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Abstract: Frequently in real life situations decision making takes place under fuzzy conditions, 

because the corresponding goals and/or the existing constraints are not clearly defined. Maji et al. 

introduced in 2002 a method of parametric decision making using soft sets as tools and representing 

their tabular form as a binary matrix. As we explain here, however, in cases where some or all of the 

parameters used for the characterization of the elements of the universal set are of fuzzy texture, 

their method does not give always the best decision making solution. In order to tackle this problem, 

we modified in earlier works the method of Maji et al. by replacing the binary elements in the tabular 

form of the corresponding soft set either by grey numbers or by triangular fuzzy numbers. In this 

work, in order to tackle more efficiently cases in which the decision maker has doubts even about the 

correctness of the fuzzy/qualitative characterizations assigned to some or all of the elements of the 

universal set, we replace the binary elements of the tabular form by neutrosophic triplets. Our new, 

neutrosophic decision making method is illustrated by an application concerning the choice of a new 

player by a soccer club. 

Keywords: decision making (DM); fuzzy set (FS); neutrosophic set (NS); soft set (SS); grey number 

(GN) 

 

 

1. Introduction 

Decision Making (DM) is a fundamental process in a great spectrum of human activities and 

many books have been written about it, helping decision makers to make smarter choices easier and 

quicker; e.g. see [1, 2], etc. Frequently in real life situations, however, DM takes place under fuzzy 

conditions, since the corresponding goals and/or the existing constraints are not clearly defined. 

Several methods have been also proposed for successful DM in such cases, e.g. [3-5], etc.  

Maji et al. introduced in 2002 a method of parametric DM using soft sets (SS) as tools and 

representing their tabular form as a binary matrix [6]. When some or all of the parameters used for 

the characterization of the elements of the set of the discourse (houses in their example) are of fuzzy 

texture (beautiful and cheap in their example), however, their method does not always give the best 

solution to the corresponding DM problem. This happens, because they replace the parameters in 

the tabular form of the corresponding SS with the binary elements 0, 1. In other words, their method, 

although it starts with a fuzzy framework (SS), it continues by using bivalent logic for obtaining the 

required decision (beautiful or not beautiful and cheap or not cheap in their example)! In order to 

tackle this problem, we modified in earlier works the method of Maji et al. by using either triangular 

fuzzy numbers (TFNs) [7] or grey numbers (GNs) – see [8], or [9] (section 5.3) - instead of the binary 

elements in the tabular form of the corresponding SS.  

In reality, however, cases appear in which the decision maker has doubts about the correctness 

of the fuzzy/qualitative characterizations assigned to some or all of the elements of the set of the 

discourse (e.g. very beautiful, rather beautiful, etc.). In order to study more efficiently the DM 
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process in the previous cases, we introduce here neutrosophic sets (NSs) and we replace the binary 

elements of the method of Maji et al. by neutrosophic triplets. The rest of the paper is organized as 

follows: Section 2 contains the necessary background about NSs, SSs and GNs needed for the 

understanding of the paper. The DM method of Maji et al., our modification using GNs, as well as 

the new neutrosophic DM method are developed in section 3, illustrated by examples concerning 

the choice of a new player by a soccer club. The article closes with a discussion on the results 

obtained in it, including some hints for future research, and the final conclusions, presented in 

section 4.                  

2. Mathematical Background  

2.1 Fuzzy Sets and Fuzzy Logic 

    Zadeh extended in 1965 the concept of crisp set to the concept of FS [10] on the purpose of 

dealing with the existing in real life partial truths (e.g. rather good, almost true, etc.) and of 

expressing mathematically definitions with no clear boundaries (e.g. high mountains, clever people, 

etc.)  This was succeeded by replacing the characteristic function by the membership function, which 

maps each element of the universal set U to the unit interval [0, 1]. In fact, if A is the corresponding 

FS in U and m: U → [0, 1] is its membership function, m(x) is called the membership degree of x in A, 

for all elements x in U. The closer m(x) to 1, the better x satisfies the characteristic property of A. And, 
although the FS A is typically defined as the set of all ordered pairs of the form (x. m(x)), ∀ x∈U, for 
reasons of simplicity many authors identify A with its membership function.   
   Most of notions and operations on crisp sets are extended in a natural way to FSs (e.g. see [11]). 
Based on the concept of FS, Zadeh introduced the infinite-valued fuzzy logic (FL), in which the truth 
values are modelled by numbers in the unit interval [12]. FL does not oppose the traditional bivalent 
logic of Aristole (384-322 BC), which used to be for many centuries the basic tool of human reasoning 
being “responsible” for the growth of science and human civilization all this time; on the contrary it 
completes and extends it [13]   
   In a later stage, when membership functions were reinterpreted as possibility distributions, FSs 

and FL were used to embrace uncertainty modelling [14, 15]. The frequently appearing in real life 

uncertainty is due to several reasons, like randomness, imprecise or incomplete data, vague 

information, etc. Probability theory has been proved sufficient to tackle only the cases of uncertainty 

which are due to randomness [16]. Starting from Zadeh’s FSs, however, several theories have been 

developed during the last years on the purpose of tackling more effectively all the forms of the 

existing uncertainty. The main among those theories are briefly reviewed in [17]. In the present 

paper we are going to use elements from the theories of NSs, SSs and GNs needed for its 

understanding, which are exposed below.    

2.2 Neutrosophic Sets  

     Atanassov in 1986, considered in addition to Zadeh’s membership degree the degree of 

non-membership and extended FS to the notion of intuitionistic FS (IFS) [18]. Smarandache in 1995, 

inspired by the frequently appearing in real life neutralities - like <friend, neutral, enemy>, <win, 

draw, defeat>, <high, medium, short>, etc. - generalized IFS to the concept of NS by adding the 

degree of indeterminacy or neutrality [19]. The word “neutrosophy” is a synthesis of the word 

“neutral´ and the Greek word “sophia” (wisdom) and means “the knowledge of neutral thought”. 

The simplest form of a NS is defined as follows:     

   Definition 1: A single valued NS (SVNS) A in the universe U is of the form  

A = {(x,T(x),I(x),F(x)): xU, T(x),I(x),F(x)[0,1], 0T(x)+I(x)+F(x)3}  (1) 

     In equation (1) T(x), I(x), F(x) are the degrees of truth (or membership), indeterminacy (or 

neutrality) and falsity (or non-membership) of x in A respectively, called the neutrosophic components 

of x. For simplicity, we write A<T, I, F>. 
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     Indeterminacy is defined to be in general everything that exists between the opposites of truth 

and falsity [20].  

     Example 1: Let U be the set of the players of a soccer club and let A be the SVNS of the good 

players of the club. Then each player x is characterized by a neutrosophic triplet (t, i, f) with respect to 

A, with t, i, f in [0, 1]. For example, x(0.7, 0.1, 0.4) ∈ A means that the coach of the club is 70% sure 

that x is a good player, but at the same time he has a 10% doubt about it and a 40% belief that x is not 

a good player. In particular, x (0, 1, 0) ∈ A means that the coach does not know absolutely nothing 

about player x (new player). 

     If the sum T(x) + I(x) + F(x) < 1, then it leaves room for incomplete information about x, if it is 

equal to 1 for complete information and if it is >1 for inconsistent (i.e. contradiction tolerant) 

information about x. A SVNS may contain simultaneously elements leaving room to all the previous 

types of information. All notions and operations defined on FSs are naturally extended to SVNSs 

[21].  

    Summation of neutrosophic triplets is equivalent to the union of NSs. That is why the 

neutrosophic summation and implicitly its extension to neutrosophic scalar multiplication can be 

defined in many ways, equivalently to the known in the literature neutrosophic union operators 

[22]. For the needs of the present work, writing the elements of a SVNS A in the form of 

neutrosophic triplets and considering them simply as ordered triplets we define addition and 

scalar product as follows: 

    Definition 2: Let (t1, i1, f1), (t2, i2, f2) be in A and let k be a positive number. Then:   

 The  sum (t1, i1, f1) + (t2, i2, f2) = (t1+ t2,  i1+ i2, f1+ f2)     (2) 

 The scalar product k(t1, i1, f1) = (kt1, k i1, kf1)    (3) 

   Remark 1: The summation and scalar product of the elements of a SVNS A with respect to 

Definition 2 need not be a closed operation in A, since it may happen that (t1+ t2)+(i1+ i2)+(f1+ f2)>3 or 

kt1+k i1+kf1>3. With the help of Definition 2, however, one can define in A the mean value of a finite 

number of elements of A as follows: 

  Definition 3: Let A be a SVNS and let (t1, i1, f1), (t2, i2, f2), …., (tk, ik, fk)  be a finite number of 

elements of A. Assume that (ti, ii, fi) appears ni times in an application, i = 1,2,…., k. Set n = 

n1+n2+….+nk. Then the mean value of all these elements of A is defined to be the element of A 

(tm, im, fm) = 1

n
[n1(t1, i1, f1)+n2(t2, i2, f2)+….+nk(tk, ik, fk)]   (4)      

2.3 Soft Sets 

    A disadvantage of FSs and of all their extensions involving membership degrees (like IFSs, 

NSs, etc.), is that there is not any exact rule for defining properly the corresponding membership 

functions. The methods used for this are usually statistical or intuitive/empirical.  Moreover, the 

definition of the membership function is not unique depending on the “signals” that each observer 

receives from the environment. For example, defining the FS of “young people” one could consider 

as young all persons aged less than 30 years and another one all persons aged less than 40 years. As 

a result the second observer will assign membership degree 1 to all people aged between 30 and 40 

years, whereas the first one will assign to them membership degrees less than 1. Analogous 

differences are logically expected to appear to the membership degrees of all the other ages. In 

other words, the only restriction for the definition of the membership function is that it must be 
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compatible to the common sense; otherwise the resulting FS does not give a creditable description 

of the corresponding real situation. This could happen, for instance, if in the previous example 

people aged more than 70 years possessed membership degrees ≥0.5.  

     For overpassing this problem, the concept of interval-valued FS (IVFS) was introduced in 1975. 

An IVFS is defined by mapping the universe U to the set of the closed subintervals of [0, 1] [23]. 

Other related to FS theories were also developed in which the definition of a membership function 

is not necessary (grey systems and numbers [24]), or it is overpassed by using a pair of crisp sets 

giving the lower and upper bound of the original set (rough sets [25]). Molodstov, introduced in 

1999 the concept of SS for tackling the uncertainty in a parametric manner, not needing, therefore, 

the definition of a membership function [26]. Namely, a SS is defined as follows:      

    Definition 4: Let E be a set of parameters, let A be a subset of E, and let f be a map from A into 

the power set P(U) of the universe U. Then the SS (f, A) in U is defined as the set of the ordered 

pairs 

(f, A) = {(e, f(e)): e ∈ A}   (5) 

     In other words, a SS is a parametrized family of subsets of U. The name "soft" was given due to 

the fact that the form of (f, A) depends on the parameters of A. For each e ∈ A, its image f(e) in P(U) is 

called the value set of e in (f, A), while f is called the approximation function of (f, A).  

     Example 2: Let U= {H1, H2, H3} be a set of houses and let E = {e1, e2, e3} be the set of parameters 

e1=cheap, e2=beautiful and e3= expensive. Let us further assume that H1, H2 are cheap, H3 is 

expensive and H2, H3 are beautiful houses. Then, a map f: E P(U) is defined by f(e1)={H1, H2},  

f(e2)={H2, H3} and f(e3)={H3}. Therefore, the SS (f, E) in U is the set of the ordered pairs  

(f, E) = {(e1, {H1, H2}), (e2, {H2, H3}, (e3, {H3}}    (6) 

    Maji et al. [6] introduced a tabular representation of SSs in the form of a binary matrix in order to 

be stored easily in a computer’s memory. For instance, the tabular representation of the soft set (f, E) 

of the previous example is given by Table 1.      

Table 1. Tabular representation of the SS of Example 2 

 e1 e2 e3 

H1 1 0 0 

H2 1 1 0 

H3 0 1 1 

     A FS in U with membership function y = m(x) is a SS in U of the form (f, [0, 1]), where 

f(α)={xU: m(x)α} is the corresponding a-cut of the FS, for each α in [0, 1]. Consequently the 

concept of SS is a generalization of the concept of FS. All notions and operations defined on FSs are 

extended in a natural way to SSs [27]. 

2.4 Grey Numbers   

    The theory of grey systems [24] introduces an alternative way for managing the uncertainty in 

case of approximate data. A grey system is understood to be any system which lacks information, 

such as structure message, operation mechanism or/and behavior document.  
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     Closed real intervals, are used for performing the necessary calculations in grey systems. In 

fact, a closed real interval [x, y] could be considered as representing a real number T, termed as a 

grey number (GN), whose exact value in [x, y] is unknown. We write then T ∈ [x, y]. A GN T, 

however, is frequently accompanied by a whitenization function f: [x, y] → [0, 1], such that, if f(a) 

approaches 1, then a in [x, y] approaches the unknown value of T. If no whitenization function is 

defined, it is logical to consider as a representative crisp approximation of the GN A the real number  

V(A) = 
x+y

2
          (7) 

     The arithmetic operations on GNs are introduced with the help of the known arithmetic of the 

real intervals [28]. In this work we are going to make use only of the addition of GNs and of the 

scalar multiplication of a GN with a positive number, which are defined as follows:  

    Definition 5: Let A ∈ [x1, y1], B ∈ [x2, y2] be two GNs and let k be a positive number. Then: 

 The sum: A+B is the GN A+B ∈ [x1+y1, x2+y2]   (8)  

 The scalar product  kA is the GN kA ∈ [kx1, ky1]   (9) 

      

3. The Parametric Assessment Method 

    The parametric assessment method of Maji et al. [6], our modification using GNs [8, 9] and our 

new method using NSs are developed in this section through suitable examples concerning the 

choice of a new player by a soccer club. 

 

3.1 The Method of Maji et al. 

    Let us consider the following example:  

    Example 3: A soccer club wants to choose a new player among 6 candidates, say P1, P2, P3, P4, P5 

and P6. The desired qualifications of the new player are to be fast, younger than 30 years, higher 

than 1.70 m and experienced. Assume that P1, P2, P6 are the fast players, P2, P3, P5,P6 are the players 

being younger than 30 years, P3, P5 are the players with heights greater than 1.70 m and P4 is the 

unique experienced player. Which is the best choice for the club? 

    Solution: Let U be the set of the 6 candidate players. Consider the parameters e1=fast, e2=younger 

than 30 years, e3=higher than 1.70 m, e4=experienced and set E = {e1, e2, e3, e4}. Define the map f: E → 

P(U)by f(e1) = {P1, P2, P6}, f(e2) = {P2, P3, P5, P6}, f(e3) = {P3, P5} and f(e4) = {P4}. Then the tabular form of 

the SS (f, E) is shown in Table 2.      

Table 2. Tabular representation of the SS of Example 3 

 e1 e2 e3 e4 

P1 1 0 0 0 

P2 1 1 0 0 

P3 0 1 1 0 

P4 0 0 0 1 

P5 0 1 1 0 

P6 1 1 0 0 
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     The choice value of each player is calculated by adding the binary elements of the row of Table 

2 in which he belongs. The players P1 and P4, therefore, have choice value 1 and all the others have 

choice value 2. Consequently, the right decision is to choose one of the players P2, P3, P5, and P6. 

 

3.2 Our Method Using GNs 

  

     The previous decision, obtained by the method of Maji et al., is obviously not very helpful for 

the soccer club. Observe, however, that the parameters e1 and e4, in contrast to e2 and e3, have not a 

bivalent texture. A player, for example, could not be very fast, but quite fast, or rather experienced, 

etc. This inspired us to characterize the qualifications of the players with respect to the parameters 

e1 and e4 in the tabular matrix of the previous SS (f, E) by using the linguistic grades A=excellent, 

B=very good, C=good, D=mediocre and F= not satisfactory instead of the binary element 0. To show 

how one works in this case for making the right decision, let us modify Example 3 as follows: 

     Example 4: Reconsider Example 3 and assume that the technical manager of the soccer club, 

after a more careful inspection of the qualifications of the 6 candidate players, decided to use the 

following Table 3 instead of Table 2 for the DM process. Which is the best choice for the club in this 

case? 

Table 3. Tabular representation of the SS of Example 4 

 e1 e2 e3 e4 

P1 1 0 0 C 

P2 1 1 0 F 

P3 C 1 1 C 

P4 D 0 0 1 

P5 D 1 1 C 

P6 1 1 0 D 

 

    Solution: Assign to each of the qualitative grades A, B, C, D, F a GN, denoted for simplicity by 

the same letter, as follows: A = [0.85, 1], B = [0.75, 0.84], C= [0.6, 0.74], D = [0.5, 0.59], F = [0, 0.49]. 

From Table 3 then, one calculates, with the help of formulas (7), (8) and (9), the choice value of each 

player in the following way. P1: 1+V(C) = 1+ 0.6 0.74

2

  = 1.67, P2: 2+V(F) = 2.245, P3: 2+V(2C) = 3.34, 

P4: 1+V(D)= 1.545, P5: 2+V(D+C) = 3.215, P6: 2+V(D)=2.545. The right decision, therefore, is to choose 

the player P3. 

     Remark 2: The choices of the qualitative grades A, B, C, D, F, as well as of the intervals for 

translating them in the numerical scale 0-1, correspond to generally accepted standards. The 

decision maker, however, could use, with respect to his/her goals, more or less qualitative grades 

(e.g. by adding E between D and F, etc.) and could also change the corresponding intervals (e.g. by 

setting A= [0.9, 1], B = [0.8, 0.89], C= [0.7, 0.79], D = [0.6, 0.69], F = [0, 0.59], or otherwise). Such 

changes, however, does not affect the generality of our method  
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3.3. The Neutrosophic DM Method 

 

    As it was already mentioned in our Introduction, DM situations appear frequently in reality, in 

which the decision maker has doubts about the correctness of the fuzzy/qualitative grades assigned 

to some or all of the elements of the set of the discourse. In such cases, the best way to perform the 

DM process is to use NSs. In Example 4, for instance, considering the set U of the 6 candidate 

players as the universal set, the decision maker could define in U the NSs of the fast and of the 

experienced players by assigning the suitable neutrosophic triplets to each player of U. In order to 

have complete information, we should have t+i+f = 1, for each triplet (t, i, f).  Then, he/she could 

continue the DM process by replacing in Table 3 the qualitative grades by the corresponding 

neutrosophic triplets and the binary elements 0, 1 by the neutrosophic triplets (0, 0, 1) and (1, 0, 0)  

respectively. This process will be illustrated by the following Example 5. 

   Example 5: Reconsider Example 4 and assume that the technical manager of the soccer club, 

being not sure about the qualitative grades assigned to each of the 6 candidate players, he decided 

to proceed by replacing them by neutrosophic triplets, in the way that we have previously 

described. As a result, the tabular matrix of the DM process took the form of the following Table 4. 

Which is the best decision for the club in this case?  

 

Table4. Tabular representation of the SS of Example 5 

 e1 e2 e3 e4 

P1 (1, 0, 0) (0, 0, 1) (0, 0, 1) (0.6, 0.3, 0.1) 

P2 (1, 0, 0) (1, 0, 0) (0, 0, 1) (0.2, 0.2, 0.6) 

P3 (0.5, 0.4, 0.1) (1, 0, 0) (1, 0, 0) (0.6, 0.2, 0.2) 

P4 (0.5, 0.2, 0.3) (0, 0, 1) (0, 0, 1) (1, 0, 0) 

P5 (0.5, 0.1, 0.4) (1, 0, 0) (1, 0, 0) (0.6, 0.3, 0.1) 

P6 (1, 0, 0) (1, 0, 0) (0, 0, 1) (0.4, 0.4, 0.2) 

    Solution: The choice value of each player in this case is defined to be the mean value of the 

neutrosophic triplets of the line of Table 4 in which he belongs. Thus, by equation (4), the choice 

value of P1 is equal to 1

4
[(1, 0, 0)+2(0, 0, 1)+(0.6, 0.3, 0.1)] = 1

4
(1.6, 0.3, 2.1) = (0.4, 0.075, 0.525). In the 

same way one finds that the choice values of P2, P3, P4, P5 and P6 are (0.55, 0.005, 0.4), (0.775, 0.15, 

0.075), (0.375, 0.05, 0.575), (0.775, 0.1, 0.125) and (0.6, 0.1, 0.3) respectively. 

    In this case the club’s technical manager could use either an optimistic criterion by choosing 

the player with the greatest truth degree, or a conservative criterion by choosing the player with the 

lower falsity degree. Consequently, using the optimistic criterion he must choose one of the players 

P3 and P5, whereas using the conservative criterion he must choose the player P3. A combination of 

the two criteria leads to the final choice of player P3. Observe, however, that, since the 

indeterminacy degree of P3 is 0.15 and of P5 is 0.1, there is a slightly greater doubt about the 
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qualifications of P3 with respect to the qualifications of P5. In other words, the choice of P3 is 

connected with a slightly greater risk. In final analysis, therefore, all the neutrosophic components 

assigned to each player give useful information about his qualifications. 

 

4. Discussion and Conclusions 

 

     In this paper a parametric DM method of hybrid character was presented illustrated by 

suitable examples about the choice of a new player from a football club. The whole discussion 

performed leads to the following conclusions: 

 The parametric DM method is based on the introduction of a set E of parameters 

characterizing the elements of the set U of all possible solutions of the corresponding DM 

problem, the definition with respect to E of a suitable SS in U and the use of its tabular 

representation T as a tool for the DM process. 

 When all the parameters of E are of bivalent texture (yes or no), then T takes the form of a 

binary matrix, wherefrom the decision maker calculates the choice value of each element 

of U by adding the binary elements of the row of T in which this element appears. 

 When some or all of the parameters of E are of fuzzy texture and the decision maker has 

no doubts about the qualitative characterizations assigned to the elements of U with 

respect to these parameters, then the binary elements of T corresponding to the fuzzy 

parameters are replaced by suitable GNs and the choice value of each element of U is 

calculated by adding the remaining in the corresponding row of T binary elements and the 

representative real values of the GNs appearing in it.  

 When some or all of the parameters of E are of fuzzy texture and the decision maker do 

has doubts about the qualitative characterizations assigned to the elements of U with 

respect to these parameters, then each parameter of E is expressed in the form of a NS in U 

and the binary elements of T are replaced by the corresponding neutrosophic triplets. In 

this case, the choice value of each element of U is obtained by calculating the mean value 

of the neutrosophic triplets of the row of T in which this element appears.  

     As it has been already mentioned in section 2.1 of this paper, several theories extending / 

generalizing Zadeh’s FSs have been developed during the last years on the purpose of tackling 

more effectively the existing in real life uncertainty. None of these theories, however, can tackle 

efficiently alone all the forms of the existing uncertainty, but the combination of all of them 

provides an adequate framework towards this target.  

    The results obtained in this and earlier works of the present author give strong indications that 

hybrid methods applied to several situations in fuzzy environments could give better results, not 

only for DM, as it happened here, but also for assessment - e.g. see [9] (section 5.2) – and probably 

for many other topics. This is, therefore, a promising area for further research.     
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Abstract. In this paper, we introduce the concept of quasi-coincidences in MBJ-neutrosophic sets and obtain

some of its properties. Also by defining the pre-image and the image of an MBJ-neutrosophic set under a

mapping, we confirm that their properties are naturally extensions of the classical case. Next, we define two

types of MBJ-neutrosophic neighborhood system and discuss their various properties and introduce the notion

of ◦-[resp. ∗-]MBJ-neutrosophic bases and deal with some of their properties. Finally, we define ◦-CI , ∗-CI ,

◦-CII and ∗-CII corresponding to the first countability and the second countability in classical topological

spaces, and we obtain the relationships between them.

Keywords:MBJ-neutrosophic set; MBJ-neutrosophic topology; MBJ-neutrosophic neighborhood; MBJ-

neutrosophic base and subbase; MBJ-neutrosophic local base.

—————————————————————————————————————————-

1. Introduction

In the real world, we are faced with a complex system that includes various types of

uncertainty to solve epidemics such as covid, conflicts between countries, and international

energy and food problems. As a tool to solve such complex systems, Zadeh [1] first pro-

posed the concept of fuzzy sets which generalises crisp sets. Smarandache [2, 3] introduced

the notion of neutrosophic sets that is a triple ⟨T, I, F ⟩ of three fuzzy sets (T, I and F

are called the truth, the indeterminate and false membership functions) and can extend the
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concepts of classical sets, fuzzy sets, interval-valued fuzzy sets [4] and intuitionistic fuzzy

sets [5]. We can see that neutrosophic set is applied to a variety of fields (See the site

http://fs.gallup.unm.edu/neutrosophy.htm). Recently, Takallo et al. [6] defined an MBJ-

neutrosophic set that generalized the neutrosophic set by replacing the interval-valued fuzzy

set with the fuzzy set I of a neutrosophic set, and applied it to BCK/BCI-algebra. Af-

ter that time, it can be seen from the literature that several researchers [7–10] have applied

the MBJ-netrosophic set to BCK/BCI-algebras. In particular, Khalid et al. [11] studied

MBJ-neutrosophic T-ideals on B-algebras. Manivasan and Kalidass [12] discussed MBJ-

neutrosophic ideals on KU -algebras.

Topology has been intended in a natural way as background for geometry and modern anal-

ysis. It is not only a nice and powerful tool in many branches in Mathematics but also has

had a beauty of its own. However, topology studies based on MBJ-neutrosophic sets could not

be found in the literature. Then it is our aim to study basic properties for topology via MBJ-

neutrosophic sets. Thus, before conducting our study, we would like to review topology studies

based on fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets and neutrosophic sets re-

spectively. Chang [13] first applied fuzzy sets to topologies (See [14–20] for further researches).

Coker [21] introduced the concept of intuitionistic fuzzy topologies and studied its some prop-

erties. After then, El-Latif and Khalaf [22], Singh and Srivastava [23], and Saleh [24] discussed

connectedness and separation axioms in intuitionistic fuzzy topological spaces. Mondal and

Samanta [25] defined an interval-valued fuzzy topology and dealt with some of its properties.

After that time, Hongmei and Xuehai [26], and Kandil et al. [27] investigated separation ax-

ioms and in interval-valued fuzzy topological spaces. Smarandache [28], Lupia
′
nẽz [29, 30],

and Salama and Alblowi [31] studied basic properties of neutrosophic topologies respectively.

Kim et al. [32] defined an ordinary single valued topology by considering the single valued

neutrosophic degree of openness for ordinary subsets and dealt with some of its properties.

Recently, Lee et al. [33] studied topological structures based on cubic sets introduced by Jun

et al. [34].

So to do this, we proceed with our research in the following order. First, we recall the

concepts of fuzzy sets, interval-valued fuzzy sets and neutrosophic sets needed in the next

sections. Second, we defined the inclusion, the union, the intersection and the compliment

for MBJ-neutrosophic sets and obtain some of their properties. Moreover, we introduce the

notion of MBJ-neutrosophic quasi-coincidences and discuss some of its properties. Third, We

define two types of topologies and neighborhoods based on MBJ-neutrosophic sets and study

their respective properties. Finally, by MBJ-neutrosophic set, the concepts of two types of

base, subbase and local base are introduced and their respective properties are studied. Also

we extend the concepts of first coutabilities and second countabilities in classical topology to
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the MBJ-neutrosophic sets and find the relationships between them. Furthermore, we present

an example which the converse of a proposition does not hold.

Throughout this paper, let I = [0, 1] and let J denote a index set.

2. Preliminaries

We list the notions of fuzzy sets, interval-valued fuzzy sets and neutrosophic sets needed in

the next sections.

For a nonempty set X, a mapping A : X → I is called a fuzzy set in X. The special fuzzy

set 0 [resp. 1] defined by:

0(x) = 0 [resp. 1(x) = 1]

is called the fuzzy empty set [resp. the fuzzy whole set] in X (See [1]). We denote the collection

of all fuzzy sets in X by IX .

For a nonempty set X, a mapping Ā = (A∈, A̸∈) : X → I × I satisfying the following

condition: for each x ∈ X,

0 ≤ A∈(x) +A ̸∈(x) ≤ 1

is called an intuitionistic fuzzy set in X (See [5]). The intuitionistic fuzzy sets 0̄ and 1̄ defined

as follows: for each x ∈ X,

0̄(x) = (0, 1) and 1̄(x) = (1, 0)

are called the intuitionistic fuzzy empty set and the intuitionistic fuzzy whole set inX. IFS(X)

denotes the set of all intuitionistic fuzzy sets.

Let [I] be the set of all closed subintervals of I and members of [I] are called interval numbers

and are denoted by ã, b̃, c̃, etc., where ã = [a−, a+] and 0 ≤ a− ≤ a+ ≤ 1 (See [34] for the

definitions of the order between two interval-valued numbers, the infimum and the supremum

of an arbitrary interval-valued numbers).

For a nonempty set X, a mapping Ã = [A−, A+] : X → [I] is called an interval-valued fuzzy

set (briefly, IVFS) in X. The special interval-valued fuzzy set 0̃ [resp. 1̃] defined by: for each

x ∈ X,

0̃(x) = [0, 0] [resp. 1̃(x) = [1, 1]]

is called the interval-valued fuzzy empty set [resp. the interval-valued fuzzy whole set in X

(See [4]). IV FS(X) denotes the set of all IVFSs in X.

For a nonempty set X, the form A =
〈
AT , AI , AF

〉
is called a neutrosophic set in X, where

AT : X → I represents a truth membership function, AI : X → I represents an indeterminate

membership and AF : X → I represents a false membership function (See [2]). We will denote

the set of all neutrosophic sets in X as NS(X).
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3. Basic properties of MBJ-neutrosophic sets

By modifying some concepts related to fuzzy sets, interval-valued fuzzy sets, intuitionis-

tic fuzzy sets and neutrosophic fuzzy sets, we give some basic definitions based on MBJ-

neutrosophic sets.

Definition 3.1 ( [6]). Let X be a nonempty set. Then the form

A =
〈
MA, B̃A, JA

〉
is called an MBJ-neutrosophic set in X, where MA, JA ∈ IX which are called a truth mem-

bership function and a false membership function respectively, and B̃A ∈ IV FS(X) which is

called an indeterminate interval-valued membership function.

It is clear that for any subset A of a nonempty set X, ⟨χA , [χA , χA ], χAc ⟩ ∈ MBJN(X),

where χA denotes the characteristic function of A. Then we can consider an MBJ-neutrosophic

set as a generalization of classical sets.

We can consider special MBJ-neutrosophic sets:

∅̈ =
〈
0, 0̃,1

〉
, ∅̇ =

〈
0, 1̃,1

〉
, ∅̆ =

〈
0, 1̃,0

〉
, ∅̂ =

〈
0, 0̃,0

〉
,

Ẍ =
〈
1, 1̃,0

〉
, Ẋ =

〈
1, 0̃,0

〉
, X̆ =

〈
1, 0̃,1

〉
, X̂ =

〈
1, 1̃,1

〉
.

We will denote the set of all MBJ-neutrosophic sets in X as MBJNS(X).

Definition 3.2. Let X be a nonempty set and let A ∈ MBJNS(X). Then the complement

of A, denoted by Ac,1 resp. Ac,2 and Ac,3], is an MBJ-neutrosophic set in X defined as follows:

Ac,1 =
〈
M c

A, B̃
c
A, J

c
A

〉
[resp. Ac,2 =

〈
JA, B̃A,MA

〉
and Ac,3 =

〈
JA, B̃

c
A,MA

〉
].

Definition 3.3. Let X be a nonempty set and let A, B ∈ MBJNS(X). Then two type’s

inclusion relations between A and B, denoted by A ⊏ B (called the ◦-inclusion) and A ⋐ B
(∗-inclusion), are defined as follows: for each x ∈ X,

(i) A ⊏ B if and only if MA(x) ≤ MA(x), B̃A(x) ≤ B̃B(x), JA(x) ≥ JA(x),

(ii) A ⋐ B if and only if MA(x) ≤ MA(x), B̃A(x) ≥ B̃B(x), JA(x) ≥ JA(x).

The following is an immediate consequence of Definitions 3.1 and 3.3.

Proposition 3.4. Let X be a nonempty set and let A ∈ MBJNS(X). Then the followings

are hold:

(1) ∅̈ ⊏ A ⊏ Ẍ, ∅̈ ⊏ ∅̇ ⊏ ∅̆ ⊏ Ẍ, X̆ ⊏ Ẋ ⊏ Ẍ, X̂ ⊏ Ẍ,

(2) ∅̇ ⋐ A ⋐ Ẋ, ∅̇ ⋐ X̂ ⋐ Ẍ ⋐ Ẋ, ∅̇ ⋐ ∅̈ ⋐ ∅̂, ∅̇ ⋐ ∅̆ ⋐ ∅̂.
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Definition 3.5. Let X be a nonempty set and let A, B ∈ MBJNS(X).

(i) The intersection of A and B, denoted by A ⊓ B (called the ◦-intersection) and A ⋒ B
(called the ∗-intersection), is a MBJ-neutrosophic set in X defined as follows: for each x ∈ X,

(A ⊓ B)(x) =
〈
MA(x) ∧MB(x), B̃A(x) ∧ B̃B(x), JA(x) ∨ JB(x)

〉
,

(A ⋒ B)(x) =
〈
MA(x) ∧MB(x), B̃A(x) ∨ B̃B(x), JA(x) ∨ JB(x)

〉
.

(ii) The union of A and B, denoted by A ⊔ B (called the ◦-union) and A ⋓ B (called the

∗-union), is an MBJ-neutrosophic set in X defined as follows: for each x ∈ X,

(A ⊔ B)(x) =
〈
MA(x) ∨MB(x), B̃A(x) ∨ B̃B(x), JA(x) ∧ JB(x)

〉
,

(A ⋓ B)(x) =
〈
MA(x) ∨MB(x), B̃A(x) ∧ B̃B(x), JA(x) ∧ JB(x)

〉
.

Definition 3.6. Let X be a nonempty set and let (Aj)j∈J ⊂ MBJNS(X).

(i) The intersection of (Aj)j∈J , denoted by ⊓j∈JAj and ⋒j∈JAj , is a MBJ-neutrosophic set

in X defined as follows: for each x ∈ X,

(⊓j ∈ JAj)(x) =

〈∧
j∈J

MAj (x),
∧
j∈J

B̃Aj (x),
∨
j∈J

JAj (x)

〉
,

(⋒j∈JAj)(x) =

〈∧
j∈J

MAj (x),
∨
j∈J

B̃Aj (x),
∨
j∈J

JAj (x)

〉
.

(ii) The union of (Aj)j∈J , denoted by ⊔j∈JAj and ⋓j∈JAj , is a MBJ-neutrosophic set in X

defined as follows: for each x ∈ X,

(⊔j ∈ JAj)(x) =

〈∨
j∈J

MAj (x),
∨
j∈J

B̃Aj (x),
∧
j∈J

JAj (x)

〉
,

(⋓j∈JAj)(x) =

〈∨
j∈J

MAj (x),
∧
j∈J

B̃Aj (x),
∧
j∈J

JAj (x)

〉
.

From Definitions 3.1, 3.2, 3.3, 3.5 and 3.6, we obtain a similar consequence of (Theorem

1, [25]), (Corollary 2.8, [21]) and (Theorem 1.2, [35]).

Proposition 3.7. Let X be a nonempty set, let A, B, C ∈ MBJNS(X) and let (Aj)j∈J ⊂
MBJNS(X).

(1) A ⊏ A ⊓ B, B ⊏ A ⊓ B, A ⋐ A ⋒ B, B ⋐ A ⋒ B.
(2) A ⊔ B ⊏ A, A ⊔ B ⊏ B, A ⋓ B ⋐ A, A ⋓ B ⋐ B.
(3) If A ⊏ B, then A ⊓ C ⊏ B ⊓ C, A ⊔ C ⊏ B ⊔ C.
(4) If A ⋐ B, then A ⋒ C ⋐ B ⋒ C, A ⋓ C ⋐ B ⋓ C.
(5) If A ⊏ B and B ⊏ C, then A ⊏ C.
(6) If A ⋐ B and B ⋐ C, then A ⋐ C.
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(7) A ⊔A = A, A ⊓A = A, A ⋓A = A, A ⋒A = A.

(8) A ⊔ B = B ⊔ A, A ⊓ B = B ⊓ A, A ⋓ B = B ⋓A, A ⋒ B = B ⋒A.

(9) A ⊔ (B ⊔ C) = (A ⊔ B) ⊔ C, A ⊓ (B ⊓ C) = (A ⊓ B) ⊓ C,
A ⋓ (B ⋓ C) = (A ⋓ B) ⋓ C, A ⋒ (B ⋒ C) = (A ⋒ B) ⋒ C.
(10) A ⊔ (B ⊓ C) = (A ⊔ B) ⊓ (A ⊔ C), A ⊓ (B ⊔ C) = (A ⊓ B) ⊔ (A ⊓ C),
A ⋓ (B ⋒ C) = (A ⋓ B) ⋒ (A ⋓ C), A ⋒ (B ⋓ C) = (A ⋒ B) ⋓ (A ⋒ C).
(10)

′ A ⊔ (⊓j∈JAj) = ⊓j∈J(A ⊔Aj), A ⊓ (⊔j∈JAj) = ⊔j∈J(A ⊓Aj),

A ⋓ (⋒j∈JAj) = ⋒j∈J(A ⋓Aj), A ⋒ (⋓j∈JAj) = ⋓j∈J(A ⋒Aj).

(11) (A ⊔ B)c,2 = Ac,2 ⋒ Bc,2, (A ⊔ B)c,i = Ac,i ⊓ Bc,i,

(A ⊓ B)c,2 = Ac,2 ⋓ Bc,2, (A ⊓ B)c,i = Ac,i ⊔ Bc,i,

(A ⋓ B)c,2 = Ac,2 ⊓ Bc,2, (A ⋓ B)c,i = Ac,i ⋒ Bc,i,

(A ⋒ B)c,2 = Ac,2 ⊔ Bc,2, (A ⋒ B)c,i = Ac,i ⋓ Bc,i for i = 1, 3.

(12) ∅̈c,2 = Ẋ, Ẍc,2 = ∅̇, ∅̈c,i = Ẍ, Ẍc,i = ∅̈,
∅̇c,2 = Ẍ, Ẍc,2 = ∅̇, ∅̇c,i = Ẋ, Ẋc,i = ∅̇ for i = 1, 3,

∅̆c,1 = X̆, X̆c,1 = ∅̆, ∅̆c,2 = ∅̆, X̆c,2 = X̆, ∅̆c,3 = ∅̂, X̆c,3 = X̂,

∅̂c,1 = X̂, X̂c,1 = ∅̂, ∅̂c,2 = ∅̂, X̂c,2 = X̂, ∅̂c,3 = ∅̆, X̂c,3 = X̆.

(13) A ⊓ Ac,i ̸= ∅̈, A ⊔ Ac,i ̸= Ẍ and A ⋒ Ac,i ̸= ∅̇, A ⋓ Ac,i ̸= Ẋ in general for i = 1, 3

(See Example 3.8).

Example 3.8. Let X = {a, b, c} and let A be the MBJ-neutrosophic set in X given by: for

each x ∈ X,

A = ⟨0.5, [0.5, 0.5], 0, 5⟩ .

Then we can easily check that A ⊓Ac,i ̸= ∅̈, A ⊔Ac,i ̸= Ẍ and A ⋒Ac,i ̸= ∅̇, A ⋓Ac,i ̸= Ẋ.

Remark 3.9. From Propositions 3.4 and 3.7, we can see that

(MBJNS(X),⊔,⊓,c,i , ∅̈, Ẍ) and (MBJNS(X),⋓,⋒,c,i , ∅̇, Ẋ)

form Boolean algebras except the condition (13) of Proposition 3.7.

Let Ma, Ja ∈ I and let B̃a ∈ [I]. Then the form

ã =
〈
Ma, B̃a, Ja

〉
= ⟨a, ã, a⟩

is called an MBJ-neutrosophic number (briefly, MBJNN). We can consider the following special

MBJNNs:

0̈ =
〈
0, 0̃, 1

〉
, 0̇ =

〈
0, 1̃, 1

〉
, 0̆ =

〈
0, 1̃, 0

〉
, 0̂ =

〈
0, 0̃, 0

〉
,

1̈ =
〈
1, 1̃, 0

〉
, 1̇ =

〈
1, 0̃, 0

〉
, 1̆ =

〈
1, 0̃, 1

〉
, 1̂ =

〈
1, 1̃, 1

〉
.

We will denote the set of all MBJNNs as I × [I]× I.
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Definition 3.10. Let ã, b̃ be two MBJNNs and let (ãj)j∈J be a family of MBJNNs.

(i) The order between ã and b̃, denoted by ã ≤◦ b̃ [resp. ã ≤∗ b̃], is defined as follows:

ã ≤◦ b̃ ⇐⇒ a ≤ b, ã ≤ ã, a ≥ b [resp. ã ≤∗ b̃ ⇐⇒ a ≤ b, ã ≥ ã, a ≥ b].

(ii) The equality of ã and b̃, denoted by ã = b̃, is defined as follows:

ã = b̃ ⇐⇒ ã ≤◦ b̃, b̃ ≤◦ ã or ã ≤∗ b̃, b̃ ≤∗ ã.

(iii) The infimum of (ãj)j∈J , denoted by
∧◦

j∈J ãj [resp.
∧∗

j∈J ãj ], is an MBJ-neutrosophic

number defined as follows:

◦∧
j∈J

ãj =

〈∧
j∈J

aj ,
∧
j∈J

ãj ,
∨
j∈J

aj

〉
[resp.

∗∧
j∈J

ãj =

〈∧
j∈J

aj ,
∨
j∈J

ãj ,
∨
j∈J

aj

〉
].

and

(iv) The supremum of (ãj)j∈J , denoted by
∨◦

j∈J ãj [resp.
∨∗

j∈J ãj ], is an MBJ-neutrosophic

number defined as follows:

◦∨
j∈J

ãj =

〈∨
j∈J

aj ,
∨
j∈J

ãj ,
∧
j∈J

aj

〉
[resp.

∗∨
j∈J

ãj =

〈∨
j∈J

aj ,
∧
j∈J

ãj ,
∧
j∈J

aj

〉
].

(v) The complement of ã, denoted by ã
c,1

[resp. ã
c,2

and ã
c,3
], is an MBJ-neutrosophic

number defined as follows:

ã
c,1

= ⟨1− a, ãc, 1− a⟩ [resp. ã
c,2

= ⟨a, ã, a⟩ and ã
c,2

= ⟨a, ãc, a⟩].

Remark 3.11. (1) Definitions 3.3, 3.5 and 3.6 are redefined by Definition 3.10 as follows. Let

X be a nonempty set, A, B ∈ MBJNS(X) and let (Aj) ⊂ MBJN(X). Then

• A ⊏ B if and only if A(x) ≤◦ B(x) for each x ∈ X,

• A ⋐ B if and only if A(x) ≤∗ B(x) for each x ∈ X,

• (A ⊓ B)(x) = A(x) ∧◦ B(x), (A ⊔ B)(x) = A(x) ∨◦ B(x) for each x ∈ X,

• (A ⋒ B)(x) = A(x) ∧∗ B(x), (A ⋓ B)(x) = A(x) ∨∗ B(x) for each x ∈ X,

• (⊓j∈JAj)(x) =
∧◦Aj(x), (⊔j∈JAj)(x) =

∨◦Aj(x) for each x ∈ X,

• (⋒j∈JAj)(x) =
∧∗Aj(x), (⋓j∈JAj)(x) =

∨∗Aj(x) for each x ∈ X.

(2) We can easily see that MBJNNs have similar properties to Proposition 3.7, and then

(I × [I]× I,∧◦,∨◦,c,i , 0̈, 1̈) and (I × [I]× I,∧∗,∨∗,c,i , 0̇, 1̇)

form Boolean algebras except the property corresponding the condition (13) of Proposition

3.7.

Definition 3.12. Let X be a nonempty set, let ã ∈ I × [I] × I and let A ∈ MBJNS(X).

Then we define two type’s MBJ-neutrosophic points as followings”
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(i) A is called a ◦-MBJ-neutrosophic point (briefly, ◦-MBJNP) with the support x ∈ X and

the value ã with a > 0, a− > 0, a < 1, denoted by A = x◦
ã
, if for each y ∈ X,

x◦
ã
=

{
ã if y = x

0̈ otherwise,

(ii) A is called a ∗- MBJ-neutrosophic point (briefly, ∗-MBJNP) with the support x ∈ X

and the value ã with a > 0, a+ < 1, a < 1, denoted by A = x◦
ã
, if for each y ∈ X,

x∗
ã
=

{
ã if y = x

0̇ otherwise.

We denote the set of all fuzzy points in X by MBJNP (X).

For a nonempty set X, let xa [resp. x
ã
] denotes the fuzzy point [resp. interval-valued fuzzy

point] in X with the support x ∈ X and the value a ∈ I [resp. ã ∈ [I]] (See [16] [resp. [25]]).

We denote the set of all fuzzy points [resp. interval-valued fuzzy points] in X as FP (X) [resp.

IV FP (X)]. It is well-known that A =
⋃

xa∈A xa for each A ∈ IX (See [18]) and Ã =
⋃

x
ã
∈Ã x

ã

for each Ã ∈ IV FS(X) (See [25]).

Definition 3.13. Let X be a nonempty set, let x◦
ã
, x∗

ã
∈ MBJNP (X) and let A ∈

MBJNS(X). Then

(i) x◦
ã
is said to belong to A, denoted by x◦

ã
∈ A, if ã ≤◦ A(x),

(ii) x∗
ã
is said to belong to A, denoted by x∗

ã
∈ A, if ã ≤∗ A(x),

(iii) x◦
ã
is said to ◦-quasi-coincident withA, denoted by x◦

ã
qiA, ifA(x) >◦ Ai(x) (i = 1, 2, 3),

(iv) x∗
ã
is said to ∗-quasi-coincident with A, denoted by x∗

ã
qiA, if A(x) >∗ Ac,i(x) (i =

1, 2, 3),

(v) A is said to be ◦-quasi-coincident with B, denoted by Aq◦,iB, if there is x ∈ X such that

A(x) >◦ Bi(x) (i = 1, 2, 3),

(vi) A is said to be ∗-quasi-coincident with B, denoted by Aq∗.iB, if there is x ∈ X such

that A(x) >∗ Bi(x) (i = 1, 2, 3).

It is obvious that A = ⊔x◦
ã
∈Ax

◦
ã
and A = ⋓x∗

ã
∈Ax

∗
ã
for each A ∈ MBJN(X).

For a fuzzy point xa and two fuzzy sets A, B, xaqA [resp. AqB] means that xa is quasi-

coincident with A [resp. A is quasi-coincident with B] (See [16]). Also, an interval-valued

fuzzy point x
ã
and two interval-valued fuzzy sets Ã, B̃, x

ã
qÃ [resp. ÃqB̃] means that x

ã
is

quasi-coincident with Ã [resp. Ã is quasi-coincident with B̃] (See [33]).

Throughout this paper, for any fuzzy set A [resp. interval-valued fuzzy set Ã] in X, if

a ≥ A(x) [resp. ã ≥ Ã(x)], then we say that xa ◦-belongs to A [resp. x
ã
∗-belongs to Ã] and

denoted by x◦
a
∈ A [resp. x∗

ã
∈ Ã]. Moreover, if a < Ac(x) [resp. ã < Ãc(x)], then we say that
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xa is ◦-quasi-coincident with A [resp. x
ã
is ∗-quasi-coincident with Ã] and denoted by xaq

◦A

[resp. x
ã
q∗Ã].

Remark 3.14. From Definition 3.13, we can easily see that the followings hold.

(1) x◦
ã
∈ A if and only if xa ∈ MA, xã

∈ B̃A, x
◦
a
∈ JA.

(2) x∗
ã
∈ A if and only if xa ∈ MA, x

∗
ã
∈ B̃A, x

◦
a
∈ JA.

(3) x◦
ã
q1A if and only if xaqMA, xã

qB̃A, xaq
◦JA,

x◦
ã
q2A if and only if a > JA(x), ã > B̃A(x), a < MA(x),

x◦
ã
q3A if and only if a > JA(x), xã

qB̃A, a < MA(x).

(4) x∗
ã
q1A if and only if xaqMA, xã

q∗B̃A, xaq
◦JA,

x∗
ã
q2A if and only if a > JA(x), ã < B̃A(x), a < MA(x),

x∗
ã
q3A if and only if a > JA(x), ã < B̃c

A(x), a < MA(x).

From now on, we will use only Ac,1 as the complement of an MBJNS A in X and write

Ac,1 = Ac. Also, we use x◦
ã
qA, x∗

ã
qA, Aq◦B and Aq∗B instead of x◦

ã
q1A, x∗

ã
q1A, Aq◦,1B and

Aq∗,1B respectively.

If there is x ∈ X such that A(x) >◦ Bc(x) [resp. A(x) >∗ Bc(x)], then we say that A
and B are ◦- [resp. ∗-]quasi-coincident (with each other) at x. We say that A is not ◦-[resp.
∗-]quasi-coincident with B, denoted by A¬q◦B [resp. A¬q∗B], if the following conditions hold:

MA¬qMB, B̃A¬qB̃B, JA¬q◦JB [resp. MA¬qMB, B̃A¬q∗B̃B, JA¬q◦JB], i.e.,

MA(x) ≤ M c
B(x), B̃A(x) ≤ B̃c

B(x), JA(x) ≥ Jc
B(x),

MA(x) ≤ M c
B(x), B̃A(x) ≥ B̃c

B(x), JA(x) ≥ Jc
B(x)

for each x ∈ X.

Definition 3.15. Let A, B ∈ MBJNS(X). Then

(i) A and B are said to be ◦-intersecting, if there is x ∈ X such that

(MA ∩MB)(x) ̸= 0, (B̃A ∩ B̃B)(x) ̸= [0, 0], (JA ∪ JB)(x) ̸= 1,

(ii) A and B are said to be ∗-intersecting, if there is x ∈ X such that

(MA ∩MB)(x) ̸= 0, (B̃A ∪ B̃B)(x) ̸= [1, 1], (JA ∪ JB)(x) ̸= 1.

In either case, we say that A and B ◦-intersect at x [resp. ∗-intersect at x].

It is obvious that if A and B are ◦- [resp. ∗-]quasi-coincident at x, then they are ◦- [resp.
∗-]intersect at x.

The following is an immediate consequence of Definition 3.13 and Remark 3.14.
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Lemma 3.16. Let x◦
ã
, x∗

ã
∈ MBJNP (X) and let A ∈ MBJNS(X). Then

(1) x◦
ã
∈ A if and only if x◦

ã
¬qAc,

(2) x∗
ã
∈ A if and only if x∗

ã
¬qAc.

The following is an immediate consequence of Definitions 3.3 and 3.13, and Lemma 3.5 (1).

Lemma 3.17. Let A, B ∈ MBJNS(X). Then the followings are equivalent:

(1) A ⊏ B,
(2) x◦

ã
∈ B for each x◦

ã
∈ A,

(3) A¬qBc.

Also, the following is an immediate consequence of Definitions 3.3 and 3.13, and Lemma 3.5

(2).

Lemma 3.18. Let A, B ∈ MBJNS(X). Then the followings are equivalent:

(1) A ⋐ B,
(2) x∗

ã
∈ B for each x∗

ã
∈ A,

(3) A¬qBc.

Lemma 3.19. Let A, B ∈ MBJNS(X), let (A)j∈J ⊂ MBJNS(X) and let x◦
ã

∈
MBJNP (X).

(1) x◦
ã
q(⊔j∈JAj) if and only if there is j0 ∈ J such that x◦

ã
qAj0.

(2) x◦
ã
q(A ⊓ B) if and only if x◦

ã
qA and x◦

ã
qB.

Proof. The proof is easy.

Lemma 3.20. Let A, B ∈ MBJNS(X), let (A)j∈J ⊂ MBJNS(X) and let x∗
ã

∈
MBJNP (X).

(1) x∗
ã
q(⋓j∈JAj) if and only if there is j0 ∈ J such that x∗

ã
qAj0.

(2) x
∗

ã
q(A ⋒ B) if and only if x∗

ã
qA and x∗

ã
qB.

Proof. The proof is similar to Proposition 3.19.

Lemma 3.21. Let X be a nonempty set and let A ∈ IX such that A(x) ̸= 1 for each x ∈ X.

Then x
ac
q◦A for each a ∈ I such that A(x) < a < 1.

Proof. The proof is straightforward.

Lemma 3.22. Let X be a nonempty set and let Ã ∈ IV FS(X) such that Ã(x) ̸= [1, 1] for

each x ∈ X. Then x
ãc
q∗Ã for each ã ∈ [I] such that Ã(x) < ã < [1, 1].
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Proof. The proof is straightforward.

Definition 3.23. Let X, Y be nonempty sets and let f : X → Y and let A ∈
MBJNS(X), B ∈ MBJNS(Y ).

(i) The pre-image of B under f , denoted by denoted by

f−1(B) =
〈
f−1(MB), f

−1(B̃B), f
−1(JB)

〉
,

is an MBJ-neutrosophic set in X defined as follows: for each x ∈ X,

f−1(MB)(x) = MB(f(x)), f−1(B̃B)(x) = B̃B(f(x)), f−1(JB)(x) = JB(f(x)).

(ii) The ◦-image and the ∗-image of A under f , denoted by f◦(A) and f∗(A), are cubic sets

in Y respectively defined as follows: for each y ∈ Y ,

f◦(A)(y) =


〈∨

x∈f−1(y)MA(x),
∨

x∈f−1(y) B̃A(x),
∧

x∈f−1(y) JA(x)
〉

if f−1(y) ̸= ∅

0̈ otherwise,

f∗(A)(y) =


〈∨

x∈f−1(y)MA(x),
∧

x∈f−1(y) B̃A(x),
∧

x∈f−1(y) JA(x)
〉

if f−1(y) ̸= ∅

0̇ otherwise.

Remark 3.24. Let us denote
∧

x∈f−1(y) JA(x) and
∧

x∈f−1(y) B̃A(x) as f◦(JA) and f∗(B̃A)

respectively. Then we can see that

f◦(A) =
〈
f(MA, f(B̃A), f

◦(JA)
〉
, f∗(A) =

〈
f(MA, f

∗(B̃A), f
◦(JA)

〉
.

We have a similar consequence of (Lemma 1.1, [17]), (Theorem 2, [25]), (Corollary 2.10, [21])

and (Theorem 1.10, [35]).

Proposition 3.25. Let X, Y be nonempty sets, let f : X → Y be a mapping, let

A, A1,A2 ∈ MBJNS(X), B, B1,B2 ∈ MBJNS(Y ), let (Aj)j∈J ⊂ MBJNS(X) and let

(Bj)j∈J ⊂ MBJNS(Y ).

(1) f−1(Bc) = [f−1(B)]c.
(2) f−1(∅̈) = ∅̈, f−1(Ÿ ) = Ÿ , f−1(∅̇) = ∅̇, f−1(Ẏ ) = Ẏ .

(3) f◦(Ac) ⊐ [f◦(A)]c and f∗(Ac) ⋑ [f∗(A)]c, if f is injective, then f◦(Ac) = [f◦(A)]c and

f∗(Ac) = [f∗(A)]c.

(4) If B1 ⊏ B2, then f−1(B1) ⊏ f−1(B2).

(5) If B1 ⋐ B2, then f−1(B1) ⋐ f−1(B2).

(6) If A1 ⊏ A2, then f◦(A1) ⊏ f◦(A2).

(7) If A1 ⋐ A2, then f∗(A1) ⋐ f∗(A2).

(8) f◦(f−1(B)) ⊏ B. In particular, if f is surjective, then f◦(f−1(B)) = B.
(9) A ⊏ f−1(f◦(A)). In particular, if f is injective, then A = f−1(f◦(A)).
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(10) f∗(f−1(B)) ⋐ B. In particular, if f is surjective, then f∗(f−1(B)) = B.
(11) A ⋐ f−1(f∗(A)). In particular, if f is injective, then A = f−1(f∗(A)).

(12) If f◦(A) ⊏ B, then A ⊏ f−1(B).
(13) If f∗(A) ⋐ B, then A ⋐ f−1(B).
(14) For each x◦

ã
∈ MBJNP (X), f◦(x◦

ã
) ∈ MBJNP (Y ) and f◦(x◦

ã
) = [f(x)]◦

ã
.

(15) For each x◦
ã
∈ MBJNP (X), if x◦

ã
qA, then f◦(x◦

ã
)qf◦(A).

(16) For each x∗
ã
∈ MBJNP (X), f∗(x∗

ã
) ∈ MBJNP (Y ) and f∗(x∗

ã
) = [f(x)]∗

ã
.

(17) For each x∗
ã
∈ MBJNP (X), if x∗

ã
qA, then f∗(x∗

ã
)qf∗(A).

(18) f◦(⊔j∈JAj) = ⊔j∈Jf
◦(Aj).

(19) f∗(⋓j∈JAj) = ⋓j∈Jf
∗(Aj).

(20) f−1(⊔j∈JBj) = ⊔j∈Jf
−1(Bj) and f−1(⋓j∈JBj) = ⋓j∈Jf

−1(Bj).

(21) f−1(⊓j∈JBj) = ⊓j∈Jf
−1(Bj) and f−1(⋒j∈JBj) = ⋒j∈Jf

−1(Bj).

(22) If g : Y → Z is a mapping, then (g ◦f)−1(C) = f−1(g−1(C)) for each C ∈ MBJNS(Z),

where g ◦ f denotes the composition of f and g.

Definition 3.26. Let X be a nonempty set and let A ∈ MBJNS(X). Then

(i) the ◦-[resp. ∗-]support of A, denoted by supp◦(A) [resp. supp∗(A)], is a subset of X

defined as follows:

supp◦(A) = {x ∈ X : A(x) >◦ 0̈} [resp. supp∗(A) = {x ∈ X : A(x) >∗ 0̇}].

(ii) A is said to be ◦-[resp. ∗-] finite, if supp◦(A) [resp. supp∗(A)] is finite.

Proposition 3.27. Let X be a nonempty set and let A, B ∈ MBJNS(X). Then

(1) the supp◦((A ⊔ B)c) = supp◦(Ac) ⊓ supp∗(Bc),

(2) the supp∗((A ⊔ B)c) = supp∗(Ac) ⊓ supp∗(Bc).

Proof. The proof is straightforward.

4. MBJ-neutrosophic neighborhoods

We define a ◦-[resp. ∗]-MBJ-neutrosophic neighborhood of a ◦-[resp. a ∗]-MBJ-neutrosophic

point with respect to a ◦-[resp. ∗]-MBJ-neutrosophic topology and obtain its various proper-

ties.

Definition 4.1. Let X be a nonempty set and let A ∈ MBJNS(X). Then A is called a

constant MBJ-neutrosophic set in X, denoted by A = Cã, if there is ã ∈ I × [I]× I such that

A(x) = ã for each x ∈ X.
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Definition 4.2. Let τ be a family of cubic sets in a nonempt set X. Consider the following

conditions:

(MBJNO0) Cã ∈ τ for each ã ∈ I × [I]× I,

(◦-MBJNO1) ∅̈, Ẍ ∈ τ ,

(◦-MBJNO2) A ⊓ B ∈ τ for any A, B ∈ τ ,

(◦-MBJNO3) ⊔j∈JAj ∈ τ for each (Aj)j∈J ⊂ τ ,

(∗-MBJNO1) ∅̇, Ẋ ∈ τ ,

(∗-MBJNO2) A ⋒ B ∈ τ for any A, B ∈ τ ,

(∗-MBJNO3) ⋓j∈JAj ∈ τ for each (Aj)j∈J ⊂ τ .

(i) τ is called a ◦-MBJ-neutrosophic topology (briefly, ◦-MBJNT) on X in Chang’s sense, if

it satisfies the conditions (◦-MBJNO1), (◦-MBJNO2) and (◦-MBJNO3).

(ii) τ is called a ∗-MBJ-neutrosophic topology (briefly, ∗-MBJNT) on X in Chang’s sense,

if it satisfies the conditions (∗-MBJNO1), (∗-MBJNO2) and (∗-MBJNO3).

(iii) τ is called a ◦-MBJ-neutrosophic topology (briefly, ∗-MBJNT) on X in Lowen’s sense,

if it satisfies the conditions (MBJNO0), (◦-MBJNO2) and (◦-MBJNO3).

(iv) τ is called a ∗-cubic topology on X in Lowen’s sense, if it satisfies the conditions

(MBJNO0), (∗-MBJNO2) and (∗-MBJNO3).

In either case, the pair (X, τ) is called a ◦-MBJ-neutrosophic topological space [resp. ∗-MBJ-

neutrosophic topological space] and each member of τ is called a ◦-MBJ-neutrosophic open

set (briefly, ◦-MBJNOS) [resp. ∗-MBJ-neutrosophic open set (briefly, ∗-MBJNOS)]. We will

denote the set of all ◦-MBJNTs in Chang’s sense [resp. Lowen’s sense] on X as MBJNT ◦(X)

[resp. MBJNT ◦
L(X)]. Also, we will denote the set of all ∗-MBJNTs in Chang’s sense [resp.

Lowen’s sense] on X as MBJNT ∗(X) [resp. MBJNT ∗
L(X)]. An MBJ-neutrosophic set A

is called a ◦-MBJ-neutrosophic closed set (briefly, ◦-MBJNCS) [resp. ∗-MBJ-neutrosophic

closed set (briefly, ∗-MBJNCS)] in X, if Ac ∈ τ . For a ◦-MBJ-neutrosophic topological space

X, we denote the set of all ◦-MBJNOs [resp. ◦-MBJNCSs] in X as MBJNO◦(X) [resp.

MBJNC◦(X)]. Also, for a ∗-MBJ-neutrosophic topological space X, we denote the set of all

∗-MBJNOSs [resp. ∗-M BJNCSs] in X as MBJNO∗(X) [resp. MBJNC∗(X)].

Example 4.3. (1) Let X = {x, y} and let Aj ∈ MBJNS(X) (j = 1, 2, 3, 4, 5, 6) defined

as follows:

A1(x) = ⟨0.4, [0.6, 0.8], 0.8⟩ , A1(y) = ⟨0.6, [0.5, 0.9], 0.7⟩ ,

A2(x) = ⟨0.5, [0.4, 0.7], 0.4⟩ , A2(y) = ⟨0.3, [0.7, 0.8], 0.9⟩ ,

A3(x) = ⟨0.5, [0.6, 0.8], 0.4⟩ , A3(y) = ⟨0.6, [0.7, 0.9], 0.7⟩ ,

A4(x) = ⟨0.4, [0.4, 0.7], 0.8⟩ , A4(y) = ⟨0.3, [0.5, 0.8], 0.9⟩ ,

A5(x) = ⟨0.5, [0.4, 0.7], 0.4⟩ , A5(y) = ⟨0.6, [0.5, 0.8], 0.7⟩ ,
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A6(x) = ⟨0.4, [0.6, 0.8], 0.8⟩ , A6(y) = ⟨0.3, [0.7, 0.9], 0.9⟩ .

Let us consider the following two families:

τ = {∅̈, Ẍ,A1,A2,A3,A4}, η = {∅̇, Ẋ,A1,A2,A5,A6}.

Then we can easily check that τ ∈ MBJNT ◦(X) and η ∈ MBJNT ∗(X). Furthermore, we

can easily see that

{A1,A2,A3,A4}
⋃

{Cã : ã ∈ I × [I]× I} ∈ MBJNT ◦
L(X)

and

{A1,A2,A5,A6}
⋃

{Cã : ã ∈ I × [I]× I} ∈ MBJNT ∗
L(X).

(2) Let X be a nonempty set and let τ be the family of MBJ-neutrosophic sets in X defined

as follows:

τ = {A ∈ MBJNS(X) : A = Ẍ or supp◦(Ac) is ◦-finite}

[resp. τ = {A ∈ MBJNS(X) : A = Ẋ or supp∗(Ac) is ∗-finite}].

Then by Proposition 3.27, it is obvious that τ ∈ MBJNT ◦(X) [resp. τ ∈ MBJNT ∗(X)]. In

this case, we will call τ as MBJ-neutrosophic ◦-[resp. ∗-]cofinite topology on X.

Remark 4.4. (1) From Definition 4.2, it is obvious that {∅̈, Ẍ} ∈ MBJNT ◦(X), {∅̇, Ẋ} ∈
MBJNT ∗(X) andMBJNS(X) are both ◦-MBJNT and ∗-MBJNT onX. In this case, {∅̈, Ẍ}
[resp. {∅̇, Ẋ} and MBJNS(X)] is called the ◦-MBJ-neutrosophic indiscrete topology [resp.

∗-MBJ-neutrosophic indiscrete topology and MBJ-neutrosophic discrete topology] on X and

will be denoted by I◦ [resp. I∗ and D]. The pair (X, I◦) [resp. (X, I∗) and (X,D)] is called

a ◦-MBJ-neutrosophic indiscrete space [resp. ∗-MBJ-neutrosophic indiscrete space and MBJ-

neutrosophic discrete space]. It is clear that that I◦ ⊂ τ ⊂ D for each τ ∈ MBJNT ◦(X) and

I∗ ⊂ τ ⊂ D for each τ ∈ MBJNT ∗(X). Moreover, by Proposition 3.4, we can easily check

that for each τ ∈ MBJNT ◦(X) [resp. τ ∈ MBJNT ∗(X)], τ have the least element ∅̈ [resp.

∅̇] and greatest element Ẍ [resp. Ẋ].

(2) Let T be a classical topology on a nonempty set X. Then clearly,

χ◦
T = {⟨χA , [χA , χA ], χAc ⟩ ∈ MBJN(X) : A ∈ T} ∈ MBJNT ◦(X),

χ∗
T = {⟨χA , [χAc , χAc ], χAc ⟩ ∈ MBJN(X) : A ∈ T} ∈ MBJNT ∗(X).

(3) We denote the set of all fuzzy topologies (See [13, 20]) on a nonempty set X as FT(X)

and let τ c = {Ac ∈ IX : A ∈ τ} for each τ ∈ FT (X). Then it is obvious that for each

τ ∈ FT (X),

{⟨A, [A,A], Ac⟩ ∈ MBJN(X) : A ∈ τ} ∈ MBJNT ◦(X),

{⟨A, [Ac, Ac], Ac⟩ ∈ MBJN(X) : A ∈ τ} ∈ MBJNT ∗(X).
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(4) Let us denote the set of all interval-valued fuzzy topologies (See [25]) on a nonempty set

X as IV FT (X). Then we can easily check that for each τ ∈ IV FT (X),

{
〈
A−, Ã, A−c

〉
∈ MBJN(X) : Ã ∈ τ} ∈ MBJNT ◦(X),

{
〈
A−, Ã, A+c

〉
∈ MBJN(X) : Ã ∈ τ} ∈ MBJNT ◦(X),

{
〈
A+, Ã, A−c

〉
∈ MBJN(X) : Ã ∈ τ} ∈ MBJNT ◦(X),

{
〈
A+, Ã, A+c

〉
∈ MBJN(X) : Ã ∈ τ} ∈ MBJNT ◦(X),

{
〈
A−, Ãc, A−c

〉
∈ MBJN(X) : Ã ∈ τ} ∈ MBJNT ∗(X),

{
〈
A−, Ãc, A+c

〉
∈ MBJN(X) : Ã ∈ τ} ∈ MBJNT ∗(X),

{
〈
A+, Ãc, A−c

〉
∈ MBJN(X) : Ã ∈ τ} ∈ MBJNT ∗(X),

{
〈
A+, Ãc, A+c

〉
∈ MBJN(X) : Ã ∈ τ} ∈ MBJNT ∗(X).

(5) We denote the set of all interval-valued fuzzy topologies [resp. cotopologies] (See [25])

and all fuzzy topologies [resp. cotopologies] (See [13, 20]) on a set X as IV FT (X) [resp.

IV FCT (X)] and FT (X) [resp. FCT (X)] respectively, where the term “cotoplogy” means

the dual of “topology”. For each τ ∈ MBJNT ◦(X) [resp. τ ∈ MBJNT ∗(X)], let us consider

the following families:

τM = {MA ∈ IX : A ∈ τ}, τ
B̃
= {B̃A ∈ IV FSX : A ∈ τ}, τJ = {JA ∈ IX : A ∈ τ}.

Then we can easily see that the followings hold:

τ ∈ MBJNT ◦(X) ⇐⇒ τM ∈ FT (X), τ
B̃
∈ IV FT (X), τJ ∈ FCT (X)

and

τ ∈ MBJNT ∗(X) ⇐⇒ τM ∈ FT (X), τ
B̃
∈ IV FCT (X), τJ ∈ FCT (X).

(6) Let (X, τ) be a neutrosophic topological space proposed by Salama and Alblowi [31] and

consider two families τ◦ and τ∗ defined by:

τ◦ = {
〈
AT , [AI , AI ], AF

〉
∈ MBJNS(X) : A =

〈
AT , AI , AF

〉
∈ τ}

and

τ∗ = {
〈
AT , [AI,c, AI,c], AF

〉
∈ MBJNS(X) : A ∈ τ},

where AI,c denotes the complement of the fuzzy set AI . Then clearly τ◦ ∈ MBJNT ◦(X) and

τ∗ ∈ MBJNT ◦(X). Moreover, it is well-known (Example 4.1, [31]) that every fuzzy topology

is a neutrosophic topolog.

(7) Let (X, τ) be an intuitionistic fuzzy topological space introduced by Coker [21] and

consider the family τI,N of neutrosophic sets in X defined by:

τI,N = {
〈
A∈, [A∈, A∈], A̸∈

〉
∈ NS(X) : Ā = (A∈, A̸∈) ∈ τ}.

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                                  24

Jong-Il Baek, Da-Li Shi, Sang Hyeon Han, Kul Hur, Topological structures via MBJ-neutrosophic sets



Then clearly τI,N is a neutrosophic topology on X. On the other hand, let τI,IV be the family

of interval-valued fuzzy sets in X given by:

τI,IV = {[A∈, A̸∈,c] ∈ IV FS(X) : Ā ∈ τ},

where A ̸∈,c denotes the complement of the fuzzy set A ̸∈. Then we can easily check that τI,IV

is an interval-valued fuzzy topology on X.

(8) Let (X, τ) be an interval-valued fuzzy topological space and consider the family τIV,N

defined by:

τIV,N = {
〈
A−, Ã, A−,c

〉
∈ NS(X) : Ā = (A∈, A̸∈) ∈ τ},

where A−,c denotes the complement of the fuzzy set A−. Then clearly τIV,N is a neutrosophic

topology on X. On the other hand, let τIV,I be the family of intuitionistic fuzzy sets in X

given by:

τIV,I = {(A−, A+,c) ∈ IFS(X) : Ã ∈ τ}.

Then it is clear that τI,IV is an intuitionistic fuzzy topology on X.

Let T [resp. FT , IF , IV FT , NT andMBJNT ] be a classical [resp. a fuzzy, an intuitionistic

fuzzy, an interval-valued fuzzy, a neutrosophic and an MBJ-neutrosophic] topology on a set

X. Then from (2)–(8) and Proposition 4.5, we have the following among T , FT , IFT , IV FT ,

NT and MBJNT:

Figure 1. Implications among the above topologies

The following is an immediate consequence of Definition 4.2 and Proposition 3.7 (12).

Proposition 4.5. Let X be a nonempty set. If τ ∈ MBJNT ◦(X), then the family

τ∗ = {
〈
MA, B̃

c
A, JA

〉
∈ MBJNS(X) : A ∈ τ} ∈ MBJNT ∗(X).

Also the converse holds.

The following is an immediate consequence of Definition 4.2.
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Proposition 4.6. (1) Let τ ∈ MBJNT ◦(X) or τ ∈ MBJNT ◦
L(X) and let τ c = {Ac : A ∈ τ}.

Then τ c satisfies the following conditions:

(MBJNC0) for each ã ∈ I × [I]× I, Cã ∈ τ c,

(◦-MBJNC1) ∅̈, Ẍ,

(◦-MBJNC2) A ⊔ B ∈ τ c for any A, B ∈ τ c,

(◦-MBJNC3) ⊓j∈JAj ∈ τ c for each (Aj)j∈J ⊂ τ c.

(2) Let τ ∈ MBJNT ∗(X) or τ ∈ MBJNT ∗
L(X) and let τ c = {Ac : A ∈ τ}. Then τ c

satisfies the following conditions:

(MBJNC0) for each ã ∈ I × [I]× I, Cã ∈ τ c,

(∗-MBJNC1) ∅̇, Ẋ,

(∗-MBJNC2) A ⋓ B ∈ τ c for any A, B ∈ τ c,

(∗-MBJNC3) ⋒j∈JAj ∈ τ c for each (Aj)j∈J ⊂ τ c.

In this case, τ c will be called a ◦-MBJ-neutrosophic cotopology [resp. ∗-MBJ-neutrosophic

cotopology] on X.

Now we will deal with neighborhood structures based on MBJ-neutrosophic sets.

Definition 4.7. Let (X, τ) be a ◦-MBJ-neutrosophic topological space or a ∗-MBJ-

neutrosophic topological space, let A ∈ MBJN(X) and let x◦
ã
, x∗

ã
∈ MBJNP (X).

(i) A is called a ◦-MBJ-neutrosophic neighborhood (briefly, ◦-MBJNN) of x◦
ã
, if there is B ∈ τ

such that x◦
ã
∈ B ⊏ A. A ◦-MBJNN A is said to be ◦-MBJ-neutrosophic open, if A ∈ τ. The

collection of all ◦-MBJNNs of x◦
ã
is called the system of ◦-MBJ-neutrosophic neighborhoods of

x◦
ã
and will be denoted by N (x◦

ã
).

(ii) A is called a ◦-MBJ-neutrosophic Q-neighborhood (briefly, ◦-MBJNQN) of x◦
ã
, if there

is B ∈ τ such that x◦
ã
qB ⊏ A. The family of all ◦-MBJNQNs of x◦

ã
is called the system of

◦-MBJ-neutrosophic Q-neighborhoods of x◦
ã
and will be denoted by NQ(x

◦
ã
).

(iii) A is called a ∗-MBJ-neutrosophic neighborhood (briefly, ∗-MBJNN) of x∗
ã
, if there is

B ∈ τ such that x∗
ã
∈ B ⋐ A. A ∗-MBJNN A is said to be ∗-MBJ-neutrosophic open, if A ∈ τ.

The collection of all ∗-MBJNNs of x∗
ã
is called the system of ∗-MBJ-neutrosophic neighborhoods

of x∗
ã
and will be denoted by N (x∗

ã
).

(iv) A is called a ∗-MBJ-neutrosophic Q-neighborhood (briefly, ∗-MBJNQN) of x∗
ã
, if there

is B ∈ τ such that x∗
ã
qB ⋐ A. The family of all ∗-MBJNQNs of x∗

ã
is called the system of

∗-MBJ-neutrosophic Q-neighborhoods of x∗
ã
and will be denoted by NQ(x

∗
ã
).

Example 4.8. Let (X, τ) and (X, η) be the ◦-MBJ-neutrosophic topological space and ∗-MBJ-

neutrosophic topological space given Example 4.3. Consider four MBJ-neutrosophic points and
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four MBJ-neutrosophic sets in X given by:

x◦
⟨0.3,[0.4,0.6],0.5⟩

, x∗
⟨0.4,[0.5,0.8],0.6⟩

, C⟨0.4,[0.5,0.7],0.3⟩ , C⟨0.6,[0.6,0.9],0.7⟩

and

x◦
⟨0.7,[0.9,0.9],0.5⟩

, x∗
⟨0.6,[0.2,0.4],0.3⟩

, C⟨0.6,[0.3,0.5],0.7⟩ , C⟨0.6,[0.3,0.7],0.5⟩ .

Then we can easily check that

C⟨0.4,[0.5,0.7],0.3⟩ ∈ N (x◦
⟨0.3,[0.4,0.6],0.5⟩

), C⟨0.6,[0.6,0.9],0.7⟩ ∈ N (x∗
⟨0.4,[0.5,0.8],0.6⟩

)

and

C⟨0.6,[0.3,0.5],0.7⟩ ∈ NQ(x
◦
⟨0.7,[0.9,0.9],0.5⟩

), C⟨0.6,[0.3,0.7],0.5⟩ ∈ NQ(x
∗
⟨0.6,[0.2,0.4],0.3⟩

).

Let Ñ(x
ã
) [resp. ÑQ(xã

)] be the set of all interval-valued fuzzy neighborhoods [resp. Q-

neighborhoods] of an interval-valued fuzzy point x
ã
(See [25] [resp. [33]) and let N(xa) [resp.

NQ(xa)] denote the set of all fuzzy neighborhoods [resp. Q-neighborhoods] of a fuzzy point xa

(See [16]).

Remark 4.9. From Remarks 3.14 and 4.4 (5), Definitions 3.13 and 4.7, we can easily check

that the following holds:

A ∈ N (x◦
ã
) ⇐⇒ MA ∈ Nτ

M
(xa), B̃A ∈ Ñτ

B̃
(x

ã
), JA ∈ N◦

τ
J
(x◦

a
),

A ∈ N (x∗
ã
) ⇐⇒ MA ∈ Nτ

M
(xa), B̃A ∈ Ñ∗

τ
B̃
(x∗

ã
), JA ∈ N◦

τ
J
(x◦

a
),

A ∈ NQ(x
◦
ã
) ⇐⇒ MA ∈ Nτ

M
,Q(xa), B̃A ∈ Ñτ

B̃
,Q(xã

), JA ∈ N◦
τ
J
,Q(x

◦
a
),

A ∈ NQ(x
∗
ã
) ⇐⇒ MA ∈ Nτ

M
,Q(xa), B̃A ∈ Ñ∗

τ
B̃
,Q(x

∗
ã
), JA ∈ N◦

τ
J
,Q(x

◦
a
),

where JA ∈ N◦
τ
J
(x◦

a
) if and only if there is JB ∈ τJ such that x◦

a
∈ JB ⊃ JA, B̃A ∈ Ñ∗

τ
B̃
(x∗

ã
) if

and only if there is B̃B ∈ τ
B̃
such that x∗

ã
∈ B̃B ⊃ B̃A, JA ∈ N◦

τ
J
,Q(x

◦
a
) if and only if there is

JB ∈ τJ such that xaq
◦JB ⊃ JA and B̃A ∈ Ñ∗

τ
B̃
,Q(x

∗
ã
) if and only if there is B̃B ∈ τ

B̃
such that

x
ã
q∗B̃B ⊃ B̃A.

Theorem 4.10. Let (X, τ) be a ◦-MBJ-neutrosophic topological space or a ∗-MBJ-

neutrosophic topological space and let A ∈ MBJN(X).

(1) A ∈ τ if and only if A ∈ N (x◦
ã
) for each x◦

ã
∈ A.

(2) A ∈ τ if and only if A ∈ N (x∗
ã
) for each x∗

ã
∈ A.

Proof. (1) By Remark 3.14 (1), it is clear that x◦
ã
∈ A if and only if xa ∈ MA, xã

∈ B̃A,

x◦
a
∈ JA. From Proposition 1.8 in [18] and Theorem 7 in [25], we have

MA ∈ τM ⇐⇒ MA ∈ Nτ
M
(xa) for each xa ∈ MA

and

B̃A ∈ τ
B̃

⇐⇒ B̃A ∈ Nτ
B̃
(x

ã
) for each x

ã
∈ B̃A.
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It is sufficient to prove that JA ∈ τJ ⇐⇒ JA ∈ N◦
τ
J
(x◦

a
) for each x◦

a
∈ JA.

Suppose JA ∈ τJ and let x◦
a
∈ JA. Then clearly, JA ∈ N◦

τ
J
(x◦

a
). Conversely, suppose the

necessary condition holds. Then there is (JB)x◦
a
∈ τJ such that

x◦
a
∈ (JB)x◦

a
∈ τJ ⊃ JA.

Thus JA =
⋂

x◦
a
∈JA(JB)x◦a

. By Remark 4.4 (5), (JB)x◦
a
∈ τJ ∈ FCT (X) for each x◦

a
∈ JA. So

JA ∈ τJ . Hence the result holds.

(2) From the procedure of the proof of (1), we get

MA ∈ τM ⇐⇒ MA ∈ Nτ
M
(xa) for each xa ∈ MA

and

JA ∈ τJ ⇐⇒ JA ∈ N◦
τ
J
(x◦

a
) for each x◦

a
∈ JA.

It is sufficient to prove that B̃A ∈ τ
B̃

⇐⇒ B̃A ∈ Nτ∗
B̃
(x∗

ã
) for each x∗

ã
∈ B̃A.

Suppose B̃A ∈ τ
B̃

and let x∗
ã
∈ B̃A. Then clearly, B̃A ∈ N∗

τ
B̃
(x∗

ã
). Conversely, suppose the

necessary condition holds. Then there is (B̃B)x∗
ã
∈ τ

B̃
such that

x∗
ã
∈ (B̃B)x∗

ã
⊃ B̃A.

Thus B̃A =
⋂

x∗
ã
∈B̃A

(B̃B)x∗
ã
. By Remark 4.4 (5), (B̃B)x∗

ã
∈ τ

B̃
∈ IV FCT (X) for each x∗

ã
∈ B̃A.

So B̃A ∈ τ
B̃
. Hence the result holds.

Theorem 4.11. Let (X, τ) be a ◦-MBJ-neutrosophic topological space or a ∗-MBJ-

neutrosophic topological space and let A ∈ MBJNS(X).

(1) A ∈ τ if and only if A ∈ NQ(x
◦
ã
) for each x◦

ã
∈ MBJNP (X) such that 0 < a < MA(x),

[0, 0] < ã < B̃A(x), JA(x) < a < 1 and x◦
ã
qA.

(2) A ∈ τ if and only if A ∈ NQ(x
∗
ã
) for each x◦

ã
∈ MBJNP (X) such that 0 < a < MA(x),

B̃A(x) < ã < [1, 1], JA(x) < a < 1 and x∗
ã
qA.

Proof. (1) From Remark 4.9, we have

A ∈ NQ(x
◦
ã
) ⇐⇒ MA ∈ Nτ

M
,Q(xa), B̃A ∈ Ñτ

B̃
,Q(xã

), JA ∈ N◦
τ
J
,Q(xa).

From Theorem 3.2 [19] and Lemma 4.12 [33], it is obvious that

MA ∈ τM ⇐⇒ MA ∈ Nτ
M

,Q(xa)

for each xa ∈ FP (X) such 0 < a < MA(x) and xaqMA and

B̃A ∈ τ
B̃
⇐⇒ B̃A ∈ Ñτ

B̃
,Q(xa)

for each x
ã
∈ IV FP (X) such [0, 0] < ã < M̃A(x) and x

ã
qM̃A. It is sufficient to show that

JA ∈ τJ ⇐⇒ JA ∈ N◦
τ
J
,Q(xã

) (1)
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for each xa ∈ FP (X) such that JA(x) < a < 1 and xaq
◦JA.

Suppose JA ∈ τJ and let xa ∈ FP (X) such that JA(x) < a < 1 and xaq
◦JA. Then clearly,

JA ∈ N◦
τ
J
,Q(xa). Conversely, suppose the necessary condition holds. Since JA(x) < a < 1, by

Lemma 3.21, x
ac
q◦JA. Then by the hypothesis, JA ∈ N◦

τ
J
,Q(xac

). Thus there is Ux
ac

∈ τJ such

that x
ac
q◦Ux

ac
⊃ JA. Since xaq

◦JA, xac
∈ JA. So JA =

⋂
x
ac

∈JA Ux
ac
. Since τJ is a fuzzy

cotopology on X and Ux
ac

∈ τJ , JA ∈ τJ . Hence the result holds.

(2) From Remark 4.9, we get

A ∈ NQ(x
∗
ã
) ⇐⇒ MA ∈ Nτ

M
,Q(xa), B̃A ∈ Ñ∗

τ
B̃
,Q(xã

), JA ∈ N◦
τ
J
,Q(xa).

From (1), it is clear that

MA ∈ τM ⇐⇒ MA ∈ Nτ
M

,Q(xa)

for each xa ∈ FP (X) such 0 < a < MA(x) and xaqMA and

JA ∈ τJ ⇐⇒ JA ∈ N◦
τ
J
,Q(xã

)

for each xa ∈ FP (X) such that JA(x) < a < 1 and xaq
◦JA. It is sufficient to show that

B̃A ∈ τ
B̃
⇐⇒ B̃A ∈ Ñ∗

τ
B̃
,Q(xã

) (2)

for each x
ã
∈ IV FP (X) such that B̃A(x) < ã < [1, 1] and x

ã
q◦B̃A.

Suppose B̃A ∈ τ
B̃
and let x

ã
∈ IV FP (X) such that B̃A(x) < ã < [1, 1] and x

ã
q∗B̃A. Then

clearly, B̃A ∈ N∗
τ
B̃
,Q(xã

). Conversely, suppose the necessary condition holds. Since B̃A(x) <

ã < [1, 1], by Lemma 3.22, x
ãc
q∗B̃A. Then by the hypothesis, B̃A ∈ N∗

τ
B̃
,Q(xãc

). Thus there is

Ũx
ãc

∈ τ
B̃
such that x

ãc
q∗Ũx

ãc
⊃ B̃A. Since xã

q∗B̃A, xãc
∈ B̃A. So B̃A =

⋂
x
ãc

∈B̃A
Ũx

ãc
. Since

τ
B̃

is an interval-valued fuzzy cotopology on X and Ũx
ãc

∈ τ
B̃
, B̃A ∈ τ

B̃
. Hence the result

holds.

Lemma 4.12. Let (X, τ) be an interval-valued fuzzy topological space and let x
ã
∈ IV FP (X).

(1) If Ã ∈ Ñ(x
ã
), then x

ã
∈ Ã.

(2) If Ã, B̃ ∈ Ñ(x
ã
), then Ã ∩ B̃ ∈ Ñ(x

ã
).

(3) If Ã ∈ Ñ(x
ã
) and Ã ⊂ B̃, then B̃ ∈ Ñ(x

ã
).

(4) If Ã ∈ Ñ(x
ã
), then there is B̃ ∈ Ñ(x

ã
) such that B̃ ⊂ Ã and B̃ ∈ Ñ(y

b̃
) for y

b̃
∈ B̃.

Conversely, if for each x
ã
∈ IV FP (X), Ñx

ã
satisfies the conditions (1), (2) and (3), then

the family τ of IVFSs in X given by:

τ = {Ã ∈ IV FS(X) : Ã ∈ Ñx
ã
for each x

ã
∈ Ã}

is an interval-valued fuzzy topology on X. Furthermore, if Ñx
ã
satisfies the condition (4), then

Ñx
ã
is exactly the system of interval-valued fuzzy neidhborhood of x

ã
with respect to τ , i.e.,

Ñx
ã
= Ñ(x

ã
).
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Proof. The proof is almost similar to a classical case (See [36]).

From Remark 4.9, Proposition 2.2 [16] and Lemma 4.12, we have the followings.

Theorem 4.13. Let (X, τ) be a ◦-MBJ-neutrosophic topological space and let x◦
ã

∈
MBJNP (X).

(1) If A ∈ N (x◦
ã
), then x◦

ã
∈ A.

(2) If A, B ∈ N (x◦
ã
), then A ⊓ B ∈ N (x◦

ã
).

(3) If A ∈ N (x◦
ã
) and A ⊏ B, then B ∈ N (x◦

ã
).

(4) If A ∈ N (x◦
ã
), then there is B ∈ N (x◦

ã
) such that B ⊏ A and B ∈ N (y◦

ã
) for y◦

ã
∈ B.

Conversely, if for each x◦
ã
∈ MBJNP (X), Nx◦

ã
satisfies the conditions (1), (2) and (3),

then the family τ of cubic sets in X given by:

τ = {A ∈ MBJN(X) : A ∈ Nx◦
ã
for each x◦

ã
∈ A}

is a ◦-MBJ-neutrosophic topology on X. Furthermore, if N ◦
x
ã
satisfies the condition (4), then

Nx◦
ã
is exactly the system of ◦-MBJ-neutrosophic neidhborhood of x◦

ã
with respect to τ , i.e.,

Nx◦
ã
= N (x◦

ã
).

Theorem 4.14. Let (X, τ) be a ∗-MBJ-neutrosophic topological space and let x∗
ã

∈
MBJNP (X).

(1) If A ∈ N (x∗
ã
), then x∗

ã
∈ A.

(2) If A, B ∈ N (x∗
ã
), then A ⋒ B ∈ N (x∗

ã
).

(3) If A ∈ N (x∗
ã
) and A ⋐ B, then B ∈ N (x∗

ã
).

(4) If A ∈ N (x∗
ã
), then there is B ∈ N (x∗

ã
) such that B ⋐ A and B ∈ N (y∗

ã
) for y∗

ã
∈ B.

Conversely, if for each x∗
ã
∈ MBJNP (X), Nx∗

ã
satisfies the conditions (1), (2) and (3),

then the family τ of cubic sets in X given by:

τ = {A ∈ MBJN(X) : A ∈ Nx∗
ã
for each x∗

ã
∈ A}

is a ∗-MBJ-neutrosophic topology on X. Furthermore, if N ∗
x
ã
satisfies the condition (4), then

Nx∗
ã
is exactly the system of ∗-MBJ-neutrosophic neidhborhood of x∗

ã
with respect to τ , i.e.,

Nx∗
ã
= N (x∗

ã
).

Lemma 4.15. Let (X, τ) be a fuzzy cotopological space, let xa ∈ FP (X) and let N◦
τ,Q(xa) be

the family of fuzzy sets in X defined as follows: for each A ∈ IX ,

A ∈ N◦
τ,Q(xa) if and only if there is B ∈ τ such that xaq

◦B ⊃ A.

(1) If A ∈ N◦
τ,Q(xa), then xaq

◦A.

(2) If A, B ∈ N◦
τ,Q(xa), then A ∪B ∈ N◦

τ,Q(xa).

(3) If A ∈ N◦
τ,Q(xa) and B ⊂ A, then B ∈ N◦

τ,Q(xa).
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(4) If A ∈ N◦
τ,Q(xa), then there is B ∈ N◦

τ,Q(xa) such that A ⊂ B and B ∈ N◦
τ,Q(yb

) for

y
b
q◦B.

Conversely, if for each xa ∈ FP (X), N◦
Q,xa

satisfies the conditions (1), (2) and (3), then

the family τ of fuzzy sets in X given by:

τ = {A ∈ IX : A ∈ N◦
Q,xa

for each xaq
◦A}

is a fuzzy cotopology on X. Furthermore, if N◦
Q,xa

satisfies the condition (4), then N◦
Q,xa

is

exactly the system of fuzzy ◦-Q-neighborhoods of xa with respect to τ , i.e., N◦
Q,xa

= N◦
τ,Q(xa).

Proof. (1) Suppose A ∈ N◦
τ,Q(xa). Then there is U ∈ τ such that xaq

◦U ⊃ A. Thus a <

U c(x) ≤ Ac(x). So xaq
◦A.

(2) Suppose A, B ∈ N◦
τ,Q(xa). Then there are U, V ∈ τ such that xaq

◦U ⊃ A and

xaq
◦V ⊃ B. Thus a < U c(x) ≤ Ac(x) and a < V c(x) ≤ Bc(x). So we get

a < U c(x) ∧ V c(x) ≤ Ac(x) ∧Bc(x) = (U ∪ V )c(x) ≤ (A ∪B)c(x).

Hence xaq
◦U ∪ V ⊃ A ∪B and U ∪ V ∈ τ. Therefore A ∪B ∈ N◦

τ,Q(xa).

(3) A ∈ N◦
τ,Q(xa) and B ⊂ A. Then there is U ∈ τ such that xaq

◦U ⊃ A. Thus a < U c(x) ≤
Ac(x) ≤ Bc(x). So xaq

◦U ⊃ B. Hence B ∈ N◦
τ,Q(xa).

(4) Suppose A ∈ N◦
τ,Q(xa). Then there is B ∈ τ such that xaq

◦B ⊃ A. Since B ⊃ B,

B ∈ N◦
τ,Q(xa) and moreover, B ∈ N◦

τ,Q(yb
) for each y

b
q◦B.

Conversely, suppose NQ,xa
satisfies the conditions (1), (2) and (3) for each xa ∈ FP (X).

From the definition of τ , it is clear that 0, 1 ∈ τ. Now let A, B ∈ τ and let xaq
◦(A∪B). Then

by Lemma 3.19 (2), xaq
◦A and xaq◦B. So by the definition of τ , A ∈ N◦

Q,xa
and B ∈ N◦

Q,xa
. By

the condition (2), A∪B ∈ NQ,xa
. Hence A∪B ∈ τ. Finally, let (Aj)j∈J ⊂ τ , let A =

⋂
j∈J Aj

and let xaq
◦A. By Lemma 3.19 (1), there is j ∈ J such that xaq

◦Aj . Since Aj ∈ τ , Aj ∈ N◦
Q,xa

.

Since Aj ⊃ A, by the condition (3), A ∈ τ, i.e.,
⋂

j∈J Aj ∈ τ. Therefore τ is a fuzzy cotopology

on X.

Now suppose N◦
Q,xa

satisfies the conditions (4). Then we can easily prove similarly to a

classical case that N◦
Q,xa

= N◦
Q(xa).

From Remarks 4.4 (5) and 4.9, Proposition 2.2 [16], Lemma 4.18 [33] and Lemma 4.15, we

obtain the following.

Theorem 4.16. Let (X, τ) be a ◦-MBJ-neutrosophic topological space and let x◦
ã

∈
MBJNP (X).

(1) If A ∈ NQ(x
◦
ã
), then x◦

ã
qA.

(2) If A, B ∈ NQ(x
◦
ã
), then A ⊓ B ∈ NQ(x

◦
ã
).

(3) If A ∈ NQ(x
◦
ã
) and A ⊏ B, then B ∈ NQ(x

◦
ã
).
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(4) If A ∈ NQ(x
◦
ã
), then there is B ∈ NQ(x

◦
ã
) such that B ⊏ A and B ∈ NQ(y

◦
ã
) for y◦

ã
qB.

Conversely, if for each x◦
ã
∈ MBJNP (X), NQ,x◦

ã
satisfies the conditions (1), (2) and (3),

then the family τ of MBJ-neutrosophic sets in X given by:

τ = {A ∈ MBJN(X) : A ∈ NQ,x◦
ã
for each x◦

ã
∈ A}

is a ◦-MBJ-neutrosophic topology on X. Furthermore, if N ◦
Q,x

ã

satisfies the condition (4),

then NQ,x◦
ã
is exactly the system of ◦-MBJ-neutrosophic neidhborhood of x◦

ã
with respect to τ ,

i.e., NQ,x◦
ã
= NQ(x

◦
ã
).

Lemma 4.17. Let (X, τ) be an interval-valued fuzzy cotopological space, let x
ã
∈ IV FP (X)

and let Ñ∗
τ,Q(xã

) be the family of interval-valued fuzzy sets in X defined as follows: for each

Ã ∈ IV FS(X),

Ã ∈ Ñ∗
τ,Q(xã

) if and only if there is B̃ ∈ τ such that x
ã
q∗B̃ ⊃ Ã.

(1) If Ã ∈ Ñ∗
τ,Q(xã

), then x
ã
q∗Ã.

(2) If Ã, B̃ ∈ Ñ∗
τ,Q(xã

), then Ã ∪ B̃ ∈ Ñ∗
τ,Q(xã

).

(3) If Ã ∈ Ñ∗
τ,Q(xã

) and B̃ ⊂ Ã, then B̃ ∈ Ñ∗
τ,Q(xã

).

(4) If Ã ∈ Ñ∗
τ,Q(xã

), then there is B̃ ∈ Ñ∗
τ,Q(xã

) such that Ã ⊂ B̃ and B̃ ∈ Ñ∗
τ,Q(yb̃

) for

y
b̃
q∗B̃.

Conversely, if for each x
ã
∈ IV FP (X), Ñ∗

Q,x
ã
satisfies the conditions (1), (2) and (3), then

the family τ of interval-valued fuzzy sets in X given by:

τ = {Ã ∈ IV FS(X) : Ã ∈ Ñ∗
Q,x

ã
for each x

ã
q∗Ã}

is an interval-valued fuzzy cotopology on X. Furthermore, if Ñ∗
Q,x

ã
satisfies the condition (4),

then Ñ∗
Q,x

ã
is exactly the system of interval-valued fuzzy ∗-Q-neighborhoods of x

ã
with respect

to τ , i.e., Ñ∗
Q,x

ã
= Ñ∗

τ,Q(xã
).

Proof. The proof is similar to Lemma 3.15.

From Remarks 4.4 (5) and 4.9, Proposition 2.2 [16], Lemmas 4.15 and Lemma 4.17, we get

the following.

Theorem 4.18. Let (X, τ) be a ∗-MBJ-neutrosophic topological space and let x∗
ã

∈
MBJNP (X).

(1) If A ∈ NQ(x
∗
ã
), then x∗

ã
qA.

(2) If A, B ∈ NQ(x
∗
ã
), then A ⋒ B ∈ NQ(x

∗
ã
).

(3) If A ∈ NQ(x
∗
ã
) and A ⋐ B, then B ∈ NQ(x

∗
ã
).

(4) If A ∈ NQ(x
∗
ã
), then there is B ∈ NQ(x

∗
ã
) such that B ⋐ A and B ∈ NQ(y

∗
ã
) for y∗

ã
qB.
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Conversely, if for each x∗
ã
∈ MBJNP (X), NQ,x∗

ã
satisfies the conditions (1), (2) and (3),

then the family τ of MBJ-neutrosophic sets in X given by:

τ = {A ∈ MBJN(X) : A ∈ NQ,x∗
ã
for each x∗

ã
∈ A}

is a ∗-MBJ-neutrosophic topology on X. Furthermore, if N ∗
Q,x

ã

satisfies the condition (4),

then NQ,x∗
ã
is exactly the system of ∗-MBJ-neutrosophic neidhborhood of x∗

ã
with respect to τ ,

i.e., NQ,x∗
ã
= NQ(x

∗
ã
).

5. MBJ-neutrosophic bases and MBJ-neutrosophic local bases

We introduce the concept of ◦-[resp. ∗-]MBJ-neutrosophic bases and ◦-[resp. ∗-]MBJ-

neutrosophic local bases, and discuss some of their properties. Also we define ◦-CI , ∗-CI , ◦-CII

and ∗-CII , and we obtain the relationships between them. Moreover, we give an Example that

the converse of Proposition 5.23 does not hold.

Definition 5.1. Let (X, τ) be a ◦-[resp. ∗-]MBJ-neutrosophic topological space and let β ⊂ τ ,

σ ⊂ τ .

(i) β is called a ◦-MBJ-neutrosophic base (briefly, ◦-MBJNB) [resp. ∗-MBJ-neutrosophic

base (briefly, ∗-MBJNB)] for τ , if for each A ∈ τ ,A = ∅̈ [resp. A = ∅̇] or there is β
′ ⊂ β such

that A = ⊔β′
[resp. A = ⋓β

′
].

(ii) σ is called a ◦-MBJ-neutrosophic subbase (briefly, ◦-MBJNSB) [resp. ∗-
MBJ-neutrosophic subbase (briefly, ∗-MBJNSB)] for τ , if the family β = {⊓η :

η is a finite subset of σ} [resp. β = {⋒η : η is a finite subset of σ}] is a ◦-MBJNB [resp.

∗-MBJNB] for τ .

Now we will introduce the concepts of bases and subbases for a fuzzy cotopology and an

interval-valued fuzzy cotopology.

Definition 5.2. Let τ be a fuzzy cotopology on a nonempty set X and let β, σ ⊂ τ .

(i) β is called a ◦-fuzzy base for τ , if for each A ∈ τ , A = 1 or there is β
′ ⊂ β such that

A =
⋂

β
′
.

(ii) σ is called a ◦-fuzzy subbase for τ , if the family β = {
⋃
η : η is a finite subset of σ} is a

◦-fuzzy base for τ .

Definition 5.3. Let τ be an interval-valued fuzzy cotopology on a nonempty set X and let

β, σ ⊂ τ .

(i) β is called a ∗-interval-valued fuzzy base for τ , if for each Ã ∈ τ , Ã = 1̃ or there is β
′ ⊂ β

such that Ã =
⋂
β

′
.

(ii) σ is called a ∗-interval-valued fuzzy subbase for τ , if the family β = {
⋃
η :

η is a finite subset of σ} is a ∗-fuzzy base for τ .
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Example 5.4. (1) Let X = {x, y} and consider the fuzzy sets Ai (i = 1, 2, · · · , 9) in X given

by:

A1(x) = 0.3, A1(y) = 0.7, A2(x) = 0.6, A2(y) = 0.4, A3(x) = 0.5, A3(y) = 0.6,

A4(x) = 0.6, A4(y) = 0.7, A5(x) = 0.5, A5(y) = 0.7, A6(x) = 0.6, A6(y) = 0.6,

A7(x) = 0.3, A7(y) = 0.4, A8(x) = 0.3, A8(y) = 0.6, A9(x) = 0.5, A9(y) = 0.4.

Then we can easily see that the family τ = {0,1, A1, A2, A3, A4, A5, A6, A7, A8, A9} is a fuzzy

cotopology on X. Now let us two subfamilies β and σ of τ given by:

β = {0, A1, A2, A3, A4, A5, A6}, σ = {0, A1, A2, A3}.

Then we can easily check that β and σ are ◦-fuzzy base and ◦-fuzzy subbase for τ respectively.

(2) Let X = {x, y} and consider the interval-valued fuzzy sets Ãi (i = 1, 2, · · · , 9) in X

given by:

Ã1(x) = [0.3, 0.5], A1(y) = [0.7, 0.8], Ã2(x) = [0.6, 0.7], Ã2(y) = [0.4, 0.6],

Ã3(x) = [0.5, 0.6], Ã3(y) = [0.6, 0.7], Ã4(x) = [0.6, 0.7], Ã4(y) = [0.7, 0.8],

Ã5(x) = [0.5, 0.6], Ã5(y) = [0.7, 0.8], Ã6(x) = [0.6, 0.7], Ã6(y) = [0.6, 0.7],

Ã7(x) = [0.3, 0.5], Ã7(y) = [0.4, 0.6], Ã8(x) = [0.3, 0.5], Ã8(y) = [0.6, 0.7],

Ã9(x) = [0.5, 0.6], Ã9(y) = [0.4, 0.6].

Then we can easily see that the family τ = {0̃, 1̃, Ã1, Ã2, Ã3, Ã4, Ã5, Ã6, Ã7, Ã8, Ã9} is a fuzzy

cotopology on X. Now let us two subfamilies β and σ of τ given by:

β = {0̃, Ã1, Ã2, Ã3, Ã4, Ã5, Ã6}, σ = {0̃, Ã1, Ã2, Ã3}.

Then we can easily check that β and σ are ∗-interval-valued fuzzy base and ∗-interval-valued
fuzzy subbase for τ respectively.

(3) Let X = {x, y} and consider the MBJ-neutrosophic sets Ai (i = 1, 2, · · · , 9) in X given

by:

A1(x) = ⟨0.5, [0.5, 0.6], 0.3⟩ , A1(y) = ⟨0.6, [0.6, 0.7], 0.7⟩ ,

A2(x) = ⟨0.6, [0.6, 0.8], 0.6⟩ , A2(y) = ⟨0.3, [0.3, 0.5], 0.4⟩ ,

A3(x) = ⟨0.8, [0.8, 0.9], 0.5⟩ , A3(y) = ⟨0.2, [0.2, 0.4], 0.6⟩ ,

A4(x) =< ⟨0.5, [0.5, 0.6], 0.5⟩ , A4(y) = ⟨0.3, [0.3, 0.5], 0.7⟩ ,

A5(x) = ⟨0.5, [0.5, 0.6], 0.5⟩ , A5(y) = ⟨0.2, [0.2, 0.4], 0.7⟩ ,

A6(x) = ⟨0.6, [0.6, 0.8], 0.6⟩ , A6(y) = ⟨0.2, [0.2, 0.4], 0.6⟩ ,

A7(x) = ⟨0.6, [0.6, 0.8], 0.3⟩ , A7(y) = ⟨0.6, [0.6, 0.7], 0.4⟩ ,

A8(x) = ⟨0.8, [0.8, 0.9], 0.3⟩ , A8(y) = ⟨0.6, [0.6, 0.7], 0.6⟩ ,
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A9(x) = ⟨0.8, [0.8, 0.9], 0.5⟩ , A9(y) = ⟨0.3, [0.3, 0.5], 0.4⟩ .

Then we can easily see that the family τ = {∅̈, Ẍ,A1,A2,A3,A4,A5,A6,A7, Ã8,A9} is a

◦-MBJ-neutrosophic topology on X. Now let us two subfamilies β and σ of τ given by:

β = {Ẍ,A1,A2,A3,A4,A5,A6}, σ = {Ẍ,A1,A2,A3}.

Then we can easily check that β and σ are ◦-MBJNB and ∗-MBJNSB for τ respectively.

(4) Let X = {x, y} and consider the MBJ-neutrosophic sets Ai (i = 1, 2, · · · , 9) in X given

by:

A1(x) = ⟨0.5, [0.3, 0.5], 0.3⟩ , A1(y) = ⟨0.6, [0.7, 0.8], 0.7⟩ ,

A2(x) = ⟨0.6, [0.6, 0.7], 0.6⟩ , A2(y) = ⟨0.3, [0.4, 0.6], 0.4⟩ ,

A3(x) = ⟨0.8, [0.5, 0.6], 0.5⟩ , A3(y) = ⟨0.2, [0.6, 0.7], 0.6⟩ ,

A4(x) =< ⟨0.5, [0.6, 0.7], 0.5⟩ , A4(y) = ⟨0.3, [0.7, 0.8], 0.7⟩ ,

A5(x) = ⟨0.5, [0.5, 0.6], 0.5⟩ , A5(y) = ⟨0.2, [0.7, 0.8], 0.7⟩ ,

A6(x) = ⟨0.6, [0.6, 0.7], 0.6⟩ , A6(y) = ⟨0.2, [0.6, 0.7], 0.6⟩ ,

A7(x) = ⟨0.6, [0.3, 0.5], 0.3⟩ , A7(y) = ⟨0.6, [0.4, 0.6], 0.4⟩ ,

A8(x) = ⟨0.8, [0.3, 0.5], 0.3⟩ , A8(y) = ⟨0.6, [0.6, 0.7], 0.6⟩ ,

A9(x) = ⟨0.8, [0.5, 0.6], 0.5⟩ , A9(y) = ⟨0.3, [0.4, 0.6], 0.4⟩ .

Then we can easily see that the family τ = {∅̇, Ẋ,A1,A2,A3,A4,A5,A6,A7, Ã8,A9} is a

∗-MBJ-neutrosophic topology on X. Now let us two subfamilies β and σ of τ given by:

β = {Ẋ,A1,A2,A3,A4,A5,A6}, σ = {Ẋ,A1,A2,A3}.

Then we can easily check that β and σ are ∗-MBJNB and ∗-MBJNSB for τ respectively.

Remark 5.5. (1) Let (X, τ) be a ◦-MBJ-neutrosophic topological space or ∗-MBJ-

neutrosophic topological space and let β ⊂ τ . Consider the following families:

βM = {MA ∈ IX : A ∈ β}, β
B̃
= {B̃A ∈ IV FS(X) : A ∈ β}, βJ = {JA ∈ IX : A ∈ β}.

Then from Remark 4.4 (5), Definitions 5.1 and 5.2, we can easily check that

(a) β is a ◦-MBJNB for τ if and only if βM is a fuzzy base for τM , β
B̃
is an interval-valued

fuzzy base for τ
B̃
and βJ is a ◦-fuzzy base for τJ ,

(b) β is a ∗-MBJNB for τ if and only if βM is a fuzzy base for τM , β
B̃
is a ∗-interval-valued

fuzzy base for τ
B̃
and βJ is a ◦-fuzzy base for τJ .

(2) Let (X, τ) be a ◦-MBJ-neutrosophic topological space or ∗-MBJ-neutrosophic topological

space and let σ ⊂ τ . Consider the following families:

σM = {MA ∈ IX : A ∈ σ}, σ
B̃
= {B̃A ∈ IV FS(X) : A ∈ σ}, σJ = {JA ∈ IX : A ∈ σ}.
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Then from Remark 4.4 (5), Definitions 5.1 and 5.2, we can easily see that

(a) σ is a ◦-MBJNSB for τ if and only if σM is a fuzzy subbase for τM , σ
B̃

is an interval-

valued fuzzy subbase for τ
B̃
and σJ is a ◦-fuzzy subbase for τJ ,

(b) σ is a ∗-MBJNSB for τ if and only if σM is a fuzzy subbase for τM , σ
B̃

is a ∗-interval-
valued fuzzy subbase for τ

B̃
and σJ is a ◦-fuzzy subbase for τJ .

Lemma 5.6. Let (X, τ) be a fuzzy cotopological space and let β ⊂ τ. Then β is a ◦-fuzzy base

for τ if and only if for each xa ∈ FP (X) and for each fuzzy closed ◦-Q-neighborhood A of xa,

there is B ∈ β such that xaq
◦B ⊃ A.

Proof. (⇒) The proof is straightforward from the definition of a ◦-fuzzy base and the necessary

condition of Lemma 3.20 (1).

(⇐) Suppose the necessary condition holds. Assume that β is not a ◦-fuzzy base for τ .

Then there is A ∈ τ such that U =
⋂
{B ∈ β : B ⊃ A} ̸= A. Thus there is x ∈ X such that

U(x) > A(x). Let a = U c(x). Then clearly, A(x) + a < U(x) + a < 1. Thus xaq
◦A. On the

other hand, let B ∈ β such that B ⊃ A. Then clearly, B ⊃ U . Thus B(x)+ a ≥ U(x)+ a = 1.

So xa¬q◦B̃. This contradicts the hypothesis.

From Proposition 2.4 in [16], Lemma 7 in [33], Lemmas 3.19 (1) and 5.6, we have the

following.

Theorem 5.7. Let (X, τ) be a ◦-MBJ-neutrosophic topological space and let β ⊂ τ. Then β is

a ◦-MBJNB for τ if and only if for each x◦
ã
∈ MBJNP (X) and for each ◦-MBJ-neutrosophic

open Q-neighborhood A of x◦
ã
, there is B ∈ β such that x◦

ã
q◦B ⊏ A.

Lemma 5.8. Let (X, τ) be an interval-valued fuzzy cotopological space and let β ⊂ τ. Then β

is a ∗-interval-valued fuzzy base for τ if and only if for each x
ã
∈ IV FP (X) and for each fuzzy

closed ∗-Q-neighborhood Ã of x
ã
, there is B̃ ∈ β such that x

ã
q∗B ⊃ A.

Proof. The proof is similar to Lemma 5.6.

Theorem 5.9. Let (X, τ) be a ∗-MBJ-neutrosophic topological space and let β ⊂ τ. Then β is

a ∗-MBJNB for τ if and only if for each x∗
ã
∈ MBJNP (X) and for each ∗-MBJ-neutrosophic

open Q-neighborhood A of x∗
ã
, there is B ∈ β such that x∗

ã
q∗B ⋐ A.

Proof. The proof is straightforward from Proposition 2.4 in [16], Lemmas 5.8 and 5.6.

The following gives a necessary and sufficient condition for a subset of MBJNS(X) to be

a ◦-MBJNB for a ◦-MBJ-neutrosophic topology on a set X.
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Theorem 5.10. Let X be a set and let β ⊂ MBJNS(X). Then β is a ◦-MBJNB for some

◦-MBJ-neutrosophic topology τ if and only if the followings hold:

(1) Ẍ = ⊔β,
(2) if B1, B̃2 ∈ β and x◦

ã
∈ B1 ⊔ B2, then there is B ∈ β such that

x◦
ã
∈ B ⊏ B1 ⊓ B2.

In this case, τ is called the ◦-MBJ-neutrosophic topology on X generated by β.

Proof. (⇒) Suppose β is a ◦-MBJNB for a ◦-MBJ-neutrosophic topology τ . Since Ẍ ∈ τ ,

Ẍ = ⊓β. Then the condition (1) holds. Now suppose B1, B̃2 ∈ β and x◦
ã
∈ B1 ⊓ B2. Since

β ⊂ τ , B1, B̃2 ∈ τ. Then B1 ⊓ B2 ∈ τ. Since x◦
ã
∈ B1 ⊓ B2, B1 ⊓ B2 ̸= ∅̈. By the definition

of a ◦-MBJNB, there is β
′ ⊂ β such that B1 ⊓ B2 = ⊔β′

. Thus there is B ∈ β such that

x◦
ã
∈ B ⊏ B1 ⊓ B2. So the condition (2) holds.

(⇐) Suppose the conditions (1) and (2) hold and let

τ = {U ∈ MBJNS(X) : U = ∅̈ or there is β
′ ⊂ β such that U = ⊔β′}.

Then clearly, ∅̈, Ẍ ∈ τ . Thus the condition (◦-MBJNO1) holds. Now suppose U1, U2 ∈ τ and

x◦
ã
∈ U1 ⊓ U2. Then there are B1, B2 ∈ β such that x◦

ã
∈ B1 ⊏ U1 and x

ã
∈ B2 ⊏ U2. Thus

x◦
ã
∈ B1 ⊓ B2 ⊏ U1 ⊓ U2. By the condition (2), there is B ∈ β such that x◦

ã
∈ B ⊏ U1 ⊓ U2. So

U1 ⊓ U2 ∈ τ. Hence the condition (◦-MBJNO2) holds. Since τ consists of all ◦-MBJ unions of

members of β, the ◦-MBJ union of any family of members of τ is also a member of τ . Then

(◦-MBJNO3) holds. This completes the proof.

Also, we have a necessary and sufficient condition for a subset of MBJNS(X) to be a

∗-MBJNB for a ∗-MBJ-neutrosophic topology on a set X.

Theorem 5.11. Let X be a set and let β ⊂ MBJNS(X). Then β is a ∗-MBJNB for some

∗-MBJ-neutrosophic topology τ if and only if the followings hold:

(1) Ẍ = ⋓β,

(2) if B1, B̃2 ∈ β and x∗
ã
∈ B1 ⋒ B2, then there is B ∈ β such that

x∗
ã
∈ B ⋐ B1 ⋒ B2.

In this case, τ is called the ∗-MBJ-neutrosophic topology on X generated by β.

Proof. The proof is similar to Theorem 5.10.

The following provides a sufficient condition for a subset of MBJNS(X) to be a ◦-MBJNB

for a ◦-MBJ-neutrosophic topology on a set X.
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Proposition 5.12. Let X be a set and let σ ⊂ MBJNS(X) such that Ẍ = ⊔σ. Then there

is a unique ◦-MBJ-neutrosophc topology τ on X such that σ is a ◦-MBJNSB for τ . In this

case, τ is called the ◦-MBJ-neutrosophc topology on X generated by σ.

Proof. Let β = {⊓η : η is a finite subset of σ} and let

τ = {U ∈ MBJNS(X) : U = ∅̈ or there is β
′ ⊂ β such that U = ⊔β′}.

Then clearly, Ẍ, ∅̈ ∈ τ by the definition of τ . Thus τ satisfies the condition (◦-MBJNO1).

Let Uj ∈ τ for each j ∈ J . Then there is βj ⊂ β such that Uj = ⊔{B ∈ MBJNS(X) : B ∈
βj}. Thus ⊔j∈JUj = ⊔j∈J(⊔B∈βj

B. So ⊔j∈JUj ∈ τ . Hence the condition (◦-MBJNO3) holds.

Finally, suppose U1, U2 ∈ τ and x◦
ã
∈ U1 ⊓ U2. Then by Theorem 5.10, there are B1, B2 ∈ β

such that x◦
ã
∈ B1 ⊓ B2, B1 ⊏ U1 and B2 ⊏ U2. Since each of B1 and B2 is the ◦-intersection of

a finite number of members of σ, B1 ⊓B2 ∈ β. So there is β
′ ⊂ β such that U1 ⊓U2 = ⊔B∈β′B.

Hence U1⊓U2 ∈ τ, i.e., the condition (◦-MBJNO2) holds. Therefore τ ∈ PCT (X). It is obvious

that τ is the unique ◦-MBJ-neutrosophic topology on X having σ as a ◦-MBJNSB.

Also, we get a sufficient condition for a subset of MBJNS(X) to be a ◦-MBJNB for a

◦-MBJ-neutrosophic topology on a set X.

Proposition 5.13. Let X be a set and let σ ⊂ MBJNS(X) such that Ẋ = ⋓σ. Then there

is a unique ∗-MBJ-neutrosophc topology τ on X such that σ is a ∗-MBJNSB for τ . In this

case, τ is called the ∗-MBJ-neutrosophc topology on X generated by σ.

Proof. The proof is similar to Proposition 5.12.

Definition 5.14. Let (X, τ) be a ◦-MBJ-neutrosophc topological space or ∗-MBJ-neutrosophc

topological space, let x◦
ã
, x∗

ã
∈ MBJNP (X) and let β(x◦

ã
) ⊂ N (x◦

ã
), β(x∗

ã
) ⊂ N (x∗

ã
).

(i) β(x◦
ã
) is called a ◦-MBJ-neutrosophic neighborhood base (briefly, ◦-MBJNNB) for N (x◦

ã
),

if for each A ∈ N (x◦
ã
), there is A ∈ β(x◦

ã
) such that B ⊏ A.

(ii) β(x∗
ã
) is called a ∗-MBJ-neutrosophic neighborhood base (briefly, ∗-MBJNNB) for N (x∗

ã
),

if for each A ∈ N (x∗
ã
), there is A ∈ β(x∗

ã
) such that B ⋐ A.

(iii) (X, τ) is said to satisfy the ◦-first axiom of countability or to be ◦-CI , if each x◦
ã
∈

MBJNP (X) has a countable ◦-MBJNNB.

(iv) (X, τ) is said to satisfy the ∗-first axiom of countability or to be ∗-CI , if each x∗
ã
∈

MBJNP (X) has a countable ∗-MBJNNB.

From Remark 4.9 and 4.4 (5), we can rewrite Definition 5.14 as followings.
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Remark 5.15. Let β(xa) ⊂ Nτ
M
(xa), β(xã

) ⊂ Ñτ
B̃
(x

ã
), β(x∗

ã
) ⊂ Ñ∗

τ
B̃
(x∗

ã
), β(x◦

a
) ⊂ N◦

τ
J
(x◦

a
).

Then we have

(1) β(x◦
ã
) is a ◦-MBJNNB for N (x◦

ã
) ⇐⇒

(i) β(xa) is a fuzzy neighborhood base for Nτ
M
(xa),

(ii) β(x
ã
) is an interval-valued fuzzy neighborhood base for Ñτ

B̃
(x

ã
),

(iii) β(x◦
a
) is a ◦-fuzzy neighborhood base for N◦

τ
J
(x◦

a
).

(2) β(x∗
ã
) is a ∗-MBJNNB for N (x∗

ã
) ⇐⇒

(i) β(xa) is a fuzzy neighborhood base for Nτ
M
(xa),

(ii) β(x∗
ã
) is an ∗-interval-valued fuzzy neighborhood base for Ñ∗

τ
B̃
(x∗

ã
),

(iii) β(x◦
a
) is a ◦-fuzzy neighborhood base for N◦

τ
J
(x◦

a
).

(3) (X, τ) is a ◦-CI ⇐⇒
(i) (X, τM ) is a fuzzy CI (See [?]),

(ii) (X, τ
B̃
) is an interval-valued fuzzy CI , i.e., each x

ã
∈ IV FP (X) has

a countable interval-valued fuzzy neighborhood base for Ñτ
B̃
(x

ã
),

(iii) (X, τJ ) is a fuzzy ◦-CI , i.e., each x◦
a
∈ FP (X) has a countable ◦-fuzzy

neighborhood base for N◦
τ
J
(x◦

a
).

(4) (X, τ) is a ∗-CI ⇐⇒
(i) (X, τM ) is a fuzzy CI ,

(ii) (X, τ
B̃
) is an interval-valued fuzzy ∗-CI , i.e., each x

ã
∈ IV FP (X) has

a countable ∗-interval-valued fuzzy neighborhood base for Ñ∗
τ
B̃
(x∗

ã
),

(iii) (X, τJ ) is a fuzzy ◦-CI .

Definition 5.16. Let (X, τ) be a ◦-MBJ-neutrosophc topological space or ∗-MBJ-neutrosophc

topological space, let x◦
ã
, x∗

ã
∈ MBJNP (X) and let βQ(x

◦
ã
) ⊂ NQ(x

◦
ã
), βQ(x

∗
ã
) ⊂ NQ(x

∗
ã
).

(i) βQ(x
◦
ã
) is called a ◦-MBJ-neutrosophic Q- neighborhood base (briefly, ◦-MBJNQNB) for

NQ(x
◦
ã
), if for each A ∈ NQ(x

◦
ã
), there is B ∈ βQ(x

◦
ã
) such that B ⊏ A.

(ii) βQ(x
∗
ã
) is called a ∗-MBJ-neutrosophic Q-neighborhood base (briefly, ∗-MBJNQNB) for

NQ(x
∗
ã
), if for each A ∈ NQ(x

∗
ã
), there is B ∈ βQ(x

∗
ã
) such that B ⋐ A.

(iii) (X, τ) is said to satisfy the ◦-Q-first axiom of countability or to be ◦-Q-CI , if each

x◦
ã
∈ MBJNP (X) has a countable ◦-MBJNQNB.

(iv) (X, τ) is said to satisfy the ∗-first axiom of countability or to be ∗-Q-CI , if each x∗
ã
∈

MBJNP (X) has a countable ∗-MBJNQNB.

From Remark 4.9, we can rewrite Definition 5.16 as followings.

Remark 5.17. Let β(xa) ⊂ Nτ
M
(xa), β(xã

) ⊂ Ñτ
B̃
(x

ã
), β(x∗

ã
) ⊂ Ñ∗

τ
B̃
(x∗

ã
), β(x◦

a
) ⊂ N◦

τ
J
(x◦

a
).

Then we have
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(1) βQ(x
◦
ã
) is a ◦-MBJNQNB for N (x◦

ã
) ⇐⇒

(i) βQ(xa) is a fuzzy Q-neighborhood base for Nτ
M

,Q(xa),

(ii) βQ(xã
) is an interval-valued fuzzy Q-neighborhood base for Ñτ

B̃
,Q(xã

),

(iii) βQ(x
◦
a
) is a ◦-fuzzy Q-neighborhood base for N◦

τ
J
,Q(x

◦
a
).

(2) βQ(x
∗
ã
) is a ∗-MBJNQNB for NQ(x

∗
ã
) ⇐⇒

(i) βQ(xa) is a fuzzy Q-neighborhood base for Nτ
M

,Q(xa),

(ii) βQ(x
∗
ã
) is an ∗-interval-valued fuzzy Q-neighborhood base for Ñ∗

τ
B̃
,Q(x

∗
ã
),

(iii) βQ(x
◦
a
) is a ◦-fuzzy Q-neighborhood base for N◦

τ
J
,Q(x

◦
a
).

(3) (X, τ) is a ◦-Q-CI ⇐⇒
(i) (X, τM ) is a fuzzy Q-CI (See [16]),

(ii) (X, τ
B̃
) is an interval-valued fuzzy Q-CI , i.e., each x

ã
∈ IV FP (X) has

a countable interval-valued fuzzy Q-neighborhood base for Ñτ
B̃
,Q(xã

),

(iii) (X, τJ ) is a fuzzy ◦-Q-CI , i.e., each x◦
a
∈ FP (X) has a countable ◦-Q-fuzzy

neighborhood base for N◦
τ
J
,Q(x

◦
a
).

(4) (X, τ) is a ∗-Q-CI ⇐⇒
(i) (X, τM ) is a fuzzy Q-CI ,

(ii) (X, τ
B̃
) is an interval-valued fuzzy ∗-Q-CI , i.e., each x

ã
∈ IV FP (X) has

a countable ∗-interval-valued fuzzy Q-neighborhood base for Ñ∗
τ
B̃
,Q(x

∗
ã
),

(iii) (X, τJ ) is a fuzzy ◦-Q-CI .

Example 5.18. (1) Let X = {x, y} and let τ = {∅̈, Ẍ,A1,A2,A3,A4,A5,A6,A7, Ã8,A9}
be the ◦-MBJ-neutrosophic topology on X given in Example 5.4 (3). Consider two families

NQ(x
◦
ã
) and NQ(y

◦
b̃
)of MBJ-neutrosophic sets in X defined by:

NQ(x
◦
ã
) = {A ∈ MBJNS(X) : A1 ⊏ A}

and

NQ(y
◦
b̃
) = {A ∈ MBJNS(X) : A1 ⊏ A},

where ã >◦ Ac
1(x) = ⟨0.5, [0.4, 0.5], 0.7⟩ , i.e., a > 0.5, ã > [0.4, 0.5], ā < 0.7 and b̃ >◦

Ac
1(y) = ⟨0.4, [0.3, 0.4], 0.3⟩ , i.e., a > 0.4, ã > [0.3, 0.4], ā < 0.3. Then we can easily see that

NQ(x
◦
ã
) and NQ(y

◦
b̃
) are MBJ-neutrosophic neighborhood system of x◦

ã
and y◦

b̃
with respect to

τ respectively. Now consider the subfamily βQ(x
◦
ã
) [resp. βQ(y

◦
b̃
)] of NQ(x

◦
ã
) [resp. NQ(y

◦
b̃
)]

given by: for each n ∈ N,

βQ(x
◦
ã
) = {A ∈ NQ(x

◦
ã
) : ã =

〈
0.5 +

1

n
, [0.4 +

1

n
, 0.5 +

1

n
], 0.7− 1

n

〉
}

[resp. βQ(y
◦
b̃
) = {A ∈ NQ(y

◦
b̃
) : b̃ =

〈
0.4 +

1

n
, [0.3 +

1

n
, 0.4 +

1

n
], 0.3− 1

n

〉
}].
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Then it is obvious that βQ(x
◦
ã
) [resp. βQ(y

◦
b̃
)] is a ◦-MBJNQNB for NQ(x

◦
ã
) [resp. NQ(y

◦
b̃
)].

Moreover, βQ(x
◦
ã
) [resp. βQ(y

◦
b̃
)] is a countable ◦-MBJNQNB. Note that if there is no condition

for MBJNN ã, then NQ(x
◦
ã
) = {Ẍ} for each x

ã
∈ MBJNP (X). Thus (X, τ) is ◦-Q-CI . Note

that by placing constraints on MBJNN ã, we can make NQ(x
◦
ã
) have more members of τ .

(2) Let X = {x, y} and let τ = {∅̈, Ẍ,A1,A2,A3,A4,A5,A6,A7, Ã8,A9} be the ∗-MBJ-

neutrosophic topology on X given in Example 5.4 (4). Consider the family NQ(x
∗
ã
) of MBJ-

neutrosophic sets in X defined by:

NQ(x
∗
ã
) = {A ∈ MBJNS(X) : A2 ⋐ A}

and

NQ(y
∗
b̃
) = {A ∈ MBJNS(X) : A2 ⋐ A},

where ã >∗ Ac
2(x) = ⟨0.4, [0.3, 0.4], 0.4⟩, i.e., a > 0.4, ã < [0.3, 0.4], ā < 0.4 and b̃ >∗ Ac

2(y) =

⟨0.7, [0.4, 0.6], 0.6⟩, i.e., a > 0.7, ã < [0.4, 0.6], ā < 0.6. Then we can easily check that

NQ(x
∗
ã
) and NQ(y

∗
b̃
) are MBJ-neutrosophic neighborhood system of x∗

ã
and y∗

b̃
with respect to

τ respectively. Now consider the subfamily βQ(x
∗
ã
) [resp. βQ(y

∗
b̃
)] of NQ(x

∗
ã
) [resp. NQ(y

∗
b̃
)]

given by: for each n ∈ N,

βQ(x
∗
ã
) = {A ∈ NQ(x

∗
ã
) : ã =

〈
0.4 +

1

n
, [0.3− 1

n
, 0.4− 1

n
], 0.4− 1

n

〉
}

[resp. βQ(y
∗
b̃
) = {A ∈ NQ(y

∗
b̃
) : b̃ =

〈
0.7 +

1

n
, [0.4− 1

n
, 0.6− 1

n
], 0.6− 1

n

〉
}.

Then it is clear that βQ(x
∗
ã
) [resp. βQ(y

∗
b̃
)] is a ∗-MBJNQNB for NQ(x

∗
ã
) [resp. NQ(y

∗
b̃
)].

Furthermore, βQ(x
∗
ã
) [resp. βQ(y

∗
b̃
)] is a countable ∗-MBJNQNB. Also, note that if there is

no condition for MBJNN ã, then NQ(x
∗
ã
) = {Ẋ} for each x

ã
∈ MBJNP (X). Thus (X, τ) is

∗-Q-CI . Also, note that by placing constraints on MBJNN ã, we can make NQ(x
∗
ã
) have more

members of τ .

(3) Let X be an infinite set and let τ be the MBJ-neutrosophic ◦-[resp. ∗-]cofinite topology

on X. Assume that β(x◦
ã
) = {Bn : n ∈ N} is a ◦-MBJNNB for x◦

ã
. Let y◦

b̃
∈ MBJNP (X)

such that x ̸= y. Then clearly, y◦
b̃
∈ N (x◦

ã
). Thus there is n ∈ N such that y◦

b̃
̸∈ Bn. So

⊓n∈NBn = {x◦
ã
}. On the other hand, we have

x◦,c
ã

= [⊓n∈NBn]
c = ⊔n∈NBc

n.

Since Bc
n is ◦-finite for each n ∈ N, ⊔n∈NBc

n is countable. So x◦,c
ã

is countable. This is a

contradiction. Hence (X, τ) is not ◦-CI . Similarly, we can check that (X, τ) is not ∗-CI .

Proposition 5.19. Let (X, τ) be a ◦-MBJ-neutrosophc topological space. If (X, τ) is ◦-CI ,

then it is ◦-Q-CI .
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Proof. Suppose (X, τ) is ◦-CI . It is well-known (Proposition 3.1, [16]) that if (X, τM ) is fuzzy

CI , then it is fuzzy Q-CI .

Let x
ã
∈ IV FP (X). Consider a sequence {ãn = [a−n , a

+
n ]}n∈N of interval numbers converging

to ãc = [1− a+, 1− a−] and interval-valued fuzzy points x
ãn

in X, where a−n ∈ (1− a+, 1] and

a+n ∈ (1− a−, 1]. Since (X, τ) is ◦-CI , by Remark 5.15 (3), (X, τ
B̃
) is interval-valued fuzzy CI .

Then for each n ∈ N, there is a countable interval-valued open neighborhood base βn(xãn
).

Thus for each B̃ ∈ βn(xãn
), B̃(x) ≥ ãn > ãc. So B̃ ∈ Ñτ

B̃
,Q(xã

). Let β(x
ã
) be the collection

of all the members of all βn(xãn
). It is clear that β(x

ã
) is a family of interval-valued fuzzy

open Q-neighborhoods of x
ã
. Let Ã ∈ Ñτ

B̃
,Q(xã

). Then clearly, Ã(x) > ãc. Since {ãn}n∈N
is convergent to ãc, there is m ∈ N such that Ã(x) ≥ ãm > ãc, i.e., x

ãm
∈ Ã and Ã is an

interval-valued fuzzy open neighborhood of x
ãm

. Thus there is B̃ ∈ βn(xãn
) ⊂ β(x

ã
) such that

B̃ ⊂ Ã and B̃(x) ≥ ãm > ãc. So β(x
ã
) is a countable interval-valued fuzzy Q-neighborhood of

x
ã
. Hence (X, τ

B̃
) is interval-valued fuzzy Q-CI .

Now let x◦
a
∈ FP (X). Consider a sequence {an}n∈N in [0, ac) converging to ac and a ◦-fuzzy

points x◦
an

in X. Since (X, τ) is ◦-CI , by Remark 5.15 (3), (X, τj ) is ◦-fuzzy CI . Then for

each n ∈ N, there is a countable ◦-fuzzy closed neighborhood base βn(x
◦
an
). Thus for each

B ∈ βn(x
◦
an
), B(x) ≤ an < ac. So B ∈ N◦

τ
J
,Q(x

◦
a
). Let β(xa) be the collection of all the

members of all βn(xan
). It is clear that β(x◦

a
) is a family of ◦-fuzzy closed Q-neighborhoods

of x◦
a
. Let A ∈ Nτ

J
,Q(x

◦
a
). Then clearly, A(x) < ac. Since {an}n∈N is convergent to ac, there

is m ∈ N such that A(x) ≤ am < ac, i.e., x◦
am

∈ A and A is a ◦-fuzzy closed neighborhood

of x◦
am

. Thus there is B ∈ βn(x
◦
an
) ⊂ β(x◦

a
) such that B ⊃ A and B(x) ≤ am < ac. So β(x◦

a
)

is a countable ◦-fuzzy Q-neighborhood of x◦
a
. Hence (X, τJ ) is ◦-fuzzy Q-CI . Therefore by

Remark 5.15, (X, τ) is ◦-Q-CI .

Proposition 5.20. Let (X, τ) be a ∗-MBJ-neutrosophc topological space. If (X, τ) is ∗-CI ,

then it is ∗-Q-CI .

Proof. Suppose (X, τ) is a ∗-CI . Then from the proof of Proposition 5.19, the conditions

(i) and (iii) of Remark 5.15. It is sufficient to show that (ii) of Remark 5.15 holds. Let

x∗
ã
∈ IV FP (X). Consider a sequence {ãn}n∈N of interval numbers converging to ãc and a

∗-interval-valued fuzzy points x∗
ãn

in X, where a−n ∈ [0, 1 − a+n ) and a+n ∈ [0, 1 − a−n ). Since

(X, τ) is ∗-CI , by Remark 5.15 (4), (X, τ
B̃
) is a ∗-interval-valued fuzzy CI . Then for each

n ∈ N, there is a countable ∗-interval-valued fuzzy closed neighborhood base βn(x
∗
ãn
). Thus

for each B̃ ∈ βn(x
∗
ãn
), B̃(x) ≤ ãn < ãc. So B̃ ∈ N∗c

τ
B̃
,Q(x

∗
ã
). Let β(x∗

ã
) be the collection of

all the members of all βn(x
∗
ãn
). It is clear that β(x∗

ã
) is a family of ∗-interval-valued fuzzy

closed Q-neighborhoods of x∗
ã
. Let Ã ∈ Ñ∗

τ
B̃
,Q(x

∗
ã
). Then clearly, Ã(x) < ãc. Since {ãn}n∈N

is convergent to ãc, there is m ∈ N such that Ã(x) ≤ ãm < ãc, i.e., x∗
ãm

∈ Ã and Ã is a
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∗-interval-valued fuzzy closed neighborhood of x∗
ãm

. Thus there is B̃ ∈ βn(x
∗
ãn
) ⊂ β(x∗

ã
) such

that B̃ ⊃ widetildeA and B̃(x) ≤ ãm < ãc. So β(x∗
ã
) is a countable ∗-interval-valued fuzzy

Q-neighborhood of x∗
ã
. Hence (X, τJ ) is ∗-interval-valued fuzzy Q-CI . Therefore by Remark

5.15, (X, τ) is ∗-Q-CI .

Definition 5.21. Let (X, τ) be a ◦-MBJ-neutrosophc topological space or ∗-MBJ-neutrosophc

topological space.

(i) (X, τ) is said to satisfy the ◦-second axiom of countability or to be ◦-CII , if there is a

countable ◦-base β for τ .

(ii) (X, τ) is said to satisfy the ∗-second axiom of countability or to be ∗-CII , if there is a

countable ∗-base β for τ .

From Remark 4.4 (5), and Definitions 5.2 and 5.3, we can rewrite Definition 5.1 (i) as

followings.

Remark 5.22. Let (X, τ) be a ◦-MBJ-neutrosophc topological space or ∗-MBJ-neutrosophc

topological space.

(1) (X, τ) is ◦-CII ⇐⇒
(i) (X, τM ) is fuzzy CII , i.e., there is a countable fuzzy base βM for τM ,

(ii) (X, B̃) is interval-valued fuzzy CII , i.e., there is a countable

interval-valued fuzzy base β
B̃

for τ
B̃
,

(iii) (X, τJ ) is ◦-fuzzy CII , i.e., there is a countable ◦-fuzzy base βJ for τJ .

(2) (X, τ) is ∗-CII ⇐⇒
(i) (X, τM ) is fuzzy CII , i.e., there is a countable fuzzy base βM for τM ,

(ii) (X, B̃) is ∗-interval-valued fuzzy CII , i.e., there is a countable ∗-interval-
valued fuzzy base β

B̃
for τ

B̃
,

(iii) (X, τJ ) is ◦-fuzzy CII , i.e., there is a countable ◦-fuzzy base βJ for τJ .

Proposition 5.23. Let (X, τ) be a ◦-MBJ-neutrosophc topological space or a ∗-MBJ-

neutrosophc topological space.

(1) If (X, τ) is ◦-CII , then it is ◦-CI .

(2) If (X, τ) is ∗-CII , then it is ∗-CI .

Proof. (1) Suppose (X, τ) is ◦-CII . It is well-known (Theorem 3.3, [14]) that if (X, τM ) is fuzzy

CII , then it is fuzzy CI . Thus (X, τM ) satisfies the condition (i) of Remark 5.15 (3).

Let x
ã
∈ IV FP (X). Then by the hypothesis and Remark 5.22 (1), there is a countable

interval-valued fuzzy base β
B̃
for τ

B̃
. Let β

B̃,x
ã
be the subfamily of β

B̃
given by β

B̃,x
ã
= {B̃ :

x
ã
∈ B̃ ∈ β

B̃
}. Then clearly, β

B̃,x
ã
is countable. Let Ã ∈ τ

B̃
such that x

ã
∈ Ã. Since β

B̃
is an
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interval-valued fuzzy base for τ
B̃
, by Theorem 5.10, there is B̃ ∈ β

B̃
such that x

ã
∈ B̃ ⊂ Ã.

Then by the definition of β
B̃,x

ã
, B̃ ∈ β

B̃,x
ã
. Thus (X, τ

B̃
is interval-valued fuzzy CI . So (X, τ

B̃

satisfies the condition (ii) of Remark 5.15 (3).

Now let x◦
a
∈ FP (X). Then by the hypothesis and Remark 5.22 (1), there is a countable

◦-fuzzy base βJ for τJ . Let βJ,x◦
a
be the subfamily of βJ defined by βJ,x◦

a
= {B : x◦

a
∈ B ∈ βJ}.

Then clearly, βJ,xcirc
a

is countable. Let A ∈ τJ such that x◦
a
∈ A. Since βJ is a ◦-fuzzy base for

τJ , by Theorem 5.10, there is B ∈ βJ such that x◦
a
∈ B ⊃ A. Then by the definition of βJ,x◦

a
,

B ∈ βJ,x◦
a
. Thus (X, τJ is ◦-fuzzy CI . So (X, τJ satisfies the condition (iii) of Remark 5.15

(3). Hence (X, τ) is ◦-CI .

(2) Suppose (X, τ) is ∗-CII . From (1), it is obvious that the conditions (i) and (iii) of

Remark 5.15 (4). It is sufficient to prove that (ii) of Remark 5.15 (4) holds.

The following is an immediate consequence of Propositions 5.19, 5.20 and 5.23.

Corollary 5.24. Let (X, τ) be a ◦-MBJ-neutrosophc topological space or a ∗-MBJ-neutrosophc

topological space.

(1) If (X, τ) is ◦-CII , then it is ◦-Q-CI .

(2) If (X, τ) is ∗-CII , then it is ∗-Q-CI .

The converse of Proposition 5.23 does not hold in general (See Example 5.33).

Definition 5.25 ( [37]). Let X be a classical topological space and let A : X → I be a

mapping.

(i) A is said to be lower semi-continuous [resp. upper semi-continuous] at a ∈ X, if for each

h < A(a) [resp. k > A(a)], there is a neighborhood V of a such that h < A(x) [resp. k > A(x)]

for each x ∈ V .

(ii) A is said to be lower semi-continuous [resp. upper semi-continuous] on X, if it is lower

semi-continuous [resp. upper semi-continuous] at each a ∈ X.

It is well-known (6.2, [37]) that A is continuous on X if and only if A is both upper and

lower semi-continuous on X. Moreover, A is lower semi-continuous on X if and only if 1− A

is upper semi-continuous on X.

For a fuzzy set A in a set X and any a ∈ I, the weak [resp. strong] a-cut or a-level set of A,

denoted by [A]a [resp. [A]a], is a subset of X defined as follows:

[A]a = {x ∈ X : A(x) ≥ a} [resp.[A]a = {x ∈ X : A(x) > a} (See [14]).
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Definition 5.26 ( [14]). Let (X,T ) be a classical topological space. Then the induced fuzzy

topology on X, denoted by F (T ), is a family of fuzzy sets in X given as follows:

F (T ) = {A ∈ IX : A is lower semi-continuous}.

It is well-known (Proposition 3.3, [15]) that for a classical topological space (X,T ) and

A ∈ IX , A is fuzzy open [resp. closed] in (X,F (T )) if and only if for each a ∈ I, [A]a ∈ T

[resp. [A]a ∈ T c]. Then from Definition 5.25 and the above fact,

F (T ) = {A ∈ IX : [A]a ∈ T, a ∈ I} and CF (T ) = {A ∈ IX : [A]a ∈ T c, a ∈ I},

where CF (T ) will be called the induced fuzzy cotopology on X. Furthermore, we can easily see

that the family {[A,A] ∈ IV FS(X) : A ∈ F (T )} is an interval-valued fuzzy topology on X,

and it will be called the induced interval-valued fuzzy topology on X and denoted by IV F (T ).

Also, CIV F (T ) = {[A,A] ∈ IV FS(X) : A ∈ CF (T )} is an interval-valued fuzzy cotopology

on X.

Remark 5.27. Let (X,T ) be a classical topological space and consider the families τ and η

of MBJ-neutrosophic sets in X defined as follows:

τ = {A ∈ MBJNS(X) : MA ∈ F (T ), B̃A ∈ IV F (T ), JA ∈ CF (T )},

η = {A ∈ MBJNS(X) : MA ∈ F (T ), B̃A ∈ CIV F (T ), JA ∈ CF (T )}.

Then clearly, τ ∈ MBJNT ◦(X) and η ∈ MBJNT ∗(X). In this case, we will call τ and η as

the induced ◦-MBJ-neutrosophic topology and the induced ∗-MBJ-neutrosophic topology on X.

Result 5.28 (See Lemma 3.1, [16]). Let (X,T ) be a classical complete regular topological

space. Then for each B ∈ F (T ), there is a family βF ⊂ IX each member of which is continuous

with respect to T , such that B =
⋃

A∈βF
A. In other words, the family

βF = {A ∈ IX : A is continuous on I}

forms a fuzzy base for F (T ).

Remark 5.29. Let (X,T ) be a classical complete regular topological space and consider the

following families:

βIV F = {[A,A] ∈ IV F (X) : A ∈ βF },

β◦
F = {A ∈ IX : Ac is continuous on I},

β∗
IV F = {[A,A] ∈ IV F (X) : A ∈ β◦

F }.

Then from Result 5.28, we can easily see that βIV F , β
◦
F and β∗

IV F form an interval-valued fuzzy

base for IV F (T ), a ◦-fuzzy base for CF (T ) and a ∗-interval-valued fuzzy base for CIV F (T )

respectively.
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From Remarks 5.5 (1), 5.27 and 5.29, and Result 5.28, we have the following.

Lemma 5.30. Let (X,T ) be a classical complete regular topological space and consider the

following families:

β = {A ∈ MBJNS(X) : MA ∈ βF , B̃A ∈ βIV F , JA ∈ β◦
F },

β∗ = {A ∈ MBJNS(X) : MA ∈ βF , B̃A ∈ β∗
IV F , JA ∈ β◦

F }.

(1) β forms a ◦-MBJNB for τ .

(2) β∗ forms a ∗-MBJNB for η.

Result 5.31 (See Theorem 3.1, [16]). Let (X,T ) be the subspace I of the real axis and let

F (T ) be the induced fuzzy topology for T . Then (X,F (T ) is fuzzy CII but not fuzzy CI .

Lemma 5.32 (See Theorem 3.1, [16]). Let (X,T ) be the subspace I of the real axis.

(1) (X, IV F (T )) is interval-valued fuzzy CII but not interval-valued fuzzy CI .

(2) (X,CF (T )) is ◦-fuzzy CII but not ◦-fuzzy CI .

(3) (X,CIV F (T )) is ∗-interval-valued fuzzy CII but not ∗-interval-valued fuzzy CI .

Proof. The proofs are similar to Result 5.31.

From Remark 5.26, Lemmas 5.30 and 5.32, and Result 5.31, we can give as an example

which the converse of Proposition 5.23 does not hold.

Example 5.33. Let (X,T ) be the subspace I of the real axis.

(1) (X, τ) is ◦-CII but not ◦-CI .

(2) (X, η) is ∗-CII but not ∗-CI .

6. Conclusions

Through the study, we obtained several results as follows:

(1) (MBJNS(X),⊔,⊓,c,i , ∅̈, Ẍ) and (MBJNS(X),⋓,⋒,c,i , ∅̇, Ẋ) form Boolean algebras

except the condition (13) of Proposition 3.7.

(2) An MBJ-neutrosophic neighborhood system generates an MBJ-neutrosophic topology

(See Theorem 4.16 and 4.18).

(3) The characterization of MBJ-neutrosophic base (See Theorems 5.6 and 5.8).

(4) A necessary and sufficient condition for a set of MB J-neutrosophic sets to be an MBJ-

neutrosophic topology (See Theorems 5.9 and 5.10).

(5) The relationships among ◦-CI , ∗-CI , ◦-CII and ∗-CII .

Before conducting our research, we came across an interesting paper written by Al-shami [38]

during a literature search. By defining soft separation axioms in soft topological spaces, he
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proposed an algorithm for decision-making problems. In the future, we try to study separation

axioms based on MBJ-neutrosophic sets and to apply them to decision-making problems.

Moreover, we expect that one can apply MBJ-neutrosophic sets to a category theory, a graph

theory, a group theory, etc.
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Abstract: As a generalization of trapezoidal fuzzy neutrosophic numbers (TFNNs), credibility 

trapezoidal fuzzy neutrosophic numbers (C-TFNNs) can independently describe true, false, and 

indeterminate membership degrees and their credibility levels in uncertain and inconsistent 

scenarios. Since the true, false, and indeterminate membership degrees are closely related to their 

credibility levels, C-TFNN can ensure the credibility of TFNN, which shows its clear merit. 

However, C-TFNNs cannot expresses the interval membership degrees of the truth, falsity and 

indeterminacy and the uncertain credibility levels, which are produced due to human cognitive 

vagueness, incompleteness, and uncertainty. Furthermore, existing decision models of C-TFNNs 

cannot perform such a DM issue with both ITFNNs and uncertain credibility levels, which reveals 

a gap.  To compensates for this gap. this paper extends C-TFNNs to credibility interval TFNNs (C-

ITFNNs), which strengthens the expression capability of uncertain information. Then, the 

operational laws and score function of C-ITFNNs are defined to solve the aggregation and sorting 

issues of C-ITFNNs in decision-making (DM) problems. Subsequently, the C-ITFNN weighted 

geometric averaging (C-ITFNNWGA) and C-ITFNN weighted arithmetic averaging (C-

ITFNNWAA) operators are proposed in view of operational laws of C-ITFNNs. Furthermore, a 

multi-attribute DM model is established in terms of the two aggregation operators and the score 

function in the C-ITFNN circumstance. Finally, a DM case of landslide control design schemes is 

used to reveal the applicability of the proposed DM model in the C-ITFNN scenario. By comparative 

analysis, the main superiority of our new DM model is that it not only compensates for the gap of 

existing DM models, but also is more reliable and versatile than existing DM models. 

Keywords: Credibility interval trapezoidal fuzzy neutrosophic number, credibility interval 

trapezoidal fuzzy neutrosophic number weighted arithmetic averaging operator, credibility interval 

trapezoidal fuzzy neutrosophic number weighted geometric averaging operator, decision making, 

landslide control design scheme 
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1. Introduction 

In real life, there are many uncertainties and ambiguities, which it is difficult to measure by crisp 

concepts. Then, fuzzy sets [1] can represent them by membership degrees belonging to [0, 1]. Due to 

the uncertainty of the membership degrees, they are difficultly described by exact fuzzy values, so 

the concept of interval-valued fuzzy sets (IVFSs) was proposed to solve this issue [2]. However, since 

there is true and false information in real life, Atanassov [3] proposed the concept of intuitionistic 

fuzzy sets (IFSs). Subsequently, IFSs were generalized to interval-valued IFSs (IVIFSs) [4] to facilitate 

the representation of incomplete and uncertain information. Although IFSs and IVIFSs can better 

express true and false membership degrees belonging to [0, 1], they cannot represent true, false, and 

indeterminate membership degrees independently and indeterminate and inconsistent information. 

To solve these issues, the neutrosophic sets (NSs) presented by Smarandache [5] are the extension of 

various fuzzy sets. Since NS can easily describe indeterminate and inconsistent information in terms 

of true, false, and indeterminate membership degrees, it reveals obvious merits. Due to the diversity 

of neutrosophic expressions (including fuzzy sets, IVFSs, IFSs, IVIFSs), neutrosophic theory has also 

become a research hotspot of scholars in recent years and has been widely used in many fields, such 

as risk assessment [6, 7], image processing (segmentation, denoising, and thresholding) [8-10], 

decision-making (DM) [11-14], and so on. As subsets of NSs, interval NSs (INSs) and single-valued 

NSs (SVNSs) were proposed by Wang et al. [15, 16]. Then SVNSs and INSs have been widely used in 

DM problems [17-21], risk assessment [22, 23], and medical diagnosis [24-26] in neutrosophic 

environments. 

In order to extend discrete fuzzy information to continuous fuzzy information, Wang and Zhong 

[27] proposed the concept of intuitionistic trapezoidal fuzzy numbers (ITFNs) based on true and false 

trapezoidal fuzzy numbers (TFNs) and defined their operational laws and the weighted geometric 

and arithmetic averaging operators for DM. Wan and Dong [28] proposed a multi-attribute group 

DM approach of ITFNs. Li [29] proposed interval-valued intuitionistic trapezoidal fuzzy numbers 

(IVITFNs) as a further extension of ITFNs. Subsequently, Ye [30] proposed the concept of trapezoidal 

fuzzy neutrosophic numbers (TFNNs) in view of true, false and indeterminate TFNs and defined 

some weighted aggregation operators of TNNs for DM. Then, the concept of interval trapezoidal 

fuzzy neutrosophic numbers (ITFNNs) [31] were proposed to solve the problems of multi-attribute 

DM [32-34] in the setting of ITFNNs. As a special case of TFNNs, Deli and Şubaş [35] introduced the 

weighted geometric operators of triangular fuzzy neutrosophic numbers and applied them to DM 

problems. 

However, decision makers are not completely familiar with various attributes in a DM problem 

when they evaluate them. The accuracy of the evaluation given by decision makers to unfamiliar 

attributes is not as high as that of familiar attributes, so it will affect the accuracy of the DM results. 

For this case, we need to consider the decision maker's credibility level to ensure the credibility of the 

assessment value to each attribute in a DM problem. Therefore, Ye et al. [36] proposed the concept of 

fuzzy credibility numbers (FCNs) to enrich the evaluation information of multi-attribute DM 

problems and to ensure their DM credibility. Then, Ye et al. [37] further proposed the concept of 

credibility TFNNs (C-TFNNs) and established a multi-attribute DM model using the C-TFNN 

weighted geometric averaging (C-TFNNWGA) and C-TFNN weighted arithmetic averaging (C-

TFNNWAA) operators to solve DM problems with C-TFNNs.  

In the C-TFNN situation, it is difficult for decision makers to give exact C-TFNNs, but they easily 

provide ITFNNs and uncertain credibility levels in indeterminate DM problems to meet the uncertain 

judgments and expressions of decision makers. However, the existing various DM techniques cannot 

handle such a DM issue with both ITFNNs and uncertain credibility levels. Therefore, we need to 

make up for this gap. To do so, this paper aims to: (a) propose the concept of credibility ITFNNs (C-

ITFNNs) and the C-ITFNN score function and sorting rules, (b) present two basic aggregation 

operators of C-ITFNNs, (c) establish a multi-attribute DM model in the scenario of C-ITFNNs, and 
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(d) apply the established DM model to an actual DM case of landslide control design schemes 

(LCDSs) in the C-ITFNN scenario. 

In this original study, the contributions and advantages of this paper are revealed as follows: 

(1) The proposed C-ITFNNs can overcome the defect of single-valued/exact C-TFNNs in the 

expression of indeterminate information. 

(2) The proposed C-ITFNN makes the expression of uncertain information more reasonable 

and reliable. 

(3) The proposed C-ITFNNWAA and C-ITFNNWGA operators and score function provide 

effective DM tools for handling multi-attribute DM problems with C-ITFNNs. 

(4) The DM model established in the C-ITFNN setting has stronger DM credibility and more 

general DM capabilities. 

The rest of the paper is given as follows. Section 2 introduces the related concepts of INS and C-

TFNNs, the weighted geometric and arithmetic averaging operators of C-TFNNs, and the scoring 

function of C-TFNN as preliminaries in this study. Section 3 presents some new concepts of C-

ITFNNs, including operational laws, score function, and sorting rules of C-ITFNNs. Section 4 

introduces the weighted geometric averaging (C-ITFNNWGA) and weighted arithmetic averaging 

(C-ITFNNWAA) operators for C-ITFNNs and their characteristics. In Section 5, a multi-attribute DM 

model is established in light of the C-ITFNNWAA and C-ITFNNWGA operators and score function. 

Section 6 demonstrates the applicability of the proposed DM model through an actual DM case of 

LCDSs in the C-ITFNN scenarios. Section 7 summarizes the conclusions of this article and future 

research. 

2. Preliminaries  

Definition 1 [15]. Let X be a non-empty set. An INS P  in X is given by 

 , ( ), ( ), ( ),
P P P

P x T x I x F x x X  , 

where  ( ) 0,1
P

T x  ,  ( ) 0,1
P

I x  , and  ( ) 0,1
P

F x   are the true, indeterminate, and false 

membership functions and then their membership degrees are subject to 

0 sup( ( )) sup( ( )) sup( ( )) 3
P P P

T x I x F x    . 

Definition 2 [37]. Let X  be a non-empty set. A C-TFNN s is denoted by 

            1 2 3 4 1 2 3 4( , , , ); , , , ( , , , ); , ,N N N L L Ls g g g g T x I x F x h h h h T x I x F x . Then, it’s 

true, indeterminate, and false membership functions are denoted as follows: 

1
1 2

2 1

2 3

4
3 4

4 3

, ,

, ,
( )

, ,

0,otherwise

N

N

N

N

x g
T g x g

g g

T g x g
T x

g x
T g x g

g g
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2 1
1 2

2 1

2 3

3 4
3 4

4 3

( )
,

, ,
( )

( )
, ,

1,otherwise

N

N

N

N

g x I x g
g x g

g g

I g x g
I x

x g I g x
g x g

g g

  
  


 

 
    

 



，

 

2 1
1 2

2 1

2 3

3 4
3 4

4 3

( )
,

, ,
( )

( )
, ,

1,otherwise

N

N

N

N

g x F x g
g x g

g g

F g x g
F x

x g F g x
g x g

g g

  
  


 

 
    

 



，

  

and it’s true, indeterminate, and false credibility measure functions are denoted as follows: 

1
1 2

2 1

2 3

4
3 4

4 3

, ,

, ,
( )

, ,

0,otherwise

L

L

L

L

x h
T h x h

h h

T h x h
T x

h x
T h x h

h h


  


 

 
  

 



 

2 1
1 2

2 1

2 3

3 4
3 4

4 3

( )
,

, ,
( )

( )
, ,

1,otherwise

L

L

L

L

h x I x h
h x h

h h

I h x h
I x

x h I h x
h x h

h h

  
  


 

 
    

 



,

 

2 1
1 2

2 1

2 3

3 4
3 4

4 3

( )
,

, ,
( )

( )
, ,

1,otherwise

L

L

L

L

h x F x h
h x h

h h

F h x h
F x

x h F h x
h x h

h h

  
  


 

 
    

 



,

 

where , , [0,1]N N NT I F  , , , [0,1]L L LT I F  , 0 3N N NT I F    , 0 3L L LT I F    , and  

gk, hk   (k = 1, 2, 3, 4). Then, a C-TFNN s is simply denoted as 

    1 2 3 4 1 2 3 4, , , ; , , , , , , ; , ,N N N L L Ls g g g g T I F h h h h T I F . 
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Definition 3 [37]. Let 
 

 

11 12 13 14 1 1 1

1

11 12 13 14 1 1 1

, , , ; , , ,

, , , ; , ,

N N N

L L L

g g g g T I F
s

h h h h T I F

 
 
 
 

 and 

 

 

21 22 23 24 2 2 2

2

21 22 23 24 2 2 2

, , , ; , , ,

, , , ; , ,

N N N

L L L

g g g g T I F
s

h h h h T I F

 
 
 
 

 be two C-TFNNs and 0  . The operational laws are 

defined as follows: 

(1) 

 

 

11 21 12 22 13 23 14 24

1 2 1 2 1 2 1 2

1 2

11 21 12 22 13 23 14 24

1 2 1 2 1 2 1 2

, , , ;
,

, ,
s

, , , ;

, ,

N N N N N N N N

L L L L L L L L

g g g g g g g g

T T T T I I F F
s

h h h h h h h h

T T T T I I F F

    
 

  
   

    
   

, 

(2) 

 

 

11 21 12 22 13 23 14 24

1 2 1 2 1 2

1 2 1 2

1 2

11 21 12 22 13 23 14 24

1 2 1 2 1 2

1 2 1 2

, , , ;

, , ,

, , , ;

, ,

N N N N N N

N N N N

L L L L L L

L L L L

g g g g g g g a

T T I I I I

F F F F
s s

h h h h h h h h

T T I I I I

F F F F

 
 

  
  
  
 
 
  
 
  
 

, 

(3) 

 

 

 

 

11 12 13 14

1 1 1

1

11 12 13 14

1 1 1

, , , ;
,

1 1 , ,

, , , ;

1 1 , ,

N N N

L L L

g g g g

T I F
s

h h h h

T I F

  

  

   


   

 
 
  
 
 
 
   

, 

(4)  
     

     

11 12 13 14 1 1 1

1

11 12 13 14 1 1 1

, , , ; ,1 1 ,1 1 ,

, , , ; ,1 1 ,1 1

N N N

L L L

g g g g T I F
s

h h h h T I F

     



     

    
 


 
    
 

. 

Regarding a series of C-TFNNs 
 

 

1 2 3 4

1 2 3 4

, , , ; , , ,

, , , ; , ,

i i i i Ni Ni Ni

i

i i i i Li Li Li

g g g g T I F
s

h h h h T I F

 
 
 
 

 (i = 1, 2, …, J) subject 

to the weight i  of si with 0 1i   and 
1

1
J

i

i




 , the C-TFNNWAA and C-TFNNWGA 

operators [37] are introduced as follows: 
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1 2 3 4
1 1 1 1

1 1 1

1 2
1
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1 1 1 1

1 1
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,

1 1 , ,
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, , , ;

1 1 , ,

i i i

i i i

J J J J
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i i i i

J J J
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J J J J
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J J
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i i

g g g g

T I F

s s s s
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1 2 3 4
1 1 1 1

1 1 1

1 2
1

1 2 3 4
1 1 1 1

1

, , , ;

,

,1 1 ,1 1

C-TFNNWGA , ,...,
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i i i i

i ii

i

i i i i

ii

J J J J

i i i i
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J J J
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1 1

i

J J

i

i i



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

. (2) 

Definition 4 [37]. To compare C-TFNNs, the score function of C-TFNN is defined as 

   

   

1 2 3 4

1 2 3 4

21
( )

144 2

N N N

L L L

g g g g T I F
S s

h h h h T I F

        
  

        

,  0 1S s  .     (3) 

The following sorting rules are given by the score function: 

(1) If 1 2( ) ( )S s S s , then 1 2s s ; 

(2) If 1 2( ) ( )S s S s , then 1 2s s . 

Particularly, when we ignore credibility degrees in C-TFNNs, C-TFNNs becomes TFNNs. Thus, 

Eqs. (1)-(3) become the TFNN weighted arithmetic averaging (TFNNWAA) and TFNN weighted 

geometric averaging (TFNNWGA) operators and the score function [30]: 

 

 

1 2
1

1 2 3 4
1 1 1 1 1 1 1

TFNNWAA , ,...,

, , , ;1 1 , ,i i i

J

J i i

i

J J JJ J J J

i i i i i i i i Ni Ni Ni

i i i i i i i

s s s s

g g g g T I F
  



   



      



 
   
 



      

,           (4) 

 

   

1 2
1

1 2 3 4
1 1 1 1 1 1 1

TFNNWGA , ,...,

, , , ; ,1 1 ,1 1

i

i ii i i i i

J

J i

i

J J J J J J J

i i i i Ni Ni Ni

i i i i i i i

s s s s

g g g g T I F



     



      



 
     
 



      
,  (5) 
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      1 2 3 4

1
( ) 2 , ( ) 0,1

12
N N NS s g g g g T I F S s          .            (6) 

If there are no credibility degrees, g1 = g2 = g3 = g4 = 1 and h1 = h2 = h3 = h4 = 1 (without considering 

TFNs) in C-TFNNs, C-TFNNs become single-valued neutrosophic numbers (SVNNs). Thus, Eqs. (1)-

(3) become the SVNN weighted arithmetic averaging (SVNNWAA) and SVNN weighted geometric 

averaging (SVNNWGA) operators and the score function [19]: 

   1 2
1 1 1 1

SVNNWAA , ,..., 1 1 , ,i i i

J J JJ

J i i Ni Ni Ni

i i i i

s s s s T I F
  

   

 
    

 
    ,        (7) 

     1 2
1 1 1 1

SVNNWGA , ,..., ,1 1 ,1 1i ii i

J J J J

J i Ni Ni Ni

i i i i

s s s s T I F
  

   

 
      

 
    ,     (8) 

    
1

( ) 2 , ( ) 0,1
3

N N NS s T I F S s      .                        (9) 

3. C-ITFNNs 

As an extension of C-TFNNs, this section proposes C-ITFNNs, some operational laws of C-

ITFNNs, and a score function for comparing C-TFNNs. 

Definition 5. Set X as a non-empty set. A C-ITFNN a  can be defined as 

 1 2 3 4 1 2 3 4( , , , ); ( ), ( ), ( ) , ( , , , ); ( ), ( ), ( )N N N L L La g g g g T x I x F x h h h h T x I x F x  for x  X. Then, 

it’s true, indeterminate, and false membership functions and their corresponding credibility measure 

functions are indicated, respectively, as follows: 

1 1
1 2

2 1 2 1

2 3

4 4
3 4

4 3 4 3

, , ,

, , ,
( )

, , ,

[0,0],otherwise

N N

N N

N

N N

x g x g
T T g x g

g g g g

T T g x g
T x

g x g x
T T g x g

g g g g

 

 

 

  
  

  
     
  

  
  




, 

2 1 2 1
1 2

2 1 2 1

2 3

N

3 4 3 4
3 4

4 3 4 3

( ) ( )
, ,

, , ,
( )

( ) ( )
, , ,

[1,1],otherwise

N N

N N

N N

g x I x g g x I x g
g x g

g g g g

I I g x g
I x

x g I g x x g I g x
g x g

g g g g

 

 

 

      
  

  
     
      

  
  




，

, 
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2 1 2 1
1 2

2 1 2 1

2 3

3 4 3 4
3 4

4 3 4 3

( ) ( )
, ,

, , ,
( )

( ) ( )
, , ,

[1,1],otherwise

N N

N N

N

N N

g x F x g g x F x g
g x g

g g g g

F F g x g
F x

x g F g x x g F g x
g x g

g g g g

 

 

 

      
  

  
     
      

  
  




，

, 

and it’s true, indeterminate and false credibility measure functions are indicated as follows: 

1 1
1 2

2 1 2 1

2 3

4 4
3 4

4 3 4 3

, , ,

, , ,
( )

, , ,

[0,0],otherwise

L L

L L

L

L L

x h x h
T T h x h

h h h h

T T h x h
T x

h x h x
T T h x h

h h h h

 

 

 

  
  

  
     
  

  
  




, 

2 1 2 1
1 2

2 1 2 1

2 3

3 4 3 4
3 4

4 3 4 3

( ) ( )
, ,

, , ,
( )

( ) ( )
, , ,

[1,1],otherwise

L L

L L

L

L L

h x I x h h x I x h
h x h

h h h h

I I h x h
I x

x h I h x x h I h x
h x h

h h h h

 

 

 

      
  

  
     
      

  
  




，

, 

1 1 1 1
1 2

2 1 2 1

2 3

3 4 3 4
3 4

4 3 4 3

( ) ( )
, ,

, , ,
( )

( ) ( )
, , ,

[1,1],otherwise

L L

L L

L

L L

h x F x h h x F x h
h x h

h h h h

F F h x h
F x

x h F h x x h F h x
h x h

h h h h

 

 

 

      
  

  
     
      

  
  




，

, 

where      , 0,1 , , 0,1 , , 0,1N N N N N NT T I I F F                   and 

     , 0,1 , , 0,1 , , 0,1L L L L L LT T I I F F                   are the true, indeterminate, false interval 

membership degrees and credibility levels in the C-ITFNN a  subject to 0 3N N NT I F       and 

0 3L L LT I F      , then gk, hk   (k = 1, 2, 3, 4) are the parameters of ITFNNs in the C-ITFNN a

. 

For the convenient representation of the C-ITFNN a , it is simply expressed as 

 1 2 3 4 1 2 3 4( , , , ); , , , ( , , , ); , ,N N N L L La g g g g T I F h h h h T I F . 

Then, the two special cases of C-ITFNN are indicated below: 

(1) If the upper and lower endpoints of the interval values ,N NT T  
  , ,N NI I  

  , ,N NF F  
  , 

,L LT T  
  , ,L LI I  

  , and ,L LF F  
   in the C-ITFNN a  are equal, C-ITFNN becomes C-TFNN.  
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(2) If g1 = g2 = g3 = g4 = 1 and h1 = h2 = h3 = h4 = 1 in the C-ITFNN a , C-ITFNN becomes the 

credibility interval neutrosophic number. 

Definition 6. Let 
 

 

11 12 13 14 1 1 1 1 1 1

1

11 12 13 14 1 1 1 1 1 1

, , , ; , , , , ,

, , , ; , , , , ,

N N N N N N

L L L L L L

g g g g T T I I F F
a

h h h h T T I I F F

     

     

      
      

       
      

 and 

 

 

21 22 23 24 2 2 2 2 2 2

2

21 22 23 24 2 2 2 2 2 2

, , , ; , , , , ,

, , , ; , , , , ,

N N N N N N

L L L L L L

g g g g T T I I F F
a

h h h h T T I I F F

     

     

      
      

       
      

 be two C-ITFNNs and 0  . 

Then, their operational laws are satisfied below: 

(1) 

11 21 12 22 13 23 14 24

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

11 21 12 22 13 23 14 24

1 2 1 2

( , , , );

, , ,

, , ,

( , , , );

N N N N N N N N

N N N N N N N N

L L L L

g g g g g g g g

T T T T T T T T

I I I I F F F F
a a

h h h h h h h h

T T T T

       

       

   

   

     

   
   

 

   

  1 2 1 2

1 2 1 2 1 2 1 2

, ,

, , ,

L L L L

L L L L L L L L

T T T T

I I I I F F F F

   

       

 
 
 
 
 
 
 
 
 

    
 
    

    

; 

(2) 

 

 

11 21 12 22 13 23 14 24 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

11 21 12 22 13 23 14 24 1 2

, , , ; , ,

, , ,

,

, , , ;

N N N N

N N N N N N N N

N N N N N N N N

L L

g g g g g g g g T T T T

I I I I I I I I

F F F F F F F F
a a

h h h h h h h h T T

   

       

       

 

 
 

     

     
 

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, ,

, ,

,

L L

L L L L L L L L

L L L L L L L L

T T

I I I I I I I I

F F F F F F F F

 

       

       

 
 
 
 
 
 
 

   
 

      
 
       

; 

(3) 

     

       

     

       

11 12 13 14 1 1

1 1 1 1

1

11 12 13 14 1 1

1 1 1 1

, , , ; 1 1 ,1 1 ,

, , ,

, , , ; 1 1 ,1 1 ,

, , ,

N N

N N N N

L L

L L L L

g g g g T T

I I F F

a

h h h h T T

I I F F

 

   

 

   

   



   

 

   

 

   

        
 

    
       

  
     
   

    
        

,




; 
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(4)  

     

   

   

     

   

   

11 12 13 14 1 1

1 1

1 1

1

11 12 13 14 1 1

1 1

1 1

, , , ; , ,

1 1 ,1 1 , ,

1 1 ,1 1

, , , ; , ,

1 1 ,1 1 ,

1 1 ,1 1

N N

N N

N N

L L

L L

L L

g g g g T T

I I

F F

a

h h h h T T

I I

F F

 
   

 

 



 
   

 

 

 

 

 

 

 

 

  
   


    
  

    
  


 
  

    
  

    
  





 
 
 
 
 
 
 
 
 
 
 
 



. 

To compare C-ITFNNs, the score function and sorting rules of C-ITFNNs are defined in terms 

of the score function of C-TFNN [37]. 

Definition 7. Set 
 

 

1 2 3 4

1 2 3 4

, , , ; , , , , ,

, , , ; , , , , ,

N N N N N N

L L L L L L

g g g g T T I I F F
a

h h h h T T I I F F

     

     

      
      

       
      

 as C-ITFNN. The score 

function is defined below: 

      

    

    

    

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1
4

24
1

4
24

1
4

576

4 .

N N N N N N

L L L L L L

N N N N N N

L L L L L L

S a g g g g T T I I F F

h h h h T T I I F F

g g g g T T I I F F

h h h h T T I I F F

     

     

     

     

           

         

           

         

     (10)  

For two C-ITFNNs 1a  and 2a , if    1 2S a S a , then 1 2a a ; if    1 2S a S a , then 

1 2a a . 

Example 1. Set two C-ITFNNs as 
       

       
1

0.4,0.5,0.6,0.7 ; 0.7,0.9 , 0.1,0.3 , 0.2,0.3 ,

0.3,0.4,0.5,0.6 ; 0.5,0.6 , 0.2,0.3 , 0.1,0.2
a

 
 
 
 

 and 

       

       
2

0.5,0.6,0.7,0.8 ; 0.6,0.8 , 0.3,0.5 , 0.1,0.2 ;

0.6,0.7,0.8,0.9 ; 0.5,0.7 , 0.2,0.3 , 0.1,0.3
a

 
 
 
 

. Thus, the two C-ITFNNs are sorted 

by the score function of Eq. (10): 

Since 
   

   
1

0.4 0.5 0.6 0.7 4 0.7 0.9 0.1 0.3 0.2 0.31
( ) 0.1389

576 0.3 0.4 0.5 0.6 4 0.5 0.6 0.2 0.3 0.1 0.2
S a

          
  

            

 

and 
   

   
2

0.5 0.6 0.7 0.8 4 0.6 0.8 0.3 0.5 0.1 0.21
( ) 0.2504

576 0.6 0.7 0.8 0.9 4 0.5 0.7 0.2 0.3 0.1 0.3
S a

          
  

            

, the 

sorting of both is 1 2a a . 

4. Two Basic Aggregation Operators of C-ITFNNs 
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As an important tool of aggregation operators for DM modeling, this section proposes two basic 

aggregation operators for C-ITFNNs by extending the weighted arithmetic and geometric averaging 

operators of C-TFNNs proposed by Ye et al. [37]. 

Definition 8. Set 
 

 

1 2 3 4

1 2 3 4

, , , ; , , , , ,

, , , ; , , , , ,

i i i i Ni Ni Ni Ni Ni Ni

i

i i i i Li Li Li Li Li Li

g g g g T T I I F F
a

h h h h T T I I F F

     

     

      
      

       
      

 (i = 1, 2, …, J) as a 

group of C-ITFNNs with the weight i  of ia  for 0 1i   and 
1

1
J

i

i




 . The C-ITFNNWAA 

operator is defined as follows: 

1 2
1

( , ,..., )
J

J i i

i

C ITFNNWAA a a a a


  .                       (11) 

In view of the operational laws of C-ITFNNs and Eq. (11), we can obtain the C-ITFNNWAA 

operator. 

Theorem 1. Set 
 

 

1 2 3 4

1 2 3 4

, , , ; , , , , ,

, , , ; , , , , ,

i i i i Ni Ni Ni Ni Ni Ni

i

i i i i Li Li Li Li Li Li

g g g g T T I I F F
a

h h h h T T I I F F

     

     

      
      

       
      

 (i = 1, 2, …, J)  as a 

group of C-ITFNNs with the weight i  of ia  for 0 1i   and 
i 1

1
J

i


 . On the basis of Eq. (11) 

and the operational laws of C-ITFNNs, the C-ITFNNWAA operator can be expressed as follows: 

   

       

1 2 3 4
1 1 1 1

1 1

1 1 1 1

1 2
1

1

, , , ;

1 1 ,1 1 , ,

, , ,

( , ,... )

,

i i

i i i i

J J J J

i i i i i i i i

i i i i

J J

Ni Ni

i i

J J J J

Ni Ni Ni Ni
J

i i i i

J i i

i

i i i

g g g g

T T

I I F F

C ITFNNWAA a a a a

h

 

   

   



 

   

 

 

   

   



 
 
 

 
    

 

   
   
   

  

   

 

   


   

       

2 3 4
1 1 1 1

1 1

1 1 1 1

, , ;

1 1 ,1 1 ,

, , ,

i i

i i i i

J J J J

i i i i i

i i i i

J J

Li Li

i i

J J J J

Li Li Li Li

i i i i

h h h

T T

I I F F

 

   

 
   

 

 

   

   

 
 
 
 
 
 
 
 
 
 
  
  

  
  

     
  

 
   

 
    
    

   

 

   

. (12) 

Proof: Here, Theorem 1 is proved in light of mathematical induction.  

(1) When J = 2, the aggregated result of the two C-ITFNNs is obtained as follows: 
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Ni

i

Ni Ni Ni Ni

i i i i

i i i i i i i i
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2 2 2

1 1 1

.

,
i i

Li Li

i i

F F
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

    
    

  ，

     (13) 

(2) If J = n, the aggregated result of n C-ITFNNs is given as follows: 
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. (14) 

(3) If J = n + 1, according to Eqs. (12) and (13), we can get the following result: 
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 (15) 

In view of the above results, Eq. (12) is true for any J.  

Then, the C-ITFNNWAA operator of Eq. (12) has the following characteristics: 

(1) Idempotency: Let 
ia  (i = 1, 2, …, J) be a group of C-ITFNNs. If ia a  for i = 1, 2, …, J, there 

is  1 2, ,..., JC ITFNNWAA a a a a  . 

(2) Boundedness: Let 
ia  (i = 1, 2, …, J) be a group of C-ITFNNs and let the minimum and 

maximum C-ITFNNs: 
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,
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. 

Then  min 1 2 max, ,..., Ja C ITFNNWAA a a a a   . 

(3) Monotonicity: Let ia  (i = 1, 2, …, J) be a group of C-ITFNNs. If 
i ia a   for i = 1, 2, …, J, 

there is    1 2 1 2, ,..., , ,...,J JC ITFNNWAA a a a C ITFNNWAA a a a     . 

Proof: (1) Let ia a  for i = 1, 2, …, J. Then, the aggregated result of Eq. (12) is given below: 
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(2) Since mina  and maxa  are the minimum and maximum C-ITFNNs, respectively, there is

min maxia a a  , then min max1 1 1

J J J

i i i ii i i
a a a  

  
     also exists. On the basis of the 

characteristic (1), there is min max1

J

i ii
a a a


  , i.e., 

 min 1 2 max, ,.., Ja C ITFNNWAA a a a a   . 

(3) Owning to 
'

i ia a  for i = 1, 2, …, J, there is 
'

1 1

J J

i i i ii i
a a 

 
  , namely, 

   1 2 1 2, ,.., , ,..,J JC ITFNNWAA a a a C ITFNNWAA a a a     . 
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Example 2. Set two C-ITFNNs as 
       

       
1

0.2,0.3,0.4,0.5 ; 0.1,0.2 , 0.2,0.3 , 0.3,0.4 ,

0.3,0.4,0.5,0.6 ; 0.1,0.3 , 0.2,0.4 , 0.3,0.5
a

 
 
 
 

 and 

       

       
2

0.4,0.5,0.6,0.7 ; 0.2,0.4 , 0.1,0.3 , 0.5,0.7 ,

0.5,0.6,0.7,0.8 ; 0.2,0.3 , 0.3,0.4 , 0.4,0.5
a

 
 
 
 

 with their weight values 0.3 and 0.7. 

Then, the calculational result using Eq. (12) is given below: 

 

       

2

1 2 1 1 2 2
1

0.3 0.7 0.3 0.7

0.3 0.7 0.3 0.7 0.3 0.7

,

0.2 0.3 0.4 0.7,0.3 0.3 0.5 0.7,
;

0.4 0.3 0.6 0.7,0.5 0.3 0.7 0.7

1 1 0.1 1 0.2 ,1 1 0.2 1 0.4 ,

0.2 0.1 ,0.3 0.3 , 0.3 0.5

i i

i

C ITFNVWAA a a a a a  


   

      
 

      

        
 

    





       

0.3 0.7

0.3 0.7 0.3 0.7

0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

,

,0.4 0.7

0.3 0.3 0.5 0.7,0.4 0.3 0.6 0.7,
;

0.5 0.3 0.7 0.7,0.6 0.3 0.8 0.7

1 1 0.1 1 0.2 ,1 1 0.3 1 0.3 ,

0.2 0.3 ,0.4 0.4 , 0.3 0.4 ,0.5 0.5





  

      
 

      

        
 

         



       

       

0.34,0.44,0.54,0.64 ; 0.171,0.346 , 0.123,0.3 , 0.429,0.592 ,
.

0.44,0.54,0.64,0.74 ; 0.171,0.3 , 0.266,0.4 , 0.367,0.5





 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 

Definition 4.2. Set 
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1 2 3 4
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a

h h h h T T I I F F

     

     

      
      

       
      

 (i = 1, 2, …, J) as a 

group of C-ITFNNs with the weight i  of 
ia  for 0 1i   and 

1

1
J

i

i




 . The C-ITFNNWGA 

operator is defined as follows: 

1 2
1

( , ,..., ) i

J

J

i

C ITFNNWGA a a a a




  .                         (16) 

In terms of the operational laws of C-ITFNNs and Eq. (16), we can obtain the C-ITFNNWGA 

operator. 

Theorem 2. Set 
 

 

1 2 3 4

1 2 3 4

, , , ; , , , , ,

, , , ; , , , , ,

i i i i Ni Ni Ni Ni Ni Ni

i

i i i i Li Li Li Li Li Li

g g g g T T I I F F
a

h h h h T T I I F F

     

     

      
      

       
      

 (i = 1, 2, …, J) as a 

group of C-ITFNNs with the weight i  of 
ia  for 0 1i   and 

1

1
J

i

i




 . On the basis of Eq. 

(16) and the operational laws of C-ITFNNs, the C-ITFNNWGA operator can be expressed as follows: 
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       (17) 

Since the proof method of Theorem 2 is similar to that of Theorem 1, it can also be proved in 

light of mathematical induction, which will not be repeated here. 

Then, the C-ITFNNWGA operator has the following characteristics: 

Idempotency: Let ia  (i = 1, 2, …, J) be a group of C-ITFNNs. If 
ia a  for i = 1, 2, …, J, there is 

 1 2, ,..., jC ITFNNWGA a a a a  . 

Boundedness: Let ia  (i = 1, 2, …, J) be a group of C-ITFNNs and let the minimum and maximum 

C-ITFNNs: 
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. 

Then  min 1 2 max, ,..., Ja C ITFNNWGA a a a a   . 
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For 
'

i ia a  (i = 1, 2, …, J), there is 
'

1 1

J J

i i i ii i
a a 

 
  , namely, 

   ' ' '
1 2 1 2, ,.., , ,..,J JC ITFNNWGA a a a C ITFNNWGA a a a   . 

However, the proof method of the C-ITFNNWGA operator is similar to that of the C-

ITFNNWAA operator, which is omitted here. 

Example 3. Set two C-ITFNNs as 

       

       
1

0.4,0.5,0.6,0.7 ; 0.1,0.4 , 0.2,0.5 , 0.3,0.6 ,

0.5,0.6,0.7,0.8 ; 0.2,0.3 , 0.3,0.4 , 0.4,0.5
a

 
 
 
   and 

       

       
2

0.3,0.4,0.5,0.6 ; 0.1,0.2 , 0.1,0.3 , 0.1,0.4 ,

0.6,0.7,0.8,0.9 ; 0.2,0.5 , 0.3,0.6 , 0.4,0.7
a

 
 
 
   with their weight values 0.4 and 0.6. Then, the 

calculational result using Eq. (17) is given below: 

 

 

       

     

1 2

2

1 2 1 2
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0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6

0.4 0.6 0.4 0.6

0.4 0.6 0.4 0.6

0.4 0.6

,

0.4 0.3 ,0.5 0.4 ,0.6 0.5 ,0.7 0.6 ;

0.1 0.1 ,0.4 0.2 ,

1 1 0.2 1 0.1 ,1 1 0.5 1 0.3 ,

1 1 0.3 1 0.1 ,1 1 0.6

i

i

i

C ITFNNWGA a a a a a
  



   

   

   

        
 

     





 

 

       

       

0.4 0.6

0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6

0.4 0.6 0.4 0.6

0.4 0.6 0.4 0.6

0.4 0.6 0.4 0.6

,

1 0.4

0.5 0.6 ,0.6 0.7 ,0.7 0.8 ,0.8 0.9 ;

0.2 0.2 ,0.3 0.5 ,

1 1 0.3 1 0.3 ,1 1 0.4 1 0.6 ,

1 1 0.4 1 0.4 ,1 1 0.5 1 0.7









  
 

   

   

        
 

        
 

       

       

0.337,0.437,0.538,0.638 ; 0.1,0.264 , 0.141,0.388 , 0.186,0.4898 ,
.

0.558,0.658,0.758,0.859 ; 0.2,0.408 , 0.3,0.53 , 0.4,0.632









 
 
 
 
 
 
 
 
 
 



 
 
 
   

Particularly, when there are no credibility degrees in C-ITFNNs, C-ITFNNs become ITFNNs. 

Thus, Eqs. (12), (17), and (10) become the ITFNN weighted arithmetic averaging (ITFNNWAA) and 

ITFNN weighted geometric averaging (ITFNNWGA) operators and the score function: 
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,    (18) 
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,   (19) 

          1 2 3 4

1
4 , 0,1

24
N N N N N NS a g g g g T T I I F F S a                  . (20) 

5. DM Model with C-ITFNNs 

In this section, we use the C-ITFNNWAA and C-ITFNNWGA operators and the score function 

to establish the multi-attribute DM model in the C-ITFNN circumstance.  

Let a set of alternatives be E = {e1, e2, …, ep} and a set of attributes be G = {g1, g2, …, gJ}. The weight 

vector of the attributes is  = (1, 2, …, J), which indicates the importance of various attributes. 

Decision makers can give their satisfactory linguistic evaluation values and credibility degrees 

through the set of linguistic terms L = {Very bad, Bad, Fairly bad, Medium, Fairly good, Good, Very 

good}. In view of Table 1, we can obtain the linguistic values of each alternative er (r = 1, 2, …, p) over 

the attributes gi (i = 1, 2, …, J) and express them as the following C-ITFNN: 

 

 

1 2 3 4

1 2 3 4

, , , ; , , , , , ,

, , , ; , , , , ,

ri ri ri ri Nri Nri Nri Nri Nri Nri

ri

ri ri ri ri Lri Lri Lri Lri Lri Lri

g g g g T T I I F F
a

h h h h T T I I F F

     

     

      
      

       
      

. 

Thus, we can establish the C-ITFNN decision matrix  ri p J
N a


 . 

Table 1. Linguistic terms and linguistic values of ITFNNs 

Linguistic term Linguistic value of ITFNNs 

Very bad (VB) <(0.1,0.1,0.1,0.1);[0.1,0.2],[0.9,1.0],[0.9,1.0]> 

Bad (B) <(0.2,0.3,0.4,0.5);[0.2,0.3],[0.8,0.9],[0.8,0.9]> 

Fairy bad (FB) <(0.3,0.4,0.5,0.6);[0.3,0.4],[0.7,0.8],[0.7,0.8]> 

Medium (M) <(0.4,0.5,0.6,0.7);[0.5,0.6],[0.4,0.6],[0.4,0.6]> 

Fairy good (FG) <(0.5,0.6,0.7,0.8);[0.7,0.8],[0.2,0.3],[0.2,0.3]> 

Good (G) <(0.6,0.7,0.8,0.9);[0.8,0.9],[0.1,0.2],[0.1,0.2]> 

Very good (VG) <(1.0,1.0,1.0,1.0);[0.9,1],[0,0.1],[0,0.1]> 

Then, we use C-ITFNNWAA and C-ITFNNWGA operators and the score function to establish 

the multi-attribute DM model with C-ITFNN information and to select the best alternative. The DM 

process is indicated below. 

Step 1: Give the aggregated C-ITFNNs 
ra  for  1,2,...,re r p  by the C-ITNNWAA 

operator or the C-ITNNWGA operator: 
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or 

 

   

   

1 2
1

1 2 3 4
1 1 1 1

1 1 1 1

, ,...

, , , ;

, , 1 1 ,1 1 ,

1 1 ,1 1

i

i i i i

i i
i i

i i

J

r r r rJ ri

i

J J J J

ri ri ri ri

i i i i

J J J J

Nri Nri Nri Nri

i i i i

Nri Nri

i

a C ITFNNWGA a a a a

g g g g

T T I I

F F



   

 
 

 



   

   

   

 

  

 
 
 

   
      

   

   





   

   

   

   

1 1

1 2 3 4
1 1 1 1

1 1 1 1

1 1

,

, , , ;

, , 1 1 ,1 1 ,

1 1 ,1 1

i i i i

i i
i i

i i

J J

i

J J J J

ri ri ri ri

i i i i

J J J J

Lri Lri Lri Lri

i i i i

J J

Lri Lri

i i

h h h h

T T I I

F F

   

 
 

 

 

   

   

   

 

 









 
   


  
  

 

   
      

   

 
    

 

 

   

   

 














 
 
 
 
 
 
 



.            (22) 

Step 2: Calculate the score values of the aggregated values ra  by Eq. (10). 

Step 3: Sort the alternatives and determine the optimal one with the largest score value. 

Step 4: End. 

6. Actual DM Example 

6.1 DM Case of LCDSs 

With the rapid development of China economy in recent years, the scale of engineering activities 

has become larger and larger, and the problem of landslides has become more and more serious. This 
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section gives an actual DM case of LCDSs to illustrate the feasibility and applicability of the proposed 

DM model in the C-ITFNN scenario. The terrain of the landslide area is high in the west and low in 

the east, high in the north and low in the south, generally inclined from west to east, and the terrain 

fluctuates greatly. Referring to the experience of landslide control, four potential LVDSs are provided 

for some landslide treatment in Shaoxing City, China, which are indicated by a set of the four 

alternatives E = {e1, e2, e3, e4}. In the scheme e1, graded slope toes and retaining wall and lattices are 

used in the central and northern areas, while slope unloading, anti-sliding piles and anchor-cable 

anti-sliding piles in the southern area. In the scheme e2, graded slope toes, retaining wall, and anchor 

rod lattice are used in the central and northern areas, and double-row anti-sliding piles and anchor-

cable anti-sliding piles are used in the southern area. In the scheme e3, graded slope toes and 

supporting anti-sliding piles are used in the central and northern areas, and anchor-cable anti-sliding 

piles are used in the southern area. In the scheme e4, graded slope toes and retaining walls and anchor 

rod lattices are used in the central and northern areas, and anchor cable anti-sliding piles are used in 

the southern area. Then, a satisfactory evaluation of the four alternatives is subject to the three 

important conditions (attributes): technical difficulty (g1), environmental impact (g2), and governance 

cost (g3). The importance of the three conditions is assigned by the weight vector  = (0.2, 0.3, 0.5).  

In the DM issue of LCDSs, experts are invited to give the satisfactory degrees and credibility 

levels of the four alternatives with respect to the three attributes by the linguistic terms obtained from 

the set of linguistic terms L = {Very bad, Bad, Fairly bad, Medium, Fairly good, Good, Very good}, 

then the given linguistic terms are shown in Table 2.  

Table 2. Linguistic terms of the satisfactory degrees and credibility levels 

 g1 g2 g3 

e1 (B, M) (FB, G) (FG, G) 

e2 (G, VG) (FG, G) (FB, G) 

e3 (B, FG) (G, G) (M, VG) 

e4 (FG, M) (VB, FG) (FB, FG) 

Thus, the linguistic terms of the satisfactory degrees and credibility levels in Table 2 can be 

converted into C-ITFNNs in view of the corresponding linguistic values in Table 1, which are 

constructed as the decision matrix: 

       

       

       

       

   0.2,0.3,0.4,0.5 ; 0.2,0.3 , 0.8,0.9 , 0.8,0.9 , 0.3,0.4,0.5,0.6 ; 0.3,0.4 , 0.7,0.8 , 0.7,0.8 , 0.5,0.6,0.7,0.8 ; 0.7,0.8 ,

0.4,0.5,0.6,0.7 ; 0.5,0.6 , 0.4,0.6 , 0.4,0.6 0.6,0.7,0.8,0.9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2

N

   
   
   
   



   

       

       

       

       

0.2,0.3 , 0.2,0.3 ,

0.6,0.7,0.8,0.9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2

0.6,0.7,0.8,0.9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2 , 0.5,0.6,0.7,0.8 ; 0.7,0.8 , 0.2,0.3 , 0.2,0.3 ,

1.0,1.0,1.0,1.0 ; 0.9,1.0 , 0,0.1 , 0,0.1 0.6,0.7,0.8,0.

 
 
 
 

 
 
 
         

       

       

       

       

0.3,0.4,0.5,0.6 ; 0.3,0.4 , 0.7,0.8 , 0.7,0.8 ,

9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2 0.6,0.7,0.8,0.9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2

0.2,0.3,0.4,0.5 ; 0.2,0.3 , 0.8,0.9 , 0.8,0.9 ,

0.5,0.6,0.7,0.8 ; 0.7,0.8 , 0.2,0.3 , 0.2,0.3

   
   
   
   

        

       

       

       

   

0.6,0.7,0.8,0.9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2 , 0.4,0.5,0.6,0.7 ; 0.5,0.6 , 0.4,0.6 , 0.4,0.6 ,

0.6,0.7,0.8,0.9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2 1.0,1.0,1.0,1.0 ; 0.9,1.0 , 0,0.1 , 0,0.1

0.5,0.6,0.7,0.8 ; 0.7,0.8

    
     
     
     

   

       

       

       

       , 0.2,0.3 , 0.2,0.3 , 0.1,0.1,0.1,0.1 ; 0.1,0.2 , 0.9,1 , 0.9,1 , 0.3,0.4,0.5,0.6 ; 0.3,0.4 , 0.7,0.8 , 0.7,0.8 ,

0.4,0.5,0.6,0.7 ; 0.5,0.6 , 0.4,0.6 , 0.4,0.6 0.5,0.6,0.7,0.8 ; 0.7,0.8 , 0.2,0.3 , 0.2,0.3 0.5,0.6,0.7,0

   
   
   
           .8 ; 0.7,0.8 , 0.2,0.3 , 0.2,0.3

 
 
 
 
 
 
 
 
 
 
 
 
  
  

  
  

. 

To deal with the DM problem, we give the following decision process. 

Step 1: Utilize the C-ITFNNWAA operator of Eq. (21) and get the aggregated values ra  for er 

(r =1, 2, …, p): 

     

       
1

0.38,0.48,0.58,0.68 ;[0.5293,0.6427], 0.3843,0.5016 , 0.3843,0.5016 ,

0.56,0.66,0.76,0.86 ; 0.7598,0.868 , 0.132,0.2491 , 0.132,0.2491
a

 
 
 
 

, 

     

       
2

0.42,0.52,0.62,0.72 ;[0.5774,0.6984], 0.3257,0.4517 , 0.3257,0.4517 ,

0.68,0.76,0.84,0.92 ; 0.8259,1 , 0,0.1741 , 0,0.1741
a

 
 
 
 

, 
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3

0.42,0.48,0.58,0.68 ;[0.5827,0.7048], 0.3031,0.468 , 0.3031,0.468 ,

0.78,0.83,0.88,0.93 ; 0.8466,1 , 0,0.1534 , 0,0.1534
a

 
 
 
 

, 

     

       
4

0.28,0.48,0.58,0.68 ;[0.3628,0.4749], 0.5875,0.703 , 0.5875,0.703 ,

0.48,0.58,0.68,0.78 ; 0.6677,0.7703 , 0.2297,0.3446 , 0.2297,0.3446
a

 
 
 
 

. 

Or use the C-ITFNNWGA operator of Eq. (22) and get the aggregated values 
ra  for er (r =1, 2, 

…, p): 

     

       
1

0.3571,0.4625,0.5658,0.668 ;[0.4226,0.5341], 0.5483,0.6743 , 0.5483,0.6743 ,

0.5533,0.6544,0.7553,0.8559 ; 0.7282,0.8299 , 0.1701,0.3036 , 0.1701,0.3036
a

 
 
 
 

, 

     

       
2

0.4017,0.5052,0.6076,0.7093 ;[0.4707,0.5792], 0.4984,0.6157 , 0.4984,0.6157 ,

0.6645,0.7518,0.8365,0.9192 ; 0.8191,0.9192 , 0.0808,0.1809 , 0.0808,0.1809
a

 
 
 
 

, 

     

       
3

0.3933,0.4994,0.6031,0.7057 ;[0.4793,0.5899], 0.4561,0.6268 , 0.4561,0.6268 ,

0.7469,0.8113,0.8709,0.9266 ; 0.8262,0.9266 , 0.0734,0.1738 , 0.0734,0.1738
a

 
 
 
 

, 

     

       
4

0.239,0.2862,0.33,0.3713 ;[0.2556,0.3732], 0.7375,1 , 0.7375,1 ,

0.4782,0.5785,0.6787,0.7789 ; 0.6544,0.7553 , 0.2447,0.3741 , 0.2447,0.3741
a

 
 
 
 

. 

Step 2: Use Eq. (10) and calculate the score values of the aggregated values 
ra (r =1, 2, …, p): 

 1 0.1729S a  ,  2 0.2582S a  ,  3 0.2661S a  , and  4 0.0855S a  . 

Or  1 0.1164S a  ,  2 0.1802S a  ,  3 0.1954S a  , and  4 0.0258S a  . 

Step 3: Give the sorting of the four LCDSs: e3 > e2 > e1 > e4. Hence, the optimal choice is the scheme 

e3.  

It can be found that the sorting and optimal choice results obtained by the C-ITFNNWAAA 

operator and the C-ITFNNWGA operator are consistent. 

6.2 Comparison of the Proposed DM Model with Previous DM Models in the Scenarios of C-TFNNs, 

ITFNNs, TFNNs, and SVNNs 

To indicate the efficiency of the proposed DM model in the C-ITFNN scenarios, we compare the 

DM model proposed in this paper with the previous DM models in the C-TFNN, ITFNN, TFNN and 

SVNN scenarios. Since the previous DM models cannot perform the DM issue of C-ITFNNs, we only 

consider the situations of C-TFNNs, ITFNNs, TFNNs, and SVNNs as four special cases of C-ITFNNs 

for convenient comparison. Therefore, we assume that all interval values in the C-ITFNN decision 

matrix N are converted into their average values to produce the C-TFNN matrix NC-TFNN: 

 

 

 

 

 

 

0.2,0.3,0.4,0.5 ;0.25,0.85,0.85 , 0.3,0.4,0.5,0.6 ;0.35,0.75,0.75 , 0.5,0.6,0.7,0.8 ;0.75,0.25,0.25 ,

0.4,0.5,0.6,0.7 ;0.55,0.5,0.5 0.6,0.7,0.8,0.9 ;0.85,0.15,0.15 0.6,0.7,0.8,0.9 ;0.85,0.15

C TFNNN 

   
   
   
   



 

 

 

 

 

 

,0.15

0.6,0.7,0.8,0.9 ;0.85,0.15,0.15 , 0.5,0.6,0.7,0.8 ;0.75,0.25,0.25 , 0.3,0.4,0.5,0.6 ;0.35,0.75,0.75 ,

1.0,1.0,1.0,1.0 ;0.95,0.05,0.05 0.6,0.7,0.8,0.9 ;0.85,0.15,0.15 0.6,0.7,0.8,0.9 ;0.

 
 
 
 

   
   
   
   

 

 

 

 

 

85,0.15,0.15

0.2,0.3,0.4,0.5 ;0.25,0.85,0.85 , 0.6,0.7,0.8,0.9 ;0.85,0.15,0.15 , 0.4,0.5,0.6,0.7 ;0.55,0.5,0.5 ,

0.5,0.6,0.7,0.8 ;0.75,0.25,0.25 0.6,0.7,0.8,0.9 ;0.85,0.15,0.15 1.0,1.0,1.0,1

 
 
 
 

   
   
   
     

 

 

 

 

 

.0 ;0.95,0.05,0.05

0.5,0.6,0.7,0.8 ;0.75,0.25,0.25 , 0.1,0.1,0.1,0.1 ;0.15,0.95,0.95 , 0.3,0.4,0.5,0.6 ;0.35,0.75,0.75 ,

0.4,0.5,0.6,0.7 ;0.55,0.5,0.5 0.5,0.6,0.7,0.8 ;0.75,0.25,0.25 0.5,0.6,

 
 
 
 

   
   
   
     0.7,0.8 ;0.75,0.25,0.25

 
 
 
 
 
 
 
 
 
 
 
 
  
  

  
  

. 
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If we do not consider the credibility levels in N, N becomes the ITFNN matrix NITFNN: 

                       

             

0.2,0.3,0.4,0.5 ; 0.2,0.3 , 0.8,0.9 , 0.8,0.9 0.3,0.4,0.5,0.6 ; 0.3,0.4 , 0.7,0.8 , 0.7,0.8 0.5,0.6,0.7,0.8 ; 0.7,0.8 , 0.2,0.3 , 0.2,0.3

0.6,0.7,0.8,0.9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2 0.5,0.6,0.7,0.8 ; 0.7,0.8 , 0.2,0.3 , 0.2,0
ITFNNN 

         

                       

       

.3 0.3,0.4,0.5,0.6 ; 0.3,0.4 , 0.7,0.8 , 0.7,0.8

0.2,0.3,0.4,0.5 ; 0.2,0.3 , 0.8,0.9 , 0.8,0.9 0.6,0.7,0.8,0.9 ; 0.8,0.9 , 0.1,0.2 , 0.1,0.2 0.4,0.5,0.6,0.7 ; 0.5,0.6 , 0.4,0.6 , 0.4,0.6

0.5,0.6,0.7,0.8 ; 0.7,0.8 , 0.2,0.3 , 0.2,0.3 0.1               ,0.1,0.1,0.1 ; 0.1,0.2 , 0.9,1 , 0.9,1 0.3,0.4,0.5,0.6 ; 0.3,0.4 , 0.7,0.8 , 0.7,0.8

 
 
 
 
 
 
 

. 

If we do not consider the credibility levels in NC-TFNN, NC-TFNN becomes the TFNN matrix NTFNN: 

        
        

0.2,0.3,0.4,0.5 ;0.25,0.85,0.85 0.3,0.4,0.5,0.6 ;0.35,0.75,0.75 0.5,0.6,0.7,0.8 ;0.75,0.25,0.25

0.6,0.7,0.8,0.9 ;0.85,0.15,0.15 0.5,0.6,0.7,0.8 ;0.75,0.25,0.25 0.3,0.4,0.5,0.6 ;0.35,0.75,0.75

0.2,0.3,0.4,0.
TFNNN 

        
        

5 ;0.25,0.85,0.85 0.6,0.7,0.8,0.9 ;0.85,0.15,0.15 0.4,0.5,0.6,0.7 ;0.55,0.5,0.5

0.5,0.6,0.7,0.8 ;0.75,0.25,0.25 0.1,0.1,0.1,0.1 ;0.15,0.95,0.95 0.3,0.4,0.5,0.6 ;0.35,0.75,0.75

 
 
 
 
 
 
 

. 

If we do not consider TFNs in NTFNN, NTFNN becomes the SVNN matrix NSVNN: 

     

     

     

     

0.25,0.85,0.85 0.35,0.75,0.75 0.75,0.25,0.25

0.85,0.15,0.15 0.75,0.25,0.25 0.35,0.75,0.75

0.25,0.85,0.85 0.85,0.15,0.15 0.55,0.5,0.5

0.75,0.25,0.25 0.15,0.95,0.95 0.35,0.75,0.75

SVNNN

 
 
 
 
 
  

. 

In the scenarios of C-TFNNs, ITFNNs, TFNNs, and SVNNs, we apply Eqs. (1), (2), (18), (19), (4), 

(5), (7), and (8) for the decision matrices of C-TFNNs, ITFNNs, TFNNs, and SVNNs to obtain their 

aggregated values. Then, the score values of their aggregated values are obtained by the score 

functions of Eqs. (3), (6), (9), and (20) in the corresponding scenarios. For clear comparison, all 

decision results are given in Table 3. 

Table 3. Decision results based on different DM models in the scenarios of SVNNs, TFNNs, ITFNNs, C-

TFNNs, and C-ITFNNs 

Method Score value Sorting Optimal one 

DM model using the 

SVNNWAA operator [19] 

0.5657,0.618,0.6223,0.3752 e3 > e2 > e1 > e4 e3 

DM model using the 

SVNNWGA operator [19] 

0.4203,0.4711,0.4856,0.2335 e3 > e2 > e1 > e4 e3 

DM model using the 

TFNNWAA operator [30] 

0.2998, 0.3523,0.336,0.1895 e2 > e3 > e1> e4 e2 

DM model using the 

TFNNWGA operator [30] 

0.2158,0.2619,0.2673,0.0716 e3 > e2 > e1 > e4 e3 

DM model using the 

ITFNNWAA operator [34] 

0.3004,0.3535,0.3371,0.1899 e2 > e3 > e1 > e4 e2 

DM model using the 

ITFNNWAA operator [34] 

0.2149,0.2615,0.2663,0.059 e3 > e2 > e1 > e4 e3 

DM model using the C-

TFNNWAA operator [37] 

0.1725,0.2479,0.2597,0.0853 e3 > e2 > e1 > e4 e3 

DM model using the C-

TFNNWGA operator [37] 

0.1170,0.1805,0.1965,0.0313 e3 > e2 > e1 > e4 e3 

DM model using the C-

ITFNNWAA operator 

0.1729,0.2582,0.2661,0.0855 e3 > e2 > e1 > e4 e3 

DM model using the C-

ITFNNWGA operator 

0.1164,0.1802,0.1954,0.0258  e3 > e2 > e1 > e4 e3 
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From the sorting results in Table 3, it can be seen that there are differences in the DM results 

obtained based on different aggregation operators of SVNNs, TFNNs, C-TFNNs, and C-ITFNNs. In 

the cases of TFNNs and ITFNNs, the optimal schemes obtained by different aggregation operators 

are inconsistent, where the optimal scheme obtained by using the weighted arithmetic averaging 

operators is e2 and the optimal scheme obtained by using the weighted geometric averaging operators 

is e3. Moreover, the optimal DM result obtained in the scenarios of SVNNs, C-TFNNs and C-ITFNNs 

is e3. However, the level of credibility plays a key role in the sorting of the alternatives because it can 

ensure the credibility of the assessment information of TFNNs and ITFNNs. The previous DM models 

with SVNNs, TFNNs, ITFNNs [19, 30, 34] may result in unreasonable/distorted DM results because 

they are difficult to ensure the credibility of SVNNs, TFNNs, and ITFNNs. In addition, in the 

scenarios of C-TFNNs and C-ITFNNs, the proposed DM model of C-ITFNNs obtains the same DM 

results as the DM model of C-TFNNs [37], which also proves the rationality and efficiency of the 

proposed DM model in the scenario of C-ITFNNs. The reason is that the C-TFNN matrix obtained by 

taking the average value of the interval values in C-ITFNNs is only a special case of the C-ITFNN 

matrix. Therefore, it can be seen that the proposed DM model of C-ITFNNs generalizes the previous 

DM model of C-TFNNs [37], while the previous DM model of C-TFNNs [37] is only a special case of 

the proposed DM model of C-ITFNNs. In general, the proposed DM model of C-ITFNNs makes DM 

applications more general and practical, demonstrating the clear advantages in the setting of C-

ITFNNs. 

7. Conclusion 

As an extension of C-TFNNs, this paper first proposed C-ITFNNs in view of ITFNNs and 

credibility levels, which are expressed by an ordered pair of ITFNNs. Then, we defined some 

operational laws of C-ITFNNs and the score function of C-ITFNN and presented the C-ITFNNWAA 

and C-ITFNNWGA operators and their properties. Furthermore, the C-ITFNNWAA and C-

ITFNNWGA operators and the score function were used for a multi-attribute DM model of C-

ITFNNs. Lastly, the proposed DM model was applied to the DM case of LCDSs in the scenario of C-

ITFNNs and verified its feasibility. By comparative analysis of the different DM models in the 

scenarios of C-ITFNNs, C-TFNNs, TFNNs, and SVNNs, the proposed DM model revealed the 

superiority of DM generalization in the scenario of C-ITFNNs since the previous DM models are only 

the special cases of the proposed DM model of C-ITFNNs. 

Generally, the information representation, operation and DM techniques of C-ITFNNs reveal 

their original contributions in this study. Then, the main superiority of our new DM model is that it 

not only compensates for the gap of existing DM models, but also is more reliable and versatile than 

existing DM models. As future research, the techniques proposed in this paper can be extended to 

slope stability/risk assessment, mine risk/safety assessment, and image processing in a C-ITFNN 

circumstance. 
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Abstract: In the process of the rapid development of big data and the Internet of Things in recent 

years, in order to create a "strong transportation" construction goals, intelligent transportation 

projects have become the key carrier of the development of China's transportation industry, the 

national and local transportation level, economic development and the improvement of people's 

living standards have an important role. However, although the construction of intelligent 

transportation projects around the world is in full swing, but the actual operation effect is not ideal. 

The comprehensive evaluation of urban smart traffic management systems (USTMS) is a classical 

MADM issues. In this paper, the MADM issues are studied with defined 2-tuple linguistic 

neutrosophic sets (2TLNSs). Then, connected traditional GRA with 2TLNSs, the 2TLNN-GRA 

method is elaborated for MADM. Finally, an example for comprehensive evaluation of USTMS was 

given and some comparisons was elaborated the 2TLNN-GRA method 

Keywords: Multiple attribute decision making (MADM); 2TLNS; GRA method; Urban smart traffic 

management system(USTMS) 

 

1. Introduction 

Generally speaking, decision making refers to making a decision based on the realization of 

conditions, whether it is a major decision made by the state or corporate policy, or a decision made 

by people in ordinary daily life[1-3]. Therefore, decision making is widely elaborated in various fields 

of life and production, and has gained more and more attention, such as a company needs to improve 

a new product, a government department bidding activity, or an individual's choice of occupation or 

the purchase of goods, all of which are of decision making significance[4-7]. In fact, human beings 

inevitably face a variety of complex decision-making problems, involving artificial intelligence and 
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other fields, network data, granularity of computing[8-11]. Nowadays, decision making is one of the 

quite common activities in people's daily life, which aims at ranking a limited number of alternatives 

by the decision maker according to the value of the evaluation index of each alternative[12-16]. Multi-

Attribute Decision Making (MADM) is a branch of decision making that is considered as a cognitive-

based human activity. The first step in decision-making is to build mathematical models to describe 

the uncertain information from different levels, and MADM is one of the processes to find the best 

solution among all feasible alternatives[17-19]. According to certain attributes, decision information 

of all alternatives, their corresponding values are represented by some precise value, however, it is 

believed that most real-life decisions are made in environments with inaccurate or imprecise goals 

and constraints, which are inherently ambiguous and thus cannot represent preferences with precise 

values, and most decision makers, due to time decision pressure and lack of full data, may have 

limited information processing capabilities [20-27]. To cope with this situation, fuzzy set theory has 

been widely used to deal with uncertainty and vague information [28-32]. After the successful 

application of fuzzy set decision theory, researchers have worked on the extensions and applications 

of fuzzy set theory, among which intuitionistic fuzzy sets(IFSs) [33-43]and neutrosophic sets (NSs) 

[44-55] theory is one of the most important extensions and has been fully applied to MADM. 

Furthermore, Wang, Wei and Wei [56] devised the 2TLNSs which fuzzy decision information are 

elaborated with 2TLs[57-63].  

With the acceleration of China's urbanization process, urban population, housing and industrial 

agglomeration on a large scale, urban traffic problems are becoming more and more prominent: traffic 

congestion is serious, resulting in increased travel time and huge energy consumption; traffic safety 

problems are serious, accidents are frequent; vehicle emissions and environmental pollution and traffic 

noise pollution more serious; the increase in vehicle ownership brings parking facilities gradually 

intensify the contradiction between supply and demand, etc.. Intelligent transportation is proposed in 

this context, but whether the development of intelligent transportation in a city meets the target 

requirements requires a complete evaluation system to judge. At present, the concept of intelligent 

transportation, the technology required for intelligent transportation, intelligent transportation 

evaluation system and standards are not in-depth research, how to develop intelligent transportation, 

how to establish an appropriate intelligent transportation evaluation system is an urgent issue to be 

solved. The problems of comprehensive evaluation of USTMS are MADM problems. In this elaborated 

paper, the 2TLNN-GRA is constructed based on GRA [64-70] and 2TLNSs. Finally, an example for 
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comprehensive evaluation of USTMS was given and some comparisons were elaborated the 2TLNN-

GRA. In order to conduct so, the reminder of such paper elaborates. The definition of 2TLNNSs is 

elaborated in Sec. 2. The 2TLNN-GRA is elaborated for MADM are elaborated in Sec. 3. An example for 

comprehensive evaluation of USTMS is elaborated  the 2TLNN-GRA in Sec. 4. Sec. 5 lists the 

conclusions. 

 

2. Preliminaries 

Wang et al. [56] elaborated the 2TLNSs.   

Definition 1 [56]. Let  0,1, 2, ,
i

f fs i H   be the LTSs. The ifs  elaborates a possible 

linguistic value, and  0 1
, ,f fs exceedingly terrible fs very terrible     

2 3 4 5 6
, , , , .fs terrible fs medium fs well fs very well fs exceedingly well     , then the 2TLNSs 

is described as: 

       , , , , , ,
t i f

f f s f f s f f s f                                                  (1) 

where        1 1 1, , , , , 0,t i ffs f fs f fs f H       ，  elaborate truth membership, 

indeterminacy membership and falsity membership with 2-tuple linguistic decision information, 

     1 1 10 , , , 3fs f fs f fs f H           . 

Definition 2[56]. Let      
1 1 11 1 1 1, , , , , ,t i ff fs f fs f fs f    , 

     
2 2 22 2 2 2, , , , , ,t i ff fs f fs f fs f    , the given operation is elaborated: 
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(2)
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Definition 3[71]. Let      
1 1 11 1 1 1, , , , , ,t i ff fs f fs f fs f    , 

     
2 2 22 2 2 2, , , , , ,t i ff fs f fs f fs f    , then the Euclidean distance is: 
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Definition 4[56]. Let      , , , , , ,
t i f

f fs f fs f fs f    , the score and accuracy functions of 

f   is elaborated: 

 
      

   
1 1 12 , , , ,

, 0,1
3

t i f
H fs f fs f fs f

SF l SF f
H

  
 

  
   

            (3) 

          1 11
, , , , 1,1

t f
HF l fs f fs f HF f
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                     (4) 

For 1f  and 2f  , then  
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1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2
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(2) , , ;

(3) , , .

if SF f SF f f f

if SF f SF f HF f HF f f f

if SF f SF f HF f HF f f f

   

     

     



  

 

 

3. 2TLNN-GRA method for MADM  

  The 2TLNN-GRA is elaborated for MADM. Suppose m  defined decision alternatives

 1 2, , , mDA DA DA , n  given attributes  1 2, , , nGO GO GO ,  1 2, , , nfw fw fw fw  is 

weight jGO , where  0,1jfw  ,
1

1
n

j

j

fw


 . The 2TLNN-GRA for MADM are elaborated. 

Step 1. Elaborate the 2TLNN-matrix ij m n
F f


    . 

1 2

1 11 12 1

2 21 22 2

1 2

GOn

n

n

ij m n

m m m mn

GO GO

DA f f f

DA f f f
F f

DA f f f

  

  


  



 
 
      
 
 

                                        (5) 

(6) 

      , , , , , ,
ij ij ijij t ij i ij f ijf fs f fs f fs f     

Step 2. Elaborate normalized ij m n
F f


    to ij m n

NF nf


    . 

Aimed at benefit decision attributes: 
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Aimed at cost decision attributes: 
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                    (8) 

Step 3. Elaborate the 2TLNN positive ideal alternative (2TLNNPIA) and 2TLNN negative ideal 

alternative (2TLNNNIA) with Eq. (9-14): 

 2 2 jTLNNPIA TLNNPIA                                            (9) 
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  2 2 jTLNNNIA TLNNNIA                                            (10) 

      , , , , ,2 ,
j j jj t j i j f jnfs nf nfs nf nfsTLNNPIA nf                   (11) 

      , , , , ,2 ,
j j jj t j i j f jnfs nf nfs nf nfsTLNNNIA nf                  (12) 

      

       

, , , , ,

max , , , , ,

j j j

ij ij ij

t j i j f j

t ij i ij f ij
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Step 4. Elaborate the grey rational coefficients (GRC) from the 2TLNNPIA and 2TLNNNIA as: 
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Step 5. Elaborate the grey relation degree (GRD) for 2TLNNPIA and 2TLNNNIA: 

   
1

2 2
n

i j

j

ijTLNNPIAGRD TLNNPIAGRCfw 


               (17) 

   
1

2 2
n

i j

j

ijTLNNNIAGRD TLNNNIAGRCfw 


              (18) 

Step 6. Obtain the defined 2TLNN relative relational degree (2TLNNRRD) for 2TLNNPIA: 

 
 

   

2
2

2 2
i

i

i i

TLNNNIAGRD
TLNNRRD

TLNNPIAGRD TLNNNIAGRD




 



             (19) 

Step 7. The optimal alternative is obtained with higher  2 iTLNNRRD  value.  

 

4. An example and comparisons 

4.1. An example for comprehensive evaluation of USTMS 
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Since the invention of the automobile, human beings have continuously conducted research on 

urban transportation and its evaluation. In traditional urban transportation planning, the evaluation 

has focused on the ability and level of the transportation system to solve traffic problems. In the 1930s, 

since Greenshields proposed the traffic flow theory, people began to use speed, flow, density and 

other traffic indicators to analyze and study the traffic operation. The idea of traffic demand 

prediction theory is to make traffic trip OD generation prediction and traffic demand prediction by 

establishing the basic relationship between traffic and land use, combining with land use information, 

and then applying network analysis techniques to allocate traffic (shortest path traffic allocation and 

multi-path traffic allocation) and formulate road traffic planning schemes. With the continuous 

development of urban transportation, traffic problems also emerge, and in order to solve various 

traffic problems that appear at different development stages, different traffic development concepts 

are proposed one after another, and even multiple traffic development concepts appear at the same 

time in one period. The new transportation development concept is proposed and involved in the 

construction of transportation, there must be a corresponding evaluation system to judge the 

development status to better guide the practice. For example, green transportation and low-carbon 

transportation are proposed on the basis of serious traffic pollution and high carbon emissions from 

motor vehicles, both of which have in common the concept of focusing on the development of public 

transportation, reducing energy consumption and achieving environmentally friendly development. 

Their evaluation systems, in addition to traffic function evaluation, mainly focus on traffic demand, 

improvement of environmental quality, and rational use of resources. Intelligent transportation is a 

transportation development concept proposed in the context of serious traffic congestion and road 

resource scarcity, focusing on the use of information technology and sensors to achieve a highly 

efficient and intelligent transportation system. Its evaluation focuses on the level of road 

infrastructure development, the level of intelligence, etc. Nowadays, the evaluation of urban 

transportation system is very rich and contains many aspects: traffic impact evaluation, traffic 

function evaluation, road traffic infrastructure level evaluation, traffic economic benefit evaluation, 

environmental impact evaluation, traffic management evaluation, road traffic safety evaluation, etc., 

involving all aspects of transportation. Although the evaluation contents are various and diverse, the 
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evaluation objects and evaluation purposes are the same. The evaluation objects are all urban traffic 

systems, and the evaluation purposes are to diagnose the current situation of urban traffic 

development and provide reference opinions for further development, so as to promote the benign 

development of urban traffic in the target direction. The problems of comprehensive evaluation of 

USTMS are classical MADM problems.  In this elaborated section, we provide an example about 

comprehensive evaluation of USTMS with 2TLNN-GRA. Aimed at five possible USTMSs

 1,2,3,4,5iDA i   to be elaborated with four attributes: 

 ①PQ is the information service level: The realization of intelligent transportation requires 

various types of IoT infrastructure, as well as various sensing equipment to collect traffic information. 

Therefore, the state of basic infrastructure directly affects the rapid development speed of intelligent 

transportation, which is the most basic content of intelligent transportation evaluation, and is also 

the key content of evaluation. 

 ②DC is the transport infrastructure: Intelligent transportation is supported by a new generation 

of information technology, which gives transportation "wisdom" and provides people with 

"humanized" transportation information services. To provide people with "humanized" traffic 

information services, so the level of information services of intelligent transportation is the most 

important basis for judging the level of rapid development of intelligent transportation. The level of 

information service includes the strength of people's attention to traffic information, the diversity of 

government related departments to provide traffic information channels of diversity, real-time and 

accuracy, people's satisfaction with public transport services The level of information service includes 

people's attention to transportation information, the diversity, real-time and accuracy of 

transportation information channels provided by government departments, and people's satisfaction 

with public transportation services. 

 ③ SL is the green environmental protection level: Intelligent transportation inherits the 

advantages of green transportation, low-carbon transportation and sustainable transportation 

environment Environmentally friendly, reduce carbon emissions and other advantages to achieve 

green transportation and sustainable development of transportation. Therefore, the evaluation of 
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green environment protection. The evaluation of green level is also an aspect of the evaluation of 

intelligent transportation.  

④EP is the security condition evaluation: Nowadays, with the surge in the number of motor 

vehicles, traffic accidents occur and have a great threat to people's lives. The problem of traffic safety 

cannot be ignored at any time. Smart transportation provides real-time and accurate traffic 

information to travelers by improving road. The smart traffic can achieve traffic safety by improving 

road infrastructure, providing real-time and accurate traffic information to travelers, and improving 

vehicle design. Only by focusing on safety and reducing traffic accidents can intelligent 

transportation develop in a positive way.  

The five possible USTMSs  1,2,3,4,5iDA i   are to be elaborated with defined 2TLNNs 

under elaborated four attributes with  0.19,0.26,0.32,13fw  . The 2TLNN-GRA is elaborated 

to cope with the comprehensive evaluation of USTMS. 

Step 1. Elaborate the built 2TLNN-matrix ij m n
F f


     (See Table 1). 

Table 1.  2TLNN matrix ij m n
F f


     

 PQ DC 

DA1 {(fs3, 0.21), (fs4, 0.03), (fs2, 0.34)} {(fs3, 0.26), (fs5, 0.12), (fs2, 0.15)} 

DA2 {(fs4, 0.07), (fs1, 0.15), (fs2, 0.27)} {(fs5, 0.03), (fs3, 0.23), (fs2, 0.15)} 

DA3 {(fs3, 0.31), (fs2, 0.04), (fs5, 0.29)} {(fs1, 0.05), (fs3, 0.16), (fs4, 0.07)} 

DA4 {(fs2, 0.31), (fs4, 0.06), (fs1, 0.19)} {(fs3, 0.04), (fs5, 0.23), (fs2, 0.37)} 

DA5 {(fs2, 0.32), (fs3, 0.14), (fs4, 0.08)} {(fs4, 0.03), (fs2, 0.06), (fs1, 0.19)} 

 SL EP 

DA1 {(fs5, 0.42), (fs2, 0.07), (fs1, 0.16)} {(fs2,0.13), (fs4, 0.05), (fs3, 0.03)} 

DA2 {(fs4, 0.14), (fs3, 0.08), (fs1, 0.11)} {(fs4, 0.16), (fs2, 0.24), (fs1, 0.18)} 
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DA3 {(fs1, 0.31), (fs2, 0.04), (fs4, 0.03)} {(fs2, 0.06), (fs4, 0.15), (fs5, 0.17)} 

DA4 {(fs2, 0.16), (fs2, 0.12), (fs3, 0.03)} {(fs2, 0.18), (fs4, 0.09), (fs3, 0.12)} 

DA5 {(fs2, 0.32), (fs1, 0.01), (fs5, 0.05)} {(fs2, 0.07), (fs3, 0.06), (fs4, 0.09)} 

 

Step 2. Normalize ij m n
F f


     to ij m n

NF nf


    ，for all the defined attributes are benefit, the 

defined decision normalization is omitted. 

Table 2.  2TLNN matrix ij m n
NF nf


     

 PQ DC 

DA1 {(fs3, 0.21), (fs4, 0.03), (fs2, 0.34)} {(fs3, 0.26), (fs5, 0.12), (fs2, 0.15)} 

DA2 {(fs4, 0.07), (fs1, 0.15), (fs2, 0.27)} {(fs5, 0.03), (fs3, 0.23), (fs2, 0.15)} 

DA3 {(fs3, 0.31), (fs2, 0.04), (fs5, 0.29)} {(fs1, 0.05), (fs3, 0.16), (fs4, 0.07)} 

DA4 {(fs2, 0.31), (fs4, 0.06), (fs1, 0.19)} {(fs3, 0.04), (fs5, 0.23), (fs2, 0.37)} 

DA5 {(fs2, 0.32), (fs3, 0.14), (fs4, 0.08)} {(fs4, 0.03), (fs2, 0.06), (fs1, 0.19)} 

 SL EP 

DA1 {(fs5, 0.42), (fs2, 0.07), (fs1, 0.16)} {(fs2,0.13), (fs4, 0.05), (fs3, 0.03)} 

DA2 {(fs4, 0.14), (fs3, 0.08), (fs1, 0.11)} {(fs4, 0.16), (fs2, 0.24), (fs1, 0.18)} 

DA3 {(fs1, 0.31), (fs2, 0.04), (fs4, 0.03)} {(fs2, 0.06), (fs4, 0.15), (fs5, 0.17)} 

DA4 {(fs2, 0.16), (fs2, 0.12), (fs3, 0.03)} {(fs2, 0.18), (fs4, 0.09), (fs3, 0.12)} 

DA5 {(fs2, 0.32), (fs1, 0.01), (fs5, 0.05)} {(fs2, 0.07), (fs3, 0.06), (fs4, 0.09)} 

 

Step 3. Elaborate the 2TLNNPIA and 2TLNNNIA (See Table 3). 

Table 3. The 2TLNNPIS and 2TLNNNIS 
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 PQ DC 

2TLNNPIA {(fs4, 0.07), (fs1, 0.15), (fs2, 0.27)}  {(fs5, 0.03), (fs3, 0.23), (fs2, 0.15)} 

2TLNNNIA {(fs2, 0.32), (fs3, 0.14), (fs4, 0.08)}  {(fs1, 0.05), (fs3, 0.16), (fs4, 0.07)} 

 SL EP 

2TLNNPIS {(fs5, 0.42), (fs2, 0.07), (fs1, 0.16)} {(fs4, 0.16), (fs2, 0.24), (fs1, 0.18)}  

2TLNNNIS {(fs1, 0.31), (fs2, 0.04), (fs4, 0.03)} {(fs2, 0.07), (fs3, 0.06), (fs4, 0.09)}  

 

Step 4. Compute the  2 ijTLNNPIAGRC    and  2 ijTLNNNIAGRC   (See Table 4-5). 

Table 4. The  2 ijTLNNPIAGRC   

Alternatives PQ DC SL EP 

DA1 0.5902 1.0000 0.2410 0.3172 

DA2 0.4520 0.3420 0.3252 0.4020 

DA3 0.6126 0.5902 1.0000 1.0000 

DA4 0.4258 0.4020 0.3420 0.3908 

DA5 1.0000 0.3420 0.3252 0.4258 

Table 5. The  2 ijTLNNNIAGRC   

Alternatives PQ DC SL EP 

DA1 0.6493 0.4809 0.5488 0.5866 

DA2 0.9216 1.0000 1.0000 0.9654 

DA3 0.5733 0.4980 0.4654 0.5268 

DA4 1.0000 0.6493 0.8464 1.0000 

DA5 0.5607 0.5866 0.6160 0.6090 

 

Step 5. Compute the  2 iTLNNPIAGRD  and  2 iTLNNNIAGRD   (See Table 6): 

Table 6. The  2 iTLNNPIAGRD    and  2 iTLNNNIAGRD    
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  2 iTLNNPIAGRD    2 iTLNNNIAGRD   

DA1 0.3236 0.3082 

DA2 0.4420 0.5744 

DA3 0.6570 0.2912 

DA4 0.3880 0.1905 

DA5 0.4077 0.2726 

Step 6. Compute the  2 iTLNNRRD   (See Table 7). 

Table 7. The  2 iTLNNRRD    

  2 iTLNNRRD   Order 

DA1 0.5069 2 

DA2 0.5877 1 

DA3 0.3186 5 

DA4 0.3366 4 

DA5 0.4144 3 

Step 7. Form  2 iTLNNRRD  , the decision order is: 2 1 5 4 3DA DA DA DA DA     and 2DA

is the best USTMSs.                           

4.2. Comparing 2TLNN-GRA with defined 2TLNNs decision operators 

The 2TLNN-GRA is fully compared with 2TLNWHM and 2TLNWDHM operator[72]. The fused 

information values are elaborated within Table 8. 

Table 8. The comparisons with 2TLNNs operators 

 2TLNWHM 2TLNWDHM 

DA1 {(fs2, 0.23), (fs2, 0.18), (fs3, 0.12)} {(fs3, 0.17), (fs5, 0.27), (fs2, 0.42)} 

DA2 {(fs5, 0.49), (fs2, 0.12), (fs1, 0.25)} {(fs5, 0.15), (fs3, 0.29), (fs2, 0.21)} 
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DA3 {(fs5, 0.46), (fs2, 0.16), (fs1, 0.21)} {(fs4, 0.16), (fs2, 0.09), (fs1, 0.23)} 

DA4 {(fs1, 0.36), (fs2, 0.22), (fs4, 0.08)} {(fs1, 0.11), (fs3, 0.26), (fs4, 0.29)} 

DA5 {(fs4, 0.18), (fs3, 0.17), (fs1, 0.19)} {(fs3, 0.28), (fs5, 0.09), (fs2, 0.03)} 

 

According to score of 2TLNNs, the score is elaborated in Table 9. 

Table 9. Scores of given USTMSs 

 2TLNWHM  2TLNWDHM 

 1SF DA  0.7494 0.4464 

 2SF DA  0.8678 0.6126 

 3SF DA  0.7828 0.5294 

 4SF DA  0.6738 0.4259 

 5SF DA  0.7635 0.5108 

 

The order is elaborated in Table 10.  

Table 10. Order by 2TLNNs operators 

 order 

2TLNWHM operator [72] 2 3 5 1 4DA DA DA DA DA     

2TLNWDHM operator [72] 2 3 5 1 4DA DA DA DA DA     

2TLNN-GRA method 2 1 5 4 3DA DA DA DA DA     

Comparing the results of the 2TLNN-GRA method with 2TLNWHM & 2TLNWDHM fused 

operators, the obtained results are slightly different and the chosen best USTMS is same.  

5. Conclusion 
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With the continuous development of China's economy, people's income level is increasing, and 

more and more families have the ability to buy private cars, which leads to a sharp increase in the 

number and frequency of urban motor vehicle ownership and use, and the contradiction between the 

effective supply and demand of people, vehicles and roads is becoming more and more prominent, 

resulting in urban traffic congestion and other urban traffic problems are becoming more and more 

obvious. The traditional methods of alleviating traffic problems are no longer applicable to the 

contradiction between people's traffic demand and traffic infrastructure supply in modern times. 

Recently, in the context of smart cities, scholars at home and abroad have started to study smart 

transportation, and with rapid development of new generation technologies such as cloud computing, 

Internet of Things, big data and 5G, more and more scholars have started to study smart 

transportation, which is an important part of smart cities. The comprehensive evaluation of USTMS 

is the MADM. In this elaborated paper, the 2TLNN-GRA is elaborated for MADM. Finally, an 

example for comprehensive evaluation of USTMS was given to elaborate the 2TLNN-GRA and the 

elaborated comparisons are also executed to elaborate the 2TLNN-GRA. In the future works, the 

2TLNN-GRA shall be applied to existed risk decision [73-76], existed selection decision[77-83] and 

other existed MADM under different uncertain environments[84-88]. 
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Abstract: Recently, colleges/universities have paid a lot of attention to the teaching quality 

evaluation (TQE) of teachers in China. TQE is an essential way to improve teachers' teaching ability 

and quality in the teaching process. Then, the TQE of teaching supervisors is a multi-attribute 

decision-making (MADM) problem with vague, inconsistent, and indeterminate information. The 

simplified neutrosophic indeterminate set/element (SNIS/SNIE) is an appropriate form to express 

the indeterminate decision-making information in the TQE process. Therefore, this article presents 

an improved ranking method based on maximizing deviations principle and technique for order of 

preference by similarity (TOPSIS) for SNIS and applies it to evaluate teachers' teaching quality. 

First, the Hamming distance between two SNIEs is defined. Then, attribute weights are obtained 

by maximizing deviation method and the TOPSIS method-based decision-making model is 

developed for the MADM applications with unknown attribute weights. Finally, we perform the 

developed MADM model for a TQE case and compare it with existing related models to indicate 

the feasibility and rationality of the proposed model with unknown attribute weights in the SNIE 

circumstance. 

Keywords: simplified neutrosophic indeterminate set; maximizing deviation; TOPSIS method; 

teaching quality evaluation 

 

 

1. Introduction 

Cultivating qualified talents is the central task of colleges/universities. During the talent 

training process, the teaching quality evaluation (TQE) is a key task. Then, TQE is one of the main 

tasks of teaching administration in various colleges/universities. A teaching evaluation system 

includes two aspects: evaluation framework and evaluation method. However, TQE is a 

multi-attribute decision-making (MADM) problem, which implies vagueness and uncertainty in the 

evaluation process. In recent years, various fuzzy evaluation methods have been applied to TQE 

[15]. 

Recently, neutrosophic set (NS) [6] has become the most popular topic for describing 

indeterminate and inconsistent information. The true, indeterminate, and false membership 

functions in NS are independent components. Compared with a fuzzy set (FS) [7] and an 

intuitionistic FS (IFS) [8, 9], NS can be used to express the corresponding inconsistent, 

indeterminate, and incomplete information in real decision-making (DM) problems. In practical 
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applications, NS has been simplified into many forms, for example, single-valued NS (SvNS) [10], 

interval NS (INS) [11], and simplified NS (SNS) [12]. They are widely used in engineering and 

science fields. However, the true, indeterminate, and false membership degrees are specified by 

single values or interval values in SNS. In complicated MADM problems, the true, indeterminate, 

and false membership degrees may be partly certain and partly uncertain. In this case, a 

neutrosophic number (NN) [13] can describe them by p = ρ + μξ for ρ, μ   and ξ  [ξ, ξ+], where ρ 

is the certain term and μξ is the uncertain term. Du et al. [14] put forward a simplified neutrosophic 

indeterminate set/element (SNIS/SNIE) combining SNS with NN. Each SNIE consists of the true NN, 

the false NN, and the indeterminate NN. SNIS can be transformed to SvNS or INS according to ξ= 

ξ+ or ξ≠ ξ+ with the value/range of indeterminacy ξ  [ξ, ξ+]. 

The TOPSIS method proposed by Hwang and Yoon [15] is a kind of distance-based rank 

method. Better choices are closer to positive ideals and farther away from negative ideals. Then, it 

has been applied to various fuzzy DM environments. For example, the TOPSIS method was used to 

solve the supplier selection problem in intuitionistic fuzzy environment [16]. Later, many 

researchers [1720] developed the DM methods using TOPSIS methods in hesitant FS, IFS, and 

interval-valued IFS environments. In indeterminate and inconsistent circumstances, Sahin and 

Yiider [21] introduced a modified TOPSIS method with SvNSs for the group DM. Chi and Liu [22] 

extended the TOPSIS method to the INS environment. 

Although some researchers have developed several operational rules for SNIEs and SNIS. 

Existing SNIS decision-making (DM) methods [14, 23, 24] used a specified weight vector of attributes 

to solve the MADM problems of SNISs. So far, no researchers consider the influence of 

indeterminate degrees on attribute weights in MADM problems of SNISs. In a real DM situation, the 

weights of attributes may be indeterminate or unknown. In this article, we extend a MADM model 

which combines the determining method of unknown attribute weights with the TOPSIS method of 

SNISs and use it for TQE. The rest of the article is as follows. 

In Section 2, the Hamming distance of SNIEs is introduced. Section 3 presents a method for 

determining unknown attribute weights and an extended TOPSIS method for SNISEs. In Section 4, 

we apply the proposed model to a TQE case and analyze the influence of indeterminate ranges in 

SNISEs on decision results. Then, the extend TOPSIS method is compared with the related models in 

Section 5. The article is summarized in Section 6. 

2. Distance of SNIEs 

This section presents the Hamming distance between SNIEs and its properties. 

First, we introduce the notions of SNIS and SNIE [14]. 

Definition 1 [14]. Let S = {s1, s2, …, sn} be a universe set. A SNIS B in S is described as B = {<sk, P(sk, ξ), 

N(sk, ξ), Q(sk, ξ)>|sk  S}, where P(sk, ξ) = ρk+μkξ  [0, 1], N(sk, ξ) = δk+Фkξ  [0, 1], and Q(sk, ξ) = λk+νkξ 

 [0, 1] for sk  S (k = 1, 2, …, n) and ξ  [ξ, ξ+]. Then, P(sk, ξ), N(sk, ξ), and Q(sk, ξ) are the true NN, 

the indeterminate NN, and the false NN. Each component <sk, P(sk, ξ), N(sk, ξ), Q(sk, ξ)> in B is called 

SNIE, which can be represented as the simple form bk = <Pk(ξ), Nk(ξ), Qk(ξ)> = <ρk+μkξ, δk+Фkξ, 

λk+νkξ>. 

Then, we present the Hamming distance of SNIEs below. 

Definition 2. Suppose that b1 = <P1(ξ), N1(ξ), Q1(ξ)> = <ρ1+μ1ξ, δ1+Ф1ξ, λ1+ν1ξ> and b2 = <P2(ξ), N2(ξ), 

Q2(ξ)> = <ρ2+μ2ξ, δ2+Ф2ξ, λ2+ν2ξ> are two SNIEs for ξ  [ξ, ξ+]. Thus, the Hamming distance 

between b1 and b2 are defined as follows: 
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Proposition 1. Set b1 = <P1(ξ), N1(ξ), Q1(ξ)> = <ρ1 + μ1ξ, δ1 + Ф1ξ, λ1 + ν1ξ>, b2 = <P2(ξ), N2(ξ), Q2(ξ)> = 

<ρ2 + μ2ξ, δ2 + Ф2ξ, λ2 + ν2ξ >, and b3 = <P3(ξ), N3(ξ), Q3(ξ)> = <ρ3 + μ3ξ, δ3 + Ф3ξ, λ3 + ν3ξ > as three 

SNIEs for ξ  [ξ, ξ+]. The Hamming distance between them meets the following properties: 

(1) 0 ≤ lH(b1, b2) ≤ 1; 

(2) lH(b1, b2) = lH(b2, b1); 

(3) lH(b1, b3) ≤ lH(b1, b2) + lH(b2, b3). 

Proof: 
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Thus lH(b1, b3) ≤ lH(b1, b2) + lH(b2, b3) holds. 

3. An Extended TOPSIS Method for SNIEs 

For a MADM problem, suppose that E = {E1, E2, …, Em} and C = {C1, C2, …, Cn} are a set of 

alternatives and a set of attributes, respectively. But the attribute weight vector β = {β1, β2, …, βn} is 

unknown for ∑
n 

j=1βj = 1 and βj  [0,1]. The decision matrix is B = [bij]m×n, where bij = <Pij(ξ), Nij(ξ), Qij(ξ)> 

= <ρij+μijξ, δij+Фijξ, λij+νijξ> is SNIE as the assessment value of the alternative Ei on the attribute Cj. 

The MADM method is described by the following steps. 
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Step 1. Normalize SNIEs for different attribute types. 

In the DM problems, attributes were classified as benefit and cost. For the benefit type, it is 

better with a higher attribute value; For the cost type, it is worse with a higher attribute value. We 

generally adopt the beneficial type in most DM situations. If the attribute Cj is the cost type, the 

SNIE bij needs to be converted to its complement bij by bij = <[λij+νijξ, λij+νijξ+], [1(δij+Фijξ+), 

1(δij+Фijξ)], [ρij+μijξ, ρij+μijξ+]>. 

Step 2. Determine attribute weights by the maximizing deviation model. 

When the attribute weight information is incomplete or completely unknown in MADM 

problems. The maximizing deviation model [25] is a commonly used method to determine attribute 

weights. The model is based on the following principle. In MADM, the evaluation values of all 

alternatives for each attribute are generally different. For an attribute, the difference between the 

assessment values of all alternatives demonstrates the importance of the attribute. The greater the 

deviation between attribute values, the greater influence this attribute will have on the ranking of 

alternatives. Thus, this attribute is set as a higher weight. On the contrary, the smaller the deviation 

between attribute values, the lower the weight. 

We determine the weight vector in view of the following steps: 

(i) Define the deviation of Ei (i = 1, 2, …, m) to all alternatives for the attribute Cj (j = 1, 2, …, n) by 

  
1

( )
m

ij j H ij kj j

k

L l b ,b 


   (2) 

(ii) Define the deviation of all the alternatives for the attribute Cj for (j = 1, 2, …, n) by 

    
1 1 1
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m m m
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i i k
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(iii) Define the deviation for all attributes by 
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       (4) 

(iv) Construct a model that maximizes all deviations to determine the weights by 
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(v) Construct a Lagrange function by 
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(vi) Take the partial derivative with respect to βj and φ by 
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(vii) Normalize the attribute weights by 

 1 1
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Step 3. Rank all alternatives with the TOPSIS method. 

(i) Determine two sets of positive and negative ideal solutions + +
1 2{ }+ +

nb = b ,b ,...,b  and 

1 2{ }nb = b ,b ,...,b   
by the following equations: 

( ), ( ) min ( ),min ( ) min ( ),min (, ,) +

j ij ij ij ij ij ij
i i i ii i

b = max P max P N N Q Q                
    

，   (9) 

min ( ),min ( ) max ( ),max ( ) max ( ),max (, ) j ij ij ij ij ij ij
i i i i i i

b = P P N N Q Q                
     

，   (10) 

(ii) Calculate the weighted distances of all alternatives to the positive ideal set 

{ }+ + + +

1 2 mh = h ,h ,...,h  and the weighted distances of all alternatives to the negative ideal set 

{ }1 2 mh = h ,h ,...,h     by 

 
1

1

( , )

( , )

n

i j H ij j

j

n

i j H ij j

j

h l b b

h l b b





 



 








 





  (11) 

(iii) Calculate the correlation coefficient ih  for each alternative by 

 i
i

i i

h
h

h h



 



  (12) 

(iv) Rank alternatives  

Alternatives are ranked according to their correlation coefficient values. 

4. An Indeterminate DM Case about TQE 

4.1 Problem Description of a TQE Case 

This study is to apply the proposed TOPSIS method to TQE in the teaching assessment of 

teachers. Teaching skill competitions are often held in universities to promote teaching quality and 

improve teaching level. Teachers participating in the competition hold open classes based on their 

courses. In China, each university usually establishes a teaching evaluation system and specifies a 

group of teaching experts as an assessment committee. In the assessment process, teaching 

evaluation system commonly includes the attributes/criteria of teaching content, method, and 

attitude. Each attribute is briefly described as follows. 

The teaching content means the rationality of teaching design. An excellent teaching design can 

strengthen the key points and important knowledge of the teaching content, which should be 
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related to the knowledge levels and the learning ability of students. 

The teaching method reflects that heuristic teaching is adopted. The teachers focus on teaching 

feedback and ability cultivation. Various teaching means are used in the classroom to maintain a 

good classroom atmosphere. 

The teaching attitude is reflected in good appearance, good manners and fluent teaching 

language. Teachers must strictly adhere to the teaching norms. Teachers must be strict with 

students and manage classroom order well. 

In the TQE case, the School of Mechanical and Electrical Engineering of Shaoxing University in 

China will offer teaching excellence awards to outstanding teachers among the four finalists E1, E2, 

E3 and E4 (the four alternatives) in the final round. Teaching supervisors observe their teaching one 

time in any class. Experts give their assessments according to the three attributes: C1 (the teaching 

content design), C2 (the teaching method), and C3 (the teaching attitude). The teaching experts were 

invited to assess each teacher participating in the competition process. However, since the weights 

of the three attributes are not specified, they are unknown. Then, they give the assessment values of 

the SNIEs bij = <Pij(ξ), Nij(ξ), Qij(ξ)> = <ρij+μijξ, δij+Фijξ, λij+νijξ> (i = 1, 2, 3, 4; j = 1, 2, 3) for ξ  [0, 1.5]. 

The decision matrix is indicated as below. 

0.7 0.2 ,0.2 0.1 ,0.2 0.2 0.7 0.2 ,0.1 0.3 ,0.1 0.1 0.6 0.2 ,0.2 0.2 ,0.2 0.2

0.7 0.2 ,0.2 0.1 ,0.3 0.1 0.8 0.1 ,0.1 0.2 ,0.1 0.3 0.7 0.1 ,0.2 0.2 ,0.1 0.1

0.8 0.1 ,0.2 0.1 ,0.1 0.2 0
B

        

        

  

              

              


      .7 0.1 ,0.2 0.1 ,0.1 0.2 0.7 0.2 ,0.3 0.1 ,0.2 0.1

0.7 0.1 ,0.1 0.2 ,0.2 0.1 0.8 0.1 ,0.1 0.2 ,0.2 0.1 0.7 0.1 ,0.2 0.1 ,0.2 0.2

     

        

 
 
 
         
 
               

 

4.2 Ranking the Alternatives  

The proposed TOPSIS method is applied to the TQE case and gives the following steps. 

Step 1. Since the attributes are all benefit types in this case, their assessed values do not need to be 

converted.  

Firstly, we assume that ξ is an indeterminate range of ξ  [0, 0.5], then the decision matrix is 

produced as follows: 

                 
                 
       

0.7 0.8 , 0.2 0.25 , 0.2 0.3 0.7 0.8 , 0.1 0.25 , 0.1 0.15 0.6 0.7 , 0.2 0.3 , 0.2 0.3

0.7 0.8 , 0.2 0.25 , 0.3 0.35 0.7 0.85 , 0.1 0.2 , 0.1 0.25 0.7 0.75 , 0.2 0.3 , 0.1 0.15
*

0.8 0.85 , 0.2 0.25 , 0.1 0.2 0.7 0.75 , 0
B

     

     


  

， ， ， ， ， ， ， ， ，

， ， ， ， ， ， ， ， ，

， ， ， ，          
                 

.2 0.25 , 0.1 0.2 0.7 0.8 , 0.3 0.35 , 0.2 0.25

0.7 0.75 , 0.1 0.2 , 0.2 0.25 0.8 0.85 , 0.1 0.2 , 0.2 0.25 0.7 0.75 , 0.2 0.25 , 0.2 0.3

 
 
 
   
 
       

， ， ， ， ，

， ， ， ， ， ， ， ， ，

 

Step 2. Calculate and normalize the attribute weights βj. 

(i) According to Eq. (2), we calculate the Hamming distances between bij and bkj, which are listed in 

Table 1. 

(ii) According to Eq. (9), we can get the normalized attribute weights  

β1= 0.3554, β2= 0.3140, and β3= 0.3306. 

Step 3. Rank the alternatives with the TOPSIS method. 

(i) According to Eqs. (10)-(11) and the decision matrix B*, we can determine two sets of the positive 

and negative ideal solutions b+ and b−: 

b+ = {<[0.8,0.85],[0.1,0.2],[0.1,0.2]>,<[0.8,0.85],[0.1,0.2],[0.1,0.15]>,<[0.7,0.8].[0.20,0.25],[0.10,0.15]>}, 

b− = {<[0.7,0.75],[0.2,0.25],[0.3,0.35]>,<[0.7,0.75],[0.2,0.25],[0.2,0.25]>,<[0.6,0.7].[0.3,0.35],[0.2,0.3]>} 

(ii) According to Eq. (12), we calculate the weighted distances of all alternatives to the positive and 

negative ideal solutions: 

h1+ = 0.0676, h2+ = 0.0492, h3+ = 0.0519, and h4+ = 0.0477; 

h1− = 0.0384, h2− = 0.0568, h3− = 0.0542, and h4− = 0.0583. 

(iii) By Eq. (13), we get the correlation coefficient ih  as follows: 

h1 = 0.3623, h2 = 0.5357, h3 = 0.5110, and h4 = 0.5500. 

(iv) In terms of the ranking rules, the alternative is better if the coefficient value is greater. Therefore, 

the ranking order from the best to worst is E4 > E2 > E3 > E1. The best teacher is E4 when the 

indeterminacy ξ is in the range of [0, 0.5]. 
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Table 1. The Hamming distances between bij and bkj 

lH(bij,bkj) 

 j = 1 j = 2 j = 3 

i = 1 k = 1 0.0000 0.0000 0.0000 

 

k = 2 0.0250 0.0500 0.0667 

k = 3 0.0583 0.0333 0.0667 

k = 4 0.0417 0.0667 0.0333 

i = 2 k =1 0.0250 0.0500 0.0667 

 

k = 2 0.0000 0.0000 0.0000 

k = 3 0.0833 0.0667 0.0667 

k = 4 0.0667 0.0167 0.0500 

i = 3 k = 1 0.0583 0.0333 0.0667 

 

k = 2 0.0833 0.0667 0.0667 

k = 3 0.0000 0.0000 0.0000 

k = 4 0.0833 0.0833 0.0500 

i = 4 k = 1 0.0417 0.0667 0.0333 

 

k = 2 0.0667 0.0167 0.0500 

k = 3 0.0833 0.0833 0.0500 

k = 4 0.0000 0.0000 0.0000 

4.3 Sensitivity Analysis 

In the MADM method proposed above, by sensitivity analysis, we reveal that different 

indeterminate ranges of ξ can change weight values and decision results.  

The relationship between the indeterminate range of ξ and the weight value is shown in Fig. 1. 

The corresponding relationship between the indeterminate range of ξ and the decision result is 

exhibited in Fig. 2. Fig. 1 reflects that the weight values will change slightly as the indeterminate 

range of ξ changes. In Fig.2, when the range of ξ is less than [0, 0.6], the ranking order of the 

alternatives is E4 > E2 > E3 > E1. Then, the ranking order of the alternatives becomes E2 > E4 > E3 > E1 

when the range of ξ is between [0, 0.7] and [0, 1.2]. In other ranges of ξ, the ranking order is E3 > E2 > 

E4 > E1. 

5. Comparison with Existing Related MADM Models 

We compare the developed TOPSIS method with existing MADM models of SNIEs [14, 23]. In 

the existing DM models [14, 23], the weight vector β = (β1, β2, β3) is specified as β = (0.30,0.36,0.34), 

which is not related to the indeterminate range of ξ. It is seen from Table 2 that the ranking results of 

the developed TOPSIS method are mostly different from those of existing DM methods [14, 23]. 

Comparing the results of Fig. 1 and Fig. 2, we find that the ranking order is E2 > E4 > E3 > E1 when the 

range of ξ is between [0, 0.7] and [0, 1.2], while the corresponding weight vector in Fig. 1 is gradually 

close to the specified weight vector β = (0.30,0.36,0.34). The decision result of this extended TOPSIS 

method is almost the same as that of other aggregation approaches regarding the same weight 

vector. It demonstrates that the developed method is effective. 

In DM problems of SINEs, the decision results change with the change in the indeterminate 

range of ξ, but the existing DM models all use a specified weight vector, which is not related to the 

indeterminate range. Then, the developed DM model fully reflects the influence of the range of ξ on 
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the weight vector and the ranking order. This new approach demonstrates the importance of 

decision makers' indeterminate levels. Obviously, there are three kinds of indeterminate levels in the 

TQE case, such as the low indeterminate level for ξ  {[0, 0], [0, 0.6]}, the moderate indeterminate 

level for ξ  {[0, 0.7], [0, 1.2]}, and the high indeterminate level for ξ  {[0, 1.3], [0, 1.5]}. Since 

different indeterminate levels reflect different ranking orders, decision makers can choose the 

decision result based on some indeterminate level. 

 

 
Fig. 1. Relationship between the range of ξ and the weight values 

 

 

Fig. 2. Relationship between the range of ξ and the decision results 
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Table 2. Ranking results of different methods 

 

6. Conclusions 

This paper first defined the Hamming distance between two SNIEs. According to the distance of 

SNIEs, we proposed the maximizing deviation method for determining the weight vector and the 

TOPSIS method for ranking alternatives. Then, the extended TOPSIS method-based MADM model 

was developed in the SNIE circumstance. Next, the developed MADM model was applied to a TQE 

case. By the case analysis, we not only obtained the decision results corresponding to the specified 

indeterminate ranges of ξ, but also analyzed the influence of the indeterminate range of ξ on the 

weight vector and the ranking order. Through comparing the developed model and the existing 

models, the results demonstrated that the developed model with unknown weights is valid by 

considering the weight vector obtained in the indeterminate range of ξ. The extended TOPSIS 

method-based MADM model can be widely used for these areas such as quality evaluation, service 

evaluation, project optimization in the environment of SNIEs. 

 

 

Funding: This research received no external funding. 

 

Conflicts of Interest: The authors declare no conflict of interest. 

 

References 

1. Lu, X.Y.; Xue, H.Z. Teaching quality evaluation system design of teachers in higher colleges & universities. In: 

International Conference on Environmental Science and Information Application Technology, Wuhan, 

China, 2009. 

2. Zhang, X.Y.; Wang, J.Q. A Heterogeneous linguistic MAGDM framework to classroom teaching quality 

evaluation. Eurasia Journal of Mathematics. Science and Technology Education 2017, 13, 4929–4956. 

3. Su, W.H.; Zeng, S.Z.; Wang, N. A novel method based on induced aggregation operator for classroom 

teaching quality evaluation with probabilistic and Pythagorean fuzzy information. EURASIA Journal of 

Mathematics, Science and Technology Education 2018, 14, 3205–3212. 

4. Peng, X.D.; Dai, J.G. Research on the assessment of classroom teaching quality with q-rung orthopair fuzzy 

information based on multiparametric similarity measure and combinative distance-based assessment. 

International Journal of Intelligent Systems 2019, 34, 1588–1630. 

5. Gong, J.W.; Li, Q.; Yin, L.S. Undergraduate teaching audit and evaluation using an extended MABAC 

method under q‐rung orthopair fuzzy environment. International Journal of Intelligent Systems 2020, 35(12), 

1912–1933. 

6. Smarandache, F. Neutrosophy: neutrosophic probability, set, and logic. American Research Press, Rehoboth, 

USA, 1998. 

7. Zadeh., L.A. Fuzzy sets. Information and Control 1965, 8, 338–353. 

8. Atanassov., K.T. More on intuitionistic fuzzy sets. Fuzzy Sets and Systems 1989, 33, 37–46. 

Approaches
Ranking order with different indeterminacy ξ

ξ= [0,0] ξ= [0,0.5] ξ= [0,1] ξ= [0,1.5]

SNIEWAA [14] E2> E4> E3> E1. E2> E4> E3> E1. E2> E4> E3> E1. E2> E3> E4> E1.

SNIEWGA [14] E2> E4> E3> E1. E2> E4> E3> E1. E4> E2> E3> E1. E3> E4> E2> E1.

SNIEEWA [23] E2> E4> E3> E1. E2> E4> E3> E1. E2> E4> E3> E1. E2> E3> E4> E1.

SNIEEWG [23] E2> E4> E3> E1. E2> E4> E3> E1. E2> E4> E3> E1. E3> E4> E2> E1.

TOPSIS E4> E2> E3> E1. E4> E2> E3> E1. E2> E4> E3> E1. E3> E2> E4> E1



Neutrosophic Sets and Systems, Vol. 53, 2023     106  

 

 

Xueping Lu, Tong Zhang, Yiming Fang, Jun Ye, TOPSIS Method-based Decision-Making Model of Simplified Neutrosophic 

Indeterminate Sets for Teaching Quality Evaluation 

 

9. Atanassov., K.T. Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 1994, 64, 

159–174. 

10. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace 

Multistructure 2010, 4, 410–413. 

11. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval neutrosophic sets and logic: Theory and 

applications in computing. Hexis, Phoenix, AZ, 2005. 

12. Ye, J. A multicriteria decision-making method using aggregation operators for simplified Neutrosophic 

sets. Journal of Intelligent & Fuzzy Systems 2014, 26, 2459–2466. 

13. Smarandache, F. Neutrosophy: neutrosophic probability, set, and logic. American Research Press, 1998. 

14. Du, S.G.; Ye, J.; Yong, R. Simplified neutrosophic indeterminate decision-making method with decision 

makers’ indeterminate ranges. Journal of Civil Engineering and Management 2020, 6, 590–598. 

15. Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Applications, Springer, Berlin 

Heidelberg, 1981. 

16. Boran, F.E.; Genc, S.; Kurt, M.; Akay, D. A multi-criteria intuitionistic fuzzy group decision making for 

supplier selection with TOPSIS method. Expert Systems with Applications 2009, 36, 11363–11368. 

17. Roseline, S.S.; Amirtharaj, E.C.H. A new method for ranking of intuitionistic fuzzy numbers. Indian Journal 

of Applied Research 2011, 3(6), 1–2. 

18. M. Palanikumar , Aiyared Iampan , Said Broumi, MCGDM based on VIKOR and TOPSIS proposes 

neutrsophic Fermatean fuzzy soft with aggregation operators, International Journal of Neutrosophic 

Science, Vol. 19 , No. 3 , (2022) : 85-94  

19. Chai, J.; Liu, J.N.K.; Xu, Z. A rule-based group decision model for warehouse evaluation under 

interval-valued intuitionistic fuzzy environments. Expert Systems with Applications 2013, 40, 1959–1970. 

20. Xu, Z.; Zhang, X. Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight 

information. Knowl- Based Syst 2013, 52, 53–64. 

21. Sahin, R.; Yiğider, M. A Multi-criteria neutrosophic group decision making method based TOPSIS for 

supplier selection. Applied Mathematics & Information Sciences 2016, 10, 1843–1852. 

22. Chi, P.P.; Liu P.D. An extended TOPSIS method for the multiple attribute decision making problems based 

on interval neutrosophic set. Neutrosophic Sets and Systems 2013, 1, 63–70. 

23. Lu, X.P.; Zhang, T.; Fang, Y.M.; Ye. J. Einstein aggregation operators of simplified neutrosophic 

indeterminate elements and their decision-making method. Neutrosophic Sets and Systems 2021, 47, 12–25. 

24. Du, S.G.; Ye, J.; Yong, R.; Zhang, F.W. Q-indeterminate correlation coefficient between simplified 

neutrosophic indeterminate sets and its multicriteria decision-making method. Journal of Civil Engineering 

and Management 2021, 27, 404–411. 

25. Wang, Y.M. Using the method of maximizing deviations to make decision for multi-indices. System 

Engineering and Electronics 1998, 7, 24–26. 

 

 

 

Received: Sep 1, 2022.  Accepted: Dec 22, 2022 



University of New Mexico

Fundamental group and complete parts of Neutrosophic

Quadruple Hv -groups

Madeleine Al Tahan1, Bijan Davvaz2,∗, Florentin Smarandache3 and Saba Al-Kaseasbeh4

1Department of Mathematics, Abu Dhabi University, United Arab Emirates; altahan.madeleine@gmail.com
2Department of Mathematical Sciences, Yazd University, Yazd, Iran; davvaz@yazd.ac.ir
3Mathematics Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA;

smarand@unm.edu
4Department of Mathematics, Tafila Technical University, Tafila, Jordan; saba.alkaseasbeh@gmail.com
∗Correspondence: davvaz@yazd.ac.ir

Abstract. It is well known that Hv -groups and groups are connected through regular relations. The purpose

of this paper is to find a similar connection between neutrosophic Hv -groups and neutrosophic groups by using

the concept of fundamental relations on Hv-groups. First, we characterize the complete parts of neutrosophic

Hv-groups. Then we study their (strongly) regular relations. Finally, we find their fundamental group.

Keywords: neutrosophic quadruple number; neutrosophic quadruple Hv -group; fundamental group; complete
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—————————————————————————————————————————-

1. Introduction

Fuzzy set theory [1] has many real-world applications, but it is not suitable for simulate

an indeterminate issue in an abstract situation. By giving indeterminates representation,

neutrosophic theory has advanced an important concept. One of the essential aspects in

practically all problems in the real world is uncertainty or indeterminacy. Fuzzy theory is used

to model uncertainty, whereas neutrosophic theory is employed to represent indeterminacy.

In 1995, F. Smarandache created the concept of neutrosophy to represent problems involving

indeterminates. For further background on neutrosophy and neutrosophic algebraic structures,

see [2–6]. By assuming that the result of ”interaction” between two elements of a non-empty

set is a non-void set of elements, one is obviously generalizing the definition of a group. (and not

only one element, as for groups), A hypergroup was first proposed in 1934 at the eighth congress
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of Scandinavian mathematicians by the French mathematician Frederic Marty [7]. The rule

that describes such a structure is known as a ”hyperoperation”, and the theory of algebraic

structures with at least one multi-valued operation is recognized as the Hyperstructure Theory.

Marty’s motivation to introduce hypergroups is that the quotient of a group modulo any

subgroup (not necessarily normal) is a hypergroup. This theory has been studied in the

following decades and nowadays by many mathematicians. As a generalization of algebraic

hyperstructures, Vougiouklis, in 1990, at the fourth A.H.A. congress [8,9] introduced the notion

of Hv -structures.

Our paper presents a connection between hypergroups, fundamental groups and neutrosophy

and it is constructed as follows: After an Introduction, in Section 2, we present some definitions

related to (weak) hyperstructures that are used throughout the paper. In Section 3, we use the

concept of neutrosophic Hv -group, defined by the authors in [10] and classify its complete parts

and its (strongly) regular relations. Finally, in Section 4, we find the fundamental neutrosophic

group of neutrosophic Hv -groups.

2. Complete parts and regular relations in neurtosphic Hv -groups

We use the notion of neutrosophic Hv -group, defined by the authors in [10] and classify its

complete parts as well as its (strongly) regular relations. For basic definitions about algebraic

hyperstructures we refer to [11–14]. In neutrosophy, < X >, < antiX >, and < neutX > are

paired two by two, as well as all three at once, to create the NeutroSynthesis. Neutrosophy

lays out the universal relationships between < X >, < antiX >, and < neutX >. < X > is

the thesis, < antiX > the antithesis, and < neutX > the neutrothesis (neither < X > nor

< antiX >, but the neutrality in between them).

Definition 2.1. [4] Let B be a nonempty set. A neutrosophic quadruple B-number is

an ordered quadruple (b1, b2T, b3I, b4F ) where b1, b2, b3, b4 ∈ B and T, I, F have their usual

neutrosophic logic meanings.

The set of all neutrosophic quadruple B-numbers is denoted by NQ(B), that is,

NQ(B) = {(b1, b42T, b3I, b4F ) : b1, b2, b3, b4 ∈ B}.

Let (H ,+) be an Hv -group with identity “ 0” and define “⊕” on NQ(H ) as follows:

(x1, x2T, x3I, x4F )⊕ (y1, y2T, y3I, y4F )

= {(a, bT, cI, dF ) : a ∈ x1 + y1, b ∈ x2 + y2, c ∈ x3 + y3, d ∈ x4 + y4}.

Throughout this section, (H,+) is an Hv -group with identity “0” and 0 + 0 = 0.

Theorem 2.2. [10] Let H be any set with a hyperoperation +. Then (NQ(H),⊕) is a

neutrosophic quadruple Hv -group if and only if (H,+) is an Hv -group with identity “0 ∈ H ”

and 0 + 0 = 0.
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Theorem 2.3. [10] Let H be any set with a hyperoperation +. Then (NQ(H),⊕) is a

neutrosophic quadruple hypergroup if and only if (H,+) is a hypergroup with identity “0 ∈ H”

and 0 + 0 = 0.

Theorem 2.4. Let (H,+) be an Hv -group with identity “0”, 0 + 0 = 0 and X be a non

empty subset of NQ(H). Then X is a complete part in NQ(H) if and only if there exist

A1, A2, A3, A4 ⊆ H such that X = {(a, bT, cI, dF ) : a ∈ A1, b ∈ A2, c ∈ A3, d ∈ A4} and that

Ai is a complete part in H for i = 1, 2, 3, 4.

Proof. Let X be a complete part in NQ(H). Then there exist A1, A2, A3, A4 ⊆ H such that

X = {(a, bT, cI, dF ) : a ∈ A1, b ∈ A2, c ∈ A3, d ∈ A4}. We prove that A1 is a complete part in

H and the others are done in a similar manner. Let x ∈ A1∩P 6= ∅. Then there exist xi ∈ H
with i = 1, 2, . . . , k such that x ∈ x1 + . . . + xk. Let y ∈ A2, z ∈ A3 and w ∈ A4. It is clear

that

(x, yT, zI, wF ) ∈ X ∩ ((x1, yT, zI, wF )⊕ (x2, 0T, 0I, 0F )⊕ . . .⊕ (xk, 0T, 0I, 0F )).

The latter and having X a complete part in NQ(H) imply that ((x1, yT, zI, wF ) ⊕
(x2, 0T, 0I, 0F ) . . .⊕ (xk, 0T, 0I, 0F ) ⊆ X. Consequently, we get x1 + . . .+ xk ⊆ A1.

Conversely, let A1, A2, A3, A4 ⊆ H be complete parts in H , X = {(a, bT, cI, dF ) :

a ∈ A1, b ∈ A2, c ∈ A3, d ∈ A4} and (a, bT, cI, dF ) ∈ X ∩ ((x1, y1T, z1I, w1F ) ⊕ . . . ⊕
(xk, ykT, zkI, wkF )). Then a ∈ A1∩(x1+. . .+xk), b ∈ A2∩(y1+. . .+yk), c ∈ A1∩(z1+. . .+zk)

and d ∈ A1 ∩ (w1 + . . . + wk). Having Ai a complete part in H for i = 1, 2, 3, 4 implies that

x1 + . . .+ xk ⊆ A1, y1 + . . .+ yk ⊆ A2, z1 + . . .+ zk ⊆ A3 and w1 + . . .+wk ⊆ A4. The latter

implies that (x1, y1T, z1I, w1F )⊕ . . .⊕ (xk, ykT, zkI, wkF ) ⊆ X.

Corollary 2.5. Let (H,+) be an Hv -group with identity “0” and 0+0 = 0 and A be a complete

part in H . Then NQ(A) is a complete part in NQ(H).

Proof. By setting Ai = A for i = 1, 2, 3, 4 and X = {(a, bT, cI, dF ) : a ∈ A1, b ∈ A2, c ∈ A3, d ∈
A4}, Theorem 2.4 asserts that NQ(A) = X is a complete part in NQ(H).

The authors in [15, 16] considered the set of arithmetic functions H and defined a hyper-

operation + on it as follows:

α+ β(n) = {α(d) + β(
n

d
) : d|n}.

Let 0?(n) = 0 for all n ∈ N. It is clear that 0? + 0? = 0?. The authors proved that (H,+) is a

hypergroup with identity 0? and characterized all complete parts in H as: S =
⋃

r∈M
Ar where

M is a non empty subset of the set of complex numbers C and Ar = {α ∈ H : α(1) = r}.
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Proposition 2.6. Let (H,+) be the hypergroup of arithmetic functions under the above hy-

peroperation. Then (NQ(H),⊕) is a neutrosophic hypergroup.

Proof. The proof follows from Theorem 2.3.

Proposition 2.7. Let (H,+) be the hypergroup of arithmetic functions defined in [16] and X

be a complete part in NQ(H). Then there exist non empty subsets Mi of C with i = 1, 2, 3, 4

such that X = {(a, bT, cI, dF ) : a ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4} and Si = ∪r∈MiAr for

i = 1, 2, 3, 4.

Proof. The proof follows from Theorem 2.4.

Corollary 2.8. Let (H,+) be the hypergroup of arithmetic functions defined in [16] and r be

any complex number. Then NQ(Ar) is a complete part in NQ(H).

Let (H,+) be an Hv -group with identity “0”, 0 + 0 = 0 and Ri be a relation on H for

i = 1, 2, 3, 4. We define ρ on NQ(H) as follows:

(a, bT, cI, dF )ρ(a′, b′T, c′I, d′F )⇔ aR1a
′, bR2b

′, cR3c
′, dR4d

′.

Proposition 2.9. Let (H,+) be an Hv -group with identity “0” and 0 + 0 = 0. Then ρ is

an equivalence relation on NQ(H) if and only if Ri is an equivalence relation on H∗ for

i = 1, 2, 3, 4.

Proof. The proof is straightforward.

Theorem 2.10. Let (H,+) be an Hv -group with identity “0” and 0 + 0 = 0. Then ρ is a

regular relation on NQ(H) if and only if Ri is a regular relation on H for i = 1, 2, 3, 4.

Proof. Let ρ be a regular relation on NQ(H) and a, a′ ∈ H with aR1a
′. Then

(a, 0T, 0I, 0F )ρ(a′, 0T, 0I, 0F ) (as 0Ri0 for i = 2, 3, 4). We need to show that a + xR1a
′ + x

and x + aR1x + a′ for all x ∈ H. We prove that a + xR1a
′ + x. Let b ∈ a + x. Then

(b, 0T, 0I, 0F ) ∈ (a, 0T, 0I, 0F )⊕ (x, 0T, 0I, 0F ). Having (a, 0T, 0I, 0F )ρ(a′, 0T, 0I, 0F ) and ρ

a regular relation on NQ(H) imply that

(a, 0T, 0I, 0F )⊕ (x, 0T, 0I, 0F )ρ(a′, 0T, 0I, 0F )⊕ (x, 0T, 0I, 0F ).

The latter implies that there exist (y, 0T, 0I, 0F ) ∈ (a′, 0T, 0I, 0F )⊕ (x, 0T, 0I, 0F ) such that

(z, 0T, 0I, 0F )ρ(y, 0T, 0I, 0F ) for every (z, 0T, 0I, 0F ) ∈ (a, 0T, 0I, 0F ) ⊕ (x, 0T, 0I, 0F ). We

get now that for every z ∈ a+ x there exists y ∈ a′ + x such that zR1y. Thus, R1 is a regular
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relation on H . In a similar manner, we can prove that Ri is a regular relation on H for

i = 2, 3, 4.

Conversely, let Ri be a regular relation on H for i = 1, 2, 3, 4,

(a, bT, cI, dF )ρ(a′, b′T, c′I, d′F ) and (x, yT, zI, wF ) ∈ NQ(H).

We need to show that

(a, bT, cI, dF )⊕ (x, yT, zI, wF )ρ(a′, b′T, c′I, d′F )⊕ (x, yT, zI, wF ).

Let (e, fT, gI, hF ) ∈ (a, bT, cI, dF )⊕ (x, yT, zI, wF ). Then e ∈ a+ x, f ∈ b+ y, g ∈ c+ z and

h ∈ d+w. Having aR1a
′, bR2b

′, cR3c
′, dR4d

′ and Ri a regular relation on H for i = 1, 2, 3, 4

imply that a + xR1a
′ + x, b + yR2b

′ + y, c + zR3c
′ + z, d + wR4d

′ + w. The latter implies

that there exist e′ ∈ a′ + x, f ′ ∈ b′ + y, g′ ∈ c′ + z, h′ ∈ d′ + w such that eR1e
′, fR2f

′,

gR3g
′ and hR4h

′. We get now that (e′, f ′T, g′I, h′F ) ∈ (a′, b′T, c′I, d′F )⊕ (x, yT, zI, wF ) with

(e, fT, gI, hF )ρ(e′, f ′T, g′I, h′F ).

Theorem 2.11. Let (H,+) be an Hv -group with identity “0” and 0 + 0 = 0. Then ρ is a

strongly regular relation on NQ(H) if and only if Ri is a strongly regular relation on H for

i = 1, 2, 3, 4.

Proof. Let ρ be a strongly regular relation on NQ(H) and a, a′ ∈ H with aR1a
′. Then

(a, 0T, 0I, 0F )ρ(a′, 0T, 0I, 0F ) (as 0Ri0 for i = 2, 3, 4). We need to show that a + xR1a
′ + x

and x + aR1x + a′ for all x ∈ H. We prove that a + xR1a
′ + x and the other is done in

a similar manner. Let b ∈ a + x. Then (b, 0T, 0I, 0F ) ∈ (a, 0T, 0I, 0F ) ⊕ (x, 0T, 0I, 0F ).

Having (a, 0T, 0I, 0F )ρ(a′, 0T, 0I, 0F ) and ρ a strongly regular relation on NQ(H) imply that

(a, 0T, 0I, 0F )⊕ (x, 0T, 0I, 0F )ρ(a′, 0T, 0I, 0F )⊕ (x, 0T, 0I, 0F ). The latter implies that for all

(y, 0T, 0I, 0F ) ∈ (a′, 0T, 0I, 0F )⊕ (x, 0T, 0I, 0F ) and for all (z, 0T, 0I, 0F ) ∈ (a, 0T, 0I, 0F )⊕
(x, 0T, 0I, 0F ), we have (z, 0T, 0I, 0F )ρ(y, 0T, 0I, 0F ). We get now that for every z ∈ a + x

and for all y ∈ a′ + x such that zR1y. Thus, R1 is a strongly regular relation on H∗. In a

similar manner, we can prove that Ri is a strongly regular relation on H for i = 2, 3, 4.

Conversely, let Ri be a strongly regular relation on H for i = 1, 2, 3, 4,

(a, bT, cI, dF )ρ(a′, b′T, c′I, d′F ) and (x, yT, zI, wF ) ∈ NQ(H). We need to show that

(a, bT, cI, dF ) ⊕ (x, yT, zI, wF )ρ(a′, b′T, c′I, d′F ) ⊕ (x, yT, zI, wF ). Let (e, fT, gI, hF ) ∈
(a, bT, cI, dF ) ⊕ (x, yT, zI, wF ). Then e ∈ a + x, f ∈ b + y, g ∈ c + z and h ∈ d + w.

Having aR1a
′, bR2b

′, cR3c
′, dR4d

′ and Ri a strongly regular relation on H for i = 1, 2, 3, 4

imply that a + xR1a
′ + x, b + yR2b

′ + y, c + zR3c
′ + z, d + wR4d

′ + w. The latter im-

plies that for all e′ ∈ a′ + x, f ′ ∈ b′ + y, g′ ∈ c′ + z, h′ ∈ d′ + w, we have eR1e
′, fR2f

′,

gR3g
′ and hR4h

′. We get now that (e′, f ′T, g′I, h′F ) ∈ (a′, b′T, c′I, d′F )⊕ (x, yT, zI, wF ) with

(e, fT, gI, hF )ρ(e′, f ′T, g′I, h′F ).
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Example 2.12. Let Q be the set of rational numbers, (H,+) be the hypergroup of arithmetic

functions and define the strongly regular equivalence relation Ri for i = 1, 2, 3, 4 on H as

follows:

αR1γ ⇔ α(1) = γ(1) + q; q ∈ Q,

and for i = 2, 3, 4

αRiγ ⇔ α(1) = γ(1).

Applying Theorem 2.11, we get ρ a strongly regular equivalence relation on NQ(H), where ρ

is defined as follows:

(α, βT, γI, λF )ρ(α′, β′T, γ′I, λ′F )

⇔ α(1) = α′(1) + q; q ∈ Q, β(1) = β′(1), γ(1) = γ′(1), λ(1) = λ′(1).

3. Fundamental group of neutrosophic quadruple Hv -groups

In this part, we investigate the fundamental relation on neutrosophic H v-groups and

determine its fundamental neutrosophic group..

In [3], Akinleye et. al. conducted their investigation of neutrosophic quadruple algebraic

structures on quadruple numbers based on the set of real numbers. And they proved that

if G is a group of real numbers then NQ(G) = {(g1, g2T, g3I, g4F ) : g1, g2, g3, g4 ∈ G} is a

neutrosophic group under the operation “⊕” given by:

g1, g2T, g3I, g4F )⊕ (g1
′, g2

′T, g3
′I, g4

′F ) = (g1 + g′1, (g2 + g2
′)T, (g3 + g3

′)I, (g4 + g4
′)F ).

The following theorem generalizes their result to any group.

Theorem 3.1. Let G be a set with operation + and 0 ∈ G. Then (NQ(G),⊕) is a group if

and only if (G,+) is a group.

Proof. The proof is similar to that of Theorem 2.1 in [3].

Proposition 3.2. Let (G,+) and (G′,+′) be isomorphic groups. Then (NQ(G),⊕) and

(NQ(G′),⊕′) are isomorphic neutrosophic groups.

Proof. Let (G,+) and (G′,+′) be isomorphic groups. Then there exists a group isomorphism

f : G→ G′. Let φ : NQ(G)→ NQ(G′) be defined as follows:

φ((a, bT, cI, dF )) = (f(a), f(b)T, f(c)I, f(d)F ).

One can easily see that φ is a group isomorphism.
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Definition 3.3. [13] For all n > 1, we define the relation βn on a semihypergroup (H, ◦) as

follows:

xβny if there exist a1, . . . , an in H such that {x, y} ⊆
n∏

i=1
ai

and we set β =
⋃
n≥1

βn, where β1 = {(x, x) | x ∈ H} is the diagonal relation on H∗.

This relation was established by Koskas [17] and studied by many authors. Clearly, the

relation β is reflexive and symmetric. Denote by β∗ the transitive closure of β.

Throughout this section, β, β? are the relations on H and βN , β
?
N are the relations on

NQ(H).

Theorem 3.4. Let (H,+) be an Hv -group with identity “0” and 0 + 0 = 0 and let

a, a′, b, b′, c, c′, d, d′ ∈ H. Then (a, bT, cI, dF )βN (a′, b′T, c′I, d′F ) if and only if aβa′, bβb′,

cβc′ and dβd′.

Proof. Let (a, bT, cI, dF )βN (a′, b′T, c′I, d′F ). Then there exist (xi, yiT, ziI, wiF ) with

i = 1, . . . , k such that {(a, bT, cI, dF ), (a′, b′T, c′I, d′F )} ⊆ (x1, y1T, z1I, w1F ) ⊕ . . . ⊕
(xk, ykT, zkI, wkF ). The latter implies that a, a′ ∈ x1 + . . . + xk, b, b′ ∈ y1 + . . . + yk,

c, c′ ∈ z1 + . . .+ zk and d ∈ w1 + . . .+ wk. Thus, aβa′, bβb′, cβc′ and d, d′βd′.

Conversely, let aβa′, bβb′, cβc′ and dβd′. Then there exist k1, k2, k3, k4 ∈ N and x1, . . . , xk1 ,

y1, . . . , yk2 , z1, . . . , zk3 , w1, . . . , wk4 ∈ H such that a, a′ ∈ x1 + . . . + xk1 , b, b′ ∈ y1 + . . . + yk2 ,

c, c′ ∈ z1 + . . . + zk3 and d, d′ ∈ w1 + . . . + wk4 . By setting k = max{k1, k2, k3, k4} and

xi = 0 for k1 < i ≤ k, yi = 0 for k2 < i ≤ k, zi = 0 for k3 < i ≤ k and wi = 0 for

k4 < i ≤ k and using the fact that x ∈ 0 + x∩ x+ 0 for all x ∈ H, we get a, a′ ∈ x1 + . . .+ xk,

b, b′ ∈ y1 + . . . + yk, c, c′ ∈ z1 + . . . + zk and d, d′ ∈ w1 + . . . + wk. The latter implies

that {(a, bT, cI, dF ), (a′, b′T, c′I, d′F )} ⊆ (x1, y1T, z1I, w1F )⊕ . . .⊕ (xk, ykT, zkI, wkF ). Thus,

(a, bT, cI, dF )βN (a′, b′T, c′I, d′F ).

Theorem 3.5. Let (H ,+) be an H∗v -group with identity “0” and 0 + 0 = 0 and let

a, a′, b, b′, c, c′, d, d′ ∈ H. Then (a, bT, cI, dF )β?N (a′, b′T, c′I, d′F ) if and only if aβ?a′, bβ?b′,

cβ?c′ and dβ?d′.

Proof. Let (a, bT, cI, dF )β?N (a′, b′T, c′I, d′F ). Then there exist (xi, yiT, ziI, wiF ) ∈ NQ(H)

with i = 1, . . . , k such that

(a, bT, cI, dF )βN (x1, y1T, z1I, w1F ), (xi, yiT, ziI, wiF )βN (xi+1, yi+1T, zi+1I, wi+1F ) for i =

1, . . . , k − 1 and (xk, ykT, zkI, wkF )βN (a′, b′T, c′I, d′F ). Theorem 3.4 implies that aβx1,

xiβxi+1 for i = 1, . . . , k − 1, xkβa
′, bβy1, yiβyi+1 for i = 1, . . . , k − 1, ykβb

′, cβz1, ziβzi+1 for

i = 1, . . . , k − 1, zkβc
′, dβw1, wiβwi+1 for i = 1, . . . , k − 1, wkβd

′. Thus, aβ?a′, bβ?b′, cβ?c′

and dβ?d′.
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Conversely, let aβ?a′, bβ?b′, cβ?c′ and dβ?d′. Then there exist xi, yi, zi, wi ∈ H such that

aβx1, xiβxi+1 for i = 1, . . . , k − 1, xkβa
′, bβy1, yiβyi+1 for i = 1, . . . , l − 1, ylβb

′, cβz1,

ziβzi+1 for i = 1, . . . ,m − 1, zmβc
′, dβw1, wiβwi+1 for i = 1, . . . , s − 1, wsβd

′. By setting

t = max{k, l,m, s} and xi = a′ for k < i ≤ t, yi = b′ for t < i ≤ t, zi = c′ for m < i ≤ t and

wi = d′ for s < i ≤ t. The latter implies that

(a, bT, cI, dF )βN (x1, y1T, z1I, w1F ), (xi, yiT, ziI, wiF )βN (xi+1, yi+1T, zi+1I, wi+1F ),

for i = 1, . . . , t− 1 and

(xt, ytT, ztI, wtF )βN (a′, b′T, c′I, d′F ).

Thus, (a, bT, cI, dF )β?N (a′, b′T, c′I, d′F ).

Theorem 3.6. Let (H ,+) be an H∗v -group with identity “0” and 0 + 0 = 0. Then

NQ(H)/β?N
∼= NQ(H/β?).

Proof. Let φ : NQ(H)/β?N → NQ(H/β?) be defined as

φ(β?N ((a, bT, cI, dF ))) = (β?(a), β?(b)T, β?(c)I, β?(d)F ).

Theorem 3.5 implies that φ is well-defined and one-to-one. Also, it is clear that φ is onto. We

need to show that φ is a group homomorphism. Since

β?N ((a, bT, cI, dF )) �′ β?N ((a′, b′T, c′I, d′F )) = β?N ((x, yT, zI, wF ))

where (x, yT, zI, wF ) ∈ (a, bT, cI, dF ) ⊕ (a′, b′T, c′I, d′F ) = (a + a′, (b + b′)T, (c + c′)I, (d +

d′)F ), it follows that φ(β?N ((a, bT, cI, dF )) � β?N ((a′, b′T, c′I, d′F ))) = φ((x, yT, zI, wF )) =

(β?(x), β?(y)T, β?(z)I, β?(w)F ). Having β?(x) = β?(a) � β?(a′), β?(y) = β?(b) � β?(b′),

β?(z) = β?(c) � β?(c′) and β?(w) = β?(d) � β?(d′) imply that φ(β?N ((a, bT, cI, dF )) �′

β?N ((a′, b′T, c′I, d′F ))) = φ(β?N ((a, bT, cI, dF ))⊕′ φ(β?N ((a′, b′T, c′I, d′F ))).

Theorem 3.7. Let (H,+) be an H∗v -group with identity “0” and 0 + 0 = 0. If G is the fun-

damental group of H∗ (up to isomorphism) then NQ(G) is the fundamental group of NQ(H)

(up to isomorphism).

Proof. Since G is the fundamental group of H (up to isomorphism), it follows that H/β? ∼= G.

The latter and Proposition 3.2 imply that NQ(H/β?) ∼= NQ(G). Theorem 3.6 completes the

proof.

Example 3.8. Let (H,+) be the hypergroup of arithmetic functions defined in [15] with the

group of complex numbers (C,+) under standard addition as a fundamental group (up to

isomorphism). Then (NQ(C),+) is the fundamental group of NQ(H) up to isomorphism.
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Corollary 3.9. Let (H,+) be an Hv -group with identity “0” and 0 + 0 = 0. If H has a

trivial fundamental group then NQ(H) has a trivial fundamental group.

Proof. The proof is straightforward by applying Corollary 3.7.

Example 3.10. Let H1 = {0, 1} and define (H1,+1) as follows:

+1 0 1

0 0 1

1 1 H1

Then (NQ(H1),⊕) is a quadruple Hv -group. Since 0, 1 ∈ 1 +1 1, it follows that xβy for all

x, y ∈ H1. Thus, H1 has trivial fundamental group. Corollary 3.9 asserts that (NQ(H1),⊕)

has trivial fundamental group.

Theorem 3.11. Let (H,+) be an Hv -group with identity “0” and 0 + 0 = 0 and wH be the

heart of H . Then NQ(wH) is the heart of NQ(H).

Proof. Let wH = {x ∈ H : β?(x) = β?(0)} be the heart of H . Having wNQ(H) =

{(a, bT, cI, dF ) ∈ NQ(H) : β?N ((a, bT, cI, dF )) = β?N (0, 0T, 0I, 0F )} and applying Theorem

3.5, we get that β?(a) = β?(b) = β?(c) = β?(d) = β?(0). Thus, wNQ(H) = {(a, bT, cI, dF ) ∈
NQ(H) : a, b, c, d ∈ wH} = NQ(wH).

Example 3.12. Let (H,+) be the hypergroup of arithmetic functions defined in [15]. Then

NQ(A0) is the heart of NQ(H).

4. Conclusion

This paper connected neutrosophic Hv -groups and neutrosophic groups by means of com-

plete parts and regular relations. More precisely, it used the complete parts and the funda-

mental relation of Hv -groupls to reach its main results that are summarized in Theorems 4.6

and 4.7. The results were supported by non-trivial illustrative examples. For future research,

it is interesting to find a connection between other types of neutrosophic Hv -structures and

neutrosophic algebraic structures. One can investigate the connection between neutrosophic

Hv -rings and neutrosophic rings or the connection between neutrosophic Hv -modules and

neutrosophic modules.
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Abstract: Soft set developed by Smarandache in 2018 to Hypersoft set (HSS) to deal with multi-

argument approximate functions. The soft set cannot deal with cases when attributes are required 

to be further divided into disjoint attribute-valued sets. Neutrosophic Hypersoft Set (NHSS) is the 

most effective and useful method to handle the environment which involved more than one 

attribute. Neutrosophic Hypersoft Set introduced by combining Hypersoft Set and Neutrosophic 

Soft Set. In this paper, we first define the concept of Possibility Neutrosophic Hypersoft Set 

(PNHSS in short) which is combination of PNSS and HSS. Certain essential basic characteristics as 

subset, equal and complement are studied with illustrative examples. Basic operations such as: 

union, intersection and some properties such as commutative, associative, distributive low and De 

Morgan’s low are discussing. Also, we introduce AND and OR operation of PNHSS with suitable 

examples and some propositions.  

Keywords: Soft Set, Neutrosophic Soft Set, Hypersoft Set, Neutrosophic Hypersoft Set, Possibility 

Neutrosophic Set and Possibility Neutrosophic Hybersoft Set. 

 

 

1. Introduction 

Fuzzy sets were developed by Zadeh [1] to solve problems which contain uncertain 

information. Some cases cannot deal with fuzzy set, so Turksen [2] introduced interval-valued 

fuzzy set. Atanassove [3] extended fuzzy set to Intuitionistic fuzzy set. Which more general than 

fuzzy set. 

Neutrosophy introduced by Smarandache [4] which is a new tool for dealing with problems 

containing imprecise, indeterminacy and inconsistent data. 

Neutrosophic sets which introduced by Smarandach in 2005 [5] is a generalization of the 

Intuitionistic fuzzy set. 

Soft Set defined by Molodtsov [6] as another commonly used method in handling uncertainties 

in the data. Soft Set extended and introduced some of its operations and properties by Maji [8]. 

Sezgin et al. [11] were proved De Morgan s Law on Soft Set. 

The concept of fuzzy soft set introduced by Maji [7]. Fuzzy soft set extended to Generalized fuzzy 

soft sets by Majumdar and Samanta in 2010 [9]. They joined the degree with the parameterization of 

fuzzy soft sets while defining a fuzzy soft set. Here for each parameter 𝑒𝑖  and ∀𝑖 = 1,… , 𝑛, 𝐹µ(𝑒𝑖)  =

 (𝐹 (𝑒𝑖), µ(𝑒𝑖)) indicates not only the degree of belongingness of the elements of 𝑈 in 𝐹 (𝑒𝑖) but also 

the degree of possibility of such belongingness which is represented by µ(𝑒𝑖). The concept of 

possibility fuzzy soft set introduced by Alkahazaleh et al. [10] by assigning a possibility degree to 

each number of fuzzy sets. 

        Neutrosophic Soft Set NSS with basic basic operation and properties proposed by Maji [12]. 

The new concept Generalised neutrosophic soft set GNSS which introduced by Sahin [13], was 

extension of the concept NSS defined by Maji [8].  NSS was also extended by Karaaslan [14] and 
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defined Possibility Neutrosophic Soft Set. NSS developed by Broumi [15] to Generalised 

Neutrosophic Soft Set with basic definitions and operations. He used this concept for solving 

decision making problems. Recently the researchers [16–20] extended the theory of neutrosophic 

soft set and developed it by discussion and applications in decision making.  

 In 2018, Soft Set developed to hypersoft Set by converting a single attribute- valued function to 

multi-attribute valued function by Smarandache [21]. In 2019, Saqlain et al. [22] extended this 

concept to deals with the Generalization of TOPSIS for NHSS, by using accuracy function.  

In 2020, the concept of HSS was generalized and the fundamentals of HSS with some relations 

and operations on HSS by Saeed et al. [23, 24]. The concept of fuzzy plithogenic hypersoft set in 

matrix introduced with some basic operations and properties in [25]. The combination of two 

concepts: Plithogenic set and hypersoft set gave a new concept, which was Plithogenic hypersoft set 

introduced in [26]. 

     The concept of hypersoft point defined in different environments such as; fuzzy hypersoft set, 

Intuitionistic fuzzy hypersoft set, neutrosophic hypersoft set and gave some basic operation of 

hypersoft points in these environments by Majahid et al. [27].  

Aggregate operators of NHSS were discussed in some cases by Saqlain et al. [28] with examples. 

Zulqarnain et al. [29] developed the Aggregate operators of NHSS with examples and properties. 

The concept of Complex hypersoft set defined by Rahman et al. [30]. They generalized the hybrids 

of hypersoft set with complex fuzzy and its generalized structure. Rahman et al. [31] introduced the 

concept of Convex and Concave hypersoft Sets with some properties and sutiable examples. In 

2021, Rahman et al. [32] introduced an application in decision making based on fuzzy parametrized 

hypersoft set theory. They made the existing literature regarding fuzzy parametrized soft set in line 

with the need of multi-attribute function. Another application to solve problems in decision making 

based on neutrosophic parametrized hypersoft set theory introduced in [33]. Numerous researchers 

discussed the concept of Rough soft set which was combination between rough set and soft set. 

Rahman et al. [34] introduced development of rough hypersoft set with application in decision 

making for the best choice of chemical material. They proposed a new algorithm to solve decision 

making problems with illustrative examples. Saeed et al. [35] defined the concept of mapping 

hypersoft classes. They developed some properties of mapping on hypersoft set classes such as 

hypersoft images and hypersoft images. 

In 2022, Debanath [36] presented the notion of Interval-valued intuitionistic fuzzy hypersoft sets 

(IVIFHSSs), which was combining interval-valued intuitionistic fuzzy sets (IVIFSS) and hypersoft 

sets (HSSs). He also, discussed some different operators of this concept such as complement, union, 

intersection, AND and OR. He introduced a new algorithm based on (IVIFHSSs). Finally, he 

introduced a numerical example to check the reliability and validity of the algorithm. 

Florentin Smarandache [37] introduced for the first time the concept of IndetermSoft as extention of 

soft set, that deals with indeterminate data, where ‘Indeterm’ stands for ‘Indeterminate’. Similarly, 

he extended hypersoft set to IndetermHypersoft set. At the end, he presented an application of the 

IndetermHyperSoft Set. Ihsan et. [38] defined expert set on Neutrosophic hypersoft set. This model 

solved the problem of dealing with one expert and solved the problem of different parametric-

valued sets parallel to different characteristics. They discussed basic characteristics, aggregation 

operation, and results with examples. Finally, they presented an application to NHSES in decision 

making problem. Neutrosophic hypersoft set are developed and an application is discussed in 

decision making, which appear from [39]-[43]. 

The organization of this paper as follows: Section 2 present the basic definitions of neutrosophic set, 

soft set, Neutrosophic soft set, Hypersoft set, Possibility neutrosophic soft set, Neutrosophic 

Hypersoft set and some relative definitions used in this work. Section 3 define the new concept of 

possibility neutrosophic hypersoft set with related definitions and suitable examples. Section 4 

describes the basic operations of PNHSS. Section 5 discusses AND and OR operation. Section 6 

presents conclude of this paper with suggested future work. 
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2. Preliminary  

In this section, we present some definitions required in this paper.  

Definition 1 [5] Neutrosophic Set. 

A neutrosophic set 𝐴  on the universe of discourse 𝑋 is defined as 𝐴 = {〈𝑥: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉; x ∈ X } 

where 𝑇; 𝐼; 𝐹 ∶ 𝑋 → [0,1] and 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. 

Definition 2 [8] Soft Set. 

Let 𝑈 be a universe and 𝐸 be a set of parameters. Let 𝑃(𝑈) denote the power set of 𝑈 and 

𝐴 ⊆  𝐸. A pair  (𝐹, 𝐴) is called a soft set over 𝑈, where 𝐹 is a mapping 𝐹: 𝐴 → 𝑃(𝑈). 

Definition 3 [7] Fuzzy soft set.  

Let 𝑈 be an initial universal set and let 𝐸 be a set of parameters. Let 𝐼𝑈  denote the power set of all 

fuzzy subsets of 𝑈. Let 𝐴 ⊆  𝐸. A pair (𝐹, 𝐸) is called a fuzzy soft set over 𝑈 where F is a mapping 

given by 𝐹 ∶  𝐴 →  𝐼𝑈. 

Definition 4 [21] Neutrosophic Soft Set. 

 Let 𝑈 be an initial universe set and 𝐸 be a set of parameters. Consider 𝐴 ⊆ 𝐸. Let 𝑃(𝑈) denotes the 

set of all neutrosophic sets of 𝑈. The collection (𝐹, 𝐴) is termed to be the soft neutrosophic set over 

𝑈, where 𝐹 is a mapping given by 𝐹: 𝐴 → 𝑃(𝑈).  

Definition 5 [21] Hypersoft Set. 

Let 𝑈 be a universal set and 𝑃(𝑈) be the all neutrosophic subset of 𝑈 and for 𝑛 ≥ 1, there are 𝑛 

distinct attributes such as ℓ1, ℓ2, … , ℓ𝑛 and 𝐿1, 𝐿2, … , 𝐿𝑛 are sets for corresponding values attributes 

respectively with following conditions such as 𝐿𝑖 ∩ 𝐿𝑗 = ∅ for 𝑖 ≠ 𝑗  and 𝑖, 𝑗 ∈  {1, 2, . . . , 𝑛}. 

Then the pair  (𝜓, 𝐿1 × 𝐿1 × …× 𝐿𝑛) is said to be Hypersoft set over 𝑈 where 𝜓 is a mapping from 

𝐿1 × 𝐿1 × …× 𝐿𝑛 to 𝑃(𝑈). 

Definition 6 [14] Possibility Neutrosophic Soft Set (GNSS). 

Let 𝑈 be an initial universe and 𝐸 be a set of parameters. Let 𝑁 (𝑈) be the set of all neutrosophic sets  

Of 𝑈 and 𝐼𝑈 is collection of all fuzzy subset of 𝑈. A possibility neutrosophic soft set 𝑓𝜇  over 𝑈 is 

defined by the set of ordered pairs   

𝑓𝜇(𝑒) = {(𝑒𝑘, {(
𝑢𝑗

𝑓(𝑒𝑘)(𝑢𝑗)
, 𝜇(𝑒𝑘)(𝑢𝑗)) : 𝑢_𝑗 ∈ 𝑈}) : 𝑒_𝑘 ∈ 𝐸  }, or a mapping defined by 

 𝑓𝜇: 𝐸 → 𝑁(𝑈) × 𝐼𝑈 where 𝜇 is a fuzzy set such that 𝜇: 𝐸 → 𝐼 = [0,1] and 𝑓𝜇 is a mapping defined by 

𝑓𝜇: 𝐸 → 𝑁(𝑈).  

 

Definition 7 [27] Neutrosophic Hypersoft Set (NHSS). 

Let 𝑈 be a universal set and 𝑃(𝑈) be a power set of 𝑈 and for 𝑛 ≥ 1, there are 𝑛 distinct attributes 

such as ℓ1, ℓ2, … , ℓ𝑛 and 𝐿1, 𝐿2, … , 𝐿𝑛 are sets for corresponding values attributes respectively with 

following conditions such as 𝐿𝑖 ∩ 𝐿𝑗 = ∅ for 𝑖 ≠ 𝑗  and 𝑖, 𝑗 ∈  {1, 2, . . . , 𝑛}. Then the pair (𝜓 , Λ) is said 

to be NHSS over 𝑈 if there exists a relation 𝐿1 × 𝐿1 × …× 𝐿𝑛 = Λ. 𝜓 is a mapping from 

 𝐿1 × 𝐿1 × …× 𝐿𝑛  to 𝑃(𝑈) and 𝜓Λ( 𝐿1 × 𝐿1 × …× 𝐿𝑛) = {〈𝑢, 𝑇Λ(𝑢), 𝐼Λ(𝑢), 𝐹Λ(𝑢)〉: 𝑢 ∈ 𝑈} where 𝑇, 𝐼, 𝐹 

are membership values for truthness, indeterminacy, and falsity respectively such that 

𝑇, 𝐼, 𝐹: 𝑈 → [0,1]  and 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. 

Definition 8 [28] Neutrosophic Hypersoft subset (NHSS). 
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For two Neutrosophic Hypersoft subsets (NHSs) 𝜓Λ1and  𝜓Λ2over 𝑈, 𝜓Λ1  is called a neutrosophic 

hypersoft subset of 𝜓Λ2 if 𝑇(𝜓Λ1) ≤ 𝑇(𝜓Λ2), 𝐼(𝜓Λ1) ≤ 𝐼(𝜓Λ2), 𝐹(𝜓Λ1) ≥ 𝐹(𝜓Λ2). 

Definition 9 [28] Neutrosophic Hypersoft set equal.  

Two Neutrosophic Hypersoft subsets (NHSs) 𝜓Λ1and  𝜓Λ2 over 𝑈, are said to be equal if 𝜓Λ1is a 

NHSs of 𝜓Λ2  and 𝜓Λ2 is a NHSs of 𝜓Λ1 . 

Definition 10 [28] Neutrosophic Hypersoft set complement.  

The complement of a Neutrosophic Hypersoft Set 𝜓Λ is denoted by (𝜓Λ)
𝑐 is defined by  (𝜓Λ)

𝑐 such 

that (𝜓Λ)
𝑐 = {〈u, 𝑇(𝜓Λ

𝑐) = 𝐹(𝜓Λ), 𝐼(𝜓Λ
𝑐) = 1 − 𝐼(𝜓Λ), 𝐹(𝜓Λ

𝑐) = 𝑇(𝜓Λ)〉  , 𝑢 ∈ 𝑈} . 

Definition 11 [29] Neutrosophic Hypersoft set union.  
The union of two NHSs 𝜓Λ1  and 𝜓Λ2over the common universe 𝑈. denoted by 𝜓Λ1 ∪ 𝜓Λ2 is the NHS 

and is given as follows: 

 𝑇(𝜓Λ1 ∪ 𝜓Λ2) =

{
 

 
𝑇(𝜓Λ1)                                                       𝑖𝑓 𝑢 ∈ Λ1 − Λ2,

𝑇(𝜓Λ2)                                                       𝑖𝑓 𝑢 ∈ Λ2 − Λ1,

𝑚𝑎𝑥 (𝑇(𝜓Λ1), 𝑇(𝜓Λ2))                          𝑖𝑓 𝑢 ∈ Λ1 ∩ Λ2,

 

𝐼(𝜓Λ1 ∪ 𝜓Λ2) =

{
 

 
𝐼(𝜓Λ1)                                                     𝑖𝑓 𝑢 ∈ Λ1 − Λ2,

𝐼(𝜓Λ2)                                                       𝑖𝑓 𝑢 ∈ Λ2 − Λ1,

𝑚𝑖𝑛 (𝐼(𝜓Λ1), 𝐼(𝜓Λ2))                         𝑖𝑓 𝑢 ∈ Λ1 ∩ Λ2,

 

𝐹(𝜓Λ1 ∪ 𝜓Λ2) =

{
 

 
𝐹(𝜓Λ1)                                                     𝑖𝑓 𝑢 ∈ Λ1 − Λ2,

𝐹(𝜓Λ2)                                                       𝑖𝑓 𝑢 ∈ Λ2 − Λ1 ,

𝑚𝑖𝑛 (𝐹(𝜓Λ1), 𝐹(𝜓Λ2))                         𝑖𝑓 𝑢 ∈ Λ1 ∩ Λ2.

 

Definition 12 [29] Neutrosophic Hypersoft intersection.  

The intersection of two NHSs 𝜓Λ1 and 𝜓Λ2over the common universe 𝑈. denoted by 

 𝜓Λ1 ∩ 𝜓Λ2  is the NHS and is given as follows: 

 𝑇(𝜓Λ1 ∩ 𝜓Λ2) =

{
 

 
𝑇(𝜓Λ1)                                                       𝑖𝑓 𝑢 ∈ Λ1 − Λ2,

𝑇(𝜓Λ2)                                                       𝑖𝑓 𝑢 ∈ Λ2 − Λ1,

𝑚𝑖𝑛 (𝑇(𝜓Λ1), 𝑇(𝜓Λ2))                          𝑖𝑓 𝑢 ∈ Λ1 ∩ Λ2,

 

𝐼(𝜓Λ1 ∩ 𝜓Λ2) =

{
 

 
𝐼(𝜓Λ1)                                                     𝑖𝑓 𝑢 ∈ Λ1 − Λ2,

𝐼(𝜓Λ2)                                                       𝑖𝑓 𝑢 ∈ Λ2 − Λ1,

𝑚𝑎𝑥 (𝐼(𝜓Λ1), 𝐼(𝜓Λ2))                         𝑖𝑓 𝑢 ∈ Λ1 ∩ Λ2,

 

𝐹(𝜓Λ1 ∩ 𝜓Λ2) =

{
 

 
𝐹(𝜓Λ1)                                                     𝑖𝑓 𝑢 ∈ Λ1 − Λ2,

𝐹(𝜓Λ2)                                                       𝑖𝑓 𝑢 ∈ Λ2 − Λ1 ,

𝑚𝑎𝑥 (𝐹(𝜓Λ1), 𝐹(𝜓Λ2))                         𝑖𝑓 𝑢 ∈ Λ1 ∩ Λ2.

 

Definition 13 [29] AND-Operation of Two Neutrosophic Hypersoft Set. 

Let 𝜓Λ1  and 𝜓Λ2  be two NHSs over the common universe 𝑈, then 𝜓Λ1˄ 𝜓Λ2  =  𝜓Λ1×Λ2  

is given as follows: 

𝑇(𝜓Λ1×Λ2) = 𝑚𝑖𝑛 (𝑇(𝜓Λ1), 𝑇(𝜓Λ2)), 
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𝐼(𝜓Λ1×Λ2) = 𝑚𝑎𝑥 (𝐼(𝜓Λ1), 𝐼(𝜓Λ2)), 

𝐹(𝜓Λ1×Λ2) = 𝑚𝑎𝑥 (𝐼(𝜓Λ1), 𝐼(𝜓Λ2)). 

Definition 14 [29] OR-Operation of Two Neutrosophic Hypersoft Set. 
Let 𝜓Λ1  and 𝜓Λ2  be two NHSs over the common universe 𝑈, then 𝜓Λ1 ∨ 𝜓Λ2  =  𝜓Λ1×Λ2  

is given as follows: 

𝑇(𝜓Λ1×Λ2) = 𝑚𝑎𝑥 (𝑇(𝜓Λ1), 𝑇(𝜓Λ2)), 

𝐼(𝜓Λ1×Λ2) = 𝑚𝑖𝑛 (𝐼(𝜓Λ1), 𝐼(𝜓Λ2)), 

𝐹(𝜓Λ1×Λ2) = 𝑚𝑖𝑛 (𝐼(𝜓Λ1), 𝐼(𝜓Λ2)). 

3.Fundamental of Possibility Neutrosophic Hypersoft Set  

Definition 15 Possibility Neutrosophic Hypersoft Set (PNHSS) 

Let ℑ be the universal set and 𝑁(ℑ)  be set of all neutrosophic subset of ℑ.  For 𝑛 ≥ 1 , let ℓ1, ℓ2, … , ℓ𝑛 

be n well-defined attributes, whose corresponding attributive are respectively the set 𝐿1, 𝐿2, … , 𝐿𝑛 

with 𝐿𝑖 ∩ 𝐿𝑗 = ∅ for 𝑖 ≠ 𝑗  and 𝑖, 𝑗 ∈  {1, 2, . . . , 𝑛} and their relation 𝐿1 × 𝐿1 × …× 𝐿𝑛 = Λ. The pair 

(𝜓𝜇 , Λ) is said to be possibility neutrosophic hypersoft set over ℑ where 

𝜓Λ
𝜇(𝑒) = {〈𝑥, (𝜓Λ(𝑒)(x), 𝜇(𝑒))〉: 𝑥 ∈ ℑ, 𝜓Λ(𝑒)(x) ∈ ∈ 𝑁(ℑ) and 𝜇(𝑒) ∈ 𝐼 = [0,1] }. Where 𝜓Λ  is a 

mapping given by 𝜓Λ: 𝐿1 × 𝐿1 × …× 𝐿𝑛 ⟶ 𝑁(ℑ) and 𝜇 is a fuzzy set such that 𝜇: Λ ⟶ 𝐼. Here 𝜓Λ
𝜇  is 

a mapping defined 

 𝜓Λ
𝜇
: 𝐿1 × 𝐿1 × …× 𝐿𝑛 ⟶ 𝑁(ℑ) × 𝐼. 

 

Example 1 

Let ℑ be the set of decision makers to decide best car given as ℑ = {𝑑1, 𝑑2, 𝑑3, 𝑑4} and a set 

 𝑀 = {𝑑1, 𝑑2} ⊂ ℑ. Also consider the set of attributes as  

𝐿1 = 𝐶𝑎𝑟 𝑡𝑦𝑝𝑒, 𝐿2 = 𝐸𝑛𝑔𝑖𝑛𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝐿3 = 𝑆𝑎𝑓𝑡𝑒𝑦, 𝐿4 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒 and their respective attributes 

are given as follows: 

𝐿1 = 𝐶𝑎𝑟 𝑡𝑦𝑝𝑒 = {𝑀𝑒𝑟𝑐𝑒𝑑𝑒𝑠 − 𝐵𝑒𝑛𝑧, 𝐵𝑀𝑊,𝑉𝑜𝑙𝑣𝑜, 𝐹𝑜𝑟𝑑} 

𝐿2 = 𝐸𝑛𝑔𝑖𝑛𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = {1500𝑐𝑐, 1800𝑐𝑐, 2000𝑐𝑐, 2500𝑐𝑐} 

𝐿3 = 𝑆𝑎𝑓𝑡𝑒𝑦 = {𝐴𝑃𝑆, 𝐴𝑖𝑟 𝑏𝑎𝑔} 

𝐿4 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒 = {𝑐𝑎𝑟 𝑡𝑜𝑟𝑞𝑢𝑒, 𝑠𝑝𝑒𝑒𝑑𝑠} 

Let 𝜓Λ
𝜇
: 𝐿1 × 𝐿2 × 𝐿3 × 𝐿4 →  𝑁(ℑ) × 𝐼 

 And 𝜇: Λ ⟶ 𝐼. Assume that the customer concentrate on type of car is BMW with engine capacity 

which provide air bag and speed. Then PNHSS is defined as follows: 

𝜓Λ
𝜇(𝐿1 × 𝐿2 × 𝐿3 × 𝐿4) = 𝜓Λ

𝜇(𝐵𝑀𝑊, 2000𝑐𝑐, 𝐴𝑖𝑟 𝑏𝑎𝑔, 𝑆𝑝𝑒𝑒𝑑) = {𝑑1, 𝑑2} 

Then the relation of above PNHSS is given as  

𝜓Λ
𝜇(𝐵𝑀𝑊, 2000𝑐𝑐, 𝐴𝑖𝑟 𝐵𝑎𝑔, 𝑆𝑝𝑒𝑒𝑑) = {〈𝑑1, (〈0.6,0.4,0.5〉, 〈0.8,0.3,0.4〉, 〈0.8,0.1,0.2〉, 〈0.4,0.7,0.5〉, (0.2))〉, 

                                                                             , 〈𝑑2, (〈0.4,0.3,0.2〉, 〈0.9,0.4,0.1〉, 〈0.3,0.7,0.6〉, 〈0.7,0.4,0.2〉), (0.5)〉}. 
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Definition 16  

Let 𝜓Λ1
𝜇
  & 𝜓Λ2

𝜂
 be two PNHSS over ℑ. Then 𝜓Λ1

𝜇 is the GNHS subset of 𝜓Λ2
𝜂

 if: 

1) 𝜇 is fuzzy subset of 𝜂 

2) Λ1 is a subset of Λ2. 

3) ∀𝑒 ∈ Λ1 ∩ Λ2, 𝜓Λ1(𝑒) is a NHSS 𝜓Λ2(𝑒). 

Example 2 

Consider the two PNHSS  𝜓Λ1
𝜇
  & 𝜓Λ2

𝜂
 over the same universe ℑ = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5}.  

Then (𝜓𝜂 , Λ2) ⊂ (𝜓
𝜇 , Λ1). 

Where,(𝜓𝜂 , Λ2) = {〈𝑑1, (〈0.4,0.3,0.7〉, 〈0.7,0.2,0.5〉, 〈0.6,0,0.4〉, 〈0.2,0.3,0.7〉, (0.1))〉}   

is a GNHS subset of(𝜓𝜇 , Λ1) = {〈𝑑1, (〈0.6,0.4,0.5〉, 〈0.8,0.3,0.4〉, 〈0.8,0.1,0.2〉, 〈0.4,0.7,0.5〉, (0.2))〉, 

                                                                , 〈𝑑2, (〈0.4,0.3,0.2〉, 〈0.9,0.4,0.1〉, 〈0.3,0.7,0.6〉, 〈0.7,0.4,0.2〉), (0.5)〉}. 

  

Definition 17 

Let 𝜓Λ1
𝜇
  & 𝜓Λ2

𝜂
 be two PNHSS over ℑ . Then 𝜓Λ1

𝜇
  & 𝜓Λ2

𝜂
𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 GNHS equal, denoted by  

𝜓Λ1
𝜇
= 𝜓Λ2

𝜂
 if 𝜓Λ1 is a GNHS subset of 𝜓Λ2 &  𝜓Λ2 is a GNHS subset of 𝜓Λ1. 

 

Definition 18  

The complement of a PNHSS  𝜓Λ
𝜇   is denoted by  (𝜓Λ

𝜇
)
𝑐
 and define 

 (𝜓Λ
𝜇
)
𝑐
= {〈𝑥, 𝜓Λ

𝑐 (𝑒)(𝑥) , 𝜇(𝑐)(𝑒)〉: 𝑥 ∈ ℑ,𝜓Λ(𝑒)(x) ∈ 𝑁(ℑ) and 𝜇(𝑒) ∈ 𝐼 = [0,1] }   

 where, 𝜇(𝑐)(𝑒) = 1 − 𝜇(𝑒) 𝑎𝑛𝑑 𝜓Λ
𝑐  = neutrosophic soft complement with  

 

𝑇Λ
(𝑐)(𝑒) = 𝐹Λ(𝑒), 𝐼Λ

(𝑐)(𝑒) = 1 −  𝐼Λ(𝑒), 𝐹Λ
(𝑐)(𝑒) = 𝑇Λ(𝑒) 

 

Example 3 

Let 𝜓
Λ
𝜇 = {〈𝑑1, (〈0.6,0.4,0.5〉, 〈0.8,0.3,0.4〉, 〈0.8,0.1,0.2〉, 〈0.4,0.7,0.5〉, (0.2))〉, 

                      , 〈𝑑2, (〈0.4,0.3,0.2〉, 〈0.9,0.4,0.1〉, 〈0.3,0.7,0.6〉, 〈0.7,0.4,0.2〉), (0.5)〉} 

 By using the PNHSS complement, we obtain the complement given by  

(𝜓Λ
𝜇
)
𝑐
= {〈𝑑1, (〈0.5,0.6,0.6〉, 〈0.4,0.7,0.8〉, 〈0.2,0.9,0.8〉, 〈0.5,0.3,0.4〉, (0.8))〉, 

                 , 〈𝑑2, (〈0.2,0.7,0.4〉, 〈0.1,0.6,0.9〉, 〈0.6,0.3,0.3〉, 〈0.2,0.6,0.7〉), (0.5)〉}. 

 

Proposition 1 

Let 𝜓Λ
𝜇  be PNHSS, then ((𝜓Λ

𝜇
)
𝑐
)
𝑐
= 𝜓Λ

𝜇. 

Proof. Let (𝜓Λ
𝜇
)
𝑐
= {〈𝑥, 𝜓Λ

𝑐 (𝑒)(𝑥) , 𝜇(𝑐)(𝑒)〉: 𝑥 ∈ ℑ } 

                                 = {〈𝑥, (𝐹Λ(𝑒), 𝐼Λ
(𝑐)(𝑒), 𝑇Λ(𝑒)) , 1 −  𝜇(𝑒)〉 : 𝑥 ∈ ℑ} 

                             = {〈𝑥, (𝐹Λ(𝑒), 1 −  𝐼Λ(𝑒), 𝑇Λ(𝑒)), 1 −  𝜇(𝑒)〉: 𝑥 ∈ ℑ} 

Then, ((𝜓Λ
𝜇
)
𝑐
)
𝑐
= [{〈𝑥, (𝐹Λ(𝑒), 1 −  𝐼Λ(𝑒), 𝑇Λ(𝑒)), 1 −  𝜇(𝑒)〉: 𝑥 ∈ ℑ}]

𝑐
 

                                = {〈𝑥, (𝑇Λ(𝑒), 1 − (1 −  𝐼Λ(𝑒)), 𝐹Λ(𝑒)) , 1 − (1 −  𝜇(𝑒))〉 : 𝑥 ∈ ℑ} 
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= {〈𝑥, (𝑇Λ(𝑒),  𝐼Λ(𝑒), 𝐹Λ(𝑒)), 1 −  𝜇(𝑒)〉: 𝑥 ∈ ℑ} = 𝜓Λ
𝜇
     , ∀𝑒 ∈ Λ, μ(𝑒) ∈ [0,1]. 

 

OR 

((𝜓Λ
𝜇
)
𝑐
)
𝑐
= [〈𝑢, (𝑇Λ

(𝑐)(𝑒) = 𝐹Λ(𝑒), 𝐼Λ
(𝑐)(𝑒) = 1 −  𝐼Λ(𝑒), 𝐹Λ

(𝑐)(𝑒) = 𝑇Λ(𝑒), 𝜇
(𝑐)(𝑒) = 1 − 𝜇(𝑒)) 〉 : 𝑢 ∈ ℑ]

𝑐

 

= [〈𝑢, (𝑇Λ(𝑒) = 𝐹Λ
(𝑐)(𝑒), 𝐼Λ(𝑒) = 1 −  𝐼Λ

(𝑐)(𝑒), 𝑇Λ(𝑒) = 𝐹Λ
(𝑐)(𝑒), 𝜇(𝑒) = 1 − 𝜇𝑐(𝑒) )〉: 𝑢 ∈ ℑ] 

= [〈𝑢, (𝑇Λ(𝑒) = 𝐹Λ
(𝑐)(𝑒), 𝐼Λ(𝑒) = 1 − [1 − 𝐼Λ(𝑒)], 𝑇Λ(𝑒) = 𝐹Λ

(𝑐)(𝑒), 𝜇(𝑒) = 1 − (1 − 𝜇(𝑒))) 〉 : 𝑢 ∈ ℑ] 

= [〈𝑢, (𝑇Λ(𝑒) = 𝐹Λ
(𝑐)(𝑒), 𝐼Λ(𝑒) = 𝐼Λ(𝑒), 𝑇Λ(𝑒) = 𝐹Λ

(𝑐)(𝑒), 𝜇(𝑒) = 𝜇(𝑒))〉 : 𝑢 ∈ ℑ ] 

= 𝜓Λ
𝜇
     , ∀𝑒 ∈ Λ, μ(𝑒) ∈ [0,1]. 

 

4. Basic Operations 

In this section, we present some basic operation with illustrative examples and propositions. 

Definition 19 

The union of two PNHSS 𝜓Λ1
𝜇
 &  𝜓Λ2

𝜂
 over ℑ is a PNHSS 𝜓Λ

𝜆 defined as 𝜓(Λ, 𝜆) where Λ = Λ1 ∪ Λ2 

and 𝜆(𝑒) = 𝑚𝑎𝑥(𝜇(𝑒), 𝜂(𝑒)) and ∀𝑒 ∈ Λ we have the follow: 

 𝜓Λ
𝜆 = 𝜓Λ1

𝜇
 ∪̂  𝜓Λ2

𝜂
    where    𝑒 𝜖Λ1 ∩ Λ2 

Where ∪̂ is a NHSS union. 

 

Example 4 

Assume that two PNHSS 𝜓Λ1
𝜇
  & 𝜓Λ2

𝜂
 over the same universe ℑ = {𝑑1, 𝑑2, 𝑑3, 𝑑4}  are defined as 

follows: 

𝜓Λ1
𝜇
= {〈𝑑1, (〈0.6,0.4,0.5〉, 〈0.8,0.3,0.4〉, 〈0.8,0.1,0.2〉, 〈0.4,0.7,0.5〉, (0.2))〉, 

             , 〈𝑑2, (〈0.4,0.3,0.2〉, 〈0.9,0.4,0.1〉, 〈0.3,0.7,0.6〉, 〈0.7,0.4,0.2〉), (0.5)〉} 

𝜓Λ2
𝜂
= {〈𝑑1, (〈0.8,0.6,0.3〉, 〈0.9,0.5,0.2〉, 〈0.3,0.2,0.4〉, 〈0.3,0.2,0.7〉, (0.3))〉, 

             , 〈𝑑3, (〈0.5,0.3,0.4〉, 〈0.2,0.5,0.7〉, 〈0.7,0.1,0.5〉, 〈0.4,0.5,0.2〉), (0.4)〉}. 

Then,  

𝜓Λ
𝜆 = 𝜓Λ1

𝜇
 ∪̂ 𝜓Λ2

𝜂
= {〈𝑑1, (〈0.8,0.4,0.3〉, 〈0.9,0.3,0.2〉, 〈0.8,0.1,0.2〉, 〈0.4,0.2,0.5〉, (0.3))〉 

                                    〈𝑑2, (〈0.4,0.3,0.2〉, 〈0.9,0.4,0.1〉, 〈0.3,0.7,0.6〉, 〈0.7,0.4,0.2〉), (0.5)〉 

                                    , 〈𝑑3, (〈0.5,0.3,0.4〉, 〈0.2,0.5,0.7〉, 〈0.7,0.1,0.5〉, 〈0.4,0.5,0.2〉), (0.4)〉}. 

 

Proposition 2  

Let 𝜓Λ1
𝜇
, 𝜓Λ2 

𝜂
& 𝜓Λ3

𝛿  are PNHSS over ℑ. Then  

1) 𝜓Λ1
𝜇
 ∪̂ 𝜓Λ2

𝜂
= 𝜓Λ2

𝜂
 ∪̂ 𝜓Λ1

𝜇       (Commutative law) 

2) (𝜓Λ1
𝜇
 ∪̂ 𝜓Λ2

𝜂
)  ∪̂ 𝜓Λ3

𝛿 = 𝜓Λ1
𝜇
∪̂ (𝜓Λ2

𝜂
 ∪̂ 𝜓Λ3

𝛿 )      (Associative law) 

Proof. In the following proof first two cases are trivial, we consider only the third case.  

1)  𝜓Λ1
𝜇
 ∪̂ 𝜓Λ2

𝜂
 

= {⟨𝑥, ((𝑚𝑎𝑥{𝑇(𝜓Λ1
𝜇
  ) , 𝑇(𝜓Λ2

𝜂
  )}, 𝑚𝑖𝑛{𝐼(𝜓Λ1

𝜇
  ) , 𝐼(𝜓Λ2

𝜂
  )} , 𝑚𝑖𝑛{𝐹(𝜓Λ1

𝜇
  ) , 𝐹(𝜓Λ2

𝜂
  )}),𝑚𝑎𝑥{𝜇(𝑒  ) , 𝜂(𝑒)}⟩} 
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= {⟨𝑥, ((𝑚𝑎𝑥{𝑇(𝜓Λ2
𝜂
  ) , 𝑇(𝜓Λ1

𝜇
  )}, 𝑚𝑖𝑛{𝐼(𝜓Λ2

𝜂
  ) , 𝐼(𝜓Λ1

𝜇
  )} , 𝑚𝑖𝑛{𝐹(𝜓Λ2

𝜂
  ) , 𝐹(𝜓Λ1

𝜇
  )}),𝑚𝑎𝑥{𝜂(𝑒) , 𝜇(𝑒  )}⟩} 

= 𝜓Λ2
𝜂
 ∪̂ 𝜓Λ1

𝜇
. 

 

2) 𝜓Λ1
𝜇
 ∪̂ 𝜓Λ2

𝜂
 

= {⟨𝑥, ((𝑚𝑎𝑥{𝑇(𝜓Λ1
𝜇
  ) , 𝑇(𝜓Λ2

𝜂
  )}, 𝑚𝑖𝑛{𝐼(𝜓Λ1

𝜇
  ) , 𝐼(𝜓Λ2

𝜂
  )} , 𝑚𝑖𝑛{𝐹(𝜓Λ1

𝜇
  ) , 𝐹(𝜓Λ2

𝜂
  )}),𝑚𝑎𝑥{𝜇(𝑒  ) , 𝜂(𝑒)}⟩} 

Then  (𝜓Λ1
𝜇
∪̂ 𝜓Λ2

𝜂
) ∪̂ 𝜓Λ3

𝛿  

= {⟨𝑥, ((𝑚𝑎𝑥{𝑚𝑎𝑥{𝑇(𝜓Λ1
𝜇
  ) , 𝑇(𝜓Λ2

𝜂
  )}, 𝑇(𝜓Λ3

𝛿   )} ,  𝑚𝑖𝑛{𝑚𝑖𝑛{𝐼(𝜓Λ1
𝜇
  ) , 𝐼(𝜓Λ2

𝜂
  )}, 𝐼(𝜓Λ3

𝛿   )}, 

, 𝑚𝑖𝑛{𝐹(𝜓Λ1
𝜇
  ) , 𝐹(𝜓Λ2

𝜂
  )}, 𝐹(𝜓Λ3

𝛿   )}),𝑚𝑎𝑥{𝑚𝑎𝑥{𝜇(𝑒  ) , 𝜂(𝑒)}, 𝛿(𝑒)}⟩}. 

= {⟨𝑥, ((𝑚𝑎𝑥{𝑇(𝜓Λ1
𝜇
  ) , 𝑇(𝜓Λ2

𝜂
  ), 𝑇(𝜓Λ3

𝛿   )} , 𝑚𝑖𝑛{𝑚𝑖𝑛{𝐼(𝜓Λ1
𝜇
  ) , 𝐼(𝜓Λ2

𝜂
  ), 𝐼(𝜓Λ3

𝛿   )}, 

𝑚𝑖𝑛{𝐹(𝜓Λ1
𝜇
  ) , 𝐹(𝜓Λ2

𝜂
  ), (𝜓Λ3

𝛿   )}),𝑚𝑎𝑥{𝜇(𝑒  ) , 𝜂(𝑒), 𝛿(𝑒)}⟩}. 

= {⟨𝑥, ((𝑚𝑎𝑥{𝑇(𝜓Λ1
𝜇
  ), 𝑚𝑎𝑥{𝑇(𝜓Λ2

𝜂
  ) , 𝑇(𝜓Λ3

𝛿   )}} , ((𝑚𝑖𝑛{𝐼(𝜓Λ1
𝜇
  ), 𝑚𝑖𝑛{𝐼(𝜓Λ2

𝜂
  ) , 𝐼(𝜓Λ3

𝛿   )}} , 

((𝑚𝑖𝑛{𝐹(𝜓Λ1
𝜇
  ), 𝑚𝑖𝑛{𝐹(𝜓Λ2

𝜂
  ) , 𝐹(𝜓Λ3

𝛿   )}} , ((𝑚𝑎𝑥{𝜇(𝑒  ),𝑚𝑎𝑥{𝐹𝜂(𝑒 ), 𝛿(𝑒)}}⟩} 

= 𝜓Λ1
𝜇
 ∪̂ (𝜓Λ2

𝜂
 ∪̂ 𝜓Λ3

𝛿 ). 

 

Definition 20 

The intersection of two PNHSS 𝜓Λ1
𝜇
 &  𝜓Λ2

𝜂
 over ℑ is a PNHSS 𝜓Λ

𝜆 defined as 𝜓(휀, 𝜆) where  

Λ = Λ1 ∩ Λ2 and 휀(𝑒) = 𝑚𝑖𝑛(𝜇(𝑒), 𝜂(𝑒)) and ∀𝑒 ∈ Λ we have the follow: 

 𝜓Λ = 𝜓Λ1
𝜇
 ∩̂  𝜓Λ2

𝜂
    where    𝑒 𝜖Λ1 ∩ Λ2 

Where ∩̂ is a NHSS intersection. 

Example 5 

Consider example 4. By using basic neutrosophic intersection we can easily verify that 𝜓Λ =

𝜓Λ1
𝜇
∩̂  𝜓Λ2

𝜂
, where 

𝜓Λ = 𝜓Λ1
𝜇
 ∩̂ 𝜓Λ2

𝜂
= {〈𝑑1, (〈0.6,0.6,0.5〉, 〈0.8,0.5,0.4〉, 〈0.3,0.2,0.2〉, 〈0.3,0.7,0.7〉, (0.2))〉}. 

 

Proposition 3 

Let 𝜓Λ1
𝜇
, 𝜓Λ2 

𝜂
& 𝜓Λ3

𝛿  are PNHSS over ℑ. Then  

1) 𝜓Λ1
𝜇
 ∩̂ 𝜓Λ2

𝜂
= 𝜓Λ2

𝜂
 ∩̂ 𝜓Λ1

𝜇                                     (Commutative law) 

2) (𝜓Λ1
𝜇
 ∩̂ 𝜓Λ2

𝜂
)  ∩̂ 𝜓Λ3

𝛿 = 𝜓Λ1
𝜇
 ∩̂ (𝜓Λ2

𝜂
 ∩̂ 𝜓Λ3

𝛿 )      (Associative law) 

Proof. Similar to proposition 2. 

Proposition 4 

Let 𝜓Λ1
𝜇
 & 𝜓Λ2 

𝜂
 are PNHSS over ℑ. Then  

1) (𝜓Λ1
𝜇
∪̂ 𝜓Λ2

𝜂
)
𝑐
= (𝜓Λ2

𝜂
)
𝑐
 ∩̂ (𝜓Λ1

𝜇
)
𝑐
 .     

2) (𝜓Λ1
𝜇
 ∩̂ 𝜓Λ2

𝜂
)
𝑐
= (𝜓Λ2

𝜂
)
𝑐
∪̂ (𝜓Λ1

𝜇
)
𝑐
. 
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Proof. The proof is straightforward from Definitions 18 and 19. 

 

Proposition 5 

Let 𝜓Λ1
𝜇
 & 𝜓Λ2 

𝜂
 are PNHSS over ℑ. Then  

1) 𝜓Λ1
𝜇   GNHS subset of  𝜓Λ1

𝜇
∪̂ 𝜓Λ2

𝜂
       

2) 𝜓Λ1
𝜇
∩̂ 𝜓Λ2

𝜂
 GNHS subset of  𝜓Λ1

𝜇  

Proof. It’s clear from definition. 

 

Proposition 6 

Let 𝜓Λ1
𝜇
, 𝜓Λ2 

𝜂
& 𝜓Λ3

𝛿  are PNHSS over ℑ. Then  

1) (𝜓Λ1
𝜇
∪̂ 𝜓Λ2

𝜂
) ∩̂ 𝜓Λ3

𝛿 = (𝜓Λ1
𝜇
∩̂ 𝜓Λ3

𝛿 ) ∪̂ (𝜓Λ2
𝜂
∩̂ 𝜓Λ3

𝛿 ).       

2) (𝜓Λ1
𝜇
∩̂ 𝜓Λ2

𝜂
) ∪̂ 𝜓Λ3

𝛿 = (𝜓Λ1
𝜇
∪̂ 𝜓Λ3

𝛿 ) ∩̂ (𝜓Λ2
𝜂
∪̂ 𝜓Λ3

𝛿 ). 

Proof. The proof can be easily obtained from relative definitions. 

 

5. AND and OR Operation. 

In this section, we introduce the definitions of AND and OR operations for Possibility neutrosophic 

hypersoft set, derive their properties, and give some examples. 

Definition 21  

Let 𝜓Λ1
𝜇
& 𝜓Λ2 

𝜂
 are PNHSS over ℑ. Then 𝜓Λ1

𝜇
 AND  𝜓Λ2 

𝜂
denoted by 𝜓Λ1

𝜇
 ∧̂  𝜓Λ2 

𝜂
 is given as  

𝜓Λ1
𝜇
 ∧̂   𝜓Λ2 

𝜂
= 𝜓Λ1×Λ2  

 such that 𝜓Λ1×Λ2(𝛼, 𝛽) = 𝜓Λ1
𝜇 (𝛼) ∩̂ 𝜓Λ2 

𝜂 (𝛽), ∀(𝛼, 𝛽) ∈ Λ1 × Λ2 

Where ∩̂ is a NHSS intersection and 휀(𝑒) = 𝑚𝑖𝑛(𝜇(𝑒), 𝜂(𝑒)).  

 

Example 6 

Consider example 4. Then we can easily verify 𝜓Λ1
𝜇
 ∧̂   𝜓Λ2 

𝜂
= 𝜓Λ1×Λ2  where  

𝜓Λ1×Λ2 = {〈(𝑑1, 𝑑1)(〈0.6,0.6,0.5〉, 〈0.8,0.5,0.4〉, 〈0.3,0.2,0.4〉, 〈0.3,0.7,0.7〉, (0.2))〉 , 

〈(𝑑1, 𝑑3), (〈0.5,0.4,0.5〉, 〈0.2,0.5,0.7〉, 〈0.7,0.1,0.5〉, 〈0.4,0.7,0.5〉, (0.2))〉, 

〈(𝑑2, 𝑑1), (〈0.4,0.6,0.3〉, 〈0.9,0.5,0.2〉, 〈0.3,0.7,0.6〉, 〈0.3,0.4,0.7〉, (0.3))〉, 

〈(𝑑2, 𝑑3), (〈0.4,0.3,0.4〉, 〈0.2,0.5,0.7〉, 〈0.3,0.7,0.6〉, 〈0.4,0.5,0.2〉, (0.4))〉}. 

 

Definition 22  

Let 𝜓Λ1
𝜇
& 𝜓Λ2 

𝜂
 are PNHSS over ℑ. Then 𝜓Λ1

𝜇
 OR  𝜓Λ2 

𝜂
denoted by 𝜓Λ1

𝜇
 ∨̂  𝜓Λ2 

𝜂
 is given as  

𝜓Λ1
𝜇
 ∨̂   𝜓Λ2 

𝜂
= 𝜓Λ1×Λ2

𝜆  

 such that 𝜓Λ1×Λ2
𝜆 (𝛼, 𝛽) = 𝜓Λ1

𝜇 (𝛼) ∪̂ 𝜓Λ2 
𝜂 (𝛽), ∀(𝛼, 𝛽) ∈ Λ1 × Λ2 

Where ∪̂ is a GNSS union and 𝜆(𝑒) = 𝑚𝑎𝑥(𝜇(𝑒), 𝜂(𝑒)). 

 

Example 7 

Consider example 4. Then we can easily verify 𝜓Λ1
𝜇
 ∨̂   𝜓Λ2 

𝜂
= 𝜓Λ1×Λ2

𝜆  where  

𝜓Λ1×Λ2
𝜆 = {〈(𝑑1, 𝑑1)(〈0.8,0.4,0.3〉, 〈0.9,0.3,0.2〉, 〈0.8,0.1,0.4〉, 〈0.4,0.2,0.5〉, (0.3))〉 , 
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〈(𝑑1, 𝑑3), (〈0.6,0.3,0.4〉, 〈0.8,0.3,0.4〉, 〈0.8,0.1,0.2〉, 〈0.4,0.5,0.2〉, (0.4))〉, 

〈(𝑑2, 𝑑1), (〈0.8,0.3,0.2〉, 〈0.9,0.4,0.1〉, 〈0.3,0.2,0.4〉, 〈0.7,0.2,0.2〉, (0.5))〉, 

〈(𝑑2, 𝑑3), (〈0.5,0.3,0.2〉, 〈0.9,0.4,0.1〉, 〈0.7,0.1,0.5〉, 〈0.7,0.4,0.2〉, (0.5))〉}. 

 

Proposition 7 

Let 𝜓Λ1
𝜇
& 𝜓Λ2 

𝜂
 are PNHSS, then 

1) (𝜓Λ1
𝜇
∨̂  𝜓Λ2 

𝜂
)
𝑐
= (𝜓Λ1

𝜇
)
𝑐
∧̂ (𝜓Λ2 

𝜂
)
𝑐
. 

2) (𝜓Λ1
𝜇
∧̂  𝜓Λ2 

𝜂
)
𝑐
= (𝜓Λ1

𝜇
)
𝑐
∨̂ (𝜓Λ2 

𝜂
)
𝑐
. 

Proof. The proof is straightforward from Definitions 18, 21 and 22.  

4. Conclusions  

In this paper we have introduced the concept of of Possibility Neutrosophic Hypersoft Set 

and studied some of its properties like: subset, equal, complement with detailed examples. 

Basic operation of PNHSS are established like: union, intersection with illustrative examples. 

Some basic laws such as commutative, associative, distributive and De Morgens low are 

discussed. AND and OR operation of PNHSS are defined with suitable examples and some 

propositions. 

In the future we use the new concept of PNHSS in decision making problem and in medical 

diagnosis. Also, the authors may extend this Possibility Neutrosophic Hypersoft Set to 

algebraic structure such as group, ring and field and their generalizations may be studied.  
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Abstract: Fuzzy decision-making is a critical research topic in uncertain decision-making issues. 

Under uncertain scenarios, a group of decision makers/experts presents the fuzzy evaluation data 

of the criteria to an alternative. In this case, we can use a fuzzy multi-valued set (FMVS) to express 

them. To solve the operation problem between different fuzzy sequence lengths in FMVSs and 

ensure some confidence level of fuzzy assessment values from the perspective of probability, this 

paper first proposes a transformation technique from FMVS to a confidence neutrosophic number 

cubic set (CNNCS) based on confidence levels and normal distribution of fuzzy values in FMVS. 

Then, we present an exponential similarity measure between CNNCSs and its group DM model 

with some confidence levels and normal distribution in a FMVS circumstance. Finally, the 

developed group DM model is applied to the selection of intelligent manufacturing equipment, 

and then the decision results corresponding to the 90%, 95%, and 99% confidence levels reveal the 

decision flexibility and rationality/reliability. 

Keywords: fuzzy multi-valued set; confidence neutrosophic number cubic set; exponential 

similarity measure; group decision-making 

 

 

1. Introduction 

In uncertain decision-making (DM) issues, fuzzy DM is a critical one of DM research topics. 

Fuzzy sets (FSs) [1] have been applied in various DM areas, such as social science, economics and 

engineering management [2–6]. As an extension of FS that contains almost one occurrence of each 

element, Yager [7] presented a fuzzy multi-set (FMS) or bag, where permit multiple occurrences of 

the elements with identical or different membership degrees. Since then, the fuzzy multisets have 

been applied to group DM [8, 9] and clustering analysis [10–12] and so on. To avoid aggregation 

operations between different fuzzy sequence lengths in FMSs, Fu et al. [13] introduced a 

transformation technique from FMS to an entropy fuzzy set in terms of the mean and 

Shannon/probability entropy of fuzzy sequences, and then developed a group DM model using the 

Aczel-Alsina aggregation operators of entropy fuzzy elements and used it for renal cancer surgery 

options with FMS information. 

In view of the hybrid form of interval fuzzy values (uncertain fuzzy values) and fuzzy values 

(exact fuzzy values), Jun et al. [14, 15] proposed (fuzzy) cubic sets (CSs). Then, CSs have been 
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applied in many DM problems [16–18]. Moreover, there are some extension forms of CSs, such as 

cubic hesitant fuzzy sets [19–21], fuzzy credibility cubic numbers [22], and cubic fuzzy-consistency 

sets transformed from cubic fuzzy multi-valued sets [23], and their DM applications in existing 

literature. Since CS shows its obvious merit in the hybrid information expression of interval fuzzy 

values and fuzzy values, it is more useful than FS in multi-criteria group DM problems. 

In uncertain problems, a neutrosophic number (NN) N = h + uI = [h + uI, h + uI+] for an 

indeterminacy I = [I, I+] and h, u   was proposed by Smarandache [24–26]. NN implies its main 

merit in the indeterminate information representation of changeable interval values or fuzzy values 

corresponding to different indeterminate ranges of I. Hence, it shows better flexibility and 

generalization in the representation and processing capability of uncertain information in 

multi-criteria DM problems [27, 28]. Recently, Lv et al. [29] presented the concepts of NN probability 

and confidence neutrosophic numbers (CNNs) (confidence intervals) in light of confidence levels 

and normal and log-normal probability distributions of multi-valued datasets from the perspective 

of probability, and then developed CNN linear programming methods based on normal and 

log-normal probability distributions to carry out production planning problems in uncertain 

scenarios. 

In the setting of FMSs, Fu et al. proposed a transformation technique from FMS to entropy 

fuzzy elements based on the mean and Shannon/probability entropy of fuzzy sequences in FMS. 

Then, from the perspective of probability estimation, the transformation technique does not consider 

a confidence level and certain probability distribution of fuzzy sequences/data, which shows its 

defect. To avoid this defect, this paper proposes a new transformation technique from a fuzzy 

multi-valued set (FMVS) to a confidence neutrosophic number cubic set (CNNCS) and group DM 

model using an exponential similarity measure (ESM) of CNNCSs to solve group DM problems in 

view of the conditions of some confidence levels and normal distribution in a FMVS circumstance. 

This paper contains remaining structures. The second section introduces the definitions of 

FMVS and CNNCS and some basic relationships of CNNCEs. The third section proposes an ESM 

between CNNCSs and a weighted ESM of CNNCSs. The fourth section develops a group DM model 

based on the weighted ESM of CNNCSs in a FMVS circumstance. The fifth section utilizes the 

developed group DM model to perform the selection of intelligent manufacturing equipment. The 

sixth section provides decision results and discussions corresponding to the 90%, 95%, and 99% 

confidence levels to reveal the decision flexibility and rationality/reliability. The last section 

summarizes the conclusions and future research directions. 

2. FMVS and CNNCS 

This section gives the definitions of FMVS and CNNCS and then defines some basic 

relationships of confidence neutrosophic number cubic elements (CNNCEs). 

Definition 1. A FMVS H on a finite set Z = {z1, z2, …, zq} is defined as 

 , ( ) |k H k kH z M z z Z  ,                               (1) 

where MH(zk) contains multiple membership degrees of each element zk to the set H, denoted as a 

fuzzy sequence 
1 2( ) ( , ,..., )

kH k k k krM z h h h  with identical and/or different fuzzy values for zk  Z 

and hki  [0, 1] (k = 1, 2, …, q; i = 1, 2, …, rk). 

For convenience, each element , ( )k H kz M z  in H is denoted as a fuzzy multi-valued element 

(FMVE) 
1 2, ( , ,..., )

kk k k k krh z h h h  with increasing fuzzy sequence. Especially when rk = 1, the FMVS 

H becomes FS. 

According to the confidence interval with a (1)100% confidence level [29], we present a 

transformation technique from FMVS to CNNCS, which is defined below. 
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Definition 2. Set FMVS as H1 = {<z1, (h11, h2, …, 
11rh )>, <z2, (h21, h22, …, 

22rh )>,…, <zq, (hq1, hq2, …, 
qqrh )>} 

in a finite set Z = {z1, z2, …, zq}. Thus, CNNCS can be defined as 

11 11 11 12 12 12

1 1

1 2

1

/2 /21

, , , , , ,... ( ), ( ) ( ) , ( )

 ( ), (

,

, , | [ , ])

m m

q q m qq

h I h I h h I h I h

h I h I

z z
G

t thz I

   

 



  

   

 

        
  

      

,             (2) 

where 1 1( ), ( )k kh I h I 

     (k = 1, 2, …, q) is CNN, which is obtained by 

1 1
1 1 1 1 1 /1 21 1 /2( ), ) , ,( k k

m k k m k k m k m kk k

k k

h u I h u I h th I h I h t
r r

    

    
 

            
  

;         (3) 

/2 /2[ , ] [ , ]I I I t t    

     is an indeterminate interval depending on a specified value of t/2; u1k is 

an indeterminate parameter; then hm1k and 1k are the average value and standard deviation of a 

fuzzy sequence in H1, which are yielded by the formulae: 

1 1
1

1 kr

m k i

ik

h h
r 

  ,                                       (4) 

2
1 1 1

1

1
( )

1

kr

k i m k

ik

h h
r




 

 .                               (5) 

Remark 1. The specified values of t/2 are related to (1)100% confidence levels [29], which are 

usually specified as t/2 = 1.645, 1.960, 2.576 for the levels of  = 0.1, 0.05, 0.01 in actual applications 

[29]. 

From a probabilistic viewpoint and the estimation of small example data in some distribution 

situation, the CNN of Eq. (3) with a (1)100% confidence level reveals the probability of fuzzy 

values falling within CNN (confidence interval). For example, considering the 90% confidence level, 

the 90% probability of all fuzzy values will occur within CNN, while the 10% probability of all fuzzy 

values will occur outside CNN. 

Example 1. Assume that there is the FMVS H1 = {<z1, (0.5, 0.6, 0.7, 0.9)>, <z2, (0.6, 0.7, 0.7, 0.8, 0.9)>} in a 

finite set Z = {z1, z2}, where fuzzy data are in the normal distribution situation. Considering the 90% 

confidence level with the specified value of t/2 = 1.645, the FMVS H1 can be transformed into the 

CNNCS G1 by Eqs. (3)–(5), which is described by the calculational process below. 

Using Eqs. (4) and (5), the average values and standard deviations of two fuzzy sequences in H1 

are given as follows: 

hm11 = 0.675, hm12 = 0.74, 11 = 0.1708, and 12 = 0.114. 

Using Eq. (3), two CNNs are produced as follows: 

11 11

0.1708 0.1708
0.675 1.645,0.675 1.645( ), ( ) [0.5345  0.8155]

4 4
h I h I 

   
         

 
， , 

11 11

0.114 0.114
0.74 1.645,0.74 1.645 [0.6561  0.8239]

5
(

5
), ( )h I h I 

   
         

 
， . 

Thus, the CNNCS G1 for  = 0.1 is obtained below: 

G1 = 0.1 = {<z1, [0.5345, 0.8155], 0.675>, <z2, [0.6561, 0.8239], 0.74>|I = [–1.645, 1.645]}. 

Then, each element 11 1 1, , ( ), ( )k k m kh I Iz h h 

     in the CNNCS G1 is simply represented as 

the CNNCE 11 1 1( )  , ,k k m kk I h hg h  

      (k = 1, 2, …, q). 

Definition 3. Set two CNNCEs as 1 1 11 ( ) , ,k k m kk I h h hg   

      and 

2 2 22 ( ) , ,k k m kk I h h hg   

      (k = 1, 2, …, q). Then, their basic relationships are defined below: 
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(1) 1 2( ) ( )k kg I g I    1 1 2 2[ , ] [ , ]k k k kh h h h   

     and 1 2m k m kh h ; 

(2) 1 2( ) ( )k kg I g I    1 2( ) ( )k kg I g I  and 1 2( ) ( )k kg I g I  , i.e., 1 2k kh h 

  , 

1 2k kh h 

  , and 1 2m k m kh h ; 

(3) 
1 2 1 2 1 2 1 2( ) ( ) [ , ],k k k k k k m k m kg I g I h h h h h h     

        ; 

(4) 
1 2 1 2 1 2 1 2( ) ( ) [ , ],k k k k k k m k m kg I g I h h h h h h     

        ; 

(5) 
1 1 1 1( ) [1 ,1 ],1c

k k k m kg I h h h  

      (Complement of 1 ( )kg I ). 

3. ESM of CNNCSs 

In this section, we present the ESM of CNNCSs, the weighted ESM of CNNCSs, and their 

characteristics. 

Definition 4. Set G1 = {g11(I), g12(I), …, g1q(I)} and G2 = {g21(I), g22(I), …, g2q(I)} as two CNNCSs, 

where 11 1 1 ,( ) ,k kk m khg I h h 

      and 22 2 2 ,( ) ,k kk m khg I h h 

      (k = 1, 2, …, q) are two 

collections of CNNCEs. Thus, the ESM of two CNNCSs G1 and G2 is defined as 

  2 2 2
1 2 1 2 2

2

1

1
1

( ) ( ) ( )

1 exp( 3)

exp exp( 3)1
( , )

k k k m
q

k k

k

k m

E G
h h h h h

q

h
G

   

  

   



   

 

 


 

 .    (6) 

Proposition 1. The ESM E(G1, G2) contains the following characteristics: 

(a) E(G1, G2) = E(G2, G1); 

(b) 0 ≤ E(G1, G2) ≤ 1; 

(c) E(G1, G2) = 1 if and only if G1 = G2; 

(d) If G1  G2  G3 for any three CNNCSs G1, G2, and G3, then E(G1, G2)  E(G1, G3) and 

E(G2, G3)  E(G1, G3) exist. 

Proof:  

(a) This characteristic is obvious.  

(b) Since there is the inequality 
2 2 2

1 2 1 2 1 20 ( ) ( ) ( ) 3k k k k m k m kh h h h h h   

          , the 

inequality   2 2 2
1 2 1 2 1 2e ( ) (xp(0) 1 exp exp( 3) ) )(k k k k m k m kh h h h h h   

            also exists. 

Therefore, the value of Eq. (6) belongs to [0, 1], i.e., 0 ≤ E(G1, G2) ≤ 1. 

(c) When G1, = G2, g1k(I) = g2k(I) (k = 1, 2, …, q) exists. Thus, there are 1 2k kh h 

  , 1 2k kh h 

  , 

and 1 2m k m kh h  (k = 1, 2, …, q). In this case, there is exp(0) = 1 in Eq. (6), and then E(G1, G2) = 1 

exists. 

When E(G1, G2) = 1, there is exp(0) = 1 in Eq. (6). Hence, 1 2k kh h 

  , 1 2k kh h 

  , and 

1 2m k m kh h  exist. In this case, there is g1k(I) = g2k(I) (k = 1, 2, …, q), and then G1 = G2 can hold. 

(d) For G1  G2  G3, there is g1k(I)  g2k(I)  g3k(I), and then 

1 1 2 2 3 3[ , ] [ , ] [ , ]k k k k k kh h h h h h     

        and 1 2 3m k m k m kh h h   (k = 1, 2, …, q) exist. Thus, there 

are the following inequalities: 
2 2 2 2

1 2 1 3 1 2 1 3( ) ( ) , ( ) ( )k k k k k k k kh h h h h h h h       

             , 

2 2 2 2
2 3 1 3 2 3 1 3( ) ( ) , ( ) ( )k k k k k k k kh h h h h h h h       

             ’ 

2 2
1 2 1 3( ) ( )m k m k m k m kh h h h   , 

2 2
2 3 1 3( ) ( )m k m k m k m kh h h h   . 

Since exp(y) for y  0 is a decreasing function, E(G1, G2)  E(G1, G3) and E(G2, G3)  

E(G1, G3) can hold. 
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Considering the weight of gjk(I) (k = 1, 2, …, q; j = 1, 2), it is given by k  [0, 1] for 
1

1
q

kk



 . 

Thus, the weighted ESM of the CNNCSs G1 and G2 is established below: 

  2 2 2
1 2 1 2 1 2

1 2
1

exp exp( 3)( ) ( ) ( )

1 exp( 3
( , )

)

k k k k m k

k

k

q
k

W

mh h h h
E

h h
G G  

   


   



     







 .      (7) 

Proposition 2. The weighted ESM EW(G1, G2) also contains these characteristics: 

(a) EW(G1, G2) = EW(G2, G1); 

(b) 0 ≤ EW(G1, G2) ≤ 1; 

(c) EW(G1, G2) = 1 if and only if G1 = G2; 

(d) If G1  G2  G3 for any three CNNCSs G1, G2, and G3, then there are EW(G1, G2)  EW(G1, 

G3) and EW(G2, G3)  EW(G1, G3). 

Based on the similar proof process of Proposition 1, Proposition 2 can be easily verified 

(omitted). 

4. Group DM Model Based on the ESM of CNNCSs 

A multi-criteria group DM problem usually contains a group of possible alternatives Me = {Me1, 

Me2, …, Mep} and a group of main assessment criteria Z = {z1, z2, …, zq}. Taking into account the 

weights of different criteria, their weight vector is expressed as  = (1, 2, …, q). In the group DM 

problem, the group DM model can be developed and reflected by the decision procedure below. 

Step 1: In the suitability assessment of the alternatives, the fuzzy evaluation values of each 

alternative satisfying the criteria are assigned by a group of experts/decision makers and constructed 

as the FMVS  | 1,2,...,j jkH h k q   containing the q FMVEs
1 2, ( , ,..., )

kjk k jk jk jkrh z h h h  (k = 1, 

2, …, q; j = 1,2, …, p) for zk  Z. Then, all FMVSs can be formed as their decision matrix DH = (hjk)pq. 

Step 2: Using Eqs. (3)(5) for the 90%, 95% and 99% confidence levels with the specified values 

of t/2 = 1.645, 1.96, 2.576, the FMVSs Hj (j = 1, 2, …, p) can be transformed into the CNNCSs G j = 

{gj1(I), gj2(I), …, gjq(I)} containing the q CNNCEs  ,( ) ,jk jk jk mjkh hg I h 

      (j = 1, 2, …, p; k = 

1, 2, …, q) for  = 0.1, 0.05, 0.01. Thus, their decision matrix is denoted as D = (gjk(I))pq. 

Step 3: Set the ideal solution/CNNCS as G* = {<z1, [1, 1], 1>, <z2, [1, 1], 1>, …, <zq, [1, 1], 1>}. Then, 

the weighted ESM values of EW(G j, G*) (j = 1, 2, …, p) are given by 

  2

*

1

2 2( 1)exp e( 1) ( 1)

1 e

xp( 3)
(

xp( 3
)

)
,

jk jk
q

k

kW j

mjkh h h
E GG

 

  





   

 

  
 .        (8) 

Step 4: The alternatives are sorted, and the optimal choice is determined by the largest 

weighted ESM value. 

Step 5: End. 

5. DM Example 

5.1 Selection of intelligent manufacturing equipment 

This section provides a DM example on the selection of intelligent manufacturing equipment in 

a manufacturing company to reflect the practicability and efficiency of the developed group DM 

model in the scenario of FMVSs. 

To improve intelligent manufacturing capability in a manufacturing company, the 

manufacturing company wants to purchase a type of intelligent manufacturing equipment from 

possible equipment providers. In this case, the technology department preliminarily selects possible 

six types of intelligent manufacturing equipment (six alternatives) from possible equipment 

providers, which are denoted as a set of six alternatives Me = {Me1, Me2, Me3, Me4, Me5, Me6}. To assess 

their suitability, the technology department chooses four assessment criteria: cost (z1), intelligent 
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degree (z2), technical advancement level (z3), and manufacturing performance and capability (z4). 

Then, the decision department invites five experts to select the optimal type of intelligent 

manufacturing equipment (the optimal alternative) by the suitability assessment of each alternative 

with respect to the four criteria. The weight vector of the four criteria  = (0.2, 0.3, 0.2, 0.3) is 

presented by experts/decision makers. 

For the DM example, the developed group DM model can be applied to the selection problem 

of intelligent manufacturing equipment and depicted by the decision procedure below.  

Step 1: Five experts present their fuzzy evaluation values of each alternative Mej (j = 1, 2, 3, 4, 5, 

6) satisfying the criteria zk (k = 1, 2, 3, 4). Then, their assessed fuzzy values are constructed as the 

FMVS decision matrix: 

   

   

   

   

1 2

1 2

1 2

1 2

1

z , 0.7,0.7,0.8,0.8,0.9 , 0.6,0.7,0.7,0.7,0.7

, 0.7,0.7,0.7,0.8,0.8 , 0.6,0.6,0.7,0.7,0.8

, 0.6,0.6,0.6,0.7,0.7 , 0.6,0.7,0.8,0.8,0.9

, 0.6,0.7,0.7,0.7,0.8 , 0.6,0.6,0.7,0.8,0.8

, 0.7,0.7,0.8,0.8,0.

H

z

z z

z z
D

z z

z



   

   

   

   

 

3 4

3 4

3 4

2

1 2

, 0.7,0.8,0.8,0.9,0.9 , 0.7,0.8,0.8,0.8,0.8

, 0.7,0.7,0.8,0.8,0.8 , 0.6,0.7,0.7,0.8,0.8

, 0.7,0.8,0.8,0.8,0.9 , 0.6,0.6,0

8 , 0.7,0.7,0.7,0.7,0.7

, 0.6,0.7,0.7,0.7,0.8 , 0.6,0.7,0.7,0.8,0.8

z z

z z

z z

z

z z












 

   

   

   

3 4

3 4

3 4

.6,0.7,0.8

, 0.6,0.7,0.7,0.7,0.8 , 0.6,0.6,0.7,0.7,0.8

, 0.6,0.7,0.7,0.7,0.7 , 0.5,0.6,0.7,0.7,0.7

, 0.6,0.6,0.6,0.7,0.7 , 0.5,0.6,0.8,0.8,0.9

z z

z z

z z












. 

Step 2: The specified values for  = 0.1, 0.05, 0.01 are t/2 = 1.645, 1.96, 2.576 [29]. Using Eqs. 

(3)(5) with the 90%, 95% and 99% confidence levels, the FMVS decision matrix DH can be 

transformed into the following three CNNCS matrices: 

0.1

[0.7184, 0.8416], 0.78 [0.6471, 0.7129], 0.68

[0.6997, 0.7803], 0.74 [0.6184, 0.7416], 0.68

[0.5997, 0.6803], 0.64 [0.6761, 0.8439], 0.76

[0.6480, 0.7520], 0.70 [0.6264, 0.7736], 0.70

[0.7197, 0.8003],

D 

[0.7584, 0.8816], 0.82 [0.7471, 0.8129], 0.78

[0.7197, 0.8003], 0.76 [0.6584, 0.7816], 0.72

[0.7480, 0.8520], 0.80 [0.5942, 

 0.76 [0.7000, 0.7000], 0.70

[0.6480, 0.7520], 0.70 [0.6584, 0.7816], 0.72











0.7258], 0.66

[0.6480, 0.7520], 0.70 [0.6184, 0.7416], 0.68

[0.6471, 0.7129], 0.68 [0.5742, 0.7058], 0.64

[0.5997, 0.6803], 0.64 [0.5991, 0.8409], 0.72











. 

0.05

[0.7067, 0.8533], 0.78 [0.6408, 0.7192], 0.68

[0.6920, 0.7880], 0.74 [0.6067, 0.7533], 0.68

[0.5920, 0.6880], 0.64 [0.6601, 0.8599], 0.76

[0.6380, 0.7620], 0.70 [0.6123, 0.7877], 0.70

[0.7120, 0.8080]

D 

[0.7467, 0.8933], 0.82 [0.7408, 0.8192], 0.78

[0.7120, 0.8080], 0.76 [0.6467, 0.7933], 0.72

[0.7380, 0.8620], 0.80 [0.5816,

, 0.76 [0.7000, 0.7000], 0.70

[0.6380, 0.7620], 0.70 [0.6467, 0.7933], 0.72











 0.7384], 0.66

[0.6380, 0.7620], 0.70 [0.6067, 0.7533], 0.68

[0.6408, 0.7192], 0.68 [0.5616, 0.7184], 0.64

[0.5920, 0.6880], 0.64 [0.5760, 0.8640], 0.72











, 

0.01

[0.6836, 0.8764], 0.78 [0.6285, 0.7315], 0.68

[0.6769, 0.8031], 0.74 [0.5836, 0.7764], 0.68

[0.5769, 0.7031], 0.64 [0.6286, 0.8914], 0.76

[0.6185, 0.7815], 0.70 [0.5848, 0.8152], 0.70

[0.6969, 0.8231]

D 

[0.7236, 0.9164], 0.82 [0.7285, 0.8315], 0.78

[0.6969, 0.8231], 0.76 [0.6236, 0.8164], 0.72

[0.7185, 0.8815], 0.80 [0.5570,

, 0.76 [0.7000, 0.7000], 0.70

[0.6185, 0.7815], 0.70 [0.6236, 0.8164], 0.72











 0.7630], 0.66

[0.6185, 0.7815], 0.70 [0.5836, 0.7764], 0.68

[0.6285, 0.7315], 0.68 [0.5370, 0.7430], 0.64

[0.5769, 0.7031], 0.64 [0.5307, 0.9093], 0.72











. 

Step 3: Using Eq. (8), the weighted ESM values of EW(Gj, G*) are shown in Table 1. 

 

Table 1. Decision results corresponding to the 90%, 95% and 99% confidence levels 

 t/2 EW(Gj, G*) Sorting order Optimal choice 

0.1 1.645 
0.8220, 0.7735, 0.7587, 

0.7361, 0.7318, 0.7397 

Me1 > Me2 > Me3 > 

Me6 > Me4 > Me5 
Me1 

0.05 1.96 
0.8203, 0.7715, 0.7557, 

0.7336, 0.7306, 0.7354 

Me1 > Me2 > Me3 > 

Me6 > Me4 > Me5 
Me1 

0.01 2.576 
0.8163, 0.7666, 0.7485, 

0.7274, 0.7278, 0.7250 

Me1 > Me2 > Me3 > 

Me5 > Me4 > Me6 
Me1 
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Step 4: The six alternatives are sorted and the optimal choice is determined by the largest 

weighted ESM value, then all decision results corresponding to the 90%, 95%, and 99% confidence 

levels are shown in Table 1. 

5.2 Results and discussions 

In view of the decision results in Table 1, different confidence levels can impact on the sorting 

orders of the six alternatives, then the optimal alternative always is Me1. By comparing existing DM 

models in the scenarios of FMSs and CSs [13, 16, 17, 18], our new DM model reveals the following 

main merits: 

(i) The proposed information transformation technique from FMVSs to CNNCSs can make 

the information expression more reasonable and confident and avoid operation problems between 

different fuzzy sequence lengths in FMVSs since CNNCS contains CNNs (confidence intervals) and 

average values. Then, CNN can reflect the probabilistic estimation of fuzzy values related to some 

confidence level to ensure the probabilistic reliability of fuzzy values falling within CNN. 

(ii) Our new group DM model based on the weighted ESM of CNNCSs can reflect its decision 

flexibility depending on specified confidence levels. Then, decision makers can choose their optimal 

alternative according to their preference for confidence levels so as to satisfy some actual 

applications or requirements. 

(iii) To some extent, existing CS is only a special case of CNNCS. In terms of a probabilistic 

viewpoint, existing CSs lack a confidence level in group DM problems, which shows its defect in the 

probabilistic estimation of the group evaluation values; while CNNCS contains both CNNs and 

average values, which can reflect the confidence level and magnitude of the group evaluation 

values. Therefore, our new group DM model indicates its obvious superiority over the existing DM 

models in the scenarios of FMSs and CSs. 

6. Conclusions 

Based on a confidence level of small sample data (the collection of several fuzzy values), this 

paper proposed a transformation technique from FMVSs to CNNCSs to reasonably express the 

mixed information of CNN and mean of fuzzy sequences. In the group DM process, the advantage 

of CNNCSs is that CNNCSs can effectively ensure the group evaluation data and mean falling 

within CNNs (confidence intervals) in light of a confidence level and a distribution status of the 

group evaluation data and solve the operational issue between different fuzzy sequence lengths in 

the scenario of FMVSs. Then, the proposed ESM of CNNCSs can make the similarity measure more 

reasonable and confident since it is closely related to confidence levels and normal distribution. 

Moreover, it also implies the measure flexibility corresponding to different confidence levels. The 

developed group DM model based on the proposed ESM of CNNCSs can not only make decision 

results more flexible and confident depending on certain confidence level, but also ensure the 

credibility and effectiveness of the DM results from the perspective of probability estimation in the 

scenario of FMVSs. It is obvious that the developed group DM model of CNNCSs reveals its obvious 

superiority over the existing DM models of FMSs/CSs in the information conversion/expression and 

DM methods. 

Since this original study proposed the transformation technique from FMVSs to CNNCSs and 

the group DM model of CNNCSs for the first time, they are only suitable for group DM problems 

under the normal distribution condition of the group evaluation data (FMVSs), which shows their 

limitation in group DM applications. Therefore, we shall further develop other transformation 

techniques and group DM models and their applications, such as medical diagnosis, image 

processing, and production programming problems, as future research directions. 
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Abstract: The internet of vehicular things (IOVT) is an important modern technology that offers 

many advantages and facilities; however, if vehicular malfunctions are not detected in a timely 

manner, it may cause many dangers and serious accidents. To achieve safe self-driving vehicles, 

safety and security measures must be taken. In this work, a safety and security model are proposed 

to evaluate the level of vehicular malfunctions and determine the corresponding danger in terms of 

road safety. The proposed model presents the optimal actions and alternatives for self-driving 

vehicles to avoid crises. The objective of this study to develop a hybrid model for multicriteria 

decision-making problems using neutrosophic theory to handle vehicular malfunctions that occur 

in the IOVT environment under uncertain conditions and conflicting information. In addition, the 

technique for order of preference by similarity to the ideal solution is used to prioritize the 

corresponding alternatives in the case of vehicular malfunction. A case study considering four 

likely vehicular defects is presented to ensure the applicability and availability of the proposed 

model. 

Keywords: internet of vehicular things (IOVT), vehicular malfunction detection, multi-criteria 

decision making (MCDM), neutrosophic theory, analytical hierarchy process (AHP), TOPSIS. 

 

 

1. Introduction 

Self-driving vehicles have become one of the most important technological advances in the world [1]. To 

reduce risks that result from vehicles, self-driving vehicles are expected to be relied upon in more countries and 

cities [2]. By 2040, 40% of vehicles are expected to be self-driving [3]. According to the World Health 

Organization, many people at risk of serious injury or death each year from accidents due to undiscovered 

vehicular defects [4]. The problem of defect detection in vehicles, especially while driving, is the target of this 

study, with the aim of preventing accidents on the road based on statistics regarding the causes of accidents. 

This paper proposes the most important problems that may cause accidents, which are classified into four 

categories depicted in Figure 1. 
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Figure 1. Factors and obstacles that influence the roadworthiness of vehicles. 

Tires are important sources of vehicular risks and accidents. Hence, three of the problems 

considered in this study are related to tires: 1) overinflation, when the pressure exceeds the normal 

range [5],[6]; 2) non-roundness, deformations or extensions of the tire [7]; and 3) cuts and punctures, 

which can occur if the vehicle drives over hazards on the road [8]. The fourth problem is related to 

brakes [9]. Malfunctions and defects of the brakes can cause vague and inconsistent information for 

self-driving vehicles [1], which may lead to difficulty in making consistent and accurate driving 

decisions.  

This paper discusses some of the defects that affect vehicles depending on internet of vehicular 

things (IOVT) technology by integrating multicriteria decision-making (MCDM) method, analytical 

hierarchy process (AHP), neutrosophic sets, and the technique for order of preference by similarity 

to ideal solution (TOPSIS) based on intelligent techniques [10]. AHP is among the most popular 

methods to deal with complicated MCDM problems [11] and can be summarized as a process of 

decomposition, calculating the weights for the decision criteria, and finally calculating the priority 

for alternatives [11]. This classical AHP method can determine the priorities for criteria and is also 

able compare and grade alternatives, but it is unable to handle ambiguous information [10] and the 

Saaty comparison matrix cannot determine whether it is in a consistent or inconsistent state because 

it has no systemic methodology [10]. To overcome this problem, fuzzy AHP (FAHP) combines fuzzy 

set theory and AHP [12]. This method can handle conflict, but decision makers cannot determine the 

membership function permanently. This paper proposes a neutrosophic technique combined with 

AHP to help decision makers handle uncertainty and determine influential factors to better handle 

vehicular defects. The neutrosophic set is expressed as truth, falsity, and indeterminacy (T, I, F) 

membership [13]. Based on this, uncertainty, conflict, and vague and incomplete information can be 

handled. TOPSIS methods, including AHP TOPSIS, depend on classifying alternatives into two 

parts: positive and negative solutions, where the optimal solution is the solution near the set of 

positive solutions that is farthest from the set of negative solutions [10,14]. This proposed model 

examined four risks that could affect self-driving vehicles that rely on IOVT technology to determine 

the optimal action that must be taken at the right time. IOVT is a network of vehicles that contain 

software, sensors, and other important techniques and among the most influential factors in 

autonomous vehicles [15,16]. This paper aims to achieve the following objectives: 

Validity of the 
vehicles to drive 

on the roads 
influential factors

Cuts and 
punctures

Car brakes

Over-inflation

Non-roundness
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1. Determine whether IOVT can overcome vehicular problems and accidents. 

2. Discuss some defects and malfunctions that may affect vehicles and lead problems and accidents. 

3. Assess the influence of criteria in attempt to help experts and decision makers reach optimal 

solutions. 

4. Propose solutions to deal with MCDM problems. 

5. Propose a hybrid model that integrates AHP, neutrosophic models, and TOPSIS to recommend the 

best option out of three proposed alternatives. 

6. Apply the proposed framework in a case study of self-driving vehicles that depend on IOVT. 

7. Conduct a sensitivity analysis to ensure the robustness and reliability of decision-making by IOVT. 

 

The next sections of this paper are as follows. Section 2 presents a literature review. Section 3 introduces 

the framework of this study. Section 4 presents the methodology of the proposed model. Section 5 concludes the 

paper with insights obtained from this work and future considerations. 

2. Literature Review 

Many researchers have suggested the importance of the internet of things (IOT) to connect 

devices via the internet, and IOVT has become one of the most important modern technical 

developments in the era in both academic and industrial fields [17]. The rapid development of the 

intelligent transportation system (ITS) helps to provide utilities to consumers, including safe traffic 

management [18]. 
The daily use of roads causes some dangers for drivers [19]. There are many causes of vehicle 

accidents arising from a lack of experience in dealing with emergency situations. These situations 

include tire problems, such as overinflation, cuts and punctures, and non-roundness, as well as 

problems with the vehicle’s brakes [20]. IOVT helps to predict these malfunctions in a timely manner 

and make an appropriate decision to avoid accidents. Many recent studies on vehicular defect 

detection in intelligent transportation systems introduce risk assessment of vehicles to propose a 

theoretical basis to prevent accidents that results from vehicular malfunctions [21]. In [22], a unified 

diagnostics service protocol (UDS) proposes a semiautomatic approach to brake pedal testing and 

diagnostics. In [23], radiography is used to detect defects in vehicle tires, and [24] describes three 

vehicular defects, including changes in tire pressure. Effective methods have been developed to 

detect aquaplaning detection using a small group of sensors, stability-based electronic control, and 

drive torques [5]. In [25], IOT and deep learning are combined to produce an integrated 

self-diagnostic system for self-driving vehicles. In [17] discuss federated learning issue and aims to 

develop IOVT applications which is characterized by confidentiality and security. IOT and ITS have 

been merged to improve the efficiency and effectiveness of ITS. Information about malfunctions that 

vehicles may be exposed may be incomplete and uncertainty [26]. The authors of [27] propose 

techniques to handle uncertainty when predicting crashes in self-driving vehicles. 
MCDM methods have become an important issue for decision makers, as they are used to 

prioritize criteria and alternatives to help solve the problems of uncertainty and incomplete 

information [11]. In addition, several studies have been presented based on fuzzy sets. For example, 

[28] presents a theory of sets to manage uncertainty, and [4] presents an FAHP method to evaluate 

the roadworthiness of vehicles. When AHP methods are integrated with fuzzy techniques, they can 

better handle uncertainty information, but they still cannot handle indeterminate values. FAHP is 

very convenient for evaluating alternatives. FAHP can evaluate the current state of the vehicle, but it 

has some limitations. For example, when input data are expressed in linguistic terms depending on 

the experience and opinions of decision makers, it cannot obtain actual relations between the criteria 

and alternatives [11]. MCDM methods use neutrosophic sets to offer solutions under ambiguous and 

conflicting information by proposing truth, indeterminate, and falsity (T, I, F). In [29], MCDM with 

single value neutrosophic sets is proposed to calculate values between options and available choices. 

The neutrosophic set proposes three membership functions to calculate the weights of criteria and 

alternatives and choose the optimal alternative, and its integration with TOPSIS is a new 



Neutrosophic Sets and Systems, Vol. 53, 2023     142  

 

 

Marwa Elshahawy, Nada A. Nabeeh, Ahmed Aboelfetouh and Hazem M. El-Bakry, Neutrosophic model for vehicular 

malfunction detection 

development to enable the selection of an ideal choice [30]. In [31] researchers present a realistic 

empirical example of Starbucks company to develop strategies for its development and uses a model 

that combines AHP and Neutrosophic theory. In [32] researchers present a model that combines 

AHP and Neutrosophic theory. In [33] researchers discuss the problem of choosing the best learning 

management system (LMS) because there are many (LMS) available in the marketplace therefore, 

decision -making to choose the best system is a multi-criteria problem. so, this research applies 

neutrosophic AHP method. The main contribution of this study is the application of the MCDM 

method using a neutrosophic set, AHP, and TOPSIS to produce an effective model that can handle 

the problems of IOVT. 

3. Framework 

The integration of AHP, MCDM, neutrosophic, and TOPSIS techniques is an effective way to help 

decision makers face the problems of uncertainty and confusion of information to make appropriate decisions. 

Neutrosophic and TOPSIS methods have been used in recent studies to help determine ideal solutions. AHP is a 

method to solve confusion and complex problems [34] and is characterized by its simplicity, as it decomposes 

problems into subproblems [35]. This study proposes the integration of AHP and neutrosophic techniques to 

analyze the factors that influence the safety of vehicles [36]. The resulting system outputs a warning if defects or 

malfunctions are detected based on multiple data sets obtained from sensors in the tires, which are connected to 

each other and the warning system using IOT [37]. 

This section describes four main criteria that cause vehicular malfunctions, which may lead to injuries and 

accidents. Tires are a major source of problems that result in accidents; therefore, tires must be replaced or 

repaired as soon as a problem is detected to avoid accidents. Three of the four criteria considered herein are tire 

defects: overinflation, non-roundness, and cuts or punctures. The fourth defect is malfunction of the brakes [38]. 

The correct action must be selected in the event of any of these defects from the following three options: stop the 

vehicle immediately, stop the vehicle at the nearest repair station, or continue (there is no danger). 

The main criteria are measured as follows: 

1. Overinflation: 

A sensor is used to measure the air temperature and pressure changes inside the tire [39]. If the pressure 

reaches the critical pressure, the sensor sends warning. The sensor utilizes multiple previously 

constructed datasets to determine the critical value.  

2. Non-roundness: 

A sensor is used to detect stretching and changes in the tire radius. 

3. Cuts and punctures: 

A moving sensor detects any cuts or punctures in the tire.  

4. Brakes: 

Braking condition is a well-established influential factor that must be constantly examined in IOT 

environments [40]. A warning is sent to the vehicle if the sensor detects any abnormal conditions. 

The steps of the proposed method, as depicted in Figure 2, can be divided into three stages. The first 

stage is to specify the criteria and actions. In the second stage, the criteria are evaluated using 

neutrosophic scales to help decision makers determine the optimal action. The third stage applies 

TOPSIS through the following steps: 

5. Normalize the criteria and actions. 

6. Find the positive and negative regions. 

7. Find the positive and negative Euclidian regions and determine the relative proximity. 

 

Over inflation 
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Figure 2. Conceptual steps of the proposed method. 

 

Then, the optimal action is determined by the following steps: 

Step 1: Specify the criteria using the AHP model according to Table 1. 

Step 2: Compare the criteria and actions based on the neutrosophic scale in Table 1. 
If criterion 1 is strongly significant than criterion 2, the value of the neutrosophic scale is written 

as ⟨(4,5,6)0.80,0.15, 0.20⟩; conversely, if criterion 2 is strongly significant than criterion 1, the 

neutrosophic scale is the inverse of <4,5,6>, which is1/ ⟨(4,5,6)0.80,0.15,0.20⟩. 
The pairwise comparison matrix between the different criteria is 

,              (1) 

 
where . k represents the decision maker’s number depending on the preference of the  

criterion over the . For example, in the form of the neutrosophic triangular, the decision 

maker’s sight is presented as <<4, 5, 6>; <0.80, 0.15, 0.20>>, where the neutrosophic triangular 

scale values are referenced as the lower, median, and upper values. 

The decision maker’s degree of certainty is represented as <0.80, 0.15, 0,20> truth, 

indeterminacy, and falsity. Thus, the triangular neutrosophic scale structure is < (L, m, u); T, I, F 

, where l, m, and u refer to the lower, median, and upper neutrosophic triangular scale 

values. ,   are the truth, indeterminacy, and falsity, which represent the certainty of 

the decision maker’s perspective. 

For example,  refers to the comparison of criteria 2 and 4 from the perspective of the third 

decision maker. 

 

Step 3: Aggregate the decision makers’ preference relations between the criteria. 

Appropriate action 
selection

Stage 1:
Hierarchal process 

method

Specify criteria and 
actions

Calculate weights of 
criteria

Stage 2:
Neutrosophic estimation 

Specify neutrosophic 
scales for criteria and 

actions 

Apply score function 
changing neutrosophic 
scales into crisp values 

Review and check 
consistency

Stage 3:
Applying TOPSIS by :

1-normalize criteria and 
actions

2-find positive and 
negative region

3- find Euclidian positive 
and negative region

Finally ,find relative 
closeness
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To achieve certainty, multiple decision makers evaluate the preference relations between the 

criteria. The aggregated  is  

,             (2) 

 
and the aggregated pairwise comparison matrix is 
 

G = .                (3) 

 

Then, the neutrosophic scales are transformed into crisp values using the score function of ( ). 

S ( =            (4) 

The scale of the neutrosophic numbers represented by l, m, u and T, I, F symbolize lower, 

median, upper and truth, indeterminacy, and falsity membership functions of the triangular 

neutrosophic number. 

 
Step 4: According to the previous matrix, the weights and priorities are calculated. 
First, calculate the sum of the average row.  

 

,                     (5) 

 

where i = 1, 2, 3, 4, …, m and j = 1, 2, 3, 4, …, n. 

Second, normalize the crisp value using  

.         (6) 

 

Step 5: Verify the decision maker’s decision.  

CR=                            (7) 

 

where CR, CI, and RI denote the consistency rate, consistency index, and random consistency 

index, respectively. The result achieved an accepted consistency of 1%. 
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Table 1. Triangular neutrosophic scales corresponding to linguistic phrases. 

Score Linguistic Phrase Neutrosophic Triangular Scale 

1 Equally significant  

3 Slightly significant 
 

5 Strongly significant 
 

7 very strongly significant 
 

9 Absolutely significant 
 

2 
 

Sporadic values between two 

close scales 

 

4 
 

6 
 

8 
 

 

Step 6: Upgrade the consistency in the neutrosophic AHP by collecting the inconsistent elements in 

the pairwise comparison matrix using the induced matrix, as mentioned in [38]. Then calculate the 

normalized decision matrix as follows: 

.                                                  (8) 

 

Step 7: Multiply each alternative by its corresponding weight considering its corresponding criterion 

to obtain an action score using:  
                                                   

(9) 

Step 8: Select the best decision according to the rankings of the alternatives. This process is 

implemented in several steps: 

 

Step 8.1: Calculate the positive and negative regions using Eqs. (10) and (11), respectively: 

 

 =                         (10) 

 

=           (11) 

Step 8.2: Compute the Euclidian distance between the positive ( ) and negative ( ) optimal 

solutions using Eqs. (12) and (13), respectively: 

 

,                                 
(12) 

.                                  
(13) 

 

Step 8.3: Compose a final ranking of actions and select the ideal action. For this purpose, 

calculate the relative closeness as 

.                                             (14) 

Step 8.4: Choose the optimal action. 
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4. Empirical Application 

As an empirical application of the neutrosophic model, we consider a vehicle manufacturing company in 

Egypt. This company hopes to introduce IOT technologies to self-driving vehicles, which will detect vehicle 

malfunctions during an early stage of driving on the road and make an appropriate decision for accident and 

disaster avoidance. The company employs an expert panel of four decision makers (Table 2). During a meeting, 

the expert panel proposed the following four criteria for identifying vehicle malfunctions: 

C1: overinflation. 

C2: non-roundness. 

C3: cuts and punctures. 

C4: brake malfunctions. 

 

Decision makers select one of three actions: 

1- stop the car immediately. 

2- stop the car at the nearest repair station. 

3- continue driving (no problem or cause for concern). 

 

The proposed model proceeds through the following steps: 

Step1: Select an expert panel of four decision makers. The credentials and demographic information of the 

experts are listed in Table 2 and the four main criteria and actions related to vehicle malfunctions are proposed 

in Figure 3. 

Table 2. Demographic information of the expert committee. 

Gender Age Qualifications Job title Demographic 

information 

Female 45 Master Financial consultant First expert 

Male 50 PhD Mechatronics 

engineer 

Second expert 

Female 35 Master Quality and safety 

manger 

Third expert 

Male 40 Bachelor Mechanical 

engineer 

Fourth expert 
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Figure 3. AHP structure of the presented criteria and actions. 

Step 2: Map the decision maker’s perspectives onto the neutrosophic scale using Eq. (1). The experts’ decisions 

are aggregated using Eq. (2) and are expressed in the format of Eq. (3) in Table 3. 

 

Table 3. Proposed collected perspectives of the decision makers of criteria. 

Step 3: For simplicity, convert the neutrosophic aggregated perspectives into crisp values using 

Eq. (4). The results are shown in Table 4.  

Step 4: Compute the weights of the criteria using Eqs. (5) and (6). The results are listed in Table 5 and 

visualized as a pie chart in Figure 4. 

 

Step 5: Compute the consistency rate using Eq. (7). The consistency was determined as 1%. 

Table 4. Crisp values of criteria according to the perspectives of the decision makers. 

C4 C3 C2 C1 Criterion 

1.388 1.855 1.843 1 C1 

1.450 1.848 1 0.542 C2 

2.139 1 0.541 0.539 C3 

1 0.467 0.689 0.720 C4 

 

 

criteria

Over-
inflation

Non-
roundness

Cuts and 
punctures

Car brakes

action

The car need to stop 
now

The car must be 
stopped at the nearest 

repaire station

The car continue on its 
way , there is no 

problem cause for 
concern

C4 C3 C2 C1 Criterion 

<<1,2,3>;0.40,0,60,0.65> 1/<<2,3,4>;0.30,0.75,0.70> <<4,5,6>;<0.80,0.15,0.20> <<1,1,1>;0.50,0.50,0.50> C1 

<<6,7,8>;0.90,0.10,0.10> <<3,4,5>;0.35,0.60,0.40> <<1,1,1>;<0.50,0.50,0.50> 1/<<4,5,6>;<0.80,0.5,0.20 > C2 

<<7,8,9>;0.85,0.10,0.15> <<1,1,1>;0.50,0.50,0.50> 1/<<3,4,5>;0.35,0.60,0.40> 1/<<2,3,4>;0.30,0.75,0.70> C3 

<<1,1,1>;0.50,0.50,0.50> 1/<<7,8,9>;0.85,0.10,0.15> 1/<<6,7,8>;0.90,0.10,0.10> 1/<<1,2,3>;0.40,0,60,0.65> C4 
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Table 5. Criteria weights. 

Weights Criteria 

0.377 C1 

0.268 C2 

0.234 C3 

0.159 C4 

 

0.377

0.268

0.234

0.159

C1 C2 C3 C4

 

Figure 4. Pie chart of IOVT malfunctions criteria weights. 

Step 6: Gain the perspectives of the decision makers on the presented actions and criteria 

(Table 6), then calculate the crisp neutrosophic values of the decision makers using Eq. (4) 

(Table 7). Finally, normalize the decision matrix as . The normalized results are 

listed in Table 8. 

 

Table 6. Proposed decision matrix of criteria and actions for decision makers. 

C4 C3 C2 C1 Criteria 

<<1,1,1>;0.50,0.50,0.50> <<4,5,6>;0.80,0.15,0.20> <<2,3,4>;0.30,0.75,0.70> <<6,7,8>;0.90,0.10,0.10> A1 

<<9,9,9>;1.00,0.00,0.00> <<2,3,4>;0.30,0.75,0.70> <<1,2,3>;0.40,0.60,0.65> <<1,1,1>;0.50,0.50,0.50> A2 

<<1,1,1>;0.50,0.50,0.50> <<6,7,8>;0.90,0.10,0.10> <<4,5,6>;0.80,0.15,0.20> <<2,3,4>;0.30,0.75,0.70> A3 

 

Table 7. Crisp neutrosophic values for decision makers.  

C4  C3 C2 C1 Criteria 

1 1.84 1.85 2.03 A1 

2.08 1.85 1.38 1 A2 

1 2.03 1.84 1.85 A3 
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Table 8. Normalization of decision matrix by applying .  

C4 C3 C2 C1 Criteria 

0.245 0.321 0.364 0.415 A1 

0.509 0.323 0.272 0.204 A2 

0.245 0.354 0.362 0.379 A3 

Step 7: To calculate the weighted matrix, multiply the criteria weights obtained from the 

neutrosophic AHP by the normalized decision matrix [Eq. (9)]. The results are tabulated in 

Table 9 and presented in Figure 5. 

Table 9. Weighted matrix obtained by applying  to multiply the criteria weights obtained 

from the neutrosophic AHP by the normalized decision matrix. 

C4 C3 C2 C1 Criteria 

0.038 0.075 0.097 0.156 A1 

0.080 0.075 0.072 0.076 A2 

0.038 0.082 0.097 0.142 A3 

 

0.097

0.072

0.097

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

A1

A2

A3

over-inflation non-roundness cuts and punctures car-brakes

 

Figure 5. Comparison of the three alternatives based on different criteria Table 9. 

 

Step 8: Calculate the positive and negative regions using Eqs. (10) and (11), respectively, then 

calculate the Euclidian distances between the positive ( ) and negative ( ) optimal solutions to 

present actions using Eqs. (12) and (13), respectively. Finally, rank the actions using Eq. (14). The 

ranked results are listed in Table 10. 

A+ = {0.156, 0.097, 0.082, 0.080} 

A− = {0.076, 0.072, 0.075, 0.038} 
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Table 10. Final ranks of actions. 

rank     

1 0.664 0.083 0.042 A1 

3 0.33 0.042 0.084 A2 

2 0.614 0.070 0.044 A3 

 

Actions A1 and A2 are considered to be the best and worst choices, respectively, in the opinion 

of the decision makers. That is, the best action for the driver to take is action A1—stop the car 

immediately—and the worst action, which the driver must not take, is to stop the car at the nearest 

repair station, as this action may cause danger or accidents. 

 

Figure 6. Sensitivity analysis of weights of alternatives depending on various priorities of criteria.         

 

 

A3 A2 A1 Case# 

2 3 1 1 

2 3 1 2 

2 3 1 3 
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Table 11. Final ranks of the alternatives for different priorities of criteria A1, A2, and A3     

5. Sensitivity analysis 

A sensitivity analysis studies the effect of the variance of each input measure on the model output. It 

is useful for prioritizing the selection of the best alternatives. During a sensitivity analysis, the model 

is assumed sufficiently precise to reproduce the behavior of the system. The present study conducts 

a sensitivity analysis on the criteria (attribute) ranking. Specifically, it demonstrates how the 

prioritization of the criteria affects the final rank of the alternatives. To obtain efficient and accurate 

results, we selected 12 random cases for the sensitivity analysis (three alternatives and four criteria; 

see Table (11). Figure 6 illustrates how the final rank of alternatives changes after changing the 

priority order of the criteria. 

The sensitivity analysis clarified that in all cases except Case 6, A1 is the best alternative and A2 is 

the worst alternative. A3 ranked medium in most cases. 

 

6. Comparative analysis 

This part of the study compares the results of our suggested approach that integrates AHP, 

neutrosophic theory, and topsis with those of another approach that assumes a fuzzy environment 

[41],[42],[43]. Applying the fuzzy approach to select the best action of an autonomous vehicle in our 

case study, the alternatives are ranked as follows: A3> A1>A2 (Figure 7). 

 
 

Figure 7. Alternative ranking based on the fuzzy approach. 
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A2
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A3
47%
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Figure 8. Aggregated results for each alternative according to each criteria. 

 

Table 12 lists the final ranks of the alternatives using the fuzzy approach presented in [41] and [42] 

and our suggested neutrosophic topsis approach. 

 Table 12. Final rankings of alternatives based on our proposed approach and a fuzzy approach. 

Fuzzy approach AHP neutrosophic topsis approach Alternatives 

2 1 A1 

3 3 A2 

1 2 A3 

 

To compare the ranks of the neutrosophic topsis approach and fuzzy approach, we applied 

Spearman’s correlation method [44], which estimates whether two continuous variables are 

correlated or uncorrelated: 

)(15                                 -= 1   

In this formula, t denotes the number of alternatives and  is the difference between two ranks of 

alternatives. If Sm is +1 or -1, the correlation is strong and if  is 0, the variables are uncorrelated. 

The Pearson’s correlation indicates the degree of linear correlation between two variables. It ranges 

from -1 (completely negatively correlated) through 0 (completely uncorrelated) to +1 (completely 

positively correlated). The Pearson correlation is calculated as  

,                                (16) 
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where cov (a, b) denotes the covariance of a and b, and  denote the standard deviations of 

a and b, respectively. The Spearman's correlation coefficient was computed as 0.5, indicating a 

strong correlation between our proposed approach and the fuzzy approach. The Pearson’s 

correlation coefficient between the two approaches was also 0.5. By ranking the weights of the 

criteria and alternatives and comparing the results of our proposed and fuzzy approaches, we find 

that our proposed approach simplifies the application as follows:  

1. As the fuzzy approach requires more equations than our approach, it is necessarily more complex, 

time-consuming, and storage-demanding than the AHP neutrosophic–topsis approach. 

2. Our proposed approach depends on the truth degree, falsity degree, and indeterminacy degree 

whereas the fuzzy approach depends only on the truth and falsity degrees. Therefore, our proposed 

approach can handle ambiguous and conflicting information which cannot be efficiently handled by 

the fuzzy approach. Moreover, the neutrosophic–topsis approach can simulate natural human 

thinking. 

3. The fuzzy approach depends on linguistic variables, so is restricted in scale and cannot provide a 

logical confirmation degree. In contrast, our proposed approach allows decision makers to use 

suitable linguistic variables and confirmation degree. 

7. Applications 

The study proposes an intelligent hybrid model that merges AHP, neutrosophic theory, and topsis. 

The model handles MCDM problems and optimizes decision making to overcome the problems 

introduced by uncertainties and incomplete information. Although IOVT is being rapidly 

developed, its many advantages are partly offset by the increased risk of accidents caused by vehicle 

malfunctions that are undetected and not corrected by an appropriate action in a timely manner. The 

objective of this study was to ensure safety and security on the roads by discovering malfunctions in 

self-driving vehicles and quickly implementing the optimal action. Factories, companies, 

manufacturers and developers of self-driving vehicles will benefit from this model because it 

identifies and prioritizes the proper attributes and actions in the event of any problem or danger. 

8. Conclusions and Future Work 

The study proposes an intelligent hybrid model that merges AHP, neutrosophic, and TOPSIS 

techniques to solve MCDM problems and help decision makers overcome the problems of 

uncertainty and incomplete information. Many countries are witnessing significant developments in 

IOVT, which has some disadvantages and risks that arise from undetected vehicular malfunctions. 

These risks can be mitigated by taking the appropriate action in a timely manner. The objective of 

this study was to achieve safety and security on the roads by discovering malfunctions in 

self-driving vehicles in a timely manner and implementing the optimal action. 

Comparing our proposed approach with the fuzzy approach, we concluded that our 

neutrosophic topsis approach is more effective and simpler to implement than the fuzzy approach; 

moreover, it simulates natural human thinking. 

 

In the future, we will update this technique to predict more vehicular defects using diverse 

multicriteria decision-analysis methods. Further, we will improve this method by applying 

evolutionary algorithms to determine the most effective criteria. we will apply many methods such 

as VIKOR, ENTROPY, and DEMATEL method in the future to this problem.  
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Abstract: In this paper, neutrosophic statistical analysis of temperature data of five different cities 

of Pakistan is given. The neutrosophic mean and neutrosophic coefficient of variation are computed 

using the temperature data. From the analysis, it is concluded that on average the temperature of 

Lahore city is higher than the temperature of other cities. Also, the temperature of Karachi city is 

more consistent compared to other cities. In addition, the neutrosophic results are compared with 

results under classical statistics. The neutrosophic statistical analysis is found to be more 

informative than classical statistics results.  
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1. Introduction 

The weather temperature has a serious effect on the human body. An increase in weather 

temperature can be harmful to humans and other living things. It also affects the reduction of 

productivity of agriculture (Janjua et al., 2020). Recently, Pakistan has been experiencing an 

unexpected extreme change in climate which cause a lot of damage to health and livelihoods in the 

country (Eckstein, 2018). In recent years many heat strokes have been recorded which has caused 

many problems in the environment. The animals are dying because of water due to environmental 

change. The statistical methods have been widely applied for the prediction and estimation of 

temperature. Several researchers also studied different aspects of temperature. Iqbal et al. (2016) 

presented a study on the recent changes in maximum and minimum temperatures in Pakistan. This 

analysis deals with the trends in both variables at a monthly, seasonal, and annual resolution. 

Dawood (2017) presented a Spatio-statistical analysis of temperature fluctuations, this analysis deals 

with the variation in temperature such that positive tends with mean maximum temperature and 

negative tends with mean minimum temperature and slope magnitude. Amin et al. (2018) dealt with 

the analysis of historical temperature (1996–2015) and projected (2030–2060) climate in Pakistan, 

presented the possible variations for both minimum and maximum temperature. Khan et al. (2019) 

presented the analysis of both minimum and maximum temperature trends and the significant 

increase in a heat wave. This analysis shows that the intense heat wave occurred in southwest 

Pakistan. Abid et al. (2019) presented the Farmers perception of climate change, observed trends, and 

adaptation of agriculture in Pakistan. This analysis deals with the perception of increasing mean 

temperature with locally recorded data. Tariq at al. (2020) presented the analysis of seasonal land 

surface temperature and land use land cover change using optical multi-temporal satellite data of 

Faisalabad, Pakistan. Saleem et al. (2021) presented the annual and seasonal trends of extreme 

temperature and pacific variability during 1980-2019. Rafiq et al. (2022) presented the analysis of the 

variability of mean monthly, seasonal and annual temperature of Baluchistan province, Pakistan. 
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These analyses are done by using classical statistics. More information on analysis can be seen in 

Iqbal and Quamar (2011).  

     Classical statistics deals with determinate and exact data, crisp arguments charts, diagrams, 

probability distributions, algorithms, functions, parametric and non-parametric whereas; 

neutrosophic statistics is an advanced form of classical statistics that deal with indeterminacy, 

uncertainty, unclear and incomplete form of data, and also a generalization of interval statistics, see 

Smarandache (2014). According to Smarandache (2022) “Neutrosophic Statistics is an extension of 

the Interval Statistics, since it may deal with all types of indeterminacies (with respect to the data, 

inferential procedures, probability distributions, graphical representations, etc.), it allows the 

reduction of indeterminacy, and it uses the neutrosophic probability that is more general than 

imprecise and classical probabilities, and has more detailed corresponding probability density 

functions. While Interval Statistics only deals with indeterminacy that can be represented by 

intervals. Not all indeterminacies (uncertainties) may be represented by intervals. Also, in some 

applications, we should better use hesitant sets (that have less indeterminacy) instead of intervals. 

Neutrosophic statistics is a generalization of interval statistics, because of, among others, while 

interval statistics is based on interval analysis, neutrosophic statistics is based on set Analysis 

(meaning all kinds of sets, not only intervals)”To deal with neutrosophic data or data in intervals the 

various applications can be viewed in Broumi and Smarandache (2014) presented the neutrosophic 

set of new cosine similarities between two intervals. Aslam and Khan (2021) worked on the normality 

test of temperature in Jeddah city using Cochran’s test under indeterminacy. Afzal et al. (2021) 

presented the analysis of resistance depending on the temperature variance of conducting material 

under the neutrosophic statistical analysis. Further, Janjua et al. (2022) worked on the climate 

variability and wheat crop under a neutrosophic environment. Afzal et al. (2022) presented the work 

on the fabrication of temperature flexibility on robot skin.  

      In this paper, we will apply neutrosophic statistics to the temperature data collected from 

different cities in Pakistan. We will present the neutrosophic statistical analysis of the temperature 

data of Gujranwala, Lahore, Karachi, Islamabad and Sialkot enumerated by Pakistan Meteorological 

Department. We will compare the result of classical statistics with the result of neutrosophic statistics 

using the temperature data of different cities in Pakistan.  

 

2. Methodology   

 Suppose that  be a neutrosophic random variable which represents the 

temperature of different cities of Pakistan, where  is the lower temperature and  is the upper 

temperature and  be the interval of indeterminacy. By following, Chen et al. (2017), Chen 

et al. (2017) and Aslam (2019), the neutrosophic average of temperature data  can be 



Neutrosophic Sets and Systems, Vol. 53, 2023     159  

 

 

Ishmal Shahzadi, Neutrosophic Statistical Analysis of Temperature of Different Cities of Pakistan 

calculated as , where ,  and  

be a neutrosophic sample. The neutrosophic standard deviation can be computed as follows 

 (1) 

            

Note that   and . We will use the symbols  and  to present the lower and upper 

values, respectively throughout the paper. The neutrosophic sample variance can be computed by;  

                                                         

        (2) 

The neutrosophic form of  can be written as  

                   (3) 

The neutrosophic coefficient of variation ( ) can be applied to see the consistency of the 

temperature in the different cities of Pakistan. A city having a smaller value of   means more 

consistent than the other city in temperature. The  can be computed by;                                                           

                    (4) 

The neutrosophic form of   is   

                                                    (5) 

  

3. Data collection   

    We used temperature data of different big cities of Pakistan like Gujranwala, Lahore, Karachi, 

Islamabad and Sialkot. Our aim is to investigate which city on average has the higher temperature 

and which city temperature is more consistent. We used daily data of temperature for the month of 

July 2022 from https://www.gismeteo.com/. The data is reported in Table 1. Table 1 presents low and 

high values of the temperature data. The temperature data given in the interval cannot be analysed 

https://www.gismeteo.com/
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using classical statistics. The interval data can be analyzed using neutrosophic statistics. The 

neutrosophic statistical analysis for the temperature data is shown in Section 4.  

Table 1: The temperature data (in Co) of different cities in Pakistan 

Day Date Gujranwala Lahore Karachi Islamabad Sialkot 

Low High Low High Low High Low High Low High 

Monday 4 29 40 29 40 28 36 28 35 28 37 

Tuesday 5 34 43 36 43 29 34 31 39 31 41 

Wednesday 6 29 39 31 38 28 31 26 36 30 35 

Thursday 7 28 36 29 39 28 33 27 35 28 36 

Friday 8 31 41 31 41 29 32 29 37 31 41 

Saturday 9 30 35 29 34 29 33 28 34 29 35 

Sunday 10 28 37 29 39 30 35 26 33 29 37 

Monday 11 28 37 29 37 29 33 27 35 28 37 

Tuesday 12 30 36 31 37 29 31 28 34 27 34 

Wednesday 13 27 34 28 36 29 32 28 34 27 34 

Thursday 14 28 37 27 38 28 31 27 33 26 36 

Friday 15 27 36 26 35 29 32 27 35 27 36 

Saturday 16 29 38 29 37 29 33 27 35 29 37 

Sunday 17 29 38 30 40 29 36 27 32 28 38 

Monday 18 31 40 32 40 28 32 26 37 31 40 

Tuesday 19 33 41 33 41 28 31 30 37 31 40 

Wednesday 20 33 40 34 41 28 30 29 37 29 36 

Thursday 21 30 38 32 40 28 31 25 35 26 33 

Friday 22 29 33 31 35 28 32 27 34 26 29 

Saturday 23 28 34 30 36 28 32 26 34 25 30 

Sunday 24 28 36 30 38 28 32 26 35 25 32 

Monday 25 29 39 31 42 29 32 27 37 26 34 

Tuesday 26 32 41 35 43 29 31 28 39 28 36 

Wednesday 27 32 40 35 43 29 31 29 39 28 35 

Thursday 28 32 39 35 42 29 30 29 38 28 35 

Friday 29 29 36 31 39 28 30 28 34 26 31 

Saturday 30 29 37 32 40 28 30 26 35 25 32 

Sunday 31 29 37 32 40 28 30 26 34 25 32 

 

4.  Result and interpretation 

    We performed the neutrosophic statistical analysis using the temperature data. The neutrosophic 

mean of temperature is shown in Table 2. The neutrosophic standard deviation is shown in Table 3. 

The neutrosophic coefficient variation is shown in Table 4. From Table 2, the neutrosophic form of 

the average temperature of Gujranwala city is                                               
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. It means that the average temperature of Gujranwala city is between 

29.68 to 37.79 and the measure of indeterminacy is 0.20, a neutrosophic form of average temperature 

of Lahore city is . It means that the average temperature of Lahore city is 

between 30.97 to 39.08 and the measure of indeterminacy is 0.20, a neutrosophic form of the average 

temperature of Karachi city is . 

It means that the average temperature of Karachi city is between 28.52 to 32.00 and the measure of 

indeterminacy is 0.10, a neutrosophic form of the average temperature of Islamabad city is 

. It means that the average temperature of Islamabad city is between 27.41 

to 35.41 and the measure of indeterminacy is 0.26 and, neutrosophic form of average temperature of 

Sialkot city is . It means that the average temperature of between 27.75 

to 35.31 and the measure of indeterminacy is 0.20. On average, the temperature of Lahore city is 

higher than other cities as it has the maximum monthly average temperature as compared to 

Gujranwala city. 

Table 2. The neutrosophic mean of the temperature of different cities of Pakistan. 

 

 

Table 3. The neutrosophic standard deviation of the temperature of different cities of Pakistan. 

Cities 
  

Gujranwala 
  

Lahore 
  

Karachi 
  

Cities 
  

Gujranwala 
  

Lahore 
  

Karachi 
  

Islamabad 
  

Sialkot 
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Islamabad 
  

Sialkot 
  

 

 

Table 4. Neutrosophic coefficient of variation of temperature of different cities in Pakistan. 

Cities 
  

Gujranwala [6.36,6.45] 
6.36+6.45 ;   

Lahore [8.03,6.49] 
8.03-6.49  

Karachi [2.02,5.24] 
2.02+5.24  

Islamabad [5.10,5.35] 
5.10+5.35  

Sialkot [6.97,8.79] 
6.97+8.79  

 

 

From Table 4, the coefficient of variation of temperature of Gujranwala city is between 6.36 to 6.45, 

coefficient of variation of temperature of Lahore city is between 8.03 to 6.49, coefficient of variation 

of temperature of Karachi city is between 2.02 to 5.24, coefficient of variation of temperature of 

Islamabad city is between 5.10 to 5.35, coefficient of variation of temperature of Sialkot city is between 

6.97 to 8.79. The measures of indeterminacy associated with the coefficient of variation are also shown 

in Table 4. Based on the analysis, it can be concluded that the values of the coefficient of variation of 

temperature in Karachi is minimum. Therefore, the temperature of Karachi city is more consistent 

than the other cities in Pakistan.     

5. Comparative study  

The neutrosophic statistical analysis is the generalization of the classical statistical analysis. The 

neutrosophic statistical analysis reduces to classical statistical analysis when no indeterminacy is 

found in the data or data is not recorded in the intervals. Note here that temperature data is always 

recorded in intervals and therefore adequately analysed by the neutrosophic statistics. We now 

compare the results obtained using neutrosophic statistics with the results of classical statistics. The 

neutrosophic form of the temperature of Karachi city is CVN =2.02+5.24 . The first 

value (determinate)  of this neutrosophic shows the analysis from the classical statistics while 

the second part 5.24  of the neutrosophic form shows the indeterminate part. From the analysis, it 

can be seen that the values CVN ranges from 2.02% to 5.24% with the measure of indeterminacy or 

uncertainty at 0.6155. Note that when =0, the neutrosophic statistical results reduce to the results 

under classical statistics. Based on the comparative study, it can be concluded that neutrosophic 

statistical results are more adequate, flexible and more informative than the classical statistics  
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5. Concluding remarks 

      In this paper, we applied neutrosophic statistical analysis to temperature data of different cities 

of Pakistan. We observed that neutrosophic analysis of temperature data provided the estimated 

results of temperature in intervals rather the result of temperature in exact values. Therefore, the 

neutrosophic result is more flexible than classical statistics result. The government of Pakistan should 

take serious steps to reduce global warming by planting more trees, especially in Lahore city. The 

neutrosophic statistical analysis can be applied to analyse the interval data more adequately than 

classical statistics. 
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Abstract: Vagueness and uncertainty are two distinct models are represented by Fuzzy sets and Soft sets. The 

combination of Soft sets and simple graphs produces soft graphs which is also an interesting concept to deal 

with uncertainty problems. Any communication network can be modeled as a graph whose nodes are the 

processors (stations) and a communication link as an edge between corresponding nodes. The stability of a 

communication network is a very important factor for the network designers to reconstruct the it after the 

failure of certain stations or communication links. Two essential quantities in an analysis of the vulnerability of a 

communication network are (1) the number of nodes that are not functioning and (2) the size of a maximum order of a 

remaining sub network within which mutual communications can still occur. C. A. Barefoot, et. al. [13] introduced the 

concept of integrity.  The extension of such a vulnerability parameter is studied in fuzzy graphs. Since 

neutrosophic soft graphs  are the most generalized network structure where we can define and study the 

importance of the vulnerability parameters is made in this manuscript. Also, we introduce the domination 

integrity of neutrosophic soft graphs and explain with suitable examples. Few bounds are obtained.  

 

Keywords:   Soft graph, Neutrosophic soft graphs, Integrity, Domination integrity. 

 

1. Introduction 

The problems deal with vagueness and uncertainty can be modelled by using two different 

soft tools namely fuzzy set defined by Zadeh [48] in 1965 and soft set defined by Molodtsov [31] in 

1999.  The intuitionistic fuzzy set is the generalization of fuzzy set was introduced by Atanassov 

[2-4]. It depends on a membership function and a non membership function. Any real time 

problems which consist of involving imprecise, indeterminacy and inconsistent data can be 

represented as the neutrosophic set, introduced by Smarandache [38]. This is the generalization of 

classical sets and fuzzy sets.  The degree of acceptance deals in fuzzy sets, membership (truth) 

function and a non-membership (falsity) function deals in intuitionistic fuzzy set, neutrosophic set 

deals truth-membership, indeterminacy-membership, and falsity-membership. The rough soft sets, 

soft rough sets, and soft-rough fuzzy sets are obtained from soft sets with rough sets and fuzzy 

sets. Feng et al. [18 -20] and Ali [7] introduced these soft tools in the consecutive years 2010 and 

2011. In 2014, Rajesh Thumbakara et. al.[33] introduced soft graphs. They defined soft graph 

homomorphism, soft tree and soft complete graph and discussed their properties also.  Ali et al. [7] 

discussed the fuzzy sets and fuzzy soft sets induced by soft sets.  

 In 1736, graph theory was defined by Euler. Fuzzy graph was introduced by Azriel 

Rosenfied in 1975[29 & 35]. Muhammad Akram et.al. [6] defined fuzzy soft graphs in 2015. Also, 
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they have investigated the properties of strong, complete and regular fuzzy soft graphs. Guven et. 

al. [25] introduced an idea about neutrosophic soft graphs and its application.  Shannon and 

Atanassov [37] defined the intuitionistic fuzzy graph (IFG). A.M.Shyla [46] introduced the concept 

of Intuitionistic Fuzzy Soft graph in 2016.  Ghorai. G. et. al.[21 ] modelled the neutrosophic graphs 

in 2017. Akram [6] established the certain notions including neutrosophic soft graphs, strong 

neutrosophic soft graphs, and complete neutrosophic soft graphs.  

Graphs are the most important and essential tool in the modern communication world which 

has communication nodes and links. The stability of such communication networks can be 

measured by vulnerability parameters like connectivity, toughness [11], tenacity [16], rupture 

degree, scattering number, integrity [13-15], domination integrity [39-42], etc. Two essential 

quantities in an analysis of the vulnerability of a communication network are (1) the number of 

nodes that are not functioning and (2) the size of a maximum order of a remaining sub network 

within which mutual communications can still occur. C. A. Barefoot, et. al. [13-14] introduced the 

concept of integrity. It is a useful measure of vulnerability and it is defined as follows. 𝐼(𝐺)  =

 𝑚𝑖𝑛{|𝑆|  +  𝑚(𝐺 −  𝑆) ∶  𝑆 ⊂  𝑉 (𝐺)}, where 𝑚(𝐺 − 𝑆) denotes the order of the largest component in 

G − S.   

Integrity measures not only the difficulty to break down the network but also the damage 

caused. A small group of people have effective communication links with other members of the 

organization and they take important decisions in an administrative set up. Domination in graphs 

provides a model for such a concept. A minimum dominating set of nodes provides a link with the 

rest of the nodes in a network, If the removal of such a set, results huge impact in the network. That 

is, the decision-making process is paralyzed but also the communication between the remaining 

members is minimized. The damage will be more when the dominating sets of nodes are under 

attack.  

This motivated to study the concept of domination integrity when the sets of nodes disturbed 

are dominating sets. Sundareswaran et. al. introduced the concept of Domination Integrity of a 

graph and studied in [39] as another measure of vulnerability of a graph which is defined as follows 

𝐷𝐼(𝐺)  =  𝑚𝑖𝑛{|𝑆|  +  𝑚(𝐺 −  𝑆)}, where S is a dominating set of 𝐺 and 𝑚(𝐺 −  𝑆) denotes the order 

of the largest component in 𝐺 −  𝑆 and is denoted by 𝐷𝐼(𝐺). M. Saravanan et. al.   extended the idea 

of vulnerability parameters in fuzzy graphs [42 - 44]. They explained a real time application for the 

domination integrity [45].  There are different versions of domination integrity were introduced in 

the literature such as Domination Weak Integrity in graphs [47], Geodomination integrity [12], 

Connected domination integrity in graphs [27] and Total Edge Domination Integrity in graphs [8].  

This motivated us to introduce the concept of integrity and domination integrity in 

neutrosophic fuzzy soft graphs. Also, we prove certain properties of these new parameter concepts 

are described with suitable examples.  

In the second section, we provide all the basic definitions and results related to our article. 

The definitions of the Integrity and Domination integrity in Fuzzy graphs were stated in the third 

section and in the fourth section, we introduce the concept of Integrity and Domination integrity in 

Neutrosophic graphs. At the end of the article, we give the conclusion of our work and discuss the 

future work.  
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2. Preliminaries 

In this section, we provide all the basic definitions and results in the literature. 

 

Definition 2.1 [21] 

A neutrosophic graph is of the form 𝐺∗ = (𝑉, 𝜎, 𝜇) where 𝜎 = (𝑇1, 𝐼1, 𝐹1) & 𝜇 = (𝑇2, 𝐼2, 𝐹2) 

(i) 𝑉 = {𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛} such that 𝑇1 ∶ 𝑉 ⟶ [0,1], 𝐼1: 𝑉 ⟶ [0,1] and 𝐹1∶𝑉 → [0,1] denote the 

degree of truth-membership function , indeterminacy –membership function and 

falsity-membership function of the vertex 𝑣1 ∈ 𝑉  respectively and 0 ≤ 𝑇𝑖(𝑣) + 𝐼𝑖(𝑣) +

𝐹1(𝑣) ≤ 3, ∀ 𝑣𝑖 ∈ 𝑉 ( 𝑖 = 1,2 , 3, … 𝑛). 

(ii) 𝑇3 ∶ 𝑉 × 𝑉 ⟶ [0,1], 𝐼2: 𝑉 × 𝑉 ⟶ [0,1] and 𝐹2∶𝑉 × 𝑉 → [0,1] where 𝑇2(𝑣𝑖 , 𝑣𝑗), 𝐼2(𝑣𝑖 , 𝑣𝑗) 

and 𝐹2(𝑣𝑖 , 𝑣𝑗) denote the degree of truth-membership function , indeterminacy –

membership function and falsity-membership function of the edge (𝑣𝑖 , 𝑣𝑗)  respectively 

such that for every edge (𝑣𝑖 , 𝑣𝑗), 

𝑇2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝑇1(𝑣𝑖), 𝑇1(𝑣𝑗)} ,  

 𝐼2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝐼1(𝑣𝑖), 𝐼1(𝑣𝑗)} , 

𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ max{𝐹1(𝑣𝑖), 𝐹1(𝑣𝑗)} ,  

 and 𝑇2(𝑣𝑖 , 𝑣𝑗) +  𝐼2(𝑣𝑖 , 𝑣𝑗) +   𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ 3 

 

Definition 2.2 [33]  

Let 𝐺 =  (𝑉, 𝐸) be a simple graph, 𝐴 any nonempty set. Let 𝑅 an arbitrary relation between elements 

of 𝐴 and elements of 𝑉. That is ⊆  𝐴 ×  𝑉 . A set valued function 𝐹 ∶  𝐴 ⇢ 𝑃(𝑉 ) can be defined as 

𝐹(𝑥) =  𝑦 ∈ 𝑉 | 𝑥𝑅𝑦}. The pair (𝐹, 𝐴) is a soft set over 𝑉. Let (𝐹, 𝐴) be a soft set over 𝑉. Then (𝐹, 𝐴) is 

said to be a soft graph of G if the subgraph induced by F(𝑥) in 𝐺, 𝐹(𝑥) is a connected subgraph of 𝐺 

for all 𝑥 ∈  𝐴. The set of all soft graph of G is denoted by 𝑆𝐺(𝐺). 

 

Definition 2.3 [6]  

A neutrosophic soft graph 𝐺 =  (𝐺∗ , 𝐹, 𝐾, 𝐴) is an ordered four tuple if it satisfies the following 

conditions: 

i. 𝐺∗  =  (𝑉, 𝐸) is a simple graph, 

ii. 𝐴 is a nonempty set of parameters, 

iii. (𝐹, 𝐴) is a neutrosophic soft set over V, 

iv. (K, A) is a neutrosophic soft set over 𝐸, 

v. (𝐹(𝑒), 𝐾(𝑒)) is a neutrosophic graph of 𝐺  ∗for all 𝑒 ∈ 𝐴. That is 

    𝑇𝐾(𝑒)(𝑥𝑦) ≤ min{𝑇𝐹(𝑒)(𝑥), 𝑇𝐹(𝑒)(𝑦)} ;  

𝐼𝐾(𝑒)(𝑥𝑦) ≤ min{𝐼𝐹(𝑒)(𝑥), 𝐼𝐹(𝑒)(𝑦)} ; 

  𝐹𝐾(𝑒)(𝑥𝑦) ≤ max{𝐹𝐹(𝑒)(𝑥), 𝐹𝐹(𝑒)(𝑦)} ; 

such that  0 ≤ 𝑇𝐾(𝑒)(𝑥𝑦) + 𝐼𝐾(𝑒)(𝑥𝑦) + 𝐹𝐾(𝑒)(𝑥𝑦) ≤ 3, ∀𝑒 ∈ 𝐴, 𝑥, 𝑦 ∈ 𝑉. 

 

S. Satham Hussain et. al.  defined in [36] degree and total degree of a vertex 𝑣 in a neutrosophic soft graph 

𝐺, order and size of a neutrosophic soft graph G. Also, they introduced vertex, edge and cardinality of a 

neutrosophic graph 𝐺.  
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Definition 2.4 [36]  

Let 𝐺 = (𝐺∗, 𝐽, 𝐾, 𝐴) be a neutrosophic soft graph. Then the degree of a vertex 𝑢 ∈ 𝐺 is a sum of 

degree truth membership, sum of indeterminacy membership and sum of falsity membership of all 

those edges which are incident on vertex u denoted by 𝑑(𝑢) = (𝑑𝑇𝐽(𝑒)(𝑢), 𝑑𝐼𝐽(𝑒)(𝑢), 𝑑𝐹𝐽(𝑒) (𝑢)) where  

𝑑𝑇𝐽(𝑒)(𝑢) = 𝛴𝑒∈𝐴(𝛴𝑢≠𝑣∈𝑉 𝑇𝐾(𝑒)(𝑢, 𝑣)) called the degree of truth membership vertex  

𝑑𝐼𝐽(𝑒)(𝑢) = 𝛴𝑒∈𝐴(𝛴𝑢≠𝑣∈𝑉𝐼𝐾(𝑒)(𝑢, 𝑣)) called the degree of indeterminacy membership vertex  

𝑑𝐹𝐽(𝑒)(𝑢) = 𝛴𝑒∈𝐴(𝛴𝑢≠𝑣∈𝑉𝐹𝐾(𝑒)(𝑢, 𝑣)) called the degree of falsity membership vertex for all 𝑒 ∈ 𝐴, 𝑢, 𝑣 ∈ 𝑉. 

 

Definition 2.5 [36]  

Let 𝐺 = (𝐺∗, 𝐽, 𝐾, 𝐴) be a neutrosophic soft graph. Then the total degree of a vertex 𝑢 ∈ 𝐺 is a sum of 

degree truth membership, sum of indeterminacy membership and sum of falsity membership of all 

those edges which are incident on vertex u denoted by 𝑡𝑑(𝑢) = (𝑡𝑑𝑇𝐽(𝑒)(𝑢), 𝑡𝑑𝐼𝐽(𝑒)(𝑢), 𝑡𝑑𝐹𝐽(𝑒) (𝑢)) where  

𝑡𝑑𝑇𝐽(𝑒)(𝑢) = 𝛴𝑒∈𝐴(𝛴𝑢≠𝑣∈𝑉 𝑇𝐾(𝑒)(𝑢, 𝑣) + 𝑇𝐽(𝑒)(𝑢, 𝑣) ) called the degree of truth membership vertex  

𝑡𝑑𝐼𝐽(𝑒)(𝑢) = 𝛴𝑒∈𝐴(𝛴𝑢≠𝑣∈𝑉𝐼𝐾(𝑒)(𝑢, 𝑣) +  𝐼𝐽(𝑒)(𝑢, 𝑣))) called the degree of indeterminacy membership vertex  

𝑡𝑑𝐹𝐽(𝑒)(𝑢) = 𝛴𝑒∈𝐴(𝛴𝑢≠𝑣∈𝑉𝐹𝐾(𝑒)(𝑢, 𝑣) +  𝐹𝐽(𝑒)(𝑢, 𝑣)) called the degree of falsity membership vertex for all 𝑒 ∈

𝐴, 𝑢, 𝑣 ∈ 𝑉. 

 

Definition 2.6 [36] 

The order of a neutrosophic soft graph 𝐺 is   

𝑂𝑟𝑑(𝐺) = 𝛴𝑒𝑖∈𝐴(𝛴𝑥∈𝑉𝑇𝐽(𝑒𝑖)(𝑒𝑖)(𝑥), 𝛴𝑥∈𝑉𝐼𝐽(𝑒𝑖)(𝑒𝑖)(𝑥), 𝛴𝑥∈𝑉𝐼𝐽(𝑒𝑖)(𝑒𝑖)(𝑥). 

 

Definition 2.7 [36] 

The size of a neutrosophic soft graph 𝐺 is  

𝑆(𝐺) = 𝛴𝑒𝑖∈𝐴(𝛴𝑥𝑦∈𝑉𝑇𝐾𝑒𝑖
 (𝑒𝑖)(𝑥𝑦), 𝑥𝑦 ∈ 𝑉, 𝛴𝑥𝑦∈𝑉𝐼𝐾𝑒𝑖

 (𝑒𝑖)(𝑥𝑦), 𝛴𝑥𝑦∈𝑉𝐹𝑒𝑖
(𝑒𝑖) (𝑥𝑦) 

 

Definition 2.8 [36] 

Let 𝐺 = (𝐺∗, 𝐽, 𝐾, 𝐴) be an neutrosophic soft graph. Then cardinality of 𝐺 is defined to be  

|𝐺| = 𝛴𝑒∈𝐴 |𝛴𝑣𝑖∈𝑉

 1 + 𝑇𝐽(𝑒)(𝑥) + 𝐼𝐽(𝑒)(𝑥) − 𝐹𝐽(𝑒)(𝑥)

2
| + | 𝛴𝑣𝑖,𝑣𝑗∈𝑉    

1 + 𝑇𝐽(𝑒)(𝑥𝑦) + 𝐼𝐽(𝑒)(𝑥𝑦) − 𝐹𝐽(𝑒)(𝑥𝑦)

2
| 

 

Definition 2.9 [36] 

Let 𝐺 = (𝐺, 𝐽, 𝐾, 𝐴) be an neutrosophic soft graph, then vertex cardinality of 𝑮 is defined to be  

|𝑉| = 𝛴𝑒∈𝐴|𝛴𝑣𝑖∈𝑉

1 + 𝑇𝐽(𝑒)(𝑥) + 𝐼𝐽(𝑒)(𝑥) − 𝐹𝐽(𝑒)(𝑥)

2
 | 

Definition 2.10 [36] 

Let 𝐺 = (𝐺 ∗, 𝐽, 𝐾, 𝐴) be an neutrosophic soft graph, then edge cardinality of G is defined to be  

|𝐸| = 𝛴𝑒∈𝐴|𝛴𝑥𝑦∈𝐸

1 + 𝑇𝐾(𝑒)(𝑥𝑦) + 𝐼𝐾(𝑒)(𝑥𝑦) − 𝐹𝐾(𝑒)(𝑥𝑦)

2
| 

Definition 2.11 [36] 

 An arc (𝑢, 𝑣) is said to be strong arc, if 𝑇𝐾(𝑒)(𝑢, 𝑣) ≥ 𝑇𝐾(𝑒)
∞ (𝑢, 𝑣) and 𝐼𝐾(𝑒)(𝑢, 𝑣) ≥ 𝐼𝐾(𝑒)

∞ (𝑢, 𝑣) and 

𝐹𝐾(𝑒)(𝑢, 𝑣) ≥ 𝐹𝐾(𝑒)
∞ (𝑢, 𝑣).  

Clearly, if u,v are connected by means of path of length 𝑘 then 𝑇𝐾(𝑒)
𝑘

(𝑣𝑖, 𝑣𝑗) is defined as  

𝑠𝑢𝑝{𝑇𝐾(𝑒)(𝑢, 𝑣1) ∧ 𝑇𝐾(𝑒)(𝑣1, 𝑣2) ∧ 𝑇𝐾(𝑒)(𝑣1, 𝑣3) ∧. . .∧ 𝑇𝐾(𝑒)(𝑣𝑘−1, 𝑣𝑘)/𝑢, 𝑣, 𝑣1, . . . 𝑣𝑘−1, 𝑣 ∈ 𝑉}, 
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𝐼𝑘(𝑒)
𝑘

(𝑣𝑖, 𝑣𝑗) is defined as   

𝑖𝑛𝑓{𝐼𝐾(𝑒)(𝑢, 𝑣1) ∨ 𝐼𝐾(𝑒)(𝑣1, 𝑣2) ∨ 𝐼𝐾(𝑒)(𝑣1, 𝑣3) ∨. . .∨ 𝐼𝐾(𝑒)(𝑣𝑘−1, 𝑣𝑘)/𝑢, 𝑣, 𝑣1, . . . 𝑣𝑘−1, 𝑣 ∈ 𝑉} and  

𝐹𝐾(𝑒)
𝑘

(𝑣𝑖, 𝑣𝑗) is defined as  

𝑖𝑛𝑓{𝐹𝐾(𝑒)(𝑢, 𝑣1) ∨ 𝐹𝐾(𝑒)(𝑣1, 𝑣2) ∨ 𝐹𝐾(𝑒)(𝑣1, 𝑣3) ∨. . .∨ 𝐹𝐾(𝑒)(𝑣𝑘−1, 𝑣𝑘)/𝑢, 𝑣, 𝑣1, . . . 𝑣𝑘−1, 𝑣 ∈ 𝑉}, 𝑒 ∈ 𝐴. 

 

Definition 2.12 [36]  

Let 𝐺 = (𝐺 ∗, 𝐽, 𝐾, 𝐴)be a neutrosophic soft graph on 𝑉. Let 𝑢, 𝑣 ∈ 𝑉, we say that 𝑢 dominates 𝑣 in 𝐺 if 

there exists a strong arc between them. 

 

Definition 2.13 [36]  

Given 𝑆 ⊂ 𝑉 is called a dominating set in 𝐺 if for every vertex 𝑣 ∈ 𝑉 − 𝑆 there exists a vertex 𝑢 ∈

𝑆 such that u dominates 𝑣. for all 𝑒 ∈ 𝐴, 𝑢, 𝑣 ∈ 𝑉.  

 

 

Definition 2.14 [36] 

A dominating set 𝑆 of a neutrosophic soft graph 𝐺 = (𝐺 ∗, 𝐽, 𝐾, 𝐴) is said to be minimal dominating 

set if no proper subset of 𝑆 is a dominating set, for all 𝑒 ∈ 𝐴, 𝑢, 𝑣 ∈ 𝑉.  

 

Definition 2.15 [R.Dhavaseelan et. al.17] 

A neutrosophic graph G = (G ∗, J, K, A)  is called Strong Neutrosophic graph if 

    𝑇𝐾(𝑒)(𝑥𝑦) = min{𝑇𝐹(𝑒)(𝑥), 𝑇𝐹(𝑒)(𝑦)} ;  

𝐼𝐾(𝑒)(𝑥𝑦) = min{𝐼𝐹(𝑒)(𝑥), 𝐼𝐹(𝑒)(𝑦)} ; 

  𝐹𝐾(𝑒)(𝑥𝑦) = max{𝐹𝐹(𝑒)(𝑥), 𝐹𝐹(𝑒)(𝑦)} ∀𝑒 ∈ 𝐴, 𝑥, 𝑦 ∈ 𝑉 

Definition 2.16 [36] 

A neutrosophic soft graph 𝐺 is a strong neutrosophic soft graph if H(e) is a strong neutrosophic 

graph for all e ∈ A. 

 

Definition 2.17 [36] 

Let 𝐺 = (𝐺 ∗, 𝐽, 𝐾, 𝐴) be a strong neutrosophic soft graph and 𝑣 ∈ 𝑉.  Then the strong degree and the 

strong neighborhood degree of v are defined, respectively  

𝑑𝑠(𝑣) = 𝛴𝑒∈𝐴(𝛴𝑢∈𝑁𝑠
(𝑣)𝑇𝐾(𝑒)(𝑢𝑣), 𝛴𝑢∈𝑁𝑠

(𝑣)𝐼𝐾(𝑒)(𝑢𝑣), 𝛴𝑢∈𝑁𝑠
(𝑣)𝐹𝐾(𝑒)(𝑢𝑣))  

𝑑𝑠𝑁(𝑣) = 𝛴𝑒∈𝐴(𝛴𝑢∈𝑁𝑠
(𝑣)𝑇𝐽(𝑒)(𝑢𝑣), 𝛴𝑢∈𝑁𝑠

(𝑣)𝐼𝐽(𝑒)(𝑢𝑣), 𝛴𝑢∈𝑁𝑠
(𝑣)𝐹𝐽(𝑒)(𝑢𝑣)) 

The strong degree cardinality of 𝑣 are defined by 

|𝑑𝑠(𝑣)| =  ∑( ∑
1 + 𝑇𝐾(𝑒)(𝑢, 𝑣) + 𝐼𝐾(𝑒)(𝑢, 𝑣) − 𝐹𝐾(𝑒)(𝑢, 𝑣)

2
𝑢∈𝑁𝑠(𝑣)𝑒∈𝐴 

) 

The minimum and maximum strong degree of G are defined, respectively as 

𝛿𝑠(𝐺) = ∧ |𝑑𝑠(𝑣)|, ∀𝑣 ∈ 𝑉 and Δ𝑠(𝑣) =∨ |𝑑𝑠(𝑣)|, ∀𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐴 

 

Definition 2.18 [36]  

The strong degree cardinality and the strong neighborhood degree cardinality of 𝑣 are defined by  

|𝑑𝑠(𝑣)| = 𝛴𝑒∈𝐴(𝛴𝑢∈𝑁𝑠
(𝑣)

1+𝑇𝐾(𝑒)(𝑢,𝑣)+𝐼𝐾(𝑒)(𝑢,𝑣)−𝐹𝐾(𝑒)(𝑢,𝑣)

2
)  
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|𝑑𝑠𝑁(𝑣)| = 𝛴𝑒∈𝐴(𝛴𝑢∈𝑁𝑠
(𝑣)

1+𝑇𝐽(𝑒)(𝑢,𝑣)+𝐼𝐽(𝑒)(𝑢,𝑣)−𝐹𝐽(𝑒)(𝑢,𝑣)

2
) 

 

Definition 2.19 [36]  

Two vertices in a neutrosophic soft graph 𝐺 = (𝐺 ∗, 𝐽, 𝐾, 𝐴)are said to be an independent if there is 

no strong arc between them.  

 

Definition 2.20 [36] 

Given 𝑆 ⊂ 𝑉 is said to be independent set of 𝐺 if 𝑇𝐾(𝑒)(𝑢, 𝑣) < 𝑇𝐾(𝑒)
∞ (𝑢, 𝑣) and 𝐼𝐾(𝑒)(𝑢, 𝑣) < 𝐼𝐾(𝑒)

∞ (𝑢, 𝑣) 

and 𝐹𝐾(𝑒)(𝑢, 𝑣) < 𝐹𝐾(𝑒)
∞ (𝑢, 𝑣) ∀𝑒 ∈ 𝐴, 𝑢, 𝑣 ∈ 𝑆. 

 

Definition 2.21 [36] 

An independent set S of 𝐺 in a neutrosophic soft graph is said to be maximal independent, if for 

every vertex 𝑣 ∈ 𝑉 − 𝑆, the set 𝑆 ∪ {𝑣} is not independent.  

 

Definition 2.22 [36] 

The minimum cardinality among all maximal independent set is called lower independence 

number of 𝐺, and it is denoted by 𝛴𝑒∈𝐴(𝑖𝑁𝑆(𝐺)). The maximum cardinality among all maximal 

independent set is called lower independence number of G, and it is denoted by 𝛴𝑒∈𝐴(𝐼𝑁𝑆(𝐺)). 

 

Muhammad Akram and Sundas Shahzadi gave the following definitions [6]  

 

Definition 2.23 [6] 

A neutrosophic soft graph 𝐺′ = = (𝐺 ∗, 𝐽′, 𝐾′, 𝐴′)  is called a neutrosophic soft subgraph of                  

G = (𝐺 ∗, 𝐽, 𝐾, 𝐴) if i. 𝐴′ ⊆  𝐴   

𝑖𝑖. 𝐾𝑒
′   ⊆  𝐾𝑒 , that is 𝑇𝐾𝑒

′(𝑥)  ≤  𝑇𝐾𝑒
(𝑥), , 𝐼𝐾𝑒

′ (𝑥)  ≤  𝐼𝐾𝑒
(𝑥), 𝐹𝐾𝑒

′(𝑥)  ≥  𝐹𝐾𝑒
(𝑥) 

 𝑖𝑖𝑖. 𝐽𝑒
′   ⊆  𝐽𝑒, that is 𝑇𝐽𝑒

′ (𝑥)  ≤  𝑇𝐽𝑒
(𝑥), , 𝐼𝐽𝑒

′ (𝑥)  ≤  𝐼𝐽𝑒
(𝑥), 𝐹𝐽𝑒

′ (𝑥)  ≥  𝐹𝐽𝑒
(𝑥)  for all 𝑒 ∈  𝐴. 

 

Definition 2.24 [6] 

The neutrosophic soft graph 𝐺1  = (𝐺 ∗ , 𝐽1, 𝐾1, 𝐵) is called spanning neutrosophic soft subgraph of 

𝐺 =  (𝐺 ∗, 𝐽, 𝐾, 𝐴) if  

(i) 𝐵 ⊆  𝐴,  

(ii) 𝑇𝐹1(𝑒)(𝑣)  =  𝑇𝐽(𝑒)(𝑣), 𝐼𝐽1(𝑒)(𝑣)  =  𝐼𝐽(𝑒)(𝑣), 𝐹𝐽1(𝑒)(𝑣)  =  𝐹𝐽(𝑒)(𝑣) for all 𝑒 ∈  𝐴, 𝑣 ∈  𝑉 

Definition 2.25 [6] 

The complement of a neutrosophic soft graph 𝐺 =  (𝐽, 𝐾, 𝐴) denoted by 𝐺𝑐  = (𝐽𝑐 , 𝐾𝑐, 𝐴𝑐) is defined 

as follows:  

(i) 𝐴𝑐  =  𝐴, 

(𝑖𝑖)𝐽𝑐(𝑒)  =  𝐽(𝑒), 

(𝑖𝑖𝑖)𝑇𝐾𝑐 (𝑒)(𝑢, 𝑣)  =  𝑇𝐽(𝑒)(𝑢)  ∧ 𝑇𝐽(𝑒)(𝑣)  − 𝑇𝐾(𝑒)(𝑢, 𝑣), 

(𝑖𝑣)𝐼𝐾𝑐(𝑒)(𝑢, 𝑣)  =  𝐼𝐽(𝑒)(𝑢)  ∧  𝐼𝐽(𝑒)(𝑣)  −  𝐼𝐾(𝑒)(𝑢, 𝑣), 

(𝑣)𝐹𝐾𝑐(𝑒)(𝑢, 𝑣)  =  𝐹𝐽(𝑒)(𝑢)  ∨  𝐹𝐽(𝑒)(𝑣)  − 𝐹𝐾(𝑒)(𝑢, 𝑣), for all 𝑢, 𝑣 ∈  𝑉, 𝑒 ∈  𝐴. 
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Definition 2.26 [6] 

A neutrosophic soft graph 𝐺 is self-complementary if 𝐺 ≈  𝐺𝑐 . 

 

Definition 2.27 [6] 

A neutrosophic soft graph 𝐺 is a complete neutrosophic soft graph if 𝐻(𝑒) is a complete 

neutrosophic graph of 𝐺 for all 𝑒 ∈  𝐴,  

𝑇𝐾(𝑒)(𝑢𝑣)  =  𝑚𝑖𝑛 {𝑇𝐹(𝑒)(𝑢), 𝑇𝐹(𝑒)(𝑣)} 

𝐼𝐾(𝑒)(𝑢𝑣) = min{𝐼𝐹(𝑒)(𝑢), 𝐼𝐹(𝑒)(𝑣)} 𝑎𝑛𝑑  

𝐹𝐾(𝑒)(𝑢𝑣)  =  𝑚𝑎𝑥 {𝐹𝐹(𝑒)(𝑢), 𝐹𝐹(𝑒)(𝑣)}  

∀𝑢, 𝑣 ∈  𝑉, 𝑒 ∈  𝐴. 

 

3. Integrity and Domination integrity in Fuzzy graphs 

Saravanan et. al.[33 - 36] introduced the idea of the vulnerability parameter namely integrity and 

domination integrity in fuzzy graphs.  

 

Definition 3. 1 [41]   

Let G = ( σ, μ) be a fuzzy graph. The integrity of G, denoted by Ǐ(G), is defined as Ǐ(G) =

min{ |S| + m(G − S)} where |S| =  ∑ σ(u)u∈S  denotes the cardinality of S, and m(G − S)  =

∑ σ(v)u∈V(G−S)   is order of the biggest component of G −  S [41 - 43]. 

 

Definition 3.2 [35]  

Let G = ( σ, μ) be a fuzzy graph. The domination integrity of G, denoted by DĬ(G), is defined as          

DĬ(G), = min{ |S| + m(G − S)}, S is the dominating set of G and  |S| =  ∑ σ(u)u∈S  denotes the 

cardinality of  S, and m(G − S)  = ∑ σ(v)u∈V(G−S)   is order of the biggest component of G −  S [33 - 36].  

 

4. Integrity and Domination integrity in Neutrosophic soft graphs 

In the crisp graph, membership values of vertex and edge are the same. In fuzzy, 

intuitionistic fuzzy graphs and neutrosophic graph, the membership values of vertices and edges 

have their own importance depending on the situation like uncertainty, indeterminacy, and falsity. 

This motivates to define these vulnerability parameters in neutrosophic fuzzy graphs. Also, it gives 

more accurate values in the real time problems especially in decision making process. 

 

Definition 4.1  

Let G = (G∗, J, K, A) be a neutrosophic soft graph. The integrity of G, denoted by I⃛(G) is 

defined as I⃛(G) = min{ |S| + m(G − S)} where |S| =  Σe∈A |Σvi∈S

1+TJ(e)(x)+IJ(e)(x)−FJ(e)(x)

2
 | denotes the 

cardinality of  S, and m(G − S)  = Σe∈A|Σvi∈V(G−S)

1+TJ(e)(x)+IJ(e)(x)−FJ(e)(x)

2
 |  is order of the biggest 

component of G −  S . 

 

Definition 4.2  

Let G = (G∗, J, K, A) be a neutrosophic soft graph. The domination integrity of G, denoted by DI⃛(G), is 

defined as DI⃛(G) = min{ |S| + m(G − S)} and 𝑆 is a dominating set of 𝐺 , where |S| =



Neutrosophic Sets and Systems, Vol. 53, 2023     172  

 

 

R. V. Jaikumar, R. Sundareswaran, Said Broumi, Integrity and Domination Integrity in Neutrosophic Soft Graphs 

 Σe∈A|Σvi∈S

1+TJ(e)(x)+IJ(e)(x)−FJ(e)(x)

2
 | denotes the cardinality of S, and m(G − S)  =

Σe∈A|Σvi∈V(G−S)

1+TJ(e)(x)+IJ(e)(x)−FJ(e)(x)

2
 |  is order of the biggest component of G −  S . 

 

Definition 4.3 

An I⃛  -set of G = (G∗, J, K, A)  is any (strict) subset S of V(G) for which I⃛(G) = min{ |S| + m(G − S)}. 

 

Definition 4.4 

An DI⃛(G)-set of G = (G∗, J, K, A)  is any (strict) subset S of V(G) for which DI⃛(G) = min{ |S| + m(G −

S)}. 

 

Example : 4.5 

 

 

 

 

 

 

 

 

          𝐻(𝑒1)   Figure 1     𝐻(𝑒2) 

 

𝑆 |𝑆| 𝑚(𝐺 − 𝑆) I⃛(G) 

𝑆1 = {𝑢1, 𝑢3} 1.4 . 7 for {𝑢2} 

. 75 for {𝑢4} 

2.1 

2.15 

𝑆2 = {𝑢2, 𝑢4} 
1.45 . 7 for {𝑢1} 

. 75 for {𝑢3} 

2.1 

2.15 

𝑆3 = {𝑢1, 𝑢2} 
1.4 1.5 for {𝑢3, 𝑢4} 2.9 

𝑆4 = {𝑢1, 𝑢4} 
1.45 1.45 for {𝑢2, 𝑢3} 2.9 

 

Among all these subsets, 𝑆1 is a I⃛  -set of 𝐺 and I⃛(G) = 2.1 corresponding to the parameter 𝑒1 

For 𝑒2  

𝑆 |𝑆| 𝑚(𝐺 − 𝑆) I⃛(G) 

𝑆1 = {𝑢1, 𝑢3} 1.55 . 65 for {𝑢2} 

. 75 for {𝑢4} 

2.2 

2.3 

𝑆2 = {𝑢2, 𝑢4} 
1.4 . 8 for {𝑢1} 

. 75 for {𝑢3} 

2.2 

2.15 

𝑆3 = {𝑢1, 𝑢2} 
1.45 1.5 for {𝑢3, 𝑢4} 2.95 

𝑆4 = {𝑢1, 𝑢4} 
1.55 1.4 for {𝑢2, 𝑢3} 2.95 

 

Among all these subsets, 𝑆1 and 𝑆2 are the I⃛  -sets of 𝐺 and I⃛(G) = 2.2 corresponding to the parameter 

𝑒2 

 

u1(0.4,0.6,0.6) u2 (0.5,0.7, 0.8) 

u4(0.5,0.7,0.7) u3(0.6,0.6,0.7) 

(0.4,0.5,0.6) 

 

(0.5,0.6,0.7) 

 

(0.4,0.6,0.6) 

(0.4,0.6,0.6

(0.4,0.5,0.5) 

(0.4,0.5,0.5) 

u1(0.5, 0.6, 0.5) 

 
𝑢2 (0.5,0.6,0.8) 

 

u  

u4 (0.5,0.6,0.6) u3(0.6,0.6,0.7) 

(0.4,0.5,0.6) 

(0.5,0.5,0.7) (0.5, 0.6, 0.5) 

(0.5,0.5,0.6) 
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Example: 4.6 

 

 

𝐻(𝑒) 

 

 

 

 

                  Figure 2 

In Figure 2, corresponding to the parameter 𝐻(𝑒), {(𝑢1, 𝑢2), (𝑢2, 𝑢3), (𝑢3, 𝑢4), (𝑢1, 𝑢4)} are the dominating 

sets. 

 

 

 

𝑆 |𝑆| 𝑚(𝐺 − 𝑆) DI⃛(G) 

𝑆1 = {𝑢1, 𝑢2} 1.35 1.2 for 
{𝑢3, 𝑢4} 

2.55 

𝑆2 = {𝑢2, 𝑢3} 
1.2 1.35 for 

{𝑢1, 𝑢4} 

2.35 

𝑆3 = {𝑢3, 𝑢4} 
1.2 1.5 for 

{𝑢1, 𝑢2} 

2.9 

𝑆4 = {𝑢1, 𝑢4} 
1.35 1.45 for 

{𝑢2, 𝑢3} 

2.9 

𝑆5 = {𝑢1, 𝑢3} 
1.35 0.6 for {𝑢2} 

0.6 for {𝑢4} 

1.95 

𝑆5 = {𝑢2, 𝑢4} 
1.2 0.6 for {𝑢3} 

0.75 for {𝑢1} 

𝑀𝑖𝑛{1.8,1.95}  
=  1.8 

 

Among all these subsets, 𝑆5 is a DI⃛  -set of 𝐺 and DI⃛(G) = 1.8 corresponding to the parameter 𝑒. In this 

neutrosophic graph 𝐺  𝐼(𝐺) = 𝐷�⃛�(𝐺). 

 

Example: 4.7 

𝐻(𝑒)  

 

 

Figure 3 

In Figure 2, corresponding to the parameter 𝐻(𝑒), {(𝑢2, 𝑢4)} are the dominating sets 

 

𝑆 |𝑆| 𝑚(𝐺 − 𝑆) DI⃛(G) 

𝑆1 = {𝑢2, 𝑢4} 1.2 . 5 for  {𝑢1} 

. 5 for  {𝑢3} 

. 7 for  {𝑢5} 

1.7 

 

𝑆 |𝑆| 𝑚(𝐺 − 𝑆) I⃛(G) 

u1(0.6,0.7,0.8) 
u2 (0.6,0.5,0.9) 

u4(0.3, 0.5 ,0.6) u3(0.4,0.5,0.7) 

(0.6,0.5,0.9) 

 

(0.4,0.5,0.9) 

 

(0.3,0.5,0.8) 

(0.4,0.6,0.6

(0.3,0.5,0.7) 

(0.4,0.5,0.5) 

u5(0.4, 0.3, 0.7) 
u1(0.3, 0.5, 0.8) 

u2 (0.3, 0.6, 0.7) u3(0.3, 0.3 , 0.6) 
u4(0.4, 0.5, 0.7) 

(0.3, 0.5, 0.7) 

 
(0.3, 0.3, 0.6) 

(0.4,0.5,0.5) 

(0.3, 0.3, 0.6) 

 
(0.4, 0.3, 0.7) 
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𝑆1 = {𝑢3} . 5 1.1 for  {𝑢1, 𝑢2} 

1.1 for  {𝑢4, 𝑢5} 

1.6 
1.6 

In crisp graph  , 𝐼(𝐺) ≤ 𝐷𝐼(𝐺). But there is no relationship between these parameters in Fuzzy 

as well Neutrosophic soft graphs.  

 

Definition 4.8 

Let G = (G∗, J, K, A) be a neutrosophic soft graph. A subset  S ⊂ V(G) is said to be a vertex covering of 

G if S contains at least one end of every strong arcs of G.  A vertex covering 𝑆 of 𝐺 is called a 

minimal vertex covering if no subset of 𝑆 is a vertex covering. The minimum cardinality of among 

all minimal vertex covering of 𝐺 is called its vertex covering number and is denoted by 

𝛴𝑒∈𝐴(𝑐𝑁𝑆(𝐺)).  . 

 

Note: In Neutrosophic soft graphs, independent set may contain arcs which are not a strong arcs. 

 

 

 

 

 

 

 

 

 

 

 

𝐻(𝑒1)        𝐻(𝑒2) 

In 𝐻(𝑒1), 𝑢3𝑢4 is not a strong. So, independent set  𝑆 = {𝑢3, 𝑢4} and vertex covering set 𝑊 = {𝑢1, 𝑢2} 

In 𝐻(𝑒2), all are strong arcs. Therefore, independent set 𝑆 = {𝑢1, 𝑢3} and vertex covering set 𝑊 =

{𝑢3, 𝑢4} 

 

Theorem 4.9 

Let  𝐺 be neutrosophic soft graph.  Then  𝛴𝑒∈𝐴(𝐼𝑁𝑆(𝐺)) +  𝛴𝑒∈𝐴(𝑐𝑁𝑆(𝐺)) = |𝑉(𝐺)| . 

Proof.  

Let S be a maximum independent set of a neutrosophic soft graph G and 𝑊 be a minimum vertex 

covering of G.  Hence 𝛴𝑒∈𝐴(𝐼𝑁𝑆(𝐺)) + 𝛴𝑒∈𝐴(𝑐𝑁𝑆(𝐺)) = |𝑉(𝐺)|. 

 

Definition 4.10 

A neutrosophic soft graph 𝐺 is said to be strong arc neutrosophic soft graph if every arc in 𝐺 is a 

strong arc. 

 

Theorem 4.11 

Let  𝐺 be strong arc neutrosophic soft graph. Then 𝐼(𝐺) ≤ 𝐷�⃛�(𝐺) ≤ |𝑉(𝐺)|. Also 𝐼(𝐺) ≤ 𝐷�⃛�(𝐺) ≤ 

|𝑉(𝐺)| − 𝛴𝑒∈𝐴(𝑐𝑁𝑆(𝐺)) + 1. 

u1(0.4,0.6,0.6) u2 (0.5,0.7, 0.8) 

u4(0.5,0.7,0.7) u3(0.6,0.6,0.7) 

(0.4,0.5,0.6) 

 

(0.5,0.6,0.7) 

 

(0.4,0.6,0.6) 

(0.4,0.6,0.6

(0.4,0.5,0.5) 

(0.4,0.5,0.5) 

u1(0.6,0.7,0.8) 
u2 (0.6,0.5,0.9) 

u4(0.3, 0.5 ,0.6) u3(0.4,0.5,0.7) 

(0.6,0.5,0.9) 

 

(0.4,0.5,0.9) 

 

(0.3,0.5,0.8) 

(0.4,0.6,0.6

(0.3,0.5,0.7) 

(0.4,0.5,0.5) 
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Proof.  

In strong neutrosophic graph, every arc is a strong arc. Therefore, 𝐼(𝐺) ≤ 𝐷�⃛�(𝐺). Let 𝑆  be vertex 

covering in G. Then, clearly the induced graph of  𝐺 − 𝑆 is an independent set, say 𝑇. Hence the 

removal of 𝑆 results totally independent vertices (isolates). Therefore, 𝑚(𝐺 − 𝑆) = 1. Hence 

  |𝑉(𝐺)| − 𝛴𝑒∈𝐴(𝑐𝑁𝑆(𝐺)) + 1. 

  

Theorem 4.12 

For any neutrosophic soft graph, 𝛴𝑒∈𝐴 (𝑑𝑁𝑆(𝐺)) ≤ 𝐷�⃛�(𝐺). 

Proof. 

The domination integrity number of a neutrosophic soft graph 𝐺 depends upon the dominating set S 

and the corresponding maximum order of the component of 𝐺 −  𝑆. This implies that 𝛴𝑒∈𝐴 (𝑑𝑁𝑆(𝐺)) <

𝐷�⃛�(𝐺). The equality holds only when all the vertices of a neutrosophic soft graph. Hence 

𝛴𝑒∈𝐴 (𝑑𝑁𝑆(𝐺)) ≤ 𝐷�⃛�(𝐺). 

 

Theorem 4.13 

For any strong arc neutrosophic soft graph, δs(G) + 1 ≤ 𝐼(𝐺) ≤ 𝐷�⃛�(𝐺). 

Proof. 

Let 𝐺 be a strong neutrosophic soft graph. Let S be a subset of V(G) . Let u ∈ V(G) be a minimum 

strong degree vertex of G. Let |ds(v)| = δs(G).  Then, after the removal of the vertices in S from G,  

we get m(G − S) ≥ 1 which gives the result δs(G) + 1 ≤ 𝐼(𝐺). 

 

Theorem 4.14 

Let 𝐺′ = = (𝐺 ∗, 𝐽′, 𝐾′, 𝐴′)  is called a neutrosophic soft subgraph of G = (𝐺 ∗, 𝐽, 𝐾, 𝐴). Then 𝐼(𝐻) ≤

 𝐼(𝐺). 

Proof. 

Let 𝐺′ = = (𝐺 ∗, 𝐽′, 𝐾′, 𝐴′)  is called a neutrosophic soft subgraph of G = (𝐺 ∗, 𝐽, 𝐾, 𝐴). Clearly, |𝑉(𝐻)| ≤

|𝑉(𝐺)| (by subgraph definition, at least one vertex, 𝑣 ∈  H which has less membership value 

comparing with membership value of 𝐺, otherwise |𝑉(𝐺)| ≤ |𝑉(𝐻)|). Moreover, for any 

neutrosophic soft graph 𝐻, 𝐼 (𝐻)  ≤  |𝐻|  <  |𝐺|.  

Suppose 𝐼 (𝐺)  >  𝐼(𝐻) for an integrity set 𝑆 of 𝐻. Then 𝑚(𝐻 −  𝑆)  <  𝐼(𝐺)  − |𝑆|. If 𝑆 is also an 

integrity set of 𝐺, then 𝑚(𝐻 −  𝑆)  <  𝑚(𝐺 −  𝑆), which is impossible, since 𝐻 is sub set of 𝐺. If S is 

not an integrity set of 𝐺 then 𝐼(𝐺)  − |𝑆|  <  𝑚(𝐺 −  𝑆), this is a contradiction. Hence any integrity 

set 𝑆 of G is such that 𝐼 ⃛(𝐻)  ≤  𝐼 ⃛(𝐺).  

 

Theorem 4.15 

Let G = (𝐺 ∗, 𝐽, 𝐾, 𝐴) be a complete neutrosophic soft graph. Then 𝐼(𝐺) = |𝑉(𝐺)| = 𝐷�⃛�(𝐺). 

Proof. 

Clearly, in complete neutrosophic soft graph, all the vertices are adjacent with the remaining set of 

vertices. Therefore, after the removal of any subset 𝑆 of vertices from 𝐺, 𝑚(𝐺 − 𝑆) = |V (G)| - |S|. 

 

Theorem 4.16 

If 𝐺 =  (𝐽, 𝐾, 𝐴) is a strong neutrosophic soft graph and its complement  𝐺𝑐  = (𝐽𝑐 , 𝐾𝑐, 𝐴𝑐) , then 

𝐼(𝐺 ∪ 𝐺𝑐) = |𝑉(𝐺)|. 
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Proof. 

Let G be a strong neutrosophic graph and 𝐺𝑐 be the complement of 𝐺. By proposition 3.34[6], 𝐺 ∪

 𝐺𝑐  is a complete neutrosophic soft graph. Hence 𝐼(𝐺 ∪ 𝐺𝑐) = |𝑉(𝐺)|. 

 

Theorem 4.17 

Let 𝐺1 and 𝐺2 be two connected neutrosophic soft graphs and  𝐺 =  𝐺1 ∪  𝐺2 with |𝐺1| ≥  |𝐺2|, then 

vertex integrity of 𝐺 is given by  

𝐼 (𝐺)  =  𝑚𝑖𝑛{|𝐺1|, 𝐼 (𝐺1), |𝑆|  + |𝑉(𝐺2)|, |𝑆|  +  𝑚𝑎𝑥{𝑚(𝐺1 −  𝑆), 𝑚(𝐺2  −  𝑆)}} where 𝑆 is 𝐼 - set of 𝐺. 

Proof.  

Let 𝐺1 and 𝐺2 be two connected neutrosophic soft graphs and  𝐺 =  𝐺1 ∪  𝐺2 with |𝐺1| ≥  |𝐺2|. 

Assume that |𝐺1| >  |𝐺2|.  In this case integrity set 𝑆 of 𝐺 is either vertices from G1 or G2 or both or 

empty.  Since |𝐺1| ≥  |𝐺2|, 𝑆 cannot contain vertices from 𝐺2 alone.  

Based on each case which is mentioned above, we get the result.  

 

Theorem 4.18 

Let 𝐺1 and 𝐺2 be two connected neutrosophic soft graphs and 𝐺 =  𝐺1 + 𝐺2 with 𝑉1  ∩  𝑉2 ≠  ∅. Then 

𝐼 (𝐺)  =  𝑚𝑖𝑛{𝐼(𝐺1)  + |𝑉(𝐺2)|, 𝐼 (𝐺2)  + |𝑉(𝐺1)|}. 

Proof.  

Let 𝐺1 and 𝐺2 be two complete neutrosophic soft graphs.  Clearly, 𝐺 is a complete neutrosophic soft 

graph. Therefore, 𝐼 (𝐺)  =  𝐼(𝐺1)  +  𝐼(𝐺2)  =  𝐼(𝐺1)  + |𝑉(𝐺2)|  =  |𝑉(𝐺1)|  + 𝐼 (𝐺2). If we take all the 

vertices of 𝐺1 in the 𝐼 -set of 𝐺, then  induced graph 𝐺2 is a single connected component, since every 

vertex from 𝐺1 is linked with 𝐺2 with an edge. In the similar manner, we consider 𝐺2. Moreover, 

other subsets of 𝑉(𝐺), 𝑚(𝐺 −  𝑆 )contains all the remaining vertices of G. Hence the theorem 

5. Conclusion 

In this present work, we introduced the concept of integrity and domination integrity in 

neutrosophic soft graphs and calculated the certain bounds of these new parameters.  In our future 

work, we will study the applications of these new parameters in neutrosophic real time networks 

for decision making problems.  
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Abstract 

The success of an organization nowadays is heavily dependent on the usability of its website. Offering educational content 

and services online is becoming more commonplace in the higher education sector. University websites serve a wide range 

of users, like students, faculty, parents, staff, etc. Hence, the website must address the different needs of these users while 

maintaining good usability. Good usability makes it easier for users to find what they are looking for, understand how to 

use the website, and navigate through the content. This helps improve user satisfaction and engagement with the website, 

which can lead to increased productivity and better outcomes. Therefore, usability testing and analysis is the unspoken 

metric for success. Understanding the many factors contributing to the usability of academic websites is a multi-criteria 

decision-making (MCDM) topic. In this paper, we propose a framework for evaluating the usability of academic websites 

using the Entropy and Weighted Aggregated Sum Product Assessment (WASPAS) MCDM methods under type-2 

neutrosophic sets. The entropy method is used to compute the objective weights of four main criteria contributing to the 

usability of academic websites, namely (Content, Organization, Presentation and Interaction, and Trustworthiness), with 

31 sub-criteria. The WASPAS method is then used to rank five Egyptian university websites and select the best one in terms 

of usability. This framework will help designers understand the important criteria to consider while designing for 

university websites in addition to providing them with a usability evaluation method tailored to university websites.  

 

Keywords: University websites; Usability; Neutrosophic; WASPAS; Website Evaluation; MCDM 

 
1. Introduction 

Currently, the internet is the most used medium of communication and service delivery by people or entities, especially 

post-Covid-19. Users search the internet for information they need daily, whether for business, health, education, or 

governance purposes. With websites acting as a powerful platform for information distribution, many institutions have 

resorted to the web channel for access. One important type of website that attracts a lot of users is the university website. 

University websites are crucial for current and prospective students, faculty, and parents. It provides important information 

and can act as a marketing or public relations tool to attract potential students. Academic websites have changed the way 

information is stored and accessed. They have made accessing information related to admission, courses, and exams easier. 

This has removed many of the boundaries that once limited these processes, such as geography and time [1]. While 

university websites have always been a source of valuable information, they have become even more essential in recent 

years. With their ability to provide quick and easy access to up-to-date academic information, university websites are now 

among the most comprehensive information platforms available. University websites are intended to provide services to a 

diverse audience; therefore, it’s critical to maintain the accessibility and usability of these sites for all groups of users  to 
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satisfy their intended use and to provide the users with the most intuitive and quality experience. Yet, many university 

websites suffer from poor designs, difficult interactions, and problems with the findability of core information buried in a 

sea of pages. There are several factors contributing to this problem. One such factor is that universities usually have large 

websites with hundreds of sub-sites and thousands of pages, and the need to serve multiple distinct audiences with different 

needs and questions to answer. These factors lead to academic websites failing to meet the expectations of users or not 

providing the users with quality information and quality in look and feel. Hence, the effort and cost put into maintaining 

and hosting these websites become useless and wasteful.  

Organizations place a great deal of importance on their website design, working to create sites that not only look good but 

are also easy and usable. Usability, according to ISO 9241-11, is defined as the effectiveness, efficiency, and satisfaction with 

which a set of users can achieve a set of tasks in a defined environment [2]. Nevertheless, the users' satisfaction and the 

interfaces' usability are questionable and vague. Hence, there is a growing need for tools to support and help designers 

make better decisions and go in the right direction to achieve maximum user satisfaction. We need a way to make user 

interfaces quantifiable, thus allowing for automatic calculation of how good an interface is and easily comparing different 

versions of designs without involving end users. To this end, it is highly important to understand the impact of the different 

criteria contributing toward user satisfaction with academic websites which is a MCDM problem. The neutrosophic 

approach is a promising method to deal with uncertainty. That makes it highly suitable for addressing the usability of 

academic websites. This research focuses on implementing a framework for evaluating the usability of academic websites 

using MCDM methods under type-2 neutrosophic sets. 

The remainder of the paper is organized as follows. Technical background and literature review in Section 2. Section 3 

presents the research methodology. Section 4 presents the case study and analysis. Section 5 presents the sensitivity analysis. 

Finally, we conclude this paper in Section 6. 

2. Technical background and literature review 

In this section, we give a quick overview of usability and usability evaluation methods, then a literature review of previous 

work. 

2.1 Concepts and terminologies 

Usability 

According to ISO 25000, Usability is “the degree to which specified users can use a product or system to achieve specified 

goals with effectiveness, efficiency, and satisfaction in a specified context of use”. And they summarize usability in 6 

characteristics: Recognizability, Learnability, Operability, Error protection, Aesthetics, and Accessibility [3]. Nielsen 

defined usability as how easy an interface is to use, and he defined usability through 5 characteristics: Learnability, 

Efficiency, memorability, Errors, and Satisfaction.  [4] 

So, a website’s usability is the website’s ability to enable users to find the information they’re looking for most efficiently 

and delightfully to deliver user satisfaction. Therefore, website usability is achieved through multiple criteria, such as 

efficiency, learnability, memorability, delightfulness, and error tolerance, etc., and the criteria would differ based on the 

target users, their needs, and the situation. Hence, Usability is one of the major factors determining a website's success. It is 

important, therefore, to have some guidelines to ensure websites’ usability, and to have a way to assess the usability of 

websites.  
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Usability evaluation techniques  

An essential part of the design process of user interfaces is their evaluation by users to enhance their usability, as users are 

becoming less willing to interact with difficult or uncomfortable interfaces. A usability evaluation method is a procedure 

used to collect user interaction data with software to assess the degree of usability achieved by the properties of that 

software [5].   

There are several methods to assess the usability of user interfaces, we could classify them into two general types based on 

end-users involvement: empirical methods and inspection methods. Empirical methods require end-user presence to 

complete some tasks using the software or prototype and to capture his interactions and usage data to detect usability 

issues, this end-user presence makes empirical methods costly and restricts their conduction till the software is developed. 

Inspection methods on the other side don’t require end users but are performed by experts who review the user interface 

with respect to some predefined set of principles and guidelines to assess their usability and detect any usability violations, 

which makes it more cost-efficient, this method has the advantage that problems can be ironed out before considerable 

effort and resources have been expended on the design process. However, inspection methods could be affected by 

evaluators' expertise, biases and opinions, and the quality of the evaluation guidelines, which could leave out the real user 

needs. One of the most famous inspection evaluation methods is the heuristic evaluation method by Nielsen [6], [7] used 

for finding usability problems in a user interface by following a set of usability heuristics “principles” and checking if the 

interface violates any of them [8]. It is not justifiable to standardize usability guidelines across different design situations, 

as different organizations have distinct business goals and end-users. Organizations should design websites focusing on 

who their end-users are, what information they need, and how they can easily retrieve this information. 

Usability evaluation studies 

Many studies have addressed the problem of website usability assessment, either using traditional assessment methods 

like questionnaires, Likert scales, and heuristic evaluations or using multi-criteria decision-making methods such as AHP 

and FAHP, etc. These studies identified various factors that affect the usability of academic websites. 

Astani [9] evaluated the effectiveness of the top 50 universities’ websites in the U.S. and analyzed the weaknesses and 

strengths of these websites, using traditional assessment methods such as a questionnaire and a list of 6 predefined usability 

characteristics from a literature review rated using a five-point Likert scale (Information, Content, Navigation, Usability, 

Customization, Download Speed, Security). Similarly, Manzoor & Hussain [10] evaluated the usability of higher education 

websites in Asia using a survey and performed some analysis on the results to propose a “WUEM” Web usability evaluation 

model consisting of 4 main usability criteria (Web design, page design, navigation, accessibility) and a total of 17 sub-

criteria. Another study evaluated the usability of the Namik Kamel university's website using 5 usability criteria 

(attractiveness, controllability, helpfulness, efficiency, and learnability) defined by WAMMI (Website Analysis and 

Measurement Inventory)[11]. A similar study developed a set of 7 principles and heuristics to evaluate 12 Saudi Arabia 

university websites, including: (visual design and consistency, links and navigation, data entry forms, information truth 

and precision, privacy and security, search functionality, help, feedback, and error tolerance). These principles were based 

on Nielsen’s heuristics and ISO standards [12]. Hasan [13] is another researcher that employed the heuristic evaluation 

method to evaluate the usability of 3 Jordan university websites using a set of 5 usability criteria related to educational 

websites (Navigation, architecture/organization, ease of use and communication, design, content). Based on that heuristic 

evaluation, a list of 34 specific types of usability problems was identified. Roy et al. [14] used questionnaire-based evaluation 

and performance-based evaluation to evaluate 3 academic websites based on 4 criteria (Task success, Task completion time, 

Number of clicks, and satisfaction metrics). Five high-level quality factors (functionality, usability, reliability, presentation, 

content) and 20 sub-quality factors based on ISO 9126-1 for evaluating academic websites were identified by Devi & Sharma 

[15]’s framework. EduGate, an online academic portal of King Saud University, was evaluated by 3 experts using a heuristic 
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checklist based on Nielsen’s heuristics [16]. Vakkalanka et al. [17] proposed a tool for evaluating academic websites, based 

on a set of 6 main criteria developed from previous models and ISO 9126 (content, usability, reliability, maintenance, 

functionality) with a total of 24 sub-criteria. According to the systematic literature review of university website usability 

evaluation conducted in 2022, most usability problems found were related to interface design, navigation, content, and 

performance and accessibility issues [18]. A comparison of the criteria used in these studies is presented in table 1. 

As we have seen, many researchers paid attention to the problem of academic website evaluation. However, all the above 

studies used questionnaires, automated accessibility tools, and heuristic rules to evaluate usability. But usability is a more 

complex problem that is influenced by many criteria, these criteria in most real-life scenarios can be conflicting, and there 

will be a tradeoff between them, like aesthetics and simplicity, paying more attention to the website’s design using more 

colors, images and visual content could sometimes make the design more complex to use. That’s why we need to empower 

designers with a framework of the most suitable criteria for academic website usability with their relative importance, this 

becomes a multi-criteria decision-making problem (MCDM), and within the last few years, some studies have assessed 

academic websites usability using some MCDM methods like Analytical hierarchy process (AHP), fuzzy analytical 

hierarchy process (FAHP), fuzzy TOPSIS, PROMETHEE. 

Nagpal et al. [19] proposed a rule-based system using the ANFIS method to assess website usability from the perspective 

of end users. A survey was used to identify the factors affecting usability, and 4 factors were chosen (Ease of use, 

information, response time, and ease of navigation). In Nagpal, Bhatia, et al. [20], the same authors employed a FAHP 

approach to evaluate the weights of usability criteria of an educational institute website and used the proposed approach 

to rank 4 websites based on their evaluated usability score. They used the same 4 criteria used in [19]. In Nagpal, Bhatia, et 

al. [20] Also, FAHP was used to evaluate the criteria affecting the usability of a website, and a fuzzy TOPSIS method was 

used to rank 4 websites based on the usability criteria (Ease of use, informative, response time, ease of navigation). An AHP-

based usability evaluation technique is proposed by Roy et al. [21]  to measure the usability score of a website. A 

questionnaire was used to measure users’ satisfaction degree on 5 usability criteria (attractiveness, controllability, efficiency, 

helpfulness, and learnability), and the results were analyzed using AHP. In Nagpal et al. [22] a metric is proposed 

integrating objective and subjective usability evaluation approaches, using fuzzy AHP and entropy methods respectively, 

on 5 usability criteria (Ease of use, information, response time, ease of navigation, and contrast errors). Response time (RT) 

was suggested by the entropy as the main contributor to usability, and Ease of use (EOU) was suggested as the main 

contributor by FAHP. RT was the main contributor to the evaluation of the usability of academic websites according to the 

combined approach. In Shayganmehr et al. [23] hybrid MCDM approaches (AHP and PROMETHEE) are used to determine 

the importance of criteria and sub-criteria contributing to the usability of E-services of Iranian universities' websites. Nine 

indexes (criteria) were used (website design, responsiveness quality, security, trust, content and information quality, 

participation, support and maintenance, services, and usability). A framework for evaluating university websites was 

proposed by Gharibe Niazi et al. [1]. It used the Delphi technique, systematic review, and meta-analysis approaches. The 

proposed framework included 10 criteria (credibility, reliability, usability, website design, functionality, content, page 

design, efficiency, and webometrics) that are suggested for university website evaluation. This study suggested that 

credibility is the most important factor in the evaluation of university websites. In Muhammad et al. [24], a FAHP approach 

is used to evaluate the usability of academic websites with 3 usability criteria (usability, navigation, content) and 9 sub-

criteria (ease of use, interactivity, learnability, ease of navigation, accessibility, efficiency, informative, accuracy, user 

satisfaction), The fuzzy extent analysis technique was used to rank 5 university websites. A comparison of the different 

criteria used in these studies is presented in table 2.  
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Table 1. Universities' website usability criteria. 

Usability Criteria 
Studies 

[9] [13] [25] [10] [16] [14] [26] [18] [15] [17] 

Content           
Navigation           
Usability           
Customization           

Security           

Download speed           

Architecture/ Organization           

Ease of use and communication           

Design           
Consistency           

Links           

Data entry forms           

Search functionality           
Help, feedback, and error tolerance, recoverability           
Sitemap           

Concise News and Events           

Multiple Language Support           
Accurate Page title           
Page headings           

Avoid Page scrolling           

Link logo to homepage           

Home page navigation in the main menu           

Adequate text‐to‐background contrast           

Font size/spacing is easy to read           

Attractiveness           
Controllability           

Efficiency           

Helpfulness           

Learnability           

Reliability           
Functionality           
Understandability           
Interactivity           
Availability           

Memorability           

User satisfaction           

Few errors           
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Table 2. Usability criteria used in MCDM studies. 

Usability Criteria 
Studies 

[19] [20] [29] [21] [30] [22] [27] [1] [24] 

Ease of use          
Informative          

Response time          

Ease of navigation          
Attractiveness          

Controllability          

Efficiency          
Helpfulness          

Learnability          

Contrast errors          

Website Design          

Responsiveness          

Security          

Trust          

Content and information quality          

Participation          

Support and maintenance          

Services          

Usability          
Reliability          

Web credibility          

Functionality          

Systematic cues          

Page design          

Webometric          

Interactivity          
Accessibility          

Accuracy          
User satisfaction          
User-friendliness          

Personalization          

 

3. Research methodology 

The methodology used in this research consists of 3 phases: Criteria identification through literature review and surveying 

the stakeholders and UX experts and academics to identify the key relevant usability criteria for academic websites to 

consider in our framework, Computing the criteria objective weights using Shannon’s entropy method, and finally, ranking 

five university websites based on the usability criteria weights using the WASPAS method. The usability evaluation of a 

university website is a multi-criteria scenario that considers different criteria, with varying importance, and it’s a 
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challenging task to try to consider the different needs and criteria, so tradeoffs will often be made when designing, hence, 

it is necessary to understand how each criterion contributes to the overall usability of the website, so that educated design 

decisions can be made. And when presented with different designs, we can evaluate and select the most usable design. The 

proposed methodology used the neutrosophic environment to overcome vague and incomplete information. The type-2 

neutrosophic sets (TNSs) are used in this study. The graphical representation of the research methodology is depicted in 

Fig. 1. The steps of the proposed framework are organized as follows: 

 

Figure 1. Research Methodology 

Phase 1: Identify the usability criteria 

Step 1: In order to identify the relevant usability criteria, a comprehensive literature review was conducted and UX experts 

and academics were consulted to identify the key usability criteria relevant to academic websites. 

Step 2: A survey study was conducted to determine the importance of the identified criteria to help focus on the most 

relevant ones. The participants were UX field experts with experience in usability evaluation, academics with Ph.D. and 

experience in the field of Human-Computer Interaction, stakeholders, current and prospective students using academic 

websites, faculty members, etc. 

Step 3: Five university websites were selected for usability evaluation, and three UX and usability evaluation experts 

evaluated the five websites based on the selected criteria from step 2, and a decision matrix for each of the three experts 

was constructed using the type-2 neutrosophic sets. Then the opinions of experts were converted from linguistic terms into 

crisp values. Finally, we aggregated the opinions of the three experts into one matrix. 

Phase 2: Prioritize the usability criteria using the entropy method 

3.1 Shannon’s entropy method 

Assuming we have m alternatives (𝐴1, 𝐴2, … 𝑎)  and b criteria (𝐶1, 𝐶2, … 𝑏)  for a decision problem  

Step 4: Normalize the aggregated decision matrix 

𝑛𝑟𝑐𝑑  =
𝑥𝑐𝑑

∑ 𝑥𝑐𝑑
𝑎
𝑐=1

                                                                                                                                                     (1) 

Where 𝑐 = 1,2,3, … . 𝑎;  𝑎𝑛𝑑 𝑑 = 1,2,3, … . . 𝑏 

Step 5: Calculate the entropy  

𝑟𝑑  = −𝐿 ∑ 𝑛𝑟𝑐𝑑 ln 𝑛𝑟𝑐𝑑
𝑎
𝑐=1                                                                                                                                   (2) 
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Where 𝐿 = 1/ ln 𝑎 

Step 6: Compute the objective weights of the criteria 

𝑤𝑑  =
1− 𝑟𝑑

∑ (1− 𝑟𝑑)𝑏
𝑐=1

                                                                                                                                                    (3) 

Phase 3: Evaluate and rank the five university websites using the WASPAS technique 

3.2 WASPAS method 

The weighted aggregated sum product WASPAS is a decision-making method that combines the weighted sum model 

(WSM) and the weighted product model (WPM) to help identify the ranking of the different alternatives to solve the 

decision-making problem. The WSM approach calculates the total score of the alternative as a weighted sum of the criteria. 

The WPM approach was created to prevent alternatives that have poor attributes or criterion values. The WASPAS method 

can check the consistency in the overall ranking of the alternatives using the 𝜆 coefficient. Apply steps 1 to 3.  

Step 7: Normalize the decision matrix by the WASPAS method as: 

X∗
𝑐𝑑   =

𝑥𝑐𝑑   

max
𝑐

𝑥𝑐𝑑   
 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎,                                                                                                         (4) 

X−
𝑐𝑑   =

min
𝑐

𝑥𝑐𝑑   

𝑥𝑐𝑑   
 𝑓𝑜𝑟 𝑛𝑜𝑛 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎.                                                                                                 (5) 

Step 8: Calculate the weighted normalized neutrosophic decision-making matrix for the WSM: 

WX∗
𝑐𝑑  =  X∗

𝑐𝑑   ∗ 𝑊𝑑                                                                                                                                          (6) 

Step 9: Calculate the weighted normalized neutrosophic decision-making matrix for the WPM: 

WX−
𝑐𝑑  =  X−

𝑐𝑑   ∗ 𝑊𝑑                                                                                                                                         (7) 

Step 10: Calculate the total relative importance based on: 

The WSM for c alternative: 

𝑆𝑐
1 =  ∑ WX∗

𝑐𝑑  
𝑏
𝑑=1                                                                                                                                                  (8) 

The WPM for c alternative: 

𝑆𝑐
2 =  ∏ (X−

𝑐𝑑  )
𝑊𝑑𝑏

𝑑=1                                                                                                                                              (9) 

Step 11: To improve the ranking accuracy, the utility function value of the WASPAS-neutrosophic method is calculated as 

follows: 

𝑆𝑐 =  𝛼𝑆𝑐
1 + (1 − 𝛼)𝑆𝑐

2                                                                                                                                         (10) 

Where 𝛼 𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1 

The alternatives are ranked based on the values of 𝑆𝑐 , the alternatives having the highest values being the most significant. 

4. Case study and analysis 

The proposed methodology results of the entropy and WASPAS methods under a neutrosophic environment are 

demonstrated through this case study.  
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4.1 Description of criteria  

Considering section 2, After conducting a comprehensive literature review of the previous studies on the usability 

evaluation of academic websites and talking to usability experts working in the field of UX design, we considered the most 

important and effective criteria for evaluating the usability of academic websites to be 31 criteria (shown in figure 2) 

organized under four main Categories: Content, Organization, Presentation and Interaction, Trustworthiness. All criteria 

are positive except Broken links, Load time, and response time. Appendix table 1 shows the 4 main criteria and 31 sub-

criteria.  

 

Figure 2. The Identified usability criteria, 4 main criteria, 31 sub-criteria 

The criteria are introduced and explained below. 

Category 1: Content. In this category, all criteria are related to a website's content, including text, images, videos, audio 

data, etc., which answers the question: Is it what the user wants? 

1. Informative: Users come to a website looking for specific kinds of information. Informative refers to how the content 

on the website provides current, relevant, complete, valuable, and quality information. The content should be 

comprehensive, appropriate, and within the expected level of detail [28], which is a significant usability factor for a 

university website, as providing clear and understandable content will encourage users to keep returning to the 

website. 

2. Accuracy: In a university website, it’s important that the content is always accurate, reliable, correct, and authentic 

so that it builds trust. This can be done by checking for spelling or grammatical errors that could alter the meaning 

of information, providing images and multimedia of appropriate quality, using accurate page titles, and providing 

precise and trustworthy content [20].  
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3. Availability: Availability is a measure of the readiness of content. Content should always be ready and available for 

users to access. This also includes the ability to reach past and archived content easily.  

4. Coverage: Coverage refers to the degree that topics of interest are successfully addressed, with clearly presented 

arguments and adequate support to substantiate them. This can refer to the diversity of services and academic 

activities covered on the website. 

5. Personalization: Personalization and customization are other significant factors of a university website due to the 

diversity of its audience. This is the website’s ability to offer customized content to the user based on different criteria 

like location etc., using the user’s data to suggest and serve up related content and allowing the users to customize 

their experiences.  

6. Readability and Legibility: Readability and legibility refer to how the users read and view the content of a page or 

screen; good readability helps users read the content more efficiently and understand the message more clearly. On 

the other hand, good legibility makes the presentation edible and allows users to quickly understand what is on the 

page or screen. The use of appropriate Typography, whitespace, hierarchy, etc., can help achieve these two [31].  

7. Search Engine Friendliness: A university website needs to have a strong presence in search engines. Multiple factors 

contribute to that, such as clear web page structure, using a good mix of visual media, conserving the website’s 

storage to improve site speed, and having a responsive design [32].  

8. Use of Technology and Innovation: This criterion refers to how the website adapts to accommodate the latest 

technological advancements, such as Augmented reality (AR) and Virtual reality (VR), using chatbots and voice 

search. 

9. Updates: A university website needs to have up-to-date content. An outdated website will cause confusion and loss 

of credibility, so the content and style presented in a website should be frequently updated, displaying the latest 

update date. 

 

Category 2: Organization. In this category, all criteria are related to the organization and structure of the information on 

the academic website. This category answers: Can the user find it? 

10. Ease of Navigation: A university website is a collection of large and diverse amounts of information. It’s essential 

that the users can navigate through it and find information quickly and easily. As users will discontinue using the 

site if it is complex to navigate or if too many clicks are required to retrieve the required information. Ease of 

Navigation depends on how the information is organized and arranged, the presence of navigational aids, and 

providing alternative navigational ways. This helps overcome the navigational complexity, especially in the case of 

big websites like university websites [22].  

11. Functionality: Functionality refers to the degree that the website provides functions that meet and cover all the stated 

or implied needs, tasks, and objectives of the users [33]. Examples of functionality are: Searching and retrieving 

mechanisms, navigational prediction, and online services. 

12. Efficiency: Efficiency measures how quickly and easily the users can locate and achieve their goals without putting 

in much cognitive effort. Users can experience a measurable decline in efficiency when they lose their sense of location 

on a website or feel disoriented [34]. According to Jakob’s Usability Heuristic, efficiency refers to how quickly users 

can perform tasks after learning to use the design by allowing for flexibility, shortcuts, and reducing the number of 

clicks [35].  
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13. Broken Links: Broken links affect navigation significantly, and university websites should have no broken links and 

no orphan pages. Broken links frustrate and drive users away and negatively affect the website’s SEO, search ranking, 

and quality scores.  

14. Helpfulness: Helpfulness refers to how helpful the website is to the users, reducing their cognitive effort. Hence, it 

is essential to help users during each visit step (before, during, and after). A high level of helpfulness corresponds 

with the users' expectations about the content and structure [21].  

15. Design optimization: A university website must be compatible with and perform well in different browsers and 

platforms. The website design and organization should also be consistent and accessible through all browsers and 

platforms (responsiveness).  

 

Category 3: Presentation and Interaction. In this category, all criteria are related to how the website supports the user in 

terms of presentation and interaction. It answers the question: Is it easy to comprehend, and can the user act on it? 

16. Ease of Use: Ease of use is an essential factor in assessing the usability of a university website [19]. It measures how 

intuitively and easily the user can use the website. Consistent design, clear instructions, help, using simple terms and 

conventions are examples of factors contributing to the ease of use of an interface. 

17. Learnability: Refers to how easy the system is to learn, which is an important factor for university websites, as these 

websites have diverse audiences, and not all are frequent users. So, their design should be self-descriptive 

encouraging users to quickly become familiar with and learn how to perform different academic tasks through the 

website [36].  

18. Memorability: Memorability refers to how easily users can remember how to use the website and re-establish 

proficiency after a period of absence, which is crucial for university websites that are used infrequently. Users need 

to be reminded how to do tasks and find the information they are looking for. There are many ways of designing a 

website to support memorability. For example, using meaningful icons, obvious names, and menu options and 

structuring the content in a relevant way. 

19. Interactivity: Interactivity refers to how engaging and interactive the website is, which is related to support; Hence, 

the website should provide means of interaction with the website’s functions, error prevention mechanism, visible 

controls, hints, and a feedback mechanism to assist and encourage the users during their visit [30].  

20. Contextual help and cues: This factor refers to providing support for the users relative to the area they are currently 

interacting with through tooltips, visual prompts, walkthroughs, inline instructions, partial content, sound, and 

vibration to help guide users to the most significant elements and equally, move away from the least significant ones. 

21. Services: The criteria refer to the number of academic services delivered through the website [37]. 

22. Attractiveness: The content on the website should be attractive to retain and interest the users. Attractiveness is a 

usability attribute that measures the visual aspect of the website. According to [10], the appearance of a website is a 

crucial factor in improving the perception of information in terms of better cognitive mapping and easy assessment 

of decisions. Thus, the website should be aesthetic, pleasant, fun, well-organized, and clean. 

23. Accessibility: Accessibility measures how easily and intuitively accessible is the website’s information for any user. 

Examples of accessibility include multiple language support, Adequate text-to-background contrast, proper font 

size/spacing, images having appropriate ALT tags, and compliance with WCAG accessibility guidelines. A university 

website needs to be accessed efficiently anytime and anywhere for the users to benefit from it [23].  
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24. Load Time: Load time refers to the time it takes to download and display an entire webpage, including all page 

elements, such as HTML, scripts, CSS, images, and third-party resources. Compressing images used on the website, 

compressing your images, removing unnecessary custom fonts and plugins, etc. can help speed up load time. 

25. Response Time: Response Time measures how quickly a website responds to a request. Response times play a critical 

role in university websites, as delays in accessing the information cause users to be highly unsatisfied, particularly at 

times of enrollment, result declaration, etc. thus, response time affects inversely to the website's usability. Various 

parameters affect response time like network bandwidth, download, query processing time, etc. [28].  

26. Markup Validation: Markup validation ensures that the HTML of the website is clean, well-structured, and used in 

a way that is compliant with the HTML specifications, as it supports assistive technologies, browser compatibility, 

and website usability. 

 

Category 4: Trustworthiness. In this category, all criteria are related to how trustworthy the website is perceived to be. 

27. Security and Privacy: Security and privacy are very important, especially on university websites, as they deal with 

sensitive information, confidential information should be well protected, and privacy and security policies should be 

presented to users. Factors like using secure protocols and data encryption methods help protect privacy and security 

from the infrastructure dimension while using security code images, a virtual keyboard for entering a password, and 

sending alarm messages when an unknown user logs into other users’ accounts assure privacy and security from the 

interface dimension. 

28. Confirmation: Confirmation messages are an important key to enforcing a trustworthy image. These are messages 

which require users to confirm an action they are trying to perform [38]. Confirmation messages are important to use 

to communicate information the user must confirm before an action is completed. A balance between transparency 

and excess information is needed. 

29. Reliability: The performance of the website starts with how reliable it is and its ability to recover quickly from 

problems; reliability, according to [33], is the “degree to which a system, product or component performs specified 

functions under specified conditions for a specified period of time”. Reliability can be measured by: Fault tolerance, 

recoverability, and availability.  

30. Web Credibility: According to a Stanford study on web credibility [39], credibility is “perceived trustworthiness + 

perceived expertise”. This can be measured by factors such as having a professional website appearance, providing 

information about the university, showing total transparency, listing communication information visible on the site, 

testimonials, highlighting professional accomplishments, showing social proof, ratings, and reviews, etc. 

31. Traffic: The success of a website is measured by the number of its visitors and its conversion rate, which is affected 

by factors such as engaging content, impressive design, optimization for mobile, SEO, smooth navigation, etc. 

 

4.2 Prioritizing the usability criteria using the entropy method  

Step 1: Five websites were selected for usability evaluation in this study, to preserve confidentiality the websites are referred 

to as (WebA1, WebA2, WebA3, WebA4, WebA5).  

Step 2: Three UX and usability experts with PhD and experience not less than 15 years in this field are selected to evaluate 

the five selected websites in terms of the identified usability criteria to compute the objective weights of the criteria using 

the entropy method as mentioned in step 4,5,6.  
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Step 3: The three experts used the type-2 neutrosophic numbers [40] to evaluate the websites based on the identified 31 

criteria, using linguistic terms. Then we converted the opinions of experts (linguistic terms) to neutrosophic numbers as 

shown in appendix tables 2-4.  After that, the type-2 neutrosophic numbers were converted to crisp values [40]. Then we 

aggregated the different opinions of the experts into one matrix by the average method.  

Applying the Entropy method 

Step 4: The aggregated decision matrix was normalized by applying Eq. (1), as shown in Table 3.  

Table 3. The normalization matrix by the entropy method 

 WebA1 WebA2 WebA3 WebA4 WebA5 

WebC1 0.225727 0.084278 0.203056 0.203056 0.283884 

WebC2 0.129779 0.289738 0.207243 0.207243 0.165996 

WebC3 0.224561 0.236647 0.224561 0.08655 0.22768 

WebC4 0.161665 0.230492 0.208884 0.255302 0.143657 

WebC5 0.134974 0.228662 0.265582 0.19611 0.174672 

WebC6 0.211221 0.181151 0.211221 0.245325 0.151082 

WebC7 0.226939 0.235102 0.201633 0.134694 0.201633 

WebC8 0.225599 0.099942 0.240795 0.19287 0.240795 

WebC9 0.205703 0.293279 0.163951 0.113035 0.224033 

WebC10 0.178349 0.132399 0.192368 0.260514 0.236371 

WebC11 0.176494 0.231047 0.136382 0.234256 0.221821 

WebC12 0.098404 0.231383 0.231383 0.231383 0.207447 

WebC13 0.169065 0.258993 0.205935 0.25 0.116007 

WebC14 0.160131 0.120915 0.155773 0.313725 0.249455 

WebC15 0.188555 0.275422 0.132565 0.237135 0.166324 

WebC16 0.14726 0.328767 0.167808 0.188356 0.167808 

WebC17 0.127075 0.382942 0.127075 0.127075 0.235833 

WebC18 0.191388 0.138388 0.211999 0.246227 0.211999 

WebC19 0.30139 0.168818 0.202085 0.151936 0.17577 

WebC20 0.148084 0.264373 0.148084 0.291376 0.148084 

WebC21 0.11677 0.357764 0.160248 0.204969 0.160248 

WebC22 0.129665 0.108159 0.163188 0.364326 0.234662 

WebC23 0.157229 0.251787 0.321056 0.122045 0.147883 

WebC24 0.249679 0.094912 0.185977 0.246259 0.223172 

WebC25 0.146366 0.267144 0.113613 0.298874 0.174002 

WebC26 0.213915 0.185877 0.213915 0.271028 0.115265 

WebC27 0.128755 0.224737 0.192743 0.261022 0.192743 

WebC28 0.253074 0.169057 0.132172 0.234631 0.211066 

WebC29 0.207191 0.136502 0.201097 0.207191 0.24802 

WebC30 0.24184 0.284866 0.127596 0.16815 0.177547 

WebC31 0.224037 0.079736 0.224037 0.248152 0.224037 

 

Step 5: Then, the entropy is computed using Eq. (2).  

Step 6: The objective weights of the criteria are computed by Eq. (3). From the results, the presentation and interaction 

category scored the highest weight compared to the other three main criteria, while the organization category scored the 

lowest weight.  Fig. 2 shows the weights of the criteria. From Fig.3, we see that “ease of use” is of the highest importance in 

all 31 criteria, and “updates” are of the lowest importance.  
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Figure 3. The weights of criteria. 

4.3 Ranking the five university websites  

The proposed framework was used to rank five Egyptian university websites using the WASPAS method. 

Applying the WASPAS method 

Step 7: The decision matrix was normalized by Eqs. (4,5) as shown in table 4.  

Step 8: The WSM matrix is computed by Eq. (6), as shown in Table 5. 

Step 10: The WPM matrix is computed by Eq. (7), as shown in Table 6. 

Step 11: The total relative importance of the alternatives is calculated by Eqs. (8,9) 

Step 12: Finally, the utility function was computed by Eq. (10). We use 𝛼 = 0.5. Then the alternatives are ranked based on 

the highest value of the utility function, as shown in Fig. 3. From Fig. 4. website 4 has the highest rank and website 1 has 

the lowest rank.  
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Figure 4. The rank of alternatives. 

Table 4. The normalization matrix by the WASPAS method. 

 WebA1 WebA2 WebA3 WebA4 WebA5 

WebC1 0.795139 0.296875 0.715278 0.715278 1 

WebC2 0.447917 1 0.715278 0.715278 0.572917 

WebC3 0.948929 1 0.948929 0.365733 0.962109 

WebC4 0.633229 0.902821 0.818182 1 0.562696 

WebC5 0.508221 0.860987 1 0.738416 0.657698 

WebC6 0.860987 0.738416 0.860987 1 0.615845 

WebC7 0.965278 1 0.857639 0.572917 0.857639 

WebC8 0.936893 0.415049 1 0.800971 1 

WebC9 0.701389 1 0.559028 0.385417 0.763889 

WebC10 0.684604 0.508221 0.738416 1 0.907324 

WebC11 0.753425 0.986301 0.582192 1 0.946918 

WebC12 0.425287 1 1 1 0.896552 

WebC13 0.652778 1 0.795139 0.965278 0.447917 

WebC14 0.510417 0.385417 0.496528 1 0.795139 

WebC15 1.42236 2.07764 1 1.78882 1.254658 

WebC16 1 2.232558 1.139535 1.27907 1.139535 

WebC17 0.331839 1 0.331839 0.331839 0.615845 

WebC18 0.77728 0.562033 0.860987 1 0.860987 

WebC19 1 0.560132 0.670511 0.504119 0.583196 

WebC20 0.508221 0.907324 0.508221 1 0.508221 

WebC21 0.326389 1 0.447917 0.572917 0.447917 

WebC22 0.355903 0.296875 0.447917 1 0.644097 

WebC23 0.489726 0.784247 1 0.380137 0.460616 

WebC24 1 0.380137 0.744863 0.986301 0.893836 

WebC25 0.489726 0.893836 0.380137 1 0.582192 

WebC26 0.789272 0.685824 0.789272 1 0.425287 

WebC27 0.493274 0.860987 0.738416 1 0.738416 

WebC28 1 0.668016 0.522267 0.927126 0.834008 

WebC29 0.835381 0.550369 0.810811 0.835381 1 

WebC30 0.848958 1 0.447917 0.590278 0.623264 

WebC31 0.902821 0.321317 0.902821 1 0.902821 

15.45 15.5 15.55 15.6 15.65 15.7 15.75 15.8

WebA1

WebA2

WebA3

WebA4

WebA5

WebA1 WebA2 WebA3 WebA4 WebA5

Rank 15.58025851 15.74179416 15.62137732 15.75467735 15.68864893
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Table 5. The WSM matrix by the WASPAS method. 

 WebA1 WebA2 WebA3 WebA4 WebA5 

WebC1 0.035726 0.013339 0.032137 0.032137 0.04493 

WebC2 0.011753 0.026238 0.018768 0.018768 0.015032 

WebC3 0.034678 0.036545 0.034678 0.013366 0.03516 

WebC4 0.010504 0.014975 0.013571 0.016587 0.009334 

WebC5 0.009642 0.016334 0.018972 0.014009 0.012478 

WebC6 0.008283 0.007104 0.008283 0.009621 0.005925 

WebC7 0.012076 0.01251 0.010729 0.007167 0.010729 

WebC8 0.028194 0.01249 0.030094 0.024104 0.030094 

WebC9 0.024336 0.034698 0.019397 0.013373 0.026505 

WebC10 0.013224 0.009817 0.014263 0.019316 0.017526 

WebC11 0.010744 0.014064 0.008302 0.01426 0.013503 

WebC12 0.012396 0.029148 0.029148 0.029148 0.026132 

WebC13 0.018143 0.027794 0.0221 0.026829 0.012449 

WebC14 0.023281 0.017579 0.022647 0.045611 0.036267 

WebC15 0.034281 0.050075 0.024102 0.043114 0.03024 

WebC16 0.036001 0.080375 0.041025 0.046048 0.041025 

WebC17 0.028472 0.085801 0.028472 0.028472 0.05284 

WebC18 0.009602 0.006943 0.010636 0.012354 0.010636 

WebC19 0.024398 0.013666 0.016359 0.0123 0.014229 

WebC20 0.018969 0.033865 0.018969 0.037324 0.018969 

WebC21 0.019344 0.059265 0.026546 0.033954 0.026546 

WebC22 0.026655 0.022234 0.033546 0.074894 0.048239 

WebC23 0.024606 0.039404 0.050244 0.0191 0.023143 

WebC24 0.03503 0.013316 0.026093 0.034551 0.031311 

WebC25 0.023155 0.042262 0.017974 0.047282 0.027527 

WebC26 0.020078 0.017446 0.020078 0.025439 0.010819 

WebC27 0.009136 0.015947 0.013676 0.018521 0.013676 

WebC28 0.018877 0.01261 0.009859 0.017502 0.015744 

WebC29 0.010602 0.006985 0.01029 0.010602 0.012691 

WebC30 0.02479 0.029201 0.01308 0.017237 0.0182 

WebC31 0.038146 0.013576 0.038146 0.042252 0.038146 

 

Table 6. The WPM matrix by the WASPAS method. 

 WebA1 WebA2 WebA3 WebA4 WebA5 

WebC1 0.989753 0.946897 0.985057 0.985057 1 

WebC2 0.979147 1 0.991247 0.991247 0.985491 

WebC3 0.998086 1 0.998086 0.963909 0.998589 

WebC4 0.99245 0.998306 0.996677 1 0.990507 

WebC5 0.987241 0.997164 1 0.994263 0.992082 

WebC6 0.998561 0.997087 0.998561 1 0.995347 

WebC7 0.999558 1 0.998081 0.993056 0.998081 

WebC8 0.99804 0.973884 1 0.993344 1 

WebC9 0.987768 1 0.980024 0.96746 0.990698 

WebC10 0.992708 0.987012 0.99416 1 0.998123 

WebC11 0.995971 0.999803 0.992316 1 0.999223 
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WebC12 0.975387 1 1 1 0.996822 

WebC13 0.988215 1 0.993649 0.999018 0.977924 

WebC14 0.969791 0.957445 0.968571 1 0.989599 

WebC15 1.008528 1.01778 1 1.014115 1.005483 

WebC16 1 1.029336 1.004714 1.0089 1.004714 

WebC17 0.909693 1 0.909693 0.909693 0.95926 

WebC18 0.996892 0.992907 0.998153 1 0.998153 

WebC19 1 0.985959 0.990295 0.983428 0.98693 

WebC20 0.975054 0.996377 0.975054 1 0.975054 

WebC21 0.935796 1 0.953516 0.967527 0.953516 

WebC22 0.925545 0.913059 0.941622 1 0.967591 

WebC23 0.964766 0.987863 1 0.952564 0.9618 

WebC24 1 0.966685 0.989735 0.999517 0.996076 

WebC25 0.966808 0.994707 0.955298 1 0.974747 

WebC26 0.993998 0.990452 0.993998 1 0.978485 

WebC27 0.986996 0.997232 0.994399 1 0.994399 

WebC28 1 0.992413 0.987813 0.998573 0.996579 

WebC29 0.99772 0.99245 0.997342 0.99772 1 

WebC30 0.99523 1 0.97682 0.984724 0.986289 

WebC31 0.99569 0.953162 0.99569 1 0.99569 

 

In this paper Shannon’s entropy method is used to rank the usability criteria of academic websites by 

calculating their objective weights, The main criteria contributing to the usability of academic websites were earlier 

identified as Content, Organization, Presentation and Interaction, and Trustworthiness, with 31 sub-criteria that were 

rated by usability experts using the linguistic term to incorporate the vagueness in the experts’ opinions. Based on the 

evaluation of the three experts, the “Presentation and Interaction” criteria are of the highest importance, followed by 

“Content” and then “Trustworthiness”. The “Organization” came with the lowest importance compared to the other 

three main criteria. In the sub-criteria, “Ease-of-use” scored the highest importance, followed by “Interactivity” and 

“Attractiveness”, While “Updates” scored the lowest importance in 31 criteria. The entropy method was found easier 

for decision-makers and more meaningful than performing pair-wise comparisons between the sub-criteria which is 

a tedious task and can be subject to personal opinions. Also, it wouldn’t make sense to ask someone for example 

whether they think content or organization is more important, unlike the process followed in the entropy method 

where the experts evaluate existing websites according to the usability criteria and based on that the objective weights 

of the criteria are computed.  

The WASPAS was later used to evaluate five Egyptian university websites based on the weights of the 31 usability 

criteria identified by the entropy method. Based on this evaluation, the fourth website scored the highest rank, 

followed by the second website, while the first website had the lowest rank. This method makes it easier to choose 

the best design from multiple alternatives based on their usability. 

5. Sensitivity Analysis  

In this section, the sensitivity analysis of the 𝛼 value is performed to show the robustness and reliability of the 

proposed entropy and WASPAS model. The goal of the sensitivity analysis is to show how the rank of alternatives 

change when changing the 𝛼 value. The 𝛼 value changes between 0.1 and 0.9. Table 8 shows the rank of alternatives 
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according to the different 𝛼 values.  From Figure 4, The rank of the alternatives doesn’t change in the 𝛼 value between 

0.1 and 0.7. But when the 𝛼 value was equal to 0.8 and 0.9, the rank of the alternatives changed, the second website 

became the best, followed by the fourth website, with the first website being the worst. All 𝛼 values resulted in the 

first alternative being the worst, and all 𝛼 values between 0.1 and 0.7 agreed the fourth alternative is the best. 

However, the 𝛼 value of 0.8 and 0.9 agreed the second alternative is the best. From this analysis, the alternatives' rank 

is not sensitive to the 𝛼 change. 

Table 8. The rank of alternatives after changing the 𝛼 value 

 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9 

WebA1 27.52037 24.53534 21.55031 18.56529 15.58026 12.59523 9.610204 6.625177 3.64015 

WebA2 27.68274 24.69751 21.71227 18.72703 15.74179 12.75656 9.77132 6.786082 3.800845 

WebA3 27.57273 24.58489 21.59705 18.60922 15.62138 12.63354 9.6457 6.657862 3.670023 

WebA4 27.71423 24.72434 21.73445 18.74456 15.75468 12.76479 9.774902 6.785015 3.795127 

WebA5 27.65553 24.66381 21.67209 18.68037 15.68865 12.69693 9.705207 6.713487 3.721766 

 

 

Figure 5. The rank of alternatives by sensitivity analysis. 

6. Conclusion and Future work 

This study was conducted methodically to propose a multi-stage MCDM framework using Shannon’s entropy method and 

the WASPAS method under the type-2 neutrosophic environment for evaluating the usability of academic websites. First, 

the usability criteria relevant to academic websites were identified through secondary research and literature review and 

were further validated by usability experts and websites’ users through a survey study which narrowed them down to four 

main usability criteria namely, Content, Organization, Presentation and Interaction, and Trustworthiness, with 31 sub-

criteria. The usability criteria weights were then computed using the entropy method to understand their relative 

importance. This study found that the most important criteria among the four main criteria were Presentation and 

Interaction; The least critical criteria of the main criteria was Organization. Meaning that the website’s organization is 

important but only after the content provided meets the users’ needs and is easy to comprehend and act on and can be 

trusted. Only then the organization would make sense. In terms of the sub-criteria, Ease of use scored the highest 

importance while updates were the least important sub-criteria. Five Egyptian university websites were ranked using the 

WASPAS method based on the criteria weights identified.   
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The major strength of this work in relation to previous studies to the best of our knowledge is that it is the first framework 

to address this large number of criteria; 31, covering almost all aspects of a university website in detail and precisely, instead 

of addressing few major usability criteria that can be interpreted differently by different designers.   

To further verify the soundness of this framework regarding the ranking of the usability criteria, it will be tested with a 

larger number of university website users. As for future work, the DEMATEL method can be used to explain the 

dependency between the identified usability criteria which will further help designers understand their contribution to the 

overall usability of academic websites. 

The contribution of this research study can be summarized as follows: 

1. The proposed framework provides an evaluation tool to diagnose weak usability areas of academic websites, so 

designers, developers, and universities can use it to improve the experiences provided through their websites. 2. This 

framework will help designers understand the key usability criteria to consider when designing new or evaluating existing 

academic websites, which is more suitable compared to the general usability heuristic rules used currently. 3. Providing 

designers with the relative importance of the different usability criteria contributing to academic websites, will help them 

prioritize and make educated design decisions and tradeoffs between the criteria, which in real-life scenarios it can be 

challenging to address all these criteria as they can be conflicting. 
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Appendix 

 

Table 1. The 4 main criteria and 31 sub criteria 

Trustworthiness WebC1 Content WebC2 Presentation & Interaction WebC3 Organization WebC4 

Does the website convey a good 

and trustworthy image? 
Is it what the user wants? Is it easy to comprehend and can 

the user act on it? 
Can the user find it? 

Security & privacy Updates Load time Design optimization 

Confirmation Personalization Response time Helpfulness 

Reliability Accuracy Ease of use Functionality 

Web credibility Use of technology and innovation Systematic cues Broken links 

Traffic Coverage Memorability Efficiency 

 Readability & legibility Services  Ease of navigation 

 Availability Attractiveness  

 Search engine friendliness Interactivity  

 Informative Accessibility  

  Markup validation  

  Learnability  

 

Table 2. The decision matrix by the first expert 
 WebA1 WebA2 WebA3 WebA4 WebA5 

WebC1 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC3 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 

WebC4 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 

WebC5 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC7 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC8 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC9 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC10 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 

WebC11 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 

WebC12 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC13 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC14 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC15 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC16 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC17 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC18 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC19 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 

WebC20 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC21 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC22 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 

WebC23 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 

WebC24 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC25 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC26 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC27 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC28 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC29 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC30 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 

WebC31 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 
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Table 3. The decision matrix by the second expert 
 WebA1 WebA2 WebA3 WebA4 WebA5 
WebC1 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC3 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 

WebC4 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC5 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC7 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC8 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC9 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC10 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC11 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC12 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC13 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC14 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC15 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC16 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC17 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC18 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC19 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 

WebC20 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC21 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC22 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC23 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC24 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC25 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC26 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC27 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC28 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC29 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC30 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC31 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

 

Table4. The decision matrix by the third expert 
 WebA1 WebA2 WebA3 WebA4 WebA5 
WebC1 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC3 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC4 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC5 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC7 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC8 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC9 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC10 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC11 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC12 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC13 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC14 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC15 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.5,0.45,0.5,0.4,0.35,0.5,0.35,0.3,0.45 

WebC16 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC17 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC18 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC19 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC20 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC21 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC22 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC23 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC24 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC25 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC26 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 

WebC27 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 

WebC28 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC29 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 

WebC30 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 0.35,0.35,0.1,0.5,0.75,0.8,0.5,0.75,0.65 0.4,0.3,0.35,0.5,0.45,0.6,0.45,0.4,0.6 

WebC31 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.2,0.2,0.1,0.65,0.8,0.85,0.45,0.8,0.7 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 0.95,0.9,0.95,0.1,0.1,0.05,0.05,0.05,0.05 0.7,0.75,0.8,0.15,0.2,0.25,0.1,0.15,0.2 
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Abstract: Piping systems tend to malfunction when a set parameter goes off the mark. The parameters 

which directly affect the structure and working of a pump piping system are known as critical factors. 

The processes influenced by these factors and consequently the underlying cause of failure have been 

thoroughly investigated through research. The interrelationship between them, however, remains a 

mystery. The ability of the plant supervisor or worker to combine their vast theoretical knowledge 

with actual data will be enhanced by exposing these cause-effect correlations among the problems 

commonly encountered in pump piping systems. The SVN DEMATEL (Decision-Making Trial-and-

Evaluation Laboratory) approach is used in this study to determine the predominant causes of pump 

piping system failures. By considering a group of expert perspectives to create a cause-and-effect 

relationship diagram, the DEMATEL approach allows one to determine and assess the most significant 

element. SVN sets in DEMATEL, likewise, eliminate uncertainty when making conclusions concerning 

failure relationships from the judgements provided by experts [1]. The focus of the failure analysis was 

divided into six groups: selection of pump, design of pump, construction, operation/maintenance, 

piping errors and commissioning of the system. A total of 26 factors were identified and were assigned 

to a relevant group. Each factor was further categorized into four levels based on the degree of 

influence using the methodology presented in this study. It was found that “Temperature” has the 

highest degree of influence over the other criteria whereas criteria like “Pressure” and “Power Supply” 

tend to be influenced by other factors. The proposed SVN-DEMATEL method would be suitable for 

qualitative analysis of different industrial systems.  

Keywords: DEMATEL model; Pump piping system; failure analysis; single-valued neutrosophic sets; 

linguistic variable. 

1. Introduction 

The decision-making trial and evaluation laboratory (DEMATEL) is a comprehensive analytical method 

for constructing a structural model indicating the causal relationships existent between complex factors 

[3]. The initial goal was to identify integrated solutions employing matrices and graphs to the 

fragmented and conflicting phenomena of world civilizations [4], because it is practical to see the 

structure of complicated causal interactions. The DEMATEL approach has become quite popular among 

https://scholar.google.co.in/citations?view_op=view_org&hl=en&org=14079291269976144350
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diverse fields. It is based on digraphs, which may split the related components into two groups: cause 

and effect. Digraphs, or directed graphs, are more useful than directionless graphs which can show the 

directed links between subsystems. A digraph can be used to show a communication network or a 

dominance relationship between people [5]. The digraph depicts a basic notion of contextual relation 

among the system's elements, with the numeral indicating the degree of influence [6]. Hence, this 

method can convert the relationship between the causes and effects of factors into an intelligible 

structural model of the system.  

The DEMATEL approach uses linguistic variables to perform a weighted analysis of the decision maker's 

opinion. It was conclusively shown that DEMATEL has a higher Spearman ranking coefficient in 

comparison to other multi criteria decision making (MCDM) analysis [7]. This implies that the 

relationship between two variables can be described using a monotonic function. This makes it more 

relevant to the industry as most of the parameters under the scope of analysis have a nonlinear 

connection and regressive in nature.  

However, the linguistic terms pose a major setback. To begin with, linguistic terms are not ideally suited 

to provide an in-depth analysis and a judgement further on since the information provided is often 

vague and incomplete [8]. Because of this incomplete information, the judgements of the decision 

makers might be misconstrued. To deal with the ambiguities that come with such estimation, it's a 

good idea to transform these linguistic terms into fuzzy numbers. A linguistic variable contains 

unique values (linguistic values) that depict the form of phrases or sentences one can find in a natural 

language [9]. This is commonly known as the fuzzy set. The generalization of fuzzy set lead to the 

development of another important analysis tool called “neutrosophic set”. To curtail its application to 

real life scientific problems, it was further developed to single values neutrosophic set (SVNS). Owing 

to the ease in application of SVNSs, they sets have been adapted in other scientific areas such as 

information technology, information system and decision support system for example, relational 

database systems, semantic web services, financial data set detection, new economy's growth, decline 

analysis and etc [10-15]. 

1.1. Literature Review 

The following section summarizes the results and gaps identified by various other research work related 

to neutrosophic sets, DEMATEL and pipeline failure analysis. Previous work mainly focuses on the 

integration of DEMATEL with other MCDM analysis methods. However, SVNS were seldom included. 

There has been certain research work aimed at different applications which used SVNS, but it was still 

lacking in proficiency as quadrant analysis was not used.  The table given below summarizes the recent 

research and the corresponding research gaps. Owing to these limitations, this paper aims to provide 

an integrated SVN-DEMATEL method to investigate pipeline failure.  
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The eight-step procedure of DEMATEL is followed wherein the linguistic variables are designated by 

truth, indeterminacy, and falsity membership [16].      

Table 1. Literature Review Summary. 

 

 Authors  Method  Application  Research gap  

Betty Chang [17] Fuzzy DEMATEL 

method  

Supply chain 

management (SCM)  

Does not employ 

SVNs to state 

assumptions in the 

dataset– No quadrant 

analysis  

GülçinBüyüközkan 

[18] 

Integrated DEMATEL-

ANP approach  

Renewable energy 

resources  

Integration of 

DEMATEL with fuzzy 

logic – No quadrant 

analysis  

EmreAkyuz [19] fuzzy DEMATEL 

method  

Shipboard operations  

(Operational hazards)  

Shows only cause-

effect diagram – does 

not portray the basic 

concept of contextual 

relationship and 

strengths of influence 

among the elements 

or criteria.  

Yuan-WeiDu [20] Hierarchical DEMATEL 

method  

Complex Systems  Integration of 

DEMTEL with other 

methods (fuzzy logic, 

SVNs)  

This paper establishes 

a method to approach 

complex problems 

with several factors.  

 

1.2. Future Scope 

The presented study can be used as a basis for ranking data based on their significance, which 

consecutively can be used to generate machine learning models for the system. The output of this 

method could be used to further train an AI model to make an informed decision about a certain 

process. This could be incorporated in adaptive control systems. On a much rudimentary level, the 

machine can be trained to display the most significant control parameters that can be controlled to 

reduce errors using which, a trained professional can make the decisions. 

2. SVN-DEMATEL  

The algorithm used in DEMATEL is the framework of the proposed SVN-DEMATEL. Instead of real 

numbers representing the linguistic variables as seen in the traditional methodology, SVNS are used 
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to deal with uncertainty. Apart from the inclusion of SVNS, the proposed method also incorporates the 

relative importance of the decision-maker weight. Boran et al. [21] suggested a proportion equation to 

approximate the relative weights of each decision maker. This bears accurate and crisper computational 

results rather than using equal weights for all decision makers. The three memberships of the linguistic 

variables are re-defined into real numbers to aid mathematical calculations. Radwan and Fouda [22] 

proposed the concept of average as an equation which is employed in this proposed method. Unlike 

the original DEMATEL, this method rules out the need to find multiplicative inverse of a matrix. The 

establishment of four types of criteria, also known as quadrant analysis, is extended by this method 

using causal-effect diagram. 

 

2.1 Proposed SVN-DEMATEL algorithm: 
 

Step-1. Construction of direct-relation matrix 

The critical factors relevant to the study are identified and group into a matrix X of size M x M where 

M is the number of criteria. This matrix depicts the interrelation between pairs of elements using a 

linguistic scale. Hence, a total of N^2 relations are obtained [23]. 

 

Step-2. Finding the relative weights of decision-makers. 

 

The aggregated crisp matrix is formulated in consideration of the weight of each decision-maker’s 

judgment. Based on the importance of each decision maker, an SVNN is assigned which is used to 

calculate the overall distinctive weights [24]. Because decision-makers' work experience and expertise 

fluctuate regularly, this is critical to the success of research analysis. 

 

The linguistic variables used for relative importance weights of decision-makers and their respective 

SVNNs are shown in Table 2 [25]. If the SVNN for the kth expert's relative importance is 𝜆𝑘  =  (𝑇𝑘 , 𝐼𝑘 , 𝐹𝑘), 

then the value of the relative weight for the kth expert can be calculated using the equation: 

 

𝜆𝑘 =
𝑇𝑘(𝑥) + 𝐼𝑘(𝑥)((𝑇𝑘(𝑥)/𝑇𝑘(𝑥) + 𝐹𝑘(𝑥)))

∑  𝑙
𝑘=1  𝑇𝑘(𝑥) + 𝐼𝑘(𝑥)((𝑇𝑘(𝑥)/𝑇𝑘(𝑥) + 𝐹𝑘(𝑥)))

 

(𝜆𝑘  ≥  0,   𝜆𝑘 = 1, l is the number of decision makers)  

Sample Calculation:  

Value of denominator (𝐴) =  [0.9 +  0.1(0.9/1)] +  [0.5 +  0.4(0.5/0.95)]  + [0.35 +  0.6(0.35/1.05)]  =

 2.250526316 

For example, substituting the values of Linguistic Variable “Very important” and that of A 

𝜆𝑘1  =  [0.9 +  0.1(0.9/1)]/𝐴 =  𝟎. 𝟒𝟑𝟗𝟖𝟗𝟕𝟏𝟎𝟎𝟏 

 

 

Step-3. Construction of aggregated direct-relation matrix (AGDRM) 

         ------------(1) 
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The opinions of each decision makers are compiled into initial direct relation matrices. By including 

the relative weights, they can be merged into a collective matrix that represent the overall correlations 

between the factors. Let the SVN given by the kth expert on the assessment of criterion i on j be 

𝑧𝑘  (𝑖, 𝑗)  =  (𝑇𝑘  (𝑖, 𝑗), 𝐼𝑘  (𝑖, 𝑗), 𝐹𝑘 (𝑖, 𝑗)) [20]. The procedure of Single Valued Neutrosophic Set Weighted 

Aggregation (SVNSWA) is used [21]. Note that x(i,j) represents the influence level of criterion i on j. 

𝑎𝑖𝑗  =  𝑆𝑉𝑁𝑆𝑊𝐴 (𝑧1 [𝑖, 𝑗], 𝑧2 [𝑖, 𝑗], … , 𝑧𝑘  [𝑖, 𝑗] )  

 = ∑𝜆𝒌𝑧𝒊𝒋
𝒌   =  [1 − ∏ (1 − 𝑇𝑗)

𝑤𝑗𝑙
𝑘=1 , ∏ (𝐼𝑗)

𝑤𝑗𝑙
𝑘=1 , ∏ (𝐹𝑗)

𝑤𝑗𝑙
𝑘=1  ] 

 
     𝑖 =  1, 2, 3, 4, . . . , 𝑚;  𝑗 =  1, 2, 3, 4, . . . , 𝑛, 

 

Step-4.. Convert the SVNNs to real numbers 

 

 Using the following equation, convert the aggregated single neutrosophic relation matrix to a real 

number    matrix: 

 𝑃(𝑧)  =  [3 +  𝑇 −  2𝐼 –  𝐹] / 4 

 

Step-5. Normalization of AGDRM 

 

Normalized DRM (matrix N) is computed using the equation: 

𝑁 =  𝑘 ×  𝑅 

 

where,  𝑘 = min ((1/𝑚𝑎𝑥 ∑ |𝑎𝑖𝑗|   ),   (1/𝑚𝑎𝑥 ∑ |𝑎𝑖𝑗|   𝑛
𝑖=1

𝑛
𝑗=1 )), i, j ∈ {1,2,3, . . ., n} 

and R is the Aggregated DRM with real numbers. 

 

Step-6.. The Total Relation Matrix, T, is computed using the equation below: 

 

𝑇 =  𝑁 (𝐼 −  𝑁)−1                                                                                                          -------------(6) 

(‘I’ is an identity matrix of rank M) 

Step-7. Construct a causal diagram. Using the following equation, calculate H and V from TRM. 

 

Given T, 

 

𝑇 =  [ 𝑡𝑦]
𝑛 𝑋 𝑛

   𝑖, 𝑗 =  1,2, . . . . 𝑛, and using the following equation: 

H= [∑ 𝑡𝑦
𝑛
𝑖=1 ]

𝑙 𝑋 𝑛
 =  [𝑡(𝑗)]𝑙 𝑋 𝑛, 

V=[∑ 𝑡𝑦
𝑛
𝑖=1 ]

𝑛 𝑋  𝑙
 = [𝑡(𝑖)]𝑛 𝑋 𝑙 

where 𝐻 signifies the total number of rows in the matrix and 𝑉 denotes the total number of columns. 

As a result, the values of (𝐻 + 𝑉) and (𝐻 − 𝑉) are computed separately in different columns. If (H-V) is 

positive and (𝐻 + 𝑉) is large, a criterion is classified as a cause group. It's classified as an effect group 

if (𝐻 − 𝑉) is negative and (𝐻 + 𝑉) is small [28]. 

8. Segregation of criteria 

 

   ------------(2) 

          -------------(3) 

                           -------------(4) 

-------------(5) 

                                 ------------(7) 

                                 ------------(8) 
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The values of (𝐻 + 𝑉) and (𝐻 − 𝑉) are employed as Cartesian plane coordinates (𝐻 + 𝑉, 𝐻 − 𝑉) to 

divide the criteria into four classes [29]. 

The case of a pump piping system failure is presented in detail. 

2.2 Criteria and Linguistic scale  

Criteria that influence the pump piping system are identified and it is represented in the form of fish 

bone diagram shown in Figure 1. There are 26 such criteria based on: 

Selection of pump: Working fluid (F1), Design pressure (F2), Temperature (F3), Geographical location 

(F4),  

Construction: Misalignment (F5), Support placement (F6), Valve placement (F7), Pipe strain (F8), 

Coupling (F9), 

Operation and Maintenance:  Power overloading (F10), Instrument malfunction (F11), Pressure head 

(F12), Lubrication (F13), Temperature (F14), 

Piping errors: Valve placement (F15), Temporary strainer (F16), Layout (F17), Pipe run (F18), Water 

hammering (F19),  

Design of Pump: Working fluid (F20), Vibration damping (F21), Material of casing (F22), Pressure 

head (F23), 

Commissioning: Nature of priming (F24), Power supply (F25) and Strainer clogging (F26). 

Table 2 represents the five-point linguistic scale using which these criteria will be assessed. The 

pairwise comparison method is made use in judgments. 
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Fig. 1. Ishikawa Diagram of the Pump piping system failures. 

Linguistic variable for 

relative importance 

SVNN {T, I, F } 

Very important (VI) {0.90, 0.10, 0.10} 

Important (I) {0.80, 0.20, 0.15} 

Medium (M) {0.50, 0.40, 0.45} 

Unimportant (UI) {0.35, 0.60, 0.70} 

Very unimportant (VUI) {0.10, 0.80, 0.90} 

 

Table 2 Linguistic Variable for relative importance of decision makers [19] 

 

 

 

 

Table 3 Linguistic Scale used in study [24] 

2.3 Illustrations 

Piping Engineer: 

      Piping engineers are engineering professionals who are responsible for the design of piping 

systems that transport fluids such as oil, gas, water, and waste from one location to another. Their work 

involves design, material selection, stress analysis and commissioning of piping systems.  

Project Manager: 

Project managers oversee planning, procurement, and execution of any activity with a defined scope, 

start, and end date. 

Quality Engineer: 

A quality engineer is a professional who manages and implements the quality assurance and control 

systems of a company. Piping engineers don’t work independently but rather work as a team 

comprising of members from piping, mechanical, process instrumentation divisions. To ensure the 

smooth coordination within the team as well as suggest corrective measures, a quality engineer is 

crucial to the team.  

Maintenance Engineer: 

     In industries, maintenance engineers oversee keeping equipment and machinery working smoothly. 

They are required to constantly upkeep the support equipment such as valves and FRL while keeping 

an eye on the pipe layout. Since long maintenance times could prove to be a costly affair to the 

company, maintenance engineers need to have a solid understanding about the system to perform 

quick actions when needed. 

Linguistic terms for level of 

influence 

SVNS {T, I, F } 

None (1) {0.00, 1.00, 1.00} 

Low (2) {0.20, 0.85, 0.80} 

Medium (3) {0.40, 0.65, 0.60} 

High (4) {0.60, 0.35, 0.40} 

Very high (5) {0.80, 0.15, 0.20} 
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All decision-makers specialize in assessing pump piping system. The decision-makers were formally 

approached by letter to rank criteria based on the degree of influence over other factors utilizing the 

linguistic scale to evaluate pipeline failures. The data thus obtained from them are applied to the 

proposed SVNS-DEMATEL method. 

 

2.4 Implementation 

The following computations are carried out using the suggested algorithm: 

Step - 1. Construction of Direct Relation Matrix for each individual decision-maker i.e., DM1, DM2 

and DM3 give their judgment regarding the influence of the criteria on failure in pump piping systems. 

The following table shows the initial direct relation matrix i.e., judgments of one of the decision-maker. 

Linguistic terms are involved in the matrix to represent the correlations between the criteria as 

mentioned below.  

Step -2. Finding the relative weights of decision-makers. 𝜆, which represents the relative weights of 

decision-makers are computed using equation 1.  

 

Table 4.  Judgments of criteria (DM1) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

1 x 5 5 5 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 5 5 5 5 2 2 2 

2 5 X 5 5 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 5 5 5 5 2 2 2 

3 5 5 x 5 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 5 5 5 5 2 2 2 

4 3 3 3 x 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 

5 1 1 1 1 x 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 4 4 4 

6 1 1 1 1 5 x 5 5 5 3 3 3 3 3 3 3 3 3 3 2 2 2 2 3 3 3 

7 1 1 1 1 3 3 x 3 3 3 3 3 3 3 4 4 4 4 4 1 1 1 1 3 3 3 

8 3 3 3 3 3 3 3 x 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 3 3 3 

9 3 3 3 3 3 3 3 3 x 3 3 3 3 3 2 2 2 2 2 3 3 3 3 4 4 4 

10 3 3 3 3 3 3 3 3 4 x 5 5 5 5 1 1 1 1 1 2 2 2 2 5 5 5 

11 1 1 1 1 4 4 4 4 4 5 x 5 5 5 3 3 3 3 3 1 1 1 1 5 5 5 

12 5 5 5 5 5 5 5 5 5 5 5 x 5 5 3 3 3 3 3 5 5 5 5 5 5 5 

13 3 3 3 3 3 3 3 3 3 4 4 4 x 4 2 2 2 2 2 1 1 1 1 2 2 2 

14 5 5 5 5 2 2 2 2 2 4 4 4 4 X 2 2 2 2 2 5 5 5 5 2 2 2 

15 2 2 2 2 3 3 3 3 3 3 3 3 3 3 x 4 4 4 4 1 1 1 1 3 3 3 

16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 X 2 2 2 2 2 2 2 4 4 4 

17 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 x 4 4 2 2 2 2 3 3 3 

18 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 x 3 2 2 2 2 3 3 3 

19 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 X 3 3 3 3 4 4 4 

20 5 5 5 5 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 x 5 5 5 2 2 2 

21 2 2 2 2 3 3 3 3 3 4 4 4 4 4 2 2 2 2 2 2 x 2 2 3 3 3 

22 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 5 5 x 5 2 2 2 

23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 5 5 5 x 5 5 5 

24 3 3 3 3 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 1 1 1 1 x 5 5 

25 4 4 4 4 4 4 4 4 4 5 5 5 5 5 1 1 1 1 1 4 4 4 4 5 X 5 

26 1 1 1 1 4 4 4 4 4 5 5 5 5 5 2 2 2 2 2 1 1 1 1 5 5 x 
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 From Table 4, note that the diagonal elements are taken as x, purely for programming purposes only.  

Step -3. Construct the AGDRM using Equation (2) 

 

Table 5. Aggregated DRM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step -4. Construction of DRM with real numbers. 

Using equation (3), the aggregated neutrosophic matrix is translated into a DRM with real numbers. 

The matrices are tabulated as below [25]. 

Table 6. DRM with real numbers  

 

 F1 F2 F3…………………….. F25 F26 

F1 0.00 0.6 0.59 0.33 0.55 

Criteria F1 F2   ----------- F25 F26 

F1 

0.0000
1.0000
1.0000

 
0.6648
0.2932
0.3352

 
0.1998
0.8380
0.8002

 
0.5640
0.3958
0.4360

 

F2 

0.6061
0.3359
0.3939

 
0.000
1.000
1.000

 
0.1998
0.8380
0.8002

 
0.1998
0.8380
0.8002

 

F3 

0.7051
0.2412
0.2949

 
0.6648
0.2932
0.3352

 
0.1998
0.8380
0.8002

 
0.1998
0.8380
0.8002

 

F4 

0.2949
0.7448
0.7051

 
0.2949
0.7448
0.7051

 
0.2949
0.7448
0.7051

 
0.2949
0.7448
0.7051

 

F5 

. 

. 

0.2006
0.7738
0.7994

 
0.2006
0.7738
0.7994

 
0.5583
0.4072
0.4417

 
0.5583
0.4072
0.4417

 

F22 

0.5999
0.3501
0.4001

 
0.5999
0.3501
0.4001

 
0.2543
0.7961
0.7457

 
0.2543
0.7961
0.7457

 

F23 

0.7630
0.1846
0.2370

 
0.7630
0.1846
0.2370

 
0.7383
0.2147
0.2617

 
0.7383
0.2147
0.2617

 

F24 

0.3999
0.6501
0.6001

 
0.3999
0.6501
0.6001

 
0.7383
0.2147
0.2617

 
0.7383
0.2147
0.2617

 

F25 

0.5583
0.4072
0.4417

 
0.5583
0.4072
0.4417

 
0.0000
1.0000
1.0000

 
0.7383
0.2147
0.2617

 

F26 

0.1173
0.9001
0.8827

 
0.1173
0.9001
0.8827

 
0.7383
0.2147
0.2617

 
0.0000
1.0000
1.0000

 



Neutrosophic Sets and Systems, Vol.53, 2023     211  

 

 

R. Sundareswaran, S. Vijayan, Sneha S, Srinath Venkatesh, Vishnu Prasad P R, Viswapriya G , Lakshmi Narayan Mishra 

and Said Broumi, Failure analysis of pump piping system using DEMATEL SVN methodology  

F2 0.58 0.00 0.58 0.33 0.33 

F3 

. 

. 

0.63 0.6 0.00 0.33 0.33 

F25 0.55 0.55 0.55 0.00 0.64 

F26 0.3 0.3 0.3 0.64 0.00 

 

Step -5. Construct normalized DRM. 

To begin with, the summation of rows and columns of DRM is made to construct the normalized. 

 

Table 7. Summation of Rows and Columns  

 

 

 

 

 

 

 

The maximum number derived from the summation of rows and the summation of columns is 

determined. Then, equation (5) is used to compute k using these maximum numbers. 

By multiplying the aggregated DRM by the value of k, the DRM is normalised (equation (4)). The 

normalised DRM with real values is represented as a 26 x 26 matrix as shown in the table below. 

Table 8. Normalized DRM  

 

 

 

 

 

 

 

 

 

 

Step -6. Obtaining total-relation matrix 

(TRM) 

Equation (6) is used to compute TRM. TRM is calculated by multiplying the inverse of DRM with the 

difference of identity matrix and DRM The results are tabulated as follows: 

Table 9. Total Relation Matrix  

 

 F1 F2 F3 . . . . . . . . . . .  F21 F22 

F1 0.137452 0.17820384 0.17853866 0.1590871 0.17605889 

Criteria Row Sum Column Sum 

F1 11.00 23.68 

F2 11.12 23.76 

F3 

. 

. 

11.25 23.94 

F24 12.21 23.50 

F25 13.13 23.58 

F26 11.38 24.06 

 F1 F2 F3 ……… F25 F26 

F1 0.00 0.04 0.04 0.02 0.04 

F2 0.04 0.00 0.04 0.02 0.02 

F3 

. 

. 

0.04 0.04 0.00 0.03 0.03 

F25 0.04 0.04 0.04 0.00 0.04 

F26 0.02 0.02 0.02 0.04 0.00 
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F2 0.17801681 0.13949323 0.17950661 0.1603709 0.16320226 

F3 

. 

. 

0.18218722 0.18071384 0.14142555 0.16118724 0.16408375 

F21 0.19875082 0.19925168 0.2004106 0.1620496 0.20802736 

F22 0.16159569 0.16198612 0.16307218 0.18533314 0.14491719 

 

Step -7. Plot casual diagram. 

The sum of rows (𝐻) and the sum of columns (𝑉) are calculated to obtain the Cause-and-Effect 

diagram. 𝐻 + 𝑉 and 𝐻 − 𝑉 are calculated using these two summations. The results can be acquired by 

translating the (𝐻 + 𝑉, 𝐻 − 𝑉) data set onto the cartesian plane. Table 5 gives the calculated 

performance of criteria. 

 

Table 5 Performance of the Criteria 

 

Summation of Rows of TRM 

[H] 

Summation of Columns of 

TRM  

[V]                [H+V] [H-V] 

4.273448111482863 4.571708319732535 8.845156431215397 0.2982602082496717 

4.319454924785043 4.585681466062835 8.905136390847877 0.266226541277792 

4.35176372479797 4.619417399098856 8.971181123896827 0.2676536743008855 

4.104556749171913 4.550125169053278 8.65468191822519 0.445568419881365 

4.622340474030425 4.645100601369393 9.267441075399818 0.022760127338967706 

4.226040326244855 4.586126600106721 8.812166926351576 0.36008627386186554 

4.061933426960683 4.740230474655422 8.802163901616105 0.6782970476947394 

4.124326337331055 4.837887343076521 8.962213680407576 0.7135610057454667 

4.094015191818948 4.63753832340008 8.731553515219028 0.5435231315811322 

4.416001893528742 4.842298184588803 9.258300078117546 0.42629629106006117 

4.619182296562277 5.003907315135014 9.623089611697292 0.38472501857273667 

5.7028723886376484 5.0671875895313025 10.770059978168952 -0.6356847991063459 

3.865264956267218 5.046966406364441 8.912231362631658 1.181701450097223 

4.761954782723879 5.09534063462179 9.857295417345668 0.33338585189791115 

4.141719045979212 4.063762855590824 8.205481901570035 -0.07795619038838808 

4.573492093775418 3.9744198005428304 8.547911894318249 -0.599072293232588 
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4.68620928200716 4.067925222137253 8.754134504144414 -0.6182840598699064 

4.555388693643281 3.9973845247800885 8.55277321842337 -0.5580041688631927 

5.486932197999035 4.064814466974208 9.551746664973244 -1.4221177310248274 

4.606972932704049 4.223800692369891 8.83077362507394 -0.383172240334158 

4.116863397367269 4.288953433924168 8.405816831291437 0.1720900365568987 

4.114405090712399 4.22123009801596 8.335635188728359 0.10682500730356104 

5.768493768672305 4.253444220034323 10.021937988706629 -1.5150495486379816 

4.70633151280972 4.555342307719526 9.261673820529246 -0.15098920509019376 

5.053124279140549 4.571215860265098 9.624340139405646 -0.48190841887545144 

4.417188040006047 4.658466610008801 9.075654650014847 0.24127857000275377 

3. Result and Discussion 

The 𝑯 + 𝑽 and 𝑯 − 𝑽 values are plotted into a casual diagram. The Fig. 2 shows the casual diagram 

between the cause- and-effect group of criteria, being separated by the 𝑯 + 𝑽 axis 

Fig. 2 Casual diagram for Criteria 

 

The causal diagram helps us in visualizing the cause criteria and the effect criteria. The cause 

criteria are Working fluid, Design pressure, Temperature, Geographical location, Misalignment, 

Support placement, Pipe strain, Coupling, Power overloading, Instrument malfunction, Lubrication, 
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Temperature, Vibration damping, Material of casing, Strainer clogging as their H-V values is positive. 

The effect criteria Pressure head, Valve placement, Temporary strainer, Layout, Pipe run, Water 

hammering, working fluid, Pressure head, Nature of priming, Power supply as their H-V values are 

negative. 

3.1 Segregation of criteria.  

The coordinates of (𝐻 + 𝑉, 𝐻 − 𝑉) can be used to better analyze the figure. There are four 

different sorts of criterion. Based on the coordinates of (𝐻 + 𝑉, 𝐻 − 𝑉), all criteria in this study may be 

divided into four quadrants. There are four basic types of instances. Fig. 3 shows the criteria details in 

quadrant analysis. Note that the value of (𝐻 + 𝑉) is taken as large or small in comparison to the mean 

of all the values (9.0523) 

Case(i): When (𝐻 +  𝑉) is large and (𝐻 +  𝑉) is positive, the first kind occurs. This suggests that 

the factors are cause criteria, as well as a driving factor to resolve critical issues. Hence, the criterion 

“Temperature” is the most governing element on other factors. 

Case(ii): When 𝐻 − 𝑉 is positive and 𝐻 + 𝑉 is small. It demonstrates that factors are self-

contained and can only impact a small number of others. In the selection of the factor for studying the 

pump piping system failure, the criterion “Material of casing” is a stand-alone criterion that has no 

bearing on other factors. 

Case(iii): When 𝐻 − 𝑉 is negative and 𝐻 + 𝑉 is large. It shows that the factors turn out to be an 

effect criterion, which can be enhanced. The factor “Pressure head” is an effect criterion which is highly 

contingent to other factors. 

Case(iv): When 𝐻 − 𝑉 is negative and 𝐻 + 𝑉 is small. It demonstrates that the factors are self-

contained and are scarcely affected by other factors. In our case, “Valve placement” is considered as an 

independent criterion.  

 From the above cases, we can conclude that “Temperature” and “Pressure head” are the most 

important factors which have to be taken into consideration while making pump piping system failure 

analysis. 
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Fig.3 Quadrant Analysis 

4. Conclusion 

The DEMATEL method has proved itself to be a powerful tool in the industry ever since it was first 

proposed. It is applicable to almost all engineering systems and provides comprehensible results which 

can be used to improve the system. A study indicated that DEMATEL is most used in conjunction with 

ANP. This is followed by the integrated Fuzzy-DEMATEL method which has a major advantage in 

situations dealing with uncertainty. The present study proposes an incorporation of neutrosophic sets 

into the classical DEMATEL to understand the fundamentals of the application in a much more 

sophisticated manner. More specifically, Single Valued Neutrosophic (SVN) sets are used which has the 

advantage of its three membership functions to tackle indeterminacy. However, the method is not 

without limitations. Despite the incorporation of neutrosophic sets to reduce ‘vagueness’, the opinions 

of the decision makers may vary based on their mood, judgement, and accuracy of perception. The 

reliability of the input data needs to be verified before proceeding with the analysis. In this paper, the 

proposed method is utilized in assessing the piping failure where a total of 26 critical factors were 

identified. The extensive review of criteria by the Truth, Indeterminacy, and Falsity memberships of 

SVNS successfully divides these criteria into two groups: cause and effect. The results indicate that the 

criterion “Temperature” is the most important cause in influencing other factors that must be studied 

during the pump piping system failure. This is in line with the available theoretical knowledge. 

Temperature change creates expansion or contraction which can lead to thermal stresses thus altering 

the entire working conditions of the piping system. Higher temperatures can also imply increased 

corrosion rate. The criterion “Pressure” on the other hand, is highly influenced by changes in other 

factors. This is a particularly useful detail since by placing tighter control mechanisms on the pressure 

head, the efficiency of the entire system can be directly improved. The results also show that even 

though factors like material, pipe layout and valve placement can directly contribute to the failure of 

the system, their inter-relationship with other factors are negligibly low and need not be prioritised 

over others. The procedure implemented in this paper can be successfully applied to various other 

systems and obtain intelligible results despite any level of uncertainty involved.  

Scarecely influencing 
other criteria:

•Material of Casing
•Geographical 

Location

•Vibration Damping

Simply influencing 
other criteria:

•Temperature
•Instrument 

Malfunction

Scarecely 
influenced by 
other criteria:

•Valve Placement
•Pipe Run

Simply 
influenced by 
other criteria:

•Pressure Head
•Power Supply
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Abstract: One of the disadvantages of the point estimate in survey sampling is that it fluctuates from 

sample to sample due to sampling error, as the estimator only provides a point value for the parameter 

under discussion. The neutrosophic approach, pioneered by Florentin Smarandache, is an excellent tool 

for estimating the parameters under consideration in sampling theory since it yields interval estimates in 

which the parameter lies with a very high probability. As a result, the neutrosophic technique, which is a 

generalization of classical approach, is used to deal with ambiguous, indeterminate, and uncertain data. 

In this investigation, we suggest a new general family of ratio and exponential ratio type estimators for 

the elevated estimation of neutrosophic population mean of the primary variable utilizing known 

neutrosophic auxiliary parameters. For the first degree approximation, the bias and Mean Squared Error 

(MSE) of the suggested estimators are computed. The neutrosophic optimum values of the characterizing 

constants are determined, as well as the minimum value of the neutrosophic MSE of the suggested 

estimator is obtained for these optimum values of the characterizing scalars. Because the minimum MSE 

of the classical estimators of population mean lies inside the estimated interval of the neutrosophic 

estimators, the neutrosophic estimators are better than the equivalent classical estimators. The empirical 

investigation, which used both real and simulated data sets, backs up the theoretical findings. For 

practical utility in various areas of applications, the estimator with the lowest MSE or highest Percentage 

Relative Efficiency (PRE) is recommended.  

Keywords: Classical Ratio Estimators, Neutrosophic Estimators, Bias, MSE, PRE, Simulation.  

_____________________________________________________________________________________________ 

 
1.  Introduction 

Due to time and financial constraints, sampling becomes unavoidable when the population is big. The 

most apt estimator for the parameter under consideration is the corresponding statistic and so is the 

sample mean ( y ) for the population mean (Y ) of main variable Y . Although y is an unbiased estimator 

of Y , its sampling variance is rather high, hence the sampling distribution of y will not be very close to 

the genuine Y . Therefore, we look for a population mean estimator that is even biased yet has a 

sampling distribution closer to the true Y . The employment of an auxiliary variable ( X ) having a high 

degree of positive or negative association with Y achieves the goal of finding efficient estimators. The use 

of supplementary information to elevate the effectiveness of the estimators of the parameters under 

consideration is well established in sampling theory. For elevated estimation of Y using positively and 

negatively correlated auxiliary information with main variable, respectively, ratio and product technique 

of estimation processes are utilized with the condition that the line of regression pass through origin. If 

the line does not cross through the origin, the regression method of estimation is favored above the ratio 

and product approaches. The ratio method is preferred in real-world applications due to its broad 

mailto:drskystats@gmail.com
mailto:fsmarandache@gmail.com
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applicability; for example, area and production in crop yield applications, income and investment in 

business and economics, hospital infrastructure and health are some examples of applications, where 

ratio estimators are used to estimate Y . As a result, the current research focuses on estimating Y using 

known positively associated auxiliary variable.  

 
1.2. Estimation under Classical Sampling Theory 

In estimation methods of classical sampling theory, the data utilized for elevated estimation of Y using 

ratio, product, or regression type estimators are known and produced by crisp numbers. In classical 

statistics, various authors worked on numerous estimators of Y in the presence of known X and 

suggested various ratio type estimators. In classical sampling theory, [1] introduced the conventional 

ratio estimator of Y using the positively correlated X . As an auxiliary parameter, he utilized the known 

population mean ( X ) of X . Various authors later used well-known auxiliary parameters like coefficient 

of variation (CV), coefficient of skewness, coefficient of kurtosis, standard deviation, quartiles, and so on 

to improve the estimation of Y . [2] worked on a modified ratio estimator of Y utilizing the known CV of 

X . For the elevated estimation of Y , [3] proposed the exponential ratio estimator employing a known 

X . [4] proposed two ratio estimators for more efficient estimation of Y , utilizing known coefficient of 

kurtosis and the CV of X . [5] focused on improving Y estimate utilizing known population correlation 

coefficient between Y  and X , and their results outperformed rival estimators. For increased estimate of

Y , [6] suggested the modifications on ratio estimator of Y , that makes the use of known coefficient of 

kurtosis of X . [7] proposed several modified ratio estimators of Y based on known information on some 

well-known auxiliary parameters. [8] suggested two ratio type estimators of Y utilizing known skewness 

and kurtosis of X , which outperformed rival estimators. [9] presented an increased estimation approach 

for population mean using auxiliary parameters on characteristic. [10] worked in the direction of  

improving a family of ratio and product estimators of Y with known parameters of X and [11] worked 

on a generic family of estimators of Y using transformed X . [12] proposed a generalized family of dual 

to ratio-cum-product Y estimators with known auxiliary parameters. [13] developed a new 

ratio estimator for Y utilizing linear transformation of X as minimum and maximum values. Using 

auxiliary parameters, [14] provided several efficient estimators for Y . [15] introduced a new family of Y
estimators based on the main variable's known population median and shown improvement over the 

estimators in competition. [16] proposed a new modified ratio type estimator based on an auxiliary 

variable's exponential parameter. [17] proposed an improved family of Y estimators utilizing known 

parameters of Y and X  for improving the efficiency of the estimators, [18] used some well-known 

traditional and non-traditional auxiliary parameters. Many more authors have attempted to improve Y
estimation using known data on traditional and non-traditional, robust and non-robust auxiliary 

parameters in classical sampling theory. 

 

1.3. Estimation under Neutrosophic Sampling Theory 

The data in classical sampling theory is mostly deterministic with no uncertainty in the measurements of 

the observations for the characteristics under investigation, however, we frequently encounter difficulties 

in everyday life where the data for the attributes under examination are not determined, for instance the 

measurement of temperature at any place along with other applications including information 

technology, information systems, decision support systems, financial data set detection, new economy 

growth, decline analysis, and more. In such cases, we seek alternate ways for dealing with undetermined 
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data, and the fuzzy logic pioneered by Prof. Lofti A. Zadeh in 1965 gives a solution for dealing with such 

data when exact measurements of the variable under examination are unavailable. Although fuzzy 

statistics deals with ambiguous, unclear, or imprecise data, it does not take into account the 

indeterminacy measurements. Neutosophic logic, further, is a generalized fuzzy logic that measures 

indeterminacy together with the determinate component of the observations and is utilized to analyze 

when the observations are imprecise or ambiguous, [19, 20]. [21] utilized the fuzzy logic in decision 

making for more precise decisions. Later different procedures using fuzzy logic have been developed and 

utilized extensively for making decisions in different areas of applications, [22-26]. [27] mentioned that 

the complex fuzzy sets are the advanced fuzzy sets and its generalization is the complex neutrosophic set. 

[28] suggested a diagram of fuzzy sets along with the generalizations of the sets and utilized the interval-

valued neutrosophic sets for making decisions.  

According to [29], Neutosophic statistics are used when data has some indeterminacy. 

Neutrosophic statistics is the extended form of classical statistics and are applied when the observations 

in the population or sample are imprecise, indeterminate, or vague. Further he mentioned that the 

methods of Neutrosophic statistics are utilized to analyze Neutrosophic data, which is indeterminate to 

some degree and the sample size may not be an exact number. In their works, [30] and [19] argue that 

neutrosophic statistics are particularly useful and acceptable for use in the system with the uncertainty. 

[31] used neutrosophic statistics to analyze the effect on scale and anisotropy for neutrosophic numbers 

of rock joint roughness coefficient. [20] focused on a Neutrosophic analysis of variance for university 

student data. [32] used a neutrosophic soft matrix (NSM) and relative weights of experts to develop an 

algorithmic strategy for group decision making (GDM) challenges. [33] used neutrosophic statistics to 

examine data from diabetes patients who had undergone a new diagnosis test. [34] worked on the 

estimation of the ratio of a crisp variable and a neutrosophic variable and shown improvement over the 

classical ratio method of estimation. [35] employed NEWMA chart and recurrent sampling to monitor 

road traffic crashes using neutrosophic statistics and in his research, [36] used neutrosophic statistics to 

develop a new goodness of fit test utilizing unclear parameters. In a study of skewness and kurtosis 

estimators of wind speed distributions under indeterminacy, [37] employed neutrosophic statistics. [38] 

devised a decision-making approach for determining the best fit of those damages in a neutrosophic 

environment, with the badly damaged machine receiving preference. [39] developed several new single-

valued neutrosophic graph (SVNG) concepts, stating that the fuzzy set and the neutrosophic set are two 

effective instruments for dealing with the uncertainties and ambiguity of any real-world scenario.  

When dealing with the uncertainties of a real-life scenario, the neutrosophic set outperforms the 

fuzzy set. [40] used neutrosophic parameterized hypersoft set theory to develop a decision-making 

application. They first conceptualized the neutrosophic parameterized hypersoft set, as well as some of its 

basic features and operations, and then used this theory to construct a decision-making-based method. 

For both one and two sample hypothesis testing situations, [41] suggested a modified Sign test that takes 

into account the indeterminate condition and true data form. They evaluated the suggested improved 

Sign test using two real data sets: covid-19 reproduction rate and covid-positive daily cases in ICU in 

Pakistan, and found that the suggested methodologies are appropriate for the problems of nonparametric 

in decision-making involving interval-valued data. To handle medical diagnostics and decision-making 

difficulties, [42] worked on algorithms for a generalization of multipolar neutrosophic soft set with 

measures of information. They proposed a general multipolar neutrosophic soft set, complete with 

operations and fundamental features. Later, they extended it to tackle decision-making problems by 

introducing various information measures for the generalization of multipolar neutrosophic soft set, such 

as distance, similarity, and correlation coefficient. [43] mentioned that in traditional survey sample 

studies where data is definite, certain, and unambiguous, the estimates are a single valued crisp results 
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that may be incorrect, overestimated, or understated, which might be a disadvantage. There are a variety 

of scenarios where data is neutrosophic in nature, and this is when Neutrosophic statistics is used instead 

of traditional approaches.  

Uncertain and ambiguous values of the variables, non-clear contentions, and imprecise interval 

values are examples of neutrosophic data. As a result, data from trials or populations may be interval-

valued neutrosophic numbers. The factual observation, that was ambiguous at the time of collecting, was 

thought to be a value within that range. There are more indeterminate data than definite data available in 

real life. As a result, more statistical techniques that are neutrosophic are needed. In real life, there are so 

many research variables that gathering information is quite costly, especially when the information is 

confusing. Thus, using traditional methods for indeterminate data to determine the unknown real value 

of the parameter will be dangerous and costly. After a thorough review of the literature, no study in 

sample surveys for ratio method of estimation for Y utilizing known X under neutrosophic data has 

been found. There are not enough promising articles in this subject of statistics yet. There was no 

available solution to tackle the issue using ratio estimation when Y and X were neutrosophic in nature. 

As a result, [43] presented a neutrosophic ratio-type estimation approach as the initial step in this 

direction. Further [43] mentioned that Neutrosophic Statistical analysis aids in the study of data with a 

degree of indeterminacy or insufficient knowledge, as well as conflicting beliefs. For the problem of 

indeterminacy, traditional statistics unsucceeded to analyze the data since certain observations were 

presented in a range of unknown values with the possibility of including a factual measurement within 

that range. As a result, in an uncertain environment, neutrosophic statistics is used, which is a more 

flexible alternative to and generalization of classical statistics. There have been numerous studies in the 

field of sample surveys under the Neutrosophy, where the method of ratio estimation is still new and 

necessitates a great deal of attention to the uncertain data system. For instance, the measurements of a 

machine product such as nuts or bolts may have slight measurement or manufacturing errors, and we 

may accept such product if it falls within the specified measurement range. Marks in grade system and 

health parameters through different testing procedures may be the areas of applications where 

neutrosophic statistics may be a better choice than the traditional one. Thus it is clear that in many 

situations, discussed above, the Neutrosophic estimators are used for improved estimation of population 

mean over the classical estimators where the observations of the study variable are not deterministic 

rather these are nondeterministic.   

 In this investigative work, we suggest a novel generalized neutrosophic ratio estimator for 

enhanced estimation of Y utilizing the known parameters of X . The sampling properties of the 

suggested estimator are studied for the first degree of approximation. The complete manuscript is being 

presented in different sections from introduction to the references.  

 

1.4. Observations in Neutrosophic Environment and Notations 

Quantitative neutrosophic data, where a number may lie in an uncertain interval [a, b], is one sort of 

observation in the neutrosophic environment, [30]. Neutosophic numbers' interval value can be 

represented in a variety of ways. [43] have defined neutrosophic interval values as NULN IZZZ  , 

where, ],[ ULN III  . We also use the same notations of [43] for the considered neutrosophic data, which 

are in the interval form as ],[ ULN ZZZ  , where LZ and LZ are the lower and upper values of the 

neutrosophic variable NZ . Let the neutrosophic population consists of N distinct units )...,,,( 21 NPPP

and a neutrosophic random sample of size ],[ ULN nnn  is taken from the above population using simple 

random sampling without replacement (srswor) technique. Let )(iyN be the observation on the ith unit of 
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the sample for the neutrosophic data under consideration for the main variable Ny , of the form 

],[)( ULN yyiy  and by the same way for the auxiliary variable ],[)( ULN xxix  . Let ],[)( ULN yyiy 

be the sample mean for the neutrosophic study variable Ny and ],[)( ULN xxix  be sample mean for the 

neutrosophic Nx which is correlated with Ny . Further let ],[ ULN YYY  and ],[ ULN XXX  be the 

population means for the neutrosophic variables Ny and Nx respectively, which are the overall averages 

of the neutrosophic data set. The neutrosophic coefficients of variation of Ny and Nx are given as 

],[ yNUyNLyN CCC  and ],[ xNUxNLxN CCC  respectively. The correlation coefficient between the 

neutrosophic variables Ny and Nx is represented as ],[ yxNUyxNLyxN   . The neutrosophic coefficients 

of skewness and kurtosis for Nx are given by ],[ )(1)(1)(1 NUxNLxNx   and ],[ )(2)(2)(2 NUxNLxNx  

respectively. The neutrosophic quartiles of Nx are given by ],[ iNUiNLiN QQQ  , 3,1i and the 

neutrosophic median of auxiliary variable as ],[ dNUdNLdN MMM  .  

 

1.5. Flow Chart of the Study 

The graph given below represents the flow chart of the suggested study using neutrosophic numbers. 

The following chart is a recreated flow chart suggested by [43].  
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Figure-1: Flow chart of the study 

 

1.6. Standard Approximations 

Following are some standard approximations used for the sampling properties of the neutrosophic 

estimators, suggested by [43] as, 

Let ],[ yUyLyN eee  and ],[ xUxLxN eee  be the mean errors for the study and the auxiliary neutrosophic 

variables along with NNyN Yiyie  )()( and 
NNxN Xixie  )()(  respectively.  The expectations of 

these errors for different orders are defined as; 

0)()(  xNyN eEeE  and,  

222 )( yNNNyN CYeE  , 
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 , ],[ ULN   , ],[ ULN nnn  , ],[ 222

xUxLxN   , ],[ 222
yUyLyN   , ],[ yxUyxLyxN    

On the basis of the errors of the neutrosophic variables, bias and the Mean Squared Error (MSE) of the 

introduced and the competing estimators are obtained for an approximation of order one. The Bias and 

the MSE in neutrosophic environment are defined as, ],[)( ULN BiasBiasyBias   and 

],[)( ULN MSEMSEyMSE  . Further the correlated auxiliary variables are used for the elevated 

estimation of NY and neutrosophic ratio type estimators are applied when there is indeterminacy in the 

data.  

 

1.7. Review of Neutrosophic Estimators 

The most appropriate neutrosophic estimator for the neutrosophic NY  of Y is the corresponding 

neutrosophic sample mean and is given by, 

 Nyt 0  

The variance of the neutrosophic sample mean for the first degree of approximation is, 
22

0 )( yNNN CYtV                                          (1) 

Where, ],[ 000 ULN ttt   

Using [1], [43] suggested the usual neutrosophic ratio estimator of NY using the known neutrosophic 

population mean of X as, 













N

N
NRN

x

X
yt  

The bias and MSE of the neutrosophic ratio estimator RNt , for an approximation of degree one 

respectively are, 

][)(Bias 2
yxNxNNNRN CCYt  , where, xNyNyxNyxN CCC   

]2[)(M 222
yxNxNyNNNRN CCCYtSE                                (2) 
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Where, ],[ RURLRN ttt   

Motivated by [2], [43] suggested the following neutrosophic ratio estimator using CV of neutrosophic 

variable X as, 
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The bias and MSE of the neutrosophic ratio estimator Nt1 , for an approximation of order one respectively 

are, 
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Based on [3], [43] proposed the following neutrosophic exponential ratio estimator as, 
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The bias and MSE of the neutrosophic exponential ratio estimator Nt2 , for an approximation of order one 

respectively are, 
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Where,   ],[ 222 ULN ttt   

Motivated by [4], the two neutrosophic ratio estimators using CV and coefficient of kurtosis of X may be 

given as, 
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The biases and MSEs of the neutrosophic ratio estimators Nt3 and Nt4 , for an approximation of order one 

respectively are, 
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Motivated by [5], the neutrosophic ratio estimator Nt5 , using known population coefficient of correlation 

may be given as, 
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The bias and MSE of the neutrosophic ratio estimator Nt5 , for an approximation of order one respectively 

are, 
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[43] suggested the following neutrosophic ratio estimator by adapting the estimator by [6], using 

coefficient of kurtosis of X as, 
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The bias and MSE of the neutrosophic ratio estimator Nt6 , for an approximation of order one respectively 

are, 
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Motivated by [44], the two neutrosophic ratio estimators using first and third quartiles of X may be 

given as, 
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The biases and MSEs of the neutrosophic ratio estimators Nt7 and Nt8 , for an approximation of order one 

respectively are, 
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Motivated by [8], the two neutrosophic ratio estimators using coefficients of skewness and kurtosis of X
may be represented as, 
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The biases and MSEs of the neutrosophic ratio estimators Nt9 and Nt10 , for an approximation of order 

one respectively are, 
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Motivated by [45], the two neutrosophic ratio estimators using median and coefficients of variation of X , 

we may define as, 
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The biases and MSEs of the neutrosophic ratio estimators Nt11 and Nt12 , for an approximation of order 

one respectively are, 

][)(Bias 11
22

1111 yxNNxNNNNN CCYt  
 

][)(Bias 12
22

1212 yxNNxNNNNN CCYt    

]2[)(M 11
22

11
22

11 yxNNxNNyNNNN CCCYtSE                              (13) 

]2[)(M 12
22

12
22

12 yxNNxNNyNNNN CCCYtSE                              (14) 

Where, 
NxdN

N
N

MX

X

)(

11


 , 
NxdNxN

NxN
N

MXC

XC

)(

12


 and ],[ 11111 ULN ttt  , ],[ 121212 ULN ttt 
 

Motivated by [46], the neutrosophic ratio estimator Nt13 , using known population coefficient of 

correlation may be given as, 
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The bias and MSE of the neutrosophic ratio estimator Nt13 , for an approximation of order one respectively 

are, 
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Motivated by [47], [43] suggested the following neutrosophic modified exponential ratio estimator as, 















)()(

)()(
exp14

bxabXa

bxabXa
yt

NN

NN
NN  

where, a and b are the neutrosophic auxiliary parameters.  

The bias and MSE of the neutrosophic exponential ratio estimator Nt14 , for an approximation of order one 

respectively are, 
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Motivated by [48], [43] proposed the following generalized neutrosophic exponential ratio estimator as, 
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where,  and h are the real known constants with   and 0h . The characterizing scalar a   

( 0a ) is determined so that the MSE of Nt15 is minimum.  

 The bias and MSE of the neutrosophic generalized exponential ratio estimator Nt15 , for an approximation 

of order one respectively are, 
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The optimum value of the characterizing constant a is obtained by minimizing )(M 15NtSE and the 

optimum value is, 

yxN

xN
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2
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The minimum value of the )(M 15NtSE for the optimum value of opta is, 

)1()(M 222
15min yxNyNNNN CYtSE                                                          (19) 

 

2. Material and Methods 

Motivated by [49], we suggest a ratio cum exponential ratio class of neutrosophic main variable using the 

neutrosophic auxiliary parameters as, 
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Where, 1 and 2 are the characterizing scalars to be determine such that the MSE of pNt is minimum. It 

is worth notable that, 

(i) If 02  , then the introduced estimator pNt reduces to [49] ratio type estimators having different 

estimators by different authors as its special cases. 

(ii) If 02   and 11  , the introduced estimator pNt reduces to ratio type estimators having different 

estimators by different authors as its special cases. 

(iii) If 01  , then the suggested class of estimators pNt reduces to [49] exponential ratio type estimators 

having different estimators by different authors as its special cases. 

(iv) If 01   and 12  , the suggested family of estimators pNt reduces to exponential ratio type 

estimators having different estimators by different authors as its special cases. 

Expressing the introduced estimator in terms of 
yNe and xNe , we have  
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Expanding the terms on the right hand side and simplifying and retaining the terms for the first degree of 

approximation, we get 
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Subtracting NY on both sides of the above equation, we have  
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Taking expectations on both sides of (20) and putting values of different expectations, we get the bias of 

pNt as, 
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Squaring on both sides of (20), simplifying for the first degree of approximation, we get 
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Putting values of different expectations after taking expectation on both sides, we get the MSE of pNt as, 
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The optimum values of the characterizing constants 1 and 2 which minimizes the MSE of the 

suggested estimator pNt respectively are, 
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The minimum value of the MSE of pNt for these optimum values of 1 and 2 is, 
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3. Theoretical Efficiency Comparison  

Under this section, we have compared the introduced neutrosophic estimator with the competing 

neutrosophic estimators of Y  using the neutrosophic auxiliary parameters. The efficiency of the 

introduced estimator has been compared in terms of MSEs and the efficiency condition of the introduced 

estimator to be more efficient than the competing one is obtained.  

The suggested estimator pNt is more efficient than 0t for the condition if, 

0)()( min0  pNtMSEtV or, 
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The introduced estimator pNt has lesser MSE than estimator RNt for the following condition. 
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The suggested estimator pNt  is better than the estimator Nt1 by [43] under the restriction if, 
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The suggested estimator pNt  is better than the exponential ratio type estimator Nt2 by [43] for the 

condition if, 
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The introduced estimator pNt performs better than the estimator Nt3  if, 
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The introduced estimator pNt has lesser MSE than the estimator Nt4  if it satisfies, 
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The proposed estimator pNt is better than the estimator Nt5  if, 

0)()(M min5  pNN tMSEtSE or, 
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The suggested estimator pNt performs better than the ratio estimator Nt6  by [43] if, 
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The introduced estimator pNt is better than the ratio estimator Nt7  under the condition if, 
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The proposed estimator pNt has lesser MSE than the ratio estimator Nt8  for the condition if, 
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The introduced estimator pNt performs better than the estimator Nt9  if, 
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The introduced estimator pNt has lesser MSE than the estimator Nt10  if, 

0)()(M min10  pNN tMSEtSE or, 
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The proposed estimator pNt has lesser MSE in comparison to the ratio estimator Nt11  under the condition 

if, 
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The introduced estimator pNt is better than the ratio estimator Nt12  for the condition if, 

0)()(M min12  pNN tMSEtSE or, 

01]2[ 12
22

12
2 










Q

P
CCC yxNNxNNyNN 

 

The proposed estimator pNt perform better the estimator Nt13 if, 

0)()(M min13  pNN tMSEtSE or, 

01]2[ 13
22

13
2 










Q

P
CCC yxNNxNNyNN 

 

The suggested estimator pNt has lesser MSE with that of the ratio estimator Nt14  under the condition if, 

0)()(M min14  pNN tMSEtSE or, 
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The introduced estimator pNt is better than that of the estimator Nt15 if, 
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4. Simulation Study  

To verify the theoretical efficiency conditions and evaluate the efficiencies of the suggested and 

competing neutrosophic estimator of Y utilizing known auxiliary parameters, we have simulated a 

neutrosophic data set using the same parameters of [43]. To generate the neutrosophic data, we have 

considered that the neutrosophic main and auxiliary random variables NY and NX follow the 

neutrosophic normal distributions. Thus ),(~ 2
yNyNN NNY  ; ),( ULN YYY  , ),( yUyLyN   , 

),( 222
yUyLyN   and ),(~ 2

xNxNN NNX  ; ),( ULN XXX  , ),( xUxLxN   , ),( 222
xUxLxN   . 

For the numerical illustration, we have taken ]))2.17(,)9.12[(],9.84,0.76([~ 22NNYN
, where, 

)9.84,0.76(yN , )2.17,9.12(yN and ]))7.6(,)8.5[(],4.180,2.171([~ 22NNX N
, where, 

)4.180,2.171(xN , )7.6,8.5(xN and generated 1000 normal random observation for both the 

variables.  The descriptive statistics for the simulated data is presented in Table 1. 

 
Table 1.  Descriptive statistics of the simulated data for the neutrosophic data 

Parameter      Neutrosophic    Value Parameter     Neutrosophic Value 

NN
                

]1000,1000[
           xNC

                     
]0369.0,0332.0[  

Nn
  

]20,20[
     Nx)(1  

]0051.0,0020.0[  

yN
 

]63.85,20.76[
      Nx)(2  

]9539.2,0227.3[  

xN
 

]34.180,08.171[
   NxQ )(1    

]1144.176,3941.167[  

yN
   

]37.17,79.12[
       NxdM )(     

]3451.180,9067.170[  

xN
        

]65.6,67.5[
           NxQ )(3  

]7586.184,9269.174[  

yNC
                

]2028.0,1679.0[
 yxN

     
]00703.0,01933.0[  

 

The Table 2 is representing the neutrosophic MSEs of different competing along with the suggested 

estimator of population mean.  
Table 2. Neutrosophic MSEs of different competing and suggested estimator 

SR. No.     Estimators              MSE 

1.                       𝑡0                         [8.019213, 14.77799] 

2.                       𝑡𝑅𝑁                      [17.39673, 27.98680] 

3.                       𝑡1𝑁                       [17.39674, 27.98681] 

4.                         𝑡2𝑁                     [8.066852, 14.8812] 

5.                𝑡3𝑁                     [17.39709, 27.98701] 
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6.                         𝑡4𝑁                     [17.39674, 27.98681] 

7.                         𝑡5𝑁                     [17.39674, 27.98681] 

8.                         𝑡6𝑁                     [17.3978, 27.98741] 

9.                         𝑡7𝑁                     [17.42703, 28.00546] 

10.                       𝑡8𝑁                     [17.4277, 28.00592] 

11.                       𝑡9𝑁                     [17.39673, 27.98681] 

12.                       𝑡10𝑁                    [17.4517, 28.01563] 

13.                       𝑡11𝑁                    [17.42734, 28.00569] 

14.                       𝑡12𝑁                    [17.45602, 28.02323] 

15.                       𝑡13𝑁                    [17.40314, 27.99058] 

16.                       𝑡14𝑁(a=1,b=0)    [17.42736, 28.00569] 

17.                       𝑡14𝑁(a=1,b=1)    [17.42754, 28.00579] 

18.                       𝑡15𝑁                    [8.016216, 14.77726] 

19.                       pNt
                    

[7.864525, 13.821846] 

 

 

5. Results and Discussion  

From Table 2, it may clearly be observed that the estimator 0t of NY has its neutrosophic sampling 

variance as [8.019213, 14.77799] and the neutrosophic MSE of the exponential ratio estimator Nt2 is 

[8.066852, 14.8812] while the neutrosophic MSEs of all the mentioned ratio type estimators lie in the 

interval [17.45602, 28.02323]. The neutrosophic ratio type estimators have high MSEs than the 

neutrosophic estimator 0t because of the low neutrosophic correlation between neutrosophic y and x . 

The neutrosophic MSE of the suggested class of estimators is [7.864525, 13.821846], which is the minimum 

among the group of all neutrosophic estimators of NY in competition.  

 

6. Conclusion  

In this scripture, we have suggested a novel family of neutrosophic estimators of NY for the elevated 

estimation of neutrosophic NY  using the known neutrosophic auxiliary parameters. We studied the 

neutrosophic sampling properties mainly bias and MSE of the proposed family of estimators for the 

approximation of degree one. The neutrosophic optimum values of the characterizing scalars of the 

introduced estimator are obtained and the neutrosophic minimum MSE of the suggested estimator has 

also been obtained for these neutrosophic optimum values of the characterizing scalars. The introduced 

estimator has been compared with the neutrosophic competing estimators theoretically and the efficiency 

condition over the competing estimators have been obtained. These efficiency conditions are verified 

using a neutrosophic simulated data set. The results in Table-2 are showing that the suggested estimator 

is most efficient among the class of all neutrosophic competing estimators of NY . Thus the introduced 

class of estimators may be recommended for elevated estimation of neutrosophic NY  in different areas of 

applications. It is to be mentioned here that the neutrosophic estimators are most suitable for improved 

estimation of population mean for the situations where the observations of the study variable are 

nondeterministic but for the situation where its observations are deterministic, it may be inferior to the 

classical estimators.  
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Abstract: We approach learning characteristic on a neutrosophic graph such as r-edge regular neutrosophic 

graph, strongly edge regular neutrosophic graph and absolute degree of vertex since a neutrosophic set 𝑁𝑆 =

{〈𝑥, 𝑁𝑆𝔗(𝑥),𝑁𝑆𝔩(𝑥), 𝑁𝑆𝔉(𝑥)〉; 𝑥 ∈ 𝑋} of a universe set A. We discuss different aspects of these graphics in this 

article. We've also included several examples to help you understand these concepts. 
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1. Introduction 

By “changing the definition of the fuzzy set, Smarandache [2] presented the neutrosophic set. 

Any vague real-life problem can be solved using the neutrosophic set, which can function with 

uncertain, indeterminate, unclear, and inconsistent details. It's essentially a hybrid of the crisp set, 

Type 1 fuzzy set, and the IFS. The truth, indeterminate, and false membership degrees of any object 

are used to define it. These three membership degrees are independent of one another and always 

fall within the range of [0, 1+], i.e. a nonstandard unit interval. Numerous scholars have long 

become more interested in neutrosophic graph theory, such as Ye [3] and Yang et al. [5]. Borzooei 

[1], Azadi et al. [9], Arkam [6] and Poulik, S.,  Ghorai, G [9-14] . The vertex degree is a useful way to 

define a vertex's total number of relationships in a graph, and it can also be utilised evaluate the 

graph. In a fuzzy graph, Gani and Lathi raised the concepts of irregularity, total irregularity, and 

total degree. Maheswari and Sekar suggested the d2-vertex term and defined several assets of the 

d2-vertex degree of a fuzzy graph. Darabian et al. introduced the dm-regular vague graph, the tdm-

regular vague graph, the m-highly irregular vague graph, and the m-highly complete irregular 

vague graph, as well as some of their attributes. In this article, we look at neutrosophic graphs 

using certain r-edge regularity and absolute degree of vertex properties. The purpose of this work is 

to generalise an idea from neutrosophic graph.  

2. Preliminaries 

2.1. Definition [7] 

A graph 𝐺 = (𝑉, 𝐸) is really an ordered pair made up of a non-empty vertex set 𝑉, another edge set 

𝐸, and a link that connects each edge across two end points. 
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2.2. Definition [7] 

Consider the graph 𝐺 = (𝑉, 𝐸). Since 𝔄 ⊆ Vand 𝔅 ⊆ E then ϑG = (𝔄,𝔅) could very well be a sub 

graph of G. 

 

2.3. Definition [11] 

A function μ ∶ 𝔄 → [0, 1]. Defines a fuzzy set on a set 𝔄. 

 

2.4. Definition  

A fuzzy graph 𝐺 = (𝜎, 𝜇) is called complete fuzzy graph if  μ(ᶏ, ᶀ) = min{𝜎(ᶏ), 𝜎(ᶀ)}, ∀ᶏ, ᶀ 𝜖 σ. 

 

2.5. Definition  

A fuzzy graph 𝐺 = (𝜎, 𝜇) is called strong fuzzy graph if  μ(ᶏ, ᶀ) = min{𝜎(ᶏ), 𝜎(ᶀ)} ∀ᶏ, ᶀ ϵ μ.  

 

2.6. Definition 

The complement of a fuzzy graph 𝐺 = (𝜎, 𝜇) is a fuzzy graph and it is represented as 𝐺𝑐 = (𝜎𝑐, 𝜇𝑐), 

where 𝜎𝑐 = 𝜎 and 𝜇𝑐(ᶏ, ᶀ) = 𝑚𝑖𝑛{𝜎(ᶏ), 𝜎(ᶀ)} − 𝜇(ᶏ, ᶀ). 

 

2.7. Definition [7] 

A fuzzy graph 𝔄𝐺 = (𝑉, 𝜆, 𝜇) is a non-empty set 𝑉 together with pair of functions 𝜆: 𝑉 → [0,1] and  

𝜇: 𝑉 × 𝑉 → [0,1] such that for all ᶏ, ᶀ ∈ 𝑉, 𝜇(ᶏ, ᶀ) ≤ min {𝜆(ᶏ), 𝜆(ᶀ)} where 𝜆(ᶏ) and 𝜇(ᶏᶀ) represent 

the membership value of the vertex ᶏ and the edge ᶏ, ᶀ in 𝔄𝐺, respectively. The underlying crisp 

graph of the fuzzy graph 𝔄𝐺 = (𝑉, 𝜆, 𝜇) is denoted by 𝔄𝐺∗ = (𝑉, 𝜆
∗, 𝜇∗)  where 𝜆∗ = {ᶏ ∈ 𝑉; 𝜆(ᶏ) > 0} 

and 𝜇∗ = {ᶏᶀ ∈ 𝑉 × 𝑉; 𝜇(ᶏᶀ) > 0}. Thus for underlying fuzzy graph 𝜆∗ = 𝑉. 

 

2.8. Definition [14] 

An intuitionistic fuzzy graph is a pair Let 𝐺 = (𝑉, 𝐸) of a graph 𝐺∗ = (𝑉, 𝐸) where 𝔄 = (𝔄𝜇 , 𝔄𝜆)an 

intuitionistic fuzzy set on V is and 𝔅 = (𝔅𝜇 , 𝔅𝜆) is an intuitionistic fuzzy relation on E such that  

𝔅𝜇(ᶏᶀ) ≤ min{𝔄𝜇(ᶏ), 𝔄𝜇(ᶀ)} , 𝔅𝜆(ᶏᶀ) ≥ max{𝔄𝜆(ᶏ), 𝔄𝜆(ᶀ)}  for all ᶏ, ᶀ 𝑖𝑛 𝑉. The underlying crip graph 

of 𝐺 = (𝔄,𝔅) is the crisp graph 𝐺∗ = (𝑉, 𝐸),where 𝑉 = {ᶏ;𝔄𝜆(ᶏ) > 0 𝑜𝑟 𝔄𝜆(ᶏ) = 0} and 𝐸 =

{ᶏᶀ;𝔅𝜇(ᶏᶀ) > 0 𝑜𝑟 𝔅𝜇(ᶏᶀ) = 0} 

 

2.9. Definition [3] 

A neutrosophic graph is of the form 𝐺 = (𝑉, 𝐸) where 

1. V such that 𝔗1: 𝔄 → [0,1],  𝔩1: 𝔄 → [0,1] and  𝔉1: 𝔄 → [0,1] denote the degree of membership, 

degree of indeterminacy and non-membership of the element 𝑣𝑖 ∈ 𝑉, respectively, and 0 ≤

𝔗𝑖(𝑣𝑖) +  𝔩𝑖(𝑣𝑖) + 𝔉𝑖(𝑣𝑖) ≤ 3, for every 𝑣𝑖 ∈ 𝑉, (𝑖 = 1,2, …… , 𝑛). 

 

2. 𝐸 ⊆ 𝑉 × 𝑉, Where 𝔗2: 𝔄 → [0,1],  𝔩2: 𝔄 → [0,1] and  𝔉2: 𝔄 → [0,1]  

such that 𝔗2(𝑣𝑖 , 𝑣𝑗) ≤ min{𝔗1(𝑣𝑖), 𝔗1(𝑣𝑗)} , 𝔩2(𝑣𝑖 , 𝑣𝑗) ≥ max{𝔩1(𝑣𝑖), 𝔩1(𝑣𝑗)}, and  

𝔉2(𝑣𝑖 , 𝑣𝑗) ≥ max  {𝔉1(𝑣𝑖), 𝔉1(𝑣𝑗)} and 0 ≤ 𝔗𝑖(𝑣𝑖 , 𝑣𝑗) + 𝔩𝑖(𝑣𝑖 , 𝑣𝑗) + 𝛿𝑖(𝑣𝑖 , 𝑣𝑗) ≤ 3 for every 

𝑣𝑖 , 𝑣𝑗 ∈ 𝐸, (𝑖, 𝑗 = 1,2, …… , 𝑛). 

 

2.10. Example  

Consider a neutrosophic graph G, such that 𝔄 = {a, b, c, d, e} and  𝔅 = {ab, ac, cb, ce, ed, bd, cd, eb} as 

in Figure 1. 
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3. Neutrosophic graph in r-edge regular 

 

3.1. Definition  

A graph 𝐺∗ = (𝔄,𝔅) with a neutrosophic graph 𝐺 = (𝔄,𝔅) is said to be strong if, for all ᶏᶀ 𝜖 𝔄 and 

1.𝔅𝔗(ᶏᶀ)= min{𝔄𝔗(ᶏ), 𝔄𝔗(ᶀ)}  

2.𝔅𝔩(ᶏᶀ)  = max{𝔄𝔩(ᶏ), 𝔄𝔩(ᶀ)} 

3.𝔅𝔉(ᶏᶀ) = max{𝔄𝔉(ᶏ), 𝔄𝔉(ᶀ)}  

3.2. Example  

Consider a neutrosophic graph G, such that 𝔄 = {a, b, c, d} and 𝔅 = {ab, bc, cd, da} as in figure 2. 

 

 

 

 

 

 

 

 

 

3.3. Definition  

A graph 𝐺∗ = (𝔄,𝔅) with a neutrosophic graph 𝐺 = (𝔄,𝔅) is said to be complete if, for all ᶏᶀ 𝜖 𝔅 

and  1.𝔅𝔗(ᶏᶀ) = min{𝔄𝔗(ᶏ), 𝔄𝔗(ᶀ)} 

 2.𝔅𝔩(ᶏᶀ)  = max{𝔄𝔩(ᶏ), 𝔄𝔩(ᶀ)} 

 3.𝔅𝔉(ᶏᶀ) = max{𝔄𝔉(ᶏ), 𝔄𝔉(ᶀ)}.  

 

 

Figure 2 
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3.4. Example  

Consider a neutrosophic graph G, such that 𝔄 = {a, b, c, d} and 𝔅 = {ab, bc, cd, da, ac, db} as in figure 

3. 

 

 

 

 

 

 

 

 

 

 

3.5. Definition  

A complement of a neutrosophic graph 𝐺 = (𝔄,𝔅) is a neutrosophic graph 

�̅� = (�̅�, �̅�), where �̅� = (�̅�𝔗(ᶏ),  �̅�𝐼(ᶏ), �̅�𝔉(ᶏ)) and �̅� = (�̅�𝔗(ᶏ),  �̅�𝐼(ᶏ), �̅�𝔉(ᶏ)) 

Here, 

 1. �̅�𝔗(ᶏᶀ) = min{𝔄𝔗(ᶏ), 𝔄𝔗(ᶀ)} −  𝔅𝔗(ᶏᶀ) 

 2. �̅�𝔩(ᶏᶀ) = max{𝔄𝔩(ᶏ), 𝔄𝐼(ᶀ)} −  𝔅𝔩(ᶏᶀ) 

3. �̅�𝔉(ᶏᶀ) = max{𝔄𝔉(ᶏ), 𝔄𝔉(ᶀ)}−𝔅𝔉(ᶏᶀ) for all ᶏ, ᶀ 𝜖 𝔅. 

3.6. Example  

Consider a neutrosophic graph G, such that 𝔄 = {a, b, c, d} and 𝔅 = {ac, ad, db, bc} as in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. Definition 

The absolute degree of any vertex an is determined by if 𝐺 = (𝔄,𝔅)  is a neutrosophic graph. 

Ɗᶏ = ( 𝔗Ɗ(ᶏ),  𝔩Ɗ(ᶏ),  𝐹Ɗ(ᶏ)), where  

  1. 𝔗Ɗ(ᶏ) =  ∑𝔅𝔗(ᶏᶀ); ᶏ ≠ ᶀ, ᶏᶀ ∈ 𝐸 

  2. 𝔩Ɗ(ᶏ)   =  ∑𝔅𝔩(ᶏᶀ); ᶏ ≠ ᶀ, ᶏᶀ ∈ 𝐸 

  3. 𝔉Ɗ(ᶏ) =  ∑𝔅𝔉(ᶏᶀ); ᶏ ≠ ᶀ, ᶏᶀ ∈ 𝐸  

And hence Ɗᶏ = | ∑ 𝔅𝔗(ᶏᶀ) − ∑ 𝔅𝔩(ᶏᶀ) −ᶏ≠ᶀ
ᶏ∈𝑉

∑ 𝔅𝔉(ᶏᶀ)ᶏ≠ᶀ
ᶏ∈𝑉

ᶏ≠ᶀ
ᶏ∈𝑉

 | 

 

Figure 3 

Figure 4 
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3.8. Example 

Let 𝐺∗ = (𝔄,𝔅), where 𝔄 = {a, b, c, d, e} and 𝔅 = {ab, ae, bd, ad, de}, then 

 𝐷ᶏ = |(0.3 + 0.2) − (0.5 + 0.5) − (0.6 + 0.6)| = 1.8 

 𝐷ᶀ = |(0.4 + 0.3) − (0.6 + 0.5) − (0.7 + 0.6)| = 1.7 

                 𝐷ç = |(0.3 + 0.4 + 0.2) − (0.6 + 0.6 + 0.6) − (0.7 + 0.7 + 0.7)| = 3 

                                             𝐷𝑑 = |(0.2 + 0.2 + 0.2) − (0.5 + 0.5 + 0.6) − (0.6 + 0.6 + 0.7)|  = 2.9 
          𝐷𝑒 = |(0.3 + 0.2) − (0.6 + 0.5) − (0.7 + 0.6)| = 1.9  

 

 

 

 

 

  

 

 

 

 

3.9 Definition  

If 𝐺∗ = (𝑉, 𝐸) is a crisp graph and i = ᶏ, ᶀ is an edge in 𝐺∗, then Ɗe = Ɗᶏ + Ɗᶀ − 2 is the degree of the 

e ∈ E. 

 

3.10. Definition 

 Let 𝐺 = (𝔄,𝔅) be a neutrosophic graph. Ɗ𝑁(ᶏ) = (𝑁𝔄(ᶏ) + 𝑁𝔅(ᶏ))  is the degree neighbourhood of a 

vertex. Where 𝑁𝔄(ᶏ) =  ∑ 𝔄𝔗(ᶀ), 𝑁𝔄(ᶏ) = ∑ 𝔄𝔩(ᶀ).ᶀ∈𝑁(ᶏ)  ᶏ𝑛𝑑 𝑁𝐵(ᶏ) = ∑ 𝔅𝔉(ᶀ).ᶀ∈𝑁(ᶏ)  ᶀ∈𝑁(ᶏ)  

 

3.11. Definition  

In a neutrosophic graph G = ( 𝔄, 𝔅) an edge's total open neighbourhood degree  ᶏᶀ ∈ E is known as 

𝔗Ɗ(ᶏᶀ) = (𝑇Ɗ𝔄𝔗(ᶏᶀ), 𝑇Ɗ𝔄𝔩(ᶏᶀ), 𝑇Ɗ𝔄𝔉(ᶏᶀ)) 

Where, 
𝑇Ɗ𝔄𝔗(ᶏᶀ) = 𝑇Ɗ(ᶏ) + 𝑇𝐷(ᶀ) − 𝔅𝔗(ᶏᶀ) 
𝑇Ɗ𝔄𝔩(ᶏᶀ) = 𝑇Ɗ(ᶏ) + 𝑇Ɗ(ᶀ) − 𝔅𝔩(ᶏᶀ) 
𝑇Ɗ𝔄𝔉(ᶏᶀ) = 𝑇Ɗ(ᶏ) + 𝑇Ɗ(ᶀ) − 𝔅𝔉(ᶏᶀ) 

An edge's minimum total open neighbourhood degree is equal to ∆𝑇𝐸  = min {𝑇Ɗ(ᶏᶀ); ᶏᶀ ∈ 𝐸}  

An edge's minimum total open neighbourhood degree is equal to ∆𝐼𝐸  = min {𝐼Ɗ(ᶏᶀ); ᶏᶀ ∈ 𝐸} and  

An edge's maximum open neighbourhood degree is known as 𝐹𝑇𝐸 = max{𝐹Ɗ(ᶏᶀ); ᶏᶀ ∈ 𝐸}.  

 

3.12. Definition 

Let G = ( 𝔄, 𝔅) be a neutrosophic graph. The degree neighbourhood of a vertex  a is defined as 𝐷𝑁 =

(𝑁𝑇(𝑎), 𝑁𝐼(𝑎), 𝑁𝐹(𝑎)), Where 𝑁𝑇(𝑎) = ∑ 𝑇𝑏∈𝑁𝑇(𝑎)
(𝑏), 𝑁𝐼(𝑎) = ∑ 𝐼𝑏∈𝑁𝐼(𝑎)

(𝑏) 𝑎𝑛𝑑  𝑁𝐹(𝑎) =

∑ 𝐹𝑏∈𝑁𝐹(𝑎)
(𝑏). 

Figure 5 
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3.13. Definition 

Assume 𝐺 = (𝔄,𝔅) is a neutrosophic graph on 𝐺∗. 

1. G also is an r-edge regular neutrosophic graph if all of its edges get the same 

neighbourhood degree r. 

In a neutrosophic graph 𝐺 = (𝔄,𝔅), the open neighbourhood degree of an edge  ᶏᶀ ∈ 𝐸 is 

classified as Ɗᶏᶀ = (Ɗ𝔄𝔗(ᶏᶀ), Ɗ𝔄𝔩(ᶏᶀ), Ɗ𝔄𝔉(ᶏᶀ) such that; 

Ɗ𝔄𝔗(ᶏᶀ) = 𝔗Ɗ(ᶏ) + 𝔗Ɗ(ᶀ) − 2𝔅𝔗(ᶏᶀ), Ɗ𝔄𝔩(ᶏᶀ) = 𝔩Ɗ(ᶏ) + 𝔩Ɗ(ᶀ) − 2𝔅𝔩(ᶏᶀ),  

and Ɗ𝔄𝔉(ᶏᶀ) = 𝔉Ɗ(ᶏ) + 𝔉Ɗ(ᶀ) − 2𝔅𝔉(ᶏᶀ).  

 

3.14. Example 

 Consider a neutrosophic graph 𝐺 = (𝔄,𝔅) such that 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Ɗᶏ = (0.5, 1.2, 1.6)   Ɗᶀ = (0.3, 1.2, 1.5)     Ɗç = (0.5, 1.2, 1.6)    

Ɗ𝑑 = (0.5,1.2, 1.5)  Ɗ𝑒 = (0.6, 1.2, 1.6)    Ɗ𝑓 = (0.8, 1.2, 1.8) 

 
Ɗ𝔄𝑇(ᶏᶀ) = 𝔗Ɗ(ᶏ) + 𝔗Ɗ(ᶀ) − 2𝔅𝔗(ᶏᶀ) = 0.5 + 0.3 − 2(0.1) = 0.6 
Ɗ𝔄𝔩(ᶏᶀ) = 𝔩Ɗ(ᶏ) + 𝔩Ɗ(ᶀ) − 2𝔅𝔩(ᶏᶀ)        = 1.2 + 1.2 − 2(0.4) = 1.6 
Ɗ𝔄𝔉(ᶏᶀ) = 𝔉Ɗ(ᶏ) + 𝔉Ɗ(ᶀ) − 2𝔅𝔉(ᶏᶀ)  = 1.6 + 1.5 − 2(0.5) = 2.1 

Ɗᶏᶀ = (Ɗ𝔄𝔗(ᶏᶀ), Ɗ𝐴𝔩(ᶏᶀ)  Ɗ𝐴𝐹(ᶏᶀ))  = (0. 6, 1.6, 2. 1) 

 
Ɗ𝔄𝔗(ᶀç) = 𝔗Ɗ(ᶀ) + 𝔗𝐷(ç) − 2𝔅𝔗(ᶀç) = 0.3 + 0.5 − 2(0.1) = 0.6 
Ɗ𝔄𝔩(ᶀç) = 𝔩Ɗ(ᶀ) + 𝔩Ɗ(ç) − 2𝔅𝔩(ᶀç)        = 1.2 + 1.2 − 2(0.4) = 1.6 
Ɗ𝔄𝔉(ᶀç) = 𝔉Ɗ(ᶀ) + 𝔉Ɗ(ç) − 2𝔅𝔉(ᶀç)  = 1.5 + 1.6 − 2(0.5) = 2.1 

Ɗᶀç = (Ɗ𝔄𝔗(ᶀç), Ɗ𝔄𝔩(ᶀç)  Ɗ𝔄𝔉(ᶀç))  = (0.6, 1.6, 2.1) 

 
Ɗ𝔄𝔗(ç𝑑) = 𝔗Ɗ(ç) + 𝔗Ɗ(𝑑) − 2𝔅𝔗(ç𝑑) = 0.5 + 0.5 − 2(0.2) = 0.6 
Ɗ𝔄𝔩(ç𝑑)  = 𝔩Ɗ(ç)   + 𝔩Ɗ(𝑑)   −  2𝔅𝔩(ç𝑑) = 1.2 + 1.2 − 2(0.4) = 1.6 
Ɗ𝔄𝔉(ç𝑑) = 𝔉Ɗ(ç) + 𝔉Ɗ(𝑑) − 2𝔅𝔉(ç𝑑)  = 1.6 + 1.5 − 2(0.5) = 2.1 

Ɗç𝑑 = (Ɗ𝔄𝑇(ç𝑑), Ɗ𝔄𝔩(ç𝑑)  Ɗ𝔄𝔉(ç𝑑))  = (0.6, 1.6, 2.1) 

 
Ɗ𝔄𝔗(dᶏ) = 𝔗Ɗ(d) + 𝔗Ɗ(ᶏ) − 2𝔅𝔗(dᶏ) = 0.4 + 0.4 − 2(0.1) = 0.6 
 Ɗ𝔄𝔩(dᶏ)  = 𝔩Ɗ(d) + 𝔩Ɗ(ᶏ) − 2𝔅𝔩(dᶏ)       = 0.9 + 1.3 − 2(0.4) = 1.4 
Ɗ𝔄𝔉(dᶏ) = 𝔉Ɗ(d) + 𝔉Ɗ(ᶏ) − 2𝔅𝔉(dᶏ)  = 1.9 + 2.1 − 2(0.6) = 2.8 

Ɗ𝑑ᶏ = (Ɗ𝔄𝔗(dᶏ), Ɗ𝔄𝔩(dᶏ), Ɗ𝔄𝔉(dᶏ))  = (0.6, 1.4, 2.8) 

 
Ɗ𝔄𝔗(ᶏ𝑓) = 𝔗Ɗ(ᶏ) + 𝔗Ɗ(𝑓) − 2𝔅𝔗(ᶏ𝑓) = 0.5 + 0.8 − 2(0.3) = 1.1 

Figure 6 
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Ɗ𝔄𝔩(ᶏ𝑓)  = 𝔩Ɗ(ᶏ) + 𝔩Ɗ(𝑓)    − 2𝔅𝔩(ᶏ𝑓)    = 1.2 + 1.2 − 2(0.4) = 1.6 
Ɗ𝔄𝔉(ᶏ𝑓) = 𝔉Ɗ(ᶏ) + 𝔉Ɗ(𝑓) − 2𝔅𝔉(ᶏ𝑓)  = 1.6 + 1.8 − 2(0.6) = 2. 2 

 
Ɗᶏ𝑓 = (Ɗ𝔄𝔗(ᶏ𝑓), Ɗ𝔄𝔩(ᶏ𝑓)  Ɗ𝔄𝐹(ᶏ𝑓))  = (1.1, 1.6, 2.2) 

 
Ɗ𝔄𝔗(𝑒𝑓) = 𝔗Ɗ(𝑒) + 𝔗Ɗ(𝑓) − 2𝔅𝔗(𝑒𝑓) = 0.6 + 0.8 − 2(0.3) = 0.8 
Ɗ𝔄𝔩(𝑒𝑓)  = 𝔩Ɗ(𝑒) + 𝔩Ɗ(𝑓) − 2𝔅𝔩(𝑒𝑓)       = 1.2 + 1.2 − 2(0.4) = 1.6 
Ɗ𝔄𝔉(𝑒𝑓) = 𝔉Ɗ(𝑒) + 𝔉Ɗ(𝑓) − 2𝔅𝔉(𝑒𝑓)  = 1.6 + 1.8 − 2(0.6) = 2.2 

Ɗ𝑒𝑓 = (Ɗ𝔄𝔗(𝑒𝑓), Ɗ𝔄𝔩(𝑒𝑓)  Ɗ𝔄𝔉(𝑒𝑓))  = (0.8, 1.6, 2.2) 

 
Ɗ𝔄𝔗(ç𝑓) = 𝔗Ɗ(ç) + 𝔗Ɗ(𝑓) − 2𝔅𝔗(ç𝑓) = 0.5 + 0.8 − 2(0.2) = 0.9 
Ɗ𝔄𝔩(ç𝑓)  = 𝔩Ɗ(ç) + 𝔩Ɗ(𝑓) − 2𝔅𝔩(ç𝑓)      = 1.2 + 1.2 − 2(0.4) = 1.6 
Ɗ𝔄𝔉(ç𝑓) = 𝔉Ɗ(ç) + 𝔉Ɗ(𝑓) − 2𝔅𝔉(ç𝑓)  = 1.6 + 1.8 − 2(0.6) = 2.2 

Ɗç𝑒 = (Ɗ𝔄𝔗(ç𝑓), Ɗ𝔄𝔩(ç𝑓)  Ɗ𝔄𝔉(ç𝑓))  = (0.9, 1.6, 2.2) 

 
Ɗ𝔄𝔗(𝑏𝑒) = 𝔗Ɗ(𝑏) + 𝔗Ɗ(𝑒) − 2𝔅𝔗(𝑏𝑒) = 0.3 + 0.6 − 2(0.1) = 0.7 
Ɗ𝔄𝔩(𝑏𝑒) = 𝔩Ɗ(𝑏) + 𝔩Ɗ(𝑒) − 2𝔅𝔩(𝑏𝑒)        = 1.2 + 1.2 − 2(0.4) = 1.6 
Ɗ𝔄𝔉(𝑏𝑒) = 𝔉Ɗ(𝑏) + 𝔉Ɗ(𝑒) − 2𝔅𝔉(𝑏𝑒)  = 1.5 + 1.6 − 2(0.5) = 2.1 

Ɗ𝑏𝑒 = (Ɗ𝔄𝔗(𝑏𝑒), Ɗ𝔄𝔩(𝑏𝑒)  Ɗ𝔄𝔉(𝑏𝑒))  = (0.7, 1.6, 2.1) 

 
Ɗ𝔄𝔗(𝑑𝑒) = 𝔗Ɗ(𝑑) + 𝔗Ɗ(𝑒) − 2𝔅𝔗(𝑑𝑒) = 0.5 + 0.6 − 2(0.2) = 0.7 
Ɗ𝔄𝔩(𝑑𝑒) = 𝔩Ɗ(𝑑) + 𝔩Ɗ(𝑒) − 2𝔅𝔩(𝑑𝑒)        = 1.2 + 1.2 − 2(0.4) = 1.6 
Ɗ𝔄𝔉(𝑑𝑒) = 𝔉Ɗ(𝑑) + 𝔉Ɗ(𝑒) − 2𝔅𝔉(𝑑𝑒)  = 1.5 + 1.6 − 2(0.5) = 2.1 

Ɗ𝑏𝑒 = (Ɗ𝔄𝔗(𝑑𝑒), Ɗ𝔄𝔩(𝑑𝑒)  Ɗ𝔄𝔉(𝑑𝑒))  = (0.7, 1.6, 2.1) 

 

 
Ɗ𝔄𝑇(ᶏᶀ) = 𝔗Ɗ(ᶏ) + 𝔗Ɗ(ᶀ) − 𝔅𝔗(ᶏᶀ) = 0.5 + 0.3 − (0.1) = 0.7 
Ɗ𝔄𝔩(ᶏᶀ) = 𝔩Ɗ(ᶏ) + 𝔩Ɗ(ᶀ) − 𝔅𝔩(ᶏᶀ)        = 1.2 + 1.2 − (0.4) = 2.0 
Ɗ𝔄𝔉(ᶏᶀ) = 𝔉Ɗ(ᶏ) + 𝔉Ɗ(ᶀ) − 𝔅𝔉(ᶏᶀ)  = 1.6 + 1.5 − (0.5) = 2.6 

Ɗᶏᶀ = (Ɗ𝔄𝔗(ᶏᶀ), Ɗ𝐴𝔩(ᶏᶀ)  Ɗ𝐴𝐹(ᶏᶀ))  = (0. 7, 2.0, 2. 6) 

 
Ɗ𝔄𝔗(ᶀç) = 𝔗Ɗ(ᶀ) + 𝔗𝐷(ç) − 𝔅𝔗(ᶀç) = 0.3 + 0.5 − (0.1) = 0.7 
Ɗ𝔄𝔩(ᶀç) = 𝔩Ɗ(ᶀ) + 𝔩Ɗ(ç) − 𝔅𝔩(ᶀç)        = 1.2 + 1.2 − (0.4) = 2.0 
Ɗ𝔄𝔉(ᶀç) = 𝔉Ɗ(ᶀ) + 𝔉Ɗ(ç) − 𝔅𝔉(ᶀç)  = 1.5 + 1.6 − (0.5) = 1.6 

Ɗᶀç = (Ɗ𝔄𝔗(ᶀç), Ɗ𝔄𝔩(ᶀç)  Ɗ𝔄𝔉(ᶀç))  = (0.7, 2.0, 1.6) 

 
Ɗ𝔄𝔗(ç𝑑) = 𝔗Ɗ(ç) + 𝔗Ɗ(𝑑) − 𝔅𝔗(ç𝑑) = 0.5 + 0.5 − (0.2) = 0.8 
Ɗ𝔄𝔩(ç𝑑)  = 𝔩Ɗ(ç)   + 𝔩Ɗ(𝑑)   −  𝔅𝔩(ç𝑑) = 1.2 + 1.2 − (0.4) = 2.0 
Ɗ𝔄𝔉(ç𝑑) = 𝔉Ɗ(ç) + 𝔉Ɗ(𝑑) − 𝔅𝔉(ç𝑑)  = 1.6 + 1.5 − (0.5) = 2.7 

Ɗç𝑑 = (Ɗ𝔄𝑇(ç𝑑), Ɗ𝔄𝔩(ç𝑑)  Ɗ𝔄𝔉(ç𝑑))  = (0.8, 2.0, 2.7) 

 
Ɗ𝔄𝔗(dᶏ) = 𝔗Ɗ(d) + 𝔗Ɗ(ᶏ) − 𝔅𝔗(dᶏ) = 0.4 + 0.4 − (0.1) = 0.9 
 Ɗ𝔄𝔩(dᶏ)  = 𝔩Ɗ(d) + 𝔩Ɗ(ᶏ) − 𝔅𝔩(dᶏ)       = 0.9 + 1.3 − (0.4) = 2.0 
Ɗ𝔄𝔉(dᶏ) = 𝔉Ɗ(d) + 𝔉Ɗ(ᶏ) − 𝔅𝔉(dᶏ)  = 1.9 + 2.1 − (0.6) = 2.6 

Ɗ𝑑ᶏ = (Ɗ𝔄𝔗(dᶏ), Ɗ𝔄𝔩(dᶏ), Ɗ𝔄𝔉(dᶏ))  = (0.6, 1.4, 2.8) 

 
Ɗ𝔄𝔗(ᶏ𝑓) = 𝔗Ɗ(ᶏ) + 𝔗Ɗ(𝑓) − 𝔅𝔗(ᶏ𝑓) = 0.5 + 0.8 − (0.3) = 1.0 
Ɗ𝔄𝔩(ᶏ𝑓)  = 𝔩Ɗ(ᶏ) + 𝔩Ɗ(𝑓)    − 𝔅𝔩(ᶏ𝑓)    = 1.2 + 1.2 − (0.4) = 2.0 
Ɗ𝔄𝔉(ᶏ𝑓) = 𝔉Ɗ(ᶏ) + 𝔉Ɗ(𝑓) − 𝔅𝔉(ᶏ𝑓)  = 1.6 + 1.8 − (0.6) = 2. 8 

Ɗᶏ𝑓 = (Ɗ𝔄𝔗(ᶏ𝑓), Ɗ𝔄𝔩(ᶏ𝑓)  Ɗ𝔄𝐹(ᶏ𝑓))  = (1.0, 2.0, 2.8) 

 
Ɗ𝔄𝔗(𝑒𝑓) = 𝔗Ɗ(𝑒) + 𝔗Ɗ(𝑓) − 𝔅𝔗(𝑒𝑓) = 0.6 + 0.8 − (0.3) = 1.1 
Ɗ𝔄𝔩(𝑒𝑓)  = 𝔩Ɗ(𝑒) + 𝔩Ɗ(𝑓) − 𝔅𝔩(𝑒𝑓)       = 1.2 + 1.2 − (0.4) = 2.0 
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Ɗ𝔄𝔉(𝑒𝑓) = 𝔉Ɗ(𝑒) + 𝔉Ɗ(𝑓) − 𝔅𝔉(𝑒𝑓)  = 1.6 + 1.8 − (0.6) = 2.8 
Ɗ𝑒𝑓 = (Ɗ𝔄𝔗(𝑒𝑓), Ɗ𝔄𝔩(𝑒𝑓)  Ɗ𝔄𝔉(𝑒𝑓))  = (1.1, 2.0, 2.8) 

 
Ɗ𝔄𝔗(ç𝑓) = 𝔗Ɗ(ç) + 𝔗Ɗ(𝑓) − 𝔅𝔗(ç𝑓) = 0.5 + 0.8 − (0.2) = 1.1 
Ɗ𝔄𝔩(ç𝑓)  = 𝔩Ɗ(ç) + 𝔩Ɗ(𝑓) − 𝔅𝔩(ç𝑓)      = 1.2 + 1.2 − (0.4) = 2.0 
Ɗ𝔄𝔉(ç𝑓) = 𝔉Ɗ(ç) + 𝔉Ɗ(𝑓) − 𝔅𝔉(ç𝑓)  = 1.6 + 1.8 − (0.6) = 2.8 

Ɗç𝑒 = (Ɗ𝔄𝔗(ç𝑓), Ɗ𝔄𝔩(ç𝑓)  Ɗ𝔄𝔉(ç𝑓))  = (1.1,2.0, 2.8) 

 
Ɗ𝔄𝔗(𝑏𝑒) = 𝔗Ɗ(𝑏) + 𝔗Ɗ(𝑒) − 𝔅𝔗(𝑏𝑒) = 0.3 + 0.6 − (0.1) = 0.8 
Ɗ𝔄𝔩(𝑏𝑒) = 𝔩Ɗ(𝑏) + 𝔩Ɗ(𝑒) − 𝔅𝔩(𝑏𝑒)        = 1.2 + 1.2 − (0.4) = 2.0 
Ɗ𝔄𝔉(𝑏𝑒) = 𝔉Ɗ(𝑏) + 𝔉Ɗ(𝑒) − 𝔅𝔉(𝑏𝑒)  = 1.5 + 1.6 − (0.5) = 2.6 

Ɗ𝑏𝑒 = (Ɗ𝔄𝔗(𝑏), Ɗ𝔄𝔩(𝑒)  Ɗ𝔄𝔉(𝑏𝑒))  = (0.8, 2.0, 2.6) 

 
Ɗ𝔄𝔗(𝑑𝑒) = 𝔗Ɗ(𝑑) + 𝔗Ɗ(𝑒) − 𝔅𝔗(𝑑𝑒) = 0.3 + 0.6 − (0.1) = 0.9 
Ɗ𝔄𝔩(𝑑𝑒) = 𝔩Ɗ(𝑑) + 𝔩Ɗ(𝑒) − 𝔅𝔩(𝑑𝑒)        = 1.2 + 1.2 − (0.4) = 2.0 
Ɗ𝔄𝔉(𝑑𝑒) = 𝔉Ɗ(𝑑) + 𝔉Ɗ(𝑒) − 𝔅𝔉(𝑑𝑒)  = 1.5 + 1.6 − (0.5) = 2.6 

Ɗ𝑏𝑒 = (Ɗ𝔄𝔗(𝑑𝑒), Ɗ𝔄𝔩(𝑑𝑒)  Ɗ𝔄𝔉(𝑑𝑒))  = (0.9, 2.0, 2.6) 

 

3.15. Definition  

A neutrosophic graph 𝐺 is a totally (𝑟1, 𝑟2, 𝑟3) -edge regular neutrosophic graph if every edge has the 

same total degree (𝑟1, 𝑟2, 𝑟3). 

 

3.16. Definition  

A neutrosophic graph is 𝐺 = (𝔄,𝔅). 𝐺 is shown to be a regular neutrosophic graph of degree 

(𝑟1, 𝑟2, 𝑟3) if every vertex does have the same degree(𝑟1, 𝑟2, 𝑟3). 

 

3.17. Definition  

If any vertex in a neutrosophic graph 𝐺 = (𝔄,𝔅)has the same degree(𝑟1, 𝑟2, 𝑟3), then 𝐺 is called a 

(𝑟1, 𝑟2, 𝑟3) edge regular neutrosophic graph. 

 

3.18. Theorem  

𝐺 = ∑ 𝐷ᶏ𝑖ᶏ𝑗 = ∑ Ɗᶏ𝑖ᶏ𝑖∈𝑉ᶏ𝑖ᶏ𝑗∈𝐸  if 𝐺 is an edge regular neutrosophic graph on a cycle 𝐺∗. 

Proof  

Since 𝐺 is an edge regular neutrosophic graph, thus  

∑Ɗᶏ𝑖 ᶏ𝑗+1 = (∑Ɗ𝔄𝔗(ᶏ𝑖ᶏ𝑗)

𝑛

𝑖=1

,∑Ɗ𝔄𝔩(ᶏ𝑖ᶏ𝑗),∑Ɗ𝔄𝔉(ᶏ𝑖ᶏ𝑗)

𝑛

𝑖=1

𝑛

𝑖=1

)

𝑛

𝑖=1

 

∑Ɗ𝔄𝔗(ᶏ𝑖ᶏ𝑗)

𝑛

𝑖=1

= Ɗ𝔄𝔗(ᶏ1ᶏ2) + Ɗ𝔄𝔗(ᶏ2ᶏ3) + ⋯+Ɗ𝔄𝔗(ᶏ𝑛ᶏ1) 

Since,  
ᶏ𝑛+1 = Ɗ𝔄𝔗(ᶏ1) + Ɗ𝔄𝔗(ᶏ2) − 2𝔅(ᶏ1ᶏ2) + Ɗ𝔄 𝔗(ᶏ2) + Ɗ𝔄𝔗(ᶏ3) − 2𝔅(ᶏ2ᶏ3) + ⋯ 
             +Ɗ𝔄𝔗(ᶏ𝑛) + Ɗ𝔄𝔗(ᶏ1) − 2𝔅(ᶏ𝑛ᶏ1)  

          = 2Ɗ𝔄𝔗(ᶏ1) + 2Ɗ𝔄𝔗(ᶏ2) + 2Ɗ𝔄𝔗(ᶏ𝑛) − 2(𝔅(ᶏ1ᶏ2) + 𝔅(ᶏ2ᶏ3) + 𝔅(ᶏ𝑛ᶏ1)) 

          = 2∑ Ɗ𝔄𝔗(ᶏ1) + 2∑ (ᶏ𝑖ᶏ𝑖+1)
𝑛
𝑖=1 − 2ᶏ𝑖∈𝑉

∑ 𝐵𝔗(ᶏ𝑖ᶏ𝑖+1)
𝑛
𝑖=1   

          = ∑ Ɗ𝔄𝔗(ᶏ𝑖)ᶏ𝑖∈𝑉
 

Then 
∑ Ɗ𝔄𝔗(ᶏ𝑖ᶏ𝑗+1)
𝑛
𝑖=1   = ∑ Ɗ𝔄𝔗(ᶏ𝑖)ᶏ𝑖∈𝑉

 

Similarly 
∑ Ɗ𝔄𝔩(ᶏ𝑖ᶏ𝑖+1)
𝑛
𝑖=1    =  ∑ Ɗ𝔄𝔩(ᶏ𝑖)ᶏ𝑖∈𝑉

 

∑ Ɗ𝔄𝔉(ᶏ𝑖ᶏ𝑖+1)
𝑛
𝑖=1   = ∑ Ɗ𝔄𝔉(ᶏ𝑖)ᶏ𝑖∈𝑉

               ∑ Ɗ(ᶏ𝑖ᶏ𝑖+1)      =
𝑛
𝑖=1

( ∑ Ɗ𝔄𝔗(ᶏ𝑖ᶏ𝑖+1)
𝑛
𝑖=1 , ∑ Ɗ𝔄𝔩(ᶏ𝑖ᶏ𝑖+1), ∑ Ɗ𝔄𝔉(ᶏ𝑖ᶏ𝑖+1)

𝑛
𝑖=1

𝑛
𝑖=1 ) 
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                  ∑ Ɗ(ᶏ𝑖ᶏ𝑖+1)  = ∑ Ɗᶏ𝑖ᶏ𝑖∈𝑉
𝑛
𝑖=1 . 

 

3.19. Lemma  

If 𝐺 is an edge regular neutrosophic graph on 𝐺∗, then  ∑ Ɗ(ᶏ𝑖ᶏ𝑗)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

=

(∑ Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

𝔅𝔗(ᶏ𝑖ᶏ𝑗), ∑ Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

𝔅𝔩(ᶏ𝑖ᶏ𝑗), ∑ Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

𝔅𝔉(ᶏ𝑖ᶏ𝑗)) 

Since, Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗) = Ɗ𝐺∗(ᶏ𝑖) + Ɗ𝐺∗(ᶏ𝑗) − 2, 𝑓𝑜𝑟 ᶏ𝑙𝑙 ᶏ𝑖ᶏ𝑗 ∈ 𝐸. 

 

3.20. Proposition 

 If 𝐺 is an r-regular 𝐺∗ edge regular neutrosophic graph, then ∑ Ɗ(ᶏ𝑖ᶏ𝑖+1)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

= ((𝑟 −

1)∑ Ɗ𝔄𝔗ᶏ𝑖
(ᶏ𝑖), (𝑟 − 1)∑ Ɗ𝔄𝐼ᶏ𝑖

(ᶏ𝑖), (𝑟 − 1)∑ Ɗ𝔄𝔉ᶏ𝑖
(ᶏ𝑖)). 

 

Proof  

By lemma we obtain  ∑Ɗ(ᶏ𝑖ᶏ𝑗) =

(∑ Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

𝔅𝔗(ᶏ𝑖ᶏ𝑗), ∑ Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

𝔅𝔩(ᶏ𝑖ᶏ𝑗), ∑ Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

𝔅𝔉(ᶏ𝑖ᶏ𝑗)) 

                         = (

∑(Ɗ𝐺∗(ᶏ𝑖) + Ɗ𝐺∗(ᶏ𝑗) − 2)𝔅𝔗(ᶏ𝑖ᶏ𝑗),

∑(Ɗ𝐺∗(ᶏ𝑖) + Ɗ𝐺∗(ᶏ𝑗) − 2)𝔅𝔩(ᶏ𝑖ᶏ𝑗),

∑(Ɗ𝐺∗(ᶏ𝑖) + Ɗ𝐺∗(ᶏ𝑗) − 2)𝔅𝔉(ᶏ𝑖ᶏ𝑗)

) 

We know 𝐺∗ is regular then the degree of every vertex in 𝐺∗ is r , this means that 

 Ɗ𝐺∗(ᶏ𝑖) = 𝑟 and hence, 

   ∑Ɗ(ᶏ𝑖ᶏ𝑖+1) = ((𝑟 + 𝑟 − 2)∑𝔅𝔗(ᶏ𝑖ᶏ𝑗), (𝑟 + 𝑟 − 2)∑𝔅𝐼(ᶏ𝑖ᶏ𝑗), (𝑟 + 𝑟 − 2)∑𝔅𝔉(ᶏ𝑖ᶏ𝑗)) 

                               = (2(𝑟 − 1)∑𝔅𝔗(ᶏ𝑖ᶏ𝑗), 2(𝑟 − 1)∑𝔅𝐼(ᶏ𝑖ᶏ𝑗), 2(𝑟 − 1)∑𝔅𝐹(ᶏ𝑖ᶏ𝑗))                    

∑ Ɗ(ᶏ𝑖ᶏ𝑖+1)
𝑛
ᶏ𝑖ᶏ𝑗∈𝐸

= ((𝑟 − 1)∑ Ɗ𝔄𝔗ᶏ𝑖
(ᶏ𝑖), (𝑟 − 1)∑ Ɗ𝔄𝐼ᶏ𝑖

(ᶏ𝑖), (𝑟 − 1)∑ Ɗ𝔄𝐹ᶏ𝑖
(ᶏ𝑖)) 

 

3.21. Corollary 

 ∑𝑇Ɗ(ᶏ𝑖ᶏ𝑖) = (

∑Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)𝔅𝔗(ᶏ𝑖ᶏ𝑗) + ∑𝔅𝔗(ᶏ𝑖ᶏ𝑗) ,

∑Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)𝔅𝔩(ᶏ𝑖ᶏ𝑗) + ∑𝔅𝔩(ᶏ𝑖ᶏ𝑗) ,

∑Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)𝔅𝔉(ᶏ𝑖ᶏ𝑗) + ∑𝔅𝔉(ᶏ𝑖ᶏ𝑗)

) , where 𝐺 is a regular neutrosophic graph with 

edges on 𝐺∗. 

 

Proof          

∑𝑇Ɗ(ᶏ𝑖ᶏ𝑖) = (∑𝑇Ɗ𝔄𝔗(ᶏ𝑖ᶏ𝑗) + ∑𝑇Ɗ 𝔄𝐼(ᶏ𝑖ᶏ𝑗) + ∑𝑇Ɗ 𝔄𝔉(ᶏ𝑖ᶏ𝑗))                                                                                    

= (∑𝑇Ɗ 𝔄𝔗(ᶏ𝑖ᶏ𝑗) + 𝔅𝔗(ᶏ𝑖ᶏ𝑗), ∑ 𝑇Ɗ𝔄𝔩(ᶏ𝑖ᶏ𝑗) + 𝔅𝔩(ᶏ𝑖ᶏ𝑗), ∑ 𝑇Ɗ 𝔄𝐹(ᶏ𝑖ᶏ𝑗) + 𝔅𝔉(ᶏ𝑖ᶏ𝑗)) =

(∑Ɗ𝔄𝔗(ᶏ𝑖ᶏ𝑗) +∑𝔅𝔗(ᶏ𝑖ᶏ𝑗), ∑Ɗ𝔄𝐼(ᶏ𝑖ᶏ𝑗) +∑𝔅𝐼(ᶏ𝑖ᶏ𝑗), ∑Ɗ𝔄𝐹(ᶏ𝑖ᶏ𝑗) +∑𝔅𝔉(ᶏ𝑖ᶏ𝑗) ) 

By lemma, we get                       

∑𝑇Ɗ(ᶏ𝑖ᶏ𝑖) =

(

  
 

∑Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)𝔅𝔗(ᶏ𝑖ᶏ𝑗) +∑𝔅𝑇(ᶏ𝑖ᶏ𝑗)

∑Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)𝔅𝔩(ᶏ𝑖ᶏ𝑗) +∑𝔅𝔩(ᶏ𝑖ᶏ𝑗)

∑Ɗ𝐺∗(ᶏ𝑖ᶏ𝑗)𝔅𝐹(ᶏ𝑖ᶏ𝑗) +∑𝔅𝔉(ᶏ𝑖ᶏ𝑗))

  
 

 

3.22. Definition  

When a neutrosophic graph G is strongly regular, it means: 

1.    G  is a regular neutrosophic graph (𝑟1, 𝑟2, 𝑟3) 

2. ᶏ𝑖 , ᶏ𝑗 of is the number of the member values of the general neighbourhood vertices of any 

pair of adjacent and non-adjacent vertices. G  has the same weight and is denoted by the 
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symbols 𝛼 = (𝛼1, 𝛼2), 𝛽 = (𝛽1, 𝛽2). 𝑆𝑁𝐺 = (𝑟, 𝛼, 𝛽) represents a strongly neutrosophic graph 

G.    

 

 

3.23. Theorem  

If G is a complete neutrosophic graph with constant functions (𝔄𝔗, 𝔄𝔩, 𝔄𝔉) and (𝔅𝔗, 𝔅𝔩, 𝔅𝔉) then G 

is a highly normal neutrosophic graph. 

 

Proof 

Since that (𝔄𝔗, 𝔄𝔩, 𝔄𝔉) and (𝔅𝔗, 𝔅𝔩, 𝔅𝔉) are constant function, then 

𝔄𝔗(ᶏ𝑖) = 𝑘,   𝐴𝐼(ᶏ𝑖) = 𝑠, 𝔄𝐹(ᶏ𝑖) = 𝑡 and 𝔄𝔗(ᶏ𝑖ᶏ𝑗) = 𝑑1,   𝔄𝔩(ᶏ𝑖ᶏ𝑗) = 𝑑2, 𝔄𝔉(ᶏ𝑖ᶏ𝑗) = 𝑑3. 

Such that 𝑘, 𝑠, 𝑡, 𝑑1, 𝑑2, 𝑑3 are constant, and 𝐺 is complete, then  

Ɗᶏ𝑖ᶏ𝑗 = ((𝑛 − 1)𝑑1, (𝑛 − 1)𝑑2, (𝑛 − 1)𝑑3), 

Therefore 𝐺 is  

∑𝔄𝔗(ᶏ𝑖ᶏ𝑗) , ∑𝔄𝔩(ᶏ𝑖ᶏ𝑗), ∑𝔄𝔉(ᶏ𝑖ᶏ𝑗))     = Ɗ𝔄𝔗(ᶏ𝑖ᶏ𝑗), Ɗ𝔄𝔩(ᶏ𝑖ᶏ𝑗), Ɗ𝔄𝔉(ᶏ𝑖ᶏ𝑗) 

 = ((𝑛 − 1)𝑑1, (𝑛 − 1)𝑑2, (𝑛 − 1)𝑑3), 

On the other hand, in a regular neutrosophic graph with n vertices, the sum of 𝔗, 𝔩,F of common 

neighbourhood vertices of any pair of adjacent vertices 𝛼 = (𝑛 − 2)𝑘, (𝑛 − 2)𝑠, (𝑛 − 2)𝑡 is equal, and 

the sum of 𝔗, 𝔩,F values common neighbourhood vertices of any pair of non-adjacent vertices 𝛽 = 0 

is equal. 

 

3.24. Theorem 

𝐺𝐶   is a (𝑟1, 𝑟2, 𝑟3)  regular if 𝐺 is a strongly regular neutrosophic graph that is strong. 

 

Proof 

We know 𝐺  is strong, then 

𝔅𝐶𝔗(ᶏ𝑖ᶏ𝑗) = {
0                                                ᶏ𝑖ᶏ𝑗 ∈ 𝔅 

min {𝔄𝔗(ᶏ𝑖), 𝔄𝔗(ᶏ𝑗)}           ᶏ𝑖ᶏ𝑗 ∉ 𝔅
 

𝔅𝐶𝐼(ᶏ𝑖ᶏ𝑗) = {
0                                                ᶏ𝑖ᶏ𝑗 ∈ 𝔅 

min{𝔄𝔩(ᶏ𝑖), 𝔄𝔩(ᶏ𝑗)}            ᶏ𝑖ᶏ𝑗 ∉ 𝔅
 

𝔅𝐶𝐹(ᶏ𝑖ᶏ𝑗) = {
0                                                ᶏ𝑖ᶏ𝑗 ∈ 𝔅 

min{𝔄𝔉(ᶏ𝑖), 𝔄𝔉(ᶏ𝑗)}          ᶏ𝑖ᶏ𝑗 ∉ 𝔅
 

Also, 

                                               Ɗ𝐶𝐺(ᶏ𝑖) = (𝔗Ɗ
𝐶
𝐺(ᶏ𝑖), 𝔩Ɗ

𝐶
𝐺(ᶏ𝑖), 𝔉Ɗ

𝐶
𝐺(ᶏ𝑖)), 

Such that, 

𝔗Ɗ𝐶𝐺(ᶏ𝑖) = ∑ 𝔅𝐶𝔗(ᶏ𝑖ᶏ𝑗)

ᶏ𝑖≠ᶏ𝑗

 

          = ∑ 𝑚𝑖𝑛 (𝔄𝐶𝔗(ᶏ𝑖), 𝔄
𝐶
𝔗(ᶏ𝐽)) = 𝑟1ᶏ𝑖≠ᶏ𝑗

 

𝔩Ɗ𝐶𝐺(ᶏ𝑖) = ∑ 𝔅𝐶𝔩(ᶏ𝑖ᶏ𝑗)

ᶏ𝑖≠ᶏ𝑗

 

          = ∑ 𝑚𝑖𝑛 (𝔄𝐶𝔩(ᶏ𝑖), 𝔄
𝐶
𝔩(ᶏ𝐽)) = 𝑟2ᶏ𝑖≠ᶏ𝑗

 

𝔉Ɗ𝐶𝐺(ᶏ𝑖) = ∑ 𝔅𝐶𝔉(ᶏ𝑖ᶏ𝑗)

ᶏ𝑖≠ᶏ𝑗

 

           = ∑ 𝑚𝑖𝑛 (𝔄𝐶𝔉(ᶏ𝑖), 𝔄
𝐶
𝔉(ᶏ𝑗)) = 𝑟3ᶏ𝑖≠ᶏ𝑗

 

For all ᶏ𝑖 ∈ 𝑉.  Thus Ɗ(ᶏ𝑖ᶏ𝑗) = (𝑟1,  𝑟2,  𝑟3). Hence 𝐺𝐶  is (𝑟1, 𝑟2, 𝑟3) regular neutrosophic graph. 
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Application  

 The models of graph are used in wide application in much area of computer science, 

mathematical models of social sciences. These graph models need to incorporate more structure 

than simply the adjacency between vertices. In the discussion of set behaviour, it is observed that 

certain people can influence thinking of others. Each element of a set is represented by a node. 

There is a directed path from node a to node b when the member represented by node a influence 

the node represented by node b.  

 In any social set all the nodes can never be members of the group always. Any node can be 

removed from the set at any time if his/her activity is against the set. Each node of the set is 

represented by a vertex and every vertex has two values; the first value represents the power of the 

node in the set which means how much it possess to control the set, the second value represents the 

power of the node in the set when it became removed itself from the set. 

 Each path has also two values such that the first component represents the influence by the 

first node over the second node when the first node is element of the set. The second component 

represents the influence by the first node over the second node when the first node is non-member 

of the set. Any different neutrosophic graph needs large data for training to be able to help in 

decision making technology and science. The new style which is generalized in this research is 

based on the pattern of unique cases that can help us to make a better choice in the contrast to the 

established solutions of neutrosophic graph. 

 

Conclusion 

 The main contribution of this manuscript is to introduce the idea of regularity in 

neutrosophic graph theory. In it paper, we have described the idea over the on regular neutrosophic 

graph. Some unique kinds on neutrosophic graphs certain as the regular, regular strong, r-edge 

regular neutrosophic graph, strongly edge regular, neutrosophic graph and absolute degree of vertex, have 

been introduced here. We bear additionally provided some sufficient standards for r-edge regular 

neutrosophic graph and strongly edge regular.  

 In the future, we pleasure focal point about the education on neutrosophic intersection 

graphs, neutrosophic interval graphs, neutrosophic hyper graphs, or therefore on. The notion over 

the neutrosophic graph execute stay ancient of countless areas regarding expert systems, image 

processing, computer networks, and communal systems”. 

 

 

 

 

 

 

 

 

 



250  
Neutrosophic Sets and Systems, Vol. 53, 2023          

 

M.Kaviyarasu, r- Edge Regular Neutrosophic Graphs 

 

 

 

 

 

Reference  

 

1. Borzooei, R.A.; Rashmanlou, H.; Samanta, S.; Pal, M. Regularity of vague graphs. J. Intell. 

Fuzzy Syst. 2016, 30, 3681–3689.   

2. Smarandache, F. A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, 

Neutrosophic Set, Neutrosophic Probability and Statistics; Infinite Study; Modern Science 

Publisher: New York, NY, USA, 2005.  

3. Ye, J. Single-valued neutrosophic minimum spanning tree and its clustering method. J. 

Intell. Syst. 2014, 23, 311–324.   

4. Yang, H.L.; Guo, Z.L.; She, Y.; Liao, X. On single valued neutrosophic relations. J. Intell. 

Fuzzy Syst. 2016, 30, 1045–1056.  

5. Akram, M.; Waseem, N.; Dudek, W.A. certain types of edge m-polar fuzzy graphs. Iran. J. 

Fuzzy Syst. 2017, 14, 27–50.  

6. Akram, M.; Siddique, S. Neutrosophic competition graphs with applications. J. Intell. Fuzzy 

Syst. 2017, 33, 921–935.   

7. Gani, A.N.; Latha, S. On irregular fuzzy graphs. Appl. Math. Sci. 2012, 6, 517–523.  

8. Maheswari, N.S.; Sekar, C. Semi neighbourly irregular graphs. Int. J. Comb. Graph Theory 

Appl. 2015, 5, 135–144.  

9. Darabian, E.; Borzooei, R.A.; Rashmanlou, H.; Azadi, M. New concepts of regular and 

(highly) irregular vague graphs with applications. Fuzzy Inf. Eng. 2017, 9, 161–179.  

10. Poulik, S.,  Ghorai, G. Detour g-interior nodes and detour g-boundary nodes in bipolar 

fuzzy graph with applications. Hacet. J. Math. Stat. 2019, 1 – 14. 

11. Poulik, S.,  Ghorai, G. Certain indices of graphs under bipolar fuzzy environment with 

applications, Soft Computing. 2020, 27, 5119-5131. 

12. Poulik, S.,  Ghorai, G., Qin Xin. Pragmatic results in Taiwan education system based IVFG 

& IVNG, Soft Computing. 2021, 25. 

13. Poulik, S.,  Ghorai, G. Determination of journeys order based on graph's Wiener absolute 

index with bipolar fuzzy information, Information SciencesSciences,2021,545,608-619. 

14. Prem Kumar Singh, Single-valued Plithogenic graph for handling multi-valued attribute 

data and its context, International Journal of Neutrosophic Science, Vol. 15 , No. 2 , (2021) : 

98-112  

15. Karunambigai, M.G., Palanivel, K., and Sivasankar, S. Edge regular intuitionistic fuzzy 

graphs, Advances in Fuzzy Sets and Systems, 2015, 20, 25-46. 

   

Received: Sep 8, 2022.  Accepted: Dec 23, 2022 

 



                                    Neutrosophic Sets and Systems, Vol. 53, 2023 
University of New Mexico  

 

F. Masri, M. B. Zeina and O. Zeitouny, Some Single Valued Neutrosophic Queueing Systems with Maple Code 

 

Some Single Valued Neutrosophic Queueing Systems with 
Maple Code 

Fatina Masri 1, Mohamed Bisher Zeina2,* and Omar Zeitouny 3 

1 Department of Mathematical Statistics, Faculty of Science, University of Aleppo, Aleppo, Syria; fatenahmasri@gmail.com 
2 Department of Mathematical Statistics, Faculty of Science, University of Aleppo, Aleppo, Syria; bisher.zeina@gmail.com 
3 Department of Mathematical Statistics, Faculty of Science, University of Aleppo, Aleppo, Syria; ozeitouny70@gmail.com 

 
* Correspondence: bisher.zeina@gmail.com 

 

Abstract:  

In this paper we introduce for the first time the concept of single valued neutrosophic queueing 

systems (SVNQSs) as an extension of crisp and fuzzy queueing systems which are very applicable 

and important in controlling systems. SVNQSs have been defined assuming that arrival rates and 

departure rates are single valued neutrosophic trapezoidal numbers, and depending on this 

assumption probabilities and performance measures were also single valued neutrosophic 

trapezoidal numbers. Numerical examples were presented and solved successfully, and because of 

hard computations, a maple code is presented to make calculations easier. 

Keywords: Single Valued Neutrosophic Set; Single Valued Trapezoidal Neutrosophic Number; 

Queueing Systems; Markovian Queues; Performance Measures 

 

 

1. Introduction 

Fuzzy sets presented by L.A. Zadeh assume that each element 𝑥 belongs to a set 𝐴 ⊆ Ω with 

membership degree 0 ≤ 𝜇𝐴(𝑥) ≤ 1  and doesn’t belong to the set with non-membership degree 

𝜇𝐴𝑐(𝑥) where 𝜇𝐴𝑐(𝑥) = 1 − 𝜇𝐴(𝑥) [1]. This definition was extended by K. Atanassov by assuming 

that 0 ≤ 𝜇𝐴(𝑥) + 𝜇𝐴𝑐(𝑥) ≤ 1 or 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 [2]. Recently F. Smarandache presented what 

is known by neutrosophic set as a generalization to fuzzy sets and intuitionistic fuzzy sets assuming 

that  −0 ≤ 𝜇𝐴(𝑥) + 𝛿𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 3+ where 𝛿𝐴(𝑥) is degree of indeterminacy, also F. Smarandache 

supposed that all these three components are subsets of nonstandard real intervals ] 0 
− , 1+[. When 

these components are taken as subsets of standard real intervals, we have what is named by single 

valued neutrosophic set, i.e., when 𝜇𝐴(𝑥), 𝛿𝐴(𝑥), 𝜈𝐴(𝑥) ∈ [0,1] and 0 ≤ 𝜇𝐴(𝑥) + 𝛿𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 3 [3] 

[4]. 

Due to this generalization, many extensions to all branches of science have been made including 

probability theory, statistics, reliability theory, queueing theory, artificial intelligence, data mining, 

algebra, linear algebra, mathematical analysis, complex analysis, differential equations, physics, 

philosophy etc [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]. 

In probability theory, neutrosophic probability measure was defined by F.Smarandache as a 

mapping 𝑁𝑃: 𝑋 → [0,1]3 where 𝑋 is a neutrosophic sample space and the neutrosophic probability 

function of an event 𝐴 ⊆ Ω is defined by 𝑁𝑃(𝐴) = (𝑐ℎ(𝐴), 𝑐ℎ(𝑛𝑒𝑢𝑡𝐴), 𝑐ℎ(𝑎𝑛𝑡𝑖𝐴)) = (𝛼, 𝛽, 𝛾) where 

0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1 and 0 ≤ 𝛼 + 𝛽 + 𝛾 ≤ 3, i.e., 𝑁𝑃(𝐴) can be called a single valued probability measure. 

researchers introduced many neutrosophic probability distributions like Poisson, exponential, 

binomial, normal, uniform, Weibull, …etc. 
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Later, M.B. Zeina and A. Hatip in [15] defined the neutrosophic random variable in the form 

𝑋𝑁 = 𝑋 + 𝐼  where 𝐼  is indeterminacy which satisfies 𝐼2 = 𝐼  and then defined many probabilistic 

properties based on the last definition, which opens new philosophy to the study probability measure 

and many new definitions and extensions were made depending on it like in [16] [17]. 

One of the most important applications of probability theory is queueing theory presented by 

A.K. Erlang when he created mathematical models describing systems of telephone exchanges and 

then this theory has been applied in many telecommunication systems [18]. 

Queueing theory was generalized to fuzzy queueing theory to fit uncertainty in 

telecommunication systems in many papers like [19] [20] [21]. Many neutrosophic queueing systems 

were defined and studied by M.B. Zeina in many papers like [22] [23] [24] [25]. 

In the previous studies about neutrosophic queueing systems only indeterminacy was taken in 

hand where systems have been studied assuming that parameters are of the form 𝑎 + 𝑏𝐼 where 𝐼 is 

indeterminacy. In this paper we will study neutrosophic queueing systems assuming that parameters 

(Arrivals and Departures) are single valued trapezoidal neutrosophic numbers as a more general case 

of fuzzy and intuitionistic fuzzy queueing systems, then we present a maple code that makes 

calculations easier. 

2. Preliminaries 

2.1 Neutrosophic Set [4] 

Let E be a universe. Then, a neutrosophic set A over E is defined by: 

A = {  < x , ( TA (x) , IA (x) , FA (x)) > ;  x ∈ E } 

Where: 

TA ∶ E →  ] 0 
− , 1 

+[ is called truth-membership function. 

IA ∶ E →   ] 0 
− , 1 

+[ indeterminacy-membership function. 

FA ∶ E →   ] 0 
− , 1 

+[ falsity-membership function. 

0 
− ≤ TA (x) +  IA (x) + FA (x) ≤ 3 

+ 

2.2 Single Valued Neutrosophic Set [4] 

Let E be a universe. Then, a single valued neutrosophic set A over E is defined by: 

A = {  < x , ( TA (x) , IA (x) , FA (x)) > ;  x ∈ E } 

Where: 

TA ∶ E →  [0,1] is called truth-membership function. 

IA ∶ E →   [0,1] indeterminacy-membership function. 

FA ∶ E →  [0,1] falsity-membership function. 

0 ≤ TA (x) + IA (x) + FA (x) ≤ 3 

        This set is used in engineering, biology, decision-making and other applications because its 

concept is clearer and more applied than neutrosophic sets. 

2.3 Single Valued Trapezoidal Neutrosophic Number (SVTNN) [26] 

A single valued trapezoidal neutrosophic number is denoted by:  

a ̃ = < ( a1, b1, c1, d1) ; wa ̃ , ua ̃ , ya ̃ > 

Where: 

wa ̃ is the nucleus of truth membership, ua ̃ is the nucleus of indeterminacy membership and 

ya ̃ is the nucleus of falsity membership where: 

Truth-membership function is: 

Ta ̃ (x) =

{
  
 

  
 
(x − a1)wa ̃

b1 − a1
        ; a1  ≤ x < b1

     wa ̃                    ; b1 < x ≤ c1
(d1 − x)wa ̃

d1 − c1
          ; c1 < x ≤ d1

0                                  ; otherwise

 

Indeterminacy-membership function is: 
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Ia ̃ (x) =

{
  
 

  
 
(b1 − x + ua ̃(x − a1))

b1 − a1
        ; a1  ≤ x < b1

               ua ̃                               ; b1 < x ≤ c1
(x − c1 + ua ̃(d1 − x)

d1 − c1
          ; c1 < x ≤ d1

1                                  ; otherwise

 

Falsity-membership function is: 

Fa ̃ (x) =

{
  
 

  
 
(b1 − x + ya ̃(x − a1))

b1 − a1
        ; a1  ≤ x < b1

                ya ̃                             ; b1 < x ≤ c1
(x − c1 + ya ̃(d1 − x)

d1 − c1
          ; c1 < x ≤ d1

1                                  ; otherwise

 

2.3 Operations on SVTNNs [26] 

Let a ̃ = < ( a1, b1, c1, d1) ; wa ̃ , ua ̃ , ya ̃ >,b ̃ = < ( a2, b2, c2, d2) ; wb ̃ , ub ̃ , yb ̃ > be two 

SVTNNs and 𝛾 ≥ 0 any real number, then: 

a ̃ ⊕ b ̃ = < ( a1 + a2, b1 + b2, c1 + c2, d1 + d2) ; wa ̃ + wb ̃ − wa ̃wb ̃ , ua ̃ub ̃ , ya ̃yb ̃ > 

     a ̃ ⊗ b ̃ = < ( a1a2, b1b2, c1c2, d1d2) ; wa ̃wb ̃ , ua ̃ + ub ̃ − ua ̃ub ̃ , ya ̃ + yb ̃ − ya ̃yb ̃ > 

 𝛾a ̃ = < ( 𝛾a1, 𝛾b1, 𝛾c1, 𝛾d1) ; 1 − (1 − wa ̃)
𝛾 , ua ̃

𝛾  , ya ̃
𝛾 >  

  a ̃𝛾 = < ( a1
𝛾, b1

𝛾 , c1
𝛾, d1

𝛾) ; wa ̃
𝛾  ,1 − (1 − ua ̃)

𝛾, 1 − (1 − ya ̃)
𝛾 > 

3. Recall of Some Crisp Queueing Systems [18] 

Here we recall definitions and properties of some crisp queueing systems including M/M/1, 

M/M/c, M/M/c/b. 

3.1 M/M/1 Queueing System 

In this system we have one server with arrival rate 𝜆 customers per time unit and serving 

rate 𝜂 customers per time unit. 

The probability that we will not find customers in the system is: 

P0 = (1 − ρ)             ;      ρ =
λ

𝜂
   

The probability that we will find n customers in the system is: 

       Pn = (1 − ρ) ∗ ρn             ;  n = 0,1,2, … 

The average number of customers in queue is: 

Lq =
ρ2

1 − ρ 
 

The average number of customers in system is:       

Ls =
ρ

1 − ρ
 

The mean waiting time in queue is: 

Wq =
Lq

λ
 

The mean waiting time in system is: 

Ws =
Ls

λ
 

3.2 M/M/c Queueing System 

In this system we have c servers with arrival rate 𝜆 and serving rate 𝜂. 

The probability that we will not find customers in the system is: 

P0 =
1

∑
ρn

n!
c−1
n=0 +

ρc

c! ∗ (1 −
ρ
c
)

  ;     ρ =
λ

𝜂
   ,

ρ

c
 < 1  

The probability that we will find n customers in the system is: 
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Pn =

{
 
 

 
 
ρn

n!
∗ P0            ;  n = 0,1, … , c − 1

 
 

ρn

c!
∗
P0

cn−c
          ;  n = c, c + 1,…

 

The average number of customers in queue is: 

Lq =
ρc+1

c!
 ∗

P0

c ∗ (1 −
ρ
c
 ) 2

 

The average number of customers in system is:       

Ls = Lq + ρ     

The mean waiting time in queue is: 

Wq =
Lq

λ
 

The mean waiting time in system is: 

Ws =
Ls

λ
 

3.3 M/M/c/b Queueing System 

Here we have c servers and the system size is limited by b where 𝑐 < 𝑏 with arrival rate 𝜆 

and serving rate 𝜂. 

The probability that we will not find customers in the system is: 

P0 =
1
 

∑
ρn

c!

𝑐−1           
𝑛=0

+ 
ρc

c!
∗ (

           1 − (
ρ
c
 )
b−c+1

1 −
ρ
c
 

) 

    ;    ρ =
λ

𝜂
                     

The probability that we will find n customers in the system is: 

Pn =

{
 
 

 
 ρ

n

n!
∗ P0         ;  n = 0,1, … , c − 1

 
ρn

c!
∗
P0

cn−c
      ;  n = c, c + 1,… , b

 

The average number of customers in queue is: 

Lq =
ρc ∗ 𝑃0

c!
∗ ∑ (n − c) ∗ (

ρ

c
)
n−c

𝑏

𝑛=𝑐+1

     

The effective arrival rate is: 

λe = λ ∗ (1 − Pb) 

The average number of customers in system is:        

Ls = Lq +
λe
𝜂
    

The mean waiting time in queue is: 

Wq =
Lq

λe
        

The mean waiting time in system is: 

Ws =
Ls

λe
     

4. Single Valued Neutrosophic Queueing Systems 

Here we suppose that both of arrival rate and serving rate are SVTNNs given by 

Nλ =< (λ1, λ2, λ3, λ4);   wλ, uλ, vλ >, N𝜂 =< (𝜂1, 𝜂2, 𝜂3, 𝜂4);   w𝜂 , u𝜂 , v𝜂 > 

Where: 
0 ≤ wλ, uλ, vλ ≤ 1    &    0 ≤ w𝜂 , u𝜂, v𝜂 ≤ 1 

0 ≤ wλ + uλ + vλ ≤ 3    &     0 ≤ w𝜂 + u𝜂 + v𝜂 ≤ 3 

The neutrosophic utilization coefficient is: 
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Nρ =
Nλ

N𝜂
=< (

λ1
𝜂4
,
λ2
𝜂3
,
λ3
𝜂2
,
λ4
𝜂1
) ;  wλ ∗ w𝜂 , uλ + uη − uλ ∗ uη, vλ + vη − vλ ∗ vη > 

We will depend on all of our results on neutrosophic operations defined in 2.3 

4.1 Single Valued Neutrosophic M/M/1 Queueing System 

In this system we have one server and infinite queue size and based on (2.3,3.1) we can find the 

following: 

Neutrosophic probability that we will not find customers in the system 
NP0 =< (1 − ρ4, 1 − ρ3, 1 − ρ2, 1 − ρ1);  wρ, uρ, vρ >           (1) 

Where 𝑤𝜌, 𝑢𝜌, 𝑣𝜌  are truth, indeterminacy and falsity of neutrosophic utilization coefficient 

respectively. 

The neutrosophic probability that we will find n customers in the system will be: 

NPn =< ((1 − ρ4)ρ1
𝑛, (1 − ρ3)ρ2

𝑛, (1 − ρ2)ρ3
𝑛, (1 − ρ1)ρ4

𝑛);wρ ∗ wρ
n, 1 − (1 − uρ)

n

− (1 − (1 − uρ)
n
)uρ + uρ ,1 − (1 − vρ)

n
− (1 − (1 − vρ)

n
)vρ + vρ    >  ; 

 n = 0,1,2, …           (2) 

The neutrosophic average number of customers in queue is: 

NLq =< (
ρ2
1

1 − ρ4
,
ρ2

2

1 − ρ3
,
ρ2

3

1 − ρ2
,
ρ2

4

1 − ρ1
) ;wρ

3 ,1 − (1 − uρ)
2
− (1 − (1 − uρ)

2
) uρ + uρ , 

1 − (1 − vρ)
2
− (1 − (1 − vρ)

2
) vρ + vρ >                                   (3)  

The neutrosophic average number of customers in system is: 

NLs =< (
ρ1

1 − ρ4
,
ρ2

1 − ρ3
,
ρ3

1 − ρ2
,
ρ4

1 − ρ1
) ;   wρ

2, 2uρ − uρ
2, 2vρ − vρ

2 >       (4) 

The neutrosophic mean waiting time in queue is: 

NWq =
NLq

𝑁λ 
=< (

ρ2
1

λ4(1 − ρ4)
,

ρ2
2

λ3(1 − ρ3)
,

ρ2
3

λ2(1 − ρ2)
,

ρ2
4

λ1(1 − ρ1)
) ;        wλ ∗ wρ

3 , 

1 − (1 − uρ)
2
− (1 − (1 − uρ)

2
) uρ + uρ + uλ − (1 − (1 − uρ)

2
− (1 − (1 − uρ)

2
) uρ + uρ) ∗ uλ , 

1 − (1 − vρ)
2
− (1 − (1 − vρ)

2
) vρ + vρ + vλ − (1 − (1 − vρ)

2
− (1 − (1 − vρ)

2
) vρ + vρ) ∗ vλ >    (5)  

The neutrosophic mean waiting time in system is: 

𝑁Ws =
NLs

𝑁λ 
 =< (

ρ1
λ4(1 − ρ4)

,
ρ2

λ3(1 − ρ3)
,

ρ3
λ2(1 − ρ2)

,
ρ4

λ1(1 − ρ1)
) ;     wρ

3, 

2uρ − uρ
2 + uλ − (2uρ − uρ

2) ∗ uλ, 2vρ − vρ
2 + vλ − (2vρ − vρ

2) ∗ vλ >             (6) 

Example 1 (Single Valued M/M/1 Queue) 

Suppose that both arrival rate and serving rate are SVTNNs given by 

Nλ =< (1,2,3,4);   0.8,0.2,0.01 >, Nη =< (5,6,7,8);   0.9,0.1,0.01 > 

The neutrosophic probability that we will find no customers in systems using equation (1) will be: 

𝑁𝑃0  = < (0.2000000000,0 .5000000000,0 .7142857143,0 .8750000000), 0 .72, 0.28, 0.0199 > 

Which means that with possibility 72% the probability of finding 0 customers in the system will range 

between 50% and 71.43% and will never be less than 20% or more than 87.5%. 

We are also unsure with percentage of indeterminacy 28% of these results and we may be false by 

1.9% falsity degree. 

Fig1.  Below shows all the possibilities of different truth, indeterminacy and falsity degrees by drawing 

a horizontal line on the graph, e.g. if we draw a horizontal line at y=0.4 we say that: with truth degree 

40% P0 will lay between about 0.36 and about 0.78, with indeterminacy degree 60% (which is 1-y) P0 

will lay between 0.45 and 0.74 and with falsity degree 60% (which is also 1-y) P0 will lay between 0.44 

and 0.75. 
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Fig1. NP0 in single valued neutrosophic M/M/1 queue 

 

The neutrosophic probability that we will find 3 customers in system using equation (2) will be: 

𝑁𝑃3  = < (0.0003906250000, 0.01166180758, 0.08928571429, 0.4480000000),

0.26873856,0 .73126144, 0.07725530557 > 

Which means that with possibility 26.9% the probability of finding 3 customers in the system will 

range between 1.2% and 8.9% and will never be less than 0.04% or more than 44.8%. 

We are also unsure with percentage of indeterminacy 73% of these results and we may be false by 

7.7% falsity degree. 

Fig2. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NP3: 

 

 
Fig2. NP3 in single valued neutrosophic M/M/1 queue 

 

Neutrosophic performance measures using equations (3) to (6) will be: 
𝑁𝐿𝑞 = < (0.01785714286,0 .1142857143,0 .5000000000, 3.200000000),

0.373248,0 .626752, 0.05851985060 > 

Which means that surely 37% the average number of customers in queue will range between 11% 

and 50% and will never be less than 1.8% or more than 3.20. 

We are also unsure with percentage of indeterminacy 62.7% of these results and we may be false by 

5.8% falsity degree. 

Fig3. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NLq: 



Neutrosophic Sets and Systems, Vol. 53, 2023     257  

 

 

F. Masri, M. B. Zeina and O. Zeitouny, Some Single Valued Neutrosophic Queueing Systems with Maple Code 

 

 
Fig3. NLq in single valued neutrosophic M/M/1 queue 

 

𝑁𝐿𝑠  = < (0.1428571429, 0.4000000000, 1. , 4. ),0 .5184,0 .4816, 0.03940399 > 

Which means that surely 51.8% the average number of customers in system will range between 40% 

and 100% and will never be less than 14.3% or more than 4. 

We are also unsure with percentage of indeterminacy 48% of these results and we may be false by 

3.9% falsity degree. 

Fig4. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NLs: 

 

 
Fig4. NLs in single valued neutrosophic M/M/1 queue  

 
     𝑁𝑊𝑞  = < (0.004464285715, 0.03809523810, 0.2500000000, 3.200000000) ,  

0.2985984,0 .7014016, 0.06793465209 >  

Which means that surely 29.8% the mean waiting time in queue will range between 3.8% and 25% and 

will never be less than 0.44% or more than 3.20. 

We are also unsure with percentage of indeterminacy 70% of these results and we may be false by 

6.8% falsity degree. 

Fig5. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NWq: 
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Fig5. NWq in single valued neutrosophic M/M/1 queue 

 

                            𝑁𝑊𝑠 =< (0.03571428572,0 .1333333333,0 .5000000000, 4. ), 

 0.41472,0 .58528, 0.0490099501 > 

Which means that surely 41% the mean waiting time in system will range between 13.3% and 50% 

and will never be less than 3.5% or more than 4. 

We are also unsure with percentage of indeterminacy 58.5% of these results and we may be false by 

4.9% falsity degree. 

Fig6. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NWs: 

 

 
Fig6. NWs in single valued neutrosophic M/M/1 queue 

 

4.2 Single Valued Neutrosophic M/M/c and M/M/c/b Queueing System 

In M/M/c system we have c parallel servers working homogeneously with neutrosophic arrivals 

and neutrosophic departures and unlimited queue size. M/M/c/b is as same as M/M/c except that 

the first one has limited queue size. Finding probabilities of these queueing systems cannot be done 

by hand because of complex calculations so we will present a Maple package of code which makes 

calculations easier.   

4.3 Single Valued Neutrosophic Queueing Systems Package 
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Notice that equations (1-6) are very hard to be applied by hand calculating, so we wrote a maple 

code depending on our previous neutrosophic package in [14] to handle neutrosophic queues 

easily. 

A general procedure with overloading in parameters named 

QueueingSystem(NLambda,NMu,n,c,b) calls a procedure to calculate neutrosophic probability of 

finding 0 customers in the system, neutrosophic probability of finding n customers in the system, 

neutrosophic average number of customers in the system, neutrosophic average number of 

customers in the queue, neutrosophic mean time in the system and neutrosophic mean time in 

the queue then plots these numbers, where: 

NLambda is 𝑁𝜆 (neutrosophic arrival rate) 

NMu is 𝑁𝜇 (neutrosophic departure rate) 

n is number of customers that we want to calculate the neutrosophic probability of finding them 

in the system. 

c is number of servers working in parallel. 

b is size of system (including servers). 

We can use this procedure to describe different types of queues as shown in table 1: 

Procedure Neutrosophic Queueing System 

   QueueingSystem(NLambda,NMu,n,c,b) NM/NM/c/b 

   QueueingSystem(NLambda,NMu,n,c) NM/NM/c/∞ or NM/NM/c 

   QueueingSystem(NLambda,NMu,n) NM/NM/1/∞ or NM/NM/1 

Table 1. Single valued neutrosophic queueing systems overloaded procedures. 

 

Also, a plotting procedure is programmed to plot the results as follows: 

SVTNQPlot(QueueingSystem(NLambda,NMu,OVERLOADED PARAMETERS),measure); 

Where 'measure' can be replaced by p0,pn,lq,ls,wq or ws. 

Example 2 (Single Valued M/M/c Queue) 

suppose that we have a queueing system with arrival rate given as follows: 

Nλ =< (2,2.5,3,3.5);   0.8,0.2,0.01 >, Nη =< (5,5.5,6,6.5);   0.9,0.1,0.01 > 

We can define these rates using the code: 

NLambda :=SVTN(2,2.5,3,3.5,0.8,0.2,0.01);NMu:=SVTN(5,5.5,6,6.5,0.9,0.1,0.01); 

Suppose that we have 2 servers, and we would like to calculate the following: 

1. Probability of finding no customers in the system. 

2. Probability of finding 3 customers in the system. 

3. Performance measures. 

These can be done by typing: 

QueueingSystem(NLambda,NMu,3,2); 

Which results: 

The neutrosophic probability that we will find no customers in systems using equation (1) will be: 

𝑁𝑃0  =  [
[0.4814814815, 0.5714285711, 0.6551724136, 0.7333333331] ,

 0.96224256, 0.03775744, 0.00001560437408
] 

Which means that with possibility 96.2% the probability of finding 0 customers in the system will 

range between 57% and 65.5% and will never be less than 48% or more than 73.3%. 

We are also unsure with percentage of indeterminacy 3.8% of these results and we may be false by 

0.002% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,3,2),p0); 

Fig7. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NP0: 
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Fig7. NP0 in single valued neutrosophic M/M/c queue 

 

The neutrosophic probability that we will find 3 customers in system using equation (2) will be: 

𝑁𝑃3  = [
[0.003506465046, 0.01033399471, 0.02658099950, 0.06288333332] ,

0 .1678434279,0 .8321565721, 0.2449034052
] 

Which means that with possibility 16.8% the probability of finding 3 customers in the system will 

range between 1.04% and 2.7% and will never be less than 0.35% or more than 6.3%. 

We are also unsure with percentage of indeterminacy 83% of these results and we may be false by 

24.5% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,3,2),pn); 

Fig8. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NP3: 

 

 
Fig8. NP3 in single valued neutrosophic M/M/c queue 

 

Neutrosophic performance measures using equations (3) to (6) will be: 

𝑁𝐿𝑞 = [
[0.004897459442, 0.01648858989, 0.05025470221, 0.1488362919] ,

 0.2004575439, 0.7995424561, 0.2419205946
] 

Which means that surely 20% the average number of customers in queue will range between 1.65% 

and 5.03% and will never be less than 0.48% or more than 14.9%. 

We are also unsure with percentage of indeterminacy 79.9% of these results and we may be false by 

24.2% falsity degree. 
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SVTNQPlot(QueueingSystem(NLambda,NMu,3,2),lq); 

Fig9. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NLq: 

 
Fig9. NLq in single valued neutrosophic M/M/c queue 

 

𝑁𝐿𝑠  =  [
[0.3125897671, 0.4331552566, 0.5957092477, 0.8488362919] ,

0 .7761281123, 0.2238718877, 0.004814219833
] 

Which means that surely 77.6% the average number of customers in system will range between 

43.3% and 59.6% and will never be less than 31.3% or more than 84.9%. 

We are also unsure with percentage of indeterminacy 22.4% of these results and we may be false by 

0.48% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,3,2),ls); 

Fig10. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NLs: 

 
Fig10. NLs in single valued neutrosophic M/M/c queue 

 

     𝑁𝑊𝑞  = [
[0.001399274126, 0.005496196630, 0.02010188088, 0.07441814595𝑒] ,

 0.1603660351, 0.8396339649, 0.2495013887
] 

Which means that surely 16% the mean waiting time in queue will range between 0.55% and 2.01% 

and will never be less than 0.14% or more than 7.44%. 

We are also unsure with percentage of indeterminacy 83.9% of these results and we may be false by 

24.9% falsity degree. 
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SVTNQPlot(QueueingSystem(NLambda,NMu,3,2),wq); 

Fig11. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NWq: 

 

 
Fig11. NWq in single valued neutrosophic M/M/c queue 

 

𝑁𝑊𝑠 = [
[0.08931136203, 0.1443850855, 0.2382836991, 0.4244181460] ,

0 .6209024898,0 .3790975102, 0.01476607764
] 

Which means that surely 62% the mean waiting time in system will range between 14.4% and 24% 

and will never be less than 8.9% or more than 42%. 

We are also unsure with percentage of indeterminacy 37.9% of these results and we may be false by 

1.4% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,3,2),ws); 

Fig12. Below shows all the possibilities of different truth, indeterminacy and falsity degrees of NWs: 

 

 
Fig12. NWs in single valued neutrosophic M/M/c queue 

Example 3 (Single Valued M/M/c/b Queue) 

Suppose that we have a queueing system with: 

Nλ =< (2,2.5,3,3.5);   1,0.01,0.01 >, Nη =< (4,4.5,5,5.5);   0.9,0.1,0.01 > 
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Suppose that we have 2 servers and system size limited by 4, and we would like to calculate the 

following: 

1. Probability of finding no customers in the system. 

2. Probability of finding 4 customers in the system. 

3. Performance measures. 

 These can be done by typing: 

NLambda :=SVTN(2,2.5,3,3.5,1,0.01,0.01);NMu:=SVTN(4,4.5,5,5.5,0.9,0.1,0.01); 

QueueingSystem(NLambda,NMu,4,2,4); 

Which results: 

 The neutrosophic probability that we will find no customers in systems using equation (1) will be: 

𝑁𝑃0  =  [
[0.3919316843,0 .5013054829,0 .6022304833, 0.6955662590] ,

 0.9912331324, 0.01057498123, 0.0002232497869
] 

Which means that with possibility 99% the probability of finding 0 customers in the system will 

range between 50% and 60% and will never be less than 39% or more than 69.5%. 

We are also unsure with percentage of indeterminacy 1.05% of these results and we may be false by 

0.02% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,4,2,4),p0); 

 
Fig13. NP0 in single valued neutrosophic M/M/c/b queue 

 

The neutrosophic probability that we will find 4 customers in system using equation (2) will be: 

𝑁𝑃𝑛  = [
[0.0008566227644, 0.003916449084, 0.01486988847, 0.05096602137] ,

0 .2870206713,0 .7337556823,0 .3662088099
] 

Which means that with possibility 28.7% the probability of finding 4 customers in the system will 

range between 0.39% and 1.5% and will never be less than 0.08% or more than 5.09%. 

We are also unsure with percentage of indeterminacy 73.4% of these results and we may be false by 

36.6% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,4,2,4),pn); 
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Fig14. NPn in single valued neutrosophic M/M/c/b queue 

 

Neutrosophic performance measures using equations (3) to (6) will be: 

𝑁𝐿𝑞 = [
[0.006424670732, 0.02349869451, 0.07434944242, 0.2184258058] ,

0 .5090336259,0 .5139856353, 0.2064567181
] 

Which means that surely 50% the average number of customers in queue will range between 2.4% 

and 7.4% and will never be less than 0.64% or more than 21.8%. 

We are also unsure with percentage of indeterminacy 51.4% of these results and we may be false by 

20.6% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,4,2,4),lq); 

 
Fig15. NLq in single valued neutrosophic M/M/c/b queue 

 

𝑁𝐿𝑠  =  [
[0.3515279356, 0.5160637503, 0.7384051431, 1.092676261] ,

0 .6358593744,0 .3920560678, 0.07821019297
] 

Which means that surely 63.6% the average number of customers in system will range between 52% 

and 74% and will never be less than 35% or more than 1.1. 

We are also unsure with percentage of indeterminacy 39% of these results and we may be false by 

7.8% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,4,2,4),ls); 
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Fig16. NLs in single valued neutrosophic M/M/c/b queue 

 

     𝑁𝑊𝑞  =  [
[0.001837193992, 0.007863695934, 0.03018867926, 0.1150779691] ,

0 .1461031730,0 .8718954227,0 .5020886664
] 

Which means that surely 14.6% the mean waiting time in queue will range between 0.8% and 3% and 

will never be less than 0.2% or more than 11.5%. 

We are also unsure with percentage of indeterminacy 87% of these results and we may be false by 

50% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,4,2,4),wq); 

 
Fig17. NWq in single valued neutrosophic M/M/c/b queue 

 

 

𝑁𝑊𝑠 = [
[0.1005226630, 0.1726976115,0 .2998203524, 0.5756781558] ,

 0.1825047845, 0.8397569988, 0.4216199638
] 

Which means that surely 18% the mean waiting time in system will range between 29.9% and 83.9% 

and will never be less than 10% or more than 57.5%. 

We are also unsure with percentage of indeterminacy 83.9% of these results and we may be false by 

42% falsity degree. 

SVTNQPlot(QueueingSystem(NLambda,NMu,4,2,4),ws); 
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Fig18. NWs in single valued neutrosophic M/M/c/b queue 

6. Conclusions  

Ignoring indeterminacy may lead decision makers to make wrong decisions especially in 

controlling systems which is one of the most important applications of queueing theory. We found 

that neutrosophic queues are more reliable and applicable than crisp queues because of dealing with 

indeterminacy and uncertainty. We are looking forward to study and define more queuing systems 

in neutrosophic logic including tandem networks, open Jackson networks, balk queues, etc.  
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Appendix (Maple Code) 

interface(warnlevel = 0): 

with(plots):with(plottools): 

SVTN := proc (a1, a2, a3, a4, wa, ua, ya)  

return [[a1, a2, a3, a4], wa, ua, ya];  

end proc: 

SVTNNPlotT:=proc(n::list) 

n1:=n[1][1]; 

n2:=n[1][2]; 

n3:=n[1][3]; 

n4:=n[1][4]; 
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t:=n[2]; 

i:=n[3]; 

f:=n[4]; 

lt:=piecewise(n1<w and w<n2,t*(w-n1)/(n2-n1),undefined); 

mt:=piecewise(n2<w and w<n3,t,undefined); 

rt:=piecewise(n3<w and w<n4,t*(w-n4)/(n3-n4),undefined); 

plot([lt(w),mt(w),rt(w)],w=n1..n4,color="green",legend=["T","",""],labels=["",""]); 

end proc: 

SVTNNPlotI:=proc(n::list) 

n1:=n[1][1]; 

n2:=n[1][2]; 

n3:=n[1][3]; 

n4:=n[1][4]; 

t:=n[2]; 

i:=n[3]; 

f:=n[4]; 

li:=piecewise(n1<u and u<n2,(n2-u+i*(u-n1))/(n2-n1),undefined); 

mi:=piecewise(n2<u and u<n3,i,undefined); 

ri:=piecewise(n3<u and u<n4,(u-n3+i*(n4-u))/(n4-n3),undefined); 

plot([li(u),mi(u),ri(u)],u=n1..n4,color="blue",legend=["I","",""],labels=["",""]); 

end proc: 

SVTNNPlotF:=proc(n::list) 

n1:=n[1][1]; 

n2:=n[1][2]; 

n3:=n[1][3]; 

n4:=n[1][4]; 

t:=n[2]; 

i:=n[3]; 
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f:=n[4]; 

lf:=piecewise(n1<y and y<n2,(n2-y+f*(y-n1))/(n2-n1),undefined); 

mf:=piecewise(n2<y and y<n3,f,undefined); 

rf:=piecewise(n3<y and y<n4,(y-n3+f*(n4-y))/(n4-n3),undefined); 

plot([lf(y),mf(y),rf(y)],y=n1..n4,color="red",legend=["F","",""],labels=["",""]); 

end proc: 

SVTNPlot:=proc(n::list,myTitle) 

t:=SVTNNPlotT(n): 

i:=SVTNNPlotI(n): 

f:=SVTNNPlotF(n): 

display([t, i, f],title=myTitle); 

end proc: 

SVTNQPlot:=proc(q::Matrix,property) 

properties:=[p0,pn,lq,ls,wq,ws]; 

i:=ListTools[SearchAll](property,properties); 

n:=rhs(op(convert(q[i],list))); 

myTitle:=lhs(op(convert(q[i],list))); 

SVTNPlot(n,myTitle); 

end proc: 

CrispNumberSS := proc (n) return SVTN(n, n, n, n, 0, 1, 1); end proc: 

CrispNumberMD := proc (n) return SVTN(n, n, n, n, 1, 0, 0); end proc: 

CrispNumber:=proc (n,NRho) return SVTN(n, n, n, n, NRho[2], NRho[3], NRho[4]); end proc: 

SVTNSum := proc (t1, t2) x := t1; y := t2;  

L1 := x[1][1]+y[1][1], x[1][2]+y[1][2], x[1][3]+y[1][3], x[1][4]+y[1][4];  

U1 := x[2]+y[2]-x[2]*y[2], x[3]*y[3], x[4]*y[4]; [[L1], U1]; end proc: 

SVTNSub := proc (t1, t2) x := t1; y := t2;  

L1 := x[1][1]-y[1][4], x[1][2]-y[1][3], x[1][3]-y[1][2], x[1][4]-y[1][1];  

U1 := x[2]+y[2]-x[2]*y[2], x[3]*y[3], x[4]*y[4]; [[L1], U1]; end proc: 
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SVTNMult := proc (t1, t2) x := t1; y := t2;  

L1 := x[1][1]*y[1][1], x[1][2]*y[1][2], x[1][3]*y[1][3], x[1][4]*y[1][4];  

U1 := x[2]*y[2], x[3]+y[3]-x[3]*y[3], x[4]+y[4]-x[4]*y[4]; [[L1], U1]; end proc: 

SVTNScalarMult := proc (t1, PN) x := t1;  

L1 := PN*x[1][1], PN*x[1][2], PN*x[1][3], PN*x[1][4];  

U1 := 1-(1-x[2])^PN, x[3]^PN, x[4]^PN; [[L1], U1]; end proc: 

SVTNDiv := proc (t1, t2) x := t1; y := t2;  

L1 := x[1][1]/y[1][4], x[1][2]/y[1][3], x[1][3]/y[1][2], x[1][4]/y[1][1];  

U1 := x[2]*y[2], x[3]+y[3]-x[3]*y[3], x[4]+y[4]-x[4]*y[4]; [[L1], U1]; end proc: 

SVTNPower := proc (t1, PN) x := t1;  

L1 := x[1][1]^PN, x[1][2]^PN, x[1][3]^PN, x[1][4]^PN;  

U1 := x[2]^PN, 1-(1-x[3])^PN, 1-(1-x[4])^PN; [[L1], U1]; end proc: 

SVTNSeries:=proc(x,n,NRho) 

S:=CrispNumber(1,NRho); 

for i from 1 by 1 to n-1 do 

S:=SVTNSum(S,SVTNScalarMult(SVTNPower(x,i),1/(i!))); 

end do; 

S; 

end proc: 

SVTNSeriesmmcb:=proc(x,c,b) 

Lq:=SVTNScalarMult(x,1/c); 

for i from c+2 by 1 to b do 

Lq:=SVTNSum(Lq,SVTNScalarMult(SVTNPower(SVTNScalarMult(x,1/c),i-c),i-c)); 

end do; 

Lq; 

end proc: 

QueueingSystem:=overload( 

[ 



Neutrosophic Sets and Systems, Vol. 53, 2023     270  

 

 

F. Masri, M. B. Zeina and O. Zeitouny, Some Single Valued Neutrosophic Queueing Systems with Maple Code 

proc(NLambda::list,NMu::list,n::integer,c::integer,b::integer) option overload; 

NRho:=SVTNDiv(NLambda, NMu); 

NP0:=evalf(SVTNDiv(CrispNumberMD(1),SVTNSum(SVTNSeries(NRho,c,NRho),SVTNMult(SVT

NScalarMult(SVTNPower(NRho,c),1/(c!)),SVTNDiv(SVTNSub(CrispNumberSS(1),SVTNPower(SV

TNScalarMult(NRho,1/c),b-c+1)),SVTNSub(CrispNumberSS(1),SVTNScalarMult(NRho,1/c))))))); 

if 0 <= n and n < c then  

NPn:=evalf(SVTNMult(SVTNScalarMult(SVTNPower(NRho,n),1/(n!)),NP0)); 

NPb:=evalf(SVTNMult(SVTNScalarMult(SVTNPower(NRho,b),1/(b!)),NP0)); 

elif c <= n and n <= b then 

NPn:=evalf(SVTNMult(SVTNScalarMult(SVTNPower(NRho,n),1/(c!)),SVTNScalarMult(NP0,1/(c^(n

-c))))); 

NPb:=evalf(SVTNMult(SVTNScalarMult(SVTNPower(NRho,b),1/(c!)),SVTNScalarMult(NP0,1/(c^(b

-c)))));  

end if; 

NLq:=SVTNMult(SVTNMult(SVTNScalarMult(SVTNPower(NRho,c),1/c!),NP0),SVTNSeriesmmcb(

NRho,c,b)); 

NLambdae:= evalf(SVTNMult(NLambda,SVTNSub(CrispNumberSS(1),NPb))); 

NLs:=evalf(SVTNSum(NLq,SVTNDiv(NLambdae,NMu))); 

NWs:=evalf(SVTNDiv(NLs,NLambdae)); 

NWq:=evalf(SVTNDiv(NLq,NLambdae)); 

<'NP0'=NP0, 

'NPn'=NPn, 

'NLq'=NLq, 

'NLs'=NLs, 

'NWq'=NWq, 

'NWs'=NWs>; 

end proc, 

#MMc 

proc(NLambda,NMu,n,c) option overload; 

NRho:=SVTNDiv(NLambda, NMu); 
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NP0:=evalf(SVTNDiv(CrispNumberMD(1),SVTNSum(SVTNSeries(NRho,c,NRho),SVTNDiv(SVTN

Power(NRho,c),SVTNScalarMult(SVTNSub(CrispNumberMD(1),SVTNScalarMult(NRho,1/c)),c!))))

); 

NLq:=evalf(SVTNMult(SVTNScalarMult(SVTNPower(NRho,c+1),1/(c!)),SVTNDiv(NP0,SVTNScalar

Mult(SVTNPower(SVTNSub(CrispNumberMD(1),SVTNScalarMult(NRho,1/c)),2),c)))); 

NLs:=evalf(SVTNSum(NLq,NRho)); 

NWs:=evalf(SVTNDiv(NLs,NLambda)); 

NWq:=evalf(SVTNDiv(NLq,NLambda)); 

if n>=0 and n < c then NPn:= evalf(SVTNMult(SVTNScalarMult(SVTNPower(NRho,n),1/(n!)),NP0)); 

elif n>=c then NPn:= 

evalf(SVTNMult(SVTNScalarMult(SVTNPower(NRho,n),1/(c!)),SVTNScalarMult(NP0,1/(c^(n-c))))); 

end if; 

<'NP0'=NP0, 

'NPn'=NPn, 

'NLq'=NLq, 

'NLs'=NLs, 

'NWq'=NWq, 

'NWs'=NWs>; 

end proc, 

#MM1 

proc(NLambda,NMu,n) option overload; 

NRho:=SVTNDiv(NLambda, NMu); 

NLs:=evalf(SVTNDiv(NRho, SVTNSub(CrispNumberSS(1),NRho))); 

NLq:=evalf(SVTNDiv(SVTNPower(NRho,2), SVTNSub(CrispNumberSS(1),NRho))); 

NWs:=evalf(SVTNDiv(NLs, NLambda)); 

NWq:=evalf(SVTNDiv(NLq, NLambda)); 

NP0:=evalf(SVTNSub(CrispNumberSS(1),NRho)); 

NPn:=evalf(SVTNMult(NP0, SVTNPower(NRho, n))); 

<'NP0'=NP0, 

'NPn'=NPn, 
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'NLq'=NLq, 

'NLs'=NLs, 

'NWq'=NWq, 

'NWs'=NWs>; 

end proc 

] 

): 
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ABSTRACT. A refined neutrosophic set (RNS) is an extension of a neutrosophic set in which all the uncertain

belonging-based entities like belonging-grade, non-belonging-grade, and indeterminate-grade are further cat-

egorized into their respective sub-belonging grades, sub-non-belonging-grades, and sub-indeterminate-grades,

respectively. In other words, the RNS provides multi sub-grades for each uncertain component of theneutro-

sophic set. This study is aimed to integrate the classical concepts of convexity and concavity with RNS to make

the RNS applicable to various optimization problems.Thus, convex RNS and concave RNS are developed. Some

of their important aggregation operations and results are investigated and then modified.

Keywords: Sub-belonging grade; Sub non-belonging grade; Sub-indeterminacy grade; Infimum projection;

Supremum projection; Ortho-convexity; Ortho-concavity.

—————————————————————————————————————————-

1. Introduction

To deal with uncertainty, Zadeh [1] proposed a fuzzy set (FS) in 1965. Each component

of the universe under investigation is given a belonging grade from the range [0, 1] in an

FS. Zadeh [2] used his own idea of FSs as the foundation for a theory of possibility. The

link between FSs and probability theories was studied by Dubois et al. [4, 5]. For algebraic

operations carried out between random set-valued variables, they derived the monotonic-

ity property. Dubois et al. [3] performed research on ranking fuzzy numbers in the context

of possibility theory. Beg et al. computed similarities between FSs under specific implica-

tions [6–8]. The solution of nonlinear partial differential equations in a fuzzy environment

was determined by Osman et al. [9]. Khan et al. [10] envisaged some semi-groups in the

context of fuzzy interior intuitionistic ideals. With applications in both the first and second
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under refined neutrosophic set environment
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senses, Rahman et al. [11] and Ihsan et al. [26] proposed the conceptual framework of (m, n)-

convexity-cum-concavity on fuzzy soft set and fuzzy soft expert set, respectively.

Only being a member is insufficient in some real-world situations. Atanassov conceptual-

ized an intuitionistic fuzzy set (IFS) to make the FSs suitable for the non-belonging grade in

1986 [13, 14]. Each component of the universe of discourse receives an allocation of both be-

longing value and non-belonging value from a [0,1]. The generalization of the FS, the IFS, has

shown to be a very useful tool for academics. With their study of operations, algebra, model

operators, and normalization on IFSs, Ejegwa et al. [15] broadened the concept.

Since both Zadeh’s FS and Atanassov’s IFS are insufficient for the grade of indeterminacy,

Smarandache [16] devised the neutrosophic set (NS) to overcome these drawbacks. Addition-

ally, because the NS does not impose the dependency requirement on uncertain components,

truthfulness, falseness, and indeterminacy grades are independent and can take on any value

inside a closed unit interval.

The concept of a concave FS was presented by Chaudhuri [17,18]. He also examined some of

the sets’ valuable qualities and defined some of their related concepts and computing meth-

ods. The development of fuzzy geometry and fuzzy structures can benefit from this idea.

This idea was improved by Yu-Ru Syau [19] to include convex and concave fuzzy map-

pings. Concavo-convex FSs were introduced by Sarkar [20], who also established some of

its intriguing characteristics. The discussion on convex IFSs given by Ban [21, 22] led to the

development of convex temporal IFSs. The collection of convex IFSs was described and its

generalized qualities were covered in depth by Díaz et al. [23]. Sarkar [26] discusses convex-

ity on the NS.

Smarandache [24] introduced refinements in FS-like structures including NS by developing

their relevant models with refined settings which categorizes the uncertain grades of these

models into their respective sub-grades. Rahman et al. [25] studied the fundamental proper-

ties, operations, and results of refined IFSs with examples. The researches [21, 22, 24, 26, 27]

have many concepts which lead to the motivation of this study and thus convex and concave

sets are generalized under refined NS (RNS). Additionally, few significant properties and re-

sults are investigated in this context.

The remaining portion of the paper has been divided into three sections: section 2, section

3, and section 4. Section 2 is about the recalling of some important definitions, section 3 is

aimed to investigate the notions of classical convexity and concavity under the RNS environ-

ment along with modifications of various results, and the last section summarizes the paper

accompanied by future scope.
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2. Preliminaries

This portion is aimed to recall few definitions which assist the readers to understand the

main concepts. The acronyms ∆̂, G , I, ζ̂, ϑ̂ and ξ̂ are meant for initial set of objects, Rn, [0, 1],

true-belonging, false-belonging and indeterminate-belonging functions respectively.

Definition 2.1. [1, 2] A FS Λ̂ is stated as Λ̂ =
{(

℘̂, ζ̂Λ̂(℘̂)
)

: ℘̂ ∈ ∆̂
}

such that ζ̂Λ̂ : ∆̂ → [0, 1]

with ζ̂Λ̂(℘̂) ∈ [0, 1] as belonging-grade of ℘̂ in ∆̂. If Λ̂1 and Λ̂2 are FSs then

(1) Λ̂c =
{(

℘̂, 1− ζ̂Λ̂(℘̂)
)

: ℘̂ ∈ ∆̂
}

.

(2) Λ̂3 = Λ̂1 ∪ Λ̂2 =
{(

℘̂, max{ζ̂Λ̂1
(℘̂), ζ̂Λ̂2

(℘̂)}
)

: ℘̂ ∈ ∆̂
}

.

(3) Λ̂4 = Λ̂1 ∩ Λ̂2 =
{(

℘̂, min{ζ̂Λ̂1
(℘̂), ζ̂Λ̂2

(℘̂)}
)

: ℘̂ ∈ ∆̂
}

.

Definition 2.2. [1] A FS Λ̂ is stated to be convex FS when its belonging function ζ̂Λ̂ satisfies

the following inequality ζ̂Λ̂ (ς̂℘̂1 + (1− ς̂) ℘̂2) ≥ min
(
ζ̂Λ̂ (℘̂1) , ζ̂Λ̂ (℘̂2)

)
with ς̂ ∈ [0, 1] and

℘̂1, ℘̂2 ∈ ∆̂.

Definition 2.3. [17] A FS Λ̂ is stated to be concave FS when its belonging function ζ̂Λ̂ satisfies

the following inequality ζ̂Λ̂ (ς̂℘̂1 + (1− ς̂) ℘̂2) ≤ max
(
ζ̂Λ̂ (℘̂1) , ζ̂Λ̂ (℘̂2)

)
with ς̂ ∈ [0, 1] and

℘̂1, ℘̂2 ∈ ∆̂.

Definition 2.4. [13] A IFS Γ̂ is stated as Γ̂ =
{(

℘̂, 〈ζ̂Γ̂(℘̂), ϑ̂Γ̂(℘̂)〉
)

: ℘̂ ∈ ∆̂
}

such that ζ̂Γ̂, ϑ̂Γ̂ :

∆̂ → [0, 1] with ζ̂Γ̂(℘̂), ϑ̂Γ̂(℘̂) ∈ [0, 1] as belonging-grade and non belonging-grade of ℘̂ in ∆̂

such that 0 ≤ ζ̂Γ̂(℘̂) + ϑ̂Γ̂(℘̂) ≤ 1. If Γ̂1 and Γ̂2 are IFSs then

(1) Γ̂c =
{(

℘̂, 〈ϑ̂Γ̂(℘̂), ζ̂Γ̂(℘̂)〉
)

: ℘̂ ∈ ∆̂
}

.

(2) Γ̂3 = Γ̂1 ∪ Γ̂2 =
{(

℘̂, 〈max{ζ̂Γ̂1
(℘̂), ζ̂Γ̂2

(℘̂)}, min{ϑ̂Γ̂1
(℘̂), ϑ̂Γ̂2

(℘̂)}〉
)

: ℘̂ ∈ ∆̂
}

.

(3) Γ̂4 = Γ̂1 ∩ Γ̂2 =
{(

℘̂, 〈min{ζ̂Γ̂1
(℘̂), ζ̂Γ̂2

(℘̂)}, max{ϑ̂Γ̂1
(℘̂), ϑ̂Γ̂2

(℘̂)}〉
)

: ℘̂ ∈ ∆̂
}

.

Definition 2.5. [21] A IFS Γ̂ is stated to be concave IFS when its belonging function ζ̂Γ̂ and

non belonging function ϑ̂Γ̂ satisfy the following inequalities

(1) ζ̂Γ̂ (ς̂℘̂1 + (1− ς̂) ℘̂2) ≥ min
(
ζ̂Γ̂ (℘̂1) , ζ̂Γ̂ (℘̂2)

)
(2) ϑ̂Γ̂ (ς̂℘̂1 + (1− ς̂) ℘̂2) ≤ max

(
ϑ̂Γ̂ (℘̂1) , ϑ̂Γ̂ (℘̂2)

)
with ς̂ ∈ [0, 1] and ℘̂1, ℘̂2 ∈ ∆̂.

Definition 2.6. [16] A NS ℵ̂ is stated as

ℵ̂ =
{(

℘̂, 〈ζ̂ℵ̂(℘̂), ϑ̂ℵ̂(℘̂), ξ̂ℵ̂(℘̂)〉
)

: ℘̂ ∈ ∆̂, ζ̂ℵ̂, ϑ̂ℵ̂, ξ̂ℵ̂ ∈
]−0, 1+

[}
with ζ̂ℵ̂, ϑ̂ℵ̂ and ξ̂ℵ̂ as belonging, non-belonging and indeterminate functions such that −0 ≤
ζ̂ℵ̂(℘̂) + ϑ̂ℵ̂(℘̂) + ξ̂ℵ̂(℘̂) ≤ 3+.

Definition 2.7. [26] A NS ℵ̂ is stated to be convex NS when its belonging function ζ̂ℵ̂, non

belonging function ϑ̂ℵ̂ and indeterminate function ξ̂ℵ̂ satisfy the following inequalities
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(1) ζ̂ℵ̂ (ς̂℘̂1 + (1− ς̂) ℘̂2) ≥ min
(
ζ̂ℵ̂ (℘̂1) , ζ̂ℵ̂ (℘̂2)

)
(2) ϑ̂ℵ̂ (ς̂℘̂1 + (1− ς̂) ℘̂2) ≤ max

(
ϑ̂ℵ̂ (℘̂1) , ϑ̂ℵ̂ (℘̂2)

)
(3) ξ̂ℵ̂ (ς̂℘̂1 + (1− ς̂) ℘̂2) ≤ max

(
ξ̂ℵ̂ (℘̂1) , ξ̂ℵ̂ (℘̂2)

)
with ς̂ ∈ [0, 1] and ℘̂1, ℘̂2 ∈ ∆̂.

Definition 2.8. [24] A refined FS Ω̂RFS is stated as

Ω̂RFS =
{(

℘̂,
〈

ζ̂1
Ω̂RFS

(℘̂), ζ̂2
Ω̂RFS

(℘̂), ..., ζ̂
p
Ω̂RFS

(℘̂)
〉)

: p ≥ 2, ℘̂ ∈ Ω̂RFS

}
with ζ̂k

Ω̂RFS
as sub-belonging grades of kth-type entities of ∆̂ with respect to Ω̂RFS, and for

k ∈ [1, p] and
p
∑

k=1
sup ζ̂k

℘̂ ≤ 1, ∀℘̂ ∈ Ω̂RFS.

Definition 2.9. [24] A refined IFS Ω̂RIFS is stated as

Ω̂RIFS =


℘̂,

〈 (
ζ̂1

Ω̂RIFS
(℘̂), ζ̂2

Ω̂RIFS
(℘̂), ..., ζ̂

p
Ω̂RIFS

(℘̂)
)

;(
ϑ̂1

Ω̂RIFS
(℘̂), ϑ̂2

Ω̂RIFS
(℘̂), ..., ϑ̂s

Ω̂RIFS
(℘̂)
) 〉 , p + s > 3, ℘̂ ∈ Ω̂RIFS


with ζ̂k

Ω̂RIFS
as sub-belonging grades of kth-type entities with respect to Ω̂RIFS, and ϑ̂l

Ω̂RIFS

as sub non-belonging grades of lth-type entities with respect to Ω̂RIFS and
p
∑

k=1
sup ζ̂k +

s
∑

l=1
sup ϑ̂l ≤ 1, and ζ̂k

Ω̂RIFS
, ϑ̂l

Ω̂RIFS
⊆ [0, 1] for k ∈ [1, p] and l ∈ [1, s].

Definition 2.10. [24] A RNS Ω̂RNS is stated as

Ω̂RNS =


℘̂,

〈 (
ζ̂1

Ω̂RNS
(℘̂), ζ̂2

Ω̂RNS
(℘̂), ..., ζ̂

p
Ω̂RNS

(℘̂)
)

;(
ϑ̂1

Ω̂RNS
(℘̂), ϑ̂2

Ω̂RNS
(℘̂), ..., ϑ̂s

Ω̂RNS
(℘̂)
)

;(
ξ̂1

Ω̂RNS
(℘̂), ξ̂2

Ω̂RNS
(℘̂), ..., ξ̂t

Ω̂RNS
(℘̂)
)

〉 : p + s + t > 3, ℘̂ ∈ Ω̂RNS


with ζ̂k

Ω̂RNS
as sub-belonging grades of kth-type entities, ϑ̂l

Ω̂RNS
as sub non-belonging grades

of lth-type entities and ξ̂m
Ω̂RNS

as sub indeterminate grades of mth-type entities with respect to

Ω̂RNS and −0 ≤
p
∑

k=1
sup ζ̂k

Ω̂RNS
+

s
∑

l=1
sup ϑ̂l

Ω̂RNS
+

t
∑

m=1
sup ξ̂m

Ω̂RNS
≤ 3+, and ζ̂k

Ω̂RNS
, ϑ̂l

Ω̂RNS
, ξ̂m

Ω̂RNS
⊆

]−0, 1+[ for k ∈ [1, p], l ∈ [1, s], m ∈ [1, t].

3. Convexity and Concavity on RNSs

This portion describes the notions of convexity and concavity for RNSs. Throughout the

paper, the symbols ”RNS” and ”ẑ1ẑ2” are meant for RNS and line-segment correspondingly.

Definition 3.1. In G , a RNS Ω̂RNS is stated to be convex if the points ẑ1, ẑ2, ẑ3 ∈ G on ẑ1ẑ2

ζ̂k
Ω̂RNS

(ẑ3) ≥ min
(

ζ̂k
Ω̂RNS

(ẑ1), ζ̂k
Ω̂RNS

(ẑ2)
)

, k ∈ [1, p]

ϑ̂l
Ω̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ω̂RNS

(ẑ1), ϑ̂l
Ω̂RNS

(ẑ2)
)

, l ∈ [1, s]
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ξ̂m
Ω̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ω̂RNS

(ẑ1), ξ̂m
Ω̂RNS

(ẑ2)
)

, m ∈ [1, t]

where ζ̂k
Ω̂RNS

is kth-type grade of sub-belonging of the entities with respect to Ω̂RNS, and for

k ∈ [1, p],
p
∑

k=1
sup ζ̂k ≤ 1, ϑ̂l

Ω̂RNS
is lth-type grade of sub non-belonging of the entities with

respect to Ω̂RNS, and for l ∈ [1, s] and
s
∑

l=1
sup ϑ̂l ≤ 1 and ξ̂m

Ω̂RNS
is mth-type grade of sub-

indeterminacy of the entities with respect to Ω̂RNS, and for m ∈ [1, t],
t

∑
m=1

sup ξ̂m ≤ 1 with

condition
p
∑

k=1
sup ζ̂k +

s
∑

l=1
sup ϑ̂l +

t
∑

m=1
sup ξ̂m ≤ 3. The symbol Ξ̂CxRNS is meant for family of

convex RNSs.

Definition 3.2. In G , a RNS Ω̂RNS is stated to be ortho-convex if the points ẑ1, ẑ2, ẑ3 ∈ G on

ẑ1ẑ2 which is lying on that line which is ‖ axis

ζ̂k
Ω̂RNS

(
ẑ′3
)
≥ min

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
))

, k ∈ [1, p].

ϑ̂l
Ω̂RNS

(
ẑ′3
)
≤ max

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
))

, l ∈ [1, s].

ξ̂m
Ω̂RNS

(
ẑ′3
)
≤ max

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
))

, m ∈ [1, t].

with same conditions as provided in Definition 3.1. The symbol Ξ̂O
CxRNS is meant for family

of ortho-convex RNSs.

Remark 3.3. If Ω̂RNS ∈ Ξ̂O
CxRNS then Ω̂RNS ∈ Ξ̂CxRNS but the converse is not true.

Definition 3.4. In G , a RNS Ω̂RNS is stated to be concave if the points ẑ1, ẑ2, ẑ3 ∈ G on ẑ1ẑ2

ζ̂k
Ω̂RNS

(ẑ3) ≤ max
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2)
)

, k ∈ [1, p].

ϑ̂l
Ω̂RNS

(ẑ3) ≥ min
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2)
)

, l ∈ [1, s].

ξ̂m
Ω̂RNS

(ẑ3) ≥ min
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2)
)

, m ∈ [1, t].

where

ζ̂k
Ω̂RNS

is kth-type grade of sub-belonging of the entities with respect to Ω̂RNS, and is subset

of I for k ∈ [1, p] and
p
∑

k=1
sup ζ̂k ≤ 1, ϑ̂l

Ω̂RNS
is lth-type grade of sub non-belonging of the

entities with respect to Ω̂RNS, and is subset of I for l ∈ [1, s] and
s
∑

l=1
sup ϑ̂l ≤ 1 with condition

p
∑

k=1
sup ζ̂k +

s
∑

l=1
sup ϑ̂l ≤ 1 and ξ̂m

Ω̂RNS
is mth-type grade of sub indeterminacy of the entities

with respect to Ω̂RNS, and is subset of I for m ∈ [1, t] and
t

∑
m=1

sup ξ̂m ≤ 1 with condition

p
∑

k=1
sup ζ̂k +

s
∑

l=1
sup ϑ̂l +

t
∑

m=1
sup ξ̂m ≤ 3.

The symbol Ξ̂CvRNS is meant for family of concave RNSs.
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Definition 3.5. In G , a RNS Ω̂RNS is stated to be ortho-concave if the points ẑ1, ẑ2, ẑ3 ∈ G on

ẑ1ẑ2 that is lying on line which is ‖ axis

ζ̂k
Ω̂RNS

(
ẑ′3
)
≤ max

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
))

, k ∈ [1, p].

ϑ̂l
Ω̂RNS

(
ẑ′3
)
≥ min

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
))

, l ∈ [1, s].

ξ̂m
Ω̂RNS

(
ẑ′3
)
≥ min

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ϑ̂m
Ω̂RNS

(
ẑ′2
))

, m ∈ [1, t].

with same conditions as provided in Definition 3.4.

The symbol Ξ̂O
CvRNS is meant for family of ortho-concave RNSs.

Remark 3.6. If Ω̂RNS ∈ Ξ̂O
CvRNS then Ω̂RNS ∈ Ξ̂CvRNS but the converse is not true.

Theorem 3.7. If Ω̂RNS ∈ Ξ̂CxRNS then Ω̂c
RNS ∈ Ξ̂CvRNS.

Proof. If Ω̂RNS ∈ Ξ̂CxRNS then for points ẑ1, ẑ2, ẑ3 on ẑ1ẑ2

ζ̂k
Ω̂RNS

(ẑ3) ≥ min
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2)
)

, k ∈ [1, p]

so

ζ̂
k
Ω̂RNS

(ẑ3) ≤ 1−min
(

1− ζ̂
k
Ω̂RNS

(ẑ1) , 1− ζ̂
k
Ω̂RNS

(ẑ2)

)
, k ∈ [1, p] (1)

now if

1− ζ̂
k
Ω̂RNS

(ẑ1) ≤ 1− ζ̂
k
Ω̂RNS

(ẑ2)

then

min
(

1− ζ̂
k
Ω̂RNS

(ẑ1) , 1− ζ̂
k
Ω̂RNS

(ẑ2)

)
= 1− ζ̂

k
Ω̂RNS

(ẑ1)

and there from (1)

ζ̂
k
Ω̂RNS

(ẑ3) ≤ ζ̂
k
Ω̂RNS

(ẑ1)

similarly if

1− ζ̂
k
Ω̂RNS

(ẑ2) ≤ 1− ζ̂
k
Ω̂RNS

(ẑ1)

then

min
(

1− ζ̂
k
Ω̂RNS

(ẑ1) , 1− ζ̂
k
Ω̂RNS

(ẑ2)

)
= 1− ζ̂

k
Ω̂RNS

(ẑ2)

so from (1)

ζ̂
k
Ω̂RNS

(ẑ3) ≤ ζ̂
k
Ω̂RNS

(ẑ2) .

Hence

ζ̂
k
Ω̂RNS

(ẑ3) ≤ max
(

ζ̂
k
Ω̂RNS

(ẑ1) , ζ̂
k
Ω̂RNS

(ẑ2)

)
, k ∈ [1, p].

Again

ϑ̂l
Ω̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2)
)

, l ∈ [1, s]
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then

ϑ̂
l
Ω̂RNS

(ẑ3) ≥ 1−max
(

1− ϑ̂
l
Ω̂RNS

(ẑ1) , 1− ϑ̂
l
Ω̂RNS

(ẑ2)

)
, l ∈ [1, s] (2)

now if

1− ϑ̂
l
Ω̂RNS

(ẑ1) ≥ 1− ϑ̂
l
Ω̂RNS

(ẑ2)

then

max
(

1− ϑ̂
l
Ω̂RNS

(ẑ1) , 1− ϑ̂
l
Ω̂RNS

(ẑ2)

)
= 1− ϑ̂

l
Ω̂RNS

(ẑ1)

and from (2)

ϑ̂
l
Ω̂RNS

(ẑ3) ≥ ϑ̂
l
Ω̂RNS

(ẑ1)

similarly if

1− ϑ̂
l
Ω̂RNS

(ẑ2) ≥ 1− ϑ̂
l
Ω̂RNS

(ẑ1)

then

max
(

1− ϑ̂
l
Ω̂RNS

(ẑ1) , 1− ϑ̂
l
Ω̂RNS

(ẑ2)

)
= 1− ϑ̂

l
Ω̂RNS

(ẑ2)

so from (2)

ϑ̂
l
Ω̂RNS

(ẑ3) ≥ ϑ̂
l
Ω̂RNS

(ẑ2) .

Hence

ϑ̂
l
Ω̂RNS

(ẑ3) ≥ min
(

ϑ̂
l
Ω̂RNS

(ẑ1) , ϑ̂
l
Ω̂RNS

(ẑ2)

)
, l ∈ [1, s].

Similarly

ξ̂m
Ω̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2)
)

, m ∈ [1, t]

so

ξ̂
m
Ω̂RNS

(ẑ3) ≥ 1−max
(

1− ξ̂
m
Ω̂RNS

(ẑ1) , 1− ξ̂
m
Ω̂RNS

(ẑ2)
)

, m ∈ [1, t] (3)

now if

1− ξ̂
m
Ω̂RNS

(ẑ1) ≥ 1− ξ̂
m
Ω̂RNS

(ẑ2)

then

max
(

1− ξ̂
m
Ω̂RNS

(ẑ1) , 1− ξ̂
m
Ω̂RNS

(ẑ2)
)
= 1− ξ̂

m
Ω̂RNS

(ẑ1)

and there from (3)

ξ̂
m
Ω̂RNS

(ẑ3) ≥ ξ̂
m
Ω̂RNS

(ẑ1)

similarly if

1− ξ̂
m
Ω̂RNS

(ẑ2) ≥ 1− ξ̂
m
Ω̂RNS

(ẑ1)

then

max
(

1− ξ̂
m
Ω̂RNS

(ẑ1) , 1− ξ̂
m
Ω̂RNS

(ẑ2)
)
= 1− ξ̂

m
Ω̂RNS

(ẑ2)

so from (3)

ξ̂
m
Ω̂RNS

(ẑ3) ≥ ξ̂
m
Ω̂RNS

(ẑ2) .
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Hence

ξ̂
m
Ω̂RNS

(ẑ3) ≥ min
(

ξ̂
m
Ω̂RNS

(ẑ1) , ξ̂
m
Ω̂RNS

(ẑ2)
)

, m ∈ [1, t]

consequently Ω̂c
RNS ∈ Ξ̂CvRNS.

Remark 3.8. If Ω̂RNS ∈ Ξ̂O
CxRNS then Ω̂c

RNS ∈ Ξ̂O
CvRNS and Ω̂RNS ∈ Ξ̂CvRNS.

Theorem 3.9. If Ω̂RNS, Θ̂RNS ∈ Ξ̂CxRNS then Ω̂RNS ∪ Θ̂RNS ∈ Ξ̂CxRNS.

Proof. Let Ω̂RNS and Θ̂RNS be two convex RNSs and Ψ̂RNS = Ω̂RNS ∪ Θ̂RNS and the points

ẑ1, ẑ2, ẑ3 on ẑ1ẑ2. Now

ζ̂k
Ψ̂RNS

(ẑ1) = min
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1)
)

, k ∈ [1, p]

ζ̂k
Ψ̂RNS

(ẑ2) = min
(

ζ̂k
Ω̂RNS

(ẑ2) , ζ̂k
Θ̂RNS

(ẑ2)
)

, k ∈ [1, p]

ζ̂k
Ψ̂RNS

(ẑ3) = min
(

ζ̂k
Ω̂RNS

(ẑ3) , ζ̂k
Θ̂RNS

(ẑ3)
)

, k ∈ [1, p].

Now

min
(

ζ̂k
Ψ̂RNS

(ẑ1) , ζ̂k
Ψ̂RNS

(ẑ2)
)

= min
(

min
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1)
)

, min
(

ζ̂k
Ω̂RNS

(ẑ2) , ζ̂k
Θ̂RNS

(ẑ2)
))

= min
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2) , ζ̂k
Θ̂RNS

(ẑ2)
)

(4)

let

ζ̂k
Ω̂RNS

(ẑ3) ≤ ζ̂k
Θ̂RNS

(ẑ3)

in (4) so that

ζ̂k
Ψ̂RNS

(ẑ3) = ζ̂k
Ω̂RNS

(ẑ3)

as Ω̂RNS is convex RNS so

ζ̂k
Ω̂RNS

(ẑ3) ≥ min
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2)
)

≥ min
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2) , ζ̂k
Θ̂RNS

(ẑ2)
)

i.e.

ζ̂k
Ω̂RNS

(ẑ3) = ζ̂k
Ψ̂RNS

(ẑ3) ≥ min
(

ζ̂k
Ψ̂RNS

(ẑ1) ζ̂k
Ψ̂RNS

(ẑ2)
)

similarly for ζ̂k
Θ̂RNS

(ẑ3) ≤ ζ̂k
Ω̂RNS

(ẑ3) in equation (4) so that

ζ̂k
Ψ̂RNS

(ẑ3) = ζ̂k
Θ̂RNS

(ẑ3)

as Θ̂RNS is convex RNS so (4) becomes

ζ̂k
Θ̂RNS

(ẑ3) ≥ min
(

ζ̂k
Θ̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ2)
)

≥ min
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2) , ζ̂k
Θ̂RNS

(ẑ2)
)
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i.e.

ζ̂k
Ψ̂RNS

(ẑ3) ≥ min
(

ζ̂k
Ψ̂RNS

(ẑ1) ζ̂k
Ψ̂RNS

(ẑ2)
)

Again

ϑ̂l
Ψ̂RNS

(ẑ1) = max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1)
)

, l ∈ [1, s]

ϑ̂l
Ψ̂RNS

(ẑ2) = max
(

ϑ̂l
Ω̂RNS

(ẑ2) , ϑ̂l
Θ̂RNS

(ẑ2)
)

, l ∈ [1, s]

ϑ̂l
Ψ̂RNS

(ẑ3) = max
(

ϑ̂l
Ω̂RNS

(ẑ3) , ϑ̂l
Θ̂RNS

(ẑ3)
)

, l ∈ [1, s].

Now

max
(

ϑ̂l
Ψ̂RNS

(ẑ1) , ϑ̂l
Ψ̂RNS

(ẑ2)
)

= max
(

max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1)
)

, max
(

ϑ̂l
Ω̂RNS

(ẑ2) , ϑ̂l
Θ̂RNS

(ẑ2)
))

= max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2) , ϑ̂l
Θ̂RNS

(ẑ2)
)

(5)

let

ϑ̂l
Ω̂RNS

(ẑ3) ≤ ϑ̂l
Θ̂RNS

(ẑ3)

in (5) so that

ϑ̂l
Ψ̂RNS

(ẑ3) = ϑ̂l
Ω̂RNS

(ẑ3)

as Ω̂RNS is convex RNS so

ϑ̂l
Ω̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2)
)

≤ max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2) , ϑ̂l
Θ̂RNS

(ẑ2)
)

i.e.

ϑ̂l
Ω̂RNS

(ẑ3) = ϑ̂l
Ψ̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ψ̂RNS

(ẑ1) ϑ̂l
Ψ̂RNS

(ẑ2)
)

similarly for ϑ̂l
Θ̂RNS

(ẑ3) ≥ ϑ̂l
Ω̂RNS

(ẑ3) in equation (5) so that

ϑ̂l
Ψ̂RNS

(ẑ3) = ϑ̂l
Θ̂RNS

(ẑ3)

as Θ̂RNS is convex RNS so (5) becomes

ϑ̂l
Θ̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Θ̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ2)
)

≤ max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2) , ϑ̂l
Θ̂RNS

(ẑ2)
)

i.e.

ϑ̂l
Ψ̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ψ̂RNS

(ẑ1) ϑ̂l
Ψ̂RNS

(ẑ2)
)

.

Similarly now

ξ̂m
Ψ̂RNS

(ẑ1) = max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1)
)

, m ∈ [1, t]

ξ̂m
Ψ̂RNS

(ẑ2) = max
(

ξ̂m
Ω̂RNS

(ẑ2) , ξ̂m
Θ̂RNS

(ẑ2)
)

, m ∈ [1, t]

ξ̂m
Ψ̂RNS

(ẑ3) = max
(

ξ̂m
Ω̂RNS

(ẑ3) , ξ̂m
Θ̂RNS

(ẑ3)
)

, m ∈ [1, t].
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Now

max
(

ξ̂m
Ψ̂RNS

(ẑ1) , ξ̂m
Ψ̂RNS

(ẑ2)
)

= max
(

max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1)
)

, max
(

ξ̂m
Ω̂RNS

(ẑ2) , ξ̂m
Θ̂RNS

(ẑ2)
))

= max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2) , ξ̂m
Θ̂RNS

(ẑ2)
)

(6)

let

ξ̂m
Ω̂RNS

(ẑ3) ≤ ξ̂m
Θ̂RNS

(ẑ3)

in (6) so that

ξ̂m
Ψ̂RNS

(ẑ3) = ξ̂m
Ω̂RNS

(ẑ3)

as Ω̂RNS is convex RNS so

ξ̂m
Ω̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2)
)

≤ max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2) , ξ̂m
Θ̂RNS

(ẑ2)
)

i.e.

ξ̂m
Ω̂RNS

(ẑ3) = ξ̂m
Ψ̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ψ̂RNS

(ẑ1) ξ̂m
Ψ̂RNS

(ẑ2)
)

similarly for ξ̂m
Θ̂RNS

(ẑ3) ≥ ξ̂m
Ω̂RNS

(ẑ3) in equation (6) so that

ξ̂m
Ψ̂RNS

(ẑ3) = ξ̂m
Θ̂RNS

(ẑ3)

as Θ̂RNS is convex RNS so (6) becomes

ξ̂m
Θ̂RNS

(ẑ3) ≤ max
(

ξ̂m
Θ̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ2)
)

≤ max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2) , ξ̂m
Θ̂RNS

(ẑ2)
)

i.e.

ξ̂m
Ψ̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ψ̂RNS

(ẑ1) ξ̂m
Ψ̂RNS

(ẑ2)
)

.

Theorem 3.10. If Ω̂RNS, Θ̂RNS ∈ Ξ̂O
CxRNS then Ω̂RNS ∪ Θ̂RNS ∈ Ξ̂O

CxRNS and Ω̂RNS ∪ Θ̂RNS ∈
Ξ̂CxRNS.

Proof. Let Ω̂RNS and Θ̂RNS be two convex RNSs and Ψ̂RNS = Ω̂RNS ∪ Θ̂RNS and the points

ẑ′1, ẑ′2, ẑ′3 on ẑ′1ẑ′2‖ axis.

Now

ζ̂k
Ψ̂RNS

(
ẑ′1
)
= min

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
))

, k ∈ [1, p]

ζ̂k
Ψ̂RNS

(
ẑ′2
)
= min

(
ζ̂k

Ω̂RNS

(
ẑ′2
)

, ζ̂k
Θ̂RNS

(
ẑ′2
))

, k ∈ [1, p]

ζ̂k
Ψ̂RNS

(
ẑ′3
)
= min

(
ζ̂k

Ω̂RNS

(
ẑ′3
)

, ζ̂k
Θ̂RNS

(
ẑ′3
))

, k ∈ [1, p].
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Now

min
(

ζ̂k
Ψ̂RNS

(
ẑ′1
)

, ζ̂k
Ψ̂RNS

(
ẑ′2
))

= min
(

min
(

ζ̂k
Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
))

, min
(

ζ̂k
Ω̂RNS

(
ẑ′2
)

, ζ̂k
Θ̂RNS

(
ẑ′2
)))

= min
(

ζ̂k
Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
)

, ζ̂k
Θ̂RNS

(
ẑ′2
))

(7)

let

ζ̂k
Ω̂RNS

(
ẑ′3
)
≤ ζ̂k

Θ̂RNS

(
ẑ′3
)

in (7) so that

ζ̂k
Ψ̂RNS

(
ẑ′3
)
= ζ̂k

Ω̂RNS

(
ẑ′3
)

as Ω̂RNS is ortho-convex RNS so

ζ̂k
Ω̂RNS

(
ẑ′3
)
≥ min

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
))

≥ min
(

ζ̂k
Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
)

, ζ̂k
Θ̂RNS

(
ẑ′2
))

i.e.

ζ̂k
Ω̂RNS

(
ẑ′3
)
= ζ̂k

Ψ̂RNS

(
ẑ′3
)
≥ min

(
ζ̂k

Ψ̂RNS

(
ẑ′1
)

ζ̂k
Ψ̂RNS

(
ẑ′2
))

similarly for ζ̂k
Θ̂RNS

(ẑ′3) ≤ ζ̂k
Ω̂RNS

(ẑ′3) in equation (7) so that

ζ̂k
Ψ̂RNS

(
ẑ′3
)
= ζ̂k

Θ̂RNS

(
ẑ′3
)

as Θ̂RNS is ortho-convex RNS so

ζ̂k
Θ̂RNS

(
ẑ′3
)
≥ min

(
ζ̂k

Θ̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′2
))

≥ min
(

ζ̂k
Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
)

, ζ̂k
Θ̂RNS

(
ẑ′2
))

i.e.

ζ̂k
Θ̂RNS

(
ẑ′3
)
= ζ̂k

Ψ̂RNS

(
ẑ′3
)
≥ min

(
ζ̂k

Ψ̂RNS

(
ẑ′1
)

ζ̂k
Ψ̂RNS

(
ẑ′2
))

.

Again

ϑ̂l
Ψ̂RNS

(
ẑ′1
)
= max

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
))

, l ∈ [1, s]

ϑ̂l
Ψ̂RNS

(
ẑ′2
)
= max

(
ϑ̂l

Ω̂RNS

(
ẑ′2
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
))

, l ∈ [1, s]

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
= max

(
ϑ̂l

Ω̂RNS

(
ẑ′3
)

, ϑ̂l
Θ̂RNS

(
ẑ′3
))

, l ∈ [1, s].

Now

max
(

ϑ̂l
Ψ̂RNS

(
ẑ′1
)

, ϑ̂l
Ψ̂RNS

(
ẑ′2
))

= max
(

max
(

ϑ̂l
Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
))

, max
(

ϑ̂l
Ω̂RNS

(
ẑ′2
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
)))

= max
(

ϑ̂l
Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
))

(8)

let

ϑ̂l
Ω̂RNS

(
ẑ′3
)
≥ ϑ̂l

Θ̂RNS

(
ẑ′3
)
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in (8) so that

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
= ϑ̂l

Ω̂RNS

(
ẑ′3
)

as Ω̂RNS is ortho-convex RNS so

ϑ̂l
Ω̂RNS

(
ẑ′3
)
≤ max

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
))

≤ max
(

ϑ̂l
Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
))

i.e.

ϑ̂l
Ω̂RNS

(
ẑ′3
)
= ϑ̂l

Ψ̂RNS

(
ẑ′3
)
≤ max

(
ϑ̂l

Ψ̂RNS

(
ẑ′1
)

ϑ̂l
Ψ̂RNS

(
ẑ′2
))

similarly for ϑ̂l
Θ̂RNS

(ẑ′3) ≥ ϑ̂l
Ω̂RNS

(ẑ′3) in equation (8) so that

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
= ϑ̂l

Θ̂RNS

(
ẑ′3
)

as Θ̂RNS is ortho-convex RNS so

ϑ̂l
Θ̂RNS

(
ẑ′3
)
≤ max

(
ϑ̂l

Θ̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
))

≤ max
(

ϑ̂l
Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
))

i.e.

ϑ̂l
Θ̂RNS

(
ẑ′3
)
= ϑ̂l

Ψ̂RNS

(
ẑ′3
)
≤ max

(
ϑ̂l

Ψ̂RNS

(
ẑ′1
)

ϑ̂l
Ψ̂RNS

(
ẑ′2
))

.

Similarly

ξ̂m
Ψ̂RNS

(
ẑ′1
)
= max

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
))

, m ∈ [1, t]

ξ̂m
Ψ̂RNS

(
ẑ′2
)
= max

(
ξ̂m

Ω̂RNS

(
ẑ′2
)

, ξ̂m
Θ̂RNS

(
ẑ′2
))

, m ∈ [1, t]

ξ̂m
Ψ̂RNS

(
ẑ′3
)
= max

(
ξ̂m

Ω̂RNS

(
ẑ′3
)

, ξ̂m
Θ̂RNS

(
ẑ′3
))

, m ∈ [1, t].

Now

max
(

ξ̂m
Ψ̂RNS

(
ẑ′1
)

, ξ̂m
Ψ̂RNS

(
ẑ′2
))

= max
(

max
(

ξ̂m
Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
))

, max
(

ξ̂m
Ω̂RNS

(
ẑ′2
)

, ξ̂m
Θ̂RNS

(
ẑ′2
)))

= max
(

ξ̂m
Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
)

, ξ̂m
Θ̂RNS

(
ẑ′2
))

(9)

let

ξ̂m
Ω̂RNS

(
ẑ′3
)
≥ ξ̂m

Θ̂RNS

(
ẑ′3
)

in (9) so that

ξ̂m
Ψ̂RNS

(
ẑ′3
)
= ξ̂m

Ω̂RNS

(
ẑ′3
)

as Ω̂RNS is ortho-convex RNS so

ξ̂m
Ω̂RNS

(
ẑ′3
)
≤ max

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
))

≤ max
(

ξ̂m
Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
)

, ξ̂m
Θ̂RNS

(
ẑ′2
))
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i.e.

ξ̂m
Ω̂RNS

(
ẑ′3
)
= ξ̂m

Ψ̂RNS

(
ẑ′3
)
≤ max

(
ξ̂m

Ψ̂RNS

(
ẑ′1
)

ξ̂m
Ψ̂RNS

(
ẑ′2
))

similarly for ξ̂m
Θ̂RNS

(ẑ′3) ≥ ξ̂m
Ω̂RNS

(ẑ′3) in equation (9) so that

ξ̂m
Ψ̂RNS

(
ẑ′3
)
= ξ̂m

Θ̂RNS

(
ẑ′3
)

as Θ̂RNS is ortho-convex RNS so

ξ̂m
Θ̂RNS

(
ẑ′3
)
≤ max

(
ξ̂m

Θ̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′2
))

≤ max
(

ξ̂m
Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
)

, ξ̂m
Θ̂RNS

(
ẑ′2
))

i.e.

ξ̂m
Θ̂RNS

(
ẑ′3
)
= ξ̂m

Ψ̂RNS

(
ẑ′3
)
≤ max

(
ξ̂m

Ψ̂RNS

(
ẑ′1
)

ξ̂m
Ψ̂RNS

(
ẑ′2
))

since every ortho-convex RNS is also convex RNS. Hence the proof.

Remark 3.11. If Ω̂α
RNS ∈ Ξ̂CxRNS then

⋃
α

Ω̂α
RNS ∈ Ξ̂CxRNS.

Remark 3.12. If Ω̂α
RNS ∈ Ξ̂O

CxRNS then
⋃
α

Ω̂α
RNS ∈ Ξ̂O

CxRNS and
⋃
α

Ω̂α
RNS ∈ Ξ̂CxRNS.

Theorem 3.13. If Ω̂RNS ∈ Ξ̂CvRNS then Ω̂c
RNS ∈ Ξ̂CxRNS.

Proof. Let Ω̂RNS ∈ Ξ̂CvRNS and the points ẑ1, ẑ2, ẑ3 on ẑ1ẑ2, then

ζ̂k
Ω̂RNS

(ẑ3) ≤ max
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2)
)

, k ∈ [1, p]

so

ζ̂
k
Ω̂RNS

(ẑ3) ≥ 1−max
(

1− ζ̂
k
Ω̂RNS

(ẑ1) , 1− ζ̂
k
Ω̂RNS

(ẑ2)

)
, k ∈ [1, p] (10)

now if

1− ζ̂
k
Ω̂RNS

(ẑ1) ≤ 1− ζ̂
k
Ω̂RNS

(ẑ2)

then

max
(

1− ζ̂
k
Ω̂RNS

(ẑ1) , 1− ζ̂
k
Ω̂RNS

(ẑ2)

)
= 1− ζ̂

k
Ω̂RNS

(ẑ2)

and from (10)

ζ̂
k
Ω̂RNS

(ẑ3) ≥ ζ̂
k
Ω̂RNS

(ẑ2)

similarly if

1− ζ̂
k
Ω̂RNS

(ẑ2) ≤ 1− ζ̂
k
Ω̂RNS

(ẑ1)

then

max
(

1− ζ̂
k
Ω̂RNS

(ẑ1) , 1− ζ̂
k
Ω̂RNS

(ẑ2)

)
= 1− ζ̂

k
Ω̂RNS

(ẑ1)

so from (10)

ζ̂
k
Ω̂RNS

(ẑ3) ≥ ζ̂
k
Ω̂RNS

(ẑ1) .
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Hence

ζ̂
k
Ω̂RNS

(ẑ3) ≥ min
(

ζ̂
k
Ω̂RNS

(ẑ1) , ζ̂
k
Ω̂RNS

(ẑ2)

)
, k ∈ [1, p]

consequently Ω̂c
RNS ∈ Ξ̂CxRNS.

Again

ϑ̂l
Ω̂RNS

(ẑ3) ≥ min
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2)
)

, l ∈ [1, s]

so we have

ϑ̂
l
Ω̂RNS

(ẑ3) ≤ 1−min
(

1− ϑ̂
l
Ω̂RNS

(ẑ1) , 1− ϑ̂
l
Ω̂RNS

(ẑ2)

)
, l ∈ [1, s] (11)

now if

1− ϑ̂
l
Ω̂RNS

(ẑ1) ≥ 1− ϑ̂
l
Ω̂RNS

(ẑ2)

then

min
(

1− ϑ̂
l
Ω̂RNS

(ẑ1) , 1− ϑ̂
l
Ω̂RNS

(ẑ2)

)
= 1− ϑ̂

l
Ω̂RNS

(ẑ2)

and there from (11)

ϑ̂
l
Ω̂RNS

(ẑ3) ≤ ϑ̂
l
Ω̂RNS

(ẑ2)

similarly if

1− ϑ̂
l
Ω̂RNS

(ẑ2) ≥ 1− ϑ̂
l
Ω̂RNS

(ẑ1)

then

min
(

1− ϑ̂
l
Ω̂RNS

(ẑ1) , 1− ϑ̂
l
Ω̂RNS

(ẑ2)

)
= 1− ϑ̂

l
Ω̂RNS

(ẑ1)

so from (11)

ϑ̂
l
Ω̂RNS

(ẑ3) ≤ ϑ̂
l
Ω̂RNS

(ẑ1) .

Hence

ϑ̂
l
Ω̂RNS

(ẑ3) ≤ max
(

ϑ̂
l
Ω̂RNS

(ẑ1) , ϑ̂
l
Ω̂RNS

(ẑ2)

)
, l ∈ [1, s].

Similarly

ξ̂m
Ω̂RNS

(ẑ3) ≥ min
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2)
)

, m ∈ [1, t]

so we have

ξ̂
m
Ω̂RNS

(ẑ3) ≤ 1−min
(

1− ξ̂
m
Ω̂RNS

(ẑ1) , 1− ξ̂
m
Ω̂RNS

(ẑ2)
)

, m ∈ [1, t] (12)

now if

1− ξ̂
m
Ω̂RNS

(ẑ1) ≥ 1− ξ̂
m
Ω̂RNS

(ẑ2)

then

min
(

1− ξ̂
m
Ω̂RNS

(ẑ1) , 1− ξ̂
m
Ω̂RNS

(ẑ2)
)
= 1− ξ̂

m
Ω̂RNS

(ẑ2)

and there from (12)

ξ̂
m
Ω̂RNS

(ẑ3) ≤ ξ̂
m
Ω̂RNS

(ẑ2)
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similarly if

1− ξ̂
m
Ω̂RNS

(ẑ2) ≥ 1− ξ̂
m
Ω̂RNS

(ẑ1)

then

min
(

1− ξ̂
m
Ω̂RNS

(ẑ1) , 1− ξ̂
m
Ω̂RNS

(ẑ2)
)
= 1− ξ̂

m
Ω̂RNS

(ẑ1)

so from (12)

ξ̂
m
Ω̂RNS

(ẑ3) ≤ ξ̂
m
Ω̂RNS

(ẑ1) .

Hence

ξ̂
m
Ω̂RNS

(ẑ3) ≤ max
(

ξ̂
m
Ω̂RNS

(ẑ1) , ξ̂
m
Ω̂RNS

(ẑ2)
)

, m ∈ [1, t]

consequently Ω̂c
RNS ∈ Ξ̂CxRNS.

Remark 3.14. If Ω̂RNS ∈ Ξ̂O
CvRNS then Ω̂c

RNS ∈ Ξ̂O
CxRNS and Ω̂RNS ∈ Ξ̂CxRNS.

Theorem 3.15. If Ω̂RNS, Θ̂RNS ∈ Ξ̂CvRNS then Ω̂RNS ∪ Θ̂RNS ∈ Ξ̂CvRNS.

Proof. Let Ω̂RNS, Θ̂RNS ∈ Ξ̂CvRNS, Ψ̂RNS = Ω̂RNS ∪ Θ̂RNS and the points ẑ1, ẑ2, ẑ3 on ẑ1ẑ2

now

ζ̂k
Ψ̂RNS

(ẑ1) = max
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1)
)

, k ∈ [1, p]

ζ̂k
Ψ̂RNS

(ẑ2) = max
(

ζ̂k
Ω̂RNS

(ẑ2) , ζ̂k
Θ̂RNS

(ẑ2)
)

, k ∈ [1, p]

ζ̂k
Ψ̂RNS

(ẑ3) = max
(

ζ̂k
Ω̂RNS

(ẑ3) , ζ̂k
Θ̂RNS

(ẑ3)
)

, k ∈ [1, p]

now

max
(

ζ̂k
Ψ̂RNS

(ẑ1) , ζ̂k
Ψ̂RNS

(ẑ2)
)

= max
(

max
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1)
)

, max
(

ζ̂k
Ω̂RNS

(ẑ2) , ζ̂k
Θ̂RNS

(ẑ2)
))

= max
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2) , ζ̂k
Θ̂RNS

(ẑ2)
)

(13)

let

ζ̂k
Ω̂RNS

(ẑ3) ≥ ζ̂k
Θ̂RNS

(ẑ3)

in equation (13) so that

ζ̂k
Ψ̂RNS

(ẑ3) = ζ̂k
Ω̂RNS

(ẑ3)

as Ω̂RNS is concave RNS so equation (13) becomes

ζ̂k
Ψ̂RNS

(ẑ3) = ζ̂k
Ω̂RNS

(ẑ3) ≤ max
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2)
)

ζ̂k
Ψ̂RNS

(ẑ3) ≤ max
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2) ζ̂k
Θ̂RNS

(ẑ2)
)

i.e.

ζ̂k
Ψ̂RNS

(ẑ3) ≤ max
(

ζ̂k
Ψ̂RNS

(ẑ1) ζ̂k
Ψ̂RNS

(ẑ2)
)
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similarly for ζ̂k
Θ̂RNS

(ẑ3) ≥ ζ̂k
Ω̂RNS

(ẑ3),in equation (13) so that

ζ̂k
Ψ̂RNS

(ẑ3) = ζ̂k
Θ̂RNS

(ẑ3)

as Θ̂RNS is concave RNS so equation (13) becomes

ζ̂k
Ψ̂RNS

(ẑ3) = ζ̂k
Θ̂RNS

(ẑ3) ≤ max
(

ζ̂k
Θ̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2)
)

ζ̂k
Ψ̂RNS

(ẑ3) ≤ max
(

ζ̂k
Ω̂RNS

(ẑ1) , ζ̂k
Θ̂RNS

(ẑ1) , ζ̂k
Ω̂RNS

(ẑ2) ζ̂k
Θ̂RNS

(ẑ2)
)

i.e.

ζ̂k
Ψ̂RNS

(ẑ3) ≤ max
(

ζ̂k
Ψ̂RNS

(ẑ1) ζ̂k
Ψ̂RNS

(ẑ2)
)

.

Now

ϑ̂l
Ψ̂RNS

(ẑ1) = max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1)
)

, l ∈ [1, s]

ϑ̂l
Ψ̂RNS

(ẑ2) = max
(

ϑ̂l
Ω̂RNS

(ẑ2) , ϑ̂l
Θ̂RNS

(ẑ2)
)

, l ∈ [1, s] (14)

ϑ̂l
Ψ̂RNS

(ẑ3) = max
(

ϑ̂l
Ω̂RNS

(ẑ3) , ϑ̂l
Θ̂RNS

(ẑ3)
)

, l ∈ [1, s]

now

max
(

ϑ̂l
Ψ̂RNS

(ẑ1) , ϑ̂l
Ψ̂RNS

(ẑ2)
)

= max
(

max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1)
)

, max
(

ϑ̂l
Ω̂RNS

(ẑ2) , ϑ̂l
Θ̂RNS

(ẑ2)
))

= max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2) , ϑ̂l
Θ̂RNS

(ẑ2)
)

let

ϑ̂l
Ω̂RNS

(ẑ3) ≥ ϑ̂l
Θ̂RNS

(ẑ3)

in equation (14) so that

ϑ̂l
Ψ̂RNS

(ẑ3) = ϑ̂l
Ω̂RNS

(ẑ3)

as Ω̂RNS is concave RNS so equation (14) becomes

ϑ̂l
Ψ̂RNS

(ẑ3) = ϑ̂l
Ω̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2)
)

ϑ̂l
Ψ̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2) ϑ̂l
Θ̂RNS

(ẑ2)
)

i.e.

ϑ̂l
Ψ̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ψ̂RNS

(ẑ1) ϑ̂l
Ψ̂RNS

(ẑ2)
)

similarly for ϑ̂l
Θ̂RNS

(ẑ3) ≥ ϑ̂l
Ω̂RNS

(ẑ3),in equation (14) so that

ϑ̂l
Ψ̂RNS

(ẑ3) = ϑ̂l
Θ̂RNS

(ẑ3)

as Θ̂RNS is concave RNS so equation (14) becomes

ϑ̂l
Ψ̂RNS

(ẑ3) = ϑ̂l
Θ̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Θ̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2)
)

ϑ̂l
Ψ̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ω̂RNS

(ẑ1) , ϑ̂l
Θ̂RNS

(ẑ1) , ϑ̂l
Ω̂RNS

(ẑ2) ϑ̂l
Θ̂RNS

(ẑ2)
)
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i.e.

ϑ̂l
Ψ̂RNS

(ẑ3) ≤ max
(

ϑ̂l
Ψ̂RNS

(ẑ1) ϑ̂l
Ψ̂RNS

(ẑ2)
)

.

Similarly

ξ̂m
Ψ̂RNS

(ẑ1) = max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1)
)

, m ∈ [1, t]

ξ̂m
Ψ̂RNS

(ẑ2) = max
(

ξ̂m
Ω̂RNS

(ẑ2) , ξ̂m
Θ̂RNS

(ẑ2)
)

, m ∈ [1, t] (15)

ξ̂m
Ψ̂RNS

(ẑ3) = max
(

ξ̂m
Ω̂RNS

(ẑ3) , ξ̂m
Θ̂RNS

(ẑ3)
)

, m ∈ [1, t]

now

max
(

ξ̂m
Ψ̂RNS

(ẑ1) , ξ̂m
Ψ̂RNS

(ẑ2)
)

= max
(

max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1)
)

, max
(

ξ̂m
Ω̂RNS

(ẑ2) , ξ̂m
Θ̂RNS

(ẑ2)
))

= max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2) , ξ̂m
Θ̂RNS

(ẑ2)
)

let

ξ̂m
Ω̂RNS

(ẑ3) ≥ ξ̂m
Θ̂RNS

(ẑ3)

in equation (15) so that

ξ̂m
Ψ̂RNS

(ẑ3) = ξ̂m
Ω̂RNS

(ẑ3)

as Ω̂RNS is concave RNS so equation (15) becomes

ξ̂m
Ψ̂RNS

(ẑ3) = ξ̂m
Ω̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2)
)

ξ̂m
Ψ̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2) ξ̂m
Θ̂RNS

(ẑ2)
)

i.e.

ξ̂m
Ψ̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ψ̂RNS

(ẑ1) ξ̂m
Ψ̂RNS

(ẑ2)
)

similarly for ξ̂m
Θ̂RNS

(ẑ3) ≥ ξ̂m
Ω̂RNS

(ẑ3),in equation (15) so that

ξ̂m
Ψ̂RNS

(ẑ3) = ξ̂m
Θ̂RNS

(ẑ3)

as Θ̂RNS is concave RNS so equation (15) becomes

ξ̂m
Ψ̂RNS

(ẑ3) = ξ̂m
Θ̂RNS

(ẑ3) ≤ max
(

ξ̂m
Θ̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2)
)

ξ̂m
Ψ̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ω̂RNS

(ẑ1) , ξ̂m
Θ̂RNS

(ẑ1) , ξ̂m
Ω̂RNS

(ẑ2) ξ̂m
Θ̂RNS

(ẑ2)
)

i.e.

ξ̂m
Ψ̂RNS

(ẑ3) ≤ max
(

ξ̂m
Ψ̂RNS

(ẑ1) ξ̂m
Ψ̂RNS

(ẑ2)
)

hence the proof.

Theorem 3.16. If Ω̂RNS, Θ̂RNS ∈ Ξ̂O
CvRNS then Ω̂RNS ∪ Θ̂RNS ∈ Ξ̂O

CvRNS and Ω̂RNS ∪ Θ̂RNS ∈
Ξ̂CvRNS.
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Proof. Let Ω̂RNS, Θ̂RNS ∈ Ξ̂O
CvRNS, Ψ̂RNS = Ω̂RNS ∪ Θ̂RNS and the points ẑ′1, ẑ′2, ẑ′3 on ẑ′1ẑ′2 so

that ẑ′1ẑ′2‖ axis.

Now

ζ̂k
Ψ̂RNS

(
ẑ′1
)
= max

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
))

, k ∈ [1, p]

ζ̂k
Ψ̂RNS

(
ẑ′2
)
= max

(
ζ̂k

Ω̂RNS

(
ẑ′2
)

, ζ̂k
Θ̂RNS

(
ẑ′2
))

, k ∈ [1, p]

ζ̂k
Ψ̂RNS

(
ẑ′3
)
= max

(
ζ̂k

Ω̂RNS

(
ẑ′3
)

, ζ̂k
Θ̂RNS

(
ẑ′3
))

, k ∈ [1, p]

now

max
(

ζ̂k
Ψ̂RNS

(
ẑ′1
)

, ζ̂k
Ψ̂RNS

(
ẑ′2
))

= max
(

max
(

ζ̂k
Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
))

, max
(

ζ̂k
Ω̂RNS

(
ẑ′2
)

, ζ̂k
Θ̂RNS

(
ẑ′2
)))

= max
(

ζ̂k
Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
)

, ζ̂k
Θ̂RNS

(
ẑ′2
))

(16)

let

ζ̂k
Ω̂RNS

(
ẑ′3
)
≥ ζ̂k

Θ̂RNS

(
ẑ′3
)

in (16) so that

ζ̂k
Ψ̂RNS

(
ẑ′3
)
= ζ̂k

Ω̂RNS

(
ẑ′3
)

as Ω̂RNS is ortho-concave RNS so

ζ̂k
Ψ̂RNS

(
ẑ′3
)
= ζ̂k

Ω̂RNS

(
ẑ′3
)
≤ max

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
))

ζ̂k
Ψ̂RNS

(
ẑ′3
)
≤ max

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
)

ζ̂k
Θ̂RNS

(
ẑ′2
))

i.e.

ζ̂k
Ψ̂RNS

(
ẑ′3
)
≤ max

(
ζ̂k

Ψ̂RNS

(
ẑ′1
)

ζ̂k
Ψ̂RNS

(
ẑ′2
))

similarly for ζ̂k
Θ̂RNS

(ẑ′3) ≥ ζ̂k
Ω̂RNS

(ẑ′3),in equation (16) so that

ζ̂k
Ψ̂RNS

(
ẑ′3
)
= ζ̂k

Θ̂RNS

(
ẑ′3
)

as Θ̂RNS is ortho-concave RNS so equation (16) becomes

ζ̂k
Ψ̂RNS

(
ẑ′3
)
= ζ̂k

Θ̂RNS

(
ẑ′3
)
≤ max

(
ζ̂k

Θ̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
))

ζ̂k
Ψ̂RNS

(
ẑ′3
)
≤ max

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Θ̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
)

ζ̂k
Θ̂RNS

(
ẑ′2
))

i.e.

ζ̂k
Ψ̂RNS

(
ẑ′3
)
≤ max

(
ζ̂k

Ψ̂RNS

(
ẑ′1
)

ζ̂k
Ψ̂RNS

(
ẑ′2
))

.

Again

ϑ̂l
Ψ̂RNS

(
ẑ′1
)
= min

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
))

, l ∈ [1, s]

ϑ̂l
Ψ̂RNS

(
ẑ′2
)
= min

(
ϑ̂l

Ω̂RNS

(
ẑ′2
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
))

, l ∈ [1, s]

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
= min

(
ϑ̂l

Ω̂RNS

(
ẑ′3
)

, ϑ̂l
Θ̂RNS

(
ẑ′3
))

, l ∈ [1, s]
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now

min
(

ϑ̂l
Ψ̂RNS

(
ẑ′1
)

, ϑ̂l
Ψ̂RNS

(
ẑ′2
))

= min
(

min
(

ϑ̂l
Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
))

, min
(

ϑ̂l
Ω̂RNS

(
ẑ′2
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
)))

= min
(

ϑ̂l
Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
)

, ϑ̂l
Θ̂RNS

(
ẑ′2
))

(17)

let

ϑ̂l
Ω̂RNS

(
ẑ′3
)
≤ ϑ̂l

Θ̂RNS

(
ẑ′3
)

in (17) so that

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
= ϑ̂l

Ω̂RNS

(
ẑ′3
)

as Ω̂RNS is ortho-concave RNS so

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
= ϑ̂l

Ω̂RNS

(
ẑ′3
)
≥ min

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
))

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
≥ min

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
)

ϑ̂l
Θ̂RNS

(
ẑ′2
))

i.e.

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
≥ min

(
ϑ̂l

Ψ̂RNS

(
ẑ′1
)

ϑ̂l
Ψ̂RNS

(
ẑ′2
))

similarly for ϑ̂l
Θ̂RNS

(ẑ′3) ≤ ϑ̂l
Ω̂RNS

(ẑ′3),in equation (17) so that

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
= ϑ̂l

Θ̂RNS

(
ẑ′3
)

as Θ̂RNS is ortho-concave RNS so equation (17) becomes

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
= ϑ̂l

Θ̂RNS

(
ẑ′3
)
≥ min

(
ϑ̂l

Θ̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
))

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
≥ min

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Θ̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
)

ϑ̂l
Θ̂RNS

(
ẑ′2
))

i.e.

ϑ̂l
Ψ̂RNS

(
ẑ′3
)
≥ min

(
ϑ̂l

Ψ̂RNS

(
ẑ′1
)

ϑ̂l
Ψ̂RNS

(
ẑ′2
))

.

Similarly

ξ̂m
Ψ̂RNS

(
ẑ′1
)
= min

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
))

, m ∈ [1, t]

ξ̂m
Ψ̂RNS

(
ẑ′2
)
= min

(
ξ̂m

Ω̂RNS

(
ẑ′2
)

, ξ̂m
Θ̂RNS

(
ẑ′2
))

, m ∈ [1, t]

ξ̂m
Ψ̂RNS

(
ẑ′3
)
= min

(
ξ̂m

Ω̂RNS

(
ẑ′3
)

, ξ̂m
Θ̂RNS

(
ẑ′3
))

, m ∈ [1, t]

now

min
(

ξ̂m
Ψ̂RNS

(
ẑ′1
)

, ξ̂m
Ψ̂RNS

(
ẑ′2
))

= min
(

min
(

ξ̂m
Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
))

, min
(

ξ̂m
Ω̂RNS

(
ẑ′2
)

, ξ̂m
Θ̂RNS

(
ẑ′2
)))

= min
(

ξ̂m
Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
)

, ξ̂m
Θ̂RNS

(
ẑ′2
))

(18)

let

ξ̂m
Ω̂RNS

(
ẑ′3
)
≤ ξ̂m

Θ̂RNS

(
ẑ′3
)
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in (18) so that

ξ̂m
Ψ̂RNS

(
ẑ′3
)
= ξ̂m

Ω̂RNS

(
ẑ′3
)

as Ω̂RNS is ortho-concave RNS so

ξ̂m
Ψ̂RNS

(
ẑ′3
)
= ξ̂m

Ω̂RNS

(
ẑ′3
)
≥ min

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
))

ξ̂m
Ψ̂RNS

(
ẑ′3
)
≥ min

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
)

ξ̂m
Θ̂RNS

(
ẑ′2
))

i.e.

ξ̂m
Ψ̂RNS

(
ẑ′3
)
≥ min

(
ξ̂m

Ψ̂RNS

(
ẑ′1
)

ξ̂m
Ψ̂RNS

(
ẑ′2
))

similarly for ξ̂m
Θ̂RNS

(ẑ′3) ≤ ξ̂m
Ω̂RNS

(ẑ′3),in equation (18) so that

ξ̂m
Ψ̂RNS

(
ẑ′3
)
= ξ̂m

Θ̂RNS

(
ẑ′3
)

as ξ̂Θ̂RNS
is ortho-concave RNS so equation (18) becomes

ξ̂m
Ψ̂RNS

(
ẑ′3
)
= ξ̂m

Θ̂RNS

(
ẑ′3
)
≥ min

(
ξ̂m

Θ̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
))

ξ̂m
Ψ̂RNS

(
ẑ′3
)
≥ min

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ξ̂m
Θ̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
)

ξ̂m
Θ̂RNS

(
ẑ′2
))

i.e.

ξ̂m
Ψ̂RNS

(
ẑ′3
)
≥ min

(
ξ̂m

Ψ̂RNS

(
ẑ′1
)

ξ̂m
Ψ̂RNS

(
ẑ′2
))

.

Since every ortho-concave RNS is also concave RNS which leads to completion of proof.

Remark 3.17. If Ω̂α
RNS ∈ Ξ̂CvRNS then

⋃
α

Ω̂α
RNS ∈ Ξ̂CvRNS.

Remark 3.18. If Ω̂α
RNS ∈ Ξ̂O

CvRNS then
⋃
α

Ω̂α
RNS ∈ Ξ̂O

CvRNS and
⋃
α

Ω̂α
RNS ∈ Ξ̂CvRNS.

Definition 3.19. If L be any line and p be any point on it with Lp ⊥ L at Ω̂RNS then the

inf projection of Ω̂RNS, denoted by Ω̂L , is stated as a mapping ψ̂ : L → X̂ such that for any

p ∈ L , ψ̂(p) = inf
{

Ω̂RNS(r̂), r̂ ∈ Lp
}

where
{

Ω̂RNS(r̂), r̂ ∈ Lp
}
⊆ X̂.

Definition 3.20. If L be any line and p be any point on it with Lp ⊥ L at Ω̂RNS then the

sup projection of Ω̂RNS, denoted by Ω̂L , is stated as a mapping ψ̂ : L → X̂ such that for any

p ∈ L , ψ̂(p) = sup
{

Ω̂RNS(r̂), r̂ ∈ Lp
}

where
{

Ω̂RNS(r̂), r̂ ∈ Lp
}
⊆ X̂.

Theorem 3.21. If Ω̂RNS ∈ Ξ̂CvRNS then Ω̂L ∈ Ξ̂CvRNS.

Proof. Let ẑ1, ẑ2, ẑ3 are the points lying on L with ẑ3 that is lying on ẑ1ẑ2, for any ε̂ > 0,

let ẑ′1, ẑ′2 be the points lying on Lẑ1 and Lẑ2 with ζ̂k
Ω̂L

(ẑ1) > ζ̂k
Ω̂RNS

(ẑ′1)− ε̂ and ζ̂k
Ω̂K

(ẑ2) >

ζ̂k
Ω̂RNS

(ẑ′2)− ε̂. Let ẑ′3 = ẑ′1ẑ′2 ∩Lẑ3 . Since Ω̂RNS is concave and ẑ′3 ∈ ẑ′1ẑ′2, then we have

ζ̂k
Ω̂RNS

(
ẑ′3
)
≤ max

(
ζ̂k

Ω̂RNS

(
ẑ′1
)

, ζ̂k
Ω̂RNS

(
ẑ′2
))

, k ∈ [1, p],
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< max
(

ζ̂k
Ω̂L

(ẑ1) + ε̂, ζ̂k
Ω̂L

(ẑ2) + ε̂
)

= max
(

ζ̂k
Ω̂L

(ẑ1) , ζ̂k
Ω̂L

(ẑ2)
)
+ ε̂

but

ζ̂k
Ω̂RNS

(
ẑ′3
)
≥ ζ̂k

Ω̂L
(ẑ3)

hence

ζ̂k
Ω̂L

(ẑ3) < max
(

ζ̂k
Ω̂L

(ẑ1) , ζ̂k
Ω̂L

(ẑ2)
)
+ ε̂

as ε̂ > 0 is of arbitrary nature, therefore

ζ̂k
Ω̂L

(ẑ3) ≤ max
(

ζ̂k
Ω̂L

(ẑ1) , ζ̂k
Ω̂L

(ẑ2)
)

.

Again

ϑ̂l
Ω̂RNS

(
ẑ′3
)
≥ min

(
ϑ̂l

Ω̂RNS

(
ẑ′1
)

, ϑ̂l
Ω̂RNS

(
ẑ′2
))

, l ∈ [1, s],

> min
(

ϑ̂l
Ω̂L

(ẑ1) + ε̂, ϑ̂l
Ω̂L

(ẑ2) + ε̂
)

= min
(

ϑ̂l
Ω̂L

(ẑ1) , ϑ̂l
Ω̂L

(ẑ2)
)
+ ε̂

but

ϑ̂l
Ω̂RNS

(
ẑ′3
)
≤ ϑ̂l

Ω̂L
(ẑ3)

hence

ϑ̂l
Ω̂L

(ẑ3) > min
(

ϑ̂l
Ω̂L

(ẑ1) , ϑ̂l
Ω̂L

(ẑ2)
)
+ ε̂

as ε̂ > 0 is of arbitrary nature, therefore

ϑ̂l
Ω̂L

(ẑ3) ≥ min
(

ϑ̂l
Ω̂L

(ẑ1) , ϑ̂l
Ω̂L

(ẑ2)
)

.

Similarly

ξ̂m
Ω̂RNS

(
ẑ′3
)
≥ min

(
ξ̂m

Ω̂RNS

(
ẑ′1
)

, ξ̂m
Ω̂RNS

(
ẑ′2
))

, m ∈ [1, t],

> min
(

ξ̂m
Ω̂L

(ẑ1) + ε̂, ξ̂m
Ω̂L

(ẑ2) + ε̂
)

= min
(

ξ̂m
Ω̂L

(ẑ1) , ξ̂m
Ω̂L

(ẑ2)
)
+ ε̂

but

ξ̂m
Ω̂RNS

(
ẑ′3
)
≤ ξ̂m

Ω̂L
(ẑ3)

hence

ξ̂m
Ω̂L

(ẑ3) > min
(

ξ̂m
Ω̂L

(ẑ1) , ξ̂m
Ω̂L

(ẑ2)
)
+ ε̂

as ε̂ > 0 is of arbitrary nature, therefore

ξ̂m
Ω̂L

(ẑ3) ≥ min
(

ξ̂m
Ω̂L

(ẑ1) , ξ̂m
Ω̂L

(ẑ2)
)

so Ω̂L is concave.

Remark 3.22. If Ω̂RNS ∈ Ξ̂CxRNS then Ω̂L ∈ Ξ̂CxRNS.
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4. Conclusion

Through this research, the existing idea of NS is refined by categorizing its uncertain com-

ponents into their respective multi-sub-grades. This refined idea is then integrated with the

classical theory of convexity and concavity to make it applicable to solving optimization-

related problems. Several useful axiomatic results are generalized with convex and concave

RNS settings. It is observed that all classical results that are discussed in the paper, are quite

valid for such settings. By taking into consideration the various kinds of convexity, the pro-

posed model may be extended to generalize the results for them. Additionally, these results

can also be utilized successfully for establishing various types of mathematical inequalities.
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Abstract: The neutrosophic approach is a potential area to provide a novel framework for dealing 

with uncertain data. This study aims to introduce the neutrosophic Maxwell distribution (MD̃) for 

dealing with imprecise data. The proposed notions are presented in such a manner that the 

proposed model may be used in a variety of circumstances involving indeterminate, ambiguous, 

and fuzzy data. The suggested distribution is particularly useful in statistical process control (SPC) 

for processing uncertain values in data collection. The existing formation of VSQ-chart is incapable of 

addressing uncertainty on the quality variables being investigated. The notion of neutrosophic VSQ-

chart (ṼSQ) is developed based on suggested neutrosophic distribution. The parameters of the 

suggested ṼSQ-chart and other performance indicators, such as neutrosophic power curve (PC̃), 

neutrosophic characteristic curve (CC̃)  and neutrosophic run length (RL̃)  are established. The 

performance of the ṼSQ-chart under uncertain environment is also compared to the performance of 

the conventional model. The comparative findings depict that the proposed ṼSQ-chart outperforms 

in consideration of neutrosophic indicators. Finally, the implementation procedure for real data on 

the COVID-19 incubation period is explored to support the theoretical part of the proposed model. 

Keywords: Neutrosophic probability; Maxwell distribution; Maxwell control chart; Simulation;  

Estimation 

 

1. INTRODUCTION 

Statistical process control (SPC) is a set of statistical methods for process improvement and 

quality control. SPC is applied to observe and control a process to reduce the possibility of rework 

[1]. The ability to work at maximum capacity is made possible by monitoring and controlling the 

process [2]. SPC is a process for determining whether or not produced products satisfy the criteria 

and then adjusting the process to generate the desired proportion of conforming items [3]. The 

control chart is one of the most well-known SPC tools for observing and reducing the variation in 

the process. Because of many inherent causes, normal variation occurrence in closely every 

manufactured object is the best possible phenomenon [4]. The SPC is a standard approach that uses 

statistical techniques for estimating fluctuations in production or manufacturing process 

mailto:faisal.shah@uoh.edu.pk
mailto:zahidkhan@hu.edu.pk
mailto:e-mail@e-mail.com
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parameters [5]. The role of a SPC is more significant in manufacturing industries [6]. This method is 

widely used to study the behaviour of processes and enhance their production [7]. SPC aims to 

detect irregularities in made items as early as feasible to stop the progression before defective 

products are made [8]. The Shewhart’s model, developed by Walter A. Shewhart, is a popular 

predictive process tool that is simple to apply and comprehend [9]. The Shewhart control chart 

scheme is usually not recommended in service sectors and production operations where slight 

modifications can result in substantial monetary losses due to its ease of development and 

widespread use [10]. As a result, a chart of memory types that highly responsive to small shifts in 

study parameters. By contrast, most real-world systems can have uncertainties or indeterminacies 

[11]. Shewhart control charts cannot accurately identify a process if the process is ambiguous or 

essential quality characteristics are determined by human subjectivity [12]–[14]. As a result, 

problems are explained and modelled using fuzzy set theory. Research studies [15]–[17] reveal a 

simple application of fuzzy charts. On average, fuzzy-based control charts are more sensitive than 

traditional control charts [18]. The neutrosophic approach is a more general concept and provides a 

platform that combines a fuzzy concept set with the notion of a classical set [19]–[21]. The 

neutrosophic philosophy considers the existence of truth, false, and imprecise situations . The 

concept of neutrosophy is currently being used in various disciplines [22]. New application areas 

for SPC techniques are emerging, demanding further attention. 

In a variety of real-world scenarios, the collected data may be ambiguous [23]. Various 

researchers use neutrosophical philosophy to address the problems of having incomplete data [24]–

[29]. In the field of neutrosophic statistics, the traditional statistical methods have been 

comprehensive to address the management of data involving ambiguity. When the underlying data 

consists of incomplete, unclear, or uncertain data on quality characteristics, it is impossible to utilize 

a typical control chart technique. Numerous researchers such as [13], [16], [30], [31] have suggested 

statistical approaches that are linked with neutrosophic logic in the domains SPC [17]. When the 

premise of normality is seriously questioned, the use of commonly used control charts is far less 

appropriate [32]. The VSQ is one of these approaches for dealing with nonnormality in quality data, 

which is best represented by the classical Maxwell model [33]. The Maxwell distribution is a 

statistical distribution that has sparked the interest of many scholars owing to its numerous 

practical applications [34], [35]. 

In this work, neutrosophic aspect of the Maxwell model with application domains in SPC is 

presented. The neutrosophic version of the VSQ-chart that may handle the vague, incomplete or 

imprecise observations in underlying Maxwell quality characteristics is suggested.  

The rest of the work is organized as follows: The notions of MD̃ are first introduced in Section 2. 

Section 3 contains the proposed control chart based on MD̃. The suggested neutrosophic design 

performance measure is provided in Section 4. Section 5 contains a comparative analysis of the ṼSQ-

chart. An actual example of the useful execution of the suggested ṼSQ-chart is expounded in Section 

6. Section 7 summarizes the key findings of the work. 

2. STRUCTURE OF THE PROPOSED DISTRIBUTION 
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This section presents an overview of the suggested distribution and introduces it in a unified 

framework. The following definitions establish a connection between the proposed model and its 

applications in the neutrosophic framework. 

Definition 1: The neutrosophic density function (PDF)̃ and Distribution function (CDF)̃ respectively 

of the MD̃ with fuzziness in the scale parameterϑ̃are defined as: 

fN(t, ϑ̃) = √(
2

π
)ϑ̃−3t2e

−
t2

2ϑ̃2 ; ϑ̃ > 0, t > 0        (1) 

FN(t, ϑ̃) = (
2

√π
) γ [

3

2
 ,

t2

2ϑ̃2] ; ϑ̃ > 0, t > 0        (2) 

where ϑ̃ = [ϑ1, ϑu] and the neutrosophic random variable . In the framework of neutrosophic 

calculus, it is defined as the integral of the variable density over a specified range. The neutrosophic 

parameter ϑ̃  denotes simply the scale factor whose different values result in a variety of 

neutrosophic curves of the proposed distribution. The graphs of PDF̃ and CDF̃ for a continuous 

random variable  with different neutrosophic values of the scale parameter are depicted in Figure 

1 and Figure 2, respectively.  

 

Figure 1. The 𝑃𝐷�̃� plots of the proposed model with (a) �̃� = [1.5, 2] and (b) �̃� = [2, 3.5] 

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

= [1.5, 2]

T

f N
t

a

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

= [2, 3.5]

T

f N
t

b



Neutrosophic Sets and Systems, Vol. 53, 2023     300  

 

 

Faisal Shah, Muhammad Aslam and Zahid Khan, New Control Chart Based On Neutrosophic Maxwell 

Distribution with Decision Making Applications 

 

 

Figure 2. The 𝐶𝐷�̃� plots of the proposed model with (a) �̃� = [1.5, 2] and (b) �̃� = [2, 3.5] 

Figure 1 shows that the densities are asymmetric and skewed toward the right. In the neutrosophic 

framework, the density curve is represented by a thick layer rather than a single curve. The layer 

thickness (shaded region) corresponds to an indeterminacy part and total area under the sturdy 

curve equal to one due to completeness of 𝑃𝐷�̃�. In addition, Figure 2 shows the overall behaviour 

of 𝐶𝐷�̃� which is right continuous and varies in the interval [0, 1].  

Definition 2 Mean and variance of the MD̃ are respectively given by 

�̃� = 2�̃�√
2

𝜋
 , and �̃�2 = (3𝜋 − 8)

�̃�2

𝜋
 

Proof By definition 

𝐸(𝑇) = ∫ 𝑡 

∞

0

𝑓𝑁(𝑡)𝑑𝑡 

= ∫ 𝑡 [

∞

0

𝑓𝑙(𝑡), 𝑓𝑢(𝑡)]𝑑𝑡 

= [∫ 𝑡 

∞

0

𝑓𝑙(𝑡)𝑑𝑡, ∫ 𝑡 

∞

0

𝑓𝑢(𝑡)𝑑𝑡 ] 
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= [2�̃�𝑙√
2

𝜋
 , 2�̃�𝑢√

2

𝜋
 ]         

 (3) 

= 2�̌�√
2

𝜋
, is the required mean value of the random variable 𝑇 

Now the second raw moment of the MD̃ is given by: 

𝐸(𝑇2) = ∫ 𝑡2

∞

0

𝑓𝑁(𝑡)𝑑𝑡 

= ∫ 𝑡2 [

∞

0

𝑓𝑙(𝑡),  𝑓𝑢(𝑡)]𝑑𝑡 

= [∫ 𝑡2

∞

0

𝑓𝑙(𝑡)𝑑𝑡, ∫ 𝑡2

∞

0

𝑓𝑢(𝑡)𝑑𝑡 ] 

= [3�̃�𝑙 , 3�̃�𝑢] 

𝐸(𝑇2) = 3�̃�2 

Thus the variance becomes 

Now 𝜎2
𝑁(𝑡) = 𝐸(𝑇2) − (𝐸(𝑇))2 = [3�̃�𝑙, 3�̃�𝑢] − ([2�̃�𝑙√

2

𝜋
 , 2�̃�𝑢√

2

𝜋
 ])2 

After simplifying, we get 

= [(3𝜋 − 8)
�̃�𝑙

2

𝜋
 , (3𝜋 − 8)

�̃�𝑢
2

𝜋
]        (4) 

Further neutrosophic measures of the proposed can be derived in a similar way using the 

neutrosophic calculus. 

The Maxwell distribution is extensively used to describe wind speed data, communications 

data in signals processing, modelling of wind speed data, lifetimes of different objects in reliability 

studies, and noise factor modelling in magnetic imaging and SPC. With particularly focus on SPC, 

designing of new �̃�𝑆𝑄. The chart based on the neutrosophic version of the Maxell model is described 

in the next section.  
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3. CONSTRUCTION OF CONTROL CHART  

Assume that the desired quality attribute is given by Y and that it follows the neutrosophic 

form of the Maxwell model as described in (1). In most real-world circumstances, the value of the 

neutrosophic parameter �̌� is rarely known and usually estimated by the maximum likelihood (ML) 

approach. Let 𝑦1𝑁 , 𝑦2𝑁 , 𝑦3𝑁 … … . 𝑦�̃�𝑁 be the observed interval values sample from MD̃ with density 

function 𝑓𝑁(𝑦, �̃�) . Assume the parameter �̃�  is unknown in the defined distribution, then 

∏ 𝑓𝑁(𝑦𝑖 , �̃�) �̃�
𝑖=1  be the joint probability of the observed sample.  

Taking the logarithm of the product ∏ 𝜙𝑁(𝑦𝑖 , �̃�)�̃�
𝑖=1  provides log-likelihood as: 

𝜉𝑁(𝑦𝑖𝑁 , �̃�) =
�̃�

2
log (

2

𝜋
) − 3�̃�𝑙𝑜𝑔�̃� + 𝑙𝑜𝑔 ∏ 𝑦𝑖𝑁

2 −
∑ 𝑦𝑖𝑁

2�̃�
𝑖=1

2�̃�2
�̃�
𝑖=1     (5) 

where �̃� = [𝑚𝑙, 𝑚𝑢] is the neutrosophic sample size which turns to classical sample size when  𝑚𝑙 =

𝑚𝑢 = 𝑚 

The ML estimate of the unknown �̃� is the value that maximizes 𝜉𝑁(𝑦, �̃�) i.e., 

�̂̃� = max (𝜉𝑁(𝑦𝑖𝑁 , �̃�)) 

The ML estimates, namely �̂�𝑁 can be obtained by using the neutrosophic calculus as: 

𝛿𝜉𝑁(𝑦,�̃�)

𝛿�̃�
= [

𝛿𝜉𝑙(𝑦𝑖𝑙,�̃�𝑙)

𝛿�̃�𝑢
 ,

𝛿𝜉𝑢(𝑦𝑖𝑢,�̃�𝑢)

𝛿�̃�𝑙
]         (6) 

where  𝜉𝑙(𝑦, �̃�𝑙) =
𝑚𝑙

2
log (

2

𝜋
) − 3�̃�𝑙𝑜𝑔�̃�𝑙 + 𝑙𝑜𝑔 ∏ 𝑦𝑖𝑙

2 −
∑ 𝑦𝑖𝑙

2𝑚𝑙
𝑖=1

2�̃�𝑙
2

𝑚𝑙
𝑖=1   

and 

𝜉𝑢(𝑦, �̃�𝑢) =
𝑚𝑢

2
log (

2

𝜋
) − 3𝑛𝑙𝑜𝑔�̃�𝑢 + 𝑙𝑜𝑔 ∏ 𝑦𝑖𝑢

2 −
∑ 𝑦𝑖𝑢

2𝑚𝑢
𝑖=1

2�̃�𝑢
2

𝑚𝑢
𝑖=1 . 

Simplification of (6) provides: 

𝛿𝜉𝑁(𝑦,�̃�)

𝛿�̃�
= [

−3𝑚𝑙

�̃�𝑙
+

∑ 𝑦𝑖𝑙
2𝑚𝑙

𝑖=1

�̃�𝑙
3  ,

−3𝑚𝑢

�̃�𝑢
+

∑ 𝑦𝑖𝑢
2𝑚𝑢

𝑖=1

�̃�𝑢
3 ]       (7) 

Equating (7) to [0, 0] yields: 
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[�̂̃�𝑙 , �̂̃�𝑢] = [√
∑ 𝑦𝑖𝑙

2𝑚𝑙
𝑖=1

3𝑚𝑙

, √
∑ 𝑦𝑖𝑢

2𝑚𝑢
𝑖=1

3𝑚𝑢

  ] = √
∑ 𝑦𝑖𝑁

2�̃�
𝑖=1

3�̃�
 

Thus 

 �̂̃� = √∑ 𝑦𝑖𝑁
2�̃�

𝑖=1

3�̃�
 is the required ML estimator for the neutrosophic parameter of MD̃. 

For structuring the parameters of proposed �̃�𝑆𝑄-chart, we have to establish the distribution of the  �̂̃�-

estiamator. The chi (𝜒) random variable 𝑍 with 3-degree of freedom (df) is associated with the 

estimator  �̂̃� as follows [31]: 

 �̂̃� =
𝜎

√3𝑚
𝑍          (8) 

It is now assumed that uncertain values of  𝜎 and 𝑚 are provided instead of accurate values. Under 

neutrosophic environment expression (8) can be written as follows: 

 �̂̃� =
𝜎𝑁

√3�̃�
𝑍          (9) 

where 𝜎𝑁 = [𝜎𝑙 , 𝜎𝑢], �̃� = [𝑚𝑙, 𝑚𝑢] and 𝑍  is the neutrosophic chi (𝜒𝑁) a random variable with 3�̃� 

degree of freedom. The skewed curve is a collective term for the 𝜒 distribution. The density plot of 

the 𝜒𝑁 variable with neutrosophic df is displayed in Figure 3.  

 

Figure 3. Probability curves of the 𝜒𝑁 random variable 
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Figure 3 is sketched to familiar with the neutrosophic form of the 𝜒𝑁 distribution for the case of 

various neutrosophic degrees of freedom. It is depicted from Figure 3 that distribution is skewed to 

the right for the lower degree of freedom. The distributional characteristics of the estimator  �̂̃� using 

(9) can be established) as : 

𝐸 ( �̂̃�) = 𝜎𝑁𝛿 

𝑉 ( �̂̃�) = 𝜎2
𝑁[1 − 𝛿2]         (10) 

where 𝛿 = √(
2

3�̃�
) (

Γ(
(3�̃�+1)

2
)

Γ(
3�̃�

2
)

) is an interval form of the neutrosophic constant and counts on �̃�. 

According to (10), the estimator  �̂̃� is not the unbiased statistic of  𝜎𝑁. For the analysis, suppose 𝑇 

samples with imprecise observations are available. For each sample batch, ML estimate of  �̂̃� is 

obtained, then the mean of all collected sample groups will be:  

 �̂̃�
̅

=
∑  𝜗�̃�

̂𝑇
𝑖=1

𝑇
           (11) 

Thus an unbiased estimator for 𝜎𝑁 can be developed as follows: 

�̂�𝑁 =
 �̂̃�
̅

𝛿
           (12) 

Because the distribution of  �̂̃� is highly skewed, particularly for smaller values of �̃�, three-sigma 

limits are ordinarily inapplicable due to unequal tail sizes [36]. A common procedure in SPC is to 

use probability limits (PL) to address this issue. Since  �̂̃� is followed by the 𝜒𝑁 distribution, its 𝛼𝑡ℎ 

percentile is determined as: 

𝐹𝜒𝑁
(�̃�) = 𝛼           (13) 

Using (8) in (13) yielded: 

 �̂̃� =
𝜎𝑁

√3�̃�
𝐹𝜒𝑁

−1(�̃�)         (14) 

As a result, the PL of the �̃�𝑆𝑄-chart is constructed as follows: 

𝑢𝑝𝑙𝑁 =
𝜎𝑁

√3�̃�
𝐹𝜒𝑁

−1 (1 −
𝛼

2
) = 𝜎𝑁�̃�1 
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𝑙𝑝𝑙𝑁 =
𝜎𝑁

√3�̃�
𝐹𝜒𝑁

−1 (
𝛼

2
) = 𝜎𝑁�̃�2        (15) 

where �̃�1 =
𝐹𝑌

−1(1−
𝛼

2
)

√3�̃�
= [𝑡1𝑙 , 𝑡1𝑢] and 𝑡2̃ =

𝐹𝑌
−1(

𝛼

2
)

√3�̃�
= [𝑡2𝑙 , 𝑡2𝑢] are neutrosophic values.  

When the parameter defining the MD̃ distributed quality characteristic is not provided, it is derived 

using an estimator described in (10). Thus the estimated PL becomes: 

𝑢𝑝�̂�𝑁 =
�̂�𝑁

√3�̃�
𝐹𝜒𝑁

−1 (1 −
𝛼

2
) =  �̂̃�

̅
�̃�3 

𝑙𝑝�̂�𝑁 =
�̂�𝑁

√3�̃�
𝐹𝜒𝑁

−1 (
𝛼

2
) =  �̂̃�

̅
�̃�4        (16) 

where �̃�3 =
𝐹𝑌

−1(1−
𝛼

2
)

𝛿√3�̃�
= [𝑡3𝑙 , 𝑡3𝑢]  and  �̃�4 =

𝐹𝑌
−1(

𝛼

2
)

𝛿√3�̃�
= [𝑡4𝑙 , 𝑡4𝑢] 

For a fixed of false alarm probability 𝛼 and various values of 𝑚, the classic pair of crisp values 

(�̃�1, �̃�2) and (�̃�3, �̃�4) are easily computed and viewable in [31]. Three-sigma limits may be derived 

similarly but are not discussed in detail here due to the asymmetric form of the underlying statistic, 

particularly for the lower value of �̃�. 

4. PERFORMANCE METRICS 

The performance measures applied in this study are explained in this section. The suggested 

control charts' performance is assessed using a variety of metrics, however the average 

neutrosophic run length (ARL̃) is the most frequently used and well accepted metric for analyzing 

neutrosophic control charts. The other related quantities such as neutrosophic power function (PF̃) 

and neutrosophic characteristics function (CH̃)  are also described. The PF̃  and CH̃  functions are 

traditionally used to evaluate the sensitivity of the control chart to identify a sustained shift in key 

parameters. Whereas average number of neutrosophic points display on a control chart prior to the 

detection of an out-of-control signal is referred to as the ARL̃. In this concept, it has been considered 

that samples are taken at evenly spaced time intervals. The ARL̃ is actually the average value of the 

run-length distribution when the process is in-control (IC) and is usually denoted by ARL̃0. On the 

other hand, when a shift occurs, the number of samples collected from that point onward is known 

as out-of-control (OC) run length (ARL̃1). Of course, the optimum circumstance for a given chart is 

for ARL̃0 to be large and ARL̃1 to be small. However, this is harder to establish, as it is with the 

Type-I and Type-II errors probabilities in the hypothesis test framework. As a remedy for this 

problem, the SPC literature employs an approach similar to hypothesis testing in which the ARL̃0 

value is fixed at a certain level and the ARL̃1 value is reduced as much as feasible. To compute the 

value of ARL̃1, the ability of ṼSQ-chart of not detecting the shift is given by: 
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βN = P[lplN ≤ ϑ̃ ≤ uplN H1⁄ ]         (17) 

Further simplification of (17) yielded: 

β = FχN
(θϑ̃1√3m̃) − FχN

(θϑ̃2√3m̃)       (18) 

where θ is the shift constant that linked the IC parameter with OC parameter as: 

ϑ̃1 = θϑ̃0;  ϑ̃0 = [ϑ̃l0, ϑ̃u0]          (19) 

Thus ARL̃1 can be defined as: 

ARL̃1 =
1

1−FχN
(θt̃1√3m̃)+FχN

(θt̃2√3m̃)
=

1

1−β
       (20) 

Note that the expression 1 − FχN
(θt̃1√3m̃) + FχN

(θt̃2√3m̃) = 1 − β  establishes the PF̃  of the 

proposed chart and when θ becomes equal to 1, (20) provides ARL̃0 i.e., mean of IC run length while 

the other values of θ  i.e., θ ≠ 1,  provides upwardly and downwardly shifts in the observed 

parameter of the proposed model. Now we compute the values of ARL̃1 and (PF̃) of the proposed 

chart for known value of process parameters. For this, we assume that m̃ = [3,5], crisp ARL̃0 =

[370, 370] and upwardly shift in the observed parameter. In such case, computed ARL̃1 and (PF̃) are 

depicted in Figure 4 and Figure 5, respectively. 

 

Figure 4 The ARL̃1 curve of the proposed ṼSQ-chart 
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Figure 5 The PF̃ curve of the proposed ṼSQ-chart 

Figure 4 depicts the geometric shape of the RL distribution for a certain m̃, several curves may be 

graphed similarly for various m̃ values. It is clear from the graphs in Figure 4 that ARL̃1 drops as θ 
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performance of ṼSQ-chart in terms of ARL̃1  in Table 1. The results in Table 1 are based on 105 

simulations of each shift in the study parameter at a fixed benchmark value ARL̃0 = [370, 370]. 

 

Table 1 The estimated ARL̃1of ṼSQ-chart 

Sample size 

Shifting 
amount (𝜃) 

[2, 3] [5, 7]  [9, 12]  

 

1.00 [371.77,372.05]  [369.54,370.57]  [365.69,370.57]  
1.25 [132.32,214.55]  [35.80,62.82]  [22.57, 35.80]  
1.50 [35.88, 80.03]  [5.51, 11.62]  [3.27,5.51]  
1.75 [13.23, 35.95]  [1.95, 3.81]  [1.36,1.95]  
2.00 [6.18, 18.60]  [1.21, 1.91]  [1.04,1.21]  
2.25 [3.47, 10.75]  [1.03, 1.30]  [1.00,1.03]  
2.50 [2.27, 6.81]  [1.00, 1.09]  [1.00,1.00]  
2.75 [1.67, 4.65]  [1.00, 1.02]  [1.00,1.00]  
3.00 [1.36, 3.38]  [1.00,1.00]  [1.00,1.00]  
3.25 [1.18, 2.60]  [1.00,1.00]  [1.00,1.00]  
3.50 [1.18, 2.60]  [1.00,1.00]  [1.00,1.00]  
3.75 [1.09,2.09]  [1.00,1.00]  [1.00,1.00]  
4.00 [1.04, 1.75]  [[1.00,1.00]  [1.00,1.00]  
4.25 [1.01, 1.52]  [1.00,1.00]  [1.00,1.00]  
4.50 [1.00, 1.36]  [1.00,1.00]  [1.00,1.00]  
4.75 [1.00, 1.25]  [1.00,1.00]  [1.00,1.00]  
5.00 [1.00, 1.17]  [1.00,1.00]  [1.00,1.00]  

 

Results in Table 1 show the performance of ṼSQ-chart at various neutrosophic sample sizes. It looks 

that estimated ARL̃1 is closer to the benchmark value of 370 when no shift occurred in the process 

parameter, i.e., θ = 1. In contrast, for other values of θ, ARL̃1 steadily decreases as expected with an 

increase in the shifted parameter. 

5. COMPARATIVE STUDY 

In this section, the performance of the suggested chart is compared to that of other existing 

model utilized to monitor the parameter of interest of the Maxwell model. It has been evaluated 

against an existing model of the V-chart in an indeterminate framework to observe how well ṼSQ-

chart performs. Various measures can be used for this comparison, although power curves are 

routinely employed in many research studies [37]–[39]. The equation (20) shows that power curve is 

a function of α, m̃ and θ . Power curves are often used to show the connection between these 

parameters. The development of the power curve for the suggested model is also based on the 

distribution of the estimator  ϑ̂̃ . In estimating how large sample size is needed to detect an 

observable difference with a given probability, power curves can be helpful. In our case, the power 

of the ṼSQ-chart is defined as if the computed  ϑ̂̃ statistic surpasses the design limits for particular 

values of α and m̃. To construct the power curve, assume that ϑ̃0 is an IC value of the observed 
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process. Then PF̃ indicates the likelihood of detecting a shift to a new value, say ϑ̃1, where ϑ̃1 = θϑ̃0 

on the first sample after the shift. This approach is used to evaluate the neutrosophic power of the 

recommended chart and its counterpart for fixed values of ARL̃0 and m̃ in Figure 6. 

 

 

Figure 6 Power comparisons of ṼSQ-chart at (a) ARL̃0 = [370, 370] and m̃ = [3,5], (b) ARL̃0 = [370, 370] and 

m̃ = [8,10] 

For examining Figure 6, it is observed that the suggested ṼSQ-chart is particularly successful in 

identifying process changes even for small sample size. As an illustration, the power of ṼSQ-chart 

and neutrosophic V -chart for detecting a shift of amount 3ϑ̃0  are [0.75, 0.95] and [0.25, 0.40] 

respectively at m̃ = [3,5].Whereas the same comparison with higher probabilities hold for a larger 

sample size, i.e., m̃ = [8,10]. Thus the proposed chart is deemed efficiently and highly sensitive for 

detecting the shift of different amounts in the studied parameter of the neutrosophic Maxwell 

process.  

6.  REAL-LIFE APPLICATION 

In this section, a real-life example of the healthcare sector has been described to explain the 

theoretical framework of the proposed method. A patient's life or death is at stake in healthcare 

quality. To ensure patient satisfaction and safety, the healthcare system requires both investment 

and quality. Quality is a major concern for investors in this sector, which has seen a steady rise in 

investment. The assumption that the distribution of most medical data is normal is not accurate in 

most cases, so the customary assumption of normality approximation turns into inadequate for 

nonnormal data analysis. On the contrary, the techniques proposed in this work may effectively 

monitor and model the healthcare data. The capacity to reliably monitor the mean incubation time 

of COVID-19 and its variability in healthcare has become a major issue for the government, 
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industry, the general public, and academics. We have applied ṼSQ -chart to COVID-19 mean 

incubation time data taken from the source [40] to examine the possible variability in incubation 

periods estimated from different studies. Being aware of the incubation period model while dealing 

with a point source pandemic enables statistical evaluation of exposure time. This information may 

also be used to evaluate hypotheses about whether the pandemic has come to an end by analyzing 

incubation time distribution during point-source epidemics. The incubation time, defined as the 

period between initial infection and illness manifestation, is an essential indicator for characterizing 

the spread of contagious diseases and developing quarantine policies [41]. It is important because 

reproduction numbers are often calculated using the mean incubation time, while quarantine 

durations are typically determined by using the maximum incubation period. The typical 

incubation time for COVID-19 varies widely, ranging from 3 days to 18 days [42]. As a result, it's 

impossible to quantify a precise quarantine period. Incubation periods have been found to vary 

widely in different research studies most likely because of the study population size and the 

estimating methodologies used. As a result, the mean incubation duration worldwide from the 

source is reported in Table 2 with uncertainties rather than precise figures in 12 subgroups.  

Table 2: COVID-19 mean incubation period data with uncertainties 

Sample 

batch 

Mean incubation period values 

1 [7.81, 9.00] [8.31, 9.16] [4.48, 5.65] [7.43, 8.51] 

2 [4.95, 5.80] [6.75, 7.62] [5.05, 6.01] [4.95, 5.22] 

3 [6.49, 7.73] [5.58, 6.45] [5.55, 6.80] [6.85, 7.18] 

4 [3.99, 4.57] [4.82, 5.04] [6.58, 7.12] [3.38, 4.45] 

5 [8.94, 9.48] [6.11, 7.60] [5.36, 6.40] [4.84, 5.05] 

6 [5.35,6.63] [9.48, 10.68] [8.35, 9.27] [7.93, 8.74] 

7 [5.91, 6.16] [9.90, 10.50] [10.31, 11.37] [8.32, 8.92] 

8 [5.21, 5.98] [5.88, 6.68] [5.03, 5.31] [3.83, 5.18] 

9 [5.82, 6.90] [6.01, 7.01] [5.07, 6.14] [2.52, 3.73] 

10 [7.38, 8.18] [5.80, 7.26] [6.76, 7.57] [6.52, 7.70] 

11 [6.32, 6.86] [5.33, 6.78] [5.07,5.77] [2.07, 3.65] 

12 [7.42, 8.21] [4.06, 5.92] [4.17,5.48] [3.72, 4.52] 

 

Mean incubation time uncertainties are introduced to the technique devised in [13]. An informal 

graphical approach has shown that the Maxwell distribution is an acceptable model for 

representing the incubation time data since most actual data does not stray greatly from the 

theoretical red lines. The process data are skewed, as seen from the histogram and CDF plot in 

Figure 7 and Figure 8. As a result, the data may be further examined using the model that has been 

suggested.  
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Figure 7. Histrogram of COVID-19 incubation period data 

 

 

Figure 8. Theoretical and empirical CDF plots of incubation period data 

 

By considering the individual values given in Table 2, the ML estimator  ϑ̂̃ can be obtained from 

each subgroup in Table 3: 
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Table 3: Neutrosophic estimates of the proposed model for each sample group 

Sample batch Neutrosphic estimator ( �̂̃�) 

1 [4.14, 4.73] 

2 [3.16, 3.59] 

3 [3.54, 4.07] 

4 [2.79, 3.12] 

5 [3.75, 4.22] 

6 [4.52, 5.16] 

7 [5.06, 5.45] 

8 [2.91, 3.36] 

9 [2.92, 3.52] 

10 [3.83, 4.44] 

11 [2.86, 3.41] 

12 [2.92, 3.56] 

 

After finding ML estimate of  ϑ̂̃ from each sample batch, the mean of all collected sample groups 

from (10) can be obtained as: 

 ϑ̂̃
̅

= [3.54, 4.06] 

The upper and lower probability limits for sample size 4 utilizing (16) thus can be obtained as: 

upl̂N = max[5.90, 6.78] and lpl̂N = min[1.60,1.80]. 

The proposed control chart based on these limits is depicted in Figure 9. 

 

Figure 9. Control chart based on the proposed model 
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The depicted Maxwell estimator in Figure 9 exhibits a random tendency within the control limits. 

Thus, observable data-generating mechanisms may be inferred as a statistical control condition. 

. 

7.  CONCLUSIONS  

The classical Maxwell model under the neutrosophic logic has been extended in this work. Several 

theoretical aspects of the proposed MD̃  distribution, such as its probability density function, 

characteristic function, and a few raw moments, are investigated. The theoretical framework of the 

suggested model, notably in domains of SPC, have been described for working data, including 

ambiguous, indeterminate, and imprecise observations on examined variables. Because of its 

suitability for dealing with ambiguous data in SPC applications, a new control chart based on the 

suggested MD̃  distribution has been developed. Some essential charting characteristics such as 

power curve (PC̃), the neutrosophic characteristic curve (CC̃) and neutrosophic run length (RL̃) of 

the proposed chart in terms of neutrosophic logic have been derived and validated through 

simulated data. A simulation study is carried out to demonstrate the theoretical results and the 

effectiveness of the ṼSQ-chart is evaluated to that of existing counterparts. Simulation results reveal 

that the proposed chart is deemed efficiently and have highly discriminatory power for detecting 

the shift of different amounts in the studied parameter of MD̃ distribution. Finally, the usefulness of 

the ṼSQ-chart has been described considering the real data example on the incubation period of 

COVID-19. Based on the results given in this study, neutrosophic extension may be designed for 

other statistical models in future work. 
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Abstract:  Breast cancer is among the most prevalent cancers, and early detection is crucial to 

successful treatment. One of the most crucial phases of breast cancer treatment is a correct diagnosis. 

Numerous studies exist about breast cancer classification in the literature. However, analyzing the 

cancer dataset in the context of clusterability for unsupervised modeling is rare. This work analyzes 

pointedly the breast cancer dataset clusterability via applying the widely used c-means clustering 

algorithm and its evolved versions fuzzy and neutrosophic ones. An in-depth comparative study is 

conducted utilizing a set of quantitative and qualitative clustering efficiency metrics. The study's 

outcomes divulge the presented neutrosophic c-means clustering superiority in segregating similar 

breast cancer instances into clusters. 

Keywords: Breast cancer dataset clusterability; Fuzzy c-means clustering; Neutrosophic c-means 

clustering; t-SNE; Silhouette coefficient. 

________________________________________________________________________________ 

1. Introduction 

  

One of the biggest problems in the healthcare system is cancer-related death. It ranks among the 

major causes of death among women [1]. More people have died from breast cancer than from any 

other disease, including tuberculosis and malaria. 

Initial analysis of this condition can reduce the rate of mortality, which is on the rise [2]. Breast 

cancer is the sixth foremost reason of mortality globally, according to the Globocan 2020 data, and it 

is diagnosed in one out of every four women worldwide [3]. 

Making a precise diagnosis of malignancies is crucial. Most breast tumors are caused by benign 

(non-cancerous) alterations, however, if a benign tumor is assumed as a malignant one, it might 

have disastrous consequences. The most crucial actions to lowering breast cancer mortality are early 

detection and receiving state-of-the-art cancer therapy. Early-stage, mild breast cancer that hasn't 

spread can be treated successfully and quickly. Routine screening tests represent the most 
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dependable method for identifying breast cancer in its earliest stages [4]. In an extraordinarily rich 

information environment, healthcare has extraordinarily little knowledge. Healthcare systems 

contain a vast amount of data, and it is crucial to find and establish connections with hidden data. 

The International Classification of Diseases (ICD) divided the foremost origins of death into five 

categories, with breast cancer being part of two of them [5]. According to a McKinsey report, the 

amount of data is increasing at a pace of 50% annually. Data science has now formally emerged as an 

especially important field. According to research, the phrase "data science" describes a systematic 

examination of the structure, properties, and evaluation of information along with the role that data 

play in society [6]. Statistics knowledge can be exploited from a diversity of areas, even though 

machine learning procedures are the most frequently used healthcare datasets. 

A data analysis method called machine learning teaches a computer what results from various 

methods. The most popular machine learning algorithms are decision trees, k-means clustering, and 

neural networks [7].  

The incidence of breast cancer among women, particularly those between the ages of 35 and 55, is 

rising because of the inhabitants of industrialized and developing nations changing their lifestyles 

from traditional to modern. By identifying breast tumors in their initial stages, it is possible to keep 

track of the prevalence of the illness [8]. Breast cancer screening methods include self- and 

professional breast exams, Magnetic Resonance Imaging (MRI), ultrasound, and mammography [9]. 

The mammogram, which includes the backdrop, the breast region, adipose tissue, breast masses, 

and microcalcifications with high intensities, is the result of the mammography procedure [10]. 

Radiologists may make mistakes or overlook crucial signs as the need for mammography processing 

increases because of weariness [11]. 

In [12]. The DCE-MRI enables a highly accurate follow-up for breast tumors. Fuzzy spatial clustering 

was used by Militello et al. To segment masses on DCE-MRI breast scans, and the results were 

superior to those of other traditional methods. 

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset, a highly well-known cancer dataset, was 

used as the basis for another cluster analysis work [13]. which incorporated a multidimensional data 

analysis. Because the multidimensionality of data has long been a barrier to data analysis this study 

hypothesized that a multidimensional data set must be projected into a lower dimensional space 

where it will inevitably lose some of its features to be displayed due to the limits of handling more 

than three spatial dimensions.  

In [14], a new training dataset of breast cancer is produced using the modified k-means technique, 

which enhances the performance of the support vector machine model. A prediction model for 

breast cancer was developed using k-means and support vector machine. Using the updated 

k-means, a training dataset of the highest caliber was produced. Then, to group the cancerous 

instances of unidentified photographs, classification and accuracy were improved. 

In [15], The R programming language, R visual studio, and Weka machine learning software have all 

been tried on the breast cancer dataset. Using various clustering algorithms were employed to 
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examine the proper correlation in the Breast cancer dataset. In this unsupervised learning strategy, a 

pretrained model or label is not necessary. 

 The key contribution of this proposed methodology is as follows: 

• Through the application of the widely known c-means clustering technique and its advanced 

versions fuzzy and neutrosophic ones, this work specifically investigates the clusterability of the 

breast cancer dataset. 

• Using a collection of quantitative and qualitative clustering efficiency metrics, extensive 

comparative research is carried out. In terms of silhouette score, precision, and rand index, the 

suggested neutrosophic c-means clustering gets the best clustering performance.  

Following are the last five portions of this study: Section 2 gives a review of materials and methods, 

Section 3 presents the metrics and results, and Section 4 presents the overall research conclusion. 

2. Materials and methods 

 

2.1 Dataset 

The efficiency of the suggested model was evaluated using the WDBC datasets, which are breast 

cancer datasets [16]. Data from the University of Wisconsin Hospitals have previously been 

gathered. Each example was assigned a benign or malignant classification. The WDBC has 569 

occurrences (about 62.7% benign and 37.3% malignant) and 32 significant patient features. A patient 

ID, 30 tumor-specific traits, and one class indicator are among these characteristics. The 

distinguishing features of the tumors of the patients were gathered using ten different elements, 

including texture, radius, area, perimeter, smoothness, concavity, compactness, concave spots, 

fractal dimension, and symmetry. These traits were generated from a breast lumps fine needle 

aspirate (FNA) picture. A set of 30 features was created by deciding the key, recognizing data for 

each image, such as mean, standard error, and the least or biggest standards of these features.  

The dataset from Kaggle that included information about breast cancer. Thirty-two parameters make 

up the dataset. All the indicators can be used to categorize cancer, and if they have significantly high 

values, that could indicate the presence of malignant tissue. A number called ID serves as the first 

argument and is used for identification. The second factor is the diagnosis of membranes, which can 

be either malignant or benign depending on the tissue. The correct tissue diagnosis must be 

established for various cancer kinds if both membranes require various therapies. Following these 

two, a range between the center and a point on the perimeter is shown by estimated means, standard 

errors, and radius means. The estimated standard error is shown by radius se. The center of the 

projected range has the highest value of the radius worst. Knowing the distance between the center 

and the point is crucial since the size affects operation. With large tumors, surgery is not an option. 

The gray-scale values' standard deviation is represented by the texture mean. The estimated 

standard deviation of gray-scale values is represented by the texture se. Gray-scale values with the 

largest mean standard deviation are characterized as having the worst texture. Grayscale is 

frequently used to locate tumors, and the standard deviation is crucial to identifying data variation 

and explaining how to disperse the values. While the standard error of the mean indicates the core 
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tumor expressed as perimeter se, the perimeter mean represents the mean value for the core tumor. 

The perimeter worst column displays the core tumor's maximum value. Area means, area se, and 

area worst point are identical to the previously mentioned mean of the cancer cell areas. Regional 

variations in the radius range are represented by smoothness mean, local variations in radius length 

are represented by smoothness se, and the biggest mean value is displayed as smoothness worst. 

The greatest mean value of the calculation is referred to as compactness worst. Compactness mean is 

a mean value of estimation of the perimeter and area. Compactness se is used to calculate the 

standard error of the mean. The severity of the concave regions of the shape is shown by the 

concavity mean, and the number of concave points in the shape is indicated by the concave points 

mean. Concavity se denotes the standard deviation of concave areas, whereas concave points se 

denotes the standard deviation of the shape's concave areas. The worst concavity and worst concave 

points represent the highest mean value. The fractal dimension means the calculated mean value for 

the coastline approximation, the fractal dimension se represents the standard error of the coastline 

approximation, and the fractal dimension worst represents the highest mean value [16]. 

Figure 1. Shows the distribution of thirty-one features for all 569 lesions using the Weka tool. 

Through the malignant and benign lesions, each feature was visualized to show how much affect 

the detection of diagnosis. 

 

Figure 1 Distribution of dataset features. 

The data is available for download in.csv format.  Then, the CSV extension was updated to the 

Weka-compatible Attribute Relation Data Format (ARFF) extension. The data was then subjected to 

extensive preprocessing. There are 569 instances in the collection. The dataset is then further 

normalized using the min-max normalization approach in Weka software so that all feature values 

fall within the range [0, 1]. Being an unsupervised learning technique, clustering solely uses feature 

values. This indicates that the dataset's final column, the category label, is not normalized. We first 
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eliminate the ID number. The Hopkins Statistic Index is then used to analyze the dataset to 

determine whether there is a strong propensity for clustering among the data points. Then, using 

Python programming language and Weka software tools, we apply several clustering techniques. 

Hopkins Statistic Index = 0.6809 shows the dataset is heavily clustered, according to our results. 

2.2 K-means clustering 

K-means is a clustering method that can group enormous volumes of data with a processing time 

that is both quicker and more efficient. The k-means algorithm, in contrast, has a flaw that is 

dependent on the initial value cluster that establishes the center. K-means clustering provides 

superior topical remedies as trial outcomes. However, the testing procedure calls for the data to be 

close together. In order to get a high degree of similarity among the cluster points, this can be 

divided into a number of clusters. The k-means algorithm is also multisided, according to (celebi et 

al. 2013) K-means are too straightforward to modify at each stage of the process because they are 

predicated on the conditions for iteration termination. They are also easy to measure in terms of 

distance. The first data point collection from each cluster's midway is crucial since the k-mean 

cluster is a local optimization [17]. The objectives of these adjustments are the best precision and the 

fastest convergence. If the initial point is selected from the cluster's midway, the k-mean cluster 

algorithm will also be limited to the optimum site. Additionally, a starting point for the k-mean 

clustering method will be chosen at random from the middle, up to style k. The initial centroid 

cluster, which is chosen at random, will have an impact on the total number of centroid cluster 

iterations. Therefore, by locating the centroid cluster in the high starting data points, it can be fixed 

to achieve higher execution. 

Two familiar features of the K-means clustering technique. The first is that as a precondition 

parameter for clustering, it requires the usage of a specified cluster starting value, or "k centroid." 

However, in most cases, without prior knowledge, we are unable to determine the optimal initial 

number of clustering that a given data set can produce. Connecting each point to the closest cluster is 

the other feature. 

2.3 The Fuzzy C-Means Clustering (FCM) 

In their work, Dunn and Bezdek devised the fuzzy c-means method (FCM). Finding the optimal 

participation and clustering center to minimize the optimal solution is the main notion. 

To set up the membership vector, the method must first decide on the number of clusters to create. 

After then, both the Center of Clustering and the Membership vector are regularly revised. Centers 

of various clusters and levels of membership may be produced when the optimal solution is smaller 

than some threshold. 

These are some of the algorithm's drawbacks: Having a high degree of, sensitivity to, and depending 

on, the initial grouping. It is simple for the algorithm to become wedged in a local least if the starting 

cluster center is distant from the global optimum clustering center. 

2.4 The Neutrosophic Sets 
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Smarandache introduced the neutrosophic concept, a generalization of previously expanded 

concepts, to overcome the shortcomings of conventional fuzzy clustering and enhance its capacity to 

manage and communicate unclear knowledge. When applied to fuzzy clustering, the neutrosophic 

theory is able not just to portray non-deterministic difficulties more accurately, but as well as 

provide solutions to those problems that remain open. 

The central tenet of neutrosophic thought is the premise that every vantage point has some element 

of veracity, doubt, and fallacy. For this reason, the concepts of and were proposed as neutrosophic 

elements to signify the seriousness, ambiguity, and humorlessness of occurrences. True, 

indeterminate, and false outcomes are the names given to these agnostic components. 

 

2.5 The Neutrosophic C-Means Clustering (NCM) 

Conventional fuzzy clustering approaches in clustering algorithms can only explain the degree to 

which each group exists. It is challenging to distinguish which category a given sample belongs to 

and which divisions it joins, especially for the samples located in the border area among distinct 

groups. The neutrosophic c-means clustering method was introduced by Guo et al. To address these 

issues, which is an improvement on the FCM based on neutrosophic theory (NCM). 

 

We propose a fresh special combination, A, which unites the determinant and indeterminate 

clusters. Let 𝐴 = 𝐶𝑗⋃𝐵⋃𝑅, 𝑗 = 1, 2, . . . , 𝑐, 𝑤ℎ𝑒𝑟𝑒 𝐶𝑗  Is an indeterminate cluster, B refers to clusters 

near the edges, R relates to erratically sampled data, and is the union process. Clusters B and R both 

fall within the category of being agnostic. T indicates membership in the determinant cluster, I in the 

perimeter cluster, and F in the noisy set of data. With uncertainty in clustering in mind, we construct 

a new goal function and class membership as follows: 

𝐽(𝑇, 𝐼, 𝐹, 𝐶) = 〈

∑ ∑(𝑤1𝑇𝑖𝑘)𝑚

𝑐

𝑘=1

𝑛

𝑖=1

∥ 𝑥𝑖 − 𝑣𝑘 ∥2

+ ∑ ∑(𝑤2𝐼2𝑖𝑘)𝑚

(𝑐
2)

𝑘=1

𝑛

𝑖=1

∥ 𝑥𝑖 − 𝑣2𝑘̅̅ ̅̅ ∥2

+ ∑ ∑(𝑤3𝐼3𝑖𝑘)𝑚

(𝑐
3)

𝑘=1

𝑛

𝑖=1

∥ 𝑥𝑖 − 𝑣3𝑘̅̅ ̅̅ ∥2

+ ∑ ∑(𝑤4𝐼4𝑖𝑘)𝑚

(𝑐
4)

𝑘=1

𝑛

𝑖=1

∥ 𝑥𝑖 − 𝑣4𝑘̅̅ ̅̅ ∥2

+ ∑ ∑(𝑤5𝐼5𝑖𝑘)𝑚

(𝑐
5)

𝑘=1

𝑛

𝑖=1

∥ 𝑥𝑖 − 𝑣5𝑘̅̅ ̅̅ ∥2

+ ∑ ∑(𝑤𝑐𝐼𝑐𝑖𝑘)𝑚

(𝑐
𝑐)

𝑘=1

𝑛

𝑖=1

∥ 𝑥𝑖 − 𝑣𝑐𝑘̅̅ ̅̅ ∥2

+ ∑(𝑤𝑐+1̅̅ ̅̅ ̅̅ 𝐹𝑖)
𝑚

𝑛

𝑖=1

〉 (1) 
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2.6 Hopkins statistic 

The Hopkins statistic (Lawson and Jurs 1990) calculates the likelihood that a particular data set was 

produced by a uniform data distribution to evaluate the tendency of a data set to cluster [18]. In 

other words, it evaluates the data's spatial randomness. 

Use the Hopkins score from clustered to estimate the likelihood of cluster formation before doing 

clustering. The outcome was two clusters, indicating the data is eligible for clustering. Unsupervised 

data has no notion of how many supposed clusters there are, therefore, assumptions range from two 

to six. Figure 2. Shows the Silhouette values vs. the number of clusters.  

However, after clustering, the silhouette score used to measure cluster quality varied for each 

cluster. The formula is defined as follows: 

𝐇 =
∑ 𝒚𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏 + ∑ 𝒚𝒊

𝒏
𝒊=𝟏

 (2) 

How should I interpret the Hopkins data? 

In the case of a uniform distribution of D, ∑ 𝒚𝒊
𝒏
𝒊=𝟏  and ∑ 𝒙𝒊

𝒏
𝒊=𝟏 , would be close to one another, and H 

would therefore be about 0.5. However, if clusters are present in D, the distances between 

manufactured points (∑ 𝒚𝒊
𝒏
𝒊=𝟏 ) would be expected to be much greater than those between genuine 

points (∑ 𝒙𝒊
𝒏
𝒊=𝟏 ), increasing the value of H. 

Noting from figure 2. Through cluster numbers from two to six, we pick up the highest silhouette 

coefficient, which is determined by the number of two clusters, which suggests that two clusters are 

the optimum choice for data clustering. The average Silhouette Score plot of the number of clusters 

fluctuates between two and six and the highest silhouette value is 0.58, demonstrating that the breast 

cancer dataset is well matched to the given cluster when the cluster size is two. 
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Figure 2. Silhouette values vs. the number of clusters. 

 

2.7 Silhouette Score Analysis 

Researchers may determine how closely related each observation is to the cluster to which it has 

been assigned about other clusters using silhouette analysis. For each observation in the data, this 

metric (silhouette width) runs from -1 to 1, and it can be interpreted as follows [19]: 

I) Values that are near 1 indicate that the allocated cluster is a good fit for the observation. 

II) Values near 0 point to a possible borderline match between two groups of the observation. 

III) Values near -1 point to the possibility that the observations were placed in the incorrect cluster. 

In the study, we will use three well known clustering methods, investigating which one will be 

superior in detecting cancer cases for the aforementioned dataset. Applying k-means, fuzzy 

c-means, and neutrosophic c-means clustering methods. 

 

In figure 3, We investigated two clusters of the provided data: a benign cluster and a malignant 

cluster. Clusters C1 and C2 are home to all 569 instances. The two clusters' average Silhouette values 

are 0.43 for the c-means cluster on the left, 0.5 for the fuzzy cluster in the middle, and 0.66 for the 

neutrosophic cluster on the right. When the Silhouette width has the highest value, which is the 

neutrosophic c-means in the outcomes from the three approaches, we can obtain the best clustering 

result. The silhouette score is shown in Table 1. 
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              ( a )                ( b )             ( c ) 

 

Figure 3. Silhouette Score for (a) k-means (left) , (b) fuzzy c-means (middle) , and (c ) neutrosophic c-means 

clustering methods (right). 

Table 1. The silhouette score of the three models. 

Model 1 Silhouette score 

K-Means 0.43306 

Fuzzy c-means 0.49809 

Neutrosophic c-means 0.66348  

 

2.8 T-Distributed Stochastic Neighbor Embedding 

T-Distributed Stochastic Neighbor Embedding (t-SNE) has emerged as a powerful standard for 

visualizing high-dimensional datasets in a variety of biological data sets, especially for large 

datasets. Using this method will help each class have a clearer image. T-SNE encompasses a variety 

of fields, including Bioinformatics, music analysis, computer security, and cancer biology. Similar to 

SNE, t-SNE chooses two distinct similarity measures for the two-dimensional embedding and the 

high-dimensional information. The objective of this stage is to produce a 2-dimensional embedding 

with a KL divergence between the vector of similarities between points in pairs over the entire 

dataset and the similarities between points in the encoding that is as little as possible. T-SNE is used 

to solve the nonconvex optimization problem utilizing gradient descent and random initialization. 

Figure 4. Shows the three dimensions of T-SNE visualization (best viewed in color) for the four 

clustering methods actual clusters (right-bottom), c-means (left-upper), fuzzy c-means (right-upper), 

and neutrosophic c-means (left-bottom), respectively. By visualizing, it becomes evident that 

neutrosophic c- means is the best option because it is close to the actual clustering. C-means, on the 

other hand, is the clustering approach that is farthest from the actual means; as a result, fuzzy 

c-means is the second-closest method. 
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Figure 4. T-SNE graphs for c-means (left-upper), fuzzy c-means (right-upper), neutrosophic c-means 

(left-bottom), and actual clusters (right-bottom), (best viewed in color). 

 

 

 

3. Results 

3.1. Performance metrics: 

Achieving high intra-cluster identity and low inter-cluster commonality is the primary focus of 

clustering methods (objects in the same cluster are more similar than the objects in different 

clusters). 

In several of my investigations, the clustering methods failed to identify the optimal number of 

clusters. It has been shown that certain methods overestimate the size of clusters while others 

underestimate it. When the final class number matches the number of categories in the gold 

standard, we may use the typical criteria for analyzing recognition accuracy. 

Equation. (3) depicts the clustering technique as a K x S matrix, where K is the expected number of 

clusters of the clustering method and S is the number of classes in the reference set. 

Here, the element 𝑎𝑘𝑠 represents the entire number of objects that have been clustered into the 𝑘𝑡ℎ 

cluster and are of the sth class in the ideal distribution. 

When K = S, the clustering method's estimated number of clusters exactly corresponds to the number 

of classes found in the reference data. 
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𝑚𝑎𝑡𝑟𝑖𝑥 𝑘 ∗ 𝑠 =
𝑘1

…
𝑘𝑘

 [

𝑎11 ⋯ 𝑎1𝑠

⋮ ⋱ ⋮
𝑎𝑘1 ⋯ 𝑎𝑘𝑠

] (3) 

Precision  

We find the benchmark class to which the most items have been allocated for each cluster. Following 

this, we take the sum of the largest number of items in every group and divide it by the whole 

number of grouped objects. precision is determined by calculating the resultant value by using K x S 

matrix, as seen in equation. (4). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑚𝑎𝑥

𝑘
𝑎𝑘𝑠𝑠

∑ ∑ 𝑚𝑎𝑥
𝑘

𝑎𝑘𝑠𝑠𝑘

 (4) 

Recall  

We find the class where most items belong based on the gold standard. The complete list of grouped 

and unclustered items is then divided by the sum of the maximum number of objects in each gold 

standard class. Equation. (5) demonstrates the K x S matrix's role in deriving the recall (also called 

sensitivity). The number of items that are not in a cluster is denoted by U. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑚𝑎𝑥

𝑘
𝑎𝑘𝑠𝑠

∑ ∑ 𝑚𝑎𝑥
𝑘

𝑎𝑘𝑠 + 𝑈𝑠𝑘

 (5) 

F1-Score 

According to equation. (6), the F1-score is determined by taking the mean of the accuracy and recall 

scores. 

𝐹1 = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (6) 

Rand Index 

Two clustering strategies may be compared with one another using the Rand index. 

The Rand Index, sometimes abbreviated as R, is determined using the following formula: 

𝑅 =  (𝑎 + 𝑏) / (𝑛𝐶2) (7) 

Where: 

a: The frequency with which a given pair of items is assigned to the same cluster by two different 

techniques of clustering. 

b: The frequency with which a given pair of items is found in different clusters when using two 

different clustering techniques. 
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nC2 is the count of all the non-matched pairings in a collection of n items. 

3.2 results analysis  

Applying the equations. (4,5,6) to compute the precision, recall, and f1 score. In the precision, the 

total clustered data is 569 and there is no unclustered data. In the c-means the maximum clustered 

data is 453, so the precision is computed by dividing the maximum clustered data by the total 

clustered data, the outcome is 0.796. Due to no unclustered data, the precision is equal to recall and 

f1 score.  Table 2 shows all analyses of the precision and Rand Index.  

 

Table 2. The overall performance analysis of the proposed model. 

Model Precision Rand Index 

C-Means 0.796 0.6748 

FCM 0.8872 0.7919 

NCM 0.9789 0.9586 

 

Table 3. There are four predicted class data by the neutrosophic and fuzzy c-means clustering. In 

data 1, the fuzzy predicted class 0, neutrosophic predicted class 0, and the actual label is class 0, so 

the fuzzy and neutrosophic predicted this data truly. In data 2 the fuzzy predicted class 1, and the 

neutrosophic predicted class 1, also the actual data is class 1, so the fuzzy and neutrosophic 

predicted true labels. In data 3 the fuzzy predicted class 0, but the neutrosophic predicted class 1 and 

the actual labels are class 1, so the neutrosophic predicted true but the fuzzy predicted false. In data 

4, the fuzzy predicted class 1, the neutrosophic predicted class 0, and the actual class is 0, so the 

neutrosophic predicted true and the fuzzy predicted false. Table 3. The neutrosophic predicted four 

true classes and the fuzzy predicted the two true classes and one false class.   

 

 

Table 3. The predicted labels for Fuzzy and Neutrosophic vs. Actual label. 

Data Fuzzy Predicated Label Neutrosophic Predicated Label Actual Label 

Data 1 0 0 0 

Data 2 1 1 1 

Data 3 0 1 1 

Data 4 1 0 0 

 

 

4. Conclusions 

 This paper analyzes the breast cancer dataset cluster ability via applying the widely used 

c-means clustering algorithm and its evolved versions fuzzy and neutrosophic ones. The conducted 

comparative study utilizes various metrics to fairly judge the breast cancer dataset clustering 

efficiency. The suggested neutrosophic c-means clustering achieves the highest clustering 

performance in terms of silhouette score, precision, and Rand index. 
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Abstract: The purpose of this article is to study the equations of neutrosophic straight line and 

neutrosophic circle, where the neutrosophic point, general neutrosophic equation of a line, the 

equation of a neutrosophic straight line passing through two neutrosophic points and parallel and 

perpendicular neutrosophic lines are defined, in addition, four forms of the equations of neutrosophic 

circle were discussed. Where detailed examples are given to clarify each case. 

 

Keywords: neutrosophic straight line; neutrosophic circle; the equations; polar; radius; center. 

 

 

1. Introduction 

           As an alternative to the existing logics, Smarandache proposed the Neutrosophic Logic to 

represent a mathematical model of uncertainty, vagueness, ambiguity, imprecsion, undefined, 

unknown, incompleteness, inconsistency, redundancy, contradiction, where the concept of 

neutrosophy is a new branch of philosophy introduced by Smarandache [3-13]. He presented the 

definition of the standard form of neutrosophic real number and conditions for the division of two 

neutrosophic real numbers to exist, he defined the standard form of neutrosophic complex number, 

and found root index  n ≥ 2 of a neutrosophic real and complex number [2-4], studying the concept 

of the Neutrosophic probability [3-5], the Neutrosophic statistics [4][6], and professor Smarandache 

entered the concept of preliminary calculus of the differential and integral calculus, where he 

introduced for the first time the notions of neutrosophic mereo-limit, mereo-continuity, 

mereoderivative, and mereo-integral [1-8]. Madeleine Al- Taha presented results on single valued 

neutrosophic (weak) polygroups [9]. Edalatpanah proposed a new direct algorithm to solve the 

neutrosophic linear programming where the variables and right-

hand side represented with triangular neutrosophic numbers [10]. Chakraborty used pentagonal 

neutrosophic number in networking problem, and Shortest Path Problem [11-12]. Y.Alhasan studied 

the concepts of neutrosophic complex numbers, the general exponential form of a neutrosophic 

complex, and the neutrosophic integrals and integration methods [7-14-81]. On the other hand, 

M.Abdel-Basset presented study in the science of neutrosophic about an approach of TOPSIS 

technique for developing supplier selection with group decision making under type-2 neutrosophic 
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number [15]. Also, neutrosophic sets played an important role in applied science such as health care, 

industry, and optimization [16-17]. Giorgio Nordo, Arif Mehmood and Said Broumi studied single 

valued neutrosophic filters [19]. 

 

 

            The paper is organized as follows. Section 1, provides an introduction, in which neutrosophic 

science review has given. Neutrosophic real number are discussed in Section 2. Section 3 frames the 

equations of neutrosophic straight line. the equations of neutrosophic circle were discussed in section 

4. Finally, In Section 5 a conclusion to the paper is given. 

 

2. Preliminaries 

2.1. Neutrosophic Real Number [4] 

    Suppose that 𝑤 is a neutrosophic number, then it takes the following standard form: 

𝑤 = 𝑎 + 𝑏𝐼 where  a , b are real coefficients, and I represent indeterminacy, such 0. 𝐼 = 0  and 𝐼𝑛 =

𝐼, for all positive integers 𝑛. 

 2.2. Division of neutrosophic real numbers [4] 

       Suppose that 𝑤1, 𝑤2  are two neutrosophic numbers, where: 

𝑤1 = 𝑎1 + 𝑏1𝐼  , 𝑤2 = 𝑎2 + 𝑏2𝐼 

To find  (𝑎1 + 𝑏1𝐼) ÷ (𝑎2 + 𝑏2𝐼), we can write: 

𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
≡ 𝑥 + 𝑦𝐼   

where 𝑥 and 𝑦 are real unknowns. 

𝑎1 + 𝑏1𝐼 ≡ (𝑎2 + 𝑏2𝐼)(𝑥 + 𝑦𝐼) 

 

𝑎1 + 𝑏1𝐼 ≡ 𝑎2𝑥 + (𝑏2𝑥 + 𝑎2𝑦 + 𝑏2𝑦)𝐼 

by identifying the coefficients, we get: 

𝑎1 = 𝑎2𝑥 

 

𝑏1 = 𝑏2𝑥 + (𝑎2 + 𝑏2)𝑦 

We obtain unique one solution only, provided that: 

              |
𝑎2 0
𝑏2 𝑎2 + 𝑏2

| ≠ 0   ⇒   𝑎2(𝑎2 + 𝑏2) ≠ 0 

 

 Hence:   𝑎2 ≠ 0    𝑎𝑛𝑑  𝑎2 ≠ −𝑏2  are the conditions for the division of two 

 neutrosophic real numbers to exist. 

Then:    

𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
=

𝑎1

𝑎2

+
𝑎2𝑏1 − 𝑎1𝑏2

𝑎2(𝑎2 + 𝑏2)
. 𝐼 
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2.3. Root index  𝒏 ≥ 𝟐 of a neutrosophic real number [4] 

   1) Case:  𝑛 = 2 

 

Let  𝑤 = 𝑎 + bI  be a neutrosophic real number, then:  

 

√𝑎 + bI = 𝑥 + 𝑦. 𝐼 

 

𝑎 + bI ≡ (𝑥 + 𝑦. 𝐼)2 

 𝑎 + 𝑏𝐼 ≡ 𝑥2 + 2𝑥𝑦. 𝐼 + 𝑦2𝐼 

  

by identifying the coefficients, we get: 

               𝑥2 = 𝑎 

 

           𝑦2 + 2𝑥𝑦 = 𝑏 

 

 Hence            𝑥 = ±√𝑎 

 

       𝑦2 ± 2√𝑎𝑦 − 𝑏 = 0 

By solving the second equation in respect to y we find: 

 

𝑦 =
∓2√𝑎 ± √4𝑎 + 4b

2
= ∓√𝑎 ± √𝑎 + b 

Then we fined four solutions of √𝑎 + bI: 

 

 √𝑎 + bI = √𝑎 + (−√𝑎 + √𝑎 + b). 𝐼 

 

Or:                  √𝑎 + bI = √𝑎 − (−√𝑎 + √𝑎 + b). 𝐼 

 

Or:                   √𝑎 + bI = −√𝑎 + (√𝑎 + √𝑎 + b). 𝐼 

 

Or:                   √𝑎 + bI = −√𝑎 + (√𝑎 − √𝑎 + b). 𝐼 

 

particular case:   √𝐼 = ±𝐼 

 

2) Case:  𝑛 > 2 

√𝑎 + bI
𝑛

= 𝑥 + 𝑦. 𝐼 

 

𝑎 + bI ≡ (𝑥 + 𝑦. 𝐼)𝑛 

 

𝑎 + bI ≡ 𝑥𝑛 + (∑ 𝐶𝑛
𝑘 𝑦𝑛−𝑘 𝑥𝑘

𝑛−1

𝑘=0

) . 𝐼 

 

𝑥𝑛 = 𝑎 ⇒            𝑥 = {
√𝑎
𝑛

     ;   𝑛 𝑜𝑑𝑑

± √𝑎
𝑛

       ;   𝑛 𝑒𝑣𝑒𝑛    
 

  

∑ 𝐶𝑛
𝑘 𝑦𝑛−𝑘  𝑎

𝑘
𝑛 = 𝑏

𝑛−1

𝑘=0

 

 
Solve it in respect to 𝑦, we can distinguish two cases:  

When the 𝑥 and 𝑦 solutions are real, we get neutrosophic real solutions, 
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When 𝑥 and 𝑦 solutions are complex, we get neutrosophic complex solutions. 

3. The equations of neutrosophic straight line 

3.1. Neutrosophic point  

   Definition3.1.1:  

Let 𝑥𝐴 = 𝑥𝑎 + 𝑥𝑏𝐼 and 𝑦𝐴 = 𝑦𝑎 + 𝑦𝑏𝐼, where 𝑥𝑎 , 𝑥𝑏 , 𝑦𝑎 , 𝑦𝑏  are real numbers, while 𝐼 = Indeterminacy, 

then 𝐴(𝑥𝐴 , 𝑦𝐴) represent the neutrosophic point. 

 

3.2. General neutrosophic equation of a line 

  Definition3.2.1:  

The general equation of a neutrosophic straight line is given by the following formula: 

 

(𝑎0 + 𝑎1𝐼 )𝑥 + (𝑏0 + 𝑏1𝐼)𝑦 + 𝑐0 + 𝑐1𝐼 = 0 

 

Where 𝑎0, 𝑏0 ≠ 0 and 𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1 are real numbers, while 𝐼 = indeterminacy. 

 

   Definition3.2.2:  

Slope-intercept form of the equation of a neutrosophic straight line is given by the following formula: 

 

𝑦 = (𝑚𝑎 + 𝑚𝑏𝐼)𝑥 + 𝑝𝑎 + 𝑝𝑏𝐼 

 

where 𝑚𝑎, 𝑚𝑏 , 𝑝𝑎, 𝑝𝑏  are real numbers, while 𝐼 =indeterminacy. 

 

  Example3.1.1:  

𝑦 = (3 + 2𝐼)𝑥 + 2 − 4𝐼 

  Definition3.2.3:  

Equation of a neutrosophic straight line passing through two neutrosophic points, 𝐴(𝑥1 + 𝑥2𝐼, 𝑦1 +

𝑦2𝐼) 𝑎𝑛𝑑 𝐵(𝑥1́ + 𝑥2́𝐼, 𝑦1́ + 𝑦2́𝐼), is given by the following formula: 

  
𝑦 − 𝑦1 − 𝑦2𝐼

𝑥 − 𝑥1 − 𝑥2𝐼
=

𝑦1́ + 𝑦2́𝐼 − 𝑦1 − 𝑦2𝐼

𝑥1́ + 𝑥2́𝐼 − 𝑥1 − 𝑥2𝐼
 

 

where 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑥1́, 𝑥2́, 𝑦1́, 𝑦2́ are real numbers (𝑥1́ ≠ 𝑥1 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜), while 𝐼 = indeterminacy. 

 

  Example3.1.2:  

 

Find the equation of a neutrosophic straight line passing through two neutrosophic points:  

𝐴(3 + 2𝐼, 3𝐼) 𝑎𝑛𝑑 𝐵(7 − 3𝐼, 5 + 𝐼) 

 

Solution: 
𝑦 − 3𝐼

𝑥 − 3 − 2𝐼
=

5 + 𝐼 − 3𝐼

7 − 3𝐼 − 3 − 2𝐼
 

 
𝑦 − 3𝐼

𝑥 − 3 − 2𝐼
=

5 − 2𝐼

4 − 5𝐼
 

 
𝑦 − 3𝐼

𝑥 − 3 − 2𝐼
=

5

4
−

17

4
𝐼 

 

𝑦 − 3𝐼 = (𝑥 − 3 − 2𝐼) (
5

4
−

17

4
𝐼) 
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𝑦 − 3𝐼 = (
5

4
−

17

4
𝐼) 𝑥 −

8

4
+

75

4
𝐼 

 

𝑦 = (
5

4
−

17

4
𝐼) 𝑥 −

8

4
+

75

4
𝐼 + 3𝐼 

 

          ⟹                𝑦 = (
5

4
−

17

4
𝐼) 𝑥 −

8

4
+

87

4
𝐼 

 

  Definition3.2.4:  

Let 𝑑1, 𝑎𝑛𝑑 𝑑2 are two straight lines, we say 𝑑1, 𝑎𝑛𝑑 𝑑2 are parallel if their slopes are equal, and we 

say that they are perpendicular if the product of their slopes is −1 . 

 

  Example3.1.3:  

 

𝑑1:   𝑦 = (2 − 3𝐼)𝑥 + 4 + 3𝐼 

 

𝑑2:   𝑦 = (2 − 3𝐼)𝑥 + 5 + 4𝐼 

 
𝑚𝑑1

= 𝑚𝑑2
= 2 − 3𝐼    ⟹  𝑑1 ∕∕ 𝑑2 

 

We can illustrate this by giving different values of 𝐼: 

 

 𝐼 = 0, then: 

𝑑1:   𝑦 = 2𝑥 + 4 

 

𝑑2:   𝑦 = 2𝑥 + 5 

 𝐼 = 5, then: 

 

𝑑1:   𝑦 = −7𝑥 + 13 

 

𝑑2:   𝑦 = −7𝑥 + 17 

 

  Example3.1.4:  

𝑑1:   𝑦 = (3 + 5𝐼)𝑥 − 3 + 𝐼 

 

                          𝑑2:   𝑦 = (
1

−3−5𝐼
) 𝑥 + 7 − 2𝐼 

 

𝑚𝑑1
. 𝑚𝑑2

= (3 + 5𝐼) (
1

−3 − 5𝐼
) = −1    ⟹  𝑑1 ⊥ 𝑑2 

4. The equations of neutrosophic circle  

    Definition4.1:  

The standard equation of a neutrosophic circle: for point 𝑝(𝑥, 𝑦) to lie on a circle with center 𝑐(ℎ +

ℎ1𝐼, 𝑘 + 𝑘1𝐼) and radius 𝑟 + 𝑟1𝐼 > 0, the distance 𝑝𝑐 must be equal to radius 𝑟 + 𝑟1𝐼. Then, using 

the distance formula we get: 

 

𝑝𝑐̅̅ ̅ = √(𝑥 − ℎ − ℎ1𝐼)2 + (𝑦 − 𝑘 − 𝑘1𝐼)2 

 

𝑝𝑐̅̅ ̅ = 𝑟 + 𝑟1𝐼 

 

https://byjus.com/the-distance-formula/


Neutrosophic Sets and Systems, Vol. 53, 2023     336  

 

 

Yaser Ahmad Alhasan, The equations of neutrosophic straight line and neutrosophic circle 

√(𝑥 − ℎ − ℎ1𝐼)2 + (𝑦 − 𝑘 − 𝑘1𝐼)2 = 𝑟 + 𝑟1𝐼 

 

(√(𝑥 − ℎ − ℎ1𝐼)2 + (𝑦 − 𝑘 − 𝑘1𝐼)2)
2

= (𝑟 + 𝑟1𝐼)2 

 
(𝑥 − ℎ − ℎ1𝐼)2 + (𝑦 − 𝑘 − 𝑘1𝐼)2 = (𝑟 + 𝑟1𝐼)2    (1) 

 

    Example4.1:  

(𝑥 − 3 − 2𝐼)2 + (𝑦 + 4 − 3𝐼)2 = 4 − 3𝐼 

 

The center is 𝑐(3 + 2𝐼, −4 + 3𝐼), we can find the radius as the following: 

 

(𝑟 + 𝑟1𝐼)2 = 4 − 3𝐼 

 

𝑟 + 𝑟1𝐼 = √4 − 3𝐼 

 

Let’s find √4 − 3𝐼 

√4 − 3𝐼 = 𝑟 + 𝑟1𝐼 

 

4 − 3𝐼 = 𝑟2 + 2𝑟𝑟1𝐼 + 𝑟1
2𝐼 

 

4 − 3𝐼 = 𝑟2 + (2𝑟𝑟1 + 𝑟1
2)𝐼 

then:  

{
𝑟2 = 4 

2𝑟𝑟1 + 𝑟1
2 = −3

 

 

{
𝑟 = ±2 

𝑟2 + 2𝑟𝑟1 + 3 = 0
 

Find 𝑟1: 

When 𝑟 = 2    ⟹  𝑟1
2 + 2𝑟1 + 3 = 0 

 

(𝑟1 + 3)(𝑟1 + 1) = 0    ⟹ 𝑟1 = −3 , 𝑟1 = −1 

 

(2, −3), (2, −1) 

 

When 𝑟 = −2    ⟹  𝑟1
2 − 4𝑟1 + 3 = 0  

 

(𝑟1 − 3)(𝑟1 − 1) = 0    ⟹ 𝑟1 = 3 , 𝑟1 = 1 

 

(−2,3), (−2,1) 

Hence: 

 

                  𝑟 + 𝑟1𝐼 = 2 − 3𝐼     ; 𝐼 <
2

3
 

 

                          Or        𝑟 + 𝑟1𝐼 = 2 − 𝐼         ; 𝐼 < 2 

 

                          Or        𝑟 + 𝑟1𝐼 = −2 + 3𝐼    ; 𝐼 > 2/3 

 

                          Or        𝑟 + 𝑟1𝐼 = −2 + 𝐼      ; 𝐼 > 2 

 

   Definition4.2:  

Equation of a neutrosophic circle when the centre is origin 𝑂(0,0), it given by formula: 
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𝑥2 + 𝑦2 = (𝑟 + 𝑟1𝐼)2 

 

 
   Example4.2:  

𝑥2 + 𝑦2 = 16 − 15𝐼 

 

The center is 𝑂(0,0), we can find the radius as the following: 

 

(𝑟 + 𝑟1𝐼)2 = 16 − 15𝐼 

 

𝑟 + 𝑟1𝐼 = √16 − 15𝐼 

 

Let’s find √16 − 15𝐼 

√16 − 15𝐼 = 𝑟 + 𝑟1𝐼 

 

16 − 15𝐼 = 𝑟2 + 2𝑟𝑟1𝐼 + 𝑟1
2𝐼 

 

16 − 15𝐼 = 𝑟2 + (2𝑟𝑟1 + 𝑟1
2)𝐼 

then:  

{
𝑟2 = 16

2𝑟𝑟1 + 𝑟1
2 = −15

 

 

{
𝑟 = ±4 

𝑟2 + 2𝑟𝑟1 + 15 = 0
 

Find 𝑟1: 

When 𝑟 = 4   ⟹  𝑟1
2 + 8𝑟1 + 15 = 0 

(𝑟1 + 3)(𝑟1 + 5) = 0    ⟹ 𝑟1 = −3 , 𝑟1 = −5 

 

(4, −3), (4, −5) 

 

When 𝑟 = −4    ⟹  𝑟1
2 − 8𝑟1 + 15 = 0  

 

(𝑟1 − 3)(𝑟1 − 5) = 0    ⟹ 𝑟1 = 3 , 𝑟1 = 5 

 

(−4,3), (−4,5) 

Hence: 

 

                  𝑟 + 𝑟1𝐼 = 4 − 3𝐼     ; 𝐼 <
4

3
 

 

                          Or        𝑟 + 𝑟1𝐼 = 4 − 5𝐼         ; 𝐼 < 4/5 

 

                          Or        𝑟 + 𝑟1𝐼 = −4 + 3𝐼    ; 𝐼 > 4/3 

 

                          Or        𝑟 + 𝑟1𝐼 = −4 + 5𝐼      ; 𝐼 > 4/5 

 

     Definition4.3:  

The general equation of a neutrosophic circle given by formula: 

 

𝑥2 + 𝑦2 + (𝑎 + 𝑎1𝐼)𝑥 + (𝑏 + 𝑏1𝐼)𝑦 + 𝑐 + 𝑐1𝐼 = 0 

 

Adding (𝑎 + 𝑎1𝐼)2 + (𝑏 + 𝑏1𝐼)2 on both sides of the equation gives, we get: 
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   𝑥2 + 𝑦2 + (𝑎 + 𝑎1𝐼)𝑥 + (𝑏 + 𝑏1𝐼)𝑦 + (𝑎 + 𝑎1𝐼)2 + (𝑏 + 𝑏1𝐼)2 = (𝑎 + 𝑎1𝐼)2 + (𝑏 + 𝑏1𝐼)2 − 𝑐 − 𝑐1𝐼 

 

𝑥2 + (𝑎 + 𝑎1𝐼)𝑥 + (𝑎 + 𝑎1𝐼)2 + 𝑦2 + (𝑏 + 𝑏1𝐼)𝑦 + (𝑏 + 𝑏1𝐼)2 = (𝑎 + 𝑎1𝐼)2 + (𝑏 + 𝑏1𝐼)2 − 𝑐 − 𝑐1𝐼 

 

(𝑥 +
𝑎 + 𝑎1𝐼

2
)

2

+ (𝑦 +
𝑏 + 𝑏1𝐼

2
)

2

= (
𝑎 + 𝑎1𝐼

2
)

2

+ (
𝑏 + 𝑏1𝐼

2
)

2

− 𝑐 − 𝑐1𝐼    (2) 

 

Comparing (2) with (1), we find: 

 

ℎ + ℎ1𝐼 = − (
𝑎 + 𝑎1𝐼

2
)  

 

𝑘 + 𝑘1𝐼 = −(
𝑏 + 𝑏1𝐼

2
) 

 

(𝑟 + 𝑟1𝐼)2 = (
𝑎 + 𝑎1𝐼

2
)

2

+ (
𝑏 + 𝑏1𝐼

2
)

2

− 𝑐 − 𝑐1𝐼    

 

⟹         𝑟 + 𝑟1𝐼 = √(
𝑎 + 𝑎1𝐼

2
)

2

+ (
𝑏 + 𝑏1𝐼

2
)

2

− 𝑐 − 𝑐1𝐼       > 0 

 

   Example4.3: 

To find the standard equation, the center and radius of the following neutrosophic circle:   

 

𝑥2 − 6𝑥 + 𝑦2 − 6𝐼𝑦 + 2𝐼 = 0 

 

we follow these steps: 

ℎ + ℎ1𝐼 = − (
𝑎 + 𝑎1𝐼

2
) =

6

2
= 3  

 

𝑘 + 𝑘1𝐼 = − (
𝑏 + 𝑏1𝐼

2
) =

6𝐼

2
= 3𝐼 

 

(𝑟 + 𝑟1𝐼)2 = (
𝑎 + 𝑎1𝐼

2
)

2

+ (
𝑏 + 𝑏1𝐼

2
)

2

− 𝑐 − 𝑐1𝐼    

 

= 9 + 9𝐼 − 2𝐼 = 9 + 7𝐼 

 

hence: 

 

(𝑥 − 3)2 + (𝑦 − 3𝐼)2 = 9 + 7𝐼 

 

The center is 𝑐(3,3𝐼), we can find the radius as the following: 

 

(𝑟 + 𝑟1𝐼)2 = 9 + 7𝐼 

 

𝑟 + 𝑟1𝐼 = √9 + 7𝐼 

 

Let’s find √9 + 7𝐼 

√9 + 7𝐼 = 𝑟 + 𝑟1𝐼 

 

9 + 7𝐼 = 𝑟2 + 2𝑟𝑟1𝐼 + 𝑟1
2𝐼 
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9 + 7𝐼 = 𝑟2 + (2𝑟𝑟1 + 𝑟1
2)𝐼 

then:  

{
𝑟2 = 9

2𝑟𝑟1 + 𝑟1
2 = 7

 

 

{
𝑟 = ±3

𝑟2 + 2𝑟𝑟1 − 7 = 0
 

find 𝑟1: 

when 𝑟 = 3    ⟹  𝑟1
2 + 6𝑟1 − 7 = 0 

 

(𝑟1 + 7)(𝑟1 − 1) = 0    ⟹ 𝑟1 = −7 , 𝑟1 = 1 

 

(3, −7), (3,1) 

 

when 𝑟 = −3    ⟹  𝑟1
2 − 6𝑟1 − 7 = 0  

 

(𝑟1 − 7)(𝑟1 + 1) = 0    ⟹ 𝑟1 = 7 , 𝑟1 = −1 

 

(−3,7), (−3, −1) 

hence: 

                  𝑟 + 𝑟1𝐼 = 3 − 7𝐼     ; 𝐼 <
3

7
 

 

                          Or        𝑟 + 𝑟1𝐼 = 3 + 𝐼         ; 𝐼 > −3 

 

                          Or        𝑟 + 𝑟1𝐼 = −3 + 7𝐼    ; 𝐼 > 3/7 

 

                          Or        𝑟 + 𝑟1𝐼 = −3 − 𝐼      ; 𝐼 < −3 

 

4.1. Polar equation of a neutrosophic circle 

      The polar form of equation of a neutrosophic circle, with a center 𝑆( �́� + 𝑟1́𝐼, 𝜑 + 𝜑1𝐼) and 

radius 𝑅+𝑅1𝐼, using the low of cosine: 

 

(𝑟 + 𝑟1𝐼 ) 2 + (�́� + 𝑟1́𝐼) 2 − 2(𝑟 + 𝑟1𝐼 )(�́� + 𝑟1́𝐼) cos(𝜃 + 𝜃1𝐼 − 𝜑 − 𝜑1𝐼) = ( 𝑅+𝑅1𝐼 )2  

  

 
                                                                      Figure 1 
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Note: 

The polar equation of a neutrosophic circle, with radius 𝑅+𝑅1𝐼 and a center on the polar axis 

running through the pole 𝑂 (origin): 

Since: 

cos(𝜃 + 𝜃1𝐼) =
𝑟 + 𝑟1𝐼

2(𝑅+𝑅1𝐼)
 

then: 

𝑟 + 𝑟1𝐼 = 2(𝑅+𝑅1𝐼) cos(𝜃 + 𝜃1𝐼) 

 

 
                                                               Figure 2 

 

Example4.1.1: 

Convert The polar equation of a neutrosophic circle: 

  

𝑟 + 𝑟1𝐼 = (−4 + 6𝐼) cos(𝜃 + 𝜃1𝐼) 

into cartesian coordinatedes.  

 

Solution: 

𝑟 + 𝑟1𝐼 = (−4 + 6𝐼) cos(𝜃 + 𝜃1𝐼) 

 

(𝑟 + 𝑟1𝐼)2 = (−4 + 6𝐼)(𝑟 + 𝑟1𝐼) cos(𝜃 + 𝜃1𝐼) 

 

by substitute in: 

 

𝑥2 + 𝑦2 = (𝑟 + 𝑟1𝐼)2 

 

we get: 

 

𝑥2 + 𝑦2 = (−4 + 6𝐼)(𝑟 + 𝑟1𝐼) cos(𝜃 + 𝜃1𝐼) 

we know: 

𝑥 = (𝑟 + 𝑟1𝐼) cos(𝜃 + 𝜃1𝐼) 

 

then: 

 

𝑥2 + 𝑦2 = (−4 + 6𝐼)𝑥 

 

𝑥2 − (−4 + 6𝐼)𝑥 + 𝑦2 = 0 

 

ℎ + ℎ1𝐼 = − (
𝑎 + 𝑎1𝐼

2
) =

−4 + 6𝐼

2
= −2 + 3𝐼  



Neutrosophic Sets and Systems, Vol. 53, 2023     341  

 

 

Yaser Ahmad Alhasan, The equations of neutrosophic straight line and neutrosophic circle 

 

𝑘 + 𝑘1𝐼 = − (
𝑏 + 𝑏1𝐼

2
) =

0

2
= 0 + 0𝐼 

 

(𝑟 + 𝑟1𝐼)2 = (
𝑎 + 𝑎1𝐼

2
)

2

+ (
𝑏 + 𝑏1𝐼

2
)

2

− 𝑐 − 𝑐1𝐼    

 

= (−2 + 3𝐼 )2 + 0 + 0𝐼 − (0 + 0𝐼) = 4 − 3𝐼 

 

hence: 

 

(𝑥 + 2 − 3𝐼)2 + 𝑦2 = 4 − 3𝐼 

 

The center is 𝑐(−2 + 3𝐼 ,0 + 0𝐼), we can find the radius as the following: 

 

(𝑟 + 𝑟1𝐼)2 = 4 − 3𝐼 

 

𝑟 + 𝑟1𝐼 = √4 − 3𝐼 

 

let’s find √4 − 3𝐼 

√4 − 3𝐼 = 𝑟 + 𝑟1𝐼 

 

4 − 3𝐼 = 𝑟2 + 2𝑟𝑟1𝐼 + 𝑟1
2𝐼 

 

4 − 3𝐼 = 𝑟2 + (2𝑟𝑟1 + 𝑟1
2)𝐼 

then:  

{
𝑟2 = 4 

2𝑟𝑟1 + 𝑟1
2 = −3

 

 

{
𝑟 = ±2 

𝑟2 + 2𝑟𝑟1 + 3 = 0
 

Find 𝑟1: 

When 𝑟 = 2    ⟹  𝑟1
2 + 2𝑟1 + 3 = 0 

 

(𝑟1 + 3)(𝑟1 + 1) = 0    ⟹ 𝑟1 = −3 , 𝑟1 = −1 

 

(2, −3), (2, −1) 

 

When 𝑟 = −2    ⟹  𝑟1
2 − 4𝑟1 + 3 = 0  

 

(𝑟1 − 3)(𝑟1 − 1) = 0    ⟹ 𝑟1 = 3 , 𝑟1 = 1 

 

(−2,3), (−2,1) 

Hence: 

 

                  𝑟 + 𝑟1𝐼 = 2 − 3𝐼     ; 𝐼 <
2

3
 

 

                          Or        𝑟 + 𝑟1𝐼 = 2 − 𝐼         ; 𝐼 < 2 

 

                          Or        𝑟 + 𝑟1𝐼 = −2 + 3𝐼    ; 𝐼 > 2/3 

   

                          Or        𝑟 + 𝑟1𝐼 = −2 + 𝐼      ; 𝐼 > 2 
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4. Conclusions  

          Geometry is important for many reasons. The world is overflowing with geometric shapes, and 

since geometric shapes surround us from every side, our understanding and appreciation of our 

world will be better if we learn something about geometry. This led us to introduce the concept of 

neutrosophic in geometry and to write this paper. The equations of the circle and the straight line in 

the neutrosophic field are defined.  This paper is considered an introduction to the neutrosophic 

geometry. 
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Abstract  

Medical images are essential in contemporary medicine because they provide practicable 

entropy, which is used to diagnose medical conditions. It is useful to visualize abnormality in 

several parts of the body. Image segmentation in the medical has an important function in 

various applications in diagnosis systems. Researchers have become interested in 

segmentation algorithms as a result of Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI). The Region of Interest (ROI) extracts used in medical applications depend 

heavily on processes including cancer identification, bulk detection, and organ segmentation. 

Due to its capacity to deal with uncertainty and imprecision, Neutrosophic image processing 

(NIP) is a significant domain for uncertainty in medical image processing. Its methods in 

medicine demonstrate their transcendence. In the suggested work, the primary medical 

domains that NIP can create for image segmentation from DICOM pictures are highlighted. 

Due to the way it handles uncertain information, it has been found to be a better method. 

.   
Keywords: Image processing, Neutrosophic image processing, Image segmentation, DICOM images. 

. 
 

1. Introduction  

mailto:broumisaid78@gmail.com


Neutrosophic Sets and Systems, Vol. 53, 2023                                                                                                                                345   

 
D. Nagarajan ,S.Broumi Neutrosophic DICOM Image Processing and its applications 

  
 

Digital imaging is a vital role in medical image analysis in clinical theory therapy [18],[25], and [28]. Medical 

image classification has been thoroughly explained [4],[29]. outlined how crucial the problem of image 

segmentation is to image processing [16]. image segmentation techniques were explained [33]. The use of images 

has attracted the attention of several researchers [10], [11], [46], [41], [48] and [14]. image analysis was reviewed 

[45]. An explanation of an image segmentation pattern [12]. Some novel medical segmentation concepts are 

proposed in [2], [9], [13], and [22]. Explained image segmentation by threshold [39]. Segmentation is handled 

by region [52]. In this investigation, operators defined in the Neutrosophic theory will be applied for digital 

image processing. Neutrosophic is the branch of philosophy that studies everything related to neutralities. Along 

with the membership and non-membership function, it now also provides an indeterminacy membership function 

for the first time, allowing any one of them to exist independently of the others. Contradictions, inconsistencies, 

and ignorance in knowledge or information are modelled by indeterminacy. Explained filters in Neutrosophic 

image processing [42]. Studies on edge detection based on uniforms [18], [24] Using evolutionary algorithms 

and an enhanced Sobel operator, locate edges in photos [26]. Using hysteresis thresholds in thresholding 

techniques to detect edges [33]. There has been some investigation on the effectiveness of the Neutrosophic set 

approach filtering method for image denoising [39]. Grey picture extraction and segmentation using fuzzy logic 

[34]. [50]. ultrasonography breast image segmentation using the Neutrosophic approach. area merge approach 

using Newton-Raphson logic (49). [8] utilising ultrasound pictures for automated identification and 

categorization of breast cancer. [15]. Neutrosophic Sets: A New Approach for Improving Image Retrieval. 

[20],[35]. MRI denoising using the Wiener filtering nonlocal Neutrosophic set technique. [30],[19] innovative 

method for segmenting coloured images using fuzzy c-means and the Neutrosophic. [27] Modified Neutrosophic 

method for segmenting coloured images. [39] a DICOM image extraction type-2 fuzzy. [38] Using Type-2 Fuzzy 

Triangular Norms, find edges in a DICOM image. 

Random noise throughout the process reduces the processing speed and quality of the MRI pictures. Denoising 

plays a crucial function in the earlier stage of picture processing.  In Neutrosophic based noise reduction is MRI 

images converted to Neutrosophic sets. True, indeterminacy, and false in defined in Neutrosophic sets. The 

entropy is measured from indeterminacy. Image segmentation is considered for pattern identification [12].[3]. 

Proposed a new image segmentation in images on Neutrosophic histogram estimation. Neutrosophic set is high 

impact on deducing indeterminacy of uncertainty [6],[5],[7],[36],[44],[47] and [43]. After the development of 

Neutrosophic theory so many researchers concentrated on medical image processing [21],[17].[31] proposed 

breast lesion image segmentation from computed tomography. [32] introduced a contour model image 

segmentation. [1] Neutrosophic based liver tumor segmentation. [23] and [32] propose to introduce image 

processing through the Neutrosophic sets. 

 

2.Methodology 
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Evaluation Metric 

Cardinality for Neutrosophic images 

If the image is being  the  pixel  coordinate A( x, y),  G(x,y) be the gray level pixel of A(x,y).    μA(x) represent  

the membership function of the expert knowledge of the image. IA(x)  is indeterminacy of the expert knowledge 

of the image and FA(x) is the non membership of the expert knowledge of the image. πA(x) is represent as 

hesitation value. If an image of size M x N pixel gray level L between 0 to L-1. 

          𝜋𝐴(𝑥) = 3 − 𝜇𝐴(𝑥) − 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥)   

       𝜇𝐴(𝑔𝑖𝑗), 𝐼𝐴(𝑔𝑖𝑗)  𝑎𝑛𝑑 𝐹𝐴(𝑔𝑖𝑗)  represent as the  (i,j) the pixel of membership, indeterminacy and non 

membership function.  

          𝜇𝐴(𝑔𝑖𝑗) =
𝑔𝑖𝑗−𝑚𝑖𝑛𝑔𝑖𝑗

𝑔𝑖𝑗−𝑚𝑎𝑥𝑔𝑖𝑗
  mingij,maxgij  represent the gray level of images. 

If N is a neutrosophic crisp set. The neutrosophic measure defines as  

𝐸(𝑁) =
1

𝑛
∑

𝑀𝑎𝑥𝑐𝑜𝑢𝑛𝑡(𝐸𝑖 ∩ 𝐸𝑖
𝑐)

𝑀𝑎𝑥𝑐𝑜𝑢𝑛𝑡(𝐸𝑖 ∪ 𝐸𝑖
𝑐)

𝑛

𝑖=1

 

Where n is the cardinal(E), Ei denotes a single element. The cardinality of E is given by  

𝑀𝑎𝑥𝑐𝑜𝑢𝑛𝑡(𝐸) = ∑(𝜇𝐸(𝑥𝑖) +

𝑖=1

𝜋𝐸(𝑥𝑖))(𝐸) + ∑(𝑉𝐸(𝑥𝑖) +

𝑖=1

𝜋𝐸(𝑥𝑖)) 

 DICOM image is mapped in to Neutrosophic space, where the Neutrosophic space image 

NI(x,y)={T(x,y),I(x,y).F(x,y)}.  

Where T(x,y), I(x,y) and F(x,y) are the true ,indeterminate and false respectively on the image N. 

𝑇(𝑥, 𝑦) =
𝑁 (𝑖,𝑗)−𝑁 𝑚𝑖𝑛

�̅� 𝑚𝑎𝑥−𝑁 𝑚𝑖𝑛
                                                                                                                                       (1) 

𝑁 (𝑥, 𝑦) =
1

𝑤 𝑥 𝑤
∑ ∑ 𝑁(𝑖, 𝑗)

𝑏+
𝑤

2

𝑗=𝑏−
𝑤

2

𝑎+
𝑤

2

𝑖=𝑎−
𝑤

2

                                                                                             (2)                                                                                        

𝐼 (𝑥, 𝑦) =
𝛿(𝑥,𝑦)−𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛
                                                                                                                                            (3) 

𝜕(𝑥, 𝑦) = 𝑎𝑏𝑠(𝑁(𝑥, 𝑦) − 𝑁 (𝑥, 𝑦)                                                                                                                    (4) 

𝐹(𝑥, 𝑦) = 1 − 𝑇(𝑥, 𝑦)                                                                                                                                          (5) 
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Accuracy =
𝑁True Positive+𝑁True Negative

𝑁True Positive+𝑁True Negative+𝑁False Positive+𝑁False Negative
                                                                             (6) 

Precision =
𝑁True Positive

𝑁True Positive+𝑁False Positive
                                                                                                                      (7) 

Harmonic mean =
2×𝑁True Positive

2×𝑁True Positive+𝑁False Positive+𝑁False Negative
                                                                                  (8) 

 

True ,Indeterminacy and false entropies in Neutrosophic image are measured from  entropy domain 

𝑁 (𝑥, 𝑦) is the local mean and 𝜕(𝑥, 𝑦) is the absolute value of difference between 𝑁(𝑥, 𝑦) 𝑎𝑛𝑑 𝑁 (𝑥, 𝑦).    If the 

intensity have equal probability with uniformly distributed. Guo et al .,(2009) 

3.Neutrosophic image processing  

 

 

 

 

 

Fig(1) Neutrosophic image processing  

The approved and standard data is called Digital Imaging and Communication in Medicine (DICM) .It 

is impossible to determine whether an edge is visible in a picture because most photographs lack sufficient 

brightness. Before the edge detection technique begins, edges may be improved. Opening and Closing, Maximum 

Erosion, and Minimum Dilation are morphological operations used in image processing (Idempotency). 

 

 

 

 

 

 

4.Architecture of edge detection by Neutrosophic 

Here the proposed design of the process of edge detection is described (Figure 2.) 

Figure 2: Architecture of Edge Detection on DICOM image 

Input image 

Neutrosophic Domain 

neutrozzification of T,I,F 

Denetrozzification of 

image 

output 
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5.Proposed edge detection algorithm 

Step 1: Convert CT scans files to DICOM through filpdim 

Step 2: Image convert to  Gray Scale  

Step 3: Do thresholding and region growing  

Step 4: Convert RGB to green channel complement 

Step 5: Give contrast limited adopting histogram equalization 

Step 6: Use morphological operation 

Step 7: Remove optic disc 

Step 8: Use 2D medium filter and reduce the noise 

Input 

Information 

about 

DICOM 

Image 

DICOM Read 

Flipdim 

Create Axes 

Region 

Props and 

Centroid 

Image 

Thresholding 

Montage Segmentation 

Using 

Neutrosophic 

sets 

Gray scale 

Select image 

output 
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Step 9: Remove background and image adjustment  

Step 10: Do the segmentation using Neutrosophic sets 

Step 11: Detect the edge  

Step 12: End 

6.Programme of  DICOM image processing 

g=imread('image.jpg'); 
g=rgb2gray(g); 
g=double(g); 
w=3; 
for i=3:size(g,1)-2 
for j=3:size(g,2)-2 
s=0; 
for m=i-round(w/2):i+round(w/2) 
for n=j-round(w/2):j+round(w/2) 
s=s+g(m,n); 
end 
end                                                        
g1(i,j)=s/(w*w); 
segma(i,j)=abs(g(i,j)-g1(i,j)); 
end 
end 
g1min=min(min(g1)); 
g1max=max(max(g1)); 
segmamin=min(min(segma)); 
segmamax=max(max(segma)); 
for i=3:size(g,1)-2 
for j=3:size(g,2)-2 
T(i,j)=((g1(i,j)-g1min)./(g1max-g1min)); 
I(i,j)=((segma(i,j)-segmamin)./(segmamax-segmamin)); 
F(i,j)=1-T(i,j); 
end 
end 
figure 
subplot(3,1,1),imshow(T),title('T domain') 
subplot(3,1,2),imshow(I),title('I-domain') 
subplot(3,1,3),imshow(F),title('F-domain') 
 

 

APPLICATION OF IMAGE PROCESSING 

Image  analysis is using MATLAB 2021b. The three-dimensional image in this instance is changed to a two-

dimensional image. The image in Figure 1 was taken from a patient DICOM image as part of our experimental 

data collection. 

For the purpose of the whole image in Figure 3, The data image was produced using computed tomography and 

is coloured in grayscale. The facial bone of a 50-year-old woman is mentioned in the study's description.Figure 
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3 displays a portion of the DICOM data collection. Convolution models for image segmentation can benefit from 

the usage of medical imaging. There are few data sets for medical picture segmentation. 

 

 

Fig :3 DICOM Montage   

 

 

  

Fig :4 Image with Best view and Neutrosophic images 

S Accuracy sensitivity specificity  
Negative 
Rate 

Predictive 
Value score precision 

Harmonic 
mean 

T 0.9668 0.1287 0.9838 0.0162 0.1394 0.1338 0.13944 0.13384321 

I 0.1946 0.9583 0.048 0.952 0.162 0.2771 0.16197 0.27710843 

F 0.3733 0.8333 0.3118 0.6882 0.1393 0.2387 0.13927 0.23866348 

normal 0.987 0.037 0.9945 0.0055 0.0514 0.043 0.05139 0.04304932 
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The optimum filter for extracting the image from DICOM data in the suggested system is found to be the 2D 

median filter. The experiment's classification result shows that the genuine membership image extraction 

accuracy is 97%, the sensitivity is 1%, the specification is 98%, the PPV is 12%, and the 12 harmonic mean of 

precision and sensitivity is 12%. In Table 1, the categorization outputs are displayed. 

Table:1 Measures of the images. 

 

Fig :5 Thresholding Images and Neutrosophic images 

                                             

  Fig :6 Image segmentation and Neutrosophic images 
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Fig. 7 Accuracy Analysis 

Fig 7 shows that true membership is very nearest value from original images. 

 

Fig. 8 Score Analysis 

Fig 8 shows that true membership is very nearest value from original score images. 
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Fig. 9 Harmonic Analysis 

Fig 9 shows that true membership is very nearest value from harmonic value of an  images. 

Conclusion 

In Decision making using DICOM images involve vagueness, incompleteness, uncertainty and indeterminacy 

due to object orientation, staining degree and colors. NIP can achieve a better output in the vagueness of the 

images. NIP using three membership , it is effectively handled indeterminacy and uncertainty. NIP have 

impressive performance in DICOM image segmentation. NIP images transforming into Neutrosophic sets. 

Because of its imaging process, image's noise, inhomogeneity, and contrast, DICOM images play a crucial role 

in the diagnosis and treatment of brain cancers. For segmentation in these situations, neurosophic image 

processing is applied. This procedure seeks to make the image easier to depict as more significant and to 

determine or analyse. A patient's MRI's DICOM picture has undergone image segmentation. It has been noted 

that it requires extremely precise segmentation. Additionally, plithogenic conditions may be added to the process 
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Abstract: When performing the simulation process, we encounter many systems that do not follow 
by their nature the uniform distribution adopted in the process of generating the random numbers 
necessary for the simulation process. Therefore, it was necessary to find a mechanism to convert the 
random numbers that follow the regular distribution over the period [0, 1] to random variables that 
follow the probability distribution that works on the system to be simulated. In classical logic, we 
use many techniques in the transformation process that results in random variables that follow 
irregular probability distributions. In this research, we used the inverse transformation technique, 
which is one of the most widely used techniques, especially for the probability distributions for 
which the inverse function of the cumulative distribution function can found. We applied this 
technique to generate neutrosophic random variables that follow an exponential distribution or a 
neutrosophic exponential distribution. This based on classical or neutrosophic random numbers that 
follow a regular distribution. We distinguished three cases according to the logic that each of the 
random numbers or the exponential distribution follows.  We arrived at neutrosophic random 
variables that, when we use them in systems that operate according to an exponential distribution, 
such as queues and others, will provide us with a high degree of accuracy of results, and the reason 
for this is due to the indeterminacy provided by neutrosophic logic. 

Keywords: Simulation - inverse transformation - uniform distribution - exponential distribution - 

neutrosophic exponential distribution - random numbers - random variables - neutrosophic logic. 

1. Introduction 

The generation of random variables that follow a certain distribution is the basis of the simulation. We can 

generate random events that simulate any real system by finding probability distributions that apply to the 

events and properties of that system, for example: "times between arrivals" in queues are random events that 

often follow an exponential distribution. There are several methods and algorithms for generating random 

variables from a given distribution [1,2,3]. 

To keep pace with the modern studies that emerged after the neutrosophic revolution, the logic laid down by the 

American mathematical philosopher Florentin Smarandache in 1995 [6,8,10,11,12,13,20] came as a 
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generalization of the fuzzy logic and an extension of the theory of fuzzy sets presented by Lotfi Zadeh in 1965 

[7]. As an extension of that logic, A. A. Salama presented the theory of classical neutrosophic sets as a 

generalization of the theory of classical sets and developed, introduced and formulated new concepts in the 

fields of mathematics, statistics, computer science and classical information systems through neutrosophic. 

Logic that studies the origin, nature and field of indeterminacy so that it takes into account every idea with its 

opposite (its negation) and with the spectrum of indeterminacy [4]. In addition, there were several achievements 

of many researchers in the field of neutrosophic [5,9,14,15,16,17,18,19,21,22,23,24,25,26]. It was necessary to 

work on transforming the random numbers that follow a neutrosophic uniform distribution into random 

variables that follow a neutrosophic exponential distribution. In this research, we present a study on the process 

of converting random numbers that follow a regular distribution over the period [0, 1] to random variables that 

follow an exponential distribution, based on the definition of regular and exponential distributions according to 

neutrosophic logic.  

2. Experimental and Theoretical Part:  

In view of the great importance that the exponential distribution has in most fields of science, and in order to 

obtain more accurate results when using it in a field. the researchers defined this distribution according to the 

neutrosophic logic. The logic that enables us to deal with all the cases that we can come across during the study. 

In previous research [28] entitled " Fundamentals of Neutrosophical Simulation for Generating Random 

Numbers Associated with Uniform Probability Distribution" we reached mathematical formulas that help us in 

generating neutrosophic random numbers that follow the uniform distribution on the period [0, 1].  In this 

paper, we have developed a mechanism to obtain the neutrosophic random variables that follow an exponential 

distribution. This based on the random numbers that follow the uniform distribution on the period [0, 1]. This 

done by using the inverse transformation of the cumulative distribution function. The study included all the 

cases that we need during the simulation process for the systems that operate according to the exponential 

distribution. 

Previous studies: [1, 2, 3, 28] 

If R1, R2 ... are a sequence of random numbers then Ri has a probability function defined as: 



 


otherwise0
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 Cumulative distribution function: 
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To generate x1, x2 ... observations of the random variable X. follow the distribution: 

 

We use the sequence of random numbers R1, R2 …., and the cumulative distribution function for the random 

variable X. Then we apply the inverse transformation method. It is the most commonly used, especially for 

probability distributions in which F-1(x) can found. It based on matching: 

F(X) = R  (*) 

If the random variable X follows a classical exponential distribution. 

Then the probability density function is: 



Neutrosophic Sets and Systems, Vol. 53, 2023     360  

 

 

Maissam Jdid, Rafif Alhabib and A. A. Salama The Basics of Neutrosophic Simulation for Converting Random Numbers 

Associated With a Uniform Probability Distribution into Random Variables Follow an Exponential Distribution 












0x0

0xe
)x(f

x

 

The cumulative distribution function: 
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We substitute in the relation (*): 

F(X) = R 

 

By solving the previous equation, it results in: 

 

We call the equation (**): the generator equation for the random variable that follows the exponential 

distribution. Are of the form: 

X = F-1(R) 

Therefore, to obtain a sequence of observations, of the random variable X that follows the exponential 

distribution, we use the relationship )(1 RFX    , and the sequence of random numbers R1, R2.... we write: 

 

 

It can be simplified to the form: 

 

3. Results and Discussion  

 The current study: To generate random variables that follow an exponential distribution according to 

neutrosophic logic, we distinguish the following cases: 

First case: the random numbers follow the neutrosophic uniform distribution on the 

period    1,0  and the exponential distribution in the classical form. 

  To generate random variables that follow the exponential distribution whose probability density function: 

f(x) = e-x  x > 0 

Cumulative Distribution Function: 

F(x) = 1 – e-x  x  0 

Using the sequence of neutrosophic random numbers that follows the uniform distribution on the 

period    1,0  , and which is given as R1 - , R2 - … , we apply the relationship (*): 
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F(x) = R 

In this case, we write: 

F(x) = Ri -   

1 – e-x = Ri -  

e-x = 1 – (Ri - ) 

-x = ln (1 – (Ri - ))  

 





)R(1ln
x i            i = 1, 2… 

Accordingly, to obtain a sequence of observations of the random variable X using the random 

numbers that follow the neutrosophic uniform distribution on the period    1,0 , which 

is given by the formula Ri -  . We substitute, in the following relationship: 

        ; i = 1, 2… 

 

It can be simplified: 

 

           ; i = 1, 2… 

 

The second case: classical random numbers and a neutrosophic exponential 

distribution. 

Let's have a sequence of random numbers R1, R2 … that follows a uniform distribution on the 

period  1,0  , and we want to generate random variables that follow a neutrosophic exponential 

distribution. 

Probability density function of the neutrosophic exponential distribution [4]: 

Nx
NN e)x(f 

         0 < x <  

The cumulative distribution function given by: 

NF(x) = 1 - Nxe   

Using the relation (*): 

NF(x) = R  

1 - Nxe   = R  
Nxe   = 1 – R 

N

)R1ln(
x




            Or:             

N

Rln
x


  

Accordingly, to obtain a sequence of observations of the random variable X, ''which follow the 

neutrosophic exponential distribution''. Using the random numbers that follow the uniform 

distribution on the period  1,0 , we substitute in the relationship: 
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         i = 1, 2… 

The third case: the random numbers follow the neutrosophic uniform distribution and 

the neutrosophic exponential distribution. 

To find the relationship through which we get: random variables that follow the neutrosophic 

exponential distribution starting from the sequence of neutrosophic random numbers that follow the 

regular distribution on the period    1,0 , which are given as follows: 

R1 - , R2 - , …. 

We apply the relationship (*): 

F(x) = R 

1 - Nxe   = R -   

 )R(1ln
1

X
N





  

or in the form: 

N

)Rln(
X




  

Therefore, to obtain a sequence of observations of the random variable X that follows the 

neutrosophic exponential distribution using the random numbers that follow the neutrosophic 

uniform distribution on the period    1,0 , we substitute in the relation: 

N

i

Ni

R
X



 )ln( 
         i = 1, 2… 

4. Application Example: 

Suppose we have a system that operates according to an exponential distribution whose probability 

density function is   0;2 2   xexf x  . We want to conduct a neutrosophic simulation of this 

system. Where the indeterminate  03,0,0 . Here we need to generate neutrosophic random 

numbers. Therefore, we use one of the cases: 

 

First case: The exponential distribution is classical, its probability density function              is 

  0;2 2   xexf x , and neutrosophic random numbers (We get it by one of the methods studied 

in the research [28 ] ). 
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In this example, we generate random numbers that follow the neutrosophic uniform distribution on 

the period    1,0 , That is, we generate random numbers according to one of the known 

methods. Here we will use the "mean-squared" method, by taking the seed 1276R . We get the 

random numbers: 

  0 9 5 1,0,3 3 1 0,0,4 5 0 9,0,6 2 8 1,0 4321  RRRR  

By using the rule that we reached in previous research [28] to convert classical random numbers into 

random numbers that follow the neutrosophic uniform distribution on the period    1,0 . In 

addition, take the given indeterminacy  03,0,0 . We get the neutrosophic random numbers: 

     
   0956,0,0656,0,3310,0,3010,0

4509,0,4209,0,6281,0,5981,0,1276,0,0976,0

43

21





NN

NNN

RR

RRR 
 

Then we apply the following rule  
 



 Nii

Ni

RR
X

lnln



   ;  4,3,2,1,0i  

We get: 

 
 

 
 

 
 

 
 

 
 3621,1,1738,1

2

0956,0,0656,0lnln

6003,0,5528,0
2

3310,0,3010,0lnln

4327,0,3983,0
2

4509,0,4209,0lnln

2570,0,2325,0
2

6281,0,5981,0lnln

16343,1,0294,1
2

1276,0,0976,0lnln

4
4

3
3

2
2

1
1





















N

N

N
N

N
N

N

N

N

N

R
X

R
X

R
X

R
X

R
X 



 

It is sequence of neutrosophic random observations, which follow an exponential distribution. 

The second case: The neutrosophic exponential distribution, its probability density function 

is       0;03,2,2 03,2,2   xexf x . Random numbers are classical. 

To find the required neutrosophic random observations, we will take the random numbers that follow 

the uniform distribution on the period  1,0 : 

0951,0,3310,0

4509,0,6281,0,1276

43

21





RR

RRR
 

Then we apply the rule: 
N

i

Ni

R
X



ln
  ; 4,3,2,1,0i  
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We get: 

 
 

 
 

 
 

 
 

 
 1764,1,1590,1

03,2,2

0951,0lnln

5528,0,5446,0
03,2,2

3310,0lnln

3983,0,5045,1
03,2,2

4509,0lnln

2325,0,2290,0
03,2,2

6281,0lnln

0294,1,01421,1
03,2,2

1276lnln

4

3

2

1











N

i

N

N

i
N

N

i

N

N

i

N

N

i

N

R
X

R
X

R
X

R
X

R
X












 

It is sequence of neutrosophic random observations, which follow the neutrosophic exponential 

distribution. 

The third case: The neutrosophic exponential distribution, its probability density function given by 

the following       0;03,2,2 03,2,2   xexf x  . The neutrosophic random numbers from the 

figure iR . To find neutrosophic random observations. We take the neutrosophic random numbers 

used in the first case and apply the following rule:   

N

Ni

Ni

R
X



ln
    ;     iNi RR      ;  4,3,2,1,0i   

We get: 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 13621,1564,1
03,2,2

0956,0,0656,0lnln

6003,0,54465,0
03,2,2

3310,0,3010,0lnln

4327,0,3924,0
03,2,2

4509,0,4209,0lnln

2570,0,2291,0
03,2,2

6281,0,5981,0lnln

16343,1,01421,1
03,2,2

1276,0,0976,0lnln

4
4

3
3

2
2

1
1









































N

N

N

N

N
N

N

N

N

N

N

N

N

N

N

R
X

R
X

R
X

R
X

R
X














 

It is sequence of neutrosophic random observations, which follow the neutrosophic exponential 

distribution. 

5. Conclusions: 

Through the previous study, we found that, to generate a sequence of neutrosophic random 

observations that follow an exponential distribution, using a sequence of random numbers that follow 

a uniform distribution. We use one of the following cases, according to the case under study: The first 
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case: neutrosophic random numbers, i.e. They follow the neutrosophic uniform distribution on the 

period    1,0 , and the exponential distribution in the classical form. 

The second case: random numbers that follow the uniform distribution on the period  1,0 , and the 

neutrosophic exponential distribution. 

The third case: the neutrosophic random numbers, i.e., they follow the neutrosophic uniform 

distribution on the period    1,0 , and the neutrosophic exponential distribution. 

By using techniques used in classical logic. In this paper, we used the inverse transformation 

technique. In addition, we found that for every random number (neutrosophic or classical) there is a 

random variable that follows the neutrosophic exponential distribution, which enables accurately 

simulate the systems that follow the exponential distribution. That is through the accuracy that 

neutrosophic logic provides us when studying any system according to its hypotheses. 

In the near future, we are looking forward to preparing studies that will enable us to generate 

neutrosophic random variables that follow other probability distributions such as the Weibull 

distribution, the geometric distribution, and others. 
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Abstract: the purpose of this article is to study the neutrosophic limits, where the methods of 

neutrosophic factorization and neutrosophic rationalization were applied, useful theorems have been 

proven for facilitating the calculation of the neutrosophic limits. Also, the definition of a positive 

neutrosophic number was presented, and the necessary condition to find the square root of the 

neutrosophic number, in addition to studying some special limits and neutrosophic trigonometric 

limits. Where detailed examples were given to clarify each case. 

Keywords: the neutrosophic limits; neutrosophic trigonometric limits; indeterminacy; method of 

neutrosophic factorization. 

 

 

1. Introduction 

       As an alternative to the existing logics, Smarandache proposed the neutrosophic logic to 

represent a mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, 

unknown, incompleteness, inconsistency, redundancy, contradiction, where the concept of 

neutrosophy is a new branch of philosophy introduced by Smarandache [3-14]. He presented the 

definition of the standard form of neutrosophic real number [2-4], studying the concept of the 

Neutrosophic probability [3-6], the Neutrosophic statistics [4][7], and professor Smarandache entered 

the concept of preliminary calculus of the differential and integral calculus [1-9]. Madeleine Al- Taha 

presented results on single valued neutrosophic (weak) polygroups [10]. Edalatpanah proposed a 

new direct algorithm to solve the neutrosophic linear programming where the variables and right-

hand side represented with triangular neutrosophic numbers [11]. Chakraborty used pentagonal 

neutrosophic number in networking problem, and Shortest Path Problem [12-13]. Y. Alhasan studied 

the concepts of neutrosophic complex numbers and the general exponential form of a neutrosophic complex 

[8][15]. On the other hand, M. Abdel-Basset presented study in the science of neutrosophic about an approach 

of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic 

number [16]. H. Khalid, F. Smarandache and A. Essa have presented a study on a neutrosophic binomial 

factorial theorem with their Refrains [5]. 

mailto:y.alhasan@psau.edu.sa
mailto:I.abdulah@psau.edu.sa
mailto:y.alhasan@psau.edu.sa
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Paper consists of 5 sections. In 1st section, provides an introduction, in which neutrosophic science 

review has given. In 2nd section, some definitions, examples of neutrosophic real number and new 

theorems in neutrosophic limits are discussed. The 3rd section frames methods of neutrosophic 

factorization, neutrosophic rationalization, and neutrosophic trigonometric limits. The 4th section 

introduces the definition of a positive neutrosophic number, and the necessary condition to find the 

square root of the neutrosophic number, in addition to studying some special limits and neutrosophic 

trigonometric limits. In 5th section, a conclusion to the paper is given. 

2. Preliminaries 

2.1. Neutrosophic real number [4] 

     Suppose that 𝑤 is a neutrosophic real number, then it takes the following standard form: 𝑤 =

𝑎 + 𝑏𝐼 where  a , b are real coefficients, and I represent indeterminacy, such 0. I = 0  and I𝑛 = I, 

for all positive integers 𝑛. 

2.2. Division of neutrosophic real numbers [4] 

    Suppose that 𝑤1, 𝑤2  are two neutrosophic numbers, where: 

𝑤1 = 𝑎1 + 𝑏1𝐼  , 𝑤2 = 𝑎2 + 𝑏2𝐼 

To find  (𝑎1 + 𝑏1𝐼) ÷ (𝑎2 + 𝑏2𝐼), we can write: 

        
𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
≡ 𝑥 + 𝑦𝐼   

where x and y are real unknowns. 

𝑎1 + 𝑏1𝐼 ≡ (𝑎2 + 𝑏2𝐼)(𝑥 + 𝑦𝐼) 

 

𝑎1 + 𝑏1𝐼 ≡ 𝑎2𝑥 + (𝑏2𝑥 + 𝑎2𝑦 + 𝑏2𝑦)𝐼 

by identifying the coefficients, we get 

𝑎1 = 𝑎2𝑥 

 
𝑏1 = 𝑏2𝑥 + (𝑎2 + 𝑏2)𝑦 

We obtain unique one solution only, provided that: 

              |
𝑎2 0
𝑏2 𝑎2 + 𝑏2

| ≠ 0   ⇒   𝑎2(𝑎2 + 𝑏2) ≠ 0 

 

 Hence:   𝑎2 ≠ 0    𝑎𝑛𝑑  𝑎2 ≠ −𝑏2  are the conditions for the division of two neutrosophic real 

numbers to exist. 

Then:    

𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
=

𝑎1

𝑎2

+
𝑎2𝑏1 − 𝑎1𝑏2

𝑎2(𝑎2 + 𝑏2)
. 𝐼 

2.3 New theorems in neutrosophic limits [5] 

Theorem2.3.1 (Binomial Factorial Theorem) 

 

            𝑙𝑖𝑚
𝑥→∞

(𝐼 +
1

𝑥
)

𝑥

 = 𝐼𝑒 

 

where 𝐼 is the literal indeterminacy, 𝑒 =  2.7182828. 

 

Corollary 2.3.1 
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             𝑙𝑖𝑚
𝑥→0

(𝐼 + 𝑥)
1
𝑥  = 𝐼𝑒 

 

 

 

Corollary 2.3.2 

 

            𝑙𝑖𝑚
𝑥→∞

(𝐼 +
𝑘

𝑥
)

𝑥

 = 𝐼𝑒𝑘 

 

where 𝑘 > 0 & 𝑘 ≠ 0 , 𝐼 is the literal indeterminacy. 

 

Corollary 2.3.3 

 

             𝑙𝑖𝑚
𝑥→0

(𝐼 +
𝑥

𝑘
)

1
𝑥

 = √𝐼𝑒
𝑘

 

 

where 𝑘 ≠ 0 & 𝑘 > 0. 

 

Theorem2.3.2 

 

            𝑙𝑖𝑚
𝑥→0

(𝑙𝑛𝑎)[𝐼𝑎𝑥 − 𝐼]

𝑥𝑙𝑛𝑎 + 𝑙𝑛𝐼
=

 𝑙𝑛𝑎

1 + 𝑙𝑛𝐼
 

 

where 𝑎 > 0, 𝑎 ≠ 0. 

 

Corollary 2.3.4 

 

            𝑙𝑖𝑚
𝑥→0

𝐼𝑎𝑘𝑥 − 𝐼

𝑥 +
𝑙𝑛𝐼

𝑙𝑛𝑎𝑘

 =
𝑘 𝑙𝑛𝑎

1 + 𝑙𝑛𝐼
 

 

Corollary 2.3.5 

 

            𝑙𝑖𝑚
𝑥→0

𝐼𝑎𝑥 − 𝐼

𝑥 + 𝑙𝑛𝐼
=

1

1 + 𝑙𝑛𝐼
 

 

Corollary 2.3.6 

 

            𝑙𝑖𝑚
𝑥→0

𝐼𝑎𝑘𝑥 − 𝐼

𝑥 +
𝑙𝑛𝐼
𝑘

 =
𝑘

1 + 𝑙𝑛𝐼
 

Theorem2.3.3 

 

        𝑙𝑖𝑚
𝑥→0

𝑙𝑛(𝐼 + 𝑘𝑥)

𝑥
= 𝑘(1 + 𝑙𝑛𝐼) 

Theorem2.3.4 

Prove that, for any two real numbers 𝑎, 𝑏 

 

         𝑙𝑖𝑚
𝑥→0

𝐼𝑎𝑥 − 𝐼

𝐼𝑏𝑥 − 𝐼
 = 1 

 

where 𝑎, 𝑏 > 0 & 𝑎, 𝑏 ≠ 1. 
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3. Method of neutrosophic factorization 

Suppose 
𝑓(𝑥,𝐼)

𝑔(𝑥,𝐼)
 is rational neutrosophic function, if 𝑓(𝑥, 𝐼), 𝑔(𝑥, 𝐼) contains some common factors, 

then we can cancel out the common factors from the numerator and denominator and then put 𝑥 =

𝑎 + 𝑏𝐼 

where  a , b are real coefficients, and I represent indeterminacy. 

 

Example 3.1 

Evaluate:  

𝑙𝑖𝑚
𝑥→2−3𝐼

𝑥 − 2 + 3𝐼

𝑥2 − 4 + 3𝐼
 

 

Solution: 

𝑙𝑖𝑚
𝑥→2−3𝐼

𝑥 − 2 + 3𝐼

𝑥2 − 4 + 3𝐼
=

0

0
 

Method1: 

 

𝑥2 − 4 + 3𝐼 = (𝑥 − 2 + 3𝐼)(𝑥 + 2 − 3𝐼) 

 

 

𝑙𝑖𝑚
𝑥→2−3𝐼

𝑥 − 2 + 3𝐼

𝑥2 − 4 + 3𝐼
= 𝑙𝑖𝑚

𝑥→2−3𝐼

𝑥 − 2 + 3𝐼

(𝑥 − 2 + 3𝐼)(𝑥 + 2 − 3𝐼)
 

 

𝑙𝑖𝑚
𝑥→2−3𝐼

1

𝑥 + 2 − 3𝐼
=

1

4 − 6𝐼
=

1

4
−

3

4
𝐼 

 

Method2: 

by using L'Hôpital's rule 

 

    ⟹      𝑙𝑖𝑚
𝑥→2−3𝐼

𝑥 − 2 + 3𝐼

𝑥2 − 4 + 3𝐼
= 𝑙𝑖𝑚

𝑥→2−3𝐼

1

2𝑥
 

 

=
1

2(2 − 3𝐼)
=

1

4 − 6𝐼
=

1

4
−

3

4
𝐼 

3.1 The method of neutrosophic rationalization  

 

Example 3.1.1 

Evaluate:  

𝑙𝑖𝑚
𝑥→0+0𝐼

√1 − (2 + 4𝐼)𝑥 − √1 + (2 + 4𝐼)𝑥

(1 + 3𝐼)𝑥
 

 

Solution: 

 

𝑙𝑖𝑚
𝑥→0+0𝐼

√1 − (2 + 4𝐼)𝑥 − √1 + (2 + 4𝐼)𝑥

(1 + 3𝐼)𝑥
=

0

0
 

 

Method1: 

 

    ⟹      𝑙𝑖𝑚
𝑥→0+0𝐼

√1 − (2 + 4𝐼)𝑥 − √1 + (2 + 4𝐼)𝑥

(1 + 3𝐼)𝑥
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= 𝑙𝑖𝑚
𝑥→0+0𝐼

(√1 − (2 + 4𝐼)𝑥 − √1 + (2 + 4𝐼)𝑥) (√1 − (2 + 4𝐼)𝑥 + √1 + (2 + 4𝐼)𝑥)

(1 + 3𝐼)𝑥 (√1 − (2 + 4𝐼)𝑥 + √1 + (2 + 4𝐼)𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼

1 − (2 + 4𝐼)𝑥 − (1 + (2 + 4𝐼)𝑥)

(1 + 3𝐼)𝑥 (√1 − (2 + 4𝐼)𝑥 + √1 + (2 + 4𝐼)𝑥)
 

 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼

−(4 + 8𝐼)𝑥

(1 + 3𝐼)𝑥 (√1 − (2 + 4𝐼)𝑥 + √1 + (2 + 4𝐼)𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼

−4 − 8𝐼

(1 + 3𝐼) (√1 − (2 + 4𝐼)𝑥 + √1 + (2 + 4𝐼)𝑥)
 

 

=
−2 − 4𝐼

1 + 3𝐼
= −2 +

1

2
𝐼 

 

Method2: 

by using L'Hôpital's rule 

 

    ⟹      𝑙𝑖𝑚
𝑥→0+0𝐼

√1 − (2 + 4𝐼)𝑥 − √1 + (2 + 4𝐼)𝑥

(1 + 3𝐼)𝑥
 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼

−(2 + 4𝐼)

2√1 − (2 + 4𝐼)𝑥
−

(2 + 4𝐼)

2√1 + (2 + 4𝐼)𝑥

1 + 3𝐼
 

 

 

=

−(2 + 4𝐼)

2√1 − 0
−

(2 + 4𝐼)

2√1 + 0
1 + 3𝐼

=
−1 − 2𝐼 − 1 − 2𝐼

1 + 3𝐼
 

 

=
−2 − 4𝐼

1 + 3𝐼
= −2 +

1

2
𝐼 

 

Example 3.1.2 

Evaluate:  

𝑙𝑖𝑚
𝑥→5−𝐼

1 − √𝑥 − 4 + 𝐼

𝑥 − 5 + 𝐼
 

 

Solution: 

 

𝑙𝑖𝑚
𝑥→5−𝐼

1 − √𝑥 − 4 + 𝐼

𝑥 − 5 + 𝐼
=

0

0
 

 
Method1: 

    ⟹    𝑙𝑖𝑚
𝑥→5−𝐼

(1 − √𝑥 − 4 + 𝐼)(1 + √𝑥 − 4 + 𝐼)

(𝑥 − 5 + 𝐼)(1 + √𝑥 − 4 + 𝐼)
 

 

= 𝑙𝑖𝑚
𝑥→5−𝐼

1 − (𝑥 − 4 + 𝐼)

(𝑥 − 5 + 𝐼)(1 + √𝑥 − 4 + 𝐼)
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= 𝑙𝑖𝑚
𝑥→5−𝐼

−𝑥 + 5 − 𝐼

(𝑥 − 5 + 𝐼)(1 + √𝑥 − 4 + 𝐼)
  

 

= 𝑙𝑖𝑚
𝑥→5−𝐼

−(𝑥 − 5 + 𝐼)

(𝑥 − 5 + 𝐼)(1 + √𝑥 − 4 + 𝐼)
 

 

= 𝑙𝑖𝑚
𝑥→5−𝐼

−1

1 + √𝑥 − 4 + 𝐼
=

−1

2
 

 

Method2: 

by using L'Hôpital's rule 

 

    ⟹     𝑙𝑖𝑚
𝑥→5−𝐼

1 − √𝑥 − 4 + 𝐼

𝑥 − 5 + 𝐼
 

 

                         = 𝑙𝑖𝑚
𝑥→5−𝐼

−1

2√𝑥 − 4 + 𝐼
1

= 𝑙𝑖𝑚
𝑥→5−𝐼

−1

2√𝑥 − 4 + 𝐼
=

−1

2
 

 

 

Example 3.1.3 

 

Evaluate:  

𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

√𝑎 + 𝑏𝐼 + 2𝑥 − √3𝑥

 √3𝑎 + 3𝑏𝐼 + 𝑥 − 2√𝑥
 

 

Solution: 

 

𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

√𝑎 + 𝑏𝐼 + 2𝑥 − √3𝑥

 √3𝑎 + 3𝑏𝐼 + 𝑥 − 2√𝑥
=

0

0
 

 

  ⟹      𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

√𝑎 + 𝑏𝐼 + 2𝑥 − √3𝑥

 √3𝑎 + 3𝑏𝐼 + 𝑥 − 2√𝑥
 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

(√𝑎 + 𝑏𝐼 + 2𝑥 − √3𝑥)(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)

(√3𝑎 + 3𝑏𝐼 + 𝑥 − 2√𝑥)(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

𝑎 + 𝑏𝐼 + 2𝑥 − 3𝑥

(√3𝑎 + 3𝑏𝐼 + 𝑥 − 2√𝑥)(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

𝑎 + 𝑏𝐼 − 𝑥

(√3𝑎 + 3𝑏𝐼 + 𝑥 − 2√𝑥)(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)
=

0

0
 

 

  ⟹      𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

𝑎 + 𝑏𝐼 − 𝑥

(√3𝑎 + 3𝑏𝐼 + 𝑥 − 2√𝑥)(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)
 
√3𝑎 + 3𝑏𝐼 + 𝑥 + 2√𝑥

√3𝑎 + 3𝑏𝐼 + 𝑥 + 2√𝑥
     

 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

(𝑎 + 𝑏𝐼 − 𝑥)(√3𝑎 + 3𝑏𝐼 + 𝑥 + 2√𝑥)

(3𝑎 + 3𝑏𝐼 + 𝑥 − 4𝑥)(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)
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= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

(𝑎 + 𝑏𝐼 − 𝑥)(√3𝑎 + 3𝑏𝐼 + 𝑥 + 2√𝑥)

3(𝑎 + 𝑏𝐼 − 𝑥)(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼

√3𝑎 + 3𝑏𝐼 + 𝑥 + 2√𝑥

3(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)
=

√3𝑎 + 3𝑏𝐼 + 𝑎 + 𝑏𝐼 + 2√𝑎 + 𝑏𝐼

3(√𝑎 + 𝑏𝐼 + 2(𝑎 + 𝑏𝐼) + √3(𝑎 + 𝑏𝐼))
 

 

=
√4(𝑎 + 𝑏𝐼) + 2√𝑎 + 𝑏𝐼

3(√3(𝑎 + 𝑏𝐼) + √3(𝑎 + 𝑏𝐼))
=

4√𝑎 + 𝑏𝐼

6√3(𝑎 + 𝑏𝐼)
 

 

=
2√𝑎 + 𝑏𝐼

3√3√𝑎 + 𝑏𝐼
=

2

3√3
 

3.2 Neutrosophic trigonometric limits 

1) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑠𝑖𝑛 (𝑎 + 𝑏𝐼) 𝑥 = 0 

 
2) 𝑙𝑖𝑚

𝑥→0+0𝐼
𝑐𝑜𝑠(𝑎 + 𝑏𝐼) 𝑥 = 0 

 

3) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑠𝑖𝑛(𝑎 + 𝑏𝐼)𝑥

𝑥
= 𝑎 + 𝑏𝐼 

 

Proof (3): 

 

Put (𝑎 + 𝑏𝐼)𝑥 = 𝑦       ⟹   𝑥 =
1

𝑎+𝑏𝐼
𝑦 

 

When 𝑥 ⟶ 0 + 0𝐼   then: 𝑦 ⟶ 0 + 0𝐼    

 

⟹    𝑙𝑖𝑚
𝑥→0+0𝐼

𝑠𝑖𝑛(𝑎 + 𝑏𝐼) 𝑥

𝑥
= 𝑙𝑖𝑚

𝑦→0+0𝐼

𝑠𝑖𝑛𝑦

1
𝑎 + 𝑏𝐼

𝑦
= (𝑎 + 𝑏𝐼) 𝑙𝑖𝑚

𝑦→0+0𝐼

𝑠𝑖𝑛𝑦

𝑦
= 𝑎 + 𝑏𝐼 

  

4) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑥

𝑠𝑖𝑛(𝑎 + 𝑏𝐼)𝑥
=

1

𝑎 + 𝑏𝐼
=

1

𝑎
−

𝑏

𝑎(𝑎 + 𝑏)
𝐼 

 

Where 𝑎 , 𝑏 are real coefficients, 𝑎2 ≠ 0   𝑎𝑛𝑑 𝑎2 ≠ −𝑏2, 𝐼 represent indeterminacy. 

 

Proof (4): 

 

Put (𝑎 + 𝑏𝐼)𝑥 = 𝑦       ⟹   𝑥 =
1

𝑎+𝑏𝐼
𝑦 

 

When 𝑥 ⟶ 0 + 0𝐼   then: 𝑦 ⟶ 0 + 0𝐼    

 

⟹    𝑙𝑖𝑚
𝑥→0+0𝐼

𝑥

𝑠𝑖𝑛(𝑎 + 𝑏𝐼) 𝑥
= 𝑙𝑖𝑚

𝑦→0+0𝐼

1
𝑎 + 𝑏𝐼

𝑦

𝑠𝑖𝑛𝑦
 

 

                                                =
1

𝑎 + 𝑏𝐼
𝑙𝑖𝑚

𝑦→0+0𝐼

𝑠𝑖𝑛𝑦

𝑦
 

 

                                                =
1

𝑎 + 𝑏𝐼
=

1

𝑎
−

𝑏

𝑎(𝑎 + 𝑏)
𝐼 

 

5) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑡𝑎𝑛(𝑎 + 𝑏𝐼)𝑥

𝑥
= 𝑎 + 𝑏𝐼 
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6) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑥

𝑡𝑎𝑛(𝑎 + 𝑏𝐼)𝑥
=

1

𝑎 + 𝑏𝐼
=

1

𝑎
−

𝑏

𝑎(𝑎 + 𝑏)
𝐼 

 

Where 𝑎 , 𝑏 are real coefficients, 𝑎2 ≠ 0   𝑎𝑛𝑑 𝑎2 ≠ −𝑏2, 𝐼 represent indeterminacy. 
 
We can prove 5 and 6 the same method in 3, 4. 

 

Example 3.2.1 

 

1) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑠𝑖𝑛(5 + 4𝐼)𝑥

(6 − 7𝐼)𝑥
=

5 + 4𝐼

6 − 7𝐼
𝑙𝑖𝑚

𝑥→0+0𝐼

𝑠𝑖𝑛(5 + 4𝐼)𝑥

(5 + 4𝐼)𝑥
=

5 + 4𝐼

6 − 7𝐼
=

5

6
−

59

6
𝐼 

 

2) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑥

𝑠𝑖𝑛(1 + 2𝐼)𝑥
=

1

1 + 2𝐼
𝑙𝑖𝑚

𝑥→0+0𝐼

(1 + 2𝐼)𝑥

𝑠𝑖𝑛(1 + 2𝐼)𝑥
=

1

1 + 2𝐼
= 1 −

2

3
𝐼 

 

3) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑠𝑖𝑛(3 + 4𝐼)𝑥

𝑡𝑎𝑛(2 − 8𝐼)𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼

𝑠𝑖𝑛(3 + 4𝐼)𝑥
𝑥

𝑡𝑎𝑛(2 − 8𝐼)𝑥
𝑥

=
𝑙𝑖𝑚

𝑥→0+0𝐼

𝑠𝑖𝑛(3 + 4𝐼)𝑥
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼

𝑡𝑎𝑛(2 − 8𝐼)𝑥
𝑥

=
3 + 4𝐼

2 − 8𝐼
=

3

2
−

8

3
𝐼 

 

4) 𝑙𝑖𝑚
𝑥→0

1 − 𝑐𝑜𝑠 (10 + 4𝐼)𝑥

𝑥2
= 𝑙𝑖𝑚

𝑥→0+0𝐼

2𝑠𝑖𝑛2(5 + 2𝐼)𝑥

𝑥2
= 2 𝑙𝑖𝑚

𝑥→0+0𝐼
(

𝑠𝑖𝑛(5 + 2𝐼)𝑥

𝑥
)

2

= 2(5 + 2𝐼)2 = 50 + 28𝐼 

 

5) 𝑙𝑖𝑚
𝑥→0+0𝐼

(3 − 5𝐼)𝑥 − 𝑠𝑖𝑛(2 + 1𝐼) 𝑥

(1 − 4𝐼)𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼
(

(3 − 5𝐼)𝑥

(1 − 4𝐼)𝑥
−

𝑠𝑖𝑛(2 + 1𝐼) 𝑥

(1 − 4𝐼)𝑥
) 

 

                                                               = 𝑙𝑖𝑚
𝑥→0+0𝐼

(
3 − 5𝐼

1 − 4𝐼
−

𝑠𝑖𝑛(2 + 1𝐼)𝑥

(1 − 4𝐼)𝑥
) =

3 − 5𝐼

1 − 4𝐼
− (

2 + 1𝐼

1 − 4𝐼
) = 1 +

2

3
𝐼 

 

4. 

Deffinition4.1 

Let the neutrosophic number 𝑎 + 𝑏𝐼, then 𝑎 + 𝑏𝐼 is positive neutrosophic number If it fulfills one of 

the following conditions: 

 

1) 𝑎 > 0 , 𝑏 > 0 𝑎𝑛𝑑  𝐼 > 0 

 

2) 𝑎 > 0 , 𝑏 < 0 𝑎𝑛𝑑  𝐼 < 0 

 

3) 𝑎 < 0  𝑎𝑛𝑑 {
 𝑏 > 0 𝑎𝑛𝑑   𝐼 >

𝑎

𝑏

𝑏 < 0 𝑎𝑛𝑑   𝐼 <
𝑎

𝑏

 

 
Example 4.1 

1) 5 + 3𝐼, 𝐼 > 0 𝑡ℎ𝑒𝑛: 5 + 3𝐼 > 0 

 

2) 1 − 3𝐼, 𝐼 < 0 𝑡ℎ𝑒𝑛: 1 − 3𝐼 > 0 

 

3) −7 + 3𝐼, 𝐼 >
7

3
 𝑡ℎ𝑒𝑛: − 7 + 3𝐼 > 0 

 
4) −4 − 𝐼, 𝐼 < −4 𝑡ℎ𝑒𝑛: − 4 − 𝐼 > 0 

 

Deffinition4.2 



Neutrosophic Sets and Systems, Vol.53, 2023     375  

 

 

Yaser Ahmad Alhasan, Iqbal Ahmed Musa. The neutrosophic limits  

Let the neutrosophic real number 𝑎 + 𝑏𝐼, then 𝑎 + 𝑏𝐼 has a square root if it fulfills the following 

condition: 

 

𝑎 ≥ 0 𝑎𝑛𝑑 𝑎 + 𝑏 ≥ 0 

Where: 

 

√𝑎 + 𝑏𝐼 = √𝑎 + (−√𝑎 + √𝑎 + 𝑏)𝐼 

 

Or:  = √𝑎 − (√𝑎 + √𝑎 + 𝑏)𝐼 

 

Or:  = −√𝑎 + (√𝑎 + √𝑎 + 𝑏)𝐼 

 

Or:  = −√𝑎 + (√𝑎 − √𝑎 + 𝑏)𝐼 

  

For fulfills the real square root condition √𝑎 𝑎𝑛𝑑 √𝑎 + 𝑏, the neutrosophic number 𝑎 + 𝑏𝐼 must 

fulfills the following condition: 

 
        𝑎 ≥ 0 𝑎𝑛𝑑 𝑎 + 𝑏 ≥ 0   
 

Example 4.2 

 

1) 4 − 3𝐼, has a square root 

 

2) 1 − 3𝐼, has not a square root because: 

 

          𝑎 + 𝑏 = 1 − 3 = −2 < 0 

 

3) −4 + 2𝐼, has not a square root because: 

 

  𝑎 = −4 < 0 𝑎𝑛𝑑 𝑎 + 𝑏 = −6 < 0 

4.1 Some Special Limits 

 
1) 𝑙𝑖𝑚

𝑥→0+0𝐼
𝑒(𝑎+𝑏𝐼)𝑥  = 1 

 

2) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑒(𝑎+𝑏𝐼)𝑥 − 1

𝑥
 = 𝑎 + 𝑏𝐼 

 

Proof (2): 

 

Put (𝑎 + 𝑏𝐼)𝑥 = 𝑦       ⟹   𝑥 =
1

𝑎+𝑏𝐼
𝑦 

 

When 𝑥 ⟶ 0 + 0𝐼   then: 𝑦 ⟶ 0 + 0𝐼    

 

⟹    𝑙𝑖𝑚
𝑥→0+0𝐼

𝑒(𝑎+𝑏𝐼)𝑥 − 1

𝑥
= 𝑙𝑖𝑚

𝑦→0+0𝐼

𝑒𝑦 − 1

1
𝑎 + 𝑏𝐼

𝑦
 

 

                   = (𝑎 + 𝑏𝐼) 𝑙𝑖𝑚
𝑦→0+0𝐼

𝑒𝑦 − 1

𝑦
= (𝑎 + 𝑏𝐼)(1) = 𝑎 + 𝑏𝐼 

 

 



Neutrosophic Sets and Systems, Vol.53, 2023     376  

 

 

Yaser Ahmad Alhasan, Iqbal Ahmed Musa. The neutrosophic limits  

3) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(1 + (𝑎 + 𝑏𝐼)𝑥)

𝑥
= 𝑎 + 𝑏𝐼 

 

Proof (3): 

 

Put (𝑎 + 𝑏𝐼)𝑥 = 𝑦       ⟹   𝑥 =
1

𝑎+𝑏𝐼
𝑦 

 

When 𝑥 ⟶ 0 + 0𝐼   then: 𝑦 ⟶ 0 + 0𝐼    

 

⟹    𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(1 + (𝑎 + 𝑏𝐼)𝑥)

𝑥
= 𝑙𝑖𝑚

𝑦→0+0𝐼

𝑙𝑛(1 + 𝑦) 

1
𝑎 + 𝑏𝐼

𝑦
 

 

                           = (𝑎 + 𝑏𝐼) 𝑙𝑖𝑚
𝑦→0+0𝐼

𝑙𝑛(1 + 𝑦)

𝑦
= (𝑎 + 𝑏𝐼)(1) = 𝑎 + 𝑏𝐼 

4) 𝑙𝑖𝑚
𝑥→0+0𝐼

(𝑎+𝑏𝐼)𝑥−1

𝑥
 = 𝑙𝑛(𝑎 + 𝑏𝐼)        ;      𝑎 + 𝑏𝐼 > 0  

 

Proof (4): 

 

Put (𝑎 + 𝑏𝐼)𝑥 − 1 = 𝑦       ⟹   (𝑎 + 𝑏𝐼)𝑥 = 𝑦 + 1 
 

𝑙𝑛(𝑎 + 𝑏𝐼)𝑥 = 𝑙𝑛(1 + 𝑦) 
 

𝑥 𝑙𝑛(𝑎 + 𝑏𝐼) = 𝑙𝑛(1 + 𝑦) 
 

𝑥 =
1

𝑙𝑛(𝑎 + 𝑏𝐼)
𝑙𝑛(1 + 𝑦) 

 

When 𝑥 ⟶ 0 + 0𝐼   then: 𝑦 ⟶ 0 + 0𝐼    

⟹        𝑙𝑖𝑚
𝑥→0+0𝐼

(𝑎 + 𝑏𝐼)𝑥 − 1

𝑥
=  𝑙𝑖𝑚

𝑥→0+0𝐼

𝑦

1
𝑙𝑛(𝑎 + 𝑏𝐼)

𝑙𝑛(1 + 𝑦)
 

 

= 𝑙𝑛(𝑎 + 𝑏𝐼) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑦

𝑙𝑛(1 + 𝑦)
 = 𝑙𝑛(𝑎 + 𝑏𝐼) (1) = 𝑙𝑛(𝑎 + 𝑏𝐼) 

Corollary 4.1: 

 

𝑙𝑖𝑚
𝑥→0+0𝐼

(𝑎 + 𝑏𝐼)𝑥 − 1

(𝑐 + 𝑑𝐼)𝑥 − 1
 =

𝑙𝑛(𝑎 + 𝑏𝐼)

𝑙𝑛(𝑐 + 𝑑𝐼)
    ;      𝑎 + 𝑏𝐼 > 0   𝑎𝑛𝑑    𝑐 + 𝑑𝐼 > 0 

 

Proof: 

 

𝑙𝑖𝑚
𝑥→0+0𝐼

(𝑎 + 𝑏𝐼)𝑥 − 1
𝑥

(𝑐 + 𝑑𝐼)𝑥 − 1
𝑥

 =
𝑙𝑖𝑚

𝑥→0+0𝐼

(𝑎 + 𝑏𝐼)𝑥 − 1
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼

(𝑐 + 𝑑𝐼)𝑥 − 1
𝑥

=
𝑙𝑛(𝑎 + 𝑏𝐼)

𝑙𝑛(𝑐 + 𝑑𝐼)
     

 

Example 4.1.1 

 

1) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑒(4+5𝐼)𝑥  = 1 

 

2) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑒(1+3𝐼)𝑥 − 1

𝑥
 = 1 + 3𝐼 
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3) 𝑙𝑖𝑚
𝑥→0+0𝐼

(5 + 4𝐼)𝑥 − 1

𝑥
 = 𝑙𝑛(5 + 4𝐼)        ;   𝐼 > 0   

 

4) 𝑙𝑖𝑚
𝑥→0+0𝐼

(9 − 4𝐼)𝑥 − 1

𝑒(1+3𝐼)𝑥 − 1
         ;     𝐼 < 0   

 

𝑙𝑖𝑚
𝑥→0+0𝐼

(9 − 4𝐼)𝑥 − 1

𝑒(7+𝐼)𝑥 − 1
 = 𝑙𝑖𝑚

𝑥→0+0𝐼

(9 − 4𝐼)𝑥 − 1
𝑥

𝑒(7+𝐼)𝑥 − 1
𝑥

  

 

             =
𝑙𝑖𝑚

𝑥→0+0𝐼

(9 − 4𝐼)𝑥 − 1
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼

𝑒(7+𝐼)𝑥 − 1
𝑥

=
𝑙𝑛(9 − 4𝐼)

7 + 𝐼
= (

1

7
−

1

56
𝐼) 𝑙𝑛(9 − 4𝐼) 

 

 

5) 𝑙𝑖𝑚
𝑥→0+0𝐼

(5 − 4𝐼)𝑥 − 1

(6 − 2𝐼)𝑥 − 1
 =

𝑙𝑛(5 − 4𝐼)

𝑙𝑛(6 − 2𝐼)
     ;       𝐼 < 0   

 

6) 𝑙𝑖𝑚
𝑥→0+0𝐼

(−7 + 3𝐼)𝑥 − 1

𝑥
 = 𝑙𝑛(−7 + 3𝐼)   ;  −7 + 3𝐼, 𝐼 >

7

3
 

 

7) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(1 + (3 + 3𝐼)𝑥)

𝑥
= 3 + 3𝐼 

 

8) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑒(−4+2𝐼)𝑥 − 1

sin(1 + 2𝐼) 𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼

𝑒(−4+2𝐼)𝑥 − 1
𝑥

sin(1 + 2𝐼) 𝑥
𝑥

 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑒(−4+2𝐼)𝑥 − 1
𝑥

𝑠𝑖𝑛(1 + 2𝐼)𝑥
𝑥

=
𝑙𝑖𝑚

𝑥→0+0𝐼

𝑒(−4+2𝐼)𝑥 − 1
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼

𝑠𝑖𝑛(1 + 2𝐼)𝑥
𝑥

=
−4 + 2𝐼

1 + 2𝐼
= −4 +

10

3
𝐼 

 

10) 𝑙𝑖𝑚
𝑥→0+0𝐼

(3 + 𝐼)𝑥 − (5 + 2𝐼)𝑥

𝑥
         ;   𝐼 > 0   

 

𝑙𝑖𝑚
𝑥→0+0𝐼

(3 + 𝐼)𝑥 − (5 + 2𝐼)𝑥

𝑥
 = 𝑙𝑖𝑚

𝑥→0+0𝐼

(3 + 𝐼)𝑥 − (5 + 2𝐼)𝑥 − 1 + 1

𝑥
  

 

 = 𝑙𝑖𝑚
𝑥→0+0𝐼

(3+𝐼)𝑥−1−((5+2𝐼)𝑥−1) 

𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼

(3+𝐼)𝑥−1 

𝑥
− 𝑙𝑖𝑚

𝑥→0+0𝐼

(5+2𝐼)𝑥−1 

𝑥
 

 

 = 𝑙𝑛(3 + 𝐼) − ln(5 + 2𝐼) = ln (
3+𝐼

5+2𝐼
) = ln (

3

5
−

1

35
𝐼) 

Theorem 4.1: 

 

          𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(𝐼 + (𝑎 + 𝑏𝐼)𝑥)

𝑥
= (𝑎 + 𝑏𝐼) (1 + 𝑙𝑛𝐼) 

 

Proof: 
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         𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(𝐼 + (𝑎 + 𝑏𝐼)𝑥)

𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼

𝑙𝑛(𝐼 + (𝑎 + 𝑏𝐼)𝑥) − 𝑙𝑛𝐼 + 𝑙𝑛𝐼

𝑥
 

 

Let  𝑦 = 𝑙𝑛(𝐼 + (𝑎 + 𝑏𝐼)𝑥) − 𝑙𝑛𝐼   ⟹   𝑦 + 𝑙𝑛𝐼 = 𝑙𝑛(𝐼 + (𝑎 + 𝑏𝐼)𝑥) 

 

𝑒𝑦+𝑙𝑛𝐼 = 𝑒𝑙𝑛(𝐼+(𝑎+𝑏𝐼)𝑥)      ⟹   𝑒𝑦𝑒𝑙𝑛𝐼 = 𝐼 + (𝑎 + 𝑏𝐼)𝑥 

 

𝐼𝑒𝑦 − 𝐼 = (𝑎 + 𝑏𝐼)𝑥   ⟹    𝑥 =
𝐼𝑒𝑦 − 𝐼

𝑎 + 𝑏𝐼
 

𝑦 ⟶ 0 + 0𝐼    𝑎𝑠    𝑥 ⟶ 0 + 0𝐼 

 

  ⟹        𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(𝐼 + (𝑎 + 𝑏𝐼)𝑥)

𝑥
= 𝑙𝑖𝑚

𝑦→0+0𝐼

𝑦 + 𝑙𝑛𝐼

𝐼𝑒𝑦 − 𝐼

𝑎 + 𝑏𝐼

 

 

= 𝑙𝑖𝑚
𝑦→0+0𝐼

𝑎 + 𝑏𝐼

𝐼𝑒𝑦 − 𝐼
𝑦 + 𝑙𝑛𝐼

=
𝑎 + 𝑏𝐼

𝑙𝑖𝑚
𝑦→0+0𝐼

(
𝐼𝑒𝑦 − 𝐼
𝑦 + 𝑙𝑛𝐼

)
 

 

=
𝑎 + 𝑏𝐼

1
1 + 𝑙𝑛𝐼

= (𝑎 + 𝑏𝐼)(1 + 𝑙𝑛𝐼) 

Example 4.3 

1) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(𝐼 + (3 + 5𝐼)𝑥)

𝑥
= (3 + 5𝐼) (1 + 𝑙𝑛𝐼) 

2) 𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(1 + (1 + 2𝐼)𝑥)

𝑙𝑛(𝐼 + (6 + 4𝐼)𝑥)
= 𝑙𝑖𝑚

𝑥→0+0𝐼

𝑙𝑛(1 + (1 + 2𝐼)𝑥)
𝑥

𝑙𝑛(𝐼 + (6 + 4𝐼)𝑥)
𝑥

=
𝑙𝑖𝑚

𝑥→0+0𝐼

𝑙𝑛(1 + (1 + 2𝐼)𝑥)
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(𝐼 + (6 + 4𝐼)𝑥)
𝑥

 

 

                                                     =
1 + 2𝐼

(6 + 4𝐼)(1 + 𝑙𝑛𝐼)
= (

1

6
+

2

15
)

1

1 + 𝑙𝑛𝐼
 

Theorem 4.2: 

 

𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(𝑎 + 𝑏𝐼) [𝐼(𝑎 + 𝑏𝐼)𝑥 − 𝐼]

𝑥 ln(𝑎 + 𝑏𝐼) − 𝑙𝑛𝐼
 =

𝑙𝑛(𝑎 + 𝑏𝐼)

1 + 𝑙𝑛𝐼
    ;   𝑎 + 𝑏𝐼 > 0 

 

Proof: 

 

Let 𝑦 = 𝐼(𝑎 + 𝑏𝐼)𝑥 − 𝐼     ⟹     𝑦 + 𝐼 = 𝐼(𝑎 + 𝑏𝐼)𝑥  

 

     𝑦 ⟶ 0 + 0𝐼  𝑎𝑠  𝑥 ⟶ 0 + 0𝐼 

 

⟹    𝑙𝑛(𝑦 + 𝐼) = 𝑙𝑛𝐼 + 𝑥𝑙𝑛(𝑎 + 𝑏𝐼)    ⟹   𝑥 =
𝑙𝑛(𝑦 + 𝐼) − 𝑙𝑛𝐼

𝑙𝑛(𝑎 + 𝑏𝐼)
 

Then: 
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𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(𝑎 + 𝑏𝐼) [𝐼(𝑎 + 𝑏𝐼)𝑥 − 𝐼]

𝑥 𝑙𝑛(𝑎 + 𝑏𝐼) − 𝑙𝑛𝐼
 = 𝑙𝑖𝑚

𝑥→0+0𝐼

𝐼(𝑎 + 𝑏𝐼)𝑥 − 𝐼

𝑥 −
𝑙𝑛𝐼

𝑙𝑛(𝑎 + 𝑏𝐼)

 = 𝑙𝑖𝑚
𝑦→0+0𝐼

𝑦

ln(𝑦 + 𝐼) − 𝑙𝑛𝐼
𝑙𝑛(𝑎 + 𝑏𝐼)

−
𝑙𝑛𝐼

𝑙𝑛(𝑎 + 𝑏𝐼)

  

 

𝑙𝑖𝑚
𝑦→0+0𝐼

𝑙𝑛(𝑎 + 𝑏𝐼)

𝑙𝑛(𝑦 + 𝐼)
𝑦

 =
𝑙𝑛(𝑎 + 𝑏𝐼)

𝑙𝑖𝑚
𝑦→0+0𝐼

𝑙𝑛(𝑦 + 𝐼)
𝑦

=
𝑙𝑛(𝑎 + 𝑏𝐼)

1 + 𝑙𝑛𝐼
 

 
Theorem 4.3: 

 

𝑙𝑖𝑚
𝑥→0+0𝐼

𝐼(𝑎 + 𝑏𝐼)𝑥 − 𝐼

𝐼(𝑐 + 𝑑𝐼)𝑥 − 𝐼
 = 1   ;      𝑎 + 𝑏𝐼 > 0   𝑎𝑛𝑑    𝑐 + 𝑑𝐼 > 0 

 

Proof: 

 

𝑙𝑖𝑚
𝑥→0+0𝐼

𝐼(𝑎 + 𝑏𝐼)𝑥 − 𝐼

𝐼(𝑐 + 𝑑𝐼)𝑥 − 𝐼
 = 𝑙𝑖𝑚

𝑥→0+0𝐼

𝑙𝑛(𝑎 + 𝑏𝐼)[𝐼(𝑎 + 𝑏𝐼)𝑥 − 𝐼]
𝑥 𝑙𝑛(𝑎 + 𝑏𝐼) − 𝑙𝑛𝐼

𝑙𝑛(𝑐 + 𝑑𝐼)[𝐼(𝑐 + 𝑑𝐼)𝑥 − 𝐼]
𝑥𝑙𝑛(𝑐 + 𝑑𝐼) − 𝑙𝑛𝐼

 .  

𝑥 𝑙𝑛(𝑎 + 𝑏𝐼) − 𝑙𝑛𝐼
𝑙𝑛(𝑎 + 𝑏𝐼)

𝑥𝑙𝑛(𝑐 + 𝑑𝐼) − 𝑙𝑛𝐼
𝑙𝑛(𝑐 + 𝑑𝐼)

 

 

=
𝑙𝑖𝑚

𝑥→0+0𝐼

𝑙𝑛(𝑎 + 𝑏𝐼)[𝐼(𝑎 + 𝑏𝐼)𝑥 − 𝐼]
𝑥 𝑙𝑛(𝑎 + 𝑏𝐼) − 𝑙𝑛𝐼

𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(𝑐 + 𝑑𝐼)[𝐼(𝑐 + 𝑑𝐼)𝑥 − 𝐼]
𝑥𝑙𝑛(𝑐 + 𝑑𝐼) − 𝑙𝑛𝐼

 .
𝑙𝑖𝑚

𝑥→0+0𝐼
(𝑥 𝑙𝑛(𝑎 + 𝑏𝐼) − 𝑙𝑛𝐼)

𝑙𝑖𝑚
𝑥→0+0𝐼

(𝑥𝑙𝑛(𝑐 + 𝑑𝐼) − 𝑙𝑛𝐼)
.
𝑙𝑛(𝑐 + 𝑑𝐼)

𝑙𝑛(𝑎 + 𝑏𝐼)
 

 

=

𝑙𝑛(𝑎 + 𝑏𝐼)
1 + 𝑙𝑛𝐼

𝑙𝑛(𝑐 + 𝑑𝐼)
1 + 𝑙𝑛𝐼

.
𝑙𝑛𝐼

𝑙𝑛𝐼
.
𝑙𝑛(𝑐 + 𝑑𝐼)

𝑙𝑛(𝑎 + 𝑏𝐼)
= 1 

 
Example 4.4 

 

𝑙𝑖𝑚
𝑥→0+0𝐼

𝑙𝑛(5 + 3𝐼) [𝐼(5 + 3𝐼)𝑥 − 𝐼]

𝑥 ln(5 + 3𝐼) − 𝑙𝑛𝐼
 =

𝑙𝑛(5 + 3𝐼)

1 + 𝑙𝑛𝐼
 ;   𝐼 > 0  

 
Corollary 4.2: 

 

𝑙𝑖𝑚
𝑥→∞

[𝐼 +
𝑎

𝑥 − 𝑏
]

𝑥

 = 𝐼𝑎+𝑏𝑒𝑎  ;  𝑎 + 𝑏 > 0  

 

Note: if 𝑎 + 𝑏 = 0   then 𝐼𝑎+𝑏 = 𝐼0  and if 𝑎 + 𝑏 < 0 then 𝐼𝑎+𝑏 =
1

𝐼−(𝑎+𝑏) =
1

𝐼
 that is from forms of 

the indeterminate forms in neutrosophic calculus. 

 

Proof: 

 

𝑦 =
𝑎

𝑥 − 𝑏
    ⟹   𝑥𝑦 − 𝑏𝑦 = 𝑎   ⟹   𝑥 =

𝑎

𝑦
+ 𝑏   

 

𝑦 ⟶ 0  𝑎𝑠   𝑥 ⟶ ∞ 

 

⟹    𝑙𝑖𝑚
𝑥→∞

[𝐼 +
𝑎

𝑥 − 𝑏
]

𝑥

 = 𝑙𝑖𝑚
𝑦→0

[𝐼 + 𝑦]
𝑎
𝑦

+𝑏 
 = (𝑙𝑖𝑚

𝑦→0
[𝐼 + 𝑦]

1
𝑦)

𝑎

. 𝑙𝑖𝑚
𝑦→0

[𝐼 + 𝑦]𝑏  

 

= (𝐼𝑒)𝑎 . 𝐼𝑏 = 𝐼𝑎+𝑏𝑒𝑎 
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Corollary 4.3: 

 

𝑙𝑖𝑚
𝑥→∞

[𝐼 +
𝑎

𝑥 − 𝑏
]

𝑘𝑥

 = 𝐼𝑘(𝑎+𝑏)𝑒𝑘𝑎  ;  𝑎 + 𝑏 > 0  &  𝑘 ≠ 0 

 

Proof: 

 

𝑦 =
𝑎

𝑥 − 𝑏
    ⟹   𝑥𝑦 − 𝑏𝑦 = 𝑎   ⟹   𝑥 =

𝑎

𝑦
+ 𝑏   

 

𝑦 ⟶ 0  𝑎𝑠   𝑥 ⟶ ∞ 

 

⟹    𝑙𝑖𝑚
𝑥→∞

[𝐼 +
𝑎

𝑥 − 𝑏
]

𝑥

 = 𝑙𝑖𝑚
𝑦→0

[𝐼 + 𝑦]
𝑘(

𝑎
𝑦

+𝑏) 
 = (𝑙𝑖𝑚

𝑦→0
[𝐼 + 𝑦]

1
𝑦)

𝑘𝑎

. 𝑙𝑖𝑚
𝑦→0

[𝐼 + 𝑦]𝑘𝑏  

 

= (𝐼𝑒)𝑘𝑎 . 𝐼𝑘𝑏 = 𝐼𝑘(𝑎+𝑏)𝑒𝑘𝑎  
 
Example 4.5 

 

1) 𝑙𝑖𝑚
𝑥→∞

[𝐼 +
5

𝑥 − 4
]

𝑥

  

 

𝑦 =
5

𝑥 − 4
    ⟹   𝑥 =

5

𝑦
+ 4   

 

𝑦 ⟶ 0  𝑎𝑠   𝑥 ⟶ ∞ 

 

⟹    𝑙𝑖𝑚
𝑥→∞

[𝐼 +
5

𝑥 − 4
]

𝑥

 = 𝑙𝑖𝑚
𝑦→0

[𝐼 + 𝑦]
5
𝑦

+4 
 = (𝑙𝑖𝑚

𝑦→0
[𝐼 + 𝑦]

1
𝑦)

5

. 𝑙𝑖𝑚
𝑦→0

[𝐼 + 𝑦]4 = (𝐼𝑒)5. 𝐼4 = 𝐼9𝑒5 = 𝐼𝑒5 

 

2) 𝑙𝑖𝑚
𝑥→∞

[𝐼 +
1

𝑥 − 2
]

𝑥
2

  

 

𝑦 =
1

𝑥 − 2
    ⟹     𝑥 =

1

𝑦
+ 2  

 

𝑦 ⟶ 0  𝑎𝑠   𝑥 ⟶ ∞ 

 

⟹    𝑙𝑖𝑚
𝑥→∞

[𝐼 +
1

𝑥 − 2
]

𝑥
2

 = 𝑙𝑖𝑚
𝑦→0

[𝐼 + 𝑦]
1
2

(
1
𝑦

+2) 
 = (𝑙𝑖𝑚

𝑦→0
[𝐼 + 𝑦]

1
𝑦)

1
2

. 𝑙𝑖𝑚
𝑦→0

[𝐼 + 𝑦]  

 

= (𝐼𝑒)
1
2. 𝐼 = √𝐼𝑒 𝐼 = √𝐼√𝑒 𝐼 = ±𝐼√𝑒  

 
Where: √𝐼 = ±𝐼 

5. Conclusions  

Limits are one of the important principles of calculus. It is concerned with the study of derivation by 

studying the basic concepts of infinitesimal quantities. This led us to study the neutrosophic limits. 

Where the methods of neutrosophic factorization and neutrosophic rationalization were applied, in 

addition to introduce definition of the positive neutrosophic number, and the necessary condition to 

find the square root of the neutrosophic number. Also, studying some special limits and neutrosophic 

trigonometric limits. This paper is considered an introduction of the neutrosophic calculus. 
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Abstract. Theory of picture fuzzy soft set and generalized picture fuzzy soft sets(GPFSS) extended to picture

fuzzy hypersoft sets (PFHSS) and generalized picture fuzzy hypersoft set (GPFHSS) respectively handle the

uncertainties and multi-attribute values in the material during evaluation. The main focus of this research work

is to initiate and learn new operations, along with properties and examples of PFHSS and GPFHSS. Several

basic operations PFHSS are defined and also prove De Morgans laws for PFHSS. Furthermore, we construct

an algorithm using GPFHSS and a new expectation score function for the positive value of the score function

that is useful for ranking different MADM problems. We conclude from this study the proposed outlook used

to manipulate the uncertainties and multi-attribute values decision-making problems.

Keywords: SS, HS, PFS, PFSS, GPFSS, PFHSS, GPFHSS.

—————————————————————————————————————————-

1. Introduction

Many researchers are intrigued by the Molodtsov [1] softset (Ss) for specific applications in

data analysis, cryptography, and distributed storage. Later, the work was expanded upon and

some of its foundational ideas and set-theoretic operations were examined by Maji et al. [4]

and Zou et al [5]. Picture fuzzy set was proposed by Couge [6]. Positive, neutral, and negative

degree are the elements of PFS. Later Yang et al. [7] combine picture fuzzy set and soft set

and introduce the new concept of picture fuzzy soft set. In 2018, the theory of the HS set was

introduced by Smarandache [16]. It is an extension of a soft set. The basic operations of a

HS such as HS containments, Zero HS, aggregation operators along with HS set relation, sub

relation, complement relation, function, matrices, and operations on HS matrices discussed by

Saeed et al. [17]. In 2020 Raman et al. [23] offers the concept of a hybrid HS set structure of

FS, IFS and Neutrosophy sets. The concept of convexity and concavity on a HS set proposed

by Rahman et al. [24] in 2020.
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1.1. Literature Review

In 1965 [2], Zadeh’s fuzzy set theory brought about a significant generalisation in math-

ematics. The membership function aids in the invention of the FS structure. By including

a non-membership function, Atanassov [3] extended a fuzzy set structure to an intuitionistic

fuzzy set in 1986. IFS lessens the challenges associated with dealing with fuzzy, uncertain,

and incomplete information. A soft set theory for solving problems involving uncertainty and

decision-making was developed by Molodtsov [1]. By fusing the ideas of soft sets and fuzzy sets,

Maji et al. [4] produced fuzzy soft Sets. PFS was developed by Coung et al. [6] to deal with

inconsistencies in real-world data. Favorable , neutraland negative degreemake up PFS.Voting

is a PFS example, as is the process of conducting elections. To deal with ambiguity, Smaran-

dache [16] developed a novel method. He made the soft to HS more general by breaking the

function down into several decision functions. In 2019 Jaber et al. presented an algorithm

with the help of extended intersection of GPFS and PFDWA for solving MADM problems.

NO Structure Authors Year Properties

01 Fuzzy Set Zadeh [2] 1965 Each individual in universal set is assign

to membership value between [0,1].

02 Intuitionistic Fuzzy Set Atanassov

[3]

1983 It describes the membership degree and

non-membership degree of an element to

a set.

03 Soft set Molodtsov

[1]

1999 It deals with uncertainy in parametric

manner.

04 Fuzzy Soft set Maji et al

[4]

2001 Fuzzy values are assign to each power set

of universal set.

05 Picture Fuzzy Set Cuong [?] 2013 Handling issue of inconsistent informa-

tion.

06 Picture Fuzzy Soft Set Yang [28] 2015 combination of PFS and SS.

07 Hypersoft sets Smarandache

[16]

2018 Extension of SS.

08 Fuzzy Hypersoft Set Yolcu et al 2021 Each element in power set have a fuzzy

membership degree.

09 Intuitionistic Fuzzy Hy-

persoft Set

Yolcu et al

[36]

2021 Combination of intuitionistic Fuzzy set

and Hypersoft Set.

10 Generalized Picture

Fuzzy Soft set

Jaber et al.

[25]

2019 Hybrid modal of PFSS and PFS in which

extra information is given in form of PFS

in output for accuracy of results in deci-

sion making.
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1.2. Motivation

The concept of IFS invented by Atanassov [40] has membership and nonmembership degrees.

IFS was not playing a role in handling inconsistency-like voting problems. Overcomes such

types of difficulties Cuong [ [6], [?]] defined the notion of PFS and basic operations, opened a

new area of research in decision-making problems. An important hybrid modal that generalized

SS to PFSS discussed in [7] obtained effective outcomes in DM. In [29] generalized picture

distance measure is used to investigate hidden knowledge from a mass of data sets. In 2017

Peng et al. [13] proposed an algorithm using distance measure between PFS.

In 2018 HSS defined by Smarandache [16] which is a generalization of SS by transforming the

mapping into a multi-attribute mapping. Saeed et al. [17] gave an idea of fundamentals of

HS like union, intersection, containment, null, and compliment. The concept of HS points

introduced by Abbas et al. [18]. Yolcu et al. extend the idea of HS to FHS and IFHS. They

also discussed the role of FHS and IFHS in decision-making problems. With the help of IFHS,

an algorithm developed by Zulqernain et al. for the solution of MADM problems [22]. Rehman

et al. [23] proposed the idea of HS with the complex fuzzy set also introduced the theory of

concave and convex HS [24]. The main motivation of using Hypersoft Set (HSS) is that when

the attributes are more than one and further bisected, the circumstance of a soft set cannot

handle such types of cases. So, there is a worth requirement to define a new approach to solve

these. Decision-making methods help experts to choose a suitable alternative by analyzing

the effectiveness of the alternatives. Having motivation from the work in [25], we extend the

existing theory of PFSS to PFHSS to make it adequate for multi-attribute valued function.

All the new proposed operations and properties are equipped with illustrated examples.

In section 2 our center of attention are some basic definitions which are useful in this paper.

Section 3, the concept of a PFHSS with its properties is presented. In Section 4 and 5, we

present definition of GPFHSS and operation of GPFHSS understand by an example. In Section

6 and 7, an algorithm is examined and ranking the companies. Section 9 wind up the paper.

2. Preliminaries

In this section, we define basic definitions of IFS, PFS, SS, HS, PFSS, Score function and

PFDWA.

In 1986 Atanassov [40] include non membership function in fuzzy set obtained IFS. It

overcomes defects of fuzzy sets.

Definition 2.1. [40]

An IFS X on universe of discourse X = {xςκ1, x
ς
κ2, ....., x

ς
κn} is defined as :

L̃ςκ = {〈µ̈L̃ςκ(xςκi), ν̈L̃ςκ(xςκi)〉|x
ς
κi ∈ X}
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where µ̈L̃ςκ(xςκi) : X −→ [0, 1] denotes membership degree of xςκi in L̃ςκ ν̈L̃ςκ(xςκi) : X −→ [0, 1]

is non membership degree of xςκi in L̃ςκ and 0 ≤ µ̈L̃ςκ(xςκi)+ ν̈L̃ςκ(xςκi) ≤ 1 , ∀xςκi ∈ X πL̃ςκ(xςκi) =

1− µ̈L̃ςκ(xςκi)− ν̈L̃ςκ(xςκi) represent hesitancy degree of xςκi in L̃ςκ , ∀xςκi ∈ X , 0 ≤ πL̃ςκ(xςκi) ≤ 1

In 2013 coung [42] introduced PFS to solve inconsistent information in real life. The proce-

dure of voting is a good example to understand the concept of PFS.

Definition 2.2. [?]

A PFS on universe of discourse X = {xςκ1, x
ς
κ2, ....., x

ς
κn} is defined as:

N ς
κ1 = {〈µ̈Nς

κ1
(xςκi), η̈Nς

κ1
(xςκi), ν̈Nς

κ1
(xςκi)〉|x

ς
κi ∈ X}

where µ̈Nς
κ1

(xςκi) : X −→ [0, 1], η̈Nς
κ1

(xςκi) : X −→ [0, 1] and ν̈Nς
κ1

(xςκi) : X −→ [0, 1] represent

degree of membership, neutral and non membership function xςκi in N ς
κ1 respectively. Also

0 ≤ µ̈Nς
κ1

(xςκi) + η̈Nς
κ1

(xςκi) + ν̈Nς
κ1

(xςκi) ≤ 1 , ∀xςκi ∈ X.

ρNς
κ1

(xςκi) = 1− µ̈Nς
κ1

(xςκi)− η̈Nς
κ1

(xςκi)− ν̈Nς
κ1

(xςκi) represent refusal membership degree of xςκi

in N ς
κ1 , ∀xςκi ∈ X The set of all picture fuzzy subsets on universe of discourse N ς

κ1 is denoted

by PFSs(X).

Some basic operations of PFS is discussed as follows

Definition 2.3. [?]

The operations between two PFS N ς
κ1 = {〈µ̈Nς

κ1
(g), η̈Nς

κ1
(g), ν̈Nς

κ1
(g)〉|g ∈ X} and N ς

κ2 =

{〈µ̈Nς
κ2

(g), η̈Nς
κ2

(g), ν̈Nς
κ2

(g)〉|g ∈ X} given as follows:

(i) N ς
κ1 ⊆ N ς

κ2 iff µ̈Nς
κ1

(g) ≤ µ̈Nς
κ2

(g) , η̈Nς
κ1

(g) ≤ η̈Nς
κ2

(g) and ν̈Nς
κ1

(g) ≥ ν̈Nς
κ2

(g)

N ς
κ1 = N ς

κ2 iff N ς
κ1 ⊆ N ς

κ2 and N ς
κ2 ⊆ N ς

κ1

(ii) N ς
κ1∪N ς

κ2 = {(g, (µ̈Nς
κ1

(g)∨ µ̈Nς
κ2

(g))), (g, (η̈Nς
κ1

(g)∧ η̈Nς
κ2

(g))), (g, (ν̈Nς
κ1

(g)∧ ν̈Nς
κ2

(g)))}
(iii) N ς

κ1∩N ς
κ2 = {(g, (µ̈Nς

κ1
(g)∧ µ̈Nς

κ2
(g))), (g, (η̈Nς

κ1
(g)∧ η̈Nς

κ2
(g))), (g, (ν̈Nς

κ1
(g)∨ ν̈Nς

κ2
(g)))}

(iv) let N ς
κ1 = {〈µ̈Nς

κ1
(g), η̈Nς

κ1
(g), ν̈Nς

κ1
(g)〉|g ∈ X} then

N ς
κ
c
1 = {〈ν̈Nς

κ1
(g), η̈Nς

κ1
(g), µ̈Nς

κ1
(g)〉|g ∈ X}

New scientific instrument SS, introduced by Molodtsov [1] in which parametrization helps

to manage uncertainties.

Definition 2.4. [1]

A mapping F : A −→ P (U)

(F ,A) is called a soft set over U , where A is set of parameters.

In 2015 Yang et al [28] proposed PFSS which is combination of PFS and SS.

Definition 2.5. [28]

Let E is parametric set. Consider a function F : A −→ PF (U), where A ⊆ E and PF( U) is

power set of PFS over U then pair (F ,A) is representation of PFSS. .
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In 2018 HSS defined by Smarandache [16] which is generalization of SS by transforming the

mapping into a multi-attribute mapping.

Definition 2.6. [16]

Suppose n distinct attributes are b1, b2, ......, bn, for b ≥ 1, then for each attributes

Qςκ1,Qςκ2, .....,Qςκn, with Qςκr
⋂
Qςκs = φ, i 6= j, and r,s ∈ {1, 2, ...., n} are corresponding

attributes. The pair (Ḧ,Qςκ1 ×Qςκ2 × .....×Qςκn),

where Ḧ : Qςκ1 ×Qςκ2 × .....×Qςκn → P (U) represent Hypersoft Set over U .

Chen and Tan [41] proposed an idea of score function which plays an important role to

handle multicriteria fuzzy decision-making problems.

Definition 2.7. [41]

Let Ḧ(xςκi) = 〈µ(xςκi), η(xςκi), ν(xςκi)〉 be PFSV. Υ and Λ denotes the score and accuracy func-

tions respectively.

Υ = µ(xςκi)− ν(xςκi) Υ ∈ [−1, 1]

Λ = µ(xςκi) + η(xςκi) + ν(xςκi) Λ ∈ [0, 1]

Jana et al [27] introduced Dombi aggregation operators in PFS sense for MADM problems.

Definition 2.8. [27]

let Ḧ(xςκi) = 〈µ(xςκi), η(xςκi), ν(xςκi)〉 be PFSV then the function Pn → P is called PFDWA

such that

PFDWAW(xςκ1, x
ς
κ2, ...x

ς
κn) =

i=n∑
i=1

Wix
ς
κi

= (1− 1

1+{
∑i=n
i=1 Wi(

µ(xςκi)

1−µ(xςκi)
)k}k

, 1

1+{
∑i=n
i=1 Wi(

1−η(xςκi)
η(xςκi)

)k}k
, 1

1+{
∑i=n
i=1 Wi(

1−ν(xςκi)
ν(xςκi)

)k}k
)

For each Wi ≥ 0 and
∑i=n

i=1Wi = 1

3. Picture Fuzzy Hypersoft Sets

In [28] hybrid model of PFS and SS is defined. In this section we introduce PFHSS is an

extension of PFSS which helps for paying crucial role in decision making for multi attribute

characteristic.

Definition 3.1. Picture Fuzzy Hypersoft Sets

Suppose m disjoint attribute-valued sets are pab 1, p
a
b 2, p

a
b 3, ..., p

a
bm then their corresponding m

distinct attributes are P ab 1, P
a
b 2, P

a
b 3, ...., P

a
b m respectively and P ab = P ab 1 × P

a
b 2 × P

a
b 3 × ....×

P ab m. A mapping is given by Ḧ : P ab −→ PF (U)

Ḧ(tab ) = {〈µḦ(tab )(j
a
b i), ηḦ(tab )(j

a
b i), νḦ(tab )(j

a
b i)〉|(j

a
b i) ∈ U} for any tab ∈ P ab
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then pair (Ḧ, P ab ) represent PFHSS.

Example 3.2. Consider (Ḧ,P) be PFHSS over U . Let U = {jab 1, j
a
b 2, j

a
b 3, j

a
b 4} be four schools

any where in World. let E = {a1, a2, a3, a4} where each ai stands for Fee Structure , facilities

, faculties and labs be the attributes values respectively, {A1, A2, A3, A4} be attribute values

against each ai. let A1 = {b11 = low, b12= medium , b13 = expensive }
A2 = {b21 = playgrounds, b22= library, b23 = cafeterias, b24 = bookshop, b25 =

{b21, b22, b23, b24}}
A3 = {b31 = Science and Arts teacher, b32 = Oriental teacher, b33 = Physical education

teacher, b34 = {b31, b32, b33}}
A4 = {b41 = Science labs, b42 = Computer lab, b43 = {b41, b42}}
then

L̃ςκ = A1 ×A2 ×A3 ×A4

There are one hundred eighty outcomes but for simplicity we take only four outcomes.

L̃ςκ =

{
tab 1 = (b11, b21, b31, b41), tab 2 = (b12, b25, b34, b43),

tab 3 = (b12, b22, b31), tab 4 = (b11, b25, b34, b43),

}

(Ḧ, L̃ςκ) =


Ḧ(tab 1) = {〈0.7, 0.1, 0.1〉/jab 1, 〈0.3, 0.2, 0.4〉/j

a
b 2, 〈0.1, 0.5, 0.3〉/j

a
b 3, 〈0.4, 0.1, 0.3〉/j

a
b 4},

Ḧ(tab 2) = {〈0.6, 0.1, 0.2〉/jab 1, 〈0.4, 0.1, 0.3〉/j
a
b 2, 〈0.7, 0.1, 0.1〉/j

a
b 3, 〈0.2, 0.5, 0.2〉/j

a
b 4, },

Ḧ(tab 3) = {〈0.2, 0.3, 0.5〉/jab 1, 〈0.1, 0.1, 0.6〉/j
a
b 2, 〈0.2, 0.1, 0.7〉/j

a
b 3, 〈0.8, 0.1, 0.1〉/j

a
b 4},

Ḧ(tab 4) = {〈0.3, 0.2, 0.4〉/jab 1, 〈0.5, 0.1, 0.3〉/j
a
b 2, 〈0.1, 0.5, 0.3〉/j

a
b 3, 〈0.2, 0.1, 0.7〉/j

a
b 4},


The PFHSS is represented by Tab 1.

Table 1. Picture Fuzzy Hyper soft Set

U tab 1 tab 2 tab 3 tab 4

jab 1 〈0.7, 0.1, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.2, 0.3, 0.5〉 〈0.3, 0.2, 0.4〉
jab 2 〈0.3, 0.2, 0.4〉 〈0.4, 0.1, 0.3〉 〈0.1, 0.1, 0.6〉 〈0.5, 0.1, 0.3〉
jab 3 〈0.1, 0.5, 0.3〉 〈0.7, 0.1, 0.1〉 〈0.2, 0.1, 0.7〉 〈0.1, 0.5, 0.3〉
jab 4 〈0.4, 0.1, 0.3〉 〈0.2, 0.5, 0.2〉 〈0.8, 0.1, 0.1〉 〈0.2, 0.1, 0.7〉

Definition 3.3.

Let (Ḧ1, N
ς
κ1) and (Ḧ2, N

ς
κ2) be two PFHSS then (Ḧ1, N

ς
κ1) ⊆ (Ḧ2, N

ς
κ2) if N ς

κ1 ⊆ N ς
κ2 and

Ḧ1(tab ) ⊆ Ḧ2(tab ) for all tab ∈ N ς
κ1
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Example 3.4.

(Ḧ1, N
ς
κ1) =


Ḧ1(tab 1) = {〈0.3, 0.1, 0.3〉/jab 1, 〈0.4, 0.2, 0.3〉/j

a
b 2, 〈0.1, 0.4, 0.3〉/j

a
b 3, 〈0.2, 0.1, 0.3〉/j

a
b 4},

Ḧ1(tab 3) = {〈0.3, 0.1, 0.4〉/jab 1, 〈0.5, 0.1, 0.3〉/j
a
b 2, 〈0.1, 0.3, 0.5〉/j

a
b 3, 〈0.4, 0.1, 0.3〉/j

a
b 4},

Ḧ1(tab 4) = {〈0.2, 0.3, 0.4〉/jab 1, 〈0.5, 0.1, 0.3〉/j
a
b 2, 〈0.1, 0.2, 0.6〉/j

a
b 3, 〈0.4, 0.1, 0.4〉/j

a
b 4}

 ,

and

(Ḧ2, N
ς
κ2) =


Ḧ2(tab 1) = {〈0.5, 0.2, 0.1〉/jab 1, 〈0.5, 0.3, 0.1〉/j

a
b 2, 〈0.3, 0.5, 0.1〉/j

a
b 3, 〈0.4, 0.3, 0.2〉/j

a
b 4},

Ḧ2(tab 3) = {〈0.5, 0.2, 0.2〉/jab 1, 〈0.6, 0.2, 0.1〉/j
a
b 2, 〈0.3, 0.4, 0.1〉/j

a
b 3, 〈0.5, 0.2, 0.2〉/j

a
b 4},

Ḧ2(tab 4) = {〈0.4, 0.4, 0.1〉/jab 1, 〈0.6, 0.2, 0.1〉/j
a
b 2, 〈0.5, 0.3, 0.2〉/j

a
b 3, 〈0.5, 0.3, 0.1〉/j

a
b 4}

 .

be two PFHSS.

This implies that (Ḧ1, N
ς
κ1) ⊆ (Ḧ2, N

ς
κ2).

Definition 3.5.

The extended union of two PFHSS (Ḧ1, N
ς
κ1) and (Ḧ2, N

ς
κ2) is defined as (Ḧ3, N

ς
κ3) =

(Ḧ1, N
ς
κ1) ∪e (Ḧ2, N

ς
κ2), where N ς

κ3 = N ς
κ1 ∪N ς

κ2 and for all tab ∈ N ς
κ3,

Ḧ3(tab ) =


Ḧ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

Ḧ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

Ḧ1(tab ) ∪ Ḧ2(tab ) if tab ∈ N ς
κ1 ∩N ς

κ2


Example 3.6. Considering example 3.4, we have

(Ḧ3, C) =


Ḧ3(tab 1) = {〈0.5, 0.1, 0.1〉/jab 1, 〈0.5, 0.2, 0.1〉/j

a
b 2, 〈0.3, 0.4, 0.1〉/j

a
b 3, 〈0.4, 0.1, 0.2〉/j

a
b 4},

Ḧ3(tab 3) = {〈0.5, 0.1, 0.2〉/jab 1, 〈0.6, 0.1, 0.1〉/j
a
b 2, 〈0.3, 0.3, 0.1〉/j

a
b 3, 〈0.5, 0.1, 0.2〉/j

a
b 4},

Ḧ3(tab 4) = {〈0.4, 0.3, 0.1〉/jab 1, 〈0.6, 0.1, 0.1〉/j
a
b 2, 〈0.5, 0.2, 0.2〉/j

a
b 3, 〈0.5, 0.1, 0.1〉/j

a
b 4}

 .

Definition 3.7.

The extended intersection of (Ḧ1, A) and (Ḧ2, B) is defined as (Ḧ4, C) = (Ḧ1, A) ∩e (Ḧ2, B),

where C = A ∪B and for all tab ∈ C,

Ḧ4(tab ) =


Ḧ1(tab ), if tab ∈ A \B
Ḧ2(tab ), if tab ∈ B \A
Ḧ1(tab ) ∩ Ḧ2(tab ) if tab ∈ A ∩B


Example 3.8. In example 3.4, we get

(Ḧ4, C) =


Ḧ4(tab 1) = {〈0.3, 0.1, 0.3〉/jab 1, 〈0.4, 0.2, 0.3〉/j

a
b 2, 〈0.1, 0.4, 0.3〉/j

a
b 3, 〈0.2, 0.1, 0.3〉/j

a
b 4},

Ḧ4(tab 3) = {〈0.3, 0.1, 0.4〉/jab 1, 〈0.5, 0.1, 0.3〉/j
a
b 2, 〈0.1, 0.3, 0.5〉/j

a
b 3, 〈0.4, 0.1, 0.3〉/j

a
b 4},

Ḧ4(tab 4) = {〈0.2, 0.3, 0.4〉/jab 1, 〈0.5, 0.1, 0.3〉/j
a
b 2, 〈0.1, 0.2, 0.6〉/j

a
b 3, 〈0.4, 0.1, 0.4〉/j

a
b 4}

 .
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Definition 3.9. The restricted union of (Ḧ1, N
ς
κ1) and (Ḧ2, N

ς
κ2) is defined as (Ḧ5, N

ς
κ3) =

(Ḧ1, N
ς
κ1) ∪r (Ḧ2, N

ς
κ2), where N ς

κ3 = N ς
κ1 ∩N ς

κ2 6= ∅ and for all tab ∈ N ς
κ3,

Example 3.10. From example 3.4, we get

(Ḧ3, C) =


Ḧ3(tab 1) = {〈0.5, 0.1, 0.1〉/jab 1, 〈0.5, 0.2, 0.1〉/j

a
b 2, 〈0.3, 0.4, 0.1〉/j

a
b 3, 〈0.4, 0.1, 0.2〉/j

a
b 4},

Ḧ3(tab 3) = {〈0.5, 0.1, 0.2〉/jab 1, 〈0.6, 0.1, 0.1〉/j
a
b 2, 〈0.3, 0.3, 0.1〉/j

a
b 3, 〈0.5, 0.1, 0.2〉/j

a
b 4},

Ḧ3(tab 4) = {〈0.4, 0.3, 0.1〉/jab 1, 〈0.6, 0.1, 0.1〉/j
a
b 2, 〈0.5, 0.2, 0.2〉/j

a
b 3, 〈0.5, 0.1, 0.1〉/j

a
b 4}

 .

Definition 3.11. The restricted intersection of (Ḧ1, N
ς
κ1) and (Ḧ2, N

ς
κ2) is defined as

(Ḧ5, N
ς
κ3) = (Ḧ1, N

ς
κ1) ∩r (Ḧ2, N

ς
κ2), where N ς

κ3 = N ς
κ1 ∩N ς

κ2 6= ∅ and for all tab ∈ N ς
κ3,

Example 3.12. Example 3.4, implies that

(Ḧ4, C) =


Ḧ4(tab 1) = {〈0.3, 0.1, 0.3〉/jab 1, 〈0.4, 0.2, 0.3〉/j

a
b 2, 〈0.1, 0.4, 0.3〉/j

a
b 3, 〈0.2, 0.1, 0.3〉/j

a
b 4},

Ḧ4(tab 3) = {〈0.3, 0.1, 0.4〉/jab 1, 〈0.5, 0.1, 0.3〉/j
a
b 2, 〈0.1, 0.3, 0.5〉/j

a
b 3, 〈0.4, 0.1, 0.3〉/j

a
b 4},

Ḧ4(tab 4) = {〈0.2, 0.3, 0.4〉/jab 1, 〈0.5, 0.1, 0.3〉/j
a
b 2, 〈0.1, 0.2, 0.6〉/j

a
b 3, 〈0.4, 0.1, 0.4〉/j

a
b 4}

 .

Definition 3.13. If (Ḧ, L̃ςκ) be PFHSS then

(Ḧ, P )
′

= {〈νḦ(tab )(j
a
b i), ηḦ(tab )(j

a
b i), µḦ(tab )(j

a
b i)〉|(j

a
b i) ∈ U} for any tab ∈ L̃ςκ

Example 3.14. If

(Ḧ, N ς
κ1) =

{
Ḧ(tab ) = {〈0.7, 0.1, 0.1〉/jab 1, 〈0.2, 0.5, 0.2〉/j

a
b 3, 〈0.6, 0.1, 0.2〉/j

a
b 6, 〈0.4, 0.1, 0.3〉/j

a
b 8},

}
.

then

(Ḧ, N ς
κ1)
′

=
{
Ḧ(tab ) = {〈0.1, 0.1, 0.7〉/jab 1, 〈0.2, 0.5, 0.2〉/j

a
b 3, 〈0.2, 0.1, 0.6〉/j

a
b 6, 〈0.3, 0.1, 0.4〉/j

a
b 8},

}
.

Remark 3.15.

(i) (Ḧ, L̃ςκ) ∪e (Ḧ, L̃ςκ) = (Ḧ, L̃ςκ) ∪r (Ḧ, L̃ςκ) = (Ḧ, L̃ςκ)

(ii) (Ḧ, L̃ςκ) ∩e (Ḧ, L̃ςκ) = (Ḧ, L̃ςκ) ∩r (Ḧ, L̃ςκ) = (Ḧ, L̃ςκ)

Next, we check validity of the De Morgans laws in PFHSS with respect to extended, union

and intersection.

Theorem 3.16. If (Ḧ1, N
ς
κ1) and (Ḧ2, N

ς
κ2) be two PFHSS over U . Then

(i) ((Ḧ1, N
ς
κ1) ∪e (Ḧ2, N

ς
κ2))

′
= (Ḧ1, N

ς
κ1)
′ ∩e (Ḧ2, N

ς
κ2)
′

(ii) ((Ḧ1, N
ς
κ1) ∩e (Ḧ2, N

ς
κ2))

′
= (Ḧ1, N

ς
κ1)
′ ∪e (Ḧ2, N

ς
κ2)
′

Proof. (i) Since

(Ḧ3, N
ς
κ3) = (Ḧ1, N

ς
κ1) ∪e (Ḧ2, N

ς
κ2), where N ς

κ3 = N ς
κ1 ∪N ς

κ2
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Then (Ḧ3, N
ς
κ3)
′

= ((Ḧ1, N
ς
κ1) ∪e (Ḧ2, N

ς
κ2))

′

Ḧ3(tab ) =


Ḧ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

Ḧ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

Ḧ1(tab ) ∪ Ḧ2(tab ) if tab ∈ N ς
κ1 ∩N ς

κ2


for all tab ∈ N ς

κ3 then

(Ḧ3(tab ))
′

=


(Ḧ1(tab ))

′
, if tab ∈ N ς

κ1 \N ς
κ2

(Ḧ2(tab ))
′
, if tab ∈ N ς

κ2 \N ς
κ1

(Ḧ1(tab ) ∪ Ḧ2(tab ))
′
if tab ∈ N ς

κ1 ∩N ς
κ2


Since De Morgans laws hold in Picture Fuzzy Soft set

(Ḧ3(tab ))
′

=


(Ḧ1(tab ))

′
, if tab ∈ N ς

κ1 \N ς
κ2

(Ḧ2(tab ))
′
, if tab ∈ N ς

κ2 \N ς
κ1

(Ḧ1(tab ))
′ ∩ (Ḧ2(tab ))

′
if tab ∈ N ς

κ1 ∩N ς
κ2

 ∈ (Ḧ3, N
ς
κ3)
′

Suppose (Ḧa, N ς
κ3) = (Ḧ1, N

ς
κ1)
′ ∩e (Ḧ2, N

ς
κ2)
′
, where N ς

κ3 = N ς
κ1 ∪N ς

κ2 for all tab ∈ N ς
κ3

(Ḧa(tab )) =


(Ḧ1(tab ))

′
, if tab ∈ N ς

κ1 \N ς
κ2

(Ḧ2(tab ))
′
, if tab ∈ N ς

κ2 \N ς
κ1

(Ḧ1(tab ))
′ ∩ (Ḧ2(tab ))

′
if tab ∈ N ς

κ1 ∩N ς
κ2

 ∈ (Ḧ3, N
ς
κ3)
′

This Implies

((Ḧ1, N
ς
κ1) ∪e (Ḧ2, N

ς
κ2))

′
= (Ḧ1, N

ς
κ1)
′ ∩e (Ḧ2, N

ς
κ2)
′

(ii) Since

(Ḧ4, N
ς
κ3) = (Ḧ1, N

ς
κ1) ∩e (Ḧ2, N

ς
κ2), where N ς

κ3 = N ς
κ1 ∪N ς

κ2

then ((Ḧ4, N
ς
κ3))

′
= ((Ḧ1, N

ς
κ1) ∩e (Ḧ2, N

ς
κ2))

′
,

Ḧ4(tab ) =


Ḧ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

Ḧ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

Ḧ1(tab ) ∩ Ḧ2(tab ) if tab ∈ N ς
κ1 ∩N ς

κ2


for all tab ∈ N ς

κ3

(Ḧ4(tab ))
′

=


(Ḧ1(tab ))

′
, if tab ∈ N ς

κ1 \N ς
κ2

(Ḧ2(tab ))
′
, if tab ∈ N ς

κ2 \N ς
κ1

(Ḧ1(tab ) ∩ Ḧ2(tab ))
′
if tab ∈ N ς

κ1 ∩N ς
κ2


As we know that

(Ḧ4(tab ))
′

=


(Ḧ1(tab ))

′
, if tab ∈ N ς

κ1 \N ς
κ2

(Ḧ2(tab ))
′
, if tab ∈ N ς

κ2 \N ς
κ1

(Ḧ1(tab ))
′ ∪ (Ḧ2(tab ))

′
if tab ∈ N ς

κ1 ∩N ς
κ2

 ∈ (Ḧ4, N
ς
κ3)
′
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Suppose (Ḧb, N ς
κ3) = (Ḧ1, N

ς
κ1)
′ ∪e (Ḧ2, N

ς
κ2)
′
, where N ς

κ3 = N ς
κ1 ∪N ς

κ2 for all tab ∈ N ς
κ3

(Ḧb(tab )) =


(Ḧ1(tab ))

′
, if tab ∈ N ς

κ1 \N ς
κ2

(Ḧ2(tab ))
′
, if tab ∈ N ς

κ2 \N ς
κ1

(Ḧ1(tab ))
′ ∪ (Ḧ2(tab ))

′
if tab ∈ N ς

κ1 ∩N ς
κ2

 ∈ (Ḧ4, N
ς
κ3)
′

Hence

((Ḧ1, N
ς
κ1) ∩e (Ḧ2, N

ς
κ2))

′
= (Ḧ1, N

ς
κ1)
′ ∪e (Ḧ2, N

ς
κ2)
′

We want to prove De Morgans laws for restricted union and restricted intersection in PFHSS.

Theorem 3.17.

(i) ((Ḧ1, N
ς
κ1) ∪r (Ḧ2, N

ς
κ2))

′
= (Ḧ1, N

ς
κ1)
′ ∩r (Ḧ2, N

ς
κ2)
′

(ii) ((Ḧ1, N
ς
κ1) ∩r (Ḧ2, N

ς
κ2))

′
= (Ḧ1, N

ς
κ1)
′ ∪r (Ḧ2, N

ς
κ2)
′

Proof. (i) Since N ς
κ3 = N ς

κ1 ∩N ς
κ2 6= ∅ and

(Ḧ5, N
ς
κ3) = (Ḧ1, N

ς
κ1) ∪r (Ḧ2, N

ς
κ2) then

(Ḧ5, N
ς
κ3)
′

= ((Ḧ1, N
ς
κ1) ∪r (Ḧ2, N

ς
κ2))

′

for all tab ∈ N ς
κ3 Ḧ5(tab ) = Ḧ1(tab ) ∪r Ḧ2(tab ) since De morgan law hold in PFSS

Therefore (Ḧ5(tab ))
′

= (Ḧ1(tab ))
′ ∩r (Ḧ2(tab ))

′ ∈ (Ḧ5, N
ς
κ3)
′

Suppose (Ḧc, N ς
κ3) = (Ḧ1, N

ς
κ1)
′ ∩r (Ḧ2, N

ς
κ2)
′

Ḧc(tab ) = (Ḧ1(tab ))
′ ∩r (Ḧ2(tab ))

′
for all tab ∈ N ς

κ3 where N ς
κ3 = N ς

κ1 ∪N ς
κ2

hence

((Ḧ1, A) ∪r (Ḧ2, B))
′

= (Ḧ1, A)
′ ∩r (Ḧ2, B)

′

(ii) Straightforward

4. Generalized Picture Fuzzy Hypersoft Sets

In this section, we describe an extension of PFHSS. It is a hybrid modal of PHSS and

PFS known as generalized picture fuzzy hypersoft set (GPFHSS). GPFHSS has a character in

decision-making exertion, when taking an important decision according to the given attributes

it will minimize evaluation, and output will be in the form of PFS.

Definition 4.1. Generalized Picture Fuzzy Hypersoft Sets

Suppose N ς
κ1, N

ς
κ2, N

ς
κ3, ...., N

ς
κm be disjoint attribute-valued sets corresponding to m distinct

attributes pab 1, p
a
b 2, p

a
b 3, ..., p

a
bm respectively and P = N ς

κ1 ×N ς
κ2 ×N ς

κ3 × ....×N ς
κm. A triplet

(Ḧ, P,Φ) is called a generalized picture fuzzy hypersoft set (GPFHSS), where Φ is a mapping

given by Φ : P −→ £(P ). where £(P ) is the set of all picture fuzzy hypersoft subsets of P

and is called parametric picture fuzzy hypersoftset of GPFHSS.
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Example 4.2. Considering example 3.4, (Ḧ, L̃ςκ) is PHSS and

Φ = {〈0.2, 0.1, 0.1〉/tab 1, 〈0.5, 0.2, 0.1〉/t
a
b 2, 〈0.7, 0.2, 0.0〉/t

a
b 3, 〈0.6, 0.2, 0.1〉/t

a
b 4}

where Φ is an extra viewpoint of a arbitrator on the general standard of work done to check

out alternatives on the basis of given multi-attributes.

Table 2. GPFHSS

U tab 1 tab 2 tab 3 tab 4

jab 1 〈0.7, 0.1, 0.1〉 〈0.4, 0.2, 0.1〉 〈0.2, 0.3, 0.5〉 〈0.6, 0.2, 0.1〉
jab 2 〈0.3, 0.2, 0.4〉 〈0.5, 0.2, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.3, 0.2, 0.4〉
jab 3 〈0.5, 0.3, 0.2〉 〈0.7, 0.1, 0.1〉 〈0.2, 0.1, 0.7〉 〈0.6, 0.2, 0.1〉
jab 4 〈0.6, 0.1, 0.2 〈0.5, 0.3, 0.1〉 〈0.4, 0.1, 0.1〉 〈0.5, 0.1, 0.2〉
Φ 〈0.2, 0.1, 0.1〉 〈0.5, 0.2, 0.1〉 〈0.7, 0.2, 0.0〉 〈0.6, 0.2, 0.1〉

Definition 4.3. let ∇1 = (Ḧ1, N
ς
κ1,Φ1) and ∇2 = (Ḧ2, N

ς
κ2,Φ2) be two GPFHSS over U .

Then ∇1 ⊆ ∇2 if

(i) (Ḧ1, N
ς
κ1) ⊆ (Ḧ2, N

ς
κ2)

(ii) 〈µΦ1(tab )(j
a
b i) ≤ 〈µΦ2(tab )(j

a
b i) , 〈ηΦ1(tab )(j

a
b i) ≤ 〈ηΦ2(tab )(j

a
b i) , 〈νΦ1(tab )(j

a
b i) ≥ 〈〈νΦ2(tab )(j

a
b i)

Definition 4.4. Two GPFHSS ∇1 = (Ḧ1, N
ς
κ1,Φ1) and ∇2 = (Ḧ2, N

ς
κ2,Φ2) over U are said

to be equal if Ḧ1 = Ḧ2 , N ς
κ1 = N ς

κ2 and Φ1 = Φ2.

Definition 4.5. let ∇1 = (Ḧ1, N
ς
κ1,Φ1) be GPFHSS then the complement of ∇1 = is denoted

as (∇1)c and defined as

(∇1)c = (Ḧ1, N
ς
κ1,Φ1)c = (Ḧ5, N

ς
κ5,Φ3) where (Ḧ5, N

ς
κ5) is compliment of (Ḧ1, N

ς
κ1) and Φ3

is compliment of Φ1.

5. Basic Operation of Generalized Picture Fuzzy Hypersoft Sets

In this section, we introduce some basic operations for GPFHSS.

Definition 5.1. The extended union of two GPFHSS ∇1 = (Ḧ1, N
ς
κ1,Φ1) and ∇2 =

(Ḧ2, N
ς
κ2,Φ2) over U is denoted by

∇3 = (Ḧ6, N
ς
κ6,Φ4) = (Ḧ1, N

ς
κ1,Φ1) ∪e (Ḧ2, N

ς
κ2,Φ2) and defined as

(i) (Ḧ6, N
ς
κ6) = (Ḧ1, N

ς
κ1) ∪e (Ḧ2, N

ς
κ2) where N ς

κ6 = N ς
κ1 ∪N ς

κ2
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(ii)

µΦ4(tab ) =


µΦ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

µΦ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

max(µΦ1(tab )µΦ2(tab )) if tab ∈ N ς
κ1 ∩N ς

κ2


(iii)

ηΦ4(tab ) =


ηΦ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

ηΦ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

min(ηΦ1(tab )ηΦ2(tab )) if tab ∈ N ς
κ1 ∩N ς

κ2


(iv)

νΦ4(tab ) =


νΦ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

νΦ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

min(νΦ1(tab )νΦ2(tab )) if tab ∈ N ς
κ1 ∩N ς

κ2


Definition 5.2. The extended intersection of two GPFHSS ∇1 = (Ḧ1, N

ς
κ1,Φ1) and ∇2 =

(Ḧ2, N
ς
κ2,Φ2) over U is denoted by

∇3 = (Ḧ6, N
ς
κ6,Φ4) = (Ḧ1, N

ς
κ1,Φ1) ∩e (Ḧ2, N

ς
κ2,Φ2) and defined as

(i) (Ḧ6, N
ς
κ6) = (Ḧ1, N

ς
κ1) ∩e (Ḧ2, N

ς
κ2) where N ς

κ6 = N ς
κ1 ∩N ς

κ2

(ii)

µΦ4(tab ) =


µΦ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

µΦ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

min(µΦ1(tab )µΦ2(tab )) if tab ∈ N ς
κ1 ∩N ς

κ2


(iii)

ηΦ4(tab ) =


ηΦ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

ηΦ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

min(ηΦ1(tab )ηΦ2(tab )) if tab ∈ N ς
κ1 ∩N ς

κ2


(iv)

νΦ4(tab ) =


νΦ1(tab ), if tab ∈ N ς

κ1 \N ς
κ2

νΦ2(tab ), if tab ∈ N ς
κ2 \N ς

κ1

max(νΦ1(tab )νΦ2(tab )) if tab ∈ N ς
κ1 ∩N ς

κ2


Definition 5.3. The restricted union of Two GPFHSS ∇1 = (Ḧ1, N

ς
κ1,Φ1) and ∇2 =

(Ḧ2, N
ς
κ2,Φ2) over U is defined as

∇5 = (Ḧ8, N
ς
κ8,Φ6) = (Ḧ1, N

ς
κ1,Φ1) ∪r (Ḧ2, N

ς
κ2,Φ2) such that

(i) (Ḧ8, N
ς
κ8) = (Ḧ1, N

ς
κ1) ∪r (Ḧ1, N

ς
κ1)

(ii) µΦ8(tab ) = max(µΦ1(tab ), µΦ2(tab )) , ηΦ8(tab ) = min(ηΦ1(tab ), ηΦ2(tab )) and νΦ8(tab ) =

min(νΦ1(tab ), νΦ2(tab ))

Definition 5.4. The restricted intersection of two GPFHSS ∇1 = (Ḧ1, N
ς
κ1,Φ1) and ∇2 =

(Ḧ2, N
ς
κ2,Φ2) over U is defined as

∇6 = (Ḧ9, N
ς
κ9,Φ7) = (Ḧ1, N

ς
κ1,Φ1) ∩r (Ḧ2, N

ς
κ2,Φ2) such that
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(i) (Ḧ9, N
ς
κ9) = (Ḧ1, N

ς
κ1) ∩r (Ḧ1, N

ς
κ1)

(ii) µΦ9(tab ) = min(µΦ1(tab ), µΦ2(tab )) , ηΦ9(tab ) = min(ηΦ1(tab ), ηΦ2(tab )) and νΦ9(tab ) =

max(νΦ1(tab ), νΦ2(tab ))

Example 5.5. Suppose U = {cςκ1, c
ς
κ2, c

ς
κ3, c

ς
κ4} be four hospital. . Let E = {e1, e2, e3, e4}

stand for organ transplant services, medical and surgical specialties and support services

whose corresponding attribute values are {A1, A2, A3} respectively. let A1 = {b11= liver

transplant,b12 = kidney transplant,b13= corneal transplant,b14 = {b11, b12, b13}}
A2 = {b21 = medical and surgical clinics, b22 = emergency services, b23 = diagnostic services,

b24 = {b21, b22, b23}}
A3 = {b31 = Pharmecy }
then

L̃ςκ = A1 ×A2 ×A3

L̃ςκ =

{
tab 1 = (b11, b21, b31, ), tab 2 = (b14, b24, b31),

tab 3 = (b12, b22), tab 4 = (b12, b31),

}

(Ḧ1, L̃
ς
κ) =


Ḧ(tab 1) = {〈0.7, 0.1, 0.1〉/cςκ1, 〈0.3, 0.2, 0.4〉/cςκ2, 〈0.1, 0.5, 0.3〉/cςκ3, 〈0.4, 0.1, 0.3〉/cςκ4},
Ḧ(tab 2) = {〈0.7, 0.1, 0.1〉/cςκ4, 〈0.2, 0.5, 0.2〉/cςκ1, 〈0.6, 0.1, 0.2〉/cςκ2, 〈0.4, 0.1, 0.3〉/cςκ3},
Ḧ(tab 3) = {〈0.2, 0.3, 0.5〉/cςκ1, 〈0.2, 0.1, 0.7〉/cςκ4, 〈0.1, 0.1, 0.6〉/cςκ2, 〈0.8, 0.1, 0.1〉/cςκ3},
Ḧ(tab 4) = {〈0.3, 0.2, 0.4〉/cςκ3, 〈0.5, 0.1, 0.3〉/cςκ2, 〈0.1, 0.5, 0.3〉/cςκ4, 〈0.2, 0.1, 0.7〉/cςκ1},


In addition, Φ1 is the PPFS which is given by

Φ1 = {〈0.5, 0.1, 0.2〉 , 〈0.8, 0.2, 0.0〉 , 〈0.5, 0.2, 0.2〉 , 〈0.9, 0.0, 0.0〉} Tabular representation of

∇1 = (Ḧ1, N
ς
κ1,Φ1) is given in Table

Table 3. ∇1 = (Ḧ1, N
ς
κ1,Φ1)

U tab 1 tab 2 tab 3 tab 4

cςκ1 〈0.7, 0.1, 0.1〉 〈0.2, 0.5, 0.2〉 〈0.2, 0.3, 0.5〉 〈0.2, 0.1, 0.7〉
cςκ2 〈0.3, 0.2, 0.4〉 〈0.6, 0.1, 0.2〉 〈0.1, 0.1, 0.6〉 〈0.5, 0.1, 0.3〉
cςκ3 〈0.1, 0.5, 0.3〉 〈0.4, 0.1, 0.3〉 〈0.8, 0.1, 0.1〉 〈0.3, 0.2, 0.4〉
cςκ4 〈0.4, 0.1, 0.3〉 〈0.7, 0.1, 0.1〉 〈0.2, 0.1, 0.7〉 〈0.1, 0.5, 0.3〉
Φ1 〈0.5, 0.1, 0.2〉 〈0.8, 0.2, 0.0〉 〈0.5, 0.2, 0.2〉 〈0.9, 0.0, 0.0〉

(Ḧ2, L̃
ς
κ) =


Ḧ(tab 1) = {〈0.6, 0.2, 0.1〉/cςκ1, 〈0.3, 0.3, 0.4〉/cςκ2, 〈0.1, 0.2, 0.4〉/cςκ3, 〈0.5, 0.1, 0.3〉/cςκ4},
Ḧ(tab 2) = {〈0.7, 0.0, 0.2〉/cςκ4, 〈0.2, 0.1, 0.3〉/cςκ1, 〈0.8, 0.1, 0.1〉/cςκ2, 〈0.6, 0.1, 0.3〉/cςκ3},
Ḧ(tab 3) = {〈0.5, 0.1, 0.2〉/cςκ1, 〈0.2, 0.1, 0.1〉/cςκ4, 〈0.4, 0.1, 0.1〉/cςκ2, 〈0.9, 0.1, 0.0〉/cςκ3},
Ḧ(tab 4) = {〈0.7, 0.2, 0.1〉/cςκ3, 〈0.6, 0.1, 0.3〉/cςκ2, 〈0.5, 0.3, 0.2〉/cςκ4, 〈0.2, 0.1, 0.6〉/cςκ1},
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In addition, Φ2 is the PPFS which is given by

Φ2 = {〈0.7, 0.1, 0.2〉 , 〈0.5, 0.2, 0.1〉 , 〈0.6, 0.2, 0.2〉 , 〈0.8, 0.1, 0.0〉}Whose tabular representation

is given in Table 4

Table 4. ∇2 = (Ḧ2, N
ς
κ2,Φ2)

U tab 1 tab 2 tab 3 tab 4

cςκ1 〈0.6, 0.2, 0.1〉 〈0.2, 0.1, 0.3〉 〈0.5, 0.1, 0.2〉 〈0.2, 0.1, 0.6〉
cςκ2 〈0.3, 0.3, 0.4〉 〈0.8, 0.1, 0.1〉 〈0.4, 0.1, 0.1〉 〈0.6, 0.1, 0.3〉
cςκ3 〈0.1, 0.2, 0.4〉 〈0.6, 0.1, 0.3〉 〈0.9, 0.1, 0.0〉 〈0.7, 0.2, 0.1〉
cςκ4 〈0.5, 0.1, 0.3〉 〈0.7, 0.0, 0.2〉 〈0.2, 0.1, 0.1〉 〈0.5, 0.3, 0.2〉
Φ2 〈0.7, 0.1, 0.2〉 〈0.5, 0.2, 0.1〉 〈0.6, 0.2, 0.2〉 〈0.8, 0.1, 0.0〉

Table 5. Intersection of GPFHSSs

U tab 1 tab 2 tab 3 tab 4

cςκ1 〈0.7, 0.1, 0.1〉 〈0.2, 0.1, 0.2〉 〈0.5, 0.1, 0.2〉 〈0.2, 0.1, 0.6〉
cςκ2 〈0.3, 0.2, 0.4〉 〈0.8, 0.1, 0.1〉 〈0.4, 0.1, 0.1〉 〈0.6, 0.1, 0.3〉
cςκ3 〈0.1, 0.2, 0.3〉 〈0.6, 0.1, 0.3〉 〈0.9, 0.1, 0.0〉 〈0.7, 0.2, 0.1〉
cςκ4 〈0.5, 0.1, 0.3〉 〈0.7, 0.0, 0.1〉 〈0.2, 0.1, 0.1〉 〈0.5, 0.3, 0.2〉
Φ3 〈0.7, 0.1, 0.2〉 〈0.5, 0.2, 0.0〉 〈0.6, 0.2, 0.2〉 〈0.9, 0.0, 0.0〉

In this section of paper we introduce, an expectation score function and an algorithm for

interpreting MADM problems.

Definition 5.6. let Ḧ(tab ) = 〈µḦ(tab )(x
ς
κi), ηḦ(tab )(x

ς
κi), νḦ(tab )(x

ς
κi)〉 be PFHSV then the expec-

tation score function is define as

S(Ḧ(tab )) =
2+µḦ(ta

b
)(x

ς
κi)+ηḦ(ta

b
)(x

ς
κi)−νḦ(ta

b
)(x

ς
κi)

3 S(Ḧ(tab )) ∈ [0, 1]

Definition 5.7. The Weight vector W(Ḧ(tab )) is defined as

W(Ḧ(tab )) =
S(Ḧ(tab ))

m

where m =
∑
S(Ḧ(tab )

6. Algorithim

∇1 ← First GPFHSS

∇2 ← Second GPFHSS

∇1 ∩e ∇2 ← Extended intersection of First and Second GPFHSS

S(Ḧ(tab ))← Compute expected sore function
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W(Ḧ(tab ))← Compute weight vector

DAPFDV ←Compute Dombi aggregated picture fuzzy decision values

SF ← Compute Score Function

Rank ← Maximum value of score function is greater.

7. Case Study: Construction Company Problem

A firm want to construct a labor colony for their worker, major qualities to look for

completion of their project are qualities, services, skilled team and equipments. Consider

U = {cςκ1, c
ς
κ2, c

ς
κ3, c

ς
κ4, c

ς
κ5} be be five construction company.

Let E = {e1, e2, e3, e4} stand for qualities, services, skilled team and equipments whose corre-

sponding attribute values are {A1, A2, A3, A4} respectively. let A1 = {b11 = Credentials, b12

= Experience, b13 = Goodwill and Reputation, b14 = {b11, b12, b13}}
A2 = {b21 = New construction, b22 = Repair, b23 = demolition, b24 = {b21, b22, b23}}
A3 = {b31 = builders and architects, b31 = civil engineers }
A4 = {b41 = Modern equipments }

L̃ςκ =


tab 1 = (b11, b21, b31), tab 2 = (b14, b24, b31, b41),

tab 3 = (b12, b22), tab 4 = (b12, b31),

tab 5 = (b11, b22, b31, b42), tab 6 = (b11, b23),


The CEO makes two groups of members of administration of firm to do the evaluation.. The

set of attributes N ς
κ1 = {tab 1, t

a
b 2, t

a
b 3, t

a
b 4} observed by first group and second group monitoring

attributes value N ς
κ2 = {tab 2, t

a
b 4, t

a
b 5, t

a
b 6}. Two GPFHSS (Ḧ1, N

ς
κ1,Φ3) and (Ḧ2, N

ς
κ2,Φ4) are

given in table.

Step: 01

Table 6. GPFHSS 1

U tab 1 tab 2 tab 3 tab 4

cςκ1 〈0.5, 0.1, 0.1〉 〈0.7, 0.1, 0.2〉 〈0.3, 0.1, 0.3〉 〈0.3, 0.1, 0.2〉
cςκ2 〈0.3, 0.2, 0.4〉 〈0.6, 0.1, 0.1〉 〈0.5, 0.1, 0.2〉 〈0.8, 0.0, 0.2〉
cςκ3 〈0.7, 0.1, 0.1〉 〈0.4, 0.1, 0.3〉 〈0.9, 0.1, 0.0〉 〈0.5, 0.2, 0.1〉
cςκ4 〈0.6, 0.1, 0.3〉 〈0.8, 0.1, 0.1〉 〈0.4, 0.1, 0.1〉 〈0.4, 0.3, 0.3〉
cςκ5 〈0.4, 0.1, 0.2〉 〈0.3, 0.1, 0.5〉 〈0.3, 0.1, 0.4〉 〈0.7, 0.1, 0.2〉
Φ3 〈0.8, 0.0, 0.1〉 〈0.6, 0.1, 0.1〉 〈0.1, 0.2, 0.7〉 〈0.3, 0.1, 0.5〉

Step: 02 Calculate intersection of GPFHSS 1 and GPFHSS 2.
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Table 7. GPFHSS 2

U tab 2 tab 4 tab 5 tab 6

cςκ1 〈0.8, 0.1, 0.1〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.1, 0.2〉 〈0.3, 0.1, 0.3〉
cςκ2 〈0.6, 0.1, 0.2〉 〈0.5, 0.0, 0.3〉 〈0.2, 0.1, 0.3〉 〈0.7, 0.1, 0.2〉
cςκ3 〈0.4, 0.1, 0.3〉 〈0.8, 0.1, 0.0〉 〈0.9, 0.0, 0.1〉 〈0.5, 0.1, 0.1〉
cςκ4 〈0.3, 0.3, 0.1〉 〈0.4, 0.2, 0.0〉 〈0.5, 0.2, 0.1〉 〈0.6, 0.2, 0.1〉
cςκ5 〈0.5, 0.1, 0.3〉 〈0.7, 0.0, 0.1〉 〈0.2, 0.1, 0.1〉 〈0.5, 0.3, 0.2〉
Φ4 〈0.8, 0.1, 0.1〉 〈0.1, 0.2, 0.7〉 〈0.6, 0.2, 0.2〉 〈0.3, 0.1, 0.5〉

Table 8. Intersection of GPFHSS 1 and GPFHSS 2

U tab 1 tab 2 tab 3 tab 4 tab 5 tab 6

cςκ1 〈0.5, 0.1, 0.1〉 〈0.7, 0.1, 0.2〉 〈0.3, 0.1, 0.3〉 〈0.3, 0.1, 0.2〉 〈0.4, 0.1, 0.2〉 〈0.3, 0.1, 0.3〉
cςκ2 〈0.3, 0.2, 0.4〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.1, 0.2〉 〈0.5, 0.0, 0.3〉 〈0.2, 0.1, 0.3〉 〈0.7, 0.1, 0.2〉
cςκ3 〈0.7, 0.1, 0.1〉 〈0.4, 0.1, 0.3〉 〈0.9, 0.1, 0.0〉 〈0.5, 0.1, 0.1〉 〈0.9, 0.0, 0.1〉 〈0.5, 0.1, 0.1〉
cςκ4 〈0.6, 0.1, 0.3〉 〈0.3, 0.1, 0.1〉 〈0.4, 0.1, 0.1〉 〈0.4, 0.2, 0.3〉 〈0.5, 0.2, 0.1〉 〈0.6, 0.2, 0.1〉
cςκ5 〈0.4, 0.1, 0.2〉 〈0.3, 0.1, 0.5〉 〈0.3, 0.1, 0.4〉 〈0.7, 0.0, 0.2〉 〈0.2, 0.1, 0.1〉 〈0.5, 0.3, 0.2〉
Φ4 〈0.8, 0.0, 0.1〉 〈0.1, 0.2, 0.7〉 〈0.1, 0.2, 0.7〉 〈0.1, 0.1, 0.7〉 〈0.6, 0.2, 0.2〉 〈0.3, 0.1, 0.5〉

Step:03 Calculate value of expectation score function using 5.6 and weight vector by 5.7

shown in Tab 9

Table 9. Expectation Score Function and Weight vector

U tab 1 tab 2 tab 3 tab 4 tab 5 tab 6

Φ4 〈0.8, 0.0, 0.1〉 〈0.1, 0.2, 0.7〉 〈0.1, 0.2, 0.7〉 〈0.1, 0.1, 0.7〉 〈0.6, 0.2, 0.2〉 〈0.3, 0.1, 0.5〉
S(Ḧ(tab )) 0.9333 0.5333 0.5333 0.5 0.8666 0.6333

W(Ḧ(tab )) 0.2333 0.1333 0.1333 0.125 0.217 0.158

Step: 04 Calculate Dombi aggregated picture fuzzy decision values (DAPFDVs) for k = 1

by 2.8 and score function using 2.7. The DAPFDVs can be calculated as:

From above table

cςκ2 ≺ cςκ5 ≺ cςκ1 ≺ cςκ4 ≺ cςκ3

cςκ3 is suitable construction company for labor colony construction.

8. Comparison

The algorithm proposed by Jaber et al. [25] face challenges to deal with the MADM problem

where attributes of the alternates have their corresponding sub-attributes. To overcome such
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Table 10. DAPFDVs and Score Function

U DAPFDV s SF

cςκ1 〈0.4645, 0.1000, 0.1760〉 〈0.2885〉
cςκ2 〈0.4952, 0.0000, 0.2599〉 〈0.2353〉
cςκ3 〈0.8027, 0.0000, 0.0000〉 〈0.8027〉
cςκ4 〈0.5081, 0.1333, 0.1313〉 〈0.3768〉
cςκ5 〈0.4362, 0.0000, 0.1868〉 〈0.2494〉

difficulties we developed an extension of GPFSS by changing the mapping to a multi-attribute

mapping. With the help of GPFHSS, we define an algorithm, which plays an important role

to study the picture fuzzy and hypersoft environment.

9. Conclusions

In this article, we introduce PFHSS and GPFHSS. We defined some operations of PFHSS

and GPFHSS, also proved De Morgans laws for these operations. For the solution of MADM

problems, we construct an algorithm by using the extended intersection of GPFHSS informa-

tion and also we introduced a new expectation score function to find the value of the weight

vector. With the help of the weight vector and new expectation score function, we calculate

DAPFDVs and score function. Then we rank the construction companies which are given in

the example of a case study of the construction of labor colonies by using ascending values of

the score function. After comparison with prior proposed techniques and arise it to be more

generalized and productive to deal with multi-attribute classifications.
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Abstract. In this paper, the priority disciplined queuing models are investigated under neutrosophic environ-

ment. It develops and optimizes a model with non-preemptive priorities system, denoted by NM/NM/1. It is

a queuing model where the arrivals follow a Poisson process, service times are exponentially distributed and

there is only one server whose arrival rate and service rate are represented in terms of single valued trapezoidal

Neutrosophic number (SVTNN). Using (α, β, γ)-cut approach and Zadehs extension principle, the Neutrosophic

queuing model is reduced to a crisp model and results are discussed. An illustrative example is provided to

understand the analytical procedure developed in this paper.

Keywords: Neutrosophic set; single value trapezoidal Neutrosophic number; Neutrosophic Markov chain; pri-

ority queue.

—————————————————————————————————————————-

1. Introduction

Basic queueing systems involve organized queues where the arrival rate of customers is in an

order and waiting discipline is ensured. But in real life situations most of the queuing models

require priority discipline as most urgent work has to be given preference. Priority queueing

models are useful in a variety of different applications. In priority queues customers are served

based on their service priorities. The high-priority customers with high urgency are served first

and the lower priority customers are served with less urgency. In communication engineering,

priority queues are used to study networks with differentiated levels of quality of service.

Steady state distribution of single server priority queue was developed by Miller [1]. Prade [2]

dealt with fuzzy service time and fuzzy service rule in a queuing problem with application. Li

et al. [3] investigated two fuzzy queues denoted by M/F/1 and FM/FM/1 whose interarrival

time and service rate are fuzzified. Negi et al. [4] discussed analytical and simulation results of
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fuzzy and probability approaches of traditional queuing models. Maria et al. [5] developed two

fuzzy queueing models with priority-discipline both with non-pre-emptive priorities system

and pre-emptive priorities system. Varadharajan et al. [6] analysed fuzzy priority discipline

queue models using a parametric programming approach.

Kalpana et al. [7] investigated the performance measures for non-pre-emptive priority fuzzy

queues. Usha et al. [8] made an interpretation of a non-pre-emptive priority queueing system

in fuzzy environment with asymmetrical service rates. Aarthi et al. [9] analyzed the per-

formance of a non-pre-emptive intuitionistic fuzzy queuing model. Khudr Al-Kridi et al. [10]

discussed the performance measures of FM/FM/1 queueing model where both arrival and de-

parture rates are fuzzy numbers Kumuthavalli et al. [11] focused on developing a neutrosophic

probability for solving queue operation in the real standard domain.

Fariborz Jolai et al. [12] presented a new formulation for the problem of fuzzy priority assign-

ment and buffer control. Mohamed Bisher Zeina [13] provided Neutrosophic Littles Formulas

which is a main tool in queueing systems problems under neutrosophic environment. Also

he [14, 15] discussed about Erlang service queueing model under neutrosophic environment.

Heba Rashad et al. [16] discussed the performance measures of NM/NM/1, NM/NM/s, and

NM/NM/1/b queueing models. Zhivko Tomov et al. [17] proposed generalized net models of

different queueing disciplines in queueing systems. Buckley [18, 19] dealt fuzzy queue model

using possibility theory. Many researchers [20, 21], have shown light over Intuitionistic fuzzy

queueing models.

Florentin Smarandache [22] introduced Neutrosophic set as an generalization of Intution-

istic fuzzy set developed by Atanassov [23] which is a powerful tool to deal with ambiguity

compared to fuzzy set proposed by Zadeh [24] as it considers membership, indeterminacy and

non-membership degree of an object simultaneously. Also Florentin Smarandache [25,26] has

explored various concepts such as Neutrosophic measure, Neutrosophic logic, Neutrosophic

probability etc.,. Wang et al. [27] discussed about operations and properties of single valued

Neutrosophic set (SVNS). Later applications involving SVNS are considered by many re-

searchers [28,29]. This paper aims at investigating a single server queuing model with priority

discipline involving SVNS. A comparison table 1 of existing queueing model under uncertainty

is discussed below.
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Table 1. Comparison with the existing queueing model

Author Queueing model Uncertainty used Methodology

Prade, H. M (1980) General queuing

model

Fuzzy sets Zadehs extension

principle

Li, R. J. et al.

(1989)

General queuing

model

Fuzzy sets Zadehs extension

principle

Negi, D. S. et al.

(1992)

General queuing

model

Fuzzy sets -cut approach

Khudr Al-Kridi et

al. (2018)

General queuing

model

Fuzzy sets Zadehs extension

principle

Zhivko Tomov

(2019)

General queuing

model

Intuitionistic fuzzy

set

Generalized Net

models

Kumuthavalli et al.

(2017)

General queuing

model

Neutrosophic sets Zadehs Exclusion

Principle

Mohamed Bisher

Zeina (2020)

General queuing

model

Neutrosophic sets Neutrosophic Lit-

tles Formulas

Mohamed Bisher

Zeina (2020)

Erlang service

queueing model

Neutrosophic sets Neutrosophic sta-

tistical interval

method

Maria Jose Pardoa

et al. (2007)

Priority queues Fuzzy sets Zadehs extension

principle

Varadharajan et al.

(2018)

Priority queues Fuzzy sets α-cut approach

Kalpana et al.

(2018)

Priority queues Fuzzy sets LR method

Usha Prameela et

al.(2021)

Priority queue Fuzzy sets α-cut approach

Aarthi et al. (2022) Priority queue Intuitionistic Fuzzy

sets

Ranking method

Fariborz Jolai et al.

(2016)

Multi objective pri-

ority queue

Fuzzy sets Fuzzy Data Envel-

opment Analysis

Heba Rashad et al.

(2021)

General queueing

model

Neutrosophic sets Neutrosophic Lit-

tles Formulas

Proposed Priority model Neutrosophic sets (α, β, γ)-cut

In this paper, we explored the neutrosophic queueing model and its application. To the

best of the authors knowledge, none of the previous works has addressed the neutrosophic

decision-making regarding prioritization and queue selection of service-needing people in dis-

aster aftermath. The main contributions of the study include:

(1) The innovative concept of priority queuing model under neutrosophic sets is introduced.
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(2) Formulation of NM/NM/1 queue with priority model is proposed.

(3) Also, a numerical example is discussed to show the effectiveness of the proposed queueing

model.

(4) To make the decision maker understand the solution graphical representation are pro-

vided.

In Section 2, we discusses the Neutrosophic preliminaries. Section 3 briefly discussed the

neutrosophic queueing model. In section 4, numerical illustration are solved for showing per-

formance measures of neutrosophic in queueing model and Section 5 presents the conclusion,

and future work.

2. Preliminaries

Definition 2.1. [26] A neutrosophic set N is given as

N = {(s, TA(s), IA(s),FA(s))/s ∈ s}

where TA(s), IA(s),FA(s) : s →]0−, 1+[ are the degree of truth, ondeterminancy and falsity

such that 0− ≤ sup TA(s) + sup IA(s) + supFA(s) ≤ 3+.

Definition 2.2. [26] A single valued neutrosophic set (SVNS) N in s is stated as

N = {(s, TA(s), IA(s),FA(s))/s ∈ s}

where TA(s), IA(s),FA(s) ∈ [0, 1] and 0 ≤ sup TA(s) + sup IA(s) + supFA(s) ≤ 3.

Definition 2.3. [25] Let (νΩ, NF,NP ) be a neutrosophic probability space, where νΩ is

a neutrosophic sample space, NF is a neutrosophic event space, and NP is a neutrosophic

probability measure.The following neutrosophic probability axioms are as follows

(i) The neutrosophic probability of an event A

NP (A) =
(
ch(A), ch(indetermA), ch(Ā)

)
,

where ch(A) ≥ 0, ch(indetermA) ≥ 0, ch(Ā) ≥ 0, for any A ∈ NF ; with the notations that

indeterm(A) means indeterminacy related to event A and Ā is the complement event of A

(the antiA event).

(ii) The neutrosophic probability of the sample space is between −0 and 3+.

NP (νΩ) =

( ∑
x∈νΩ

ch(x), ch(indetermνΩ), ch(antiνΩ)

)
,

where −0 ≤
∑
x∈νΩ

ch(x), ch(indetermνΩ), ch(antiνΩ) ≤ 3+,

with the notation indetermνΩ means total indeterminacy that may occur in the neutrosophic

sample space. For the classical complete (normalized) sample space, ch(antiνΩ) = 0, but for

incomplete sample space ch(antiνΩ) > 0.

(iii) The neutrosophic σ-additivity is defined as
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NP (A1 ∪A2 ∪ . . .) =

(
∞∑
j=1

ch(Aj), ch(indetermA1∪A2∪...), ch(A1 ∪A2 ∪ . . .)

)
,

where A1, A2, . . . is a countable sequence of disjoint neutrosophic events.

Definition 2.4. [25] A random variable (r.v) which have an indeterminate outcome is said

to be neutrosophic r.v.

A neutrosophic stochastic process is a collection of neutrosophic r.v which represents the

evolution over time of some neutrosophic random values.

Definition 2.5. [25] A neutrosophic stochastic process {X(n) : n ∈ N} is said to be a neu-

trosophic Markov chain if it satisfies the Markov property:

P (Xn+1 = j/Xn = i,Xn−1 = k, . . .X0 = m) = P (Xn+1 = j/Xn = i)

where i, j, k establish the state space S of the process.

Here P̃ij = P (Xn+1 = j/Xn = i) are called the neutrosophic probabilities of moving from

state i to state j in one step. Hence P̃ij =
(
T
P̃ij
, I
P̃ij
,F

P̃ij

)
, where T

P̃ij
(I
P̃ij
,F

P̃ij
) is the

truth (indeterminate, falsity) membership of the transition from state i to state j. The matrix

P = P̃ij is called the neutrosophic transition probability matrix.

Definition 2.6. [30] A single valued trapezoidal neutrosophic number (SVTNN) A is defined

as follows

TA(s) =



sT − tT1
tT2 − tT1

for tT1 ≤ sT ≤ tT2

1 for tT2 ≤ sT ≤ tT3
tT4 − sT

tT4 − tT3
for tT3 ≤ sT ≤ tT4

0 otherwise

where tT1 ≤ tT2 ≤ tT3 ≤ tT4 .

IA(s) =



tI2 − sI

tI2 − tI1
for tI1 ≤ sI ≤ tI2

1 for tI2 ≤ sI ≤ tI3
tI4 − sI

tI4 − tI3
for tI3 ≤ sI ≤ tI4

1 otherwise

where tI1 ≤ tI2 ≤ tI3 ≤ tI4 .

FA(s) =



tF2 − sF

tF2 − tF1
for tF1 ≤ sF ≤ tF2

1 for tF2 ≤ sF ≤ tF3
tF4 − sF

tF4 − tF3
for tF3 ≤ sF ≤ tF4

1 otherwise
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where tF1 ≤ tF2 ≤ tF3 ≤ tF4 .

Definition 2.7. [30]

(α, β, γ)-cut of a TSVNN is defined as follows:

Aα,β,γ = [A1(α), A2(α)] ;
[
A
′
1(β), A

′
2(β)

]
;
[
A
′′
1(γ), A

′′
2(γ)

]
, 0 ≤ α+ β + γ ≤ 3, where

[A1(α), A2(α)] =
[(
tT1 + α(tT2 − tT1 )

)
,
(
tT4 − α(tT4 − tT3 )

)]
,[

A
′
1(β), A

′
2(β)

]
=
[(
tI2 − β(tI2 − tI1 )

)
,
(
tI3 + β(tI4 − tI3 )

)]
,[

A
′′
1(γ), A

′′
2(γ)

]
=
[(
tF2 − γ(tF2 − tF1 )

)
,
(
tF3 + γ(tF4 − tF3 )

)]
.

Definition 2.8. [32] Let [r1, r2] and [r3, r4] be two closed and bounded real intervals. If ∗
denotes addition, substraction, multiplication or division, then [r1, r2] ∗ [r3, r4] = [α, β].

For division, it is assumed that 0 /∈ [r3, r4]. With basic operations, is developed as follows :

i . [r1, r2] + [r3, r4] = [r1 + r3, r2 + r4]

ii . [r1, r2]− [r3, r4] = [r1 − r4, r2 − r3]

iii . [r1, r2] . [r3, r4] = [min {r1r3, r1, r4, r2r3, r2r4} ,max {r1r3, r1, r4, r2r3, r2r4}]

iv .
[r1, r2]

[r3, r4]
=

[
min

{
r1

r3
,
r1

r4
,
r2

r3
,
r2

r4

}
,max

{
r1

r3
,
r1

r4
,
r2

r3
,
r2

r4

}]
3. The Neutrosophic Queueing Model

In this section, we analyze a single server queue with priority in neutrosophic environment.

3.1. Classical M/M/1 queue with priority queue

We consider a single server queue with priority. Assume that there are two arrival stream of

customers called higher priority and low priority customers and they follow different Poisson

process with parameters λ1 and λ2 respectively. A single server provides service to these

customers and the service time follows exponential distribution with rate µ. The higher priority

customers have the right to be served ahead of the others without preemption. The system

capacity is infinite and within the priority group the first come first served rule is applied.

Some system performance are

• Average queue length of higher priority: Lq1 =
ρ.λ1

µ− λ1

• Average queue length of low priority: Lq2 =
ρ.λ2

(1− ρ)(µ− λ1)

• Average waiting time of higher priority queue: Wq1 =
ρ

µ− λ1

• Average waiting time of low priority queue: Wq2 =
ρ

(µ− λ)(µ− λ1)

where λ = λ1 + λ2 and traffic intensity (ρ)=
λ

µ
.

An M/M/1 priority queue with infinite capacity as depicted in figure 1.
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(a) Higher priority customers in service (b) Low priority customers in service

Figure 1. M/M/1 queue with priority queue

3.2. Formulation of NM/NM/1 queue with priority model

Consider a single server NM/NM/1 queueing system with priority. The neutrosophic in-

terarrival times Ãi, i = 1, 2 of units in the first and second priority, neutrosophic service time

S̃ are approximately known and are represented by the follows

Ãi =
{(
a, T

Ãi
(a), I

Ãi
(a),F

Ãi
(a)
)
/a ∈ X

}
; i = 1, 2

S̃ =
{(
s, T

S̃
(s), I

S̃
(s),F

S̃
(s)
)
/s ∈ Y

}
where X and Y are crisp universal sets of the neutrosophic interarrival times and neutrosophic

service time and µ
Ãi

(a); i = 1, 2, T
S̃

(s) are the corresponding membership functions. The

(α, β, γ)-cut of Ãi; i = 1, 2 and S̃ are

Ai(α, β, γ) =
{
a ∈ X/T

Ãi
(a) ≥ α, I

Ãi
(a) ≤ β,F

Ãi
(a) ≤ γ

}
; i = 1, 2

S(α, β, γ) =
{
s ∈ Y/T

S̃
(s) ≥ α, I

S̃
(s) ≤ β,F

S̃
(s) ≤ β

}
where the Ai(α, β, γ) and S(α, β, γ) are the crisp subsets of X and Y respectively.

Using (α, β, γ)-cuts, the Neutrosophic interarrival times and Neutrosophic service time

can be represented by different levels of confidence intervals. Consequently, a Neutro-

sophic queue can be reduced to a family of crisp queues with different (α, β, γ)-cuts

{Ai(α, β, γ) : 0 < α ≤ 1, 0 ≤ β < 1, 0 ≤ γ < 1} and

{S(α, β, γ) : 0 < α ≤ 1, 0 ≤ β < 1, 0 ≤ γ < 1} .
In this paper, we proposed queueing model with both interarrival times Ãi, i = 1, 2 and

service time S̃ are represented as SVTNN. Denote confidence intervals of Ãi and S̃ by

[l
Ãi(α,β,γ)

, u
Ãi(α,β,γ)

] and [l
S̃(α,β,γ)

, u
S̃(α,β,γ)

].

Let us denote the performance measure by p(Ãi, S̃) and the truth membership function, the

indeterminacy membership function and the falsity membership function of p(Ãi, S̃) can be

defined using Zadeh’s extension principle [31,32], as:

T
p(Ãi,S̃)

(z) = sup
{
mina∈X,a′∈Y (µ

Ãi(a)
, T
S̃(a
′
)
) : z = p(a, a

′
)
}
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I
p(Ãi,S̃)

(z) = inf
{
mina∈X,a′∈Y (µ

Ãi(a)
, T
S̃(a′ )) : z = p(a, a

′
)
}

and

F
p(Ãi,S̃)

(z) = inf
{
mina∈X,a′∈Y (µ

Ãi(a)
, T
S̃(a′ )) : z = p(a, a

′
)
}

We can find the lower and upper bounds of the (α, β, γ) cuts of Ãi, S̃ as follows:

lp(α,β,γ) = min p(a, a
′
) such that l

Ãi(α,β,γ)
≤ a ≤ u

Ãi(α,β,γ)
, l
S̃(α,β,γ)

≤ a′ ≤ u
S̃(α,β,γ)

(1)

up(α,β,γ) = max p(a, a
′
) such that l

Ãi(α,β,γ)
≤ a ≤ u

Ãi(α,β,γ)
, l
S̃(α,β,γ)

≤ a′ ≤ u
S̃(α,β,γ)

(2)

provided a ∈ Ãi(α, β, γ) and a
′ ∈ S̃(α, β, γ).

If both lp(α,β,γ) and up(α,β,γ) are invertible with respect to (α, β, γ) then the left shape function

LT (z) =
(
lp(α,β,γ)

)−1
and the right shape function RT (z) =

(
up(α,β,γ)

)−1
can be obtained,

from which the truth membership function µ
p(Ãi,S̃)

(z) is given by

T
p(Ãi,S̃)

(z) =


LT (z); zT1 ≤ z ≤ zT2
RT (z); zT3 ≤ z ≤ zT4
0; otherwise

where zT1 ≤ z ≤ zT4 and LT (zT1 ) = RT (zT4 ) = 0 for the SVTNN.

Similarly the indeterminacy membership function η
p(Ãi,S̃)

(z) and the falsity membership func-

tion ν
p(Ãi,S̃)

(z),are derived as follows

I
p(Ãi,S̃)

(z) =


LI(z); zI1 ≤ z ≤ z2v

RI(z); zI3 ≤ z ≤ zI4
0; otherwise

where zI1 ≤ z ≤ zI4 and LI(z
I
1 ) = RI(z

I
4 ) = 0 for the SVTNN.

F
p(Ãi,S̃)

(z) =


LF (z); zF1 ≤ z ≤ zF2
RF (z); zF3 ≤ z ≤ zF4
0; otherwise

where zF1 ≤ z ≤ zF4 and LF (zF1 ) = RF (zF4 ) = 0 for the SVTNN.

The proposed NM/NM/1 queue with priority can be reduced it to classical M/M/1 queue

with priority by using the concept of (α, β, γ)-cut approach.

4. Numerical Illustration

In this section, we present a numerical example to explain the proposed NM/NM/1 queue-

ing model with priority.

Let the arrival rates of first and second priority with the same service rate are represented by

SVTNN Ã1 = 〈(3, 4, 5, 6) (2, 5, 8, 11) (2, 4, 6, 8)〉
Ã2 = 〈(4, 5, 6, 7) (3, 4, 5, 6) (6, 6, 7, 8)〉 and

S̃ = 〈(16, 17, 18, 19) (18, 20, 22, 24) (17, 19, 21, 23)〉 per hour respectively.
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The (α, β, γ)-cut of Ãi, i = 1, 2; S̃ are

Ã1 = 〈[3 + α, 6− α], [5− 3β, 8 + 3β], [4− 2γ, 6 + 2γ]〉 ,
Ã2 = 〈[4 + α, 7− α], [4− β, 5 + β], [6− γ, 7 + γ]〉 and

S̃ = 〈[16 + α, 19− α], [20− 2β, 22− 2β], [19− 2γ, 21 + 2γ]〉
From equations (1) and (2) the parametric programming problems are formulated to derive

the membership function Lq1 , Lq2 ,W q1 and W q2 . They are calculated as follows.

The performance functions of (i) Lq1- average queue length of higher priority (ii) Lq2- aver-

age queue length of low priority (iii) W q1 -average waiting time in higher priority queue (iv)

W q2 - average waiting time in low priority queue are derived from the respective parametric

programs. These differ only in their objective functions and are listed below.

lLq1 (α) = min

{
e1(e1 + e2)

e3(e3 − e1)

}
, uLq1 (α) = max

{
e1(e1 + e2)

e3(e3 − e1)

}
such that 3 + α < e1 < 6− α

4 + α < e2 < 7− α

16 + α < e3 < 19− α

(3)

where 0 < α ≤ 1. lLq1 (α) is found when e1 and e2 approach their lower bounds (l.b) and e3

approaches its upper bound (u.b) and also uLq1 (α) is found when e1 and e2 approach their

u.b’s and e3 approaches its l.b. Consequently the optimal solution for (3) are

lLq1 (α) =
21 + 13α+ 2α2

304− 54α+ 2α2
and uLq1 (α) =

78− 25α+ 2α2

160 + 42α+ 2α2

The truth membership function is

TLq1
(z) =


LT (z);

[
lLq1 (α)

]
α=0
≤ z ≤

[
lLq1 (α)

]
α=1

RT (z);
[
uLq1 (α)

]
α=1
≤ z ≤

[
uLq1 (α)

]
α=0

0; otherwise

which is estimated as

TLq1
(z) =



(54z + 13)− (484z2 + 4004z − 1)

1

2

2(2z − 2)
; 0.07 ≤ z ≤ 0.14

−(42z + 25) + (484z2 + 4004z − 1)

1

2

2(2z − 2)
; 0.27 ≤ z ≤ 0.49

0; otherwise

lLq1 (β) = min

{
e1(e1 + e2)

e3(e3 − e1)

}
, uLq1 (β) = max

{
e1(e1 + e2)

e3(e3 − e1)

}
such that 5− 3β < e1 < 8 + 3β

4− β < e2 < 5 + β

20− 2β < e3 < 22 + 2β

(4)
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where 0 < β ≤ 1. lLq1 (β) is found when e1 and e2 approach their l.b’s and e3 approaches its

u.b. and also uLq1 (β) is found when e1 and e2 approach their u.b’s and e3 approaches its l.b.

Consequently the optimal solution for (4) is

lLq1 (β) =
45− 47β + 12β2

374 + 144β + 10β2
and uLq1 (β) =

104 + 71β + 12β2

240− 124β + 10β2

The indeterminacy membership function is

ILq1
(z) =


LI(z);

[
lLq1 (β)

]
β=1
≤ z ≤

[
lLq1 (β)

]
β=0

RI(z);
[
uLq1 (β)

]
β=0
≤ z ≤

[
uLq1 (β)

]
β=1

0; otherwise

which is estimated as

ILq1
(z) =



−(144z + 47) + (5776z2 + 33288z + 49)

1

2

2(10z − 12)
; 0.02 ≤ z ≤ 0.12

(124z + 71)− (5776z2 + 33288z + 49)

1

2

2(10z − 12)
; 0.43 ≤ z ≤ 1.48

0; otherwise

lLq1 (γ) = min

{
e1(e1 + e2)

e3(e3 − e1)

}
, uLq1 (γ) = max

{
e1(e1 + e2)

e3(e3 − e1)

}
such that 4− 2γ < e1 < 6 + 2γ

6− γ < e2 < 7 + γ

19− 2γ < e3 < 21 + 2γ

(5)

where 0 < γ ≤ 1. lLq1 (γ) is found when e1 and e2 approach their l.b’s and e3 approaches its

u.b. and also uLq1 (γ) is found when e1 and e2 approach their u.b’s and e3 approaches its l.b.

Consequently the optimal solution for (5) is

lLq1 (γ) =
40− 32γ + 6γ2

357 + 118γ + 8γ2
and uLq1 (γ) =

78 + 44γ + 6γ2

247− 102γ + 8γ2
(6)

The falsity membership function is

FLq1
(z) =


LF (z);

[
lLq1 (γ)

]
γ=1
≤ z ≤

[
lLq1 (γ)

]
γ=0

RF (z);
[
uLq1 (γ)

]
γ=0
≤ z ≤

[
uLq1 (γ)

]
γ=1

0; otherwise
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which is estimated as

FLq1
(z) =



−(118z + 32) + (2500z2 + 17400z + 64)

1

2

2(8z − 6)
; 0.03 ≤ z ≤ 0.11

(102z + 44)− (2500z2 + 17400z + 64)

1

2

2(8z − 6)
; 0.32 ≤ z ≤ 0.83

0; otherwise

For different values of α, β, γ ∈ [0, 1], the average queue length of higher priority Lq1 is calcu-

lated and given in table 2. Also a graphical interpolation of truth, Indeterminacy and falsity

of average queue length of higher priority is shown in figure 2.

Table 2. Lq1

α lLq1(α)
uLq1(α)

β, γ lLq1(β)
uLq1(β)

lLq1(γ)
uLq1(γ)

0.0 0.06908 0.48750 1.0 0.12032 0.43333 0.11204 0.31579

0.1 0.07474 0.45987 0.9 0.10404 0.48845 0.09992 0.34811

0.2 0.08074 0.43376 0.8 0.08948 0.55046 0.08884 0.38357

0.3 0.08709 0.40908 0.7 0.07649 0.62042 0.07870 0.42253

0.4 0.09380 0.38573 0.6 0.06491 0.69958 0.06945 0.46539

0.5 0.10090 0.36364 0.5 0.05463 0.78947 0.06100 0.51263

0.6 0.10840 0.34273 0.4 0.04552 0.89196 0.05331 0.56477

0.7 0.11633 0.32293 0.3 0.03748 1.00936 0.04631 0.62244

0.8 0.12469 0.30419 0.2 0.03043 1.14457 0.03995 0.68637

0.9 0.13353 0.28643 0.1 0.02427 1.30125 0.03419 0.75742

1.0 0.14286 0.26961 0.0 0.01894 1.48413 0.02899 0.83660

Figure 2. Average queue length of higher priority
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Similarly the performance functions of Lq2 is derived from the respective parametric pro-

grams. These differ only in their objective functions and are listed below.

lLq2 (α) = min

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(7)

and

uLq2 (α) = max

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(8)

The objective functions given through the equations (7) and (8) with the constraints given

with the equation (3) yield the following results:

lLq2 (α) =
28 + 15α+ 2α2

192− 72α+ 6α2
; uLq2 (α) =

91− 27α+ 2α2

30 + 36α+ 6α2

TLq2
(z) =



(72z + 15)− (576z2 + 4368z + 1)

1

2

2(6z − 2)
; 0.14 ≤ z ≤ 0.36

−(36z + 27) + (576z2 + 4368z + 1)

1

2

2(6z − 2)
; 0.92 ≤ z ≤ 3.03

0; otherwise

Similarly the performance functions of Lq2 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lLq2 (β) = min

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(9)

and

uLq2 (β) = max

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(10)

The objective functions given through the equations (9) and (10) with the constraints given

with the equations (4) yield the following results:

lLq2 (β) =
36− 25β + 4β2

221 + 167β + 30β2
; uLq2 (β) =

65 + 33β + 4β2

84− 107β + 30β2

ILq2
(z) =



−(167z + 25) + (1369z2 + 16206z + 49)

1

2

2(30z − 4)
; 0.04 ≤ z ≤ 0.16

(107z + 33)− (1369z2 + 16206z + 49)

1

2

2(30z − 4)
; 0.77 ≤ z ≤ 14.57

0; otherwise

Similarly the performance functions of Lq2 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lLq2 (γ) = min

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(11)
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and

lLq2 (γ) = max

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(12)

The objective functions given through the equations (11) and (12) with the constraints given

with the equations (5) yield the following results:

lLq2 (γ) =
60− 28γ + 3γ2

187 + 129γ + 20γ2
; uLq2 (γ) =

91 + 34γ + 3γ2

78− 89γ + 20γ2

FLq2
(z) =



−(129z + 28) + (1681z2 + 14268z + 64)

1

2

2(20z − 3)
; 0.1 ≤ z ≤ 0.32

(89z + 34)− (1681z2 + 14268z + 64)

1

2

2(20z − 3)
; 1.17 ≤ z ≤ 14.22

0; otherwise

For different values of α, β, γ ∈ [0, 1], the average queue length of low priority Lq2 is calculated

and given in table 3. Also a graphical interpolation of truth, Indeterminacy and falsity of

average queue length of low priority is shown in figure 3.

Table 3. Lq2

α lLq2(α)
uLq2(α)

β, γ lLq2(β)
ulq2(β)

lLq2(γ)
ulq2(γ)

0.0 0.14583 3.03333 1.0 0.16290 0.77381 0.32086 1.16667

0.1 0.15969 2.62389 0.9 0.14092 0.92853 0.28601 1.36263

0.2 0.17476 2.28846 0.8 0.12191 1.12476 0.25524 1.60525

0.3 0.19118 2.00968 0.7 0.10541 1.37839 0.22800 1.91092

0.4 0.20906 1.77513 0.6 0.09105 1.71391 0.20380 2.30439

0.5 0.22857 1.57576 0.5 0.07853 2.17105 0.18226 2.82468

0.6 0.24987 1.40476 0.4 0.06759 2.81830 0.16303 3.53711

0.7 0.27314 1.25697 0.3 0.05803 3.78403 0.14584 4.55961

0.8 0.29861 1.12835 0.2 0.04965 5.33864 0.13043 6.12857

0.9 0.32652 1.01576 0.1 0.04232 8.16167 0.11660 8.79646

1.0 0.35714 0.91667 0.0 0.03589 14.57144 0.10417 14.22223
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Figure 3. Average queue length of low priority

Similarly the performance functions of W q1 is derived from the respective parametric pro-

grams. These differ only in their objective functions and are listed below.

uWq1 (α) = min

{
(e1 + e2)

e3(e3 − e1)

}
(13)

and

uWq1 (α) = max

{
(e1 + e2)

e3(e3 − e1)

}
(14)

The objective functions given through the equations (13) and (14) with the constraints given

with the equations (3) yield the following results:

lWq1 (α) =
7 + 2α

304− 54α+ 2α2
; uWq1 (α) =

13− 2α

160 + 42α+ 2α2

TW q1
(z) =



(54z + 2)− (484z2 + 272z + 4)

1

2

4z
; 0.02 ≤ z ≤ 0.04

−(42z + 2) + (484z2 + 272z + 4)

1

2

4z
; 0.05 ≤ z ≤ 0.08

0; otherwise

Similarly the performance functions of W q1 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lWq1 (β) = min

{
(e1 + e2)

e3(e3 − e1)

}
(15)

and

uWq1 (β) = max

{
(e1 + e2)

e3(e3 − e1)

}
(16)
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The objective functions given through the equations (15) and (16) with the constraints given

with the equations (3) yield the following results:

lWq1 (β) =
9− 4β

374 + 144β + 10β2
; uWq1 (β) =

13 + 4β

240 + 124β + 10β2

IW q1
(z) =



−(144z + 4) + (5776z2 + 1512z + 16)

1

2

20z
; 0.009 ≤ z ≤ 0.02

(124z + 4)− (5776z2 + 1512z + 16)

1

2

20z
; 0.05 ≤ z ≤ 0.13

0; otherwise

Similarly the performance functions of W q1 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lWq1 (γ) = min

{
(e1 + e2)

e3(e3 − e1)

}
(17)

and

uWq1 (γ) = max

{
(e1 + e2)

e3(e3 − e1)

}
(18)

The objective functions given through the equations (17) and (18) with the constraints given

with the equations (5) yield the following results:

lWq1 (γ) =
10− 3γ

357 + 118γ + 8γ2
; uWq1 (γ) =

13 + 3γ

247− 102γ + 8γ2

FW q1
(z) =



−(118z + 3) + (2500z2 + 1028z + 9)

1

2

16z
; 0.01 ≤ z ≤ 0.03

(102z + 3)− (2500z2 + 1028z + 9)

1

2

16z
; 0.05 ≤ z ≤ 0.11

0; otherwise

For different values of α, β, γ ∈ [0, 1], the average waiting time in the higher priority queue

W q1 is calculated and given in table 4. Also a graphical interpolation of truth, Indeterminacy

and falsity of average waiting time in the higher priority queue is shown in figure 4.
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Table 4. W q1

α lWq1(α)
uWq1(α)

β, γ lWq1(β)
uWq1(β)

lWq1(γ)
uWq1(γ)

0.0 0.02303 0.08125 1.0 0.02406 0.05417 0.02801 0.05263

0.1 0.02411 0.07794 0.9 0.02214 0.05885 0.02630 0.05615

0.2 0.02523 0.07479 0.8 0.02034 0.06401 0.02468 0.05993

0.3 0.02639 0.07177 0.7 0.01866 0.06971 0.02315 0.06402

0.4 0.02759 0.06888 0.6 0.01708 0.07604 0.02170 0.06844

0.5 0.02883 0.06612 0.5 0.01561 0.08310 0.02033 0.07323

0.6 0.03011 0.06347 0.4 0.01422 0.09102 0.01904 0.07844

0.7 0.03144 0.06093 0.3 0.01292 0.09994 0.01781 0.08411

0.8 0.03281 0.05850 0.2 0.01170 0.11005 0.01665 0.09031

0.9 0.03424 0.05616 0.1 0.01055 0.12161 0.01554 0.09711

1.0 0.03571 0.05392 0.0 0.00947 0.13492 0.01449 0.10458

Figure 4. Average waiting time in the higher priority queue

Similarly the performance functions of W q2 is derived from the respective parametric pro-

grams. These differ only in their objective functions and are listed below.

lWq2 (α) = min

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(19)

and

uWq2 (α) = max

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(20)

The objective functions given through the equations (19) and (20) with the constraints given

with the equations (3) yield the following results:

lWq2 (α) =
7 + 2α

192− 72α+ 6α2
; uWq2 (α) =

13− 2α

30 + 36α+ 6α2
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TW q2
(z) =



(72z + 2)− (576z2 + 456z + 4)

1

2

12z
; 0.04 ≤ z ≤ 0.07

−(36z + 2) + (576z2 + 456z + 4)

1

2

12z
; 0.15 ≤ z ≤ 0.43

0; otherwise

Similarly the performance functions of W q2 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lWq2 (β) = min

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(21)

and

uWq2 (β) = max

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(22)

The objective functions given through the equations (21) and (22) with the constraints given

with the equations (3) yield the following results:

lWq2 (β) =
9− 4β

221 + 167β + 30β2
; uWq2 (β) =

13 + 4β

84− 107β + 30β2

IW q2
(z) =



−(167z + 4) + (1369z2 + 2416z + 16)

1

2

60z
; 0.01 ≤ z ≤ 0.04

(107z + 4)− (1369z2 + 2416z + 16)

1

2

60z
; 0.15 ≤ z ≤ 2.43

0; otherwise

Similarly the performance functions of W q2 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lWq2 (γ) = min

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(23)

and

uWq2 (γ) = max

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(24)

The objective functions given through the equations (23) and (24) with the constraints given

with the equations (5) yield the following results:

lWq2 (γ) =
10− 3γ

187 + 129γ + 20γ2
; uWq2 (γ) =

13 + 3γ

78− 89γ + 20γ2

FW q2
(z) =



−(129z + 3) + (1681z2 + 1574z + 9)

1

2

40z
; 0.02 ≤ z ≤ 0.05

(89z + 3)− (1681z2 + 1574z + 9)

1

2

40z
; 0.17 ≤ z ≤ 1.78

0; otherwise
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For different values of α, β, γ ∈ [0, 1], the average waiting time in the low priority queue W q2

is calculated and given in table 5. Also a graphical interpolation of truth, Indeterminacy and

falsity of average waiting time in the low priority queue is shown in figure 5.

Table 5. W q2

α lWq2(α)
uWq2(α)

β, γ lWq2(β)
uWq2(β)

lWq2(γ)
uWq2(γ)

0.0 0.03646 0.43333 1.0 0.04072 0.15476 0.05348 0.16667

0.1 0.03895 0.38027 0.9 0.03613 0.18207 0.04848 0.19192

0.2 0.04161 0.33654 0.8 0.03208 0.21630 0.04401 0.22295

0.3 0.04446 0.29995 0.7 0.02849 0.26007 0.04000 0.26177

0.4 0.04751 0.26896 0.6 0.02529 0.31739 0.03639 0.31140

0.5 0.05079 0.24242 0.5 0.02244 0.39474 0.03314 0.37662

0.6 0.05432 0.21949 0.4 0.01988 0.50327 0.03019 0.46541

0.7 0.05812 0.19952 0.3 0.01758 0.663870 0.02752 0.59216

0.8 0.06221 0.18199 0.2 0.01552 0.92045 0.02508 0.78571

0.9 0.06664 0.16652 0.1 0.01365 1.38333 0.02286 1.11348

1.0 0.07143 0.15278 0.0 0.01196 2.42857 0.02083 1.77778

Figure 5. Average waiting time in the low priority queue
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5. Conclusion

Priority queueing models are useful in real world problems such as emergency cases in hos-

pital medical treatment, communication networks etc. The parameters for queueing decision

models can be known imprecisely and hence the performance measurements of the system can

be dealt in neutrosophic environment. This paper, proposes a single server queuing model

with priority discipline and its characteristics. The service time and arrival time of proposed

model are expressed in terms of single valued trapezoidal Neutrosophic number. An illustra-

tive example is provided to show the performance measures of the proposed model which are

constructed using truth, indeterminacy and falsity membership degree of SVTNN. In future,

this queueing model can extended multi objective priority queuing model. The extensions

of neutrosophic sets such as pythogorean and Fermatean neutrosophic sets can used in the

proposed model to explore its new aspects.
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Abstract 

Addressing the relative importance and urgency of different requirements to cope with the limited resources of projects 

such as budget and time is called Requirements Prioritization (RP), and it is a crucial step in the project management 

process, it involves several stakeholders deciding between multiple requirements based on several criteria, which is a 

multi-criteria decision making (MCDM). Different organizations use different requirements prioritization methods 

depending on the scope and level of the project. But the challenge arises when the number of requirements is large, and 

multiple stakeholders with conflicting goals are involved, which makes it hard to get consensus on the project direction. 

Another challenge in the prioritization process is that the judgement of the different stakeholders can be vague and 

imprecise, making it difficult to be represented in exact numbers. Therefore, this paper presents a MCDM framework 

based on the type-2 neutrosophic numbers (T2NNs) for the prioritization of requirements using T2NNs Decision making 

trial and evaluation laboratory (DEMATEL) and T2NNs technique for order of preference by similarity to ideal solution 

(TOPSIS). T2NNs are used to deal with the uncertainty and vagueness in stakeholders’ preferences. The initial step of the 

proposed RP framework is to identify the relevant stakeholders, the goals, and the requirements. Second, we use the 

T2NN-based DEMATEL method to compute and rank the criteria importance. Then the T2NN-based TOPSIS is used to 

rank the requirements. Finally, the applicability of the proposed framework is demonstrated with the help of a numeric 

case study.  

Keywords  

Requirements Prioritization; Requirements Selection; MCDM; DEMETAL; TOPSIS; T2NN. 

1.Introduction 

The ultimate goal of any project, system or service is to meet the users and stakeholders needs and expectations, by 

effectively identifying the requirements and using them as a guide in the project development process. But in most 

projects, there are more requirements than we can address within the projects constrains. Thus, it becomes a major 

challenge for user experience designers, product managers and business analysts during the initial phase of project 

development to find out the list of requirements or features to develop and prioritize some requirements to be 

implemented immediately and some to be reserved for a later release while still producing a system that meets the 

essential needs of users and stakeholders. [1]. Requirements prioritization (RP) is the process of addressing the relative 

importance and urgency of different requirements to cope with the limited resources of projects such as budget and time, 

so prioritization of requirements is a way of maximizing the benefits from finite resources allotted to a particular iteration 

or release of a project. Requirements prioritization is an essential aspect of software release planning. The requirements 

that make the top of this list are given top priority, and the work for these requirements takes precedence over others. 

Prioritization is an essential and ongoing process during any product development process as it is the only way to deal 

with competing demands from stakeholders, clients, end users for limited resources.  

However, Requirements prioritization is a daunting task. Different criteria of software requirements must be considered 

when prioritizing requirements, such as dependency, cost–value, risk, and other criteria [2]. And this only gets even more 
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complicated when stakeholders with different levels of expertise, understanding, and opinions are involved, so the 

prioritized requirements would need to align with different goals such as business, user and technical goals which can 

often be conflicting. That’s why making an informed decision on what to prioritize can be challenging.   

Many useful methods have been successfully developed to execute the RP process, including MoSCoW analysis, Ranking 

Method, Value-Oriented Prioritization (VOP), Planning Game, Weighted Sum Method, Impact-Effort Matrix, Feasibility-

Desirability-Viability Scorecard, RICE method, Kano model, NUF test, Analytical Hierarchy Process (AHP), Minimal 

spanning tree, Cumulative Voting (CV), Multi-factor matrix etc. In the systematic literature review on requirements 

prioritization techniques by [3], 40 techniques have been identified for requirements prioritization from 2009 to 2017. The 

choice of the appropriate RP technique depends on the scope and level of the project as some techniques are too simple to 

deal with large number of requirements, conflicted goals, and multiple decision makers. 

Requirements prioritization is a multi-criteria decision making (MCDM) problem whose objective is to prioritize the 

requirements on the basis of different criteria. As the prioritization process includes the judgement and preferences of 

different stakeholders which can be vague, imprecise, and difficult to represent in exact numbers (like most of the 

prioritization techniques), stakeholders may then use linguistic terminologies instead of exact numbers to specify their 

preferences. Therefore, this paper focuses on implementing a type-2 neutrosophic framework to prioritize requirements 

by considering the different criteria as well as uncertainty and vagueness in stakeholders’ preferences by using the 

neutrosophic approach which is a promising method to deal with uncertainty. The initial step of the proposed RP 

framework is to identify the relevant stakeholders, their goals, and requirements. Second, we use a technique called 

T2NN-based DEMATEL to compute and rank the criteria importance, and we use another technique called T2NN-based 

TOPSIS to rank the requirements.  

The remainder of the paper is organized as follows. Technical background and literature review in Section 2. Section 3 

presents the proposed framework methodology. Section 4 presents a numeric case study to demonstrate the applicability 

of the proposed framework. Finally, we conclude this paper in Section 5. 

2. Technical background and literature review 

In this section, we give a quick overview of requirements prioritization methods then a literature review of previous 

work. 

2.1 Concepts and terminologies 

Business requirements: 

These are the requirements related to what the business wants to achieve from the project, they define the business needs 

and the success criteria. Business requirements include Project timeline and scope, Branding rules, marketing, sales, 

customer services, Competitors, and Stakeholder expectations. [4] 

User requirements: 

User requirements gathering is a process used to understand what typical users will need from a service or a product 

which is about to be designed, it involves understanding the needs, goals, and expectations of the users to identify a list of 

requirements, features, and functionality the new service must have. This helps to ensure that the product or service 

meets the user's needs and expectations. This process answers questions like: Who are the target users, and what are their 

needs and pain points? What usability or accessibility issues that designers need to consider?  

Technical requirements: 
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Technical requirements are related to how the project will be implemented, they answer key technical questions and 

address technical limitations, and they fall into two categories: 

Functional (FRs): Outlines the product’s specifications, technical capabilities, and limitations. 

Non-functional (NFRs): Describes the product’s performance, such as usability, performance, data integrity, and 

maintenance. 

2.2 Requirements prioritization techniques:  

There are several methods to assess the priorities of requirements, [5], for clarity, we classify them into three categories: 

visual plots, Scoreboards, and comparison-based methods. 

Visual Plots: 

Visual plots techniques are a quick, flexible, collaborative, and simplified approach for prioritization, they can work with 

large number of features involving different stakeholders. But their simplicity can have a downside when we need a more 

structured approach for decision making. Some of the techniques are: 

A. Impact-Effort or Value-Complexity Matrix 

This is a four-quadrant prioritization technique that prioritizes the requirements regarding their impact and the effort 

needed to implement them [1]. requirements that have high impact but need low effort, are done right away, on the other 

hand, requirements having a low impact, but high effort are not worth it. Requirements that have high impact but need 

high effort too, are strategic and defensible. And lastly, the requirements that need low effort, and have low impact are 

kept for later in case they become needed.  

 

B. MoSCoW analysis 

MoSCoW analysis was created by Dai Clegg and is used in many Agile frameworks. It breaks requirements into four 

groups: Must Have, Should Have, Could Have, and Will Not Have. Must have requirements represents the mandatory 

requirements that are vital to the product or project. Should have, represents requirements that support core functionality 

and are important to the project or context, but the project or product will still work without them. Could have, refers to 

requirements that are not essential, but wanted and nice to have. Will not have, are requirements that are not needed. 

They don’t present enough value and can be left out. [6] 

 

C. Eisenhower decision matrix 

This technique by Steven Covey [7] breaks requirements into four groups: DO, Schedule, Delegate, Don’t do. based on 

their urgency and importance. Urgent refers to requirements that need immediate action. Failing to address an urgent 

requirement often results in clear consequences. And Important refers to the requirements that contribute to the long-

term goals and require planning and careful action.  

 

D. Kano Model 

This technique by Dr. Noriaki Kano 1984 prioritizes requirements based on the degree they are likely to satisfy and 

delight the end user, by weighing a high satisfactory feature against its implementation investment to determine whether 

to include it in the product roadmap. It clusters the requirements into five categories: Basic features, Performance 

features, Excitement features, Indifferent features, and Dissatisfaction features. [8] 

 

Scoreboards or weighted sum methods (WSM): 
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Sometimes features are complicated and need to be prioritized with more detail than a simple visual plot can do. In this 

case, the scoreboards methods are a great way to score priorities, scoreboards or score matrix can be customized 

according to the specific needs and criteria of the different stakeholders involved, each criteria can be assigned a relative 

weight representing its importance [9]. Some of the famous scoreboard techniques: 

E. Feasibility, Desirability, and Viability Scorecard (FDV) 

FDV was invented by IDEO in the early 2000s [6], it ranks requirements based on feasibility, desirability, and viability. 

Feasibility refers to the degree to which the requirement can be technically feasible. Desirability refers to the degree to 

which the user desires the feature. Finally, viability relates to the benefit the feature will bring to the business. A matrix is 

made with rows representing each of the features and columns representing the three categories, then each of the 

stakeholders assigns a score to each of the feature regarding each category on an importance scale from 1 to 10, then, a 

total score is calculated, and the features are ranked. 

 

F. NUF test 

Similar to the feasibility, desirability and viability scoreboard, this technique developed by Dave Gray [10] prioritizes 

requirements based on three criteria: New, Useful, Usable. New refers to the degree to which the feature is new and 

innovative. Useful refers to how useful a feature is in solving and addressing the user. Feasible assesses the features in 

terms of the resources and effort needed to get implemented. 

 

G. RICE Method 

This prioritization framework developed by Intercom [11] considers four factors: Reach, Impact, Confidence, and Effort to 

prioritize which features to implement. Each feature has a score calculated by multiplying Reach (the number of users 

affected by the feature) by Impact (the value the feature has on users) and Confidence (how valid these estimates are). 

Then dividing the resulting number by Effort (the effort it will take to implement the feature). 

 

Comparison based methods: 

The comparison-based prioritization techniques can lead to the most accurate results [12] [13] , but as the requirements 

list gets bigger, these methods become more complex and time consuming to implement. Two of the most popular 

comparison methods are: 

H. AHP:  

This feature prioritization method is used to identify the most important features of a product or service based on 

multiple objectives. All possible pairs of features are compared, to determine the relative importance of each feature. 

Usually, this is done with a scale from 1 to 9 where 1 represents equal importance and 9 represents that the feature is a lot 

more important. 

 

AHP is considered the most promising prioritization method in comparison with other methods, as it yields the most 

trustworthy results due to the comparison redundancies that makes it less sensitive to judgment errors, it provides 

consistency check and the results are based on a ratio scale to compare the requirements instead of an ordinal scale, which 

is more meaningful, thus the priority distance between the requirements is given [14], [15]. But to come up with a 

prioritization, many comparisons have to be made, which requires a lot of time and effort and can be a challenge task for 

User Experience (UX) teams with limited resources. [16] 

 

I. Bubble Sorting 
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This technique is based on the comparison of two requirements and swapping the one with the most importance to have 

more priority than the other one. The comparison is carried out until the last item is prioritized and sorted. [12] [17]. This 

method can be time consuming when the feature list is large and challenging when different stakeholders are involved. 

Each of these prioritization techniques has its own strengths and weaknesses, but a common limitation is that none of 

these methods considers the interdependency between the criteria when weighing them, also, it’s not an easy process to 

define requirements in numeric values as in the scoreboards’ methods, instead it’s more meaningful to use linguistic 

terms. 

2.3 Requirements Prioritization studies: 

Different MCDM techniques have been used for the prioritization and selection of requirements i.e., Analytic Hierarchy 

Process (AHP), TOPSIS, etc. The previous studies on MCDM for requirements prioritization can be classified into single 

methods studies and combined methods, either using crisp or fuzzy values in the prioritization process.  

[18] Presented a prioritization method using fuzzy AHP to assess the goal-oriented requirements elicitation process, this 

method used binary sort to get the prioritized list of requirements, this method was demonstrated on a case study of ten 

functional requirements, three criteria, for the prioritization of requirements and ten stakeholders’ and five Decision 

makers (DM) participating to prioritize the requirements. [19] proposed a fuzzy based MoSCoW method for software 

requirements prioritization, they applied their proposed method to prioritize the requirements of Library Management 

System (LMS), using the “goal-oriented requirements elicitation process” (GOREP) to determine the ten functional 

requirements and using three non-functional requirements as the criteria. This study didn’t include multiple 

stakeholders’ opinions in the prioritization. [20] proposed a prioritization method combining Planning Games (PG) and 

analytical hierarchy process (AHP) techniques. The proposed method was applied on a Library Management System case 

study. This method reduced the number of pairwise comparisons from 105 to 31 for the same number of FRS and NFRs. 

Another study by [21] used the fuzzy TOPSIS method to rank 10 FRs functional requirements of an Institute Examination 

System (IES), based on 3 NFRs, by five decision makers. [22] Proposed a combined method of fuzzy AHP and fuzzy 

TOPSIS for requirements prioritization. This method was applied for the selection of the requirements of Institute 

Examination Systems, where 16 FRs were identified, 3 NFRs as the criteria and 4 DMs. Fuzzy AHP was used for 

computing the requirements weights and Fuzzy TOPSIS was used to compute the ranking. [23] proposed another 

combined method using MoScoW and AHP, this technique has combined the benefits of both MOSCOW and AHP. It 

performs categorization of 21 requirements using MOSCOW and then ranking using AHP, using AHP in MOSCOW 

reduced the number of comparisons from 210 to 45. [24] conducted a comparative study between fuzzy AHP and fuzzy 

TOPSIS for software requitements selection as they’re the most used methods in this domain, the results of their study 

stated that both fuzzy AHP and fuzzy TOPSIS methods produce the same set of functional requirements, but AHP causes 

the rank reversal issue; unlike TOPSIS. Fuzzy TOPSIS requires less judgment by decision makers compared to fuzzy AHP 

and there is no limit in the FRs and NFRs when using fuzzy TOPSIS, on the other hand, the fuzzy AHP is limited to the 

number of FRs and NFRs as it requires large number of comparisons to be made. 

3. Proposed methodology 

In this study, the T2NNs are used to rank the requirements by using the DEMATEL[25] and TOPSIS[26] methods. The 

DEMATEL method is used to compute the weights of criteria taking into account the interdependency between them, and 

the TOPSIS method is used to rank the requirements. This section shows the steps of the proposed methodology. A 

summary of the proposed methodology is depicted in figure 1. 
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Fig 1. The proposed methodology. 

Phase 1: Identify the relevant stakeholders and their goals 

Step 1: Identify the relevant stakeholders to take part on the prioritization process. 

Step 2: Identify the different goals (Criteria). 

Step 3: Identify the requirements. 

Phase 2: Compute the weights of the criteria using DEMATEL method 

The T2NN-based DEMATEL addresses the vagueness and uncertainty in the stakeholders’ judgements, using the 

indeterminacy degree, DEMATEL is helpful in handling interrelated problems, as all criteria fall into two categories: 

cause and effect, making it a perfect choice for computing the weights of the criteria as in most cases the different criteria 

are interrelated and affect one another, i.e., customer satisfaction can cause higher revenues.  

Step 4: Use the neutrosophic scale to evaluate the different criteria. 

Step 5: Build the pairwise comparison matrix for each stakeholder. 

Step 6: Convert the neutrosophic numbers to crisp values [27].  

Step 7: Aggregate the pairwise comparison matrix by the average method to obtain direct relation matrix. 

Step 8: Normalize the direct relation matrix  [25]. 

𝑁 =
1

max
1≤𝑖≤𝑛

∑ 𝑥𝑖𝑗
𝑛
𝑗=1

                                                                                                                                                                               (1) 

Where 𝑖 = 1,2,3 … . . 𝑚 (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠); 𝑗 = 1,2,3 … . 𝑛 (𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎) 

Step 9: Compute the total relation matrix as: 

𝑅 = 𝑁 × (𝐼 − 𝑁)−1                                                                                                                                                                          (2) 

Step 10: Compute the weights of criteria by the total relation matrix. 

Phase 3: Rank the requirements by the TOPSIS method  
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In T2NN-based TOPSIS, the set of requirements are scored against the set of criteria using linguistic terms for each 

criterion. Each criteria have a direction of preference based on whether more or less of that criterion is preferred. This 

makes the T2NN-based TOPSIS a good choice for requirements prioritization as it simulates the real prioritization process 

where we score a set of requirements against cost/value criteria. 

Step 11: Build the decision matrix of the criteria and requirements. 

Step 12: Use the neutrosophic scale to evaluate the requirements based on the criteria. 

Step 13: Compute the crisp values [27].  

Step 14: Aggregate the decision matrix. 

Step 15: Normalize the decision matrix [26]. 

𝑁𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

                                                                                                                                                                                   (3) 

Step 16: Compute the weighted normalized decision matrix as: 

𝑊𝑁𝑖𝑗 = 𝑁𝑖𝑗 × 𝑊𝑗                                                                                                                                                                           (4) 

Step 17: Compute the ideal and negative solution  

𝑃𝑖
+ =  √∑ (𝑊𝑁𝑖𝑗 − max 𝑊𝑁𝑖𝑗)

2𝑛
𝑗=1                                                                                                                                               (5) 

𝑃𝑖
− =  √∑ (𝑊𝑁𝑖𝑗 − min 𝑊𝑁𝑖𝑗)

2𝑛
𝑗=1                                                                                                                                                (6) 

Step 18: Rank the requirements (alternatives) by the highest value of S as: 

𝑆𝑖 =
𝑃𝑖

−

𝑃𝑖
−+𝑃𝑖

+                                                                                                                                                                                      (7) 

 4 Numeric case study 

The aim of this section is to apply the steps of the proposed framework and show the results of the DEMATEL and 

TOPSIS methods for the prioritization and selection of the requirements of an online banking system (OBS) [2]. We take 

five main online banking requirements as an example, they’ll be referred to as OBSR1, OBSR2, etc. And five NFRs as the 

criteria, they’ll be referred to as OBSC1, OBSC2, etc. 

Phase 1: Identify the stakeholders and their goals 

Step 1: Three stakeholders were chosen to evaluate the criteria and requirements.  

Step 2: Five criteria were identified as the project’s priorities, namely speed, integrity, security, customer satisfaction, and 

services.  

Phase 2: Compute the weights of the criteria using DEMATEL method 

Step 3: T2NNs were used by stakeholders to evaluate the criteria [27].  

Step 4: The pairwise comparison matrix for the five criteria were constructed using linguistic terms, by each of the three 

stakeholders.  

Step 5: The linguistic terms were converted to T2NNs then into crisp values by the score function [27].  
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Step 6: The direct relation matrix is computed by the aggregation matrix as in table 1. 

Step 7: The normalized matrix is built by Eq. (1) as in table 2. 

Step 8: Using Eq. (2) the total relation matrix is built as shown in table 3.  

Step 9: The weights of criteria were computed by the relation matrix as in Fig. 2. From Fig. 2 we can see that security is the 

most important criteria followed by speed, and the criteria with the lowest weight being services.  

 

Fig 2. The weights of criteria. 

Table 1. Aggregated pairwise comparison matrix 

 OBSC1 OBSC2 OBSC3 OBSC4 OBSC5 

OBSC1 1 0.513333 0.663333 0.686667 0.536667 

OBSC2 2.415825 1 0.62 0.606667 0.576667 

OBSC3 2.411569 3.79283 1 0.493333 0.78 

OBSC4 1.477273 1.847643 2.713805 1 0.55 

OBSC5 2.55635 2.238366 1.282051 2.020202 1 

 

Table 2. Normalized pairwise comparison matrix 

 OBSC1 OBSC2 OBSC3 OBSC4 OBSC5 

OBSC1 0.391183 0.135343 0.244429 0.3399 0.536667 

OBSC2 0.945029 0.263655 0.228462 0.3003 0.576667 

OBSC3 0.943364 1 0.368486 0.2442 0.78 

OBSC4 0.577884 0.487141 1 0.495 0.55 

OBSC5 1 0.590157 0.472418 1 1 

 

Table 3. Total relation matrix 

0.139545745

0.148445587

0.199775169
0.213299502

0.298933995

CRITERIA WEIGHTS

OBSC1 OBSC2 OBSC3 OBSC4 OBSC5
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 OBSC1 OBSC2 OBSC3 OBSC4 OBSC5 

OBSC1 -0.37166 -0.27894 -0.14724 -0.11183 -0.15032 

OBSC2 -0.03338 -0.36486 -0.29251 -0.21853 -0.21831 

OBSC3 -0.20654 0.027849 -0.52124 -0.50664 -0.31093 

OBSC4 -0.51107 -0.10905 0.093692 -0.51986 -0.57395 

OBSC5 -0.72436 -0.42023 -0.37067 -0.1451 -0.61035 

 

Phase 3: Rank the requirements by the TOPSIS method  

Step 10: The decision matrix for evaluating the requirements against the criteria were built by each stakeholder using 

linguistic terms, then converted to T2NNs then to crisp values. Then the aggregated decision matrix was calculated as in 

table 4.  

Step 11: The aggregated decision matrix was normalized by Eq. (3) as in table 5. 

Step 12: The weights of criteria were multiplied by the normalization matrix by using Eq. (4) as in table 6. 

Step 13: Then the ideal and negative solutions were computed by Eqs. (5,6). 

Step 14: To get the requirements ranks, we use the values of S computed by Eq. (7), the requirement with the highest 

value of S being the most important one etc., as shown in Fig. 3.  From Fig. 3 we see that requirement 1 is the most 

important requirement, followed by requirement 3, and the least important requirement is requirement 5.  

 

Fig 3. The rank of requirements 

Table 4. Aggregated decision matrix 

 OBSC1 OBSC2 OBSC3 OBSC4 OBSC5 

OBSR1 0.6 0.513333 0.663333 0.686667 0.53 

OBSR2 0.48 0.436667 0.62 0.62 0.58 

OBSR3 0.28 0.32 0.72 0.476667 0.786667 

OBSR4 0.472333 0.35 0.32 0.833333 0.52 

OBSR5 0.28 0.366667 0.286667 0.433333 0.826667 

Rank
0

0.2

0.4

0.6

OBSR1 OBSR2 OBSR3 OBSR4 OBSR5

0.58458842
0.521128689 0.53197095

0.413292946 0.37050299

OBSR1 OBSR2 OBSR3 OBSR4 OBSR5

Rank 0.58458842 0.521128689 0.53197095 0.413292946 0.37050299

REQUIREMENTS RANKS

Rank
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Table 5. Normalized decision matrix 

 OBSC1 OBSC2 OBSC3 OBSC4 OBSC5 

OBSR1 0.609114 0.56913 0.536731 0.489809 0.358147 

OBSR2 0.487291 0.48413 0.501669 0.442255 0.391935 

OBSR3 0.284253 0.354783 0.582583 0.340013 0.53159 

OBSR4 0.479508 0.388043 0.258926 0.594428 0.35139 

OBSR5 0.284253 0.406522 0.231954 0.309103 0.558619 

 

Table 6. Weighted normalized decision matrix 

 OBSC1 OBSC2 OBSC3 OBSC4 OBSC5 

OBSR1 0.084999 0.084485 0.107226 0.104476 0.107062 

OBSR2 0.067999 0.071867 0.100221 0.094333 0.117163 

OBSR3 0.039666 0.052666 0.116386 0.072525 0.15891 

OBSR4 0.066913 0.057603 0.051727 0.126791 0.105042 

OBSR5 0.039666 0.060346 0.046339 0.065931 0.16699 

 

Conclusions 

In this work, we present a new framework for requirements prioritization using the DEMATEL and TOPSIS methods 

under the neutrosophic environment. The DEMATEL method is used to compute the criteria weights, while the TOPSIS 

method was later used to rank the requirements based on the identified criteria. The proposed framework was explained 

using a numeric case study of an OBS, where three stakeholders were chosen to participate in the RP process, five criteria 

and five requirements were selected to be used as an example. The proposed framework has shown few interesting 

advantages over previous methods, The DEMATEL method used in the framework addresses the interdependency 

between the different criteria, as some criteria can influence and cause other criteria. The TOPSIS method used requires 

few stakeholders’ judgements compared to other method such as AHP, making it the perfect choice for dealing with large 

number of requirements, it’s also more meaningful and easier for stakeholders as it simulates the basic prioritization 

matrix where a set of requirements are evaluated against a set of criteria. The TOPSIS method also avoids the rank 

reversal issue, thus, making the proposed framework more dynamic. The neutrosophic approach used in this framework 

addresses the imprecision and vagueness in the stakeholders’ judgements, making it possible for stakeholders to use 

linguistic terms instead of numbers and scales which can be understood differently by everyone, which can drive 

inaccurate results. For future research, we plan to test this framework on a large project to further validate its results. 
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Abstract. It can be difficult to figure out how to satisfy customers’ ever rising demands and keep up one’s

market competitiveness while containing controllable costs. Inefficiencies in the supply chain network are thus

discovered by our investigation. Finding the best allocation order for products from diverse sources going to

numerous destinations is the primary objective. Moreover, The information that is readily available is typically

not clear-cut in real-world circumstances. So, it gives rise to the uncertain transportation problem. With

the aim of helping the decision maker to have the suitable transportation plan with real suitation, in this

paper, a solution procedure for multi objective transportation problem involving uncertainvariables has been

studied under neutrosophic environment. A chance constraint model is constructed foruncertain multi objective

transportation problem and then a neutrosophic compromise approach is used toobtain the pareto optimal

solution for the problem. As neutrosophic sets are built with truth, indeterminacyand falsity membership

functions, they are capable to help the decision maker in this complex transportation model. A numerical

example has been reported to demonstrate the efficiency of the proposed approach towardsthe best compromise

solution and a comparison study has been made with the existing methods.

Keywords: Multi objective transportation problem; Chance constraint programming; Neutrosophic set theory.

—————————————————————————————————————————-

1. Introduction

In the real world, transportation planning decision problems play a vital role in logistics

and supply chain management with diverse challenges to be addressed. A transportation

planning problem involves a large number of factors such as shipment, distance, delivery time;

transportation cost etc and are defined on the basis of quantitative evaluation. More often

than not, the market scenario keeps varying and posing challenges, because of which various
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objective functions are needed related to a transportation problem. For example maximizing

the profit of the transportation, minimizing the transportation cost and toll tax etc. Since the

cost parameters of various objectives of the transportation problem are not related to each

other, these are considered as conflicting and commensurable model of the multi objective

transportation problem (MOTP). In the present-day scenario, most of the transportation

planning decisions is made under uncertain environment due to many unpredictable factors.

Traditional methods failed to capture the decision maker’s ambiguities and are non-effective to

solve these complex ill-defined models. Many researchers had developed different stochastic,

fuzzy and uncertain models to solve complex uncertain transportation engineering problems.

In this paper, we’ve proposed a solution procedure for multi-objective transportation prob-

lem whose parameters are all uncertain variables. Motivated by neutrosophic sets studied by

Smarandache [19] which provides a general structure to deal with uncertainty, a compromise

solution to the proposed model is obtained. The term “neutrosophy”means the knowledge of

neutral thought and considers that all elements can be represented by three degrees namely-

truth, falsity, indeterminacy which lie between 0 and 1. Since its establishment by Smaran-

dache [25], some attention has been developed for optimization aspects [20]. Rizk M [21]

proposed an algorithm based upon MOTP under neutrosophic environment. Since neutro-

sophic models effectively assist the decision-maker by incorporating satisfaction, satisfaction

to some degree, and dissatisfaction of objective functions in determining the best compromise

solution. we have applied the neutrosophic technique for the first time to the MOTP whose

parameters are uncertain normal variables.

The rest of the paper is structured as follows. Section 2 contains the existing research papers

related to the proposed work. In section 3, weve reviewed the preliminaries of uncertainty the-

ory. In section 4, the mathematical model of uncertain multi objective transportation model

is introduced. Deterministic multi objective transportation model, uncertain MOTP model

and chance constraint programming model are presented in the subsections 4.1,4.2 and 4.3

respectively. In section 5, a neutrosophic compromise programming approach is introduced

and we presented the preliminaries of neutrosophic set. In subsection 5.1, neutrosophic de-

cision making is explained and in subsection 5.2, an algorithm to solve uncertain MOTP is

presented. A numerical example has been given in section 6, to understand the applicability

of the proposed model and compared with a existing approach. The result and discussion,

Implications, and the conclusion have been presented in Section 7,8 and 9 respectively.

2. Literature Review

The basic study of the transportation problem (TP) was carried over by Hitchcock [1] and

Koopmans [2] played a significant role in its development. Abdelaziz et al [3] had proposed
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a compromise chance constraint programming model (CCCP) for multi-objective stochastic

programming portfolio models.

Aouni et al [4], for the stochastic goal programming model, explicitly introduced the

decision-makers preferences adapted chance-constrained-program. A fuzzy multi-objective

programming (FMOP) vendor selection model was developed by Wu et al [5]. Bit et al [6]

presented an approach to multicriteria decision making transportation problem under fuzzy

environment. Zimmerman [7], using fuzzy set theory, solved the multi-objective transportation

problem by considering suitable membership functions. A fuzzy goal programming approach

to determine an optimal compromise solution for the multi-objective transportation problem

by assuming that each objective function has a fuzzy goal was proposed by Zangiabadi and

Maleki [8]. Gupta et al [28] proposed a model for the probabilistic fuzzy goal multi-objective

supply chain network (PFG-MOSCN) and discussed the solution procedure for the same.

Although fuzzy set theory proposed by Zadeh [9] is widely applied in many uncertain models,

it could not handle human uncertainty in some contexts involving incomplete information. As

an attempt to deal with such indeterminacies, Liu founded uncertainty theory [10,11]. Nowa-

days, uncertainty theory is considered as a mathematical branch for modeling belief degrees

and has been adopted in many mathematical models like uncertain programming, uncertain

logic, uncertain graph, uncertain statistics and uncertain finance [12–14]. The belief degree

of an uncertain event to happen is measured by uncertain measure. The usage of random

uncertain variable and chance measure was also introduced by Liu [15]. Post that, he also

presented uncertain random programming to model optimization problems containing more

than one random variable. Gao [16], in his paper, newly proposed certain properties based

on continuously uncertain measures. Seyyed Mojtaba Chasence [17] introduced uncertain

linear fractional programming problem and also presented three methods for conversion of

uncertain optimization problem into an equivalent deterministic problem. Liu [18] provided

a new uncertain multi objective programming and introduced uncertain goal programming as

a compromised method to solve multi-objective programming with the uncertain variables,

considering the operational law of uncertain variables through inverse uncertainty distribu-

tion. Gupta et al [29] formulated the model of an Uncertain multi-objective capacitated

transportation problem with mixed constraints. Latter, Srikant Gupta et al [30] proposed the

procedure for solving multi-objective capacitated transportation problem under an uncertain

environment. S Das et al [39] presented a solution procedure for solving fully fuzzy linear

programming problems whose parameters are considered as the trapezoidal fuzzy number.

Utilising the aggregate ranking function, Sapan Kumar Das [40] constructed a new framework

for neutrosophic integer programming problems involving triangular neutrosophic numbers.

SK Das’s [41] studied a transportation problem involving pentagonal Neutrosophic numbers
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where in the supply, demand, and cost of transportation were all ambiguous . Constraints

under neutrosophic environment Das et al [42] proposed the solution procedure for solving

the Linear Programming Problems with Mixed . Motivated by the above said works, we have

proposed the solution procedure for solving the uncertain MOTP by using the neutosophic

techniques.

Table 1. Comparision between existing transportation models with proposed

model

Author Nature of the objective Environment Methodology Used

Single Multiple

Lakhveer et

al [31]

× ✓ Crisp Using the weighted

approach

Subhakantra

Dash et al [32]

✓ × Rough Using the uncertainity

distribution

Bharati et al [33] × ✓ Interval valued

intuitionistic

fuzzy sets

Based on extended

Yager’s function Interval

valued intuitionistic

fuzzy sets

Haiying Guo et

al [34]

✓ × Uncertainty

theory

Using the simplex

method

Thamaraiselvi [35] ✓ × Neutrosophic The arithmetic

operations on single

valued neutrosophic

trapezoidal numbers

areemployed

RizkM.Rizk Al-

lah [36]

× ✓ Neutrosophic Using Neutrosophic

compromise

programming approach

Somnath

maity [37]

✓ × Type-2 fuzzy Using fuzzy number

approximation

Deshabrata Roy

Mahapatra [38]

× ✓ stochastic Using fuzzy goal

programming

Proposed Model ✓ ✓ Uncertainty

theory

Using BOTH

uncertainty theory and

Neutrosophic method

The current research on the transportation issue is presented in Table 1. We compared the

transportation problems on the basis of the numbers of objectives and the various types of
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environments. To the best of our knowledge, no one has investigated a multi-objective trans-

portation problem with the simultaneous goals of maximization of profit, minimization of toll

tax, and minimization of transportation cost in both neutrosophic and uncertain environment.

We have used both the methods to bring the level of indeterminancy down to the maximum.

3. Preliminaries

The concepts and definitions which will be used in the subsequent discussions has been

presented in the section.

Definition 3.1. [13] [10] Let L be a σ - algebra of collection of events Λ of a universal set

Γ. A set function M is said to be uncertain measure defined on the σ - algebra where M{Λ}
indicate the belief degree with which we believe that the event will happen; It satisfies the

following axioms:

(1) Normality Axiom: For the universal set Γ, we have M{Γ} = 1.

(2) Duality Axiom: For any event Γ, we have M{Λ}+M{ΛC} = 1.

(3) Subadditivity Axiom: For every countable sequence of events Λ1,Λ2, · · · , we have

M{
⋃∞

i=1 Λi} ≤
∑∞

i=1M{Λi}.
(4) Product Axiom: Let (Γi,Li,Mi) be uncertainty

spaces for i = 1, 2, 3, · · · The product uncertain measure is an uncertain measure holds

M{Π∞
i=1∧i} = ∧∞

i=1M{∧i} where ∧i ∈ Li for i = 1, 2, 3, · · ·∞.

Definition 3.2. [10] A function ξ : (Γ,L,M) → R is said to be an uncertain variable such

that {ξ ∈ B} = {γ ∈ Γ/ξ(γ) ∈ B} is an event for any Borel set B of real numbers.

Definition 3.3. [10] An uncertain variable ξ defined on the uncertainty space (Γ,L,M) is

said to be non- negative if M{ξ < 0} = 0 and positive if M{ξ ≤ 0} = 0.

Definition 3.4. [10] The uncertainty distribution ϕ(x) of an uncertain variable ξ for any real

number x is defined by ϕ(x) = M{ξ ≤ x}.

Definition 3.5. Let ϕ(x) be the regular uncertainty distribution of an uncertain variable ξ.

Then ϕ−1(α) is called inverse uncertainty distribution of ξ and it exists on (0, 1).

Definition 3.6. [10] The uncertain variable

ξi (i = 1, 2, 3, · · ·n) are said to be independent if

M

{
n⋂

i=1

(ξi ∈ Bi)

}
= ∧n

i=1M(ξi ∈ Bi) (1)

where Bi(i = 1, 2, 3, · · ·n) are called Borel sets of real numbers.
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Theorem 3.7. Let ξ be an uncertain variable with regular uncertain distribution function ψ.

Then its α - optimistic value and α - pessimistic values are

ξsup(α) = ψ−1(1− α), ξinf(α) = ψ−1(α) (2)

Theorem 3.8. [11] The regular uncertainty distributions of independent uncertain variables

ξi(i = 1, 2, 3, · · ·n) are ϕi(i = 1, 2, 3, · · ·n) respectively. If the function

f(x1, x2, · · · , xn) is strictly increasing and strictly decreasing with respect to x1, x2, · · · , xm and

xm+1, xm+2, · · · , xn respectively then the uncertain variable ξ = f(ξ1, ξ2, · · · , ξn) has an inverse

uncertainty distribution

ψ−1(α) =f(ϕ−1
1 (α), ϕ−1

2 (α), · · · , ϕ−1
m (α),

ϕ−1
m+1(1− α), ϕ−1

m+2(1− α), · · · , ϕ−1
n (1− α))

(3)

Definition 3.9. [10] The expected value of uncertain variable ξ is given by

E(ξ) =

∫ ∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx (4)

This is valid only if at least one of the integral is finite.

Theorem 3.10. [22] Let ϕi(i = 1, 2, 3, · · ·n) be regular uncertainty distributions of indepen-

dent ξi(i = 1, 2, 3, · · ·n) with respectively. If the function f(x1, x2, · · · , xn) is strictly increasing

and strictly decreasing w.r.to

x1, x2, · · · , xm and xm+1, xm+2, · · · , xn respectively, then

E(ξ) =

∫ 1

0
f(ϕ−1

1 (α), · · · , ϕ−1
m (α),

ϕ−1
m+1(1− α), · · · , ϕ−1

n (1− α))dα

(5)

From the above theorem, we know that

E(ξ) =

∫ 1

0
ϕ−1(α)dα (6)

where ξ is an uncertain variable with regular uncertainty distribution Φ.

Definition 3.11. [10] A linear uncertain variable ξ is defined as

ϕ(x) =


0 ifx ≤ 1

x− l

m− l
if l ≤ x ≤ m

1 ifx ≥ m

(7)

represented by L(l,m), where l and m ∈ R with l < m.

The inverse distribution function of a linear uncertain variable L(l,m) is given by

ϕ−1(α) = (1− α)l + αm (8)
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and its expected value is given by

E(ξ) =
l +m

2
(9)

Definition 3.12. [10] The distribution function of a normal uncertain variable is

ϕ(x) =

1 + exp

π(µ− x)

σ
√
3


−1

, x ≥ 0 (10)

and it is denoted as N(µ, σ);µ, σ ∈ R with σ > 0.

The inverse uncertainty distribution and the expected value of N(µ, σ) is defined as follows

ϕ−1(α) = µ+
σ
√
3

π
ln

α

1− α
(11)

E(ξ) = µ (12)

4. Uncertain Multi objective transportation model

In this section, we introduce the mathematical formulation of uncertain multi objective

transportation problem (UMOTP). For the formulation of UMOTP, the following assump-

tions such as indexes, decision variables and parameters are considered as follows.

i index for origins

j index for destinations

k index for objective function

xij
quantity transported from ith origin to jth

destination

Zk kth objective function

ckij the unit cost of transportation from ith origin

to jth destination for the kth objective

function
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ai total amount of product available at orgin i

bj total demand of the product at destination j

Zk(x : ξ) kth objective function with uncertain variable

ξkij uncertain cost coefficient of the kth objective

γi uncertain availability at origin i

ηj uncertain capacity of destination j

α
confidence level for objective function,

α ∈ (0, 1)

αi
confidence level for availability constraint,

αi ∈ (0, 1)

βj
confidence level for destination constraint,

βj ∈ (0, 1)

ψk regular uncertainty distribution for the

independent uncertain variable ξk

ψk
ij

regular uncertainty distribution for the

independent uncertain variable ξkij

ϕi
regular uncertainty distribution for the

independent uncertain variable γi

θj
regular uncertainty distribution for the

independent uncertain variable ηj

N neutrosophic set

X space of objects

TN truth membership function

IN indeterminacy membership function

FN falsity membership function

tk, sk predetermined numbers in (0,1).

Uk upper bound of the kth objective

Lk lower bound of the kth objective

DN neutrosophic decision set

Gk neutrosophic goal

Ci neutrosophic constraint

λT , λI , λF auxiliary parameters
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4.1. Deterministic model of Multi objective transportation problem

The mathematical formulation of deterministic multi objective transportation problem is

MinZk(x) =
m∑
i=1

n∑
j=1

ckijxij (k = 1, 2, · · · ,K)

subject to

n∑
j=1

xij ≤ ai, i = 1, 2, · · · ,m

m∑
i=1

xij ≥ bj , j = 1, 2, · · · , n

xij ≥ 0,∀i, j

(13)

Here ckij , ai, (i = 1, 2, · · · ,m) and bj , (j = 1, 2, · · · , n) are the cost, supply and demand pa-

rameters of multi objective transportation problem respectively which are represented by crisp

numbers. Without loss of generality, it may be considered that ai ≥ 0,∀i, bj ≥ 0,∀j and

ckij ≥ 0, ∀k and
∑m

i=1 ai =
∑n

j=1 bj .

4.2. Mathematical model for uncertain multi objective transportation problem

In real life scenario, planning is made in prior before the transportation process. But many

uncertain factors like road conditions, climate changes, changes in sales due to attitude of

customers, operate parallelly, making demand, supply and transportation cost remain uncer-

tain. Hence, cost, supply and demand parameters ckij , ai and bj respectively are considered as

uncertain variables and are represented by ξkij , γi and ηj .

Then the mathematical model for uncertain multi objective transportation problem is defined

as

MinZk(x; ξ) =
m∑
i=1

n∑
j=1

ξkijxij (k = 1, 2, · · · ,K)

subject to
n∑

j=1

xij ≤ γi, i = 1, 2, · · · ,m

m∑
i=1

xij ≥ ηj , j = 1, 2, · · · , n

xij ≥ 0, ∀i, j

(14)

As we cannot deal with uncertain environment directly, we have to convert(14) into an equiva-

lent deterministic model by using expected value model or chance constrained model or taking

confidence level on the constraint functions and expected value on the objective function. As

chance constraint programming model provides most suitable solutions [23], we make use of

the chance constraint model for uncertain multi objective transportation problem as shown

below.
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4.3. Chance constraint model of UMOTP

Let α be the predetermined confidence level with α ∈ (0, 1). The decision maker aims to

get a smallest value f̃ such that uncertain variable Zk(x : ξ) ≤ f̃ with the predetermined

confidence level α.

Definition 4.1. The solution vector x = (xij) ≥ 0 is a feasible solution of the model (14), if

it holds the below constraints.

M


m∑
i=1

n∑
j=1

ξkijxij ≤ f̃

 ≥ α, k = 1, 2, · · · ,K (15)

M


n∑

j=1

xij ≤ γi

 ≥ αi, i = 1, 2, · · · ,m (16)

M

{
m∑
i=1

xij ≥ ηj

}
≥ βj , j = 1, 2, · · · , n (17)

Definition 4.2. A feasible solution x∗ is said to be pareto optimal solution of the model (14)

if there exists no other feasible solution x such that

Min
{
f̃/M

{
Zk(x : ξ) ≤ f̃

}
≥ α

}
≤ Min

{
f̃/M

{
Zk(x

∗ : ξ) ≤ f̃
}
≥ α

}
∀k = 1, 2, · · · ,K

(18)

Definition 4.3.

Min
{
f̃/M

{
Zk(x : ξ) ≤ f̃

}
≥ α

}
< Min

{
f̃/M

{
Zk(x

∗ : ξ) ≤ f̃
}
≥ α

}
for atleast one k = 1, 2, · · · ,K

(19)

The chance constraint programming model of UMOTP can be constructed as follows

Minf̃

subject to

M


m∑
i=1

n∑
j=1

ξkijxij ≤ f̃

 ≥ α, k = 1, 2, · · · ,K

M


n∑

j=1

xij ≤ γi

 ≥ αi

M

{
m∑
i=1

xij ≥ ηj

}
≥ βj

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(20)

Here, the confidence levels α, αi, βj are predetermined from the interval (0,1).
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Definition 4.4 (Pareto optimal solution). Pareto optimal solution is defined as a set of ‘non-

inferior’ solutions in the objective space defining a boundary beyond which none of the objec-

tives can be improved without sacrificing at least one of the other objectives.

Theorem 4.5. Suppose that ξkij , γi, ηj are independent uncertain variables with regular un-

certainty distribution ψk
ij , ϕi, θj respectively. The equivalent deterministic model of chance

constraint model is

MinZ∗
k =

m∑
i=1

n∑
j=1

(ψk
ij)

−1(α) xij (k = 1, 2, · · · ,K)

subject to

n∑
j=1

xij ≤ (ϕi)
−1(1− αi), i = 1, 2, · · · ,m

m∑
i=1

xij ≥ (θj)
−1(βj), j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(21)

Proof:

Assume that uncertainty variable ξk =
∑m

i=1

∑n
j=1(ξ

k
ij)xij has distribution function ψk.

Let f(y11, y12, · · · , ymn) = y11x11 + y12x12 + · · ·+ ymnxmn

It is clear that this function is strictly increasing with respect to y11, y12, · · · , ymn then by the

theorem (3.8), the uncertain variable ξk has an inverse uncertainty distribution.

(ψk)
−1(α) =

n∑
j=1

m∑
i=1

(ψk
ij)

−1(α)xij

So, we have

M


n∑

j=1

m∑
i=1

(ξij)
kxij ≤ f̃

 ≥ α

⇔ ψk(f̃) ≥ α

⇔ (ψk)−1(α) ≤ f̃

(i.e.)

n∑
j=1

m∑
i=1

(ψk
ij)

−1(α)xij ≤ f̃
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For the constraints, we have

M


n∑

j=1

xij ≤ γi

 ≥ αi

⇔ M


n∑

j=1

xij − γi ≤ 0

 ≥ αi

⇔
n∑

j=1

xij − (φi)
−1(1− α) ≤ 0

⇔
n∑

j=1

xij ≤ (φi)
−1(1− αi)

Similarly M{
∑m

i=1 xij ≥ ηj} ≥ βj is equivalent to∑m
i=1 xij ≥ (θj)

−1(βj), j = 1, 2, · · · , n.
Hence the theorem is proved.

Corollary 4.6. Let xij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n be the non negative decision variable

and ξk, k = 1, 2, · · · ,K are independently uncertain variables with expected values eij , i =

1, 2, · · · ,m, j = 1, 2, · · · , n and the variances σ2ij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n respectively.

If ξ be a normal uncertain variable N(e, σ), then for any α ∈ (0, 1), the model (21) can be

converted into the following model.

Min (eij)k +
(σij)k

√
3

π
ln

α

1− α
, k = 1, 2, · · · ,K

subject to
n∑

j=1

xij ≤ ei +
σi
√
3

π
ln

1− αi

αi
i = 1, 2, · · · ,m

m∑
i=1

xij ≥ e∗j +
σ∗j

√
3

π
ln

βj
1− βj

, j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(22)

5. Neutrosophic compromise programming approach

In this section first we introduce some basic definitions of neutrosophic set theory and then

we will discuss about neutrosophic compromise programming approach.

Definition 5.1. A neutrosophic set N defined in the universal set X is characterized by truth

membership function TN (x), indeterminacy membership function

IN (x) and a falsity membership function FN (x) and is denoted by

N = {⟨x, TN (x), IN (x), FN (x)⟩ |x ∈ X} (23)
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where TN (x), IN (x), FN (x) are real standard or non standard subsets belonging to]0- ,1+[.

Also the membership grades of truth, indeterminacy and falsity are the functions from X to

]0- ,1+[. Also we have 0− ≤ supTN (x)+ sup IN (x)+ supFN (x) ≤ 3+ as there is no restriction

on the sum of TN (x), IN (x)&FN (x).

Wang [24] introduced Single valued Neutrosophic set (SVNS) in engineering problem as it is

computationally more comfortable.

Definition 5.2. [24] A single valued neutrosophic set N defined on X is expressed as

N = {⟨x, TN (x), IN (x), FN (x)⟩ |x ∈ X} where

TN (x), IN (x), FN (x) ∈ [0, 1], ∀x ∈ X and

0 ≤ TN (x), IN (x), FN (x) ≤ 3. Clearly, SVNS is subset of neutrosophic set.

Definition 5.3. [25] Let P and Q are the two Single Valued Netuosophic Sets (SVNSs). Then

their union also a SVNS and their membership functions are given by

TP∪Q(x) =Max{TP (x), TQ(x)};

IP∪Q(x) =Max{IP (x), IQ(x)};

FP∪Q(x) =Min{FP (x), FQ(x)}

Definition 5.4. [25] Let P and Q are SVNS, then their intersection also a SVNS with the

following membership functions

TP∩Q(x) =Min{TP (x), TQ(x)};

IP∩Q(x) =Min{IP (x), IQ(x)};

FP∩Q(x) =Max{FP (x), FQ(x)}

Definition 5.5. The complement of the neutrosophic set N is denoted by c(N) and is defined

by Tc(N)(x) = FN (x), Ic(N)(x) = 1− IN (x), Fc(N)(x) = TN (x), ∀x ∈ X

5.1. Neutrosophic Decision making

In this section, a neutrosophic approach to solve a deterministic model (21) is presented.

Indeterminacy part present in the optimization problem considered, is handled by neutro-

sophic programming approach as it simultaneously maximizes the degree of satisfaction(truth)

and the degree of dissatisfaction(falsity) and minimizes the degree of satisfaction to some ex-

tent(Indeterminacy) of neutrosophic decis ion [21, 26]. A conjunction of neutrosophic goal Gk

and neutrosophic constraint Ci is the neutrosophic decision set DN , that is,

DN =

(
K⋂
k=1

Gk

)(
m⋂
i=1

Ci

)
= {⟨x, TD(x), ID(x), FD(x)⟩ |x ∈ X}
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where

TD(x) = min

{
TG1(x), TG2(x), · · · , TGk

(x);

TC1(x), TC2(x), · · · , TCm(x);

}
, x ∈ X

ID(x) = min

{
IG1(x), IG2(x), · · · , IGk

(x);

IC1(x), IC2(x), · · · , ICm(x);

}
, x ∈ X

FD(x) = max

{
FG1(x), FG2(x), · · · , FGk

(x);

FC1(x), FC2(x), · · · , FCm(x);

}
, x ∈ X

where TD(x), ID(x), FD(x) are truth, indeterminacy and falsity membership functions respec-

tively of neutrosophic decision set DN . To formulate the membership function for the deter-

ministic model (21) for the uncertain MOTP, the upper bound Uk and lower bound Lk for

each objective function is calculated. By solving K objective function individually subject to

the constraints we obtained k solutions x1, x2, · · · , xK .

To find the bounds for each objective function, these K solutions are substituted in each

objective function.

(i.e.)Uk = max{Fk(x1), Fk(x2), · · · , Fk(xK)}

and Lk = min{Fk(x1), Fk(x2), · · · , Fk(xK)}
(24)

Hence, the upper and lower bounds for truth, falsity and indeterminacy membership function

are given by

UT
k = Uk, L

T
k = Lk

UF
k = UT

k , L
F
k = LT

k + tk(U
T
k − LT

k )

U I
k = LT

k + sk(U
T
k − LT

k ), L
I
k = LT

k

 (25)

where tk, sk are predetermined real numbers in (0,1).

Using the above upper and lower bounds, the membership functions of truth, indeterminacy

and falsity of model (21) can be interpreted as follows:

Tk(Z
∗
k(x)) =


1 ifZ∗

k(x) < LT
k

UT
k − Z∗

k(x)

UT
k − LT

k

ifLT
k ≤ Z∗

k(x) ≤ UT
k

0 ifZ∗
k(x) > UT

k

(26)

Ik(Z
∗
k(x)) =


1 ifZ∗

k(x) < LI
k

U I
k − Z∗

k(x)

U I
k − LI

k

ifLI
k ≤ Z∗

k(x) ≤ U I
k

0 ifZ∗
k(x) > U I

k

(27)

Fk(Z
∗
k(x)) =


1 ifZ∗

k(x) > UF
k

ZF
k − L∗

k(x)

UF
k − LF

k

ifLF
k ≤ Z∗

k(x) ≤ UF
k

0 ifZ∗
k(x) < LF

k

(28)
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where U
(.)
k ̸= L

(.)
k for all objectives. The value of this membership function is set to one, if

U
(.)
k = L

(.)
k . Following the Bellman and Zadeh [26], the neutroshopic optimization model of

(21) can be stated as follows

Max min
k

{Tk(Z∗
k(x))} : k = 1, 2, · · · ,K

Min max
k

{Fk(Z
∗
k(x))} : k = 1, 2, · · · ,K

Max min
k

{Ik(Z∗
k(x))} : k = 1, 2, · · · ,K

where

Min Z∗
k(x) =

m∑
i=1

n∑
j=1

(ψk
ij)

−1(α)xij , k = 1, 2, · · · ,K

subject to

n∑
j=1

xij ≤ (φi)
−1(1− αi) i = 1, 2, · · · ,m

m∑
i=1

xj ≥ (θj)
−1(βj), j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(29)

By using the auxiliary parameters, the above problem can be transformed as

MaxλT

MaxλI

MinλF

subject to

Tzk(x) ≥ λT , Izk(x) ≥ λI , Fzk(x) ≤ λF
n∑

j=1

xij ≤ (φi)
−1(1− αi) i = 1, 2, · · · ,m

m∑
i=1

xij ≥ (θj)
−1(βj), j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

λT ≥ λI , λT ≥ λF , λT + λI + λF ≤ 3, λT , λI , λF ∈ [0, 1]

(30)
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The simplified model of uncertain MOTP (21) can be represented as follows:

MaxλT − λF + λI

subject to

n∑
j=1

xij ≤ (φi)
−1(1− αi), i = 1, 2, · · · ,m

m∑
i=1

xij ≥ (θj)
−1(βj), j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

Z∗
k(x) + (UT

k − LT
k )λT ≤ UT

k

Z∗
k(x) + (U I

k − LI
k)λI ≤ U I

k

Z∗
k(x)− (UF

k − LF
k )λF ≤ LF

k

λT ≥ λI , λT ≥ λF , λT + λI + λF ≤ 3,

λT , λI , λF ∈ [0, 1]

(31)

5.2. Algorithm for solving uncertain MOTP under Neutrosophic environment

In this section, the algorithm for solving uncertain MOTP under neutosophic environment

to obtain the pareto optimal solution is presented.

Step 1: Convert the Uncertain MOTP (14) into a deterministic model by using chance

constraint model (21).

Step 2: Solve each objective function individually subject to the constraints.

Let x1, x2, · · · , xK represent the respective ideal solutions for k objective transportation

problems. If all k objectives have same solutions x1 = x2 = · · · = xK = {xij}m,n
i,j=1 choose

one of them as optimal compromise solution, otherwise go to step 3.

Step 3: Calculate the lower and upper bounds for all objectives functions

U1 = Max {F1(x1), . . . , F1(xk)}

U2 = Max {F2(x1), . . . , F2(xk)}

...

Uk = Max {Fk(x1), . . . , Fk(xk)}

L1 = Min {F1(x1), . . . , F1(xk)}

...

Lk = Min {Fk(x1), . . . , Fk(xk)} (32)
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Step 4: Define the truth, indeterminacy and falsity membership functions of the objective

functions and constraints using equations (26), (27), (28).

Step 5: Formulate the neutrosophic compromise programming model for given the uncertain

MOTP using the model (31) and solve it for Pareto optimal solution.

6. Illustrative example

Illustrative example from Gurupada et al [27] is considered to demonstrate the proposed

approach where all the multi objective functions parameters are considered to be uncertain.

The decision maker aims to distribute the product from three sources namely M1,M2,M3

to 4 destinations namely C1, C2, C3 and C4 in the planning process he likes to optimize the

following objective function as

* Minimize the transportation cost (Z1)

* Minimize the toll tax (Z2)

* Maximize the profit (Z3)
Table 2. Transportation cost C1

ij (in $) and loss of time (in week)

C1 C2 C3 C4

M1 (20, .1) (18, .1) (22, .1) (24 , .1)

M2 (10, 0) (12, .2) (15, 0) (13 , 0)

M3 (22, 0) (20, .1) (24, 1) (23, .15)

Table 3. Toll tax cost C2
ij (in $) for transportation goods

C1 C2 C3 C4

M1 5 6 4 3

M2 6 5 5 4

M3 9 8 8 10

Table 4. Cost parameters C3
ij related to profit (in $) and loss of time (in

week).

C1 C2 C3 C4

M1 (3, 0.1) (3.5, 0.1) (2.5, 0.1) (5 ,0.1)

M2 (3, 0) (6, 0.2) (4, 0) (4 ,0)

M3 (4, 0) (3, 0.1) (4, 1) (5, 0.15)
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The supply parameters a1, a2 and a3 of mines M1,M2 and M3 the demand parameters

b1, b2, b3 and b4 of cities C1, C2, C3 and C4 follow normal distribution N(e1i , σ
1
i ), for i = 1, 2, 3

and N(e2j , σ
2
j ), for j = 1, 2, 3, 4 respectively. The data for supply ai and demand bj ,∀i, j are

presented in table 4 and 5.

Table 5. Uncertain supply parameters ai.

M1 M2 M3

(55, 4) (60, 5) (70, 4)

Table 6. Uncertain demand parameters bj .

C1 C2 C3 C4

(40, 3) (36, 4) (35, 5) (40, 3)

Step 1:

Assume the confidence level as α = 0.9, αi = 0.9 and βj = 0.9 for all i = 1, 2, 3 and j = 1, 2, 3, 4.

By using the theorem (4.5), the equivalent deterministic model of the problem is

MinZ1=MinZ∗
1 = 20.1x11 + 18.1x12 + 22.1x13 + 24.1x14 + 10x21

+12.2x22 + 15x23 + 13x24 + 22x31 + 20.1x32 + 25.2x33 + 23.2x34

MinZ2=MinZ∗
2 = 5x11 + 6x12 + 4x13 + 3x14 + 6x21 + 5x22

+5x23 + 4x24 + 9x31 + 8x32 + 8x33 + 10x34

MaxZ3=MinZ∗
3 = −3.1x11 − 3.6x12 − 2.6x13 − 5.1x14 − 3x21

−6.2x22 − 4x23 − 4x24 − 4x31 − 3.1x32 − 5.2x33 − 5.2x34

Subject to

x11 + x12 + x13 + x14 + x15 = 50.2

x21 + x22 + x23 + x24 + x25 = 53.9

x31 + x32 + x33 + x34 + x35 = 65.2

x11 + x21 + x31 = 43.6

x12 + x22 + x32 = 40.8

x13 + x23 + x33 = 41.1

x14 + x24 + x34 = 43.6

x15 + x25 + x35 = 0.2

Step 2: Solving the above objective functions individually, we get

x1 = (0, 9.1, 41.1, 0, 0, 43.6, 0, 0, 10.3, 0, 0, 31.7, 0, 33.3, 0.2)

x2 = (0, 0, 6.6, 43.6, 0, 0, 19.4, 34.5, 0, 0, 43.6, 21.4, 0, 0, 0, 2)

x3 = (6.6, 0, 0, 43.6, 0, 12.9, 40.8, 0, 0, 0.2, 24.1, 0, 41.1, 0, 0)
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Clearly x1 ̸= x2 ̸= x3.

Step 3: By using the above solutions, we have

Z∗
1(x1) = 3052.65,Z∗

1(x2) = 3340.14,Z∗
1(x3) = 3376.1

Z∗
2(x1) = 1108.4,Z∗

2(x2) = 990.3,Z∗
2(x3) = 990.9

Z∗
3(x1) = −583.05,Z∗

3(x2) = −738.54,Z∗
3(x3) = −844.6

The upper and lower bounds of each objective functions are as follows:

UZ∗
1
= 3376.1, LZ∗

1
= 3052.65, UZ∗

2
= 1108.4,

LZ∗
2
= 990.3, UZ∗

3
= −583.05, LZ∗

3
= −844.6

Step 4: Formulate the membership functions of the given objectives using the equations (26),

(27) and (28).

For Z∗
1 :

UT
Z∗
1
= 3376.1, LT

Z∗
1
= 3052.65

UF
Z∗
1
= 3376.1, LF

Z∗
1
= 3052.65 + 323.45t1

U I
Z∗
1
= 3052.65 + 323.45s1, L

I
Z∗
1
= 3052.65

T1(Z
∗
1 (x)) =


1 ifZ∗

1 (x) < 3052.65

3376.1− Z∗
1 (x)

3376.1− 3052.65
if 3052.65 ≤ Z∗

1 (x) ≤ 3376.1

0 ifZ∗
1 (x) > 3376.1

I1(Z
∗
1 (x)) =


1 ifZ∗

1 (x) < 3052.65

3052.65 + 323.45s1 − Z∗
1 (x)

323.45s1
if 3052.65 ≤ Z∗

1 (x) ≤ 3052.65 + 323.45s1

0 ifZ∗
1 (x) > 3052.65 + 323.45s1

F1(Z
∗
1 (x)) =


1 ifZ∗

1 (x) > 3376.1

Z∗
1 (x)− 3052.65− 323.45t1

323.45− 323.45t1
if 3052.65 + 323.45t1 ≤ Z∗

1 (x) ≤ 3376.1

0 ifZ∗
1 (x) < 3052.65 + t1(323.45)

For Z∗
2 :

UT
Z∗
2
= 1108.4, LT

Z∗
2
= 990.3

UF
Z∗
2
= 1108.4, LF

Z∗
2
= 990.3 + 118.1t2

U I
Z∗
2
= 990.3 + 118.1s2, L

I
Z∗
2
= 990.3

T2(Z
∗
2 (x)) =


1 ifZ∗

2 (x) < 990.3

1108.4− Z∗
2 (x)

118.1
if 990.3 ≤ Z∗

2 (x) ≤ 1108.4

0 ifZ∗
2 (x) > 1108.4

I2(Z
∗
2 (x)) =


1 ifZ∗

2 (x) < 990.3

990.3 + 118.1s2 − Z∗
2 (x)

118.1s2
if 990.3 ≤ Z∗

2 (x) ≤ 990.3 + 118.1s2

0 ifZ∗
2 (x) > 990.3 + 118.1s2
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F2(Z
∗
2 (x)) =


1 ifZ∗

2 (x) > 1108.4

Z∗
2 (x)− 990.3− 118.1t2

118.1− 118.1t2
if 990.3 + 118.1t2 ≤ Z∗

2 (x) ≤ 1108.4

0 ifZ∗
2 (x) < 990.3 + 118.1t2

For Z∗
3 :

UT
Z∗
3
= −583.05, LT

Z∗
3
= −844.6

UF
Z∗
3
= −583.05, LF

Z∗
3
= −844.6 + 261.55t3

U I
Z∗
3
= −844.6 + 261.55s3, L

I
Z∗
3
= −844.6

T3(Z
∗
3 (x)) =


1 ifZ∗

3 (x) < −844.6

−583.05− Z∗
3 (x)

261.55
if − 844.6 ≤ Z∗

3 (x) ≤ −583.05

0 ifZ∗
3 (x) > −583.05

I3(Z
∗
3 (x)) =


1 ifZ∗

3 (x) < −844.6

−844.6 + 261.55s3 − Z∗
3 (x)

261.55s3
if − 844.6 ≤ Z∗

3 (x) ≤ −844.6 + 261.55s3

0 ifZ∗
3 (x) > −844.6 + 261.55s3

F3(Z
∗
3 (x)) =


1 ifZ∗

3 (x) > −583.05

Z∗
3 (x) + 844.6− 261.55t3
261.55− 261.55t3

if − 844.6 + 261.55t3 ≤ Z∗
3 (x) ≤ −583.05

0 ifZ∗
3 (x) < −844.6 + 261.55t3

Step 5: The neutrosophic compromise programming model for given the uncertain MOTP

using the model (31) is

Max λT − λF + λI

subject to

x11 + x12 + x13 + x14 + x15 = 50.2

x21 + x22 + x23 + x24 + x25 = 53.9

x31 + x32 + x33 + x34 + x35 = 65.2

x11 + x21 + x31 = 43.6

x12 + x22 + x32 = 40.8

x13 + x23 + x33 = 41.1

x14 + x24 + x34 = 43.6

x15 + x25 + x35 = 0.2

20.1x11 + 18.1x12 + 22.1x13 + 24.1x14 + 10x21 + 12.2x22 +15x23 + 13x24 + 22x31 + 20.1x32 +

25.2x33 + 23.2x34 +233.45λT ≤ 3376.1

5x11+6x12+4x13+3x14+6x21+5x22+5x23+4x24 +9x31+8x32+8x33+10x34+118.1λT ≤ 1108.4

−3.1x11−3.6x12−2.6x13−5.1x14−3x21−6.2x22 −4x23−4x24−4x31−3.1x32−5.2x33−5.2x34
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+261.55λT ≤ −583.05

20.1x11 + 18.1x12 + 22.1x13 + 24.1x14 + 10x21 + 12.2x22 +15x23 + 13x24 + 22x31 + 20.1x32 +

25.2x33 + 23.2x34 +323.45t1(λT − 1) ≤ 3052.65

5x11+6x12+4x13+3x14+6x21+5x22+5x23+4x24 +9x31+8x32+8x33+10x34+118.1t2(λT−1) ≤
990.3

−3.1x11−3.6x12−2.6x13−5.1x14−3x21−6.2x22 −4x23−4x24−4x31−3.1x32−5.2x33−5.2x34

+261.55t3(λT − 1) ≤ −844.6

20.1x11 + 18.1x12 + 22.1x13 + 24.1x14 + 10x21 + 12.2x22 +15x23 + 13x24 + 22x31 + 20.1x32 +

25.2x33 + 23.2x34 +(λF − 1)(3052.65 + 323.45s1)− 3376.1λF ≤ 0

5x11 + 6x12 + 4x13 + 3x14 + 6x21 + 5x22 + 5x23 + 4x24 +9x31 + 8x32 + 8x33 + 10x34

+(λF − 1)(990.3 + 118.1s2)− 1108.4λF ≤ 0

−3.1x11−3.6x12−2.6x13−5.1x14−3x21−6.2x22 −4x23−4x24−4x31−3.1x32−5.2x33−5.2x34

+(λF − 1)(−844.6 + 261.55s3) + 583.05λF ≤ 0

λT ≥ λI , λT ≥ λF , λT + λF + λI ≤ 3, λT ≤ 1, λI ≤ 1, λF ≤ 1

0 ≤ t1, s1 ≤ 323.5, 0 ≤ t2, s2 ≤ 118.1, 0 ≤ t3, s3 ≤ 261.55, λT , λF , λI ∈ [0, 1]

solving the above model by using the LINGO (17.0) software, we get

λT = 0.523, λF = 0, λI = 0.52,

x11 = 21.1, x12 = 28.1, x14 = 0.9, x22 = 11.2,

x24 = 42.6, x31 = 22, x32 = 1.4, x33 = 41.1, x35 = 0.2

t1 = 1, t2 = 1.2, t3 = 0.9,

s1 = 1.2, s2 = 1.2, s3 = 0.47,

Z1 = 3192.71, Z2 = 1041.2, Z3 = 717.06.

Table 7 illustrates the comparison between the results obtained from Fuzzy Multi Choice goal

programming method and the proposed method. Table 8 provides the comparison study of

solution obtained by fuzzy goal programming method and proposed method.

In Gurupada et al [27] work, wherein he proved that Fuzzy multi choice goal programming

was more efficient in providing an optimal solution than by employing goal programming and

revised multi choice goal programming approach. Contrasting to his work in the proposed

method, the decision maker need not fix the goals of the objective function using any of the

existing techniques, to get a better optimal value for the objective function. In short, we have

overcome the difficulty of the decision maker to fix the objective value goal.

Clearly it can be seen that by using neutrosophic compromise programming approach, we

obtained an improvised pareto optimal solution. As in table 8, we can observe that the pro-

posed method yields a more minimal value for transportation cost and a considerable increase
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in profit. As neutrosophic programming explores the indeterminacy part of a optimization

problem, it helps the decision maker to get better results.

Table 7. Comparison between the pareto optimal solution of the existing and

the proposed method.

Method Pareto-optimal solution

Fuzzy Multi Choice

goal programming

method [27]

x11 = 3.12,

x12 = 0,

x13 = 18.95,

x14 = 29.10,

x21 = 11.26,

x22 = 25.07,

x23 = 4.36,

x24 = 14.54,

x31 = 29.26,

x32 = 15.42,

x33 = 17.74,

x34 = 0

Proposed method

x11 = 21.1,

x12 = 28.1,

x14 = 0.9,

x22 = 11.2,

x24 = 42.6,

x31 = 22,

x32 = 1.4,

x33 = 41.1,

x35 = 0.2

Table 8. The comparison between the existing and the proposed method.

Method Min Z1 Min Z2 Max Z3

Fuzzy Multi Choice

goal programming

method [27]

3400 980.13 650

Proposed method 3192.71 1041.2 717.06
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7. Result and Discussion

In our work, we have obtained the compromise solution of the Uncertain MOTP using the

neutrosphic technique.

Table 7 illustrates the comparison between the results obtained from Fuzzy Multi Choice

goalprogramming method and the proposed method. Table 8 provides the comparison study

ofsolution obtained by fuzzy goal programming method and proposed method.In Gurupada

et al [27] work, wherein he proved that Fuzzy multi choice goal programmingwas more efficient

in providing an optimal solution than by employing goal programming andrevised multi choice

goal programming approach. Contrasting to his work in the proposedmethod, the decision

maker need not fix the goals of the objective function using any of theexisting techniques, to

get a better optimal value for the objective function. In short, we haveovercome the difficulty

of the decision maker to fix the objective value goal.Clearly it can be seen that by using

neutrosophic compromise programming approach, weobtained an improvised pareto optimal

solution. As in Table 8, we can observe that the proposed method yields a more minimal value

for transportation cost and a considerable increasein profit. As neutrosophic programming

explores the indeterminacy part of a optimizationproblem, it helps the decision maker to get

better results.

8. Implications

This paper used the neutrosophic approach to discuss the uncertain MOTP. The literature

review section includes studies that are comparable to these ones. According to the author’s

knowledge, no research has been done on applying the neutrosophic method to solve the un-

certain MOTP. The method for solving uncertain MOTP utilizing the neutrosophic technique

has been provided in the suggested work to close the aforementioned research gap. The effi-

ciency of the proposed work has been demonstrated by comparing Gurupata’s [27]’s work. It

has been explained that the suggested work will assist the decision maker to have the suitable

and desired transportation plan.

9. Conclusion

In this work, a procedure to solve multi objective transportation problem with uncertainvari-

ables is studied under neutrosophic environment. The uncertain MOTP is converted into an

equivalent chance constraint deterministic model with the use of operational law of uncertain

variables. Then using neutrosophic compromise programming approach the best compromise

solution is obtained. Since the solution searches of UMOTP based on different membership

function such as truth, indeterminacy and falsity, it allows the decision maker to know about

the various functions and provides more practicable and reasonable compromise solution. More
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info It has been established that, in order to obtain a better optimal value for the objective

function, the decision maker does not need to fix the goals of the objective function using any

of the available strategies. In other words, we have succeeded in fixing the decision-difficulty

maker’s with regard to the objective value aim. A numerical example had been considered and

obtained the compromise solution and is tabulated in Table 8. It is evident that we were able

to achieve an improvised pareto optimum solution by applying the neutrosophic compromise

programming approach.

Conflicts of Interest: The authors confirm that there are no known conflicts of interest

associated with this publication.
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Abstract. When compared to its extension, the hypersoft set, which deals with discontinuous attribute-valued

sets corresponding to different attributes, the soft set only works with a single set of attributes. Numerous

scholars created models based on soft sets to address issues in a variety of domains, including decision-making

and medical diagnostics. However, these models only take into account one expert, which causes numerous

issues for users, particularly when creating questions. We provide a fuzzy parameterized neutrosophic hypersoft

expert set to eliminate this mismatch. In addition to addressing the issue of dealing with a single expert, this

approach also addresses the problem of soft sets not being adequate for discontinuous attribute-valued sets

corresponding to different attributes. The notion of fuzzy parameterized neutrosophic hypersoft expert sets,

which combines fuzzy parameterized neutrosophic sets and hypersoft expert sets, is first introduced in this work.

Examples are provided to help illustrate some key fundamental concepts, aggregation operations and results.

A decision-making application is shown at the end to demonstrate the viability of the suggested theory.

Keywords: Soft set; Soft expert set; Neutrosophic set; Hypersoft set; Fuzzy parameterized neutrosophic

hypersoft expert set.

—————————————————————————————————————————-

1. Introduction

For a correct description of an object in an ambiguous and uncertain environment, we

sometimes consider both the truth membership and the falsity membership in professional sys-

tems, belief systems, and information systems. The neutrosophic set was defined by Smaran-

dache [1–3] as a generalisation of classical sets, fuzzy sets, and intuitionistic fuzzy sets. Mem-

bership functions are used to define fuzzy sets [4], while membership and nonmembership

Muhammad Ihsan, Muhmmad Saeed, Atiqe Ur Rahman, An intelligent fuzzy parameterized MADM-

approach to optimal selection of electronic appliances based on neutrosophic hypersoft expert set
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functions describe intuitionistic fuzzy sets [5], which are used to solve problems involving im-

precise, ambiguous, and inconsistent data. The neutrosophic set has numerous applications in

a variety of disciplines, including topology, control theory, databases, and medical diagnosis.

Truth membership, indeterminacy membership, and false membership are all wholly inde-

pendent in the neutrosophic set, where the indeterminacy is clearly quantified. The neutro-

sophic set and set-theoretic view operators need to be described from a scientific or technical

perspective. If not, it will be challenging to apply in actual applications. Therefore, Wang

et al. [6] described the set-theoretic operations and various properties of single-valued neutro-

sophic sets (SVNS). In both theories and applications, work on neutrosophic sets (NS) and

their hybrid structures has made rapid progress.advanced quickly [7].

In his conceptualization of soft set theory, Molodtsov [8] described it as a brand-new family of

parameterized subsets of the universe of discourse. Different structures of convexity (concav-

ity) on an s-set were introduced by Rahman et al. [9,10]. They explored the different convexity

and concavity characteristics in the context of fs-set, s-set, and hypersoft set (an extension of

s-set) settings with some altered findings. As a parametrization technique to handle uncer-

tainty, Maji et al. [11] developed fuzzy soft set. This idea has been expanded upon and used

in other domains by scholars [12]. Soft expert set (SE-set) and fuzzy soft expert set (FSE-set)

are concepts developed by Alkhazaleh et al. [19, 20]. They talked about how they could be

used in decision-making. Convexity-cum-concavity on SE-set was conceptualised by Ihsan et

al. [21], who also highlighted some of its characteristics. The convexity on the FSE-set was

once more gestated and its specific qualities were elucidated by Ihsan et al. [22]. In their

conceptualization of intuitionistic fuzzy soft expert sets, Broumi et al. [23] presented their use

in decision-making.

Through the substitution of a multi-attribute valued function for a single attribute-valued func-

tion in 2018, Smarandache [24] extended soft set to hypersoft set. Saeed et al. [25] developed

the idea and covered the principles of the hypersoft set, including its relation, sub relation,

complement relation, function, matrices, and operations on hypersoft matrices, as well as its

hypersoft subset, complement, and non hypersoft set. Mujahid et al. [25] discussed hypersoft

points in several fuzzy-like environments. Complex hypersoft set was defined by Rahman et

al. [27], who also created its hybrids with the complex fuzzy set, complex intuitionistic fuzzy

set, and complex neutrosophic set. The principles, such as subset, equal sets, null set, absolute

set, etc., as well as the theoretic operations, such as complement, union, intersection, etc., were

also covered. Convexity and concavity were theorised on a hypersoft set by Rahman et al. [28],

who also provided their pictorial representations and examples to illustrate them. Rahman et

al. [33] created the preliminary HS-set structure and provided an application for the optimal

chemical material choice in DM. Rahman et al. [34] developed a novel method for studying

Muhammad Ihsan, Muhammad Saeed, Atiqe Ur Rahman, An intelligent fuzzy parameterized
MADM-approach to optimal selection of electronic appliances based on neutrosophic
hypersoft expert set
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neutrosophic hypersoft graphs and discussed some of its characteristics. The aggregation op-

erations of complex FHS-set were first employed in DMPs by Rahman et al. (AUR5). The

structure of interval-valued complex FHS-set was also devised by them. The bijective HS-set

was conceptualised by Rahman et al. [36] and its uses in DMPs were covered. In order to know

the opinions of various experts in various models when attributed sets are further divided into

disjoint attribute valued sets, Ihsan et al. [37] generalised the HS-set to hypersoft expert set

(HSE-set). The fuzzy hypersoft expert set (FHSE-set) was conceptualised by Ihsan et al. [38],

who also used the proposed technique to demonstrate how DMPs were used.

Çaǧman et al. [39] applied a significant degree to the parameters and conceptualised the fuzzy

parameterized soft set (FPS-set). In order to create hybrids of the fuzzy parameterized soft

expert set (FPSE-set) for use in DMPs, Bashir et al. [40] combined the structures of fuzzy pa-

rameterized with SE-set. By converting a single set of attributes into several disjoint attribute

valued sets, Rahman et al. [41] enhanced the work of fuzzy parameterized soft set to fuzzy

parameterized hypersoft set and examined the applications in DMPs. A novel structure for

the fuzzy parameterized neutrosophic hypersoft expert set is required by the literature. New

ideas on the fuzzy parameterized neutrosophic hypersoft expert set are created as a result.

Figure 1 shows how the rest of the paper is organised.

Figure 1. Organization of the paper
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2. Preliminaries

This section provides definitions and explanations of several key terminology and concepts

connected to the primary study.

Definition 2.1. [13] A neutrosophic set N in O is defined by N = {<

f, (ᵀN(f), lN(f),FN(f)) >: f ∈ E, ᵀN, lN,FN ∈]−0, 1+[} where ᵀN, lN,FN are truth, inde-

terminacy, and falsity membership function and 0− ≤ ᵀN(f), lN(f),FN(f) ≤ 3+.

Definition 2.2. [10] Let Q and P are two neutrosophic sets such that

Q = {< f, (ᵀQ(f), lQ(f),FQ(f)) >: f ∈ E, ᵀQ, lQ,FQ ∈]−0, 1+[},
P = {< f, (ᵀP(f), lP(f),FP(f)) >: f ∈ E, ᵀP, lP,FP ∈]−0, 1+[},
then, the following operations between two neutrosophic sets can be defined like subset, com-

plement, union and intersection:

(1) Neutrosophic set Q is a subset of another Neutrosophic set P if

ᵀQ(f) ≤ ᵀP(f), lQ ≥ lP, FQ(f) ≤ FP(f).

(2) The compliment of neutrosophic set Q is defined as

Qc = {< f, (ᵀQ(f), 1− lQ(f),FQ(f)) >: f ∈ E, ᵀQ, lQ,FQ ∈]−0, 1+[},
(3) The union of neutrosophic sets between Q and P is defined by

max(ᵀQ(f), ᵀP(f), min(lQ(f), lP(f)), min(FQ(f),FP(f)),

(4) The intersection of neutrosophic sets between Q and P is defined by

min(ᵀQ(f), ᵀP(f), max(lQ(f), lP(f)), max(FQ(f),FP(f)).

Definition 2.3. [23] Let I represents set of specialists(experts) and set of parameters is

denoted by L, O = L × I × U with S ⊆ O. While U represents a set of conclusions i.e, U=

{0 = disagree, 1 = agree} and 4̂ represents the universe with power set P(4̂) and I =[0, 1].

A FPSVNSE-set can be described as a pair (gΛ,R) with gΛ is gΛ : R→ P(4̂) such that P(4̂)

is going to use for collection of all SVN subsets of 4̂ and R ⊆ O.

Definition 2.4. [24] An agree FPSVNSE-set can be defined as a subset of FPSVNSE-set and

shown as: (gΛ,R)
1 = {gΛ(v̈) : v̈ ∈ L× I× 1}.

Definition 2.5. [24] An disagree FPSVNSE-set can be defined as a subset of FPSVNSE-set

and shown as: (gΛ,R)
0 = {gΛ(v̈) : v̈ ∈ L× I× 0}.

Definition 2.6. [27] Considering disjoint sets H
¯ 1
,H

¯ 2
,H

¯ 3
, .....,H

¯w
as a corresponding attribute

values for w different characteristics h
¯1
, h
¯2
, h
¯3
, .....,h

¯w
. Then hypersoft set can be considered

as a pair (Æ,g), where g = H
¯ 1
×H

¯ 2
×H3 × .....×H

¯m
and Æ : g→ P(∆) .
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3. Fuzzy Parameterized Neutrosophic Hypersoft Expert Set (FPNHSE-set)

Fuzzy parameterized single valued neutrosophic soft expert set, an existing idea, has been

used to build fuzzy parameterized neutrosophic hypersoft expert set in this part. Here, several

fundamental qualities are shown.

Definition 3.1. Fuzzy Parameterized Neutrosophic Hypersoft Expert Set A fuzzy

parameterized neutrosophic hypersoft expert set ΨF over 4̂ is defined as

ΨF =
{((

q̂
µF(q̂)

, Êi, Ôi

)
, δ̂

ψF(δ̂)

)
; ∀q̂ ∈ Q, Êi ∈ I, Ôi ∈ U, δ̂ ∈ 4̂

}
where

(1) µF : J̌→ FP(4̂)

(2) ψF : J̌→ NP(4̂) is called approximate function of FPNHSE-set

(3) J̌ ⊆ H = L× I× U with S ⊆ O.

(4) where Q1,Q2,Q3, ...,Qr are different sets of parameter corresponding to r different pa-

rameters q1, q2, q3, ..., qr.

(5) I be a set of specialists (operators)

(6) U be a set of conclusions.

Example 3.2. Suppose that a college chain is searching for a construction company to upgrade

the college building with globalisation and requires certain specialists(experts) to evaluate its

working. Let ∆ = {η1, η2, η3, η4} be a set of companies and G1 = {p11, p12}, G2 = {p21, p22},

G3 = {p31, p32} be disjoint attributive sets for distinct attributes p1= cheap, p2= standard,

p3= cooperative. Now G = G1 × G2 × G3

G =



f1/0.2/0.2 = (p11, p21, p31),f2/0.3 = (p11, p21, p32),

f3/0.4 = (p11, p22, p31),f4/0.5 = (p11, p22, p32),

f5/0.6 = (p12, p21, p31),f6/0.7 = (p12, p21, p32),

f7/0.8 = (p12, p22, p31),f8/0.9 = (p12, p22, p32)


Now H = G×D× C

H =



(f1/0.2, c, 0), (f1/0.2, c, 1), (f1/0.2, d, 0), (f1/0.2, d, 1), (f1/0.2, e, 0), (f1/0.2, e, 1),

(f2/0.3, c, 0), (f2/0.3, c, 1), (f2/0.3, d, 0), (f2/0.3, d, 1), (f2/0.3, e, 0), (f2/0.3, e, 1),

(f3/0.4, c, 0), (f3/0.4, c, 1), (f3/0.4, d, 0), (f3/0.4, d, 1), (f3/0.4, e, 0), (f3/0.4, e, 1),

(f4/0.5, c, 0), (f4/0.5, c, 1), (f4/0.5, d, 0), (f4/0.5, d, 1), (f4/0.5, e, 0), (f4/0.5, e, 1),

(f5/0.6, c, 0), (f5/0.6, c, 1), (f5/0.6, d, 0), (f5/0.6, d, 1), (f5/0.6, e, 0), (f5/0.6, e, 1),

(f6/0.7, c, 0), (f6/0.7, c, 1), (f6/0.7, d, 0), (f6/0.7, d, 1), (f6/0.7, e, 0), (f6/0.7, e, 1),

(f7/0.8, c, 0), (f7/0.8, c, 1), (f7/0.8, d, 0), (f7/0.8, d, 1), (f7/0.8, e, 0), (f7/0.8, e, 1),

(f8/0.9, c, 0), (f8/0.9, c, 1), (f8/0.9, d, 0), (f8/0.9, d, 1), (f8/0.9, e, 0), (f8/0.9, e, 1)
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let

Q =


(f1/0.2, c, 0), (f1/0.2, c, 1), (f1/0.2, d, 0), (f1/0.2, d, 1), (f1/0.2, e, 0), (f1/0.2, e, 1),

(f2/0.3, c, 0), (f2/0.3, c, 1), (f2/0.3, d, 0), (f2/0.3, d, 1), (f2/0.3, e, 0), (f2/0.3, e, 1),

(f3/0.4, c, 0), (f3/0.4, c, 1), (f3/0.4, d, 0), (f3/0.4, d, 1), (f3/0.4, e, 0), (f3/0.4, e, 1),



be a subset of H and D = {c, d, e, } be a set of specialists.

Following survey depicts choices of three specialists:

h̄1 = h̄(f1/0.2, c, 1) =
{

η1
<0.2,0.5,0.4> ,

η2
<0.7,0.2,0.5> ,

η3
<0.5,0.4,0.6> ,

η4
<0.1,0.3,0.6>

}
,

h̄2 = h̄(f1/0.2, d, 1) =
{

η1
<0.4,0.2,0.3> ,

η2
<0.8,0.1,0.5> ,

η3
<0.4,0.5,0.6> ,

η4
<0.2,0.5,0.3>

}
,

h̄3 = h̄(f1/0.2, e, 1) =
{

η1
<0.7,0.2,0.3> ,

η2
<0.5,0.3,0.6> ,

η3
<0.6,0.3,0.7> ,

η4
<0.3,0.5,0.6>

}
,

h̄4 = h̄(f2/0.3, c, 1) =
{

η1
<0.9,0.1,0.3> ,

η2
<0.4,0.5,0.4> ,

η3
<0.7,0.2,0.6> ,

η4
<0.3,0.4,0.8>

}
,

h̄5 = h̄(f2/0.3, d, 1) =
{

η1
<0.4,0.5,0.6> ,

η2
<0.8,0.1,0.7> ,

η3
<0.3,0.6,0.5> ,

η4
<0.2,0.6,0.7>

}
,

h̄6 = h̄(f2/0.3, e, 1) =
{

η1
<0.5,0.4,0.7> ,

η2
<0.3,0.6,0.4> ,

η3
<0.6,0.2,0.5> ,

η4
<0.8,0.1,0.6>

}
,

h̄7 = h̄(f3/0.4, c, 1) =
{

η1
<0.2,0.7,0.5> ,

η2
<0.9,0.1,0.4> ,

η3
<0.4,0.5,0.7> ,

η4
<0.5,0.4,0.8>

}
,

h̄8 = h̄(f3/0.4, d, 1) =
{

η1
<0.4,0.3,0.2> ,

η2
<0.6,0.3,0.1> ,

η3
<0.7,0.2,0.3> ,

η4
<0.9,0.1,0.4>

}
,

h̄9 = h̄(f3/0.4, e, 1) =
{

η1
<0.7,0.2,0.6> ,

η2
<0.3,0.5,0.7> ,

η3
<0.5,0.4,0.5> ,

η4
<0.2,0.7,0.8>

}
,

h̄10 = h̄(f1/0.2, c, 0) =
{

η1
<0.3,0.2,0.1> ,

η2
<0.2,0.4,0.5> ,

η3
<0.4,0.5,0.8> ,

η4
<0.1,0.8,0.3>

}
,

h̄11 = h̄(f1/0.2, d, 0) =
{

η1
<0.1,0.8,0.4> ,

η2
<0.9,0.1,0.2> ,

η3
<0.6,0.3,0.4> ,

η4
<0.2,0.7,0.5>

}
,

h̄12 = h̄(f1/0.2, e, 0) =
{

η1
<0.2,0.7,0.5> ,

η2
<0.1,0.8,0.6> ,

η3
<0.3,0.5,0.7> ,

η4
<0.5,0.4,0.6>

}
,

h̄13 = h̄(f2/0.3, c, 0) =
{

η1
<0.8,0.1,0.6> ,

η2
<0.3,0.6,0.7> ,

η3
<0.5,0.4,0.8> ,

η4
<0.7,0.2,0.9>

}
,

h̄14 = h̄(f2/0.3, d, 0) =
{

η1
<0.7,0.2,0.5> ,

η2
<0.2,0.6,0.4> ,

η3
<0.9,0.1,0.6> ,

η4
<0.4,0.5,0.7>

}
,

h̄15 = h̄(f2/0.3, e, 0) =
{

η1
<0.6,0.2,0.5> ,

η2
<0.7,0.2,0.4> ,

η3
<0.3,0.5,0.4> ,

η4
<0.2,0.7,0.6>

}
,

h̄16 = h̄(f3/0.4, c, 0) =
{

η1
<0.1,0.7,0.5> ,

η2
<0.4,0.5,0.7> ,

η3
<0.7,0.2,0.9> ,

η4
<0.8,0.2,0.4>

}
,

h̄17 = h̄(f3/0.4, d, 0) =
{

η1
<0.2,0.7,0.4> ,

η2
<0.9,0.1,0.6> ,

η3
<0.8,0.2,0.4> ,

η4
<0.3,0.5,0.7>

}
,

h̄18 = h̄(f3/0.4, e, 0) =
{

η1
<0.5,0.4,0.2> ,

η2
<0.3,0.6,0.1> ,

η3
<0.6,0.3,0.2> ,

η4
<0.1,0.8,0.3>

}
.

The FPNHSES can be described as
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(h̄,Q) =



(
(f1/0.2, c, 1),

{
η1

<0.2,0.5,0.4> ,
η2

<0.7,0.2,0.5> ,
η3

<0.5,0.4,0.6> ,
η4

<0.1,0.3,0.6>

} )
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.8,0.1,0.5> ,

η3
<0.4,0.5,0.6> ,

η4
<0.2,0.5,0.3>

} )
,(

(f1/0.2, e, 1),
{

η1
<0.7,0.2,0.3> ,

η2
<0.5,0.3,0.6> ,

η3
<0.6,0.3,0.7> ,

η4
<0.3,0.5,0.6>

} )
,(

(f2/0.3, c, 1),
{

η1
<0.9,0.1,0.3> ,

η2
<0.4,0.5,0.4> ,

η3
<0.7,0.2,0.6> ,

η4
<0.3,0.4,0.8>

} )
,(

(f2/0.3, d, 1),
{

η1
<0.4,0.5,0.6> ,

η2
<0.8,0.1,0.7> ,

η3
<0.3,0.6,0.5> ,

η4
<0.2,0.6,0.7>

} )
,(

(f2/0.3, e, 1),
{

η1
<0.5,0.4,0.7> ,

η2
<0.3,0.6,0.4> ,

η3
<0.6,0.2,0.5> ,

η4
<0.8,0.1,0.6>

} )
,(

(f3/0.4, c, 1),
{

η1
<0.2,0.7,0.5> ,

η2
<0.9,0.1,0.4> ,

η3
<0.4,0.5,0.7> ,

η4
<0.5,0.4,0.8>

} )
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.3,0.2> ,

η2
<0.6,0.3,0.1> ,

η3
<0.7,0.2,0.3> ,

η4
<0.9,0.1,0.4>

} )
,(

(f3/0.4, e, 1),
{

η1
<0.7,0.2,0.6> ,

η2
<0.3,0.5,0.7> ,

η3
<0.5,0.4,0.5> ,

η4
<0.2,0.7,0.8>

} )
,(

(f1/0.2, c, 0),
{

η1
<0.3,0.2,0.1> ,

η2
<0.2,0.4,0.5> ,

η3
<0.4,0.5,0.8> ,

η4
<0.1,0.8,0.3>

} )
,(

(f1/0.2, d, 0),
{

η1
<0.1,0.8,0.4> ,

η2
<0.9,0.1,0.2> ,

η3
<0.6,0.3,0.4> ,

η4
<0.2,0.7,0.5>

} )
,(

(f1/0.2, e, 0),
{

η1
<0.2,0.7,0.5> ,

η2
<0.1,0.8,0.6> ,

η3
<0.3,0.5,0.7> ,

η4
<0.5,0.4,0.6>

} )
,(

(f2/0.3, c, 0),
{

η1
<0.8,0.1,0.6> ,

η2
<0.3,0.6,0.7> ,

η3
<0.5,0.4,0.8> ,

η4
<0.7,0.2,0.9>

} )
,(

(f2/0.3, d, 0),
{

η1
<0.7,0.2,0.5> ,

η2
<0.2,0.6,0.4> ,

η3
<0.9,0.1,0.6> ,

η4
<0.4,0.5,0.7>

} )
,(

(f2/0.3, e, 0),
{

η1
<0.6,0.2,0.5> ,

η2
<0.7,0.2,0.4> ,

η3
<0.3,0.5,0.4> ,

η4
<0.2,0.7,0.6>

} )
,(

(f3/0.4, c, 0),
{

η1
<0.1,0.7,0.5> ,

η2
<0.4,0.5,0.7> ,

η3
<0.7,0.2,0.9> ,

η4
<0.8,0.2,0.4>

} )
,(

(f3/0.4, d, 0),
{

η1
<0.2,0.7,0.4> ,

η2
<0.9,0.1,0.6> ,

η3
<0.8,0.2,0.4> ,

η4
<0.3,0.5,0.7>

} )
,(

(f3/0.4, e, 0),
{

η1
<0.5,0.4,0.2> ,

η2
<0.3,0.6,0.1> ,

η3
<0.6,0.3,0.2> ,

η4
<0.1,0.8,0.3>

} )



.

Definition 3.3. A FPNHSES (h̄1,Q) is said to be FPNHSE subset of (h̄2,P) over ∆, if

(i) Q ⊆ P,
(ii) ∀ γ ∈ Q, h̄1(γ) ⊆ h̄2(γ) and shown by (h̄1,Q) ⊆ (h̄2,P).
Whereas (h̄2,P) is said to be FPNHSE-superset of (h̄1,Q).

Example 3.4. Considering Example 3.2, suppose

Q1 =

 (f1/0.2, c, 1), (f3/0.4, c, 0), (f1/0.2, d, 1), (f3/0.4, d, 1),

(f3/0.4, d, 0), (f1/0.2, e, 0), (f3/0.4, e, 1)


Q2 =

 (f1/0.2, c, 1), (f3/0.4, c, 0), (f3/0.4, c, 1), (f1/0.2, d, 1), (f3/0.4, d, 1),

(f1/0.2, d, 0), (f3/0.4, d, 0), (f1/0.2, e, 0), (f3/0.4, e, 1), (f1/0.2, e, 1)


It is clear that Q1 ⊂ Q2.
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Suppose (h̄1,Q1) and (h̄2,Q2) be defined as following

(h̄1,Q1) =



(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.7> ,
η2

<0.6,0.5,0.8> ,
η3

<0.4,0.6,0.9> ,
η4

<0.1,0.8,0.6>

})
,(

(f1/0.2, d, 1),
{

η1
<0.3,0.4,0.5> ,

η2
<0.6,0.4,0.6> ,

η3
<0.2,0.5,0.7> ,

η4
<0.1,0.5,0.6>

})
,(

(f3/0.4, d, 1),
{

η1
<0.2,0.6,0.4> ,

η2
<0.5,0.4,0.7> ,

η3
<0.6,0.5,0.8> ,

η4
<0.8,0.6,0.4>

})
,(

(f3/0.4, e, 1),
{

η1
<0.6,0.4,0.3> ,

η2
<0.2,0.7,0.6> ,

η3
<0.4,0.5,0.3> ,

η4
<0.1,0.7,0.4>

})
,(

(f1/0.2, e, 0),
{

η1
<0.1,0.6,0.3> ,

η2
<0.1,0.7,0.4> ,

η3
<0.2,0.7,0.6> ,

η4
<0.1,0.6,0.7>

})
,(

(f3/0.4, c, 0),
{

η1
<0.1,0.8,0.6> ,

η2
<0.3,0.6,0.5> ,

η3
<0.6,0.3,0.4> ,

η4
<0.7,0.2,0.6>

})
,(

(f3/0.4, d, 0),
{

η1
<0.1,0.7,0.4> ,

η2
<0.6,0.3,0.6> ,

η3
<0.7,0.2,0.5> ,

η4
<0.2,0.7,0.4>

})



(h̄2,Q2) =



(
(f1/0.2, c, 1),

{
η1

<0.2,0.3,0.6> ,
η2

<0.7,0.4,0.7> ,
η3

<0.5,0.4,0.8> ,
η4

<0.2,0.4,0.5>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.3,0.4> ,

η2
<0.8,0.3,0.5> ,

η3
<0.4,0.3,0.6> ,

η4
<0.2,0.6,0.5>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.3,0.4> ,

η2
<0.9,0.1,0.3> ,

η3
<0.4,0.5,0.4> ,

η4
<0.5,0.3,0.4>

})
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.6,0.3,0.6> ,

η3
<0.7,0.4,0.5> ,

η4
<0.9,0.5,0.2

})
,(

(f1/0.2, e, 1),
{

η1
<0.7,0.2,0.4> ,

η2
<0.5,0.2,0.6> ,

η3
<0.6,0.2,0.7> ,

η4
<0.3,0.5,0.8

})
,(

(f3/0.4, e, 1),
{

η1
<0.7,0.3,0.1> ,

η2
<0.3,0.5,0.4> ,

η3
<0.5,0.4,0.2> ,

η4
<0.2,0.6,0.3>

})
,(

(f1/0.2, e, 0),
{

η1
<0.2,0.5,0.1> ,

η2
<0.2,0.6,0.3> ,

η3
<0.3,0.5,0.4> ,

η4
<0.5,0.3,0.5>

})
,(

(f1/0.2, d, 0),
{

η1
<0.1,0.6,0.4> ,

η2
<0.9,0.1,0.6> ,

η3
<0.6,0.3,0.8> ,

η4
<0.2,0.6,0.8>

})
,(

(f3/0.4, c, 0),
{

η1
<0.2,0.7,0.4> ,

η2
<0.4,0.5,0.3> ,

η3
<0.7,0.2,0.1> ,

η4
<0.8,0.1,0.5>

})
,(

(f3/0.4, d, 0),
{

η1
<0.2,0.5,0.1> ,

η2
<0.7,0.2,0.3> ,

η3
<0.8,0.2,0.4> ,

η4
<0.3,0.5,0.2>

})



which shows that (h̄1,Q1) ⊆ (h̄2,Q2).

Definition 3.5. Two FPNHSE-sets (h̄1,Q1) and (h̄2,Q2) over ∆ are said to be equal if

(h̄1,Q1) is a FPNHSE-subset of (h̄2,Q2) and (h̄2,Q2) is a FPNHSE-subset of (h̄1,Q1).

Definition 3.6. The complement of a FPNHSE-set (h̄,Q), denoted by (h̄,Q)c, is defined by

(h̄,Q)c = c̃(h̄(σ)) ∀ σ ∈ ∆ while c̃ is a NF complement.
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Example 3.7. Taking complement of FPNHSE-set determined in 3.2, we have

(h̄,Q)c =



{
(ζ1/0.2, c, 1),

{
η1

<0.4,0.5,0.2> ,
η2

<0.5,0.8,0.7> ,
η3

<0.6,0.6,0.5> ,
η4

<0.6,0.7,0.1>

}}
,{

(f1/0.2, d, 1),
{

η1
<0.3,0.8,0.6> ,

η2
<0.5,0.9,0.8> ,

η3
<0.6,0.5,0.4> ,

η4
<0.3,0.5,0.2>

}}
,(

(f1/0.2, e, 1),
{

η1
<0.3,0.8,0.7> ,

η2
<0.6,0.7,0.5> ,

η3
<0.7,0.7,0.6> ,

η4
<0.6,0.5,0.3>

})
,(

(f2/0.3, c, 1),
{

η1
<0.3,0.9,0.9> ,

η2
<0.4,0.5,0.4> ,

η3
<0.6,0.8,0.7> ,

η4
<0.8,0.6,0.3>

})
,(

(f2/0.3, d, 1),
{

η1
<0.6,0.5,0.4> ,

η2
<0.7,0.9,0.8> ,

η3
<0.5,0.4,0.3> ,

η4
<0.7,0.4,0.2>

})
,(

(f2/0.3, e, 1),
{

η1
<0.7,0.6,0.5> ,

η2
<0.4,0.4,0.3> ,

η3
<0.5,0.8,0.6> ,

η4
<0.6,0.9,0.8>

})
,(

(f3/0.4, c, 1),
{

η1
<0.5,0.3,0.2> ,

η2
<0.4,0.9,0.9> ,

η3
<0.7,0.5,0.4> ,

η4
<0.8,0.6,0.5>

})
,(

(f3/0.4, d, 1),
{

η1
<0.2,0.7,0.4> ,

η2
<0.1,0.7,0.6> ,

η3
<0.3,0.8,0.7> ,

η4
<0.4,0.9,0.9>

})
,(

(f3/0.4, e, 1),
{

η1
<0.6,0.8,0.7> ,

η2
<0.7,0.5,0.3> ,

η3
<0.5,0.6,0.5> ,

η4
<0.8,0.3,0.2>

})
,(

(f1/0.2, c, 0),
{

η1
<0.1,0.8,0.3> ,

η2
<0.5,0.6,0.2> ,

η3
<0.8,0.5,0.4> ,

η4
<0.3,0.2,0.1>

})
,(

(f1/0.2, d, 0),
{

η1
<0.4,0.2,0.1> ,

η2
<0.2,0.9,0.9> ,

η3
<0.4,0.7,0.6> ,

η4
<0.5,0.3,0.2>

})
,(

(f1/0.2, e, 0),
{

η1
<0.5,0.3,0.2> ,

η2
<0.6,0.2,0.1> ,

η3
<0.7,0.5,0.3> ,

η4
<0.6,0.6,0.5>

})
,(

(f2/0.3, c, 0),
{

η1
<0.6,0.9,0.8> ,

η2
<0.7,0.4,0.3> ,

η3
<0.8,0.6,0.5> ,

η4
<0.9,0.8,0.7>

})
,(

(f2/0.3, d, 0),
{

η1
<0.5,0.8,0.7> ,

η2
<0.4,0.4,0.2> ,

η3
<0.6,0.9,0.9> ,

η4
<0.7,0.5,0.4>

})
,(

(f2/0.3, e, 0),
{

η1
<0.5,0.8,0.6> ,

η2
<0.4,0.8,0.7> ,

η3
<0.4,0.5,0.3> ,

η4
<0.6,0.3,0.2>

})
,(

(f3/0.4, c, 0),
{

η1
<0.5,0.3,0.1> ,

η2
<0.7,0.5,0.3> ,

η3
<0.9,0.8,0.8> ,

η4
<0.4,0.8,0.8>

})
,(

(f3/0.4, d, 0),
{

η1
<0.4,0.3,0.2> ,

η2
<0.6,0.9,0.9> ,

η3
<0.4,0.8,0.8> ,

η4
<0.7,0.5,0.3>

})
,(

(f3/0.4, e, 0),
{

η1
<0.2,0.6,0.5> ,

η2
<0.1,0.4,0.3> ,

η3
<0.2,0.7,0.6> ,

η4
<0.3,0.2,0.1>

})



.

Definition 3.8. An agree-FPNHSE-set (h̄,Q)ag over ∆, is a FPNHSE-subset of (h̄,Q) and

is characterized as (h̄,Q)ag = {h̄ag(σ) : σ ∈ G×D× {1}}.

Example 3.9. Finding agree-FPNHSE-set determined in 3.2, we get

(h̄,Q) =



(
(f1/0.2, c, 1),

{
η1

<0.2,0.5,0.4> ,
η2

<0.7,0.2,0.5> ,
η3

<0.5,0.4,0.6> ,
η4

<0.1,0.3,0.6>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.8,0.1,0.5> ,

η3
<0.4,0.5,0.6> ,

η4
<0.2,0.5,0.3>

})
,(

(f1/0.2, e, 1),
{

η1
<0.7,0.2,0.3> ,

η2
<0.5,0.3,0.6> ,

η3
<0.6,0.3,0.7> ,

η4
<0.3,0.5,0.6>

})
,(

(f2/0.3, c, 1),
{

η1
<0.9,0.1,0.3> ,

η2
<0.4,0.5,0.4> ,

η3
<0.7,0.2,0.6> ,

η4
<0.3,0.4,0.8>

})
,(

(f2/0.3, d, 1),
{

η1
<0.4,0.5,0.6> ,

η2
<0.8,0.1,0.7> ,

η3
<0.3,0.6,0.5> ,

η4
<0.2,0.6,0.7>

})
,(

(f2/0.3, e, 1),
{

η1
<0.5,0.4,0.7> ,

η2
<0.3,0.6,0.4> ,

η3
<0.6,0.2,0.5> ,

η4
<0.8,0.1,0.6>

})
,(

(f3/0.4, c, 1),
{

η1
<0.2,0.7,0.5> ,

η2
<0.9,0.1,0.4> ,

η3
<0.4,0.5,0.7> ,

η4
<0.5,0.4,0.8>

})
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.3,0.2> ,

η2
<0.6,0.3,0.1> ,

η3
<0.7,0.2,0.3> ,

η4
<0.9,0.1,0.4>

})
,(

(f3/0.4, e, 1),
{

η1
<0.7,0.2,0.6> ,

η2
<0.3,0.5,0.7> ,

η3
<0.5,0.4,0.5> ,

η4
<0.2,0.7,0.8>

})



.

Definition 3.10. A disagree-FPNHSE-set (h̄,Q)dag over ∆, is a FPNHSE-subset of (h̄,Q)

and is characterized as (h̄,Q)dag = {h̄dag(σ) : σ ∈ G×D× {0}}.
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Example 3.11. Getting disagree-FPNHSE-set determined in 3.2,

(h̄,Q) =



(
(f1/0.2, c, 0),

{
η1

<0.3,0.2,0.1> ,
η2

<0.2,0.4,0.5> ,
η3

<0.4,0.5,0.8> ,
η4

<0.1,0.8,0.3>

})
,(

(f1/0.2, d, 0),
{

η1
<0.1,0.8,0.4> ,

η2
<0.9,0.1,0.2> ,

η3
<0.6,0.3,0.4> ,

η4
<0.2,0.7,0.5>

})
,(

(f1/0.2, e, 0),
{

η1
<0.2,0.7,0.5> ,

η2
<0.1,0.8,0.6> ,

η3
<0.3,0.5,0.7> ,

η4
<0.5,0.4,0.6>

})
,(

(f2/0.3, c, 0),
{

η1
<0.8,0.1,0.6> ,

η2
<0.3,0.6,0.7> ,

η3
<0.5,0.4,0.8> ,

η4
<0.7,0.2,0.9>

})
,(

(f2/0.3, d, 0),
{

η1
<0.7,0.2,0.5> ,

η2
<0.2,0.6,0.4> ,

η3
<0.9,0.1,0.6> ,

η4
<0.4,0.5,0.7>

})
,(

(f2/0.3, e, 0),
{

η1
<0.6,0.2,0.5> ,

η2
<0.7,0.2,0.4> ,

η3
<0.3,0.5,0.4> ,

η4
<0.2,0.7,0.6>

})
,(

(f3/0.4, c, 0),
{

η1
<0.1,0.7,0.5> ,

η2
<0.4,0.5,0.7> ,

η3
<0.7,0.2,0.9> ,

η4
<0.8,0.2,0.4>

})
,(

(f3/0.4, d, 0),
{

η1
<0.2,0.7,0.4> ,

η2
<0.9,0.1,0.6> ,

η3
<0.8,0.2,0.4> ,

η4
<0.3,0.5,0.7>

})
,(

(f3/0.4, e, 0),
{

η1
<0.5,0.4,0.2> ,

η2
<0.3,0.6,0.1> ,

η3
<0.6,0.3,0.2> ,

η4
<0.1,0.8,0.3>

})



.

Definition 3.12. A FPNHSE-set (h̄1,Q1) is called a relative null FPNHSE-set w.r.t Q1 ⊂ Q,
denoted by (h̄1,Q1), if h̄1(g) = ∅, ∀g ∈ Q1.

Example 3.13. Taking the concept of Example 3.2, if

(h̄1,Q1) = {((η1, c, 1), ∅), ((η2, d, 1), ∅), ((η3, e, 1), ∅)}

.

Definition 3.14. A FPNHSE-set (h̄2,Q2) is called a relative whole FPNHSE-set w.r.t Q2 ⊂
Q, denoted by (h̄2,Q2)∆ , if h̄1(g) = ∆, ∀ g ∈ Q2.

Example 3.15. Taking the concept of Example 3.2, if

(h̄2,Q2)∆ = {((η1, c, 1), ∆), ((η2, d, 1), ∆), ((η3, e, 1), ∆)}

where Q2 ⊆ Q.

Definition 3.16. A FPNHSE-set (h̄,Q) is called absolute whole FPNHSE-set denoted by

(h̄,Q)∆ , if h̄(g) = ∆, ∀ g ∈ Q.

Example 3.17. Using Example 3.2, if

(Ψ, S)∆ =



(f1/0.2, c, 1), ∆) , (f1/0.2, d, 1), ∆) , (f1/0.2, e, 1), ∆) , (f3/0.4, c, 1), ∆) ,
(f3/0.4, d, 1), ∆) , (f3/0.4, e, 1), ∆) , (f5/0.6, c, 1), ∆) , (f5/0.6, d, 1), ∆) ,
(f5/0.6, e, 1), ∆) , (f1/0.2, c, 0), ∆) , (f1/0.2, d, 0), ∆) , (f1/0.2, e, 0), ∆) ,
(f3/0.4, c, 0), ∆) , (f3/0.4, d, 0), ∆) , (f3/0.4, e, 0), ∆) , (f5/0.6, c, 0), ∆) ,
(f5/0.6, d, 0), ∆) , (f5/0.6, e, 0), ∆)


Proposition 3.18. Suppose (h̄1,Q1)∆, (h̄2,Q2)∆, (h̄3,Q3)∆, be three FPNHSE-sets over ∆,

then

(1) (h̄1,Q1) ⊂ (h̄2,Q2)∆,
(2) (h̄1,Q1)h̄ ⊂ (h̄1,Q1),
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(3) (h̄1,Q1) ⊂ (h̄1,Q1),
(4) If (h̄1,Q1) ⊂ (h̄2,Q2), (h̄2,Q2) ⊂ (h̄3,Q3), then (h̄1,Q1) ⊂ (h̄3, S3),
(5) If (h̄1,Q1) = (h̄2,Q2), (h̄2,Q2) = (h̄3,Q3), then (h̄1,Q1) = (h̄3,Q3).

Proposition 3.19. If (h̄,Q) is a FPNHSE-set over ∆, then

(1) ((h̄,Q)c)c = (h̄,Q)

(2) (h̄,Q)cag = (h̄,Q)dag

(3) (h̄,Q)cdag = (h̄,Q)ag.

4. Set Theoretic Operations of FPNHSE-set

In this portion, some set theoretic operations are presented with detailed examples.

Definition 4.1. The union of FPNHSE-sets (h̄1,Q) and (h̄2,R) over ∆ is (h̄3,L) with L =

Q ∪ R, defined as

h̄3(σ) =


h̄1(σ)

h̄2(σ)

∪(h̄1(σ), h̄2(σ))

; σ ∈ Q− R
; σ ∈ R−Q
; σ ∈ Q ∩ R

where

∪(h̄1(σ), h̄2(σ)) = {< u,max(h̄1(σ), h̄2(σ)),min(h̄1(σ), (h̄2(σ)),min(h̄1(σ), (h̄2(σ))} >: u ∈ ∆}.

Example 4.2. Using Example 3.2, with two sets

Q1 =
{
(f1/0.2, c, 1), (f1/0.2, d, 1), (f3/0.4, d, 1)

}
Q2 =

{
(f1/0.2, c, 1), (f3/0.4, c, 1), (f1/0.2, d, 1), (f3/0.4, d, 1)

}
.

Suppose (h̄1,Q1) and (h̄2,Q2) over ∆ are two FPNHSE-sets such that

(h̄1,Q1) =


(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.4> ,
η2

<0.6,0.3,0.2> ,
η3

<0.4,0.5,0.1> ,
η4

<0.1,0.8,0.5>

})
,(

(f1/0.2, d, 1),
{

η1
<0.3,0.4,0.5> ,

η2
<0.6,0.2,0.3> ,

η3
<0.2,0.5,0.6> ,

η4
<0.1,0.5,0.3>

})
,(

(f3/0.4, d, 1),
{

η1
<0.2,0.6,0.7> ,

η2
<0.5,0.2,0.3> ,

η3
<0.6,0.3,0.5> ,

η4
<0.8,0.1,0.9>

})


(h̄2,Q2) =



(
(f1/0.2, c, 1),

{
η1

<0.2,0.3,0.4> ,
η2

<0.7,0.4,0.5> ,
η3

<0.5,0.4,0.6> ,
η4

<0.2,0.4,0.7>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.3,0.8> ,

η2
<0.8,0.3,0.5> ,

η3
<0.4,0.3,0.5> ,

η4
<0.2,0.6,0.7>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.3,0.6> ,

η2
<0.9,0.1,0.7> ,

η3
<0.4,0.5,0.8> ,

η4
<0.5,0.3,0.5>

})
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.6,0.3,0.5> ,

η3
<0.7,0.4,0.5> ,

η4
<0.9,0.5,0.7

})
,


Then (h̄1,Q1) ∪ (h̄2,Q2) = (h̄3,Q3)

(h̄3,Q3) =



(
(f1/0.2, c, 1),

{
η1

<0.2,0.3,0.4> ,
η2

<0.7,0.3,0.5> ,
η3

<0.5,0.4,0.1> ,
η4

<0.2,0.4,0.5>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.3,0.5> ,

η2
<0.8,0.2,0.3> ,

η3
<0.4,0.3,0.5> ,

η4
<0.2,0.4,0.3>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.30,0.6> ,

η2
<0.9,0.10,0.7> ,

η3
<0.4,0.5,0.8> ,

η4
<0.5,0.3,0.5>

})
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.6,0.2,0.3> ,

η3
<0.7,0.3,0.5> ,

η4
<0.9,0.1,0.7

})

 .
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Definition 4.3. Restricted Union of two fuzzy parameterized neutrosophic hypersoft expert

sets (h̄1,Q1), (h̄2,Q2) over ∆ is (h̄3,L) with L = Q1 ∩Q2, defined as

h̄3(σ) = h̄1(σ) ∪R h̄2(σ) for σ ∈ Q1 ∩Q2.

Example 4.4. Taking Example 3.2, with two sets

Q1 =
{
(f1/0.2, c, 1), (f1/0.2, d, 1), (f3/0.4, d, 1)

}
Q2 =

{
(f1/0.2, c, 1), (f3/0.4, c, 1), (f1/0.2, d, 1), (f3/0.4, d, 1)

}
Suppose (h̄1,Q1) and (h̄2,Q2) over ∆ are two FPNHSE-sets such that

(h̄1,Q1) =


(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.4> ,
η2

<0.6,0.3,0.2> ,
η3

<0.4,0.5,0.1> ,
η4

<0.1,0.8,0.5>

})
,(

(f1/0.2, d, 1),
{

η1
<0.3,0.4,0.5> ,

η2
<0.6,0.2,0.3> ,

η3
<0.2,0.5,0.6> ,

η4
<0.1,0.5,0.3>

})
,(

(f3/0.4, d, 1),
{

η1
<0.2,0.6,0.7> ,

η2
<0.5,0.2,0.3> ,

η3
<0.6,0.3,0.5> ,

η4
<0.8,0.1,0.9>

})


(h̄2,Q2) =



(
(f1/0.2, c, 1),

{
η1

<0.2,0.3,0.4> ,
η2

<0.7,0.4,0.5> ,
η3

<0.5,0.4,0.6> ,
η4

<0.2,0.4,0.7>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.3,0.8> ,

η2
<0.8,0.3,0.5> ,

η3
<0.4,0.3,0.5> ,

η4
<0.2,0.6,0.7>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.3,0.6> ,

η2
<0.9,0.1,0.7> ,

η3
<0.4,0.5,0.8> ,

η4
<0.5,0.3,0.5>

})
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.6,0.3,0.5> ,

η3
<0.7,0.4,0.5> ,

η4
<0.9,0.5,0.7

})
,


Then (h̄1,Q1) ∪R (h̄2,Q2) = (h̄3,L)

(h̄3,L) =


(
(f1/0.2, c, 1),

{
η1

<0.2,0.3,0.4> ,
η2

<0.7,0.3,0.5> ,
η3

<0.5,0.4,0.1> ,
η4

<0.2,0.4,0.5>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.3,0.5> ,

η2
<0.8,0.2,0.3> ,

η3
<0.4,0.3,0.5> ,

η4
<0.2,0.4,0.3>

})
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.6,0.2,0.3> ,

η3
<0.7,0.3,0.5> ,

η4
<0.9,0.1,0.7

})
 .

Proposition 4.5. If (h̄1,Q1),(h̄2,Q2) and (h̄3,Q3) are three FPNHSE-sets over ∆, then

(1) (h̄1,Q1) ∪ (h̄2,Q2) = (h̄2,Q2) ∪ (h̄1,Q1),
(2) ((h̄1,Q1) ∪ (h̄2,Q2)) ∪ (h̄3,Q3) = (h̄1,Q1) ∪ ((h̄2,Q2) ∪ (h̄3, N3)),

(3) (h̄,Q) ∪Φ = (h̄,Q).

Definition 4.6. The intersection of FPNHSE-sets (h̄1,Q) and (h̄2,R) over ∆ is (h̄3,L) with

L = Q ∩ R, defined as

h̄3(σ) =


h̄1(σ)

h̄2(σ)

∩(h̄1(σ), h̄2(σ))

; σ ∈ Q− R
; σ ∈ R−Q
; σ ∈ Q ∩ R

where

∩(h̄1(σ), h̄2(σ)) = {< u,min(h̄1(σ), h̄2(σ)),max(h̄1(σ), (h̄2(σ)),max(h̄1(σ), (h̄2(σ))} >: u ∈ ∆}.

Example 4.7. Using Example 3.2, with two sets

Q1 =
{
(f1/0.2, c, 1), (f1/0.2, d, 1), (f3/0.4, d, 1)

}
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Q2 =
{
(f1/0.2, c, 1), (f3/0.4, c, 1), (f1/0.2, d, 1), (f3/0.4, d, 1)

}
Suppose (h̄1,Q1) and (h̄2,Q2) over ∆ are two FPNHSE-sets such that

(h̄1,Q1) =


(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.4> ,
η2

<0.6,0.3,0.2> ,
η3

<0.4,0.5,0.1> ,
η4

<0.1,0.8,0.5>

})
,(

(f1/0.2, d, 1),
{

η1
<0.3,0.4,0.5> ,

η2
<0.6,0.2,0.3> ,

η3
<0.2,0.5,0.6> ,

η4
<0.1,0.5,0.3>

})
,(

(f3/0.4, d, 1),
{

η1
<0.2,0.6,0.7> ,

η2
<0.5,0.2,0.3> ,

η3
<0.6,0.3,0.5> ,

η4
<0.8,0.1,0.9>

})


(h̄2,Q2) =



(
(f1/0.2, c, 1),

{
η1

<0.2,0.3,0.4> ,
η2

<0.7,0.4,0.5> ,
η3

<0.5,0.4,0.6> ,
η4

<0.2,0.4,0.7>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.3,0.8> ,

η2
<0.8,0.3,0.5> ,

η3
<0.4,0.3,0.5> ,

η4
<0.2,0.6,0.7>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.3,0.6> ,

η2
<0.9,0.1,0.7> ,

η3
<0.4,0.5,0.8> ,

η4
<0.5,0.3,0.5>

})
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.6,0.3,0.5> ,

η3
<0.7,0.4,0.5> ,

η4
<0.9,0.5,0.7

})
,


Then (h̄1,Q1) ∩ (h̄2,Q2) = (h̄3,Q3)

(h̄3,Q3) =


(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.4> ,
η2

<0.6,0.3,0.2> ,
η3

<0.4,0.5,0.6> ,
η4

<0.2,0.8,0.7>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.4,0.8> ,

η2
<0.6,0.3,0.5> ,

η3
<0.2,0.5,0.6> ,

η4
<0.1,0.6,0.7>

})
,(

(f3/0.4, d, 1),
{

η1
<0.2,0.6,0.7> ,

η2
<0.5,0.3,0.5> ,

η3
<0.6,0.4,0.5> ,

η4
<0.8,0.5,0.9

})
 .

Definition 4.8. Extended intersection of (h̄1, S) and (h̄2,R) over ∆ is (h̄3,L) with L = S∪R,
defined as

h̄3(σ) =


h̄1(σ)

h̄2(σ)

h̄1(σ) ∩ h̄2(σ)

; σ ∈ S− R
; σ ∈ R− S
; σ ∈ S ∩ R.

Example 4.9. Reconsidering Example 3.2, consider the following two sets

Q1 =

 (f1/0.2, c, 1), (f3/0.4, c, 0), (f1/0.2, d, 1), (f3/0.4, d, 1),

(f3/0.4, d, 0), (f1/0.2, e, 0), (f3/0.4, e, 1)



Q2 =


(f1/0.2, c, 1), (f3/0.4, c, 0), (f3/0.4, c, 1), (f1/0.2, d, 1),

(f3/0.4, d, 1), (f1/0.2, d, 0), (f3/0.4, d, 0), (f1/0.2, e, 0),

(f3/0.4, e, 1), (f1/0.2, e, 1)


Suppose (h̄1,Q1) and (h̄2,Q2) over ∆ are two FPNHSE-sets such that

(h̄1,Q1) =



(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.4> ,
η2

<0.6,0.3,0.2> ,
η3

<0.4,0.5,0.1> ,
η4

<0.1,0.8,0.5>

})
,(

(f1/0.2, d, 1),
{

η1
<0.3,0.4,0.5> ,

η2
<0.6,0.2,0.3> ,

η3
<0.2,0.5,0.6> ,

η4
<0.1,0.5,0.3>

})
,(

(f3/0.4, d, 1),
{

η1
<0.2,0.6,0.7> ,

η2
<0.5,0.2,0.3> ,

η3
<0.6,0.3,0.5> ,

η4
<0.8,0.1,0.9>

})
,(

(f3/0.4, e, 1),
{

η1
<0.6,0.2,0.4> ,

η2
<0.2,0.7,0.6> ,

η3
<0.4,0.3,0.5> ,

η4
<0.1,0.5,0.4>

})
,(

(f1/0.2, e, 0),
{

η1
<0.1,0.3,0.5> ,

η2
<0.1,0.7,0.6> ,

η3
<0.2,0.7,0.4> ,

η4
<0.4,0.6,0.8>

})
,(

(f3/0.4, c, 0),
{

η1
<0.1,0.6,0.9> ,

η2
<0.3,0.6,0.7> ,

η3
<0.6,0.1,0.2> ,

η4
<0.7,0.2,0.3>

})
,(

(f3/0.4, d, 0),
{

η1
<0.1,0.7,0.3> ,

η2
<0.8,0.1,0.2> ,

η3
<0.7,0.2,0.4> ,

η4
<0.2,0.7,0.6>

})
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(h̄2,Q2) =



(
(f1/0.2, c, 1),

{
η1

<0.2,0.3,0.4> ,
η2

<0.7,0.4,0.5> ,
η3

<0.5,0.4,0.6> ,
η4

<0.2,0.4,0.7>

})
,(

(f1/0.2, d, 1),
{

η1
<0.4,0.3,0.8> ,

η2
<0.8,0.3,0.5> ,

η3
<0.4,0.3,0.5> ,

η4
<0.2,0.6,0.7>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.3,0.6> ,

η2
<0.9,0.1,0.7> ,

η3
<0.4,0.5,0.8> ,

η4
<0.5,0.3,0.5>

})
,(

(f3/0.4, d, 1),
{

η1
<0.4,0.2,0.3> ,

η2
<0.6,0.3,0.5> ,

η3
<0.7,0.4,0.5> ,

η4
<0.9,0.5,0.7

})
,(

(f1/0.2, e, 1),
{

η1
<0.7,0.2,0.3> ,

η2
<0.5,0.2,0.4> ,

η3
<0.6,0.2,0.4> ,

η4
<0.3,0.5,0.6

})
,(

(f3/0.4, e, 1),
{

η1
<0.7,0.3,0.7> ,

η2
<0.3,0.5,0.6> ,

η3
<0.5,0.4,0.3> ,

η4
<0.2,0.6,0.4>

})
,(

(f1/0.2, e, 0),
{

η1
<0.2,0.5,0.4> ,

η2
<0.2,0.6,0.3> ,

η3
<0.3,0.5,0.6> ,

η4
<0.5,0.3,0.7>

})
,(

(f1/0.2, d, 0),
{

η1
<0.1,0.6,0.3> ,

η2
<0.9,0.1,0.2> ,

η3
<0.6,0.3,0.4> ,

η4
<0.2,0.6,0.3>

})
,(

(f3/0.4, c, 0),
{

η1
<0.2,0.7,0.5> ,

η2
<0.4,0.5,0.6> ,

η3
<0.7,0.2,0.3> ,

η4
<0.8,0.1,0.4>

})
,(

(f3/0.4, d, 0),
{

η1
<0.2,0.5,0.4> ,

η2
<0.7,0.2,0.3> ,

η3
<0.8,0.2,0.6> ,

η4
<0.3,0.5,0.7>

})


Then (h̄1,Q1) ∩E (h̄2,Q2) = (h̄3,L)

(h̄3,L) =



(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.4> ,
η2

<0.6,0.4,0.5> ,
η3

<0.4,0.5,0.6> ,
η4

<0.1,0.8,0.7>

})
,(

(f1/0.2, d, 1),
{

η1
<0.3,0.4,0.8> ,

η2
<0.6,0.3,0.5> ,

η3
<0.2,0.5,0.6> ,

η4
<0.1,0.6,0.7>

})
,(

(f3/0.4, d, 1),
{

η1
<0.2,0.6,0.7> ,

η2
<0.5,0.4,0.5> ,

η3
<0.6,0.4,0.5> ,

η4
<0.8,0.1,0.7>

})
,(

(f3/0.4, e, 1),
{

η1
<0.6,0.3,0.7> ,

η2
<0.2,0.7,0.6> ,

η3
<0.4,0.4,0.5> ,

η4
<0.1,0.6,0.4>

})
,(

(f1/0.2, e, 0),
{

η1
<0.1,0.5,0.5> ,

η2
<0.1,0.6,0.6> ,

η3
<0.2,0.7,0.6> ,

η4
<0.4,0.6,0.8>

})
,(

(f3/0.4, c, 0),
{

η1
<0.1,0.7,0.9> ,

η2
<0.3,0.6,0.7> ,

η3
<0.6,0.2,0.3> ,

η4
<0.7,0.2,0.4>

})
,(

(f3/0.4, d, 0),
{

η1
<0.1,0.7,0.4> ,

η2
<0.8,0.2,0.3> ,

η3
<0.7,0.2,0.6> ,

η4
<0.2,0.7,0.7>

})(
(f1/0.2, d, 0),

{
η1

<0.1,0.6,0.3> ,
η2

<0.9,0.1,0.2> ,
η3

<0.6,0.3,0.4> ,
η4

<0.2,0.6,0.3>

})
,(

(f1/0.2, e, 0),
{

η1
<0.2,0.5,0.4> ,

η2
<0.2,0.6,0.3> ,

η3
<0.3,0.5,0.6> ,

η4
<0.5,0.3,0.7>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.3,0.6> ,

η2
<0.9,0.1,0.7> ,

η3
<0.4,0.5,0.8> ,

η4
<0.5,0.3,0.5>

})



.

Proposition 4.10. If (h̄1,Q1),(h̄2,Q2) and (h̄3,Q3) are three FPNHSE-sets over ∆, then

(1) (h̄1,Q1) ∩ (h̄2,Q2) = (h̄2,Q2) ∩ (h̄1,Q1),
(2) ((h̄1,Q1) ∩ (h̄2,Q2)) ∩ (h̄3,Q3) = (h̄1,Q1) ∩ ((h̄2,Q2) ∩ (h̄3,Q3)),
(3) (h̄,Q) ∩ φ = φ.

Proposition 4.11. If (h̄1,Q1),(h̄2,Q2) and (h̄3,Q3) are three FPNHSE-sets over ∆, then

(1) (h̄1,Q1) ∪ ((h̄2,Q2) ∩ (h̄3,Q3)) = ((h̄1,Q1) ∪ ((h̄2,Q2)) ∩ ((h̄1,Q1) ∪ (h̄3,Q3)),
(2) (h̄1,Q1) ∩ ((h̄2,Q2) ∪ (h̄3,Q3)) = ((h̄1,Q1) ∩ ((h̄2,Q2)) ∪ ((h̄1,Q1) ∩ (h̄3,Q3)).

Definition 4.12. If (h̄1,Q1) and (h̄2,Q2) are two FPNHSE-sets over ∆ then (h̄1,Q1) AND

(h̄2,Q2) denoted by (h̄1,Q1)∧ (h̄2,Q2) is defined by (h̄1,Q1)∧ (h̄2,Q2) = (h̄3,Q1 ×Q2),
while h̄3(σ, γ) = h̄1(σ) ∩ h̄2(γ), ∀(σ, γ) ∈ Q1 ×Q2.

Example 4.13. Retaking Example 3.2, let two sets

Q1 =
{
(f1/0.2, c, 1), (f1/0.2, d, 1), (f3/0.4, c, 0)

}
Q2 =

{
(f1/0.2, c, 0), (f3/0.4, c, 1)

}
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Suppose (h̄1,Q1) and (h̄2,Q2) over ∆ are two FPNHSE-sets such that

(h̄1,Q1) =


(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.4> ,
η2

<0.6,0.4,0.5> ,
η3

<0.4,0.5,0.6> ,
η4

<0.1,0.8,0.7>

})
,(

(f1/0.2, d, 1),
{

η1
<0.3,0.4,0.8> ,

η2
<0.6,0.3,0.5> ,

η3
<0.2,0.5,0.6> ,

η4
<0.1,0.6,0.7>

})
,(

(f3/0.4, c, 0),
{

η1
<0.1,0.6,0.9> ,

η2
<0.3,0.6,0.7> ,

η3
<0.6,0.1,0.2> ,

η4
<0.7,0.2,0.3>

})
,


(h̄2,Q2) =

{ (
(f1/0.2, c, 0),

{
η1

<0.2,0.1,0.3> ,
η2

<0.7,0.2,0.4> ,
η3

<0.5,0.2,0.5> ,
η4

<0.2,0.3,0.6>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.5,0.6> ,

η2
<0.4,0.2,0.5> ,

η3
<0.7,0.1,0.2> ,

η4
<0.8,0.1,0.4>

})
,

}
Then (h̄1,Q1)∧ (h̄2,Q2) = (h̄3,Q1 ×Q2)

(
((f1/0.2, c, 1), (f1/0.2, c, 0)),

{
η1

<0.1,0.35,0.4> ,
η2

<0.6,0.30,0.5> ,
η3

<0.4,0.35,0.6> ,
η4

<0.1,0.55,0.7>

})
,(

((f1/0.2, d, 1), (f1/0.2, c, 0)),
{

η1
<0.2,0.25,0.8> ,

η2
<0.6,0.25,0.5> ,

η3
<0.2,0.35,0.6> ,

η4
<0.1,0.45,0.7>

})
,(

((f1/0.2, d, 1), (f3/0.4, c, 1)),
{

η1
<0.1,0.45,0.8> ,

η2
<0.4,0.25,0.5> ,

η3
<0.2,0.30,0.6> ,

η4
<0.1,0.35,0.7>

})
,(

((f1/0.2, c, 1), (f3/0.4, c, 1)),
{

η1
<0.1,0.55,0.6> ,

η2
<0.4,0.30,0.5> ,

η3
<0.4,0.30,0.6> ,

η4
<0.1,0.45,0.7>

})
,(

((f3/0.4, c, 0), (f1/0.2, c, 0)),
{

η1
<0.1,0.35,0.9> ,

η2
<0.3,0.40,0.7> ,

η3
<0.5,0.15,0.5> ,

η4
<0.2,0.25,0.6>

})
,(

((f3/0.4, c, 0), (f3/0.4, c, 1)),
{

η1
<0.1,0.55,0.9> ,

η2
<0.3,0.40,0.7> ,

η3
<0.6,0.10,0.2> ,

η4
<0.7,0.15,0.4>

})
.


Definition 4.14. If (h̄1,Q1) and (h̄2,Q2) are two FPNHSE-sets over ∆, then (h̄1,Q1) OR

(h̄2,Q2) denoted by (h̄1,Q1)∨ (h̄2,Q2) is defined by (h̄1,Q1)∨ (h̄2,Q2) = (h̄3,Q1 ×Q2),
while h̄3(δ, γ) = h̄1(δ) ∪ h̄2(γ), ∀(δ, γ) ∈ Q1 ×Q2.

Example 4.15. Reconsidering Example 3.2, suppose the following sets

Q1 =
{
(f1/0.2, c, 1), (f1/0.2, d, 1), (f3/0.4, c, 0)

}
Q2 =

{
(f1/0.2, c, 0), (f3/0.4, c, 1)

}
Suppose (h̄1,Q1) and (h̄2,Q2) over ∆ are two FPNHSE-sets such that

(h̄1,Q1) =


(
(f1/0.2, c, 1),

{
η1

<0.1,0.6,0.4> ,
η2

<0.6,0.4,0.5> ,
η3

<0.4,0.5,0.6> ,
η4

<0.1,0.8,0.7>

})
,(

(f1/0.2, d, 1),
{

η1
<0.3,0.4,0.8> ,

η2
<0.6,0.3,0.5> ,

η3
<0.2,0.5,0.6> ,

η4
<0.1,0.6,0.7>

})
,(

(f3/0.4, c, 0),
{

η1
<0.1,0.6,0.9> ,

η2
<0.3,0.6,0.7> ,

η3
<0.6,0.1,0.2> ,

η4
<0.7,0.2,0.3>

})


(h̄2,Q2) =

{ (
(f1/0.2, c, 0),

{
η1

<0.2,0.1,0.3> ,
η2

<0.7,0.2,0.4> ,
η3

<0.5,0.2,0.5> ,
η4

<0.2,0.3,0.6>

})
,(

(f3/0.4, c, 1),
{

η1
<0.1,0.5,0.6> ,

η2
<0.4,0.2,0.5> ,

η3
<0.7,0.1,0.2> ,

η4
<0.8,0.1,0.4>

})
.

}
Then (h̄3,Q3)∨ (h̄2,Q2) = (h̄3,Q1 ×Q2)

(
((f1/0.2, c, 1), (f1/0.2, c, 0)),

{
η1

<0.2,0.35,0.3> ,
η2

0<0.7,0.30,0.4> ,
η3

<0.5,0.35,0.5> ,
η4

<0.2,0.55,0.6>

})
,(

((f1/0.2, d, 1), (f1/0.2, c, 0)),
{

η1
<0.3,0.25,0.3> ,

η2
<0.7,0.25,0.4> ,

η3
<0.5,0.35,0.5> ,

η4
<0.2,0.45,0.6>

})
,(

((f1/0.2, d, 1), (f3/0.4, c, 1)),
{

η1
<0.3,0.45,0.6> ,

η2
<0.6,0.25,0.5> ,

η3
<0.7,0.30,0.2> ,

η4
<0.8,0.35,0.4>

})
,(

((f1/0.2, c, 1), (f3/0.4, c, 1)),
{

η1
<0.1,0.55,0.4> ,

η2
<0.6,0.30,0.5> ,

η3
<0.7,0.30,0.2> ,

η4
<0.8,0.45,0.4>

})
,(

((f3/0.4, c, 0), (f1/0.2, c, 0)),
{

η1
<0.2,0.35,0.3> ,

η2
<0.7,0.40,0.4> ,

η3
<0.6,0.15,0.2> ,

η4
<0.7,0.25,0.3>

})
,(

((f3/0.4, c, 0), (f3/0.4, c, 1)),
{

η1
<0.1,0.55,0.6> ,

η2
<0.4,0.40,0.5> ,

η3
<0.7,0.10,0.2> ,

η4
<0.8,0.15,0.4>

})
.


Proposition 4.16. If (h̄1,Q1),(h̄2,Q2) and (h̄3,Q3) are three FPNHSE-sets over ∆, then

(1) ((h̄1,Q1)∧ (h̄2,Q2))c = ((h̄1,Q1))c ∨ ((h̄2,Q2))c

(2) ((h̄1,Q1)∨ (h̄2,Q2))c = ((h̄1,Q1))c ∧ ((h̄2,Q2))c
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Proposition 4.17. If (h̄1,Q1),(h̄2,Q2) and (h̄3,Q3) are three FPNHSE-sets over ∆, then

(1) ((h̄1,Q1)∧ (h̄2,Q2))∧ (h̄3,Q3) = (h̄1,Q1)∧ ((h̄2,Q2)∧ (h̄3,Q3))
(2) ((h̄1,Q1)∨ (h̄2,Q2))∨ (h̄3,Q3) = (h̄1,Q1)∨ ((h̄2,Q2)∨ (h̄3,Q3))
(3) (h̄1,Q1)∨ ((h̄2,Q2)∧ (h̄3,Q3) = ((h̄1,Q1)∨ ((h̄2,Q2))∧ ((h̄1,Q1)∨ (h̄3,Q3))
(4) (h̄1,Q1)∧ ((h̄2,Q2)∨ (h̄3,Q3)) = ((h̄1,Q1)∧ ((h̄2,Q2))∨ ((h̄1,Q1)∧ (h̄3,Q3)).

5. An Application to Fuzzy Parameterized Neutrosophic Hypersoft Expert Set

In this section, an application of FPNHSE-set theory with a proposed algorithm in a

decision-making problem, is presented.

Statement of the problem

The procurement of an electronic equipment has evolved in the product selection scenario into

a difficult issue for a person and an organisation. For the usage of his family, Mr. Bay is

looking for an LED TV. He has never purchased it before. He solicits assistance from his

buddies who may have knowledge on where to buy such a device. Consider the following while

buying this device in light of their friends’ experiences:

(1) Screen Resolution: The screen goal of a LED TV is the number of pixels in each

aspect that the TV can show locally. Higher-goal screens permit you to see all the

more fine subtleties in your beloved substance.

(2) Refresh Rate: Assuming you’re on the lookout for a LED TV, you’ve likely heard a

great deal about ”speed.” When promotions and audits talk about how quick a LED

TV is, they allude to the showcase’s invigorate rate or how regularly it changes the

image. TV and motion pictures don’t show natural movement, even handfuls, and

many casings each second, similar to a reel of film or a colossal flipbook. The quicker

the LED TV, the more casings it shows each second.

(3) Warranty: Service agreement for your TV or TV covering all assembling absconds,

programming issues, and electrical glitches or breakdowns. The maintenance agree-

ment for TV or TV begins following your producer or OEM guarantee lapses.

(4) Ports: Somewhere around four ports ought to be accessible, including USB, HDMI,

sound/video, and VGA. Additionally, ensure it upholds every hard circle and pen drive

to play recordings.

(5) Screen Size: There is a broad scope of Tv sizes accessible in the market to choose

from. The right TV size gives you a vivid review experience. Looking for an ideal

space from room, lounge, and nearness to the TV screen. Contrast TV stands and

divider mounted set up to track down a suitable spot in the space to put the TV set.

The right screen size and distance give you immersive survey encounters.

Muhammad Ihsan, Muhammad Saeed, Atiqe Ur Rahman, An intelligent fuzzy parameterized
MADM-approach to optimal selection of electronic appliances based on neutrosophic
hypersoft expert set

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                                474



————————————————————————————————————–

Proposed Algorithm : Selection of LED TV

————————————————————————————————————–

B Start:

B Construction:

———1. Construct FPNHSE-set (ξ, K)

B Computation:

———2. Determine Agree-FPNHSE-set and Disagree-FPNHSE-set.

———3. Calculation of Values of ᵀ(0i) − l(0i) − F(0i) for each 0i ∈ Ω.

———4. Calculate the the highest numerical grade for Agree and Disagree-FPNHSE-sets.

———5. Determine the score of each element 0i ∈ Ω for Agree and Disagree-FPNHSE-sets.

———-6. Determine the score difference for each element ci ∈ Ω.

B Output:

———7. Compute n, for which M= max ji to decide the best solution of the problem.

B End:

—————————————————————————————————————

Step-1

Let four categories of LED TV forming the universe of discourse Ω = {t1, t2, t3, t4} and X =

{E1 = Henry, E2 = John, E3 = Watson} be a set of experts for this purchase. The following

are the attribute-valued sets for prescribed attributes:

W1 = ScreenResolution = {w1 = 1280× 720pixels,w2 = 1920× 1080pixels}
W2 = RefreshRate = {w3 = 60Hz,w4 = 120Hz}, W3 = Warranty = {w5 = 4years,w6 =

5years}, W4 = Ports = {w7 = 4,w8 = 5}, W5 = ScreenSize = {w9 = 24inch,w10 = 32inch}

and then W =1 ×W2 ×W3 ×W4 ×W5

W =



(w1, w3, w5, w7, w9), (w1, w3, w5, w7, w10), (w1, w3, w5, w8, w9), (w1, w3, w5, w8, w10),

(w1, w3, w6, w7, w9), (w1, w3, w6, w7, w10), (w1, w3, w6, w8, w9), (w1, w3, w6, w8, w10),

(w1, w4, w5, w7, w9), (w1, w4, w5, w7, w10), (w1, w4, w5, w8, w9), (w1, w4, w5, w8, w10),

(w1, w4, w6, w7, w9), (w1, w4, w6, w7, w10), (w1, w4, w6, w8, w9), (w1, w4, w6, w8, w10),

(w2, w3, w5, w7, w9), (w2, w3, w5, w7, w10), (w2, w3, w5, w8, w9), (w2, w3, w5, w8, w10),

(w2, w3, w6, w7, w9), (w2, w3, w6, w7, w10), (w2, w3, w6, w8, w9), (w2, w3, w6, w8, w10),

(w2, w4, w5, w7, w9), (w2, w4, w5, w7, w10), (w2, w4, w5, w8, w9), (w2, w4, w5, w8, w10),

(w2, w4, w6, w7, w9), (w2, w4, w6, w7, w10), (w2, w4, w6, w8, w9), (w2, w4, w6, w8, w10)


Now take K ⊆ N as

K = {k1/0.2 = (w1, w3, w5, w7, w9), k2/0.3 = (w1, w3, w6, w7, w10), k3/0.4 =

(w1, w4, w6, w8, w9), k4/0.5 = (w2, w3, w6, w8, w9), k5/0.6 = (w2, w4, w6, w7, w10)}
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(ξ,K)1 =



(
(k1, E1, 1),

{
c1

<0.9,0.1,0.7> ,
c2

<0.5,0.2,0.1> ,
c3

<0.6,0.2,0.4> ,
c4

<0.7,0.1,0.2>

})
,(

(k1, E2, 1),
{

c1
<0.8,0.2,0.4> ,

c2
<0.9,0.2,0.3> ,

c3
<0.6,0.2,0.3> ,

c4
<0.9,0.1,0.5>

})
,(

(k1, E3, 1),
{

c1
<0.7,0.3,0.1> ,

c2
<0.4,0.1,0.2> ,

c3
<0.6,0.1,0.4> ,

c4
<0.8,0.6,0.1>

})
,(

(k2, E1, 1),
{

c1
<0.8,0.4,0.2> ,

c2
<0.4,0.2,0.1> ,

c3
<0.7,0.1,0.5> ,

c4
<0.5,0.2,0.1>

})
,(

(k2, E2, 1),
{

c1
<0.5,0.1,0.3> ,

c2
<0.9,0.4,0.4> ,

c3
<0.7,0.4,0.1> ,

c4
<0.9,0.2,0.3>

})
,(

(k2, E3, 1),
{

c1
<0.7,0.3,0.1> ,

c2
<0.8,0.2,0.4> ,

c3
<0.9,0.2,0.5> ,

c4
<0.8,0.2,0.1>

})
,(

(k3, E1, 1),
{

c1
<0.9,0.4,0.2> ,

c2
<0.7,0.2,0.3> ,

c3
<0.8,0.2,0.5> ,

c4
<0.7,0.2,0.4>

})
,(

(k3, E2, 1),
{

c1
<0.8,0.3,0.4> ,

c2
<0.9,0.2,0.5> ,

c3
<0.6,0.2,0.3> ,

c4
<0.9,0.2,0.3>

})
,(

(k3, E3, 1),
{

c1
<0.7,0.4,0.1> ,

c2
<0.6,0.3,0.2> ,

c3
<0.8,0.2,0.3> ,

c4
<0.7,0.1,0.4>

})
,(

(k4, E1, 1),
{

c1
<0.9,0.1,0.7> ,

c2
<0.8,0.3,0.1> ,

c3
<0.7,0.1,0.4> ,

c4
<0.6,0.3,0.2>

})
,(

(k4, E2, 1),
{

c1
<0.8,0.1,0.4> ,

c2
<0.4,0.3,0.1> ,

c3
<0.8,0.3,0.1> ,

c4
<0.7,0.2,0.1>

})
,(

(k4, E3, 1),
{

c1
<0.6,0.2,0.4> ,

c2
<0.1,0.3,0.2> ,

c3
<0.9,0.5,0.3> ,

c4
<0.6,0.1,0.3>

})
,(

(k5, E1, 1),
{

c1
<0.6,0.3,0.2> ,

c2
<0.8,0.2,0.4> ,

c3
<0.3,0.2,.01> ,

c4
<0.7,0.1,0.4>

})
,(

(k5, E2, 1),
{

c1
<0.5,0.3,0.2> ,

c2
<0.6,0.2,0.3> ,

c3
<0.4,0.3,0.1> ,

c4
<0.6,0.1,0.2>

})
,(

(k5, E3, 1),
{

c1
<0.4,0.3,0.1> ,

c2
<0.6,0.1,0.2> ,

c3
<0.3,0.1,0.2> ,

c4
<0.9,0.4,0.2>

})



.

and

(ξ,K)0 =



(
(k1, E1, 0),

{
c1

<0.6,0.3,0.1> ,
c2

<0.9,0.1,0.2> ,
c3

<0.8,0.2,0.3> ,
c4

<0.6,0.1,0.4>

})
,(

(k1, E2, 0)
{

c1
<0.7,0.2,0.3> ,

c2
<0.6,0.3,0.2> ,

c3
<0.7,0.2,0.1> ,

c4
<0.8,0.2,0.1>

})
,(

(k1, E3, 0),
{

c1
<0.8,0.3,0.4> ,

c2
<0.6,0.2,0.1> ,

c3
<0.7,0.4,0.2> ,

c4
<0.9,0.4,0.4>

})
,(

(k2, E1, 0),
{

c1
<0.9,0.4,0.2> ,

c2
<0.9,0.3,0.3> ,

c3
<0.8,0.1,0.4> ,

c4
<0.8,0.2,0.2>

})
,(

(k2, E2, 0),
{

c1
<0.9,0.5,0.1> ,

c2
<0.7,0.2,0.3> ,

c3
<0.6,0.3,0.2> ,

c4
<0.5,0.3,0.2>

})
,(

(k2, E3, 0),
{

c1
<0.7,0.2,0.1> ,

c2
<0.8,0.5,0.2> ,

c3
<0.7,0.1,0.2> ,

c4
<0.8,0.4,0.3>

})
,(

(k3, E1, 0),
{

c1
<0.9,0.1,0.6> ,

c2
<0.7,0.2,0.1> ,

c3
<0.9,0.1,0.5> ,

c4
<0.8,0.2,0.1>

})
,(

(k3, E2, 0),
{

c1
<0.8,0.2,0.1> ,

c2
<0.9,0.2,0.1> ,

c3
<0.9,0.6,0.1> ,

c4
<0.9,0.2,0.1>

})
,(

(k3, E3, 0),
{

c1
<0.6,0.2,0.4> ,

c2
<0.6,0.1,0.3> ,

c3
<0.9,0.4,0.1> ,

c4
<0.7,0.4,0.2>

})
,(

(k4, E1, 0),
{

c1
<0.6,0.3,0.2> ,

c2
<0.7,0.5,0.1> ,

c3
<0.8,0.2,0.1> ,

c4
<0.9,0.4,0.1>

})
,(

(k4, E2, 0),
{

c1
<0.5,0.2,0.1> ,

c2
<0.5,0.2,0.1> ,

c3
<0.3,0.1,0.0> ,

c4
<0.6,0.2,0.1>

})
,(

(k4, E3, 0),
{

c1
<0.7,0.1,0.3> ,

c2
<0.7,0.2,0.1> ,

c3
<0.6,0.1,0.4> ,

c4
<0.9,0.1,0.6>

})
,(

(k5, E1, 0),
{

c1
<0.9,0.5,0.1> ,

c2
<0.6,0.2,0.1> ,

c3
<0.9,0.1,0.3> ,

c4
<0.9,0.2,0.5>

})
,(

(k5, E2, 0),
{

c1
<0.8,0.6,0.1> ,

c2
<0.9,0.2,0.1> ,

c3
<0.8,0.5,0.2> ,

c4
<0.7,0.3,0.2>

})
,(

(k5, E3, 0),
{

c1
<0.8,0.1,0.3> ,

c2
<0.5,0.2,0.4> ,

c3
<0.8,0.1,0.7> ,

c4
<0.6,0.1,0.3>

})


are FPNHSE-sets.

Step-2

Table 1 and Table 2 represent the values of ᵀ(ci)-l(ci)-F(ci).

Step-(2)

Grade values of agree and disagree FPNHSE-sets have been represented in Table 3 and Table

4 respectively.

Step-(3-5)
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Table 1. Agree-FPNHSE-set

C c1 c2 c3 c4

(k1, E1, 1) 0.1 0.3 0.0 0.4

(k1, E2, 1) 0.2 0.4 0.1 0.3

(k1, E3, 1) 0.4 0.1 0.1 0.1

(k2, E1, 1) 0.2 0.1 0.1 0.3

(k2, E2, 1) 0.2 0.1 0.2 0.4

(k2, E3, 1) 0.3 0.2 0.2 0.2

(k3, E1, 1) 0.3 0.2 0.1 0.1

(k3, E2, 1) 0.1 0.2 0.3 0.2

(k3, E3, 1) 0.2 0.1 0.3 0.2

(k4, E1, 1) 0.1 0.4 0.2 0.1

(k4, E2, 1) 0.3 0.0 0.2 0.4

(k4, E3, 1) 0.0 0.0 0.1 0.2

(k5, E1, 1) 0.1 0.2 0.0 0.3

(k5, E2, 1) 0.0 0.1 0.0 0.3

(k5, E3, 1) 0.0 0.4 0.0 0.3

Table 2. Disagree-FPNHSE-set

C c1 c2 c3 c4

(k1, E1, 0) 0.4 0.6 0.3 0.2

(k1, E2, 0) 0.2 0.1 0.4 0.5

(k1, E3, 0) 0.1 0.1 0.1 0.4

(k2, E1, 0) 0.3 0.3 0.3 0.4

(k2, E2, 0) 0.3 0.2 0.1 0.0

(k2, E3, 0) 0.3 0.1 0.4 0.1

(k3, E1, 0) 0.2 0.4 0.3 0.5

(k3, E2, 0) 0.5 0.4 0.2 0.6

(k3, E3, 0) 0.0 0.4 0.2 0.3

(k4, E1, 0) 0.1 0.1 0.5 0.4

(k4, E2, 0) 0.1 0.2 0.0 0.3

(k4, E3, 0) 0.4 0.1 0.1 0.2

(k5, E1, 0) 0.1 0.3 0.5 0.2

(k5, E2, 0) 0.1 0.6 0.1 0.2

(k5, E3, 0) 0.5 0.1 0.0 0.4

The difference of scores of agree and disagree-FPNHSE-sets have been shown in Table 5. The

scores for agree-FPNHSE-set are :

S(c1) = 0.6, S(c2) = 1.3, S(c3) = 0.6 and S(c4) = 2.0

whereas scores for disagree-FPNHSE-set are:
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Table 3. Numerical Grades of agree FPNHSE-set

Pairs ci Highest Numerical Grade

(k1, E1, 1) c4 0.4

(k1, E2, 1) c2 0.4

(k1, E3, 1) c1 0.4

(k2, E1, 1) c2 0.1

(k2, E2, 1) c4 0.4

(k2, E3, 1) c1 0.3

(k3, E1, 1) c1 0.3

(k3, E2, 1) c3 0.3

(k3, E3, 1) c3 0.3

(k4, E1, 1) c2 0.4

(k4, E2, 1) c4 0.4

(k4, E3, 1) c4 0.2

(k5, E1, 1) c4 0.3

(k5, E2, 1) c4 0.3

(k5, E3, 1) c2 0.4

Table 4. Numerical Grades of disagree FPNHSE-set

Pairs ci Highest Numerical Grade

(k1, E1, 0) c2 0.6

(k1, E2, 0) c3 0.4

(k1, E3, 0) c4 0.4

(k2, E1, 0) c4 0.4

(k2, E2, 0) c1 0.4

(k2, E3, 0) c3 0.4

(k3, E1, 0) c4 0.5

(k3, E2, 0) c4 0.6

(k3, E3, 0) c2 0.4

(k4, E1, 0) c3 0.5

(k4, E2, 0) c4 0.3

(k4, E3, 0) c1 0.4

(k5, E1, 0) c3 0.5

(k5, E2, 0) c2 0.6

(k5, E3, 0) c1 0.5

S(c1) = 1.3, S(c2) = 1.6, S(c3) = 1.8 and S(c4) = 2.2.

Step-6; Decision

As from above result, c4 is preferred to be best and have been mentioned in Figure 2.
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Table 5. Numerical values of ji = Gi −Hi

Gi Hi ji = Gi −Hi

S(c1) = 0.6 S(c1) = 1.3 -0.7

S(c2) = 1.3 S(c2) = 1.6 -0.3

S(c3) = 0.6 S(c3) = 1.8 -1.2

S(c4) = 2.0 S(c4) = 2.2 0.2

Figure 2. Ranking of Alternatives for Algorithm

6. Conclusions

The foundations of the fuzzy parameterized neutrosophic hypersoft expert set are developed

in this study, along with certain generalisations of theoretical operations like union, intersec-

tion, complement, AND, and OR. With specific instances, some fundamental concepts like

exclusion, contradiction, and laws are explored. These concepts include idempotent, absorp-

tion, domination, identity, associative, and distributive laws. In the end, an algorithm is

created to describe how the decision-making problem is solved. This new work inspires further

advancements of related research and practical applications while providing an exceptional

expansion to existing theories for handling ambiguity, untruth, and truthness.
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Abstract: This article aims to propose a new type of single-valued neutrosophic(SVN) covering-based rough 

sets over two universes by using Wang’s single-valued neutrosophic covering rough sets. Wang’s model is 

based on one universe but the proposed model is based on two universes and thus the new model gives a new 

perspective for decision-making on uncertain problems. First, we define SVN β-neighborhood, which is 

considered as a mapping from the universe to the set of SVN sets in another universe and study its properties. 

Then we investigate the properties of the new type of SVN covering-based rough set model over two universes. 

Also, we give a necessary and sufficient condition under which two SVN β-coverings generate the same SVN 

covering lower and the upper approximation. In addition, we also present the matrix representation of SVN 

covering lower and upper approximation operators over two universes for solving real-life-based multi-criteria 

decision-making problems.  

Keywords: SVN sets; SVN β-neighborhood; SVN covering-based rough set; MCDM 

 

 

1. Introduction 

The discovery of fuzzy set (FS), introduced by Zadeh[1] has been regarded as the finest discovery that is utilized 

to solve vague and uncertain information with an aid of a membership function. The FS concept provides a new 

perspective for the decision-makers to address the issues that cannot be tackled by using traditional 

mathematical tools. Due to the novelty of FS, it can be employed in various practical applications given in [2-6]. 

To realize the importance of the non-membership value along with the membership value of an attribute in a 

universe, Atanassov[7] introduced the intuitionistic fuzzy set(IFS). To handle more complexity that arises in 

various real uncertain decision-making problems; the FS concept has been further extended by introducing 

interval-valued fuzzy set [8], interval-valued intuitionistic fuzzy set [9], picture fuzzy set [10], spherical fuzzy 

set [11], hesitant fuzzy set [12], Pythagorean fuzzy set [13], etc.   

In our previous discussion, we were mainly concerned with fuzzy sets and their various extensions to address 

uncertain and vague information. But, all these types of fuzzy sets are not capable to model the indeterminate 

information present in human cognition. To fill up this gap, Smarandache[14] introduced the notion of 

neutrosophy as a new branch of philosophy. Later on, he introduced the neutrosophic set (NS) [15] as an 

extension of IFS. In NS, every object in the universe is characterized by the three membership functions called 
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the truth-membership function ( AT ), indeterminate-membership function ( AI  ), and the falsity membership 

function ( AF  ) with a restriction , , : 0,1A A AT I F X       and      0 3A A AT x I x F x     . 

Later on, Wang et al.[16] introduced the single-valued neutrosophic set(SVNS) as an instance of NS. For 

handling decision-making problems under a neutrosophic environment, the decision-makers face problems 

while deciding due to the involvement of non-standard unit intervals. So, SVNS is introduced where the 

non-standard unit interval is replaced by a standard unit interval. The concept of SVNS has been extensively 

used in numerous decision-making problems (see the references [17-21]). Also, we would like to discuss some 

other important topics that are useful for the further development of the proposed study as follows: fixed point 

results in orthogonal neutrosophic metric spaces [22]; contractive and weakly compatible mappings in 

neutrosophic metric spaces are utilized in solving nonlinear differential equations [23]; some new aspects of 

fixed point theory under the intuitionistic fuzzy set and neutrosophic set [24]; fuzzy b-metric like spaces [25]; 

new aspects in fuzzy fixed point theory [26]; pentagonal controlled fuzzy metric spaces and its application [27]. 

In 1982, the Polish mathematician Pawlak [28] proposed another useful mathematical tool known as the 

rough set(RS) theory. Like FS, RS is another kind of generalization of a classical set. In RS, every subset of the 

universe is characterized by lower and upper approximations (see [29]). Also, in RS, the concept of equivalence 

classes is the key issue to form two approximations. It can be useful in discovering the hidden data, modeling 

information systems, eliminating the redundant data, and applied in data analysis, pattern recognition, data 

mining, intelligent systems, medical diagnosis, machine learning, and many more (see the references [30-34]). 

RS deals with crisp approximation space. But, we encounter some information system that contains fuzzy 

characteristics. To cope with such an issue, a rough set is combined with different types of fuzzy sets and obtain 

new hybrid structures and their associated applications are as follows: rough fuzzy sets and soft rough sets [35], 

intuitionistic fuzzy rough sets and their topological properties [36], interval-valued intuitionistic rough set [37], 

generalized interval-valued fuzzy rough set and its decision-making approach [38], etc. Furthermore, with the 

combination of rough set and neutrosophic set, many theories and their practical implications are proposed in 

[39-46].  

Pawlak’s rough set model is based on partition or equivalence relation. There exist many applications in real life 

where the notion of an equivalence relation is restrictive. To overcome such difficulties, Yiyu et al.[47] 

introduced the covering-based rough set model as an extension of classical RS. In [48], Kong et al. proposed the 

covering-based fuzzy rough sets and their properties. By introducing the fuzzy  -covering and fuzzy 

 -neighborhood, Ma [49] presented two types of fuzzy covering RS models. Zhang et al.[50] introduced fuzzy 

 -covering  ,I T fuzzy rough set model and its application in MADM problem. In [51], Zhang et al. defined 

the TOPSIS-WAA method built upon a covering-based fuzzy rough set. Zhou et al.[52]defined three types of 

fuzzy covering-based RS models. Furthermore, Yang et al. introduced some types of covering based rough sets 

[53]; Deer et al. investigated the properties and interrelationships of fuzzy covering-based rough set models 

[54]; fuzzy information system based covering based rough sets are prosed in [55]; fuzzy covering-based rough 

set on two different universes and its application is successfully executed by Yang [56]; Zhan et al. [57] initiated 

the PROMETHEE EDAS method via covering-based variable precision fuzzy rough sets [58]; MADM method 
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under the hesitant fuzzy   -covering rough sets setting is successfully applied in [59]; TOPSIS method for 

MADM via covering-based spherical fuzzy rough set model is given in [60]. For further extension of the hybrid 

covering-based rough set model, Zhan et al.[61] defined covering-based intuitionistic fuzzy rough sets and their 

application in the MADM problem; two types of intuitionistic fuzzy covering rough sets in the MCGDM 

problem are defined by Wang et al.[62]; two types of single-valued neutrosophic rough sets and their 

decision-making approach are proposed in [63]; in [64], Wang et al. introduced a new type of single-valued 

neutrosophic covering rough set model. Some more recent works are based on neutrosophic covering rough set 

model proposed in [65-68]. 

The objectives of this paper are furnished below: 

 The purpose of this article is to propose a single-valued neutrosophic covering-based rough set model 

over two universes by using Wang’s approach given in [63]. 

 Construction of SVN  -neighborhood operators on two universes and study their properties. 

 Construction of SVN  -covering lower and upper approximation operators over two universes. 

 Matrix representation of SVN  -neighborhood and SVN  -covering lower and upper 

approximation operators over two universes and studied some propositions on them. 

 A new type of MCDM problem is solved under the proposed study with the help of an algorithm. 

To visualize the effectiveness of the proposed study over the existing theories, see the following Fig 1. 

 

 

 

 

 

 

 

       [49-56, 58] 

              [57] 

         [61-62]  

        

      

       

 

      [63, 64, 66, 68]       [Proposed]  

 

 

 

                   Fig 1. A brief diagrammatic presentation of the proposed study  

2. Preliminaries 

In this section, we give some basic concepts that are useful for the proposed study. 

   Various Types of Covering Based Rough set Model Under 

Single Universe Based 
 Two Universes Based 

  Fuzzy Set 

Intuitionistic Fuzzy Set 

  Single-valued Neutrosophic Set 
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Definition 2.1 [29] Let  be a universal set and R be an equivalence relation on. Then the pair (, R) is called a 

Pawlak approximation space. Let 1 2, ,..., n   are the equivalence classes generated by R. Therefore, R 

generates a partition / R  1 2, ,..., n    on. 

Definition 2.2 [69] Let  be a universal set and C be a family of non-empty subsets of. If   C, then C is 

known as a covering of . Also, the pair (, C) is called a covering approximation space. 

Definition 2.3 [16] A single-valued neutrosophic set (SVNS) defined on  is an object of the form given 

below: 

      , , , :T I F         , where  T  is the degree of truth-membership,  I   is 

the degree of indeterminacy-membership, and  F  is the degree of falsity-membership such that 

       , , 0,1T I F      and      0 3T I F        for all  . The family of SVNS 

over  is denoted by
 SVNS 

 .  

Definition 2.4 [63] Let 
 SVNS 

 denotes the family of SVNS in  and , ,p q r  be a SVN number. 

Then, for  1 2, ,...., kM M M 


with
jM 

 SVNS 
  1,2,..,j k , a SVN  -covering of , if for 

all  , there exists jM 


such that  jM   . The pair ( ,


) is called a SVN  -covering 

approximation space. 

Definition 2.5 [63] Let 


be a SVN  -covering of , where  1 2, ,...., kM M M 


. For any  , 

the SVN  -neighborhood 







 of  induced by 


can be defined as 

  :j jM M


  


   


  

It is to be noted that  jM       ,
j jM MT p I q   and  

jMF r  , where , ,p q r  is 

a SVN number. 

 

3. Construction of SVN β-covering Approximation Space over Two Universes 

In this section, we first introduce the notion of SVN β-neighborhood, and then we define a type of SVN 

covering-based rough set model over two universes. Here  ,X Y denotes the family of all mappings from 

X toY . 
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Definition 3.1 Let G


be a SVN β-covering of the universe X where  1 2 3, , ,......, pG G G G G


. For 

any x X , the SVN β-neighborhood x



 of x  induced by G


can be defined as: 

 : , 1,2,..,x i i
G G G x i p




  

 
     

  



 .

 

By introducing : ( )x X SVN Y


  , we define a new type of SVN covering-based rough set model over two 

universes.

 
By Wang’s [63] approach, If G



be a SVN β-covering of the universe X for some  , ,    where 

 , , 0,1    such that 3     , we do not sure that f G
 
 
 



is a SVN β-covering overY . To support 

this claim we give an example in the following: 

Example 3.2 Let  1 2 3 4, , ,X x x x x and  1 2 3, ,Y y y y be two universal sets and  ,f X Y such 

that    1 2 1f x f x y  , and    3 4 2f x f x y  . Let  1 2,G G G


, where 

1

1 2 3 4

0.3,0.2,0.2 0.4,0.1,0.3 0.3,0.1,0.3 0.3,0.3,0.4
, , ,G

x x x x

 
  
 

 

2

1 2 3 4

0.4,0.3,0.4 0.3,0.4,0.3 0.4,0.2,0.4 0.3,0.3,0.4
, , ,G

x x x x

 
  
 

 

It is to be noted that G


is a SVN β-covering of X , where  0.3,0.3,0.4  . 

Now,     
 

   
1

1

1 1 1 1 1 1 2 0.4,0.1,0.2
x f y

f G y G x G x G x


     

    
 

   
1

2

1 2 1 1 3 1 4 0.3,0.1,0.3
x f y

f G y G x G x G x


     

    
 1

3

1 3 1

x f y

f G y G x


  0 

 1

1 2

0.4,0.1,0.2 0.3,0.1,0.3
,f G

y y

 
  
   

Similarly,     
 

   
1

1

2 1 2 2 1 2 2 0.4,0.3,0.3
x f y

f G y G x G x G x
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1

2

2 2 2 2 3 2 4 0.4,0.2,0.4
x f y

f G y G x G x G x


     

    
 1

3

2 3 2

x f y

f G y G x


  0 

 2

1 2

0.4,0.3,0.3 0.4,0.2,0.4
,f G

y y

 
  
   

Therefore,      1 2,f G f G is not a SVN  -covering ofY . 

Based on the above example, a natural question arises that under what condition f G
 
 
 



is a SVN  -covering 

ofY for which G


 is a SVN  -covering of X . For further investigation we discuss the following: 

Proposition 3.3 Let X and Y be two universes and  , ,    where  , , 0,1    such 

that 3     and the family of all surjective mappings from X to Y be denoted by ( , )Sur X Y , 

where ( , )f Sur X Y . Then we consider the following: 

(1) If G


 is a SVN  -covering of X , then f G
 
 
 



is a SVN  -covering ofY . 

(2) If H


is a SVN  -covering ofY if and only if 
1f H  
 
 



is a SVN  -covering of X . 

The converse of the Proposition (1) does not hold. To hold the converse of Proposition (1), we give the 

following necessary condition: 

Theorem 3.4 Let :f X Y be a bijection from X to Y  ,  , ,    where  , , 0,1    such 

that 3     and G


 be a family of SVN sets on X . Then G


is a SVN  -covering of X iff f G
 
 
 



is 

also a SVN  -covering ofY . 

Definition 3.5 Let X and Y be two non-empty finite universal sets and ( , )f Sur X Y . Let 

 1 2, ,...., mG G G G


be a family of SVN  -covering for some  , ,    . For all x X , we define 

the SVN  -neighborhood x



 as: 

    :x i if G G x
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In [50], the SVN  -neighborhood of x X was defined in ,X G
 
 
 



but in the proposed study, we define 

this in , ,X Y G
 
 
 



. For better understanding, we consider the following example: 

Example 3.6 Let :f X Y be a surjection, where  1 2 3 4 5 6, , , , ,X x x x x x x ,  1 2 3 4, , ,Y y y y y and 

 

 

 
1 1 3

2 2 5

3 4

4 6

, ,

, ,

,

,

y x x x

y x x x
f x

y x x

y x x

 



 


 

 

Let,  1 2 3 4, , ,G G G G G


be a SVN set over X , where  

1

1 2 3 4 5 6

0.3,0.5,0.4 0.4,0.2,0.6 0.2,0.4,0.5 0.3,0.5,0.6 0.5,0.6,0.3 0.3,0.4,0.2
, , , , ,G

x x x x x x

 
  
 

 

2

1 2 3 4 5 6

0.4,0.3,0.2 0.5,0.3,0.4 0.3,0.3,0.5 0.3,0.4,0.5 0.6,0.3,0.2 0.5,0.3,0.3
, , , , ,G

x x x x x x

 
  
 

 

3

1 2 3 4 5 6

0.5,0.2,0.3 0.4,0.3,0.4 0.6,0.5,0.3 0.4,0.2,0.1 0.4,0.5,0.6 0.4,0.5,0.3
, , , , ,G

x x x x x x

 
  
 

 

4

1 2 3 4 5 6

0.4,0.3,0.5 0.5,0.3,0.4 0.6,0.4,0.4 0.3,0.4,0.5 0.5,0.5,0.4 0.3,0.4,0.2
, , , , ,G

x x x x x x

 
  
 

 

 1

1 2 3 4

0.3,0.4,0.4 0.5,0.2,0.3 0.3,0.5,0.6 0.3,0.4,0.2
, , ,f G

y y y y

 
  
 

 

 2

1 2 3 4

0.4,0.3,0.2 0.6,0.3,0.2 0.3,0.4,0.5 0.5,0.3,0.3
, , ,f G

y y y y

 
  
 

 

 3

1 2 3 4

0.6,0.2,0.3 0.4,0.3,0.4 0.4,0.2,0.1 0.4,0.5,0.3
, , ,f G

y y y y
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 4

1 2 3 4

0.6,0.3,0.4 0.5,0.3,0.4 0.3,0.4,0.5 0.3,0.4,0.2
, , ,f G

y y y y

 
  
 

 

For  0.2,0.6,0.6  , G


and f G
 
 
 



are SVN  -coverings over X and Y respectively. 

Suppose  0.3,0.4,0.3  , then we calculate the SVN  -neighborhood x



 for each x X as follows: 

 

1

0.3,0.4,0.3

1 1 1

0.4,0.3,0.2 0.6,0.2,0.3 0.4,0.3,0.3
x

y y y



    

 

2

0.3,0.4,0.3

x



  , 

 

3

0.3,0.4,0.3

x



  , 
 

4

0.3,0.4,0.3

3

0.4,0.2,0.1
x

y



  , 

 

5

0.3,0.4,0.3

x



   

 

6

0.3,0.4,0.3

4 4 4 4

0.3,0.4,0.2 0.5,0.3,0.3 0.3,0.4,0.2 0.3,0.4,0.3
x

y y y y



     

Proposition 3.7 Let  ,f Sur X Y and  1 2 3, , ,....., mG G G G G


be a SVN  -covering for 

some  , ,    . Then we consider the following properties: 

(1)   x f x





  for each x X . 

(2) Let f be injective and for all , ,x y z X , if   x f y





  and   y f z





  , 

then   x f z





  . 

(3) For each  , ,    , where  , , 0,1    and 3     , we can write the following: 

   : , and i=1,2,..,mxi if G G x x X



 

    
 

  

(4) If 1 20      , then 
1 2

x x

  

    for all x X . 

Proof. (1) For each x X , 

  x f x


 =  
 

  
i

i

G x

f G f x


 
  
 
 = 

 
    

i
i

G x
f G f x


 = 

    
 

* 1

*

i
i

G x x f f x
G x

  

 
  

 
 

                                                                     
 

 
i

i
G x

G x
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(2) We have   x f y



 

 
i

i
G x

G y





    and   y f z



 

 
i

i
G y

G z





   . Then for 

each 1,2,..,i m ,    G x G yi i    and    y zG Gi i    . Thus, 

  
 

 
i

x i
G x

f z G z








    . 

(3) By definition 3.5,    x iG xi f G





    .  

Then    : , and i=1,2,..,mxi if G G x x X



 

    
 

  

(4) For each x X , 1 2            1 2: :i i i if G G x f G G x    .  

Then,          
1 2

1 2: :x xi i i if G G x f G G x
 

 
 

        for all x X . 

Proposition 3.8 Let X and Y be two finite universes,  , ,f Sur X Y f be injective and 

 1 2 3, , ,....., mG G G G G


be a SVN  -covering for some  , ,    . For all ,x y X ,

  x f y





  iff y x

  

   . So   x f y





  and   y f x





  if and only if y x

  

   . 

Proof.     x f y


 =  
 

 
i

i

G x

f G y


 
  
 
 =

 
  ( )

i
i

G x
f G f y





  .  

We have,    :i if G f G G x 
  

   
  



   :i if G f G G y 
  

    
  



. 

Since,   x f y





  , 

  
   

 
 
 

 
 
 

   i
G xix

G x Ii G xiIG x Fi G xiFG xi

i f G f y
Tf y T

T T f G f y T
























    , 

  
   

 
 
 

 
 
 

   i
G xix

G x Ii G xiIG x Fi G xiFG xi

i f G f y
Tf y T

I I f G f y I
























    , 

and 
  

   
 
 
 

 
 
 

   i
G xix

G x Ii G xiIG x Fi G xiFG xi

i f G f y
Tf y T

F F f G f y F
























     

Again, for z X , 
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i i
G x G yi ix y
I IG x G yi i
F FG x G yi i

f G f z f G f z
T T

f z f z

T T T T 

 

 

 

 
 

 

 

 

      

    
 
 

   
 
 
 

   
  

i i
G x G yi ix y
I IG x G yi i
F FG x G yi i

f G f z f G f z
T T

f z f z

I I I I 

 

 

 

 
 

 

 

 

      

    
 
 

   
 
 
 

   
  

i i
G x G yi ix y
I IG x G yi i
F FG x G yi i

f G f z f G f z
T T

f z f z

F F F F 

 

 

 

 
 

 

 

 

      

Therefore, for z X , y x

  

   . 

  :  For any ,x y X , we have y x

  

   , 

  x f y

T 




  y f y

T  




 , 
  x f z

I 




  y f y

I  




 , 
  x f y

F 




  y f y

F  




  

Therefore,   x f y





  . 

Proposition 3.9 Let  ,f Sur X Y , f be injective and  1 2 3, , ,....., mG G G G G


be a SVN 

 -covering for some  , ,    . For all , ,x y z X , if   yf x N


 and   zf y N


 , 

then   zf x N


 . 

Proof. For all , ,x y z X ,  

    y y x yf x N N f x N N
   


   

     and     z z y zf y N N f y N N
   


   

     . 

Then x y zN N N
    

  and      x zN f x N f x
 


 

  . Therefore,   zf x N


 . This completes 

the proof. 

4. Construction of Single-valued neutrosophic covering based approximation operators over Two 

Universes 

In this section, a new type of SVN covering based rough set model over two universes for neutrosophic subsets 

is defined and its properties are explored: 

Definition 4.1 Let X and Y be two non-empty finite universes, ( , )f sur X Y and G


be a SVN 

 -covering on X for some  , ,     . For each  A f Y , we define the SVN covering lower 

approximation  *G A


and SVN covering upper approximation  
*

G A


as follows: 
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* ( ) ( ) ( )
( ) ( ) ( )

( ) , 1 , , :
x x x

A y A y A y
y Y y Y y YN f y N f y N f y

G A x x T T I I F F x X    
  

        
               

        



 

 
     

*

( ) ( ) ( )
( ) ( ) ( )

( ) , , 1 , 1 :
x x x

A y A y A y
y Y y Y y YN f y N f y N f y

G A x x T T I I F F x X    
  

          
                 

          



 

If    
*

*G A G A
 

, then A is called the SVN covering based rough set. 

Example 4.1.1 Let us consider the two finite universes as  1 2 3 4 5, , , ,X x x x x x , 

 1 2 3, ,Y y y y and  

 

 
1 1 2

2 3 4

3 5

, ,

: , , ,

,

y x x x

f X Y f x y x x x

y x x




  
 

. 

Let  1 2 3 4, , ,G G G G G


, where  

1

1 2 3 4 5

0.3,0.4,0.5 0.6,0.7,0.4 0.4,0.5,0.6 0.8,0.4,0.7 0.5,0.5,0.6
, , , ,G

x x x x x

 
  
 

 

2

1 2 3 4 5

0.2,0.6,0.4 0.5,0.4,0.4 0.6,0.3,0.7 0.5,0.6,0.4 0.3,0.7,0.5
, , , ,G

x x x x x

 
  
 

 

3

1 2 3 4 5

0.7,0.6,0.4 0.5,0.4,0.6 0.6,0.4,0.5 0.7,0.5,0.6 0.3,0.6,0.5
, , , ,G

x x x x x

 
  
 

 

4

1 2 3 4 5

0.6,0.5,0.6 0.5,0.6,0.7 0.6,0.4,0.5 0.4,0.6,0.5 0.5,0.6,0.4
, , , ,G

x x x x x

 
  
 

 

 1

1 2 3

0.6,0.4,0.4 0.8,0.4,0.6 0.5,0.5,0.6
, ,f G

y y y

 
  
 

 

 2

1 2 3

0.5,0.4,0.4 0.6,0.3,0.4 0.3,0.7,0.5
, ,f G

y y y

 
  
 

 

 3

1 2 3

0.7,0.4,0.4 0.7,0.4,0.5 0.3,0.6,0.5
, ,f G

y y y

 
  
 

 

 4

1 2 3

0.6,0.5,0.6 0.6,0.4,0.5 0.5,0.6,0.4
, ,f G

y y y
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Clearly, for 0.2,0.7,0.7  , G


and f G
 
 
 



are SVN  -coverings of X and Y respectively. 

 

1

0.2,0.7,0.7

1 1 1 1 1

0.6,0.4,0.4 0.5,0.4,0.4 0.7,0.4,0.4 0.6,0.5,0.6 0.5,0.5,0.6
x

y y y y y



    
 

 

2

0.2,0.7,0.7

1 1 1 1 1

0.6,0.4,0.4 0.5,0.4,0.4 0.7,0.4,0.4 0.6,0.5,0.6 0.5,0.5,0.6
x

y y y y y



    
 

 

3

0.2,0.7,0.7

2 2 2 2 2

0.8,0.4,0.6 0.6,0.3,0.4 0.7,0.4,0.5 0.6,0.4,0.5 0.6,0.4,0.6
x

y y y y y



    
 

 

4

0.2,0.7,0.7

2 2 2 2 2

0.8,0.4,0.6 0.6,0.3,0.4 0.7,0.4,0.5 0.6,0.4,0.5 0.6,0.4,0.6
x

y y y y y



    
 

 

5

0.2,0.7,0.7

3 3 3 3 3

0.5,0.5,0.6 0.3,0.7,0.5 0.3,0.6,0.5 0.5,0.6,0.4 0.3,0.7,0.6
x

y y y y y



      

For 
1 2 3

0.3,0.5,0.6 0.4,0.5,0.6 0.6,0.4,0.3
, ,A

y y y

 
  
 

 

 *

1 2 3 4 5

0.5,0.5,0.6 0.5,0.5,0.6 0.4,0.4,0.6 0.4,0.4,0.6 0.7,0.5,0.6
( ) , , , ,G A x

x x x x x

 
  
 



 

 
*

1 2 3 4 5

0.5,0.5,0.4 0.5,0.5,0.4 0.6,0.6,0.4 0.6,0.6,0.4 0.3,0.4,0.4
( ) , , , ,G A x

x x x x x

 
  
 



 

Thus,    
*

*G A G A
 

 

 

Some properties of SVN covering-based rough set model over two universes can be presented through the 

following proposition: 

Proposition 4.2 Let X and Y be two non-empty finite universes and  ,f Sur X Y . Let 

 1 2 3, , ,....., mG G G G G


be a SVN  -covering on X for some  , ,    , 

where  , , 0,1    and  3. For each , ,A B X Y       , we have the following statements: 

   
*

*(1) ,G Y X G  
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* *

* *2 ,

c c

c cG A G A G A G A
   

    
  

   

 

             
* * *

* * *3 ,G A B G A G B G A B G A G B 
     

     

       
* *

* *(4) , ,If A B then G A G B G A G B  
   

 

             
* * *

* * *5 ,G A B G A G B G A B G A G B 
     

     

 
 

 
   

 
 

 
 

 
   

( ) ( ) ( ) ( )

*

*

( ) ( )

6 , 1 , 1

1 ,

x x x x

x x

A y A y
N f y N f y N f y N f y

A y
N f y N f y

For each x X if T T T I I I and

F F F for all y Y then G A G A

   

 

   

 

      

    
 

. 

Proof.  

(1) For each x X , 

 * ( )G Y x 


     
 ( ) ( ) ( )

( ) ( ) ( )

, 1 , , :
x x x

Y y Y y Y y
y Y y Y y YN f y N f y N f y

x T T I I F F x X X x    
  

        
               

        

 

 
     

 
*

( ) , , 1 , 1 :( ) ( ) ( )
( ) ( ) ( )

G x x T T I I F F x X xy y yy Y y Y y Y
N f y N f y N f yx x x
                    

          
           

               



 

Hence  

   
*

* ,G Y X G  
 

 

(2) For each x X , 

 
     

     

*
( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) , 1 , , :

1 , , 1 , 1

c c c

x x x

x x x

c

A y A y A yy Y y Y y Y
N f y N f y N f y

A y A y
y Y y Y y YN f y N f y N f y

G A x x T T I I F F x X

x T T I I F

  

  

  

  

  

  

        
               

        

      
              

      



 

 

( )

*

*

:

1 ( )

( )

A y

c

F x X

G A x

G A x

   
  

   

 

 
  
 





Similarly, 
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*

*

c

cG A x G A x
 

  
 

 

  

Then,        
* *

* *,

c c

c cG A G A G A G A
   

    
  

   

       

 

(3) For each x X , 

 * ( )G A B x 




     

   

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

( )

, 1 , , :

, 1 1 ,

x x x

x x

x

A B y A B y A B y
y Y y Y y YN f y N f y N f y

A y B y
y Y

N f y N f y

y Y N f y

x T T I I F F x X

x T T T T

I

  

 



  

 



  





        
              

        

       
               
        



 

  

     
( ) ( ) ( ) ( )

( ) ( ) ( )

:

,
x x x

A y B y A y B y
y YN f y N f y N f y

x X

I I I F F F F    


 
 
 

 
           

                
           

=    * *( ) ( )G A x G B x
 

  

and 

 
   

 

   

*

( ) ( )
( ) ( )

, , 1 ,
( ) ( )

( ) ( )
:

1
( )

( )

( )

,
x x

A y B y
y Y N f y N f y

X

x T T I I
A B y A B yy Y y Y

N f y N f yx x
x

F F
A B yy Y

N f yx

G A B x

x T T T T 

 



 


    
  



  


     
    
    
        

   
   
   
    

   
      

   




 





   

   

   

( ) ( )
( ) ( )

( ) ( )
( ) ( )

* *

,

1 1 , :

1 1

( ) ( )

x x

x x

A y B y
y Y N f y N f y

A y B y
y Y N f y N f y

I I I I x X

F F F F

G A x G B x

 

 

 

 





 
 
 
 

        
                 
         

 
        

                
         


 



            
* * *

* **, ,Then G A B G A G B G A B G A G B 
     

     

     4 ,If A B then A Y B Y  for each y Y . For every x X , we have 
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* ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) , 1 , , :

, 1 , , :

x x x

x x x

A y A y A y
y Y y Y y Y

N f y N f y N f y

B y B y B y
y Y y Y y Y

N f y N f y N f y

G A x x T T I I F F x X

x T T I I F F x

  

  

  

  

  

  

        
               

        

      
              

      



 * ( )

X

G B x

  
 
  




 

        

 

and 

 
     

     

*

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) , , 1 , 1 :

, , 1 , 1

x x x

x x x

A y A y A y
y Y y Y y YN f y N f y N f y

B y B y
y Y y Y y Y

N f y N f y N f y

G A x x T T I I F F x X

x T T I I F

  

  

  

  

  

  

          
                 

          

      
           

      



 

( )

*

:

( )

B yF x X

G B x

   
   

   




 

Then,        
* *

* * ,G A G B G A G B 
   

. 

(5) Since A A B  , B A B  , A B A and A B B , then from (4) we can write 

   * *G A G A B
 

 ,    * *G B G A B
 

 ,    
* *

G A B G A
 

 and    
* *

G A B G B
 

 . 

Therefore,  *G A B 


    * *G A G B
 

 ,      
* * *

G A B G A G B
  

  . 

(6) This proof is obvious. 

Proposition 4.3 Let X and Y be two non-empty finite universes and ( , )f Sur X Y . Again, let 

 1 2, ,..., pG G G G


be a SVN  -covering on X for some  , ,    , 

where  , , 0,1    and 3.     For M   Y , where   Y denotes the family of all subsets of 

Y and  0,1 , we have the following results: 

(1)    
* *

Y XG M G M 
 

   

(2)    * *Y XG M G M 
 

   

Proof.  (1) For any x X , 
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*

YG M x


 =

     

     
 

 

( ) ( ) ( )

( ) ( )

( )

, 1 , 1

, 1 , 1

Y Y Y

x x x

x x x

x

M y M y M y
y Y y Y y YN y N y N y

M y M y M y
y Y y Y y YN y N y N y

M y
y Y N y

T T I I F F

T T I I F F

T T

  

  



  

  

  

  



  

  



        
              
        

        
                  

        


 



  

     

   

( )

( )

, 1 1 ,

1 1

x x x

x x

M y
y Y y Y y YN y N y N y

M y
y Y y YN y N y

T I I I

F F F

  

 

 



  

 

  

 

                   
                                                         

       
                

        

  
*

G M x 

  
  
    






Thus,    
* *

Y XG M G M 
 

   

(2) For every z X , 

  * YG M z 




     

     
 

 

(z) (z) (z)

(z) (z)

(z)

1 , ,

1 , ,

1

Y Y Y

x x x

x x x

x

M M M
z Y z Y z YN z N z N z

M M M z
z Y z Y z YN z N z N z

M
z Y N z

T T I I F F

T T I I F F

T T

  

  



  

  

  

  



  

  



      
            

      

      
                

      

   
     

  


  

     

   

  

(z)

(z)

*

1 , ,
x x x

x x

M
z Y z Y z YN z N z N z

M
z Y z Y

N z N z

T I I I

F F F

G M z

  

 

 





  

 

  

 

               
                                              

       
            
       






 

Hence,    * *Y XG M G M 
 

   

5. Matrix Representation of SVN Covering-Based Approximation Operators  

In this section, we have investigated the matrix representations of SVN covering-based lower and upper 

approximation operators and performed some matrix operations on them. Also, the algorithmic representation 

helps to calculate the matrix operations through the computer. 
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Definition 5.1 Let    , ,
ij ij ijij p p pm n m n

P p T I F
 

  and    , ,
jk jk jkjk q q q

n l
Q q T I F


  be two SVN 

matrices. Then, we perform the following two operations on  ij m n
P p


 and  jk n l

Q q


 as follows: 

         
1 1 1

, 1 , 1
ij jk p jk p jkij ij

n n n

ik p q q qm l j j j
P Q r T T I I F F

   
           , 1,2,..,i m ; 

1,2,.., lj   

        
1 1 1

1 , ,
ij jk p jk p jkij ij

n n n

ik p q q qm l j j j
P Q s T T I I F F

   
          , 1,2,..,i m ; 

1,2,.., lj   

 

Definition 5.2 Let  1 2, ,..., mX x x x and  1 2, y ,..., ynY y be two finite universal sets 

and ( , )f Sur X Y . Then the Boolean matrix under SVN environment is denoted by  f ij m n
Z z


 , where 

 

   

1,0,0 ,

0,1,1 ,
i j

ij

i j

when f x y
z

when f x y

 
 


 

Definition 5.3 Let  1 2, ,..., mX x x x be a non-empty finite universe and  1 2, ,..., nG G G G


be a SVN 

 -covering on X for some  , ,    , where  , , 0,1    and 3.     Then 

  j i m nG

Z G x


 is a matrix representation of G


. Also, the Boolean matrix  ij m n
Z t 

 is called a SVN 

covering based  -matrix representation of G


, where 

 

 

1,0,0 ,

0,1,1 ,
j i

ij

when G x
t

otherwise

 
 


 

Example 5.3.1 Let  1 2 3 4 5, , , ,X x x x x x and  1 2 3, y , yY y be two non-empty finite universes 

and :f X Y , where  

 

 

 

1 1 4

2 2

3 3 5

, ,

,

, ,

y x x x

f x y x x

y x x x




 
 

. 

Let  1 2 3, ,G G G G


, where 

1

1 2 3 4 5

0.3,0.6,0.5 0.4,0.6,0.4 0.6,0.3,0.5 0.7,0.5,0.6 0.4,0.3,0.2
, , , ,G

x x x x x
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2

1 2 3 4 5

0.4,0.6,0.3 0.5,0.8,0.5 0.6,0.4,0.3 0.7,0.5,0.6 0.7,0.3,0.4
, , , ,G

x x x x x

 
  
   

3

1 2 3 4 5

0.2,0.3,0.4 0.5,0.3,0.6 0.6,0.4,0.5 0.4,0.6,0.5 0.3,0.4,0.5
, , , ,G

x x x x x

 
  
   

For  0.2,0.9,0.7  , G


is a SVN  -covering of X . 

Now, 

     

     

     

     

     

31 2

1

2

3

4

5

1,0,0 0,1,1 0,1,1

0,1,1 1,0,0 0,1,1

0,1,1 0,1,1 1,0,0

1,0,0 0,1,1 0,1,1

0,1,1 0,1,1 1,0,0

yy y

f

x

x

Z x

x

x

 
 
 
 
 
 
 
  

, 

     

     

     

     

     

31 2

1

2

3

4

5

0.3,0.6,0.5 0.4,0.6,0.3 0.2,0.3,0.4

0.4,0.6,0.4 0.5,0.8,0.5 0.5,0.3,0.6

0.6,0.3,0.5 0.6,0.4,0.3 0.6,0.4,0.5

0.7,0.5,0.6 0.7,0.5,0.6 0.4,0.6,0.5

0.4,0.3,0.2 0.7,0.3,0.4 0.3,0.4,0.5

GG G

G

x

x

Z x

x

x

 
 
 
 
 


 







 

For   0.4,0.5,0.6   

 

     

     

     

     

     

31 2

1

2

30.4,0.5,0.6

4

5

0,1,1 0,1,1 0,1,1

0,1,1 0,1,1 1,0,0

1,0,0 1,0,0 1,0,0

1,0,0 1,0,0 0,1,1

1,0,0 1,0,0 0,1,1

GG G

x

x

Z x

x

x

 
 
 
 
 
 
 
  

 

Proposition 5.4 Let X and Y be two non-empty finite universes, and ( , )f Sur X Y . Let G


be a SVN 

 -covering on X for some  , ,    , 

where  , , 0,1    and 3.     Then  
T

f
G f G

Z Z Z
 
 
 

   . 

Proof. The proof is simple and straight forward. 

Example 5.4.1 Considering the example 5.3.1, we have 
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31 2

1

2

3

4

5

0.3,0.6,0.5 0.4,0.6,0.3 0.2,0.3,0.4
1,0,0 0,1,1 0,1,1 1,0,0 0,1,1 0.4,0.6,0.4 0.5,0.8,0.5 0.5,0.3,0.6
0,1,1 1,0,0 0,1,1 0,1,1 0,1,1 0.6,0.3,0.5 0.6,0.4,0.
0,1,1 0,1,1 1,0,0 0,1,1 1,0,0

GG G

f G

x

x

Z x

x

x

 
 
 

 
 

  
 
 

    

     

     

3 0.6,0.4,0.5

0.7,0.5,0.6 0.7,0.5,0.6 0.4,0.6,0.5

0.4,0.3,0.2 0.7,0.3,0.4 0.3,0.4,0.5

 
 
 
 
 
 
 
  

            =

                 

     

0.3,0,0,0.7,0 , 1,0.6,0.3,1,0.3 , 1,0.4,0.5,1,0.2 0.4,0,0,0.7,0 , 1,0.8,0.4,1,0.3 , 1,0.5,0.3,1,0.4 0.2,0,0,0.4,0 , 1,0.3,0.4,1,0.4 , 1,0.4,0.5,1,0.5

0,0.4,0,0,0 , 0.6,1,0.3,0.5,0.3 , 0.5,1,0.5,0.6,0.2 0,0.5

        

               

           

,0,0,0 , 0.6,1,0.4,0.5,0.3 , 0.3,1,0.3,0.6,0.4 0,0.5,0,0,0 , 0.3,1,0.4,0.6,0.4 , 0.4,1,0.5,0.5,0.5

0,0,0.6,0,0.4 , 0.6,0.6,1,0.5,0.1 , 0.5,0.4,1,0.6,1 0,0,0.6,0,0.7 , 0.6,0.8,1,0.5,1 , 0.3,0.5,1,0.6,1 0,0,0.6

    

            ,0,0.3 , 0.3,0.3,1,0.6,1 , 0.4,0.6,1,0.5,1

 
 
 
 

   

0.7,0.3,0.2 0.7,0.3,0.4 0.4,0.3,0.4

0.4,0.3,0.2 0.5,0.3,0.3 0.5,0.3,0.4

0.6,0.5,0.4 0.7,0.5,0.3 0.6,0.3,0.4

 
 

  
 
 

 

Proposition 5.5 Let  1 2, ,..., mX x x x and  1 2, y ,..., ynY y be two non-empty finite universal sets 

( , )f Sur X Y and  1 2, ,..., lG G G G


 be a SVN  -covering on X for some  , ,    , where 

 , , 0,1    and 3.     If Z be a  -matrix representation of G


, 
fZ be a matrix representation 

of f , and 
G

Z  be a matrix representation of G


, then 

    i

T
T

xf j
G

m n

Z Z Z y








 
    

 
 . 

Proof. This proof is simple and obvious. 

Example 5.5.1 With reference to example 5.3.1 and the continuation of example 5.4.1, we have 

 ix jy
 

 
 

=

     

     

     

     

     

0,1,1 0,1,1 0,1,1

0,1,1 0,1,1 1,0,0

1,0,0 1,0,0 1,0,0

1,0,0 1,0,0 0,1,1

1,0,0 1,0,0 0,1,1

 
 
 
 
 
 
 
  



0.7,0.3,0.2 0.4,0.3,0.2 0.6,0.5,0.4

0.7,0.3,0.4 0.5,0.3,0.3 0.7,0.5,0.3

0.4,0.3,0.4 0.5,0.3,0.4 0.6,0.3,0.4
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1,0.3,0.4 1,0.5,0.4 1,0.5,0.4

0.4,0.3,0.4 0.5,0.3,0.4 0.6,0.5,0.4

0.4,0,0 0.4,0,0 0.6,0,0

0.7,0.3,0.4 0.4,0.3,0.4 0.6,0.3,0.4

0.7,0.3,0.4 0.4,0.3,0.4 0.6,0.3,0.4

 
 
 
 
 
 
 
 

 

Proposition 5.6 Let  1 2, ,..., mX x x x and  1 2, y ,..., ynY y be two non-empty finite universal sets 

( , )f Sur X Y and  1 2, ,..., lG G G G


 be a SVN  -covering on X for some  , ,    , where 

 , , 0,1    and 3.     If Z be a  -matrix representation of G


, 
fZ be a matrix representation 

of f , and 
G

Z  be a matrix representation of G


, then for each X   Y , we have 

   *

T
T

f X
G

G X Z Z Z Z

  
     

  




,    
*

,
T

T

f X
G

G X Z Z Z Z

  
     

  




where

  
1X i n

Z X y


 . 

Proof. It is obvious. 

Example 5.6.1 In a continuation of example 5.5.1, we can obtain  *G X


and  
*

G X


as follows: 

 *

1,0.3,0.4 1,0.5,0.4 1,0.5,0.4

0.4,0.3,0.4 0.5,0.3,0.4 0.6,0.5,0.4 0.3,0.4,0.5

0.4,0,0 0.4,0,0 0.6,0,0 0.2,0.5,0.6

0.7,0.3,0.4 0.4,0.3,0.4 0.6,0.3,0.4 0.5,0.7,0

0.7,0.3,0.4 0.4,0.3,0.4 0.6,0.3,0.4

G X

 
 
 
  
 
 
 
 



.4

 
 
 
 
 

 

0.2,0.5,0.4

0.5,0.5,0.4

0.5,0,0

0.3,0.3,0.4

0.3,0.3,0.4
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*

1,0.3,0.4 1,0.5,0.4 1,0.5,0.4

0.4,0.3,0.4 0.5,0.3,0.4 0.6,0.5,0.4 0.3,0.4,0.5

0.4,0,0 0.4,0,0 0.6,0,0 0.2,0.5,0.6

0.7,0.3,0.4 0.4,0.3,0.4 0.6,0.3,0.4 0.5,0.7,0

0.7,0.3,0.4 0.4,0.3,0.4 0.6,0.3,0.4

G X

 
 
 
  
 
 
 
 



.4

0.5,0.5,0.6

0.5,0.7,0.6

0.5,1,1

0.5,0.7,0.6

0.5,0.7,0.6

 
 
 
 
 

 
 
 
 
 
 
 
 

 

Clearly,    
*

*G X G X
 

 

6. Application of SVN Covering Based Rough Set Model over Two Universes in MCDM Problem 

Multiple-criteria decision-making (MCDM) is a scientific approach that is useful to evaluate an optimal 

alternative under certain criteria or attributes. It is taken care of while evaluating the multiple conflicting 

criteria. Due to the uncertainty involved in many decision-making problems, makes the decision model more 

complex, and to overcome such type and reach a better decision, we need to consider a multiple-criteria model 

that provides a better option for the decision-makers to select the best option.  Over the years, a variety of 

methods and approaches are developed to implement MCDM in many fields to enhance the decision-making 

approach. According to the traditional approach to MCDM, we select the best alternative according to the 

attribute values. But in modern MCDM methods, the selection of the best alternative is done according to the 

profit/loss type attribute values. So, the modern MCDM approaches are more flexible and powerful than the 

traditional approaches. The MCDM methods include TOPSIS, DEA, AHP, ANP, MULTIMOORA, etc. 

In this section, we put forward an attempt to initiate a new approach to MCDM problems based on SVN 

covering-based rough set over two universes. For this, we describe the following MCDM problem: 

Let  1 2, ,..., mX x x x be the set of m patients and  1 2, ,...., nY y y y be the set of n diseases. Again, 

let  1 2, ,..., lG G G G


be the set of diagnosis set, it is also known as SVN  -covering on X for 

some  , ,    , where  , , 0,1    and 3.     Let ( , )f sur X Y  such 

that   , 1,2,..., 1,2,...,i jf x y where i m and j n   . We claim that f partitions X into n classes. 

Therefore, to identify the disease of patients through diagnosis, the set of doctors (experts) specifies a suitable 

diagnosis scores line according to the symptoms of all the patients. For this, we set a 

suitable
     

1 1 1 1 1 1, ,
j i j i j i

m n m n m n

i j i j i j
G x G x G x

T I F      

      
            

      
   . It can be easily verified that 
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G


is a SVN  -covering on X . Afterward, we obtain 

 
                    1 1 1

, ,
k i k i k ii i j i i j i i j

k j
G x G x G xx X x f y x X x f y x X x f y

f G y T I F
          

  
      

   
  



which denotes the 

degree of criteria 
kG


to the diseases jy . Also,    
 

i

k

x j k j

G x

y f G y








 
    

 




denotes the possibility of the 

patient xi having a disease y j . 

Moreover, for a given criterion M over a SVN set of the universe Y , the SVN covering-based lower 

approximation  *G M


of M denotes the neighborhood degree of M and 
ix



 . And the SVN 

covering-based upper approximation  
*

G M


of M denotes the degree of intersection of M and
ix



 . If 

  * iG M x 


and   
*

iG M x 


, then the patient xi does not satisfied with the attribute M . 

Otherwise, if   * iG M x 


 and   
*

iG M x 


, then the patient xi satisfies the criteria.  

To implement the MCDM process, we consider the following steps: 

Input: Assuming the SVN information system , ,X Y G
 
 
 



over two universes for MCDM problem 

, ( , )f Sur X Y and a criteria value  , ,    , where  , , 0,1    and 3.      

Computations: 

 

Step 1: Construct a SVN covering-based rough set model over two universes. 

Step2: Calculate the SVN covering-based lower approximation  *G M


and the SVN covering-based upper 

approximation  
*

G M


for the criterion M (defined by the SVN set of the universe Y ) provided by the hospital. 

Step 3: If   * iG M x 


  
*

iG M x 


, then the patient ix cannot be diagnosed to detect the disease 

jy under the critical value  . 

Step 4: If   * iG M x 


  
*

iG M x 


, then the patient ix be diagnosed to detect the disease jy under 

the critical value  . 

Step 5: Rank the alternatives to select the patient who needs a diagnosis to detect a certain disease. 
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Output: Ranking orders of all the alternatives. 

 

7. Conclusions and Future Scope 

The notion of a single-valued neutrosophic  -covering set is introduced by Wang et al.[63], which makes a 

connection between a single-valued neutrosophic set and a covering-based rough set. Using this concept, in this 

paper, a new type of SVN covering-based rough set model over two universes is developed. We also introduce 

SVN  -covering rough set model over two universes with an aid of SVN  -neighborhood and studied some 

of its properties. Furthermore, we have presented the matrix representations of the SVN covering-based lower 

and upper approximation operators. Finally, we give a method for MCDM under the SVN  -covering-based 

lower and upper approximation operators over two universes. 

In the future, to handle more critical decision-making problems, we can extend the proposed model by replacing 

the SVN covering information with the refined single-valued neutrosophic(RSVN) and quadripartitioned 

single-valued neutrosophic(QSVN) covering information and use them to develop TOPSIS, AHP, 

MULTIMOORA method in the MADM, MCDM, MCGDM, MAGDM problems. Topology and Entropy-based 

study in the same setting can also be possible to develop soon. To handle the parametric information, we can add 

the flavor of the soft set and hypersoft set in the present study to make it more flexible to encounter the uncertain 

information in a sophisticated way.  

Conflicts of Interest: The author declares no conflict of interests with anyone. 

References 

 [1] L.A. Zadeh (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/s0019-9958(65)90241-x      

 [2] Gupta, M.M.; Ragade, R.K. (1977). Fuzzy set theory and its applications: A survey. IFAC Proceedings Volumes, 10(6), 

247–259.  doi:10.1016/b978-0-08-022010-9.50038-4 

[3] Biswas, R. (1995). An application of fuzzy sets in students' evaluation. Fuzzy sets and systems, 74(2), 187-194. 

[4] Pal, S. K., & King, R. A. (1980). Image enhancement using fuzzy set. Electronics letters, 16(10), 376-378. 

[5] Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International 

Journal of Geographical Information Science, 14(2), 173-184. 

[6] Yager, R. R. (1982). Measuring tranquility and anxiety in decision making: an application of fuzzy sets. International 

Journal of General Systems, 8(3),139-146.  

[7] Krassimir T. Atanassov (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems , 20(1), 87–96. 

doi:10.1016/s0165-0114(86)80034-3  

[8] Gorzałczany, M. B. (1987). A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy 

sets and systems, 21(1), 1-17. 

[9] K. Atanassov; G. Gargov (1989). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems , 31(3), 343–349. 

doi:10.1016/0165-0114(89)90205-4  

[10] Cuong, B. C., & Kreinovich, V. (2013). Picture Fuzzy Sets-a new concept for computational intelligence problems. In 

2013 third world congress on information and communication technologies (WICT 2013) (pp. 1-6). IEEE. 

  

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                               504



 

 

Somen Debnath, Single Valued Neutrosophic Covering-Based Rough Set Model Over Two Universes and Its Application in 

MCDM     
 

[11] Ashraf, S., Abdullah, S., Aslam, M., Qiyas, M., & Kutbi, M. A. (2019). Spherical fuzzy sets and its representation of 

spherical fuzzy t-norms and t-conorms. Journal of Intelligent & Fuzzy Systems, 36(6), 6089–6102. 

doi:10.3233/JIFS-181941  

[12] Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529-539. 

[13] Yager, R. R. (2013, June). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and NAFIPS annual meeting 

(IFSA/NAFIPS) (pp. 57-61). IEEE. 

[14] Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. 

American Research Press, ISBN 1879585634. 

[15] Smarandache, F. (2005). Neutrosophic set-a generalization of the intuitionistic fuzzy set. International journal of pure 

and applied mathematics, 24(3), 287-297. 

[16] Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Technical Sciences 

and Applied Mathematics,10-14. 

[17] Pramanik, S., Dalapati, S., Alam, S., Smarandache, F., & Roy, T. K. (2018). NS-cross entropy-based MAGDM under 

single-valued neutrosophic set environment. Information, 9(2), 37. https://doi.org/10.3390/info9020037 

[18] Ye, J. (2014). Single valued neutrosophic cross-entropy for multicriteria decision making problems. Applied 

Mathematical Modelling, 38(3), 1170-1175. 

[19] Biswas, P., Pramanik, S., & Giri, B. C. (2016). TOPSIS method for multi-attribute group decision-making under 

single-valued neutrosophic environment. Neural computing and Applications, 27(3), 727-737. 

[20] Kazimieras Zavadskas, E., Baušys, R., & Lazauskas, M. (2015). Sustainable assessment of alternative sites for the 

construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set. Sustainability, 

7(12), 15923-15936. 

[21] Jiang, W., & Shou, Y. (2017). A novel single-valued neutrosophic set similarity measure and its application in 

multicriteria decision-making. Symmetry, 9(8), 127. 

[22] Ishtiaq, U., Javed, K., Uddin, F., Sen, M. D. L., Ahmed, K., & Ali, M. U. (2021). Fixed point results in orthogonal 

neutrosophic metric spaces. Complexity, 2021. 

[23] Ali, U., Alyousef, H. A., Ishtiaq, U., Ahmed, K., & Ali, S. (2022). Solving Nonlinear Fractional Differential Equations 

for Contractive and Weakly Compatible Mappings in Neutrosophic Metric Spaces. Journal of Function Spaces, 2022. 

[24] Hussain, A., Al Sulami, H., & Ishtiaq, U. (2022). Some New Aspects in the Intuitionistic Fuzzy and Neutrosophic Fixed 

Point Theory. Journal of Function Spaces, 2022. 

[25] Javed, K., Uddin, F., Aydi, H., Arshad, M., Ishtiaq, U., & Alsamir, H. (2021). On fuzzy b-metric-like spaces. Journal of 

Function Spaces, 2021. 

[26] Ishtiaq, U., Hussain, A., & Al Sulami, H. (2022). Certain new aspects in fuzzy fixed point theory. AIMS Mathematics, 

7(5), 8558-8573. 

[27] Hussain, A., Ishtiaq, U., Khalil, A., & Al-Sulami, H. (2022). On pentagonal controlled fuzzy metric spaces with an 

application to dynamic market equilibrium. Journal of function spaces, 2022. 

[28] Pawlak, Z. Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982). 

https://doi.org/10.1007/BF01001956 

[29] Degang, C., Wenxiu, Z., Yeung, D., & Tsang, E. C. (2006). Rough approximations on a complete completely 

distributive lattice with applications to generalized rough sets. Information Sciences, 176(13), 1829-1848. 

[30] Pawlak, Z. (1998). Rough set theory and its applications to data analysis. Cybernetics & Systems, 29(7), 661-688. 

  

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                               505

https://doi.org/10.1007/BF01001956


 

Somen Debnath, Single Valued Neutrosophic Covering-Based Rough Set Model Over Two Universes and Its Application in 

MCDM     
 

[31] Mitra, S., & Banka, H. (2007). Application of Rough Sets in Pattern Recognition. Lecture Notes in Computer Science, 

4400, 151–169. doi:10.1007/978-3-540-71663-1_10 

[32] Slimani, T. (2013). Application of rough set theory in data mining. International Journal of Computer Science and 

Network Solutions, 1(3), 1-10. 

[33] Pan, W., Yi, J., & San, Y. (2008). Rough set theory and its application in the intelligent systems," 2008 7th World 

Congress on Intelligent Control and Automation, 2008, pp. 3706-3711, doi: 10.1109/WCICA.2008.4593519. 

[34] Paszek, P., & Wakulicz–Deja, A. (2007). Applying Rough Set Theory to Medical Diagnosing. Lecture Notes in 

Computer Science, 4585, 427–435. doi:10.1007/978-3-540-73451-2_45 

[35] J. Hua. (2008). Study on the application of rough sets theory in machine learning. Second International Symposium on 

Intelligent Information Technology Application, 2008, pp. 192-196, doi: 10.1109/IITA.2008.154. 

[36] Dubois, D., & Prade, H. (1990). Rough fuzzy sets and fuzzy rough sets. International Journal of General System, 

17(2-3), 191-209. 

[37] Zhou, Lei; Wu, Wei-Zhi; Zhang, Wen-Xiu (2009). On intuitionistic fuzzy rough sets and their 

topological structures. International Journal of General Systems, 38(6), 589–616. doi:10.1080/03081070802187723  

[38] Zhang, Z. (2009). An interval-valued intuitionistic fuzzy rough set model. Fundamenta Informaticae, 97 , 471–498. 

[39] Zhang, H., & Shu, L. (2015). Generalized interval-valued fuzzy rough set and its application in decision 

making. International Journal of Fuzzy Systems, 17(2), 279–291. doi:10.1007/s40815-015-0012-9  

[40] Yang, H. L., Zhang, C. L., Guo, Z. L., Liu, Y. L., & Liao, X. (2017). A hybrid model of single valued neutrosophic sets 

and rough sets: single valued neutrosophic rough set model. Soft Computing, 21(21), 6253-6267. 

[41] Zhao, H., & Zhang, H. Y. (2020). On hesitant neutrosophic rough set over two universes and its application. Artificial 

Intelligence Review, 53(6), 4387-4406. 

[42] Akram, M., Ishfaq, N., Sayed, S., & Smarandache, F. (2018). Decision-making approach 

based on neutrosophic rough information. Algorithms, 11(5), 59. https://doi.org/10.3390/a11050059 

[43] Bo, C., Zhang, X., Shao, S., & Smarandache, F. (2018). Multi-granulation neutrosophic rough sets on a single domain 

and dual domains with applications. Symmetry, 10(7), 296. https://doi.org/10.3390/sym10070296 

[44] Abdel-Basset, M., & Mohamed, M. (2018). The role of single valued neutrosophic sets and rough sets in smart city: 

Imperfect and incomplete information systems. Measurement, 124, 47-55. 

[45] Mondal, K., & Pramanik, S. (2015). Rough neutrosophic multi-attribute decision-making based on rough accuracy 

score function. Neutrosophic Sets and Systems, 8, 14-21. 

[46] Pramanik, S., & Mondal, K. (2015). Cotangent similarity measure of rough neutrosophic sets and its application to 

medical diagnosis. Journal of New Theory, (4), 90-102. https://dergipark.org.tr/en/pub/jnt/issue/34490/381119 

[47] Mondal, K., & Pramanik, S. (2015). Rough neutrosophic multi-attribute decision-making based on grey relational 

analysis. Neutrosophic Sets and Systems, 7(2015), 8-17. 

[48] Yiyu Y., & Bingxue Y. (2012). Covering based rough set approximations. Information Sciences, 200, 91–107. 

doi:10.1016/j.ins.2012.02.065  

[49] Kong, Q. Z., Wei, Z. X., Batyrshin, I., Pamučar, D. S., Crippa, P., & Liu, F. (2015). Covering-based fuzzy rough sets. 

Journal of Intelligent & Fuzzy Systems, 29(6), 2405–2411. doi:10.3233/IFS-151940  

[50] Ma, L. (2016). Two fuzzy covering rough set models and their generalizations over fuzzy lattices. Fuzzy Sets and 

Systems, 294, 1-17. S0165011415002171–. doi:10.1016/j.fss.2015.05.002  

  

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                               506



 

 

Somen Debnath, Single Valued Neutrosophic Covering-Based Rough Set Model Over Two Universes and Its Application in 

MCDM     
 

[51] Zhang, K., Zhan, J., Wu, W., & Alcantud, J. C. R. (2019). Fuzzy β-covering based (I, T)-fuzzy rough set models and 

applications to multi-attribute decision-making. Computers & Industrial Engineering, 128, 605-621. 

[52] Zhang, K., Zhan, J., & Wang, X. (2020). TOPSIS-WAA method based on a covering-based fuzzy rough set: an 

application to rating problem. Information Sciences, 539, 397-421. 

[53] Zhou, J., Xu, F., Guan, Y., & Wang, H. (2021). Three types of fuzzy covering-based rough set models. Fuzzy Sets and 

Systems, 423, 122-148. 

[54] Yang, B., & Hu, B. Q. (2017). On some types of fuzzy covering-based rough sets. Fuzzy sets and Systems, 312, 36-65. 

[55] D'eer, L., & Cornelis, C. (2018). A comprehensive study of fuzzy covering-based rough set models: Definitions, 

properties and interrelationships. Fuzzy Sets and Systems, 336, 1-26. 

[56] Yang, B., & Hu, B. Q. (2018). Communication between fuzzy information systems using fuzzy covering-based rough 

sets. International Journal of Approximate Reasoning, 103, 414-436. 

[57] Yang, B. (2022). Fuzzy covering-based rough set on two different universes and its application. Artificial Intelligence 

Review, 1-37. 

[58] Zhan, J., Jiang, H., & Yao, Y. (2020). Covering-based variable precision fuzzy rough sets with PROMETHEE-EDAS 

methods. Information Sciences, 538, 314-336. 

[59] Zhou, J. J., & Li, X. Y. (2021). Hesitant fuzzy β covering rough sets and applications in multi-attribute decision making. 

Journal of Intelligent & Fuzzy Systems, 41, 2387-2402. 

[60] Zeng, S., Hussain, A., Mahmood, T., Irfan Ali, M., Ashraf, S., & Munir, M. (2019). Covering-based spherical fuzzy 

rough set model hybrid with TOPSIS for multi-attribute decision-making. Symmetry, 11(4), 547. 

[61] Zhan, J., & Sun, B. (2020). Covering-based intuitionistic fuzzy rough sets and applications in multi-attribute 

decision-making. Artificial Intelligence Review, 53(1), 671-701. 

[62] Wang, J., & Zhang, X. (2018). Two types of intuitionistic fuzzy covering rough sets and an application to multiple 

criteria group decision making. Symmetry, 10(10), 462. 

[63] Wang, J., & Zhang, X. (2018). Two types of single valued neutrosophic covering rough sets and an application to 

decision making. Symmetry, 10(12), 710. 

[64] Wang, J., & Zhang, X. (2019). A new type of single valued neutrosophic covering rough set model. Symmetry, 11(9), 

1074. 

[65] Mao, L. (2020, December). Reducts in single valued neutrosophic ß-covering approximation spaces. In Journal of 

Physics: Conference Series (Vol. 1693, No. 1, p. 012024). IOP Publishing. 

[66] Zhang, X., Atef, M., & Khalil, A. M. (2021). On different types of single-valued neutrosophic covering rough set with 

application in decision-making. Mathematical Problem in Engineering, 2021, 1-16. 

[67] Xu, D., Xian, H., & Lu, X. (2021). Interval neutrosophic covering rough sets based on neighborhoods. AIMS 

Mathematics, 6(4), 3772-3787.  

[68] Wang, J. Q., & Zhang, X. H. (2020). Multigranulation single valued neutrosophic covering-based rough sets and their 

applications to multi-criteria group decision making. Iranian Journal of Fuzzy Systems, 17(5), 109-126. 

[69] Pomykala, J. A. (1987). Approximation operations in approximation space. Bull. Pol. Acad. Sci, 35, 653-662. 

 

 

 

Received: Sep 12, 2022.  Accepted: Dec 21, 2022

  

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                               507



University of New Mexico

Number of Neutrosophic Topological Spaces on Finite Set with

k ≤ 4 Open Sets

Bhimraj Basumatary1,∗ and Jili Basumatary2

1Department of Mathematical Sciences, Bodoland University, Kokrajhar; brbasumatary14@gmail.com
2Department of Mathematical Sciences, Bodoland University, Kokrajhar; jilibasumatary@gmail.com
∗Correspondence: brbasumatary14@gmail.com

Abstract. In this paper, the number of neutrosophic topological spaces having two, three, and four open sets

are computed for a finite set XNT whose membership values lies in MNT . Further, the number of neutrosophic

bitopological spaces and neutrosophic tritopological spaces having k(k = 2, 3, 4) neutrosophic open sets on finite

sets are computed.

Keywords: : Neutrosophic Set; Neutrosophic Topology; Two Open Set; Three Open Set; Four Open Set.

—————————————————————————————————————————-

1. Introduction

Finding the number of topologies in a set is an interesting task. Many authors have done

their work in this field. Krishnamurty [1] obtained a sharper bound namely 2n(n−1) for the

number of distinct topologies. Sharp [2] shows that only discrete topology has cardinal greater

than 3
42

n and derived bounds for the cardinality of topologies which are connected, non-

connected, non-T0, and some more. After obtaining all non-homeomorphic topologies with n

points and > 7
162

n open sets, Stanley [3] also determined which of these are T0. The concept

of partial chain topologies supported Kamel [4] to formulate a special case for computing the

number of chain topologies and maximal elements with natural generalization. Ragnarsson et

al. [5], have also studied obtainable sizes of topologies on a finite set. Benoumhani [6] computed

the number of topologies having 2, 3, . . . , 12-open sets, and alsoT0 topologies having n+4, n+5,

and n+ 6 open sets. These results are extended in [7].

Later on, Benoumhani et al. [8] extended their work to fuzzy topological spaces (FTS).

They computed the number of FTS having 2, 3, 4, and 5-open sets and certain cases, where the

number of open sets is large. Basumatary et al. [9] discussed the number of fuzzy bitopological

spaces and gave some formulae.
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After the generalization of the fuzzy set [10] from crisp set and intuitionistic fuzzy set [11],

Smarandache discovered the concept of the neutrosophic set by combining the fuzzy set and

intuitionistic fuzzy set. Since the introduction of the NS (Neutrosophic set) by Smarandache

[12], several authors have contributed their work in science and technology by taking NS

as a tool. Wang [13] studied single-valued NSs in multiset and multistructure. Salama et

al. [14] studied the neutrosophic topological spaces (NTS). Lupiáñez [15–18] investigated NTS.

Mwchahary et al. [19] studied neutrosophic bitopological space (NBTS). Devi et al. [20] and

Ozturk et al. [21] also discussed NBTS. Kelly [22] and Kovar [23] introduced the notion of

bitopological space and tritopological space respectively. The neutrosophic crisp tri-topological

spaces are studied by Al-Hamido et al. [24].

Ishtiaq et al. [25, 26] studied fixed-point results in orthogonal neutrosophic metric spaces

and also certain new aspects in fuzzy fixed-point theory. Ali et al. [27] discussed solving

nonlinear fractional differential equations for contractive and weakly compatible mappings in

neutrosophic metric spaces. Hussain et al. [28] worked on some new aspects of the intuitionistic

fuzzy and neutrosophic fixed point theory. Javed et al. [29] studied the fuzzy b-metric-like

spaces. Hussain et al. [30] studied the pentagonal controlled fuzzy metric spaces with an

application to dynamic market equilibrium.

From the literature survey, it is observed that generally finding the number of topologies

(NoTs) for a set is not an easy task. Because of this current authors started research work in

this area. This article discusses formulae for calculating the NNTSs (number of NTSs) with

2, 3, or 4-open sets, as well as the NNBTSs (number of NBTSs) and NNTRSs (number of

neutrosophic tritopological spaces) with the same number of open sets in topologies.

Let XNT be a non-empty finite set,MNT be the finite totally ordered set with |MNT | = m ≥ 2

and NT
X be a set that contains all the neutrosophic subsets (NSubs) of XNT with membership

values in MNT .

Note that in this paper TNT
X (n,m, k) denotes NNTSs on XNT with |XNT | = n and k-

open sets, (TNT
i ,TNT

j )NT
X (n,m, k) and (TNT

i ,TNT
j ,TNT

k )NT
X (n,m, k) denotes NNBTSs and

NNTRSs respectively on XNT consisting k-open sets in topologies at a time where n,m, k ∈ N,
n ≥ 1,m ≥ 2 and k ≥ 2.

2. Preliminaries

Definition 2.1. [14] On a universe of discourse XNT a NS UNT is defined as UNT =

⟨ u
(TNT

U (u),INT
U (u),FNT

U (u))
: u ∈ XNT ⟩, where TNT

U , INT
U , FNT

U : XNT →]−0, 1+[. Here −0 ≤
TNT
U (u)+INT

U (u)+FNT
U (u) ≤ 3+; TNT

U (u) represents degree of membership function, INT
U (u)

degree of indeterminacy and FNT
U (u) degree of non-membership function.
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Definition 2.2. [14,15] Let TNT ⊆ NNT
X then TNT is called a neutrosophic topology (NT)

on XNT if

• 0NT , 1NT ∈ TNT

• UNT
1 ∩ UNT

2 ∈ TNT for any UNT
1 ,UNT

2 ∈ TNT .

• ∪UNT
i ∈ TNT , for arbitrary family {UNT

i : i ∈ I} ∈ TNT .

The pair (XNT ,TNT ) is called NTS and any NS in TNT is called NOS (neutrosophic open

set) in XNT .

Definition 2.3. [19] Let TNT
1 and TNT

2 be the two NTs on XNT . Then (XNT ,TNT
1 ,TNT

2 )

is called a NBTS.

Example 2.4. If XNT = {u,v,w} and if TNT
1 = {0NT , 1NT ,UNT

1 } and TNT
2 =

{0NT , 1NT ,UNT
2 }, where

UNT
1 = ⟨ u

(0.7,0.1,0.5) ,
v

(0.5,0.2,0.3) ,
w

(0.3,0.4,0.4)⟩,U
NT
2 = ⟨ u

(0.2,0.5,0.1) ,
v

(0.1,0.2,0.3) ,
w

(0.6,0.3,0.5)⟩.
Then (XNT ,TNT

1 ) and (XNT ,TNT
2 ) form NTS. Therefore, (XNT ,TNT

1 ,TNT
2 ) is a NBTS.

Definition 2.5. [31] Let TNT
1 ,TNT

2 and TNT
3 be the three NTs on XNT . Then

(XNT ,TNT
1 ,TNT

2 ,TNT
3 ) is called a neutrosophic tritopological space (NTRS).

Example 2.6. If XNT = {u,v,w} and consider TNT
1 = {0NT , 1NT ,UNT

1 }, TNT
2 =

{0NT , 1NT ,UNT
2 } and TNT

3 = {0NT , 1NT ,UNT
3 }.

Here, UNT
1 = ⟨ u

(0.7,0.1,0.5) ,
v

(0.5,0.2,0.3) ,
w

(0.3,0.6,0.2)⟩, UNT
2 = ⟨ u

(0.6,0.5,0.3) ,
v

(0.7,0,0.2) ,
w

(0.8,0.1,0.1)⟩,
UNT
3 = ⟨ u

(0.5,0.2,0.3) ,
v

(0.2,0.1,0.2) ,
w

(0.1,0,0.1)⟩.
Then (XNT ,TNT

1 ), (XNT ,TNT
2 ) and (XNT ,TNT

3 ) form NTS.

Therefore (XNT ,TNT
1 ,TNT

2 ,TNT
3 ) is a NTRS. In this case, (XNT ,TNT

1 ,TNT
2 ,TNT

3 ) is a

NTRS having 3-NOS in each of the topologies.

3. Results on NNTS

Proposition 3.1. The NNTs (Number of Neutrosophic Topologies) on XNT , whose member-

ship values lies in MNT , is finite if and only if both XNT and MNT are finite.

Result 3.2. The NNTSs having 2-NOS is one i.e., TNT
X (n,m, 2) = 1.

The NT having 2-open set is the indiscrete NT which is TNT
1 = {0NT , 1NT }.

Result 3.3. The NNTs having 3-NOS is mn − 2 i.e., TNT
X (n,m, 3) = mn − 2.

These NTs necessarily consists of a chain containing 0NT , 1NT and any one NSub of XNT .

In this case NTs are in the chain, of the form 0NT ⊆ UNT
1 ⊆ 1NT ,UNT

1 is any NSub of XNT .
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Example 3.4. Let XNT = {u,v} and MNT = {(0, 1, 1), (0.6, 0.1, 0.2), (1, 0, 0)}. It is seen

that, |XNT | = n = 2, |MNT | = m = 3.

Then number of elements in NT
X i.e., |NT

X | = 32 = 9. These are

0NT , 1NT , UNT
1 = ⟨ u

(0,1,1) ,
v

(0.6,0.1,0.2)⟩, UNT
2 = ⟨ u

(0,1,1) ,
v

(1,0,0)⟩, UNT
3 = ⟨ u

(0.6,0.1,0.2) ,
v

(0,1,1)⟩,
UNT
4 ⟨ u

(0.6,0.1,0.2) ,
v

(0.6,0.1,0.2)⟩, UNT
5 = ⟨ u

(0.6,0.1,0.2) ,
v

(1,0,0)⟩, UNT
6 = ⟨ u

(1,0,0) ,
v

(0,1,1)⟩,
UNT
7 = ⟨ u

((1,0,0) ,
v

(0.6,0.1,0.2)⟩.
So, TNT

X (2, 3, 3) = 32 − 2 = 7.

The NTs having 3-open sets are:

TNT
1 = {0NT , 1NT ,UNT

1 }, TNT
2 = {0NT , 1NT ,UNT

2 }, TNT
3 = {0NT , 1NT ,UNT

3 },
TNT
4 = {0NT , 1NT ,UNT

4 }, TNT
5 = {0NT , 1NT ,UNT

5 }, TNT
6 = {0NT , 1NT ,UNT

6 },
TNT
7 = {0NT , 1NT ,UNT

7 }.

Result 3.5. An arbitrary NT with 4-NOSs is an NT consisting of 1NT , 0NT and other two

NSubs. These NSubs are either chain of 2-elements or anti-chain of 2-elements having 1NT

and 0NT as union and intersection respectively.

Theorem 3.6. In N̂T
X = NT

X − {0NT , 1NT }, the number of chains (NCs) of length 2 is

obtained by

c2(N
T
X ) =

(
m+1
2

)n − 3mn + 3.

Corollary 3.7. In NT
X , the NCs of length 4 having both 0NT and 1NT is same as c2(N

T
X ).

Lemma 3.8. In NT
X , the number of anti-chains (NACs) of size 2 (having 2-elements) with

1NT as union and 0NT as intersection is 2n−1 − 1.

Corollary 3.9. The NAC NTs of NT
X consisting of 4-open set is 2n−1 − 1.

Theorem 3.10. The NNTs in NT
X with 4-NOSss is

TNT
X (n,m, 4) =

(
m(m+1)

2

)n
− 3mn + 2n−1 + 2.

Follow Cor. 3.7 and Cor. 3.9 for the prove of theorem.

Example 3.11. Let, XNT = {u,v} and MNT = {(0, 1, 1), (0.1, 0.3, 0.8), (1, 0, 0)}. Therefore

|NT
X | = 32 = 9. These NSubs are

0NT = ⟨ u
(0,1,1) ,

v
(0,1,1)⟩, 1NT = ⟨ u

(1,0,0) ,
v

(1,0,0)⟩, UNT
1 = ⟨ u

(0,1,1) ,
v

(0.1,0.3,0.8)⟩,
UNT
2 = ⟨ u

(0,1,1) ,
v

(1,0,0)⟩, UNT
3 = ⟨ u

(0.1,0.3,0.8) ,
v

(0,1,1)⟩, UNT
4 = ⟨ u

(0.1,0.3,0.8) ,
v

(0.1,0.3,0.8)⟩,
UNT
5 = ⟨ u

(0.1,0.3,0.8) ,
v

(1,0,0)⟩, UNT
6 = ⟨ u

(1,0,0) ,
v

(0,1,1)⟩, UNT
7 = ⟨ u

(1,0,0) ,
v

(0.1,0.3,0.8)⟩.
In this case, n = 2, m = 3,

Therefore, TNT
X (2, 3, 4) =

(
3(3+1)

2

)2
− 3.32 + 22−1 + 2 = 62 − 23 = 13.

These NTs with 4-NOSs are

TNT
1 = {0NT , 1NT ,UNT

1 ,UNT
2 }, TNT

2 = {0NT , 1NT ,UNT
1 ,UNT

4 },
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TNT
3 = {0NT , 1NT ,UNT

1 ,UNT
5 }, TNT

4 = {0NT , 1NT ,UNT
1 ,UNT

7 },
TNT
5 = {0NT , 1NT ,UNT

2 ,UNT
5 }, TNT

6 = {0NT , 1NT ,UNT
2 ,UNT

6 },
TNT
7 = {0NT , 1NT ,UNT

3 ,UNT
4 }, TNT

8 = {0NT , 1NT ,UNT
3 ,UNT

5 },
TNT
9 = {0NT , 1NT ,UNT

3 ,UNT
6 }, TNT

10 = {0NT , 1NT ,UNT
3 ,UNT

7 },
TNT
11 = {0NT , 1NT ,UNT

4 ,UNT
5 }, TNT

12 = {0NT , 1NT ,UNT
4 ,UNT

7 },
TNT
13 = {0NT , 1NT ,UNT

6 ,UNT
7 }.

Here, the only anti-chain NTs in NT
X is TNT

6 with 0NT and 1NT as intersection and union

respectively.

4. Results on NNBTS

In this section, the NBTS having 3-NOSs in both NTs and the NBTS having 3-NOSs in both

NTs without repetition means NBTS of the form (XNT ,TNT
i ,TNT

j ), where TNT
i ,TNT

j are

identical or non-identical topologies, and non-identical topologies having 3-NOSs respectively.

A similar meaning is used for 4-NOSs.

Result 4.1. In NT
X , the NNBTS with two NOSs in both the NTs is

(TNT
i ,TNT

j )NT
X (n,m, 2) = 1.

From Result 3.2, TT
X (n,m, 2) = 1, which is the indiscrete topology TNT

1 = {0NT , 1NT }.
Hence, NBTS with 2-NOSs is only one i.e., (XNT ,TNT

1 ,TNT
1 ).

Result 4.2. In NT
X , the NNBTSs having 3-NOSs in both NTs is

(TNT
i ,TNT

j )NT
X (n,m, 3) =

(
TNT
X (n,m,3)+1

2

)
= m2n−3mn+2

2 .

Example 4.3. Example 3.4 gives TNT
X (2, 3, 3) = 7.

Therefore,(TNT
i ,TNT

j )NT
X (2, 3, 3) =

(
TNT
X (2,3,3)+1

2

)
= 28.

Then, these NBTSs are

(XNT ,TNT
1 ,TNT

1 ), (XNT ,TNT
1 ,TNT

2 ), (XNT ,TNT
1 ,TNT

3 ), (XNT ,TNT
1 ,TNT

4 ),

(XNT ,TNT
1 ,TNT

5 ), (XNT ,TNT
1 ,TNT

6 ), (XNT ,TNT
1 ,TNT

7 ),

(XNT ,TNT
2 ,TNT

2 ), (XNT ,TNT
2 ,TNT

3 ), (XNT ,TNT
2 ,TNT

4 ), (XNT ,TNT
2 ,TNT

5 ),

(XNT ,TNT
2 ,TNT

6 ), (XNT ,TNT
2 ,TNT

7 ),

(XNT ,TNT
3 ,TNT

3 ), (XNT ,TNT
3 ,TNT

4 ), (XNT ,TNT
3 ,TNT

5 ), (XNT ,TNT
3 ,TNT

6 ),

(XNT ,TNT
3 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

4 ), (XNT ,TNT
4 ,TNT

5 ), (XNT ,TNT
4 ,TNT

6 ), (XNT ,TNT
4 ,TNT

7 ),

(XNT ,TNT
5 ,TNT

5 ), (XNT ,TNT
5 ,TNT

6 ), (XNT ,TNT
5 ,TNT

7 ),

(XNT ,TNT
6 ,TNT

6 ), (XNT ,TNT
6 ,TNT

7 ),

(XNT ,TNT
7 ,TNT

7 ).

Result 4.4. In NT
X , the NNBTSs having 3-NOSs in both NTs without repetition is
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(TNT
i ,TNT

j )NT
X (n,m, 3) =

(
TNT
X (n,m,3)

2

)
.

Example 4.5. Following Example 3.4 and Result 4.4., the number of NBTSs without repeti-

tion is

21 =
(
TNT
X (2,3,3)

2

)
=

(
7
2

)
.

Result 4.6. The NNBTSs in NT
X , consisting 4-NOSs in both the NT is

(TNT
i ,TNT

j )NT
X (n,m, 4) =

(
TNT
X (n,m,4)+1

2

)
.

Example 4.7. Let XNT = {u,v} and MNT = {(0, 1, 1), (0.1, 0.3, 0.8), (1, 0, 0)}.
Then, TNT

X (2, 3, 4) = 13.

and the NNBTSs is

(TNT
i ,TNT

j )NT
X (2, 3, 4) =

(
TNT
X (2,3,4)+1

2

)
= 91.

These NBTSs are

(XNT ,TNT
1 ,TNT

1 ), (XNT ,TNT
1 ,TNT

2 ), (XNT ,TNT
1 ,TNT

3 ), (XNT ,TNT
1 ,TNT

4 ),

(XNT ,TNT
1 ,TNT

5 ), (XNT ,TNT
1 ,TNT

6 ), (XNT ,TNT
1 ,TNT

7 ), (XNT ,TNT
1 ,TNT

8 ),

(XNT ,TNT
1 ,TNT

9 ), (XNT ,TNT
1 ,TNT

10 ), (XNT ,TNT
1 ,TNT

11 ), (XNT ,TNT
1 ,TNT

12 ),

(XNT ,TNT
1 ,TNT

13 ),

(XNT ,TNT
2 ,TNT

2 ), (XNT ,TNT
2 ,TNT

3 ), (XNT ,TNT
2 ,TNT

4 ), (XNT ,TNT
2 ,TNT

5 ),

(XNT ,TNT
2 ,TNT

6 ), (XNT ,TNT
2 ,TNT

7 ), (XNT ,TNT
2 ,TNT

8 ), (XNT ,TNT
2 ,TNT

9 ),

(XNT ,TNT
2 ,TNT

10 ), (XNT ,TNT
2 ,TNT

11 ), (XNT ,TNT
2 ,TNT

12 ), (XNT ,TNT
2 ,TNT

13 ),

(XNT ,TNT
3 ,TNT

3 ), (XNT ,TNT
3 ,TNT

4 ), (XNT ,TNT
3 ,TNT

5 ), (XNT ,TNT
3 ,TNT

6 ),

(XNT ,TNT
3 ,TNT

7 ), (XNT ,TNT
3 ,TNT

8 ), (XNT ,TNT
3 ,TNT

9 ), (XNT ,TNT
3 ,TNT

10 ),

(XNT ,TNT
3 ,TNT

11 ), (XNT ,TNT
3 ,TNT

12 ), (XNT ,TNT
3 ,TNT

13 ),

(XNT ,TNT
4 ,TNT

4 ), (XNT ,TNT
4 ,TNT

5 ), (XNT ,TNT
4 ,TNT

6 ), (XNT ,TNT
4 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

8 ), (XNT ,TNT
4 ,TNT

9 ), (XNT ,TNT
4 ,TNT

10 ), (XNT ,TNT
4 ,TNT

11 ),

(XNT ,TNT
4 ,TNT

12 ), (XNT ,TNT
4 ,TNT

13 ),

(XNT ,TNT
5 ,TNT

5 ), (XNT ,TNT
5 ,TNT

6 ), (XNT ,TNT
5 ,TNT

7 ), (XNT ,TNT
5 ,TNT

8 ),

(XNT ,TNT
5 ,TNT

9 ), (XNT ,TNT
5 ,TNT

10 ), (XNT ,TNT
5 ,TNT

11 ), (XNT ,TNT
5 ,TNT

12 ),

(XNT ,TNT
5 ,TNT

13 ),

(XNT ,TNT
6 ,TNT

6 ), (XNT ,TNT
6 ,TNT

7 ), (XNT ,TNT
6 ,TNT

8 ), (XNT ,TNT
6 ,TNT

9 ),

(XNT ,TNT
6 ,TNT

10 ), (XNT ,TNT
6 ,TNT

11 ), (XNT ,TNT
6 ,TNT

12 ), (XNT ,TNT
6 ,TNT

13 ),

(XNT ,TNT
7 ,TNT

7 ), (XNT ,TNT
7 ,TNT

8 ), (XNT ,TNT
7 ,TNT

9 ), (XNT ,TNT
7 ,TNT

10 ),

(XNT ,TNT
7 ,TNT

11 ), (XNT ,TNT
7 ,TNT

12 ), (XNT ,TNT
7 ,TNT

13 ),

(XNT ,TNT
8 ,TNT

8 ), (XNT ,TNT
8 ,TNT

9 ), (XNT ,TNT
8 ,TNT

10 ), (XNT ,TNT
8 ,TNT

11 ),

(XNT ,TNT
8 ,TNT

12 ), (XNT ,TNT
8 ,TNT

13 ),

(XNT ,TNT
9 ,TNT

9 ), (XNT ,TNT
9 ,TNT

10 ), (XNT ,TNT
9 ,TNT

11 ), (XNT ,TNT
9 ,TNT

12 ),

(XNT ,TNT
9 ,TNT

13 ),
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(XNT ,TNT
10 ,TNT

10 ), (XNT ,TNT
10 ,TNT

11 ), (XNT ,TNT
10 ,TNT

12 ), (XNT ,TNT
10 ,TNT

13 ),

(XNT ,TNT
11 ,TNT

11 ), (XNT ,TNT
11 ,TNT

12 ), (XNT ,TNT
11 ,TNT

13 ),

(XNT ,TNT
12 ,TNT

12 ), (XNT ,TNT
12 ,TNT

13 ),

(XNT ,TNT
13 ,TNT

13 ).

Result 4.8. In NT
X , the NNBTSs having 4-NOSs in both NTs without repetition is

(TNT
i ,TNT

j )NT
X (n,m, 4) =

(
TNT
X (n,m,4)

2

)
.

Example 4.9. Following Example 3.11 and result 4.8, the number of NBTSs without repeti-

tion is 78 =
(
TNT
X (2,3,4)

2

)
=

(
13
2

)
.

5. Results on NNTRS

In this section, the NTRS having 3-NOS in three NTs and the NTRS having 3-NOS

in three NTs without repetition means NTRS of the form (XNT ,TNT
i ,TNT

j ,TNT
k ) where

TNT
i ,TNT

j ,TNT
k are identical or non-identical topologies and non-identical topologies having

3-NOS respectively. A similar meaning is used for 4-NOS.

Result 5.1. In NT
X the NNTRS consisting 2-NOSs in three NT is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 2) = 1.

In this case NT with 2-NOSs is the indiscrete one i.e., TNT
1 = {0NT , 1NT }. Therefore,

NNTRS with 2-NOSs is exactly one, namely (XNT ,TNT
1 ,TNT

1 ,TNT
1 ).

Result 5.2. The NNTRSs consisting 3-NOSs in all three NT in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) =
(
TNT
X (n,m,3)+2

3

)
.

Example 5.3. Example 3.4 implies (TNT
X (2, 3, 3) = 7.

Therefore, (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3) =
(
TNT
X (2,3,3)+2

3

)
= 9×8×7

6 = 84.

Result 5.4. The NNTRSs consisting 3-NOSs in all three NT without repetition in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) =
(
TNT
X (n,m,3)

3

)
.

Example 5.5. From Example 3.4, TNT
X (2, 3, 3) = 7. In this case, the NTRSs having 3-NOSs

in three NTs without repetition are

(XNT ,TNT
1 ,TNT

2 ,TNT
3 ), (XNT ,TNT

1 ,TNT
2 ,TNT

4 ), (XNT ,TNT
1 ,TNT

2 ,TNT
5 ),

(XNT ,TNT
1 ,TNT

2 ,TNT
6 ), (XNT ,TNT

1 ,TNT
2 ,TNT

7 ),

(XNT ,TNT
1 ,TNT

3 ,TNT
4 ), (XNT ,TNT

1 ,TNT
3 ,TNT

5 ), (XNT ,TNT
1 ,TNT

3 ,TNT
6 ),

(XNT ,TNT
1 ,TNT

3 ,TNT
7 ),

(XNT ,TNT
1 ,TNT

4 ,TNT
5 ), (XNT ,TNT

1 ,TNT
4 ,TNT

6 ), (XNT ,TNT
1 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
1 ,TNT

5 ,TNT
6 ), (XNT ,TNT

1 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
1 ,TNT

6 ,TNT
7 ),
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(XNT ,TNT
2 ,TNT

3 ,TNT
4 ), (XNT ,TNT

2 ,TNT
3 ,TNT

5 ), (XNT ,TNT
2 ,TNT

3 ,TNT
6 ),

(XNT ,TNT
2 ,TNT

3 ,TNT
7 ),

(XNT ,TNT
2 ,TNT

4 ,TNT
5 ), (XNT ,TNT

2 ,TNT
4 ,TNT

6 ), (XNT ,TNT
2 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
2 ,TNT

5 ,TNT
6 ), (XNT ,TNT

2 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
2 ,TNT

6 ,TNT
7 ),

(XNT ,TNT
3 ,TNT

4 ,TNT
5 ), (XNT ,TNT

3 ,TNT
4 ,TNT

6 ), (XNT ,TNT
3 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
3 ,TNT

5 ,TNT
6 ), (XNT ,TNT

3 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
3 ,TNT

6 ,TNT
7 ),

(XNT ,TNT
4 ,TNT

5 ,TNT
6 ), (XNT ,TNT

4 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

6 ,TNT
7 ).

(XNT ,TNT
5 ,TNT

6 ,TNT
7 ).

Therefore, the NNTRSs consisting 3-NOSs in all three NTs without repetition is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3) = 35 =
(
TNT
X (2,3,3)

3

)
=

(
7
3

)
.

Result 5.6. (TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) = mn

3 (TNT
i ,TNT

j )NT
X (n,m, 3).

Example 5.7. From Example 4.3 and 5.3, we have,

(TNT
i ,TNT

j )NT
X (2, 3, 3) = 28 and (TNT

i ,TNT
j ,TNT

k )NT
X (2, 3, 3) = 84.

Therefore 32

3 × (TNT
i ,TNT

j )NT
X (2, 3, 3) = 32

3 × 28 = 84 = (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3).

Result 5.8. In NT
X , the NNTRSs consisting 4-NOSs in three NTs is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(
TNT
X (n,m,4)+2

3

)
.

Example 5.9. Example 3.11 implies,

TNT
X (2, 3, 4) = 13.

Then the NNTRS having 4-NOSs is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) =
(
TNT
X (2,3,4)+2

3

)
= 13(13+1)(13+2)

6 = 455.

Result 5.10. The NNTRSs consisting 4-NOSs in all three NT without repetition in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(
TNT
X (n,m,4)

3

)
.

Example 5.11. From Example 3.11, TNT
X (2, 3, 4) = 13. Following Example 5.5

and result 5.10, the NNTRSs consisting 4-NOSs in all three NT without repetition is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) = 286.

Result 5.12. (TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(TNT

X (n,m,4)+2)
3 (TNT

i ,TNT
j )NT

X (n,m, 4).

Example 5.13. From Examples 3.11, 4.7 and 5.9, we have

TNT
X (2, 3, 4) = 13, (TNT

i ,TNT
j )NT

X (2, 3, 4) = 91 and (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) = 455.
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Therefore,

(TNT
X (2,3,4)+2)

3 (TNT
i ,TNT

j )NT
X (2, 3, 4) = 13+2

3 × 91 = 455 = (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4).

6. Effective of the proposed method

The formula for giving the number of topologies T (n) is still not obtained for a finite set

X having n elements. If n is small, then we can compute it by hand. But the difficulty

increases when n becomes large. Studying this particular area is also a highly valued part of

the topology, and this is one of the fascinating and challenging research areas. Note that the

explicit formula for finding the number of topologies is undetermined till now. This paper is

towards the formulae for finding the number of neutrosophic topological spaces having 2, 3, 4-

open sets, the number of neutrosophic bitopological spaces, and tritopological spaces having

the same number of open sets in topologies.

7. Conclusions

In this paper, the NNTSs consisting of small NOSs i.e., 2, 3, and 4-open sets are computed.

Moreover, the NNBTSs and NNTRSs are computed. It is also observed that formulae for

finding NNTSs, NNBTSs, and NNTRSs are interrelated. Hope this work will help in further

study of NNTSs with greater open sets. In the future, the NNBTSs having k, l-open sets and

the NNTRSs having k, l,m-open sets can be found where k ̸= l ̸= m. Moreover, we aim to

extend our work to study the existence of NNTSs in the topological group.
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Abstract: In this paper introduce the homomorphism, isomorphism, weak isomorphism and co-weak isomorphism
of Neutrosophic over topologized graphs. Some properties of isomorphism are introduced. The isomorphism of Neu-
trosophic over topologized graphs equivalnce relation, weak isomorphism of Neutrosophic over topologized graphs
partial order relation and complement of Neutrosophic over topologized graphs also derived here.
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1 Introduction
In 1965 Zadeh [12] was invent the idea of a fuzzy set as a mathematical frame work for represent-

ing vagueness and imprecise information. Rosenfield (1975) introduced the notion of fuzzy graph [10]. Fuzzy
graphs have numerous applications in diverse parts of science and engineering like broad cost communications
producing, social network. Attanassov introduced the concept of intuitionstic fuzzy set as a gerealization of
fuzzy sets [2]. Many researchers established and studied about fuzzy graphs and Intuitionstic fuzzy graphs
in[1].Neutrosophic set proposed by Smarandache [11,13,14] is a powerful tool for dealing incomplete , in-
consistance, imprecision, uncertain, false and inderminate problems in the real world whenever the fuzzy and
intuitionstic fuzzy approches fail in such type of situation. Also he extended the neutrosophic set respec-
tively to Neutrosophic Overset when some neutrosophic component is > 1, to Neutrosophic Underset when
some neutrosophic component is < 0, and to Neutrosophic Offset when some neutrosophic components are
off the interval [0, 1], i.e. some neutrosophic component > 1 and other neutrosophic component < 0. since
our real-world has numerous examples and applications of over-/under-/off-neutrosophic components[4,5,6].
Later, Narmada Devi [15,16,17,18,19,20,21,22,23] worked on new type of Neutrosophic over, Neutrosophic
off graph and minimal domination via Neutrosophic over graph and Neutrosophic over topologized graph. In
this paper, we introduce the notion of homomorphism and isomorphism between Neutrosophic over topolo-
gized graphs.

2 Preliminiaries
Definition 2.1. [3] A topologized graph is a topological space X such that
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(i) every singleton is open or closed

(ii) ∀x ∈ X , |ð(x)| ≤ 2, since ð(x) is denoted by the boundary of a point x.

Definition 2.2. [16] A single-valued neutrosophic over set A is defined as A = (X, ⟨T (x),I (x),F (x)⟩), x ∈
X such that there exist some elements in A that have atleast one neutrosophic component that is > 1 and
no element has neutrosophic components that are < 0 and T (x),I (x),F (x) ∈ [0,Ω], where Ω is called
overlimit such that 0 < 1 < Ω.

Definition 2.3. [16] A Neutrosophic over graph G = (P,Q) on a crisp graph G∗ where P is an neutrosophic
vertex over set on V and Q is a neutrosophic edge over set on E respectively such that

(i) TQ (mn) ≤ [TP (m) ∧ TP (n)]]

(ii) IQ (mn) ≤ [IP (m) ∧ IP (n)]]

(iii) FQ (mn) ≥ [FP (m) ∨ FP (n)]] for every mn ∈ E ⊆ V × V .

3 Homomorphism of Neutrosophic over Topologized Graphs
Definition 3.1. Let G = (A,B) be a Neutrosophic over topologized graph [In short Neutrosophic over top
graph] . The order of G denoted by O(G) is defined as O(G) = (OT (G), OI(G), OF (G)), where
OT (G) =

∑
v∈V

TA(v) denotes the T−order of G,

OI(G) =
∑
v∈V

IA(v) denotes the I−order of G,

OF (G) =
∑
v∈V

FA(v) denotes the F−order of G.

Definition 3.2. Let G = (A,B) be a Neutrosophic over top graph. The size of G denoted by S(G) is defined
as S(G) = (ST (G), SI(G), SF (G)), where
ST (G) =

∑
vi ̸=vj

TB(vi, vj) denotes the T−size of G,

SI(G) =
∑

vi ̸=vj

IB(vi, vj) denotes the I−size of G,

SF (G) =
∑

vi ̸=vj

FB(vi, vj) denotes the F−size of G,

Definition 3.3. Let G1 and G2 be the Neutrosophic over top graphs. A homomorphism f : G1 → G2 is a map
f : V1 → V2 which satisfies the following conditions
(a) TA1(x1) = TA2(f(x1)), IA1(x1) = IA2(f(x1)), FA1(x1) = FA2(f(x1))

(b) TB1(x1y1) = TB2(f(x1)f(y1)), IB1(x1y1) = IB2(f(x1)f(y1)), FB1(x1y1) = FB2(f(x1)f(y1)),

∀x1 ∈ V1, x1y1 ∈ E1

Definition 3.4. Let G1 and G2 be the Neutrosophic over top graphs. Isomorphism f : G1 → G2 is a map
f : V1 → V2 which is a bijective mapping that satisfies the following conditions
(i) TA1(x1) = TA2(f(x1)), IA1(x1) = IA2(f(x1)), FA1(x1) = FA2(f(x1)),
(ii) TB1(x1y1) = TB2(f(x1)f(y1)), IB1(x1y1) = IB2(f(x1)f(y1)), FB1(x1y1) = FB2(f(x1)f(y1)),

∀x1 ∈ V1, x1y1 ∈ E1
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Definition 3.5. Let G1 and G2 be the Neutrosophic over top graphs. Then a weak isomorphism f : G1 → G2

is bijective mapping f : V1 → V2 which satisfies the following conditions

(1) f is homomorphism

(2) TA1(x1) = TA2(f(x1)), IA1(x1) = IA2(f(x1)) and FA1(x1) = FA2(f(x1)), ∀x1 ∈ V1.

Thus, a weak isomorphism preserves the weights of the vertex but not necessarily the weight of the edges.

Theorem 3.1. For any two isomorphic Neutrosophic over top graphs their order and size are same.
Proof: If f : G1 → G2 is an isomorphism between the Neutrosophic over top graphs G1 and G2 with the

underlying sets V1 and V2 respectively.
(i) TA1(x1) = TA2(f(x1)), IA1(x1) = IA2(f(x1)) and FA1(x1) = FA2(f(x1)),∀x1 ∈ V1

(ii) TB1(x1y1) = TB2(f(x1)f(y1)), IB1(x1y1) = IB2(f(x1)f(y1)), FB1(x1y1) = FB2(f(x1)f(y1)), ∀x1y1 ∈ E1

(i) order of G = (OT (G1), OI(G1), OF (G1))

=

(∑
x∈V

TA(x),
∑
x∈V

IA(x),
∑
x∈V

FA(x)

)

=

(∑
x,y∈E

TA(f(x)),
∑
x,y∈E

IA(f(x)),
∑
x,y∈E

FA(f(x))

)
= (OT (G2), OI(G2), OF (G2))

= O(G2)

(ii) S = (ST (G1), SI(G1), SF (G1))

=

(∑
x1∈V1

TB1(x1y1),
∑
x1∈V1

IB1(x1y1),
∑
x1∈V1

FB1(x1y1)

)

=

( ∑
x1,y1∈E1

TB2(f(x1), f(y1)),
∑

x1,y1∈E1

IB2(f(x1), f(y1)),
∑

x1,y1∈E1

FB2(f(x1), f(y1))

)
= (ST (G2), SI(G2), SF (G2))

= S(G2)

Hence the theorem.

Theorem 3.2. Isomorphism between Neutrosophic over top graphs is an equivalence relation.
Proof: Let G = (A,B), G1 = (A1, B1) and G2 = (A2, B2) be Neutrosophic over top graphs with underlying
sets V , V1 and V2 respectively.

(i) Reflexive:
Consider the identity map f : V → V such that f(v) = v,∀v ∈ V .

This f is a bijective map satisfying TA(vi) = TA(f(vi)), IA(vi) = IA(f(vi)), FA(vi) = FA(f(vi)),∀vi ∈ V
TB(vi, vj) = TA(f(vi), f(vj)), IA(vi, vj) = IA(f(vi), f(vj)), FA(vi, vj) = FA(f(vi), f(vj)),∀vi, vj ∈ V
Hence f is an isomorphism of the Neutrosophic over top graph to itself. ∴ It satisfies reflexive relation.
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(ii) Symmetric:
Let f : V → V1 be an isomorphism of G onto G1, then f is a bijective map such that f(v) = v1, v ∈ V
satisfying

TA(v) = TA(f(v))

IA(v) = IA(f(v))

FA(v) = FA(f(v)),∀v ∈ V

TB(vi, vj) = TB1(f(vi), f(vj))

IB(vi, vj) = IB1(f(vi), f(vj))

FB(vi, vj) = FB1(f(vi), f(vj)),∀vi, vj ∈ V

(3.1)

As f is bijective, by equation (3.1)

f 1(v1) = v,∀v1 ∈ V1 (3.2)

using (3.2) in (3.1), we get

TA(f
−1(v1)) = TA1(v1)

IA(f
−1(v1)) = IA1(v1)

FA(f
−1(v1)) = FA1(v1),∀v1 ∈ V1

TB(f
−1(vi), f

−1(vj)) = TB1(vi1), f(vj1))

IB(f
−1(vi), f

−1(vj)) = IB1(vi1), f(vj1))

FB(f
−1(vi), f

−1(vj)) = FB1(vi1), f(vj1)),∀vi1, vj1 ∈ V1

(3.3)

Hence we get a 1-1, onto map f−1 : V1 ∈ V , which is an isomorphism from G1 to G

i.e., G ∼= G
′
=⇒ G

′ ∼= G

∴ It satisfies symmetric property.

(iii) Transitive:
Let f : V → V1 and g : V1 → V2 be isomorphisms of the Neutrosophic over top graphs G onto G1 and
G1 onto G2 respectively.

Then g ◦ f is a 1-1 onto map from V → V2 where

(g ◦ f)(v) = g(f(v)),∀v ∈ V

As f : V → V1 is an isomorphism

f(v) = v1, v ∈ V (3.4)

TA(v) = TA1(f(v))

IA(v) = IA1(f(v))

FA(v) = FA1(f(v)),∀v ∈ V

TB(vi, vj) = TB1(f(vi), f(vj))

IB(vi, vj) = IB1(f(vi), f(vj))

FB(vi, vj) = FB1(f(vi), f(vj)),∀vi, vj ∈ V

(3.5)
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using equation (3.4) in equation (3.5), we have

TA(v)) = TA1(v1)

IA(v) = IA1(v1)

FA(v)) = FA1(v1), ∀v ∈ V

(3.6)

TB(vi, vj) = TB1(f(v1i), f(v1j))

IB(vi, vj) = IB1(f(v1i), f(v1j))

FB(vi, vj) = FB1(f(v1i), f(v1j)),∀vi, vj ∈ V

(3.7)

As g : V1 → V2 is an isomorphisms

g(v1) = v2, v1 ∈ V1 (3.8)

TA1(v1)) = TA2(g(v1))

IA1(v1)) = IA2(g(v1))

FA1(v1)) = FA2(g(v1)),∀v1 ∈ V1

(3.9)

TB1(v1i, v1j) = TB2(g(v1i), f(v1j))

IB1(v1i, v1j) = IB2(g(v1i), f(v1j))

FB1(v1i, v1j) = FB2(g(v1i), f(v1j)),∀vi, vj ∈ V1

(3.10)

Equations (3.5), (3.7) and (3.10) implies

TA(v) = TA2(g(v1)) = TA2(g(f(v)))

IA(v) = IA2(g(f(v)))

FA(v) = FA2(g(v1))

(3.11)

Equations (3.5), (3.8) and (3.11) implies

TB(vi, vj) = TB2(g(v1i), g(v1j)) = TB2(g(f(vi)), g(f(vj)))

IB(vi, vj) = IB2(g(f(vi)), g(f(vj)))

FB(vi, vj) = FB2(g(f(vi)), g(f(vj)))

(3.12)

Equations (3.12) and (3.13) implies

g ◦ f is an isomorphism between G and G
′′ is G ∼= G

′′ i.e., isomorphism between Neutrosophic over top
graphs is an equivalence relation.

Theorem 3.3. Weak isomorphism between Neutrosophic over top graphs satisfies the partial order relation.
Proof: Let G = (A,B), G′

= (A
′
, B

′
), G′′

= (A
′′
, B

′′
) be Neutrosophic over top graphs with underlying

sets V, V ′ and V
′′ respectively.
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(i) Reflexive:

Consider the identity map h : V → V such that h(v) = v,∀v ∈ V .

This h is a bijective map satisfying

TA(vi) = TA(h(vi))

IA(vi) = IA(h(vi))

FA(vi) = FA(h(vi)),∀vi ∈ V

TB(vi, vj) ≤ TB(h(vi), h(vj))

IB(vi, vj) ≤ IB(h(vi), h(vj))

FB(vi, vj) ≤ FB(h(vi), h(vj)),∀vi, vj ∈ V

Hence h is a weak isomorphism of the Neutrosophic over top graph to itself.

∴ it satisfies reflexive relation.

(ii) Anti symmetric:

Let h be a weak isomorphism between G and G
′ and g be a weak isomorphism between G

′ and G.

i.e., h : V → V
′ is a bijective map such that h(v) = v

′ , v ∈ V satisfying

TA(v) = TA′ (h(v))

IA(v) = IA′ (h(v))

FA(v) = FA′ (h(v)),∀v ∈ V

TB(vi, vj) ≤ TB′ (h(vi), h(vj))

IB(vi, vj) ≤ IB′ (h(vi), h(vj)) (3.13)
FB(vi, vj) ≤ FB′ (h(vi), h(vj)),∀vi, vj ∈ V

and g : V
′ → V is a bijective map satisfying

TA′ (v
′
) = TA(g(v

′
))

IA′ (v
′
) = IA(g(v

′
))

FA′ (v
′
) = FA(g(v

′
)),∀v′ ∈ V

′

TB′ (v
′

i, v
′

j) ≤ TB(h(v
′

i), h(v
′

j))

IB′ (v
′

i, v
′

j) ≤ IB(h(v
′

i), h(v
′

j)) (3.14)

FB′ (v
′

i, v
′

j) ≤ FB(h(v
′

i), h(v
′

j)), ∀v
′

i, v
′

j ∈ V
′

The inequalities (3.13) and (3.14) hold good on the finite sets V V
′ only when G and G

′ have the same
number of edges and the corresponding edges have same weights.

Hence G and G
′ are identical.
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(iii) Transitive:

Let h : V → V
′ and g : V

′ → V
′′ be weak isomorphism of the Neutrosophic over top graphs G onto G

′

and G
′ onto G

′′ respectively.

Then g ◦ h is a 1-1, onto map from V → V
′′ where (g ◦ h)(v) = g(h(v)), v ∈ V .

As h : V → V
′ is a weak isomorphism h(v) = v

′ , v ∈ V .

TA(v) = TA′ (h(v))

IA(v) = IA′ (h(v))

FA(v) = FA′ (h(v)),∀v ∈ V

TB(vi, vj) ≤ TB′ (h(vi), h(vj))

IB(vi, vj) ≤ IB′ (h(vi), h(vj)) (3.15)
FB(vi, vj) ≤ FB′ (h(vi), h(vj)),∀vi, vj ∈ V

As g : V
′ → V

′′ is a weak isomorphism g(v
′
) = v

′′ , ∀v′ ∈ V
′ .

TA′ (v
′
) = TA′′ (h(v

′
))

IA′ (v
′
) = IA′′ (h(v

′
))

FA′ (v
′
) = FA′′ (h(v

′
)),∀v′ ∈ V

TB′ (vi, vj) ≤ TB′′ (h(v
′

i), h(v
′

j))

IB′ (vi, vj) ≤ IB′′ (h(v
′

i), h(v
′

j)) (3.16)

FB′ (vi, vj) ≤ FB′′ (h(v
′

i), h(v
′

j)),∀v
′

i, v
′

j ∈ V
′

Equation (3.15) and (3.16) implies

TA(v) = TA′′ (g(v
′
)) = TA′′ (g(h(v)))

IA(v) = IA′′ (g(v
′
)) = IA′′ (g(h(v))) (3.17)

FA(v) = FA′′ (g(v
′
)) = FA′′ (g(h(v))),∀v′ ∈ V

TB(vi, vj) ≤ TB′′ (g(v
′

i), g(v
′

j)) = TB′′ (g(h(vi)), g(h(vj)))

IB(vi, vj) ≤ IB′′ (g(v
′

i), g(v
′

j)) = IB′′ (g(h(vi)), g(h(vj))) (3.18)

FB(vi, vj) ≤ FB′′ (g(v
′

i), g(v
′

j)) = FB′′ (g(h(vi)), g(h(vj)))

Equations (3.17) & (3.18) implies g ◦ h is a weak isomorphism between G & G
′′ .

i.e., weak isomorphism satisfies transitity.

(i), (ii) & (iii) implies weak isomorphism between Neutrosophic over top graphs is partial relation.
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4 Isomorphic Neutrosophic Over topologized graphs and their com-
plements

Definition 4.1. The complement of a Neutrosophic over top graph G = (A,B) is a Neutrosophic over top
graph G = (A,B), where

(1) V = V

(2) TA(vi) = TA(vi)

IA(vi) = IA(vi)

FA(vi) = FA(vi)

(3) TB(vi, vj) =

{
min[TA(vi), TA(vj)], if TB(vi, vj)

min[TA(vi), TA(vj)]− TB(vi, vj), if TB(vi, vj) > 0

IB(vi, vj) =

{
min[IA(vi), IA(vj)], if IB(vi, vj)

min[IA(vi), IA(vj)]− IB(vi, vj), if IB(vi, vj) > 0

FB(vi, vj) =

{
max[FA(vi), FA(vj)], if FB(vi, vj)

max[F (vi), FA(vj)]− FB(vi, vj), if FB(vi, vj) > 0

∀vi, vj ∈ V

Example 4.1. Consider a Neutrosophic over top graph G = (A,B) on the non-empty set V = {v1, v2, v3, v4}
E = {v1v2, v2v3, v3v4, v4v1}. Neutrosophic over top graph G = (A,B) and complement Neutrosophic over
top graph G = (A,B).

v1

(0.3,0.2,1.2)

v2

(0.5,0.6,1.1)

v3

(0.8,1.1,0.3)

v4

(0.5,0.9,1.3)

(0.3,0.2,1.2)(0.
5,0

.6,
1.3

)

G

v1

(0.3,0.2,1.2)

v2

(0.5,0.6,1.1)

v3

(0.8,1.1,0.3)

v4

(0.5,0.9,1.3)

(0.3,0.2,1.2)

(0.5,0.6,1.1)

(0.5,0.9,1.3)

(0
.3

,0
.2

,1
.3

)

G

Figure 1: Neutrosophic over top graph G and its complement G

Theorem 4.1. If two Neutrosophic over top graphs are isomorphic then their complements are isomorphic.
Proof: Let G1 = (A1, B1) and G2 = (A2, B2) be the two Neutrosophic over top graphs. Assume G1

∼= G2.
There exists a bijective map h : V1 → V2 satisfying

TA1(v) = TA2(h(v))
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IA1(v) = IA2(h(v))

FA1(v) = FA2(h(v)),∀v ∈ V

TB1(vi, vj) = TB2(h(vi), h(vj))

IB1(vi, vj) = IB2(h(vi), h(vj))

FB1(vi, vj) = FB2(h(vi), h(vj)),∀vi, vj ∈ V

By definition

TB1(vi, vj) = min[TA1(vi), TA1(vj)]− TB1(vi, vj)

= min[TA2(h(vi)), TA2(h(vj))]− TB2(h(vi), h(vj))

= TB2(h(vi), h(vj)),∀vi, vj ∈ V

IB1(vi, vj) = IB2(h(vi), h(vj)),∀vi, vj ∈ V

FB1(vi, vj) = FB2(h(vi), h(vj)), ∀vi, vj ∈ V

Hence G1
∼= G2.

Theorem 4.2. If G1 = (A1, B1) and G2 = (A2, B2) are weak isomorphic, then Ḡ2 = (Ā2, B̄2) and
Ḡ1 = (Ā1, B̄1) are also weak isomorphic.

Proof: If h is a weak isomorphic between G1 & G2 then h : V1 → V2 is a one-one-onto mapping and
h(v) = v1, v ∈ V

TA1(v) = TA2(h(v))

IA1(v) = IA2(h(v))

FA1(v) = FA2(h(v)),∀v ∈ V

(4.1)

TB1(vi, vj) = TB2(h(vi), h(vj))

IB1(vi, vj) = IB2(h(vi), h(vj))

FB1(vi, vj) = FB2(h(vi), h(vj)),∀vi, vj ∈ V

(4.2)

Since h−1 : V2 → V1 is also one-one and onto for every v in V2 there is a v ∈ V1 such that h−1(v1) = V .
By equation number (4.2),

we have

TA2(v) = TA1(h
−1(v))

IA2(v) = IA1(h
−1(v))

FA2(v) = FA1(h
−1(v)),∀v ∈ V

(4.3)

TB1(vi, vj) = min[TA1(vi), TA1(vj)]− TB1(vi, vj)

= min[TA2(h(vi)), TA2(h(vj))]− TB2(h(vi), h(vj))

= T̄B2(h(vi), h(vj)),i , vj ∈ V

Similarly

ĪB1(vi, vj) = ĪB2(h(vi), h(vj)),i , vj ∈ V

F̄B1(vi, vj) = F̄B2(h(vi), h(vj)),i , vj ∈ V
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Definition 4.2. Let G1 and G2 be Neutrosophic over top graphs. A co-weak isomorphism f : G1 → G2 is
bijective mapping f : V1 → V2 which satisfies the following conditions

(i) f is homomorphism

(ii) TB1(x1y1) = TB2(f(x1), f(y1))

IB1(x1y1) = IB2(f(x1), f(y1))

FB1(x1y1) = FB2(f(x1), f(y1))

Thus, a co-weak isomorphism preserves the weight of the arcs but not necessarily the weights of the nodes.

Remark 4.1. 1. If G1 = G2 = G, then the homomorphism f over itself is called an endomorphism. An
isomorphism f over G is called an automorphism.

2. If G1 = G2, then the weak and co-weak isomorphism actually become isomorphic.

3. If V1 → V2 is a bijective map, then f−1 : V1 → V2 is also a bijective map.

Remark 4.2. The interrelationship among Neutrosophic over top graphs as given below

isomorphism

homomorphism weak isomorphism co-weak isomorphism
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Abstract. This research directs to obtain optimum fuzzy soft constants through Bonferroni mean and TOPSIS

with the initial data represented in terms of multi-valued m-polar neutrosophic soft set. Multi-valued m-polar

neutrosophic soft set is defined in this paper, which is the generalization of m-polar neutrosophic soft set,

obtained by combining it with multi-valued neutrosophic soft set. Optimum fuzzy soft constants play a funda-

mental role for the construction of the system of differential equations which helps to observe the experts, future

attitudes. Sometimes experts feel a requirement to rethink their choices or decisions due to the observation of

others, choice especially when others choose different alternatives. After the individual decisions of experts, an

analysis of experts, attitudes is produced by using phase portraits and line graphs of the system of differential

equations. This analysis can also be provided by using system of differential equations with fuzzy initial condi-

tions. To find the multi-valued m-polar neutrosophic Bonferroni mean, some basic operations on the elements

of the defined set are introduced. An illustrative example is given where a system of two differential equations

is developed for attitude analysis of two persons with independent variable t.

Keywords: Multi valued neutrosophic set; Multi polar neutrosophic set; Bonferroni mean; Fuzzy soft differ-

ential equations.

—————————————————————————————————————————-

1. Introduction

Fuzzy sets have been conveniently utilized to deal with a plethora of problems regarding

to uncertainties since when it was introduced by Zadeh [10]. It allocates each element of a

set with a membership degree in the real standard [0, 1]. Intuitionistic fuzzy set (IFS) was

introduced by Atanassov [11] which generalizes the concept of fuzzy set and handles some

complicated fuzzy information in multi-criteria decision making (MCDM). IFS determines the
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membership and non-membership degrees for each element of a set. The concept of IFS was

extended by Atanassov and Gargov [12] to interval-valued intuitionistic fuzzy set (IVIFS)

which was applied for MCDM methods by several authors [13–18]. Despite of a number of

research achievements on IFS, there is a need of indeterminate information. Smarandache [1]

proposed an indeterminacy membership function which leads to the neutrosophic set (NS).

NS generalizes the fuzzy set and IFS. Hesitant fuzzy set (HFS) was defined by Torra [20]

which is identified by a function hA on a universe U that returns a subset of [0, 1]. Many

extensions of fuzzy set were further extended by combining with hesitant fuzzy set to Interval-

valued hesitant fuzzy set (IVHFS) [25], hesitant fuzzy soft set (HFSS) [21], Interval-valued

hesitant fuzzy soft set (IVHFSS) [22], dual hesitant fuzzy set (DHFS) [23], dual hesitant

fuzzy soft set (DHFSS) [24], interval-valued dual hesitant fuzzy set (IVDHFS) [26] and some

others. All these extended representations of hesitant fuzzy set have a substantial amount

of research work for MCDM [27–29, 49]. Single valued neutrosophic set (SVNS) is an NS for

which membership function, indeterminacy function and falsity function assign a single value

from the interval [0, 1] for each element of a set [2,45]. Interval-valued neutrosophic set (IVNS)

involves the functions (membership, indeterminacy, non-membership) assigning the intervals

from the interval [0, 1] for each element [43]. NS has remarkably contributed in MCDM [44,47],

and recently in TOPSIS [46]. Sometimes, decision makers hesitate to assign a single value to

membership, non-membership or indeterminacy functions. They may suggest two or more

values to these functions. HFS, IVHFS, DHFS and multi-valued neutrosophic set (MVNS) [3]

facilitates those problems.

Bipolar fuzzy set [50] is an extension of a fuzzy set whose membership degree ranges from

−1 to 1, It represents the double-sided uncertainties (e.g. positive-negative, yes-no, gains-

loses,bright-dim, effect-side effect, etc.). These two sides are reciprocally related. Some bipolar

representations with their applications have been done by different authors [30–33]. Chen et

al. [34] presented a multi-polar fuzzy set which is an abstraction of a bipolar fuzzy set. They

also explained some real world problems involving multi-agent, multi-attribute, multi-object

and multi-index information. Deli et al. [5] defined multi-polar neutrosophic soft set and Saeed

et al. [9] presented some operations on this set.

Bonferroni mean (BM) and geometric Bonferroni mean (WBM) are the aggregation opera-

tors which generalize arithmetic mean and geometric mean respectively [35]. BM and WBM

represent the interrelationships between the arguments of individuals and have some properties

discussed by Yager [36], Xu and Yager [37] and Xia et al. [39]. Multi-valued neutrosophic Bon-

ferroni mean (MVNBM) was defined by Liu et al. [3] and some of its applications in multiple

attribute group decision-making are also presented. Hesitant fuzzy Bonferroni mean (HFBM)

was defined by Zhu et al. [38] which facilitates to calculate BM for hesitant fuzzy elements.
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Beg et al. [41] utilized HFBM to analyze the human attitude by developing fuzzy soft differ-

ential equations. This investigation along with some others [42, 48] guides us to think about

the changes in attitudes or experts, interpersonal influences after the decisions.

In this paper multi-valued m-polar neutrosophic set (MVmNS) is defined by combining the

multi-valued neutrosophic set (MVNS) and m-polar neutrosophic set (mNS). Then operational

laws are defined for its elements which lead to formulate multi-valued m-polar neutrosophic

Bonferroni mean (MVmNBM) and multi-valued m-polar neutrosophic weighted Bonferroni

mean (MVmNWBM) operators which are the extension of multi-valued neutrosophic Bonfer-

roni mean (MVNBM) and multi-valued neutrosophic weighted Bonferroni mean (MVNWBM)

operators [3] respectively. Then by utilizing the score values of MVmNWBM and coefficients

of relative closeness obtained through TOPSIS for each alternative, a system of fuzzy soft

differential equations is constructed to observe the change in experts, attitudes. Another con-

tribution of this research work is the utilization of system of differential equations with fuzzy

initial conditions.

2. Preliminaries

2.1. Neutrosophic Set

Neutrosophy is a branch of Philosophy and a basis of neutrosophic set. Neutrosophy con-

siders a unit “A” in relation to “anti-A” and “neither A nor anti-A”. Smarandache presented

the neutrosophic set with some applications [1].

Definition 2.1. [2] Let Z be a universal set. A single valued neutrosophic set (SVNS) X is

defined as:

X = {z, (TX(z), IX(z), FX(z)) : z ∈ Z},
where, TX(z), IX(z) and FX(z) are three real values in [0, 1], denoting the truth-membership

degree, the indeterminacy-membership degree and the falsity-membership degree of the ele-

ment z ∈ Z to the set X respectively, satisfying

0 ≤ TX(z) + IX(z) + FX(z) ≤ 3

for all z ∈ Z.

Definition 2.2. [3] Let Z be a universal set. An MVNS X is defined as:

X = {z, (
∼
TX(z),

∼
IX(z),

∼
FX(z)) : z ∈ Z},

where,
∼
TX(z),

∼
IX(z) and

∼
FX(z) are three collections of discrete real values in [0, 1], de-

noting the truth-membership degree, the indeterminacy-membership degree and the falsity-

membership degree of the element z ∈ Z to the set X respectively, satisfying

0 ≤ γ, µ, ϕ ≤ 1, 0 ≤ γ+ + µ+ + ϕ+ ≤ 3 and γ ∈
∼
TX(z), γ+ ∈ sup

∼
TX(z), µ ∈

∼
IX(z),

µ+ ∈ sup
∼
IX(z), ϕ ∈

∼
FX(z), ϕ+ ∈ sup

∼
FX(z).
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An element
∼
n of an MVNS X can have the following expression:

∼
n =

(
∼
TX(z),

∼
IX(z),

∼
FX(z)

)
for some z ∈ Z, where

∼
TX(z) = {γ, γ ∈ [0, 1]},
∼
IX(z) = {µ, µ ∈ [0, 1]},
∼
FX(z) = {ϕ,ϕ ∈ [0, 1]}.

Definition 2.3. [3] Let
∼
n1 =

(
∼
T 1,

∼
I1,

∼
F 1

)
and

∼
n2 =

(
∼
T 2,

∼
I2,

∼
F 2

)
be two elements of an

MVNS, then their operational laws are defined as follows:

(1)
∼
n1⊕

∼
n2 =

(
∼
T 1 ⊕

∼
T 2,

∼
I1 ⊗

∼
I2,

∼
F 1 ⊗

∼
F 2

)
= ∪

γ1 ∈
∼
T 1, µ1 ∈

∼
I1, ϕ1 ∈

∼
F 1

γ2 ∈
∼
T 2, µ2 ∈

∼
I2, ϕ2 ∈

∼
F 2

(γ1 + γ2 − γ1γ2, µ1µ2, ϕ1ϕ2)

(2)
∼
n1⊗

∼
n2 =

(
∼
T 1 ⊗

∼
T 2,

∼
I1 ⊕

∼
I2,

∼
F 1 ⊕

∼
F 2

)
= ∪

γ1 ∈
∼
T 1, µ1 ∈

∼
I1, ϕ1 ∈

∼
F 1

γ2 ∈
∼
T 2, µ2 ∈

∼
I2, ϕ2 ∈

∼
F 2

(γ1γ2, µ1 + µ2 − µ1µ2, , ϕ1 + ϕ2 − ϕ1ϕ2)

(3) k
∼
n1 = ∪

γ1∈
∼
T 1,µ1∈

∼
I 1,ϕ1∈

∼
F 1

(
1− (1− γ1)k, µk1, ϕ

k
1

)
, k > 0

(4)
∼
n
k

1 = ∪
γ1∈

∼
T 1,µ1∈

∼
I 1,ϕ1∈

∼
F 1

(
γk1 , 1− (1− µ1)k, 1− (1− ϕ1)k

)
, k > 0

For many real world problems (e.g. ordering results of a journal, ordering results of an

institute and inclusion degrees), multipolar information exists. The notion of m-polar fuzzy

set was put forward to deal with those problems where m is an arbitrary ordinal number [34].

2.2. Multi-Polar Neutrosophic Set

Definition 2.4. [9] An m-polar neutrosophic set (mNS) on a universal set Z is a mapping

X = {(s1 ◦ TX(z), s2 ◦ TX(z), ..., sm ◦ TX(z)), (s1 ◦ IX(z), s2 ◦ IX(z), ..., sm ◦ IX(z)), (s1 ◦
FX(z), s2 ◦ FX(z), ..., sm ◦ FX(z))} : Z −→ ([0, 1]m, [0, 1]m, [0, 1]m)

where ith mapping is defined as

si ◦ TX : Z −→ [0, 1]

si ◦ IX : Z −→ [0, 1]

si ◦ FX : Z −→ [0, 1]

and 0 ≤ si ◦ TX(z) + si ◦ IX(z) + si ◦ FX(z) ≤ 3

for all i = 1, 2, ...,m and z ∈ Z.

Example 2.5. Let Z = {z1, z2, z3} be a universal set. Then
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X = {
((0.4, 0.6, 0.7), (0.1, 0.2, 0.3), (0.3, 0.5, 0.6))/z1

((0.2, 0.4, 0.5), (0.6, 0.7, 0.8), (0.7, 0.8, 0.9))/z2

((0.2, 0.5, 0.6), (0.3, 0.4, 0.6), (0.4, 0.6, 0.8))/z3

}

represents an 3-polar neutrosophic set (3NS).

2.3. Neutrosophic Soft Set

Let Z be a universal set and E be the set of attributes of elements in Z. Take X to be a

subset of E.

Definition 2.6. [4] An neutrosophic soft set (NSS) (ω,X) over Z is a mapping from X to

P (Z) and is defined as

ΩX = (ω,X) = {(e, ωX(e)) : e ∈ E,ωX(e) ∈ P (Z)}
where P (Z) denotes the collection of all neutrosophic subsets of Z,

ωX(e) = {z, TX(e)(z), IX(e)(z), FX(e)(z) : z ∈ Z}
and each of TX(e)(z), IX(e)(z) and FX(e)(z) is a mapping from Z to interval [0, 1] with

0 ≤ TX(e)(z) + IX(e)(z)+ FX(e)(z) ≤ 3

for all e ∈ E and z ∈ Z.

Definition 2.7. [5] An m-polar neutrosophic soft set (mNSS) (ω,X) over Z is a mapping

from X to P (Z) and is defined as

ΩX = (ω,X) = {(e, ωX(e)) : e ∈ E,ωX(e) ∈ P (Z)}
where P (Z) denotes collection of all neutrosophic subsets of Z,

ωX(e) = {z, si ◦ TX(e)(z), si ◦ IX(e)(z), si ◦ FX(e)(z) : z ∈ Z}
and

0 ≤ si ◦ TX(e)(z) + si ◦ IX(e)(z) + si ◦ FX(e)(z) ≤ 3

for all i = 1, 2, ...,m; e ∈ E, z ∈ Z.

2.4. Bonferroni mean operator

Definition 2.8. [37] Let l,m be two natural numbers and xi ≥ 0 where i ∈ {1, 2, ..., n} then

Bonferroni mean Bl,mis defined as follow:

Bl,m =

 1

n (n− 1)

n∑
i,j=1,i 6=j

xlix
m
j

 1
l+m

.

Definition 2.9. [37] Let l,m be two natural numbers and xi ≥ 0 (i = 1, 2, ..., n) and W =

[wi ≥ 0]T be the weight vector of [xi] with the condition
n∑
i=1
wi = 1, then weighted Bonferroni
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mean (WBM) is defined as follow:

WBM l,m =

 1

n (n− 1)

n∑
i,j=1,i 6=j

(wixi)
l (wjxj)

m

 1
l+m

.

2.5. Fuzzy Differential Equations

2.5.1. Fuzzy Numbers and Fuzzy Functions

Definition 2.10. [6] A fuzzy number x is defined by a pair x = (x, x) of functions x, x :

[0, 1] −→ R, satisfying the three conditions:

(1) x(α) is a bounded, monotonically increasing left-continuous function for all α ∈ (0, 1]

and right-continous for α = 0,

(2) x(α) is a bounded, monotonically decreasing left-continuous function for all α ∈ (0, 1]

and right-continous for α = 0,

(3) For all α ∈ (0, 1] we have: x ≤ x.

For every x = (x, x), y = (y, y) and k > 0, α ∈ (0, 1], we define addition and multiplication

as follows:

• (x+ y)(α) = x(α) + y(α),

• (x+ y)(α) = x(α) + y(α),

• (kx)(α) = kx(α),

• (kx)(α) = kx(α).

With this definition of addition and multiplication, the collection of all fuzzy numbers is

denoted by E1. For 0 < α ≤ 1, we define α−cuts of fuzzy number u with [x]α = {u ∈ R |
x(u) ≥ α} and for α = 0, the support of x is defined as [x]0 = {u ∈ R | x(u) > 0}.

Definition 2.11. [6] Let x = (x, x) and y = (y, y) be two arbitrary numbers, then distance

between x and y is defined as follows:

d(x, y) = sup
α∈[0,1]

{max[| x(α)− y(α) |, | x(α)− y(α) |]}.

Definition 2.12. [6] A fuzzy function g : R1 → E1 is said to be continuous if for an arbitrary

fixed t◦ ∈ R1 and ε > 0 there exists a δ > 0 such that:

|t− t◦| < δ ⇒ d(g(t), g(t̂)) < ε,

then g is said to be continuous.

Definition 2.13. [6] Let x, y ∈ E1. If there exists z ∈ E1 such that x = y+ z then z is called

the H-difference of x, y and it is denoted by x− y.
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Definition 2.14. [6] A function g : (c, d) → E1 is said to be H-differentiable at t◦ ∈ (c, d)

if for a small h > 0, there exist the H-differences g(t◦) − g(t◦ − h), g(t◦ + h) − g(t◦) and the

element g′(t◦) ∈ E1 such that:

0 = lim
h→0+

d

(
g(t◦)− g(t◦ − h)

h
, g′(t◦)

)
= lim

h→0+
d

(
g(t◦ + h)− g(t◦)

h
, g′(t◦)

)
,

then g′(t◦) is called the fuzzy derivative of g at t◦.

Definition 2.15. [7] The triangular fuzzy numbers are common and are denoted by x =

(α, c, β) and defined by:

x =


u−α
c−α , if α ≤ u ≤ c,
β−u
β−c , if c ≤ u ≤ β,

0, otherwise.

2.5.2. First Order Fuzzy Differential Equations

A first order fuzzy differential equation is written in the following form:

x′(t) = g(t, x(t))

where g(t, x) is a fuzzy function of the crisp variable t and the fuzzy variable x and x is a fuzzy

function of t. Here x′ is the fuzzy derivative of x. Consider the initial value problem

x′(t) = g(t, x(t)), x(t◦) = x◦, (1)

a mapping x : R1 → E1 is a solution to the problem (1) if and only if it is continuous and

satisfies the integral equation

x(t) = x◦ +

∫ t

t◦

g(s, x(s))ds

for all t ∈ R1 [8]. Moreover, sufficient conditions for the existence of a unique solution to Eq

(1) are:

• f is continuous,

• A Lipschitz condition d(g(t, x), g(t, y)) ≤ Ld(x, y) satisfied for some L > 0.

To obtain the solution of Eq (1), it can be replaced by the following equivalent system:

x′(t) = g(t, x(t)), x(t◦) = x◦,

x′(t) = g(t, x(t)), x(t◦) = x◦.

For example, to solve

dx
dt = t2x, x(0) = (0, 1

2 , 1),

it is replaced by
dx
dt = t2x, x(0) = (0, 1

2),
dx
dt = t2x, x(0) = (1

2 , 1),
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x(0) = (0, 1
2) and x(0) = (1

2 , 1) are replaced by parametric forms x(0) = 2α and x(0) = 2(1−α),

respectively where α ∈ [0, 1]. And the solution is:

x = (2αe
t3

3 , 2(1− α)e
t3

3 ), α ∈ [0, 1].

2.6. Human attitude analysis after a decision

The constants which provide the base to rank the alternatives, can also provide a support

for further process of rethinking after a decision. These constants were utilized in fuzzy soft

differential equations [41] and in developing the influence matrix which can play a vital role

in influence model and doubly extended TOPSIS [42,48].

2.6.1. Human attitude analysis based on fuzzy soft differential equations

A system of linear fuzzy soft differential equations is developed by Beg et al. [41].

dP1
dt = a1

P1
P1 + a1

P2
P2,

dP2
dt = a2

P1
P1 + a2

P2
P2

(2)

where P1 and P2 are the variables representing the attitude of two persons after taking a

decision at time t, dP1
dt and dP2

dt represent the change in persons, attitudes after some time

due to that decision and aiPj
(i, j = 1, 2) are optimum fuzzy soft constants (OFSCs) taken

as signed fuzzy numbers denoting the influence on ith person of his internal feelings and jth

person,s feelings. Positive sign is assigned to aiPj
when the attitude of jth person for ith person

is supportive, otherwise a negative sign is assigned to it. Stability of system (2) depends upon

eigen values of the matrix

[
a1
P1

a1
P2

a2
P1

a2
P2

]
3. Multi valued Multi-Polar Neutrosophic Set

Multi-valued multi-polar neutrosophic set (MVmNS) is a generalization and composition of

MVNS and mNS.

Definition 3.1. Let Z be a non empty set. An MVmNS X is a mapping defined as

X : Z →

 m sets of discrete values in [0, 1],

m sets of discrete values in [0, 1],

m sets of discrete values in [0, 1]



X(z) =



(
s1 ◦

∼
TX (z) , s2 ◦

∼
TX (z) , ..., sm ◦

∼
TX (z)

)
,(

s1 ◦
∼
IX (z) , s2 ◦

∼
IX (z) , ..., sm ◦

∼
IX (z)

)
,(

s1 ◦
∼
FX (z) , s2 ◦

∼
FX (z) , ..., sm ◦

∼
FX (z)

)


where si ◦

∼
TX (z) , si ◦

∼
IX (z) and si ◦

∼
FX (z) (i = 1, 2, ...,m) are the collections of discrete

real values γi, µi and ϕi denoting the truth-membership degree, the indeterminacy-membership
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degree and the falsity-membership degree of the element z ∈ Z to the set X respectively with

0 ≤ γi, µi, ϕi ≤ 1, 0 ≤ γ+
i + µ+

i + ϕ+
i ≤ 3, γ+

i ∈ sup

(
si ◦

∼
TX (z)

)
, µ+

i ∈ sup

(
si ◦

∼
IX (z)

)
,

ϕ+
i ∈ sup

(
si ◦

∼
FX (z)

)
.

3.1. Multi valued Multi-Polar Neutrosophic Soft Set

Definition 3.2. Let Z be a universal set and E be a set of parameters with X ⊆ E. Define

ω : X → P (Z), where P (Z) is the collection of all MVmN subsets of the set Z. Then

(ω,X) is said to be an multi-valued m-polar neutrosophic soft set (MVmNSS) over Z which

is represented as ΩX = (ω,X) = {e, ωX(e) : e ∈ E,ωX(e) ∈ P (Z)} and ωX(e) is an MVmNS

over Z.

3.2. Operations on MVmNS

Let X(z1) =



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)


=
((
∪{γ(z1)

1 }, ...,∪{γ(z1)
m }

)
,
(
∪{µ(z1)

1 }, ...,∪{µ(z1)
m }

)
,
(
∪{ϕ(z1)

1 }, ...,∪{ϕ(z1)
m }

))

and X (z2) =



(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)


=
((
∪{γ(z2)

1 }, ...,∪{γ(z2)
m }

)
,
(
∪{µ(z2)

1 }, ...,∪{µ(z2)
m }

)
,
(
∪{ϕ(z2)

1 }, ...,∪{ϕ(z2)
m }

))
be two elements of an MVmNS. Then their operational laws are defined as

(1) (X (z1))c =



(
s1 ◦

∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)
,(

s1 ◦
∼
I
´

X (z1) , s2 ◦
∼
I
´

X (z1) , ..., sm ◦
∼
I
´

X (z1)

)
,(

s1 ◦
∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)


=
((
∪{ϕ(z1)

1 }, ...,∪{ϕ(z1)
m }

)
,
(
∪{1− µ(z1)

1 }, ...,∪{1− µ(z1)
m }

)
,
(
∪{γ(z1)

1 }, ...,∪{γ(z1)
m }

))
.

(2) X (z1)⊕X (z2)

=



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)

⊕


(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)
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=



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
⊕
(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
⊗
(
s1 ◦

∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)
⊗
(
s1 ◦

∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)



=



((
s1 ◦

∼
TX (z1)

)
⊕
(
s1 ◦

∼
TX (z2)

)
, ...,

(
sm ◦

∼
TX (z1)

)
⊕
(
sm ◦

∼
TX (z2)

))
,((

s1 ◦
∼
IX (z1)

)
⊗
(
s1 ◦

∼
IX (z2)

)
, ...,

(
sm ◦

∼
IX (z1)

)
⊗
(
sm ◦

∼
IX (z2)

))
,((

s1 ◦
∼
FX (z1)

)
⊗
(
s1 ◦

∼
FX (z2)

)
, ...,

(
sm ◦

∼
FX (z1)

)
⊗
(
sm ◦

∼
FX (z2)

))



=


(
∪{γ(z1)

1 + γ
(z2)
1 − γ(z1)

1 γ
(z2)
1 }, ...,∪{γ(z1)

m + γ
(z2)
m − γ(z1)

m γ
(z2)
m }

)
,(

∪{µ(z1)
1 µ

(z2)
1 }, ...,∪{µ(z1)

m µ
(z2)
m }

)
,(

∪{ϕ(z1)
1 ϕ

(z2)
1 }, ...,∪{ϕ(z1)

m ϕ
(z2)
m }

)
 .

(3) X (z1)⊗X (z2)

=



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)

⊗


(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)



=



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
⊗
(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
⊕
(
s1 ◦

∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)
⊕
(
s1 ◦

∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)



=



((
s1 ◦

∼
TX (z1)

)
⊗
(
s1 ◦

∼
TX (z2)

)
, ...,

(
sm ◦

∼
TX (z1)

)
⊗
(
sm ◦

∼
TX (z2)

))
,((

s1 ◦
∼
IX (z1)

)
⊕
(
s1 ◦

∼
IX (z2)

)
, ...,

(
sm ◦

∼
IX (z1)

)
⊕
(
sm ◦

∼
IX (z2)

))
,((

s1 ◦
∼
FX (z1)

)
⊕
(
s1 ◦

∼
FX (z2)

)
, ...,

(
sm ◦

∼
FX (z1)

)
⊕
(
sm ◦

∼
FX (z2)

))



=


(
∪{γ(z1)

1 γ
(z2)
1 }, ...,∪{γ(z1)

m γ
(z2)
m }

)
,(

∪{µ(z1)
1 + µ

(z2)
1 − µ(z1)

1 µ
(z2)
1 }, ...,∪{µ(z1)

m + µ
(z2)
m − µ(z1)

m µ
(z2)
m }

)
,(

∪{ϕ(z1)
1 + ϕ

(z2)
1 − ϕ(z1)

1 ϕ
(z2)
1 }, ...,∪{ϕ(z1)

m + ϕ
(z2)
m − ϕ(z1)

m ϕ
(z2)
m }

)
 .

(4) kX (z1) =



(
∪{1−

(
1− γ(z1)

1

)k
}, ...,∪{1−

(
1− γ(z1)

m

)k
}
)
,(

∪{
(
µ

(z1)
1

)k
}, ...,∪{

(
µ

(z1)
m

)k
}
)
,(

∪{
(
ϕ

(z1)
1

)k
}, ...,∪{

(
ϕ

(z1)
m

)k
}
)

 .
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(5) (X (z1))k =



(
∪{
(
γ

(z1)
1

)k
}, ...,∪{

(
γ

(z1)
m

)k
}
)
,(

∪{1−
(

1− µ(z1)
1

)k
}, ...,∪{1−

(
1− µ(z1)

m

)k
}
)
,(

∪{1−
(

1− ϕ(z1)
1

)k
}, ...,∪{1−

(
1− ϕ(z1)

m

)k
}
)

 .

Example 3.3. Let

x1 = (({0.3}, {0.4, 0.5}, {0.5, 0.6}) , ({0.4, 0.5}, {0.2}, {0.7}) , ({0.3}, {0.5}, {0.8})) and

x2 = (({0.1}, {0.3}, {0.6}) , ({0.2, 0.4}, {0.6}, {0.7, 0.8}) , ({0.5}, {0.6}, {0.7, 0.8}))
be two elements of an MV3NS. Then

(x1)c = (({0.3}, {0.5}, {0.8}) , ({0.6, 0.5}, {0.8}, {0.3}) , ({0.3}, {0.4, 0.5}, {0.5, 0.6})) ,

x1 ⊕ x2 =

 ({0.37}, {0.58, 0.65}, {0.8, 0.84}) ,
({0.08, 0.2}, {0.12}, {0.49, 0.56}) ,

({0.15}, {0.30}, {0.56, 0.64})

 ,

x1 ⊗ x2 =

 ({0.03}, {0.12, 0.15}, {0.3, 0.36}) ,
({0.52, 0.7}, {0.68}, {0.91, 0.94}) ,

({0.65}, {0.8}, {0.94, 0.96})

 ,

2x1 =

(
({0.51}, {0.64, 0.75}, {0.75, 0.84}) ,

({0.16, 0.25}, {0.04}, {0.49}) , ({0.09}, {0.25}, {0.64})

)
,

(x1)2 =

(
({0.09}, {0.16, 0.25}, {0.25, 0.36}) ,

({0.64, 0.75}, {0.36}, {0.91}) , ({0.51}, {0.75}, {0.96})

)
.

Definition 3.4. Score function s(X(z)) and accuracy function a(X(z)) of an element X(z)

of an MVmNS is defined as follows:

s(X(z)) =
1

m

m∑
i=1

(
1

liT liI liF

∑(
γi − µi − ϕi

3

))
,

a(X(z)) =
1

m

m∑
i=1

(
1

liT liI liF

∑(
γi + µi + ϕi

3

))
,

where γi ∈ si ◦
∼
TX (z) , µi ∈ si ◦

∼
IX (z), ϕi ∈ si ◦

∼
FX (z) and liT , liI , liF are the number of

elements in si ◦
∼
TX (z) , si ◦

∼
IX (z) and si ◦

∼
FX (z) respectively.

It can be observed that, the score function and accuracy function satisfy the following

properties:

(1) For an element X(z) of an MVmNS,

−2

3
≤ s(X(z)) ≤ 1

3
.

(2) For an element X(z) of an MVmNS,

0 ≤ a(X(z)) ≤ 1.
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Definition 3.5. Two elements X(z1) and X(z2) of an MVmNS are compared as:

• if s (X (z1)) > s (X (z2)) , then X (z1) > X (z2) ,

• if s (X (z1)) = s (X (z2)) and

– if a (X (z1)) > a (X (z2)) , then X(z1) > X (z2) ,

– if a (X (z1)) = a (X (z2)) , then X(z1) = X (z2) .

Definition 3.6. Let X(zi), (i = 1, 2, ..., n) be the elements of an MVmNS. Then for two

natural numbers p, q, MVmNBM operator is defined as

MVmNBMp,q (X (z1) , X (z2) , ..., X (zn)) =

(
1

n(n−1)

(
n
⊕

i,j=1,j 6=i
((X(zi))

p ⊗ (X (zj))
q)

)) 1
p+q

Theorem 3.7. Let X(zi), (i = 1, 2, ..., n) be n elements of an MVmNS, then MVmNBM

operator can be expressed as:

MVmNBMp,q (X (z1) , X (z2) , ..., X (zn)) =


∪




1−


n∏

i, j = 1

i 6= j

(
1−

(
γ

(zi)
1

)p (
γ

(zj)
1

)q)


1
n(n−1)



1
p+q


, ...,∪




1−


n∏

i, j = 1

i 6= j

(
1−

(
γ

(zi)
m

)p (
γ

(zj)
m

)q)


1
n(n−1)



1
p+q




,


∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1− µ(zi)

1

)p (
1− µ(zj)

1

)q)


1
n(n−1)



1
p+q


, ...,∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1− µ(zi)

m

)p (
1− µ(zj)

m

)q)


1
n(n−1)



1
p+q




,


∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1− ϕ(zi)

1

)p (
1− ϕ(zj)

1

)q)


1
n(n−1)



1
p+q


, ...,∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1− ϕ(zi)

m

)p (
1− ϕ(zj)

m

)q)


1
n(n−1)



1
p+q







Proof. Let

X(zi) =
((
∪{γ(zi)

1 }, ...,∪{γ(zi)
m }

)
,
(
∪{µ(zi)

1 }, ...,∪{µ
(zi)
m }

)
,
(
∪{ϕ(zi)

1 }, ...,∪{ϕ
(zi)
m }

))
and X (zj) =

((
∪{γ(zj)

1 }, ...,∪{γ(zj)
m }

)
,
(
∪{µ(zj)

1 }, ...,∪{µ(zj)
m }

)
,
(
∪{ϕ(zj)

1 }, ...,∪{ϕ(zj)
m }

))

(X (zi))
p =


(
∪{
(
γ

(zi)
1

)p
}, ...,∪{

(
γ

(zi)
m

)p
}
)
,(

∪{1−
(

1− µ(zi)
1

)p
}, ...,∪{1−

(
1− µ(zi)

m

)p
}
)
,(

∪{1−
(

1− ϕ(zi)
1

)p
}, ...,∪{1−

(
1− ϕ(zi)

m

)p
}
)


(X (zj))
q =


(
∪{
(
γ

(zj)
1

)q
}, ...,∪{

(
γ

(zj)
m

)q
}
)
,(

∪{1−
(

1− µ(zj)
1

)q
}, ...,∪{1−

(
1− µ(zj)

m

)q
}
)
,(

∪{1−
(

1− ϕ(zj)
1

)q
}, ...,∪{1−

(
1− ϕ(zj)

m

)q
}
)


(X (zi))
p ⊗ (X (zj))

q =
(
∪
{(
γ

(zi)
1

)p (
γ

(zj)
1

)q}
, ...,∪

{(
γ

(zi)
m

)p (
γ

(zj)
m

)q})
,(

∪
{

1−
(

1− µ(zi)
1

)p (
1− µ(zj)

1

)q}
, ...,∪

{
1−

(
1− µ(zi)

m

)p (
1− µ(zj)

m

)q})
,(

∪
{

1−
(

1− ϕ(zi)
1

)p (
1− ϕ(zj)

1

)q}
, ...,∪

{
1−

(
1− ϕ(zi)

m

)p (
1− ϕ(zj)

m

)q})
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n
⊕

i,j=1,j 6=i
((X(zi))

p ⊗ (X (zj))
q) =


∪


1−

n∏
i, j = 1

i 6= j

(
1−

(
γ

(zi)
1

)p (
γ

(zj)
1

)q)

, ...,∪


1−

n∏
i, j = 1

i 6= j

(
1−

(
γ

(zi)
m

)p (
γ

(zj)
m

)q)



,


∪


n∏

i, j = 1

i 6= j

(
1−

(
1− µ(zi)

1

)p (
1− µ(zj)

1

)q)

, ...,∪


n∏

i, j = 1

i 6= j

(
1−

(
1− µ(zi)

m

)p (
1− µ(zj)

m

)q)



,


∪


n∏

i, j = 1

i 6= j

(
1−

(
1− ϕ(zi)

1

)p (
1− ϕ(zj)

1

)q)

, ...,∪


n∏

i, j = 1

i 6= j

(
1−

(
1− ϕ(zi)

m

)p (
1− ϕ(zj)

m

)q)





Finally, the required result is obtained by using operations 4 and 5, presented in section 3.2.

Definition 3.8. Let X(zi), (i = 1, 2, ..., n) be the elements of an MVmNS with weight vector

W = (w1, w2, ..., wn)T satisfying wi ≥ 0 and
n∑
i=1
wi = 1. Then for two natural numbers p, q,

MVmNWBM operator is defined as

MVmNWBMp,q (X (z1) , X (z2) , ..., X (zn)) =

(
1

n(n− 1)

(
n
⊕

i,j=1,j 6=i
((wiX(zi))

p ⊗ (wjX (zj))
q)

)) 1
p+q

Theorem 3.9. Let X(zi), (i = 1, 2, ..., n) be n elements of an MVmNS with weight vector

W = (w1, w2, ..., wn)T satisfying wi ≥ 0 and
n∑
i=1
wi = 1, then MVmNWBM operator can be

expressed as:

MVmNWBMp,q (X (z1) , X (z2) , ..., X (zn)) =
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∪




1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

1

)wi
)p (

1−
(

1− γ(zj)
1

)wj
)q)



1
n(n−1)



1
p+q


, ...,

∪




1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

m

)wi
)p (

1−
(

1− γ(zj)
m

)wj
)q)



1
n(n−1)



1
p+q





,



∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q)



1
n(n−1)



1
p+q


, ...,

∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
m

)wi
)p (

1−
(
µ

(zj)
m

)wj
)q)



1
n(n−1)



1
p+q





,



∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
ϕ

(zi)
1

)wi
)p (

1−
(
ϕ

(zj)
1

)wj
)q)



1
n(n−1)



1
p+q


, ...,

∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
ϕ

(zi)
m

)wi
)p (

1−
(
ϕ

(zj)
m

)wj
)q)



1
n(n−1)



1
p+q






Proof. This result can be obtained similarly as the previous one.

MVmNBM and MVmNWBM operators satisfy the following properties:
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• Permutation

• Monotonicity

• Boundedness

Theorem 3.10. (Permutation) Let X(zi), (i = 1, 2, ..., n) be a set of n elements of an

MVmNS. If X (́zi), (i = 1, 2, ..., n) is a permutation of X(zi), (i = 1, 2, ..., n), then

MVmNWBM(X (z1) , X (z2) , ..., X (zn)) =MVmNWBM
(
X´(z1) , X´(z2) , ..., X´(zn)

)
Proof. Following result can be obtained by definition(

1

n(n− 1)

(
n
⊕

i,j=1,j 6=i
((wiX(z1))p ⊗ (wjX (z2))q)

)) 1
p+q

=

(
1

n(n− 1)

(
n
⊕

i,j=1,j 6=i

((
wiX

´(z1)
)p
⊗
(
wjX

´(z2)
)q))) 1

p+q

.

Hence the result.

Theorem 3.11. (Monotonicity) Let X(zi), (i = 1, 2, ..., n) and X (́zi), (i = 1, 2, ..., n) be

two sets of elements of an MVmNS. If X(zi) ≥ X (́zi) for all i = 1, 2, ..., n then

MVmNWBMp,q (X (z1) , X (z2) , ..., X (zn)) ≥MVmNWBMp,q
(
X´(z1) , X´(z2) , ..., X´(zn)

)
.

Proof. Let

X(zi) =
((
∪{γ(zi)

1 }, ...,∪{γ(zi)
m }

)
,
(
∪{µ(zi)

1 }, ...,∪{µ
(zi)
m }

)
,
(
∪{ϕ(zi)

1 }, ...,∪{ϕ
(zi)
m }

))
and X (́zi) =

((
∪{γ (́zi)

1 }, ...,∪{γ (́zi)
m }

)
,
(
∪{µ(́zi)

1 }, ...,∪{µ
(́zi)
m }

)
,
(
∪{ϕ(́zi)

1 }, ...,∪{ϕ
(́zi)
m }

))
.

(1) X(zi) ≥ X (́zi) =⇒ γ
(zi)
1 ≥ γ (́zi)

1 =⇒ 1−
(

1− γ(zi)
1

)wi

≥ 1−
(

1− γ (́zi)
1

)wi

=⇒
(

1−
(

1− γ(zi)
1

)wi
)p(

1−
(

1− γ(zj)
1

)wj)q
≥
(

1−
(

1− γ (́zi)
1

)wi
)p(

1−
(

1− γ (́zj)
1

)wj)q
for all j = 1, 2, . . . ,m,

=⇒ 1−
(

1−
(

1− γ (́zi)
1

)wi
)p(

1−
(

1− γ (́zj)
1

)wj)q
≤ 1−

(
1−

(
1− γ(zi)

1

)wi
)p(

1−
(

1− γ(zj)
1

)wj)q

=⇒
n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ (́zi)

1

)wi
)p(

1−
(

1− γ (́zj)
1

)wj)q)
≤

n∏
i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

1

)wi
)p(

1−
(

1− γ(zj)
1

)wj)q)
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=⇒ 1−
n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

1

)wi
)p(

1−
(

1− γ(zj)
1

)wj)q)
≥

1−
n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ (́zi)

1

)wi
)p(

1−
(

1− γ (́zj)
1

)wj)q)

=⇒


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

1

)wi
)p (

1−
(

1− γ(zj)
1

)wj
)q)



1
n(n−1)



1
p+q

≥


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ (́zi)

1

)wi
)p (

1−
(

1− γ (́zj)
1

)wj
)q)



1
n(n−1)



1
p+q

Similarly
1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

k

)wi
)p (

1−
(

1− γ(zj)
k

)wj
)q)



1
n(n−1)



1
p+q

≥


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ (́zi)

k

)wi
)p (

1−
(

1− γ (́zj)
k

)wj
)q)



1
n(n−1)



1
p+q

for k = 1, 2, ...,m.

(2) X(zi) ≥ X (́zi) =⇒ µ
(zi)
1 ≤ µ(́zi)

1 =⇒
(
µ

(zi)
1

)wi

≤
(
µ

(́zi)
1

)wi

=⇒
(

1−
(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q
≥
(

1−
(
µ

(́zi)
1

)wi
)p (

1−
(
µ

(́zj)
1

)wj
)q
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=⇒ 1−
(

1−
(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q
≤ 1−

(
1−

(
µ

(́zi)
1

)wi
)p (

1−
(
µ

(́zj)
1

)wj
)q

=⇒
n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q)

≤

n∏
i, j = 1

i 6= j

(
1−

(
1−

(
µ

(́zi)
1

)wi
)p (

1−
(
µ

(́zj)
1

)wj
)q)

=⇒ 1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q)



1
n(n−1)



1
p+q

≤

1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(́zi)
1

)wi
)p (

1−
(
µ

(́zj)
1

)wj
)q)



1
n(n−1)



1
p+q

Similarly

1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
k

)wi
)p (

1−
(
µ

(zj)
k

)wj
)q)



1
n(n−1)



1
p+q

≤

1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(́zi)
k

)wi
)p (

1−
(
µ

(́zj)
k

)wj
)q)



1
n(n−1)



1
p+q
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for k = 1, 2, ...,m.

(3)1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
ϕ

(zi)
k

)wi
)p (

1−
(
ϕ

(zj)
k

)wj
)q)



1
n(n−1)



1
p+q

≤

1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
ϕ

(́zi)
k

)wi
)p (

1−
(
ϕ

(́zj)
k

)wj
)q)



1
n(n−1)



1
p+q

for k = 1, 2, ...,m.

From (1)-(3), the required result is obtained.

Theorem 3.12. (Boundedness) Let X(zi), (i = 1, 2, ..., n) be a set of n elements of an

MVmNS, then

min (X (z1) , X (z2) , ..., X (zn)) ≤MVmNWBM (X (z1) , X (z2) , ..., X (zn))

≤ max (X (z1) , X (z2) , ..., X (zn))

Proof. Let m = min (X (z1) , X (z2) , ..., X (zn)) and M = max (X (z1) , X (z2) , ..., X (zn))

Since m ≤ X(zi) ≤M so by using previous theorem

m ≤MVmNWBM (X (z1) , X (z2) , ..., X (zn)) ,

MVmNWBM (X (z1) , X (z2) , ..., X (zn)) ≤M.

Hence the result.

3.3. Multi-Valued Multi-Polar Neutrosophic Soft Set

Definition 3.13. Let Z be a universal set and E be a set of parameters with X ⊆ E. Define

ω : X → P (Z), where P (Z) is the collection of all MVmN subsets of the set Z. Then

(ω,X) is said to be an multi-valued m-polar neutrosophic soft set (MVmNSS) over Z which

is represented as ΩX = (ω,X) = {e, ωX(e) : e ∈ E,ωX(e) ∈ P (Z)} and ωX(e) is an MVmNS

over Z.
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Table 1. Representation of a MV3NSS.

C1 C2 C3

A1

 ({0.6}, {0.4, 0.5}, {0.4, 0.5}) ,
({0.8, }, {0.1, 0.4}, {0.5}) ,
({0.2}, {0.8}, {0.3, 0.6})


 ({0.6}, {0.7}, {0.4, 0.5}) ,

({0.3, 0.7}, {0.6}, {0.8, 0.9}) ,
({0.4}, {0.8, 0.9}, {0.5})


 ({0.3, 0.5}, {0.7}, {0.9}) ,

({0.6, 0.9}, {0.8}, {0.6}) ,
({0.4, 0.5}, {0.4}, {0.7})


A2

 ({0.4, 0.6}, {0.5}, {0.2}) ,
({0.6, 0.7}, {0.7}, {0.2, 0.4}) ,

({0.4}, {0.6}, {0.6, 0.8})


 ({0.4, 0.6}, {0.6}, {0.6, 0.9}) ,

({0.6}, {0.6, 0.8}, {0.7}) ,
({0.4}, {0.6}, {0.5, 0.9})


 ({0.6, 0.8}, {0.6}, {0.5, 0.7}) ,

({0.2, 0.6}, {0.3, 0.4}, {0.4}) ,
({0.4}, {0.5}, {0.5, 0.7})


A3

 ({0.4}, {0.3}, {0.8, 0.9}) ,
({0.4}, {0.3}, {0.9}) ,

({0.7, 0.9}, {0.8}, {0.5})


 ({0.6}, {0.4, 0.6}, {0.8}) ,

({0.7, 0.8}, {0.9}, {0.5}) ,
({0.3, 0.5}, {0.8}, {0.7, 0.8})


 ({0.9}, {0.7}, {0.8, 0.9}) ,

({0.4}, {0.7, 0.9}, {0.8}) ,
({0.4}, {0.8}, {0.7, 0.9})


A4

 ({0.6}, {0.6}, {0.5, 0.7}) ,
({0.5, 0.7}, {0.7}, {0.9}) ,

({0.4}, {0.8, 0.9}, {0.5, 0.6})


 ({0.6}, {0.4}, {0.1, 0.3}) ,

({0.5}, {0.8}, {0.6, 0.7}) ,
({0.3}, {0.6, 0.7}, {0.6, 0.9})


 ({0.7}, {0.3, 0.6}, {0.7}) ,

({0.7}, {0.9}, {0.4, 0.5}) ,
({0.4}, {0.3}, {0.6})



Following example shows an MV3NS where three poles represent three different opinion

leaders and decision makers are considered as opinion followers. Opinion leaders have an

influence power for updating process of opinion followers, opinions [40].

Example 3.14. Let {A1, A2, A3, A4} be a set of four companies where an investor wants to

invest a suitable amount and {C1, C2, C3} be a set of criteria, then an MV3NSS is represented

in Table 1.

3.3.1. Operations on Multi-Valued m-Neutrosophic Soft Set

Some operations in MVmNSS are defined in this section.

Definition 3.15. Let Z be a universal set and E be a set of parameters with U, V ⊆ E. For

two MVmNSSs ΩU and ΨV , ΩU ⊆̆ΨV if

(1) U ⊆ V ,

(2) ΩU (e) ⊆ ΨV (e) for all e ∈ U i.e. s (ΩU (e)(z)) ≤ s (ΨV (e)(z)) for all e ∈ U , z ∈ Z.

Example 3.16. Let Z = {z1, z2} and E = {e1, e2, e3}. U = {e1, e2} and V = {e1, e2} be

subsets of E. Let ΩU and ΨV be two MV3NSSs defined as:
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ΩU = {(e1, (z1, ({0.3, 0.4}, {0.4, 0.6, 0.7}, {0.2, 0.5}), ({0.5, 0.7}, {0.6, 0.8, 0.9}, {0.7, 0.8}),
({0.4, 0.6}, {0.5, 0.7}, {0.5, 0.7, 0.8})), (z2, ({0.3, 0.4}, {0.6, 0.9}, {0.8, 0.9}),
({0.4, 0.5}, {0.6, 0.8}, {0.4, 0.6, 0.7}), ({0.1, 0.3, 0.5}, {0.6, 0.7}, {0.7, 0.8}))),
(e2, (z1, ({0.4, 0.5}, {0.4, 0.6}, {0.6, 0.9}), ({0.2, 0.4, 0.5}, {0.6, 0.7}, {0.7, 0.8}),
({0.3, 0.5}, {0.6, 0.7, 0.8}, {0.7, 0.9})), (z2, ({0.4, 0.6}, {0.4, 0.6, 0.7}, {0.6, 0.7}),
({0.1, 0.2, 0.4}, {0.5, 0.6, 0.7}, {0.6, 0.8}), ({0.4, 0.5}, {0.5, 0.6}, {0.5, 0.7})))}

ΨV = {(e1, (z1, ({0.8, 0.9}, {0.3, 0.5}, {0.5, 0.6}), ({0.5, 0.6}, {0.2, 0.3}, {0.4, 0.5}),
({0.8, 0.9}, {0.3, 0.4, 0.5}, {0.3, 0.4, 0.5})), (z2, ({0.7, 0.8, 0.9}, {0.4, 0.5}, {0.5, 0.6}),
({0.6, 0.7}, {0.6, 0.7}, {0.3, 0.5}), ({0.7, 0.8}, {0.4, 0.6}, {0.2, 0.5}))),
(e2, (z1, ({0.6, 0.8}, {0.4, 0.5}, {0.4, 0.5, 0.6}), ({0.6, 0.8, 0.9}, {0.4, 0.6}, {0.6, 0.7}),
({0.7, 0.8}, {0.6, 0.7}, {0.5, 0.7})), (z2, ({0.6, 0.8}, {0.4, 0.5}, {0.4, 0.5}),
({0.5, 0.8}, {0.4, 0.5}, {0.1, 0.4}), ({0.9}, {0.4, 0.5}, {0.5, 0.7})))}.

Since s (ΩU (e)(z)) ≤ s (ΨV (e)(z)) for all e ∈ U , z ∈ Z ⇒ ΩU ⊆̆ΨV (one of the different

choices of e and z is explained as: s(ΩU (e1)(z1)) = −0.3288 ≤ −0.083 = s(ΨU (e1)(z1))).

Definition 3.17. Let Z be a universal set and ΩU , ΨV be two MVmNS sets, where U and V

are subsets of E. ΩU and ΨV are said to be equal if ΩU ⊆̆ΨV and ΨV ⊆̆ΩU .

4. Distance Measures

Let Z = {z1, z2, ..., zn} be a universal set, E = {e1, e2, ..., ep} be a set of attributes and

U, V ⊆ E. Let ΩU and ΨV be two MVmNS sets over Z with their respective MVmN mappings:

ωU (ej) =

{(
zk, si ◦

∼
TU (ej) (zk) , si ◦

∼
IU (ej) (zk) , si ◦

∼
FU (ej) (zk)

)}
,

ψV (ej) =

{(
zk, si ◦

∼
T V (ej) (zk) , si ◦

∼
IV (ej) (zk) , si ◦

∼
F V (ej) (zk)

)}
,

for all i = 1, 2, . . . ,m; j = 1, 2, . . . , p and k = 1, 2, . . . , n, then the distance measures between

ΩU and ΨV are defined as:

4.1. Hamming Distance

dH (ΩU ,ΨV ) = 1
3mp


m∑
i=1

p∑
j=1

n∑
k=1



∣∣∣∣si ◦ ∼TU (ej) (zk)− si ◦
∼
T V (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼IU (ej) (zk)− si ◦
∼
IV (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼FU (ej) (zk)− si ◦
∼
F V (ej) (zk)

∣∣∣∣




.
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4.2. Normalized Hamming Distance

dNH (ΩU ,ΨV ) = 1
3mpn


m∑
i=1

p∑
j=1

n∑
k=1



∣∣∣∣si ◦ ∼TU (ej) (zk)− si ◦
∼
T V (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼IU (ej) (zk)− si ◦
∼
IV (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼FU (ej) (zk)− si ◦
∼
F V (ej) (zk)

∣∣∣∣




.

4.3. Euclidean Distance

dE (ΩU ,ΨV ) = 1
3mp


m∑
i=1

p∑
j=1

n∑
k=1



(
si ◦

∼
TU (ej) (zk)− si ◦

∼
T V (ej) (zk)

)2

+(
si ◦

∼
IU (ej) (zk)− si ◦

∼
IV (ej) (zk)

)2

+(
si ◦

∼
FU (ej) (zk)− si ◦

∼
F V (ej) (zk)

)2





1
2

.

4.4. Normalized Euclidean Distance

dNE (ΩU ,ΨV ) = 1
3mpn


m∑
i=1

p∑
j=1

n∑
k=1



(
si ◦

∼
TU (ej) (zk)− si ◦

∼
T V (ej) (zk)

)2

+(
si ◦

∼
IU (ej) (zk)− si ◦

∼
IV (ej) (zk)

)2

+(
si ◦

∼
FU (ej) (zk)− si ◦

∼
F V (ej) (zk)

)2





1
2

.

Some distance measures are defined with weight vector W = (w1, w2, ..., wp)
T satisfying

wj ≥ 0 and
p∑
j=1

wj = 1.

4.5. Weighted Hamming Distance

dWH (ΩU ,ΨV ) = 1
3mp


m∑
i=1

p∑
j=1

n∑
k=1

wj



∣∣∣∣si ◦ ∼TU (ej) (zk)− si ◦
∼
T V (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼IU (ej) (zk)− si ◦
∼
IV (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼FU (ej) (zk)− si ◦
∼
F V (ej) (zk)

∣∣∣∣




.

4.6. Weighted Euclidean Distance

dE (ΩU ,ΨV ) = 1
3mp


m∑
i=1

p∑
j=1

n∑
k=1

wj



(
si ◦

∼
TU (ej) (zk)− si ◦

∼
T V (ej) (zk)

)2

+(
si ◦

∼
IU (ej) (zk)− si ◦

∼
IV (ej) (zk)

)2

+(
si ◦

∼
FU (ej) (zk)− si ◦

∼
F V (ej) (zk)

)2





1
2

.
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5. MCDM Based on MVmNSS by using TOPSIS

Ordering of the elements of MVmNS and formulation of distance measures between them

leads us to develop a stepwise algorithm of TOPSIS.

Step 1: Construct a set of alternatives X = {x1, x2, . . . , xn} and a set of attributes E =

{e1, e2, . . . , ep}.
Step 2: A decision matrix is constructed by a decision maker which is the representation

of an MVmNSS. In case of group decision, decision matrices are obtained from the experts

and then an aggregated matrix D is obtained by using MVmNBM (Definition 3.6), and is

represented as:

D (xk) =

{(
ej , si ◦

∼
TD (ej) , si ◦

∼
ID (ej) , si ◦

∼
FD (ej)

)}
,

for an alternative xk, k = 1, 2, . . . , n.

Step 3: Choose the positive and negative ideal solutions by calculating the score values of

the entries of decision matrices,

PIS =

{(
ej , si ◦

∼
TP (ej) , si ◦

∼
IP (ej) , si ◦

∼
FP (ej)

)}
,

NIS =

{(
ej , si ◦

∼
TN (ej) , si ◦

∼
IN (ej) , si ◦

∼
FN (ej)

)}
.

Step 4: Find the distances of the elements of the aggregated matrix from PIS and NIS for

each alternative xk, k = 1, 2, . . . , n by using one of the following group of distance measures:

• dWH (Dxk , P IS) = 1
3mp


m∑
i=1

p∑
j=1

wj



∣∣∣∣si ◦ ∼TD (ej)− si ◦
∼
TP (ej)

∣∣∣∣+∣∣∣∣si ◦ ∼ID (ej)− si ◦
∼
IP (ej)

∣∣∣∣+∣∣∣∣si ◦ ∼FD (ej)− si ◦
∼
FP (ej)

∣∣∣∣




,

dWH (Dxk , NIS) = 1
3mp


m∑
i=1

p∑
j=1

wj



∣∣∣∣si ◦ ∼TD (ej)− si ◦
∼
TN (ej)

∣∣∣∣+∣∣∣∣si ◦ ∼ID (ej)− si ◦
∼
IN (ej)

∣∣∣∣+∣∣∣∣si ◦ ∼FD (ej)− si ◦
∼
FN (ej)

∣∣∣∣




,

• dWE (Dxk , P IS) = 1
3mp


m∑
i=1

p∑
j=1

wj



(
si ◦

∼
TD (ej)− si ◦

∼
TP (ej)

)2

+(
si ◦

∼
ID (ej)− si ◦

∼
IP (ej)

)2

+(
si ◦

∼
FD (ej)− si ◦

∼
FP (ej)

)2





1
2

,
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dWE (Dxk , NIS) = 1
3mp


m∑
i=1

p∑
j=1

wj



(
si ◦

∼
TD (ej)− si ◦

∼
TN (ej)

)2

+(
si ◦

∼
ID (ej)− si ◦

∼
IN (ej)

)2

+(
si ◦

∼
FD (ej)− si ◦

∼
FN (ej)

)2





1
2

.

Step 5: Calculate the co-efficients of relative closeness (RC) for the alternatives by using

one of the following formulae:

RC(xk) =
dWH (Dxk , NIS)

dWH (Dxk , NIS) + dWH (Dxk , P IS)
,

or

RC(xk) =
dWE (Dxk , NIS)

dWE (Dxk , NIS) + dWE (Dxk , P IS)
,

k = 1, 2, ..., n, according to the distance measure used in step 4.

Step 6: Rank the alternatives.

5.1. An Application Example

Let X = {x1, x2, x3, x4} be a set of alternatives, E = {e1, e2, e3} be a set of attributes and

D = {d1, d2, d3} be the set of decision makers. Ranking of alternatives by the experts and

observation of their attitudes is done here by two techniques:

(1) MVmNBM

(2) TOPSIS

By using first technique, stepwise procedure is as under:

Step 1: Obtain the MV2NSSs from the decision makers d1, d2 and d3 which can be repre-

sented in Table 2, Table 3 and Table 4 respectively.

Step 2: Obtain an MVmNSS dagg by calculating MV2NBM (Definition 3.6) for the respec-

tive values of Table 2, Table 3 and Table 4.

Step 3: Let W1 =
(

0.3 0.5 0.2
)

, W2 =
(

0.2 0.4 0.4
)

and W3 =
(

0.7 0.1 0.2
)

be three weight vectors for the attributes provided by three decision makers d1, d2 and d3

respectively. Their weighted aggregated values are obtained from Definition 3.7 and are shown

in Table 6, Table 7 and Table 8.

Step 4: Now by using the score function (Definition 3.4), find the single values for each

alternative.

Score values for d1:

S(x1) = −0.3128

S(x2) = −0.3341

S(x3) = −0.3009

S(x4) = −0.3147
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Table 2. Decision matrix from the decision maker d1.

1 e1 e2 e3

x1

 ({0.3, 0.4}, {0.4}) ,
({0.5}, {0.4}) ,
({0.6}, {0.7})


 ({0.6, 0.7}, {0.8}) ,

({0.5, 0.7}, {0.4, 0.6}) ,
({0.9}, {0.9})


 ({0.9}, {0.6, 0.8}) ,

({0.4, 0.5}, {0.7}) ,
({0.3}, {0.6})


x2

 ({0.1}, {0.5}) ,
({0.5}, {0.9}) ,

({0.6, 0.7}, {0.9})


 ({0.7, 0.8}, {0.5}) ,

({0.6, 0.7}, {0.6}) ,
({0.6, 0.8}, {0.9})


 ({0.3}, {0.7}) ,

({0.4}, {0.9}) ,
({0.2}, {0.3, 0.5})


x3

 ({0.6}, {0.8}) ,
({0.7, 0.8}, {0.1}) ,

({0.6}, {0.1})


 ({0.9}, {0.8}) ,

({0.7}, {0.6}) ,
({0.5, 0.6}, {0.5})


 ({0.5}, {0.6}) ,

({0.4}, {0.9}) ,
({0.1, 0.4}, {0.5})


x4

 ({0.5}, {0.9}) ,
({0.2, 0.6}, {0.4}) ,

({0.7}, {0.4})


 ({0.1, 0.4}, {0.5}) ,

({0.7}, {0.2}) ,
({0.5}, {0.3, 0.7})


 ({0.3}, {0.8}) ,

({0.4}, {0.5, 0.6}) ,
({0.4, 0.6}, {0.7})



Table 3. Decision matrix from the decision maker d2.

2 e1 e2 e3

x1

 ({0.1}, {0.3}) ,
({0.2}, {0.1, 0.5}) ,

({0.4}, {0.6})


 ({0.7}, {0.5}) ,

({0.4}, {0.5}) ,
({0.3, 0.5}, {0.4})


 ({0.3, 0.5}, {0.5, 0.6}) ,

({0.4}, {0.8}) ,
({0.3}, {0.7})


x2

 ({0.4, 0.6}, {0.9}) ,
({0.8}, {0.5}) ,
({0.6}, {0.6})


 ({0.1}, {0.5, 0.7}) ,

({0.6}, {0.7}) ,
({0.1}, {0.3})


 ({0.4}, {0.9}) ,

({0.5}, {0.6}) ,
({0.7}, {0.8})


x3

 ({0.2}, {0.4}) ,
({0.5}, {0.6, 0.7}) ,

({0.2}, {0.7})


 ({0.4}, {0.7, 0.8}) ,

({0.2}, {0.1}) ,
({0.2}, {0.7})


 ({0.2}, {0.8, 0.9}) ,

({0.5}, {0.8}) ,
({0.1}, {0.5, 0.9})


x4

 ({0.5, 0.7}, {0.4}) ,
({0.4, 0.8}, {0.9}) ,

({0.1}, {0.5})


 ({0.9}, {0.8}) ,

({0.6}, {0.7, 0.9}) ,
({0.3}, {0.6})


 ({0.3}, {0.4, 0.5}) ,

({0.3, 0.4}, {0.6}) ,
({0.7}, {0.2, 0.3})



Score values for d2:

S(x1) = −0.3084

S(x2) = −0.3326

S(x3) = −0.2952

S(x4) = −0.3167
Score values for d3:
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Table 4. Decision matrix from the decision maker d3.

3 e1 e2 e3

x1

 ({0.6}, {0.7}) ,
({0.8, 0.9}, {0.4}) ,

({0.3}, {0.6})


 ({0.4, 0.6}, {0.7}) ,

({0.4}, {0.6}) ,
({0.5}, {0.7, 0.9})


 ({0.1, 0.3}, {0.4}) ,

({0.6}, {0.5, 0.8}) ,
({0.3, 0.5}, {0.4})


x2

 ({0.4}, {0.5}) ,
({0.6}, {0.7}) ,
({0.8}, {0.6})


 ({0.3}, {0.4}) ,

({0.5, 0.6}, {0.6}) ,
({0.4}, {0.7})


 ({0.5, 0.8}, {0.5}) ,

({0.2}, {0.3}) ,
({0.4}, {0.9})


x3

 ({0.2}, {0.3, 0.6}) ,
({0.4}, {0.5}) ,
({0.7}, {0.8})


 ({0.6}, {0.7, 0.8}) ,

({0.7}, {0.9}) ,
({0.4, 0.5}, {0.8})


 ({0.9}, {0.7}) ,

({0.4}, {0.6, 0.7}) ,
({0.6}, {0.8})


x4

 ({0.2}, {0.6}) ,
({0.4, 0.6}, {0.7}) ,
({0.6}, {0.8, 0.9})


 ({0.6}, {0.4}) ,

({0.4}, {0.9}) ,
({0.3}, {0.6, 0.7})


 ({0.2}, {0.3, 0.5}) ,

({0.7, 0.8}, {0.9}) ,
({0.4}, {0.1})


Table 5. Aggregated matrix dagg.

Agg1 e1 e2 e3

x1

 ({0.3039, 0.3437}, {0.4539}) ,
({0.5187, 0.56}, {0.3025, 0.4338}) ,

({0.4362}, {0.6346})


 ({0.5638, 0.6666}, {0.6666}) ,

({0.4338, 0.5050}, {0.5022, 0.5677}) ,
({0.5891, 0.6507}, {0.6961, 0.7911})


 ({0.3691, 0.5488}, {0.4978, 0.5955}) ,

({0.4687, 0.5022}, {0.6774, 0.7690}) ,
({0.3, 0.3672}, {0.5740})


x2

 ({0.2860, 0.3437}, {0.6246}) ,
({0.6418}, {0.7204}) ,

({0.6722, 0.7050}, {0.7140})


 ({0.3268, 0.3484}, {0.4659, 0.5285}) ,

({0.5677, 0.6346}, {0.6346}) ,
({0.3732, 0.4454}, {0.6732})


 ({0.3966, 0.4806}, {0.7003}) ,

({0.3693}, {0.6299}) ,
({0.4404}, {0.7207, 0.7607})


x3

 ({0.3068}, {0.4806, 0.5955}) ,
({0.5387, 0.5775}, {0.4130, 0.4512}) ,

({0.5194}, {0.5824})


 ({0.6268}, {0.7334, 0.8}) ,

({0.5607}, {0.5803}) ,
({0.3693, 0.4419}, {0.6774})


 ({0.5095}, {0.7, 0.7334}) ,

({0.4338}, {0.7832, 0.8081}) ,
({0.2430, 0.3732}, {0.6088, 0.7607})


x4

 ({0.3912, 0.4524}, {0.6268}) ,
({0.3346, 0.6722}, {0.6961}) ,

({0.4936}, {0.6193})


 ({0.5169, 0.6268}, {0.5581}) ,

({0.5740}, {0.6516, 0.7608}) ,
({0.3672}, {0.5080, 0.6682})


 ({0.2648}, {0.4806, 0.5947}) ,

({0.4724, 0.5432}, {0.6842, 0.7140}) ,
({0.5050, 0.5740}, {0.32, 0.3656})



S(x1) = −0.3444

S(x2) = −0.3663

S(x3) = −0.3365

S(x4) = −0.3503

S(x2) < S(x4) < S(x1) < S(x3) is the ranking of alternatives which is similar for all three

decision makers. Alternative x3 is the best one to select.

Step 5: To analyze the future attitude of the decision makers, system of differential equa-

tions (2) is developed by selecting ajpi , i, j = 1, 2, 3 from the score values.a1
p1 = 0.6991, a1

p2 =

0.7048, a2
p1 = 0.6991, a2

p2 = 0.7048

dP1
dt = 0.6991P1 + 0.7048P2

dP2
dt = 0.6991P1 + 0.7048P2

(3)
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Table 6. Weighted aggregated values for d1.

x1

 ({0.6455, 0.7069}, {0.7202, 0.7360}) ,
({0.7883, 0.8137}, {0.7889, 0.8375}) ,
({0.7778, 0.8019}, {0.8684, 0.8858})


x2

 ({0.5922, 0.6256}, {0.7444, 0.7571}) ,
({0.8186, 0.8313}, {0.8771}) ,

({0.8, 0.8185}, {0.8924, 0.8968})


x3

 ({0.6843}, {0.7723, 0.8112}) ,
({0.8109, 0.8172}, {0.8381, 0.8473}) ,
({0.7346, 0.7749}, {0.8617, 0.8789})


x4

 ({0.6379, 0.6756}, {0.7298, 0.7465}) ,
({0.7832, 0.8494}, {0.8824, 0.9030}) ,
({0.7760, 0.7859}, {0.7963, 0.8345})


Table 7. Weighted aggregated values for d2.

x1

 ({0.6527, 0.7225}, {0.7263, 0.7470}) ,
({0.7825, 0.8081}, {0.8027, 0.8508}) ,
({0.7683, 0.7942}, {0.8634, 0.8808})


x2

 ({0.6019, 0.6362}, {0.7520, 0.7644) ,

({0.8064, 0.8201}, {0.8716}) ,
({0.7848, 0.8033}, {0.8912, 0.8976})


x3

 ({0.7001}, {0.7867, 0.8221}) ,
({0.8033, 0.8084}, {0.8527, 0.8623}) ,
({0.7179, 0.7647}, {0.8595, 0.8840})


x4

 ({0.6304, 0.6637}, {0.7270, 0.7496}) ,
({0.7826, 0.8418}, {0.8802, 0.9015}) ,
({0.7730, 0.7872}, {0.7815, 0.8234})


Line graph for the system (3) (Figure 2) shows the same future behaviour of the decision

makers d1 and d2, since lines are overlapping and phase portrait (Figure 1) shows that the

system is unstable. It means that the experts may change their attitudes in future. A similar

conclusion can be observed between d3 and d2 or d1 and d3. Future attitudes of d1 and d2 can

also be analyzed (Figure 3) with the following fuzzy initial conditions (FICs):

P1(0) = (−1, 0, 1),

P2(0) = (−1, 0, 1),

or (α-cut representation)

P1(0) = (−1 + α, 1− α) α ∈ [0, 1],

P2(0) = (−1 + α, 1− α) α ∈ [0, 1].
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Table 8. Weighted aggregated values for d3.

x1

 ({0.5941, 0.6529}, {0.6708, 0.6887}) ,
({0.8239, 0.8432}, {0.8310, 0.8709}) ,
({0.7917, 0.8105}, {0.8813, 0.8881})


x2

 ({0.5629, 0.6}, {0.7245, 0.7304}) ,
({0.8437, 0.8488}, {0.8980}) ,

({0.8431, 0.8567}, {0.9106, 0.9155})


x3

 ({0.6299}, {0.7240, 0.7646}) ,
({0.8336, 0.8407}, {0.8720, 0.8806}) ,
({0.7762, 0.8090}, {0.8767, 0.8985})


x4

 ({0.5891, 0.6212}, {0.6886, 0.7115}) ,
({0.8066, 0.8744}, {0.9019, 0.9135}) ,
({0.8179, 0.8283}, {0.8261, 0.8461})



Figure 1. Phase portrait for the system (3).

Figure 2. Line graph for the system (3).
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Figure 3. Line graph for the system (3) with FICs.

Table 9. Score values from the decision maker d1.

d1 e1 e2 e3

x1 −0.2416 −0.2416 −0.075

x2 −0.3916 −0.2666 −0.15

x3 −0.025 −0.1083 −0.1583

x4 −0.0833 −0.1916 −0.175

Table 10. Score values from the decision maker d2.

d2 e1 e2 e3

x1 −0.1833 −0.0833 −0.2083

x2 −0.1833 −0.1666 −0.2166

x3 −0.2416 −0.0083 −0.175

x4 −0.1833 −0.1 −0.1916

Now the stepwise procedure of the second technique is as under:

Step 1 Same as in first technique

Step 2 Same as in first technique.

Step 3 Find the score values of the entries of Table 2, Table 3 and Table 4 by Definition

3.4. Respective score values are represented in Table 9, Table 10 and Table 11.

Step 4 By comparing the score values of the alternatives in Table 9, Table 10 and Table 11,

select the PIS and NIS from Table 2, Table 3 and Table 4.

Step 5 Find the weighted distances between the entries of Table 5 and Table 12 as described

in section 4.5 with W1 =
(

0.3 0.5 0.2
)

and W2 =
(

0.2 0.4 0.4
)

. Here weighted

Hamming distance is utilized.
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Table 11. Score values from the decision maker d3.

d3 e1 e2 e3

x1 −0.1416 −0.1833 −0.2416

x2 −0.3 −0.2583 −0.1

x3 −0.2916 −0.25 −0.1416

x4 −0.3083 −0.2083 −0.2583

Table 12. Positive and negative ideal solution.

e1 e2 e3

PIS

 ({0.6}, {0.8}) ,
({0.7, 0.8}, {0.1}) ,

({0.6}, {0.1})


 ({0.4}, {0.7, 0.8}) ,

({0.2}, {0.1}) ,
({0.2}, {0.7})


 ({0.9}, {0.6, 0.8}) ,

({0.4, 0.5}, {0.7}) ,
({0.3}, {0.6})


NIS

 ({0.1}, {0.5}) ,
({0.5}, {0.9}) ,

({0.6, 0.7}, {0.9})


 ({0.7, 0.8}, {0.5}) ,

({0.6, 0.7}, {0.6}) ,
({0.6, 0.8}, {0.9})


 ({0.2}, {0.3, 0.5}) ,

({0.7, 0.8}, {0.9}) ,
({0.4}, {0.1})



dW1H (Dx1 , P IS) = 0.4059 dW2H (Dx1 , P IS) = 0.3875

dW1H (Dx2 , P IS) = 0.4284 dW2H (Dx2 , P IS) = 0.4131

dW1H (Dx3 , P IS) = 0.4048 dW2H (Dx3 , P IS) = 0.3886

dW1H (Dx4 , P IS) = 0.4523 dW2H (Dx4 , P IS) = 0.4485

dW1H (Dx1 , NIS) = 0.3838 dW2H (Dx1 , NIS) = 0.4064

dW1H (Dx2 , NIS) = 0.3928 dW2H (Dx2 , NIS) = 0.3824

dW1H (Dx3 , NIS) = 0.4060 dW2H (Dx3 , NIS) = 0.4109

dW1H (Dx4 , NIS) = 0.4122 dW2H (Dx4 , NIS) = 0.4597

Step 6 Find the Coefficients of relative closeness for each alternative and rank the alterna-

tives.

RCW1(x1) = 0.4860 RCW2(x1) = 0.5119

RCW1(x2) = 0.4783 RCW2(x2) = 0.4807

RCW1(x3) = 0.5007 RCW2(x3) = 0.5139

RCW1(x4) = 0.4768 RCW2(x4) = 0.5061

S(x4) < S(x2) < S(x1) < S(x3) S(x2) < S(x4) < S(x1) < S(x3)

Both experts select the same alternative and their future attitude is same as discussed in

previous technique.
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6. Conclusion

MVmNSS can model the problems of MCDM with undetermined information better than

MVNSS and mNSS. It engages not only the multi-polar information but also multi-valued data.

The multi-valued neutrosophic set has the membership, non-membership and indeterminacy

values which can be treated as in hesitant fuzzy set or dual hesitant fuzzy set when operational

laws (Definition 2.3) are defined. An analysis of experts, attitudes after their decisions can

also be done by utilizing the MVmNBM. This study has also been carried out by Beg et

al. [41] with a fuzzy soft matrix as the initial data which does not captivate the degrees

of falsity-membership and indeterminacy-membership. MVmNSS handles these complicated

uncertainties and can be aggregated by MVmNBM. In the future, other MCDM methods

(TOPSIS, VIKOR, etc.) can be applied in group decision problems by defining the distance

and similarity measures in MVmNSs. Another aspect of this research is the utilization of

differential equations with FICs which does not produce different results.
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Abstract. Neutrosophy deals with the study of neutrosophic logic, set and probability. A Pythagorean m-

polar neutrosophic set is indeed an expansion of crisp, fuzzy, intuitionistic fuzzy, neutrosophic and Pythagorean

m-polar fuzzy sets. In this paper, we develop the perception of Pythagorean m-polar fuzzy neutrosophic metric

space defined over Pythagorean m-polar fuzzy neutrosophic set relying on the classical definition of metric

spaces defined on a crisp set. We present some related results and illustrations to perceive the conceptions.

We present many examples of metrics which hold true for classical sets but fail to make sense in Pythagorean

m-polar fuzzy environment. We also render a practical utility of the proposed metrics in pattern recognition.

Keywords: Pythagorean m-polar fuzzy neutrosophic set; Pythagorean m-polar fuzzy neutrosophic subset;

Pythagorean m-polar fuzzy neutrosophic metric spaces; Pattern recognition

—————————————————————————————————————————-

1. Introduction

In the wake of advancement of classical sets to fuzzy sets by Zadeh [33], the scientists around

the globe started working on diverse aspects of fuzzy sets and its expansions. Contrary to clas-

sical sets, an element is allowed to partially belong to the set, as specified in fuzzy set. In [2,3]

Atanassov unveiled the notion of intuitionistic fuzzy sets (IFSs) by including the so called non-

membership grade to already included membership grade in a fuzzy set. Yager [32] comforted

the decision makers by enhancing the space for the the choice of association and dissociation

grades prevailing in the IFSs and called the resulting model as Pythagorean fuzzy set. Naeem
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et al. [21] expanded the conception given by Yager to Pythagorean m-polar fuzzy sets and ren-

dered a fascinating practical implementation to advertisement mode selection problem. Later,

Riaz et al. [24] further generalized the thought to Pythagorean fuzzy soft sets. Naeem et al.

further explored the chief characteristics of Pythagorean m-polar fuzzy sets in [22].

Maurice René Fréchet, a French mathematician, floated the idea of metric spaces in 1906.

Deng [12], Diamond and Kloden [13], Atefi and Jehadi [4], Chaudhuri and Rosenfeld [5],

George and Veeramani [14], and Gregori and Romaguera [15] are among the mathematicians

who studied and explored different aspects of fuzzy metric spaces. The scientists who explored

metric spaces in the framework of IFSs mainly include Gregori and Romaguera [16], Li et

al. [19], and Park et al. [23].

Smarandache [28] presented yet another expansion of fuzzy sets called Neutrosophic sets. He

made further explorations in [29] and [30]. The series of fascinating explorations by Smaran-

dache is continued. Wang et al. [31] presented single valued neutrosophic sets. Arockiarani

et al. [1] studied fuzzy neutrosophic soft topological spaces. Şimşek and Kirşci [27] explored

fixed points in the context of neutrosophic metric spaces. Ishtiaq et al. [17] presented fixed

points results in orthogonal neutrosophic metric spaces. Jansi and Mohana [18] studied, in

recent times, pairwise Pythagorean neutrosophic P-spaces (with dependent neutrosophic com-

ponents between T and F). In recent times, Siraj et al. [25] unveiled the apprehension of

Pythagorean m-polar fuzzy neutrosophic topology with applications towards handling eco-

nomic crises caused due to COVID-19 and the root cause behind scarcity of water in Thar

desert of Pakistan.

Das et al. [6] presented the notion of neutrosophic fuzzy matrices with their algebraic opera-

tions. Das and Tripathy [7] studied neutrosophic multiset topological space. Mukherjee and

Das [20] explored neutrosophic bipolar vague soft set and its application. Das et al. [8] un-

veiled the notions of neutro algebra and neutro group. Das and Das [9] presented neutrosophic

separation axioms. Recently, Das et al. [10] rendered the idea of pentapartitioned neutrosophic

probability distributions. Das et al. [11] studied topology on ultra neutrosophic set.

There arise many situations in real life where we have to think time and again before reach-

ing at some decision–a decision that may be thought as flawless. It is in fact the process of

multipolarity. The ever-expanding applications of neutrosophic sets are not concealed from

the world. Pythagorean neutrosophic environment provides the enhanced facility of choosing

values for the three membership functions (truth, indeterminacy and falsity) from a broader

space.

In this article, we explore some notions of Pythagorean m-polar fuzzy neutrosophic metric

spaces. Section 2 presents some basic notions necessary to conceive the main topic of this

study. The third section presents main study of this article. In this section, the notion of
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Pythagorean m-polar fuzzy neutrosophic metric spaces has been put forward. A large number

of examples and illustrations are presented to conceive the perception. Section 4 presents a

practical implementation of the proposed metrics in pattern recognition. Section 5 concludes

the paper.

2. Preliminaries

Definition 2.1. [28, 29] A neutrosophic set N on the underlying set X is specified as

N = {< g, TN(g), IN(g), FN(g) >: g ∈ X}

where T, I, F : X 7→]−0, 1+[ accompanied by the constraint −0 ≤ TN(g)+IN(g)+FN(g) ≤ 3+.

Here TN(g), IN(g) and FN(g) are the degrees of membership, indeterminacy and falsity (non-

membership) of members of the given set, respectively. T , I and F are acknowledged as the

neutrosophic components.

Definition 2.2. [1] A fuzzy neutrosophic set (fn-set) over X is delineated as

A = {< g, TA(g), IA(g), FA(g) >: g ∈ X}

where T, I, F : X 7→ [0, 1] in such a way that 0 ≤ TA(g) + IA(g) + FA(g) ≤ 3.

Definition 2.3. [25] A Pythagorean m-polar fuzzy neutrosophic set (PmFNS) ℑ over a basic

setX is marked by three mappings T
(i)
ℑ

: X → [0, 1]m, I
(i)
ℑ

: X → [0, 1]m and F
(i)
ℑ

: X → [0, 1]m,

where m is a natural number, ∀i = 1, 2, · · · ,m, with the limitation that

0 ≤
(

T
(i)
ℑ

(g)
)2

+
(

I
(i)
ℑ
(g)

)2
+

(

F
(i)
ℑ

(g)
)2 ≤ 2

for all g ∈ X.

A PmFNS may be expressed as

ℑ =
{

(g,
(

(T
(1)
ℑ

(g), I
(1)
ℑ

(g), F
(1)
ℑ

(g)), · · · , (T (m)
ℑ

(g), I
(m)
ℑ

(g), F
(m)
ℑ

(g))
)

: g ∈ X
}

=

{

g

(T
(1)
ℑ

(g), I
(1)
ℑ

(g), F
(1)
ℑ

(g)), · · · , (T (m)
ℑ

(g), I
(m)
ℑ

(g), F
(m)
ℑ

(g))
: g ∈ X

}

=

{

g

(T
(i)
ℑ

(g), I
(i)
ℑ

(g), F
(i)
ℑ

(g))
: g ∈ X, i = 1, 2, · · · ,m

}

If cardinality of X is l, then tabular structure of ℑ is as in Table 1:
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Table 1. Tabular representation of PmFNS ℑ

ℑ

g1

(

T
(1)
ℑ

(g1), I
(1)
ℑ

(g1), F
(1)
ℑ

(g1)
) (

T
(2)
ℑ

(g1), I
(2)
ℑ

(g1), F
(2)
ℑ

(g1)
)

· · ·
(

T
(m)
ℑ

(g1), I
(m)
ℑ

(g1), F
(m)
ℑ

(g1)
)

g2

(

T
(1)
ℑ

(g2), I
(1)
ℑ

(g2), F
(1)
ℑ

(g2)
) (

T
(2)
ℑ

(g2), I
(2)
ℑ

(g2), F
(2)
ℑ

(g2)
)

· · ·
(

T
(m)
ℑ

(g2), I
(m)
ℑ

(g2), F
(m)
ℑ

(g2)
)

.

..
.
..

.

..
. . .

.

..

gl

(

T
(1)
ℑ

(gl), I
(1)
ℑ

(gl), F
(1)
ℑ

(gl)
) (

T
(2)
ℑ

(gl), I
(2)
ℑ

(gl), F
(2)
ℑ

(gl)
)

· · ·
(

T
(m)
ℑ

(gl), I
(m)
ℑ

(gl), F
(m)
ℑ

(gl)
)

The corresponding matrix format is

ℑ =











(

T
(1)
ℑ

(g1), I
(1)
ℑ

(g1), F
(1)
ℑ

(g1)
) (

T
(2)
ℑ

(g1), I
(2)
ℑ

(g1), F
(2)
ℑ

(g1)
)

· · ·
(

T
(m)
ℑ

(g1), I
(m)
ℑ

(g1), F
(m)
ℑ

(g1)
)

(

T
(1)
ℑ

(g2), I
(1)
ℑ

(g2), F
(1)
ℑ

(g2)
) (

T
(2)
ℑ

(g2), I
(2)
ℑ

(g2), F
(2)
ℑ

(g2)
)

· · ·
(

T
(m)
ℑ

(g2), I
(m)
ℑ

(g2), F
(m)
ℑ

(g2)
)

...
...

. . .
...

(

T
(1)
ℑ

(gl), I
(1)
ℑ

(gl), F
(1)
ℑ

(gl)
) (

T
(2)
ℑ

(gl), I
(2)
ℑ

(gl), F
(2)
ℑ

(gl)
)

· · ·
(

T
(m)
ℑ

(gl), I
(m)
ℑ

(gl), F
(m)
ℑ

(gl)
)











This l ×m matrix is known as PmFN matrix. The assortment of each PmFNS characterized

over universe would be designated by PmFNS(X).

Definition 2.4. [25] Let ℑ1 and ℑ2 be PmFNSs over X. ℑ1 is acknowledged as a subset of

ℑ2, written as ℑ1 ⊆ ℑ2, ∀ℑ ∈ X and each values of i ranging from 1 to m, if

1) T
(i)
ℑ1

(g) ≤ T
(i)
ℑ2

(g),

2) I
(i)
ℑ1
(g) ≥ I

(i)
ℑ2
(g),

3) F
(i)
ℑ1

(g) ≥ F
(i)
ℑ2

(g).

ℑ1 and ℑ2 are said to be equal if ℑ1 ⊆ ℑ2 ⊆ ℑ1 and is written as ℑ1 = ℑ2.

Definition 2.5. [25] A PmFNS ℑ over X is known as null PmFNS if T
(i)
ℑ

(g) = 0 , I
(i)
ℑ
(g) = 1

and F
(i)
ℑ

(g) = 1, ∀g ∈ X and all acceptable values of i. It is designated by Φ.

Thus,

Φ =















(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)

(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)
...

...
. . .

...

(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)















.

Definition 2.6. [25] A PmFNS ℑ over X is called an absolute PmFNS if T
(i)
ℑ

(g) = 1,

I
(i)
ℑ
(g) = 0, and F

(i)
ℑ

(g) = 0, ∀g ∈ X. It is denoted by χ̆.

Thus,

χ̆ =















(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)

(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)
...

...
. . .

...

(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)















.
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Definition 2.7. [25] The complement of a PmFNS

ℑ =

{

g

(T
(i)
ℑ

(g), I
(i)
ℑ

(g), F
(i)
ℑ

(g))
: g ∈ X, i = 1, · · · ,m

}

over X is defined as

ℑc =

{

g

(F
(i)
ℑ

(g), 1 − I
(i)
ℑ
(g), T

(i)
ℑ

(g))
: g ∈ X, i = 1, · · · ,m

}

.

Definition 2.8. [25] The union of any PmFNSs ℑ1 and ℑ2 expressed over the same universe

X is represented as

ℑ1∪Mℑ2 =
{

g

(max(T
(i)
ℑ1(g), T

(i)
ℑ2 (g)),min(I

(i)
ℑ1(g), I

(i)
ℑ2(g)),min(F

(i)
ℑ1(g), F

(i)
ℑ2 (g))

: g ∈ X, i = 1, · · · ,m
}

Definition 2.9. [25] The intersection of any PmFNSs ℑ1 and ℑ2 expressed over the same

universe X is represented as

ℑ1∩Mℑ2 =
{

g

(min(T
(i)
ℑ1 (g), T

(i)
ℑ2 (g)),max(I

(i)
ℑ1(g), I

(i)
ℑ2(g)),max(F

(i)
ℑ1(g), F

(i)
ℑ2 (g))

: g ∈ X, i = 1, · · · ,m
}

3. Pythagorean m-Polar Fuzzy Neutrosophic Metric Spaces

In this section, we introduce the notion of Pythagorean m-polar fuzzy neutrosophic metric

space along with its prime characteristics and illustrations. The superscript i, wherever used,

will run from 1 to m, unless stated otherwise.

Definition 3.1. Let ð1, ð2 and ð3 be three PmFNSs on X
¯
. The mapping

M
¯
s : PmFN(X

¯
) × PmFN(X

¯
) 7→ [0, 2] is said to be a Pythagorean m-polar fuzzy neutro-

sophic metric on PmFN(X
¯
) if it ensures the following postulates:

M
¯
s
1: 0 ≤ M

¯
s(ð1, ð2) ≤ 2

M
¯
s
2: M¯

s(ð1, ð2) = M
¯
s(ð2, ð1)

M
¯
s
3: M¯

s(ð1, ð2) = 0 ⇔ ð1 = ð2

M
¯
s
4: M¯

s(ð1, ð3) ≤ M
¯
s(ð1, ð2) +M

¯
s(ð2, ð3)

M
¯
s
5: If ð1 ⊆ ð2 ⊆ ð3, then M

¯
s(ð1, ð2) ≤ M

¯
s(ð1, ð3) and M

¯
s(ð2, ð3) ≤ M

¯
s(ð1, ð3)

for all ð1, ð2 and ð3 ∈̄ PmFN(X
¯
).

The pair (PmFN(X
¯
), M

¯
s) is said to be the Pythagorean m-polar fuzzy neutrosophic metric

space (PmFNMS). PmFN(X
¯
) is known as the Pythagorean m-polar fuzzy neutrosophic un-

derlying set (PmFN-underlying set) or the Pythagorean m-polar fuzzy neutrosophic ground set

(PmFN-ground set). The elements of PmFN(X
¯
) are called the Pythagorean m-polar fuzzy

neutrosophic points (PmFN-points) of the PmFNMS (PmFN(X
¯
), M

¯
s).
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Remark 3.2. If ð1, ð2, ð3, · · · ,ðn−1, ðn are n distinct PmFN points of the PmFNMS

(PmFN(X
¯
), M

¯
s), then the fourth postulate may be generalized as

M
¯
s(ð1, ðn) ≤ M

¯
s(ð1, ð2) + M

¯
s(ð2, ð3) + M

¯
s(ð3, ð4) + · · · +M

¯
s(ðn−1,ðn)

Example 3.3. Let

ð1 = {〈(k
¯
(i)
1 , I

¯
(i)
1 , ̥

¯

(i)
1 )〉},

and

ð2 = {〈(k
¯
(i)
2 , I

¯
(i)
2 , ̥

¯

(i)
2 )〉}

be members of PmFN(X
¯
). We establish that

M
¯
s(ð1, ð2) = 2m

√

√

√

√

m
∑

i=1

{

(k
¯
(i)
1 − k

¯
(i)
2 )2m + (I

¯
(i)
1 − I

¯
(i)
2 )2m + (̥

¯

(i)
1 −̥

¯

(i)
2 )2m

}

is a PmFNMS on PmFN(X
¯
).

M
¯
s
2 and M

¯
s
3 of Definition 3.1 are obvious. We establish the remaining requirements.

M
¯
s
1: Since 0 ≤ (k

¯
(i)
1 − k

¯
(i)
2 )2m ≤ 1, 0 ≤ (I

¯
(i)
1 − I

¯
(i)
2 )2m ≤ 1, 0 ≤ (̥

¯

(i)
1 −̥

¯

(i)
2 )2m ≤ 1

⇒ 0 ≤ 2m

√

∑m
i=1

{

(k
¯
(i)
1 − k

¯
(i)
2 )2m + (I

¯
(i)
1 − I

¯
(i)
2 )2m + (̥

¯

(i)
1 −̥

¯

(i)
2 )2m

}

≤ 2

Thus,

0 ≤ M
¯
s(ð1, ð2) ≤ 2

∀ ð1, ð2 ∈̄ PmFN(X
¯
).

M
¯
s
4: By virtue of Minkowski’s inequality, we have

[(k
¯
(i)
1 −k

¯
(i)
3 )2m+(I

¯
(i)
1 − I

¯
(i)
3 )2m+(̥

¯

(i)
1 −̥

¯

(i)
3 )2m]

1
2m ≤ [(k

¯
(i)
1 −k

¯
(i)
2 )2m+(I

¯
(i)
1 − I

¯
(i)
2 )2m+

(̥
¯

(i)
1 −̥

¯

(i)
2 )2m]

1
2m + [(k

¯
(i)
2 − k

¯
(i)
3 )2m + (I

¯
(i)
2 − I

¯
(i)
3 )2m + (̥

¯

(i)
2 −̥

¯

(i)
3 )2m]

1
2m

⇒ M
¯
s(ð1, ð3) ≤ M

¯
s(ð1, ð2) + M

¯
s(ð2, ð3)

∀ ð1, ð2, ð3 ∈̄ PmFN(X
¯
).

M
¯
s
5: If ð1 ⊆ ð2 ⊆ ð3, then

k
¯
(i)
1 ≤ k

¯
(i)
2 ≤ k

¯
(i)
3 ,

I
¯
(i)
1 ≥ I

¯
(i)
2 ≥ I

¯
(i)
3 ,

̥
¯

(i)
1 ≥ ̥

¯

(i)
2 ≥ ̥

¯

(i)
3

so that

M
¯
s(ð1, ð2) = [(k

¯
(i)
1 − k

¯
(i)
2 )2m + (I

¯
(i)
1 − I

¯
(i)
2 )2m + (̥

¯

(i)
1 −̥

¯

(i)
2 )2m]

1
2m

∵ M
¯
s(ð1, ð2) = M

¯
s(ð2, ð1), from M

¯
s
2

So,

M
¯
s(ð1, ð2) = [(k

¯
(i)
2 − k

¯
(i)
1 )2m + (I

¯
(i)
2 − I

¯
(i)
1 )2m + (̥

¯

(i)
2 −̥

¯

(i)
1 )2m]

1
2m

and

M
¯
s(ð1, ð3) = [(k

¯
(i)
1 − k

¯
(i)
3 )2m + (I

¯
(i)
1 − I

¯
(i)
3 )2m + (̥

¯

(i)
1 −̥

¯

(i)
3 )2m]

1
2m
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again from M
¯
s
2, we have

M
¯
s(ð1, ð3) = [(k

¯
(i)
3 − k

¯
(i)
1 )2m + (I

¯
(i)
3 − I

¯
(i)
1 )2m + (̥

¯

(i)
3 −̥

¯

(i)
1 )2m]

1
2m

Now, if ð2 ⊆ ð3, then

k
¯
(i)
2 ≤ k

¯
(i)
3

⇒ k
¯
(i)
2 − k

¯
(i)
1 ≤ k

¯
(i)
3 − k

¯
(i)
1

⇒ (k
¯
(i)
2 − k

¯
(i)
1 )2m ≤ (k

¯
(i)
3 − k

¯
(i)
1 )2m

Also,

I
¯
(i)
2 ≥ I

¯
(i)
3

⇒ −I
¯
(i)
2 ≤ −I

¯
(i)
3

⇒ I
¯
(i)
1 − I

¯
(i)
2 ≤ I

¯
(i)
1 − I

¯
(i)
3

⇒ (I
¯
(i)
1 − I

¯
(i)
2 )2m ≤ (I

¯
(i)
1 − I

¯
(i)
3 )2m

and

I
¯
(i)
2 ≥ I

¯
(i)
3

⇒ −̥
¯

(i)
2 ≤ −̥

¯

(i)
3

⇒ ̥
¯

(i)
1 −̥

¯

(i)
2 ≤ ̥

¯

(i)
1 −̥

¯

(i)
3

⇒ (̥
¯

(i)
1 −̥

¯

(i)
2 )2m ≤ (̥

¯

(i)
1 −̥

¯

(i)
3 )2m

It follows from above inequalities that M
¯
s(ð1, ð2) ≤ M

¯
s(ð1, ð3).

The other inclusion may be established on the parallel track.

Thus, M
¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
).

Example 3.4. Consider the PmFNSs ð1, ð2 and ð3 given in Example 3.3. Then, none of the

following is a PmFNMS on PmFN(X
¯
):

(1) M
¯
s
r(ð1, ð2) = maxi{k

¯
(i)
1 ,k

¯
(i)
2 }+maxi{I

¯
(i)
1 , I

¯
(i)
2 }+maxi{̥

¯

(i)
1 ,̥

¯

(i)
2 }.

(2) M
¯
s
t (ð1, ð2) = mini{k

¯
(i)
1 ,k

¯
(i)
2 }+mini{I

¯
(i)
1 , I

¯
(i)
2 }+mini{̥

¯

(i)
1 ,̥

¯

(i)
2 }.

(3) M
¯
s
b(ð1,ð2) =

∑m
i=1

(

k
¯
(i)
1 + k

¯
(i)
2 + I

¯
(i)
1 + I

¯
(i)
2 +̥

¯

(i)
1 +̥

¯

(i)
2

)

.

(4) M
¯
s
c(ð1,ð2) =

∑m
i=1

{

(k
¯
(i)
1 + k

¯
(i)
2 )2 + (I

¯
(i)
1 + I

¯
(i)
2 )2 + (̥

¯

(i)
1 +̥

¯

(i)
2 )2

}

.

(5) M
¯
s
d(ð1,ð2) =

√

∑m
i=1

{

(k
¯
(i)
1 + k

¯
(i)
2 )2 + (I

¯
(i)
1 + I

¯
(i)
2 )2 + (̥

¯

(i)
1 +̥

¯

(i)
2 )2

}

.

(6) M
¯
s
e(ð1,ð2) =

∑m
i=1

{(

(k
¯
(i)
1 + k

¯
(i)
2 )2 + (I

¯
(i)
1 + I

¯
(i)
2 )2 + (̥

¯

(i)
1 +̥

¯

(i)
2 )2

)n}
, where n ∈ R.

(7) M
¯
s
u(ð1, ð2) = maxi{k

¯
(i)
1 + k

¯
(i)
2 , I

¯
(i)
1 + I

¯
(i)
2 ,̥

¯

(i)
1 +̥

¯

(i)
2 }.

In case of (1), if ð1 = ð2 i.e. if k
¯
(i)
1 = k

¯
(i)
2 , I

¯
(i)
1 = I

¯
(i)
2 and ̥

¯

(i)
1 = ̥

¯

(i)
2 , then it is not necessary

that k
¯
(i)
1 = k

¯
(i)
2 = I

¯
(i)
1 = I

¯
(i)
2 = ̥

¯

(i)
1 = ̥

¯

(i)
2 = 0.

Therefore, ð1 = ð2 ; M
¯
r
s(ð1, ð2) = 0. Hence, M

¯
s
r(ð1, ð2) is not a PmFNMS on PmFN(X

¯
).

Same reasoning holds good for (2).
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For (3), it is not guaranteed that the sum on the RHS will not exceed 2. So, M
¯
s
b fails to be a

PmFNMS on PmFN(X
¯
). The same argument is valid for (4), (5) and (6).

The analogous issue arises in case of (7).

Example 3.5. Let PmFN(X
¯
) = {x1, x2} be the universal sets with three P3FNSs as given

in Tables 2 - 4.

Table 2. P3FNS M1

M1

x1 (0.417, 0.312, 0.356) (0.012, 0.374, 0.436) (0.811, 0.363, 0.272)

x2 (0.712, 0.117, 0.562) (0.333, 0.672, 0.891) (0.068, 0.772, 0.921)

Table 3. P3FNS N1

N1

x1 (0.811, 0.062, 0.211) (0.312, 0.270, 0.137) (0.921, 0.266, 0.152)

x2 (0.932, 0.101, 0.431) (0.466, 0.352, 0.721) (0.368, 0.572, 0.900)

and

Table 4. P3FNS O1

O1

x1 (0.932, 0.001, 0.200) (0.527, 0.170, 0.007) (1.000, 0.062, 0.008)

x2 (0.982, 0.001, 0.231) (0.667, 0.252, 0.421) (0.766, 0.423, 0.262)

where M1, N1, O1 ∈̄ P3FN(X
¯
) and M1 ⊂ N1 ⊂ O1. We show that M

¯
s(M1, N1) is a P3FNMS

on PmFN(X
¯
) if

M
¯
s
α(M1, N1) =

√

∑

i

{

(k
¯
(i)
1 − k

¯
(i)
2 )2 + (I

¯
(i)
1 − I

¯
(i)
2 )2 + (̥

¯

(i)
1 −̥

¯

(i)
2 )2

}

M
¯
s
1: M¯

s
α(M1, N1) =

√
0.239 + 0.190 + 0.036 + 0.066 + 0.149 + 0.130 = 0.900

⇒ 0 ≤ M
¯
s
α(M1, N1) ≤ 2.

M
¯
s
2: Obvious.

M
¯
s
3: Obvious.

M
¯
s
4: Since M

¯
s
α(M1, O1) = 1.680, M

¯
s
α(N1, O1) = 0.970, and M

¯
s
α(M1, N1) = 0.900, so

M
¯
s
α(M1, O1) ≤ M

¯
s
α(M1, N1) +M

¯
s
α(N1, O1)

M
¯
s
5: M1 ⊂ N1 ⊂ O1 ⇒ M

¯
s
α(M1, N1) < M

¯
s
α(M1, O1) and M

¯
s
α(N1, O1) < M

¯
s
α(M1, O1)

follows from above computations.
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Thus, M
¯
s
α(M1, N1) is a P3FNMS on PmFN(X

¯
), for M1, N1, O1 ∈̄ P3FN(X

¯
).

Proposition 3.6. Let M
¯

s(ð1, ð2) and M
¯

s(ð3, ð4) be two PmFNMSs on a PmFNS

PmFN(X
¯
), then M

¯
s
f [(ð1, ð3), (ð2, ð4)] = M

¯
s(ð1, ð2) + M

¯
s(ð3, ð4) is not a PmFNMS on

PmFN(X
¯
)× PmFN(X

¯
).

Proof. Since M
¯
s(ð1, ð2) and M

¯
s(ð3, ð4) are two PmFNMSs. Therefore, by definition

0 ≤ M
¯
s(ð1, ð2) ≤ 2 and 0 ≤ M

¯
s(ð3, ð4) ≤ 2

⇒ 0 ≤ M
¯
s(ð1, ð2) +M

¯
s(ð3, ð4) ≤ 4

⇒ 0 ≤ M
¯
s
f [(ð1, ð3), (ð2, ð4)] ≤ 4

So, M
¯
s
f [(ð1, ð3), (ð2, ð4)] is not a PmFNMS on PmFN(X

¯
)× PmFN(X

¯
).

0.1cm

Remark 3.7. It is interesting to note that the distance defined in the way as in Proposition

3.6 yields metric space in crisp sets but fails to hold in PmFNSs.

Example 3.8. Consider the PmFNSs PmFN(X
¯
), M1, N1 and O1 given in Example 3.5 and

M2, N2 and O2 given in Tables 5, 6 and 7, respectively:

Table 5. P3FNS M2

M2

x1 (0.444, 0.123, 0.256) (0.114, 0.274, 0.336) (0.901, 0.269, 0.117)

x2 (0.882, 0.107, 0.432) (0.441, 0.521, 0.742) (0.172, 0.710, 0.916)

Table 6. P3FNS N2

N2

x1 (0.844, 0.002, 0.201) (0.332, 0.260, 0.037) (0.922, 0.261, 0.109)

x2 (0.936, 0.006, 0.331) (0.470, 0.262, 0.621) (0.468, 0.472, 0.889)

Table 7. P3FNS O2

O2

x1 (0.992, 0.001, 0.169) (0.627, 0.070, 0.006) (1.000, 0.032, 0.006)

x2 (0.988, 0.001, 0.201) (0.676, 0.152, 0.411) (0.862, 0.413, 0.216)
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∀ M1, M2, N1, N2, O1, O2 ∈̄ P3FN(X
¯
). We check whether M

¯
s[(M1,M2), (N1,N2)] =

2
∑

r=1

M
¯
s(Mr,Nr) is a PmFNMS on PmFN(X

¯
)× PmFN(X

¯
) or not?

Since M
¯
s(M1,N1) = 0.900 and M

¯
s(M2,N2) = 0.756, so that M

¯
s[(M1,M2), (N1,N2)] = 1.656

⇒ 0 ≤ M
¯
s[(M1,M2), (N1,N2)] ≤ 2

But,

M
¯
s[(M1,M2), (O1,O2)] = M

¯
s(M1,O1) +M

¯
s(M2,O2)

=
√
0.386 + 0.491 + 0.196 + 0.196 + 0.509 + 1.043

+
√
0.323 + 0.414 + 0.095 + 0.076 + 0.301 + 1.054

=
√
2.821 +

√
2.263

= 3.182 � 2

So, M
¯
s[(M1,M2), (N1,N2)] is not a P3FNMS on PmFN(X

¯
)× PmFN(X

¯
).

Proposition 3.9. Let M
¯

s(ð1, ð2) and M
¯

s(ð3, ð4) be two PmFNMSs on PmFNS PmFN(X
¯
),

then

(i) M
¯

s
g[(ð1, ð3), (ð2, ð4)] = max{M

¯
s(ð1, ð2),M

¯
s(ð3, ð4)}

(ii) M
¯

s
g[(ð1, ð3), (ð2, ð4)] = min{M

¯
s(ð1, ð2),M

¯
s(ð3, ð4)}

are PmFNMSs on PmFN(X
¯
)× PmFN(X

¯
).

Proof. We prove (i) here. The proof of (ii) may be furnished on the parallel track.

M
¯
s
1: Since M

¯
s(ð1, ð2) and M

¯
s(ð3, ð4) are PmFNMSs on PmFN(X

¯
).

⇒ 0 ≤ M
¯
s(ð1, ð2) ≤ 2 and 0 ≤ M

¯
s(ð3, ð4) ≤ 2

But then, max{M
¯
s(ð1, ð2),M

¯
s(ð3, ð4)}, being the maximum of two non-negative and

less than or equal to 2 quantities, is also non-negative and less than or equal to 2.

M
¯
s
2: Obvious.

M
¯
s
3:

M
¯
s
g[(ð1, ð3), (ð2, ð4)] = 0 ⇔ max{M

¯
s(ð1, ð2),M

¯
s(ð3, ð4)} = 0

⇔ M
¯
s(ð1, ð2) = 0, M

¯
s(ð3, ð4) = 0

⇔ ð1 = ð2, ð3 = ð4

⇔ (ð1,ð3) = (ð2,ð4)

M
¯
s
4: M¯

s
g[(ð1, ð3), (ð5, ð6)] = max{M

¯
s(ð1, ð5),M

¯
s(ð3, ð6)}

Let M
¯
s
g[(ð1, ð3), (ð5, ð6)] = M

¯
s(ð1, ð5). Then,

M
¯
s(ð1, ð2) ≤ max{M

¯
s(ð1, ð2),M

¯
s(ð3, ð4)}

and
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M
¯
s(ð2, ð5) ≤ max{M

¯
s(ð2, ð5),M

¯
s(ð4, ð6)}

Since M
¯
s(ð1, ð2) is a PmFNMS. Therefore,

M
¯
s(ð1, ð5) ≤ M

¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

⇒ max [M
¯
s(ð1, ð5),M

¯
s(ð3, ð6)] ≤ M

¯
s(ð1, ð2) + M

¯
s(ð2, ð5) ≤

max{M
¯
s(ð1, ð2),M

¯
s(ð3, ð4)}+ [M

¯
s(ð2, ð5),M

¯
s(ð4, ð6)]

⇒ M
¯
s
g[(ð1, ð3), (ð5, ð6)] ≤ M

¯
s
g[(ð1, ð3), (ð2, ð4)] +M

¯
s
g[(ð2, ð4), (ð5, ð6)]

M
¯
s
5: Straight forward.

Thus, M
¯
s
g[(ð1, ð3), (ð2, ð4)], ∀ ð1, ð2, ð3, ð4, ð5, ð6 ∈̄ PmFN(X

¯
) is a PmFNMS on

PmFN(X
¯
)× PmFN(X

¯
).

0.1cm

Remark 3.10. Proposition 3.9 shows that more than one PmFNMSs can be defined on a

single PmFNS.

Example 3.11. Consider the P3FNSs given in Example 3.5 and 3.8. We check whether

(i) M
¯
s
1[(M1,M2), (N1,N2)] = max{M

¯
s(M1,N1),M

¯
s(M2,N2)}

(ii) M
¯
s
2[(M1,M2), (N1,N2)] = min{M

¯
s(M1,N1),M

¯
s(M2,N2)}

where M
¯
s(M1,M2) and M

¯
s[(M3,M4) are P3FNMSs on PmFN(X

¯
)× PmFN(X

¯
) or not?

For (i):

M
¯
s
1:

M
¯
s
1[(M1,M2), (N1,N2)] = max{M

¯
s(M1,N1),M

¯
s(M2,N2)}

= max{0.900, 0.756}

= 0.900

⇒ 0 ≤ M
¯
s
1[(M1,M2), (N1,N2)] ≤ 2

M
¯
s
2: Obvious.

M
¯
s
3: Obvious.

M
¯
s
4: M¯

s
1[(M1,M2), (O1,O2)] = max{M

¯
s(M1,O1),M

¯
s(M2,O2)} = max{1.680, 1.504} =

1.680.

Also,

M
¯
s
1[(M1,M2), (N1,N2)] = max{M

¯
s(M1,N1),M

¯
s(M2,N2)] = max{0.900, 0.756} =

0.900,

and

M
¯
s
1[(N1,N2), (O1,O2)] = max{M

¯
s(N1,O1),M

¯
s(N2,O2)} = max{0.970, 0.973} = 0.973.

⇒ M
¯
s
1[(M1,M2), (N1,N2)] +M

¯
s
1[(N1,N2), (O1,O2)] = 0.900 + 0.973 = 1.873

Thus,
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M
¯
s
1[(M1,M2), (O1,O2)] < M

¯
s
1[(M1,M2), (N1,N2)] +M

¯
s
1[(N1,N2), (O1,O2)]

M
¯
s
5: As given, M1 ⊆ N1 ⊆ O1 and M2 ⊆ N2 ⊆ O2

M
¯
s
1[(M1,M2), (N1,N2)] = 0.900,

M
¯
s
1[(M1,M2), (O1,O2)] = 1.680,

and

M
¯
s
1[(N1,N2), (O1,O2)] = 0.973.

It may be observed that

M
¯
s
1[(M1,M2), (N1,N2)] < M

¯
s
1[(M1,M2), (O1,O2)]

and

M
¯
s
1[(N1,N2), (O1,O2)] < M

¯
s
1[(M1,M2), (O1,O2)]

Hence, M
¯
s
1[(M1,M2), (N1,N2)] is a P3FNMS on PmFN(X

¯
)× PmFN(X

¯
).

(ii) may be proved likewise.

Example 3.12. Consider the P3FNMS given in Example 3.5, then following are not P3FNMSs

on PmFN(X
¯
).

(i) M
¯
s
4(M1,N1) =

M
¯

s
(M1,N1)

1−M
¯

s
(M1,N1)

(ii) M
¯
s
5(M1,N1) =

1−M
¯

s
(M1,N1)

M
¯

s
(M1,N1)

(iii) M
¯
s
6(M1,N1) =

3−M
¯

s
(M1,N1)

1+M
¯

s
(M1,N1)

(iv) M
¯
s
7(M1,N1) =

M
¯

s
(M1,N1)

3−M
¯

s
(M1,N1)

(v) M
¯
s
8(M1,N1) =

1−M
¯

s
(M1,N1)

1+M
¯

s
(M1,N1)

We prove them one by one as follows:

(i) Since M
¯
s(M1,N1) = 0.900, so

M
¯
s
4(M1,N1) =

M
¯

s
(M1,N1)

1−M
¯

s
(M1,N1)

= 0.900
1−0.900 = 9 � 2

and hence M
¯
s
4(M1,N1) =

M
¯

s
(M1,N1)

1−M
¯

s
(M1,N1)

is not a P3FNMS on PmFN(X
¯
).

(ii) Since

M
¯
s
5(M1,M1) =

1−M
¯

s
(M1,M1)

M
¯

s
(M1,M1)

= 1−0
0 = 1

0

which is undefined. So, M
¯
s
5(M1,N1) is not a P3FNMS on PmFN(X

¯
).

(iii) Since

M
¯
s
6(M1,M1) =

3−M
¯

s
(M1,M1)

1+M
¯

s
(M1,M1)

= 3−0
1+0 = 3 6= 0

Hence, M
¯
s
6(M1,N1) is not a P3FNMS on PmFN(X

¯
).

(iv) Since

M
¯
s
7(M1,O1) =

M
¯

s
(M1,O1)

3−M
¯

s
(M1,O1)

= 1.680
3−1.680 = 1.273

M
¯
s
7(M1,N1) =

M
¯

s
(M1,N1)

3−M
¯

s
(M1,N1)

= 0.900
3−0.900 = 0.429
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and

M
¯
s
7(N1,O1) =

M
¯

s
(N1,O1)

3−M
¯

s
(N1,O1)

= 0.970
3−0.970 = 0.478

so,

M
¯
s
7(M1,O1) � M

¯
s
7(M1,N1) +M

¯
s
7(N1,O1)

and hence M
¯
s
7(M1,N1) is not a P3FNMS on PmFN(X

¯
).

(v) Since

M
¯
s
8(M1,M1) =

1−M
¯

s
(M1,M1)

1+M
¯

s
(M1,M1)

= 1−0
1+0 = 1 6= 0

Thus, M
¯
s
8(M1,N1) is not a P3FNMS on PmFN(X

¯
).

Remark 3.13. Let M
¯
s(M1,N1) be a PmFNMS on non-empty universal PmFNS PmFN(X

¯
),

then

(1) M
¯
s∗(M1,N1) =

M
¯

s
(M1,N1)

q−M
¯

s
(M1,N1)

, where q is any integer, is not a PmFNMS on PmFN(X
¯
).

(2) M
¯
s∗∗(M1,N1) =

M
¯

s
(M1,N1)

n+M
¯

s
(M1,N1)

, where n is any natural number, is a PmFNMS on

PmFN(X
¯
).

(3) Distance defined in this way yields metric spaces in crisp set but fails to hold in

PmFNMSs.

Proposition 3.14. Let M
¯

s(ð1, ð2) be a PmFNMS on a non-empty universal PmFNS

PmFN(X
¯
) then M

¯
s
f (ð1, ð2) =

M
¯

s
(ð1, ð2)

n+M
¯

s
(ð1, ð2)

, where n is any natural number, is also a

PmFNMS on PmFN(X
¯
).

Proof. M
¯
s
1: Since M

¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
). So,

0 ≤ M
¯
s(ð1, ð2) ≤ 2 ⇒ 0 ≤ M

¯
s
(ð1, ð2)

n+M
¯

s
(ð1, ð2)

≤ 2 ⇒ 0 ≤ M
¯
s
f (ð1, ð2) ≤ 2

M
¯
s
2:

M
¯
s
f (ð1, ð2) =

M
¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2)

=
M
¯
s(ð2, ð1)

n+M
¯
s(ð2, ð1)

(∵ M
¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
))

= M
¯
s
f (ð2, ð1)

M
¯
s
3:

M
¯
s
f (ð1, ð2) = 0 ⇔ M

¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2)

= 0

⇔ M
¯
s(ð1, ð2) = 0

⇔ ð1 = ð2

Since M
¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
).
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M
¯
s
4: Since M

¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
). So,

M
¯
s(ð1, ð5) ≤ M

¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

n+M
¯
s(ð1, ð5) ≤ n+M

¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

1

n+M
¯
s(ð1, ð5)

≥ 1

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

−n

n+M
¯
s(ð1, ð5)

≤ −n

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

1− n

n+M
¯
s(ð1, ð5)

≤ 1− n

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

n+M
¯
s(ð1, ð5)− n

n+M
¯
s(ð1, ð5)

≤ n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)− n

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

M
¯
s(ð1, ð5)

n+M
¯
s(ð1, ð5)

≤ M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

=
M
¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

+
M
¯
s(ð2, ð5)

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

≤ M
¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2)

+
M
¯
s(ð2, ð5)

n+M
¯
s(ð1, ð2)

⇒ M
¯
s
f (ð1, ð5) ≤ M

¯
s
f (ð1, ð2) +M

¯
s
f (ð2, ð5)

M
¯
s
5: Since M¯

s(ð1, ð2) is a PmFNMS on PmFN(X
¯
). So, if ð1 ⊆ ð2 ⊆ ð5 then M

¯
s(ð1, ð2) ≤

M
¯
s(ð1, ð5) and M

¯
s(ð2, ð5) ≤ M

¯
s(ð1, ð5) then follows directly from definition.

Hence, M
¯
s
f (ð1, ð2) is also a PmFNMS on PmFN(X

¯
). 0.1cm

Example 3.15. Consider the PmFNMS given in Example 3.5. We show that M
¯
s
3(M1,N1) =

M
¯

s
(M1,N1)

1+M
¯

s
(M1,N1)

is a PmFNMS on PmFN(X
¯
).

M
¯
s
1: Since M

¯
s(M1,M2) = 0.900 from Example 3.5, so

M
¯
s
3(M1,N1) =

M
¯

s
(M1,N1)

1+M
¯

s
(M1,N1)

= 0.900
1+0.900 = 0.900

1.900 = 0.474 ⇒ 0 ≤ M
¯
s
3(M1,N1) ≤ 2.

M
¯
s
2: Obvious.

M
¯
s
3: Obvious.

M
¯
s
4: M¯

s
3(M1,O1) =

M
¯

s
(M1,O1)

1+M
¯

s
(M1,O1)

= 1.680
1+1.680 = 0.627

M
¯
s
3(M1,N1) = 0.474 and

M
¯
s
3(N1,O1) =

M
¯

s
(N1,O1)

1+M
¯

s
(N1,O1)

= 0.970
1+0.970 = 0.492

∴ M
¯
s
3(M1,O1) < M

¯
s(M1,N1) +M

¯
s
3(N1,O1)

M
¯
s
5: M¯

s
3(M1,N1) = 0.474 < 0.627 = M

¯
s
3(M1,O1)

and M
¯
s
3(N1,O1) = 0.492 < 0.627 = M

¯
s
3(M1,O1)

Thus, M
¯
s
3(M1,N1) is also a PmFNMS on PmFN(X

¯
).
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4. Application of proposed metrics in pattern recognition

In this section, we present an application of suggested metrics in pattern recognition. Pat-

tern recognition is the science endued with diverse utilizations, mainly including speech and

fingerprint recognition, medical imaging and diagnosis, aerial photo interpretation, image pro-

cessing, and optical character recognition in scanned documents such as contracts and pho-

tographs.

Example 4.1. Let PmFN(Z
¯
) = {z1, z2, z3} be the universal set with model P3FNS M and

three P3FNSs M1, M2 and M3 as given in Tables 8, 9, 10 and 11, respectively.

Table 8. Model P3FNS M

M

z1 (0.206, 0.101, 0.135) (0.010, 0.153, 0.215) (0.600, 0.142, 0.051)

z2 (0.114, 0.100, 0.215) (0.080, 0.093, 0.435) (0.090, 0.002, 0.981)

z3 (0.087, 0.132, 0.156) (0.090, 0.123, 0.204) (0.340, 0.642, 0.131)

Table 9. P3FNS M1

M1

z1 (0.307, 0.202, 0.246) (0.002, 0.264, 0.326) (0.701, 0.253, 0.162)

z2 (0.542, 0.002, 0.254) (0.143, 0.876, 0.796) (0.214, 0.005, 0.214)

z3 (0.053, 0.007, 0.760) (0.320, 0.432, 0.324) (0.530, 0.241, 0.964)

Table 10. P3FNS M2

M2

z1 (0.701, 0.052, 0.101) (0.202, 0.160, 0.027) (0.811, 0.156, 0.042)

z2 (0.262, 0.001, 0.003) (0.290, 0.980, 0.017) (0.041, 0.126, 0.022)

z3 (0.754, 0.023, 0.100) (0.192, 0.360, 0.023) (0.408, 0.134, 0.702)

and

Table 11. P3FNS M3

M3

z1 (0.822, 0.001, 0.100) (0.417, 0.060, 0.007) (1.000, 0.052, 0.008)

z2 (0.143, 0.084, 0.098) (0.009, 0.170, 0.037) (0.000, 0.402, 0.064)

z3 (0.632, 0.340, 0.132) (0.128, 0.604, 0.215) (0.800, 0.322, 0.609)
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where M,M3,M4,M5 ∈̄ P3FN(Z
¯
). We use the metrics defined in Example 3.3, which is

M
¯
s(ð1, ð2) = 2m

√

√

√

√

m
∑

i=1

{

(k
¯
(i)
1 − k

¯
(i)
2 )2m + (I

¯
(i)
1 − I

¯
(i)
2 )2m + (̥

¯

(i)
1 −̥

¯

(i)
2 )2m

}

,

in Example 3.5, which is

M
¯
s
α(M1, N1) =

√

∑

i

{

(k
¯
(i)
1 − k

¯
(i)
2 )2 + (I

¯
(i)
1 − I

¯
(i)
2 )2 + (̥

¯

(i)
1 −̥

¯

(i)
2 )2

}

and that in Example 3.14, which is

M
¯
s
f (ð1, ð2) =

M
¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2)

taking n = 2, to determine pattern similarity between M and Mi’s. The results so computed

are tabulated in Table 12.

Table 12. Metrics between M and Mi’s

Metric (M,M1) (M,M2) (M,M3)

M
¯
s 0.969 1.068 0.948

M
¯
s
α 1.753 1.880 1.650

M
¯
s
f 0.326 0.348 0.322

Above results show that pattern of M3 is most recognizable with M. These results are

depicted in Figure 1.

Figure 1. Chart of metrics between M and Mi’s
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5. Conclusion

We have inculcated the axiomatic definition of Pythagorean m-polar fuzzy neutrosophic

metric space with the help of Pythagorean m-polar neutrosophic sets and classical metric

space in this study. We provided a large number of examples to perceive the notion clearly.

The cases which are metrics in classical sets but fail to be so in the environment of Pythagorean

m-polar neutrosophic setting have also been made part of the study. The results presented also

hold good in the case of Pythagorean fuzzy neutrosophic sets. We presented an application of

the proposed metrics in pattern recognition. We computed three metrics there and exhibited

that these metrics yield the same optimal choice. The results computed are displayed with the

assistance of a statistical chart. We hope that this article will give new ideas to the researchers

to promote research in various fields.
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—————————————————————————————————————————-

1. Introduction

Smarandache introduced a new concept in neutrosophy branches as neutro-algebra as a

generalization of partial algebra. A neutro algebra is an algebra which has at least one neutro-

operation (an operation that is partially well-defined, partially indeterminate, and partially

outer-defined) or one neutro-axiom (axiom that is true for some elements, indeterminate for

other elements, and false for the other elements). A partial algebra is an algebra that has at

least one partial operation, and all its axioms are classical (i.e. axioms true for all elements).

Through a theorem he proved that Neutro-algebra is a generalization of partial algebra, and

he gave examples of neutro-algebras that are not partial algebras. He also introduced the

neutro-function (and neutro-operation). Recently, Smarandache, introduced a new concept

as a generalization of hypergraphs to n-super hypergraph, plithogenic n-super hypergraph

{with super-vertices (that are groups of vertices) and hyper-edges {defined on power-set of

power-set...} that is the most general form of graph as today}, and n-ary hyperalgebra, n-ary

neutro hyperalgebra, n-ary anti hyperalgebra respectively, which have several properties and

are connected with the real world [2,8]. Recently in the scope of neutro logical (hyper) algebra,

Hamidi, et al. introduced the concept of neutro BCK-subalgebras [4], neutro d-subalgebras [3]

and single-valued neutro hyper BCK-subalgebras [5] as a generalization of BCK-algebras and

hyper BCK-subalgebras, respectively and presented the main results in this regard. Also
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Smarandache a novel concept as super hyperalgebra with its super hyperoperations and super

hyperaxioms, then is introduced some concepts such as super hypertopology and especially

the super hyperfunction and neutrosophic super hyperfunction [10,11].

Regarding these points, we try to develop the notation of BCK-algebras to the concept of

super hyper BCK-algebras and so we want to seek the connection between BCK-algebras and

super hyper BCK-algebras.

2. Preliminaries

In this section, we recall some concepts that need to our work.

Definition 2.1. [6] Let X ̸= ∅. Then a universal algebra (X,ϑ, 0) of type (2, 0) is called a

BCK-algebra, if ∀ x, y, z ∈ X:

(BCI-1) ((xϑ y)ϑ (xϑ z))ϑ (zϑ y) = 0,

(BCI-2) (xϑ (xϑ y))ϑ y = 0,

(BCI-3) xϑ x = 0,

(BCI-4) xϑ y = 0 and yϑ x = 0 imply x = y,

(BCK-5) 0ϑ x = 0,

where ϑ(x, y) is denoted by xϑ y.

Definition 2.2. [1,7] Let X ̸= ∅ and P ∗(X) = {Y | ∅ ̸= Y ⊆ X}. Then for a map ϱ : X2 →
P ∗(X) a hyperalgebraic system (X, ϱ, 0) is called a hyper BCK-algebra, if ∀ x, y, z ∈ X :

(H1) (x ϱ z) ϱ (y ϱ z) ≪ x ϱ y,

(H2) (x ϱ y) ϱ z = (x ϱ z) ϱ y,

(H3) x ϱ X ≪ x,

(H4) x ≪ y and y ≪ x imply x = y,

where x ≪ y is defined by 0 ∈ x ϱ y, ∀ W,Z ⊆ X, W ≪ Z ⇔ ∀ a ∈ W ∃ b ∈ Z s.t a ≪ b,

(W ϱ Z) =
∪

a∈W,b∈Z
(a ϱ b) and ϱ(x, y) is denoted by xϱ y.

We will call X is a weak commutative hyper BCK-algebra if, ∀ x, y ∈ X, (x ϱ (x ϱ y)) ∩
(y ϱ (y ϱ x)) ̸= ∅.

Theorem 2.3. [7] Let (X, ϱ, 0) be a hyper BCK-algebra. Then ∀ x, y, z ∈ X and W,Z ⊆ X,

(i) (0 ϱ 0) = 0, 0 ≪ x, (0 ϱ x) = 0, x ∈ (x ϱ 0) and (W ≪ 0 ⇒ W = 0),

(ii) x ≪ x, x ϱ y ≪ x and (y ≪ z ⇒ x ϱ z ≪ x ϱ y),

(iii) W ϱ Z ≪ W , W ≪ W and (W ⊆ Z ⇒ W ≪ Z).
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Definition 2.4. [10, 11] Let X be a nonempty set and 0 ∈ X. Then (X, ◦∗(m,n)) is called an

(m,n)-super hyperalgebra, where ◦∗(m,n) : X
m → Pn

∗ (X) is called an (m,n)-super hyperopera-

tion, Pn
∗ (X) is the nth powerset of the set X, ∅ ̸∈ Pn

∗ (X), for any A ∈ Pn
∗ (X), we identify {A}

with A,m,≥ 2, n ≥ 0, Xm = X ×X × . . . X︸ ︷︷ ︸
m−times

and P 0
∗ (X) = X.

3. Superhyper BCK-subalgebra

In this section, we make the concept of superhyper BCK-subalgebras as an extension of

BCK-subalgebras and seek some of their properties.

Proposition 3.1. Let (X,ϑ, 0) be a BCK-algebra. Then for all x, y, z ∈ X,

(i) ϑ(ϑ(x, y), ϑ(x, z)) = ϑ(ϑ(ϑ(x, y), ϑ(x, z)), 0).

(ii) ϑ(ϑ(x), ϑ(x, y)) = ϑ(ϑ(ϑ(x), ϑ(x, y)), 0).

Proof. Since for all x ∈ X,ϑ(x, 0) = x, results are clear.

By Proposition 3.1, we define the concept of (m,n)-super hyper BCK-subalgebras.

Definition 3.2. Let X be a nonempty set and 0 ∈ X and α = 0, 0, . . . 0︸ ︷︷ ︸
(m−1)−times

. Then (X, ◦∗(m,n))

is called an (m,n)-super hyper BCK-subalgebra, if

(i) 0 ∈ ◦∗(m,n)

(
◦∗(m,n)

(◦∗(m,n)(x
1
1, x

1
2, . . . , x

1
m), . . . , ◦∗(m,n)(x

1
1, x

m
2 , . . . , xmm)), α, ◦∗(m,n)(x

m
m, xm−1

m , . . . , x1m)
)
,

(ii) 0 ∈ ◦∗(m,n)

(
◦∗(m,n) (x

1
1, 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, ◦∗(m,n)(x
1
1, x

1
2, . . . , x

1
m)), 0, 0, . . . 0︸ ︷︷ ︸

(m−1)−times

, x1m)
)
,

(iii) 0 ∈ ◦∗(m,n)

(
x, x, . . . , x

)
,

(iv) if 0 ∈ ◦∗(m,n)

(
x1, x2, . . . , xm

)
and 0 ∈ ◦∗(m,n)

(
xm, xm−1, . . . , x1

)
, then xi = xj , where

i+ j = m+ 1,

(v) 0 ∈ ◦∗(m,n)

(
0, 0, . . . , x

)
,

Example 3.3. (i) Let (X, ◦∗(m,n)) be a (m,n)-super hyper BCK-subalgebra. Then (X, ◦∗(2,0))
is a BCK-subalgebra.

(ii) Let (X, ◦∗(m,n)) be a (m,n)-super hyper BCK-subalgebra. Then (X, ◦∗(2,1)) is a hyper

BCK-subalgebra.

Example 3.4. Let X = {0, a}.
(i) Then (X, ◦∗) is a (3, 3)-super hyper BCK-subalgebra as follows:

◦∗(3,3)(x, y, z) =


P 3
∗ ({0, x, z}) if x = z

P 3
∗ ({0, z}) if x = y = 0

P 3
∗ ({a}) o.w

,
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where

P∗({a}) = P 2
∗ ({a}) = P 3

∗ ({a}) = {a}, P∗({0, a}) = {0, a, {0, a}},

P 2
∗ ({0, a}) = {0, a, {0, a}, {0, {0, a}}, {a, {0, a}}},

P 3
∗ ({0, a}) =

{
0, a, {0, a}, {0, {0, a}}, {a, {0, a}}, {0, {0, {0, a}}, {0, {a, {0, a}}, {a, {0, {0, a}},

{a, {a, {0, a}}, {{0, a}, {0, {0, a}}}, {{0, a}, {a, {0, a}}, {{0, {0, a}}, {a, {0, a}}}
}
.

(i) By definition,

◦∗(3,3)
(
◦∗(3,3) (◦

∗
(3,3)(x, y, z), ◦

∗
(3,3)(x

′, y′, z′), ◦∗(3,3)(x
′′, y′′, z′′)), 0, ◦∗(3,3)(z

′′, z′, z)
)
⊆ {0, a}. (ii) It

is similar to item (i).

(iii) By definition, ◦∗(3,3)(a, a, a) = {0, a}.
(iv) By definition, if 0 ∈ ◦∗(3,3)(x, y, z) and 0 ∈ ◦∗(3,3)(z, y, x), then x = z and so (x, y, z) =

(z, y, x).

(v) By definition, ◦∗(3,3)(0, 0, a) = {0, a}.
(ii) Then (X, ◦∗) is a (3, 0)-super hyper BCK-subalgebra as follows:

◦∗(3,1)(x, y, z) =

0 if x = y = z

x o.w
,

Theorem 3.5. Let (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra. Then for any k ≥ n,

(X, ◦∗(m,n)) is an (m, k)-super hyper BCK-subalgebra.

Proof. Let (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra and k ≥ n. Since Pn
∗ (X) ⊆

P k
∗ (X), for any x1, x2, . . . , xm ∈ X, ◦∗(m,n)(x1, x2, . . . , xm) ⊆ ◦∗(m,k)(x1, x2, . . . , xm). Thus 0 ∈

◦∗(m,n)(x1, x2, . . . , xm) implies that 0 ∈ ◦∗(m,k)(x1, x2, . . . , xm) and all axioms are valid.

Example 3.6. Let X = {0, a}. Then for any n ≥ 3, by Theorem 3.5, (X, ◦∗) is a (3, n)-super

hyper BCK-subalgebra as follows:

◦∗(3,3)(x, y, z) =


Pn
∗ ({0, x, z}) if x = z

Pn
∗ ({0, z}) if x = y = 0

Pn
∗ ({a}) o.w

.

Let m be an even and (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra. For any

given x1, x2, . . . , xm ∈ X, define (x1, x2, . . . , xm
2
) ≤ (xm

2
+1, xm

2
+2, . . . , xm) if and only if 0 ∈

◦∗(m,n)(x1, x2, . . . , xm).

Theorem 3.7. Let m be an even and x1, x2, . . . , xm ∈ X. Then (X, ◦∗(m,n)) is an (m,n)-super

hyper BCK-subalgebra if and only if

(i) ◦∗(m,n)(◦
∗
(m,n)(x

1
1, x

1
2, . . . , x

1
m), . . . , ◦∗(m,n)(x

1
1, x

m
2 , . . . , xmm))) ≤ ◦∗(m,n)(x

m
m, xm−1

m , . . . , x1m),

Mohammad Hamidi, On Superhyper BCK-Algebras

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                             583



(ii) ◦∗(m,n)(x
1
1, 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, ◦∗(m,n)(x
1
1, x

1
2, . . . , x

1
m)) ≤ ◦∗(m,n)( 0, 0, . . . 0︸ ︷︷ ︸

(m−1)−times

, x1m)
)
,

(iii) (x, x, . . . , x︸ ︷︷ ︸
(m
2
)−times

) ≤ (x, x, . . . , x︸ ︷︷ ︸
(m
2
)−times

),

(iv) if (x1, x2, . . . , xm
2
) ≤ (xm

2
+1, xm

2
+2, . . . , xm) and

(xm
2
+1, xm

2
+2, . . . , xm) ≤ (x1, x2, . . . , xm

2
), then xi = xj, where |i− j| = 2,

(v) (0, 0, . . . , 0︸ ︷︷ ︸
(m
2
)−times

) ≤ (xm
2
+1, xm

2
+2, . . . , xm),

(vi) (x1, x2, . . . , xm
2
) ≤ (xm

2
+1, xm

2
+2, . . . , xm) if and only if 0 ∈ ◦∗(m,n)(x1, x2, . . . , xm).

Proof. Immediate by definition.

Theorem 3.8. Let m be an even and (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra and

x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
∈ X. If 0 ∈ ◦∗(m,n)(x1, x2, . . . , xm

2
, y1, y2, . . . , ym

2
),

then 0 ∈
◦∗(m,n)

(
◦∗(m,n) (z1, z2, . . . , zm

2
, y1, y2, . . . , ym

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, ◦∗(m,n)(z1, z2, . . . , zm
2
, x1, x2, . . . , xm

2
)
)
.

Proof. Let x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
∈ X. Clearly,

◦∗(m,n)(◦
∗
(m,n)(z1, z2, . . . , zm

2
, y1, y2, . . . , ym

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, ◦∗(m,n)(z1, z2, . . . , zm
2
, x1, x2, . . . , xm

2
)))

≤ ◦∗(m,n)(x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
).

Since 0 ∈ ◦∗(m,n)(x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
), we get that

0 ∈ ◦∗(m,n)

(
◦∗(m,n)(z1, z2, . . . , zm

2
, y1, y2, . . . , ym

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, ◦∗(m,n)(z1, z2, . . . , zm
2
, y1, y2, . . . , ym

2
)
)
.

Theorem 3.9. Let m be an even and (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra

and x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
∈ X. If

0 ∈ ◦∗(m,n)(x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
) ∩ ◦∗(m,n)(y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
),

then 0 ∈ ◦∗(m,n)(x1, x2, . . . , xm
2
, z1, z2, . . . , zm

2
).

Proof. Let x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
∈ X. Since

0 ∈ ◦∗(m,n)(x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
) ∩ ◦∗(m,n)(y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
),

by Theorem 3.8, we get that

0 ∈ ◦∗(m,n)

(
◦∗(m,n)(z1, z2, . . . , zm

2
, y1, y2, . . . , ym

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, ◦∗(m,n)(z1, z2, . . . , zm
2
, x1, x2, . . . , xm

2
)
)
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and

0 ∈ ◦∗(m,n)

(
◦∗(m,n)(x1, x2, . . . , xm

2
, z1, z2, . . . , zm

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, ◦∗(m,n)(x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
)
)
.

It follows that 0 ∈ ◦∗(m,n)(x1, x2, . . . , xm
2
, z1, z2, . . . , zm

2
).

Let (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra and A,B ⊆ X. If ◦∗(m,n)(A) ∩
◦∗(m,n)(B) ̸= ∅, will denote it by A ≈ B.

Theorem 3.10. Let m be an even and (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra

and x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
∈ X. If α = 0, . . . , 0︸ ︷︷ ︸

(m
2
−1)−times

, then

◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, y1, . . . , ym

2
), α, z1, . . . , zm

2
) ≈ ◦∗(m,n)(◦

∗
(m,n)(x1, . . . , xm

2
, z1, . . . , zm

2
), α, y1, . . . , ym

2
).

Proof. Let x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
∈ X. Since

0 ∈ ◦∗(m,n)

(
◦∗(m,n) (x1, x2, . . . , xm

2
, (◦∗(m,n)(x1, x2, . . . , xm

2
, z1, z2, . . . , zm

2
)), z1, z2, . . . , zm

2
)
)
, we

get that

◦∗(m,n)

(
◦∗(m,n) (x1, x2, . . . , xm

2
, y1, y2, . . . , ym

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, z1, z2, . . . , zm
2
)
)

≤ ◦∗(m,n)

(
◦∗(m,n) (x1, x2, . . . , xm

2
, z1, z2, . . . , zm

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, y1, y2, . . . , ym
2
)
)

and in similar to

◦∗(m,n)

(
◦∗(m,n) (x1, x2, . . . , xm

2
, z1, z2, . . . , zm

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, y1, y2, . . . , ym
2
)
)

≤ ◦∗(m,n)

(
◦∗(m,n) (x1, x2, . . . , xm

2
, y1, y2, . . . , ym

2
), 0, 0, . . . 0︸ ︷︷ ︸

(m−2)−times

, z1, z2, . . . , zm
2
)
)
.

It follows that

◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, y1, . . . , ym

2
), α, z1, . . . , zm

2
) ≈ ◦∗(m,n)(◦

∗
(m,n)(x1, . . . , xm

2
, z1, . . . , zm

2
), α, y1, . . . , ym

2
).

Corollary 3.11. Let m be an even and (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra

and x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
∈ X. If

0 ≈ ◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, y1, . . . , ym

2
), 0, . . . 0︸ ︷︷ ︸

(m
2
−1)−times

, z1, . . . , zm
2
)

then

0 ≈ ◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, z1, . . . , zm

2
), 0, . . . 0︸ ︷︷ ︸

(m
2
−1)−times

, y1, . . . , ym
2
).
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Example 3.12. Consider the (3, 3)-super hyper BCK-subalgebra in Example 3.4. Clearly

◦∗(3,3)(◦
∗
(3,3)(0, a, 0), 0, a) = ◦∗(3,3)(P

3
∗ ({0}), 0, a) = ◦∗(3,3)(0, 0, a) = P 3

∗ ({0, a})

= ◦∗(3,3)(a, 0, a) = ◦∗(3,3)(P
3
∗ ({a}), 0, a) = ◦∗(3,3)(◦

∗
(3,3)(0, a, a), 0, a).

Thus ◦∗(3,3)(◦
∗
(3,3)(0, a, 0), 0, a) = ◦∗(3,3)(◦

∗
(3,3)(0, a, a), 0, a), while m is an odd. It follows that

the converse of Theorem 3.10, is not necessarily true.

Theorem 3.13. Let m be an even and (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra

and x1, x2, . . . , xm, y1, y2, . . . , ym ∈ X. If α = 0, . . . , 0︸ ︷︷ ︸
(m
2
−1)−times

, then

(i)

◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, x1, . . . , xm

2
), α, y1, . . . , ym

2
) ≈ ◦∗(m,n)(◦

∗
(m,n)(x1, . . . , xm

2
, y1, . . . , ym

2
), α, x1, . . . , xm

2
).

(ii)

◦∗(m,n)( 0, . . . 0︸ ︷︷ ︸
(m
2
)−times

, y1, . . . , ym
2
) ≈ ◦∗(m,n)(◦

∗
(m,n)(x1, . . . , xm

2
, y1, . . . , ym

2
), 0, . . . , 0︸ ︷︷ ︸

(m
2
−1)−times

, x1, . . . , xm
2
).

(iii)

◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, x1, . . . , xm

2
), 0, . . . 0︸ ︷︷ ︸

(m
2
−1)−times

, y1, . . . , ym
2
) ≈ ◦∗(m,n)( 0, . . . , 0︸ ︷︷ ︸

(m
2
)−times

, y1, . . . , ym
2
).

Proof. (i), (ii), (iii) Let x1, x2, . . . , xm
2
, y1, y2, . . . , ym

2
, z1, z2, . . . , zm

2
∈ X. Using Corollary

3.11, we get that

0 ≈ ◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, y1, . . . , ym

2
), 0, . . . 0︸ ︷︷ ︸

(m
2
−1)−times

, x1, . . . , xm
2
)

and

0 ≈ ◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, x1, . . . , xm

2
), 0, . . . 0︸ ︷︷ ︸

(m
2
−1)−times

, y1, . . . , ym
2
).

In addition, by definition we get that 0 ≈ ◦∗(m,n)( 0, . . . 0︸ ︷︷ ︸
(m
2
)−times

, y1, . . . , ym
2
), hence the proof is

completed.

Corollary 3.14. Let m be an even and (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra

and x1, x2, . . . , xm−1, y1, y2, . . . , ym−1 ∈ X.Then

(i)

◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, x1, . . . , xm

2
), y1, . . . , ym−1) ≈ ◦∗(m,n)(◦

∗
(m,n)(x1, . . . , xm

2
, y1, . . . , ym

2
), x1, . . . , xm−1).
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(ii)

◦∗(m,n)(0, y1, . . . , ym−1) ≈ ◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, y1, . . . , ym

2
), x1, . . . , xm−1).

(iii)

◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm

2
, x1, . . . , xm

2
), y1, . . . , ym−1) ≈ ◦∗(m,n)(0, y1, . . . , ym−1).

Theorem 3.15. Let m be an even and (X, ◦∗(m,n)) be an (m,n)-super hyper BCK-subalgebra

and x1, x2, . . . , xm−1 ∈ X.Then (x1, . . . , xm−1) ≈ ◦∗(m,n)(x1, . . . , xm−1, 0).

Proof. Let x1, x2, . . . , xm ∈ X. Then 0 ≈ ◦∗(m,n)(x1, x2, . . . , xm−1, ◦∗(m,n)(x1, x2, . . . , xm−1, 0)).

Moreover by Theorem 3.13, we have 0 ≈ ◦∗(m,n)(◦
∗
(m,n)(x1, . . . , xm−1, 0), x1, . . . , xm−1). Thus

we conclude that (x1, . . . , xm−1) ≈ ◦∗(m,n)(x1, . . . , xm−1, 0).

4. Conclusion

The concept of super hyper BCK-algebras as a generalization of BCK-algebras is introduced

in this paper such that for special cases, we can obtain the concepts of BCK-algebras and

hyper BCK-algebras. We wish this research is important for the next studies in logical super

hyperalgebras. In our future studies, we hope to obtain more results regarding single-valued

neutrosophic super(hyper)BCK-subalgebras and their applications in handing information

regarding various aspects of uncertainty, non-classical mathematics (fuzzy mathematics or

great extension and development of classical mathematics) that are considered to be a more

powerful technique than classical mathematics.

Conflicts of Interest: ”The authors declare no conflict of interest.”
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Abstract. A single deteriorating product’s EOQ model has been examined in the literature, where it is con-

sidered that the product deteriorate continuously but has a maximum lifespan. It has also been assumed that

market demand is linearly related to time. Additionally, the credit-risk is required for the retailer to pay the

purchase price is offered by the supplier. The total annual relevant cost has been demonstrated to be convex,

suggesting that not only does the ideal replenishment cycle time exist, but that it is also singular. We identify

the system’s ideal replenishment strategy, which reduces the overall cost per unit of time. To generalize the

model we used Neutrosophic triangular numbers for the parameters. Finally, an numerical example is given to

illustrate the theoretical results of this model.

Keywords:EOQ model; deterioration; time dependent demand; Neutrosophic interval valued goal program-

ming

—————————————————————————————————————————-

1. Introduction

In real life, certain type of products either deteriorate or become obsolete and can not serve

the need of the customer for an extended period of time. For example, in the food industry

items deteriorate continuously. Also, how items are stored also has an impact on the lifespan

of the products. For example in the durg industry items become obsolete after a fixed period.

So, deterioration impacts how well can a customer be served. A lot of literature explored

inventory model with deterioration. Some recent papers including including [8–12] explored

deterioration inventory models. A supply chain environment to determine retailer’s optimal

credit period and cycle time was consided by Mahata [29]. A two-warehouse inventory model

for decaying goods having imperfect quality was considered by [28] . Mahata [30] considered

Neutrosophic Sets and Systems, Vol. 53, 2023
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supply chain inventory model for deteriorating items with maximum lifetime and partial trade

credit to credit-risk customers. In the article, they showed that the total annual relevant

cost is convex. An EOQ inventory model for non-instantaneous deteriorating products with

advertisement and price sensitive demand under order quantity dependent trade credit was

discussed in [31]. Some modified mathematical derivations of the annual total relevant cost of

the inventory model with two levels of trade credit in the supply chain system was analyzed

in [32]. Liao et. al. [27] studied Lot-sizing decisions for deteriorating items with two warehouses

under an order-size-dependent trade credit. Abdel et. al. [2] discussed a hybrid approach of

neutrosophic sets and DEMATEL method for the development in supplier selection criteria. [3]

has done a case study using the integrated neutrosophic ANP and VIKOR technique to achieve

sustainable supplier selection. [4] provided a Comprehensive Framework to evaluate sustainable

green building indicators under an uncertain environment. [5] provided a bipolar neutrosophic

multi criteria decision making technique for making a professional selection. [6] developed a

hybrid multi-criteria decision making technique to evaluate thesustainable photovoltaic farms

locations. [7] introduced an approach of TOPSIS technique for developing supplier selection

with group decision making under type-2 neutrosophic number.

In most of the articles above, the market demand is taken to be constant. Furthermore

all the articles are formulated with the assumption all the data available in hand are pre-

cise. But, in real life problems the data available may not be exact. Using the arguments

presented above, this paper investigate two important elements. Firstly, the market demand

is taken to be a linear function of time. And secondly, the parameters are taken to be neu-

trosopic triangular numbers to consider the fuzziness in the data. Zadeh [26] developed the

idea of fuzzy set. Bellman [21] explained the decision making in fuzzy systems. Zimmer-

mann [22] implemented this concept for solving linear programming problem with several ob-

jective functions. Atanassov [19] introduced the concept of intuitionistic fuzzy set, where the

sum of the membership degree and non-membership degreeis less than equal to one. Smaran-

dache [25] developed the concept of neutrosophic by adding another independent membership

function called as indeterminacy membership along with truth and falsity membership func-

tions. Smarandache [14,18] introduced the idea of Neutrosophic interval valued number. Some

basic properties as have been established in that paper. Ye [13] explained some basic proper-

ties and developed a linear programming method. Banerjee [17] dealt with a single objective

linear goal programming model with neutrosophic numbers. [1] developed a EOQ model with

trade credit model with deterioration with constant demand.

In this paper, we have developed a EOQ model where the said item deteriorates continuously

with time and the demand is linearly dependent on time. Also to generalize the model we

have taken demand as the triangular neutrosophic number. The rest of the manuscript is
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organized as follows; 2 provides some basic definitions. 3 presents the model. 4 forms the

fuzzy problem, where demand is taken to be Neutrosophic triangular number. 5 provides an

illustrative example. 6 gives the conclusion.

2. Preliminaries

2.1. Some Definitions

Definition 2.1 (Fuzzy Sets). According to [26], a fuzzy set Ã in a universe of discourse X is

defined as the ordered pairs Ã = {(x,M
Ã
(x)) : x ∈ X} where M

Ã
: X → [0, 1] is a function

known as the membership function of the set Ã. M
Ã
(x) is the degree of membership of x ∈ X

in the fuzzy set Ã. Higher value of M
Ã
(x) indicates a higher degree of membership in Ã.

Definition 2.2 (Neutrosophic sets). According to [25], let X be a universe of discourse and let

x ∈ X. A neutrosophic set A in X is characterized by a truth-membership function TA(x), an

indeterminacy-membership function IA(x), and a falsity- membership function FA(x), where

TA(x), IA(x), FA(x) ∈ (0, 1),∀x ∈ X and 0+ ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3−.

Definition 2.3 (Single valued neutrosophic sets). According to [24], if X is a universe of dis-

course and if x ∈ X, a single valued neutrosophic set A is characterized by a truth-membership

function TA(x), an indeterminacy-membership function IA(x), and a falsity- membership func-

tion FA(x), where TA(x), IA(x), FA(x) ∈ [0, 1],∀x ∈ X and 0 ≤ supTA(x) + supIA(x) +

supFA(x) ≤ 3.

Definition 2.4 (Interval valued Neutrosophic number). As in [18], A neutrosophic number

α = a+ bI where a is the determinate part, b is the indeterminate part and I is the indeter-

minacy. Here a, b ∈ ℜ and I is an real interval.

α = a+ bI, where I = [I l, Iu] =⇒ α = [a+ bI l, a+ bIu] = {x ∈ ℜ|a+ bI l < x < a+ bIu} =

[αl, αu](say).

Example: Let α = 1+2[0.1, 0.2] where 1 is the determinate part and 2 is the indeterminate

part. Assume that I ∈ [0.1, 0.2], then α becomes an interval α = [1.2, 1.4].

2.2. Neutrosophic interval valued linear programming

In this section we briefly discuss neutrosophic interval valued linear programming as in

[13,17].

MinimizeZn=

n∑
i=1

[clni, c
u
ni]xi (1)
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Subject to,

K∑
k=1

[almk, a
u
mk]xk ≤ [blm, bum] m = 1, 2, ...,M (2)

xk ≥ 0 k = 1, 2, ...,K (3)

where Zn for n=1,2,3,...,N are objective functions, [clni, c
u
ni] are the interval coefficients for the

pth objective function, [almk, a
u
mk], [b

l
m, bum] are the interval coefficients of the constraints.

Accordingly in [15,16], the constraints in 2 can be transformed into two following inequali-

ties,

K∑
k=1

almkxk ≤ bum m = 1, 2, ...,M (4)

K∑
k=1

aumkxk ≤ blm m = 1, 2, ...,M (5)

Therefore then minimization problem stated above can be written as,

MinimizeZn=

n∑
i=1

[clni, c
u
ni]xi (6)

Subject to,

K∑
k=1

almkxk ≤ bum m = 1, 2, ...,M (7)

K∑
k=1

aumkxk ≤ blm m = 1, 2, ...,M (8)

xk ≥ 0 k = 1, 2, ...,K (9)

For the best possible solution, we solve the problem

MinimizeZn=
n∑

i=1

clnixi = Z l(say) (10)

Subject to,

K∑
k=1

almkxk ≤ bum m = 1, 2, ...,M (11)

xk ≥ 0 k = 1, 2, ...,K (12)

And for the worst possible solution, we solve the problem

MinimizeZn=

n∑
i=1

cunixi = Zu(say) (13)
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Subject to,

K∑
k=1

aumkxk ≤ blm m = 1, 2, ...,M (14)

xk ≥ 0 k = 1, 2, ...,K (15)

Let the best and worst possible solution respectively be Zb
n(x

b
n) and Zw

n (x
w
n ). So the optimal

solution lies in the interval [Zb
n(x

b
n), Z

w
n (x

w
n )]. So, for the decision maker the objective function

Z lies in [Zb
n(x

b
n), Z

w
n (x

w
n )]. If dl, du ≥ 0 be devotional variables, then the goal achievement

functions can be written as,

−Zu + du = −Zb
n(x

b
n) andZ

l + dl = Zw
n (x

w
n ) (16)

So, the goal programming problem according to [17],

Minimize(du + dl) (17)

subject to,

−Zu + du = −Zb
n(x

b
n) (18)

Z l + dl = Zw
n (x

w
n ) (19)

K∑
k=1

almkxk ≤ bum m = 1, 2, ...,M (20)

K∑
k=1

aumkxk ≤ blm m = 1, 2, ...,M (21)

dl ≥ 0 (22)

du ≥ 0 (23)

xk ≥ 0 k = 1, 2, ...,K (24)

(25)

3. Mathematical Model

In this manuscript, we study a supply chain system where a supplier supplies retailers with

deteriorating products. Also, the give credit to pay the credit-risk of the retailer’s accounts.

For this we have the following notations and assumptions.

3.1. Notations

o per unit order cost

c per unit cost of purchasing

p per unit selling price

h per unit annual holding costs excluding interest costs
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Ie interest that the retailer earns each year

Ip interest accrued annually

I(t) inventory level at any time t

θ(t) non-decreasing deterioration rate at any time t

m maximum lifetime of the products in years

M trade credit term in years set by the supplier

D time dependent demand rate per year

Q order amount in units per replenishment cycle

T the number of years in the replenishing cycle

Z(t) the total relevant yearly cost

T ∗ the optimal duration between replenishment cycles

3.2. Assumptions

(1) The item deteriorate continuously. Also, the item expires after the maximum lifetime.

The deterioration rate is assumed to be closed to 1 when time approaches to the

expiration date m. The deterioration rate is assumed to be same as that in [23] as

follows:

θ(t) =
1

1 +m− t
(0 ≤ t ≤ T ≤ m) (26)

Clearly, 0 ≤ θ(t) ≤ 1 , θ(m) = 1 and θ
′
(t) ≥ 1

(2) The market demand is a linear function of time as follows: D(t) = a+ bt

(3) Shortages are not allowed.

(4) There is no delay in replenishment and also the lead time is zero.

(5) Time horizon is assumed to be infinite.

(6) The trade credit agreement is assumed to be as follow:

• The retailer initially borrows money to pay the supplier’s procurement costs, after

which interest charges are incurred during the time interval (0,M].

• In the event that the retailer does not settle the balance by time M, the supplier

asks the retailer to pay the unpaid balance plus interest with interest rate Ip. The

retailer then uses the earnings from the sale to settle the supplier’s outstanding

debt. Once all accounts have been settled, the retailer keeps the profit and uses

sales income to earn interest for the course of the replenishment cycle (T).
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3.3. Model formulation

At any time t ∈ [0, T ], the inventory level is depleting from the demand and deterioration.

The inventory level is described by the following differential equation:

dI(t)

dt
= −D − θ(t)I(t)

= −(a+ bt)− 1

1 +m− t
I(t) (0 ≤ t ≤ T ≤ m)

(27)

With the boundary condition I(T)=0.

Solving the differential eq. 27, we get,

I(t) = (1 +m− t)[(a+ (1 +m)b) ln

(
1 +m− t

1 +m− T

)
+ b(t− T )] (28)

Furthermore, by assumption 6, the retailer takes loan to pay off the supplier. So the amount

of loan the retailer has to take
∫ T
0 cDdt = c[aT + bT

2

2 ]. Then the amount of interest charged

cMIp[aT + bT 2

2 ] during the time interval (0, M]. Additionally, the retailer keeps the payments

and receives interest during the same time period.,i.e. ,

p

∫ M

0
(a+ bt)dt+ pIe

∫ M

0
(a+ bt)tdt = p(aM +

bM2

2
) + pIe(

aM2

2
+

bM3

3
)

Now, if p(aM +
bM2

2
) + pIe(

aM2

2 +
bM3

3
) ≥ c[aT + bT

2

2 ] then the retailer succeeds in paying

off the loan and keeps earning interest on the remaining balance given by,

p(aM +
bM2

2
) + pIe(

aM2

2
+

bM3

3
) > −c[aT + b

T 2

2
]

If, p(aM +
bM2

2
) + pIe(

aM2

2 +
bM3

3
) < c[aT + bT

2

2 ] then the retailer fails to pay off the loan

and he/she has to reduce the loan amount from sales revenue.

Additionally, the retailer encounters the following costs,

(1)

Annual ordering cost =
o

T
(29)

(2)

Annual procurement cost =
cQ

T
=

cI(0)

T
=

c(1 +m)[(a+ (1 +m)b) ln
(

1+m
1+m−T

)
+ b(−T )]

T
(30)

(3)

Annual holding cost excluding interest charge,

=
h

T

∫ T

0
I(t)dt

=
h(a+ b(1 +m))

T
[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+

T 2

4
− (1 +m)T

2
− bTh

2
]

(31)
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In this connection two cases arise. The first case is for when the replenishment cycle is less

than trade credit period and the second one is for when replenishment cycle is greater than

trade credit period.

Case 1: In this case we examine the case where the retailer pays off the loan in time t=M

and T ≤ M Here, the retailer keeps the profit and sells revenue and earns profit on it untill

the the replenishment cycle time T.

The annual interest payable is given by,

Ipc(aM +
cM2

2
) (32)

Interest earned by the retailer from t=0 to t=T with an interest rate Ie is given by,

Iep

∫ T

0
(a+ bt)tdt = Iep[

aT 2

2
+

bT 3

3
]. (33)

Additionally, the interest earned starting from the time t=T to t=M is given by,

Ie[p(aT +
bT 2

2
) + pIe(

aT 2

2
+

bT 3

3
)](M − T ) (34)

Hence, the total annual interest earned is given by,

1

T
[Iep(

aT 2

2
+

bT 3

3
) + Ie(M − T ){p(aT +

bT 2

2
) + pIe(

aT 2

2
+

bT 3

3
)}] (35)

So, the annual opportunity cost of capital is given by,

Z1 =
o

T
+

c(1 +m)[(a+ (1 +m)b) ln
(

1+m
1+m−T

)
+ b(−T )]

T
+

h(a+ b(1 +m))

T
[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+

T 2

4

− (1 +m)T

2
− bTh

2
] + Ipc(aM +

bM2

2
)− 1

T
[Iep(

aT 2

2
+

bT 3

3
) + Ie(M − T ){p(aT +

bT 2

2
) + pIe(

aT 2

2
+

bT 3

3
)}]

(36)

With the inventory constant, I(0) ≤ I

Case 2: In this case, we study the case when the replenishment cycle is greater than trade

credit i.e. M ≤ T . Similar to the previous case, the retailer has to pay the annual interest,

Ipc(aM +
bM2

2
) (37)

The retailer earns interest on sales revenue from t=0 to t=M and it is given by,

Iep

∫ M

0
(a+ bt)tdt = Iep[

aM2

2
+

bM3

3
]. (38)

After paying the loan interest, the retailer uses the remaining revenue to earn more interest.

Since the retailer pays off in time t=M, he earns interest on the net revenue from time t=M

to t=T on every replenishment cycle. So, the annual interest earned is given by,

Ie[(p(aM +
bM2

2
)) + pIe(

aM2

2
+

bM3

3
)− c(aT +

bT 2

2
)](T −M) + pIe(

a(T −m)2

2
+

b(T −M)3

3
)

(39)
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So, the annual opportunity cost of capital is given by,

Z2 =
o

T
+

c(1 +m)[(a+ (1 +m)b) ln
(

1+m
1+m−T

)
+ b(−T )]

T
+

h(a+ b(1 +m))

T
[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+

T 2

4

− (1 +m)T

2
− bTh

2
] + Ipc(aM +

bM2

2
)− 1

T
[Iep

(
aM2

2
+

bM3

3

)
+ Ie[(p(aM +

bM2

2
)) + pIe(

aM2

2
+

bM3

3
)

− c(aT +
bT 2

2
)](T −M) + pIe(

a(T −m)2

2
+

b(T −M)3

3
)]

(40)

So we have,

Z(T ) =

Z1(T ) if T ≤ M

Z2(T ) if T ≥ M
(41)

4. Fuzzy Model formulation

Sometimes it is hard to predict the market demand precisely. The approximate demand

within a range may be predicted. So for generalization we form the same problem with the help

of neutrosophic triangular number. We take the market demand asD = [al, au]+[bl, bu]t, where

[al, au], [bl, bu] are interval coefficients of fuzzy demand function. Here again the inventory level

is described by the following differential equation:

dI(t)

dt
= −D − θ(t)I(t)

= −([al, au] + [bl, bu]t)− 1

1 +m− t
I(t) (0 ≤ t ≤ T ≤ m)

(42)

Solving the differential eq. we get,

I(t) = (1 +m− t)[([al, au] + (1 +m)[bl, bu]) ln

(
1 +m− t

1 +m− T

)
+ [bl, bu](t− T ) (43)

Proceeding similar way, the loan amount will be c[[al, au]T+[bl, bu]T
2

2 ] and the interest charged

will be cMIp[[a
l, au]T + [bl, bu]T

2

2 ]. Here the costs the retailer encounters are,

(1)

Annual ordering cost =
o

T
(44)

(2)

Annual procurement cost =
cQ

T
=

cI(0)

T
=

c(1 +m)[([al, au] + (1 +m)[bl, bu]) ln
(

1+m
1+m−T

)
+ [bl, bu](−T )]

T
(45)
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(3)

Annual holding cost excluding interest charge,

=
h

T

∫ T

0
I(t)dt

=
h([al, au] + [bl, bu](1 +m))

T
[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+

T 2

4
− (1 +m)T

2
− [bl, bu]Th

2
]

(46)

Again two cases arise.

Case 1: Similarly as the crisp cases we get the following annual opportunity cost of capital,

Z̃1 =
o

T
+

c(1 +m)[([al, au] + (1 +m)[bl, bu]) ln
(

1+m
1+m−T

)
+ [bl, bu](−T )]

T

+
h([al, au] + [bl, bu](1 +m))

T
[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+

T 2

4

− (1 +m)T

2
− [bl, bu]Th

2
] + Ipc([a

l, au]M +
[bl, bu]M2

2
)− 1

T
[Iep(

[al, au]T 2

2
+

[bl, bu]T 3

3
) + Ie(M − T ){p([al, au]T

+
[bl, bu]T 2

2
) + pIe(

[al, au]T 2

2
+

[bl, bu]T 3

3
)}]

(47)

With the inventory constant, I(0) ≤ I

We solve the problem, using neutrosophic goal programming method.

Case 2: Here again, as before we get the following annual opportunity cost of capital,

Z̃2 =
o

T
+

c(1 +m)[([al, au] + (1 +m)[bl, bu]) ln
(

1+m
1+m−T

)
+ [bl, bu](−T )]

T

+
h([al, au] + [bl, bu](1 +m))

T
[
(1 +m)2

2
ln

(
1 +m

1 +m− T

)
+

T 2

4
− (1 +m)T

2
− [bl, bu]Th

2
]

+ Ipc([a
l, au]M +

[bl, bu]M2

2
)− 1

T
[Iep

(
[al, au]M2

2
+

[bl, bu]M3

3

)
+ Ie[(p([a

l, au]M +
[bl, bu]M2

2
))

+ pIe(
[al, au]M2

2
+

[bl, bu]M3

3
)− c([al, au]T +

[bl, bu]T 2

2
)](T −M)

+ pIe(
[al, au](T −m)2

2
+

[bl, bu](T −M)3

3
)]

(48)

Similarly we have,

Z̃(T ) =

Z̃1(T ) if T ≤ M

Z̃2(T ) if T ≥ M
(49)

5. Numerical example

In this section we discuss the numerical results in two cases. In the first case the crisp model

is discussed. And in the second case the fuzzy model is discussed.
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Case 1: For the following example, we have taken the ordering cost 10$ per order. Per unit

cost of purchasing and selling are taken respectively 10$,15$. We have taken holding cost per

unit per year excluding interest charge to be 1$. We assumed the retailer earns 0.12$ per year

and the retailer pays 0.15$ per year interest. We have the following problem,

Minimize Z̃(T ) (50)

Z(T ) =

Z1(T ) if T ≤ M

Z2(T ) if T ≥ M
(51)

We have used Lingo software for solving this optimization problem.

We have the following results,

Table 1

a b o c p h Ie Ip M m T ∗ Z∗(T ∗)

100 .1 10 10 15 10 .12 .15 1 1 0.1071494 653.5241

105 .11 10 10 15 10 .12 .15 1 1 0.1046234 628.8297

110 .12 10 10 15 10 .12 .15 1 1 0.1022692 599.0090

95 .1 10 10 15 10 .12 .15 1 1 0.1098596 625.4176

5.1. Numerical example(Fuzzy)

In this section we solve the problem using the neutrosophic interval valued linear program-

ming to solve the problem as discussed in 2.2. Again for the following example, we have taken

the ordering cost 10$ per order. Per unit cost of purchasing and selling are taken respectively

10$,15$. We have taken holding cost per unit per year excluding interest charge to be 1$. We

assumed the retailer earns 0.12$ per year and the retailer pays 0.15$ per year interest.

The problem is,

Minimize Z̃(T ) (52)

where,

Z̃(T ) =

Z̃1(T ) if T ≤ M

Z̃2(T ) if T ≥ M
(53)

Similarly using Lingo program we get the following results for different values of the market

demand.

By similar arguments, for different values of the score functions we get the following results,
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Table 2

[al, au] [bl, bu] o c p h Ie Ip M m T ∗ Z∗(T ∗)

[103,115] [.11,.15] 10 10 15 10 .12 .25 1 1 0.3269101 [448.55,618.64]

[101,110] [.10,.13] 10 10 15 10 .12 .25 1 1 0.3656319 [543.78,659.13]

[99,108] [.12,.16] 10 10 15 10 .12 .25 1 1 0.2551095 [372.84,548.5184]

[105,125] [.09,.12] 10 10 15 10 .12 .25 1 1 0.4338459 [667.10,734.18]

So, when we use the neutrosophic interval valued number we get an range of value for the

objective function rather than getting a fixed value. So, the decision maker has more freedom

in choosing the approximate demand.

6. Conclusion

In this paper we have developed a EOQ model for a single deteriorating product which

deteriorate continuously. Also, the market demand is considered to be linearly dependent of

time. The retailer is given trade credit with a fixed interest. The retailer assumed to be

earning interest on the profit. Since the market demand cannot be predicted precisely, the

model is further generalized using neutrosophic triangular numbers for the parameters. The

final model is solved using neutrosophic interval valued goal programming method. Through

an example we have shown that the retailer has more freedom in choosing the approximate

demand for the later case.

The model has been formed assuming the demand function is a linear function of time. For

future work, the demand function can be assumed to be more complex functions of time or

other parameters. Furthermore, the model can be more generalized by considering the other

parameters as neutrosophic triangular number.
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Abstract. Mappings are significant mathematical tools with many applications in our daily lives. The bipolar

hypersoft set is one of the effective tools for dealing with ambiguity and vagueness. The purpose of this article

is to define mappings between the classes of bipolar hypersoft sets. The notions of bipolar hypersoft image

and bipolar hypersoft inverse image of bipolar hypersoft sets are then defined, and some of their properties

are studied. Moreover, we discuss the relations between the bipolar hypersoft image and the bipolar hyper-

soft inverse image of the bipolar hypersoft sets. This proposed work can be extended to IndetermSoft Set,

IndetermHyperSoft Set and TreeSoft Set and their corresponding Fuzzy, Intuitionistic Fuzzy, Neutrosophic

forms and other Fuzzy-extension.
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—————————————————————————————————————————-

1. Introduction

In all real-life disciplines, such as environmental science, social science, engineering and

economics, there is ambiguity, inaccuracy, and inadequate information. Many researchers have

attempted to process such data in the past and present. In 1999, Molodtsov [14] proposed the

theory of soft set as a completely flexible mathematical approach to modeling uncertainties. In

2003, Maji et al. [12] developed the theory of soft sets by defining several essential operations

like subset, the equal set and the complement of a soft set. Shabir and Naz [25] proposed

and studied the concept of bipolar soft sets (a combination of the soft set and the bipolarity

structure) and its use in decision-making (2013).

Sagvan Y. Musa and Baravan A. Asaad, Mappings on Bipolar Hypersoft Classes

Neutrosophic Sets and Systems, Vol. 53, 2023



The traditional soft set is built on a determinate function, however there are numerous

sources in our world that, due to ignorance or a lack of knowledge, present indeterminate

information. Due to the uncertainty in our world, they can be modeled by operators with some

degree of uncertainty. As a result, Smarandache [27,28] extended the soft set to hypersoft set in

2018, then both of them to IndetermSoft Set and IndetermHyperSoft Set [29, 30] respectively

in 2022, and introduced TreeSoft Set [31] as extension of the MultiSoft Set [26]. Several

applications are presented for each type of soft set. Musa and Asaad [4,15,16] applied hypersoft

set to present some topological concepts such as connectedness and separation axioms.

Defining relations and mappings on soft sets, bipolar soft sets and hypersoft sets was one of

the most important steps in the development of these theories. Babitha and Sunil [6] initiated

the notion of soft relations and soft functions. Qin et al. [21] introduced the concept of soft

relation which is a generalization of soft set relation presented in [6]. They supported their

work with an application to information systems. Majumdar and Samanta [13] examined the

concept of crisp (soft) set images using soft mappings. Kharal and Ahmad [11] defined the

idea of soft class mappings and discussed the characteristics of soft images and soft pre-images.

Furthermore, they provided an application of soft mapping in medical diagnosis. Addis et

al. [2] has developed a new method to define soft mappings and studying their properties.

They used this concept in a new way to study soft homomorphisms and soft homomorphism

theorems on groups. They also built a soft mapping to model a symptom–disease relationship

in medical diagnosis. The notion of mappings between two collections of bipolar soft sets

was introduced by Al-shami [1] and exhaustively studied by Fadel and Dzul-Kifli [8]. Saeed

et al. [23, 24] introduced mappings to the hypersoft set environment. They defined hypersoft

image and hypersoft pre-image and studied some of their properties. Moreover, the validity

and dominance of their suggested technique is demonstrated through practical application and

comparative analysis. Other searches for mappings can be seen [3, 5, 7, 9, 10,22,32–34].

Musa and Asaad [17], came up with the concept of bipolar hypersoft set as a mixture

of hypersoft set and bipolarity structure and is created by looking at not only a collection of

carefully chosen parameters, but also a set associated with parameters with opposing meanings

known as ”not set of parameters”. They also presented an application of bipolar hypersoft

sets in a decision-making problem [18]. In addition, the authors [19,20] studied the topological

structures of bipolar hypersoft sets. Motivated by the interest of researchers for mappings and

their applications. We continue to study bipolar hypersoft sets by defining bipolar hypersoft

mapping and discuss some of its characteristics.

The rest of the article is organized in the following order: Section 2 provides an overview

of several fundamental concepts that are necessary to understand our research. In section 3,

we define the concept of bipolar hypersoft mapping and study its properties. In section 4,
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we introduce bipolar hypersoft inverse image and related results. We conclude this section

by presenting the relationship between the bipolar hypersoft image and the bipolar hypersoft

inverse image. Section 5 provide a summary of ongoing work as well as a suggestion for future

study.

2. Preliminaries

Throughout this work, ℜ and ℵ denote the universal sets; 2ℜ and 2ℵ denote the power sets

of ℜ and ℵ, respectively; Σ = σ1 × σ2 × . . . × σn and Σ́ = σ́1 × σ́2 × . . . × σ́n denote the

parameter sets with σi ∩ σj = ϕ, σ́i ∩ σ́j = ϕ where i ̸= j; and Λ,∆, Λ́, ∆́ are non-empty sets

of parameters where Λ,∆ ⊆ Σ and Λ́, ∆́ ⊆ Σ́.

The basic definitions and results introduced in [17] will be collected in this section.

Definition 2.1. A triple (g , ĝ ,Λ) is called a bipolar hypersoft set over ℜ, where g and ĝ are

mappings given by g : Λ → 2ℜ and ĝ : ¬Λ → 2ℜ such that g (ℓ) ∩ ĝ (¬ℓ) = ϕ for all ℓ ∈ Λ.

We represent a bipolar hypersoft set (g , ĝ ,Λ) as:

(g , ĝ ,Λ) = {(ℓ, g (ℓ), ĝ (¬ℓ)) : ℓ ∈ Λ and g (ℓ) ∩ ĝ (¬ℓ) = ϕ}.

The collection of all bipolar hypersoft sets on ℜ (resp., ℵ) with the set of parameters Σ

(resp., Σ́) is denoted by Ω(ℜ,Σ) (resp., Ω(ℵ,Σ́)).

Definition 2.2. Let (g , ĝ ,Λ), (f , f̂ ,∆) ∈ Ω(ℜ,Σ). Then

i. (g , ĝ ,Λ) is a bipolar hypersoft subset of (f , f̂ ,∆), denoted by (g , ĝ ,Λ) ˜̃⊑ (f , f̂ ,∆), if

Λ ⊆ ∆ and g (ℓ) ⊆ f (ℓ), f̂ (¬ℓ) ⊆ ĝ (¬ℓ) for all ℓ ∈ Λ.

ii. (g , ĝ ,Λ) and (f , f̂ ,∆) are bipolar hypersoft equal, if (g , ĝ ,Λ) ˜̃⊑ (f , f̂ ,∆) and (f , f̂ ,∆)˜̃⊑ (g , ĝ ,Λ).
iii. If g (ℓ) = ϕ and ĝ (¬ℓ) = ℜ for all ℓ ∈ Λ, then (g , ĝ ,Λ) is called a relative null bipolar

hypersoft set and denoted by (ϕ̃, ℜ̃,Λ).
iv. If g (ℓ) = ℜ and ĝ (¬ℓ) = ϕ for all ℓ ∈ Λ, then (g , ĝ ,Λ) is called a relative whole bipolar

hypersoft set and denoted by (ℜ̃, ϕ̃,Λ).
v. The complement of (g , ĝ ,Λ) is a bipolar hypersoft set (g , ĝ ,Λ)c = (g c, ĝ c,Λ) where

g c(ℓ) = ĝ (¬ℓ) and ĝ c(¬ℓ) = g (ℓ) for all ℓ ∈ Λ.

vi. The union of (g , ĝ ,Λ) and (f , f̂ ,∆), denoted by (g , ĝ ,Λ) ˜̃⊔ (f , f̂ ,∆), is a bipolar

hypersoft set (h , ĥ , C), where C = Λ ∪∆ and for all ℓ ∈ C:

h(ℓ) =


g (ℓ) if ℓ ∈ Λ \∆
f (ℓ) if ℓ ∈ ∆ \ Λ
g (ℓ) ∪ f (ℓ) if ℓ ∈ Λ ∩∆
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ĥ(¬ℓ) =


ĝ (¬ℓ) if ¬ℓ ∈ ¬Λ \ ¬∆
f̂ (¬ℓ) if ¬ℓ ∈ ¬∆ \ ¬Λ
ĝ (¬ℓ) ∩ f̂ (¬ℓ) if ¬ℓ ∈ ¬Λ ∩ ¬∆

vii. The extended intersection of (g , ĝ ,Λ) and (f , f̂ ,∆), denoted by (g , ĝ ,Λ) ˜̃⊓ε (f , f̂ ,∆),

is a bipolar hypersoft set (h , ĥ , C), where C = Λ ∪∆ and for all ℓ ∈ C:

h(ℓ) =


g (ℓ) if ℓ ∈ Λ \∆
f (ℓ) if ℓ ∈ ∆ \ Λ
g (ℓ) ∩ f (ℓ) if ℓ ∈ Λ ∩∆

ĥ(¬ℓ) =


ĝ (¬ℓ) if ¬ℓ ∈ ¬Λ \ ¬∆
f̂ (¬ℓ) if ¬ℓ ∈ ¬∆ \ ¬Λ
ĝ (¬ℓ) ∪ f̂ (¬ℓ) if ¬ℓ ∈ ¬Λ ∩ ¬∆

viii. The restricted union of (g , ĝ ,Λ) and (f , f̂ ,∆), denoted by (g , ĝ ,Λ) ˜̃⊔R (f , f̂ ,∆), is a

bipolar hypersoft set (h , ĥ , C), where C = Λ ∩∆ and for all ℓ ∈ C: h(ℓ) = g (ℓ) ∪ f (ℓ)
and ĥ(¬ℓ) = ĝ (¬ℓ) ∩ f̂ (¬ℓ).

ix. The intersection of (g , ĝ ,Λ) and (f , f̂ ,∆), denoted by (g , ĝ ,Λ) ˜̃⊓ (f , f̂ ,∆), is a bipolar

hypersoft set (h , ĥ , C), where C = Λ ∩ ∆ and for all ℓ ∈ C: h(ℓ) = g (ℓ) ∩ f (ℓ) and

ĥ(¬ℓ) = ĝ (¬ℓ) ∪ f̂ (¬ℓ).

Proposition 2.3. Let (g , ĝ ,Λ), (f , f̂ ,Λ) ∈ Ω(ℜ,Σ). Then

i. ((g , ĝ ,Λ)c)c = (g , ĝ ,Λ).
ii. If (g , ĝ ,Λ) ˜̃⊑ (f , f̂ ,Λ), then (f , f̂ ,Λ)c ˜̃⊑ (g , ĝ ,Λ)c.
iii. (ϕ̃, ℜ̃,Λ) ˜̃⊑ (g , ĝ ,Λ) ˜̃⊓ (g , ĝ ,Λ)c ˜̃⊑ (g , ĝ ,Λ) ˜̃⊔ (g , ĝ ,Λ)c ˜̃⊑ (ℜ̃, ϕ̃,Λ).
iv. (g , ĝ ,Λ) ˜̃⊔ (f , f̂ ,Λ) = (g , ĝ ,Λ) ˜̃⊔R (f , f̂ ,Λ).
v. (g , ĝ ,Λ) ˜̃⊓ (f , f̂ ,Λ) = (g , ĝ ,Λ) ˜̃⊓ε (f , f̂ ,Λ).

Proposition 2.4. Let (g , ĝ ,Λ), (f , f̂ ,∆) ∈ Ω(ℜ,Σ). Then

i. ((g , ĝ ,Λ) ˜̃⊔ (f , f̂ ,∆))c = (g , ĝ ,Λ)c ˜̃⊓ (f , f̂ ,∆)c.

ii. ((g , ĝ ,Λ) ˜̃⊓ (f , f̂ ,∆))c = (g , ĝ ,Λ)c ˜̃⊔ (f , f̂ , B)c.

3. Bipolar Hypersoft Mappings

In this section, we study mappings between families of bipolar hypersoft sets with differ-

ent universes and sets of parameters. In addition, illustrative examples are offered to help

understand the main results.
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Definition 3.1. Let γ : ℜ → ℵ be an injective mapping. Let δ : Σ → Σ́ and λ : ¬Σ → ¬Σ́
be two mappings such that λ(¬ℓ) = ¬δ(ℓ) for all ¬ℓ ∈ ¬Σ. Then a bipolar hypersoft mapping

Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) is defined as: for any bipolar hypersoft set (g , ĝ ,Λ) ∈ Ω(ℜ,Σ), the image

of (g , ĝ ,Λ) under Ψγδλ, Ψγδλ((g , ĝ ,Λ)) = (Ψγδλ(g ),Ψγδλ(ĝ ), Σ́) is a bipolar hypersoft set in

Ω(ℵ,Σ́) given as, for all ℓ́ ∈ Σ́:

Ψγδλ(g )(ℓ́) =

 γ
(⋃

ℓ∈δ−1(ℓ́)∩Λ g (ℓ)
)
, if δ−1(ℓ́) ∩ Λ ̸= ϕ

ϕ, otherwise

Ψγδλ(ĝ )(¬ℓ́) =

 γ
(⋂

¬ℓ∈λ−1(¬ℓ́)∩¬Λ ĝ (¬ℓ)
)
, if λ−1(¬ℓ́) ∩ ¬Λ ̸= ϕ

ℵ, otherwise

Example 3.2. Let ℜ = {r1, r2, r3} and ℵ = {η1, η2, η3, η4} be two sets, σ1 =

{ℓ1, ℓ2, ℓ3, ℓ4}, σ2 = {ℓ5}, σ3 = {ℓ6}, and σ́1 = {ℓ́1, ℓ́2, ℓ́3, ℓ́4}, σ́2 = {ℓ́5}, σ́3 = {ℓ́6} be

sets of parameters, γ : ℜ → ℵ be a mapping defined as γ(ri) = ηi for i = 1, 2, 3,

the mapping δ : Σ → Σ́ be defined as δ((ℓ1, ℓ5, ℓ6)) = δ((ℓ2, ℓ5, ℓ6)) = (ℓ́1, ℓ́5, ℓ́6),

δ((ℓ3, ℓ5, ℓ6)) = (ℓ́3, ℓ́5, ℓ́6), δ((ℓ4, ℓ5, ℓ6)) = (ℓ́4, ℓ́5, ℓ́6), the mapping λ : ¬Σ → ¬Σ́ be

defined as λ(¬ℓi) = ¬δ(ℓi) for i = 1, 2, 3, and Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) be a bipo-

lar hypersoft mapping. Let Λ1 = {ℓ1, ℓ2, ℓ3},Λ2 = {ℓ5},Λ3 = {ℓ6} and (g , ĝ ,Λ) =

{((ℓ1, ℓ5, ℓ6), {r1}, {r2}), ((ℓ2, ℓ5, ℓ6), {r3}, {r1, r2}), ((ℓ3, ℓ5, ℓ6), {r3}, {r1})}. Then, the bipolar

hypersoft image of (g , ĝ ,Λ):

Since δ(Λ) = δ({(ℓ1, ℓ5, ℓ6), (ℓ2, ℓ5, ℓ6), (ℓ3, ℓ5, ℓ6)}) = {(ℓ́1, ℓ́5, ℓ́6), (ℓ́3, ℓ́5, ℓ́6)}, then for

(ℓ́1, ℓ́5, ℓ́6) : δ
−1((ℓ́1, ℓ́5, ℓ́6)) ∩ Λ = {(ℓ1, ℓ5, ℓ6), (ℓ2, ℓ5, ℓ6)} ∩ {(ℓ1, ℓ5, ℓ6), (ℓ2, ℓ5, ℓ6), (ℓ3, ℓ5, ℓ6)}

= {(ℓ1, ℓ5, ℓ6), (ℓ2, ℓ5, ℓ6)}. We have

Ψγδλ(g )(ℓ́1, ℓ́5, ℓ́6) = γ
(⋃

ℓ∈δ−1(ℓ́1,ℓ́5,ℓ́6)∩Λ g (ℓ)
)

= γ
(
g (ℓ1, ℓ5, ℓ6) ∪ g (ℓ2, ℓ5, ℓ6)

)
=

γ ({r1} ∪ {r3}) = γ ({r1, r3}) = {η1, η3}.

Also, λ(¬Λ) = {¬(ℓ́1, ℓ́5, ℓ́6),¬(ℓ́3, ℓ́5, ℓ́6)}, then for ¬(ℓ́1, ℓ́5, ℓ́6) : λ−1(¬(ℓ́1, ℓ́5, ℓ́6)) ∩ ¬Λ =

{¬(ℓ1, ℓ5, ℓ6),¬(ℓ2, ℓ5, ℓ6)}. We have

Ψγδλ(ĝ )(¬(ℓ́1, ℓ́5, ℓ́6)) = γ
(⋂

¬ℓ∈λ−1(¬(ℓ́1,ℓ́5,ℓ́6))∩¬Λ ĝ (¬ℓ)
)

= γ(ĝ (¬(ℓ1, ℓ5, ℓ6)) ∩
ĝ (¬(ℓ2, ℓ5, ℓ6))) = γ ({r2} ∩ {r1, r2}) = γ ({r2}) = {η2}

Then, Ψγδλ((g , ĝ ,Λ))((ℓ́1, ℓ́5, ℓ́6)) = ((ℓ́1, ℓ́5, ℓ́6), {η1, η3}, {η2}).
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Now, for (ℓ́3, ℓ́5, ℓ́6) : δ
−1((ℓ́3, ℓ́5, ℓ́6))∩Λ = {(ℓ3, ℓ5, ℓ6)} ∩ {(ℓ1, ℓ5, ℓ6), (ℓ2, ℓ5, ℓ6), (ℓ3, ℓ5, ℓ6)}

= {(ℓ3, ℓ5, ℓ6)}. We have

Ψγδλ(g )((ℓ́3, ℓ́5, ℓ́6)) = γ
(⋃

ℓ∈δ−1((ℓ́3,ℓ́5,ℓ́6))∩Λ g (ℓ)
)
= γ

(
g (ℓ3, ℓ5, ℓ6)

)
= γ ({r3}) = {η3}.

Also, for ¬(ℓ́3, ℓ́5, ℓ́6) : λ−1(¬(ℓ́3, ℓ́5, ℓ́6)) ∩ ¬Λ = {¬(ℓ3, ℓ5, ℓ6)}. We have

Ψγδλ(ĝ )(¬(ℓ́3, ℓ́5, ℓ́6)) = γ
(⋂

¬ℓ∈λ−1(¬(ℓ́3,ℓ́5,ℓ́6))∩¬Λ ĝ (¬ℓ)
)

= γ
(
ĝ (¬(ℓ3, ℓ5, ℓ6))

)
= γ ({r1})

= {η1}.

Then, Ψγδλ((g , ĝ ,Λ))((ℓ́3, ℓ́5, ℓ́6)) = ((ℓ́3, ℓ́5, ℓ́6), {η3}, {η1}).
Hence, Ψγδλ((g , ĝ ,Λ)) = {((ℓ́1, ℓ́5, ℓ́6), {η1, η3}, {η2}), ((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ), ((ℓ́3, ℓ́5, ℓ́6), {η3}, {η1}),
((ℓ́4, ℓ́5, ℓ́6), ϕ,ℵ)}.

Remark 3.3. In the next example, we illustrate the reason for choosing the mapping γ : ℜ → ℵ
in Definition 3.1 to be injective .

Example 3.4. Suppose Ψγδλ and (g , ĝ ,Λ) be the same as in Example 3.2 but γ(r2) = η1

instead of γ(r2) = η2, then Ψγδλ((g , ĝ ,Λ))((ℓ́1, ℓ́5, ℓ́6)) = ((ℓ́1, ℓ́5, ℓ́6), {η1, η3}, {η1}) which con-

tradicts the definition of bipolar hypersoft set since Ψγδλ(g )((ℓ́1, ℓ́5, ℓ́6)) ∩ Ψγδλ(ĝ )(¬(ℓ́1, ℓ́5, ℓ́6))
̸= ϕ.

Definition 3.5. Suppose that Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) is a bipolar hypersoft mapping and

(g , ĝ ,Λ), (f , f̂ ,∆) ∈ Ω(ℜ,Σ). Then:

(1) The union of bipolar hypersoft image of (g , ĝ ,Λ), (f , f̂ ,∆) ∈ Ω(ℜ,Σ) is defined as, for

all ℓ́ ∈ Σ́,(
Ψγδλ((g , ĝ ,Λ))˜̃⊔Ψγδλ((f , f̂ ,∆))

)
(ℓ́) =

(
ℓ́,Ψγδλ(g )(ℓ́) ∪Ψγδλ(f )(ℓ́),Ψγδλ(ĝ )(¬ℓ́) ∩Ψγδλ(f̂ )(¬ℓ́)

)
.

(2) The intersection of bipolar hypersoft image of (g , ĝ ,Λ), (f , f̂ ,∆) ∈ Ω(ℜ,Σ) is defined

as, for all ℓ́ ∈ Σ́,

(
Ψγδλ((g , ĝ ,Λ))˜̃⊓Ψγδλ((f , f̂ ,∆))

)
(ℓ́) =

(
ℓ́,Ψγδλ(g )(ℓ́) ∩Ψγδλ(f )(ℓ́),Ψγδλ(ĝ )(¬ℓ́) ∪Ψγδλ(f̂ )(¬ℓ́)

)
.
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Definition 3.6. Suppose that Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) is a bipolar hypersoft mapping, where

γ : ℜ → ℵ is an injective mapping, δ : Σ → Σ́ and λ : ¬Σ → ¬Σ́ are two mappings such that

λ(¬ℓ) = ¬δ(ℓ) for all ¬ℓ ∈ ¬Σ. Then a bipolar hypersoft mapping Ψγδλ is called:

(1) A bipolar hypersoft surjective mapping if γ and δ are surjective mappings.

(2) A bipolar hypersoft injective mapping if γ and δ are injective mappings. (Provided

that any bipolar hypersoft sets in Ω(ℜ,Σ) must have the same sets of parameters.)

(3) A bipolar hypersoft bijective mapping if γ and δ are bijective mappings.

Proposition 3.7. Suppose that Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) is a bipolar hypersoft mapping, where

γ : ℜ → ℵ is an injective mapping, δ : Σ → Σ́ and λ : ¬Σ → ¬Σ́ are two mappings such that

λ(¬ℓ) = ¬δ(ℓ) for all ¬ℓ ∈ ¬Σ. If (g , ĝ ,Λ), (f , f̂ ,∆) ∈ Ω(ℜ,Σ) then:

(1) Ψγδλ((Φ, ℜ̂,Σ)) ˜̃⊒ ((Φ, ℵ̂, Σ́)). The equality holds if γ is a surjective mapping.

(2) Ψγδλ((ℜ̂,Φ,Σ)) ˜̃⊑ ((ℵ̂,Φ, Σ́)).
(3) If (g , ĝ ,Λ) ˜̃⊑ (f , f̂ ,∆), then Ψγδλ((g , ĝ ,Λ)) ˜̃⊑ Ψγδλ((f , f̂ ,∆)).

(4) Ψγδλ((g , ĝ ,Λ)˜̃⊔(f , f̂ ,∆)) = Ψγδλ((g , ĝ ,Λ)) ˜̃⊔ Ψγδλ((f , f̂ ,∆)).

(5) Ψγδλ

(
(g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆) = (h , ĥ ,Λ ∩∆)

) ˜̃⊑ Ψγδλ((g , ĝ ,Λ)) ˜̃⊓ Ψγδλ((f , f̂ ,∆)). The

equality holds if Ψγδλ is a bipolar hypersoft injective mapping.

Proof. 1. and 2. are straightforward.

3. Let (g , ĝ ,Λ) ˜̃⊑ (f , f̂ ,∆), then we want to show that, for all ℓ́ ∈ Σ́, Ψγδλ(g )(ℓ́) ⊆ Ψγδλ(f )(ℓ́)
and, for all ¬ℓ́ ∈ ¬Σ́, Ψγδλ(f̂ )(¬ℓ́) ⊆ Ψγδλ(ĝ )(¬ℓ́). Let ℓ́ ∈ δ(Λ) ⊆ δ(∆) ⊆ Σ́ (if ℓ́ /∈ δ(Λ), then

Ψγδλ(g )(ℓ́) = ϕ ⊆ Ψγδλ(f )(ℓ́)), then

Ψγδλ(g )(ℓ́) = γ

 ⋃
ℓ∈δ−1(ℓ́)∩Λ

g (ℓ)


⊆ γ

 ⋃
ℓ∈δ−1(ℓ́)∩∆

f (ℓ)

 , since g (ℓ) ⊆ f (ℓ) for all ℓ ∈ Λ

= Ψγδλ(f )(ℓ́).

Now, for ¬ℓ́ ∈ λ(¬Λ) ⊆ λ(¬∆) ⊆ ¬Σ́ (if ¬ℓ́ /∈ λ(¬Λ), then Ψγδλ(ĝ )(¬ℓ́) = ℵ ⊇ Ψγδλ(f̂ )(¬ℓ́)),
we have

Ψγδλ(f̂ )(¬ℓ́) = γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩¬∆

f̂ (¬ℓ)


⊆ γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩¬Λ

ĝ (¬ℓ)

 , since f̂ (¬ℓ) ⊆ ĝ (ℓ) for all¬ℓ ∈ ¬Λ

= Ψγδλ(ĝ )(¬́ℓ).
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Hence, Ψγδλ((g , ĝ ,Λ)) ˜̃⊑ Ψγδλ((f , f̂ ,∆)).

4. To keep things simple, let

Ψγδλ((g , ĝ ,Λ))˜̃⊔Ψγδλ((f , f̂ ,∆)) = (h , ĥ , Σ́)

Ψγδλ((g , ĝ ,Λ)˜̃⊔(f , f̂ ,∆)) = Ψγδλ((I , Î ,Λ ∪∆)) = (J , Ĵ , Σ́).

We want to prove that , for all ℓ́ ∈ Σ́, J (ℓ́) = h(ℓ́) and, for all ¬ℓ́ ∈ Σ́, Ĵ (¬ℓ́) = ĥ(¬ℓ́). For

non-trivial case, let ℓ́ ∈ δ(Λ ∪∆) = δ(Λ) ∪ δ(Λ) = Λ́ ∪ ∆́, then

J (ℓ́) = Ψγδλ(I )(ℓ́) = γ
(⋃

ℓ∈δ−1(ℓ́)∩(Λ∪∆) I (ℓ)
)

=


γ
(⋃

ℓ∈δ−1(ℓ́)∩(Λ\∆) g (ℓ)
)
, if ℓ́ ∈ Λ́ \ ∆́

γ
(⋃

ℓ∈δ−1(ℓ́)∩(∆\Λ) f (ℓ)
)
, if ℓ́ ∈ ∆́ \ Λ́

γ
(⋃

ℓ∈δ−1(ℓ́)∩Λ g (ℓ)
)
∪ γ

(⋃
ℓ∈δ−1(ℓ́)∩∆ f (ℓ)

)
, if ℓ́ ∈ Λ́ ∩ ∆́

=


Ψγδλ(g )(ℓ́), if ℓ́ ∈ Λ́ \ ∆́
Ψγδλ(f )(ℓ́), if ℓ́ ∈ ∆́ \ Λ́
Ψγδλ(g )(ℓ́) ∪Ψγδλ(f )(ℓ́), if ℓ́ ∈ Λ́ ∩ ∆́

Since Ψγδλ(f )(ℓ́) = ϕ for ℓ́ ∈ Λ́ \ ∆́ and Ψγδλ(g )(ℓ́) = ϕ for ℓ́ ∈ ∆́ \ Λ́, then for all ℓ́ ∈ Σ́, we

have

J (ℓ́)) = Ψγδλ(g )(ℓ́) ∪Ψγδλ(f )(ℓ́)

= h(ℓ́)), by Definition 3.5 (1.).

Also, for non-trivial case, let ¬ℓ́ ∈ ¬(Λ́ ∪ ∆́) = ¬Λ́ ∪ ¬∆́, then

Ĵ (¬ℓ́) = Ψγδλ(Î )(¬ℓ́) = γ
(⋂

¬ℓ∈λ−1(¬ℓ́)∩(¬Λ∪¬∆) Î (¬ℓ)
)

=


γ
(⋂

¬ℓ∈λ−1(¬ℓ́)∩(¬Λ\¬∆) ĝ (¬ℓ)
)
, if ¬ℓ́ ∈ ¬Λ́ \ ¬∆́

γ
(⋂

¬ℓ∈λ−1(¬ℓ́)∩(¬∆\¬Λ) f̂ (¬ℓ)
)
, if ¬ℓ́ ∈ ¬∆́ \ ¬Λ́

γ
(⋂

¬ℓ∈λ−1(¬ℓ́)∩¬Λ ĝ (¬ℓ)
)
∩ γ

(⋂
¬ℓ∈λ−1(¬ℓ́)∩¬∆ f̂ (¬ℓ)

)
, if ¬ℓ́ ∈ ¬Λ́ ∩ ¬∆́

=


Ψγδλ(ĝ )(¬ℓ́), if ¬ℓ́ ∈ ¬Λ́ \ ¬∆́
Ψγδλ(f̂ )(¬ℓ́), if ¬ℓ́ ∈ ¬∆́ \ ¬Λ́
Ψγδλ(ĝ )(¬ℓ́) ∩Ψγδλ(f̂ )(¬ℓ́), if ¬ℓ́ ∈ ¬Λ́ ∩ ¬∆́

Since Ψγδλ(f̂ )(¬ℓ́) = ℵ for ¬ℓ́ ∈ ¬Λ́ \ ¬∆́ and Ψγδλ(ĝ )(¬ℓ́) = ℵ for ¬ℓ́ ∈ ¬∆́ \ ¬Λ́, then for all

¬ℓ́ ∈ ¬Σ́, we have

Ĵ (¬ℓ́)) = Ψγδλ(ĝ )(¬ℓ́) ∩Ψγδλ(f̂ )(¬ℓ́)
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= ĥ(¬ℓ́)), by Definition 3.5 (2.).

Hence, Ψγδλ((g , ĝ ,Λ)˜̃⊔(f , f̂ ,∆)) = Ψγδλ((g , ĝ ,Λ)) ˜̃⊔ Ψγδλ((f , f̂ ,∆)).

5. Simply, let

Ψγδλ((g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆)) = Ψγδλ((h , ĥ ,Λ ∩∆))

Ψγδλ((g , ĝ ,Λ))˜̃⊓Ψγδλ((f , f̂ ,∆)) = (I , Î , Σ́).

We want to show that, for all ℓ́ ∈ Σ́, Ψγδλ(h)(ℓ́) ⊆ (I )(ℓ́) and, for all ¬ℓ́ ∈ ¬Σ́, (Î )(¬ℓ́) ⊆
Ψγδλ(ĥ)(¬ℓ́). For a non-trivial case, let ℓ́ ∈ δ(Λ ∩∆) ⊆ Σ́, then

Ψγδλ(h)(ℓ́) = γ

 ⋃
ℓ∈δ−1(ℓ́)∩(Λ∩∆)

h(ℓ)


= γ

 ⋃
ℓ∈δ−1(ℓ́)∩(Λ∩∆)

g (ℓ) ∩ f (ℓ)


= γ

 ⋃
ℓ∈δ−1(ℓ́)∩(Λ∩∆)

g (ℓ)

 ∩ γ

 ⋃
ℓ∈δ−1(ℓ́)∩(Λ∩∆)

f (ℓ)


⊆ γ

 ⋃
ℓ∈δ−1(ℓ́)∩Λ

g (ℓ)

 ∩ γ

 ⋃
ℓ∈δ−1(ℓ́)∩∆

f (ℓ)


= Ψγδλ(g )(ℓ́) ∩Ψγδλ(f )(ℓ́)

= I (ℓ́).

Now, for a non-trivial case, let ¬ℓ́ ∈ λ(¬Λ ∩ ¬∆) ⊆ ¬Σ́, then

Ψγδλ(ĥ)(¬ℓ́) = γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩(¬Λ∩¬∆)

ĥ(¬ℓ)


= γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩(¬Λ∩¬∆)

ĝ (¬ℓ) ∩ f̂ (¬ℓ)


⊇ γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩(¬Λ∩¬∆)

ĝ (ℓ)

 ∪ γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩(¬Λ∩¬∆)

f̂ (¬ℓ)


⊇ γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩¬Λ

ĝ (¬ℓ)

 ∪ γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩¬∆

f̂ (¬ℓ)


= Ψγδλ(ĝ )(¬ℓ́) ∪Ψγδλ(f̂ )(¬ℓ́)

= Î (¬ℓ́).
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Therefore, Ψγδλ((g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆)) = Ψγδλ((h , ĥ ,Λ∩∆)) ˜̃⊑ Ψγδλ((g , ĝ ,Λ)) ˜̃⊓ Ψγδλ((f , f̂ ,∆)).

Remark 3.8. The reverse of Proposition 3.7 (5) is incorrect.

Example 3.9. Let Ψγδλ and (g , ĝ ,Λ) be the same as in Example 3.2. Let (f , f̂ ,∆) =

{((ℓ1, ℓ5, ℓ6), {r2}, {r1, r3}), ((ℓ2, ℓ5, ℓ6), {r1}, {r2}), ((ℓ3, ℓ5, ℓ6),ℜ, ϕ)), ((ℓ4, ℓ5, ℓ6), {r3}, {r1}))},
then Ψγδλ((f , f̂ ,∆)) = {((ℓ́1, ℓ́5, ℓ́6), {η1, η2}, ϕ), ((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ), ((ℓ́3, ℓ́5, ℓ́6), {η1, η2, η3}, ϕ),
((ℓ́4, ℓ́5, ℓ́6), {η3}, {η1})}. Now,

Ψγδλ((g , ĝ ,Λ))˜̃⊓Ψγδλ((f , f̂ ,∆)) = {((ℓ́1, ℓ́5, ℓ́6), {η1}, {η2}), ((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ), ((ℓ́3, ℓ́5, ℓ́6),

{η3}, {η1}), ((ℓ́4, ℓ́5, ℓ́6), ϕ,ℵ)}.

On the other hand, (g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆) = {((ℓ1, ℓ5, ℓ6), ϕ, {r1, r2, r3}), ((ℓ2, ℓ5, ℓ6), ϕ, {r1, r2}),
((ℓ3, ℓ5, ℓ6), {r3}, {r1})}, then

Ψγδλ((g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆)) = {((ℓ́1, ℓ́5, ℓ́6), ϕ, {η1, η2}), ((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ), ((ℓ́3, ℓ́5, ℓ́6),

{η3}, {η1}), ((ℓ́4, ℓ́5, ℓ́6), ϕ,ℵ)}.

Therefore, Ψγδλ((g , ĝ ,Λ)) ˜̃⊓ Ψγδλ((f , f̂ ,∆))
˜̸̃⊑ Ψγδλ((g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆)).

Remark 3.10. In Proposition 3.7 (5.), Ψγδλ

(
(g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆) = (h , ĥ ,Λ ∪∆)

) ˜̸̃⊑
Ψγδλ((g , ĝ ,Λ)) ˜̃⊓ Ψγδλ((f , f̂ ,∆)).

Example 3.11. Let Ψγδλ and (g , ĝ ,Λ) be the same as in Example 3.2. Let (f , f̂ ,∆) =

{((ℓ1, ℓ5, ℓ6), {r1, r2}, ϕ), ((ℓ3, ℓ5, ℓ6), {r3}, {r1}), ((ℓ4, ℓ5, ℓ6),ℜ, ϕ)}, then Ψγδλ((f , f̂ ,∆)) =

{((ℓ́1, ℓ́5, ℓ́6), {η1, η2}, ϕ), ((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ), ((ℓ́3, ℓ́5, ℓ́6), {η3}, {η1}), ((ℓ́4, ℓ́5, ℓ́6), {η1, η2, η3}, ϕ)}.
Now,

Ψγδλ((g , ĝ ,Λ))˜̃⊓Ψγδλ((f , f̂ ,∆)) = {((ℓ́1, ℓ́5, ℓ́6), {η1}, {η2}), ((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ), ((ℓ́3, ℓ́5, ℓ́6),

{η3}, {η1}), ((ℓ́4, ℓ́5, ℓ́6), ϕ,ℵ)}.

On the other hand, (g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆) = {((ℓ1, ℓ5, ℓ6), {r1}, {r2}), ((ℓ2, ℓ5, ℓ6), {r3}, {r1, r2}),
((ℓ3, ℓ5, ℓ6), {r3}, {r1}), ((ℓ4, ℓ5, ℓ6),ℜ, ϕ})}, then

Ψγδλ((g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆)) = {((ℓ́1, ℓ́5, ℓ́6), {η1, η3}, {η2}), ((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ), ((ℓ́3, ℓ́5, ℓ́6),

{η3}, {η1}), ((ℓ́4, ℓ́5, ℓ́6), {η1, η2, η3}, ϕ)}.
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Therefore, Ψγδλ((g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆))
˜̸̃⊑ Ψγδλ((g , ĝ ,Λ)) ˜̃⊓ Ψγδλ((f , f̂ ,∆)).

4. Bipolar Hypersoft Inverse Image

This section focuses on bipolar hypersoft inverse image and its relation to the bipolar hy-

persoft image on bipolar hypersoft sets.

Definition 4.1. Let γ : ℜ → ℵ be an injective mapping. Let δ : Σ → Σ́ and λ : ¬Σ → ¬Σ́
be two mappings such that λ(¬ℓ) = ¬δ(ℓ) for all ¬ℓ ∈ ¬Σ, and Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) be a

bipolar hypersoft mapping. The inverse image of a bipolar hypersoft set (g , ĝ , Λ́) under Ψγδλ,

Ψ−1
γδλ((g , ĝ ,Λ)) = (Ψ−1

γδλ(g ),Ψ
−1
γδλ(ĝ ),Σ) is a bipolar hypersoft set in Ω(ℜ,Σ) given as, for all

ℓ ∈ Σ:

Ψ−1
γδλ(g )(ℓ) =

{
γ−1

(
g (δ(ℓ))

)
, if δ(ℓ) ∈ Λ́

ϕ, if δ(ℓ) /∈ Λ́

Ψ−1
γδλ(ĝ )(¬ℓ) =

{
γ−1(ĝ (λ(¬ℓ))), if λ(¬ℓ) ∈ ¬Λ́
ℜ, if λ(¬ℓ) /∈ ¬Λ́

Example 4.2. Let Ψγδλ be the same as in Example 3.2. Let (g , ĝ , Λ́) =

{((ℓ́3, ℓ́5, ℓ́6),ℵ, ϕ), ((ℓ́4, ℓ́5, ℓ́6), {η1, η3}, {η2})}.

Since δ−1(Λ́) = δ−1({(ℓ́3, ℓ́5, ℓ́6), (ℓ́4, ℓ́5, ℓ́6)}) = {(ℓ3, ℓ5, ℓ6), (ℓ4, ℓ5, ℓ6)} and δ((ℓ3, ℓ5, ℓ6)) =

(ℓ́3, ℓ́5, ℓ́6) ∈ Λ́, then

Ψ−1
γδλ(g )(ℓ3, ℓ5, ℓ6) = γ−1(g (δ((ℓ3, ℓ5, ℓ6)))) = γ−1(g ((ℓ́3, ℓ́5, ℓ́6))) = γ−1(ℵ) = ℜ.

Also, λ−1(¬Λ́) = λ−1({(¬ℓ́3,¬ℓ́5,¬ℓ́6), (¬ℓ́4,¬ℓ́5,¬ℓ́6)}) = {(¬ℓ3,¬ℓ5,¬ℓ6), (¬ℓ4,¬ℓ5,¬ℓ6)}
and λ((¬ℓ3,¬ℓ5,¬ℓ6)) = (¬ℓ́3,¬ℓ́5,¬ℓ́6) ∈ ¬Λ́, then

Ψ−1
γδλ(g )(ℓ3, ℓ5, ℓ6) = γ−1(g (δ((ℓ3, ℓ5, ℓ6)))) = γ−1(ĝ ((¬ℓ́3,¬ℓ́5,¬ℓ́6))) = γ−1(ϕ) = ϕ.

Then, Ψ−1
γδλ((g , ĝ , Λ́))((ℓ3, ℓ5, ℓ6)) = ((ℓ3, ℓ5, ℓ6),ℜ, ϕ).

Now, for (ℓ4, ℓ5, ℓ6): δ((ℓ4, ℓ5, ℓ6)) = (ℓ́4, ℓ́5, ℓ́6) ∈ Λ́, then

Ψ−1
γδλ(g )(ℓ4, ℓ5, ℓ6) = γ−1(g (δ((ℓ4, ℓ5, ℓ6)))) = γ−1(g ((ℓ́4, ℓ́5, ℓ́6))) = γ−1({η1, η3}) = {r1, r3}.

Sagvan Y. Musa and Baravan A. Asaad, Mappings on Bipolar Hypersoft Classes

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                                613



Also, λ((¬ℓ4,¬ℓ5,¬ℓ6)) = (¬ℓ́4,¬ℓ́5,¬ℓ́6) ∈ ¬Λ́, then

Ψ−1
γδλ(g )(ℓ4, ℓ5, ℓ6) = γ−1(g (δ((ℓ4, ℓ5, ℓ6)))) = γ−1(ĝ ((¬ℓ́4,¬ℓ́5,¬ℓ́6))) = γ−1({η2}) = {r2}.

Then, Ψ−1
γδλ((g , ĝ , Λ́))((ℓ4, ℓ5, ℓ6)) = ((ℓ4, ℓ5, ℓ6), {r1, r3}, {r2}).

Hence, Ψ−1
γδλ((g , ĝ , Λ́)) = {((ℓ1, ℓ5, ℓ6), ϕ,ℜ), ((ℓ2, ℓ5, ℓ6), ϕ,ℜ), ((ℓ3, ℓ5, ℓ6),ℜ, ϕ),

((ℓ4, ℓ5, ℓ6), {r1, r3}, {r2})}.

Definition 4.3. Suppose that Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) is a bipolar hypersoft mapping and

(g , ĝ , Λ́), (f , f̂ , ∆́) ∈ Ω(ℵ,Σ́). Then:

(1) The union of bipolar hypersoft inverse image of (g , ĝ , Λ́), (f , f̂ , ∆́) ∈ Ω(ℵ,Σ́) is defined

as, for all ℓ ∈ Σ,

(
Ψ−1

γδλ((g , ĝ , Λ́))˜̃⊔Ψ−1
γδλ((f , f̂ , ∆́))

)
(ℓ) =

(
ℓ,Ψ−1

γδλ(g )(ℓ) ∪Ψ−1
γδλ(f )(ℓ),Ψ

−1
γδλ(ĝ )(¬ℓ) ∩Ψ−1

γδλ(f̂ )(¬ℓ)
)
.

(2) The intersection of bipolar hypersoft inverse image of (g , ĝ , Λ́), (f , f̂ , ∆́) ∈ Ω(ℵ,Σ́) is

defined as, for all ℓ ∈ Σ,

(
Ψ−1

γδλ((g , ĝ , Λ́))˜̃⊓Ψ−1
γδλ((f , f̂ , ∆́))

)
(ℓ) =

(
ℓ,Ψ−1

γδλ(g )(ℓ) ∩Ψ−1
γδλ(f )(ℓ),Ψ

−1
γδλ(ĝ )(¬ℓ) ∪Ψ−1

γδλ(f̂ )(¬ℓ)
)
.

Proposition 4.4. Suppose that Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) is a bipolar hypersoft mapping, where

γ : ℜ → ℵ is an injective mapping, δ : Σ → Σ́ and λ : ¬Σ → ¬Σ́ are two mappings such that

λ(¬ℓ) = ¬δ(ℓ) for all ¬ℓ ∈ ¬Σ. If (g , ĝ , Λ́), (f , f̂ , ∆́) ∈ Ω(ℵ,Σ́) then:

(1) Ψ−1
γδλ((Φ, ℵ̂, Σ́)) = (Φ, ℜ̂,Σ).

(2) Ψ−1
γδλ((ℵ̂,Φ, Σ́)) = (ℜ̂,Φ,Σ).

(3) If (g , ĝ , Λ́) ˜̃⊑ (f , f̂ , ∆́), then Ψ−1
γδλ((g , ĝ , Λ́)) ˜̃⊑ Ψ−1

γδλ((f , f̂ , ∆́)).

(4) Ψ−1
γδλ((g , ĝ , Λ́)˜̃⊔(f , f̂ , ∆́)) = Ψ−1

γδλ((g , ĝ , Λ́)) ˜̃⊔ Ψ−1
γδλ((f , f̂ , ∆́)).

(5) Ψ−1
γδλ

(
(g , ĝ , Λ́)˜̃⊓(f , f̂ , ∆́) = (h , ĥ , Λ́ ∩ ∆́)

)
= Ψ−1

γδλ((g , ĝ , Λ́)) ˜̃⊓ Ψ−1
γδλ((f , f̂ , ∆́)).

(6) Ψ−1
γδλ((g , ĝ , Σ́)c) = (Ψ−1

γδλ((g , ĝ , Σ́)))c.

Proof. 1. and 2. are straightforward.

3. Let (g , ĝ , Λ́) ˜̃⊑ (f , f̂ , ∆́), then we want to show that, for all ℓ ∈ Σ, Ψ−1
γδλ(g )(ℓ) ⊆ Ψ−1

γδλ(f )(ℓ)
and, for all ¬ℓ ∈ ¬Σ, Ψ−1

γδλ(f̂ )(¬ℓ) ⊆ Ψ−1
γδλ(ĝ )(¬ℓ). Let ℓ ∈ Σ where δ(ℓ) ∈ Λ́ ⊆ ∆́ (if δ(ℓ) /∈ Λ́,
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then Ψ−1
γδλ(g )(ℓ) = ϕ ⊆ Ψ−1

γδλ(f )(ℓ)), then

Ψ−1
γδλ(g )(ℓ) = γ−1

(
g (δ(ℓ))

)
⊆ γ−1(f (δ(ℓ))), since g (ℓ́) ⊆ f (ℓ́) for all ℓ́ ∈ Λ́

= Ψ−1
γδλ(f )(ℓ).

Now, for ¬ℓ ∈ ¬Σ where λ(¬ℓ) ∈ ¬Λ́ ⊆ ¬∆́ (if λ(¬ℓ) /∈ ¬Λ́), then Ψ−1
γδλ(f̂ )(¬ℓ) ⊆

Ψ−1
γδλ(ĝ )(¬ℓ) = ℜ, we have

Ψ−1
γδλ(f̂ (¬ℓ)) = γ−1(f̂ (λ(¬ℓ)))

⊆ γ−1(ĝ (λ(¬ℓ))), since f̂ (¬ℓ́) ⊆ ĝ (ℓ́) for all¬ℓ́ ∈ ¬Λ́

= Ψ−1
γδλ(ĝ )(¬ℓ).

Hence, Ψ−1
γδλ((g , ĝ , Λ́)) ˜̃⊑ Ψ−1

γδλ((f , f̂ , ∆́)).

4. To keep things simple, let

Ψ−1
γδλ((g , ĝ , Λ́) ˜̃⊔ (f , f̂ , ∆́)) = Ψ−1

γδλ((I , Î , Λ́ ∪ ∆́)) = (J , Ĵ ,Σ)

Ψ−1
γδλ((g , ĝ , Λ́)) ˜̃⊔ Ψ−1

γδλ((f , f̂ , ∆́)) = (h , ĥ ,Σ).

We want to prove that, for all ℓ ∈ Σ, J (ℓ) = h(ℓ) and, for all ¬ℓ ∈ ¬Σ, Ĵ (¬ℓ) = ĥ(¬ℓ). For a
non-trivial case, let ℓ ∈ Σ where δ(ℓ) ∈ Λ́ ∪ ∆́, then

J (ℓ) = Ψ−1
γδλ(I )(ℓ) = γ−1(I (δ(ℓ)))

=


γ−1(g (δ(ℓ))), if δ(ℓ) ∈ Λ́ \ ∆́
γ−1(f (δ(ℓ))), if δ(ℓ) ∈ ∆́ \ Λ́
γ−1(g (δ(ℓ)) ∪ f (δ(ℓ))), if δ(ℓ) ∈ Λ́ ∩ ∆́

=


γ−1(g (δ(ℓ))), if δ(ℓ) ∈ Λ́ \ ∆́
γ−1(f (δ(ℓ))), if δ(ℓ) ∈ ∆́ \ Λ́
γ−1(g (δ(ℓ))) ∪ γ−1(f (δ(ℓ))), if δ(ℓ) ∈ Λ́ ∩ ∆́

=


Ψ−1

γδλ(g (ℓ)), if δ(ℓ) ∈ Λ́ \ ∆́
Ψ−1

γδλ(f (ℓ)), if δ(ℓ) ∈ ∆́ \ Λ́
Ψ−1(g (ℓ)) ∪Ψ−1(f (ℓ)), if δ(ℓ) ∈ Λ́ ∩ ∆́

Since Ψ−1
γδλ(f )(ℓ) = ϕ for δ(ℓ) ∈ Λ́ \ ∆́ and Ψ−1

γδλ(g )(ℓ́) = ϕ for δ(ℓ) ∈ ∆́ \ Λ́, then for all ℓ ∈ Σ,

we have

J (ℓ) = Ψ−1
γδλ(g )(ℓ) ∪Ψ−1

γδλ(f )(ℓ)

= h(ℓ), by Definition 4.3 (1.).
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Also, for a non-trivial case, let ¬ℓ ∈ ¬Σ where λ(¬ℓ) ∈ ¬Λ́ ∪ ¬∆́, then

J (¬ℓ) = Ψ−1
γδλ(Î )(¬ℓ) = γ−1(Î (λ(¬ℓ)))

=


γ−1(ĝ (λ(¬ℓ))), if λ(¬ℓ) ∈ ¬Λ́ \ ¬∆́
γ−1(f̂ (λ(¬ℓ))), if λ(¬ℓ) ∈ ¬∆́ \ ¬Λ́
γ−1(ĝ (λ(¬ℓ)) ∩ f̂ (λ(¬ℓ))), if λ(¬ℓ) ∈ ¬Λ́ ∩ ¬∆́

=


γ−1(ĝ (λ(¬ℓ))), if λ(¬ℓ) ∈ ¬Λ́ \ ¬∆́
γ−1(f̂ (λ(¬ℓ))), if λ(¬ℓ) ∈ ¬∆́ \ ¬Λ́
γ−1(ĝ (λ(¬ℓ))) ∩ γ−1(f̂ (λ(¬ℓ))), if λ(¬ℓ) ∈ ¬Λ́ ∩ ¬∆́

=


Ψ−1

γδλ(ĝ (¬ℓ)), if λ(¬ℓ) ∈ ¬Λ́ \ ¬∆́
Ψ−1

γδλ(f̂ (¬ℓ)), if λ(¬ℓ) ∈ ¬∆́ \ ¬Λ́
Ψ−1(ĝ (¬ℓ)) ∩Ψ−1(f̂ (¬ℓ)), if λ(¬ℓ) ∈ ¬Λ́ ∩ ¬∆́

Since Ψ−1
γδλ(f̂ )(¬ℓ) = ℜ for λ(¬ℓ) ∈ ¬Λ́ \ ¬∆́ and Ψ−1

γδλ(ĝ )(¬ℓ́) = ℜ for λ(¬ℓ) ∈ ¬∆́ \ ¬Λ́, then
for all ¬ℓ ∈ ¬Σ, we have

Ĵ (¬ℓ) = Ψ−1
γδλ(ĝ )(¬ℓ) ∩Ψ−1

γδλ(f̂ )(¬ℓ)

= ĥ(¬ℓ), by Definition 4.3 (2.).

Hence, Ψ−1
γδλ((g , ĝ , Λ́)˜̃⊔(f , f̂ , ∆́)) = Ψ−1

γδλ((g , ĝ , Λ́)) ˜̃⊔ Ψ−1
γδλ((f , f̂ , ∆́)).

5. Simply, let

Ψ−1
γδλ((g , ĝ , Λ́)˜̃⊓(f , f̂ , ∆́)) = Ψ−1

γδλ((I , Î , Λ́ ∩ ∆́)) = (J , Ĵ ,Σ)

Ψ−1
γδλ((g , ĝ , Λ́))˜̃⊓Ψ−1

γδλ((f , f̂ , ∆́)) = (h , ĥ ,Σ).

We want to prove that, for all ℓ ∈ Σ, J (ℓ) = h(ℓ) and, for all ¬ℓ ∈ ¬Σ, Ĵ (¬ℓ) = ĥ(¬ℓ). For a
non-trivial case, let ℓ ∈ δ−1(Λ́ ∩ ∆́) = δ−1(Λ́) ∩ δ−1(∆́), then

J (ℓ) = Ψ−1
γδλ(I )(ℓ)

= γ−1(g (δ(ℓ)) ∩ f (δ(ℓ)))

= γ−1(g (δ(ℓ))) ∩ γ−1(f (δ(ℓ)))

= Ψ−1
γδλ(g )(ℓ) ∩Ψ−1

γδλ(f (δ(ℓ)))

= h(ℓ).
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Also, let ¬ℓ ∈ λ−1(¬Λ́ ∩ ¬∆́) = λ−1(¬Λ́) ∩ λ−1(¬∆́), then

Ĵ (¬ℓ) = Ψ−1
γδλ(Î )(¬ℓ)

= γ−1(ĝ (λ(¬ℓ)) ∪ f̂ (λ(¬ℓ)))

= γ−1(ĝ (λ(¬ℓ))) ∪ γ−1(f̂ (λ(¬ℓ)))

= Ψ−1
γδλ(ĝ )(¬ℓ) ∪Ψ−1

γδλ(f̂ (λ(¬ℓ)))

= ĥ(¬ℓ).

Hence, Ψ−1
γδλ((g , ĝ , Λ́)˜̃⊓(f , f̂ , ∆́)) = Ψ−1

γδλ((g , ĝ , Λ́)) ˜̃⊓ Ψ−1
γδλ((f , f̂ , ∆́)).

6. Simply, let Ψ−1
γδλ((g , ĝ , Σ́)) = (h , ĥ ,Σ). Let ℓ ∈ Σ, then(

Ψ−1
γδλ(g )(ℓ)

)c
=

(
γ−1(g (δ(ℓ)))

)c
=

(
h(ℓ)

)c
= ĥ(¬ℓ).

Again, (g , ĝ , Σ́)c = (g c, ĝ c, Σ́), then

Ψ−1
γδλ(g

c)(ℓ) = γ−1(g c(δ(ℓ)))

= γ−1(ĝ (¬δ(ℓ)))

= γ−1(ĝ (λ(¬ℓ)))

= ĥ(¬ℓ).

Hence,
(
Ψ−1

γδλ(g )(ℓ)
)c

= Ψ−1
γδλ(g )c(ℓ). Using the same technique, we can show that(

Ψ−1
γδλ(ĝ )(¬ℓ)

)c
= Ψ−1

γδλ(ĝ )c(¬ℓ) for all ¬ℓ ∈ ¬Σ.
Therefore, Ψ−1

γδλ((g , ĝ , Σ́)c) = (Ψ−1
γδλ((g , ĝ , Σ́)))c.

Remark 4.5. In Proposition 4.4 (5.), Ψ−1
γδλ

(
(g , ĝ , Λ́)˜̃⊓(f , f̂ , ∆́) = (h , ĥ , Λ́ ∪ ∆́)

)
̸=

Ψ−1
γδλ((g , ĝ , Λ́)) ˜̃⊓ Ψ−1

γδλ((f , f̂ , ∆́)).

Example 4.6. Consider Ψγδλ in Example 3.2 and (g , ĝ , Λ́) in Example 4.2. Let (f , f̂ , ∆́) =

{((ℓ́1, ℓ́5, ℓ́6), {η4}, {η3}), ((ℓ́2, ℓ́5, ℓ́6), {η1}, {η2}), ((ℓ́3, ℓ́5, ℓ́6), {η1}, {η3, η4}), ((ℓ́4, ℓ́5, ℓ́6), ϕ,ℵ)},
then Ψ−1

γδλ((f , f̂ , ∆́)) = {((ℓ1, ℓ5, ℓ6), ϕ, {r3}), ((ℓ2, ℓ5, ℓ6), ϕ, {r3}), ((ℓ3, ℓ5, ℓ6), {r1}, {r3}),
((ℓ4, ℓ5, ℓ6), ϕ,ℜ)}. Now,

Ψ−1
γδλ((g , ĝ , Λ́))˜̃⊓Ψ−1

γδλ((f , f̂ , ∆́)) = {((ℓ1, ℓ5, ℓ6), ϕ,ℜ), ((ℓ2, ℓ5, ℓ6), ϕ,ℜ), ((ℓ3, ℓ5, ℓ6),

{r1}, {r3}), ((ℓ4, ℓ5, ℓ6), ϕ,ℜ)}.

On the other hand, (g , ĝ , Λ́) ˜̃⊓ (f , f̂ , ∆́) = (f , f̂ , ∆́), then Ψ−1
γδλ((g , ĝ ,Λ)˜̃⊓(f , f̂ ,∆)) =

Ψ−1
γδλ((f , f̂ , ∆́)).
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Therefore, Ψ−1
γδλ

(
(g , ĝ , Λ́)˜̃⊓(f , f̂ , ∆́)

)
̸= Ψ−1

γδλ((g , ĝ , Λ́)) ˜̃⊓ Ψ−1
γδλ((f , f̂ , ∆́)).

In what follows, the bipolar hypersoft image and the bipolar hypersoft inverse image of

bipolar hypersoft sets are discussed.

Proposition 4.7. Suppose that Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) is a bipolar hypersoft mapping, where

γ : ℜ → ℵ is an injective mapping, δ : Σ → Σ́ and λ : ¬Σ → ¬Σ́ are two mappings such that

λ(¬ℓ) = ¬δ(ℓ) for all ¬ℓ ∈ ¬Σ. If (g , ĝ ,Λ) ∈ Ω(ℜ,Σ), then (g , ĝ ,Λ) ˜̃⊑ Ψ−1
γδλ(Ψγδλ((g , ĝ ,Λ))).

The equality holds if Λ = Σ and Ψγδλ is a bipolar hypersoft injective mapping.

Proof. Let Ψ−1
γδλ(Ψγδλ((g , ĝ ,Λ))) = Ψ−1

γδλ((f , f̂ , Σ́)) = (h , ĥ ,Σ). We want to show that, for all

ℓ ∈ Λ, Ψγδλ(g )(ℓ) ⊆ Ψγδλ(h)(ℓ) and, for all ¬ℓ ∈ ¬Λ, Ψγδλ(ĥ)(¬ℓ) ⊆ Ψγδλ(ĝ )(¬ℓ). Let ℓ ∈ Λ,

then

h(ℓ) = Ψ−1
γδλ(f )(ℓ)

= γ−1(f (δ(ℓ)))

= γ−1

γ(
⋃

ℓ∈δ−1(δ(ℓ))∩Λ

g (ℓ))


=

⋃
ℓ∈δ−1(δ(ℓ))∩Λ

γ−1(γ(g (ℓ)))

=
⋃

ℓ∈δ−1(δ(ℓ))∩Λ

g (ℓ), since γ is injectivemapping

⊇ g (ℓ).

Also, for ¬ℓ ∈ ¬Λ, then

ĥ(¬ℓ) = Ψ−1
γδλ(f̂ )(¬ℓ)

= γ−1(f̂ (λ(¬ℓ)))

= γ−1

γ(
⋂

¬ℓ∈λ−1(λ(¬ℓ))∩¬Λ

ĝ (¬ℓ))


=

⋂
¬ℓ∈λ−1(λ(¬ℓ))∩¬Λ

γ−1(γ(ĝ (¬ℓ))), since γ is injectivemapping

=
⋂

¬ℓ∈λ−1(λ(¬ℓ))∩¬Λ

ĝ (¬ℓ), since γ is injectivemapping

⊆ ĝ (¬ℓ).

Hence, the proof is completed.

Remark 4.8. The equality is false in Proposition 4.7.
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Example 4.9. Consider Ψγδλ, (g , ĝ ,Λ), and Ψγδλ((g , ĝ ,Λ)) in Example 3.2. Then

Ψ−1
γδλ(Ψγδλ((g , ĝ ,Λ))) = {((ℓ1, ℓ5, ℓ6), {r1, r3}, {r2}), ((ℓ2, ℓ5, ℓ6), {r1, r3}, {r2}),

((ℓ3, ℓ5, ℓ6), {r3}, {r1}), ((ℓ4, ℓ5, ℓ6), ϕ,ℜ)}. Hence, (g , ĝ ,Λ) ̸= Ψ−1
γδλ(Ψγδλ((g , ĝ ,Λ))).

Proposition 4.10. Suppose that Ψγδλ : Ω(ℜ,Σ) → Ω(ℵ,Σ́) is a bipolar hypersoft mapping, where

γ : ℜ → ℵ is a bijective mapping, δ : Σ → Σ́ and λ : ¬Σ → ¬Σ́ are two mappings such that

λ(¬ℓ) = ¬δ(ℓ) for all ¬ℓ ∈ ¬Σ. If (f , f̂ , Σ́) ∈ Ω(ℵ,Σ́), then Ψγδλ(Ψ
−1
γδλ((f , f̂ , Σ́))) ˜̃⊑ (f , f̂ , Σ́).

The equality holds if Ψγδλ is a bipolar hypersoft surjective mapping.

Proof. Let Ψγδλ(Ψ
−1
γδλ((f , f̂ , Σ́))) = Ψγδλ((g , ĝ ,Σ)) = (h , ĥ , Σ́). We want to show that, for

all ℓ́ ∈ Σ́, Ψγδλ(h)(ℓ́) ⊆ Ψγδλ(f )(ℓ́) and, for all ¬ℓ́ ∈ ¬Σ́, Ψγδλ(f̂ )(¬ℓ́) ⊆ Ψγδλ(ĥ)(¬ℓ́). Let

ℓ́ ∈ δ(δ−1(Σ́)) ⊆ Σ́ (if ℓ́ ∈ Σ́ \ δ(δ−1(Σ́)), then h(ℓ) = ϕ ⊆ g (ℓ)), then

h(ℓ́) = Ψγδλ(g )(ℓ́)

= γ

 ⋃
ℓ∈δ−1(ℓ́)∩Σ

g (ℓ)


= γ

 ⋃
ℓ∈δ−1(ℓ́)

γ−1(f (δ(ℓ)))


= γ

γ−1(
⋃

ℓ∈δ−1(ℓ́)

f (δ(ℓ)))


= γ

(
γ−1(f (ℓ́))

)
, since f (δ(ℓ)) = f (ℓ́) for all ℓ ∈ δ−1(ℓ́)

= f (ℓ́), since γ is surjectivemapping.

Also, for ¬ℓ́ ∈ λ(λ−1(¬Σ́)) ⊆ ¬Σ́ (if ¬ℓ́ ∈ ¬Σ́ \ λ(λ−1(¬Σ́)), then ĥ(¬ℓ) = ℵ ⊇ f̂ (¬ℓ)), then

ĥ(¬ℓ́) = Ψγδλ(ĝ )(¬ℓ́)

= γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)∩¬Σ

ĝ (¬ℓ)


= γ

 ⋂
¬ℓ∈λ−1(¬ℓ́)

γ−1(f̂ (λ(¬ℓ)))


= γ

γ−1(
⋂

¬ℓ∈λ−1(¬ℓ́)

f̂ (λ(¬ℓ)))


= γ

(
γ−1(f̂ (¬ℓ́))

)
, since f̂ (λ(¬ℓ)) = f̂ (¬ℓ́) for all¬ℓ ∈ λ−1(¬ℓ́)

= f̂ (¬ℓ́), since γ is surjectivemapping.

Hence, the proof is completed.
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Remark 4.11. If γ is not surjective in Proposition 4.10, then the subset relation is not true

in general.

Example 4.12. Consider Ψγδλ in Example 3.2 and (f , f̂ , Λ́ = Σ́), Ψ−1
γδλ((f , f̂ , Σ́))

in Example 4.6. Then Ψγδλ(Ψ
−1
γδλ((f , f̂ , Σ́))) = {((ℓ́1, ℓ́5, ℓ́6), ϕ, {η3}), ((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ),

((ℓ́3, ℓ́5, ℓ́6), {η1}, {η3}), ((ℓ́4, ℓ́5, ℓ́6), ϕ, {η1, η2, η3})}. Hence, Ψγδλ(Ψ
−1
γδλ((f , f̂ , Σ́))) ˜̸̃⊑ (f , f̂ , Σ́).

Remark 4.13. The equality does not hold in Proposition 4.10.

Example 4.14. Consider Ψγδλ in Example 3.2 but if we take ℵ = {η1, η2, η3} in-

stead of ℵ = {η1, η2, η3, η4}, then γ will be a bijective mapping. Let (f , f̂ , Σ́)
= {((ℓ́1, ℓ́5, ℓ́6), {η1, η2}, ϕ), ((ℓ́2, ℓ́5, ℓ́6),ℵ, ϕ), ((ℓ́3, ℓ́5, ℓ́6),ℵ, ϕ), ((ℓ́4, ℓ́5, ℓ́6), {η3}, {η1})}, then

Ψ−1
γδλ((f , f̂ , Σ́)) = {((ℓ1, ℓ5, ℓ6), {r1, r2}, ϕ), ((ℓ2, ℓ5, ℓ6), {r1, r2}, ϕ), ((ℓ3, ℓ5, ℓ6),ℜ, ϕ),

((ℓ4, ℓ5, ℓ6), {r3}, {r1})}. Therefore, Ψγδλ(Ψ
−1
γδλ((f , f̂ , Σ́))) = {((ℓ́1, ℓ́5, ℓ́6), {η1, η2}, ϕ),

((ℓ́2, ℓ́5, ℓ́6), ϕ,ℵ), ((ℓ́3, ℓ́5, ℓ́6),ℵ, ϕ), ((ℓ́4, ℓ́5, ℓ́6), {η3}, {η1})}. Hence, Ψγδλ(Ψ
−1
γδλ((f , f̂ , Σ́))) ̸=

(f , f̂ , Σ́).

5. Conclusions

Throughout this study, we have introduced bipolar hypersoft mapping as well as various

associated concepts and properties. Also, the definition of the bipolar hypersoft inverse image

along with some of the related results are then presented. We examined, on a bipolar hypersoft

set, the relationship between bipolar hypersoft image and the bipolar hypersoft inverse image.

In the future, we strongly recommend applying these results and suggestions to real-life prob-

lems in decision-making and medical diagnosis, as well as examining the behavior of specific

topological and algebraic concepts.
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Abstract: In 2019, Riaz et al. introduced the notion of linear Diophantine fuzzy set(LDFS) where there is an 

addition of reference parameters that help to address the issues that cannot be managed by the existing theories 

such as fuzzy sets(FSs), intuitionistic fuzzy sets(IFSs), Pythagorean fuzzy sets(PFSs), and q-rung orthopair 

fuzzy sets(q-ROFSs). But all these theories are not capable to describe indeterminacy that exists in numerous 

real-world problems. For this purpose, neutrosophic sets(NSs), single-valued neutrosophic 

sets(SVNSs), Pythagorean neutrosophic sets(PNSs) are introduced. In PNS, each object x  in the universe is 

characterized by a dependent truth   T x and falsity   F x membership values and 

indeterminacy   I x membership value with the 

restriction         
2 2 2

0 2T F Ix x x      . If we consider a neutrosophic triplet 

as 0.9,0.9,0.9  then 
2 2 20.9 0.9 0.9  will give 2.43, which is 2 . Such a problem cannot be handled 

by the decision-makers under the Pythagorean neutrosophic environment. To take care of such an issue there 

is an urgency to develop another mathematical model. This lead to an introduction of linear Diophantine 

neutrosophic set(LDNS) as an extension of PNS. Thus, the main purpose of this paper is to introduce the 

LDNS model with an aid of reference parameters to ensure that through this new model the decision-makers 

can freely choose the neutrosophic membership values with an extended domain. Therefore, in a broad sense, 

the LDNSs are a new idea that removes the restrictions present in the existing concepts such as FSs, IFSs, 

PFSs, q-ROFSs, PNSs, LDFSs, etc. From example 3.1.1, it is quite visible that this new structure helps to 

classify the problem by changing the physical nature of reference parameters. Moreover, some basic 

properties and operations on LDNSs are investigated. We also define the score and accuracy function based 

on linear Diophantine neutrosophic number(LDNN). With the help of a novel linear Diophantine 

single-valued neutrosophic weighted arithmetic-geometric aggregation (LDSVNWAGA) operator, an 

algorithm has been developed for decision-making. Finally, the proposed algorithm has been successfully 

executed with the help of a numerical application.  
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1. Introduction  

Presently, in the real-world we are facing complicated problems that cannot be solved by the traditional 

mathematical tools. It is due to the involvement of uncertainty or vagueness in real-life situations. The crisp 

concept is no more valid to define ambiguity. A crisp set A can be characterized by a characteristic function 

A  and the values of  A  corresponding to all the objects in A  are either 0 or 1. Boolean algebra also 

useful to address the same situation. In mathematics, we find some linguistic terms such as “excellent”, 

“beautiful”, “intelligent” etc, which are subjective. To eradicate such a problem to some extent, Zadeh 

introduced the fuzzy set [1] in 1965 and fuzzy logic [2] in 1996. A fuzzy set is a significant mathematical tool 

to model vagueness or uncertainty in the data or information, that has been attracted the attention of many 

researchers across the globe in the last decades. A fuzzy set X be characterized by its membership 

function : [0,1]X  , which assigns a real value in the unit closed interval [0,1] to each object of the 

universe. Thus, a fuzzy set is an extension of a crisp set whose boundary is blurred. The researchers have been 

studied fuzzy sets as problem-solving techniques in various fields including, engineering, computer science, 

medical science, social science, economics, environments, robotics, etc., having various uncertainties. Some 

significant works associated with fuzzy sets are studied in [3-7]. Later on, in 2010, Bustince [8] introduced 

an interval-valued fuzzy set (IVFS), where the membership function defined as  : int [0,1]X  , 

 int [0,1] denotes the collection of all subsets of[0,1] . To define the incomplete information, Atanassov [9] 

introduced intuitionistic fuzzy set(IFS) as a direct extension of the fuzzy set by using the notion of 

membership degree    and the non-membership degree   , where both the membership values belong to 

the interval [0,1]  with a restriction that their sum cannot exceed the unity and the hesitancy degree is 

calculated as 1     . Bustince[10] defined vague sets are intuitionistic fuzzy sets, in [11], Garg et al. 

presented an improved possibility degree  method to find the rank of intuitionistic fuzzy numbers(IFNs), Gou 

et al.[12] defined exponential operations for IFNs, Heilpern[13] proposed an application of fuzzy 

numbers(FNs), Nayagam et al.[14] defined ranking of IFNs, Szmidt et al.[15] gives an application of IFS, 

Wang et al.[16] proposed IFS and L-FS, Zeng et al.[17] presented multiattribute decision-making based on 

novel score function of intuitionistic fuzzy values and modified VIKOR method. If a decision-maker assigns 

an ordered pair  0.65.0.55 to an alternative, then it is not an IFN, as 0.65+0.55 1 . To tackle such a case, 

Yager [18] introduced a Pythagorean fuzzy set(PFS) where the sum of the squares of Pythagorean fuzzy 

membership grades should not exceed unity. So, we have an enlarged space for PFSs as compared to IFSs. In 
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[19], Wan et al. introduced Pythagorean fuzzy number(PFN). PFSs have been further extended by introducing 

q-ROFSs[20-24]. Some novel works associated with PFSs and PFNs are proposed in [25-36]. In 2019, Jansi et 

al.[37] introduced correlation measure for Pythagorean neutrosophic sets where truthfulness and falseness are 

dependent components. Ajay et al.[38] introduced the Pythagorean neutrosophic fuzzy graphs. 

 In some real-life problems, the sum of the membership grade and non-membership grade to which an 

alternative satisfying an attribute provided by the decision-maker (DM) may be larger than 1 (e.g 0.8+0.7>1) 

and their sum of the squares is also larger than 1 (e.g 0.82+0.72>1). Thus, IFS and PFS fail to hold in such 

situations. To overcome these deficiencies, the restrictions on membership and non-membership grades are 

altered to 0 1q q    in the case of q-rung orthopair fuzzy set(q-ROFS). Even for very large values of 

“q”, we can deal with membership and non-membership grades independently to some extent. In some 

practical problems, when 1   , we obtain1 1 1q q  , which contradicts the constraint of q-ROFS. It 

makes the MADM limited and affects the optimum decision. Linear Diophantine fuzzy set (LDFS) [39] can 

deal with such situations to some extent. LDFS provides a large number of applications to the MADM for such 

real-world problems. So, through the model of LDFS, we can deal with the intuitionistic, Pythagorean, and 

q-rung orthopair nature of attributes under the effect of reference parameters  ,  . For example, let 

(0.7+0.6>1), we can introduce reference parameters  ,  such that      0.7 0.6 1   , where 

 ,  denotes the reference parameters concerning for to membership and non-membership grade 

respectively. Some recent works related to LDFS are given in [40-42]. 

    The term neutrosophy denotes the study of neutralities and it is proposed by Smarandache[43]. 

Neutrosophy can be treated as a branch of philosophy. If we consider A  be an idea or proposition or an 

axiom or theorem then its opposite notion is denoted by antiA and for completeness property we consider 

another concept known as nor A . But, some concepts are there which lie in between A and antiA , 

they are denoted by neut A . 

So, realizing the importance of the study of neutrality, Smarandache[44] introduced a neutrosophic set(NS), as 

an extension of IFS. For technical use, Wang et al. [45] introduced a single-valued neutrosophic set(SVNS). 

Some recent research works associated with NSs are in the following: data development analysis for 

simplified NS is studied in [46]. Another data envelopment analysis under a triangular neutrosophic number 

environment has been done in [47]. In [48], Edalatpanah introduced the neutrosophic structured element. 

A triangular neutrosophic linear programming model is presented in [49]. Martin et al. [50] introduced the 

COVID-19 diagnostic model by using a new pilthogenic cognitive maps approach. Debnath[51] presented the 
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neutrosophic statistical data to assess the knowledge, attitude, and symptoms of reproductive  

tract infection(RTI) among women in selected villages in India. 

By using IFS, PFS, and q-ROFS we only define the incomplete information present in the data. 

But, in real life some information is there which is partially true and partially false i.e., they are 

indeterminate or inconsistent. To overcome such problems, the concept of the neutrosophic 

theory is very helpful. For the sake of computation, throughout the paper, we use SVNS instead 

of NS. 

The main motivation behind presenting this paper is to extend the notion of LDFS to LDNS. 

Some MADM problems exist in real life which involves indeterminate attributes. To handle 

such problems we need a powerful tool to tackle. This leads to the introduction of LDNSs. 

Also, we have investigated some operations and properties based on LDNSs. Further, we have 

introduced an algorithm that can be applied successfully in solving real MADM problems with 

the help of a suitable example. 

1.1 Novelty 

There exists some real-world-based complex phenomenon that cannot be solved by using the existing fuzzy 

theories and their extensions. Such phenomenon can be tackled with addition of reference parameters that 

build a bridge between the existing theories and the physical world. For this purpose, we have introduced a 

novel concept known as linear Diophantine neutrosophic set(LDNS) to apply it in different MADM problems 

by categorizing the data using reference parameters. Therefore, the LDNS model surely provides a powerful 

mathematical tool for the further development of the neutrosophic theory. The objectives of the proposed 

study are discussed in the following manner: 

 The PNS [37, 38] is developed to generalize the PFS[18] and the SVNS with dependent neutrosophic 

components. But, in some real-life situation, the sum of squares of a membership grade, non-membership 

grade, and indeterminacy grade to an attribute provided by a decision-maker may be 2 . Such problems 

cannot be described by FS, IFS, PFS, SVNS, PNS,q-ROFS, LDFS. To remove such inadequacy, the LDNS is 

introduced to deal with a large number of MADM problems by enlarging the domain with an aid of reference 

parameters. 

For better understanding, suppose the neutrosophic triplet of an attribute provided by the decision-maker 

is 0.8,0.9,0.9 . The sum of their squares gives 2.26 2 . Corresponding to the neutrosophic triplet if we 

assign the grades of the reference parameters triplet as 0.5,0.6,0.7 . Then, 

0.8 0.5 0.9 0.6 0.9 0.7     =1.57 2 . It looks similar to the linear Diophantine equation 

ax by cz d   which is a popular topic in number theory. So, the name of the proposed model is logical in 

this sense. Thus, by introducing LDNS, we fill the research gap. 

 FS, IFS, NS, SVNS, PFS, q-ROFS, PNS cannot deal with parameters. So, by introducing reference parameters 

in LDNS, there is a huge scope for a decision-maker to address various types of MADM problems by changing 
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the physical nature of the reference parameters. 

 Define the linear Diophantine neutrosophic numbers (LDNNs) and study their properties. 

 Define a new aggregate operator called LDSVNWAGA operator that helps to obtain the rank of the alternatives. 

 Construction of a new algorithm for solving MADM problems by using the new aggregate operator. 

 Justify the algorithm with the help of a numerical application based on real life.  

 

 

1.2 Structure of the paper 

      The manuscript is organized in the following manner: Section 2 includes the basic definitions of FS, 

IFS, PFS, q-ROFS, PNS, LDFS which are useful to build the proposed study. Section 3 contains the definition 

of LDNNs and their properties. Section 4 contains the definitions of score function, accuracy function, and 

aggregate operator based on LDNNs. In Section 5, an algorithm is constructed for MADM problems. In 

Section 6, a numerical example is presented to justify the proposed algorithm. Section 7 contains a 

comparative study between the proposed and the existing theories. Conclusion and the future scope have been 

studied in Section 8. 

2. Preliminaries  

In this section, we review some basic definitions with examples that are very useful for the 

subsequent sections of this paper. 

Definition 2.1 [1, 2, 6] Let X be an initial universe and  : 0,1A X  be the membership function. 

Then a fuzzy set A is defined by  

   
 

 
,

when X is discrete

= when X is continuous

, :

,

A

A

xA
x

A x x x X

x
x









 

   

Here  A x denotes the degree of membership of x to the fuzzy set A . The value of the 

membership function  A x can be chosen by different experts may be different depending upon 

their experiences, perceptions, perspectives, etc. The collection of all fuzzy sets in X is denoted 

by I
X

. 

Example 2.1.1 Let  1 2 3 4 5, , , ,X x x x x x be a collection of beautiful students, and then the fuzzy set 

A associated with X is defined by a decision-maker (DM) as 

          1 2 3 4 5,0.5 , ,0.6 , ,1.0 , ,0.0 , ,0.3A x x x x x  

If all the membership values in A are either 0 or 1, then A reduces to a crisp set. So, a crisp set is a 

particular class of a fuzzy set. 
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Definition 2.2 [9] An intuitionistic fuzzy set(IFS) A  over the universe X is defined as 

     , , :A AA x x x x X   such that    0 1A Ax x    , x X  where 

 : 0,1A X  and  : 0,1A X  denote the membership function and the non-membership 

function, respectively. However, the hesitancy degree is given 

by      1 ,A A Ax x x x X       . 

Definition 2.3 [18, 26, 36] A Pythagorean fuzzy set(PFS) P over the universe X is defined by 

     , , :P PP x x x x X   where  , : 0,1P P X   with the restriction 

     
2 2

0 1P Px x    .  

Hence PFSs have a wide range of space of application as compared to IFSs. 

The degree of hesitancy may be computed as        
2 2

1P P PI x x x     

Definition 2.4 [20, 21] Let  1 2, ,...., n    be a finite universal set, then a q-ROFS, Q in  can be 

defined as follows: 

    , , :Q QQ         where  , : 0,1Q Q   with the condition 

     0 1
q q

Q Q      , 1q  ,    . 

The value        1
q q

Q Q Q        is called the degree of indeterminacy of Q in . 

Also,  0 1,Q       .  

Definition 2.5 [39] Let Q be the non-empty reference set. An LDFS £D on Q is an object of the form: 

£D=      , , , , :D D Q         where,      , , , 0,1D D       are membership, 

non-membership and reference parameters with the following conditions: 

   0 1,D D Q         and 0 1    . These reference parameters can help in 

defining or classifying a particular system. The hesitation part can be evaluated as: 

   1D D D       where  is the reference parameters related to the degree of 

hesitancy. 

Definition 2.6 [37, 38] Let X be a non-empty universal set. A Pythagorean neutrosophic set 

with T and F are dependent neutrosophic components A over X is an object of the form 

      , , , :A A Ax T x I x F x x X , where        , , 0,1A A AT x I x F x  , 

     2 2 20 2A A AT x I x F x    , for all x X . Here, 
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     , andA A AT x I x F x respectively denote the degree of truth membership, degree of 

indeterminacy membership, and the degree of falsity membership. 

 

 3. Linear Diophantine Neutrosophic Set(LDNS) 

Definition 3.1   

Let Q be the non-empty reference set. A LDNS £ND on Q is an object of the form: 

£ND=        , , , , , , :
ND ND ND

Q            where,      , ,
ND ND ND

      ,

, ,   [0,1] are truth-membership, indeterminacy-membership, falsity-membership, and their reference 

parameters respectively with the following conditions: 

     0 2
ND ND ND

         , Q   and 0 2      . These reference 

parameters can help in defining or classifying a particular system. The hesitation part can be evaluated as: 

      2
ND ND NDND          where  is the reference parameter related to the degree 

of indeterminacy. Simply  , , , , ,ND ND ND       is called linear Diophantine neutrosophic 

number(LDNN) with 0 2
ND ND ND

      and 0 2      . 

Since the proposed model looks similar to the well-known linear Diophantine equation ax by cz d   in 

the number theory, so LDNS is the most suitable name for the proposed model. The proposed model enhances 

the existing methodologies and the decision-maker (DM) can choose the grades with more liberty as compared 

to the other existing theories. This structure also categorizes the problem by changing the physical sense of 

reference alternatives in MADM. 

Example 3.1.1 Chemical bonding can be described as a force that binds two or more atoms together to form 

molecules or ionic compounds. Chemical bonds form because the overall energy of the bonded atoms is less 

than the atoms have separately. Atoms form bonds to attain a noble gas configuration. There are two main 

types of bonds such as ionic bonds and covalent bonds. Covalent bonds are dived into polar and non-polar 

covalent bonds. Some atoms have high electro negativity (e.g. fluorine), some have low electro negativity (e.g. 

cesium) and some are neutral (e.g. carbon) in nature.  

Let Q=  1 2 3 4 5 6, , , , ,      be a collection of atoms having different electro negativity and by 

combining two or more of them, molecule is formed. If we consider the reference or control parameters as: 

 =polar covalent bond,  =ionic bond and  =non-polar covalent bond 

Then its LDNS is given in Table 1 
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Alternatives                              LDNSs 

1   0.871,0.563,0.643 , 0.321,0.564,0.456  

2   0.862,0.573,0.776 , 0.354,0.567,0.786  

3   0.578,0.654,0.456 , 0.567,0.865,0.546  

4   0.525,0.943,0.654 , 0.324,0.456,0.567  

5   0.675,0.765,0.845 , 0.865,0.467,0.656  

6   0.456,0.678,0.897 , 0.564,0.867,0.567  

 

                                Table 1. LDNS for Molecule 

 

Definition 3.2   

A LDNS on Q of the form 1£ND =   , 1,0,0 , 1,0,0 : Q   is called absolute LDNS and  

0£ND=   , 0,1,1 , 0,1,1 : Q   is called empty or void LDNS. 

Now, we define some operations on LDNNs associated with LDNSs 

Definition 3.3   

Let  , , , , ,Q Q Q Q Q Q

Q ND ND ND       , where Q  be an assembling of LDNNs , then 

(i)  , , , , ,c Q Q Q Q Q Q

Q ND ND ND        

(ii) 1 2 1 2 1 2 1 2 1 2 1 2
1 2 , , , , ,ND ND ND ND ND ND                      

(iii) 1 2 1 2 1 2 1 2 1 2 1 2
1 2 , , , , ,ND ND ND ND ND ND                     

(iv) sup ,inf ,inf , sup ,inf ,inf
Q Q Q Q Q Q

Q ND ND ND ND ND ND
Q Q Q QQ QQ

    

     
    

 
  
  
 

  

(V) inf ,sup ,sup , inf ,sup ,sup
Q Q Q Q Q Q

Q ND ND ND ND ND ND
Q QQ Q Q QQ
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(vi) 

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 , , , , ,ND ND ND ND ND ND ND ND                       

(vii) 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

, , ,

, ,

ND ND ND ND ND ND ND ND ND ND         

         

    
   
    
 

 

(viii)    1 1 1 1 1 1
1 1 1 , , , 1 1 , , , 0ND ND ND ND ND ND

 
                  

   
 

(ix) 

       1 1 1 1 1 1
1 ,1 1 ,1 1 , ,1 1 ,1 1 , 0ND ND ND ND ND ND

   
                    

 
 

It is to be noted that LDNNs don’t obey De Morgan’s laws. It is one of the drawbacks of using LDNNs.  

Example 3.3.1   Let 

   1 20.55,0.65,0.84 , 0.56,0.64,0.46 and 0.65,0.45,0.54 , 0.66,0.34,0.36   
 

be two LDNNs. Then, we obtain the following results: 

       1 20.84,0.65,0.55 , 0.46,0.64,0.56 and 0.54,0.45,0.65 , 0.36,0.34,0.66
c c

   

 

Here, 1 2   (By definition 3.3) 

Now,  

1 2  =  0.65,0.45,0.54 , 0.66,0.34,0.36 = 2  and 1 2  = 1  

1 2  =  0.8425,0.2925,0.4536 , 0.8504,0.2176,0.1656  

1 2  =  0.3575,0.8075,0.9264 , 0.3696,0.7624,0.6544
 

For  =0.4,  1 0.273,0.841,0.932 , 0.279,0.836,0.732   

For  =0.2,  1 0.887,0.189,0.315 , 0.89,0.184,0.115   

 

Proposition 3.4     Let 1 2,   and 3 be three LDNNs then we have the following results: 

(i) If 1 2   and 2 3 1 3    (Transitivity) 

(ii) 1 2 2 1      and 1 2 2 1       (commutativity) 
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(iii)    1 2 3 1 2 3           and    1 2 3 1 2 3          (Associativity) 

(iv)      1 2 3 1 2 1 3             and      1 2 3 1 2 1 3           
 

                                                                                                                 (Distributivity) 

Proof. All proofs are straightforward. 

4. Linear Diophantine single-valued neutrosophic weighted arithmetic and geometric 

aggregation(LDSVNWAGA) operator 

In this section, we describe the score and accuracy function for the comparative analysis in MADM of 

LDNNs. The notion of score and accuracy function of neutrosophic numbers proposed by Smarandache in 

[52]. However, hybrid arithmetic and geometric aggregation operators of single-valued neutrosophic numbers 

are proposed in [53]. 

Definition 4.1 

 Let  , , , , ,Q Q Q Q Q Q

Q ND ND ND       be a LDNN, then the score function(SF) on Q can 

be defined by the mapping : ( ) [0,1]LDNN Q  and given by 

 
QQ   =    

1
2 2

3
Q Q Q Q Q Q

ND ND ND            
 

 

where ( )LDNN Q is an assembling of LDNNs on Q. 

Definition 4.2 

Let  , , , , ,Q Q Q Q Q Q

Q ND ND ND       be a LDNN, then the accuracy function(AF) on Q  

can be defined by the mapping : ( ) [ 1,1]LDNN Q    and given by 

 

 
QQ   =    

1

3
Q Q Q Q

ND ND      
 

 

Definition 4.3 

Let 
1Q and 

2Q be two LDNNs, then on the context of SF and AF we can compare the two LDNNs as 

follows: 

(i) If 
1 2Q Q

   , then 
1Q 

2Q  

(ii) If 
1 2Q Q

   , then 
1Q 

2Q  

(iii) If 
1 2Q Q

   then, 

(a) If 
1 2Q Q

   then 
1Q 

2Q  

(b) If 
1 2Q Q

   then 
1Q 

2Q  
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(c) If 
1 2Q Q

   then 
1Q 

2Q  

Definition 4.4 

Let   , , , , , : 1,2,...,
ND ND ND ND n



              be an assembling of LDNNs on the 

reference set ¥ and  1 2, ,....,
T

n    be the weight vector with
1

1
n







 , then the linear Diophantine 

single-valued neutrosophic weighted Arithmetic geometric aggregation  LDSVNWAGA  operator 

defined as  

 
1 2, ,......, nND ND NDLDSVNWAGA      

    
 

     
 

     
 1 1 1

1 1 , 1 1 1 , 1 1 1
1 1 1 1 11

jj j j j j
nn n n n nj j j j jj j j j j j j

ND ND ND ND ND ND
j j j j jj

        
     

  

             
    

   
            



5. An algorithmic approach 

For mathematical modeling, we construct an algorithm that is based on LDNNs. The steps of 

the algorithm are given in the following: 

Algorithm: 

Step1: Input the opinion of the expert’s  1,2,...,l l n  in the form of LDNNs for each attribute. 

Step2: Input the weight vector of the experts. 

Step3: Calculate the aggregate value of each attribute by using LDSVNWAGA operator 

proposed in definition 4.4 

Step4: Find the total weight of the aggregate value of each alternative. 

Step5: Rank the weight in ascending order and choose the attribute having the highest weight. 

If more than one attributes having the same weight then we repeat all the previous steps by 

reassessing the expert’s opinion. 

 

6. Numerical Example 

In this section, we cite an example of the real world that helps to realize the importance of 

LDNNs in real decision-making problems. We consider the following example: 

Suppose that Mr. Advik, together want to invest their money in any one of investment plans 

belong to the set given by 

 1 2 3 4 5, , , ,       

Where 

1 =Monthly Income Plan(MIP) 
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2 =Mutual Fund(MF) 

3 =Public Provident Fund(PPF) 

4 =Life Insurance Plan(LIP) 

5 =Unit Linked Insurance Plan(ULIP) 

According to the performance of the above investment plans, there associated three risk factors, they are 

denoted by the set of three reference parameters given by 

 , ,    , where  =low-risk investment,  =medium-risk investment, and  =high-risk 

investment. 

To choose the best investment scheme influenced by three risk factors, Mr. Advik takes the advice of three 

experts(decision-makers) denoted by the set  

 1 2 3, ,    . 

The set of LDNNs of the set of attributes of the three experts are shown below in the form of the 

following tables: 

 

Alternatives LDNSs 

1   0.8,0.9,0.7 , 0.7,0.8,0.6  

2   0.5,0.6,0.8 , 0.9,0.7,0.8  

3   0.7,0.6,0.9 , 0.5,0.8,0.6  

4   0.7,0.6,0.4 , 0.3,0.9,0.6  

5   0.9,0.8,0.6 , 0.8,0.6,0.7  

Table2. LDNS for 1 

 

Alternatives LDNSs 

1   0.6,0.8,0.8 , 0.9,0.5,0.8  

2   0.4,0.3,0.7 , 0.8,0.9,0.6  
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3   0.9,0.7,0.8 , 0.7,0.9,0.7  

4   0.7,0.8,0.7 , 0.8,0.6,0.8  

5   0.9,0.7,0.4 , 0.5,0.8,0.6  

Table3. LDNS for 2 

 

Alternatives LDNSs 

1   0.7,0.6,0.7 , 0.7,0.5,0.8  

2   0.8,0.7,0.6 , 0.7,0.6,0.5  

3   0.8,0.7,0.9 , 0.6,0.7,0.8  

4   0.8,0.7,0.6 , 0.6,0.8,0.7  

5   0.8,0.6,0.6 , 0.7,0.5,0.8  

Table4. LDNS for 3 

According to the experience of the experts, we consider the weight vector as 

  0.3, 0.4, 0.3

Now, the aggregate value of each alternative, by using LDSVNWAGA operator is given by: 

 1( ) 2.0938, 0.9499,1.3212LDSVNWAGA    

 2( ) 1.7335, 0.9318,1.031LDSVNWAGA    

 3( ) 2.4582,1.3853,1.2407LDSVNWAGA    

 4( ) 2.0399,1.3804,1.0146LDSVNWAGA    

 5( ) 2.6224,1.031,0.9207LDSVNWAGA    

Next, we calculate the total weight of the aggregate values of all the alternatives given by, 

 1  =4.3649 

  2  =3.6963 

  3  =5.0842 
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  4  =4.4349 

  5  =4.5741 

The rank of the total weight in ascending order is given by 

  2     1      4      5    3 



From the ascending order of the rank, we observe that 3 has the highest value. Thus, we conclude that Mr. 

Advik will select Public Provident Fund to invest his money and earn the maximum return in the future. 

Thus, by using the reference parameters in LDNS, we can handle another particular class of neutrosophic data. 

7. Comparison Analysis of LDNS model with the existing models in the literature 

 

Types of set Uncertainty Falsity Indeterminacy Hesitancy Parametrization 

FS[1]   × × × × 

IFS[9]     ×   × 

PFS[18]     ×   × 

q-ROFS[20]     ×   × 

SVNS[45]       × × 

PNS[37,38]         × 

LDFS[39]     ×      

LDNS(Proposed)           

              Table5. Comparison analysis of LDNS model with the existing models in the literature 

8. Conclusion and Future Scope 

In this work, we have introduced the notion of LDNS which can be viewed as an extension of FS, IFS, PFS, 

q-ROFS, PNS, etc. LDNS is a new structure that deals with uncertainty and indeterminacy with the support of 

reference parameters. The LDNS model can transform the problem related to the physical world into 

numerical form due to its parametric nature. Therefore, it provides more flexibility to handle uncertainty as 

compared to the existing theories. We have discussed some properties of LDNSs. For comparison of 

LDNNs, we have defined score and accuracy functions. Moreover, we have introduced LDSVNWAGA 

operator for solving MADM problems with the help of an algorithm. We have presented an illustrative 

example to give a practical application of the proposed method. Finally, we have presented the comparative 

analysis of the proposed model and the existing models which gives a clear picture to the researchers of the 

importance of this study and it will surely motivate them to enrich the present study by introducing many other 

important theories and results associated to LDNNs and apply them in various practical applications.  

In the future, we hope that there is a huge scope for the researchers and the policymakers(decision-makers) to 
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explore several practical real-world applications related to topics based on linear Diophantine interval 

neutrosophic set(LDINS), linear Diophantine neutrosophic rough set(LDNRS), linear Diophantine 

neutrosophic graph(LDNG), linguistic linear Diophantine neutrosophic set(LLDNS), linear Diophantine 

hesitant neutrosophic set(LDHNS). The proposed study may be further extended by introducing TOPSIS, 

VIKOR, AHP, aggregate operators, several distance-based similarity measures.  

Conflict of Interest The author has no conflict of interest regarding the publication of the article with anyone.  
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Abstract: In this research, we introduce an algebraic approach to define the concept of neutrosophic 

maximum likelihood estimation method based on neutrosophic continuous probability 

distributions based on classical neutrosophic numbers of the form 𝑁 = 𝑎 + 𝑏𝐼; 𝐼2 = 𝐼  i.e., 𝐼  is a 

letter not a numerical set. We prove that the neutrosophic loglikelihood function gives the same 

estimators given by neutrosophic likelihood function. Also, we present the concept of neutrosophic 

moments estimation method which produces system of neutrosophic equations to derive the 

neutrosophic estimators using an algebraic isomorphism. Estimators based on two mentioned 

methods were derived successfully for some neutrosophic continuous probability distributions. 

Concept of neutrosophic Fisher information is also presented. Theorems were proved using an 

algebraic approach depending on the one-dimensional AH-Isometry. A simulation study is also 

presented to show the efficiency of the presented estimators. 

 

Keywords: AH Isometry; Neutrosophic Field of Reals; Maximum Likelihood; Moments; Probability 

Density Functions; Neutrosophic Fisher Information. 

 

 

1. Introduction 

Neutrosophic field of reals is an extension to field of reals adding new algebraic structure 𝐼 satisfies 

𝐼2 = 𝐼 so we get 𝑅(𝐼) = 𝑅 ∪ {𝐼} = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏 ∈ 𝑅 , 𝐼2 = 𝐼} which is neutrosophic field of reals. [1] 

Many mathematical studies were done based on the neutrosophic set of reals in many fields of 

abstract mathematics including abstract algebra, probability theory, topology, number theory, etc.[2-

7]. 

In [8] Abobala and Hatip presented an isometry called AH-Isometry which transfers mathematical 

problems from 𝑅(𝐼) to 𝑅 × 𝑅 and an inverse isometry transfers the mathematical problem from 𝑅 ×

𝑅 to 𝑅(𝐼). This isometry is very applicable to solve and study many types of mathematical problems 

including real analysis, complex analysis, algebraic structures, probability theory, operations 

research, etc. 
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Many previous studies about neutrosophic probability theory were done assuming that parameters 

of probability distribution functions are indeterminant, i.e. parameter 𝜃 is an interval neutrosophic 

number, so it can be noted by 𝜃𝑁 ∈ [𝜃𝐿 , 𝜃𝑈].[9-15] 

In [16], [17] Zahid Khan, Sultan Salem et al. presented neutrosophic lognormal model and studied its 

critical properties then applied this model to environmental data and in lifetime data where they 

treated problems with interval neutrosophic numbers, in [18] Zahid Khan et al. presented 

neutrosophic gamma distribution and applied it to a real dataset for the purpose of dealing with 

inaccurate statistical data which is also described by interval neutrosophic numbers. Many other 

extensions were done to other types of distributions like neutrosophic exponential distribution, 

neutrosophic maxwell distribution, etc. and these extensions were applied successfully in may real 

datasets. [19-21]. Notice that all the mentioned studies are done by using neutrosophic interval 

numbers 𝑁 = 𝑑 + 𝐼 where 𝐼 ∈ [𝑎, 𝑏] and not neutrosophic classical numbers of the form 𝑁 = 𝑎 +

𝑏𝐼, 𝐼2 = 𝐼 and this is the main difference between our study and the previous studies, so, we are going 

to study neutrosophic probability distribution assuming that there is uncertainty in its parameters 

and the random variable itself, i.e. 𝑓(𝑥; 𝜃) is 𝑓(𝑥𝑁; 𝜃𝑁) based on its algebraic structure, i.e. 𝑥𝑁 = 𝑥 +

𝑦𝐼, 𝜃𝑁 = 𝜃1 + 𝜃2𝐼 ; 𝑥, 𝑦, 𝜃1, 𝜃2 ∈ 𝑅 , 𝐼2 = 𝐼 , 0 ∙ 𝐼 = 0  by using AH-Isometry which will transfer each 

neutrosophic probability density function into two crisp probability distribution functions. Based on 

this transformation we have successfully defined the neutrosophic log-likelihood function and 

studied its properties then found estimators of neutrosophic probability distributions based on 

maximum likelihood estimation method, also on the same algorithm we have succeed to define 

moments estimation method and finally the neutrosophic fisher information about the estimated 

parameters. One can also define many other estimation methods based on the same algorithm 

presented in this paper. Many examples were solved successfully and estimators of many 

neutrosophic probability distributions were successfully derived. 

2. Preliminaries 

Definition 2.1 [5] [8] 

Let 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏 ∈ 𝑅 , 𝐼2 = 𝐼, 0 ∙ 𝐼 = 0}  be the neutrosophic field of reals. The one-

dimensional AH-isometry is defined as follows: 

𝑇: 𝑅(𝐼) → 𝑅2 ∶  𝑇(𝑎 + 𝑏𝐼) = (𝑎, 𝑎 + 𝑏)    (1) 

And its inverse is defined as follows: 

𝑇−1: 𝑅2 → 𝑅(𝐼) ∶  𝑇−1(𝑎, 𝑏) = 𝑎 + (𝑏 − 𝑎)𝐼        (2) 

Remark: 

We will call the form 𝑎 + 𝑏𝐼 the formal of a neutrosophic number. 

Definition 2.2  [6] 

Let 𝑓: 𝑅(𝐼) → 𝑅(𝐼); 𝑓 = 𝑓(𝑥𝑁)  where 𝑥𝑁 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼)  then 𝑓  is called a neutrosophic real 

function with one neutrosophic variable. 

Definition 2.3 [1] 

A neutrosophic random variable can be defined as follows: [6] [22] 

𝑋𝑁 = 𝑋 + 𝑌𝐼 ; 𝐼2 = 𝐼 , 0 ∙ 𝐼 = 0          (3) 

Where 𝑋, 𝑌 are crisp random variables taking values on 𝑅. 

Definition 2.4 [4] 

Let 𝑅(𝐼) be the neutrosophic field of reals, and let 𝑎𝑁 = 𝑎1 + 𝑎2𝐼, 𝑏𝑁 = 𝑏1 + 𝑏2𝐼 ∈ 𝑅(𝐼). We say 

that 𝑎𝑁 ≥𝑁 𝑏𝑁 iff: 
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𝑎1 ≥ 𝑏1 and 𝑎1 + 𝑎2 ≥ 𝑏1 + 𝑏2 

Definition 2.5 [22] 

Let 𝑅(𝐼) be the neutrosophic field of reals, the neutrosophic logarithmic function can be defined 

as: 

𝑙𝑛(𝑥 + 𝑦𝐼) = 𝑙𝑛 𝑥 + [𝑙𝑛(𝑥 + 𝑦) − 𝑙𝑛(𝑥)]𝐼, where 𝑥 + 𝑦𝐼 >𝑁 0. 

3. Results and Discussion 

Definition 3.1 

Suppose that 𝕏𝑁 = 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 is a sequence of neutrosophic random variables, we say that  

𝕏𝑁  is a neutrosophic random sample drawn from neutrosophic random variable 𝑋𝑁  if 

𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 are dependent and have the same probability distribution as 𝑋𝑁. 

Definition 3.2 

Let 𝕏𝑁 be a random sample drawn from 𝑋𝑁, we call the function: 

𝐿𝑁 = 𝐿(𝕏𝑁; Θ𝑁) = 𝑓(𝕏𝑁; Θ𝑁) = ∏ 𝑓(𝑋𝑖𝑁; Θ𝑁)𝑛
𝑖=1     (4) 

The neutrosophic likelihood function where Θ𝑁 = Θ1 + Θ2𝐼 = (𝜃1𝑁 , 𝜃2𝑁 , … , 𝜃𝑟𝑁)  is a vector of 

unknown parameters. 

Theorem 1 

The formal form of neutrosophic likelihood function 𝐿𝑁 is: 

𝐿𝑁 = 𝐿(𝕏𝑁; Θ𝑁) = 𝐿(𝕏; Θ1) + [𝐿(𝕏 + 𝕐; Θ1 + Θ2) − 𝐿(𝕏; Θ1)]𝐼  (5) 

Proof: 

Using the one-dimensional AH-Isometry: 

𝑇(𝐿(𝕏𝑁; Θ𝑁)) = 𝑇 (∏ 𝑓(𝑥𝑖 + 𝑦𝑖𝐼; Θ1 + Θ2𝐼)

𝑛

𝑖=1

) 

= ∏ 𝑓((𝑥𝑖 , 𝑥𝑖 + 𝑦𝑖); (Θ1, Θ1 + Θ2))

𝑛

𝑖=1

 

= (∏ 𝑓(𝑥𝑖 ; Θ1)𝑛
𝑖=1 , ∏ 𝑓(𝑥𝑖 + 𝑦𝑖; Θ1 + Θ2)𝑛

𝑖=1 )     (6) 

Now taking the inverse isometry 𝑇−1: 

𝐿(𝕏𝑁; Θ𝑁) = 𝑇−1 ((∏ 𝑓(𝑥𝑖 ; Θ1)

𝑛

𝑖=1

, ∏ 𝑓(𝑥𝑖 + 𝑦𝑖 ; Θ1 + Θ2)

𝑛

𝑖=1

)) 

= ∏ 𝑓(𝑥𝑖 , Θ1)

𝑛

𝑖=1

+ [∏ 𝑓(𝑥𝑖 + 𝑦𝑖 ; Θ1 + Θ2)

𝑛

𝑖=1

− ∏ 𝑓(𝑥𝑖 , Θ1)

𝑛

𝑖=1

] 𝐼 

= 𝐿(𝕏; Θ1) + [𝐿(𝕏 + 𝕐; Θ1 + Θ2) − 𝐿(𝕏; Θ1)]𝐼     (7) 

Definition 3.3 

We call  ℒ𝑁 = 𝑙𝑛 𝐿(𝕏𝑁; Θ𝑁) the neutrosophic loglikelihood function. 

Theorem 2 

The formal form of neutrosophic loglikelihood function is: 

ℒ𝑁 = ℒ(𝕏; Θ1) + [ℒ(𝕏 + 𝕐; Θ1 + Θ2) − ℒ(𝕏; Θ1)]𝐼  (8) 

Proof: 

Similar to theorem 1. 

Definition 3.4 
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The neutrosophic statistic Θ̂𝑁  based on random sample that maximize the neutrosophic 

likelihood function is called the neutrosophic likelihood estimator. 

Theorem 3 

The neutrosophic statistic based on random sample that maximize the neutrosophic likelihood 

function is the same statistic that maximize the neutrosophic loglikelihood function. 

Proof: 

The neutrosophic statistic Θ̂𝑁  that maximize the likelihood function fulfills the following 

conditions: 
𝜕

𝜕Θ𝑁
𝐿(𝕏𝑁; Θ𝑁)|Θ𝑁= Θ̂𝑁

= 0 ,
𝜕2

𝜕Θ𝑁
2 𝐿(𝕏𝑁; Θ𝑁)|Θ𝑁= Θ̂𝑁

<𝑁 0   (9) 

Using theorem 1 the conditions become: 
𝜕𝐿(𝕏;Θ1)|Θ1= Θ̂1

𝜕Θ1
+ [

𝜕𝐿(𝕏+𝕐;Θ1+Θ2)|Θ1+Θ2= Θ̂1+Θ̂2

𝜕(Θ1+Θ2)
−

𝜕𝐿(𝕏;Θ1)|Θ1= Θ̂1

𝜕Θ1
] 𝐼 = 0  (10) 

Which means that: 
𝜕

𝜕Θ1
𝐿(𝕏; Θ1)|Θ1= Θ̂1

= 0      (11) 

𝜕

𝜕(Θ1+Θ2)
𝐿(𝕏 + 𝕐; Θ1 + Θ2)|Θ1+Θ2=Θ̂1+Θ̂2

= 0  (12) 

The same to the second condition which yields to: 
𝜕2

𝜕Θ1
2 𝐿(𝕏; Θ1)|Θ1= Θ̂1

< 0      (13) 

𝜕2

𝜕(Θ1+Θ2)2 𝐿(𝕏 + 𝕐; Θ1 + Θ2)|Θ1+Θ2= Θ̂1+Θ̂2
< 0 (14) 

If we apply the same conditions to the neutrosophic loglikelihood function we get: 
𝜕

𝜕Θ𝑁
ℒ𝑁 =

𝜕ℒ(𝕏;Θ1)|Θ1= Θ̂1

𝜕Θ1
+ [

𝜕ℒ(𝕏+𝕐;Θ1+Θ2)|Θ1+Θ2= Θ̂1+Θ̂2

𝜕(Θ1+Θ2)
−

𝜕ℒ(𝕏;Θ1)|Θ1= Θ̂1

𝜕Θ1
] 𝐼 = 0  (15) 

Since ℒ𝑁 = 𝑙𝑛 𝐿𝑁, we know that 
𝜕

𝜕Θ𝑁
ℒ𝑁 =

𝜕

𝜕Θ𝑁
𝑙𝑛𝐿𝑁 =

𝜕

𝜕Θ𝑁
𝐿𝑁

𝐿𝑁
  

So, the first condition become: 
𝜕

𝜕Θ1
𝐿(𝕏;Θ1)

𝐿(𝕏;Θ1)
|Θ1= Θ̂1

+ [

𝜕

𝜕(Θ1+Θ2)
𝐿(𝕏+𝕐;Θ1+Θ2)

𝐿(𝕏+𝕐;Θ1+Θ2)
|Θ1+Θ2= Θ̂1+Θ̂2

−

𝜕

𝜕Θ1
𝐿(𝕏;Θ1)

𝐿(𝕏;Θ1)
|Θ1= Θ̂1

] 𝐼 = 0 (16) 

Which means that both following equations hold: 
𝜕

𝜕Θ1
𝐿(𝕏;Θ1)

𝐿(𝕏;Θ1)
|Θ1= Θ̂1

= 0      (17) 
𝜕

𝜕(Θ1+Θ2)
𝐿(𝕏+𝕐;Θ1+Θ2)

𝐿(𝕏+𝕐;Θ1+Θ2)
|Θ1+Θ2= Θ̂1+Θ̂2

= 0   (18) 

And this yields to: 
𝜕

𝜕Θ1
𝐿(𝕏; Θ1)|Θ1= Θ̂1

= 0      (19) 

𝜕

𝜕(Θ1+Θ2)
𝐿(𝕏 + 𝕐; Θ1 + Θ2)|Θ1+Θ2= Θ̂1+Θ̂2

= 0  (20) 

And these are the same equations as (11), (12). 

Same proof can be applied to the second condition. 

Example 1:  

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density of neutrosophic 

power distribution: 

𝑓(𝑥𝑁; 𝜃𝑁) = 𝜃𝑁𝑥𝑁
𝜃𝑁−1

; 0 ≤𝑁 𝑥𝑁 ≤𝑁 1 

Let’s take AH-Isometry to 𝑓(𝑥𝑁; 𝜃𝑁): 

𝑇[𝑓(𝑥𝑁; 𝜃𝑁)] = 𝑇[𝜃𝑁𝑥𝑁
𝜃𝑁−1

] = 𝑇[(𝜃1 + 𝜃2𝐼)(𝑥 + 𝑦𝐼)(𝜃1+𝜃2𝐼)−1]       

         = 𝑇[(𝜃1 + 𝜃2𝐼)]𝑇[(𝑥 + 𝑦𝐼)(𝜃1+𝜃2𝐼)−1]             

 = 𝑇[(𝜃1 + 𝜃2𝐼)]𝑇[(𝑥 + 𝑦𝐼)]𝑇[(𝜃1+𝜃2𝐼)−1] 

= (𝜃1, 𝜃1 + 𝜃2)(𝑥, 𝑥 + 𝑦)(𝜃1,𝜃1+𝜃2)−(1,1)  
= (𝜃1𝑥𝜃1−1, (𝜃1 + 𝜃2)(𝑥 + 𝑦)(𝜃1+𝜃2)−1) 

= (𝑓(𝑥; 𝜃1), 𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)) 
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So, by applying equation (15) considering properties of probability density functions we get: 

𝑇 [
𝜕

𝜕𝜃𝑁

𝑙𝑛 𝐿(𝕏𝑁; 𝜃𝑁)] = (∑
𝜕

𝜕𝜃1

𝑙𝑛 𝑓(𝑥𝑖; 𝜃1)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 𝑓(𝑥𝑖 + 𝑦𝑖 ; 𝜃1 + 𝜃2)

𝑛

𝑖=1

) 

= (∑
𝜕

𝜕𝜃1

𝑙𝑛(𝜃1𝑥𝑖
𝜃1−1

)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 ((𝜃1 + 𝜃2)(𝑥𝑖 + 𝑦𝑖)(𝜃1+𝜃2)−1)

𝑛

𝑖=1

) 

= (∑
𝜕 𝑙𝑛 𝜃1

𝜕𝜃1

+
𝜕(𝜃1 − 1) 𝑙𝑛 𝑥𝑖

𝜕𝜃1

𝑛

𝑖=1

, ∑
𝜕 𝑙𝑛(𝜃1 + 𝜃2)

𝜕(𝜃1 + 𝜃2)
+

𝜕(𝜃1 + 𝜃2 − 1) 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)

𝜕(𝜃1 + 𝜃2)

𝑛

𝑖=1

) 

= (∑
1

𝜃1

+ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

, ∑
1

𝜃1 + 𝜃2

+ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

) = (
𝑛

𝜃1

+ ∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

,
𝑛

𝜃1 + 𝜃2

+ ∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

) 

𝑇 [
𝜕

𝜕𝜃𝑁

𝑙𝑛 𝐿(𝕏𝑁; 𝜃𝑁)] = 𝑇[0] 

(
𝑛

�̂�1

+ ∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

,
𝑛

�̂�1 + �̂�2

+ ∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

) = (0,0) 

(�̂�1, �̂�1 + �̂�2) = (−
𝑛

∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

, −
𝑛

∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

) 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1 (−
𝑛

∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

, −
𝑛

∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

) 

⇒ �̂�𝑁 = −
𝑛

∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

+ [−
𝑛

∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

+
𝑛

∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

] 𝐼 

Example 2: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density of neutrosophic 

Maxwell distribution: 

𝑓(𝑥𝑁; 𝜃𝑁) = √
2

𝜋
𝜃𝑁

3

2 𝑥𝑁
2 𝑒−

1

2
𝜃𝑁𝑥𝑁

2

; 𝑥𝑁 >𝑁 0 

So: 

(∑
𝜕

𝜕𝜃1

𝑙𝑛 𝑓(𝑥𝑖; 𝜃1)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 𝑓(𝑥𝑖 + 𝑦𝑖 ; 𝜃1 + 𝜃2)

𝑛

𝑖=1

) = (0,0) 

(∑
𝜕

𝜕𝜃1

𝑙𝑛 (√
2

𝜋
𝜃1

3

2𝑥2𝑒−
1

2
𝜃1𝑥2

)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 (√

2

𝜋
(𝜃1 + 𝜃2)

3

2(𝑥 + 𝑦)2𝑒−
1

2
(𝜃1+𝜃2)(𝑥+𝑦)2

)

𝑛

𝑖=1

) = (0,0) 

(
3𝑛

2�̂�1

−
1

2
∑ 𝑥𝑖

2

𝑛

𝑖=1

,
3𝑛

2(�̂�1 + �̂�2)
− ∑(𝑥𝑖 + 𝑦𝑖)2

𝑛

𝑖=1

) = (0,0) 

(�̂�1, �̂�1 + �̂�2) = (
3𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

,
3𝑛

∑ (𝑥𝑖 + 𝑦𝑖)2𝑛
𝑖=1

) 

Taking 𝑇−1: 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1 (
3𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

,
3𝑛

∑ (𝑥𝑖 + 𝑦𝑖)2𝑛
𝑖=1

) 

�̂�𝑁 =
3𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

+ [
3𝑛

∑ (𝑥𝑖 + 𝑦𝑖)2𝑛
𝑖=1

−
3𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

] 𝐼 

Example 3: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density of neutrosophic 

exponential distribution: 

𝑓(𝑥𝑁; 𝜃𝑁) =
1

𝜃𝑁

𝑒
−

𝑥𝑁
𝜃𝑁   ;    𝑥𝑁 >𝑁 0 

So: 

(∑
𝜕

𝜕𝜃1

𝑙𝑛 𝑓(𝑥𝑖; 𝜃1)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 𝑓(𝑥𝑖 + 𝑦𝑖 ; 𝜃1 + 𝜃2)

𝑛

𝑖=1

) = (0,0) 
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(∑
𝜕

𝜕𝜃1

𝑙𝑛
1

𝜃1

𝑒
−

𝑥

𝜃1

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛

1

𝜃1 + 𝜃2

𝑒
−

(𝑥+𝑦)

(𝜃1+𝜃2)

𝑛

𝑖=1

) = (0,0) 

(−
𝑛

�̂�1

+
𝑛�̅�

𝜃1
2 , −

𝑛

�̂�1 + �̂�2

+
𝑛�̅� + 𝑛�̅�

(�̂�1 + �̂�2)
2) = (0,0) 

(�̂�1, �̂�1 + �̂�2) = (�̅�, �̅� + �̅�) 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1(�̅�, �̅� + �̅�) 

⇒ �̂�𝑁 = �̅� + �̅�𝐼 

Definition 3.5 

Let 𝑋𝑁  be a neutrosophic random variable, we call 𝛼𝑘𝑁 = 𝐸(𝑋𝑁
𝑘)  the kth moment of the 

neutrosophic random variable 𝑋𝑁. 

Definition 3.6 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the neutrosophic random 

variable 𝑋𝑁, we call 𝐴𝑘𝑁(𝑋) =
1

𝑛
∑ 𝑋𝑖𝑁

𝑘𝑛
𝑖=1  the sample moment of order k. 

Definition 3.7 

The parameter that satisfies the following system of equations: 

𝛼𝑘𝑁 = 𝐴𝑘𝑁(𝑋)     (21) 

Is called the moments estimator where k is the number of unknown parameters. 

Theorem 4 

Equations (21) can be written in 𝑅2 in the following form: 

(∫ 𝑥𝑘𝑓(𝑥; 𝜃1)
+∞

−∞
𝑑𝑥, ∫ (𝑥 + 𝑦)𝑘𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)

+∞

−∞
𝑑(𝑥 + 𝑦)) = (

1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1 ,

1

𝑛
∑ (𝑥𝑖 + 𝑦𝑖)𝑘𝑛

𝑖=1 ) (22) 

Proof: 

𝛼𝑘𝑁 = 𝛼𝑘𝑁(𝜃𝑁) = 𝐸(𝑋𝑁
𝑘) = ∫ 𝑥𝑁

𝑘 𝑓(𝑥𝑁; 𝜃𝑁)
+∞

−∞
𝑑𝑥𝑁   (23) 

Taking AH-Isometry: 

𝑇[𝛼𝑘𝑁] = 𝑇[𝐸(𝑋𝑁
𝑘)] = 𝑇 [∫ 𝑥𝑁

𝑘 𝑓(𝑥𝑁; 𝜃𝑁)
+∞

−∞

𝑑𝑥𝑁] 

= (∫ 𝑥𝑘𝑓(𝑥; 𝜃1)
+∞

−∞
𝑑𝑥, ∫ (𝑥 + 𝑦)𝑘𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)

+∞

−∞
𝑑(𝑥 + 𝑦))  (24) 

Also: 

𝐴𝑘𝑁(𝑋) =
1

𝑛
∑ 𝑋𝑖𝑁

𝑘𝑛
𝑖=1     (25) 

And taking the AH-Isometry: 

𝑇[𝐴𝑘𝑁(𝑋)] = 𝑇 [
1

𝑛
∑ 𝑋𝑖𝑁

𝑘𝑛
𝑖=1 ] = (

1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1 ,

1

𝑛
∑ (𝑥𝑖 + 𝑦𝑖)𝑘𝑛

𝑖=1 )  (26) 

Equations (24) and (26) proves the theorem. 

e.g., for one parameter, we substitute 𝑘 = 1: 

(∫ 𝑥𝑓(𝑥; 𝜃1)
+∞

−∞
𝑑𝑥, ∫ (𝑥 + 𝑦)𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)

+∞

−∞
𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) (27) 

for two parameters, we substitute 𝑘 = 2: 

(∫ 𝑥2𝑓(𝑥; 𝜃1)
+∞

−∞
𝑑𝑥, ∫ (𝑥 + 𝑦)2𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)

+∞

−∞
𝑑(𝑥 + 𝑦)) = (

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ,

1

𝑛
∑ (𝑥𝑖 + 𝑦𝑖)2𝑛

𝑖=1 ) (28) 

And so on. 

Example 4: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density given in example 

1, then to find the moments estimator we have to solve the equation: 

α1𝑁 = 𝐴1𝑁 

(∫ 𝑥𝑓(𝑥; 𝜃1)
+∞

−∞

𝑑𝑥, ∫ (𝑥 + 𝑦)𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)
+∞

−∞

𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) 
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(∫ 𝑥𝜃1𝑥𝜃1−1
1

0

𝑑𝑥, ∫ (𝑥 + 𝑦)(𝜃1 + 𝜃2)(𝑥 + 𝑦)𝜃1+𝜃2−1
1

0

𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) 

(
�̂�1

�̂�1 + 1
,

�̂�1 + �̂�2

�̂�1 + �̂�2 + 1
) = (�̅�, �̅� + �̅�) 

(�̂�1, �̂�1 + �̂�2) = (
�̅�

1 − �̅�
,

�̅� + �̅�

1 − (�̅� + �̅�)
) 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1 (
�̅�

1 − �̅�
,

�̅� + �̅�

1 − (�̅� + �̅�)
) 

�̂�𝑁 = �̂�1 + �̂�2𝐼 =
�̅�

1 − �̅�
+ [

�̅� + �̅�

1 − (�̅� + �̅�)
−

�̅�

1 − �̅�
] 𝐼 

Example 5: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density given in example 

2, then to find the moments estimator we have to solve the equation: 

Using equation (27): 

(∫ 𝑥√
2

𝜋
𝜃1

3

2𝑥2𝑒−
1

2
𝜃1𝑥2

+∞

0

𝑑𝑥, ∫ (𝑥 + 𝑦)√
2

𝜋
(𝜃1 + 𝜃2)

3

2(𝑥 + 𝑦)2𝑒−
1

2
(𝜃1+𝜃2)(𝑥+𝑦)2

+∞

0

𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) 

(√
8

𝜋�̂�1

, √
8

𝜋(�̂�1 + 𝜃2)
) = (�̅�, �̅� + �̅�) 

(�̂�1, �̂�1 + �̂�2) = (
8

𝜋�̅�2
,

8

𝜋(�̅� + �̅�)2
) 

�̂�𝑁 = 𝑇−1 (
8

𝜋�̅�2
,

8

𝜋(�̅� + �̅�)2
) =

8

𝜋�̅�2
+ [

8

𝜋(�̅� + �̅�)2
−

8

𝜋�̅�2
] 𝐼 

Example 6: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density given in example 

3, then to find the moments estimator we have to solve the equation: 

Using equation (27): 

(∫ 𝑥
1

𝜃1

𝑒
−

𝑥

𝜃1

+∞

0

𝑑𝑥, ∫ (𝑥 + 𝑦)
1

𝜃1 + 𝜃2

𝑒
−

(𝑥+𝑦)

(𝜃1+𝜃2)

+∞

0

𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) 

(�̂�1, �̂�1 + �̂�2) = (�̅�, �̅� + �̅�) 
𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1(�̅�, �̅� + �̅�) 

�̂�𝑁 = �̅� + �̅�𝐼 

Definition 3.8 

We call the partial derivative of neutrosophic log-likelihood function the neutrosophic score 

function and we denote it by: 

𝑈(𝕏𝑁; 𝜃𝑁) =
𝜕

𝜕𝛩𝑁
ℒ𝑁      (29) 

Remark: 

Notice that equation (29) is a neutrosophic random sample since it is a function of 𝕏N. 

Theorem 5 

Expected value of neutrosophic score function is equal to zero. 

Proof: 

𝑇[∫ 𝐿(𝕩𝑁; 𝛩𝑁)
+∞

−∞
𝑑𝕩𝑁] = 𝑇[1]  (30) 

Where ∫ 𝐿(𝕩𝑁; Θ𝑁)
+∞

−∞
𝑑𝕩𝑁 = 1  because 𝐿(𝕩𝑁; Θ𝑁)  is a neutrosophic probability density 

function. 

𝑇 [
𝜕

𝜕Θ𝑁
∫ 𝐿(𝕩𝑁; Θ𝑁)

+∞

−∞
𝑑𝕩𝑁] = 𝑇 [

𝜕

𝜕𝛩𝑁
1]  (31) 
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(
𝜕

𝜕Θ1
∫ 𝐿(𝕩; Θ1)

+∞

−∞
𝑑𝕩,

𝜕

𝜕(Θ1+Θ2)
∫ 𝐿(𝕩 + 𝕪; Θ1 + Θ2)

+∞

−∞
𝑑(𝕩 + 𝕪)) = (0,0) (32) 

(∫
𝜕

𝜕Θ1
𝑙𝑛 𝐿(𝕩; Θ1) 𝐿(𝕩; Θ1)

+∞

−∞
𝑑𝑥1, ∫

𝜕

𝜕(Θ1+Θ2)
𝑙𝑛 𝐿(𝕩 + 𝕪; Θ1 + Θ2) 𝐿(𝕩 + 𝕪; Θ1 + Θ2)

+∞

−∞
𝑑(𝕩 + 𝕪)) =

(0,0) (33) 

(𝐸 [
𝜕

𝜕Θ1
𝑙𝑛 𝐿(𝕏; Θ1)] , 𝐸 [

𝜕

𝜕(Θ1+Θ2)
𝑙𝑛 𝐿(𝕏 + 𝕐; Θ1 + Θ2)]) = (0,0)  (34) 

(𝐸[𝑈(𝕏; Θ1)], 𝐸[𝑈(𝕏 + 𝕐; Θ1 + Θ2)]) = (0,0)  (35) 

Taking 𝑇−1 get: 

𝐸(𝑈(𝕏𝑁; 𝜃𝑁)) = 0   (36) 

Definition 3.9 

We will call variance of neutrosophic score function the neutrosophic Fisher information about 

the neutrosophic parameter 𝛩𝑁 (𝑁𝐹𝐼𝑛(𝛩𝑁)) i.e.: 

𝑁𝐹𝐼𝑛(𝛩𝑁) = 𝑉𝑎𝑟(𝑈(𝕏𝑁; 𝜃𝑁)) = 𝐸(𝑈2(𝕏𝑁; 𝜃𝑁))   (37) 

Theorem 6 

𝑉𝑎𝑟(𝑈(𝕏𝑁; 𝜃𝑁)) = 𝐸([𝑈(𝕏𝑁; 𝜃𝑁)]2) = −𝑛𝐸 (
𝜕

2
𝑙𝑛 𝑓(𝑥𝑁;𝜃𝑁)

𝜕𝜃𝑁
2 )   (38) 

Proof: 
𝜕

𝜕Θ𝑁
𝐸(𝑈(𝕏𝑁; 𝜃𝑁)) = 0    (39) 

𝑇 [
𝜕

𝜕Θ𝑁
𝐸(𝑈(𝕏𝑁; 𝜃𝑁))] = 𝑇[0]   (40) 

(
𝜕

𝜕Θ1
∫

𝜕

𝜕Θ1
𝑙𝑛 𝐿(𝕩; Θ1) 𝐿(𝕩; Θ1)

+∞

−∞
𝑑𝕩,

𝜕

𝜕(Θ1+Θ2)
∫

𝜕

𝜕(Θ1+Θ2)
𝑙𝑛 𝐿(𝕩 + 𝕪; Θ1 + Θ2) 𝐿(𝕩 + 𝕪; Θ1 +

+∞

−∞

Θ2) 𝑑(𝕩 + 𝕪))       (41) 

(∫ (
𝜕2 𝑙𝑛 𝐿(𝕩;Θ1)𝐿(𝕩;Θ1)

𝜕Θ1
2 +

𝜕𝐿(𝕩;Θ1)

𝜕Θ1

𝜕 𝑙𝑛 𝐿(𝕩;Θ1)

𝜕Θ1
)

+∞

−∞
𝑑𝕩, (∫

𝜕2 𝑙𝑛 𝐿(𝕩+𝕪;Θ1+Θ2)𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)2

+∞

−∞
+

𝜕𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)

𝜕 𝑙𝑛 𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)
) 𝑑(𝕩 + 𝕪)) = (0,0)   (42) 

( ∫ (
𝜕2 𝑙𝑛 𝐿(𝕩;Θ1)𝐿(𝕩;Θ1)

𝜕Θ1
2 + (

𝜕 𝑙𝑛 𝐿(𝕩;Θ1)

𝜕Θ1
)

2

𝐿(𝕩; Θ1))
+∞

−∞
𝑑𝕩, ∫  

+∞

−∞
(

𝜕2 𝑙𝑛 𝐿(𝕩+𝕪;Θ1+Θ2)𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)2 +

(
𝜕 𝑙𝑛 𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)
)

2

𝐿(𝕩 + 𝕪; Θ1 + Θ2)) 𝑑(𝕩 + 𝕪)) = (0,0)    (43) 

(𝐸 (
𝜕2 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
2 ) + 𝐸 (

𝜕 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
)

2

, 𝐸 (
𝜕2 𝑙𝑛 𝐿(𝕏+𝕐;Θ1+Θ2)

𝜕(Θ1+Θ2)2 ) + 𝐸 (
𝜕 𝑙𝑛 𝐿(𝕏+𝕐;Θ1+Θ2)

𝜕(Θ1+Θ2)
)

2

) = (0,0) (44) 

𝐸 [
𝜕2 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
2 ] + 𝐸 [(

𝜕 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
)

2

] + [𝐸 [(
𝜕2 𝑙𝑛 𝐿(𝕏+𝕐;Θ1+Θ2)

𝜕(Θ1+Θ2)2 )
2

] + 𝐸 [(
𝜕 𝑙𝑛 𝐿(𝕏+𝕐;Θ1+Θ2)

𝜕(Θ1+Θ2)
)

2

] −

(𝐸 [
𝜕2 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
2 ] + 𝐸 [(

𝜕 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
)

2

])] 𝐼 = 0      (45) 

𝐸 [
𝜕2

𝜕Θ𝑁
2 𝑙𝑛 𝐿(𝕏𝑁; Θ𝑁)] + 𝐸 [(

𝜕

𝜕Θ𝑁
𝑙𝑛 𝐿(𝕏𝑁; Θ𝑁))

2

] = 0  (46) 

𝐸([𝑈(𝕏𝑁; 𝜃𝑁)]2) = −𝑛𝐸 (
𝜕

2
𝑙𝑛 𝑓(𝑥𝑁;𝜃𝑁)

𝜕𝜃𝑁
2 )    (47) 

Theorem 7 

Neutrosophic Fisher information can be written in the following form: 

𝑁𝐹𝐼𝑛(𝜃𝑁) = 𝐹𝐼𝑛(𝜃1) + [𝐹𝐼𝑛(𝜃1 + 𝜃2) − 𝐹𝐼𝑛(𝜃1)]𝐼   (48) 

Where: 

𝐹𝐼𝑛(𝜃) = 𝑛𝐸
𝜕2

𝜕𝜃2 𝑙𝑛 𝑓(𝑥; 𝜃)     (49) 
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Proof: 

Using equations (47) and properties of AH-Isometry we get: 

𝑁𝐹𝐼𝑛(𝜃𝑁) = 𝐸([𝑈(𝕏𝑁; 𝜃𝑁)]2) = −𝑛𝐸 (
𝜕

2
𝑙𝑛 𝑓(𝑥𝑁;𝜃𝑁)

𝜕𝜃𝑁
2 )  (50) 

𝑇(𝑁𝐹𝐼𝑛(𝜃𝑁)) = 𝑇 (−𝑛𝐸 (
𝜕2

𝜕(𝜃1 + 𝜃2𝐼)2
𝑙𝑛 𝑓(𝑥 + 𝑦𝐼; 𝜃1 + 𝜃2𝐼))) 

= (−𝑛𝐸
𝜕2

𝜕𝜃1
2 𝑙𝑛 𝑓(𝑥; 𝜃1) , −𝑛𝐸

𝜕2

𝜕(𝜃1+𝜃2)2 𝑙𝑛 𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃1))  (51) 

Taking 𝑇−1get: 

𝑁𝐹𝐼𝑛(𝜃𝑁) = 𝑇−1 (−𝑛𝐸
𝜕2

𝜕𝜃1
2 𝑙𝑛 𝑓(𝑥; 𝜃1) , −𝑛𝐸

𝜕2

𝜕(𝜃1 + 𝜃2)2
𝑙𝑛 𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃1)) 

= −𝑛𝐸
𝜕2

𝜕𝜃1
2 𝑙𝑛 𝑓(𝑥; 𝜃1) + [−𝑛𝐸

𝜕2

𝜕(𝜃1 + 𝜃2)2
𝑙𝑛 𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2) + 𝑛𝐸

𝜕2

𝜕𝜃1
2 𝑙𝑛 𝑓(𝑥; 𝜃1)] 𝐼 

= 𝐹𝐼𝑛(𝜃1) + [𝐹𝐼𝑛(𝜃1 + 𝜃2) − 𝐹𝐼𝑛(𝜃1)]𝐼   (52) 

Example 7: 

Let 𝕏N be a neutrosophic random sample of distribution given in example 3, then: 

𝑇(𝑓(𝑥𝑁; 𝜃𝑁)) = (
1

𝜃1

𝑒
−

𝑥

𝜃1 ,
1

(𝜃1 + 𝜃2)
𝑒

−
(𝑥+𝑦)

(𝜃1+𝜃2)) 

𝑇(𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁)) = (− 𝑙𝑛 𝜃1 −
𝑥

𝜃1

, − 𝑙𝑛(𝜃1 + 𝜃2) −
(𝑥 + 𝑦)

(𝜃1 + 𝜃2)
) 

𝑇 (
𝜕

𝜕𝜃𝑁

𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁)) = (−
1

𝜃1

+
𝑥

𝜃1
2 , −

1

(𝜃1 + 𝜃2)
+

(𝑥 + 𝑦)

(𝜃1 + 𝜃2)2
) 

𝑇 (
𝜕2

𝜕𝜃𝑁
2 𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁)) = (

1

𝜃1
2 −

2𝑥

𝜃1
3 ,

1

(𝜃1 + 𝜃2)2
−

2(𝑥 + 𝑦)

(𝜃1 + 𝜃2)3
) 

𝑇 (−𝑛𝐸 (
𝜕2

𝜕𝜃𝑁
2 𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁))) = (−𝑛𝐸 (

1

𝜃1
2 −

2𝑥

𝜃1
3) , −𝑛𝐸 (

1

(𝜃1 + 𝜃2)2
−

2(𝑥 + 𝑦)

(𝜃1 + 𝜃2)3
)) 

𝑇 (−𝑛𝐸 (
𝜕2

𝜕𝜃𝑁
2 𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁))) = (

𝑛

𝜃1
2 ,

𝑛

(𝜃1 + 𝜃2)2
) 

−𝑛𝐸 (
𝜕2

𝜕𝜃𝑁
2 𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁)) = 𝑇−1 ((

𝑛

𝜃1
2 ,

𝑛

(𝜃1 + 𝜃2)2
)) =

𝑛

𝜃1
2 + [

𝑛

(𝜃1 + 𝜃2)2
−

𝑛

𝜃1
2] 𝐼 = 𝑁𝐼𝐹𝑛(𝜃𝑁) 

Simulation Analysis: 

In this part, performance of two estimation methods was evaluated based on Monte Carlo 

simulation to the three studied neutrosophic probability distributions using R software with various 

sample sizes and with total replication of 𝑁 = 10000 times with sample sizes of 5,15,30,50 and 100 

and with fixed parameter 𝜃𝑁 = 2 + 𝐼. Goodness of estimation was assessed depending on average 

bias and root mean square error defined below: [18] 

𝐴𝐵 =
∑ (�̂�𝑁𝑖 − 𝜃𝑁)𝑁

𝑖=1

𝑁
 

𝑅𝑀𝑆𝐸 = √∑ (�̂�𝑁𝑖 − 𝜃𝑁)
2𝑁

𝑖=1

𝑁
 

Table (1) shows results of simulation analysis for neutrosophic power distribution and compares 

the two proposed estimation methods, notice that average bias of moments estimator is decreasing 

faster than maximum likelihood’s average bias, which proves by simulation that moments estimator 

is asymptotically unbiased. 

Table 1: Simulation performance of Neutrosophic Power Distribution. 

n Maximum Likelihood Moments 

 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 

5 1.48 + 0.76𝐼 0.4992 + 0.2356𝐼 2.50 + 1.24𝐼 1.45 + 0.75𝐼 0.3877 + 0.2213𝐼 2.39 + 1.22𝐼 
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15 0.61 + 0.29𝐼 0.1443 + 0.0638𝐼 2.14 + 1.06𝐼 0.63 + 0.28𝐼 0.1101 + 0.0559𝐼 2.11 + 1.06𝐼 

30 0.39 + 0.22𝐼 0.0678 + 0.0422𝐼 2.07 + 1.04𝐼 0.41 + 0.21𝐼 0.0505 + 0.0406𝐼 2.05 + 1.04𝐼 

50 0.29 + 0.16𝐼 0.0386 + 0.0204𝐼 2.04 + 1.02𝐼 0.31 + 0.15𝐼 0.0282 + 0.0193𝐼 2.03 + 1.02𝐼 

100 0.21 + 0.10𝐼 0.0192 + 0.0126𝐼 2.02 + 1.01𝐼 0.22 + 0.10𝐼 0.0147 + 0.0104𝐼 2.01 + 1.01𝐼 

Table (2) shows results of simulation analysis for neutrosophic Exponential distribution and 

compares the two proposed estimation methods and we see that both methods give the same 

estimators. 

 

Table 2: Simulation performance of Neutrosophic Exponential Distribution. 

n Maximum Likelihood Moments 

 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 

5 0.89 + 0.46𝐼 −0.0046 + 0.0097𝐼 2.00 + 1.01𝐼 0.89 + 0.46𝐼 −0.0046 + 0.0097𝐼 2.00 + 1.01𝐼 

15 0.61 + 0.29𝐼 0.0067 − 0.0178𝐼 2.01 + 0.98𝐼 0.61 + 0.29𝐼 0.0067 − 0.0178𝐼 2.01 + 0.98𝐼 

30 0.39 + 0.22𝐼 −0.0024 + 0.0121𝐼 2.00 + 1.01𝐼 0.39 + 0.22𝐼 −0.0024 + 0.0121𝐼 2.00 + 1.01𝐼 

50 0.29 + 0.16𝐼 −0.0024 − 0.0013𝐼 2.00 + 1.00𝐼 0.29 + 0.16𝐼 −0.0024 − 0.0013𝐼 2.00 + 1.00𝐼 

100 0.21 + 0.10𝐼 −0.0008 + 0.0033𝐼 2.00 + 1.00𝐼 0.21 + 0.10𝐼 −0.0008 + 0.0033𝐼 2.00 + 1.00𝐼 

Table (3) shows results of simulation analysis for neutrosophic Maxwell distribution and 

compares the two proposed estimation methods, notice that average bias of moments estimator is 

decreasing faster than maximum likelihood’s average bias, which proves by simulation that moments 

estimator is asymptotically unbiased. 

 

Table 3: Simulation performance of Neutrosophic Maxwell Distribution. 

n Maximum Likelihood Moments 

 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 

5 1.04 + 0.49𝐼 0.3119 + 0.1552𝐼 2.31 + 1.16𝐼 1.02 + 0.48𝐼 0.2470 + 0.1260𝐼 2.25 + 1.13𝐼 

15 0.47 + 0.23𝐼 0.0882 + 0.0568𝐼 2.09 + 1.06𝐼 0.47 + 0.24𝐼 0.0687 + 0.0488𝐼 2.07 + 1.05𝐼 

30 0.31 + 0.16𝐼 0.0429 + 0.0185𝐼 2.04 + 1.02𝐼 0.32 + 0.16𝐼 0.0351 + 0.0113𝐼 2.04 + 1.01𝐼 

50 0.24 + 0.12𝐼 0.0274 + 0.0105𝐼 2.03 + 1.01𝐼 0.24 + 0.12𝐼 0.0231 + 0.0073𝐼 2.02 + 1.01𝐼 

100 0.17 + 0.08𝐼 0.0160 + 0.0046𝐼 2.02 + 1.00𝐼 0.17 + 0.08𝐼 0.0135 + 0.0032𝐼 2.01 + 1.00𝐼 

6. Conclusions and future research directions 

In this paper we have introduced the concept of neutrosophic likelihood estimation method and neutrosophic 

moments estimation method and studied its properties based on AH-Isometry. We also presented theorems on 

these two estimation methods. We see that two estimation methods yields to different estimators. We also 

presented the concept of neutrosophic fisher information and presented some theorems related to it. In future 

work we are looking forward to study the properties of estimators like biasness, consistency and sufficiency. 

This paper opens the way to study the theory of neutrosophic statistical inference which is using neutrosophic 

classical numbers 𝑁 = 𝑎 + 𝑏𝐼; 𝐼2 = 𝐼 (not interval neutrosophic numbers).  
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1.  Introduction 

The plithogeny, plithogenic set, plithogenic logic, plithogenic probability, plithogenic statistics, 

and the symbolic plithogenic algebraic structures were introduced in 2018-2019 by Smarandache [1, 

2, 3, 4, 5]. 

Plithogeny is the genesis or origination, creation, formation, development, and evolution of new 

entities from dynamics and organic fusions of contradictory and/or neutrals and/or non-

contradictory multiple old entities.  

And plithogenic means what is pertaining to plithogeny.  

Plithogeny is an extension of neutrosophy, which is an extension of paradoxism.  

While paradoxism [6] is based on using opposite ideas, contradictions, paradoxes in arts, letters, 

and science creations,  

neutrosophy is based on the dynamics of a pair of opposites (<A> ,<antiA>) and their neutral 

(indeterminacy) <neutA>,  

but plithogeny on the dynamics of many pairs of opposites (<A1>, <antiA1>), …, (<Ak>,     

<antiAk>) and their neutralities <neutA1>, …, <neutAk>, for k ≥ 2 [“plitho” means “many” in Greek 

language]. 

Plithogenic Set was extended to Type-n Plithogenic Set, for integer n ≥ 1. 

Symbolic Plithogenic Numbers are generalizations of Neutrosophic Quadruple Numbers, 

Refined Neutrosophic Quadruple Numbers, and Symbolic Turiyam Numbers. 

Consequently, the Symbolic Plithogenic Algebraic Structures (semigroup, group, ring, etc.) are 

generalization of the corresponding algebraic structures built on these particular cases described 

above. 

2.  Informal Definition of Plithogenic Set  

A plithogenic set (PS) is a set whose elements are characterized, as in our real world, by many 

attributes (parameters): P1, P2, …, Pn.  

1 2{ ( , ,..., ), }nPS x P P P x U=  , where U is a universe of discourse. 
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A generic element x belongs to the plithogenic set PS in a certain degree d(Pi) with respect to 

each attribute (parameter) Pi. The degree of appurtenance of an element to the plithogenic set may 

be: classical, fuzzy, intuitionistic fuzzy, neutrosophic, refined neutrosophic, and any other type of 

extended fuzzy.  

In a better descriptive way, emphasizing the degrees, we may re-write it as: 

1 2{ ( ( ), ( ),..., ( )), }nPS x d P d P d P x U=   

The attributes (parameters) P1, P2, …, Pn may be independent, dependent, or partially 

independent and partially dependent of each other - according to each application. 

This is also called Type-1 Plithogenic Set. 

 

3.   Type-k Plithogenic Set 

 

The Type-k Neutrosophic Set [13] has been extended to Type-k Plithogenic Set. 

If the parameters   depend on sub-parameters  for  then one gets 

a Type-2 Plithogenic Set. 

Afterward, if the sub-parameters  are formed by sub-sub-parameters  

for then one gets a Type-3 Plithogenic Set.   

And so on, up to Type-k Plithogenic Set. 

Passing to degrees, one may write: 

1 1 1 1 2 1{ ( ( ), ( ),..., ( )), }nPS x d P d P d P x U=   

Type-2 Plithogenic Set 

2 2 1 1 2 1 2 2 1{ ( ( ( )), ( ( )),..., ( ( ))), }nPS x d d P d d P d d P x U=   

In general, Type-n Plithogenic Set 

2 1 1 2 1 2 2 1{ ( (... ( ( ))...), (... ( ( ))...),..., (... ( ( ))...), }k k k k nPS x d d d P d d d P d d d P x U=  . 

 

4. Hybridization of Classical, Fuzzy, and Fuzzy Extension Sets 

 The real applications require many times to deal with multiple types of classical, fuzzy, and 

fuzzy extension sets. 

Assume that, starting from a neutrosopohic element of the form x(T, I, F), with 

0 3T I F + +  , one has be combined it with a Picture_Fuzzy form (T, N, F), with 

0 1T N F + +  , then one gets: the neutrosophic-picture_fuzzy hybrid form: 

(( , , ), ( , , ), ( , , ))TT TN TF IT IN IF FT FN FF ,  

with 0 1,0 1,0 1,TT TN TF IT IN IF FT FN FF + +   + +   + +   

where T was split into TT, TN, TF representing the confidence in T, neutral-confidence in T, and 

nonconfidence in T respectively; similarly for I and F. 

Further on, let’s combine the result with the Spherical_Fuzzy Set, where the sum of squares of 

components is between 0 and 1, then one obtains a neutrosophic-picture_fuzzy-spherical_fuzzy 

hybrid form: (( , , ), ( , , ), ( , , ))TT TN TF IT IN IF FT FN FF , with 

2 2 2 2 2 2 2 2 20 1,0 1,0 1TT TN TF IT IN IF FT FN FF + +   + +   + +  . 

 The hybridization chain may be as long as needed, and may deal with various types of 

classical, fuzzy, and fuzzy extension sets – including repeated types. 

5. Definitions of Symbolic Plithogenic Set & Symbolic Plithogenic Algebraic Structures  

Let SPS be a non-empty set, included in a universe of discourse U, defined as follows: 

 
0 1 1 2 2{ | ... , 1,n n iSPS x x a a P a P a P n a R= = + + + +    or 

ia C or ai belong to some given 

algebraic structure, for 0 i n  ,  

,1 ,iP i n  1 2, ,...,
ii i imP P P 1im 

,1 ,1ij iP i n j m   

1 2, ,...,
jij ij ijmP P P 1jm 
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where R = the set of real numbers, C = the set of complex numbers, and all 
iP  are letters (or 

variables) and are called Symbolic (Literal) Plithogenic Components (Variables)}, where 1, P1, P2, …, Pn act 

like a base for the elements of the above set SPS.  

a0, a1, a2, …, an are called coefficients. 

SPS is called a Symbolic Plithogenic Set. And the algebraic structures defined on this set are 

called Symbolic Plithogenic Algebraic Structures. 

In general, Symbolic (or Literal) Plithogenic Theory is referring to the use of abstract symbols 

{i.e. the letters/parameters) P1, P2, …, Pn, representing the plithogenic components (variables) as 

above} in some theory. 

6. Definition of Plithogenic Numbers (PN)  

The numbers of the form
0 1 1 2 2 ... n nPN a a P a P a P= + + + +  defined as above are called Plithogenic 

Numbers, where anPn is called the leading (strongest) term. 

7. Prevalence Order (PO)  

The experts establish a prevalence order [1], or total order, according to the importance of each 

attribute/parameter (Pi) into the application.  To obtain a total order among the symbolic plithogenic 

components 
1 2{ , ,..., }nP P P , one defines some relationships (laws) between them. 

The most used one is the absorbance law.  

8. Absorbance Law  

We recall and use now our 2015 Absorbance Law [1], simply defined as:  

the greater absorbs the smaller [the bigger fish eats the smaller fish]. 

9. Multiplication and Power of Symbolic Plithogenic Components under the Absorbance Law  

We assume that in the above definition of the plithogenic numbers, the symbolic plithogenic 

components are ranked increasingly, or 

1 2 ... nP P P     (prevalence order) 

where “<” may signify:  smaller, less important, under, inferior, etc. 

Whence, the multiplication and power of symbolic plithogenic components are: 

max{ , }i j i jP P P = , whence 2( )i iP P= .  

In general, 
1 2 1 2max{ , ,..., }...

k ki i i i i iP P P P   = and ( )m

i iP P=  for integer 1m . 

Negative powers of Symbolic Plithogenic Components do not exist, ( )
( )

1m

i m

i

P
P

−
= does not 

exist.  For example, ( )
1 1

i

i

P
P

−
= does not exist. 

And iP to the power zero is equal to 1 by definition: ( )
0

1iP .  

 

10.  m-th Root of the Symbolic Plithogenic Components 

 

 ,1m
i iP P i n=   , for integer 2m  , because ( ) ( )

m
mm

i iP P= , or i iP P= . 

     ( )
m

m
iP cannot be equal to 1iP− or lower, nor 1iP+  or upper, because the last two raised to the 

power m would not give iP . 
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Examples: 1 1P P= , 3
7 7P P= , 44 4

9 9 916 16 2P P P=  = . 

11. Example of Plithogenic Set  

Let’s have a classical set  

S = {John, George, Mary}, 

and each element is characterized with respect to the attributes: Weight (W), Tallness (T), Oldness 

(()), Beauty (B), Health (H).  

Each person/element has some (classical, fuzzy, or any fuzzy extension) degree (d) with respect 

to each attribute (parameter): d(Weight), d(Tallness), d(Oldness), d(Beauty), d(Health).  

And thus one transforms the classical set into a plithogenic set: 

PS = {John[d(Weight), d(Tallness), d(Oldness), d(Beauty), d(Health)], 

George[d(Weight), d(Tallness), d(Oldness), d(Beauty), d(Health)],  

Mary[d(Weight), d(Tallness), d(Oldness), d(Beauty), d(Health)]}. 

As a numerical example, see below, as evaluated by Expert 1:  

PS1 = {John(0.5, 0.6, 0.3, 0.1, 0.7), George(0.1, 0.8, 0.3, 0.1, 0.4), Mary(0.9, 0.4, 0.6, 0.1, 0.2)}. 

       PS1 is a Type-1 Plithogenic Set. 

Which means that on some corresponding scales, John’s fuzzy degree of Weight is 0.5, fuzzy 

degree of Tallness 0.6, fuzzy degree of Oldness 0.3, fuzzy degree of Beauty 0.1, and fuzzy degree of 

Health 0.7. {Of course, one may consider all kind of degrees: not only fuzzy, but also: classical, 

intuitionistic fuzzy, neutrosophic, refined neutrosophic, and other fuzzy extensions.} 

Similarly for George’s and Mary’s degrees. 

 

12.  Example of Type-2 Plithogenic Set 

 Assume that Expert 2 is not totally confident on the evaluation of the Expert 1 in the above 

example. Thus, he decides to evaluate the first evaluation. Expert 2 may, as well, use any types of 

degrees – according to the expert desire and tools, not necessarily the same as in the previous 

evaluation. 

For the sake of simplicity, let’s consider that Expert 2 also uses fuzzy degrees. Now one gets a  

Type-2 Plithogenic Set: 

 

2 { [0.5(0.9),0.6(0.4),0.3(1.0),0.1(0.0),0.7(0.8)],

[0.1(0.3),  0.8(0.4),  0.3(0.5),  0.1(0.7),  0.4(0.9)],

[0.9(0.1),  0.4(0.5),  0.6(0.6),  0.1(0.8),  0.2(0.9)]}

PS John

George

Mary

=

 

Which are interpreted as follows: 

0.5(0.9) means that Expert 2 is 0.9 (90%) confident in John’s fuzzy degree of Weight of 0.5 

assigned by Expert 1; 

0.6(0.4) means that Expert 2 is 0.4 (40%) confident in John’s fuzzy degree of Tallness of 0.6 

assigned by Expert 1; 

0.3(1.0) means that Expert 2 is 1.0 (100%) confident in John’s fuzzy degree of Oldness of 0.3 

assigned by Expert 1; 

0.1(0.0) means that Expert 2 is 0.0 (0%) confident in John’s fuzzy degree of Beauty of 0.1 

assigned by Expert 1; 

0.7(0.8) means that Expert 2 is 0.8 (80%) confident in John’s fuzzy degree of Health of 0.7 

assigned by Expert 1. 

And similarly for George’s and Mary’s second round of degrees. 

 

13.  Example of Type-3 Plithogenic Set 

The process may go on and have an Expert 3 evaluate the Expert 2.  Assume Expert 3 uses 

neutrosophic degrees. 
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3 { {0.5[0.9(0.6,0.7,0.3)],0.6[0.4(0.6,0.7,0.3)],

0.3[1.0(0.6,0.7,0.3)],0.1[0.0(0.6,0.7,0.3)],0.7[0.8(0.6,0.7,0.3)]},

PS John=
 

[0.1[0.3(0.4,0.4,0.06)],  0.8[0.4(0.9,0.1,0.03)],  0.3[0.5(0.9,1.0,0.2)],

 0.1[0.7(0.7,0.3,0.6)],  0.4[0.9(0.1,0.0,0.4)],

George
 

{0.9[0.1(0.2,0.3,0.4)],  0.4[0.5(0.7,0.8,0.7)],  

0.6[0.6(1.0,0.0,0.0)],  0.1[0.8(0.1,0.4,0.6)],  0.2[0.9(0.0,0.0,0.0)]}

Mary
 

 

Therefore, 

0.5[0.9(0.6,0.7,0.3)] 

means that Expert 3 assigns the neutrosophic degrees of truth = 0.6, indeterminacy = 0.7, and 

falsehood = 0.3, to the Expert 2’s evaluation of 0.9 (90%) confidence on Expert 1’s evaluation of 0.5 

degree of John’s Weight. 

And so on for all others. 

 

One may generalize to Type-k Plithogenic Set, recurrently going on from a type to the next type, 

but it becomes more sophisticated and not usable in practice. 

14. Example of Symbolic Plithogenic Numbers  

The corresponding Symbolic Plithogenic Algebraic Structure is based on the symbolic (or literal) 

plithogenic components W, T, O, B, H, and we get the plithogenic numbers (PN) of the form:  

PN = a + bW + cT + dO + eB + fH, 

where a, b, c, d, e, f are real, or complex numbers, or they may belong to a set of a given classical 

algebraic structure. As a particular example, let PN1 = 2 - 3W + 5T - O + 6B - 4H. 

In this example, let’s assume that the prevalence order is:   

W < T < O < B < H, where “<” means “less important”, 

or W is less important than T, which is less important than O, which is less important that B, 

which is less important than H. 

The absorbance law is defined as follows: the most important absorbs the less important in the 

multiplication operation, for example W T T = , since T absorbs W because T is more important 

(bigger) than W.  Similarly for the other multiplications. 

15. Operations with Plithogenic Numbers   

Let’s consider two plithogenic numbers: 

1 0 1 1 2 2 ... n nPN a a P a P a P= + + + +
  

2 0 1 1 2 2 ... n nPN b b P b P b P= + + + +
. 

15.1.  Addition of Plithogenic Numbers 

1 2 0 0

1

( ) ( )
n

i i i

i

PN PN a b a b P
=

+ = + + +
 

15.2.  Subtraction of Plithogenic Numbers 

1 2 0 0

1

( ) ( )
n

i i i

i

PN PN a b a b P
=

− = − + −
 

(SPS, +) is a Symbolic Plithogenic Commutative Group 

15.3.  Scalar Multiplication of Plithogenic Numbers  

1 0 1 1 2 2 0 1 1 2 2( ... ) ...n n n nc PN c a a P a P a P c a c a P c a P c a P =  + + + + =  +  +  + + 
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15.4.  Multiplication of and Ppower of Plithogenic Numbers  

1 2 0 1 1 2 2 0 1 1 2 2( ... ) ( ... )n n n nPN PN a a P a P a P b b P b P b P = + + + +  + + + +
 

and then one multiplies them, term by term 
max{ , }( ) ( )i i j j i j i ja P a P a a P =   , where   is the 

classical multiplication, as in classical algebra, using the above multiplication of symbolic plithogenic 

components. 

As particular case: 0 0iP = . 

( , , )SPS +   is a Symbolic Plithogenic Commutative Ring, with the plithogenic unitary element: 

1 21 1 0 0 ... 0 nP P P +  +  + +  . 

The symbolic plithogenic components Pi’s are not inversible, therefore the elements of SPS are 

non-inversible (except the plithogenic unitary element *1 ).  

1 1 1 1( ) ...m

m times

PN PN PN PN

−

=    for integer 1m  ; 

The negative power of a plithogenic number 1( ) mPN −
 does not exist. 

15.5.  Alternative Multiplication of Plithogenic Numbers 

1 2 0 0 1 1 1 2 2 2 ... n n nPN PN a b a b P a b P a b P =  +   +   + +  
. 

( , , )SPS +  , is a Symbolic Plithogenic Commutative Ring, with the unitary element: 

1 21 1 1 1 ... 1 nP P P  +  +  + +  . 

The plithogenic numbers that have coefficients equal to zero do not have an inverse, for example:  

2 + 3P1 – 5P3 = 2 + 3P1 + 0P2 – 5P3 is not inversible. 

15.6.  Division of Symbolic Plithogenic Components  

0 1 1 2 2 0 1

0 1 1 2 2 0 1

... ... 0

... ... 1

j j i j

i

i i i

j

x x P x P x P P x x x i j
P

x x P x P x P x x x i j
P

i j

+ + + + + + + + =  
 

= + + + + + + + = = 
  

 

where all coefficients 0 1 2, , ,... ,..., ,...i jx x x x x SPS . 

There are j-tuple infinities of quotients when i > j,  

also i-tuple infinities of quotients when i = j,  

and no quotient (indeterminate division) when i < j. 

Therefore, the operation of division d(. , .) of symbolic plithogenic components 
2

1 2( , ) :{ , ,..., }i j nd P P P P P SPS→
 

is a NeutroOperation, because:  

it is well-defined (inner-defined) for no elements, since one never gets a single quotient, or 

( , )i jd P P SPS ;  

it is indeterminate (cannot be calculated) for some elements (when Pi < Pj) with ( , )i jd P P  being 

indeterminate;  

and outer-defined (when Pi = Pj and Pi > Pj) with ( , )i jd P P SPS  

but ( , ) ( )i jd P P P SPS  the powerset of SPS. 

15.6.1.  Example 1 of Division of Symbolic Plithogenic Components 

i > j [j-tuple infinities of quotients] 

Let’s divide P5 by P2. 

5

2

P
x

P
=
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where 
0 1 1 2 2 ... n nx x x P x P x P SPS= + + + +  . 

5 2P x P= 
 

Since the multiplication 
2x P should not exceed P5 we take n = 5 into the formula of x, or  

 

2 0 1 1 2 2 3 3 4 4 5 5 2

0 2 1 1 2 2 2 2 3 3 2 4 4 2 5 5 2

0 1 2 2 3 3 4 4 5 5

5 1 2 3 4 5

( )

( )

0 0 0 0 0 1

x P x x P x P x P x P x P P

x P x PP x P P x P P x P P x P P

x x x P x P x P x P

P P P P P P

 = + + + + + 

= + + + + +

= + + + + +

  + + + + +  
Therefore, x5 = 1, x4 = 0, x3 = 0, x0 + x1 + x2 = 0. 

Whence, 5
0 1 1 2 2 5

2

,
P

x x P x P P
P

= + + + with 
0 1 2 0x x x+ + = , and the coefficients 

0 1 2, ,x x x SPS  

[2-tuple infinities of quotients]. 

15.6.2.  Example 2 of Division of Symbolic Plithogenic Components 

i = j [i-tuple infinities of quotients] 

3

3

P
x

P
=

  or 

3 3 3 0 1 1 2 2 3 3 0 3 1 1 3 2 2 3 3 3 3

0 3 1 3 2 3 3 3 0 1 2 3 3 3

( )

( ) 1

P P x P x x P x P x P x P x PP x P P x P P

x P x P x P x P x x x x P P

=  =  + + + = + + +

= + + + = + + +  
 

whence 0 1 2 3 1x x x x+ + + =
. 

Thus, 3
0 1 1 2 2 3 3

3

P
x x P x P x P

P
= + + + ,  

where 
0 1 2 3 1x x x x+ + + = , and the coefficients 

0 1 2 3, , ,x x x x SPS  

15.6.3.  Example 3 of Division of Symbolic Plithogenic Components  

i < j [indeterminate, no quotient] 

2

4

P
x

P
=  or 

2 4 4 2P P x P P=     or  
2 2P P , which is impossible. 

This multiplication, P4 times any of 1, P1, P2, …, Pn, will give a result that is greater than or equal 

to P4 according to the absorbing law. 

This division is undefined (indeterminate). 

15.7.  Division of Symbolic Plithogenic Numbers  

Let consider two symbolic plithogenic numbers as below: 

3 0 1 1 2 2 ... r rPN a a P a P a P= + + + +
  and  4 0 1 1 2 2 ... s sPN b b P b P b P= + + + +

 

where r, s ≤ n are positive integers, and the leading coefficients (the coefficients of the 

highest/largest symbolic plithogenic components Pr and respectively Ps) are nonnull, 0, 0r sa b  . 

The division is also based on the absorbance law. 

0 1 1 2 2

0 1 1 2 2

...

...

r rr

s s s

a a P a P a PPN
x

PN b b P b P b P

+ + + +
= =

+ + + +
 

We need to find x SPS . 

0 1 1 2 2 0 1 1 2 2... ( ... )r r s sa a P a P a P x b b P b P b P+ + + +   + + + +
 

We are focusing first on the division of their leading symbolic plithogenic components: r

s

P

P
as 

we did on the previous section. Of course the leading coefficients 0, 0r sa b  . 
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, ,
r

s

none one many r sPN

r sPN 

 
=  

   
For r s  there may be: none, one, or many (including infinitely many) quotients. 

For r < s no quotient. 

We prove these through several examples: 

15.7.1. Example 1 (no quotient) 

1

1

1
?

P

P

+
=

1
0 1 1

1

1
( )

P
x x x P

P

+
= = + , we need to solve for x (actually for x0 and x1).

1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 11 ( ) ( )P x x P P x P x PP x P x P x x P+ = +  = + = + = +

We may set 
0 1 1x x+ = , but we are not able to catch the free coefficient 1 from the left-hand

side, i.e. 

1 11P P+ 

15.7.2. Example 3 (one quotient only) 

1

1

2
?

1

P

P

+
=

+

1
0 1 1

1

2

1

P
x x x P

P

+
= = +

+

whence 

1 0 1 1 1 0 1 1 1 1 0 1 1

0 1 1 1 0 1 1 1 0 0 1 1

2 ( ) ( 1)

( 2 )

P x x P P x P x PP x x P

x P x P x P x P x x x P

+ = +  + = + + +

= + + + = + +

we get 

0 0 12, 2 1,x x x= + = then x1 = -0.5. 

There is only one quotient (solution): 0 1 1x x P+ = 2 - 0.5P1 = - 0.5P1 + 2. 

Let’s check the result: 

1 1 1 1 1 1 1 1 1

1

( 1) ( 0.5 2) 0.5 2 0.5 2 0.5 2 0.5 2

2.

P P PP P P P P P

P

+  − + = − + − + = − + − +

= +

15.7.3. Example 3 (double infinities of quotients (solutions)) 

3

3 2

5
?

2

P

P P
=

−

3
0 1 1 2 2 3 3

3 2

5
.

2

P
x x x P x P x P

P P
= = + + +

−

We need to find the coefficients 
0 1 2 3, , ,x x x x . 

3 0 1 1 2 2 3 3 3 2

0 1 1 2 2 3 3 3 0 1 1 2 2 3 3 2

0 1 2 3 3 0 1 2 2 3 3

0 1 2 3 3 0 1 2 2 3 2

5 ( ) ( 2 )

( ) ( ) ( 2 )

( ) (2 2 2 ) 2

( ) (2 2 2 ) 5 0

P x x P x P x P P P

x x P x P x P P x x P x P x P P

x x x x P x x x P x P

x x x x P x x x P P P

= + + +  −

= + + +  + + + +  −

= + + + − + + −

= + + − − + +  +

Whence we get two equations: 

0 1 2 3

0 1 2

5

2 2 2 0

x x x x

x x x

+ + − =

+ + =

Hence 0 1 22( ) 0x x x+ + = , or 0 1 2 0x x x+ + =
. 

Replace it into the first equation: 

Indeterminacy.

This is also a NeutroOperation since it has indeterminate cases.
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0 – x3 = 5, then x3 = -5. 

3
0 1 1 2 2 3 3 0 1 1 2 2 3

3 2

5
5 ,

2

P
x x P x P x P x x P x P P

P P
= + + + = + + −

−  

where 0 1 2 0x x x+ + = . 

15.8.      m-th Root of the Plithogenic Number 

 

1 0 1 1 2 2 ...m m
n nPN a a P a P a P= + + + + = 0 1 1 2 2 ... n nx x P x P x P+ + + + . 

We need to find the coefficients 0 1 2, , ,..., nx x x x . 

Raising to the power m both sides, one gets: 

0 1 1 2 2 0 1 1 2 2... ( ... )m

n n n na a P a P a P x x P x P x P+ + + + = + + + + , where 0 1 2, , ,..., nx x x x are 

coefficients that we need to find out. After raising to the power k the right-hand side, we identify the 

coefficients two by two. 

The m-root of a plithogenic number may have: no solution, several solutions, or infinitely many 

solutions. 

 

Example 1 of m-th Root of the Plithogenic Number with real coefficients (several solutions) 

14 3 ?P− =  

1 0 1 14 3P x x P− = + , where we need to find x0 and x1. 

Raise both sides to the second power: 
2 2

1 0 1 1( 4 3 ) ( )P x x P− = +  or 

2 2 2 2 2

0 0 1 1 1 1 0 0 1 1 1 1

2 2

0 0 1 1 1 1

4 3 ( ) 2 ( ) ( ) ( ) 2 ( )

( ) [2 ( ) ] 4 3

P x x x P x P x x x P x P

x x x x P P

− = + + = + +

= + +  −
 

Identify the coefficients: 
2

0

2

0 1 1

( ) 4

2 ( ) 3

x

x x x

 =
 

+ = − 
 

Whence 0 2, 2x = −  from the first equation. Replaced into the second equation one gets: 

2

1 14 ( ) 3x x + = − , or two quadratic equations 
2

1 1( ) 4 3 0x x + =  that we need to solve. 

For 0 2,x =
2

1 1( ) 4 3 0x x+ + = , has the solutions 1 1, 3x = − − ,  

thus 0 1( , ) (2, 1)x x = −  or (2, 3)− . 

For 0 2,x = −
2

1 1( ) 4 3 0x x− + = , has the solutions 1 1,3x = ,  

thus 0 1( , ) ( 2,1)x x = −  or ( 2,3)− . 

Final answer: 

1 0 1 14 3P x x P− = + = 1 1 1 12 ,2 3 , 2 , 2 3P P P P− − − + − +  (four solutions). 

 

Example 2 of m-th Root of the Plithogenic Number with real coefficients (no solution) 

14 3P− − has no solution since one gets, in the above calculation 
2

0( ) 4x = − , which does not 

work in the set of real numbers. 

 

15.9.  Remark 1 

Other operations may be constructed on the Symbolic Plithogenic Set (SPS), giving birth to 

various symbolic plithogenic algebraic structures. 
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15.10.   Remark 2 

All previous operations are valid for the absorbance law and prevalence order defined above. If 

different law and order are defined by the experts, then different operations and results one gets. 

16.  Particular Cases of Symbolic Plithogenic Algebraic Structures 

16.1.  Neutrosophic Quadruple Numbers 

Let’s consider an entity (i.e. a number, an idea, an object, etc.) which is represented by a known 

part (a) and an unknown part (𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹). 

Numbers of the form 

𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹,  

where a, b, c, d are real (or complex) numbers (or intervals, or in general subsets), and 

T = truth / membership / probability, 

I = indeterminacy / neutrality, 

F = false / membership / improbability, 

are called Neutrosophic Quadruple (Real respectively Complex) Numbers (or Intervals, or in general 

Subsets) [1]. 

“a” is called the known part of NQ,  

while “𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹” is called the unknown part of NQ. 

Neutrosophic Quadruple Numbers [1] are particular case of the Plithogenic Numbers, since one 

takes n = 3, and P1, P2, P3 are more general than T, I, and F respectively.  

16.2.  Refined Neutrosophic Quadruple Numbers 

The Refined Neutrosophic Quadruple Numbers [1, 7] have the form: 

1 1 1

p r s

j j k k l l

j k l

RQN a b T c I d F
= = =

= + + +    

where a, all 𝑏𝑖, all 𝑐𝑗, and all 𝑑𝑘 are real (or complex) numbers, intervals, or, in general, subsets, while 

𝑇1, 𝑇2, ... , 𝑇𝑝 are refinements of 𝑇; 

𝐼1, 𝐼2, ... , 𝐼𝑟 are refinements of 𝐼; 

and 𝐹1, 𝐹2, ... , 𝐹𝑠 are refinements of 𝐹, 

for integers , , 0p r s   and at least one of them be 2 , with p r s n+ + = . 

Refined Neutrosophic Quadruple Numbers are also particular case of the Plithogenic Numbers, 

since instead of symbolic sub-truths / sub-indeterminacies / sub-falsehoods , ,j k lT I F  one may use all 

kinds of symbolic plithogenic components 
1 2, ,..., nP P P . 

All, Neutrosophic Quadruple Numbers and Refined Neutrosophic Quadruple Numbers, 

together with the Prevalence Order and Absorbance Law, were introduced by Smarandache [1] in 

2015. 

16.3.  (Symbolic) Turiyam Set 

Turiyam Set (TS) was introduced by P. K Singh [9] in 2021, who added to the neutrosophic 

components T (Truth), I (Indeterminacy), F(Falsehood), another component Y (called state of awareness). 

According to him, Turiyam component (Y) means: “Rejection of both acceptation and rejection 

of attribute at the given time i.e. unknown region (l). It needs Turiyam consciousness to explore it” 

[9]. 

Turiyam Set is very similar to Belnap’s Logic, based on: True (T), False (F), Unknown (U), and 

Contradiction (C), where T, F, U, C are taken as symbols, not numbers. Belnap’s Logic is a particular 

case of Refined Neutrosophic Logic [10]. 

Turiyam Set was defined as: 

0 1 2 3 4{( , , , , ), }iTS a a T a F a I a Y a A=  , where A is a given set, or it is the set of a given classical 

algebraic structure. 
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The Symbolic Turiyam Numbers have the form: 

0 1 2 3 4STN a a T a F a I a Y= + + + +
 

where 𝑎𝑖 ∈ 𝐴. 

It is clear that Turiyam Set (2021) is a particular case of the Plithogenic Set, because one replaces 

n = 4, and P1, P2, P3, P4 by T, F, I, Y respectively, since the symbolic plithogenic components may be 

either independent, or dependent, or partially independent/dependent as we desire. 

The operations on TS were defined as particular cases to Smarandache’s 2015 neutrosophic 

quadruple numbers and absorbance law [1] and 2019 symbolic plithogenic numbers [5]. 

Let  

0 1 2 3 4 0 1 2 3 4( , , , , )x a a T a F a I a Y a a T a F a I a Y= = + + + +
  

0 1 2 3 4 0 1 2 3 4( , , , , )y b bT b F b I b Y b bT b F b I b Y= = + + + +
  

be two STNs, and c be a scalar. 

Then the addition  

0 0 1 1 2 2 3 3 4 4

0 0 1 1 2 2 3 3 4 4

( , ( ) , ( ) , ( ) , ( ) )

( ) ( ) ( ) ( ) ( )

x y a b a b T a b F a b I a b Y

a b a b T a b F a b I a b Y

+ = + + + + +

= + + + + + + + + +   
The multiplication of the symbolic components T, F, I, Y were more complicated listed in [12], 

as: 
2 2 2 2, , , , ,

, , , , .

T T T T F F F F I I I I Y Y Y Y T Y Y T Y

T F F T F T I I T I I Y Y I I F Y Y F Y F I I F I

 = =  = =  = =  = =  =  =

 =  =  =  =  =  =  =  =  =  =  
While using the absorbance law (the stronger absorbs the weaker) and the prevalence order T < 

F < I < Y (as chosen by author Singh [12]) it would have been much simpler. 

Multiplication of STNs: 

0 1 2 3 4 0 1 2 3 4( ) ( )x y a a T a F a I a Y b bT b F b I b Y = + + + +  + + + +
 

Then similarly multiply them term by term, taking into consideration the multiplication of 

symbolic components T, F, I, Y as explained above. 

Scalar Multiplication in the similar way: 

0 1 2 3 4 0 1 2 3 4( )c x c a a T a F a I a Y c a c a T c a F c a I c a Y =  + + + + =  +  +  +  + 
. 

Consequently, the Symbolic Turiyam Group [11] and Symbolic Turiyan Ring [12], as algebraic 

structures, are particular cases of the Symbolic Plithogenic Commutative Group (defined above in 

sections 15.1 & 15.2), and respectively Symbolic Plithogenic Commutative Ring (defined above in 

sections 15.4 or 15.5). 

 

17. Practical Application 

  

 Since the cases n = 3 and 4 of Symbolic Plithogenic Algebraic Structures have been investigated, 

the reader may try to develop it for the case when n = 5, using Hexagonal Plithogenic Numbers (HPN), 

hexa since the dimension of HPN is 5 + 1 = 6 because one has  6 vectors into the base: 

1 2 3 4 51, , , , ,P P P P P .  

0 1 1 2 2 3 3 4 4 5 5HPN a a P a P a P a P a P= + + + + + , where all coefficients  ai belong to a given set. 

As practical application, for example, assume that the parameters  represent various colors, C1, C2, 

C3, C4, C5, then we denote it as: 

0 1 1 2 2 3 3 4 4 5 5HPN a a C a C a C a C a C= + + + + + .   

As multiplication law of the symbolic plithogenic components Ci with Cj one adopts a law from the 

real world. For example, if C1 = yellow, and C2 = red, then it makes sense to consider 1 2C C = pink 

(because yellow mixed with red give pink), and so on.  

In this practical application, the absorbance law does not work, that’s why one designs a new law in 

order to be able to multiply the components.  

 

18. Open Question 
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Future possible study for researchers would be to investigate the infinite-case, we mean when 

each element in the plithogenic set (section 2 above) is characterized by infinitely many attributes 

(parameters), and similarly the symbolic plithogenic numbers (section 3 above) have infinitely many 

symbolic plithogenic components 1 2, ,...,P P P  and, eventually, their applications. 

 

19.  Conclusion  

In this paper, the new types of algebraic structures from 2018-2019, called Symbolic Plithogenic 

Algebraic Structures, were revisited, and afterwards compared to other related structures. 

We proved that the Symbolic Plithogenic Numbers are generalizations of Neutrosophic 

Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, and Symbolic Turiyam Numbers. 

Consequently, the Symbolic Plithogenic algebraic structures (semigroup, group, ring, etc.) are 

generalization of the corresponding algebraic structures built on these particular cases described 

above. We recalled the Symbolic Plithogenic Group and Ring. 

Many examples and practical applications were also revealed.  

Any future application may require a special multiplication law of the components and of 

plithogenic numbers that the experts should design themselves. 
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