(iii) Let (H, .) be a group. If x ∗ y =< x, y >, ∀ x, y ∈ H, where < x, y > is the

subgroup generated by x and y, then (H, ∗) is a hypergroup.

Definition 4.3. Let (H, ∗) and (K, ◦) be two hypergroups. A mapping ϕ : H → K, is

called:

(i) an inclusion homomorphism if ϕ(x ∗ y) ⊆ ϕ(x) ◦ ϕ(y), ∀ x, y ∈ H;

(ii) a good homomorphism if ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y), ∀ x, y ∈ H.

Definition 4.4. Let H be a nonempty set and let + be a hyperoperation on H. The

couple (H,+) is called a canonical hypergroup if the following conditions hold:

(i) x+ y = y + x, ∀ x, y ∈ H,

(ii) x+ (y + z) = (x+ y) + z, ∀ x, y, z ∈ H,

(iii) there exists a neutral element 0 ∈ H such that x+ 0 = {x} = 0 + x, ∀ x ∈ H,

(iv) for every x ∈ H, there exists a unique element −x ∈ H such that 0 ∈ x+(−x)∩
(−x) + x,

(v) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y, ∀ x, y, z ∈ H.
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Example 4.5. Let H = {0, a, b, c} be a set and let + be a hyperoperation on H defined

in the Cayley table below.

+ 0 a b c

0 0 a b c

a a {0, b} {a, c} b

b b {a, c} {0, b} a

c c b a 0

Then (H,+) is a canonical hypergroup.

Definition 4.6. Let (H,+) and (K,+) be two canonical hypergroups. A mapping

ϕ : H → K is called:

(a) a homomorphism if:

(i) ϕ(x+ y) ⊆ ϕ(x) + ϕ(y), ∀ x, y ∈ H and

(ii) ϕ(0) = 0.

(b) a good or strong homomorphism if:

(i) ϕ(x+ y) = ϕ(x) + ϕ(y), ∀ x, y ∈ H and

(ii) ϕ(0) = 0.

The kernel of ϕ denoted by Kerϕ is the set {x ∈ H : ϕ(x) = 0}.

Definition 4.7. Let (H, ∗) be any hypergroup. The couple (SPH, ∗) is called a symbolic

Plithogenic hypergroup. If x = (a, a1P1, a2P2) and y = (b, b1P1, b2P2) are any two

elements of SPH, the composition of x and y in SPH denoted by x ∗ y is defined as

x ∗ y = {(c, c1P1, c2P2) : c ∈ a ∗ b, c1 ∈ (a ∗ b1 ∪ a1 ∗ b ∪ a1 ∗ b1 ∪ a1 ∗ b2 ∪ a2 ∗ b1)P1),

c2 ∈ (a ∗ b2 ∪ a2 ∗ b ∪ a2 ∗ b2)P2)} (16)

Example 4.8. (i) Let (H, ∗) be a total hypergroup. Then (SPH, ∗) is a symbolic

Plithogenic total hypergroup.

(ii) Let (H, ∗) be a P-hypergroup. Then (SPH, ∗) is a symbolic Plithogenic P-

hypergroup.

Theorem 4.9. Let (H, ∗) be a hypergroup and let (SPH, ∗) be the corresponding sym-

bolic Plithogenic hypergroup. Then:

(i) (SPH, ∗) is a semigroup.

(ii) (SPH, ∗) generally is not a hypergroup.

Proof. Let x = (a, a1P1, a2P2), y = (b, b1P1, b2P2) and z = (c, c1P1, c2P2) be arbitrary

elements of SPH.
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(i)

x ∗ y = (a, a1P1, a2P2) ∗ (b, b1P1, b2P2)

= (a ∗ b, (a ∗ b1 ∪ a1 ∗ b ∪ a1 ∗ b1 ∪ a1 ∗ b2 ∪ a2 ∗ b1)P1),

(a ∗ b2 ∪ a2 ∗ b ∪ a2 ∗ b2)P2)

⊂ SPH.

This shows that (SPH, ∗) is a groupoid. Next,

(x ∗ y) ∗ z = [(a, a1P1, a2P2) ∗ (b, b1P1, b2P2)] ∗ (c, c1P1, c2P2)

= [(a ∗ b, (a ∗ b1 ∪ a1 ∗ b ∪ a1 ∗ b1 ∪ a1 ∗ b2 ∪ a2 ∗ b1)P1),

(a ∗ b2 ∪ a2 ∗ b ∪ a2 ∗ b2)P2)] ∗ (c, c1P1, c2P2)

= (a ∗ b ∗ c, (a ∗ b ∗ c1 ∪ a ∗ b1 ∗ c ∪ a1 ∗ b ∗ c ∪ a1 ∗ b1 ∗ c ∪ a1 ∗ b2 ∗ c

∪a2 ∗ b1 ∗ c ∪ a ∗ b1 ∗ c1 ∪ a1 ∗ b ∗ c1 ∪ a1 ∗ b1 ∗ c1 ∪ a1 ∗ b2 ∗ c1 ∪ a2 ∗ b1 ∗ c1

∪a ∗ b1 ∗ c2 ∪ a1 ∗ b ∗ c2 ∪ a1 ∗ b1 ∗ c2 ∪ a1 ∗ b2 ∗ c2 ∪ a2 ∗ b1 ∗ c2 ∪ a ∗ b2 ∗ c1

∪a2 ∗ b ∗ c1 ∪ a2 ∗ b2 ∗ c1)P1, (a ∗ b ∗ c2 ∪ a ∗ b2 ∗ c ∪ a2 ∗ b ∗ c ∪ a2 ∗ b2 ∗ c

∪a ∗ b2 ∗ c2 ∪ a2 ∗ b ∗ c2 ∪ a2 ∗ b2 ∗ c2)P2)

x ∗ (y ∗ z) = (a ∗ b ∗ c, (a ∗ b ∗ c1 ∪ a ∗ b1 ∗ c ∪ a ∗ b1 ∗ c1 ∪ a ∗ b1 ∗ c2 ∪ a ∗ b2 ∗ c1 ∪ a1 ∗ b ∗ c

∪a1 ∗ b ∗ c1 ∪ a1 ∗ b1 ∗ c ∪ a1 ∗ b1 ∗ c1 ∪ a1 ∗ b1 ∗ c2 ∪ a1 ∗ b2 ∗ c1 ∪ a1 ∗ b ∗ c2

∪a1 ∗ b2 ∗ c ∪ a1 ∗ b2 ∗ c2 ∪ a2 ∗ b ∗ c1 ∪ a2 ∗ b1 ∗ c ∪ a2 ∗ b1 ∗ c1 ∪ a2 ∗ b1 ∗ c2

∪a2 ∗ b2 ∗ c1)P1, (a ∗ b ∗ c2 ∪ a ∗ b2 ∗ c ∪ a2 ∗ b ∗ c ∪ a2 ∗ b2 ∗ c ∪ a ∗ b2 ∗ c2

∪a2 ∗ b ∗ c2 ∪ a2 ∗ b2 ∗ c2)P2

= x ∗ (y ∗ z).

Accordingly, (SPH, ∗) is a semigroup.

(ii) For all x = (a, a1P1, a2P2) in SPH, it can be shown that x∗SPH ̸= SPH ̸= SPH∗x.
This shows that reproduction axiom failed to hold in SPH. Hence, (SPH, ∗) is not a
hypergroup.

Definition 4.10. Let (SPH, ∗) and (SPK, ◦) be any two symbolic Plithogenic hyper-

groups and let ϕ : SPH → SPK be a mapping from SPH into SPK.

(a) ϕ is called a symbolic Plithogenic hypergroup homomorphism if the following

conditions hold:

(i) ϕ(x ∗ y) ⊆ ϕ(x) ◦ ϕ(y), ∀x, y ∈ SPH.

(ii) ϕ(Pi) = Pi, for i = 1, 2.
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(b) ϕ is called a symbolic Plithogenic good hypergroup homomorphism if the follow-

ing conditions hold:

(i) ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y), ∀x, y ∈ SPH.

(ii) ϕ(Pi) = Pi, for i = 1, 2.

Theorem 4.11. Let ψ : (H, ∗) → (K, ◦) be a good hypergroup homomorphism from a

hypergroup (H, ∗) into a hypergroup (K, ◦) and let ϕ : SPH → SPK be a mapping from

a symbolic Plithogenic hypergroup SPH into a symbolic Plithogenic hypergroup SPK

defined by

ϕ(x) = (ψ(a), ψ(b)P1, ψ(c)P2), ∀ x = (a, bP1, cP2) ∈ SPH.

Then ϕ is a good hypergroup homomorphism.

Proof. Let x = (a, bP1, cP2) and y = (d, eP1, fP2) be two arbitrary elements in SPR.

Then

x ∗ y = (a ∗ d, (a ∗ e ∪ b ∗ d ∪ b ∗ e ∪ b ∗ f ∪ c ∗ e)P1, (a ∗ f ∪ c ∗ d ∪ c ∗ f)P2),

ϕ(x) = (ψ(a), ψ(b)P1, ψ(c)P2),

ϕ(y) = (ψ(d), ψ(e)P1, ψ(f)P2),

∴ ϕ(x ∗ y) = (ψ(a ∗ d), ψ((a ∗ e ∪ b ∗ d ∪ b ∗ e ∪ b ∗ f ∪ c ∗ e)P1, ψ(a ∗ f ∪ c ∗ d ∪ c ∗ f)P2)),

= (ψ(a) ◦ ψ(d), (ψ(a) ◦ ψ(e) ∪ ψ(b) ◦ ψ(d) ∪ ψ(b) ◦ ψ(e) ∪ ψ(b) ◦ ψ(f) ∪ ψ(c) ◦ ψ(e))P1,

(ψ(a) ◦ ψ(f) ∪ ψ(c) ◦ ψ(d) ∪ ψ(c) ◦ ψ(f))P2),

= [(ψ(a), ψ(b)P1, ψ(c)P2)] ◦ [(ψ(d), ψ(e)P1, ψ(f)P2)],

= ϕ(x) ◦ ϕ(y).

Accordingly, ϕ is a good hypergroup homomorphism.

Definition 4.12. Let (C,+) be any canonical hypergroup. The couple (SPC,+) is

called a symbolic Plithogenic canonical hypergroup. If x = (a, a1P1, a2P2) and y =

(b, b1P1, b2P2) are any two elements of SPC, the composition of x and y in SPC denoted

by x+ y is defined as

x+ y = {(c, c1P1, c2P2) : c ∈ a+ b, c1 ∈ a1 + b1, c2 ∈ a2 + b2}. (17)

Theorem 4.13. Let (SPC,+) be a symbolic Plithogenic canonical hypergroup. Then

(SPC,+) is a canonical hypergroup.
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Proof. Let x = (a, a1P1, a2P2), y = (b, b1P1, b2P2) and z = (c, c1P1, c2P2) be arbitrary

elements of SPC. Then

x+ y = (a, a1P1, a2P2) + (b, b1P1, b2P2)

= {(u, u1P1, u2P2) : u ∈ a+ b, u1 ∈ a1 + b1, u2 ∈ a2 + b2}

= {(u, u1P1, u2P2) : u ∈ b+ a, u1 ∈ b1 + a1, u2 ∈ b2 + a2}

= y + x.

Next,

(x+ y) + z = ((a, a1P1, a2P2) + (b, b1P1, b2P2)) + (c, c1P1, c2P2)

= {(u, u1P1, u2P2) : u ∈ a+ b, u1 ∈ a1 + b1, u2 ∈ a2 + b2}+ (c, c1P1, c2P2)

= {(u, u1P1, u2P2) : u ∈ a+ b+ c, u1 ∈ a1 + b1 + c1, u2 ∈ a2 + b2 + c2}

= {(u, u1P1, u2P2) : u ∈ a+ (b+ c), u1 ∈ a1 + (b1 + c1), u2 ∈ a2 + (b2 + c2)}

= (a, a1P1, a2P2) + ((b, b1P1, b2P2) + (c, c1P1, c2P2))

= x+ (y + z).

Since SPC is a symbolic Plithogenic canonical hypergroup, it follows that (0, 0P1, 0P2) =

(0, 0, 0) ∈ SPC so that

x+ (0, 0, 0) = (a, a1P1, a2P2) + (0, 0, 0)

= {(u, u1P1, u2P2) : u ∈ a+ 0, u1 ∈ a1 + 0, u2 ∈ a2 + 0}

= {(u, u1P1, u2P2) : u ∈ {a}, u1 ∈ {a1}, u2 ∈ {a2}}

= {(a, a1P1, a2P2)}

= {x} and similarly,

(0, 0, 0) + x = {x}.

Also,

x+ (−x) ∩ (−x) + x = [(a, a1P1, a2P2) + (−a,−a1P1,−a2P2)] ∩ [(−a,−a1P1,−a2P2)

+(a, a1P1, a2P2)]

= {(u, u1P1, u2P2) : u ∈ a+ (−a), u1 ∈ a1 + (−a1), u2 ∈ a2 + (−a2)}

∩{(v, v1P1, v2P2) : v ∈ (−a) + a, v1 ∈ (−a1) + (a1), v2 ∈ (−a2) + (a2)}

= {(u, u1P1, u2P2) : u ∈ {0}, u1 ∈ {0}, u2 ∈ {0}}

∩{(v, v1P1, v2P2) : v ∈ {0}, v1 ∈ {0}, v2 ∈ {0}}

∴ (0, 0, 0) ∈ x+ (−x) ∩ (−x) + x
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which shows that −x is the unique inverse of x , ∀ x ∈ SPC.

Lastly, suppose that z ∈ x+ y, then

(c, c1P1, c2P2) ∈ (a, a1P1, a2P2) + (b, b1P1, b2P2)

= {(u, u1P1, u2P2) : u ∈ a+ b, u1 ∈ a1 + b1, u2 ∈ a2 + b2}

= {(u, u1P1, u2P2) : b ∈ −a+ u, b1 ∈ −a1 + u1, b2 ∈ −a2 + u2}

= {(b, b1P1, b2P2) : b ∈ −a+ u, b1 ∈ −a1 + u1, b2 ∈ −a2 + u2}

∴ (b, b1P1, b2P2) ∈ −(a, a1P1, a2P2) + (c, c1P1, c2P2)

that is y ∈ −x+ z and similarly,

z ∈ x+ y ⇒ x ∈ z − y.

Accordingly, (SPC,+) is a canonical hypergroup.

Example 4.14. Let ψ, ψ1, ψ2 : C1 → C2 be good canonical hypergroup homomorphisms

and let SPC1 and SPC2 be two symbolic Plithogenic canonical hypergroups. If ϕ :

SPC1 → SPC2 is a mapping defined by

ϕ(x) = (ψ(a), ψ1(a1)P1, ψ2(a2)P2), ∀ x = (a, a1P1, a2P2) ∈ SPC1,

then ϕ is a good canonical hypergroup homomorphism and

Kerϕ = {(a, a1P1, a2P2) ∈ SPC1 : ϕ((a, a1P1, a2P2)) = (0, 0P1, 0P2)}

= {(a, a1P1, a2P2) ∈ SPC1 : (ψ(a), ψ1(a1)P1, ψ2(a2)P2) = (0, 0P1, 0P2)}

= {(a, a1P1, a2P2) ∈ SPC1 : ψ(a) = 0, ψ1(a1) = 0, ψ2(a2) = 0}

= {(a, a1P1, a2P2) ∈ SPC1 : a ∈ Ker(ψ), a1 ∈ Ker(ψ1), a2 ∈ Ker(ψ2)}

= {(Kerψ,Kerψ1P1,Kerψ2P2)}.

5. Conclusion

We have in this paper studied symbolic Plithogenic algebraic structures and hyper

structures. In particular, we studied symbolic Plithogenic group, symbolic Plithogenic

ring, symbolic Plithogenic hypergroup and symbolic Plithogenic canonical hypergroup,

and we presented their basic properties.
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Abstract. In this manuscript, We introduce some fixed point results for some contractive type mappings on

complete ordered triangular neutrosophic metric spaces, and review many existing results in the literature.

Furthermore, we use our results to obtain the property (P).
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—————————————————————————————————————————-

1. Introduction and Preliminaries

Zadeh [1] defined the concept of fuzzy set in 1965. After that, many authors have introduced

and discussed several notions of generalizations of this fundamental concept. In the year 1968

Chang [3] initiated and study fuzzy topological spaces. In particular, the concept of intu-

itionistic fuzzy sets (IFSs for short) was first investigated by Atanassov [4]. This concept was

extended and modified to intuitionistic L-fuzzy setting by Stoeva and Atanassov [5], which cur-

rently known by ”intuitionistic L-topological spaces”. Using the cocept of intuitionistic fuzzy

sets, the concept of intuitionistic fuzzy topological space was introduced by Coker [6, 15, 16].

In diverse latest papers, F. Smarandache modified the concepts of intuitionistic fuzzy sets

and different styles of sets to obtained neutrosophic sets (NSs for short) [7]. F. Smarandache

and A. Al Shumrani obtained the concept of neutrosophic topology on the non-general and

standard interval [8, 9]. Several authors was extended this principle with many applications

(see [10, 19–23]). Recently, Alomari and Smarandache [11, 12] introduce and discussed the

concepts of continuity in neutrosophic topology, neutrosophic closed and open sets in neu-

trosophic topological space, they also defined the notion of neutrosophic connectedness and
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neutrosophic mapping.

W. Al-Omeri et al, [13] introduce the concept of neutrosophic metric space. That is a gen-

eralization of intuitionistic fuzzy metric space due to Veeramani and George [17]. Zhang and

Huang [18] focused on this new notion of cone metric space and they discussed some fixed point

theorems for contractive type mappings. In 2019 wadei Al-Omeri et al. [13] introduced a new

concept known by ”neutrosophic cone metric space” which is generalized the corresponding

concept of intuitionistic fuzzy metric space.

In intuitionistic fuzzy metric space, Bag et al [2] extended the concept of (∅,Ψ)-weak con-

traction, then by using the altering distance function he proved some fixed point theorems.

Metric fixed point and cone metric space results are played a remarkable role in the study of

(Φ,Ψ)-weak contraction to neutrosophic cone metric space

The purpose of this paper is to introduce a new results about the property (P). In addition,

some fixed point consequences with the aid of combine all the principles of these papers for a

few contractive type mappings for such mappings in entire metric spaces on complete ordered

triangular neutrosophic metric spaces.

2. Historical Background

In this part, we have studied some basic notions such as continuous t-norm, induced topology

and neutrosophic cone metric space (NCMS, shortly) the which is defined as τ(Σ,Ξ). A

sequence {um} in an neutrosophic cone metric space (Σ,Ξ,Θ,
⊗
, �) is said to be Cauchy when

every z > 0 and ε > 0, there exists a natural number m0 such that M(um, un, z) > 1− ε and

N(um, un, z) < ε for all m,n ≥ m0. Also, (Σ,Ξ,Θ,
⊗
, �) is said to be complete NCMS when

each Cauchy sequence in NCMS is convergent with respect τ(Σ,Ξ).

Definition 2.1. [13] For any neutrosophic metric space (Σ,Ξ,Θ,
⊗
, �), the sequence {xn} is

said to be neutrosophic cone contractive sequence if there exists q ∈ (0, 1) such that

1

Ξ(ε1n+1, ε1n+2,m)
− 1 ≤ q( 1

Ξ(ε1, ε1n+1,m)
− 1)

,

Θ(ε1n+1, ε1n+2,m) ≤ qΘ(ε1, ε1n+1,m) for every n ∈ Θ.

.

Definition 2.2. [13] Let (Σ,Ξ,Θ,
⊗
, �) be a neutrosophic CMS and an identity mapping

k : Σ → Σ. Then k is said to be neutrosophic cone contractive if there exists 0 < q < 1 such

that
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1

Ξ(k(ε1), k(ε2),m)
− 1 ≤ q( 1

Ξ(ε1, ε2,m)
− 1)

Θ(k(ε1), k(ε2),m) ≤ qΘ(ε1, ε2,m)

for each ε1, ε2 ∈ Σ and m� 0Θ. The constant q is said to be contractive constant of k.

Definition 2.3. [14] For any neutrosophic CMS (Σ,Ξ,Θ,
⊗
, �) and the mappings H, T :

Σ → Σ. Then the mapping H is called neutrosophic (Φ,Ψ)-weak contraction with respect to

T if there exists an alternating distance function Φ and a function Ψ : [0,∞) −→ [0,∞) with

Ψ(s) > 0 for Ψ(s) = 0 and s > 0 such that

Φ(
1

Ξ(H(ε1),H(ε2),H(ε3),m)
− 1Θ) ≤ Ψ(

1

Ξ(T (ε1), T (ε2), T (ε3),m)
− 1Θ). (2.1)

hold for all ε1, ε2, ε3 ∈ Ξ and every m � Θ. If T is the identity map, then H is called

neutrosophic (Φ,Ψ)-weak contraction mapping.

Example 2.4. Let Σ = [0,∞) and d(r, s) = |r − s|. Define the self-map Γ on Σ and β :

Σ × Σ −→ [0,∞), respectively by the formulas Γr =
√
r, and β(r, s) = exp(r − s), whenever

r ≥ s and β(r, s) = 0 whenever r < s for all r, s ∈ Σ. Then Γ is β-admissible

Definition 2.5. [13] Let (Σ,Ξ,Θ,
⊗
, �) be a neutrosophic cone metric space. The cone metric

(Σ,Ξ) is said to be triangular when

1

Ξ(u, v, n)
− 1 ≤ 1

Ξ(u,w, n)
− 1 +

1

Ξ(w, v, n)
− 1

,

Θ(u, v, n) ≤ Θ(u,w, n) + Θ(w, v, n) for all u, v, n ∈ Σ and n > 0

A self-map H : Σ → Σ is said to be orbitally continuous at ε1 when for every sequence

{x(i)}i≥1 with Hx(i)ε1 → b for few b ∈ Σ, we have Hx(i)+1 → Hb. By [14], here Hm+1 =

H(Hm). Finally, we define the orbit of H at ε1 by O(ε1,∞) := {ε1,Hε1,H2ε1, ...,Hnε1, ..}.
We say that H has the strongly similar property whilst (Hn−1y,Hny) ∈ Σ� for each n ≥ 1

and m ≥ 2, where y ∈ F (Hm).

3. Existence result

In this part, we have studied some special mappings of discontinuity.
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Theorem 3.1. Let (Σ,Ξ,Θ,
⊗
, �) be a complete ordered triangular NMS, δ ∈ (0, 1) and H a

self-map on Σ satisfying

min

{
[1− Ξ(Hu,Hv, t)]2

Ξ2(Hu,Hv, t)
,
[1− Ξ(u, v, t)][1− Ξ(Hu,Hv, t)]

Ξ(u, v, t)Ξ(Hu,Hv, t)
,
[1− Ξ(v,Hv, t)]2

Ξ2(v,Hv, t)

}
−min

{
[1− Ξ(u,Hu, t)]2

Ξ2(u,Hu, t)
,
[1− Ξ(v,Hv, t)][1− Ξ(u,Hv, t)]

Ξ(v,Hv, t)Ξ(u,Hv, t)
,
[1− Ξ(v,Hu, t)]2

Ξ2(v,Hu, t)

}
≤ δ [1− Ξ(u,Hu, t)][1− Ξ(v,Hv, t)]

Ξ(u,Hu, t)Ξ(v,Hv, t)
.

Thus, for all u, v ∈ Σ�.if T has the strongly comparable property, then T has the property

(P). Moreover,If there exists u0 ∈ Σ such that (Hm−1u0,Hmu0) ∈ Σ� for all m ≥ 1 and H is

orbitally continuous at u0, then T has a fixed point.

Proof. To prove that H has the property (P). Let n ≥ 2 be given and u ∈ T (Hn). Since H
has the strongly comparable property, we can put x = Hm−1u and u = Hmu in the condition.

Then we have

min

{
[1− Ξ(Hmu,Hm+1u, t)]2

Ξ2(Hmu,Hm+1u, t)
,
[1− Ξ(Hm−1u,Hmu, t)][1− Ξ(Hmu,Hm+1u, t)]

Ξ(Hm−1u,Hmu, t)Ξ(Hmu,Hm+1u, t)

}
≤ δ [1− Ξ(Hm−1u,Hmu, t)][1− Ξ(Hmu,Hm+1u, t)]

Ξ(Hm−1u,Hmu, t)Ξ(Hmu,Hm+1u, t)
.

Therefore,

min

{
[1− Ξ(u,Hu, t)]2

Ξ2(u,Hu, t)
,
[1− Ξ(Hm−1u, u, t)][1− Ξ(u,Hu, t)]

Ξ(Hm−1u, u, t)Ξ(u,Hu, t)

}
,

≤ δ [1− Ξ(Hm−1u, u, t)][1− Ξ(u,Hu, t)]
Ξ(Hm−1u, u, t)Ξ(u,Hu, t)

.

and so we get two cases.

Case I.
[1− Ξ(u,Hu, t)]2

Ξ2(u,Hu, t)
≤ δ [1− Ξ(Hn−1u, u, t)][1− Ξ(u,Hu, t)]

Ξ(Hn−1u, u, t)Ξ(u,Hu, t)
.

We claim that 1
Ξ(u,Hu,t) −1 = 0. If 1

Ξ(u,Hu,t) −1 > 0. Then 1
Ξ(u,Hu,t) −1 = 1

Ξ(Hmu,Hm+1u,t)
−1 ≤

δ 1
Ξ(Hm−1u,Hmu,t)

− 1.

Again, by putting x = Hm−2u and y = Hm−1u in condition, we obtain

min

{
[1− Ξ(Hm−1u,Hmu, t)]2

Ξ2(Hm−1u,Hmu, t)
,
[1− Ξ(Hm−2u,Hm−1u, t)][1− Ξ(Hm−1u,Hmu, t)]

Ξ(Hm−2u,Hm−1u, t)Ξ(Hm−1u,Hmu, t)

}
≤ δ [1− Ξ(Hm−2u,Hm−1u, t)][1− Ξ(Hm−1u,Hmu, t)]

Ξ(Hm−2u,Hm−1u, t)Ξ(Hm−1u,Hmu, t)
.

Again, we get two cases. Let

min

{
[1− Ξ(Hm−1u,Hmu, t)]2

Ξ2(Hm−1u,Hmu, t)
≤ δ [1− Ξ(Hm−2u,Hm−1u, t)][1− Ξ(Hm−1u,Hmu, t)]

Ξ(Hm−2u,Hm−1u, t)Ξ(Hm−1u,Hmu, t)

}
.

If 1
Ξ(Hm−1u,Hmu,t)

− 1 = 0, then Hm−1u = u and so u = Hmu = Hu. If 1
Ξ(Hm−1u,Hmu,t)

− 1 > 0,
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then 1
Ξ(Hm−1u,Hmu,t)

− 1 ≤ δ
[

1
Ξ(Hm−2u,Hm−1u,t)

− 1
]
. Now, let

[1− Ξ(Hm−2u,Hm−1u, t)][1− Ξ(Hm−1u,Hmu, t)]
Ξ(Hm−2u,Hm−1u, t)Ξ(Hm−1u,Hmu, t)

≤ δ [1− Ξ(Hm−2u,Hm−1u, t)][1− Ξ(Hm−1u,Hmu, t)]
Ξ(Hm−2u,Hm−1u, t)Ξ(Hm−1u,Hmu, t)

.

In this case we should have 1
Ξ(Hm−2u,Hm−1u,t)

− 1 = 0 or 1
Ξ(Hm−1u,Hmu,t)

− 1 = 0 (and so

u = Hu), because if 1
Ξ(Hm−2u,Hm−1u,t)

− 1 > 0 and 1
Ξ(Hm−1u,Hmu,t)

− 1 > 0, then we get δ ≥ 1

which is a contradiction. By continuing this process, we have

1

Ξ(u,Hu, t)
− 1 =

1

Ξ(Hmu,Hm+1u, t)
− 1 ≤ δ

[
1

Ξ(Hm−1u,Hmu, t)
− 1

]
≤ δ2

[
1

Ξ(Hm−2u,Hm−1u, t)
− 1

]
≤ ... ≤ δm

[
1

Ξ(u,Hu, t)
− 1

]
which leads us to δ ≥ 1 which is a contradiction. Thus, in this case we obtain 1

Ξ(u,Hu,t) − 1

and so Hu = u

Case II.
[1− Ξ(Hm−1u, u, t)][1− Ξ(u,Hu, t)]

Ξ(Hm−1u, u, t)Ξ(u,Hu, t)
≤ δ [1− Ξ(Hm−1u, u, t)][1− Ξ(u,Hu, t)]

Ξ(Hm−1u, u, t)Ξ(u,Hu, t)
.

In this case, we should have 1
Ξ(Hm−1u,Hu,t) −1 = 0 or 1

Ξ(u,Hu,t) −1 = 0 (and so u = Hu) In fact,

if 1
Ξ(Hm−1u,Hu,t) − 1 > 0 and 1

Ξ(u,Hu,t) − 1 > 0, then δ ≥ 1 which is a contradiction. Therefore,

we consequence that T (Hm) ⊆ T (H). Therefore, H has the property

Now, define un+1 = Hun = Hn+1u0 for all n ≥ 0. If un0 = un0−1 for some natural number

n0, then un = un0 for all n ≥ n0 and un0 is a fixed point of H. Suppose that un 6= un−1 for all

n ≥ 1. Now for each n ≥ 1, by using the hypotheses, we can put u = un−1 and y = un in the

condition. Therefore we obtain

min

{
[1− Ξ(um, um+1, t)]

2

Ξ2(um, um+1, t)
,
[1− Ξ(um−1, um, t)][1− Ξ(um, um+1, t)]

Ξ(um−1, um, t)Ξ(um, um+1, t)

}
≤ δ [1− Ξ(um−1, um, t)][1− Ξ(um, um+1, t)]

Ξ(um−1, um, t)Ξ(um, um+1, t)
.

Since δ ≤ 1

min

{
[1− Ξ(um, um+1, t)]

2

Ξ2(um, um+1, t)
,
[1− Ξ(um−1, um, t)][1− Ξ(um, um+1, t)]

Ξ(um−1, um, t)Ξ(um, um+1, t)

}
=

[1− Ξ(um, um+1, t)]
2

Ξ2(um, um+1, t)
.

Hence

1

Ξ2(um, um+1, t)
− 1 ≤ δ

(
1

Ξ2(um−1, um, t)
− 1

)
.

By continuing this process we obtain

1

Ξ2(um, um+1, t)
− 1 ≤ δm

(
1

Ξ2(u0, u1, t)
− 1

)
,
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for all m ≥ 1. Thus for each natural number k we have

1

Ξ2(um, um+k, t)
− 1 ≤

m+k−1∑
i=m

(
1

Ξ2(ui, ui+1, t)
− 1

)
≤

m+k−1∑
i=m

δi
(

1

Ξ2(u0, u1, t)
− 1

)
≤ δm

1− δ

(
1

Ξ2(u0, u1, t)
− 1

)
.

Then, {um} is a Cauchy sequence. If (Σ,Ξ,Θ,
⊗
, �) is a complete NMS, then there exists

v ∈ Σ such that um → v. Since H is orbitally continuous, um+1 = Hum → Hv. This implies

that Hv = v.

Theorem 3.2. Let (Σ,Ξ,Θ,
⊗
, �) be a complete ordered triangular neutrosophic metric space,

c ∈ [0, 1), b ≥ 0, n a nonnegative integer and H a selfmap on Σ satisfy the condition

[1− Ξ(Hn+1u,Hn+2v, t)]2

Ξ2(Hn+1u,Hn+2v, t)
≤ c [1− Ξ(Hnu,Hn+1u, t)][1− Ξ(Hn+1v,Hn+2v, t)]

Ξ(Hnu,Hn+1u, t)Ξ(Hn+1v,Hn+2v, t)

+ b
[1− Ξ(Hnu,Hn+2v, t)][1− Ξ(Hn+1v,Hn+1u, t)]

Ξ(Hnu,Hn+2v, t)Ξ(Hn+1v,Hn+1u, t)
.

for all u, v ∈ Σ�. Suppose that there exists u0 ∈ Σ such that (Hm−1x0,Hmu0) ∈ Σ� for all

m ≥ 1. If H is orbitally continuous at u0 or n = 0, then H has a fixed point. Moreover, H
has a unique fixed point whenever b < 1. If H has the strongly comparable property, then H
has the property (P).

Proof. Define u1 = Hn+1u0 and um+1 = Hxm for all m ≥ 1. Then

[1− Ξ(u1, u2, t)]
2

Ξ2(u1, u2, t)
=

[1− Ξ(Hn+1u0,Hn+2u0, t)]
2

Ξ2(Hn+1u0,Hn+2u0, t)

≤ c [1− Ξ(Hnu0,Hn+1u0, t)][1− Ξ(Hn+1u0,Hn+2u0, t)]

Ξ(Hnu0,Hn+1u0, t)Ξ(Hn+1u0,Hn+2u0, t)

+ b
[1− Ξ(Hnu0,Hn+2u0, t)][1− Ξ(Hn+1u0,Hn+1u0, t)]

Ξ(Hnu0,Hn+2u0, t)Ξ(Hn+1u0,Hn+1u0, t)
.

= c
[1− Ξ(Hnu0,Hn+1u0, t)][1− Ξ(Hn+1u0,Hn+2u0, t)]

Ξ(Hnu0,Hn+1u0, t)Ξ(Hn+1u0,Hn+2u0, t)

= c
[1− Ξ(Hnu0,Hn+1u0, t)][1− Ξ(u1, u2, t)]

Ξ(Hnu0,Hn+1u0, t)Ξ(u1, u2, t)
.
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If 1
Ξ(u1,u2,t)

− 1 = 0, then Hu1 = u2 = u1 and so H has a fixed point. If 1
Ξ(u1,u2,t)

− 1 > 0, then

1
Ξ(u1,u2,t)

− 1 ≤ c 1
Ξ(Hnu0,u1,t)

− 1. Similarly, we have.

[1− Ξ(u2, u3, t)]
2

Ξ2(u2, u3, t)
=

[1− Ξ(Hn+2u0,Hn+3u0, t)]
2

Ξ2(Hn+2u0,Hn+3u0, t)

≤ c [1− Ξ(Hn+1u0,Hn+2u0, t)][1− Ξ(Hn+2u0,Hn+3u0, t)]

Ξ(Hn+1u0,Hn+2u0, t)Ξ(Hn+2u0,Hn+3u0, t)

+ b
[1− Ξ(Hn+1u0,Hn+3u0, t)][1− Ξ(Hn+2u0,Hn+2u0, t)]

Ξ(Hn+1u0,Hn+3u0, t)Ξ(Hn+2u0,Hn+2u0, t)
.

= c
[1− Ξ(Hn+1u0,Hn+2u0, t)][1− Ξ(Hn+2u0,Hn+3u0, t)]

Ξ(Hn+1u0,Hn+2u0, t)Ξ(Hn+2u0,Hn+3u0, t)

= c
[1− Ξ(u1, u2, t)][1− Ξ(u2, u3, t)]

Ξ(u1, u2, t)Ξ(u2, u3, t)
.

If 1
Ξ(u1,u2,t)

− 1 = 0, then Hu2 = u3 = u2 and so H has a fixed point. If 1
Ξ(u2,u3,t)

− 1 > 0,

then 1
Ξ(u2,u3,t)

− 1 ≤ c
[

1
Ξ(u1,u2,t)

− 1
]

and so 1
Ξ(u2,u3,t)

− 1 ≤ c2
[

1
Ξ(Hnu0,u1,t)

− 1
]
. By continuing

this process we get that 1
Ξ(un,un+1,t)

− 1 ≤ cn
[

1
Ξ(Hnu0,u1,t)

− 1
]

for all m ≥ 1. This implies that

{um} is a Cauchy sequence. Since (Σ,Ξ,Θ,
⊗
, �) is a complete neutrosophic metric space,

there exists x ∈ Σ such that um → x. If H is orbitally continuous, then Hum → Hx. Hence,

Hx = x.

If n = 0, then for each m ≥ 2 we have

[1− Ξ(Hx,Hmu0, t)]
2

Ξ2(Hx,Hmu0, t)
≤ c [1− Ξ(x,Hx, t)][1− Ξ(Hum−2,H2um−2, t)]

Ξ(x,Hx, t)Ξ(Hum−2,H2um−2, t)

+ b
[1− Ξ(x,H2um−2, t)][1− Ξ(Hum−2,Hx, t)]

Ξ(x,H2um−2, t)Ξ(Hum−2,Hx, t)
.

Since um → x, we have

1

Ξ(Hx, x, t)
− 1 ≤ b [1− Ξ(x, x, t)][1− Ξ(x,Hx, t)]

Ξ(x, x, t)Ξ(x,Hx, t)
= 0

and so Hx = x. Now, we show that H has a unique fixed point whenever b < 1. Let x and y

be fixed points of H. Then, we have(
1

Ξ(x, y, t)
− 1

)2

=

(
1

Ξ(Hn+1x,Hn+2y, t)
− 1

)2

≤c [1− Ξ(Hnx,Hn+1x, t)][1− Ξ(Hn+1y,Hn+2y, t)]

Ξ(Hnx,Hn+1x, t)Ξ(Hn+1y,Hn+2y, t)

+b
[1− Ξ(Hnx,Hn+2y, t)][1− Ξ(Hn+1y,Hn+1x, t)]

Ξ(Hnx,Hn+2y, t)Ξ(Hn+1y,Hn+1x, t)
= b

(
1

Ξ(x, y, t)
− 1

)2

.

Hence, 1
Ξ(x,y,t) − 1= 0 because b < 1. Thus, x = y and so H has a unique fixed point. Finally,

we prove that H has the property (P) whenever H has the strongly comparable property. Let

m2 be given and y ∈ T (Hm). We consider the following cases. Case I. n = 0. In this case,
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we have (
1

Ξ(y,Hy, t)
− 1

)2

=

(
1

Ξ(H(Hm−1y),H2(Hm−1y), t)
− 1

)2

≤c [1− Ξ(Hm−1y,Hmy, t)][1− Ξ(Hmy,Hm+1y, t)]

Ξ(Hm−1y,Hmy, t)Ξ(Hmy,Hm+1y, t)

+b
[1− Ξ(Hm−1y,Hm+1y, t)][1− Ξ(Hmy,Hmy, t)]

Ξ(Hm−1y,Hm+1y, t)Ξ(Hmy,Hmy, t)

=c
[1− Ξ(Hm−1y, y, t)][1− Ξ(y,Hy, t)]

Ξ(Hm−1y, y, t)Ξ(y,Hy, t)
.

If 1
Ξ(y,Hy,t)−1 = 0 thenHy = y. If 1

Ξ(x,y,t)−1 > 0, then 1
Ξ(Hmy,Hm+1y,t)

−1 ≤ c
(

1
Ξ(Hm+1y,Hmy,t)

−

1

)
. By using a similar argument as in Theorem 3.1 and continuing the process, we obtain

1

Ξ(y,Hy, t)
− 1 =

1

Ξ(Hmy,Hm+1y, t)
− 1 ≤ c

[
1

Ξ(Hm−1y,Hmy, t)
− 1

]
≤ c2

[
1

Ξ(Hm−2y,Hm−1y, t)
− 1

]
≤ ... ≤ cm

[
1

Ξ(y,Hy, t)
− 1

]
.

Since c < 1, Hy = y.

Case II. n ≥ 1 and m ≤ n. In this case, choose a natural number µ and an integer number

0 ≤ ν < m such that n+ 1 = µm+ ν. Then, we have Hm(Hm−νy) = Hn+1(Hn−νy) = y, and

so(
1

Ξ(y,Hy, t)
− 1

)2

=

(
1

Ξ(Hn+1(Hm−νy),Hn+2(Hm−νy), t)
− 1

)2

≤c [1− Ξ(Hn(Hm−νy),Hn+1(Hm−νy), t)][1− Ξ(Hn+1(Hm−νy),Hn+2(Hm−νy), t)]

Ξ(Hn(Hm−νy),Hn+1(Hm−νy), t)Ξ(Hn+1(Hm−νy),Hn+2(Hm−νy), t)

+b
[1− Ξ(Hn(Hm−νy),Hn+2(Hm−νy), t)][1− Ξ(Hn+1(Hm−νy),Hn+1(Hm−νy), t)]

Ξ(Hn(Hm−νy),Hn+2(Hm−νy), t)Ξ(Hn+1(Hm−νy),Hn+1(Hm−νy), t)

=c
[1− Ξ(Hm−1y, y, t)][1− Ξ(y,Hy, t)]

Ξ(Hm−1y, y, t)Ξ(y,Hy, t)
.

If 1
Ξ(y,Hy,t) − 1 = 0 then Hy = y. If 1

Ξ(x,Hy,t) − 1 > 0, then 1
Ξ(Hmy,Hm+1y,t)

− 1 ≤

c

(
1

Ξ(Hm−1y,Hmy,t)
− 1

)
. By using a similar argument as in Theorem 3.1, we obtain

1

Ξ(y,Hy, t)
− 1 =

1

Ξ(Hmy,Hm+1y, t)
− 1 ≤ c

[
1

Ξ(Hm−1y,Hmy, t)
− 1

]
≤ c2

[
1

Ξ(Hm−2y,Hm−1y, t)
− 1

]
≤ ... ≤ cm

[
1

Ξ(y,Hy, t)
− 1

]
.

Since c < 1, Hy = y. Thus, T (Hm) ⊆ T (H). Therefore, H has the property (P).
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Definition 3.3. Let (Σ,Ξ,Θ,
⊗
, �) be a neutrosophic metric space and H a selfmap on Σ.

Then, H is said to be a convex contraction of order 2 if there exist r, s ∈ (01) and t > 0 with

r + s < 1 such that

1

Ξ(H2u,H2v, t)
− 1 ≤ r

[
1

Ξ(Hu,Hv, t)
− 1

]
+ s

[
1

Ξ(u, v, t)
− 1

]
for all u, v ∈ Σ. Also, H is said to be a convex contraction of order 2 if there exist r1, r2, s1, s2 ∈
(0, 1) with r1 + r2 + s1 + s2 < 1 such that

1

Ξ(H2u,H2v, t)
− 1 ≤ r1

[
1

Ξ(u,Hu, t)
− 1

]
+ r2

[
1

Ξ(Hu,H2u, t)
− 1

]
+ s1

[
1

Ξ(v,Hv, t)
− 1

]
+ s2

[
1

Ξ(Hv,H2v, t)
− 1

]
∀u, v ∈ Σ

Theorem 3.4. Let (Σ,Ξ,Θ,
⊗
, �) be a complete order triangular NMS, r, s ∈ (0, 1) with

r + s < 1 and H an orbitally continuous selfmap on Σ satisfy the condition

1

Ξ(H2u,H2v, t)
− 1 ≤ r

[
1

Ξ(Hu,Hv, t)
− 1

]
+ s

[
1

Ξ(u, v, t)
− 1

]
for all u, v ∈ Σ�, then H has a unique fixed point. Also, T (H) = T (H2).

Proof. Define um = Hmu0 for all m ≥ 1, y = 1
Ξ(Hu0,H2u0,t)

− 1 + 1
Ξ(u0,Hu0,t) − 1 , and δ = r+ s.

Thus 1
Ξ(H2u0,Hu0,t) − 1 ≤ y. Now, by using the assumption, we can put u = Hu0 and v = u0

in the condition. Thus, we obtain

1

Ξ(H3u0,H2u0, t)
− 1 ≤ r

[
1

Ξ(H2u0,Hu0, t)
− 1

]
+ s

[
1

Ξ(u0,Hu0, t)
− 1

]
≤ δy

Now, by putting u = H2u0 and v = Hu0 in the condition, we get

1

Ξ(H4u0,H3u0, t)
− 1 ≤ r

[
1

Ξ(H3u0,H2u0, t)
− 1

]
+ s

[
1

Ξ(H2u0, u0, t)
− 1

]
≤ r2

[
1

Ξ(H2u0,Hu0, t)
− 1

]
+ rs

[
1

Ξ(u0,Hu0, t)
− 1

]
+ s

[
1

Ξ(H2u0, u0, t)
− 1

]
≤ δ2y.

Again, by putting u = H3u0 and v = H2u0 in the condition, we obtain

1

Ξ(H5u0,H4u0, t)
− 1 ≤ r

[
1

Ξ(H4u0,H3u0, t)
− 1

]
+ s

[
1

Ξ(H3u0,H2u0, t)
− 1

]
≤ (r3 + rs)

[
1

Ξ(H2u0,Hu0, t)
− 1

]
+ r2s

[
1

Ξ(u0,Hu0, t)
− 1

]
+ rs

[
1

Ξ(H2u0,Hu0, t)
− 1

]
+ s

[
1

Ξ(u0,Hu0, t)
− 1

]
= (r3 + 2rs)

[
1

Ξ(H2u0,Hu0, t)
− 1

]
+ (r2s+ s2)

[
1

Ξ(u0,Hu0, t)
− 1

]
≤ δ3y.
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By continuing this process, we get 1
Ξ(Hm+1u0,Hmu0,t)

− 1 ≤ δm−1y ∀m ≥ 3. This implies that

1

Ξ2(Hnu0,Hmu0, t)
− 1 ≤

m−1∑
i=n

(
1

Ξ2(Hiu0,Hi+1u0, t)
− 1

)
≤

m−1∑
i=n

δi−2y ≤ δi−2

1− δ
y.

for all m > n ≥ 3. Hence, {um} is a Cauchy sequence. If there exists x ∈ Σ such that um → x.

Then (Σ,Ξ,Θ,
⊗
, �) is a complete neutrosophic metric space. Since H is orbitally continuous,

Hum → Hx and so Hx = x. Now, we show that H mapping has a unique fixed point. Let v

and w be fixed points of H. Then

1

Ξ(v, w, t)
− 1 =

1

Ξ(H2v,H2w, t)
− 1 ≤ r

[
1

Ξ(Hv,Hw, t)
− 1

]
+ s

[
1

Ξ(v, w, t)
− 1

]
=(r + s)

1

Ξ(v, w, t)
− 1

Since r + s < 1, we get Hv = v.

Theorem 3.5. Let (Σ,Ξ,Θ,
⊗
, �) be a complete order triangular neutrosophic metric space,

r1, r2, s1, s2 ∈ (0, 1) with r1 + r2 + s1 + s2 < 1 and H an orbitally continuous selfmap on Σ

satisfy the condition

1

Ξ(H2u,H2v, t)
− 1 ≤ r1

[
1

Ξ(u,Hu, t)
− 1

]
+ r2

[
1

Ξ(Hu,H2u, t)
− 1

]
+ s1

[
1

Ξ(v,Hv, t)
− 1

]
+ s2

[
1

Ξ(Hv,H2v, t)
− 1

]
∀u, v ∈ Σ�. If there exists u0 ∈ Σ such that Hm−1u0,Hmu0) ∈ Σ� ∀m ≥ 1, then H has a

unique fixed point. Also T (H) = T (H2).

Proof. Define um = Hmu0, for all ∀m ≥ 1, and set y = 1
Ξ(Hu0,H2u0,t)

− 1 + 1
Ξ(u0,Hu0,t) − 1 Also,

put δ = r1 + r2 + s1 and λ = 1s2. We prove that

1

Ξ(Hm+1u0,Hmu0, t)
− 1 ≤

(
δ

λ

)m−2

y

for all m ≥ 3. Note that

1

Ξ(H3u0,H2u0, t)
− 1 ≤ r1

[
1

Ξ(u0,Hu0, t)
− 1

]
+ r2

[
1

Ξ(Hu0,H2u0, t)
− 1

]
+ s1

[
1

Ξ(u0,Hu0, t)
− 1

]
+ s2

[
1

Ξ(H3u0,H2u0, t)
− 1

]
≤ r1y + (r1 + s1)y + s2

[
1

Ξ(H3u0,H2u0, t)
− 1

]
.
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Hence, 1
Ξ(H3u0,H2u0,t)

− 1 ≤
(
δ
λ

)
y. Now, by using the assumption, we can put u = Hu0 and

v = H2u0 in the condition. Thus, we obtain

1

Ξ(H3u0,H4u0, t)
− 1 ≤ r1

[
1

Ξ(Hu0,H2u0, t)
− 1

]
+ r2

[
1

Ξ(H2u0,H3u0, t)
− 1

]
+ s1

[
1

Ξ(H2u0,H3u0, t)
− 1

]
+ s2

[
1

Ξ(H3u0,H4u0, t)
− 1

]
≤ r1y + (r1 + s1)

r1 + r2 + s1

1− s2
y + s2

[
1

Ξ(H3u0,H4u0, t)
− 1

]
.

Hence, 1
Ξ(H3u0,H4u0,t)

− 1 ≤
(
δ
λ

)
y. Similarly, we have

1

Ξ(H5u0,H4u0, t)
− 1 ≤ r1

[
1

Ξ(H3u0,H2u0, t)
− 1

]
+ r2

[
1

Ξ(H4u0,H3u0, t)
− 1

]
+ s1

[
1

Ξ(H4u0,H3u0, t)
− 1

]
+ s2

[
1

Ξ(H5u0,H4u0, t)
− 1

]
≤ r1

r1 + r2 + s1

1− s2
y + (r2 + s1)

r1 + r2 + s1

1− s2
y + s2

[
1

Ξ(H5u0,H4u0, t)
− 1

]
.

Hence, 1
Ξ(H5u0,H4u0,t)

− 1 ≤
(
δ
λ

)2

y. Also, by using the assumption and putting u = H3u0 and

v = H4u0 in the condition, we obtain

1

Ξ(H5u0,H6u0, t)
− 1 ≤ r1

[
1

Ξ(H3u0,H4u0, t)
− 1

]
+ r2

[
1

Ξ(H4u0,H5u0, t)
− 1

]
+ s1

[
1

Ξ(H4u0,H5u0, t)
− 1

]
+ s2

[
1

Ξ(H5u0,H6u0, t)
− 1

]
≤ r1

( δ
λ

)
y + (r2 + s1)big(

δ

λ

)2
y + s2

[
1

Ξ(H5u0,H6u0, t)
− 1

]
=
( δ
λ

)2[
r1

(λ
δ

)
y + (r2 + s1)y +

(λ
δ

)2
s2

[
1

Ξ(H5u0,H6u0, t)
− 1

]]
≤
( δ
λ

)2[
r1

(λ
δ

)
y + (r2 + s1)

(λ
δ

)
y +

(λ
δ

)2
s2

[
1

Ξ(H5u0,H6u0, t)
− 1

]]
=
( δ
λ

)2[(λ
δ

)
(r + 1 + r2 + s1)v +

(λ
δ

)2
s2

[
1

Ξ(H5u0,H6u0, t)
− 1

]]
≤
( 1

λ

)2[(λ
δ

)
(r + 1 + r2 + s1)3v + (λ)2s2

[
1

Ξ(H5u0,H6u0, t)
− 1

]]
which implies

(λ
δ

)
(λ)3

[
1

Ξ(H5u0,H6u0, t)
− 1

]
≤ 1− (s2)3

[
1

Ξ(H5u0,H6u0, t)
− 1

]
≤ (δ)3y

Hence [
1

Ξ(H5u0,H6u0, t)
− 1

]
≤
( δ
λ

)3
y.
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By continuing the process, we get

[
1

Ξ(H5u0,H6u0,t)
− 1

]
≤
(
δ
λ

)m−2
for all m ≥ 3. This implies

1

Ξ2(Hnu0,Hmu0, t)
− 1 ≤

m−1∑
i=n

(
1

Ξ2(Hiu0,Hi+1u0, t)
− 1

)
≤

m−1∑
i=n

( δ
λ

)i−2
y ≤

(
δ
λ

)m−2

1−
(
δ
λ

)y,
for all mn > m ≥ 3. Hence {um} is a Cauchy sequence. Since (Σ,Ξ,Θ,

⊗
, �) is a complete

neutrosophic metric space, there exists x ∈ Σ such that um → x. Since H is orbitally contin-

uous, Hum → Hx and so Hx = x. Now, we show that H has a unique fixed point. Let v and

w be fixed points of H. Then,

1

Ξ(v, w, t)
− 1 =

1

Ξ(H2v,H2w, t)
− 1 ≤ r1

[
1

Ξ(Hv, v, t)
− 1

]
+ r2

[
1

Ξ(Hv,H2v, t)
− 1

]
+ s1

[
1

Ξ(w,Hw, t)
− 1

]
+ s2

[
1

Ξ(Hw,H2w, t)
− 1

]
and so v = w. Now, we prove that T (H) = T (H2). Let v ∈ T (H2). Then, we have

1

Ξ(v,Hv, t)
− 1 =

1

Ξ(H2v,H2v, t)
− 1 ≤ r1

[
1

Ξ(Hv,H2v, t)
− 1

]
+ r2

[
1

Ξ(H2v,H3v, t)
− 1

]
+ s1

[
1

Ξ(v,Hv, t)
− 1

]
+ s2

[
1

Ξ(Hv,H2v, t)
− 1

]
= (r1 + r2 + s1 + s2)

[
1

Ξ(v,Hv, t)
− 1

]
.

Since r + s < 1, we get Hv = v

4. application

Example 4.1. Let Σ = [0,∞), be endowed with d(u, v) = |u− v|, Ξ(u, v,m) = m
m+d(u,v) and

Θ(u, v,m) = d(u,v)
m+d(u,v) for all u, v ∈ Σ and m ≥ 0. Define the selfmap H on Σ by Hu = 0

whenever 0 ≤ u ≤ 10, Hu = u10 whenever 10 ≤ u ≤ 11 and Hu = 1.1 whenever u ≥ 11. Then

by putting δ = 1
2 . Therefore, the condition of Theorem 3.1 is satisfied for H.

Example 4.2. Let Σ = [0,∞), be endowed with d(u, v) = |u− v|, Ξ(u, v,m) = m
m+d(u,v) and

Θ(u, v,m) = d(u,v)
m+d(u,v) for all u, v ∈ Σ and m ≥ 0. Define the selfmap H on Σ by Hu = 0

whenever 0 ≤ u ≤ 100, Hu = u100 whenever 100 ≤ u ≤ 100.1 and Hu = 0.15 whenever

u ≥ 100.1. Then by putting δ = 1
2 n = 0. Therefore, the condition of Theorem 3.2 is satisfied

for H.

Example 4.3. Let Σ = {1, 3, 5}, be endowed with d(u, v) = |u−v|, Ξ(u, v,m) = m
m+d(u,v) and

Θ(u, v,m) = d(u,v)
m+d(u,v) for all u, v ∈ Σ and m ≥ 0. Define �= {(1, 1), (3, 3), (5, 5)} the selfmap

H on Σ by H1 = 3,H3 = 1,H5 = 5 Then, by putting u0 = 5, r = 1
2and s = 1

4 , we conclude

that the condition of Theorem 3.4 is satisfied.
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Example 4.4. Let Σ = {1, 3, 5}, be endowed with d(u, v) = |u−v|, Ξ(u, v,m) = m
m+d(u,v) and

Θ(u, v,m) = d(u,v)
m+d(u,v) for all u, v ∈ Σ and m ≥ 0. Define �= {(1, 1), (3, 3), (5, 5)} the selfmap

H on Σ by H1 = 3,H3 = 1,H5 = 5 Then, by putting u0 = 5, r1 = r2 = s1 = s2 = 1
4 , it is

easy to verify that H satisfies the conditions of the last theorem 3.5, and so H has a unique

solution.

Here the Cauchy sequence in neutrosophic metric space, complete neutrosophic metric space

and complete ordered triangular neutrosophic metric spaces examples are introduced.

Example 4.5. Let Σ = 1
n : n ∈ N with the standard metric d(µ, ν) = |µ−ν|. For all µ, ν ∈ Σ

and α ∈ [0,∞), be defined by

Ξ(µ, ν, α) =


α

α+ d(µ, ν)
, if α > 0,

0, if α = 0

φ(µ, ν, α) =


d(µ, ν)

kα+ d(µ, ν)
, if α > 0, k > 0

1, if α = 0

Υ(µ, ν, α) =
d(µ, ν)

α
if α > 0.

for all µ, ν ∈ Σ and α > 0. Then (Σ,Ξ, φ,Υ, ∗,♦) is called complete neutrosophic metric space

on Σ, Here ∗ is defined by µ ∗ ν = µ, ν and ♦ is defined as µ♦ν = min{1, µ + ν}. Define

σ(µ) = µ, ρ(ν) = ν. Clearly σ(Σ) ⊆ ρ(Σ), Also for k = 1
3 , we get

Ξ(σ(µ), ρ(ν),
α

3
) =

α
3

α
3 + d(σ(µ), ρ(ν))

≥ α

α+ d(µ,ν)
3

= Ξ(σ(µ), ρ(ν).

Example 4.6. For r > 0, let Ξ(y, r) = r
r+‖y‖ , φ(y, r) = ‖y‖

r+‖y‖ , Υ(y, r) = ‖y‖
r . Then (N,V, ∗,♦)

is an Neutrosophic norm space (NNS). Now,

lim
µ,ν→∞

r

r+ ‖ yµ − yν ‖
= 1, lim

µ,ν→∞

‖ yµ − yν ‖
r+ ‖ yµ − yν ‖

= 0, lim
µ,ν→∞

‖ yµ − yν ‖
r

= 0.

lim
µ,ν→∞

Ξ(yµ − yν , r) = 1, lim
µ,ν→∞

φ(yµ − yν , r) = 0, lim
µ,ν→∞

Υ(yµ − yν , r) = 0, as r →∞.

This shows that {yµ} is a Cauchy sequence in the NNS (N,V, ∗,♦).

Example 4.7. Choose H as natural numbers set. Give the operations ∗ and ♦ as Triangular

norms (TN) µ ∗ ν = max{0, µ+ ν − 1} and Triangular conorms (TC) µ♦ν = µ+ ν − µν. for

all µ, ν ∈ H,α > 0

Ξ(µ, ν, α) =


µ

ν
, if µ < ν,

ν

µ
, if ν < µ,
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Ξ(µ, ν, α) =


ν − µ
y

, if µx < ν,

µ− ν
x

, if ν < µ,

Ξ(µ, ν, α) =

ν − µ, if µ < ν,

µ− ν, if ν < µ,

Then, (H,N , ∗,♦) is Neutrosophic metric space NMS such that N : H ×H ×R+ −→ [0, 1].

5. Conclusion

In this article, I gave some results about the property (P). Moreover, I study and provide

fixed point theorem for such mappings on complete ordered triangular neutrosophic metric

spaces (NMS). Also stated and proved some results which extensions from the reference section

of this paper of several results as in relevant items, as well as in the literature in general.
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Abstract. Municipal solid waste (MSW) development has increased on a global scale, posing significant socio-

economic and environmental challenges. Waste to energy conversion is strategic because it can determine the

best waste-to-energy technology. Recognizing the significance of waste in energy selection, this research aims

to select the best technology based on its eco-friendliness. A two-phase methodology is used for presenting a

framework for waste to energy technology selection. The first phase involves the selection of criteria for this

problem and the perspectives of decision makers. Ranking the selected criteria using a novel SWARA method,

and ranking the technology of WtE with respect to selected criteria weights are obtained. In this paper, we

investigate the WtE technology problem using the novel concept of the Pythagorean Neutrosophic fuzzy set

(PNFS). This set is a hybrid of the Pythagorean and Neutrosophic fuzzy sets. In this paper, we propose the best

WtE technology for India. We employ the MULTIMOORA method in the Pythagorean Neutrosophic fuzzy

environment for this purpose. Sensitivity and comparison analyses are also performed to ensure the framework’s

robustness. The findings of this study are useful in ranking the technology, and as a result, waste management

can replicate the proposed framework for waste disposal for their new platform.

Keywords: Pythagorean Fuzzy Set, Neutrosophic Fuzzy Set, Pythagorean Neutrosophic Fuzzy Set, Multi-

Criteria Decision Making, MULTIMOORA, WtE Technology.

—————————————————————————————————————————-

1. Introduction

Real-world decision-making problems are typically so complex and organized that tradi-

tional decision-making techniques cannot be applied. Human decisions are represented as pre-

cise numbers in traditional decision-making techniques. In many real applications, however,

the information may be incomplete, or the experts may be unable to assign precise statistical

measures to the assessment. As some of the judging criteria are subjective and descriptive in
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nature, it is challenging for the decision maker to express his or her priorities using precise

statistical measures [1]. Rather, decision-makers generally focus on making linguistic assess-

ment processes in the decision matrix. Moreover, conventional decision-making strategies are

far less capable of coping with the imprecise or ambiguous nature of linguistic evaluations [2].

The increasing industrialization, urbanisation, and changes in lifestyle that accompany the

process of economic growth result in the generation of increasing amounts of waste, posing

increased environmental threats. In recent years, technologies have been developed that not

only aid in the generation of a significant amount of distributed energy but also in the reduction

of waste for safe disposal. The Ministry is promoting all available technology options for

establishing projects for the recovery of energy in the form of biogas, bio-CNG, and electricity

from renewable agricultural, industrial, and urban wastes, such as municipal solid wastes,

vegetable and other market wastes, slaughterhouse waste, agricultural residues, and industrial

wastes and effluents [3].

Solid waste management (SWM) disposal is at an advanced stage in India. There is an

imperative need to build facilities to treat and dispose of growing amounts of MSW. More than

90% of waste in India is thought to be dumped in an unsatisfactory fashion. Waste dumps

are estimated to have occupied approximately 1400 km2 in the past few years, and this figure

is expected to rise in the future. Waste disposal that is properly engineered protects public

health and preserves critical environmental resources such as groundwater, surface water, soil

fertility, and air quality [4]. Globally, solid waste generation is steadily increasing. According

to the World Bank [15], worldwide annual waste generation has been rapidly increasing. This

significant increase in MSW generation is affected by a variety of factors like economic growth,

rising population, technological growth, urban growth, and rural-to-urban migration, among

others. Along with the increasing quantity of waste, the concentration of MSW is becoming

more diverse and complicated as a result of the development of developing societies based on

consumer-based lifestyles [15, 16]. There is an urgent need to develop WtE technology, which

can significantly reduce waste while also protecting the environment and public health.

Real-world problems, such as decision-making problems, are complicated and involve ambi-

guity and fuzzy logic. This motivated Zadeh [5, 6] to develop fuzzy set theory as a means to

describe and transform information that was not accurate, but rather imprecise. Fuzzy logic

theory provides a mathematical foundation for capturing the uncertainty and risk related to

human thought processes such as logic and understanding [7]. Because of the complexity of

information and the ambiguity of the human mind, the membership function of the fuzzy set

is not always sufficient to reveal the characteristics of things. To address this limitation of

the fuzzy set, Atanassov [8] transformed it into an intuitionistic fuzzy set (IFS) by including

a non-membership function and a hesitancy function. An IFS can describe things in three
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ways: superiority, inferiority, and hesitation, which are typically represented by intuitionis-

tic fuzzy numbers (IFNs) [9]. Yager [10–12] recently proposed the concept of Pythagorean

fuzzy set (PFS) as a different assessment feature to obtain more valuable information under

imprecise and ambiguous environments, which is characterised by the membership and non-

membership degree satisfying the condition that their square sum is not greater than 1. Zhang

and Xu [13] developed the Pythagorean fuzzy number concept and provided a comprehensive

computational model for PFS.

In 1998, Smarandache [14] proposed the concept of Neutrosophic set and Neutrosophic

probability, as well as their logic, which has three distinct logic components: truthfulness,

indeterminacy, and falsity. This concept also includes the concept of hesitation, which gives

the research a significant impact in various research areas. In a Neutrosophic fuzzy set, truth

membership is denoted by T , indeterminacy membership by I, and falsity membership by F .

These are all independent, with a sum of 0 ≤ T + I + F ≤ 3, while uncertainty in IFS is

determined by the degree of membership and non-membership, the indeterminacy factor in

Neutrosophic fuzzy sets is independent of the truth and falsity values. The uncertainty, falsity,

and hesitation information of a real-life problem can be described using a Neutrosophic fuzzy

number. In this paper, we use the proposed method to combine two sets, such as Pythagorean

and Neutrosophic fuzzy sets, to provide a more reliable solution to the WtE problem. In

addition, many researchers studied the WtE problem using various types of fuzzy sets in

various MCDM methods.

Several studies have been conducted to propose criteria for selecting waste-to-energy tech-

nologies. Abdel-Basset et al. [17] proposed and defined some operational rules for an advanced

type of Neutrosophic technique in a type 2 environment. Farooq et al. presented appropri-

ate MSW waste-to-energy technologies [18]. Yap and Nixon [19] used multi-criteria decision

making based on the analytical hierarchical process to evaluate and compare WtE technolo-

gies. Different types of waste to energy technology for MSW were evaluated by Atwadkar et

al [20] for Kolhapur. A life cycle assessment (LCA) of WtE treatment plants for electricity

generation was proposed by Ayodele [21]. Abdel-Basset et al. [22] discussed the creation of

an evaluation strategy to help Egypt choose the best renewable energy sources. Beyene et

al. [23] discussed the most recent updates on WtE technologies, which convert waste into

electricity, hydrogen gas, and other chemical feedstocks while being environmentally friendly.

Chiu et al. [24] investigated the feasibility of using microbial fuel cells to convert solid waste

organics into energy under a variety of operational conditions. To locate sustainable photo-

voltaic farms, Abdel-Basset et al. [25] used a hybrid multi-criteria decision-making approach

in a neutrosophic environment. Khan et al. [26] explored the effects of renewable electricity

generation from waste. Kurbatova and Abu-Qdais [27] used AHP to evaluate various WtE
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options in order to select the most appropriate technology for the Moscow region. Malav et

al. [28] discussed the difficulties associated with WtE projects in India. Reddy [29] examined

MSW WtE conversion in India. Abdel-Basset et al. [30] evaluated the sustainable bioenergy

production through a case study in Egypt and further suggested that converting municial

wastes to biogas is the most suitable sustainable bioenergy technology.

Different WtE technologies were reviewed by many researchers. All of the studies reviewed

were aimed at identifying the most feasible WtE options for various countries using MCDM

methods that are rapidly developing waste management. As a result, the aim of the research

was to create a general framework for selecting the most appropriate WtE technologies for

India based on environmental, socioeconomic, and technological factors. To achieve this, we

employ the MULTIMOORA method, which employs a Pythogorean Neutrosophic fuzzy set to

select the best solution.

2. Preliminaries

Definition 2.1. [31–33] Let U be a universal set. Then, a Pythagorean fuzzy set P , which

is a set of ordered pairs over U , is defined by the following:

P = {(u, φ(u), γ(u))|u ∈ U}

where φP (u) : U → [0, 1] and γP (u) : U → [0, 1] define the degree of membership and the

degree of non-membership, respectively, of the element u ∈ U to P , which is a subset of U ,

and for every u ∈ U :

0 ≤ (φP (u))2 + (γP (u))2 ≤ 1

Suppose (φP (u))2 + (γP (u))2 ≤ 1 then there is a degree of indeterminacy of u ∈ U to P

defined by πP (u) :
√

1− [(φP (u))2 + (γP (u))2] and πP (u) ∈ [0, 1]. In what follows, (φP (u))2 +

(γP (u))2 + (πP (u))2 = 1. Otherwise, πP (u) = 0 whenever (φP (u))2 + (γP (u))2 = 1.

Definition 2.2. [31–33]

Let U be a universal set. A Neutrosophic fuzzy set N on U is an object of the form:

N = {(u, φN (u),ΩN (u), γN (u)) : u ∈ U}

where φN (u),ΩN (u), γN (u) ∈ [0, 1], 0 ≤ φN (u)+ΩN (u)+γN (u) ≤ 3 for all u ∈ U , φN (u) is the

degree of membership, ΩN (u) is the degree of indeterminacy and γN (u) is the degree of non-

membership. Here, φN (u) and γN (u) are dependent component and ΩN (u) is an independent

components.

Definition 2.3. [31–33] Let U be a universal set. A Pythagorean Neutrosophic fuzzy set

(PNFS) with T and F are dependent Neutrosophic components D on U is an object of the
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Table 1. Pythagorean Neutrosophic fuzzy linguistic scale

Linguistic term membership values indeterminacy values non-membership values

Extremely high (EH) 0.85 0.10 0.15

Very high (VH) 0.75 0.20 0.25

Medium High (MH) 0.65 0.30 0.35

Medium (M) 0.55 0.40 0.45

Medium Low (ML) 0.35 0.60 0.65

Very Low (VL) 0.25 0.70 0.75

Extremely Low (EL) 0.15 0.80 0.85

form

D = {(u, φN (u),ΩN (u), γN (u)) : u ∈ U}

where φN (u),ΩN (u), γN (u) ∈ [0, 1], 0 ≤ (φN (u))2 + (ΩN (u))2 + (γN (u))2 ≤ 2, for all u ∈ U ,

φN (u) is the degree of membership, ΩN (u) is the degree of indeterminacy and γN (u) is the

degree of non-membership. Here, φN (u) and γN (u) are dependent component and ΩN (u) is

an independent components.

Definition 2.4. [32] The score function of the Pythagorean Neutrosophic fuzzy sets with

dependent Pythogorean Neutrospohic components I and F are defined as:

SD(u) = (T + (1− I) + (1− F ))

with the condition 0 ≤ (φN (u))2 + (ΩN (u))2 + (γN (u))2 ≤ 2.

Definition 2.5. Linguistic variable deals with many real-world decision-making problems

which are more complex and uncertain. Many research studies have different linguistic vari-

ables with fuzzy numbers [34]. Here, the linguistic variables with Pythgorean Neutrosophic

fuzzy number to evaluate the WtE technologies based on selected criteria and the linguistic

scale is presented in Table 1.

3. Mathematical Methods

MULTIMOORA is one of the most proficient MCDM models that emerged from the impor-

tant contributions of Brauers and Zavadskas [35]. The MOORA method is the ancestor of the

MULTIMOORA method. It employs three methods: the ration system (RS), the reference

point (RP), and the full multiplicative form (FMF). The MULTIMOORA method algorithm

is as follows: [34,36]
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3.1. Ration system approach:

The overall significance of the ithalternative is as follows:

Xi = x+i − x
−
i (1)

where

x+i =
∑
j∈B

aij (2)

x−i =
∑
j∈C

aij (3)

where, x+i and x−i denote the sum of the normalized performance ratings of the importances

obtained on the basis of the benefit and cost criteria; aij denotes the normalized performance

ratings. Here, B and C represents the benefit and cost criterion respectively; i = 1, 2, 3, ..., s

and j = 1, 2, 3, ..., t.

The normalized performance ratings are obtained as:

aij =
xij√∑x
i=1(xij)

2

where xij is the performance rating of the ith alternative to the jth criterion. The compared

alternatives are ranked in descending order based on their xi values, with the alternative with

the highest xi value being the best ranked.

3.2. The reference point approach:

The optimization based on the reference point can be shown as below:

Ri = mini(maxjWj × d(pj − aij)) (4)

Here, Ri is the overall performance of the reference point approach and d(pj − aij) is the

distance between the reference point and the normalized matrix, which is multiplied by the

criteria weights.Here, pj represents the jth coordinate of the reference point, as:

pj = maxi aij ; j ∈ B

pj = mini aij ; j ∈ C
(5)

The compared alternatives are ranked in ascending order based on their ri values, and the

alternative with the lowest value of ri is the best ranked.
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3.3. Full multiplicative form:

In this approach, the overall utility of the alternative can be calculated as follows:

Fi =
Bi
Ci

(6)

where Bi is the product of the weighted performance ratings of the benefit criteria and Ci is the

product of the weighted performance ratings of the alternative’s cost criteria. The compared

alternatives are ranked in descending order and the highest value of Fi is the best result.

The MULTIMOORA was used to determine the final ranking of alternatives. Generally, dif-

ferent parts of the MULTIMOORA approach provide different ranking orders. The dominance

theory was proposed by Brauers and Zavadskas [37] in order to describe the ranks provided

by three approaches of the MULTIMOORA and determine the final ranking values.

3.4. SWARA weighting method

Kresuliene et al. [38] propose the SWARA method, which assists experts in determining

criteria weights. The SWARA method is described below: [34]

Step 1: Rank the criteria based on their importance.

Step 2: Determine its relative importance βi.

Step 3: To calculate the coefficient value Γj , where Γj = βj + 1.

Step 4: Calculate the initial weights ωj , ωj =
βj−1

β .

Step 5: Obtain the final weight of the criteria Wj , where Wj =
ωj∑
ωj

.

4. Application

Nowadays, the amount of waste is rapidly increasing day by day due to population growth

and a wide range of technologies. The government authorities are implementing different kinds

of disposal methods to reduce the waste, but they are still finding the best solution for this

problem without any harmful impact on the environment and society. In the current situation,

waste management is facing many difficulties in reducing the waste that comes from industries,

houses, institutes, hospitals, etc. Therefore, we make it necessary to reduce the waste in a good

manner and we make energy from that waste. Developing countries are focusing on advanced

technologies to make energy from MSW wastes, which helps to find environmentally friendly

energy while at the same time reducing the amount of waste. In this study, we proposed the

MULIMOORA method to obtain the best WtE technologies for India using a Pythagorean

Neutrosophic fuzzy set. For this, we chose four types of WtE technologies based on economic,

environmental, social, and technology aspects.
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Table 2. Weight values of the criteria

Criteria βj Γj = βj + 1 ωj =
βj−1

β Wj =
ωj∑
ωj

Technology 0 1 1 0.392

Society 0.25 1.25 0.8 0.314

Environment 0.35 1.6 0.5 0.196

Economic 0.4 2 0.25 0.098

5. Numerical example

In this section, we discuss the WtE technology problem under the Pythagorean Neutrosophic

fuzzy set using the MULTIMOORA method. Here, the experts evaluate this problem based

on the selected criteria. The WtE technologies are M1− chemical and mechanical methods;

M2−new trends in WtE; M3−biochemical methods; and M4−thermal conversion method. To

solve this problem, experts evaluate the WtE technologies using the proposed method. The

linguistic scale is used to form a decision matrix. We are now analyzing the problem using the

suggested model.

5.1. SWARA method:

Using the SWARA method, we obtain the weight values of the criteria, which are shown in

Table 2.

5.2. MULTIMOORA method:

The WtE technologies and the criteria are given below:

M1 − Chemical and mechanical method

M2 −New trends in WtE method

M3 − Biochemical method

M4 − Thermal conversion method
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Table 3. The ratings of the WtE technology obtained from the expert

Criteria / WtE C1 C2 C3 C4

M1 (0.75, 0.40, 0.45) (0.25, 0.70, 0.45) (0.15, 0.30, 0.15) (0.85, 0.70, 0.45)

M2 (0.85, 0.40, 0.35) (0.55, 0.80, 0.25) (0.35, 0.20, 0.75) (0.85, 0.60, 0.45)

M3 (0.55, 0.20, 0.35) (0.25, 0.40, 0.65) (0.75, 0.70, 0.65) (0.85, 0.20, 0.65)

M4 (0.85, 0.30, 0.65) (0.85, 0.60, 0.75) (0.85, 0.30, 0.65) (0.15, 0.40, 0.65)

Table 4. Decision matrix

C1 C2 C3 C4

M1 1.9 1.1 1.7 1.7

M2 2.1 1.5 1.4 1.8

M3 2.0 1.2 1.4 2.1

M4 1.9 1.5 1.9 1.1

C1 − Economic

C2 − Society

C3 − Environment

C4 − Technology

(7)

The experts then assess the WtE technology using the evaluation criteria they have chosen.

Table 3 shows the expert evaluation results and which shows the ratings in the form of the

PNFNs obtained as the result of the transformation of the linguistic variables from Table 1.

5.3. Ratio system approach:

The ranking results and the ranking order of the WtE technology were obtained on the basis

of the RS approach. Using the PNFSs score function to create the decision matrix shown in

Table 4, by applying Eqs. (2) and (3), we calculate the normalized decision matrix, which is

shown in Table 5. The final ranking result of the RS approach is given in Table 6 using Eq.

(1).

5.4. Reference point approach

By applying the procedure of RP, we obtained the weighted distance between the reference

point and the normalized decision matrix using Eqs. (4), it is presented in Table 7. The

reference point is calculated by applying Eq.(5) which are (0.4805, 0.5609, 0.5885, 0.5939) and

the final ranking results are given in Table 8.
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Table 5. Normalized decision matrix

C1 C2 C3 C4

M1 0.4805 0.4113 0.5266 0.5048

M2 0.5311 0.5609 0.4337 0.5345

M3 0.5058 0.4487 0.4337 0.5939

M4 0.4805 0.5609 0.5885 0.3266

Table 6. The final ranking results for RS

WtE Ranking values Rank

M1 0.9622 4

M2 0.998 1

M3 0.9705 3

M4 0.9955 2

Table 7. Weighted distance between reference point and the normalized matrix

C1 C2 C3 C4

M1 0 0.0469 0.0121 0.0349

M2 -0.0049 0 0.0303 0.0232

M3 -0.0024 0.0352 0.0303 0

M4 0 0 0 0.1047

Table 8. The final ranking results for RP

WtE Ranking values Rank

M1 0.0469 3

M2 0.0303 1

M3 0.0352 2

M4 0.1047 4

5.5. Full multiplicative form:

The ranking results and the ranking order of the WtE technology obtained on the basis of

the FMF approach, by applying Eq (6), are shown in Table 10. For this, we first obtained the

weighted normalized matrix, which is given in Table 9. The final ranking results are obtained

using dominance theory, it as presented in Table 11.
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Table 9. Weighted normalized decision matrix

C1 C2 C3 C4

M1 0.0470 0.1291 0.1032 0.1978

M2 -0.0520 0.1761 0.0850 0.2095

M3 -0.0495 0.1408 0.0850 0.2328

M4 0.0470 0.1761 0.1153 0.1280

Table 10. The final ranking results for FMF

WtE Ranking values Rank

M1 0.0560 2

M2 0.0596 1

M3 0.0545 3

M4 0.0495 4

Table 11. The final ranking results of MULTIMOORA method

WtE RA RP FMF Final rank

M1 4 3 2 2

M2 1 1 1 1

M3 3 2 3 3

M4 2 4 4 4

From this Table 11, M2− New trends in WtE technology is the most suitable and environ-

ment friendly method to convert the waste into energy.

6. Comparison and sensitivity analysis

6.1. Comparison Analysis

This section compares the proposed approach to a number of existing methods from the

literature in order to demonstrate the method’s efficiency and performance in comparison to

those methods. The proposed methodology was compared to two existing techniques: the

VIKOR [39] and the MOORA model [40]. These MCDM methods use the proposed criterion

weights. The results of the ranking order comparison are shown in Table 12. The proposed

ranking yields different results than the existing VIKOR and MOORA models. As a result,

when compared to other MCDM models, the proposed approach yields more reliable findings.
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Table 12. Comparison analysis results

WtE VIKOR Rank MOORA Rank Proposed method

M1 0.8010 4 0.3651 4 3

M2 0 1 0.4248 1 1

M3 0.4508 2 0.4160 2 2

M4 0.5384 3 0.3762 3 4

Table 13. Weights in sensitivity analysis

WtE Case 1 Case 2 Case 3

M1 0.392 0.314 0.098

M2 0.196 0.392 0.314

M3 0.314 0.098 0.196

M4 0.098 0.196 0.392

Table 14. Sensitivity analysis results-Case 1

WtE RA Rank RP Rank FMF Rank DT

M1 1.1787 3 0.0480 4 0.0559 2 2

M2 1.3402 1 0.0388 2 0.0495 3 3

M3 1.2615 2 0.0412 3 0.0396 4 4

M4 1.1424 4 0.0388 1 0.1027 1 1

Table 15. Sensitivity analysis results-Case 2

WtE RA Rank RP Rank FMF Rank DT

M1 1.1787 3 0.0387 1 0.0401 4 4

M2 1.3402 1 0.0412 2 0.0756 1 1

M3 1.2615 2 0.0824 4 0.0744 2 2

M4 1.1424 4 0.0697 3 0.0585 3 3

6.2. Sensitivity analysis

The sensitivity analysis of this model compares the results of three cases. Case 3 is the

outcome of this study, and Cases 1 and 2 are the other outcomes discovered using different

weights of the criteria. Sensitivity analysis shows that modifying the weights of the criteria

has an effect on the ranking order.

R.Narmada Devi, S.Sowmiya, and A.Anuja, Selecting the Suitable Waste to Energy
Technology for India Using MULTIMOORA Method under Pythagorean Neutrosophic Fuzzy
Logic

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                               287



7. Conclusion

The most widely used waste-to-energy technology for residual waste uses combustion to

provide combined heat and power. Adopting maximum recycling with waste-to-energy in an

integrated waste management system would significantly reduce dumping in India. Waste-to-

energy technologies are available that can process unsegregated low-calorific value waste, and

the industries are keen to exploit these technologies in India. Several waste-to-energy projects

using combustion of un-segregated low-calorific value waste are currently being developed.

Alternative thermal treatment processes to combustion include gasification, pyrolysis, produc-

tion of refuse derived fuel and gas-plasma technology [4]. However, these WtE technologies

have some drawbacks and in order to overcome this problem and selecting the best solution for

waste to energy from new trends in WtE to achieve to reduce the sustainability factors result-

ing from the presence of many different indicators, this paper applies a hybrid multi-criteria

decision-making approach under a Pythagorean Neutrosophic fuzzy environment.

Waste to energy (WtE) technologies have been identified as a promising solution for dealing

with the problem of complexly composed and ever-increasing waste volumes in developed coun-

tries such as the European Union and the United States, among others. However, governments

and policymakers continue to face significant challenges in selecting appropriate WtE technolo-

gies to design sustainable waste management systems for India. As a result, this study was

carried out in order to propose a general systematic framework that can assist policymakers in

identifying the most appropriate WtE technologies for designing waste management systems

in India. In this paper, the score function of PNFS and the PNF-MULTIMOORA method

based on it have been presented. The characteristic of each WtE technology is taken in the

form of PNFNs. Based on the proposed method to find the best solution for this problem,

New trends in WtE have been identified as the safest and most beneficial WtE technology in

the current scenario, which is obtained from the proposed method. This method contributes

to waste reduction while also producing energy, which will help with future energy demand

issues.
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Abstract: This paper examines the asymptotic mean square solidness of a turbulent synchronization to time de-
lay neutrosophic stochastic framework. The Lyapunov solidness hypothesis is utilized to plan a neutrosophic-based
stochastic framework with time postpone that is supposed to be asymptotically mean square steady. The Takagi-
Sugeno neutrosophic model had been made to make a neutrosophic spectator with a versatile refreshing system, as
well as a neutrosophic spectator inside that presence. To communicate versatile update rules and control execution,
direct framework disparity is utilized (LMI). A neutrosophic-based versatile control plot is assessed utilizing the idea
of obscure. however, fixed boundary frameworks. The Lyapunov dependability hypothesis is utilized to foster the
effectiveness of stochastic time delay tumultuous frameworks. For mathematical calculation, the Genesio-Tesi tumul-
tuous framework is used. The neutrosophic fluffy framework yield is completed utilizing MATLAB. Hypothetical
outcomes are approved by this recreation.

Keywords: Asymptotic mean square stability, T-S neutrosophic system, Chaos synchronization, Lyapunov function.

1 Introduction
Nonlinear dynamical frameworks that display perplexing and unusual way of behaving are known as tumul-
tuous frameworks. The most intelligent qualities of turbulent frameworks are their touchy reliance on intro-
ductory circumstances and boundary varieties inside a given range[1-4]. Yamada and Fujisaka were quick to
explore the synchronization of turbulent frameworks, trailed by Pecora and Carroll One way to deal with ex-
press delicate reliance on beginning circumstances is through turmoil syn- chronization The synchronization
for turbulent frameworks has been far and wide to the degree, like summed up synchro- nization, stage syn-
chronization , slack synchronization, projective synchronization , summed up projective syn- chronization and,
surprisingly, hostile to synchronization [5-7]. The property of hostile to synchronization lay out a predomi-
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nating peculiarity in even oscillators, in which the state vectors have similar outright qualities however in-
verse signs. At the point when synchronization and hostile to synchronization coincide, at the same time, in
tumultuous frameworks, the synchronization is called half and half synchronization.

The hypotheses of vulnerability have equipped emphatically after the presentation of the fluffy set by zadeh
and intuitionstic fluffy set where he presented the idea of parts capability of belongingness. Smarandache
shows the possibility of a neutrosophic set. Neutrosophic set considers reality componentsthe indeterminacy
parts capability, and the deception parts capability at the same time. Innovation of neutrosophic set plays a
significant effect in science and designing examination area. In this ongoing age, it is for the most part utilized
in direction (DM) issue and numerical demonstrating [8-12] . This supposition that is vital in a great deal of
circumstances, for example, data combination when we attempt to join the information from various sensors.
Neutrosophy was presented by Smarandache in 1995. ”It is a part of phi- losophy which concentrates on the
beginning, nature and extent of neutralities, as well as their connections with various ideational spectra” . Neu-
trosophic set is a power general conventional structure which sums up the idea of the exemplary set, fluffy set,
span esteemed fluffy set , intuitionistic fluffy set , and so forth [13-18]

Neutosophic fluffy based mayhem control has gotten a ton of interest as of late in an assortment of engi-
neering applications. Versatile control configuration is an immediate mix of a control approach and some type
of recursive framework recognizable proof, with the framework ID meaning to decide if the framework being
controlled is direct or nonlinear. Just the qualities of a decent sort of model not set in stone for sys- tem ID,
compelling parametric framework ID and parametric versatile control. In the hypothesis of questionable yet
fixed boundary frameworks, versatile control configuration is contemplated and investigated [19-23].
This work proposes a neutosophic fluffy model for stochastic time-defer tumultuous frameworks with vul-
nerabilities in light of stochastic time-postpone turbulent frameworks with vulnerabilities. This technique is
a deliberate plan procedure that guarantees the stochastic time-postpone tumultuous frameworks’ worldwide
mean square dependability. The versatile and supervi- siory control is resolved utilizing the Lyapunov capa-
bility to tune the regulator gain in view of the precalculated criticism control inputs. This paper is organized as
follows. The issue is portrayed in Segment 2 alongside some fundamental data. The fundamental commitment
of this study is referenced in Segment 3. The outline of the outcomes acquired in this paper is talked about in
part 4.

2 Problem Statement and Preliminaries

Consider the stochastic time-delay chaotic system interms of T-S neutrosophic model with a time delay
Rl : IfZ1(tc) is M l

1 and . . . and Zj(tc) is M l
j then

dx(tc) = [(A1l(tc) + ∆A1l(tc))x(tc) + (A2l(tc) + ∆A2l(tc))x(tc − τc)]dtc+
[(A3l(tc) + ∆A3l(tc))x(tc) + (A4l(tc) + ∆A4l(tc))x(tc − τc)]dw(tc)

y(tc) = Cx(tc), l = 1, 2, 3, . . . , r.
(2.1)

where x(tc) ∈ Rnis state vector,y(tc) ∈ Rm is output vector x(tc−τc) is time delay state vector, A1l, A2l, A3l, A4l

and C are system matrices, ∆A1l, ∆A2l, ∆A3l,∆A4l and C are corresponding uncertainties. τc is consider
as constant time delay. M l

j be the fuzzy set, r be the number of fuzzy rule, z(tc) = [z1(tc), z2(tc), . . . zj(tc)]
T

are premise variables associated with system states.
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The center of gravity defuzzification method is used to get output of neutrosophic system.

Wl = ⟨tc, µWl
, σWl

, γWl
⟩

dx = ⟨tc, µdx, σWdx
, γdx⟩

dtc = ⟨ µdtc , σWdtc
γdtc⟩

dw(tc) = ⟨ µdw, σWdw
γdw⟩

y(tc) = ⟨µCx(tc), σWx(tc), γCx(tc)⟩

(2.2)

where µWl
(z) =

j∏
i=1

µM l
i
(zj), σWl

(z) =
j∏

i=1

σM l
i
(zj), γWl(z) =

j∏
i=1

γM l
i (zj)

and µCx(tc), σCx(tc), γCx(tc) are fuzzy

matrices.

µdx(tc) =

r∑
l=1

µWl
(z)[(µA1l

+µ∆A1l
)(x(tc))+(µA2l

+µ∆A2l
)(x(tc−τc))]µdtc+[(µA3l

+µ∆A3l
)x(tc)+(µA4l

+µ∆A4l
)(x(tc−τc))]µdw(tc)

r∑
l=1

µWl
(z)

σdx(tc) =

r∑
l=1

σWl
(z)[(σA1l

+σ∆A1l
)(x(tc))+(σA2l

+σ∆A2l
)(x(tc−τc))]σdtc+[(σA3l

+σ∆A3l
)x(tc)+(σA4l

+σ∆A4l
)(x(tc−τc))]σdw(tc)

r∑
l=1

σWl
(z)

γdx(tc) = 1− µdxtc
and

y(tc) = Cx(tc)
(2.3)

µM l
i
(zi), σM l

i
(zi) and γM l

i
(zi) are the grades of components function and non components functions of M l

i

corresponding to zi
µMl

(zi) =
µWl

(zi)
r∑

l=1

µWl
(zi)

σMl
(zi) =

σWl
(zi)

r∑
l=1

σWl
(zi)

γMl
(zi) =

γWl
(zi)

r∑
l=1

γWl
(zi)

(2.4)

Therefore the state of the neutrosophic system is given by

µdx(tc) =
r∑

l=1

µMl
(zi)([(µA1l

+ µ∆A1l
)(x(tc)) + (µA2l

+ µ∆A2l
)x(tc − τc)]µdtc+

[(µA3l
+ µ∆A3l

)(x(tc)) + (µA4l
+ µ∆A4l

)(x(tc − τc))]µdw(tc)

σdx(tc) =
r∑

l=1

σMl
(zi)([(σA1l

+ σ∆A1l
)(x(tc)) + (σA2l

+ σ∆A2l
)x(tc − τc)]σdtc+

[(µA3l
+ σ∆A3l

)(x(tc)) + (σA4l
+ σ∆A4l

)(x(tc − τc))]σdw(tc)

γdx(tc) = 1− µdx(tc)
and

y(tc) = Cx(tc)

(2.5)
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Considering the assumptions

µ∆A(tc) =
r∑

l=1

µMl
(zi)µ∆A1l

(tc), σ∆A(tc) =
r∑

l=1

σMl
(zi)σ∆A1l

(tc) and γ∆A(tc) =
r∑

l=1

γMl
(zi)γ∆A1l

(tc)

µ∆Ad1
(tc) =

r∑
l=1

µMl
(zi)µ∆A2l

(tc), σ∆Ad1
(tc) =

r∑
l=1

σMl
(zi)σ∆A2l

(tc) and γ∆Ad1
(tc) =

r∑
l=1

γMl
(zi)γ∆A2l

(tc)

µ∆Ad3
(tc) =

r∑
l=1

µMl
(zi)µ∆A4l

(tc), σ∆Ad3
(tc) =

r∑
l=1

σMl
(zi)σ∆A4l

(tc) and γ∆Ad3
(tc) =

r∑
l=1

γMl
(zi)γ∆A4l

(tc)

(2.6)
Therefore the state of the neutrosophic systems is

µdx(tc) = [
r∑

l=1

µMl
(zi)(A1l(x(tc)) + A2lx(tc − τc)) + µ∆A(tc)x(tc) + µ∆Ad1

x(tc − τc)]dtc

+[
r∑

l=1

µMl
(zi)(A3l(x(tc)) + A4lx(tc − τc)) + µ∆Ad2

(tc)x(tc) + µ∆Ad3
(tc)x(tc − τc)]dw(tc)

σdx(tc) = [
r∑

l=1

σMl
(zi)(A1l(x(tc)) + A2lx(tc − τc)) + σ∆A(tc)x(tc) + σ∆Ad1

x(tc − τc)]dtc

+[
r∑

l=1

σMl
(zi)(A3l(x(tc)) + A4lx(tc − τc)) + σ∆Ad2

(tc)x(tc) + µ∆Ad3
(tc)x(tc − τc)]dw(tc)

γdx(tc) = 1− µdx(tc)
and

y(tc) = Cx(tc)
(2.7)

Assume that the uncertainties are imposed on matching condition. Therefore there exist an uniformly con-
tinuous function EA(tc) andEd(tc) exist such that ∆A(tc) = BEA(tc), ∆Ad(tc) = BEd(tc), B in Rn×p are
known matrix. Therefore the uncertainties in equation (2.7) are represented as

∆A(tc)x(tc) = Bξ1(x(tc)tc)
∆Ad1(tc)x(tc − τc) = Bξ2(x(tc − τc)tc)

∆Ad2(tc)x(tc) = Bξ3(x(tc)tc)
∆Ad3(tc)x(tc − τc) = Bξ4(x(tc − τc)tc)

(2.8)

where ξ1, ξ2, ξ3, ξ4 are uncertainties, which are unknown, design of neutrosophic observer is required to
estimate these uncertainties.
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Therefore equation (2.7) becomes

µdx(tc) = [
r∑

l=1

µl(z)(µA1l(x(tc)) + µA2lx(tc − τc)) + µBξ1(x(tc)tc) + µBξ2(x(tc − τc)tc)]dtc

+[
r∑

l=1

µl(z)(µA3l(x(tc)) + µA4lx(tc − τc)) + µBξ3(x(tc)tc) + µBξ4(x(tc − τc)tc)]µdw(tc)

σdx(tc) = [
r∑

l=1

σl(z)(µA1l(x(tc)) + µA2lx(tc − τc)) + σBξ1(x(tc)tc) + σBξ2(x(tc − τc)tc)]dtc

+[
r∑

l=1

µl(z)(σA3l(x(tc)) + σA4lx(tc − τc)) + σBξ3(x(tc)tc) + σBξ4(x(tc − τc)tc)]σdw(tc)

γdx(tc) = 1− µdx(tc)µAl1(x(tc − τc))
and

y(tc) = < µy(tc), σy(tc), γy(tc) >
(2.9)

where µy(tc) = (µc, µx(tc))

Consider the following the neutrosophic system; that approximate the ith components of the uncertainties
ξ1(x(tc)tc), ξli as
Rj : Ifx1(tc) is M̃ j

1 and . . . and xn(tc) is M̃ j
n, then ξ̂1i is D̃ij, j = 1, 2, 3, 4 . . . q.

The output of the neutrosophic inference is

µ(x/θi) =

q∑
j=1

θij(
n∏

h=1
µ
M̃

j
h

(xh))

q∑
j=1

n∏
h=1

µ
M̃

j
h

(xh)

σ(x/θi) =

q∑
j=1

θij(
n∏

h=1
σ
M̃

j
h

(xh))

q∑
j=1

n∏
h=1

σ
M̃

j
h

(xh)

γ(x/θi) =

q∑
j=1

θij(
n∏

h=1
γ
M̃

j
h

(xh))

q∑
j=1

n∏
h=1

γ
M̃

j
h

(xh)

hence ξ̂1i(x/θi) = θTi ω(x).

(2.10)

where θi = (θi1, θi2, . . . , θiq)
T is an adjustable parameter vector.θij is the center of D̃ij for i = 1, 2, 3, . . . , p;

j = 1, 2, 3, . . . q, ω(x) is the neutrosophic basic function.

The estimation of ξ1 has the form ξ̂1i(x/θ) = θTi ω(x), θ ∈ Rp×q.

The optimal parameter neutrosophic matrix θ∗ is defined as θ∗ =< µθ∗, σθ∗, γθ∗ >

µθ∗ = arg minθ∈Ωθ
(sup

∥∥∥µξ̂1
(x/θ)− µξ̂1

(xtctc)
∥∥∥) (2.11)

such that ∥∥∥µξ̂1
(x/θ∗)− µξ̂1

(xtc)
∥∥∥ ≤ µξ1 (2.12)

σθ∗ = arg minθ∈Ωθ
(sup

∥∥∥σξ̂1
(x/θ)− σξ̂1

(x(tc)tc)
∥∥∥)

such that ∥∥∥σξ̂1
(x/θ∗)− σξ̂1

(xtc)
∥∥∥ ≤ σξ1
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and
γθ∗(tc) = 1− µθ∗(tc)µAl1(x(tc − τc))

where
Ωθ = (θ/trace(θT θ) < M2

θ ), (2.13)

here tr(.) is trace of the matrix, Mθ is designed constant, ξ1 is unknown upper bound such that

∥ξ2(x(tc − τc))tc∥ ≤ ξ2, (2.14)

ω(x) is uniformly continuous then exist an Lipshiz constants

∥ω(x)− ω̂(x)∥ ≤ γ ∥x− x̂∥ . (2.15)

Thus, the neutrosophic observer for a stochastic time- delay chaotic system (2.1) is
Rl : IfZ1(tc) is M l

1 and . . . and Zj(tc) is M l
j then dx̂(tc) =< µdx̂(tc), σdx̂(tc), γdx̂(tc) > where

µdx̂(tc) = [µA1lx̂(tc) + µA2lx̂(tc − τc) + µLl(y(tc)− ŷ(tc)) + µB(ξ̂1(x̂)/θ) + µu1(tc) + µu2(tc)]dtc
+[µA3lx̂(tc) + µA4lx̂(tc − τc) + µLl(y(tc)− ŷ(tc)) + µB(ξ̂1(x̂/θ) + µu1(tc) + µu2tc]µdw(tc),

σdx̂(tc) = [σA1lx̂(tc) + σA2lx̂(tc − τc) + σLl(y(tc)− ŷ(tc)) + σB(ξ̂1(x̂)/θ) + σu1(tc) + µu2(tc)]dtc
+[σA3lx̂(tc) + σA4lx̂(tc − τc) + σLl(y(tc)− ŷ(tc)) + σB(ξ̂1(x̂/θ) + σu1(tc) + σu2(tc)]σdw(tc),

γ(d ˆcx(tc)) = 1− µdx̂(tc)µAl1
(x(tc − τc))

and
ŷ(tc) = Cx̂(tc), l = 1, 2, 3, . . . r.

(2.16)
where Ll is neutrosophic designed feedback gain matrices, u1 and u2 are neutrosophic supervisory control.

Therefore the output of the neutrosophic systems (2.16) is

µdx̂(tc) = [
r∑

l=1

µl(z)[µA1lx̂(tc) + µA2lx̂(tc − τc) + µLl(y(tc)− µŷ(tc))+

µB(ξ̂1(x̂/θ) + µu1(tc) + µu2(tc)]]dtc + [
r∑

l=1

µl(z)[µA3lx̂(tc) + µA4lx̂(tc − τc)+

µLl(y(tc)− ŷtc) +B(ξ̂1(x̂/θ) + µu1(tc) + µu2(tc)]]µdw(tc),

σdx̂(tc) = [
r∑

l=1

σl(z)[σA1lx̂(tc) + σA2lx̂(tc − τc) + σLl(y(tc)− σŷ(tc))+

σB(ξ̂1(x̂/θ) + σu1(tc) + σu2(tc)]]dtc + [
r∑

l=1

σl(z)[σA3lx̂(tc) + σA4lx̂(tc − τc)+

σLl(y(tc)− ŷ(tc)) +B(ξ̂1(x̂/θ) + σu1tc + σu2tc]]σdwtc,
γdx̂tc) = 1− µdx̂tc

and
ŷtc = Cx̂tc, l = 1, 2, 3 . . . r.

(2.17)

The observation error is defined as
detc = dxtc − dx̂tc. (2.18)
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Therefore, the error dynamic is noted by

µdetc = [
r∑

l=1

µl(z)[µ(A1ltc − µLlC)etc + µA2le(tc − τc)] + µB(ξ1(xtctc)− µξ̂1(x̂/θ)− µu1tc)

+µB(ξ1(x(tc − τc)tc)− µu2tc)]dt+ [
r∑

l=1

µl(z)[µ(A3ltc − µLlC)etc + µA4le(tc − τc)]

−µB(ξ̂1(x̂/θ) + µu1tc)− µB(u2tc)]µdwtc.

σdetc) = [
r∑

l=1

σl(z)[σ(A1ltc − σLlC)etc + σA2le(tc − τc)] + σB(ξ1(xtctc)− σξ̂1(x̂/θ)− σu1tc)

+σB(ξ1(x(tc − τc)tc)− σu2tc)]dt+ [
r∑

l=1

σl(z)[σ(A3ltc − σLlC)etc + σA4le(tc − τc)]

−σB(ξ̂1(x̂/θ) + σu1tc)− σB(u2tc)]σdwtc.
and

γdetc = 1− µdetc

(2.19)

3 Main Result

Define the two state variables for stochastic time-delay chaotic system (2.6)

µf tc =
r∑

l=1

µl(z)(µA1lxtc + µA2lx(tc − τc)) + µBξ1(xtctc) + µBξ1(x(tc − τc)tc)

µgtc =
r∑

l=1

µl(z)(µA3lxtc + µA4lx(tc − τc)) + µBξ3(xtctc) + µBξ4(x(tc − τc)tc).

σf tc =
r∑

l=1

σl(z)(σA1lxtc + σA2lx(tc − τc)) + σBξ1(xtctc) + σBξ1(x(tc − τc)tc)

σgtc =
r∑

l=1

σl(z)(σA3lxtc + σA4lx(tc − τc)) + σBξ3(xtctc) + σBξ4(x(tc − τc)tc).

γf tc =
r∑

l=1

γl(z)(γA1lxtc + γA2lx(tc − τc)) + γBξ1(xtctc) + γBξ1(x(tc − τc)tc)

γgtc =
r∑

l=1

γl(z)(γA3lxtc + γA4lx(tc − τc)) + γBξ3(xtctc) + γBξ4(x(tc − τc)tc).

(3.1)

Then the stochastic time delay chaotic system is

µxtc − µx(tc − τc) =
∫ t

t−τc
µdx(s) =

∫ t

t−τc
µf(s)ds+

∫ t

t−τc
µg(s)µdw(s).

σxtc − σx(tc − τc) =
∫ t

t−τc
σdx(s) =

∫ t

t−τc
σf(s)ds+

∫ t

t−τc
σg(s)σdw(s).

γxtc − γx(tc − τc) =
∫ t

t−τc
γdx(s) =

∫ t

t−τc
γf(s)ds+

∫ t

t−τc
σg(s)γdw(s).

(3.2)

Theorem 3.1 Consider the stochastic time-delay chaotic system (2.1) and its corresponding neutrosophic
observer (2.16). Suppose that positive definite matrices P, Q, S, R, D0, D1 and the feedback gain Li,
i = 1, 2, 3, 4, . . . , r, such that PB = CT and the following condition holds

[(A1i − LiC)TP + P (A1i − LiC) +R +D0 +D1 + PA2iR
−1AT

2i] ≤ −Qi,
λmin(Qi) ≥ 2γMθ ∥C∥ . (3.3)

where λmin denotes the minimum eigen value of a matrix.
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Given the supervisory controls

u1 = ξ̂1
BTPe

∥BTPe∥
, u2 = ξ̂2

BTPe

∥BTPe∥
(3.4)

where ξ̂1 and ξ̂2 stand for estimators of ξ1 and ξ2.

The error dynamic is asymptotically stable in the mean square by applying

θ̇ = 2ηω(x̂)BTPe,
˙̂
ξ1 = 2η1e

TPB,
˙̂
ξ2 = 2η2e

TPB.

(3.5)

where η, η1, η2 denotes positive adaption constants.

Proof: Consider the Lyapunov-Krasovskii functional as follows:

V tc = eTPe+
1

2η
tr(θ̃T θ̃) +

1

2η1
ξ̃21 +

1

2η2
ξ̃21 +

∫ t

t−τc

eT (σ)Se(σ)dσ, (3.6)

where
θ̃ = θ∗ − θ,

ξ̃1 = ξ1 − ξ̂1,

ξ̃2 = ξ2 − ξ̂2,

(3.7)

then its derivative can be obtained by Itô formula that

dvtc = LV tcdt+ 2eTPgtcdwtc
LV tc = Vttc + Vetcftc +

1
2
trace(gTVeeg)

(3.8)

Therefore

µLV tc = 2eTP ([
r∑

i=1

µi(z)[µ(A1itc−µLiC)etc+µA2ie(tc − τc)]+µB(ξ1(xtctc)−µξ̂1(x̂/θ)−µu1tc)

+µB(ξ2(x(tc − τc)tc)− µu2tc)]) + µeTSe+ µgTPg − µ 1
η
tr(θ̃T ˙̃θ)− µ 1

η1
ξ̃1

˙̂
ξ1

−µ 1
η2
ξ̃2

˙̂
ξ2 − µeT (tc − τc)Se(tc − τc).

σLV tc = 2eTP ([
r∑

i=1

σi(z)[σ(A1itc−σLiC)etc+σA2ie(tc − τc)]+σB(ξ1(xtctc)−σξ̂1(x̂/θ)−σu1tc)

+σB(ξ2(x(tc − τc)tc)− σu2tc)]) + σeTSe+ σgTPg − σ 1
η
tr(θ̃T ˙̃θ)− σ 1

η1
ξ̃1

˙̂
ξ1

−σ 1
η2
ξ̃2

˙̂
ξ2 − σeT (tc − τc)Se(tc − τc).

γLV tc = 1− µLV tc
(3.9)

Now consider the relation
gTPg ≤ eTD0e+ eT (tc − τc)D1e(tc − τc). (3.10)
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Then

µLV tc = 2eTP ([
r∑

i=1

µi(z)[µ(A1itc−µLiC)etc+µA2ie(tc − τc)]+µB(ξ1(xtctc)−µξ̂1(x̂/θ)−µu1tc)

+µB(ξ2(x(tc − τc)tc)− µu2tc)]) + µeTSe+ µeTD0e+ µeT (tc − τc)D1e(tc − τc)

µ− 1
η
tr(θ̃T ˙̃θ)− µ 1

η1
ξ̃1

˙̂
ξ1 − µ 1

η2
ξ̃2

˙̂
ξ2 − µeT (tc − τc)Se(tc − τc)

≤
r∑

i=1

µi[e
TP (A1i −i C)T e+ µeT (A1i −i C)Pe+ µ2eTPA2ie(tc − τc)]

+µ2eTPB(ξ1(xtctc)− µξ̂1(x̂/θ))
−µ2eTPB(u1) + µ2eTPB(ξ2(x(tc − τc))− µu2) + µeTSe+ µeTD0e

+µeT (tc − τc)D1e(tc − τc)− 1
η
tr(θ̃T θ̇)− µ 1

η1
ξ̃1

˙̂
ξ1 − µ 1

η2
ξ̃2

˙̂
ξ2 − µeT (tc − τc)Se(tc − τc).

σLV tc = 2eTP ([
r∑

i=1

σi(z)[σ(A1itc−σLiC)etc+σA2ie(tc − τc)]+σB(ξ1(xtctc)−σξ̂1(x̂/θ)−σu1tc)

+σB(ξ2(x(tc − τc)tc)− σu2tc)]) + σeTSe+ σeTD0e+ σeT (tc − τc)D1e(tc − τc)

σ − 1
η
tr(θ̃T ˙̃θ)− σ 1

η1
ξ̃1

˙̂
ξ1 − σ 1

η2
ξ̃2

˙̂
ξ2 − σeT (tc − τc)Se(tc − τc)

≤
r∑

i=1

σi[e
TP (A1i − σLiC)T e+ σeT (A1i − σLiC)Pe+ σ2eTPA2ie(tc − τc)]

+σ2eTPB(ξ1(xtctc)− σξ̂1(x̂/θ))
−σ2eTPB(u1) + σ2eTPB(ξ2(x(tc − τc))− σu2) + σeTSe+ σeTD0e

+σeT (tc − τc)D1e(tc − τc)− 1
η
tr(θ̃T θ̇)− σ 1

η1
ξ̃1

˙̂
ξ1 − σ 1

η2
ξ̃2

˙̂
ξ2 − σeT (tc − τc)Se(tc − τc).

γLV tc = 1− γLV tc
(3.11)

Now consider the relation

2eTPA2ie(tc − τc) ≤ eTPA2iR
−1AT

2iPe+ eT (tc − τc)Re(tc − τc). (3.12)
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Therefore the equation (3.11) becomes

µLV tc ≤
r∑

i=1

µi e
T [P (A1i − LiC)T + (A1i − LiC)P + PA2iR

−1AT
2iP + S]e+ eT (tc − τc)Re(tc − τc)

+2eTPB(ξ1(xtctc)− ξ̂1(x̂/θ))− 2eTPB(u1) + 2eTPB(ξ2(x(tc − τc))− u2)+

eTD0e+ eT (tc − τc)D1e(tc − τc)− 1
η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1 − 1

η2
ξ̃2

˙̂
ξ2 − eT (tc − τc)Se(tc − τc).

≤
r∑

i=1

µi e
T [P (A1i − LiC)T + (A1i − LiC)P +R +D0 +D1 + PA2iR

−1AT
2iP ]e+

+2eTPB(ξ1(xtctc)− ξ̂1(x̂/θ))− 2eTPB(u1) + 2eTPB(ξ2(x(tc − τc)tc))

−2eTPBu2 − 1
η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1 − 1

η2
ξ̃2

˙̂
ξ2.

σLV tc ≤
r∑

i=1

σi e
T [P (A1i − LiC)T + (A1i − LiC)P + PA2iR

−1AT
2iP + S]e+ eT (tc − τc)Re(tc − τc)

+2eTPB(ξ1(xtctc)− ξ̂1(x̂/θ))− 2eTPB(u1) + 2eTPB(ξ2(x(tc − τc))− u2)+

eTD0e+ eT (tc − τc)D1e(tc − τc)− 1
η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1 − 1

η2
ξ̃2

˙̂
ξ2 − eT (tc − τc)Se(tc − τc).

≤
r∑

i=1

σi e
T [P (A1i − LiC)T + (A1i − LiC)P +R +D0 +D1 + PA2iR

−1AT
2iP ]e+

+2eTPB(ξ1(xtctc)− ξ̂1(x̂/θ))− 2eTPB(u1) + 2eTPB(ξ2(x(tc − τc)tc))

−2eTPBu2 − 1
η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1 − 1

η2
ξ̃2

˙̂
ξ2.

γLV tc ≤ 1− µLV tc
(3.13)

Again we consider the relation

µξ1(xtctc)−µξ̂1(x̂/θ) = µξ1(xtctc)−µξ̂1
(x̂/θ)+µξ̂1

(x̂/θ∗)−µξ̂1
(x̂/θ∗)+µξ̂1

(x/θ∗)−µξ̂1
(x/θ∗)

= µ(ξ1−µξ̂1
(x̂/θ∗))+µξ̂1

((x̂/θ∗)−µ(x̂/θ))+µξ̂1
((x/θ∗)−µ(x̂/θ∗))

= (µξ1−µξ̂1
(x̂/θ∗))+µθ̃Tω(x̂)+µθ∗T (ω(x)−µω(x̂)),

σξ1(xtctc)−σξ̂1(x̂/θ) = σξ1(xtctc)−σξ̂1
(x̂/θ)+σξ̂1

(x̂/θ∗)−σξ̂1
(x̂/θ∗)+σξ̂1

(x/θ∗)−σξ̂1
(x/θ∗)

= σ(ξ1−σξ̂1
(x̂/θ∗))+σξ̂1

((x̂/θ∗)−σ(x̂/θ))+σξ̂1
((x/θ∗)−σ(x̂/θ∗))

= (σξ1−σξ̂1
(x̂/θ∗))+σθ̃Tω(x̂)+σθ∗T (ω(x)−σω(x̂)),

γξ1(xtctc)− γξ̂1(x̂/θ) = 1− [µξ1(xtctc)− µξ̂1(x̂/θ)] (3.14)

and
P (A1i − LiC)T + (A1i − LiC)P +R +D0 +D1 + PA2iR

−1AT
2iP ≤ −Qi. (3.15)
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Now, the equation (3.13) become

µLV tc ≤
∑r

i=1 µie
T (−Qi)e+ 2eTPB(ξ1(xtctc)− ξ̂1(x̂/θ) + ξ̂1(x̂/θ

∗)− ξ̂1(x̂/θ
∗) + ξ̂1(x/θ

∗)

−ξ̂1(x/θ
∗))−2eTPB(u1)+2eTPB(ξ2(x(tc − τc)tc))−2eTPBu2− 1

η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1− 1

η2
ξ̃2

˙̂
ξ2

≤
∑r

i=1 µie
T (−Qi)e+2eTPB(ξ1−ξ̂1(x̂/θ

∗))+2eTPB(θ̃Tω(x̂))+2eTPB(θ∗T (ω(x)−ω(x̂)))

−2eTPB(u1) + 2eTPB(ξ2(x(tc − τc)tc))− 2eTPBu2 − 1
η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1 − 1

η2
ξ̃2

˙̂
ξ2

≤
∑r

i=1 µie
T (−Qi)e+ 2γ ∥e∥2 ∥C∥Mθ +

1
η
tr[θ̃T (2ηωx̂eTPB − θ̇)]

+2eTPB(ξ̂1 − u1) + 2eTPB(ξ̂2 − u2) +
1
η1
(2η1e

TPB − ˙̂
ξ1) +

1
η2
(2η2e

TPB − ˙̂
ξ2)ξ̃2

σLV tc ≤
∑r

i=1 σie
T (−Qi)e+ 2γ ∥e∥2 ∥C∥Mθ +

1
η
tr[θ̃T (2ηωx̂eTPB − θ̇)]

+2eTPB(ξ̂1 − u1) + 2eTPB(ξ̂2 − u2) +
1
η1
(2η1e

TPB − ˙̂
ξ1) +

1
η2
(2η2e

TPB − ˙̂
ξ2)ξ̃2

and
γLV tc ≥ 1− [µLV tc]

(3.16)
Now applying adaptive updating law (3.4) and (3.4) into (3.16), which yields

LV tc ≤ −eTβe, β > 0 (3.17)

Therefore
dV tc = −eTβe+ 2eTPgtcdwtc (3.18)

Taking expectation, then it follows that

E[dV tc] = E[−eTβe] + E[2eTPgtcdwtc]. (3.19)

Then it follows
dvtc ≤ −eTβe. (3.20)

Therefore V ∈ L∞, which indicate that e, θ̃, ξ̃1, ξ̃2, u1, u2 ∈ L∞.

Integrating (3.20) from 0 to ∞ result in

β

∫ ∞

0

eeTdt < V (0)− V (∞) < ∞. (3.21)

That mean that e ∈ L2, applying the Lipschitz condition to the neutrosophic estimation lead to that ė ∈ L∞.
Based on the Barbalat lemma, one may conclude that e → 0 as t → ∞.

Which is asymptotically stable in mean square.2

For neutrosophic observer, the output feedback control scheme is applied to stochastic chaotic time-delay.
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The output feedback for a stochastic chaotic time-delay system is

µdxtc = [
r∑

i=1

µi(z)(µA1i
+∆µA1i

)xtc + (µA2i
+∆µA2i)(x(tc − τc)) + µButc]dt+

[
r∑

i=1

µl(z)(µA3i
+∆µA3i

)xtc + (µA4i
+∆µA4i

)(x(tc − τc)) + µButc]µdwtc

σdxtc = [
r∑

i=1

σi(z)(σA1i
+∆σA1i

)xtc + (σA2i
+∆σA2i)(x(tc − τc)) + σButc]dt+

[
r∑

i=1

σl(z)(σA3i
+∆σA3i

)xtc + (σA4i
+∆σA4i

)(x(tc − τc)) + σButc]σdwtc

γdx = 1− µdxtc
and
ytc = Cxtc

(3.22)

and the corresponding neutrosophic observer is

µdx̂tc = [
r∑

i=1

µi(z)(µµA1i
x̂tc + µA2i

tc)x(tc − τc) + µLi
(ytc − ŷtc)− µBKi

x̂tc]dt

+[
r∑

i=1

µi(z)(µA3i
x̂tc + µA3i

tc)x(tc − τc) + µLi
(ytc − ŷtc)− µBKi

x̂tc]µdwtc

σdx̂tc = [
r∑

i=1

σi(z)(σµA1i
x̂tc + µA2i

tc)x(tc − τc) + µLi
(ytc − ŷtc)− µBKi

x̂tc]dt

+[
r∑

i=1

µi(z)(µA3i
x̂tc + µA3i

tc)x(tc − τc) + µLi
(ytc − ŷtc)− µBKi

x̂tc]µdwtc

γdx̂tc = 1− µdxtc
and
ŷtc = Cx̂tc.

(3.23)

Now the system can be represented as

µdxtc =
r∑

i=1

µi(z)[µA1i
xtc + µA2i

x(tc − τc) + µBξ1(xtctc) + µBξ2(x(tc − τc)tc) + µButc]dt

+
r∑

i=1

µi(z)[µA3ixtc + µA4ix(tc − τc) + µBξ1(xtctc) + µBξ2(x(tc − τc)tc) + µButc]µdwtc

σdxtc =
r∑

i=1

σi(z)[σA1i
xtc + σA2i

x(tc − τc) + σBξ1(xtctc) + σBξ2(x(tc − τc)tc) + σButc]dt

+
r∑

i=1

σi(z)[µA3ixtc + σA4ix(tc − τc) + σBξ1(xtctc) + σBξ2(x(tc − τc)tc) + σButc]σdwtc

γdxtc = 1− µdxtc
and
ytc = Cxtc.

(3.24)

Theorem 3.2 Let the neutrosophic controller in (3.24) be chosen as

µutc =
∑r

l=1 µi[−µKi
− µLi

µM ]x̂− µξ̂1
(x̂/θ)− u1 − u2,

σutc =
∑r

l=1 σi[−σKi
− σLi

σM ]x̂− σξ̂1
(x̂/θ)− u1 − u2,

γutc = 1− µutc

(3.25)
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where M is a positive definite matrix and Kiis neutrosophic feedback gain. Suppose definitions of ξ̂1(x̂/θ),
u1, u2, and the stability conditions in theorem(1) hold. If the positive definite neutrosophic matrices M , W , U ,
V0, V1 and Ni for i = 1, 2, 3, . . . , r exist, the following conditions are satisfied

(A1i −BKi)
TM +M(A1i −BKi) + U + V0 + V1 +MA2iU

−1AT
2iM

T ≤ −Ni ∨ i (3.26)

the observer-based control system is asymptotically mean square stable.
Proof: Consider the Lyapunov-Krasovskii functional as follows:

V tc = x̂TMx̂+ eTPe+ 1
2η

tr(θ̃T θ̃) + 1
2η
ξ̃21 +

1
2η
ξ̃22+∫ t

t−τc
eT (σ)Se(σ)dσ +

∫ t

t−τc
x̂T (σ)Sx̂(σ)dσ,

µLV tc = [
r∑

i=1

µi(2x̂
T (µA1i

− µBµKi)x̂tc + 2x̂TµA2i
x̂(tc − τc)) + 2x̂TµMµLi

µCe]

+[
r∑

i=1

µi[2e
TµP (µA1i

− µLiC)etc + 2eTµPµA2i
e(tc − τc)]] + 2eTµPµBµξ1

+2eTµPµBµξ2 + 2eTµPµButc + 2eTµPµBµKi
x̂− 1

η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1

− 1
η2
ξ̃2

˙̂
ξ2 − eT tcSetc − eT (tc − τc)µSe(tc − τc) + x̂TµW x̂− x̂(tc − τc)

TµW x̂(tc − τc)+

gT tcµwgtc + gT tcµPgtc

σLV tc = [
r∑

i=1

σi(2x̂
T (σA1i

− σBσKi)x̂tc + 2x̂TσA2i
x̂(tc − τc)) + 2x̂TσMσLi

σCe]

+[
r∑

i=1

σi[2e
TσP (σA1i

− σLiC)etc + 2eTσPσA2i
e(tc − τc)]] + 2eTσPσBσξ1

+2eTσPσBσξ2 + 2eTσPσButc + 2eTσPσBσKi
x̂− 1

η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1

− 1
η2
ξ̃2

˙̂
ξ2 − eT tcSetc − eT (tc − τc)σSe(tc − τc) + x̂TσW x̂− x̂(tc − τc)

TσW x̂(tc − τc)+

gT tcσwgtc + gT tcσPgtc
γLV tc = 1− µLV tc

(3.27)
Now consider the relation

gT tcWgtc ≤ x̂TV0x̂+ x̂T (tc − τc)V1x̂(tc − τc)
gT tcPgtc ≤ eTD0e+ eT (tc − τc)D1e(tc − τc)

(3.28)

µLV tc ≤
r∑

i=1

µiet
T
c [(µA1i

−µLi
µC)

TµP+µP (µA1i
−µLi

µC)+µR+µD0+µD1+µPµA2iR−1µAT
2i
µP ]etc

+2eTµPµBξ1 + 2eTµPµBξ2 + 2eTPButc − 1
η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1 − 1

η2
ξ̃2

˙̂
ξ2

+
r∑

i=1

µi2x̂
TµMµLi

µCe+
r∑

i=1

µix̂
T [(µA1i

− µBµKi
)TµM

+µM(µA1i
− µBµKi

) + µMµA2i
µU−1µAT

2i
µM + µU + µV0 + µV1 ]x̂tc

σLV tc ≤
r∑

i=1

σiet
T
c [(σA1i

−σLi
σC)

TσP+σP (σA1i
−σLi

σC)+σR + σD0+σD1+σPσA2iR−1σAT
2i
σP ]etc

+2eTσPσBξ1 + 2eTσPσBξ2 + 2eTPButc − 1
η
tr(θ̃T θ̇)− 1

η1
ξ̃1

˙̂
ξ1 − 1

η2
ξ̃2

˙̂
ξ2

+
r∑

i=1

σi2x̂
TσMσLi

σCe+
r∑

i=1

σix̂
T [(σA1i

− σBσKi
)TσM

+σM(σA1i
− σBσKi

) + σMσA2i
σU−1σAT

2i
σM + σU + σV0 + σV1 ]x̂tc

Synchronization of Time Delay Neutrosophic Stochastic System

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                                                           303



γLV tc = 1− [µLV tc] (3.29)

Now we put
µutc =

∑r
l=1 µi[−µKi

− µLi
µM ]x̂− ξ̂1(x̂/θ)− u1 − u2

σutc =
∑r

l=1 σi[−σKi
− σLi

σM ]x̂− ξ̂1(x̂/θ)− u1 − u2

γutc = 1− µutc

(3.30)

Therefore

µLV tc ≤
r∑

i=1

σiet
T
c [(µA1i

−µLi
C)TµP+µP (µA1i

−µLi
µC)+µR+µD0+µD1+µPµA2i

µR−1µAT
2i
µP ]etc

+2eTµPµB(ξ1 − µξ̂1
(x̂/θ)− u1)2e

TµPµBµ(ξ2 − u2 − 1
η
tr(θ̃T θ̇)− 1

µη1
ξ̃1µ ˙̂

ξ1
− 1

µη2
ξ̃2µ ˙̂

ξ2

+
r∑

i=1

µix̂
T [(µA1i

−µBµKi
)TµM+µM(µA1i

−µBi)+µMµA2i
µU−1µAT

2i
µM+U+V0+V1]x̂tc

σLV tc ≤
r∑

i=1

σiet
T
c [(σA1i

−σLi
C)TσP+σP (σA1i

−σLi
σC)+σR+σD0+σD1+σPσA2i

σR−1σAT
2i
σP ]etc+

2eTσPσB(ξ1 − σξ̂1
(x̂/θ)− u1)2e

TσPσBσ(ξ2 − u2 − 1
η
tr(θ̃T θ̇)− 1

σ η1
ξ̃1σ ˙̂

ξ1
− 1

σ η2
ξ̃2σ ˙̂

ξ2

+
r∑

i=1

σix̂
T [(σA1i

− σBσKi
)TσM + σM(σA1i

− σBi) + σMσA2i
σU−1σAT

2i
σM + U + V0 + V1]x̂tc

γLV tc ≤ 1− µLV tc
(3.31)

adopting the results from the theorem 1 yields

µLV tc ≤ −βeT e+
r∑

i=1

µix̂
T [(µA1i

− µBµKi
)TµM + µM(µA1i

− µBµKi
)

+µMµA2i
µU−1µAT

2i
µM + µU + µV0 + µV1 ]x̂tc

σLV tc ≤ −βeT e+
r∑

i=1

σix̂
T [(σA1i

− σBσKi
)TσM + σM(σA1i

− σBσKi
)

+σMσA2i
σU−1σAT

2i
σM + σU + σV0 + σV1 ]x̂tc

γLV tc ≥ 1− µLV tc

(3.32)

Given the stability conditions (3.26), it follows that

LV tc ≤ −βeT e−
∑r

i=1 µiλmin(Ni) ∥x̂∥2 ,
≤ βeT e− αx̂T x̂, α > 0

(3.33)

Therefore
dV tc = −eTβe− αx̂T x̂+ 2eTPgtcdwtc (3.34)

Taking expectation, then it follows that

E[dV tc] = E[(−eTβe− αx̂T x̂)] + E[2eTPgtcdwtc]
dvtc ≤ −eTβe− αx̂T x̂

Using the Barbalat lemma, both e and x̂ will eventually approach zero.2

As a general rule, a tumultuous framework has unsound fixed focuses or temperamental circles. The
synchronization of the framework typically centers around fostering a control technique that powers framework
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directions to join to unsound fixed places or circles.

The stochastic time postpone tumultuous framework is planned as the following reference model.

The neutrosophic reference model for stochastic time-delay chaotic system is

µdxmtc = [
r∑

i=1

µi(µA1i
xmtc + µA2i

xm(tc − τc) + µBi
rtc)]dt

+[
r∑

i=1

µi(µA3ixmtc+µA4i
xm(tc−τc)+µBi

rtc)]µdwtc,

σdxmtc = [
r∑

i=1

σi(σA1i
xmtc + σA2i

xm(tc − τc) + σBi
rtc)]dt

+[
r∑

i=1

σi(σA3ixmtc+σA4i
xm(tc−τc)+σBi

rtc)]σdwtc,

γdxmtc = 1− µdxm(tc − τc)
and
ymtc = Cxmtc

(3.35)

whereA1i = A1i − BKi, A2i = A2iA3i = A3i − BKi, A4i = A4i, Bi = BKmi, Kmi is a known real matrix
and rtc is reference input.

The observer for tracking control is

µdx̂tc =
r∑

i=1

[(µA1i
− µBµKi

)x̂tc + µA2i
x̂(tc − τc) + µLi

(ytc − ŷtc) + µBµKmi
rtc]dt

+
r∑

i=1

[(µA3i
− µBµKi

)x̂tc + µA4i
x̂(tc − τc) + µLi

(ytc − ŷtc) + µBµKmi
rtc]µdwtc

σdx̂tc =
r∑

i=1

[(σA1i
− σBσKi

)x̂tc + σA2i
x̂(tc − τc) + σLi

(ytc − ŷtc) + σBσKmi
rtc]dt

+
r∑

i=1

[(σA3i
− σBσKi

)x̂tc + σA4i
x̂(tc − τc) + σLi

(ytc − ŷtc) + σBσKmi
rtc]σdwtc

γdx̂tc = 1− µdx̂tc
ŷtc = Cx̂tc.

(3.36)

Therefore the neutrosophic reference model can be written as

µdxmtc =
r∑

i=1

σi[(µA1i
− µBµKi

)xmtc + µA2i
xm(tc − τc) + µBµKmi

rtc]dt

+
r∑

i=1

µi[(µA3i
− µBµKi

)xmtc + µA4i
xm(tc − τc) + µBµKmi

rtc]µdwtc (3.37)

σdxmtc =
r∑

i=1

σi[(σA1i
− σBσKi

)xmtc + σA2i
xm(tc − τc) + µBσKmi

rtc]dt

+
r∑

i=1

σi[(σA3i
− σBσKi

)xmtc + σA4i
xm(tc − τc) + σBσKmi

rtc]σdwtc (3.38)
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γdxmtc = 1− µdxmtc (3.39)
and
ymtc = Cxmtc. (3.40)

Define the error vectors etc = xtc − x̂mtc, xtc = xmtc − x̂tc The error dynamics system of etc and x is

µdetc =
r∑

i=1

µi[(µA1i
− µLi

µC)etc + µA2i
e(tc − τc) + µBξ2 − µBµKmi

rtc + µButc]dt

+
r∑

i=1

µi[(µA3i
− µLiµC)etc + µA4i

e(tc − τc) + µBξ2 − µBµKmi
rtc + µButc]µdwtc

σdetc =
r∑

i=1

σi[(σA1i
− σLi

σC)etc + σA2i
e(tc − τc) + σBξ2 − σBσKmi

rtc + σButc]dt

+
r∑

i=1

σi[(σA3i
− σLiσC)etc + σA4i

e(tc − τc) + σBξ2 − σBσKmi
rtc + σButc]σdwtc

γdetc = 1− µdetc
and

µdx =
r∑

i=1

µi[(µA1i
− µBµKi

)xtc + µA2ix(tc − τc)− µLi
µCxtc]dt

+
r∑

i=1

µi[(µA3i
− µBµKi

)xtc + µA4i
x(tc − τc)− µLi

µCxtc]µdwtc

σdx =
r∑

i=1

σi[(σA1i
− σBσKi

)xtc + σA2ix(tc − τc)− σLi
σCxtc]dt

+
r∑

i=1

σi[(σA3i
− σBσKi

)xtc + σA4i
x(tc − τc)− σLi

σCxtc]σdwtc

µdx = 1− µdx

(3.41)

Theorem 3.3 Suppose that the fuzzy controller in (3.24) is

µutc =
∑r

i=1 µi(−µKi
x̂− µLiµM x̂+ µKmirtc)− ξ̂1(x̂/θ)− u1 − u2,

σutc =
∑r

i=1 σi(−σKi
x̂− σLiσM x̂+ σKmirtc)− ξ̂1(x̂/θ)− u1 − u2,

µutc = 1− µutc

(3.42)

and the stability conditions addressed in Theorems 3.1 and 3.2 hold. Then, the mean square asymptotic stabil-
ities of the closed-loop systems (3.41) are guaranteed.

Proof: The Lyapunov − Krasovskii functional candidate is chosen as

V tc = xTMx+ eTPe+ 1
2η
tr(θ̃T θ̃) + 1

2η
ξ̃21 +

1
2η
ξ̃22+∫ t

t−τc
eT (σ)Se(σ)dσ +

∫ t

t−τc
xT (σ)Sx(σ)dσ

(3.43)

Suppose the derivative of (3.43) as

µLV tc ≤
r∑

i=1

µi e
T [(µA1i

−µLi
µC)

TµP+µP (µA1i
−µLi

µC)+µD0+µD1+µR+µPµA2i
µR−1µT

A2i
µP ]e

+2eTµPµBξ1 + 2eT PµBξ2 +
r∑

i=1

2eTµPµBµKix̂+
r∑

i=1

2eTPB(−Ki)x̂− 2eTµPµB ξ̂1(x̂/θ)

−2eTµPµBu1 − 2eTµPµBu2 −
r∑

i=1

µi2x
TµMµLicx+

r∑
i=1

µi(−J)xTx
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σLV tc ≤
r∑

i=1

σi e
T [(σA1i

− σLi
σC)

TσP + σP (σA1i
− σLi

σC) + σD0 + σD1 + σR + σPσA2i
σR−1σT

A2i
σP ]e

+2eTσPσBξ1 + 2eT PσBξ2 +
r∑

i=1

2eTσPσBσKix̂+
r∑

i=1

2eTPB(−Ki)x̂− 2eTσPσB ξ̂1(x̂/θ)

−2eTσPσBu1 − 2eTσPσBu2 −
r∑

i=1

σi2x
TσMσLicx+

r∑
i=1

σi(−J)xTx

γLV tc ≥ 1− µLV tc
(3.44)

adopting the results from the theorem 1 and theorem 2 and Given the stability conditions (3.42), it follows that

LV tc ≤ βeT e− δxTx, δ > 0 (3.45)

Therefore
dV tc = −eTβe− δxTx+ 2[eTP + xTM ]gtcdwtc (3.46)

Taking expectation, then it follows that

E[dV tc] = E[(−eTβe− δxTx)] + E[2[eTP + xTM ]Pgtcdwtc]
≤ −eTβe− δxTx

Using the Barbalat lemma, both β and x will eventually approach zero.
Which is asymptotically mean square stable.

4 Numerical Simulations

Gensio-Tesi is a three-dimensional autonomous chaotic system. The system is defined by the following set of
differential equations:

ẋ1 = −x3 − x2

ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c)
(4.1)

where a, b, and c are system parameters. The Gensio-Tesi system has been studied extensively in the field
of chaos theory and has been used as a benchmark system for testing various chaos analysis methods.

The Gensio Tesi chaotic delay system is a nonlinear dynamic system that exhibits chaotic behavior. The
mathematical representation of the Gensio Tesi chaotic delay system is given by the following set of delay
differential equations:

ẋ1 = −ax1 + βx2(tc − τc)
ẋ2 = γx1 + δx2(tc − τc) + ϵx3(tc − τc)
ẋ3 = µx3 + vx1x2

(4.2)

The Gensio Tesi chaotic delay system has been applied in various fields such as secure communication,
chaos control, and image encryption. Its complex and unpredictable behavior makes it a useful tool in these
applications.

The system exhibits chaotic behavior under certain parameter regimes, which means that small perturba-
tions in the initial conditions can lead to vastly different outcomes over time. The delay term introduces a time
lag in the system’s response, while the stochastic term adds random fluctuations to the dynamics. The system
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Figure 1: Neutrosophic components Function for Timetcandstatevariablesx1, x2, x3

is defined by the following set of differential equations:

dx1tc = [−ax1 + βx2(tc − τc)]dt+ σ1[−ax1]dwtc
dx2tc = [γx1 + δx2(tc − τc) + ϵx3(tc − τc)]dt+ σ2[δx2(tc − τc)]dwtc
dx2tc = [µx3 + vx1x2]dt+ σ3[x1x2]dwtc

(4.3)

The system (4.3) is the stochastic differential equation that gives the Gensio Tesi chaotic delay system. Here
σ1, σ2, σ3 are the noise parameter. For this problem these parameter values are vary inbetween 0 and 1. wtc is
the wiener.

The MATLAB is used for numerical simulation. Calculation is performed using the exponential fuzzy
components function.

Figure 1 shows neutrosophic components function for timetcandstatevariablesx1, x2, x3.
Figure 2 shows neutrosophic components function the state variables x1 without time t.
Figure 3 portraits neutrosophic components function the state variables x2 without time t.
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Figure 2: Neutrosophic components Function for state variables x1

Synchronization of Time Delay Neutrosophic Stochastic System

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                                                           309



Figure 3: Neutrosophic components Function for state variables x2
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Figure 4: Neutrosophic components Function for state variables x3
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Figure 4 portraits neutrosophic components function the state variables x3 without time t.

5 Conclusion
This work proposes a neutrosophic T-S stochastic turbulent framework with time delay using an eyewitness
based approach. A fluffy versatile administrative control strategy has been utilized to survey the asymptotic
mean square soundness of tumultuous frameworks. To infer the neutrosophic versatile update regulation and
control execution, direct lattice imbalance is utilized (LMI). Since the Lyapunov examples are not required
for these computations, the versatile administrative control engineering is extremely proficient and advanta-
geous for acquiring asymptotic mean square synchronization. For mathematical reenactment, the Genisio Tesi
turbulent defer framework is utilized. The given hypothetical outcome is approved by the mathematical reen-
actment. The article is quick to address stochastic tumultuous frameworks with time delays and neutrosophic
fuzzy.
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Abstract. The process of determining which illness or disease is to blame for a person’s symptoms and indi-

cators is known as medical diagnosis. Most frequently, it is referred to as analysis with the clinical environment

implied. The data needed for finding is normally gathered from a clinical trial and actual assessment of the

individual looking for medical consideration. This paper’s major objective is to identify a methodical strategy

for decision-making problems that involves choosing the appropriate choices and qualities for a neutrosophic

score function utilising neutrosophic topology. Additionally, we use a neutrosophic topological space based on

attributes and alternatives combined with graphical representation to apply a neutrosophic scoring function to

medical diagnosis problems.

Keywords: Neutrosophic set, Neutrosophic topology, Neutrosophic score function.

—————————————————————————————————————————-

1. Introduction

Zadeh [41] as part of logic and set hypothesis was the first to introduce the concept of a

fuzzy set between intervals in mathematics. Chang’s [10] general topology framework, that

utilisesfuzzy topological space, was created with a fuzzy set. Adlassnig [6] used fuzzy set

theory to formalise medical interactions and fuzzy logic to create a framework for automated

analysis. This theory has been used in the areas of artificial intelligence, probability, science,

control structures, and financial concerns [16,20,26].

In 1983, Atanassov [7] developed an intuitionistic fuzzy set with membership and non-

membership values. Coker [14] created intuitionistic fuzzy topological spaces from intuitionistic

fuzzy sets. De et al. [15] were the first to develop the applications of intuitionistic fuzzy sets in
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medical diagnosis. Several researchers [8,17,27] investigated intuitionistic fuzzy sets in medical

diagnostics further.

Smarandache [23,24] offered the notions of neutrosophy and neutrosophic set at the begin-

ning of the 21th century and has a wide range of consistent applications in computer science, in-

formation systems, applied mathematics, artificial intelligence, mechanics, medicine, dynamic,

management science, and electrical & electronics, etc [1–4,36,37]. Salama and Alblowi, [21,22]

in 2012, developed neutrosophic set and neutrosophic crisp set in a neutrosophic topological

space. Recently, Vadivel and authors [29,30,33–35] presented various open sets and mappings

in neutrosophic topological spaces. Smarandache [24] described the single valued Neutrosophic

set on three portions (T-Truth, F-Falsehood, I-Indeterminacy) Neutrosophic sets, which Wang

et al. [38] worked on. In decision making problems, Majumdar and Samanta [18] described

various similarity measures of single valued neutrosophic sets. Several researchers have re-

cently proposed numerous similarity measures and single-valued neutrosophic sets in medical

diagnostics [5, 9, 11–13, 19, 28, 39, 40]. Vadivel and authors [31, 32] discussed an applications

using neutrosophic score function in mobile networking and material selection problems.

2. Preliminaries

Definition 2.1. [21] Let T be a non-empty set. A neutrosophic set (briefly, Nseus) L is

an object having the form L = {⟨t, µL(t), σL(t), νL(t)⟩ : t ∈ T} where µL, σL, νL → [0, 1]

denote the degree of membership, indeterminacy, non-membership functions respectively of

each element t ∈ T to the Nseus L and 0 ≤ µL(t) + σL(t) + νL(t) ≤ 3 for each t ∈ T .

Definition 2.2. [21] Let T be a non-empty set & the Nseus’s L & K in the form L =

{⟨t, µL(t), σL(t), νL(t)⟩ : t ∈ T}, K = {⟨t, µK(t), σK(t), νK(t)⟩ : t ∈ T}, then

(i) 0Ns = ⟨t, 0, 0, 1⟩ and 1Ns = ⟨t, 1, 1, 0⟩,
(ii) L ⊆ K iff µL(t) ≤ µK(t), σL(t) ≤ σK(t) & νL(t) ≥ νK(t) : t ∈ T ,

(iii) L = K iff L ⊆ K and K ⊆ L,

(iv) 1Ns − L = {⟨t, νL(t), 1− σL(t), µL(t)⟩ : t ∈ T} = Lc,

(v) L ∪K = {⟨t,max(µL(t), µK(t)),max(σL(t), σK(t)),min(νL(t), νK(t))⟩ : t ∈ T},
(vi) L ∩K = {⟨t,min(µL(t), µK(t)),min(σL(t), σK(t)),max(νL(t), νK(t))⟩ : t ∈ T}.

Definition 2.3. [21] A neutrosophic topology (briefly, Nseuty) on a non-empty set T is a

family ΓNs of neutrosophic subsets of T satisfying

(i) 0Ns , 1Ns ∈ ΓNs .

(ii) L1 ∩ L2 ∈ ΓNs for any L1, L2 ∈ ΓNs .

(iii)
∪

Lx ∈ ΓNs , ∀ Lx : x ∈ T ⊆ ΓNs .
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Then (T,ΓNs) is called a neutrosophic topological space (briefly, Nseutysp) in T . The ΓNs

elements are called neutrosophic open sets (briefly, Nseuos) in T . A Nseus CNs is called a

neutrosophic closed sets (briefly, Nseucs) iff its complement Cc
Ns

is Nseuos.

Definition 2.4. [25] The Neutrosophic Score Function (briefly, NseuScFu) on s : L → [0, 1]

is defined by

s(µL, σL, νL) =
2 + µL − σL − νL

3

that represents the average of positiveness of the neutrosophic components µL, σL, νL.

3. Neutrosophic Score Function

In this section, we present a neutrosophic score function based on methodical approach

for decision-making problem with neutrosophic information. The following essential steps

are proposed the precise way to deal with select the proper attributes and alternative in the

decision-making situation.

Step 1: Problem field selection:

Consider multi-attribute decision making problems with m attributes At1, At2, · · · , Atm and

n alternatives Γ1,Γ2, · · · ,Γn and p attributes ξ1, ξ2, · · · , ξp, (n ≤ p).

Γ1 Γ2 . . . Γn

At1 (b11) (b12) . . . (b1n)

At2 (b21) (b22) . . . (b2n)

. . . . . . .

. . . . . . .

. . . . . . .

Atm (bm1) (bm2) . . . (bmn)

At1 At2 . . . Atm

ξ1 (e11) (e12) . . . (e1m)

ξ2 (e21) (e22) . . . (e2m)

. . . . . . .

. . . . . . .

. . . . . . .

ξp (ep1) (ep2) . . . (epm)

Here all the attributes bij and eki are neutrosophic numbers, where (i = 1, 2, . . . ,m, j =

1, 2, . . . , n and k = 1, 2, . . . , p).

Step 2: Form neutrosophic topologies for Γj and ξk:

(i) Γ∗
j = Γ∪Γ∗∪Γ∗∗, where Γ = {1Ns , 0Ns , b1j , b2j , · · · bmj}, Γ∗ = {b1j∪b2j , b2j∪b3j , ·, bm−1j∪

bmj} and Γ∗∗ = {b1j ∩ b2j , b2j ∩ b3j , ·, bm−1j ∩ bmj}.
(ii) ξ∗k = ξ∪ξ∗∪ξ∗∗, where ξ = {1Ns , 0Ns , ek1, ek2, · · · ekm}, ξ∗ = {ek1∪ek2, ek2∪ek3, ·, ekm−1∪

ekm} and ξ∗∗ = {ek1 ∩ ek2, ek2 ∩ ek3, ·, ekm−1 ∩ ekm}.
Step 3: Find neutrosophic score functions:

Neutrosophic score functions (shortly, NseuScFu) of Γ,Γ∗,Γ∗∗, ξ, ξ∗, ξ∗∗,Γj and ξk are de-

fined as follows.

(i) NseuScFu(Γ) = 1
3(m+2)

[∑m+2
i=1 [2 + µi − σi − νi]

]
,

NseuScFu(Γ∗) = 1
3q [

∑q
i=1[2 + µi − σi − νi]], where q is the number of element of Γ∗ and
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NseuScFu(Γ∗∗) = 1
3r [

∑r
i=1[2 + µi − σi − νi]], where r is the number of element of Γ∗∗. For

j = 1, 2, · · · , n,

NseuScFu(Γj)

=


NseuScFu(Γ) if NseuScFu(Γ∗) = 0;NseuScFu(Γ∗∗) = 0

1
2 [NseuScFu(Γ) +NseuScFu(Γ∗)] if NseuScFu(Γ∗∗) = 0

1
3 [NseuScFu(Γ) +NseuScFu(Γ∗) +NseuScFu(Γ∗∗)] otherwise

(ii) NseuScFu(ξ) = 1
3(m+2)

[∑m+2
i=1 [2 + µi − σi − νi]

]
,

NseuScFu(ξ∗) = 1
3s [

∑s
i=1[2 + µi − σi − νi]], where s is the number of element of ξ∗ and

NseuScFu(ξ∗∗) = 1
3t

[∑t
i=1[2 + µi − σi − νi]

]
, where t is the number of element of ξ∗∗. For

k = 1, 2, · · · , p,

NseuScFu(ξk)

=


NseuScFu(ξ) if NseuScFu(ξ∗) = 0;NseuScFu(ξ∗∗) = 0

1
2 [NseuScFu(ξ) +NseuScFu(ξ∗)] if NseuScFu(ξ∗∗) = 0

1
3 [NseuScFu(ξ) +NseuScFu(ξ∗) +NseuScFu(ξ∗∗)] otherwise

Step 4: Final Decision

Arrange neutrosophic score values for the alternatives Γ1 ≤ Γ2 ≤ · · · ≤ Γn and the attributes

ξ1 ≤ ξ2 ≤ · · · ≤ ξp. Choose the attribute ξp for the alternative Γ1 and ξp−1 for the alternative

Γ2 etc. If n < p, then ignore ξk, where k = 1, 2, · · · , n− p.

4. Numerical Example

Medical diagnosis has increased volume of data accessible to doctors from new medical

innovations and includes vulnerabilities. In medical diagnosis, very difficult task is the way

toward classifying different set of symptoms under a single name of an illness. In this part, we

exemplify a medical diagnosis problem for effectiveness and applicability of above proposed

approach.

Step 1: Problem field selection:

Consider the following tables giving informations when consulted physicians about five pa-

tients, Patient 1 (shortly, Pat1), Patient 2 (shortly, Pat2), Patient 3 (shortly, Pat3), Patient

4 (shortly, Pat4) and Patient 5 (shortly, Pat5) and symptoms are Weight gain (shortly, Wg),

Tiredness (shortly, Td), Myalgia (shortly, Ml), Swelling of legs (shortly, Sl) and Mensus Prob-

lem (shortly, Mp). We need to find the patient and to find the disease such as Lymphedema,

Insomnia, Hypothyroidism, Menarche, Arthritis of the patient. The data in Table 1 and Table
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2 are explained by the membership, the indeterminacy and the non-membership functions of

the patients and diseases respectively.

XXXXXXXXXXXSymptoms

Patients
Pat1 Pat2 Pat3 Pat4 Pat5

Wg (0.9,0.1,0) (0.8,0,0.2) (0,0.1,0.9) (0.1,0,0.7) (0.3,0.2,0.5)

Td (0,0.3,0.7) (0.1,0.2,0.7) (0.8,0.1,0.2) (0.1,0.1,0.8) (0.6,0.5,0.3)

Ml (0.3,0.1,0.6) (0.8,0,0.3) (0.3,0.1,0.6) (0.2,0.1,0.6) (0.3,0.4,0.4)

Sl (0.9,0,0.1) (0.4,0.2,0.5) (0.2,0.2,0.7) (0.4,0.2,0.5) (0.4,0.6,0.3)

Mp (0.2,0.1,0.7) (0.3,0.2,0.5) (0.4,0.3,0.2) (0.9,0,0.1) (0.7,0.4,0.5)

Table 1. Neutrosophic values for patients

XXXXXXXXXXXDisease

Symptoms
Wg Td Ml Sl Mp

Lymphedema (0,0.2,0.8) (0.2,0.2,0.1) (0.7,0.2,0.1) (0.9,0,0.1) (0.2,0.6,0.4)

Insomnia (0,0.1,0.9) (0.9,0,0.1) (0.2,0,0.8) (0.2,0.4,0.1) (0.2,0.1,0.7)

Hypothyroidism (0.9,0.1,0.1) (0.1,0.1,0.8) (0,0.1,0.9) (0.1,0.4,0.3) (0.2,0.6,0.4)

Menarche (0.6,0.3,0.1) (0.1,0.1,0.8) (0.2,0.4,0.1) (0.2,0.5,0.3) (0.9,0,0.2)

Arthritis (0,0.1,0.8) (0.1,0.4,0.6) (0.9,0.1,0.1) (0.1,0.3,0.5) (0.3,0.1,0.6)

Table 2. Neutrosophic values for diseases

Wg Td Ml Sl Mp
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Figure 1. Neutrosophic values for Patient 1

Step 2: Form neutrosophic topologies for (Γj) and (ξk):

(i) Γ∗
1 = Γ ∪ Γ∗ ∪ Γ∗∗, where

Γ = {(0, 0, 1), (1, 1, 0), (0.9, 0.1, 0), (0, 0.3, 0.7), (0.3, 0.1, 0.6), (0.9, 0, 0.1), (0.2, 0.1, 0.7)},
Γ∗ = {(0.9, 0.3, 0), (0.3, 0.3, 0.6), (0.9, 0.3, 0.1), (0.2, 0.3, 0.7), (0.9, 0.1, 0.1)} and

Γ∗∗ = {(0, 0.1, 0.7), (0, 0, 0.7), (0.3, 0, 0.6), (0.2, 0, 0.7)}.
(ii) Γ∗

2 = Γ ∪ Γ∗ ∪ Γ∗∗, where
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Figure 2. Neutrosophic values for Patient 2
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Figure 3. Neutrosophic values for Patient 3
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Figure 4. Neutrosophic values for Patient 4

Γ = {(0, 0, 1), (1, 1, 0), (0.8, 0, 0.2), (0.1, 0.2, 0.7), (0.8, 0, 0.2), (0.4, 0.2, 0.5), (0.3, 0.2, 0.5)},
Γ∗ = {(0.8, 0.2, 0.2), (0.8, 0.2, 0.3)} and

Γ∗∗ = {(0.1, 0, 0.7), (0.4, 0, 0.5), (0.3, 0, 0.5)}.
(iii) Γ∗

3 = Γ ∪ Γ∗ ∪ Γ∗∗, where

Γ = {(0, 0, 1), (1, 1, 0), (0, 0.1, 0.9), (0.8, 0.1, 0.2), (0.3, 0.1, 0.6), (0.2, 0.2, 0.7), (0.4, 0.3, 0.2)},
Γ∗ = {(0.8, 0.2, 0.2), (0.8, 0.3, 0.2), (0.3, 0.2, 0.6)} and

Γ∗∗ = {(0.2, 0.1, 0.7), (0.4, 0.1, 0.2)}.
Thangaraja P, Vadivel A and John Sundar C, Application Of Neutrosophic Sets Based On
Score Function in Medical Diagnosis

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                             319



Wg Td Ml Sl Mp
0

0.2

0.4

0.6
D
eg
re
es

o
f
va
lu
es

µM σM ξM

Figure 5. Neutrosophic values for Patient 5
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Figure 6. Neutrosophic values for Lymphedema
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Figure 7. Neutrosophic values for Insomnia

(iv) Γ∗
4 = Γ ∪ Γ∗ ∪ Γ∗∗, where

Γ = {(0, 0, 1), (1, 1, 0), (0.1, 0, 0.7), (0.1, 0.1, 0.8), (0.2, 0.1, 0.6), (0.4, 0.2, 0.5), (0.9, 0, 0.1)},
Γ∗ = {(0.1, 0.1, 0.7), (0.9, 0.1, 0.1), (0.9, 0.2, 0.1)} and

Γ∗∗ = {(0.1, 0, 0.8), (0.2, 0, 0.6), (0.4, 0, 0.5)}.
(v) Γ∗

5 = Γ ∪ Γ∗ ∪ Γ∗∗, where

Γ = {(0, 0, 1), (1, 1, 0), (0.3, 0.2, 0.5), (0.6, 0.5, 0.3), (0.3, 0.4, 0.4), (0.4, 0.6, 0.3), (0.7, 0.4,
0.5)},
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Figure 8. Neutrosophic values for Hypothyroidism
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Figure 9. Neutrosophic values for Menarche
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Figure 10. Neutrosophic values for Arthritis

Γ∗ = {(0.6, 0.6, 0.3), (0.7, 0.5, 0.3), (0.7, 0.4, 0.4), (0.7, 0.6, 0.3)} and

Γ∗∗ = {(0.4, 0.5, 0.3), (0.6, 0.4, 0.5), (0.3, 0.4, 0.5), (0.4, 0.4, 0.5)}.
(i) ξ∗1 = ξ ∪ ξ∗ ∪ ξ∗∗, where

ξ = {(0, 0, 1), (1, 1, 0), (0, 0.2, 0.8), (0.2, 0.2, 0.1), (0.7, 0.2, 0.1), (0.9, 0, 0.1), (0.2, 0.6, 0.4)},
ξ∗ = {(0.9, 0.2, 0.1), (0.2, 0.6, 0.1), (0.7, 0.6, 0.1), (0.9, 0.6, 0.1)} and

ξ∗∗ = {(0, 0, 0.8), (0.2, 0.2, 0.1), (0.2, 0, 0.1), (0.2, 0.2, 0.4), (0.7, 0, 0.1), (0.2, 0, 0.4)}.
(ii) ξ∗2 = ξ ∪ ξ∗ ∪ ξ∗∗, where
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ξ = {(0, 0, 1), (1, 1, 0), (0, 0.1, 0.9), (0.9, 0, 0.1), (0.2, 0, 0.8), (0.2, 0.4, 0.1), (0.2, 0.1, 0.7)},
ξ∗ = {(0.9, 0.1, 0.1), (0.2, 0.1, 0.8), (0.9, 0.4, 0.1)} and

ξ∗∗ = {(0, 0, 0.9), (0.2, 0, 0.1), (0.2, 0, 0.7)}.
(iii) ξ∗3 = ξ ∪ ξ∗ ∪ ξ∗∗, where

ξ = {(0, 0, 1), (1, 1, 0), (0.9, 0.1, 0.1), (0.1, 0.1, 0.8), (0, 0.1, 0.9), (0.1, 0.4, 0.3), (0.2, 0.6, 0.4)},
ξ∗ = {(0.9, 0.4, 0.1), (0.9, 0.6, 0.1), (0.2, 0.6, 0.3)} and

ξ∗∗ = {(0.1, 0.1, 0.3), (0.2, 0.1, 0.4), (0, 0.1, 0.9), (0.1, 0.4, 0.4)}.
(iv) ξ∗4 = ξ ∪ ξ∗ ∪ ξ∗∗, where

ξ = {(0, 0, 1), (1, 1, 0), (0.6, 0.3, 0.1), (0.1, 0.1, 0.8), (0.2, 0.4, 0.1), (0.2, 0.5, 0.3), (0.9, 0, 0.2)},
ξ∗ = {(0.6, 0.4, 0.1), (0.6, 0.5, 0.1), (0.9, 0.3, 0.1), (0.9, 0.1, 0.2), (0.2, 0.5, 0.1), (0.9, 0.4, 0.1),

(0.9, 0.5, 0.2)} and

ξ∗∗ = {(0.2, 0.3, 0.1), (0.2, 0.3, 0.3), (0.6, 0, 0.2), (0.1, 0, 0.8), (0.2, 0.4, 0.3), (0.2, 0.4, 0.2)}.
(v) ξ∗5 = ξ ∪ ξ∗ ∪ ξ∗∗, where

ξ = {(0, 0, 1), (1, 1, 0), (0, 0.1, 0.8), (0.1, 0.4, 0.6), (0.9, 0.1, 0.1), (0.1, 0.3, 0.5), (0.3, 0.1, 0.6)},
ξ∗ = {(0.9, 0.4, 0.1), (0.1, 0.4, 0.5), (0.3, 0.4, 0.6), (0.9, 0.3, 0.1), (0.3, 0.3, 0.5)} and

ξ∗∗ = {(0.1, 0.1, 0.6), (0.1, 0.3, 0.6), (0.1, 0.1, 0.5)}.
Step 3: Find neutrosophic score functions:

(i) NseuScFu(Γ) = 0.6, NseuScFu(Γ∗) = 0.6933 and NseuScFu(Γ∗∗) = 0.475.

NseuScFu(Γ1) = 0.5894.

(ii) NseuScFu(Γ) = 0.6, NseuScFu(Γ∗) = 0.7833 and NseuScFu(Γ∗∗) = 0.5666.

NseuScFu(Γ2) = 0.6499.

(iii) NseuScFu(Γ) = 0.5381, NseuScFu(Γ∗) = 0.6888 and NseuScFu(Γ∗∗) = 0.5833.

NseuScFu(Γ3) = 0.6034.

(iv) NseuScFu(Γ) = 0.5524, NseuScFu(Γ∗) = 0.7333 and NseuScFu(Γ∗∗) = 0.5333.

NseuScFu(Γ4) = 0.6063.

(v) NseuScFu(Γ) = 0.5533, NseuScFu(Γ∗) = 0.6083 and NseuScFu(Γ∗∗) = 0.5166.

NseuScFu(Γ5) = 0.5527.

(i) NseuScFu(ξ) = 0.5857, NseuScFu(ξ∗) = 0.6917 and NseuScFu(ξ∗∗) = 0.5857.

NseuScFu(ξ1) = 0.6332.

(ii) NseuScFu(ξ) = 0.5381, NseuScFu(ξ∗) = 0.7111 and NseuScFu(ξ∗∗) = 0.5222.

NseuScFu(ξ2) = 0.5905.

(iii) NseuScFu(ξ) = 0.5, NseuScFu(ξ∗) = 0.6555 and NseuScFu(ξ∗∗) = 0.475.

NseuScFu(ξ3) = 0.5435.

(iv) NseuScFu(ξ) = 0.5809, NseuScFu(ξ∗) = 0.7666 and NseuScFu(ξ∗∗) = 0.5888.

NseuScFu(ξ4) = 0.6454.

(v) NseuScFu(ξ) = 0.5143, NseuScFu(ξ∗) = 0.5933 and NseuScFu(ξ∗∗) = 0.4555.
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NseuScFu(ξ5) = 0.5210.
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Figure 11. Neutrosophic score values for Patients
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Figure 12. Neutrosophic score values for Diseases

Step 4: Final Decision:

Arrange neutrosophic score values for the alternatives Γ1, Γ2, Γ3, Γ4, Γ5 and the attributes

ξ1, ξ2, ξ3, ξ4, ξ5 in ascending order. We get the following sequences Γ5 ≤ Γ1 ≤ Γ3 ≤ Γ4 ≤ Γ2

and ξ5 ≤ ξ3 ≤ ξ2 ≤ ξ1 ≤ ξ4. Thus the Pat5 suffers from Menarche, the Pat1 suffers from

Lymphedema, the Pat3 suffers from Insomnia, the Pat4 suffers from Hypothyroidism and the

Pat2 suffers from Arthritis.

5. Conclusions

In this numerical example, we found out that the patients suffering from a diseases in the

form of neutrosophic set by using neutrosophic score functions. This will help to find out the

correct attributes and alternative in any field environment problems.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the editors and the anonymous review-

ers for their valuable comments and suggestions which have helped immensely in improving

the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Thangaraja P, Vadivel A and John Sundar C, Application Of Neutrosophic Sets Based On
Score Function in Medical Diagnosis

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                             323



References

1. M. Abdel-Basset, V. Chang, M. Mohamed and F. Smarandche, A Refined Approach for Forecasting Based

on Neutrosophic Time Series, Symmentry, 11 (4) (2019), 457.

2. M. Abdel-Basset, G. Manogaran, A. Gamal and V. Chang, A Novel Intelligent Medical Decision Support

Model Based on Soft Computing and IoT, IEEE Internet of Things Journal, (2019).

3. M. Abdel-Basset, and M. Mohamed, A novel and powerful framework based on neutrosophic sets to aid

patients with cancer, Future Generation Computer Systems, 98 (2019) 144-153.

4. M. Abdel-Basset, A. Gamal, G. Manogaran and H. V. Long A novel group decision making model based on

neutrosophic sets for heart disease diagnosis, Multimedia Tools and Applications, (2019) 1-26.

5. M. Abdel-Basset, G. Manogaran, A. Gamal and F. Smarandache, A group decision making framework

based on neutrosophic TOPSIS approach for smart medical device selection, Journal of medical systems, 43

(2)(2019), 1-13.

6. K. P. Adlassnig, Fuzzy set theory in medical diagnosis, IEEE Transactions on Systems, Man, and Cyber-

netics, 16 (2) (1986), 260-265.

7. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.

8. P. Biswas, S. Pramanik and B. C. Giri, A study on information technology professionals’ health problem based

on intuitionistic fuzzy cosine similarity measure, Swiss Journal of Statistical and Applied Mathematics, 2

(1) (2014), 44-50.

9. S. Broumi and F. Smarandache, Several similarity measures of neutrosophic sets, Neutrosophic Sets and

Systems, 1 (2013), 54-62.

10. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

11. V. Chinnadurai and A. Bobin, Multiple-Criteria Decision Analysis Process by Using Prospect Decision

Theory in Interval-Valued Neutrosophic Environment, CAAI Trans. Intell. Technol., 5 (3) (2020), 209-221.

12. V. Chinnadurai and A. Bobin, Single-valued neutrosophic N-soft set and intertemporal single-valued neu-

trosophic N-soft set to assess and pre-assess the mental health of students amidst COVID-19, Neutrosophic

sets and systems, 38 (2020), 67-110.

13. V. Chinnadurai, F. Smarandache and A. Bobin, Multi-Aspect Decision-Making Process in Equity Investment

Using Neutrosophic Soft Matrices, Neutrosophic sets and systems, 31 (2020), 224-241.

14. D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88 (1997),

81-89.

15. S. K. De, A. Biswas and R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets

and System, 117 (2) (2001), 209-213.

16. P. R. Innocent and R. I. John, Computer aided fuzzy medical diagnosis, Information Sciences, 162 (2004),

81-104.

17. V. Khatibi and G. A. Montazer, Intuitionistic fuzzy set vs fuzzy set application in medical pattern recognition,

Artificial Intelligence in Medicine, 47 (1) (2009), 43-52.

18. P. Majumdar and S. K. Samanta, On similarity and entropy of neutrosophic sets, Journal of Intelligent and

Fuzzy Systems, 26 (3) (2014), 1245-1252.

19. N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb and A. Aboelfetouh, An Integrated

Neutrosophic-TOPSIS Approach and Its Application to Personnel Selection: A New Trend in Brain Pro-

cessing and Analysis, IEEE Access, 7 (2019), 29734-29744.

20. T.J. Roos, Fuzzy Logic with Engineering Applications, McGraw Hill P.C., New York, 1994.

21. A. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR Journal of

Mathematics, 3 (4) (2012), 31-35.

Thangaraja P, Vadivel A and John Sundar C, Application Of Neutrosophic Sets Based On
Score Function in Medical Diagnosis

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                             324



22. A. A. Salama and F. Smarandache, Neutrosophic crisp set theory, Educational Publisher, Columbus, Ohio,

USA, 2015.

23. F. Smarandache, A Unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic

probability, American Research Press, Rehoboth, NM, (1999).

24. F. Smarandache, Neutrosophy and neutrosophic logic, First International Conference on Neutrosophy, Neu-

trosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA (2002).

25. F. Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of

Neutrosophic Triplets (T, I, F), Neutrosophic Sets and Systems, 38 (2020), 1-14.

26. M. Sugeno, An Introductory survey of fuzzy control, Information sciences, 36 (1985), 59-83.

27. E. Szmidt and J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications, In International Confer-

ence on Computational Intelligence, Springer, Berlin, Heidelberg (2001), 148-151.

28. N. D. Thanh and M. Ali, Neutrosophic recommender system for medical diagnosis based on algebraic sim-

ilarity measure and clustering, In Fuzzy Systems (FUZZ-IEEE), IEEE International Conference, (2017),

1-6.

29. A. Vadivel and C. John Sundar, Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps, International

Journal of Neutrosophic Science (IJNS), 13 (2) (2021), 66-74.

30. A. Vadivel and C. John Sundar, New Operators Using Neutrosophic δ-Open Set, Journal of Neutrosophic

and Fuzzy Systems, 1 (2) (2021), 61-70.

31. A. Vadivel and C. John Sundar, Application of Neutrosophic Sets Based on Mobile Network Using Neutro-

sophic Functions , Emerging Trends in Industry 4.0 (ETI 4.0), (2021), 1-8.

32. A. Vadivel, N. Moogambigai, S. Tamilselvan and P. Thangaraja, Application of Neutrosophic Sets Based

on Neutrosophic Score Function in Material Selection, 2022 First International Conference on Electrical,

Electronics, Information and Communication Technologies (ICEEICT), (2022), 1-5.

33. A. Vadivel, M. Seenivasan and C. John Sundar, An introduction to δ-open sets in a neutrosophic topological

spaces, Journal of Physics: Conference Series, 1724 (2021), 012011.

34. A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-continuous maps and neutrosophic e-

irresolute maps, Turkish Journal of Computer and Mathematics Education, 12 (1S) (2021), 369-375.

35. A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-Open Maps, Neutrosophic e-Closed Maps

and Neutrosophic e-Homeomorphisms in Neutrosophic Topological Spaces, AIP Conference Proceedings,

2364 (2021), 020016.

36. V. Venkateswaran Rao and Y. Srinivasa Rao, Neutrosophic Pre-open sets and Pre-closed sets in Neutrosophic

Topology, International Journal of chemTech Research, 10 (10), 449-458.

37. F. Wadei, Al-Omeri and Saeid Jafari, Neutrosophic pre-continuity multifunctions and almost pre-continuity

multifunctions, Neutrosophic Sets and Systems, 27 (2019), 53-69.

38. H. Wang, F. Smarandache, Y. Zhang and R. Sunderraman, Single valued neutrosophic sets, Multi-space

and Multi-structure, 4 (2010), 410-413.

39. J. Ye and Q. Zhang, Single valued neutrosophic similarity measures for multiple attribute decision-making,

Neutrosophic Sets and Systems, 2 (2014), 48-54.

40. J. Ye and S. Ye, Medical diagnosis using distance-based similarity measures of single valued neutrosophic

multisets, Neutrosophic Sets and Systems, 7 (2015), 47-54.

41. L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.

Thangaraja P, Vadivel A and John Sundar C, Application Of Neutrosophic Sets Based On
Score Function in Medical Diagnosis

Received: March 21, 2023.  Accepted: July 19, 2023

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                             325



University of New Mexico

A contemporary postulates on resolvable sets and functions

Deepa M 1 ∗, Sasikala D2, Broumi Said3

1Assistant Professor,PSGR Krishnammal College for Women, Coimbatore; mdeepa@psgrkcw.ac.in.
2Assistant Professor,PSGR Krishnammal College for Women, Coimbatore, dsasikala@psgrkcw.ac.in
3Laboratory of information processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7995, Sidi

Othman, Casablanca, Morocco, broumisaid78@gmail.com

∗Correspondence: mdeepa@psgrkcw.ac.in

Abstract. In this article, a new class of sets namely neutrosophic resolvable sets in neutrosophic topological

space have been introduced. We present the neutrosophic resolvable functions between neutrosophic topological
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—————————————————————————————————————————-

1. Introduction

Zadeh presented the notion of fuzzy sets with membership functions in 1965 [15]. This con-

cept is succesfully used to handle uncertainty in real life where each element has a membership

function. In 1986, Attanassov proposed vague intuitionistic fuzzy sets which are characterised

by the membership function and the non-member function. [2]. But in real world we have to

handle the indeterminancy and incompleteness. For this purpose, Smarandache introduced the

neutrosophic set theory to solve many practical problems in the real world [5]. Topology has

been a vital part of research in recent years. In this context, Salama and Albowi succesfully

applied the neutrosophic sets in the topological space called as neutrosophic topological space

in 2012 [12].

The concept of resolvable sets in topological space was presented by Kuratowski in 1966 [6].

Maximilian Ganster gave the concept of pre-open sets and resolvable spaces in 1987 [7]. Resolv-

able spaces and irresolvable spaces were explored by Chandan Chakkopadhyay and Chhanda

Bandyopadhyay in 1993 [4]. In 2017 neutrosophic resolvable, neutrosophic irresolvable, neu-

trosophic open hereditarily irresolvable spaces and maximally neutrosophic irresolvable spaces

were studied by Caldas, Maximilian Ganster, Dhavaseelan, and Jafari through neutrosophic
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topological spaces [3]. In 2017, Thangaraj initiated to introduce the idea of resolvable sets

and their functions in fuzzy topological spaces. Additionally, they discussed the conditions for

fuzzy topological spaces to become a fuzzy Baire spaces obtained by fuzzy resolvable sets. [8].

Thangaraj and Lokeshwari studied irresolvable sets and open hereditarily irresolvable spaces in

fuzzy topological spaces [9]. Also, they discussed resolvable sets and functions in fuzzy hyper-

connected spaces [10]. In 2020, fuzzy resolvable functions were briefly inspected by Thangaraj

and Senthil. [11]. These studies motivated us to ideate a new notion of sets namely neutro-

sophic resolvable sets in neutrosophic topological spaces. Also we define the new functions

namely neutrosophic resolvable functions between neutrosophic topological spaces N (X , πX )

and N (Y, πY). Finally the properties of neutrosophic resolvable sets and functions are dis-

cussed by theorems and suitable examples.

Through out this paper, neutrosophic topological space [simply nts] is denoted by N (X , π).

2. Preliminaries

Definition 2.1. [1] Let X be a nonempty fixed set. A neutrosophic set P is an object having

the form P = {< r, µP(r), νP(r), ωP(r) >; r ∈ X} where µP(r), νP(r) and ωP(r) represent the

degree of true, indeterminancy and false membership functions respectively of each element

r ∈ X to the set P.

Definition 2.2. [1] Let P = {< r, µP(r), νP(r), ωP(r) >, r ∈ X} be a neutrosophic sets, then

the complement of P can be defined as by the following three kinds,

C1 : C[P] = {< r, 1N − µP(r), 1N − νP(r), 1N − ωP(r) >; r ∈ X}
C2 : C[P] = {< r, ωP(r), νP(r), µP(r) >; r ∈ X}
C3 : C[P] = {< r, ωP(r), 1N − νP(r), µP(r) >; r ∈ X}
Throughout this paper, the examples are derived using C1.

proposition 2.3. [1] For any neutrosophic set P in N (X , π), the following conditions are

hold

(i) 0N ≤ 0N , 0N ≤ P
(ii) 1N ≤ 1N ,P ≤ 1N

Definition 2.4. [12] Let X be a non empty set and the neutrosophic sets P and Q in the

form P = {< r, µP(r), νP(r), ωP(r) >, r ∈ X} and Q = {< r, µQ(r), νQ(r), ωQ(r) >; r ∈ X},
then P is the subset of Q i.e., P ⊆ Q is defined by the following two ways:

(i) P ≤ Q ⇔ µP(r) ≤ µQ(r), νP(r) ≤ νQ(r), ωP(r) ≥ ωQ(r);∀r ∈ X
(ii) P ≤ Q ⇔ µP(r) ≤ µQ(r), νP(r) ≥ νQ(r), ωP(r) ≥ ωQ(r);∀r ∈ X

Deepa M, Sasikala D and Broumi Said,A contemporary postulates on resolvable sets and
functions

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                             327



Definition 2.5. [12] Let X be a non-empty set and π be a collection of all neutrosophic

subsets of X . Then π is said to be neutrosophic topology on X if the following conditions are

hold.

(i) 0N , 1N ∈ π

(ii)
⋃

Pi ∈ π, ∀{Pi; i ∈ π} ≤ π

(iii) P1 ∩ P2 ∈ π, for any P1, P2 ∈ π

Then the pair N (X , π) is called as neutrosophic topological space. The elements of N (X , π)

are called neutrosophic open sets. A neutrosophic set is said to be neutrosophic closed if its

complement is neutrosophic open.

Definition 2.6. [1] Let X be a nts and P = {< r, µP(r), νP(r), ωP(r) >; r ∈ X} be a

neutrosophic set in X . Then the neutrosophic interior and neutrosophic closure of P are

defined as,

N int[P] =
⋃
{H : H is a neutrosophic open set in X and H ≤ P}

N cl[P] =
⋂
{K : K is a neutrosophic closed set in X and P ≤ K}

It follows that,

(i) P is a neutrosophic closed set if and only if N cl[P] = P
(ii) P is a neutrosophic open set if and only if N int[P] = P

Definition 2.7. [1] A neutrosophic subset P in a nts N (X , π) is called as

(i) neutrosophic semi open set if P ≤ N cl[N int[P]]

(ii) neutrosophic pre open set if P ≤ N int[N cl[P]]

(iii) neutrosophic semi pre open set if P ≤ N cl[N int[N cl[P]]]

(iv) neutrosophic regular open set if P = N intN cl[P]

Definition 2.8. [5] A neutrosophic subset P in a nts N (X , π) is called

(i) neutrosophic dense if N cl[P] = 1N

(ii) neutrosophic nowhere dense N intN cl[P] = 0N

(iii) neutrosophic somewhere dense if N int[N cl[P]] ̸= 0N

Definition 2.9. [5] Let N (X , π) be a nts and P1, P2 are neutrosophic subsets in X , then

the following conditions are hold.

(i) N int[P1] ≤ P1

(ii) N cl[P1] ≥ P1

(iii) P1 ≤ P2 =⇒ N int[P1] ≤ N int[P2]

(iv) P1 ≤ P2 =⇒ N cl[P1] ≤ N cl[P2]

(v) N int[N int[P1]] = N int[P1]
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(vi) N cl[N cl[P1]] = N cl[P1]

(vii) N int[P1 ∧ P2] = N int[P1] ∧N int[P2]

(viii) N cl[P1 ∨ P2] = N cl[P1] ∨N cl[P2]

(ix) N int[0N ] = 0N

(x) N int[1N ] = 1N

(xi) N cl[0N ] = 0N

(xii) N cl[1N ] = 1N

(xiii) P1 ≤ P2 =⇒ C[P2] ≤ C[P1]

(xiv) N cl[P1 ∧ P2] ≤ N cl[P1] ∧N cl[P2]

(xv) N int[P1 ∧ P2] ≥ N int[P1] ∧N int[P2]

Definition 2.10. [14] LetN (X , πX ) andN (Y, πY) be any two neutrosophic topological space.

Then the function f : [X , πX ] → [Y, πY ] is called a

(i) Neutrosophic continuous function if f−1[P] is neutrosophic open in N (X , πX ), for each

neutrosophic open set P in N (Y, πY)

(ii) Neutrosophic contra continuous function if f−1[P] is neutrosophic closed in N (X , πX ),

for each neutrosophic open set P in N (Y, πY).

3. Neutrosophic resolvable sets

Definition 3.1. A neutrosophic set P is said to be neutrosophic resolvable set in neutrosophic

topological space N (X , π), if {N cl[Q∧P]∧N cl[Q∧C[P]]} is neutrosophic nowhere dense in

N (X , π) for each neutrosophic closed set Q in N (X , π). i.e.,N intN cl{N cl[Q ∧ P] ∧ N cl[Q ∧
C[P]]]} = 0N , where C[Q] ∈ π.

Example 3.2. Consider X = {µ, ν} and the neutrosophic sets P1, P2, P3 and P4 in X as

follows

P1={< µ, 0.4, 0.3, 0.6 >,< ν, 0.5, 0.3, 0.2 >;µ, ν ∈ X}
P2={< µ, 0.3, 0.4, 0.3 >,< ν, 0.6, 0.5, 0.2 >;µ, ν ∈ X}
P3={< µ, 0.4, 0.4, 0.3 >,< ν, 0.6, 0.5, 0.2 >;µ, ν ∈ X}
P4={< µ, 0.3, 0.3, 0.6 >,< ν, 0.5, 0.3, 0.2 >;µ, ν ∈ X} Then π = {0N ,P1,P2,P3,P4, 1N } is a

nts. Now, πC = {0N , C[P1], C[P2], C[P3], C[P4], 1N }
Let A={< µ, 0.2, 0.1, 0.7 >,< ν, 0.3, 0.1, 0.3 >;µ, ν ∈ X}. Now,
N intN cl{N cl[C[P1] ∧A] ∧N cl[C[P1] ∧ C[A]]} = 0N

N intN cl{N cl[C[P2] ∧A] ∧N cl[C[P2] ∧ C[A]]} = 0N

N intN cl{N cl[C[P3] ∧A] ∧N cl[C[P3] ∧ C[A]]} = 0N

N intN cl{N cl[C[P4] ∧A] ∧N cl[C[P4] ∧ C[A]]} = 0N .

Therefore A is a neutrosophic resolvable set in N (X , π).
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Example 3.3. Consider X = {µ} and consider the neutrosophic sets Q1, Q2, Q3 and R in X
as follows:

Q1 = {< µ, 0.4, 0.5, 0.6 >,µ ∈ X}
Q2 = {< µ, 0.3, 0.4, 0.8 >,µ ∈ X}
Q3 = {< µ, 0.4, 0.5, 0.8 >,µ ∈ X}
Then [X , π] = {0N ,Q1,Q2,Q3, 1N } is a nts. Here πC = {0N , C[Q1], C[Q2], C[Q3], 1N }. Take

R = {< µ, 0.6, 0.6, 0.4 >,µ ∈ x}. Now,
N intN cl[N cl[C[Q1] ∧R] ∧N cl[C[Q1] ∧ C[R]]] = Q1 ̸= 0N

N intN cl[N cl[C[Q2] ∧R] ∧N cl[C[Q2] ∧ C[R]]] = Q1 ̸= 0N

N intN cl[N cl[C[Q3] ∧R] ∧N cl[C[Q3] ∧ C[R]]] = 0N

This implies R is not a neutrosophic resolvable set in N (X , π).

Remark 3.4. In a nts N (X , π), every neutrosophic resolvable set need not be a neutrosophic

open set. In example 3.2, A is a neutrosophic resolvable set but not neutrosophic open set.

proposition 3.5. In a nts N (X , π), if P is a neutrosophic resolvable set, then N intN cl[P ∧
C[P] ∧Q] = 0N for each neutrosophic closed set Q in N (X , π).

Proof. Let P be a neutrosophic resolvable set in N (X , π), then for each neutrosophic closed

set Q, we have N intN cl{N cl[Q ∧ P] ∧ N cl[Q ∧ C[P]]]} = 0N , Using 3.1, N cl[Q ∧ P] ∧
N cl[Q ∧ C[P]] ≥ N cl[[Q ∧ P] ∧ [Q ∧ C[P]] ≥ N cl[Q ∧ P ∧ C[P]]. Now, N intN cl{N cl[Q ∧
P] ∧ N cl[Q ∧ C[P]]} ≥ N intN cl[Q ∧ P ∧ C[P]]. This implies 0N ≥ N intN cl[Q ∧ P ∧ C[P]].

Hence N intN cl[Q∧ P ∧ C[P]] = 0N in N (X , π).

proposition 3.6. In a nts N (X , π), if P is a neutrosophic resolvable set in N (X , π), then

N cl[P ∨ C[P] ∨R] = 1N for each neutrosophic open set R in N (X , π).

Proof. Let P be a neutrosophic resolvable set in N (X , π) using proposition 3.5, we have

N intN cl[P ∧ C[P] ∧ Q] = 0N for each neutrosophic closed set Q in N (X , π). Then

C[N intN cl[P ∧ C[P] ∧ Q]] = 1N . We know that N clN int[C[P] ∨ P ∨ C[Q]] ≤ N cl[C[P] ∨
P ∨ C[Q]]. This implies 1N ≤ N cl[C[P]] ∨ [P] ∨ C[Q] and put C[Q] = R. Then we have

N cl[P ∨ C[P] ∨R] = 1N for each neutrosophic open set R in N (X , π).

proposition 3.7. Let N (X , π) be a nts, then the neutrosophic interior of a neutrosophic closed

set is neutrosophic regular open.

Proof. Let Q be a neutrosophic closed set in N (X , π) and take R = N intQ. Therefore

R ≤ Q. Since Q is closed set in N (X , π). N cl[R] ≤ N cl[Q] = Q. This implies N intN cl[R] ≤
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N int[Q] = R. We have R ≤ N cl[R]. Now N int[R] ≤ N intN cl[R]. This implies R ≤
N intN cl[R] gives N intN cl[R] = R. Therefore R is a neutrosophic regular open set.

proposition 3.8. In a ntsN (X , π), if P is a neutrosophic resolvable set, then there exists a

neutrosophic regular open set R in N (X , π) such that R ≤ N cl[P ∨ C[P]].

Proof. Let P be a neutrosophic resolvable set in N (X , π). Using proposition 3.5, we have

N intN cl[P ∧ C[P] ∧ Q] = 0N for each closed set Q in N (X , π).N int[P ∧ C[P] ∧ Q] ≤
N intN cl[P ∧ C[P] ∧ Q] = 0N =⇒ N int[P ∧ C[P] ∧ Q] = 0N in N (X , π) =⇒
N int[P∧C[P]]∧N int[Q] = 0N =⇒ N intQ ≤ C[N int[P∧C[P]]] = N cl[C[P]∨P] inN (X , π).

Since Q is a neutrosophic closed set. Using Proposition 3.7 , N intQ is a neutrosophic regular

open in N (X , π). Put N intQ = R. Hence if P is a neutrosophic resolvable set in N (X , π),

there exist a neutrosophic regular open set R in N (X , π) such that R ≤ N cl[P ∨ C[P]].

proposition 3.9. In a ntsN (X , π) if P is neutrosophic resolvable set in N (X , π) , then C[P]

is also a neutrosophic resolvable set in N (X , π).

Proof. Let P be a neutrosophic resolvable set in N (X , π) then N intN cl{[N cl[Q ∧
P] ∧ N cl[Q ∧ C[P]]]} = 0N for each neutrosophic closed set Q in N (X , π).

For the set C[P], N intN cl{[N cl[Q ∧ C[P]] ∧ N cl[Q ∧ C[C[P]]]]} = 0N =⇒
N intN cl[N cl[Q∧ C[P]] ∧N cl[Q∧ P]] = 0N . Hence C[P] is also a neutrosophic resolvable

set in N (X , π).

proposition 3.10. In a nts N (X , π), if P is a neutrosophic closed set with N int[P] = 0N ,

then P is a neutrosophic resolvable set in N (X , π).

Proof. Let P be a neutrosophic closed set and N int[P] = 0N in N (X , π). For a neutrosophic

closed set Q in N (X , π), we have N cl[Q ∧ P] ∧ N cl[Q ∧ C[P]] ≤ N cl[P] ∧ N cl[C[P]] ≤ P.

Since P is a neutrosophic closed set in N (X , π). Thus N intN cl[N cl[Q∧P] ∧N cl[Q∧C[P]]]

≤ N intN cl[P] = N int[P] = 0N . Hence P is a resolvable set in N (X , π).

proposition 3.11. Let N (X , π) be the nts. If P is a neutrosophic open set and neutrosophic

dense in N (X , π), then P is a neutrosophic resolvable set in N (X , π).

Proof. Let P be a neutrosophic open set and neutrosophic dense in N (X , π). Then C[P] is

neutrosophic closed and N cl[P] = 1N . For a neutrosophic closed set Q, we have N cl[Q∧P]∧
N cl[Q ∧ C[P]] ≤ N cl[Q] ∧N cl[P] ∧N cl[Q] ∧N cl[C[P]] =⇒ Q∧ C[P]. Since N cl[P] = 1N ,

Q and C[P] are neutrosophic closed set in N (X , π). This implies N intN cl[N cl[Q ∧ P] ∧
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N cl[Q∧C[P]]] ≤ N intN cl[Q∧C[P]] ≤ N int[N cl[Q]∧N cl[C[P]]]. By computation, we have

N intN cl[N cl[Q ∧ P] ∧ N cl[Q ∧ C[P]]] = 0N . Hence P is a neutrosophic resolvable set in

N (X , π).

proposition 3.12. If P is a neutrosophic open and neutrosophic dense in a nts N (X , π), then

C[P] is neutrosophic resolvable set in N (X , π).

Proof. Let P be a neutrosophic open set and neutrosophic dense set in N (X , π). This im-

plies C[P] is a neutrosophic closed set and N cl[P] = 1N . Then C[N cl[P]] = C[1N ] =⇒
N int[C[P]] = 0N Using Proposition 3.10, C[P] is neutrosophic resolvable set in N (X , π).

proposition 3.13. Let N (X , π) be a nts. If P is a neutrosophic resolvable set in N (X , π),

then N int[P ∧ C[P]] ≤ N cl[C[Q]] for each neutrosophic closed set Q in N (X , π).

Proof. Let P be a neutrosophic resolvable set in N (X , π). Using Proposition 3.5 N intN cl[P∧
C[P]∧Q] = 0N in N (X , π). We know that, N int[P∧C[P]∧Q] ≤ N intN cl[P∧C[P]∧Q] = 0N

=⇒ N int[P ∧ C[P] ∧ N int[Q]] = 0N =⇒ N int[P ∧ C[P]] ≤ C[N intQ] = N cl[C[Q]] in

N (X , π).

4. Neutrosophic resolvable functions

Definition 4.1. Let N (X , πX ) and N (Y, πY) be any two neutrosophic topological spaces. A

function R : N (X , πX ) → N (Y, πY) is called as neutrosophic resolvable functions if R−1[P] is

neutrosophic resolvable set in N (X , πX ) for each neutrosophic open set P in N (Y, πY).

Example 4.2. Let X = {µ, ν, ω} and consider the neutrosophic sets as follows,

U1 = {< µ, 0.6, 0.7, 0.2 >,< ν, 0.7, 0.8, 0.2 >,< ω, 1.0, 0.6, 0.3 >;µ, ν, ω ∈ X}
U2 = {< µ, 0.5, 0.6, 0.3 >,< ν, 0.8, 0.7, 0.4 >,< ω, 1.0, 0.8, 0.4 >;µ, ν, ω ∈ X}
U3 = {< µ, 0.5, 0.6, 0.3 >,< ν, 0.7, 0.7, 0.4 >,< ω, 1.0, 0.6, 0.4 >;µ, ν, ω ∈ X}
U4 = {< µ, 0.6, 0.7, 0.2 >,< ν, 0.8, 0.8, 0.2 >,< ω, 1.0, 0.8, 0.3 >;µ, ν, ω ∈ X}
S = {< µ, 0.3, 0.2, 0.8 >,< ν, 0.1, 0.2, 0.9 >,< ω, 0.0, 0.3, 0.8 >;µ, ν, ω ∈ X}
T = {< µ, 0.0, 0.3, 0.8 >,< ν, 0.3, 0.2, 0.8 >,< ω, 0.1, 0.2, 0.4 >;µ, ν, ω ∈ X}
Then πX = {0N , U1, U2, U3, U4, 1N }, πY = {0N , T, 1N } are the nts. Therefore

πC
X = {0N , C[U1], C[U2], C[U3], C[U4], 1N }, πC

Y = {0N , C[T ], 1N }. Now,
N intN cl[N cl[C[U1] ∧ S] ∧ N cl[C[U1] ∧ C[S]]] = 0N , N intN cl[N cl[C[U2] ∧ S] ∧ N cl[C[U2] ∧
C[S]]] = 0N , N intN cl[N cl[C[U3] ∧ S] ∧ N cl[C[U3] ∧ C[S]]] = 0N , N intN cl[N cl[C[U4] ∧ S] ∧
N cl[C[U4] ∧ C[S]]] = 0N .

This implies S is a neutrosophic resolvable set. Now we define a function R : N (X , πX ) →
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N (Y, πY) by R(µ) = ν, R(ν) = ω and R(ω) = µ. By computation R−1[T ] = S, for each

neutrosophic open set T in N (Y, πY). Thus, S is neutrosophic resolvable set. Hence R is a

neutrosophic resolvable function.

Example 4.3. Consider the set X = {µ, ν, ω} and the neutrosophic sets V1, V2, V3, V4 and

V5 are defined in X as follows:-

V1 = {< µ, 0.0, 0.0, 0.5 >,< ν, 0.1, 0.1, 0.6 >,< ω, 0.2, 0.1, 0.5 >,µ, ν, ω ∈ X}

V2 = {< µ, 1.0, 0.9, 0.0 >,< ν, 0.9, 0.8, 0.1 >,< ω, 0.8, 0.7, 0.5 >,µ, ν, ω ∈ X}

V3 = {< µ, 0.0, 0.0, 0.4 >,< ν, 0.1, 0.1, 0.5 >,< ω, 0.1, 0.1, 0.4 >,µ, ν, ω ∈ X}

V4 = {< µ, 0.2, 0.2, 0.4 >,< ν, 0.3, 0.3, 0.5 >,< ω, 0.3, 0.2, 0.5 >,µ, ν, ω ∈ X}

V5 = {< µ, 0.3, 0.2, 0.5 >,< ν, 0.2, 0.2, 0.5 >,< ω, 0.3, 0.3, 0.5 >,µ, ν, ω ∈ X}

Then πX = {0N , V1, V2, 1N }, πY = {0N , V5, 1N } are two neutrosophic topological spaces. Now

we define a function R : N (X , πX ) → N (Y, πY) by R(µ) = ν, R(ν) = µ and R(ω) = µ. Now

=⇒ N intN cl[N cl[C[V1] ∧ V3] ∧ N cl[C[V1] ∧ C[V3]]] = 0N =⇒ N intN cl[N cl[C[V2] ∧ V3] ∧
N cl[C[V2] ∧ C[V3]]] = 0N . This implies V3 is a neutrosophic resolvable set in N (X , πX ). But

N intN cl[N cl[C[V1]∧V4]]∧N cl[C[V1]∧C[V4]] = V1 ̸= 0N . Therefore V4 is not a neutrosophic

resolvable set in N (X , πX ). By computation, we have R−1[V5] = V4 ̸= V3 for a non empty

neutrosophic open set V5 in N (Y, πY). Therefore the function R : N (X , πX ) → N (Y, πY) is

not a neutrosophic resolvable function. Since V4 is not a neutrosophic resolvable set.

proposition 4.4. If a function R : N (X , πX ) → N (Y, πY) is a neutrosophic resolvable func-

tion, then for any neutrosophic open set P in N (Y, πY)

(a) N intN cl[Q ∧ R−1[P ∧ C[P]]] = 0N in N (X , π) for each neutrosophic closed set Q,

where C[Q] ∈ πX .

(b) For the neutrosophic closed set Q, N int[Q∧R−1[P ∧ C[P]]] = 0N .

Proof. (a) Let R : N (X , πX ) → N (Y, πY) be the neutrosophic resolvable function. Then for

the neutrosophic open set 0N ̸= P in N (Y, πY), there exist the neutrosophic resolvable set

R−1[P] inN (X , πX ). Using the definition of resolvable set, we haveN intN cl[N cl[Q∧R−1[P]]∧
N cl[Q ∧ C[R−1[P]]]] = 0N in N (X , πX ). N cl[[Q ∧ R−1[P]] ∧ [Q ∧ C[R−1[P]]]] ≤ N cl[Q ∧
R−1[P]] ∧ N cl[Q ∧ C[R−1[P]]] =⇒ N intN cl[Q ∧ R−1[P] ∧ C[R−1[P]]] = 0N in N (X , πX ).

Therefore Q∧R−1[P] ∧ C[R−1[P]] is the neutrosophic nowhere dense set in N (X , πX ).

(b) Using (a), we have N intN cl[Q∧R−1[P ∧C[P]]] = 0N , in N (X , πX ) for the neutrosophic

open set P in N (Y, πY). Now, N int[Q∧R−1[P ∧C[P]]] ≤ N intN cl[Q∧R−1[P ∧C[P]]] = 0N

=⇒ N int[Q∧R−1[P ∧ C[P]]] = 0N in N (X , πX ).
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proposition 4.5. If a function R : N (X , πX ) → N (Y, πY) is the neutrosophic resolvable

function then N int[R−1[P ∧C[P]]] ≤ N cl[C[Q]] for the neutrosophic open set P in N (Y, πY),

and Q is the neutrosophic closed set in N (X , πX ).

Proof. Let us take a neutrosophic resolvable function R : N (X , πX ) → N (Y, πY). Then for any

neutrosophic open set P in N (Y, πY) using the proposition 4.4 (b), we have N int[Q∧R−1[P]∧
C[R−1[P]]] = 0N , here Q is the neutrosophic closed set in N (X , πX ). Now, N int[Q∧R−1[P]∧
C[R−1[P]]] = N int[Q] ∧ N int[R−1[P] ∧ C[R−1[P]]] = 0N =⇒ N int[R−1[P] ∧ C[R−1[P]]] ≤
C[N int[Q]] = N cl[C[Q]].

proposition 4.6. If a function R : N (X , πX ) → N (Y, πY) is the neutrosophic resolvable

function from the neutrosophic topological space N (X , πX ) to nts N (Y, πY), then for any

neutrosophic open set P in N (Y, πY).

(a) there exist a regular open set S in N (X , πX ) such that N cl[R−1[P ∨ C[P]]] ≥ S.

(b) N intN cl[P ∨ C[P]] ̸= 0N in N (X , πX ).

Proof. (a) Let R be a neutrosophic resolvable function from nts N (X , πX ) into nts N (Y, πY).

Then for any neutrosophic open set P in N (Y, πY), using the Proposition 4.4 (b), we

have N int[Q ∧ R−1[P] ∧ C[R−1[P]]] = 0N in N (X , πX ), where Q is the neutrosophic

closed set. This implies N int[Q] ∧ N int[R−1[P] ∧ C[R−1[P]]] = 0N =⇒ N int[Q] ≤
C[N int[R−1[P]]∧C[R−1[P]]] = N cl[C[R−1[P]]∨R−1[P]]. Since Q is the neutrosophic closed

set. Using 3.7, N int[Q] is the neutrosophic regular open set in N (X , π). Put R = N int[Q].

Then N cl[R−1[C[P] ∧ P]] ≥ R, for a neutrosophic regular open set R in N (X , πX ).

(b) Since every neutrosophic regular open set is neutrosophic open in a nts N (X , πX ). There-

fore the neutrosophic regular open set S is neutrosophic open in N (X , πX ). Using (a)

S ≤ N cl[R−1[[C[P]] ∨ [P]]] ̸= 0N =⇒ N intS = S ≤ N intN cl[R−1[C[P] ∨ [P]]] ̸= 0N

in N (X , πX ).

proposition 4.7. Let R : N (X , πX ) → N (Y, πY) be a neutrosophic resolvable function, then

for any neutrosophic open set P in N (Y, πY), there exists a neutrosophic regular closed set R

in N (X , πX ) such that S ≥ N int[R−1[P] ∧ C[R−1[P]]].

Proof. Consider R : N (X , πX ) → N (Y, πY) be a neutrosophic resolvable function. Using the

proposition 4.5, for any neutrosophic open set P in N (Y, πY). N cl[C[Q]] ≥ N int[R−1[P ∧
C[P]]], here Q is the neutrosophic closed set in N (X , πX ). Therefore C[Q] is the neutrosophic

open set. Put S = C[Q]. This implies, N cl[S] is the neutrosophic regular closed set in

N (X , πX ). Hence S ≥ N int[R−1[P] ∧ C[R−1[P]]].
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proposition 4.8. If R : N (X , πX ) → N (Y, πY) is the neutrosophic resolvable function, then

N cl[R−1[P ∨ C[P]] ∨ S] = 1N in N (X , πX ) for the neutrosophic open set P in N (Y, πY) and

S ∈ N (X , πX ).

Proof. Let R : N (X , πX ) → N (Y, πY) be the neutrosophic resolvable function. By Propo-

sition 4.5 N intN cl[Q ∧ R−1[P] ∧ C[R−1[P]]] = 0N for the neutrosophic open set P and

neutrosophic closed set Q in N (X , πX ). Then C[N intN cl[Q ∧ R−1[P] ∧ C[R−1[P]]]] = 1N

=⇒ N clN int[C[Q] ∨C[R−1[P]] ∨R−1[P]] = 1N . Since C[C[P]] = P. Now, N clN int[C[Q] ∨
C[R−1[P]]∨R−1[P]] ≤ N cl[C[Q]∨C[R−1[P]]∨R−1[P]] =⇒ N cl[C[Q]∨R−1[P∨C[P]]] = 1N .

Put S = C[Q] then we have N cl[S ∨ R−1[P ∨ C[P]]] = 1N in N (X , πX ) where S is the neu-

trosophic open set in N (X , πX ).

proposition 4.9. If the function R : N (X , πX ) → N (Y, πY) is the neutrosophic resolvable

function and P is the neutrosophic open set in N (Y, πY), then C[R−1[P]] is also neutrosophic

resolvable set in N (X , πX ).

Proof. Let P be a neutrosophic open set in N (Y, πY) and R be a neutrosophic resolvable

function from a nts N (X , πX ) into a nts[Y, πY ]. This implies R−1[P] is the neutrosophic

resolvable set N (X , πX ), using Proposition 3.9 C[R−1[P]] is the neutrosophic resolvable set in

N (X , πX ).

proposition 4.10. Let R1 : N (X , πX ) → N (Y, πY) be the neutrosophic resolvable function

and R2 : N (Y, πY) → N (Z, πZ) be the neutrosophic continuous function, then R2 ◦ R1 :

[X , πX ] → [Z, πZ ] is the neutrosophic resolvable function.

Proof. Let 0N ̸= P be a neutrosophic open set in N (Z, πZ). Since R2 is the neutrosophic con-

tinuous function from N (Y, πY) into N (Z, πZ). This implies R−1[P] is the neutrosophic open

set in N (Y, πY). Since R1 is the neutrosophic resolvable set from N (X , πX ) into N (Y, πY).

Therefore R−1
1 [R−1

2 [P]] is the neutrosophic resolvable set in N (X , πX ). Thus [R2 ◦ R1]
−1[P]

is the neutrosophic resolvable set in N (X , πX ), for the neutrosophic resolvable function from

N (X , πX ) into N (Z, πZ).

proposition 4.11. If R : N (X , πX ) → N (Y, πY) is the neutrosophic contra continuous func-

tion from the nts N (X , πX ) into the nts N (Y, πY), and if N int[Q] = 0N , for each neutrosophic

closed set Q in N (X , πX ), then R : N (X , πX ) → N (Y, πY)) is the neutrosophic resolvable

function.
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Proof. Let R : N (X , πX ) → N (Y, πY) be the neutrosophic contra continuous function. Take

P be the neutrosophic open set in N (Y, πY). This implies R−1[P] is the neutrosophic closed

set in N (X , πX ). Using the hypothesis, N int[R−1[P]] = 0N in N (X , πX ). For the neutro-

sophic closed set Q in N (X , πX ). N cl[Q ∧ [R−1][P]] ∧ N cl[Q ∧ C[R−1[P]]] ≤ N cl[R−1[P]] ∧
N cl[C[R−1[P]]]= N cl[R−1[P]] ∧ C[N int[R−1[P]]]= R−1[P]. Since R−1[P] is neutrosophic

closed set in N (X , πX ). Therefore N cl[Q ∧ R−1[P]] ∧ N cl[Q ∧ C[R−1[P]]] ≤ R−1[P]. Now,

N intN cl{[N cl[Q∧R−1[P]∧N cl[Q∧C[R−1[P]]]} ≤ N intN cl[R−1[P]] = N int[R−1[P]] = 0N .

This implies R−1[P] is the neutrosophic resolvable set in N (X , π). Hence R : N (X , πX ) →
N (Y, πY) is the neuttosophic resolvable function.

5. Conclusion

Neutrosophic resolvable sets and neutrosphic resolvable functions were introduced in this

article. The characteristics of such sets are closely examined and studied to arrive at a solution.

As a result, the concept of neutrosophic resolvable sets has been generalized according to areas

of research.
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———————————————————————————–

1. Introduction

Neutrosophic Topological Space was initiated and formulated by A.A.Salama [14] in

2012 by using Smarandache [10] neutrosophic sets which was introduced in 2002, a gener-

alisation of intuitionistic fuzzy sets. The neutrosophic sets consists of the degree of truth

membership, degree of indeterminancy and the degree of false membership which are

self-supporting and defines uncertainity. Neutrosophic α closed sets were introduced

by I.Arockiarani [1] in 2017. In 2016, P.Ishwarya [12] defined the neutrosophic semi

open and closed sets in neutrosophic topological space. Also, they studied the neutro-

sophic semi interior and closure operators. Neutrosophic α-generalized closed sets was

established by R. Dhavaseelan et al., V.K.Shanthi [15] in 2018 initiated neutrosophic
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generalised semi closed sets. Furthermore, neutrosophic αgs closed sets were initiated

by V.Banu Priya [2] in 2019. S.N.Jothi [5] in 2011 introduced the topology between

two universal sets which is defined to be binary topology. The binary topology is a

binary structure from U̇ to V̇ which consists of ordered pairs (Ṡ, Q̇) where A ⊆ U̇ and

B ⊆ V̇ . In continuation, S.S.Surekha, J.Elekiah and G.Sindhu [16] in 2022 introduced

Neutrosophic Binary Topological Space which consists of two universal sets and each

universal set contain its own truth, indeterminancy and false membership values. Also,

in 2022, S.S.Surekha and G.sindhu [17] formulated binary αgs closed sets in binary

topological space. In this article, we defined Neutrosophic Binary regular, semi and α

open and closed sets. Also, Neutrosophic Binary αgs closed sets was defined and some

characteristics have been framed.

2. Motivation

Neutrosophic Topological Space was formulated by A.A.Salama [14] in 2012. The

neutrosophic sets consists of the degree of truth membership, degree of indeterminancy

and the degree of false membership. S.N.Jothi [5] in 2011 introduced the binary topol-

ogy. Later, S.S.Surekha, J.Elekiah and G.Sindhu [16] in 2022 introduced Neutrosophic

Binary Topological Space consisting of two universal sets and each has its own truth, in-

determinancy and false membership values. Also, in 2022, S.S.Surekha and G.sindhu [17]

formulated binary αgs-closed sets in binary topological space. Also, neutrosophic αgs

closed sets were initiated by V.Banu Priya [2] in 2019. Hence these implications moti-

vated the researcher to investigate the role of neutrosophic binary αgs closed and open

sets in neutrosophic binary topological spaces.

3. Preliminaries

Definition 3.1. [16] A Neutrosophic binary topology is a binary structure consisting

of two universal sets U̇ and V̇ where MN ⊆ P (U̇)× P (V̇) and it satisfies the following

conditions:

(1) (0̇U̇ , 0̇V̇) ∈ MN and (1̇U̇ , 1̇V̇) ∈ MN .

(2) (Ṡ1 ∩ Q̇2, Ṡ1 ∩ Q̇2) ∈ MN whenever (Ṡ1, Q̇1) ∈ MN and (Ṡ2, Q̇2) ∈ MN .

(3) If (Ṡα, Q̇α)α∈S is a family of members of MN , then (∪α∈SṠα,∪α∈SQ̇α) ∈ MN .

The triplet (U̇ , V̇ ,MN ) is called Neutrosophic Binary Topological space.

Definition 3.2. [16] (0U̇ , 0V̇) can be defined as

(01) 0U̇ = {< U̇, 0, 0, 1 >: u̇ ∈ U̇}, 0V̇ = {< V̇ , 0, 0, 1 >: v̇ ∈ V̇}
(02) 0U̇ = {< U̇, 0, 1, 1 >: u̇ ∈ U̇}, 0V̇ = {< V̇ , 0, 1, 1 >: v̇ ∈ V̇}
(03) 0U̇ = {< U̇, 0, 1, 0 >: u̇ ∈ U̇}, 0V̇ = {< V̇ , 0, 1, 0 >: v̇ ∈ V̇}
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(04) 0U̇ = {< U̇, 0, 0, 0 >: u̇ ∈ U̇}, 0V̇ = {< V̇ , 0, 0, 0 >: ⊑̇ ∈ V̇}

(1U̇ , 1V̇) can be defined as

(11) 1U̇ = {< U̇, 1, 0, 0 >: u̇ ∈ U̇}, 1V̇ = {< V̇ , 1, 0, 0 >: v̇ ∈ V̇}
(12) 1U̇ = {< U̇, 1, 0, 1 >: u̇ ∈ U̇}, 1V̇ = {< V̇ , 1, 0, 1 >: v̇ ∈ V̇}
(13) 1U̇ = {< U̇, 1, 1, 0 >: u̇ ∈ U̇}, 1V̇ = {< V̇ , 1, 1, 0 >: v̇ ∈ V̇}
(14) 1U̇ = {< U̇, 1, 1, 1 >: u̇ ∈ U̇}, 1V̇ = {< V̇ , 1, 1, 1 >: v̇ ∈ V̇}

Definition 3.3. [16] Let (Ṡ, Q̇) = {< µS, σS, γS >,< µQ, σQ, γQ >} be a neutrosophic

binary set on (U̇ , V̇ ,MN ), then the complement of the set C̃(Ṡ, Q̇) may be defined as

˜(C1) C̃(Ṡ, Q̇) ={U̇ , < 1− µṠ(U̇), σṠ(U̇), 1− γṠ(U̇) >: u̇ ∈ U̇ ,

< V̇ , 1− µQ̇(V̇ ), σQ̇(V̇ ), 1− γQ̇(V̇ ) >: v̇ ∈ V̇ }
˜(C2) C̃(Ṡ, Q̇) ={U̇ , < γṠ(U̇), σṠ(U̇), µṠ(U̇) >: u̇ ∈ U̇ ,

< V̇ , γQ̇(V̇ ), σQ̇(V̇ ), µQ̇(V̇ ) >: v̇ ∈ V̇ }
˜(C3) C̃(Ṡ, Q̇) ={U̇ , < γṠ(U̇), 1− σṠ(U̇), µṠ(U̇) >: u̇ ∈ U̇ ,

< V̇ , γQ̇(V̇ ), 1− σQ̇(V̇ ), µQ̇(V̇ ) >: v̇ ∈ V̇ }

Definition 3.4. [16] Let (Ṡ, Q̇) and (Ṫ , Ṙ) be two neutrosophic binary sets.

Then (Ṡ, Q̇) ⊆ (Ṫ , Ṙ) can be defined as

(1) (Ṡ, Q̇) ⊆ (Ṫ , Ṙ) ⇐⇒ µṠ(U̇) ≤ µṪ (U̇), σṠ(U̇) ≤ σṪ (U̇), γṠ(U̇) ≥ γṪ (U̇)∀u̇ ∈ U̇

µQ̇(V̇ ) ≤ µṘ(V̇ ), σQ̇(V̇ ) ≤ σṘ(V̇ ), γQ̇(V̇ ) ≥ γṘ(V̇ )∀v̇ ∈ V̇

(2) (Ṡ, Q̇) ⊆ (Ṫ , Ṙ) ⇐⇒ µṠ(U̇) ≤ µṪ (U̇), σṠ(U̇) ≥ σṪ (U̇), γṠ(U̇) ≥ γṪ (U̇)∀u̇ ∈ U̇

µQ̇(V̇ ) ≤ µṘ(V̇ ), σQ̇(V̇ ) ≥ σṘ(V̇ ), γQ̇(V̇ ) ≥ γṘ(V̇ )∀v̇ ∈ V̇

Definition 3.5. [16] Let (Ṡ, Q̇) and (Ṫ , Ṙ) be two neutrosophic binary sets.

(1) (Ṡ, Q̇) ∩ (Ṫ , Ṙ) can be defined as

(Ṡ, Q̇) ∩ (Ṫ , Ṙ) = { < U̇, µṠ(U̇) ∧ µṪ (U̇), σṠ(U̇) ∧ σṪ (U̇), γṠ(U̇) ∨ γṪ (U̇) >

< V̇ , µQ̇(V̇ ) ∧ µṘ(V̇ ), σQ̇(V̇ ) ∧ σṘ(V̇ ), γQ̇(V̇ ) ∨ γṘ(V̇ ) >}

(Ṡ, Q̇) ∩ (Ṫ , Ṙ) = { < U̇, µṠ(U̇) ∧ µṪ (U̇), σṠ(U̇) ∨ σṪ (U̇), γṠ(U̇) ∨ γṪ (U̇) >

< V̇ , µQ̇(V̇ ) ∧ µṘ(V̇ ), σQ̇(V̇ ) ∨ σṘ(V̇ ), γQ̇(V̇ ) ∨ γṘ(V̇ ) >}

(2) (Ṡ, Q̇) ∪ (Ṫ , Ṙ) can be defined as

(Ṡ, Q̇) ∪ (Ṫ , Ṙ) = { < U̇, µṠ(U̇) ∨ µṪ (U̇), σṠ(U̇) ∨ σṪ (U̇), γṠ(U̇) ∧ γṪ (U̇) >

< V̇ , µQ̇(V̇ ) ∨ µṘ(V̇ ), σQ̇(V̇ ) ∨ σṘ(V̇ ), γQ̇(V̇ ) ∧ γṘ(V̇ ) >}
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(Ṡ, Q̇) ∩ (Ṫ , Ṙ) = { < U̇, µṠ(U̇) ∨ µṪ (U̇), σṠ(U̇) ∧ σṪ (U̇), γṠ(U̇) ∧ γṪ (U̇) >

< V̇ , µQ̇(V̇ ) ∨ µṘ(V̇ ), σQ̇(V̇ ) ∧ σṘ(V̇ ), γQ̇(V̇ ) ∧ γṘ(V̇ ) >}

Definition 3.6. [16] Let (U̇ , V̇ ,MN ) be a Neutrosophic Binary Topological Space.

Then,

(Ṡ, Q̇)1
⋆
N = ∩{Sα : (Sα, Qα) is neutrosophic binary closed and (Ṡ, Q̇) ⊆ (Sα, Qα)}

(Ṡ, Q̇)2
⋆
N = ∩{Qα : (Sα, Qα) is neutrosophic binary closed and (Ṡ, Q̇) ⊆ (Sα, Qα)}.

The ordered pair ((Ṡ, Q̇)1
⋆
N , (Ṡ, Q̇)2

⋆
N ) is called the neutrosophic binary closure of (Ṡ, Q̇).

Definition 3.7. [16] Let (U̇ , V̇ ,MN ) be a Neutrosophic Binary Topological Space.

Then,

(Ṡ, Q̇)1
0
N = ∪{Sα : (Sα, Qα) is neutrosophic binary open and (Sα, Qα) ⊆ (Ṡ, Q̇)}

(Ṡ, Q̇)2
0
N = ∪{Qα : (Sα, Qα) is neutrosophic binary open and (Sα, Qα) ⊆ (Ṡ, Q̇)}.

The ordered pair ((Ṡ, Q̇)1
0
N , (Ṡ, Q̇)2

0
N ) is called the neutrosophic binary interior of (Ṡ, Q̇).

Definition 3.8. Let (U̇ , τN) be a Neutrosophic topological space. Then the subset A is

said to be

(1) neutrosophic α open [1] if A ⊆ Nint(Ncl(Nint(A))).

(2) neutrosophic semi open [12] if A ⊆ Ncl(Nint(A)).

Definition 3.9. [1] Let (U̇ , τN) be a Neutrosophic Topological Space. Let A be the

subset of neutrosophic topological space. The intersection of all the neutrosophic α

closed sets which contains A is called the neutrosophic α closure of A and is denoted by

Nαcl(A).

Definition 3.10. [2] Let (U̇ , τN) be a Neutrosophic topological space. Then the subset

A is said to be neutrosophic αgs closed if Nαcl(A) ⊆ U whenever A ⊆ U and U is

neutrosophic semi open.

4. Neutrosophic Binary αgs-closed sets

Definition 4.1. Let (U̇ , V̇ ,MN ) be a Neutrosophic Binary Topological Space. Then

(Ṡ, Q̇) is called

(1) Neutrosophic binary regular open if (Ṡ, Q̇) = N bint(N bcl(Ṡ, Q̇)) and the com-

plement of neutrosophic binary regular open sets are called as neutrosophic bi-

nary regular closed (shortly N b-regular closed).

(2) Neutrosophic binary semiopen if (Ṡ, Q̇) ⊆ N bcl(N bint(Ṡ, Q̇)) and the comple-

ment of neutrosophic binary semi open sets are called as neutrosophic binary

semi closed sets (shortly N b-semi closed).

S.S.Surekha and G.Sindhu, A Contemporary approach on Generalised NB Closed Sets
in Neutrosophic Binary Topological Spaces

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                             341



(3) Neutrosophic binary α open if (Ṡ, Q̇) ⊆ N bint(N bcl(N bint(Ṡ, Q̇))) and the

complement of neutrosophic binary α open sets are called as neutrosophic binary

α closed sets (shortly N b-α closed).

Definition 4.2. Let (U̇ , V̇ ,MN ) be a Neutrosophic Binary Topological Space. Then,

(Ṡ, Ṫ )
1⋆N
α = ∩{Sα : (Sα, Tα) is neutrosophic binary α closed and (Ṡ, Ṫ ) ⊆ (Sα, Tα)}

(Ṡ, Ṫ )
2⋆N
α = ∩{Tα : (Sα, Tα) is neutrosophic binary α closed and (Ṡ, Ṫ ) ⊆ (Sα, Tα)}.

The ordered pair ((Ṡ, Ṫ )
1⋆N
α , (Ṡ, Ṫ )

2⋆N
α ) is called the neutrosophic binary α closure of (Ṡ, Q̇)

and is denoted by N bαcl(Ṡ, Q̇).

Definition 4.3. Let (U̇ , V̇ ,MN ) be a Neutrosophic Binary Topological Space. Then,

(Ṡ, Ṫ )
10N
α = ∪{Sα : (Sα, Bα) is neutrosophic binary α open and (Sα, Tα) ⊆ (Ṡ, Ṫ )}

(Ṡ, Ṫ )
20N
α = ∪{Tα : (Sα, Tα) is neutrosophic binary α open and (Sα, Tα) ⊆ (Ṡ, Ṫ )}.

The ordered pair ((Ṡ, Ṫ )
10N
α , (Ṡ, Ṫ )

20N
α ) is called the neutrosophic binary α interior of

(Ṡ, Ṫ ) and it is denoted by N bαint(Ṡ, Ṫ ).

Example 4.4. Let U̇ = {a1, a2, a3} and V̇ = {b1, b2, b3}. Let

(A1, A2) = {< U̇ , (O.4, 0.5, 0.2), (0.3, 0.2, 0.1), (0.9, 0.6, 0.8) >,

< V̇ , (0.2, 0.4, 0.5), (0.1, 0.1, 0.2), (0.6, 0.5, 0.8) >}

(B1, B2) = {< U̇ , (0.5, 0.6, 0.2), (0.4, 0.3, 0.1), (0.7, 0.6, 0.7) >,

< V̇ , (0.3, 0.5, 0.4), (0.3, 0.2, 0.1), (0.7, 0.5, 0.6) >}.

The Neutrosophic Binary Topological space is given by

MN = {(0U̇ , 0V̇), (1U̇ , 1V̇), (A1, A2), (B1, B2)}. Let

(C1, C2) = {< U̇ , (0.5, 0.6, 0.1), (0.4, 0.3, 0.1), (0.9, 0.8, 0.5) >,

< V̇ , (0.3, 0.4, 0.5), (0.9, 0.3, 0.1), (0.7, 0.6, 0.7) >}.

Clearly, (C1, C2) is Neutrosophic Binary semi open. Also, it is Neutrosophic Binary

alpha open.

Theorem 4.5. In a neutrosophic binary topological space (U̇ , V̇ ,MN ),

(1) Every N b-regular closed sets are N b closed sets.

(2) Every N b-semi closed sets are N bα closed sets.

Proof. (1) Since, (Ṡ, Q̇) is Neutrosophic Binary-regular closed set, we have (Ṡ, Q̇) =

N bcl(N bint(Ṡ, Q̇)). Obviously, (Ṡ, Q̇) is Neutrosophic Binary closed set.

(2) Since, (Ṡ, Q̇) is Neutrosophic Binary Semi closed, we have N bint(N bcl(Ṡ, Q̇)) ⊆
(Ṡ, Q̇). This implies, N bcl(N bint(N bcl(Ṡ, Q̇))) ⊆ N bcl(Ṡ, Q̇). Since, every neutro-

sophic binary semi closed sets are closed, we have (Ṡ, Q̇) = N bcl(Ṡ, Q̇). Therefore,

S.S.Surekha and G.Sindhu, A Contemporary approach on Generalised NB Closed Sets
in Neutrosophic Binary Topological Spaces

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                             342



N bcl(N bint(N bcl(Ṡ, Q̇))) ⊆ (Ṡ, Q̇). Hence, (Ṡ, Q̇) is neutrosophic binary α closed in

(U̇ , V̇ ,MN ).

Remark 4.6. Since, every N b-semi closed sets are N bα closed sets, it is obvious that

N bscl(Ṡ, Q̇) ⊆ N bαcl(Ṡ, Q̇).

Definition 4.7. Let (U̇ , V̇ ,MN ) be a Neutrosophic Binary Topological Space. Let

(Ṡ, Ṫ ) ⊆ (U̇ , V̇). Then (Ṡ, Ṫ ) is called a Neutrosophic Binary α generalised semiclosed

set (shortly N bαgs-closed set) if N bαcl(Ṡ, Ṫ ) ⊆ (P, V ) whenever (P, V ) is Neutrosophic

Binary Semiopen.

Theorem 4.8. The union of two N bαgs-closed set is also a N bαgs-closed set.

Proof. Let (Ṡ, Q̇) and (Ṫ , Ṙ) be two N b-αgs closed set in (U̇ , V̇ ,MN ). Then by defi-

nition 4.7, we have N bαcl(Ṡ, Q̇) ⊆ (Ṗ , V̇ ) whenever (Ṡ, Q̇) ⊆ (Ṗ , V̇ ) and (Ṗ , V̇ ) is N b

semiopen. Also, N bαcl(Ṫ , Ṙ) ⊆ (Ṗ , V̇ ) whenever (Ṫ , Ṙ) ⊆ (Ṗ , V̇ ) and (Ṗ , V̇ ) is N b

semiopen. This implies N bαcl(Ṡ, Q̇) ∪ N bαcl(Ṫ , Ṙ) ⊆ (Ṗ , V̇ ) =⇒ N bαcl[(Ṡ, Q̇) ∪
(Ṫ , Ṙ)] ⊆ (Ṗ , V̇ ). Therefore, (Ṡ, Q̇) ∪ (Ṫ , Ṙ) is a N b-αgs closed set in (U̇ , V̇ ,MN ).

Remark 4.9. The intersection of two N bαgs-closed sets need not be a N bαgs-closed

set.

It is demonstrated by the following example.

Example 4.10. Let U̇ = {a1, a2, a3} and V̇ = {b1, b2, b3} be the universe. Let

MN = {(0U̇ , 0V̇), (1U̇ , 1V̇), (A1, A2), (B1, B2), (C1, C2), (D1, D2)} be the neutrosophic bi-

nary topological space. Here

(A1, A2) = { < U̇ , (0.4, 0.5, 0.2), (0.3, 0.5, 0.1), (0.9, 0.6, 0.8) >,

< V̇ , (0.2, 0.5, 0.5), (0.1, 0.5, 0.2), (0.6, 0.5, 0.8) >}

(B1, B2) = { < U̇ , (0.5, 0.6, 0.2), (0.4, 0.5, 0.1), (0.7, 0.6, 0.7) >,

< V̇ , (0.3, 0.5, 0.4), (0.3, 0.5, 0.1), (0.7, 0.5, 0.6) >}

(C1, C2) = { < U̇ , (0.5, 0.5, 0.2), (0.4, 0.5, 0.1), (0.9, 0.6, 0.7) >,

< V̇ , (0.3, 0.5, 0.4), (0.3, 0.5, 0.1), (0.7, 0.5, 0.6) >}

(D1, D2) = { < U̇ , (0.4, 0.6, 0.2), (0.3, 0.5, 0.1), (0.7, 0.6, 0.8) >,

< V̇ , (0.2, 0.5, 0.5), (0.1, 0.5, 0.2), (0.6, 0.5, 0.8) >}
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Let (Ṡ, Q̇) = { < U̇ , (0.3, 0.4, 0.2), (0.3, 0.1, 0.1), (0.6, 0.4, 0.9) >,

< V̇ , (0.2, 0.3, 0.6), (0.1, 0.1, 0.3), (0.4, 0.4, 0.9) >} and

(Ṫ , Ṙ) = { < U̇ , (0.4, 0.5, 0.2), (0.3, 0.5, 0.1), (0.9, 0.4, 0.8) >,

< V̇ , (0.2, 0.5, 0.5), (0.1, 0.5, 0.2), (0.6, 0.5, 0.8) >}

be two N bαgs-closed sets in (U̇ , V̇ ,MN ). The intersection of the two subsets

(Ṡ, Q̇) ∩ (Ṫ , Ṙ) = { < U̇ , (0.3, 0.5, 0.2), (0.3, 0.5, 0.1), (0.6, 0.4, 0.9) >,

< V̇ , (0.2, 0.5, 0.6), (0.1, 0.5, 0.3), (0.4, 0.5, 0.9) >}

which is not N bαgs-closed set in (U̇ , V̇ ,MN ).

Theorem 4.11. In a neutrosophic binary topological space (U̇ , V̇ ,MN ), every N b-closed

sets are N bαgs-closed set.

Proof. Let (Ṡ, Q̇) be a N b-closed set in (U̇ , V̇ ,MN ). Let us consider a neutrosophic

binary set (Ṡ, Q̇) ⊆ (Ṗ , V̇ ) where (Ṗ , V̇ ) is neutrosophic binary semiopen in (U̇ , V̇ ,MN ).

Since N bαcl(Ṡ, Q̇) ⊆ N bcl(Ṡ, Q̇) and also (Ṡ, Q̇) is neutrosophic binary closed set,

we have N bαcl(Ṡ, Q̇) ⊆ N bcl(Ṡ, Q̇) = (Ṡ, Q̇) ⊆ (Ṗ , V̇ ) which implies N bαcl(Ṡ, Q̇) ⊆
(Ṗ , V̇ ) whenever (Ṗ , V̇ ) is neutrosophic binary semiopen. Hence (Ṡ, Q̇) is N bαgs-closed

set.

Remark 4.12. The converse of the above theorem need not be true as illustrated by

the following example.

Example 4.13. Let U̇ = {a1, a2} and V̇ = {b1, b2} be the universe.

Let MN = {(0U̇ , 0V̇), (1U̇ , 1V̇), (V,W )} be the neutrosophic binary topological space.

(V,W ) = {< U̇ , (0.7, 0.5, 0.3), (0.6, 0.5, 0.4) >,< V̇ , (0.6, 0.5, 0.4), (0.7, 0.5, 0.3) >}.
(Ṡ, Q̇) = {< U̇ , (0.2, 0.5, 0.8), (0.3, 0.5, 0.7) >,< V̇ , (0.3, 0.5, 0.8), (0.2, 0.4, 0.7) >} isN b-

αgs closed set but not N b closed set in (U̇ , V̇ ,MN ).

Theorem 4.14. Every N b-Regular closed set in (U̇ , V̇ ,MN ) is N b-αgs closed set in

(U̇ , V̇ ,MN ).

Proof. Let (Ṡ, Q̇) be a N b-regular closed set in (U̇ , V̇ ,MN ). By theorem 4.5, every

N b-regular closed set is N b-closed set in (U̇ , V̇ ,MN ). This implies, (Ṡ, Q̇) is N b-closed

set. Also, by theorem 4.11, we have (Ṡ, Q̇) is N b-αgs-closed set in (U̇ , V̇ ,MN ).

Remark 4.15. The converse of the above theorem need not be true as proved in the

following example.
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Example 4.16. Let U̇ = {a1, a2} and V̇ = {b1, b2} be the universe.

Let MN = {(0U̇ , 0V̇), (1U̇ , 1V̇), (V,W )} be the neutrosophic binary topological space.

(V,W ) = {< U̇ , (0.6, 0.5, 0.4), (0.6, 0.5, 0.4) >,< V̇ , 0.7, 0.5, 0.3), (0.8, 0.5, 0.4)}.
Let (Ṡ, Q̇) = {< U̇ , (0.3, 0.5, 0.7), (0.2, 0.5, 0.8) >,< V̇ , (0.4, 0.5, 0.8), (0.3, 0.5, 0.7) >} is

N b-αgs closed but not N b regular closed in (U̇ , V̇ ,MN ).

Theorem 4.17. Every N b-αgs closed set is N b-semi closed in (U̇ , V̇ ,MN ).

Proof. Let (Ṡ, Q̇) be a N b-αgs closed set in (U̇ , V̇ ,MN ). By remark 4.6, we have

N bscl(Ṡ, Q̇) ⊆ N bαcl(Ṡ, Q̇). Since (Ṡ, Q̇) isN b-αgs closed set, we haveN bαcl(Ṡ, Q̇) ⊆
(Ṗ , V̇ ), where (Ṗ , V̇ ) is N b- semiopen. This implies N bScl(Ṡ, Q̇) ⊆ (Ṗ , V̇ ). Hence,

(Ṡ, Q̇) is N b-semi closed.

Remark 4.18. The converse of the above theorem need not be true as illustrated in

the following example.

Example 4.19. Let U̇ = {a1, a2} and V̇ = {b1, b2} be the universe.

Let MN = {(0U̇ , 0V̇), (1U̇ , 1V̇), (V,W )} be the neutrosophic binary topological space

where (V,W ) = {< U̇ , (0.6, 0.5, 0.2), (0.3, 0.5, 0.2) >,< V̇ , (0.7, 0.5, 0.1), (0.3, 0.5, 0.3) >
}.
Let (Ṡ, Q̇) = {< U̇ , (0.1, 0.5, 0.7), (0.1, 0.5, 0.5) >,< V̇ , (0.2, 0.5, 0.6), (0.2, 0.5, 0.7) >} is

N b semi closed but not N b-αgs closed set in (U̇ , V̇ ,MN ).

Theorem 4.20. Every N b-α closed set is N b-αgs closed set in (U̇ , V̇ ,MN ).

Proof. Let (U̇ , V̇ ,MN ) be a neutrosophic binary topological space. Let (Ṡ, Q̇) be a N b-

α closed set in (U̇ , V̇ ,MN ). Let (Ṡ, Q̇) ⊆ (Ṗ , V̇ ) where (Ṗ , V̇ ) is N b semiopen. Since

(Ṡ, Q̇) is N b- α closed set, we have N b-αcl(Ṡ, Q̇) = (Ṡ, Q̇) ⊆ (Ṗ , V̇ ) which implies

N b-αcl(Ṡ, Q̇) ⊆ (Ṗ , V̇ ). Hence (Ṡ, Q̇) is N b- αgs closed set in (U̇ , V̇ ,MN ).

Remark 4.21. The converse of the above theorem need not be true as seen in the

following example.

Example 4.22. Let U̇ = {a1, a2} and V̇ = {b1, b2} be the universe.

Let MN = {(0U̇ , 0V̇), (1U̇ , 1V̇), (V1,W1), (V2,W2)} be the neutrosophic binary

topological space. Here

(V1,W1) = {< U̇ , (0.4, 0.5, 0.5), (0.3, 0.5, 0.6) >,< V̇ , (0.3, 0.5, 0.5), (0.4, 0.5, 0.7) >}
(V2,W2) = {< U̇ , (0.3, 0.5, 0.6), (0.2, 0.5, 0.7) >,< V̇ , (0.2, 0.5, 0.6), (0.3, 0.5, 0.7) >}.
(Ṡ, Q̇) = {< U̇ , (0.8, 0.5, 0.1), (0.8, 0.5, 0.1) >,< V̇ , (0.7, 0.5, 0.2), (0.6, 0.5, 0.1) >} isN b-

αgs closed set but not N bα closed set in (U̇ , V̇ ,MN ).
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Remark 4.23. The following diagram shows the above implications.

N bαgs-closed

N b Regular closed

N b semiclosed

N b-closed

N bα-closed

5. Neutrosophic Binary αgs open sets

Definition 5.1. A neutrosophic binary set (Ṡ, Ṫ ) in a neutrosophic binary topological

space (U̇ , V̇ ,MN ) is said to be neutrosophic binary αgs-open sets (shortlyN b-αgs open)

if the complement (Ṡ, Q̇)c is N b-αgs closed in (U̇ , V̇ ,MN ).

Theorem 5.2. In a neutrosophic binary topological space (U̇ , V̇ ,MN ), every N b-open

sets are N bαgs-open sets.

Proof. Let (Ṡ, Q̇) be the N b-open set in (U̇ , V̇ ,MN ). Then, (Ṡ, Q̇)c is N b-closed set in

(U̇ , V̇ ,MN ). Then by theorem 4.11,(Ṡ, Q̇)c is N bαgs-closed set, which implies (Ṡ, Q̇) is

N bαgs-open set in (U̇ , V̇ ,MN ).

Remark 5.3. The converse of the above theorem is not true as illustrated in the fol-

lowing example.

Example 5.4. Let U̇ = {a1, a2} and V̇ = {b1, b2}. The neutrosophic binary topological

space is given by MN = {(0U̇ , 0V̇), (1U̇ , 1V̇), (V,W )} where

(V,W ) = {< U̇ , (0.8, 0.5, 0.2), (0.6, 0.5, 0.4) >,< V̇ , (0.7, 0.5, 0.1), (0.6, 0.5, 0.3) >}.
Consider the neutrosophic binary set

(Ṡ, Q̇) = {< U̇ , (0.9, 0.5, 0.1), (0.7, 0.5, 0.3) >,< V̇ , (0.8, 0.5, 0.1), (0.8, 0.5, 0.3) >}. Here,
(Ṡ, Q̇)c is neutrosophic binary alphags closed set set. This implies that (Ṡ, Q̇) is

neutrosophic binary αgs open set. But (Ṡ, Q̇) is not the neutrosophic binary open set.

Theorem 5.5. In a neutrosophic binary topological space (U̇ , V̇ ,MN ), every N b- reg-

ular open sets are N bαgs-open sets.

Proof. Let (Ṡ, Q̇) be the N b- regular open set in (U̇ , V̇ ,MN ). Then, (Ṡ, Q̇)c is N b-

regular closed set in (U̇ , V̇ ,MN ). Then by theorem 4.14, (Ṡ, Q̇)c is N bαgs-closed set,

which implies (Ṡ, Q̇) is N bαgs-open set in (U̇ , V̇ ,MN ).
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Remark 5.6. The converse of the above theorem is not true as seen in the following

example.

Example 5.7. Let U̇ = {a1, a2} and V̇ = {b1, b2}. The neutrosophic binary topological

space is given by MN = {(0U̇ , 0V̇), (1U̇ , 1V̇), (V,W )} where

(V,W ) = {< U̇ , (0.6, 0.5, 0.4), (0.6, 0.5, 0.4) >,< V̇ , (0.7, 0.5, 0.3), (0.6, 0.5, 0.4) >}.
Consider the neutrosophic binary set

(Ṡ, Q̇) = {< U̇ , (0.7, 0.5, 0.3), (0.8, 0.5, 0.2) >,< V̇ , (0.8, 0.5, 0.3), (0.8, 0.5, 0.2) >}. Here,
(Ṡ, Q̇)c is neutrosophic binary αgs closed set set. This implies that (Ṡ, Q̇) is neutrosophic

binary αgs open set. But (Ṡ, Q̇) is not the neutrosophic binary regular open set.

Theorem 5.8. In a neutrosophic binary topological space (U̇ , V̇ ,MN ), every N bα- open

sets are N bαgs-open sets.

Proof. Let (Ṡ, Q̇) be the N bα- open set in (U̇ , V̇ ,MN ). Then, (Ṡ, Q̇)c is N bα-closed

set in (U̇ , V̇ ,MN ). Then by theorem 4.20, (Ṡ, Q̇)c is N bαgs-closed set, which implies

(Ṡ, Q̇) is N bαgs-open set in (U̇ , V̇ ,MN ).

Remark 5.9. The converse of the above theorem is not true as seen in the example

4.22.

Theorem 5.10. In a neutrosophic binary topological space (U̇ , V̇ ,MN ), every N bαgs-

open sets are N b semi open sets.

Proof. Let (Ṡ, Q̇) be the N bαgs- open set in (U̇ , V̇ ,MN ). Then, (Ṡ, Q̇)c is N bαgs-

closed set in (U̇ , V̇ ,MN ). Then by theorem 4.17, (Ṡ, Q̇)c is N b semi-closed set, which

implies (Ṡ, Q̇) is N b- semi open set in (U̇ , V̇ ,MN ).

Remark 5.11. The converse of the above theorem is not true as seen in the example

4.19.

Theorem 5.12. A neutrosophic binary set (Ṡ, Q̇) of a neutrosophic binary topological

space (U̇ , V̇ ,MN ) is N bαgs-open set if and only if (Ė, Ḟ ) ⊆ N bα-int(Ṡ, Q̇) whenever

(Ė, Ḟ ) is N b-semi closed in (U̇ , V̇ ,MN ) and (Ė, Ḟ ) ⊆ (Ṡ, Q̇).

Proof. Necessary Part:

Let (Ṡ, Q̇) be a N b-αgs open set in (U̇ , V̇ ,MN ).

Let (Ė, Ḟ ) be a N b-αgs closed set and also (Ė, Ḟ ) ⊆ (Ṡ, Q̇). This implies, (Ė, Ḟ )c is

N b-αgs open set in (U̇ , V̇ ,MN ) and (Ṡ, Q̇)c ⊆ (Ė, Ḟ )c. Since, (Ṡ, Q̇)c is N b-αgs closed

set, we have N b-αcl(Ṡ, Q̇)c ⊆ (Ė, Ḟ )c. Hence, (Ė, Ḟ ) ⊆ N b-αint(Ṡ, Q̇).
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Sufficient Part:

Let (Ė, Ḟ ) ⊆ N b-αint(Ṡ, Q̇).

This implies, N b-αcl(Ṡ, Q̇)c ⊆ (Ė, Ḟ )c whenever (Ė, Ḟ )c is N b-semi open. Therefore,

(Ṡ, Q̇)c is N b-αgs closed set in (U̇ , V̇ ,MN ). Hence, (Ṡ, Q̇) is N b-αgs open set in

(U̇ , V̇ ,MN ).

Theorem 5.13. Let (U̇ , V̇ ,MN ) be a Neutrosophic Binary Topological Space. Then for

every N b-αgs open set (Ṡ, Q̇) in (U̇ , V̇ ,MN ) and for every Neutrosophic Binary set

(Ṫ , Ṙ) in (U̇ , V̇ ,MN ), N bαint(Ṡ, Q̇) ⊆ (Ṫ , Ṙ) ⊆ (Ṡ, Q̇) =⇒ (Ṫ , Ṙ) is a N b-αgs open

set in (U̇ , V̇ ,MN ).

Proof. By hypothesis, (Ṡ, Q̇)c ⊆ (Ṫ , Ṙ)c ⊆ (N bαint(Ṡ, Q̇))c. Let (Ṫ , Ṙ)c ⊆ (Ṗ , V̇ )

and (Ṗ , V̇ ) be a N b-semiopen set in (U̇ , V̇ ,MN ). Since (Ṡ, Q̇)c ⊆ (Ṫ , Ṙ)c, we have

(Ṡ, Q̇)c ⊆ (Ṗ , V̇ ). But (Ṡ, Q̇)c is N b-αgs closed. Therefore, N bαcl((Ṡ, Q̇)c) ⊆ (Ṗ , V̇ ).

Also, (Ṫ , Ṙ)c ⊆ (N bαint(Ṡ, Q̇))c = N bαcl((Ṡ, Q̇)c).That implies,

N bαcl((Ṫ , Ṙ)c) ⊆ N bαcl((Ṡ, Q̇)c) ⊆ (Ṗ , V̇ ). Therefore, (Ṫ , Ṙ)c is N b-αgs closed set in

(U̇ , V̇ ,MN ). Hence (Ṫ , Ṙ) is N b-αgs open set in (U̇ , V̇ ,MN ).

6. Conclusion

The Neutrosophic Binary αgs closed and open sets were introduced in this article.

Also,its relationship with other sets in Neutrosophic Binary Topological Spaces were

analyzed. The characteristics of such sets are closely examined and studied with the

examples. In future, the decision making problems in real life will be analyzed using the

neutrosophic binary sets.
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Abstract: The referral cooperation hospital choice has been studied to better rationalize the allocation of 

healthcare assets and enhance the efficacy of resource utilization. Choosing hospitals to work within a 

collaborative referral arrangement is a crucial step in the patient-referral process. A referral cooperative 

hospital is chosen after careful consideration of these aspects to guarantee that patients will get the kind of 

detailed treatment that is appropriate for their condition. The concept of multi-criteria decision-making 

(MCDM) is used due to various criteria. The VIKOR method is the MCDM method used in this paper to 

rank the referral cooperation hospitals. The VIKOR method is integrated with the single-valued 

neutrosophic set to overcome uncertain information. The single-valued neutrosophic VIKOR method is 

applied to a case study in Egypt. We achieved quality of care as the best criterion from the eleven criteria 

used. 

Keywords: Neutrosophic Set, VIKOR Method, Healthcare, Referral Cooperative Hospital, Patient Care. 

 

1. Introduction  

As the world's population becomes older, the healthcare system will be put to the test in new ways. 

Establishing a trustworthy healthcare system to improve human health has long been an important and 

engaging issue. Budgetary restraints prevent hospitals from purchasing the necessary number of high-

priced yet in-demand medical devices, leading to inequitable distribution of these devices and extended 

wait periods for patients. As a result, several nations are adopting the medical consortium model to boost 

the efficacy of their healthcare systems and increase the effectiveness with which their healthcare resources 

are being use[1], [2]. 
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Providing patients with access to specialized treatment and resources that may be lacking at other hospitals 

or medical practices, referral cooperative hospitals play a crucial role in the healthcare system. These 

facilities also aid in ensuring that patients get the best treatment possible by connecting them with other 

facilities or practices that better suit their requirements. 

Hospitals are carefully chosen throughout the referral cooperative selection process to form a cooperative 

connection for the referral of patients. This step is essential for providing treatment that consistently 

exceeds patients' expectations. Care quality, service availability, location, insurance coverage, cost, 

communication and coordination, and cultural competence are just a few of the variables considered when 

choosing a referral cooperative hospital[3], [4]. 

Choosing a referral cooperative hospital is a multi-step procedure that must consider a wide range of 

considerations. The quality of care offered by the facility is a crucial consideration. The hospital's 

reputation, accreditation, results, and patient happiness all play a role. Referrals tend to choose hospitals 

with a solid reputation for offering excellent treatment. 

Consideration must also be given to the accessibility of the hospital's services. Diagnostic and imaging 

services, as well as specialized care in fields like cardiology, cancer, and neurology, should all be available 

at the hospital. The hospital should also have enough beds and medical personnel to care for its patients[5], 

[6]. 

When deciding on a referral cooperative hospital, it is also crucial to take location into account. Many 

patients prefer to get care at a hospital that is conveniently situated near the facility or clinic that is 

recommended to them. This may also aid improve inter-hospital communication and cooperation. When 

choosing a referral cooperative hospital, insurance coverage is an important consideration. For the patient's 

convenience, the hospital should take the same insurance plans as the facility or clinic recommending them. 

Patients' financial contributions may be kept to a minimum and they can get the treatment they need with 

fewer issues if this is implemented[7], [8]. 

When choosing a referral cooperative hospital, cost should be considered. The hospital's price policy should 

be made clear to patients, and the cost of treatment should be affordable. This may make it easier for people 

to get the treatment they need without having to worry about how to pay for it. When deciding on a referral 

cooperative hospital, it is also important to think about how well you and the facility can communicate and 

work together. The hospital's communication and coordination systems, including the transmission of 

patient information, should be efficient and timely. This may aid in ensuring that patients get the treatment 

they need with little disruption to their schedules[9], [10]. 

Overcoming the conceptual ambiguity associated with human expert judgments has been accomplished 

via the application of neutrosophic logic[11], [12]. 

The Neutrosophic Set generalizes the intuitionistic set, classical set, fuzzy set, paraconsistent set, dialetheist 

set, paradoxist set, and tautological set, whereas the Neutrosophic Logic generalizes fuzzy logic based on 

Neutrosophy[13], [14]. 

The usual problem selection is the greatest suit for the Neutrosophic representation of uncertainty and 

indeterminacy[15], [16]. 

2. Referral Cooperative Hospitals 



Neutrosophic Sets and Systems, Vol. 56, 2023                                                                                                                              353     
_____________________________________________________________________________________ 
 

________________________________________________________________________________________________________ 
Ahmed Abdelhafeez, Ahmed Abdel-Monem, Alber S Aziz, Alshaimaa A. Tantawy, Choice of suitable referral hospital to improve 
the financial result of hospital operations and quality of patient care under a Neutrosophic Environment 

A referral cooperative hospital has partnered with another facility or clinic to facilitate patient referrals. 

This kind of partnership is often formed to guarantee top-notch treatment for patients by connecting them 

with clinics or hospitals that can provide the right services for them. 

Hospitals that are part of referral cooperatives have earned a stellar reputation within their communities 

and are well-equipped to satisfy the diverse demands of their patients. These hospitals may feature 

specialized technology and personnel to treat patients with certain conditions, such as those requiring 

cardiology, cancer, or neurological treatment[17], [18]. 

In most cases, a doctor at one facility will send a patient to another facility that is part of a referral 

cooperative to get specialized care. The cooperative hospital receives the patient, assesses their condition, 

and treats them accordingly. To ensure that patients get the best possible treatment, the referring hospital 

or medical practice must communicate and coordinates with the referral cooperative hospital[19], [20]. 

 

3. Insurance Coverage of Referral Cooperative Hospitals 

Most hospitals that participate in referral networks have systems in place to assist patients with 

understanding their insurance coverage for treatment received at an out-of-network facility. The following 

are examples of procedures: 

Hospitals participating in a referral network may coordinate with insurance providers to get prior approval 

for treating patients who are not in their networks. The patient's out-of-pocket expenses may be reduced if 

their insurance covers the necessary medical procedures. 

Claims help Referral hospitals may also help patients through the insurance claims process. This may 

improve the likelihood that the claims will be paid in full and that the patient will get the most out of their 

insurance[21], [22]. 

Hospitals participating in referral networks may provide patients with access to financial counselors who 

can answer questions about insurance and other healthcare financing concerns. Payment plan negotiations 

and applications for government aid are examples of the kinds of services that may fall under this category. 

To better serve their patients, hospitals in referral networks may try to negotiate in-network status with 

insurance providers. 

Patients should check with their insurance providers and learn about any out-of-pocket charges before 

seeking treatment at a referral cooperative hospital. Patients should contact their insurance companies to 

learn more about out-of-network coverage and whether prior permission is needed for any upcoming 

medical procedures. If a patient has questions regarding their health insurance, they should ask their doctor 

or the hospital that made the recommendation[23], [24]. 

 

4. Neutrosophic VIKOR method 

Opricovic recommended the use of VIKOR. VIKOR is a compromise ranking approach that chooses many 

options when competing criteria are present. The compromise answer is the best approximation to the 
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optimal answer[25]–[27]. The VIKOR method is integrated with the single-valued neutrosophic set to select 

the best referral cooperative hospital with a set of criteria. Figure 1 shows the proposed framework. 

 

 

Figure 1. Steps of the neutrosophic VIKOR method. 

 

A) Construct the decision matrix  
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B) Obtain the best and worst criterion 

The ideal best and worst criterion are computed by: 

𝑦𝑗
+ =  max

𝑖
𝑦𝑖𝑗                                                                                                                                                                       (1) 

𝑦𝑗
− =  min

𝑖
𝑦𝑖𝑗                                                                                                                                                                    (2) 

C) Normalize the decision matrix  

𝑟𝑖𝑗 =
𝑦𝑖𝑗−𝑦𝑗

− 

𝑦𝑗
+−𝑦𝑗

−                                                                                                                                                                          (3) 

D) Compute the utility and regret values  

The utility measures and regret measures are computed by using Manhattan and Chebyshev distances as: 

𝑈𝑖 = ∑ (𝑤𝑗

𝑟𝑗
+−𝑟𝑖𝑗

𝑟𝑗
+−𝑟𝑗

−)𝑛
𝑗=1                                                                                                                                                            (4) 

𝐺𝑖 = max
𝑗

(𝑤𝑗

𝑟𝑗
+−𝑟𝑖𝑗

𝑟𝑗
+−𝑟𝑗

−)                                                                                                                                                         (5) 

E) Compute the VIKOR index  

𝑉𝑖 =
𝑈𝑖−𝑈𝑖

−

𝑈𝑖
−+𝑈𝑖

+ + (1 − 𝑝)
𝐺𝑖−𝐺𝑖

−

𝐺𝑖
−+𝐺𝑖

+                                                                                                                                                 (6) 

Where 𝑝 = 0.5  

 

5. Case Study  

This section introduces the selection of referral cooperative hospitals in Egypt. This study used eight 

hospitals to be ranked and eleven criteria.  

When choosing hospitals to work with on patient referrals, it is important to find a balance between the 

needs of both parties. To guarantee high-quality treatment and patient happiness, this method 

seeks institutions that satisfy criteria and features. 

 

Referral hospitals are chosen using the following criteria and factors: 

Consideration should be given to the hospital's reputation for providing high-quality treatment. The 

hospital's reputation, accreditation, results, and patient happiness all play a role.  

The hospital should provide all the resources and tools required to care for its patients. This comprises 

diagnostic and imaging services in addition to specialized care in areas like cardiology, cancer, and 

neurology. 

Hospitals that are geographically near to the referral hospital or medical practice are chosen so that patients 

may spend less time traveling. 
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For the patient's convenience, the hospital should accept the same insurance plans as the facility making 

the referral. 

The hospital's price policy should be made clear to patients, and the cost of treatment should be affordable. 

The hospital should have efficient communication and coordination mechanisms in place to guarantee that 

all patients get consistent, high-quality treatment. 

The hospital's ability to offer treatment that is culturally competent and respectful of the needs of all 

patients is essential. 

When choosing a referral cooperative hospital, it is important to take all these considerations into account 

to provide patients with the best chance of receiving treatment that is up to par with their standards. 

 

 

Table 1. Referral cooperative hospital data. 

 RCHC1 RCHC2 RCHC3 RCHC4 RCHC5 RCHC6 RCHC7 RCHC8 RCHC9 RCHC1

0 
RCHC1

1 
RCH

1 
(0.9,0.15,0.15

) 

(0.35,0.70,0.6

0) 

(0.8,0.25,0.20

) 

(0.9,0.15,0.15

) 

(0.75,0.30,0.2

0) 

(0.8,0.25,0.20

) 

(0.9,0.15,0.15

) 

(0.75,0.30,0.2

0) 

(0.9,0.15,0.15

) 

(0.8,0.25,0.20

) 

(0.9,0.15,0.15

) 

RCH

2 
(0.8,0.25,0.20

) 

(0.75,0.30,0.2

0) 

(0.8,0.25,0.20

) 

(0.35,0.70,0.6

0) 

(0.35,0.70,0.6

0) 

(0.75,0.30,0.2

0) 

(0.35,0.70,0.6

0) 

(0.15,0.90,0.8

0) 

(0.8,0.25,0.20

) 

(0.15,0.90,0.8

0) 

(0.8,0.25,0.20

) 

RCH

3 
(0.75,0.30,0.2

0) 

(0.15,0.90,0.8

0) 

(0.9,0.15,0.15

) 

(0.35,0.70,0.6

0) 

(0.9,0.15,0.15

) 

(0.15,0.90,0.8

0) 

(0.9,0.15,0.15

) 

(0.8,0.25,0.20

) 

(0.35,0.70,0.6

0) 

(0.9,0.15,0.15

) 

(0.8,0.25,0.20

) 

RCH

4 
(0.8,0.25,0.20

) 

(0.75,0.30,0.2

0) 

(0.15,0.90,0.8

0) 

(0.8,0.25,0.20

) 

(0.15,0.90,0.8

0) 

(0.8,0.25,0.20

) 

(0.15,0.90,0.8

0) 

(0.75,0.30,0.2

0) 

(0.15,0.90,0.8

0) 

(0.15,0.90,0.8

0) 

(0.75,0.30,0.2

0) 

RCH

5 
(0.9,0.15,0.15

) 

(0.15,0.90,0.8

0) 

(0.15,0.90,0.8

0) 

(0.9,0.15,0.15

) 

(0.15,0.90,0.8

0) 

(0.75,0.30,0.2

0) 

(0.9,0.15,0.15

) 

(0.75,0.30,0.2

0) 

(0.15,0.90,0.8

0) 

(0.9,0.15,0.15

) 

(0.35,0.70,0.6

0) 

RCH

6 
(0.75,0.30,0.2

0) 

(0.75,0.30,0.2

0) 

(0.8,0.25,0.20

) 

(0.15,0.90,0.8

0) 

(0.8,0.25,0.20

) 

(0.15,0.90,0.8

0) 

(0.8,0.25,0.20

) 

(0.8,0.25,0.20

) 

(0.15,0.90,0.8

0) 

(0.75,0.30,0.2

0) 

(0.8,0.25,0.20

) 

RCH

7 
(0.8,0.25,0.20

) 

(0.35,0.70,0.6

0) 

(0.9,0.15,0.15

) 

(0.35,0.70,0.6

0) 

(0.15,0.90,0.8

0) 

(0.9,0.15,0.15

) 

(0.15,0.90,0.8

0) 

(0.9,0.15,0.15

) 

(0.35,0.70,0.6

0) 

(0.9,0.15,0.15

) 

(0.75,0.30,0.2

0) 

RCH

8 
(0.9,0.15,0.15

) 

(0.75,0.30,0.2

0) 

(0.8,0.25,0.20

) 

(0.35,0.70,0.6

0) 

(0.75,0.30,0.2

0) 

(0.8,0.25,0.20

) 

(0.35,0.70,0.6

0) 

(0.75,0.30,0.2

0) 

(0.35,0.70,0.6

0) 

(0.8,0.25,0.20

) 

(0.9,0.15,0.15

) 

 

Experts and decision-makers used the single-valued neutrosophic numbers to evaluate the criteria and 

referral cooperative hospitals as shown in Table 1. Then by using Equation. (3), the data are normalized as 

shown in Table 2 based on the best and worst criterion. Then compute the utility and regret measures by 

using Equations. (4-5). Then compute the VIKOR index by using Equation. (6) as shown in Figure 2.  

 

Table 2. Referral cooperative hospital normalization data. 

 RCHC1 RCHC2 RCHC3 RCHC4 RCHC5 RCHC6 RCHC7 RCHC8 RCHC9 RCHC10 RCHC11 
RCH1 0 0.027344 0.010675 0 0.014308 0.081122 0 0.014308 0 0.081122 0 

RCH2 0.072549 0 0.010675 0.07322 0.063363 0.076852 0.07322 0.087891 0.011811 0 0.016382 

RCH3 0.101563 0.041016 0 0.07322 0 0 0 0.010221 0.07322 0.091796 0.016382 

RCH4 0.072549 0 0.091796 0.011811 0.087891 0.081122 0.101563 0.014308 0.101563 0 0.022934 

RCH5 0 0.041016 0.091796 0 0.087891 0.076852 0 0.014308 0.101563 0.091796 0.101563 

RCH6 0.101563 0 0.010675 0.101563 0.010221 0 0.011811 0.010221 0.101563 0.076852 0.016382 
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RCH7 0.072549 0.027344 0 0.07322 0.087891 0.091796 0.101563 0 0.07322 0.091796 0.022934 

RCH8 0 0 0.010675 0.07322 0.014308 0.081122 0.07322 0.014308 0.07322 0.081122 0 

 

 

Figure 2. The referral cooperative hospital ranking. 

 

There are many challenges of referral cooperative hospitals, benefits, and drawbacks. Care coordination 

between many providers and various locations is a significant difficulty for referral cooperative hospitals. 

Cultural, linguistic, and technological barriers may make this process more difficult than it must be. 

Satisfaction of Patients: Patients may be unsatisfied with the referral procedure if they find it cumbersome 

or if they must wait an extended period before they get treatment. Referral cooperative hospitals may be 

costlier than choices, depending on the complexity and rarity of the patient's disease. While hospitals in a 

referral cooperative may be selected for their specialization, patients may have doubts about the quality of 

treatment they would get there. Care at a referral cooperative hospital may not be covered by insurance if 

it is located outside of the patient's plan's coverage area. 

 

Advantages of Hospitals Working Together to Refer Patients: 

Referral cooperative hospitals provide access to specialized treatment that may be unavailable at general 

medical facilities. Care of a higher level is provided by the referral cooperative hospitals, which have earned 

a solid reputation for excellence in patient care and provide a full range of specialized medical services. 

Patients who are treated in hospitals that are members of a referral cooperative may have better results 

than those treated elsewhere, especially if they have a complicated or uncommon ailment. Better patient 

outcomes and care coordination are possible when diverse clinicians and institutions work together, as is 

encouraged by referral cooperative hospitals. 

0

0.2

0.4

0.6

0.8

1

1.2
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VIKOR Index
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Consequences of Hospitals Working Together to Refer Patients: 

Referral cooperative hospitals may charge more than average, depending on the complexity or rarity of the 

patient's illness. Patients may have to travel farther to reach the referral cooperative hospitals, which may 

be difficult and time-consuming. Appointments and operations at referral cooperation hospitals may have 

lengthier wait periods, especially during times of high demand. Care at a referral cooperative hospital may 

not be covered by insurance if it is located outside of the patient's plan's coverage area. Referrals to certain 

medical facilities might make patients feel as if they have fewer choices in where to get treatment. 

 

6. Conclusions  

Choosing a hospital for a referral cooperative is a crucial step that must consider several variables. Care 

quality, service availability, location, insurance coverage, cost, communication and coordination, and 

cultural competence are just a few of the variables considered when choosing a referral cooperative 

hospital. Hospitals that can deliver high-quality, all-encompassing care that is up to patients' requirements 

and expectations are given preference when establishing referral connections. However, the process of 

choosing a referral cooperative hospital is difficult, and there is always the chance that something may go 

wrong in terms of communication or coordination. This paper used the single-valued neutrosophic set with 

a MCDM methodology to overcome the uncertain data. The VIKOR method is the MCDM method used to 

rank the hospitals for a referral cooperative. This method is applied to Egypt as a case study. 
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—————————————————————————————————————————-

1. Introduction

As it lays the groundwork for modern mathematics, classical set theory progresses through

numerous extensions. Zadeh [32] first suggested the idea of Fuzzy Sets (FS) in 1965. Fuzzy

set theory was crucially applied in all branches of science and engineering. The idea of Fuzzy

Meric Space (FMS) was first put forth in 1975 by Kramosil and Michalek[14]. This important

characteristic of assigning graded membership polarised the academics, prompting them to de-

velop different analyses and applications for various types of fuzzy metric spaces. George and

Veeramani [4] reconstructed FMS using triangular criteria. Following then, other researchers

explored the properties of FMS and produced numerous fixed point results.

Intuitionistic Fuzzy Sets, which expanded fuzzy set theory to include the idea of non-

membership grade, were introduced by Atanassov [1] in 1983. Since then, a lot of work

has been put into coming to new findings and extending existing ideas to the intuitionistic
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fuzzy environment. Park [17] developed intuitionistic fuzzy metric space (IFMS), and several

fixed point findings based on the concept of IFS were published. Alaca et al. [2] and other

researchers have developed several fixed point theorems in FMS and IFMS. Tarkan Oner et

al. [16] developed the idea of fuzzy cone metric space. By Priyobartal et al. [18], several fixed

point outcomes in fuzzy cone metric space were studied. Neutrosophy is an extension of the

intuitionistic fuzzy set presented by Florentin Smarandache [20] in 1998. It holds that there

exists a continuum-power spectrum of neutralities between a notion and its opponent.

According to this theory, there is a continuum-power spectrum of neutralities that might

exist between a concept and its adversary. Neutralities were added to the Intuitionistic Fuzzy

Set by neutrosophy, which energised the scientific community, and the field is now thriving

with countless investigations, analyses, computing techniques, and applications. Neutrosophic

metric space was established by Kirisci et al. [15] in 2019 as an expansion of intuitionistic

fuzzy metric space that produces fixed point theorms in complete neutrosophic metric space.

In Neutrosophic Metric Spaces(NMS), Sowndrarajan, Jeyaraman, and Florentin Smarandache

demonstrated fixed point findings for contraction theorems.

This paper introduces the idea of Neutrosophic Cone Metric Space (NCMS) and explains

its key components.. On Neutrosophic Cone Metric Space, the Banach contraction theorem

and a few fixed point results are presented and demonstrated. Furthermore, by utilising the

idea of occasionally weakly compatible on two self mappings, fixed point results on NCMS

have been demonstrated.

2. Preliminaries

Definition 2.1. Think about a non-empty set that presummably serves as a common fixed

point of mappings G : ℸ× ℸ → ℸ and F : ℸ → ℸ if ϱ = F(ϱ) = G(ϱ, ϱ).

Definition 2.2. If the mappings G : ℸ × ℸ → ℸ and F : ℸ → ℸ in a nonempty set are

considered to be commutative, then F(G(ϱ, ς)) = G(F(ϱ),F(ς)) for all ϱ, ς ∈ ℸ.

Definition 2.3. Consider a non-empty set ℸ and G, F self-maps of ℸ. ϱ serves as a coincidence

point of G and F if and only if G(ϱ) = F(ϱ) where ϱ ∈ ℸ. Then w = G(ϱ) = F(ϱ) is referred

to as a point of coincidence of G and F.

Definition 2.4. Let G and F represents two set’s self- maps of a set ℸ. G and F are referred

to be occasionally weakly compatible if and only if a point is made ϱ ∈ ℸ which is an instance

of coincidence point of G and F, where G and F commute.
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Definition 2.5. Consider a cone metric space (ℸ, d) Next, for each n1 ≫ 0 and n2 ≫ 0,

n1, n2 ∈ E, a thing exists n ≫ 0, n ∈ E like that n ≪ n1 and n ≪ n2 .

Lemma 2.6. Assume that ℸ is a collection of G,F’s occasionally weakly compatible self maps.

If G and F share a unique fixed point w, then G and F share a special coincidence w = G(ϱ) =

F(ϱ).

Definition 2.7. Let ∗ : [0, 1] × [0, 1] → [0, 1] where it meets the following requirements be a

continuous t-norm [CTN]:

(i) ∗ is commutative and associative,

(ii) ∗ is continuous,

(iii) ε1 ∗ 1 = ε1 for all ε1 ∈ [0, 1],

(iv) ε1 ∗ ε2 ≤ ε3 ∗ ε4 whenever ε1 ≤ ε3 and ε2 ≤ ε4, for every ε1, ε2, ε3, ε4 ∈ [0, 1].

Definition 2.8. Let ⋄ : [0, 1] × [0, 1] → [0, 1] where it meets the following requirements be a

continuous t-conorm [CTC]:

(i) ⋄ is commutative and associative,

(ii) ⋄ is continuous,

(iii) ε1 ⋄ 0 = ε1 for all ε1 ∈ [0, 1],

(iv) ε1 ⋄ ε2 ≤ ε3 ⋄ ε4 whenever ε1 ≤ ε3 and ε2 ≤ ε4, for each ε1, ε2, ε3, ε4 ∈ [0, 1].

3. Neutrosophic Cone Metric Spaces

Definition 3.1. It is claimed that a 6-tuple (ℸ,Ξ,Θ,Υ, ∗, ⋄) is a Neutrosophic Cone Metric

Space, a cone of E is P, ℸ can be any non empty set, ∗ be a neutrosophic CTN, ⋄ be a

neutrosophic CTC and Ξ,Θ and Υ are neutrosophic sets on ℸ2 × int(P) where it meets the

criteria listed below:

for every ϱ, ς, δ, ω ∈ ℸ, α, µ ∈ int(P).

(i) 0 ≤ Ξ(ϱ, ς, α) ≤ 1; 0 ≤ Θ(ϱ, ς, α) ≤ 1; 0 ≤ Υ(ϱ, ς, α) ≤ 1;

(ii) Ξ(ϱ, ς, α) + Θ(ϱ, ς, α) + Υ(ϱ, ς, α) ≤ 3;

(iii) Ξ(ϱ, ς, α) > 0;

(iv) Ξ(ϱ, ς, α) = 1 if and only if ϱ = ς;

(v) Ξ(ϱ, ς, α) = Ξ(ς, ϱ, α);

(vi) Ξ(ϱ, ς, α) ∗ Ξ(ς, δ, µ) ≤ Ξ(ϱ, δ, α+ µ), for all α, µ > 0;

(vii) Ξ(ϱ, ς, ·) : int(P) → (0, 1] is neutrosophic continuous;

(viii) lim
α→∞

Ξ(ϱ, ς, α) = 1 for all α > 0;

(ix) Θ(ϱ, ς, α) < 1;

(x) Θ(ϱ, ς, α) = 0 if and only if ϱ = ς;

(xi) Θ(ϱ, ς, α) = Θ(ς, ϱ, α);
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(xii) Θ(ϱ, ς, α) ⋄Θ(ς, δ, µ) ≥ Θ(ϱ, δ, α+ µ), for all α, µ > 0;

(xiii) Θ(ϱ, ς, ·) : int(P) → (0, 1] is neutrosophic continuous;

(xiv) lim
α→∞

Θ(ϱ, ς, α) = 0 for all α > 0;

(xv) Υ(ϱ, ς, α) < 1;

(xvi) Υ(ϱ, ς, α) = 0 if and only if ϱ = ς;

(xvii) Υ(ϱ, ς, α) = Υ(ς, ϱ, α);

(xviii) Υ(ϱ, ς, α) ⋄Υ(ς, δ, µ) ≥ Υ(ϱ, δ, α+ µ), for all α, µ > 0;

(xix) Υ(ϱ, ς, ·) : int(P) → (0, 1] is neutrosophic continuous;

(xx) lim
α→∞

Υ(ϱ, ς, α) = 0 for all α > 0;

(xxi) If α ≤ 0 then Ξ(ϱ, ς, α) = 0;Θ(ϱ, ς, α) = 1;Υ(ϱ, ς, α) = 1.

Then, (Ξ,Θ,Υ) is referred to as a NCMS on ℸ. The mappings Ξ,Θ and Υ represents degree

of closedness, neturalness and non-closedness between ϱ and ς in relation to α respectively.

Example 3.2. Consider a metric space (ℸ, d). Let E = R and P = [0,∞). Define ω ∗ σ =

min{ω, σ} and ω ⋄ σ = max{ω, σ}, then every neutrosophic metric spaces became an NCMS.

Example 3.3. P could be an any cone, ℸ = N . Define ω ∗ σ = min{ω, σ} and ω ⋄ σ =

max{ω, σ}, Ξ,Θ,Υ : ℸ2 × int(P) → [0, 1] defined by

Ξ(ϱ, ς, α) =


ϱ

ς
, if ϱ ≤ ς

ς

ϱ
, if ς ≤ ϱ

Θ(ϱ, ς, α) =


ς − ϱ

ς
, if ϱ ≤ ς

ϱ− ς

ϱ
, if ς ≤ ϱ

Υ(ϱ, ς, α) =


ς−ϱ
ϱ , if ϱ ≤ ς

ϱ−ς
ς , if ς ≤ ϱ

for all ϱ, ς ∈ ℸ and α≫ 0. Then (ℸ,Ξ,Θ,Υ, ∗, ⋄) be a NCMS.

Example 3.4. Assume E = R2. Then P = {(ρ1, ρ2) : ρ1, ρ2 ≥ 0} ⊂ E with normal constant

P = 1, let P be a normal cone assume ℸ = R, ω ∗ σ = min{ω, σ}, ω ⋄ σ = max{ω, σ}

and Ξ,Θ,Υ : ℸ2 × int(P) → [0, 1] defined by Ξ(ϱ, ς, α) =
1

e
|ϱ−ς|
∥α∥

,Θ(ϱ, ς, α) =
e

|ϱ−ς|
∥α∥ − 1

e
|ϱ−ς|
∥α∥

and

Υ(ϱ, ς, α) = e
|ϱ−ς|
∥α∥ − 1, for each ϱ, ς ∈ ℸ and α≫ 0. Then (ℸ,Ξ,Θ,Υ, ∗, ⋄) is a NCMS.

Definition 3.5. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). For α≫ 0, the open ball O(ϱ, r, α) where

ϱ is its center and r ∈ (0, 1) is its radius as O(ϱ, r, α) = {ς ∈ ℸ : Ξ(ϱ, ς, α) > 1−r,Θ(ϱ, ς, α) < r

and Υ(ϱ, ς, α) < r}.

Definition 3.6. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). Let ϱ ∈ ℸ and {ϱn} be a sequence in ℸ.
Then {ϱn} suppose converges to ϱ if for any α≫ 0 and r ∈ (0, 1) are present, a natural integer

n0 exists such that Ξ(ϱn, ϱ, α) > 1− r,Θ(ϱn, ϱ, α) < r and Υ(ϱn, ϱ, α) < r for all n > n0. Then

lim
n→∞

ϱn = ϱ or ϱn → ϱ as n→ ∞.

Definition 3.7. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). Let ϱ ∈ ℸ and {ϱn} be a sequence in ℸ.
If for any 0 < ε < 1 and any α ≫ 0 a natural number n0 like that exists and Ξ(ϱn, ϱm, α) >
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1 − ε,Θ(ϱn, ϱm, α) < ε and Υ(ϱn, ϱm, α) < ε for each n,m > n0 then {ϱn} referred to as a

Cauchy sequence.

Definition 3.8. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). One calls ℸ complete if each and every

Cauchy sequence converges.

Definition 3.9. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). We refer to a subset Φ of ℸ as FC -

bounded assuming if α≫ 0 and r ∈ (0, 1) are present like that Ξ(ϱ, ς, α) > 1− r,Θ(ϱ, ς, α) < r

and Υ(ϱ, ς, α) < r for each ϱ, ς ∈ Φ.

Definition 3.10. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄) and h : ℸ → ℸ be a self mapping. Then

neutrosophic cone contractive is the name given to h and assuming there is ρ ∈ (0, 1) like that
1

Ξ(h(ϱ), h(ς), α)
− 1 ≤ ρ

(
1

Ξ(ϱ, ς, α)
− 1

)
,Θ(h(ϱ), h(ς), α) ≤ ρΘ(ϱ, ς, α) and Υ(h(ϱ), h(ς), α) ≤

ρΥ(ϱ, ς, α) for each ϱ, ς ∈ ℸ and α≫ 0. ρ is referred to as the h contractive constant.

Lemma 3.11. Consider any two points ϱ, ς ∈ ℸ and ρ ∈ (0, 1) such that Ξ(ϱ, ς, ρα) ≥
Ξ(ϱ, ς, α),Θ(ϱ, ς, ρα) ≤ Θ(ϱ, ς, α) and Υ(ϱ, ς, ρα) ≤ Υ(ϱ, ς, α). Then ϱ = ς.

Theorem 3.12. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). Define τ = {Φ ⊆ ℸ : ϱ ∈ Φ iff a thing

exists r ∈ (0, 1) and α≫ 0 like that O(ϱ, r, α) ⊂ Φ}, which is a topology on ℸ.

Proof. Let ϱ ∈ ϕ. Hence ϕ = O(ϱ, r, α) ⊂ ϕ and ϕ ∈ τ .

Since for any ϱ ∈ ℸ, and r ∈ (0, 1), α ≫ 0 are present then O(ϱ, r, α) ⊂ ℸ, then ℸ ∈ τ . Let

Φ,O ∈ τ and ϱ ∈ Φ ∩ O, then ϱ ∈ Φ and ϱ ∈ O so a thing exists α1 ≫ 0, α2 ≫ 0 and

r1, r2 ∈ (0, 1) such that O(ϱ, r1, α1) ⊂ Φ and O(ϱ, r2, α2) ⊂ O.

From Definition (2.5), for α1 ≫ 0, α2 ≫ 0, a thing exists α≫ 0 such that α≫ α1, α≫ α2 and

take r = min{r1, r2}. ThenO(ϱ, r, α) ⊂ O(ϱ, r1, α1)∩O(ϱ, r2, α2) ⊂ Φ∩O. Hence Φ∩O ∈ τ . Let

Φj ∈ r for every j ∈ I and ϱ ∈ ∪j∈IΦj . Afterwards, there is i0 ∈ I similar to ϱ ∈ Φj0 . So, there

is α ≫ 0 and r ∈ (0, 1) like that O(ϱ, r, α) ⊂ Φj0 . Since Φj0 ⊂ ∪j∈IΦj ,O(ϱ, r, α) ⊂ ∪j∈IΦj .

Thus ∪j∈IΦj ∈ τ . Hence, τ is therefore a topology on ℸ.

Theorem 3.13. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). Then (ℸ, τ) is Hausdorff.

Proof. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). Let ϱ, ς be the two separate points of ℸ. Then

0 < Ξ(ϱ, ς, α) < 1, 0 < Θ(ϱ, ς, α) < 1 and 0 < Υ(ϱ, ς, α) < 1. Assume Ξ(ϱ, ς, α) = r1,

Θ(ϱ, ς, α) = r2 and Υ(ϱ, ς, α) = r3 and r = max{r1, r2, r3}. Then for each r0 ∈ (r, 1), there is

r4, r5 and r6 such that r4 ∗ r4 ≥ r0, (1− r5)⋄ (1− r5) ≤ (1− r0) and (1− r6)⋄ (1− r6) ≤ (1− r0).

Assume r7 = max{r4, r5, r6}. Think about open balls O(ϱ, 1− r7,
α
2 ) and O(ς, 1− r7,

α
2 ). Then

obviously O(ϱ, 1− r7,
α
2 )∩O(ς, 1− r7,

α
2 ) = ∅. Assume that O(ϱ, 1− r7,

α
2 )∩O(ς, 1− r7,

α
2 ) ̸= ∅.
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Then there is ν ∈ O(ϱ, 1− r7,
α
2 ) ∩ O(ς, 1− r7,

α
2 ).

r1 = Ξ(ϱ, ς, α)

≥ Ξ(ϱ, ν,
α

2
) ∗ Ξ(ν, ς, α

2
) ≥ r7 ∗ r7 ≥ r4 ∗ r4 ≥ r0 > r1,

r2 = Θ(ϱ, ς, α)

≤ Θ(ϱ, ν,
α

2
) ⋄Θ(ν, ς,

α

2
) ≤ (1− r7) ⋄ (1− r7) ≤ (1− r5) ⋄ (1− r5) ≤ (1− r0) < r2 and

r3 = Υ(ϱ, ς, α)

≤ Υ(ϱ, ν,
α

2
) ⋄Υ(ν, ς,

α

2
) ≤ (1− r7) ⋄ (1− r7) ≤ (1− r6) ⋄ (1− r6) ≤ (1− r0) < r3,

which contradicts itself. Hence, (ℸ,Ξ,Θ,Υ, ∗, ⋄) is Hausdorff.

Theorem 3.14. Consider a NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄), ϱ ∈ ℸ and (ϱn) be an ℸ sequence. Then

(ϱn) converges to ϱ if, then, just Ξ(ϱn, ϱ, α) → 1,Θ(ϱn, ϱ, α) → 0 and Υ(ϱn, ϱ, α) → 0 as

n→ ∞, for every α≫ 0.

Proof. Assume that (ϱn) → ϱ. Then, for each α≫ 0 and r ∈ (0, 1), there is a natural number

n0 such that Ξ(ϱn, ϱ, α) > 1 − r,Θ(ϱn, ϱ, α) < r and Υ(ϱn, ϱ, α) < r, for all n ≫ n0. We have

1− Ξ(ϱn, ϱ, α) < r,Θ(ϱn, ϱ, α) < r and Υ(ϱn, ϱ, α) < r. Hence Ξ(ϱn, ϱ, α) → 1,Θ(ϱn, ϱ, α) → 0

and Υ(ϱn, ϱ, α) → 0 as n→ ∞.

However, suppose that Ξ(ϱn, ϱ, α) → 1 as n → ∞. Then, there exists a natural integer n0

such that for each α≫ 0 and r ∈ (0, 1), 1−Ξ(ϱn, ϱ, α) < r,Θ(ϱn, ϱ, α) < r and Υ(ϱn, ϱ, α) < r

for each n ≥ n0. Hence, Ξ(ϱn, ϱ, α) > 1−r,Θ(ϱn, ϱ, α) < r and Υ(ϱn, ϱ, α) < r for each n ≥ n0.

Hence ϱn → ϱ as n→ ∞.

4. Main Results

Theorem 4.1. Consider a complete NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄) in which neutrosophic cone con-

tractive sequences are Cauchy. Let F : ℸ → ℸ be a neutrosophic cone contractive mapping, the

contractice constant is ρ. Then F has a distinct fixed point.

Proof. Consider ϱ ∈ ℸ and let ϱn = Fn(ϱ), n ∈ N. For α≫ 0, we have

1

Ξ(F(ϱ),F2(ϱ), α)
− 1 ≤ ρ

(
1

Ξ(ϱ, ϱ1, α)
− 1

)
,

Θ(F(ϱ),F2(ϱ), α) ≤ ρΘ(ϱ, ϱ1, α)

Υ(F(ϱ),F2(ϱ), α) ≤ ρΥ(ϱ, ϱ1, α)
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and by induction

1

Ξ(ϱn+1, ϱn+2, α)
− 1 ≤ ρ

(
1

Ξ(ϱn, ϱn+1, α)
− 1

)
,

Θ(ϱn+1, ϱn+2, α) ≤ ρΘ(ϱn, ϱn+1, α)

Υ(ϱn+1, ϱn+2, α) ≤ ρΥ(ϱn, ϱn+1, α), for all n ∈ N

Then (ϱn) is a neutrosophic contractive Cauchy sequence which converges to ς where ς ∈ ℸ.
Theorem (3.14), gives us

1

Ξ(F(ς),F(ϱn), α)
− 1 ≤ ρ

(
1

Ξ(ς, ϱn, α)
− 1

)
→ 1,

Θ(F(ς),F(ϱn), α) ≤ ρΘ(ς, ϱn, α) → 0 and

Υ(F(ς),F(ϱn), α) ≤ ρΥ(ς, ϱn, α) → 0 as n→ ∞.

Then for every α≫ 0,

lim
n→∞

Ξ(F(ς),F(ϱn), α) = 1, lim
n→∞

Θ(F(ς),F(ϱn), α) = 0 and lim
n→∞

Υ(F(ς),F(ϱn), α) = 0 and

hence lim
n→∞

F(ϱn) = F(ς).

Now, we prove uniqueness. Assume F(ν) = ν for some ν ∈ V. For α≫ 0, we have

1

Ξ(ς, ν, α)
− 1 =

1

Ξ(F(ς),F(ν), α)
− 1 ≤ ρ

(
1

Ξ(ς, ν, α)
− 1

)
= ρ

(
1

Ξ(F(ς),F(ν), α)
− 1

)
≤ ρ2

(
1

Ξ(ς, ν, α)
− 1

)
≤ · · · ≤ ρn

(
1

Ξ(ς, ν, α)
− 1

)
→ 1 as n→ ∞,

Θ(ς, ν, α) = Θ(F(ς),F(ν), α) ≤ ρΘ(ς, ν, α)

= ρΘ(F(ς),F(ν), α) ≤ ρ2Θ(ς, ν, α)

≤ · · · ≤ ρnΘ(ς, ν, α) → 0 as n→ ∞,

Υ(ς, ν, α) = Υ(F(ς),F(ν), α) ≤ ρΥ(ς, ν, α)

= ρΥ(F(ς),F(ν), α) ≤ ρ2Υ(ς, ν, α)

≤ · · · ≤ ρnΥ(ς, ν, α) → 0 as n→ ∞,

Hence Ξ(ς, ν, α) = 1,Θ(ς, ν, α) = 0 and Υ(ς, ν, α) = 0 and ς = ν.

Theorem 4.2. Consider a complete NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄), and let P,R,Q and S be self-

mappings of ℸ. Let {P,Q} and {R,S} be Occasionally Weakly Compatible (OWC) pairings.
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Assuming there is a ρ ∈ (0, 1) such that

Ξ(P(ϱ),R(ς), ρ(α)) ≥ min


Ξ(Q(ϱ),S(ς), α), Ξ(Q(ϱ),P(ϱ), α),

Ξ(R(ς),S(ς), α), Ξ(P(ϱ),S(ς), α),
Ξ(R(ς),Q(ϱ), α)

 ,

Θ(P(ϱ),R(ς), ρ(α)) ≤ max


Θ(Q(ϱ),S(ς), α), Θ(Q(ϱ),P(ϱ), α),

Θ(R(ς),S(ς), α), Θ(P(ϱ),S(ς), α),
Θ(R(ς),Q(ϱ), α)

 ,

Υ(P(ϱ),R(ς), ρ(α)) ≤ max


Υ(Q(ϱ),S(ς), α), Υ(Q(ϱ),P(ϱ), α),

Υ(R(ς),S(ς), α), Υ(P(ϱ),S(ς), α),
Υ(R(ς),Q(ϱ), α)

 (4.2.1)

for each ϱ, ς ∈ ℸ and for each α ≫ 0, afterward there is a special point ω ∈ ℸ like that

P(ω) = Q(ω) = ω and a unique point ν ∈ ℸ such that R(ν) = S(ν) = ν. Moreover ν = ω,

hence P,R,Q and S have a singular shared fixed point.

Proof. Consider {P,Q} and {R,S} which are OWC pairings, consequently points ϱ, ς ∈ ℸ is

such that P(ϱ) = Q(ϱ) and R(ς) = S(ς). We claim that P(ϱ) = R(ς).

By inequality (4.2.1),

Ξ(P(ϱ),R(ς), ρ(α)) ≥ min


Ξ(Q(ϱ),S(ς), α), Ξ(Q(ϱ),P(ϱ), α),

Ξ(R(ς),S(ς), α), Ξ(P(ϱ),S(ς), α),
Ξ(R(ς),Q(ϱ), α)


= min


Ξ(P(ϱ),R(ς), α), Ξ(P(ϱ),P(ϱ), α),

Ξ(R(ς),R(ς), α), Ξ(P(ϱ),R(ς), α),

Ξ(R(ς),P(ϱ), α)


= Ξ(P(ϱ),R(ς), α),

Θ(P(ϱ),R(ς), ρ(α)) ≤ max


Θ(Q(ϱ),S(ς), α), Θ(Q(ϱ),P(ϱ), α),

Θ(R(ς),S(ς), α), Θ(P(ϱ),S(ς), α),
Θ(R(ς),Q(ϱ), α)


= max


Θ(P(ϱ),R(ς), α), Θ(P(ϱ),P(ϱ), α),

Θ(R(ς),R(ς), α), Θ(P(ϱ),R(ς), α),

Θ(R(ς),P(ϱ), α)


= Θ(P(ϱ),R(ς), α)

Υ(P(ϱ),R(ς), ρ(α)) ≤ max


Υ(Q(ϱ),S(ς), α), Υ(Q(ϱ),P(ϱ), α),

Υ(R(ς),S(ς), α), Υ(P(ϱ),S(ς), α),
Υ(R(ς),Q(ϱ), α)
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= max


Υ(P(ϱ),R(ς), α), Υ(P(ϱ),P(ϱ), α),

Υ(R(ς),R(ς), α), Υ(P(ϱ),R(ς), α),

Υ(R(ς),P(ϱ), α)


= Υ(P(ϱ),R(ς), α)

By Lemma (3.11), P(ϱ) = R(ς), i.e., P(ϱ) = Q(ϱ) = R(ς) = S(ς).
Supposing there is a point ν that is different P(ν) = Q(ν) then by (4.2.1), we have P(ν) =

Q(ν) = R(ς) = S(ς), so P(ϱ) = P(ν) and ω = P(ϱ) = Q(ϱ) is the special place where P and

Q coincide.

By Lemma (3.11), the only fixed point between P and Q is ω. Likewise, there is a special

point ν ∈ ℸ like that ν = R(ν) = S(ν). Assume that ω ̸= ν, we have

Ξ(ω, ν, ρ(α)) = Ξ(P(ω),R(ν), ρ(α))

≥ min


Ξ(Q(ω),S(ν), α), Ξ(Q(ω),P(ν), α),

Ξ(R(ν),S(ν), α), Ξ(P(ω),S(ν), α),
Ξ(R(ν),Q(ω), α)


= min

{
Ξ(ω, ν, α),Ξ(ω, ν, α),Ξ(ν, ν, α),Ξ(ω, ν, α),Ξ(ν, ω, α)

}
= Ξ(ω, ν, α),

Θ(ω, ν, ρ(α)) = Θ(P(ω),R(ν), ρ(α))

≤ max


Θ(Q(ω),S(ν), α), Θ(Q(ω),P(ν), α),

Θ(R(ν),S(ν), α), Θ(P(ω),S(ν), α),
Θ(R(ν),Q(ω), α)


= max

{
Θ(ω, ν, α),Θ(ω, ν, α),Θ(ν, ν, α),Θ(ω, ν, α),Θ(ν, ω, α)

}
= Θ(ω, ν, α),

Υ(ω, ν, ρ(α)) = Υ(P(ω),R(ν), ρ(α))

≤ max


Υ(Q(ω),S(ν), α), Υ(Q(ω),P(ν), α),

Υ(R(ν),S(ν), α), Υ(P(ω),S(ν), α),
Υ(R(ν),Q(ω), α)


= max

{
Υ(ω, ν, α),Υ(ω, ν, α),Υ(ν, ν, α),Υ(ω, ν, α),Υ(ν, ω, α)

}
= Υ(ω, ν, α).

Hence, we have ν = ω by Lemma (3.11), a common fixed point of P,R,Q and S is ν. (4.2.1)

states that the fixed point’s uniqueness is true.
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Theorem 4.3. Consider a complete NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄) and let P,R,Q and S be self-

mappings of ℸ. Let {P,Q} and {R,S} be OWC pairings. If ρ ∈ (0, 1) exists in a way that

Ξ(P(ϱ),R(ς), ρ(α)) ≥ χ

[
min


Ξ(Q(ϱ),S(ς), α), Ξ(Q(ϱ),P(ϱ), α),

Ξ(R(ς),S(ς), α), Ξ(P(ϱ),S(ς), α),
Ξ(R(ς),Q(ϱ), α)


]
,

Θ(P(ϱ),R(ς), ρ(α)) ≤ ψ

[
max


Θ(Q(ϱ),S(ς), α), Θ(Q(ϱ),P(ϱ), α),

Θ(R(ς),S(ς), α), Θ(P(ϱ),S(ς), α),
Θ(R(ς),Q(ϱ), α)


]
,

Υ(P(ϱ),R(ς), ρ(α)) ≤ ϕ

[
max


Υ(Q(ϱ),S(ς), α), Υ(Q(ϱ),P(ϱ), α),

Υ(R(ς),S(ς), α), Υ(P(ϱ),S(ς), α),
Υ(R(ς),Q(ϱ), α)


]
,

for each ϱ, ς ∈ ℸ and χ, ψ, ϕ : [0, 1] → [0, 1], such that χ(α) > α,ψ(α) < α, ϕ(α) < α for all

0 ≪ α < 1, thereforeP,R,Q and S have a special shared fixed point.

Proof. Theorem (4.2) leads to the theorem’s proof.

Theorem 4.4. Consider a complete NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄) and let P,R,Q and S be self-

mappings of ℸ. Let {P,Q} and {R,S} be OWC pairings. If there is a ρ ∈ (0, 1) such that

Ξ(P(ϱ),R(ς), ρ(α)) ≥ χ


Ξ(Q(ϱ),S(ς), α), Ξ(Q(ϱ),P(ϱ), α),

Ξ(R(ς),S(ς), α), Ξ(P(ϱ),S(ς), α),
Ξ(R(ς),Q(ϱ), α)

 ,

Θ(P(ϱ),R(ς), ρ(α)) ≤ ψ


Θ(Q(ϱ),S(ς), α), Θ(Q(ϱ),P(ϱ), α),

Θ(R(ς),S(ς), α), Θ(P(ϱ),S(ς), α),
Θ(R(ς),Q(ϱ), α)

 ,

Υ(P(ϱ),R(ς), ρ(α)) ≤ ϕ


Υ(Q(ϱ),S(ς), α), Υ(Q(ϱ),P(ϱ), α),

Υ(R(ς),S(ς), α), Υ(P(ϱ),S(ς), α),
Υ(R(ς),Q(ϱ), α)

 (4.4.1)

for each ϱ, ς ∈ ℸ and χ, ψ, ϕ : [0, 1]5 → [0, 1], such that χ(α, 1, 1, α, α) > α,ψ(α, 0, 0, α, α) <

α, ϕ(α, 0, 0, α, α) < α for all 0 ≪ α < 1, then P,R,Q and S have a special shared fixed point.

Proof. Consider {P,Q} and {R,S} which are OWC pairings, there are points ϱ, ς ∈ ℸ such

that P(ϱ) = Q(ϱ) and R(ς) = S(ς).
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We show that P(ϱ) = R(ς). By inequality (4.4.1), we have

Ξ(P(ϱ),R(ς), ρ(α)) ≥ χ


Ξ(Q(ϱ),S(ς), α), Ξ(Q(ϱ),P(ϱ), α),

Ξ(R(ς),S(ς), α), Ξ(P(ϱ),S(ς), α),
Ξ(R(ς),Q(ϱ), α)


= χ


Ξ(P(ϱ),R(ς), α), Ξ(P(ϱ),P(ϱ), α),

Ξ(R(ς),R(ς), α), Ξ(P(ϱ),R(ς), α),

Ξ(R(ς),P(ϱ), α)


= χ

{
Ξ(P(ϱ),R(ς), α), 1, 1,Ξ(P(ϱ),R(ς), α),Ξ(R(ς),P(ϱ), α)

}
≥ Ξ(P(ϱ),R(ς), α),

Θ(P(ϱ),R(ς), ρ(α)) ≤ ψ


Θ(Q(ϱ),S(ς), α), Θ(Q(ϱ),P(ϱ), α),

Θ(R(ς),S(ς), α), Θ(P(ϱ),S(ς), α),
Θ(R(ς),Q(ϱ), α)


= ψ


Θ(P(ϱ),R(ς), α), Θ(P(ϱ),P(ϱ), α),

Θ(R(ς),R(ς), α), Θ(P(ϱ),R(ς), α),

Θ(R(ς),P(ϱ), α)


= ψ

{
Θ(P(ϱ),R(ς), α), 0, 0,Θ(P(ϱ),R(ς), α),Θ(R(ς),P(ϱ), α)

}
≤ Θ(P(ϱ),R(ς), α),

Υ(P(ϱ),R(ς), ρ(α)) ≤ ϕ


Υ(Q(ϱ),S(ς), α), Υ(Q(ϱ),P(ϱ), α),

Υ(R(ς),S(ς), α), Υ(P(ϱ),S(ς), α),
Υ(R(ς),Q(ϱ), α)


= ϕ


Υ(P(ϱ),R(ς), α), Υ(P(ϱ),P(ϱ), α),

Υ(R(ς),R(ς), α), Υ(P(ϱ),R(ς), α),

Υ(R(ς),P(ϱ), α)


= ϕ

{
Υ(P(ϱ),R(ς), α), 0, 0,Υ(P(ϱ),R(ς), α),Υ(R(ς),P(ϱ), α)

}
≤ Υ(P(ϱ),R(ς), α),

which is a contradiction, hence P(ϱ) = R(ς). That is P(ϱ) = Q(ϱ) = R(ς) = S(ς).
Assume that there is a point ν such that P(ν) = Q(ν), then by (4.4.1) P(ν) = Q(ν) = R(ς) =

S(ς), so P(ϱ) = P(ν) and ω = P(ϱ) = S(ϱ) is the special place where P and Q coincide.

From Lemma (2.6), ω is the sole fixed point that connects P and Q. Likewise, there is a

speical point ν ∈ ℸ like that ν = R(ν) = S(ν). Thus a common fixed point between P,R,Q
and S is ν. (4.4.1) states that the fixed point’s uniqueness holds.

Theorem 4.5. Consider a complete NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄) and let P,R,Q and S be self -

mappings of ℸ. Consider {P,Q} and {R,S} which are OWC pairings. If point ρ ∈ (0, 1)
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exists, then for every ϱ, ς ∈ ℸ and α≫ 0 satisfying

Ξ
(
P(ϱ),R(ς), ρ(α)

)
≥ Ξ(Q(ϱ),S(ς), α) ∗ Ξ(P(ϱ),Q(ϱ), α) ∗ Ξ(R(ς),S(ς), α) ∗ Ξ(P(ϱ),S(ς), α)

Θ
(
P(ϱ),R(ς), ρ(α)

)
≤ Θ(Q(ϱ),S(ς), α) ⋄Θ(P(ϱ),Q(ϱ), α) ⋄Θ(R(ς),S(ς), α) ⋄Θ(P(ϱ),S(ς), α)

Υ
(
P(ϱ),R(ς), ρ(α)

)
≤ Υ(Q(ϱ),S(ς), α) ⋄Υ(P(ϱ),Q(ϱ), α) ⋄Υ(R(ς),S(ς), α) ⋄Υ(P(ϱ),S(ς), α)

(4.5.1)

then P,R,Q and S have a special shared fixed point.

Proof. Consider {P,Q} and {R,S} which are OWC pairings. There are points ϱ, ς ∈ ℸ such

that P(ϱ) = Q(ϱ) and R(ς) = S(ς). We claim that P(ϱ) = R(ς).

By inequality (4.5.1), we have

Ξ
(
P(ϱ),R(ς), ρ(α)

)
≥ Ξ(Q(ϱ),R(ς), α) ∗ Ξ(P(ϱ),Q(ϱ), α) ∗ Ξ(R(ς),S(ς), α) ∗ Ξ(P(ϱ),S(ς), α)

= Ξ(P(ϱ),R(ς), α) ∗ Ξ(P(ϱ),P(ϱ), α) ∗ Ξ(R(ς),R(ς), α) ∗ Ξ(P(ϱ),R(ς), α)

≥ Ξ(P(ϱ),R(ς), α) ∗ 1 ∗ 1 ∗ Ξ(P(ϱ),R(ς), α)

= Ξ(P(ϱ),R(ς), α)

Θ
(
P(ϱ),R(ς), ρ(α)

)
≤ Θ(Q(ϱ),R(ς), α) ⋄Θ(P(ϱ),Q(ϱ), α) ⋄Θ(R(ς),S(ς), α) ⋄Θ(P(ϱ),S(ς), α)

= Θ(P(ϱ),R(ς), α) ⋄Θ(P(ϱ),P(ϱ), α) ⋄Θ(R(ς),R(ς), α) ⋄Θ(P(ϱ),R(ς), α)

≤ Θ(P(ϱ),R(ς), α) ⋄ 0 ⋄ 0 ⋄Θ(P(ϱ),R(ς), α)

≤ Θ(P(ϱ),R(ς), α)

Υ
(
P(ϱ),R(ς), ρ(α)

)
≤ Υ(Q(ϱ),R(ς), α) ⋄Υ(P(ϱ),Q(ϱ), α) ⋄Υ(R(ς),S(ς), α) ⋄Υ(P(ϱ),S(ς), α)

= Υ(P(ϱ),R(ς), α) ⋄Υ(P(ϱ),P(ϱ), α) ⋄Υ(R(ς),R(ς), α) ⋄Υ(P(ϱ),R(ς), α)

≤ Υ(P(ϱ),R(ς), α) ⋄ 0 ⋄ 0 ⋄Υ(P(ϱ),R(ς), α)

≤ Υ(P(ϱ),R(ς), α)

By Lemma (3.11), we have P(ϱ) = R(ς) i.e., P(ϱ) = Q(ϱ) = R(ς) = S(ς). Assume that there is

a another point ν such that P(ν) = R(ν) then by (4.5.1), we have P(ν) = Q(ν) = R(ς) = S(ς),
so P(ϱ) = P(ν) and ω = P(ϱ) = Q(ϱ) is the one and only place where P and Q coincide.

Similarly, there is a special aspect ω ∈ ℸ like that ω = R(ω) = S(ω).
The common fixed point between P,R,Q and S is ω.

Theorem 4.6. Consider a complete NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄) and let P,R,Q and S be self-

mappings of ℸ. Let {P,Q} and {R,S} be OWC pairings. If there is a ρ ∈ (0, 1) for each
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ϱ, ς ∈ ℸ and α≫ 0 satisfying

Ξ
(
P(ϱ),R(ς), ρ(α)

)
≥ Ξ(Q(ϱ),S(ς), α) ∗ Ξ(P(ϱ),Q(ϱ), α) ∗ Ξ(R(ς),S(ς), α) ∗ Ξ(R(ς),Q(ϱ), 2α)∗

Ξ(P(ϱ),S(ς), α)

Θ
(
P(ϱ),R(ς), ρ(α)

)
≤ Θ(Q(ϱ),S(ς), α) ⋄Θ(P(ϱ),Q(ϱ), α) ⋄Θ(R(ς),S(ς), α) ⋄Θ(R(ς),Q(ϱ), 2α)⋄

Θ(P(ϱ),S(ς), α)

Υ
(
P(ϱ),R(ς), ρ(α)

)
≤ Υ(Q(ϱ),S(ς), α) ⋄Υ(P(ϱ),Q(ϱ), α) ⋄Υ(R(ς),S(ς), α) ⋄Υ(R(ς),Q(ϱ), 2α)⋄

Υ(P(ϱ),S(ς), α)

then there is a singular common fixed point between P,R,Q and S.

Proof. We have

Ξ
(
P(ϱ),R(ς), ρ(α)

)
≥ Ξ(Q(ϱ),S(ς), α) ∗ Ξ(P(ϱ),Q(ϱ), α) ∗ Ξ(R(ς),S(ς), α) ∗ Ξ(R(ς),Q(ϱ), 2α)∗

Ξ(P(ϱ),S(ς), α)

≥ Ξ(Q(ϱ),S(ς), α) ∗ Ξ(P(ϱ),Q(ϱ), α) ∗ Ξ(R(ς),S(ς), α) ∗ Ξ(Q(ϱ),S(ς), α)∗

Ξ(S(ς),R(ς), α) ∗ Ξ(P(ϱ),S(ς), α)

≥ Ξ(Q(ϱ),S(ς), α) ∗ Ξ(P(ϱ),Q(ϱ), α) ∗ Ξ(R(ς),S(ς), α) ∗ Ξ(P(ϱ),S(ς), α)

Θ
(
P(ϱ),R(ς), ρ(α)

)
≤ Θ(Q(ϱ),S(ς), α) ⋄Θ(P(ϱ),Q(ϱ), α) ⋄Θ(R(ς),S(ς), α) ⋄Θ(R(ς),Q(ϱ), 2α)⋄

Θ(P(ϱ),S(ς), α)

≤ Θ(Q(ϱ),S(ς), α) ⋄Θ(P(ϱ),Q(ϱ), α) ⋄Θ(R(ς),S(ς), α) ⋄Θ(Q(ϱ),S(ς), α)⋄

Θ(S(ς),R(ς), α) ⋄Θ(P(ϱ),S(ς), α)

≤ Θ(Q(ϱ),S(ς), α) ⋄Θ(P(ϱ),Q(ϱ), α) ⋄Θ(R(ς),S(ς), α) ⋄Θ(P(ϱ),S(ς), α)

Υ
(
P(ϱ),R(ς), ρ(α)

)
≤ Υ(Q(ϱ),S(ς), α) ⋄Υ(P(ϱ),Q(ϱ), α) ⋄Υ(R(ς),S(ς), α) ⋄Υ(R(ς),Q(ϱ), 2α)⋄

Υ(P(ϱ),S(ς), α)

≤ Υ(Q(ϱ),S(ς), α) ⋄Υ(P(ϱ),Q(ϱ), α) ⋄Υ(R(ς),S(ς), α) ⋄Υ(Q(ϱ),S(ς), α)⋄

Υ(S(ς),R(ς), α) ⋄Υ(P(ϱ),S(ς), α)

≤ Υ(Q(ϱ),S(ς), α) ⋄Υ(P(ϱ),Q(ϱ), α) ⋄Υ(R(ς),S(ς), α) ⋄Υ(P(ϱ),S(ς), α)

and hence from Theorem (4.5) there is a shared fixed point for P,R,Q and S.

Corollary 4.7. Consider a complete NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄). Then continuous self-mappings

Q and S of ℸ possess a shared fixed point in ℸ if and only if a self - mapping P of ℸ exists so

that that the aforementioned requirements are met.

(1) Pℸ ⊂ Sℸ ∩Qℸ
(2) the pairs {P,Q} and {P,S} are weakly compatible,
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(3) a point has been made ρ ∈ (0, 1) such that for every ϱ, ς ∈ ℸ and α≫ 0,

Ξ
(
P(ϱ),P(ς), ρ(α)

)
≥ Ξ(Q(ϱ),S(ς), α) ∗ Ξ(P(ϱ),Q(ϱ), α) ∗ Ξ(P(ς),S(ς), α) ∗ Ξ(P(ϱ),S(ς), α),

Θ
(
P(ϱ),P(ς), ρ(α)

)
≤ Θ(Q(ϱ),S(ς), α) ⋄Θ(P(ϱ),Q(ϱ), α) ⋄Θ(P(ς),S(ς), α) ⋄Θ(P(ϱ),S(ς), α),

Υ
(
P(ϱ),P(ς), ρ(α)

)
≤ Υ(Q(ϱ),S(ς), α) ⋄Υ(P(ϱ),Q(ϱ), α) ⋄Υ(P(ς),S(ς), α) ⋄Υ(P(ϱ),S(ς), α)

Fixed point in common between P,Q and S is distinct.

Proof. Since compatibility also implies OWC , Theorem (4.6) leads to the conclusion.

Theorem 4.8. Consider a complete NCMS (ℸ,Ξ,Θ,Υ, ∗, ⋄) and let P and Q be self -mappings

of ℸ. Let the P and Q are OWC . If there is a point ρ ∈ (0, 1) for every ϱ, ς ∈ ℸ and α≫ 0

Ξ
(
Q(ϱ),Q(ς), ρ(α)

)
≥ αΞ(P(ϱ),P(ς), α) + βmin

{
Ξ(P(ϱ),P(ς), α),Ξ(Q(ϱ),P(ϱ), α),Ξ(Q(ς),P(ς), α)

}
,

Θ
(
Q(ϱ),Q(ς), ρ(α)

)
≤ αΘ(P(ϱ),P(ς), α) + βmax

{
Θ(P(ϱ),P(ς), α),Θ(Q(ϱ),P(ϱ), α),Θ(Q(ς),P(ς), α)

}
,

Υ
(
Q(ϱ),Q(ς), ρ(α)

)
≤ αΥ(P(ϱ),P(ς), α) + βmax

{
Υ(P(ϱ),P(ς), α),Υ(Q(ϱ),P(ϱ), α),Υ(Q(ς),P(ς), α)

}
(4.8.1)

for all ϱ, ς ∈ ℸ, where α, β > 0, α+ β > 1. P and Q share a distinct common fixed point.

Proof. Consider {P,Q} which are OWC pair, so that there is a point ϱ ∈ ℸ such that

P(ϱ) = Q(ϱ). Consider the possibiity of another point ς ∈ ℸ for which P(ς) = Q(ς). We claim

that Q(ϱ) = Q(ς). By inequality (4.8.1), we have

Ξ
(
Q(ϱ),Q(ς), ρ(α)

)
≥ αΞ(P(ϱ),P(ς), α) + βmin

{
Ξ(P(ϱ),P(ς), α),Ξ(Q(ϱ),P(ϱ), α),Ξ(Q(ς),P(ς), α)

}
= αΞ(Q(ϱ),Q(ς), α) + βmin

{
Ξ(Q(ϱ),Q(ς), α),Ξ(Q(ϱ),Q(ϱ), α),Ξ(Q(ς),Q(ς), α)

}
= (α+ β)Ξ(Q(ϱ),Q(ς), α),

Θ
(
Q(ϱ),Q(ς), ρ(α)

)
≤ αΘ(P(ϱ),P(ς), α) + βmax

{
Θ(P(ϱ),P(ς), α),Θ(Q(ϱ),P(ϱ), α),Θ(Q(ς),P(ς), α)

}
= αΘ(Q(ϱ),Q(ς), α) + βmax

{
Θ(Q(ϱ),Q(ς), α),Θ(Q(ϱ),Q(ϱ), α),Θ(Q(ς),Q(ς), α)

}
= (α+ β)Θ(Q(ϱ),Q(ς), α),

Υ
(
Q(ϱ),Q(ς), ρ(α)

)
≤ αΥ(P(ϱ),P(ς), α) + βmax

{
Υ(P(ϱ),P(ς), α),Υ(Q(ϱ),P(ϱ), α),Υ(Q(ς),P(ς), α)

}
= αΥ(Q(ϱ),Q(ς), α) + βmax

{
Υ(Q(ϱ),Q(ς), α),Υ(Q(ϱ),Q(ϱ), α),Υ(Q(ς),Q(ς), α)

}
= (α+ β)Υ(Q(ϱ),Q(ς), α)

a contradiction, since (α + β) > 1. Therefore Q(ϱ) = Q(ς). Therefore P(ϱ) = P(ς) and P(ϱ)

is unique. P and Q have a distinct fixed point from lemma (2.6).

Example 4.9. Let Σ = [0, 1] and let Ξ(ϱ, ς, α) = α
α+|ϱ−ς| , Θ(ϱ, ς, α) = |ϱ−ς|

α+|ϱ−ς| and

Υ(ϱ, ς, α) = |ϱ−ς|
α are neutrosophic metric on Σ. Define self mappings P and Q on Σ as
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follows P(ϱ) = 1−ϱ
3 and Q(ϱ) =

√
5−4(1−2ϱ)2−1

4 . Clearly P and Q are OWC maps. Also, P
and Q are satisfy all the conditions of Theorem 4.8. The self maps P and Q have coincidence

points ϱ = 1, 14 and the common fixed point ϱ = 1
4 .

5. Conclusion

Using the idea of contractive conditions and OWC , we have demonstrated that there is a

common fixed point for four self mappings, three self mappings and two self mappings in a

complete NCMS.
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Abstract. Medical diagnosis is the process of determining which illness or disease is causing an individual’s

symptoms and warning signs. It is most commonly referred to as analysis, with the clinical environment

implied. The evidence required for discovery is typically acquired from a clinical study and an examination of

the individual seeking medical treatment. The major purpose of this research is to use topology to establish a

methodical technique for decision making difficulties in order to select the appropriate attributes and alternatives

for neutrosophic negative score function. In addition, we use a neutrosophic topological space based on attributes

and alternatives, as well as graphical representation, to apply a neutrosophic negative score function in medical

diagnosis problems.

Keywords: Neutrosophic set, Neutrosophic topology, Neutrosophic topological spaces, Neutrosophic negative

score function.

—————————————————————————————————————————-

1. Introduction

Zadeh [41] as part of logic and set hypothesis was the first to introduce the concept of a

fuzzy set between intervals in mathematics. Chang’s [10] general topology framework, that

utilisesfuzzy topological space, was created with a fuzzy set. Adlassnig [6] used fuzzy set

theory to formalise medical interactions and fuzzy logic to create a framework for automated

analysis. This theory has been used in the areas of artificial intelligence, probability, science,

control structures, and financial concerns [16,20,26].
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In 1983, Atanassov [7] developed an intuitionistic fuzzy set with membership and non-

membership values. Coker [14] created intuitionistic fuzzy topological spaces from intuitionistic

fuzzy sets. De et al. [15] were the first to develop the applications of intuitionistic fuzzy sets in

medical diagnosis. Several researchers [8,17,27] investigated intuitionistic fuzzy sets in medical

diagnostics further.

Smarandache [23,24] offered the notions of neutrosophy and neutrosophic set at the begin-

ning of the 21th century and has a wide range of consistent applications in computer science, in-

formation systems, applied mathematics, artificial intelligence, mechanics, medicine, dynamic,

management science, and electrical & electronics, etc [1–4,36,37]. Salama and Alblowi, [21,22]

in 2012, developed neutrosophic set and neutrosophic crisp set in a neutrosophic topological

space. Recently, Vadivel and authors [29,30,33–35] presented various open sets and mappings

in neutrosophic topological spaces. Smarandache [24] described the single valued Neutrosophic

set on three portions (T-Truth, F-Falsehood, I-Indeterminacy) Neutrosophic sets, which Wang

et al. [38] worked on. In decision making problems, Majumdar and Samanta [18] described

various similarity measures of single valued neutrosophic sets. Several researchers have re-

cently proposed numerous similarity measures and single-valued neutrosophic sets in medical

diagnostics [5, 9, 11–13, 19, 28, 39, 40]. Vadivel and authors [31, 32] discussed an applications

using neutrosophic score function in mobile networking and material selection problems.

The methodical strategy for decision making issues to identify the appropriate qualities and

alternatives for neutrosophic negative score function by employing topology is defined in this

work. In addition, we use neutrosophic topological spaces to apply a neutrosophic negative

score function in medical diagnosis problems based on their features and alternatives.

2. Preliminaries

Definition 2.1. [21] Let T be a non-empty set. A neutrosophic set (briefly, Nseus) L is

an object having the form L = {⟨t, µL(t), σL(t), νL(t)⟩ : t ∈ T} where µL, σL, νL → [0, 1]

denote the degree of membership, indeterminacy, non-membership functions respectively of

each element t ∈ T to the Nseus L and 0 ≤ µL(t) + σL(t) + νL(t) ≤ 3 for each t ∈ T .

Definition 2.2. [21] Let T be a non-empty set & the Nseus’s L & K in the form L =

{⟨t, µL(t), σL(t), νL(t)⟩ : t ∈ T}, K = {⟨t, µK(t), σK(t), νK(t)⟩ : t ∈ T}, then

(i) 0Ns = ⟨t, 0, 0, 1⟩ and 1Ns = ⟨t, 1, 1, 0⟩,
(ii) L ⊆ K iff µL(t) ≤ µK(t), σL(t) ≤ σK(t) & νL(t) ≥ νK(t) : t ∈ T ,

(iii) L = K iff L ⊆ K and K ⊆ L,

(iv) 1Ns − L = {⟨t, νL(t), 1− σL(t), µL(t)⟩ : t ∈ T} = Lc,

(v) L ∪K = {⟨t,max(µL(t), µK(t)),max(σL(t), σK(t)),min(νL(t), νK(t))⟩ : t ∈ T},
(vi) L ∩K = {⟨t,min(µL(t), µK(t)),min(σL(t), σK(t)),max(νL(t), νK(t))⟩ : t ∈ T}.

Thangaraja P, Vadivel A and John Sundar C, Application Of Neutrosophic Sets Based On
Neutrosophic Negative Score Function in Medical Diagnosis

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                              378



Definition 2.3. [21] A neutrosophic topology (briefly, Nseuty) on a non-empty set T is a

family ΓNs of neutrosophic subsets of T satisfying

(i) 0Ns , 1Ns ∈ ΓNs .

(ii) L1 ∩ L2 ∈ ΓNs for any L1, L2 ∈ ΓNs .

(iii)
∪

Lx ∈ ΓNs , ∀ Lx : x ∈ T ⊆ ΓNs .

Then (T,ΓNs) is called a neutrosophic topological space (briefly, Nseutysp) in T . The ΓNs

elements are called neutrosophic open sets (briefly, Nseuos) in T . A Nseus CNs is called a

neutrosophic closed sets (briefly, Nseucs) iff its complement Cc
Ns

is Nseuos.

Definition 2.4. [25] The Neutrosophic Negative Score Function (briefly, NseuNeScFu) on

s : L → [0, 1] is defined by

s(µL, σL, νL) =
1− µL + σL + νL

3

that represents the average of positiveness of the neutrosophic components µL, σL, νL.

3. Neutrosophic Negative Score Function

In this section, we provide a neutrosophic scoring function that is based on a methodical

approach to solving a decision-making problem with neutrosophic information. In the decision-

making situation, the following vital stages are recommended as the precise technique to deal

with selecting the appropriate qualities and alternative based on neutrosophic negative score

function.

Step 1: Problem field selection:

Consider multi-attribute decision making problems with m attributes At1, At2, · · · , Atm and

n alternatives τ1, τ2, · · · , τn and p attributes ν1, ν2, · · · , νp, (n ≤ p).

τ1 τ2 . . . τn

At1 (b11) (b12) . . . (b1n)

At2 (b21) (b22) . . . (b2n)

. . . . . . .

. . . . . . .

. . . . . . .

Atm (bm1) (bm2) . . . (bmn)

At1 At2 . . . Atm

ν1 (e11) (e12) . . . (e1m)

ν2 (e21) (e22) . . . (e2m)

. . . . . . .

. . . . . . .

. . . . . . .

νp (ep1) (ep2) . . . (epm)

Here all the attributes bij and eki are neutrosophic numbers, where (i = 1, 2, . . . ,m, j =

1, 2, . . . , n and k = 1, 2, . . . , p).

Step 2: From neutrosophic topologies for τj and νk:

(i) τ∗j = τ ∪τ∗∪τ∗∗, where τ = {1Ns , 0Ns , b1j , b2j , · · · bmj}, τ∗ = {b1j ∪b2j , b2j ∪b3j , ·, bm−1j ∪
bmj} and τ∗∗ = {b1j ∩ b2j , b2j ∩ b3j , ·, bm−1j ∩ bmj}.
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(ii) ν∗j = ν∪ν∗∪ν∗∗, where ν = {1Ns , 0Ns , ek1, ek2, · · · ekm}, ν∗ = {ek1∪ek2, ek2∪ek3, ·, ekm−1∪
ekm} and ν∗∗ = {ek1 ∩ ek2, ek2 ∩ ek3, ·, ekm−1 ∩ ekm}.

Step 3: Find neutrosophic negative score functions:

Neutrosophic negative score functions (shortly, NseuNeScFu) of τ, τ∗, τ∗∗, ν, ν∗, ν∗∗, τj and

νk are defined as follows.

(i) NseuNeScFu(τ) = 1
3(m+2)

[∑m+2
i=1 [1− µi + σi + γi]

]
,

NseuNeScFu(τ∗) = 1
3q [

∑q
i=1[1− µi + σi + γi]], where q is the number of element of τ∗ and

NseuNeScFu(τ∗∗) = 1
3r [

∑r
i=1[1− µi + σi + γi]], where r is the number of element of τ∗∗. For

j = 1, 2, · · · , n,

NseuNeScFu(τj)

=


NseuNeScFu(τ) if NseuNeScFu(τ∗) = 0;NseuNeScFu(τ∗∗) = 0

1
2 [NseuNeScFu(τ) +NseuNeScFu(τ∗)] if NseuNeScFu(τ∗∗) = 0

1
3 [NseuNeScFu(τ) +NseuNeScFu(τ∗) +NseuNeScFu(τ∗∗)] otherwise

(ii) NseuNeScFu(ν) = 1
3(m+2)

[∑m+2
i=1 [1− µi + σi + γi]

]
,

NseuNeScFu(ν∗) = 1
3s [

∑s
i=1[1− µi + σi + γi]], where s is the number of element of ν∗ and

NseuNeScFu(ν∗∗) = 1
3t

[∑t
i=1[1− µi + σi + γi]

]
, where t is the number of element of ν∗∗. For

k = 1, 2, · · · , p,

NseuNeScFu(νk)

=


NseuNeScFu(ν) if NseuNeScFu(ν∗) = 0;NseuNeScFu(ν∗∗) = 0

1
2 [NseuNeScFu(ν) +NseuNeScFu(ν∗)] if NseuNeScFu(ν∗∗) = 0

1
3 [NseuNeScFu(ν) +NseuNeScFu(ν∗) +NseuNeScFu(ν∗∗)] otherwise

Step 4: Final Decision

Arrange neutrosophic negative score values for the alternatives τ1 ≥ τ2 ≥ · · · ≥ τn and the

attributes ν1 ≥ ν2 ≥ · · · ≥ νp. Choose the attribute νp for the alternative τ1 and νp−1 for the

alternative τ2 etc. If n < p, then ignore νk, where k = 1, 2, · · · , n− p.

4. Numerical Example

Medical diagnosis has expanded the number of data available to medical professionals as

a result of new medical advancements, which also includes vulnerabilities. The path towards

grouping multiple sets of symptoms under a single term of a disease is a particularly tough

issue in medical diagnosis. In this section, we demonstrate the usefulness and application of

the neutrosophic negative score function technique to a medical diagnosis problem.
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Step 1: Problem field selection:

Consider the following tables giving informations when consulted physicians about five pa-

tients, Patient 1 (shortly, Pat1), Patient 2 (shortly, Pat2), Patient 3 (shortly, Pat3), Patient

4 (shortly, Pat4) and Patient 5 (shortly, Pat5) and symptoms are Weight gain (shortly, Wg),

Tiredness (shortly, Td), Myalgia (shortly, Ml), Swelling of legs (shortly, Sl) and Mensus Prob-

lem (shortly, Mp). We need to find the patient and to find the disease such as Lymphedema,

Insomnia, Hypothyroidism, Menarche, Arthritis of the patient. The data in Table 1 and Table

2 are explained by the membership, the indeterminacy and the non-membership functions of

the patients and diseases respectively.

XXXXXXXXXXXSymptoms

Patients
Pat1 Pat2 Pat3 Pat4 Pat5

Wg (0.9,0.1,0) (0.8,0,0.2) (0,0.1,0.9) (0.1,0,0.7) (0.3,0.2,0.5)

Td (0,0.3,0.7) (0.1,0.2,0.7) (0.8,0.1,0.2) (0.1,0.1,0.8) (0.6,0.5,0.3)

Ml (0.3,0.1,0.6) (0.8,0,0.3) (0.3,0.1,0.6) (0.2,0.1,0.6) (0.3,0.4,0.4)

Sl (0.9,0,0.1) (0.4,0.2,0.5) (0.2,0.2,0.7) (0.4,0.2,0.5) (0.4,0.6,0.3)

Mp (0.2,0.1,0.7) (0.3,0.2,0.5) (0.4,0.3,0.2) (0.9,0,0.1) (0.7,0.4,0.5)

Table 1. Neutrosophic values for patients

XXXXXXXXXXXDisease

Symptoms
Wg Td Ml Sl Mp

Lymphedema (0,0.2,0.8) (0.2,0.2,0.1) (0.7,0.2,0.1) (0.9,0,0.1) (0.2,0.6,0.4)

Insomnia (0,0.1,0.9) (0.9,0,0.1) (0.2,0,0.8) (0.2,0.4,0.1) (0.2,0.1,0.7)

Hypothyroidism (0.9,0.1,0.1) (0.1,0.1,0.8) (0,0.1,0.9) (0.1,0.4,0.3) (0.2,0.6,0.4)

Menarche (0.6,0.3,0.1) (0.1,0.1,0.8) (0.2,0.4,0.1) (0.2,0.5,0.3) (0.9,0,0.2)

Arthritis (0,0.1,0.8) (0.1,0.4,0.6) (0.9,0.1,0.1) (0.1,0.3,0.5) (0.3,0.1,0.6)

Table 2. Neutrosophic values for diseases

Step 2: From neutrosophic topologies for (τj) and (νk):

(i) τ∗1 = τ ∪ τ∗ ∪ τ∗∗, where

τ = {(0, 0, 1), (1, 1, 0), (0.9, 0.1, 0), (0, 0.3, 0.7), (0.3, 0.1, 0.6), (0.9, 0, 0.1), (0.2, 0.1, 0.7)},
τ∗ = {(0.9, 0.3, 0), (0.3, 0.3, 0.6), (0.9, 0.3, 0.1), (0.2, 0.3, 0.7), (0.9, 0.1, 0.1)} and

τ∗∗ = {(0, 0.1, 0.7), (0, 0, 0.7), (0.3, 0, 0.6), (0.2, 0, 0.7)}.
(ii) τ∗2 = τ ∪ τ∗ ∪ τ∗∗, where

τ = {(0, 0, 1), (1, 1, 0), (0.8, 0, 0.2), (0.1, 0.2, 0.7), (0.8, 0, 0.2), (0.4, 0.2, 0.5), (0.3, 0.2, 0.5)},
τ∗ = {(0.8, 0.2, 0.2), (0.8, 0.2, 0.3)} and

τ∗∗ = {(0.1, 0, 0.7), (0.4, 0, 0.5), (0.3, 0, 0.5)}.
(iii) τ∗3 = τ ∪ τ∗ ∪ τ∗∗, where

τ = {(0, 0, 1), (1, 1, 0), (0, 0.1, 0.9), (0.8, 0.1, 0.2), (0.3, 0.1, 0.6), (0.2, 0.2, 0.7), (0.4, 0.3, 0.2)},
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Figure 1. Neutrosophic values for Patient 1
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Figure 2. Neutrosophic values for Patient 2
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Figure 3. Neutrosophic values for Patient 3

τ∗ = {(0.8, 0.2, 0.2), (0.8, 0.3, 0.2), (0.3, 0.2, 0.6)} and

τ∗∗ = h{(0.2, 0.1, 0.7), (0.4, 0.1, 0.2)}.
(iv) τ∗4 = τ ∪ τ∗ ∪ τ∗∗, where

τ = {(0, 0, 1), (1, 1, 0), (0.1, 0, 0.7), (0.1, 0.1, 0.8), (0.2, 0.1, 0.6), (0.4, 0.2, 0.5), (0.9, 0, 0.1)},
τ∗ = {(0.1, 0.1, 0.7), (0.9, 0.1, 0.1), (0.9, 0.2, 0.1)} and
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Figure 4. Neutrosophic values for Patient 4
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Figure 5. Neutrosophic values for Patient 5
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Figure 6. Neutrosophic values for Lymphedema

τ∗∗ = {(0.1, 0, 0.8), (0.2, 0, 0.6), (0.4, 0, 0.5)}.
(v) τ∗5 = τ ∪ τ∗ ∪ τ∗∗, where τ = {(0, 0, 1), (1, 1, 0), (0.3, 0.2, 0.5),

(0.6, 0.5, 0.3), (0.3, 0.4, 0.4), (0.4, 0.6, 0.3), (0.7, 0.4, 0.5)},
τ∗ = {(0.6, 0.6, 0.3), (0.7, 0.5, 0.3), (0.7, 0.4, 0.4), (0.7, 0.6, 0.3)} and

τ∗∗ = {(0.4, 0.5, 0.3), (0.6, 0.4, 0.5), (0.3, 0.4, 0.5), (0.4, 0.4, 0.5)}.
(i) ν∗1 = ν ∪ ν∗ ∪ ν∗∗, where

ν = {(0, 0, 1), (1, 1, 0), (0, 0.2, 0.8), (0.2, 0.2, 0.1), (0.7, 0.2, 0.1), (0.9, 0, 0.1), (0.2, 0.6, 0.4)},
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Figure 7. Neutrosophic values for Insomnia
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Figure 8. Neutrosophic values for Hypothyroidism
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Figure 9. Neutrosophic values for Menarche

ν∗ = {(0.9, 0.2, 0.1), (0.2, 0.6, 0.1), (0.7, 0.6, 0.1), (0.9, 0.6, 0.1)} and

ν∗∗ = {(0, 0, 0.8), (0.2, 0.2, 0.1), (0.2, 0, 0.1), (0.2, 0.2, 0.4), (0.7, 0, 0.1), (0.2, 0, 0.4)}.
(ii) ν∗2 = ν ∪ ν∗ ∪ ν∗∗, where

ν = {(0, 0, 1), (1, 1, 0), (0, 0.1, 0.9), (0.9, 0, 0.1), (0.2, 0, 0.8), (0.2, 0.4, 0.1), (0.2, 0.1, 0.7)},
ν∗ = {(0.9, 0.1, 0.1), (0.2, 0.1, 0.8), (0.9, 0.4, 0.1)} and

ν∗∗ = {(0, 0, 0.9), (0.2, 0, 0.1), (0.2, 0, 0.7)}.
(iii) ν∗3 = ν ∪ ν∗ ∪ ν∗∗, where
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Figure 10. Neutrosophic values for Arthritis

ν = {(0, 0, 1), (1, 1, 0), (0.9, 0.1, 0.1), (0.1, 0.1, 0.8), (0, 0.1, 0.9), (0.1, 0.4, 0.3), (0.2, 0.6, 0.4)},
ν∗ = {(0.9, 0.4, 0.1), (0.9, 0.6, 0.1), (0.2, 0.6, 0.3)} and

ν∗∗ = {(0.1, 0.1, 0.3), (0.2, 0.1, 0.4), (0, 0.1, 0.9), (0.1, 0.4, 0.4)}.
(iv) ν∗4 = ν ∪ ν∗ ∪ ν∗∗, where

ν = {(0, 0, 1), (1, 1, 0), (0.6, 0.3, 0.1), (0.1, 0.1, 0.8), (0.2, 0.4, 0.1), (0.2, 0.5, 0.3), (0.9, 0, 0.2)},
ν∗ = {(0.6, 0.4, 0.1), (0.6, 0.5, 0.1), (0.9, 0.3, 0.1), (0.9, 0.1, 0.2), (0.2, 0.5, 0.1), (0.9, 0.4,

0.1), (0.9, 0.5, 0.2)} and

ν∗∗ = {(0.2, 0.3, 0.1), (0.2, 0.3, 0.3), (0.6, 0, 0.2), (0.1, 0, 0.8), (0.2, 0.4, 0.3), (0.2, 0.4, 0.2)}.
(v) ν∗5 = ν ∪ ν∗ ∪ ν∗∗, where

ν = {(0, 0, 1), (1, 1, 0), (0, 0.1, 0.8), (0.1, 0.4, 0.6), (0.9, 0.1, 0.1), (0.1, 0.3, 0.5), (0.3, 0.1, 0.6)},
ν∗ = {(0.9, 0.4, 0.1), (0.1, 0.4, 0.5), (0.3, 0.4, 0.6), (0.9, 0.3, 0.1), (0.3, 0.3, 0.5)} and

ν∗∗ = {(0.1, 0.1, 0.6), (0.1, 0.3, 0.6), (0.1, 0.1, 0.5)}.
Step 3: Find neutrosophic negative score functions:

(i) NseuNeScFu(τ) = 0.4, NseuNeScFu(τ∗) = 0.3067 and NseuNeScFu(τ∗∗) = 0.525.

NseuNeScFu(τ1) = 0.4106.

(ii) NseuNeScFu(τ) = 0.4, NseuNeScFu(τ∗) = 0.2167 and NseuNeScFu(τ∗∗) = 0.4334.

NseuNeScFu(τ2) = 0.3501.

(iii) NseuNeScFu(τ) = 0.4619, NseuNeScFu(τ∗) = 0.3112 and NseuNeScFu(τ∗∗) =

0.4167.

NseuNeScFu(τ3) = 0.3966.

(iv) NseuNeScFu(τ) = 0.4476, NseuNeScFu(τ∗) = 0.2667 and NseuNeScFu(τ∗∗) =

0.4667.

NseuNeScFu(τ4) = 0.3937.

(v) NseuNeScFu(τ) = 0.4467, NseuNeScFu(τ∗) = 0.3917 and NseuNeScFu(τ∗∗) =

0.4834.
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NseuNeScFu(τ5) = 0.4473.

(i) NseuNeScFu(ν) = 0.4143, NseuNeScFu(ν∗) = 0.3083 and NseuNeScFu(ν∗∗) =

0.4143.

NseuNeScFu(ν1) = 0.3668.

(ii) NseuNeScFu(ν) = 0.4619, NseuNeScFu(ν∗) = 0.2889 and NseuNeScFu(ν∗∗) =

0.4778.

NseuNeScFu(ν2) = 0.4095.

(iii) NseuNeScFu(ν) = 0.5, NseuNeScFu(ν∗) = 0.3445 and NseuNeScFu(ν∗∗) = 0.525.

NseuNeScFu(ν3) = 0.4565.

(iv) NseuNeScFu(ν) = 0.4191, NseuNeScFu(ν∗) = 0.2334 and NseuNeScFu(ν∗∗) =

0.4112.

NseuNeScFu(ν4) = 0.3546.

(v) NseuNeScFu(ν) = 0.4857, NseuNeScFu(ν∗) = 0.4067 and NseuNeScFu(ν∗∗) =

0.5445.

NseuNeScFu(ν5) = 0.479.

τ1 τ2 τ3 τ4 τ5
0

0.2

0.4

Neutrosophic negative score value

Figure 11. Neutrosophic negative score values for Patients

ν1 ν2 ν3 ν4 ν5
0

0.2

0.4
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Figure 12. Neutrosophic negative score values for Diseases
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Step 4: Final Decision:

Arrange neutrosophic negative score values for the alternatives τ1, τ2, τ3, τ4, τ5 and the

attributes ν1, ν2, ν3, ν4, ν5 in descending order. We get the following sequences τ5 ≤ τ1 ≤ τ3 ≤
τ4 ≤ τ2 and ν5 ≤ ν3 ≤ ν2 ≤ ν1 ≤ ν4. Thus the Pat5 suffers from Menarche, the Pat1 suffers

from Lymphedema, the Pat3 suffers from Insomnia, the Pat4 suffers from Hypothyroidism and

the Pat2 suffers from Arthritis.

5. Conclusions

One of the research areas in general fuzzy topological spaces dealing with the concept of

vagueness is neutrosophic topological space. This study established the neutrosophic negative

scoring function and the technique based on qualities, as well as alternatives to its real-world

application. In addition, the medical diagnosis decision-making problem employing qualities

and choices on the neutrosophic score function. This theory can be developed and applied to

other general topology study areas such as rough topology, digital topology, image processing,

neural networks, and so on. Furthermore, the neutrosophic accuracy function and neutrosophic

certainty function are based on applications that can be carried out in future studies.
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Abstract 

Plithogenic sets coined by Smarandache in the year 2018 has unveiled new research opportunities in 

the field of Multi criteria decision making (MCDM). The contributions and developments of new 

decision making approaches based on plithogeny is gaining high momentum presently. The 

theoretical conceptualization of different phenomenon with plithogenic sets are also applied in 

designing optimal solutions to the decision making problems. This review paper presents the 

applications of plithogenic MCDM from the year 2018 to till date in almost all the spheres of decision 

making scenario. The literature works of the researchers presented in this paper will certainly portray 

the compatibility and flexibility of plithogenic sets, operators and other decision making tools. 

Though the time span considered for counting on the plithogeny based works is short, the applications 

of plithogenic sets are growing many in number and also plithogeny based theories are amplifying in 

a speedy manner. This has motivated the authors to investigate on the proliferation of plithogeny 

applications in decision making. This review paper has focused on the dimensions of different fields 

to which plithogeny is applied, new plithogeny based theories, extension of plithogeny, plithogenic 

based operators and measures. In addition to it the data on the publications of plithogeny based 

articles and interests of researchers are also presented as a part of this review work. The overall 

impact of plithogeny in the arena of decision making science and on the researchers of the same field 

is well sketched in this paper with the intention and hope of inspiring plithogenic researchers.  

Keywords: Plithogeny, Plithogenic MCDM, Applications 

1. Introduction 

 Multi criteria decision making (MCDM) is a growing research area which attracts many 

researchers to develop new decision making techniques to accomplish the objective of finding optimal 

solutions. MCDM otherwise called as Multi attribute decision making (MADM) is a convoluted 

process entailing alternatives, criteria and feasible methods of deriving solutions. The primary aim of 

every decision making problem is to identify ideal alternative that highly fulfill all the criteria to a 

significant extent. MCDM methods are applied in different fields such as supply chain management, 

Education, Internet of Things, COVID-19 epidemic, Material selection for various manufacturing 

industries, Renewable Energy Development, Business and Banking sector, Planning, Medical, 

Agriculture ,construction  and logistic. 

Decision making under deterministic environment is not possible always as the decision making data 

is based on decision maker’s opinions and perspectives. This happens as MCDM problems do not 

deal only with quantitative data but also with qualitative data. At certain instances, the decision matrix 

comprises of linguistic representations are handled by fuzzy MCDM methods. The theory of MCDM 

is integrated with fuzzy sets introduced by Zadeh [1] to handle imprecise and vague data. The fuzzy 

MCDM models are extended to intuitionistic fuzzy MCDM. In an intuitionistic MCDM the data 

representations are made using intuitionistic sets. Atanssov [2] introduced intuitionistic sets 

comprising membership and non-membership values. Intuitionistic MCDM methods are extended to 

neutrosophic MCDM to handle indeterminacy. Smarandache [3] introduced the theory of neutrosophy 
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to handle the condition of indeterminacy. MCDM methods discussed under the environments of 

fuzzy, intuitionistic and neutrosophic are more compatible in making precise decisions. But still to 

develop a more comprehensive genre of MCDM models Smarandache developed [4] the theory of 

Plithogeny.  Plithogenic based MCDM are gaining more impetus at recent times as these MCDM 

models are more adaptive to any kind of decision making models based on the characteristics of crisp, 

fuzzy, intuitionistic and neutrosophic.  The compatibility and comprehensive nature of plithogenic 

sets has motivated the authors to investigate on the plithogenic based MCDM. This review article 

intends to answer the following questions (i) What are the theories developed based on Plithogeny? 

(ii) How far the theory of plithogeny is associated with MCDM? (iii) What are the significant 

applications of Plithogenic MCDM? (iv)To what extent the theory of plithogeny has gained the 

interest of the researchers in the recent years?  

 The remaining contents are structured as follows: section 2 comprises the overview of the 

MCDM methods; section 3 elucidates on the origin and development of Plithogeny and the 

conceptualization of Plithogenic based theories; section 4 sketches out the applications of the 

Plithogeny based MCDM; section 5 presents the analysis of plithogenic publication and the last 

section concludes the review work with future directions 

2. Overview of MCDM 

The theoretical arguments of Multi criteria decision making is an integral part of Decision theory. 

MCDM is otherwise termed as MCDA where the latter focuses on analysis. A MCDM problem 

generally begins with the formulation of a primary decision making matrix with alternatives and 

criteria. The alternatives are referred as the options, the criteria as the characteristic features and the 

value of the matrix indicates the satisfactory extent of the criteria by the alternatives. The number of 

MCDM methods that currently exist are many in number but the process of finding optimal solution 

to the decision making problems follows certain steps in common. 

(i) Formulation of Decision Making matrix with finite number of alternatives and criteria of 

the form 

                           DM(T) =  

(

 
 

𝑡11 𝑡12 … . … . 𝑡1𝑗
𝑡21 𝑡22 … . … . 𝑡2𝑗
… … … … …
… … … … …
𝑡𝑖1 𝑡𝑖2 … … 𝑡𝑖𝑗)

 
 

 ; i=1,2…m , j=1,2…n 

 

The above matrix has m alternatives and n criteria where the values of m and n ranges 

from 1 to I and 1to j respectively 

(ii) Computing the criterion weights Wj. At some cases the criterion weights are assumed to 

be equal but in some cases the criterion weights are computed using preferences and 

relative importance. 

(iii) Normalization of the matrix 

 This is a very essential step in every decision making process. As the values of the decision 

matrix are of different ranges, the values are normalized and scaled down to the range between 0 

and 1. Different methods of normalization such as linear sum, linear max-min, linear max and 

VIKOR   are used.  

(iv) Finding the weighted normalized matrix 

The weighted normalized matrix is obtained by multiplying the weight vector of the 

criteria with the normalized matrix. 
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(v) Ranking of the alternatives based on the relative score values. 

The alternatives are ranked after computing the score values of the alternatives. The 

modality of calculating the score values differs with respect to the methods. The graphical 

representation of any MCDM framework in general is presented in Fig.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   Implement the Aggregate Function 

 

  

 

 

 

 

                                                                         Optimal Decision  

 

 

 

Fig.1. MCDM Framework 

 

The MCDM methods are classified based on the following classifiers as follows 

(i) Number of decision makers 

(ii) Number of alternatives 

Ranking of Alternatives 

MCDM Framework 
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Weight of Each Criterion 
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Decision Matrix

Implement the Aggregate Functions 

Optimal Decision 
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(iii) Nature of the criteria 

(iv) Nature of the values in the decision making matrix 

(v) Goals of the decision making problem 

(vi) Criterion weights computation 

(vii) Calculation of the score values of the alternatives 

(viii) Nature of the decision making environment 

 

 

Based on the above described classifiers, many numbers of MCDM methods are developed especially 

to find the criterion weights and to rank the alternatives. The MCDM methods that are formulated by 

the researchers are presented as follows in Table 1. 

                      Table 1 Chronological Development of MCDM Methods  

S.No MCDM Methods Authors Year 

1 Taxonomy Method Adanson  1763 

2 Weighted Product Model (WPM) Bridgeman 1922 

3 Simple Additive Weighting (SAW) Fish burn et al.,    1967 

4 Weighted Sum Model (WSM) L. A. Zadeh 1963 

5 Multi Attribute Utility Theory (MAUT)  
P.C. Fishburn, Keeney , 
Raiffa 

1965, 
1976 

6 Multi-Attribute Utility Analysis (MAUA)  P.C. Fishburn 1965 

7 
Elimination and Choice Translating 

Reality (ELECTRE) Benayoun Roy 1968 

8 Multi-Attribute Utility Analysis (MAUA)   R.L. Keeney, H.R. Raiffa 1969 

9 Analytic Hierarchy Process (AHP) Thomas Saaty 1970 

10 Decision-Making Trial and Evaluation 
Laboratory (DEMATEL)  Fonetla and Gabus 1971 

11 
QUALItative FLEXible  

(QUALIFLEX) 
Paelinck  , Jacquet Lagreze 1975 

12 ORESTE Roubens 1980 

13 
Preference Ranking Organization 

Method for Enrichment Evaluations 
(PROMETHEE) 

J. P. Brans , P. Vicke 1982 

14 Evaluation of Mixed Data (EVAMIX) 
Voogd , Martel and 

Matarazzo 
1982 

15 Grey relational analysis(GRA) Deng 1982 

16 REGIME 
Hinloopen, Nijkamp, and 

Rietveld 
1983 

17 
Simple Multi-Attribute Rating Technique 

(SMART) 
Winterfeldt & Edwards 1986 

18 Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS) S. Opricovic 1990 
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19 
Measuring Attractiveness by a Categorical 

Based Evaluation Technique (MACBETH) 
Banae Costa , Vansnick 1990 

20 
EXPROM I & II (Extension of the 

PROMETHEE) 
Diakoulaki , Koumoutsos 1991 

21 TODIM Gomes, Lima 1992 

22 Ashby Ashby 1992 

23 
Complex Proportional Assessment 

(COPRAS) 
Zavadskas , Kaklauskas and 
Sarka 

1994 

24 
The Criteria Importance Through Inter 

criteria Correlation  (CRITIC) 

Diakoulaki, Mavrotas, and 

Papayannakis 
1995 

25 Analytic Network Process (ANP) Saaty T. T 1996 

26 PAMSSEM I & II Martel, Kiss, and Rousseau 1996 

27 

Multi criteria Optimization  and 

Compromise Solution 

(VlseKriterijumska Optimizacija I 

Kompromisno Resenje) (VIKOR) 

 S. Opricovic 1998 

28 
superiority and inferiority ranking method 

(SIR) Xu 
2001 

29 
Multi-Objective Optimization by Ratio 

Analysis Method (MOORA) Brauers , Zavadskas 
2004, 

2006 

30 Case Based Reasoning (CBR) Li, Sun, Kolodner 2008 

31 Preference selection index (PSI) Maniya , Bhatt 2010 

32 Additive Ratio Assessment (ARAS)  Zavadskas ,Turskis 2010 

33 
Stepwise Weight Assessment Ratio Analysis 

(SWARA)  

Kersuliene, Zavadskas, and 

Turskis 
2010 

34 Data Envelopment Analysis (DEA) Thanassoulis, Kortelainen, 
and Allen 

2012 

35 
Weighted Aggregates Sum Product 

Assessment (WASPAS)  

Zavadskas, Turskis, 

Antucheviciene, and 

Zakarevicius in 

2012 

36 
Kemeny Median Indicator Ranks 

Accordance (KEMIRA) 

Krylovas, Zavadskas, 

Kosareva, and Dadelo 
2014 

37 
Evaluation based on Distance from Average 

Solution (EDAS) 

Keshavarz Ghorabaee, 

Zavadskas, Olfat, and Turskis 
2015 

38 
Multi-Attributive Border Approximation 

area Comparison (MABAC)  
Pamucar and Cirovic 2015 

39 Best Worst Method (BWM) Rezaei 2015 

40 
Integrated Determination of Objective 

CRIteria Weights (IDOCRIW)  
Zavadskas and Podvezko 2016 

41 PIvot Pairwise RElative Criteria Importance Stanujkic et al.,  2017 
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Assessment (PIPRECIA) 

42 Full Consistency Method (FUCOM )  Pamucar 2018 

43 
MultiAtributive Ideal-Real Comparative 

Analysis (MAIRCA )  
D.S. Pamucar 2018 

44 
COmbined COmpromise SOlution 

(CoCoSo) 
Morteza  Y., et al 2019 

45 
Method based on the removal effects of 

criteria  (MEREC) 
Keshavarz-Ghorabaee et al 2021 

The significant characteristics of the most commonly applied MCDM methods are measured by the 

nature of the method, attribute dependency and facilitation in handling qualitative and quantitative 

values. In general the methods are of compensatory in nature. Table 2 sketches out the core 

characteristics of the MCDM methods.  

 

 

 

Table 2 Characteristics of MCDM methods 

MCDM Methods                        Characteristics 

Compensatory 

Method 

Attributes 

Dependency 

Conversion of 

Qualitative to 

Quantitative  

Weighted Sum Model 

(WSM) 
  X   

Weighted Product Model 
(WPM) 

  X   

Analytic Hierarchy Process 

(AHP) 
  X   

Data Envelopment Analysis 
(DEA) 

-     

Analytic Network Process 

(ANP) 
      

ELimination and Choice 
Translating REality 

(ELECTRE) 

      

Multicriteria 

Optimization  and 
Compromise Solution 

(VIKOR)  

  X   

Technique for Order of 
Preference by Similarity to 

Ideal Solution (TOPSIS) 

  X   

Preference Ranking 

Organization 
Method for Enrichment 

Evaluations (PROMETHEE) 

      

Best Worst Method (BWM) - - - 
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Case Based Reasoning 

(CBR) - - - 

Multi Attribute Utility 
Theory (MAUT)  

  X   

DEcision-Making Trial and 

Evaluation Laboratory    
(DEMATEL) 

      

  COPRAS   X   

Preference selection index 

(PSI) 
- - - 

SMART 
      

REGIME 
  X X 

ORESTE 
  X X 

MOORA 
  X   

QUALIFLEX 
  X X 

SIR 
  X   

EVAMIX 
  X X 

ARAS 
  X 

  

Taxonomy Method 
  X 

  

MACBETH 
  X 

  

WASPAS 
  X 

  

SWARA 
  X - 

MAIRCA - - - 

CRITIC 
      

FUCOM - - - 

TODIM   X   

IDOCRIW   X   

EDAS   X   

PAMSSEM I & II 
      

EXPROM I & II 
      

MABAC    X   

KEMIRA   -   

Grey relational analysis 

(GRA) 
- - - 

Method based on the 

removal effects of 
-   
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criteria  (MEREC) 

COmbined COmpromise 

SOlution (CoCoSo) 
  X   

Simple Additive Weighting 

(SAW) 
- X   

 

Hence the MCDM methods that are formulated by the researchers have high utility in making optimal 

decisions, there are few limitations. The existence of speculations about the decision making scenario 

in different perspectives are quite inevitable. As every decision making circumstances are inscribed 

with uncertainty, ambiguity and indeterminacy, it is quite natural and essential to extend the crisp 

decision making methods to fuzzy, intuitionistic and neutrosophic environments.  

Table: 3 Pioneers of MCDM methods in Different Decision Making Environments 

 

MCDM 

methods 
Fuzzy MCDM 

Intuitionistic 

MCDM 

Neutrosophic 

MCDM 
Plithogenic MCDM 

AHP 
Van Laarhoven 
and Pedrycs [5] 

Jian Wu 

Hai-bin Huang, 

Qing-wei Cao [6] 

Nouran M. 

Radwan, 
M. Badr 

Senousy [7] 

Mohamed Abdel-Basset 

[8] 

 

BWM 
Guo Sen,     

Haoran Zhao [9] 

Mou Qiong, 
Xu Zeshui, 

Huchang Liao[10] 

Vafadarnikjoo, 
Amin ,Madjid, 

Tavana [11] 

Mohamed Grida [12] 

FUCOM 
Galina Ilieva 

[13] 

Arunodaya Raj 

Mishra, Abhishek 
Kumar Garg [14] 

Fatih Yiğit [15] 
S.Sudha & Nivetha 

Martin [120] 

MAIRCA Boral et al[16] Fatih Ecer [17] 
Dragan et al 

[18] 
A.Ozcil et al[19] 

TOPSIS 
Chen. 

Or Lai et al [20] 
Deepa Joshi, 

Sanjay Kumar[21] 
A 

Elhassouny[22] 
M. Abdel-Basset & 

Rehab Mohamed[23] 

CRITIC 
Kahraman et al 

[24] 

Quan-Song Qi 

[25] 

Esra Aytaç 
Adalı, 

Tayfun Öztaş 

[26] 

Abdel-Basset et al .,[23] 

Korucuk, Demir,  

Karamasa,  & 
Stević.,[27] 

 

MABAC 

Liang WZ, Zhao 

GY, Wu H, Dai 

B. [28] 

Jia F et al,[29] 

Mengwei Zhao & 
Guiwu Wei et al 

[30] 

Sahin R, Altun 
F [31] 

Florentin Smarandache 
et al.,[32] 

MACBETH Dhouib [33] 

Mustafa said 

Yurtyapan 
Erdal Aydemir 

[34] 

Irvanizam  et 
al.,[35] 

S.Sudha & Nivetha 
Martin [121] 

MEREC 

Mohamad 

Shahiir Saidin et 

al.,[36] 

Ibrahim M. Hezam 
et al.,[37] 

- 

Sudha.S , Edwin Deepak 

F.X , Nivetha Martin 

[124] 

https://link.springer.com/article/10.1057/s41283-020-00061-4#auth-Mohamed-Abdel_Basset
https://www.researchgate.net/scientific-contributions/Haoran-Zhao-2093933461
https://www.researchgate.net/profile/Amin-Vafadarnikjoo
https://www.researchgate.net/profile/Madjid-Tavana
https://www.researchgate.net/profile/Madjid-Tavana
https://link.springer.com/article/10.1057/s41283-020-00061-4#auth-Rehab-Mohamed
https://www.worldscientific.com/doi/10.1142/S0219622022500456
https://www.worldscientific.com/doi/10.1142/S0219622022500456
https://www.worldscientific.com/doi/10.1142/S0219622022500456
https://unm.academia.edu/FlorentinSmarandache
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PIPRECIA 
Stević et 

al.[123] 
- - 

Alptekin Ulutas et al 

[123] 

 

3. Origin and Development of Plithogeny  

Smarandache is the founding father of the theory of Plithogeny. The Plithogenic sets are introduced as 

the generalization of crisp sets,fuzzy sets, intuitionistic sets, neutrosophic sets [38]. A plithogenic set 

is a quintuple of the form (P,a,V,d,c), where P is the set, a is the attribute, V is the set of attribute 

values, d is the degree of appurtenance and c is the degree of contradiction. The plithogenic sets are a 

boon to the field of decision making as it deals with attributes. These sets are very comprehensive in 

nature as it facilitates in accommodating multi expert’s opinion and several attributes values with 

respective d and c values.  

 Smarandache [4] also developed Plithogenic based theories of probability, statistics. The 

notion of Plithogenic logic is also formulated as a generalization to multi valued logic [39]. Villacrés 

et al.,[40] applied Plithogenic logic in determining the occupational health risks. George [41] applied 

Plithogenic sets and logic in information analysis. Smarandache [42] has also made the extensions of 

neutrosophic over set/under set/off set to Plithogenic. Smarandache [43,44] has extended neutrosophic 

statistics to Plithogenic statistics. Smarandache and Guo [45] developed neutrosophic based 

plithogenic optimization. The plithogenic statistics is considered to be the most generalized form of 

the statistics. Castro Sánchez et al., [46] have applied the neutrosophic and plithogenic statistical 

concepts in making decisions on developing educational field. Prem Kumar Singh [47] has applied 

Plithogenic sets in multivariate data analysis. 

Smarandache [48,49] was the pioneer of Hypersoft sets and Plithogenic Hypersoft sets which are the 

extensions of soft sets. Shawkat et al.,[50] introduced Plithogenic soft sets. Smarandache [51] has also 

introduced new types of soft sets such as indeterm soft set, indeterm Hypersoft set, Tree soft sets. 

Rana et al.,[52] introduced plithogenic whole hypersoft set and generalized plithogenic whole 

hypersoft set. Dhivya and Arockia Lancy [53,54] have developed Near plithogenic hypersoft sets and 

discussed the properties of  the sets. Nivetha Martin and Smarandache [55,56] have introduced 

combined plithogenic hypersoft sets and extended plithogenic Hypersoft sets with dual dominant 

attributes. Shazia Rana et al., [57] together designed Plithogenic Subjective Hyper-Super-Soft 

Matrices with different levels of ranking 

 Vasantha and Smarandache [58] developed Plithogenic graphs. Sultana et al., [59] applied 

plithogenic graphs in analysing the spread of corona virus. Bharathi [60] introduced plithogenic 

product fuzzy graphs and studied its applications in social networks. Prem kumar singh [61-63] has 

discoursed on single valued plithogenic graph, single valued neutrosophic plithogenic graph and 

Intuitionistic plithogenic graph.  Smarandache [64] has also developed the notion of n-Super Hyper 

Graph and Plithogenic n-Super Hyper Graph. Smarandache and Nivetha Martin [65] have developed 

concentric plithogenic hypergraph based on Plithogenic Hypersoft sets. 

Researchers have also explored plithogenic based algebraic structures. Smarandache [66-68] laid the 

foundation of Plithogenic algebraic structures. Gayen et al., [69] plithogenic Hypersoft subgroups. 

Basumatary et al., [70] investigated the topological properties based on plithogenic neutrosophic 

Hypersoft. Taffach,  & Hatip [71] presented a brief review of Symbolic 2-Plithogenic Algebraic 

Structures. Taffach et al.,[72] discoursed on Plithogenic rings. Taffach & Nader Mahmoud [73] 

discussed on the fusion of Symbolic Plithogenic Sets and Vector Spaces.  Priyadharshini & Nirmala 

Irudayam[74] have explored plithogenic based topological spaces and their properties. Merkepci & 

Abobala [75] evolved the theory of Symbolic 2-Plithogenic Rings. Al-Basheer et al., [76] elicited on  

Symbolic 3-Plithogenic Rings and their Algebraic Properties. Smarandache [66] presented an overall 

view of the plithogenic algebraic structures and symbolic plithogenic algebraic structures. Taffach et 
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al.,[77] have explored Plithogenic Number Theory and algebraic equations. Khaldi.,[78] formulated 

algorithms for solving algebraic equations with  Symbolic 2-Plithogenic numbers. 

 Plithogenic numbers is also investigated by several researchers. Nivetha et al.,[79] have introduced 

Plithogenic numbers. Followed by Noel Batista Hernández et al.,[80] have applied plithogenic 

numbers in assessing competency of the students. Raúl Comas Rodríguez  et al.,[81] have applied in 

evaluation of education and society. Zuñiga et al.,[82]  have used plithogenic numbers in study of the 

soil attributes 

Nivetha Martin et al.,[79]introduced Plithogenic Sociogram. Sudha, Nivetha Martin , Florentin 

Smarandache [83] introduced extended plithogenic sets and applied the same in plithogenic 

sociogram. The plithogenic sociogram approaches are the extensions of neutrosophic sociogram 

approaches. These are used as alternatives of MCDM methods. Nivetha Martin and Florentine 

Smarandache [84] have introduced the theory of Plithogenic Cognitive Maps to make optimal 

decisions. Sujatha et al.,[85] have applied Plithogenic Cognitive Maps in making analysis of the novel 

corona virus. Nivetha Martin et al.,[86] have developed the concept of new plithogenic sub cognitive 

maps with mediating effects. Priya and Nivetha Martin [87] introduced Induced Plithogenic Cognitive 

Maps with Combined Connection Matrix. Priya, Martin, & Kishore [88] have applied PCM in the 

field of behaviour modification.  

Priyadharshini et al.,[89] have developed plithogenic cubic sets and have explored their properties 

with suitable illustrations. Prem kumar Singh [90] has introduced complex plithogenic set. The 

Plithogenic sets are applied to other physical fields. Smarandache [91] has coined Physical 

plithogenic sets. Within a very short span of time of the conceptualization of Plithogeny, the 

plithogenic sets are widely applied in almost all the domains of mathematics.  

4. Applications of Plithogeny based MCDM 

This section presents the applications of Plithogenic sets in the arena of decision making. The 

plithogenic representations, plithogenic operators are integrated with decision making elements to 

make optimal decisions. The plithogenic concepts that are presented in the section [3] are applied in 

making decisions based on multi attributes. The plithogenic based decision making are used in solving 

ranking based problem. It is also used in making assessments and evaluation study. The plithogenic 

environment is extensively applied in solving various problems. Abdel-Basset et al.,[8] in green 

supply chain management, Abdel-Basset et al.,[92] in making evaluations of hospital administration, 

Tayal et al., [93] in ranking of products, Rously  et al., [94] in prioritizing.  Gómez et al.,[95] in 

evaluating strategies of promoting education, Fernández et al.,[96]  in selecting investment projects, 

Moncayo et al.,[97] in defining strategies, Öztaş et al.,[98] in performance evaluation, Pai, & Prabhu 

Gaonkar [99] in making risk assessments on evidential reasoning. Rehab Mohamed et al.,[12] in 

evaluating the performances of IoT based supply chain. M. Abdel-Basset et al.,[32] in supplier 

selection. Abdel-Basset et al.,[100] in financial performances. In the above mentioned plithogenic 

based decision making models, the plithogenic representations are used to represent data. 

  Some of the MCDM methods presented in Table 4,  are also discussed under plithogeny. The 

applications of the extended plithogenic based MCDM methods are described as follows. Ansari and 

Kant [101] have applied plithogenic based neutrosophic Analytical Hierarchy Process in handling a 

decision-making problem on supply chain. TOPSIS is one of the most preferred MCDM method. 

Sankar et al.,[102] applied Plithogenic TOPSIS in modelling COVID- 19 problem. Mohamed Abdel-

Basset & Rehab [23] used TOPSIS-CRITIC in supply chain management. Nivetha Martin [103] 

employed TOPSIS-SWARA in food processing technology. Abdullah Ozcil et al. [19] used 

plithogenic MAIRCA in building novel decision making model. Sudha & Nivetha Martin [104] 

developed TOPSIS integrated Plithogenic Cognitive Maps in making optimal decisions on the 

problems based on the evaluation of teachers performance. Korucuk et al.,[27] formulated plithogenic 

CRITIC decision model to optimize logistics based problems. Sudha & Nivetha Martin [105] applied 
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the integrated Plithogenic CRITIC-MAIRCA in making decisions on feasible livestock feeding stuffs. 

Wang et al., [106] devised multi attribute group decision making using Plithogenic VIKOR with 

linguistic representations. Wang et al.,[107] used rough numbers in framing plithogenic neutrosophic 

based decision making model. Ulutaş & Topal [108] used Plithogenic PIPRECIA in dealing logistics 

problem. Abdel-Basset et al.,[109] designed plithogenic best-worst method in making decisions on 

supply chain. Sudha & Nivetha Martin [110] made comparative analysis of the efficiency of 

plithogenic and neutrosophic best and worst method. 

Shio Gai Quek et al.,[111]  used Plithogenic entropy measures in solving a multi-attribute decision 

making. Gomathy et al.,[112] applied plithogenic sets in making decisions on health dynamics. 

Abdel-Basset et al., [8] used quality functions in devising hybrid decision making models in solving 

supply chain management problems.  Priyadharshini and  Nirmala Irudayam [113] used refined and 

single valued plithogenic neutrosophic sets in solving MCDM problems. Nivetha Martin et al [114]., 

used PROMTHEE Plithogenic Pythagorean Hypergraphic Approach in Smart Materials Selection. 

Walid Abdelfattah [115] developed plithogenic DEA in assessment based problems. 

Inaddition to the applications of the Plithogenic based MCDM methods in making optimal decisions. 

Florentin Smarandache and Nivetha Martin[116] have used Plithogenic n- Super Hypergraph in 

making Novel Multi -Attribute Decision Making. Muhammad Rayees Ahmad et al., [117] used 

Plithogenic Hypersoft Sets with Fuzzy Neutrosophic representations in framing novel decision 

making model. Dhivya & Arokia Lancy [118] constructed a multi attribute decision-making model 

with Heronian Mean Aggregation Operators using the representations of near plithogenic 

neutrosophic hypersoft representations. Sudha and Nivetha Martin [119] applied combined 

Plithogenic Hypersoft sets in making optimal decisions on business analytics tools. The Table 4 

presents the applications of the above discussed Plithogenic based MCDM methods. 

 

Table:4 Applications of the Plithogenic MCDM methods 

Plithogenic MCDM Methods Problem Specification  

Plithogenic TOPSIS  Quality Function Deployment for Selecting Supply Chain 

Sustainability Metrics 

 COVID-19 pandemic problem 

Plithogenic VIKOR Hospital medical care systems 

Plithogenic AHP Eco-innovation practices in supply chain 

Plithogenic TOPSIS-CRITIC Risk management in sustainable supply chain 

Plithogenic MAIRCA  Constructing innovative decision making model 

Plithogenic BWM & VIKOR Evaluating the   Performance of IoT Based Supply Chain 

Plithogenic AHP,TOPSIS & 

VIKOR 
Financial performance  evaluation  of  manufacturing  industries. 

Plithogenic   MABAC, BWM Supplier Selection problem 

Plithogenic SWARA-TOPSIS Food Processing Methods with Different Normalization 

Techniques 

PROMTHEE Plithogenic 

Pythagorean Hypergraph 
Smart Materials Selection 
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Analysis on Publications  

This section presents the analysis of the publications of the articles based on Plithogenic MCDM. The 

list of journals in which the article are published are presented in Table 5.  

Table : 5 List of the Journals 

Name of the Journal Number  

Neutrosophic Sets and Systems (NSS). 27 

Infinite Study 4 

International Journal  of Neutrosophic Science (IJNS) 17 

AIP Conference Proceedings 1 

MDPI- Symmetry 3 

Intelligent and Fuzzy Techniques- Smart and Innovative Solutions 2 

In Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics. 

Academic Press 

1 

International Journal of Sustainable Engineering 1 

Acta Scientific Computer Sciences 1 

Multimedia Tools and Applications 1 

Artificial intelligence in medicine 2 

Octogon Mathematical Magazine 1 

International Journal of Creative Research Thoughts (IJCRT) 1 

International Journal of Mechanical Engineering 1 

Indian Journal of Natural Sciences (IJONS) 1 

Journal of Intelligent & Fuzzy Systems, 1 

Journal of Fuzzy Extension and Applications 3 

AIP Publishing LLC 3 

Advances in Decision Making 1 

Journal of Cleaner Production 1 

International Conference on Intelligent and fuzzy systems 1 

Mathematics-MDPI 1 

Computers, Materials & Continua., Tech Press Science. 1 

Risk Management 1 

Artificial intelligence in medicine.  1 

International Journal of Fuzzy Systems 1 

Sustainability 1 

IGI Global - Optimization and Decision-Making in the Renewable Energy 1 

Plithogenic Best-Worst method Supply chain ,Evaluation of Teaching & Learning process 

Plithogenic CRITIC-MAIRCA Feasible Livestock Feeding Stuffs 

TOPSIS-Plithogenic Cognitive 

Maps 
Performance of teachers being evaluated 

Plithogenic CRITIC Optimize logistics problems 

Plithogenic VIKOR Group decision making problem 

Plithogenic PIPRECIA Logistics Selection problem 

Plithogenic FUCOM-MAIRCA sustainable factors and suppliers for transforming business sectors 

to Green Globe Creators  
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Industry(Book) 

Stochastic Modeling & Applications 1 

Journal of  Ambient Intell Humaniz Comput 1 

Indian Journal of Science and Technology 1 

Optimization Theory Based on Neutrosophic and Plithogenic Sets 1 

Research gate 1 

International Journal of Fuzzy Logic and Intelligent Systems 1 

IJSRM- International Journal of Scientific Research and Management 1 

Galoitica Journal Of Mathematical Structures And Applications (GJMSA) 2 

REVISTA INVESTIGACION OPERACIONAL 1 

Current Advances in Mechanical Engineering 1 

 International Research Journal of Modernization in Engineering 

Technology and Science 

1 

 

5. Conclusion and Future Directions  

This review paper has presented an extensive overview of the philosophy of plithogeny and its 

applications in decision making. The ongoing research works in the plithogenic field is an actual 

substantiation for the effectiveness of plithogenic principles in making optimal decisions. The 

theoretical developments of plithogeny constructed by Smarandache are articulated by the plithogenic 

researchers in terms of excellent applications. The applications of plithogeny have smoothened the 

hurdles of determining solutions to the problems of varied kinds. The manifestations of plithogeny 

embedded with realistic applications in various fields are also bountiful. The recent developments and 

extensions of plithogenic sets are the instances of the comprehensives of plithogenic sets. As the 

researches and contributions of plithogenic sets are persisting with vibrancies, the opportunities of 

integrating plithogeny with other facets of decision making models are in manifold. The construction 

of new kinds of sets at recent times shall also be dealt with plithogeny. The contributions of 

Plithogenic sets are scaled up within a very short span of time and certainly, it is expected to reach a 

huge number in the coming decades.  
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Abstract. Interval-valued neutrosophic sets have been shown to provide a limited platform for computational
complexity, but neutrosophic sets are suitable for it. The neutrosophic setsare a suitable mechanism for inter-
preting the philosophical problems of real-life, but not for scientific problems because it is difficult to consolidate.
This study aims to develop the notion of neutrosophic single-valued general machine over a finite group, which
is knows as ”group neutrosophic general machine”, for simplicity, GNGM. After that, we present the notions of
max-min GNGM, single-valued neutrosophic subgroup (SVNSG) and single-valued neutrosophic normal sub-
group (SVNNSG). We show that if there exists a homomorphism between two GNGMs M1 and M2 and M

is a single-valued neutrosophic fundamental (SVNF) of M2, then f−1(M) is a SVNF of M1. Also, if M is a
singe-valued neutrosophic kernel (SVNK) of M2, then f−1(M) is a SVNK of M1. Moreover, we prove that if
M is a SVNK and N is a SVNF of M, then M ∗N is a SVNF of M. In addition, we show that if M and N

are SVNK of M, then M ∗N is a SVNK of M.

Keywords: Neutrosophic set, Automata, Intuitionistic set, Submachine, General fuzzy au-
tomata
—————————————————————————————————————————-

1. Introduction

The concept of ‘fuzzy‘ together with some other notions in mathematics and other areas
were fuzzified by Zadeh [16] in 1965. Within this real, among the first investigations was
the concept of fuzzy automaton suggested by Wee [15] and Santos [8]. Doostfatemeh and
Kremer [4] introduced the concept of general fuzzy automata.

An intuitionistic fuzzy set can be viewed as an alternative approach when available in-
formation is not sufficient to define the impreciseness by the conventional fuzzy set. Sub-
sequently, as a generalization, the concept of intuitionistic general fuzzy automata has been

M. Shamsizadeh, P. Lo′lo′, Neutrosophic General Machine: An Group-Based Study

Neutrosophic Sets and Systems, Vol. 56, 2023



introduced and studied by Shamsizadeh and Zahedi [10]. For more details see the recent
literature as [2, 3, 5, 9, 11,12].

Neutrosophy deals with origin, nature and scope of neutralities, as well as their interactions
with different ideational spectra. Neutrosophy is the basis of neutrosophic sets (derivative of
neutrosophy). A neutrosophic set is a general framework which generalizes the concept of fuzzy
set, interval valued fuzzy set, and intuitionistic fuzzy set. Wang et al. [14] introduced single
valued neutrosophic sets which is a neutrosophic set defined in the range [0, 1]. Wang et.al: [13]
introduced the notion of interval-valued neutrosophic sets. Interval-valued neutrosophic sets
have been shown that fuzzy sets provides limited platform for computational complexity but
neutrosophic sets is suitable for it. The neutrosophic sets is an appropriate mechanism for
interpreting real-life philosophical problems but not for scientific problems since it is difficult
to consolidate.

The concept of interval neutrosophic finite state machine was introduced by Tahir Mahmood
[7]. In 2019 [6] Kavikumar introduced the notion of neutrosophic general fuzzy automata.

The present paper is organized as follows: Section 2 encompasses preliminary information
pertaining to the content of the paper. In Section 3 we present the notion of neutrosophic
single-valued general automata over a finite group which is knows as ”group neutrosophic
general machine” (GNGM). Moreover, we give the notions of max-min GNGM, single-valued
neutrosophic subgroup (SVNSG) and single-valued neutrosophic normal subgroup (SVNNSG).
We prove that if there exists a homomorphism between two GNGMs M1 and M2 and M be
a single-valued neutrosophic fundamental (SVNF) of M2, then f−1(M) is a SVNF of M1.
Also, if M is a singe-valued neutrosophic kernel (SVNK) of M2, then f−1(M) is a SVNK of
M1. Moreover, we prove that if M is a SVNK and N is a SVNF of M, then M ∗N is a SVNF
of M. In addition, we show that if M and N are SVNK of M, then M ∗N is a SVNK of M.

2. Preliminaries

In this section, some concepts and definitions related to single-valued neutrosophy and
automata are introduced.

Definition 2.1. [4] A general fuzzy automaton (GFA) is considered as: F̃ =

(Q,Σ, R̃, Z, δ̃, ω, F1, F2), where (i) Q is a finite set of states, Q = {q1, q2, ..., qn}, (ii) Σ is
a finite set of input symbols, Σ = {a1, a2, ..., am}, (iii) R̃ is the set of fuzzy start states,
R̃ ⊆ P̃ (Q), (iv) Z is a finite set of output symbols, Z = {b1, b2, ..., bk}, (v) ω : Q → Z is the
output function, (vi) δ̃ : (Q × [0, 1]) × Σ × Q → [0, 1] is the augmented transition function.
(vii) Function F1 : [0, 1] × [0, 1] → [0, 1] is called membership assignment function. (viii)
F2 : [0, 1]

∗ → [0, 1], is called multi-membership resolution function.
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Definition 2.2. Let Σ be a space of points (objects), with a generic element in Σ denoted
by x. A neutrosophic set A in Σ is characterized by a truth-membership function TA, an
indeterminacy-membership function IA and a falsity-membership function FA. TA(x), IA(x)

and FA(x) are real standard or non-standard subsets of ]0−, 1+[. That is TA : Σ →]0−, 1+[, IA :

Σ →]0−, 1+[, FA : Σ →]0−, 1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x),
so 0− ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+.

Definition 2.3. Single-valued neutrosophic set is the immediate results of neutrosophic set
if it is defined over standard unit interval [0, 1] instead of the non-standard unit interval
]0−, 1+[. A single-valued neutrosophic subset (SVNS) A of Q is defined by SV NS(A) =

{(x, TA(x), IA(x), FA(x))
∣∣x ∈ Σ}, where TA(x), IA(x), FA(x) : Σ → [0, 1] such that 0 ≤

supTA(x) + sup IA(x) + supFA(x) ≤ 3.

Definition 2.4. [1] The support of a single-valued neutrosophic set A =

{(x, TA(x), IA(x), FA(x))
∣∣x ∈ X} is denoted by supp(A), defined by supp(A) = {x ∈

A
∣∣TA(x) ̸= 0, IA(x) ̸= 0, FA(x) ̸= 0}. The support of a single-valued neutrosophic set is a

crisp set.

3. Single-Valued Neutrosophic General Machine Over a Finite Group

Definition 3.1. A group single-valued neutrosophic general machine (GNGM) is a seven-tuple
machine M = (Q, ∗,Σ, R̃, δ̃, E1, E2), such that (Q, ∗) is a finite group and

1. Q is called the set of states,
2. Σ is a finite set of input symbols,
3. R̃ ⊆ P̃ (Q) is the set of single-valued neutrosophic initial states,
4. δ̃ : (Q × [0, 1] × [0, 1] × [0, 1]) × Σ × Q → [0, 1] × [0, 1] × [0, 1] is the single-valued

neutrosophic augmented transition function,
5. E1 = (ET

1 , E
I
1 , E

F
1 ), where ET

1 : [0, 1] × [0, 1] → [0, 1] is a t-norm and it is called the
truth-membership assignment function. ET

1 (T, Tδ) is motivated by two parameters
T and Tδ, where T is the truth-membership value of a predecessor and Tδ is the
truth-membership value of the transition. Also, EI

1 : [0, 1] × [0, 1] → [0, 1] is a t-
norm and it is called the indeterminacy-membership function. EI

1(I, Iδ) is motivated
by two parameters I and Iδ, where I is the indeterminacy-membership value of a
predecessor and Iδ is the indeterminacy-membership value of the transition. Moreover,
EF

1 : [0, 1]×[0, 1] → [0, 1] is a t-conorm and it is called the falsity-membership function.
EF

1 (F, Fδ) is motivated by two parameters F and Fδ, where F is the falsity-membership
value of a predecessor and Fδ is the falsity-membership value of the transition.
In this definition, the process that takes place upon the transition from the state qi to
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qj on an input ak is represented by:

T t+1(qj) = δ̃1((qi, T
t(qi), I

t(qi), F
t(qi)), ak, qj) = ET

1 (T
t(qi), δ1(qi, ak, qj)),

It+1(qj) = δ̃2((qi, T
t(qi), I

t(qi), F
t(qi)), ak, qj) = EI

1(I
t(qi), δ2(qi, ak, qj)),

F t+1(qj) = δ̃3((qi, T
t(qi), I

t(qi), F
t(qi)), ak, qj) = EF

1 (T
t(qi), δ3(qi, ak, qj)),

where

δ̃((qi, T
t(qi),I

t(qi), F
t(qi)), ak, qj) = (δ̃1((qi, T

t(qi), I
t(qi), F

t(qi)), ak, qj),

δ̃2((qi, T
t(qi), I

t(qi), F
t(qi)), ak, qj), δ̃3((qi, T

t(qi), I
t(qi), F

t(qi)), ak, qj)),

and

δ(qi, ak, qj) = (δ1(qi, ak, qj), δ2(qi, ak, qj), δ3(qi, ak, qj)).

6. E2 = (ET
2 , E

I
2 , E

F
2 ), where ET

2 : [0, 1]∗ → [0, 1] is a T-conorm and it is called multi-
truth-membership function, EI

2 : [0, 1]∗ → [0, 1] is a T-conorm and it is called multi-
indetermincy-membership function, EF

2 : [0, 1]∗ → [0, 1] is a T-norm and it is called
multi-falsity-membership function.

Example 3.2. Let the GNGM M = (Q, ∗,Σ, δ̃, R̃, E1, E2) such that Q = {q0, q1, q2},Σ = {a},
R̃ = {(q0, 0.4, 0.7, 0.3)} and δ is defined as follows:

δ(q0, a, q0) = (0.6, 0.7, 1), δ(q0, a, q1) = (0.7, 0.5, 0.5),

δ(q0, a, q2) = (0.9, 0.7, 0.4), δ(q1, a, q1) = (0.4, 0.5, 0.2),

δ(q1, a, q2) = (0.3, 0.7, 0.6), δ(q2, a, q0) = (0.7, 0.9, 0.6),

δ(q2, a, q1) = (0.7, 1, 1), δ(q2, a, q2) = (0.6, 0.9, 0.5).

Now, we can consider E1 as follows:
1. ET

1 = T ∧ Tδ, EI
1 = I ∧ Iδ, EF

1 = F ∨ Fδ,

T t+1(qm) =
n∨

i=1

ET
1 (T

t(qi), δ1(qi, ak, qm)),

It+1(qm) =

n∨
i=1

EI
1(I

t(qi), δ2(qi, ak, qm)),

F t+1(qm) =
n∧

i=1

EF
3 (F

t(qi), δ3(qi, ak, qm)),
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2. ET
1 = T.Tδ, EI

1 = I.Iδ, EF
1 = F + Fδ − F.Fδ,

T t+1(qm) =

n∨
i=1

ET
1 (T

t(qi), δ1(qi, ak, qm)),

It+1(qm) =
n∨

i=1

EI
1(I

t(qi), δ2(qi, ak, qm)),

F t+1(qm) =

n∧
i=1

EF
3 (F

t(qi), δ3(qi, ak, qm)),

3. ET
1 = T ∧ Tδ, EI

1 = I ∧ Iδ, EF
1 = F ∨ Fδ,

T t+1(qm) = Tp(Tp(T
t(qi), δ1(qi, ak, qm))),

It+1(qm) = Tp(Tp(I
t(qi), δ2(qi, ak, qm)),

F t+1(qm)) = Sp(SpE
F
3 (F

t(qi), δ3(qi, ak, qm))),

where Tp is the product t-norm and Sp is the product t-conorm.
If we choose the case 1, then we have

T t1(q0) = ET
1 (T

t0(q0), δ1(q0, a, q0)) = 0.4 ∧ 0.6 = 0.4,

It1(q0) = EI
1(I

t0(q0), δ2(q0, a, q0)) = 0.7 ∧ 0.7 = 0.7,

F t1(q0) = EF
1 (F

t0(q0), δ3(q0, a, q0)) = 0.3 ∨ 1 = 1,

T t1(q1) = ET
1 (T

t0(q0), δ1(q0, a, q1)) = 0.4 ∧ 0.7 = 0.4,

It1(q1) = EI
1(I

t0(q0), δ2(q0, a, q1)) = 0.7 ∧ 0.5 = 0.5,

F t1(q1) = EF
1 (F

t0(q0), δ3(q0, a, q1)) = 0.3 ∨ 0.5 = 0.5,

T t1(q2) = ET
1 (T

t0(q0), δ1(q0, a, q2)) = 0.4 ∧ 0.9 = 0.4,

It1(q2) = EI
1(I

t0(q0), δ2(q0, a, q2)) = 0.7 ∧ 0.7 = 0.7,

F t1(q2) = EF
1 (F

t0(q0), δ3(q0, a, q2)) = 0.3 ∨ 0.4 = 0.4,

T t2(q0) = ET
1 (T

t1(q0), δ1(q0, a, q0)) ∨ ET
1 (T

t1(q2), δ1(q2, a, q0)) = (0.4 ∧ 0.6) ∨ (0.4 ∧ 0.7) = 0.4,

It2(q0) = EI
1(I

t1(q0), δ2(q0, a, q0)) ∨ EI
1(I

t1(q2), δ2(q2, a, q0)) = (0.7 ∧ 0.7) ∨ (0.7 ∧ 0.9) = 0.7,

F t2(q0) = EF
1 (F

t1(q0), δ3(q0, a, q0)) ∧ EF
1 (F

t1(q2), δ3(q2, a, q0)) = (1 ∨ 1) ∧ (0.4 ∨ 0.6) = 0.6,

T t2(q1) = ET
1 (T

t1(q0), δ1(q0, a, q1)) ∨ ET
1 (T

t1(q1), δ1(q1, a, q1)) ∨ ET
1 (T

t1(q2), δ1(q2, a, q1))

= (0.4 ∧ 0.7) ∨ (0.4 ∧ 0.4) ∨ (0.4 ∧ 0.7) = 0.4,
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It2(q1) = EI
1(I

t1(q0), δ2(q0, a, q1)) ∨ EI
1(I

t1(q1), δ2(q1, a, q1)) ∨ EI
1(I

t1(q2), δ2(q2, a, q1))

= (0.7 ∧ 0.5) ∨ (0.5 ∧ 0.5) ∨ (0.7 ∧ 1) = 0.7,

F t2(q1) = EF
1 (F

t1(q0), δ3(q0, a, q1)) ∧ EF
1 (F

t1(q1), δ3(q1, a, q1)) ∧ EF
1 (F

t1(q2), δ3(q2, a, q1))

= (1 ∨ 0.5) ∧ (0.5 ∨ 0.2) ∧ (0.4 ∨ 1) = 0.5,

T t2(q2) = ET
1 (T

t1(q0), δ1(q0, a, q2)) ∨ ET
1 (T

t1(q1), δ1(q1, a, q2)) ∨ ET
1 (T

t1(q2), δ1(q2, a, q2))

= (0.4 ∧ 0.9) ∨ (0.4 ∧ 0.3) ∨ (0.4 ∧ 0.6) = 0.4,

It2(q2) = EI
1(I

t1(q0), δ2(q0, a, q2)) ∨ EI
1(I

t1(q1), δ2(q1, a, q2)) ∨ EI
1(I

t1(q2), δ2(q2, a, q2))

= (0.7 ∧ 0.7) ∨ (0.5 ∧ 0.7) ∨ (0.7 ∧ 0.9) = 0.7,

F t2(q2) = EF
1 (F

t1(q0), δ3(q0, a, q2)) ∧ EF
1 (F

t1(q1), δ3(q1, a, q2)) ∧ EF
1 (F

t1(q2), δ3(q2, a, q2))

= (1 ∨ 0.4) ∧ (0.5 ∨ 0.6) ∧ (0.4 ∨ 0.5) = 0.5.

Clearly, we can see that there are three simultaneous transition to the action states q0, q1 and
q2 at time t2.

Definition 3.3. Let M = (Q, ∗,Σ, δ̃, R̃, E1, E2) be a GNGM. We define max-min GNGM of
the form M = (Q, ∗,Σ, δ̃∗, R̃, E1, E2) such that δ̃∗ : Qact × Σ∗ × Q → [0, 1] × [0, 1] × [0, 1],
where Qact = {Qact(t0), Qact(t1), ...} and for every i ≥ 0,

δ̃∗1((q, T
t(q), It(q), F t(q)),Λ, p) =

1 if p = q

0 otherwise
,

δ̃∗2((q, T
t(q), It(q), F t(q)),Λ, p) =

1 if p = q

0 otherwise
,

δ̃∗3((q, T
t(q), It(q), F t(q)),Λ, p) =

0 if p=q

1 otherwise
,

and for every i ≥ 1, δ̃∗((q, T t(q), It(q), F t(q)), a, p) = δ̃((q, T t(q), It(q), F t(q)), a, p) and recur-
sively,

δ̃∗1((q, T
t(q), It(q), F t(q)), a1a2...an, p) = ∨{δ̃1((q, T t(q), It(q), F t(q)), a1, p1) ∧ ...

∧ δ̃1((pn−1, T
t(pn−1), I

t(pn−1), F
t(pn−1)), an, p)

∣∣p1 ∈ Qact(t1), ..., pn−1 ∈ Qact(tn−1)},

δ̃∗2((q, T
t(q), It(q), F t(q)), a1a2...an, p) = ∨{δ̃2((q, T t(q), It(q), F t(q)), a1, p1) ∧ ...

∧ δ̃2((pn−1, T
t(pn−1), I

t(pn−1), F
t(pn−1)), an, p)

∣∣p1 ∈ Qact(t1), ..., pn−1 ∈ Qact(tn−1)},

δ̃∗3((q, T
t(q), It(q), F t(q)), a1a2...an, p) = ∧{δ̃3((q, T t(q), It(q), F t(q)), a1, p1) ∨ ...

∨ δ̃3((pn−1, T
t(pn−1), I

t(pn−1), F
t(pn−1)), an, p)

∣∣p1 ∈ Qact(t1), ..., pn−1 ∈ Qact(tn−1)},
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in which ai ∈ Σ, for all 1 ≤ i ≤ n and assuming that the entered in put at time ti is ai, for
1 ≤ i ≤ n− 1.

In the rest of paper, instead of max-min GNGM we say that GNGM.

Definition 3.4. A SVNS N of Q is called a single-valued neutrosophic subgroup (SVNSG) of
Q if the following properties hold:

(1) TN (p ∗ q) ≥ TN (p) ∧ TN (q),
(2) IN (p ∗ q) ≥ IN (p) ∧ IN (q),
(3) FN (p ∗ q) ≤ FN (p) ∨ FN (q),
(4) (TN (p), IN (p), FN (p)) = (TN (p−1), IN (p−1), FN (p−1)),

for every p, q ∈ Q.

Definition 3.5. A SVNSG N of Q is called a single-valued neutrosophic normal subgroup
(SVNNSG) of Q if for every p, q ∈ Q, TN (p ∗ q ∗ p−1) ≥ TN (q), IN (p ∗ q ∗ p−1) ≥ IN (q), FN (p ∗
q ∗ p−1) ≤ FN (q).

Definition 3.6. Let N and M be two SVNS of Q. Then product N ∗M is defined as follows:
N ∗M(p) = (TN∗M (p), IN∗M (p), FN∗M (p)), where

TN∗M (p) = ∨{TN (r) ∧ TM (s)
∣∣r, s ∈ Q, p = r ∗ s},

IN∗M (p) = ∨{IN (r) ∧ IM (s)
∣∣r, s ∈ Q, p = r ∗ s},

FN∗M (p) = ∧{FN (r) ∨ FM (s)
∣∣r, s ∈ Q, p = r ∗ s},

for every p ∈ Q.

Definition 3.7. Let N and M be two SVNSG of Q such that N ⊆ M . Then N is called
SVNNSG of M if for every p, q ∈ Q, we have

TN (p ∗ q ∗ p−1) ≥ TN (q) ∧ TM (p),

IN (p ∗ q ∗ p−1) ≥ IN (q) ∧ IM (p),

FN (p ∗ q ∗ p−1) ≤ FN (q) ∨ FM (p).

Let N and M be two SVNSG of Q such that N is a SVNNSG of M . Then supp(N) is a
SVNNSG of supp(M), too.

Definition 3.8. Let N and M be two SVNS of the groups Q and P , respectively. Let
f : Q → P be a group homomorphism. Then the SVNSs f(N) of P and f−1(M) of Q are
defined as follows:

f(N)(p) =

(Tf(N)(p), If(N)(p), Ff(N)(p)) if f−1(P ) ̸= ∅

(0, 0, 1) if f−1(P ) = ∅
, (1)
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where Tf(N)(p) = ∨{TN (q)
∣∣q ∈ Qand f(q) = p}, If(N)(p) = ∨{IN (q)

∣∣q ∈ Qand f(q) =

p} and Ff(N)(p) = ∧{FN (q)
∣∣q ∈ Qand f(q) = p}, for every p ∈ P . Also, f−1(M)(q) =

(TM (f(q)), IM (f(q)), FM (f(q))), for every q ∈ Q.

Definition 3.9. Let M and N be two SVNS of the groups Q and P , respectively. A function
f : Q → P is called a weak homomorphism from M into N if the following conditions hold:

(1) f is an epimorphism,
(2) f(M) ⊆ N .

If f is an isomorphism from Q onto P , then we say that f is a weak isomorphism from M to
N .

Definition 3.10. Let Mi = (Qi, ∗,Σi, R̃i, δ̃
i, E1, E2), i = 1, 2, be two GNGM. A pair of

functions (f, g), where f : Q1 → Q2 and g : Σ1 → Σ2 is called a homomorphism from M1 into
M2 and written (f, g) : M1 → M2 if the following conditions hold:

(1) f is a group homomorphism,
(2) δ̃11((q, T

t(q), It(q), F t(q)), a, p) ≤ δ̃21((f(q), T
t(f(q)), It(f(q)), F t(f(q))), g(a), f(q)),

(3) δ̃12((q, T
t(q), It(q), F t(q)), a, p) ≤ δ̃22((f(q), T

t(f(q)), It(f(q)), F t(f(q))), g(a), f(q)),
(4) δ̃13((q, T

t(q), It(q), F t(q)), a, p) ≥ δ̃23((f(q), T
t(f(q)), It(f(q)), F t(f(q))), g(a), f(q)),

for every p, q ∈ Q and a ∈ Σi.

The pair (f, g) is called a strong homomorphism from M1 into M2 if it satisfies 1 of
Definition 3.10, and the following conditions holds:

(1) δ̃21((f(q), T
t(f(q)), It(f(q)), F t(f(q))), g(a), f(p)) =

∨ {δ̃11((q, T t(q), It(q), F t(q)), a, r)
∣∣f(r) = f(p), r ∈ Q1},

(2) δ̃22((f(q), T
t(f(q)), It(f(q)), F t(f(q))), g(a), f(p)) =

∨ {δ̃12((q, T t(q), It(q), F t(q)), a, r)
∣∣f(r) = f(p), r ∈ Q1},

(3) δ̃23((f(q), T
t(f(q)), It(f(q)), F t(f(q))), g(a), f(p)) =

∧ {δ̃13((q, T t(q), It(q), F t(q)), a, r)
∣∣f(r) = f(p), r ∈ Q1},

for every p, q ∈ Q, a ∈ Σi and z ∈ Z.
In Definition 3.10, if Σ1 = Σ2 and g is the identity map of Σ1, then we say that f is a

homomorphism (strong homomorphism) from M1 into M2 and we write f : M1 → M2.

Definition 3.11. Let M = (Q, ∗,Σ, R̃, δ̃, E1, E2) be a GNGM. A SVNS M of Q is called a
single-valued neutrosophic kernel (SVNK) of δ if the following conditions hold:

(1) M is a SVNS of Q,
(2) TM (p) ≥ δ1(q, a, p) ∧ TM (q),
(3) IM (p) ≥ δ2(q, a, p) ∧ IM (q),
(4) FM (p) ≤ δ3(q, a, p) ∨ FM (q),
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for every p, q ∈ Q and a ∈ Σ.

Theorem 3.12. Let M be a GNGM. A SVNNSG M of Q is a SVNK of M if and only if the
following conditions hold:

(1) TM (p ∗ r−1) ≥
δ̃∗1((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), x, p)∧ δ̃∗1((q, T

t′(q), It
′
(q), F t′(q)), x, r)∧TM (k),

(2) IM (p ∗ r−1) ≥
δ̃∗2((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), x, p)∧ δ̃∗2((q, T

t′(q), It
′
(q), F t′(q)), x, r)∧ IM (k),

(3) FM (p ∗ r−1) ≤
δ̃∗3((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), x, p)∨ δ̃∗3((q, T

t′(q), It
′
(q), F t′(q)), x, r)∨FM (k),

for every p, q, k, r ∈ Q and x ∈ Σ∗.

Proof. Let M be a SVNK of M. We prove the claim by induction on |x| = n. Let n = 0.
Then x = Λ. If p = q ∗ k and r = q. So,

δ̃∗1((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)),Λ, p) ∧ δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)),Λ, r) ∧ TM (k)

≤ TM (k) ≤ TM (q ∗ k ∗ q−1),

δ̃∗2((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)),Λ, p) ∧ δ̃∗2((q, T
t′(q), It

′
(q), F t′(q)),Λ, r) ∧ IM (k)

≤ IM (k) ≤ IM (q ∗ k ∗ q−1),

δ̃∗3((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)),Λ, p) ∨ δ̃∗3((q, T
t′(q), It

′
(q), F t′(q)),Λ, r) ∨ FM (k)

≥ FM (k) ≥ FM (q ∗ k ∗ q−1).

If p ̸= q ∗ k or r ̸= q. Then

δ̃∗1((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)),Λ, p) ∧ δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)),Λ, r) ∧ TM (k)

= 0 ≤ TM (p ∗ r−1),

δ̃∗2((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)),Λ, p) ∧ δ̃∗2((q, T
t′(q), It

′
(q), F t′(q)),Λ, r) ∧ IM (k)

= 0 ≤ IM (p ∗ r−1),

δ̃∗3((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)),Λ, p) ∨ δ̃∗3((q, T
t′(q), It

′
(q), F t′(q)),Λ, r) ∨ FM (k)

= 1 ≥ FM (p ∗ r−1).
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So, the result holds for n = 0. Now, let the claim holds for every y ∈ Σ∗ such that |y| = n− 1

and n > 0. Let x ∈ Σ∗, x = ya, y ∈ Σ∗, a ∈ Σ, |y| = n− 1 and n > 0. Then

δ̃∗1((q ∗ k,T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), x, p) ∧ δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)), x, r) ∧ TM (k)

= (∨{δ̃∗1((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), y, u)

∧ δ̃∗1((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)

∣∣u ∈ Q})

∧ (∨{δ̃∗1((q, T t′(q), It
′
(q), F t′(q)), y, v)

∧ δ̃∗1((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣v ∈ Q}) ∧ TM (k)

≤ ∨{∨{δ̃∗1((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), y, u)

∧ δ̃∗1((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)

∧ δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)), y, v)

∧ δ̃∗1((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r) ∧ TM (k)
∣∣u ∈ Q}

∣∣v ∈ Q}

≤ ∨{∨{TM (u ∗ v−1) ∧ δ̃∗1((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)

∧ δ̃∗1((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣u ∈ Q}

∣∣v ∈ Q}

≤ ∨{∨{TM (v−1 ∗ u)

∧ δ̃∗1((v ∗ v−1 ∗ u, T t+n−1(v ∗ v−1 ∗ u), It+n−1(v ∗ v−1 ∗ u), F t+n−1(v ∗ v−1 ∗ u)), a, p)

∧ δ̃∗1((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣u ∈ Q}

∣∣v ∈ Q}

≤ TM (p ∗ r−1),

also,

δ̃∗2((q ∗ k,T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), x, p) ∧ δ̃∗2((q, T
t′(q), It

′
(q), F t′(q)), x, r) ∧ IM (k)

= (∨{δ̃∗2((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), y, u)

∧ δ̃∗2((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)

∣∣u ∈ Q})

∧ (∨{δ̃∗2((q, T t′(q), It
′
(q), F t′(q)), y, v)

∧ δ̃∗2((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣v ∈ Q}) ∧ IM (k)

≤ ∨{∨{δ̃∗2((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), y, u)

∧ δ̃∗2((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)
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∧ δ̃∗2((q, T
t′(q), It

′
(q), F t′(q)), y, v)

∧ δ̃∗2((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)

∧ IM (k)
∣∣u ∈ Q}

∣∣v ∈ Q}

≤ ∨{∨{IM (u ∗ v−1)

∧ δ̃∗2((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)

∧ δ̃∗2((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣u ∈ Q}

∣∣v ∈ Q}

≤ ∨{∨{IM (v−1 ∗ u)

∧ δ̃∗2((v ∗ v−1 ∗ u, T t+n−1(v ∗ v−1 ∗ u), It+n−1(v ∗ v−1 ∗ u), F t+n−1(v ∗ v−1 ∗ u)), a, p)

∧ δ̃∗2((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣u ∈ Q}

∣∣v ∈ Q}

≤ IM (p ∗ r−1),

and

δ̃∗3((q ∗ k,T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), x, p) ∨ δ̃∗3((q, T
t′(q), It

′
(q), F t′(q)), x, r) ∨ FM (k)

= (∧{δ̃∗3((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), y, u)

∨ δ̃∗3((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)

∣∣u ∈ Q})

∨ (∧{δ̃∗3((q, T t′(q), It
′
(q), F t′(q)), y, v)

∨ δ̃∗3((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣v ∈ Q}) ∨ FM (k)

≥ ∧{∧{δ̃∗3((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), y, u)

∨ δ̃∗3((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)

∨ δ̃∗3((q, T
t′(q), It

′
(q), F t′(q)), y, v)

∨ δ̃∗3((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)

∨ FM (k)
∣∣u ∈ Q}

∣∣v ∈ Q}

≥ ∧{∧{FM (u ∗ v−1)

∨ δ̃∗3((u, T
t+n−1(u), It+n−1(u), F t+n−1(u)), a, p)

∨ δ̃∗3((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣u ∈ Q}

∣∣v ∈ Q}

≥ ∧{∧{FM (v−1 ∗ u)

∨ δ̃∗3((v ∗ v−1 ∗ u, T t+n−1(v ∗ v−1 ∗ u), It+n−1(v ∗ v−1 ∗ u), F t+n−1(v ∗ v−1 ∗ u)), a, p)

∨ δ̃∗3((v, T
t′+n−1(v), It

′+n−1(v), F t′+n−1(v)), a, r)
∣∣u ∈ Q}

∣∣v ∈ Q}

≥ FM (p ∗ r−1),
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Definition 3.13. Let M be a GNGM and M be a SVNSM of Q. M is called single-valued
neutrosophic fundamental (SVNF) of M if the following hold:

(1) M is a SVNSG of Q,
(2)

TM (p) ≥ δ̃1((q, T
t(q), It(q), F t(q)), x, p) ∧ TM (q)

IM (p) ≥ δ̃2((q, T
t(q), It(q), F t(q)), x, p) ∧ IM (q)

FM (p) ≤ δ̃3((q, T
t(q), It(q), F t(q)), x, p) ∨ FM (q),

for every p, q ∈ Q and x ∈ Σ.

Theorem 3.14. Let M be a GNGM and M be a SVNSM of Q. Then M is a SVNF of M if
and only if the following hold:

TM (p) ≥ δ̃∗1((q, T
t(q), It(q), F t(q)), x, p) ∧ TM (q)

IM (p) ≥ δ̃∗2((q, T
t(q), It(q), F t(q)), x, p) ∧ IM (q)

FM (p) ≤ δ̃∗3((q, T
t(q), It(q), F t(q)), x, p) ∨ FM (q),

for every p, q ∈ Q and x ∈ Σ∗.

Proof. The proof is similar to proof of Theorem 3.12.

Theorem 3.15. Let M = (Q, ∗,Σ, R̃, δ̃, E1, E2) and M′ = (Q′, ∗,Σ, R̃′, δ̃′, E1, E2) be two
GNGM. Let f be a homomorphism from Q into Q′. If M is a SVNF of M′, then f−1(M) is
a SVNF of M.

Proof. The proof is straightforward.

Theorem 3.16. Let M = (Q, ∗,Σ, R̃, δ̃, E1, E2) and M′ = (Q′, ∗,Σ, R̃′, δ̃′, E1, E2) be two
GNGM. Let f be a homomorphism from Q into Q′. If M is a SVNK of M′, then f−1(M) is
a SVNK of M.

Theorem 3.17. Let M = (Q, ∗,Σ, R̃, δ̃, E1, E2) and M′ = (Q′, ∗,Σ, R̃′, δ̃′, E1, E2) be two
GNGM. Let f be a strong homomorphism from M into M′. If M is a SVNK of M, then
f(M) is a SVNK of M′.
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Proof. Let M be a SVNK of M. Then M is a SVNNSG of Q. So, f(M) is a SVNNSG of Q′,
since f is an epimorphism from Q onto Q′. Let p′, q′, r′, k′ ∈ Q′ and x ∈ Σ. Then

δ̃
′∗
1 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p1)

∧ δ̃
′∗
1 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∧ Tf(M)(k1)

= δ̃
′∗
1 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p) ∧ δ̃

′∗
1 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1)

∧ (∨{TM (k)
∣∣k ∈ Q, f(k) = k1})

= ∨{δ̃′∗
1 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p)

∧ δ̃
′∗
1 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∧ TM (k)
∣∣k ∈ Q, f(k) = k1},

and

δ̃
′∗
2 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p1)

∧ δ̃
′∗
2 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∧ If(M)(k1)

= δ̃
′∗
2 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p) ∧ δ̃

′∗
2 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1)

∧ (∨{IM (k)
∣∣k ∈ Q, f(k) = k1})

= ∨{δ̃′∗
2 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p)

∧ δ̃
′∗
2 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∧ IM (k)
∣∣k ∈ Q, f(k) = k1},

also,

δ̃
′∗
3 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p1)

∨ δ̃
′∗
3 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∨ Ff(M)(k1)

= δ̃
′∗
3 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p) ∨ δ̃

′∗
3 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1)

∨ (∧{FM (k)
∣∣k ∈ Q, f(k) = k1}) ∧ {δ̃′∗

3 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p)

∨ δ̃
′∗
3 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∨ FM (k)
∣∣k ∈ Q, f(k) = k1}.

Now, suppose that p, q, r, k ∈ Q be such that f(p) = p1, f(q) = q1, f(r) = r1 and f(k) = k1.
Then
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δ̃
′∗
1 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p1)

∧ δ̃
′∗
1 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∧ Tf(M)(k1)

= δ̃
′∗
1 ((f(q ∗ k), T t(f(q ∗ k)), It(f(q ∗ k)), F t(f(q ∗ k))), x, f(p))

∧ δ̃
′∗
1 ((f(q), T t′(f(q)), It

′
(f(q)), F t′(f(q))), x, f(r)) ∧ TM (k)

= ∨{δ̃∗1((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), x, h)
∣∣f(h) = f(p), h ∈ Q}

∧ ∨{δ̃∗1((q, T t′(q), It
′
(q), F t′(q)), x, l)

∣∣f(l) = f(r), l ∈ Q} ∧ TM (k)

= ∨{∨{δ̃∗1((q ∗ k, T t(q ∗ k), It(q ∗ k), F t(q ∗ k)), x, h) ∧ δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)), x, l)

∧ TM (k)
∣∣f(h) = f(p), f(l) = f(r), l, h ∈ Q}}

≤ ∨{∨{TM (h ∗ l−1)
∣∣h ∈ Q, f(h) = f(p)

∣∣l ∈ Q, f(l) = f(r)}}

≤ T (f(M))(p1 ∗ r−1
1 ).

Similarly,

I(f(M))(p1 ∗ r−1
1 ) ≥ δ̃

′∗
2 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p1)

∧ δ̃
′∗
2 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∧ If(M)(k),

and

F (f(M))(p1 ∗ r−1
1 ) ≤ δ̃

′∗
3 ((q1 ∗ k1, T t(q1 ∗ k1), It(q1 ∗ k1), F t(q1 ∗ k1)), x, p1)

∨ δ̃
′∗
3 ((q1, T

t′(q1), I
t′(q1), F

t′(q1)), x, r1) ∨ Ff(M)(k).

Hence, f(M) is a SVNK of M′.

Theorem 3.18. Let Mi = (Qi, ∗,Σ, R̃i, δ̃i, E1, E2), i = 1, 2 be two GNGM and f be a strong
homomorphism from M1 onto M2. If M is a SVNF of M1, then f(M) is a SVNF of M2.

Proof. The proof is similar to the proof of Theorem 3.17.
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In the rest of paper for SVNGA M = (Q, ∗,Σ, R̃, δ̃, E1, E2) the following conditions are
satisfied:

δ̃∗1((p ∗ q, T t(p ∗ q), It(p ∗ q), F t(p ∗ q)), x, r) ≤ δ̃∗1((p, T
t′(p), It

′
(p), F t′(p)), x, k)

∧ δ̃∗1((q, T
t′′(q), It

′′
(q), F t′′(q)), x, k),

δ̃∗2((p ∗ q, T t(p ∗ q), It(p ∗ q), F t(p ∗ q)), x, r) ≤ δ̃∗2((p, T
t′(p), It

′
(p), F t′(p)), x, k)

∧ δ̃∗2((q, T
t′′(q), It

′′
(q), F t′′(q)), x, k),

δ̃∗3((p ∗ q, T t(p ∗ q), It(p ∗ q), F t(p ∗ q)), x, r) ≥ δ̃∗3((p, T
t′(p), It

′
(p), F t′(p)), x, k)

∨ δ̃∗3((q, T
t′′(q), It

′′
(q), F t′′(q)), x, k),

for every p, q, r, k ∈ Q and x ∈ Σ∗. Also, e will denote the identity element of the group (Q, ∗).

Theorem 3.19. Let M = (Q, ∗,Σ, R̃, δ̃, E1, E2) be a GNGM and M be a SVNK of M. Then
M is a SVNF of M if and only if

1. TM (p) ≥ δ̃∗1((e, T
t(e), It(e), F t(e)), x, p) ∧ TM (e),

2. IM (p) ≥ δ̃∗2((e, T
t(e), It(e), F t(e)), x, p) ∧ IM (e),

3. FM (p) ≤ δ̃∗3((e, T
t(e), It(e), F t(e)), x, p) ∨ FM (e),

for every p ∈ Q and x ∈ Σ∗

Proof. Let conditions 1, 2 and 3 are satisfied. Then

TM (p) = TM (p ∗ r−1 ∗ r)

≥ TM (p ∗ r−1) ∧ TM (r)

≥ δ̃∗1((q, T
t(q), It(q), F t(q)), x, p) ∧ δ̃∗1((e, T

t′(e), It
′
(e), F t′(e)), x, r) ∧ TM (q) ∧ TM (r)

≥ δ̃∗1((q, T
t(q), It(q), F t(q)), x, p) ∧ δ̃∗1((e, T

t′(e), It
′
(e), F t′(e)), x, r) ∧ TM (e) ∧ TM (q)

= δ̃∗1((q, T
t(q), It(q), F t(q)), x, p) ∧ TM (q).

Since, TM (q ∗ q−1) ≥ TM (q) ∧ TM (q−1) = TM (q), then TM (e) ≥ TM (q), also

δ̃∗1((e, T
t′(e), It

′
(e), F t′(e)), x, r) ∧ δ̃∗1((q, T

t(q), It(q), F t(q)), x, r)

≥ δ̃∗1((e ∗ q, T t′′(e ∗ q), It′′(e ∗ q), F t′′(e ∗ q)), x, r),
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so, δ̃∗1((e, T t′(e), It
′
(e), F t′(e)), x, r) ≥ δ̃∗1((e ∗ q, T t′′(e ∗ q), It′′(e ∗ q), F t′′(e ∗ q)), x, r). On the

other hand,

IM (p) = IM (p ∗ r−1 ∗ r)

≥ IM (p ∗ r−1) ∧ IM (r)

≥ δ̃∗2((q, T
t(q), It(q), F t(q)), x, p) ∧ δ̃∗2((e, T

t′(e), It
′
(e), F t′(e)), x, r) ∧ IM (q) ∧ IM (r)

≥ δ̃∗2((q, T
t(q), It(q), F t(q)), x, p) ∧ δ̃∗2((e, T

t′(e), It
′
(e), F t′(e)), x, r) ∧ IM (e) ∧ IM (q)

≥ δ̃∗2((q, T
t(q), It(q), F t(q)), x, p) ∧ IM (q).

Also,

FM (p) = FM (p ∗ r−1 ∗ r)

≤ FM (p ∗ r−1) ∨ FM (r)

≤ δ̃∗3((q, T
t(q), It(q), F t(q)), x, p) ∨ δ̃∗3((e, T

t′(e), It
′
(e), F t′(e)), x, r) ∨ FM (q) ∨ FM (e)

≤ δ̃∗3((q, T
t(q), It(q), F t(q)), x, p) ∨ FM (q).

Hence, M is a SVNF of M. The converse is clear.

Corollary 3.20. If M is a SVNK and N is a SVNK of M such that M ⊆ N and
(TM (e), IM (e), FM (e)) = (TN (e), IN (e), FN (e)), then M is a SVNF of M.

Theorem 3.21. Let M be a SVNK and N be a SVNF of M. Then M ∗N is a SVNF of M.

Proof. Since M is a SVNNSG and N is a SVNSG of Q, then M ∗ N is a SVNSG of Q and
M ∗N = N ∗M . Now, we have

TM∗N (p) ≥ TM (p ∗ r−1) ∧ TN (r) ≥ δ̃∗1((a ∗ b, T t(a ∗ b), It(a ∗ b), F t(a ∗ b)), x, p)

∧ δ̃∗1((a, T
t′(a), It

′
(a), F t′(a)), x, r) ∧ TM (b)

∧ δ̃∗1((a, T
t′(a), It

′
(a), F t′(a)), x, r) ∧ TN (a)

= δ̃∗1((a ∗ b, T t′(a ∗ b), It′(a ∗ b), F t′(a ∗ b)), x, p)

∧ TM (b) ∧ TN (a),

In addition, IM∗N (p) ≥ δ̃∗2((a ∗ b, T t(a ∗ b), It(a ∗ b), F t(a ∗ b)), x, p) ∧ IM (b) ∧ IN (a), since
δ̃∗2((a ∗ b, T t(a ∗ b), It(a ∗ b), F t(a ∗ b)), x, p) ≤ δ̃∗2((a, T

t′(a), It
′
(a), F t′(a)), x, r). Also,

FM∗N (p) ≤ FM (p ∗ r−1) ∨ FN (r)

≤ δ̃∗3((a ∗ b, T t(a ∗ b), It(a ∗ b), F t(a ∗ b)), x, p) ∨ δ̃∗3((a, T
t′(a), It

′
(a), F t′(a)), x, r)

∨ FM (b) ∨ δ̃∗3((a, T
t′(a), It

′
(a), F t′(a)), x, r) ∨ FN (a)

δ̃∗3((a ∗ b, T t(a ∗ b), It(a ∗ b), F t(a ∗ b)), x, p) ∨ FM (b) ∨ FN (a),
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for every a, b, p ∈ Q and x ∈ Σ∗. So, for every p, q ∈ Q and x ∈ Σ∗

TM∗N (p) ≥ ∨{δ̃∗1((a ∗ b, T t(a ∗ b), It(a ∗ b), F t(a ∗ b)), x, p) ∧ TM (b) ∧ TN (a)
∣∣a, b ∈ Q, a ∗ b = q}

= δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)), x, p) ∧ (∨{TM (b) ∧ TN (a)

∣∣a, b ∈ Q, a ∗ b = q})

= δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)), x, p) ∧ TM∗N (q),

clearly, IM∗N (p) ≥ δ̃∗2((q, T
t′(q), It

′
(q), F t′(q)), x, p) ∧ IM∗N (q) and

FM∗N (p) ≤ δ̃∗3((q, T
t′(q), It

′
(q), F t′(q)), x, p) ∨ FM∗N (q).

Therefore, M ∗N is a SVNF of Ã.

Theorem 3.22. If M and N are two SVNKs of M̃, then M ∗N is a SVNK of M̃.

Proof. Let M and N be two SVNNSGs of Q. Then M ∗N is a SVNNSG of Q and M ∗N =

N ∗M . Now, we have

TM∗N (p ∗ r−1) ≥ TM (p ∗ q−1) ∧ TN (q ∗ r−1)

≥ δ̃∗1((a ∗ b ∗ c, T t(a ∗ b ∗ c), It(a ∗ b ∗ c), F t(a ∗ b ∗ c)), x, p)

∧ δ̃∗1((a ∗ b, T t′(a ∗ b), It′(a ∗ b), F t′(a ∗ b)), x, p) ∧ TM (c)

∧ δ̃∗1((a ∗ b, T t′(a ∗ b), It′(a ∗ b), F t′(a ∗ b)), x, r)

∧ δ̃∗1((a, T
t′′(a), It

′′
(a), F t′′(a)), x, r) ∧ IM (c) ∧ IN (c)

= δ̃∗1((a ∗ b ∗ c, T t(a ∗ b ∗ c), It(a ∗ b ∗ c), F t(a ∗ b ∗ c)), x, p)

∧ δ̃∗1((a, T
t′′(a), It

′′
(a), F t′′(a)), x, r) ∧ TM (c) ∧ TN (b),

and

IM∗N (p ∗ r−1) ≥ IM (p ∗ q−1) ∧ IN (q ∗ r−1)

≥ δ̃∗2((a ∗ b ∗ c, T t(a ∗ b ∗ c), It(a ∗ b ∗ c), F t(a ∗ b ∗ c)), x, p)

∧ δ̃∗2((a ∗ b, T t′(a ∗ b), It′(a ∗ b), F t′(a ∗ b)), x, p) ∧ IM (c)

∧ δ̃∗2((a ∗ b, T t′(a ∗ b), It′(a ∗ b), F t′(a ∗ b)), x, r)

∧ δ̃∗2((a, T
t′′(a), It

′′
(a), F t′′(a)), x, r) ∧ TM (c) ∧ TN (c)

= δ̃∗2((a ∗ b ∗ c, T t(a ∗ b ∗ c), It(a ∗ b ∗ c), F t(a ∗ b ∗ c)), x, p)

∧ δ̃∗2((a, T
t′′(a), It

′′
(a), F t′′(a)), x, r) ∧ IM (c) ∧ IN (b),

also,

FM∗N (p ∗ r−1) ≤ δ̃∗3((a ∗ b ∗ c, T t(a ∗ b ∗ c), It(a ∗ b ∗ c), F t(a ∗ b ∗ c)), x, p)

∨ δ̃∗3((a, T
t′′(a), It

′′
(a), F t′′(a)), x, r) ∨ FM (c) ∨ FN (b),
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for every a, b, c, p, r, q ∈ Q and x ∈ Σ∗.
Now, we have

TM∗N (p ∗ r−1) ≥ ∨{δ̃∗1((a ∗ b ∗ c, T t(a ∗ b ∗ c), It(a ∗ b ∗ c), F t(a ∗ b ∗ c)), x, p)

∧ δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)), x, r) ∧ TM (c) ∧ TN (b)

∣∣b, c ∈ Q, b ∗ c = k}

= (δ̃∗1((q ∗ k, T t′′(q ∗ k), It′′(q ∗ k), F t′′(q ∗ k)), x, p)

∧ δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)), x, r)

∧ ∨{TM (c) ∧ TN (b)
∣∣b, c ∈ Q, b ∗ c = k})

= δ̃∗1((q ∗ k, T t′′(q ∗ k), It′′(q ∗ k), F t′′(q ∗ k)), x, p)

∧ δ̃∗1((q, T
t′(q), It

′
(q), F t′(q)), x, r) ∧ TM∗N (k),

and

IM∗N (p ∗ r−1) ≥ δ̃∗2((q ∗ k, T t′′(q ∗ k), It′′(q ∗ k), F t′′(q ∗ k)), x, p)

∧ δ̃∗2((q, T
t′(q), It

′
(q), F t′(q)), x, r) ∧ IM∗N (k),

also,

FM∗N (p ∗ r−1) ≤ δ̃∗3((q ∗ k, T t′′(q ∗ k), It′′(q ∗ k), F t′′(q ∗ k)), x, p)

∨ δ̃∗3((q, T
t′(q), It

′
(q), F t′(q)), x, r) ∨ FM∗N (k),

Hence, M ∗N is a SVNK of M̃.

Let M be a SVNK of M̃. Let

L(M) =
{
N
∣∣N is a SVNK of M̃ such that (TM (e), IM (e), FM (e)) = (TN (e), IN (e), FN (e))

}
.

Theorem 3.23. (L(M),⊆) is a lattice.

Proof. Let B,N ∈ L(M). Then B∩N ∈ L(M) and B∩N is infimum of B and N , for relation
⊆. By Theorem 3.22, B ∗N ∈ L(M) and B ∗N is the supremum of B and N for the relation
⊆. Therefore, (T (M),⊆) is a lattice.

4. Conclusion

In this note, we presented the notion of neutrosophic single-valued general machine over
a finite group, which is known as a ”group neutrosophic general machine”, for simplicity,
GNGM. Also, we presented the notions of max-min GNGM, single-valued neutrosophic sub-
group (SVNSG) and single-valued neutrosophic normal subgroup (SVNNSG). Moreover, we
proved that if M is a SVNK and N is a SVNF of M, then M ∗N is a SVNF of M.
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Abstract. The main goal of this project is to analyze the structure of anti-biminimal spaces through the

lens of the notions of interior and closure. Anti-biminimal spaces can be considered as generalizations of anti-

bitopological spaces that have been introduced and studied earlier. On the other hand, they can be viewed as

counterparts of biminimal spaces. Finally, they are spaces equipped with two anti-minimal structures. Thus,

we show some basic results on the latter. In particular, we refer to the concepts of density, nowhere density

and rarity in anti-minimal spaces.

In general, anti-topology is a structure κ in which at least one classical axiom is totally false. In this paper,

we consider the first axiom. Hence, ∅ and X do not belong to κ.

Keywords: anti-biminimal space, biminimal space, anti-topology

—————————————————————————————————————————-

1. Introduction

We know that topology on some non-empty universe X is defined as a family τ ⊆ P (X)

that is closed under finite intersections and arbitrary unions. The elements of this family of

subsets are called open sets. Moreover, we always assume that ∅ and X are open too. This

definition can be considered as a generalization of the idea of open intervals on real line or

open balls on real plane. Using this concept mathematicians defined many notions that are

used in other branches of mathematics. In particular, continuity is very important in analysis.

Many modern topologists try to reconstruct typical topological notions (like continuity, den-

sity, nowhere density, compactness, connectedness, separation etc.) in weaker or just different

frameworks than the one mentioned above. For example, we can assume that closure of our

family under finite intersections is not necessary and thus we obtain supra topological spaces

(see [13]). Instead of this, we can eliminate necessity of closure under unions (to get infra
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topological spaces, see [3] and [14]). One can reject both these conditions: this leads to min-

imal structures, like in [15]. We can even assume that X may not be open. These are weak

structures (see [6]), where the only requirement is that ∅ is open. If weak structure is closed

under arbitrary unions then it can be considered as a generalized topological space in the

sense of Császár (see [5]). Finally, we can assume that τ is arbitrary (we can use the notion

of generalized weak structure here), see [1] and [7].

We have different approaches too. The whole direction of our present research is based on

Smarandache’s suggestion that we should investigate anti-algebras. They are based on the idea

that some classical requirements (like closure under finite intersections in case of topologies)

are forbidden. Initial papers on this concept are e.g. [17], [18], [19] and [20].

In general, Smarandache invented six new types of topologies recently (that is, in the years

2019 - 2022). These are: refined neutrosophic topology, refined neutrosophic crisp topology,

neutro-topology, anti-topology, super-hyper topology and neutrosophic super-hyper-topology.

The last two are based on the idea of the n-th power set of a given non-empty set (be it classical

or neutrosophic). As for the neutro-topological structures, they are based on the assumption

that at least one of the classical topological axioms is partially true, partially indeterminate,

and partially false. They have been studied e.g. by Şahin et al. in [16]. There was also another

paper by Khaklary and Chandra Ray, see [10].

Refined structures are characterized by the fact that truth, falsity and indeterminacy can

be split into arbitrarily many subcomponents (depending on applications and needs). This

leads to the idea of refined fuzzy, refined intuitionistic fuzzy and then refined neutrosophic set.

Finally, we have the idea of anti-topology. Anti-topology means a topology where at least

one of its classical axioms is totally false. In particular, it is possible that any non-trivial

intersection or union of the elements of τ is beyond τ . Moreover, we may assume ∅ and X

are never open. Such anti-topologies are anti-chains of sets. These spaces have been already

studied e.g. in [21], [22]. Moreover, anti-bitopological spaces equipped with two anti-topologies

have been investigated in [9].

As for the present paper, it is devoted to the initial study of anti-minimal and anti-weak

structures. Anti-biminimal structures are presented too.

2. Basic notions

Let us introduce several basic notions that will be used extensively throughout the paper.

The first two are somewhat classical, the next two refer to the general program of anti-algebra.

By ”non-trivial” we mean intersection or union that engages at least two different sets.

Then we say that such a family is ”anti-closed” under these operations.
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Definition 2.1. (compare [15]). Assume that X is a non-empty universe and m ⊆ P (X). If

∅, X ∈ m then we say that m is a minimal structure on X. We say that an ordered pair (X,m)

is a minimal structure space.

Clearly, every topology onX is a minimal structure too. In particular, anti-discrete topology

is the simplest example of minimal structure.

Definition 2.2. (compare [4]). Assume that X is a non-empty universe and m1, m2 are

two minimal structures on X. Then we say that an ordered pair (X,m1,m2) is a biminimal

structure space.

Remark 2.3. If the structures mentioned in the last definition are weak structures (and not

necessarily minimal), then the whole space is called biweak structure. Such spaces have been

investigated e.g. in [11].

As it was announced earlier, the next two definitions can be considered as negations of the

former two.

Definition 2.4. Assume that X is a non-empty universe and κ ⊆ P (X). If ∅, X /∈ κ, then

we say that κ is an anti-minimal structure on X. We say that an ordered pair (X,κ) is an

anti-minimal structure space. The elements of κ are called κ-open sets and their complements

are κ-closed. The set of all κ-closed sets is denoted with κCl.

In the light of our earlier considerations, anti-minimal structure is an example of anti-

topology (since the first axiom of topology is totally false).

Definition 2.5. Assume that X is a non-empty universe and κ1, κ2 are two anti-minimal

structures on X. Then we say that an ordered pair (X,κ1, κ2) is an anti-biminimal structure

space.

One can easily give many examples of anti-minimal and anti-biminimal structures. Some of

them will be presented throughout the paper. Clearly, anti-minimal structures can be closed

under some operations (like non-empty intersections or unions that do not lead to X). They

can be anti-closed under these operations too.

We can define closure and interior in terms of anti-minimal structures. Both the definitions

below are standard.

Definition 2.6. Assume that (X,κ) is an anti-minimal structure space and A ⊆ X. We say

that κ-interior of A is the following set: κInt(A) =
⋃
{B ∈ κ;B ⊆ A}.

Definition 2.7. Assume that (X,κ) is an anti-minimal structure space and A ⊆ X. We say

that κ-closure of A is the following set: κCl(A) =
⋂
{B ∈ κCl;A ⊆ B}.
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Remark 2.8. Note that anti-minimal structures have one interesting property. Due to the

fact that ∅ and X are never κ-open (nor κ-closed) we can define four non-trivial sets:

(1) κY nt(A) =
⋂
{B ∈ κ;B ⊆ A} (subinterior of A).

(2) κKl(A) =
⋃
{B ∈ κCl;A ⊆ B} (superclosure of A).

(3) κEnt(A) =
⋃
{B ∈ κ;B ⊆ A} (superinterior of A).

(4) κGl(A) =
⋂
{B ∈ κCl;A ⊆ B} (subclosure of A).

This will be analyzed in our further research. Clearly, similar operators can be defined

even for topological spaces but with some more or less additional assumptions (like e.g. ”the

intersection of all non-empty open sets contained in A”), while in anti-minimal structures

they are more natural. Note (for example) that if our space is not closed under unions, then

κEnt(A) may be different than
⋃
κ (because the union of all open sets need not to be open).

The following properties of κ-interior and κ-closure are true just because they are true for

any generalized weak structure (and anti-minimal structure is a generalized weak one, without

any doubt). The reader can compare this e.g. with [1].

Lemma 2.9. Assume that (X,κ) is an anti-minimal structure space and A,B ⊆ X. Then:

(1) κInt(A) ⊆ A.

(2) If A ∈ κ, then κInt(A) = A.

(3) If A ⊆ B, then κInt(A) ⊆ κInt(B).

(4) κInt(κInt(A)) = κInt(A).

(5) A ⊆ κCl(A).

(6) If A ∈ κCl, then κCl(A) = A.

(7) If A ⊆ B, then κCl(A) ⊆ κCl(B).

(8) κCl(κCl(A)) = κCl(A).

(9) −κInt(A) = κCl(−A).

(10) κInt(−A) = −κCl(A).

(11) x ∈ κInt(A) if and only if there is U ∈ κ such that x ∈ U ⊆ A.

(12) x ∈ κCl(A) if and only if U ∩A ̸= ∅ for any U ∈ κ such that x ∈ U .

(13) κInt(A ∩B) ⊆ κInt(A) ∩ κInt(B).

Remark 2.10. Note that the converses of Lemma 2.9 (2), (6) need not to be true. For example,

let X = {a, b, c, d} and κ = {{a, b}, {b, c}, {c, d}}. Now let A = {a, b, c}. Then κInt(A) =

{a, b} ∪ {b, c} = A /∈ κ. Besides, this particular κ is an example of anti-topological space.

This is because it is anti-closed under unions and intersections (any union and intersection

of two different sets from κ leads beyond κ). Moreover, in the definition of anti-topological

space (see [21]) we always assume that ∅, X /∈ κ. Hence, each anti-topological space is an

anti-minimal structure too.
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Remark 2.11. The converse of Lemma 2.9 (13) may not be true. Consider X = {1, 2, 3, 4, 5}
with κ = {{1, 3}, {2}, {3, 4}}, where A = {1, 2, 3} and B = {2, 3, 4}. One can easily check that

κInt(A) ∩ κInt(B) = A ∩B = {2, 3} ⊈ {2} = κInt({2, 3}) = κInt(A ∩B).

3. On density and related notions

We can briefly discuss the concepts of density, nowhere density and rarity (leaving more

detailed theorems for the further research).

Definition 3.1. Let (X,κ) be an anti-minimal structure and A ⊆ X. Then we say that A is:

(1) κ-dense if and only if κCl(A) = X.

(2) κ-nowhere dense if and only if κInt(κCl(A)) = ∅.
(3) Strongly κ-nowhere dense if and only if for any κ-open set B there is some κ-open

U ⊆ B such that A ∩ U = ∅.
(4) κ-rare if and only if κInt(A) = ∅.

Remark 3.2. Note that if A is κ-dense in an anti-minimal space, then it is equivalent with

saying that the set Z = {C ∈ κCl;A ⊆ C} is empty. Note thatX is never κ-open. Analogously,

A is κ-rare in anti-minimal space if and only if the set J = {C ∈ κ;C ⊆ A} is empty.

We can prove equivalent characterization of κ-dense sets.

Theorem 3.3. Let (X,κ) be an anti-minimal structure. Let A ⊆ X. Then A is κ-dense if

and only if A ∩B ̸= ∅ for any B ∈ κ.

Proof. (⇒). We have κCl(A) = X and B ∈ κ. Assume that A∩B = ∅. Now let x ∈ B (there

must be some x ∈ B because B is non-empty as a member of κ). Hence x ∈ X = κCl(A). By

Lemma 2.9 (13) we obtain A ∩B ̸= ∅.
(⇐). Let A ∩ B ̸= ∅ for any B ∈ κ. Suppose that A is not κ-dense. Then κCl(A) ̸= X.

Hence, for some D ∈ κCl, A ⊆ D. But D ̸= X. Then −D = X \D ∈ κ and A ∩ (−D) = ∅.
This is contradiction.

The theorem above can be proved for generalized weak structures too. However, we should

assume that B is non-empty (while in anti-minimal structures it is clear by the very definition

of κ).

Remark 3.4. Consider X = {1, 2, 3, 4} and κ = {{1, 2}, {2, 3}, {2, 3, 4}, {1, 3, 4}}. Then

κCl = {{3, 4}, {1, 4}, {1}, {2}}. Hence, A = {1, 2} and B = {2, 3} are both κ-open and κ-

dense. However, their intersection, that is A ∩B = {2} is not κ-dense. This is because {2} is

κ-closed, so its κ-closure is just {2} itself.
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Note that the remark above shows us that the situation is different than e.g. in topological

spaces. Recall that in topological spaces we can prove that if A,B are dense and at least B

is open, then their intersection is dense too. However, we can prove the following lemma and

theorem.

Lemma 3.5. Let (X,κ) be an anti-minimal structure that is closed under non-empty finite

intersections. If A is κ-dense, then κCl(U) = κCl(A ∩ U) for any U ∈ κ.

Proof. Clearly, U ∩ A ⊆ U . Now we use Lemma 2.9 (8) to say that κCl(U ∩ A) ⊆ κCl(U).

Let x ∈ κCl(U). Now it must be that W ∩ U ̸= ∅ for any W ∈ κ such that x ∈ W (that is,

for any κ-open neighborhood of x). Because of the closure of our κ under non-empty finite

intersections, W ∩U ∈ κ. Hence, by Lemma 2.9 (13), (W ∩U)∩A ̸= ∅. Thus, x ∈ κCl(U ∩A).

Theorem 3.6. Let (X,κ) be an anti-minimal space that is closed under non-empty finite

intersections. Suppose that A,B ⊆ X are both κ-dense and B is κ-open. Then A ∩ B is

κ-dense.

Proof. We already know that if A is κ-dense, then A ∩ U ̸= ∅ for any U ∈ κ. Now let V ∈ κ.

There is some x ∈ V . But x ∈ X = κCl(B). Hence, B∩V ̸= ∅. Moreover, B∩V ∈ κ (because

of the closure under non-empty finite intersections). Hence, A ∩ (B ∩ V ) ̸= ∅. But this means

that A ∩B is κ-dense. Note that we can write (A ∩B) ∩ V ̸= ∅ to emphasize this fact.

The fact that we distinguish between nowhere density and strong nowhere density is impor-

tant. In topological spaces these two notions are equivalent but not here.

On the one hand we can prove the following theorem.

Theorem 3.7. Every κ-strongly nowhere dense set in anti-minimal structure is κ-nowhere

dense too.

Proof. Suppose that A is κ-strongly nowhere dense but κInt(κCl(A)) ̸= ∅. Then there is some

x ∈ κInt(κCl(A)). In particular, it means that x ∈ κCl(A). Then for any V ∈ κ such that

x ∈ V , V ∩A ̸= ∅. However, from the property of κ-strongly nowhere density of A we infer that

for any B ∈ κ we can find U ∈ κ, U ⊆ B such that A ∩ U = ∅. Thus we obtain contradiction.

However, the converse is not necessarily true.
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Example 3.8. Let X = {a, b, c, d}, κ = {{a, b}, {b, c}, {c, d}}. Then κCl =

{{c, d}, {a, d}, {a, b}}. Take A = {a, d}. Its κ-closure is just {a, d} = A but then we see

that κInt(A) = ∅ (there are no κ-open sets contained in A). However, A it not strongly

nowhere dense. Take B = {a, b}. We see that A ∩B = {a} ≠ ∅.

4. More on anti-biminimal structures

Now let us concentrate on anti-biminimal structures. We would like to determine some

specific class of subsets that will be the object of our investigation. Let us assume that i and j

will be always interpreted as elements of {1, 2}. However, first let us express some basic facts.

Remark 4.1. Note that if A and B are anti-minimal structures on some universe X, then

A ∩B and A ∪B are anti-minimal structures too.

If A is anti-minimal structure and B is minimal structure, then A∪B is a minimal structure,

while A ∩B is an anti-minimal structure.

Definition 4.2. Let (X,κ1, κ2) be an anti-biminimal structure space. Assume that A ⊆ X.

We say that A is κiκj-closed set if and only if A = κiCl(κjCl(A)). The complement of

κiκj-closed set is called κiκj-open.

Lemma 4.3. Let (X,κ1, κ2) be an anti-biminimal structure space. Then A is an κiκj-open

subset of X if and only if A = κiInt(κjInt(A)).

Proof. Assume that A is κiκj-open. It means that −A is κiκj-closed. Hence,

κiCl(κjCl(−A)) = −A. However, by virtue of the general properties of κ-interior,

κiCl(κjCl(−A)) = −κiInt(−κjCl(−A)) = −κiInt(κjInt(−(−A))) = −κiInt(κjInt(A)) =

−A. But then A = κiInt(κjInt(A)). Now we can repeat the whole reasoning in the oppo-

site direction to obtain the expected result: namely, that −A is κiκj-closed and thus A is

κiκj-open.

As we could see, the lemma above is based on the general properties of interior and closure in

arbitrary generalized weak structures rather, than on the specific properties of anti-biminimal

structure. The same can be said about the next lemma:

Lemma 4.4. Let (X,κ1, κ2) be an anti-biminimal structure space. Assume that A,B ⊆ X are

κ1κ2-closed subsets of X. Then A ∩B is κ1κ2-closed too.

Proof. By the assumption, κ1Cl(κ2Cl(A)) = A and κ1Cl(κ2Cl(B)) = B. Clearly, A ∩B ⊆ A

and A ∩ B ⊆ B. Thus κ1Cl(κ2Cl(A ∩ B)) ⊆ κ1Cl(κ2Cl(A)) and κ1Cl(κ2Cl(A ∩ B)) ⊆
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κ1Cl(κ2Cl(B)). Then κ1Cl(κ2Cl(A ∩B)) ⊆ κ1Cl(κ2Cl(A)) ∩ κ1Cl(κ2Cl(B)) = A ∩B. How-

ever, on the other hand, A∩B ⊆ κ1Cl(κ2Cl(A∩B)) (by the very definition of closure). Thus,

A ∩B ⊆ κ1Cl(κ2Cl(A ∩B)) = A ∩B and due to this reason A ∩B is κ1κ2-closed.

Remark 4.5. Assume that (X,κ1, κ2) is an anti-biminimal structure on X and A,B ⊆ X

are two κ1κ2-closed sets. Then A ∪ B does not need to be κ1κ2-closed. For example, take

X = {a, b, c, d, e}, κ1 = {{c, d, e}, {a, b, e}, {a, b, c, d}} and κ2 = {{c, d, e}, {a, b, e}, {a, b, d, e}}.
Then κ1Cl = {{a, b}, {c, d}, {e}} and κ2Cl = {{a, b}, {c, d}, {c}}. Now take A = {a, b} and

B = {c, d}. They are both κ1κ2-closed. Let us check their union, that is {a, b, c, d}. We see

that κ1Cl(κ2Cl({a, b, c, d})) = κ1Cl(
⋂
{A ∈ κ2Cl; {a, b, c, d} ⊆ A}) = κ1Cl(

⋂
∅) = κ1Cl(X) =⋂

{A ∈ κ1Cl;X ⊆ A} =
⋂
∅ = X ̸= {a, b, c, d}.

Besides, let us calculate directly κ1Cl(κ2Cl(A ∩ B)) = κ1Cl(κ2Cl(∅)) = κ1Cl(
⋂
{A ∈

κ2Cl; ∅ ⊆ A}) = κ1Cl({a, b} ∩ {c, d} ∩ {c}) = κ1Cl(∅) =
⋂
{A ∈ κ1Cl; ∅ ⊆ A} = {a, b} ∩

{c, d} ∩ {e} = ∅.
Now, both from the general lemma and from this direct calculation, we know that ∅ is κ1κ2-

closed in this particular anti-biminimal structure. However, it is clear (by the very definition

of anti-biminimal and anti-minimal structure as such) that ∅ /∈ κ1Cl ∩ κ2Cl. Hence, we see that

κ1 ∩ κ2 is not identical with the set of all κ1κ2-closed sets. This leads us to the next lemma.

Lemma 4.6. Let (X,κ1, κ2) be an anti-biminimal space. Let A ∈ κ1Cl ∩ κ2Cl. Then A is

κ1κ2-closed.

Proof. A ∈ κ2Cl, hence κ2Cl(A) = A. But A ∈ κ1Cl too, hence κ1Cl(κ2Cl(A)) = κ1Cl(A) = A.

The converse need not to be true, as we could already seen. However, we should not think

that empty set is the only possible counter-example.

Example 4.7. Let (X,κ1, κ2) be an anti-biminimal space where X = {a, b, c, d, e},
κ1 = {{a, d}, {e}} and κ2 = {{a, e}, {d}}. Now κ1Cl = {{b, c, e}, {a, b, c, d}} and κ2Cl =

{{b, c, d}, {a, b, c, e}}. Now take A = {b, c}. We see that κ2Cl(A) = {b, c, d} ∩ {a, b, c, e} =

{b, c}. Then κ1Cl(κ2Cl(A)) = κ1Cl(A) = {b, c, e} ∩ {a, b, c, d} = {b, c} = A. Hence, A is

κ1κ2-closed but A /∈ κ1Cl ∩ κ2Cl. In fact, A is not even in κ1Cl ∪ κ2Cl.

Remark 4.8. Let us think about the example above again. Take A = {a, b, d}. On the one

hand, κ1Int(A) = {a, d} and then κ2Int({a, d}) = {d}. On the other hand, κ2Int(A) = {d}
and κ1Int({d}) = ∅. This shows us that in general κ1Int(κ2Int(A)) may not be identical with

κ2Int(κ1Int(A)).
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However, the fact mentioned in the remark above should not be confused with the following

theorem:

Theorem 4.9. Assume that (X,κ1, κ2) is an anti-biminimal space. Then A ⊆ X is κ1κ2-open

if and only if it is κ2κ1-open.

Proof. Let A be κ1κ2-open. Then κ1Int(κ2Int(A)) = A. However, it must be that

κ2Int(A)) = A. Assume the contrary. Clearly, it means that κ2Int(A) ⊆ A and κ2Int(A) ̸= A.

Thus there is some x ∈ A such that x /∈ κ2Int(A). Suppose that x ∈ κ1Int(κ2Int(A)). But

κ1Int(κ2Int(A)) ⊆ κ2Int(A), so we obtain contradiction. Thus x /∈ κ1Int(κ2Int(A)) = A.

Hence x /∈ A. Contradiction.

Now, if we already know that κ2Int(A) = A, then κ2Int(κ1Int(κ2Int(A))) = κ2Int(A) = A.

But on the left side we have (by the assumption) κ2Int(κ1Int(A)). Finally, κ2Int(κ1Int(A)) =

A. Hence A is κ1κ2-open.

Clearly, the other direction of the proof is similar.

Note that this proof would be true for any generalized weak structure: we did not use the

fact that ∅ and X are not open in κ1 and κ2.

Analogously, we have:

Theorem 4.10. Assume that (X,κ1, κ2) is an anti-biminimal space. Then A ⊆ X is κ1κ2-

closed if and only if it is κ2κ1-closed.

Proof. Assume that κ1Cl(κ2Cl(A)) = A. Then κ2Cl(A)) = A. Suppose the contrary. It

means that A ⊆ κ2Cl(A) but κ2Cl(A) ̸= A. Hence there is some x ∈ κ2Cl(A) such that

x /∈ A. Suppose that x ∈ κ1Cl(κ2Cl(A)). But κ2Cl(A) ⊆ κ1Cl(κ2Cl(A)) = A which gives us

that x ∈ A and this is contradiction.

Now we see that κ2Cl(κ1Cl(κ2Cl(A))) = κ2Cl(A) = A. But on the left side we have

κ2Cl(κ1(A)), so finally we get κ2Cl(κ1(A)) = A which means that A is κ2κ1-closed.

As for the empty set, we may prove the following theorem.

Theorem 4.11. Let (X,κ1, κ2) be an anti-biminimal space. Then ∅ is κ1κ2-closed if and only

if
⋂

κ1Cl = ∅ and
⋂
κ2Cl = ∅.

Proof. (⇒). Assume that
⋂
κ2Cl = L ̸= ∅. Now let us calculate: κ1Cl(κ2Cl(∅)) = κ1Cl(

⋂
{A ∈

κ2Cl; ∅ ⊆ A}) = κ1Cl(
⋂
{A ∈ κ2Cl}) = κ1Cl(

⋂
κ2Cl) = κ1Cl(L). However, if L is non-empty, as

we assumed, then its κ1-closure must be non-empty too. Finally, κ1Cl(κ2Cl(∅)) ̸= ∅, so ∅ is

not κ1κ2-closed.

T. Witczak, Interior and closure in anti-minimal and anti-biminimal spaces in the frame of
anti-topology

Neutrosophic Sets and Systems, Vol. 56, 2023                                                                              437



Analogously, assume that
⋂
κ1Cl = K ̸= ∅. If κ2Cl(∅) ̸= ∅, then κ1Cl(κ2Cl(∅)) is non-empty

(as a κ1-closure of non-empty set). However, even if κ2Cl(∅) = ∅, then κ1Cl(∅) =
⋂
{A ∈

κ1; ∅ ⊆ A} =
⋂
{A ∈ κ1Cl} =

⋂
κ1Cl = K ̸= ∅. Again, in both cases ∅ is not κ1κ2-closed.

(⇐).

Assume that
⋂
κ1Cl = ∅ and

⋂
κ2Cl = ∅. Let us calculate κ1Cl(κ2Cl(∅)) = κ1Cl(

⋂
{A ∈

κ2Cl; ∅ ⊆ A}) = κ1Cl(
⋂
{A ∈ κ2Cl}) = κ1Cl(

⋂
κ2Cl) = κ1Cl(∅) =

⋂
{A ∈ κ1Cl; ∅ ⊆ A} =

⋂
{A ∈

κ1Cl} =
⋂

κ1Cl = ∅.

Remark 4.12. Clearly the left side of this theorem can be reformulated as: ”X is κ1κ2-open”.

The theorem above can be illustrated.

Example 4.13. Let (X,κ1, κ2) be an anti-biminimal space where X = {a, b, c, d, e},
κ1 = {{c, d, e}, {a, b, e}}, κ2 = {{a, d, e}, {a, b, e}. Hence κ1Cl = {{a, b}, {c, d}} and κ2Cl =

{{b, c}, {c, d}}. Clearly,
⋂
κ2Cl = {c} ≠ ∅. Now κ1Cl(κ2Cl(∅)) = κ1Cl(

⋂
κ2Cl) = κ1Cl({c}) =⋂

{A ∈ κ1Cl; {c} ⊆ A} = {c, d} ≠ ∅.
This was an example of the situation where ∅ was not κ1κ2-closed. Now take the same

universe and κ1 = {{a}, {b, c, d, e}} and κ2 = {{a, d, e}, {a, b, c}}. Now κ1Cl = κ1 and κ2Cl =

{{b, c}, {d, e}}. In both these minimal structures the intersection of all closed sets is empty.

Now one can check that κ1Cl(κ2Cl(∅)) = ∅ just repeating the reasoning presented in (⇐) part

of the last theorem.

Let us go back to the notion of interior. We prove the following lemma.

Lemma 4.14. Let (X,κ1, κ2) be an anti-biminimal structure space. Assume that A,B ⊆ X

are κ1κ2-open subsets of X. Then A ∪B is κ1κ2-open too.

Proof. Assume that both A and B are κ1κ2-open. Hence, κ1Int(κ2Int(A)) = A and

analogously κ1Int(κ2Int(B)) = B. Clearly, A ⊆ A ∪ B and B ⊆ A ∪ B. Hence,

κ1Int(κ2Int(A)) ⊆ κ1Int(κ2Int(A∪B)) and κ1Int(κ2Int(B)) ⊆ κ1Int(κ2Int(A∪B)). Thus,

A ∪ B = κ1Int(κ2Int(A)) ∪ κ1Int(κ2Int(B)) ⊆ κ1Int(κ2(A ∪ B)). However, on the other

hand, κ1Int(κ2Int(A ∪B)) ⊆ A ∪B. Finally, κ1Int(κ2Int(A ∪B)) = A ∪B. Thus, A ∪B is

κ1κ2-open.

As for the whole universe, we have a theorem analogous to Theorem 4.11.

Theorem 4.15. Let (X,κ1, κ2) be an anti-biminimal space. Then X is κ1κ2-open if and only

if
⋃

κ1 = X and
⋃
κ2 = X.
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Proof. (⇒). Assume that
⋃
κ2 = M ̸= X. Now let us calculate: κ1Int(κ2Int(X)) =

κ1Int(
⋃
{A ∈ κ2;A ⊆ X}) = κ1Int(

⋃
κ2) = κ1Int(M). However, it M is properly contained

in X, then its κ1-interior must be properly contained in X too. Finally, κ1Int(κ2Int(X)) ̸= X,

so X is not κ1κ2-open.

Assume now that
⋃
κ1 = N ̸= X. If κ2Int(X) = M ̸= X, then κ1Int(κ2Int(X)) =

κ1Int(M) ̸= X (being contained in M). However, even if κ2Int(X) = X, then κ1Int(X) =⋃
{A ∈ κ1;A ⊆ X} =

⋃
κ1 = N ̸= X. In both cases X is not κ1κ2-open.

(⇐). Suppose that
⋃
κ1 = X and

⋃
κ2 = X. Let us calculate κ1Int(κ2Int(X)) =

κ1Int(
⋃
{A ∈ κ2;A ⊆ X}) = κ1Int(

⋃
κ2) = κ1Int(X) =

⋃
{A ∈ κ1;A ⊆ X} =

⋃
{A ∈

κ1} =
⋃

κ1 = X.

This was direct proof but it was enough to use Theorem 4.11, Remark 4.12 and the fact

that
⋃

κ = −
⋂

κCl.

5. Conclusion

In this paper we presented anti-minimal and anti-biminimal spaces. We proved some initial

claims about these structures. Now our idea is to analyze the notion of nowhere density and

to introduce the idea of continuous functions (in both frameworks). Moreover, we think that

it would be valuable to analyze those somewhat untypical operators that have been mentioned

in Remark 2.8.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Avila J, Molina F. Generalized weak structures. International Mathematical Forum 2012; 7(52): 2589-2595.

2. B. Basumatary, JK Khaklary. A study on the properties of antitopological space, in: Neutrosophic Algebraic

Structures and Their Applications, NSIA Publishing House, 2022.

3. Bhattacharya B, Das B, Saha AK. On infi-topological spaces. The Journal of Fuzzy Mathematics 2017;

25(2): 437-448.

4. Boonpok Ch. Biminimal structure spaces. International Mathematical Forum (5) 2010, no. 15: 703-707.
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